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TO THE STUDENT

Authors of books live with the hope that someone actually reads them. Contrary to
what you might believe, almost everything in a typical college-level mathematics text
is written for you and not the instructor. True, the topics covered in the text are cho-
sen to appeal to instructors because they make the decision on whether to use it in
their classes, but everything written in it is aimed directly at you the student. So I
want to encourage you—no, actually I want to tell you—to read this textbook! But
do not read this text like you would a novel; you should not read it fast and you
should not skip anything. Think of it as a workbook. By this I mean that mathemat-
ics should always be read with pencil and paper at the ready because, most likely, you
will have to work your way through the examples and the discussion. Read—oops,
work—all the examples in a section before attempting any of the exercises; the ex-
amples are constructed to illustrate what I consider the most important aspects of the
section, and therefore, reflect the procedures necessary to work most of the problems
in the exercise sets. I tell my students when reading an example, cover up the solu-
tion; try working it first, compare your work against the solution given, and then
resolve any differences. I have tried to include most of the important steps in each
example, but if something is not clear you should always try—and here is where
the pencil and paper come in again—to fill in the details or missing steps. This may
not be easy, but that is part of the learning process. The accumulation of facts fol-
lowed by the slow assimilation of understanding simply cannot be achieved without
a struggle.

Specifically for you, a Student Resource and Solutions Manual (SRSM) is avail-
able as an optional supplement. In addition to containing solutions of selected prob-
lems from the exercises sets, the SRSM has hints for solving problems, extra exam-
ples, and a review of those areas of algebra and calculus that I feel are particularly
important to the successful study of differential equations. Bear in mind you do not
have to purchase the SRSM; by following my pointers given at the beginning of most
sections, you can review the appropriate mathematics from your old precalculus or
calculus texts.

In conclusion, I wish you good luck and success. I hope you enjoy the text and
the course you are about to embark on—as an undergraduate math major it was one
of my favorites because I liked mathematics that connected with the physical world.
If you have any comments, or if you find any errors as you read/work your way
through the text, or if you come up with a good idea for improving either it or the
SRSM, please feel free to either contact me or my editor at Brooks/Cole Publishing
Company:

charlie.vanwagner@cengage.com

TO THE INSTRUCTOR

WHAT IS NEW IN THIS EDITION? 

First, let me say what has not changed. The chapter lineup by topics, the number and
order of sections within a chapter, and the basic underlying philosophy remain the
same as in the previous editions.

PREFACE



In case you are examining this text for the first time, A First Course in
Differential Equations with Modeling Applications, 9th Edition, is intended for
either a one-semester or a one-quarter course in ordinary differential equations. The
longer version of the text, Differential Equations with Boundary-Value Problems,
7th Edition, can be used for either a one-semester course, or a two-semester course
covering ordinary and partial differential equations. This longer text includes six
more chapters that cover plane autonomous systems and stability, Fourier series and
Fourier transforms, linear partial differential equations and boundary-value prob-
lems, and numerical methods for partial differential equations. For a one semester
course, I assume that the students have successfully completed at least two semes-
ters of calculus. Since you are reading this, undoubtedly you have already examined
the table of contents for the topics that are covered. You will not find a “suggested
syllabus” in this preface; I will not pretend to be so wise as to tell other teachers
what to teach. I feel that there is plenty of material here to pick from and to form a
course to your liking. The text strikes a reasonable balance between the analytical,
qualitative, and quantitative approaches to the study of differential equations. As far
as my “underlying philosophy” it is this: An undergraduate text should be written
with the student’s understanding kept firmly in mind, which means to me that the
material should be presented in a straightforward, readable, and helpful manner,
while keeping the level of theory consistent with the notion of a “first course.”

For those who are familiar with the previous editions, I would like to mention a
few of the improvements made in this edition.

• Contributed Problems Selected exercise sets conclude with one or two con-
tributed problems. These problems were class-tested and submitted by in-
structors of differential equations courses and reflect how they supplement
their classroom presentations with additional projects.

• Exercises Many exercise sets have been updated by the addition of new prob-
lems to better test and challenge the students. In like manner, some exercise
sets have been improved by sending some problems into early retirement. 

• Design This edition has been upgraded to a four-color design, which adds
depth of meaning to all of the graphics and emphasis to highlighted phrases.
I oversaw the creation of each piece of art to ensure that it is as mathemati-
cally correct as the text.

• New Figure Numeration It took many editions to do so, but I finally became
convinced that the old numeration of figures, theorems, and definitions had to
be changed. In this revision I have utilized a double-decimal numeration sys-
tem. By way of illustration, in the last edition Figure 7.52 only indicates that
it is the 52nd figure in Chapter 7. In this edition, the same figure is renumbered
as Figure 7.6.5, where

Chapter Section

7.6.5 Fifth figure in the section

I feel that this system provides a clearer indication to where things are, with-
out the necessity of adding a cumbersome page number.

• Projects from Previous Editions Selected projects and essays from past
editions of the textbook can now be found on the companion website at
academic.cengage.com/math/zill.

STUDENT RESOURCES

• Student Resource and Solutions Manual, by Warren S. Wright, Dennis G. Zill,
and Carol D. Wright (ISBN 0495385662 (accompanies A First Course in
Differential Equations with Modeling Applications, 9e), 0495383163 (ac-
companies Differential Equations with Boundary-Value Problems, 7e)) pro-
vides reviews of important material from algebra and calculus, the solution of
every third problem in each exercise set (with the exception of the Discussion

;
bb
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Problems and Computer Lab Assignments), relevant command syntax for the
computer algebra systems Mathematica and Maple, lists of important con-
cepts, as well as helpful hints on how to start certain problems.

• DE Tools is a suite of simulations that provide an interactive, visual explo-
ration of the concepts presented in this text. Visit academic.cengage.com/
math/zill to find out more or contact your local sales representative to ask
about options for bundling DE Tools with this textbook.

INSTRUCTOR RESOURCES

• Complete Solutions Manual, by Warren S. Wright and Carol D. Wright (ISBN
049538609X), provides worked-out solutions to all problems in the text.

• Test Bank, by Gilbert Lewis (ISBN 0495386065) Contains multiple-choice
and short-answer test items that key directly to the text.
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1 INTRODUCTION TO DIFFERENTIAL
EQUATIONS

1.1 Definitions and Terminology

1.2 Initial-Value Problems

1.3 Differential Equations as Mathematical Models

CHAPTER 1 IN REVIEW

The words differential and equations certainly suggest solving some kind of

equation that contains derivatives y�, y�, . . . . Analogous to a course in algebra and

trigonometry, in which a good amount of time is spent solving equations such as

x2 � 5x � 4 � 0 for the unknown number x, in this course one of our tasks will be

to solve differential equations such as y� � 2y� � y � 0 for an unknown function

y � �(x).

The preceding paragraph tells something, but not the complete story, about the

course you are about to begin. As the course unfolds, you will see that there is more

to the study of differential equations than just mastering methods that someone has

devised to solve them.

But first things first. In order to read, study, and be conversant in a specialized

subject, you have to learn the terminology of that discipline. This is the thrust of the

first two sections of this chapter. In the last section we briefly examine the link

between differential equations and the real world. Practical questions such as How

fast does a disease spread? How fast does a population change? involve rates of

change or derivatives. As so the mathematical description—or mathematical

model—of experiments, observations, or theories may be a differential equation.



DEFINITIONS AND TERMINOLOGY

REVIEW MATERIAL
● Definition of the derivative
● Rules of differentiation
● Derivative as a rate of change
● First derivative and increasing/decreasing
● Second derivative and concavity

INTRODUCTION The derivative dy�dx of a function y � �(x) is itself another function ��(x)
found by an appropriate rule. The function is differentiable on the interval (��, �), and
by the Chain Rule its derivative is . If we replace on the right-hand side of
the last equation by the symbol y, the derivative becomes

. (1)

Now imagine that a friend of yours simply hands you equation (1)—you have no idea how it was
constructed—and asks, What is the function represented by the symbol y? You are now face to face
with one of the basic problems in this course: 

How do you solve such an equation for the unknown function y � �(x)?

dy

dx
� 0.2xy

e0.1x2
dy>dx � 0.2xe0.1x2

y � e0.1x2

2 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

1.1

A DEFINITION The equation that we made up in (1) is called a differential
equation. Before proceeding any further, let us consider a more precise definition of
this concept.

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or more dependent variables,
with respect to one or more independent variables, is said to be a differential
equation (DE).

To talk about them, we shall classify differential equations by type, order, and
linearity.

CLASSIFICATION BY TYPE If an equation contains only ordinary derivatives of
one or more dependent variables with respect to a single independent variable it is
said to be an ordinary differential equation (ODE). For example,

A DE can contain more
than one dependent variable

(2)

are ordinary differential equations. An equation involving partial derivatives of
one or more dependent variables of two or more independent variables is called a

dy

dx
� 5y � ex,    

d 2y

dx2 �
dy

dx
� 6y � 0,    and    

dx

dt
�

dy

dt
� 2x � y

b  b



partial differential equation (PDE). For example,

(3)

are partial differential equations.*

Throughout this text ordinary derivatives will be written by using either the
Leibniz notation dy�dx, d2y�dx2, d3y�dx3, . . . or the prime notation y�, y�, y�, . . . .
By using the latter notation, the first two differential equations in (2) can be written
a little more compactly as y� � 5y � ex and y� � y� � 6y � 0. Actually, the prime
notation is used to denote only the first three derivatives; the fourth derivative is
written y(4) instead of y��. In general, the nth derivative of y is written dny�dxn or y(n).
Although less convenient to write and to typeset, the Leibniz notation has an advan-
tage over the prime notation in that it clearly displays both the dependent and
independent variables. For example, in the equation

it is immediately seen that the symbol x now represents a dependent variable,
whereas the independent variable is t. You should also be aware that in physical
sciences and engineering, Newton’s dot notation (derogatively referred to by some
as the “flyspeck” notation) is sometimes used to denote derivatives with respect
to time t. Thus the differential equation d2s�dt2 � �32 becomes s̈ � �32. Partial
derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, with the subscript notation the second equation in
(3) becomes uxx � utt � 2ut.

CLASSIFICATION BY ORDER The order of a differential equation (either
ODE or PDE) is the order of the highest derivative in the equation. For example,

is a second-order ordinary differential equation. First-order ordinary differential
equations are occasionally written in differential form M(x, y) dx � N(x, y) dy � 0.
For example, if we assume that y denotes the dependent variable in 
(y � x) dx � 4x dy � 0, then y� � dy�dx, so by dividing by the differential dx, we
get the alternative form 4xy� � y � x. See the Remarks at the end of this section.

In symbols we can express an nth-order ordinary differential equation in one
dependent variable by the general form

, (4)

where F is a real-valued function of n � 2 variables: x, y, y�, . . . , y(n). For both prac-
tical and theoretical reasons we shall also make the assumption hereafter that it is
possible to solve an ordinary differential equation in the form (4) uniquely for the

F(x, y, y�, . . . , y(n)) � 0

first ordersecond order

� 5( )3
� 4y � ex

dy
–––
dx

d 2y
––––
dx2

d 2x
–––
dt2

� 16x � 0

unknown function
or dependent variable

independent variable

�2u

�x2 �
�2u

�y2 � 0,    
�2u

�x2 �
�2u

�t2 � 2
�u

�t
,    and    

�u

�y
� �

�v

�x
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*Except for this introductory section, only ordinary differential equations are considered in A First
Course in Differential Equations with Modeling Applications, Ninth Edition. In that text the
word equation and the abbreviation DE refer only to ODEs. Partial differential equations or PDEs
are considered in the expanded volume Differential Equations with Boundary-Value Problems,
Seventh Edition.



highest derivative y(n) in terms of the remaining n � 1 variables. The differential
equation

, (5)

where f is a real-valued continuous function, is referred to as the normal form of (4).
Thus when it suits our purposes, we shall use the normal forms

to represent general first- and second-order ordinary differential equations. For example,
the normal form of the first-order equation 4xy� � y � x is y� � (x � y)�4x; the normal
form of the second-order equation y� � y� � 6y � 0 is y� � y� � 6y. See the Remarks.

CLASSIFICATION BY LINEARITY An nth-order ordinary differential equation (4)
is said to be linear if F is linear in y, y�, . . . , y(n). This means that an nth-order ODE is
linear when (4) is an(x)y(n) � an�1(x)y(n�1) � 	 	 	 � a1(x)y� � a0(x)y � g(x) � 0 or

. (6)

Two important special cases of (6) are linear first-order (n � 1) and linear second-
order (n � 2) DEs:

. (7)

In the additive combination on the left-hand side of equation (6) we see that the char-
acteristic two properties of a linear ODE are as follows:

• The dependent variable y and all its derivatives y�, y�, . . . , y(n) are of the
first degree, that is, the power of each term involving y is 1.

• The coefficients a0, a1, . . . , an of y, y�, . . . , y(n) depend at most on the
independent variable x.

The equations

are, in turn, linear first-, second-, and third-order ordinary differential equations. We
have just demonstrated that the first equation is linear in the variable y by writing it in
the alternative form 4xy� � y � x. A nonlinear ordinary differential equation is sim-
ply one that is not linear. Nonlinear functions of the dependent variable or its deriva-
tives, such as sin y or , cannot appear in a linear equation. Therefore

are examples of nonlinear first-, second-, and fourth-order ordinary differential equa-
tions, respectively.

SOLUTIONS As was stated before, one of the goals in this course is to solve, or
find solutions of, differential equations. In the next definition we consider the con-
cept of a solution of an ordinary differential equation.

nonlinear term:
coefficient depends on y

nonlinear term:
nonlinear function of y

nonlinear term:
power not 1

(1 � y)y� � 2y � ex, � sin y � 0, and
d 2y
––––
dx2 � y 2 � 0

d 4y
––––
dx 4

ey�

(y � x)dx � 4x dy � 0,   y� � 2y� � y � 0,   and   
d 3y

dx3 � x
dy

dx
� 5y � ex

a1(x)
dy

dx
� a0(x)y � g(x)    and    a2(x)

d 2y

dx2 � a1(x)
dy

dx
� a0(x)y � g(x)

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 � 	 	 	 � a1(x)
dy

dx
� a0(x)y � g(x)

dy

dx
� f (x, y)    and    

d 2y

dx2 � f (x, y, y�)

dny

dxn � f (x, y, y�, . . . , y(n�1))

4 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS



DEFINITION 1.1.2 Solution of an ODE

Any function �, defined on an interval I and possessing at least n derivatives
that are continuous on I, which when substituted into an nth-order ordinary
differential equation reduces the equation to an identity, is said to be a
solution of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a func-
tion � that possesses at least n derivatives and for which

We say that � satisfies the differential equation on I. For our purposes we shall also
assume that a solution � is a real-valued function. In our introductory discussion we
saw that is a solution of dy�dx � 0.2xy on the interval (��, �).

Occasionally, it will be convenient to denote a solution by the alternative
symbol y(x).

INTERVAL OF DEFINITION You cannot think solution of an ordinary differential
equation without simultaneously thinking interval. The interval I in Definition 1.1.2
is variously called the interval of definition, the interval of existence, the interval
of validity, or the domain of the solution and can be an open interval (a, b), a closed
interval [a, b], an infinite interval (a, �), and so on.

EXAMPLE 1 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on
the interval (��, �).

(a) (b)

SOLUTION One way of verifying that the given function is a solution is to see, after
substituting, whether each side of the equation is the same for every x in the interval.

(a) From

we see that each side of the equation is the same for every real number x. Note
that is, by definition, the nonnegative square root of .

(b) From the derivatives y� � xex � ex and y� � xex � 2ex we have, for every real
number x,

Note, too, that in Example 1 each differential equation possesses the constant so-
lution y � 0, �� 
 x 
 �. A solution of a differential equation that is identically
zero on an interval I is said to be a trivial solution.

SOLUTION CURVE The graph of a solution � of an ODE is called a solution
curve. Since � is a differentiable function, it is continuous on its interval I of defini-
tion. Thus there may be a difference between the graph of the function � and the

right-hand side:   0.

left-hand side:  y� � 2y� � y � (xex � 2ex) � 2(xex � ex) � xex � 0,

1
16 x

4y1/2 � 1
4 x2

right-hand side:    xy1/2 � x � � 1

16
x4�

1/2

� x � �1

4
x2� �

1

4
x3,

left-hand side:    
dy

dx
�

1

16
 (4 � x3) �

1

4
x3,

y� � 2y� � y � 0; y � xexdy>dx � xy1/2; y � 1
16 x

4

y � e0.1x2

F(x, �(x), ��(x), . . . , �(n)(x)) � 0    for all x in I.
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graph of the solution �. Put another way, the domain of the function � need not be
the same as the interval I of definition (or domain) of the solution �. Example 2
illustrates the difference.

EXAMPLE 2 Function versus Solution

The domain of y � 1�x, considered simply as a function, is the set of all real num-
bers x except 0. When we graph y � 1�x, we plot points in the xy-plane corre-
sponding to a judicious sampling of numbers taken from its domain. The rational
function y � 1�x is discontinuous at 0, and its graph, in a neighborhood of the ori-
gin, is given in Figure 1.1.1(a). The function y � 1�x is not differentiable at x � 0,
since the y-axis (whose equation is x � 0) is a vertical asymptote of the graph.

Now y � 1�x is also a solution of the linear first-order differential equation
xy� � y � 0. (Verify.) But when we say that y � 1�x is a solution of this DE, we
mean that it is a function defined on an interval I on which it is differentiable and
satisfies the equation. In other words, y � 1�x is a solution of the DE on any inter-
val that does not contain 0, such as (�3, �1), , (��, 0), or (0, �). Because
the solution curves defined by y � 1�x for �3 
 x 
 �1 and are sim-
ply segments, or pieces, of the solution curves defined by y � 1�x for �� 
 x 
 0
and 0 
 x 
 �, respectively, it makes sense to take the interval I to be as large as
possible. Thus we take I to be either (��, 0) or (0, �). The solution curve on (0, �)
is shown in Figure 1.1.1(b).

EXPLICIT AND IMPLICIT SOLUTIONS You should be familiar with the terms
explicit functions and implicit functions from your study of calculus. A solution in
which the dependent variable is expressed solely in terms of the independent
variable and constants is said to be an explicit solution. For our purposes, let us
think of an explicit solution as an explicit formula y � �(x) that we can manipulate,
evaluate, and differentiate using the standard rules. We have just seen in the last two
examples that , y � xex, and y � 1�x are, in turn, explicit solutions
of dy�dx � xy1/2, y� � 2y� � y � 0, and xy� � y � 0. Moreover, the trivial solu-
tion y � 0 is an explicit solution of all three equations. When we get down to
the business of actually solving some ordinary differential equations, you will
see that methods of solution do not always lead directly to an explicit solution
y � �(x). This is particularly true when we attempt to solve nonlinear first-order
differential equations. Often we have to be content with a relation or expression
G(x, y) � 0 that defines a solution � implicitly.

DEFINITION 1.1.3 Implicit Solution of an ODE

A relation G(x, y) � 0 is said to be an implicit solution of an ordinary
differential equation (4) on an interval I, provided that there exists at least
one function � that satisfies the relation as well as the differential equation
on I.

It is beyond the scope of this course to investigate the conditions under which a
relation G(x, y) � 0 defines a differentiable function �. So we shall assume that if
the formal implementation of a method of solution leads to a relation G(x, y) � 0,
then there exists at least one function � that satisfies both the relation (that is,
G(x, �(x)) � 0) and the differential equation on an interval I. If the implicit solution
G(x, y) � 0 is fairly simple, we may be able to solve for y in terms of x and obtain
one or more explicit solutions. See the Remarks.

y � 1
16 x

4

1
2 
 x 
 10

(1
2, 10)
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1

x

y

1

(a) function y � 1/x, x � 0

(b) solution y � 1/x, (0, �)

1

x

y

1

FIGURE 1.1.1 The function y � 1�x
is not the same as the solution y � 1�x



EXAMPLE 3 Verification of an Implicit Solution

The relation x2 � y2 � 25 is an implicit solution of the differential equation

(8)

on the open interval (�5, 5). By implicit differentiation we obtain

.

Solving the last equation for the symbol dy�dx gives (8). Moreover, solving
x2 � y2 � 25 for y in terms of x yields . The two functions

and satisfy the relation (that is,
x2 � �1

2 � 25 and x2 � �2
2 � 25) and are explicit solutions defined on the interval

(�5, 5). The solution curves given in Figures 1.1.2(b) and 1.1.2(c) are segments of
the graph of the implicit solution in Figure 1.1.2(a).

Any relation of the form x2 � y2 � c � 0 formally satisfies (8) for any constant c.
However, it is understood that the relation should always make sense in the real number
system; thus, for example, if c � �25, we cannot say that x2 � y2 � 25 � 0 is an
implicit solution of the equation. (Why not?)

Because the distinction between an explicit solution and an implicit solution
should be intuitively clear, we will not belabor the issue by always saying, “Here is
an explicit (implicit) solution.”

FAMILIES OF SOLUTIONS The study of differential equations is similar to that of
integral calculus. In some texts a solution � is sometimes referred to as an integral
of the equation, and its graph is called an integral curve. When evaluating an anti-
derivative or indefinite integral in calculus, we use a single constant c of integration.
Analogously, when solving a first-order differential equation F(x, y, y�) � 0, we
usually obtain a solution containing a single arbitrary constant or parameter c. A
solution containing an arbitrary constant represents a set G(x, y, c) � 0 of solutions
called a one-parameter family of solutions. When solving an nth-order differential
equation F(x, y, y�, . . . , y(n)) � 0, we seek an n-parameter family of solutions
G(x, y, c1, c2, . . . , cn) � 0. This means that a single differential equation can possess
an infinite number of solutions corresponding to the unlimited number of choices
for the parameter(s). A solution of a differential equation that is free of arbitrary
parameters is called a particular solution. For example, the one-parameter family
y � cx � x cos x is an explicit solution of the linear first-order equation xy� � y �
x2 sin x on the interval (��, �). (Verify.) Figure 1.1.3, obtained by using graphing soft-
ware, shows the graphs of some of the solutions in this family. The solution y �
�x cos x, the blue curve in the figure, is a particular solution corresponding to c � 0.
Similarly, on the interval (��, �), y � c1ex � c2xex is a two-parameter family of solu-
tions of the linear second-order equation y� � 2y� � y � 0 in Example 1. (Verify.)
Some particular solutions of the equation are the trivial solution y � 0 (c1 � c2 � 0),
y � xex (c1 � 0, c2 � 1), y � 5ex � 2xex (c1 � 5, c2 � �2), and so on.

Sometimes a differential equation possesses a solution that is not a member of a
family of solutions of the equation—that is, a solution that cannot be obtained by spe-
cializing any of the parameters in the family of solutions. Such an extra solution is called
a singular solution. For example, we have seen that and y � 0 are solutions of
the differential equation dy�dx � xy1/2 on (��, �). In Section 2.2 we shall demonstrate,
by actually solving it, that the differential equation dy�dx � xy1/2 possesses the one-
parameter family of solutions . When c � 0, the resulting particular
solution is . But notice that the trivial solution y � 0 is a singular solution, sincey � 1

16 x
4

y � (1
4 x2 � c)2

y � 1
16 x

4

y � �2(x) � �125 � x2y � �1(x) � 125 � x2
y � �225 � x2

d

dx
x2 �

d

dx
y2 �

d

dx
 25    or    2x � 2y

dy

dx
� 0

dy

dx
� �

x

y
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y

x
5

5

y

x
5

5

y

x

5

5

−5

(a) implicit solution

x2 � y2 � 25

(b) explicit solution

y1 � � ��25 x2, 5 
 x 
 5

(c) explicit solution

y2 � ��25 � x2, �5 
 x 
 5

(a)

FIGURE 1.1.2 An implicit solution
and two explicit solutions of y� � �x�y

FIGURE 1.1.3 Some solutions of 
xy� � y � x2 sin x

y

x

c>0

c<0

c=0



it is not a member of the family ; there is no way of assigning a value to
the constant c to obtain y � 0.

In all the preceding examples we used x and y to denote the independent and
dependent variables, respectively. But you should become accustomed to seeing
and working with other symbols to denote these variables. For example, we could
denote the independent variable by t and the dependent variable by x.

EXAMPLE 4 Using Different Symbols

The functions x � c1 cos 4t and x � c2 sin 4t, where c1 and c2 are arbitrary constants
or parameters, are both solutions of the linear differential equation

For x � c1 cos 4t the first two derivatives with respect to t are x� � �4c1 sin 4t
and x� � �16c1 cos 4t. Substituting x� and x then gives

In like manner, for x � c2 sin 4t we have x� � �16c2 sin 4t, and so

Finally, it is straightforward to verify that the linear combination of solutions, or the
two-parameter family x � c1 cos 4t � c2 sin 4t, is also a solution of the differential
equation.

The next example shows that a solution of a differential equation can be a
piecewise-defined function.

EXAMPLE 5 A Piecewise-Defined Solution

You should verify that the one-parameter family y � cx4 is a one-parameter family
of solutions of the differential equation xy� � 4y � 0 on the inverval (��, �). See
Figure 1.1.4(a). The piecewise-defined differentiable function

is a particular solution of the equation but cannot be obtained from the family
y � cx4 by a single choice of c; the solution is constructed from the family by choos-
ing c � �1 for x 
 0 and c � 1 for x  0. See Figure 1.1.4(b).

SYSTEMS OF DIFFERENTIAL EQUATIONS Up to this point we have been
discussing single differential equations containing one unknown function. But
often in theory, as well as in many applications, we must deal with systems of
differential equations. A system of ordinary differential equations is two or more
equations involving the derivatives of two or more unknown functions of a single
independent variable. For example, if x and y denote dependent variables and t
denotes the independent variable, then a system of two first-order differential
equations is given by

(9)
dy

dt
� g(t, x, y).

dx

dt
� f(t, x, y)

y � ��x4,    x 
 0

x4,    x  0

x� � 16x � �16c2 sin 4t � 16(c2 sin 4t) � 0.

x� � 16x � �16c1 cos 4t � 16(c1 cos 4t) � 0.

x� � 16x � 0.

y � (1
4 x2 � c)2
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FIGURE 1.1.4 Some solutions of 
xy� � 4y � 0

(a) two explicit solutions

(b) piecewise-defined solution

c = 1

c = −1
x

y

c = 1,
x 0≤

c = −1,
x < 0

x

y



A solution of a system such as (9) is a pair of differentiable functions x � �1(t),
y � �2(t), defined on a common interval I, that satisfy each equation of the system
on this interval.

REMARKS

(i) A few last words about implicit solutions of differential equations are in
order. In Example 3 we were able to solve the relation x2 � y2 � 25 for
y in terms of x to get two explicit solutions, and

, of the differential equation (8). But don’t read too much
into this one example. Unless it is easy or important or you are instructed to,
there is usually no need to try to solve an implicit solution G(x, y) � 0 for y
explicitly in terms of x. Also do not misinterpret the second sentence following
Definition 1.1.3. An implicit solution G(x, y) � 0 can define a perfectly good
differentiable function � that is a solution of a DE, yet we might not be able to
solve G(x, y) � 0 using analytical methods such as algebra. The solution curve
of � may be a segment or piece of the graph of G(x, y) � 0. See Problems 45
and 46 in Exercises 1.1. Also, read the discussion following Example 4 in
Section 2.2.

(ii) Although the concept of a solution has been emphasized in this section,
you should also be aware that a DE does not necessarily have to possess
a solution. See Problem 39 in Exercises 1.1. The question of whether a
solution exists will be touched on in the next section.

(iii) It might not be apparent whether a first-order ODE written in differential
form M(x, y)dx � N(x, y)dy � 0 is linear or nonlinear because there is nothing
in this form that tells us which symbol denotes the dependent variable. See
Problems 9 and 10 in Exercises 1.1.

(iv) It might not seem like a big deal to assume that F(x, y, y�, . . . , y(n)) � 0 can
be solved for y(n), but one should be a little bit careful here. There are exceptions,
and there certainly are some problems connected with this assumption. See
Problems 52 and 53 in Exercises 1.1.

(v) You may run across the term closed form solutions in DE texts or in
lectures in courses in differential equations. Translated, this phrase usually
refers to explicit solutions that are expressible in terms of elementary (or
familiar) functions: finite combinations of integer powers of x, roots, exponen-
tial and logarithmic functions, and trigonometric and inverse trigonometric
functions.

(vi) If every solution of an nth-order ODE F(x, y, y�, . . . , y(n)) � 0 on an inter-
val I can be obtained from an n-parameter family G(x, y, c1, c2, . . . , cn) � 0 by
appropriate choices of the parameters ci, i � 1, 2, . . . , n, we then say that the
family is the general solution of the DE. In solving linear ODEs, we shall im-
pose relatively simple restrictions on the coefficients of the equation; with these
restrictions one can be assured that not only does a solution exist on an interval
but also that a family of solutions yields all possible solutions. Nonlinear ODEs,
with the exception of some first-order equations, are usually difficult or impos-
sible to solve in terms of elementary functions. Furthermore, if we happen to
obtain a family of solutions for a nonlinear equation, it is not obvious whether
this family contains all solutions. On a practical level, then, the designation
“general solution” is applied only to linear ODEs. Don’t be concerned about
this concept at this point, but store the words “general solution” in the back of
your mind—we will come back to this notion in Section 2.3 and again in
Chapter 4.

�2(x) � �125 � x2
�1(x) � 125 � x2
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EXERCISES 1.1 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1–8 state the order of the given ordinary differ-
ential equation. Determine whether the equation is linear or
nonlinear by matching it with (6).

1. (1 � x)y� � 4xy�� 5y � cos x

2.

3. t5y(4) � t3y� � 6y � 0

4.

5.

6.

7. (sin �)y� � (cos �)y� � 2

8.

In Problems 9 and 10 determine whether the given first-order
differential equation is linear in the indicated dependent
variable by matching it with the first differential equation
given in (7).

9. (y2 � 1) dx � x dy � 0; in y; in x

10. u dv � (v � uv � ueu) du � 0; in v; in u

In Problems 11–14 verify that the indicated function is an
explicit solution of the given differential equation. Assume
an appropriate interval I of definition for each solution.

11. 2y� � y � 0; y � e�x/2

12.

13. y� � 6y� � 13y � 0; y � e3x cos 2x

14. y� � y � tan x; y � �(cos x)ln(sec x � tan x)

In Problems 15–18 verify that the indicated function 
y � �(x) is an explicit solution of the given first-order
differential equation. Proceed as in Example 2, by consider-
ing � simply as a function, give its domain. Then by consid-
ering � as a solution of the differential equation, give at least
one interval I of definition.

15. (y � x)y� � y � x � 8;  y � x � 42x � 2

dy

dt
� 20y � 24;  y �

6

5
�

6

5
e�20t

ẍ � �1 �
x. 2

3 �x. � x � 0

d 2R

dt 2 � �
k

R2

d 2y

dx 2 � B1 � �dy

dx�
2

d 2u

dr 2 �
du

dr
� u � cos(r � u)

x
d3y

dx3 � �dy

dx�
4

� y � 0

16. y� � 25 � y2; y � 5 tan 5x

17. y� � 2xy2; y � 1�(4 � x2)

18. 2y� � y3 cos x; y � (1 � sin x)�1/2

In Problems 19 and 20 verify that the indicated expression is
an implicit solution of the given first-order differential equa-
tion. Find at least one explicit solution y � �(x) in each case.
Use a graphing utility to obtain the graph of an explicit solu-
tion. Give an interval I of definition of each solution �.

19.

20. 2xy dx � (x2 � y) dy � 0; �2x2y � y2 � 1

In Problems 21–24 verify that the indicated family of func-
tions is a solution of the given differential equation. Assume
an appropriate interval I of definition for each solution.

21.

22.

23.

24.

25. Verify that the piecewise-defined function

is a solution of the differential equation xy� � 2y � 0
on (��, �).

26. In Example 3 we saw that y � �1(x) � and
are solutions of dy�dx �

�x�y on the interval (�5, 5). Explain why the piecewise-
defined function

is not a solution of the differential equation on the
interval (�5, 5).

y � � 125 � x2,
�125 � x2,

�5 
 x 
 0

 0 � x 
 5

y � �2(x) � �125 � x2
125 � x2

y � ��x2, x 
 0

 x2, x  0

y � c1x�1 � c2x � c3x ln x � 4x2

x3 d 3y

dx3 � 2x2 d 2y

dx2 � x
dy

dx
� y � 12x2;

d 2y

dx2 � 4
dy

dx
� 4y � 0; y � c1e2x � c2xe2x

dy

dx
� 2xy � 1; y � e�x2�x

0
et2

dt � c1e�x2

dP

dt
� P(1 � P); P �

c1et

1 � c1et

dX

dt
� (X � 1)(1 � 2X);  ln�2X � 1

X � 1 � � t



In Problems 27–30 find values of m so that the function
y � emx is a solution of the given differential equation. 

27. y� � 2y � 0 28. 5y� � 2y

29. y� � 5y� � 6y � 0 30. 2y� � 7y� � 4y � 0

In Problems 31 and 32 find values of m so that the function
y � xm is a solution of the given differential equation. 

31. xy� � 2y� � 0

32. x2y� � 7xy� � 15y � 0

In Problems 33–36 use the concept that y � c, �� 
 x 
 �,
is a constant function if and only if y� � 0 to determine
whether the given differential equation possesses constant
solutions.

33. 3xy� � 5y � 10

34. y� � y2 � 2y � 3

35. (y � 1)y� � 1

36. y� � 4y� � 6y � 10

In Problems 37 and 38 verify that the indicated pair of
functions is a solution of the given system of differential
equations on the interval (��, �).

37. 38.

,

Discussion Problems

39. Make up a differential equation that does not possess
any real solutions.

40. Make up a differential equation that you feel confident
possesses only the trivial solution y � 0. Explain your
reasoning.

41. What function do you know from calculus is such that
its first derivative is itself? Its first derivative is a
constant multiple k of itself? Write each answer in
the form of a first-order differential equation with a
solution.

42. What function (or functions) do you know from calcu-
lus is such that its second derivative is itself? Its second
derivative is the negative of itself? Write each answer in
the form of a second-order differential equation with a
solution.

y � �cos 2t � sin 2t � 1
5 ety � �e�2t � 5e6t

x � cos 2t � sin 2t � 1
5 etx � e�2t � 3e6t,

d 2y

dt 2 � 4x � et;
dy

dt
� 5x � 3y;

d 2x

dt 2 � 4y � etdx

dt
� x � 3y
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43. Given that y � sin x is an explicit solution of the

first-order differential equation . Find

an interval I of definition. [Hint: I is not the interval
(��, �).]

44. Discuss why it makes intuitive sense to presume that
the linear differential equation y� � 2y� � 4y � 5 sin t
has a solution of the form y � A sin t � B cos t, where
A and B are constants. Then find specific constants A
and B so that y � A sin t � B cos t is a particular solu-
tion of the DE.

In Problems 45 and 46 the given figure represents the graph
of an implicit solution G(x, y) � 0 of a differential equation
dy�dx � f (x, y). In each case the relation G(x, y) � 0
implicitly defines several solutions of the DE. Carefully
reproduce each figure on a piece of paper. Use different
colored pencils to mark off segments, or pieces, on each
graph that correspond to graphs of solutions. Keep in mind
that a solution � must be a function and differentiable. Use
the solution curve to estimate an interval I of definition of
each solution �.

45.

dy

dx
� 11 � y2

FIGURE 1.1.5 Graph for Problem 45

FIGURE 1.1.6 Graph for Problem 46

y

x

1

1

1 x

1

y46.

47. The graphs of members of the one-parameter family
x3 � y3 � 3cxy are called folia of Descartes. Verify
that this family is an implicit solution of the first-order
differential equation

dy

dx
�

y(y3 � 2x3)

x(2y3 � x3)
.



48. The graph in Figure 1.1.6 is the member of the family of
folia in Problem 47 corresponding to c � 1. Discuss:
How can the DE in Problem 47 help in finding points
on the graph of x3 � y3 � 3xy where the tangent line
is vertical? How does knowing where a tangent line is
vertical help in determining an interval I of definition
of a solution � of the DE? Carry out your ideas,
and compare with your estimates of the intervals in
Problem 46.

49. In Example 3 the largest interval I over which the
explicit solutions y � �1(x) and y � �2(x) are defined
is the open interval (�5, 5). Why can’t the interval I of
definition be the closed interval [�5, 5]?

50. In Problem 21 a one-parameter family of solutions of
the DE P� � P(1 � P) is given. Does any solution
curve pass through the point (0, 3)? Through the
point (0, 1)?

51. Discuss, and illustrate with examples, how to solve
differential equations of the forms dy�dx � f (x) and
d2y�dx2 � f (x).

52. The differential equation x(y�)2 � 4y� � 12x3 � 0 has
the form given in (4). Determine whether the equation
can be put into the normal form dy�dx � f (x, y).

53. The normal form (5) of an nth-order differential equa-
tion is equivalent to (4) whenever both forms have
exactly the same solutions. Make up a first-order differ-
ential equation for which F(x, y, y�) � 0 is not equiva-
lent to the normal form dy�dx � f (x, y).

54. Find a linear second-order differential equation 
F(x, y, y�, y�) � 0 for which y � c1x � c2x2 is a two-
parameter family of solutions. Make sure that your equa-
tion is free of the arbitrary parameters c1 and c2.

Qualitative information about a solution y � �(x) of a
differential equation can often be obtained from the
equation itself. Before working Problems 55–58, recall
the geometric significance of the derivatives dy�dx
and d2y�dx2.

55. Consider the differential equation .

(a) Explain why a solution of the DE must be an
increasing function on any interval of the x-axis.

(b) What are What does

this suggest about a solution curve as 

(c) Determine an interval over which a solution curve is
concave down and an interval over which the curve
is concave up.

(d) Sketch the graph of a solution y � �(x) of the dif-
ferential equation whose shape is suggested by
parts (a)– (c).

x : ��?

lim
x : ��

dy>dx  and lim
x : �

dy>dx?

dy>dx � e�x2
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56. Consider the differential equation dy�dx � 5 � y.

(a) Either by inspection or by the method suggested in
Problems 33–36, find a constant solution of the DE.

(b) Using only the differential equation, find intervals on
the y-axis on which a nonconstant solution y � �(x)
is increasing. Find intervals on the y-axis on which 
y � �(x) is decreasing.

57. Consider the differential equation dy�dx � y(a � by),
where a and b are positive constants.

(a) Either by inspection or by the method suggested
in Problems 33–36, find two constant solutions of
the DE.

(b) Using only the differential equation, find intervals on
the y-axis on which a nonconstant solution y � �(x)
is increasing. Find intervals on which y � �(x) is
decreasing.

(c) Using only the differential equation, explain why 
y � a�2b is the y-coordinate of a point of inflection
of the graph of a nonconstant solution y � �(x).

(d) On the same coordinate axes, sketch the graphs of
the two constant solutions found in part (a). These
constant solutions partition the xy-plane into three
regions. In each region, sketch the graph of a non-
constant solution y � �(x) whose shape is sug-
gested by the results in parts (b) and (c).

58. Consider the differential equation y� � y2 � 4.

(a) Explain why there exist no constant solutions of
the DE.

(b) Describe the graph of a solution y � �(x). For
example, can a solution curve have any relative
extrema?

(c) Explain why y � 0 is the y-coordinate of a point of
inflection of a solution curve.

(d) Sketch the graph of a solution y � �(x) of the
differential equation whose shape is suggested by
parts (a)–(c).

Computer Lab Assignments

In Problems 59 and 60 use a CAS to compute all derivatives
and to carry out the simplifications needed to verify that the
indicated function is a particular solution of the given differ-
ential equation.

59. y(4) � 20y� � 158y� � 580y� � 841y � 0;

y � xe5x cos 2x

60.

y � 20
cos(5 ln x)

x
� 3

sin(5 ln x)

x

x3y� � 2x2y� � 20xy� � 78y � 0;



FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an
nth-order initial-value problem. For example,

(2)

and (3)

are first- and second-order initial-value problems, respectively. These two problems
are easy to interpret in geometric terms. For (2) we are seeking a solution y(x) of the
differential equation y� � f (x, y) on an interval I containing x0 so that its graph passes
through the specified point (x0, y0). A solution curve is shown in blue in Figure 1.2.1.
For (3) we want to find a solution y(x) of the differential equation y� � f (x, y, y�) on
an interval I containing x0 so that its graph not only passes through (x0, y0) but the slope
of the curve at this point is the number y1. A solution curve is shown in blue in
Figure 1.2.2. The words initial conditions derive from physical systems where the
independent variable is time t and where y(t0) � y0 and y�(t0) � y1 represent the posi-
tion and velocity, respectively, of an object at some beginning, or initial, time t0.

