100

Birzeit University Mathematics Department Math 234

Math 234 هند مؤدر Second Exam Summer Semester 2018-2019 Student Name: Mchanad Moayad Shann (7 Number: 11.81401. Section: 3 Question 1 (64%). True or False (1) (......) If $f_1, f_2, \dots, f_n \in C^{n-1}[a, b]$ and $W[f_1, f_2, \dots, f_n](x) = 0$ for all $x \in [a, b]$, then f_1, f_2, \dots, f_n are linearly independent. (....) The transition matrix of two basis could be singular. (3) If U is the row echelon form or the reduced row echelon form of A, then the rank of A is equal to the number of lead 1's in U. (4) Let U be the row echelon form of A, then the nullity of A equals the number of nonzero columns of U. (5) f(x) = f(x). If A is a singular matrix, then the null space of A is $\{0\}$. (6) (......) If A is a 3×3 matrix and Ax = 0 has a nontrivial solution, then the nullity of A is either 1 or 2. (7) (7...) If A is an $n \times n$ matrix and the row space of A is $\mathbb{R}^{1 \times n}$, then the column space of A is (8) Let V be a vector space, $\{v_1, v_2, \dots v_n\}$ a spanning set for V, and $v \in V$. Mark each of the following by true or false The vectors $(v_1, v_2, \dots v_n, \underline{v})$ form a spanning set for V. The vectors $[v_1, v_2, \dots v_{n-1}]$ form a spanning set for V. (10) Let $U = \{(x,y)^T : y = x+1\}$. Then U is a subspace of \mathbb{R}^2 (11) (.1...) If A is an $n \times n$ -matrix, and $\det(A) \neq 0$, then $\operatorname{rank}(A) = n$. (12) Let V be a vector space, $v_1, v_2, \ldots v_n \in V$ be linearly independent, and $v \in V$. Mark each of the following by true or false \mathcal{L} ..) The vectors $v_1, v_2, \dots v_{n-1}$ are linearly dependent. (18) (....) Every spanning set for \mathbb{R}^3 contains at least 3 vectors. (14) (14) If A is a nonzero 3×2 matrix such that Ax = 0 has infinitely many solutions, then 7 (15) (..., Let $S = \{v_1, v_2, \dots, v_r\}$ be a set of vectors in \mathbb{R}^n . If r > n, then S is linearly dependent. (16) (15...) Let V be a vector space. If $v_1, v_2, v_3, v_4 \in V$ with $\operatorname{span}(v_1, v_2, v_3, v_4) = V$, then

 v_1, v_2, v_3, v_4 are linearly independent.

- vectors is linealrly dependent.
- (19) Let A be an 4×3 matrix, and rank(A) = 3. Mark each of the following by true or false

F The rows of A are linearly independent

.) The rows of A form a basis for $\mathbb{R}^{1\times 3}$

The system Ax = b is consistent for every $b \in \mathbb{R}^4$.

 \mathcal{L} .) The columns of A are linearly independent.

 \mathbb{R} .) The columns of A form a spanning set for \mathbb{R}^4 .

(.....) nullity of A is 1.

- (20) Let A be a 3×5 matrix, and rank(A) = 3 Mark each of the following by true or false
 - n (A) = 2The columns of A form a spanning set for \mathbb{R}^3 .
 - .) The rows of A are linearly independent.
 - .) The system Ax = 0 has only the zero solution.
 - ,) The columns of A are linearly dependent.
 - F..) The rows of A are linearly dependent.
 - $(\dots \square)$ nullity(A) = 0

Question 2 (32 points). Circle the most correct answer

- - (d) 0
- (2) let A be a 4×7 -matrix, if the row echelon form of A has 2 nonzero rows, then dim(column space of A) is
 - (a) 3
 - (b) 5
 - (c) 6
- (3) The coordinate vector of $\begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$ with respect to the ordered basis $\begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \end{bmatrix}$ is

 (a) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (b) $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (d) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (e) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (f) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (g) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (h) $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$ (b)
 - - (d)
- (4) Let V be a vector space with $(\dim(V) = 5)$ and S a subspace of V. If $v_1, v_2, v_3, v_4 \in S$ with $\operatorname{span}(v_1, v_2, v_3, v_4) = S$, then v_1, v_2, v_3, v_4 dim of 5 & 4
 - (a) are linearly dependent
 - (b) form a basis for S
 - (c) is not a spanning set for V
 - (d) are linearly independent.
- (5) The coordinate vector of 2 + 6x with respect to the basis [2x, 4] is

05

- (6) The dimension of the subspace $S = \{(a-b+2c_{j}a+2b-4c_{j}-b+2c)^{T}, a, b, c \in R\}$ is
 - $\begin{pmatrix} 1 & -1 & 2 & 0 \\ 0 & -1 & 2 & 0 \end{pmatrix}$ \Rightarrow $\begin{pmatrix} 0 & -1 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & -6 & 0 \end{pmatrix}$
 - 20) (| -1 | -2 | 0) A-Your = 2

