$\frac{A}{10}$ $\frac{3.2}{2}$ $\frac{3.2}{2}$ $\frac{3.2}{2}$ $\frac{3.2}{2}$ $\frac{5.2}{2}$ $(A_n) \longrightarrow A x = b$ + If x_a is a solution to $Ax = b$ and x_c is a solution to $A(x+xy) = Ax_0 + Ax_1 = b + c = b.$ « Any solution de Ax=b is of the form y = x + z
x, a solution do Ax=b al = is scolution de Ax=0. In Let A be men-matrix. If x_3 is a particular solution to
Ax=b (so Ax=b is consistent) then y is a solution
to Ax=b if and only if $y = x+z$), where $z \in N(A)$ Red: Now if x_a is a solution to $Ax = b$ (Z is a solution)
and y is any solution to $Ax = b$ (Z is a solution) => Ax=b and Ay=b $\Rightarrow Ay-Ax_0=0 \Rightarrow A(y-x_0)=0$. Let $F=9-\frac{1}{2}$ = $\frac{Az=0}{1}$ = $\frac{B}{Ax=0}$
and $z=9-\frac{1}{2}$ = $\frac{B}{A}$ = $\frac{B}{A}$ = $\frac{B}{A}$ = $\frac{B}{A}$ = $\frac{B}{A}$ = $\frac{B}{A}$ = $\frac{C}{A}$ = $\frac{D}{A}$ = $\frac{D}{A}$ = $\frac{D}{A}$ = $\frac{D}{A}$ = $\frac{D}{A}$ = $\frac{D}{A}$ = $\begin{array}{|c|c|c|c|c|}\hline \end{array}$ (And 1 (C=2a, $\begin{array}{|c|c|c|c|}\hline \end{array}$ 2: columns of A.
1 If $M(A)$ = {0} } How many solutions does $\begin{array}{|c|c|}\hline \end{array}$ (have?

 $I\perp I\perp M(A)=\{0\}$ of How many solutions closs $AK=C|have1$ Ax= O considert (c is a linear comb.)
a solution lo Ax= c is $X=C$ is consistent.) Are there other solutions (No)
It y is a solution to $Ax = C \implies y = \frac{x + z}{z}$ ZEN(A). $\Rightarrow y = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + 2$, $\frac{2}{\sqrt{2}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. so $Ax=c$ has a unique solution. $2) 14(N(A) + 6)$ AX=C Les infinite number of solutions. A_{11} A_{12} A_{13} A_{14} A_{15} A_{16} A_{17} A_{18} A_{19} A_{11} $\begin{picture}(120,10) \put(0,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}} \put(15,0){\line(1,0){100}}$ 3.3 Linear independence. $\begin{array}{|c|c|c|c|c|c|c|c|} \hline \rule{0pt}{16pt} \hline \rule{0pt}{2pt} \hline \rule{0pt}{2pt} \rule{0pt}{2pt} \hline \rule{0pt}{2pt} \rule{0pt}{2pt} \rule{0pt}{2pt} \hline \rule{0pt}{2pt} \rule{0pt}{2pt} \rule{0pt}{2pt} \hline \rule{0pt}{2pt} \rule{0pt}{2pt} \rule{0pt}{2pt} \rule{0pt}{2pt} \hline \rule{0pt}{2pt} \rule{0pt}{2pt} \rule{0pt}{2pt} \hline \rule{0pt}{2pt} \rule{0pt}{2pt} \$ Execution $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$

 $Solve \sqrt{x_1y_1 + x_2y_1 + y_2y_2} = 0$ ∞ - $\frac{1}{1}$ 6 – has nongero conditions) has only the zero solution. $10 < x < y < z < 0$ $\Rightarrow 0,02+0,02+0,000 \Rightarrow v_1 = 0 v_2 - 2 v_3.$ Slone of theme can be written as a lied others. the one with nongero coefficient. Def: Let $v_1, v_2, ..., v_n \in V$. If the system $c_1v_1+c_2v_2+...+s_k=0$ has only the revo solution, we say $v_{1}, -3v_{n}$ are If Civitain + - taimso has a nongero solution, we Remarks: 1) The vectors v1, ..., vn are Linearly clependent O V, V21-1 Vn ane linearly dependent of end only if
one of the Can be written as a linear combination of
the other vectors. (=> the system c, v, + c, v, + c, v, = 0 3) V1, V21, Vn are linearly independent of and only if None of them can be written as a linear continuation of the \mathbb{R}^n $\overline{}$