Solving an nth-order initial-value problem such as (1) frequently entails first
finding an n-parameter family of solutions of the given differential equation and then
using the n initial conditions at x0 to determine numerical values of the n constants in
the family. The resulting particular solution is defined on some interval I containing
the initial point x0.

EXAMPLE 1 Two First-Order IVPs

In Problem 41 in Exercises 1.1 you were asked to deduce that y � cex is a one-
parameter family of solutions of the simple first-order equation y� � y. All the
solutions in this family are defined on the interval (��, �). If we impose an initial
condition, say, y(0) � 3, then substituting x � 0, y � 3 in the family determines the

Subject to:  y(x0) � y0, y�(x0) � y1

Solve:  d2y

dx2 � f (x, y, y�)

Subject to:  y(x0) � y0

Solve:  dy

dx
� f (x, y)
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INITIAL-VALUE PROBLEMS

REVIEW MATERIAL
● Normal form of a DE
● Solution of a DE
● Family of solutions

INTRODUCTION We are often interested in problems in which we seek a solution y(x) of a
differential equation so that y(x) satisfies prescribed side conditions—that is, conditions imposed on
the unknown y(x) or its derivatives. On some interval I containing x0 the problem

(1)

where y0, y1, . . . , yn�1 are arbitrarily specified real constants, is called an initial-value
problem (IVP). The values of y(x) and its first n � 1 derivatives at a single point x0, y(x0) � y0,
y�(x0) � y1, . . . , y(n�1)(x0) � yn�1, are called initial conditions.

Subject to:  y(x0) � y0, y�(x0) � y1, . . . , y(n�1)(x0) � yn�1,

Solve:   dny

dxn � f �x, y, y�, . . . , y(n�1)�

1.2

FIGURE 1.2.1 Solution of
first-order IVP

FIGURE 1.2.2 Solution of
second-order IVP

xI

solutions of the DE

(x0, y0)

y

m = y1

xI

solutions of the DE

(x0, y0)

y



constant 3 � ce0 � c. Thus y � 3ex is a solution of the IVP

Now if we demand that a solution curve pass through the point (1, �2) rather than
(0, 3), then y(1) � �2 will yield �2 � ce or c � �2e�1. In this case y � �2ex�1 is
a solution of the IVP

The two solution curves are shown in dark blue and dark red in Figure 1.2.3.

The next example illustrates another first-order initial-value problem. In this
example notice how the interval I of definition of the solution y(x) depends on the
initial condition y(x0) � y0.

EXAMPLE 2 Interval I of Definition of a Solution

In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family
of solutions of the first-order differential equation y� � 2xy2 � 0 is y � 1�(x2 � c).
If we impose the initial condition y(0) � �1, then substituting x � 0 and y � �1
into the family of solutions gives �1 � 1�c or c � �1. Thus y � 1�(x2 � 1). We
now emphasize the following three distinctions:

• Considered as a function, the domain of y � 1�(x2 � 1) is the set of real
numbers x for which y(x) is defined; this is the set of all real numbers
except x � �1 and x � 1. See Figure 1.2.4(a).

• Considered as a solution of the differential equation y� � 2xy2 � 0, the
interval I of definition of y � 1�(x2 � 1) could be taken to be any
interval over which y(x) is defined and differentiable. As can be seen in
Figure 1.2.4(a), the largest intervals on which y � 1�(x2 � 1) is a solution
are (��,�1), (�1, 1), and (1, �).

• Considered as a solution of the initial-value problem y� � 2xy2 � 0,
y(0) � �1, the interval I of definition of y � 1�(x2 � 1) could be taken to
be any interval over which y(x) is defined, differentiable, and contains the
initial point x � 0; the largest interval for which this is true is (�1, 1). See
the red curve in Figure 1.2.4(b).

See Problems 3–6 in Exercises 1.2 for a continuation of Example 2.

EXAMPLE 3 Second-Order IVP

In Example 4 of Section 1.1 we saw that x � c1 cos 4t � c2 sin 4t is a two-parameter
family of solutions of x� � 16x � 0. Find a solution of the initial-value problem

(4)

SOLUTION We first apply x(��2) � �2 to the given family of solutions: c1 cos 2� �
c2 sin 2� � �2. Since cos 2� � 1 and sin 2� � 0, we find that c1 � �2. We next apply
x�(��2) � 1 to the one-parameter family x(t) � �2 cos 4t � c2 sin 4t. Differentiating
and then setting t � ��2 and x� � 1 gives 8 sin 2� � 4c2 cos 2� � 1, from which we
see that . Hence is a solution of (4).

EXISTENCE AND UNIQUENESS Two fundamental questions arise in consider-
ing an initial-value problem:

Does a solution of the problem exist?
If a solution exists, is it unique?

x � �2 cos 4t � 1
4 sin 4tc2 � 1

4

x� � 16x � 0,  x��

2� � �2,  x���

2� � 1.

y� � y,  y(1) � �2.

y� � y,  y(0) � 3.
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FIGURE 1.2.3 Solutions of two IVPs

y

x

(0, 3)

(1, −2)

FIGURE 1.2.4 Graphs of function
and solution of IVP in Example 2

(0, −1)

x

y

1−1

x

y

1−1

(a) function defined for all x except x = ±1

(b) solution defined on interval containing x = 0



For the first-order initial-value problem (2) we ask:

Existence {Does the differential equation dy�dx � f (x, y) possess solutions?
Do any of the solution curves pass through the point (x0, y0)?

Uniqueness {When can we be certain that there is precisely one solution curve
passing through the point (x0, y0)?

Note that in Examples 1 and 3 the phrase “a solution” is used rather than “the solu-
tion” of the problem. The indefinite article “a” is used deliberately to suggest the
possibility that other solutions may exist. At this point it has not been demonstrated
that there is a single solution of each problem. The next example illustrates an initial-
value problem with two solutions.

EXAMPLE 4 An IVP Can Have Several Solutions

Each of the functions y � 0 and satisfies the differential equation
dy�dx � xy1/2 and the initial condition y(0) � 0, so the initial-value problem

has at least two solutions. As illustrated in Figure 1.2.5, the graphs of both functions
pass through the same point (0, 0).

Within the safe confines of a formal course in differential equations one can be
fairly confident that most differential equations will have solutions and that solutions of
initial-value problems will probably be unique. Real life, however, is not so idyllic.
Therefore it is desirable to know in advance of trying to solve an initial-value problem
whether a solution exists and, when it does, whether it is the only solution of the prob-
lem. Since we are going to consider first-order differential equations in the next two
chapters, we state here without proof a straightforward theorem that gives conditions
that are sufficient to guarantee the existence and uniqueness of a solution of a first-order
initial-value problem of the form given in (2). We shall wait until Chapter 4 to address
the question of existence and uniqueness of a second-order initial-value problem.

THEOREM 1.2.1 Existence of a Unique Solution

Let R be a rectangular region in the xy-plane defined by a � x � b, c � y � d
that contains the point (x0, y0) in its interior. If f (x, y) and �f ��y are continuous
on R, then there exists some interval I0: (x0 � h, x0 � h), h � 0, contained in
[a, b], and a unique function y(x), defined on I0, that is a solution of the initial-
value problem (2).

The foregoing result is one of the most popular existence and uniqueness theo-
rems for first-order differential equations because the criteria of continuity of f (x, y)
and �f��y are relatively easy to check. The geometry of Theorem 1.2.1 is illustrated
in Figure 1.2.6.

EXAMPLE 5 Example 4 Revisited

We saw in Example 4 that the differential equation dy�dx � xy1/2 possesses at least
two solutions whose graphs pass through (0, 0). Inspection of the functions

f (x, y) � xy1/2    and    
�f

�y
�

x

2y1/2

dy

dx
� xy1/2,  y(0) � 0

y � 1
16 x

4

1.2 INITIAL-VALUE PROBLEMS ● 15

y

y = 0

y = x4/16

(0, 0)

1

x

xI0

R

a b

c

d

(x0, y0)

y

FIGURE 1.2.5 Two solutions
of the same IVP

FIGURE 1.2.6 Rectangular region R



shows that they are continuous in the upper half-plane defined by y � 0. Hence
Theorem 1.2.1 enables us to conclude that through any point (x0, y0), y0 � 0 in the
upper half-plane there is some interval centered at x0 on which the given differential
equation has a unique solution. Thus, for example, even without solving it, we know
that there exists some interval centered at 2 on which the initial-value problem
dy�dx � xy1/2, y(2) � 1 has a unique solution.

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the
initial-value problems y� � y, y(0) � 3 and y� � y, y(1) � �2 other than y � 3ex

and y � �2ex�1, respectively. This follows from the fact that f (x, y) � y and
�f��y � 1 are continuous throughout the entire xy-plane. It can be further shown that
the interval I on which each solution is defined is (��, �).

INTERVAL OF EXISTENCE/UNIQUENESS Suppose y(x) represents a solution
of the initial-value problem (2). The following three sets on the real x-axis may not
be the same: the domain of the function y(x), the interval I over which the solution
y(x) is defined or exists, and the interval I0 of existence and uniqueness. Example 2
of Section 1.1 illustrated the difference between the domain of a function and the
interval I of definition. Now suppose (x0, y0) is a point in the interior of the rectan-
gular region R in Theorem 1.2.1. It turns out that the continuity of the function
f (x, y) on R by itself is sufficient to guarantee the existence of at least one solution
of dy�dx � f (x, y), y(x0) � y0, defined on some interval I. The interval I of defini-
tion for this initial-value problem is usually taken to be the largest interval contain-
ing x0 over which the solution y(x) is defined and differentiable. The interval I
depends on both f (x, y) and the initial condition y(x0) � y0. See Problems 31–34 in
Exercises 1.2. The extra condition of continuity of the first partial derivative �f��y
on R enables us to say that not only does a solution exist on some interval I0 con-
taining x0, but it is the only solution satisfying y(x0) � y0. However, Theorem 1.2.1
does not give any indication of the sizes of intervals I and I0; the interval I of
definition need not be as wide as the region R, and the interval I0 of existence and
uniqueness may not be as large as I. The number h � 0 that defines the interval
I0: (x0 � h, x0 � h) could be very small, so it is best to think that the solution y(x)
is unique in a local sense —that is, a solution defined near the point (x0, y0). See
Problem 44 in Exercises 1.2.

REMARKS

(i) The conditions in Theorem 1.2.1 are sufficient but not necessary. This means
that when f (x, y) and �f��y are continuous on a rectangular region R, it must
always follow that a solution of (2) exists and is unique whenever (x0, y0) is a
point interior to R. However, if the conditions stated in the hypothesis of
Theorem 1.2.1 do not hold, then anything could happen: Problem (2) may still
have a solution and this solution may be unique, or (2) may have several solu-
tions, or it may have no solution at all. A rereading of Example 5 reveals that the
hypotheses of Theorem 1.2.1 do not hold on the line y � 0 for the differential
equation dy�dx � xy1/2, so it is not surprising, as we saw in Example 4 of this
section, that there are two solutions defined on a common interval �h 
 x 
 h
satisfying y(0) � 0. On the other hand, the hypotheses of Theorem 1.2.1 do
not hold on the line y � 1 for the differential equation dy�dx � �y � 1�.
Nevertheless it can be proved that the solution of the initial-value problem
dy�dx � �y � 1�, y(0) � 1, is unique. Can you guess this solution?

(ii) You are encouraged to read, think about, work, and then keep in mind
Problem 43 in Exercises 1.2.
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EXERCISES 1.2 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2, y � 1�(1 � c1e�x) is a one-parameter
family of solutions of the first-order DE y� � y � y2. Find a
solution of the first-order IVP consisting of this differential
equation and the given initial condition.

1. 2. y(�1) � 2

In Problems 3–6, y � 1�(x2 � c) is a one-parameter family
of solutions of the first-order DE y� � 2xy2 � 0. Find a
solution of the first-order IVP consisting of this differential
equation and the given initial condition. Give the largest
interval I over which the solution is defined.

3. 4.

5. y(0) � 1 6.

In Problems 7–10, x � c1 cos t � c2 sin t is a two-parameter
family of solutions of the second-order DE x� � x � 0. Find
a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.

7. x(0) � �1, x�(0) � 8

8. x(��2) � 0, x�(��2) � 1

9.

10.

In Problems 11–14, y � c1ex � c2e�x is a two-parameter
family of solutions of the second-order DE y� � y � 0. Find
a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.

11.

12. y(1) � 0, y�(1) � e

13. y(�1) � 5, y�(�1) � �5

14. y(0) � 0, y�(0) � 0

In Problems 15 and 16 determine by inspection at least two
solutions of the given first-order IVP.

15. y� � 3y2/3, y(0) � 0

16. xy� � 2y, y(0) � 0

In Problems 17–24 determine a region of the xy-plane for
which the given differential equation would have a unique
solution whose graph passes through a point (x0, y0) in the
region.

17. 18.
dy

dx
� 1xy

dy

dx
� y2/3

y�(0) � 2y(0) � 1,

x(�>4) � 12, x�(�>4) � 212

x(�>6) � 1
2, x�(�>6) � 0

y(1
2) � �4

y(�2) � 1
2y(2) � 1

3

y(0) � �1
3

19. 20.

21. (4 � y2)y� � x2 22. (1 � y3)y� � x2

23. (x2 � y2)y� � y2 24. (y � x)y� � y � x

In Problems 25–28 determine whether Theorem 1.2.1 guar-
antees that the differential equation pos-
sesses a unique solution through the given point.

25. (1, 4) 26. (5, 3)

27. (2, �3) 28. (�1, 1)

29. (a) By inspection find a one-parameter family of solu-
tions of the differential equation xy� � y. Verify that
each member of the family is a solution of the
initial-value problem xy� � y, y(0) � 0.

(b) Explain part (a) by determining a region R in the
xy-plane for which the differential equation xy� � y
would have a unique solution through a point (x0, y0)
in R.

(c) Verify that the piecewise-defined function

satisfies the condition y(0) � 0. Determine whether
this function is also a solution of the initial-value
problem in part (a).

30. (a) Verify that y � tan (x � c) is a one-parameter family
of solutions of the differential equation y� � 1 � y2.

(b) Since f (x, y) � 1 � y2 and �f��y � 2y are continu-
ous everywhere, the region R in Theorem 1.2.1 can
be taken to be the entire xy-plane. Use the family of
solutions in part (a) to find an explicit solution of
the first-order initial-value problem y� � 1 � y2,
y(0) � 0. Even though x0 � 0 is in the interval
(�2, 2), explain why the solution is not defined on
this interval.

(c) Determine the largest interval I of definition for the
solution of the initial-value problem in part (b).

31. (a) Verify that y � �1�(x � c) is a one-parameter
family of solutions of the differential equation 
y� � y2.

(b) Since f (x, y) � y2 and �f��y � 2y are continuous
everywhere, the region R in Theorem 1.2.1 can be
taken to be the entire xy-plane. Find a solution from
the family in part (a) that satisfies y(0) � 1. Then
find a solution from the family in part (a) that
satisfies y(0) � �1. Determine the largest interval I
of definition for the solution of each initial-value
problem.

y � �0,  x 
 0

x,  x  0

y� � 1y2 � 9

dy

dx
� y � xx

dy

dx
� y



(c) Determine the largest interval I of definition for the
solution of the first-order initial-value problem
y� � y2, y(0) � 0. [Hint: The solution is not a mem-
ber of the family of solutions in part (a).]

32. (a) Show that a solution from the family in part (a)
of Problem 31 that satisfies y� � y2, y(1) � 1, is
y � 1�(2 � x).

(b) Then show that a solution from the family in part (a)
of Problem 31 that satisfies y� � y2, y(3) � �1, is
y � 1�(2 � x).

(c) Are the solutions in parts (a) and (b) the same?

33. (a) Verify that 3x2 � y2 � c is a one-parameter fam-
ily of solutions of the differential equation 
y dy�dx � 3x.

(b) By hand, sketch the graph of the implicit solution
3x2 � y2 � 3. Find all explicit solutions y � �(x) of
the DE in part (a) defined by this relation. Give the
interval I of definition of each explicit solution.

(c) The point (�2, 3) is on the graph of 3x2 � y2 � 3,
but which of the explicit solutions in part (b) satis-
fies y(�2) � 3?

34. (a) Use the family of solutions in part (a) of Problem 33
to find an implicit solution of the initial-value
problem y dy�dx � 3x, y(2) � �4. Then, by hand,
sketch the graph of the explicit solution of this
problem and give its interval I of definition.

(b) Are there any explicit solutions of y dy�dx � 3x
that pass through the origin?

In Problems 35–38 the graph of a member of a family
of solutions of a second-order differential equation 
d2y�dx2 � f (x, y, y�) is given. Match the solution curve with
at least one pair of the following initial conditions.

(a) y(1) � 1, y�(1) � �2

(b) y(�1) � 0, y�(�1) � �4

(c) y(1) � 1, y�(1) � 2

(d) y(0) � �1, y�(0) � 2

(e) y(0) � �1, y�(0) � 0

(f ) y(0) � �4, y�(0) � �2

35.
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Discussion Problems

In Problems 39 and 40 use Problem 51 in Exercises 1.1 and
(2) and (3) of this section.

39. Find a function y � f (x) whose graph at each point (x, y)
has the slope given by 8e2x � 6x and has the 
y-intercept (0, 9).

40. Find a function y � f (x) whose second derivative is
y� � 12x � 2 at each point (x, y) on its graph and
y � �x � 5 is tangent to the graph at the point corre-
sponding to x � 1.

41. Consider the initial-value problem y� � x � 2y,
. Determine which of the two curves shown

in Figure 1.2.11 is the only plausible solution curve.
Explain your reasoning.

y(0) � 1
2

FIGURE 1.2.7 Graph for Problem 35

y

x

5

−5

5

FIGURE 1.2.10 Graph for Problem 38

y

x

5

−5

5

36.

37.

38.

FIGURE 1.2.8 Graph for Problem 36

FIGURE 1.2.9 Graph for Problem 37

y

x

5

−5

5

y

x

5

−5

5



42. Determine a plausible value of x0 for which the
graph of the solution of the initial-value problem 
y� � 2y � 3x � 6, y(x0) � 0 is tangent to the x-axis at
(x0, 0). Explain your reasoning.

43. Suppose that the first-order differential equation 
dy�dx � f (x, y) possesses a one-parameter family of
solutions and that f (x, y) satisfies the hypotheses of
Theorem 1.2.1 in some rectangular region R of the 
xy-plane. Explain why two different solution curves
cannot intersect or be tangent to each other at a point
(x0, y0) in R.

44. The functions and

have the same domain but are clearly different. See
Figures 1.2.12(a) and 1.2.12(b), respectively. Show that
both functions are solutions of the initial-value problem

y(x) � �0,
1

16 x
4,

 x 
 0

  x  0

y(x) � 1
16 x

4, �� 
 x 
 �
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FIGURE 1.2.11 Graphs for Problem 41

(0, )1
2

1

1 x

y

dy�dx � xy1/2, y(2) � 1 on the interval (��, �).
Resolve the apparent contradiction between this fact
and the last sentence in Example 5.

Mathematical Model

45. Population Growth Beginning in the next section
we will see that differential equations can be used to
describe or model many different physical systems. In
this problem suppose that a model of the growing popu-
lation of a small community is given by the initial-value
problem

where P is the number of individuals in the community
and time t is measured in years. How fast—that is, at
what rate—is the population increasing at t � 0? How
fast is the population increasing when the population
is 500?

dP

dt
� 0.15P(t) � 20,  P(0) � 100,

FIGURE 1.2.12 Two solutions of the IVP in Problem 44
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DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS

REVIEW MATERIAL
● Units of measurement for weight, mass, and density
● Newton’s second law of motion
● Hooke’s law
● Kirchhoff’s laws
● Archimedes’ principle

INTRODUCTION In this section we introduce the notion of a differential equation as a
mathematical model and discuss some specific models in biology, chemistry, and physics. Once we
have studied some methods for solving DEs in Chapters 2 and 4, we return to, and solve, some of
these models in Chapters 3 and 5.

1.3

MATHEMATICAL MODELS It is often desirable to describe the behavior of
some real-life system or phenomenon, whether physical, sociological, or even eco-
nomic, in mathematical terms. The mathematical description of a system of phenom-
enon is called a mathematical model and is constructed with certain goals in mind.
For example, we may wish to understand the mechanisms of a certain ecosystem by
studying the growth of animal populations in that system, or we may wish to date
fossils by analyzing the decay of a radioactive substance either in the fossil or in the
stratum in which it was discovered.



Construction of a mathematical model of a system starts with

(i) identification of the variables that are responsible for changing the
system. We may choose not to incorporate all these variables into the
model at first. In this step we are specifying the level of resolution of
the model.

Next

(ii) we make a set of reasonable assumptions, or hypotheses, about the
system we are trying to describe. These assumptions will also include
any empirical laws that may be applicable to the system.

For some purposes it may be perfectly within reason to be content with low-
resolution models. For example, you may already be aware that in beginning
physics courses, the retarding force of air friction is sometimes ignored in modeling
the motion of a body falling near the surface of the Earth, but if you are a scientist
whose job it is to accurately predict the flight path of a long-range projectile,
you have to take into account air resistance and other factors such as the curvature
of the Earth.

Since the assumptions made about a system frequently involve a rate of change
of one or more of the variables, the mathematical depiction of all these assumptions
may be one or more equations involving derivatives. In other words, the mathemat-
ical model may be a differential equation or a system of differential equations.

Once we have formulated a mathematical model that is either a differential equa-
tion or a system of differential equations, we are faced with the not insignificant
problem of trying to solve it. If we can solve it, then we deem the model to be reason-
able if its solution is consistent with either experimental data or known facts about
the behavior of the system. But if the predictions produced by the solution are poor,
we can either increase the level of resolution of the model or make alternative as-
sumptions about the mechanisms for change in the system. The steps of the model-
ing process are then repeated, as shown in the following diagram:

Of course, by increasing the resolution, we add to the complexity of the mathemati-
cal model and increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time t.
A solution of the model then gives the state of the system; in other words, the values
of the dependent variable (or variables) for appropriate values of t describe the system
in the past, present, and future.

POPULATION DYNAMICS One of the earliest attempts to model human popula-
tion growth by means of mathematics was by the English economist Thomas Malthus
in 1798. Basically, the idea behind the Malthusian model is the assumption that the rate
at which the population of a country grows at a certain time is proportional* to the total
population of the country at that time. In other words, the more people there are at time t,
the more there are going to be in the future. In mathematical terms, if P(t) denotes the

Assumptions
Mathematical
formulation

Obtain
solutions

Check model
predictions with

known facts

Express assumptions in terms
of differential equations

Display model predictions
(e.g., graphically)

Solve the DEs
If necessary,

alter assumptions
or increase resolution

of model
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*If two quantities u and v are proportional, we write u � v. This means that one quantity is a constant
multiple of the other: u � kv.



total population at time t, then this assumption can be expressed as

, (1)

where k is a constant of proportionality. This simple model, which fails to take into
account many factors that can influence human populations to either grow or decline
(immigration and emigration, for example), nevertheless turned out to be fairly accu-
rate in predicting the population of the United States during the years 1790–1860.
Populations that grow at a rate described by (1) are rare; nevertheless, (1) is still used
to model growth of small populations over short intervals of time (bacteria growing
in a petri dish, for example).

RADIOACTIVE DECAY The nucleus of an atom consists of combinations of pro-
tons and neutrons. Many of these combinations of protons and neutrons are unstable—
that is, the atoms decay or transmute into atoms of another substance. Such nuclei are
said to be radioactive. For example, over time the highly radioactive radium, Ra-226,
transmutes into the radioactive gas radon, Rn-222. To model the phenomenon of
radioactive decay, it is assumed that the rate dA�dt at which the nuclei of a sub-
stance decay is proportional to the amount (more precisely, the number of nuclei)
A(t) of the substance remaining at time t:

. (2)

Of course, equations (1) and (2) are exactly the same; the difference is only in the in-
terpretation of the symbols and the constants of proportionality. For growth, as we
expect in (1), k � 0, and for decay, as in (2), k 
 0.

The model (1) for growth can also be seen as the equation dS�dt � rS, which
describes the growth of capital S when an annual rate of interest r is compounded
continuously. The model (2) for decay also occurs in biological applications such as
determining the half-life of a drug—the time that it takes for 50% of a drug to be
eliminated from a body by excretion or metabolism. In chemistry the decay model
(2) appears in the mathematical description of a first-order chemical reaction. The
point is this:

A single differential equation can serve as a mathematical model for many
different phenomena.

Mathematical models are often accompanied by certain side conditions. For ex-
ample, in (1) and (2) we would expect to know, in turn, the initial population P0 and
the initial amount of radioactive substance A0 on hand. If the initial point in time is
taken to be t � 0, then we know that P(0) � P0 and A(0) � A0. In other words, a
mathematical model can consist of either an initial-value problem or, as we shall see
later on in Section 5.2, a boundary-value problem.

NEWTON’S LAW OF COOLING/WARMING According to Newton’s empiri-
cal law of cooling/warming, the rate at which the temperature of a body changes is
proportional to the difference between the temperature of the body and the temper-
ature of the surrounding medium, the so-called ambient temperature. If T(t) repre-
sents the temperature of a body at time t, Tm the temperature of the surrounding
medium, and dT�dt the rate at which the temperature of the body changes, then
Newton’s law of cooling/warming translates into the mathematical statement

, (3)

where k is a constant of proportionality. In either case, cooling or warming, if Tm is a
constant, it stands to reason that k 
 0.

dT

dt
� T � Tm    or    

dT

dt
� k(T � Tm)

dA

dt
� A    or    

dA

dt
� kA

dP

dt
� P    or    

dP

dt
� kP
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SPREAD OF A DISEASE A contagious disease—for example, a flu virus—is
spread throughout a community by people coming into contact with other people. Let
x(t) denote the number of people who have contracted the disease and y(t) denote the
number of people who have not yet been exposed. It seems reasonable to assume that
the rate dx�dt at which the disease spreads is proportional to the number of encoun-
ters, or interactions, between these two groups of people. If we assume that the num-
ber of interactions is jointly proportional to x(t) and y(t)—that is, proportional to the
product xy—then

, (4)

where k is the usual constant of proportionality. Suppose a small community has a
fixed population of n people. If one infected person is introduced into this commu-
nity, then it could be argued that x(t) and y(t) are related by x � y � n � 1. Using
this last equation to eliminate y in (4) gives us the model

. (5)

An obvious initial condition accompanying equation (5) is x(0) � 1.

CHEMICAL REACTIONS The disintegration of a radioactive substance, governed
by the differential equation (1), is said to be a first-order reaction. In chemistry
a few reactions follow this same empirical law: If the molecules of substance A
decompose into smaller molecules, it is a natural assumption that the rate at which
this decomposition takes place is proportional to the amount of the first substance
that has not undergone conversion; that is, if X(t) is the amount of substance A
remaining at any time, then dX�dt � kX, where k is a negative constant since X is
decreasing. An example of a first-order chemical reaction is the conversion of t-butyl
chloride, (CH3)3CCl, into t-butyl alcohol, (CH3)3COH:

Only the concentration of the t-butyl chloride controls the rate of reaction. But in the
reaction

one molecule of sodium hydroxide, NaOH, is consumed for every molecule of
methyl chloride, CH3Cl, thus forming one molecule of methyl alcohol, CH3OH, and
one molecule of sodium chloride, NaCl. In this case the rate at which the reaction
proceeds is proportional to the product of the remaining concentrations of CH3Cl and
NaOH. To describe this second reaction in general, let us suppose one molecule of a
substance A combines with one molecule of a substance B to form one molecule of a
substance C. If X denotes the amount of chemical C formed at time t and if � and �
are, in turn, the amounts of the two chemicals A and B at t � 0 (the initial amounts),
then the instantaneous amounts of A and B not converted to chemical C are � � X
and � � X, respectively. Hence the rate of formation of C is given by

, (6)

where k is a constant of proportionality. A reaction whose model is equation (6) is
said to be a second-order reaction.

MIXTURES The mixing of two salt solutions of differing concentrations gives
rise to a first-order differential equation for the amount of salt contained in the mix-
ture. Let us suppose that a large mixing tank initially holds 300 gallons of brine (that
is, water in which a certain number of pounds of salt has been dissolved). Another

dX

dt
� k(� � X)(� � X)

CH3Cl � NaOH : CH3OH � NaCl

(CH3)3CCl � NaOH : (CH3)3COH � NaCl.

dx

dt
� kx(n � 1 � x)

dx

dt
� kxy
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brine solution is pumped into the large tank at a rate of 3 gallons per minute; the
concentration of the salt in this inflow is 2 pounds per gallon. When the solution in
the tank is well stirred, it is pumped out at the same rate as the entering solution. See
Figure 1.3.1. If A(t) denotes the amount of salt (measured in pounds) in the tank at
time t, then the rate at which A(t) changes is a net rate:

. (7)

The input rate Rin at which salt enters the tank is the product of the inflow concentra-
tion of salt and the inflow rate of fluid. Note that Rin is measured in pounds per
minute:

Now, since the solution is being pumped out of the tank at the same rate that it is
pumped in, the number of gallons of brine in the tank at time t is a constant 300 gal-
lons. Hence the concentration of the salt in the tank as well as in the outflow is
c(t) � A(t)�300 lb/gal, so the output rate Rout of salt is

The net rate (7) then becomes

(8)

If rin and rout denote general input and output rates of the brine solutions,* then
there are three possibilities: rin � rout, rin � rout, and rin 
 rout. In the analysis lead-
ing to (8) we have assumed that rin � rout. In the latter two cases the number of gal-
lons of brine in the tank is either increasing (rin � rout) or decreasing (rin 
 rout) at
the net rate rin � rout. See Problems 10–12 in Exercises 1.3.

DRAINING A TANK In hydrodynamics Torricelli’s law states that the speed v of
efflux of water though a sharp-edged hole at the bottom of a tank filled to a depth h
is the same as the speed that a body (in this case a drop of water) would acquire in
falling freely from a height h—that is, , where g is the acceleration due to
gravity. This last expression comes from equating the kinetic energy with the
potential energy mgh and solving for v. Suppose a tank filled with water is allowed to
drain through a hole under the influence of gravity. We would like to find the depth h
of water remaining in the tank at time t. Consider the tank shown in Figure 1.3.2. If
the area of the hole is Ah (in ft2) and the speed of the water leaving the tank is

(in ft/s), then the volume of water leaving the tank per second is 
(in ft3/s). Thus if V(t) denotes the volume of water in the tank at time t, then

, (9)
dV

dt
� �Ah12gh

Ah12ghv � 12gh

1
2mv2

v � 12gh

dA

dt
� 6 �

A

100
    or    

dA

dt
�

1

100
A � 6.

Rout � (        lb/gal) 	 (3 gal/min) �         lb/min.
A(t)
––––
300

A(t)
––––
100

concentration
of salt

in outflow
output rate

of brine
output rate

of salt

concentration
of salt

in inflow
input rate
of brine

input rate
of salt

Rin � (2 lb/gal) 	 (3 gal/min) � (6 lb/min).

dA

dt
� �input rate

of salt � � �output rate

of salt � � Rin � Rout
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input rate of brine
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output rate of brine
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FIGURE 1.3.1 Mixing tank

h

Aw

Ah

FIGURE 1.3.2 Draining tank

*Don’t confuse these symbols with Rin and Rout, which are input and output rates of salt.



where the minus sign indicates that V is decreasing. Note here that we are ignoring
the possibility of friction at the hole that might cause a reduction of the rate of flow
there. Now if the tank is such that the volume of water in it at time t can be written
V(t) � Awh, where Aw (in ft2) is the constant area of the upper surface of the water
(see Figure 1.3.2), then dV�dt � Aw dh�dt. Substituting this last expression into (9)
gives us the desired differential equation for the height of the water at time t:

. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this
case we must express the upper surface area of the water as a function of h—that is,
Aw � A(h). See Problem 14 in Exercises 1.3.

SERIES CIRCUITS Consider the single-loop series circuit shown in Figure 1.3.3(a),
containing an inductor, resistor, and capacitor. The current in a circuit after a switch
is closed is denoted by i(t); the charge on a capacitor at time t is denoted by q(t). The
letters L, R, and C are known as inductance, resistance, and capacitance, respectively,
and are generally constants. Now according to Kirchhoff’s second law, the im-
pressed voltage E(t) on a closed loop must equal the sum of the voltage drops in the
loop. Figure 1.3.3(b) shows the symbols and the formulas for the respective voltage
drops across an inductor, a capacitor, and a resistor. Since current i(t) is related to
charge q(t) on the capacitor by i � dq�dt, adding the three voltages

inductor resistor capacitor

and equating the sum to the impressed voltage yields a second-order differential
equation

(11)

We will examine a differential equation analogous to (11) in great detail in
Section 5.1.

FALLING BODIES To construct a mathematical model of the motion of a body
moving in a force field, one often starts with Newton’s second law of motion. Recall
from elementary physics that Newton’s first law of motion states that a body either
will remain at rest or will continue to move with a constant velocity unless acted on
by an external force. In each case this is equivalent to saying that when the sum of
the forces —that is, the net or resultant force—acting on the body is zero,
then the acceleration a of the body is zero. Newton’s second law of motion
indicates that when the net force acting on a body is not zero, then the net force is
proportional to its acceleration a or, more precisely, F � ma, where m is the mass of
the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated in
Figure 1.3.4. What is the position s(t) of the rock relative to the ground at time t? The
acceleration of the rock is the second derivative d2s�dt2. If we assume that the up-
ward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

. (12)

In other words, the net force is simply the weight F � F1 � �W of the rock near the
surface of the Earth. Recall that the magnitude of the weight is W � mg, where m is

m
d 2s

dt2 � �mg    or    
d 2s

dt2 � �g

F � � Fk

L
d 2q

dt2 � R
dq

dt
�

1

C
q � E(t).

L
di

dt
� L

d 2q

dt2 ,    iR � R
dq

dt
,    and    

1

C
q

dh

dt
� �

Ah

Aw

12gh
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FIGURE 1.3.3 Symbols, units, and
voltages. Current i(t) and charge q(t) are
measured in amperes (A) and coulombs
(C), respectively

ground

building

rock
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FIGURE 1.3.4 Position of rock
measured from ground level



the mass of the body and g is the acceleration due to gravity. The minus sign in (12) is
used because the weight of the rock is a force directed downward, which is opposite
to the positive direction. If the height of the building is s0 and the initial velocity of the
rock is v0, then s is determined from the second-order initial-value problem

. (13)

Although we have not been stressing solutions of the equations we have con-
structed, note that (13) can be solved by integrating the constant �g twice with
respect to t. The initial conditions determine the two constants of integration.
From elementary physics you might recognize the solution of (13) as the formula

FALLING BODIES AND AIR RESISTANCE Before Galileo’s famous experiment
from the leaning tower of Pisa, it was generally believed that heavier objects in free
fall, such as a cannonball, fell with a greater acceleration than lighter objects, such as
a feather. Obviously, a cannonball and a feather when dropped simultaneously from
the same height do fall at different rates, but it is not because a cannonball is heavier.
The difference in rates is due to air resistance. The resistive force of air was ignored
in the model given in (13). Under some circumstances a falling body of mass m, such
as a feather with low density and irregular shape, encounters air resistance propor-
tional to its instantaneous velocity v. If we take, in this circumstance, the positive
direction to be oriented downward, then the net force acting on the mass is given by
F � F1 � F2 � mg � kv, where the weight F1 � mg of the body is force acting in the
positive direction and air resistance F2 � �kv is a force, called viscous damping,
acting in the opposite or upward direction. See Figure 1.3.5. Now since v is related to
acceleration a by a � dv�dt, Newton’s second law becomes F � ma � m dv�dt. By
equating the net force to this form of Newton’s second law, we obtain a first-order
differential equation for the velocity v(t) of the body at time t,

. (14)

Here k is a positive constant of proportionality. If s(t) is the distance the body falls in
time t from its initial point of release, then v � ds�dt and a � dv�dt � d2s�dt2. In
terms of s, (14) is a second-order differential equation

(15)

SUSPENDED CABLES Suppose a flexible cable, wire, or heavy rope is suspended
between two vertical supports. Physical examples of this could be one of the two
cables supporting the roadbed of a suspension bridge as shown in Figure 1.3.6(a) or
a long telephone wire strung between two posts as shown in Figure 1.3.6(b). Our goal
is to construct a mathematical model that describes the shape that such a cable
assumes.

To begin, let’s agree to examine only a portion or element of the cable between
its lowest point P1 and any arbitrary point P2. As drawn in blue in Figure 1.3.7, this
element of the cable is the curve in a rectangular coordinate system with y-axis cho-
sen to pass through the lowest point P1 on the curve and the x-axis chosen a units
below P1. Three forces are acting on the cable: the tensions T1 and T2 in the cable
that are tangent to the cable at P1 and P2, respectively, and the portion W of the total
vertical load between the points P1 and P2. Let T1 � �T1�, T2 � �T2�, and 
W � �W� denote the magnitudes of these vectors. Now the tension T2 resolves
into horizontal and vertical components (scalar quantities) T2 cos � and T2 sin �.

m
d 2s

dt 2 � mg � k
ds

dt
    or    m

d 2s

dt 2 � k
ds

dt
� mg.

m
dv

dt
� mg � kv

s(t) � �1
2gt2 � v0t � s0.

d 2s

dt 2 � �g,  s(0) � s0,  s�(0) � v0
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Because of static equilibrium we can write

By dividing the last equation by the first, we eliminate T2 and get tan � � W�T1. But
because dy�dx � tan �, we arrive at

(16)

This simple first-order differential equation serves as a model for both the shape of a
flexible wire such as a telephone wire hanging under its own weight and the shape of
the cables that support the roadbed of a suspension bridge. We will come back to
equation (16) in Exercises 2.2 and Section 5.3.

WHAT LIES AHEAD Throughout this text you will see three different types of
approaches to, or analyses of, differential equations. Over the centuries differential
equations would often spring from the efforts of a scientist or engineer to describe
some physical phenomenon or to translate an empirical or experimental law into
mathematical terms. As a consequence a scientist, engineer, or mathematician would
often spend many years of his or her life trying to find the solutions of a DE. With a
solution in hand, the study of its properties then followed. This quest for solutions is
called by some the analytical approach to differential equations. Once they realized
that explicit solutions are at best difficult to obtain and at worst impossible to obtain,
mathematicians learned that a differential equation itself could be a font of valuable
information. It is possible, in some instances, to glean directly from the differential
equation answers to questions such as Does the DE actually have solutions? If a
solution of the DE exists and satisfies an initial condition, is it the only such solu-
tion? What are some of the properties of the unknown solutions? What can we say
about the geometry of the solution curves? Such an approach is qualitative analysis.
Finally, if a differential equation cannot be solved by analytical methods, yet we
can prove that a solution exists, the next logical query is Can we somehow approxi-
mate the values of an unknown solution? Here we enter the realm of numerical
analysis. An affirmative answer to the last question stems from the fact that a differ-
ential equation can be used as a cornerstone for constructing very accurate approxi-
mation algorithms. In Chapter 2 we start with qualitative considerations of first-order
ODEs, then examine analytical stratagems for solving some special first-order equa-
tions, and conclude with an introduction to an elementary numerical method. See
Figure 1.3.8.

dy

dx
�

W

T1
.

T1 � T2 cos �    and    W � T2 sin �.
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(a) analytical (b) qualitative (c) numerical

y'=f(y)

FIGURE 1.3.8 Different approaches to the study of differential equations



REMARKS

Each example in this section has described a dynamical system—a system that
changes or evolves with the flow of time t. Since the study of dynamical
systems is a branch of mathematics currently in vogue, we shall occasionally
relate the terminology of that field to the discussion at hand.

