
Civil and Mechanical Engineering

Ramin S. Esfandiari

Esfandiari
Num

erical M
ethods for Engineers

and Scientists Using M
ATLAB

®

Numerical Methods for Engineers
and Scientists Using MATLAB®

“Overall, this book provides the reader with a fundamental knowledge of basic numerical
methods that are used in various disciplines in engineering and science. MATLAB® is
used throughout the book either in the implementation of a numerical method or in the
completion of a homework problem. It covers a variety of numerical methods....”

––Zhangxing (John) Chen, University of Calgary, Alberta, Canada

Designed to benefit scientific and engineering applications, Numerical Methods for Engi-
neers and Scientists Using MATLAB® focuses on the fundamentals of numerical meth-
ods while making use of MATLAB software. The book introduces MATLAB early on and
incorporates it throughout the chapters to perform symbolic, graphical, and numerical
tasks. The text covers a variety of methods from curve fitting to solving ordinary and
partial differential equations.

Created to be user-friendly and easily understandable, Numerical Methods for Engineers
and Scientists Using MATLAB® provides background material and a broad introduction
to the essentials of MATLAB, specifically its use with numerical methods. Building on
this foundation, it introduces techniques for solving equations and focuses on curve
fitting and interpolation techniques. It addresses numerical differentiation and integration
methods, presents numerical methods for solving initial-value and boundary-value prob-
lems, and discusses the matrix eigenvalue problem, which entails numerical methods to
approximate a few or all eigenvalues of a matrix. The book then deals with the numerical
solution of partial differential equations, specifically those that frequently arise in engi-
neering and science.

The book presents a user-defined function or a MATLAB script file for each method,
followed by at least one fully worked-out example. When available, MATLAB built-in func-
tions are executed for confirmation of the results. A large set of exercises of varying
levels of difficulty appears at the end of each chapter. The concise approach with strong,
up-to-date MATLAB integration provided by this book affords readers a thorough knowl-
edge of the fundamentals of numerical methods utilized in various disciplines.

K19104

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

w w w . c r c p r e s s . c o m

Numerical Methods
for Engineers
and Scientists
Using MATLAB®

This page intentionally left blankThis page intentionally left blank

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Numerical Methods
for Engineers
and Scientists
Using MATLAB®

Ramin S. Esfandiari

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or
discussion of MATLAB® and Simulink® software or related products does not constitute endorsement
or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MAT-
LAB® and Simulink® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130520

International Standard Book Number-13: 978-1-4665-8570-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To

My wife Haleh, my sisters Mandana and Roxana, and

my parents to whom I owe everything

This page intentionally left blankThis page intentionally left blank

vii

Contents

Preface... xvii
Acknowledgments... xxi
Author.. xxiii

	 1.	 Background and Introduction...1
1.1	 Background...1

1.1.1	 Differential Equations..1
1.1.1.1	 Linear First-Order ODEs..2
1.1.1.2	 Second-Order ODEs with Constant
	 Coefficients...2

1.1.2	 Matrix Analysis...5
1.1.2.1	 Matrix Operations...5
1.1.2.2	 Special Matrices...6
1.1.2.3	 Determinant of a Matrix..6
1.1.2.4	 Inverse of a Matrix..9

1.1.3	 Matrix Eigenvalue Problem... 10
1.1.3.1	 Solving the Eigenvalue Problem........................... 11
1.1.3.2	 Similarity Transformation..................................... 12

1.2	 Introduction to Numerical Methods... 13
1.2.1	 Errors and Approximations.. 13

1.2.1.1	 Computational Errors... 13
1.2.1.2	 Binary and Hexadecimal Numbers...................... 14
1.2.1.3	 Floating Point and Rounding Errors.................... 15
1.2.1.4	 Absolute and Relative Errors................................. 17

1.2.2	 Iterative Methods.. 21
1.2.2.1	 A Fundamental Iterative Method.........................23
1.2.2.2	 Rate of Convergence of an Iterative Method....... 24

Problem Set..25

	 2.	 Introduction to MATLAB®.. 31
2.1	 MATLAB® Built-In Functions... 31

2.1.1	 Rounding Commands.. 32
2.1.2	 Relational Operators... 32
2.1.3	 Format Options... 32

2.2	 Vectors and Matrices...33
2.2.1	 Linspace...34
2.2.2	 Matrices..35
2.2.3	 Determinant, Transpose, and Inverse.................................. 37

viii Contents

2.2.4	 Slash Operators... 37
2.2.5	 Element-by-Element Operations...38

2.3	 User-Defined Functions and Script Files.. 39
2.3.1	 Setting Default Values for Input Variables..........................40
2.3.2	 Creating Script Files... 41
2.3.3	 Anonymous Functions...42
2.3.4	 Inline...43

2.4	 Program Flow Control...43
2.4.1	 for Loop..44
2.4.2	 if Command...44
2.4.3	 while Loop...45

2.5	 Displaying Formatted Data..46
2.6	 Symbolic Toolbox... 47

2.6.1	 Differentiation...48
2.6.2	 Integration.. 49
2.6.3	 Differential Equations.. 49

2.7	 Plotting..50
2.7.1	 Subplot..50
2.7.2	 Plotting Analytical Expressions... 51
2.7.3	 Multiple Plots... 52

Problem Set��52

	 3.	 Solution of Equations of a Single Variable..55
3.1	 Numerical Solution of Equations...56
3.2	 Bisection Method...56

3.2.1	 MATLAB® Built-In Function fzero.................................... 62
3.3	 Regula Falsi Method (Method of False Position)............................. 62

3.3.1	 Modified Regula Falsi Method...65
3.4	 Fixed-Point Method...66

3.4.1	 Selection of a Suitable Iteration Function............................ 67
3.4.2	 A Note on Convergence...68
3.4.3	 Rate of Convergence of the Fixed-Point
	 Iteration.. 73

3.5	 Newton’s Method (Newton−Raphson Method).............................. 73
3.5.1	 Rate of Convergence of Newton’s Method..........................77
3.5.2	 A Few Notes on Newton’s Method...................................... 78
3.5.3	 Modified Newton’s Method for Roots with

Multiplicity 2 or Higher... 79
3.6	 Secant Method.. 82

3.6.1	 Rate of Convergence of Secant Method...............................84
3.6.2	 A Few Notes on Secant Method...84

3.7	 Equations with Several Roots...84
3.7.1	 Finding Zeros to the Right of a Specified Point.................85
3.7.2	 Finding Zeros on Two Sides of a Specified Point............... 87

ixContents

3.7.3	 Using fzero to Find Several Roots...................................... 89
3.7.4	 Points of Discontinuity Mistaken for Roots........................ 91

Problem Set.. 92

	 4.	 Solution of Systems of Equations..99
4.1	 Linear Systems of Equations..99
4.2	 Numerical Solution of Linear Systems... 100
4.3	 Gauss Elimination Method... 100

4.3.1	 Choosing the Pivot Row: Partial Pivoting with
Row Scaling... 102

4.3.2	 Permutation Matrices... 104
4.3.3	 Counting the Number of Operations................................. 107

4.3.3.1	 Elimination... 107
4.3.3.2	 Back Substitution... 108

4.3.4	 Tridiagonal Systems... 109
4.3.4.1	 Thomas Method.. 109
4.3.4.2	 MATLAB® Built-In Function “\”........................ 112

4.4	 LU Factorization Methods.. 112
4.4.1	 Doolittle Factorization.. 113

4.4.1.1	 Doolittle’s Method to Solve a
	 Linear System..116
4.4.1.2	 Operations Count.. 118

4.4.2	 Cholesky Factorization... 118
4.4.2.1	 Cholesky’s Method to Solve a
	 Linear System..120
4.4.2.2	 Operations Count.. 122
4.4.2.3	 MATLAB® Built-In Functions lu and chol......122

4.5	 Iterative Solution of Linear Systems.. 122
4.5.1	 Vector Norms... 123
4.5.2	 Matrix Norms.. 124

4.5.2.1	 Compatibility of Vector and
	 Matrix Norms.. 126

4.5.3	 General Iterative Method... 126
4.5.3.1	 Convergence of the General
	 Iterative Method.. 127

4.5.4	 Jacobi Iteration Method.. 128
4.5.4.1	 Convergence of the Jacobi
	 Iteration Method.. 129

4.5.5	 Gauss–Seidel Iteration Method... 132
4.5.5.1	 Convergence of the Gauss–Seidel

Iteration Method.. 133
4.5.6	 Indirect Methods versus Direct Methods for

Large Systems.. 137
4.6	 Ill-Conditioning and Error Analysis... 138

x Contents

4.6.1	 Condition Number... 138
4.6.2	 Ill-Conditioning.. 139

4.6.2.1	 Indicators of Ill-Conditioning.............................. 140
4.6.3	 Computational Error.. 141

4.6.3.1	 Consequences of Ill-Conditioning...................... 143
4.6.4	 Effects of Parameter Changes on the Solution................. 144

4.7	 Systems of Nonlinear Equations.. 146
4.7.1	 Newton’s Method for a System of
	 Nonlinear Equations.. 146

4.7.1.1	 Method for Solving a System of Two
Nonlinear Equations... 146

4.7.1.2	 Method for Solving a System of n
Nonlinear Equations... 150

4.7.1.3	 Convergence of Newton’s Method...................... 151
4.7.2	 Fixed-Point Iteration Method for a System of

Nonlinear Equations.. 152
4.7.2.1	 Convergence of the Fixed-Point

Iteration Method.. 152
Problem Set.. 156

	 5.	 Curve Fitting (Approximation) and Interpolation............................... 175
5.1	 Least-Squares Regression... 175
5.2	 Linear Regression... 176

5.2.1	 Deciding a “Best” Fit Criterion... 177
5.2.2	 Linear Least-Squares Regression.. 179

5.3	 Linearization of Nonlinear Data.. 182
5.3.1	 Exponential Function... 182
5.3.2	 Power Function... 183
5.3.3	 Saturation Function.. 183

5.4	 Polynomial Regression.. 188
5.4.1	 Quadratic Least-Squares Regression................................. 190
5.4.2	 Cubic Least-Squares Regression... 192
5.4.3	 MATLAB® Built-In Functions polyfit
	 and polyval... 195

5.5	 Polynomial Interpolation.. 196
5.5.1	 Lagrange Interpolating Polynomials................................. 197
5.5.2	 Drawbacks of Lagrange Interpolation...............................200
5.5.3	 Newton Divided-Difference
	 Interpolating Polynomials...200
5.5.4	 Special Case: Equally Spaced Data..................................... 203
5.5.5	 Newton Forward-Difference Interpolating

Polynomials... 206
5.6	 Spline Interpolation... 208

5.6.1	 Linear Splines.. 209

xiContents

5.6.2	 Quadratic Splines.. 210
5.6.2.1	 Function Values at the Endpoints....................... 210
5.6.2.2	 Function Values at the Interior Knots................ 211
5.6.2.3	 First Derivatives at the Interior Knots................ 211
5.6.2.4	 Second Derivative at the Left
	 Endpoint is Zero.. 212

5.6.3	 Cubic Splines... 213
5.6.4	 Construction of Cubic Splines: Clamped

Boundary Conditions... 215
5.6.5	 Construction of Cubic Splines: Free Boundary

Conditions.. 219
5.6.6	 MATLAB® Built-In Functions interp1 and spline..... 221
5.6.7	 Boundary Conditions...223
5.6.8	 Interactive Curve Fitting and Interpolation

in MATLAB®.. 224
5.7	 Fourier Approximation and Interpolation.....................................225

5.7.1	 Sinusoidal Curve Fitting..225
5.7.2	 Linear Transformation of Data...227
5.7.3	 Discrete Fourier Transform... 232
5.7.4	 Fast Fourier Transform...233

5.7.4.1	 Sande–Tukey Algorithm
	 (N = 2p, p = integer)..234
5.7.4.2	 Cooley–Tukey Algorithm
	 (N = 2p, p = integer)..238

5.7.5	 MATLAB® Built-In Function fft.......................................238
5.7.5.1	 Interpolation Using fft.......................................238

Problem Set.. 241

	 6.	 Numerical Differentiation and Integration... 267
6.1	 Numerical Differentiation.. 267
6.2	 Finite-Difference Formulas for Numerical
	 Differentiation.. 267

6.2.1	 Finite-Difference Formulas for the
	 First Derivative.. 268

6.2.1.1	 Two-Point Backward Difference Formula......... 268
6.2.1.2	 Two-Point Forward Difference Formula............ 269
6.2.1.3	 Two-Point Central Difference Formula.............. 269
6.2.1.4	 Three-Point Backward
	 Difference Formula... 271
6.2.1.5	 Three-Point Forward Difference Formula......... 272

6.2.2	 Finite-Difference Formulas for the
	 Second Derivative... 273

6.2.2.1	 Three-Point Backward Difference Formula...... 273
6.2.2.2	 Three-Point Forward Difference Formula......... 273

xii Contents

6.2.2.3	 Three-Point Central Difference Formula........... 274
6.2.2.4	 Summary of Finite-Difference Formulas for

First to Fourth Derivatives................................... 275
6.2.3	 Estimate Improvement: Richardson’s
	 Extrapolation... 275
6.2.4	 Derivative Estimates for Nonevenly
	 Spaced Data...280
6.2.5	 MATLAB® Built-In Functions diff and polyder.......... 281

6.3	 Numerical Integration: Newton–Cotes Formulas.........................283
6.3.1	 Newton–Cotes Formulas...284
6.3.2	 Rectangular Rule..284

6.3.2.1	 Composite Rectangular Rule...............................285
6.3.3	 Error Estimate for Composite Rectangular Rule.............. 287
6.3.4	 Trapezoidal Rule... 289

6.3.4.1	 Composite Trapezoidal Rule................................ 290
6.3.4.2	 Error Estimate for Composite

Trapezoidal Rule.. 291
6.3.5	 Simpson’s Rules... 292

6.3.5.1	 Simpson’s 1/3 Rule.. 293
6.3.5.2	 Composite Simpson’s 1/3 Rule............................ 294
6.3.5.3	 Error Estimate for Composite

Simpson’s 1/3 Rule.. 295
6.3.5.4	 Simpson’s 3/8 Rule.. 296
6.3.5.5	 Composite Simpson’s 3/8 Rule............................ 297
6.3.5.6	 Error Estimate for Composite

Simpson’s 3/8 Rule.. 298
6.3.6	 MATLAB® Built-In Functions quad and trapz.............. 299

6.4	 Numerical Integration of Analytical Functions: Romberg
Integration, Gaussian Quadrature...300
6.4.1	 Richardson’s Extrapolation, Romberg Integration........... 301

6.4.1.1	 Richardson’s Extrapolation.................................. 301
6.4.1.2	 Romberg Integration...304

6.4.2	 Gaussian Quadrature...306
6.5	 Improper Integrals... 312
Problem Set.. 313

	 7.	 Numerical Solution of Initial-Value Problems...................................... 329
7.1	​ One-Step Methods... 329
7.2	 Euler’s Method..330

7.2.1	​ Error Analysis for Euler’s Method.....................................333
7.2.2	 Calculation of Local and Global
	 Truncation Errors..333
7.2.3	​ Higher-Order Taylor Methods..335

7.3	​ Runge–Kutta Methods..338
7.3.1	​ Second-Order Runge–Kutta Methods...............................338

xiiiContents

7.3.1.1	​ Improved Euler’s Method....................................340
7.3.1.2	​ Heun’s Method..340
7.3.1.3	​ Ralston’s Method...340
7.3.1.4	​ Graphical Representation of Heun’s Method..... 341

7.3.2	 Third-Order Runge–Kutta Methods..................................343
7.3.2.1	​ Classical RK3 Method..344
7.3.2.2	​ Heun’s RK3 Method..345

7.3.3	 Fourth-Order Runge–Kutta Methods................................346
7.3.3.1	​ Classical RK4 Method...347
7.3.3.2	​ Higher-Order Runge–Kutta Methods................349

7.3.4	​ Runge–Kutta–Fehlberg Method...350
7.4	​ Multistep Methods... 351

7.4.1	​ Adams–Bashforth Method.. 351
7.4.1.1	​ Second-Order Adams–Bashforth Formula........ 352
7.4.1.2	 Third-Order Adams–Bashforth Formula..........353
7.4.1.3	​ Fourth-Order Adams–Bashforth Formula........353

7.4.2	​ Adams–Moulton Method..354
7.4.2.1	 Second-Order Adams–Moulton Formula..........354
7.4.2.2	 Third-Order Adams–Moulton Formula............ 355
7.4.2.3	 Fourth-Order Adams–Moulton Formula.......... 355

7.4.3	​ Predictor–Corrector Methods... 355
7.4.3.1	 Heun’s Predictor–Corrector Method.................. 356
7.4.3.2	​ Adams–Bashforth–Moulton
	 Predictor–Corrector Method............................... 357

7.5	​ Systems of Ordinary Differential Equations.................................360
7.5.1	​ Transformation into a System of First-Order ODEs.........360

7.5.1.1	 State Variables..360
7.5.1.2	​ Notation..360
7.5.1.3	 State-Variable Equations.......................................360

7.5.2	 Numerical Solution of a System of First-Order ODEs.......363
7.5.2.1	 Euler’s Method for Systems.................................363
7.5.2.2	​ Heun’s Method for Systems.................................366
7.5.2.3	​ Classical RK4 Method for Systems.....................368

7.6	 Stability.. 371
7.6.1	​ Euler’s Method.. 371
7.6.2	​ Euler’s Implicit Method.. 372

7.7	 Stiff Differential Equations... 374
7.8	​​ MATLAB® Built-In Functions for Initial-Value Problems............ 376

7.8.1	​​ Nonstiff Equations.. 376
7.8.1.1	​​ Single First-Order IVP.. 376
7.8.1.2	​ Setting ODE Solver Options................................ 378
7.8.1.3	 System of First-Order IVPs.................................. 379

7.8.2	 Stiff Equations...380
Problem Set.. 382

xiv Contents

	 8.	 Numerical Solution of Boundary-Value Problems............................... 401
8.1	 Shooting Method..402
8.2	 Finite-Difference Method...408
8.3	 BVPs with Mixed Boundary Conditions.. 413
8.4	 MATLAB® Built-In Function bvp4c for BVPs............................... 417

8.4.1	 Second-Order BVP.. 417
Problem Set..422

	 9.	 Matrix Eigenvalue Problem...429
9.1	 Power Method: Estimation of the Dominant Eigenvalue............429

9.1.1	 Inverse Power Method: Estimation of the
Smallest Eigenvalue..434

9.1.2	 Shifted Inverse Power Method: Estimation of the
Eigenvalue Nearest a Specified Value................................434
9.1.2.1	 Shifted Power Method.. 437

9.1.3	 MATLAB® Built-In Function eig....................................... 439
9.2	 Deflation Methods...440

9.2.1	 Wielandt’s Deflation Method..440
9.2.1.1	 Deflation Process... 441

9.3	 Householder Tridiagonalization and
QR Factorization Methods..444
9.3.1	 Householder’s Tridiagonalization Method

(Symmetric Matrices)...445
9.3.1.1	 Determination of Symmetric Orthogonal

Pk (k = 1, 2, . . . , n − 2)...446
9.3.2	 QR Factorization Method..449

9.3.2.1	 Determination of Qk and Rk Matrices.................450
9.3.2.2	 Structure of Lk (k = 2, 3, . . . , n)............................. 451
9.3.2.3	 MATLAB® Built-In Function qr.......................... 452

9.3.3	 Transformation to Hessenberg Form
(Nonsymmetric Matrices)..456

Problem Set.. 457

	10.	 Numerical Solution of Partial Differential Equations........................463
10.1	​ Introduction..463
10.2	 Elliptic PDEs...464

10.2.1	 Dirichlet Problem..464
10.2.2	 Alternating Direction-Implicit Methods........................... 469

10.2.2.1	 Peaceman–Rachford Alternating
	 Direction-Implicit Method................................... 470

10.2.3	 Neumann Problem... 476
10.2.3.1	 Existence of Solution for
	 Neumann Problem.. 478

10.2.4	 Mixed Problem.. 479
10.2.5	 More Complex Regions..480

xvContents

10.3	 Parabolic PDEs..483
10.3.1	 Finite-Difference (FD) Method...483

10.3.1.1	 Stability and Convergence of the
	 FD Method...485

10.3.2	 Crank–Nicolson (CN) Method.. 487
10.3.2.1	 CN Method versus FD Method.......................... 491

10.4	 Hyperbolic PDEs.. 493
10.4.1	 Starting the Procedure... 494

Problem Set.. 498

Bibliography... 511

Index.. 513

This page intentionally left blankThis page intentionally left blank

xvii

Preface

The principal goal of this book is to provide the reader with a thorough
knowledge of the fundamentals of numerical methods utilized in vari-
ous disciplines in engineering and science. The very powerful software
MATLAB® is introduced at the outset and is used throughout the book to
perform symbolic, graphical, and numerical tasks. The textbook, written at
the junior level, methodically covers a wide array of methods ranging from
curve fitting a set of data to numerically solving ordinary and partial differ-
ential equations. Each method is accompanied by either a user-defined func-
tion or a MATLAB script file. MATLAB built-in functions are also presented
for each main topic.

This book comprises 10 chapters. Chapter 1 presents the necessary back-
ground material and is divided into two parts. The first part covers dif-
ferential equations, matrix analysis, and matrix eigenvalue problem. The
second part introduces errors, approximations, iterative methods, and rates
of convergence.

Chapter 2 gives a comprehensive introduction to the essentials of MATLAB
as related to numerical methods. The chapter addresses fundamental fea-
tures such as built-in functions and commands, formatting options, vector
and matrix operations, program flow control, symbolic operations, and plot-
ting capabilities. The reader also learns how to write a user-defined function
or a MATLAB script file to perform specific tasks.

Chapters 3 and 4 introduce techniques for solving equations. Chapter 3
focuses on finding a single root or multiple roots of equations of a single
variable. Chapter 4 covers methods for solving linear and nonlinear systems
of equations.

Chapter 5 is entirely devoted to curve fitting and interpolation techniques,
while Chapter 6 covers numerical differentiation and integration methods.
Chapters 7 and 8 present numerical methods for solving initial-value prob-
lems and boundary-value problems, respectively.

Chapter 9 discusses the matrix eigenvalue problem, which entails numeri-
cal methods to approximate a few or all eigenvalues of a matrix.

Chapter 10 deals with the numerical solution of partial differential equa-
tions, specifically those that frequently arise in engineering and science.

xviii Preface

Pedagogy of the Book

This book is written in a user-friendly manner that intends to make the
material easy to understand by the reader. The materials are presented sys-
tematically using the following format:

•	 Each newly introduced method is accompanied by a user-defined
function, or a script file, that utilizes the method to perform a desired
task.

•	 This is followed by at least one fully worked-out example showing
all details.

•	 The results are then confirmed through the execution of the user-
defined function or the script file.

•	 When available, built-in functions are executed for reconfirmation.
•	 Plots are regularly generated to shed light on the soundness and sig-

nificance of the numerical results.

Exercises

A large set of exercises, of different levels of difficulty, appears at the end of
each chapter and can be worked out using either a

•	  Hand calculator, or
•	 MATLAB.

In many instances, the reader is asked to prepare a user-defined function, or
a script file, that implements a specific technique. In many cases, these sim-
ply require revisions to those previously presented in the chapter.

Ancillary Material

The following will be provided to the instructors adopting this book:

•	 An instructor’s solutions manual (in PDF format), featuring com-
plete solution details of all exercises, prepared by the author, and

•	 A web download containing all user-defined functions and script files
used throughout the book, available at www.crcpress.com/product/
isbn/9781466585690.

xixPreface

An ample portion of the material in this book has been rigorously class
tested over the past several years. In addition, the valuable remarks and sug-
gestions made by students have greatly contributed to making this book as
complete and user-friendly as possible.

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc.
For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

This page intentionally left blankThis page intentionally left blank

xxi

Acknowledgments

The author expresses his deep gratitude to Jonathan Plant (senior editor,
Mechanical, Aerospace, Nuclear and Energy Engineering) at Taylor &
Francis/CRC Press for his assistance during various stages of the develop-
ment of this project, as well as Dr. Nicholas R. Swart of the University of
British Columbia for thoroughly reviewing the book and providing valuable
input. The author also appreciates the feedback by his students that helped
make this book as user-friendly as possible.

This page intentionally left blankThis page intentionally left blank

xxiii

Author

Dr. Ramin S. Esfandiari is a professor of mechanical and aerospace
engineering at California State University, Long Beach (CSULB), where he
has served as a faculty member since 1989. He received his BS in mechanical
engineering, as well as his MA and PhD in applied mathematics (optimal
control), from the University of California, Santa Barbara.

He has authored several refereed research papers in high-quality engineer-
ing and scientific journals, including the Journal of Optimization Theory and
Applications, the Journal of Sound and Vibration, Optimal Control Applications
and Methods, and the ASME Journal of Applied Mechanics.

 Dr. Esfandiari is the author of Applied Mathematics for Engineers, 4th edi-
tion (2007), Matrix Analysis and Numerical Methods for Engineers (2007), and
MATLAB Manual for Advanced Engineering Mathematics (2007), all published
by Atlantis Publishing Company, as well as Modeling and Analysis of Dynamic
Systems (CRC Press, 2010) with Dr. Bei Lu. He is one of the select few con-
tributing authors for the latest edition of the Springer-Verlag Mechanical
Engineering Handbook (2009) and the coauthor (with Dr. H.V. Vu) of Dynamic
Systems: Modeling and Analysis (McGraw-Hill, 1997).

Dr. Esfandiari is the recipient of several teaching and research awards,
including two Meritorious Performance and Professional Promise
Awards, the TRW Excellence in Teaching and Scholarship Award, and the
Distinguished Faculty Teaching Award.

This page intentionally left blankThis page intentionally left blank

1

1
Background and Introduction

This chapter is essentially divided into two main parts. In the first part, we
review some important mathematical concepts related to differential equa-
tions and matrix analysis. In the second part, fundamentals of numerical
methods, such as computational errors and approximations, as well as itera-
tions are introduced. The materials presented here will be fully integrated in
the subsequent chapters.

1.1  Background

1.1.1  Differential Equations

Differential equations are divided into two categories: ordinary differential
equations (ODEs) and partial differential equations (PDEs). An equation
involving an unknown function and one or more of its derivatives is called
a differential equation. When there is only one independent variable, the
equation is called an ODE. If the unknown function is a function of several
independent variables, the equation is a PDE. For example, x x t+ =4 sin is
an ODE involving the unknown function x(t), its first derivative x x t= d d/ ,
as well as a given function sin t. Similarly, tx xx t − = + 1 is an ODE relat-
ing x(t) and its first and second derivatives with respect to t, as well as the
function t + 1. The derivative of the highest order of the unknown function
x(t) with respect to t is the order of the ODE. For instance, x x t+ =4 sin is of
order 1, while tx xx t − = + 1 is of order 2.

Consider an nth-order ODE in the form

	 a x a x a x a x F tn
n

n
n() () ()+ + + + =−

−
1

1
1 0… � 	 (1.1)

where x = x(t) and x d x dtn n n() = / . If all coefficients a0, a1, . . . , an are either
constants or functions of the independent variable t, then the ODE is lin-
ear. Otherwise, the ODE is nonlinear. If F(t) ≡ 0, the ODE is homogeneous.
Otherwise, it is nonhomogeneous. Therefore x x t+ =4 sin is linear,
tx xx t − = + 1 is nonlinear, and both are nonhomogeneous.

2 Numerical Methods for Engineers and Scientists Using MATLAB®

1.1.1.1  Linear First-Order ODEs

A linear, first-order ODE can be expressed as

	 a x a x F t x g t x f t
a

1 0

1

 + = ⇒ + =() () ()
Divide by

	
(1.2)

A general solution for Equation 1.2 is obtained as

	
x t e e f t t c h t g t t ch h() () , () () ,= +





= =− ∫ ∫d d const
	

(1.3)

To find a particular solution, an initial condition must be prescribed.
Assuming t0 is the initial time, a first-order initial-value problem (IVP) is
described as

	 x g t x f t x t x+ = =() (), ()0 0

Example 1.1:  Linear First-Order IVP

Solve

	
2 0

2
3

2x x e xt+ = =− , ()

Solution

We first write the ODE in the standard form of Equation 1.2, as
x x e t+ = −1

2
1
2

2 so that g t() = 1
2 , f t e t() .= −1

2
2 By Equation 1.3,

	
h t t x t e e e t c e cet t t t t= = = +





= − +∫ ∫− − − −1
2

1
2

1
2

1
3

2 2 2 2 2d d, () / / /

Applying the initial condition, we find

	
x c c()0

1
3

2
3

1= − + = ⇒ =

Therefore,

	
x t e et t() /= − +− −1

3
2 2

1.1.1.2  Second-Order ODEs with Constant Coefficients

Consider a second-order ODE in the form

	  x a x a x f t a a+ + = =1 0 1 0(), , const 	 (1.4)

3Background and Introduction

The corresponding second-order IVP comprises this ODE accompanied
by two initial conditions. A general solution of Equation 1.4 is a superposi-
tion of the homogeneous solution xh(t) and the particular solution xp(t).

1.1.1.2.1  Homogeneous Solution

The homogeneous solution is the solution of the homogeneous equation

	  x a x a x+ + =1 0 0 	 (1.5)

Assuming a solution in the form x(t) = eλt, substituting into Equation 1.5,
and using the fact that eλt ≠ 0, we find

	 λ λ2
1 0 0+ + =a a

known as the characteristic equation. The solution of Equation 1.5 is deter-
mined according to the nature of the two roots of the characteristic equation.
These roots, labeled λ1 and λ2, are called the characteristic values.

	 1.	When λ1 ≠ λ2 (real), the homogeneous solution is

	 x t c e c eh
t t() = +1 2

1 2λ λ

	 2.	When λ1 = λ2, we have

	 x t c e c teh
t t() = +1 2

1 1λ λ

	 3.	When λ λ1 2= complex conjugates(), and λ1 = σ + iω, we find

	 x t e c t c th
t() (cos sin)= +σ ω ω1 2

Example 1.2:  Homogeneous, Second-Order
ODE with Constant Coefficients

Consider the homogeneous equation

	  x x x+ + =4 3 0

The characteristic equation is formed as λ2 + 4λ + 3 = 0 so that the charac-
teristic values are λ1 = −1, λ2 = −3, and

	 x t c e c eh
t t() = +− −

1 2
3

4 Numerical Methods for Engineers and Scientists Using MATLAB®

1.1.1.2.2  Particular Solution

The particular solution is determined by the function f(t) in Equation 1.4 and
how f(t) is related to the independent functions that constitute the homo
geneous solution. The particular solution is obtained by the method of unde-
termined coefficients. This method is limited in its applications only to cases
where f(t) is a polynomial, an exponential function, a sinusoidal function, of
any of their combinations.

1.1.1.2.3  Method of Undetermined Coefficients

Table 1.1 considers different scenarios and the corresponding recommended
xp(t). These recommended forms are subject to modification in some special
cases as follows. If xp(t) contains a term that coincides with a solution of the
homogeneous equation, and that the solution corresponds to a nonrepeated
characteristic value, then the recommended xp(t) must be multiplied by t. If
the characteristic value is repeated, then multiply xp(t) by t2.

Example 1.3:  Second-Order IVP

Solve the following second-order IVP:

	
  x x x e x xt+ + = = = −−4 3 2 0 1 0 2, () , ()

Solution

The homogeneous solution was previously found in Example 1.2, as
x t c e c eh

t t() .= +− −
1 2

3 Since f(t) = 2e−t, Table 1.1 recommends xp(t) = Ke−t.
However, e−t is one of the independent functions in the homogeneous
solution, thus xp(t) must be modified. Since e−t is associated with a
nonrepeated characteristic value, the modification is xp(t) = Kte−t.
Substitution into the ODE, and collecting like terms, yields

	 2 2 1Ke e kt t− −= ⇒ =

This implies xp(t) = te−t, and a general solution is found as
x(t) = c1e−t + c2e−3t + te−t. Applying the initial conditions,

Table 1.1

Method of Undetermined Coefficients

Term in f(t) Recommended xp(t)

A t A t A t An
n

n
n+ + + +−

−
1

1
1 0 K t K t K t Kn

n
n

n+ + + +−
−

1
1

1 0

Ae at Ke at

A cos α t or A sin α t K t K t1 2cos sinα α+

Ae tat cosα or Ae tat sinα e K t K tat(cos sin)1 2α α+

5Background and Introduction

	

Solvec c

c c

c

c
1 2

1 2

1

2

1
3 1 2

0
1

+ =
− − + = −

⇒
=
=

Therefore, x(t) = e−3t + te−t.

1.1.2  Matrix Analysis

An n-dimensional vector v is an ordered set of n scalars, written as

	

v =





















v

v

vn

1

2

...

where each vi (i = 1, 2, . . . , n) is a component of vector v. A matrix is a collec-
tion of numbers (real or complex) or possibly functions, arranged in a rectan-
gular array and enclosed by square brackets. Each of the elements in a matrix
is an entry of the matrix. The horizontal and vertical lines are the rows and
columns of the matrix, respectively. The number of rows and columns of a
matrix determine its size. If a matrix A has m rows and n columns, then it is
of size m × n. A matrix is square if the number of its rows and columns are
the same, and rectangular if different. Matrices are denoted by bold-faced
capital letters, such as A. The abbreviated form of an m × n matrix is

	 A = ×[aij m n]

where aij is known as the (i,j) entry of A, located at the intersection of the ith
row and the jth column of A so that a32, for instance, is the entry at the inter-
section of the third row and the second column. In a square matrix An×n, the
elements a11, a22, . . . , ann are the diagonal entries.

Two matrices A = [aij] and B = [bij] are equal if they have the same size and
the same respective entries. A submatrix of A is generated by deleting some
rows and/or columns of A.

1.1.2.1  Matrix Operations

The sum of A = [aij]m×n and B = [bij]m×n is

	 C = = +× ×[] []c a bij m n ij ij m n

The product of a scalar k and matrix A = [aij]m×n is

	 k kaij m nA = ×[]

6 Numerical Methods for Engineers and Scientists Using MATLAB®

Consider A = [aij]m×n and B = [bij]n×p so that the number of columns of A is
equal to the number of rows of B. Then, their product C = AB is m × p whose
entries are obtained as

	
c a b i m j pij ik kj

k

n

= = =
=

∑
1

1 2 1 2, , , , , , , ,... ...

1.1.2.1.1  Matrix Transpose

Given Am×n, its transpose, denoted by AT, is an n × m matrix such that its
first row is the first column of A, its second row is the second column of A,
and so on. Provided all matrix operations are valid,

	 ()A B A B+ = +T T T

	 () ()k k kT TA A= = scalar

	 ()AB B AT T T=

1.1.2.2  Special Matrices

A square matrix A = [aij] is symmetric if AT = A, and skew-symmetric if
AT = −A. It is upper triangular if aij = 0 for all i > j, that is, all entries below the
main diagonal are zeros. It is lower triangular if aij = 0 for all i < j, that is, all
elements above the main diagonal are zeros. It is diagonal if aij = 0 for all i ≠ j.
In the upper and lower triangular matrices, the diagonal elements may be
all zeros. However, in a diagonal matrix, at least one diagonal entry must be
nonzero. The n × n identity matrix, denoted by I, is a diagonal matrix whose
every diagonal entry is equal to 1.

1.1.2.3  Determinant of a Matrix

The determinant of a square matrix A = [aij]n×n is a real scalar denoted by
|A| or det(A). For n ≥ 2, the determinant may be calculated using any row or
column—with preference given to the row or column with the most zeros.
Using the ith row, the determinant is found as

	
A = − =+

=
∑ a M i nik

i k
ik

k

n

() (, , ,)1 1 2
1

…
	

(1.6)

In Equation 1.6, Mik is the minor of the entry aik, defined as the determinant
of the (n − 1) × (n − 1) submatrix of A obtained by deleting the ith row and the
kth column of A. The quantity (−1)i+kMik is the cofactor of aik and is denoted
by Cik. Also note that (−1)i+k is responsible for whether a term is multiplied

7Background and Introduction

by +1 or −1. A square matrix is nonsingular if its determinant is nonzero.
Otherwise, it is called singular.

Example 1.4:  Determinant

Calculate |A| if

	

A =

−

−
−





















1 2 1 3
2 0 1 4
1 1 5 2
3 4 2 3

Solution

We will use the second row since it contains a zero entry.

A = −
−

−
− −

−
+

−
−

−

= − − + =

2
2 1 3
1 5 2
4 2 3

1 2 3
1 1 2
3 4 3

4
1 2 1
1 1 5
3 4 2

2 99 32 4 55() () −−10

Note that each of the 3 × 3 determinants is calculated via Equation 1.6.

1.1.2.3.1  Properties of Determinant

	 AB A B=

	
A AT =

•	 The determinant of a lower triangular, upper triangular, or diagonal
matrix is the product of the diagonal entries

•	 If any rows or columns of A are linearly dependent, then |A| = 0

1.1.2.3.2  Cramer’s Rule

Consider a linear system of n algebraic equations in n unknowns x1, x2, . . . ,
xn in the form

	

a x a x a x b

a x a x a x b

a x a x

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ +




 ++ =








 a x bnn n n 	

(1.7)

where aij (i, j = 1, 2, . . . , n) and bk (k = 1, 2, . . . , n) are known constants, and aij’s
are the coefficients. Equation 1.7 can be expressed in matrix form, as

	 Ax b=

8 Numerical Methods for Engineers and Scientists Using MATLAB®

with

	

A =














a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

...

...
...

...






=





















=















× ×n n n n n

x

x

x

b

b

b

, ,x b

1

2

1

1

2

... ...








×n 1

Assuming A is nonsingular, each unknown xi (i = 1, 2, . . . , n) is uniquely
determined via

	
xi

i= ∆
∆

where determinants Δ and Δi are described as

	

∆ ∆= =

a a a

a a a

a a a

a
n

n

n n nn

i

11 12 1

21 22 2

1 2

11...
...

...
...

,

.... ...

... ...
...
...

b a

a b a

i

n

n

1 1

21 2 2

th column of ∆

....

... ...a b an n nn1

Example 1.5:  Cramer’s Rule

Solve the following system using Cramer’s rule:

	

2 3 3
2 6

3 2 9

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ − = −
− + + = −

− − =









Solution

The determinants are calculated as

	

∆ ∆

∆

=
−

−
− −

= − =
− −
−

− −
= −

=
− −

− −
−

=

2 3 1
1 2 1
1 3 2

6
3 3 1
6 2 1
9 3 2

6

2 3 1
1 6 1
1 9 2

1

2

, ,

112
2 3 3
1 2 6
1 3 9

63, ∆ =
−

− −
−

=

9Background and Introduction

The unknowns are then found as

	
x x x1

1
2

2
3

31 2 1= = = = − = = −∆
∆

∆
∆

∆
∆

, ,

1.1.2.4  Inverse of a Matrix

The inverse of a square matrix An×n is denoted by A−1 with the property
AA−1 = A−1A = I where I is the n × n identity matrix. The inverse of A exists
only if |A| ≠ 0 and is obtained by using the adjoint matrix of A, denoted by
adj(A).

1.1.2.4.1  Adjoint Matrix

If A = [aij]n×n, then the adjoint of A is defined as

	

adj()

() () ()
() ()

A =

− − −
− −

+ + +

+ +

1 1 1
1 1

1 1
11

2 1
21

1
1

1 2
12

2 2
22

M M M

M M

n
n


   



()

() () ()

−

− − −


















+

+ + +

1

1 1 1

2
2

1
1

2
2

n
n

n
n

n
n

n n
nn

M

M M M





=



















C C C

C C C

C C C

n

n

n n nn

11 21 1

12 22 2

1 2




   


		
		 (1.8)

where Mij is the minor of aij and Cij = (−1)i+jMij is the cofactor of aij. Note
that each minor Mij (or cofactor Cij) occupies the (j,i) position in the adjoint
matrix. Then,

	
A

A
A− =1 1

adj()
	

(1.9)

Example 1.6:  Inverse

Find the inverse of

	

A = −
















3 1 1
1 1 1
0 2 1

Solution

We first calculate |A| = −8. Following the strategy outlined in Equation
1.8, the adjoint matrix of A is obtained as

	

adj()A =
−
− −

− −

















3 1 2
1 3 2
2 6 4

10 Numerical Methods for Engineers and Scientists Using MATLAB®

Finally, by Equation 1.9, we have

	

A− =
−

−

− −

− −



















=

− −
1 1

8

3 1 2

1 3 2

2 6 4

0.3750 0.1250 0.2500

0.12550 0.3750 0.2500

0.2500 0.7500 0.5000

−

−



















1.1.2.4.2  Properties of Inverse

	 ()A A− − =1 1

	 ()AB B A− − −=1 1 1

	 () () ,A A− −= = >1 1 0p p p integer

	
A A− =1 1/

	 () ()A A− −=1 1T T

•	 Inverse of a symmetric matrix is symmetric
•	 Inverse of a diagonal matrix is diagonal whose entries are the recip-

rocals of the entries of the original matrix

1.1.2.4.3  Solving a System of Equations

A system of equations Ax = b can be solved using A−1. Assuming An×n is non-
singular, the solution vector xn×1 is found as follows:

	
Ax b x A b

A
= ⇒ =

−

−
both sides by

Pre-multiply

1

1

1.1.3  Matrix Eigenvalue Problem

Consider an n × n matrix A, a scalar λ (complex, in general), and a non-
zero n × 1 vector v. The eigenvalue problem associated with matrix A is
defined as

	 Av v v 0= ≠λ , 	 (1.10)

where λ is an eigenvalue of A, and v is the eigenvector of A corresponding
to λ. Note that an eigenvector cannot be the zero vector.

11Background and Introduction

1.1.3.1  Solving the Eigenvalue Problem

Rewriting Equation 1.10, we have

	
Av v 0 A I v 0

v

− = ⇒ −[] =λ λ
from the right side

Factoring

	
(1.11)

where the identity matrix I has been inserted to make the two terms in
brackets size compatible. Recall that the solution vector v cannot be the zero
vector, or the trivial solution. That said, Equation 1.11 has a nontrivial solu-
tion if and only if the coefficient matrix is singular, that is,

	 A I− =λ 0 	 (1.12)

This is known as the characteristic equation for A. Since A is assumed
n × n, Equation 1.12 has n roots, which are the eigenvalues of A. The cor-
responding eigenvector for each λ is obtained by solving Equation 1.11.
Since A − λI is singular, it has at least one row dependent on other rows [see
Section 1.1.2.3.1]. Therefore, for each λ, Equation 1.11 has infinitely many
solutions. A basis of solutions will then represent all eigenvalues associated
with λ.

Example 1.7:  Eigenvalue Problem

Find the eigenvalues and eigenvectors of

	

A =
















1 0 1
0 1 0
1 0 1

Solution

The characteristic equation is formed as

A I− =
−

−
−

= − − = ⇒ =λ
λ

λ
λ

λ λ λ λ
1 0 1

0 1 0
1 0 1

1 2 0 0 1 2()() , ,

Solving Equation 1.11 with λ1 = 0, we have

	

A I v 0 v−[] = ⇒
















=
















λ1 1 1

1 0 1
0 1 0
1 0 1

0
0
0

12 Numerical Methods for Engineers and Scientists Using MATLAB®

Let the three components of v1 be a, b, c. Then, the above system yields
b = 0 and a + c = 0. Since the coefficient matrix is singular, by design, there
is a free variable, which can be either a or c. Letting a = 1 leads to c = −1,
and consequently the eigenvector associated with λ1 = 0 is determined as

	

v1

1
0
1

=
−

















Similarly, the eigenvectors associated with the other two eigenvalues
(λ2 = 1, λ3 = 2) will be obtained as

	

v v2 3

0
1
0

1
0
1

=
















=
















,

1.1.3.2  Similarity Transformation

Consider a matrix An×n and a nonsingular matrix Sn×n and suppose

	 S AS B− =1
	 (1.13)

We say B has been obtained through a similarity transformation of A, and
that matrices A and B are similar. The most important property of similar
matrices is that they have the same set of eigenvalues.

1.1.3.2.1  Matrix Diagonalization

Suppose matrix An×n has eigenvalues λ1, λ2, . . . , λn and linearly independent
eigenvectors v1, v2, . . . , vn. Then, the modal matrix P = [v1  v2  . . .  vn]n×n diago-
nalizes A by means of a similarity transformation:

	

P AP D− = =



















1

1

2

λ
λ

λ
...

n 	

(1.14)

Example 1.8:  Matrix Diagonalization

Consider the matrix in Example 1.7. The modal matrix is formed as

	

P v v v=   =
−

















1 2 3

1 0 1
0 1 0
1 0 1

13Background and Introduction

Subsequently,

	

P AP− =
















=
















1
1

2

3

0 0 0
0 1 0
0 0 2

λ
λ

λ

1.1.3.2.2  Eigenvalue Properties of Matrices

•	 The determinant of a matrix is the product of the eigenvalues of that
matrix.

•	 Eigenvalues of lower triangular, upper triangular, and diagonal
matrices are the diagonal entries of that matrix.

•	 Similar matrices have the same set of eigenvalues.
•	 Eigenvalues of a symmetric matrix are all real.
•	 Every eigenvalue of an orthogonal matrix [A−1 = AT] has an absolute

value of 1.

1.2  Introduction to Numerical Methods

1.2.1  Errors and Approximations

Numerical methods are procedures that allow for efficient solution of a
mathematically formulated problem in a finite number of steps to within an
arbitrary precision. Although scientific calculators can handle simple prob-
lems, computers are needed in most other cases. Numerical methods com-
monly consist of a set of guidelines to perform predetermined mathematical
(algebraic and logical) operations leading to an approximate solution of a
specific problem. Such set of guidelines is known as an algorithm. A very
important issue here is the errors caused in computations.

1.2.1.1  Computational Errors

While investigating the accuracy of the result of a certain numerical method,
two key questions arise: (1) what are the possible sources of error, and (2) to
what degree do these errors affect the ultimate result? In numerical compu-
tations, there exist three possible sources of error:

	 1.	Error in the initial model
	 2.	Truncation error
	 3.	Round-off error

14 Numerical Methods for Engineers and Scientists Using MATLAB®

The first source occurs in the initial model of the problem; for example,
when simplifying assumptions are made in the derivation of the mathemati-
cal model of a physical system. Also, if mathematical numbers such as e or π
are encountered, then we need to use their approximate values such as 2.7183
and 3.1416.

The second source is due to truncation errors, which occur whenever an
expression is approximated by some type of a mathematical method. As an
example, suppose we use the Maclaurin series representation of the sine
function:

	
sin

()
! ! !

()
!

()/ ()/

α α α α α= − = − + − + −−

=

∞ −

∑ 1 1
3

1
5

11 2
3 5

1 2n
n

n odd

m

n m

 αα m
mE+

where Em is the tail end of the expansion, neglected in the process, and
known as the truncation error.

The third type of computational error is caused by the computer within
the process of translating a decimal number to a binary number. This is
because unlike humans who use the decimal number system (in base 10),
computers mostly use the binary number system (in base 2, or perhaps 16).
In this process, the number that is inputted to the computer is first converted
to base 2, arithmetic is done in base 2, and finally the outcome is converted
back to base 10.

1.2.1.2  Binary and Hexadecimal Numbers

For ordinary purposes, base 10 is used to represent numbers. For example,
the number 147 is expressed as

	
147 1 10 4 10 7 102 1 0

10
= × + × + × 

where the subscript is usually omitted when the base is 10. This is known
as decimal notation. The so-called normalized decimal form of a number is

	 ± × ≤ ≤ ≤ ≤0. 1 ,d d d d d d dm
p

m1 2 1 2 310 9 0 9… …, , , , 	 (1.15)

Equation 1.15 is also known as the floating-point form, to be explained
shortly. On the other hand, most computers use the binary system (in base
2). For instance, the number 147 is expressed in base 2 as follows. First, we
readily verify that

	
147 1 2 0 2 0 2 1 2 0 2 0 2 1 2 1 27 6 5 4 3 2 1 0

2
= × + × + × + × + × + × + × + × 

15Background and Introduction

Then, in base 2, we have

	 147 10010011 2= ()

We refer to a binary digit as a bit. This last expression represents a binary
number. Similarly, the same number can be expressed in base 16, as

	
147 9 16 3 16 147 931 0

16
16= × + ×  ⇒ =

In base 16
()

This last expression represents a hexadecimal number. While the binary
system consists of only two digits, 0 and 1, there are 16 digits in the hexa-
decimal system; 0, 1, 2, . . . , 9, A, B, . . . , F, where A−F represent 10−15. We
then sense that the hexadecimal system is a natural extension of the binary
system. Since 24 = 16, for every group of four bits, there is one hexadecimal
digit. Examples include C = (1100)2, 3 = (0011)2, and so on.

1.2.1.3  Floating Point and Rounding Errors

Because only a limited number of digits can be stored in computer mem-
ory, a number must be represented in a manner that uses a somewhat
fixed number of digits. Digital computers mostly represent a number in
one of two ways: fixed point and floating point. In a fixed-point setting,
a fixed number of decimal places are used for the representation of num-
bers. For instance, in a system using 4 decimal places, we encounter num-
bers like −2.0000, 131.0174, 0.1234. On the other hand, in a floating-point
setting, a fixed number of significant digits* are used for representation.
For instance, if four significant digits are used, then we will encounter
numbers such as†

	 0.2501 0.7012× − ×−10 102 5,

Note that these two numbers fit the general form given by Equation 1.15. In
the floating-point representation of a number, one position is used to identify
its sign, a prescribed number of bits to represent its fractional part, known
as the mantissa, and another prescribed number of bits for its exponential
part, known as the characteristic. Computers that use 32 bits for single-
precision representation of numbers, use 1 bit for the sign, 24 bits for the
mantissa, and 8 bits for the exponent. Typical computers can handle wide

*	 Note that significant digits are concerned with the first nonzero digit and the ones to its right.
For example, 4.0127 and 0.088659 both have five significant digits.

†	 Also expressed in scientific notation, as 0.2501E − 2 and −0.7012E + 5.

16 Numerical Methods for Engineers and Scientists Using MATLAB®

ranges of exponents. As one example, the IEEE* floating point standard range
is between −38 and +38. Outside of this range, the result is an underflow if
the number is smaller than the minimum and an overflow if the number is
larger than the maximum.

1.2.1.3.1  Round-Off: Chopping and Rounding

Consider a positive real number N expressed as

	 N d d d dm m
p= ×+0.1 2 1 10

The floating-point form of N, denoted by FL(N), in the form of Equation
1.15, is obtained by terminating its fractional part at m decimal digits. There
are two ways to do this. The first method is called chopping, and involves
chopping of the digits to the right of dm to get

	 FL(0.N d d dm
p) = ×1 2 10…

The second method is known as rounding, and involves adding 5 × 10p − (m+1)

to N and then chopping. In this process, if dm+1 < 5, then all that happens
is that the first m digits are retained. This is known as rounding down. If
dm+1 ≥ 5, then FL(N) is obtained by adding one to dm. This is called rounding
up. It is clear that when a number is replaced with its floating-point form,
whether through rounding down or up, an error results. This error is called
round-off error.

Example 1.9:  Chopping and Rounding

Consider e = 2.71828182. . . = 0.271828182. . . × 101. If we use 5-digit chop-
ping (m = 5), the floating-point form is FL(e) = 0.27182 × 101 = 2.7182.
We next use rounding. Since the digit immediately to the right of d5 is
d6 = 8 > 5, we add 1 to d5 to obtain

	 FL(0.27183 2.7183e) = × =101

so that we have rounded up. The same result is obtained by following
the strategy of adding 5 × 10p − (m+1) to e and chopping. Note that p = 1 and
m = 5, so that 5 × 10p − (m+1) = 5 × 10−5 = 0.00005. Adding this to e, we have

	 e + = + = = ×0.00005 2.71828182 0.00005 2.71833 0.271833… … … 101

5-digit chopping yields FL(e) = 0.27183 × 101 = 2.7183, which agrees with
the result of rounding up.

*	 Institute of Electrical and Electronics Engineers.

17Background and Introduction

1.2.1.4  Absolute and Relative Errors

In the beginning of this section, we discussed the three possible sources
of error in computations. Regardless of what the source may be, computa-
tions generally yield approximations as their output. This output may be
an approximation to a true solution of an equation, or an approximation of
a true value of some quantity. Errors are commonly measured in one of two
ways: absolute error and relative error. If x is an approximation to a quantity
whose true value is x, the absolute error is defined as

	 e x xabs = −  	 (1.16)

On the other hand, the true relative error is given by

	
e

e
x

x x
x

xrel
abs= = = − ≠Absolute error

True value


, 0
	

(1.17)

Note that if the true value happens to be zero, the relative error is
regarded as undefined. The relative error is generally of more significance
than the absolute error, as we will discuss in Example 1.10. And because
of that, whenever possible, we will present bounds for the relative error in
computations.

Example 1.10:  Absolute and Relative Errors

Consider two different computations. In the first one, an estimate
x1 = 0.003 is obtained for the true value x1 = 0.004. In the second one,
x2 = 1238 for x2 = 1258. Therefore, the absolute errors are

	 () , ()e x x e x xabs abs0.001 20 1 1 1 2 2 2= − = = − = 

The corresponding relative errors are

	
()

()
()

()
e

e
x

e
e
x

rel
abs

rel
abs0.001

0.004
0.25,

20
1258

1
1

1
2

2

2
= = = = = == 0.0159

We notice that the absolute errors of 0.001 and 20 can be rather mis-
leading, judging by their magnitudes. In other words, the fact that 0.001
is much smaller than 20 does not make the first error a smaller error
relative to its corresponding computation. In fact, looking at the relative
errors, we see that 0.001 is associated with a 25% error, while 20 corre-
sponds to 1.59% error, much smaller than the first. Because they convey
a more specific type of information, relative errors are considered more
significant than absolute errors.

18 Numerical Methods for Engineers and Scientists Using MATLAB®

1.2.1.4.1  Error Bound

It is customary to use the absolute value of eabs so that only the upper bound
needs to be obtained, since the lower bound is clearly zero. We say that α is
an upper bound for the absolute error if

	 e x xabs = − ≤ α

Note that α does not provide an estimate for x x−  , and is simply a bound.
Similarly, we say that β is an upper bound for the relative error if

	
e

x x
x

xrel =
−

≤ ≠


β , 0

Example 1.11:  Error Bound

Find two upper bounds for the relative errors caused by the 5-digit chop-
ping and rounding of e in Example 1.9.

Solution

Using the results of Example 1.9, we have

	

e
e e

e
rel Chopping

FL 0.000008182
0.271828182

0.8=
−

= ×
×

=
() …

…
10
10

1

1

1182
0.271828182

…
…

× ≤− −10 105 4

Here, we have used the fact that the numerator is less than 1, while the
denominator is greater than 0.1. It can be shown that in the general case,
an m-digit chopping results in an upper bound relative error of 101−m. For
the 5-digit rounding, we have

	

e
e e

e
rel Rounding

FL 0.000001818
0.271828182

0.1=
−

= ×
×

=
() …

…
10
10

1

1

8818
0.271828182

0.5

…
…

× ≤ ×− −10 105 4

where we used the fact that the numerator is less than 0.5 and the denom-
inator is greater than 0.1. In general, an m-digit rounding corresponds to
an upper-bound relative error of 0.5 × 101−m.

1.2.1.4.2  Transmission of Error from a Source to the Final Result

Now that we have learned about the sources of error, we need to find out
about the degree to which these errors affect the outcome of a computation.
Depending on whether addition (and/or subtraction) or multiplication (and/
or division) is considered, definite conclusions may be drawn.

19Background and Introduction

Theorem 1.1

Suppose in a certain computation the approximate values x1 and x2 have been
generated for true values x1 and x2, respectively, with absolute and relative
errors (eabs)i and (erel)i, i = 1, 2, and

	 () , () , () , ()e e e eabs abs rel rel1 1 2 2 1 1 2 2≤ ≤ ≤ ≤α α β β

	 a.	The upper bound for the absolute error eabs in addition and subtrac-
tion is the sum of the upper bounds of the absolute errors associated
with the quantities involved. That is,

	 e x x x xabs = ± − ± ≤ +() ()1 2 1 2 1 2  α α

	 b.	The upper bound for relative error erel in multiplication and division
is approximately equal to the sum of the upper bounds of the rela-
tive errors associated with the quantities involved. That is,

Multiplication

	
e

x x x x
x x

rel = − ≤ +1 2 1 2

1 2
1 2

 
β β

	
(1.18)

Division

	
e

x x x x
x x

rel = − ≤ +1 2 1 2

1 2
1 2

/ /
/
 

β β
	

(1.19)

Proof

	 a.	We have

	

e x x x x x x x x

x x x x

abs = ± − ± = − ± −

≤ − + − ≤ +

() () () ()1 2 1 2 1 1 2 2

1 1 2 2 1

   

  α αα 2

	 b.	We will prove Equation 1.18. Noting that ()e x xi i iabs = −  for i = 1, 2, we
have x x ei i i= − ()abs . Insertion into the left side of Equation 1.18 yields

	

e
x x x x

x x
x x x e x e

x x
rel

abs abs

= − =
− −[] −[]

=

1 2 1 2

1 2

1 2 1 1 2 2

1 2

  () ()

−− + +() () () ()e e e x e x
x x

abs abs abs abs
 1 2 2 1 1 2

1 2

20 Numerical Methods for Engineers and Scientists Using MATLAB®

		  But (eabs)1 (eabs)2 can be assumed negligible relative to the other two
terms in the numerator. As a result,

	

e
e x e x

x x
e
x

e
x

e
x

rel
abs abs abs abs

abs

 ≅ + = +

≤

() () () ()

()

2 1 1 2

1 2

1

1

2

2

1

11

2

2
1 2+ ≤ +()e

x
abs β β

		 as asserted.

1.2.1.4.3  Subtraction of Nearly Equal Numbers

There are two particular instances leading to unacceptable inaccuracies:
division by a number that is very small in magnitude, and subtraction of
nearly equal numbers. Naturally, if this type of subtraction takes place in the
denominator of a fraction, the latter gives rise to the former. Consider two
numbers N1 and N2 having the same first k decimal digits in their floating-
point forms, that is,

	

FL 0.

FL 0. ...

()

()

N d d d a a

N d d d b

k k m
p

k k

1 1 2 1

2 1 2

10= ×

=
+

+11 10 ... bm
p×

The larger the value of k, the more “nearly equal” the two numbers are
considered to be. Subtraction yields

	 FL FL FL 0. (() ())N N c ck m
p k

1 2 1 10− = ×+
−…

where ck+1, . . . , cm are constant digits. From this expression we see that there
are only m − k significant digits in the representation of the difference. In
comparison with the m significant digits available in the original representa-
tions of the two numbers, some significant digits have been lost in the pro-
cess. This is precisely what contributes to the round-off error, which will
then be propagated throughout the subsequent computations. This can often
be remedied by a simple reformulation of the problem, as illustrated in the
following example.

Example 1.12:  The Quadratic Formula When b2 >> 4ac

Consider the quadratic equation x2 + 52x + 3 = 0 with approximate roots
x1 = −0.05775645785, x2 = −51.94224354. Recall that the quadratic formula
generally provides the solution of ax2 + bx + c = 0, as

	
x

b b ac
a

x
b b ac

a
1

2

2

24
2

4
2

= − + − = − − −
,

21Background and Introduction

But in our example, b2 >> 4ac so that b ac b2 4− ≅ . This means that
in the calculation of x1 we are subtracting nearly equal numbers in the
numerator. Now, let us use a 4-digit rounding for floating-point repre-
sentation. Then,

FL
.00 52.00 1.000)(3.000)

1.000)
52.00 51.8

()
() (

(
x1

252 4
2

=
− + −

= − + 88
2.000

0.0600= −

and

	
FL

.00 52.00 1.000)(3.000)
1.000)

51.94()
() (

(
x2

252 4
2

=
− − −

= −

The corresponding relative errors, in magnitude, are computed as

	
e

x x
xxrel
FL

0.0388 or 3.88%
1

1 1

1
=

−
≅

()

	
e

x x
xxrel
FL

0.0043 or 0.43%
2

2 2

2
=

−
≅

()

Thus, the error associated with x1 is rather large compared to that for
x2. We anticipated this because in the calculation of x2 nearly equal num-
bers are added, causing no concern. As mentioned above, reformulation
of the problem often remedies the situation. Also note that the roots of
ax2 + bx + c = 0 satisfy x1x2 = c/a. We will retain the value of FL(x2) and
calculate FL(x1) via

	
FL

FL
3.000

(1.000)(51.94)
0.05775()

()
x

c
a x

1
2

= =
−

= −

The resulting relative error is

	
e

x x
xxrel
FL

0.00011 or 0.011%
1

1 1

1
=

−
≅

()

	

which shows a dramatic improvement compared to the result of the first
trial.

1.2.2  Iterative Methods

Numerical methods generally consist of a set of directions to perform pre-
determined algebraic and logical mathematical operations leading to an

22 Numerical Methods for Engineers and Scientists Using MATLAB®

approximate solution of a specific problem. These set of directions are known
as algorithms. To effectively describe a certain algorithm, we will use a code.
Based on the programming language or the software package used, a code
can easily be modified to accomplish the task at hand. A code consists of a set
of inputs, the required operations, and a list of outputs. It is standard practice
to use two types of punctuation symbols in an algorithm: the period (.) pro-
claims that the current step is terminated, and the semicolon (;) indicates that
the step is still in progress. An algorithm is stable if a small change in the
initial data will correspond to a small change in the final result. Otherwise,
it is unstable.

An iterative method is a process that starts with an initial guess and com-
putes successive approximations of the solution of a problem until a reason-
ably accurate approximation is obtained. As we will demonstrate throughout
the book, iterative methods are used to find roots of algebraic equations, solu-
tions of systems of algebraic equations, solutions of differential equations,
and much more. An important issue in an iterative scheme is the manner in
which it is terminated. There are two ways to stop a procedure: (1) when a
terminating condition is satisfied or (2) when the maximum number of itera-
tions is exceeded. In principle, the terminating condition should check to see
whether an approximation calculated in a step is within a prescribed toler-
ance of the true value. In practice, however, the true value is not available. As
a result, one practical form of a terminating condition is whether the differ-
ence between two successively generated quantities by the iterative method
is within a prescribed tolerance. The ideal scenario is when an algorithm
meets the terminating condition, and at a reasonably fast rate. If it does not,
then the total number of iterations performed should not exceed a prescribed
maximum number of iterations.

Example 1.13:  An Algorithm and Its Code

Approximate e−2 to seven significant digits with a tolerance of ε = 10−6.

Solution

Retaining the first n + 1 terms in the Maclaurin series of f(x) = ex yields
the nth-degree Taylor’s polynomial

	

T x
i
xn
i

i

n

()
!

=
=
∑ 1

0 	

(1.20)

We want to evaluate e−2 by determining the least value of n in Equation
1.20 such that

	
e Tn− − − <2 2() ε

	
(1.21)

23Background and Introduction

Equation 1.21 is the terminating condition. To seven significant dig-
its, the true value is e−2 = 0.1353353. Let us set the maximum number of
iterations as N = 20, so that the program is likely to fail if the number of
iterations exceeds 20 and the terminating condition is not met. As soon
as an approximate value within the given tolerance is reached, the ter-
minating condition is satisfied and the program is terminated. Then the
outputs are n and the corresponding value for e−2. We write the algorithm
listed in Table 1.2. It turns out that 14 iterations are needed before the
terminating condition is satisfied, that is, n = 13. The approximate value
for e−2 is 0.1353351 with an absolute error of 0.2 × 10−6ε.

1.2.2.1  A Fundamental Iterative Method

A fundamental iterative method is the one that uses repeated substitutions.
Suppose that a function g(x) and a starting value x0 are known. Let us gener-
ate a sequence of values x1, x2, . . . via an iteration defined by

	 x g x n xn n+ = =1 00 1 2() , , , ,, is known… 	 (1.22)

There are a few possible scenarios. The iteration may exhibit convergence,
either at a fast rate or a slow rate. It is also possible that the iteration does not
converge at all. Again, its divergence may happen at a slow or a fast rate. All
these depend on critical factors such as the nature of the function g(x) and
the starting value, x0. We will analyze these in detail in Chapter 3.

Table 1.2

Algorithm in Example 1.13

Input: x = 2, ε =10−6, N = 20
Output: An approximate value of e−2 accurate to within ε, or a message of “failure”
Step 1: Set n = 0

Tval = e−x

Term = 1 True value

Psum = 0 Initiate partial sum

Sgn = 1 Initiate alternating signs
Step 2: While n ≤ N, do Step 3–Step 5
Step 3: Psum = Psum + Sgn*Term/n!
Step 4: If |Psum − Tval| < ε, then Output(n) Terminating condition

Stop
Step 5: n = n + 1 Update n

Sgn = −Sgn Alternate sign

Term = Term*x Update Term
Step 6: Output(failure)

Stop
End

24 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 1.14:  Iteration by Repeated Substitutions

Consider the sequence described by x nn
n= () =1

2 0 1 2, , , ,… . To generate
the same sequence of elements using iteration by repeated substitutions,
we need to reformulate it to agree with Equation 1.22. To that end, we
propose

	
x x n xn n+ = 





= =1 0
1
2

0 1 2 1, , , , ,…

This way, the sequence starts with x0 = 1, which matches the first element
of the original sequence. Next, we calculate

	
x x1 0

1
2

1
2

= 





=,
	

which agrees with the respective element in the original sequence. All
elements of the sequence generated in this manner agree with the origi-
nal. Therefore,

	 x g x n xn n+ = = =1 00 1 2 1() , , , ,, … 	

where g x x() = 1
2 .

1.2.2.2  Rate of Convergence of an Iterative Method

Consider a sequence {xn} that converges to x. The error at the nth iteration is
then defined as

	 e x x nn n= − =, , , ,0 1 2 …

If there exists a number R and a constant K ≠ 0 such that

	
lim
n

n

n
R

e

e
K

→∞

+ =1

	
(1.23)

then we say that R is the rate of convergence of the sequence. There are two
types of convergence that we often encounter: linear and quadratic. A con-
vergence is linear if R = 1, that is,

	
lim
n

n

n

e
e

K
→∞

+ = ≠1 0
	

(1.24)

25Background and Introduction

A convergence is said to be quadratic if R = 2, that is,

	
lim
n

n

n

e

e
K

→∞

+ = ≠1
2 0

	
(1.25)

Rate of convergence is not always an integer. We will see in Section 3.6, for
instance, that the secant method has a rate of 1

2 1 5()+ ≅ 1.618 .

Example 1.15:  Rate of Convergence

Determine the rate of convergence for the sequence in Example 1.14.

Solution

Since xn
n= () →1

2 0 as n → ∞, the limit is x = 0. With that, the error at
the nth iteration is

	
e x xn n

n n

= − = − 



 = −



0

1
2

1
2

We will first examine R = 1, that is, Equation 1.24:

	

lim lim
n

n

n n

n

n

e
e→∞

+

→∞

+

=
−()
−()

= ≠1
1
2

1

1
2

1
2

0

Therefore, R = 1 works and convergence is linear. Once a value of R sat-
isfies the condition in Equation 1.23, no other values need be inspected.

Problem Set

Differential Equations (Section 1.1.1)

 Hand Calculation

In Problems 1 through 8, solve each initial-value problem.

	 1.	 y y t y+ = =, ()0 1
	 2.	 y ty t y+ = =, ()0 0

	 3.	 1
2

1
20 0y y y+ = =, ()

	 4.	 y y e yt+ = =−2 0 1, ()
	 5.	   y y y y y+ + = = =2 2 0 0 0 0 1, () , ()

	 6.	   y y y e y yt+ + = = =−2 0 0 0 0, () , ()
	 7.	   y y t y y+ = = =2 0 0 0 0sin , () , ()
	 8.	   y y t y y+ = = =2 0 1 0 1, () , ()

26 Numerical Methods for Engineers and Scientists Using MATLAB®

Matrix Analysis (Section 1.1.2)

 In Problems 9 through 12 calculate the determinant of the given matrix.

	 9.	A =
−
−

















3 4 1
1 1 2
0 2 6

	 10.	A =
−

−

















8 2 1
1 0 4
3 4 5

	 11.	A =

−

−
−



















1 3 1 2
1 0 4 3
1 1 1 0
2 3 4 5

	 12.	A =

−
− −

−



















0 2 3 0
1 2 4 3

2 0 1 1
4 5 3 1

 In Problems 13 through 16 solve each system using Cramer’s rule.

	 13.	

x x x

x x x

x x

1 2 3

1 2 3

2 3

4 2
2 3 1

5 5

+ − = −
− + + = −

+ =









	 14.	
4

x x x

x x x

x x

1 2 3

1 2 3

1 3

3 13
2 6 13

7 4

+ − = −
− + + =

+ =









	 15.	Ax b A x= =

−
−
−



















=












, ,

2 1 0 1
1 3 1 3
0 1 3 2
2 0 1 4

1

2

3

4

x

x

x

x







=

−

















, b

3
13

5
11

	 16.	 Ax b A x= =

−
−

− −



















=












, ,

1 0 4 2
5 1 3 1
1 0 2 2
3 2 0 2

1

2

3

4

x

x

x

x








=

−



















, b

3
22
5
7

27Background and Introduction

 In Problems 17 through 20 find the inverse of each matrix.

	 17.	A = −
− − −

















4 0 1
0 3 2
1 2 1

	 18.	A =
















0 1 0
0 0 1
1 2 1

	 19.	A =
−

















1 0 0
0 5 0
4 3 2

	 20.	 A =
−

+
+

















=
α

α
α

α
0 1

0 1 2
1 0 2

, parameter

Matrix Eigenvalue Problem (Section 1.1.3)

 In Problems 21 through 24 find the eigenvalues and corresponding eigen-
vectors of each matrix.

	 21.	A =
−
−











3 0
2 1

	 22.	A =
















2 2 0
1 1 0
0 0 1

	 23.	A = −
−

















1 2 1
0 2 3
0 0 1

	 24.	A =
















1 0 0
1 2 0
2 3 3

	 25.	 Prove that a singular matrix has at least one zero eigenvalue.

28 Numerical Methods for Engineers and Scientists Using MATLAB®

 In Problems 26 through 28 diagonalize each matrix by using an appropri-
ate modal matrix.

	 26.	A =
− − −















2 1 1
3 2 1
1 1 0

	 27.	A =
















3 2 1
0 2 0
0 0 2

	 28.	A = −
−

















1 2 1
0 2 3
0 0 1

Errors and Approximations (Section 1.2.1)

 In Problems 29 through 32 convert each decimal number to a binary number.

	 29.	67
	 30.	234
	 31.	45.25
	 32.	1127

 In Problems 33 through 36 convert each decimal number to a hexadeci-
mal number.

	 33.	596
	 34.	1327
	 35.	23.1875
	 36.	364.5

 In Problems 37 through 40 convert each hexadecimal number to a binary
number.

	 37.	 (2B5.4)16
	 38.	 (143)16
	 39.	 (3D.2)16
	 40.	 (12F.11)16

29Background and Introduction

 In Problems 41 through 45 write the floating-point form of each decimal
number by m-digit rounding for the given m.

	 41.	−0.00031676 (m = 4)
	 42.	11.893 (m = 4)
	 43.	200.346 (m = 5)
	 44.	−1203.423 (m = 6)
	 45.	22318 (m = 4)

	 46.	 Suppose m-digit chopping is used to find the floating-point form of

	 N d d d dm m
p= ×+0. 1 2 1 10… …

	 Show that

	 e
N N

N
m

rel Chopping

FL()
=

−
≤ −101

	 47.	 Suppose in Problem 46, we use m-digit rounding. Show that

	 e
N N

N
m

rel Rounding

FL()
0.5=

−
≤ × −101

Iterative Methods (Section 1.2.2)

	 48.	 Consider the sequence described by x
n

nn =
+

=1
1

0 1 2, , , ,… .

	 a.	 Find a suitable function g(x) so that the sequence can be gener-
ated by means of repeated substitution in the form xn+1 = g(xn),
n = 0, 1, 2, . . .

	 b.	 Determine the rate of convergence of the sequence to its limit.

This page intentionally left blankThis page intentionally left blank

31

2
Introduction to MATLAB®

This chapter introduces fundamental features and capabilities of MATLAB®
as related to numerical methods. These range from vector and matrix opera-
tions to plotting functions and sets of data. We will discuss several MATLAB
built-in functions (commands) and their applications, as well as preparing
user-defined functions to perform specific tasks.

2.1  MATLAB® Built-In Functions

MATLAB has a large number of built-in elementary functions, each accom-
panied by a brief but sufficient description through the help command. For
example,

 >> help sqrt
 sqrt   Square root.
    sqrt(X) is the square root of the elements of X. Complex
    results are produced if X is not positive.

    See also sqrtm, realsqrt, hypot.

    Reference page in Help browser
       doc sqrt

 >> (1+sqrt(5))/2   % Calculate the golden ratio

ans =

    1.6180

The outcome of a calculation can be stored under a variable name, and sup-
pressed by using a semicolon at the end of the statement:

 >> g_ratio = (1+sqrt(5))/2;

Other elementary functions—assuming the variable name is a—include
abs(a) for |a|, sin(a) for sin(a), log(a) for ln a, log10(a) for log10 (a), exp(a)
for ea, and many more. Descriptions of these functions are available through
the help command.

32 Numerical Methods for Engineers and Scientists Using MATLAB®

2.1.1  Rounding Commands

MATLAB has four built-in functions that round decimal numbers to the
nearest integer via different rounding techniques. These are listed in Table 2.1.

2.1.2  Relational Operators

Table 2.2 gives a list of the relational and logical operators used in
MATLAB.

2.1.3  Format Options

The format built-in function offers several options for displaying output.
The preferred option can be chosen by selecting the following in the pull-
down menu: File → Preferences → Command Window. A few of the format
options are listed in Table 2.3.

Table 2.1

MATLAB Rounding Functions

MATLAB Function Example

Round(a)
Round to the nearest integer

round(1.65) = 2, round(−4.7) = –5

Fix(a)
Round toward zero

fix(1.65) = 1, fix(−4.7) = –4

Ceil(a)
Round up toward infinity

ceil(1.65) = 2, ceil(−4.7) = –4

Floor(a)
Round down toward minus infinity

floor(1.65) = 1, floor(−4.7) = –5

Table 2.2

MATLAB Relational Operators

Mathematical Symbol MATLAB Symbol

=  = =
≠  ~ =
<  <  
>  >  
≤  < =
≥  > =
AND  & or &&
OR | or ||
NOT  ~ 

33Introduction to MATLAB®

2.2  Vectors and Matrices

Vectors can be created in several ways in MATLAB. The row vector
v = [1 4 6 7 10] is created as

>> v = [1 4 6 7 10]

v =
     1   4   6   7   10

Commas may be used instead of spaces between elements. For column
vectors, the elements must be separated by semicolons.

>> v = [1;4;6;7;10]

v =
     1
     4
     6
     7
    10

The length of a vector is determined by using the length command:

>> length(v)

ans =

     5

The size of a vector is determined by the size command. For the last
(column) vector defined above, we find

>> size(v)

ans =

     5    1

Table 2.3

MATLAB Format Options

Format Option Description Example: 73/7

format short (default) Fixed point with 4 decimal digits 10.4286
format long Fixed point with 14 decimal digits 10.428571428571429
format short e Scientific notation with 4 decimal digits 1.0429e+001
format long e Scientific notation with 14 decimal digits 1.042857142857143e+001
format bank Fixed point with 2 decimal digits 10.43

34 Numerical Methods for Engineers and Scientists Using MATLAB®

Arrays of numbers with equal spacing can be created more effectively. For
example, a row vector whose first element is 2, its last element is 17, with a
spacing of 3 is created as

>> v = [2:3:17]   or   >> v = 2:3:17

v =
     2   5   8   11   14   17

To create a column vector with the same properties:

>> v = [2:3:17]′

v =
      2

      5

      8

     11

     14

     17

Any component of a vector can be easily retrieved. For example, the third
component of the above vector is retrieved by typing

>> v(3)

ans =

     8

A group of components may be retrieved as well. For example, the last
three components of the row vector defined earlier are recovered as

>> v = 2:3:17;
>> v(end-2:end)

ans =

    11    14    17

2.2.1 L inspace

Another way to create vectors with equally spaced elements is by using the
linspace command.

>> x = linspace(1,5,6) % 6 equally-spaced points between 1 and 5

x = 
    1.0000    1.8000    2.6000    3.4000    4.2000    5.0000

35Introduction to MATLAB®

The default value for the number of points is 100. Therefore, if we use
x = linspace(1,5), then 100 equally spaced points will be generated
between 1 and 5.

2.2.2  Matrices

A matrix can be created by using brackets enclosing all of its elements, rows
separated by a semicolon.

 >> A = [1 −2 3; −3 0 1;5 1 4]

A =
     1   −2    3
    −3    0    1
     5    1    4

An entry can be accessed by using the row and column number of the loca-
tion of that entry.

 >> A(3,2)
% Entry at the intersection of the 3rd row and 2nd column

ans =

     1

An entire row or column of a matrix is accessed by using a colon.

 >> Row_2 = A(2,:)   % 2nd row of A

Row_2 =

   −3     0     1

 >> Col_3 = A(:,3)   % 3rd column of A

Col_3 =

     3

     1

     4

To replace an entire column of matrix A by a given vector v, we proceed as
follows.

>>  v = [1;0;1];
>>  A_new = A;      % Pre-allocate the new matrix
>>  A_new(:,2) = v    % Replace the 2nd column with v

A_new =

     1     1     3
    −3     0     1
     5     1     4

36 Numerical Methods for Engineers and Scientists Using MATLAB®

The m × n zero matrix is created by using zeros(m,n); for instance, the
3 × 2 zero matrix:

>> A = zeros(3,2)

A =
     0     0
     0     0
     0     0

The m × n zero matrix is commonly used for pre-allocation of matrices to
save memory space. In the matrix A defined above, any entry can be altered
while others remain unchanged.

>> A(2,1) = −3; A(3,2) = −1

A =
      0     0
     −3     0
      0    −1

Size of a matrix is determined by using the size command:

>> size(A)

ans = 

     3     2

The n × n identity matrix is created by eye(n):

>> I = eye(3)

I = 

     1     0     0
     0     1     0
     0     0     1

Matrix operations (Section 1.1.2) can be easily performed in MATLAB. If
the sizes are not compatible, or the operations are not defined, MATLAB
returns an error message to that effect.

>> A = [1 2;2 −2;4 0]; B = [−1 3;2 1];

% A is 3-by-2, B is 2-by-2

>> C = A*B   % Operation is valid

C =
     3     5
    −6     4
    −4    12

37Introduction to MATLAB®

2.2.3  Determinant, Transpose, and Inverse

The determinant of an n × n matrix if calculated by the det command.

>> A = [1 2 −3;0 2 1;1 2 5]; det(A)

ans =

     16

The transpose of a matrix is found as

>> At = A.′

At = 

     1     0     1
     2     2     2
    −3     1     5

The inverse of a (nonsingular) matrix is calculated by the inv command:

>> Ai = inv(A)

Ai =

     0.5000     −1.0000     0.5000
     0.0625      0.5000    −0.0625
    −0.1250           0     0.1250

2.2.4  Slash Operators

There are two slash operators in MATLAB: backslash (\) and slash (/).

>> help \

\ Backslash or left matrix divide.

A\B is the matrix division of A into B, which is roughly the
same as INV(A)*B, except it is computed in a different way.
If A is an N-by-N matrix and B is a column vector with N
components, or a matrix with several such columns, then
X = A\B is the solution to the equation A*X = B. A warning
message is printed if A is badly scaled or nearly singular.
A\EYE(SIZE(A)) produces the inverse of A.

The backslash (\) operator is employed for solving a linear system of
algebraic equations Ax = b, whose solution vector is obtained as x = A−1 b. How
ever, instead of performing x = inv(A)*b, it is most efficient to find it as follows:

>> A = [1 −1 2;2 0 3;1 −2 1]; b = [2;8; −3];
>> x = A\b

38 Numerical Methods for Engineers and Scientists Using MATLAB®

x =
    1
    3
    2

The description of the slash (/) operator is given below.

 >> help /

/  Slash or right matrix divide.

A/B is the matrix division of B into A, which is roughly the
same as A*INV(B), except it is computed in a different way.
More precisely, A/B = (B’\A’)’. See MLDIVIDE for details.

2.2.5  Element-by-Element Operations

Element-by-element operations are summarized in Table 2.4. These are used
when operations are performed on each element of a vector or matrix.

For example, suppose we want to raise each element of a vector to power
of 2.

>> x = 0:2:10

x = 
    0    2    4    6    8    10

>> x.^2

% If we use x^2 instead, an error is returned by MATLAB

ans =

    0    4   16   36   64   100

Now consider (1 + x)/(2 + x) where x is the vector defined above. This frac-
tion is to be evaluated for each value of x.

>> (1.+x)./(2.+x)

ans = 

    0.5000    0.7500    0.8333    0.8750    0.9000    0.9167

Table 2.4

Element-by-Element Operations

MATLAB Symbol Description

.* Multiplication

./ (right) Division

.^ Exponentiation

39Introduction to MATLAB®

If two arrays are involved in the element-by-element operation, they must
be of the same size.

>> v = [1;2;3];
>> w = [2;3;4];
>> v.*w

ans =

     2
     6
    12

2.3 U ser-Defined Functions and Script Files

User-defined M file functions and scripts may be created, saved, and edited
in MATLAB using the edit command. For example, suppose we want to cre-
ate a function (say, Circ_area) that returns the area of a circle with a given
radius. The function can be saved in a folder on the MATLAB path or in the
current directory. The current directory can be viewed and/or changed
using the drop-down menu at the top of the MATLAB command window.
Once the current directory has been properly selected, type

 >> edit Circ_area

A new window (Editor Window) will be opened where the function can be
created. The generic structure of a function is

function [output variables] = FunctionName(input variables)
% Comments
Expressions/statements
Calculation of all output variables

In the case of our function, Circ_area, this translates to:

function A = Circ_area(r)
%
% Circ_area calculates the area of a circle of a given radius.
%
%   A = Circ_area(r) where
%
%     r is the radius of the circle,
%     A is the area.

A = pi*r^2;

40 Numerical Methods for Engineers and Scientists Using MATLAB®

To compute the area of a circle with radius 1.3, we simply type

 >> A = Circ_area(1.3)

A =
    5.3093

Often, functions with multiple outputs are desired. For example, suppose
our Circ_area function is to return two outputs: area of the circle, and the
perimeter of the circle. We create this as follows:

Executing this function for the case of radius 1.3, we find

>> [A P] = Circ_area(1.3)

A =
    5.3093

P =
    8.1681

2.3.1  Setting Default Values for Input Variables

Sometimes, default values are declared for one or more of the input vari-
ables of a function. As an example, consider a function y_int that returns
the y-intercept of a straight line that passes through a specified point
with a given slope. Suppose the slope is 1 unless specified otherwise. If
the specified point has coordinates (x0, y0) and the slope is m, then the
y-intercept is found as y = y0 − mx0. Based on this we write the function as
follows:

function [A P] = Circ_area(r)
%
% Circ_area calculates the area and the perimeter of a
% circle of a given radius.
%
% [A P] = Circ_area(r) where
%
% r is the radius of the circle,
% A is the area,
% P is the perimeter.

A = pi*r^2;
P = 2*pi*r;

41Introduction to MATLAB®

To find the y-intercept of the line going through (−1, 2) with slope 1, we
proceed as follows:

>> y = y_int(–1,2)

% Omitting the 3rd input variable, thus using default value

y =
    3

2.3.2  Creating Script Files

A script file comprises a list of commands as if they were typed at the
command line. Script files can be created in the MATLAB Editor, and saved
as an M file. For example, typing

 >> edit My_script

opens the Editor Window, where the script can be created and saved under
the name My_script. It is recommended that a script start with the func-
tions clear and clc. The first one clears all the previously generated vari-
ables, and the second one clears the Command Window. Suppose we type
the following lines in the Editor Window:

clear
clc
x = 2; N = 10;
a = cos(x)*N^2;

While in the Editor Window, select “Run My_script.m” under the Debug
pull-down menu. This will execute the lines in the script file and return the
Command Prompt. Simply type a at the prompt to see the result.

function y = y_int(x0,y0,m)
%
% y_int finds the y-intercept of a line passing through
% a point (x0,y0) with slope m.
%
% y = y_int(x0,y0,m) where
%
% x0, y0 are the coordinates of the given point,
% m is the slope of the line (default = 1),
% y is the y-intercept of the line.

if nargin < 3 || isempty(m)
 m = 1;
end
y = y0 — m*x0;

42 Numerical Methods for Engineers and Scientists Using MATLAB®

 >> My_script
 >> a

a =

  −41.6147

This can also be done by highlighting the contents and selecting
“Evaluate Selection.” An obvious advantage of creating a script file is that
it allows us to simply make changes to the contents without having to retype
all the commands.

2.3.3 A nonymous Functions

Another, more simple and more limited, way to create a function is to cre-
ate an anonymous function. An anonymous function offers a way to create
a function for simple expressions without creating an M file. Anonymous
functions can only contain one expression and cannot return more than one
output variable. They can either be created in the Command Window or as a
script. The generic form is

My_function = @(arguments)(expression)

The function handle My_function is used the same way as one created as
a user-defined function, described earlier. As an example, we will create an

anonymous function (in the Command Window) to evaluate α = + −1 2e bx/
when b = 1 and x = 2:

>> alfa = @(b,x)(sqrt(1+exp(−b*x/2)));
% This creates alfa(b,x), which is then evaluated for specific
% values of b and x
>> alfa(1,2)

ans =

     1.1696

An anonymous function can be used in another anonymous function. For
example, to evaluate β = + −ln /1 2e bx :

 >> alfa = @(b,x)(sqrt(1+exp(−b*x/2)));
 >> betta = @(b,x)(log(alfa(b,x)));
 >> betta(1,2)

ans =

   0.1566

43Introduction to MATLAB®

2.3.4  Inline

The built-in function inline is ideal for defining and evaluating functions
of one or more variables. As with the anonymous function, inline func-
tion does not have to be saved in a separate file, and cannot return more
than one output variable. Furthermore, it cannot call another inline but
can use a user-defined function that has already been created. The generic
form is

My_function = inline('expression','var1','var2', ...)

Let us consider the example involving evaluation of α = + −1 2e bx/ when
b = 1 and x = 2.

 >> alfa = inline('sqrt(1+exp(−b*x/2))','b','x');
 >> alfa(1,2)

ans =

     1.1696

This agrees with the earlier result using the anonymous function. Note
that if the desired order of variables is not specified by the user, MATLAB
will list them in alphabetical order. In the above example, omitting the list of
variables would still result in alfa(b,x).

In this last example, suppose b is a scalar and x is a vector. Then, the func-
tion must be defined to include the “dot” to accommodate the element-by-
element operation. Let b = 1 and x = [1 2 3]. Then,

 >> alfa = inline('sqrt(1+exp(−b*x./2))','b','x');
 >> x = [1 2 3];
 >> alfa(1,x)

ans =

     1.2675    1.1696    1.1060

Note that, as expected, the second returned output matches what we got
earlier for the case of b = 1 and x = 2.

2.4  Program Flow Control

Program flow can be controlled with the following three commands: for,
if, and while.

44 Numerical Methods for Engineers and Scientists Using MATLAB®

2.4.1  for Loop

A for/end loop repeats a statement, or a group of statements, a specific
number of times. Its generic form is

for i = first:increment:last,
  statements
end

The loop is executed as follows. The index i assumes its first value, all
statements in the subsequent lines are executed with i = first, then
the program goes back to the for command and i assumes the value
i = first + increment and the process continues until the very last run
corresponding to i = last.

As an example, suppose we want to generate a 5 × 5 matrix A with diago-
nal entries all equal to 1, and super diagonal entries all equal to 2, while all
other entries are zero.

A = zeros(5,5);   % Pre-allocate
for i = 1:5,
  A(i,i) = 1;   % Diagonal entries
end
for i = 1:4,
  A(i,i+1) = 2;   % Super diagonal entries
end

Execution of this script returns

>> A

A =

    1     2     0     0     0
    0     1     2     0     0
    0     0     1     2     0
    0     0     0     1     2
    0     0     0     0     1

2.4.2  if Command

The most general form of the if command is

if condition 1
  set of expressions 1
else if condition 2
  set of expressions 2
else
  set of expressions 3
end

45Introduction to MATLAB®

The simplest form of a conditional statement is the if/end structure. For
example,

f = inline('log(x/3)'); x = 1;
if f(x)~= 0,
error('x is not a root')
end

Execution of this script returns

x is not a root

The if/else/end structure allows for choosing one group of expres-
sions from two groups. The most complete form of the conditional state-
ment is the if/elseif/else/end structure. Let us create the same
5 × 5 matrix A as above, this time employing the if/elseif/else/end
structure.

A = zeros(5,5);
for i = 1:5,
 for j = 1:5,
   if j = = i+1,
     A(i,j) = 2;
elseif j = = i,
   A(i,j) = 1;
end
end
end

Note that each for statement is accompanied by an end statement.
Execution of this script returns

 >> A

A =

    1     2     0     0     0
    0     1     2     0     0
    0     0     1     2     0
    0     0     0     1     2
    0     0     0     0     1

2.4.3  while Loop

A while/end loop repeats a statement, or a group of statements, until a spe-
cific condition is met. Its generic form is

while condition
  statements
end

46 Numerical Methods for Engineers and Scientists Using MATLAB®

We will generate the same 5 × 5 matrix A as before, this time with the aid
of the while loop.

A = eye(5); i = 1;
while i < 5,
   A(i,i+1) = 2;
   i = i+1;
end

Executing this script returns the same matrix as above.

 >> A

A =

    1     2     0     0     0
    0     1     2     0     0
    0     0     1     2     0
    0     0     0     1     2
    0     0     0     0     1

2.5  Displaying Formatted Data

Formatted data can be displayed by using either disp or fprintf. An
example of how the disp command is used is

 >> v = [1.2 −9.7 2.8];
 >> disp(v)

    1.2000   −9.7000    2.8000

For better control of the formatted data, fprintf is used. Consider the script
below. A function f(x) = xcosx + 1 is defined. For k = 1,2,3,4,5 we want to cal-
culate each c = (1/2)k as well as the corresponding function value f(c). The
output is to be displayed in tabulated form containing the values of k, c, and
f(c) for each k = 1,2,3,4,5.

f = inline('x*cos(x)+1');
disp('  k   c   f(c)')
for k = 1:5,
   c = (1/2)^k;
   fc = f(c);
   fprintf('%2i   %6.4f   %6.4f\n',k,c,fc)
end

47Introduction to MATLAB®

Execution of this script returns

 k       c       f(c)

 1   0.5000   1.4388
 2   0.2500   1.2422
 3   0.1250   1.1240
 4   0.0625   1.0624
 5   0.0313   1.0312

The disp command simply displays all contents inside the single quotes.
The fprintf command is used inside for loop. For each k in the loop,
fprintf writes the value of k, the calculated value of c, as well as f(c). The
format %2i means integer of length 2, which is being used for displaying the
value of k. In %6.4f, the letter f represents the fixed-point format, 6 is the
length, and the number 4 is the number of digits to the right of the decimal.
Finally, \n means new line. A more detailed description is available through
the help command.

2.6  Symbolic Toolbox

The Symbolic Math Toolbox allows for manipulation of symbols to perform
operations symbolically. Symbolic variables are created by using the syms
command:

 >> syms a b

Consider a function g = 4.81 sin(a/3) + 3e−b/c where c = 2.1. This function can
be defined symbolically as follows:

>> syms a b
>> c = 2.1;
>> g = 4.81*sin(a/3) + 3*exp(-b/c)

g = 

3/exp((10*b)/21) + (481*sin(a/3))/100

In symbolic expressions, numbers are always converted to the ratio of
two integers, as it is observed here as well. For decimal representation of
numbers, we use the vpa (variable precision arithmetic) command. The
syntax is

 >> vpa(g,n)

where n is the number of desired digits. For example, if four digits are desired
in our current example, then

48 Numerical Methods for Engineers and Scientists Using MATLAB®

>> g = vpa(4.81*sin(a/3) + 3*exp(−b/c),4)

g =

4.81*sin(0.3333*a) + 3.0/exp(0.4762*b)

To evaluate this symbolic function for specified values of a and b, we use
the subs command. For instance, to evaluate g when a = 1 and b = 2,

 >> a = 1;b = 2;subs(g)

ans =

    2.7311

Symbolic functions can be converted to inline functions. In our current
example,

 >> gg = inline(char(g))

gg =

    Inline function:
    gg(a,b) = 4.81*sin(0.3333*a) + 3.0/exp(0.4762*b)

This function can easily be evaluated for the specified values of its variables:

>> gg(1,2)

ans = 

   2.7311   % Same as before

2.6.1  Differentiation

Consider f = t3 − sin t, which may be defined symbolically as

 >> f = sym('t^3−sin(t)');

To find df/dt we use the diff command:

 >> dfdt = diff(f)

dfdt =

3*t^2 − cos(t)

The second derivative d2f/dt2 is found as

 >> dfdt2 = diff(f,2)

dfdt2 =

6*t + sin(t)

49Introduction to MATLAB®

The symbolic derivatives can always be converted to inline functions for
convenient evaluation.

2.6.2  Integration

Indefinite and definite integrals are calculated symbolically via the int com-
mand. For example, the indefinite integral ∫ +(sin)t t t1

2 2 d is calculated as

 >> syms t
 >> int(t+(1/2)*sin(2*t))

ans =

t^2/2 − cos(t)^2/2

The definite integral ∫ −1
3 2()/at e tt d , where a = const, is calculated as follows:

>>  syms a t
>>  int(a*t−exp(t/2),t,1,3)

ans = 

4*a − 2*exp(1/2)*(exp(1) − 1)

To convert all constants to decimals with two digits, we use vpa:

 >> vpa(int(a*t–exp(t/2),t,1,3),2)

ans =

4.0*a − 5.7

2.6.3  Differential Equations

Differential equations and initial-value problems can be solved by the
dsolve function. For example, the solution of the differential equation
y′ + (x + 1)y = 0 is obtained as

 >> y = dsolve('Dy+(x+1)*y=0','x')

y =

C4/exp((x + 1)^2/2)

Note that the default independent variable in dsolve is t. Since in our exam-
ple, the independent variable is x, we needed to specify that in single quotes.
The initial-value problem   x x x e x xt+ + = = =−2 2 0 0 0 1, () , () is solved as

 >> x = dsolve('D2x+2*Dx+2*x=exp(−t)','x(0)=0,Dx(0)=1')

x =

1/exp(t) − cos(t)/exp(t) + sin(t)/exp(t)

50 Numerical Methods for Engineers and Scientists Using MATLAB®

2.7  Plotting

Plotting a vector of values versus another vector of values is done by using
the plot command. For example, to plot the function x(t) = e−t (cos t + sin t)
over the interval [0,5] using 100 points:

 >> t = linspace(0,5);

 >> x = exp(−t).*(cos(t)+sin(t));

 >> plot(t,x) % Figure 2.1

The Figure Window can be used to edit the figure. These include adding
grid, adjusting thickness of lines and curves, adding text and legend, axes
titles, and much more.

2.7.1  Subplot

The built-in function subplot is designed to create multiple figures in tiled
positions. Suppose we want to plot the function z(x,t) = e−x sin(t + 2x) ver-
sus 0 ≤ x ≤ 5 for four values of t = 0,1,2,3. Let us generate the four plots and
arrange them in a 2 × 2 formation.

1.2

1

0.8

0.6

0.4

0.2

t

0

–0.2
4 52.52 3 3.5 4.50 0.5 1 1.5

x

Figure 2.1
Plot of a function versus its variable.

51Introduction to MATLAB®

x = linspace(0,5); t = 0:1:3;
for i = 1:4,
   for j = 1:100,
   z(j,i) = exp(–x(j))*sin(t(i)+2*x(j));
   % Generate 100 values of z for each t
   end
end

% Initiate Figure 2.2
subplot(2,2,1), plot(x,z(:,1)), title('t = 0')
subplot(2,2,2), plot(x,z(:,2)), title('t = 1')
subplot(2,2,3), plot(x,z(:,3)), title('t = 2')
subplot(2,2,4), plot(x,z(:,4)), title('t = 3')

2.7.2  Plotting Analytical Expressions

An alternative way to plot a function is to use the ezplot command, which
plots the function without requiring data generation. As an example, consider

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
t = 0

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
t = 1

0 1 2 3 4 5 0 1 2 3 4 5

t = 2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
t = 3

Figure 2.2
Subplot in a 2 × 2 formation.

52 Numerical Methods for Engineers and Scientists Using MATLAB®

the function x(t) = e−t(cos t + sin t) that we previously plotted over the interval
[0,5]. The plot in Figure 2.1 can be regenerated using ezplot as follows:

>> x = inline('exp(–t)*(cos(t)+sin(t))');
>> ezplot(x,[0,5])

2.7.3  Multiple Plots

Multiple plots can also be created using ezplot. Suppose the two functions
y1 = e−t/3 sin 2t and y2 = e−t/2 sin t are to be plotted versus 0 ≤ t ≤ 10 in the same
graph.

syms t
y1 = exp(−t/3)*sin(2*t);
y2 = exp(−t/2)*sin(t);
ezplot(y1,[0,10])   % Initiate Figure 2.3
hold on
ezplot(y2,[0,10])   % Complete plot

Problem Set

	 1.	Write a user-defined function with function call val = function_
eval(f,a,b) where f is an inline function, and a and b are constants
such that a < b. The function calculates the midpoint m of the interval

0 1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

y1

y2

Figure 2.3
Multiple plots.

53Introduction to MATLAB®

[a,b] and returns the value of f(a) + (1/2) f(m) + f(b). Execute the func-
tion for f = ex/2, a = −2, b = 4.

	 2.	Write a user-defined function with function call m = midpoint_
seq(a,b,tol) where a and b are constants such that a < b, and tol is
a specified tolerance. The function first calculates the midpoint m1 of
the interval [a, b], then the midpoint m2 of [a, m1], then the midpoint
m3 of [a, m2], and so on. The process terminates when two successive
midpoints are within tol of each other. Allow a maximum of 20
iterations. The output of the function is the sequence m1, m2, m3, . . . .
Execute the function for a = −4, b = 10, tol = 10−3.

	 3.	Write a user-defined function with function call C = temp_conv(F)
where F is temperature in Fahrenheit, and C is the corresponding
temperature in Celsius. Execute the function for F = 87.

	 4.	Write a user-defined function with function call P = partial_
eval(f,a) where f is a function defined symbolically, and a is a con-
stant. The function returns the value of f′ + f″ at x = a. Execute the
function for f = 3x2 − ex/3, and a = 1.

	 5.	Write a user-defined function with function call P = partial_
eval(f,g,a) where f and g are functions defined symbolically,
and a is a constant. The function returns the value of f′+ g′ at x = a.
Execute the function for f = x2 + e−x, g = sin(0.3x), and a = 0.8.

	 6.	Write a script file that employs any combination of the flow control
commands to generate

	

A =

−
−

−
−























1 0 1 0 0 0
0 2 0 1 0 0
2 0 3 0 1 0
0 2 0 4 0 1
0 0 2 0 5 0
0 0 0 2 0 6




 	

	 7.	Write a script file that employs any combination of the flow control
commands to generate

	

A =

−
−

−
−























4 1 2 3 0 0
0 4 1 2 3 0
0 0 4 1 2 3
0 0 0 4 1 2
0 0 0 0 4 1
0 0 0 0 0 4






54 Numerical Methods for Engineers and Scientists Using MATLAB®

	 8.	Plot ∫ −
1

2t t xe x xsin d versus −1 ≤ t ≤ 1, add grid and label.

	 9.	Plot ∫ + − −
0

2t t xx t e x() ()d versus −2 ≤ t ≤ 1, add grid and label.

	 10.	Evaluate
sinω

ω
ω

0

∞

∫ d .

	 11.	Differentiate f(t) = (t − 1)ln(t + 1) − tcos(t/2) with respect to t, make
the outcome an inline function, and evaluate at t = 1.3.

	 12.	Differentiate g(x) = 2x−2 sin x − e3−2x with respect to x, make the out-
come an inline function, and evaluate at x = 0.9.

	 13.	Plot y e tt
1

1
3 2= − sin() and y2 = e−t/2 versus 0 ≤ t ≤ 5 in the same

graph. Add grid, and label.
	 14.	Generate 100 points for each of the two functions in Problem 13 and

plot versus 0 ≤ t ≤ 5 in the same graph. Add grid, and label.
	 15.	Plot u(x, t) = cos(1.7x)sin(3.2t) versus 0 ≤ x ≤ 5 for four values of t = 1,

1.5, 2, 2.5 in a 2 × 2 tile. Add grid and title.
	 16.	Plot u(x, t) = (1 − sinx)e−(t+1) versus 0 ≤ x ≤ 5 for values of t = 1,3 in a

1 × 2 tile. Add grid and title.
	 17.	Write a user-defined function with function call [r k] = root_

finder(f,x0,kmax,tol) where f is an inline function, x0 is a speci-
fied value, kmax is the maximum number of iterations, and tol is a
specified tolerance. The function sets x1 = x0, calculates |f(x1)|, and if
it is less than the tolerance, then x1 approximates the root r. If not, it
will increment x1 by 0.01 to obtain x2, repeat the procedure, and so
on. The process terminates as soon as |f(xk)| < tol for some k. The out-
puts of the function are the approximate root and the number of iter-
ations it took to find it. Execute the function for f(x) = x2 − 3.3x + 2.1,
x0 = 0.5, kmax = 50, tol = 10−2.

	 18.	Write a user-defined function with function call [opt k] = opt_
finder(fp,x0,kmax,tol) where fp is the derivative (as an inline
function) of a given function f, x0 is a specified value, kmax is the
maximum number of iterations, and tol is a specified tolerance.
The function sets x1 = x0, calculates |fp(x1)|, and if it is less than
the tolerance, then x1 approximates the critical point at which the
derivative is near zero. If not, it will increment x1 by 0.1 to obtain
x2, repeat the procedure, and so on. The process terminates as soon
as |fp(xk)| < tol for some k. The outputs are the approximate critical
point and the number of iterations it took to find it. Execute the func-
tion for f(x) = x + (x − 2)2, x0 = 1, kmax = 50, tol = 10−2.

	 19.	Evaluate []() /x e a x2 1 1 3+ − + when a = −1, x = 3 by using an anonymous
function in another anonymous function.

	 20.	Evaluate x e a x+ − +ln| |() /1 2 3 when a = −3, x = 1 by using an anony-
mous function in another anonymous function.

55

3
Solution of Equations of a Single Variable

The focus of this chapter is on numerical solution of equations in the general
form

	 f x() = 0 	 (3.1)

Graphically, a solution, or a root, of Equation 3.1 refers to the point of
intersection of f(x) and the x-axis. Therefore, depending on the nature of the
curve of f(x) in relation to the x-axis, Equation 3.1 may have a unique solu-
tion, multiple solutions, or no solution. A root of an equation can sometimes
be determined analytically resulting in an exact solution. For instance, the
equation e x2 3 0− = can be solved analytically to obtain a unique solution
x = 1

2 3ln . In most situations, however, this is not possible and the root(s)
must be found using a numerical procedure. An example would be an equa-
tion in the form 1 − x + sin x = 0. Figure 3.1 shows that this equation has one
solution only, slightly smaller than 2, which may be approximated to within
a desired accuracy with the aid of a numerical method.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

x

f(x
) =

 1
 −

 x
 +

 si
n

x

Approximate root

Figure 3.1
Approximate solution of 1 − x + sin x = 0.

56 Numerical Methods for Engineers and Scientists Using MATLAB®

3.1  Numerical Solution of Equations

As described in Figure 3.2, numerical methods for solving an equation are
divided into two main categories: bracketing methods and open methods.

Bracketing methods require that an initial interval containing the root
be identified. Referring to Figure 3.3, this means an interval [a,b] such that
f(a)f(b) < 0. The length of the interval is then reduced in succession until
it satisfies the desired accuracy. Exactly how this interval gets narrowed
in each step depends on the specific method used. It is readily seen that
bracketing methods always converge to the root. Open methods require
an initial estimate of the solution, close to the actual root. Then, more
accurate estimates are successively generated by a specific method (Figure
3.4). Open methods are more efficient than bracketing methods, but do not
always generate a sequence that converges to the root.

3.2  Bisection Method

Bisection method is the simplest bracketing method to find a root of f(x) = 0.
It is assumed that f(x) is continuous on an interval [a,b] and has a root there
so that f(a) and f(b) have opposite signs, hence f(a)f(b) < 0. The procedure goes
as follows: Locate the midpoint of [a,b], that is, c a b1

1
2= +() (Figure 3.5). If f(a)

and f(c1) have opposite signs, the interval [a,c1] contains the root and will be
retained for further analysis. If f(b) and f(c1) have opposite signs, we continue
with [c1,b]. In Figure 3.5, it so happens that the interval [c1,b] brackets the root
and is retained. Since the right endpoint is unchanged, we update the inter-
val [a,b] by resetting the left endpoint a = c1. The process is repeated until the
length of the most recent interval [a,b] satisfies the desired accuracy.