 \mathbb{R}^n $Ex: |v_i=(\frac{1}{2}) \times \frac{v_i}{2}=(\frac{4}{8})$ $\sqrt{\frac{1}{2} \cdot 1} \sim \frac{|1.0.1|}{2}$ $50\sqrt{c_1}$ c_1 v_1 + c_1 v_2 = c_2 + $\frac{c_1}{c_2}$ + $\frac{c_1}{c_1}$ + $\frac{c_1}{c_2}$ + $\frac{c_1}{c_2}$ (#) $\frac{\sqrt{3}}{\sqrt{3}}$ nonze solutions are L.D. $x = 4V$ or $y = \pm k$
 $y = \sqrt{v_1 + v_2}$ are L_1D_2 Remarks If $v_1,v_2\in V$. v_1,v_2 are L.D \Longleftrightarrow
one of them can be written as a scalar multiple of the other. <u>Ex:</u> P_1 (x) = x^2+x , P_2 (x) = $x+1$ 1. I or 1. D. So L.J. (none of them can be written as Methodie) solve $c_1 p_1 (x + c_2 p_2 (x) = 0.$ $C_1(x^2+y)+C_2(x+y)=0$ Coefficients: x^2 , $c_1 = 0$
 x , $c_1 + c_2 = 0$. $c_1 = 0$
 $c_1 = 0$ only the gers solution. \therefore β (x), β (x) are \Box . EC: $v_i = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ in \mathbb{R} . L. I. or L.D? solve $C_1Y + C_2Y + C_3Y = 0$ $111 / 373 - 54$

 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_9 SONE CVEC, - EVICO The five up the Can be written
The five up of the star continue to your final star vectors of the other vectors.).
The five up of the star vectors v₁, v₂, v₂ = $V_1 - Y_1$ are $L \cdot D$ = X is singular.
 $K = \begin{pmatrix} V_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} & V_L = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} & V_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} & V_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} & V_4 = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix} & V_L \cdot I$ or $L \cdot D$.
 $X = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & 0$ $\left| \begin{array}{c|c|c|c|c|c|c|c|c} \hline \sqrt{2} & 1 & -1 & 2 & 1 & -1 & 2 \ \hline 1 & 2 & 0 & -2 & -1 & 0 \ \hline 1 & 2 & 0 & 1 & 1 & 2 \ \hline 2 & 1 & 1 & 6 & 0 & -1 & 3 & 2 \ \hline \end{array} \right| = \left| \begin{array}{c|c|c|c|c|c} \hline 1 & -1 & 2 & 0 & -1 & 2 \ \hline 0 & 1 & 1 & 2 & 0 & 0 & 2 & 2 \ \hline 0 & -1 & 3 & 2 & 0 &$ $=\begin{vmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{vmatrix} = 0$: X is singular \rightarrow v_1, v_2, v_3, v_4 are $L.D.$ P_{1} F_{2} F_{3} F_{4} F_{5} F_{6} F_{7} F_{7} F_{8} F_{9} F_{10} F_{11} F_{11} F_{12} F_{13} F_{14} F_{15} F_{16} F_{17} F_{18} F_{19} F_{10} $\frac{c_1V}{solvc}$ $c_1(X^2-rx+3)+c_2(2X^2+x+8)+c_3(X+8x+7)=0.$

 $G_{\mathbf{g}}\times\mathbb{C}$ $C_1 + 2C_2 + C_3 = 0$ $x: -2c_1 + c_2 + 8c_3 = c$ $3c_1 + 8c_2 + 7c_3 = 0$ $G = I$ $\begin{array}{c|c} 2 & 1 \\ 1 & 18 \\ 8 & 7 \end{array}$ $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 5 & 10 \\ 0 & 2 & 4 \end{pmatrix}$ has nonzero solution ω $\sqrt{p(x)}, p_2(x), p_1(x)$ $L.D.$ ane one of them can be written as a l.c. of the other 2 whic fred solution?