MATH 234 EXAM 2

Student Name:	Seu	Student Number:
Instructor:		Section:

Question 1 (4 points each) Circle the most correct answer.

- 1. One of the following is true:
 - (a) Elementary row operations do not change the null space of a matrix.
 - (b) In P_3 , every set of 4 polynomials can be reduced to form a basis for P_3 .
 - (c) Let $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ be a set of vectors in \mathbb{R}^n . If r > n, then S is not a spanning set for \mathbb{R}^n .
- One of the following is false:
 - (a) Every set of vectors spanning \mathbb{R}^3 contains at least 3 vectors.

 - (b) If Wronskian $(f_1, f_2, ..., f_n) = 0$, then $f_1, f_2, ..., f_n$ are linearly independent. (c) If A is a nonzero 5×4 matrix such that $A \times = 0$ has only the trivial solution, then rank(A) = 4.
- 3. One of the following is true:
 - (a) The column vectors of any matrix A form a basis for the column space of A.
 - (b) The dimensions of the column spaces of two row equivalent matrices are equal.
 - (c) If U is the reduced row echelon form of A then A and U have the same column space.
- 4. One of the following is false
 - (a) The dimension of $W = \{p(x) \in P_3 \mid p(1) = 0\}$ is 2.
 - (b) If W is three dimensional subspace of R^3 then $W = R^3$.
 - (c) R^2 is a subspace of R^3 .
- 5. One of the following is true
 - (a) If $\{v_1, v_2, ..., v_n\}$ is a spanning set for a vector space V, then $\{v_2, ..., v_n\}$ are linearly independent.
 - (b) If $\operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n\} = \operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_{n-1}\}$ then $\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n\}$ are linearly independent.
 - (c) If $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a basis for a vector space V, and $\alpha \neq 0$ then $\{\alpha \mathbf{v}_1, \alpha \mathbf{v}_2, ..., \alpha \mathbf{v}_n\}$ is a basis for V.

- 6. One of the following is a spanning set for R^3
 - (a) $\{(1,2,3)^T, (2,1,1)^T, (4,5,7)^T, (1,-1,-2)^T\}$
 - (b) $\{(1,2,3)^T, (2,5,4)^T, (0,0,0)^T\}$

 - (c) $\{(1,2,3)^T, (2,5,1)^T\}$ (d) $\{(1,0,0)^T, (0,1,0)^T, (1,1,2)^T\}$
- 7. Let $W = \{A \in \mathbb{R}^{2 \times 2} \mid A \text{ is upper triangular}\}\$ then $\dim(W)$ is
 - (a) 1
- 8. If A is a 3×3 nonsingular matrix then
 - (a) Nullity of A is 0.
 - (b) Rank of A is 3
 - (c) Column space of A is R^3
 - (d) All of the above are true.
- 9. Suppose that the coordinate vector of $\mathbf{v} \in R^3$ with respect to the basis $S = \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\}$ is $\mathbf{v} = 2\mathbf{b_1} + 4\mathbf{b_2} 5\mathbf{b_3}$, where $\mathbf{b_1} = (1, 0, 0)^T$, $\mathbf{b_2} = (0, 1, 0)^T$, $\mathbf{b_3} = (1, 1, 2)^T$ then the coordinate vector of \mathbf{v} with respect to the standard basis is

 - (a) $(7,9,5)^T$ (b) $(-3,-1,-10)^T$ (c) $(7,\frac{13}{2},\frac{5}{2})^T$
- 10. One of the following is linearly dependent in $C[-\pi, \pi]$
 - (a) $\{(1+x)^2, x^2+2x, 5\}$ (b) $\{1, \sin x, \sin 2x\}$

 - (c) $\{\cos x, x\}$
 - (d) $\{x, x^2\}$
- 11. Let $\{v_1, v_2, v_3\}$ be a spanning set for a nonzero vector space V and suppose that $v_1 v_2 + 2v_3 = 0$, then the dimension of V is
 - (a) 1
 - (b) 2 or 3

- 12. Let $S = \{ax^2 + ax + b \mid a, b \in R\}$. Then a basis for S is
 - (a) $x^2 + x, 1$ (b) $x^2 + 1, x$