Numerical solution of f (x) = 0

Bracketing methods

Open methods

Bisection method

Regula falsi method

Fixed-point method

Newton's method

Secant method

Figure 3.2
Classification of methods to solve an equation of one variable.

57Solution of Equations of a Single Variable

Root

0
x

Root

0
x

Root

0
x

a

b

Initial interval

a

b

Second interval

a

b

Third interval

f (x)

Figure 3.3
The philosophy of bracketing methods.

58 Numerical Methods for Engineers and Scientists Using MATLAB®

The initial interval [a,b] has length b − a. Beyond that, the first generated
interval has length 1

2 ()b a− , the next interval 1
4 ()b a− , and so on. Thus, the

nth interval constructed in this manner has length () ,b a n− −/2 1 and because it
brackets the root, the absolute error associated with the nth iteration satisfies

	
e

b a
b an n≤ − >−2 1 ()

Root

0
x

Root

0
x

Root

0
x

Initial estimate

Second estimate

Third estimate

f (x)

Figure 3.4
The philosophy of open methods.

59Solution of Equations of a Single Variable

This upper bound is usually larger than the actual error at the nth step. If
the bisection method is used to approximate the root of f(x) = 0 within a pre-
scribed tolerance ε > 0, then it can be shown that the number N of iterations
needed to meet the tolerance condition satisfies

	
N

b a> − −ln() ln
ln

ε
2 	

(3.2)

The user-defined function Bisection shown below generates a sequence
of values (midpoints) that ultimately converges to the true solution. The iter-
ations terminate when 1

2 ()b a− < ε , where ε is a prescribed tolerance. The
output of the function is the last generated estimate of the root at the time
the tolerance was met. It also returns a table that comprises iteration counter,
interval endpoints and interval midpoint per iteration, as well as the value of
1
2 ()b a− to see when the terminating condition is satisfied.

Root

0
x

a

b

a

b

a

b

First estimate

Adjust interval
a = c1

Adjust interval
b = c2

c2

c1

c3

Third estimate

Second estimate

a

b

c2 = (a + b) = (c1 + b)

f (x)

c1 = (a + b)2
1–

2
1– 2

1–

c3 = (a + b) = (c1 + c2)2
1– 2

1–

Figure 3.5
Bisection method: three iterations shown.

60 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 3.1:  Bisection Method

The equation x cos x = −1 has a root in the interval [−2,4], as shown in
Figure 3.6. The figure is produced by

 >> syms x
 >> ezplot(x*cos(x)+1,[–2 4])

function c = Bisection(f, a, b, kmax, tol)
%
% Bisection uses the bisection method to approximate a
% root of f(x) = 0 in the interval [a,b].
%
%    c = Bisection(f, a, b, kmax, tol) where
%
%    f is an inline function representing f(x),
%    a and b are the limits of the interval [a,b],
%    kmax is the maximum number of iterations
%        (default 20),
%    tol is the scalar tolerance for convergence
%        (default 1e–4),
%
%    c is the approximate root of f(x) = 0.
%
if nargin < 5, tol = 1e–4; end
if nargin < 4, kmax = 20; end

if f(a)*f(b) > 0
   c ='failure';
   return
end

disp(' k     a     b     c     (b–a)/2')

for k = 1:kmax,
      c =(a+b)/2;   % Find the first midpoint
      if f(c) == 0   % Stop if a root has been found
     return
      end

fprintf('%3i %11.6f%11.6f%11.6f%11.6f\n',k,a,b,c,(b–a)/2)

   if (b–a)/2 < tol,   % Stop if tolerance is met
     return
   end

   if f(b)*f(c) > 0   % Check sign changes
     b = c;       % Adjust the endpoint of interval
   else a = c;
   end
end
c = 'failure';

61Solution of Equations of a Single Variable

  Execute the user-defined function Bisection with ε = 10−2 and no
more than 20 iterations.

 >> f = inline('x*cos(x)+1');
 >> c = Bisection(f, –2, 4, 20, 1e–2)

 k      a       b       c      (b–a)/2

 1 -2.000000 4.000000 1.000000 3.000000
 2 1.000000 4.000000 2.500000 1.500000
 3 1.000000 2.500000 1.750000 0.750000
 4 1.750000 2.500000 2.125000 0.375000
 5 1.750000 2.125000 1.937500 0.187500
 6 1.937500 2.125000 2.031250 0.093750
 7 2.031250 2.125000 2.078125 0.046875
 8 2.031250 2.078125 2.054688 0.023438
 9 2.054688 2.078125 2.066406 0.011719
10 2.066406 2.078125 2.072266 0.005859

c =
2.0723

Iterations stopped when 1
2 ()b a− = < =0.005859 0.01ε . Note that by

Equation 3.2,

	
N

b a a b
> − − = − =

=

=− =ln() ln
ln

ln ln
ln

,ε
ε2

6
2

2 4

0.01
9.23

0.01

which means at least 10 iterations are required for convergence. This is
in agreement with the findings here, as we saw that tolerance was met

−2 −1 0 1 2 3 4

−2

−1

−0.5

0

0.5

1

1.5

–1.5

–2.5

2

x

x
co

s (
x)

 +
 1

Root

Figure 3.6
Location of the root of x cos x = −1 in [−2,4].

62 Numerical Methods for Engineers and Scientists Using MATLAB®

after 10 iterations. The accuracy of the solution estimate will improve if a
smaller tolerance is imposed.

3.2.1  MATLAB• Built-In Function fzero

The fzero function in MATLAB® finds the roots of f(x) = 0 for a real function
f(x).

FZERO Scalar nonlinear zero finding.

  � X = FZERO(FUN,X0) tries to find a zero of the function FUN
near X0,

   if X0 is a scalar.

The fzero function uses a combination of the bisection, secant, and
inverse quadratic interpolation methods. If we know two points where the
function value differs in sign, we can specify this starting interval using a
two-element vector for x0. This algorithm is guaranteed to return a solution.
If we specify a scalar starting point x0, then fzero initially searches for an
interval around this point where the function changes sign. If an interval is
found, then fzero returns a value near where the function changes sign. If
no interval is found, fzero returns a NaN value.

The MATLAB built-in function fzero can be used to confirm the approxi-
mate root in Example 3.1:

 >> fzero(f,1)

ans =

   2.0739

3.3  Regula Falsi Method (Method of False Position)

The regula falsi method is another bracketing method to find a root of f(x) = 0.
Once again, it is assumed that f(x) is continuous on an interval [a,b] and has a
root there so that f(a) and f(b) have opposite signs, f(a)f(b) < 0. The technique
is geometrical in nature and described as follows. Let [a1,b1] = [a,b]. Connect
points A:(a1, f(a1)) and B:(b1, f(b1)) by a straight line as in Figure 3.7 and let c1
be its x-intercept. If f(a1)f(c1) < 0, then [a1,c1] brackets the root. Otherwise, the
root is in [c1,b1]. In Figure 3.7, it just so happens that [a1,c1] brackets the root.
Continuing this process generates a sequence c2, c3, … that eventually con-
verges to the root. In the case shown in Figure 3.7, the curve of f(x) is concave
up and the left end of the interval remains fixed throughout the process. This
issue will be addressed shortly.

63Solution of Equations of a Single Variable

Analytically, the procedure is illustrated as follows. The equation of the
line connecting points A and B is

	
y f b

f b f a
b a

x b− = −
−

−()
() ()

()1
1 1

1 1
1

To find the x-intercept, set y = 0 and solve for x = c1:

	
c b

b a
f b f a

f b
a f b b f a
f b f

1 1
1 1

1 1
1

1 1 1 1

1
= − −

−
= −

−() ()
()

() ()
()

Simplify

(()a1

Generalizing this result, the sequence of points that converges to the root
is generated via

	
c

a f b b f a
f b f a

nn
n n n n

n n
= −

−
=() ()

() ()
, , ,, 1 2 3 …

	
(3.3)

The user-defined function RegulaFalsi generates a sequence of elements
that eventually converges to the root of f(x) = 0. The iterations stop when two
consecutive x-intercepts are close to one another. That is, the terminating
condition is c cn n+ − <1 ε , where ε is the imposed tolerance. The outputs are
the approximate root and the number of iterations required to meet the toler-
ance. The function also returns a table comprised of the intervals containing
the root in all iterations performed.

f(x)

A: (a1, f (a1))

B: (b1, f(b1))

c2 = b3

c1 = b2c3 c2

a3

a2

a1

x
0

Left end

b1

Adjust right end

Adjust right end

Root

Figure 3.7
Method of false position.

64 Numerical Methods for Engineers and Scientists Using MATLAB®

function [r k] = RegulaFalsi(f, a, b, kmax, tol)
%
% RegulaFalsi uses the regula falsi method to approximate
% a root of f(x) = 0 in the interval [a,b].
%
%   [r k] = RegulaFalsi(f, a, b, kmax, tol), where
%
%    f is an inline function representing f(x),
%    a and b are the limits of interval [a,b],
%    kmax is the maximum number of iterations (default 20),
%    tol is the scalar tolerance for convergence
%    (default 1e–4),
%
%    r is the approximate root of f(x) = 0,
%    k is the number of iterations needed for convergence.
%
if nargin < 5, tol = 1e–4; end
if nargin < 4, kmax = 20; end

c = zeros(1, kmax);  % Pre-allocate

if f(a)*f(b) > 0
   r = 'failure';
   return
end

disp(' k	 a	 b')

for k = 1:kmax,
   c(k) = (a*f(b)–b*f(a))/(f(b)–f(a)); % Find the x-intercept
   if f(c(k)) == 0  % Stop if a root has been found
     return
   end

  fprintf('%2i  %11.6f%11.6f\n',k,a,b)

   if f(b)*f(c(k)) > 0 % Check sign changes
     b = c(k);	 % Adjust the endpoint of interval
   else a = c(k);
   end

   c(k+1) = (a*f(b)–b*f(a))/(f(b)–f(a));
   % Find the next x-intercept

   if abs(c(k+1)–c(k)) < tol,  % Stop if tolerance is met
	 r = c(k+1);
	 return
   end
end
r = 'failure';

65Solution of Equations of a Single Variable

Example 3.2:  Regula Falsi Method

We will find an approximate root of x cos x = −1 in the interval [−2,4]
by executing the RegulaFalsi function with tolerance ε = 10−4. Since
this happens to be the default value for tolerance in RegulaFalsi, we
simply execute

 >> [r k] = RegulaFalsi(f, –2, 4)

  k      a        b
  1   -2.000000   4.000000
  2    1.189493   4.000000
  3    1.189493   2.515720
  4    1.960504   2.515720
  5    2.069986   2.515720

r =
   2.0739

k =
5

Therefore, the approximate root with the desired accuracy is obtained
after five iterations.

3.3.1  Modified Regula Falsi Method

In many cases, the graph of the function f(x) happens to be concave up or con-
cave down. In these situations, when regula falsi is employed, one of the end-
points of the interval remains the same through all iterations, while the other
endpoint advances in the direction of the root. For instance, in Figure 3.7,

x
a

b

Root
0

Regula falsi

Modified regula falsi
1
2

f (x)

f (a)

Figure 3.8
Modified regula falsi method.

66 Numerical Methods for Engineers and Scientists Using MATLAB®

the function is concave up, the left endpoint remains unchanged, and the
right endpoint moves toward the root. The regula falsi method can be modi-
fied such that both ends of the interval move toward the root, thus improv-
ing the rate of convergence. Among many proposed modifications, there is
one that is presented here. Reconsider the scenario portrayed in Figure 3.7
now shown in Figure 3.8. If endpoint a stays the same after, say, three consec-
utive iterations, the usual straight line is replaced with one that is less steep,
going through the point at 1

2 f a() instead of f(a). This causes the x-intercept to
be closer to the actual root. It is possible that this still does not force the end-
point a to move toward the root. In that event, if endpoint a remains the same
after three more iterations, the modified line will be replaced with yet a less
steep line going through 1

4 f a(), and so on; see the Problem Set for Section 3.3
at the end of this chapter.

3.4  Fixed-Point Method

The fixed-point method is an open method to find a root of f(x) = 0. The idea
is to rewrite f(x) = 0 as x = g(x), where g(x) is called the iteration function.

Root

0
x

0 x
Root

Fixed point

y = x

g(x) = e–x/2

f(x) = e–x/2–x

Figure 3.9
Root of an equation interpreted as a fixed point of an iteration function.

67Solution of Equations of a Single Variable

Consequently, a point of intersection of y = g(x) and y = x, known as a fixed
point of g(x), is also a root of f(x) = 0. As an example, consider e xx− − =/2 0 and
its root as shown in Figure 3.9. The equation is rewritten as x e x= − /2 so that
g x e x() /= − 2 is the iteration function. It is observed that g(x) has only one fixed
point, which is the only root of the original equation. It should be noted that for
a given equation f(x) = 0 there usually exist more than one iteration function. For
instance, e xx− − =/2 0 can also be rewritten as x = −2 ln x so that g(x) = −2 ln x.

The fixed point of g(x) is found numerically via the fixed-point iteration:

	 x g x n xn n+ = = =1 11 2 3() , , ,, , initial guess… 	 (3.4)

The procedure begins with an initial guess x1 near the fixed point. The next
point x2 is found by evaluating g(x1), and so on. This continues until conver-
gence is observed, that is, until two successive points are within a prescribed
distance of each other, or

	 x xn n+ − <1 ε

Two types of convergence can be exhibited by the fixed-point iteration:
monotone and oscillatory, as illustrated in Figure 3.10. In a monotone con-
vergence, the elements of the generated sequence converge to the fixed point
from one side, while in an oscillatory convergence, the elements bounce from
one side of the fixed point to the other as they approach it.

3.4.1  Selection of a Suitable Iteration Function

As mentioned above, there is usually more than one way to rewrite a given
equation f(x) = 0 as x = g(x). The iteration function g(x) must be suitably
selected so that when used in Equation 3.4, the iterations converge to the
fixed point. In some cases, more than one of the possible forms can be suc-
cessfully used. Sometimes, none of the forms is suitable, which means that
the root cannot be found by the fixed-point method. When there are multiple

Fixed point Fixed point

0
0

y = x y = x

y = g(x)

y = g(x)

xx
x1

x3
x3 x1 x2 = g(x1)x2 = g(x1)

(b)(a)

Figure 3.10
Fixed-point iteration: (a) monotone convergence and (b) oscillatory convergence.

68 Numerical Methods for Engineers and Scientists Using MATLAB®

roots, one possible form may be used to find one root, while another form
leads to another root. As demonstrated in Theorem 3.1, there is a way to
decide whether a fixed-point iteration converges or not for a specific choice
of iteration function.

Theorem 3.1

 Suppose r ∈ I is a fixed point of g(x). Assume that g(x) has a continuous
derivative in interval I, and ′ ≤ <g x K() 1 for all x ∈ I. Then, for any initial
point x1 ∈ I, the fixed-point iteration in Equation 3.4 generates a sequence {xn}
that converges to r. Furthermore, if e1 = x1 − r and en = xn − r denote the initial
error and the error at the nth iteration, we have

	 e K en
n≤ 1 	 (3.5)

Proof

Suppose x ∈ I. Then, by the mean value theorem for derivatives (MVT), there
exists a point ξ ∈ (x,r) such that

	 g x g r g x r() () ()()− = ′ −ξ 	

Next, let us consider the left side of Equation 3.5. Noting that r = g(r) and
x g xn n= −()1 , we have

	

e x r g x g r g x r K x rn n n n n= − = − = ′ − ≤ −− − −() () ()1 1 1

MVT
ξ

= −−K g x g rn() ()2

 = ′ − ≤−

MVT
K g x r K xn()η 2

2
nn

nr K x r− − ≤ ≤ −2 1

 = K en
1

Since K < 1 by assumption, e x rn n= − → 0 as n → ∞. That completes the
proof.

3.4.2 A Note on Convergence

Following Theorem 3.1, if ′ <g x() 1 near a fixed point of g(x), conver-
gence is guaranteed. In other words, if in a neighborhood of a root, the curve
of g(x) is less steep than the line y = x, the fixed-point iteration converges.
Note that this is a sufficient, and not necessary, condition for convergence.

69Solution of Equations of a Single Variable

The user-defined function FixedPoint uses an initial x1 and generates
a sequence of elements {xn} that eventually converges to the fixed point of
g(x). The iterations stop when two consecutive elements are sufficiently
close to one another, that is, x xn n+ − <1 ε , where ε is the imposed tolerance.
The outputs are the approximate value of the fixed point and the number of
iterations needed to meet the tolerance.

Example 3.3:  Fixed-Point Method

The objective is to find the root of x − 2−x = 0 using the fixed-point
method. Rewrite the equation as x = 2−x so that g(x) = 2−x. The fixed point
can be roughly located as in Figure 3.11.

 >> g = inline('2^(−x)');
 >> syms x
 >> ezplot(g,[0,2])
 >> hold on
 >> ezplot(x,[0,2])    % Figure 3.11

function [r n] = FixedPoint(g, x1, kmax, tol)
%
% FixedPoint uses the fixed-point method to approximate a
% fixed point of g(x), that is, x = g(x).
%
%  [r n] = FixedPoint(g, x1, kmax, tol), where
%
%   g is an inline function representing g(x),
%   x1 is the initial point,
%   kmax is the maximum number of iterations (default 20),
%   tol is the scalar tolerance for convergence
% (default 1e-4),
%
%   r is the approximate fixed point of g(x),
%   n is the number of iterations needed for convergence.

if nargin < 4, tol = 1e-4;end
if nargin < 3, kmax = 20;end
x(1) = x1;
for    n = 1:kmax,
    x(n+1) = g(x(n));   % Generate the next point
   if abs(x(n+1)-x(n)) < tol,   % Stop if tolerance is met
	 r = x(n+1);
	 return
   end
end
r = 'failure';

70 Numerical Methods for Engineers and Scientists Using MATLAB®

Before applying the fixed-point iteration, we need to check the condi-
tion of convergence, Theorem 3.1, as follows:

	
′ = − = < ⇒ >− −g x xx x() ln ln2 2 2 2 1 0.5288

This means if the fixed point is in an interval comprised of values of
x larger than 0.5288, the fixed-point iteration is guaranteed to converge.
Figure 3.11 confirms that this condition is satisfied.

We will execute the user-defined function FixedPoint with x1 = 0
and default values for kmax and tol.

 >> [r n] = FixedPoint(g, 0)

r =
0.6412

n =
13

Therefore, the fixed point of g x x() = −2 , which is the root of x x− =−2 0,
is found after 13 iterations. The reader may verify that the convergence is
oscillatory. In fact, the sequence of elements generated by the iteration is

0.0000  1.0000  0.5000  0.7071  0.6125  0.6540  0.6355  0.6437
0.6401  0.6417  0.6410  0.6413  0.6411  0.6412

Example 3.4:  Selection of a Suitable Iteration Function

Consider the quadratic equation x x2 4 1 0− + = . As stated earlier, there
is more than one way to construct an iteration function g(x). For instance,
two such forms are

1.8

1.8

1.6

1.6

1.4

1.4

1

1

0.8

0.8

0.4

0.4

0.6

0.6

1.2

1.2

0

0

0.2

0.2

2

2
x

Fixed point g(x)

y = x

Figure 3.11
Location of the fixed point of g(x) = 2−x.

71Solution of Equations of a Single Variable

	
g x x g x

x
1

2
2

1
4

1 4
1

() (), ()= + = −

Let us first consider g1(x), Figure 3.12. The portion of the curve of g1(x)
below point A is less steep than y = x. Starting at any arbitrary point in
that region, we see that the iteration always converges to the smaller root
B. On the other hand, above point A, the curve is steeper than the line
y = x. Starting at any point there, the iteration will diverge. Thus, only the
smaller of the two roots can be approximated if g1(x) is used. Now, refer-
ring to Figure 3.13, the curve of g2(x) is much less steep near A than it is
near B. Also it appears that starting at any point above or below A (also
above B), the iteration converges to the larger root.

Let us inspect the condition of convergence as stated in Theorem 3.1.
In relation to g1(x), we have

	
′ = < ⇒ < ⇒ − < <g x x x x1

1
2

1 2 2 2()

The fixed point B falls inside this interval, and starting at around
x1 = 2 (Figure 3.12), the sequence did converge toward B. When we
started at around x1 = 4, however, the sequence showed divergence. In
relation to g2(x),

	
′ = < ⇒ > ⇒ < − >g x

x
x x x2 2

21
1 1 1 1() or

Figure 3.13 shows that the fixed point A certainly falls in the interval
x > 1. However, we see that our starting choice of around x1 = 0.3 led to

Start

Start

Curve is less steep than y = x

y = x

x

A

B

Sequence converges

Sequence diverges

Curve is more steep than y = x

g1(x)

0
0

1

2

3

4

5

6

0.5 1 1.5 2 2.5 3 3.5 4.54 5

Figure 3.12
Fixed points of g x x1

1
4

2 1() ()= + .

72 Numerical Methods for Engineers and Scientists Using MATLAB®

convergence, even though it was not inside the required interval. This
of course is due to the fact that the condition of convergence is only suf-
ficient and not necessary.

 >> g1 = inline('(x^2+1)/4');
 >> g2 = inline('4-1/x');
 >> [r1 n] = FixedPoint(g1, 2)

r1 =
   0.2680  % First root found by using iteration function g1

n =
   8

 >> [r2 n] = FixedPoint(g2, 0.3)

r2 =
  � 3.7320  % Second root found by using iteration function g2

n =
   7

The original equation is x x2 4 1 0− + = so that we are looking for the
roots of a polynomial. MATLAB has a built-in function roots, which
performs this task:

 >> roots([1 -4 1])

ans =

   3.7321
   0.2679

x

Start

Start
Curve is less steep near A than
it is near B A

B

y = x

g2 = (x)

3.5 4.5 5432.521.510.50

3.5

3

2.5

2

1.5

1

0.5

0

Figure 3.13
Fixed points of g x

x
2 4

1
() = − .

73Solution of Equations of a Single Variable

3.4.3  Rate of Convergence of the Fixed-Point Iteration

Suppose r is a fixed point of g(x), and that g(x) satisfies the hypotheses of
Theorem 3.1 in some interval I. Also assume the (k + 1)th derivative of g(x)
is continuous in I. Expanding g(x) in a Taylor’s series about x = r, and noting
that r = g(r), x g xn n+ =1 (), and e x rn n= − , the error at the (n + 1)th iteration is
obtained as

	

e x r g x g r

g r e
g r

e
g r
k

e

n n n

n n

k

n
k

+ += − = −

= ′ + ′′ + + +

1 1

2

2

() ()

()
()
!

()
!

()

 EEk n,
	

(3.6)

where Ek,n, the error due to truncation, is given by

	
E

g
k

e r xk n

k
n

n
k

n n, for some= ()
+

∈
+

+
()

()!
(,)

1
1

1
ξ

ξ
	

Assume ′ ≠ ∈g x x I() 0 ∀ . Then, for k = 0, Equation 3.6 yields e g en n n+ = ′ ()1 ξ .
But since xn → r as n → ∞ (by Theorem 3.1), we have ξn r→ as well.
Consequently,

	
lim lim ()
n

n

n n
n

e
e

g g r
→∞

+

→∞
= ′ () = ′ ≠1 0ξ

Therefore, convergence is linear. The rate of convergence will be improved
if ′ =g r() 0 and ′′ ≠ ∈g x x I() 0 ∀ . In that case, it can be shown that

	
lim

()
!n

n

n

e
e

g r
→∞

+ = ′′ ≠1
2 2

0
	

so that convergence is quadratic. We will see shortly that Newton’s method falls
in this category. From the foregoing analysis it is evident that the more deriva-
tives of g(x) vanish at the root, the faster the rate of the fixed-point iteration.

3.5  Newton’s Method (Newton−Raphson Method)

The most commonly used open method to solve f(x) = 0, where ′f x() is con-
tinuous, is Newton’s method. Consider the graph of f(x) in Figure 3.14. Start
with an initial point x1 and locate the point (x1, f(x1)) on the curve. Draw the
tangent line to the curve at that point, and let its x-intercept be x2. Locate

74 Numerical Methods for Engineers and Scientists Using MATLAB®

(x2, f(x2)), draw the tangent line to the curve there, and let x3 be its x-intercept.
Repeat this until convergence xn → r is observed. In general, two consecutive
elements xn and xn+1 are related via

	
x x

f x
f x

n xn n
n

n
+ = −

′
= =1 11 2 3

()
()

, , ,, , initial point…
	

(3.7)

The user-defined function Newton uses an initial x1 and generates a
sequence of elements {xn} via Equation 3.7 that eventually converges to the
root of f(x) = 0. The iterations stop when two consecutive elements are suf-
ficiently close to one another, that is, x xn n+ − <1 ε , where ε is the prescribed
tolerance. The outputs are the approximate value of the root and the number
of iterations needed to meet the tolerance.

function [r n] = Newton(f, fp, x1, tol, N)
%
% �Newton uses Newton’s method to approximate a root of
% f(x) = 0.
%
%   [r n] = Newton(f, fp, x1, tol, N), where
%
%    f is an inline function representing f(x),
%    fp is an inline function representing f'(x),
%    x1 is the initial point,
%    tol is the scalar tolerance for convergence
%        (default 1e-4),
%    N is the maximum number of iterations (default 20),
%
%    r is the approximate root of f(x) = 0,

x1x3 x2

x

f(x)

Slope = f ′(x1)

0
Root

Figure 3.14
Geometry of Newton’s method.

75Solution of Equations of a Single Variable

Example 3.5:  Newton’s Method

Find the first positive root of x cos x = −1 using Newton’s method with
ε = −10 4 and maximum 20 iterations.

Solution

This equation was previously tackled in Examples 3.1 and 3.2. According
to Figure 3.6, the first positive root is located around x = 2, thus we will
execute the user-defined function Newton with initial point x1 = 1. In the
meantime, we note that f(x) = x cos x + 1 and ′ = −f x x x x() cos sin .

 >> f = inline('x*cos(x)+1');
 >> fp = inline('cos(x)-x*sin(x)');
 >> [r n] = Newton(f, fp, 1)

r =
   2.0739

n =
   6

The result fully agrees with those of Examples 3.1 and 3.2.

Example 3.6:  Newton’s Method

Find the roots of x x2 3 7 0− − = using Newton’s method with ε = −10 4
and maximum 20 iterations.

Solution

We first plot f x x x() = − −2 3 7 to find approximate locations of its roots.

%   n is the number of iterations required for convergence.

if nargin < 5, N = 20;end
if nargin < 4,tol = 1e-4;end

x = zeros(1, N+1);  % Pre-allocate
x(1) = x1;
for n = 1:N,
     if fp(x(n)) = =0
	 r = 'failure';
	 return
     end
     x(n+1) = x(n)-f(x(n))/fp(x(n));
     if abs(x(n+1)-x(n)) < tol,
	 r = x(n+1);
	 return
     end
end
r = 'failure';

76 Numerical Methods for Engineers and Scientists Using MATLAB®

 >> f = inline('x^2-3*x-7');
 >> ezplot(f)  % Figure 3.15

Inspired by Figure 3.15, we will execute the user-defined function
Newton two separate times, once with initial point x1 = −2 and a second
time with x1 = 4.

 >> fp = inline('2*x-3');
 >> [r1 n1] = Newton(f, fp, -2)

r1 =
   -1.5414   % First root

n1 =
   4

 >> [r2 n2] = Newton(f, fp, 4)

r2 =
   4.5414   % Second root

n2 =
   4

In both applications, convergence was achieved after four iterations.
Since f(x) is a polynomial, the built-in MATLAB function roots can be
used to find its roots.

 >> roots([1 -3 -7])

ans =

    4.5414
   -1.5414

−6 −4 −2 0 2 4 6

−10

0

10

20

30

40

50

x

First root Second root

Figure 3.15
Location of the two roots of x x2 3 7 0− − = .

77Solution of Equations of a Single Variable

3.5.1  Rate of Convergence of Newton’s Method

It turns out that the speed of convergence of Newton’s method depends on
the multiplicity of a certain root of f(x) = 0. We say that a root r of f(x) = 0 is of
multiplicity (or order) m if and only if

	 f r f r f r f r f rm m() () () () , ()() ()= ′ = ′′ = = ≠−0 0 0 0 01, , , , …

A root of order 1 is commonly known as a simple root.

Theorem 3.2

Let r be a root of f(x) = 0, and in Newton’s iteration, Equation 3.7, let x1 be
sufficiently close to r.

	 a.	 If ′′f x() is continuous and r is a simple root, then

	
e

f r

f r
e

e

e

f r

f r
n n

n

n

n
+

→∞

+≅
′′
′

⇒ =
′′
′

≠1
2 1

2
1
2

1
2

0
()
()

lim
()
()

	
(3.8a)

and convergence x rn{ } → is quadratic.

	 b.	 If x rn{ } → , where r is root of order m > 1, then

	
e

m
m

e
e
e

m
m

n n
n

n

n
+

→∞

+≅ − ⇒ = − ≠1
11 1

0lim
	

(3.8b)

and convergence is linear.

Example 3.7:  Quadratic Convergence; Newton’s Method

Suppose Newton’s method is to be used to find the two roots of
x x2 3 4 0− − = , which are r = −1,4. Let us focus on the task of finding
the larger root, r = 4. Since the root is simple, by Equation 3.8a we have

	
lim

()
()n

n

n

e

e

f

f→∞

+ ≅
′′
′

= 



 =1

2
1
2

4
4

1
2

2
5

0.2

This indicates that convergence is quadratic, as stated in Theorem 3.2.
While finding the smaller root r = −1, this limit is once again 0.2, thus

78 Numerical Methods for Engineers and Scientists Using MATLAB®

confirming that convergence is quadratic. The reader can readily verify

this by tracking the ratio e en n+1
2/ while running Newton’s method.

3.5.2 A Few Notes on Newton’s Method

•	 When Newton’s method works, it generates a sequence that con-
verges rapidly to the intended root.

•	 Several factors may cause Newton’s method to fail. Usually, it is
because the initial point x1 is not sufficiently close to the intended
root. Another one is that at some point in the iterations, ′f xn() may
be close to or equal to zero. Other scenarios, where the iteration
simply halts or the sequence diverges, are shown in Figure 3.16 and
explained in Example 3.8.

•	 If f(x), ′f x(), and ′′f x() are continuous, ′ ≠f ()root 0, and the initial
point x1 is close to the root, then the sequence generated by Newton’s
method converges to the root.

•	 A downside of Newton’s method is that it requires the expression for
′f x(). However, finding ′f x() can at times be difficult. In these cases,

the secant method (described below in Section 3.6) can be used instead.

Example 3.8:  Newton’s Method

Apply Newton’s method to find the root of 2 1 1/()x + = . For the initial
point use (a) x1 = 3, and (b) x1 = 4.

Solution

	
f x

x
f x

x
() ()

()
=

+
− ′ = −

+
2

1
1

2
1 2so that

Sequence diverges
Root Root

(b)(a)
f(x) f(x)

x2

xx
x2

x1 x1–3.5
11

–1
43

f(x2) is undefined

Figure 3.16
Newton’s method (a) halts, (b) diverges.

79Solution of Equations of a Single Variable

	 a.	 Starting with x1 = 3, we find

	
x x

f x
f x

2 1
1

1

1
2
1
8

3 1= −
′

= − −
−

= −()
()

		  The iterations halt at this point because f(−1) is undefined.
This is illustrated in Figure 3.16a.

	 b.	 Starting with x1 = 4, we find

	
x x

f x
f x

x x2 1
1

1

3
5
2
25

3 44= −
′

= − −
−

= − = − = −()
()

3.5, 9.1250, 50.2578,…

		 The sequence clearly diverges. This is illustrated in Figure 3.16b.

3.5.3 � Modified Newton’s Method for Roots with Multiplicity
2 or Higher

If r is a root of f(x) and r has a multiplicity 2 or higher, then convergence of the
sequence generated by Newton’s method is linear; see Theorem 3.2. In these
situations, Newton’s method may be modified to improve the efficiency. The
modified Newton’s method designed for roots of multiplicity 2 or higher is
described as

x x
f x f x

f x f x f x
n xn n

n n

n n n

+ = − ′
′  − ′′

= =1 2 11 2 3
() ()

() () ()
, , ,, , i… nnitial point

	

(3.9)

The user-defined function NewtonMod uses an initial x1 and generates a
sequence of elements {xn} via Equation 3.9 that eventually converges to the
root of f(x) = 0, where the root has multiplicity 2 or higher. The iterations stop
when two consecutive elements are sufficiently close to one another, that is,
x xn n+ − <1 ε , where ε is the prescribed tolerance. The outputs are the approxi-
mate value of the root and the number of iterations needed to meet the tolerance.

function [r n] = NewtonMod(f, fp, f2p, x1, tol, N)
%
%  NewtonMod uses modified Newton’s method to approximate
%  a root with multiplicity 2 or higher of f(x) = 0.
%
%   [r n] = NewtonMod(f, fp, f2p, x1, tol, N), where
%
%     f is an inline function representing f(x),
%     fp is an inline function representing f’(x),
%     f2p is an inline function representing f”(x),

80 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 3.9:  Modified Newton’s Method

Find the roots of 4 4 7 2 03 2x x x+ − + = using Newton’s method and its
modified version. Discuss the results.

Solution

Figure 3.17 reveals that f x x x x() = + − +4 4 7 23 2 has a simple root at −2
and a double root (multiplicity 2) at 0.5 since it is tangent to the x-axis at
that point. We will execute NewtonMod with default parameter values and
x1 = 0.

 >> f = inline('4*x^3+4*x^2-7*x+2');
 >> fp = inline('12*x^2+8*x-7');
 >> f2p = inline('24*x+8');
 >> [r n] = NewtonMod(f, fp, f2p, 0)

r =
   0.5000

n =
   4

Executing Newton with default parameters and x1 = 0 yields

%     x1 is the initial point,
%     tol is the scalar tolerance for convergence
%      (default 1e-4),
%     N is the maximum number of iterations (default 20),
%
%     r is the approximate root of f(x) = 0,
%     �n is the number of iterations required for
%     convergence.

if nargin < 6, N = 20;end
if nargin < 5,tol = 1e-4;end

x = zeros(1,N+1);  % Pre-allocate
x(1) = x1;
for n = 1:N,
    x(n+1) = �x(n)-(f(x(n))*fp(x(n)))/(fp(x(n))^2-f(x(n))
    *f2p (x(n)));
    if abs(x(n+1)-x(n)) < tol,
	  r = x(n+1);
	  return
    end
end
r = 'failure';

81Solution of Equations of a Single Variable

 >> [r n] = Newton(f, fp, 0)

r =
   0.4999

n =
   12

The modified Newton’s method is clearly superior to the standard
Newton’s method when approximating a multiple root. The same, how-
ever, is not true for simple roots. Applying both methods with x1 = −3
and default parameters yields

 >> [r n] = NewtonMod(f, fp, f2p, -3)

r =
   -2.0000

n =
   6

 >> [r n] = Newton(f, fp, -3)

r =
   -2.0000

n =
   5

The standard Newton’s method generally exhibits a faster convergence
(quadratic, by Theorem 3.2) to the simple root. The modified Newton’s
method outperforms the standard one when finding multiple roots. But
for simple roots, it is not as efficient as Newton’s method and requires
more computations.

−4 −3 −2 −1 0 1 2 3 4

−150

−100

−50

0

50

100

150

200

250

x

Simple root

Root with
multiplicity 2

Figure 3.17
A simple and a multiple root of 4 4 7 2 03 2x x x+ − + = .

82 Numerical Methods for Engineers and Scientists Using MATLAB®

3.6  Secant Method

The secant method is another open method to solve f(x) = 0. Consider the
graph of f(x) in Figure 3.18. Start with two initial points x1 and x2, locate the
points (x1, f(x1)) and (x2, f(x2)) on the curve, and draw the secant line connect-
ing them. The x-intercept of this secant line is x3. Next, use x2 and x3 to define
a secant line and let the x-intercept of this line be x4. Continue the process
until the sequence converges to the root. In general, two consecutive ele-
ments xn and xn+1 generated by the secant method are related via

	
x x

x x
f x f x

f x n x xn n
n n

n n
n+

−

−
= − −

−
= =1

1

1
1 22 3 4

() ()
() , , , ,, , initial p… ooints

� (3.10)

Comparing with Newton’s method, we see that ′f xn() in Equation 3.7 is
essentially approximated by, and replaced with, the difference quotient

	

f x f x
x x
n n

n n

() ()−
−

−

−

1

1

The user-defined function Secant uses initial points x1 and x2 and gen-
erates a sequence of elements {xn} that eventually converges to the root of
f(x) = 0. The iterations stop when two consecutive elements are sufficiently
close to one another, that is, x xn n+ − <1 ε, where ε is the prescribed toler-
ance. The outputs are the approximate value of the root and the number of
iterations needed to meet the tolerance.

Root
0

Secant line

x3 x2 x1

x

f(x)

Figure 3.18
Geometry of the secant method.

83Solution of Equations of a Single Variable

Example 3.10:  Secant Method

Find the first positive root of x cos x = −1 using the secant method with
ε = −10 4 and maximum 20 iterations.

Solution

We have worked with this equation on a few occasions so far, the last time
in Example 3.5 while using Newton’s method. According to Figure 3.6,

function [r n] = Secant(f, x1, x2, tol, N)
%
% Secant uses secant method to approximate roots of
% f(x) = 0.
%
%   [r n] = Secant(f, x1, x2, tol, N), where
%
%     f is an inline function which represents f(x),
%     x1 and x2 are the initial values of x,
%     tol is the scalar tolerance of convergence (default
%     is 1e-4),
%     N is the maximum number of iterations (default is 20),
%
%     r is the approximate root of f(x) = 0,
%     n is the number of iterations required for
%     convergence.

if nargin < 5, N = 20;end
if nargin < 4,tol = 1e-4;end

x = zeros(1, N+1); % Pre-allocate

for n = 2:N,
    if x1 = =  x2
	 r = 'failure';
	 return
    end

     x(1) = x1; x(2) = x2;
     �x(n+1) = �x(n)–((x(n)–x(n–1))/(f(x(n))–f(x(n–1))))
     * f(x(n));
     if abs(x(n+1)–x(n)) < tol,
	 r = x(n+1);
	 return
     end
end
r = 'failure';

84 Numerical Methods for Engineers and Scientists Using MATLAB®

the first positive root is around x = 2, so we will execute the user-defined
function Secant with initial points x1 = 1 and x2 = 1.5.

 >> f = inline('x*cos(x)+1');
 >> [r n] = Secant(f, 1, 1.5)

r =
2.0739

n =
6

Recalling that Newton’s method starting with x1 = 1 also required six
iterations, we see that the secant method in this case has a similar rate
of convergence.

3.6.1  Rate of Convergence of Secant Method

Assuming a simple root r, the rate of convergence of the secant method is
1
2 1 5+() ≅ 1.618. More exactly,

	
lim

()
()n

n

n

e

e

f r
f r→∞

+ = ′′
′

≠1

2
0

 1.618

0.618

	
(3.11)

3.6.2 A Few Notes on Secant Method

•	 As with Newton’s method, because the secant method does not
bracket the root in each iteration, the sequence that it generates is
not guaranteed to converge to the root.

•	 For the case of a simple root, the rate of convergence for the secant
method is 1.618, thus the generated sequence converges faster
than linear, but slower than quadratic. Therefore, it is slower than
Newton’s method—which has quadratic convergence for simple
root—but the expression of ′f x() does not need to be obtained.

•	 If f(x), ′f x(), and ′′f x() are continuous on an interval I, which con-
tains the root, ′ ≠f ()root 0, and the initial points x1 and x2 are close
to the root, then the secant method converges to the root.

3.7  Equations with Several Roots

All the bracketing and open methods presented in this chapter are capa-
ble of finding one root of f(x) = 0 at a time. The built-in MATLAB function
fzero also finds a root nearest a specified point, with syntax fzero(f,x0).

85Solution of Equations of a Single Variable

Sometimes several roots of an equation are desired. To find zeros of a func-
tion, we must start with an initial point, increment the variable in either one
or both directions, look for sign changes in the function value, and finally
zoom in onto a root with a desired accuracy.

3.7.1  Finding Zeros to the Right of a Specified Point

The user-defined function NZeros finds n roots of f(x) = 0 to the right of the
specified initial point x0 by incrementing x and inspecting the sign of the cor-
responding f(x). A root is detected when ∆x x/ < ε , where ε is the prescribed
tolerance. The output is the list of the desired number of approximate roots.

function NRoots = NZeros(f, n, x0, tol, delx)
%
%  NZeros approximates a desired number of roots of f(x)
%  on the right side of a specified point.
%
%    NRoots = NZeros(f, n, x0, tol, delx) where
%
%       f is an inline function representing f(x),
%       n is the number of desired roots,
%       x0 is the starting value,
%       tol is the scalar tolerance (default is 1e-6),
%       delx is the increment in x (default is 0.1),
%
%       NRoots is the list of n roots of f(x) to the
%       right of x0.

if nargin < 5, delx = 0.1;end
if nargin < 4, tol = 1e-6;end

x = x0;
dx = delx;
NRoots = zeros(n,1);     % pre-allocate
for m = 1:n,
    sgn1 = sign((f(x)));
    while abs(dx/x) > tol,
       if sgn1~= sign((f(x+dx))),
         dx = dx/2;
       else
         x = x+dx;
       end
    end
NRoots(m) = x;

86 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 3.11:  Several Roots

Find the roots of x cos x + 1 = 0 in [−2π,2π].

Solution

We first plot the function to see how many roots are there in the given
interval.

 >> f = inline('x*cos(x)+1');
 >> ezplot(f)   % Figure 3.18

Figure 3.19 shows that there are two roots in [−2π,2π]. Since both roots
(n = 2) are located to the right of −6, we set x0 =  − 6 and execute NZeros
with default values for the remaining input parameters.

 >> NRoots = NZeros(f, 2, -6)

NRoots =

  -4.9172
   2.0739

The second root is what we have repeatedly found using various tech-
niques in this chapter. The first root completely agrees with Figure 3.19.

dx = delx;
x = x + abs(0.05*x);
end

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

8

x

Root Root

Figure 3.19
The two roots of x cos x = −1 in [−2π,2π].

87Solution of Equations of a Single Variable

3.7.2  Finding Zeros on Two Sides of a Specified Point

The user-defined function NZerosMod finds n roots of f(x) = 0 on both
sides of the specified initial point x0 by incrementing x in both directions
and inspecting the sign of the corresponding f(x). A root is detected when
∆x x/ < ε , where ε is the prescribed tolerance. The output is the list of the
desired number of approximate roots.

function NRoots = NZerosMod(f, n, x0, tol, delx)
%
%  NZerosMod approximates a desired number of roots of
%  f(x) on both sides of a specified point.
%
%    NRoots = NZerosMod(f, n, x0, tol, delx) where
%
%       f is an inline function representing f(x),
%       n is the number of desired roots,
%       x0 is the starting value,
%       tol is the scalar tolerance (default is 1e-6),
%       delx is the increment in x (default is 0.1),
%
%       NRoots is the list of n roots of f(x) on two
%       sides of x0.

if nargin < 5, delx = 0.1;end
if nargin < 4,tol = 1e-6;end

x = x0;
xtrack = x0;
% Vector that tracks which intervals have been searched
dx = delx;
NRoots = zeros(n,1);   % pre-allocate
for m = 1:n
    sgn1 = sign((f(x)));
    while abs(dx/x) > tol
       if sgn1~= sign((f(x + (-1)^(m+1)*dx)))
          dx = dx/2;
       else
         x = x + (-1)^(m+1)*dx; % Changes direction of search
       end
    end
NRoots(m) = x;
xtrack(m+1) = x;
xtrack = sort(xtrack);    % Sorting searched intervals
dx = delx;

88 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 3.12:  Several Roots

Find the roots of cos()πx/3 1
2= in [−6,4].

Solution

Figure 3.20 shows there are three roots in [−6,4]. We start with x0 =  − 2
and execute NzerosMod with default values for the remaining input
parameters.

 >> f = inline('cos(pi*x/3)−0.5');
 >> NRoots = NzerosMod(f, 3, −2)

% Setting x to the appropriate value so intervals are not
% searched twice
if mod(m,2) = = 1
      x = xtrack(1);
else
      x = xtrack(end);
end
x = x + (-1)^m*abs(0.05*x);
end
NRoots = sort(NRoots);

0.5

0

–0.5

–1.5

–6 –5 –4 –3 –2 –1
x

Initial point

0 1 2 3 4

–1

Figure 3.20
The three roots of cos (πx/3) − 1/2 = 0 in [−6,4].

89Solution of Equations of a Single Variable

NRoots =

   -5.0000
   -1.0000
    1.0000

We see that these are the three roots closest to the starting point.

3.7.3 U sing fzero to Find Several Roots

The following example demonstrates how the built-in function fzero can be
utilized to find several roots of an equation in a given interval.

Example 3.13:  Several Roots Using fzero

Find all roots of x sin x = 0 in [−10,10].

Solution

There are several roots in the given range. We must solve for each root
individually using an appropriate initial guess. These initial guesses
can be generated by evaluating the function at a few points in the given
range, and identifying any sign changes.

fun = inline('x.*sin(x)','x');
x = linspace(-10,10,20);
% Generate 20 points in the given range
f = fun(x);    % Evaluate function
plot(x, f)    % Figure 3.21

Any sign changes in f can be identified by

I = find(sign(f(2:end))~=sign(f(1:end-1)));

−10 −8 −6 −4 −2 0 2 4 6 8 10−6

−4

−2

0

2

4

6

8

x

f(x
)

Figure 3.21
Several roots of x sin x = 0 in [−10,10].

90 Numerical Methods for Engineers and Scientists Using MATLAB®

Now, we can iterate through each sign change, and use fzero with a
two-element initial guess.

for n = 1:length(I)
    r(n) = fzero(fun, x([I(n) I(n)+1]));  % Approximate roots
end

>> disp(r)   % Display roots

r =
   -9.4248   -6.2832   -3.1416   3.1416   6.2832   9.4248

We note that this method missed the obvious root at x = 0. This is
because the function never changes sign around this root; see Figure
3.22, which is the plot of x sin x using 101 points for x. The fzero func-
tion only finds roots where the function changes sign.

The user-defined function NZeros also skips the root at x = 0, again
because the function does not exhibit a sign change at that point. Based on
Figure 3.22, we will try to find seven roots of the function to the right of −10.

>> NRoots = NZeros(fun, 7, -10)

NRoots =

   -9.4248
   -6.2832
   -3.1416
    3.1416
    6.2832
    9.4248
   12.5664   % Root outside range, not accepted

The root at 0 is missed by this function as well. Instead, the seventh
root is a root outside of the given range.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

x

f(x
)

Root missed by fzero

Figure 3.22
Root of x sin x = 0 at x = 0 missed by fzero.

91Solution of Equations of a Single Variable

3.7.4  Points of Discontinuity Mistaken for Roots

If a function is not continuous, fzero may return values that are points of
discontinuity rather than roots. In general, it can be difficult to find all roots
of any arbitrary nonlinear function unless we have knowledge of the behav-
ior of the function, and an approximate location of all desired roots.

Example 3.14:  Points of Discontinuity

Find the roots of tan x = tanh x in [−2,2].

Solution
>> fun = inline('tan(x)-tanh(x)','x');
>> x = linspace(-2,2,100);
>> f = fun(x);
>> I = find(sign(f(2:end))~= sign(f(1:end-1)));
>> for n = 1:length(I)
    r(n) = fzero(fun, x([I(n) I(n)+1]));
end
>> r

r =

   -1.5708   -0.0000   1.5708

We realize that the only legitimate root is the one at 0, while the other
two are merely points of discontinuity; Figure 3.23. The user-defined
function NZeros also mistakes such points for roots.

−2 −1. 5 −1 −0. 5 0 0.5 1 1.5 2

−10

−5

0

5

10

x

−1.5708

Figure 3.23
Discontinuity points mistaken for roots.

92 Numerical Methods for Engineers and Scientists Using MATLAB®

Problem Set

Bisection Method (Section 3.2)

 In Problems 1 through 6, the given equation has a root in the indicated
interval. Using bisection method, generate the first four midpoints and inter-
vals (besides the original interval given) containing the root.

	 1.	cos x + sin x = 0, [2,4]
	 2.	ex − 2x = 2, [0,2]
	 3.	x2 − 4x + 2 = 0, [3,4]
	 4.	cos x cosh x = −1, [−5, − 4]
	 5.	 tan(x/2) + x + 1 = 0, [−1,0]

	 6.	 1
3 1 1 2x x+ =ln ,[,]

	 7.	 Modify the user-defined function Bisection (Section 3.2) so that
the table is not generated and the outputs are the approximate root
and the number of iterations needed for the tolerance to be met. All
other parameters, including default values, are to remain unchanged.
Save this function as Bisection_New. Apply Bisection_New to
the equation in Problem 1, using the given tolerance:

	 cos sin , , ,x x+ = [] = −0 2 4 10 4ε

	 8.	 Apply the user-defined function Bisection_New (Problem 7) to

	 2 0 10 4− −= [] =x x, , ,2 ε

	 9.	 The objective is to find all roots of e xx− + =/2 1
2 3 , one at a

time, using the bisection method, as follows: first, locate the roots
graphically and identify the intervals containing the roots. The
endpoints of each interval must be chosen as the integers closest
to a root on each side of that root. Then apply the user-defined
function Bisection_New (Problem 7) with default values for tol-
erance and maximum number of iterations allowed to find one
root at a time.

	 10.	 The goal is to find an approximate value for 7 using the bisec-
tion method. Define a suitable function f(x), plot to locate the root
of f(x) = 0 and identify the interval containing the root. The end-
points of the interval must be the integers closest to the intended
root on each side of the root. Then apply the user-defined function
Bisection_New (Problem 7) with default values for tolerance and
maximum number of iterations allowed.

93Solution of Equations of a Single Variable

Regula Falsi Method (Section 3.3)

In Problems 11 through 16, the given equation has a root in the indicated
interval. Using regula falsi method, generate the first four elements in the
sequence that eventually converges to the root.

	 11.	 2 1 02e xx− + = []/ ln , . , 1 1

	 12.	sin x + sin 2x = 1, [1,2]
	 13.	cos x cosh x = 1, [4,5]
	 14.	x3 − 5x + 3 = 0, [1,2]
	 15.	2x2 − 3 = 0, [−2, − 1]
	 16.	e−x = x2, [0,2]
	 17.	  Modify the user-defined function RegulaFalsi (Section 3.3)

so that the table is not generated and the terminating condition is
f cn() < ε , where ε is an imposed tolerance. The outputs are the

approximate root and the number of iterations needed for the toler-
ance to be met. All other parameters, including default values, are
to remain unchanged. Save this function as RegulaFalsi_New.
Apply RegulaFalsi_New to the equation in Problem 11, using the
given tolerance:

	 2 1 0 102 4e xx− −+ = [] =/ ln , . , ,1 1 ε

	 18.	 Apply the user-defined function RegulaFalsi_New (Problem
17) to

	 3 0 103 4− −= [] =x x , , ,1 ε 	

	 19.	 The goal is to find all three roots of 2 03 2x x x− − + =2.5 8.01 2.5740 ,
one at a time, using regula falsi method, as follows: first, locate the
roots graphically and identify the intervals containing the roots. The
endpoints of each interval must be chosen as the integers closest to a
root on each side of that root. Then apply the user-defined function
RegulaFalsi_New (Problem 17) with default values for tolerance
and maximum number of iterations allowed to find one root at a time.

	 20.	 The objective is to find the two roots of e xx− + =
2

2 sin 0.4 in
[−2,4], one at a time, using regula falsi method, as follows: first, locate
the roots graphically and identify the intervals containing the roots.
The endpoints of each interval must be selected as the integers closest
to a root on each side of that root. Apply the user-defined function
RegulaFalsi_New (Problem 17) with default values for tolerance
and maximum number of iterations allowed to find one root at a time.

94 Numerical Methods for Engineers and Scientists Using MATLAB®

	 21.	 The goal is to find an approximate value for 153 using regula
falsi method. Define a suitable function f(x), plot to locate the root
of f(x) = 0, and identify the interval containing the root. The end-
points of the interval must be the integers closest to the intended
root on each side of the root. Then apply the user-defined function
RegulaFalsi_New (Problem 17) with default values for tolerance
and maximum number of iterations allowed.

Modified Regula Falsi

	 22.	 Modify the user-defined function RegulaFalsi (Section 3.3) so
that if an endpoint remains stationary for three consecutive itera-
tions, 1

2 f ()endpoint is used in the calculation of the next x-intercept,
and if the endpoint still does not move, 1

4 f ()endpoint is used, and so
on. All other parameters, including the default values are to remain
the same as before. Save this function as RegulaFalsi_Mod.

		  Apply RegulaFalsi to find a root of 1
3

22 3 0()x − − = in [−6,2].
Next, apply RegulaFalsi_Mod and compare the results.

Fixed-Point Method (Section 3.4)

	 23.	The two roots of 3−x = 4 − x are to be found by the fixed-point method
as follows: Define two iteration functions g x x

1 4 3() = − − and
g x x2 3 4() log ()= − − .

	 a.	 Locate the fixed points of g1(x) and g2(x) graphically.

	 b.	  Referring to the figure showing the fixed points of g1, set x1
to be the nearest integer to the left of the smaller fixed point and
perform four iterations using the fixed-point method. Next, set
x1 to be the nearest integer to the right of the same fixed point
and perform four iterations. If both fixed points were not found,
repeat the process applied to g2. Discuss any convergence issues
as related to Theorem 3.1.

	 24.	 The two roots of 3 02x x+ − =2.72 1.24 are to be found using the
fixed-point method as follows: Define iteration functions

	 g x
x

g x
x
x

1

2

2
3

3
() , ()= − + = − +1.24

2.72
2.72 1.24

	 a.	 Locate the fixed points of g1(x) and g2(x) graphically.
	 b.	 Focus on g1 first. Execute the user-defined function FixedPoint

(Section 3.4) with initial point x1 chosen as the nearest integer to
the left of the smaller fixed point. Execute a second time with x1

95Solution of Equations of a Single Variable

an integer between the two fixed points. Finally, with x1 to the
right of the larger fixed point. In all cases, use the default tol-
erance, but increase kmax if necessary. Discuss all convergence
issues as related to Theorem 3.1.

	 c.	 Repeat Part (b), this time focusing on g2.
	 25.	Consider the fixed-point iteration described by

	 x g x x
a
x

n an n n
n

+ = = +





= >1
1
2

1 2 3 0() , , , ,, …

	 a.	  Show that the iteration converges to a for any initial point
x1 > 0, and that the convergence is quadratic.

	 b.	 Apply this iteration function g(x) to approximate 5. Execute
the user-defined function FixedPoint (Section 3.4) using
default values for kmax and tol, and x1 chosen as the nearest
integer on the left of the fixed point.

	 26.	 The goal is to find the root of 0.3 1.4x x2 1 3− =/ using the fixed-
point method.

	 a.	 As a potential iteration function, select g x x x1
1 3() ()/= + 1.4 /0.3 .

Graphically locate the fixed point of g1(x). Execute the user-
defined function FixedPoint (Section 3.4) twice, once with
initial point chosen as the integer nearest the fixed point on its
left, and a second time with the nearest integer on its right. Use
default values for kmax and tol, but increase kmax if necessary.
Fully discuss convergence issues as related to Theorem 3.1.

	 b.	 Next, as the iteration function select g x x2
2 3() ()= −0.3 1.4 and

repeat all steps in Part (a).

	 27.	 The two roots of x x2 0− + =3.13 2.0332 are to be found using
the fixed-point method as follows: Define iteration functions

	 g x
x
x

g x
x

1 2

2

() , ()= − = +3.13 2.0332 2.0332
3.13

	 a.	 Locate the fixed points of g1(x) and g2(x) graphically.
	 b.	 Focus on g1 first. Execute the user-defined function FixedPoint

(Section 3.4) with initial point x1 chosen as the nearest integer to
the left of the smaller fixed point. Execute a second time with x1
an integer between the two fixed points. Finally, with x1 to the
right of the larger fixed point. In all cases, use the default tol-
erance, but increase kmax if necessary. Discuss all convergence
issues as related to Theorem 3.1.

	 c.	 Repeat Part (b), this time focusing on g2.

96 Numerical Methods for Engineers and Scientists Using MATLAB®

	 28.	The two roots of 2 3− + =x xe/ 2.2 are to be found by the fixed-
point method as follows: Define two iteration functions
g x ex1 23() log ()= − −2.2 and g x x

2
32() ln()/= − −2.2 .

	 a.	 Locate the fixed points of g1(x) and g2(x) graphically.
	 b.	  Referring to the figure showing the fixed points of g1, set x1

to the nearest integer to the left of the smaller fixed point and
perform four iterations using the fixed-point method. Next, set
x1 to the nearest integer to the right of the same fixed point and
perform four iterations. If both fixed points were not found,
repeat the process applied to g2. Discuss any convergence issues
as related to Theorem 3.1.

Newton’s Method (Section 3.5)

In Problems 29 through 34, the given equation has a root in the indicated
interval. Using Newton’s method, with the initial point set to be the left end
of the interval, generate the first four elements in the sequence that eventu-
ally converges to the root.

	 29.	3x2 − x − 4 = 0, [−2,0]

	 30.	x3 + 2x2 + x + 2 = 0, [−3, −1]

	 31.	sin x = x − 1, [1,3]

	 32.	 ln() , ,x x+ = []1 1
2 2 4

	 33.	 e xx− − − + = −[]() cos() , ,1 1 2.3 1 1

	 34.	sin x sinh x + 1 = 0, [3,4]

	 35.	 Determine graphically how many roots the equation
0.2 0.9x x3 1 2− =/ has. Then find each root by executing the user-
defined function Newton (Section 3.5) with default parameter values
and x1 chosen as the closest integer on the left of the root.

	 36.	 The goal is to find an approximate value for 6 using Newton’s
method. Define a suitable function f(x), plot to locate the root of
f(x) = 0 and identify the interval containing the root. Then apply the
user-defined function Newton (Section 3.5) with default parameter
values and x1 chosen as the closest integer on the left of the root.

	 37.	 The goal is to find two roots of cos x cosh x = −1.3 in [−4,4].

	 a.	 Graphically locate the roots of interest,

	 b.	 To approximate each root, execute the user-defined function
Newton with default parameter values and x1 chosen as the clos-
est integer on the left of the root. If the intended root is not found
this way, set x1 to be the integer closest to the root on its right and
reexecute Newton. Discuss the results.

97Solution of Equations of a Single Variable

	 38.	 All three roots of the equation x x x3 2 0− − − =0.8 1.12 0.2560 are
inside [−2,2].

	 a.	 Graphically locate the roots, and decide whether each root is
simple or of higher multiplicity,

	 b.	 Approximate the root with higher multiplicity by executing the
user-defined function NewtonMod (Section 3.5), and the simple
root by executing Newton. In both cases use default parameter
values, and x1 chosen as the closest integer on the left of the root.

	 39.	 Roots of x x x3 2 0− + − =0.9 0.27 0.027 are inside [−1,1].
	 a.	 Graphically locate the roots, and determine if a root is simple or

of higher multiplicity,
	 b.	 Approximate the root with higher multiplicity by executing the

user-defined function NewtonMod (Section 3.5), and the simple
root by executing Newton. Use default parameter values, and let
x1 be the closest integer on the left of the root.

	 40.	 Locate the root(s) of 0.6(x − 2sin x) = 3 graphically, and depend-
ing on multiplicity, use Newton’s method or the modified Newton’s
method to find the root(s). Use default parameter values, and let x1
be the closest integer on the left of the root. Verify the result by using
the built-in fzero function.

Secant Method (Section 3.6)

In Problems 41 through 46, apply the secant method, with the given initial
points x1 and x2, to generate the next four elements in the sequence that even-
tually converges to the root.

	 41.	 x x x x3 1 4
1 25 4 5− = = =/ , , .2.45

	 42.	 x x x x2
1 25 4+ − = = − = −1.3 1.4 0, ,

	 43.	 sin , ,3 2 0 11 2x x x x= − = =

	 44.	 e x x xx− + = = − = −2 1 2 1 83
1 2, , .

	 45.	 ln(.) . , , .0 2 1 0 3 1 0 6 5 81 2x x x x− + + = = =

	 46.	 cosh , ,1
2 1 24 3x x x x() = = − = −

	 47.	 An approximate value for 7 using the secant method is desired.
Define a suitable function f(x), plot to locate the root of f(x) = 0 and
identify the interval containing the root. Then apply the user-defined
function Secant (Section 3.6) with default parameter values and x1
and x2 chosen as the two integers closest to the root on the right side
of the root.

	 48.	 Graphically locate the root of x x x3 2 2 0+ + + =0.7 1.4 . Find the
root numerically by applying the user-defined function Secant

98 Numerical Methods for Engineers and Scientists Using MATLAB®

[with x1 = 4, x2 = 3.9]. Next, apply the function Newton (Section 3.5)
with x1 = 4. In both cases, use default parameter values. Compare the
results.

	 49.	 Graphically locate the root of x x x2 1 3 1+ + =−0.1 / . Find the root
numerically by applying the user-defined function Secant [with
x1 = 3, x2 = 2.9]. Next, apply the function Newton (Section 3.5) with
x1 = 3. In both cases, use default parameter values. Compare the
results.

	 50.	 Locate the root of x x2 250 420+ = graphically. Find the approxi-
mate value of the root by applying the user-defined function Secant
[with x1 = −5, x2 = 0]. Next, apply the function Newton (Section 3.5)
with x1 = −5. In both cases, use default parameter values. Compare
the results.

Equations with Several Roots (Section 3.7)

In each problem, the user-defined functions NZeros or NzerosMod must be
executed. Use the default parameter values unless otherwise specified.

	 51.	 Find the first four positive roots of sin x + cos 2x = 0.2.
	 52.	 Find all roots of sin πx/2 1

3() = in [−4,4].
	 53.	 A very important function in engineering applications is the

Bessel function of the first kind. One specific such function is of
order 0, denoted by J0(x), represented in MATLAB by besselj(0,x).
The zeros of Bessel functions arise in applications such as vibration
analysis of circular membranes. Find the first four positive zeros of
J0(x), and verify them graphically.

	 54.	 The natural frequencies of a beam are the roots of the so-called
frequency equation. For a beam fixed at both of its ends, the fre-
quency equation is derived as cos x cosh x = 1. Find the first five
(positive) natural frequencies (rad/s) of this particular beam.

	 55.	 Find all roots of 0.2 0.58 12.1040 20.3360 6.24x x x x4 3 2 0+ − + − = .
Verify the findings by using the MATLAB built-in function roots.

99

4
Solution of Systems of Equations

This chapter is concerned with the numerical solution of systems of
equations, and is composed of two main parts: linear systems and nonlin-
ear systems.

4.1  Linear Systems of Equations

A linear system of n algebraic equations in n unknowns x1, x2, . . . , xn is in the
form

	

a x a x a x b

a x a x a x b

a x a x

n n

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ +




 ++ =








 a x bnn n n 	

(4.1)

where aij (i, j = 1, 2, … , n) and bk (k = 1, 2, … , n) are known constants and aij’s
are the coefficients. If every bk is zero, the system is homogeneous; otherwise
it is nonhomogeneous. Equation 4.1 can be expressed in matrix form as

	 Ax = b	 (4.2)

with

	

A x=



















=

×

a a a

a a a

a a a

x

x
n

n

n n nn n n

11 12 1

21 22 2

1 2

1

2

…
…

… … … …
…

,
…… …
x

b

b

bn n n n



















=



















× ×1

1

2

1

, b

where A is the coefficient matrix. A set of values for x1, x2, … , xn satisfying
Equation 4.1 forms a solution of the system. The vector x with components
x1, x2, … , xn is the solution vector for Equation 4.2. If x1 = 0 = x2 = … = xn,

100 Numerical Methods for Engineers and Scientists Using MATLAB®

the solution x = 0n×1 is called the trivial solution. The augmented matrix for
Equation 4.2 is defined as

	

A b   =















a a a

a a a

a a a

b

b

b

n

n

n n nn n

11 12 1

21 22 2

1 2

1

2

…
…

… … … …
…

…





 × +n n()1 	

(4.3)

4.2  Numerical Solution of Linear Systems

As described in Figure 4.1, numerical methods for solving linear systems
of equations are divided into two categories: direct methods and indirect
methods.

A direct method computes the solution of Equation 4.2 by performing a
predetermined number of operations. These methods transform the original
system into an equivalent system in which the coefficient matrix is upper-
triangular, lower-triangular, or diagonal, making the system much easier to
solve. Indirect methods use iterations to approximate the solution. The iteration
process begins with an initial vector and generates successive approximations
that eventually converge to the actual solution. Unlike direct methods, the
number of operations required by iterative methods is not known in advance.

4.3  Gauss Elimination Method

Gauss elimination is a procedure that transforms a given linear system of equa-
tions into upper-triangular form, the solution of which is found by back sub-
stitution. It is important to note that the augmented matrix [A|b] completely

Numerical solution of Ax = b

Direct methods

Indirect methods

Gauss elimination method

LU decomposition methods

Jacobi method

Gauss–Seidel method

Doolittle's method

Cholesky's method

Figure 4.1
Classification of methods to solve a linear system of equations.

101Solution of Systems of Equations

represents the linear system Ax = b; therefore, all modifications must be applied
to the augmented matrix and not just matrix A. The transformation into upper-
triangular form is achieved by using elementary row operations (EROs):

ERO1	 Multiply a row by a nonzero constant.
ERO2	 Interchange any two rows.
ERO3	� Multiply the ith row by a constant α ≠ 0 and add the result to

the kth row, then replace the kth row with the outcome. The ith
row is called the pivot row.

The nature of a linear system is preserved under EROs. If a linear system
undergoes a finite number of EROs, then the new system and the original
one are called row-equivalent.

Consider the system given in Equation 4.1. The first objective is to eliminate
x1 in all equations below the first; thus, the first row is the pivot row. The entry
that plays the most important role here is a11, the coefficient of x1 in the first row,
known as the pivot. If a11 = 0, the first row must be interchanged with another
row (ERO2) to ensure that x1 has a nonzero coefficient. This is called partial
pivoting. Another situation that may lead to partial pivoting is when a pivot is
very small in magnitude, with a potential to cause round-off errors. Suppose x1
has been eliminated via EROs, so that we now have a new system in which the
first equation is as in the original, while the rest are generally changed, and are
free of x1. The next step is to focus on the coefficient of x2 in the second row of
this new system. If it is nonzero, and not very small, we use it as the pivot and
eliminate x2 in all the lower-level equations. Here, the second row is the pivot
row and remains unchanged. This continues until an upper-triangular system
is formed. Finally, back substitution is used to find the solution.

Example 4.1:  Gauss Elimination with Partial Pivoting

Using Gauss elimination, find the solution x1, x2, x3, x4 of the system
whose augmented matrix is

	

−
−

− −
−

−

−





















1 2 3 1
2 4 1 2
3 8 4 1

1 4 7 2

3
1

6
4

Solution

Because the (1,1) entry is nonzero, we use it as the pivot to eliminate the
entries directly below it. For instance, multiply the first row (pivot row)
by 2 and add the result to the second row, then replace the second row by
the outcome; ERO3. All details are shown in Figure 4.2. Next, we focus on
the (2,2) entry in the second row of the new system. Because it is zero, the
second row must be switched with any other row below it, say, the third

102 Numerical Methods for Engineers and Scientists Using MATLAB®

row. As a result, the (2,2) element is now 2, and is used as the pivot to
zero out the entries below it. Since the one directly beneath it is already
zero, by design, only one ERO3 is needed. Finally, the (3,3) entry in the
latest system is 7, and applying one last ERO3 yields an upper-triangular
system as shown in Figure 4.3.

The solution is then found by back substitution as follows. The last
row gives

	
−



 = −



 ⇒ =23

7
69
7

34 4x x
	

Moving up one row at a time, each time using the latest information on
the unknowns, we find

	

x x x

x x x x

x x x x

3 4 1

2 3 4 2

1 2 3 4

1 7 5 4 1 1
1 2 5 4 3 2 2
2 3

= − = − =
= + − = ⇒ =
= + + −

/
/

()
()

33 1 13= = −x

Therefore, the solution is x1 = 1, x2 = 2, x3 = −1, x4 = 3.

4.3.1  Choosing the Pivot Row: Partial Pivoting with Row Scaling

When using partial pivoting, in the first step of the elimination process, it
is common to choose as the pivot row the row in which x1 has the largest
(in absolute value) coefficient. The subsequent steps are treated in a simi-
lar manner. This is mainly to deal with the problems that round-off can
cause while dealing with large matrices. There is also total pivoting where

+
–4 1

2

2

3 3

5
+

+

Pivot row

–3

–3

–3

1 4 7

–1 –1

0

0

2

00

–5

106

7 4

–4

–1

2 3 1

–1

–4

–3

8 64 –1

–2

2

3 121

Figure 4.2
The first three operations in Example 4.1.

Pivot row

Pivot row

–1 2 3 1

0 0 7 4

0 2 –5 –4

0 6 10 –1

3

5

–3

–1

+

–1 2 3 1

0 2 –5 –4

0 0 7 4

0 0 25 11

3

–3

5

8

–25/7

–1 2 3 1

0 2 –5 –4

0 0 7 4

0 0 0

3

–3

5

–23
7

–69
7

+

–3

Figure 4.3
Transformation into upper-triangular form in Example 4.1.

103Solution of Systems of Equations

the idea is to locate the entry of the coefficient matrix A that is the largest
in absolute value among all entries. This entry corresponds to one of the
unknowns, say, xm. Then, the first variable to be eliminated is xm. A similar
logic applies to the new system to decide which variable has to be elimi-
nated next. Because total pivoting requires much more computational effort
than partial pivoting, it is not implemented in practice. Instead, partial piv-
oting with scaling is used where we choose the pivot row as the row in
which x1 has the largest (in absolute value) coefficient relative to the other
entries in that row. More specifically, consider the first step, where x1 is to
be eliminated. We will choose the pivot row as follows. Assume A is n × n.

	 1.	 In each row i of A, find the entry with the largest absolute value. Call
it Mi.

	 2.	 In each row i, find the ratio of the absolute value of the coefficient of
x1 to the absolute value of Mi, that is

	 r
a
M

i
i

i
= 1

	 3.	Among ri (i = 1, 2, … , n), pick the largest. Whichever row is respon-
sible for this maximum value is picked as the pivot row. Eliminate x1
to obtain a new system.

	 4.	 In the new system, consider the (n − 1) × (n − 1) submatrix of the coef-
ficient matrix occupying the lower right corner. In this matrix, use the
same logic as above to choose the pivot row to eliminate x2, and so on.

Example 4.2:  Partial Pivoting with Scaling

Use partial pivoting with scaling to solve the 3 × 3 system with the aug-
mented matrix

	

A b   =
− −

−
−

















4 3 5
6 7 3
2 1 1

0
2
6

Solution

The three values of ri are found as

	
r r r1 2 3

4
5

4
5

6
7

6
7

2
2

1=
−

= = = = =, ,

Since r3 is the largest, it is the third row that produces the maximum
value; hence, it is chosen as the pivot row. Switch the first and the third row
in the original system and eliminate x1 using EROs to obtain Figure 4.4.

104 Numerical Methods for Engineers and Scientists Using MATLAB®

To eliminate x2, consider the 2 × 2 submatrix B and compute the
corresponding ratios

	

10
10

1
5

7
5
7

=
−

=,

so that the 1st row is picked as the pivot row. Row operations yield

	

2 1 1
0 10 6
0 0 4

6
16
4

−
− −

















and back substitution gives the solution; x3 = 1, x2 = −1, x1 = 2.

4.3.2  Permutation Matrices

In the foregoing analysis, a linear n × n system was solved by Gauss elimina-
tion via EROs. In the process, the original system Ax = b was transformed
into Ux b=  , where U is an upper-triangular matrix with nonzero diagonal
entries. So, there must exist an n × n matrix P so that premultiplication of the
original system by P yields

	 P Ax Pb PA x b Ux b[] = ⇒ [] = ⇒ =  	 (4.4)

To identify this matrix P, we need what are known as permutation matri-
ces. The simplest way to describe these matrices is to go through an example.
Let us refer to the 4 × 4 system in Example 4.1. Because the size is 4, we start
with the 4 × 4 identity matrix

	

I =



















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2 –1 1

6 7 –3

–4 3 5

6

2

0

2 –1 1

0 10 –6

0 –5 7

6

–16

12

B

Eliminate x1

Figure 4.4
Partial pivoting with scaling.

105Solution of Systems of Equations

Consider the three EROs in the first step of Example 4.1; see Figure 4.2.
Apply them to I to get the matrix P1 (shown below). Next, focus on the second
step, where there was only one ERO; the second and third rows were switched.
Apply that to I to obtain P2. The third step also involved one ERO only. Apply
to I to get P3. Finally, application of the operation in the last step to I gives P4

	

P P1 2

1 0 0 0
2 1 0 0
3 0 1 0

1 0 0 1

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

=
−



















=









 ,












=

−



















=

 ,

 ,P P3 4

1 0 0 0
0 1 0 0
0 0 1 0
0 3 0 1

1 0 0 0
0 1 0 0
0 0 1 00

0 0
25
7

1−























Each Pi is called a permutation matrix, reflecting the operations in each
step of Gauss elimination.

Then

P1 A yields exactly the coefficient matrix at the conclusion of the first
step in Example 4.1.

P2 (P1 A) gives the coefficient matrix at the end of the second step.
P3 (P2 P1 A) produces the coefficient matrix at the end of the third step.
P4 (P3 P2 P1 A) gives the upper-triangular coefficient matrix U at the end

of the fourth step.

Letting P = P4 P3 P2 P1

	

PA Pb b=

−
− −

−























= =
−

−

1 2 3 1
0 2 5 4
0 0 7 4

0 0 0
23
7

3
3

5
69
7

and 



























Subsequently, the final triangular system has the augmented matrix []U b
as suggested by Equation 4.4.

The user-defined function GaussPivotScale uses Gauss elimination
with partial pivoting and row scaling to transform a linear system Ax = b
into an upper-triangular system, and subsequently finds the solution vector
by back substitution. The user-defined function BackSub performs the back
substitution portion and is given below.

106 Numerical Methods for Engineers and Scientists Using MATLAB®

function x = BackSub(Ab)
%
% BackSub returns the solution vector of the upper
% triangular augmented matrix Ab using back substitution.
%
%   x = BackSub(Ab) where
%
%     Ab is the n-by-(n+1) augmented matrix,
%
%     x is the n-by-1 solution vector.

n = size(Ab, 1);
for k = n:−1:1,
    Ab(k,:) = Ab(k,:)./Ab(k, k); % Construct multipliers
    Ab(1:k−1, n+1) = Ab(1:k−1, n+1)-Ab(1:k−1, k)*Ab(k, n+1);
    % Adjust rows
end
x = Ab(:, end);

function x = GaussPivotScale(A,b)
%
% GaussPivotScale uses Gauss elimination with partial
% pivoting and row scaling to solve the linear system
% Ax = b.
%
%   x = GaussPivotScale(A,b) where
%
%     A is the n-by-n coefficient matrix,
%     b is the n-by-1 result vector,
%
%     x is the n-by-1 solution vector.

n = length(b);
A = [A b];    % Augmented matrix
for k = 1:n−1,
    M = max(abs(A(k:end, k:end−1)), [], 2);
    % Find maximum for each row
    a = abs(A(k:end, k)); % Find maximum for kth column
     [ignore I] = max(a./M);
    % Find relative row with maximum ratio
    I = I + k−1;    % Adjust relative row to actual row
    if I > k

107Solution of Systems of Equations

Example 4.3:  Partial Pivoting with Scaling

The linear system in Example 4.2 can be solved using the under-defined
function GaussPivotScale as follows:

 	 >> A = [−4 −3 5;6 7 −3;2 −1 1];
 	 >> b = [0;2;6];
 	 >> x = GaussPivotScale(A,b)

	 x = 
	     2
	    −1
	     1

4.3.3  Counting the Number of Operations

The objective is to determine approximately the total number of operations
required by Gauss elimination for solving an n × n system. We note that the
entire process consists of two parts: (1) elimination and (2) back substitution.

4.3.3.1  Elimination

Suppose the first k − 1 steps of elimination have been performed, and we are
in the kth step. This means that the coefficients of xk must be made into zeros
in the remaining n − k rows of the augmented matrix. There

n − k divisions are needed to figure out the multipliers
(n − k)(n − k + 1) multiplications
(n − k)(n − k + 1) additions

Noting that the elimination process consists of n − 1 steps, the total num-
ber of operations Ne is

  

N n k n k n ke

k

n

k

n

= − + − − +
=

−

=

−

∑ ∑() ()()
1

1

1

1

1

 Divisions Mu

lltiplications Additions

 + − − +
=

−

∑ ()()n k n k
k

n

1
1

1

	

(4.5)

      % Pivot rows
      A([k I],:) = A([I k],:);
   end
   m = A(k+1:n, k)/A(k, k);    % Construct multipliers
    [Ak M] = meshgrid(A(k,:), m);    % Create mesh
   A(k+1:n,:) = A(k+1:n,:) – Ak.*M;
end
Ab = A;
% Find the solution vector using back substitution
x = BackSub(Ab);

108 Numerical Methods for Engineers and Scientists Using MATLAB®

Letting p = n − k, Equation 4.5 is rewritten as (verify)

	

N p p p p pe

p

n

p

n

p

n

p

n

= + + = +
=

−

=

−

=

−

=

−

∑ ∑ ∑ ∑
1

1

1

1

1

1
2

1

1

2 1 3 2 ()

	
(4.6)

Using the well-known identities

	

 and p
M M

p
M M M

p

M

p

M

= =
∑ ∑= + = + +

1

2

1

1
2

1 2 1
6

() ()()

in Equation 4.6, the total number of operations in the elimination process is
given by

	
N

n n n n n
ne

n

= − + − − ≅3
1

2
2

1 2 1
6

2
3

3() () ()

For large

	
(4.7)

where we have neglected lower powers of n. The approximation is particu-
larly useful for a large system. With the above information, we can show, for
example, that the total number of multiplications is roughly 1

3
3n .

4.3.3.2  Back Substitution

When back substitution is used to determine xk, one performs

n − k multiplications
n − k subtractions
1 division

In Example 4.1, for instance, n = 4, and solving for x2 (so that k = 2) requires
two multiplications (n − k = 2), two subtractions, and one division. So, the
total number of operations Ns for the back substitution process is

	 

N n k n ks

k

n

k

n

k

= + − + −
= =

∑ ∑ 1
1 1

 Divisions Multiplications

() ()
==

∑

= + − + − ≅

1

21
2

1
2

n

n

n
n n n n

n

Subtractions

For large () ()

	
(4.8)

If n is large, Ne dominates Ns, and the total number of operations in Gauss
elimination (for a large system) is

	
N N N no e s= + ≅ 2

3
3

	

109Solution of Systems of Equations

4.3.4  Tridiagonal Systems

Tridiagonal systems often arise in engineering applications and appear in
the special form

	

d u

d u

d u

d u

d
n n n

n n

1 1

2 2 2

3 3 3

1 1 1

0 0 0
0 0

0 0

0
0 0 0

…
…
…

… … … … … …
… …

…

l

l

l

l
− − −

























































=

−

x

x

x

x

x

b

b

n

n

1

2

3

1

1

2

…
bb

b

b
n

n

3

1

…

−





























 	

(4.9)

where di (i = 1, 2, … , n) are the diagonal entries, li (i = 2, …, n) the lower diago-
nal entries, and ui (i = 1, 2, … , n − 1) the upper diagonal entries of the coef-
ficient matrix. Gauss elimination can be used for solving such systems, but
is not recommended. This is because Gauss elimination is not designed to
accommodate the very special structure of a tridiagonal coefficient matrix,
and as a result will perform unnecessary operations to find the solution.
Instead, we use an efficient technique known as the Thomas method, which
takes advantage of the fact that the coefficient matrix has several zero entries.
The Thomas method uses Gauss elimination with the diagonal entry scaled
to 1 in each step.

4.3.4.1  Thomas Method

Writing out the equations in Equation 4.9, we have

	

d x u x b

x d x u x b

x dn n n

1 1 1 2 1

2 1 2 2 2 3 2

1 2

+ =

+ + =

+− −

l

l

 …

−− − − −

−

+ =

+ =

1 1 1 1

1

x u x b

x d x b

n n n n

n n n n nl

In the first equation, the diagonal entry is scaled to 1, that is, multiply the
equation by 1/a11. Therefore, in the first equation, the modified elements are

	
u

u
d

b
b
d

1
1

1
1

1

1
= = ,

110 Numerical Methods for Engineers and Scientists Using MATLAB®

All remaining equations, except the very last one, involve three terms. In
these equations, the modified elements are

	
u

u
d u

b b
d u

i ni
i

i i i
i

i i i

i i i
=

−
= −

−
= −

−

−

−1

1

1
2 3 1

l
b

l
l

, , , , ,…

Note that in every stage, the (latest) modified values for all elements must
be used. In the last equation

	
b

b b
d u

n
n n n

n n n
= −

−
−

−

1

1

l
l

Finally, use back substitution to solve the system:

	

x b

x b u x i n n

n n

i i i i

=

= − = − −+1 1 2 2 1, , , , ,…

Example 4.4:  Thomas Method

Solve the following tridiagonal system using the Thomas method:

	

−

−

































=
















2 1 0
3 2 1
0 1 3

3
1
5

1

2

3

x

x

x

Solution

We first identify all elements:

	d d d u u b b b1 2 3 2 3 1 2 1 2 32 2 3 3 1 1 1 3 1 5= − = = = = − = = = = =, , , , , , , , ,l l

In the first equation

	
u

u
d

b
b
d

1
1

1
1

1

1

1
2

1
2

3
2

3
2

= =
−

= − = =
−

= −,

In the second equation

	
u

u
d u

b
b b
d u

2
2

2 1 2
1
2

2
2 1 2

2 1 2

3
21

2 3
2
7

1 3
2

=
−

=
− −() = = −

−
=

− −()
l

l
l()

()
,

−− −() =
1
2 3

11
7()

In the last equation

	
b

b b
d u

3
3 2 3

3 2 3

11
7
2
7

5 1
3 1

2= −
−

=
− () −
− () −

=l
l

()
()

111Solution of Systems of Equations

Back substitution yields

	

x b

x b u x

x b u x

3 3

2 2 2 3

1 1 1 2

2
11
7

2
7

2 1

3
4

1
2

= =

= − = − 





=

= − = − − −





()

 = −()1 1
	

The user-defined function ThomasMethod uses the Thomas method to
solve an n × n tridiagonal system Ax = b. The inputs are A and b. From
A, three n × 1 vectors will be constructed:

	

d

u

=  

=  

= 

−

−

a a a a

a a a

a a a

nn
T

n n
T

n n

11 22 33

21 32 1

12 23 1

0

0

…

…

…

l ,

, 
T

	

These are subsequently used in the procedure outlined above to determine
the solution vector x.

function x = ThomasMethod(A,b)
%
% ThomasMethod uses Thomas method to find the solution
% vector x of a tridiagonal system Ax = b.
%
%   x = ThomasMethod(A,b) where
%
%     A is a tridiagonal n-by-n coefficient matrix,
%     b is the n-by-1 vector of the right-hand sides,
%
%     x is the n-by-1 solution vector.
%
n = size(A,1);
d = diag(A);    % Vector of diagonal entries of A
l = [0;diag(A, −1)];   % Vector of lower diagonal elements
u = [diag(A,1);0];    % Vector of upper diagonal elements

u(1) = u(1)/d(1); b(1) = b(1)/d(1);  % First equation

for  i = 2:n−1,   % The next n−2 equations
             den = d(i) − u(i−1)*l(i);
            if den = = 0
         x = 'failure, division by zero';
         return
             end

112 Numerical Methods for Engineers and Scientists Using MATLAB®

The result obtained in Example 4.4 can be verified through the execution
of this function as

 >> A = [−2 1 0;3 2 1;0 −1 3];
 >> b = [3;1;5];
 >> x = ThomasMethod(A,b)

x = 
   −1
    1
    2

4.3.4.2  MATLAB® Built-In Function “\”

The built-in function in MATLAB® for solving a linear system Ax = b is the
backslash (\), and the solution vector is obtained via x = A\b. It is important
to note that x = A\b computes the solution vector by Gauss elimination and
not by x = A−1b.

For the linear system in Example 4.4, this yields

 >> x = A\b

    x = 
        −1
         1
         2

4.4  LU Factorization Methods

In the last section, we learned that solving a large n × n system Ax = b using
Gauss elimination requires approximately 2

3
3n operations. There are other

direct methods that require fewer operations than Gauss elimination. These
methods make use of the LU factorization of the coefficient matrix A.

 u(i)=  u(i)/den; b(i) = (b(i)-b(i−1)*l(i))/den;
end

b(n) = (b(n)-b(n-1)*l(n))/(d(n)-u(n−1)*l(n));
% Last equation
x(n) = b(n);
for i = n−1: −1:1,
    x(i) = b(i) - u(i)*x(i+1);
end
x = x’;

113Solution of Systems of Equations

LU factorization of a matrix A means expressing it in the form A = LU,
where L is a lower-triangular matrix and U is upper-triangular. There are dif-
ferent ways to accomplish this, depending on the specific restrictions imposed
on L or U. For example, Crout factorization (see Problem Set at the end of this
chapter) requires the diagonal entries of U be 1s, while L is a general lower-
triangular matrix. Another technique, known as Doolittle factorization, uses
the results from different steps of Gauss elimination. These two approaches
have similar performances, but we will present Doolittle factorization here.

4.4.1  Doolittle Factorization

Doolittle factorization of A is A = LU, where L is lower-triangular consisting
of 1s along the diagonal and negatives of the multipliers (from Gauss elimi-
nation) below the main diagonal, while U is the upper-triangular form of the
coefficient matrix in the final step of Gauss elimination.

Example 4.5:  Doolittle Factorization

Find the Doolittle factorization of

	

A = −
−

















1 3 6
2 1 1
4 2 3

Solution

Imagine A as the coefficient matrix in a linear system, which is being
solved by Gauss elimination as shown in Figure 4.5.

The final upper-triangular form is U. Three multipliers, −2, −4, and −2,
have been used to create zeros in the (2,1), (3,1), and (3,2) positions. Therefore,
2, 4, and 2 will occupy the respective slots in matrix L. As a result

	

L U=
















= − −
















1 0 0
2 1 0
4 2 1

1 3 6
0 7 11
0 0 1

,

A more efficient way to find L and U is a direct approach as demon-
strated in the following example.

+

31

34

–1 1

–2

2

6–4 –2

+
+

31

0

–7 –11

–14

0

6

–2

–21

31

0

–7 –11

0

0

6

1

Figure 4.5
Reduction to an upper-triangular matrix.

114 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 4.6:  Direct Calculation of L and U

Consider the matrix in Example 4.5.

	

A = −
−

















1 3 6
2 1 1
4 2 3

Based on the structures of L and U in Doolittle factorization, we write

	

L U=
















=












1 0 0
1 0

1
0
0 0

21

31 32

11 12 13

22 23

33

l

l l

,
u u u

u u

u





Setting A = LU, we find

	

a a a

a a a

a a a

u u u

u u
11 12 13

21 22 23

31 32 33

11 12 13

21 11 21 1

















= l l 22 22 21 13 23

31 11 31 12 32 22 31 13 32 23 33

+ +
+ + +










u u u

u u u u u u

l

l l l l l 





Each entry on the left must be equal to the corresponding entry on the
right. This generates nine equations in nine unknowns. The entries in
the first row of U are found immediately as

	 u11 = a11,  u12 = a12,  u13 = a13

The elements in the first column of L are found as

	
l l21

21

11
31

31

11
= =a
u

a
u

,

The entries in the second row of U are calculated via

	 u a u u a u22 22 21 12 23 23 21 13= − = −l l,

The element in the second column of L is found as

	
l

l
32

32 31 12

22
= −a u

u

Finally, the entry in the third row of U is given by

	 u a u u33 33 31 13 32 23= − −l l

115Solution of Systems of Equations

Using the entries of matrix A and solving the nine equations just
listed, we find

	

L U=
















= − −
















1 0 0
2 1 0
4 2 1

1 3 6
0 7 11
0 0 1

,

This clearly agrees with the outcome of Example 4.5.

The direct calculation of the entries of L and U in Doolittle factorization can
be performed systematically for an n × n matrix A using the steps outlined in
Example 4.6. The user-defined function DoolittleFactor performs all the
operations in the order suggested in Example 4.6 and returns the appropriate
L and U matrices.

The findings of the last example can easily be confirmed using this function.

 >> A = [1 3 6;2 −1 1;4 −2 3];
 >> [L U] = DoolittleFactor(A)

L = 

	 1   0   0
	 2   1   0
	 4   2   1

function [L U] = DoolittleFactor(A)
%
% DoolittleFactor returns the Doolittle factorization of
% matrix A.
%
% [L U] = DoolittleFactor(A) where
%
% A is an n-by-n matrix,
%
% �L is the lower triangular matrix with 1’s along the
% diagonal,
% U is an upper triangular matrix.
%
n = size(A,1);
L = eye(n); U = zeros(n,n);    % Initialize
for i = 1:n,
 U(i,i) = A(i,i)−L(i,1:i−1)*U(1:i−1,i);
 for j = i+1:n,
 U(i,j) = A(i,j)−L(i,1:i−1)*U(1:i−1,j);
        L(j,i) = (A(j,i)−L(j,1:i−1)*U(1:i−1,i))/U(i,i);
 end
end

116 Numerical Methods for Engineers and Scientists Using MATLAB®

U = 

	 1    3       6
	 0   −7    −11
	 0    0       1

4.4.1.1  Doolittle’s Method to Solve a Linear System

Doolittle’s method uses Doolittle factorization to solve Ax = b. Substitution
of A = LU into the system yields

	 LU x = b L Ux = b[] ⇒ []

which will be solved in two steps:

	

Ly = b

Ux = y


 	

(4.10)

Note that each of the two systems is triangular, and hence only requires
forward and back substitution to solve. The user-defined function Doolit
tleMethod uses Doolittle factorization of the coefficient matrix, and sub-
sequently solves the two triangular systems in Equation 4.10 to find the
solution vector x.

function x = DoolittleMethod(A,b)
%
% DoolittleMethod uses the Doolittle factorization of
% matrix A and solves the ensuing triangular systems to
% find the solution vector x.
%
% x = DoolittleMethod(A,b) where
%
% A is the n-by-n coefficient matrix,
% b is the n-by-1 vector of the right-hand sides,
%
% x is the n-by-1 solution vector.
%
[L U] = DoolittleFactor(A);
% Find Doolittle factorization of A
n = size(A,1);

% Solve the lower triangular system Ly = b (forward
% substitution)
y = zeros(n,1);
y(1) = b(1);

117Solution of Systems of Equations

Example 4.7:  Doolittle’s Method to Solve a Linear System

Using Doolittle’s method, solve Ax = b, where

	

A b x= −
−

















= −
−

















=












1 3 6
2 1 1
4 2 3

19
2
1

1

2

3

, ,
x

x

x






Solution

Doolittle factorization of A was done in Examples 4.5 and 4.6. Using L
and U in Equation 4.10

	

Ly b=
































= −
−

















⇒:
1 0 0
2 1 0
4 2 1

19
2
1

1

2

3

y

y

y

yy

Ux y

= −
















= − −


























19
40
3

1 3 6
0 7 11
0 0 1

1

2

3

:
x

x

x






= −
















⇒ =
−















19
40
3

2
1
3

x

The result can be verified by executing the user-defined function
DoolittleMethod.

>> A = [1 3 6;2 −1 1;4 −2 3];
>> b = [19; −2; −1];
>> x = DoolittleMethod(A,b)

x = 

	 −2
	  1
	  3

for i = 2:n,
y(i) = b(i)−L(i,1:i−1)*y(1:i−1);

end

% Solve the upper triangular system Ux = y (back
% substitution)
x = zeros(n,1);
x(n) = y(n)/U(n,n);
 for i = n−1: −1:1,
        x(i) = (y(i)−U(i,i+1:n)*x(i+1:n))/U(i,i);
 end
end

118 Numerical Methods for Engineers and Scientists Using MATLAB®

4.4.1.2  Operations Count

Doolittle’s method comprises two parts: LU factorization of the coeffi-
cient matrix and back/forward substitution to solve the two triangular
systems. For a large system Ax = b, the LU factorization of A requires
roughly 1

3
3n operations. The ensuing triangular systems are simply

solved by back and forward substitution, each of which requires n2 opera-
tions; see Section 4.3. Therefore, the total number of operations is roughly
1
3

3 2n n+ , which is approximately 1
3

3n since n is large. This implies that
Doolittle’s method requires half as many operations as the Gauss elimi-
nation method.

4.4.2  Cholesky Factorization

A very special matrix encountered in many engineering applications is a
symmetric, positive definite matrix. An n × n matrix A = [aij] is positive defi-
nite if all of the following determinants are positive:

	

D a D
a a

a a
D

a a a

a a a

a a a
1 11 2

11 12

21 22
3

11 12 13

21 22 23

31 32 33

0 0= > = > = >, , 00

0

,… ,

Dn = >A

Of course, A is symmetric if A = AT. For a symmetric, positive definite
matrix, there is a very special form of LU factorization, where the upper-
triangular matrix is the transpose of the lower-triangular matrix. This is
known as Cholesky factorization

	 A = LLT

For instance, in the case of a 3 × 3 matrix

	

a a a

a a a

a a a

11 12 13

12 22 23

13 23 33

11

21 22

31 32 3

0 0
0

















=
l

l l

l l l 33

11 21 31

22 32

33

11
2

11 21 11

0
0 0

































=

l l l

l l

l

l l l l l331

21 11 21
2

22
2

21 31 22 32

31 11 21 31 22 32 31
2

32

l l l l l l l l

l l l l l l l l

+ +
+ + 22

33
2+















l

	

(4.11)

Owing to symmetry, only six equations—as opposed to nine for Doolittle—
need to be solved. The user-defined function CholeskyFactor performs all
the operations and returns the appropriate L and U = LT matrices.

119Solution of Systems of Equations

Example 4.8:  Cholesky Factorization

Find the Cholesky factorization of

	

A =
−
−

− −

















9 6 3
6 13 5
3 5 18

Solution

The elements listed in Equation 4.11 can be directly used to determine
the six entries of L. For instance

	

l l l

l l l
l

l

11
2

11 11
2

11

11 21 12 21
12

11
21

9 3

6
3

2

= ⇒ = ⇒ =

= ⇒ = = ⇒ =

a

a
a

and so on. The user-defined function CholeskyFactor will confirm the
results.

 >>    A = [9 6 −3;6 13 −5; −3 −5 18];
 >> [L U] = CholeskyFactor(A)

L = 
3   0  0
2   3  0

  −1  −1  4

function [L U] = CholeskyFactor(A)
%
% CholeskyFactor returns the Cholesky factorization of
% matrix A.
%
% [L U] = CholeskyFactor(A) where
%
% A is a symmetric, positive definite n-by-n matrix,
%
% L is a lower triangular matrix,
% U = L′ is an upper triangular matrix.
%
n = size(A,1);
L = zeros(n,n);   % Initialize
for i = 1:n,
 L(i,i) = sqrt(A(i,i)−L(i,1:i−1)*L(i,1:i−1)′);
 for j = i+1:n,
        L(j,i) = (A(j,i)−L(j,1:i−1)*L(i,1:i−1)′)/L(i,i);
 end
end
U = L′;

120 Numerical Methods for Engineers and Scientists Using MATLAB®

U = 
3  2  −1
0  3  −1
0  0   4

4.4.2.1  Cholesky’s Method to Solve a Linear System

Cholesky’s method uses Cholesky factorization to solve Ax = b. Substitution
of A = LLT into the system yields

	
LL x = b L L x = bT T  ⇒  

which will be solved in two steps:

	

Ly = b

L x = y

T



 	

(4.12)

Both systems are triangular, for which the solutions are found by for-
ward and back substitution. The user-defined function CholeskyMethod
uses Cholesky factorization of the coefficient matrix, and subsequently
solves the two triangular systems in Equation 4.12 to find the solution
vector x.

function x = CholeskyMethod(A,b)
%
% CholeskyMethod uses the Cholesky factorization of
% matrix A and solves the ensuing triangular systems to
% find the solution vector x.
%
% x = CholeskyMethod(A,b) where
%
% A is a symmetric, positive definite n-by-n
% coefficient matrix,
% b is the n-by-1 vector of the right-hand sides,
%
% x is the n-by-1 solution vector.
%
[L U] = CholeskyFactor(A);
% Find Cholesky factorization of A
n = size(A,1);

% Solve the lower triangular system Ly = b (forward
% substitution)
y = zeros(n,1);
y(1) = b(1)/L(1,1);

121Solution of Systems of Equations

Example 4.9:  Cholesky’s Method to Solve a Linear System

Using Cholesky’s method, solve Ax = b, where

	

A b x=
−
−

− −

















=
−

−

















=
9 6 3

6 13 5
3 5 18

15
17
52

1

2

3

, ,
x

x

x














Solution

The coefficient matrix A is symmetric, positive definite. Cholesky
factorization of A was done in Example 4.8. Using L and U in Equation
4.12

	

Ly b=
− −

































=
−

−











:
3 0 0
2 3 0
1 1 4

15
17
52

1

2

3

y

y

y






⇒ =
−

−

















=
−
−





















y

L x y

5
9
12

3 2 1
0 3 1
0 0 4

1

2

3

T

x

x

x

: 












=
−

−

















⇒ =
−

−

















5
9
12

4
2
3

x

	

The result can be verified by executing the user-defined function
CholeskyMethod.

>> A = [9 6 −3;6 13 −5; −3 −5 18];
>> b = [−15;17; −52];
>> x = CholeskyMethod(A,b)

x = 
−4
2

−3

for  i = 2:n,
 y(i) = (b(i)−L(i,1:i−1)*y(1:i−1))/L(i,i);
end

% Solve the upper triangular system L’x = y (back
% substitution)
x = zeros(n,1);
x(n) = y(n)/U(n,n);
 for i = n−1: −1:1,
        x(i) = (y(i)−U(i,i+1:n)*x(i+1:n))/U(i,i);
 end
end

122 Numerical Methods for Engineers and Scientists Using MATLAB®

4.4.2.2  Operations Count

Cholesky’s method comprises two parts: LU factorization of the coefficient
matrix and back/forward substitution to solve the two triangular systems.
For a large system Ax = b, the LU factorization of A requires roughly 1

3
3n

operations. The ensuing triangular systems are solved by back and forward
substitution, each requiring n2 operations. Therefore, the total number of
operations is roughly 1

3
3 2n n+ , which is approximately 1

3
3n since n is large.

This implies that Cholesky’s method requires half as many operations as the
Gauss elimination method.

4.4.2.3  MATLAB® Built-In Functions lu and chol

MATLAB has built-in functions to perform LU factorization of a square
matrix: lu for general square matrices and chol for symmetric, positive
definite matrices. There are different ways of calling the function lu. For
example, the outputs in [L U] = lu(A) are U, which is upper-triangular and
L, which is the product of a lower-triangular matrix and permutation matri-
ces such that LU = A. On the other hand, [L U P] = lu(A) returns a lower-
triangular L, an upper-triangular U, and permutation matrices P, such that
LU = PA. Other options in lu allow for the control of pivoting when working
with sparse matrices.

For a symmetric, positive definite matrix A, the function call U = chol(A)
returns an upper-triangular matrix U such that UT U = A. If the matrix is not
positive definite, chol returns an error message.

4.5  Iterative Solution of Linear Systems

In Sections 4.3 and 4.4, we introduced direct methods for solving Ax = b,
which included the Gauss elimination and methods based on LU factoriza-
tion of the coefficient matrix A. We now turn our attention to indirect, or
iterative, methods. In principle, a successful iteration process starts with an
initial vector and generates successive approximations that eventually con-
verge to the solution vector x.

Unlike direct methods, where the total number of operations is identi-
fied in advance, the number of operations required by an iterative method
depends on how many iteration steps must be performed for satisfactory
convergence, as well as the nature of the system at hand. What is meant by
convergence is that the iteration must be terminated as soon as two succes-
sive vectors are close to one another. A measure of the proximity of two vec-
tors is provided by a vector norm.

123Solution of Systems of Equations

4.5.1  Vector Norms

The norm of a vector vn×1, denoted by ∙v∙, provides a measure of how small or
large v is, and has the following properties:

∙v∙ ≥ 0 for all v, and ∙v∙ = 0 if and only if v = 0n×1

∙α v∙ = ∙α∙ ∙v∙, α = scalar
∙v + w∙ ≤ ∙v∙ + ∙w∙ for all vectors v and w

There are three commonly used vector norms as listed below. In all cases,
vector v is assumed in the form

	

v =



















v

v

vn

1

2



l1-norm, denoted by ∙v∙1, is the sum of the absolute values of all components
of v:

	 v
1 1 2= + + +v v vn 	 (4.13)

l∞-norm, denoted by ∙v∙∞, is the largest (in absolute value) of all components
of v:

	
v ∞ = { }max , , ,v v vn1 2 … 	

(4.14)

l2-norm, denoted by ∙v∙2, is the square root of the sum of the squares of all
components of v:

	
v

2 1
2

2
2 2 1 2

= + + + v v vn
/

	
(4.15)

Example 4.10:  Vector Norms

Find the three norms of

	

v =

−



















2
0

1.3
0.5

	

124 Numerical Methods for Engineers and Scientists Using MATLAB®

	 a.	 Using Equations 4.13 through 4.15
	 b.	 Using the MATLAB built-in function norm

Solution

	 a.	 By Equations 4.13 through 4.15

	

v

v

v

1

2
2 2

2

2 2

= − + + =

= −{ } =

= − + + =

∞

1.3 0.5 3.8

max 1.3 0.5

(2) 1.3 0.5 2.2

, ,

44372

		 Note that all three norms return values that are of the same
order of magnitude, as is always the case. If a certain norm of a
vector happens to be small, the other norms will also be some-
what small, and so on.

	 b.	 MATLAB built-in function norm calculates vector and matrix
norms.

>> v = [−2;0;1.3;0.5];
>> [norm(v,1) norm(v,inf) norm(v,2)]

ans = 

3.8000    2.0000    2.4372

4.5.2  Matrix Norms

The norm of a matrix An×n, denoted by ∙A∙, is a nonnegative real number
that provides a measure of how small or large A is, and has the following
properties:

∙A∙ ≥ 0 for all A, and ∙A∙ = 0 if and only if A = 0n×n

∙α A∙ = |α| ∙A∙, α = scalar
∙A + B∙ ≤ ∙A∙ + ∙B∙ for all n × n matrices A and B
∙AB∙ ≤ ∙A∙ ∙B∙ for all n × n matrices A and B

There are three commonly used matrix norms as listed below. In all cases,
matrix A is in the form A = [aij]n×n.

1-norm (column-sum norm), denoted by ∙A∙1, is defined as

	
A

1 1
1

=










≤ ≤
=

∑max
j n

ij

i

n

a
	

(4.16)

125Solution of Systems of Equations

The sum of the absolute values of entries in each column of A is calculated,
and the largest is selected.

Infinite-norm (row-sum norm), denoted by ∙A∙∞, is defined as

	

A ∞ ≤ ≤
=

=











∑max

1
1

i n
ij

j

n

a

	

(4.17)

The sum of the absolute values of entries in each row of A is calculated,
and the largest is selected.

Euclidean norm (2-norm, Frobenius norm), denoted by ∙A∙E, is defined as

	

A
E ij

j

n

i

n

a=












==
∑∑

/

2

11

1 2

	

(4.18)

Example 4.11:  Matrix Norms

Find the three norms of

	

A =

− −
−

−





















1 2 3 0
0 5 0 2
2 2 0 4
3 6 2 5

	 a.	 Using Equations 4.16 through 4.18
	 b.	 Using the MATLAB built-in function norm

Solution

	 a.	 By Equations 4.16 through 4.18

	

A

A

1 1 4
1

4

1 4

6 15 5 11 15=











= { } =

=

≤ ≤
=

∞ ≤ ≤

∑max , , ,

max

j
ij

i

i

a max

aa

a

ij

j

E ij

ji

=

==

∑

∑∑












= { } =

=






1

4

2

1

4

1

4

6 7 8 16 16max

, , ,

A







=

1 2/

11.8743

		 As it was the case with vector norms, the values returned by all
three matrix norms are of the same order of magnitude.

126 Numerical Methods for Engineers and Scientists Using MATLAB®

	 b.	