In more precise terms, a dynamical system consists of a set of time-
dependent variables, called state variables, together with a rule that enables
us to determine (without ambiguity) the state of the system (this may be a past,
present, or future state) in terms of a state prescribed at some time t0. Dynamical
systems are classified as either discrete-time systems or continuous-time systems.
In this course we shall be concerned only with continuous-time systems—
systems in which all variables are defined over a continuous range of time. The
rule, or mathematical model, in a continuous-time dynamical system is a differ-
ential equation or a system of differential equations. The state of the system
at a time t is the value of the state variables at that time; the specified state of
the system at a time t0 is simply the initial conditions that accompany the math-
ematical model. The solution of the initial-value problem is referred to as the
response of the system. For example, in the case of radioactive decay, the rule
is dA�dt � kA. Now if the quantity of a radioactive substance at some time t0 is
known, say A(t0) � A0, then by solving the rule we find that the response of the
system for t  t0 is (see Section 3.1). The response A(t) is the
single state variable for this system. In the case of the rock tossed from the roof
of a building, the response of the system—the solution of the differential
equation d2s�dt2 � �g, subject to the initial state s(0) � s0, s�(0) � v0 , is the
function , where T represents the time
when the rock hits the ground. The state variables are s(t) and s�(t), which
are the vertical position of the rock above ground and its velocity at time t,
respectively. The acceleration s�(t) is not a state variable, since we have to know
only any initial position and initial velocity at a time t0 to uniquely determine
the rock’s position s(t) and velocity s�(t) � v(t) for any time in the interval 
t0 � t � T. The acceleration s�(t) � a(t) is, of course, given by the differential
equation s�(t) � �g, 0 
 t 
 T.

One last point: Not every system studied in this text is a dynamical system.
We shall also examine some static systems in which the model is a differential
equation.

s(t) � �1
2gt2 � v0t � s0, 0 � t � T

A(t) � A0e(t� t0)
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EXERCISES 1.3 Answers to selected odd-numbered problems begin on page ANS-1.

Population Dynamics

1. Under the same assumptions that underlie the model in
(1), determine a differential equation for the population
P(t) of a country when individuals are allowed to
immigrate into the country at a constant rate r � 0.
What is the differential equation for the population P(t)
of the country when individuals are allowed to emigrate
from the country at a constant rate r � 0?

2. The population model given in (1) fails to take death
into consideration; the growth rate equals the birth rate.
In another model of a changing population of a commu-
nity it is assumed that the rate at which the population
changes is a net rate—that is, the difference between

the rate of births and the rate of deaths in the commu-
nity. Determine a model for the population P(t) if both
the birth rate and the death rate are proportional to the
population present at time t.

3. Using the concept of net rate introduced in Problem 2,
determine a model for a population P(t) if the birth rate
is proportional to the population present at time t but the
death rate is proportional to the square of the population
present at time t.

4. Modify the model in Problem 3 for net rate at which
the population P(t) of a certain kind of fish changes by
also assuming that the fish are harvested at a constant
rate h � 0.



Newton’s Law of Cooling/Warming

5. A cup of coffee cools according to Newton’s law of
cooling (3). Use data from the graph of the temperature
T(t) in Figure 1.3.9 to estimate the constants Tm, T0, and
k in a model of the form of a first-order initial-value
problem: dT�dt � k(T � Tm), T(0) � T0.
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number of people x(t) who have adopted the innovation
at time t if it is assumed that the rate at which the innova-
tions spread through the community is jointly propor-
tional to the number of people who have adopted it and
the number of people who have not adopted it.

Mixtures

9. Suppose that a large mixing tank initially holds 300 gal-
lons of water in which 50 pounds of salt have been dis-
solved. Pure water is pumped into the tank at a rate of
3 gal/min, and when the solution is well stirred, it is
then pumped out at the same rate. Determine a differen-
tial equation for the amount of salt A(t) in the tank at
time t. What is A(0)?

10. Suppose that a large mixing tank initially holds 300 gal-
lons of water is which 50 pounds of salt have been
dissolved. Another brine solution is pumped into the tank
at a rate of 3 gal/min, and when the solution is well
stirred, it is then pumped out at a slower rate of 2 gal/min.
If the concentration of the solution entering is 2 lb/gal,
determine a differential equation for the amount of salt
A(t) in the tank at time t.

11. What is the differential equation in Problem 10, if the
well-stirred solution is pumped out at a faster rate of
3.5 gal/min?

12. Generalize the model given in equation (8) on page 23
by assuming that the large tank initially contains N0

number of gallons of brine, rin and rout are the input and
output rates of the brine, respectively (measured in gal-
lons per minute), cin is the concentration of the salt in
the inflow, c(t) the concentration of the salt in the tank
as well as in the outflow at time t (measured in pounds
of salt per gallon), and A(t) is the amount of salt in the
tank at time t.

Draining a Tank

13. Suppose water is leaking from a tank through a circular
hole of area Ah at its bottom. When water leaks through a
hole, friction and contraction of the stream near the hole
reduce the volume of water leaving the tank per second to

where c (0 
 c 
 1) is an empirical constant.
Determine a differential equation for the height h of water
at time t for the cubical tank shown in Figure 1.3.11. The
radius of the hole is 2 in., and g � 32 ft/s2.

cAh12gh,

FIGURE 1.3.9 Cooling curve in Problem 5

FIGURE 1.3.10 Ambient temperature in Problem 6
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6. The ambient temperature Tm in (3) could be a function
of time t. Suppose that in an artificially controlled
environment, Tm(t) is periodic with a 24-hour period,
as illustrated in Figure 1.3.10. Devise a mathematical
model for the temperature T(t) of a body within this
environment.

Spread of a Disease/Technology

7. Suppose a student carrying a flu virus returns to an iso-
lated college campus of 1000 students. Determine a dif-
ferential equation for the number of people x(t) who have
contracted the flu if the rate at which the disease spreads
is proportional to the number of interactions between the
number of students who have the flu and the number of
students who have not yet been exposed to it.

8. At a time denoted as t � 0 a technological innovation is
introduced into a community that has a fixed population
of n people. Determine a differential equation for the

h

circular
hole

10 ft

Aw

FIGURE 1.3.11 Cubical tank in Problem 13



14. The right-circular conical tank shown in Figure 1.3.12
loses water out of a circular hole at its bottom. Determine
a differential equation for the height of the water h at
time t. The radius of the hole is 2 in., g � 32 ft/s2, and
the friction/contraction factor introduced in Problem 13
is c � 0.6.
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Newton’s Second Law and Archimedes’ Principle

18. A cylindrical barrel s feet in diameter of weight w lb
is floating in water as shown in Figure 1.3.16(a). After
an initial depression the barrel exhibits an up-and-
down bobbing motion along a vertical line. Using
Figure 1.3.16(b), determine a differential equation for
the vertical displacement y(t) if the origin is taken to be
on the vertical axis at the surface of the water when the
barrel is at rest. Use Archimedes’ principle: Buoyancy,
or upward force of the water on the barrel, is equal to
the weight of the water displaced. Assume that the
downward direction is positive, that the weight density
of water is 62.4 lb/ft3, and that there is no resistance
between the barrel and the water.

FIGURE 1.3.12 Conical tank in Problem 14
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FIGURE 1.3.13 LR series circuit in Problem 15

FIGURE 1.3.14 RC series circuit in Problem 16

FIGURE 1.3.15 Air resistance proportional to square of
velocity in Problem 17
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FIGURE 1.3.16 Bobbing motion of floating barrel in
Problem 18
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Series Circuits

15. A series circuit contains a resistor and an inductor as
shown in Figure 1.3.13. Determine a differential equa-
tion for the current i(t) if the resistance is R, the induc-
tance is L, and the impressed voltage is E(t).

16. A series circuit contains a resistor and a capacitor as
shown in Figure 1.3.14. Determine a differential equa-
tion for the charge q(t) on the capacitor if the resis-
tance is R, the capacitance is C, and the impressed
voltage is E(t).

Falling Bodies and Air Resistance

17. For high-speed motion through the air—such as the
skydiver shown in Figure 1.3.15, falling before the para-
chute is opened—air resistance is closer to a power of
the instantaneous velocity v(t). Determine a differential
equation for the velocity v(t) of a falling body of mass m
if air resistance is proportional to the square of the
instantaneous velocity.

Newton’s Second Law and Hooke’s Law

19. After a mass m is attached to a spring, it stretches it
s units and then hangs at rest in the equilibrium position
as shown in Figure 1.3.17(b). After the spring/mass

FIGURE 1.3.17 Spring/mass system in Problem 19
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system has been set in motion, let x(t) denote the di-
rected distance of the mass beyond the equilibrium po-
sition. As indicated in Figure 1.3.17(c), assume that the
downward direction is positive, that the motion takes
place in a vertical straight line through the center of
gravity of the mass, and that the only forces acting on
the system are the weight of the mass and the restoring
force of the stretched spring. Use Hooke’s law: The
restoring force of a spring is proportional to its total
elongation. Determine a differential equation for the
displacement x(t) at time t.

20. In Problem 19, what is a differential equation for the
displacement x(t) if the motion takes place in a medium
that imparts a damping force on the spring/mass system
that is proportional to the instantaneous velocity of the
mass and acts in a direction opposite to that of motion?

Newton’s Second Law and the Law 
of Universal Gravitation

21. By Newton’s universal law of gravitation the free-fall
acceleration a of a body, such as the satellite shown in
Figure 1.3.18, falling a great distance to the surface is not
the constant g. Rather, the acceleration a is inversely pro-
portional to the square of the distance from the center of
the Earth, a � k�r2, where k is the constant of proportion-
ality. Use the fact that at the surface of the Earth r � R and
a � g to determine k. If the positive direction is upward,
use Newton’s second law and his universal law of gravita-
tion to find a differential equation for the distance r.
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Additional Mathematical Models

23. Learning Theory In the theory of learning, the rate at
which a subject is memorized is assumed to be pro-
portional to the amount that is left to be memorized.
Suppose M denotes the total amount of a subject to be
memorized and A(t) is the amount memorized in time t.
Determine a differential equation for the amount A(t).

24. Forgetfulness In Problem 23 assume that the rate at
which material is forgotten is proportional to the amount
memorized in time t. Determine a differential equation
for the amount A(t) when forgetfulness is taken into
account.

25. Infusion of a Drug A drug is infused into a patient’s
bloodstream at a constant rate of r grams per second.
Simultaneously, the drug is removed at a rate proportional
to the amount x(t) of the drug present at time t. Determine
a differential equation for the amount x(t).

26. Tractrix A person P, starting at the origin, moves in the
direction of the positive x-axis, pulling a weight along
the curve C, called a tractrix, as shown in Figure 1.3.20.
The weight, initially located on the y-axis at (0, s), is
pulled by a rope of constant length s, which is kept taut
throughout the motion. Determine a differential equation
for the path C of motion. Assume that the rope is always
tangent to C.

FIGURE 1.3.18 Satellite
in Problem 21

FIGURE 1.3.19 Hole through
Earth in Problem 22
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22. Suppose a hole is drilled through the center of the Earth
and a bowling ball of mass m is dropped into the hole, as
shown in Figure 1.3.19. Construct a mathematical model
that describes the motion of the ball. At time t let r de-
note the distance from the center of the Earth to the mass
m, M denote the mass of the Earth, Mr denote the mass of
that portion of the Earth within a sphere of radius r, and
� denote the constant density of the Earth.

FIGURE 1.3.20 Tractrix curve in Problem 26

FIGURE 1.3.21 Reflecting surface in Problem 27
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27. Reflecting Surface Assume that when the plane
curve C shown in Figure 1.3.21 is revolved about the
x-axis, it generates a surface of revolution with the prop-
erty that all light rays L parallel to the x-axis striking the
surface are reflected to a single point O (the origin). Use
the fact that the angle of incidence is equal to the angle
of reflection to determine a differential equation that



describes the shape of the curve C. Such a curve C is
important in applications ranging from construction of
telescopes to satellite antennas, automobile headlights,
and solar collectors. [Hint: Inspection of the figure
shows that we can write � � 2�. Why? Now use an
appropriate trigonometric identity.]

Discussion Problems

28. Reread Problem 41 in Exercises 1.1 and then give an
explicit solution P(t) for equation (1). Find a one-
parameter family of solutions of (1).

29. Reread the sentence following equation (3) and assume
that Tm is a positive constant. Discuss why we would ex-
pect k 
 0 in (3) in both cases of cooling and warming.
You might start by interpreting, say, T(t) � Tm in a
graphical manner.

30. Reread the discussion leading up to equation (8). If we
assume that initially the tank holds, say, 50 lb of salt, it
stands to reason that because salt is being added to the
tank continuously for t � 0, A(t) should be an increas-
ing function. Discuss how you might determine from
the DE, without actually solving it, the number of
pounds of salt in the tank after a long period of time.

31. Population Model The differential equation

where k is a positive constant, is a

model of human population P(t) of a certain commu-
nity. Discuss an interpretation for the solution of this
equation. In other words, what kind of population do
you think the differential equation describes?

32. Rotating Fluid As shown in Figure 1.3.22(a), a right-
circular cylinder partially filled with fluid is rotated
with a constant angular velocity � about a vertical y-axis
through its center. The rotating fluid forms a surface of
revolution S. To identify S, we first establish a coordinate
system consisting of a vertical plane determined by the
y-axis and an x-axis drawn perpendicular to the y-axis
such that the point of intersection of the axes (the origin)
is located at the lowest point on the surface S. We then
seek a function y � f (x) that represents the curve C of in-
tersection of the surface S and the vertical coordinate
plane. Let the point P(x, y) denote the position of a parti-
cle of the rotating fluid of mass m in the coordinate
plane. See Figure 1.3.22(b).

(a) At P there is a reaction force of magnitude F due to
the other particles of the fluid which is normal to the
surface S. By Newton’s second law the magnitude
of the net force acting on the particle is m�2x. What
is this force? Use Figure 1.3.22(b) to discuss the na-
ture and origin of the equations

(b) Use part (a) to find a first-order differential equation
that defines the function y � f (x).

F cos � � mg,    F sin � � m�2x.

dP

dt
� (k cos t)P,
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33. Falling Body In Problem 21, suppose r � R � s,
where s is the distance from the surface of the Earth to
the falling body. What does the differential equation
obtained in Problem 21 become when s is very small in
comparison to R? [Hint: Think binomial series for 

(R � s)�2 � R�2 (1 � s�R)�2.]

34. Raindrops Keep Falling In meteorology the term
virga refers to falling raindrops or ice particles that
evaporate before they reach the ground. Assume that a
typical raindrop is spherical. Starting at some time,
which we can designate as t � 0, the raindrop of radius
r0 falls from rest from a cloud and begins to evaporate.

(a) If it is assumed that a raindrop evaporates in such a
manner that its shape remains spherical, then it also
makes sense to assume that the rate at which the rain-
drop evaporates—that is, the rate at which it loses
mass—is proportional to its surface area. Show that
this latter assumption implies that the rate at which
the radius r of the raindrop decreases is a constant.
Find r(t). [Hint: See Problem 51 in Exercises 1.1.]

(b) If the positive direction is downward, construct a
mathematical model for the velocity v of the falling
raindrop at time t. Ignore air resistance. [Hint:
When the mass m of an object is changing with

time, Newton’s second law becomes ,

where F is the net force acting on the body and mv
is its momentum.]

F �
d

dt
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FIGURE 1.3.22 Rotating fluid in Problem 32



35. Let It Snow The “snowplow problem” is a classic and
appears in many differential equations texts but was
probably made famous by Ralph Palmer Agnew:

“One day it started snowing at a heavy and steady
rate. A snowplow started out at noon, going 2 miles
the first hour and 1 mile the second hour. What time
did it start snowing?”

32 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Find the text Differential Equations, Ralph Palmer Agnew,
McGraw-Hill Book Co., and then discuss the construction
and solution of the mathematical model.

36. Reread this section and classify each mathematical
model as linear or nonlinear.

CHAPTER 1 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2 fill in the blank and then write this result
as a linear first-order differential equation that is free of the
symbol c1 and has the form dy�dx � f (x, y). The symbol c1

represents a constant.

1.

2.

In Problems 3 and 4 fill in the blank and then write this result
as a linear second-order differential equation that is free of
the symbols c1 and c2 and has the form F(y, y�) � 0. The
symbols c1, c2, and k represent constants.

3.

4.

In Problems 5 and 6 compute y� and y� and then combine
these derivatives with y as a linear second-order differential
equation that is free of the symbols c1 and c2 and has the form
F(y, y� y�) � 0. The symbols c1 and c2 represent constants.

5. y � c1ex � c2xex 6. y � c1ex cos x � c2ex sin x

In Problems 7–12 match each of the given differential equa-
tions with one or more of these solutions:

(a) y � 0, (b) y � 2, (c) y � 2x, (d) y � 2x2.

7. xy� � 2y 8. y� � 2

9. y� � 2y � 4 10. xy� � y

11. y� � 9y � 18 12. xy� � y� � 0

In Problems 13 and 14 determine by inspection at least one
solution of the given differential equation.

13. y� � y� 14. y� � y(y � 3)

In Problems 15 and 16 interpret each statement as a differen-
tial equation.

15. On the graph of y � �(x) the slope of the tangent line at
a point P(x, y) is the square of the distance from P(x, y) to
the origin.

16. On the graph of y � �(x) the rate at which the slope
changes with respect to x at a point P(x, y) is the nega-
tive of the slope of the tangent line at P(x, y).

d 2

dx2 (c1 cosh kx � c2 sinh kx) �

d 2

dx2 (c1 cos kx � c2 sin kx) �

d

dx
 (5 � c1e�2x) �

d

dx
c1e10x �

17. (a) Give the domain of the function y � x2/3.

(b) Give the largest interval I of definition over which
y � x2/3 is solution of the differential equation 
3xy� � 2y � 0.

18. (a) Verify that the one-parameter family y2 � 2y �
x2 � x � c is an implicit solution of the differential
equation (2y � 2)y� � 2x � 1.

(b) Find a member of the one-parameter family in
part (a) that satisfies the initial condition y(0) � 1.

(c) Use your result in part (b) to find an explicit
function y � �(x) that satisfies y(0) � 1. Give the
domain of the function �. Is y � �(x) a solution of
the initial-value problem? If so, give its interval I of
definition; if not, explain.

19. Given that y � x � 2�x is a solution of the DE xy� �
y � 2x. Find x0 and the largest interval I for which y(x) is
a solution of the first-order IVP xy� � y � 2x, y(x0) � 1.

20. Suppose that y(x) denotes a solution of the first-order
IVP y� � x2 � y2, y(1) � �1 and that y(x) possesses
at least a second derivative at x � 1. In some neigh-
borhood of x � 1 use the DE to determine whether
y(x) is increasing or decreasing and whether the graph
y(x) is concave up or concave down.

21. A differential equation may possess more than one fam-
ily of solutions.

(a) Plot different members of the families 
y � �1(x) � x2 � c1 and y � �2(x) � �x2 � c2.

(b) Verify that y � �1(x) and y � �2(x) are two
solutions of the nonlinear first-order differential
equation (y�)2 � 4x2.

(c) Construct a piecewise-defined function that is a
solution of the nonlinear DE in part (b) but is not a
member of either family of solutions in part (a).

22. What is the slope of the tangent line to the graph of a
solution of that passes through (�1, 4)?

In Problems 23–26 verify that the indicated function is a
particular solution of the given differential equation. Give an
interval of definition I for each solution.

23. y� � y � 2 cos x � 2 sin x; y � x sin x � x cos x

24. y� � y � sec x; y � x sin x � (cos x)ln(cos x)

y� � 61y � 5x3



25. x2y� � xy� � y � 0; y � sin(ln x)

26. x2y� � xy� � y � sec(ln x);
y � cos(ln x) ln(cos(ln x)) � (ln x) sin(ln x)

In Problems 27–30, y � c1e3x � c2e�x � 2x is a two-
parameter family of the second-order DE y� � 2y� � 3y �
6x � 4. Find a solution of the second-order IVP consisting
of this differential equation and the given initial conditions.

27. y (0) � 0, y�(0) � 0 28. y (0) � 1, y�(0) � �3

29. y (1) � 4, y�(1) � �2 30. y (�1) � 0, y�(�1) � 1

31. The graph of a solution of a second-order initial-value
problem d2y�dx2 � f (x, y, y�), y(2) � y0, y�(2) � y1, is
given in Figure 1.R.1. Use the graph to estimate the val-
ues of y0 and y1.
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32. A tank in the form of a right-circular cylinder of radius
2 feet and height 10 feet is standing on end. If the tank
is initially full of water and water leaks from a circular
hole of radius inch at its bottom, determine a differen-
tial equation for the height h of the water at time t.
Ignore friction and contraction of water at the hole.

33. The number of field mice in a certain pasture is given by
the function 200 � 10t, where time t is measured in
years. Determine a differential equation governing a
population of owls that feed on the mice if the rate at
which the owl population grows is proportional to the
difference between the number of owls at time t and
number of field mice at time t.

34. Suppose that dA�dt � �0.0004332 A(t) represents
a mathematical model for the radioactive decay of
radium-226, where A(t) is the amount of radium (mea-
sured in grams) remaining at time t (measured in years).
How much of the radium sample remains at the time t
when the sample is decaying at a rate of 0.002 gram per
year?

1
2

y

x5

−5

5

FIGURE 1.R.1 Graph for Problem 31
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2.1 Solution Curves Without a Solution

2.1.1 Direction Fields

2.1.2 Autonomous First-Order DEs

2.2 Separable Variables

2.3 Linear Equations

2.4 Exact Equations

2.5 Solutions by Substitutions

2.6 A Numerical Method

CHAPTER 2 IN REVIEW

The history of mathematics is rife with stories of people who devoted much of their

lives to solving equations—algebraic equations at first and then eventually

differential equations. In Sections 2.2–2.5 we will study some of the more

important analytical methods for solving first-order DEs. However, before we start

solving anything, you should be aware of two facts: It is possible for a differential

equation to have no solutions, and a differential equation can possess a solution yet

there might not exist any analytical method for finding it. In Sections 2.1 and 2.6

we do not solve any DEs but show how to glean information directly from the

equation itself. In Section 2.1 we see how the DE yields qualitative information

about graphs that enables us to sketch renditions of solutions curves. In Section 2.6

we use the differential equation to construct a numerical procedure for

approximating solutions.

FIRST-ORDER DIFFERENTIAL
EQUATIONS
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SOLUTION CURVES WITHOUT A SOLUTION

REVIEW MATERIAL
● The first derivative as slope of a tangent line
● The algebraic sign of the first derivative indicates increasing or decreasing

INTRODUCTION Let us imagine for the moment that we have in front of us a first-order differ-
ential equation dy�dx � f (x, y), and let us further imagine that we can neither find nor invent a
method for solving it analytically. This is not as bad a predicament as one might think, since the dif-
ferential equation itself can sometimes “tell” us specifics about how its solutions “behave.”

We begin our study of first-order differential equations with two ways of analyzing a DE qual-
itatively. Both these ways enable us to determine, in an approximate sense, what a solution curve
must look like without actually solving the equation.

2.1

2.1.1 DIRECTION FIELDS

SOME FUNDAMENTAL QUESTIONS We saw in Section 1.2 that whenever
f (x, y) and �f��y satisfy certain continuity conditions, qualitative questions about
existence and uniqueness of solutions can be answered. In this section we shall see
that other qualitative questions about properties of solutions—How does a solution
behave near a certain point? How does a solution behave as ?—can often be
answered when the function f depends solely on the variable y. We begin, however,
with a simple concept from calculus: 

A derivative dy�dx of a differentiable function y � y(x) gives slopes of tangent
lines at points on its graph.

SLOPE Because a solution y � y(x) of a first-order differential equation

(1)

is necessarily a differentiable function on its interval I of definition, it must also be con-
tinuous on I. Thus the corresponding solution curve on I must have no breaks and must
possess a tangent line at each point (x, y(x)). The function f in the normal form (1) is
called the slope function or rate function. The slope of the tangent line at (x, y(x)) on
a solution curve is the value of the first derivative dy�dx at this point, and we know
from (1) that this is the value of the slope function f (x, y(x)). Now suppose that (x, y)
represents any point in a region of the xy-plane over which the function f is defined. The
value f (x, y) that the function f assigns to the point represents the slope of a line or, as
we shall envision it, a line segment called a lineal element. For example, consider the
equation dy�dx � 0.2xy, where f (x, y) � 0.2xy. At, say, the point (2, 3) the slope of a
lineal element is f (2, 3) � 0.2(2)(3) � 1.2. Figure 2.1.1(a) shows a line segment with
slope 1.2 passing though (2, 3). As shown in Figure 2.1.1(b), if a solution curve also
passes through the point (2, 3), it does so tangent to this line segment; in other words,
the lineal element is a miniature tangent line at that point.

DIRECTION FIELD If we systematically evaluate f over a rectangular grid of
points in the xy-plane and draw a line element at each point (x, y) of the grid with
slope f (x, y), then the collection of all these line elements is called a direction field
or a slope field of the differential equation dy�dx � f (x, y). Visually, the direction
field suggests the appearance or shape of a family of solution curves of the
differential equation, and consequently, it may be possible to see at a glance certain
qualitative aspects of the solutions—regions in the plane, for example, in which a

dy

dx
� f (x, y)

x : �

solution
curve

(a) lineal element at a point

(b) lineal element is tangent to
solution curve that passes
through the point

slope = 1.2

(2, 3)

x

y

tangent

(2, 3)

x

y

FIGURE 2.1.1 A solution curve is
tangent to lineal element at (2, 3)
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solution exhibits an unusual behavior. A single solution curve that passes through a
direction field must follow the flow pattern of the field; it is tangent to a line element
when it intersects a point in the grid. Figure 2.1.2 shows a computer-generated direc-
tion field of the differential equation dy�dx � sin(x � y) over a region of the xy-plane.
Note how the three solution curves shown in color follow the flow of the field.

EXAMPLE 1 Direction Field

The direction field for the differential equation dy�dx � 0.2xy shown in Figure 2.1.3(a)
was obtained by using computer software in which a 5 � 5 grid of points (mh, nh),
m and n integers, was defined by letting �5 � m � 5, �5 � n � 5, and h � 1.
Notice in Figure 2.1.3(a) that at any point along the x-axis (y � 0) and the
y-axis (x � 0), the slopes are f (x, 0) � 0 and f (0, y) � 0, respectively, so the lineal
elements are horizontal. Moreover, observe in the first quadrant that for a fixed value
of x the values of f (x, y) � 0.2xy increase as y increases; similarly, for a fixed y the
values of f (x, y) � 0.2xy increase as x increases. This means that as both x and y
increase, the lineal elements almost become vertical and have positive slope ( f (x, y) �
0.2xy � 0 for x � 0, y � 0). In the second quadrant, � f (x, y)� increases as �x � and y
increase, so the lineal elements again become almost vertical but this time have
negative slope ( f (x, y) � 0.2xy 
 0 for x 
 0, y � 0). Reading from left to right,
imagine a solution curve that starts at a point in the second quadrant, moves steeply
downward, becomes flat as it passes through the y-axis, and then, as it enters the first
quadrant, moves steeply upward—in other words, its shape would be concave
upward and similar to a horseshoe. From this it could be surmised that y : �
as x : ��. Now in the third and fourth quadrants, since f (x, y) � 0.2xy � 0 and
f (x, y) � 0.2xy 
 0, respectively, the situation is reversed: A solution curve increases
and then decreases as we move from left to right. We saw in (1) of Section 1.1 that

is an explicit solution of the differential equation dy�dx � 0.2xy; you
should verify that a one-parameter family of solutions of the same equation is given
by . For purposes of comparison with Figure 2.1.3(a) some representative
graphs of members of this family are shown in Figure 2.1.3(b).

EXAMPLE 2 Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value
problem dy�dx � sin y, .

SOLUTION Before proceeding, recall that from the continuity of f (x, y) � sin y and
�f��y � cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve
passing through any specified point (x0, y0) in the plane. Now we set our computer soft-
ware again for a 5 � 5 rectangular region and specify (because of the initial condition)
points in that region with vertical and horizontal separation of unit—that is, at
points (mh, nh), , m and n integers such that �10 � m � 10, �10 � n � 10.
The result is shown in Figure 2.1.4. Because the right-hand side of dy�dx � sin y is 0
at y � 0, and at y � ��, the lineal elements are horizontal at all points whose second
coordinates are y � 0 or y � ��. It makes sense then that a solution curve passing
through the initial point (0, has the shape shown in the figure.

INCREASING/DECREASING Interpretation of the derivative dy�dx as a function
that gives slope plays the key role in the construction of a direction field. Another
telling property of the first derivative will be used next, namely, if dy�dx � 0 (or
dy�dx 
 0) for all x in an interval I, then a differentiable function y � y(x) is
increasing (or decreasing) on I.
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h � 1
2
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2

y � ce0.1x2
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(b) some solution curves in the
family y � ce0.1x2

(a) direction field for
dy/dx � 0.2xy

FIGURE 2.1.3 Direction field and
solution curves

FIGURE 2.1.2 Solution curves
following flow of a direction field
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FIGURE 2.1.4 Direction field for
Example 2

REMARKS

Sketching a direction field by hand is straightforward but time consuming; it is
probably one of those tasks about which an argument can be made for doing it
once or twice in a lifetime, but it is overall most efficiently carried out by means
of computer software. Before calculators, PCs, and software the method of
isoclines was used to facilitate sketching a direction field by hand. For the DE
dy�dx � f (x, y), any member of the family of curves f (x, y) � c, c a constant,
is called an isocline. Lineal elements drawn through points on a specific iso-
cline, say, f (x, y) � c1 all have the same slope c1. In Problem 15 in Exercises 2.1
you have your two opportunities to sketch a direction field by hand.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

AUTONOMOUS FIRST-ORDER DEs In Section 1.1 we divided the class of ordi-
nary differential equations into two types: linear and nonlinear. We now consider
briefly another kind of classification of ordinary differential equations, a classifica-
tion that is of particular importance in the qualitative investigation of differential
equations. An ordinary differential equation in which the independent variable does
not appear explicitly is said to be autonomous. If the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as
f (y, y�) � 0 or in normal form as

. (2)

We shall assume throughout that the function f in (2) and its derivative f � are contin-
uous functions of y on some interval I. The first-order equations

f (y) f (x, y)
p p

are autonomous and nonautonomous, respectively.
Many differential equations encountered in applications or equations that are

models of physical laws that do not change over time are autonomous. As we have
already seen in Section 1.3, in an applied context, symbols other than y and x are rou-
tinely used to represent the dependent and independent variables. For example, if t
represents time then inspection of

,

where k, n, and Tm are constants, shows that each equation is time independent.
Indeed, all of the first-order differential equations introduced in Section 1.3 are time
independent and so are autonomous.

CRITICAL POINTS The zeros of the function f in (2) are of special importance.
We say that a real number c is a critical point of the autonomous differential
equation (2) if it is a zero of f—that is, f (c) � 0. A critical point is also called an
equilibrium point or stationary point. Now observe that if we substitute the constant
function y(x) � c into (2), then both sides of the equation are zero. This means:

If c is a critical point of (2), then y(x) � c is a constant solution of the
autonomous differential equation.

A constant solution y(x) � c of (2) is called an equilibrium solution; equilibria are
the only constant solutions of (2).

dA

dt
� kA,    

dx

dt
� kx(n � 1 � x),    

dT

dt
� k(T � Tm),    

dA

dt
� 6 �

1

100
A

dy

dx
� 1 � y2    and    

dy

dx
� 0.2xy

dy

dx
� f (y)
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As was already mentioned, we can tell when a nonconstant solution y � y(x) of
(2) is increasing or decreasing by determining the algebraic sign of the derivative
dy�dx; in the case of (2) we do this by identifying intervals on the y-axis over which
the function f (y) is positive or negative.

EXAMPLE 3 An Autonomous DE

The differential equation

where a and b are positive constants, has the normal form dP�dt � f(P), which is (2)
with t and P playing the parts of x and y, respectively, and hence is autonomous.
From f(P) � P(a � bP) � 0 we see that 0 and a�b are critical points of the equation,
so the equilibrium solutions are P(t) � 0 and P(t) � a�b. By putting the critical points
on a vertical line, we divide the line into three intervals defined by �� 
 P 
 0,
0 
 P 
 a�b, a�b 
 P 
 �. The arrows on the line shown in Figure 2.1.5 indicate
the algebraic sign of f(P) � P(a � bP) on these intervals and whether a nonconstant
solution P(t) is increasing or decreasing on an interval. The following table explains
the figure.

Interval Sign of f (P) P(t) Arrow

(��, 0) minus decreasing points down
(0, a�b) plus increasing points up
(a�b, �) minus decreasing points down

Figure 2.1.5 is called a one-dimensional phase portrait, or simply phase
portrait, of the differential equation dP�dt � P(a � bP). The vertical line is called a
phase line.

SOLUTION CURVES Without solving an autonomous differential equation, we
can usually say a great deal about its solution curves. Since the function f in (2) is
independent of the variable x, we may consider f defined for �� 
 x 
 � or for 
0 � x 
 �. Also, since f and its derivative f� are continuous functions of y on some
interval I of the y-axis, the fundamental results of Theorem 1.2.1 hold in some hori-
zontal strip or region R in the xy-plane corresponding to I, and so through any point
(x0, y0) in R there passes only one solution curve of (2). See Figure 2.1.6(a). For the
sake of discussion, let us suppose that (2) possesses exactly two critical points c1 and
c2 and that c1 
 c2. The graphs of the equilibrium solutions y(x) � c1 and y(x) � c2

are horizontal lines, and these lines partition the region R into three subregions R1,
R2, and R3, as illustrated in Figure 2.1.6(b). Without proof here are some conclusions
that we can draw about a nonconstant solution y(x) of (2):

• If (x0, y0) is in a subregion Ri, i � 1, 2, 3, and y(x) is a solution whose graph
passes through this point, then y(x) remains in the subregion Ri for all x. As
illustrated in Figure 2.1.6(b), the solution y(x) in R2 is bounded below by c1

and above by c2, that is, c1 
 y(x) 
 c2 for all x. The solution curve stays
within R2 for all x because the graph of a nonconstant solution of (2) cannot
cross the graph of either equilibrium solution y(x) � c1 or y(x) � c2. See
Problem 33 in Exercises 2.1.

• By continuity of f we must then have either f (y) � 0 or f (y) 
 0 for all x in
a subregion Ri, i � 1, 2, 3. In other words, f (y) cannot change signs in a
subregion. See Problem 33 in Exercises 2.1.
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P-axis
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b

FIGURE 2.1.5 Phase portrait of 
dP�dt � P(a � bP)
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(a) region R

(b) subregions R1, R2, and R3 of R

FIGURE 2.1.6 Lines y(x) � c1 and
y(x) � c2 partition R into three horizontal
subregions



• Since dy�dx � f (y(x)) is either positive or negative in a subregion Ri, i � 1,
2, 3, a solution y(x) is strictly monotonic—that is, y(x) is either increasing
or decreasing in the subregion Ri. Therefore y(x) cannot be oscillatory, nor
can it have a relative extremum (maximum or minimum). See Problem 33
in Exercises 2.1.

• If y(x) is bounded above by a critical point c1 (as in subregion R1 where
y(x) 
 c1 for all x), then the graph of y(x) must approach the graph of the
equilibrium solution y(x) � c1 either as x : � or as x : ��. If y(x) is
bounded—that is, bounded above and below by two consecutive critical
points (as in subregion R2 where c1 
 y(x) 
 c2 for all x)—then the graph
of y(x) must approach the graphs of the equilibrium solutions y(x) � c1 and
y(x) � c2, one as x : � and the other as x : ��. If y(x) is bounded below
by a critical point (as in subregion R3 where c2 
 y(x) for all x), then the
graph of y(x) must approach the graph of the equilibrium solution y(x) � c2

either as x : � or as x : ��. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in
Example 3.

EXAMPLE 4 Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points 
P � 0 and P � a�b now correspond in the tP-plane to three subregions defined by:

R1: �� 
 P 
 0, R2: 0 
 P 
 a�b, and R3: a�b 
 P 
 �,

where �� 
 t 
 �. The phase portrait in Figure 2.1.7 tells us that P(t) is decreasing
in R1, increasing in R2, and decreasing in R3. If P(0) � P0 is an initial value, then in
R1, R2, and R3 we have, respectively, the following:

(i) For P0 
 0, P(t) is bounded above. Since P(t) is decreasing, P(t)
decreases without bound for increasing t, and so P(t) : 0 as t : ��.
This means that the negative t-axis, the graph of the equilibrium solution
P(t) � 0, is a horizontal asymptote for a solution curve.

(ii) For 0 
 P0 
 a�b, P(t) is bounded. Since P(t) is increasing, P(t) : a�b
as t : � and P(t) : 0 as t : ��. The graphs of the two equilibrium
solutions, P(t) � 0 and P(t) � a�b, are horizontal lines that are horizontal
asymptotes for any solution curve starting in this subregion.

(iii) For P0 � a�b, P(t) is bounded below. Since P(t) is decreasing, P(t) : a�b
as t : �. The graph of the equilibrium solution P(t) � a�b is a horizontal
asymptote for a solution curve.

In Figure 2.1.7 the phase line is the P-axis in the tP-plane. For clarity the origi-
nal phase line from Figure 2.1.5 is reproduced to the left of the plane in which
the subregions R1, R2, and R3 are shaded. The graphs of the equilibrium solutions
P(t) � a�b and P(t) � 0 (the t-axis) are shown in the figure as blue dashed lines;
the solid graphs represent typical graphs of P(t) illustrating the three cases just
discussed.

In a subregion such as R1 in Example 4, where P(t) is decreasing and unbounded
below, we must necessarily have P(t) : ��. Do not interpret this last statement to
mean P(t) : �� as t : �; we could have P(t) : �� as t : T, where T � 0 is a
finite number that depends on the initial condition P(t0) � P0. Thinking in dynamic
terms, P(t) could “blow up” in finite time; thinking graphically, P(t) could have a
vertical asymptote at t � T � 0. A similar remark holds for the subregion R3.

The differential equation dy�dx � sin y in Example 2 is autonomous and has an
infinite number of critical points, since sin y � 0 at y � n�, n an integer. Moreover,
we now know that because the solution y(x) that passes through is bounded(0, �3

2)

R1

R2
P0

P0

P0

PP

a
b

0
t

R3

phase line

decreasing

decreasing

increasing

tP-plane

FIGURE 2.1.7 Phase portrait and
solution curves in each of the three
subregions
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above and below by two consecutive critical points (�� 
 y(x) 
 0) and is
decreasing (sin y 
 0 for �� 
 y 
 0), the graph of y(x) must approach the graphs
of the equilibrium solutions as horizontal asymptotes: y(x) : �� as x : � and
y(x) : 0 as x : ��.

EXAMPLE 5 Solution Curves of an Autonomous DE

The autonomous equation dy�dx � (y � 1)2 possesses the single critical point 1.
From the phase portrait in Figure 2.1.8(a) we conclude that a solution y(x) is an
increasing function in the subregions defined by �� 
 y 
 1 and 1 
 y 
 �, where
�� 
 x 
 �. For an initial condition y(0) � y0 
 1, a solution y(x) is increasing and
bounded above by 1, and so y(x) : 1 as x : �; for y(0) � y0 � 1 a solution y(x) is
increasing and unbounded.

Now y(x) � 1 � 1�(x � c) is a one-parameter family of solutions of the differ-
ential equation. (See Problem 4 in Exercises 2.2) A given initial condition determines
a value for c. For the initial conditions, say, y(0) � �1 
 1 and y(0) � 2 � 1, we
find, in turn, that y(x) � 1 � 1�(x � , and y(x) � 1 � 1�(x � 1). As shown in
Figures 2.1.8(b) and 2.1.8(c), the graph of each of these rational functions possesses

1
2)
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y0

(d)

y0

(c)

y0

(b)

y0

(a)

FIGURE 2.1.9 Critical point c is an
attractor in (a), a repeller in (b), and semi-
stable in (c) and (d).
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FIGURE 2.1.8 Behavior of solutions near y � 1

a vertical asymptote. But bear in mind that the solutions of the IVPs

are defined on special intervals. They are, respectively,

The solution curves are the portions of the graphs in Figures 2.1.8(b) and
2.1.8(c) shown in blue. As predicted by the phase portrait, for the solution curve
in Figure 2.1.8(b), y(x) : 1 as x : �; for the solution curve in Figure 2.1.8(c),
y(x) : � as x : 1 from the left.

