Assignment #2 (Part 2)

	First semester 2019	/2020 Chapter 2	Mahmoud Ghannam	
--	---------------------	-----------------	-----------------	--

- (Q1) Consider the function $h(x) = 0.001x^4 + x^2 + 3x + 1$. Estimate the critical point of h(x) using Newton's method with a guess value of -1 and accuracy of 5×10^{-5} .
- (Q2) Calculate an approximate value for $4^{\frac{1}{4}}$ using two steps of the secant method starting with $P_0 = 1$ and $P_1 = 2$
- (Q3) Let $f(x) = (x-1)^2 \ln x$. Use the accelerated Newton's method to estimate the zero of f(x) with $p_0 = 1.5$ and $|E| < 5 \times 10^{-7}$
- (Q4) A small business has weekly profits of $P(x) = x^2 + 4x 2e^x$, where x is the number of units produced weekly. Using Newton's method with $p_0 = 1.5$ and $\epsilon = 10^{-6}$, approximate the level of production that yields the maximum profit.

(Q5) Clearly $P = \pi$ is a root of $f(x) = (\pi - x)\sin(x - \pi)$.

- (a) Find the multiplicity of this root.
- (b) Find the order of convergence and the asymptotic error constant if we used Newton-Raphson iteration to estimate this root.
- (c) Use the accelerated Newton's method to estimate this root using $P_0 = 3$. Find two iterations.
- (d) What is the order of convergence and the asymptotic error constant for bisection method to estimate this root?
- (e) What is the order of convergence of secant method to estimate this root?
- (f) What is the order of convergence of false-position method to estimate this root?
- (Q6) Let P = 2 be a fixed point of g(x) with g'(2) = g''(2) = 0 and g'''(2) = -4.8, find R and A of the FPI.
- (Q7) Clearly p = 1 is root of $f(x) = x^4 4x^3 + 6x^2 4x + 1$. Find R and A if we used Newton's method. Then prove your results numerically using $p_0 = 1.5$ with four iterations.

(Q8) Clearly p = 3 is root of $f(x) = \ln(x-2) + 3x - 9$. Find R and A of the following methods:

- (a) Newton-Raphson method.
- (b) The secant method.

(Q9) Consider the fixed point iteration: $p_{n+1} = g(p_n) = \frac{p_n(p_n^2 + 6)}{3p_n^2 + 2}$

- (a) Show that $p = \sqrt{2}$ is a fixed point of g(x).
- (b) Find the order of convergence and asymptotic error constant.