>> A = [−1 2 −3 0;0 −5 0 2;2 2 0 −4;3 6 2 5];
>> [norm(A,1) norm(A,inf) norm(A,′fro′)]

ans = 

15.0000    16.0000    11.8743

4.5.2.1  Compatibility of Vector and Matrix Norms

The three matrix norms above are compatible with the three vector norms
introduced earlier, in the exact order they were defined. More specifically,
the compatibility relations are

	

Av A v

Av A v

Av A v

1 1 1

2 2

≤

≤

≤

∞ ∞ ∞

E 	

(4.19)

Example 4.12:  Compatibility Relations

The relations in Equation 4.19 can be verified for the vector and the
matrix used in Examples 4.10 and 4.11 as follows:

	

Av Av=

−

−
−





















⇒ =

1.9
1

0.9

9.8
6 1

Calculate vector norms
,, , 6.4358Av Av∞ = =6

2

Then

	 9.8 ≤ (15)(3.8),  6 ≤ (16)(2),  6.4358 ≤ (11.8743)(2.4372)

4.5.3 G eneral Iterative Method

The idea behind the general iterative method to solve Ax = b is outlined as fol-
lows: Split the coefficient matrix as A = Q − P and substitute into Ax = b to obtain

	 [Q − P]x = b  ⇒  Qx = Px + b

This system cannot be solved in its present form, as the solution vector x
appears on both sides. Instead, it will be solved by iterations. Choose an ini-
tial vector x(0) and generate a sequence of vectors via

	 Qx(k+1) = Px(k) + b,  k = 0, 1, 2, …	 (4.20)

127Solution of Systems of Equations

Assuming Q is nonsingular, this is easily solved at each step for the
updated vector x(k+1) as

	 x(k+1) = Q−1Px(k) + Q−1 b,  k = 0, 1, 2, …	 (4.21)

In the general procedure, splitting of A is arbitrary, except that Q must be
nonsingular. This arbitrary nature of the split causes the procedure to be
generally inefficient. In specific iterative methods, matrices P and Q obey
very specific formats.

4.5.3.1  Convergence of the General Iterative Method

The sequence of vectors obtained via Equation 4.21 converges if the sequence
of error vectors associated with each iteration step approaches the zero vec-
tor. The error vector at iteration k is defined as

	 e(k) = x(k) − xa

Note that the actual solution xa is unknown, and is being used in the analy-
sis merely for the development of the important theoretical results. That said,
since xa is the actual solution of Ax = b, then

	 Axa = b  ⇒  [Q − P]xa = b

Inserting this into Equation 4.20 yields

	 Qx(k+1) = Px(k) + [Q − P]xa  ⇒  Q[x(k+1) − xa] = P[x(k) − xa]  ⇒  Qe(k+1) = Pe(k)

Premultiplication of this last equation by Q−1, and letting M = Q−1P, results in

	 e(k+1) = Q−1 Pe(k) = Me(k),  k = 0, 1, 2, …

so that

	 e(1) = Me(0),  e(2) = Me(1) = M2 e(0), … , e(k)  =  Mk e(0)

Taking the infinite-norm of both sides of the last equation and k applica-
tions of the second compatibility relation in Equation 4.19, we find

	
e M e() ()k k

∞ ∞ ∞
≤ 0

Thus, a sufficient condition for ∙e(k)∙∞ → 0 as k → ∞ is that  M ∞→k 0 as
k → ∞, which is met if ∙ M ∙∞ < 1. The matrix M = Q−1P plays a key role in the
convergence of iterative schemes. The above analysis suggests that in split-
ting matrix A, matrices Q and P must be chosen so that the norm of M = Q−1P

128 Numerical Methods for Engineers and Scientists Using MATLAB®

is small. We note that ∙ M ∙∞ < 1 is only a sufficient condition and not neces-
sary. This means that if it holds, the iteration converges, but if it does not
hold, convergence is not automatically ruled out.

4.5.4  Jacobi Iteration Method

Let D, L, and U be the diagonal, lower-, and upper-triangular portions of
matrix A = [aij]n×n, respectively, that is

D L=



















=

















a

a

a

a

a ann n n

11

22 21

1 2

0 0 0
0 0

0
…

…

… … … …
…

,



=



















, U

0
0 0

0 0 0

12 1

2

a a

a
n

n

…

… … …
…

In the Jacobi method, A is split as

	

A Q P

D L U

Q D

P L U

= −
= + +[]

=
= − +[]so that

Subsequently, Equation 4.20 takes the specific form

	 Dx(k+1) = −[L + U]x(k) + b,  k = 0, 1, 2, …	 (4.22)

For D−1 to exist, the diagonal entries of D, and hence of A, must all be non-
zero. If a zero entry appears in a diagonal slot, the equations in the original
system must be rearranged in such a way that no zero entry appears along
the diagonal in the resulting matrix. Then, premultiplication of Equation 4.22
by D−1 yields

	 x(k+1) = D−1 { − [L + U]x(k) + b},  k = 0, 1, 2, …	 (4.23)

known as the Jacobi method. Note that L + U is precisely A, with zero diago-
nal entries, and that the diagonal elements of D−1 are 1/aii for i = 1, 2, . . . , n.
Denoting the vector generated at the kth iteration by x() () ()[]k k

n
k Tx x= 1 … ,

Equation 4.23 can be expressed component-wise as

	

x
a

a x b ii
k

ii
ij j

k

j
j i

n

i
() () , , ,+

=

= − +

















=∑1

1

1
1 2 ,

≠

… nn

	

(4.24)

The very important matrix M = Q−1 P takes the special form

	 MJ = −D−1[L + U]

129Solution of Systems of Equations

and is called the Jacobi iteration matrix. A sufficient condition for Jacobi itera-
tion to converge is that ∙ MJ ∙∞ < 1.

4.5.4.1  Convergence of the Jacobi Iteration Method

Convergence of the Jacobi method relies on a special class of matrices known
as diagonally dominant. An n × n matrix A is diagonally dominant if in each
row, the absolute value of the diagonal entry is greater than the sum of the
absolute values of all the off-diagonal entries, that is

	

a a i nii ij

j
j i

n

> =
=

∑ , ...1 2
1

, , ,

≠ 	

(4.25)

or equivalently

	

a

a
i n

ij

iij
j i

n

< =
=

∑ 1, ...1 2
1

, , ,

≠ 	

(4.26)

Theorem 4.1

Suppose A is diagonally dominant. Then, the linear system Ax = b has a
unique solution xa, and the sequence of vectors generated by Jacobi iteration,
Equation 4.23, converges to xa regardless of the initial vector x(0).

Proof

Since A is diagonally dominant, Equation 4.26 holds. The Jacobi iteration
matrix is formed as

	

M D L UJ

n

n

a a a a

a a a a

= − +[] =−1

12 11 1 11

21 22 2 22

0
0
/ /

/ /
... ...
... ...

...

... ...
... ...

, ,a a

a a a a
n n n n

n nn n nn

− − −














1 1 1

1 2 0
/

/ / 








It is clear that every row of the above matrix satisfies Equation 4.26 so that
every row-sum is less than 1. This means the row-sum norm of MJ is less
than 1, that is, ∙ MJ ∙∞ < 1. Since this is a sufficient condition for convergence
of the Jacobi method, the proof is complete.

130 Numerical Methods for Engineers and Scientists Using MATLAB®

The user-defined function Jacobi uses the Jacobi iteration method to
solve the linear system Ax = b, and returns the approximate solution vector,
the number of iterations needed for convergence, and ∙MJ∙∞. The terminating
condition is ∙ x(k+1) − x(k) ∙ < ε for a prescribed tolerance ε.

function [x, k, MJnorm] = Jacobi(A, b, x0, tol, kmax)
%
% Jacobi uses the Jacobi iteration method to approximate
% the solution of Ax = b.
%
% [x, k, MJnorm] = Jacobi(A, b, x0, tol, kmax) where
%
% A is the n-by-n coefficient matrix,
% b is the n-by-1 right-hand side vector,
% x0 is the n-by-1 initial vector (default zeros),
%        tol is the scalar tolerance for convergence (default 1e-4),
% kmax is the maximum number of iterations (default 100),
%
% x is the n-by-1 solution vector,
% k is the number of iterations required for convergence,
% MJnorm is the infinite norm of the Jacobi iteration
% matrix.

if nargin < 3 || isempty(x0)
 x0 = zeros(size(b));
end
if nargin < 4 || isempty(tol)
 tol = 1e-4;
end
if nargin < 5 || isempty(kmax)

kmax = 100;
end
x(:, 1) = x0;

D = diag(diag(A)); At = A - D;
L = tril(At);
U = triu(At);

% Norm of Jacobi iteration matrix
M = -D\(L + U); MJnorm = norm(M, inf);
B = D\b;

% Perform iterations up to kmax
for k = 1:kmax,
 x(:, k+1) = M*x(:, k) + B;  % Compute next approximation
 if norm(x(:, k+1) - x(:, k)) < tol, break; end
 % Check convergence
end
x = x(:, end);

131Solution of Systems of Equations

Example 4.13:  Jacobi Iteration

Consider the linear system

	

4 1 1
2 5 0

2 1 6

1
7

13

0

−
−

















= −
















=x x,
initial vector

()

00
1
1

















where the coefficient matrix is diagonally dominant because

	 4 > 1 + |− 1|,  5 > |− 2|,  6 > 2 + 1

Theorem 4.1 guarantees convergence of the sequence of vectors gener-
ated by the Jacobi iteration method to the actual solution. Starting with
the given initial vector x(0), we will find the components of the next vec-
tor x(1) generated by Jacobi iteration using Equation 4.24

	

x
a

a x b ii
ii

ij j

j
j i

i
() () , ,1 0

1

3
1

1 2 3= − +


















=
=

∑ ,

≠

Specifically

	

x
a

a x a x b1
1

11
12 2

0
13 3

0
1

1 1
4

1 1 1 1() () () ()() ()()= − +  +{ } = − + −[] + 11

1 1
5

2 02
1

22
21 1

0
23 3

0
2

{ } =

= − +  +{ } = − − +

0.25

x
a

a x a x b() () () ()() (()() ()

() () ()

0 1 7

1
3
1

33
31 1

0
32 2

0
3

[] + −{ } = −

= − +  +{ }

1.4

x
a

a x a x b == − +[] +{ } =1
6

2 0 1 1 13 2()() ()()

Therefore

	

x()1 = −
















0.25
1.4
2

Subsequent vectors may be found in a similar manner. This vector can be
verified by executing the user-defined function Jacobi with kmax = 1
so that only one iteration is performed.

	  >> A = [4 1 −1; −2 5 0;2 1 6]; b = [1; −7;13]; x0 = [0;1;1];
	  >> [x, k, MJnorm] = Jacobi(A, b, x0, 1e−4, 1)

132 Numerical Methods for Engineers and Scientists Using MATLAB®

x = 

0.2500
−1.4000
2.0000    % Agrees with earlier result

k = 
1

MJnorm = 

0.5000

Finally, we will solve the system using Jacobi iteration with initial vec-
tor x(0) as given above and terminating condition ∙x(k+1) − x(k)∙ < 10−4.

	�  >> [x, k, MJnorm] = Jacobi(A, b, x0)

	� % Default values for tolerance and kmax

x = 
1.0000

−1.0000
2.0000

k = 
13

MJnorm = 

0.5000

4.5.5 G auss–Seidel Iteration Method

Based on Equations 4.23 and 4.24, every component of x(k+1) is calculated
entirely from x(k) of the previous iteration. In other words, to have access to
x(k+1), the kth iteration has to be completed so that x(k) is available. The perfor-
mance of Jacobi iteration can be improved if the most updated components of
a vector are utilized, as soon as they are available, to compute the subsequent
components of the same vector. Consider two successive vectors, as well as
the actual solution

	

x x()

()

()

()

()

(

...

...

k

k

p
k

p
k

n
k

x

x

x

x

=































+

1

1

, kk

k

p
k

p
k

n
k

x

x

x

x

+

+

+

+
+

+

=
























1

1
1

1

1
1

1

)

()

()

()

()

...

...










=































+
, xa

p

p

n

x

x

x

x

1

1

...

...

133Solution of Systems of Equations

Generally speaking, xpk()+1 is a better estimate of xp than xpk(). Then, using
xpk()+1 instead of xpk() should lead to a better approximation of the next compo-
nent, xp

k
+
+
1
1(), in the current vector. This is the logic behind the Gauss–Seidel

iteration method, which is considered a refinement of the Jacobi method. To
comply with this logic, the coefficient matrix A is split as

	

A Q P

D L U
Q D L

P U

= −
= +[] +

= +
= −

so that

As a result, Equation 4.20 takes the specific form

	 [D + L]x(k+1) = −Ux(k) + b,  k = 0, 1, 2, . . .	 (4.27)

But D + L is a lower-triangular matrix whose diagonal entries are those
of A. Thus, [D + L]−1 exists if A has nonzero diagonal entries to begin with.
Subsequently, premultiplication of Equation 4.27 by [D + L]−1 yields

	 x(k+1) = −[D + L]−1 Ux(k) + [D + L]−1 b,  k = 0, 1, 2, . . .	 (4.28)

known as the Gauss–Seidel iteration method. Denoting the vector at the kth
iteration by x() () ()[]k k

n
k Tx x= 1 ... , Equation 4.28 can be expressed component-

wise as

	

x
a

a x a x bi
k

ii
ij j

k
ij j

k

j i

n

i

j

i
() () ()+ +

= +=

−

= − − +











∑∑1 1

11

1
1


=, ...i n1 2, , ,

	

(4.29)

where the first sum on the right side is considered zero when i = 1. The very
important matrix M = Q−1 P now takes the special form

	 MGS = −[D + L]−1 U

known as the Gauss–Seidel iteration matrix. A sufficient condition for the
Gauss–Seidel iteration to converge is that ∙MGS∙∞ < 1.

4.5.5.1  Convergence of the Gauss–Seidel Iteration Method

Since the Gauss–Seidel method is a refinement of the Jacobi method, it con-
verges whenever the Jacobi method does, and usually faster. Recall that if
A is diagonally dominant, Jacobi iteration is guaranteed to converge to the
solution vector. This implies that if A is diagonally dominant, Gauss–Seidel
iteration is also guaranteed to converge, and faster than Jacobi.

If A is not diagonally dominant, the convergence of the Gauss–Seidel
method relies on another special class of matrices known as symmetric, pos-
itive definite (Section 4.4).

134 Numerical Methods for Engineers and Scientists Using MATLAB®

Theorem 4.2

Suppose A is symmetric, positive definite. Then, the linear system Ax = b
has a unique solution xa, and the sequence of vectors generated by Gauss–
Seidel iteration, Equation 4.28, converges to xa regardless of the initial
vector x(0).

The user-defined function GaussSeidel uses the Gauss–Seidel itera-
tion method to solve the linear system Ax = b, and returns the approxi-
mate solution vector, the number of iterations needed for convergence,
and ∙MGS∙∞. The terminating condition is ∙x(k+1) − x(k)∙ < ε for a prescribed
tolerance ε.

function [x, k, MGSnorm] = GaussSeidel(A, b, x0, tol, kmax)
%
% GaussSeidel uses the Gauss-Seidel iteration method to
% approximate the solution of Ax = b.
%
% [x, k, MGSnorm] = GaussSeidel(A, b, x0, tol, kmax) where
%
% A is the n-by-n coefficient matrix,
% b is the n-by-1 right-hand side vector,
% x0 is the n-by-1 initial vector (default zeros),
% tol is the scalar tolerance for convergence
%  (default 1e-4),
% kmax is the maximum number of iterations (default 100),
%
% x is the n-by-1 solution vector,
% k is the number of iterations required for convergence,
% MGSnorm is the infinite norm of the Gauss-Seidel
% iteration matrix.

if nargin < 3 || isempty(x0)
 x0 = zeros(size(b));
end
if nargin < 4 || isempty(tol)
 tol = 1e-4;
end
if nargin < 5 || isempty(kmax)
 kmax = 100;
end
x(:, 1) = x0;

D = diag(diag(A)); At = A - D;
L = tril(At);
U = At − L;

135Solution of Systems of Equations

Example 4.14:  Gauss–Seidel Iteration

Consider the linear system of Example 4.13, where the coefficient matrix
was diagonally dominant:

	

4 1 1
2 5 0

2 1 6

1
7

13

0

−
−

















= −
















=x x,
initial vector

()

00
1
1

















Gauss–Seidel iteration is guaranteed to converge because Jacobi is
guaranteed to converge. Starting with the given initial vector x(0), we will
find the components of the next vector x(1) generated by Gauss–Seidel
iteration using Equation 4.29

	

x
a

a x a x bi
k

ii
ij j

k
ij j

k

j i

i

j

i
() () ()+ +

= +=

−

= − − +











∑∑1 1

1

3

1

1
1


=, i 1 2 3, ,

As previously mentioned, the first sum on the right side is considered
zero when i = 1. For the problem at hand

	

x
a

a x a x b1
1

11
12 2

0
13 3

0
1

1 1
4

1 1 1 0 1() () () ()() ()()= − − +  = − − − +[] = 00.25

0.25x
a

a x a x b2
1

22
21 1

1
23 3

0
2

1 1
5

2 0() () () ()() ()= − − +  = − − − (()

()(() () ()

1 7

1 1
6

23
1

33
31 1

1
32 2

1
3

−[] = −

= − − +  = − −

1.3

0x
a

a x a x b ..25 1.3 2.3) ()()− − +[] =1 13

Therefore

	

x()1 = −
















0.25
1.3

2.3

% Norm of Gauss-Seidel iteration matrix
M = −(D + L)\U; MGSnorm = norm(M, inf);
B = (D + L)\b;

% Perform iterations up to kmax
for k = 1:kmax,
 x(:, k+1) = M*x(:, k) + B;
 if norm(x(:,k+1)-x(:, k)) < tol,
 break
 end
end
x = x(:, end);

136 Numerical Methods for Engineers and Scientists Using MATLAB®

Subsequent vectors may be calculated in a similar manner. This vector
can be verified by executing the user-defined function GaussSeidel
with kmax = 1 so that only one iteration is performed.

 >> A = [4 1 −1; −2 5 0;2 1 6]; b = [1; −7;13]; x0 = [0;1;1];
 >> [x, k, MGSnorm] = GaussSeidel(A, b, x0, 1e−4, 1)

x = 
0.2500

−1.3000
2.3000    % Agrees with the above result

k = 
1

MGSnorm = 

0.5000

Using Gauss–Seidel iteration with the given x(0) and terminating con-
dition ∙x(k+1) − x(k)∙ < 10−4, we find

 >> [x, k, MGSnorm] = GaussSeidel(A, b, x0)

x = 
1.0000

−1.0000
2.0000

k = 
8

MGSnorm = 

0.5000

As expected, Gauss–Seidel exhibits a faster convergence (8 iterations)
than Jacobi (13 iterations).

Example 4.15:  Gauss–Seidel Iteration

Consider

	

1 1 2
1 10 4
2 4 24

6
15
58

0

−

−

















=
−















x x,
initial vect

()

oor
=

















0
0
0

The coefficient matrix is symmetric, positive definite; thus Gauss–
Seidel iteration will converge to the solution vector for any initial vector.

137Solution of Systems of Equations

Executing the user-defined function GaussSeidel with default values
for tol and kmax, we find

 >> A = [1 1 −2;1 10 4; −2 4 24]; b = [−6;15;58];
 >> [x, k, MGSnorm] = GaussSeidel(A, b)

x = 
−3.0000
1.0000
2.0000

k = 
15

MGSnorm = 

3

The input argument x0 was left out because the initial vector here
happens to be the zero vector, which agrees with the default. Also
note that ∙MGS∙∞ = 3 > 1 even though iterations did converge. This is
because the condition ∙MGS∙∞ < 1 is only sufficient and not necessary.
Also note that unlike the fact that a diagonally dominant coefficient
matrix guarantees ∙MJ∙∞ < 1, a symmetric, positive definite coefficient
matrix does not guarantee ∙MGS∙∞ < 1, but does guarantee convergence
for the Gauss–Seidel method.

4.5.6  Indirect Methods versus Direct Methods for Large Systems

Indirect methods such as Gauss–Seidel are mostly used when the linear sys-
tem Ax = b is large. Suppose a large system is being solved by the general
iterative method, Equation 4.21

	 x(k+1) = Q−1 Px(k) + Q−1 b,  k = 0, 1, 2, . . .

and that convergence is observed after m iterations. Since each iteration requires
roughly n2 multiplications, a total of n2m multiplications are performed by the
time convergence is achieved. On the other hand, a direct method such as
Gauss elimination requires 1

3
3n multiplications to find the solution. Therefore,

an indirect method is superior to a direct method as long as

	 n m n m n2 31 3 1 3< ⇒ </ /

For example, for a 100 × 100 system, this yields m < 1
3 100() so that an

iterative method is preferred as long as it converges within 33 iterations.
In many physical applications, not only is the size of the coefficient matrix
A large, it is also sparse, that is, it contains a large number of zero entries.
As one example, consider the numerical solution of partial differential

138 Numerical Methods for Engineers and Scientists Using MATLAB®

equations using the finite-differences method (Chapter 10). In these cases,
we encounter a large, sparse system where the coefficient matrix has at
most five nonzero entries in each row. Therefore, based on Equations 4.24
and/or 4.29, six multiplications must be performed to find each component
xi

k()+1 of the generated vector. But each vector has n components; thus, a total
of 6n multiplications per iteration are performed. If it takes m iterations
for convergence, then a total of 6nm multiplications are required for the
indirect method. Therefore, the indirect method is computationally more
efficient than a direct method as long as

	 6 1 3 1 183 2nm n m n< ⇒ </ /

For a 1000 × 1000 system with a sparse coefficient matrix, this translates to
m < 1

18
21000() so that an iterative method such as Gauss–Seidel is superior

to Gauss elimination if it converges within 55,556 iterations, which is quite
likely.

4.6  Ill-Conditioning and Error Analysis

So far, this chapter has focused on methods to find the solution vector for
linear systems in the form Ax = b. In this section, we study the conditioning
of a linear system and how it may impact the error associated with a com-
puted solution.

4.6.1  Condition Number

The condition number of a nonsingular matrix An×n is defined as

	 κ (A) = ∙A∙ ∙A−1∙	 (4.30)

where the same matrix norm is used for both A and A−1. It can be shown
that for any An×n

	 κ (A) ≥1

We will learn that the smaller the condition number of a matrix, the better
the condition of the matrix. A useful measure of the condition of a matrix is
provided by the ratio of the largest (in magnitude) to the smallest (in magni-
tude) eigenvalue of the matrix.

139Solution of Systems of Equations

Example 4.16:  Condition Number

Calculate the condition number of the following matrix using all three
norms, and verify the results using the MATLAB built-in command cond:

	

A =
















6 4 3
4 3 2
3 4 2

Solution

The inverse is found as

	

A− =
− −
−

−

















1

2 4 1
2 3 0

7 12 2

Then

	

A A A

A A A

A A

1
1

1

1

1

13 19 247

13 21 273

= = ⇒ =

= = ⇒ =

=

−

∞
−

∞

−

,

,

10.9087,

κ

κ

()

()

E EE
= ⇒ =15.1987 165.7982κ ()A

In MATLAB, cond(A,P) returns the condition number of matrix A in
P-norm.

>> A = [6 4 3;4 3 2;3 4 2];
>> [cond(A,1) cond(A,inf) cond(A,'fro')]
% Using three different matrix norms

ans =

247.0000    273.0000    165.7981

Note that all three returned values are of the same order of magnitude,
regardless of the choice of norm used.

4.6.2  Ill-Conditioning

The system Ax = b is said to be well-conditioned if small errors gener-
ated during the solution process, or small changes in the coefficients, have
small effects on the solution. For instance, if the diagonal entries of A are
much larger in magnitude than the off-diagonal ones, the system is well-
conditioned. If small errors and changes during the solution process have

140 Numerical Methods for Engineers and Scientists Using MATLAB®

large impacts on the solution, the system is ill-conditioned. Ill-conditioned
systems often arise in areas such as statistical analysis and least-squares fits.

Example 4.17:  Ill-Conditioning

Investigate the ill-conditioning of

	
Ax b A b= =

−
−









 =









,
1.0001 1.9998

,
1 2 2

2

Solution

The actual solution of this system can be easily verified to be

	
xa =

−








1
0.5

Suppose the first component of vector b is slightly perturbed by a very
small ε > 0 so that the new vector is

	

b =
+








2
2

ε

The ensuing system Ax b = is then solved via Gauss elimination as

	

1 2 2
2

1 21 2−
−

+











→
−− +

1.0001 1.9998

0 0.0004

1.0001(row rowε) 22

1 2 2

+
− −













→
− +

− −












ε
ε0.0002 1.0001

0 1 0.5 2500.25
ε

ε

so that

	
x =

−
− −









=
−









−
1 14999.50
0.5 2500.25 0.5

4999.5
2500.

ε
ε 225

4999.5
2500.25









= −








ε εxa

Therefore, even though one of the components of b was subjected to a very
small change of ε, the resulting solution vector shows very large relative
changes in its components. This indicates that the system is ill-conditioned.

4.6.2.1  Indicators of Ill-Conditioning

There are essentially three indicators of ill-conditioning for a system Ax = b:

	 1.	det (A) is very small in absolute value relative to the largest entries of
A and b in absolute value.

141Solution of Systems of Equations

	 2.	The entries of A−1 are large in absolute value relative to the compo-
nents of the solution vector.

	 3.	κ(A) is very large.

Example 4.18:  Indicators of Ill-Conditioning

Consider the system in Example 4.17:

	
Ax b A b= =

−
−









 =









,
1.0001 1.9998

,
1 2 2

2

We will see that this system is ill-conditioned by verifying all three
indicators listed above.

	 1.	 det(A) = 0.0004, which is considerably smaller than the absolute
values of entries of A and b.

	 2.	 The inverse of A is found as

	
A− −

−










1 5000
2500

=
4999.50
2500.25

		 The entries are very large in magnitude relative to the compo-
nents of the solution vector

	
xa =

−








1
0.5

	 3.	 Using the 1-norm, we find the condition number of A as

	 ∙A∙1 = 3.9998,  ∙A−1∙1 = 7500  ⇒  κ(A) = 29,998.5

		 which is quite large.

4.6.3  Computational Error

Suppose xc is the computed solution of a linear system Ax = b, while xa is the
actual solution. The corresponding residual vector is defined as

	 r = Axc − b

The norm of the residual vector ∙r∙ gives a measure of the accuracy of the
computed solution, and so does the absolute error ∙xc − xa∙. The most com-
monly used measure is the relative error

	

x x
x

c a

a

−

142 Numerical Methods for Engineers and Scientists Using MATLAB®

Note that in applications the actual solution vector xa is not available
and the notation is being used here merely to develop some important
results.

Theorem 4.3

Let xa and xc be the actual and computed solutions of Ax = b, respectively.
If r = Axc − b is the residual vector and κ(A) is the condition number of
A, then

	

1
κ

κ
()

()
A

r
b

x x
x

A
r
b

≤
−

≤c a

a 	
(4.31)

A selected matrix norm and its compatible vector norm must be used
throughout.

Proof

We first write

	 r = Axc − b = Axc − Axa = A(xc − xa)  ⇒  xc − xa = A−1 r

so that

	
x x A r A r

x x
x

A
r
xx

c a
c a

a aa
− = ≤ ⇒

−
≤− − −1 1 1

by

Divide both sides

	
(4.32)

But by Equation 4.30

	
A

A
A

− =1 κ ()

and

	
b Ax b A x

x
A
b

= ⇒ ≤ ⇒ ≤a a
a

1

Inserting these into Equation 4.32 yields

	

x x
x

A
r
b

c a

a

−
≤ κ ()

143Solution of Systems of Equations

which establishes the upper bound for relative error. To derive the lower
bound, we first note that

	
r Ax Ax r A x x x x

r
A A

A

= − ⇒ ≤ − ⇒ − ≥
>

c a c a c a
0 for any nonzero

Divide by

AA

Also

	
x A b x A b

x A b
a a

a
= ⇒ ≤ ⇒ ≥− −

−
1 1

1

1 1

Multiplication of the last two inequalities results in

	

x x
x A

r
b

c a

a

−
≥ 1

κ ()

This completes the proof.

4.6.3.1  Consequences of Ill-Conditioning

Ill-conditioning has an immediate impact on the accuracy of the computed
solution. Consider the relative error bounds given in Equation 4.31. For a
computed solution, it is safe to assume that the norm of the residual vector
∙r∙ is relatively small compared to ∙b∙. A small condition number for A raises
the lower bound while lowering the upper bound, thus narrowing the inter-
val for relative error. A large condition number for A, on the other hand,
lowers the lower bound and raises the upper bound, widening the inter-
val and allowing for a large relative error associated with the computed
solution.

Another consequence of ill-conditioning is less conspicuous in the sense
that a poor approximation of the actual solution vector may come with a very
small residual vector norm. Once again, refer to the system in Examples 4.17
and 4.18, and consider

	
x̂ =









2
0.0002

which is clearly a poor approximation of the actual solution

	
xa =

−








1
0.5

144 Numerical Methods for Engineers and Scientists Using MATLAB®

The corresponding residual vector is

	
r Ax b= − =

−
−



















−








=
−

ˆ
1 2 2 2

21.0001 1.9998 0.0002
0.00004
0.0002−









Any one of the three vector norms returns a very small value for ∙r∙, sug-
gesting that x̂ may be a valid solution.

4.6.4  Effects of Parameter Changes on the Solution

The following theorem illustrates how changes in the entries of A or compo-
nents of b affect the resulting solution vector x, as well as the role of condi-
tion number of A.

Theorem 4.4

Consider the linear system Ax = b. Let ΔA, Δb, and Δx reflect the changes in
the entries or components of A, b, and x, respectively. Then

	

∆ ∆x
x

A
A

A≤ κ ()
	

(4.33)

and

	

∆ ∆x
x

b
b

A≤ κ ()
	

(4.34)

A selected matrix norm and its compatible vector norm must be used
throughout.

Proof

Suppose that entries of A have been changed and these changes are recorded
in ΔA. As a result, the solution x will also change, say, by Δx. In Ax = b, insert
A + ΔA for A and x + Δx for x to obtain

	

()() () [] [](A A x x b Ax A x A x A+ + = ⇒ + + +∆ ∆ ∆ ∆ ∆ ∆
Expand

xx b) =

⇒
from both sidees

Cancel Ax b
A x A x A x 0

=
+ + = () [] []()∆ ∆ ∆ ∆

145Solution of Systems of Equations

Solving for Δx

	 A(Δx) = −[ΔA](x + Δx)  ⇒  Δx = −A−1[ΔA](x + Δx)

Taking the (vector) norm of both sides, and applying compatibility rela-
tions, Equation 4.19, twice, we have

	 ∙Δx∙ = ∙−A−1[ΔA](x + Δx)∙ ≤ ∙ A−1∙ ∙ΔA∙ ∙x + Δx∙

Inserting ∙A−1∙ = κ(A)/∙A∙ in this last equation, and dividing both sides by
∙x + Δx∙, yields

	

∆
∆

∆x
x x

A
A

A
+

≤ κ ()

Since Δx represents small changes in x, then

	
x x x

x
x x

x
x

+ ≅ ⇒
+

≅∆
∆

∆
∆

Using this in the previous equation establishes Equation 4.33. To verify
Equation 4.34, insert b + Δb for b, and x + Δx for x in Ax = b and proceed as
before. This completes the proof.

Equations 4.33 and 4.34 assert that if κ (A) is small, then small percent
changes in A or b will result in small percent changes in x. This, of course,
is in line with the previous findings in this section. Furthermore, Equations
4.33 and 4.34 only provide upper bounds and not estimates of the percent
change in solution.

Example 4.19:  Percent Change

Consider the linear system

	
Ax b A b x= =









 =

−
−









⇒ =
−


 ,

2 4.0001
,

2.0002 solution

1 2 1 3
2





Suppose the (1,2) entry of A is reduced by 0.01 while its (2,1) entry is
increased by 0.01 so that

	
∆ ∆A A A A=

−







 ⇒ = + =

0
0

10.01
0.01

1.99
2.0

New coefficient matrix

11 4.0001










146 Numerical Methods for Engineers and Scientists Using MATLAB®

Solving the new system yields

	
Ax b x x x x= ⇒ =

−







= − =
−









98.51
49

sothat
101.51

∆
51

From this point forward, the 1-norm will be used for all vectors and
matrices. The condition number of A is calculated as κ (A) = 3.6001 × 105
indicating ill-conditioning. The upper bound for the percent change in
solution can be found as

	

∆ ∆x

x

A

A
A1

1

1

1

510≤ = × =κ () ()
0.01

6.0001
3.6001 600.0100

The upper bound is rather large as a consequence of ill-conditioning.
The actual percent change is calculated as

	

∆x

x
1

1
5

= =152.51
30.5020

which is much smaller than the upper bound offered by Equation 4.33,
thus asserting that the upper bound is in no way an estimate of the
actual percent change.

4.7  Systems of Nonlinear Equations

Systems of nonlinear equations can be solved numerically by either using
Newton’s method (for small systems) or the fixed-point iteration method* (for
large systems).

4.7.1  Newton’s Method for a System of Nonlinear Equations

Newton’s method for solving a single nonlinear equation was discussed pre-
viously. An extension of that technique can be used for solving a system of
nonlinear equations. We will first present the idea and the details as per-
tained to a system of two nonlinear equations, followed by a general system
of n nonlinear equations.

4.7.1.1  Method for Solving a System of Two Nonlinear Equations

A system of two (nonlinear) equations in two unknowns can generally be
expressed as

*	 Refer to Newton’s method and fixed-point iteration method for a single nonlinear equation,
Chapter 3.

147Solution of Systems of Equations

	

f x y

f x y
1

2

0
0

(,)
(,)

=
= 	

(4.35)

We begin by selecting (x1, y1) as an initial estimate of the solution. Suppose
(x2, y2) denotes the actual solution so that f1(x2, y2) = 0 and f2(x2, y2) = 0. If x1 is
sufficiently close to x2, and y1 to y2, then by Taylor series expansion

	

f x y f x y
f
x

x x
f
y

y y
x y x y

1 2 2 1 1 1
1

2 1
1

2 1

1 1 1 1

(,) (,) () (
(,) (,)

= + − + −∂
∂

∂
∂

))

(,) (,) () (
(,) (,)

+

= + − +



f x y f x y
f
x

x x
f
y

y
x y x y

2 2 2 2 1 1
2

2 1
2

1 1 1 1

∂
∂

∂
∂ 22 1− +y) 

where the terms involving higher powers of small quantities x2 − x1 and
y2 − y1 have been neglected. Let Δx = x2 − x1 and Δy = y2 − y1 and recall that
f1(x2, y2) = 0 and f2(x2, y2) = 0 to rewrite the above equations as

	

∂
∂

∂
∂

∂
∂

∂

f
x

x
f
y

y f x y

f
x

x

x y x y

x y

1 1
1 1 1

2

1 1 1 1

1 1

(,) (,)

(,)

(,)∆ ∆

∆

+ + = −

+



ff
y

y f x y
x y

2
2 1 1

1 1
∂

(,)

(,)∆ + = −

which can be expressed as

	

∂
∂

∂
∂

∂
∂

∂
∂

f
x

f
y

f
x

f
y

x

y

f

f

x y

1 1

2 2

1

2

1 1



























=
−
−



 (),

∆
∆ 





(,)x y1 1

	

(4.36)

Equation 4.36 is a linear system that can be solved for Δx, Δy as long as the
coefficient matrix is nonsingular. The quantity

	

J f f

f
x

f
y

f
x

f
y

(,)1 2

1 1

2 2
=

∂
∂

∂
∂

∂
∂

∂
∂

148 Numerical Methods for Engineers and Scientists Using MATLAB®

is called the Jacobian of f1 and f2. Therefore, for Equation 4.36 to have a non-
trivial solution, we must have

	

det

(,)

∂
∂

∂
∂

∂
∂

∂
∂

f
x

f
y

f
x

f
y

x y

1 1

2 2

1 1

0








































≠ ⇒ ≠J f f x y(,) (,)1 2 1 1 0

This means that the values of x2 = x1 + Δx and y2 = y1 + Δy are now known.
And they clearly do not describe the actual solution because higher-order
terms in Taylor series expansions were neglected earlier. Since (x2, y2) is closer
to the actual solution than (x1, y1), we use (x2, y2) as the new estimate to the
solution and solve Equation 4.36, with (x2, y2) replacing (x1, y1), and continue
the process until values generated at successive iterations meet a prescribed
tolerance condition. A reasonable terminating condition is

	

x

y

x

y
k

k

k

k

+

+









−








≤1

1 2

ε
	

(4.37)

where ε is a specified tolerance. Keep in mind that in each iteration step, the
Jacobian must be nonzero.

Example 4.20:  Newton’s Method

Solve the nonlinear system below using Newton’s method, terminating
condition as in Equation 4.37 with tolerance ε = 10−3 and maximum num-
ber of iterations set to 20:

	

3.2 1.8 24.43
.92

x y

x y

3 2

2 3

0
2 3 5

+ + =
− + =







Solution

The original system is written in the form of Equation 4.35 as

	

f x y x y

f x y x y
1

3 2

2
2 3

0
2 3 5 0

(,)
(,)

= + + =
= − + − =







3.2 1.8 24.43
.92 

First, we need to find approximate locations of the roots using a graph-
ical approach.

>> f1 = inline('3.2*x^3+1.8*y^2+24.43','x','y');
>> f2 = inline('−2*x^2+3*y^3−5.92','x','y');
>> ezplot(f1)
>> hold on
>> ezplot(f2)    % Figure 4.6

149Solution of Systems of Equations

Based on Figure 4.6, there is only one solution, and a logical initial
estimate for this solution is (−2, 2). Performing partial differentiations in
Equation 4.36, we find

	

9.6 3.6

x y

x y

x

y

f

f

2

2
2 2

1

2 2 2
4 9−



















=
−
−







− −(,) (,

∆
∆

))

⇒








Solve ∆
∆
x

y

The next solution estimate is then found as

	

x

y

x

y

x

y
2

2

1

1









=








+








∆
∆

The following MATLAB code will perform these tasks. In addition to
the terminating condition in Equation 4.37, the code includes a section
that checks to see if |f1(x, y)| < ε and |f2(x, y)| < ε after each iteration.
This is because sometimes an acceptable estimate of a root may have
been found, but because of the nature of f1 and/or f2, the current vec-
tor and the subsequent vector do not meet the terminating condition in
Equation 4.37.

% Define the entries of the coefficient matrix and
% the right-hand side vector as inline functions

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

(the only) root

Figure 4.6
Graph of the nonlinear system in Example 4.20.

150 Numerical Methods for Engineers and Scientists Using MATLAB®

A11 = inline('9.6*x^2','x','y'); A12 = inline('3.6*y','x','y');
A21 = inline('−4*x','x','y'); A22 = inline('9*y^2','x','y');

f1 = inline('3.2*x^3+1.8*y^2+24.43','x','y');
f2 = inline('−2*x^2+3*y^3−5.92','x','y');

tol = 1e−3; kmax = 20;
% Set tolerance and maximum number of
% iterations allowed
v(:,1) = [−2;2]; % Initial estimate

for k = 1:kmax,
 A = [�A11(v(1,k),v(2,k)) A12(v(1,k),v(2,k));

A21(v(1,k),v(2,k)) A22(v(1,k),v(2,k))];
 b = [−f1(v(1,k),v(2,k));−f2(v(1,k),v(2,k))];

% Check to see if a root has been found, while two
% successive vectors do not satisfy terminating
% condition due to the nature of function(s) near
% a root

 if abs(b(1)) < tol && abs(b(2)) < tol,
        root = v(:,k);
    return
  end

    delv = A\b;
    v(:,k+1) = v(:,k) + delv;    % Update solution
    if norm(v(:,k+1)-v(:,k)) < tol,
    % Check terminating condition
        root = v(:,k+1);
         break
   end
end

The execution of this code results in

>> v

v =

−2.0000   −2.1091   −2.1001   −2.0999
 2.0000       1.7442   1.7012       1.7000

Therefore, it took three iterations for the tolerance to be met. The
computed solution is (−2.0999, 1.7000).

4.7.1.2  Method for Solving a System of n Nonlinear Equations

A system of n (nonlinear) equations in n unknowns can in general be
expressed as

151Solution of Systems of Equations

	

f x x x

f x x x

f x x x

n

n

n n

1 1 2

2 1 2

1 2

0
0

0

(, , ,)
(, , ,)

(, , ,)

…
…
…
…

=
=

= 	

(4.38)

Choose (x1,1, x2,1, . . . ,xn,1) as the initial estimate and follow the steps that led
to Equation 4.36 to arrive at

	

∂
∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

f
x

f
x

f
x

f
x

f
x

f
x

f

n

n

n

1

1

1

2

1

2

1

2

2

2

⋅ ⋅ ⋅

∂ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

xx
f
x

f
x

n n

n x x xn1 2
1 1 2 1

∂
∂

∂
∂

⋅ ⋅ ⋅



























 ... (, , ,, , ,,)

(

1

1

2

1

2

∆
∆

∆

x

x

x

f

f

fn n

⋅ ⋅ ⋅



















=

−
−
⋅ ⋅ ⋅
−



















xx x xn1 1 2 1 1, , ,, , ,) ...

	

(4.39)

The partial derivatives in Equation 4.39 can be found either analytically or
numerically.* Solve this system to obtain the vector composed of increments
Δx1, . . . , Δxn. Then, update the solution estimate

	

x

x

x

x

x

xn n

1 2

2 2

2

1 1

2 1

1

,

,

,

,

,

,

⋅ ⋅ ⋅



















=
⋅ ⋅ ⋅



















+
⋅ ⋅ ⋅



















∆
∆

∆

x

x

xn

1

2

If a specified terminating condition is not met, solve Equation 4.39 with
(x1,2, x2,2, . . . , xn,2) replacing (x1,1, x2,1, . . . , xn,1) and continue the process until
the terminating condition is satisfied.

4.7.1.3  Convergence of Newton’s Method

Convergence of Newton’s method is not guaranteed, but it is expected if
these conditions hold:

•	 f1, f2, . . . , fn and their partial derivatives are continuous and bounded
near the actual solution.

•	 The Jacobian is nonzero, J( f1, f2 , . . . , fn ) ≠ 0, near the solution.
•	 The initial solution estimate is sufficiently close to the actual solution.

*	 See Chapter 10.

152 Numerical Methods for Engineers and Scientists Using MATLAB®

As it was the case with a single nonlinear equation, if Newton’s method
does not exhibit convergence, it is usually because the initial solution esti-
mate is not sufficiently close to the actual solution.

4.7.2  Fixed-Point Iteration Method for a System of Nonlinear Equations

The fixed-point iteration* to solve a single nonlinear equation can be extended
to handle systems of nonlinear equations in the form of Equation 4.38. The
idea is to find suitable auxiliary functions gi (x1, x2, . . . , xn), i = 1, 2, . . . , n, and
rewrite Equation 4.38 as

	

x g x x x

x g x x x

x g x x x

n

n

n n n

1 1 1 2

2 2 1 2

1 2

=
=

=

(, , ,)
(, , ,)

(, , ,)

…
…

…
… 	

(4.40)

or in vector form

	

x g x x g

x

x
= =



















=()
...

()
()

...
(

, ,

x

x

x

g

g

gn n

1

2

1

2

xx)



















	

(4.41)

Choose (x1,1, x2,1, . . . , xn,1) as the initial estimate and substitute into the right
sides of the equations in Equation 4.40. The updated estimates are calculated as

	

x g x x x

x g x x x

x

n

n

1 2 1 1 1 2 1 1

2 2 2 1 1 2 1 1

, , , ,

, , , ,

(, , ,)
(, , ,)

...

=
=

...

...

nn n ng x x x, , , ,(, , ,)2 1 1 2 1 1= ...

These new values are then inserted in the right sides of Equation 4.40 to
generate the new updates, and so on. The process continues until conver-
gence is observed.

4.7.2.1  Convergence of the Fixed-Point Iteration Method

The conditions for convergence of the fixed-point iteration

	 x(k+1) = g(x(k)),  k = 0, 1, 2, . . .	 (4.42)

*	 See Section 3.4.

153Solution of Systems of Equations

are similar to those for the case of a function of one variable. Let R be an
n-dimensional rectangular region composed of points x1, x2, . . . , xn such that
ai ≤ xi ≤ bi (i = 1,2, . . . , n) for constants a1, a2, . . . , an and b1, b2, . . . , bn. Suppose
g(x) is defined on R. Then the sufficient conditions for convergence of the
fixed-point iteration method, Equation 4.42, are*

•	 Auxiliary functions g1, g2, . . . , gn and their partial derivatives with
respect to x1, x2, . . . , xn are continuous near the actual solution.

•	 There exists a constant K < 1 such that for each x ∈ R

	

∂
∂
g
x

K
n

j n i nj

i

()
, , , , , ,

x
≤ =, ... , ...= 1 2 1 2

	
(4.43)

	 which may also be interpreted as

	

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

g
x

g
x

g
x

g
x

g
x

g
x

g

n

n

n

1

1

1

2

1

2

1

2

2

2

1

1

+ + ⋅ ⋅ ⋅ +

+ + ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅

≤

≤

∂∂
∂
∂

∂
∂x

g
x

g
x

n n

n1 2
1+ + ⋅ ⋅ ⋅ + ≤

	

(4.44)

•	 The initial estimate (x1,1, x2,1, . . . , xn,1) is sufficiently close to the actual
solution.

Example 4.21:  Fixed-Point Iteration

Using the fixed-point iteration method, solve the nonlinear system in
Example 4.20:

	

3.2 1.8 24.43
.92

x y

x y

3 2

2 3

0
2 3 5

+ + =
− + =







Use the same initial estimate and terminating condition as before.

Solution

We first need to rewrite the given equations in the form of Equation 4.40
by selecting suitable auxiliary functions. These auxiliary functions are
not unique, and one way to rewrite the original system is

	
x g x y

y

y g x y
x

= = − +





= = +





1

2 1 3

2

22

(,)

(,)

/
1.8 24.43

3.2

5.92
3 

1 3/

 *	 Refer to Atkinson, K.E., An Introduction to Numerical Analysis, 2nd ed., John Wiley, NY, 1989.

154 Numerical Methods for Engineers and Scientists Using MATLAB®

	

x g x y
y

y g x y
x

= = − +





= = +





1

2 1 3

2

22

(,)

(,)

/
1.8 24.43

3.2

5.92
3 

1 3/

Based on Figure 4.6, a reasonable rectangular region R is chosen as
−4 ≤ x ≤ −2, 0 ≤ y ≤ 2. We next examine the conditions listed in Equation
4.44 in relation to our choices of g1 and g2. Noting that in this example,
n = 2, the four conditions to be met are

	

∂
∂

∂
∂

∂
∂

∂
∂

g
x

g
y

g
x

g
y

1 1 2 21
2

1
2

1
2

1
2

< , , ,< < <

Of course, | / |∂ ∂ = <g x1
1
20 and | / |∂ ∂ <g y2

1
20= satisfy two of the

above. The other two may be inspected with the aid of MATLAB as
follows:

>> g1 = '-((1.8*y^2+24.43)/3.2)^(1/3)';
>> g2 = '((2*x^2+5.92)/3)^(1/3)';
>> ezplot(abs(diff(g1,'y')),[0 2])
% First plot in Figure 4.7
>> ezplot(abs(diff(g2,'x')),[-4 -2])
% Complete Figure 4.7

The two plots in Figure 4.7 clearly indicate that the two remaining
partial derivatives satisfy their respective conditions as well. This means
that the vector function

	
g =









g

g
1

2

has a fixed point in region R, and the fixed-point iteration in Equation
4.42 is guaranteed to converge to this fixed point.

The following code will use the fixed-point iteration to generate a
sequence of values for x and y and terminates the iterations as soon as
the tolerance is met. For simplicity, we define a vector

	
v =









x

y

and subsequently define g1 and g2 as functions of the components of
vector v.

% Define the auxiliary functions g1 and g2
g1 = inline('-((24.43+1.8*v(2,1)^2)/3.2)^(1/3)','v');
g2 = inline('((5.92+2*v(1,1)^2)/3)^(1/3)','v');

tol = 1e-3; kmax = 10;
v(:,1) = [-1;-2];   % Initial estimate
for k = 1:kmax,

155Solution of Systems of Equations

   v(:,k+1) = [g1(v(:,k));g2(v(:,k))];
   % Fixed-point iteration
   if norm(v(:,k+1)-v(:,k)) < tol,
       break
   end
end

Execution of this code results in

>> v

Convergence to the true solution is observed after six iterations. The results
agree with those of Example 4.20.

v =
 -1.0000 -2.1461 -2.0574 -2.1021 -2.0980 -2.1000 -2.0998
 -2.0000 1.3821 1.7150 1.6863 1.7007 1.6994 1.7000

–4 –3.8 –3.6 –3.4 –3.2 –3 –2.8 –2.6 –2.4 –2.2 –2
0.32

0.322

0.324

0.326

0.328

0.33

0.332

0.334

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

y

∂g1
∂y

∂g2
∂x

Figure 4.7
Graphical inspection of upper bounds for |∂g1/∂y| and |∂g2/∂x|.

156 Numerical Methods for Engineers and Scientists Using MATLAB®

Problem Set

Gauss Elimination Method (Section 4.3)

  In  Problems 1 through 12, solve the linear system using basic Gauss
elimination with partial pivoting, if necessary.

	 1.	
− − =

+ =




2 2
4 3 0

1 2

1 2

x x

x x

	 2.	
3 4 4
2 6 7

1 2

1 2

x x

x x

− =
+ =





	 3.	
0.6 1.3 0.2
2.1 3.2 3.8

x x

x x
1 2

1 2

+ =
− =





	 4.	

x x

x x x

x x x

2 3

1 2 3

1 2 3

3 11
2 3 2 1

6 9 7 1

+ = −
− + =

− + − =









	 5.	

− + + =
+ − = −
+ + =









2 2 8
3 2 7

3 8 0

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

	 6.	

3 5 1
5 2 12

2 7 4 18

1 3

1 2 3

1 2 3

x x

x x x

x x x

+ = −
− + − =

− + = −






 


	 7.	

4 1 0
1 3 5

2 5 6

9
15
25

1

2

3

−
− −

































=
−

−
















x

x

x

	 8.	

6 29 1
0 7 3
3 4 1

47
1
0

1

2

3

− −

− −

































=
−
−

















x

x

x

	 9.	

− −
−

































=
−

−

















3 3 2
1 4 1
0 9 2

12
5
6

1

2

3

x

x

x

	 10.	

1.5 1.0 2.5
3.0 2.0 6.2
2.4 0.4 5.0

0−
−

−

































=
x

x

x

1

2

3

..5
0.2
1.3

−
−

















157Solution of Systems of Equations

	 11.	

− −































=
2.0 2.5 8.0

1.0 0 6.0
3.0 5.0 15.2

6.0x

x

x

1

2

3

00
9.3

















	 12.	

− −
−

− −
− −

































5 1 16 12
1 0 4 3
0 3 10 5
4 8 24 3

1

2

3

4

x

x

x

x 



=

−

−



















28
6
2

1

Small Pivot

	 13.	  Consider a linear 2 × 2 system (with unknowns x1 and x2)
described by its augmented matrix

	

ε 1
1 1

2
1











where ε > 0 is a very small constant.

	 a.	Solve by Gauss elimination without partial pivoting.
	 b.	�Solve by Gauss elimination with partial pivoting. Compare the

results and discuss their validity.

In Problems 14 through 18, a linear system is given.

	 a.	�   Solve using Gauss elimination with partial pivoting and row
scaling.

	 b.	�   Solve by executing the user-defined function GaussPivotScale
(Section 4.3).

	 14.	
2 6 8
3 2 2 1

5 1

1 2 3

1 2 3

1 2

x x x

x x x

x x

+ − =
− + =
+ =






 


	 15.	
− + + = −

− − =
+ − =

3 3 5 14
3 2 2 3
9 10 5

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x









	 16.	
5 8 12 15

3 5 8 11
2

1 2 3

1 2 3

1 2

x x x

x x x

x x

+ + =
− + − =

−

++ = −







 4 23x

158 Numerical Methods for Engineers and Scientists Using MATLAB®

	 17.	

2 1 3
5 6 4
1 0 1

17
3
5

1

2

3

−































=
















x

x

x

	 18.	
3 2 0
3 5 1
6 5 12

7
9

47

1

2

3

− −
































=
−















x

x

x

Tridiagonal Systems

In Problems 19 through 24, a tridiagonal system is given.

	 a.	  Solve using the Thomas method.
	 b.	   Solve by executing the user-defined function ThomasMethod

(Section 4.3).

	 19.	
2 1 0
1 2 1
0 1 2

1
5
5

1

2

3

































=
−















x

x

x

	 20.	
3 1 0
1 2 1
0 1 3

6
4
0

1

2

3

−

− −

































= −
















x

x

x

	 21.	

1 2 0 0
2 3 1 0
0 1 2 1
0 0 1 4

4
5
7

1

2

3

4

−

−
−





































=

−x

x

x

x 113



















	 22.	

0.1 0.09
0.12 1.2 0.8

1.1 0.9 0.6
1.3 0.9

0 0
0

0
0 0

1

2

3

−



















x

x

x

x44



















=

−

















0.01
0.28
1.4
3.1

	 23.	

−
− −

−




























1 1 0 0 0

1 3 1 0 0
0 0 1 2 0
0 0 2 3 4
0 0 0 0 2

1

2

3

4

5

x

x

x

x

x






















=

−

−



























1
1
4
9
4

159Solution of Systems of Equations

	 24.

	

−

−
−






























1 1 0 0 0
1 2 0 0 0
0 2 3 1 0
0 0 1 4 0
0 0 0 3 1

1

2

3

4

5

x

x

x

x

x






















= −

−



























2
7
8
8
7

	 25.	Alternating direct implicit (ADI) methods are used to numerically
solve a certain type of partial differential equation in a rectangu-
lar region; Chapter 10. These methods are specifically designed to
generate tridiagonal systems in their solution process. In one such
application, the following tridiagonal system has been created:

	

−
−

−
−

−
−























4 1 0 0 0 0
1 4 1 0 0 0
0 1 4 0 0 0
0 0 0 4 1 0
0 0 0 1 4 1
0 0 0 0 1 4




































=

−
−
−

x

x

x

x

x

x

1

2

3

4

5

6

0.6056
1.0321
1.13389
0.2563
0.4195
0.3896

−
−
−































	 a.	  Solve using the Thomas method. Use four-digit rounding up.
	 b.	�   Solve by executing the user-defined function ThomasMethod.

Compare with the results in (a).

	 26.	Finite difference methods are used to numerically solve boundary-
value problems; Chapter 8. These methods are designed so that
tridiagonal systems are generated in their solution process. In
one such application, the following tridiagonal system has been
created:

	

−
−

−
−

−



















6 0 0 0
8 0 0

0 10 0
0 0 12
0 0 0 4 4

3.5
3.5 4.5

4.5 5.5
5.5 6.5
































=

−
−

−
−
−



















w

w

w

w

w

1

2

3

4

5

4
2

3
1

2.5








	 a.	  Solve using the Thomas method. Use four-digit rounding up.
	 b.	�   Solve by executing the user-defined function ThomasMethod.

Compare with the results in (a).

160 Numerical Methods for Engineers and Scientists Using MATLAB®

LU Factorization Methods (Section 4.4)

Doolittle Factorization

  In Problems 27 through 32, find the Doolittle factorization of each matrix
using the Gauss elimination method.

	 27.	 A =
− −









2 1
4 3

	 28.	 A =
−

− −

















2 3 2
0 1 3
6 9 7

	 29.	 A =
− −

−
















1 3 5
4 1 0
2 5 6

	 30.	 A =
−

− −
−

















1 2 2
3 4 5
2 6 3

	 31.	 A =
− − −



















3 6 3 9
1 5 4 7
2 1 2 3
3 0 1 7

	 32.	 A =

−

−



















2 4 2 6
1 3 2 5
4 7 3 10
3 5 1 11

In Problems 33 through 38, find the Doolittle factorization of each matrix
by

	 a.	  Direct calculation of L and U
	 b.	�   Executing DoolittleFactor (Section 4.4)

	 33.	 A = − −
−

















3 1 1
3 3 1
3 3 6

161Solution of Systems of Equations

	 34.
	

A = −

− −





















2 2 1

1 1
13
2

2
10
3

6

	
35.

	
A =

−

−

−





















1 3 3
1
3

5 2

2
3

14 3

	
36.

	
A =

−
− −

−



















4 2 8
4 5 13

1
19
2

19

	 37.	 A =

−
−

− − −
−



















3 0 1 2
3 2 2 1
0 2 5 2
6 6 7 20

	 38.	 A =

− −
−

− − −
− −



















2 1 3 1
4 5 6 0
4 2 1 1
2 13 12 18

Doolittle’s Method

In Problems 39 through 44

	 a.	  Using Doolittle’s method, solve each linear system Ax = b.
	 b.	   Confirm the results by executing the user-defined function

DoolittleMethod (Section 4.4).

	 39.	 A b=
− −

−
















=
−















1 3 5
4 1 0
2 5 6

14
5
9

 ,

	 40.	 A b=
−

− −
−

















=
−

−

















1 2 2
3 4 5
2 6 3

8
21
13

 ,

162 Numerical Methods for Engineers and Scientists Using MATLAB®

41.	 A b= − −
−

















= −
















3 1 1
3 3 1
3 3 6

2
4
0

 ,

42.	 A b= −

− −





















= −
−

















2 2 1

1 1
13
2

2
10
3

6

6
15
24

 ,

43.	 A b=

−
−

− − −
−



















=
−















3 0 1 2
3 2 2 1
0 2 5 2
6 6 7 20

4
1
6

40

 ,





44.	 A b=

− −
−

− − −
− −



















=
−









2 1 3 1
4 5 6 0
4 2 1 1
2 13 12 18

0
7

11
65

 ,












Cholesky Factorization

In Problems 45 through 50, find the Cholesky factorization of each matrix by

	 a.	  Direct calculation of L and LT

	 b.	   Executing CholeskyFactor (Section 4.4)

45.	 A =
−

−

















1 1 2
1 10 4
2 4 24

46.	 A =
−

−
















9 6 3
6 13 1
3 1 6

47.	 A =
−

−

















4 2 6
2 17 5
6 5 17

48.	 A =
− −

−
−

















1 2 3
2 5 7
3 7 26

163Solution of Systems of Equations

49.	 A =

−
−
−

− − −



















4 2 6 4
2 2 2 6
6 2 11 3
4 6 3 25

50.	 A =



















9 6 3 6
6 5 6 7
3 6 21 18
6 7 18 18

Cholesky’s Method

In Problems 51 through 56

	 a.	  Using Cholesky’s method solve each linear system Ax = b.
	 b.	   Confirm the results by executing the user-defined function

CholeskyMethod (Section 4.4).

51.	 A b=
−

−

















=
−















1 1 2
1 10 4
2 4 24

3
33
78

 ,

52.	 A b=
−

−
















=
−















9 6 3
6 13 1
3 1 6

30
53
9

 ,

53.	 A b=
−

−

















=
−















4 2 6
2 17 5
6 5 17

14
17
45

 ,

54.	 A b=
− −

−
−

















=
−















1 2 3
2 5 7
3 7 26

6
13
83

 ,

55.	 A b=

−
−
−

− − −



















=

−
−
−






4 2 6 4
2 2 2 6
6 2 11 3
4 6 3 25

16
26
12

114

 ,














56.	 A b=



















=
−



















9 6 3 6
6 5 6 7
3 6 21 18
6 7 18 18

3
1
3
1

 ,

164 Numerical Methods for Engineers and Scientists Using MATLAB®

Crout Factorization

	 57.	�   Crout LU factorization requires the diagonal entries of U be 1’s,
while L is a general lower-triangular matrix. Perform direct calculation
of the entries of L and U for the case of a 3 × 3 matrix, similar to that
in Example 4.6. Based on the findings, write a user-defined function
with function call [L U] = Crout_Factor(A) that returns the desired
lower- and upper-triangular matrices for any n × n matrix. Apply
Crout_Factor to

	

A = −
− − −

















2 2 6
1 3 1
3 2 7

Crout’s Method

	 58.	   Crout’s method uses Crout factorization (see Problem 57) of the
coefficient matrix A of the linear system Ax = b and generates two
triangular systems, which can be solved by back and forward substi-
tution. Write a user-defined function with function call x = Crout_
Method(A,b). Apply Crout_Method to

	

2 2 6
1 3 1
3 2 7

6
5
5

−
− − −

















=
−















x

Iterative Solution of Linear Systems (Section 4.5)

Vector/Matrix Norms

In Problems 59 through 70

	 a.	  Calculate the three norms of each vector or matrix.
	 b.	   Verify the results by using the MATLAB built-in function norm.

	 59.	 v =








1
2

1
1

	 60.	 v =
−















1
1.25
0.95

	 61.	 v =



























1
3
2
3
1
4

165Solution of Systems of Equations

	 62.	 v = −
















3
2
3
1

	 63.	 v =

−

−



















1
0
3
4

	 64.	 v =
−
−



















1
1
2
5

	 65.
	

A = −

−

























1
2

1 0

1
1
2

1

0 2
1
2

	 66.	 A =
−

−
−

















4 3 1
2 1 5
0 1 6

	 67.	 A =
−

−

















10
7

5

0.3 0.7
0.2 1.2
0.9 1.1

	 68.	 A =
− −

− −

















2
3

4

1.4 0.8
1.4 1.5
0.8 1.5

	 69.

	

A =

−

−

−

−





























1
5

1
2

1
3

0

2
3

1
1
5

1
3

1
3

1
5

1
2
3

0
2
5

1
3

1
5

166 Numerical Methods for Engineers and Scientists Using MATLAB®

	 70.	 A =

−

−

− −

−





























2
1
2

1
3

0

1
2

1
1
5

1
3

1
3

1
5

3
2
3

0
1
3

2
3

4

	 71.	   Write a user-defined function with function call [x,k,Mnorm] = 
GenIter_1(A,b,x0,tol,kmax) to solve Ax = b using the general
iterative method as follows: The coefficient matrix is split as A = Q − P,
where Q has the same diagonal and upper diagonal (one level higher
than the diagonal) entries as A with all other entries zero. The input/
output arguments, as well as the terminating condition are as in func-
tions Jacobi and GaussSeidel (Section 4.5) with the same default
values. The output Mnorm is the infinite norm of the corresponding
iteration matrix. Apply GenIter_1 to the linear system

7 1 2 0 1
1 6 1 2 1
0 2 8 3 2
2 1 4 10 2
1 3 1 5 12

18
0
2

21

−
− −

−
−

−























= −x

228

0
0
0
1
0

100 6



























=



























= −, ,x() ε

	 72.	   Write a user-defined function with function call [x,k,Mnorm] = ​
GenIter_2(A,b,x0,tol,kmax) to solve Ax = b using the general
iterative method as follows: The coefficient matrix must be split as
A = Q − P, where Q has the same diagonal, upper diagonal (one level
higher than the diagonal), and lower diagonal (one level lower than
the diagonal) entries as A with all other entries zero. The input/out-
put arguments, as well as the terminating condition are as in functions
Jacobi and GaussSeidel (Section 4.5) with the same default values.
The output Mnorm is the infinite norm of the corresponding iteration
matrix. Apply GenIter_2 to the linear system

− −

− − −
−

− −























= −
−

8 0 1 1 3
0 6 0 1 4
2 1 5 0 1
3 2 1 7 0
1 3 4 1 11

4
16

9x
110

1

0
0
0
1
1

100 6



























=



























= −, ,x() ε

Jacobi Iteration Method

In Problems 73 through 76

167Solution of Systems of Equations

	 a.	  For each linear system, find the components of the first vector
generated by the Jacobi method.

	 b.	   Find the solution vector by executing the user-defined function
Jacobi with default values for tol and kmax.

	 73.	

3 0 1
1 2 0

2 1 4

4
5

8

0
3 1−

−

















= −
















= ×x x 0, ()

	 74.	
1.9 0.7 0.9
0.6 2.3 1.2
0.8 1.3 3.2

1.5
0.7
9.1

−

−

















=











x




=
















, x()0

0
0
1

	 75.	

3 0 1 1
0 4 2 1
1 2 5 0
1 3 2 6

5
3
4

16

−
−
−

−



















=
−
−



















x x, (00

1
0
0
1

) =



















	 76.	

6 2 1 2
2 5 1 0
1 3 7 1
2 1 4 8

5
7

28
6

0

−
−

−
− −



















=



















x x, ()) =



















1
1
0
0

	 77.	  Calculate the components of the first two vectors generated by the
Jacobi method when applied to

−
−

−

















= −
















=















3 1 2
2 4 1
1 2 4

24
5

12

1
1
1

0x x, ()



	 78.	  Calculate the components of the first two vectors generated by the
Jacobi method when applied to

−
−

−

















=
















=
















5 4 0
2 6 3
1 2 3

18
11
3

1
0
1

0x x, ()

Gauss–Seidel Iteration Method

In Problems 79 through 82

	 a.	  For each linear system find the components of the first vector
generated by Gauss–Seidel method.

	 b.	   Find the solution vector by executing the user-defined function
GaussSeidel with tol and kmax set to default values. Discuss
convergence!

168 Numerical Methods for Engineers and Scientists Using MATLAB®

	 79.	
4 2 6
2 17 5
6 5 17

2
25
5

1
1
0

0

−

−

















=
















=
















x x, ()

	 80.	
1 1 2
1 10 4
2 4 24

6
15
58

0
1
1

0

−

−

















=
−















=











x x, ()




81.	

6 3 2 0
3 7 1 2
2 1 8 3
0 2 3 9

14
3
9
6

0

−
−

−
−



















=
−



















x x, ()) =



















1
0
1
0

82.	

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

23
32
33
31



















=



















x x, (00

0
0
1
1

) =



















83.	�  Calculate the components of the first two vectors generated by
Gauss–Seidel method when applied to

1 1 3
1 10 4
3 4 24

5
0

38

1
0
1

0

−

−

















=
−















=















x x, ()



84.	�  Calculate the components of the first two vectors generated by
Gauss–Seidel method when applied to

4 2 6
2 17 5
6 5 17

10
21
35

0
1
0

0

















=
−

−

















=











x x, ()




85.	�   Solve the linear system below by executing user-defined functions
Jacobi and GaussSeidel with the initial vector and tolerance as indi-
cated, and default kmax. Compare the results and discuss convergence.

−
−

− −
−

−























=

−

−

8 2 0 1 3
1 6 2 0 1
2 2 7 1 1
0 4 1 9 2
3 0 1 3 10

2
18
18
3

x

22

1
0
0
1
0

100 6



























=



























= −, ,x() ε

169Solution of Systems of Equations

86.	�   Solve the linear system below by executing user-defined functions
Jacobi and GaussSeidel with the initial vector and tolerance as indi-
cated, and default kmax. Compare the results and discuss convergence.

	

8 1 0 1 3
1 6 1 0 1
0 1 10 1 2
1 0 1 9 1
3 1 2 1 10

41
6

16
24
4

−
− −

−























=
−

x

44

1
0
0
1
0

100 6



























=



























= −, ,x() ε

Ill-Conditioning and Error Analysis (Section 4.6)

Condition Number

In Problems 87 through 92

	 a.	  Calculate the condition number of each matrix using all three
matrix norms.

	 b.	   Verify the results using the MATLAB built-in function cond:

87.	 A =










1 0.3
0.3 0.1

88.	 A = −
















3 1 0
1 1 2
1 1 1

89.	 A =
















5 3 0
3 2 0
0 0 1

90.	 A =
−

















2 7 4
2 1 2
5 1 2

91.	 A =

−
− −

−
−



















1 2 1 3
1 1 1 6
1 3 4 4
2 4 2 5

170 Numerical Methods for Engineers and Scientists Using MATLAB®

92.

	

A =





























×

1
1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7 4 4 Hilbert matrix

Ill-Conditioning

In Problems 93 through 96, a linear system Ax = b, its actual solution xa, and
a poor approximation x̂ of the solution are given. Perform all of the following
to inspect the ill-conditioning or well-conditioning of the system:

	 a.	  Perturb the second component of b by a small ε > 0 and find the
solution of the ensuing system.

	 b.	   Find the condition number of A using the 1-norm.
	 c.	  Calculate the 1-norm of the residual vector corresponding to the

poor approximation x̂.

93.	
2 2

1.0002 0.9998
4

2.0012
, ,









 =









=
−









=





x x xa

4
2

2
0

ˆ 


94.	
1 2

4.0001 2.0002
, ,

2
1 3

2
1

0








 =

−
−









=
−









=
−








x x xa ˆ

95.	
5 9

11
, ,

7.2
4.16

1
1

2
1









 =

−
−









=
−








=
−









x x xa ˆ

96.	

13 14 14
11 12 13
12 13 14

55
48
52

1
2
1

















=
















=








x x, a









=
−















,
0.51

3.61
0.79

x̂

Percent Change

97.	�   Consider the system in Example 4.19 and suppose the second com-
ponent of vector b is increased by 0.0001, while the coefficient matrix
is unchanged from its original form. Find the upper bound for, and
the actual value of, the percent change in solution. Use the vector and
matrix 1-norm.

98.	  Consider

	
Ax b A b= =











−
−









,
6

 ,
5 9

11
1
1

=

171Solution of Systems of Equations

	 a.	�Increase each of the second-column entries of A by 0.01, solve the
ensuing system, and calculate the actual percent change in solu-
tion. Also find an upper bound for the percent change. Use matrix
and vector 1-norm.

	 b.	�In the original system, increase each of the components of b by
0.01, and repeat (a).

Systems of Nonlinear Equations (Section 4.7)

99.	   Consider

	
()

sin
x y

xy x

− + =
− =







1 1 0
0

3

2

First locate the roots graphically. Then find an approximate value for
one of the roots using Newton’s method with initial estimate (4, 0), a ter-
minating condition with ε = 10−4, and allow a maximum of 20 iterations.

100.	   Consider the nonlinear system

	
y x

x y

= −
+ =







2

2 2

4
10

	 a.	�Solve using Newton’s method with initial estimate (2, 0), tolerance
ε = 10−3, and a maximum of 10 iterations.

	 b.	Repeat (a) but with an initial estimate (2, −2).
	 c.	Use a graphical approach to validate the results in (a) and (b).

101.	   Consider the nonlinear system

	
2 0

3 4 82 2

e y

x y

x + =
+ =







	 a.	�Solve using Newton’s method with initial estimate (−1, −2), toler-
ance ε = 10−4, and a maximum of 10 iterations.

	 b.	Repeat (a) but with an initial estimate (−2, 0).
	 c.	Use a graphical approach to validate the results in (a) and (b).

102.	   Consider the nonlinear system

	
x y

x y

2 2

2 22 3 3
+ =

+ =






1.2

172 Numerical Methods for Engineers and Scientists Using MATLAB®

	 a.	�Solve using Newton’s method with initial estimate (0.25,1), toler-
ance ε = 10−4, and a maximum of 10 iterations.

	 b.	�Graph the two nonlinear equations to roughly locate their points
of intersection. Then using Newton’s method with an appropri-
ate initial estimate, approximate the root directly below the one
obtained in (a).

103.	�   Solve the following system of three nonlinear equations in three
unknowns:

	

x y z

x z

x y z

2 2

2 2

2 2 2

2
1
3
1

+ =

+ =

+ + =










using Newton’s method with initial estimate (1,1,0.1), tolerance ε = 10−4,
and a maximum of 10 iterations.

104.	�   A planar, two-link robot arm is shown in Figure 4.8. The coordinate
system xy is the tool frame and is attached to the end-effector. The coor-
dinates of the end-effector relative to the base frame are expressed as

	
x L L

y L L

= + +
= + +





1 1 2 1 2

1 1 2 1 2

cos cos()
sin sin()

θ θ θ
θ θ θ

Suppose the lengths, in consistent physical units, of the two links are
L1 = 1 and L2 = 2, and that x = 2.5, y = 1.4. Find the joint angles θ1 and θ2
(in radians) using Newton’s method with an initial estimate of (0.8, 0.9),
tolerance ε = 10−4, and maximum number of iterations set to 10.

Base frame

y
x

L1

L2

θ1

θ2

Tool frame

x–

y–

Figure 4.8
A two-link arm in plane motion.

173Solution of Systems of Equations

105.	�   Solve (with tolerance ε = 10−4) the following nonlinear system using
Newton’s method:

	

2 2 2 14

2 3 9

2 2

2 2

x xy y

x xy y

+ + =

− + =







106.	�   Solve the following nonlinear system using Newton’s method, with
initial estimate (0, 1, 1) and tolerance ε = 10−3.

	

xy x z

x y z

x y z

− + =
− + =

+ =









cos

sin

2

22
3

3.6
2.8
2.8

2

107.	   Consider

	

sin() cos
cos() sin

α β β
α β α

+ − =
− + =





0.17
.8 1

	 a.	�Locate the roots graphically for the ranges 0 ≤ α ≤ 2 and −6 ≤ β ≤ −4.
	 b.	�Using Newton’s method with ε = 10−4 and initial estimate (1.4, −5.4),

find one root. Find the second root using initial estimate (1.2, −4.4).

108.	�   Consider

	

x y x

y xy x

2

3

2
2 3 2 0

+ − =
+ − =







0.4

	 a.	Locate the roots graphically.
	 b.	�Using Newton’s method with initial estimate (1,1), tolerance

ε = 10−4, and a maximum of 20 iterations, find one of the roots.
	 c.	Find the second root using initial estimate (−0.5, −0.5).
	 d.	Find the third root with initial estimate (−0.25, 0).

109.	   Consider the nonlinear system in Problem 99:

	
xy x

x y

2

3

0
1 1 0
− =

− + =






sin
()

With auxiliary functions

	 g x y
x

y
g x y

x
1 2 2 3

1
1

(,)
sin

(,)
()

= = −
−

,

use the fixed-point iteration method with initial estimate (2, −2), toler-
ance ε = 10−3, and maximum 20 iterations to estimate one solution of the
system.

174 Numerical Methods for Engineers and Scientists Using MATLAB®

110.	   Reconsider the system in Problem 100:

	
y x

x y

= −
+ =







2

2 2

4
10

	 a.	Locate the roots graphically.
	 b.	�Find the root in the first quadrant by using the fixed-point itera-

tion with auxiliary functions

	 g x y y g x y x1 2
24 10(,) (,)= + = −,

		 with (2, 0) as initial estimate, ε = 10−3, and maximum number of
iterations set to 20.

	 c.	�There are three other roots, one in each quadrant. Find these roots
by using combinations of the same g1 and g2 with positive and
negative square roots.

111.	   Recall the nonlinear system in Problem 101:

	
2 0

3 4 82 2

e y

x y

x + =
+ =







	 a.	Locate the roots graphically.
	 b.	�Based on the location of the roots, select suitable auxiliary func-

tions g1 and g2 and apply the fixed-point iteration method with
(−1, −2) as the initial estimate, ε = 10−4, and number of iterations not
to exceed 20, to find one of the two roots.

	 c.	�To find the other root, write the original equations in reverse
order, suitably select g1 and g2, and apply fixed-point iteration with
all information as in (b).

112.	   Consider the nonlinear system in Problem 102.

	 a.	Locate the roots using a graphical approach.
	 b.	Select auxiliary functions

	
g x y y g x y

x
1

2
2

23 2
3

(,) (,)= − = −
1.2 ,

		 and apply the fixed-point iteration method with initial estimate
(0.25, 1) and tolerance ε = 10−4 to find a root. Decide the maximum
number of iterations to be performed.

	 c.	�There are three other roots, one in each of the remaining quad-
rants. Find these roots by using combinations of the same g1 and
g2 with positive and negative square roots.

175

5
Curve Fitting (Approximation)
and Interpolation

A set of data may come from various sources. In many scientific and
engineering applications, the data comes from conducting experiments
where physical quantities are measured; for instance, measuring the dis-
placement of a coiled spring when subjected to tensile or compressive force.
Other times, the data may be generated by other numerical methods; for
instance, numerical solution of differential equations (Chapters 7, 8, and 10).

An available set of data can be used for different purposes. In some situ-
ations, the data is represented by a function, which in turn can be used for
numerical differentiation or integration. Such function is obtained through
curve fitting, or approximation, of the data. Curve fitting is a procedure
where a function is used to fit a given set of data in the “best” possible way
without having to match the data exactly. As a result, while the function does
not necessarily yield the exact value at any of the data points, overall it fits
the set of data well. Several types of functions and polynomials of different
orders can be used for curve fitting purposes. Curve fitting is normally used
when the data has substantial inherent error, such as data gathered from
experimental measurements.

In many other cases, it may be desired to find estimates of values at inter-
mediate points, that is, at the points between the given data points. This is
done through interpolation, a procedure that first determines a polynomial
that agrees exactly with the data points, and then uses the polynomial to
find estimates of values at intermediate points. For a small set of data, inter-
polation over the entire data may be adequately accomplished using a sin-
gle polynomial. For large sets of data, however, different polynomials are
used in different intervals of the whole data. This is referred to as spline
interpolation.

5.1  Least-Squares Regression

As mentioned above, a single polynomial may be sufficient for the inter-
polation of a small set of data. However, when the data has substantial
error, even if the size of data is small, this may no longer be appropriate.
Consider Figure 5.1, which shows a set of seven data points collected from

176 Numerical Methods for Engineers and Scientists Using MATLAB®

an experiment. The nature of the data suggests that for the most part, the y
values increase with the x values. A single interpolating polynomial goes
through all of the data points, but displays large oscillations in some of the
intervals. As a result, the interpolated values near x = 1.2 and x = 2.9 will be
well outside of the range of the original data.

In these types of situations, it makes more sense to find a function that
does not necessarily go through all of the data points, but fits the data well
overall. One option, for example, is to fit the “best” straight line into the
data. This line is not random and can be generated systematically via least-
squares regression.

5.2  Linear Regression

The simplest case of a least-squares regression involves finding a straight
line (linear function) in the form

	 y = a1x + a0	 (5.1)

that best fits a set of n data points (x1, y1), . . . , (xn, yn). Of course, the data
first needs to be plotted to see whether the independent and dependent vari-
ables have a somewhat linear relationship. If this is the case, then the coef-
ficients a1 and a0 are determined such that the error associated with the line

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

Linear least-squares fit

Data

Interpolation using a
single polynomial

Figure 5.1
Interpolation by a single polynomial, and least-squares fit of a set of data.

177Curve Fitting (Approximation) and Interpolation

is minimized. As shown in Figure 5.2, at each data point (xi, yi) the error ei
is defined as the difference between the true value yi and the approximate
value a1xi + a0

	 ei = yi − (a1xi + a0)	 (5.2)

These individual errors will be used to calculate a total error associated
with the line y = a1x + a0.

5.2.1  Deciding a “Best” Fit Criterion

Different strategies can be considered for determining the best linear fit of a
set of n data points (x1, y1), . . . , (xn, yn). One such strategy is to minimize the
sum of all the individual errors

	
E e y a x ai

i

n

i i

i

n

= = +
= =

∑ ∑
1

1 0

1

[()]−
	

(5.3)

This criterion, however, does not offer a good measure of how well the
line fits the data because, as shown in Figure 5.3, it allows for positive and
negative individual errors—even very large errors—to cancel out and yield
a zero sum.

Another strategy is to minimize the sum of the absolute values of the indi-
vidual errors

	
E e y a x ai

i

n

i i

i

n

= = − +
= =

∑ ∑| | | |
1

1 0

1

()
	

(5.4)

x

y

...

y = a1x + a0

(x2 , y2)

(x3 , y3)

(xn, yn)(x1, y1)

e1
e2 e3

en

Figure 5.2
A linear fit of data, and individual errors.

178 Numerical Methods for Engineers and Scientists Using MATLAB®

As a result, the individual errors can no longer cancel out and the total
error is always positive. This criterion, however, is not able to uniquely deter-
mine the coefficients that describe the best line fit because for a given set of
data, several lines can have the same total error. Figure 5.4 shows a set of four
data points with two line fits that have the same total error.

The third strategy is to minimize the sum of the squares of the individual
errors

	
E e y a x ai

i

n

i i

i

n

= = +
= =

∑ ∑2

1

1 0
2

1

[()]−
	

(5.5)

This criterion uniquely determines the coefficients that describe the best
line fit for a given set of data. As in the second strategy, individual errors
cannot cancel each other and the total error is always positive. Also note that
small errors get smaller and large errors get larger. This means that larger

x

y

e1

e2

e3

e4

Figure 5.4
Two linear fits with the same total error calculated by Equation 5.4.

e1

e2 e3

e4

x

y

Figure 5.3
Zero total error based on the criterion defined by Equation 5.3.

179Curve Fitting (Approximation) and Interpolation

individual errors have larger contributions to the total error being mini-
mized so that this strategy essentially minimizes the maximum distance
that an individual data point is located relative to the line.

5.2.2 L inear Least-Squares Regression

As decided above, the criterion to find the line y = a1x + a0 that best fits the
data (x1, y1), . . . , (xn, yn) is to determine the coefficients a1 and a0 that minimize

	
E y a x ai i

i

n

= +
=

∑[()]− 1 0
2

1 	
(5.6)

Noting that E is a (nonlinear) function of a0 and a1, it attains its minimum
where ∂E/∂a0 and ∂E/∂a1 vanish, that is,

	

∂
∂

= − − + − + =

∂
∂

= −

= =
∑ ∑E

a
y a x a y a x a

E
a

i i

i

n

i i

i

n

0
1 0

1

1 0

1

1

2 0 0[()] [()]= ⇒

22 0 01 0

1

1 0

1

x y a x a x y a x ai i i

i

n

i i i

i

n

[()] { [()]}− + = ⇒ − + =
= =

∑ ∑

Expanding and rearranging the above equations yields a system of two
linear equations to be solved for a0 and a1:

	

na x a y

x a x a

i

i

n

i

i

n

i

i

n

i

i

n

0

1

1

1

1

0
2

1

+








 =





















= =

= =

∑ ∑

∑ ∑+ 11

1

=
=

∑ x yi i

i

n

By Cramer’s rule, the solutions are found as

	

a
n x y x y

n x

i i
i

n

i
i

n

i
i

n

i
i

n
1

1 1 1

2

1

=





 − 














= = =

=

∑ ∑ ∑
∑ 

 − 





=











 −

=

= = =

∑

∑ ∑ ∑

x

a
x y x

i
i

n

i
i

n

i
i

n

i
i

n

1

2

0

2

1 1 1

,

















 − 





=

= =

∑
∑ ∑

x y

n x x

i i
i

n

i
i

n

i
i

n

1

2

1 1

2

	

(5.7)

180 Numerical Methods for Engineers and Scientists Using MATLAB®

The user-defined function LinearRegression uses the linear least-
squares regression approach to find the straight line that best fits a set of
data. The function plots this line, as well as the original data.

Example 5.1:  Linear Least-Squares Regression

Consider the data in Table 5.1.

function [a1 a0] = LinearRegression(x,y)
%
% LinearRegression uses linear least-squares
% approximation to fit a data by a line in the form
% y = a1*x + a0.
%
% [a1 a0] = LinearRegression(x,y) where
%
%   x, y are n-dimensional row or column vectors of data,
%
%   a1 and a0 are the coefficients that describe the
%   linear fit.
%
n = length(x);
Sumx = sum(x); Sumy = sum(y); Sumxx = sum(x.*x);
Sumxy = sum(x.*y);
den = n*Sumxx − Sumx^2;
a1 = (n*Sumxy − Sumx*Sumy)/den;
a0 = (Sumxx*Sumy − Sumxy*Sumx)/den;
% Plot the data and the line fit
l = zeros(n,1);   % Pre-allocate
for i = 1:n,
    l(i) = a1*x(i)+ a0;    % Calculate n points on the line
end
plot(x,y,'o')
hold on
plot(x,l)
end

Table 5.1

Data in Example 5.1

xi yi

0.2 8.0
0.4 8.4
0.6 8.8
0.8 8.6
1.0 8.5
1.2 8.7

181Curve Fitting (Approximation) and Interpolation

	 a.	 Using least-squares regression, find a straight line that best fits
the data.

	 b.	 Confirm the results by executing the user-defined function
LinearRegression.

Solution

	 a.	 Noting n = 6, we first calculate all the essential sums involved
in Equation 5.7:

	

x

y

i

i

i

i

=

=

∑

∑

= + + + =

= + + + =

1

6

1

6

51

0.2 0.4 1.2 4.2,

8.0 8.4 8.7





	

xi
i

2

1

6
2 2 2

=
∑ = + + + =(((0.2) 0.4) 1.2) 3.64

	

x yi
i

i

=
∑ = + + + =

1

6

(((0.2)(8.0) 0.4)(8.4) 1.2)(8.7) 36.06

		 Then, following Equation 5.7, the coefficients are found as

	

a

a

1 2

0

6 51
6

5

= −
−

=

=

()() ()()
()() ()

()(

36.06 4.2
3.64 4.2

0.5143,

3.64 11
6 2

) ()()
()() ()

−
−

=4.2 36.06
3.64 4.2

8.1400

		 Therefore, the line that best fits the data is described by

	 y = 0.5143x + 8.1400

	 b.	 Execution of LinearRegression yields the coefficients a1 and
a0, which describe the best line fit, as well as the plot of the line
and the original set of data; Figure 5.5.

>>   x = 0.2:0.2:1.2;
>>   y = [8 8.4 8.8 8.6 8.5 8.7];
>> [a1 a0] = LinearRegression(x,y)

a1 =
    0.5143

a0 =
    8.1400

182 Numerical Methods for Engineers and Scientists Using MATLAB®

5.3  Linearization of Nonlinear Data

If the relationship between the independent and dependent variables is non-
linear, curve-fitting techniques other than linear regression must be used.
One such method is polynomial regression, to be presented in Section 5.4.
Others involve conversion of the data into a form that could be handled by
linear regression. Three examples of nonlinear functions that are used for
curve fitting are as follows.

5.3.1  Exponential Function

One is the exponential function

	 y = aebx  (a,b = constant)	 (5.8)

Because differentiation of the exponential function returns a constant mul-
tiple of the exponential function, this technique applies to situations where
the rate of change of a quantity is directly proportional to the quantity itself;
for instance, radioactive decay. Conversion into linear form is made by tak-
ing the natural logarithm of Equation 5.8 to obtain

	 ln y = bx + ln a	 (5.9)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

x

y

y = 0.5143x + 8.1400

Data

Data

Data

Figure 5.5
The data and the best line fit in Example 5.1.

183Curve Fitting (Approximation) and Interpolation

Therefore, the plot of ln y versus x is a straight line with slope b and inter-
cept ln a; see Figure 5.6a and d.

5.3.2  Power Function

Another example of a nonlinear function is the power function

	 y = axb  (a,b = constant)	 (5.10)

Linearization is achieved by taking the standard (base 10) logarithm of
Equation 5.10

	 log y = blog x + log a	 (5.11)

so that the plot of log y versus log x is a straight line with slope b and intercept
log a; see Figure 5.6b and e.

5.3.3  Saturation Function

The saturation function is in the form

	
y

x
ax b

a b=
+

= constant(,)
	

(5.12)

Inverting Equation 5.12 yields

	

1 1
y

b
x

a= 



 +

	
(5.13)

Exponential function

(a)

(d) (e) (f)

(b) (c)

y = aebx y = axb
y = x/(ax + b)

lny

1 1 1lna log a
log x 1/x

logy 1/y

y y y

x

x

b b b

a

a

x x

Power function

1/a

Saturation function

Figure 5.6
Linearization of three nonlinear functions for curve fitting: (a,d) exponential, (b,e) power, and
(c,f) saturation.

184 Numerical Methods for Engineers and Scientists Using MATLAB®

so that the plot of 1/y versus 1/x is a straight line with slope b and intercept
a; see Figure 5.6c and f.

Example 5.2:  Curve Fit: Saturation Function

Consider the data in Table 5.2. Plot of the data reveals that the saturation
function is suitable for a curve fit; Figure 5.7.

1.5
10 20 30 40 50 60 70 80 90 100

2

2.5

3

3.5

4

4.5

x

y

Figure 5.7
Plot of the data in Table 5.2.

Table 5.2

Data in Example 5.2

x y

10 1.9
20 3.0
30 3.2
40 3.9
50 3.7
60 4.2
70 4.1
80 4.4
90 4.5
100 4.4

185Curve Fitting (Approximation) and Interpolation

>>  x = 10:10:100; y = [1.9 3.0 3.2 3.9 3.7 4.2 4.1 4.4 4.5 4.4];
>>  plot(x,y,'o')    % Figure 5.7

Therefore, the plot of 1/y versus 1/x should be somewhat linear. We will apply
linear regression to this converted data to find the slope and the intercept of the
line fit. Execution of the user-defined function LinearRegression (Section 5.2)
provides this information and also plots the result; Figure 5.8.

>>  xx = 1./x; yy = 1./y;   % Element-by-element reciprocals
>>  [a1 a0] = LinearRegression(xx,yy)

a1 =
    3.3052

a0 =
    0.1890

Based on the form in Equation 5.13, we have b = 3.3052 (slope) and
a = 0.1890 (intercept). Consequently, the saturation function of interest is

	
y

x
ax b

x
x

=
+

=
+0.1890 3.3052

Figure 5.9 shows the plot of this function together with the original data.

Example 5.3:  Curve Fit: Power Function

Consider the data in Table 5.3. Plot of the data reveals that the power
function is suitable for a curve fit; Figure 5.10.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1/x

1/
y 1/y = 3.3052(1/x) + 0.1890

Figure 5.8
Linear fit of the converted data in Example 5.2.

186 Numerical Methods for Engineers and Scientists Using MATLAB®

>>  x = 0.1:0.1:1;

>>  y = [0.02 0.1 0.2 0.35 0.56 0.75 1.04 1.3 1.7 2.09];

>>  plot(x,y,'o')   % Figure 5.10

If the power function is appropriate, then log y and log x should have
a linear relationship. Applying linear regression to the converted data,
we find the slope and the intercept of the line fit. Execution of the user-
defined function LinearRegression provides this information as well
as the plot of the result; Figure 5.11.

>>   xx = log10(x); yy = log10(y);
>>  [a1 a0]= LinearRegression(xx,yy)

Table 5.3

Data in Example 5.3

x y

0.1 0.02
0.2 0.10
0.3 0.20
0.4 0.35
0.5 0.56
0.6 0.75
0.7 1.04
0.8 1.30
0.9 1.70
1.0 2.09

10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

4.5

5

x

y

Original data

Saturation function

Figure 5.9
Curve fit using the saturation function; Example 5.2.

187Curve Fitting (Approximation) and Interpolation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

y

Figure 5.10
Plot of the data in Table 5.3.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−2

–1.5

–1

–0.5

0

0.5

log x

lo
g

y

log y = 1.9769 log x + 0.3252

Figure 5.11
Linear fit of the converted data in Example 5.3.

188 Numerical Methods for Engineers and Scientists Using MATLAB®

a1 =
    1.9769

a0 =
    0.3252

Based on Equation 5.11, we have b = 1.9769 (slope) and log a = 0.3252 (inter-
cept) so that a = 2.1145. The corresponding power function is

	 y = axb = 2.1145x1.9769

Figure 5.12 shows the plot of this function together with the original data.

5.4  Polynomial Regression

In the previous section, we learned that a curve can fit into nonlinear data by
transforming the data into a form that can be handled by linear regression.
Another method is to fit polynomials of different orders to the data by means
of polynomial regression.

The linear least-squares regression of Section 5.2 can be extended to fit a set
of n data points (x1, y1), . . . , (xn, yn) with an mth-degree polynomial in the form

	 y = am xm + am−1 xm−1 + ⋯ + a2x2 + a1x + a0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

y

Power function Original data

Figure 5.12
Curve fit using the power function; Example 5.3.

189Curve Fitting (Approximation) and Interpolation

with a total error

	
E y a x a x a x ai m i

m
i i

i

n

= − + + + +
=

∑[()] 2
2

1 0
2

1 	
(5.14)

The coefficients am, . . . , a2, a1, a0 are to be determined such that E is mini-
mized. A necessary condition for E to attain a minimum is that its partial
derivative with respect to each of these coefficients vanishes, that is

	

∂
∂

= − − + + + +()



 =

∂
∂

= −

=
∑E

a
y a x a x a x a

E
a

i m i
m

i i

i

n

0
2

2
1 0

1

1

2 0

22 0

2

2
2

1 0

1

2

2

x y a x a x a x a

E
a

x y a

i i m i
m

i i

i

n

i i

− + + + +()



{ } =

∂
∂

= − −

=
∑ 

mm i
m

i i

i

n

x a x a x a+ + + +()



{ } =

=
∑ 



2
2

1 0

1

0

  


∂
∂

= − − + + + +()



{ } =

=
∑E

a
x y a x a x a x a

m
i
m

i m i
m

i i

i

n

2 02
2

1 0

1

Manipulation of these equations yields a system of m + 1 linear equations
to be solved for am, . . . , a2, a1, a0:

na x a x a x a yi

i

n

i

i

n

i
m

i

n

m i0

1

1
2

1

2

1

+








 +









 + +









 =

= = =
∑ ∑ ∑

ii

n

i

i

n

i

i

n

i

i

n

x a x a x a

=

= = =

∑

∑ ∑ ∑








 +









 +









 +

1

1

0
2

1

1
3

1

2

 ++








 =









 +






+

= =

= =

∑ ∑

∑ ∑

x a x y

x a x

i
m

i

n

m i i

i

n

i

i

n

i

i

n

1

1 1

2

1

0
3

1




 +









 + +









 =

=

+

= =
∑ ∑ ∑a x a x a x yi

i

n

i
m

i

n

m i i

i

n

1
4

1

2
2

1

2

1



  

x a x ai
m

i

n

i
m

i

n

=

+

=
∑ ∑









 +











1

0
1

1

1 ++








 + +









 =+

= = =
∑ ∑ ∑x a x a x yi

m

i

n

i
m

i

n

m i
m

i

i

n
2

1

2
2

1 1



	(5.15)

190 Numerical Methods for Engineers and Scientists Using MATLAB®

5.4.1  Quadratic Least-Squares Regression

The objective is to fit a set of n data points (x1, y1), . . . , (xn, yn) with a second-
degree polynomial

	 y = a2x2 + a1x + a0

such that the total error

	
E y a x a x ai i i

i

n

= − + +()





=
∑ 2

2
1 0

2

1

is minimized. Following the procedure outlined above, which ultimately led
to Equation 5.15, the coefficients a2, a1, a0 are determined by solving a system
of three linear equations:

	

na x a x a y

x

i

i

n

i

i

n

i

i

n

0

1

1
2

1

2

1

+








 +









 =

= = =
∑ ∑ ∑

ii

i

n

i

i

n

i

i

n

i i

i

n

a x a x a x y
= = = =

∑ ∑ ∑








 +









 +









 =

1

0
2

1

1
3

1

2

1
∑∑

∑ ∑ ∑
= = =









 +









 +









 =x a x a x a x yi

i

n

i

i

n

i

i

n

i i
2

1

0
3

1

1
4

1

2
2

ii

n

=
∑

1 	

(5.16)

The user-defined function QuadraticRegression uses the quadratic
least-squares regression approach to find the second-degree polynomial that
best fits a set of data. The coefficients a2, a1, a0 are found by writing Equation
5.16 in matrix form and applying the built-in backslash “\” operator in
MATLAB®. The function also returns the plot of the data and the best qua-
dratic polynomial fit.

function [a2 a1 a0] = QuadraticRegression(x,y)
%
% QuadraticRegression uses quadratic least-squares
% approximation to fit a data by a 2nd-degree polynomial
% in the form y = a2*x^2 + a1*x + a0.
%
%   [a2 a1 a0] = QuadraticRegression(x,y) where
%
%     x, y are n-dimensional row or column vectors of data,
%
%    a2, a1 and a0 are the coefficients that describe
%    the quadratic fit.
%

191Curve Fitting (Approximation) and Interpolation

Example 5.4:  Curve Fit: Quadratic Regression

Using quadratic least-squares regression, find the second-degree poly-
nomial that best fits the data in Table 5.4.

Solution
>> x = 0:0.4:1.6;
>> y = [2.90 3.10 3.56 4.60 6.70];
>> [a2 a1 a0] = QuadraticRegression(x,y)
a2 =
    1.9554

a1 =
   −0.8536
a0 =
    2.9777

The results are shown in Figure 5.13.

n = length(x);
Sumx = sum(x); Sumy = sum(y);
Sumx2 = sum(x.^2); Sumx3 = sum(x.^3); Sumx4 = sum(x.^4);
Sumxy = sum(x.*y); Sumx2y = sum(x.*x.*y);

% Form the coefficient matrix and the vector of right-hand
% sides
A =[n Sumx Sumx2;Sumx Sumx2 Sumx3;Sumx2 Sumx3 Sumx4];
b =[Sumy;Sumxy;Sumx2y];
w = A\b;  % Solve
a2 = w(3); a1 = w(2); a0 = w(1);
% Plot the data and the quadratic fit
xx = linspace(x(1),x(end));
% Generate 100 points for plotting purposes
p = zeros(100,1);  % Pre-allocate
for i = 1:100,
    p(i)= a2*xx(i)^2 + a1*xx(i)+ a0; % Calculate 100 points
end
plot(x,y,'o')
hold on
plot(xx,p)
end

Table 5.4

Data in Example 5.4

x y

0 2.90
0.4 3.10
0.8 3.56
1.2 4.60
1.6 6.70

192 Numerical Methods for Engineers and Scientists Using MATLAB®

5.4.2  Cubic Least-Squares Regression

The objective is to fit a set of n data points (x1, y1), . . . , (xn, yn) with a third-
degree polynomial
	 y = a3x3 + a2x2 + a1x + a0

such that the total error

	
E y a x a x a x ai i i i

i

n

= − + + +()





=
∑ 3

3
2

2
1 0

2

1

is minimized. Proceeding as before, a3, a2, a1, a0 are determined by solving a
system of four linear equations:

	

na x a x a x a yi

i

n

i

i

n

i

i

n

i

i

0

1

1
2

1

2
3

1

3+








 +









 +









 =

= = = =
∑ ∑ ∑

11

1

0
2

1

1
3

1

n

i

i

n

i

i

n

i

i

n

x a x a x

∑

∑ ∑ ∑
= = =









 +









 +









 +









 =









 +

= =

= =

∑ ∑

∑

a x a x y

x a x

i

i

n

i i

i

n

i

i

n

i

i

2
4

1

3

1

2

1

0
3

1

nn

i

i

n

i

i

n

i i

i

n

i

a x a x a x y

x

∑ ∑ ∑ ∑








 +









 +









 =

= = =

1
4

1

2
5

1

3
2

1

33

1

0
4

1

1
5

1

2
6

1i

n

i

i

n

i

i

n

i

i

n

a x a x a x
= = = =

∑ ∑ ∑ ∑








 +









 +









 +









 =

=
∑a x yi i

i

n

3
3

1 	

(5.17)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

x

y

Data

Quadratic regression
y = 1.9554x2 – 0.8536x + 2.9777

Figure 5.13
Quadratic polynomial fit in Example 5.4.

193Curve Fitting (Approximation) and Interpolation

The user-defined function CubicRegression uses the cubic least-squares
regression approach to find the third-degree polynomial that best fits a set of
data. The coefficients a3, a2, a1, a0 are found by writing Equation 5.17 in matrix
form and solving by “\” in MATLAB. The function also returns the plot of
the data and the best cubic polynomial fit.

function [a3 a2 a1 a0]= CubicRegression(x,y)
%
% CubicRegression uses cubic least-squares approximation
% to fit a data by a 3rd-degree polynomial
% y = a3*x^3 + a2*x^2 + a1*x + a0.
%
%   [a3 a2 a1 a0]= CubicRegression(x,y) where
%
%    x, y are n-dimensional row or column vectors of
%    data,
%
%    a3, a2, a1 and a0 are the coefficients that
%    describe the cubic fit.
%

n = length(x);
Sumx = sum(x); Sumy = sum(y);
Sumx2 = sum(x.^2); Sumx3 = sum(x.^3); Sumx4 = sum(x.^4);
Sumx5 = sum(x.^5); Sumx6 = sum(x.^6);
Sumxy = �sum(x.*y); Sumx2y = sum(y.*x.^2);
Sumx3y = sum(y.*x.^3);

% Form the coefficient matrix and the vector of right-
% hand sides
A =[n Sumx Sumx2 Sumx3;Sumx Sumx2 Sumx3 Sumx4;Sumx2 Sumx3
     Sumx4 Sumx5; Sumx3 Sumx4 Sumx5 Sumx6];
b =[Sumy;Sumxy;Sumx2y;Sumx3y];
w = A\b;   % Solve
a3 = w(4); a2 = w(3); a1 = w(2); a0 = w(1);
% Plot the data and the cubic fit
xx = linspace(x(1),x(end));
p = zeros(100,1);   % Pre-allocate
for i = 1:100,
    p(i)= a3*xx(i)^3 + a2*xx(i)^2 + a1*xx(i) + a0;
    % Calculate 100 points
end
plot(x,y,'o')
hold on
plot(xx,p)
end

194 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 5.5:  Curve Fit: Cubic Regression

Find the cubic polynomial that best fits the data in Example 5.4. Plot the
quadratic and cubic polynomial fits in one graph and compare.

Solution
>>  x = 0:0.4:1.6;
>>  y =[2.90 3.10 3.56 4.60 6.70];
>>  [a3 a2 a1 a0] = CubicRegression(x,y)

a3 =
    1.0417

a2 =
   −0.5446

a1 =
    0.5798

a0 =
    2.8977

>>  [a2 a1 a0] = QuadraticRegression(x,y)
% Previously done in Example 5.4

a2 =
    1.9554

a1 =
   −0.8536

a0 =
    2.9777

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

x

y Quadratic regression

Cubic regression

Figure 5.14
Quadratic and cubic polynomial fits; Example 5.5.

195Curve Fitting (Approximation) and Interpolation

Figure 5.14 clearly shows that the cubic polynomial fit is superior to the
quadratic one. The cubic polynomial fit almost goes through all five data
points, but not exactly. This is because a third-degree polynomial has four
coefficients but the data contains five points. A fourth-degree polynomial,
which has five coefficients, would exactly agree with the data in this exam-
ple. In general, if a set of n data points is given, then the (n − 1)th-degree
polynomial that best fits the data will agree exactly with the data points.
This is the main idea behind interpolation, and such polynomial is called an
interpolating polynomial. We will discuss this topic in Section 5.5.

5.4.3  MATLAB® Built-In Functions polyfit and polyval

A brief description of the MATLAB built-in function polyfit is given as

POLYFIT Fit polynomial to data.

  � P = POLYFIT(X,Y,N) finds the coefficients of a polynomial
P(X) of degree N that fits the data Y best in a least-
squares sense. P is a row vector of length N+1 containing
the polynomial coefficients in descending powers, P(1)*
X^N + P(2)*X^(N−1) + ⋯ + P(N)* X + P(N+1).

This polynomial can then be evaluated at any x using the built-in function
polyval.

Example 5.6:  Curve Fit: polyfit Function

Using the polyfit function, find and plot the third-degree polyno-
mial that best fits the data in Table 5.5. Apply the user-defined function
CubicRegression and compare the results.

Solution
>> x = 0:0.3:1.2;
>> y = [3.6 4.8 5.9 7.6 10.9];
>> P = polyfit(x,y,3)

P =
  � 5.2469    −5.6349    5.2897    3.5957
  � % Coefficients of the 3rd-deg polynomial fit

Table 5.5

Data in Example 5.6

x y

0 3.6
0.3 4.8
0.6 5.9
0.9 7.6
1.2 10.9

196 Numerical Methods for Engineers and Scientists Using MATLAB®

>> xi = linspace(0,1.2);
% Generate 100 points for plotting purposes
>> yi = polyval(P,xi);
% Evaluate the polynomial at these points
>> plot(xi,yi)   % Figure 5.15
>> hold on
>> plot(x,y,'o')

Execution of CubicRegression yields:

>> [a3 a2 a1 a0] = CubicRegression(x,y)

a3 =
    5.2469

a2 =
   −5.6349

a1 =
    5.2897

a0 =
    3.5957

The coefficients of the third-degree polynomial are precisely those
returned by polyfit.

5.5  Polynomial Interpolation

Given a set of n + 1 data points (x1, y1), . . . , (xn+1, yn+1), there is only one poly-
nomial of degree at most n in the form

	 p(x) = an+1xn + anxn−1 + ⋯ + a3x2 + a2x + a1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
3

4

5

6

7

8

9

10

11

x

y
Data Third-degree polynomial fit

Figure 5.15
Cubic polynomial fit using polyfit.

197Curve Fitting (Approximation) and Interpolation

that goes through all the points. Although this polynomial is unique, it can
be expressed in different forms. The two most commonly used forms are
provided by Lagrange interpolating polynomials and Newton interpolating
polynomials, which are presented in this section.

5.5.1 L agrange Interpolating Polynomials

The first-degree Lagrange interpolating polynomial that goes through the
two points (x1, y1) and (x2, y2) is in the form

	 p1(x) = L1(x)y1 + L2(x)y2

where L1(x) and L2(x) are the Lagrange coefficient functions and described by

	
L x

x x
x x

L x
x x
x x

1
2

1 2
2

1

2 1
() ()= −

−
= −

−
,

Then, L1(x1) = 1 and L1(x2) = 0, while L2(x1) = 0 and L2(x2) = 1. As a result,
p1(x1) = y1 and p1(x2) = y2, which means the polynomial, in this case a straight
line, passes through the two points; see Figure 5.16a.

