Math330

Assignment #4

2nd semester 2018/2019

Mahmoud Ghannam

- **(Q1)** Let $f(x) = \cos(\frac{\pi x}{2})$.
 - (a) Using the nodes: -1, 0, find Lagrange's polynomial.
 - (b) Find Newton's polynomial based on the nodes: -1, 0, 1, 2. Then estimate f(0.5).
 - (c) Estimate $\cos(\frac{\pi}{8})$ using Lagrange's polynomial based on the nodes: -1, 0, 1.
 - (d) Find f[2,3,4], then calculate its cost.
 - (e) Using the nodes: 0, 1, 2, find $L_{2,1}(1.5)$.
- (Q2) Given the data

x	0	1	2
y	b	-1	12

Using the interpolating polynomial for these data, if the coefficient of x^2 is 4, find b.

- (Q3) Let $f(x) = e^{-x/3}$; $0.2 \le x \le 0.8$. Using equally space nodes, find upper bounds for $E_1(x), E_2(x)$, and $E_3(x)$.
- (Q4) Let $f(x) = x \frac{1}{(x+2)^2}$ with the nodes 0, 1, 3 respectively. Find the upper bound of $E_2(2)$ when estimating f(x) by Newton's polynomial $P_2(x)$.
- (Q5) Given the nodes $x_{-3} = x_0 3h$, $x_{-1} = x_0 h$, and $x_1 = x_0 + h$, find the uniform upper bound for $E_2(x)$ of interpolating the data in the interval $[x_{-3}, x_1]$ assuming that $|f^{(3)}(x)| < 0.5$ on this interval.
- (Q6) Consider the data points: (1, 2), (2, 9), (3, 28)
 - (a) Estimate f(1.5) using Lagrange interpolating polynomial $P_2(x)$
 - (b) Find the cost of the above estimation.
 - (c) Estimate f(1.5) using Newton interpolating polynomial $P_2(x)$
 - (d) Find the cost of the above estimation.
 - (e) Find an upper bound for the error at x = 1.5 in the above estimation, given that $f(x) = x^3 + 1$