Birzeit University Mathematics Department Math 234

Second Exam Exam

First Semester 2019/2020

circle your section number Dr. Mohammad Saleh: section (1) & (4) Dr. Khaled Altakhman: section (2) Dr. Ala' Talahma: section (3) Dr. Hasan Yousef: section (5)

Question 1 (2.5 points each). Mark each of the following statements by True or false

- (1) $(\overline{\ldots \ldots})$ If v_1, v_2, \cdots, v_k are vectors in a vector space V, and $Span(v_1, v_2, \dots, v_k) = Span(v_1, v_2, \dots, v_{k-1}),$ then v_1, v_2, \dots, v_k are linearly dependent.
- (2) $(\overline{\ldots \ldots})$ If A is an $m \times n$ -matrix, then rank $(A) = \text{rank}(A^T)$.
- (3) $(\overline{\ldots \ldots})$ If A, B are row equivalnt matrices, then $R(A) = R(B)$ $(A, B$ have the same raw space).
-
- (5) $(\overline{\ldots} \cdot \cdot)$ If A is a 6 x 4-matrix, rank $(A) = 4$, b is in the column space of A, then the system $Ax = b$ has exactly one solution.
- (6) $(\overline{\ldots} \overline{\ldots})$ If A is 3×5 -matrix, rank $(A) = 3$, then the system $Ax = b$ has infinitely many solutions for every $b \in \mathbb{R}^3$.
- (7) $(\overline{\ldots \ldots})$ If A is a 5×4 -matrix, and $Ax = 0$ has only the zero solution, then rank $(A) = 4$.
- (8) $(\cdot \overline{.1})$ $S = \{A \in \mathbb{R}^{3 \times 3} : A \text{ is upper triangular}\}\$ is a subspace of $\mathbb{R}^{3 \times 3}$
- (9) $(\cdot \cdot \cdot \cdot)$ If S is a subspace of a vector space V, then $0 \in S$
- (10) Let A be a 2×4 matrix, and rank $(A) = 2$. Mark each of the following by true or false
	- $\left(\cdot, \overline{\cdot, \cdot}\right)$. The columns of A form a spanning set for \mathbb{R}^2 .
	- $\overline{(\ldots \cdots)}$ The rows of A are linearly independent.
	- $(. . . .)$ The system $Ax = 0$ has only the zero solution.
	- $\overline{(\cdot \cdot \cdot \cdot)}$ The columns of A are linearly dependent.
	- $\overline{(\ldots \cdot \cdot)}$ The system $Ax = b$ has infinitely many solutions for every $b \in \mathbb{R}^2$
	- \overline{F} .) nullity $\overline{A} = 0$
- (11) $(\overline{\ldots \ldots})$ If A is an $m \times n$ -matrix, $m \neq n$, then either the rows or the columns of A are linearly dependent

Question 2 (2.5 points each). Circle the most correct answer

(1) If A is a 4×4 -matrix, and $Ax = 0$ has only the zero solution, then rank (A)

- $(a) 1$
- (b) 2
- (c) 3
- (d) 4

(2) If $f_1, f_2, \dots, f_n \in C^{n-1}[a, b]$ and $W[f_1, f_2, \dots, f_n](x) = 0$ for all $x \in [a, b]$, then f_1, f_2, \dots, f_n are

- (a) linearly independent.
- (b) linearly dependent
- (c) form a spanning set for $C^{n-1}[a, b]$
- (d) none of the above

(3) If $T_{n\times n}$ is a transition matrix between two bases for a vector space V, $\dim(V) = n > 0$, then

- (a) T is nonsingular
- (b) $\det(T) = 1$
- (c) rank $(T)=1$
- (d) nullity(T) = n
- (4) If the columns of $A_{n\times n}$ are linearly independent and $b \in \mathbb{R}^n$, then the system $Ax = b$ has
	- (a) no solution
	- (b) exactly one solution
	- (c) infinitely many solutions
	- (d) none of the above

(5) if $\{v_1, v_2, \dots, v_k\}$ is a spanning set for $\mathbb{R}^{2\times 3}$, then

- (a) $k=6$
- (b) $k \geq 6$
- (c) $k \leq 6$
- (d) $k > 6$
- (6) If A is an $m \times n$ matrix, then
	- (a) rank $(A) \leq m$
	- (b) rank $(A) \leq n$
	- (c) rank $(A) \leq \min\{m, n\}$
	- (d) rank $(A) = m = n$

independent (7) If A is an $m \times n$ -matrix, and columns of A are linearly dependent, then

- (a) $m \leq$
- $n \leq m$ (c) $m = n$
- (d) $m = n + 1$
- (8) If A is a 3×5 -matrix, rows of A are linearly independent, then
	- (a) rank (A) = nullity (A)
	- (b) rank (A) = nullity (A) + 1
	- (c) rank (A) = nullity (A) + 2
	- (d) rank (A) = nullity (A) + 3
- (9) Let A be a 4×3 matrix, and rank $(A) = 3$
	- (a) The columns of A are linearly independent
	- (b) nullity(A) = 0
	- (c) The rows of A are linearly dependent
	- (d) All of the above
- (10) If $\{v_1, v_2, v_3, v_4\}$ forms a spanning set for a vector space V, $\dim(V) = 3$, v_4 can be written as a linear combination of v_1, v_2, v_3 , then
	- (a) v_1 can be written as a linear combination of v_2, v_3, v_4
	- (b) $\{v_1, v_2, v_3\}$ do not form a spanning set for V
	- (c) $\{v_1, v_2, v_3\}$ are linearly dependent
	- $\left(\overline{\mathrm{d}}\right)\left\{v_1,v_2,v_3\right\}$ is a basis for V