The second-degree Lagrange interpolating polynomial that goes through
the three points (x1, y1), (x2, y2), and (x3, y3) is in the form

	 p2(x) = L1(x)y1 + L2(x)y2 + L3(x)y3

where

	

L x
x x x x
x x x x

L x
x x x x
x x

1
2 3

1 2 1 3
2

1 3

2 1
()

()()
()()

()
()()

()
= − −

− −
= − −

−
,

(()

()
()()

()()

x x

L x
x x x x
x x x x

2 3

3
1 2

3 1 3 2

−

= − −
− −

,

x

y

x

y(a) (b)

p1(x)

p2(x)

(x1, y1) (x1, y1)

(x2, y2)
(x3, y3)

(x2, y2)

Figure 5.16
(a) First-degree and (b) second-degree Lagrange interpolating polynomials.

198 Numerical Methods for Engineers and Scientists Using MATLAB®

Then, L1(x1) = 1 = L2(x2) = L3(x3), while all other Li(xj) = 0 for i ≠ j. This guar-
antees p2(x1) = y1, p2(x2) = y2, and p2(x3) = y3, so that the polynomial goes
through the three points; see Figure 5.16b.

In general, the nth-degree Lagrange interpolating polynomial that goes
through n + 1 points (x1, y1), . . . , (xn+1, yn+1) is formed as

	
p x L x y L x y L x yn n n i i

i

n

() () () ()= + + =+ +

=

+

∑1 1 1 1

1

1


	

(5.18)

where each Li(x) is defined as

	

L x
x x
x x

i
j

i jj
j i

n

() =
−
−

=
≠

+

∏
1

1

	

(5.19)

and “Π” denotes the product of terms.
The user-defined function LagrangeInterp finds the Lagrange interpo-

lating polynomial that fits a set of data and uses this polynomial to calculate
the interpolated value at a specified point.

function yi = LagrangeInterp(x,y,xi)
%
% LagrangeInterp finds the Lagrange interpolating
% polynomial that fits the data (x,y) and uses it to find the
% interpolated value at xi.
%
%   yi = LagrangeInterp(x,y,xi) where
%
%    x, y are n-dimensional row or column vectors of data,
%    xi is a specified point,
%
%    yi is the interpolated value at xi.
%
n = length(x);
L = zeros(1,n);   % Pre-allocate

for i = 1:n,
    L(i) = 1;
    for j = 1:n,
      if j ~= i,
        L(i) = L(i)* (xi − x(j))/(x(i) − x(j));
      end
    end
end
yi = sum(y.* L);

199Curve Fitting (Approximation) and Interpolation

Example 5.7:  Lagrange Interpolation

Find the second-degree Lagrange interpolating polynomial for the
data in Table 5.6. Use this polynomial to find the interpolated value
at x = 0.3. Confirm the result by executing the user-defined function
LagrangeInterp.

Solution

The three Lagrange coefficient functions are first found as

	
L x

x x x x
x x x x

x x
1

2 3

1 2 1 3
()

()()
()()

()()
()(

= − −
− −

= − −
−

0.5 0.9
0.1 0.5 0..1 0.9−)

	
L x

x x x x
x x x x

x x
2

1 3

2 1 2 3
()

()()
()()

()()
()(

= − −
− −

= − −
−

0.1 0.9
0.5 0.1 0..5 0.9−)

	
L x

x x x x
x x x x

x x
3

1 2

3 1 3 2
()

()()
()()

()()
()(

= − −
− −

= − −
−

0.1 0.5
0.9 0.1 0..9 0.5−)

The second-degree polynomial is then formed as

	

0.5 0.9
0.1 0.5 0

p x L x y L x y L x y

x x

2 1 1 2 2 3 3() () () ()

()()
()(

= + +

= − −
− ..1 0.9

0.12
0.1 0.9

0.5 0.1 0.5 0.9
0.47

0

−
− −
− −

+ −

)
()

()()
()()

()

(

+ x x

x ..1 0.5
0.9 0.1 0.9 0.5

0.65

0.5312 1.19
simplify

)()
()()

()
x

x

−
− −

= − +2 337 0.0059x +

Using this polynomial, we can interpolate at x = 0.3 to find

	 p2 (0.3) = 0.3162

Table 5.6

Data in Example 5.7

i xi yi

1 0.1 0.12
2 0.5 0.47
3 0.9 0.65

200 Numerical Methods for Engineers and Scientists Using MATLAB®

The result can be readily verified in MATLAB as follows:

>> x = [0.1 0.5 0.9];
>> y = [0.12 0.47 0.65];
>> yi = LagrangeInterp(x,y,0.3)

yi =
    0.3162

5.5.2  Drawbacks of Lagrange Interpolation

With Lagrange interpolating polynomials, we learned that going from one
degree to the next, no information is stored from the lower-degree polyno-
mial and used in the construction of the new higher-degree polynomial. This
is particularly inconvenient in two situations: (1) when the exact degree of
the interpolating polynomial is not known in advance; for instance, it might
be better to use a portion of the set of data, or (2) when additional points are
added to the data. In these cases, a more suitable form is provided by the
Newton interpolating polynomials.

5.5.3  Newton Divided-Difference Interpolating Polynomials

The Newton interpolating polynomials are recursively constructed as

	

p x a a x x

p x a a x x a x x x x p x a

1 1 2 1

2 1 2 1 3 1 2 1 3

() ()

() () ()() ()

= + −

= + − + − − = + (()()

() () ()()()

() (

x x x x

p x p x a x x x x x x

p x P xn n

− −

= + − − −

= −

1 2

3 2 4 1 2 3

1

…

)) ()() ()+ − − −+a x x x x x xn n1 1 2 ... 	

(5.20)

where the coefficients a1, a2, . . . , an+1 are determined inductively as follows:
Since p1(x) must agree with the data at (x1, y1) and (x2, y2), we have

	 p1(x1) = y1,  p1(x2) = y2

so that

	

a a x x y

a a x x y
a y a

y y
x x

1 2 1 1 1

1 2 2 1 2
1 1 2

2 1

2 1

+ − =
+ − =

⇒ = = −
−

()
()

,

Similarly, p2(x) must agree with the data at (x1, y1), (x2, y2), and (x3, y3); hence

	 p2(x1) = y1,  p2(x2) = y2,  p2(x3) = y3

This gives a1 and a2 as above, and

	
a

y y x x y y x x
x x

3
3 2 3 2 2 1 2 1

3 1
= − − − − −

−
() ())/()/(

201Curve Fitting (Approximation) and Interpolation

Continuing this process yields all remaining coefficients. These coeffi-
cients follow a systematic pattern that is best understood through Newton’s
divided differences. For two points (x1, y1) and (x2, y2), the first divided differ-
ence is the slope of the line connecting them and denoted by

	
f x x

y y
x x

a[,]2 1
2 1

2 1
2= −

−
=

For three points (x1, y1), (x2, y2), and (x3, y3), the second divided difference
is defined as

	
f x x x

f x x f x x
x x

y y x x y y
[, ,]

[,] [,] () (
3 2 1

3 2 2 1

3 1

3 2 3 2 2 1= −
−

= − − − −)/()//(x x
x x

a2 1

3 1
3

−
−

=)

In general, the kth divided difference is described by

	
f x x x x

f x x x x f x x x x
x

k k
k k k k

k
[, , , ,]

[, , , ,] [, , , ,]
+

+ −= −
1 2 1

1 3 2 1 2 1…
… …

++
+−

=
1 1

1
x

ak
	

(5.21)

Therefore, the nth-degree Newton divided-difference interpolating poly-
nomial for the data (x1, y1), . . . , (xn+1, yn+1) is formed as

	

p x a a x x a x xn

y f x x f x x x

() () (
, , ,

= + − + −
↓ ↓

[]
↓

[]
1 2 1 3

1 2 1 3 2 1

11 2

1 1 2

1 1

)()

()() ()
, ,

x x

a x x x x x xn

f x x

n

n

− +

+ − − −+
↓

[]+

�

�
…

	

(5.22)

where the coefficients a1, . . . , an+1 are best calculated with the aid of a divided-
differences table. A typical such table is presented in Table 5.7 corresponding
to a set of five data points.

The user-defined function NewtonInterp finds the Newton divided-
difference interpolating polynomial that fits a set of data and uses this
polynomial to calculate the interpolated value at a specific point.

function yi = NewtonInterp(x,y,xi)
%
% NewtonInterp finds the Newton divided-difference
% interpolating polynomial that fits the data (x,y) and
% uses it to find the interpolated value at xi.
%
%   yi = NewtonInterp(x,y,xi) where
%
%    x, y are n-dimensional row or column vectors of data,
%    xi is a specified point,

202 Numerical Methods for Engineers and Scientists Using MATLAB®

%
%    yi is the interpolated value at xi.
%
n = length(x);
a = zeros(1,n);   % Pre-allocate
a(1) = y(1);

DivDiff = zeros(1,n−1);   % Pre-allocate

for i = 1:n−1,
 DivDiff(i,1) = (y(i+1) − y(i))/(x(i+1) − x(i));
end
for j = 2:n−1,
 for i = 1:n–j,
 DivDiff(i,j) = �(DivDiff(i+1,j−1) − DivDiff(i,j−1))/
  (x(j+i) − x(i));
 end
end
for k = 2:n,
 a(k) = DivDiff(1,k−1);
end
yi = a(1);
xprod = 1;
for m = 2:n,
 xprod = xprod*(xi − x(m−1));
 yi = yi + a(m)*xprod;
end

Table 5.7

Divided Differences Table

xi yi

First
Divided Diff.

Second
Divided Diff.

Third
Divided Diff.

Fourth
Divided Diff.

x1 y a1 1=

f x x a[,]2 1 2=

x2 y2 f x x x a[, ,]3 2 1 3=

f [x3, x2] f x x x x a[, , ,]4 3 2 1 4=

x3 y3 f [x4, x3, x2] f x x x x x a[, , , ,]5 4 3 2 1 5=

f [x4, x3] f [x5, x4, x3, x2]
x4 y4 f [x5, x4, x3]

f [x5, x4]
x5 y5

203Curve Fitting (Approximation) and Interpolation

Example 5.8:  Newton Interpolation, Divided Differences

Find the fourth-degree Newton interpolating polynomial for the
data in Table 5.8. Use this polynomial to find the interpolated value
at x = 0.7. Confirm the result by executing the user-defined function
NewtonInterp.

Solution

The divided differences are calculated according to Equation 5.21 and
recorded in Table 5.9.

The fourth-degree Newton interpolating polynomial is then formed as

	

p x a a x x a x x x x a x x x x x x

a x

4 1 2 1 3 1 2 4 1 2 3

5

() () ()() ()()()

(

= + − + − − + − − −

+ −− − − −

= + − − − − +

x x x x x x x

x x x

1 2 3 4

0 0 0

)()()()

() ()()1.2100 0.8100 0.1 0..3664

0.1 0.2 0.1254 0.1 0.2 0.5

()

()() ()()()(

x

x x x x x x

−

− − − − − − −

0

0×))

= − + − +0.1254 0.4667 0.9412 1.2996x x x x4 3 2

Using this polynomial, we can find the interpolated value at x = 0.7, as

	 p4 (0.7) = 0.5784

The result can be readily verified in MATLAB as follows:

>> x = [0 0.1 0.2 0.5 0.8];
>> y = [0 0.1210 0.2258 0.4650 0.6249];
>> yi = NewtonInterp(x,y,0.7)

yi =
    0.5785

5.5.4  Special Case: Equally Spaced Data

In the derivation of Newton divided difference interpolating polynomial,
Equation 5.22, no restriction was placed on how the data was spaced. In

Table 5.8

Data in Example 5.8

xi yi

0 0
0.1 0.1210
0.2 0.2258
0.5 0.4650
0.8 0.6249

204 Numerical Methods for Engineers and Scientists Using MATLAB®

Ta
b

le
 5

.9

D
iv

id
ed

 D
if

fe
re

nc
es

 T
ab

le
 fo

r
E

xa
m

pl
e

5.
8

x i
y i

Fi
rs

t D
iv

id
ed

 D
if

f.
S

ec
on

d
 D

iv
id

ed
 D

if
f.

T
h

ir
d

 D
iv

id
ed

 D
if

f.
Fo

u
rt

h
 D

iv
id

ed
 D

if
f.

0
01a

0.
12

10
0.

1
1.

21
00

−
−

=
0

0

2a

0.
1

0.
12

10
1.

04
80

1.
21

00
0.

2
0.

81
00

− −
=

−
0

3a

0.
22

58
0.

12
10

0.
2

0.
1

1.
04

80
− −

=
−

−
− −

=
0.

62
68

0.
81

00
0.

5
0.

36
64

(
)

0

4a

0.
2

0.
22

58
0.

79
73

1.
04

80
0.

5
0.

1
0.

62
68

− −
=

−
0.

26
61

0.
36

64
0.

8
0.

12
54

− −
=

−
0

5a

0.
46

50
0.

22
58

0.
5

0.
2

0.
79

73
− −

=
−

−
−

−
=

0.
44

05
0.

62
68

0.
8

0.
1

0.
26

61
(

)

0.
5

0.
46

50
0.

53
30

0.
79

73
0.

8
0.

2
0.

44
05

− −
=

−

0.
62

49
0.

46
50

0.
8

0.
5

0.
53

30
− −

=

0.
8

0.
62

49

205Curve Fitting (Approximation) and Interpolation

the event that the data is equally spaced, as it is often the case in practice,
the divided differences reduce to simpler forms. Let every two successive
x values in the data (x1, y1), . . . , (xn+1, yn+1) be separated by distance h so that

	 xi+1 − xi = h,  i = 1, 2, . . . , n

Consequently,

	 x2 = x1 + h,  x3 = x1 + 2h, . . . ,  xn+1 = x1 + nh

The first forward difference at xi is defined as

	 Δyi = yi+1 − yi,  i = 1, 2, . . . , n

The second forward difference at xi is defined as

	 Δ2yi = Δyi+1 − Δyi,  i = 1, 2, . . . , n

In general, the kth forward difference is described as

	 Δkyi = Δk−1 yi+1 − Δk−1 yi,  k = 1, 2, . . . , n	 (5.23)

We next find out how the divided differences and forward differences
are related. For (x1, y1) and (x2, y2), the first divided difference can be writ-
ten as

	
f x x

y y
x x

y
h

[,]2 1
2 1

2 1

1= −
−

= ∆

For (x1, y1), (x2, y2), and (x3, y3), the second divided difference is

	

f x x x
y y x x y y x x

x x
y y

[, ,]
() () (

3 2 1
3 2 3 2 2 1 2 1

3 1

2 1= − − − − −
−

= −)/()/()∆ ∆ //h
h

y y
h

y
h

2

2 2
2 1

2

2
1

2= − =∆ ∆ ∆

In general, for (x1, y1), . . . , (xk+1, yk+1), the kth divided difference can be
expressed as

	
f x x x x

y
k h

k k

k

k[, , , ,]
!+ =1 2 1

1…
∆

206 Numerical Methods for Engineers and Scientists Using MATLAB®

5.5.5  Newton Forward-Difference Interpolating Polynomials

Any arbitrary x between x1 and xn+1 can be expressed as x = x1 + mh for a suit-
able real value m. Then

	

x x x mh x mh x x mh h m h

x x m h

x x mn

− = + − = − − = − = −

− = −

− = −

2 1 2 2 1

3

1

2

() () ()

()

(

…

(())n h− 1

Substitution of these, together with the relations between divided differ-
ences and forward differences established above, into Equation 5.22, yields
the Newton forward-difference interpolating polynomial as

	

p x y
y
h

mh
y
h

mh m h

y
n h

mh m

n

n

n

() () ()(())

!
()(()

= + + −

+ −

1
1

2
1

2

1

2
1

1

∆ ∆

∆

+

hh m n h

y m y
m m

y
m m m n

n
n

) ()

()
!

() (())
!






()− −

= + + − + + − − −

1

1
2

1 1
1 1

2
1∆ ∆ ∆ yy

m
x x
h

1

1where = −

	
(5.24)

This polynomial is best formed with the aid of a forward-differences table,
as in Table 5.10.

Table 5.10

Forward Differences Table

xi yi

First
Forward Diff.

Second
Forward Diff.

Third
Forward Diff.

x1 y1

∆y1

x2 y2 ∆2
1y

Δy2 ∆3
1y

x3 y3 Δ2y2

Δy3

x4 y4

207Curve Fitting (Approximation) and Interpolation

Example 5.9:  Newton Interpolation, Forward Differences

For the data in Table 5.11, interpolate at x = 0.52 using the third-degree
Newton forward-difference interpolating polynomial. Confirm the
result by executing the user-defined function NewtonInterp.

Solution

The forward differences are calculated according to Equation 5.23 and
recorded in Table 5.12. Since we are interpolating at x = 0.52, we have

	
m

x x
h

= − = − =1 0.52 0.4
0.1

1.2

Inserting this and the proper (boxed) entries of Table 5.12 into Equation
5.24, we find the interpolated value as

	

p3
2

() (0.52 0.921061 1.2(0.043478)
(1.2)(0.2)

0.008769)

(1

= + − + −

+ ..2)(0.2)(0.8)
(0.000522) 0.867818

− =
6

The actual value is cos(0.52) = 0.867819, indicating a 5-decimal place
accuracy. The result can be verified in MATLAB using the user-defined
function NewtonInterp.

Table 5.11

Data in Example 5.9

xi yi = cos(xi)

0.4 0.921061

0.5 0.877583

0.6 0.825336

0.7 0.764842

Table 5.12

Forward Differences Table for Example 5.9

xi yi First Forward Diff. Second Forward Diff. Third Forward Diff.

0.4 0.921061

−0.043478

0.5 0.877583 −0.008769

 − 0.052247 0.000522

0.6 0.825336  − 0.008247
 − 0.060494

0.7 0.764842

208 Numerical Methods for Engineers and Scientists Using MATLAB®

>> x = [0.4 0.5 0.6 0.7];
>> y = [0.921061 0.877583 0.825336 0.764842];
>> format long
>> yi = NewtonInterp(x,y,0.52)

yi =
    0.867818416000000

5.6  Spline Interpolation

In Section 5.5, we used nth-degree polynomials to interpolate n + 1 data
points. For example, we learned that a set of 11 data points can be interpo-
lated by a single 10th-degree polynomial. When there are a small number
of points in the data, the degree of the interpolating polynomial will also be
small, and the interpolated values are generally accurate. However, when
a high-degree polynomial is used to interpolate a large number of points,
large errors in interpolation are possible, as shown in Figure 5.17. The main
contributing factor is the large number of peaks and valleys that accompany
a high-degree polynomial. These problems can be avoided by using several
low-degree polynomials, each of which is valid in one interval between one
or more data points. These low-degree polynomials are known as splines.
The term “spline” originated from a thin, flexible strip, known as a spline,

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

x

y

Cubic spline

10th-degree polynomial

Large errors possible
in interpolated values

Cubic spline

Large errors possible
in interpolated values

Figure 5.17
A 10th-degree polynomial and cubic splines for interpolation of 11 data points.

209Curve Fitting (Approximation) and Interpolation

used by draftsmen to draw smooth curves over a set of points marked by
pegs or nails. The data points at which two splines meet are called knots.

The most commonly used splines are cubic splines, which produce very
smooth connections over adjacent intervals. Figure 5.17 shows the clear
advantage of using several cubic splines as opposed to one single high-
degree polynomial for interpolation of a large set of data.

5.6.1 L inear Splines

With linear splines, straight lines (linear functions) are used for interpolation
between the data points. Figure 5.18 shows the linear splines used for a set
of four data points, as well as the third-degree interpolating polynomial. If
the data points are labeled (x1, y1), (x2, y2), (x3, y3), and (x4, y4), then, using the
Lagrange form, the linear splines are simply three linear functions defined as

	

S x
x x
x x

y
x x
x x

y x x x

S x
x x
x x

y
x x

1
2

1 2
1

1

2 1
2 1 2

2
3

2 3
2

()

()

= −
−

+ −
−

≤ ≤

= −
−

+ −

,

22

3 2
3 2 3

3
4

3 4
3

3

4 3
4 3 4

x x
y x x x

S x
x x
x x

y
x x
x x

y x x x

−
≤ ≤

= −
−

+ −
−

≤ ≤

,

,()

This is clearly the same as linear interpolation as discussed in Section 5.5.
The obvious drawback of linear splines is that they are not smooth so that

2 3 4 5 6 7 8
1

2

3

4

5

6

7

x

y

x3 x4

3rd-degree interpolating
polynomial

x2x1

S1(x) S2(x)

S3(x)

Figure 5.18
Linear splines.

210 Numerical Methods for Engineers and Scientists Using MATLAB®

the slope experiences sudden changes at the knots. This is because the first
derivatives of neighboring linear functions do not agree. To circumvent this
problem, higher-degree polynomial splines are used such that the deriva-
tives of every two successive splines agree at the point (knot) they meet.
Quadratic splines ensure continuous first derivatives at the knots, but not the
second derivatives. Cubic splines ensure continuity of both first and second
derivatives at the knots, and are most commonly used in practice.

5.6.2  Quadratic Splines

The idea behind quadratic splines is to use second-degree polynomials to
interpolate over each interval between data points. Suppose there are n + 1
data points (x1, y1), . . . , (xn+1, yn+1) so that there are n intervals and thus n qua-
dratic polynomials; see Figure 5.19. Each quadratic polynomial is in the form

	 Si(x) = ai x2 + bi x + ci,  i = 1, 2, . . . , n	 (5.25)

where ai, bi, ci (i = 1, 2, . . . , n) are unknown constants to be determined. Since
there are n such polynomials, and each has three unknown constants, there are
a total of 3n unknown constants. Therefore, exactly 3n equations are needed
to determine all the unknowns. These equations are generated as follows:

5.6.2.1  Function Values at the Endpoints

The first polynomial S1(x) must go through (x1, y1), and the last polynomial
Sn(x) must go through (xn+1, yn+1):

	

S x y

S x yn n n

1 1 1

1 1 2

()
()

=
=



+ +

equations

S1(x) = a1x2 + b1x + c1

S2(x) = a2x2 + b2x + c2

Sn(x) = anx2 + bnx + cn

(x2, y2)

(x3, y3)
(xn, yn)

(xn+1, yn+1)
(x1, y1)

x1 x2 x3 xn xn+1

Figure 5.19
Quadratic splines.

211Curve Fitting (Approximation) and Interpolation

More specifically,

	

a x b x c y

a x b x c yn n n n n n

1 1
2

1 1 1 1

1
2

1 1

+ + =
+ + =+ + + 	

(5.26)

5.6.2.2  Function Values at the Interior Knots

At the interior knots, two conditions must hold: (1) polynomials must go through
the data points, and (2) adjacent polynomials must agree at the data points:

	

S x y S x y S x y

S x y S x y S
n n n1 2 2 2 3 3 1

2 2 2 3 3 3

() () ()
() ()

= = =
= =

−, , ,
, , ,

…
… nn n n n

n

x y() =


 −

−

 equations

 equations

1

1

More specifically,

	

S x y i n

S x y i n
i i i

i i i

() , , ,
() , , ,

+ += = −
= =

1 1 1 2 1
2 3

,
,

…
…

so that

	

a x b x c y i n

a x b x c y i
i i i i i i

i i i i i i

+ + ++ + = = −
+ + = =

1
2

1 1
2

1 2 1
2 3

,
,

, , ,
, ,
…
… ,, n 	

(5.27)

5.6.2.3  First Derivatives at the Interior Knots

At the interior knots, the first derivatives of adjacent quadratic polynomials
must agree:

	
′ = ′ ′ = ′ ′ = ′ }− −
S x S x S x S x S x S xn n n n n1 2 2 2 2 3 3 3 1 1

() () () () () (), , ,
 eq

…
uuations

More specifically,

	 ′ = ′ = −+ + +S x S x i ni i i i() () , , ,1 1 1 1 2 1, …

Noting that Si′(x) = 2aix + bi, the above yields

	 2ai xi+1 + bi = 2ai+1 xi+1 + bi+1,  i = 1, 2, . . . , n − 1	 (5.28)

So far, we have managed to generate 2 + (n − 1) + (n − 1) + (n − 1) = 3n − 1
equations. One more equation is needed to complete the task. Among several
available choices, we select the following:

212 Numerical Methods for Engineers and Scientists Using MATLAB®

5.6.2.4  Second Derivative at the Left Endpoint is Zero

	 ′′ =S x1 1 0() }1 equation

Noting that S1′′ (x1) = 2a1, this yields

	 a1 = 0	 (5.29)

A total of 3n equations have therefore been generated.
In summary, one equation simply gives a1 = 0 and the remaining 3n − 1

unknowns are found by solving the 3n − 1 equations provided by Equations
5.26 through 5.28.

Example 5.10:  Quadratic Splines

Construct the quadratic splines for the data in Table 5.13.

Solution

Since there are 4 data points, we have n = 3 so that there are 3 quadratic
splines with a total of 9 unknown constants. Of these, one is given by
a1 = 0. The remaining 8 equations to solve are provided by Equations 5.26
through 5.28 as follows.

Equation 5.26 yields

	

a b c

a b c
1

2
1 1

3
2

3 3

2 2 5() ()
() ()

+ + =
+ + =

7.5 7.5 1.5

Equation 5.27 yields

	

a b c

a b c

a b

1
2

1 1

2
2

2 2

2
2

2

3 3
5 5
3 3

() ()
() ()
() (

+ + =
+ + =
+

2.3
5.1

))
() ()

+ =
+ + =

c

a b c
2

3
2

3 35 5
2.3
5.1

Table 5.13

Data in Example 5.10

xi yi

2 5
3 2.3
5 5.1
7.5 1.5

213Curve Fitting (Approximation) and Interpolation

Finally, Equation 5.28 gives

	

2 3 2 3
2 5 2 5

1 1 2 2

2 2 3 3

a b a b

a b a b

() ()
() ()

+ = +
+ = +

Substituting a1 = 0 and writing the above equations in matrix form, we
arrive at

	

2 1 0 0 0 0 0 0
0 0 0 0 0 1
3 1 0 0 0 0 0 0
0 0 25 5 1 0 0 0
0 0 9 3 1 0 0 0
0 0 0 0 0 25 5 1
1 0

56.25 7.5

−− −
− −

































6 1 0 0 0 0
0 0 10 1 0 10 1 0

1

1

2

2

2

b

c

a

b

c

a33

3

3

5

0
0

b

c





































=











1.5
2.3
5.1
2.3
5.1



























This system is subsequently solved to obtain

	

a

b

c

a

b

c

a1

1

1

2

2

2

30
15

=
= −
=

=
= −
=

= −
2.7

10.4

2.05

28.85

2..776
33.26

91.8
b

c
3

3

=
= −

Therefore, the quadratic splines are completely defined by the follow-
ing three second-degree polynomials:

	

S x x x

S x x
1

2
2

2 3
1

()
()

= − + ≤ ≤
= −

2.7 10.4,
2.05 55 5

3
2

x x

S x x x x

+ ≤ ≤
= − + − ≤ ≤

28.85, 3
2.776 33.26 91.8, 5 7.5()

Results are shown graphically in Figure 5.20. Note that the first spline,
S1(x), describes a straight line since a1 = 0.

5.6.3  Cubic Splines

In cubic splines, third-degree polynomials are used to interpolate over each
interval between data points. Suppose there are n + 1 data points (x1, y1), …,
(xn+1, yn+1) so that there are n intervals and thus n cubic polynomials. Each
cubic polynomial is conveniently expressed in the form

	 Si(x) = ai (x − xi)3 + bi (x − xi)2 + ci (x − xi) + di,  i = 1, 2, … , n	 (5.30)

where ai, bi, ci, di (i = 1, 2, … , n) are unknown constants to be determined.
Since there are n such polynomials, and each has 4 unknown constants, there

214 Numerical Methods for Engineers and Scientists Using MATLAB®

are a total of 4n unknown constants. Therefore, 4n equations are needed to
determine all the unknowns. These equations are derived based on the same
logic as quadratic splines, except that second derivatives of adjacent splines
also agree at the interior knots and two boundary conditions are required.

Splines go through the endpoints and interior knots, and adjacent splines agree at
the interior knots (2n equations)

	

S x y S x y

S x S x
n n n

i i i i

1 1 1 1 1

1 1 1

() ()
()

= =
=

+ +

+ + +

,
(),,

,
i n

S x y i ni i i

= −
= =

1 2 1
2 3

, , ,
() , , ,

…
… 	

(5.31)

First derivatives of adjacent splines agree at the common interior knots (n − 1
equations)

	 ′ () = ′ () = −+ + +S x S x i ni i i i1 1 1 1 2 1, , , ,… 	 (5.32)

Second derivatives of adjacent splines agree at the common interior knots (n − 1
equations)

	 ′′ = ′′ = −+ + +S x S x i ni i i i() () , , ,1 1 1 1 2 1, … 	 (5.33)

A total of 4n − 2 equations have been generated up to this point. The other
two are provided by the boundary conditions. Boundary conditions indicate

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

2

3

4

5

6

7

8

x

Q
ua

dr
at

ic
 sp

lin
e

S2(x)

S1(x)

S3(x)

Figure 5.20
Quadratic splines in Example 5.10.

215Curve Fitting (Approximation) and Interpolation

the manner in which the first spline departs from the first data point and
the last spline arrives at the last data point. There are two sets of boundary
conditions that are generally used for this purpose.

Clamped Boundary Conditions
The slopes with which S1 departs from (x1, y1) and Sn arrives at (xn+1, yn+1) are
specified:

	 ′ = ′ =+S x p S x qn n1 1 1() (), 	 (5.34)

Free Boundary Conditions

	 ′′ = ′′ +S x S xn n1 1 10 0() (), = 	 (5.35)

The clamped boundary conditions generally yield more accurate approxi-
mations because they contain more specific information about the splines;
see Example 5.12.

5.6.4  Construction of Cubic Splines: Clamped Boundary Conditions

The coefficients ai, bi, ci, di (i = 1, 2, . . . , n) will be determined by Equations
5.31 through 5.33, together with clamped boundary conditions given by
Equation 5.34.

By Equation 5.30, Si(xi) = di (i = 1, 2, . . . , n). The first and last equations in
Equation 5.31 yield Si(xi) = yi (i = 1, 2, . . . , n). Therefore,

	 di = yi,  i = 1, 2, . . . , n	 (5.36)

Let hi = xi+1 − xi (i = 1, 2, . . . , n) define the spacing between the data points.
Using this in the second equation in Equation 5.31, while noting Si+1(xi+1) = di+1,
we have

	 d a h b h c h d i ni i i i i i i i+ + + + = −1
3 2 1 2 1= , , , ,…

If we define dn+1 = yn+1, then the above equation will be valid for the range
i = 1, 2, . . . , n since Sn(xn+1) = yn+1. Thus,

	 d a h b h c h d i ni i i i i i i i+ = + + + =1
3 2 1 2, , , ,… 	 (5.37)

Taking the first derivative of Si(x) and applying Equation 5.32, we find

	 c a h b h c i ni i i i i i+ = + + = −1
23 2 1 2 1, , , ,…

216 Numerical Methods for Engineers and Scientists Using MATLAB®

If we define cn+1 = Sn′(xn+1), then the above equation will be valid for the
range i = 1, 2, . . . , n. Therefore,

	 c a h b h c i ni i i i i i+ = + + =1
23 2 1 2, , , ,… 	 (5.38)

Taking the second derivative of Si(x) and applying Equation 5.33, yields

	 2bi+1 = 6aihi + 2bi,  i = 1, 2, . . . , n − 1

If we define b S xn n n+ += ′′1
1
2 1(), then the above equation will be valid for the

range i = 1, 2, . . . , n. Therefore,

	 bi+1 = 3aihi + bi,  i = 1, 2, . . . , n	 (5.39)

The goal is to derive a system of equations for bi (i = 1, 2, . . . , n + 1) only.
Solve Equation 5.39 for ai = (bi+1 − bi)/3hi and substitute into Equations 5.37
and 5.38 to obtain

	
d b b h c h d i ni i i i i i i+ += + + + =1 1

21
3

2 1 2() , , ,, …
	 (5.40)

and

	 ci+1 = (bi + bi+1)hi + ci,  i = 1, 2, . . . , n	 (5.41)

Solve Equation 5.40 for ci:

	
c

d d
h

b b hi
i i

i
i i i= − − ++

+
1

1
1
3

2()
	

(5.42)

Change i to i − 1 and rewrite the above as

	
c

d d
h

b b hi
i i

i
i i i−

−

−
− −= − − +1

1

1
1 1

1
3

2()
	

(5.43)

Also change i to i − 1 and rewrite Equation 5.41 as

	 ci = (bi−1 + bi)hi−1 + ci−1	 (5.44)

Finally, insert Equations 5.42 and 5.43 into Equation 5.44 to derive

b h b h h b h
d d
h

d d
h

ii i i i i i i
i i

i

i i

i
− − − +

+ −

−
+ + + = − − −

1 1 1 1
1 1

1
2

3 3
()

() ()
, == 2 3, , ,… n

	
(5.45)

217Curve Fitting (Approximation) and Interpolation

This describes a system whose only unknowns are bi (i = 1, 2, . . . , n + 1)
because di (i = 1, 2, . . . , n + 1) are simply the values at the data points and hi
(i = 1, 2, . . . , n) define the spacing of the data. Equation 5.45, however, gener-
ates a system of n − 1 equations in n + 1 unknowns, which means two more
equations are still needed. These come from the clamped boundary condi-
tions, Equation 5.34. First, Equation 5.42 with i = 1 gives

	
c

d d
h

b b h1
2 1

1
1 2 1

1
3

2= − − +()

But c1 = S1′(x1) = p. Then, the above equation can be rewritten as

	
()

()
2

3
31 2 1

2 1

1
b b h

d d
h

p+ = − −
	

(5.46)

By Equation 5.41,

	 cn+1 = (bn + bn+1)hn + cn

Knowing that cn+1 = Sn′(xn+1) = q, we have

	 cn = q − (bn + bn+1)hn	 (5.47)

Equation 5.42 with i = n gives

	
c

d d
h

b b hn
n n

n
n n n= − − ++

+
1

1
1
3

2()

Substituting Equation 5.47 into the above, we have

	
()

()
2

3
31

1b b h
d d
h

qn n n
n n

n
+

++ = − − +
	

(5.48)

Combining Equations 5.48, 5.46, and 5.45 yields a system of n + 1 equations
in n + 1 unknowns bi (i = 1, 2, . . . , n + 1).

In summary, bis are obtained by solving the system

()
()

()
(

2
3

3

2
3

1 2 1
2 1

1

1 1 1 1

b b h
d d
h

p

b h b h h b h
d

i i i i i i i
i

+ = − −

+ + + =− − − +
+11 1

1

1
1

3
2 3

2
3

− − − =

+ = − −

−

−

+
+

d
h

d d
h

i n

b b h
d d
h

i

i

i i

i

n n n
n n

) ()
, , ,

()
()

, …

nn
q+ 3

	

(5.49)

218 Numerical Methods for Engineers and Scientists Using MATLAB®

Recall that di (i = 1, 2, . . . , n + 1) are the values at the data points and hi
(i = 1, 2, . . . , n) define the spacing of the data. The system is tridiagonal (see
Section 4.3) with a unique solution. Once bis are known, Equation 5.42 is
used to find cis:

	
c

d d
h

b b h i ni
i i

i
i i i= − − + =+

+
1

1
1
3

2 1 2() , , ,, …
	

(5.50)

Finally, Equation 5.39 is used to determine ais:

	
a

b b
h

i ni
i i

i
= − =+1

3
1 2, , , ,…

	
(5.51)

Example 5.11:  Cubic Splines, Clamped Boundary Conditions

For the data in Table 5.13 of Example 5.10 construct the cubic splines with
clamped boundary conditions

	 p = −1,  q = 1

Solution

Since there are 4 data points, we have n = 3 so that there are 3 cubic
polynomials

	 Si(x) = ai(x − xi)3 + bi(x − xi)2 + ci(x − xi) + di,  i = 1, 2, 3

Following the summarized procedure outlined above, we first find bis
by solving the system in Equation 5.49:

	

()
()

()
() (

2
3

3

2
3 3

1 2 1
2 1

1

1 1 2 2 1 3 2
3 2

2

b b h
d d
h

p

b h b h h b h
d d
h

+ = − −

+ + = − −+ dd d
h

b h b h h b h
d d
h

d d
h

b b

2 1

1

2 2 3 3 2 4 3
4 3

3

3 2

2

4 3

2
3 3

2

−

+ + + = − − −

+

)

()
() ()

())
()

h
d d
h

q3
4 3

3

3
3= − − +

Note that dis are simply the values at data points; hence

	 d1 = 5,  d2 = 2.3,  d3 = 5.1,  d4 = 1.5

Also, h1 = 1, h2 = 2, and h3 = 2.5. Substituting these, together with p = −1
and q = 1, the system reduces to

219Curve Fitting (Approximation) and Interpolation

	

2 1 0 0
1 6 2 0
0 2 9 2 5
0 0 2 5 5

1

2

3

4

.
.









































=

−b

b

b

b

55.1
12.3
8.52

7.32
−





















which is tridiagonal, as asserted, and its solution is

	 b1 = −4.3551,  b2 = 3.6103,  b3 = −2.5033,  b4 = 2.7157

Next, cis are found by solving Equation 5.50:

	

c
d d
h

b b h

c
d d
h

b b h

1
2 1

1
1 2 1

2
3 2

2
2 3 2

1
3

2 1

1
3

2

= − − + = −

= − − +

()

()

== −

= − − + =

1.7449

0.4691 c
d d
h

b b h3
4 3

3
3 4 3

1
3

2()

Finally, ais come from Equation 5.51:

	

a
b b

h

a
b b

h

a
b b

h

1
2 1

1

2
3 2

2

3
4 3

3

3

3

3

= − =

= − = −

= − =

2.6551

1.0189

0.6959

Therefore, the three cubic splines are determined as

	

S x x x x x

S x

1
3 2

2

2 2 2 5 2 3() () () ()

()

= − − − − − + ≤ ≤

= −

2.6551 4.3551 ,

1.0189(() () ()

() (

x x x x

S x x

− + − − − + ≤ ≤

= −

3 3 3 3 5

5

3 2

3

3.6103 1.7449 2.3,

0.6959)) () ()3 25 5 5− − + − + ≤ ≤2.5033 0.4691 5.1, 7.5x x x

The results are illustrated in Figure 5.21, where it is clearly seen
that cubic splines are much more desirable than the quadratic splines
obtained for the same set of data.

5.6.5  Construction of Cubic Splines: Free Boundary Conditions

Recall that free boundary conditions are ′′ = ′′ =+S x S xn n1 1 10 0() (), . Knowing
′′ = − +S x a x x b1 1 1 16 2() () , the first condition yields b1 = 0. From previous work,
b S xn n n+ += ′′1

1
2 1() so that the second condition implies bn+1 = 0. Combining these

with Equation 5.45 forms a system of n + 1 equations in n + 1 unknowns that
can be solved for bis:

220 Numerical Methods for Engineers and Scientists Using MATLAB®

b

b h b h h b h
d d
h

d d
h

i i i i i i i
i i

i

i i

i

1

1 1 1 1
1 1

0

2
3 3

=

+ + + = − − −
− − − +

+ −()
() ()

−−

+

=

=

1

1

2 3

0

, i n

bn

, , ,…

	(5.52)

Once bis are available, all other unknown constants are determined as in
the case of clamped boundary conditions. In summary, di (i = 1, 2, . . . , n + 1)
are the values at the data points, hi (i = 1, 2, . . . , n) define the spacing of
the data, bis come from Equation 5.52, cis from Equation 5.50, and ais from
Equation 5.51.

Example 5.12:  Cubic Splines, Free Boundary Conditions

For the data in Table 5.13 of Examples 5.10 and 5.11, construct the cubic
splines with free boundary conditions.

Solution

The free boundary conditions imply that b1 = 0, b4 = 0. Consequently, the
system in Equation 5.52 simplifies to

	

b

b b

b b

b

b

b

1

2 3

2 3

4

2

3

0
6 2
2 9

0

=
+ =
+ = −

=

⇒
=
= −

12.3
8.52

2.5548
1.5144

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

2

3

4

5

6

7

8

x

y

Cubic splines

Quadratic splines

Figure 5.21
Cubic and quadratic splines for the same set of data.

221Curve Fitting (Approximation) and Interpolation

Next, cis are found by solving Equation 5.50:

	

c
d d
h

b b h

c
d d
h

b

1
2 1

1
1 2 1

2
3 2

2
2

1
3

2

1
3

2

= − − + = −

= − − +

()

(

3.5516

bb h

c
d d
h

b b h

3 2

3
4 3

3
3 4 3

1
3

2

)

()

= −

= − − + =

0.9968

1.0840

Finally, ais come from Equation 5.51:

	

a
b b

h

a
b b

h

a
b b

h

1
2 1

1

2
3 2

2

3
4 3

3

3

3

3

= − =

= − = −

= − =

0.8516

0.6782

0.2019

Therefore, the three cubic splines are determined as

S x x x x

S x x

1
3

2
3

2 2 5 2 3

0 3

() () ()

() ()

= − − − + ≤ ≤

= − − +

0.8516 3.5516 ,

.6782 22.5548 0.9968 2.3,

0.2019 1.51

() ()

() ()

x x x

S x x

− − − + ≤ ≤

= − −

3 3 3 5

5

2

3
3 444 1.0840 5.1, 7.5() ()x x x− + − + ≤ ≤5 5 52

The graphical results are shown in Figure 5.22, where it is observed
that the clamped boundary conditions lead to more accurate approxima-
tions, as stated earlier.

5.6.6  MATLAB® Built-In Functions interp1 and spline

Brief descriptions of the MATLAB built-in functions interp1 and spline
are given as

YI = INTERP1(X,Y,XI,METHOD) specifies alternate methods.
The default is linear interpolation. Use an empty matrix []
to specify the default. Available methods are:

'nearest' − nearest neighbor interpolation
'linear'  − linear interpolation
'spline'  − piecewise cubic spline interpolation (SPLINE)
'pchip'     − shape-preserving piecewise cubic Hermite interpolation

Of the four methods, the nearest-neighbor interpolation is the fastest, and
does not generate new points. It only returns values that already exist in
the Y vector. The linear method is slightly slower than the nearest-neighbor

222 Numerical Methods for Engineers and Scientists Using MATLAB®

method and returns values that approximate a continuous function. Each
of the pchip and spline methods generates a different cubic polynomial
between any two data points, and uses these points as two of the constraints
when determining the polynomial. The difference between these two meth-
ods is that pchip seeks to match the first-order derivatives at these points
with those of the intervals before and after, which is a characteristic of
Hermite interpolation. The spline method tries to match the second-order
derivatives at these points with those of the intervals before and after.

The pchip method produces a function whose minimums match the mini-
mums of the data. Also, the function is monotonic over intervals where the data
are monotonic. The spline method produces a smooth (twice-continuously
differentiable) function, but will overshoot and undershoot the given data.

Example 5.13:  MATLAB® Function interp1

Consider the data for x = −2:0.5:2 generated by y x x= −1
4

4 1
2

2 .
Interpolate and plot using the four different methods listed in interp1.

Solution

 >> x = −2:0.5:2;
 >> y = 1./4.*x.^4−1./2.*x.^2;
 >> xi = linspace(−2, 2);
 >> ynear = interp1(x, y, xi, 'nearest');
 >> ylin = interp1(x, y, xi, 'linear');
 >> ypc = interp1(x, y, xi, 'pchip');

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x

y

Cubic splines
(free

boundary
conditions)

Cubic splines
(clamped

boundary conditions)

Data

Figure 5.22
Cubic splines with clamped and free boundary conditions; Example 5.12.

223Curve Fitting (Approximation) and Interpolation

 >> yspl = interp1(x, y, xi, 'spline');
% Start Figure 5.23
 >> �subplot(2,2,1), plot(xi,ynear,x,y,'o'), title('Nearest

neighbor interpolation’)
 >> hold on
 >> �subplot(2,2,2), plot(xi,ylin,x,y,'o'), title('Linear

interpolation’)
 >> �subplot(2,2,3), plot(xi,ypc,x,y,'o'), title('Piecewise

cubic Hermite interpolation’)
 >> �subplot(2,2,4), plot(xi,yspl,x,y,'o'), title('Cubic

spline interpolation’)

5.6.7 B oundary Conditions

YI = INTERP1(X,Y,XI,'spline') uses piecewise cubic splines
interpolation. Note that the option 'spline' does not allow
for specific boundary conditions.

PP = SPLINE(X,Y) provides the piecewise polynomial form of the
cubic spline interpolant to the data values Y at the data sites

–2 –1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

Nearest neighbor interpolation

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

Linear interpolation

Piecewise cubic Hermite interpolation Cubic spline interpolation

Figure 5.23
Interpolation by interp1 using four methods; Example 5.13.

224 Numerical Methods for Engineers and Scientists Using MATLAB®

X. Ordinarily, the not-a-knot end conditions are used. However,
if Y contains two more values than X has entries, then the
first and last value in Y are used as the end slopes for the
cubic spline.

We will apply these two functions to the set of data considered in Examples
5.10 through 5.12.

>> x = [2 3 5 7.5] y = [5 2.3 5.1 1.5];
>> xi = linspace(2,7.5);
>> �yi = interp1(x,y,xi,'spline');
% No control over boundary conditions
>> plot(x,y,'o',xi,yi)
>> �cs = spline(x,[−1 y 1]);
% Specify boundary conditions: end slopes of −1 and 1
>> hold on
>> plot(x,y,'o',xi,ppval(cs,xi),'−');   % Figure 5.24

5.6.8  Interactive Curve Fitting and Interpolation in MATLAB®

The basic fitting interface in MATLAB allows for interactive curve fitting of
data. First plot the data. Then, under the “tools” menu choose “basic fitting.”
This opens a new window on the side with a list of fitting methods, includ-
ing spline interpolation and different degree polynomial interpolation. By
simply checking the box next to the desired method, the corresponding
curve is generated and plotted. Figure 5.25 shows the spline and seventh-
degree polynomial interpolations of a set of 21 data points.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
1

2

3

4

5

6

7

x

y
‘interp1’ function

no control over
boundary conditions

‘spline’ function
with end slopes

−1 and +1

Figure 5.24
Cubic splines using MATLAB built-in functions.

225Curve Fitting (Approximation) and Interpolation

5.7  Fourier Approximation and Interpolation

So far in this chapter we have discussed curve fitting and interpolation of
data using polynomials. But in engineering we often deal with systems that
oscillate. To that end, trigonometric functions 1, cos t, cos 2t, . . . , sin t, sin 2t,
. . . are used for modeling such systems. Fourier approximation outlines the
systematic use of trigonometric series for this purpose.

5.7.1  Sinusoidal Curve Fitting

To present the idea, we first consider a very special set of equally spaced data
and then use a linear transformation to apply the results to any given equally
spaced data.

Consider N data points (σ1, x1), (σ2, x2), . . . , (σN, xN), where σk (k = 1, 2, . . . , N)
are assumed to be equally spaced along the interval [0,2π), that is

	
σ σ π σ π σ π

1 2 30
2

2
2

1
2= = = 



 = − 



, ,

N N
N

N
N, , ()…

It is desired to interpolate or approximate this set of data by means of a
function in the form

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20

Data 1
Spline
7th degree

Figure 5.25
The basic fitting interface in MATLAB.

226 Numerical Methods for Engineers and Scientists Using MATLAB®

	

f a a j b j a a

a m b

j j

j

m

m

() cos sin cos

cos

σ σ σ σ

σ

= + +  = + + +

+

=
∑1

2
1
20

1

0 1 

11 sin sinσ σ+ + b mm 	 (5.53)

where f(σ) is a trigonometric polynomial of degree m if both am and bm are not
zero. Interpolation requires f(σ) to go through the data points, while approxi-
mation (curve fit) is in the sense of least squares; Section 5.4. More specifi-
cally, the coefficients a0, a1, . . . , am, b1, . . . , bm are determined so as to minimize

	

Q a a j b j xj k j k

j

m

k

k

= + + 












−










==
∑1

2 0

1

2

1

cos sinσ σ
NN

∑
	

(5.54)

A necessary condition for Q to attain a minimum is that its partial deriva-
tives with respect to all coefficients vanish, that is

	

∂
∂

∂
∂

∂
∂

Q
a

Q
a

j m
Q
b

j m
j j0

0 0 1 2 0 1 2= = = = =, (, (, , ,) , , ,)… …

The ensuing system of 2m + 1 equations can then be solved to yield

	

a
N

x j j m

b
N

x j j m

j k k

k

N

j k k

k

N

= =

= =

=

=

∑

∑

2
0 1 2

2
1 2

1

1

cos , , , ,

sin , , ,

σ

σ

,

,

…

…
	

(5.55)

Fourier Approximation
If 2m + 1 < N (there are more data points than unknown coefficients), then
the least-squares approximation of the data is described by Equation 5.53
with coefficients given by Equation 5.55.

Fourier Interpolation
For interpolation, the suitable form of the trigonometric polynomial depends
on whether N is odd or even.

•	 Case (1) N = odd = 2m + 1
	 In this case, the interpolating trigonometric polynomial is exactly in

the form of the approximating polynomial.

227Curve Fitting (Approximation) and Interpolation

•	 Case (2) N = even = 2m

	 The interpolating polynomial is in the form

	

f a a a a m a m

b

m m() cos cos cos() cos

sin

σ σ σ σ σ

σ

= + + + + − +

+ +

−
1
2

2 1
1
20 1 2 1

1



bb b mm2 12 1sin sin()σ σ+ + −− 		
		

(5.56)

	 where the coefficients are once again given by Equation 5.55.

5.7.2 L inear Transformation of Data

Fourier approximation or interpolation of an equally spaced data (t1, x1),(t2, x2),
. . . , (tN, xN) is handled as follows. First assume the data is (σ1, x1),(σ2, x2), . . . ,
(σN, xN) equally spaced over [0,2π) and apply the results presented above.
Then transform the data back to its original form via (see Figure 5.26)

	
t

N t t
N

tN= −
−

+()
()

1
11 2π

σ
	

(5.57)

The user-defined function TrigPoly finds the appropriate Fourier
approximation or interpolation of an equally spaced data by first assum-
ing the data is equally spaced over [0,2π) and then transforming the data to
agree with the range of the original set. The function also returns the plot of
the interpolating/approximating trigonometric polynomial and the given
set of data.

t

0 (N – 1)2π/N

tN

t1
t =

σ

N(tN – t1)

2π (N – 1)
σ + t1

Figure 5.26
Linear transformation of data.

228 Numerical Methods for Engineers and Scientists Using MATLAB®

function [a, b] = TrigPoly(x, m, t1, tN)
%
% TrigPoly approximates or interpolates a set of equally
% spaced data (t1, x1),..., (tN, xN) by a trigonometric
% polynomial of degree m.

% [a, b] = TrigPoly(x, m, t1, tN) where
%
% x = [x1 x2... xN],
% m is the degree of the trigonometric polynomial,
% t1 and tN define the interval endpoints (interval
% open at tN),
%
% a and b are the vectors of coefficients of the
% polynomial.
%
% Case(1) Approximation if 2*m + 1 < N,
% Case(2) Interpolation if 2*m + 1 = N or 2*m = N.

N = length(x);

% Consider an equally-spaced data from s=0 to s=2*pi
h = 2*pi/N; s = 0:h:2*pi-h; s = s’;
a = zeros(m,1);    % Pre-allocate
b = a;

for i = 1:m,
 a(i) = x*cos(i*s);
 b(i) = x*sin(i*s);
end
a = 2*a/N; b = 2*b/N; a0 = sum(x)/N;
if N == 2*m,
 a(m) = a(m)/2;
end

ss = linspace(0,2*pi*(N–1)/N,500);
% 500 points for plotting
xx = a0 + a(1)*cos(ss) + b(1)*sin(ss);
for i = 2:m,
 xx = xx + a(i)*cos(i*ss) + b(i)*sin(i*ss);
end

% Transform from s to t
t = N*((tN–t1)/(2*pi*(N–1)))*s + t1;
tt = N*((tN–t1)/(2*pi*(N–1)))*ss + t1;

plot(tt,xx,t,x,'o')
a = [a0;a];

229Curve Fitting (Approximation) and Interpolation

Example 5.14:  Fourier Approximation

Find the first-degree approximating or interpolating trigonometric poly-
nomial for the data in Table 5.14. Confirm the results by executing the
user-defined function TrigPoly.

Solution

First treat the data as (σ1, x1),(σ2, x2), . . . , (σ5, x5), equally spaced over [0,2π).
That is

	
σ σ π σ π σ π σ π

1 2 3 4 50
2
5

4
5

6
5

8
5

= = = = =, , , ,

Since m = 1 and N = 5, we have 2m + 1 < N so that the polynomial
in Equation 5.53 is the suitable form for approximation; in particu-
lar, f a a b() cos sinσ σ σ.= + +1

2 0 1 1 The coefficients are provided by
Equation 5.55 as

	

a x

a x

k

k

k k

k

0

1

5

1

1

2
5

2
5

2
5

= = + − − + =

=

=

=

∑ ()

cos

6.8 3.2 4.1 3.9 3.3 2.1200

σ
55

2
5

0 2 5

4 5 6 5

∑ = +

− − +

[6.8 3.2 /

4.1 / 3.9 / 3.

cos() cos()

cos() cos()

π

π π 33 / 6.1123

[6.8sin 3.2

cos()]

sin () sin(

8 5

2
5

2
5

0 21

1

5

π

σ

=

= = +
=

∑b xk k

k

ππ π

π π

/ 4.1 /

3.9 / 3.3 / 0.0851

5 4 5

6 5 8 5

) sin()

sin() sin()]

−

− + = −

Therefore, the least-squares approximating polynomial is f(σ) = 1.06 +
6.1123 cos σ − 0.0851 sin σ. But variables t and σ are related via Equation 5.57,

	

t
N t t
N

tN=
−()

−
+ = − + = +

=

1
1

1 2
5

4 2()
()

()π
σ

π
σ σ

σ

1.3 0.5
0.5 0.1592 0.5

6⇒ ..2832 0.5()t −

Table 5.14

Data in Example 5.14

ti xi

0.5 6.8
0.7 3.2
0.9 −4.1
1.1 −3.9
1.3 3.3

230 Numerical Methods for Engineers and Scientists Using MATLAB®

The approximating trigonometric polynomial is then formed as

	 f(t) = 1.06 + 6.1123 cos(6.2832(t − 0.5)) − 0.0851 sin(6.2832(t− 0.5))

Executing the user-defined function TrigPoly yields the coefficients
of the trigonometric polynomial as well as the plot of this polynomial
and the original data. This is shown in Figure 5.27.

 >> x = [6.8 3.2 −4.1 −3.9 3.3];
 >> [a, b] = TrigPoly(x, 1, 0.5, 1.3)

a =
    1.0600
    6.1123

b =
   −0.0851

Example 5.15:  Fourier Interpolation

Find the third-degree approximating or interpolating trigonometric
polynomial for the data in Table 5.15. Confirm the results by executing the
user-defined function TrigPoly. Find the interpolated value at t = 0.63.

Solution

First treat the data as (σ1, x1), (σ2, x2), . . . , (σ6, x6), equally spaced over [0,2π).
That is

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−6

−4

−2

0

2

4

6

8

Data

1st-degree approximating
trig. poly.

Figure 5.27
Fourier approximation of the data in Example 5.14.

231Curve Fitting (Approximation) and Interpolation

	
σ σ π σ π σ π σ π σ π

1 2 3 4 5 60
3

2
3

4
3

5
3

= = = = = =, , , , ,

Since m = 3 and N = 6, we have 2m = N so that the trigonometric
polynomial interpolates the data and is given by Equation 5.56, more
specifically

	
f a a a a b b() cos cos cos sin sinσ σ σ σ σ σ= + + + + +1

2
2

1
2

3 20 1 2 3 1 2

The coefficients are provided by Equation 5.55 as

	

a x a x

a x

k

k

k k

k

k k

k

0

1

6

1

1

6

2

1

6

2
6

1
2
6

2
6

2

= = = = −

=

= =

=

∑ ∑, 0.3333,cos

cos

σ

σ∑∑ ∑

∑

= = = −

= = −

=

=

0
2
6

3

2
6

3

1

6

1

1

6

, cos

sin

a x

b x

k k

k

k k

k

σ

σ

0.3333,

0.5774, bb xk k

k

2

1

6
2
6

2 0= =
=

∑ sin σ

This yields f () cos cos sinσ σ σ σ= − − −1
2 30.3333 0.1667 0.5774 . But

variables t and σ are related via Equation 5.57

	

t
N t t
N

tN=
−()

−
+ = − + = +1

1
1 2

6
5 2()

()
()π

σ
π

σ σ0.85 0.10
0.10 0.1432 0.10

⇒⇒ σ = −6.9813 0.10()t

Therefore, the approximating trigonometric polynomial is formed as

	

f t t

t

() cos(())

cos((

= − − −

× × −

1
2

0.3333 6.9813 0.10 0.1667

3 6.9813 0.110 0.5774 6.9813 0.10)) sin(())− −t

Table 5.15

Data in Example 5.15

ti xi

0.10 0
0.25 0
0.40 0
0.55 1
0.70 1
0.85 1

232 Numerical Methods for Engineers and Scientists Using MATLAB®

The interpolated value at t = 0.63 is

	 f(0.63) = 1.0712

Executing the user-defined function TrigPoly yields the coefficients
of the trigonometric polynomial as well as the plot of this polynomial
and the original data. This is shown in Figure 5.28.

 >> x = [0 0 0 1 1 1];
 >>  [a, b] = TrigPoly(x, 3, 0.10, 0.85)

a =
     0.5000
    −0.3333
    −0.0000
    −0.1667

b =
    −0.5774
     0.0000
     0.0000

The numerical results agree with those obtained earlier.

5.7.3  Discrete Fourier Transform

Periodic functions can conveniently be represented by Fourier series. But
there are many functions or signals that are not periodic; for example,
an impulsive force applied to a mechanical system will normally have a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Data

3rd-degree interpolating
trig. poly.

Figure 5.28
Fourier interpolation of the data in Example 5.15.

233Curve Fitting (Approximation) and Interpolation

relatively large magnitude and will be applied for a very short period of
time. Such nonperiodic signals are best represented by the Fourier integral.
The Fourier integral of a function can be obtained while taking the Fourier
transform of that function. The Fourier transform pair for a continuous func-
tion x(t) is defined as

	

ˆ() ()

() ˆ()

x x t e dt

x t x e d

i t

i t

ω

π
ω ω

∞

∞

∞

∞

=

=

−

−

−

∫

∫

ω

ω1
2

	

(5.58)

The first equation gives the Fourier transform x()ω of x(t). The second
equation uses x()ω to represent x(t) as an integral known as the Fourier inte-
gral. In applications, data is often collected as a discrete set of values and
hence x(t) is not available in the form of a continuous function.

Divide an interval [0,T] into N equally spaced subintervals, each of width
h = T/N. Consider the set of data chosen as (t0, x0), . . . , (tN−1, xN−1) such that
t0 = 0, t1 = t0 + h, . . . , tN−1 = t0 + (N − 1)h. Note that the point tN = T is not includ-
ed.* Equation 5.58 is then discretized as

	

ˆ , , ,x x e k N
N

k n
ik n

n

N

= = − =−

=

−

∑ ω ω π

0

1

0 1 1
2

, ,…
	

(5.59)

	
x

N
x e n Nn k

ik n

k

N

= = −
=

−

∑1
0 1 1

0

1

ˆ , , ,ω , …
	

(5.60)

where x̂k is known as the discrete Fourier transform (DFT). Equations 5.59
and 5.60 can be used to compute the Fourier and inverse Fourier transform
for a set of discrete data. Calculation of the DFT in Equation 5.59 requires N2
complex operations. Therefore, even for data of moderate size, such calcula-
tions can be quite time-consuming. To remedy that, the fast Fourier trans-
form (FFT) is developed for efficient computation of the DFT. What makes
FFT computationally attractive is that it reduces the number of operations by
using the results of previous calculations.

5.7.4  Fast Fourier Transform

The FFT algorithm requires roughly N log2 N operations as opposed to N2
by the DFT, and it does so by using the fact that trigonometric functions

*	 Refer to R.W. Ramirez, The FFT, Fundamentals and Concepts, Prentice-Hall, 1985.

234 Numerical Methods for Engineers and Scientists Using MATLAB®

are periodic and symmetric. For instance, for N = 100, the FFT is roughly 15
times faster than the DFT. For N = 500, it is about 56 times faster. The first
major contribution leading to an algorithm for computing the FFT was made
by J. W. Cooley and J. W. Tukey in 1965, known as the Cooley–Tukey algo-
rithm. Since then, a number of other methods have been developed that are
essentially consequences of their approach.

The basic idea behind all of these techniques is to decompose, or deci-
mate, a DFT of length N into successively smaller length DFTs. This can be
achieved via decimation-in-time or decimation-in-frequency techniques.
The Cooley–Tukey method, for example, is a decimation-in-time technique.
Here, we will discuss an alternative approach, the Sande–Tukey algorithm,
which is a decimation-in-frequency method. The two decimation techniques
differ in how they are organized, but they both require N log2 N operations.
We will limit our presentation to the case N = 2p (integer p) for which the
techniques work best, but analogous methods will clearly work for the gen-
eral case N = N1 N2 . . . Nm, where each Ni is an integer.

5.7.4.1  Sande–Tukey Algorithm (N = 2p, p = integer)

We will present the simplified algorithm for the special case N = 2p, where p
is some integer. Recall from Equation 5.59 that the DFT is given by

	

ˆ , , ,(/)x x e k Nk n
ik N n

n

N

= = −−

=

−

∑ 2

0

1

0 1 1π , …
	

(5.61)

Define the weighting function W = e−(2π/N)i so that Equation 5.61 may also
be written as

	

ˆ , , ,x x W k Nk n
kn

n

N

= = −
=

−

∑
0

1

0 1 1, …
	

(5.62)

We next divide the sample of length N in half, each half containing N/2
points, and write Equation 5.61 as

	

ˆ (/)

/

(/)

/

x x e x ek n
ik N n

n

N

n
ik N n

n N

N

= +−

=

()−
−

=

−

∑ ∑2

0

2 1

2

2

1
π π

Since summations can only be combined if their indices cover the same
range, introduce a change of variables in the second summation and rewrite
this last equation as

235Curve Fitting (Approximation) and Interpolation

	

ˆ (/)
(/)

/
()(/)

(

x x e x ek n
ik N n

n

N

n N
ik N n N

n

= +−

=

−

+
− +

=
∑ 2

0

2 1

2
2 2

0

π π /
NN

n
i k

n N
kni N

n

N

x e x e

/)

/
/

(/)

[]

2 1

2
2

0

2 1

−

−
+

−

=

−

∑

= +

Combine

π π∑∑
	

(5.63)

But

	
e k i k

k

k
i k k− = − = − =

=
− =





π π πcos sin ()1
1
1

if even
if odd

Therefore, the expression for x̂k will depend on whether the index is even
or odd. For even index, Equation 5.63 yields

	

ˆ /
() /

/

x x x ek
k k

n n N
k ni N

n

N

2
2

2
2 2

0

2

 for

Substitute
= +[]+

−

=

()−
π

11

2
2 2

0

2 1

∑ ∑= +[]+
−

=

()−
Rewrite

 x x en n N
N i kn

n

N

/
[(/)]

/

π

For odd index

	

ˆ /
() /x x x ek

k k
n n N

k ni N

n

N

2 1
2 1

2
2 2 1

0

+
+

+
− +

=

= −[]
 for

Substitute
π

//

/
[(/)] [(/)]

/

2 1

2
2 2 2

0

()−

+
− −

=

∑

= −[]
Rewrite

x x e en n N
N i n N i kn

n

N

π π
22 1()−

∑

In terms of W = e−(2π/N)i, defined earlier

	

ˆ []/

()

x x x Wk n n N
kn

n

N

2 2
2

0

2 1

= + +

=

−

∑
/

	
(5.64)

	

ˆ {[] }/

()

x x x W Wk n n N
n kn

n

N

2 1 2
2

0

2 1

+ +

=

−

= −∑
/

	
(5.65)

Next, define

	

y x x

z x x W
n N

n n n N

n n n N
n

= +
= −[] = −+

+

/

/
, , , ()

2

2
0 1 2 1, /…

	
(5.66)

236 Numerical Methods for Engineers and Scientists Using MATLAB®

Inspired by Equation 5.62, it is easy to see that the summations in Equations
5.64 and 5.65 simply represent the transforms of yn and zn. That is

	

ˆ ˆ
ˆ ˆ

, , ,
x y

x z
k N

k k

k k

2

2 1
0 1 2 1

=
=

= () −
+

, /…

Consequently, the original N-point computation has been replaced by two
(N/2)-point computations, each requiring (N/2)2 = N2/4 operations for a total
of N2/2. Comparing with N2 for the original data, the algorithm manages to
reduce the number of operations by a factor of 2. The decomposition contin-
ues, with the number of sample points divided by two in each step, until N/2
two-point DFTs are computed. To better understand how the scheme works,
we present the details involving an 8-point sample.

Case Study: N = 23 = 8
An 8-point DFT is to be decomposed successively using Sande–Tukey algo-
rithm (decimation-in-frequency) into smaller DFTs. Figure 5.29 shows the
details in the first stage where two 4-point DFTs are generated. The intersec-
tions that are accompanied by “+” and/or “−” signs act as summing junc-
tions. For example, by Equation 5.66, we have

	 y0 = x0 + x4,  z0 = (x0 − x4)W0

The operation y0 = x0 + x4 is handled by a simple addition of two signals. To
obtain z0, we first perform x0 − x4, then send the outcome to a block of W0. The
same logic applies to the remainder of the sample.

Next, each of the 4-point DFTs will be decomposed into two 2-point DFTs,
which will mark the end of the process for the case of N = 8; see Figure 5.30.

4-point DFT

4-point DFT

8-point DFT

+
+

+
+

+
+

+
+
+

–
+

+

+

–

–

–

W 0

W 1

W 2

W 3

Compute

Compute

x0

x1

x2

x3

x4

x5

x6

x7

y0

y1

y2

y3

z0

z1

z2

z3

ˆ ˆ ˆ ˆx0 , x2 , x4 , x6 , ...

ˆ ˆ ˆ ˆx1, x3 , x5 , x7, ...

Figure 5.29
First stage of decomposition (decimation-in-frequency) of an 8-point DFT into two 4-point DFTs.

237Curve Fitting (Approximation) and Interpolation

Also, N = 2p = 8 implies p = 3, and there are exactly three stages involved in
the process. Furthermore, since N = 8, we have W = e−(2π/N)i = e−(π/4)i, and

	
W W e i W e i W ei i i0 1 4 2 2 3 3 41

2
2

1
2

2
1= = = − = = − = = −− − −, , ,/() (/) (/)() (π π π ++ i)

The computed Fourier coefficients appear in a mixed order but can be
unscrambled using bit reversal as follows: (1) express the subscripts 0
through 7 in binary form,* (2) reverse the bits, and (3) express the reversed
bits in decimal form. The details are depicted in Table 5.16.

*	 For example, 5 = 1 × 22 + 0 × 21 + 1 × 20 = (101)2.

8-point DFT

+
+

+
+

+
+

+
+
+

–
+

+

+

–

–

– W3

+
+

+

+

+

+

+

+
+
+

+
+
+

+

+

+

+
W2

W2

W2

W1

W0

W0

W0

W0

W0

W0

W0

+

+

+
–

–

+

+

–

–

–

–

–

–

+

+

Two 4-pt. DFTs Four 2-pt. DFTs

x̂0

x̂4

x̂2

ˆ6x

x̂1

x̂5

x̂3

x̂7

x0

x1

x2

x3

x4

x5

x6

x7

Figure 5.30
Complete decomposition (decimation-in-frequency) of an 8-point DFT.

Table 5.16

Bit Reversal Applied to the Scenario in Figure 5.30

Mixed Order Binary Subscripts Reverse Bits Unscrambled Order

x̂0 0 → 000 000 → 0 x̂0

x̂4 4 → 100 001 → 1 x̂1

x̂2 2 → 010 010 → 2 x̂2

x̂6 6 → 110 011 → 3 x̂3

x̂1 1 → 001 100 → 4 x̂4

x̂5 5 → 101 101 → 5 x̂5

x̂3 3 → 011 110 → 6 x̂6

x̂7 7 → 111 111 → 7 x̂7

238 Numerical Methods for Engineers and Scientists Using MATLAB®

5.7.4.2  Cooley–Tukey Algorithm (N = 2p, p = integer)

The flow graph for the Cooley–Tukey algorithm is shown in Figure 5.31. The
initial sample is divided into groups of even-indexed and odd-indexed data
points, but the final outcome appears in correct order.

5.7.5  MATLAB® Built-In Function fft

The MATLAB built-in function fft computes the DFT of an N-dimensional
vector using the efficient FFT method. The DFT of the evenly spaced data
points x(1), x(2), . . . , x(N) is another N-dimensional vector X(1), X(2), . . . ,
X(N), where

	
X k x n e k Nk n i N

n

N

() () , , ,()() /= =− − −

=
∑ 2 1 1

1

1 2π , …

5.7.5.1  Interpolation Using fft

A set of equally spaced data (tk, xk), k = 1, 2, . . . , N is interpolated using fft as
follows. The data is first treated as

	 (,), (,), , (,)1 2 2σ σ σ1 x x xN N…

where σk (k = 1, 2, . . . , N) are equally spaced along the interval [0,2π), that is

	
σ σ π σ π σ π

1 2 30
2

2
2

1
2= = = 



 = − 



, ,

N N
N

N
N, , ()…

+
+

+
+

+
+

+
+
+

–
+

+

+

–

–

–

+
+

+

+

+

+

+

+
+
+

+
+
+

+

+

+

+

+

+

+
–

–

+

+

–

–

–

–

–

–

+

+

x0

x4

x2

x6

x1

x5

x3

x7

W0

W0

W0

W0

W1

W2

W3

W2

W2

W0

W0

W0

x̂0

x̂1

x̂2

ˆ3x

x̂4

x̂5

x̂6

x̂7

Figure 5.31
Complete decomposition (decimation-in-time) of an 8-point DFT.

239Curve Fitting (Approximation) and Interpolation

The FFT of the vector []x x xN1 2 … is computed using MATLAB
built-in function fft. The resulting data is then used in Equation 5.60, with
index ranging from 1 to N, to reconstruct xk. Finally, the data is transformed
to its original form and plotted.

Example 5.16:  Interpolation Using fft

Table 5.17 contains the equally spaced data for one period of a periodic
waveform. Construct and plot the interpolating function for this data
using the MATLAB function fft.

Solution

We will accomplish this in two steps: First, we compute the FFT of the
given data, and then use the transformed data to find the interpolating
function by essentially reconstructing the original waveform. Note that
the reconstruction is done via Equation 5.60, rewritten as

	
x x en k

i k n

k

= − −

=
∑1

16
2 1 1 16

1

16

ˆ ()()/π

where we will use n = 1:200 for plotting purposes. The 16 values of x̂k are
obtained as follows:

 >> x = �[2.95  2.01  0.33  .71  .11  .92  −.16  .68  −1.57  −1.12
 −.58  −.69  −.21  −.54  −.63  −2.09];
 >> Capx = fft(x)′

Capx =

 0.1200
 5.1408 + 6.1959i
 0.8295 + 1.9118i
 4.4021 + 5.0122i
 2.3200 + 2.6600i
 4.0157 + 3.7006i
 2.1305 + 0.8318i

Table 5.17

Data in Example 5.16

ti xi ti xi

0.0 2.95 0.8 −1.57
0.1 2.01 0.9 −1.12
0.2 0.33 1.0 −0.58
0.3 0.71 1.1 −0.69
0.4 0.11 1.2 −0.21
0.5 0.92 1.3 −0.54
0.6  −0.16 1.4 −0.63
0.7 0.68 1.5 −2.09

240 Numerical Methods for Engineers and Scientists Using MATLAB®

 4.5215 + 3.6043i
 0.3600
 4.5215 - 3.6043i
 2.1305 - 0.8318i
 4.0157 - 3.7006i
 2.3200 - 2.6600i
 4.4021 - 5.0122i
 0.8295 - 1.9118i
 5.1408 - 6.1959i

Let x̂ ik k k= +α β so that

	

x x e

i k n

n k
i k n

k

k k

=

= +[] − −

− −

=
∑1

16

1
16

2 1 1

2 1 1 16

1

16

ˆ

cos ()(

()()/π

α β π)) sin ()()/ /16 2 1 1 16
1

16

() + − −() 
=

∑ i k n
k

π

Note that α2 = α16, . . . , α8 = α10 and β2 = −β16, . . . , β8 = −β10. Also, α9 multi-
plies cos((n − 1)π), which alternates between 1 and −1 so that over a range
of 200 values for n will cancel out. Finally, α1 multiplies cos 0 = 1. Then,
the above can be written as

	
x k n k nn k k= + − − − − −1

16
1
8

2 1 1 16 2 1 1 161α α π β π[cos(()()) sin(()())]/ /
kk=
∑

2

8

The following MATLAB code will use this to reconstruct the original
waveform:

x = [�2.95  2.01  .33  .71  .11  .92  −.16  .68  −1.57  −1.12
−.58  −.69  −.21  −.54  −.63  −2.09];
N = length(x);
tN = 1.5; t1 = 0;
Capx = fft(x);   % Compute FFT of data
% Treat data as equally spaced on [0,2*pi)
h = 2*pi/N; s = 0:h:2*pi−h; s = s′;
ss = linspace(0,2*pi*(N−1)/N,200);
% 200 points for plotting purposes
y = zeros(200,1);   % Pre-allocate
% Start reconstruction & interpolation
for i = 1:200,
 y(i) = Capx(1)/2;
 for k = 1:8,
 y(i) = y(i) + real(Capx(k+1))*cos(k*ss(i))
 – imag(Capx(k+1))*sin(k*ss(i));
    end
    y(i) = (1/8)*y(i);
end
% Transform data to original form
t = N*((tN−t1)/(2*pi*(N−1)))*s + t1;
tt = N*((tN−t1)/(2*pi*(N−1)))*ss + t1;

plot(tt,y,t,x,'o')   % Figure 5.32

241Curve Fitting (Approximation) and Interpolation

Problem Set

Linear Regression (Section 5.2)

In Problems 1 through 9, for each set of data

	 a.	 Using least-squares regression, find a straight line that best fits
the data.

	 b.	 Confirm the results by executing the user-defined function
LinearRegression.

	 1.	For this problem, use the following table.

xi yi

0.7 0.12
0.8 0.32
0.9 0.58
1.0 0.79
1.1 1.05

−3
0 0.5 1 1.5

−2

−1

0

1

2

3

4

t

x
Interpolating
poly. using FFT

Data

Figure 5.32
Interpolations using FFT in Example 5.16.

242 Numerical Methods for Engineers and Scientists Using MATLAB®

	 2.	For this problem, use the following table.

	 3.	For this problem, use the following table.

	 4.	For this problem, use the following table.

	 5.	For this problem, use the following table.

xi yi

0 2.4
0.3 2.79
0.6 3.02
0.9 3.33
1.2 3.55
1.5 3.89

xi yi

−1 1.2
0 0.5
1 −0.2
2 −1.1
3 −1.8
4 −2.3

xi yi

−1 −0.42
−0.6 0.03

−0.2 0.51
0.2 1.04
0.6 1.60

xi yi

1 2.6
2 3.0
4 3.5
6 4.5
7 5.0
8 5.1
10 6.2

243Curve Fitting (Approximation) and Interpolation

	 6.	For this problem, use the following table.

	 7.	For this problem, use the following table.

	 8.	For this problem, use the following table.

xi yi

4 6
10 20
13 27
25 47
29 59
40 81
45 87

xi yi

1 6.25
2 8.8
3 11.2
4 13.2
5 15.8
6 18
7 20.5
8 23
9 25
10 28

xi yi

−2 2.2
0 2.9
1 3.6
3 4.6
4 4.9
6 6.1
7 6.6
9 7.4
10 8
12 9.2

244 Numerical Methods for Engineers and Scientists Using MATLAB®

	 9.	For this problem, use the following table.

	 10.	   Students’ scores on the mathematics portion of the SAT exam
and their GPA follow a linear probabilistic model. Data from 10 stu-
dents have been collected and recorded in the following table.

	 a.	 Execute the user-defined function LinearRegression to find
and plot a straight line that best fits the data.

	 b.	 Using the line fit, find an estimate for the GPA of a student whose
test score was 400.

	 11.	  The yield of a chemical reaction (%) at several temperatures (°C)
is recorded in the following table.

	 a.	 Execute the user-defined function LinearRegression to find
and plot a straight line that best fits the data.

	 b.	 Using the line fit, find an estimate for the yield at 400°C.

xi yi

−4.2 6

−3.1 4.6

−1.5 2.8

−0.2 1.2
0.9 −0.08
2.2 −1.7
3.2 −2.91
3.9 −3.75
4.5 −4.5
5.8 −6

xi (Test Score) yi (GPA)

340 1.60
380 1.80
460 2.25
480 2.36
500 2.40
520 2.50
590 2.80
610 3.00
640 3.15
720 3.60

245Curve Fitting (Approximation) and Interpolation

	 12.	 In a linear coiled spring, the relation between spring force (F) and
displacement (x) is described by F = kx, where k is the coefficient of
stiffness of the spring, which is constant. Testing on a certain spring
has led to the data recorded in the following table. All parameter
values are in consistent physical units.

	 a.	 Execute the user-defined function LinearRegression to
find and plot a straight line that best fits the data.

	 b.	  Using (a), find the estimated value for the stiffness coefficient,
and the displacement corresponding to F = 250.

Linearization of Nonlinear Data (Section 5.3)

	 13.	  In Example 5.3, it seems as if an exponential function may fit the
data. Follow the procedure outlined in Section 5.3 to find the appro-
priate exponential function, including the necessary plots. Compare
with the results of Example 5.3, which used a power function to fit
the data.

xi (Temperature °C) yi (Yield%)

160 79.1
190 83.5
210 84.4
230 86.2
250 88.7
260 89.4
280 92.2
290 92.9
300 95.1
310 96.3

x (Displacement) F (Force)

0.1 19.8
0.2 40.9
0.4 79.8
0.5 99.3
0.7 140.2
0.8 160.4
1.0 199.5
1.2 239.8
1.3 260.6
1.5 300.7

246 Numerical Methods for Engineers and Scientists Using MATLAB®

	 14.	  Fit an exponential function to the data in the following table.

	 15.	  Fit a saturation function to the data in the following table.

	 16.	 For the data in the following table, decide whether an exponen-
tial or a power function provides an appropriate curve fit.

xi yi

0 1.2
0.2 2.2
0.4 3.1
0.6 5.3
0.8 8.3
1.0 13
1.2 21.5
1.4 34
1.6 53.1
1.8 86

xi yi

1 0.30
2 0.49
3.5 0.61
5 0.72
6 0.80
8 0.81
9.5 0.89
10 0.88

xi yi

0.2 3.0
0.3 3.7
0.5 5.2
0.6 6.2
0.8 8.7
1.0 12.5
1.1 15.2
1.3 22.0

247Curve Fitting (Approximation) and Interpolation

	 17.	 Fit a power function to the data in the following table.

	 18.	 Fit a saturation function to the data in the following table.

	 19.	 In many applications involving chemical processes, the experi-
mental data follows an s-shaped curve as in Figure 5.33, where
the data approaches a steady-state value of 1. The following table
contains one such set of data. For these cases, curve fitting is done
by approximating the s-shaped curve by y = 1 + Ae−αt, where A < 0
since y < 1 for all data, and α > 0. Rearrange and take the natural
logarithm to obtain

	 ln|y − 1| = −α t+ ln|A|

xi yi

1 3.2
1.6 3.5
2 3.6
2.5 3.9
3 4.1
3.4 4.5
4 4.6
4.6 4.7
5 4.9
5.8 5.1

xi yi

0.5 0.10
1 0.20
1.5 0.28
2 0.34
2.7 0.40
3.5 0.48
4.2 0.52
5 0.55
6 0.60
7 0.65

248 Numerical Methods for Engineers and Scientists Using MATLAB®

		 so that ln |y − 1| versus t is linear with a slope of −α and an intercept
of ln |A|. The slope and the intercept can be found by linear regres-
sion. Apply this procedure to the data in the following table to deter-
mine the parameters A and α. Plot the original data and the curve fit
just obtained.

	 20.	 Repeat Problem 19 for the data in the following table.

ti yi

0.5 0.40
1 0.50
2 0.70
3 0.80
4 0.90
6 0.95
7 0.96
8 0.97
9 0.98
10 0.99

ti yi

2 0.78
4 0.87
6 0.89
8 0.94
10 0.95
12 0.97
14 0.98
16 0.98
18 0.99
20 0.99

t

y

1

0

Steady-state

FIGURE 5.33
An s-shapted curve—chemical process.

249Curve Fitting (Approximation) and Interpolation

Polynomial Regression (Section 5.4)

	 21.	 Using the user-defined functions of Section 5.4, find and plot the
straight line, as well as the third-order polynomial that best fit the
data in the following table.

	 22.	 Using the user-defined functions of Section 5.4, find and plot the
straight line, as well as the second-order polynomial that best fit the
data in the following table.

	 23.	   Repeat Problem 22 for the data in the following table.

xi yi

0.1 0.8
0.3 1.0
0.5 1.5
0.7 2.2
0.9 3.3

xi yi

0 2.0
1 4.1
2 5.5
3 6.7
4 8.8
5 9.1

xi yi

1 5.0
3 5.8
4 6.8
5 6.5
7 7.3

250 Numerical Methods for Engineers and Scientists Using MATLAB®

	 24.	 Repeat Problem 21 for the data in the following table.

	 25.	 Using the polyfit function, find and plot the fourth-degree
polynomial that best fits the data in the following table.

	 26.	 Using the polyfit function, find and plot the second-degree, as
well as the fifth-degree polynomial that best fits the data in the follow-
ing table.

	 27.	 During the free fall of a heavy object, the relationship between
the velocity v of the object and the force r resisting its motion—both
in consistent physical units—is described by the data in the follow-
ing table.

	 a.	 Using the polyfit function, find and plot the second-degree
polynomial that best fits the data.

	 b.	 Use the result of (a) to approximate the relationship between v and
r, which is usually modeled as r = bv2 for a suitable constant b.

xi yi

1 1
2 4
3 5
4 6
5 7
6 8

xi yi

0 3.4
1 4.9
2 6.2
3 7.3
4 9.2
5 10.2

xi yi

0.0 1.2
0.3 1.8
0.6 2.8
0.9 3.6
1.0 4.3

251Curve Fitting (Approximation) and Interpolation

	 28	 Write a user-defined function Deg _ 4 _ Regression, which
finds the fourth-degree polynomial that best fits a set of data (x,y).
The function is called as

	 [a4 a3 a2 a1 a0] = Deg_4_Regression(x,y)

		 where the outputs are the coefficients of the desired polynomial.
Apply the function to the data in the following table.

Polynomial Interpolation (Section 5.5)

Lagrange Interpolation

	 29.	Given the data in the following table:
	 a.	 Interpolate at x = 0.7 using the second-degree Lagrange interpo-

lating polynomial.
	 b.	 Confirm the results by executing the user-defined function

LagrangeInterp.

Velocity
(v)

Resistance
(r)

0 0
0.4 0.1
0.8 0.5
1.2 1.0
1.6 1.8
2.0 2.7
2.4 4.0
2.8 5.5
3.2 7.2

x y

0.20 1.5
0.56 2.5
0.92 4.1
1.28 7.1
1.64 13
2.00 22

xi yi

0.3 0.53
0.6 0.22
0.8 0.10

252 Numerical Methods for Engineers and Scientists Using MATLAB®

	 30.	Given the data in the following table:
	 a.	  Interpolate at x = 0.55 using the second-degree Lagrange

interpolating polynomial.

	 b.	 Confirm the results by executing the user-defined function
LagrangeInterp.

	 31.	 Given the data in the following table:
	 a.	 Interpolate at x = 3 with a first-degree Lagrange polynomial

using two most suitable data points.
	 b.	 Interpolate at x = 3 with a second-degree Lagrange polynomial

using three most suitable data points.
	 c.	 Compare the results of (a) and (b), and discuss.

	 32.	 Given the data in the following table:
	 a.	 Interpolate at x = 2.5 with a first-degree Lagrange polynomial

using two most suitable data points.
	 b.	 Interpolate at x = 2.5 with a second-degree Lagrange polynomial

using three most suitable data points.
	 c.	 Compare the results of (a) and (b), and discuss.

xi yi = 2 sin(xi/2)

0 1
1 0.96
2 1.68
4 1.82

xi yi = log10(xi)

1 0
1.5 0.1761
2 0.3010
3 0.4771
5 0.6990

xi yi

0.2 −0.16
0.4 −0.24
0.9 −0.09

253Curve Fitting (Approximation) and Interpolation

	 33.	 Using format long and the user-defined function Lagrange
Interp, given the data in the following table:

	 a.	 Interpolate at x = 0.6 with a second-degree Lagrange polynomial
using three most suitable data points.

	 b.	 Interpolate at x = 0.6 with a third-degree Lagrange polynomial
using four most suitable data points.

	 c.	 Compare the results of (a) and (b).

	 34.	 Using format long and the user-defined function Lagrange
Interp, given the data in the following table:

	 a.	 Interpolate at x = 0.6 with a second-degree Lagrange polynomial
using three most suitable data points.

	 b.	 Interpolate at x = 0.6 with a third-degree Lagrange polynomial
using four most suitable data points.

	 c.	 Compare the results of (a) and (b).

	 35.	 Using the user-defined function LagrangeInterp, given the
data in the following table:

xi y ei
xi= − /2

0.2 0.9048
0.4 0.8187
0.5 0.7788
0.8 0.6703
1.1 0.5769
1.3 0.5220

xi yi xi= –2

0.1 0.9330
0.2 0.8706
0.4 0.7579
0.7 0.6156
0.9 0.5359
1.0 0.5000

254 Numerical Methods for Engineers and Scientists Using MATLAB®

	 a.	 Interpolate at x = 1.7 with a second-degree Lagrange polynomial
using three most suitable data points.

	 b.	 Interpolate at x = 9 with a third-degree Lagrange polynomial
using four most suitable data points.

	 36.	 Using the user-defined function LagrangeInterp, given the
data in the following table:

	 a.	 Interpolate at x = 1.5 with a second-degree Lagrange polynomial
using three most suitable data points.

	 b.	 Interpolate at x = 3 with a third-degree Lagrange polynomial
using four most suitable data points.

Newton Interpolation (Divided Differences)

	 37.	 For the data in the following table, construct a divided differ-
ences table and interpolate at x = 0.25 using Newton interpolating
polynomials p1(x), p2(x), and p3(x).

xi y x xi i i= + +(1)/ 12()

0 1
1 1
2 0.6
2.5 0.48
4 0.29

xi yi

0 1
0.5 0.9098
0.9 0.7725
1.2 0.6626

xi y xi i= 3

0 0
1 1
3 1.44
7 1.91
12 2.29

255Curve Fitting (Approximation) and Interpolation

	 38.	 For the data in the following table, construct a divided differ-
ences table and interpolate at x = 0.3 using Newton interpolating
polynomials p1(x), p2(x), and p3(x).

	 39.	 Consider the data in the following table.
	 a.	 Construct a divided differences table and interpolate at x = 1.75

using the third-degree Newton interpolating polynomial p3(x).
	 b.	 Suppose one more point (x = 3, y = 9.11) is added to the data.

Update the divided-differences table from (a) and interpolate at
x = 1.75 using the fourth-degree Newton interpolating polyno-
mial p4(x).

	 40.	 Consider the data in the following table.
	 a.	 Construct a divided differences table and interpolate at x = 4

using the third-degree Newton interpolating polynomial p3(x).
	 b.	 Suppose one more point (x = 7, y = 0.18) is added to the data.

Update the divided-difference table from (a) and interpolate at
x = 4 using the fourth-degree Newton interpolating polynomial
p4(x).

xi yi

0 1
0.4 2.68
0.8 5.79
1 8.15

xi yi

1 1.22
1.5 2.69
2 4.48
2.5 6.59

xi yi

1 1
3 0.45
5 0.26
6 0.21

256 Numerical Methods for Engineers and Scientists Using MATLAB®

	 41.	 Given the data in the following table
	 a.	  Construct a divided differences table and interpolate at x = 2.4

and x = 4.2 using the fourth-degree Newton interpolating poly-
nomial p4(x).

	 b.	 Confirm the results by executing the user-defined function
NewtonInterp.

	 42.	Given the data in the following table
	 a.	  Construct a divided differences table and interpolate at x = 2.5

and x = 5 using the fourth-degree Newton interpolating polyno-
mial p4(x).

	 b.	 Confirm the results by executing the user-defined function
NewtonInterp.

	 43.	 Using the user-defined function NewtonInterp, given the data
in the following table, interpolate at x = 4.5 via Newton interpolating
polynomials of all possible degrees, and comment on accuracy.

xi yi

1 0.89
2 1.81
3 2.94
4 4.38
6 8.72

xi y xi i=

1 1
2 1.4142
3.5 1.8708
5 2.2361
7 2.6458
9 3
10 3.1623

xi yi

1 0.69
2 1.10
3 1.39
4 1.61
6 1.95

257Curve Fitting (Approximation) and Interpolation

	 44.	 Using format long and the user-defined function Newton
Interp, given the data in the following table, interpolate at x = 4.25
via Newton interpolating polynomials of all possible degrees, and
comment on accuracy.

Newton Interpolation (Forward Differences)

	 45.	 For the data in the following table, construct a forward-differences
table and interpolate at x = 3.3 using Newton interpolating polyno-
mial p4(x).

	 46.	 Consider the data in the following table.
	 a.	 Construct a forward-differences table and interpolate at x = 1.25

using Newton interpolating polynomials p3(x) and p4(x).
	 b.	 Suppose a new point (x = 1.5, y = 4.27) is added to the data.

Interpolate at x = 1.25 using Newton interpolating polynomial
p5(x).

xi y ei
xi= /3

1 1.3956
1.5 1.6487
2.5 2.3010
3 2.7183
4 3.7937
4.5 4.4817
5 5.2945
6 7.3891

xi yi

1 1.25
2 3.25
3 7.25
4 13.25
5 21.25

258 Numerical Methods for Engineers and Scientists Using MATLAB®

	 47.	 For the data in the following table, construct a forward-differ-
ences table and interpolate at x = 2.8 using Newton interpolating
polynomial p5(x).

	 48.	 Write a user-defined function with syntax yi = Newton_FD
(x,y,xi) that finds the Newton forward-difference interpolating
polynomial for the data (x,y) and uses this polynomial to interpo-
late at xi and returns the interpolated value in yi. For the data in
the following table, find the interpolated value at x = 6.5 by executing
Newton_FD.

	 49.	 Given the data in the following table, interpolate at x = 5.5 by
executing the user-defined function Newton_FD (see Problem 48).

xi yi

1 1.0000
2 0.4444
3 0.2632
4 0.1818
5 0.1373
6 0.1096
7 0.0929
8 0.0775
9 0.0675
10 0.0597

xi yi

1 0.92
1.5 0.80
2 0.64
2.5 0.46
3 0.29
3.5 0.14

xi yi

1.0 1.30
1.1 1.75
1.2 2.27
1.3 2.86
1.4 3.52

259Curve Fitting (Approximation) and Interpolation

	 50.	 Given the data in the following table, interpolate at x = 7.4 by
executing

	 a.	 The user-defined function Newton_FD (see Problem 48).
	 b.	 The user-defined function NewtonInterp (see Section 5.5).

Compare the results.

Spline Interpolation (Section 5.6)

 In Problems 51 through 54, find and plot the quadratic splines for the
given data and interpolate at the specified point(s). Assume ′′ =S x1 1 0() .

	 51.	For this problem, use the following table (x = 3.6).

xi yi

2 1.7100
4 2.0801
6 2.3513
8 2.5713
10 2.7589
12 2.9240
14 3.0723
16 3.2075
18 3.3322
20 3.4482

xi yi

1 1.4422
2 1.8171
3 2.2240
4 2.6207
5 3.0000
6 3.3620
7 3.7084
8 4.0412
9 4.3621
10 4.6723

xi yi

1 1.2
3 2.3
4 1.2
6 2.9

260 Numerical Methods for Engineers and Scientists Using MATLAB®

	 52.	For this problem, use the following table (x = 0.5, x = 2.2).

	 53.	For this problem, use the following table (x = 5, x = 8.5).

	 54.	For this problem, use the following table (x = 5, x = 8).

	 55.	 Consider the data in the following table.
	 a.	 Find and plot the quadratic splines, assuming ′′ =S x1 1 0() .
	 b.	 Find and plot the cubic splines with clamped boundary condi-

tions p = 1, q = −1.
	 c.	 Find the interpolated value at x = 1.5 using the splines of (a) and

(b), and compare with the true value.

xi yi

1 10
4   8
6 12
9 14

xi y ei
xi= – –10 /2

0.1 9.0488
0.5 9.2212
1 9.3935
2 9.6321

xi yi

3 1
7 4
10 5
13 2

xi yi

0 1
1 2
2 5
3 9

261Curve Fitting (Approximation) and Interpolation

	 56.	 Repeat Problem 55 but this time assume the cubic splines satisfy
free boundary conditions.

	 57.	 For the data in the following table, construct and plot cubic splines
that satisfy

	 a.	 Clamped boundary conditions p = −1, q = −0.5
	 b.	 Free boundary conditions

	 58.	 For the data in the following table construct and plot cubic splines
that satisfy

	 a.	 Clamped boundary conditions p = 0, q = 0.3
	 b.	 Free boundary conditions

	 59.	 In an exercise session, maximum heart rates for eight individu-
als of different ages have been recorded as shown in the following
table. Find the maximum heart rate of a 37-year-old individual by
using

	 a.	 interp1
	 b.	 Clamped (p = −1, q = −1) cubic spline interpolation

xi yi

1 5
4 1
6 2
8 0.5

xi yi

1 1
3 2
5 5
8 6

Age xi

Maximum
Heart Rate yi

12 204
20 198
25 192
30 185
35 180
40 175
45 168
50 162

262 Numerical Methods for Engineers and Scientists Using MATLAB®

	 60.	 The yield of a certain chemical reaction at various temperatures
is recorded in the following table. Find the reaction yield at 260°C by
using

	 a.	 interp1.
	 b.	 Clamped (p = −1, q = 1) cubic spline interpolation. Plot both

splines and the original data.
	 c.	 Clamped (p = −0.5, q = 0.5) cubic spline interpolation. Plot the

new splines together with those of (a). Compare with (b) and dis-
cuss the results.

	 61.	 The data in the following table is generated by the function
f(x) = 1/(1 + 2x2).

	 a.	 Construct and plot the cubic splines with clamped boundary
conditions p = 0.1, q = −0.1. Also plot the original function and the
given data. Interpolate at x = 1.5 and compare with the true value
at that point.

	 b.	 Repeat (a) for boundary conditions p = 0.2, q = −0.2. Discuss the
results.

xi yi

−2 0.1111

−1 0.3333
0 1
1 0.3333

2 0.1111

Temperature
(°C) xi

Reaction
Yield (%) yi

160 78.5
190 83.1
195 84.5
230 85.9
250 89.3
280 91.6
300 93.9

263Curve Fitting (Approximation) and Interpolation

	 62.	 For the data in the following table, construct and plot the cubic
splines using interp1 and find the interpolated value at x = 2.5.
Repeat for cubic splines with clamped boundary conditions p = 0,
q = 0, and compare the results.

	 63.	 Consider the data for x = 0:20 generated by the Bessel function
of the first kind of order zero J0(x), which in MATLAB is handled by
besselj(0,x). Construct and plot the cubic splines using interp1,
interpolate at x = 3.4, and compare with the actual value at that point.

	 64.	 The data in Table 5.18 shows the (experimental) compressibility
factor for air at several pressures when temperature is fixed at 180 K.
Construct and plot the cubic splines using interp1 and find the
interpolated value at x = 125. Repeat for a third-degree polynomial
using polyfit and compare the results.

xi yi

−4 0

−3 0

−2 0

−1 1.6
0 2
1 1.6
2 0
3 0
4 0

Table 5.18

Experimental Compressibility Factor for Air at Several Pressures

Pressure (Bars) xi Comp. Factor yi Pressure (Bars) xi Comp. Factor yi

1 0.9967 100 0.7084
5 0.9832 150 0.7180
10 0.9660 200 0.7986
20 0.9314 250 0.9000
40 0.8625 300 1.0068
60 0.7977 400 1.2232
80 0.7432 500 1.4361

Source:	 Perry’s Chemical Engineers’ Handbook. 6th edition, McGraw-Hill, 1984.

264 Numerical Methods for Engineers and Scientists Using MATLAB®

Fourier Approximation and Interpolation (Section 5.7)

In Problems 65 through 72, for each given set of data:

	 a.	 Find the approximating or interpolating trigonometric polyno-
mial of the degree indicated.

	 b.	 Confirm the results of (a) by executing the user-defined function
TrigPoly.

	 65.	For this problem, use the following table (m = 2).

	 66.	For this problem, use the following table (m = 2).

	 67.	For this problem, use the following table (m = 2).

ti xi

1 0.9
1.3 1
1.6 −1
1.9 −0.8
2.2 0.9
2.5 1

ti xi

0.6 −0.60
0.8 0.52
1.0 0.98
1.2 0.75
1.4 1.03

ti xi

0.3 1
0.4 0.9
0.5 0
0.6 0.1
0.7 0.8
0.8 0.9

265Curve Fitting (Approximation) and Interpolation

	 68.	For this problem, use the following table (m = 3).

	 69.	For this problem, use the following table (m = 3).

	 70.	For this problem, use the following table (m = 2).

	 71.	For this problem, use the following table (m = 3).

	 72.	For this problem, use the following table (m = 4).

ti xi

2 1.40
2.3 1.06
2.6 0.77
2.9 0.15
3.2 −0.62
3.5 0.31

ti xi

1.5 1.05
1.7 1.85
1.9 1.40
2.1 0.35
2.3 1.50
2.5 0.80

ti xi

2.4 4.15
2.6 2.05
2.8 6.20
3.0 4.30
3.2 5.80

ti xi ti xi

0.7 −0.20 1.9 1.02
1.0 −0.54 2.2 0.92
1.3 −0.12 2.5 0.56
1.6 0.38 2.8 0.19

ti xi ti xi

1.0 1.00 3.0 0.95
1.5 0.82 3.5 1.16
2.0 0.13 4.0 0.85
2.5 0.74 4.5 −0.25

266 Numerical Methods for Engineers and Scientists Using MATLAB®

 In Problems 73 through 76, for each given set of data, find the interpolat-
ing function using the MATLAB function fft.

	 73.	For this problem, use the following table.

	 74.	For this problem, use the following table.

	 75.	For this problem, use the following table.

	 76.	For this problem, use the following table.

ti xi ti xi

0 1 2 0
0.5 1 2.5 0
1 0 3 1
1.5 0 3.5 1

ti xi ti xi

0.0 4.001 0.8 0.102
0.1 3.902 0.9 0.251
0.2 1.163 1.0 0.229
0.3 0.997 1.1 0.143
0.4 0.654 1.2 0.054
0.5 0.803 1.3 0.001
0.6 0.407 1.4 −0.583
0.7 0.706 1.5 −0.817

ti xi ti xi

1.0 5.024 1.8 0.543
1.1 5.536 1.9 0.510
1.2 3.023 1.0 0.702
1.3 1.505 2.1 0.189
1.4 1.559 2.2 0.176
1.5 1.021 2.3 −0.096
1.6 0.965 2.4 −1.112
1.7 0.998 2.5 0.465

ti xi ti xi

0.2 −1 1.4 −1
0.5 0 1.7 −2
0.8 1 2.0 −3
1.1 0 2.3 −2

267

6
Numerical Differentiation and Integration

The numerical methods to find estimates for derivatives and definite integrals
are presented and discussed in this chapter. Many applications in engineer-
ing involve rates of change of quantities with respect to variables such as
time. For example, linear damping force is directly proportional to the rate
of change of displacement with respect to time. In many other applications,
definite integrals are involved. For example, the voltage across a capacitor at
any specified time is proportional to the integral of the current taken from
an initial time to that specified time.

6.1  Numerical Differentiation

There are many situations where numerical differentiation is needed.
Sometimes the analytical expression of the function to be differentiated is
known but analytical differentiation is either very difficult or impossible. In
that case, the function is discretized to generate several points (values), which
are subsequently used by a numerical method to approximate the derivative
of the function at any of the generated points. Often, however, data is avail-
able in the form of a discrete set of points. These points may be recorded data
from experimental measurements or generated as a result of some type of
numerical computations. In these situations, the derivative can be numerically
approximated in one of two ways. One way is to use finite differences, which
utilize the data in the neighborhood of the point of interest. In Figure 6.1a, for
instance, the derivative at the point xi is approximated by the slope of the line
connecting xi−1 and xi+1. The other approach is to fit a suitable, easy-to-differ-
entiate function into the data (Chapter 5) and then differentiate the analytical
expression of the function and evaluate at the point of interest; see Figure 6.1b.

6.2  Finite-Difference Formulas for Numerical Differentiation

Finite-difference formulas are used to approximate the derivative at a point
by making use of the values at the neighboring points. These formulas can be

268 Numerical Methods for Engineers and Scientists Using MATLAB®

derived to approximate derivatives of different orders at a specified point by
using the Taylor series expansion. In this section, we present the derivation
for finite-difference formulas to approximate first and second derivatives at a
point, but those for the third and fourth derivatives will be provided without
derivation.

6.2.1  Finite-Difference Formulas for the First Derivative

There are several methods for approximating the first derivative at a point
and they use the values at two or more of its neighboring points. These points
can be to the left, to the right, or on both sides of the point at which the first
derivative is being approximated.

6.2.1.1  Two-Point Backward Difference Formula

The value of f(xi−1) can be approximated by a Taylor series expansion at xi.
Letting h = xi − xi−1, this yields

	
f x f x hf x h f x h f xi i i i i() () ()

!
()

!
()− = − ′ + ′′ − ′′′ +1

2 31
2

1
3



Retaining the linear terms only, we have

	

f x f x hf x h fi i i() () ()
!

()− = − ′ + ′′1
21

2
ξ

Remainder

where xi−1 ≤ ξ ≤ xi. Solving for f′(xi), we find

	
′ = − + ′′−f x

f x f x
h

hfi
i i()

() ()
!

()1 1
2

ξ
Truncation error 	

(6.1)

x

f

x

f

Tangent line

Curve fit
Data

(a) (b)

xi–1 xi xixi+1

f ′(xi) approximated
by the slope of the line
connecting two neighboring
data points

f ′(xi) approximated
by the slope of the tangent
line to the curve fit

Figure 6.1
Approximating f′(xi) using (a) finite difference and (b) the curve fit.

269Numerical Differentiation and Integration

Approximating the first derivative can be done by neglecting the second
term on the right side, which produces a truncation error. Since this is pro-
portional to h, we say the truncation error is of the order of h and express it
as O(h)

	
′ = − +−f x

f x f x
h

O hi
i i()

() ()
()1

	
(6.2)

The actual value of the truncation error is not available because the value
of ξ is not exactly known. However, O(h) means that the error gets smaller as
h gets smaller.

6.2.1.2  Two-Point Forward Difference Formula

The value of f(xi+1) can be approximated by a Taylor series expansion at xi.
Letting h = xi+1 − xi

	
f x f x hf x h f x h f xi i i i i() () ()

!
()

!
()+ = + ′ + ′′ + ′′′ +1

2 31
2

1
3

...

Retaining the linear terms only

	

f x f x hf x h fi i i() () ()
!

()+ = + ′ + ′′1
21

2
ξ

Remainder

where xi ≤ ξ ≤ xi+1. Solving for f′(xi), we find

	
′ = − − ′′+f x

f x f x
h

hfi
i i()

() ()
!

()1 1
2

ξ
	

(6.3)

The first term on the right side of Equation 6.3 provides an approximation
for the first derivative, while the neglected second term is of the order of h
so that

	
′ = − ++f x

f x f x
h

O hi
i i()

() ()
()1

	
(6.4)

6.2.1.3  Two-Point Central Difference Formula

To derive the central difference formula, we retain up to the quadratic term
in the Taylor series. Therefore

	
f x f x hf x h f x h f x xi i i i i i() () ()

!
()

!
(),− −= − ′ + ′′ − ′′′ ≤ ≤1

2 3
1

1
2

1
3

ξ ξ

270 Numerical Methods for Engineers and Scientists Using MATLAB®

and

	
f x f x hf x h f x h f x xi i i i i i() () ()

!
()

!
(),+ += + ′ + ′′ + ′′′ ≤ ≤1

2 3
1

1
2

1
3

η η

Subtracting the first equation from the second, we find

	
f x f x hf x h f fi i i() () ()

!
() ()+ −− = ′ + ′′′ + ′′′ 1 1

32
1
3

η ξ

Solving for f′(xi) and proceeding as before

	
′ = − ++ −f x

f x f x
h

O hi
i i()

() ()
()1 1 2

2 	
(6.5)

Equation 6.5 reveals that the central difference formula provides a better
accuracy than the backward and forward difference formulas. Figure 6.2
supports this observation.

x

f

Tangent line

Backward finite difference

x

f

Tangent line

Forward finite difference

x

f

Tangent line

Central finite difference

xi xi+1xi–1 xi xi+1xi–1

xi xi+1xi–1

Figure 6.2
Two-point finite differences to approximate the first derivative.