 - (d) $x^2, 1$
- 13. Let A be an $m \times n$ matrix. If the columns of A span \mathbb{R}^m , then
 - (a) $n \leq m$
 - $\begin{array}{c}
 \text{(b)} \\
 m \leq n \\
 \text{(c)} \\
 n = m
 \end{array}$
 - (d) The columns of A form a basis for R^m
- 14. Let $\mathbf{v}_1 = (1,2)^T$, $\mathbf{v}_2 = (2,3)^T$ and let $S = \begin{bmatrix} 3 & 5 \\ 1 & -2 \end{bmatrix}$. Find vectors \mathbf{w}_1 and \mathbf{w}_2 so that S is the transition matrix from $\{\mathbf w_1,\,\mathbf w_2\}$ to $\{\mathbf v_1,\,\mathbf v_2\}$
 - (a) $\mathbf{w}_1 = (1,5)^T$ and $\mathbf{w}_2 = (9,4)^T$
 - (a) $\mathbf{w}_1 = (1,0)^T$ and $\mathbf{w}_2 = (9,4)^T$ (b) $\mathbf{w}_1 = (5,1)^T$ and $\mathbf{w}_2 = (9,4)^T$ (c) $\mathbf{w}_1 = (5,9)^T$ and $\mathbf{w}_2 = (1,4)^T$ (d) $\mathbf{w}_1 = (1,0)^T$ and $\mathbf{w}_2 = (0,1)^T$
- 15. If $p(x) = 3x^2 + x + 2$, then the coordinate vector of p(x) with respect to $F = [1, 1 + x, 1 + x + x^2]$ of P_3 is

 - (a) $(-2, 1, -2)^T$ (b) $(1, -2, 3)^T$ (c) $(2, -1, 2)^T$
- 16. Let $S = \text{Span}(x^2 2x + 1, x^2 + 1, -2x, 3x^2 4x + 3)$. Then the dim(S) is

Question 2 (12 points) Let
$$A = \begin{bmatrix} 1 & 3 & 1 & 3 & 4 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 3 & 3 & 3 \end{bmatrix}$$

1. Find a basis for the null space of A.

Basis Jarthu nall space

$$\begin{bmatrix} -3t-5 \\ t \\ 0 \\ -5 \\ 5 \end{bmatrix} = t \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

2. Find a basis for the row space of A.

$$\begin{cases} (1,3,1,3,4) & (9,0) \\ (1,3,1,3,4) & (9,0) \\ (0,0,0) & (0,0) \\ (0,0,0) & (0,0) \end{cases}$$

3. Find a basis for the column space of A.

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 2 \\ 3 \end{bmatrix} \right\}$$

4. What is the rank and nullity of A.

Question 3 (16 points) Let L be the linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $L(\mathbf{x}) = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 3x_2 \perp 2x_3 \end{bmatrix}$.

Let $E = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and $F = \{\mathbf{b}_1, \mathbf{b}_2\}$ be two ordered bases for R^3 and R^2 , where

$$\mathbf{u}_1 = (1,0,-1)^T, \ \mathbf{u}_2 = (1,2,1)^T, \ \mathbf{u}_3 = (-1,1,1)^T \ \text{and}$$

$$\mathbf{b}_1 = (1, -1)^T, \ \mathbf{b}_2 = (2, 1)^T.$$

1. Find the Ker(L) and its dimension.

$$\begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 3x_1 + 2x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Basis for the range is

3. Find the matrix representing L with respect to the ordered bases E and F.

$$\begin{bmatrix}
1 & 1 & -1 & 0 & 3 \\
0 & 2 & 1 & 2 & 1 \\
-1 & 1 & 1 & 8
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 2 & 2 \\
0 & 1 & 0 & 1 & 2 & 2 \\
0 & 0 & 1 & 1 & -10
\end{bmatrix}$$

$$A = \begin{bmatrix} \frac{1}{2} & -\frac{25}{2} \\ \frac{1}{2} & -\frac{10}{2} \end{bmatrix}$$

4. Use the matrix in part (c) to find
$$L(1,5)^T$$
.

Let $\vec{x} = (-3, 2)^T$

$$= (-3, 2)^T \Rightarrow \left[L(\vec{x}) \right]_E = A \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{53}{2} \\ 19 \\ 2 \end{bmatrix}$$

$$[L(\vec{x})]$$

$$= A \begin{bmatrix} -3 \\ 2 \end{bmatrix} =$$

Question 4 (12 points)

1. Let x_1 , x_2 and x_3 be linearly independent vectors in R^n and let A be a nonsingular $n \times n$ matrix. prove that if $y_1 = Ax_1$, $y_2 = Ax_2$, $y_3 = Ax_3$, then y_1 , y_2 and y_3 are linearly independent.

Suppose $C_1 \overset{\circ}{\mathcal{G}}_1 + C_2 \overset{\circ}{\mathcal{G}}_2 + C_3 \overset{\circ}{\mathcal{G}}_3 = \overset{\circ}{\mathcal{G}}$ $C_1(A\vec{x}_1) + C_2(A\vec{x}_2) + C_3(A\vec{x}_3) = 0$ $A' \left(A \left(G \ddot{x}_1 + C_2 \ddot{x}_2 + C_3 \ddot{x}_3 \right) = 0 \right)$ => C| x1+c2x2+c3x3=0 => C1=C1=C3=0 SIN Ce xi, xz, x3 are lini ind

2. Let S be the set of symmetric 2×2 matrices. Find a basis for S and the dimension of S.

 $\begin{bmatrix} a & b \\ b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + C = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

/m(5)=3