ATTRACTORS AND REPELLERS Suppose that y(x) is a nonconstant solution of
the autonomous differential equation given in (1) and that c is a critical point of
the DE. There are basically three types of behavior that y(x) can exhibit near c. In
Figure 2.1.9 we have placed c on four vertical phase lines. When both arrowheads on
either side of the dot labeled c point toward c, as in Figure 2.1.9(a), all solutions y(x)
of (1) that start from an initial point (x0, y0) sufficiently near c exhibit the asymp-
totic behavior . For this reason the critical point c is said to belimx:� y(x) � c

y(x) � 1 �
1

x � 1
2

,  �1
2 
 x 
 �   and   y(x) � 1 �

1

x � 1
,  �� 
 x 
 1.

dy

dx
� ( y � 1)2,  y(0) � �1    and    

dy

dx
� (y � 1)2,  y(0) � 2



asymptotically stable. Using a physical analogy, a solution that starts near c is like a
charged particle that, over time, is drawn to a particle of opposite charge, and so c is
also referred to as an attractor. When both arrowheads on either side of the dot
labeled c point away from c, as in Figure 2.1.9(b), all solutions y(x) of (1) that start
from an initial point (x0, y0) move away from c as x increases. In this case the critical
point c is said to be unstable. An unstable critical point is also called a repeller, for
obvious reasons. The critical point c illustrated in Figures 2.1.9(c) and 2.1.9(d) is
neither an attractor nor a repeller. But since c exhibits characteristics of both an
attractor and a repeller—that is, a solution starting from an initial point (x0, y0) suffi-
ciently near c is attracted to c from one side and repelled from the other side—we say
that the critical point c is semi-stable. In Example 3 the critical point a�b is
asymptotically stable (an attractor) and the critical point 0 is unstable (a repeller).
The critical point 1 in Example 5 is semi-stable.

AUTONOMOUS DEs AND DIRECTION FIELDS If a first-order differential equa-
tion is autonomous, then we see from the right-hand side of its normal form 
dy�dx � f (y) that slopes of lineal elements through points in the rectangular grid used
to construct a direction field for the DE depend solely on the y-coordinate of the points.
Put another way, lineal elements passing through points on any horizontal line must all
have the same slope; slopes of lineal elements along any vertical line will, of course,
vary. These facts are apparent from inspection of the horizontal gold strip and vertical
blue strip in Figure 2.1.10. The figure exhibits a direction field for the autonomous equa-
tion dy�dx � 2y � 2. With these facts in mind, reexamine Figure 2.1.4.

slopes of lineal
elements on a
vertical line varyslopes of lineal

elements on a horizontal
line are all the same

x

y

FIGURE 2.1.10 Direction field for an
autonomous DE
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FIGURE 2.1.11 Direction field for Problem 1
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FIGURE 2.1.12 Direction field for Problem 2

EXERCISES 2.1 Answers to selected odd-numbered problems begin on page ANS-1.

2.1.1 DIRECTION FIELDS

In Problems 1–4 reproduce the given computer-generated
direction field. Then sketch, by hand, an approximate solu-
tion curve that passes through each of the indicated points.
Use different colored pencils for each solution curve.

1.

(a) y(�2) � 1 (b) y(3) � 0

(c) y(0) � 2 (d) y(0) � 0

dy

dx
� x2 � y2

3.

(a) y(0) � 0 (b) y(�1) � 0

(c) y(2) � 2 (d) y(0) � �4

dy

dx
� 1 � xy

2.

(a) y(�6) � 0 (b) y(0) � 1

(c) y(0) � �4 (d) y(8) � �4

dy

dx
� e�0.01xy2
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In Problems 13 and 14 the given figure represents the graph
of f (y) and f (x), respectively. By hand, sketch a direction
field over an appropriate grid for dy�dx � f (y) (Problem 13)
and then for dy�dx � f (x) (Problem 14).

13.

4.

(a) y(0) � 1 (b) y(1) � 0

(c) y(3) � 3 (d) y(0) � �5
2

dy

dx
� (sin x) cos y

In Problems 5–12 use computer software to obtain a direc-
tion field for the given differential equation. By hand, sketch
an approximate solution curve passing through each of the
given points.

5. y� � x 6. y� � x � y

(a) y(0) � 0 (a) y(�2) � 2

(b) y(0) � �3 (b) y(1) � �3

7. 8.

(a) y(1) � 1 (a) y(0) � 1

(b) y(0) � 4 (b) y(�2) � �1

9. 10.

(a) (a) y(0) � �2

(b) y(2) � �1 (b) y(1) � 2.5

11. 12.

(a) y(2) � 2 (a)

(b) y(�1) � 0 (b) y(3
2) � 0

y(�1
2) � 2

dy

dx
� 1 �

y

x
y� � y � cos

�

2
x

y(0) � 1
2

dy

dx
� xeydy

dx
� 0.2x2 � y

dy

dx
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FIGURE 2.1.13 Direction field for Problem 3
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FIGURE 2.1.14 Direction field for Problem 4

14.

15. In parts (a) and (b) sketch isoclines f (x, y) � c (see the
Remarks on page 37) for the given differential equation
using the indicated values of c. Construct a direction field
over a grid by carefully drawing lineal elements with the
appropriate slope at chosen points on each isocline. In
each case, use this rough direction field to sketch an ap-
proximate solution curve for the IVP consisting of the DE
and the initial condition y(0) � 1.

(a) dy�dx � x � y; c an integer satisfying �5 � c � 5

(b) dy�dx � x2 � y2;

Discussion Problems

16. (a) Consider the direction field of the differential equa-
tion dy�dx � x(y � 4)2 � 2, but do not use tech-
nology to obtain it. Describe the slopes of the lineal
elements on the lines x � 0, y � 3, y � 4, and y � 5.

(b) Consider the IVP dy�dx � x(y � 4)2 � 2, y(0) � y0,
where y0 
 4. Can a solution y(x) : � as x : �?
Based on the information in part (a), discuss.

17. For a first-order DE dy�dx � f (x, y) a curve in the plane
defined by f (x, y) � 0 is called a nullcline of the equa-
tion, since a lineal element at a point on the curve has zero
slope. Use computer software to obtain a direction field
over a rectangular grid of points for dy�dx � x2 � 2y,

c � 1
4, c � 1, c � 9

4, c � 4



and then superimpose the graph of the nullcline 
over the direction field. Discuss the behavior of solution
curves in regions of the plane defined by and by

. Sketch some approximate solution curves. Try
to generalize your observations.

18. (a) Identify the nullclines (see Problem 17) in
Problems 1, 3, and 4. With a colored pencil, circle
any lineal elements in Figures 2.1.11, 2.1.13, and
2.1.14 that you think may be a lineal element at a
point on a nullcline.

(b) What are the nullclines of an autonomous first-order
DE?

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Consider the autonomous first-order differential equa-
tion dy�dx � y � y3 and the initial condition y(0) � y0.
By hand, sketch the graph of a typical solution y(x)
when y0 has the given values.

(a) y0 � 1 (b) 0 
 y0 
 1

(c) �1 
 y0 
 0 (d) y0 
 �1

20. Consider the autonomous first-order differential equation
dy�dx � y2 � y4 and the initial condition y(0) � y0. By
hand, sketch the graph of a typical solution y(x) when y0

has the given values.

(a) y0 � 1 (b) 0 
 y0 
 1

(c) �1 
 y0 
 0 (d) y0 
 �1

In Problems 21–28 find the critical points and phase portrait
of the given autonomous first-order differential equation.
Classify each critical point as asymptotically stable, unstable,
or semi-stable. By hand, sketch typical solution curves in the
regions in the xy-plane determined by the graphs of the
equilibrium solutions.

21. 22.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30 consider the autonomous differential
equation dy�dx � f(y), where the graph of f is given. Use the
graph to locate the critical points of each differential equa-
tion. Sketch a phase portrait of each differential equation.
By hand, sketch typical solution curves in the subregions in
the xy-plane determined by the graphs of the equilibrium
solutions.

dy

dx
�

yey � 9y

ey

dy

dx
� y ln(y � 2)

dy

dx
� y(2 � y)(4 � y)

dy

dx
� y2(4 � y2)

dy

dx
� 10 � 3y � y2dy

dx
� (y � 2)4

dy

dx
� y2 � y3dy

dx
� y2 � 3y

y � 1
2 x2

y 
 1
2 x2

y � 1
2 x2 29. f

c y

FIGURE 2.1.17 Graph for Problem 29

30. f

y1

1

FIGURE 2.1.18 Graph for Problem 30

Discussion Problems

31. Consider the autonomous DE dy�dx � (2��)y � sin y.
Determine the critical points of the equation. Discuss
a way of obtaining a phase portrait of the equation.
Classify the critical points as asymptotically stable,
unstable, or semi-stable.

32. A critical point c of an autonomous first-order DE is
said to be isolated if there exists some open interval that
contains c but no other critical point. Can there exist an
autonomous DE of the form given in (1) for which every
critical point is nonisolated? Discuss; do not think pro-
found thoughts.

33. Suppose that y(x) is a nonconstant solution of the
autonomous equation dy�dx � f (y) and that c is a
critical point of the DE. Discuss. Why can’t the graph
of y(x) cross the graph of the equilibrium solution
y � c? Why can’t f (y) change signs in one of the
subregions discussed on page 38? Why can’t y(x) be
oscillatory or have a relative extremum (maximum or
minimum)?

34. Suppose that y(x) is a solution of the autonomous equa-
tion dy�dx � f (y) and is bounded above and below by
two consecutive critical points c1 
 c2, as in subregion 
R2 of Figure 2.1.6(b). If f (y) � 0 in the region, then 
limx:� y(x) � c2. Discuss why there cannot exist a num-
ber L 
 c2 such that limx:� y(x) � L. As part of your
discussion, consider what happens to y�(x) as x : �.

35. Using the autonomous equation (1), discuss how it is
possible to obtain information about the location of
points of inflection of a solution curve.

2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 43
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36. Consider the autonomous DE dy�dx � y2 � y � 6. Use
your ideas from Problem 35 to find intervals on the
y-axis for which solution curves are concave up and
intervals for which solution curves are concave down.
Discuss why each solution curve of an initial-value
problem of the form dy�dx � y2 � y � 6, y(0) � y0,
where �2 
 y0 
 3, has a point of inflection with the
same y-coordinate. What is that y-coordinate? Carefully
sketch the solution curve for which y(0) � �1. Repeat
for y(2) � 2.

37. Suppose the autonomous DE in (1) has no critical
points. Discuss the behavior of the solutions.

Mathematical Models

38. Population Model The differential equation in
Example 3 is a well-known population model. Suppose
the DE is changed to

,

where a and b are positive constants. Discuss what
happens to the population P as time t increases.

39. Population Model Another population model is
given by

,

where h and k are positive constants. For what initial
values P(0) � P0 does this model predict that the popu-
lation will go extinct?

40. Terminal Velocity In Section 1.3 we saw that the
autonomous differential equation

,m
dv

dt
� mg � kv

dP

dt
� kP � h

dP

dt
� P(aP � b)

where k is a positive constant and g is the acceleration
due to gravity, is a model for the velocity v of a body of
mass m that is falling under the influence of gravity.
Because the term �kv represents air resistance, the
velocity of a body falling from a great height does not in-
crease without bound as time t increases. Use a phase
portrait of the differential equation to find the limiting, or
terminal, velocity of the body. Explain your reasoning.

41. Suppose the model in Problem 40 is modified so 
that air resistance is proportional to v2, that is,

.

See Problem 17 in Exercises 1.3. Use a phase portrait
to find the terminal velocity of the body. Explain your
reasoning.

42. Chemical Reactions When certain kinds of chemicals
are combined, the rate at which the new compound is
formed is modeled by the autonomous differential
equation

where k � 0 is a constant of proportionality and
� � � � 0. Here X(t) denotes the number of grams of
the new compound formed in time t.

(a) Use a phase portrait of the differential equation to
predict the behavior of X(t) as t : �.

(b) Consider the case when � � �. Use a phase portrait
of the differential equation to predict the behavior
of X(t) as t : � when X(0) 
 �. When X(0) � �.

(c) Verify that an explicit solution of the DE in the case
when k � 1 and � � � is X(t) � � � 1�(t � c).
Find a solution that satisfies X(0) � ��2. Then find
a solution that satisfies X(0) � 2�. Graph these
two solutions. Does the behavior of the solutions as
t : � agree with your answers to part (b)?

dX

dt
� k(� � X)(� � X),

m
dv

dt
� mg � kv2

2.2 SEPARABLE VARIABLES

REVIEW MATERIAL
● Basic integration formulas (See inside front cover)
● Techniques of integration: integration by parts and partial fraction decomposition
● See also the Student Resource and Solutions Manual.

INTRODUCTION We begin our study of how to solve differential equations with the simplest of
all differential equations: first-order equations with separable variables. Because the method in this
section and many techniques for solving differential equations involve integration, you are urged to
refresh your memory on important formulas (such as 	 du�u) and techniques (such as integration by
parts) by consulting a calculus text.



SOLUTION BY INTEGRATION Consider the first-order differential equation
dy�dx � f (x, y). When f does not depend on the variable y, that is, f (x, y) � g(x), the
differential equation

(1)

can be solved by integration. If g(x) is a continuous function, then integrating both
sides of (1) gives , where G(x) is an antiderivative (indefi-
nite integral) of g(x). For example, if dy�dx � 1 � e2x, then its solution is

or .

A DEFINITION Equation (1), as well as its method of solution, is just a special
case when the function f in the normal form dy�dx � f (x, y) can be factored into a
function of x times a function of y.

DEFINITION 2.2.1 Separable Equation

A first-order differential equation of the form

is said to be separable or to have separable variables.

For example, the equations

are separable and nonseparable, respectively. In the first equation we can factor
f (x, y) � y2xe3x�4y as

g(x) h(y)
p p

,

but in the second equation there is no way of expressing y � sin x as a product of a
function of x times a function of y.

Observe that by dividing by the function h(y), we can write a separable equation
dy�dx � g(x)h(y) as

, (2)

where, for convenience, we have denoted 1�h(y) by p(y). From this last form we can
see immediately that (2) reduces to (1) when h(y) � 1.

Now if y � �(x) represents a solution of (2), we must have p(� (x))��(x) � g(x),
and therefore

. (3)

But dy � ��(x) dx, and so (3) is the same as

, (4)

where H(y) and G(x) are antiderivatives of p(y) � 1�h(y) and g(x), respectively.

� p(y) dy � � g(x) dx    or    H(y) � G(x) � c

� p(� (x))��(x) dx � � g(x) dx

p(y)
dy

dx
� g(x)

f (x, y) � y2xe3x�4y �  (xe3x)( y2e4y )

dy

dx
� y2xe3x�4y    and    

dy

dx
� y � sin x

dy

dx
� g(x)h(y)

y � x � 1
2e2x � cy � 	(1 � e2x) dx

y � 	g(x) dx � G(x) � c

dy

dx
� g(x)
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METHOD OF SOLUTION Equation (4) indicates the procedure for solving
separable equations. A one-parameter family of solutions, usually given implicitly, is
obtained by integrating both sides of p(y) dy � g(x) dx.

NOTE There is no need to use two constants in the integration of a separable equa-
tion, because if we write H(y) � c1 � G(x) � c2, then the difference c2 � c1 can be
replaced by a single constant c, as in (4). In many instances throughout the chapters
that follow, we will relabel constants in a manner convenient to a given equation. For
example, multiples of constants or combinations of constants can sometimes be
replaced by a single constant.

EXAMPLE 1 Solving a Separable DE

Solve (1 � x) dy � y dx � 0.

SOLUTION Dividing by (1 � x)y, we can write dy�y � dx�(1 � x), from which it
follows that

; laws of exponents

Relabeling as c then gives y � c(1 � x).

ALTERNATIVE SOLUTION Because each integral results in a logarithm, a judicious
choice for the constant of integration is ln�c � rather than c. Rewriting the second
line of the solution as ln�y � � ln�1 � x � � ln�c � enables us to combine the terms on
the right-hand side by the properties of logarithms. From ln�y � � ln�c(1 � x) � we
immediately get y � c(1 � x). Even if the indefinite integrals are not all logarithms,
it may still be advantageous to use ln�c �. However, no firm rule can be given.

In Section 1.1 we saw that a solution curve may be only a segment or an arc of
the graph of an implicit solution G(x, y) � 0.

EXAMPLE 2 Solution Curve

Solve the initial-value problem .

SOLUTION Rewriting the equation as y dy � �x dx, we get

.

We can write the result of the integration as x2 � y2 � c2 by replacing the constant
2c1 by c2. This solution of the differential equation represents a family of concentric
circles centered at the origin.

Now when x � 4, y � �3, so 16 � 9 � 25 � c2. Thus the initial-value problem
determines the circle x2 � y2 � 25 with radius 5. Because of its simplicity we can
solve this implicit solution for an explicit solution that satisfies the initial condition.

� y dy � �� x dx    and    
y2

2
� �

x2

2
� c1

dy

dx
� �

x

y
,  y(4) � �3

�ec1

� �ec1(1 � x).

� � 1 � x � ec1

y � eln�1�x��c1 � eln�1�x� � ec1

 ln� y � � ln� 1 � x � � c1

� dy

y
� � dx

1 � x

;�� 1 � x � � 1 � x,

� 1 � x � � �(1 � x),  
x �1

x <�1



We saw this solution as y � �2(x) or in Example 3 of
Section 1.1. A solution curve is the graph of a differentiable function. In this case the
solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing
the point (4, �3).

LOSING A SOLUTION Some care should be exercised in separating variables,
since the variable divisors could be zero at a point. Specifically, if r is a zero 
of the function h(y), then substituting y � r into dy�dx � g(x)h(y) makes both sides
zero; in other words, y � r is a constant solution of the differential equation.

But after variables are separated, the left-hand side of � g(x) dx is undefined at r.

As a consequence, y � r might not show up in the family of solutions that are obtained
after integration and simplification. Recall that such a solution is called a singular
solution.

EXAMPLE 3 Losing a Solution

Solve .

SOLUTION We put the equation in the form

. (5)

The second equation in (5) is the result of using partial fractions on the left-hand side
of the first equation. Integrating and using the laws of logarithms gives

.

Here we have replaced 4c1 by c2. Finally, after replacing by c and solving the
last equation for y, we get the one-parameter family of solutions

. (6)

Now if we factor the right-hand side of the differential equation as 
dy�dx � (y � 2)(y � 2), we know from the discussion of critical points in Section 2.1
that y � 2 and y � �2 are two constant (equilibrium) solutions. The solution y � 2 is a
member of the family of solutions defined by (6) corresponding to the value c � 0.
However, y � �2 is a singular solution; it cannot be obtained from (6) for any choice of
the parameter c. This latter solution was lost early on in the solution process. Inspection
of (5) clearly indicates that we must preclude y � �2 in these steps.

EXAMPLE 4 An Initial-Value Problem

Solve .(e2y � y) cos x
dy

dx
� ey sin 2x, y(0) � 0

y � 2
1 � ce4x

1 � ce4x

�ec2

 or    ln� y � 2

y � 2 � � 4x � c2    or    
y � 2

y � 2
� �e4x�c2

1

4
 ln� y � 2 � �

1

4
 ln� y � 2 � � x � c1

dy

y2 � 4
� dx    or    
 1

4

y � 2
�

1
4

y � 2 � dy � dx

dy

dx
� y2 � 4

dy

h(y)

y � �125 � x2, �5 
 x 
 5

FIGURE 2.2.1 Solution curve for the
IVP in Example 2

x

y

(4, −3)
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SOLUTION Dividing the equation by ey cos x gives

.

Before integrating, we use termwise division on the left-hand side and the trigono-
metric identity sin 2x � 2 sin x cos x on the right-hand side. Then

integration by parts :

yields ey � ye�y � e�y � �2 cos x � c. (7)

The initial condition y � 0 when x � 0 implies c � 4. Thus a solution of the initial-
value problem is

ey � ye�y � e�y � 4 � 2 cos x. (8)

USE OF COMPUTERS The Remarks at the end of Section 1.1 mentioned
that it may be difficult to use an implicit solution G(x, y) � 0 to find an explicit
solution y � � (x). Equation (8) shows that the task of solving for y in terms of x may
present more problems than just the drudgery of symbol pushing—sometimes it
simply cannot be done! Implicit solutions such as (8) are somewhat frustrating; nei-
ther the graph of the equation nor an interval over which a solution satisfying y(0) �
0 is defined is apparent. The problem of “seeing” what an implicit solution looks like
can be overcome in some cases by means of technology. One way* of proceeding is
to use the contour plot application of a computer algebra system (CAS). Recall from
multivariate calculus that for a function of two variables z � G(x, y) the two-
dimensional curves defined by G(x, y) � c, where c is constant, are called the level
curves of the function. With the aid of a CAS, some of the level curves of the func-
tion G(x, y) � ey � ye�y � e�y � 2 cos x have been reproduced in Figure 2.2.2. The
family of solutions defined by (7) is the level curves G(x, y) � c. Figure 2.2.3 illus-
trates the level curve G(x, y) � 4, which is the particular solution (8), in blue color.
The other curve in Figure 2.2.3 is the level curve G(x, y) � 2, which is the member
of the family G(x, y) � c that satisfies y(��2) � 0.

If an initial condition leads to a particular solution by yielding a specific value of
the parameter c in a family of solutions for a first-order differential equation, there is
a natural inclination for most students (and instructors) to relax and be content.
However, a solution of an initial-value problem might not be unique. We saw in
Example 4 of Section 1.2 that the initial-value problem

(9)

has at least two solutions, y � 0 and . We are now in a position to solve the
equation. Separating variables and integrating y�1/2 dy � x dx gives

.

When x � 0, then y � 0, so necessarily, c � 0. Therefore . The trivial solution
y � 0 was lost by dividing by y1/2. In addition, the initial-value problem (9) possesses
infinitely many more solutions, since for any choice of the parameter a  0 the

y � 1
16 x

4

2y1/2 �
x2

2
� c1    or    y � �x2

4
� c�

2

y � 1
16 x

4

dy

dx
� xy1/2,  y(0) � 0

� (ey � ye�y) dy � 2 � sin x dx

e2y � y

ey dy �
sin 2x

cos x
dx

x

y

2_2
_2

_1

1

2

_1 1
FIGURE 2.2.2 Level curves 
G(x, y) � c, where 
G(x, y) � ey � ye�y � e�y � 2 cos x

FIGURE 2.2.3 Level curves 
c � 2 and c � 4

(0, 0) /2,0) (π 
x

y

2_2
_2

_1

1

2

_1 1

c=4

c=2

*In Section 2.6 we will discuss several other ways of proceeding that are based on the concept of a
numerical solver.



piecewise-defined function

satisfies both the differential equation and the initial condition. See Figure 2.2.4.

SOLUTIONS DEFINED BY INTEGRALS If g is a function continuous on an open
interval I containing a, then for every x in I,

You might recall that the foregoing result is one of the two forms of the fundamental
theorem of calculus. In other words, is an antiderivative of the function g.
There are times when this form is convenient in solving DEs. For example, if g is
continuous on an interval I containing x0 and x, then a solution of the simple initial-
value problem , that is defined on I is given by

You should verify that y(x) defined in this manner satisfies the initial condition. Since
an antiderivative of a continuous function g cannot always be expressed in terms of
elementary functions, this might be the best we can do in obtaining an explicit
solution of an IVP. The next example illustrates this idea.

EXAMPLE 5 An Initial-Value Problem

Solve 

SOLUTION The function is continuous on , but its antideriva-
tive is not an elementary function. Using t as dummy variable of integration, we can
write

Using the initial condition y(3) � 5, we obtain the solution

The procedure demonstrated in Example 5 works equally well on separable
equations where, say, f (y) possesses an elementary antiderivative
but g(x) does not possess an elementary antiderivative. See Problems 29 and 30 in
Exercises 2.2.

dy>dx � g(x) f (y)

y(x) � 5 � �x

3
e�t2

dt.

y(x) � y(3) � �x

3
e�t2

dt.

y(x) � y(3) � �x

3
e�t2

dt

y(t)]x

3
� �x

3
e�t2

dt

�x

3

dy

dt
dt � �x

3
e�t2

dt

(��, �)g(x) � e�x2

dy

dx
� e�x2

,  y(3) � 5.

y(x) � y0 � �x

x0

g(t) dt

dy>dx � g(x), y(x0) � y0

�x
a g(t) dt

d

dx
�x

a
g(t) dt � g(x).

y � �0,
1
16 (x

2 � a2)2,

x 
 a

x  a

a =   > 0 a 0

(0, 0) x

y

FIGURE 2.2.4 Piecewise-defined
solutions of (9)

2.2 SEPARABLE VARIABLES ● 49



50 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

REMARKS

(i) As we have just seen in Example 5, some simple functions do not possess
an antiderivative that is an elementary function. Integrals of these kinds of
functions are called nonelementary. For example, and are
nonelementary integrals. We will run into this concept again in Section 2.3.

(ii) In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a first-order differential equation can be rela-
beled when convenient. Also, it can easily happen that two individuals solving the
same equation correctly arrive at dissimilar expressions for their answers. For
example, by separation of variables we can show that one-parameter families of
solutions for the DE (1 � y2) dx � (1 � x2) dy � 0 are

.

As you work your way through the next several sections, bear in mind that fami-
lies of solutions may be equivalent in the sense that one family may be obtained
from another by either relabeling the constant or applying algebra and trigonom-
etry. See Problems 27 and 28 in Exercises 2.2.

arctan x � arctan y � c    or    
x � y

1 � xy
� c

�sin x2 dx�x
3 e�t2

dt

EXERCISES 2.2 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1–22 solve the given differential equation by
separation of variables.

1. 2.

3. dx � e3xdy � 0 4. dy � (y � 1)2dx � 0

5. 6.

7. 8.

9. 10.

11. csc y dx � sec2x dy � 0

12. sin 3x dx � 2y cos33x dy � 0

13. (ey � 1)2e�y dx � (ex � 1)3e�x dy � 0

14. x(1 � y2)1/2 dx � y(1 � x2)1/2 dy

15. 16.

17. 18.

19. 20.
dy

dx
�

xy � 2y � x � 2

xy � 3y � x � 3

dy

dx
�

xy � 3x � y � 3

xy � 2x � 4y � 8

dN

dt
� N � Ntet�2dP

dt
� P � P2

dQ

dt
� k(Q � 70)

dS

dr
� kS

dy

dx
� �2y � 3

4x � 5�
2

y ln x
dx

dy
� �y � 1

x �
2

exy
dy

dx
� e�y � e�2x�ydy

dx
� e3x�2y

dy

dx
� 2xy2 � 0x

dy

dx
� 4y

dy

dx
� (x � 1)2dy

dx
� sin 5x

21. 22.

In Problems 23–28 find an explicit solution of the given
initial-value problem.

23.

24.

25.

26.

27.

28. (1 � x4) dy � x(1 � 4y2) dx � 0, y(1) � 0

In Problems 29 and 30 proceed as in Example 5 and find an
explicit solution of the given initial-value problem.

29.

30.

31. (a) Find a solution of the initial-value problem consisting
of the differential equation in Example 3 and the ini-
tial conditions y(0) � 2, y(0) � �2, and .y(1

4) � 1

dy

dx
� y 2 sin x2,  y(�2) � 1

3

dy

dx
� ye�x2

,  y(4) � 1

11 � y2 dx � 11 � x2 dy � 0, y(0) �
13

2

dy

dt
� 2y � 1, y(0) � 5

2

x2 dy

dx
� y � xy, y(�1) � �1

dy

dx
�

y2 � 1

x2 � 1
, y(2) � 2

dx

dt
� 4(x2 � 1), x(�>4) � 1

(ex � e�x)
dy

dx
� y2dy

dx
� x11 � y2



(b) Find the solution of the differential equation in
Example 4 when ln c1 is used as the constant of
integration on the left-hand side in the solution and
4 ln c1 is replaced by ln c. Then solve the same
initial-value problems in part (a).

32. Find a solution of that passes through

the indicated points.

(a) (0, 1) (b) (0, 0) (c) (d)

33. Find a singular solution of Problem 21. Of Problem 22.

34. Show that an implicit solution of

is given by ln(x2 � 10) � csc y � c. Find the constant
solutions, if any, that were lost in the solution of the dif-
ferential equation.

Often a radical change in the form of the solution of a differen-
tial equation corresponds to a very small change in either the
initial condition or the equation itself. In Problems 35–38 find
an explicit solution of the given initial-value problem. Use a
graphing utility to plot the graph of each solution. Compare
each solution curve in a neighborhood of (0, 1).

35.

36.

37.

38.

39. Every autonomous first-order equation dy�dx � f (y)
is separable. Find explicit solutions y1(x), y2(x), y3(x),
and y4(x) of the differential equation dy�dx � y � y3

that satisfy, in turn, the initial conditions y1(0) � 2,
, , and y4(0) � �2. Use a graphing

utility to plot the graphs of each solution. Compare these
graphs with those predicted in Problem 19 of Exercises
2.1. Give the exact interval of definition for each solution.

40. (a) The autonomous first-order differential equation 
dy�dx � 1�(y � 3) has no critical points.
Nevertheless, place 3 on the phase line and obtain
a phase portrait of the equation. Compute d2y�dx2

to determine where solution curves are concave up
and where they are concave down (see Problems 35
and 36 in Exercises 2.1). Use the phase portrait
and concavity to sketch, by hand, some typical
solution curves.

(b) Find explicit solutions y1(x), y2(x), y3(x), and y4(x)
of the differential equation in part (a) that satisfy,
in turn, the initial conditions y1(0) � 4, y2(0) � 2,

y3(0) � �1
2y2(0) � 1

2

dy

dx
� (y � 1)2 � 0.01, y(0) � 1

dy

dx
� (y � 1)2 � 0.01, y(0) � 1

dy

dx
� (y � 1)2, y(0) � 1.01

dy

dx
� (y � 1)2, y(0) � 1

2x sin2 y dx � (x2 � 10) cos y dy � 0

(2, 1
4)(1

2,
1
2)

x
dy

dx
� y2 � y

y3(1) � 2, and y4(�1) � 4. Graph each solution
and compare with your sketches in part (a). Give
the exact interval of definition for each solution.

41. (a) Find an explicit solution of the initial-value problem

.

(b) Use a graphing utility to plot the graph of the solu-
tion in part (a). Use the graph to estimate the inter-
val I of definition of the solution.

(c) Determine the exact interval I of definition by ana-
lytical methods.

42. Repeat parts (a)– (c) of Problem 41 for the IVP consist-
ing of the differential equation in Problem 7 and the ini-
tial condition y(0) � 0.

Discussion Problems

43. (a) Explain why the interval of definition of the explicit
solution y � �2(x) of the initial-value problem in
Example 2 is the open interval (�5, 5).

(b) Can any solution of the differential equation cross
the x-axis? Do you think that x2 � y2 � 1 is an
implicit solution of the initial-value problem 
dy�dx � �x�y, y(1) � 0?

44. (a) If a � 0, discuss the differences, if any, between
the solutions of the initial-value problems consist-
ing of the differential equation dy�dx � x�y and
each of the initial conditions y(a) � a, y(a) � �a,
y(�a) � a, and y(�a) � �a.

(b) Does the initial-value problem dy�dx � x�y,
y(0) � 0 have a solution?

(c) Solve dy�dx � x�y, y(1) � 2 and give the exact
interval I of definition of its solution.

45. In Problems 39 and 40 we saw that every autonomous
first-order differential equation dy�dx � f (y) is
separable. Does this fact help in the solution of the

initial-value problem ?

Discuss. Sketch, by hand, a plausible solution curve of
the problem.

46. Without the use of technology, how would you solve

?

Carry out your ideas.

47. Find a function whose square plus the square of its
derivative is 1.

48. (a) The differential equation in Problem 27 is equiva-
lent to the normal form

dy

dx
� B

1 � y2

1 � x2

(1x � x) dy

dx
� 1y � y

dy

dx
� 11 � y2 sin2 y, y(0) � 1

2

dy

dx
�

2x � 1

2y
,  y(�2) � �1
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in the square region in the xy-plane defined by
�x � 
 1, �y � 
 1. But the quantity under the radical is
nonnegative also in the regions defined by �x � � 1,
�y � � 1. Sketch all regions in the xy-plane for
which this differential equation possesses real
solutions.

(b) Solve the DE in part (a) in the regions defined by
�x � � 1, �y � � 1. Then find an implicit and an
explicit solution of the differential equation subject
to y(2) � 2.

Mathematical Model

49. Suspension Bridge In (16) of Section 1.3 we saw that
a mathematical model for the shape of a flexible cable
strung between two vertical supports is

, (10)

where W denotes the portion of the total vertical load
between the points P1 and P2 shown in Figure 1.3.7. The
DE (10) is separable under the following conditions that
describe a suspension bridge.

Let us assume that the x- and y-axes are as shown in
Figure 2.2.5—that is, the x-axis runs along the horizon-
tal roadbed, and the y-axis passes through (0, a), which
is the lowest point on one cable over the span of the
bridge, coinciding with the interval [�L�2, L�2]. In the
case of a suspension bridge, the usual assumption is that
the vertical load in (10) is only a uniform roadbed dis-
tributed along the horizontal axis. In other words, it is
assumed that the weight of all cables is negligible in
comparison to the weight of the roadbed and that the
weight per unit length of the roadbed (say, pounds per
horizontal foot) is a constant �. Use this information to
set up and solve an appropriate initial-value problem
from which the shape (a curve with equation y � �(x))
of each of the two cables in a suspension bridge is
determined. Express your solution of the IVP in terms
of the sag h and span L. See Figure 2.2.5.

dy

dx
�

W

T1

family of solutions of the differential equation

. Experiment with different numbers

of level curves as well as various rectangular
regions defined by a � x � b, c � y � d.

(b) On separate coordinate axes plot the graphs of the
particular solutions corresponding to the initial
conditions: y(0) � �1; y(0) � 2; y(�1) � 4;
y(�1) � �3.

51. (a) Find an implicit solution of the IVP

(b) Use part (a) to find an explicit solution y � �(x) of
the IVP.

(c) Consider your answer to part (b) as a function only.
Use a graphing utility or a CAS to graph this func-
tion, and then use the graph to estimate its domain.

(d) With the aid of a root-finding application of a CAS,
determine the approximate largest interval I of defi-
nition of the solution y � �(x) in part (b). Use a
graphing utility or a CAS to graph the solution
curve for the IVP on this interval.

52. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the
family of solutions of the differential equation

. Experiment with different 

numbers of level curves as well as various rectan-
gular regions in the xy-plane until your result
resembles Figure 2.2.6.

(b) On separate coordinate axes, plot the graph of the
implicit solution corresponding to the initial condi-
tion . Use a colored pencil to mark off that
segment of the graph that corresponds to the solu-
tion curve of a solution � that satisfies the initial
condition. With the aid of a root-finding application
of a CAS, determine the approximate largest inter-
val I of definition of the solution �.  [Hint: First find
the points on the curve in part (a) where the tangent
is vertical.]

(c) Repeat part (b) for the initial condition y(0) � �2.

y(0) � 3
2

dy

dx
�

x(1 � x)

y(�2 � y)

(2y � 2) dy � (4x3 � 6x) dx �  0, y(0) � �3.

dy

dx
� �

8x � 5

3y2 � 1

FIGURE 2.2.5 Shape of a cable in Problem 49
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FIGURE 2.2.6 Level curves in Problem 52
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50. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the



2.3 LINEAR EQUATIONS

REVIEW MATERIAL
● Review the definition of linear DEs in (6) and (7) of Section 1.1

INTRODUCTION We continue our quest for solutions of first-order DEs by next examining lin-
ear equations. Linear differential equations are an especially “friendly” family of differential equa-
tions in that, given a linear equation, whether first order or a higher-order kin, there is always a good
possibility that we can find some sort of solution of the equation that we can examine.

A DEFINITION The form of a linear first-order DE was given in (7) of Section 1.1.
This form, the case when n � 1 in (6) of that section, is reproduced here for
convenience.

DEFINITION 2.3.1 Linear Equation

A first-order differential equation of the form

(1)

is said to be a linear equation in the dependent variable y.

When g(x) � 0, the linear equation (1) is said to be homogeneous; otherwise, it
is nonhomogeneous.

STANDARD FORM By dividing both sides of (1) by the lead coefficient a1(x), we
obtain a more useful form, the standard form, of a linear equation:

(2)

We seek a solution of (2) on an interval I for which both coefficient functions P and
f are continuous.

In the discussion that follows we illustrate a property and a procedure and end
up with a formula representing the form that every solution of (2) must have. But
more than the formula, the property and the procedure are important, because these
two concepts carry over to linear equations of higher order.

THE PROPERTY The differential equation (2) has the property that its solution is
the sum of the two solutions: y � yc � yp, where yc is a solution of the associated
homogeneous equation

(3)

and yp is a particular solution of the nonhomogeneous equation (2). To see this,
observe that

d
–––
dx

[yc � yp] � P(x)[yc � yp] � [ � P(x)yc] � [ � P(x)yp] � f (x).

f (x)0

dyc–––
dx

dyp–––
dx

dy

dx
� P(x)y � 0

dy

dx
� P(x)y � f(x).

a1(x)
dy

dx
� a0(x)y � g(x)
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Now the homogeneous equation (3) is also separable. This fact enables us to find yc

by writing (3) as

and integrating. Solving for y gives yc � ce�	P(x)dx. For convenience let us write
yc � cy1(x), where y1 � e�	P(x)dx. The fact that dy1�dx � P(x)y1 � 0 will be used
next to determine yp.

THE PROCEDURE We can now find a particular solution of equation (2) by a pro-
cedure known as variation of parameters. The basic idea here is to find a function
u so that yp � u(x)y1(x) � u(x)e�	P(x)dx is a solution of (2). In other words, our as-
sumption for yp is the same as yc � cy1(x) except that c is replaced by the “variable
parameter” u. Substituting yp � uy1 into (2) gives

so

Separating variables and integrating then gives

.

Since y1(x) � e�	P(x)dx, we see that 1�y1(x) � e	P(x)dx. Therefore

,

and (4)

Hence if (2) has a solution, it must be of form (4). Conversely, it is a straightforward
exercise in differentiation to verify that (4) constitutes a one-parameter family of
solutions of equation (2).

You should not memorize the formula given in (4). However, you should
remember the special term

(5)

because it is used in an equivalent but easier way of solving (2). If equation (4) is
multiplied by (5),

(6)

and then (6) is differentiated,

, (7)

we get . (8)

Dividing the last result by e	P(x)dx gives (2).

e	P(x)dx dy

dx
� P(x)e	P(x)dxy � e	P(x)dx f(x)

d

dx
[e	P(x)dxy] � e	P(x)dxf (x)

e	P(x)dxy � c � � e	P(x)dxf (x) dx,

e∫P(x)dx

y � ce�	P(x)dx � e�	P(x)dx� e	P (x)dxf (x) dx.

ypyc

yp � uy1 � �� f (x)

y1(x)
dx�e�	P(x)dx � e�	P(x)dx � e	P(x)dxf (x) dx

du �
f (x)

y1(x)
dx  and  u � � f (x)

y1(x)
dx

y1
du

dx
� f (x).

� y1 � P(x)uy1 � f (x) oru
dy1–––
dx

du
–––
dx

� f (x)u[ � P(x)y1] � y1
dy1–––
dx

du
–––
dx

Product Rule zero

dy

y
� P(x) dx � 0



METHOD OF SOLUTION The recommended method of solving (2) actually
consists of (6)–(8) worked in reverse order. In other words, if (2) is multiplied by
(5), we get (8). The left-hand side of (8) is recognized as the derivative of the prod-
uct of e	P(x)dx and y. This gets us to (7). We then integrate both sides of (7) to get the
solution (6). Because we can solve (2) by integration after multiplication by e	P(x)dx,
we call this function an integrating factor for the differential equation. For conve-
nience we summarize these results. We again emphasize that you should not mem-
orize formula (4) but work through the following procedure each time.

SOLVING A LINEAR FIRST-ORDER EQUATION

(i) Put a linear equation of form (1) into the standard form (2).

(ii) From the standard form identify P(x) and then find the integrating
factor e	P(x)dx.

(iii) Multiply the standard form of the equation by the integrating factor.
The left-hand side of the resulting equation is automatically the
derivative of the integrating factor and y:

(iv) Integrate both sides of this last equation.