271Numerical Differentiation and Integration

Consider a set of data with x1, x2, ... , xn. Since the two-point backward differ-
ence formula uses xi and the point to its left, xi−1, it cannot be applied at the first
data point x1. But it can be used to approximate the first derivative at all interior
points, as well as the last point xn, with a truncation error of O(h). The two-point
forward difference formula cannot be applied at the last point xn. But it can be
used to approximate the first derivative at the first point x1 and all the interior
points with a truncation error of O(h). The central difference formula approxi-
mates the first derivative at the interior points with a truncation error of O(h2)
but cannot be applied at the first and last points. The central difference formula
is therefore the preferred choice since it gives better accuracy, but cannot be used
at the endpoints. This means the approximation of the first derivative at the inte-
rior points has an error of O(h2), while those at the endpoints come with O(h). To
have compatible accuracy, it is desired that the approximations at the endpoints
also come with O(h2). These are provided by three-point difference formulas.

6.2.1.4  Three-Point Backward Difference Formula

We first approximate the value of f(xi−1) by a Taylor series expansion at xi

	
f x f x hf x h f x h f x xi i i i i i() () ()

!
()

!
(),− −= − ′ + ′′ − ′′′ ≤ ≤1

2 3
1

1
2

1
3

ξ ξ

We also approximate the value of f(xi−2) by a Taylor series expansion at xi

	
f x f x h f x h f x h f xi i i i() () () ()

!
() ()

!
() (),− = − ′ + ′′ − ′′′2

2 32
1
2

2
1
3

2 η ii ix− ≤ ≤2 η

Multiplying the first equation by 4 and subtracting the result from the
second equation yields

	
f x f x f x hf x h f h fi i i i() () () ()

!
()

!
(− −− = − + ′ + ′′′ − ′′′2 1

3 34 3 2
4
3

8
3

ξ η))

Solving for f′(xi), we arrive at

	
′ = − + − ′′′ + ′′′− −f x

f x f x f x
h

h f h fi
i i i()

() () ()
() ()2 1 2 24 3

2
1
3

2
3

ξ η

Then, f′(xi) can be approximated by neglecting the last two terms, which
introduces a truncation error of the order of h2, that is

	
′ = − + +− −f x

f x f x f x
h

O hi
i i i()

() () ()
()2 1 24 3

2 	
(6.6)

Therefore, the three-point backward difference formula approximates the
first derivative at xi by using the values at the points xi, xi−1, and xi−2.

272 Numerical Methods for Engineers and Scientists Using MATLAB®

6.2.1.5  Three-Point Forward Difference Formula

The three-point forward difference formula approximates the first derivative
at xi by using the values at the points xi, xi+1, and xi+2. The derivation is similar
to that presented for the backward difference, except that the values of f(xi+1)
and f(xi+2) are now considered as Taylor series expanded at xi. This ultimately
leads to

	
′ = − + − ++ +f x

f x f x f x
h

O hi
i i i()

() () ()
()

3 4
2

1 2 2

	
(6.7)

Example 6.1:  Finite-Difference Formulas for the First Derivative

Consider the function f(x) = e−xsin(x/2) with x = 1.2, 1.4, 1.6, 1.8.
Approximate f ′(1.4) using

•	 Two-point backward difference formula
•	 Two-point forward difference formula
•	 Two-point central difference formula
•	 Three-point forward difference formula

Find the relative error in each case.

Solution

Differentiation yields ′ = − 
−f x e x xx() cos() sin()1

2 2 2/ / so the actual
value is f  ′(1.4) = −0.0646. The approximate first derivative is calculated
via the four difference formulas listed above and are summarized in
Table 6.1. As expected, the two-point central difference and three-point
forward difference formulas provide better accuracy than the other two
techniques.

Table 6.1

​Summary of Calculations in Example 6.1

Difference Formula Approximate f ′(1.4) Relative Error (%)

2-Point backward
f f() ()1.4 1.2

0.2
0.0560

−
= − 13.22

2-Point forward
f f() ()1.6 1.4

0.2
0.0702

−
= − 8.66

2-Point central
f f() ()

()
1.6 1.2

0.2
0.0631

−
= −

2
2.28

3-Point forward
− + −

= −
3 4

2
f f f() () ()

()
1.4 1.6 1.8

0.2
0.0669 3.56

273Numerical Differentiation and Integration

6.2.2  Finite-Difference Formulas for the Second Derivative

The second derivative at xi can also be approximated by finite difference for-
mulas. These formulas are derived in a similar manner as those for the first
derivative. Below, we present three-point backward and forward difference,
as well as three-point central difference formulas for approximating the sec-
ond derivative.

6.2.2.1  Three-Point Backward Difference Formula

The values of f(xi−1) and f(xi−2) are first approximated by Taylor series expan-
sions about xi:

	
f x f x hf x h f x h f x xi i i i i i() () ()

!
()

!
(),− −= − ′ + ′′ − ′′′ ≤ ≤1

2 3
1

1
2

1
3

ξ ξ

	
f x f x h f x h f x h f xi i i i() () () ()

!
() ()

!
() (),− = − ′ + ′′ − ′′′2

2 32
1
2

2
1
3

2 η ii ix− ≤ ≤2 η

Multiplying the first equation by 2 and subtracting from the second equa-
tion results in

	
f x f x f x h f x h f h fi i i i() () () () () ()− −− = − + ′′ − ′′′ + ′′′2 1

2 3 32
4
3

1
3

η ξ

Proceeding as before, we find

	
′′ = − + +− −f x

f x f x f x
h

O hi
i i i()

() () ()
()2 1

2

2

	
(6.8)

6.2.2.2  Three-Point Forward Difference Formula

The values of f(xi+1) and f(xi+2) are first approximated by Taylor series expan-
sions about xi:

	
f x f x hf x h f x h f x xi i i i i i() () ()

!
()

!
(),+ += + ′ + ′′ + ′′′ ≤ ≤1

2 3
1

1
2

1
3

ξ ξ

	
f x f x h f x h f x h f xi i i i() () () ()

!
() ()

!
() (),+ = + ′ + ′′ + ′′′2

2 32
1
2

2
1
3

2 η ii ix≤ ≤ +η 2

Multiplying the first equation by 2 and subtracting from the second equa-
tion results in

	 f x f x f x h f x h f h fi i i i() () () () () ()+ +− = − + ′′ + ′′′ − ′′′2 1
2 3 32

4
3

1
3

η ξ

274 Numerical Methods for Engineers and Scientists Using MATLAB®

Therefore

	
′′ = − + ++ +f x

f x f x f x
h

O hi
i i i()

() () ()
()2 1

2

2

	
(6.9)

6.2.2.3  Three-Point Central Difference Formula

Expanding f(xi−1) and f(xi+1) in Taylor series about xi and retaining up to the
third derivative terms, we find

	
f x f x hf x h f x h f x h fi i i i i() () ()

!
()

!
()

!
()

− = − ′ + ′′ − ′′′ +1
2 3 4 41

2
1
3

1
4

((),ξ ξx xi i− ≤ ≤1

	
f x f x hf x h f x h f x h fi i i i i() () ()

!
()

!
()

!
()

+ = + ′ + ′′ + ′′′ +1
2 3 4 41

2
1
3

1
4

((),η ηx xi i≤ ≤ +1

Adding the two equations and proceeding as always, we have

	
′′ = − + +− +f x

f x f x f x
h

O hi
i i i()

() () ()
()1 1

2
22

	
(6.10)

Therefore, in approximating the second derivative, the three-point central
difference formula has a truncation error of O(h2) compared to O(h) for the
three-point backward and forward difference formulas.

Example 6.2:  Finite-Difference Formulas for the Second Derivative

Consider f(x) = e−x sin(x/2) of Example 6.1. Approximate f″(1.4) using

•	 Three-point backward difference formula (h = 0.2)
•	 Three-point forward difference formula (h = 0.2)
•	 Three-point central difference formula (h = 0.2)
•	 Three-point central difference formula (h = 0.1)

Find the relative error in each case.

Solution

The actual value is f″(1.4)= −0.0695. The numerical results are sum-
marized in Table 6.2, where it is readily seen that the three-point
central difference formula gives the most accurate estimate. It is
also observed that reducing the spacing significantly improves the
accuracy.

275Numerical Differentiation and Integration

6.2.2.4 � Summary of Finite-Difference Formulas for First to Fourth
Derivatives

Table 6.3 lists the difference formulas presented earlier, as well as addi-
tional formulas for the first and second derivatives. It also includes formu-
las that can similarly be derived for the third and fourth derivatives at a
point xi.

6.2.3  Estimate Improvement: Richardson’s Extrapolation

Derivative estimates using finite differences can clearly be improved by
either reducing the step size or using a higher-order difference formula that
involves more points. A third method is to use Richardson’s extrapolation,
which combines two derivative approximations to obtain a more accurate
estimate. The idea is best understood via a specific example.

Consider the approximation of the first derivative using the two-point cen-
tral difference formula. We will repeat some of the analysis done earlier, but
show more terms in Taylor series expansions for our purpose.

	

f x f x hf x h f x h f x h fi i i i i() () ()
!

()
!

()
!

()
− = − ′ + ′′ − ′′′ +1

2 3 4 41
2

1
3

1
4

(()
!

(),()x h f

x x

i

i i

−

≤ ≤−

1
5

5 5

1

ξ

ξ

and

	

f x f x hf x h f x h f x h fi i i i i() () ()
!

()
!

()
!

()
+ = + ′ + ′′ + ′′′ +1

2 3 4 41
2

1
3

1
4

(()
!

(),()x h f

x x

i

i i

+

≤ ≤ +

1
5

5 5

1

η

η

Table 6.2

Summary of Calculations in Example 6.2

Difference Formula Approximate f″(1.4) Relative Error (%)

3-Point backward h = 0.2
f f f() () ()

()
1 2

2

− +
= −

1.2 1.4
0.2

0.1225 76.4

3-Point forward h = 0.2
f f f() () ()

()
1 2

2

.4 1.6 1.8
0.2

0.0330
− +

= − 52.6

3-Point central h = 0.2
f f f() () ()

()
1 2

2

.2 1.4 1.6
0.2

0.0706
− +

= − 1.69

3-Point central h = 0.1
f f f() () ()

()
1 2

2

.3 1.4 1.5
0.1

0.0698
− +

= − 0.42

276 Numerical Methods for Engineers and Scientists Using MATLAB® 277Numerical Differentiation and Integration
Ta

b
le

 6
.3

Su
m

m
ar

y
of

 F
in

ite
 D

if
fe

re
nc

e
Fo

rm
u

la
s

fo
r

Fi
rs

t,
Se

co
nd

, T
h

ir
d,

 a
nd

 F
ou

rt
h

D
er

iv
at

iv
es

D
if

fe
re

n
ce

 F
or

m
u

la
Fi

rs
t D

er
iv

at
iv

e
Tr

u
n

ca
ti

on
 E

rr
or

2-
Po

in
t b

ac
kw

ar
d

′
=

−
−

f
x

f
x

f
x

h
i

i
i

(
)

(
)

(
)

1
O

(h
)

2-
Po

in
t f

or
w

ar
d

′
=

−
+

f
x

f
x

f
x

h
i

i
i

(
)

(
)

(
)

1
O

(h
)

2-
Po

in
t c

en
tr

al
′

=
−

+
−

f
x

f
x

f
x

h
i

i
i

(
)

(
)

(
)

1
1

2

O
(h

2)

3-
Po

in
t b

ac
kw

ar
d

′
=

−
+

−
−

f
x

f
x

f
x

f
x

h
i

i
i

i
(

)
(

)
(

)
(

)
2

1
4

3
2

O
(h

2)

3-
Po

in
t f

or
w

ar
d

′
=

−
+

−
+

+
f
x

f
x

f
x

f
x

h
i

i
i

i
(

)
(

)
(

)
(

)
3

4
2

1
2

O
(h

2)

4-
Po

in
t c

en
tr

al
′

=
−

+
−

−
−

+
+

f
x

f
x

f
x

f
x

f
x

h
i

i
i

i
i

(
)

(
)

(
)

(
)

(
)

2
1

1
2

8
8

12

O
(h

4)

D
if

fe
re

n
ce

 F
or

m
u

la
S

ec
on

d
 D

er
iv

at
iv

e
Tr

u
n

ca
ti

on
 E

rr
or

3-
Po

in
t b

ac
kw

ar
d

′′
=

−
+

−
−

f
x

f
x

f
x

f
x

h
i

i
i

i
(

)
(

)
(

)
(

)
2

1
2

2
O

(h
)

3-
Po

in
t f

or
w

ar
d

′′
=

−
+

+
+

f
x

f
x

f
x

f
x

h
i

i
i

i
(

)
(

)
(

)
(

)
2

1
2

2
O

(h
)

276 Numerical Methods for Engineers and Scientists Using MATLAB® 277Numerical Differentiation and Integration
3-

Po
in

t c
en

tr
al

′′
=

−
+

−
+

f
x

f
x

f
x

f
x

h
i

i
i

i
(

)
(

)
(

)
(

)
1

1
2

2
O

(h
2)

4-
Po

in
t b

ac
kw

ar
d

′′
=

−
+

−
+

−
−

−
f

x
f
x

f
x

f
x

f
x

h
i

i
i

i
i

(
)

(
)

(
)

(
)

(
)

3
2

1
2

4
5

2
O

(h
2)

4-
Po

in
t f

or
w

ar
d

′′
=

−
+

−
+

+
+

f
x

f
x

f
x

f
x

f
x

h
i

i
i

i
i

(
)

(
)

(
)

(
)

(
)

2
5

4
1

2
3

2

O
(h

2)

5-
Po

in
t c

en
tr

al
′′

=
−

+
−

+
−

−
−

+
+

f
x

f
x

f
x

f
x

f
x

f
x

h
i

i
i

i
i

i
(

)
(

)
(

)
(

)
(

)
(

)
2

1
1

2
2

16
30

16
12

O
(h

4)

D
if

fe
re

n
ce

 F
or

m
u

la
T

h
ir

d
 D

er
iv

at
iv

e
Tr

u
n

ca
ti

on
 E

rr
or

4-
Po

in
t b

ac
kw

ar
d

′′′
=

−
+

−
+

−
−

−
f

x
f
x

f
x

f
x

f
x

h
i

i
i

i
i

(
)

(
)

(
)

(
)

(
)

3
2

1
3

3
3

O
(h

)

4-
Po

in
t f

or
w

ar
d

′′′
=

−
+

−
+

+
+

+
f

x
f
x

f
x

f
x

f
x

h
i

i
i

i
i

(
)

(
)

(
)

(
)

(
)

3
3

1
2

3
3

O
(h

)

4-
Po

in
t c

en
tr

al
′′′

=
−

+
−

+
−

−
+

+
f

x
f
x

f
x

f
x

f
x

h
i

i
i

i
i

(
)

(
)

(
)

(
)

(
)

2
1

1
2

3

2
2

2

O
(h

2)

5-
Po

in
t b

ac
kw

ar
d

′′′
=

−
+

−
+

−
−

−
−

f
x

f
x

f
x

f
x

f
x

f
x

h
i

i
i

i
i

i
(

)
(

)
(

)
(

)
(

)
(

)
3

14
24

18
5

2
4

3
2

1
3

O
(h

2)

5-
Po

in
t f

or
w

ar
d

′′′
=

−
+

−
+

−
+

+
+

+
f

x
f
x

f
x

f
x

f
x

f
x

h
i

i
i

i
i

i
(

)
(

)
(

)
(

)
(

)
(

)
5

18
24

14
3

2
1

2
3

4
3

O
(h

2)

6-
Po

in
t c

en
tr

al
′′′

=
−

+
−

+
−

−
−

−
+

+
f

x
f
x

f
x

f
x

f
x

f
x

f
x

i
i

i
i

i
i

(
)

(
)

(
)

(
)

(
)

(
)

(
3

2
1

1
2

8
13

13
8

ii

h
+

3
3

8
)

O
(h

4)

(c
on

ti
nu

ed
)

278 Numerical Methods for Engineers and Scientists Using MATLAB® 279Numerical Differentiation and Integration
Ta

b
le

 6
.3

 (
co

nt
in

ue
d)

Su
m

m
ar

y
of

 F
in

ite
 D

if
fe

re
nc

e
Fo

rm
u

la
s

fo
r

Fi
rs

t,
Se

co
nd

, T
h

ir
d,

 a
nd

 F
ou

rt
h

D
er

iv
at

iv
es

D
if

fe
re

n
ce

 F
or

m
u

la
Fo

u
rt

h
 D

er
iv

at
iv

e
Tr

u
n

ca
ti

on
 E

rr
or

5-
Po

in
t b

ac
kw

ar
d

f
x

f
x

f
x

f
x

f
x

f
x

h
i

i
i

i
i

i
(

) (
)

(
)

(
)

(
)

(
)

(
)

4
4

3
2

1
4

4
6

4
=

−
+

−
+

−
−

−
−

O
(h

)

5-
Po

in
t f

or
w

ar
d

f
x

f
x

f
x

f
x

f
x

f
x

h
i

i
i

i
i

i
(

) (
)

(
)

(
)

(
)

(
)

(
)

4
1

2
3

4
4

4
6

4
=

−
+

−
+

+
+

+
+

O
(h

)

5-
Po

in
t c

en
tr

al
f

x
f
x

f
x

f
x

f
x

f
x

h
i

i
i

i
i

i
(

) (
)

(
)

(
)

(
)

(
)

(
)

4
2

1
1

2
4

4
6

4
=

−
+

−
+

−
−

+
+

O
(h

2)

6-
Po

in
t b

ac
kw

ar
d

f
x

f
x

f
x

f
x

f
x

f
x

i
i

i
i

i
i

(
) (

)
(

)
(

)
(

)
(

)
(

)
4

5
4

3
2

1
2

11
24

26
14

=
−

+
−

+
−

−
−

−
−

−
++

3
4

f
x

h
i

(
)

O
(h

2)

6-
Po

in
t f

or
w

ar
d

f
x

f
x

f
x

f
x

f
x

f
x

f
i

i
i

i
i

i
(

) (
)

(
)

(
)

(
)

(
)

(
)

4
1

2
3

4
3

14
26

24
11

2
=

−
+

−
+

−
+

+
+

+
((

)
x

h
i+

5
4

O
(h

2)

7-
Po

in
t c

en
tr

al
f

x
f
x

f
x

f
x

f
x

f
x

f
i

i
i

i
i

i
(

) (
)

(
)

(
)

(
)

(
)

(
)

4
3

2
1

1
12

39
56

39
12

=
+

−
+

+
+

−
−

−
+

((
)

(
)

x
f
x

h
i

i
+

+
−

2
3

4
6

O
(h

4)

278 Numerical Methods for Engineers and Scientists Using MATLAB® 279Numerical Differentiation and Integration

Subtracting the first equation from the second, and solving for f ′(xi), yields

	
′ = − − ′′′ ++ −f x

f x f x
h

h f x O hi
i i

i()
() ()

!
() ()1 1 2 4

2
1
3 	

(6.11)

We next repeat this process with step size 1
2 h . In the meantime, let

f x f x hi i() ()/− = −1 2
1
2 , f x f x hi i() ()/+ = +1 2

1
2 . Then, it can be shown that

	
′ = − − 



 ′′′ ++ −f x

f x f x
h

h f x O hi
i i

i()
() ()

() !
() (/ /1 2 1 2

1
2

2

2
1
3

1
2

44)
	

(6.12)

Multiply Equation 6.12 by 4 and subtract Equation 6.11 from the result to
obtain

	

f x
f x f x

h
i

i i

h

′()
() ()/ /

/

= −+ −4
3

1 2 1 2

2 pt centraldiff.formula
with

-
22

1 1

2

1
3 2

anderror
2 pt centraldiff.formula

O h

i if x f x
h

()

() ()− −+ −

-
wwith anderrorh O h

O h

()

()

2

4+

	

(6.13)

Therefore, two approximations provided by the two-point central differ-
ence formula, one with spacing h and the other with 1

2 h , each with error
O(h2), are combined to obtain a more accurate estimate of the first derivative
with error O(h4).

Equation 6.13 can be expressed in a general form as

	
D D D O hh h= − +4

3
1
32

4
/ ()

	
(6.14)

where
D = value of the derivative
Dh = a function that approximates the derivative using h and has an error

of O(h2)
Dh/2 = a function that approximates the derivative using 1

2 h and has an
error of O(h2)

Note that Equation 6.14 can be used in connection with any difference
formula that has an error of O(h2). Also note that the coefficients in Equation
6.14 add up to 1, and hence act as weights attached to each estimate. With
increasing accuracy, they place greater weight on the better estimate. For
instance, using spacing size 1

2 h generates a better estimate than the one
using h, and consequently Dh/2 has a larger weight attached to it than Dh
does.

280 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 6.3:  Richardson’s Extrapolation

Consider f(x) = e−x sin(x/2) studied in Example 6.2. We approximated f″(1.4)
using the three-point central difference formula, which has an error of
O(h2). Using h = 0.2, we found the estimate to be −0.0706. Using h = 0.1,
the estimate was −0.0698. Therefore, Dh = −0.0706 and Dh/2 = −0.0698. By
Equation 6.14

	
D ≅ − − − = −4

3
1
3

() ()0.0698 0.0706 0.0695
	

which agrees with the actual value to four decimal places and is a supe-
rior estimate to the first two.

Richardson’s extrapolation can also be used in connection with estimates
that have higher-order errors. In particular, it can combine two estimates, each
with error O(h4), to compute a new, more accurate estimate with error O(h6):

	
D D D O hh h= − +16

15
1

152
6

/ ()
	

(6.15)

where
D = value of the derivative
Dh = a function that approximates the derivative using h and has an error

of O(h4)
Dh/2 = a function that approximates the derivative using 1

2 h and has an
error of O(h4)

Once again, as mentioned before, the coefficients add up to 1 and act as
weights attached to the two estimates, with greater weight placed on the
better estimate.

6.2.4  Derivative Estimates for Nonevenly Spaced Data

The finite-difference formulas to approximate derivatives of various orders
require that the data be equally spaced. Also, Richardson’s extrapolation is
applicable only to evenly spaced data and it computes better estimates by
sequentially reducing the spacing by half. These techniques are appropriate
if the data is equally spaced or if the data is generated by uniform discretiza-
tion of a known function, such as that in Examples 6.1 and 6.2.

Empirical data—such as data resulting from experimental measure-
ments—on the other hand, are often not evenly spaced. For these situations,
one possible way to approximate the derivative is as follows: (1) consider a set
of three consecutive data points that contains the point at which the deriva-
tive is to be estimated, (2) fit a second-degree Lagrange interpolating polyno-
mial (Section 5.5) to the set, and (3) differentiate the polynomial and evaluate
at the point of interest. The derivative estimate obtained in this manner has
the same accuracy as that offered by the central difference formula, and
exactly matches it for the case of equally spaced data.

281Numerical Differentiation and Integration

Example 6.4:  Nonevenly Spaced Data

For the data in Table 6.4, approximate the first derivative at x = 0.9 using
the data at 0.3, 0.8, and 1.1.

Solution

The data is not evenly spaced. We will consider the set of three consecu-
tive points 0.3, 0.8, and 1.1, which includes the point of interest x = 0.9,
and fit a second-degree Lagrange interpolating polynomial to the set.
Letting x1 = 0.3, x2 = 0.8, and x3 = 1.1, we find

	

p x
x x x x
x x x x

x x x x
x x

2
2 3

1 2 1 3

1 3

2
()

()()
()()

()
()()

(
= − −

− −
+ − −

−
0.8228

11 2 3

1 2

3 1 3 2

)()
()

()()
()()

()

x x

x x x x
x x x x

−

+ − −
− −

=

0.4670

0.2617

0.03441 0.7491 1.0445x x2 − +

Differentiation yields ′ = −p x x2() 0.0682 0.7491 so that ′ = −p2()0.9 0.6877.

6.2.5  MATLAB® Built-In Functions diff and polyder

The MATLAB® built-in function diff can be used to estimate derivatives for
both cases of equally spaced and not equally spaced data. A brief description
of diff is given as

diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element
shorter than X, of differences between adjacent elements:

[X(2) − X(1) X(3) − X(2)... X(n) − X(n−1)]

diff(X,n) applies diff recursively n times, resulting in the
nth difference. Thus, diff(X,2) is the same as diff(diff(X)).

Table 6.4

Data in Example 6.4

xi yi

0 1
0.3 0.8228
0.8 0.4670
1.1 0.2617
1.3 0.1396

282 Numerical Methods for Engineers and Scientists Using MATLAB®

Equally spaced data: Consider a set of equally spaced data (x1, y1), … , (xn, yn),
where xi+1 − xi = h (i = 1, … , n − 1). Then, by the description of diff, the com-
mand diff(y)./h returns the (n − 1)-dimensional vector

	

y y
h

y y
h

n n2 1 1− −





−...

The first component is the first-derivative estimate at x1 using the forward-
difference formula; see Equation 6.4. Similarly, the second component is the
derivative estimate at x2. The last entry is the derivative estimate at xn–1. As
an example, consider f(x) = e−xsin(x/2), x = 1.2, 1.4, 1.6, 1.8, of Example 6.1. We
find an estimate for f′(1.4) as follows:

 >> h = 0.2;
 >> x = 1.2:h:1.8;
 >> y = [0.1701 0.1589 0.1448 0.1295];
% Values of f at the discrete x values
 >> y_prime = diff(y)./h

y_prime =

 −0.0560   −0.0702   −0.0767

Since 1.4 is the second point in the data, it is labeled x2. This means an estimate
for f ′(1.4) is provided by the second component of the output y_prime. That
is, f ′(1.4) ≅ −0.0702. This agrees with the earlier numerical results in Table 6.1.

Nonequally spaced data: Consider a set of nonevenly spaced data (x1, y1), ... ,
(xn, yn). Then, by the description of diff, the command diff(y)./diff(x)
returns the (n − 1)-dimensional vector

	

y y
x x

y y
x x
n n

n n

2 1

2 1

1

1

−
−

−
−







−

−
...

The first component is the first-derivative estimate at x1 using the forward-
difference formula, the second one is the derivative estimate at x2, while the
last entry is the derivative estimate at xn−1.

As mentioned in the description of diff above, diff(y,2) is the same as
diff(diff(y)). So, if y = [y1 … yn], then diff(y) returns

	
y y y y y yn n n2 1 3 2 1 1

− − − − −
...

() dim

and diff(y,2) returns

	

[() () () () ()

()] (

y y y y y y y y y y

y y

n n

n n n

3 2 2 1 4 3 3 2 1

1 2

− − − − − − −

− −

−

− − −

…

 22) dim

283Numerical Differentiation and Integration

which simplifies to

	 y y y y y y y y yn n n3 2 1 4 3 2 1 22 2 2− + − + − + − −...

The first component is the numerator in the three-point forward differ-
ence formula for estimating the second derivative at x1; see Equation 6.9.
Similarly, the remaining components agree with the numerator of Equation 6.9
at x2, ... ,xn−2. Therefore, for an equally spaced data (x1,y1), ... ,(xn,yn), an esti-
mate of the second derivative at x1,x2, ... ,xn−2 is provided by

diff(y,2)./h∧2

The MATLAB built-in function polyder finds the derivative of a
polynomial:

polyder Differentiate polynomial.

�polyder(P) returns the derivative of the polynomial whose
coefficients are the elements of vector P.

polyder(A,B) returns the derivative of polynomial A*B.

�[Q,D] = polyder(B,A) returns the derivative of the polynomial
ratio B/A, represented as Q/D.

For example, the derivative of a polynomial such as 2x3 − x + 3 is calculated
as follows:

 >> P = [2 0 −1 3];

 >> polyder(P)

ans =

6   0   −1

The output corresponds to 6x2 − 1.

6.3  Numerical Integration: Newton–Cotes Formulas

Definite integrals are encountered in a wide range of applications, generally
in the form

	

f x dx
a

b

()∫

where f(x) is the integrand and a and b are the limits of integration. The value
of this definite integral is the area of the region between the graph of f(x) and

284 Numerical Methods for Engineers and Scientists Using MATLAB®

the x-axis, bounded by the lines x = a and x = b. As an example of a definite
integral, consider the relation between the bending moment M and shear
force V along the longitudinal axis x of a beam, defined by

	

M M Vdx
x

x

2 1

1

2

− = ∫

where M2 is the bending moment at position x2 and M1 is the bending
moment at x1. In this case, the integrand is shear force V(x) and the limits of
integration are x1 and x2.

The integrand may be given analytically or as a set of discrete points.
Numerical integration is used when the integrand is given as a set of data
or, the integrand is an analytical function, but the antiderivative is not easily
found. To carry out numerical integration, discrete values of the integrand
are needed. This means that even if the integrand is an analytical function, it
must be discretized and the discrete values will be used in the calculations.

6.3.1  Newton–Cotes Formulas

Newton–Cotes formulas provide the most commonly used integration tech-
niques and are divided into two categories: closed form and open form. In
closed form schemes, the data points at the endpoints of the interval are used
in calculations; the trapezoidal and Simpson’s rules are closed Newton–
Cotes formulas. In open form methods, limits of integration extend beyond
the range of the discrete data; the rectangular rule and the Gaussian quadra-
ture (Section 6.4) are open Newton–Cotes formulas.

The main idea behind Newton–Cotes formulas is to replace the compli-
cated integrand or data with an easy-to-integrate function, usually a poly-
nomial. If the integrand is an analytical function, it is first discretized, and
then the polynomial that interpolates this set is found and integrated. If
the integrand is a set of data, the interpolating polynomial is found and
integrated.

6.3.2  Rectangular Rule

In the rectangular rule, the definite integral ∫ a
b
f x dx() is approximated by

the area of a rectangle. This rectangle may be built using the left endpoint,
the right endpoint, or the midpoint of the interval [a, b]; Figure 6.3. The one
that uses the midpoint is sometimes called the midpoint method. All three
cases are Newton–Cotes formulas, where the integrand is replaced with a
horizontal line (constant), that is, a zero-degree polynomial. But it is evident
by Figure 6.3 that the error of approximation can be quite large depending

285Numerical Differentiation and Integration

on the nature of the integrand. The accuracy can be improved considerably
by using the composite rectangular rule.

6.3.2.1  Composite Rectangular Rule

In applying the composite rectangular rule, the interval [a, b] is divided
into n subintervals defined by n + 1 points labeled a = x1, x2, . . . , xn, xn+1 = b.
The subintervals can generally have different widths so that longer inter-
vals may be chosen for regions where the integrand exhibits slow varia-
tions and shorter intervals where the integrand experiences rapid changes.
In most of the results presented here, however, the data is assumed equally
spaced. Over each subinterval [xi, xi+1], the integral is approximated by the
area of a rectangle. These rectangles are constructed using the left end-
point, the right endpoint, or the midpoint as described earlier; Figure 6.4.
Adding the areas of rectangles yields the approximate value of the definite
integral ∫ a

b
f x dx() .

x

f

a b
x

f

a b

x

f

a b

Rectangle constructed
using the left endpoint Rectangle constructed

using the right endpoint

Rectangle constructed
using the midpoint

Area = f (a)(b – a)

Area = f (b)(b – a)

Area = f (m)(b – a)

f (b)

f (a)
f (a)

f (a)

f (b)

f (b)

1
2 (a + b)m =

Figure 6.3
Rectangular rule.

286 Numerical Methods for Engineers and Scientists Using MATLAB®

Composite rectangular rule (using left endpoint):

	

f x dx f x x x f x x x

f x x x

a

b

n n n
h

() ()() ()()

()()
(

∫ ≅ − + − +

+ − =+
=

 1 2 1 2 3 2

1



bb a n
i

i

n

h f x
−

=
∑)/

()
Equally spaced

1 	

(6.16)

Composite rectangular rule (using right endpoint):

	

f x dx f x x x f x x x

f x x x

a

b

n n n
h

() ()() ()()

()()

∫ ≅ − + − +

+ − =+ +

 2 2 1 3 3 2

1 1



== −
=

+

∑()/
()

b a n
i

i

n

h f x
Equally spaced

2

1

	

(6.17)

x

f

x

f

x

f

Rectangles constructed
using the left endpoints

Rectangles constructed
using the right endpoints

Rectangles constructed
using the midpoints

x1 = a
x2 x3 xi xi+1 x2 x3 xi xi+1

xi xnxi+1

xn xn

x2

xn+1 = b x1 = a xn+1 = b

xn+1 = bx1 = a
m1 mi mn

Figure 6.4
Composite rectangular rules.

287Numerical Differentiation and Integration

Composite rectangular rule (using midpoint):

	

f x dx f m x x

f m x x

a

b

n n n
h b a n

() ()()

()()
()/

∫ ≅ − +

+ − =+
= −

Equally s

1 2 1

1



ppaced

 ,h f m m x xi

i

n

i i i() ()
=

+∑ = +
1

1
1
2

  

(6.18)

6.3.3  Error Estimate for Composite Rectangular Rule

Consider ∫ a
b
f x dx() , where a = x1,x2, . . . , xn, xn+1 = b divide [a, b] into n subinter-

vals of equal length h. Assume that over each interval [xi, xi+1] the rectangle is
constructed using the left endpoint xi so that it has an area of hf(xi). The error
associated with the integral over each subinterval is

	

E f x dx hf xi

x

x

i

i

i

= −
+

∫ () ()
1

Actual value

Estimate

By Taylor series expansion, we have

	 f x f x f x x x xi i i i i i() () ()()= + ′ − ≤ ≤ +ξ ξ, 1

Then

	

E f x f x x dx hf xi i i i

x

x

i

i

i

= + ′ −  − =
+

∫ () ()() ()ξ
1

andsimplify

Evaluuate 1
2

2h f i′()ξ

This indicates that each error Ei can be made very small by choosing a very
small spacing size, that is, h ≪ 1. The error associated with the entire interval
[a, b] is given by

	
E E h f h fi

i

n

i

i

n

i

i

n

= = ′ = ′
= = =

∑ ∑ ∑
1

2

1

2

1

1
2

1
2

() ()ξ ξ

An average value for f′ over [a, b] may be estimated by

	
′ ≅ ′

=
∑f

n
f i

i

n
1

1

()ξ

288 Numerical Methods for Engineers and Scientists Using MATLAB®

Consequently

	
E h nf

b a
n

hnf b a f h= ′ = −



 ′ = − ′





1
2

1
2

1
2

2 ()

Since 1
2 ()b a f− ′ = constant, the error E is of the order of h, written O(h). In

summary

Composite rectangular rule (left endpoint):

	
E b a f h O h= − ′





=1
2

() ()
	

(6.19)

Similarly, for the composite rectangular rule (using right endpoint),
E = O(h). Finally, we present without proof

Composite rectangular rule (midpoint):

	
E b a f h O h= − ′′





=1
24

2 2() ()
	

(6.20)

where ′′f is the estimated average value of f″ over [a, b].

Example 6.5:  Composite Rectangular Rule

Evaluate the following definite integral using all three composite rectan-
gular rule strategies with n = 8:

	

1
2

1

1

x
dx

+
−
∫

Solution

With the limits of integration at b = 1, a = −1, we find the spacing size
as h = (b − a)/n = 2/8 = 0.25. The nine nodes are thus defined as x1 = −1,
−0.75, −0.5, … , 0.75, 1 = x9. Letting f(x) = 1/(x + 2), the three integral esti-
mates are found as follows:

Using left endpoint:

	

f x dx h f x f f fi

i

() () () () ()
− =
∫ ∑≅ = − + − + +

=
1

1

1

8

1 0.25[0.75 0.75]

1.



11865

289Numerical Differentiation and Integration

Using right endpoint:

	

f x dx h f x f f

f f

i

i

() () () ()

()

− =
∫ ∑≅ = − + − +

+ +

1

1

2

9

 0.25[0.75 0.5

0.75



(()1] 1.0199=

Using midpoint:

	

f x dx h f m f f

f

i

i

() () () ()

(

− =
∫ ∑≅ = − + − +

+

1

1

1

8

 0.25[0.8750 0.6250

0.



88750] 1.0963) =

Noting that the actual value of the integral is 1.0986, the above esti-
mates come with relative errors of 8%, 7.17%, and 0.21%, respectively. As
suggested by Equations 6.19 and 6.20, the midpoint method yields the
best accuracy.

6.3.4  Trapezoidal Rule

The trapezoidal rule is a Newton–Cotes formula, where the integrand is
replaced with a straight line (a first-degree polynomial) connecting the points

(a, f(a)) and (b, f(b)) so that the definite integral ∫ a
b
f x dx() is approximated by

the area of a trapezoid; Figure 6.5a. The equation of this connecting line is

	
p x f a

f b f a
b a

x a1() ()
() ()

()= + −
−

−

x

f

a b
x

f

(a) (b)

f (a)

f (b)

1
2Area = [f(a) + f (b)](b – a)

x1 = a
x2 xi xnxi+1 xn+1 = b

Figure 6.5
(a) Trapezoidal rule and (b) composite trapezoidal rule.

290 Numerical Methods for Engineers and Scientists Using MATLAB®

Therefore

	

f x dx p x dx f a
f b f a
b a

x a dx

f

a

b

a

b

a

b

() () ()
() ()

()∫ ∫ ∫≅ = + −
−

−







=

 1

(()
() () ()

a x
f b f a
b a

x a

x a

b

+ −
−

−









=

2

2

Evaluation of this last expression yields

	

f x dx
f a f b

b a
a

b

()
() ()

()∫ ≅ + −
2

	

(6.21)

The right side is indeed the area of the trapezoid as shown in Figure 6.5a.
It is also evident by Figure 6.5a that the error of approximation can be quite
large depending on the nature of the integrand. The accuracy of estima-
tion can be improved significantly by using the composite trapezoidal rule;
Figure 6.5b.

6.3.4.1  Composite Trapezoidal Rule

In the composite rectangular rule, the interval [a, b] is divided into n sub-
intervals defined by n + 1 points labeled a = x1, x2, . . . , xn, xn+1 = b. As in the
case of rectangular rule, the subintervals can have different widths so that
longer intervals can be used for regions where the integrand shows slow
variations and shorter intervals where the integrand shows rapid changes.
In most of the results presented here, however, the data is assumed equally
spaced. Over each subinterval [xi, xi+1], the integral is approximated by the
area of a trapezoid. Adding the areas of trapezoids yields the approximate
value of the definite integral:

	

f x dx
f x f x

x x
f x f x

x x

f x

a

b

()
() ()

()
() ()

()

(

∫ ≅ + − + + − +

+

 ...1 2
2 1

2 3
3 22 2

nn n
n n

i i
i i

f x
x x

f x f x
x x

) ()
()

() ()
(

+ −

= + −

+
+

+
+

1
1

1
1

2

2
))

i

n

=
∑

1 	
(6.22)

291Numerical Differentiation and Integration

For the case of equally spaced data, xi+1 − xi = h (i = 1, 2, . . . , n), Equation 6.22
simplifies to

f x dx
h

f x f x
h

f a f x f x
a

b

i i

i

n

() () () () () ()∫ ∑≅ +  = + + ++

=

 .
2 2

2 21

1

2 3
... 

+ + 2 f x f bn() ()
�

(6.23)

6.3.4.2  Error Estimate for Composite Trapezoidal Rule

The error for the composite trapezoidal rule can be shown to be

	
E b a f h O h= − − ′′





=1
12

2 2() ()
	

(6.24)

where ′′f is the estimated average value of f″ over [a, b]. Therefore, the error
O(h2) is compatible with the midpoint method and superior to the rectangu-
lar rule using the endpoints whose error is O(h).

The user-defined function TrapComp uses the composite trapezoidal rule
to estimate the value of a definite integral.

function I = TrapComp(f,a,b,n)
%
% TrapComp estimates the value of the integral of f(x)
% from a to b by using the composite trapezoidal rule
% applied to n equal-length subintervals.
%
%   I = TrapComp(f,a,b,n) where
%
%    f is an inline function representing the integrand,
%    a and b are the limits of integration,
%    n is the number of equal-length subintervals in [a,b],
%
%    I is the integral estimate.
%
h = (b-a)/n; I = 0;
x = a:h:b;
for i = 2:n,

I = I + 2*f(x(i));

292 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 6.6:  Composite Trapezoidal Rule

a.	� Evaluate the definite integral in Example 6.5 using the composite
trapezoidal rule with n = 8:

	

1
2

1

1

x
dx

+
−
∫

b.	   Confirm the result by executing the user-defined function TrapComp.

Solution

a.	� The spacing size is h = (b − a)/n = 0.25 and the nine nodes are defined
as x1 = −1, −0.75, −0.5, . . . , 0.75, 1 = x9. Letting f(x) = 1/(x + 2), the inte-
gral estimate is found by Equation 6.23 as follows:

	

1
2 2

1 2 2 2 1
1

1

x
dx f f f f f

+
= − + − + − + + +

−
∫

0.25
0.75 0.5 0.75() () () () () 

= 1.1032 	

Recalling the actual value 1.0986, the relative error is calculated as
0.42%. As expected, and stated earlier, the accuracy of composite trap-
ezoidal rule is compatible with the midpoint method and better than the
composite rectangular rule using either endpoint.

b.

	  >> f = inline('1/(x+2)');
	  >> I = TrapComp(f, −1,1,8)

	 I = 
	 1.1032

6.3.5  Simpson’s Rules

The trapezoidal rule estimates the value of a definite integral by approxi-
mating the integrand with a first-degree polynomial, the line connecting the
points (a, f(a)) and (b, f(b)). Any method that uses a higher-degree polynomial

end
I = I + f(a) + f(b);
I = I*h/2;

293Numerical Differentiation and Integration

to connect these points will provide a more accurate estimate. Simpson’s 1/3
and 3/8 rules, respectively, use second- and third-degree polynomials to
approximate the integrand.

6.3.5.1  Simpson’s 1/3 Rule

In evaluating ∫ a
b
f x dx() , the Simpson’s 1/3 rule uses a second-degree poly-

nomial to approximate the integrand f(x). The three points that are needed
to determine this polynomial are picked as x1 = a, x2 = (a + b)/2, and x3 = b as
shown in Figure 6.6a. Consequently, the second-degree Lagrange interpolat-
ing polynomial (Section 5.5) is constructed as

	

p x
x x x x
x x x x

f x
x x x x
x x

2
2 3

1 2 1 3
1

1 3

2 1
()

()()
()()

()
()()

()(
= − −

− −
+ − −

− xx x
f x

x x x x
x x x x

f x

2 3
2

1 2

3 1 3 2
3

−

+ − −
− −

)
()

()()
()()

()

The definite integral will then be evaluated with this polynomial replacing
the integrand:

	

f x dx p x dx
a

b

a

b

() ()∫ ∫≅ 2

x

f

h

(a) (b)

h
x

f

h

h

x1 = a x1 = a1
2 (a + b)x2 =

x2
xn–1

xn+1 = b
xnx3x3 = b

p2 (x)

f (x) f (x)

Figure 6.6
(a) Simpson’s 1/3 rule and (b) composite Simpson’s 1/3 rule.

294 Numerical Methods for Engineers and Scientists Using MATLAB®

Substituting for p2(x), with x1 = a, x2 = (a + b)/2, x3 = b, integrating from a to
b, and simplifying, yields

	

f x dx
h

f x f x f x h
b a

a

b

() () () ()∫ ≅ + +  = −
 ,

3
4

21 2 3

	

(6.25)

The method is known as the 1/3 rule because h is multiplied by 1/3.
The estimation error, which can be large depending on the nature of the
integrand, can be improved significantly by repeated applications of the
Simpson’s 1/3 rule.

6.3.5.2  Composite Simpson’s 1/3 Rule

In the composite Simpson’s 1/3 rule, the interval [a, b] is divided into n subin-
tervals defined by n + 1 points labeled a = x1, x2, . . . , xn, xn+1 = b. Although the
subintervals can have different widths, the results that follow are based on the
assumption that the points are equally spaced with spacing size h = (b − a)/n.
Since three points are needed to construct a second-degree polynomial, the
Simpson’s 1/3 rule must be applied to two adjacent subintervals at a time.
For example, the first application will be to the first two subintervals [x1, x2]
and [x2, x3] so that the three points corresponding to x1, x2, and x3 are used
for polynomial construction. The next application will be to [x3, x4] and [x4,
x5], so that x3, x4, and x5 are used for construction. Continuing this pattern,
the very last interval is composed of [xn−1, xn] and [xn, xn+1]; see Figure 6.6b.
Therefore, [a, b] must be divided into an even number of subintervals for the com-
posite 1/3 rule to be implemented. As a result

	

f x dx
h

f x f x f x
h

f x f x f x
a

b

() () () () () () ()∫ ≅ + +  + + +
3

4
3

41 2 3 3 4 5  +

+ + + − +

…

h
f x f x f xn n n3

41 1() () ()

The even-indexed points (x2, x4, . . . , xn) are the middle terms in each appli-
cation of the 1/3 rule, and therefore, by Equation 6.25 have a coefficient of
4. The odd-indexed terms (x3, x5, . . . , xn−1) are the common points to adjacent
intervals and thus count twice and have a coefficient of 2. The two terms f(x1)
and f(xn+1) on the far left and far right each has a coefficient of 1. In summary

	

f x dx
h

f x f x f x f x
a

b

i

i

n

j

j

n

n() () () () (
, , , ,

∫ ∑ ∑≅ + + +
= =

−

+
3

4 21

2 4 6 3 5 7

1

11)










 	

(6.26)

295Numerical Differentiation and Integration

6.3.5.3  Error Estimate for Composite Simpson’s 1/3 Rule

The error for the composite Simpson’s 1/3 rule can be shown to be

	
E b a f h O h= − −





=1
180

4 4 4() ()()

	
(6.27)

where f ()4 is the estimated average value of f(4) over [a, b]. Therefore, the
error O(h4) is superior to the composite trapezoidal rule, which has an error
of O(h2).

The user-defined function Simpson uses the composite Simpson’s 1/3 rule
to estimate the value of a definite integral.

Example 6.7:  Composite Simpson’s 1/3 Rule

a.	� Evaluate the definite integral in Examples 6.5 and 6.6 using the com-
posite Simpson’s 1/3 rule with n = 8:

	

1
2

1

1

x
dx

+
−
∫

function I = Simpson(f,a,b,n)
%
% Simpson estimates the value of the integral of f(x)
% from a to b by using the composite Simpson’s 1/3 rule
% applied to n equal-length subintervals.
%
%   I = Simpson(f,a,b,n) where
%
%    f is an inline function representing the integrand,
%    a, b are the limits of integration,
%    n is the (even) number of subintervals,
%
%    I is the integral estimate.

h = (b−a)/n;
x = a:h:b;
I = 0;
for i = 1:2:n,

I = I + f(x(i)) + 4*f(x(i+1)) + f(x(i+2));
end

296 Numerical Methods for Engineers and Scientists Using MATLAB®

b.	   Confirm the result by executing the user-defined function Simpson.

Solution

a.	� The spacing size is h = (b − a)/n = 0.25 and the nine nodes are defined
as x1 = −1, −0.75, −0.5, . . . , 0.75, 1 = x9. Letting f(x) = 1/(x + 2), the inte-
gral estimate is found by Equation 6.26 as follows:

	

1
2 3

1 4 2 4 2 0
1

1

x
dx f f f f f

+
= − + − + − + − +

−
∫

0.25
0.75 0.5 0.25[() () () () ()

++ + + + =4 2 4 1f f f f() () () ()]0.25 0.5 0.75 1.0987

Knowing the actual value is 1.0986, the relative error is calculated as
0.10%. As expected, the accuracy of the composite Simpson’s 1/3 rule
is superior to the composite trapezoidal rule. Recall that the relative
error associated with the composite trapezoidal rule was calculated in
Example 6.6 as 0.42%.
b.

>> f = inline('1/(x+2)');
>> I = Simpson(f, −1,1,8)

I =

1.0987

6.3.5.4  Simpson’s 3/8 Rule

The Simpson’s 3/8 rule uses a third-degree polynomial to approximate
the integrand f(x). The four points that are needed to form this polyno-
mial are picked as the four equally spaced points x1 = a, x2 = (2a + b)/3,
x3 = (a + 2b)/3, and x4 = b with spacing size h = (b − a)/3 as shown in Figure
6.7. The third-degree Lagrange interpolating polynomial (Section 5.5) is
then constructed as

	

p x
x x x x x x
x x x x x x

f x
x x

3
2 3 4

1 2 1 3 1 4
1

1()
()()()

()()()
()

()(= − − −
− − −

+ − xx x x x
x x x x x x

f x

x x x x x x

− −
− − −

+ − − −

3 4

2 1 2 3 2 4
2

1 2 4

)()
()()()

()

()()()
(xx x x x x x

f x
x x x x x x

x x x x3 1 3 2 3 4
3

1 2 3

4 1 4 2− − −
+ − − −

− −)()()
()

()()()
()())()

()
x x

f x
4 3

4−

The definite integral will be evaluated with this polynomial replacing the
integrand:

297Numerical Differentiation and Integration

	

f x dx p x dx
a

b

a

b

() ()∫ ∫≅ 3

Substituting for p2(x), with x1, x2, x3, x4, integrating from a to b, and simplify-
ing, yields

	

f x dx
h

f x f x f x f x h
b a

a

b

() () () () ()∫ ≅ + + +  = −
 ,

3
8

3 3
31 2 3 4

	

(6.28)

The method is known as the 3/8 rule because h is multiplied by 3/8. As
before, the estimation error can be improved significantly by repeated appli-
cations of the Simpson’s 3/8 rule.

6.3.5.5  Composite Simpson’s 3/8 Rule

In the composite Simpson’s 3/8 rule, the interval [a, b] is divided into n
subintervals defined by n + 1 points labeled a = x1, x2, . . . , xn, xn+1 = b. The
subintervals can have different widths, but the results presented here are
based on the assumption that they are equally spaced with spacing size
h = (b − a)/n. Since four points are needed to construct a third-degree poly-
nomial, the Simpson’s 3/8 rule is applied to three adjacent subintervals at a
time. For example, the first application will be to the first three subintervals
[x1, x2], [x2, x3], and [x3, x4] so that the four points corresponding to x1, x2, x3,
and x4 are used for polynomial construction. The next application will be to
[x4, x5], [x5, x6], and [x6, x7] so that x4, x5, x6, and x7 are used for construction.

x

f

h h h

x1 = a x4 = bx2 x3

p3(x)
f (x)

Figure 6.7
Simpson’s 3/8 rule.

298 Numerical Methods for Engineers and Scientists Using MATLAB®

Continuing this pattern, the very last interval is composed of [xn−2, xn−1],
[xn−1, xn], and [xn, xn+1]. Therefore, [a, b] must be divided into a number of sub-
intervals that is a multiple of 3 for the composite 3/8 rule to be implemented. As a
result

	

f x dx
h

f x f x f x f x
h

f x f x
a

b

() [() () () ()] [() ()∫ ≅ + + + + +
3
8

3 3
3
8

31 2 3 4 4 5 ++

+ + + + + + =− − +

3

3
8

3 3

6

7 2 1 1

f x

f x
h

f x f x f x f x h
b

n n n n

()

()] [() () () ()]… ,
−− a
n

The middle terms in each application of 3/8 rule have a coefficient of 3 by
Equation 6.28, while the common points to adjacent intervals are counted
twice and have a coefficient of 2. The two terms f(x1) and f(xn+1) on the far left
and far right each has a coefficient of 1. In summary

f x dx
h

f x f x f x f x
a

b

i i

i

n

j

j

() () () () ()
, ,

∫ ∑≅ + +  ++

=

−

=

3
8

3 21 1

2 5 8

1

44 7 10

2

1

, ,

()
n

nf x
−

+∑ +










 �

(6.29)

We summarize the implementation of the composite Simpson rules as fol-
lows: If the number of subintervals is even, then Simpson’s 1/3 rule is applied.
If the number of subintervals is odd, then Simpson’s 3/8 rule is applied to the
last three subintervals and the 1/3 rule is applied to all previous ones; see
Problem Set 6.2.

6.3.5.6  Error Estimate for Composite Simpson’s 3/8 Rule

The error for the composite Simpson’s 3/8 rule can be shown to be

	
E b a f h O h= − −





=1
80

4 4 4() ()()

	
(6.30)

where f ()4 is the estimated average value of f(4) over the interval [a, b].
Therefore, the error O(h4) is compatible with that of the composite 1/3
rule.

The rectangular rule, trapezoidal rule, and the Simpsons’ 1/3 and 3/8
rules all belong to a class of integration techniques known as Newton–Cotes
formulas. Although there are higher-order formulas, which need more than

299Numerical Differentiation and Integration

four points to form the interpolating polynomial and naturally offer better
accuracy, Simpson’s rules are adequate for most applications in engineering.
To improve estimation accuracy, the composite Simpson’s rules are preferred
to higher-order formulas. In the event that the integrand is given analyti-
cally, other methods such as Romberg integration and Gaussian quadrature
(Section 6.4) are practical alternatives.

6.3.6  MATLAB® Built-In Functions quad and trapz

MATLAB has two built-in functions to compute definite integrals: quad and
trapz. The quad function handles cases where the integrand is given ana-
lytically, while trapz is used when the integrand is given as a discrete set
of data.

QUAD � Numerically evaluate integral, adaptive Simpson
quadrature.

Q = quad(FUN,A,B) tries to approximate the integral of
scalar-valued function FUN from A to B to within an error
of 1.e−6 using recursive adaptive Simpson quadrature. FUN
is a function handle. The function Y=FUN(X) should accept
a vector argument X and return a vector result Y, the
integrand evaluated at each element of X.

Note that quad uses adaptive Simpson quadrature. Adaptive integration
methods adjust the number of subintervals needed to meet a desired accu-
racy by using more function evaluations in regions where the integrand
shows rapid changes and less in areas where the integrand is well approxi-
mated by a quadratic function. In particular, adaptive Simpson quadrature
uses an error estimate associated with the Simpson’s rule, and if the error
exceeds the desired tolerance, it divides the interval into two and applies
Simpson’s rule to each subinterval recursively.

The integral ∫ +−1
1 1 2[/()]x dx considered throughout this section, can be

evaluated as follows:

function y = myfunc(x)
y = 1./(x+2);
end

>> Q = quad(@myfunc, −1,1)

Q =

1.0986

For situations where the integrand is defined as a set of discrete data, the
built-in function trapz is used.

300 Numerical Methods for Engineers and Scientists Using MATLAB®

TRAPZ  Trapezoidal numerical integration.

Z = trapz(X,Y) computes the integral of Y with respect to X
using the trapezoidal method. X and Y must be vectors of
the same length, or X must be a column vector and Y an
array whose first non-singleton dimension is length(X).
trapz operates along this dimension.

In Example 6.6, we used the composite trapezoidal rule with n = 8 to evalu-
ate ∫ + −1

1 1 2/() .x dx To confirm the result of that example using trapz, we
must first generate a discrete set of data (x, y) equally spaced on [−1, 1] with
spacing size of h = 0.25.

 >> f = inline('1/(x+2)');
 >> x = −1:0.25:1;
 >> for i = 1:9,
y(i) = f(x(i)); % Generate the y coordinates
end

 >> I = trapz(x,y)
I =

1.1032    % Result agrees with that in Example 6.6

6.4 � Numerical Integration of Analytical Functions: Romberg
Integration, Gaussian Quadrature

Throughout Section 6.3, we presented numerical methods to evaluate inte-
grals of analytical functions, as well as tabulated data. When the function is
given analytically, it can be discretized at as many points as desired and these
points are subsequently used to estimate the value of the integral. When the
integrand is in tabulated form, only the given points in the data can be used
for integral estimation and the number of points cannot be increased.

In this section, we introduce two methods that are exclusively developed
to estimate the value of ∫ ab f x dx() , where f(x) is an analytical function. The
first method is based on Richardson’s extrapolation, which combines two
numerical estimates of an integral to find a third, more accurate estimate.
Richardson’s extrapolation can be efficiently implemented using Romberg
integration. The second method is the Gaussian quadrature, which approxi-
mates the value of the integral by using a weighted sum of values of f(x) at
several points in [a,b]. These points and the weights are determined such
that the error is minimized.

301Numerical Differentiation and Integration

6.4.1  Richardson’s Extrapolation, Romberg Integration

The errors associated with the composite trapezoidal and Simpson’s rules
were shown in Equations 6.24 and 6.27 to be

	
E b a f h

b a
n

f
h b a n

trapezoid = − − ′′





= − −
′′

= −1
12 12

2
3

2()
()()/

and

	
E b a f h

b a
n

f
h b a n

Simpson = − −





= − −= −1
180 180

4 4
5

4
4()

()()
()/

())

This means in both cases the error is reduced as n increases. Therefore, to
achieve high levels of precision, a large number n of subintervals of [a,b] are
needed, requiring greater computational effort as n gets larger. Consequently,
as an alternative to composite trapezoidal and Simpson’s rules with large
n, Romberg integration can be used to attain more accurate estimates more
efficiently.

6.4.1.1  Richardson’s Extrapolation

Richardson’s extrapolation combines two numerical estimates of an integral
to find a third, more accurate estimate. For example, two estimates each with
error O(h2) can be combined to obtain an estimate with error O(h4). Similarly,
two estimates each with error O(h4) can be combined to obtain an estimate
with error O(h6). In general, Richardson’s extrapolation combines two inte-
gral estimates each with order O(heven) to obtain a third, more accurate esti-
mate with error O(heven+2).

As an estimate with error O(h2), consider the composite trapezoidal rule
applied to n subintervals with spacing h = (b − a)/n, and let the correspond-
ing integral estimate be Ih. Noting the error as given in Equation 6.24, the
true value of the integral is expressed as

	
I I

b a
f hh≅ − −
′′



12

2

But since ′′f is the estimated average value of f″ over [a, b], it is independent
of h and we can rewrite the above as

	 I I Ch Ch≅ + =2 , constant

Suppose the composite trapezoidal rule is used with two different spac-
ing sizes h1 and h2 to find two estimates Ih1 and Ih2 of the same integral. Then

302 Numerical Methods for Engineers and Scientists Using MATLAB®

	

I I Ch

I I Ch
h

h

≅ +
≅ +

1

2

1
2

2
2

Eliminating C between the two equations, we find

	
I

h h I I
h h

h h≅ −
−

()
()
1 2

2

1 2
2
2 1

1
/

/

It can be shown* that this new estimate has an error of O(h4). In particular,
two estimates given by the composite trapezoidal rule applied with h1 = h
and h h2

1
2= can be combined to obtain

	
I

I Ih h≅ −
−

2
2 1

2
2

2
/

	
(6.31)

Simplifying the above, and realizing the error of the estimate is O(h4), we
have

	
I I I O hh h= − +4

3
1
32

4
/ ()

	
(6.32)

Note that Equation 6.32 can be used in connection with any integration
formula that has an error of O(h2). Also note that the coefficients in Equation
6.32 add up to 1, hence act as weights attached to each estimate. With increas-
ing accuracy, they place greater weight on the better estimate. For instance,
using spacing size 1

2 h generates a better estimate than the one using h, and
consequently Ih/2 has a larger weight attached to it than Ih does.

Similarly, it can readily be shown that two integral estimates with spac-
ing sizes h1 and h2, each with error O(h4), can be combined to obtain a more
accurate estimate

	
I

h h I I
h h

h h≅ −
−

()
()
1 2

4

1 2
4
2 1

1
/

/

with an error of O(h6). In particular, two estimates corresponding to h1 = h
and h h2

1
2= can be combined to obtain

	
I

I Ih h≅ −
−

2
2 1

4
2

4
/

	
(6.33)

*	 Refer to Ralston, A. and P. Rabinowitz, A First Course in Numerical Analysis, 2nd edition,
McGraw-Hill, NY, 1978.

303Numerical Differentiation and Integration

Simplifying, and realizing the error of the estimate is O(h6), we find

	
I I I O hh h= − +16

15
1

152
6

/ ()
	

(6.34)

Continuing in this fashion, two integral estimates corresponding to h1 = h
and h h2

1
2= , each with error O(h6), can be combined to obtain

	
I

I Ih h≅ −
−

2
2 1

6
2

6
/

	
(6.35)

so that

	
I I I O hh h= − +64

63
1

632
8

/ ()
	

(6.36)

Example 6.8:  Richardson’s Extrapolation

Consider

	
()x x dx2 2

0

1

3+∫

Application of the trapezoidal rule with n = 2, n = 4, and n = 8 yields
three estimates with error O(h2), as listed in the column labeled “Level 1”
in Table 6.5, together with their respective relative errors. Combining the
first two estimates in Level 1 via Equation 6.32, we find a new estimate
with error O(h4):

Table 6.5

Integral Estimates at Three Levels of Accuracy; Example 6.8

n Estimate O(h2) Level 1 Estimate O(h4) Level 2 Estimate O(h6) Level 3

2 5.531250000000000
(17.69%)

4.700520833333333
(0.011%)

4 4.908203125000000
(4.43%)

4.700000000000000 (0%)

4.700032552083333
(0.0007%)

8 4.752075195312500
(1.11%)

304 Numerical Methods for Engineers and Scientists Using MATLAB®

	

I ≅ −

=

4
3

1
3

() ()4.908203125000000 5.531250000000000

4.7005208333333333

Combining the second and third estimates in Level 1 also yields a new
estimate with O(h4):

	

I ≅ −

=

4
3

1
3

() ()4.752075195312500 4.908203125000000

4.7000325520883333

These two better estimates are listed in Level 2 of Table 6.5. Combining
these two via Equation 6.34 gives a new estimate with error O(h6), in
Level 3:

	

I ≅ −

=

16
15

1
15

() ()4.700032552083333 4.700520833333333

4.7000000000000000

This last estimate happens to match the exact value of the integral.

6.4.1.2  Romberg Integration

In the foregoing analysis, Richardson’s extrapolation was employed to com-
bine two trapezoidal rule integral estimates corresponding to spacing sizes
h and 1

2 h, each with error O(heven), to obtain a third, more accurate estimate
with error O(heven+2). The first three such results were shown in Equations
6.31, 6.33, and 6.35. These equations also follow a definite pattern that allows
us to create a general formula as

	
I

I I
i j

j
i j i j
j,
, ,=

−
−

−
+ − −

−
4

4 1

1
1 1 1

1
	

(6.37)

The entries I1,1, I2,1, . . . , Im,1 are placed in the first column and represent the
estimates by the composite trapezoidal rule with the number of subinter-
vals n, 2n, . . . , 2m−1n. For example, I4,1 is the trapezoidal estimate applied to
23n = 8n subintervals. The second column has one element fewer than the
first column, with entries I1,2, I2,2, . . . , Im−1,2, which are obtained by combining
every two successive entries of the first column and represent more accurate
estimates. This continues until the very last column, whose only entry is I1,m.
This scheme is depicted in Figure 6.8.

The user-defined function Romberg uses the scheme described in Figure
6.8 to find integral estimates at various levels of accuracy.

305Numerical Differentiation and Integration

function I = Romberg(f,a,b,n,n_levels)
%
% Romberg uses the Romberg integration scheme to find
% integral estimates at different levels of accuracy.
%
% I = Romberg(f,a,b,n,n_levels) where
%
% f is an inline function representing the integrand,
% a and b are the limits of integration,
% n is the initial number of equal-length
% subintervals in [a,b],
% n_levels is the number of accuracy levels,
%
% I is the matrix of integral estimates.
%

I = zeros(n_levels,n_levels);   % Pre-allocate

% Calculate the first-column entries by using the
% composite trapezoidal rule, where the number of
% subintervals is doubled going from one element
% to the next.

n

2n

4n

Number of
subintervals

Level 1 (j = 1)
Composite
trapezoidal rule
estimates

Error

Level 2
(j = 2)

Level 3
(j = 3)

Level m–1
(j = m–1)

Level m
(j = m)

I1,1

I1,2
I1,3

I2,2

I2,1

I3,1

Im–2,3

Im–1,2

Im–2,2

Im–2,1

I1,m–1

I1,m
I2,m–1

Im–1,1

Im,1

2m–3 n

2m–2 n

2m–1 n

O(h2) O(h4) O(h6) O(h2m–2) O(h2m)

Figure 6.8
Romberg integration scheme.

306 Numerical Methods for Engineers and Scientists Using MATLAB®

The results of Example 6.8 can be verified by executing Romberg. Note
that the initial number of subintervals for the application of composite trap-
ezoidal rule was n = 2 and three levels of accuracy are desired.

 >> format long
 >> f = inline('(x∧2+3*x)∧2');
 >> I = Romberg(f,0,1,2,3)

I =

5.531250000000000   4.700520833333333   4.700000000000000
4.908203125000000   4.700032552083333   0
4.752075195312500   0   0

As mentioned earlier, the Romberg integration scheme is more efficient
than the trapezoidal and Simpson rules. Referring to the above example, if
only Simpson’s 1/3 rule were to be used, it would have to be applied with 192
subintervals to achieve 10-decimal accuracy.

6.4.2 G aussian Quadrature

In estimating the value of ∫ ab f x dx() all the numerical integration methods
discussed up to now have been based on approximating f(x) with a polyno-
mial and function evaluations at fixed, equally spaced points. But if these
points were not fixed, we could pick them in such a way that the estimation
error is minimized. Consider, for instance, the trapezoidal rule, Figure 6.9a,
where the (fixed) points on the curve must correspond to a and b. Without
this limitation, we could select two points on the curve so that the area
of the resulting trapezoid is a much better estimate of the area under the
curve; Figure 6.9b.

The Gaussian quadrature is based on this general idea, and estimates the
integral value by using a weighted sum of values of f(x) at several points in

for i = 1:n_levels,
 n_intervals = 2∧(i-1)*n;
 I(i,1) = TrapComp(f,a,b,n_intervals);
end

% Starting with the second level, use Romberg scheme to
% generate the remaining entries of the table.

for j = 2:n_levels,
 for i = 1:n_levels − j+1,
 �I(i,j) = (4∧(j−1)*I(i+1,j−1)−I(i,j−1))/(4∧(j−1)−1);
 end
end

307Numerical Differentiation and Integration

[a, b] that are not fixed or equally spaced. These points and the weights are
determined such that the error is minimized.

The Gaussian quadrature is presented as applied to an integral in the
explicit form

	

f x dx()
−
∫

1

1

Note that any integral in the general form ∫ ab f d()σ σ can be converted to
∫−1

1 f x dx() via a linear transformation

	
σ σ= − + + = −b a

x a d
b a

dx
2

1
2

() so that

and the new limits of integration are −1 and 1. Upon substitution, the origi-
nal integral is transformed into

	

f
b a

x a
b a

dx
− + +





−

−
∫ 2

1
2

1

1

()

	

(6.38)

Gaussian quadrature estimates the integral as

	

f x dx c f xi i

i

n

() ()
− =
∫ ∑≅

1

1

1 	

(6.39)

where the weights ci and the Gauss nodes xi (i = 1, 2, . . . , n) are determined
by assuming that Equation 6.39 fits exactly the above integral for functions

x

f

a b
x

f

a b

Points selected so that
the area of the trapezoid
more closely estimates the
area under the curve

Points are fixed and the
area of the trapezoid is a
poor estimate of the area
under the curve

(a) (b)

Figure 6.9
(a) Integral estimate by trapezoidal rule and (b) improved integral estimate.

308 Numerical Methods for Engineers and Scientists Using MATLAB®

f(x) = 1, x, x2, … . How many of these functions need to be used depends on
the value of n. For the simple case of n = 2, for example, we have

	

f x dx c f x c f x() () ()
−
∫ ≅ +

1

1

1 1 2 2

	

(6.40)

so that there are four unknowns: weights c1 and c2, and nodes x1 and x2. The
required four equations will be provided by fitting the integral for functions
f(x) = 1, x, x2, x3:

c c dx1 2

1

1

1 2+ = ⋅ =
−
∫

c x c x xdx1 1 2 2

1

1

0+ = =
−
∫

c x c x x dx1 1
2

2 2
2 2

1

1
2
3

+ = =
−
∫

c x c x x dx1 1
3

2 2
3 3

1

1

0+ = =
−
∫

Solving this system of four equations in four unknowns yields

	 c c1 21= =

	
x x1 2

1
3

1
3

= − = − = =0.5773502692, 0.5773502692

As a result, by Equation 6.40

	

f x dx f f()
−
∫ ≅ −





+ 





1

1
1
3

1
3

	

(6.41)

This provides the exact value of the integral as long as the integrand is any
of the functions f(x) = 1, x, x2, x3 or their linear combination. Otherwise, it
yields an approximate value of the integral.

309Numerical Differentiation and Integration

The accuracy of approximation can be improved by increasing the value of
n. For example, for the case of n = 3

	

f x dx c f x c f x c f x() () () ()
−
∫ ≅ + +

1

1

1 1 2 2 3 3

and there are now six unknowns: weights c1, c2, c3, and nodes x1, x2, x3. The
six equations needed to solve for the unknowns are generated by fitting the
integral for functions f(x) = 1, x, x2, x3, x4, x5. Proceeding as before, and solving
the system of six equations, we arrive at

	 c c c1 3 2= = =0.5555555556 , 0.8888888889

	 x x x1 2 3= − = =0.7745966692, 0, 0.7745966692

In general

	

f x dx c f x c f x c f x c f xi i

i

n

n n() () () () ()
− =
∫ ∑≅ = + + +

1

1

1

1 1 2 2 ...

which contains 2n unknowns: n weights and n nodes. The needed equations
are generated by fitting the integral for functions f(x) = 1, x, x2, . . . , x2n−1. The
resulting values of ci and xi are tabulated in Table 6.6 for n = 1, 2, . . . , 6. It turns
out that the weights c1, c2, . . . , cn can be calculated via

	

c
x x
x x

dxi
j

i jj
j i

n

=
−
−

=
≠

−
∏∫

11

1

	

(6.42)

and the Gauss nodes x1, x2, . . . , xn are the zeros of the nth-degree Legendre poly-
nomial.* For example, for n = 3, the nodes are the zeros of P x x x3

1
2

35 3() (),= −
that is, 0 3 5, ,± / which agree with the values given above. The weights are
computed via Equation 6.42 and will agree with those given earlier, as well
as in Table 6.6.

*	 The first five Legendre polynomials are P x P x x P x x P x x x0 1 2
1
2

2
3

1
2

31 3 1 5 3() , () , () (), () (),= = = − = −
P x x x4

1
8

4 235 30 3() ().= − +

310 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 6.9:  Gaussian Quadrature

Consider

	
e dxx−∫ 2 2

1

4

/

	 a.	 Find an approximate value for the integral using the Gaussian
quadrature with n = 3, n = 4, and n = 5.

	 b.	 How many subintervals must Simpson’s 1/3 rule be applied
to so that the accuracy is at the same level as that offered by the
quadrature with n = 5? Use the user-defined function Simpson
(Section 6.3) for this purpose. The actual value of the integral is
0.397610357.

Solution

	 a.	 First rewrite the integral as ∫ −
1
4 22
e dσ σ/ and then convert it into

the standard form using the linear transformation

σ σ= − + + = + + = + =b a
x a x

x
d dx

2
1

3
2

1 1
3 5

2
3
2

() () so that

Table 6.6

Weights and Nodes Used in the Gaussian Quadrature

n Weights ci Gauss Nodes xi

2 c1 = 1.000000000
c2 = 1.000000000

x1 = −0.577350269
x2 = 0.577350269

3 c1 = 0.555555556
c2 = 0.888888889
c3 = 0.555555556

x1 = −0.774596669
x2 = 0
x3 = 0.774596669

4 c1 = 0.347854845
c2 = 0.652145155
c3 = 0.652145155
c4 = 0.347854845

x1 = −0.861136312
x2 = −0.339981044
x3 = 0.339981044
x4 = 0.861136312

5 c1 = 0.236926885
c2 = 0.478628670
c3 = 0.568888889
c4 = 0.478628670
c5 = 0.236926885

x1 = −0.906179846
x2 = −0.538469310
x3 = 0
x4 = 0.538469310
x5 = 0.906179846

6 c1 = 0.171324492
c2 = 0.360761573
c3 = 0.467913935
c4 = 0.467913935
c5 = 0.360761573
c6 = 0.171324492

x1 = −0.932469514
x2 = −0.661209386
x3 = −0.238619186
x4 = 0.238619186
x5 = 0.661209386
x6 = 0.932469514

311Numerical Differentiation and Integration

Consequently, the integral in the desired form is

3
2

3
2

3 5 8

1

1

3 5 82 2
e dx f x ex x− +

−

− +∫ =() / () /()so that

For the case of n = 3:

3
2

3 5 8

1

1

1 1 2 2 3 3
2

e dx c f x c f x c f x

f

x− +

−
∫ ≅ + +

= ⋅

() / () () ()

 0.555555556 (() ()

(

− + ⋅

+ ⋅

0.774596669 0.888888889

 0.555555556 0.77459666

f

f

0

99

0.400020454

)

=

For the case of n = 4:

	

3
2

3 5 8

1

1

1 1 2 2 3 3 4 4
2

e dx c f x c f x c f x c f xx− +

−
∫ ≅ + + +

=

() / () () () ()

0.3478554845 0.861136312 0.652145155

0.339981044 0.65214

⋅ − +

⋅ − +

f

f

()

() 55155 0.339981044

0.347854845 0.861136312 0.39744198

⋅

+ ⋅ =

f

f

()

() 22 	

Similarly, for n = 5:

3
2

3 5 2 8

1

1

1 1 2 2 3 3 4 4 5 5e dx c f x c f x c f x c f x c f xx− +

−
∫ ≅ + + + +() / () () () () ())

 0.397613225=

Therefore, n = 5 yields an integral estimate that is exact to five
decimal places.

	 b.
>> format long
>> f = inline('exp(−x2/2)');
>> I = Simpson(f,1,4,50)

I =
   0.397610268688848

Simpson’s 1/3 rule must be applied to 50 subintervals to produce
an estimate that is five-decimal places accurate.

312 Numerical Methods for Engineers and Scientists Using MATLAB®

6.5  Improper Integrals

All numerical integration techniques introduced in Sections 6.3 and 6.4
were designed to estimate integrals in the form ∫ ab f x dx() , where the limits
a and b are finite. While it is quite common to see these types of integrals in
engineering applications, there are situations where improper integrals are
encountered and must be approximated numerically. Some of these integrals
appear in the following forms:

	

f x dx a f x dx b f x dx
a

b

() (), () (), ()
∞

−∞

−

−∞

∞

∫ ∫ ∫> > 0 0

	

(6.43)

Consider ∫ >
∞
a f x dx a() , 0. If the integrand reduces to zero at least as fast as

x −2 does as x → ∞, then the integral is handled by a simple change of variable:

	
x dx d= = −1 1

2σ σ
σso that

Then

	

f x dx f d f d
a a

a

()
/

/∞

∫ ∫ ∫= 



 ⋅ −



 = 





1 1 1 1

1

0

2 2

0

1

σ σ
σ

σ σ
σ

	

(6.44)

The only concern is that the integrand is singular at the lower limit. Because
of this, an open Newton–Cotes formula such as the composite midpoint rule
(Section 6.3) can be utilized so that the integral is estimated without using
the data at the endpoint(s).

The integral ∫ >−∞
−b

f x dx b() , 0 can be dealt with in a similar manner,
including the condition on the rate of reduction of f(x) to zero. The last form
∫−∞

∞
f x dx() is treated as follows: we first decompose it as

	

f x dx f x dx f x dx f x dx
b

b

a

a

() () () ()
−∞

∞

−∞

−

−

∞

∫ ∫ ∫ ∫= + +
	

(6.45)

In the first integral, we choose −b so that f(x) has started to asymptotically
converge to zero at least as fast as x−2. In the last integral, a is chosen such
that the condition on the rate of reduction of f(x) to zero is met as well. The
integral in the middle can be approximated using a closed Newton–Cotes
formula such as Simpson’s 1/3 rule (Section 6.3).

313Numerical Differentiation and Integration

Example 6.10:  Improper Integral

Consider

	

sinx
x

dx2

2

∞

∫
This is in the form of the first integral in Equation 6.43; hence, we use

the change of variable x = 1/σ leading to Equation 6.44:

	

sin sin()
()

sin
/ /

x
x

dx d d2

2

2 2

0

1 2

0

1 2
1 1

1
1

∞

∫ ∫ ∫= = 



σ

σ
σ

σ
σ

σ/
/

Noting that the integrand is singular at the lower limit, we will use the
composite midpoint method with h = 0.0125 to estimate this last integral.

 >> f = inline('sin(1/x)'); h = 0.0125; x = 0:h:0.5;
 >> n = length(x) − 1; m = zeros(n,1); I = 0;
 >> for i = 1:n,
m(i) = (x(i+1) + x(i))/2;
I = I + f(m(i));
end
 >> I = I*h;
 >> I =

      0.0277

Accuracy can be improved by reducing the spacing size h.

Problem Set

Finite-Difference Formulas for Numerical Differentiation (Section 6.2)

	 1.	 Consider g(t) = te−t/3, t = 0, 0.4, 0.8, 1.2. Approximate g()0.4 using
•	 Two-point backward difference formula
•	 Two-point forward difference formula
•	 Two-point central difference formula
•	 Three-point forward difference formula

Find the relative error in each case.

	 2.	  Consider g(t) = et/2 cos t, t = 1.3, 1.6, 1.9, 2.2. Approximate g()1.9 using
•	 Two-point backward difference formula
•	 Two-point forward difference formula
•	 Two-point central difference formula
•	 Three-point backward difference formula

Find the relative error in each case.

314 Numerical Methods for Engineers and Scientists Using MATLAB®

	 3.	 Consider f(x) = x−1 3x, x = 1.7, 2.0, 2.3, 2.6, 2.9. Approximate f′(2.3)
using
•	 Three-point backward difference formula
•	 Three-point forward difference formula
•	 Four-point central difference formula

Find the relative error in each case.

	 4.	 Consider f(x) = 2x log x, x = 2.0, 2.4, 2.8, 3.2, 3.6. Find an estimate
for f′(2.8) using
•	 Three-point backward difference formula
•	 Three-point forward difference formula
•	 Four-point central difference formula

Find the relative error in each case.

	 5.	 The data in the following table shows the population of Canada
recorded every 10 years between 1960 and 2010.

	 a.	 Find the rate of population growth in 2010 using the three-point
backward difference formula,

	 b.	 Using the result of (a), and applying the two-point central differ-
ence formula, predict the population in 2020.

	 6.	 The position of a moving object has been recorded as shown in
the following table.

	 a.	 Find the velocity of the object at t = 3 s using the three-point
backward difference formula.

	 b.	 Using the result of (a), and applying the two-point central differ-
ence formula, predict the position at t = 3.5 s.

Time, t (s) Position, x (m)
1 0.65
1.5 1.275
2 2.15
2.5 3.275
3 4.65

Year t Population, p (millions)

1960 17.9
1970 21.3
1980 24.6
1990 27.8
2000 30.8
2010 34.1

315Numerical Differentiation and Integration

	 7.	 The position of a moving object has been recorded as shown in
the following table.

	 a.	 Find the acceleration of the object at t = 1.9 s using the four-point
backward difference formula.

	 b.	 Using the result of (a), and the three-point central difference for-
mula, predict the position at t = 2.2 s.

	 8.	 The deflection u of a beam along its longitudinal (x) axis has been
recorded as shown in the following table. The bending moment at
any point along this beam is modeled as M(x) = 1.05u″(x). All param-
eters are in consistent physical units. Find an estimate for the bend-
ing moment at x = 0.6 using

	 a.	 The three-point central difference formula
	 b.	 The three-point backward difference formula

	 9.	 Consider f(x) = (x + 1)e−2x/3, x = 1, 1.5, 2, 2.5, 3. Approximate f″(2) using
•	 Three-point central difference formula
•	 Five-point central difference formula

	 10.	 Let f(x) = 2x − 3.
	 a.	 Approximate f′(2.4) using the two-point central difference for-

mula with h = 0.2.
	 b.	 Approximate f′(2.4) using the two-point central difference for-

mula with h = 0.1.
	 c.	 Apply an appropriate form of Richardson’s extrapolation to the

results of (a) and (b) to obtain a superior estimate.

Position x Deflection u

0.2  − 0.15
0.4  − 0.20
0.6  − 0.20
0.8  − 0.15

Time, t (s) Position, x (m)

0.7 0.58
1 0.73
1.3 0.94
1.6 1.20
1.9 1.52

316 Numerical Methods for Engineers and Scientists Using MATLAB®

	 11.	 Let f(x) = x2 − 2x.
	 a.	 Approximate f′(3.4) using the four-point central difference for-

mula with h = 0.2.
	 b.	 Approximate f′(3.4) using the four-point central difference for-

mula with h = 0.1.
	 c.	 Apply an appropriate form of Richardson’s extrapolation to the

results of (a) and (b) to obtain a superior estimate.

Display six decimal places for all numerical results.

	 12.	 Let f(x) = e−x + x.
	 a.	 Approximate f″(1.5) using the three-point central difference for-

mula with h = 0.3.
	 b.	 Approximate f″(1.5) using the three-point central difference for-

mula with h = 0.15.
	 c.	 Apply an appropriate form of Richardson’s extrapolation to the

results of (a) and (b) to obtain a superior estimate.
	 13.	 For the unevenly spaced data in the following table, estimate the

first derivative at x = 1.65 by
	 a.	 Fitting a second-degree Lagrange interpolating polynomial to a

set of three suitable data points
	 b.	 Fitting a third-degree Lagrange interpolating polynomial to the

entire set

	 14.	 Given the unequally spaced data in the following table, estimate
the first derivative at x = 2.45 by

	 a.	 Fitting a second-degree Lagrange interpolating polynomial to a
set of three suitable data points

	 b.	 Fitting a third-degree Lagrange interpolating polynomial to the
entire set

xi yi

2 5.8432
2.4 7.5668
2.6 8.5643
3 10.8731

xi yi

1.3 1.27
1.5 1.37
2 1.72
2.4 2.12

317Numerical Differentiation and Integration

	 15.	Given the unequally spaced data in the following table, estimate the
first derivative at x = 2.7 by

	 a.	  Fitting a second-degree Lagrange interpolating polynomial
to a set of three suitable data points

	 b.	 Applying the MATLAB built-in function diff to the
entire set

	 16.	Given the equally spaced data in the following table, estimate the
second derivative at x = 3.6 by

	 a.	  Fitting a second-degree Lagrange interpolating polynomial
to a set of three suitable data points

	 b.	 Applying the MATLAB built-in function diff to the entire
set

Numerical Integration: Newton–Cotes Formulas (Section 6.3)

Composite Rectangular Rule

  In Problems 17 through 20, evaluate the definite integral using all three
composite rectangular rule strategies with the indicated number of equally
spaced data, and calculate the relative errors.

	 17.	 e dxx−∫ 2

1

3

, n = 8 (actual value 0.139383)

	 18.	 1
1

5

+∫ x dx, n = 10

xi yi

3 0.4817
3.3 0.9070
3.6 1.4496
3.9 2.1287

xi yi

2 1.0827
2.3 1.2198
2.7 1.3228
3 1.3443

318 Numerical Methods for Engineers and Scientists Using MATLAB®

	 19.	
sin

,
x

x
dx

2

3

∫ n = 10 (actual value 0.24323955)

	 20.	 xe dxx

0 4

1

.

,∫ n = 8

 In Problems 21 through 24, evaluate the definite integral using all three
composite rectangular rule strategies with the indicated nonequally spaced
data, and calculate the relative errors.

	 21.	
x dx x x1 3

1 8

1

3

1 3/ , , , , , , , ,= =∫ 1.2 1.5 1.7 1.8 2.2 2.5

	 22.	 ()sin , , , , , , , ,
.

x x dx x x+ = =∫ 1 01 8

0

2 5

0.5 0.8 1.1 1.6 2 2.3 2.5

	 23.	 e x dx x xx cos , , , , , , , ,
.

.

1 8

0 3

1 3

= =∫ 0.3 0.4 0.6 0.9 1 1.1 1.2 1.3

	 24.	
5

2 12 1 8

0

3

x
dx x x

+
= =∫ 0 0.4 0.9 1.2 1.8 2.3 2.6 3, , , , , , , ,

Composite Trapezoidal Rule

In Problems 25 through 28

	 a.	 Evaluate the integral using the composite trapezoidal rule with
the indicated number of equally spaced data.

	 b.	 Confirm the results by executing the user-defined function
TrapComp.

	 25.	
1

1

4

x
dx ∫ ,  n = 5

	 26.	 xe dxx−∫ 2

0

2 1.

,  n = 7

	 27.	 3
0 2

1 4

2.5x dx
.

.

∫ ,  n = 6

	 28.	 1 2

0 3

3

+∫ x dx
.

,  n = 9

319Numerical Differentiation and Integration

	 29.	 Write a user-defined function with function call I = TrapComp_
Gen(f,x) that uses the composite trapezoidal rule to estimate the
value of the integral of f from a to b, which are the first and last
entries of the vector x, and the entries of x are not necessarily equally
spaced. Then apply TrapComp_Gen to estimate the value of

	 e x dxx−∫ / sin2 2

1

3

2

		 where
	 a.	 x = 1, 1.2, 1.6, 1.8, 1.9, 2, 2.1, 2.3, 2.6, 2.8, 3
	 b.	 x = 1:0.2:3 (equally spaced with increments of 0.2)

	 30.	 Consider e x dxx−

−∫ cos .
2

0

	 a.	 Evaluate by executing TrapComp_Gen (see Problem 29) with
x = −2, −1.8, −1.3, −0.9, −0.3, 0.

	 b.	 Evaluate by executing TrapComp (see Section 6.3) with
x = −2 : 0.4 : 0 (equally spaced with increments of 0.4).

	 c.	 Knowing the actual integral value is 1.3220, calculate the rela-
tive errors associated with the results of (a) and (b).

	 31.	 Consider x x dx/() .3

0

2

1+ ∫

	 a.	 Evaluate by executing TrapComp_Gen (see Problem 29) with
x = 0,0.2,0.35,0.6,0.7,0.9,1.2,1.5,1.7,1.8,2.

	 b.	 Evaluate by executing TrapComp (see Section 6.3) with x = 0:0.2:2
(equally spaced with increments of 0.2).

	 c.	 Knowing the actual integral value is 0.7238, calculate the rela-
tive errors associated with the results of (a) and (b).

	 32.	 Write a user-defined function with function call I = TrapComp_
Data(x,y) that estimates the value of the integral of a tabular
data (x,y), which is not necessarily equally spaced, using the
composite trapezoidal rule. Apply TrapComp_Data to the data in
the following table.

	 33.	 Write a user-defined function with function call I = TrapComp _
ESData(x,y) that estimates the value of the integral of a tabular,
equally spaced data (x,y) using the composite trapezoidal rule.
Apply TrapComp_ESData to the data in the following table.

xi 0 0.20 0.25 0.35 0.50 0.60 0.65 0.8 0.90 1
yi 0 0.19 0.23 0.30 0.37 0.39 0.4 0.38 0.34 0.31

320 Numerical Methods for Engineers and Scientists Using MATLAB®

	 34.	 A fragile instrument is placed inside a package to be protected
during shipping and handling. The characteristics of the packing
material are available experimentally, as shown in the following
table. Assume that the force F(x) exerted on the instrument is not to
exceed 10 lbs. To determine the maximum safe drop height for the
package, we first need to compute

	 F x x() d
0

3

∫
	 a.	 Evaluate this integral by executing the user-defined function

TrapComp_ESData (see Problem 33).
	 b.	 Determine the sixth-degree interpolating polynomial for the

data in the following table using polyfit, and then integrate
this polynomial from 0 to 3 to approximate the above integral.

Composite Simpson’s 1/3 Rule

In Problems 35 through 39

	 a.	 Evaluate the integral using the composite Simpson’s 1/3 rule
with the indicated number of equally spaced data.

	 b.	 Confirm the results by executing the user-defined function
Simpson.

	 35.	 x e dxx2 −∫
0.2

1.4

,  n = 6

	 36.	 21 3−∫ x dx
2.05

4.15

,  n = 6

	 37.	 42−∫ x dx
3.1

4.3

,  n = 8

	 38.	
x
x x

dx
+
+∫ 1

2 32

3

7

,  n = 8

x (inches) 0 0.5 1 1.5 2 2.5 3
F (lbs) 0 0.5 1 1.75 3 5 10

xi 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
yi 0.31 0.27 0.22 0.17 0.14 0.10 0.08 0.05 0.04 0.02 0.01

321Numerical Differentiation and Integration

	 39.	 x dx2 1
2

2

1

3

+()
−
∫ ,  n = 10

	 40.	   Write a user-defined function with syntax I = Simpson _
Gen(f,x) that uses the composite Simpson’s 1/3 rule to estimate
the value of the integral of f from a to b, which are the first and last
entries of the vector x, and the entries of x are not necessarily equally
spaced. Then apply Simpson_Gen to estimate the value of

	 2
1
3

2
3

0

1

+



∫ cos x dx 	

		 where
	 a.	 x = 0, 0.1, 0.25, 0.3, 0.4, 0.55, 0.6, 0.7, 0.85, 0.9, 1
	 b.	 x = 0 : 0.1 : 1 (equally spaced with increments of 0.1)

	 41.	 Consider ()/() .x x dx− + 
−∫ 1 34

1

1

	 a.	 Evaluate by executing Simpson_Gen (see Problem 40) with x = 
−1, −0.85, −0.6, −0.4, −0.25, −0.1, 0, 0.25, 0.6, 0.8, 1.

	 b.	 Evaluate by executing Simpson (see Section 6.3) with x = −1 : 0.2 : 1
(equally spaced with increments of 0.2).

	 42.	 Consider x x dxln .
1

4

∫

	 a.	 Evaluate by executing Simpson_Gen (see Problem 40) with
x = 1, 1.4, 1.7, 1.9, 2.3, 2.5, 2.6, 2.8, 3.3, 3.8, 4.

	 b.	 Evaluate by executing Simpson (see Section 6.3) with x = 1 : 0.3 : 4
(equally spaced with increments of 0.3).

	 c.	 Calculate the relative errors associated with the results of (a)
and (b).

	 43.	   Write a user-defined function with function call I = Simpson_
Data(x,y) that estimates the value of the integral of a tabular data
(x,y), not necessarily equally spaced, using the composite Simpson’s
1/3 rule. Apply Simpson_Data to the data in the following table.

	 44.	 Write a user-defined function with function call I = Simpson_
ESData(x,y) that estimates the value of the integral of a tabular,
equally spaced data (x,y) using the composite Simpson’s 1/3 rule.
Apply Simpson_ESData to the data in the following table.

xi 0 0.25 0.35 0.50 0.60 0.65 0.8 0.90 1
yi 0 0.23 0.30 0.37 0.39 0.4 0.38 0.34 0.31

322 Numerical Methods for Engineers and Scientists Using MATLAB®

Composite Simpson’s 3/8 Rule

  In Problems 45 through 48, evaluate each integral using the composite
Simpson’s 3/8 rule.

	 45.	 32.5

0

1.8

x dx∫ ,  n = 9

	 46.	 x e dxx2 3−∫ / ,
0.2

2

  n = 6

	 47.	
ln

,
x

x
dx

+∫ 1
2

5

  n = 6

	 48.	 x x dxsin() ,2 1+∫
1.2

4.8

  n = 9

	 49.	 Write a user-defined function with function call I = Simpson _
38(f,a,b,n) that estimates the value of the integral of f from a to b
using the composite Simpson’s 3/8 rule applied to n subintervals of
equal length. Apply Simpson_38 to estimate the value of

	 cos () ,2

0

4

1 9x dx n− =∫

	 50.	 Consider e x dxx−

−∫ sin .
1

3

 Evaluate by executing
	 a.	 Simpson_38 (see Problem 49) with n = 6
	 b.	 Simpson with n = 6
	 c.	 quad

	 51.	 Consider x e dxx−∫ 2 2

0.2

0.5

. Evaluate by executing
	 a.	 Simpson_38 (see Problem 49) with n = 9
	 b.	 quad

	 52.	 Write a user-defined function with function call I = Simpson_
38_ESData(x,y) that estimates the integral of a tabular, equally

xi 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
yi 0.31 0.27 0.22 0.17 0.14 0.10 0.08 0.05 0.04 0.02 0.01

323Numerical Differentiation and Integration

spaced data (x,y) using the composite Simpson’s 3/8 rule. Apply
Simpson_38_ESData to

	
x

x
dx

1
1

2

+∫ ln

		 where y is the vector of discretized values of the integrand at the
specified values of x = linspace(1,2,10). Also evaluate the inte-
gral using the quad function and compare the results.

	 53.	 Apply the user-defined function Simpson_38_ESData (see
Problem 52) to

	 2 1
2

3

1

−

−
∫ x x dxcos()

		 where y is the vector of discretized values of the integrand at the
specified values of x = linspace(−3,1,10). Also evaluate the inte-
gral using the quad function and compare the results.

	 54.	 Write a user-defined function with function call I = Simpson _
13_38(f,a,b,n) that estimates the integral of f from a to b as fol-
lows: If n = even, it applies composite Simpson’s 1/3 rule throughout,
and if n = odd, it applies the 3/8 rule to the last three subintervals
and the 1/3 rule to all the previous ones. Execute this function to
evaluate

	
sin 2

2
0

5
x

x
dx

+∫

		 using n = 20 and n = 25. Also evaluate using the quad function and
compare the results. Use format long.

	 55.	 Execute the user-defined function Simpson_13_38 (see
Problem 54) to evaluate

	 e dxx−∫ 2

1

4

		 using n = 20 and n = 25. Also evaluate using the quad function and
compare the results. Use format long.

324 Numerical Methods for Engineers and Scientists Using MATLAB®

	 56.	 In estimating f x dx
a

b

() ,∫ Boole’s rule uses five equally spaced

points to form a fourth-degree polynomial that approximates the
integrand f(x). The formula for Boole’s rule is derived as

f x dx
h

f x f x f x f x f x

h

a

b

() () () () () ()∫ ≅ + + + +  ,
2
45

7 32 12 32 71 2 3 4 5

== −b a
4

The composite Boole’s rule applies the above formula to four adja-
cent intervals at a time. Therefore, interval [a,b] must be divided into
a number of subintervals that is a multiple of 4. Write a user-defined
function with function call I = Boole_Comp(f,a,b,n) that esti-
mates the integral of f from a to b using the composite Boole’s rule.
Execute this function to evaluate

	
2 1

1
0

1
x

x
dx

−
+∫ cos

		 using n = 20. Also evaluate using the quad function and compare
the results. Use format long.

	 57.	 Evaluate the following integral by executing Boole_Comp (see
Problem 56) with n = 20. Also evaluate using the quad function. Use
format long.

	 e x dxx1 1

1

2

− −∫
	 58.	 Consider

	
1

12

0

1

x
dx

+∫
Evaluate the integral using three different methods, using n = 20

in all cases: composite trapezoidal rule, composite Simpson’s 1/3
rule, and composite Boole’s rule (Problem 56). User-defined func-
tions to be implemented are

TrapComp (Section 6.3)
Simpson (Section 6.3)
Boole _ Comp (Problem 56)

325Numerical Differentiation and Integration

Find the actual value of the integral using the MATLAB built-in
function int (symbolic integration). Calculate the relative errors
corresponding to all three strategies used above. Discuss the
results. Use format long throughout.

Numerical Integration of Analytical Expressions Romberg
Integration, Gaussian Quadrature (Section 6.4)

Richardson’s Extrapolation, Romberg Integration

In Problems 59 through 62
	 a.	  Apply the trapezoidal rule with the indicated values of n to yield

estimates with error O(h2). Then calculate all subsequent higher-
order estimates using Richardson’s extrapolation, and tabulate the
results as in Table 6.5. Also compute the relative error associated
with each integral estimate.

	 b.	 Confirm the results by executing the user-defined function
Romberg. Use format long.

	 59.	 e x dxx−∫ /

/

3

0

3

3sin ,
π

  n = 2,4,8

	 60.	 ex
2 1

0

1

+∫ ,  n = 2,4,8,16, Actual value = 3.975899662263389

	 61.	
cos

,
x

x
dx2

0

4

2+∫   n = 2,4,8, Actual value = 0.247005259638691

	 62.	 1 2

1

1

−
−
∫ x dx,  n = 2,4,8

Gaussian Quadrature

  In Problems 63 through 68, evaluate each integral using the Gaussian
quadrature with the indicated number(s) of nodes.

	 63.	
sin

,
x

x
dx

−
∫

4

4

  n = 4

	 64.	 2 2

0

1

x x dx∫ ,  n = 3, n = 4

	 65.	 sin cos ,3 41
2

2

0

5

x x dx+()∫   n = 3, n = 4

326 Numerical Methods for Engineers and Scientists Using MATLAB®

	 66.	 e x dxxsin cos ,
−
∫

1

3

  n = 3, n = 5

	 67.	
x

x
dx

2 13

0

4

+∫ ,  n = 2, n = 3, n = 4

	 68.	 x x dx2 2

0

3 2

3 1+ +()∫
/

,  n = 4, n = 5

	 69.	 Write a user-defined function with syntax I = Gauss _
Quad _ 4(f,a,b) that evaluates the integral of f from a to b using
the Gaussian quadrature with n = 4. Execute Gauss _ Quad _ 4 to
evaluate the integral in Problem 67:

	
x

x
dx

2 13

0

4

+∫
	 70.	 Write a user-defined function with function call I = Gauss _

Quad _ 5(f,a,b) that evaluates the integral of f from a to b using
the Gaussian quadrature with n = 5. Execute Gauss _ Quad _ 5 to
evaluate the integral in Problem 68:

	 ()
/

x x dx2 2

0

3 2

3 1+ +∫
	 71.	Consider

	 x x dxln
1

2

∫
	 a.	   Find the actual value of the integral analytically.

	 b.	 Evaluate by executing the user-defined function Simpson
(Section 6.3) using n = 4.

	 c.	 Evaluate by executing the user-defined function Gauss _
Quad _ 4 (see Problem 69).

	 d.	 Calculate the relative error in (b) and (c) and comment.

	 72.	 Evaluate

	
e x
x

dx
x−

+∫ sin
3

1

2

1

327Numerical Differentiation and Integration

	 a.	 By executing the user-defined function Gauss_Quad_4 (see
Problem 69).

	 b.	 By executing the user-defined function Romberg (Section 6.4)
with n = 2 and n_levels = 3. Use format long.

	 c.	 Knowing the actual value is 0.062204682443299, calculate the
relative errors in (a) and (b) and comment.

Improper Integrals (Section 6.5)

	 73.	 Estimate

	 e x dxx−
∞

∫ 1 2

0

/

		 as follows: Decompose it as
0 0

1

1

∞ ∞

∫ ∫ ∫= + . Evaluate the first

integral using composite Simpson’s 1/3 rule with n = 6, and evaluate
the second integral by first changing the variable and subsequently
using the composite midpoint method with h = 0.05.

	 74.	 Estimate

	
1

2 12x
dx

+
−∞

∞

∫

		 as follows: Decompose it as
−∞

∞

−∞

−

−

∞

∫ ∫ ∫ ∫= + +
1

1

1

1
. Evaluate

the middle integral using composite Simpson’s 1/3 rule with n = 6.
Evaluate the first and third integrals by first changing the variable
and subsequently using the composite midpoint method with h = 0.05.

	 75.	 The cumulative distribution function (CDF) for the standard
normal variable z (zero mean and standard deviation of 1) is
defined as

	 Φ() /z e dzz

z

= −

−∞
∫1

2
2 2

π

		 and gives the probability that an event is less than z. Approximate
Φ(0.5).

	 76.	 Evaluate

	
1
2

2 2

π
e dzz−

−∞

∞

∫ /

This page intentionally left blankThis page intentionally left blank

329

7
Numerical Solution of Initial-Value Problems

An nth-order differential equation is accompanied by n auxiliary conditions,
which are needed to determine the n constants of integration that arise in
the solution process. When these conditions are provided at the same value
of the independent variable, we speak of an initial-value problem (IVP). In
other situations, the supplementary conditions are specified at different val-
ues of the independent variable. And since these values are usually stated
at the extremities of the system, these types of problems are referred to as
boundary-value problems (BVPs).

In this chapter, we will discuss various methods to numerically solve IVPs.
Stability and stiffness of differential equations will also be covered. Treatment
of BVPs is presented in Chapter 8. Numerical methods for a single, first-
order IVP will be studied first; Figure 7.1. Some of these methods will then be
extended and used to solve higher-order and systems of differential equations.

A single, first-order IVP is represented as

	 ′ = = = ≤ ≤ =y f x y y x y a x x x bn(,), () ,0 0 0 	 (7.1)

where y0 is the specified initial condition, the independent variable x assumes
values in [a, b], and it is assumed that a unique solution y(x) exists in the
interval [a, b]. The interval is divided into n segments of equal width h so that

	 x x h x x h x x nhn1 0 2 0 02= + = + = +, , ,…

The solution at the point x0 is available from the initial condition. The objec-
tive is to find estimates of the solution at the subsequent points x1, x2, . . . , xn.

7.1 ​ One-Step Methods

One-step methods find the solution estimate yi+1 at the location xi+1 by extrap-
olating from the solution estimate yi at the previous location xi. Exactly, how
this new estimate is extrapolated from the previous estimate depends on the
numerical method used. Figure 7.2 describes a very simple one-step method,
where the slope φ is used to extrapolate from yi to the new estimate yi+1

	 y y h i ni i+ = + = −1 0 1 2 1ϕ (, , , ,)… 	 (7.2)

330 Numerical Methods for Engineers and Scientists Using MATLAB®

Starting with the prescribed initial condition y0, Equation 7.2 is applied in
every subinterval [xi, xi+1] to find solution estimates at x1, x2, . . . , xn. The gen-
eral form in Equation 7.2 describes all one-step methods, with each method
using a specific approach to estimate the slope φ. The simplest of all one-step
methods is Euler’s method, explained below.

7.2  Euler’s Method

The expansion of y(x1) in a Taylor series about x0 yields

	
y x y x h y x hy x h y x() () () ()

!
()1 0 0 0

2
0

1
2

= + = + ′ + ′′ +

Slope = ϕ

yi+1= yi + hϕ

hϕ

h
True solution
trajectory

y

yi

yi

xi+1xi

x

Figure 7.2
​A simple one-step method.

One-step methods

Multi-step methods

Higher-order Taylor methods

Runge–Kutta methods

Adams–Bashforth method

Predictor–corrector method

Initial-value problem

Adams–Moulton method

Euler’s method

y′ = f (x,y), y(x0) = y0

Figure 7.1
Classification of methods to solve an initial-value problem.

331Numerical Solution of Initial-Value Problems

Retaining the linear terms only, the above is rewritten as

	
y x y x hy x h y() () ()

!
()1 0 0

2
0

1
2

= + ′ + ′′ ξ

for some ξ0 between x0 and x1. In general, expanding y(xi+1) about xi yields

	
y x y x hy x h yi i i i() () ()

!
()+ = + ′ + ′′1

21
2

ξ

for some ξi between xi and xi+1. Note that y′(xi) = f(xi, yi) by Equation 7.1.
Introducing notations yi = y(xi) and yi+1 = y(xi+1), the estimated solution yi+1 can
be found via

	 y y hf x y i ni i i i+ = + = −1 0 1 2 1(,), , , , ,… 	 (7.3)

known as Euler’s method. Comparing with the description of the general
one-step method, Equation 7.2, we see that the slope φ at xi is simply esti-
mated by f(xi, yi), which is the first derivative at xi, namely, y′(xi). Equation 7.3
is called the difference equation for Euler’s method.

The user-defined function EulerODE uses Euler’s method to estimate the
solution of an IVP.

function y = EulerODE(f,x,y0)
%
% EulerODE uses Euler's method to solve a first-order
% ODE given in the form y' = f(x,y) subject to initial
% condition y0.
%
%  y = EulerODE(f,x,y0) where
%
%     f is an inline function representing f(x,y),
%     x is a vector representing the mesh points,
%     y0 is a scalar representing the initial value of y,
%
%     y is the vector of solution estimates at the mesh
%     points.

y = 0*x;    % Pre-allocate
y(1) = y0; h = x(2)-x(1);
for n = 1:length(x)-1,
   y(n+1) = y(n)+  h*f(x(n),y(n));
end

332 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 7.1:  Euler’s Method

Consider the IVP

	 ′ + = = ≤ ≤y y x y x2 0 1 0 1, () ,

The exact solution is derived as yexact(x) = 2x + 3e−x − 2. We will solve the
IVP numerically using Euler’s method with step size h = 0.1. Comparing
with Equation 7.1, we find f(x,y) = −y + 2x. Starting with y0 = 1, we use
Equation 7.3 to find the estimate at the next point, x = 0.1, as

	 y y hf x y f1 0 0 0 1 0 1 1 1= + = + = + − =(,) (,) ()0.1 0.1 0.9

The exact solution at x = 0.1 is calculated as

	 y eexact() ()0.1 0.1 0.9145120.1= + − =−2 3 2

Therefore, the relative error is 1.59%. Similar computations may be per-
formed at the subsequent points 0.2, 0.3, . . . , 1. The following MATLAB®
script file uses the user-defined function EulerODE to find the numerical
solution of the IVP and returns the results, including the exact values, in
tabulated form. Figure 7.3 shows that Euler estimates capture the trend
of the actual solution.

disp(' x yEuler yExact')
h = 0.1; x = 0:h:1; y0 = 1;
f = inline('-y+2*x','x','y');
yEuler = EulerODE(f,x,y0);

True solution
trajectory

Euler’s
estimate

1.1

1

0.95

0.9

0.8

1.05

0.75

0.7

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.85

y(
x)

Exact value

Figure 7.3
​Comparison of Euler’s and exact solutions in Example 7.1.

