<u>Dashboard</u> / My courses / <u>INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta</u> / <u>General</u> / <u>Second Exam</u>

Started on Sunday, 10 January 2021, 9:55 AM

State Finished

Completed on Sunday, 10 January 2021, 11:10 AM

Time taken 1 hour 15 mins

Grade 23.00 out of 32.00 (72%)

Question 1

Correct

Mark 1.00 out of

Let V be a vector space, $\{v_1,v_2,\ldots v_n\}$ a spanning set for V, and $v\in V$, then the vectors $\{v_1,v_2,\ldots v_n,v\}$ form a spanning set for V.

Select one:

- a. False
- b. True

The correct answer is: True

Question 2

Correct

Mark 1.00 out of 1.00

If $\{v_1,v_2,v_3,v_4\}$ forms a spanning set for a vector space V, $\dim(V)=3$, v_4 can be written as a linear combination of v_1,v_2,v_3 , then

Select one:

- igcup a. $\{v_1,v_2,v_3\}$ do not form a spanning set for V
- ullet b. $\{v_1,v_2,v_3\}$ is a basis for V
- igcup c. $\{v_1,v_2,v_3\}$ are linearly dependent
- lacksquare d. v_1 can be written as a linear combination of v_2, v_3, v_4

The correct answer is: $\{v_1,v_2,v_3\}$ is a basis for V

Question $\bf 3$

Correct

Mark 1.00 out of 1.00

The nullity of
$$A=\begin{pmatrix} 1 & 1 & 0 & 2 & 0 \\ 1 & 2 & -1 & 0 & 1 \\ 2 & 3 & -1 & 2 & 1 \end{pmatrix}$$
 is

Select one:

- a. 4
- b. 3
 - ~
- \bigcirc c. 2
- 0 d. 1

The correct answer is: 3

Correct

Mark 1.00 out of 1.00

Let
$$E=[2+x,1-x,x^2+1]$$
 be an ordered basis for P_3 . If $[p(x)]_E=egin{pmatrix}1\\-1\\3\end{pmatrix}$, then

Select one:

$$lacksquare$$
 a. $p(x)=3x^2+2x+4$

$$oldsymbol{0}$$
 b. $p(x) = 3x^2 + 2x + 5$

c.
$$p(x) = 3x^2 + x - 3$$

o d.
$$p(x) = x^2 - x + 3$$

The correct answer is: $p(x) = 3x^2 + 2x + 4$

Question 5

Incorrect

Mark 0.00 out of 1.00

Let $S=\{f\in C[-1,1]: f(-1)=f(1)\}$, then S is a subspace of C[-1,1].

Select one:

- a. True
- b. False X

The correct answer is: True

Question 6

Incorrect

Mark 0.00 out of 1.00

If $\{v_1, \cdots, v_n\}$ are linearly independent and v is not in $\mathrm{Span}\{v_1, \cdots, v_n\}$, then $\{v_1, \cdots, v_n, v\}$ are linearly independent.

Select one:

- a. True
- b. False X

The correct answer is: True

Question **7**

Correct

Mark 1.00 out of 1.00

If A is a nonzero 3×2 matrix such that Ax = 0 has infinite number of solutions, then $\mathrm{rank}(A) = 1$.

Select one:

- a. True
- b. False

The correct answer is: True

Correct

Mark 1.00 out of 1.00

Let
$$S=\{egin{pmatrix} a+b+2c \\ a+2c \\ a+b+2c \end{pmatrix}: a,b\in\mathbb{R}\}.$$
 Then dimension of S equals

Select one:

- $\ \ \, \bullet \ \ \, \text{a.} \,\, 2$
- •
- b. 0
- O c. 3
- o d. 1

The correct answer is: 2

Question 9

Correct

Mark 1.00 out of 1.00

 $\dim \left(\mathrm{span}(x^2, 3+x^2, x^2+1) \right)$ is

Select one:

- a. 0
- o b. 1
- c. 2
- ~
- O d. 3

The correct answer is: 2

Question 10

Correct

Mark 1.00 out of 1.00

dimension of the subspace $S=\operatorname{Span}\left\{A_1=\begin{pmatrix}2&1\\0&1\end{pmatrix},A_2\begin{pmatrix}-1&0\\3&1\end{pmatrix},A_3=\begin{pmatrix}-8&-3\\6&-1\end{pmatrix}\right\}$ is

Select one:

