	Math330
Assignment $\#7$	
2nd semester 2018/2019	Mahmoud Ghannam
(Q1) Approximate the integral $\int_{0}^{2} e^{-x} dx$ using:	
 (a) Trapezoidal rule. (c) Simpson's rule. (e) Simpson's 3/8 rule. (g) Gauss-Legendre two-point rule. (i) How many compositions M do we need to e (1) Composite Trapezoidal rule. 	 (b) Trapezoidal rule with four compositions. (d) Simpson's rule with two compositions. (f) Gauss-Legendre one-point rule. (h) Gauss-Legendre three-point rule. estimate the above integral with accuracy of 5 × 10⁻⁹ using: (2) Composite Simpson's rule.
(Q2) Estimate the value of $\int_{0}^{14} f(x)dx$ using comp (0, 19), (1, 13), (2, 10), (4, 17), (6, 5), (10)	posite Simpson's rule using the data: $(0, 2)$, and $(14, 1)$.
(Q3) The velocity of a body is given by $v(t) =$ Find the distance covered by the body between	$\begin{cases} 2t & ; 1 \le t \le 5\\ 5t^2 + 3 & ; 5 < t \le 14 \end{cases}$ en t=2 and t=8 using two-composition trapezoidal rule
(Q4) Consider the quadrature formula: $\int_{-h}^{h} f(x)$ Find the degree of precision and $E[f]$ of C	$dx \approx Q[f] = \frac{h}{2}(f(-h) + 3f(\frac{h}{3})).$ Q[f].
(Q5) Consider the quadrature formula: $\int_{-1}^{1} f(x) dx$ Assuming that the degree of precision of Q (a) Determine the constants A, B , and C . (b) Find the truncation error of $Q[f]$.	$dx \approx Q[f] = Af(\frac{-1}{3}) + Bf(\frac{1}{3}) + Cf(1)$ [f] is 2,
(Q6) If the average value of $f(x)$ on $[a, b]$ is given	ven by $A = \frac{1}{b-a} \int_{a}^{b} f(x) dx$, Estimate A using trapezoidal rule.

(Q7) Estimate $\int_{a}^{a+2h} (x-a)^4 dx$ using Gauss-Legendre two-point rule