



aij element in ith row at joth column.

Size of A is mxn. columns.

Ex:
$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 2 & -1 & \boxed{0} & 3 \\ 2 & 1 & 2 & 2 & 4 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 2 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 2 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_{2} = \begin{pmatrix} 2 & -1 & 1 & 3 \end{pmatrix}.$$

$$\alpha = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{2x_{1}} / \alpha_$$

Two matrices A, B are called equal
$$(A = B)$$

if they have the same size and $\alpha_{ij} = b_{ij}$, for ell i_{j} .
Ex. $A = \begin{pmatrix} 2 & 3 & 4 \\ -1 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} a & b & c \\ d & e & d \end{pmatrix}$
 $A = B \longrightarrow \alpha = 2$, $b = 3$, $c = 4$, $d = -1$, $c = 0$, $d = 1$.

$$A = B = 3$$
 $\alpha = 2$, $b = 3$, $c = 4$, $d = -1$, $c = 0$, $4 = 1$.

2) Addition: (t)

Let A, B are mxn-matrices (same size), we define

$$A+B=(G_{ij})_{m\times n}$$
, $G_{ij}=G_{ij}+b_{ij}$.

$$\frac{Ex.}{-10} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -1 & 1 \\ 3 & 4 & -5 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 4 \\ 2 & 4 & -4 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 4 \\ 2 & 4 & -4 \end{pmatrix}$$