EXAMPLE 1 Solving a Homogeneous Linear DE

Solve .

SOLUTION This linear equation can be solved by separation of variables.
Alternatively, since the equation is already in the standard form (2), we see that 
P(x) � �3, and so the integrating factor is e	(�3)dx � e�3x. We multiply the equation
by this factor and recognize that

Integrating both sides of the last equation gives e�3xy � c. Solving for y gives us the
explicit solution y � ce3x, �� 
 x 
 �.

EXAMPLE 2 Solving a Nonhomogeneous Linear DE

Solve .

SOLUTION The associated homogeneous equation for this DE was solved in
Example 1. Again the equation is already in the standard form (2), and the integrat-
ing factor is still e	(�3)dx � e�3x. This time multiplying the given equation by this
factor gives

Integrating both sides of the last equation gives e�3xy � �2e�3x � c or
y � �2 � ce3x, �� 
 x 
 �.

e�3x dy

dx
� 3e�3xy � 6e�3x,    which is the same as    

d

dx
 [e�3xy] � 6e�3x.

dy

dx
� 3y � 6

e�3x dy

dx
� 3e�3xy � 0    is the same as    

d

dx
 [e�3xy] � 0.

dy

dx
� 3y � 0

d

dx
[e	P(x)dxy] � e	P(x)dx f(x).
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FIGURE 2.3.1 Some solutions of 
y� � 3y � 6

1_1 2 3 4

_2
_1

1

_3

x

y

y =_2

The final solution in Example 2 is the sum of two solutions: y � yc � yp, where
yc � ce3x is the solution of the homogeneous equation in Example 1 and yp � �2 is
a particular solution of the nonhomogeneous equation y� � 3y � 6. You need not
be concerned about whether a linear first-order equation is homogeneous or nonho-
mogeneous; when you follow the solution procedure outlined above, a solution of a
nonhomogeneous equation necessarily turns out to be y � yc � yp. However, the
distinction between solving a homogeneous DE and solving a nonhomogeneous
DE becomes more important in Chapter 4, where we solve linear higher-order
equations.

When a1, a0, and g in (1) are constants, the differential equation is autonomous.
In Example 2 you can verify from the normal form dy�dx � 3(y � 2) that �2 is a
critical point and that it is unstable (a repeller). Thus a solution curve with an
initial point either above or below the graph of the equilibrium solution 
y � �2 pushes away from this horizontal line as x increases. Figure 2.3.1, obtained
with the aid of a graphing utility, shows the graph of y � �2 along with some addi-
tional solution curves.

CONSTANT OF INTEGRATION Notice that in the general discussion and in
Examples 1 and 2 we disregarded a constant of integration in the evaluation of the
indefinite integral in the exponent of e	P(x)dx. If you think about the laws of exponents
and the fact that the integrating factor multiplies both sides of the differential equa-
tion, you should be able to explain why writing 	P(x)dx � c is unnecessary. See
Problem 44 in Exercises 2.3.

GENERAL SOLUTION Suppose again that the functions P and f in (2) are con-
tinuous on a common interval I. In the steps leading to (4) we showed that if (2) has
a solution on I, then it must be of the form given in (4). Conversely, it is a straight-
forward exercise in differentiation to verify that any function of the form given in
(4) is a solution of the differential equation (2) on I. In other words, (4) is a one-
parameter family of solutions of equation (2) and every solution of (2) defined on I
is a member of this family. Therefore we call (4) the general solution of the
differential equation on the interval I. (See the Remarks at the end of Section 1.1.)
Now by writing (2) in the normal form y� � F (x, y), we can identify 
F (x, y) � �P(x)y � f (x) and �F��y � �P(x). From the continuity of P and f on the
interval I we see that F and �F��y are also continuous on I. With Theorem 1.2.1 as
our justification, we conclude that there exists one and only one solution of the
initial-value problem

(9)

defined on some interval I0 containing x0. But when x0 is in I, finding a solution of (9)
is just a matter of finding an appropriate value of c in (4)—that is, to each x0 in I there
corresponds a distinct c. In other words, the interval I0 of existence and uniqueness
in Theorem 1.2.1 for the initial-value problem (9) is the entire interval I.

EXAMPLE 3 General Solution

Solve .

SOLUTION Dividing by x, we get the standard form

. (10)
dy

dx
�

4

x
y � x5ex

x
dy

dx
� 4y � x 6ex

dy

dx
� P(x)y � f(x),  y(x0) � y0



From this form we identify P(x) � �4�x and f (x) � x5ex and further observe that P
and f are continuous on (0, �). Hence the integrating factor is

Here we have used the basic identity . Now we multiply (10) by
x�4 and rewrite

It follows from integration by parts that the general solution defined on the interval
(0, �) is x�4y � xex � ex � c or y � x5ex � x4ex � cx4.

Except in the case in which the lead coefficient is 1, the recasting of equation
(1) into the standard form (2) requires division by a1(x). Values of x for which
a1(x) � 0 are called singular points of the equation. Singular points are poten-
tially troublesome. Specifically, in (2), if P(x) (formed by dividing a0(x) by a1(x))
is discontinuous at a point, the discontinuity may carry over to solutions of the
differential equation.

EXAMPLE 4 General Solution

Find the general solution of .

SOLUTION We write the differential equation in standard form

(11)

and identify P(x) � x�(x2 � 9). Although P is continuous on (��, �3), (�3, 3), and
(3, �), we shall solve the equation on the first and third intervals. On these intervals
the integrating factor is

.

After multiplying the standard form (11) by this factor, we get

.

Integrating both sides of the last equation gives Thus for either

x � 3 or x 
 �3 the general solution of the equation is .

Notice in Example 4 that x � 3 and x � �3 are singular points of the equation
and that every function in the general solution is discontinuous at
these points. On the other hand, x � 0 is a singular point of the differential equation
in Example 3, but the general solution y � x5ex � x4ex � cx4 is noteworthy in that
every function in this one-parameter family is continuous at x � 0 and is defined
on the interval (��, �) and not just on (0, �), as stated in the solution. However,
the family y � x5ex � x4ex � cx4 defined on (��, �) cannot be considered the gen-
eral solution of the DE, since the singular point x � 0 still causes a problem. See
Problem 39 in Exercises 2.3.

y � c�1x2 � 9

y �
c

1x2 � 9

1x2 � 9 y � c.

d

dx 
1x2 � 9 y� � 0

e	x dx/(x2�9) � e
1
2 	2x dx/(x2�9) � e

1
2 ln�x2�9� � 1x2 � 9

dy

dx
�

x

x2 � 9
y � 0

(x 2 � 9)
dy

dx
� xy � 0

x�4 dy

dx
� 4x�5y � xex    as    

d

dx
 [x�4y] � xex.

blogbN � N, N � 0

e�4	dx/x � e�4ln x � eln x�4
� x�4.

we can use ln x instead of ln �x� since x � 0
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EXAMPLE 5 An Initial-Value Problem

Solve .

SOLUTION The equation is in standard form, and P(x) � 1 and f (x) � x are contin-
uous on (��, �). The integrating factor is e	dx � ex, so integrating

gives exy � xex � ex � c. Solving this last equation for y yields the general solution
y � x � 1 � ce�x. But from the initial condition we know that y � 4 when x � 0.
Substituting these values into the general solution implies that c � 5. Hence the
solution of the problem is

y � x � 1 � 5e�x, �� 
 x 
 �. (12)

Figure 2.3.2, obtained with the aid of a graphing utility, shows the graph of (12)
in dark blue, along with the graphs of other representative solutions in the one-
parameter family y � x � 1 � ce�x. In this general solution we identify yc � ce�x

and yp � x � 1. It is interesting to observe that as x increases, the graphs of all mem-
bers of the family are close to the graph of the particular solution yp � x � 1, which
is shown in solid green in Figure 2.3.2. This is because the contribution of yc � ce�x

to the values of a solution becomes negligible for increasing values of x. We say that
yc � ce�x is a transient term, since yc : 0 as x : �. While this behavior is not a
characteristic of all general solutions of linear equations (see Example 2), the notion
of a transient is often important in applied problems.

DISCONTINUOUS COEFFICIENTS In applications the coefficients P(x) and
f (x) in (2) may be piecewise continuous. In the next example f (x) is piecewise con-
tinuous on [0, �) with a single discontinuity, namely, a (finite) jump discontinuity at
x � 1. We solve the problem in two parts corresponding to the two intervals over
which f is defined. It is then possible to piece together the two solutions at x � 1 so
that y(x) is continuous on [0, �).

EXAMPLE 6 An Initial-Value Problem

Solve 

SOLUTION The graph of the discontinuous function f is shown in Figure 2.3.3. We
solve the DE for y(x) first on the interval [0, 1] and then on the interval (1, �). For
0 � x � 1 we have

.

Integrating this last equation and solving for y gives y � 1 � c1e�x. Since y(0) � 0,
we must have c1 � �1, and therefore y � 1 � e�x, 0 � x � 1. Then for x � 1 the
equation

dy

dx
� y � 0

dy

dx
� y � 1  or, equivalently,   

d

dx
 [exy] � ex

dy

dx
� y � f (x), y(0) � 0 where f (x) � �1,

0,

0 � x � 1,

  x � 1.

d

dx
 [exy] � xex

dy

dx
� y � x, y(0) � 4

x

y

4_4
_4

_2

2

4

_2 2

c=0

c>0

c<0

FIGURE 2.3.2 Some solutions of 
y� � y � x

FIGURE 2.3.3 Discontinuous f(x)

x

y



leads to y � c2e�x. Hence we can write

By appealing to the definition of continuity at a point, it is possible to determine c2

so that the foregoing function is continuous at x � 1. The requirement that
implies that c2e�1 � 1 � e�1 or c2 � e � 1. As seen in

Figure 2.3.4, the function

(13)

is continuous on (0, �).

It is worthwhile to think about (13) and Figure 2.3.4 a little bit; you are urged to
read and answer Problem 42 in Exercises 2.3.

FUNCTIONS DEFINED BY INTEGRALS At the end of Section 2.2 we dis-
cussed the fact that some simple continuous functions do not possess antiderivatives
that are elementary functions and that integrals of these kinds of functions are called
nonelementary. For example, you may have seen in calculus that and
	sin x2 dx are nonelementary integrals. In applied mathematics some important func-
tions are defined in terms of nonelementary integrals. Two such special functions are
the error function and complementary error function:

. (14)

From the known result * we can write 
Then from it is seen from (14) that the complementary error func-
tion erfc(x) is related to erf(x) by erf(x) � erfc(x) � 1. Because of its importance
in probability, statistics, and applied partial differential equations, the error func-
tion has been extensively tabulated. Note that erf(0) � 0 is one obvious function
value. Values of erf(x) can also be found by using a CAS. 

EXAMPLE 7 The Error Function

Solve the initial-value problem .

SOLUTION Since the equation is already in standard form, we see that the integrat-
ing factor is , so from

. (15)

Applying y(0) � 1 to the last expression then gives c � 1. Hence the solution of the
problem is

The graph of this solution on the interval (��, �), shown in dark blue in Figure 2.3.5
among other members of the family defined in (15), was obtained with the aid of a
computer algebra system.

y � 2ex2 �x

0

e�t2
dt � ex2

 or y � ex2
[1 � 1� erf(x)].

d

dx
 [e�x2

y] � 2e�x2    we get    y � 2ex2 �x

0

e�t2
dt � cex2

e�x2
dx

dy

dx
� 2xy � 2,  y(0) � 1

	�
0 � 	x

0 � 	�
x

(2�1�) 	�
0 e�t2

dt � 1.	�
0 e�t2

dt � 1��2

erf(x) �
2

1�
�x

0
e�t2

dt    and    erfc(x) �
2

1�
��

x
e�t2

dt

	e�x2
dx

y � �1 � e�x,

(e � 1)e�x,

0 � x � 1,

  x � 1

limx:1� y(x) � y(1)

y � �1 � e�x,

c2e�x,

0 � x � 1,

  x � 1.

1 x

y

FIGURE 2.3.4 Graph of function
in (13)

*This result is usually proved in the third semester of calculus.

FIGURE 2.3.5 Some solutions of 
y� � 2xy � 2

x

y

2.3 LINEAR EQUATIONS ● 59



60 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

USE OF COMPUTERS The computer algebra systems Mathematica and Maple
are capable of producing implicit or explicit solutions for some kinds of differential
equations using their dsolve commands.*

REMARKS

(i) In general, a linear DE of any order is said to be homogeneous when 
g(x) � 0 in (6) of Section 1.1. For example, the linear second-order DE 
y� � 2y� � 6y � 0 is homogeneous. As can be seen in this example and in the
special case (3) of this section, the trivial solution y � 0 is always a solution of
a homogeneous linear DE.

(ii) Occasionally, a first-order differential equation is not linear in one variable
but is linear in the other variable. For example, the differential equation

is not linear in the variable y. But its reciprocal

is recognized as linear in the variable x. You should verify that the integrating
factor e	(�1)dy � e�y and integration by parts yield the explicit solution
x � �y2 � 2y � 2 � cey for the second equation. This expression is, then,
an implicit solution of the first equation.

(iii) Mathematicians have adopted as their own certain words from engineer-
ing, which they found appropriately descriptive. The word transient, used
earlier, is one of these terms. In future discussions the words input and output
will occasionally pop up. The function f in (2) is called the input or driving
function; a solution y(x) of the differential equation for a given input is called
the output or response.

(iv) The term special functions mentioned in conjunction with the error func-
tion also applies to the sine integral function and the Fresnel sine integral
introduced in Problems 49 and 50 in Exercises 2.3. “Special Functions” is
actually a well-defined branch of mathematics. More special functions are
studied in Section 6.3.

dx

dy
� x � y2    or    

dx

dy
� x � y2

dy

dx
�

1

x � y2

EXERCISES 2.3 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–24 find the general solution of the given dif-
ferential equation. Give the largest interval I over which the
general solution is defined. Determine whether there are any
transient terms in the general solution.

1. 2.

3. 4. 3
dy

dx
� 12y � 4

dy

dx
� y � e3x

dy

dx
� 2y � 0

dy

dx
� 5y

5. y� � 3x2y � x2 6. y� � 2xy � x3

7. x2y� � xy � 1 8. y� � 2y � x2 � 5

9. 10.

11. 12.

13. x2y� � x(x � 2)y � ex

(1 � x)
dy

dx
� xy � x � x2x

dy

dx
� 4y � x3 � x

x
dy

dx
� 2y � 3x

dy

dx
� y � x2 sin x

*Certain commands have the same spelling, but in Mathematica commands begin with a capital letter
(Dsolve), whereas in Maple the same command begins with a lower case letter (dsolve). When
discussing such common syntax, we compromise and write, for example, dsolve. See the Student
Resource and Solutions Manual for the complete input commands used to solve a linear first-order DE.



14. xy� � (1 � x)y � e�x sin 2x

15. y dx � 4(x � y6) dy � 0

16. y dx � (yey � 2x) dy

17.

18.

19.

20.

21.

22.

23.

24.

In Problems 25–30 solve the given initial-value problem.
Give the largest interval I over which the solution is defined.

25. xy� � y � ex, y(1) � 2

26.

27.

L, R, E, and i0 constants

28.

k, Tm, and T0 constants

29.

30. y� � (tan x)y � cos2x, y(0) � �1

In Problems 31–34 proceed as in Example 6 to solve the
given initial-value problem. Use a graphing utility to graph
the continuous function y(x).

31. where

32. where

f (x) � �1,

�1, 
0 � x � 1

x � 1

dy

dx
� y � f (x), y(0) � 1,

f (x) � �1,

0,

0 � x � 3

x � 3

dy

dx
� 2y � f (x), y(0) � 0,

(x � 1)
dy

dx
� y � ln x, y(1) � 10

dT

dt
� k(T � Tm); T(0) � T0,

L
di

dt
� Ri � E, i(0) � i0,

y
dx

dy
� x � 2y2,  y(1) � 5

(x2 � 1)
dy

dx
� 2y � (x � 1)2

x
dy

dx
� (3x � 1)y � e�3x

dP

dt
� 2tP � P � 4t � 2

dr

d�
� r sec � � cos �

(x � 2)2 dy

dx
� 5 � 8y � 4xy

(x � 1)
dy

dx
� (x � 2)y � 2xe�x

cos2x sin x
dy

dx
� (cos3x)y � 1

cos x
dy

dx
� (sin x)y � 1

33. where

34. where

35. Proceed in a manner analogous to Example 6 to solve the
initial-value problem y� � P(x)y � 4x, y(0) � 3, where

Use a graphing utility to graph the continuous function
y(x).

36. Consider the initial-value problem y� � exy � f (x),
y(0) � 1. Express the solution of the IVP for x � 0 as a
nonelementary integral when f (x) � 1. What is the so-
lution when f (x) � 0? When f (x) � ex?

37. Express the solution of the initial-value problem 
y� � 2xy � 1, y(1) � 1, in terms of erf(x).

Discussion Problems

38. Reread the discussion following Example 2. Construct a
linear first-order differential equation for which all
nonconstant solutions approach the horizontal asymp-
tote y � 4 as x : �.

39. Reread Example 3 and then discuss, with reference
to Theorem 1.2.1, the existence and uniqueness of a
solution of the initial-value problem consisting of 
xy� � 4y � x6ex and the given initial condition.

(a) y(0) � 0 (b) y(0) � y0, y0 � 0

(c) y(x0) � y0, x0 � 0, y0 � 0

40. Reread Example 4 and then find the general solution of
the differential equation on the interval (�3, 3).

41. Reread the discussion following Example 5. Construct a
linear first-order differential equation for which all solu-
tions are asymptotic to the line y � 3x � 5 as x : �.

42. Reread Example 6 and then discuss why it is technically
incorrect to say that the function in (13) is a “solution”
of the IVP on the interval [0, �).

43. (a) Construct a linear first-order differential equation of
the form xy� � a0(x)y � g(x) for which yc � c�x3

and yp � x3. Give an interval on which 
y � x3 � c�x3 is the general solution of the DE.

(b) Give an initial condition y(x0) � y0 for the DE
found in part (a) so that the solution of the IVP 
is y � x3 � 1�x3. Repeat if the solution is 

P(x) � � 2,

�2>x,
 0 � x � 1,

x � 1.

f (x) � �x,

�x, 
0 � x 
 1

x  1

(1 � x2)
dy

dx
� 2xy � f (x), y(0) � 0,

f (x) � �x,

0, 
0 � x 
 1

x  1

dy

dx
� 2xy � f (x), y(0) � 2,
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y � x3 � 2�x3. Give an interval I of definition of
each of these solutions. Graph the solution curves. Is
there an initial-value problem whose solution is
defined on (��, �)?

(c) Is each IVP found in part (b) unique? That is, can
there be more than one IVP for which, say, 
y � x3 � 1�x3, x in some interval I, is the solution?

44. In determining the integrating factor (5), we did not use
a constant of integration in the evaluation of 	P(x) dx.
Explain why using 	P(x) dx � c has no effect on the
solution of (2).

45. Suppose P(x) is continuous on some interval I and a is a
number in I. What can be said about the solution of the
initial-value problem y� � P(x)y � 0, y(a) � 0?

Mathematical Models

46. Radioactive Decay Series The following system
of differential equations is encountered in the study of the
decay of a special type of radioactive series of elements:

where 	1 and 	2 are constants. Discuss how to solve this
system subject to x(0) � x0, y(0) � y0. Carry out your
ideas.

47. Heart Pacemaker A heart pacemaker consists of a
switch, a battery of constant voltage E0, a capacitor with
constant capacitance C, and the heart as a resistor with
constant resistance R. When the switch is closed, the
capacitor charges; when the switch is open, the capacitor
discharges, sending an electrical stimulus to the heart.
During the time the heart is being stimulated, the voltage

dy

dt
� �1x � �2y,

dx

dt
� ��1x

E across the heart satisfies the linear differential equation

Solve the DE subject to E(4) � E0.

Computer Lab Assignments

48. (a) Express the solution of the initial-value problem 
y� � 2xy � �1, , in terms of erfc(x).

(b) Use tables or a CAS to find the value of y(2). Use a
CAS to graph the solution curve for the IVP on
(��, �).

49. (a) The sine integral function is defined by
, where the integrand is 

defined to be 1 at t � 0. Express the solution y(x) of
the initial-value problem x3y� � 2x2y � 10sin x,
y(1) � 0 in terms of Si(x).

(b) Use a CAS to graph the solution curve for the IVP
for x � 0.

(c) Use a CAS to find the value of the absolute maxi-
mum of the solution y(x) for x � 0.

50. (a) The Fresnel sine integral is defined by
. Express the solution y(x)

of the initial-value problem y�� (sin x2)y � 0,
y(0) � 5, in terms of S(x).

(b) Use a CAS to graph the solution curve for the IVP
on (��, �).

(c) It is known that S(x) : as x : � and S(x) : �
as x : �� . What does the solution y(x) approach
as x : �? As x : ��?

(d) Use a CAS to find the values of the absolute
maximum and the absolute minimum of the
solution y(x).

1
2

1
2

S(x) � 	x
0 sin(pt2>2) dt

Si(x) � 	x
0 (sin t>t) dt

y(0) � 1� �2

dE

dt
� �

1

RC
E.

2.4 EXACT EQUATIONS

REVIEW MATERIAL
● Multivariate calculus
● Partial differentiation and partial integration
● Differential of a function of two variables

INTRODUCTION Although the simple first-order equation 

y dx � x dy � 0

is separable, we can solve the equation in an alternative manner by recognizing that the expression
on the left-hand side of the equality is the differential of the function f (x, y) � xy; that is, 

d(xy) � y dx � x dy.

In this section we examine first-order equations in differential form M(x, y) dx � N(x, y) dy � 0. By
applying a simple test to M and N, we can determine whether M(x, y) dx � N(x, y) dy is a differen-
tial of a function f (x, y). If the answer is yes, we can construct f by partial integration.



DIFFERENTIAL OF A FUNCTION OF TWO VARIABLES If z � f (x, y) is a
function of two variables with continuous first partial derivatives in a region R of the
xy-plane, then its differential is

. (1)

In the special case when f (x, y) � c, where c is a constant, then (1) implies

. (2)

In other words, given a one-parameter family of functions f (x, y) � c, we can generate
a first-order differential equation by computing the differential of both sides of the
equality. For example, if x2 � 5xy � y3 � c, then (2) gives the first-order DE

. (3)

A DEFINITION Of course, not every first-order DE written in differential form
M(x, y) dx � N(x, y) dy � 0 corresponds to a differential of f (x, y) � c. So for our
purposes it is more important to turn the foregoing example around; namely, if
we are given a first-order DE such as (3), is there some way we can recognize
that the differential expression (2x � 5y) dx � (�5x � 3y2) dy is the differential
d(x2 � 5xy � y3)? If there is, then an implicit solution of (3) is x2 � 5xy � y3 � c.
We answer this question after the next definition.

DEFINITION 2.4.1 Exact Equation

A differential expression M(x, y) dx � N(x, y) dy is an exact differential in a
region R of the xy-plane if it corresponds to the differential of some function
f (x, y) defined in R. A first-order differential equation of the form

is said to be an exact equation if the expression on the left-hand side is an
exact differential.

For example, x2y3 dx � x3y2 dy � 0 is an exact equation, because its left-hand
side is an exact differential:

.

Notice that if we make the identifications M(x, y) � x2y3 and N(x, y) � x3y2, then
�M��y � 3x2y2 � �N��x. Theorem 2.4.1, given next, shows that the equality of the
partial derivatives �M��y and �N��x is no coincidence.

THEOREM 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial
derivatives in a rectangular region R defined by a 
 x 
 b, c 
 y 
 d. Then a
necessary and sufficient condition that M(x, y) dx � N(x, y) dy be an exact
differential is

. (4)
�M

�y
�

�N

�x

d �1
3 x3 y3� � x2y3 dx � x3y2 dy

M(x, y) dx � N(x, y) dy � 0

(2x � 5y) dx � (�5x � 3y2) dy � 0

�f

�x
dx �

�f

�y
dy � 0

dz �
�f

�x
dx �

�f

�y
dy
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PROOF OF THE NECESSITY For simplicity let us assume that M(x, y) and
N(x, y) have continuous first partial derivatives for all (x, y). Now if the expression
M(x, y) dx � N(x, y) dy is exact, there exists some function f such that for all x in R,

.

Therefore ,

and .

The equality of the mixed partials is a consequence of the continuity of the first par-
tial derivatives of M(x, y) and N(x, y).

The sufficiency part of Theorem 2.4.1 consists of showing that there exists a
function f for which �f ��x � M(x, y) and �f ��y � N(x, y) whenever (4) holds. The
construction of the function f actually reflects a basic procedure for solving exact
equations.

METHOD OF SOLUTION Given an equation in the differential form 
M(x, y) dx � N(x, y) dy � 0, determine whether the equality in (4) holds. If it does,
then there exists a function f for which

.

We can find f by integrating M(x, y) with respect to x while holding y constant:

, (5)

where the arbitrary function g(y) is the “constant” of integration. Now differentiate
(5) with respect to y and assume that �f ��y � N(x, y):

This gives . (6)

Finally, integrate (6) with respect to y and substitute the result in (5). The implicit
solution of the equation is f (x, y) � c.

Some observations are in order. First, it is important to realize that the expres-
sion N(x, y) � (���y) 	 M(x, y) dx in (6) is independent of x, because

.

Second, we could just as well start the foregoing procedure with the assumption that
�f ��y � N(x, y). After integrating N with respect to y and then differentiating that
result, we would find the analogues of (5) and (6) to be, respectively,

.

In either case none of these formulas should be memorized.

f (x, y) � �N(x, y) dy � h(x)    and    h�(x) � M(x, y) �
�

�x
� N(x, y) dy

�

�x 
N(x, y) �
�

�y
�M(x, y) dx � �

�N

�x
�

�

�y �
�

�x
�M(x, y) dx� �

�N

�x
�

�M

�y
� 0

g�(y) � N(x, y) �
�

�y
�M(x, y) dx

�f

�y
�

�

�y
� M(x, y) dx � g�(y) � N(x, y).

f (x, y) � �M(x, y) dx � g(y)

�f

�x
� M(x, y)

�M

�y
�

�

�y �
�f

�x� �
�2 f

�y �x
�

�

�x �
�f

�y� �
�N

�x

M(x, y) �
�f

�x
,    N(x, y) �

�f

�y

M(x, y) dx � N(x, y) dy �
�f

�x
dx �

�f

�y
dy



EXAMPLE 1 Solving an Exact DE

Solve 2xy dx � (x2 � 1) dy � 0.

SOLUTION With M(x, y) � 2xy and N(x, y) � x2 � 1 we have

.

Thus the equation is exact, and so by Theorem 2.4.1 there exists a function f (x, y)
such that

.

From the first of these equations we obtain, after integrating,

.

Taking the partial derivative of the last expression with respect to y and setting the
result equal to N(x, y) gives

. ; N(x, y)

It follows that g�(y) � �1 and g(y) � �y. Hence f (x, y) � x2y � y, so the solution
of the equation in implicit form is x2y � y � c. The explicit form of the solution is
easily seen to be y � c�(1 � x2) and is defined on any interval not containing either
x � 1 or x � �1.

NOTE The solution of the DE in Example 1 is not f (x, y) � x2y � y. Rather, it is
f (x, y) � c; if a constant is used in the integration of g�(y), we can then write the so-
lution as f (x, y) � 0. Note, too, that the equation could be solved by separation of
variables.

EXAMPLE 2 Solving an Exact DE

Solve (e2y � y cos xy) dx � (2xe2y � x cos xy � 2y) dy � 0.

SOLUTION The equation is exact because

.

Hence a function f (x, y) exists for which

.

Now for variety we shall start with the assumption that �f ��y � N(x, y); that is,

.f (x, y) � 2x � e2y dy � x � cos xy dy � 2 � y dy

�f

�y
� 2xe2y � x cos xy � 2y

M(x, y) �
�f

�x
    and   N(x, y) �

�f

�y

�M

�y
� 2e2y � xy sin xy � cos xy �

�N

�x

�f

�y
� x2 � g�(y) � x2 � 1

f (x, y) � x2y � g(y)

�f

�x
� 2xy    and    

�f

�y
� x2 � 1

�M

�y
� 2x �

�N

�x
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Remember, the reason x can come out in front of the symbol 	 is that in the integra-
tion with respect to y, x is treated as an ordinary constant. It follows that

, ;M(x, y)

and so h�(x) � 0 or h(x) � c. Hence a family of solutions is

xe2y � sin xy � y2 � c � 0.

EXAMPLE 3 An Initial-Value Problem

Solve  .

SOLUTION By writing the differential equation in the form

(cos x sin x � xy2) dx � y(1 � x2) dy � 0,

we recognize that the equation is exact because

.

Now

The last equation implies that h�(x) � cos x sin x. Integrating gives

.

Thus , (7)

where 2c1 has been replaced by c. The initial condition y � 2 when x � 0 demands
that 4(1) � cos2 (0) � c, and so c � 3. An implicit solution of the problem is then
y2(1 � x2) � cos2 x � 3.

The solution curve of the IVP is the curve drawn in dark blue in Figure 2.4.1;
it is part of an interesting family of curves. The graphs of the members of the one-
parameter family of solutions given in (7) can be obtained in several ways, two of
which are using software to graph level curves (as discussed in Section 2.2) and
using a graphing utility to carefully graph the explicit functions obtained for var-
ious values of c by solving y2 � (c � cos2 x)�(1 � x2) for y.

INTEGRATING FACTORS Recall from Section 2.3 that the left-hand side of
the linear equation y� � P(x)y � f (x) can be transformed into a derivative when
we multiply the equation by an integrating factor. The same basic idea sometimes
works for a nonexact differential equation M(x, y) dx � N(x, y) dy � 0. That is, it is

y2

2
 (1 � x2) �

1

2
 cos2 x � c1    or    y2(1 � x2) � cos2 x � c

h(x) � �� (cos x)(�sin x dx) � �
1

2
 cos2 x

�f

�x
� �xy2 � h�(x) � cos x sin x � xy2.

f(x, y) �
y2

2
 (1 � x2) � h(x)

�f

�y
� y(1 � x2)

�M

�y
� �2xy �

�N

�x

dy

dx
�

xy2 � cos x sin x

y(1 � x2)
, y(0) � 2

�f

�x
� e2y � y cos xy � h�(x) � e2y � y cos xy

f(x, y) � xe2y � sin xy � y2 � h(x)

x

y

FIGURE 2.4.1 Some graphs
of members of the family 
y2(1 � x2) � cos2x � c



sometimes possible to find an integrating factor 
(x, y) so that after multiplying, the
left-hand side of


(x, y)M(x, y) dx � 
(x, y)N(x, y) dy � 0 (8)

is an exact differential. In an attempt to find 
, we turn to the criterion (4) for exact-
ness. Equation (8) is exact if and only if (
M)y � (
N )x, where the subscripts
denote partial derivatives. By the Product Rule of differentiation the last equation is
the same as 
My � 
yM � 
Nx � 
xN or


xN � 
yM � (My � Nx)
. (9)

Although M, N, My, and Nx are known functions of x and y, the difficulty here in
determining the unknown 
(x, y) from (9) is that we must solve a partial differential
equation. Since we are not prepared to do that, we make a simplifying assumption.
Suppose 
 is a function of one variable; for example, say that 
 depends only on x. In
this case, 
x � d
�dx and 
y � 0, so (9) can be written as

. (10)

We are still at an impasse if the quotient (My � Nx)�N depends on both x and y.
However, if after all obvious algebraic simplifications are made, the quotient
(My � Nx)�N turns out to depend solely on the variable x, then (10) is a first-order
ordinary differential equation. We can finally determine 
 because (10) is separa-
ble as well as linear. It follows from either Section 2.2 or Section 2.3 that 

(x) � e	(( � )/N )dx. In like manner, it follows from (9) that if 
 depends only on
the variable y, then

. (11)

In this case, if (Nx � My)�M is a function of y only, then we can solve (11) for 
.
We summarize the results for the differential equation

M(x, y) dx � N(x, y) dy � 0. (12)

• If (My � Nx)�N is a function of x alone, then an integrating factor for (12) is

. (13)

• If (Nx � My)�M is a function of y alone, then an integrating factor for (12) is

. (14)

EXAMPLE 4 A Nonexact DE Made Exact

The nonlinear first-order differential equation

xy dx � (2x2 � 3y2 � 20) dy � 0

is not exact. With the identifications M � xy, N � 2x2 � 3y2 � 20, we find the partial
derivatives My � x and Nx � 4x. The first quotient from (13) gets us nowhere, since

depends on x and y. However, (14) yields a quotient that depends only on y:

.
Nx � My

M
�

4x � x

xy
�

3x

xy
�

3

y

My � Nx

N
�

x � 4x

2x2 � 3y2 � 20
�

�3x

2x2 � 3y2 � 20

�(y) � e
�Nx�My

M
dy

�(x) � e
�My�Nx

N
dx

d�

dy
�

Nx � My

M
�

NxMy

d�

dx
�

My � Nx

N
�
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The integrating factor is then e	3dy/y � e3lny � eln � y3. After we multiply the given
DE by 
(y) � y3, the resulting equation is

xy4 dx � (2x2y3 � 3y5 � 20y3) dy � 0.

You should verify that the last equation is now exact as well as show, using the
method of this section, that a family of solutions is .

REMARKS

(i) When testing an equation for exactness, make sure it is of the precise
form M(x, y) dx � N(x, y) dy � 0. Sometimes a differential equation 
is written G(x, y) dx � H(x, y) dy. In this case, first rewrite it as 
G(x, y) dx � H(x, y) dy � 0 and then identify M(x, y) � G(x, y) and 
N(x, y) � �H(x, y) before using (4).

(ii) In some texts on differential equations the study of exact equations
precedes that of linear DEs. Then the method for finding integrating factors
just discussed can be used to derive an integrating factor for 
y� � P(x)y � f (x). By rewriting the last equation in the differential form
(P(x)y � f (x)) dx � dy � 0, we see that

.

From (13) we arrive at the already familiar integrating factor e	P(x)dx, used in
Section 2.3.

My � Nx

N
� P(x)

1
2 x2y4 � 1

2 y6 � 5y4 � c

y3

EXERCISES 2.4 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–20 determine whether the given differential
equation is exact. If it is exact, solve it.

1. (2x � 1) dx � (3y � 7) dy � 0

2. (2x � y) dx � (x � 6y) dy � 0

3. (5x � 4y) dx � (4x � 8y3) dy � 0

4. (sin y � y sin x) dx � (cos x � x cos y � y) dy � 0

5. (2xy2 � 3) dx � (2x2y � 4) dy � 0

6.

7. (x2 � y2) dx � (x2 � 2xy) dy � 0

8.

9. (x � y3 � y2 sin x) dx � (3xy2 � 2y cos x) dy

10. (x3 � y3) dx � 3xy2 dy � 0

11. (y ln y � e�xy) dx � �1

y
� x ln y� dy � 0

�1 � ln x �
y

x� dx � (1 � ln x) dy

�2y �
1

x
� cos 3x� dy

dx
�

y

x2 � 4x3 � 3y sin 3x � 0

12. (3x2y � ey) dx � (x3 � xey � 2y) dy � 0

13.

14.

15.

16. (5y � 2x)y� � 2y � 0

17. (tan x � sin x sin y) dx � cos x cos y dy � 0

18.

19. (4t3y � 15t2 � y) dt � (t4 � 3y2 � t) dy � 0

20. �1

t
�

1

t 2 �
y

t 2 � y2� dt � �yey �
t

t 2 � y2� dy � 0

� (x � sin2 x � 4xyexy2
) dy

(2y sin x cos x � y � 2y2exy2
) dx

�x2y3 �
1

1 � 9x2� dx

dy
� x3y2 � 0

�1 �
3

y
� x� dy

dx
� y �

3

x
� 1

x
dy

dx
� 2xex � y � 6x2



In Problems 21–26 solve the given initial-value problem.

21. (x � y)2 dx � (2xy � x2 � 1) dy � 0, y(1) � 1

22. (ex � y) dx � (2 � x � yey) dy � 0, y(0) � 1

23. (4y � 2t � 5) dt � (6y � 4t � 1) dy � 0, y(�1) � 2

24.

25. (y2 cos x � 3x2y � 2x) dx
� (2y sin x � x3 � ln y) dy � 0, y(0) � e

26. ,

In Problems 27 and 28 find the value of k so that the given
differential equation is exact.

27. (y3 � kxy4 � 2x) dx � (3xy2 � 20x2y3) dy � 0

28. (6xy3 � cos y) dx � (2kx2y2 � x sin y) dy � 0

In Problems 29 and 30 verify that the given differential equa-
tion is not exact. Multiply the given differential equation
by the indicated integrating factor 
(x, y) and verify that the
new equation is exact. Solve.

29. (�xy sin x � 2y cos x) dx � 2x cos x dy � 0;

(x, y) � xy

30. (x2 � 2xy � y2) dx � (y2 � 2xy � x2) dy � 0;

(x, y) � (x � y)�2

In Problems 31–36 solve the given differential equation by
finding, as in Example 4, an appropriate integrating factor.

31. (2y2 � 3x) dx � 2xy dy � 0

32. y(x � y � 1) dx � (x � 2y) dy � 0

33. 6xy dx � (4y � 9x2) dy � 0

34.

35. (10 � 6y � e�3x) dx � 2 dy � 0

36. (y2 � xy3) dx � (5y2 � xy � y3 sin y) dy � 0

In Problems 37 and 38 solve the given initial-value problem
by finding, as in Example 4, an appropriate integrating factor.

37. x dx � (x2y � 4y) dy � 0, y(4) � 0

38. (x2 � y2 � 5) dx � (y � xy) dy, y(0) � 1

39. (a) Show that a one-parameter family of solutions of
the equation

(4xy � 3x2) dx � (2y � 2x2) dy � 0

is x3 � 2x2y � y2 � c.

cos x dx � �1 �
2

y� sin x dy � 0

y(0) � 1� 1

1 � y2 � cos x � 2xy� dy

dx
� y(y � sin x)

�3y2 � t 2

y5 � dy

dt
�

t

2y4 � 0, y(1) � 1

(b) Show that the initial conditions y(0) � �2 and 
y(1) � 1 determine the same implicit solution.

(c) Find explicit solutions y1(x) and y2(x) of the dif-
ferential equation in part (a) such that y1(0) � �2
and y2(1) � 1. Use a graphing utility to graph y1(x)
and y2(x).

Discussion Problems

40. Consider the concept of an integrating factor used in
Problems 29–38. Are the two equations M dx � N dy � 0
and 
M dx � 
N dy � 0 necessarily equivalent in the
sense that a solution of one is also a solution of the other?
Discuss.

41. Reread Example 3 and then discuss why we can con-
clude that the interval of definition of the explicit
solution of the IVP (the blue curve in Figure 2.4.1) is
(�1, 1).

42. Discuss how the functions M(x, y) and N(x, y) can be
found so that each differential equation is exact. Carry
out your ideas.

(a)

(b)

43. Differential equations are sometimes solved by
having a clever idea. Here is a little exercise in
cleverness: Although the differential equation 
(x � ) dx � y dy � 0 is not exact, show how
the rearrangement (x dx � y dy) � dx and
the observation d(x2 � y2) � x dx � y dy can lead to
a solution.

44. True or False: Every separable first-order equation
dy�dx � g(x)h(y) is exact.

Mathematical Model

45. Falling Chain A portion of a uniform chain of length
8 ft is loosely coiled around a peg at the edge of a high
horizontal platform, and the remaining portion of the
chain hangs at rest over the edge of the platform. See
Figure 2.4.2. Suppose that the length of the overhang-
ing chain is 3 ft, that the chain weighs 2 lb/ft, and that
the positive direction is downward. Starting at t � 0
seconds, the weight of the overhanging portion causes
the chain on the table to uncoil smoothly and to fall to
the floor. If x(t) denotes the length of the chain over-
hanging the table at time t � 0, then v � dx�dt is its
velocity. When all resistive forces are ignored, it can
be shown that a mathematical model relating v to x is

1
2

�1x2 � y2
1x2 � y2

�x�1/2y1/2 �
x

x2 � y� dx � N(x, y) dy � 0

M(x, y) dx � �xexy � 2xy �
1

x� dy � 0
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given by

.