333Numerical Solution of Initial-Value Problems

yExact = inline('2*x+3*exp(-x)-2');

for k = 1:length(x),
    x_coord = x(k);
    yE = yEuler(k);
    yEx = yExact(x(k));

   fprintf('%6.2f   %11.6f  %11.6f\n',x_coord,yE,yEx)

end

   x         yEuler       yExact

  0.00      1.000000     1.000000
  0.10      0.900000     0.914512
  0.20      0.830000     0.856192
  0.30      0.787000     0.822455
  0.40      0.768300     0.810960
  0.50      0.771470     0.819592
  0.60      0.794323     0.846435
  0.70      0.834891     0.889756
  0.80      0.891402     0.947987
  0.90      0.962261     1.019709
  1.00      1.046035     1.103638

The largest relative error is roughly 6.17% and occurs at x = 0.7. Using
a smaller step size h will reduce the errors. Executing the above script file
with h = 0.05, for example, shows a maximum relative error of 3.01% at
x = 0.65.

7.2.1 ​ Error Analysis for Euler’s Method

Two sources of error are involved in the numerical solution of ordinary dif-
ferential equations: round-off and truncation. Round-off errors are caused
by the number of significant digits retained and used for calculations by
the computer. Truncation errors are caused by the way a numerical method
approximates the solution, and comprise two parts. The first part is a local
truncation error resulting from the application of the numerical method in
each step. The second part is a propagated truncation error caused by the
approximations made in the previous steps. Adding the local and propagated
truncation errors yields the global truncation error. It can be shown that the
local truncation error is O(h2), while the global truncation error is O(h).

7.2.2  Calculation of Local and Global Truncation Errors

The global truncation error at the point xi+1 is simply the difference between
the actual solution yia+1 and the computed solution yic+1. This contains the
local truncation error, as well as the effects of all the errors accumulated in
the steps prior to the current location xi+1:

	

Global truncation error at
Actual
solution
at

x yi i
a

xi

+ +=

+

1 1

1

−− +
+

y hf x yi
c

i i
c

xi

(,)
 Euler’s estimate at
 using comp

1
uuted solution at xi

	

(7.4)

334 Numerical Methods for Engineers and Scientists Using MATLAB®

The local truncation error at xi+1 is the difference between the actual
solution yia+1 and the solution that would have been computed had the actual
solution been used by Euler’s method going from xi to xi+1,

	

Local truncation error at
Actual
solution
at

x yi i
a

xi

+ += −

+

1 1

1

yy hf x yi
a

i i
a

x
x

i

+
+

(,)
Euler’s estimate at
using actual solution at

1
ii

	

(7.5)

Example 7.2:  Local and Global Truncation Errors

In Example 7.1, calculate the local and global truncation errors at each
point and tabulate the results.

Solution

Starting with the initial condition y0 = 1, the Euler’s computed value at
x1 = 0.1 is yc

1 = 0.9 while the actual value is y a
1 = 0.914512. At this stage,

the global and local truncation errors are the same because Euler’s
method used the initial condition, which is exact, to find the estimate. At
x2 = 0.2, the computed value is yc

2 = 0.83, which was calculated by Euler’s
method using the estimated value yc

1 = 0.9 from the previous step. If
instead of yc

1 we use the actual value y a
1 = 0.914512, the computed value

at x2 is

	
y y hf x y fa a

2 1 1 1= + = + =(,) (,)0.914512 0.1 0.1 0.914512 0.843061

  Therefore

	

Local truncation error at

0.856192 0.843061 0.01313

x y ya
2 2 2= −

= − =



11

  The global truncation error at x2 is simply calculated as

	

Global truncation error at

0.856192 0.830000 0.0261

x y ya c
2 2 2= −

= − = 992

  It is common to express these errors in the form of percent relative
errors; hence, at each point we evaluate

	

()Local or global Truncation error
Actual value

× 100

  With this, the (local) percent relative error at x2 is

	

y y
y

a

a
2 2

2
100 100

− × = × =
 0.013131

0.856192
1.53

335Numerical Solution of Initial-Value Problems

  The (global) percent relative error at x2 is

	

y y
y

a c

a
2 2

2
100 100

− × = × =0.026192
0.856192

3.06

The following MATLAB script file uses this approach to find the per-
cent relative errors at all xi, and completes the table presented earlier in
Example 7.1.

disp('   x       yEuler       yExact    e_local   e_global')
h = 0.1; x = 0:h:1; y0 = 1; f = inline('-y+2*x','x','y');
yEuler = EulerODE(f,x,y0); yExact = inline('2*x+3*exp(-x)-2');

ytilda = 0*x; ytilda(1) = y0;
for n = 1:length(x)-1,
    ytilda(n+1) = yExact(x(n)) + h*f(x(n),yExact(x(n)));
end

for k = 1:length(x),
    x_coord = x(k);
    yE = yEuler(k);
    yEx = yExact(x(k));
    e_local = (yEx-ytilda(k))/yEx*100;
    e_global = (yEx-yE)/yEx*100;

   fprintf('%6.2f %11.6f %11.6f %6.2f
   %6.2f\n',x_coord,yE,yEx,e_local,e_global)
end

 x      yEuler      yExact   e_local  e_global

0.00   1.000000    1.000000   0.00     0.00
0.10   0.900000    0.914512   1.59     1.59
0.20   0.830000    0.856192   1.53     3.06 �Calculated by

hand earlier
0.30   0.787000    0.822455   1.44     4.31
0.40   0.768300    0.810960   1.33     5.26
0.50   0.771470    0.819592   1.19     5.87
0.60   0.794323    0.846435   1.04     6.16
0.70   0.834891    0.889756   0.90     6.17
0.80   0.891402    0.947987   0.76     5.97
0.90   0.962261    1.019709   0.64     5.63
1.00   1.046035    1.103638   0.53     5.22

7.2.3 ​ Higher-Order Taylor Methods

Euler’s method was developed by retaining only the linear terms in a Taylor
series. Retaining more terms in the series is the premise of higher-order
Taylor methods. Expanding y(xi+1) in a Taylor series about xi yields

	
y x y x hy x h y x

k
h y x

k
i i i i

k k
i() () ()

!
()

!
()

()!
()

+ = + ′ + ′′ + + +
+1

21
2

1 1
1

 hh yk k
i

+ +1 1() ()ξ

336 Numerical Methods for Engineers and Scientists Using MATLAB®

where ξi is between xi and xi+1. The kth-order Taylor method is defined as

	 y y hp x y i ni i k i i+ = + = −1 0 1 2 1(,), , , , ,… 	 (7.6)

where

	
p x y f x y hf x y

k
h f x yk i i i i i i
k k

i i(,) (,)
!

(,)
!

(,)()= + ′ − −1
2

1 1 1+ +

It is then clear that Euler’s method is a first-order Taylor method. Recall
that Euler’s method has a local truncation error O(h2) and a global trunca-
tion error O(h). The kth-order Taylor method has a local truncation error
O(hk+1) and a global truncation error O(hk). Therefore, the higher the order of
the Taylor method, the more accurately it estimates the solution of the IVP.
However, this reduction in error demands the calculation of the derivatives
of f(x,y), which is an obvious drawback.

Example 7.3:  Second-Order Taylor Method

Solve the IVP in Examples 7.1 and 7.2 using the second-order Taylor
method with the same step size h = 0.1 as before, and compare the
numerical results with those produced by Euler’s method.

Solution

The problem is

	 ′ + = = ≤ ≤y y x y x2 0 1 0 1, () ,

so that f(x,y) = −y + 2x. Implicit differentiation with respect to x yields

	 ′ = − ′ + = − − + + = − +
′=

f x y y y x y x
y f x y

(,) ()
(,)

2 2 2 2 2

By Equation 7.6, the second-order Taylor method is defined as

	 y y hp x y i ni i i i+ = + = −1 2 0 1 2 1(,), , , , ,…

where

	
p x y f x y hf x yi i i i i i2

1
2

(,) (,)
!

(,)= + ′

Therefore

	
y y h f x y hf x yi i i i i i+ = + + ′





1
1
2

(,)
!

(,)

337Numerical Solution of Initial-Value Problems

Starting with y0 = 1, the solution estimate at the next location x1 = 0.1
is calculated as

	
y y h f x y hf x y1 0 0 0 0 0

1
2

= + + ′





=(,) (,) 0.9150

Noting the actual value at x1 = 0.1 is 0.914512, this estimate has a
(global) percent relative error of −0.05%, which is a significant improve-
ment over the 1.59% offered by Euler’s method at the same location.
This upgrading of accuracy was expected because the second-order
Taylor method has a (global) truncation error O(h2) compared with O(h)
for Euler’s method. As mentioned before, this came at the expense of the
evaluation of the first derivative f′(x, y). The following MATLAB script
tabulates the solution estimates generated by the second-order Taylor
method:

disp(' x yEuler yTaylor2 e_Euler e_Taylor2')
h = 0.1; x = 0:h:1; y0 = 1;
f = inline('-y+2*x','x','y'); fp = inline('y-2*x+2','x','y');
yEuler = EulerODE(f,x,y0); yExact = inline('2*x+3*exp(-x)-2');

yTaylor2 = 0*x; yTaylor2(1) = y0;
for n = 1:length(x)-1,
   yTaylor2(n+1) = �yTaylor2(n)+h*(f(x(n),yTaylor2(n))+(1/2)*h
   *fp(x(n),yTaylor2(n)));
end

for k = 1:length(x),
    x_coord = x(k);
    yE = yEuler(k);
    yEx = yExact(x(k));
    yT = yTaylor2(k);
    e_Euler = (yEx-yE)/yEx*100;
    e_Taylor2 = (yEx-yT)/yEx*100;
  fprintf('%6.2f  %11.6f  %11.6f  %6.2f
  %6.2f\n',x_coord,yE,yT,e_Euler,e_Taylor2)
end

 x       yEuler     yTaylor2  e_Euler  e_Taylor2

0.00    1.000000    1.000000    0.00     0.00
0.10    0.900000    0.915000    1.59    −0.05 �Calculated by

hand earlier
0.20    0.830000    0.857075    3.06    −0.10
0.30    0.787000    0.823653    4.31    −0.15
0.40    0.768300    0.812406    5.26    −0.18
0.50    0.771470    0.821227    5.87    −0.20
0.60    0.794323    0.848211    6.16    −0.21
0.70    0.834891    0.891631    6.17    −0.21
0.80    0.891402    0.949926    5.97    −0.20
0.90    0.962261    1.021683    5.63    −0.19
1.00    1.046035    1.105623    5.22    −0.18

338 Numerical Methods for Engineers and Scientists Using MATLAB®

7.3 ​ Runge–Kutta Methods

In the last section, we learned that a kth-order Taylor method has a global
truncation error O(hk) but requires the calculation of derivatives of f(x, y).
Runge–Kutta methods generate solution estimates with the accuracy of
Taylor methods without having to calculate these derivatives. Recall from
Equation 7.2 that all one-step methods to solve the IVP

	 ′ = = = ≤ ≤ =y f x y y x y a x x x bn(,), () ,0 0 0

are expressed as

	 y y h x yi i i i+ = +1 ϕ (,)

where φ(xi, yi) is an increment function and is essentially a suitable slope
over the interval [xi, xi+1] that is used for extrapolating yi+1 from yi. The order
of the Runge–Kutta method is the number of points that are used in [xi, xi+1]
to determine this suitable slope. For example, second-order Runge–Kutta
methods use two points in each subinterval to find the representative slope,
and so on.

7.3.1 ​ Second-Order Runge–Kutta Methods

For the second-order Runge–Kutta (RK2) methods, the increment function is
expressed as φ(xi, yi) = a1k1 + a2k2 so that

	 y y h a k a ki i+ = + +1 1 1 2 2() 	 (7.7)

with

	

k f x y

k f x b h y c k h

i i

i i

1

2 1 11 1

=

= + +

(,)

(,) 	
(7.8)

where a1, a2, b1, and c11 are constants, each set determined separately for each
specific RK2 method. These constants are evaluated by setting Equation 7.7
equal to the first three terms in a Taylor series, neglecting terms with h3 and
higher:

	
y y h y h y O hi i x xi i

+ + ′ + ′′ +1
2 31

2
= ()

	
(7.9)

339Numerical Solution of Initial-Value Problems

The term ′y
xi

 is simply f(xi, yi), while

	

′′ = ′ = +

=

y f x y
f
x

f
y

dy
dxx i i

x y x y x
i

i i i i i

|
Chain rule

(,)
(,) (,)

∂
∂

∂
∂

′′=
+

y f x y

x y x y

i i
f
x

f
y

f x y
i i i i

(,)

(,) (,)

(,)
∂
∂

∂
∂

Substituting for ′y xi| and ′′y xi| in Equation 7.9, we have

	

y y hf x y h
f
x

h
f
y

f x yi i i i
x y x y

i i

i i i i

+ = + + +1
2 21

2
1
2

(,) (,)
(,) (,)

∂
∂

∂
∂

+ OO h()3

	
(7.10)

Next, we will calculate yi+1 using a different approach as follows. In
Equation 7.7, the term k2 = f(xi + b1h, yi + c11k1h) is a function of two variables,
and can be expanded about (xi, yi) as

	

k f x b h y c k h f x y b h
f
x

c k h
f
y

i i i i
x yi i

2 1 11 1 1

11 1

= + +

+

(,) (,)
(,)

(

= + ∂
∂

∂
∂

xx yi i

O h
,)

()+ 2

	
(7.11)

Substituting Equation 7.11 and k1 = f(xi, yi) in Equation 7.7, we find

	

y y h a f x y a f x y b h
f
x

c k h
f
y

i i i i i i
x y xi i

+ = + + + +1 1 2 1 11 1(,) (,)
(,) (

∂
∂

∂
∂

ii i

i i

y

k f x y

i i

O h

y a a hf x

,)

(,)

()

() (

+
























= +
=

2

1 2

1

 + ,,) (,) ()
(,) (,)

y a b h
f
x

a c h
f
y

f x y O hi
x y x y

i i

i i i i

+ + +2 1
2

2 11
2 3∂

∂
∂
∂

	
		

(7.12)

The right-hand sides of Equations 7.10 and 7.12 represent the same quan-
tity, yi+1; hence, they must be equal. That yields

	
a a a b a c1 2 2 1 2 111

1
2

1
2

+ = = =, ,
	

(7.13)

340 Numerical Methods for Engineers and Scientists Using MATLAB®

Since there are four unknowns and only three equations, a unique set of
solutions does not exist. But if a value is assigned to one of the constants, the
other three can be calculated. This is why there are several versions of RK2
methods, three of which are presented below. RK2 methods have local trun-
cation error O(h3) and global truncation error O(h2), as did the second-order
Taylor methods.

7.3.1.1 ​ Improved Euler’s Method

Assuming a2 = 1, the other three constants in Equation 7.13 are determined as
a1 = 0, b1

1
2= , and c11

1
2= . Inserting into Equations 7.7 and 7.8, the improved

Euler’s method is described by

	 y y hki i+ = +1 2 	 (7.14)

where

	

k f x y

k f x h y k h

i i

i i

1

2 1
1
2

1
2

=

= + +





(,)

,
	

(7.15)

7.3.1.2 ​ Heun’s Method

Assuming a2
1
2= , the other three constants in Equation 7.13 are determined

as a1
1
2= , b1 = 1, and c11 = 1. Inserting into Equations 7.7 and 7.8, Heun’s

method is described by

	
y y h k ki i+ = + +1 1 2

1
2

()
	

(7.16)

where

	

k f x y

k f x h y k h

i i

i i

1

2 1

=

= + +

(,)

(,) 	
(7.17)

7.3.1.3 ​ Ralston’s Method

Assuming a2
2
3= , the other three constants in Equation 7.13 are determined

as a1
1
3= , b1

3
4= , and c11

3
4= . Inserting into Equations 7.7 and 7.8, Ralston’s

method is described by

341Numerical Solution of Initial-Value Problems

	
y y h k ki i+ = + +1 1 2

1
3

2()
	

(7.18)

where

	

k f x y

k f x h y k h

i i

i i

1

2 1
3
4

3
4

=

= + +





(,)

,
	

(7.19)

Note that each of these RK2 methods produces estimates with the accu-
racy of a second-order Taylor method without calculating the derivative of
f(x,y). Instead, each method requires two function evaluations per step.

7.3.1.4 ​ Graphical Representation of Heun’s Method

Equations 7.16 and 7.17 can be combined as

	
y y h

f x y f x h y k h
i i

i i i i
+ = + + + +

1
1

2
(,) (,)

	
(7.20)

Since k1 = f(xi, yi), we have yi + k1h = yi + hf(xi, yi). But this is the estimate yi+1
given by Euler’s method at xi+1, which we denote by yi+1

Euler to avoid confusion
with yi+1 in Equation 7.20. With this, and the fact that xi + h = xi+1, Equation 7.20
is rewritten as

	
y y h

f x y f x y
i i

i i i i
+

+ += + +
1

1 1

2
(,) (,)Euler

	
(7.21)

The fraction multiplying h is the average of two quantities: the first
one is the slope at the left end xi of the interval; the second one is the
estimated slope at the right end xi+1 of the interval. This is illustrated in
Figure 7.4.

In Figure 7.4a, the slope at the left end of the interval is shown as f(xi, yi).
Figure 7.4b shows the estimated slope at the right end of the interval to be
f x yi i(,)+ +1 1

Euler . The line whose slope is the average of these two slopes, Figure
7.4c, yields an estimate that is superior to yi+1

Euler . In Heun’s method, yi+1 is
extrapolated from yi using this line.

The user-defined function HeunODE uses Heun’s method to estimate the
solution of an IVP.

342 Numerical Methods for Engineers and Scientists Using MATLAB®

function y = HeunODE(f,x,y0)
%
% HeunODE uses Heun's method to solve a first-order ODE
% given in the form y' = f(x,y) subject to initial
% condition y0.
%
%   y = HeunODE(f,x,y0) where
%
%    f is an inline function representing f(x,y),
%    x is a vector representing the mesh points,
%    y0 is a scalar representing the initial value of y,
%
%    y is the vector of solution estimates at the mesh
%    points.

y = 0*x;  % Pre-allocate
y(1) = y0; h = x(2)- x(1);
for n = 1:length(x)-1,
    k1 = f(x(n),y(n));
    k2 = f(x(n)+h,y(n)+h*k1);
    y(n+1) = y(n)+h*(k1+k2)/2;
end

True solution
trajectory

True solution
trajectory

True solution
trajectory

A better estimate than yi+1

yi yi

xixi

xi xi+1

xi+1xi+1

yi

y

h

h h

x

x

x

y y

Average slope

Euler

Slope = f (xi+1, yi+1)Euler

EulerSlope = f (xi+1, yi+1)

Exactyi+1

Exactyi+1

Euleryi+1

Euler

yi+1
Euleryi+1

Slope = f (xi, yi)

Slope = f (xi, yi)

(a) (b)

(c)

Figure 7.4
​Graphical representation of Heun’s method.

343Numerical Solution of Initial-Value Problems

Example 7.4:  RK2 Methods

Consider the IVP

	 ′ − = = ≤ ≤ =y x y x y x h2 22 0 1 0 1, () , , 0.1

Compute the estimated value of y1 = y(0.1) using each of the three RK2
methods discussed earlier.

Solution

Noting that f(x, y) = x2(2 + y), the value of y1 = y(0.1) estimated by each
RK2 method is calculated as follows:

Improved Euler’s Method

	

k f x y f

k f x h y k h f

1 0 0

2 0 0 1

0 1 0

1
2

1
2

0 1

= = =

= + +



 = =

(,) (,)

, (,).05 0.00075

0.1 0.0075 1.0008

⇒ y y hk1 0 2

1

= +

= + =()

Heun’s Method

	

k f x y f

k f x h
1 0 0

2 0

0 1 0= = =
= +

(,) (,)
(

,,) (,)

()

()

y k h f
y y h k k

0 1
1 0 1 20 1

1
2

1

+ = =
⇒ = + +

= + =

.1 0.0300

0.05 0.0300 11.0015

Ralston’s Method

	

k f x y f1 0 0 0 1 0= = =(,) (,)

.075 0.0169k f x h y k h f
y y h k

2 0 0 1
1 0 13

4
3
4

0 1
1
3= + +



 = =

⇒ = +
, (,)

(++

= + =

2

1
1
3

2k)

()()0.1 0.0338 1.0011

Continuing this process, the estimates given by the three methods at
the remaining points will be obtained and tabulated as in Table 7.1. The
exact solution is y ex= 3 2

3 3/ − . The global percent relative errors for all
three methods are also listed, where it is readily observed that all RK2
methods perform better than Euler, and that Ralston’s method is produc-
ing the most accurate estimates.

7.3.2  Third-Order Runge–Kutta Methods

For the third-order Runge–Kutta (RK3) methods, the increment function is
expressed as φ(xi, yi) = a1k1 + a2k2 + a3k3, so that

	 y y h a k a k a ki i+ = + + +1 1 1 2 2 3 3() 	 (7.22)

344 Numerical Methods for Engineers and Scientists Using MATLAB®

with

	

k f x y

k f x b h y
i i

i

1

2 1

=
= +

() ,
(, ii

i i

c k h

k f x b h y c k h c k h

+
= + + +

11 1

3 2 21 1 22 2

)
(,)

where a1, a2, a3, b1, b2, c11, c21, and c22 are constants, each set determined sepa-
rately for each specific RK3 method. These constants are found by setting
Equation 7.22 equal to the first four terms in a Taylor series, neglecting terms
with h4 and higher. Proceeding as with RK2 methods, we will end up with
six equations and eight unknowns. By assigning values to two of the con-
stants, the other six can be determined. Because of this, there are several RK3
methods, two of which are presented here. RK3 methods have local trun-
cation error O(h4) and global truncation error O(h3), as did the third-order
Taylor methods.

7.3.2.1 ​ Classical RK3 Method

The classical RK3 method is described by

	
y y h k k ki i+ = + + +1 1 2 3

1
6

4()
	

(7.23)

where

	

k f x y

k f x h y

i i

i i

1

2
1
2

1

=

= + +

() ,

,
22

2

1

3 1 2

k h

k f x h y k h k hi i







= + − +

 (,)

Table 7.1

​Summary of Calculations in Example 7.4

x yEuler yHeun yImp_Euler yRalston eEuler eHeun eImp_Euler eRalston

0.0 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.00 0.00
0.1 1.0000 1.0015 1.0008 1.0011 0.10 −0.05 0.02 −0.01
0.2 1.0030 1.0090 1.0075 1.0083 0.50 −0.10 0.05 −0.02
0.3 1.0150 1.0286 1.0263 1.0275 1.18 −0.15 0.08 −0.03
0.4 1.0421 1.0667 1.0636 1.0651 2.12 −0.19 0.10 −0.04
0.5 1.0908 1.1302 1.1261 1.1281 3.27 −0.23 0.14 −0.04
0.6 1.1681 1.2271 1.2219 1.2245 4.56 −0.25 0.17 −0.04
0.7 1.2821 1.3671 1.3604 1.3637 5.96 −0.27 0.22 −0.03
0.8 1.4430 1.5626 1.5541 1.5583 7.40 −0.28 0.27 −0.00
0.9 1.6633 1.8301 1.8191 1.8246 8.87 −0.27 0.34 0.04
1.0 1.9600 2.1922 2.1777 2.1849 10.37 −0.25 0.42 0.09

345Numerical Solution of Initial-Value Problems

7.3.2.2 ​ Heun’s RK3 Method

Heun’s RK3 method is described by

	
y y h k ki i+ = + +1 1 3

1
4

3()
	

(7.24)

where

	

k f x y

k f x h y

i i

i i

1

2
1
3

1
3

=

= + +

(,)

,

kk h

k f x h y k hi i

1

3 2
2
3

2
3







= + +





 ,

Each of these RK3 methods produces estimates with the accuracy of a
third-order Taylor method without calculating the derivatives of f(x,y).
Instead, each method requires three function evaluations per step.

Example 7.5:  RK3 Methods

Consider the IVP in Example 7.4:

	 ′ − = = ≤ ≤ =y x y x y x h2 22 0 1 0 1, () , , 0.1

Compute the estimated value of y1 = y(0.1) using the two RK3 methods
presented above.

Solution

Noting that f(x, y) = x2 (2 + y), the calculations are carried out as follows.

Classical RK3 Method

	

k f x y f1 0 0 0 1 0= = =(,) (,)

.05 0.0075 k f x h y k h f2 0 0 1
1
2

1
2

0 1= + + = =(,) (,)

kk f x h y k h k h f3 0 0 1 22 0= + − + = =(,) (,).1 1.0015 0.0300

	

y y h k k k1 0 1 2 3
1
6

4

1
1
6

4

= + + +

= + × + =

()

()()0.1 0.0075 0.0300 1.0010

346 Numerical Methods for Engineers and Scientists Using MATLAB®

Heun’s RK3 Method

	

k f x y f1 0 0 0 1 0= = =(,) (,)

.0333 0.0033 k f x h y k h f

k

2 0 0 1
1
3

1
3

0 1= + + = =(,) (,)

33 0 0 2

1 0 1

2
3

2
3

0 1

1
4

= + + = =

= + +

f x h y k h f

y y h k

(,) (,)

(

.0667 .0002 0.0133

33 13k) ()= + =0.05 0.0300 1.0010

A summary of all calculations is given in Table 7.2 where it is easily seen
that the global percent relative errors for the two RK3 methods are con-
siderably lower than all previous methods covered up to this point.

7.3.3  Fourth-Order Runge–Kutta Methods

For the fourth-order Runge–Kutta (RK4) methods, the increment function is
expressed as

	 ϕ (,)x y a k a k a k a ki i = + + +1 1 2 2 3 3 4 4

so that

	 y y h a k a k a k a ki i+ = + + + +1 1 1 2 2 3 3 4 4() 	 (7.25)

with

	

k f x yi i1 = () ,

(
k f x b h y c k h

k f x
i i

i

2 1 11 1

3

= + +
=

(,)
++ + +

= + + +
b h y c k h c k h

k f x b h y c k h
i

i i

2 21 1 22 2

4 3 31 1

,
(,

)
cc k h c k h32 2 33 3+)

Table 7.2

Summary of Calculations in Example 7.5

x yEuler yRK3 yHeun_RK3 eEuler eRK3 eHeun_RK3

0.0 1.0000 1.0000 1.0000 0.00 0.0000 0.0000
0.1 1.0000 1.0010 1.0010 0.10 −0.0000 0.0000
0.2 1.0030 1.0080 1.0080 0.50 −0.0001 0.0001
0.3 1.0150 1.0271 1.0271 1.18 −0.0004 0.0003
0.4 1.0421 1.0647 1.0647 2.12 −0.0010 0.0007
0.5 1.0908 1.1277 1.1276 3.27 −0.0018 0.0014
0.6 1.1681 1.2240 1.2239 4.56 −0.0030 0.0024
0.7 1.2821 1.3634 1.3633 5.96 −0.0044 0.0038
0.8 1.4430 1.5584 1.5582 7.40 −0.0059 0.0059
0.9 1.6633 1.8253 1.8250 8.87 −0.0074 0.0086
1.0 1.9600 2.1870 2.1866 10.37 −0.0087 0.0124

347Numerical Solution of Initial-Value Problems

where aj, bj, and cij are constants, each set determined separately for each spe-
cific RK4 method. These constants are found by setting Equation 7.25 equal
to the first five terms in a Taylor series, neglecting terms with h5 and higher.
Proceeding as before leads to 10 equations and 13 unknowns. By assigning
values to three of the constants, the other 10 can be determined. This is why
there are many RK4 methods, but only the classical RK4 is presented here.
RK4s have local truncation error O(h5) and global truncation error O(h4).

7.3.3.1 ​ Classical RK4 Method

The classical RK4 method is described by

	
y y h k k k ki i+ = + + + +1 1 2 3 4

1
6

2 2()
	

(7.26)

where

	

k f x y

k f x h y k h

k f x h y k h

i i

i i

i i

1

2 1

3 2

1
2

1
2

1
2

1
2

=

= + +





= + +


(,)

,

, 


= + +k f x h y k hi i4 3(,) 	

(7.27)

RK4 methods produce estimates with the accuracy of a fourth-order Taylor
method without calculating the derivatives of f(x, y). Instead, four function
evaluations per step are performed. The classical RK4 method is the most
commonly used technique for numerical solution of first-order IVPs, as it
offers the most acceptable balance of accuracy and computational effort.

The user-defined function RK4 uses the classical RK4 method to estimate
the solution of an IVP.

function y = RK4(f,x,y0)
%
% RK4 uses the classical RK4 method to solve a first-
% order ODE given in the form y' = f(x,y) subject to
% initial condition y0.
%
%   y = RK4(f,x,y0) where
%
%   f is an inline function representing f(x,y),

348 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 7.6:  RK4 methods

Consider the IVP in Examples 7.4 and 7.5:

	 ′ − = = ≤ ≤ =y x y x y x h2 22 0 1 0 1, () , , 0.1

Compute the estimated value of y1 = y(0.1) using the classical RK4 method.

Solution

Noting that f(x, y) = x2 (2 + y), the calculations are carried out as follows.

Classical RK4 Method

	

k f x y f1 0 0 0 1 0= = =(,) (,)

.05 0.0075 k f x h y k h f2 0 0 1
1
2

1
2

0 1= + + = =(,) (,)

.05 1.0004 0.0075 k f x h y k h f

k f x h

3 0 0 2

4 0

1
2

1
2

0= + + = =

= +

(,) (,)

(,,) (,)

()

y k h f

y y h k k k k

0 3

1 0 1 2 3 4

0
1
6

2 2

+ = =

= + + + + =

.1 1.0008 0.0300

1.00010

A summary of all calculations is provided in Table 7.3 where it is easily
seen that the global percent relative error for the classical RK4 method is
significantly lower than all previous methods covered up to this point.
As expected, starting with Euler’s method, which is indeed a first-order
Runge–Kutta method, the accuracy improves with the order of the RK
method.

%    x is a vector representing the mesh points,
%    y0 is a scalar representing the initial value of y,
%
%    y is the vector of solution estimates at the mesh
%    points.

y = 0*x;    % Pre-allocate
y(1) = y0; h = x(2)-x(1);
for n = 1:length(x)-1,
    k1 = f(x(n),y(n));
    k2 = f(x(n)+h/2,y(n)+h*k1/2);
    k3 = f(x(n)+h/2,y(n)+h*k2/2);
    k4 = f(x(n)+h,y(n)+h*k3);
   y(n+1) = y(n)+h*(k1+2*k2+2*k3+k4)/6;
end

349Numerical Solution of Initial-Value Problems

7.3.3.2 ​ Higher-Order Runge–Kutta Methods

The classical RK4 is the most commonly used numerical method for solving
first-order IVPs. If higher levels of accuracy are desired, the recommended
technique is Butcher’s fifth-order Runge–Kutta method (RK5), which is
defined as

	
y y h k k k k ki i+ = + + + + +1 1 3 4 5 6

1
90

7 32 12 32 7()
	

(7.28)

where

	

k f x yi i1 = () ,

 k f x h y k hi i2 1
1
4

1
4

= + +



,

 k f x h y k h k hi i3 1 2
1
4

1
8

1
8

= + + +



,

 k f x h y k h k hi i4 2 3
1
2

1
2

= + − +



,

k f x h y k h k hi i5 1 4
3
4

3
16

9
16

= + + +



,

k f x h y k h k h k h ki i6 1 2 3
3
7

2
7

12
7

12
7

= + − + + −, 44 5
8
7

h k h+





Therefore, Butcher’s RK5 method requires six function evaluations per
step.

Table 7.3

​Summary of Calculations in Example 7.6

RK4 RK3 RK2 RK1

x yRK4 eRK4 eRK3 eHeun eEuler

0.0 1.000000 0.000000 0.0000 0.00 0.00
0.1 1.001000 0.000001 −0.0000 −0.05 0.10
0.2 1.008011 0.000002 −0.0001 −0.10 0.50
0.3 1.027122 0.000003 −0.0004 −0.15 1.18
0.4 1.064688 0.000004 −0.0010 −0.19 2.12
0.5 1.127641 0.000005 −0.0018 −0.23 3.27
0.6 1.223966 0.000006 −0.0030 −0.25 4.56
0.7 1.363377 0.000007 −0.0044 −0.27 5.96
0.8 1.558286 0.000010 −0.0059 −0.28 7.40
0.9 1.825206 0.000016 −0.0074 −0.27 8.87
1.0 2.186837 0.000028 −0.0087 −0.25 10.37

350 Numerical Methods for Engineers and Scientists Using MATLAB®

7.3.4 ​ Runge–Kutta–Fehlberg Method

One way to estimate the local truncation error for Runge–Kutta meth-
ods is to use two RK methods of different order and subtract the results.
For cases involving variable step size, the error estimate can be used to
decide when the step size needs to be adjusted. Naturally, a drawback of
this approach is the number of function evaluations required per step.
For example, we consider a common approach that uses a fourth-order
and a fifth-order RK. This requires a total of 10 (four for RK4 and six for
RK5) function evaluations per step. To get around the computational bur-
den, the Runge–Kutta–Fehlberg (RKF) method utilizes an RK5 method
that uses the function evaluations provided by its accompanying RK4
method.* This will reduce the number of function evaluations per step
from 10 to 6.

	
y y h k k k ki i+ = + + + −



1 1 3 4 5

25
216

1408
2565

2197
4104

1
5 	

(7.29)

together with a fifth-order method

	
y y h k k k k ki i+ = + + + − +



1 1 3 4 5 6

16
135

6656
12825

28561
56430

9
50

2
55 

	
(7.30)

where

	

k f x yi i1 2= (,)

 k f x h y k hi i2 1
1
4

1
4

= + +



,

k f x h y k h k hi i3 1 2
3
8

3
32

9
32

= + + +



, 

k f x h y k hi i4 1
12
13

1932
2197

7= + + −,
2200

2197
7296
21972 3k h k h+





k f x h y k h k hi i5 1 2
439
216

8
36= + + − +,

880
513

845
41043 4k h k h−





k f x h y k h k h ki i6 1 2 3
1
2

8
27

2
3544
2565

= + − + −, hh k h k h+ −





1859
4104

11
404 5

*	 Refer to K.E. Atkinson, An Introduction to Numerical Analysis. 2nd edition, John Wiley,
New York, 1989.

351Numerical Solution of Initial-Value Problems

Subtracting Equation 7.29 from Equation 7.30 yields the estimate of the
local truncation error:

	
Error = − − + +



h k k k k k

1
360

128
4275

2197
75240

1
50

2
551 3 4 5 6

	
(7.31)

In each step, Equation 7.29 gives the fourth-order accurate estimate,
Equation 7.30 gives the fifth-order accurate estimate, and Equation 7.31
returns the estimated local truncation error.

7.4 ​ Multistep Methods

In single-step methods, the solution estimate yi+1 at the point xi+1 is obtained by
using information at a single previous point xi. Multistep methods are based
on the idea that a more accurate estimate for yi+1 at xi+1 can be attained by utiliz-
ing information on two or more previous points rather than xi only. Consider
y′ = f(x, y) subject to initial condition y(x0) = y0. To use a multistep method to
find an estimate for y1, information on at least two previous points are needed.
However, the only available information is y0. This means that such methods
cannot self-start and the estimates at the first few points—depending on the
order of the method—must be found using either a single-step method such as
the classical RK4 or another multistep method that uses fewer previous points.

Multistep methods can be explicit or implicit. Explicit methods employ an
explicit formula to calculate the estimate. For example, if an explicit method
uses two previous points, the estimate yi+1 at xi+1 is in the form

	 y F x x y x yi i i i i i+ + − −=1 1 1 1(, , , ,)

This way, only known values appear on the right-hand side. In implicit
methods, the unknown estimate yi+1 is involved on both sides of the equation

	 y F x y x y x yi i i i i i i+ + + − −=1 1 1 1 1
(, , , , ,)

and must be determined iteratively using the methods described in Chapter 3.

7.4.1 ​A dams–Bashforth Method

Adams–Bashforth method is an explicit multistep method to estimate the
solution yi+1 of an IVP at xi+1 by using the solution estimates at two or more
previous points. Several formulas can be derived depending on the number
of previous points used. The order of each formula is the number of previous

352 Numerical Methods for Engineers and Scientists Using MATLAB®

points it uses. For example, a second-order formula finds yi+1 by utilizing the
estimates yi and yi−1 at the two prior points xi and xi−1.

To derive the Adams–Bashforth formulas, we integrate y′ = f(x, y) over an
arbitrary interval [xi, xi+1]

	

′ =
+ +

∫ ∫y dx f x y dx
x

x

x

x

i

i

i

i1 1

(,)

Because ∫ ′ = −+
+x

x
i ii

i
y dx y x y x

1

1() (), the above can be rewritten as

	

y x y x f x y dxi i

x

x

i

i

() () (,)+ = +
+

∫1

1

or

	

y y f x y dxi i

x

x

i

i

+ = +
+

∫1

1

(,)

	

(7.32)

But since y(x) is unknown, f(x,y) cannot be integrated. To remedy this,
f(x,y) is approximated by a polynomial that interpolates the data at (xi, yi)
and a few previous points. The number of the previous points that end up
being used depends on the order of the formula to be derived. For exam-
ple, for a second-order Adams–Bashforth formula, we use the polynomial
that interpolates the data at (xi, yi) and one previous point, (xi−1, yi−1), and
so on.

7.4.1.1 ​ Second-Order Adams–Bashforth Formula

The polynomial that interpolates the data at (xi, yi) and (xi−1, yi−1) is linear and
in the form

	
p x f x y

f x y f x y
x x

x xi i
i i i i

i i
i1

1 1

1
() (,)

(,) (,)
()= + −

−
−− −

−

Letting fi = f(xi, yi) and fi−1 = f(xi−1, yi−1) for brevity, using p1(x) in Equation 7.32

	
y y p x dxi i

x

x

i

i

+ = +
+

∫1 1

1

()

353Numerical Solution of Initial-Value Problems

and assuming equally spaced data with spacing h, we arrive at

	
y y h f fi i i i+ −= + −1 1

1
2

3()
	

(7.33)

As mentioned earlier, this formula cannot self-start because finding y1
requires y0 and y−1, the latter not known. First, a single-step method such as
RK4 is used to find y1 from the initial condition y0. The first application of
Equation 7.33 is when i = 1 so that y2 can be obtained using the information
on y0 and y1.

7.4.1.2  Third-Order Adams–Bashforth Formula

Approximating the integrand f(x,y) in Equation 7.32 by the second-degree
polynomial p2(x) (Section 5.5) that interpolates the data at (xi, yi), (xi−1, yi−1), and
(xi−2, yi−2), and carrying out the integration yields

	
y y h f f fi i i i i+ − −= + − +1 1 2

1
12

23 16 5()
	

(7.34)

Since only y0 is known, we first apply a method such as RK4 to find y1
and y2. The first application of Equation 7.34 is when i = 2 to obtain y3 by
using the information on y0, y1, and y2.

7.4.1.3 ​ Fourth-Order Adams–Bashforth Formula

Approximating the integrand f(x,y) in Equation 7.32 by the third-degree
polynomial p3(x) (Section 5.5) that interpolates the data at (xi, yi), (xi−1, yi−1),
(xi−2, yi−2), and (xi−3, yi−3), and carrying out the integration yields

	
y y h f f f fi i i i i i+ − − −= + − + −1 1 2 3

1
24

55 59 37 9()
	

(7.35)

Since only y0 is known, we first apply a method such as RK4 to find y1,
y2, and y3. The first application of Equation 7.35 is when i = 3 to obtain y4 by
using the information on y0, y1, y2, and y3.

Adams–Bashforth formulas are primarily used in conjunction with the
Adams–Moulton formulas, which are also multistep but implicit, to be pre-
sented next. A weakness of higher-order Adams–Bashforth formulas is that
stability requirements place limitations on the step size that is necessary for
desired accuracy. The user-defined function AdamsBashforth4 uses the
fourth-order Adams–Bashforth formula to estimate the solution of an IVP.

354 Numerical Methods for Engineers and Scientists Using MATLAB®

7.4.2 ​A dams–Moulton Method

Adams–Moulton method is an implicit multistep method to estimate the
solution yi+1 of an IVP at xi+1 by using the solution estimates at two or more
previous points, as well as (xi+1, yi+1), where the solution is to be determined.
Several formulas can be derived depending on the number of points used.
The order of each formula is the total number of points it uses. For example,
a second-order formula finds yi+1 by utilizing the estimates yi and yi+1 at the
points xi and xi+1. This makes the formula implicit because the unknown yi+1
will appear on both sides of the ensuing equation.

Derivation of Adams–Moulton formulas is similar to Adams–Bashforth
where the integrand in Equation 7.32 is approximated by a polynomial that
interpolates the data at prior points, as well as the point where the solution
is being determined.

7.4.2.1  Second-Order Adams–Moulton Formula

The polynomial that interpolates the data at (xi, yi) and (xi+1, yi+1) is linear and
in the form

	
p x f

f f
x x

x xi
i i

i i
i1

1

1
() ()= + −

−
−+

+

function y = AdamsBashforth4(f,x,y0)
%
% AdamsBashforth4 uses the fourth-order Adams-Bashforth
% formula to solve a first-order ODE in the form y' = f(x,y)
% subject to initial condition y0.
%
%   y = AdamsBashforth4(f,x,y0) where
%
%    f is an inline function representing f(x,y),
%    x is a vector representing the mesh points,
%    y0 is a scalar representing the initial value of y,
%
%    y is the vector of solution estimates at the mesh
%    points.

y(1:4) = RK4(f,x(1:4),y0);
for n = 4:length(x)-1,
    h = x(n+1)-x(n);
    y(n+1) = y(n)+h*(55*f(x(n),y(n))-59*f(x(n-1),y(n-1)) 
    + 37*f(x(n-2),y(n-2))-9*f(x(n-3),y(n-3)))/24;
end

355Numerical Solution of Initial-Value Problems

where fi = f(xi, yi) and fi+1 = f(xi+1, yi+1). Replacing f(x,y) in Equation 7.32 with
p1(x) and carrying out the integration yields

	
y y h f fi i i i+ += + +1 1

1
2

()
	

(7.36)

This formula is implicit because fi+1 = f(xi+1, yi+1) contains yi+1, which is the
solution being sought. In this type of a situation, yi+1 must be found itera-
tively using the techniques listed in Chapter 3. This formula has a global
truncation error O(h2).

7.4.2.2  Third-Order Adams–Moulton Formula

Approximating the integrand f(x,y) in Equation 7.32 by the second-degree
polynomial that interpolates the data at (xi+1, yi+1), (xi, yi), and (xi−1, yi−1), and
carrying out the integration yields

	
y y h f f fi i i i i+ + −= + + −1 1 1

1
12

5 8()
	

(7.37)

Since only y0 is initially known, a method such as RK4 is first applied to
find y1. The first application of Equation 7.37 is when i = 1 to obtain y2 implic-
itly. This formula has a global truncation error O(h3).

7.4.2.3  Fourth-Order Adams–Moulton Formula

Approximating the integrand f(x,y) in Equation 7.32 by the third-degree
polynomial that interpolates the data at (xi+1, yi+1), (xi, yi), (xi−1, yi−1), and (xi−2,
yi−2), and carrying out the integration we find

	
y y h f f f fi i i i i i+ + − −= + + − +1 1 1 2

1
24

9 19 5()
	

(7.38)

Since only y0 is initially known, a method such as RK4 is first applied to
find y1 and y2. The first application of Equation 7.38 is when i = 2 to obtain y3
implicitly. This formula has a global truncation error O(h4).

7.4.3 ​ Predictor–Corrector Methods

Predictor–corrector methods are a class of techniques that employ a combi-
nation of an explicit formula and an implicit formula to solve an IVP. First,
the explicit formula is used to predict the value of yi+1. This predicted value
is denoted by yi+1. The predicted yi+1 is then used on the right-hand side of

356 Numerical Methods for Engineers and Scientists Using MATLAB®

an implicit formula to obtain a new, more accurate value for yi+1 on the left-
hand side.

The simplest predictor–corrector method is Heun’s method, presented in
Section 7.3. Heun’s method first uses Euler’s method—an explicit formula—
as the predictor to obtain yi+1

Euler . This predicted value is then used in Equation
7.21, which is the corrector

	
y y h

f x y f x y
i i

i i i i
+

+ += + +
1

1 1

2
(,) (,)Euler

to find a more accurate value for yi+1. A modified version of this approach is
derived next so that a desired accuracy may be achieved through repeated
applications of the corrector formula.

7.4.3.1  Heun’s Predictor–Corrector Method

The objective is to find an estimate for yi+1. The method is implemented as
follows:

	 1.	Find a first estimate for yi+1, denoted by yi+1
1() , using Euler’s method,

which is an explicit formula

	 Predictor y y hf x yi i i i+ = +1
1() (,) 	 (7.39)

	 2.	 Improve the predicted estimate by solving Equation 7.21 iteratively

	
Corrector y y h

f x y f x y
ki

k
i

i i i i
k

+
+ + += + + =1

1 1 1

2
1 2 3()

()(,) (,)
, , , ,…

	
(7.40)

		 Therefore, yi+1
1() is used in Equation 7.40 to obtain yi+1

2() , and so on.
	 3.	The iterations in Step 2 are terminated when the following criterion

is satisfied:

Tolerance
y y

y
i
k

i
k

i
k

+
+

+

+
+
−1

1
1

1
1

() ()

() < ε
	

(7.41)

		 where ε is a prescribed tolerance.
	 4.	 If the tolerance criterion is met, increment i by 1 and set yi equal to

this last yi
k
+

+
1

1() and go to Step 1.

357Numerical Solution of Initial-Value Problems

7.4.3.2 ​ Adams–Bashforth–Moulton Predictor–Corrector Method

Several predictor–corrector formulas can be created by combining one of the
(explicit) Adams–Bashforth formulas of a particular order as the predictor
with the (implicit) Adams–Moulton formula of the same order as the cor-
rector. The fourth-order formulas of these two methods, for example, can
be combined to create the fourth-order Adams–Bashforth–Moulton (ABM4)
predictor–corrector:

Predictor y y h f f f f ii i i i i i+ − − −= + − + − =1
1

1 2 3
1

24
55 59 37 9 3 4() (), , ,… ,, n

	
		 (7.42)

Corrector y y h f f f f ki
k

i i
k

i i i+
+

+ − −= + + − + =1
1

1 1 2
1

24
9 19 5 1 2() ()(), , ,, ,3 … � (7.43)

where f f x yi
k

i i
k

+ + +=1 1 1
() ()(,). This method cannot self-start and is implemented

as follows: starting with the initial condition y0, apply a method such as RK4
to find estimates for y1, y2, and y3 and calculate their respective f(x, y) values.
At this stage, the predictor (Equation 7.42) is applied to find y4

1(), which is then
used to calculate f4

1(). The corrector (Equation 7.43) is next applied to obtain
y4

2(). The estimate can be substituted back into Equation 7.43 for iterative cor-
rection. The process is repeated for the remaining values of the index i.

The user-defined function ABM4PredCorr uses the fourth-order ABM
predictor–corrector method to estimate the solution of an IVP. Note that the
function does not perform the iterative correction mentioned above.

function y = ABM4PredCorr(f,x,y0)
%
% ABM4PredCorr uses the fourth-order Adams-Bashforth-
% Moulton predictor-corrector formula to solve y' = f(x,y)
% subject to initial condition y0.
%
%   y = ABM4PredCorr(f,x,y0) where
%
%    f is an inline function representing f(x,y),
%    x is a vector representing the mesh points,
%    y0 is a scalar representing the initial value of y,
%
%    y is the vector of solution estimates at the mesh
%    points.
%
py = zeros(4,1);   % Pre-allocate

358 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 7.7:  ABM4 Predictor–Corrector Method

Consider the IVP in Examples 7.4 through 7.6:

	 ′ − = = ≤ ≤ =y x y x y x h2 22 0 1 0 1, () , , 0.1

Compute the estimated value of y4 = y(0.4) using the ABM4 predictor–
corrector method.

Solution

f(x, y) = x2 (2 + y). The first element y0 is given by the initial condition. The
next three are obtained by RK4 as

	 y y y1 2 3= = =1.001000 1.008011 1.027122, ,

The respective f(x, y) values are calculated next:

	

f f x y f

f f x y f

0 0 0

1 1 1

0 1 0= = =

= = =

(,) (,)

(,) (,)

0.1 1.001000 0.0300100

0.2 1.008011 0.120320

 0.3

f f x y f

f f x y f

2 2 2

3 3 3

= = =

= =

(,) (,)

(,) (,11.027122 0.272441) =

Prediction

Equation 7.42 yields

	
y y h f f f f4

1
3 3 2 1 0

1
24

55 59 37 9() ()= + − + − = 1.064604

Calculate f f x y f4
1

4 4
1() ()(,) (,)= = =0.4 1.064604 0.490337.

y(1:4) = RK4(f,x(1:4),y0); % Find the first 4 elements by RK4
h = x(2) − x(1);

% Start ABM4
for n = 4:length(x)−1,
    py(n+1) = y(n) + (h/24)*(55*f(x(n),y(n))−59*f(x(n−1),
    y(n−1))+37*f(x(n−2),y(n−2))-9*f(x(n−3),y(n−3)));
    y(n+1) = y(n)+(h/24)*(9*f(x(n+1),py(n+1))+19*f(x(n),
    y(n))−5*f(x(n−1),y(n−1))+f(x(n−2),y(n−2)));
end

359Numerical Solution of Initial-Value Problems

Correction

Equation 7.43 yields

	

y y h f f f f4
2

3 4
1

3 2 1
1

24
9 19 5

0 000

() ()()

. %

= + + − +

= 1.064696 error 8Rel =

This corrected value may be improved by substituting y4
2() and the cor-

responding f f x y4
2

4 4
2() ()(,)= into Equation 7.43

	
y y h f f f f4

3
3 4

2
3 2 1

1
24

9 19 5() ()()= + + − +

and inspecting the accuracy. In the present analysis, we perform only one
correction so that y4

2() is regarded as the value that will be used for y4. This
estimate is then used in Equation 7.42 with the index i incremented from 3
to 4. Continuing this process, we generate the numerical results in Table 7.4.

Another well-known predictor–corrector method is the fourth-order
Milne’s method:

	
Predictor y y h f f f i ni i i i i+ − − −= + − + =1

1
3 1 2

4
3

2 2 3 4() (), , , ,…

	
Corrector y y h f f f ki

k
i i

k
i i+

+
− + −= + + + =1

1
1 1 1

1
3

4 1 2 3() ()(), , , ,…

where f f x yi
k

i i
k

+ + +=1 1 1
() ()(,). As with the fourth-order ABM, this method cannot

self-start and needs a method such as RK4 for estimating y1, y2, and y3 first.

Table 7.4

​Summary of Calculations in Example 7.7

x yRK4
yi Predicted yi Corrected

0.0 1.000000
0.1 1.001000
0.2 1.008011
0.3 1.027122 Start ABM4
0.4 1.064604 1.064696
0.5 1.127517 1.127662
0.6 1.223795 1.224004
0.7 1.363143 1.363439
0.8 1.557958 1.558381
0.9 1.824733 1.825350
1.0 2.186134 2.187052

360 Numerical Methods for Engineers and Scientists Using MATLAB®

7.5 ​ Systems of Ordinary Differential Equations

Mathematical models of most systems in various engineering disciplines
comprise one or more first- or higher-order differential equations subject to
an appropriate number of initial conditions. In this section, we will achieve
two tasks: (1) transforming the model into a system of first-order differential
equations, and (2) numerically solving the system of first-order differential
equations thus obtained.

7.5.1 ​ Transformation into a System of First-Order ODEs

The first task is to show how a single higher-order IVP or a system of
various-order IVPs may be transformed into a system of first-order IVPs.
The most important tools that facilitate this process are the state variables.

7.5.1.1  State Variables

State variables form the smallest set of linearly independent variables that
completely describe the state of a system. Given the mathematical model of a
system, the state variables are determined as follows:

•	 How many state variables are there?
	 The number of state variables is the same as the number of initial

conditions required to completely solve the model.
•	 What are selected as state variables?
	 The state variables are selected to be exactly those variables for

which initial conditions are required.

7.5.1.2 ​ Notation

State variables are represented by ui ; for example, if there are three state vari-
ables, they will be denoted u1, u2, and u3.

7.5.1.3  State-Variable Equations

If a system has m state variables u1, u2, . . . , um, then there are exactly m state-
variable equations. Each of these equations is a first-order differential equa-
tion in the form

	 � … …u f t u u u i mi i m= (, , , ,), , , ,1 2 1 2= 	 (7.44)

Therefore, the left side is the first derivative (with respect to time in
most applications) of the state variable ui, and the right side is an algebraic

361Numerical Solution of Initial-Value Problems

function of the state variables, and possibly time t explicitly. Note that only
state variables and functions of time that are part of the system model are
allowed to appear on the right side of Equation 7.44. The system of first-
order differential equations in Equation 7.44 can be conveniently expressed
in vector form as

	

�
… …

u f u u f

u

u

u

= =



















=(,),

(,)
(,)

(,)

t

u

u

u

f t

f t

f tm m

1

2

1

2
,



















	

(7.45)

Example 7.8:  A Single Higher-Order IVP

The mathematical model of a mechanical system is derived as

	 2 3 10 0 0 0 1  x x x t x x+ + = = =sin , () , ()

Since two initial conditions are required, there are two state variables:
u1 and u2. The state variables are exactly those variables for which initial
conditions are required. Therefore

	

u x

u x
1

2

=
= 

This means there are two state-variable equations in the form

	

� …
� …
u

u
1

2

=
=

Note that only state variables and functions of time such as sin t that
are already in the model are allowed on the right sides. Since u1 = x, we
have  u x1 = but x is not allowed on the right side. However, we know
x u= 2, which is a state variable. Therefore, the first of the state-variable
equations is

	 u u1 2=

The second equation has u2 on the left side. Since u x2 =  , we have
 u x2 = , and x is not eligible for the right side. But x can be solved for in
the system model

	
 



x x x t u u t
x u

x u
= − − + = − − +

=

=1
2

3 10
1
2

3 10
1

2

2 1(sin) (sin)

362 Numerical Methods for Engineers and Scientists Using MATLAB®

Therefore, the state-variable equations are formed as

	





u u

u u u

1 2

2 2 1
1
2

3 10

=

= − − +

(sinn)

()
()t

u

u
subject to initial conditions

1

2

0 0
0 1

=
=

Expressing these in vector form, we find

	

u f u u f u= =








=
− − +












(,), ,

(sin)
,t

u

u

u

u u t
1

2

2

2 1
1
2

3 10
00

0
1

=








Example 7.9:  A Single Higher-Order IVP

Consider the third-order IVP described by

	 ′′′ − ′′ − ′ − = = ′ = ′′ = −−y y y y e y y yx5 3 0 0 0 1 0 1, () , () , ()

Since three initial conditions are required, there are three state vari-
ables: u1, u2, and u3. The state variables are those variables for which
initial conditions are required. Therefore:

	 u y u y u y1 2 3= = ′ = ′′, ,

There are three state-variable equations:

	

′ = ′ =u y u1 2
 ′ = ′′ =u y u2 3

′ = ′′′ = ′′ + ′ + + −u y y y y e3 5 3 xx xu u u e

u

u

u= + + +

=
=
= −−

3 2 1

1

2

35 3

0 0
0 1
0 1

subject to

()
()
()

In vector form:

	

′ = =
















=
+ + +















−

u f u u f(,), ,x

u

u

u

u

u

u u u e x

1

2

3

2

3

3 2 15 3 
=

−

















, u0

0
1
1

Example 7.10:  A System of Different-Order IVPs

Consider

	

 

x x x x e t

x

t
1 1 1 2

2

2 2+ + − = −() sin subject to initial conditions
−− − = = = = −2 0 0 0 0 0 0 21 2 1 2 1() () , () , ()x x x x x

363Numerical Solution of Initial-Value Problems

Three initial conditions are required; hence, there are three state vari-
ables: u1, u2, and u3. The state variables are those for which initial condi-
tions are required. Therefore

	 u x u x u x1 1 2 2 3 1= = =, , 

This is the natural order for selecting state variables, as the derivatives
of variables are chosen after all nonderivatives have been used up. There
are three state-variable equations

	

 

 

u x u u

u x x x u u u

1 1 3 1

2 2 1 2 1 2 2

0 0

2 2 0

= = =

= = − = − =

()

() () ()subject to 00

2 2 0 2

2 2

3 1 1 1 2 3

3 1 2

  u x x x x e t u

u u u e

t= = − − − + = −

= − − − +

−

−

() sin ()

() tt tsin 	

In vector form

	

u f u u f= =
















= −
− − − + −

(,), , ()
()

t

u

u

u

u

u u

u u u e t

1

2

3

3

1 2

3 1 2

2
2 2 ssin

,
t

















=
−

















u0

0
0
2

7.5.2  Numerical Solution of a System of First-Order ODEs

In Examples 7.8 through 7.10, we learned how to transform a single higher-
order IVP or a system of different-order IVPs into one system of first-order
differential equations subject to a set of initial conditions in the general form

	 ′ = = = ≤ ≤ =u f u u u(,), () ,x x a x x x bn0 0 0 	 (7.46)

In many applications, the independent variable x is replaced with time t.
Equation 7.46 is exactly in the form of Equation 7.1, where except for the inde-
pendent variable x, all other quantities are vectors. And as such, the numeri-
cal methods presented so far in this chapter for solving Equation 7.1, a single
first-order IVP, can be extended and applied to a system of first-order IVPs in
Equation 7.46. We will present three of these methods here: Euler’s method,
Heun’s method, and the classical RK4 method.

7.5.2.1  Euler’s Method for Systems

As before, the interval [a, b] is divided into subintervals of equal length h
such that

	 x x h x x h x x nhn1 0 2 0 02= + = + = +, , ,…

364 Numerical Methods for Engineers and Scientists Using MATLAB®

Euler’s method for a system in the form of Equation 7.46 is defined as

	 u u f ui i i ih x i n+ = + = −1 0 1 2 1(,), , , , ,… 	 (7.47)

The user-defined function EulerODESystem uses Euler’s method as out-
lined in Equation 7.47 to estimate the solution vector of a system of IVPs in
the form of Equation 7.46.

Example 7.11:  Euler’s Method for Systems

Consider the third-order IVP in Example 7.9:

	 ′′′ − ′′ − ′ − = = ′ = ′′ = − ≤ ≤−y y y y e y y y xx5 3 0 0 0 1 0 1 0 1, () , () , () ,

Using Euler’s method for systems, with step size h = 0.1, find an esti-
mate for y2 = y(0.2). Confirm by executing the user-defined function
EulerODESystem.

function u = EulerODESystem(f,x,u0)
%
% EulerODESystem uses Euler's method to solve a system of
% first-order ODEs given in the form u' = f(x,u) subject to
% initial condition vector u0.
%
%   u = EulerODESystem(f,x,u0) where
%
%    f is an inline (m-dim. vector) function
%    representing f(x,u),
%    x is an (n+1)-dim. vector representing the mesh
%    points,
%    u0 is an m-dim. vector representing the initial
%    condition of u,
%
%    u is an m-by-(n+1) matrix, each column being the
%    vector of solution estimates at a mesh point.

u(:,1) = u0;
% The first column is set to be the initial vector u0
h = x(2) − x(1);

for i = 1:length(x)−1,
  u(:,i+1) = u(:,i)+h*f(x(i),u(:,i));
end

365Numerical Solution of Initial-Value Problems

Solution

In Example 7.9, the IVP was transformed into the standard form of a
system of first-order IVPs as

	

′ = =
















= ′
′′

















=u f u u f u(,), , (,)x

u

u

u

y

y

y

x

u

u

u

1

2

3

2

3

33 2 1

0

1

2

3

5 3

0
0
0

0
1
1

+ + +

















=
















=
−

−u u e

u

u

u

x

,

()
()
()

u

















To find y(0.2), we need to find the solution vector u2 = u(0.2) and then
extract its first component, which is y(0.2). By Equation 7.47

	 u u f u1 0 0 0= + h x(,)

But

f u(,)
()
()

() () ()
x

u

u

u u u e x

x

0 0

2

3

3 2 1

0
0
0

0 5 0 3 0 0

0

=
+ + +

















=
−

=
11
1

1 5 1 3 0 1

1
1
5

−
− + + +

















= −














() ()

Therefore

	

u u f u1 0 0 0

0
1
1

1
1
5

= + =
−

















+ −
















=
−

h x(,) 0.1
0.1
0.9
0.55

















In the next step, u2 = u1 + hf(x1, u1) where

	

f u(,)
(.)
(.)

(.) (.) (.)
x

u

u

u u u e x
1 1

2

3

3 2 1

0 1
0 1

0 1 5 0 1 3 0 1 1

=
+ + +







 −









= −
− + + +

















=
=

−

x

e

1

5 3 0 1

0.1

0.1

0.9
0.5

0.5 0.9

0.9

() (.)
−−

















0.5
.20485

366 Numerical Methods for Engineers and Scientists Using MATLAB®

Therefore

	

u u f u2 1 1 1

5
= + =

−

















+ −








h x(,)
0.1
0.9
0.5

0.1
0.9
0.5

.2048









=
















0.19
0.85

0 0205.

The first component represents y(0.2); thus y(0.2) = 0.19. The exact solu-
tion happens to be 0.1869; hence, our estimate has a relative error of
1.67%. The result may be confirmed in MATLAB as follows:

>> f = inline('[u(2,1);u(3,1);u(3,1)+5*u(2,1)+3*u(1,1)+
exp(−x)]','x','u');
>> x = 0:0.1:1;   % 11 mesh points
>> u0 = [0;1;−1];
>> u = EulerODESystem(f,x,u0);   % Returns a 3-by-11 matrix
>> y = u(1,:)
% Retain the first row of u: estimates of y at 11 mesh points

y =

   Columns 1 through 7

      0  0.1000  0.1900  0.2750  0.3602  0.4513  0.5546

   Columns 8 through 11

 0.6778  0.8298  1.0221  1.2687

The (shaded) value of y(0.2) agrees with our earlier finding.

7.5.2.2 ​ Heun’s Method for Systems

Heun’s method for a system in the form of Equation 7.46 is defined as

	
u u k ki i h i n+ = + + = −1 1 2

1
2

0 1 2 1(), , , , ,…
	

(7.48)

where

	

k f u

k f u k
1

2 1

=
= + +

() x

x h h
i i

i i

,
(,)

The user-defined function HeunODESystem uses Heun’s method as out-
lined in Equation 7.48 to estimate the solution vector of a system of IVPs in
the form of Equation 7.46.

367Numerical Solution of Initial-Value Problems

Example 7.12:  Heun’s Method for Systems

In Example 7.11, find an estimate for y(0.2) by executing the user-defined
function HeunODESystem.

Solution
>> x = 0:0.1:1;
>> u0 = [0;1;−1];
>> f = inline('[u(2,1);u(3,1);u(3,1)+5*u(2,1)+3*u(1,1)+
exp(−x)]','x','u');
>> u = HeunODESystem(f,x,u0);
>> y = u(1,:)

y =

   Columns 1 through 7

  0   0.0950   0.1851   0.2756   0.3731   0.4848   0.6201

function u = HeunODESystem(f,x,u0)
%
% HeunODESystem uses Heun's method to solve a system of
% first-order ODEs given in the form u' = f(x,u) subject
% to initial condition vector u0.
%
%    u = HeunODESystem(f,x,u0) where
%
%       f is an inline (m-dim. vector) function
%       representing f(x,u),
%       x is an (n+1)-dim. vector representing the mesh
%       points,
%       u0 is an m-dim. vector representing the initial
%       condition of u,
%
%       u is an m-by-(n+1) matrix, each column being the
%       vector of solution estimates at a mesh point.

u(:,1) = u0;
% The first column is set to be the initial vector u0
h = x(2) − x(1);

for i = 1:length(x)−1,
    k1 = f(x(i),u(:,i));
    k2 = f(x(i)+h,u(:,i) + h*k1);
    u(:,i+1) = u(:,i)+h* (k1+k2)/2;
end

368 Numerical Methods for Engineers and Scientists Using MATLAB®

   Columns 8 through 11

   0.7907   1.0117   1.3031   1.6911

The (shaded) computed value is y(0.2) = 0.1851. Since the exact value is
0.1869, given in Example 7.11, our estimate has a relative error of 0.97%
compared with 1.67% by Euler’s estimate. As expected, Heun’s method
returns a more accurate approximation.

7.5.2.3 ​ Classical RK4 Method for Systems

The classical RK4 method for a system in the form of Equation 7.46 is defined as

	
u u k k k ki i h i n+ = + + + + = −1 1 2 3 4

1
6

2 2 0 1 2 1(), , , , ,…
	

(7.49)

where

	

k f u

k f u k

1

2 1
1
2

1
2

=

= + +





(,)

,

x

x h h

i i

i i

kk f u k

k f u k

3 2

4 3

1
2

1
2

= + +





= + +

x h h

x h h

i i

i i

,

(,)

The user-defined function RK4System uses the RK4 method as outlined in
Equation 7.49 to estimate the solution vector of a system of IVPs in the form
of Equation 7.46.

function u = RK4System(f,x,u0)
%
% RK4System uses RK4 method to solve a system of first-
% order ODEs given in the form u' = f(x,u) subject to
% initial condition vector u0.
%
%    u = RK4System(f,x,u0) where
%
%       f is an inline (m-dim. vector) function
%       representing f(x,u),
%       x is an (n+1)-dim. vector representing the mesh
%       points,
%       u0 is an m-dim. vector representing the initial
%       condition of u,
%

369Numerical Solution of Initial-Value Problems

Example 7.13:  RK4 Method for Systems

Reconsider Example 7.11. Using RK4 method for systems, with h = 0.1,
find an estimate for y1 = y(0.1). Confirm by executing the user-defined
function RK4System.

Solution

Recall

	

′ = =
















= ′
′′

















=u f u u f u(,), , (,)x

u

u

u

y

y

y

x

u

u

u

1

2

3

2

3

33 2 1

0

1

2

3

5 3

0
0
0

0
1
1

+ + +

















=
















=
−

−u u e

u

u

u

x

,

()
()
()

u

















We first need to find u u k k k k1 0
1
6 1 2 3 42 2= + + + +h() .

	

k f u1 0 0

2

3

3 2 1

0
0

0 5 0 3 0 0

= =
+ + +

















=

−

(,)
()
()

() () ()
x

u

u

u u u e x

x00 0
1
1

1 5 1 3 0 1

1
1
5

=
−

− + + +

















= −














() ()

%       u is an m-by-(n+1) matrix, each column being the
%       vector of solution estimates at a mesh point.

u(:,1) = u0;
% The first column is set to be the initial vector u0
h = x(2) − x(1);

for i = 1:length(x)−1,
    k1 = f(x(i),u(:,i));
    k2 = f(x(i)+h/2,u(:,i)+h*k1/2);
    k3 = f(x(i)+h/2,u(:,i)+h*k2/2);
    k4 = f(x(i)+h,u(:,i)+h*k3);
    u(:,i+1) = u(:,i)+h*(k1+2*k2+2*k3+k4)/6;
end

370 Numerical Methods for Engineers and Scientists Using MATLAB®

To calculate k f u k f u k2 0
1
2 0

1
2 1 0

1
2 1= + + = +(,) (,)x h h h0.05 , we first find

	

u k0 1
1
2

0
1
1

1
1
5

+ =
−

















+ −
















=
−



h 0.05
0.05
0.95
0.75














Then

	

k f u k2 0 1
1
2

5 3
= +



 = −

− + + + −

0.05

0.95
0.75

0.75 0.95 0.05 0

,
() ()

h
e ..05

0.95
0.75

5.1012

















= −
















To calculate k f u k f u k3 0
1
2 0

1
2 2 0

1
2 2= + + = +(,) (,)x h h h0.05 , we first find

	

u k0 2
1
2

0
1
1

+ =
−

















+ −
















=h 0.05
0.95
0.75

5.1012

0.04775
0.9625
0.7449−

















Then

	

k f u k3 0 2
1
2

5 3
= +



 = −

− + +
0.05

0.9625
0.7449

0.7449 0.9625 0
,

() (
h

..0475

0.9625
0.7449
5.1613

0.05) +

















= −
















−e

To find k4 = f(x0 + h, u0 + hk3) = f(0.1, u0 + hk3), we first calculate

	

u k0 3

0
1
1

+ =
−

















+ −
















=h 0.1
0.9625
0.7449
5.1613

0.09963
0.9255
0.4839−

















Then

	

k f u k4 0 3

5 3
= + = −

− + + +
(,)

() ()
0.1

0.9255
0.4839

0.4839 0.9255 0.0963
h

ee−

















−
















0.1

=
0.9255
0.4839
5.3373

371Numerical Solution of Initial-Value Problems

Finally

	

u u k k k k1 0 1 2 3 4
1
6

2 2= + + + + =
−

















h()
0.0958
0.9254
0.4856

Therefore, our estimate is y(0.1) = 0.0958. The result may be confirmed
in MATLAB as follows:

>> x = 0:0.1:1;
>> u0 = [0;1;−1];
>> f = inline('[u(2,1);u(3,1);u(3,1)+5*u(2,1)+3*u(1,1)+ 
exp(−x)]','x','u');
>> u = RK4System(f,x,u0);
>> y = u(1,:)

y =

  Columns 1 through 7

      0  0.0958  0.1869  0.2787  0.3779  0.4923  0.6314

  Columns 8 through 11

 0.8077  1.0372  1.3410  1.7471

The shaded value agrees with the hand calculations.

7.6  Stability

Numerical stability is a desirable property of numerical methods. A numeri-
cal method is said to be stable if errors incurred in one step do not magnify
in later steps. Stability analysis of a numerical method often boils down to
the error analysis of the method when applied to a basic IVP, which serves
as a model, in the form

	 ′ = = =y y y y− >λ λ, () ,0 00 constant 	 (7.50)

Since the exact solution y(x) = y0e−λx exponentially decays toward zero, it
is desired that the error also approaches zero as x gets sufficiently large. If a
method is unstable when applied to this model, it is likely to have difficulty
when applied to other differential equations.

7.6.1 ​ Euler’s Method

Suppose Euler’s method (Section 7.2) with step size h is applied to this model.
This means each subinterval [xi, xi+1] has length h = xi+1 − xi. Noting that
f(x,y) = −λy, the solution estimate yi+1 at xi+1 by Euler’s method is

372 Numerical Methods for Engineers and Scientists Using MATLAB®

	 y y hf x y y h y h yi i i i i i i+ = + = − = −1 1(,) ()λ λ 	 (7.51)

At xi+1, the exact solution is

	
y y e y e e y x ei

x
x x h

x h
i

i
i i

i
+

−
= +

− −+
+

 1 0 0
1

1
Exact Exact = = =λ λ λ () −−λh

	
(7.52)

Comparison of Equations 7.51 and 7.52 reveals that 1 − λh in the com-
puted solution is an approximation for e−λh in the exact solution.* From
Equation 7.51, it is also observed that error will not be magnified if
|1 − λh| < 1. This implies that the numerical method (in this case, Euler’s
method) is stable if

	 | |1 1 1 1 1 0 2− < ⇒ −λ λ λh h h< − < ⇒ < < 	 (7.53)

which acts as a stability criterion for Euler’s method when applied to the IVP
in Equation 7.50. Equation 7.53 describes a region of absolute stability for
Euler’s method. The wider the region of stability, the less limitation imposed
on the step size h.

7.6.2 ​ Euler’s Implicit Method

Euler’s implicit method is described by

	 y y hf x y i ni i i i+ + += + = −1 1 1 0 1 2 1(,), , , , ,… 	 (7.54)

so that yi+1 appears on both sides of the equation. As with other implicit
methods discussed so far, yi+1 is normally found numerically via the meth-
ods of Chapter 3, and can only be solved analytically if the function f(x,y) has
a simple structure. This is certainly the case when applied to the model in
Equation 7.50 where f(x,y) = −λy.

	
y y hf x y y h y y

h
yi i i i i i i i+ + + + += + = + − ⇒ =

+1 1 1 1 1
1

1
(,) ()λ

λ

Therefore, Euler’s implicit method is stable if

	

1
1

1 1 1 0
0

+
< ⇒ + > ⇒ >

>

λ
λ

λ

h
h h

h
| |

,

which implies it is stable regardless of the step size.

*	 Taylor series of e−λh is e h hh− = − + −λ λ λ1 1
2

2
! ()  so that for small λh, we have e−λh ≅ 1 − λh.

373Numerical Solution of Initial-Value Problems

Example 7.14:  Stability of Euler’s Methods

Consider the IVP

	 ′ = − = ≤ ≤y y y x4 0 2 0 5, () ,

	 a.	 Solve using Euler’s method with step size h = 0.3 and again
with h = 0.55, plot the estimated solutions together with the
exact solution y(x) = 2e−4x, and discuss stability.

	 b.	 Repeat using the Euler’s implicit method, Equation 7.54.

Solution

	 a.	 Comparing the IVP at hand with the model in Equation 7.50, we
have λ = 4. The stability criterion for Euler’s method is

	
4 2

1
2

h h< ⇒ <

Therefore, Euler’s method is stable if h < 0.5, and is unstable
otherwise. As observed from the first plot in Figure 7.5, Euler’s
method with h = 0.3 < 0.5 produces estimates that closely follow
the exact solution, while those generated by h = 0.55 > 0.5 grow
larger in each step, indicating instability of the method.

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10
Euler

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Euler implicit

h = 0.55
unstable

Exact
solution

Exact
solution

h = 0.3
stable h = 0.55

stable

h = 0.3
stable

Figure 7.5
Stability analysis of Euler’s and Euler’s implicit methods in Example 7.14.

374 Numerical Methods for Engineers and Scientists Using MATLAB®

	 b.	 As mentioned earlier, when applied to a simple IVP such as the
one here, Euler’s implicit method is stable for all step sizes. The
second plot in Figure 7.5 clearly shows that the errors associ-
ated with both step sizes decay to zero as x increases, indicating
stability.

y0 = 2; f = inline('−4*y','x','y');
yExact = inline('2*exp(−4*x)');
h1 = 0.3; x1 = 0:h1:5; h2 = 0.55; x2 = 0:h2:5;
y1 = EulerODE(f,x1,y0); y2 = EulerODE(f,x2,y0);

y1I(1) = y0;
for i = 2:length(x1),
    y1I(i) = y1I(i−1)/(1+4*h1);    % Implicit (h = 0.3)
end
y2I(1) = y0;
for i = 2:length(x2),
    y2I(i) = y2I(i−1)/(1+4*h2);    % Implicit (h = 0.55)
end
x3 = linspace(0,5);
ye = zeros(100,1);
for i = 1:100,
    ye(i) = yExact(x3(i)); % Exact
end
subplot (1,2,1), plot(x1,y1,'o',x2,y2,' + ',x3,ye,'−')
title('Euler')
subplot (1,2,2), plot(x1,y1I,'o',x2,y2I,' + ',x3,ye,'−')
title('Euler implicit')

7.7  Stiff Differential Equations

In many engineering applications, such as chemical kinetics, mass–spring–
damper systems, and control system analysis, we encounter systems of
differential equations whose solutions contain terms with magnitudes
that vary at rates that are considerably different. For example, if a solu-
tion includes the terms e−at and e−bt, with a,b > 0, where the magnitude of
a is much larger than b, then e−at decays to zero at a much faster rate than
e−bt does. In the presence of a rapidly decaying transient solution, certain
numerical methods become unstable unless the step size is unreasonably
small. Explicit methods generally are subjected to this stability constraint,
which requires them to use an extremely small step size for accuracy. But
using a very small step size not only substantially increases the number of
operations to find a solution, it also causes round-off error to grow, thus
causing limited accuracy. Implicit methods, on the other hand, are free of
stability restrictions and are therefore preferred for solving stiff differen-
tial equations.

375Numerical Solution of Initial-Value Problems

Example 7.15:  Stiff System of ODEs

Consider

	



v v w

w v w

v v

w w

= −
= −

= =
= = −

790 1590
793 1593

0 1
0 1

0

0
subject to

 ()
()

The exact solution of this system can be found in closed form as

	

v t e e

w t e e

t t

t

()

()

= −

= −

− −

− −

3180
797

2383
797

1586
797

2383
797

3 800

3 8000t

Exact solution at t = 0.1:

	

v v e e

w

1
3 800

1

3180
797

2383
797

= = − =− −() () ()0.1 2.9558368150.1 0.1

== = − =− −w e e() () ()0.1 1.4742003740.1 0.11586
797

2383
797

3 800

Euler’s method with h = 0.1: We first express the system in vector form

	
u f u u f u= =









=
−
−









=
−

(,), , ,t
v

w

v w

v w

790 1590
793 1593

1
10









Then, by Euler’s method

	

u u f u1 0 0 0
0 0

0 0

1
1

790 1590
793 1593

= + =
−









+
−
−






h x

v w

v w
(,) 0.1 



=








⇒
=
=

239 2391

1237.6

237.6
v

w

which are totally incorrect. Euler’s method is an explicit method, and as
such, it is unstable unless a very small step size is selected. The main con-
tribution to numerical instability is indeed done by the rapidly decaying
e− 800t. Reduction of the step size to h = 0.001 results in

	

u u f u1 0 0 0
0 0

0 0

1
1

790 1590
793 1593

= + =
−









+
−
−


h x

v w

v w
(,) 0.001







=








⇒
=
=

3 380 3 3801

1

. .
1.386

1.386

v

w

376 Numerical Methods for Engineers and Scientists Using MATLAB®

which are much more accurate than before. Further reduction to
h = 0.0001 allows round-off error to grow, causing the estimates to be
much less accurate.

Euler’s implicit method with h = 0.1: Using the vector form of
Equation 7.54

	

u u f u1 0 1 1
1 1

1 1

1
1

790 1590
793 1593

= + () =
−









+
−
−






h x

v w

v w
, 0.1 



⇒
= + −
= − + −

⇒
=v v w

w v w

v1 1 1

1 1 1

11 79 159
1 79 3 159 3

 3.0322
. .

888699
1.493827160w1 =

These are closer to the exact values than those generated by Euler’s
method with a much smaller h.

7.8  MATLAB® Built-In Functions for Initial-Value Problems

There are several MATLAB built-in functions designed for solving a single
first-order IVP, as well as a system of first-order IVPs. These are known as
ODE solvers and include ode23, ode45, and ode113 for nonstiff equations,
and ode15s for stiff equations. Most of these built-in functions use highly
developed techniques that allow them to use an optimal step size, or in some
cases, adjust the step size for error minimization in each step.

7.8.1  Nonstiff Equations

We will first show how the built-in functions can be used to solve a sin-
gle first-order IVP, then extend their applications to systems of first-order
IVPs.

7.8.1.1  Single First-Order IVP

The IVP is

	 y f t y y t y= =(,), ()0 0 	 (7.55)

Note that, as mentioned previously, we are using t in place of x since in
most applied problems time is the independent variable. For nonstiff equa-
tions, MATLAB built-in ODE solvers are ode23, ode45, and ode113.
ode23 is a single-step method based on second- and third-order Runge–

Kutta methods. As always, MATLAB help file should be regularly consulted
for detailed information.

377Numerical Solution of Initial-Value Problems

ode23 Solve non-stiff differential equations, low order
method.

[TOUT,YOUT] = ode23(ODEFUN,TSPAN,Y0) with TSPAN = [T0 TFINAL]
integrates the system of differential equations y' = f(t,y)
from time T0 to TFINAL with initial conditions Y0. ODEFUN is
a function handle. For a scalar T and a vector Y, ODEFUN(T,Y)
must return a column vector corresponding to f(t,y). Each row
in the solution array YOUT corresponds to a time returned in
the column vector TOUT. To obtain solutions at specific times
T0,T1,...,TFINAL (all increasing or all decreasing), use
TSPAN = [T0 T1... TFINAL].

Note that if TSPAN has only two elements (the left and right endpoints for
t), then vector YOUT will contain solutions calculated by ode23 at all steps.
ode45 is a single-step method based on fourth- and fifth-order Runge–

Kutta methods. Refer to MATLAB help file for more detailed information.

ode45 Solve non-stiff differential equations, medium order
method.

The function call is

[TOUT,YOUT] = ode45(ODEFUN,TSPAN,Y0)

with all input and output argument descriptions as in ode23 above. ode45
can handle most IVPs and should be the first solver attempted for a given
problem.
ode113 is a multistep method based on ABM methods. Refer to MATLAB

help file for more detailed information.

ode113 Solve non-stiff differential equations, variable order
method.

The function call is

[TOUT,YOUT] = ode113(ODEFUN,TSPAN,Y0)

with all input and output argument descriptions as in ode23 and ode45
above.

Example 7.16:  ode23, ode45

Write a MATLAB script file that solves the following IVP using ode23
and ode45 solvers and returns a table that includes the solution esti-
mates at t = 0:0.1:1, as well as the exact solution and the percent relative
error for both methods at each point. The exact solution is y = (t + 1)e −t/2.

	 2 2 0 1 0 12y y e y tt+ = = ≤ ≤− / , () ,

378 Numerical Methods for Engineers and Scientists Using MATLAB®

Solution
disp('   t    yode23    yode45    yExact    e_23    e_45')

t = 0:0.1:1; y0 = 1;
[t,y23] = ode23(@myfunc,t,y0);   % 'myfunc' defined below
[t,y45] = ode45(@myfunc,t,y0);

yExact = inline('(t+1)*exp(−t/2)');

for k=1:length(t),
    t_coord = t(k);
    yode23 = y23(k);
    yode45 = y45(k);
    yEx = yExact(t(k));
    e_23 = (yEx − yode23)/yEx*100;
    e_45 = (yEx − yode45)/yEx*100;

   fprintf('%6.2f %11.6f%11.6f %11.6f %11.6f
   %11.8f\n',t_coord,yode23,yode45,yEx,e_23,e_45)
end

function dydt = myfunc(t,y)
dydt = (2*exp(−t/2)−y)/2;

t yode23 yode45 yExact e_23 e_45

0.00 1.000000 1.000000 1.000000 0.000000 0.00000000
0.10 1.046353 1.046352 1.046352 −0.000077 0.00000000

0.20 1.085806 1.085805 1.085805 −0.000140 0.00000000

0.30 1.118922 1.118920 1.118920 −0.000190 0.00000000

0.40 1.146226 1.146223 1.146223 −0.000232 0.00000000

0.50 1.168204 1.168201 1.168201 −0.000266 0.00000000

0.60 1.185313 1.185309 1.185309 −0.000294 0.00000000

0.70 1.197974 1.197970 1.197970 −0.000317 0.00000001

0.80 1.206580 1.206576 1.206576 −0.000336 0.00000001

0.90 1.211498 1.211493 1.211493 −0.000352 0.00000001

1.00 1.213066 1.213061 1.213061 −0.000365 0.00000001

As expected, ode45 produces much more accurate estimates but is
often slower than ode23. Note that even though we could have used an
inline function, we opted for a function handle because it is more efficient.

7.8.1.2  Setting ODE Solver Options

The ode23, ode45, and ode113 functions accept an optional input argu-
ment called an “options structure” that allows many properties of the solu-
tion method to be specified. Two examples of such properties are the relative
tolerance and the minimum step size. The odeset function creates these
options structures.

odeset Create/alter ODE OPTIONS structure.

379Numerical Solution of Initial-Value Problems

OPTIONS = odeset('NAME1',VALUE1,'NAME2',VALUE2,...)
creates an integrator options structure OPTIONS in
which the named properties have the specified values.
Any unspecified properties have default values. It is
sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for
property names.

A complete list of the various properties and their descriptions is available
in the help function. A default options structure is created using

 >> options = odeset;

The default relative tolerance RelTol is 10−3. RelTol can either be speci-
fied upon creation of the options structure

 >> options = odeset('RelTol', 1e−7);

or can be changed by including the current options as the first input
argument.

 >> options = odeset(options, 'RelTol', 1e−6);

The option structure is then specified as the fourth input argument to the
ODE solvers.

 >> [t y] = ode45(@myfunc,t,y0,options);

Therefore, we can trade speed for accuracy by specifying the relative toler-
ance. Other parameters may also be specified.

7.8.1.3  System of First-Order IVPs

The ODE solvers discussed here can also handle systems of first-order
IVPs.

Example 7.17:  ode45 for a System

Using ode45 solve the following system:

	





u u

u u u t

1 2

2 2 1
1
2

3 10

=

= − − +

(sin)
ssubject to initial conditions

u

u
1

2

0 0
0 1

()
()

=
=

Solution

We first express the system in vector form

	

u f u u f u= =








=
− − +












(,), ,

(sin)
,t

u

u

u

u u t
1

2

2

2 1
1
2

3 10
00

0
1

=








380 Numerical Methods for Engineers and Scientists Using MATLAB®

 >> u0 = [0;1]; t = 0:0.1:1;
 >> [t,u45] = ode45(@myfunc,t,u0)

t =
        0
   0.1000
   0.2000
   0.3000
   0.4000
   0.5000
   0.6000
   0.7000
   0.8000
   0.9000
   1.0000

u45 =              
% u45 has two columns: 1st column is u1, 2nd column is u2

        0    1.0000
   0.0922    0.8405
   0.1677    0.6690
   0.2259    0.4950
   0.2669    0.3267
   0.2917    0.1710
   0.3017    0.0332
   0.2990   −0.0832
   0.2858   −0.1760
   0.2646   −0.2445
   0.2377   −0.2893

function dudt = myfunc(t,u)
dudt = [u(2);(−3*u(2)−10*u(1)+sin(t))/2];

7.8.2  Stiff Equations

The ODE solver ode15s can be used to solve stiff equations. ode15s is a mul-
tistep, variable-order method. Refer to MATLAB help file for more detailed
information.

ode15s Solve stiff differential equations and DAEs, variable
order method.

The function call is

[TOUT,YOUT] = ode15s(ODEFUN,TSPAN,Y0)

with all input and output argument descriptions as in ode23 and others.

Example 7.18:  ode15s

Consider the stiff system in Example 7.15:

	



v v w

w v w

v v

w w

= −
= −

= =
= = −

790 1590
793 1593

0 1
0 1

0

0
subject to

 ()
()

381Numerical Solution of Initial-Value Problems

Write a MATLAB script file that solves the system using ode15s and
ode45 and returns a table that includes the solution estimates for v(t) at
t = 0:0.1:1, as well as the exact solution and the percent relative error
for both methods at each point. The exact solution was provided in
Example 7.15.

Solution
disp(' t v15s v45 vExact e_15s e_45')

t = 0:0.1:1; u0 = [1;−1];
[t,u15s] = ode15s(@myfunc,t,u0);
% Values of v are in the 1st column of u15s
[t,u45] = ode45(@myfunc,t,u0);
% Values of v are in the 1st column of u45

uExact = inline('[3180/797*exp(−3*t)-2383/797*exp
(−800*t);1586/797*exp(−3*t)-2383/797*exp(−800*t)]');
for i = 1:length(t),
 uex(:,i) = uExact(t(i));
% Evaluate exact solution vector at each t
end

for k = 1:length(t),
 t_coord = t(k);
 v15s = u15s(k,1); % Retain the 1st column of u15s: values of v
 v45 = u45(k,1); % Retain the 1st column of u45: values of v
 vExact = uex(1,k); % Retain the exact values of v

 e_15s = (vExact − v15s)/vExact*100;
 e_45 = (vExact − v45)/vExact*100;

 fprintf('%6.2f %11.6f%11.6f %11.6f %11.6f
 %11.8f\n',t_coord,v15s,v45,vExact,e_15s,e_45)

end

function dudt = myfunc(t,u)
dudt = [790*u(1)−1590*u(2);793*u(1)−1593*u(2)];

t v15s v45 vExact e_15s e_45

0.00 1.000000 1.000000 1.000000  0.000000  0.00000000
0.10 2.955055 2.955511 2.955837  0.026464  0.01102274
0.20 2.187674 2.188567 2.189738  0.094262  0.05345813
0.30 1.620781 1.622657 1.622198  0.087342 −0.02830662
0.40 1.201627 1.201785 1.201754  0.010535 −0.00261497
0.50 0.890826 0.890278 0.890281 −0.061233  0.00033632

0.60 0.660191 0.659508 0.659536 −0.099254  0.00427387

0.70 0.489188 0.488525 0.488597 −0.121031  0.01461519

0.80 0.362521 0.361836 0.361961 −0.154754  0.03468108

0.90 0.268708 0.268171 0.268147 −0.209208 −0.00866986
1.00 0.199060 0.198645 0.198649 −0.207140 0.00178337

382 Numerical Methods for Engineers and Scientists Using MATLAB®

It is easy to see that even for this stiff system of ODEs, the solver ode45 still
outperforms ode15s, which is specially designed to handle such systems.

Problem Set

Euler’s Method (Section 7.2)

In Problems 1 through 6, given each IVP

	 a.	 Using Euler’s method with the indicated step size h, calculate
the solution estimates at x1, x2, and x3, as well as the local and global
truncation errors at those locations,

	 b.	 Write a MATLAB script file that uses EulerODE to find the
approximate values produced by Euler’s method and returns a table
that includes these values, as well as the exact values and the global
percent relative error, at all mesh points in the given interval.

	 1.	 ′ + = = ≤ =y xy y x h2 0 0 1 1, () , ,0 0.1≤

	 Exact solution is y e x= − 2
.

	 2.	 xy′ = y − x,  y(1) = 0,  1 ≤ x ≤ 2,  h = 0.1
	 Exact solution is y = −xlnx.

	 3.	 ex y′ = y2,  y(0) = 1,  0 ≤ x ≤ 0.5,  h = 0.05
	 Exact solution is y = ex.

	 4.	 ′ = = ≤ ≤ =y y x y x h2 0
1
3

1cos , () , ,0 0.1
	 Exact solution is y = 1/(3 − sinx).

	 5.	 xy′ = y + y2,  y(2) = 1,  2 ≤ x ≤ 3,  h = 0.1
	 Exact solution is y = x/(4 − x).

	 6.	 e y x y y x hx ′ = = ≤ ≤ =2 2 0
1
3

1, () , ,0 0.2

	 Exact solution is y e x xx= + + +− −[()]2 12 2 1 .
	 7.	 Write a MATLAB script to solve the following IVP using

EulerODE with h = 0.4, and again with h = 0.2. The file must return
a table showing the estimated solutions at 0, 0.4, 0.8, 1.2, 1.6, 2 pro-
duced by both scenarios, as well as the exact values at these points.
The exact solution is y e ex x= −− −/ /[]10 7 304 3 .

	 ′ = − + = ≤ ≤−y y e y xx0.1 0.7 0/ , () ,3 0 1 2

	 8.	    Write a MATLAB script to solve the following IVP using
EulerODE with h = 0.2, and again with h = 0.1. The file must return
a table showing the estimated solutions at 0, 0.2, 0.4, 0.6, 0.8, 1 pro-
duced by both scenarios, as well as the exact values at these points.
The exact solution is y e xx= − −3 2

2 2 2/ .

	 y′ − xy = x3,  y(0) = 1,  0 ≤ x ≤ 1

383Numerical Solution of Initial-Value Problems

	 9.	 The free fall of a light particle of mass m released from rest and
moving with a velocity v is governed by

	 mv mg bv v = − =, ()0 0

	 where g = 9.81 m/s2 is the gravitational acceleration and b = 0.2m
is the coefficient of viscous damping. Write a MATLAB script that
solves the IVP using EulerODE with h = 0.05 and returns a table of
the estimated solutions at 0, 0.2, 0.4, 0.6, 0.8, 1, as well as the exact
values at these points. The exact solution is v t e t() ()= − −49.05 /1 5 .

	 10.	 The free fall of a heavy particle of mass m released from rest and
moving with a velocity v is governed by

	 mv mg bv v = − =2 0 0, ()

	 where g = 9.81 m/s2 is the gravitational acceleration and b = 0.2m
is the coefficient of viscous damping. Write a MATLAB script that
solves the IVP using EulerODE with h = 0.05 and h = 0.1, and returns
a table of estimated solutions at 0, 0.2, 0.4, 0.6, 0.8, 1 for both step
sizes, as well as the exact values at these points. The exact solution is

	
v t g g t() tanh= ()5 0.2

Higher-Order Taylor Methods

	 11.	  Solve the following IVP using the second-order Taylor method
with step size h = 0.3 to calculate the solution estimates at x1, x2, and x3.

	 y′ = − y + x2y,  y(0) = 1,  0 ≤ x ≤ 1.2

	 12.	 Write a user-defined function with function call y = Taylor_2_
ODE(f,fp,x,y0) that solves a first-order IVP in the form y′ = f(x,y),
y(x0) = y0 using the second-order Taylor method. The input argument
fp represents the first derivative of the function f, while the others
are as in EulerODE. Execute the function to solve

	 ′ = + = ≤ ≤ =y y x x e y x hx/ 1 0.12 1 0 2, () , ,

In Problems 13 through 16, for each IVP
	 a.	  Using the second-order Taylor method with the indicated step

size h, calculate the solution estimates at x1, x2, and x3.
	 b.	 Write a MATLAB script file that uses EulerODE and Taylor_2_

ODE (see Problem 12) to find the approximate values produced by

384 Numerical Methods for Engineers and Scientists Using MATLAB®

Euler’s and second-order Taylor methods and returns a table that
includes these values, as well as the exact values and the global per-
cent relative error for both methods, at all mesh points in the given
interval.

	 13.	 xy x y y x h′ = − = ≤ ≤ =, () , ,1 0 21 0.1
	 Exact solution is y = x/2 − 1/(2x).

	 14.	 2 2 0 1 22′ = − + = ≤ ≤ =−y y e y x hx/ , () , ,0 0.2

	 Exact solution is y = (x + 1)e − x/2.

	 15.	 x t t x t h= − − = ≤ ≤ =10 1 2 0 0 1()(), () , ,0 0.1

	 Exact solution is x t t t t() ().= − +5
3

22 9 12

	 16.	 tx x x x t h = + = ≤ ≤ =3 2 1, () , ,2 2.5 0.05

	 Exact solution is x t t t() .= −1 8 2/()

	 17.	  Write a MATLAB script file that solves the IVP below using
EulerODE with h = 0.04 and Taylor_2_ODE (see Problem 12) with
h = 0.08. The file must return a table that includes the estimated solu-
tions at x = 0:0.08:0.8, as well as the exact values and the global per-
cent relative error for both methods, at all mesh points in the given
interval. The exact solution is y = e−x/(x − 1) + 2. Discuss the results.

	 () , () ,x y xy x y x− ′ + = = ≤ ≤1 2 0 1 0 0.8

	 18.	  Write a MATLAB script file that solves the IVP below using
EulerODE with h = 0.05 and Taylor_2_ODE (see Problem 12) with
h = 0.1. The file must return a table that includes the estimated solu-
tions at x = 1:0.1:2, as well as the exact values and the global percent
relative error for both methods, at all mesh points in the given inter-
val. The exact solution is y x x x x= − + −1

2
1
4

1ln . Discuss the results.

	
xy y x x y x′ + = = ≤ ≤ln , () ,1

3
4

21

Runge–Kutta Methods (Section 7.3)

RK2 Methods

 �In Problems 19 through 22, for each IVP and the indicated step size h, use
the following methods to compute the solution estimates at x1 and x2.

	 a.	 Improved Euler
	 b.	Heun
	 c.	Ralston

385Numerical Solution of Initial-Value Problems

	 19.	2y′ + xy = 0,  y(0) = 1,  0 ≤ x ≤ 1,  h = 0.1

	 20.	xy′ = y − 3x,  y(1) = 1,  1 ≤ x ≤ 2,  h = 0.1

	 21.	 ′ = = ≤ ≤ =−y e y y x hx2 2 0
1
2

1, () , ,0 0.05

	 22.	 ′ = 



 = ≤ ≤ =y y x y x h2 1

2
0 1 2sin , () , ,0 0.2

	 23.	  Write a user-defined function with function call y = Imp_
EulerODE(f,x,y0) that solves a first-order IVP in the form y′ = f(x,y),
y(x0) = y0 using the improved Euler’s method. The input arguments
are as in HeunODE. Execute the function to solve

	 xy y x e y x hx′ = + = ≤ ≤ =2 1 1 2, () , ,1 0.1

	 24.	  Write a user-defined function with function call y = Ralston_
RK2(f,x,y0) that solves a first-order IVP in the form y′ = f(x,y),
y(x0) = y0 using Ralston’s method. The input arguments are as in
HeunODE. Execute the function to solve

	 () , () , ,x y xy x y x h− ′ + = = ≤ ≤ =1 2 2 52 0.3

	 25.	  Write a MATLAB script file that uses EulerODE (Section 7.2),
Taylor_2_ODE (see Problem 12), and HeunODE (Section 7.3) to find
the approximate values produced by Euler’s, second-order Taylor,
and Heun’s methods and returns a table that includes these values,
as well as the exact values and the global percent relative error for all
three methods, at all mesh points in the given interval. Discuss the
results.

	 xy y xe y x hx′ = − + = ≤ ≤ =− / , () , ,2 1 0 1 1.5 0.05

	 The exact solution is given as y e x e xx= − +− −[]/6 2 21 2 2/ /() .
	 26.	  Write a MATLAB script file to generate Table 7.1 of Example 7.4.

The file must call functions HeunODE (Section 7.3), Imp_EulerODE
(see Problem 23), and Ralston_RK2 (see Problem 24).

RK3 Methods

 �In Problems 27 and 28, for each IVP and the indicated step size h, use the
following methods to compute the solution estimates at x1 and x2.

	 a.	Classical RK3
	 b.	Heun’s RK3

386 Numerical Methods for Engineers and Scientists Using MATLAB®

	 27.	y′ = y sin 2x,  y(0) = 1,  0 ≤ x ≤ 1,  h = 0.1
	 28.	y′ = x2 + y,  y(0) = 1,  0 ≤ x ≤ 1,  h = 0.1
	 29.	  Write a user-defined function with function call y = Classical_

RK3(f,x,y0) that solves a first-order IVP in the form y′ = f(x,y),
y(x0) = y0 using the classical RK3 method. The input arguments are
as in HeunODE.

	 30.	  Write a user-defined function with function call y = Heun_
RK3(f,x,y0) that solves a first-order IVP y′ = f(x,y), y(x0) = y0 using
Heun’s RK3 method. The input arguments are as in HeunODE.

	 31.	  Write a MATLAB script file to generate Table 7.2 of Example 7.5.
The file must call functions EulerODE (Section 7.2), Classical_
RK3 (see Problem 29), and Heun_RK3 (see Problem 30).

RK4 Methods

 �In Problems 32 through 35, for each IVP and the indicated step size h, use
the classical RK4 method to compute the solution estimates at x1 and x2.

	 32.	xy′ + 3y = x,  y(1) = 1,  1 ≤ x ≤ 2,  h = 0.2
	 33.	y′ + 0.65y = 1.3e−-x/4,  y(0) = 1,  0 ≤ x ≤ 1.5,  h = 0.15
	 34.	y′ = 12(2 − x)(3 − x),  y(0) = 0,  0 ≤ x ≤ 0.8,  h = 0.08
	 35.	xy′ + 2y = x ln x,  y(1) = 0,  1 ≤ x ≤ 2,  h = 0.1
	 36.	 Write a MATLAB script file to generate Table 7.3 of Example 7.6.

The file must call functions EulerODE (Section 7.2), Classical_
RK3 (see Problem 29), HeunODE (Section 7.3), and RK4 (Section 7.3).

	 37.	  Write a MATLAB script file that uses EulerODE (Section 7.2),
HeunODE (Section 7.3), and RK4 (Section 7.3) to find the approximate
values produced by Euler’s method, Heun’s method, and the classi-
cal RK4 method and returns a table that includes these values at all
mesh points in the given interval.

	 y′ = y2 + ex,  y(0) = 0,  0 ≤ x ≤ 0.2,  h = 0.02

	 38.	  Write a MATLAB script file that uses EulerODE (Section 7.2),
HeunODE (Section 7.3), and RK4 (Section 7.3) to find the approximate
values produced by Euler’s method, Heun’s method, and the clas-
sical RK4 method and returns a table that includes the estimated
solutions, as well as the global percent relative error for all three
methods at all mesh points in the given interval. Discuss the results.

	 xy′ = y + ey/x,  y(1) = 1,  1 ≤ x ≤ 1.5,  h = 0.05

		 The exact solution is y = −x ln (e−1 + 1/x − 1).

387Numerical Solution of Initial-Value Problems

	 39.	  Write a MATLAB script file that solves the IVP in Problem 38
using EulerODE with h = 0.025, HeunODE with h = 0.05, and RK4
with h = 0.1. The file must return a table that includes the estimated
solutions, as well as the global percent relative error, at x = 1, 1.1, 1.2,
1.3, 1.4, 1.5 for all three methods. Discuss the results.

	 xy′ = y + ey/x,  y(1) = 1,  1 ≤ x ≤ 1.5

	 40.	  Write a MATLAB script file that solves the following IVP using
EulerODE with h = 0.0125, HeunODE with h = 0.025, and RK4 with
h = 0.1. The file must return a table that includes the estimated solu-
tions, as well as the global percent relative error, at x = 1:0.1:2 for all
three methods. Discuss the results.

	 (x + 1)y′ + y = x ln x,  y(1) = 0,  1 ≤ x ≤ 2

		 The exact solution is y x x x= −



 +





+1
2

1
2

1
4

12 ln /() .

RKF Method

	 41.	  Write a user-defined function with function call [y5 y4
err] = RK_Fehlberg(f,x,y0) that solves an IVP y′ = f(x,y),
y(x0) = y0 using the RKF method. The output arguments are, in order,
the vector of fifth-order accurate estimates, vector of fourth-order
accurate estimates, and the vector of estimated truncation errors.

	 42.	  Write a MATLAB script file that employs the user-defined func-
tion RK_Fehlberg (see Problem 41) to solve the following IVP. The
file must return a table that includes the fourth-order and fifth-
order accurate estimates, as well as the estimated local trunction
error.

	 3y′ + y = e−x/2 sin x,  y(0) = 0,  0 ≤ x ≤ 1,  h = 0.1

Multistep Methods (Section 7.4)

Adams–Bashforth Method

	 43.	 Consider the IVP

	 x2 y′ = y,  y(1) = 1,  1 ≤ x ≤ 2,  h = 0.1

	 a.	 Using RK4, find an estimate for y1.
	 b.	 Using y0 (initial condition) and y1 from (a), apply the second-

order Adams–Bashforth formula to find y2.

388 Numerical Methods for Engineers and Scientists Using MATLAB®

	 c.	 Apply the third-order Adams–Bashforth formula to find an esti-
mate for y3.

	 d.	 Apply the fourth-order Adams–Bashforth formula to find an
estimate for y4.

	 44.	 Repeat Problem 43 for the IVP

	 y′ + y2 = 0,  y(0) = 1,  0 ≤ x ≤ 1,  h = 0.1

	 45.	 Consider the IVP

	 yy′ = 2x − xy2,  y(0) = 2,  0 ≤ x ≤ 1,  h = 0.1

	 a.	 Using RK4, find an estimate for y1 and y2.
	 b.	 Using y0 (initial condition) and y1 from (a), apply the second-

order Adams–Bashforth formula to find y2.
	 c.	 Compare the relative errors associated with the y2 estimates

found in (a) and (b), and comment. The exact solution is
y e x= +−[()] /2 1

2 1 2 .
	 46.	 Consider the IVP

	 y′ = y sin x,  y(1) = 1,  1 ≤ x ≤ 2,  h = 0.1

	 a.	 Using RK4, find an estimate for y1, y2, and y3.
	 b.	 Using y0 (initial condition), and y1 and y2 from (a), apply the third-

order Adams–Bashforth formula to find y3.
	 c.	 Compare the relative errors associated with the y3 estimates

found in (a) and (b), and comment. The exact solution is
y = ecos1− cosx.

	 47.	 Consider the IVP

	 y′ + y = cos x,  y(0) = 1,  0 ≤ x ≤ 1,  h = 0.1

	 a.	 Using RK4, find an estimate for y1, y2, and y3.
	 b.	 Apply the fourth-order Adams–Bashforth formula to find y4.
	 48.	  Write a user-defined function y = AB_3(f,x,y0) that solves an

IVP y′ = f(x,y), y(x0) = y0 using the third-order Adams–Bashforth
method. Solve the IVP in Problem 46 by executing AB_3. Compare
the value of y3 with that obtained in Problem 46.

	 49.	  Write a user-defined function with function call y = ABM_3
(f,x,y0) that solves an IVP y′ = f(x,y), y(x0) = y0 using the third-order

389Numerical Solution of Initial-Value Problems

ABM predictor–corrector method. Solve the following IVP by execut-
ing ABM_3.

