


## Handout # 3 Prepared by Mohammad Madiah Sections 5.1, 5.2, 6.1 and 6.2

## **Exponential and logarithmic functions**

- ★ Exponential functions are functions written in the form  $y = a^x$ , where *a* is the base, a is positive and  $a \neq 1$ , and x is a real number.
- The domain of the exponential function, the values for which x can equal, are all real number. The range however, is all positive numbers.
- For a>1, the function  $y = y_0 a^{kx}$  is called the general exponential function
  - a. k > 0 means exponential growth.
  - b. k < 0 means exponential **decay**.
  - c. Special function:  $f(x)=y_0e^{kx}$
- For a > 0, x > 0, the function  $y = \log_a x$  is called the logarithmic function.

$$y = \log_a x \Leftrightarrow a^y = x$$

Special function:  $f(x) = \ln x$ .



## Some Properties of exponential

For any real numbers a and b and positive integers m and n

1. 
$$a^{m}a^{n} = a^{m+n}$$
  
2. For  $a \neq 0$ ,  $\frac{a^{m}}{a^{n}} = \begin{cases} a^{m+n} & m > n \\ 1 & m = n \\ \frac{1}{a^{n-m}} & m < n \end{cases}$   
3.  $(ab)^{m} = a^{m}b^{m}$ 

4. 
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} (b \neq 0)$$

5. 
$$(a^m)^n = a^m$$
  
6.  $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$  (if n even,  $a \ge 0$ 

Some Properties logarithms

1. 
$$\log_a 1=0$$
  
2.  $\log_a a=1$   
3.  $\log_a a^x = x$   
4.  $d^{\log_a x} = x$   
5.  $\log_a MN = \log_a M + \log_a N$   
6.  $\log_a \frac{M}{N} = \log_a M - \log_a N$   
7.  $\log_a x^n = n\log_a x$   
8.  $\log_a x = \log_a y \Longrightarrow x = y$   
9.  $\log_{10} x = \log x$  (common logarithm)  
10.  $\log_e x = \ln x$  (natural logarithm)  
11.  $\log_b a = \frac{\log_n a}{\log_n b} = \frac{\log a}{\log b} = \frac{\ln a}{\ln b}$  (change of basis)

Using Calculator > Power Key ^ 3<sup>1.45</sup>: 3 ^ 1.45 = 4.92 > Logarithms Keys 1. log key : Use base 10 Log 15: log 15 = 1.18 2. ln key : Use base e Ln 15: ln 15 = 2.71

Ln 15: In 15 = 2.71  
> Exponential Keys  
3. 10<sup>X</sup> key : Shift + log  

$$10^{1.5}$$
: Shift + log 1.5 = 31.62  
4. e<sup>X</sup> key : shift + ln  
 $e^{1.5}$ : Shift + ln 1.5 = 4.48

## **Simple and Compound Interest**

If \$P is invested at an interest rate of r per year, then the simple interest, and the future value S after t years are

S = P + I, where I = Prt

If \$P is invested at an interest rate of r per year, compound annually, the future value S after t years is



✤ If \$P is invested for t years at a nominal interest rate r, compound m times per year, the future value S is



If \$P is invested for t years at a nominal interest rate of r compound continuously, the future value S is