 Jim of cot : Sase = 2
- (7) If A is an $n \times n$ -matrix and for each $b \in \mathbb{R}^n$ the system Ax = b has a unique solution, then
 - (a) rank(A) = n
 - (b) $\operatorname{nullity}(A) = 0$
 - (a) A is nonsingular
 - (d) all of the above
- (8) If A is an $m \times n$ -matrix, $b \in$ column space of A and the columns of A are linearly independent, then the system Ax = b has
 - (a) exactly one solution
 - (b) infinitely many solutions (c) no solution
 - (d) none of the above
- (9) If A is a 3×4 matrix such that nullity(A) = 1 and $b = (1, 2, 3)^T$, then the system Ax = b has
 - (a) at most one solution (b) exactly one solution was det.
- nonzero Z
- (c) infinitely many solutions.
- (d) no solution
- (10) The transition matrix from the ordered basis $[e_1, e_2]$ of \mathbb{R}^2 to the ordered basis $\begin{bmatrix} -3 \\ 7 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$] is

- (11) Let $S = \{ax^2 + bx + a + b : a, b \in \mathbb{R}\}$. Then a basis for S and the dimension of S are
 - $a(X^{2}+1) + b(X+1)$ (a) basis: $x^2 + 1$, x; dimension = 2 (b) basis: $x^2 + 1$, x + 1; dimension = 2

 - (c) basis: x^2 , 1; dimensin = 2
 - (d) basis: $x^2, x, 1$; dimension = 3

- (12) Let v_1, v_2, v_3 be linearly dependent in a vector space $V, V = \operatorname{span}(v_1, v_2 v_3)$, then

 - (b) $\dim(V) \le 2$ (c) $\dim(V) \ge 3$

 - (d) none of the above
- (13) Let $S = \{ax^2 + ax + \underline{b} : a, b \in \mathbb{R}\}$. Then a basis and the dimension of S are

 - (b) basis: $x^2, 1$; dimensin = 2
 - (c) basis: $x^2 + x, 1$; dimension = 2 (d) basis: $x^2 + 1, x$; dimension = 2
- (14) An $n \times n$ matrix is singular iff
 - (a) the rows of A form a basis for $\mathbb{R}^{1\times n}$
 - (b) the columns of A form a basis for \mathbb{R}^n
 - (c) $0 \in N(A)$
 - (d) none of the above
- (15) Let A be an $n \times n$ matrix. Then
 - (a) The row space of A equals the null space of A
 - (b) The row space of A is contained in the column space
 - The row space of A has the same dimension as the column space
 - (d) The row space of A equals the column space of A of A
- (16) If A is a 4×3 matrix such that nullity of A = 0, and $b = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 0 \end{pmatrix}$, then the system Ax = b
 - (a) has exactly one solution
 - (b) is either inconsistent or has an infinite number of solutions
 - (c) is inconsistent
 - (d) is either inconsistent or has one solution

Question 3 (8 points). Let E = [1 + x, 1 - x], F = [1, x] be two ordered bases for P_2

- 1. Find the transition matrix from E to F.
- 2. Find the coordinate vector of p(x) = -(1 + x) + 2(1 x) with respect to F.

2. Find the coordinate vector of
$$p(x) = -(1+x) + 2(1-x)$$
 with respect to x .

(I) $T_{E \to F} = (U^{-1}) W$

Such that $x = (1 - 1) W = (1 - 1) W$

$$(1 - 1) = (1 - 1) W = (1 - 1) W$$

$$(2 - 1) = (1 - 1) W = (1 - 1) W = (1 - 1) W$$

$$(3 - 1) = (1 - 1) W = (1 - 1) W = (1 - 1) W$$

$$(4 - 1) = (1 - 1) W = (1 - 1) W = (1 - 1) W$$

$$(5 - 1) = (1 - 1) W = (1 - 1) W = (1 - 1) W = (1 - 1) W$$

$$(7 - 1) = (1 - 1) W = (1 - 1$$

(a) Find a basis for the row space of A.

(b) Find a basis for the column space of A. (17020),

(b) Find a basis for the column space of A. (12-101)

(c) Find a basis for null space
$$A$$

$$A \times = 0$$

 $x_5 = x$, $x_a = B$, $x_3 = X$

$$X_2 = X_3 + 2 X_4 - X_5 = (X + 2 B - X) - X_2$$
 Mull Space (A) °

$$X_{1} = -2 X_{4} - X_{2}$$

$$= -2 \beta - (\chi + 2\beta - \chi) = -\chi + \chi - 4\beta$$
(1) Find Bank(4) Nullity(4)

(d) Find Rank(A), Nullity(A).