- $\quad \ \ \, \text{a.} \, 0$
- o b. 1
- c. 2
 - ~
- \bigcirc d. 3

The correct answer is: 2

Question 11

Correct

Mark 1.00 out of 1.00

Which of the following is not a basis for the corresponding space

Select one:

- \bigcirc a. $\{(1,1)^T, (2,-3)^T\}; \mathbb{R}^2$
- ullet b. $\{(-2,-1,-1)^T,(-3,-3,0)^T,(2,0,2)^T\};\mathbb{R}^3$
- \circ c. $\{5-x, x-1\}$; P_2
- \bigcirc d. $\{x+4, 1-x^2, x^2+x+3\}$; P_3

The correct answer is: $\{(-2,-1,-1)^T,(-3,-3,0)^T,(2,0,2)^T\}$; \mathbb{R}^3

Correct

Mark 1.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}\right]$ to the ordered basis

$$U=\left[u_1=\left(rac{1}{2}
ight),u_2=\left(rac{2}{5}
ight)
ight]$$
 is

Select one:

$$lacksquare$$
 a. $T=egin{pmatrix} -1 & 2 \ 2 & -5 \end{pmatrix}$

$$\bullet \ \, \mathrm{b.}\,T = \left(\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array} \right)$$

$$igcup ext{c.}\ T=egin{pmatrix} 1 & 2 \ 2 & 5 \end{pmatrix}$$

Od.
$$T = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}$$

The correct answer is: $T=\begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$

Question 13

Correct

Mark 1.00 out of 1.00

If A is a 5 imes 4-matrix, and Ax = 0 has only the zero solution, then $\mathrm{rank}(A) = 4$.

Select one:

- a. True
- b. False

The correct answer is: True

Question 14

Correct

Mark 1.00 out of 1.00

If the columns of $A_{n imes n}$ are linearly independent and $b \in \mathbb{R}^n$, then the system Ax = b has

Select one:

- a. exactly 2 solutions
- b. exactly one solution
- c. no solution
- d. infinitely many solutions

The correct answer is: exactly one solution

Question 15

Incorrect

Mark 0.00 out of 1.00

If A is a 3 imes 5-matrix, rows of A are linearly independent, then

Select one:

- igcup a. $\operatorname{rank}(A) = \operatorname{nullity}(A) + 3$
- $\qquad \text{b. } \mathsf{rank}(A) = \mathsf{nullity}(A) + 2$
- ${igcup}$ c. ${
 m rank}(A)={
 m nullity}(A)+1$
- \bigcirc d. rank $(A) = \operatorname{nullity}(A)$

The correct answer is: $\operatorname{rank}(A) = \operatorname{nullity}(A) + 1$

Correct

Mark 1.00 out of 1.00

Let E=[3-x,2+x] , F=[1,x] be ordered bases for P_2 . The transition matrix from E to F is

Select one:

- $\quad \text{a.} \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}$
- $\bigcirc \ \, \mathsf{b.} \left(\begin{array}{cc} 1 & 2 \\ -1 & 3 \end{array} \right)$
- \circ c. $\begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$
- \bigcirc d. $\begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$

Question 17

Correct

Mark 1.00 out of 1.00

If $\{v_1,v_2,v_3,v_4\}$ is a basis for a vector space V , then the set $\{v_1,v_2,v_3\}$ is

Select one:

- $\ ^{\odot}\$ a. linearly independent and not a spanning set for V.
- igcup b. linearly independent and a spanning set for V.
- c. linearly dependent and a spanning set
- igcup d. linearly dependent and not a spanning set for V.

The correct answer is: linearly independent and not a spanning set for V.

Question 18

Correct

Mark 1.00 out of

If A is a 3×2 matrix, then

Select one:

 ullet a. The rows of A are linearly dependent

~

- lacksquare b. The columns of A are linearly dependent
- igcup d. Rank(A)=3

The correct answer is: The rows of \boldsymbol{A} are linearly dependent

Question 19

Incorrect

Mark 0.00 out of 1.00

Let A be an m imes n matrix. If the rows of A are linearly dependent, then $n \leq m$

Select one:

- a. True
- b. False X

The correct answer is: True

Correct

Mark 1.00 out of 1.00

The vectors $\{x+1, x^2+2x+1, x^2+x+1\}$ form a basis for P_3 .