	
′ = = ≤ ≤ =y y x y x h2 0

1
2

sin , () , ,0 0.5 0.05

	 50.	  Write a MATLAB script file that utilizes the user-defined function
ABM4PredCorr (Section 7.4) and generates Table 7.4 in Example 7.7.

Systems of Ordinary Differential Equations (Section 7.5)

 In Problems 51 through 54, given each second-order IVP
	 a.	 Transform into a system of first-order IVPs using state variables.
	 b.	 Apply Euler, Heun, and classical RK4 methods for systems, with

the indicated step size h, to compute the solution estimate y1, and
compare with the exact value.

	 51.	y″ + 3y′ + 2y = x + 1,  y(0) = 0,  y′(0) = 0,  0 ≤ x ≤ 1,  h = 0.1

		 Exact solution is y x x e x() ()= + −−1
2

1
4

12
.

	 52.	y″ − y = 2x,  y(0) = 0,  y′(0) = 1,  0 ≤ x ≤ 1,  h = 0.1
		 Exact solution is y(x) = 3 sin hx − 2x.

	 53.	y″ + 4y = 0,  y(0) = 1,  y′(0) = −1,  0 ≤ x ≤ 1,  h = 0.1

		 Exact solution is y x x x() cos sin= −2
1
2

2 .

	 54.	y″ + 2y′ + 2y = 0,  y(0) = 1,  y′(0) = 0,  0 ≤ x ≤ 1,  h = 0.1
		 Exact solution is y(x) = e−x(cos x + sin x).

	 55.	 Consider the nonlinear, second-order IVP
y″ + 2yy′ = 0,  y(0) = 0,  y′(0) = 1

		 Using Heun’s method for systems, with step size h = 0.1, find the esti-
mated values of y(0.1) and y(0.2).

	 56.	 Consider the nonlinear, second-order IVP

	 yy″ + (y′)2 = 0,  y(0) = 1,  y′(0) = −1

		 Using RK4 method for systems, with step size h = 0.1, find the esti-
mated value of y(0.1).

	 57.	 Consider the nonlinear, second-order IVP
x2 y″ = 2y,  y(1) = 1,  y′(1) = 0,  1 ≤ x ≤ 2,  h = 0.1

	 a.	  Transform into a system of first-order IVPs.
	 b.	   Write a MATLAB script file that employs the user-defined

functions EulerODESystem, HeunODESystem, and RK4System
to solve the system in (a). The file must return a table of values

390 Numerical Methods for Engineers and Scientists Using MATLAB®

for y generated by the three methods, as well as the exact values,
at all the mesh points x = 1:0.1:2. The exact solution is
y x x= +−2

3
1 1

3
2.

	 58.	Consider the linear, second-order IVP

	 x2 y″ + 5xy′ + 3y = x2 − x,  y(1) = 0,  y′(1) = 0,  1 ≤ x ≤ 1.5,  h = 0.05

	 a.	  Transform into a system of first-order IVPs.
	 b.	   Write a MATLAB script file that employs the user-defined

functions EulerODESystem, HeunODESystem, and RK4System
to solve the system in (a). The file must return a table of values for
y generated by the three methods, as well as the exact values, at
all the mesh points x = 1:0.05:1.5. The exact solution is

	
y

x x
x x

= − + −8 15 10
120

1
40

3 2

3

	 59.	Consider the mechanical system in translational motion shown in
the following figure, where m is mass, k1 and k2 are stiffness coeffi-
cients, c1 and c2 are the coefficients of viscous damping, x1 and x2 are
displacements, and F(t) is the applied force. Assume, in consistent
physical units, the following parameter values

	
m c c k k F t e tt= = = = = = −1 1 1 2

1
2

101 2 1 2, , , , , () sin

		 The system’s equations of motion are then expressed as

	

 



x x x x e t

x x x x

t
1 1 1 2

2 2 1 2

2 10
1
2

2 0

+ + − =

+ − − =

−() sin

()
subbject to initial conditions

 x x x1 2 10 0 0 0 0 1() , () , ()= = =

k2
k1

c2 c1

x2 x1

m
F(t)

391Numerical Solution of Initial-Value Problems

	 a.	  Transform into a system of first-order IVPs.
	 b.	   Write a MATLAB script file that employs the user-defined

function RK4System to solve the system in (a). The file must
return the plot of x1 and x2 versus 0 ≤ t ≤ 5 in the same graph.
It is recommended to use at least 100 points for smoothness of
curves.

	 60.	 In the mechanical system shown in the following figure, m is mass,
c is the coefficient of viscous damping, fs = x3 is the nonlinear spring
force, x is displacement, and F(t) is the applied force. Assume, in con-
sistent physical units, the following parameter values

	 m = 1,  c = 0.6,  F(t) = 100e−t/3

		 The system’s equation of motion is expressed as

	   x x x e x xt+ + = = =−0.6 subject to3 3100 0 0 0 1/ () , ()

	 a.	  Transform into a system of first-order IVPs.
	 b.	   Write a MATLAB script file that employs the user-defined

function RK4System to solve the system in (a). The file must
return the plot of x versus 0 ≤ t ≤ 5. At least 100 points are recom-
mended for smoothness of curves.

	 61.	Consider the mechanical system shown in the following figure,
where m1 and m2 represent mass, k1 and k2 are stiffness coefficients,
c is the coefficient of viscous damping, x1 and x2 are displacements,
and F1(t) and F2(t) are the applied forces. Assume, in consistent physi-
cal units, the following parameter values

	 m1 = 1,  m2 = 1,  c = 2,  k1 = 1,  k2 = 1,  F1(t)= sin 2t,  F2(t) = e−t

mc

x

fs = x3

F(t)

392 Numerical Methods for Engineers and Scientists Using MATLAB®

The system’s equations of motion are then expressed as

 

x x x x t

x x
1 1 1 2

2 1

2 2 2+ + − =
−

sin subject to initial conditions
++ = = = = =−x e x x x xt

2 1 2 1 20 0 0 0 0 0 0 0() , () , () , () 

	 a.	  Transform into a system of first-order IVPs.
	 b.	   Write a MATLAB script file that employs the user-defined

function RK4System to solve the system in (a). The file must
return the plot of x1 and x2 versus 0 ≤ t ≤ 6 in the same graph. It is
recommended to use at least 100 points for smoothness of curves.

	 62.	The pendulum system in the following figure consists of a uniform
thin rod of length l and a concentrated mass m at its tip. The friction
at the pivot causes the system to be damped. When the angular dis-
placement θ is not very small, the system is described by a nonlinear
model in the form

	

2
3

1
2

02m mgl l θ θ θ+ + =0.09 sin

Assume, in consistent physical units, that ml g l2 7= =1.28 / .45.,

l

m

Friction force
at the pivot

θ

m2m1

x2x1

k2

k1

c

F2(t)F1(t)

393Numerical Solution of Initial-Value Problems

	 a.	  Transform into a system of first-order IVPs.
	 b.	   Write a MATLAB script file that utilizes the user-defined func-

tion RK4System to solve the system in (a). Two sets of initial condi-
tions are to be considered: (1) θ (0) = 15°, θ()0 0= , and (2) θ (0) = 30°,
θ()0 0= . The file must return the plots of the two angular dis-

placements θ1 and θ2 corresponding to the two sets of initial condi-
tions versus 0 ≤ t ≤ 5 in the same graph. Angle measures must be
converted to radians. Use at least 100 points for plotting.

	 63.	  The governing equations for an armature-controlled DC motor
with a rigid shaft are derived as

	

J
d
dt

B K i T

L
di
dt

Ri K v i

t L

e

ω ω ω

ω

+ − = =

+ + = =

, ()

, ()

0 0

0 0

where

ω = angular velocity of the rotor
i = armature current
TL= torque load
v = armature voltage

and J, B, L, R, Kt, and Ke represent constant parameters. Suppose, in
consistent physical units

	 J = 1 = L,  B = 0.5,  Kt = 0.25,  Ke = 1,  R = 1.5,  TL = te−t, v = sin t

Write a MATLAB script file that employs the user-defined func-
tion RK4System to solve the system of governing equations. The file
must return two separate plots (use subplot): angular velocity ω
versus 0 ≤ t ≤ 10, and the current i versus 0 ≤ t ≤ 10.

	 64.	  The governing equations for a field-controlled DC motor are
derived as

	

J
d
dt

B K i

L
di
dt

Ri v i

t
ω ω ω+ − = =

+ = =

0 0 0

0 0

, ()

, ()

where

ω = angular velocity of the rotor
i = armature current
v = armature voltage

394 Numerical Methods for Engineers and Scientists Using MATLAB®

and J, B, L, R, and Kt represent constant parameters. Suppose, in con-
sistent physical units

	 J = 1 = L,  B = 1,  Kt = 0.75,  R = 0.4,  v = cost

Write a MATLAB script file that employs the user-defined func-
tion RK4System to solve the system of governing equations. The file
must return two separate plots (use subplot): angular velocity ω
versus 0 ≤ t ≤ 10, and the current i versus 0 ≤ t ≤ 10.

	 65.	  Write a MATLAB script file that solves the following second-
order IVP using EulerODESystem with h = 0.025, HeunODESystem
with h = 0.05, and RK4System with h = 0.1. The file must return a
table that includes the estimated solutions, as well as the global per-
cent relative error, at x = 1:0.1:2 for all three methods. Discuss the
results. The exact solution is y = x − 2x−1/2.

	 2x2 y″ + xy′ − y = 0,  y(1) = −1,  y′(1) = 2,  1 ≤ x ≤ 2

	 66.	 The two-loop electrical network shown in the following figure
is governed by

	

Lq R q
C

q q v t

R q
C

q q v t

 



1 1 1 1 2 1

2 2 1 2 2

1

1

+ + − =

− − =

() ()

() ()
subjject to q q q1 2 10 0 0 0 0 0() , () , ()= = =

where q1 and q2 are electric charges, L is inductance, R1 and R2 are
resistances, C is capacitance, and v1(t) and v2(t) are the applied volt-
ages. The electric charge and current are related through i = dq/dt.
Assume, in consistent physical units, that the physical parameter
values are

	 L = 0.1,  R1 = 1,  R2 = 1,  C1 = 0.4,  v1(t)= sin t,  v2(t) = sin 2t

C

L

R1 R2

i2i1v1(t) v2(t)+
––
+

395Numerical Solution of Initial-Value Problems

	 a.	  �Transform into a system of first-order IVPs.
	 b.	 Write a MATLAB script file that utilizes the user-defined

function RK4System to solve the system in (a). The file must
return the plot of q1 and q2 versus 0 ≤ t ≤ 5 in the same graph. At
least 100 points are recommended for plotting.

	 67.	  Write a MATLAB script that employs the user-defined function
RK4System with h = 0.1 to solve the following system of first-order
IVPs. The file must return the plots of x2 and x3 versus 0 ≤ t ≤ 5 in the
same graph.

	





x x t

x x t

x x x t

1 2

2 1

3 1 3

7
1 3

3

= − +
= − + −
= − + +

()

ssin

()
()
()t

x

x

x

tsubject to

 and

1

2

3

0 0
0 5
0 1

0 5
=
=
= −

≤ ≤

	 68.	An inverted pendulum of length L and mass m, mounted on a motor-
driven cart of mass M is shown in the following figure, where x is
the linear displacement of the cart, φ is the angular displacement of
the pendulum from the vertical, and μ is the force applied to the cart
by the motor. The equations of motion are derived as

	

 

 

x x

g
L L

x
M L

J m
= −

= −
= = +

µ

ϕ ϕ ϕ

sin cos
, ,1 1

LL
mL

g
2

= =0.85 9.81,

where J is the moment of inertia of the rod.

	 a.	  �By choosing the state variables u1 = x,  u x2 = ,  u x L3 = + ϕ ,
u x L4 = + ϕ , obtain the state-variable equations. Then insert
the following into the state-variable equations:

	 μ = −90u1 − 10u2 + 120u3 + 30u4

	 b.	 Write a MATLAB script file that utilizes the user-defined
function RK4System to solve the system in (a). Three sets of
initial conditions are to be considered: φ(0) = 10°, 20°, 30°, while
x x() () ()0 0 0 0= = = ϕ in all three cases. The file must return
the plots of the three angular displacements corresponding to
the three sets of initial conditions versus 0 ≤ t ≤ 1.5 in the same
graph. Angle measures must be converted to radians. Use at least
100 points for plotting.

396 Numerical Methods for Engineers and Scientists Using MATLAB®

	 69.	 Write a user-defined function with function call
u = ABM_3System(f,x,u0) that solves a system of first-order IVPs

	 ′ = = = ≤ ≤ =u f u u u(,), () ,x x a x x x bn0 0 0

using the third-order ABM predictor–corrector method.
	 70.	  Write a MATLAB script file that employs the user-defined func-

tion ABM_3System (see Problem 69) to solve the following IVP. The
file must return a table of values for y generated by the method, as
well as the exact values at all the mesh points x = 1:0.05:1.5.

x2 y″ + 5xy′ + 3y = x2 − x,  y(1) = 0,  y′(1) = 0,  1 ≤ x ≤ 1.5,  h = 0.05

The exact solution is

	
y

x x
x x

= − + −8 15 10
120

1
40

3 2

3

Stability (Section 7.6)

	 71.	  The second-order Adams–Bashforth (AB2) method can be shown
to have a stability region described by 0 < λh < 1 when applied to
y′ = −λy (λ = constant > 0) subject to an initial condition. Solve the
following IVP using AB2 with step size h = 0.2 and again with
h = 0.55, plot the estimated solutions together with the exact solution
y(x) = e−2x, and discuss stability. Use 100 points for plotting.

	 y′ + 2y = 0,  y(0) = 1,  0 ≤ x ≤ 5

	 72.	  Consider the non-self-starting method

	 yi+1 = yi−1 + 2hf(xi, yi),  i = 1, 2, . . . , n − 1

mg
L

M

x

µ

ϕ

397Numerical Solution of Initial-Value Problems

for solving y′ = f(x,y) subject to initial condition y0. A method such
as RK4 can be used to start the iterations. Investigate the stability of
this method as follows. Apply the method to y′ = −3y, y(0) = 1 with
h = 0.1 and plot over the range 0 ≤ x ≤ 2. Repeat with a substantially
reduced step size h = 0.02 and plot over the range 0 ≤ x ≤ 4. Fully dis-
cuss the findings.

Stiff Differential Equations (Section 7.7)

	 73.	  Consider the IVP

	 y y t e yt+ = + =−100 99 1 0 1() , ()

The exact solution is y = e−100t + te−t so that the first term quickly
becomes negligible relative to the second term, but continues to gov-
ern stability. Apply Euler’s method with h = 0.1 and plot the solu-
tion estimates versus 0 ≤ t ≤ 1. Repeat with h = 0.01 and plot versus
0 ≤ t ≤ 5. Fully discuss the results as related to the stiffness of the
differential equation.

	 74.	 Consider the IVP

	 y y t t y+ = + =250 250 0 1sin cos , ()

The exact solution is y = e−250t + sin t so that the first term quickly
becomes negligible relative to the second term, but will continue to
govern stability. Apply Euler’s method with h = 0.1 and plot the solu-
tion estimates versus 0 ≤ t ≤ 1. Repeat with h = 0.01 and again with
h = 0.001 and plot these two sets versus 0 ≤ t ≤ 5. Fully discuss the
results as related to the stiffness of the differential equation.

MATLAB® Built-In Functions for Initial-Value Problems (Section 7.8)

	 75.	 Write a MATLAB script file that solves the following IVP using
ode45 and returns a table that includes the solution estimates at
x = 0:0.1:1.

	 (1 − x2)y″ − xy′ + 4y = 0,  y(0) = 1,  y′(0) = 1

	 76.	  A device that plays an important role in the study of nonlin-
ear vibrations is a van der Pol oscillator,* a system with a damping
mechanism. When the amplitude of the motion is small, it acts to

*	 A van der Pol oscillator is an electrical circuit, which consists of two dc power sources, a
capacitor, resistors, inductors, and a triode composed of a cathode, an anode, and a grid con-
trolling the electron flow.

398 Numerical Methods for Engineers and Scientists Using MATLAB®

increase the energy. And, for large motion amplitude, it decreases
the energy. The governing equation for the oscillator is

	  y y y y− − + = = >µ µ() ,1 0 02 constant

Write a MATLAB script file that solves the van der Pol equation
with μ = 0.5 and initial conditions y(0) = 0.1 and y()0 0= using
ode23 and ode45 and returns a table that includes the solution esti-
mates for y(t) at t = 0:0.1:1 at each point.

	 77.	  The motion of an object is described by

	

 
 
x vx

y vy

x

y

= −
= − −

=0.006
0.006 9.81

subject to
()
(
0 0
00 0

0 30
0 25)

()
()=

=
=

initial positions initial veloci



x

y
tties

where 9.81 represents the gravitational acceleration, and

v x y= + 2 2 is the speed of the object. Initial positions of zero indi-
cate that the object is placed at the origin of the xy-plane at the initial
time. Determine the positions x and y at t = 0:0.1:1 using ode45.

	 78.	  Consider

	





x y x

y x xz y

z xy z

x= −
= − −
= −

=10
15

3

0 1() ()

subject to

yy

z

()
()
0 1
0 1

= −
=

Solve the system using any MATLAB solver and plot each vari-
able versus 0 ≤ t ≤ 10. What are the steady-state values of the three
dependent variables?

	 79.	  Consider the double-pendulum system shown in the following
figure consisting of two identical rods and bobs attached to them,
coupled with a linear spring. The system’s free motion is described by

mL mgL kl kl

mL kl mgL kl

2
1

2
1

2
2

2
2

2
1

2
2

0

0




θ θ θ

θ θ θ

+ +() − =

− + +() =
subjeect to

initial angular positions

θ
θ

θ1

2

10 0
0 0

0 1()
()

()=
=

= −

θ2 0 0() =
initial angular velocities

Assume

	

g
L

k
m

l
L

= 



 =8 2

2

,

399Numerical Solution of Initial-Value Problems

Solve using ode45, and plot the angular displacements θ1 and θ2
versus 0 ≤ t ≤ 2, and angular velocities θ1 and θ2 versus 0 ≤ t ≤ 2, each
pair in one figure.

	 80.	  The mechanical system in the following figure undergoes trans-
lational and rotational motions, described by

mL mLx mgL

mL m M x cx kx F t

2 0 
  

θ θ

θ

+ + =

+ + + + =

() ()
ssubject to

initial positions

θ θ()
()

()
()

0 0
0 0

0 0
0

=
=

=
x x



 == −1
initial velocities

where the applied force is F(t) = e−t/2. Assume, in consistent physical
units, the following parameter values:

	 m = 0.4,  M = 1,  L = 0.5,  g = 9.81,  k = 1,  c = 1

Solve using ode45, and plot the angular displacement θ and linear
displacement x versus 0 ≤ t ≤ 10, in two separate figures. Determine
the steady-state values of θ and x.

km m

L

θ1
θ2

l

k

c

x

L

M

m

F(t)

θ

This page intentionally left blankThis page intentionally left blank

401

8
Numerical Solution of
Boundary-Value Problems

In Chapter 7, we learned that an initial-value problem refers to the situation
when an nth-order differential equation is accompanied by n initial condi-
tions, specified at the same value of the independent variable. We also men-
tioned that in other applications, these auxiliary conditions may be specified
at different values of the independent variable, usually at the extremities of
the system, and the problem is known as a boundary-value problem (BVP).

BVPs can be solved numerically by either using the shooting method or the
finite-difference method. The shooting method is based on making an ini-
tial-value problem (IVP) out of the BVP by guessing at the initial condition(s)
that are obviously absent in the description of a BVP, solving the IVP just cre-
ated, and testing to see if the ensuing solution satisfies the original bound-
ary conditions. Therefore, the shooting method relies on techniques such
as the fourth-order Runge–Kutta method (RK4, Chapter 7) for solving IVPs.
The finite-difference method is based on dividing the system interval into
several subintervals and replacing the derivatives by the finite-difference
approximations that were discussed in Chapter 6. As a result, a system of
algebraic equations will be generated and solved using the techniques of
Chapter 4.

Second-order BVP: Consider a second-order differential equation in its most
general form

	 y″ = f(x,y,y′ ),  a ≤ x ≤ b

subject to two boundary conditions, normally specified at the endpoints a
and b. Because a boundary condition can be a given value of y or a value of y′,
different forms of boundary conditions may be encountered.

Boundary conditions: The most common boundary conditions are as follows:
Dirichlet boundary conditions (values of y at the endpoints are given):

	 y(a) = ya,  y(b) = yb

Neumann boundary conditions (values of y′ at the endpoints are given):

	 y′(a) = y′
a,  y′(b) = y′

b

402 Numerical Methods for Engineers and Scientists Using MATLAB®

Mixed boundary conditions:

	 c y a c y a B c y b c y b Ba b1 2 3 4′ + = ′ + =() () , () ()

Higher-order BVP: BVPs can be based on differential equations with orders
higher than two, which require additional boundary conditions. As an exam-
ple, in the analysis of free transverse vibrations of a uniform beam of length
L, simply supported (pinned) at both ends, we encounter a fourth-order ODE

	

d X
dx

X
4

4
4 0 0− = = >γ γ()constant

subject to

	

X

X

X L

X L

() ,
() ,

()
()

0 0
0 0

0
0

=
′′ =

=
′′ =

8.1  Shooting Method

A BVP involving an nth-order ODE comes with n boundary conditions.
Using state variables, the nth-order ODE is readily transformed into a sys-
tem of first-order ODEs. Solving this new system requires exactly n initial
conditions. The boundary condition given at the left end of the interval also
serves as an initial condition at that point, while the rest of the initial condi-
tions must be guessed. The system is then solved numerically via RK4 and
the value of the resulting solution at the other endpoint is compared with the
given boundary condition there. If the accuracy is not acceptable, the initial
values are guessed again and the ensuing system is solved one more time.
The procedure is repeated until the solution at that end agrees with the pre-
scribed boundary condition there.

Example 8.1:  Linear BVP

Solve the BVP

	  u u u u u du dt= + = = =0.02 , , /1 0 30 10 120() ()

Solution

Since the ODE is of the second order, there are two state variables,
selected as x1 = u and x u2 = . Subsequently, the state-variable equations
are

403Numerical Solution of Boundary-Value Problems

	



x x

x x
1 2

2 1 1
=
= +





0.02

This system could then be solved numerically via RK4, but that would
require initial conditions x1(0) and x2(0). Of these two, only x1(0) = u(0) = 30
is available. For the other one, we make a first estimate (or guess)

	 x u2 0 0 10() ()= =

So, the problem to solve is

	



x x

x x

x

x
1 2

2 1

1

21
0 30
0 10

=
= +





=
=

0.02

,
()
()

	
(8.1)

 >> f = inline('[x(2,1);0.02*x(1,1)+1]','t','x');
 >> x0 = [30;10];
 >> t = linspace(0,10,20);
 >> xfirst = RK4system(f, t, x0);
 >> xfirst(1,end)

ans =

  261.0845      % u(10) = 261.0845

The result does not agree with the given boundary value u(10) = 120.
Therefore, we make a second guess, say

	 x u2 0 0 1() ()= = −

and solve the ensuing system (similar to Equation 8.1 except for x2(0) = − 1):

 >> x0 = [30;-1];
 >> xsecond = RK4system(f, t, x0);
 >> xsecond(1,end)

ans =

  110.5716     % u(10) = 110.5716

In summary:

	

x u

x u
2 0 10 10

0 1 10 1102

() ()
() ()

= =
= − =

 261.0845
 .5716 	

(8.2)

Note that one of the resulting values for u(10) must be above the tar-
geted 120, and the other must be below 120. Because the original ODE
is linear, these values are linearly related as well. As a result, a linear

404 Numerical Methods for Engineers and Scientists Using MATLAB®

interpolation (Figure 8.1) of this data will provide a value for x2(0) that
will result in the correct solution.

	

u x

u

()
()

[()]

(

10
10 1

0 12

10

− = −
− −

+

⇒

110.5716
261.0845 110.5716

when))
()

=
= −

120
2 0

Solve
0.3109x

Therefore, the solution to the original BVP can now be obtained by
solving the following initial-value problem:

	



x x

x x

x

x
1 2

2 1

1

21
0 30
0

=
= +





=
= −

0.02

0

,
()
() ..3109

This fact is readily confirmed in MATLAB® as follows:

 >> x0 = [30; -0.3109];
 >> xthird = RK4system(f, t, x0);
 >> xthird(1,end)

ans =

  120.0006

–2 0 2 4 6 8 10 12

100

150

200

250

300

u(
10

)

120

(10, 261.0845)

–0.3109

(–1, 110.5716)

x2(0)

Figure 8.1
Linear interpolation of the data in Equation 8.2.

405Numerical Solution of Boundary-Value Problems

As expected, the correct result is achieved and no further action is needed.
The solutions obtained based on the first two initial-condition estimates, as
well as the correct solution of the BVP are generated using the code below
and are depicted in Figure 8.2.

 >> x1first = xfirst(1,:);
 >> x1second = xsecond(1,:);
 >> x1third = xthird(1,:);
 >> plot(t,x1first,t,x1second,t,x1third)   % Figure 8.2

The correct solution obtained here closely matches the actual solution. We
will do this below while suppressing the plot.

 >> u_ex = dsolve('D2u-0.02*u=1','u(0)=30','u(10)=120');
 >> ezplot(u_ex,[0 10])    % Plot not shown here!
 >> hold on
 >> plot(t,x1third)         % Plot not shown here!

A linear BVP such as in Example 8.1 is relatively easy to solve using the
shooting method because the data generated by two initial-value estimates
can be interpolated linearly leading to the correct estimate. This, however,
will not necessarily be enough in the case of a nonlinear BVP. One remedy
would be to apply the shooting method three times and then use a quadratic
interpolating polynomial to estimate the initial value. But it is not very likely
that this approach would generate the correct solution, and further iterations

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

t

u(
t)

: S
ol

ut
io

n
of

 th
e B

VP

120

261.0845

110.5716

30

Solution based on first guess

Solution based on second guess

Correct solution

Figure 8.2
Solution of the BVP in Example 8.1.

406 Numerical Methods for Engineers and Scientists Using MATLAB®

would probably be required. Another option is to use the bisection method
(Chapter 3) to obtain the new estimate for the unknown initial value and to
repeat until a desired accuracy is achieved. The following example illustrates
this approach.

Example 8.2:  Nonlinear BVP

The temperature distribution along a fin can be modeled as a BVP

T T T T T T T xxx x− − + = = = =β α γ4 0 0 500 300, , 0.15 /() () , d d

where α = 20, β = 10−8, and γ  = 5 × 103 with all parameters in consistent
physical units. Find T(x), 0 ≤ x ≤ 0.15.

Solution

Choosing the state variables η1 = T and η2 = Tx, we have

	

′ =
′ = + −





η η
η αη βη γ

1 2

2 1 1
4

Of the two required initial conditions, only η1(0) = 500 is available. For
the other, we use the estimate

	 η2(0) = Tx(0) = −3000

so that the system to solve is

	

′ =
′ = + −





=η η
η αη βη γ

η
η

1 2

2 1 1
4

1 0 500
,

 ()

22 3000()0 = −

 >>  f = inline('[eta(2,1);20*eta(1,1)+1e-8*eta(1,1)^4-5e3]',
'x','eta');
 >> x = linspace(0,0.15,20);
 >> eta0 = [500;-3000];
 >> eta_first = RK4system(f,x,eta0);
 >> eta1first = eta_first(1,end)

eta1first =

  76.6313     % Lower than the target 300

As a second estimate, we pick η 2(0) = Tx(0) = −500 and solve the system:

 >> eta0 = [500;-500];
 >> eta_second = RK4system(f,x,eta0);
 >> eta1second = eta_second(1,end)

407Numerical Solution of Boundary-Value Problems

eta1second =

  484.1188    % Higher than the target 300

Note that the resulting values are such that one is higher than the tar-
geted 300, while the other is lower. From this point onward, we use the
bisection to generate the subsequent estimates until a prescribed toler-
ance is met.

eta20 L = -3000; eta20R = -500;
% Left and right values for initial-value estimate
kmax = 20;     % Maximum number of iterations
tol = 1e-3;     % Set tolerance
T_right = 300;  
% Actual boundary condition (target) on the right end

for k = 1:kmax,
eta2 = (eta20L + eta20R)/2; % Bisection
eta0 = [500;eta2]; % Set initial state vector
eta = RK4system(f,x,eta0); % Solve the system
T(k) = eta(1,end); % Extract T(0.15)
err = T(k) − T_right; % Compare with target

% Adjust the left and/or right value of initial value based
% on whether error is positive or negative

if abs(err) < tol
break
end
if err > 0
eta20R = eta2;
else
eta20L = eta2;
end
end

 >> k

k =

 17 % Number of iterations needed to meet tolerance

 >> T(17)

ans =

 300.0006  % Agrees with target T(0.15) = 300

 >> eta2

eta2 =

-1.6260e+003 % Final estimate for the missing initial value

In summary, the set of initial conditions that led to the correct solution
are T(0) = 300, Tx(0) = −1626. It took 17 applications of bisection to arrive

408 Numerical Methods for Engineers and Scientists Using MATLAB®

at the (missing) initial condition. The solution T can then be found and
plotted versus x as follows:

 >> eta0 = [500;eta2];
 >> eta = RK4system(f,x,eta0);
 >> eta1 = eta(1,:);
 >> plot(x,eta1)     % Figure 8.3

The shooting method loses its efficiency when applied to higher-order
BVPs, which will require at least two guesses (estimates) for the initial
values. For those cases, other techniques, such as the finite-difference
method, need to be employed.

8.2  Finite-Difference Method

The finite-difference method is the most commonly used alternative to the
shooting method. The interval [a,b] over which the differential equation is to
be solved is first divided into N subintervals of length h = (b − a)/N. As a result,
a total of N + 1 grid points are generated, including x1 = a and xN+1 = b, which

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
300

320

340

360

380

400

420

440

460

480

500

x

Te
m

pe
ra

tu
re

 T
 (x

)

T(0) = 500

T(0.15) = 300

Figure 8.3
Temperature distribution in Example 8.2.

409Numerical Solution of Boundary-Value Problems

are the left and right endpoints. The other N − 1 points x2, . . . , xN are the inte-
rior grid points. At each interior grid point, the derivatives involved in the
differential equation are replaced with finite divided differences. This way, the
differential equation is transformed into a system of N − 1 algebraic equations
that can then be solved using the methods previously discussed in Chapter 4.

Because of their accuracy, central-difference formulas are often used in
finite-difference methods. Specifically, for the first and second derivatives of
y with respect to x

	

dy
dx

y y
h

d y
dx

y y y
hx

i i

x

i i i

i i

≅ − ≅ − ++ − − +1 1
2

2
1 1

22
2

,
	

(8.3)

Several difference formulas are listed in Table 6.3 in Section 6.2.

Example 8.3:  Finite-Difference Method: Linear BVP

Consider the BVP in Example 8.1:

	 u u u u= + = =0.02 , ,1 0 30 10 120() ()

Solve by the finite-difference method using central-difference formu-
las and h = Δt = 2.

Solution

Replace the second derivative in the differential equation with a central-
difference formula to obtain

	
u u u

t
ui i i
i

− +− + = +1 1
2

2
1

∆
0.02

This equation is applied at the interior grid points. Since the interval
length is 10 and Δt = 2, we have N = 10/2 = 5, which means there are
N − 1 = 4 interior points. Simplifying the above equation, we find

	
u t u u t ii i i− +− +() + = =1

2
1

22 2 3 4 50.02 ,∆ ∆ , , ,
	

(8.4)

Note that u1 = 30 and u6 = 120 are available from the boundary condi-
tions. Applying Equation 8.4 yields

	

u u u

u u u

u u u

u u u

1 2 3

2 3 4

3 4 5

4 5 6

4
4
4
4

− + =
− + =
− + =
− + =

⇒

2.08
2.08
2.08
2.08

uu

u

u

u

u6

1

120

30

2

3

4

1
1 1

1 1
1

=

=

−
−

−
−





















2.08
2.08

2.08
2.08 uu5

26
4
4
116





















=

−

−





















410 Numerical Methods for Engineers and Scientists Using MATLAB®

As projected by the structure of Equation 8.4, the resulting coefficient
matrix is tridiagonal, and thus will be solved using Thomas method
(Section 4.3). That yields

	 u2 = 32.6757,  u3 = 41.9654,  u4 = 58.6123,  u5 = 83.9482

Comparison with the Shooting Method

Using the results of Example 8.1, adjusting the step size to 2, the numeri-
cal values at the interior grids are calculated and shown in Table 8.1.
Also included in Table 8.1 are the actual values provided by the actual
solution

	 u(t) = 41.0994e−0.1414t + 38.9006e0.1414t − 50

The accuracy of both techniques can be improved by reducing the
step size Δt. While both methods yield acceptable results for the cur-
rent example, which happens to be linear and second order, the finite-
difference method is generally preferred because it enables us to treat
higher-order and nonlinear systems.

Example 8.4:  Finite-Difference Method: Nonlinear BVP

Consider the BVP in Example 8.2:

	 T T T T Txx − − + = = =β α γ4 0 0 500 300, , 0.15() ()

where α = 20, β = 10−8, and γ  = 5 × 103 with all parameters in consistent
physical units. Solve by the finite-difference method using central-dif-
ference formulas and h = Δx = 0.025.

Solution

The interval is 0.15 in length and Δx = 0.025; hence, N = 0.15/0.025 = 6,
and there are 5 interior grid points. Replace the second derivative in the
differential equation with a central-difference formula to obtain

Table 8.1

Comparison of Results: Shooting Method, Finite Difference,
and Actual (Example 8.3)

t Shooting Method Finite Difference Actual

0 30 30 30
2 32.5912 32.6757 32.5912
4 41.8333 41.9654 41.8338
6 58.4703 58.6123 58.4722
8 83.8422 83.9482 83.8464
10 120 120 120

411Numerical Solution of Boundary-Value Problems

	
T T T

x
T Ti i i
i i

− +− + − − + =1 1
2

42
0

∆
β α γ

This equation is applied at the five interior grid points. Simplifying
the above

	 T x T T x T x ii i i i− +− + + − + = =1
2

1
2 4 22 0 2 3 4 5 6() , , , ,α β γ∆ ∆ ∆ , 	

(8.5)

Applying Equation 8.5, keeping in mind that T1 = 500 and T7 = 300, we
find

	

f T T T T T T T T

f
1 2 3 4 5 6 2 3

12
2
4

2

10 0(, , , ,)
(

= − + − × =−503.1250 2.0125 6.25
TT T T T T T T T T

f T
2 3 4 5 6 2 3 4

12
3
4

3

10 0, , , ,)
(

= + − + − × =−3.1250 2.0125 6.25

22 3 4 5 6 3 4 5
12

4
4

4 2

10 0, , , ,)
(

T T T T T T T T

f T

= + − + − × =−3.1250 2.0125 6.25
,, , , ,)

(,
T T T T T T T T

f T
3 4 5 6 4 5 6

12
5
4

5 2

10 0= + − + − × =−3.1250 2.0125 6.25
TT T T T T T T3 4 5 6 5 6

12
6
410 0, , ,) = + − − × =−303.1250 2.0125 6.25

Newton’s method for systems (Chapter 4) will be used to solve this
nonlinear system of algebraic equations. This means we must eventually
solve the system

	

∂
∂

∂
∂

∂
∂

∂
∂





























f
T

f
T

f
T

f
T

1

2

1

6

5

2

5

6

. . .

. .

. .

. .

. . .

∆∆

∆

T

T

f

f

2

6

1

5

.

.

.

.

.

.



























=

−

−



























	

(8.6)

The coefficient matrix in the above equation is tridiagonal and is in
the form

	

A

A

A

A

A

Aii

11

22

33

44

55

1
1 1

1 1
1 1

1























= − −where 2.0125 2.55 × −
+10 11

1
3Ti

412 Numerical Methods for Engineers and Scientists Using MATLAB®

In using Newton’s method, initial values must be assigned to the unknown
variables. Suppose the initial value for each of the five unknowns is 400.
The MATLAB code below will generate the solution iteratively.

kmax = 10; b = zeros(5,1); A = zeros(5,5);

for i = 1:4,
 A(i,i+1) = 1; A(i+1,i) = 1;
end

f1 = inline('503.1250-2.0125*T2+T3-6.25e-12*T2∧4',
'T2','T3','T4','T5','T6');
f2 = inline('3.1250+T2-2.0125*T3+T4-6.25e-12*T3∧4',
'T2','T3','T4','T5','T6');
f3 = inline('3.1250+T3-2.0125*T4+T5-6.25e-12*T4∧4',
'T2','T3','T4','T5','T6');
f4 = inline('3.1250+T4-2.0125*T5+T6-6.25e-12*T5∧4',
'T2','T3','T4','T5','T6');
f5 = inline('303.1250+T5-2.0125*T6-6.25e-12*T6∧4',
'T2','T3','T4','T5','T6');

% Function to generate the diagonal entries of A
g = inline('-2.0125-2.5e-11*y∧3','y');

T(1,:) = 400*ones(5,1)';   % Assign initial values
tol = 1e-3;     % Set tolerance

for k = 1:kmax,
 T2 = T(k,1); T3 = T(k,2); T4 = T(k,3); T5 = T(k,4); T6 = T(k,5);

for i = 1:5,
A(i,i) = g(T(k,i));  
% Diagonal entries of the coefficient matrix A
end

b(1) = -f1(T2,T3,T4,T5,T6);
b(2) = -f2(T2,T3,T4,T5,T6);
b(3) = -f3(T2,T3,T4,T5,T6);
b(4) = -f4(T2,T3,T4,T5,T6);
b(5) = -f5(T2,T3,T4,T5,T6);

delT = ThomasMethod(A,b); delT = delT';
% Solve by Thomas method
T(k+1,:) = T(k,:) + delT;
if norm(T(k+1,:)' - T(k,:)') < tol,   % See if tolerance is met
 break
end
end

Execution of this code results in

 >> T

T =

 400.0000 400.0000 400.0000 400.0000 400.0000
 461.0446 424.9850 391.3126 359.5528 329.2576
 461.0149 424.9499 391.2755 359.5135 329.2249
 461.0149 424.9498 391.2755 359.5135 329.2249

413Numerical Solution of Boundary-Value Problems

Therefore, the tolerance is met after four iterations. Note that these are
approximate solutions at the interior grid points. The process will be
completed once the boundary points are also attached.

 >> T_complete = [500 T(k+1,:) 300]   
% Include the boundary points

Comparison with the Shooting Method

This problem was solved in Example 8.2 via the shooting method.
Using the final result in Example 8.2, adjusting the step size to 0.025,
the numerical values at the interior grids are calculated and shown in
Table 8.2.

8.3  BVPs with Mixed Boundary Conditions

In the case of mixed boundary conditions, information involving the
derivative of the dependent function is prescribed at one or both of
the endpoints of the domain of solution. In these situations, the finite-
difference method can be used as seen earlier, but the resulting sys-
tem of equations cannot be solved because the values of the dependent
function at both endpoints are not available. This means there are more
unknowns than there are equations. The additional equations are derived
by using finite differences to discretize the one or two boundary con-
ditions that involve the derivative. The combination of the equations
already obtained at the interior grid points and those just generated at
the endpoint(s) form a system of algebraic equations that can be solved as
before.

500.0000 461.0149 424.9498 391.2755 359.5135 329.2249 300.0000

Table 8.2

Comparison of Results: Shooting Method and
Finite Difference (Example 8.4)

x Shooting Method Finite Difference

0 500 500

0.025 461.0054 461.0149

0.05 424.9362 424.9498

0.075 391.2618 391.2755

0.1 359.5028 359.5135

0.1250 329.2194 329.2249

0.15 300 300

414 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 8.5: � Finite-Difference Method: Linear BVP
with Mixed Boundary Conditions

Consider the BVP

	
   w

t
w w w w dw dt+ + = = = − =1

2 0 1 1 4 1, , /() ()

Solve by the finite-difference method and Δt = 0.5. Use central-
difference approximations for all derivatives. Compare the results
with the exact solution values at the grid points. Also, confirm that
the boundary condition at the right end is satisfied by the computed
solution.

Solution

The interval is 3 in length and Δt = 0.5; hence, N = 3/0.5 = 6, and there are
N − 1 = 5 interior grid points. Replacing the first and second derivatives
with central-difference formulas yields

	

w w w
t t

w w
t

i i i

i

i i− + + −− + + − + =1 1
2

1 12 1
2

2 0
∆ ∆

Simplify the above equation and apply at interior grid points so that

	 () () , , , ,2 4 2 4 2 3 4 5 61 1
2t t w t w t t w t t ii i i i i i i− − + + = − =− +∆ ∆ ∆ ,

Consequently

	

i t t w t w t t w t t

i t

= − − + + = −
=

2 2 4 2 4
3 2

2 1 2 2 2 3 2
2

() ()
(

∆ ∆ ∆

33 2 3 3 3 4 3
2

4 3 4

4 2 4
4 2 4

− − + + = −
= − −

∆ ∆ ∆
∆
t w t w t t w t t

i t t w t w

) ()
() 44 4 5 4

2

5 4 5 5 5 6

2 4
5 2 4 2

+ + = −
= − − + +

()
() ()

t t w t t

i t t w t w t t w

∆ ∆
∆ ∆ == −

= − − + + = −
4

6 2 4 2 4
5

2

6 5 6 6 6 7 6
2

t t

i t t w t w t t w t t

∆
∆ ∆ ∆ () () 	

(8.7)

w1 = w(1) = 1 is provided by the boundary condition at the left endpoint.
At the right endpoint, however, w7 = w(4) is not directly available, but
w()4 is. To approximate w at the right end, we will use a one-sided,
three-point backward difference formula so that the values at the previ-
ous points are utilized. Note that this has second-order accuracy (see
Table 6.3 in Section 6.2), which is in line with the central-difference for-
mulas used in the earlier stages.

	
w

w w w
tti

i i i≅ − +− −2 14 3
2∆ 	

(8.8)

415Numerical Solution of Boundary-Value Problems

Applying Equation 8.8 at the right end (i = 7)

	
w w w

t
w t w w

w
5 6 7

7
1
3 6 5

4 3
2

1 2 4
7− + = − ⇒ = − + −

∆
∆

Solve for
()

	
(8.9)

Substitution into Equation 8.7 for w7, and expressing the system in
matrix form, yields

	

− +
− − +

− − +
− −

4 2 0 0 0
2 4 2 0 0

0 2 4 2 0
0 0 2

2 2

3 3 3

4 4 4

5

t t t

t t t t t

t t t t t

t t

∆
∆ ∆

∆ ∆
∆ 44 2

0 0 0
5 5

4
3 6

4
3 6

2

3

4

5

6

t t t

t t t t

w

w

w

w

w

+
− − −























∆
∆ ∆() ()



























=

− − −
−
−
−

4 2
4
4
4

2
2

2 1

3
2

4
2

5

t t t t w

t t

t t

t t

∆ ∆
∆
∆
∆

()

22

6
2 2

3 64 2− + +

























t t t t t∆ ∆ ∆() 	

(8.10)

The coefficient matrix is once again tridiagonal. This system is solved
for the solution vector to obtain the approximate values at the interior
grid points. The process is completed by attaching w1, which is available,
and w7, which is found by Equation 8.9, to the vector of the interior grid
values. The MATLAB code that follows performs these tasks.

a = 1; b = 4; % Interval endpoints
dt = 0.5;
N = (b-a)/dt; % No. of interior grid points = N-1
t = a:dt:b;
w1 = 1; % Given BC at the left end

A = zeros(N-1,N-1); b = zeros(N-1,1);
b(1) = -4*t(2)*dt∧2-(2*t(2)-dt)*w1;
for i = 1:N-2,
 A(i,i+1) = 2*t(i+1)+dt;
end
for i = 1:N-3,
 A(i+1,i) = 2*t(i+2)-dt;
 b(i+1) = -4*t(i+2)*dt∧2;
end
A(N-1,N-2) = (4/3)*(t(N)-dt);
for i = 1:N-2,
    A(i,i) = -4*t(i+1);
end
A(N-1,N-1) = -(4/3)*(t(N)-dt);
b(N-1) = -4*t(N)*dt∧2+(2/3)*(2*t(N)+dt)*dt;

w_interior = ThomasMethod(A,b);
w = [w1 w_interior'];
w(N+1) = (1/3)*(-2*dt+4*w(N)-w(N-1));

 >> w

416 Numerical Methods for Engineers and Scientists Using MATLAB®

  % Exact solution

 >> w_ex  =  dsolve('D2w+(1/t)*Dw+2=0','w(1)=1','Dw(4)=-1');
 >> w_exact  =  vectorize(inline(char(w_ex)));
 >> w_e  =  w_exact(t)

Table 8.3 below summarizes the computed and exact values at the grid
points.

To confirm that the solution obtained here satisfies the boundary condition
at the right end, we run the same code with Δt = 0.05 to generate a smooth
solution curve. The result is shown in Figure 8.4.

w =
1.0000 5.2500 7.8571 9.4405 10.2814 10.5314 10.2814

w_e =
1.0000 5.2406 7.8178 9.3705 10.1833 10.4082 10.1355

Table 8.3

Comparison of Exact and Computed Values at Grid Points (Example 8.5)

Solution t = 1 t = 1.5 t = 2 t = 2.5 t = 3 t = 3.5 t = 4

Exact 1.0000 5.2406 7.8178 9.3705 10.1833 10.4082 10.1355
Computed 1.0000 5.2500 7.8571 9.4405 10.2814 10.5314 10.2814

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

10

11

t

w(
t)

Slope = –1

Figure 8.4
Approximate solution in Example 8.5.

417Numerical Solution of Boundary-Value Problems

8.4  MATLAB® Built-In Function bvp4c for BVPs

MATLAB has a built-in function, bvp4c, which can numerically solve two-
point BVPs. We will present the simplest form of this function here. The more
intricate form includes “options,” and solves the same problem with default
parameters replaced by user-specified values, a structure created with the
bvpset function, similar to the odeset function that we used in connection
with the ode solvers in Section 7.8.

To use bvp4c, we need to have the BVP in the proper form. This process is
best illustrated when applied to a basic, second-order problem.

8.4.1  Second-Order BVP

Consider, once again, a second-order differential equation in its most general
form

	 ′′ = ′() ≤ ≤y f x y y a x b, , ,

subject to two boundary conditions, specified at the endpoints a and b. Using
state variables y1 = y and y2 = y′ we find the state-variable equations in vector
form as

	
′ = =









=








y f y y f(,),
(, ,)

x
y

y

y

f x y y
1

2

2

1 2
,

	
(8.11)

Once the system of first-order ODEs is formed, as it is here, the function
bvp4c may be applied.

bvp4c  Solve boundary value problems for ODEs by collocation.

SOL = bvp4c(ODEFUN,BCFUN,SOLINIT) integrates a system of
ordinary differential equations of the form y' = f(x,y) on the
interval [a,b], subject to general two-point boundary
conditions of the form bc(y(a),y(b)) = 0. ODEFUN and BCFUN are
function handles. For a scalar X and a column vector Y,
ODEFUN(X,Y) must return a column vector representing f(x,y).
For column vectors YA and YB, BCFUN(YA,YB) must return a
column vector representing bc(y(a),y(b)). SOLINIT is a
structure with fields

 x -- ordered nodes of the initial mesh with
      SOLINIT.x(1) = a, SOLINIT.x(end) = b
 y -- �initial guess for the solution with SOLINIT.y(:,i)

a guess for y(x(i)), the solution at the node
SOLINIT.x(i)

418 Numerical Methods for Engineers and Scientists Using MATLAB®

odefun	� This is a user-defined function with function call
dydx = odefun(x,y) where x is a scalar and y is the column
vector composed of the state variables, vector y in Equation
8.11. The function returns dydx, which is the column vector f
in Equation 8.11.

bcfun	� This is a user-defined function with function call
res = bcfun(ya,yb), where ya and yb are the column vec-
tors of numerical solution estimates at y(a) and y(b). Note that

ya= =










= ′







y()

()
()

()

()
a

y a

y a

y a

y a

1

2 


= =










= ′




, ()

()
()

()

()
yb y b

y b

y b

y b

y b

1

2








	�  Therefore, ya(1) and yb(1) represent the values of solution
y at x = a and x = b, while ya(2) and yb(2) represent the val-
ues of y′ at x = a and x = b. The function returns the so-called
residual vector res, which is composed of the residuals, that
is, the differences between the numerical solution estimates
and the prescribed boundary conditions. The function bcfun
can be used in connection with any of the boundary condi-
tions listed at the outset of this section:

Dirichlet boundary conditions: y(a) = ya, y(b) = yb

In this case, the res vector is in the form

	
res

ya

yb
=

−
−









()
()
1
1

y

y
a

b

Neumann boundary conditions: y′(a) = y′a, y′(b) = y′b
In this case, the res vector is in the form

	
res

ya

yb
=

− ′
− ′









()
()
2
2

y

y
a

b

Mixed boundary conditions: c1 y′(a) + c2 y(a) = Ba, c3 y′(b) + c4 y(b) = Bb

In this case, the res vector is in the form

	

res

ya ya

yb yb
=

+ −

+ −



















() ()

() ()

2 1

2 1

2

1 1

4

3 3

c
c

B
c

c
c

B
c

a

b
,, ,c c1 3 0≠

For more simple mixed boundary conditions, such as y(a) = ya, y′(b) = y′b,
we have

419Numerical Solution of Boundary-Value Problems

	
res

ya

yb
=

−
− ′









()
()
1
2

y

y
a

b 	

solinit	� This contains the initial guess of the solution vector and is
created by the MATLAB built-in function bvpinit with the
syntax solinit = bvpinit(x,yinit). The first input x is
the vector of the initial points in the interval [a,b]. Normally,
10 points will suffice; hence, x = linspace(a,b,10). The
second input yinit is the vector of assigned initial guesses
for the variables. In the case of the two-dimensional system
in Equation 8.11, for example, yinit has two components:
the first component is the initial guess for y, the second com-
ponent is the initial guess for y′. The initial guesses can also
be assigned using a user-defined function. In that case, the
function call modifies to solinit = bvpinit(x,@yinit),
and as before, x = linspace(a,b,10).

sol	� This is the output of sol = bvp4c(@odefun,@
bcfun,solinit) and consists of two fields:

	�  sol.x is the vector of the x coordinates of the interior
points used for calculations by MATLAB, generally differ-
ent from the user-specified values in bvpinit.

	�  Sol.y is the matrix whose columns are the variables we
are solving for. For example, in the case of the two-dimen-
sional system in Equation 8.11, there are two variables to
solve: y and y′. Then, the first column in sol.y represents
the values for y at the interior points, and the second column
consists of the values of y′ at those points. The number of
rows in sol.y is the same as the number of components in
sol.x, namely, the points at which bvp4c solved the BVP.

Example 8.6:  bvp4c with Dirichlet Boundary Conditions

Consider the BVP (with Dirichlet boundary conditions) in Examples 8.1
and 8.3:

	 u u u u= + = =0.02 , ,1 0 30 10 120() ()

Replacing t by x, the ODE is written as u″ = 0.02u + 1. Selecting state
variables y1 = u and y2 = u′, we have

	
′ = =









=
+









≤ ≤y f y y f(,), , ,x
y

y

y

y
x

1

2

2

1 1
0 10

0.02

420 Numerical Methods for Engineers and Scientists Using MATLAB®

The residual vector in this problem is

	
res

ya

yb
=

−
−









()
()

1 30
1 120

  We now write a script file that solves the BVP using bvp4c and fol-
lows the instructions given above.

x = linspace(0,10,10);
solinit = bvpinit(x,[0, 0.1]);
% Assign initial values to y1 and y2
sol = bvp4c(@odefun8_6,@bcfun8_6,solinit);
% Solve using bvp4c
t = sol.x; % Change the name of sol.x to t
y = sol.y; % Change the name of sol.y to y;
Note that y is a 2-by-10 vector
u = y(1,:);
% First row of y contains the values of y1, which is u
udot = y(2,:);
% Second row of y gives the values of y2, which is udot
plot(t,u)    % Figure 8.5

function dydx = odefun8_6(x,y)
dydx = [y(2);0.02*y(1)+1];

function res = bcfun8_6(ya,yb)
res = [ya(1)-30;yb(1)-120];

  Executing the script file generates the plot of the solution u(t) in
Figure 8.5, which clearly agrees with what we obtained in Figure 8.2,
Example 8.1. It is also worth mentioning that the first element of the
vector udot is

 >> udot(1)

ans =

  −0.3109

This of course is precisely the value we obtained in Example 8.1, while
applying the shooting method. This was the value for the missing initial
condition u()0 that was needed to create an IVP whose solution agrees with
the original BVP.

Example 8.7:  bvp4c with Mixed Boundary Conditions

Consider the BVP (with mixed boundary conditions) in Example 8.5:

	
  w

t
w w w+ + = = = −1

2 0 1 1 4 1, ,() ()

421Numerical Solution of Boundary-Value Problems

Replacing t by x, the ODE is written as w″ + (1/x)w′ + 2 = 0. Selecting
the state variables y1 = w and y2 = w′, we have

	
′ = =









=
− −









≤ ≤y f y y f(,), , ,x
y

y

y

y x
x

1

2

2

2 2
4

/
1

The residual vector in this problem is

	
res

ya

yb
=

−
+









()
()
1 1
2 1

We now write a script file that solves the BVP using bvp4c and follows
the instructions given above.

x = linspace(1,4,10);
solinit = bvpinit(x,[0.1, 0]);
% Assign initial values to y1 and y2
sol = bvp4c(@odefun8_7,@bcfun8_7,solinit); % Solve using bvp4c
t = sol.x;    % Change the name of sol.x to t
y = sol.y;    % Change the name of sol.y to y;
Note that y is a 2-by-10 vector
w = y(1,:);
% First row of y contains the values of y1, which is w
wdot = y(2,:);

0 1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

110

120

t

u(
t):

 S
ol

ut
io

n
of

 B
VP

Figure 8.5
Solution u(t) of the BVP in Example 8.6 using bvp4c.

422 Numerical Methods for Engineers and Scientists Using MATLAB®

% Second row of y gives the values of y2, which is wdot
plot(t,w,'o')   % Figure 8.6

function dydx = odefun8_7(x,y)
dydx = [y(2);-y(2)/x-2];

function res = bcfun8_7(ya,yb)
res = [ya(1)-1;yb(2)+1];

  It is readily seen that the results are in agreement with those obtained
in Example 8.5 using the finite-difference method.

Problem Set

Shooting Method (Section 8.1)

  In Problems 1 through 4, solve the linear BVP using the shooting
method.
	 1.	  u u t u u+ = = =3 0 1 5, , 0.2() ()

	 2.	 2 3 3 0 0 1 1 u u u t u u+ + = = = −sin() () ()/ , ,

	 3.	 ′′ + ′ = = =w
x
w w w

1
2

0 1 3 3 1, ,() ()

	 4.	() () ()2 1 4 4 0 1 1 2 1t w tw w w w− − + = = − =  , ,

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

10

11

t

w(
t):

 S
ol

ut
io

n
of

 B
VP

Figure 8.6
Solution w(t) of the BVP in Example 8.7 using bvp4c.

423Numerical Solution of Boundary-Value Problems

  In Problems 5 through 10, solve the nonlinear BVP using the shooting
method combined with the bisection method. Use the specified tolerance
and maximum of 20 iterations. Plot the solution trajectory.

	 5.	uu u u u + = = =2 0 0 2 2 3, ,() ()

		 Tolerance: ε = 10−6

	 6.	  u u u t u u+ = = =2 0 1 3 2, ,() ()
		 Tolerance: ε =10−6

	 7.	 2 0 0 1 2 0w e w ww− = = =, ,() ()

		 Tolerance: ε = 10−4

	 8.	  y y y y y+ − = = =2 0 0 1 3 22 , ,() ()
		 Tolerance: ε = 10−4

	 9.	  x tx t x x x+ + = = − =2 23 0 0 1 1 1, ,() ()

		 Tolerance: ε = 10−4

	 10.	 w w w w− = = =3 1
2

5
20 1 3, ,() ()

		 Tolerance: ε = 10−3

Finite-Difference Method (Section 8.2)

Linear Boundary-Value Problems

	 11.	 Consider the linear BVP in Problem 1:

	  u u t u u+ = = =3 0 1 5, , 0.2() ()

	 a.	 Solve using the finite-difference method with Δt = 1.
	 b.	 Solve using the shooting method (see Problem 1). In doing so,

apply RK4system with step size of 0.25.
	 c.	 Solve using the finite-difference method with Δt = 0.5. Tabulate

and compare all calculated solution values at t = 1, 2, 3, and 4.
Also include the exact solution values at those points.

	 12.	 Consider the linear BVP in Problem 2:

	 2 3 3 0 0 1 1 u u u t u u+ + = = = −sin() () ()/ , ,

	 a.	 Solve using the finite-difference method with Δt = 0.25.
	 b.	 Solve using the shooting method (see Problem 2). In doing so,

apply RK4system with step size of 0.05.
	 c.	 Solve using the finite-difference method with Δt = 0.125. Tabulate

and compare all calculated solution values at t = 0.25, 0.5, and
0.75. Also include the exact solution values at those points.

424 Numerical Methods for Engineers and Scientists Using MATLAB®

	 13.	 Consider the linear BVP in Problem 3:

	 ′′ + ′ = = =w
x
w w w

1
2

0 1 3 3 1, ,() ()

	 a.	 Solve using the finite-difference method with Δx = 0.5.
	 b.	 Solve using the finite-difference method with Δx = 0.25. Tabulate

and compare all calculated solution values at x = 1.5, 2.0, and 2.5.
Also include the exact solution values at those points.

	 14.	 Consider the linear BVP in Problem 4:

	 () () ()2 1 4 4 0 1 1 2 1t w tw w w w− − + = = − =  , ,

	 a.	 Solve using the finite-difference method with Δt = 0.25.
	 b.	 Solve using the finite-difference method with Δt = 0.125. Tabulate

and compare all calculated solution values at t = 1.25, 1.5, and
1.75. Also include the exact solution values at those points.

Nonlinear Boundary-Value Problems: Use Central-Difference Formulas

	 15.	 Consider the nonlinear BVP in Problem 5:

	 uu u u u + = = =2 0 0 2 2 3, ,() ()

		 Solve using the finite-difference method with Δt = 0.5, kmax = 10,
and tol = 10−3. When using Newton's method, set the initial val-
ues of the unknown quantities to 2.

	 16.	 Consider the nonlinear BVP in Problem 6:

	  u u u t u u+ = = =2 0 1 3 2, ,() ()

		 Solve using the finite-difference method with Δt = 0.5, kmax = 10,
and tol = 10−3. When using Newton's method, set the initial val-
ues of the unknown quantities to 1.

	 17.	 Consider the nonlinear BVP in Problem 7:

	 2 0 0 1 2 0w e w ww− = = =, ,() ()

		 Solve using the finite-difference method with Δt = 0.5, kmax = 10,
and tol = 10−3. When using Newton's method, set the initial val-
ues of the unknown quantities to 1.

	 18.	 Consider the nonlinear BVP in Problem 8:

	  y y y y y+ − = = =2 0 0 1 3 22 , ,() ()

425Numerical Solution of Boundary-Value Problems

		 Solve using the finite-difference method with Δt = 0.5, kmax = 10,
and tol = 10−3. When using Newton’s method, set the initial val-
ues of the unknown quantities to 1.

	 19.	 Consider the nonlinear BVP in Problem 9:

	  x tx t x x x+ + = = − =2 23 0 0 1 1 1, ,() ()

		 Solve using the finite-difference method with Δt = 0.25,
kmax = 10, and tol = 10−4. When using Newton’s method, set the
initial values of the unknown quantities to 0.2.

	 20.	 Consider the nonlinear BVP in Problem 10:

	 w w w w− = = =3 0 1
1
2

3
5
2

, ,() ()

	 a.	 Solve using the finite-difference method with Δt = 0.5, kmax = 10,
and tol = 10− 4. When using Newton’s method, set the initial val-
ues of the unknown quantities to 2.

	 b.	 Repeat (a) for Δt = 0.25. Tabulate the results of the two parts com-
paring approximate values at t = 1.5, 2, 2.5.

Mixed Boundary Conditions (Section 8.3)

	 21.	 Consider

	  u u e u ut− = = − =−1
3

0 1 13/ () (), , 0.5

		 Solve by the finite-difference method and Δt = 0.1. Use central-
difference formula for the second-order derivative, and a three-
point, backward-difference formula for the first-order derivative
in the right boundary condition, which also has second-order
accuracy. Compare the computed results with the exact solution
values at the grid points.

	 22.	 Consider

	   y
t
y e y yt+ = = − =−2

2 4, 0.8, 1.3() ()

	 a.	 Solve by the finite-difference method with Δt = 0.5. Use central-
difference formula for the second-order derivative, and approxi-
mate the first-order derivative in the right boundary condition
by a three-point, backward-difference formula, which also has
second-order accuracy. Compare the computed results with the
exact solution values at the grid points.

426 Numerical Methods for Engineers and Scientists Using MATLAB®

	 b.	 Repeat (a) for Δt = 0.25. Tabulate the values obtained in (a) and
(b), as well as the exact values, at the interior grid points t = 2.5, 3,
3.5.

	 23.	 Consider

	  y y y y+ = = =2 0 0 0 1, , 1() ()

	 a.	 Solve by the finite-difference method with Δt = 0.125. Use cen-
tral-difference formula for the second-order derivative, and
approximate the first-order derivative in the left boundary con-
dition by a three-point, forward-difference formula, which also
has second-order accuracy. Compare the results with the exact
solution values at the grid points.

	 b.	 Repeat (a) for Δt = 0.0625. Tabulate the values obtained in (a) and
(b), as well as the exact values, at the interior grid points t = 0.25,
0.5, 0.75.

	 24.	 Consider

	  w
t
w t w w w+ + = = =1

0 0 0 1 1, ,() () ()

	 a.	 Solve by the finite-difference method with Δt = 0.25. Use central-
difference formula for the second-order derivative, and approxi-
mate the first-order derivative in the right boundary condition
by a three-point, backward-difference formula. Compare the
results with the exact solution values at the grid points.

	 b.	 Repeat (a) for Δt = 0.125. Tabulate the values obtained in (a) and
(b), as well as the exact values, at the interior grid points t = 0.25,
0.5, 0.75.

	 25.	 Consider the nonlinear BVP with mixed boundary conditions

	  w w w w w− = = + =3 0 1 0 2 2 1, ,() () ()

	 a.	 Solve by the finite-difference method with Δt = 0.25. Use central-
difference formula for the second-order derivative, and approxi-
mate the first-order derivative in the right boundary condition
by a three-point, backward-difference formula. Solve the ensu-
ing nonlinear system of equations via Newton’s method with all
initial values set to 1, kmax = 10, and tol = 10−3.

	 b.	 Repeat (a) for Δt = 0.125. Tabulate the values obtained in (a) and
(b) at grid points t = 1.25, 1.5, 1.75.

	 26.	 Consider the nonlinear BVP with mixed boundary conditions

	 2 0 0 1 2 2 0  w e w w ww− = = + =, ,() () ()

427Numerical Solution of Boundary-Value Problems

		 Solve by the finite-difference method with Δt = 0.5. Use central-
difference formula for the second-order derivative, and approxi-
mate the first-order derivatives in the left and right boundary
conditions by a three-point, forward- and a three-point back-
ward-difference formula, respectively. Solve the ensuing non-
linear system of equations via Newton’s method with all initial
values set to 1, kmax = 10, and tol = 10−3.

MATLAB® Built-In Function bvp4c for Boundary-Value Problems (Section 8.4)

 In Problems 27 through 30, solve the BVP using bvp4c, and plot the
dependent variable versus the independent variable.
	 27.	The BVP in Example 8.2:

T T T T T T dT dxxx x− − + = = = =β α γ4 0 0 500 300, , 0.15 /() ()

		 where α = 20, β = 10−8, and γ   = 5 × 103 with all parameters in consis-
tent physical units.

	 28.	y′″ = y4 − y′,  y(0) = 0,  y′(0) = 1,  y(1) = 20
	 29.	y″ − 0.8y = 0,  y(0) + y′(0) = 0,  y′(1) = 0
	 30.	xy″ + y′ − x −1 y = 0,  y(1) = 0,  y′(e2) = 0

	 31.	 The deflection y and rotation ψ of a uniform beam of length L = 8,
pinned at both ends, are governed by

	

′ =

′ = −
=
=

y

x x
EI

y

y

ψ

ψ

subject to5

0 0
8 0

2
()
()

	 where EI is the flexural rigidity and is assumed to be EI = 4000. All
parameter values are in consistent physical units. Using bvp4c,
find y and ψ, and plot them versus 0 ≤ x ≤ 8 in two separate figures.

	 32.	 In the analysis of free transverse vibrations of a uniform beam of
length L = 10, simply supported (pinned) at both ends, we encounter
a fourth-order ODE

	
d X
dx

X
4

4 16 0− =

		 subject to

	
X

X

X L

X L

() ,
() ,

()
()

0 0
0 0

0
0

=
′′ =

=
′′ =

		 Using bvp4c, find and plot X(x).

This page intentionally left blankThis page intentionally left blank

429

9
Matrix Eigenvalue Problem

Matrix eigenvalue problem plays a significant role in engineering
applications and is frequently encountered in numerical methods. In vibra-
tion analysis, for example, eigenvalues are directly related to the system’s
natural frequencies, while the eigenvectors represent the modes of vibra-
tion. Eigenvalues play an equally important role in numerical methods.
Consider, for example, the iterative solution of linear systems via Jacobi and
Gauss–Seidel methods; Chapter 4. The eigenvalues of the Jacobi iteration
matrix, or the Gauss–Seidel iteration matrix, not only determine whether or
not the respective iteration will converge to a solution, they also establish
their rate of convergence. In this chapter, we present numerical techniques
to approximate the eigenvalues and eigenvectors of a matrix.

Matrix Eigenvalue Problem:
Recall from Chapter 1 that the eigenvalue problem associated with a square
matrix An×n is defined as

	 Av = λv,  v ≠ 0n×1	 (9.1)

A number λ for which Equation 9.1 has a nontrivial solution (v ≠ 0n×1) is
called an eigenvalue or characteristic value of matrix A. The corresponding
solution v ≠ 0 of Equation 9.1 is the eigenvector or characteristic vector of A
corresponding to λ. The set of all eigenvalues of A is called the spectrum of A.

9.1  Power Method: Estimation of the Dominant Eigenvalue

The power method is an iterative technique to estimate the dominant eigen-
value of a matrix An×n. The basic assumptions are

•	 An×n is a real matrix.
•	 A has n eigenvalues λ1, λ2, . . . , λn, where λ1 is the dominant eigenvalue,

	 |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|

	 and the corresponding eigenvectors v1, v2, . . . , vn are linearly
independent.

•	 The dominant eigenvalue is real.

430 Numerical Methods for Engineers and Scientists Using MATLAB®

We present the power method as follows. Since v1, v2, . . . , vn is a linearly
independent set, by assumption, there exist constants c1, c2, . . . , cn such that
an arbitrary n × 1 vector x0 can be uniquely expressed as

	 x0 = c1v1 + c2v2 + ⋯ + cnvn	 (9.2)

The eigenvalue problem is

	 Av v A Av A v A v
A

i i i i i ii n= = ⇒ = ⇒λ λ ...(, , ,) () ()1 2 2
Pre-multiply by

ii i i= λ 2v

In general,

	 A v vk
i i

k
i= λ 	 (9.3)

Define the sequence of vectors

	

x Ax

x Ax A x

x Ax A x

1 0

2 1
2

0

1 0

=
= =

= =−

…

k k
k

Therefore, by Equations 9.2 and 9.3,

	
x A x A v v v v v vk

k k
n n

k k
n n

k
n

k

c c c c c c= = + + +[] = + + +

=

0 1 1 2 2 1 1 1 2 2 2

1

 λ λ λ

λ cc c c
k

n
n

k

n1 1 2
2

1
2

1
v v v+ 





+ + 

















λ
λ

λ
λ


 

(9.4)

Since λ1 is the dominant eigenvalue, the ratios λ2/λ1, λ3/λ1, . . . , λn/λ1 are less
than 1, hence for a sufficiently large k, we have x vk

kc≅ 1 1 1λ . Equation 9.4 can
also be used to obtain x vk

kc+
+≅1 1 1

1
1λ . Thus,

	 xk+1 ≅ λ1xk	 (9.5)

Estimation of λ1 will be based on Equation 9.5. Pre-multiply Equation 9.5 by
xk
T to create scalars on both sides, and

	
λ1

1≅ +x x
x x
k
T

k

k
T

k 	
(9.6)

431Matrix Eigenvalue Problem

The power method states that the sequence of scalars

	
α k

k
T

k

k
T

k
k k+

+
+= =1

1
1

x x
x x

x Ax,
	

(9.7)

converges to the dominant eigenvalue λ1 for sufficiently large k. In fact, it can
be shown that the sequence {αk} converges to λ1 at roughly the same rate as
(λ2/λ1)k → 0. Therefore, the larger the magnitude of λ1 is compared to the next
largest eigenvalue λ2, the faster the convergence. Also, because the compo-
nents of vector xk grow rapidly, it is common practice to normalize xk, that is,
divide each vector xk by its 2-norm, xk 2

. Consequently, the denominator in
Equation 9.7 simply becomes x xkT k = 1 in each step. It should be mentioned
that the power method can handle situations where a dominant eigenvalue
λ1 is repeated (see Problem Set), but not when there are two dominant eigen-
values with the same magnitude and opposite signs.

Algorithm for Power Method
Starting with a matrix An×n, an initial n × 1 vector x0, and an initial α1 = 0,

	 1.	Normalize x0 to construct a unit vector x x x1 0 0 2
= / .

	 For k = 1 to kmax (maximum number of iterations),
	 2.	Find xk+1 = Axk.

	 3.	Calculate α k k
T

k+ +=1 1x x .

	 4.	Normalize xk+1 and do not rename, x x xk k k+ + +=1 1 1 2
/ .

	 5.	Terminating condition: if |αk+1 − αk| < ε (prescribed tolerance), STOP.
		 Otherwise, increment k to k + 1 and go to Step 2.

When the iterations stop, αk+1 is the approximate dominant eigenvalue, and
the unit vector xk+1 is the corresponding eigenvector. Note that other termi-
nating conditions may also be used in Step 5. For example, we can force the
iterations to stop if two consecutive vectors satisfy x xk k+ ∞− <1 ε .

The user-defined function PowerMethod uses the power method to esti-
mate the dominant eigenvalue and the associated eigenvector for a square
matrix.

function [e_val, e_vec, k]=PowerMethod(A, x0, tol, kMax)
%
% PowerMethod approximates the dominant eigenvalue and
% corresponding eigenvector of a square matrix.
%
%  [e_val, e_vec, k]=PowerMethod(A, x0, tol, kMax) where
%

432 Numerical Methods for Engineers and Scientists Using MATLAB®

If output k (number of iterations) is not needed in an application, the func-
tion can be executed as

	 [e_val,e_vec] = PowerMethod(A,x0,tol,kMax)

Also, if e_vec (eigenvector) is not needed, we can still execute

	 [e_val] = PowerMethod(A,x0,tol,kMax)

No other combination of outputs is possible. For instance, [e_val,k] still
returns e_val and e_vec because when there are two outputs, the second
output is automatically regarded as e_vec.

%   A is an n-by-n matrix,
%   x0 is the n-by-1 initial guess (default ones),
%   tol is the tolerance (default 1e-4),
%   kMax is the maximum number of iterations (default 50),
%
%   e_val is the approximated dominant eigenvalue,
%   e_vec is the corresponding eigenvector,
%   k is the number of iterations required for convergence.
%
%   Note: The terminating condition applies to successive
%   alpha values!

n = size(A, 1);
if nargin<2 || isempty(x0), x0 = ones(n,1); end
if nargin<3 || isempty(tol), tol = 1e-4; end
if nargin<4 || isempty(kMax), kMax = 50; end
x(:,1)= x0./norm(x0, 2); x(:,2)= A*x(:,1);
alpha(2)= x(:,1).'*x(:,2);
x(:,2)= x(:,2)./norm(x(:,2), 2);

for k = 2:kMax,
    x(:,k+1)= A*x(:,k);   % Generate next vector
    alpha(k+1)= x(:,k).'*x(:,k+1);
    x(:,k+1)= x(:,k+1)./norm(x(:,k+1), 2);
    if abs(alpha(k+1) − alpha(k))< tol,
    % Check for convergence
      break
    end
end
e_val = alpha(end); e_vec = x(:, end);

433Matrix Eigenvalue Problem

Example 9.1:  Power Method

Consider

	

A =
− − −

− − −

















3 4 4
6 9 6
9 14 8

Starting with α1 00 0 1 1= =, []x T , and tolerance ε = 10−4, we follow
the algorithm outlined above:

	

x
x
x

x Ax

1
0

0 2

2 1

1
2

0
1
1

0

3

= =
















=
















= =
−

0.7071
0.7071

,

−− −

− − −

































=
−4 4

6 9 6
9 14 8

0
0.7071
0.7071

5.6569
10..6066
15.5563−

















	 α 2 1 2= = −x xT 3.5000

Normalize

	

x
x
x

2
2

2 2

= =
−

−

















0.2877
 0.5395
0.7913

  Check the terminating condition: Since |α2 − α1| = 3.5, convergence is
not observed and the iterations continue.

	

x Ax3 2

3 4 4
6 9 6
9 14 8

= =
− − −

− − −

















−

−








0.2877
 0.5395
0.7913









= −
















= = −

1.8703
1.6185

1.3668
,

2.4929α 3 2 3x xT

  Since |α3 - α2| = 1.0071, the tolerance ε = 10−4 is not met and itera-
tions must continue. This procedure is repeated until |αk+1 − αk| < ε is
achieved.
  Execution of the user-defined function PowerMethod yields

>> A = [-3 -4 -4;6 9 6;-9 -14 -8];
>> x0 = [0;0;1];

434 Numerical Methods for Engineers and Scientists Using MATLAB®

>> [e_val, e_vec, k] = PowerMethod(A, x0)
% Using default tol=1e-4, kmax=50

e_val =

 -3.0000

e_vec =

 -0.5771
 0.5774
 -0.5776

k =

 7

It takes seven steps for the power method to generate an estimate for the
dominant eigenvalue λ1 = −3 and its eigenvector. Note that the returned
(unit vector) eigenvector estimate is equivalent to []− −1 1 1 T. Direct
solution of the eigenvalue problem reveals that λ(A) = −3,0,1 and that the
eigenvector associated with λ = −3 agrees with the one obtained here.

9.1.1  Inverse Power Method: Estimation of the Smallest Eigenvalue

The smallest (in magnitude) eigenvalue of An×n can be approximated by
applying the power method to A−1. This is simply because if the eigenvalues
of A are λ1, λ2, . . . , λn, then the eigenvalues of A−1 are 1/λ1, 1/λ2, . . . , 1/λn:

	
Av v A A v A v

A

i i i i i ii n= = ⇒ = ⇒
−

− −λ λ(...1 2
1

1 1, , ,) ()
Pre-multiply by

DDivide by λ λi
i

i
i

A A I
A v v

− =
− =

1
1 1

This last equation is the eigenvalue problem associated with A−1 so that its
eigenvalues are 1/λi and the eigenvectors are vi, the same as those of A.

Example 9.2:  Inverse Power Method

The matrix A in Example 9.1 happens to be singular so that A−1 does
not technically exist. But A being singular implies that at least one of its
eigenvalues must be zero, which serves as the smallest eigenvalue of A.
Therefore, there is no need to apply the inverse power method, and it is
decided that the smallest eigenvalue of A is indeed zero.

9.1.2 � Shifted Inverse Power Method: Estimation of the Eigenvalue
Nearest a Specified Value

Once the largest or smallest eigenvalue of a matrix is known, the remaining
eigenvalues can be approximated using the shifted inverse power method.
In order to establish this method, we first recognize the fact that if the

435Matrix Eigenvalue Problem

eigenvalues of A are λ1, λ2, . . . , λn, then the eigenvalues of the matrix A − αI
are λ1 − α, λ2 − α, . . . , λn − α:

	Av v Av v v v A I
v

i i i i i i i ii n
i

= = ⇒ − = − ⇒ −λ α λ α α (... ()
Subtract

1 2, , ,)
α

vv vi i i= −()λ α

This last equation is the eigenvalue problem associated with the matrix
A − αI; therefore, its eigenvalues are λi − α and the eigenvectors are vi, the
same as those of A. Combining this with the fact regarding the eigenvalues
of A−1, it is easily seen that the eigenvalues of (A − αI)−1 are

	
µ

λ α
µ

λ α
µ

λ α1
1

2
2

1 1 1=
−

=
−

=
−

, , ,… n
n 	

(9.8)

while the eigenvectors v1, v2, . . . , vn are the same as those for A correspond-
ing to λ1, λ2, . . . , λn. If the power method is applied to (A − αI)−1, its dominant
eigenvalue (say, μm) is estimated. Since |μm| is largest among all those listed
in Equation 9.8, |λm − α| must be the smallest among its counterparts, that is,

	 λ α λ αm i i n− ≤ − =, , , ,1 2 …

In conclusion, application of the power method to (A − αI)−1 gives an esti-
mate of λm which is closest to α than all the other eigenvalues of A.

Inspired by this, we present the shifted inverse power method as follows.
Let α be an arbitrary scalar, and x0 any initial vector. Generate the sequence
of vectors

	 xk+1 = (A − αI)−1 xk	 (9.9)

and scalars

	
βk

k
T

k

k
T

k
= +x x

x x
1

	
(9.10)

Then, βk → μm = 1/(λm − α) so that λm = (1/μm) + α is the eigenvalue of A that
is closest to α. Also, the sequence of vectors xk converges to the eigenvector
corresponding to λm.

Notes on Shifted Inverse Power Method

•	 The initial vector x0 and the subsequent vectors xk will be normal-
ized to have a length of 1,

•	 Equation 9.9 is solved as (A − αI)xk+1 = xk using Doolittle’s method
(Section 4.4), which employs LU factorization of the coefficient
matrix A − αI. This proves useful, especially if α happens to be very
close to an eigenvalue of A, causing A − αI to be near singular,

436 Numerical Methods for Engineers and Scientists Using MATLAB®

•	 Setting α = 0 leads to the estimation of the smallest (in magnitude)
eigenvalue of A.

The user-defined function InvPowerMethod uses the shifted inverse
power method to estimate the eigenvalue of a square matrix closest to a
specified value. It also returns the eigenvector associated with the desired
eigenvalue.

function [eigenval, eigenvec, k] = InvPowerMethod(A, alpha,
x0, tol, kMax)
%
% InvPowerMethod uses the shifted inverse power method to
% find the eigenvalue of a matrix closest to a specified
% value. It also returns the eigenvector associated with
% this eigenvalue.
%
%   [eigenval, eigenvec, k]=InvPowerMethod(A, alpha, x0,
%  tol, kMax) where
%
%    A is an n-by-n matrix,
%    alpha is a specified value,
%    x0 is the n-by-1 initial guess (default ones),
%    tol is the tolerance (default 1e-4),
%    kMax is the maximum number of iterations (default 50),
%
%    eigenval is the estimated eigenvalue,
%    eigenvec is the corresponding eigenvector,
%     k is the number of iterations required for convergence.
%
n = size(A, 1);
if nargin<3 || isempty(x0), x0 = ones(n,1); end
if nargin<4 || isempty(tol), tol = 1e-4; end
if nargin<5 || isempty(kMax), kMax = 50; end
x(:,1)= x0./norm(x0, 2);
betas(1)= 0;
for k = 1:kMax,
    x(:,k+1)= DoolittleMethod(A-alpha*eye(n,n),x(:,k));
    % Doolittle's method
    betas(k+1)= x(:,k).'*x(:,k+1);
    x(:,k+1)= x(:,k+1)./norm(x(:,k+1), 2);
    if abs(betas(k+1) − betas(k))< tol,
    % Check for convergence
     break
    end
end
betas = betas(end); eigenval = 1/betas+alpha;
eigenvec = x(:, end);

437Matrix Eigenvalue Problem

9.1.2.1  Shifted Power Method

The shifted power method is based on the fact that if the eigenvalues of A are
λ1, λ2, . . . , λn, then the eigenvalues of the matrix A − αI are λ1 − α, λ2 − α, . . . ,
λn − α. In particular, the eigenvalues of A − λ1I are 0, λ2 − λ1, . . . , λn − λ1. If the
power method is applied to A − λ1I, the dominant eigenvalue of this matrix
(say, μ2) is found. But μ2 is a member of the list 0, λ2 − λ1, . . . , λn − λ1. Without
loss of generality, suppose μ2 = λ2 − λ1 so that λ2 = λ1 + μ2. This way, another
eigenvalue of A is estimated.

9.1.2.1.1  Strategy to Estimate All Eigenvalues of a Matrix

•	 Apply the power method to A to find the dominant λd.
•	 Apply the shifted inverse power method with α = 0 to A to find the

smallest λs.
•	 Apply the shifted power method to A − λdI or A − λsI to find at least

one more eigenvalue.
•	 Apply the shifted inverse power method as many times as necessary

with α adjusted so that an λ between any two available λ’s may be
found.

Example 9.3:  Power Methods

Find all eigenvalues and eigenvectors of the following matrix using the
power and the shifted inverse power methods.

	

A =

− −
− −

−
− −





















4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8

Solution

Apply the user-defined function PowerMethod to find the dominant
eigenvalue of A:

>> A = [4 −3 3 −9;−3 6 −3 11;0 8 −5 8;3 −3 3 −8];
>> x0 = [0;1;0;1];   % Initial vector
>> [e_val, e_vec] = PowerMethod(A, x0)
% Default values for tol and kmax

e_val =

   −5.0000    % Dominant eigenvalue

e_vec =

 0.5000
 −0.5000
 −0.5000
 0.5000

438 Numerical Methods for Engineers and Scientists Using MATLAB®

The smallest eigenvalue of A is estimated by applying the user-defined
function InvPowerMethod with α = 0:

>> [eigenval, eigenvec] = InvPowerMethod(A, 0, x0) % Set alpha=0

eigenval =

   1.0001   % Smallest eigenvalue

eigenvec =

 − 0.8165
 0.4084
 0.0001
 − 0.4082

The largest and smallest eigenvalues of A are therefore −5 and 1. To see if
the remaining two eigenvalues are between these two values, we set α to be
the average α = (−5 + 1)/2 = −2 and apply the shifted inverse power method.
However, α = −2 causes A − αI to be singular, meaning α is an eigenvalue of
A. Since we also need the eigenvector associate with this eigenvalue, we set
α to a value close to −2 and apply the shifted inverse power:

>> [eigenval, eigenvec] = InvPowerMethod(A, −1.5, x0)
% alpha=−1.5

  eigenval =

 −2.0000   % The third eigenvalue

eigenvec =

 0.5774
  −0.5774
 0.0000
 0.5774

We find the fourth eigenvalue using the shifted power method. Noting
λ = −2 is an eigenvalue of A, we apply the power method to A + 2I to find

>> A1 = A+2*eye(4,4);
>>  [e_val, e_vec] = PowerMethod(A1, x0)

e_val =

       5.0000

e_vec =

  −0.0000
 0.7071
 0.7071
 0.0000

Following the reasoning behind the shifted power method, the fourth
eigenvalue is λ = −2 + 5 = 3. In summary, all four eigenvalues and their
eigenvectors are

439Matrix Eigenvalue Problem

	

λ λ1 1 2 25

1
1
1

1

1

2
1
0
1

= − =
−
−





















= =

−

−





















, , ,v v ,,

, , ,λ λ3 3 4 42

1
1

0
1

3

0
1
1
0

= − =
−





















= =





















v v

9.1.3  MATLAB® Built-In Function eig

The built-in function eig in MATLAB® finds the eigenvalues and eigenvec-
tors of a matrix. The function eig can be used in two different forms.

eig   Eigenvalues and eigenvectors.
   � E = eig(X) is a vector containing the eigenvalues of a

square matrix X.

   � [V,D] = eig(X) produces a diagonal matrix D of eigenvalues
and a full matrix V whose columns are the corresponding
eigenvectors so that X*V = V*D.

The first form E = eig(A) is used when only the eigenvalues of a matrix A
are needed. If the eigenvalues, as well as the eigenvectors of A are desired,
[V,D] = eig(A) is used. This returns a matrix V whose columns are the
eigenvectors of A, each a unit vector, and a diagonal matrix D whose entries
are the eigenvalues of A and whose order agrees with the columns of V.
Applying the latter to the matrix in Example 9.3 yields

>> A = [4 −3 3 −9;−3 6 −3 11;0 8 −5 8;3 −3 3 −8];
>> [V,D]= eig(A)

V =

       −0.8165       −0.5774    0.0000    −0.5000
        0.4082        0.5774    0.7071      0.5000
       −0.0000        −0.0000    0.7071      0.5000
       −0.4082        −0.5774    0.0000     −0.5000

D =

    1.0000         0         0        0
       0       -2.0000         0        0
       0            0      3.0000        0
       0         0         0     -5.0000

The results clearly agree with those obtained earlier in Example 9.3.

440 Numerical Methods for Engineers and Scientists Using MATLAB®

9.2  Deflation Methods

In the previous section, we learned how to estimate eigenvalues of a matrix
by using different variations of the power method. Another tactic to find
eigenvalues of a matrix involves the idea of deflation. Suppose An×n has eigen-
values λ1, λ2, . . . , λn, and one of them is available; for example, the dominant λ1
obtained by the power method. The basic idea behind deflation is to generate
a matrix B, which is (n − 1) × (n − 1), one size smaller than A, whose eigenval-
ues are λ2, . . . , λn, meaning all the eigenvalues of A excluding the dominant
λ1. We next focus on B and suppose its dominant eigenvalue is λ2. The power
method can then be used to estimate λ2. With that, B is deflated to a yet smaller
matrix, and so on. Although there are many proposed deflation methods, we
will introduce the most common one, known as Wielandt’s deflation method.

9.2.1  Wielandt’s Deflation Method

To deflate an n × n matrix A to an (n − 1) × (n − 1) matrix B, we must first con-
struct an n × n matrix A1 whose eigenvalues are 0, λ2, . . . , λn. This is explained
in the following theorem.

Theorem 9.1
Suppose An×n has eigenvalues λ1, λ2, . . . , λn and eigenvectors v1, v2, . . . , vn.
Assume that λ1 and v1 are known and the first component of v1 is nonzero,*
which can be made into 1. If a1 is the first row of A, then

	 A1 = A − v1a1	 (9.11)

has eigenvalues 0, λ2, . . . , λn.

Proof

Since the first entry of v1 is nonzero, v1 can always be normalized so that its
first component is made into 1. As a result, the first row of the matrix v1a1 is
simply the first row of A, and A1 has the form in Figure 9.1.

Because the entire first row of A1 is zero, A1 is singular and thus has at least
one eigenvalue of 0. We next show that the remaining eigenvalues of A1 are λ2,
. . . , λn. To do this, we realize that the eigenvectors of A are either in the form

	

v vi
i

in

i
i

in

v

v

v

v
Case (1) Case (2)

=



















=





1 0

2 2

...
or

…
















=, , , ,i n2 3 …

*	 The case when the first entry of v1 is zero can be treated similarly, as in Example 9.5.

441Matrix Eigenvalue Problem

Case (1)  Consider

	

A v v A v a v v

A v v v a v

1 1 1 1 1

1 1 1

() ()()

() (

− = − −

= − −

i i

i 11 − vi) 	 (9.12)

  In the second term on the right hand side of Equation 9.12, note that a1vk
simply gives the first component of Avk. Noting Avk = λkvk and the nature
of the eigenvectors in Case (1), we have a1v1 = λ1 and a1vi = λi. Using these in
Equation 9.12,

	 A1(v1 − vi ) = λ1v1 − λivi − v1 (λ1 − λi ) = λi (v1 − vi )

  Letting ui = v1 − vi, the above equation reads A1ui = λiui. Since this is the
eigenvalue problem associated with A1, the proof of Case (1) is complete.
The eigenvectors of A1 corresponding to λ2, . . . , λn are in the form ui = v1 − vi.
Therefore, all of these eigenvectors have a first component of zero.

Case (2)  Consider

	

A v A v a v

v v a v

1 1 1

1 1

i i

i i i

= −

= −

()

 λ 	 (9.13)

Following an earlier reasoning, the term a1vi is the first component of Avi.
Noting Avi = λivi and the nature of the eigenvectors in Case (2), we conclude
that a1vi = 0. Then Equation 9.13 becomes A1vi = λivi, indicating λ2, . . . , λn are
eigenvalues of A1 with corresponding eigenvectors v2, . . . , vn. With that, the
proof is complete. Once again, note that the eigenvectors all have a first com-
ponent of zero.

9.2.1.1  Deflation Process

While proving Theorem 9.1, we learned that in both cases the eigenvectors
of A1 corresponding to λ2, . . . , λn all have zeros in their first components.

0 0

b21

b31

bn1

b22

b32

bn2 bnn

b3n

b2n

0...

...

...

...

...
A1 = B

Figure 9.1
Matrix generated by Wielandt’s deflation method.

442 Numerical Methods for Engineers and Scientists Using MATLAB®

Thus, the first column of A1 can be dropped all together. As a result, the
(n − 1) × (n − 1) block of A1, called B in Figure 9.1, must have eigenvalues
λ2, . . . , λn. Therefore, the problem reduces to finding the eigenvalues of B,
a matrix one size smaller than the original A. The power method can be
applied to estimate the dominant eigenvalue of B and its eigenvector, which
in turn may be deflated further, and so on.

Example 9.4:  Wielandt’s Deflation Method

Consider the 4 × 4 matrix in Example 9.3:

	

A =

− −
− −

−
− −





















4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8

Using the power method the dominant eigenvalue and its eigenvector
are obtained as

	

λ1 15

1
1
1

1

= − =
−
−





















, v

The first component of v1 is 1, hence v1 is already normalized. Proceeding
with Wielandt’s deflation method,

	

A A v a1 1 1

4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8

1
1
1

1

= − =

− −
− −

−
− −





















−
−
−





















− − 

=

− −
− −

−
− −


















4 3 3 9

4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8





−

− −
− −
− −

− −





















=
− −

4 3 3 9
4 3 3 9
4 3 3 9

4 3 3 9

0 0 0 0
1 3 0 2
4 5 2 1
−−



















1 0 0 1

443Matrix Eigenvalue Problem

Eliminating the first column and the first row of A1 yields the new,
smaller matrix B:

	

B = − −
















3 0 2
5 2 1
0 0 1

Application of the power method to B produces the dominant eigen-
value λ = 3 and its eigenvector v = []1 1 0 T . Note that this is not an
eigenvector of A corresponding to λ = 3, which would have been a 4 × 1
vector. Repeating the deflation process, this time applied to B, we find

	

B B vb1 1

3 0 2
5 2 1
0 0 1

1
1
0

3 0 2

0 0 0
2 2

= − = − −
















−
















 

= − −−
















⇒ =
− −

3
0 0 1

2 3
0 1first row, first column

Eliminate
C









  Since C is upper triangular, its eigenvalues are the diagonal entries −2
and 1. In summary, the four eigenvalues of the original matrix A are −5,
3, –2, 1, as asserted.

Example 9.5:  The First Component of v1 is Zero

Consider

	

A =
−

−

















2 1 1
1 3 2
1 2 3

The power method gives the dominant eigenvalue λ1 = 5 and eigenvector

	

v1

0
1
1

=
















The first component is zero, and the second component is made into 1.
The matrix A1 is now formed differently than Equation 9.11, as follows.
Because the second component of v1 is 1, we consider a2, the second row
of A, and perform

444 Numerical Methods for Engineers and Scientists Using MATLAB®

	

A A v a1 1 2

2 1 1
1 3 2
1 2 3

0
1
1

1 3 2
2 1 1
0= − =

−

−

















−
















  =
−

00 0
2 1 1− −

















Eliminating the second row and the second column of A1 yields

	
B =

−
−











2 1
2 1

The two eigenvalues of B are subsequently found to be 0,3. In conclusion,
the three eigenvalues of the original matrix A are 5,3,0, which may be
directly verified.

9.3 � Householder Tridiagonalization and QR Factorization
Methods

The methods presented so far to estimate eigenvalues and eigenvectors of
a matrix can be tedious and are also prone to round-off errors, the latter
particularly evident in the case of repeated application of power and defla-
tion methods. The deflation process relies greatly on the available eigenvalue
and its corresponding eigenvector, which are often provided by the power
method. But because these are only estimates, the entries of the ensuing
deflated matrix are also not exact. This approximated matrix is then sub-
jected to the power method, which approximates its dominant eigenvalue,
causing an accumulated round-off error. Therefore, repeated application of
this process can pose serious round-off problems.

Other, more common, techniques to estimate the eigenvalues of a matrix are
mostly two-step methods. In the first step, the original matrix is transformed
into a simpler form, such as tridiagonal, which has the same eigenvalues as
the original matrix. In the second step, the eigenvalues of this simpler matrix
are found iteratively. A majority of these methods are designed to specifi-
cally handle symmetric matrices. Jacobi’s method, for example, transforms
a symmetric matrix into a diagonal one. This method, however, is not very
efficient because as it zeros out an off-diagonal entry, it often creates a new,
nonzero entry at the location where a zero was previously generated. A more
polished technique is Givens’ method, which transforms a symmetric matrix
into a tridiagonal matrix. It should be mentioned that Givens’ method can
also be applied to a general, nonsymmetric matrix. In this event, the original
matrix is transformed into a special matrix that is no longer tridiagonal but
one known as the Hessenberg matrix, discussed later in this section.

445Matrix Eigenvalue Problem

The most efficient and commonly used method, however, is Householder’s
method, which also transforms a symmetric matrix into a tridiagonal
matrix. Like Givens’ method, Householder’s method also applies to nonsym-
metric matrices, transforming them into the Hessenberg form. The outcome
of Householder’s method is then subjected to repeated application of QR
factorization—covered later in this section—to reduce it to a matrix whose
off-diagonal elements are considerably smaller than its diagonal entries.
Ultimately, these diagonal entries serve as estimates of the eigenvalues of the
original matrix. Householder’s method is a so-called similarity transforma-
tion method. Recall from Chapter 1 that matrices An×n and Bn×n are similar if
there exists a nonsingular matrix Sn×n such that

	 B = S−1AS

We say B is obtained through a similarity transformation of A. Similarity
transformations preserve eigenvalues, that is, A and B have exactly the same
characteristic polynomial, and hence the same eigenvalues.

9.3.1  Householder’s Tridiagonalization Method (Symmetric Matrices)

Let A = [aij]n×n be a real, symmetric matrix whose eigenvalues are λ1, λ2, . . . ,
λn. Householder’s method uses n − 2 successive similarity transformations to
reduce A into T. Let P1, P2, . . . , Pn−2 denote the matrices used in this process
where each Pk is symmetric and orthogonal, that is,

	 P P Pk k
T

k k n= = = −()−1 1 2 2 , , ,…

Generate a sequence of matrices Ak (k = 1, 2, . . . , n − 2), as

	

A A

A P A P PA P
A P A P

A P A P
A P

0

1 1
1

0 1 1 0 1

2 2 1 2

3 3 4 3

2 2

=
= =
=

=
=

−

− − − −

− −

…

n n n n

n n AA Pn n− −3 2 	

(9.14)

In the first iteration, we create zeros in the appropriate slots in the first row
and the first column of A to obtain a new matrix A1

1=  aij
() , as shown below.

Then, in the second iteration, zeros are generated in the appropriate locations
in the second row and the second column of A1 to obtain A2

2=  aij
() , shown

below.

446 Numerical Methods for Engineers and Scientists Using MATLAB®

	

A1

11
1

12
1

21
1

22
1

2
1

32
1

3
1

0 0

0=

a a

a a a

a a
n

n

() ()

() () ()

() ()

…
… …
… …

… … … … …
00

0 0

2
1 1

2

11
2

12
2

21
2

a a

a a

a a

n nn
() ()

() ()

()

,

… …

…





















=A
222
2

23
2

32
2

3
2

3
2 2

0
0

0
0 0

() ()

() ()

() ()

a

a a

a a

n

n nn

…
… …

… … … …
…























Conducting this process n − 2 times, yields a tridiagonal matrix
An ij

na−
−=  2

2() , where

	

T A= =−

− −

− − −

n

n n

n n n

n

a a

a a a

a2

11
2

12
2

21
2

22
2

23
2

32

0 0
0

0

() ()

() () ()

(

…
…

−−

−
−

−
− −



















2

1
2

1
2 2

0
0

0 0

)

,
()

,
() ()

... …
… … …

…
a

a a
n n
n

n n
n

nn
n






	

(9.15)

9.3.1.1  Determination of Symmetric Orthogonal Pk (k = 1, 2, . . . , n − 2)

Each matrix Pk is defined by

	 P I v vk k k
T k n= − = −2 1 2 2, , , ,… 	 (9.16)

where vk is a unit vector ()v vkT k = 1 , the first k components of which are zero.
Moreover, it can be verified that each Pk is symmetric and orthogonal. To fur-
ther understand the structure of the unit vectors vk, let us consider v1 first:

	

v1
21

1

21
21

1

0

1
2

1

=



















= +






v

v

v
a

n

...
where

where
Σ

Σ11 21
2

31
2

1
2

1

1

21 1
21

1

21 1
21

2
0

2
0

= + + +

=
≥

− <





a a a

v

a
v

a

a
v

a

n

i

i

i

�

Σ

Σ

if

if







=, i n3 4, , ,…

	

(9.17)

Note that since v1 is used to form P1, which in turn is involved in the first
iteration of Equation 9.14, the entries of A = A0 are used in Equation 9.17 in

447Matrix Eigenvalue Problem

the construction of v1. Similarly, we construct the unit vector v2 this time by
using the entries of A1

1=  aij
() from the second iteration of Equation 9.14,

	

v2 32

2

32
32
1

2

0
0

1
2

1

=



























= +







v

v

v
a

n

...

()

where

Σ 


=   +   + +  

=

 where Σ2 32
1 2

42
1 2

2
1 2

2

2

a a a

v

a

n

i

i

() () ()�

(()
()

()
()

, , ,

1

32 2
32
1

2
1

32 2
32
1

2
0

2
0

4 5
v

a

a
v

a

i
i

Σ

Σ

if

if

≥

− <










= … ,, n

	

(9.18)

Continuing this way vn−2 is constructed, and subsequently, the tridiago-
nal matrix T = An−2 is obtained. Now, there are two possible scenarios: If the
entries of T along the sub- and super-diagonals are notably smaller in mag-
nitude than those along the main diagonal, then T is regarded as almost
diagonal, and the diagonal entries roughly approximate its eigenvalues,
hence those of the original matrix A. If not, we proceed to further trans-
form T into a tridiagonal matrix whose diagonal elements dominate all other
entries. This will be accomplished using the QR factorization.

The user-defined function Householder uses Householder’s method to
transform a real, symmetric matrix into a tridiagonal matrix.

function T = Householder(A)
%
% Householder uses Householder's method to transform a
% symmetric matrix into a tridiagonal matrix.
%
%  T = Householder(A) where
%
%     A is an n-by-n real, symmetric matrix,
%
%     T is the n-by-n tridiagonal matrix.

N = size(A, 1);

448 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 9.6:  Householder’s Method

Consider

	

A =





















4 4 1 1
4 4 1 1
1 1 3 2
1 1 2 3

Since n = 4, matrices A1 and A2 are generated by Equation 9.14 using P1
and P2, as follows. Find the unit vectors v1 and v2 by Equations 9.17 and
9.18, respectively. First,

	

v1
21

31

41

1
21

31

0

18=





















=
=
=

v

v

v

v

v
, ,

0.9856
0.

Σ
11196

0
0.9856
0.1196
0.1196

=
⇒ =





















v41
1v

By Equation 9.16, we find P I v v1 1 12= − T , and subsequently,

	

A PAP1 1 1

4 0 0
5 1 1

0 1
0 1

= =

−
− − −

−
−















4.2426
4.2426

2.5 1.5
1.5 2.5







= −
= −






so that

a

a
32
1

42
1

1
1

()

()

for n = 1:N-2,
    G = sqrt(A(n + 1:end, n)'*A(n + 1:end, n)); % Compute gamma
    v(1:N, 1) = 0;    % Set initial set of entries to 0
    v(n+1)= sqrt((1+abs(A(n + 1, n))/G)/2);
    % First nonzero entry
    sn = sign(A(n+1, n));
    % Determine sign of relevant entry
    v(n+2:N)= sn*A(n+2:end, n)/2/v(n + 1)/G;
    % Compute remaining entries
    P = eye(N) - 2*(v*v');
    % Compute the symmetric, orthogonal matrices
    A = P\A*P;   % Compute sequence of matrices
end
T = A;

449Matrix Eigenvalue Problem

Using this in Equation 9.18,

	

v v2
32

42

2
32

42
2

0
0

2=





















=
=
=

⇒ =
v

v

v

v
, ,

0.9239
0.3827

0
0

0
Σ

..9239
0.3827





















Form P I v v2 2 22= − T , and

	

A P A P2 2 1 2

4 0 0
5 0

0
0 0

= =

−
−
















4.2426

4.2426 1.4142
1.4142 4 0

0 1






which is symmetric and tridiagonal, as projected. Executing the user-
defined function Householder will confirm this.

>> A = [4 4 1 1;4 4 1 1;1 1 3 2;1 1 2 3];
>> T = Householder(A)

T =
 4.0000 −4.2426 0.0000 0.0000
 −4.2426 5.0000 1.4142 0
 −0.0000 1.4142 4.0000 0.0000
      0.0000 0.0000 0.0000 1.0000

9.3.2  QR Factorization Method

Once a special matrix such as tridiagonal matrix T is obtained via
Householder’s method, the goal is to transform it into a new tridiagonal
matrix whose off-diagonal entries are considerably smaller (in magnitude)
than the diagonal ones. For this purpose, we employ the QR factorization
(or decomposition) method. This is based on the fact that any matrix M
can be decomposed into a product, M = QR where Q is orthogonal and R
is upper triangular.

Start the process by setting T0 = T, and factorize it as T0 = Q0R0. Once Q0
and R0 have been identified, we multiply them in reverse order to form a
new matrix R0Q0 = T1. Then, apply the QR factorization to T1 to achieve Q1R1,
multiply Q1 and R1 in reverse order to create T2 = R1Q1, and so on. In this
fashion, a sequence Tk of tridiagonal matrices is generated, as

450 Numerical Methods for Engineers and Scientists Using MATLAB®

	

T T Q R

T Q R

T Q R

T R Q

T R Q

T

0 0 0

1 1 1

1 0 0

2 1 1

= =
=

=

=
=

+

… …

k k k k 11 = R Qk k

	

(9.19)

Using the last relation in Equation 9.19, we find

	 R Q T T Q T Qk k k k k k k= ⇒ =−
+

−1
1

1

so that Tk+1 and Tk are similar matrices, and have the same eigenvalues. In
fact, it is easy to see that Tk+1 is similar to the original tridiagonal matrix T.
If the eigenvalues of T have the property that |λ1| > |λ2| > ⋯ > |λn|, it can
then be shown that

	

Tk

n

k→ =



















→ ∞Λ

λ
λ

λ

1

2

…
as

Therefore, theoretically speaking, the sequence generated by Equation 9.19
converges to a diagonal matrix consisting of the eigenvalues of T. The pri-
mary challenge is the construction of matrices Qk and Rk in each iteration
step of Equation 9.19.

9.3.2.1  Determination of Qk and Rk Matrices

We begin with the first relation in Equation 9.19, and determine Q0 and R0
for T0 = [tij]. Pre-multiply T0 by an n × n matrix L2, the result denoted by
L T2 0

2=  tij
() , such that t21

2 0() = . Then, pre-multiply this matrix by L3, denot-
ing the product by L L T3 2 0

3() ()=  tij , so that t32
3 0() = . Performing n − 1 of these

operations yields an upper-triangular matrix R0, that is,

	 L L L L T Rn n− =1 3 2 0 0… 	 (9.20)

We will see later that Lk (k = 2, 3, . . ., n) are orthogonal. Manipulation of
Equation 9.20 results in QR factorization of T0,

	 T L L L L R T Q R0 1 3 2
1

0 0 0 0= ⇒ =−
−()n n … 	 (9.21)

where

	 Q L L L L L L L L L L0 1 3 2
1

2
1

3
1 1

2 3= () = =−
− − − −

n n n
T T

n
T… … …

Note that the orthogonality of Lk has been utilized.