(a) Rewrite this model in differential form. Proceed as
in Problems 31–36 and solve the DE for v in terms
of x by finding an appropriate integrating factor.
Find an explicit solution v(x).

(b) Determine the velocity with which the chain leaves
the platform.

xv
dv

dx
� v2 � 32x

Computer Lab Assignments

46. Streamlines

(a) The solution of the differential equation

is a family of curves that can be interpreted as
streamlines of a fluid flow around a circular object
whose boundary is described by the equation
x2 � y2 � 1. Solve this DE and note the solution
f (x, y) � c for c � 0.

(b) Use a CAS to plot the streamlines for
c � 0, �0.2, �0.4, �0.6, and �0.8 in three
different ways. First, use the contourplot of a CAS.
Second, solve for x in terms of the variable y. Plot
the resulting two functions of y for the given values
of c, and then combine the graphs. Third, use the
CAS to solve a cubic equation for y in terms of x.

2xy

(x2 � y2)2 dx � 
1 �
y2 � x2

(x2 � y2)2 � dy � 0

SUBSTITUTIONS Often the first step in solving a differential equation consists
of transforming it into another differential equation by means of a substitution.
For example, suppose we wish to transform the first-order differential equation
dy�dx � f (x, y) by the substitution y � g(x, u), where u is regarded as a function of
the variable x. If g possesses first-partial derivatives, then the Chain Rule

.

If we replace dy�dx by the foregoing derivative and replace y in f (x, y) by g (x, u), then

the DE dy�dx � f (x, y) becomes gx(x, u) � gu(x, u) � f (x, g(x, u)), which, solved

for du�dx, has the form � F(x, u). If we can determine a solution u � �(x) of this 

last equation, then a solution of the original differential equation is y � g(x, �(x)).
In the discussion that follows we examine three different kinds of first-order

differential equations that are solvable by means of a substitution.

du

dx

du

dx

dy

dx
�

�g

�x

dx

dx
�

�g

�u

du

dx
    gives    

dy

dx
� gx(x, u) � gu(x, u)

du

dx

x(t)

platform edge

peg

FIGURE 2.4.2 Uncoiling chain in Problem 45

2.5 SOLUTIONS BY SUBSTITUTIONS

REVIEW MATERIAL
● Techniques of integration
● Separation of variables
● Solution of linear DEs

INTRODUCTION We usually solve a differential equation by recognizing it as a certain kind of
equation (say, separable, linear, or exact) and then carrying out a procedure, consisting of equation-
specific mathematical steps, that yields a solution of the equation. But it is not uncommon to be
stumped by a differential equation because it does not fall into one of the classes of equations that
we know how to solve. The procedures that are discussed in this section may be helpful in this
situation.



HOMOGENEOUS EQUATIONS If a function f possesses the property 
f (tx, ty) � t� f (x, y) for some real number �, then f is said to be a homogeneous
function of degree �. For example, f (x, y) � x3 � y3 is a homogeneous function of
degree 3, since

f (tx, ty) � (tx)3 � (ty)3 � t3(x3 � y3) � t3f (x, y),

whereas f (x, y) � x3 � y3 � 1 is not homogeneous. A first-order DE in differential
form

M(x, y) dx � N(x, y) dy � 0 (1)

is said to be homogeneous* if both coefficient functions M and N are homogeneous
equations of the same degree. In other words, (1) is homogeneous if

.

In addition, if M and N are homogeneous functions of degree �, we can also write

, (2)

and

. (3)

See Problem 31 in Exercises 2.5. Properties (2) and (3) suggest the substitutions that can
be used to solve a homogeneous differential equation. Specifically, either of the substi-
tutions y � ux or x � vy, where u and v are new dependent variables, will reduce a
homogeneous equation to a separable first-order differential equation. To show this, ob-
serve that as a consequence of (2) a homogeneous equation M(x, y) dx � N(x, y) dy � 0
can be rewritten as

,

where u � y�x or y � ux. By substituting the differential dy � u dx � x du into the
last equation and gathering terms, we obtain a separable DE in the variables u and x:

or .

At this point we offer the same advice as in the preceding sections: Do not memorize
anything here (especially the last formula); rather, work through the procedure each
time. The proof that the substitutions x � vy and dx � v dy � y dv also lead to a
separable equation follows in an analogous manner from (3).

EXAMPLE 1 Solving a Homogeneous DE

Solve (x2 � y2) dx � (x2 � xy) dy � 0.

SOLUTION Inspection of M(x, y) � x2 � y2 and N(x, y) � x2 � xy shows that
these coefficients are homogeneous functions of degree 2. If we let y � ux, then

dx

x
�

N(1, u) du

M(1, u) � uN(1, u)
� 0

 [M(1, u) � uN(1, u)] dx � xN(1, u) du � 0

M(1, u) dx � N(1, u)[u dx � x du] � 0

x�M(1, u) dx � x�N(1, u) dy � 0    or    M(1, u) dx � N(1, u) dy � 0

M(x, y) � y�M(v, 1)    and    N(x, y) � y�N(v, 1),  where v � x>y

M(x, y) � x�M(1, u)    and    N(x, y) � x�N(1, u),  where u � y>x

M(tx, ty) � t�M(x, y)    and    N(tx, ty) � t�N(x, y)

*Here the word homogeneous does not mean the same as it did in Section 2.3. Recall that a linear first-
order equation a1(x)y� � a0(x)y � g(x) is homogeneous when g(x) � 0.
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dy � u dx � x du, so after substituting, the given equation becomes

.

After integration the last line gives

.

Using the properties of logarithms, we can write the preceding solution as

.

Although either of the indicated substitutions can be used for every homoge-
neous differential equation, in practice we try x � vy whenever the function M(x, y)
is simpler than N(x, y). Also it could happen that after using one substitution, we may
encounter integrals that are difficult or impossible to evaluate in closed form; switch-
ing substitutions may result in an easier problem.

BERNOULLI’S EQUATION The differential equation

, (4)

where n is any real number, is called Bernoulli’s equation. Note that for n � 0 and
n � 1, equation (4) is linear. For n � 0 and n � 1 the substitution u � y1�n reduces
any equation of form (4) to a linear equation.

EXAMPLE 2 Solving a Bernoulli DE

Solve 

SOLUTION We first rewrite the equation as

by dividing by x. With n � 2 we have u � y�1 or y � u�1. We then substitute

into the given equation and simplify. The result is

.
du

dx
�

1

x
u � �x

dy

dx
�

dy

du

du

dx
� �u�2 du

dx

dy

dx
�

1

x
y � xy2

x
dy

dx
� y � x2y2.

dy

dx
� P(x)y � f (x)yn

ln� (x � y)2

cx � �
y

x
    or    (x � y)2 � cxey/x

�
y

x
� 2 ln� 1 �

y

x � � ln� x � � ln�c �

�u � 2 ln� 1 � u � � ln� x � � ln� c �


�1 �
2

1 � u� du �
dx

x
� 0

1 � u

1 � u
du �

dx

x
� 0

x2 (1 � u) dx � x3(1 � u) du � 0

 (x2 � u2x2) dx � (x2 � ux2)[u dx � x du] � 0

; long division

; resubstituting u � y�x

; Chain Rule



The integrating factor for this linear equation on, say, (0, �) is

.

Integrating

gives x�1u � �x � c or u � �x2 � cx. Since u � y�1, we have y � 1�u, so a solu-
tion of the given equation is y � 1�(�x2 � cx).

Note that we have not obtained the general solution of the original nonlinear dif-
ferential equation in Example 2, since y � 0 is a singular solution of the equation.

REDUCTION TO SEPARATION OF VARIABLES A differential equation of the
form

(5)

can always be reduced to an equation with separable variables by means of the sub-
stitution u � Ax � By � C, B � 0. Example 3 illustrates the technique.

EXAMPLE 3 An Initial-Value Problem

Solve  

SOLUTION If we let u � �2x � y, then du�dx � �2 � dy�dx, so the differential
equation is transformed into

.

The last equation is separable. Using partial fractions

and then integrating yields

.

Solving the last equation for u and then resubstituting gives the solution

. (6)

Finally, applying the initial condition y(0) � 0 to the last equation in (6) gives 
c � �1. Figure 2.5.1, obtained with the aid of a graphing utility, shows the graph of

the particular solution in dark blue, along with the graphs of

some other members of the family of solutions (6).

y � 2x �
3(1 � e6x)

1 � e6x

u �
3(1 � ce6x)

1 � ce6x     or    y � 2x �
3(1 � ce6x)

1 � ce6x

1

6
 ln� u � 3

u � 3 � � x � c1    or    
u � 3

u � 3
� e6x�6c1 � ce6x

du

(u � 3)(u � 3)
� dx    or    

1

6 

1

u � 3
�

1

u � 3� du � dx

du

dx
� 2 � u2 � 7    or    

du

dx
� u2 � 9

dy

dx
� (�2x � y)2 � 7,  y(0) � 0.

dy

dx
� f(Ax � By � C)

d

dx
 [x�1u] � �1

e�	dx/x � e�ln x � eln x�1
� x�1

; replace by ce6c1

x

y

FIGURE 2.5.1 Some solutions of 
y� � (�2x � y)2 � 7
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EXERCISES 2.5 Answers to selected odd-numbered problems begin on page ANS-2.

Each DE in Problems 1–14 is homogeneous.

In Problems 1–10 solve the given differential equation by
using an appropriate substitution.

1. (x � y) dx � x dy � 0 2. (x � y) dx � x dy � 0

3. x dx � (y � 2x) dy � 0 4. y dx � 2(x � y) dy 

5. (y2 � yx) dx � x2 dy � 0

6. (y2 � yx) dx � x2 dy � 0

7.

8.

9.

10.

In Problems 11–14 solve the given initial-value problem.

11.

12.

13. (x � yey/x) dx � xey/x dy � 0, y(1) � 0

14. y dx � x(ln x � ln y � 1) dy � 0, y(1) � e

Each DE in Problems 15–22 is a Bernoulli equation.

In Problems 15–20 solve the given differential equation by
using an appropriate substitution.

15. 16.

17. 18.

19. 20.

In Problems 21 and 22 solve the given initial-value problem.

21.

22. y1/2 dy

dx
� y3/2 � 1, y(0) � 4

x2 dy

dx
� 2xy � 3y4, y(1) � 1

2

3(1 � t2)
dy

dt
� 2ty( y3 � 1)t2 dy

dt
� y2 � ty

x
dy

dx
� (1 � x)y � xy2dy

dx
� y(xy3 � 1)

dy

dx
� y � exy2x

dy

dx
� y �

1

y2

(x2 � 2y2)
dx

dy
� xy, y(�1) � 1

xy2 dy

dx
� y3 � x3, y(1) � 2

x
dy

dx
� y � 1x2 � y2, x � 0

�y dx � (x � 1xy) dy � 0

dy

dx
�

x � 3y

3x � y

dy

dx
�

y � x

y � x

Each DE in Problems 23–30 is of the form given in (5).

In Problems 23–28 solve the given differential equation by
using an appropriate substitution.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30 solve the given initial-value problem.

29.

30.

Discussion Problems

31. Explain why it is always possible to express any homoge-
neous differential equation M(x, y) dx � N(x, y) dy � 0 in
the form

.

You might start by proving that

.

32. Put the homogeneous differential equation

(5x2 � 2y2) dx � xy dy � 0

into the form given in Problem 31.

33. (a) Determine two singular solutions of the DE in
Problem 10.

(b) If the initial condition y(5) � 0 is as prescribed in
Problem 10, then what is the largest interval I over
which the solution is defined? Use a graphing util-
ity to graph the solution curve for the IVP.

34. In Example 3 the solution y(x) becomes unbounded as
x : ��. Nevertheless, y(x) is asymptotic to a curve as
x : �� and to a different curve as x : �. What are the
equations of these curves?

35. The differential equation dy�dx � P(x) � Q(x)y � R(x)y2

is known as Riccati’s equation.

(a) A Riccati equation can be solved by a succession
of two substitutions provided that we know a

M(x, y) � xaM(1, y>x)    and    N(x, y) � xaN(1, y>x)

dy

dx
� F �y

x�

dy

dx
�

3x � 2y

3x � 2y � 2
, y(�1) � �1

dy

dx
� cos(x � y), y(0) � �>4

dy

dx
� 1 � ey�x�5dy

dx
� 2 � 1y � 2x � 3

dy

dx
� sin(x � y)

dy

dx
� tan2(x � y)

dy

dx
�

1 � x � y

x � y

dy

dx
� (x � y � 1)2



particular solution y1 of the equation. Show that the
substitution y � y1 � u reduces Riccati’s equation
to a Bernoulli equation (4) with n � 2. The
Bernoulli equation can then be reduced to a linear
equation by the substitution w � u�1.

(b) Find a one-parameter family of solutions for the
differential equation

where y1 � 2�x is a known solution of the equation.

36. Determine an appropriate substitution to solve

xy� � y ln(xy).

Mathematical Models

37. Falling Chain In Problem 45 in Exercises 2.4 we saw
that a mathematical model for the velocity v of a chain

dy

dx
� �

4

x2 �
1

x
y � y2

slipping off the edge of a high horizontal platform is

.

In that problem you were asked to solve the DE by con-
verting it into an exact equation using an integrating fac-
tor. This time solve the DE using the fact that it is a
Bernoulli equation.

38. Population Growth In the study of population dy-
namics one of the most famous models for a growing
but bounded population is the logistic equation

,

where a and b are positive constants. Although we
will come back to this equation and solve it by an
alternative method in Section 3.2, solve the DE this first
time using the fact that it is a Bernoulli equation.

dP

dt
� P(a � bP)

xv
dv

dx
� v2 � 32x

2.6 A NUMERICAL METHOD

INTRODUCTION A first-order differential equation dy�dx � f (x, y) is a source of information.
We started this chapter by observing that we could garner qualitative information from a first-order
DE about its solutions even before we attempted to solve the equation. Then in Sections 2.2–2.5 we
examined first-order DEs analytically—that is, we developed some procedures for obtaining explicit
and implicit solutions. But a differential equation can a possess a solution yet we may not be able to
obtain it analytically. So to round out the picture of the different types of analyses of differential
equations, we conclude this chapter with a method by which we can “solve” the differential equa-
tion numerically—this means that the DE is used as the cornerstone of an algorithm for approximat-
ing the unknown solution.

In this section we are going to develop only the simplest of numerical methods—a method that
utilizes the idea that a tangent line can be used to approximate the values of a function in a small
neighborhood of the point of tangency. A more extensive treatment of numerical methods for ordi-
nary differential equations is given in Chapter 9.

USING THE TANGENT LINE Let us assume that the first-order initial-value
problem

(1)

possesses a solution. One way of approximating this solution is to use tangent lines.
For example, let y(x) denote the unknown solution of the first-order initial-value
problem The nonlinear differential equation in
this IVP cannot be solved directly by any of the methods considered in Sections 2.2,
2.4, and 2.5; nevertheless, we can still find approximate numerical values of the
unknown y(x). Specifically, suppose we wish to know the value of y(2.5). The IVP
has a solution, and as the flow of the direction field of the DE in Figure 2.6.1(a) sug-
gests, a solution curve must have a shape similar to the curve shown in blue.

The direction field in Figure 2.6.1(a) was generated with lineal elements passing
through points in a grid with integer coordinates. As the solution curve passes

y� � 0.11y � 0.4x2, y(2) � 4.

y� � f (x, y), y(x0) � y0
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through the initial point (2, 4), the lineal element at this point is a tangent line with
slope given by As is apparent in Figure 2.6.1(a)
and the “zoom in” in Figure 2.6.1(b), when x is close to 2, the points on the solution
curve are close to the points on the tangent line (the lineal element). Using the point
(2, 4), the slope f (2, 4) � 1.8, and the point-slope form of a line, we find that an equa-
tion of the tangent line is y � L(x), where L(x) � 1.8x � 0.4. This last equation,
called a linearization of y(x) at x � 2, can be used to approximate values of y(x)
within a small neighborhood of x � 2. If y1 � L(x1) denotes the y-coordinate on the
tangent line and y(x1) is the y-coordinate on the solution curve corresponding to an
x-coordinate x1 that is close to x � 2, then y(x1)  y1. If we choose, say, x1 � 2.1,
then y1 � L(2.1) � 1.8(2.1) � 0.4 � 4.18, so y(2.1)  4.18.

f (2, 4) � 0.114 � 0.4(2)2 � 1.8.

2

(2, 4) slope 
m = 1.8

x

y

2

4

_2

(a) direction field for y  0 (b) lineal element
at (2, 4)

e
solution
curv

FIGURE 2.6.1 Magnification of a neighborhood about the point (2, 4)
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y
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(x0, y0)
(x1, y1)

h

(x1, y(x1))

slope = f(x0, y0)

error

FIGURE 2.6.2 Approximating y(x1)
using a tangent line

EULER’S METHOD To generalize the procedure just illustrated, we use the lin-
earization of the unknown solution y(x) of (1) at x � x0:

. (2)

The graph of this linearization is a straight line tangent to the graph of y � y(x) at
the point (x0, y0). We now let h be a positive increment of the x-axis, as shown in
Figure 2.6.2. Then by replacing x by x1 � x0 � h in (2), we get

,

where y1 � L(x1). The point (x1, y1) on the tangent line is an approximation to the
point (x1, y(x1)) on the solution curve. Of course, the accuracy of the approximation
L(x1)  y(x1) or y1  y(x1) depends heavily on the size of the increment h. Usually,
we must choose this step size to be “reasonably small.” We now repeat the process
using a second “tangent line” at (x1, y1).* By identifying the new starting point
as (x1, y1) with (x0, y0) in the above discussion, we obtain an approximation 
y2  y(x2) corresponding to two steps of length h from x0, that is, x2 � x1 � h �
x0 � 2h, and

.

Continuing in this manner, we see that y1, y2, y3, . . . , can be defined recursively by
the general formula

, (3)

where xn � x0 � nh, n � 0, 1, 2, . . . . This procedure of using successive “tangent
lines” is called Euler’s method.

yn�1 � yn � hf (xn, yn)

y(x2) � y(x0 � 2h) � y(x1 � h)  y2 � y1 � hf (x1, y1)

L(x1) � y0 � f (x0, y0)(x0 � h � x0)    or    y1 � y0 � hf(x1, y1)

L(x) � y0 � f (x0, y0)(x � x0)

*This is not an actual tangent line, since (x1, y1) lies on the first tangent and not on the solution curve.



EXAMPLE 1 Euler’s Method

Consider the initial-value problem Use Euler’s
method to obtain an approximation of y(2.5) using first h � 0.1 and then h � 0.05.

SOLUTION With the identification (3) becomes

.

Then for h � 0.1, x0 � 2, y0 � 4, and n � 0 we find

,

which, as we have already seen, is an estimate to the value of y(2.1). However, if we
use the smaller step size h � 0.05, it takes two steps to reach x � 2.1. From

we have y1  y(2.05) and y2  y(2.1). The remainder of the calculations were
carried out by using software. The results are summarized in Tables 2.1 and 2.2,
where each entry has been rounded to four decimal places. We see in Tables 2.1 and
2.2 that it takes five steps with h � 0.1 and 10 steps with h � 0.05, respectively, to
get to x � 2.5. Intuitively, we would expect that y10 � 5.0997 corresponding to
h � 0.05 is the better approximation of y(2.5) than the value y5 � 5.0768 corre-
sponding to h � 0.1.

In Example 2 we apply Euler’s method to a differential equation for which we
have already found a solution. We do this to compare the values of the approxima-
tions yn at each step with the true or actual values of the solution y(xn) of the initial-
value problem.

EXAMPLE 2 Comparison of Approximate and Actual Values

Consider the initial-value problem y� � 0.2xy, y(1) � 1. Use Euler’s method to
obtain an approximation of y(1.5) using first h � 0.1 and then h � 0.05.

SOLUTION With the identification f (x, y) � 0.2xy, (3) becomes

where x0 � 1 and y0 � 1. Again with the aid of computer software we obtain the
values in Tables 2.3 and 2.4.

yn�1 � yn � h(0.2xn yn)

y2 � 4.09 � 0.05(0.114.09 � 0.4(2.05)2) � 4.18416187

y1 � 4 � 0.05(0.114 � 0.4(2)2) � 4.09

y1 � y0 � h(0.11y0 � 0.4x0
2) � 4 � 0.1(0.114 � 0.4(2)2) � 4.18

yn�1 � yn � h(0.11yn � 0.4xn
2)

f (x, y) � 0.11y � 0.4x2,

y� � 0.11y � 0.4x2, y(2) � 4.

TABLE 2.1 h � 0.1

xn yn

2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768

TABLE 2.2 h � 0.05

xn yn

2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997

TABLE 2.3 h � 0.1

xn yn Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.0200 1.0212 0.0012 0.12
1.20 1.0424 1.0450 0.0025 0.24
1.30 1.0675 1.0714 0.0040 0.37
1.40 1.0952 1.1008 0.0055 0.50
1.50 1.1259 1.1331 0.0073 0.64

TABLE 2.4 h � 0.05

xn yn Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
1.10 1.0206 1.0212 0.0006 0.06
1.15 1.0318 1.0328 0.0009 0.09
1.20 1.0437 1.0450 0.0013 0.12
1.25 1.0562 1.0579 0.0016 0.16
1.30 1.0694 1.0714 0.0020 0.19
1.35 1.0833 1.0857 0.0024 0.22
1.40 1.0980 1.1008 0.0028 0.25
1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1295 1.1331 0.0037 0.32
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In Example 1 the true or actual values were calculated from the known solution
(Verify.) The absolute error is defined to be

.

The relative error and percentage relative error are, in turn,

.

It is apparent from Tables 2.3 and 2.4 that the accuracy of the approximations
improves as the step size h decreases. Also, we see that even though the percentage
relative error is growing with each step, it does not appear to be that bad. But you
should not be deceived by one example. If we simply change the coefficient of the
right side of the DE in Example 2 from 0.2 to 2, then at xn � 1.5 the percentage
relative errors increase dramatically. See Problem 4 in Exercises 2.6.

A CAVEAT Euler’s method is just one of many different ways in which a solution
of a differential equation can be approximated. Although attractive for its simplic-
ity, Euler’s method is seldom used in serious calculations. It was introduced here
simply to give you a first taste of numerical methods. We will go into greater detail
in discussing numerical methods that give significantly greater accuracy, notably
the fourth order Runge-Kutta method, referred to as the RK4 method, in
Chapter 9.

NUMERICAL SOLVERS Regardless of whether we can actually find an explicit
or implicit solution, if a solution of a differential equation exists, it represents a
smooth curve in the Cartesian plane. The basic idea behind any numerical method
for first-order ordinary differential equations is to somehow approximate the
y-values of a solution for preselected values of x. We start at a specified initial point
(x0, y0) on a solution curve and proceed to calculate in a step-by-step fashion a
sequence of points (x1, y1), (x2, y2), . . . , (xn, yn) whose y-coordinates yi approxi-
mate the y-coordinates y(xi) of points (x1, y(x1)), (x2, y(x2)), . . . , (xn, y(xn)) that lie
on the graph of the usually unknown solution y(x). By taking the x-coordinates
close together (that is, for small values of h) and by joining the points (x1, y1),
(x2, y2), . . . , (xn, yn) with short line segments, we obtain a polygonal curve whose
qualitative characteristics we hope are close to those of an actual solution curve.
Drawing curves is something that is well suited to a computer. A computer program
written to either implement a numerical method or render a visual representation of
an approximate solution curve fitting the numerical data produced by this method
is referred to as a numerical solver. Many different numerical solvers are commer-
cially available, either embedded in a larger software package, such as a computer
algebra system, or provided as a stand-alone package. Some software packages
simply plot the generated numerical approximations, whereas others generate hard
numerical data as well as the corresponding approximate or numerical solution
curves. By way of illustration of the connect-the-dots nature of the graphs produced
by a numerical solver, the two colored polygonal graphs in Figure 2.6.3 are the
numerical solution curves for the initial-value problem y� � 0.2xy, y(0) � 1 on
the interval [0, 4] obtained from Euler’s method and the RK4 method using the
step size h � 1. The blue smooth curve is the graph of the exact solution
of the IVP. Notice in Figure 2.6.3 that, even with the ridiculously large step size of
h � 1, the RK4 method produces the more believable “solution curve.” The numer-
ical solution curve obtained from the RK4 method is indistinguishable from the
actual solution curve on the interval [0, 4] when a more typical step size of h � 0.1
is used.

y � e0.1x2

absolute error

� actual value �
  and  

absolute error

� actual value �
� 100

� actual value � approximation �

y � e0.1(x2�1).

exact 
solution

(0,1) Euler’s
method

RK4
method
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FIGURE 2.6.3 Comparison of the
Runge-Kutta (RK4) and Euler methods



USING A NUMERICAL SOLVER Knowledge of the various numerical methods
is not necessary in order to use a numerical solver. A solver usually requires that the
differential equation be expressed in normal form dy�dx � f (x, y). Numerical solvers
that generate only curves usually require that you supply f (x, y) and the initial data x0

and y0 and specify the desired numerical method. If the idea is to approximate the nu-
merical value of y(a), then a solver may additionally require that you state a value for
h or, equivalently, give the number of steps that you want to take to get from x � x0

to x � a. For example, if we wanted to approximate y(4) for the IVP illustrated in
Figure 2.6.3, then, starting at x � 0 it would take four steps to reach x � 4 with a step
size of h � 1; 40 steps is equivalent to a step size of h � 0.1. Although we will not
delve here into the many problems that one can encounter when attempting to ap-
proximate mathematical quantities, you should at least be aware of the fact that a nu-
merical solver may break down near certain points or give an incomplete or mislead-
ing picture when applied to some first-order differential equations in the normal
form. Figure 2.6.4 illustrates the graph obtained by applying Euler’s method to a cer-
tain first-order initial-value problem dy�dx � f (x, y), y(0) � 1. Equivalent results
were obtained using three different commercial numerical solvers, yet the graph is
hardly a plausible solution curve. (Why?) There are several avenues of recourse
when a numerical solver has difficulties; three of the more obvious are decrease the
step size, use another numerical method, and try a different numerical solver.

FIGURE 2.6.4 A not very helpful
numerical solution curve
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EXERCISES 2.6 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1 and 2 use Euler’s method to obtain a four-
decimal approximation of the indicated value. Carry out the
recursion of (3) by hand, first using h � 0.1 and then using
h � 0.05.

1. y� � 2x � 3y � 1, y(1) � 5; y(1.2)

2. y� � x � y2, y(0) � 0; y(0.2)

In Problems 3 and 4 use Euler’s method to obtain a four-
decimal approximation of the indicated value. First use 
h � 0.1 and then use h � 0.05. Find an explicit solution for
each initial-value problem and then construct tables similar to
Tables 2.3 and 2.4.

3. y� � y, y(0) � 1; y(1.0)

4. y� � 2xy, y(1) � 1; y(1.5)

In Problems 5–10 use a numerical solver and Euler’s
method to obtain a four-decimal approximation of the indi-
cated value. First use h � 0.1 and then use h � 0.05.

5. y� � e�y, y(0) � 0; y(0.5)

6. y� � x2 � y2, y(0) � 1; y(0.5)

7. y� � (x � y)2, y(0) � 0.5; y(0.5)

8.

9.

10. y� � y � y2, y(0) � 0.5; y(0.5)

y� � xy2 �
y

x
, y(1) � 1; y(1.5)

y� � xy � 1y, y(0) � 1; y(0.5)

In Problems 11 and 12 use a numerical solver to obtain a nu-
merical solution curve for the given initial-value problem.
First use Euler’s method and then the RK4 method. Use
h � 0.25 in each case. Superimpose both solution curves on
the same coordinate axes. If possible, use a different color
for each curve. Repeat, using h � 0.1 and h � 0.05.

11. y� � 2(cos x)y, y(0) � 1

12. y� � y(10 � 2y), y(0) � 1

Discussion Problems

13. Use a numerical solver and Euler’s method to
approximate y(1.0), where y(x) is the solution to
y� � 2xy2, y(0) � 1. First use h � 0.1 and then use 
h � 0.05. Repeat, using the RK4 method. Discuss
what might cause the approximations to y(1.0) to
differ so greatly.

Computer Lab Assignments

14. (a) Use a numerical solver and the RK4 method to
graph the solution of the initial-value problem
y� � �2xy � 1, y(0) � 0.

(b) Solve the initial-value problem by one of the
analytic procedures developed earlier in this
chapter.

(c) Use the analytic solution y(x) found in part (b)
and a CAS to find the coordinates of all relative
extrema.
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CHAPTER 2 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-3.

Answer Problems 1–4 without referring back to the text. Fill
in the blanks or answer true or false.

1. The linear DE, y� � ky � A, where k and A are constants,
is autonomous. The critical point of the equa-
tion is a(n) (attractor or repeller) for k � 0
and a(n) (attractor or repeller) for k 
 0.

2. The initial-value problem x � 4y � 0, y(0) � k, has

an infinite number of solutions for k � and
no solution for k � .

3. The linear DE, y� � k1y � k2, where k1 and k2 are
nonzero constants, always possesses a constant 
solution.

4. The linear DE, a1(x)y� � a2(x)y � 0 is also separable.

In Problems 5 and 6 construct an autonomous first-order
differential equation dy�dx � f (y) whose phase portrait is
consistent with the given figure.

5.

dy

dx

1

3

y

FIGURE 2.R.1 Graph for Problem 5

6.

0

2

4

y

FIGURE 2.R.2 Graph for Problem 6

7. The number 0 is a critical point of the autonomous dif-
ferential equation dx�dt � xn, where n is a positive inte-
ger. For what values of n is 0 asymptotically stable?
Semi-stable? Unstable? Repeat for the differential equa-
tion dx�dt � �xn.

8. Consider the differential equation 

The function f (P) has one real zero, as shown in
Figure 2.R.3. Without attempting to solve the differen-
tial equation, estimate the value of limt:� P(t).

f (P) � �0.5P 3 � 1.7P � 3.4.

dP>dt � f (P), where

FIGURE 2.R.4 Portion of a direction field for Problem 9

P1

1

f

FIGURE 2.R.3 Graph for Problem 8

9. Figure 2.R.4 is a portion of a direction field of a differ-
ential equation dy�dx � f (x, y). By hand, sketch two
different solution curves—one that is tangent to the lin-
eal element shown in black and one that is tangent to the
lineal element shown in color.

10. Classify each differential equation as separable, exact,
linear, homogeneous, or Bernoulli. Some equations may
be more than one kind. Do not solve.

(a) (b)

(c) (d)

(e) (f)

(g) y dx � (y � xy2) dy (h)

(i) xy y� � y2 � 2x ( j) 2xy y� � y2 � 2x2

(k) y dx � x dy � 0

(l)

(m) (n)
y

x2

dy

dx
� e2x3�y2

� 0
dy

dx
�

x

y
�

y

x
� 1

�x2 �
2y

x � dx � (3 � ln x2) dy

x
dy

dx
� yex/y � x

dy

dx
� 5y � y2dy

dx
�

y2 � y

x2 � x

dy

dx
�

1

x(x � y)
(x � 1)

dy

dx
� �y � 10

dy

dx
�

1

y � x

dy

dx
�

x � y

x



In Problems 11–18 solve the given differential equation.

11. (y2 � 1) dx � y sec2 x dy

12. y(ln x � ln y) dx � (x ln x � x ln y � y) dy

13.

14.

15.

16. (2x � y � 1)y� � 1

17. (x2 � 4) dy � (2x � 8xy) dx

18. (2r2 cos � sin � � r cos �) d�
� (4r � sin � � 2r cos2 �) dr � 0

In Problems 19 and 20 solve the given initial-value problem
and give the largest interval I on which the solution is defined.

19.

20.

21. (a) Without solving, explain why the initial-value
problem

has no solution for y0 
 0.
(b) Solve the initial-value problem in part (a) for 

y0 � 0 and find the largest interval I on which the
solution is defined.

22. (a) Find an implicit solution of the initial-value problem

.

(b) Find an explicit solution of the problem in part (a) and
give the largest interval I over which the solution is
defined. A graphing utility may be helpful here.

23. Graphs of some members of a family of solutions for a
first-order differential equation dy�dx � f (x, y) are
shown in Figure 2.R.5. The graphs of two implicit
solutions, one that passes through the point (1, �1) and
one that passes through (�1, 3), are shown in red.
Reproduce the figure on a piece of paper. With colored
pencils trace out the solution curves for the solutions
y � y1(x) and y � y2(x) defined by the implicit solu-
tions such that y1(1) � �1 and y2(�1) � 3, respectively.
Estimate the intervals on which the solutions y � y1(x)
and y � y2(x) are defined.

dy

dx
�

y2 � x2

xy
,  y(1) � �12

dy

dx
� 1y,  y(x0) � y0

dy

dt
� 2(t � 1)y2 � 0,  y(0) � �1

8

sin x
dy

dx
� (cos x)y � 0,  y �7�

6 � � �2

t
dQ

dt
� Q � t 4 ln t

dx

dy
� �

4y2 � 6xy

3y2 � 2x

(6x � 1)y2 dy

dx
� 3x2 � 2y3 � 0
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FIGURE 2.R.6 Portion of a direction field for Problem 25

x

y

FIGURE 2.R.5 Graph for Problem 23

24. Use Euler’s method with step size h � 0.1 to approxi-
mate y(1.2), where y(x) is a solution of the initial-value
problem , y(1) � 9.

In Problems 25 and 26 each figure represents a portion of a
direction field of an autonomous first-order differential equa-
tion dy�dx � f (y). Reproduce the figure on a separate piece
of paper and then complete the direction field over the grid.
The points of the grid are (mh, nh), where m and n
integers, �7 � m � 7, �7 � n � 7. In each direction field,
sketch by hand an approximate solution curve that passes
through each of the solid points shown in red. Discuss: Does
it appear that the DE possesses critical points in the interval
�3.5 � y � 3.5? If so, classify the critical points as asymp-
totically stable, unstable, or semi-stable.

25.

26.

h � 1
2,

y� � 1 � x1y

FIGURE 2.R.7 Portion of a direction field for Problem 26
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3
3.1 Linear Models

3.2 Nonlinear Models

3.3 Modeling with Systems of First-Order DEs

CHAPTER 3 IN REVIEW

In Section 1.3 we saw how a first-order differential equation could be used as a

mathematical model in the study of population growth, radioactive decay,

continuous compound interest, cooling of bodies, mixtures, chemical reactions,

fluid draining from a tank, velocity of a falling body, and current in a series circuit.

Using the methods of Chapter 2, we are now able to solve some of the linear DEs

(Section 3.1) and nonlinear DEs (Section 3.2) that commonly appear in

applications. The chapter concludes with the natural next step: In Section 3.3 we

examine how systems of first-order DEs can arise as mathematical models in

coupled physical systems (for example, a population of predators such as foxes

interacting with a population of prey such as rabbits).

MODELING WITH FIRST-ORDER
DIFFERENTIAL EQUATIONS
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LINEAR MODELS

REVIEW MATERIAL
● A differential equation as a mathematical model in Section 1.3
● Reread “Solving a Linear First-Order Equation” on page 55 in Section 2.3

INTRODUCTION In this section we solve some of the linear first-order models that were
introduced in Section 1.3.

3.1

GROWTH AND DECAY The initial-value problem

, (1)

where k is a constant of proportionality, serves as a model for diverse phenomena in-
volving either growth or decay. We saw in Section 1.3 that in biological applications
the rate of growth of certain populations (bacteria, small animals) over short periods
of time is proportional to the population present at time t. Knowing the population
at some arbitrary initial time t0, we can then use the solution of (1) to predict the
population in the future—that is, at times t � t0. The constant of proportionality k
in (1) can be determined from the solution of the initial-value problem, using a sub-
sequent measurement of x at a time t1 � t0. In physics and chemistry (1) is seen in
the form of a first-order reaction —that is, a reaction whose rate, or velocity, dx�dt
is directly proportional to the amount x of a substance that is unconverted or remain-
ing at time t. The decomposition, or decay, of U-238 (uranium) by radioactivity into
Th-234 (thorium) is a first-order reaction.

EXAMPLE 1 Bacterial Growth

A culture initially has P0 number of bacteria. At t � 1 h the number of bacteria is mea-
sured to be . If the rate of growth is proportional to the number of bacteria P(t) pre-
sent at time t, determine the time necessary for the number of bacteria to triple.

SOLUTION We first solve the differential equation in (1), with the symbol x replaced
by P. With t0 � 0 the initial condition is P(0) � P0. We then use the empirical obser-
vation that to determine the constant of proportionality k.

Notice that the differential equation dP�dt � kP is both separable and linear.
When it is put in the standard form of a linear first-order DE,

,

we can see by inspection that the integrating factor is e�kt. Multiplying both sides of
the equation by this term and integrating gives, in turn,

.

Therefore P(t) � cekt. At t � 0 it follows that P0 � ce0 � c, so P(t) � P0ekt. At
t � 1 we have or . From the last equation we get

, so P(t) � P0e0.4055t. To find the time at which the number of bac-
teria has tripled, we solve 3P0 � P0e0.4055t for t. It follows that 0.4055t � ln 3, or

.

See Figure 3.1.1.

t �
ln 3

0.4055
 2.71 h

k � ln 3
2 � 0.4055

ek � 3
2

3
2 P0 � P0ek

d

dt
 [e�ktP] � 0    and    e�ktP � c

dP

dt
� kP � 0

P(1) � 3
2 P0

3
2 P0

dx

dt
� kx,  x(t0) � x0

t

P

3P0

P0

t =  2.71

P(t) = P0e0.4055t

FIGURE 3.1.1 Time in which 
population triples



Notice in Example 1 that the actual number P0 of bacteria present at time t � 0
played no part in determining the time required for the number in the culture to triple.
The time necessary for an initial population of, say, 100 or 1,000,000 bacteria to
triple is still approximately 2.71 hours.

As shown in Figure 3.1.2, the exponential function ekt increases as t increases for
k � 0 and decreases as t increases for k 
 0. Thus problems describing growth
(whether of populations, bacteria, or even capital) are characterized by a positive
value of k, whereas problems involving decay (as in radioactive disintegration) yield
a negative k value. Accordingly, we say that k is either a growth constant (k � 0) or
a decay constant (k 
 0).

HALF-LIFE In physics the half-life is a measure of the stability of a radioactive
substance. The half-life is simply the time it takes for one-half of the atoms in an
initial amount A0 to disintegrate, or transmute, into the atoms of another element.
The longer the half-life of a substance, the more stable it is. For example, the half-
life of highly radioactive radium, Ra-226, is about 1700 years. In 1700 years one-
half of a given quantity of Ra-226 is transmuted into radon, Rn-222. The most
commonly occurring uranium isotope, U-238, has a half-life of approximately
4,500,000,000 years. In about 4.5 billion years, one-half of a quantity of U-238 is
transmuted into lead, Pb-206.

EXAMPLE 2 Half-Life of Plutonium

A breeder reactor converts relatively stable uranium 238 into the isotope plutonium
239. After 15 years it is determined that 0.043% of the initial amount A0 of pluto-
nium has disintegrated. Find the half-life of this isotope if the rate of disintegration is
proportional to the amount remaining.

SOLUTION Let A(t) denote the amount of plutonium remaining at time t. As in
Example 1 the solution of the initial-value problem

is A(t) � A0ekt. If 0.043% of the atoms of A0 have disintegrated, then 99.957% of the
substance remains. To find the decay constant k, we use 0.99957A0 � A(15)—that is,
0.99957A0 � A0e15k. Solving for k then gives ln 0.99957 � �0.00002867.
Hence A(t) � A0e�0.00002867t. Now the half-life is the corresponding value of time at
which . Solving for t gives , or . The
last equation yields

.

CARBON DATING About 1950 the chemist Willard Libby devised a method of
using radioactive carbon as a means of determining the approximate ages of fossils.
The theory of carbon dating is based on the fact that the isotope carbon 14 is pro-
duced in the atmosphere by the action of cosmic radiation on nitrogen. The ratio of
the amount of C-14 to ordinary carbon in the atmosphere appears to be a constant,
and as a consequence the proportionate amount of the isotope present in all living
organisms is the same as that in the atmosphere. When an organism dies, the
absorption of C-14, by either breathing or eating, ceases. Thus by comparing the pro-
portionate amount of C-14 present, say, in a fossil with the constant ratio found in the
atmosphere, it is possible to obtain a reasonable estimation of the fossil’s age. The
method is based on the knowledge that the half-life of radioactive C-14 is
approximately 5600 years. For his work Libby won the Nobel Prize for chemistry in

t �
ln 2

0.00002867
 24,180 yr

1
2 � e�0.00002867t1

2 A0 � A0e�0.00002867tA(t) � 1
2 A0

k � 1
15

dA

dt
� kA,  A(0) � A0
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1960. Libby’s method has been used to date wooden furniture in Egyptian tombs, the
woven flax wrappings of the Dead Sea scrolls, and the cloth of the enigmatic shroud
of Turin.