(11) The dimension of the space
$$
S = \text{Span} \left\{ A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, A_2 \begin{pmatrix} 1 & 0 \\ 3 & -1 \end{pmatrix}, A_3 = \begin{pmatrix} -1 & -3 \\ 6 & -8 \end{pmatrix} \right\}
$$
 is

- (a) 0
- $(b) 1$
- (c) 2
- (d) 3

(12) The rank of $A = \begin{pmatrix} 1 & 4 & 1 & 2 & 1 \\ 2 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 0 \end{pmatrix}$ is

- (a) 2
- (b) 3
- (c) 0
- (d) 1

(13) The transition matrix from the ordered basis $U = \left[u_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, u_2 = \begin{pmatrix} 3 \\ 7 \end{pmatrix} \right]$ to the standard basis

$$
S = \begin{bmatrix} e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 1 \\ -2 & 1 \end{pmatrix}
$$

\n(a)
$$
T = \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix}
$$

\n(b)
$$
T = \begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}
$$

\n(c)
$$
T = \begin{pmatrix} -7 & 3 \\ 2 & -1 \end{pmatrix}
$$

\n(d)
$$
T = \begin{pmatrix} 1 & -3 \\ -2 & 7 \end{pmatrix}
$$

 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is

(14) Let $E = [2 + x, 1 - x, x^2 + 1]$ be an ordered basis for P_3 . If $p(x) = 3x^2 + 5x + 4$, then the coordinate vector of $p(x)$ with respect to E is

(15) If A is a 3×4 matrix, then

- (a) The columns of A are linearly independent
- (b) $Rank(A) = 3$
- (c) nullity(A) \geq 1
- (d) The rows of A are linearly dependent

(16) Let
$$
S = \left\{ \begin{pmatrix} a+b \\ a+b \\ a+b \end{pmatrix} : a, b \in \mathbb{R} \right\}
$$
. Then dimension of S equals

- \circled{a} 1
- (b) 2
- (c) 3
- (d) 0
- (17) If A is a 4×3 matrix such that $N(A) = \{0\}$, and b can be written as a linear combination of the columns of A , then
	- (a) The system $Ax = b$ has exactly one solution
	- (b) The system $Ax = b$ is inconsistent
	- (c) The system $Ax = b$ has infinitely many solutions
	- (d) None of the above

(18) If A is an $n \times n$ -matrix and for each $b \in \mathbb{R}^n$ the system $Ax = b$ has a unique solution, then

- (a) A is nonsingular
- (b) rank $(A) = n$
- (c) nullity(A) = 0
- (d) all of the above
- (19) Which of the following is not a basis for the corresponding space
	- (a) $\{5-x,x\}$; P_2
	- (b) $\{(1,-1)^T,(2,-3)^T\}$; \mathbb{R}^2
	- (c) $\{x, 1-x, 2x+3\}$; P_3
	- (d) $\{(1,-1,-1)^T,(2,-3,0)^T,(-1,0,2)^T\};\mathbb{R}^3$
- (20) If $\{v_1, v_2, v_3, v_4\}$ is a basis for a vector space V, then the set $\{v_1, v_2, v_3\}$ is

(a) linearly independent and not a spanning set for V .

- (b) linearly dependent and not a spanning set for V .
- (c) linearly independent and a spanning set for V .
- (d) none of the above

Question 3 (10 points). (a) If $U = \begin{bmatrix} u_1 = \begin{pmatrix} a \\ b \end{pmatrix}, u_2 = \begin{pmatrix} c \\ d \end{pmatrix} \end{bmatrix}$, $V = \begin{bmatrix} v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, V_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ are ordered bases for \mathbb{R}^2 , and the transition matrix from U to V is $T = \begin{$

$$
\overline{u}_{\rightarrow v} = \overline{V}U \implies V\overline{I}=U
$$

$$
\implies U = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 9 & 4 \end{pmatrix}
$$

$$
\implies u_1 = \begin{pmatrix} 5 \\ 9 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}
$$

(b) If $S = \{p(x) \in P_3 : p(1) = 0\}$, show that is a subspace of P_3

$$
y 5 \neq c \n\begin{cases} \n\sin \alpha & \alpha \in S \\
\alpha \neq 0, \quad \alpha \in S \implies \beta & \beta(1) = 0 \quad \text{and} \quad \alpha(1) = 0 \\
\beta \neq 0, \quad \beta(1) = \beta(1) + \beta(1) = 0 + 0 = 0\n\end{cases}
$$
\n
$$
y \Rightarrow (p+2) = p(1) = p(1) + \beta(1) = 0 + 0 = 0
$$
\n
$$
y \Rightarrow (p+2) = p(1) = 0 \Rightarrow y \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = p(1) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$
\n
$$
y \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0 \Rightarrow (p+2) = 0
$$

 $\,6$

Scanned by CamScanner

Question 4 (6 points). If $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 0 & 0 \end{pmatrix}$ and the row echelon form of A is $U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

(a) Find a basis for the row space of A .

$$
basis \ \ \text{for} \ \ R(\mu) \ \text{is} \ \big\{ (1 + 1, 1), (0, 0, 1, 1) \big\}
$$

(b) Find a basis for the column space of A .

basis for
$$
C(A)
$$
 is $\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} > \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

(c) Find a basis for null space A : solutions of A x=0
\n
$$
x = -3
$$

\n $x_1 = -\beta$
\n $x_2 = -\beta$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$
\n $x_1 = -\alpha + \beta - \beta = -\alpha$

 $\overline{7}$

 \blacksquare

(d) Find Rank (A) , Nullity (A) .

$$
Rank(A) = 2.
$$

nnll_ity $(A) = 2.$