451Matrix Eigenvalue Problem

9.3.2.2  Structure of Lk (k = 2, 3, . . . , n)

The Lk matrices are generally simple in nature in the sense that each Lk con-
sists of a 2 × 2 submatrix that occupies rows k and k − 1, and columns k and
k − 1, and ones along the remaining portion of the main diagonal, and zeros
everywhere else. The 2 × 2 submatrix has the form of a clockwise rotation
matrix,

	

cos sin
sin cos

θ θ
θ θ
k k

k k

k k

k k

kc s

s c

c

−








 −









or simply where

==
=

cos
sin

θ
θ
k

k ks

and θk is to be chosen appropriately. For instance, if the size of the matrices
involved is n = 5, then

	

L L2

2 2

2 2

4 4 4

4 4

1
1

1

1
1

1

=
−























=
−

















c s

s c

c s

s c
,







We now address the selection of ck and sk. Recall that we must have
L T2 0

2=  tij
() such that t21

2 0() = , hence in this new matrix the only element
that needs to be analyzed is the (2,1) entry. But we determine the (2,1) entry
by using the second row of L2 and first column of T0. Regardless of the size
n, the second row of matrix L2 is always as shown above. Therefore, the (2,1)
entry of L2T0 is given by

	 t s t c t21
2

2 11 2 21
() = − +

Forcing it to be zero, we find

	
− + = ⇒ = =s t c t

s
c

t
t

2 11 2 21
2

2
2

21

11
0 tanθ

	
(9.22)

Application of trigonometric identities cos tanα α= +1 1 2/ and sin α =

tan tanα α/ 1 2+ to Equation 9.22 yields

	
c

t t
s

t t

t t
2 2

21 11
2 2 2

21 11

21 11
2

1

1 1
= =

+
= =

+
cos

()
sin

()
θ θ

/
,

/

/ 	
(9.23)

With this, matrix L2 is completely defined. Next, consider the matrix
L L T3 2 0

3() ()=  tij , of which the (3,2) entry must be made into zero. Proceeding

452 Numerical Methods for Engineers and Scientists Using MATLAB®

as above, we can obtain c3 and s3, and so on. This continues until Ln is deter-
mined, and ultimately, LnLn−1 . . . L3L2T0 = R0. Once all Lk matrices have been
found, we form Q L L L0 2 3= T T

n
T … , by Equation 9.21, and the first QR factoriza-

tion is complete. Next, form the new symmetric tridiagonal matrix T1 = R0Q0.
If the off-diagonal elements are much smaller than the diagonal ones, the
process is terminated and the diagonal entries of T1 approximate the eigen-
values of A. Otherwise, the QR factorization is repeated for T1 via the steps
listed above until a desired tridiagonal matrix is achieved.

9.3.2.3  MATLAB® Built-In Function qr

MATLAB has a built-in function that performs the QR factorization of a
matrix:

qr   Orthogonal-triangular decomposition.

 [Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper
triangular matrix R and an m-by-m unitary matrix Q so
that A = Q*R.

The user-defined function HouseholderQR uses Householder’s method
to transform a real, symmetric matrix into a tridiagonal matrix, to which
the QR factorization is repeatedly applied in order to obtain a tridiagonal
matrix whose diagonal entries are much larger than those along the super-
and sub-diagonals.

function [T Tfinal eigenvals] = HouseholderQR(A, tol, kmax)
%
% HouseholderQR uses Householder's method and repeated
% application of QR factorization to estimate the
% eigenvalues of a real, symmetric matrix.
%
%  [T Tfinal eigenvals]= HouseholderQR(A, tol, kmax) where
%
%    A is an n-by-n real, symmetric matrix,
%    tol is the tolerance used in the QR process
%     (default 1e-6),
%    kmax is the maximum number of QR iterations
%     (default 50),
%
%    T is the tridiagonal matrix created by Householder's
%    method,
%    Tfinal is the final tridiagonal matrix,
%    eigenvals is a list of estimated eigenvalues of
%    matrix A.
%

453Matrix Eigenvalue Problem

A Note on the Terminating Condition Used in “HouseholderQR”
The terminating condition employed here is based on the norm of the dif-
ference between two vectors whose components are the diagonal entries of
two successive T matrices generated in the QR process. Although this works
in most cases, there could be situations where the two aforementioned vec-
tors have elements that are close to one another, hence meeting the tolerance
condition, but the off-diagonal entries are not sufficiently small. One way
to remedy this is to use a more firm terminating condition that inspects the
ratio of the largest (magnitude) sub-diagonal entry to the smallest diagonal
element. If this ratio is within the tolerance, the process is terminated. This
will ensure that the sub-diagonal elements are considerably smaller than the
diagonal ones. (See the Problem Set at the end of this chapter.)

Example 9.7:  Householder’s Method + QR Factorization

Consider Example 9.6 where a symmetric matrix was transformed into
tridiagonal using Householder’s method:

% Note that this function calls the user-defined function
% Householder

if nargin < 2 || isempty(tol)
    tol = 1e-6;
end

if nargin < 3 || isempty(kmax)
    kmax = 50;
end

T = Householder(A);   % Call Householder
T(:,:,1) = T;

% QR factorization to reduce the off-diagonal entries of T
for m = 1:kmax,
    [Q, R]= qr(T(:,:,m));
     T(:,:,m+1)=R*Q;
     % Compare diagonals of two successive T matrices
     if norm(diag(T(:,:,m+1))-diag(T(:,:,m)))< tol,
     break;
   end
end

Tfinal = T(:,:,end);
T = T(:,:,1);
eigenvals = diag(Tfinal);

454 Numerical Methods for Engineers and Scientists Using MATLAB®

	

A T=





















→ =

−
−

4 4 1 1
4 4 1 1
1 1 3 2
1 1 2 3

4 0 0
5

4.2426
4.2426 1.41422

1.4142 4 0
0 1

0
0
0 0





















Interestingly, T is in the block diagonal form (Chapter 1). Therefore,
eigenvalues of T consist of the eigenvalues of the upper-left 3 × 3 block
matrix, and a 1 × 1 block of 1. So, one eigenvalue (λ1 = 1) is automatically
decided. As a result, we now focus on the upper-left 3 × 3 block and find
its eigenvalues. Note that this phenomenon does not generally occur and
should be investigated on a case-by-case basis.

Therefore, we will proceed with the aforementioned 3 × 3 block matrix
and repeatedly apply the QR factorization to this matrix. The process is
initiated by setting

	

T0

4 0
5

0 4
=

−
−

















4.2426
4.2426 1.4142

1.4142

The QR factorizations listed in Equation 9.19 are performed as follows.
First, by Equation 9.23,

	 c2 = 0.6860,  s2 = −0.7276

so that

	

L L T2

2 2

2 2 2 0

0
0

0 0 1
0= −

















=
− −c s

s c and
5.8310 6.5485 1.0290

0.33430 0.9701
1.41420 4

















Next, the (3,2) entry of L3L2T0 is forced to be zero, and yields

	
− + = ⇒

=
=

0.3430 1.4142
0.2357
0.9718

s c
c

s3 3
3

3
0

so that

	

L

R L L T

3 3 3

3 3

0 3 2 0

1 0 0
0
0

=
−

















=
− −

c s

s c

and

=
5.8310 6.5485 1.02290

1.4552 4.11600
0 0 0

















455Matrix Eigenvalue Problem

Finally, letting Q L L0 2 3= T T , we obtain

	

T R Q1 0 0

0
0

0 0 0
= =

−
−

















8.7647 1.0588
1.0588 4.2353

This tridiagonal matrix is also in a block diagonal form, including an
upper-left 2 × 2 clock and a 1 × 1 block of 0. This implies one of its eigen-
values must be zero, hence λ2 = 0. The remaining two eigenvalues of A
are the eigenvalues of the upper-left 2 × 2 block matrix. We will proceed
with the second iteration in Equation 9.19 using this 2 × 2 block matrix.
So, we let

	
T1 =

−
−











8.7647 1.0588
1.0588 4.2353

Since the off-diagonal entries are still relatively large, matrix T2 must
be formed, that is,

	

L2
1 2

1
2
1

2
1

2
1

2
1

2
1

()
() ()

() ()

()

()=
−











=
= −

c s

s c

c

s
with

0.9928
0..1199

sothat =
8.8284 1.5591

4.0777
R L T1 2

1
1 0

() =
−









Noting that Q L1 2
1=  

() T
, we have

	
T R Q2 1 1 1

= =
−

−










8.9517 0.4891
0.489 4.0483

Finally, because the off-diagonal entries are considerably smaller in mag-
nitude than the diagonal ones, the eigenvalues are approximately 9 and 4.
Therefore, λ(A) = 0,1,4,9. Executing the user-defined function HouseholderQR
will confirm these results.

>> A =[4 4 1 1;4 4 1 1;1 1 3 2;1 1 2 3];
>>  [T Tfinal eigenvals] = HouseholderQR(A)

T =   % Tridiagonal matrix generated by Householder
 (see Example 9.6)

 4.0000 −4.2426 0.0000 0.0000
 −4.2426 5.0000 1.4142 0
 −0.0000 1.4142 4.0000 0.0000
 0.0000 0.0000 0.0000 1.0000

456 Numerical Methods for Engineers and Scientists Using MATLAB®

Tfinal =   % Tridiagonal matrix at the conclusion of QR process

 9.0000 −0.0008 −0.0000   0.0000
 −0.0008 4.0000 −0.0000   −0.0000
 −0.0000 0.0000 1.0000 0.0000
 0.0000 0.0000 −0.0000 0.0000

eigenvals =   % List of (estimated) eigenvalues of A

 9.0000
 4.0000
 1.0000
 0.0000

9.3.3  Transformation to Hessenberg Form (Nonsymmetric Matrices)

As mentioned at the outset of this section, Householder’s method can also be
applied to nonsymmetric matrices. Instead of a tridiagonal matrix, however,
the outcome will be another special matrix known as the upper Hessenberg
form

	

H =










 −

h h h h

h h h h

h h h

h h

n

n

n

n n nn

11 12 13 1

21 22 23 2

32 33 3

1

…
…
…

… … …

,












which is upper triangular plus the subdiagonal. In the second step of the
process, repeated QR factorizations will be applied to H in order to obtain an
upper triangular matrix. Since the eigenvalues of an upper triangular matrix
are its diagonal entries, the eigenvalues of this final matrix, and hence of the
original matrix, are along its diagonal.

The user-defined function HouseholderQR, which calls another user-
defined function Householder, can be applied to any nonsymmetric matrix
to accomplish this task.

Example 9.8: Nonsymmetric Matrix, Hessenberg Form

Consider the (nonsymmetric) matrix studied in Examples 9.3 and 9.4 of
the last section:

	

A =

− −
− −

−
− −





















4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8

457Matrix Eigenvalue Problem

>> A = [4 −3 3 −9;−3 6 −3 11;0 8 −5 8;3 −3 3 −8];
>>   [H Hfinal eigenvals]= HouseholderQR(A)

H =	 % Hessenberg form generated by Householder

 4.0000 −4.2426 3.8787 −8.1213
 4.2426 −5.0000 6.8995 −12.8995
 0.0000 −0.0000 4.6569 −9.6569
  −0.0000 −0.0000 1.6569 −6.6569

Hfinal =    % (Almost) upper triangular matrix at the
conclusion of QR process

 −5.0003  5.1960  13.4724   −16.2633
 −0.0002 −1.9997    −3.5347 −2.8588
  0.0000 −0.0000  3.0000  −1.1547
 −0.0000  0.0000  0.0000  1.0000

eigenvals =     % List of (estimated) eigenvalues of A

 −5.0003
 −1.9997
  3.0000
  1.0000

Note that Hfinal is not entirely upper triangular because we opted to
use the default tol=1e-6 in the user-defined function. A smaller value
further eliminates the (2,1) entry in Hfinal.

Problem Set

Power Method (Section 9.1)

In Problems 1 through 6, for each matrix An×n,

	 a.	  Starting with α1 = 0 and an n × 1 initial vector x0 comprised of all
ones, apply the power method to generate the scalars α2 and α3, and
the normalized vectors x2 and x3.

	 b.	 Find the dominant eigenvalue and the corresponding eigenvector
by executing the user-defined function PowerMethod.

	 1.	 A =
















1 0 1
0 1 0
1 0 1

	 2.	 A =
− −

−
− −

















3 4 2
1 4 1

2 6 1

	 3.	 A =
− −

−
− −

















2 6 3
1 1 1
2 4 1

458 Numerical Methods for Engineers and Scientists Using MATLAB®

	 4.	 A =
−

−
− −

















2 2 4
1 3 2
5 10 1

	 5.	 A =

−
− − −

− −
−



















2 2 2 0
1 3 2 2

0 3 2 3
1 2 2 1

	 6.	 A =



















4 1 1 0
1 4 0 1
1 0 4 1
0 1 1 4

 In Problems 7 through 10 find all eigenvalues and eigenvectors of
the matrix by applying the user-defined functions PowerMethod and/or
InvPowerMethod. Use the initial vector x0 provided or the default, which-
ever works, in each application of these two functions.

	 7.	 A x=
−

− −
− −

















=
















21 14 64
23 10 60
11 7 33

1
0
1

0,

	 8.	 A x=
−
−
−

















=
















23 48 24
12 25 12
4 10 9

1
0
1

0,

	 9.	 A x=
− −
− −
− −

















=
















16 8 84
6 8 42
2 3 15

0
1
1

0,

	 10.	 A x=

− −
− −

− −
− −



















=















9 2 2 14
8 5 2 10
0 2 5 2
8 2 2 13

1
0
0
0

0,







Deflation Methods (Section 9.2)

 In Problems 11 through 17, for each matrix A,
	 a.	Find the dominant eigenvalue and corresponding eigenvector using

PowerMethod. Use the default initial vector x0 unless otherwise
specified.

459Matrix Eigenvalue Problem

	 b.	Using Wielandt’s deflation method, create a matrix A1, then deflate
to a matrix B, one size smaller than A, whose eigenvalues are the
remaining eigenvalues of A.

	 11.	 A =
−

− −
−

















4 1 1
1 3 2

1 2 3

	 12.	 A =
−

− −
−

















3 1 0
1 2 1

0 1 3

	 13.	 A =
− −

−
− −

















2 6 3
1 1 1
2 4 1

	 14.	 A =

− −
− −

−
− −



















4 3 3 9
3 6 3 11

0 8 5 8
3 3 3 8

	 15.	 A =

−
−

− −
− −



















1 3 3 5
1 1 3 3
0 2 6 2
1 3 3 7

	 16.	 A x=

− −
−

− −
− −



















=




















7 1 1 9
4 0 1 5
0 1 2 1
4 1 1 6

1
0
1
0

0,



	 17.	 A =
− −

−
−

















21 22 8
31 26 2
19 22 10

	 18.	 Power method can handle repeated dominant eigenvalues,
that is, two dominant eigenvalues with the same magnitude and
same sign. The repeated nature of a dominant eigenvalue only
becomes apparent after the successive applications of power
and deflation methods. For the following matrix, calculate
the dominant eigenvalue and its eigenvector by applying the

460 Numerical Methods for Engineers and Scientists Using MATLAB®

user-defined function PowerMethod, and then use this infor-
mation to deflate to a smaller matrix, ultimately finding all three
eigenvalues.

	 A = −
− −

















4 5 5
0 2 2
0 5 1

	 19.	 Repeat Problem 18 for the following matrix. Use the given
initial vector when applying PowerMethod:

	 A x=
− − −

−
















=
















5 6 7
0 4 1
0 6 1

1
0
0

0,

	 20.	 Write a user-defined function with function call

eigenvals = Deflation_Wielandt(A, x0, tol, kMax)

		 that uses Wielandt’s deflation method to find all the eigen-
values of a matrix A. It must call the user-defined function
PowerMethod to estimate the dominant eigenvalue and corre-
sponding eigenvector of A, deflate to a smaller size matrix, and
repeat the process until it reaches a 2 × 2 matrix. At that point,
the MATLAB function eig must be used to find the eigenvalues
of the 2 × 2 matrix. The function must return a list of all eigen-
values of matrix A. The input arguments have the same default
values as in PowerMethod. Apply Deflation_Wielandt (with
default inputs) to the matrix A in Example 9.4.

		 Note: A key part of the process is determining the first non-
zero component of the eigenvector v1 in each step. But since
PowerMethod generates this vector, it is only an approximation
and as such, a component whose true value is zero will appear to
have a very small value, but not exactly zero. Thus, your function
must view any component with magnitude less than 10−4 as zero.

Householder Tridiagonalization and QR Factorization Methods (Section 9.3)

 In Problems 21 through 25 find all eigenvalues of the matrix by
executing the user-defined function HouseholderQR, and verify the
results using MATLAB function eig.

	 21.	 A =



















10 4 1 3
4 10 3 1
1 3 10 4
3 1 4 10

461Matrix Eigenvalue Problem

	 22.	 A =

−
− −

−
−

−























1 1 2 0 5
1 3 0 0 3

2 0 4 1 0
0 0 1 0 2
5 3 0 2 1

	 23.	 A =

−
−

− −
− −

−























1 2 0 3 1
2 2 2 0 4
0 2 3 1 1
3 0 1 6 3
1 4 1 3 0

	 24.	 A =

−
− −

−
−



















2 1 0 1
1 5 2 3

0 2 4 1
1 3 1 3

	 25.	 A =

− −

− − − −
−



















2 1 0 2
4 1 0 3
5 5 3 2

0 0 0 1

	 26.	 Write a user-defined function with syntax

[T Tfinal eigenvals] = HouseholderQR_New(A, tol, kmax)

		 that uses Householder’s method and the successive QR factoriza-
tion process to find all eigenvalues of a matrix, as follows. Modify
HouseholderQR by altering the terminating condition: the itera-
tions must stop when the ratio of the largest (magnitude) subdi-
agonal entry to the smallest (magnitude) diagonal element is less
than the prescribed tolerance. All input parameters have the same
default as before. Apply this function to the matrix in Problem 25.

This page intentionally left blankThis page intentionally left blank

463

10
Numerical Solution of Partial Differential
Equations

Partial differential equations (PDEs) play an important role in several areas
of engineering, ranging from fluid mechanics, heat transfer, and applied
mechanics to electromagnetic theory. Since it is generally much more dif-
ficult to find a closed-form solution for PDEs than it is for ordinary differ-
ential equations, they are usually solved numerically. In this chapter, we
present numerical methods for the solution of PDEs, in particular, those that
describe some fundamental problems in engineering applications, including
the Laplace’s equation, the heat equation, and the wave equation.

10.1 ​ Introduction

A PDE is an equation involving a function (dependent variable) of at least
two independent variables, and its partial derivatives. A PDE is of the order
n if the highest derivative is of the order n. If a PDE is of the first degree in the
dependent variable and its partial derivatives, it is called linear. Otherwise,
it is called nonlinear. If a PDE is such that each of its terms involves either
the dependent variable or its partial derivatives, it is called homogeneous.
Otherwise, it is nonhomogeneous.

Notation: If u = u(x,y), then we use the following brief notations for partial
derivatives:

	
u

u
x

u
u
x

u
u

y x
x xx xy= = =∂

∂
∂
∂

∂
∂ ∂

, ,
2

2

2

The number of spatial coordinates (not time t) determines the dimen-
sion of a PDE. For instance, a PDE with dependent variable u = u(x,y,z) is
three-dimensional. If u = u(x,t) is the dependent variable, then the PDE is
one-dimensional.

In particular, we consider a class of linear, second-order PDEs that appear
in the form

	 au bu cu f x y u u uxx xy yy x y+ + =2 (, , , ,) 	 (10.1)

464 Numerical Methods for Engineers and Scientists Using MATLAB®

A PDE in the form of Equation 10.1 is called elliptic if b2 − ac < 0.
Examples of elliptic PDEs include the two-dimensional Laplace’s equation,
uxx + uyy = 0, and the two-dimensional Poisson’s equation, uxx + uyy = f(x,y).
A parabolic PDE satisfies b2 − ac = 0. The one-dimensional (1D) heat equa-
tion, u ut xx= = >α α2 0 constant() , is an example of a parabolic PDE.
Finally, a PDE is called hyperbolic if b2 − ac > 0. The 1D wave equation,
u utt xx= = >α α2 0 constant(), is a well-known example of a hyperbolic PDE.
Note that in our examples for parabolic and hyperbolic PDEs, the variable t
has replaced y. In applications, when an elliptic PDE is involved, a boundary-
value problem needs to be solved. Those involving parabolic and hyperbolic
types require the solution of a boundary-initial-value problem. We first pres-
ent the numerical solution of elliptic PDEs.

10.2  Elliptic PDEs

When an elliptic equation is to be solved in a specific region in the xy-plane,
and the unknown function is prescribed along the boundary of the region,
we have a Dirichlet problem. For instance, in the case of two-dimensional
heat flow in steady state, temperature u(x,y) is known along the boundary
of the region. On the other hand, a Neumann problem refers to a boundary-
value problem where the normal derivative of u, that is, u u nn = ∂ ∂/ , is given
on the boundary of the region. Note that along a vertical edge of a region,
un is simply u u xx = ∂ ∂/ , and along a horizontal edge, it is u u yy = ∂ ∂/ . The
mixed problem refers to the situation where u is specified on certain parts of
the boundary, and un is specified on the others.

10.2.1  Dirichlet Problem

As a fundamental Dirichlet problem, we consider the solution of the two-
dimensional Poisson’s equation

	 u u f x yxx yy+ = (,) 	 (10.2)

in the rectangular region shown in Figure 10.1, where u(x,y) is assumed to be
known along the boundary. The idea is to define a mesh size h and construct
a grid by drawing equidistant vertical and horizontal lines of distance h.
These lines are called grid lines, and the points at which they intersect are
known as mesh points. Those mesh points that happen to be located on the
boundary are called boundary points. Mesh points that lie inside the region
are called interior mesh points. The goal is to approximate the solution u at
the interior mesh points.

465Numerical Solution of Partial Differential Equations

Let us denote the typical mesh point (x,y) by (ih,jh), simply labeled as (i,j) in
Figure 10.1. The value of u at that point is then denoted by uij. Likewise, f(x,y)
is represented by fij. Approximating the second-order partial derivatives in
Equation 10.1 with three-point central difference formulas (Section 6.2), we
find

	

u u u
h

u u u
h

fi j ij i j i j ij i j
ij

− + − +− +
+

− +
=1 1

2
1 1

2

2 2, , , ,

that simplifies to

	 u u u u u h fi j i j i j i j ij ij− + − ++ + + − =1 1 1 1
24, , , , 	 (10.3)

This is called the difference equation for Poisson’s equation, which pro-
vides a relation between the solution u at (i,j) and four adjacent points.
Similarly, for the Laplace’s equation, uxx + uyy = 0, we find

	 u u u u ui j i j i j i j ij− + − ++ + + − =1 1 1 1 4 0, , , , 	 (10.4)

that is known as the difference equation for Laplace’s equation.
In both cases, the application of the difference equation results in a lin-

ear system of algebraic equations, where the number of unknowns—and
equations—is the number of interior mesh points generated by the grid.
Assuming there are n interior mesh points in the region, this linear system

0
h

h

x

y

Column 0 Column 1 Column i

Row 0

Row j

Row 1

5-Point molecule
ui, j+1

ui, j–1

ui–1, j ui, j ui+1, j

i, j+1

i, j–1

i+1, ji–1, j i, j

Figure 10.1
Grid for a rectangular region and a five-point molecule.

466 Numerical Methods for Engineers and Scientists Using MATLAB®

is in the form Au = b, where An×n is the coefficient matrix, un×1 is the vector of
the unknowns, and bn×1 is composed of known quantities. When at least one
of the adjacent points in the molecule (Figure 10.1) is a boundary point, the
value of u provided by the boundary condition is available and is ultimately
moved to the right side of the equation, hence becoming part of vector b. In
addition to the boundary points, in the case of Poisson’s equation, the terms
h2fij will also be included in b. In practice, a large number of mesh points are
needed for better accuracy, causing the coefficient matrix A to be large. This
matrix is also sparse, with at most five nonzero entries in each of its rows.
A linear system Au = b with a large, sparse coefficient matrix is normally
solved numerically via an indirect method such as the Gauss–Seidel iterative
method (Chapter 4).

The user-defined function DirichletPDE uses the difference-equation
approach outlined above to numerically solve the Poisson’s equation—or
Laplace’s equation—in a rectangular region with the values of the unknown
solution available on the boundary. The function returns the approximate
solution at the interior mesh points, as well as the values at the boundary
points in a pattern that resembles the gridded region. Additionally, it returns
the three-dimensional (3D) plot of the results.

function U = DirichletPDE(x,y,f,uleft,uright,ubottom,utop)
%
% DirichletPDE numerically solves an elliptic PDE with
% Dirichlet boundary conditions over a rectangular
% region.
%
% U = DirichletPDE(x,y,f,uleft,uright,ubottom,utop) where
%
% x is the 1-by-m vector of mesh points in the x
% direction,
% y is the n-by-1 vector of mesh points in the y
% direction,
% f is the inline function defining the forcing
% function which is in terms of x and y, namely,
% f(x,y),
% ubottom(x),utop(x),uright(y),uleft(y) are the
% functions defining the boundary conditions,
%
% U is the solution at the interior mesh points.

m = size(x,2); n = size(y,1); N = (m-2)*(n-2);
A = diag(-4*ones(N,1));    % Create diagonal matrix
A = A + diag(diag(A,n-2)+1,n-2);   % Add n-2 diagonal
A = A + diag(diag(A,2-n)+1,2-n);   % Add 2-n diagonal
d1 = ones(N-1,1);    % Create vector of ones

467Numerical Solution of Partial Differential Equations

Example 10.1:  Dirichlet Problem

The Dirichlet problem in Figure 10.2 describes the steady-state temper-
ature distribution inside a rectangular plate of length 1 and width 2.
Three of the sides are kept at zero temperature, while the lower edge has
a temperature profile of sin (πx/2). Using a mesh size of h = 0.5, construct
a grid and find the approximate values of u at the interior mesh points,
and calculate the relative errors associated with these approximate val-
ues. The exact solution is given by

	
u x y

x y
(,)

sinh()
sin sinh

()= −1
2 2

1
2π

π π
/

d1(n-2:n-2:end) = 0;     % Insert zeros
A = A + diag(d1,1);     % Add upper diagonal
A = A + diag(d1,-1);     % Add lower diagonal
[X Y] = meshgrid(x(2:end-1),y(end-1:-1:2)); % Create mesh
h = x(2)-x(1);
%Define boundary conditions

for i = 2:m-1,
 utopv(i-1) = utop(x(i));
 ubottomv(i-1) = ubottom(x(i));
end
for i = 1:n,
 uleftv(i) = uleft(y(n+1-i));
 urightv(i) = uright(y(n+1-i));
end
% Build vector b

b = 0; % Initialize vector b

for i = 1:N,
 b(i) = h^2*f(X(i),Y(i));
end

b(1:n-2:N) = b(1:n-2:N)-utopv;
b(n-2:n-2:N) = b(n-2:n-2:N)-ubottomv;
b(1:n-2) = b(1:n-2)-uleftv(2:n-1);
b(N-(n-3):N) = b(N-n+3:N)-urightv(2:n-1);

u = A\b'; % Solve the system
U = reshape(u,n-2,m-2);
U = [utopv;U;ubottomv];
U = [uleftv' U urightv'];
 [X Y] = meshgrid(x,y(end:-1:1));
 surf(X,Y,U); % 3D plot of the numerical results
xlabel('x');ylabel('y');

468 Numerical Methods for Engineers and Scientists Using MATLAB®

Solution

There are three interior mesh points and eight boundary points on the
grid. Therefore, the difference equation, Equation 10.4, must be applied
three times, once at each interior mesh point. As a result, we have

	

(,)

(,)

i j u u u u u

i j u u u u

= = + + + − =

= = + + + −

1 1 4 0

2 1

01 10 21 12 11

11 20 31 22

 44 0

3 1 4 0

21

21 30 41 32 31

u

i j u u u u u

=

= = + + + − =(,)

Included in these equations are the values at the boundary points

	 u u u u u u u u12 22 32 01 41 10 30 200 1= = = = = = = =, 0.7071 ,

Inserting these into the system of equations, we find

	

− + = −
− + = −

4
4 1

11 21

11 21 31

u u

u u u

 0.7071

 0.7071

In matrix form

u u21 314

4 1 0
1 4 1
0 1 4− = −

⇒
−

−
−

































=
−

−
−

















u

u

u

11

21

31

1
0.7071

0.7071 	

The solution of this system yields u11 = 0.2735 = u31 and u21 = 0.3867.
The exact values at these points are calculated as u11 = 0.2669 = u31 and
u21 = 0.3775, recording relative errors of 2.47% and 2.44%, respectively.
The estimates turned out reasonably accurate considering the large mesh
size that was used. Switching to a smaller mesh size of h = 0.25, for exam-
ple, generates a grid that includes 21 interior mesh points and 20 bound-
ary points. The ensuing linear system then comprises 21 equations and 21
unknowns, whose solutions are more accurate than those obtained here.

Executing the user-defined function DirichletPDE confirms the ear-
lier numerical results. Note that the plot has been suppressed.

>> x = 0:0.5:2; % x must be 1-by-m
>> y = 0:0.5:1; y = y'; % y must be n-by-1
>> f = inline('0','x','y');

h = 0.5

x

yy

x

uxx + uyy = 0

0 2

1

u = 0

u = 0

u = 0

u = sin(x/2) 0

u12

u01 u11

u10 u20 u30

u21 u31
u41

u22 u32

h

π

Figure 10.2
Dirichlet problem in Example 10.1.

469Numerical Solution of Partial Differential Equations

>> ubottom = inline('sin(pi*x/2)');
>> utop = inline('0','x'); uleft = inline('0','y');
uright = inline('0','y');
 >> U = DirichletPDE(x,y,f,uleft,uright,ubottom,utop)

U =
 0 0 0 0 0
 0 0.2735 0.3867 0.2735 0
 0 0.7071 1.0000 0.7071 0

The three shaded values are the solution estimates at the interior mesh
points, which agree with those obtained earlier. All other values corre-
spond to the boundary points in the grid used. For plotting purposes, we
reduce the mesh size to h = 0.1 and execute the function a second time, this
time suppressing the numerical results with plot shown in Figure 10.3.

>> x = 0:0.1:2;
>> y = 0:0.1:1; y = y';
>> f = inline('0','x','y');
>> ubottom = inline('sin(pi*x/2)');
>> utop = inline('0','x'); uleft = inline('0','y');
uright = inline('0','y');
>> U = DirichletPDE(x,y,f,uleft,uright,ubottom,utop)

10.2.2 A lternating Direction-Implicit Methods

In the foregoing analysis, application of the difference equation for either
Poisson’s equation or Laplace’s equation at the interior mesh points led to a

0
0.5

1
1.5

2

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

xy

Figure 10.3
Steady-state temperature distribution in Example 10.1, using h = 0.1.

470 Numerical Methods for Engineers and Scientists Using MATLAB®

linear system of equations whose coefficient matrix had at most five nonzero
entries in each row. A small mesh size results in a large, sparse coefficient
matrix. Although these types of matrices are desirable, the computations can
be made even more efficient if they are tridiagonal (Section 4.3), namely, if
they have at most three nonzero entries in each row.

The goal is thus to develop a scheme that leads to a system of equations
with a tridiagonal coefficient matrix. We will present the idea while focus-
ing on the Laplace’s equation in a rectangular region. Suppose a mesh size
h generates N internal mesh points per row and M internal mesh points per
column. Equation 10.4 takes into account the five elements of the five-point
molecule (Figure 10.1) all at once. That is, the elements u u ui j ij i j− +1 1, ,, , along the
jth row and u u ui j ij i j, ,, ,− +1 1 along the ith column, with uij as the common ele-
ment. Since we are aiming for a tridiagonal matrix, we write Equation 10.4 as

	 u u u u ui j ij i j i j i j− + − +− + = − −1 1 1 14, , , , 	 (10.5)

so that the members on the left side belong to the jth row and those on the
right side belong to the ith column. Equation 10.4 may also be rewritten as

	 u u u u ui j ij i j i j i j, , , ,− + − +− + = − −1 1 1 14 	 (10.6)

with the left-side terms belonging to the ith column and the right-side terms
to the jth row. Alternating direction-implicit (ADI) methods use this basic
idea to solve the Dirichlet problem iteratively. A complete iteration step con-
sists of two halves. In the first half, Equation 10.5 is applied in every row
in the grid. In the second half, Equation 10.6 is applied in every column of
the grid. The most commonly used ADI method is the one proposed by
Peaceman and Rachford, sometimes referred to as Peaceman–Rachford
alternating direction-implicit method (PRADI).

10.2.2.1  Peaceman–Rachford Alternating Direction-Implicit Method

Choose the arbitrary starting value uij
()0 at each interior mesh point (i,j). The

first iteration has two halves. In the first half, update the values of uij row by
row, in a manner suggested by Equation 10.5

	

j j M

u u u ui j ij i j i j

th row ()=

− + = −− +

1 2

41
1 2 1 2

1
1 2

, , ,

,
(/) (/)

,
(/)

,

…

−− +− =1
0

1
0 1 2()
,

() , , , ,u i Ni j …
	 (10.7)

Note that some of the u values are the known boundary values, which
are not affected by the starting values and remain unchanged throughout
the process. For each fixed j, one row, Equation 10.7 produces N equations.
Since there are M rows, a total of MN equations will be generated. This

471Numerical Solution of Partial Differential Equations

system has a tridiagonal coefficient matrix, by design, which can then be
solved efficiently using the Thomas method (Section 4.3). The solution at
this stage represents the half-updated values with the superscript of (1/2).

In the second half, the values of uij
()1 2/ will be updated column by column,

as suggested by Equation 10.6

	

i i N

u u u ui j ij i j i j

th column (, , ,)

,
() ()

,
()

,
(

=

− + = −− + −

1 2

41
1 1

1
1

1
1

…

//)
,

(/) , , , ,2
1

1 2 1 2− =+u j Mi j …
	 (10.8)

For each fixed i, one column, Equation 10.8 produces M equations. Once
again, the values at the boundary points are not affected and remain
unchanged. Since there are N columns, a total of MN equations will be gen-
erated. This system also has a tridiagonal coefficient matrix, which can be
solved efficiently using the Thomas method. The solution at this stage rep-
resents the updated values with the superscript of (1). This completes the
first iteration. The second iteration has two halves. In the first half

	

j j M

u u u ui j ij i j i j

th row ()=

− + = −− +

1 2

41
3 2 3 2

1
3 2

, , ,

,
(/) (/)

,
(/)

,

…

−− +− =1
1

1
1 1 2()
,

() , , , , ,u i Ni j …

generates a system of MN equations with a tridiagonal coefficient matrix. In
the second half

	

i i N

u u u ui j ij i j i j

th column (, , ,)

,
() ()

,
()

,
(

=

− + = −− + −

1 2

41
2 2

1
2

1
3

…

//)
,

(/) , , , ,2
1

3 2 1 2− =+u j Mi j …

that also generates a system of MN equations with a tridiagonal coefficient
matrix. The solution gives the updated values with the superscript of (2). The
procedure is repeated until convergence is observed. This, of course, requires
a terminating condition. One reasonable terminating condition is as follows.
Assemble the values at the interior mesh points into a matrix, with the same
configuration as the grid. If the norm of the difference between two succes-
sive matrices is less than a prescribed tolerance, terminate the iterations.

The user-defined function PRADI uses the Peaceman–Rachford ADI
method to numerically solve the Poisson’s equation—or Laplace’s equation—
in a rectangular region with the values of the unknown solution available
on the boundary. The function returns the approximate solution at the inte-
rior mesh points, as well as the values at the boundary points in a pattern
that resembles the gridded region. Additionally, it returns the 3D plot of the
results.

472 Numerical Methods for Engineers and Scientists Using MATLAB®

function [U, k] = PRADI(x,y,f,uleft,uright,ubottom,utop,
tol,kmax)
%
% PRADI numerically solves an elliptic PDE with
% Dirichlet boundary conditions over a rectangular
% region using the Peaceman-Rachford alternating
% direction implicit method.
%
%  [U,k] = PRADI(x,y,f,uleft,uright,ubottom,utop,tol,
% kmax) where
%
% x is the 1-by-m vector of mesh points in the
% x direction,
% y is the n-by-1 vector of mesh points in the
% y direction,
% f is the inline function defining the forcing
% function,
% ubottom,uleft,utop,uright are the functions
% defining the boundary conditions,
% tol is the tolerance used for convergence
%   (default = 1e-4),
% kmax is the maximum number of iterations
%   (default = 50),
%
% U is the solution at the mesh points,
% k is the number of full iterations needed to meet
% the tolerance.
%
% Note: The default starting value at all mesh points
% is 0.5.
%
if nargin<9 || isempty(kmax), kmax = 50; end
if nargin<8 || isempty(tol), tol = 1e-4; end
 [X Y] = meshgrid(x(2:end-1),y(2:end-1));
% Create messh grid
m = size(X,2); n = size(X,1); N = m*n;
u = 0.5*ones(n,m); % Starting values
h = x(2)-x(1);    % Mesh size
% Define boundary conditions
for i = 2:m+1,
 utopv(i-1) = utop(x(i));
 ubottomv(i-1) = ubottom(x(i));
end
 for i = 1:n+2,
 uleftv(i) = uleft(y(i));
 urightv(i) = uright(y(i));
  end

473Numerical Solution of Partial Differential Equations

U = [ubottomv;u;utopv]; U = [uleftv' U urightv'];
% Generate matrix A1 (first half) and A2 (second half).
A = diag(-4*ones(N,1));
d1 = diag(A,1)+1; d1(m:m:N-1) = 0;
d2 = diag(A,-1)+1; d2(n:n:N-1) = 0;
A2 = diag(d2,1)+diag(d2,-1)+A;
A1 = diag(d1,1)+diag(d1,-1)+A;
U1 = U;
for  i = 1:N, % Initialize vector b
  b0(i) = h^2*f(X(i),Y(i));
end
b0 = reshape(b0,n,m);
for k = 1:kmax,
 % First half
 b = b0-U1(1:end-2,2:end-1)-U1(3:end,2:end-1);
 b(:,1) = b(:,1)-U(2:end-1,1);
 b(:,end) = b(:,end)-U(2:end-1,end);
 b = reshape(b',N,1);
 u = ThomasMethod(A1,b);
 % Tridiagonal system - Thomas method
 u = reshape(u,m,n);
 U1 = [U(1,2:end-1);u';U(end,2:end-1)];
 U1 = [U(:,1) U1 U(:,end)];
 % second half
 b = b0-U1(2:end-1,1:end-2)-U1(2:end-1,3:end);
 b(1,:) = b(1,:)-U(1,2:end-1);
 b(end,:) = b(end,:)-U(end,2:end-1);
 b = reshape(b,N,1);
 u = ThomasMethod(A2,b);
 % Tridiagonal system - Thomas method
 u = reshape(u,n,m);
 U2 = [U(1,2:end-1);u;U(end,2:end-1)];
 U2 = [U(:,1) U2 U(:,end)];
 if norm(U2-U1,inf)<=tol, break, end;
 U1 = U2;
end
[X Y] = meshgrid(x,y);
U = U1;

for i = 1:n+2,
 W(i,:) = U(n-i+3,:);
 YY(i) = Y(n-i+3);
end
 U = W; Y = YY;
 surf(X,Y,U);
xlabel('x');ylabel('y');

474 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 10.2:  PRADI Method

For the Dirichlet problem described in Figure 10.4

	 a.	 Perform one complete step of the PRADI method using h = 1
and the starting values of 0.5 for all interior mesh points.

	 b.	 Solve the Dirichlet problem using the user-defined function
PRADI with default parameter values.

Solution

	 a.	 First half: There are two rows and two columns in the grid, and
a total of four interior mesh points. Equation 10.7 is first applied
in the first row (j = 1). Since there are two mesh points in this
row, Equation 10.7 is applied twice:

	
j

i u u u u u

i u u
=

= − + = − −
= −

1
()
()

(/) (/) ()

(/)

1 4
2 4

01 11
1 2

21
1 2

10 12
0

11
1 2

221
1 2

31 20 22
0(/) ()+ = − −u u u 	

(10.9)

Note that we have omitted superscripts for boundary values because
they remain unchanged. We next apply Equation 10.7 at the two mesh
points along the second row (j = 2):

	
j

i u u u u u

i u u
=

= − + = − −
= −

2
1 4
2 4

02 12
1 2

22
1 2

11
0

13

12
1 2

()
()

(/) (/) ()

(/)
222
1 2

32 21
0

23
(/) ()+ = − −u u u 	

(10.10)

Combining Equations 10.9 and 10.10, and using the available boundary
values as well as the starting values, we arrive at

h = 1

x

yy

x0 3

3

u = 0

u = 0

u = 0

u = sin(x/3) 0

u13

u12 u22

u11 u21

u10 u20

u32

u31

u23

h

u02

u01

j = 2

j = 1

i = 1 i = 2

uxx + uyy = 0

π

Figure 10.4
Dirichlet problem in Example 10.2.

475Numerical Solution of Partial Differential Equations

	

−
−

−
−





















4 1 0 0
1 4 0 0
0 0 4 1
0 0 1 4

11
1 2

21
1 2

12
1 2

u

u

u

(/)

(/)

(/)

uu22
1 2(/)





















=

−
−

−
−



















1.3660
1.3660

0.5
0.5




= =⇒
Solve the tridiagonal system u u

u
11
1 2

21
1 2

1

(/) (/)0.4553

22
1 2

22
1 2(/) (/)= =0.1667 u

	

Second half: Equation 10.8 is applied in the first column (i = 1). Since
there are two mesh points in this column, it is applied twice:

	
i

j u u u u u

j u u
=

= − + = − −
= −

1
1 4
2 4

10 11
1

12
1

01 21
1 2

11
1

12
1

()
()

() () (/)

() ()) (/)+ = − −u u u13 02 22
1 2

	
(10.11)

We next apply Equation 10.8 at the two mesh points along the second
column (i = 2):

	
i

j u u u u u

j u u
=

= − + = − −
= −

2
1 4
2 4

20 21
1

22
1

11
1 2

31

21
1

22
1

()
()

() () (/)

() ()) (/)+ = − −u u u23 12
1 2

32 	
(10.12)

Combining Equations 10.11 and 10.12, and using the available bound-
ary values as well as the updated values from the previous half iteration,
we arrive at

	

−
−

−
−





















4 1 0 0
1 4 0 0
0 0 4 1
0 0 1 4

11
1

12
1

21
1

22
1

u

u

u

u

()

()

()

()





















=

−
−
−
−





















1.3213
0.1667
1.3213
0.1667

⇒⇒ = =
=

Solve the tridiagonal system u u

u
11
1

21
1

12
1

() ()

()

0.3635
0..1325 = u22

1()

	

	 b.	 Executing the user-defined function PRADI (with default
parameters) yields the solution estimates at the interior mesh
points. Note that the plot has been suppressed.

>> x = 0:1:3;
>> y = 0:1:3; y = y';
>> f = inline('0','x','y');
>> ubottom = inline('sin(pi*x/3)');
>> utop = inline('0','x'); uleft = inline('0','y');
uright = inline('0','y');
>> [U, k] = PRADI(x,y,f,uleft,uright,ubottom,utop)

U =
 0 0 0 0
 0 0.1083 0.1083 0
 0 0.3248 0.3248 0
 0 0.8660 0.8660 0

k =
5   % Five iterations required for convergence

476 Numerical Methods for Engineers and Scientists Using MATLAB®

Therefore, convergence occurs after five iterations. The numerical
results obtained in (a) can be verified by letting the function PRADI per-
form only one iteration. Setting kmax = 1 and executing the function
results in

>> [U, k] = PRADI(x,y,f,uleft,uright,ubottom,utop,1e-4,1)
U =

 0 0 0 0
 0 0.1325 0.1325 0
 0 0.3635 0.3635 0
 0 0.8660 0.8660 0

k =
1

The numerical values for u u u u11
1

21
1

12
1

22
1() () () (), , , agree with those in (a).

10.2.3  Neumann Problem

In the formulation of the Neumann problem (Figure 10.5), the values of the
normal derivatives of u are prescribed along the boundary. As before, we
are focusing on the Laplace’s equation in a rectangular region. In solving
the Dirichlet problem, the objective was to find the solution estimates at
all the interior mesh points by taking advantage of the known values of
u along the boundary. In solving the Neumann problem, u is no longer
available on the boundary; hence, the boundary points become part of the
unknown vector.

Suppose the difference equation, Equation 10.4, is applied at the (3,3) mesh
point:

	
u u u u u23 32 33 43 344 0+ − + + =

Interior mesh points Boundary points

	
(10.13)

x

yy

x

uxx + uyy = 0

0 a

b

0
h

u35

u24

u13 u23 u33

u12 u22 u32

u11 u21 u31

u43

u42

u53

u34
u44

u/ y = g(x)

u/ x = J(y) u/ x = k(y)

u/ y = f (x)

h

∂ ∂

∂ ∂

∂ ∂

∂ ∂

Figure 10.5
Neumann problem.

477Numerical Solution of Partial Differential Equations

The three interior mesh points are part of the unknown vector. Since the
boundary values u43 and u34 are not available, they must also be included in
the unknown vector. Similar situations arise when we apply Equation 10.4
at near-boundary points. However, inclusion of all boundary points that lie
on the grid in the unknown vector substantially increases the size of the
unknown vector. For example, in Figure 10.5, there are 25 unknowns: 9 in
the interior and 16 on the boundary. But since Equation 10.4 is applied at the
interior mesh points, there are as many equations as there are interior mesh
points. In Figure 10.5, for example, there will only be 9 equations, while there
are 25 unknowns. Therefore, several more equations are needed to com-
pletely solve the ensuing system of equations.

To generate these additional (auxiliary) equations, we apply Equation 10.4
at each of the marked boundary points. Since we are currently concentrating
on u43 and u34, we apply Equation 10.4 at these two points:

	

u u u u u

u u u u u
24 44 35 33 34

42 44 53 33 43

4 0
4 0

+ + + − =
+ + + − = 	

(10.14)

In Equation 10.14, there are two quantities that are not part of the grid and
need to be eliminated: u53 and u35. We will do this by extending the grid
beyond the boundary of the region, and using the information on the vertical
and horizontal boundary segments they are located on. At the (3,4) boundary
point, we have access to ∂u/∂y = g(x). Let us call it g34. Applying the two-point
central difference formula (Section 6.2) at (3,4), we have

	

∂
∂
u
y

g
u u

h
u u hg

u

(,)3 4

34
35 33

35 33 342
2

35

= = − = +⇒
Solve for

Similarly, at (4,3)

	

∂
∂
u
x

k
u u

h
u u hk

u

(,)4 3
43

53 33
53 33 432

2
53

= = − = +⇒
Solve for

Substitution of these two relations into Equation 10.14 creates two new
equations that involve only the interior mesh points and the boundary
points. To proceed with this approach, we need to assume that the Laplace’s
equation is valid beyond the rectangular region, at least in the exterior area
that contains the newly produced points such as u53 and u35. If we continue
with this strategy, we will end up with a system containing as many equa-
tions as the total number of interior mesh points and the boundary points.
In Figure 10.5, for instance, the system will consist of 25 equations and 25
unknowns.

478 Numerical Methods for Engineers and Scientists Using MATLAB®

10.2.3.1  Existence of Solution for Neumann Problem

Existence of solution for Neumann problem entirely depends on the nature
of the normal derivatives u u nn = ∂ ∂/ prescribed along different portions of
the boundary. In fact, no solution is possible unless the line integral of the
normal derivative taken over the boundary is zero:

	

∂
∂
u
n
ds

C
∫ = 0

	

(10.15)

Example 10.3:  Neumann Problem

Consider the Neumann problem described in Figure 10.6 where the
grid is constructed with h = 1. Using the approach outlined above, 12
unknowns are generated: 2 interior mesh points, 10 boundary points.

First, the condition for existence of solution, Equation 10.15, must be
examined. Let the bottom edge of the region be denoted by C1, and con-
tinuing counterclockwise, let the rest of the edges be denoted by C2, C3,
and C4. Then, it can be shown that (verify)

	

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u
n
ds

u
n
ds

u
n
ds

u
n
ds

u
n
ds

x dx y

C C C C C
∫ ∫ ∫ ∫ ∫

∫

= + + +

= +

1 2 3 4

0

3

0

22

0

3

0

2

1 1 1 0∫ ∫ ∫− + − − = − ≠dy x dx y dy() ()

	

Therefore, the problem described in Figure 10.6 does not have a solu-
tion. In fact, if we had proceeded with the strategy introduced earlier,
we would have obtained a 12 × 12 system of equations with a singular
coefficient matrix.

y

x
3

2

0

u/ y = x + 1

u/ y = x

∂u/∂x = y –1 u/ x = yuxx + uyy = 0

u03

u–1,2

u–1,1

u–1,0

u13 u23 u33

u02 u12 u22 u32
u42

u41

u40

u01 u11 u21 u31

u00 u10 u20 u30

u0, –1 u1, –1 u2, –1 u3,–1

∂ ∂

∂ ∂

∂ ∂

Figure 10.6
Neumann problem in Example 10.3.

479Numerical Solution of Partial Differential Equations

10.2.4  Mixed Problem

The mixed problem refers to the case when u is prescribed along some por-
tions of the boundary, while u u nn = ∂ ∂/ is known on the other portions. The
numerical solution of these types of problems involves the same idea as in
the case of the Neumann problem, with a lower degree of complexity. This
is because un is dealt with only on certain segments of the boundary; hence,
the region does not need to be entirely extended. Consequently, the linear
system to be solved is not as large either.

Example 10.4:  Mixed Problem

Solve the mixed problem described in Figure 10.7 using the grid with
h = 1.

Solution

Since the Dirichlet boundary conditions are prescribed along the left,
lower, and upper edges, no extension of region is needed there. The only
extension pertains to the (3,1) mesh point, where u itself is unknown,
resulting in the creation of u41. Application of Equation 10.4 at the two
interior mesh points, as well as at (3,1), yields

	

(,)
(,)
(,

1 1 4 0
2 1 4 0
3 1

01 10 21 12 11

11 20 31 22 21

u u u u u

u u u u u

+ + + − =
+ + + − =

)) u u u u u21 30 41 32 314 0+ + + − = 	

(10.16)

To eliminate u41, we use the two-point central difference formula at (3,1):

	

∂
∂
u
x

y
u u

u u
u

(,)
(,)

3 1
3 1

41 21
41 212 2

2
4

41

=   = = − = +⇒Solve for

y

x
0 3

2

u = 0

u = 2x2

u = 0

u/ x = 2yuxx + uyy = 0

u12 u22 u32

u11 u21 u31

u10

u01 u41

u20 u30

∂ ∂

Figure 10.7
Mixed problem in Example 10.4.

480 Numerical Methods for Engineers and Scientists Using MATLAB®

Substitution of u41 = u21 + 4, as well as the boundary values provided by
boundary conditions, into Equation 10.16 yields

	

u u

u u u

u

21 11

11 31 21

2

2 4 0
8 4 0

+ − =
+ + − =

11 21 31

11

4 18 4 0

4 1 0
1 4 1
0 2 4+ + + − =

⇒
−

−
−















()u u

u

u
Matrix form

221

31

11

21

2
8
22u

u

u

















=
−
−
−

















⇒
=
=

Solve
1.5769
4.30777
7.6538u31 =

10.2.5  More Complex Regions

Up to now, we have investigated boundary-value problems for elliptic PDEs
in regions with relatively simple shapes, specifically, rectangular regions.
As a result, it was possible to suitably adjust the grid so that some of the
mesh points are located on the boundary of the region. But, in many appli-
cations, the geometry of the problem is not as simple as a rectangle and, as
a result, the boundary of the region crosses the grid at points that are not
mesh points.

Consider, for example, the problem of solving Laplace’s equation,
uxx + uyy = 0, in the region shown in Figure 10.8a. The region has an irregular
boundary in that the curved portion intersects the grid at points A and B,
neither of which is a mesh point. The points M and Q are treated as before
because each has four adjacent mesh points that are located on the grid. But,
a point such as P must be treated differently since two of its adjacent points,
A and B, are not on the grid. Therefore, the objective is to derive expressions
for uxx(P) and uyy(P), at mesh point P, to form a new difference equation for the
Laplace’s equation. Assume that A is located at a distance of αh to the right of
P, and B is at a distance of βh above P. Write the Taylor’s series expansion for

y

x

M

(a) (b)

P

NQ

B

A

h

h

Not on the grid

y

x

h

hβhβ

αhα

ui, j+1

ui, j–1

ui, j
ui+1, jui–1, j

Figure 10.8
Region with an irregular boundary: (a) grid, (b) mesh points.

481Numerical Solution of Partial Differential Equations

u at the four points A, B, M, and N about the point P. For example, u(M) and
u(A) are expressed as

	
u M u P h

u P
x

h
u P
x

() ()
()

!
()= − + −∂

∂
∂

∂
1
2

2
2

2 
	

(10.17)

	
u A u P h

u P
x

h
u P
x

() () ()
()

!
()

()= + + +α ∂
∂

α ∂
∂

1
2

2
2

2 
	

(10.18)

Multiply Equation 10.17 by α and add the result to Equation 10.18, while
neglecting the terms involving h2 and higher:

	
u A u M u P

h u P
x

() () () ()
()+ ≅ + + +α α α α ∂

∂
1

2

2 2

2(1)

Solving for ∂ ∂2 2u P x()/ , we find

	

∂
∂ α α α α

2

2 2

2 1
1

1
1

1u P
x h

u A u M u P
()

()
() () ()=

+
+

+
−











	
(10.19)

Similarly, expanding u(N) and u(B) about P, and proceeding as above,
yields

	

∂
∂ β β β β

2

2 2

2 1
1

1
1

1u P
y h

u B u N u P
()

()
() () ()=

+
+

+
−











	
(10.20)

Addition of Equations 10.19 and 10.20 gives

	

u P u P
h

u A u B u M

u

xx yy() ()
()

()
()

() ()+ =
+

+
+

+
+




+
+

2 1
1

1
1

1
1

1
1

2 α α β β α

β
(() ()N u P− +












1 1
α β

	
(10.21)

If the Laplace’s equation is solved, then Equation 10.21 yields

2
1

2
1

2
1

2
1

2
0

α α β β α β
α β
αβ()

()
()

() () ()
()

()
+

+
+

+
+

+
+

− + =u A u B u M u N u P

� (10.22)

482 Numerical Methods for Engineers and Scientists Using MATLAB®

With the usual notations involved in Figure 10.8b, the difference equation
is obtained by rewriting Equation 10.22 as

	

2
1

2
1

2
1

2
1

2
1 1 1 1α α β β α β

α β
αβ() ()

()
, , , ,+

+
+

+
+

+
+

− +
+ + − −u u u ui j i j i j i j uui j, = 0

� (10.23)

The case of Poisson’s equation can be handled in a similar manner.
Equation 10.23 is applied at any mesh point that has at least one adjacent
point not located on the grid. In Figure 10.8a, for example, that would be
points P and N. For the points M and Q, we simply apply Equation 10.4, as
before, or we equivalently apply Equation 10.23 with α = 1 = β.

Example 10.5:  Irregular Boundary

Solve uxx + uyy = 0 in the region shown in Figure 10.9 subject to the given
boundary conditions. The slanting segment of the boundary obeys
y x= − +2

3 2.

Solution

On the basis of the grid shown in Figure 10.9, Equation 10.4 can be
applied at mesh points (1,1), (2,1), and (1,2) because all four neighboring
points at those mesh points are on the grid. Using the boundary condi-
tions provided, the resulting difference equations are

	

 9.5

1 4 4 0

7 4 0

1 4

12 21 11

11 22 21

11
1
3 22 12

+ + + − =

+ + + − =

+ + + −

u u u

u u u

u u u == 0 	

(10.24)

h

y

x

u = 1

u = 1 –
(a) (b)

u = 8x2 – 6x

u = 10 – y

u = 6x + 1 h = 0.5
1.510.50

0.5

1

1.5
y

x

u13

u12

u11 u21

u22

u23

u32

u31
u01

u10 u20

u02

3
4 x

Figure 10.9
Example 10.5: (a) grid, (b) mesh points.

483Numerical Solution of Partial Differential Equations

However, at (2,2), we need to use Equation 10.23. From the equation of
the slanting segment, we find that point A is located at a vertical distance
of 1

3 from the (2,2) mesh point. Noting that h = 1
2 , we find β = 2

3 . On
the other hand, α = 1 since the neighboring point to the right of (2,2) is a
mesh point. With these, Equation 10.23 yields

	
9

2
2

2 2 1
0

2
3

5
3

12 5
3

21

2
3

2
3

22+
⋅

+ + − + =()
()

u u u

Combining this with Equation 10.24 and simplifying

	

−
−

−
−




































4 1 1 0
1 4 0 1
1 0 4 1
0 1 5

11

21

12

221.2

u

u

u

u







=

−
−

−
−





















⇒

=
=

5 11

2116.5
1.3333
12.6

3.3354
6.06

u

u 666
2.2749
4.4310

u

u
12

22

=
=

10.3  Parabolic PDEs

In this section, we present two techniques for the numerical solution of para-
bolic PDEs: finite-difference (FD) method and Crank–Nicolson (CN) method.
In both cases, the objective remains the same as before, namely, derive a
suitable difference equation that can be used to generate solution estimates
at mesh points. Contrary to the numerical solution of elliptic PDEs, there is
no assurance that the difference equations for parabolic equations converge,
regardless of the grid size. In these situations, it turns out that convergence
can be guaranteed as long as some additional conditions are imposed.

10.3.1  Finite-Difference (FD) Method

The 1D heat equation, u ut xx= = >α α2 0 constant(), is the simplest model
of a physical system involving a parabolic PDE. Specifically, consider a later-
ally insulated wire of length L with its ends kept at zero temperature, and
subjected to the initial temperature along the wire prescribed by f(x). The
boundary-initial-value problem at hand is

	 u u x L tt xx= = > ≤ ≤ ≥α α2 0 0 0 constant(), , 	 (10.25)

	 u t u L t(,) (,)0 0= = 	 (10.26)

	 u x f x(,) ()0 = 	 (10.27)

484 Numerical Methods for Engineers and Scientists Using MATLAB®

Figure 10.10 shows that a grid is constructed using a mesh size of h in
the x-direction and a mesh size of k in the t-direction. As usual, the partial
derivatives in Equation 10.25 must be replaced by their FD approximations.
The term uxx is approximated by the three-point central difference formula
(Section 6.2). For the term ut, however, we must use the two-point forward-
difference formula, as opposed to the more accurate central difference for-
mula. This is because starting at t = 0 (the x-axis), we are only able to progress
in the positive direction of the t-axis and we have no knowledge of u(t) when
t < 0. Consequently, Equation 10.25 yields

	

1
21

2

2 1 1
k
u u

h
u u ui j ij i j i j i j() (), , , ,+ − +− = − +α

	
(10.28)

Referring to the four-point molecule in Figure 10.10, knowing ui−1,j, ui,j, and
ui+1,j, we can find ui,j+1 at the higher level on the t-axis, via

	
u

k
h

u
k
h

u ui j i j i j i j, , , ,()+ − += −








 + +1

2

2

2

2 1 11
2 α α

that can be simplified to

	
u r u r u u r

k
h

i j ij i j i j, , ,() (),+ − += − + + =1 1 1

2

21 2
α

	
(10.29)

0
h

k

x

t

i, j + 1

i – 1, j i + 1, j i, j

Column 0 Column i
Row 0

Row j

4-Point molecule

u = 0

u = f (x)

u = 0

ui–1, j ui+1, jui, j

ui, j+1

Figure 10.10
Region and grid used for solving the 1D heat equation.

485Numerical Solution of Partial Differential Equations

and is known as the difference equation for the 1D heat equation using the
FD method.

10.3.1.1  Stability and Convergence of the FD Method

What is meant by convergence is that the approximate solution tends to the
actual solution as the computational grid gets very fine, that is, as h,k → 0. A
numerical method is said to be stable if any small changes in the initial data
result in small changes in the subsequent data, or errors such as round-off
introduced at any time remain bounded throughout. It can then be shown that
the FD method outlined in Equation 10.29 is both stable and convergent if*

	
r

k
h

= ≤α 2

2

1
2 	

(10.30)

and is unstable and divergent when r > 1
2 .

The user-defined function Heat1DFD uses the FD approach to solve the 1D
heat equation subject to zero-boundary conditions and a prescribed initial
condition. The function returns a failure message if the ratio r k h= >α 2 2 1

2/ .
The function returns the approximate solution at the interior mesh points,
as well as the values at the boundary points in a pattern that resembles the
gridded region rotated 90° clockwise.

*	 For details, refer to R.L. Burden and J.D. Faires, Numerical Analysis. 3rd edition, Prindle,
Weber, and Schmidt, 1985.

function u = Heat1DFD(t,x,u,alpha)
%
% Heat1DFD numerically solves the one-dimensional heat
% equation, with zero boundary conditions, using the
% finite-difference method.
%
% u = Heat1DFD(t,x,u,alpha) where
%
% t is the row vector of times to compute,
% x is the column vector of x positions to compute,
% u is the column vector of initial temperatures for
% each value in x,
% alpha is a given parameter of the PDE,
%
% u is the solution at the mesh points.

u = u(:); % u must be a column vector
k = t(2)-t(1);
h = x(2)-x(1);
r = (alpha/h)^2*k;

486 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 10.6:  Finite-Difference Method: 1D Heat Equation

Consider a laterally insulated wire of length L = 1 and α = 0.5, whose
ends are kept at zero temperature, subjected to the initial temperature
f(x) = 10sinπx. Compute the approximate values of temperature, u(x,t),
0 ≤ x ≤ 1, and 0 ≤ t ≤ 0.5, at mesh points generated by h = 0.25 and k = 0.1.
All parameter values are in consistent physical units. The exact solution
is given as

	 u x t x e t(,) (sin)= −10
2

π π0.25

Solution

We first calculate

	
r

k
h

= = = <α 2

2

2

2

1
2

()()
()

0.1 0.5
0.25

0.4

that signifies stability and convergence for the FD method described by
Equation 10.29. With r = 0.4, Equation 10.29 reduces to

	 u u u ui j ij i j i j, , ,()+ − += + +1 1 10.2 0.4 	 (10.31)

and will help generate approximate solutions at the mesh points marked
in Figure 10.11. The first application of Equation 10.31 is at the (1,0) posi-
tion so that

	
u u u u11 10 00 20= + + = +0.2 0.4 0.2 0.7071 0

boundary
 values

using

() () ..4 5.4142()0 10+ =

It is next applied at (2,0) to find u21, and at (3,0) to find u31. This way,
the values at the three mesh points along the time row j = 1 are all

if r  > 0.5
 warning('Method is unstable and divergent. Results will
be inaccurate.')
end

i = 2:length(x)-1;
for j = 1:length(t)-1,
 u(i,j+1) = (1-2*r)*u(i,j) + r*(u(i-1,j)+u(i+1,j));
end

487Numerical Solution of Partial Differential Equations

determined. Subsequently, Equation 10.31 is applied at the three mesh
points on the current row (j = 1) to find the values at the next time
level, j = 2, and so on. Continuing with this strategy, we will generate
the approximate values shown in Figure 10.11. It is interesting to note
that at the first time row, we are experiencing relative errors of around
2%, but this grows to about 9.63% by the time we arrive at the fifth
time level.

The numerical results obtained in this manner can be readily verified
by executing the user-defined function Heat1DFD:

>> t = 0:0.1:0.5;
>> x = 0:0.25:1; x = x';
>> u = 10.*sin(pi*x);
>> u = Heat1DFD(t,x,u,0.5)
u =
 0 0 0 0 0 0
 7.0711 5.4142 4.1456 3.1742 2.4304 1.8610
 10.0000 7.6569 5.8627 4.4890 3.4372 2.6318
 7.0711 5.4142 4.1456 3.1742 2.4304 1.8610
 0.0000 0 0 0 0 0

10.3.2  Crank–Nicolson (CN) Method

The condition r k h= ≤α 2 2 1
2/ , required by the FD method for stability and

convergence, could lead to serious computational problems. For example,
suppose α = 1 and h = 0.2. Then, r ≤ 1

2 imposes k ≤ 0.02, requiring too many
time steps. Moreover, reducing the mesh size h by half to h = 0.1 increases
the number of time steps by a factor of 4. Generally, to decrease r, we must
either decrease k or increase h. Decreasing k forces additional time levels to
be generated that increases the amount of computations. Increasing h causes
a reduction of accuracy.

x

t

k = 0.1

h = 0.25

0

0.1

0.2
u = 0

0.3

0.4

0.5

0.25 0.5 0.75 1
u = 10 sin πx

u = 0

u15

u14

u13

u12

u11

u25

u24

u23

u22

u21

u15

u14

u13

u12

u11

x

t

0 7.0711 10.0000 0

5.4142

(5.5249)

Relative
errors

5.4142
(5.5249)

7.6569

(7.8134)

4.1456 5.8628 4.1456

3.1742 4.4890

2.4305

3.1742

Exact

2.43053.4372

1.8610 1.86102.6318

2%

9.63%

7.78%

7.0711

...

...

Figure 10.11
Grid and numerical results in Example 10.6.

488 Numerical Methods for Engineers and Scientists Using MATLAB®

CN method offers a technique for solving the 1D heat equation with no
restriction on the ratio r = kα2/h2. The idea behind the CN method is to
employ a six-point molecule (Figure 10.12) as opposed to the four-point mol-
ecule (Figure 10.10) used with the FD method.

To derive the difference equation associated with this method, we consider
Equation 10.28. On the right-hand side, we write two expressions similar to
that inside parentheses: one for the jth time row, one for the (j + 1)st time row.
Multiply each by α2/2h2, and add them to obtain

1
2

2
2

21

2

2 1 1

2

2 1 1
k
u u

h
u u u

h
ui j ij i j i j i j i j() () (, , , , ,+ − + − +− = − + + −α α

uu ui j i j, ,)+ + ++1 1 1

� (10.32)

Multiply Equation 10.32 by 2k and let r = kα2/h2 as before, and rearrange
the outcome so that the three terms associated with the higher time row
[(j + 1)st row] appear on the left side of the equation. The result is

	
2 1 2 11 1 1 1 1 1 1() () () (, , , , ,+ − + = − + ++ − + + + − +r u r u u r u r u ui j i j i j ij i j i jj r

k
h

), = α 2

2

� (10.33)

This is called the difference equation for the 1D heat equation using the
CN method. Starting with the 0th time level (j = 0), each time Equation 10.33
is applied, the three values on the right side, ui−1,j, uij, ui+1,j, are available from
the initial temperature f(x), while the values at the higher time level (j = 1)
are unknown. If there are n nonboundary mesh points in each row, the ensu-
ing system of equations to be solved is n × n with a tridiagonal coefficient
matrix. Solving the system yields the values of u at the mesh points along the
j = 1 row. Repeating the procedure leads to the approximate values of u at all
desired mesh points.

The user-defined function Heat1DCN uses the CN method to solve the 1D
heat equation subject to zero-boundary conditions and a prescribed initial

k

ui–1,j ui,j

ui– 1, j+1 ui, j+1 ui+1, j+1

ui+1, j

h

Figure 10.12
Six-point molecule used in CN method.

489Numerical Solution of Partial Differential Equations

condition. The function returns the approximate solution at the interior
mesh points, as well as the values at the boundary points in a pattern that
resembles the gridded region rotated 90° clockwise.

Example 10.7:  CN Method: 1D Heat Equation

Consider the temperature distribution problem outlined in Example
10.6. Find the approximate values of u(x,t) at the mesh points, and com-
pare with the actual values as well as those obtained using the FD
method.

function u = Heat1DCN(t,x,u,alpha)
%
% Heat1DCN numerically solves the one-dimensional heat
% equation, with zero boundary conditions, using the
% Crank-Nicolson method.
%
% u = Heat1DCN(t,x,u,alpha) where
%
% t is the row vector of times to compute,
% x is the column vector of x positions to compute,
% u is the column vector of initial temperatures for
% each value in x,
% alpha is a given parameter of the PDE,
%
% u is the solution at the mesh points.

u = u(:);   % u must be a column vector
k = t(2)-t(1); h = x(2)-x(1); r = (alpha/h)^2*k;

% Compute A
n = length(x);
A = diag(2* (1+r)*ones(n-2,1));
A = A + diag(diag(A,-1)-r,-1);
A = A + diag(diag(A,1)-r, 1);

% Compute B
B = diag(2*(1-r)*ones(n-2,1));
B = B + diag(diag(B,-1) +r,-1);
B = B + diag(diag(B,1) +r,1);

C = A\B;

i = 2:length(x)-1;
for j = 1:length(t)-1,
 u(i,j+1) = C*u(i,j);
end

490 Numerical Methods for Engineers and Scientists Using MATLAB®

Solution

With r = 0.4, Equation 10.33 is written as

	 2.8 0.4 1.2 0.4u u u u u ui j i j i j ij i j i j, , , , ,() ()+ − + + + − +− + = + +1 1 1 1 1 1 1 	 (10.34)

Applying Equation 10.34 at the j = 0 level, we find

	

2.8 0.4 1.2 0.4
2.8 0.4

u u u u u u

u u u
11 01 21 10 00 20

21 11 31

− + = + +
− +

() ()
() == + +

− + = + +
1.2 0.4

2.8 0.4 1.2 0.4
u u u

u u u u u u
20 10 30

31 21 41 30 20 4

()
() (00)

Substituting the values from the boundary and initial conditions yields

	

2.8 0.4 0
0.4 2.8 0.4

0.4 2.8

1−
− −

−

































=
0

11

21

31

u

u

u

22.4853
17.6569
12.4853

tridiagonal system

Solve
















⇒ u11 == =
=

5.5880
7.9026

u

u
31

21

Next, Equation 10.34 is applied at the j = 1 level:

	

2.8 0.4 0
0.4 2.8 0.4

0.4 2.8

9−
− −

−

































=
0

12

22

32

u

u

u

..8666
13.9535
9.8666

4
tridiagonal system

Solve
















=⇒ u12 ..4159
6.2451

=
=

u

u
32

22

This procedure is repeated until the approximate values of u at the
mesh points along the j = 5 row are calculated. Execution of the user-
defined function Heat1DCD yields

>> t = 0:0.1:0.5;
>> x = 0:0.25:1; x=x';
>> u = 10.*sin(pi*x);
>> u = Heat1DCN(t,x,u,0.5)

u =
 0 0 0 0 0 0
 7.0711 5.5880 4.4159 3.4897 2.7578 2.1794
 10.0000 7.9026 6.2451 4.9352 3.9001 3.0821
 7.0711 5.5880 4.4159 3.4897 2.7578 2.1794
 0.0000 0 0 0 0 0

These numerical results, together with the associated relative errors,
are shown in Figure 10.13. Comparing the relative errors with those in
Example 10.6, it is evident that the CN method produces more accurate
estimates. Note that the values returned by the CN method overshoot
the actual values, while those generated by the FD method (Figure 10.11)
undershoot the exact values.

491Numerical Solution of Partial Differential Equations

10.3.2.1  CN Method versus FD Method

In Examples 10.6 and 10.7, the value of r satisfied the condition r ≤ 1
2

so that both FD and CN were successfully applied, with CN yielding
more accurate estimates. There are other situations where r does not
satisfy r ≤ 1

2 ; hence, the FD method cannot be implemented. To imple-
ment FD, we must reduce the value of r, which is possible by either increas-
ing h or decreasing k, which causes reduction in accuracy or increase in
computations. The following example demonstrates that even with a sub-
stantial increase in the number of time steps—to assure stability and con-
vergence of FD—the values provided by FD are not any more accurate
than those provided by CN.

Example 10.8:  CN versus FD

Consider the temperature distribution problem studied in Examples 10.6
and 10.7. Assume h = 0.25.

	 a.	 Use the CN method with r = 1 to find the temperature at the
mesh points u11, u21, and u31 in the first time row.

	 b.	 Since r = 1 does not satisfy the condition of r ≤ 1
2 , pick r = 0.25,

for example, and h = 0.25 as before, and apply the FD method to
find the values at the points u11, u21, and u31 in (a). Considering
that the number of time steps has quadrupled, decide whether
FD generates more accurate results than CN.

x

t

0 7.0711 10.0000 0

5.5880

(5.5249)

Relative
errors

(5.5249)

7.9026

(7.8134)

4.4159 6.2451

3.4897 4.9352

2.7578

Exact

3.9001

2.1794 3.0821

1.14%

5.84%

4.64%

7.0711

5.5880

4.4159

3.4897

2.7578

2.1794

3.46%

2.29%

Figure 10.13
Grid and numerical results in Example 10.7.

492 Numerical Methods for Engineers and Scientists Using MATLAB®

Solution

	 a.	 We first note that

	
r

k
h

k r
h

h
= = ⇒ = 





=
=

=α
α

α2

2

2

1
0.25

0.5
0.25

	

	 With r = 1, Equation 10.33 becomes

	 4 1 1 1 1 1 1 1u u u u ui j i j i j i j i j, , , , ,+ − + + + − +− − = + 	

	 Applying this equation with j = 0, we find

	

4
4 7.0711)
4

u u

u u u

u u

11 21

21 11 31

31 21

0 0 10
2

0 10

− − = +
− − =
− − = +

(
00

4 1 0
1 4 1

0 1 4

1011

21

31
14⇒

−
− −

−

































=
u

u

u

..1422
3.8673

5.4692
10

11 31

21

















⇒
= =
=

u u

u

	 b.	 We note that

	
r

k
h

k r
h

h
= = ⇒ = 





=
=

=α
α

α2

2

2

0.25 0.0625
0.25

0.5

	

Therefore, the step size along the t-axis has been reduced from k = 0.25
to k = 0.0625, implying that four time-step calculations are required to
find the values of u11, u21, and u31 in (a). With r = 0.25, Equation 10.29
reduces to

	 0.5 0.25u u u ui j ij i j i j, , ,()+ − += + +1 1 1

Proceeding as always, the solution estimates at the desired mesh points
will be calculated. It should be mentioned that with the new, smaller step
size, k = 0.0625, the old u11, u21, and u31 in (a) are now labeled u14, u24, and
u34. The computed values are

	

u u

u
14 34

24

= =
=

3.7533
5.3079

The numerical results obtained in (a) and (b) are summarized in
Figure 10.14 where it is readily observed that although FD used four
times as many time levels as CN, the accuracy of the results by CN is
still superior.

493Numerical Solution of Partial Differential Equations

10.4  Hyperbolic PDEs

The 1D wave equation, u utt xx= = >α α2 0 constant(), is the simplest model
of a physical system involving a hyperbolic PDE. Specifically, consider an
elastic string of length L fixed at both ends. Assuming the string is driven by
only initial displacement f(x) and initial velocity g(x), the free vibration of the
string is governed by the boundary-initial-value problem

	 u u x L ttt xx= = > ≤ ≤ ≥α α2 0 0 0 constant(), , 	 (10.35)

	 u t u L t(,) (,)0 0= = 	 (10.36)

	 u x f x u x g xt(,) (), (,) ()0 0= = 	 (10.37)

Figure 10.15 shows that a grid is constructed using a mesh size of h in the
x-direction and a mesh size of k in the t-direction. The terms uxx and utt in
Equation 10.35 will be replaced by three-point central difference approxima-
tions (Section 6.2). Consequently, Equation 10.35 yields

	

1
2 22 1 1

2

2 1 1
k

u u u
h

u u ui j ij i j i j i j i j() (), , , , ,− + − +− + = − +α
	

(10.38)

x

t

0
0.25 0.50 1

3.8673

(3.8158)

Relative
errors

5.4692

(5.3964) Exact

0.75

0.25
3.8673

3.7533 3.75335.3079

(3.8158)

FD (with 0.0625)k =

CN (with 0.25)k = 1.35%

1.64%

0.0625

0.1250

0.1875

Figure 10.14
Accuracy and efficiency of CN versus FD.

494 Numerical Methods for Engineers and Scientists Using MATLAB®

Multiplying by k2, letting r k h= ()α/ 2, and solving for ui,j+1, we find

	
u u r u r u u r

k
h

i j i j ij i j i j, , , ,() (),+ − − += − + − + + = 



1 1 1 1

2

2 1    α

	
(10.39)

that is known as the difference equation for the 1D wave equation using
the FD method. It can be shown that the numerical method described by
Equation 10.39 is stable and convergent if r ≤ 1.

10.4.1  Starting the Procedure

Applying Equation 10.39 along the j = 0 level, we have

	 u u r u r u ui i i i i, , , , ,() ()1 1 0 1 0 1 02 1= − + − + +− − +  	 (10.40)

The quantities ui,0, ui−1,0, and ui+1,0 are available from the initial displace-
ment, but ui,−1 is not yet known. To find ui,−1, we use the information on the
initial velocity u x g xt(,) ()0 = . Let xi = ih and gi = g(xi). Using the central dif-
ference formula for ut(xi,0)

	

u u
k

g u u kgi i
i

u

i i i

i
, ,

, ,

,
1 1

1 12
2

1− = ⇒ = −−
−

−Solve for

0
h

k

x

t

Column 0 Column i
Row 0

Row j

5-Point molecule

u = 0 u = 0

u = f (x)

ui, j–1

ui–1, j ui+1, jui, j

ui, j+1i, j + 1

i – 1, j i + 1, j

i, j–1

i, j

Figure 10.15
Region and grid used for solving the 1D wave equation.

495Numerical Solution of Partial Differential Equations

Inserting this into Equation 10.40

	
u r u r u u kgi i i i i, , , ,() ()1 0 1 0 1 01

1
2

= − + + +− + 
	

(10.41)

In summary, the FD approximation for the 1D wave equation is imple-
mented as follows. First, apply Equation 10.41 using the knowledge of initial
displacement and velocity. This gives the values of u along the first time
step, j = 1. From this point onward, apply Equation 10.39 to find u at the mesh
points on the higher time levels.

The user-defined function Wave1DFD uses the FD approach to solve the
1D wave equation subject to zero-boundary conditions and prescribed ini-
tial displacement and velocity. The function returns a failure message if
r k h= >()α/ 2 1. The function returns the approximate solution at the interior
mesh points, as well as the values at the boundary points in a pattern that
resembles the gridded region rotated 90° clockwise.

function u = Wave1DFD(t,x,u,ut,alpha)
%
% Wave1DFD numerically solves the one-dimensional wave
% equation, with zero boundary conditions, using the
% finite-difference method.
%
% u = Wave1DFD(t,x,u,ut,alpha) where
%
% t is the row vector of times to compute,
% x is the column vector of x positions to compute,
% u is the column vector of initial displacements
% for each value in x,
% ut is the column vector of initial velocities for
% each value in x,
% alpha is a given parameter of the PDE,
%
% u is the solution at the mesh points.

u = u(:); % u must be a column vector
ut = ut(:); % ut must be a column vector

k = t(2)-t(1);
h = x(2)-x(1);
r = (k*alpha/h)^2;

if r>1
 warning('Method is unstable and divergent. Results
will be inaccurate.')
end

496 Numerical Methods for Engineers and Scientists Using MATLAB®

Example 10.9:  Free Vibration of an Elastic String

Consider an elastic string of length L = 2 with α = 1, fixed at
both ends. Suppose the string is subjected to an initial displace-
ment f(x) = 5sin(πx/2) and zero initial velocity, g(x) = 0. Using h = 0.4 = k,
find the displacement u(x,t) of the string for 0 ≤ x ≤ L and 0 ≤ t ≤ 2.
All parameters are in consistent physical units. The exact solution is
given by

	
u x t

x t
(,) sin cos= 5

2 2
π π

Solution

We first calculate

	
r

k
h

= 





=α 2

1

To find the values of u at the j = 1 level (t = 0.4), we apply Equation 10.41.
But since gi = 0 and r = 1, Equation 10.41 simplifies to

	
u u u ii i i, , ,(), , , ,1 1 0 1 0

1
2

1 2 3 4= + =− +

so that

	
u u u u u u u u u u u11 00 20 21 10 30 31 20 40 41 30

1
2

1
2

1
2

1
2

= + = + = + =() () () (, , , ++ u50)
	

This way, the estimates at all four interior mesh points along j = 1 are
determined. For higher time level, we use Equation 10.39 that simpli-
fies to

i = 2:length(x)-1;
u(i,2) = (1-r)*u(i,1) + r/2*(u(i-1,1) + u(i+1,1)) + k*ut(i);
for j = 2:length(t)-1,
 u(i,j+1) = -u(i,j-1) + 2*(1-r)*u(i,j) + r*(u(i-1,j) + 
u(i+1,j));
end

497Numerical Solution of Partial Differential Equations

	 u u u u i ji j i j i j i j, , , , , , , , ,+ − − += − + + =1 1 1 1 1 2 3 4 	 (10.42)

To find the four estimates on the j = 2 level, for example, we fix j = 1 in
Equation 10.42, vary i = 1,2,3,4, and use the boundary values, as well as
those obtained previously on the j = 1 level. As a result, we find u12, u22,
u32, and u42. Continuing in this manner, estimates at all desired mesh
points will be calculated; see Figure 10.16. These results can be readily
verified by executing the user-defined function Wave1DFD. We can also
use this function to plot the variations of u versus x for fixed values of
time. That is, plot the values obtained in each time level in Figure 10.16
versus x. For plotting purposes, we will use a smaller increment of 0.1
for both t and x. Note that the increments h and k are constrained by the
condition ()k hα/ 2 1≤ .

>> t = 0:0.1:2;
>> x = 0:0.1:2; x = x';
>> u = 5.*sin(pi*x/2);
>> ut = zeros(length(x),1);
>> u = Wave1DFD(t,x,u,ut,1);
>> plot(x,u) % Figure 10.17

2.9389

2.3777
(2.3776)

Exact

2.93894.7553 4.75530 0

2.37773.8471
(3.8471)

3.8471

0.9082 0.90821.4695 1.4695

–0.9082 –0.9082–1.4695 –1.4695

–2.3776 –2.3776–3.8471 –3.8471

–2.9389
(–2.9389)

–2.93894.7553
(–4.7553)

–4.7553

x

t

u = 0 u = 0

Figure 10.16
Grid and numerical results in Example 10.9.

498 Numerical Methods for Engineers and Scientists Using MATLAB®

Problem Set

Elliptic Partial Differential Equations (Section 10.2)

Dirichlet Problem (Laplace’s Equation)

In Problems 1 through 4

	 a.	 Solve the Dirichlet problem described in Figure 10.18 with the
specified boundary conditions.

	 b.	 Confirm the results by executing the user-defined function
DirichletPDE. Suppress the plot.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−5

−4

−3

−2

−1

0

1

2

3

4

5

x

D
isp

la
ce

m
en

t u

t = 0

t =1

t = 2

t = 0.9

Figure 10.17
Displacement of the elastic string for various fixed values of time.

h = 0.5

x

yy

x

uxx + uyy = 0

0 2

1

u = h(y)

u = g(x)

u = k (y)

u = q(x) 0 u10 u20 u30

u01 u11 u21 u31
u41

u12 u22 u32

h

Figure 10.18
Dirichlet problem in Problems 1 through 4.

499Numerical Solution of Partial Differential Equations

	 c.	 Reduce the mesh size by half and execute DirichletPDE to
solve the problem. Compare the numerical results at the original
three interior mesh points with those obtained in (a) and (b).

	 1.	 q(x) = 85x(2 − x), g(x) = 0, h(y) = 0, k(y) = 0
	 2.	 q(x) = 50 sin(πx/2), g(x) = 100x(2 − x), h(y) = 0, k(y) = 0

	 3.	 q x x x g x h y k y y() (), () , () , () ()= + = = = −10 2 0 0 80 1 2

	 4.	 q x g x h y y y k y y y() , () , () , ()= = = − + = + +9 12 5 2 9 2 92 2

In Problems 5 through 8

	 a.	 Solve the Dirichlet problem described in Figure 10.19 with the
specified boundary conditions.

	 b.	 Confirm the results by executing the user-defined function
DirichletPDE. Suppress the plot.

	 c.	 Reduce the mesh size by half and execute DirichletPDE to
solve the problem. Compare the numerical results at the original
four interior mesh points with those obtained in (a) and (b).

	 5.	a = 3, h = 1, q(x) = x, g(x) = 3, h(y) = y, k(y) = 3

	 6.	 a h q x g x x x

h y y y k y

= = = = − −

= − + =

3 1 100 178 17

3 100

3

3

, , () , () ,

() , ()

 1100

	 7.	 a h q x x g x x x

h y k y y y

= = = = +
= = +

9 3 50 9
0 1

2 2, , () sin (), () ,
() , () (

 /

π
))

y

h

h

y

x

uxx + uyy = 0

0 a

a

u = h(y)

u = g(x)

u = k (y)

u = q(x)
0

u10 u20

u01

u02

u11 u21
u31

x

u12

u13 u23

u22
u32

h

Figure 10.19
Region and grid used in Problems 5 through 8.

500 Numerical Methods for Engineers and Scientists Using MATLAB®

	 8.	 a h q x g x x h y y

k y

= = = = − =

=

9 3 0 18 2 18 18

20

, , () , () , () sin(),

() sin

 /π

(() sin()π πy y/ /9 3 3+ 

	

Dirichlet Problem (Poisson’s Equation)

In Problems 9 through 14

	 a.	 Solve the Poisson’s equation in the specified region subject to the
given boundary conditions.

	 b.	 Confirm the results by executing the user-defined function
DirichletPDE. Suppress the plot.

	 c.	 Reduce the mesh size by half and execute DirichletPDE to
solve the problem. Compare the numerical results at the original
four interior mesh points with those obtained in (a) and (b).

	 9.	uxx + uyy = (x − 3)(2y − 1)2, same region, grid, and boundary condi-
tions as in Problem 5.

	 10.	uxx + uyy = 10x2 − 25y3, same region, grid, and boundary conditions as
in Problem 6.

	 11.	uxx + uyy = 0.1y sin(πx/9), same region, grid, and boundary conditions
as in Problem 7.

	 12.	uxx + uyy = x + y, same region, grid, and boundary conditions as in
Problem 8.

	 13.	uxx + uyy = y − x + 1, same region and grid as in Figure 10.19 with
a = 1.2 and boundary conditions described by

	 q x x g x x h y y k y y() , () , () , ()= = + = = +2 2 1.2 1.4 1.44 	

	 14.	uxx + uyy = sin πx, same region and grid as in Figure 10.19 with a = 1.8
and boundary conditions described by

	 q(x) = x,  g(x) = 1.8,  h(y) = y,  k(y) = 1.8

PRADI Method

	 15.	Referring to Example 10.2
	 a.	  Perform the second iteration to calculate the estimates

u u u u11
2

21
2

12
2

22
2() () () (), , , . Compare the corresponding relative errors

with those at the completion of one iteration step.

	 b.	 Verify the results of (a) using the user-defined function PRADI.

	 c.	 Determine the number of iterations required to meet the
(default) tolerance.

501Numerical Solution of Partial Differential Equations

	 16.	Consider the Dirichlet problem described in Figure 10.20.

	 a.	  Perform one iteration step of the PRADI method using start-
ing values of 0.4 for the interior mesh points.

	 b.	 Verify the numerical results of (a) using the user-defined
function PRADI.

 In Problems 17 through 22, perform one complete iteration step
of the PRADI method using the given starting values for the interior
mesh points in the specified region and subject to the given boundary
conditions.

	 17.	uxx + uyy = 0 in the region, and with the boundary conditions,
described in Problem 5; starting values of 2.

	 18.	uxx + uyy = 0 in the region, and with the boundary conditions,
described in Problem 6; starting values of 110.

	 19.	uxx + uyy = 0 in the region, and with the boundary conditions,
described in Problem 7; starting values of 22.

	 20.	uxx + uyy = x + y in the region, and with the boundary conditions,
described in Problem 8; starting values of −10.

	 21.	Problem 13; starting values of 0.6.
	 22.	Problem 14; starting values of 0.8.

Mixed Problem

 In Problems 23 through 30, solve the mixed problem in the given region
subject to the boundary conditions provided. In all cases, use a mesh size of
h = 1.

h = 0.5

x

yy

x

uxx + uyy =0

0 2

1

u = 0

u = 0

u = 0

u = sin(x/2)

0 u10 u20 u30

u01 u11 u21 u31
u41

u12 u22 u32

h

π

Figure 10.20
Region and grid in Problem 16.

502 Numerical Methods for Engineers and Scientists Using MATLAB®

	 23.	For this problem, use the following figure.

	 24.	For this problem, use the following figure.

	 25.	For this problem, use the following figure.

y

x
0 3

2
u/ y = 2x + 1

u/ y = 0

uxx + uyy = 0u = y2 u = y2 + 1

∂ ∂

∂ ∂

y

x
0 3

2

u = 0

u = 0 u = y3uxx + uyy = 0

u/ y = x2∂ ∂

y

x
0 3

2
u/ y = x

uxx + uyy = 0u = 0

u = 0

u = 1.5y2

∂ ∂

503Numerical Solution of Partial Differential Equations

	 26.	For this problem, use the following figure.

	 27.	For this problem, use the following figure.

	 28.	For this problem, use the following figure.

y

x
0 3

2

u/ x = 0 uxx + uyy = 0

u = x – 1

u = x

∂ ∂ u/ x = 2∂ ∂

y

x

u/ y = 3x

uxx + uyy = 0 u = 2y2

u = 3 – x

u = 3

3

0 3

∂ ∂

y

x

3

u/ x = 1uxx + uyy = 0

u = (x – 2)2 + 1

u = 5 – x

u = 5

0 3

∂ ∂

504 Numerical Methods for Engineers and Scientists Using MATLAB®

	 29.	For this problem, use the following figure ((,)).f x y x y= +1
3

2 1
2

2

	 30.	For this problem, use the following figure (  f(x,y) = 0.2xy).

More Complex Regions

	 31.	 Solve uxx + uyy = 0 in the region shown in the following figure
subject to the indicated boundary conditions. The curved portion of
the boundary obeys x2 + y2 = 41.

y

x2

u/ x = 0.1 (4 – y)3uxx + uyy = f (x, y)

u = x2 + 9

u = 3x

u = y2

0

3

∂ ∂

y

x
0 3

2

u = 1

u = 1 uxx + uyy = f (x, y)

u/ y = 2x – 1

∂u/∂x= 2y

∂ ∂

505Numerical Solution of Partial Differential Equations

	 32.	 Solve uxx + uyy = 0 in the region shown in the following figure
subject to the indicated boundary conditions. The slanted portion of
the boundary obeys y + x = 8.

	 33.	 Solve uxx + uyy = 0.5x2y in the region shown in the figure in
Problem 32 above subject to the indicated boundary conditions. The
slanted portion of the boundary obeys y + x = 8.

	 34.	 Solve uxx + uyy = 0 in the region shown in the following figure
subject to the indicated boundary conditions. The curved portion of
the boundary obeys () ()x y− + − =7 9 162 2 .

y

x

u = 0

u = 0

6

4

2

0

u = 3y2 +
2
1 y

u = 2x2

542

u = √5 (x3 –3x)

x0 2 4 6

2

4

5

u = y

0u

u = 8y3 + y

u = 2x2 – x – 1

u = x2 + 5
y

2
1

506 Numerical Methods for Engineers and Scientists Using MATLAB®

Parabolic Partial Differential Equations (Section 10.3)

FD Method

	 35.	Consider a laterally insulated wire of length L = 2 and α = 1, whose
ends are kept at zero temperature, subjected to the initial temperature

	 f x
x x

x x
() =

≤ ≤
− ≤ ≤





 if
 if 1

0 1
2 2

	

	 a.	  Using the FD method, compute the estimated values of
temperature, u(x,t), 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.5, at the mesh points
generated by h = 0.50 and k = 0.125. Also calculate the rela-
tive error at each time level. The exact solution is given by
u x t x e t

Exact / / (,) () sin() /≅ −8 22 42
π π π .

	 b.	 Confirm the numerical results of (a) using Heat1DFD.
	 36.	Consider a laterally insulated wire of length L = 2 and α = 1, whose

ends are kept at zero temperature, subjected to the initial tempera-
ture f(x) = 10 sin(πx/2).

	 a.	  Using the FD method, find the estimated values of tem-
perature, u(x,t), 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.16, at the mesh points
generated by h = 0.4 and k = 0.04. Also calculate the rela-
tive error at each time level. The exact solution is given by
u x t x e t

Exact / (,) sin() ./= −10 2
2 4π π

	 b.	 Confirm the numerical results of (a) using Heat1DFD.

y

x
0 3 6 7

3

6

9
0u

u = x2 – x

u = 42

u = 6x

u = 0

A
B

507Numerical Solution of Partial Differential Equations

	 37.	 Reconsider the wire in Problem 35. Assuming that all informa-
tion is unchanged except for k = 0.0625, calculate the temperature
estimate u(0.5,0.125), and compare the corresponding relative error
with that obtained in Problem 35.

	 38.	 Reconsider the wire in Problem 36. Assuming that all informa-
tion is unchanged except for k = 0.02, calculate the temperature esti-
mate u(0.4,0.04), and compare the corresponding relative error with
that obtained in Problem 36.

	 39.	Consider a laterally insulated wire of length L = 1 and α = 1, whose
ends are kept at zero temperature, subjected to the initial tempera-
ture f(x) = x(1 − x).

	 a.	  Using the FD method, find the estimated values of tempera-
ture, u(x,t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.04, at the mesh points generated by
h = 0.2 and k = 0.01.

	 b.	 Confirm the numerical results of (a) using Heat1DFD.

	 40.	 Write a user-defined function with function call u = Heat1DFD_
gen(t,x,u,alpha,q,g) that uses the FD method to solve the 1D
heat equation subjected to general boundary conditions. All argu-
ments are as in Heat1DFD, while the two new parameters q and g
are inline functions, respectively, representing u(0,t) and u(L,t). Using
Heat1DFD_gen find the temperature estimates for a laterally insu-
lated wire of length L = 1 and α = 1, subjected to the initial tem-
perature f(x) = x(1 − x) and boundary conditions u(0,t) = 0, u(1,t) = t,
0 < t < 0.05. Construct a grid using h = 0.2, k = 0.01.

	 41.	 Using the user-defined function Heat1DFD_gen (see Problem
40), find the temperature estimates for a laterally insulated wire of
length L = 3 and α = 0.8, subjected to the initial temperature f(x) = sin πx
and boundary conditions u(0,t) = 1, u(1,t) = 1, 0 < t < 0.3. Construct a
grid using h = 0.3, k = 0.05.

	 42.	 Write a user-defined function with function call u = Heat1DFD_
insul_ends(t,x,u,alpha) that uses the FD method to solve the
1D heat equation subjected to insulated ends, that is, ux(0,t) = 0 and
ux(L,t) = 0. Note that the difference equation must be applied at the
boundary mesh points as well since the estimates at these points
are now part of the unknown vector. Use the central difference for-
mulas to approximate the first partial derivative at these points.
All arguments are as in Heat1DFD. Using Heat1DFD_insul_
ends find the temperature estimates for a laterally insulated wire
of length L = 1 and α = 1, subjected to the initial temperature
f(x) = x(1 − x) and insulated ends. Construct a grid using h = 0.2,
k = 0.01, and assume 0 < t < 0.05.

508 Numerical Methods for Engineers and Scientists Using MATLAB®

CN Method

	 43.	Consider a laterally insulated wire of length L = 2 and α = 1,
whose ends are kept at zero temperature, subjected to the initial
temperature

	 f x
x x

x x
() =

≤ ≤
− ≤ ≤





 if
 if 1

0 1
2 2

	 a.	  Using the CN method, compute the estimated values of tem-
perature, u(x,t), 0 ≤ x ≤ 2, 0 ≤ t ≤ 0.25, at the mesh points generated
by h = 0.50 and k = 0.125. Calculate the relative error at each time
level, and compare with those corresponding to the FD method
(see Problem 35). The exact solution is given in closed form as
u x t x e t

Exact / / (,) () sin() /≅ −8 22 42
π π π .

	 b.	 Confirm the numerical results of (a) using Heat1DCN.
	 44.	Consider a laterally insulated wire of length L = 1 and α = 0.5, whose

ends are kept at zero temperature, subjected to the initial tempera-
ture f(x) = sin πx + sin 2πx.

	 a.	  Using the CN method, compute the estimated values of tem-
perature, u(x,t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.25, at the mesh points generated
by h = 0.25 and k = 0.125.

	 b.	 Confirm the numerical results of (a) using Heat1DCN.
	 45.	Consider a laterally insulated wire of length L = 3 and α = 1.5, whose

ends are kept at zero temperature, subjected to the initial tempera-
ture f(x) = 0.5x(3 − x).

	 a.	  Using the CN method, compute the estimated values of tem-
perature, u(x,t), 0 ≤ x ≤ 3, 0 ≤ t ≤ 0.25, at the mesh points generated
by h = 0.75 and k = 0.125.

	 b.	 Confirm the numerical results of (a) using Heat1DCN.
	 46.	Repeat Problem 45 for an initial temperature of f(x) = sin(πx/3) +
		 sin 2πx.

	 47.	 Consider a laterally insulated wire of length L = 0.5 and α = 1,
with ends kept at zero temperature, subjected to the initial tempera-
ture f(x) = x(1 − 2x). Let h = 0.1.

	 a.	 Find the temperature estimates, u(x,t), 0 ≤ x ≤ 0.5, 0 ≤ t ≤ 0.04,
using the Heat1DCN with k = 0.01.

	 b.	 Reduce the time step size by half and apply Heat1DFD to find the
estimates at the mesh points. Compare the numerical results by
the two methods at the time level t = 0.01.

509Numerical Solution of Partial Differential Equations

	 48.	 Consider a laterally insulated wire of length L = 1 and α = 0.7071,
with ends kept at zero temperature, subjected to the initial tempera-
ture f(x) = 1 − cos 2πx. Let h = 0.25.

	 a.	 Find the temperature estimates, u(x,t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 0.5, using
the Heat1DCN with r = 1.

	 b.	 Adjust the time step size so that α = 0.5, and apply Heat1DFD to
find the estimates at the mesh points. Compare the numerical
results by the two methods at the time level t = 0.125.

	 49.	 Consider a laterally insulated wire of length L = 2 and α = 1, sub-
jected to the initial temperature f(x) = 3x(2 − x) and boundary condi-
tions u(0,t) = 1, u(2,t) = t, 0 < t < 0.25. Construct a grid using h = 0.5,
k = 0.125. Find the temperature estimates at the mesh points using
the CN method.

	 50.	 Write a user-defined function with function call u = Heat1DCN_
gen(t,x,u,alpha,q,g) that uses the CN method to solve the 1D
heat equation subjected to general boundary conditions. All argu-
ments are as in Heat1DCN, while the two new parameters q and
g are inline functions, respectively, representing u(0,t) and u(L,t).
Using Heat1DCN_gen find the temperature estimates at the mesh
points for the problem formulated in Problem 49.

Hyperbolic Partial Differential Equations (Section 10.4)

In Problems 51 through 56, an elastic string of length L with constant α, fixed
at both ends, is considered. The string is subjected to initial displacement f(x)
and initial velocity g(x).
	 a.	 Using the FD method with the indicated mesh sizes h and k, find

the estimates for displacement u(x,t) for 0 ≤ x ≤ L and the given time
interval.

	 b.	 Confirm the numerical results of (a) using Wave1DFD.

	 51.	L = 1, α = 1, f(x) = 6 sin 2πx, g(x) = 0, h = 0.2 = k, 0 ≤ t ≤ 0.4
	 52.	L = 0.5, α = 1, f(x) = 10x(1 − 2x), g(x) = 0, h = 0.1 = k, 0 ≤ t ≤ 0.3

	 53.	 L f x g x x h k

t

= = = = − = =
≤ ≤

0.5 0.1
0.2
, , () , () sin(), ,α π1 0 2

0
	 54.	 L f x g x x h k

t

= = = = = =
≤ ≤

1 4 0 90
0

2, , () , () , , , 0.2 0.05
0.15

α

	 55.	L = 1, α = 2, f(x) = x(1 − x), g(x) = sin πx, h = 0.2, k = 0.1, 0 ≤ t ≤ 0.3
	 56.	L = 1, α = 2, f(x) = x(1 − x), g(x) = 10x, h = 0.2, k = 0.1, 0 ≤ t ≤ 0.3

This page intentionally left blankThis page intentionally left blank

511

Bibliography

	 1.	 Burden, R.L. and Faires, J.D., Numerical Analysis. 9th edition, Brooks Cole,
Independence, KY, 2010.

	 2.	 Craig, J.J., Introduction to Robotics: Mechanics and Control. 3rd edition, Prentice
Hall, Englewood Cliffs, NJ, 2004.

	 3.	 Esfandiari, R.S., Applied Mathematics for Engineers. 4th edition, Atlantis, Los
Angeles, CA, 2007.

	 4.	 Esfandiari, R.S., MATLAB Manual for Advanced Engineering Mathematics. Atlantis,
Los Angeles, CA, 2007.

	 5.	 Esfandiari, R.S. and Lu, B., Modeling and Analysis of Dynamic Systems. CRC Press,
Boca Raton, FL, 2010.

	 6.	 Golub, G.H. and Van Loan, C.F., Matrix Computations. 3rd edition, The Johns
Hopkins University Press, Baltimore, MD, 1996.

	 7.	 Henrici, P., Elements of Numerical Analysis. John Wiley & Sons, New York, NY, 1966.
	 8.	 Johnson, L.W. and Riess, R.D., Numerical Analysis. Addison-Wesley, Reading,

MA, 1977.
	 9.	 Kelly, S.G., Fundamentals of Mechanical Vibrations. 2nd edition, McGraw-Hill,

New York, NY, 2000.
	 10.	 Li, J. and Chen, Y.-T., Computational Partial Differential Equations Using MATLAB.

CRC Press, Boca Raton, FL, 2008.
	 11.	 Mathews, J.H. and Fink, K.K., Numerical Methods Using MATLAB. 4th edition,

Pearson, Upper Saddle River, NJ, 2004.
	 12.	 Meirovitch, L., Fundamentals of Vibrations. Waveland Press, Long Grove, IL, 2010.
	 13.	 Noble, B. and Daniel, J.W., Applied Linear Algebra. 3rd edition, Pearson, Upper

Saddle River, NJ, 1987.
	 14.	 Rao, S.S., Mechanical Vibrations. 5th edition, Prentice Hall, Englewood Cliffs, NJ ,

2010.
	 15.	 Smith, W.A., Elementary Numerical Analysis. Brady, Upper Saddle River, NJ,

1986.
	 16.	 Spong, M.W. and Vidyasagar, M., Robot Dynamics and Control. Wiley, New York,

NY, 1989.
	 17.	 Strang, G., Linear Algebra and Its Applications. 4th edition, Brooks Cole,

Independence, KY, 2005.
	 18.	 Strikwerda, J.C., Finite Difference Schemes and Partial Differential Equations.

2nd edition, SIAM, Philadelphia, PA, 2007.
	 19.	 Vidyasagar, M., Nonlinear Systems Analysis. 2nd edition, SIAM, Philadelphia,

PA, 2002.
	 20.	 Weaver, W., Timoshenko, S.P., and Young, D.H., Vibration Problems in Engineering.

5th edition, Wiley-Interscience, New York, NY, 1990.

This page intentionally left blankThis page intentionally left blank

Civil and Mechanical Engineering

Ramin S. Esfandiari

Esfandiari
Num

erical M
ethods for Engineers

and Scientists Using M
ATLAB

®

Numerical Methods for Engineers
and Scientists Using MATLAB®

“Overall, this book provides the reader with a fundamental knowledge of basic numerical
methods that are used in various disciplines in engineering and science. MATLAB® is
used throughout the book either in the implementation of a numerical method or in the
completion of a homework problem. It covers a variety of numerical methods....”

––Zhangxing (John) Chen, University of Calgary, Alberta, Canada

Designed to benefit scientific and engineering applications, Numerical Methods for Engi-
neers and Scientists Using MATLAB® focuses on the fundamentals of numerical meth-
ods while making use of MATLAB software. The book introduces MATLAB early on and
incorporates it throughout the chapters to perform symbolic, graphical, and numerical
tasks. The text covers a variety of methods from curve fitting to solving ordinary and
partial differential equations.

Created to be user-friendly and easily understandable, Numerical Methods for Engineers
and Scientists Using MATLAB® provides background material and a broad introduction
to the essentials of MATLAB, specifically its use with numerical methods. Building on
this foundation, it introduces techniques for solving equations and focuses on curve
fitting and interpolation techniques. It addresses numerical differentiation and integration
methods, presents numerical methods for solving initial-value and boundary-value prob-
lems, and discusses the matrix eigenvalue problem, which entails numerical methods to
approximate a few or all eigenvalues of a matrix. The book then deals with the numerical
solution of partial differential equations, specifically those that frequently arise in engi-
neering and science.

The book presents a user-defined function or a MATLAB script file for each method,
followed by at least one fully worked-out example. When available, MATLAB built-in func-
tions are executed for confirmation of the results. A large set of exercises of varying
levels of difficulty appears at the end of each chapter. The concise approach with strong,
up-to-date MATLAB integration provided by this book affords readers a thorough knowl-
edge of the fundamentals of numerical methods utilized in various disciplines.

K19104

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

w w w . c r c p r e s s . c o m

	Front Cover
	Dedication
	Contents
	Preface
	Acknowledgments
	Author
	1. Background and Introduction
	2. Introduction to MATLAB®
	3. Solution of Equations of a Single Variable
	4. Solution of Systems of Equations
	5. Curve Fitting (Approximation) and Interpolation
	6. Numerical Differentiation and Integration
	7. Numerical Solution of Initial-Value Problems
	8. Numerical Solution of Boundary-Value Problems
	9. Matrix Eigenvalue Problem
	10. Numerical Solution of Partial Differential Equations
	Bibliography
	Back Cover