EXAMPLE 3 Age of a Fossil

A fossilized bone is found to contain one-thousandth of the C-14 level found in liv-
ing matter. Estimate the age of the fossil.

SOLUTION The starting point is again A(t) � A0ekt. To determine the value of
the decay constant k, we use the fact that A0 � A(5600) or A0 � A0e5600k. From
5600k � ln � �ln 2 we then get k � �(ln 2)�5600 � �0.00012378. Therefore
A(t) � A0e�0.00012378t. With A(t) � A0 we have A0 � A0e�0.00012378t, so
�0.00012378t � ln � �ln 1000. Thus the age of the fossil is about

.

The age found in Example 3 is really at the border of accuracy for this method.
The usual carbon-14 technique is limited to about 9 half-lives of the isotope, or about
50,000 years. One reason for this limitation is that the chemical analysis needed to
obtain an accurate measurement of the remaining C-14 becomes somewhat formida-
ble around the point of A0. Also, this analysis demands the destruction of a rather
large sample of the specimen. If this measurement is accomplished indirectly, based
on the actual radioactivity of the specimen, then it is very difficult to distinguish
between the radiation from the fossil and the normal background radiation.* But
recently, the use of a particle accelerator has enabled scientists to separate C-14 from
stable C-12 directly. When the precise value of the ratio of C-14 to C-12 is computed,
the accuracy of this method can be extended to 70,000–100,000 years. Other iso-
topic techniques such as using potassium 40 and argon 40 can give ages of several
million years.† Nonisotopic methods based on the use of amino acids are also some-
times possible.

NEWTON’S LAW OF COOLING/WARMING In equation (3) of Section 1.3 we
saw that the mathematical formulation of Newton’s empirical law of cooling/warming
of an object is given by the linear first-order differential equation

, (2)

where k is a constant of proportionality, T(t) is the temperature of the object for t � 0,
and Tm is the ambient temperature—that is, the temperature of the medium around the
object. In Example 4 we assume that Tm is constant.

EXAMPLE 4 Cooling of a Cake

When a cake is removed from an oven, its temperature is measured at 300° F. Three
minutes later its temperature is 200° F. How long will it take for the cake to cool off
to a room temperature of 70° F?

dT

dt
� k(T � Tm)

1
1000

t �
ln 1000

0.00012378
 55,800 yr

1
1000

1
1000

1
1000

1
2

1
2

1
2
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*The number of disintegrations per minute per gram of carbon is recorded by using a Geiger counter.
The lower level of detectability is about 0.1 disintegrations per minute per gram.
†Potassium-argon dating is used in dating terrestrial materials such as minerals, rocks, and lava and
extraterrestrial materials such as meteorites and lunar rocks. The age of a fossil can be estimated by
determining the age of the rock stratum in which it was found.



SOLUTION In (2) we make the identification Tm � 70. We must then solve the
initial-value problem

(3)

and determine the value of k so that T(3) � 200.
Equation (3) is both linear and separable. If we separate variables,

,

yields ln �T � 70� � kt � c1, and so T � 70 � c2ekt. When t � 0, T � 300, so
300 � 70 � c2 gives c2 � 230; therefore T � 70 � 230ekt. Finally, the measurement
T(3) � 200 leads to , or ln . Thus

. (4)

We note that (4) furnishes no finite solution to T(t) � 70, since .
Yet we intuitively expect the cake to reach room temperature after a reasonably long
period of time. How long is “long”? Of course, we should not be disturbed by the fact
that the model (3) does not quite live up to our physical intuition. Parts (a) and (b) of
Figure 3.1.3 clearly show that the cake will be approximately at room temperature in
about one-half hour.

The ambient temperature in (2) need not be a constant but could be a function
Tm(t) of time t. See Problem 18 in Exercises 3.1.

MIXTURES The mixing of two fluids sometimes gives rise to a linear first-order
differential equation. When we discussed the mixing of two brine solutions in
Section 1.3, we assumed that the rate A�(t) at which the amount of salt in the mixing
tank changes was a net rate:

. (5)

In Example 5 we solve equation (8) of Section 1.3.

EXAMPLE 5 Mixture of Two Salt Solutions

Recall that the large tank considered in Section 1.3 held 300 gallons of a brine
solution. Salt was entering and leaving the tank; a brine solution was being pumped
into the tank at the rate of 3 gal/min; it mixed with the solution there, and then the
mixture was pumped out at the rate of 3 gal/min. The concentration of the salt
in the inflow, or solution entering, was 2 lb/gal, so salt was entering the tank at the
rate Rin � (2 lb/gal) � (3 gal/min) � 6 lb/min and leaving the tank at the rate Rout �
(A�300 lb/gal) � (3 gal/min) � A�100 lb/min. From this data and (5) we get equa-
tion (8) of Section 1.3. Let us pose the question: If 50 pounds of salt were dissolved
initially in the 300 gallons, how much salt is in the tank after a long time?

SOLUTION To find the amount of salt A(t) in the tank at time t, we solve the initial-
value problem

.

Note here that the side condition is the initial amount of salt A(0) � 50 in the tank
and not the initial amount of liquid in the tank. Now since the integrating factor of the

dA

dt
�

1

100
A � 6,  A(0) � 50

dA

dt
� (input rate of salt) � (output rate of salt) � Rin � Rout

lim t : � T(t) � 70

T(t) � 70 � 230e�0.19018t

13
23 � �0.19018k � 1

3e3k � 13
23

dT

T � 70
� k dt

dT

dt
� k(T � 70),  T(0) � 300
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linear differential equation is et/100, we can write the equation as

.

Integrating the last equation and solving for A gives the general solution 
A(t) � 600 � ce�t/100. When t � 0, A � 50, so we find that c � �550. Thus the
amount of salt in the tank at time t is given by

. (6)

The solution (6) was used to construct the table in Figure 3.1.4(b). Also, it can be
seen from (6) and Figure 3.1.4(a) that A(t) : 600 as t : �. Of course, this is what
we would intuitively expect; over a long time the number of pounds of salt in the
solution must be (300 gal)(2 lb/gal) � 600 lb.

In Example 5 we assumed that the rate at which the solution was pumped in was
the same as the rate at which the solution was pumped out. However, this need not be
the case; the mixed brine solution could be pumped out at a rate rout that is faster
or slower than the rate rin at which the other brine solution is pumped in. For example,
if the well-stirred solution in Example 5 is pumped out at a slower rate of, say, 
rout � 2 gal/min, then liquid will accumulate in the tank at the rate of 
rin � rout � (3 � 2) gal/min � 1 gal/min. After t minutes, (1 gal/min) � (t min) � t gal
will accumulate, so the tank will contain 300 � t gallons of brine. The con-
centration of the outflow is then c(t) � A�(300 � t), and the output rate of salt is
Rout � c(t) � rout , or

.

Hence equation (5) becomes

.

You should verify that the solution of the last equation, subject to A(0) � 50, is
A(t) � 600 � 2t � (4.95 � 107)(300 � t)�2. See the discussion following (8) of
Section 1.3, Problem 12 in Exercises 1.3, and Problems 25–28 in Exercises 3.1.

SERIES CIRCUITS For a series circuit containing only a resistor and an inductor,
Kirchhoff’s second law states that the sum of the voltage drop across the inductor
(L(di�dt)) and the voltage drop across the resistor (iR) is the same as the impressed
voltage (E(t)) on the circuit. See Figure 3.1.5.

Thus we obtain the linear differential equation for the current i(t),

, (7)

where L and R are constants known as the inductance and the resistance, respectively.
The current i(t) is also called the response of the system.

The voltage drop across a capacitor with capacitance C is given by q(t)�C,
where q is the charge on the capacitor. Hence, for the series circuit shown in
Figure 3.1.6, Kirchhoff’s second law gives

. (8)

But current i and charge q are related by i � dq�dt, so (8) becomes the linear differ-
ential equation

. (9)R
dq

dt
�

1

C
q � E(t)

Ri �
1

C
q � E(t)

L
di

dt
� Ri � E(t)

dA

dt
� 6 �

2A

300 � t
    or    

dA

dt
�

2

300 � t
A � 6

Rout � � A

300 � t
 lb/gal� � (2 gal/min) �

2A

300 � t
 lb/min

A(t) � 600 � 550e�t/100

d

dt
 [et/100A] � 6et/100
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EXAMPLE 6 Series Circuit

A 12-volt battery is connected to a series circuit in which the inductance is henry
and the resistance is 10 ohms. Determine the current i if the initial current is zero.

SOLUTION From (7) we see that we must solve

,

subject to i(0) � 0. First, we multiply the differential equation by 2 and read off the
integrating factor e20t. We then obtain

.

Integrating each side of the last equation and solving for i gives i(t) � � ce�20t.
Now i(0) � 0 implies that 0 � � c or c � � . Therefore the response is 
i(t) � � e�20t.

From (4) of Section 2.3 we can write a general solution of (7):

. (10)

In particular, when E(t) � E0 is a constant, (10) becomes

. (11)

Note that as t : �, the second term in equation (11) approaches zero. Such a term is
usually called a transient term; any remaining terms are called the steady-state part
of the solution. In this case E0�R is also called the steady-state current; for large
values of time it appears that the current in the circuit is simply governed by Ohm’s
law (E � iR).

REMARKS

The solution P(t) � P0e0.4055t of the initial-value problem in Example 1
described the population of a colony of bacteria at any time t � 0. Of course,
P(t) is a continuous function that takes on all real numbers in the interval
P0 � P 
 �. But since we are talking about a population, common sense
dictates that P can take on only positive integer values. Moreover, we would
not expect the population to grow continuously—that is, every second, every
microsecond, and so on—as predicted by our solution; there may be inter-
vals of time [t1, t2] over which there is no growth at all. Perhaps, then, the
graph shown in Figure 3.1.7(a) is a more realistic description of P than is
the graph of an exponential function. Using a continuous function to
describe a discrete phenomenon is often more a matter of convenience than
of accuracy. However, for some purposes we may be satisfied if our model
describes the system fairly closely when viewed macroscopically in time,
as in Figures 3.1.7(b) and 3.1.7(c), rather than microscopically, as in
Figure 3.1.7(a).

i(t) �
E0

R
� ce�(R/L)t

i(t) �
e�(R/L)t

L
� e(R/L)tE(t) dt � ce�(R/L)t

6
5

6
5

6
5

6
5

6
5

d

dt
 [e20ti] � 24e20t
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� 10 i � 12
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FIGURE 3.1.7 Population growth is a
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EXERCISES 3.1 Answers to selected odd-numbered problems begin on page ANS-3.

Growth and Decay

1. The population of a community is known to increase at
a rate proportional to the number of people present
at time t. If an initial population P0 has doubled in
5 years, how long will it take to triple? To quadruple?

2. Suppose it is known that the population of the commu-
nity in Problem 1 is 10,000 after 3 years. What was the
initial population P0? What will be the population in
10 years? How fast is the population growing at t � 10?

3. The population of a town grows at a rate proportional to
the population present at time t. The initial population
of 500 increases by 15% in 10 years. What will be the
population in 30 years? How fast is the population
growing at t � 30?

4. The population of bacteria in a culture grows at a rate
proportional to the number of bacteria present at time t.
After 3 hours it is observed that 400 bacteria are present.
After 10 hours 2000 bacteria are present. What was the
initial number of bacteria?

5. The radioactive isotope of lead, Pb-209, decays at a rate
proportional to the amount present at time t and has a half-
life of 3.3 hours. If 1 gram of this isotope is present ini-
tially, how long will it take for 90% of the lead to decay?

6. Initially 100 milligrams of a radioactive substance was
present. After 6 hours the mass had decreased by 3%. If
the rate of decay is proportional to the amount of the
substance present at time t, find the amount remaining
after 24 hours.

7. Determine the half-life of the radioactive substance
described in Problem 6.

8. (a) Consider the initial-value problem dA�dt � kA,
A(0) � A0 as the model for the decay of a radioac-
tive substance. Show that, in general, the half-life T
of the substance is T � �(ln 2)�k.

(b) Show that the solution of the initial-value problem
in part (a) can be written A(t) � A02�t/T.

(c) If a radioactive substance has the half-life T given
in part (a), how long will it take an initial amount A0

of the substance to decay to ?

9. When a vertical beam of light passes through a trans-
parent medium, the rate at which its intensity I
decreases is proportional to I(t), where t represents the
thickness of the medium (in feet). In clear seawater,
the intensity 3 feet below the surface is 25% of the initial
intensity I0 of the incident beam. What is the intensity of
the beam 15 feet below the surface?

10. When interest is compounded continuously, the amount
of money increases at a rate proportional to the amount

1
8 A0

S present at time t, that is, dS�dt � rS, where r is the
annual rate of interest.

(a) Find the amount of money accrued at the end of
5 years when $5000 is deposited in a savings
account drawing 5 % annual interest compounded
continuously.

(b) In how many years will the initial sum deposited
have doubled?

(c) Use a calculator to compare the amount obtained in
part (a) with the amount S � 5000(1 � (0.0575))5(4)

that is accrued when interest is compounded
quarterly.

Carbon Dating

11. Archaeologists used pieces of burned wood, or char-
coal, found at the site to date prehistoric paintings and
drawings on walls and ceilings of a cave in Lascaux,
France. See Figure 3.1.8. Use the information on page 84
to determine the approximate age of a piece of burned
wood, if it was found that 85.5% of the C-14 found in
living trees of the same type had decayed.

1
4

3
4

12. The shroud of Turin, which shows the negative image of
the body of a man who appears to have been crucified, is
believed by many to be the burial shroud of Jesus of
Nazareth. See Figure 3.1.9. In 1988 the Vatican granted
permission to have the shroud carbon-dated. Three inde-
pendent scientific laboratories analyzed the cloth and
concluded that the shroud was approximately 660 years
old,* an age consistent with its historical appearance.

*Some scholars have disagreed with this finding. For more information on
this fascinating mystery see the Shroud of Turin home page at
http://www.shroud.com/.

Image not available due to copyright restrictions

Image not available due to copyright restrictions

http://www.shroud.com/


Using this age, determine what percentage of the origi-
nal amount of C-14 remained in the cloth as of 1988.

Newton’s Law of Cooling/Warming

13. A thermometer is removed from a room where the
temperature is 70° F and is taken outside, where the air
temperature is 10° F. After one-half minute the ther-
mometer reads 50° F. What is the reading of the ther-
mometer at t � 1 min? How long will it take for the
thermometer to reach 15° F?

14. A thermometer is taken from an inside room to the out-
side, where the air temperature is 5° F. After 1 minute
the thermometer reads 55° F, and after 5 minutes it
reads 30° F. What is the initial temperature of the inside
room?

15. A small metal bar, whose initial temperature was 20° C,
is dropped into a large container of boiling water. How
long will it take the bar to reach 90° C if it is known that
its temperature increases 2° in 1 second? How long will it
take the bar to reach 98° C?

16. Two large containers A and B of the same size are filled
with different fluids. The fluids in containers A and B
are maintained at 0° C and 100° C, respectively. A small
metal bar, whose initial temperature is 100° C, is low-
ered into container A. After 1 minute the temperature
of the bar is 90° C. After 2 minutes the bar is removed
and instantly transferred to the other container. After
1 minute in container B the temperature of the bar rises
10°. How long, measured from the start of the entire
process, will it take the bar to reach 99.9° C?

17. A thermometer reading 70° F is placed in an oven
preheated to a constant temperature. Through a glass
window in the oven door, an observer records that the
thermometer reads 110° F after minute and 145° F
after 1 minute. How hot is the oven?

18. At t � 0 a sealed test tube containing a chemical is
immersed in a liquid bath. The initial temperature of
the chemical in the test tube is 80° F. The liquid bath
has a controlled temperature (measured in degrees
Fahrenheit) given by Tm(t) � 100 � 40e�0.1t, t  0,
where t is measured in minutes.

(a) Assume that k � �0.1 in (2). Before solving the
IVP, describe in words what you expect the temper-
ature T(t) of the chemical to be like in the short
term. In the long term.

(b) Solve the initial-value problem. Use a graphing util-
ity to plot the graph of T(t) on time intervals of var-
ious lengths. Do the graphs agree with your
predictions in part (a)?

19. A dead body was found within a closed room of a house
where the temperature was a constant 70° F. At the time
of discovery the core temperature of the body was
determined to be 85° F. One hour later a second mea-

1
2
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surement showed that the core temperature of the body
was 80° F. Assume that the time of death corresponds to
t � 0 and that the core temperature at that time was
98.6° F. Determine how many hours elapsed before the
body was found. [Hint: Let t1 � 0 denote the time that
the body was discovered.]

20. The rate at which a body cools also depends on its
exposed surface area S. If S is a constant, then a modifi-
cation of (2) is

where k 
 0 and Tm is a constant. Suppose that two cups
A and B are filled with coffee at the same time. Initially,
the temperature of the coffee is 150° F. The exposed
surface area of the coffee in cup B is twice the surface
area of the coffee in cup A. After 30 min the temperature
of the coffee in cup A is 100° F. If Tm � 70° F, then what
is the temperature of the coffee in cup B after 30 min?

Mixtures

21. A tank contains 200 liters of fluid in which 30 grams of
salt is dissolved. Brine containing 1 gram of salt per liter
is then pumped into the tank at a rate of 4 L/min; the
well-mixed solution is pumped out at the same rate. Find
the number A(t) of grams of salt in the tank at time t.

22. Solve Problem 21 assuming that pure water is pumped
into the tank.

23. A large tank is filled to capacity with 500 gallons of pure
water. Brine containing 2 pounds of salt per gallon is
pumped into the tank at a rate of 5 gal/min. The well-
mixed solution is pumped out at the same rate. Find the
number A(t) of pounds of salt in the tank at time t.

24. In Problem 23, what is the concentration c(t) of the salt
in the tank at time t? At t � 5 min? What is the concen-
tration of the salt in the tank after a long time, that is, as
t : �? At what time is the concentration of the salt in
the tank equal to one-half this limiting value?

25. Solve Problem 23 under the assumption that the solu-
tion is pumped out at a faster rate of 10 gal/min. When
is the tank empty?

26. Determine the amount of salt in the tank at time t in
Example 5 if the concentration of salt in the inflow is
variable and given by cin(t) � 2 � sin(t�4) lb/gal.
Without actually graphing, conjecture what the solution
curve of the IVP should look like. Then use a graphing
utility to plot the graph of the solution on the interval
[0, 300]. Repeat for the interval [0, 600] and compare
your graph with that in Figure 3.1.4(a).

27. A large tank is partially filled with 100 gallons of fluid
in which 10 pounds of salt is dissolved. Brine containing

dT

dt
� kS(T � Tm),



pound of salt per gallon is pumped into the tank at a rate
of 6 gal/min. The well-mixed solution is then pumped
out at a slower rate of 4 gal/min. Find the number of
pounds of salt in the tank after 30 minutes.

28. In Example 5 the size of the tank containing the salt
mixture was not given. Suppose, as in the discussion
following Example 5, that the rate at which brine is
pumped into the tank is 3 gal/min but that the well-
stirred solution is pumped out at a rate of 2 gal/min. It
stands to reason that since brine is accumulating in the
tank at the rate of 1 gal/min, any finite tank must even-
tually overflow. Now suppose that the tank has an open
top and has a total capacity of 400 gallons.

(a) When will the tank overflow?

(b) What will be the number of pounds of salt in the
tank at the instant it overflows?

(c) Assume that although the tank is overflowing, brine
solution continues to be pumped in at a rate of
3 gal/min and the well-stirred solution continues to
be pumped out at a rate of 2 gal/min. Devise a
method for determining the number of pounds of
salt in the tank at t � 150 minutes.

(d) Determine the number of pounds of salt in the tank as
t : �. Does your answer agree with your intuition?

(e) Use a graphing utility to plot the graph of A(t) on
the interval [0, 500).

Series Circuits

29. A 30-volt electromotive force is applied to an LR series
circuit in which the inductance is 0.1 henry and the
resistance is 50 ohms. Find the current i(t) if i(0) � 0.
Determine the current as t : �.

30. Solve equation (7) under the assumption that 
E(t) � E0 sin vt and i(0) � i0.

31. A 100-volt electromotive force is applied to an RC
series circuit in which the resistance is 200 ohms and
the capacitance is 10�4 farad. Find the charge q(t) on the
capacitor if q(0) � 0. Find the current i(t).

32. A 200-volt electromotive force is applied to an RC series
circuit in which the resistance is 1000 ohms and the
capacitance is 5 � 10�6 farad. Find the charge q(t) on the
capacitor if i(0) � 0.4. Determine the charge and current
at t � 0.005 s. Determine the charge as t : �.

33. An electromotive force

is applied to an LR series circuit in which the inductance
is 20 henries and the resistance is 2 ohms. Find the
current i(t) if i(0) � 0.

E(t) � �120,

0, 
0 � t � 20

    t � 20

1
2
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34. Suppose an RC series circuit has a variable resistor. If the
resistance at time t is given by R � k1 � k2t, where k1 and
k2 are known positive constants, then (9) becomes

.

If E(t) � E0 and q(0) � q0, where E0 and q0 are
constants, show that

.

Additional Linear Models

35. Air Resistance In (14) of Section 1.3 we saw that
a differential equation describing the velocity v of a
falling mass subject to air resistance proportional to the
instantaneous velocity is

,

where k � 0 is a constant of proportionality. The
positive direction is downward.

(a) Solve the equation subject to the initial condition
v(0) � v0.

(b) Use the solution in part (a) to determine the limit-
ing, or terminal, velocity of the mass. We saw how
to determine the terminal velocity without solving
the DE in Problem 40 in Exercises 2.1.

(c) If the distance s, measured from the point where the
mass was released above ground, is related to ve-
locity v by ds�dt � v(t), find an explicit expression
for s(t) if s(0) � 0.

36. How High?—No Air Resistance Suppose a small
cannonball weighing 16 pounds is shot vertically
upward, as shown in Figure 3.1.10, with an initial veloc-
ity v0 � 300 ft/s. The answer to the question “How high
does the cannonball go?” depends on whether we take
air resistance into account.

(a) Suppose air resistance is ignored. If the positive
direction is upward, then a model for the state of the
cannonball is given by d2s�dt2 � �g (equation
(12) of Section 1.3). Since ds�dt � v(t) the last

m
dv

dt
� mg � kv

q(t) � E0C � (q0 � E0C )� k1

k1 � k2t
�

1/Ck2

(k1 � k2t)
dq

dt
�

1

C
q � E(t)

FIGURE 3.1.10 Find the
maximum height of the cannonball
in Problem 36

ground
level

−mg



differential equation is the same as dv�dt � �g,
where we take g � 32 ft /s2. Find the velocity v(t)
of the cannonball at time t.

(b) Use the result obtained in part (a) to determine the
height s(t) of the cannonball measured from ground
level. Find the maximum height attained by the
cannonball.

37. How High?—Linear Air Resistance Repeat Prob-
lem 36, but this time assume that air resistance is
proportional to instantaneous velocity. It stands to
reason that the maximum height attained by the cannon-
ball must be less than that in part (b) of Problem 36.
Show this by supposing that the constant of proportion-
ality is k � 0.0025. [Hint: Slightly modify the DE in
Problem 35.]

38. Skydiving A skydiver weighs 125 pounds, and her
parachute and equipment combined weigh another 35
pounds. After exiting from a plane at an altitude of
15,000 feet, she waits 15 seconds and opens her para-
chute. Assume that the constant of proportionality in
the model in Problem 35 has the value k � 0.5 during
free fall and k � 10 after the parachute is opened.
Assume that her initial velocity on leaving the plane is
zero. What is her velocity and how far has she traveled
20 seconds after leaving the plane? See Figure 3.1.11.
How does her velocity at 20 seconds compare with her
terminal velocity? How long does it take her to reach the
ground? [Hint: Think in terms of two distinct IVPs.]
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and the downward direction is taken to be the positive
direction.

(a) Solve for v(t) if the raindrop falls from rest.

(b) Reread Problem 34 of Exercises 1.3 and then
show that the radius of the raindrop at time t is
r(t) � (k�r)t � r0.

(c) If r0 � 0.01 ft and r � 0.007 ft 10 seconds after the
raindrop falls from a cloud, determine the time at
which the raindrop has evaporated completely.

40. Fluctuating Population The differential equation
dP�dt � (k cos t)P, where k is a positive constant, is a
mathematical model for a population P(t) that under-
goes yearly seasonal fluctuations. Solve the equation
subject to P(0) � P0. Use a graphing utility to graph the
solution for different choices of P0.

41. Population Model In one model of the changing
population P(t) of a community, it is assumed that

,

where dB�dt and dD�dt are the birth and death rates,
respectively.

(a) Solve for P(t) if dB�dt � k1P and dD�dt � k2P.

(b) Analyze the cases k1 � k2, k1 � k2, and k1 
 k2.

42. Constant-Harvest Model A model that describes the
population of a fishery in which harvesting takes place at
a constant rate is given by

where k and h are positive constants.

(a) Solve the DE subject to P(0) � P0.

(b) Describe the behavior of the population P(t) for in-
creasing time in the three cases P0 �h�k, P0 �h�k,
and 0 
 P0 
 h�k.

(c) Use the results from part (b) to determine whether
the fish population will ever go extinct in finite
time, that is, whether there exists a time T � 0
such that P(T) � 0. If the population goes extinct,
then find T.

43. Drug Dissemination A mathematical model for the
rate at which a drug disseminates into the bloodstream
is given by 

where r and k are positive constants. The function x(t)
describes the concentration of the drug in the blood-
stream at time t.

(a) Since the DE is autonomous, use the phase portrait
concept of Section 2.1 to find the limiting value of
x(t) as t : �.

dx

dt
� r � kx,

dP

dt
� kP � h,

dP

dt
�

dB

dt
�

dD

dt

FIGURE 3.1.11
Find the time to
reach the ground in
Problem 38

free fall

parachute opens

air resistance is 0.5v

air resistance is 10v

t = 20 s

39. Evaporating Raindrop As a raindrop falls, it evapo-
rates while retaining its spherical shape. If we make the
further assumptions that the rate at which the raindrop
evaporates is proportional to its surface area and that air
resistance is negligible, then a model for the velocity
v(t) of the raindrop is

.

Here r is the density of water, r0 is the radius of the rain-
drop at t � 0, k 
 0 is the constant of proportionality,

dv

dt
�

3(k/�)

(k/�)t � r0
v � g



(b) Solve the DE subject to x(0) � 0. Sketch the graph
of x(t) and verify your prediction in part (a). At
what time is the concentration one-half this limiting
value?

44. Memorization When forgetfulness is taken into
account, the rate of memorization of a subject is given by

,

where k1 � 0, k2 � 0, A(t) is the amount memorized
in time t, M is the total amount to be memorized, and
M � A is the amount remaining to be memorized.

(a) Since the DE is autonomous, use the phase portrait
concept of Section 2.1 to find the limiting value of
A(t) as t : �. Interpret the result.

(b) Solve the DE subject to A(0) � 0. Sketch the graph
of A(t) and verify your prediction in part (a).

45. Heart Pacemaker A heart pacemaker, shown in
Figure 3.1.12, consists of a switch, a battery, a capacitor,
and the heart as a resistor. When the switch S is at P, the
capacitor charges; when S is at Q, the capacitor dis-
charges, sending an electrical stimulus to the heart. In
Problem 47 in Exercises 2.3 we saw that during this
time the electrical stimulus is being applied to the heart,
the voltage E across the heart satisfies the linear DE

.

(a) Let us assume that over the time interval of length
t1, 0 
 t 
 t1, the switch S is at position P shown
in Figure 3.1.12 and the capacitor is being
charged. When the switch is moved to position
Q at time t1 the capacitor discharges, sending an
impulse to the heart over the time interval of
length t2: t1 � t 
 t1 � t2. Thus over the initial
charging/discharging interval 0 
 t 
 t1 � t2 the
voltage to the heart is actually modeled by the
piecewise-defined differential equation

.

dE

dt
� �0,

�
1

RC
E,

0 � t 
 t1

t1 � t 
 t1 � t2

dE

dt
� �

1

RC
E

dA

dt
� k1(M � A) � k2A
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By moving S between P and Q, the charging and
discharging over time intervals of lengths t1 and t2

is repeated indefinitely. Suppose t1 � 4 s, t2 � 2 s,
E0 � 12 V, and E(0) � 0, E(4) � 12, E(6) � 0,
E(10) � 12, E(12) � 0, and so on. Solve for E(t)
for 0 � t � 24.

(b) Suppose for the sake of illustration that R � C � 1.
Use a graphing utility to graph the solution for the
IVP in part (a) for 0 � t � 24.

46. Sliding Box (a) A box of mass m slides down an
inclined plane that makes an angle u with the hori-
zontal as shown in Figure 3.1.13. Find a differential
equation for the velocity v(t) of the box at time t in
each of the following three cases:

(i) No sliding friction and no air resistance
(ii) With sliding friction and no air resistance
(iii) With sliding friction and air resistance

In cases (ii) and (iii), use the fact that the force of
friction opposing the motion of the box is mN,
where m is the coefficient of sliding friction and N
is the normal component of the weight of the box.
In case (iii) assume that air resistance is propor-
tional to the instantaneous velocity.

(b) In part (a), suppose that the box weighs 96 pounds,
that the angle of inclination of the plane is u� 30°,
that the coefficient of sliding friction is ,
and that the additional retarding force due to air
resistance is numerically equal to v. Solve the dif-
ferential equation in each of the three cases, assum-
ing that the box starts from rest from the highest
point 50 ft above ground.

1
4

� � 13�4

heart

C

Q

P S
switch

E0

R

FIGURE 3.1.12 Model of a pacemaker in Problem 45

FIGURE 3.1.13 Box sliding down inclined plane in
Problem 46

θ

50 ftmotion

friction

W = mg

47. Sliding Box—Continued (a) In Problem 46 let s(t) be
the distance measured down the inclined plane
from the highest point. Use ds�dt � v(t) and the
solution for each of the three cases in part (b) of
Problem 46 to find the time that it takes the box to
slide completely down the inclined plane. A root-
finding application of a CAS may be useful here.

(b) In the case in which there is friction (m� 0) but no
air resistance, explain why the box will not slide
down the plane starting from rest from the highest



point above ground when the inclination angle u
satisfies tan u � m.

(c) The box will slide downward on the plane when
tan u � m if it is given an initial velocity 
v(0) � v0 � 0. Suppose that and 
u � 23°. Verify that tan u � m. How far will the
box slide down the plane if v0 � 1 ft /s?

(d) Using the values and u� 23°, approxi-
mate the smallest initial velocity v0 that can be given
to the box so that, starting at the highest point 50 ft
above ground, it will slide completely down the in-
clined plane. Then find the corresponding time it
takes to slide down the plane.

� � 13�4

� � 13�4
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48. What Goes Up . . . (a) It is well known that the
model in which air resistance is ignored, part (a) of
Problem 36, predicts that the time ta it takes the
cannonball to attain its maximum height is the
same as the time td it takes the cannonball to fall
from the maximum height to the ground. Moreover,
the magnitude of the impact velocity vi will be the
same as the initial velocity v0 of the cannonball.
Verify both of these results.

(b) Then, using the model in Problem 37 that takes air
resistance into account, compare the value of ta

with td and the value of the magnitude of vi with v0.
A root-finding application of a CAS (or graphic
calculator) may be useful here.

NONLINEAR MODELS

REVIEW MATERIAL
● Equations (5), (6), and (10) of Section 1.3 and Problems 7, 8, 13, 14, and 17 of Exercises 1.3
● Separation of variables in Section 2.2

INTRODUCTION We finish our study of single first-order differential equations with an exam-
ination of some nonlinear models.

3.2

POPULATION DYNAMICS If P(t) denotes the size of a population at time t, the
model for exponential growth begins with the assumption that dP�dt � kP for some
k � 0. In this model, the relative, or specific, growth rate defined by

(1)

is a constant k. True cases of exponential growth over long periods of time are hard
to find because the limited resources of the environment will at some time exert
restrictions on the growth of a population. Thus for other models, (1) can be expected
to decrease as the population P increases in size.

The assumption that the rate at which a population grows (or decreases) is
dependent only on the number P present and not on any time-dependent mechanisms
such as seasonal phenomena (see Problem 31 in Exercises 1.3) can be stated as

. (2)

The differential equation in (2), which is widely assumed in models of animal
populations, is called the density-dependent hypothesis.

LOGISTIC EQUATION Suppose an environment is capable of sustaining no
more than a fixed number K of individuals in its population. The quantity K is
called the carrying capacity of the environment. Hence for the function f in (2) we
have f (K ) � 0, and we simply let f (0) � r. Figure 3.2.1 shows three functions f
that satisfy these two conditions. The simplest assumption that we can make is that
f (P) is linear — that is, f (P) � c1P � c2. If we use the conditions f (0) � r and

dP>dt

P
� f (P)    or    

dP

dt
� Pf (P)

dP>dt

P

P

f(P)

r

K

FIGURE 3.2.1 Simplest assumption
for f (P) is a straight line (blue color)



f (K ) � 0, we find, in turn, c2 � r and c1 � �r�K, and so f takes on the form
f (P) � r � (r�K )P. Equation (2) becomes

. (3)

With constants relabeled, the nonlinear equation (3) is the same as

. (4)

Around 1840 the Belgian mathematician-biologist P. F. Verhulst was concerned
with mathematical models for predicting the human populations of various countries.
One of the equations he studied was (4), where a � 0 and b � 0. Equation (4) came
to be known as the logistic equation, and its solution is called the logistic function.
The graph of a logistic function is called a logistic curve.

The linear differential equation dP�dt � kP does not provide a very accurate
model for population when the population itself is very large. Overcrowded condi-
tions, with the resulting detrimental effects on the environment such as pollution and
excessive and competitive demands for food and fuel, can have an inhibiting effect
on population growth. As we shall now see, the solution of (4) is bounded as t : �.
If we rewrite (4) as dP�dt � aP � bP2, the nonlinear term �bP2, b � 0, can be in-
terpreted as an “inhibition” or “competition” term. Also, in most applications the
positive constant a is much larger than the constant b.

Logistic curves have proved to be quite accurate in predicting the growth
patterns, in a limited space, of certain types of bacteria, protozoa, water fleas
(Daphnia), and fruit flies (Drosophila).

SOLUTION OF THE LOGISTIC EQUATION One method of solving (4) is sepa-
ration of variables. Decomposing the left side of dP�P(a � bP) � dt into partial
fractions and integrating gives

It follows from the last equation that

.

If P(0) � P0, P0 � a�b, we find c1 � P0�(a � bP0), and so after substituting and
simplifying, the solution becomes

. (5)

GRAPHS OF P(t) The basic shape of the graph of the logistic function P(t) can be
obtained without too much effort. Although the variable t usually represents time and
we are seldom concerned with applications in which t 
 0, it is nonetheless of some in-
terest to include this interval in displaying the various graphs of P. From (5) we see that

.P(t) :
aP0

bP0
�

a

b
 as t : �    and    P(t) : 0 as t : ��

P(t) �
aP0

bP0 � (a � bP0)e�at

P(t) �
ac1e

at

1 � bc1eat �
ac1

bc1 � e�at

P

a � bP
� c1e

at.

 ln � P

a � bP � � at � ac

1

a
 ln� P � �

1

a
 ln� a � bP � � t � c

�1>a
P

�
b>a

a � bP�dP � dt

dP

dt
� P(a � bP)

dP

dt
� P�r �

r

K
P�
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The dashed line P � a�2b shown in Figure 3.2.2 corresponds to the ordinate of a
point of inflection of the logistic curve. To show this, we differentiate (4) by the
Product Rule:

.

From calculus recall that the points where d2P�dt2 � 0 are possible points of inflec-
tion, but P � 0 and P � a�b can obviously be ruled out. Hence P � a�2b is the only
possible ordinate value at which the concavity of the graph can change. For 
0 
 P 
 a�2b it follows that P� � 0, and a�2b 
 P 
 a�b implies that P� 
 0.
Thus, as we read from left to right, the graph changes from concave up to concave
down at the point corresponding to P � a�2b. When the initial value satisfies 
0 
 P0 
 a�2b, the graph of P(t) assumes the shape of an S, as we see in
Figure 3.2.2(a). For a�2b 
 P0 
 a�b the graph is still S-shaped, but the point of
inflection occurs at a negative value of t, as shown in Figure 3.2.2(b).

We have already seen equation (4) in (5) of Section 1.3 in the form 
dx�dt � kx(n � 1 � x), k � 0. This differential equation provides a reasonable
model for describing the spread of an epidemic brought about initially by introduc-
ing an infected individual into a static population. The solution x(t) represents the
number of individuals infected with the disease at time t.

EXAMPLE 1 Logistic Growth

Suppose a student carrying a flu virus returns to an isolated college campus of 1000
students. If it is assumed that the rate at which the virus spreads is proportional not
only to the number x of infected students but also to the number of students not
infected, determine the number of infected students after 6 days if it is further
observed that after 4 days x(4) � 50.

SOLUTION Assuming that no one leaves the campus throughout the duration of the
disease, we must solve the initial-value problem

.

By making the identification a � 1000k and b � k, we have immediately from
(5) that

.

Now, using the information x(4) � 50, we determine k from

We find . Thus

.

Finally, .

Additional calculated values of x(t) are given in the table in Figure 3.2.3(b).

x(6) �
1000

1 � 999e�5.9436 � 276 students

x(t) �
1000

1 � 999e�0.9906t

�1000k � 1
4 ln 19

999 � �0.9906

50 �
1000

1 � 999e�4000k
.

x(t) �
1000k

k � 999ke�1000kt �
1000

1 � 999e�1000kt

dx

dt
� kx(1000 � x), x(0) � 1

� 2b2P �P �
a

b��P �
a

2b�
� P(a � bP)(a � 2bP)

d 2P

dt2 � P ��b
dP

dt� � (a � bP)
dP

dt
�

dP

dt
 (a � 2bP)
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P
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a/b
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FIGURE 3.2.2 Logistic curves for
different initial conditions
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t
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(a)

t (days) x (number infected)

4 50 (observed)
5 124
6 276
7 507
8 735
9 882

10 953

(b)

FIGURE 3.2.3 Number of infected
students x(t) approaches 1000 as time
t increases



MODIFICATIONS OF THE LOGISTIC EQUATION There are many variations
of the logistic equation. For example, the differential equations

and (6)

could serve, in turn, as models for the population in a fishery where fish are harvested
or are restocked at rate h. When h � 0 is a constant, the DEs in (6) can be readily an-
alyzed qualitatively or solved analytically by separation of variables. The equations
in (6) could also serve as models of the human population decreased by emigration or
increased by immigration, respectively. The rate h in (6) could be a function of time t
or could be population dependent; for example, harvesting might be done periodi-
cally over time or might be done at a rate proportional to the population P at time t. In
the latter instance, the model would look like P� � P(a � bP) � cP, c � 0. The
human population of a community might change because of immigration in such a
manner that the contribution due to immigration was large when the population P of
the community was itself small but small when P was large; a reasonable model for
the population of the community would then be P� � P(a � bP) � ce�kP, c � 0, k � 0.
See Problem 22 in Exercises 3.2. Another equation of the form given in (2),

, (7)

is a modification of the logistic equation known as the Gompertz differential equa-
tion. This DE is sometimes used as a model in the study of the growth or decline of
populations, the growth of solid tumors, and certain kinds of actuarial predictions.
See Problem 8 in Exercises 3.2.

CHEMICAL REACTIONS Suppose that a grams of chemical A are combined with
b grams of chemical B. If there are M parts of A and N parts of B formed in the com-
pound and X(t) is the number of grams of chemical C formed, then the number of
grams of chemical A and the number of grams of chemical B remaining at time t are,
respectively,

.