Select one:

- a. True
- b. False

The correct answer is: True

Question 21

Correct

Mark 1.00 out of 1.00

If A is a 3×5 matrix, then

Select one:

- lacksquare a. $\mathsf{nullity}(A) \geq 2$
 - ~
- igcup c. Rank(A)=2

The correct answer is: $\operatorname{nullity}(A) \geq 2$

Question 22

Correct

Mark 1.00 out of 1.00

 $\mathsf{let}\ A\ \mathsf{be}\ \mathsf{a}\ 4\times 7\mathsf{-matrix}, \mathsf{if}\ \mathsf{the}\ \mathsf{row}\ \mathsf{echelon}\ \mathsf{form}\ \mathsf{of}\ A\ \mathsf{has}\ \mathsf{2}\ \mathsf{nonzero}\ \mathsf{rows}, \mathsf{then}\ \mathsf{dim}(\mathsf{column}\ \mathsf{space}\ \mathsf{of}\ A)\ \mathsf{is}$

Select one:

- a. 2

 ✓
- b. 3
- 0 c. 5
- o d. 7

The correct answer is: 2

Question 23

Correct

Mark 1.00 out of 1.00

if $\{v_1, v_2, \cdots, v_k\}$ is a spanning set for $\mathbb{R}^{3 imes 2}$, then

Select one:

- \odot a. $k \leq 6$
- igcup b. k>6
- \bigcirc c. k=6
- $@ \ \mathrm{d.} \ k \geq 6$

~

The correct answer is: $k \geq 6$

Question 24

Incorrect

Mark 0.00 out of 1.00

The coordinate vector of 6+8x with respect to the basis [2x,2] is $(4,3)^T$

Select one:

- a. False X
- b. True

The correct answer is: True

Correct

Mark 1.00 out of 1.00

Let $E=[2+x,1-x,x^2+1]$ be an ordered basis for P_3 . If $p(x)=2x^2-2x+1$, then the coordinate vector of p(x) with respect to E is

Select one:

$$a. \begin{pmatrix} -2 \\ -3 \\ 2 \end{pmatrix}$$

$$\bullet \ \mathsf{b.} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$$

$$\circ$$
 c. $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$

o d.
$$\begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$$

The correct answer is: $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$

Question 26

Incorrect

Mark 0.00 out of 1.00

If A is an $m\times n\text{-matrix}$, and columns of A are linearly independent, then

Select one:

$$igcup$$
 a. $n \leq m$

$$left$$
 b. $m \leq n$

×

$$\circ$$
 c. $m=n+1$

$$\bigcirc$$
 d. $m=n$

The correct answer is: $n \leq m$

Question 27

Correct

Mark 1.00 out of 1.00

Let
$$S=\{inom{x}{y}\in\mathbb{R}^2: x=y+1\}$$
 , then S is a subspace of $\mathbb{R}^2.$

Select one:

o b. True

The correct answer is: False

Question 28

Incorrect

Mark 0.00 out of 1.00

If
$$A=egin{pmatrix} -1&-2&-1&0\ 1&2&2&0\ -2&-4&0&0 \end{pmatrix}$$
 , then $\mathrm{rank}(A)=3.$

Select one:

b. True X

	The correct answer is: False	
Question 29	If the rows of an $n imes n$ -matrix A form a basis for $\mathbb{R}^{1 imes n}$, then the columns of A also form a basis for \mathbb{R}^n .	
Mark 0.00 out of	Select one:	
1.00	a. False X	
	O b. True	
	The correct answer is: True	
Question 30 Correct	If A is a $4 imes 6$ matrix, then nullity of $A\geq 2$.	
Mark 1.00 out of	Select one:	
1.00	a. False	
	b. True ✓	
	The correct answer is: True	
Question 31 Incorrect	The vectors $\{(1,-1,1)^T,(1,-1,2)^T,(1,-2,1)^T\}$ form a basis for \mathbb{R}^3 .	
Mark 0.00 out of	Select one:	
1.00	a. True	
	The correct answer is: True	
Question 32 Correct	If A is an $n imes n$ singular matrix, then	
Mark 1.00 out of	Select one:	
1.00	lacksquare a. The columns of A are linearly dependent	
	\circ b. $N(A)=\{0\}$	
	\circ c. The rows of A are linearly independent	
	$^{\odot}$ d. rank $(A)=n$	
	The correct answer is: The columns of A are linearly dependent	
	Jump to Announcements →	