The law of mass action states that when no temperature change is involved, the rate
at which the two substances react is proportional to the product of the amounts of A
and B that are untransformed (remaining) at time t:

. (8)

If we factor out M�(M � N) from the first factor and N�(M � N) from the second
and introduce a constant of proportionality k � 0, (8) has the form

, (9)

where a� a(M � N)�M and b� b(M � N)�N. Recall from (6) of Section 1.3 that
a chemical reaction governed by the nonlinear differential equation (9) is said to be a
second-order reaction.

EXAMPLE 2 Second-Order Chemical Reaction

A compound C is formed when two chemicals A and B are combined. The resulting
reaction between the two chemicals is such that for each gram of A, 4 grams of B is
used. It is observed that 30 grams of the compound C is formed in 10 minutes.

dX

dt
� k(� � X)(� � X)

dX

dt
� �a �

M

M � N
X��b �

N

M � N
X�

a �
M

M � N
X    and    b �

N

M � N
X

dP

dt
� P(a � b ln P)

dP

dt
� P(a � bP) � h

dP

dt
� P(a � bP) � h
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Determine the amount of C at time t if the rate of the reaction is proportional to the
amounts of A and B remaining and if initially there are 50 grams of A and 32 grams
of B. How much of the compound C is present at 15 minutes? Interpret the solution
as t : �.

SOLUTION Let X(t) denote the number of grams of the compound C present at
time t. Clearly, X(0) � 0 g and X(10) � 30 g.

If, for example, 2 grams of compound C is present, we must have used,
say, a grams of A and b grams of B, so a � b � 2 and b � 4a. Thus we must use
a � � 2 g of chemical A and b � � 2 g of B. In general, for X grams of
C we must use

.

The amounts of A and B remaining at time t are then

,

respectively.
Now we know that the rate at which compound C is formed satisfies

.

To simplify the subsequent algebra, we factor from the first term and from the
second and then introduce the constant of proportionality:

.

By separation of variables and partial fractions we can write

.

Integrating gives

(10)

When t � 0, X � 0, so it follows at this point that c2 � . Using X � 30 g at t � 10,
we find 210k � ln � 0.1258. With this information we solve the last equation
in (10) for X:

. (11)

The behavior of X as a function of time is displayed in Figure 3.2.4. It is clear from
the accompanying table and (11) that X : 40 as t : �. This means that 40 grams of
compound C is formed, leaving

.50 �
1

5
(40) � 42 g of A    and    32 �

4

5
(40) � 0 g of B

X(t) � 1000
1 � e�0.1258t

25 � 4e�0.1258t

88
25

1
10

25
4

ln
250 � X

40 � X
� 210kt � c1    or    

250 � X

40 � X
� c2e210kt.

�
1

210

250 � X
dX �

1
210

40 � X
dX � k dt

dX

dt
� k(250 � X)(40 � X)

4
5

1
5

dX

dt
� �50 �

1

5
X��32 �

4

5
X�

50 �
1

5
X and 32 �

4

5
X

1

5
X grams of A    and    

4

5
X grams of B

(4
5)8

5(1
5)2

5
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10 20 30 40 t

X
X = 40

(a)

t (min) X (g)

10 30 (measured)
15 34.78
20 37.25
25 38.54
30 39.22
35 39.59

(b)

FIGURE 3.2.4 X(t) starts at 0 and
approaches 40 as t increases



REMARKS

The indefinite integral 	 du�(a2 � u2) can be evaluated in terms of logarithms,
the inverse hyperbolic tangent, or the inverse hyperbolic cotangent. For example,
of the two results

(12)

(13)

(12) may be convenient in Problems 15 and 24 in Exercises 3.2, whereas (13)
may be preferable in Problem 25.

� du

a 2 � u 2 �
1

2a
 ln � a � u

a � u � � c, � u � � a,

� du

a 2 � u 2 �
1

a
tanh�1 u

a
� c, � u � 
 a
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EXERCISES 3.2 Answers to selected odd-numbered problems begin on page ANS-3.

Logistic Equation

1. The number N(t) of supermarkets throughout the country
that are using a computerized checkout system is
described by the initial-value problem

.

(a) Use the phase portrait concept of Section 2.1 to pre-
dict how many supermarkets are expected to adopt
the new procedure over a long period of time. By
hand, sketch a solution curve of the given initial-
value problem.

(b) Solve the initial-value problem and then use a graph-
ing utility to verify the solution curve in part (a).
How many companies are expected to adopt the new
technology when t � 10?

2. The number N(t) of people in a community who are
exposed to a particular advertisement is governed by
the logistic equation. Initially, N(0) � 500, and it is
observed that N(1) � 1000. Solve for N(t) if it is pre-
dicted that the limiting number of people in the commu-
nity who will see the advertisement is 50,000.

3. A model for the population P(t) in a suburb of a large
city is given by the initial-value problem

,

where t is measured in months. What is the limiting
value of the population? At what time will the popula-
tion be equal to one-half of this limiting value?

4. (a) Census data for the United States between 1790 and
1950 are given in Table 3.1. Construct a logistic
population model using the data from 1790, 1850,
and 1910.

dP

dt
� P(10�1 � 10�7 P), P(0) � 5000

dN

dt
� N(1 � 0.0005N ),  N(0) � 1

(b) Construct a table comparing actual census popula-
tion with the population predicted by the model in
part (a). Compute the error and the percentage error
for each entry pair.

TABLE 3.1

Year Population (in millions)

1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.433
1870 38.558
1880 50.156
1890 62.948
1900 75.996
1910 91.972
1920 105.711
1930 122.775
1940 131.669
1950 150.697

Modifications of the Logistic Model

5. (a) If a constant number h of fish are harvested from a
fishery per unit time, then a model for the popula-
tion P(t) of the fishery at time t is given by

,

where a, b, h, and P0 are positive constants.
Suppose a � 5, b � 1, and h � 4. Since the DE is
autonomous, use the phase portrait concept of
Section 2.1 to sketch representative solution curves

dP

dt
� P(a � bP) � h, P(0) � P0



corresponding to the cases P0 � 4, 1 
 P0 
 4, and
0 
 P0 
 1. Determine the long-term behavior of
the population in each case.

(b) Solve the IVP in part (a). Verify the results of your
phase portrait in part (a) by using a graphing utility
to plot the graph of P(t) with an initial condition
taken from each of the three intervals given.

(c) Use the information in parts (a) and (b) to determine
whether the fishery population becomes extinct in
finite time. If so, find that time.

6. Investigate the harvesting model in Problem 5 both
qualitatively and analytically in the case a � 5, b � 1,
h � . Determine whether the population becomes
extinct in finite time. If so, find that time.

7. Repeat Problem 6 in the case a � 5, b � 1, h � 7.

8. (a) Suppose a � b � 1 in the Gompertz differential
equation (7). Since the DE is autonomous, use the
phase portrait concept of Section 2.1 to sketch rep-
resentative solution curves corresponding to the
cases P0 � e and 0 
 P0 
 e.

(b) Suppose a � 1, b � �1 in (7). Use a new phase por-
trait to sketch representative solution curves corre-
sponding to the cases P0 � e�1 and 0 
 P0 
 e�1.

(c) Find an explicit solution of (7) subject to P(0) � P0.

Chemical Reactions

9. Two chemicals A and B are combined to form a chemical
C. The rate, or velocity, of the reaction is proportional to
the product of the instantaneous amounts of A and B not
converted to chemical C. Initially, there are 40 grams of
A and 50 grams of B, and for each gram of B, 2 grams of
A is used. It is observed that 10 grams of C is formed in
5 minutes. How much is formed in 20 minutes? What is
the limiting amount of C after a long time? How much of
chemicals A and B remains after a long time?

10. Solve Problem 9 if 100 grams of chemical A is present
initially. At what time is chemical C half-formed?

Additional Nonlinear Models

11. Leaking Cylindrical Tank A tank in the form of a
right-circular cylinder standing on end is leaking water
through a circular hole in its bottom. As we saw in (10)
of Section 1.3, when friction and contraction of water at
the hole are ignored, the height h of water in the tank is
described by

,

where Aw and Ah are the cross-sectional areas of the
water and the hole, respectively.

(a) Solve the DE if the initial height of the water is H.
By hand, sketch the graph of h(t) and give its interval

dh

dt
� �

Ah

Aw

12gh

25
4
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I of definition in terms of the symbols Aw, Ah, and H.
Use g � 32 ft/s2.

(b) Suppose the tank is 10 feet high and has radius
2 feet and the circular hole has radius inch. If the
tank is initially full, how long will it take to empty?

12. Leaking Cylindrical Tank—Continued When fric-
tion and contraction of the water at the hole are taken
into account, the model in Problem 11 becomes

,

where 0 
 c 
 1. How long will it take the tank in
Problem 11(b) to empty if c � 0.6? See Problem 13 in
Exercises 1.3.

13. Leaking Conical Tank A tank in the form of a right-
circular cone standing on end, vertex down, is leaking
water through a circular hole in its bottom.

(a) Suppose the tank is 20 feet high and has radius
8 feet and the circular hole has radius 2 inches. In
Problem 14 in Exercises 1.3 you were asked to
show that the differential equation governing the
height h of water leaking from a tank is

.

In this model, friction and contraction of the water
at the hole were taken into account with c � 0.6,
and g was taken to be 32 ft/s2. See Figure 1.3.12. If
the tank is initially full, how long will it take the
tank to empty?

(b) Suppose the tank has a vertex angle of 60° and the
circular hole has radius 2 inches. Determine the dif-
ferential equation governing the height h of water.
Use c � 0.6 and g � 32 ft/s2. If the height of the
water is initially 9 feet, how long will it take the
tank to empty?

14. Inverted Conical Tank Suppose that the conical tank
in Problem 13(a) is inverted, as shown in Figure 3.2.5,
and that water leaks out a circular hole of radius 2 inches
in the center of its circular base. Is the time it takes to
empty a full tank the same as for the tank with vertex
down in Problem 13? Take the friction/contraction coef-
ficient to be c � 0.6 and g � 32 ft/s2.

dh

dt
� �

5

6h3/2

dh

dt
� �c

Ah

Aw

12gh

1
2

8 ft

Aw

h
20 ft

FIGURE 3.2.5 Inverted conical tank in Problem 14



15. Air Resistance A differential equation for the veloc-
ity v of a falling mass m subjected to air resistance pro-
portional to the square of the instantaneous velocity is

,

where k � 0 is a constant of proportionality. The posi-
tive direction is downward.

(a) Solve the equation subject to the initial condition
v(0) � v0.

(b) Use the solution in part (a) to determine the limit-
ing, or terminal, velocity of the mass. We saw how
to determine the terminal velocity without solving
the DE in Problem 41 in Exercises 2.1.

(c) If the distance s, measured from the point where
the mass was released above ground, is related to
velocity v by ds�dt � v(t), find an explicit expres-
sion for s(t) if s(0) � 0.

16. How High?—Nonlinear Air Resistance Consider the
16-pound cannonball shot vertically upward in Problems
36 and 37 in Exercises 3.1 with an initial velocity 
v0 � 300 ft/s. Determine the maximum height attained by
the cannonball if air resistance is assumed to be propor-
tional to the square of the instantaneous velocity. Assume
that the positive direction is upward and take k � 0.0003.
[Hint: Slightly modify the DE in Problem 15.]

17. That Sinking Feeling (a) Determine a differential 
equation for the velocity v(t) of a mass m sinking
in water that imparts a resistance proportional to
the square of the instantaneous velocity and also
exerts an upward buoyant force whose magnitude is
given by Archimedes’ principle. See Problem 18 in
Exercises 1.3. Assume that the positive direction is
downward.

(b) Solve the differential equation in part (a).

(c) Determine the limiting, or terminal, velocity of the
sinking mass.

18. Solar Collector The differential equation

describes the shape of a plane curve C that will reflect all
incoming light beams to the same point and could be a
model for the mirror of a reflecting telescope, a satellite
antenna, or a solar collector. See Problem 27 in
Exercises 1.3. There are several ways of solving this DE.

(a) Verify that the differential equation is homogeneous
(see Section 2.5). Show that the substitution y � ux
yields

.
u du

11 � u2 (1 � 11 � u2)
�

dx

x

dy

dx
�

�x � 1x2 � y2

y

m
dv

dt
� mg � kv 2
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Use a CAS (or another judicious substitution) to
integrate the left-hand side of the equation. Show that
the curve C must be a parabola with focus at the ori-
gin and is symmetric with respect to the x-axis.

(b) Show that the first differential equation can also be
solved by means of the substitution u � x2 � y2.

19. Tsunami (a) A simple model for the shape of a
tsunami, or tidal wave, is given by

,

where W(x) � 0 is the height of the wave expressed
as a function of its position relative to a point off-
shore. By inspection, find all constant solutions of
the DE.

(b) Solve the differential equation in part (a). A CAS
may be useful for integration.

(c) Use a graphing utility to obtain the graphs of all
solutions that satisfy the initial condition W(0) � 2.

20. Evaporation An outdoor decorative pond in the shape
of a hemispherical tank is to be filled with water pumped
into the tank through an inlet in its bottom. Suppose that
the radius of the tank is R � 10 ft, that water is pumped
in at a rate of p ft3/min, and that the tank is initially
empty. See Figure 3.2.6. As the tank fills, it loses water
through evaporation. Assume that the rate of evaporation
is proportional to the area A of the surface of the water
and that the constant of proportionality is k � 0.01.

(a) The rate of change dV�dt of the volume of the water
at time t is a net rate. Use this net rate to determine a
differential equation for the height h of the water at
time t. The volume of the water shown in the figure is
V � pRh2 � ph3, where R � 10. Express the area
of the surface of the water A � pr 2 in terms of h.

(b) Solve the differential equation in part (a). Graph the
solution.

(c) If there were no evaporation, how long would it take
the tank to fill?

(d) With evaporation, what is the depth of the water at
the time found in part (c)? Will the tank ever be
filled? Prove your assertion.

1
3

dW

dx
� W 14 � 2W

FIGURE 3.2.6 Decorative pond in Problem 20

Output: water evaporates
                 at rate proportional
                  to area A of surface

Input: water pumped in
         at rate    ft3

A
V

Output: water evaporates
                 at rate proportional
                  to area A of surface

Input: water pumped in
         at rate  ft 3/minπ

(a) hemispherical tank (b) cross-section of tank

R

r

h



Project Problems

21. Regression Line Read the documentation for your
CAS on scatter plots (or scatter diagrams) and least-
squares linear fit. The straight line that best fits a set of
data points is called a regression line or a least squares
line. Your task is to construct a logistic model for
the population of the United States, defining f (P) in (2)
as an equation of a regression line based on the popu-
lation data in the table in Problem 4. One way of 

doing this is to approximate the left-hand side of 

the first equation in (2), using the forward difference
quotient in place of dP�dt:

.

(a) Make a table of the values t, P(t), and Q(t) using
t � 0, 10, 20, . . . , 160 and h � 10. For example, the
first line of the table should contain t � 0, P(0), and
Q(0). With P(0) � 3.929 and P(10) � 5.308,

.

Note that Q(160) depends on the 1960 census popu-
lation P(170). Look up this value.

(b) Use a CAS to obtain a scatter plot of the data 
(P(t), Q(t)) computed in part (a). Also use a CAS to
find an equation of the regression line and to
superimpose its graph on the scatter plot.

(c) Construct a logistic model dP�dt � Pf (P), where
f (P) is the equation of the regression line found in
part (b).

(d) Solve the model in part (c) using the initial condi-
tion P(0) � 3.929.

(e) Use a CAS to obtain another scatter plot, this time
of the ordered pairs (t, P(t)) from your table in
part (a). Use your CAS to superimpose the graph of
the solution in part (d) on the scatter plot.

(f) Look up the U.S. census data for 1970, 1980, and
1990. What population does the logistic model in
part (c) predict for these years? What does the model
predict for the U.S. population P(t) as t : �?

22. Immigration Model (a) In Examples 3 and 4 of
Section 2.1 we saw that any solution P(t) of (4) pos-
sesses the asymptotic behavior P(t) : a�b as
t : � for P0 � a�b and for 0 
 P0 
 a�b; as a
consequence the equilibrium solution P � a�b is
called an attractor. Use a root-finding application of
a CAS (or a graphic calculator) to approximate the
equilibrium solution of the immigration model

.

(b) Use a graphing utility to graph the function 
F(P) � P(1 � P) � 0.3e�P. Explain how this graph

dP

dt
� P(1 � P) � 0.3e�P

Q(0) �
1

P(0)

P(10) � P(0)

10
� 0.035

Q(t) �
1

P(t)

P(t � h) � P(t)

h

1

P

dP

dt
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can be used to determine whether the number found
in part (a) is an attractor.

(c) Use a numerical solver to compare the solution
curves for the IVPs

for P0 � 0.2 and P0 � 1.2 with the solution curves
for the IVPs

for P0 � 0.2 and P0 � 1.2. Superimpose all curves on
the same coordinate axes but, if possible, use a differ-
ent color for the curves of the second initial-value
problem. Over a long period of time, what percentage
increase does the immigration model predict in the
population compared to the logistic model?

23. What Goes Up . . . In Problem 16 let ta be the time it
takes the cannonball to attain its maximum height and
let td be the time it takes the cannonball to fall from the
maximum height to the ground. Compare the value of
ta with the value of td and compare the magnitude of
the impact velocity vi with the initial velocity v0. See
Problem 48 in Exercises 3.1. A root-finding application
of a CAS might be useful here. [Hint: Use the model in
Problem 15 when the cannonball is falling.]

24. Skydiving A skydiver is equipped with a stopwatch
and an altimeter. As shown in Figure 3.2.7, he opens his
parachute 25 seconds after exiting a plane flying at an
altitude of 20,000 feet and observes that his altitude is
14,800 feet. Assume that air resistance is proportional
to the square of the instantaneous velocity, his initial ve-
locity on leaving the plane is zero, and g � 32 ft/s2.

(a) Find the distance s(t), measured from the plane, the
skydiver has traveled during freefall in time t. [Hint:
The constant of proportionality k in the model given
in Problem 15 is not specified. Use the expression
for terminal velocity vt obtained in part (b) of
Problem 15 to eliminate k from the IVP. Then even-
tually solve for vt.]

(b) How far does the skydiver fall and what is his
velocity at t � 15 s?

dP

dt
� P(1 � P) � 0.3e�P, P(0) � P0

dP

dt
� P(1 � P), P(0) � P0

s(t)

25 s

14,800 ft

FIGURE 3.2.7 Skydiver in Problem 24



25. Hitting Bottom A helicopter hovers 500 feet above a
large open tank full of liquid (not water). A dense com-
pact object weighing 160 pounds is dropped (released
from rest) from the helicopter into the liquid. Assume
that air resistance is proportional to instantaneous ve-
locity v while the object is in the air and that viscous
damping is proportional to v2 after the object has en-
tered the liquid. For air take k � , and for the liquid
take k � 0.1. Assume that the positive direction is
downward. If the tank is 75 feet high, determine the
time and the impact velocity when the object hits the
bottom of the tank. [Hint: Think in terms of two distinct
IVPs. If you use (13), be careful in removing the ab-
solute value sign. You might compare the velocity when
the object hits the liquid—the initial velocity for the
second problem—with the terminal velocity vt of the
object falling through the liquid.]

26. Old Man River . . . In Figure 3.2.8(a) suppose that the
y-axis and the dashed vertical line x � 1 represent, re-
spectively, the straight west and east beaches of a river
that is 1 mile wide. The river flows northward with a
velocity vr, where mi/h is a constant. A man
enters the current at the point (1, 0) on the east shore and
swims in a direction and rate relative to the river given by
the vector vs, where the speed mi/h is a constant.
The man wants to reach the west beach exactly at (0, 0)
and so swims in such a manner that keeps his velocity
vector vs always directed toward the point (0, 0). Use
Figure 3.2.8(b) as an aid in showing that a mathematical
model for the path of the swimmer in the river is

[Hint: The velocity v of the swimmer along the path or
curve shown in Figure 3.2.8 is the resultant v � vs � vr.
Resolve vs and vr into components in the x- and 

dy

dx
�

vsy � vr1x2 � y2

vsx
.

|vs| � vs

|vr| � vr

1
4
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y-directions. If are parametric equa-
tions of the swimmer’s path, then .]

27. (a) Solve the DE in Problem 26 subject to y(1) � 0. For
convenience let 

(b) Determine the values of vs for which the swimmer
will reach the point (0, 0) by examining in

the cases k � 1, k � 1, and 0 
 k 
 1.

28. Old Man River Keeps Moving . . . Suppose the man in
Problem 26 again enters the current at (1, 0) but this
time decides to swim so that his velocity vector vs is
always directed toward the west beach. Assume that the
speed mi/h is a constant. Show that a mathe-
matical model for the path of the swimmer in the river
is now

29. The current speed vr of a straight river such as that in
Problem 26 is usually not a constant. Rather, an approxi-
mation to the current speed (measured in miles per hour)
could be a function such as 

whose values are small at the shores (in this
case, vr(0) � 0 and vr(1) � 0) and largest in the middle of
the river. Solve the DE in Problem 28 subject to y(1) � 0,
where vs � 2 mi/h and vr(x) is as given. When the swim-
mer makes it across the river, how far will he have to walk
along the beach to reach the point (0, 0)?

30. Raindrops Keep Falling . . . When a bottle of liquid
refreshment was opened recently, the following factoid
was found inside the bottle cap:

The average velocity of a falling raindrop is 7 miles/hour.

A quick search of the Internet found that meteorologist
Jeff Haby offers the additional information that an
“average” spherical raindrop has a radius of 0.04 in. and
an approximate volume of 0.000000155 ft3. Use this data
and, if need be, dig up other data and make other reason-
able assumptions to determine whether “average velocity
of . . . 7 mph” is consistent with the models in Problems
35 and 36 in Exercises 3.1 and Problem 15 in this exer-
cise set. Also see Problem 34 in Exercises 1.3.

31. Time Drips By The clepsydra, or water clock, was a
device that the ancient Egyptians, Greeks, Romans, and
Chinese used to measure the passage of time by observ-
ing the change in the height of water that was permitted
to flow out of a small hole in the bottom of a container
or tank.

(a) Suppose a tank is made of glass and has the shape of
a right-circular cylinder of radius 1 ft. Assume that
h(0) � 2 ft corresponds to water filled to the top of
the tank, a hole in the bottom is circular with radius

in., g � 32 ft/s2, and c � 0.6. Use the differential
equation in Problem 12 to find the height h(t) of the
water.

1
32

0 � x � 1,
vr(x) � 30x(1 � x),

dy

dx
� �

vr

vs

.

|vs| � vs

lim
x : 0�

y(x)

k � vr>vs.

v � (dx>dt, dy>dt)
x � x(t), y � y(t)

y

(0, 0) (1, 0)

y(t)

x(t)

θ

(x(t), y(t))

vr

west
beach

east
beach

swimmer

current

x

y

(0, 0) (1, 0)

vs

vr

x

(a)

(b)

FIGURE 3.2.8 Path of swimmer in Problem 26



(b) For the tank in part (a), how far up from its bottom
should a mark be made on its side, as shown in
Figure 3.2.9, that corresponds to the passage of one
hour? Next determine where to place the marks
corresponding to the passage of 2 hr, 3 hr, . . . , 12 hr.
Explain why these marks are not evenly spaced.
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Contributed Problem

34. A Logistic Model of
Sunflower Growth This
problem involves planting
a sunflower seed and plotting the height of the sunflower
versus time. It should take 3–4 months to gather the data,
so start early! You can substitute a different plant if you
like, but you may then have to adjust the time scale and
the height scale appropriately.

(a) You are going to be creating a plot of the sunflower
height (in cm) versus the time (in days). Before be-
ginning, guess what this curve is going to look like,
and fill in your guess on the grid.21 hour

2 hours

1

FIGURE 3.2.9 Clepsydra in Problem 31

32. (a) Suppose that a glass tank has the shape of a cone with
circular cross section as shown in Figure 3.2.10. As
in part (a) of Problem 31, assume that h(0) � 2 ft
corresponds to water filled to the top of the tank,
a hole in the bottom is circular with radius in.,
g � 32 ft/s2, and c � 0.6. Use the differential equa-
tion in Problem 12 to find the height h(t) of the
water.

(b) Can this water clock measure 12 time intervals
of length equal to 1 hour? Explain using sound
mathematics.

1
32

2

1

FIGURE 3.2.10 Clepsydra in Problem 32

33. Suppose that r � f(h) defines the shape of a water clock
for which the time marks are equally spaced. Use the
differential equation in Problem 12 to find f(h) and
sketch a typical graph of h as a function of r. Assume
that the cross-sectional area Ah of the hole is constant.
[Hint: In this situation dh�dt � �a, where a � 0 is a
constant.]

height

0 10 20 30 40 50
days

60 70 80 90 100

400

300

200

100

(b) Now plant your sunflower. Take a height measure-
ment the first day that your flower sprouts, and call
that day 0. Then take a measurement at least once a
week until it is time to start writing up your data.

(c) Do your data points more closely resemble expo-
nential growth or logistic growth? Why? 

(d) If your data more closely resemble exponential
growth, the equation for height versus time will
be dH�dt � kH. If your data more closely resemble
logistic growth, the equation for height versus
time will be dH�dt � kH (C � H). What is the phys-
ical meaning of C? Use your data to estimate C.

(e) We now experimentally determine k. At each of
your t values, estimate dH�dt by using difference

quotients. Then use the fact that to

get a best estimate of k.

(f) Solve your differential equation. Now graph your
solution along with the data points. Did you come
up with a good model? Do you think that k will
change if you plant a different sunflower next year?

Contributed Problem

35. Torricelli’s Law If we
punch a hole in a bucket
full of water, the fluid
drains at a rate governed by Torricelli’s law, which states
that the rate of change of volume is proportional to the
square root of the height of the fluid.

k �
dH>dt

H(C � H)

Michael Prophet, Ph.D
Doug Shaw, Ph.D
Associate Professors
Mathematics Department
University of Northern Iowa

Ben Fitzpatrick, Ph.D
Clarence Wallen Chair
of Mathematics 
Mathematics Department
Loyola Marymount University



The rate equation given in Figure 3.2.11 arises from
Bernoulli’s principle in fluid dynamics, which states
that the quantity P � �v2 � �gh is constant. Here P is
pressure, is fluid density, v is velocity, and g is the
acceleration due to gravity. Comparing the top of the
fluid, at the height h, to the fluid at the hole, we have

If the pressure at the top and the pressure at the bottom
are both atmospheric pressure and if the drainage hole
radius is much less than the radius of the bucket, then
Ptop � Phole and vtop � 0, so leads to

Torricelli’s law: Since , we

have the differential equation

dV

dt
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In this problem, we seek a comparison of
Torricelli’s differential equation with actual data.

(a) If the water is at a height h, we can find the volume
of water in the bucket by the formula 

in which Here RT and RB denote
the top and bottom radii of the bucket, respectively,
and H denotes the height of the bucket. Taking this
formula as given, differentiate to find a relationship
between the rates dV�dt and dh�dt.

(b) Use the relationship derived in part (a) to find a
differential equation for h(t) (that is, you should
have an independent variable t, a dependent variable
h, and constants in the equation).

(c) Solve this differential equation using separation of
variables. It is relatively straightforward to deter-
mine time as a function of height, but solving for
height as a function of time may be difficult.

(d) Obtain a flowerpot, fill it with water, and watch it
drain. At a fixed set of heights, record the time at
which the water reaches the height. Compare the
results to the differential equation’s solution.

(e) It has been observed that a more accurate differen-
tial equation is

Solve this differential equation and compare to the
results of part (d).

dV

dt
� �(0.84)Ahole1gh.

m � (RT � RB)>H.

V(h) �
p

3m
[(mh � RB)3 � R3

B]

bucket height
Hwater height

h(t)

rate
            equation: = –Ahole 2ghdV

dt

FIGURE 3.2.11 Bucket Drainage

MODELING WITH SYSTEMS OF FIRST-ORDER DEs

REVIEW MATERIAL
● Section 1.3

INTRODUCTION This section is similar to Section 1.3 in that we are just going to discuss cer-
tain mathematical models, but instead of a single differential equation the models will be systems of
first-order differential equations. Although some of the models will be based on topics that we
explored in the preceding two sections, we are not going to develop any general methods for solv-
ing these systems. There are reasons for this: First, we do not possess the necessary mathematical
tools for solving systems at this point. Second, some of the systems that we discuss—notably the
systems of nonlinear first-order DEs—simply cannot be solved analytically. We shall examine
solution methods for systems of linear DEs in Chapters 4, 7, and 8.

3.3

LINEAR/NONLINEAR SYSTEMS We have seen that a single differential equation
can serve as a mathematical model for a single population in an environment. But if
there are, say, two interacting and perhaps competing species living in the same
environment (for example, rabbits and foxes), then a model for their populations x(t)



and y(t) might be a system of two first-order differential equations such as

.

(1)

When g1 and g2 are linear in the variables x and y—that is, g1 and g2 have the forms

,

where the coefficients ci could depend on t—then (1) is said to be a linear system.
A system of differential equations that is not linear is said to be nonlinear.

RADIOACTIVE SERIES In the discussion of radioactive decay in Sections 1.3
and 3.1 we assumed that the rate of decay was proportional to the number A(t) of
nuclei of the substance present at time t. When a substance decays by radioactivity,
it usually doesn’t just transmute in one step into a stable substance; rather, the first
substance decays into another radioactive substance, which in turn decays into a
third substance, and so on. This process, called a radioactive decay series, con-
tinues until a stable element is reached. For example, the uranium decay series is
U-238 : Th-234 : 	 	 	 : Pb-206, where Pb-206 is a stable isotope of lead.
The half-lives of the various elements in a radioactive series can range from
billions of years (4.5 � 109 years for U-238) to a fraction of a second. Suppose a
radioactive series is described schematically by , where k1 � �l1 
 0
and k2 � �l2 
 0 are the decay constants for substances X and Y, respectively,
and Z is a stable element. Suppose, too, that x(t), y(t), and z(t) denote amounts of
substances X, Y, and Z, respectively, remaining at time t. The decay of element X is
described by

,

whereas the rate at which the second element Y decays is the net rate

,

since Y is gaining atoms from the decay of X and at the same time losing atoms
because of its own decay. Since Z is a stable element, it is simply gaining atoms from
the decay of element Y:

.

In other words, a model of the radioactive decay series for three elements is the lin-
ear system of three first-order differential equations

(2)

MIXTURES Consider the two tanks shown in Figure 3.3.1. Let us suppose for the
sake of discussion that tank A contains 50 gallons of water in which 25 pounds of salt
is dissolved. Suppose tank B contains 50 gallons of pure water. Liquid is pumped
into and out of the tanks as indicated in the figure; the mixture exchanged between
the two tanks and the liquid pumped out of tank B are assumed to be well stirred.

dz

dt
� �2y.

dy

dt
� �1x � �2y

dx

dt
� ��1x
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dt
� �2y

dy

dt
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X
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g1(t, x, y) � c1 x � c2 y � f1(t)    and    g2(t, x, y) � c3 x � c4 y � f2(t)

dy

dt
� g2(t, x, y)

dx

dt
� g1(t, x, y)
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We wish to construct a mathematical model that describes the number of pounds x1(t)
and x2(t) of salt in tanks A and B, respectively, at time t.

By an analysis similar to that on page 23 in Section 1.3 and Example 5 of
Section 3.1 we see that the net rate of change of x1(t) for tank A is
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mixture
3 gal/min

mixture
4 gal/min

BA

pure water
3 gal/min

mixture
1 gal/min

FIGURE 3.3.1 Connected mixing tanks

dx1–––
dt

� (3 gal/min) � (0 lb/gal) � (1 gal/min) � (      lb/gal) � (4 gal/min) � (      lb/gal)
� � x1 � x2.

input rate
of salt

output rate
of salt

x2–––
50

1
–––
50

x1–––
50

2
–––
25

Similarly, for tank B the net rate of change of x2(t) is

Thus we obtain the linear system

(3)

Observe that the foregoing system is accompanied by the initial conditions x1(0) � 25,
x2(0) � 0.

A PREDATOR-PREY MODEL Suppose that two different species of animals
interact within the same environment or ecosystem, and suppose further that the
first species eats only vegetation and the second eats only the first species. In other
words, one species is a predator and the other is a prey. For example, wolves hunt
grass-eating caribou, sharks devour little fish, and the snowy owl pursues an arctic
rodent called the lemming. For the sake of discussion, let us imagine that the preda-
tors are foxes and the prey are rabbits.

Let x(t) and y(t) denote the fox and rabbit populations, respectively, at time t.
If there were no rabbits, then one might expect that the foxes, lacking an adequate
food supply, would decline in number according to

. (4)

When rabbits are present in the environment, however, it seems reasonable that the
number of encounters or interactions between these two species per unit time is
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jointly proportional to their populations x and y—that is, proportional to the product
xy. Thus when rabbits are present, there is a supply of food, so foxes are added to the
system at a rate bxy, b � 0. Adding this last rate to (4) gives a model for the fox
population:

(5)

On the other hand, if there were no foxes, then the rabbits would, with an added
assumption of unlimited food supply, grow at a rate that is proportional to the num-
ber of rabbits present at time t:

. (6)

But when foxes are present, a model for the rabbit population is (6) decreased by
cxy, c � 0—that is, decreased by the rate at which the rabbits are eaten during their
encounters with the foxes:

(7)

Equations (5) and (7) constitute a system of nonlinear differential equations

(8)

where a, b, c, and d are positive constants. This famous system of equations is known
as the Lotka-Volterra predator-prey model.

Except for two constant solutions, x(t) � 0, y(t) � 0 and x(t) � d�c, y(t) � a�b,
the nonlinear system (8) cannot be solved in terms of elementary functions. However,
we can analyze such systems quantitatively and qualitatively. See Chapter 9,
“Numerical Solutions of Ordinary Differential Equations,” and Chapter 10, “Plane
Autonomous Systems.”*

EXAMPLE 1 Predator-Prey Model

Suppose

represents a predator-prey model. Because we are dealing with populations, we have
x(t)  0, y(t)  0. Figure 3.3.2, obtained with the aid of a numerical solver, shows typ-
ical population curves of the predators and prey for this model superimposed on the
same coordinate axes. The initial conditions used were x(0) � 4, y(0) � 4. The curve
in red represents the population x(t) of the predators (foxes), and the blue curve is
the population y(t) of the prey (rabbits). Observe that the model seems to predict that
both populations x(t) and y(t) are periodic in time. This makes intuitive sense because
as the number of prey decreases, the predator population eventually decreases because
of a diminished food supply; but attendant to a decrease in the number of predators is
an increase in the number of prey; this in turn gives rise to an increased number of
predators, which ultimately brings about another decrease in the number of prey.

dy

dt
� 4.5y � 0.9xy

dx

dt
� �0.16x � 0.08xy

dy

dt
� dy � cxy � y(d � cx),

dx

dt
� �ax � bxy � x(�a � by)

dy

dt
� dy � cxy.

dy

dt
� dy,    d � 0

dx

dt
� �ax � bxy.
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*Chapters 10–15 are in the expanded version of this text, Differential Equations with Boundary-Value
Problems.

FIGURE 3.3.2 Populations of
predators (red) and prey (blue) appear to
be periodic
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COMPETITION MODELS Now suppose two different species of animals occupy
the same ecosystem, not as predator and prey but rather as competitors for the same
resources (such as food and living space) in the system. In the absence of the other,
let us assume that the rate at which each population grows is given by

, (9)

respectively.
Since the two species compete, another assumption might be that each of these

rates is diminished simply by the influence, or existence, of the other population.
Thus a model for the two populations is given by the linear system

(10)

,

where a, b, c, and d are positive constants.
On the other hand, we might assume, as we did in (5), that each growth rate in

(9) should be reduced by a rate proportional to the number of interactions between
the two species:

(11)
.

Inspection shows that this nonlinear system is similar to the Lotka-Volterra predator-
prey model. Finally, it might be more realistic to replace the rates in (9), which
indicate that the population of each species in isolation grows exponentially, with rates
indicating that each population grows logistically (that is, over a long time the popu-
lation is bounded):

. (12)

When these new rates are decreased by rates proportional to the number of interac-
tions, we obtain another nonlinear model:

(13)

,

where all coefficients are positive. The linear system (10) and the nonlinear systems
(11) and (13) are, of course, called competition models.

NETWORKS An electrical network having more than one loop also gives rise to
simultaneous differential equations. As shown in Figure 3.3.3, the current i1(t) splits
in the directions shown at point B1, called a branch point of the network. By
Kirchhoff’s first law we can write

. (14)

We can also apply Kirchhoff’s second law to each loop. For loop A1B1B2A2A1,
summing the voltage drops across each part of the loop gives

. (15)

Similarly, for loop A1B1C1C2B2A2A1 we find

. (16)E(t) � i1R1 � L2
di3

dt

E(t) � i1R1 � L1
di2

dt
� i2R2

i1(t) � i2(t) � i3(t)

dy

dt
� a2y � b2y 2 � c2xy � y(a2 � b2y � c2x)

dx

dt
� a1x � b1x2 � c1xy � x(a1 � b1x � c1y)

dx

dt
� a1x � b1x2    and    

dy

dt
� a2 y � b2 y2

dy

dt
� cy � dxy

dx

dt
� ax � bxy

dy

dt
� cy � dx

dx

dt
� ax � by

dx

dt
� ax    and    

dy

dt
� cy
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FIGURE 3.3.3 Network whose model
is given in (17)



Using (14) to eliminate i1 in (15) and (16) yields two linear first-order equations for
the currents i2(t) and i3(t):

(17)

.

We leave it as an exercise (see Problem 14) to show that the system of differential
equations describing the currents i1(t) and i2(t) in the network containing a resistor, an
inductor, and a capacitor shown in Figure 3.3.4 is

(18)

RC
di2

dt
� i2 � i1 � 0.

L
di1

dt
� Ri2 � E(t)

L2
di3

dt
� R1i2 � R1i3 � E(t)

L1
di2

dt
�  (R1 � R2)i2 � R1i3 � E(t)
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FIGURE 3.3.4 Network whose
model is given in (18)
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EXERCISES 3.3 Answers to selected odd-numbered problems begin on page ANS-4.

Radioactive Series

1. We have not discussed methods by which systems
of first-order differential equations can be solved.
Nevertheless, systems such as (2) can be solved with no
knowledge other than how to solve a single linear first-
order equation. Find a solution of (2) subject to the
initial conditions x(0) � x0, y(0) � 0, z(0) � 0.

2. In Problem 1 suppose that time is measured in days,
that the decay constants are k1 � �0.138629 and 
k2 � �0.004951, and that x0 � 20. Use a graphing utility
to obtain the graphs of the solutions x(t), y(t), and z(t)
on the same set of coordinate axes. Use the graphs to
approximate the half-lives of substances X and Y.

3. Use the graphs in Problem 2 to approximate the times
when the amounts x(t) and y(t) are the same, the
times when the amounts x(t) and z(t) are the same, and
the times when the amounts y(t) and z(t) are the same.
Why does the time that is determined when the amounts
y(t) and z(t) are the same make intuitive sense?

4. Construct a mathematical model for a radioactive series
of four elements W, X, Y, and Z, where Z is a stable
element.

Mixtures

5. Consider two tanks A and B, with liquid being pumped in
and out at the same rates, as described by the system of
equations (3). What is the system of differential equations
if, instead of pure water, a brine solution containing
2 pounds of salt per gallon is pumped into tank A?

6. Use the information given in Figure 3.3.5 to construct a
mathematical model for the number of pounds of salt
x1(t), x2(t), and x3(t) at time t in tanks A, B, and C,
respectively.

mixture
5 gal/min

mixture
6 gal/min

mixture
4 gal/min

pure water
4 gal/min

B
100 gal

C
100 gal

A
100 gal

mixture
2 gal/min

mixture
1 gal/min

FIGURE 3.3.5 Mixing tanks in Problem 6

7. Two very large tanks A and B are each partially filled
with 100 gallons of brine. Initially, 100 pounds of salt
is dissolved in the solution in tank A and 50 pounds of
salt is dissolved in the solution in tank B. The system
is closed in that the well-stirred liquid is pumped only
between the tanks, as shown in Figure 3.3.6.

mixture
2 gal/min

mixture
3 gal/min

B
100 gal

A
100 gal

FIGURE 3.3.6 Mixing tanks in Problem 7

(a) Use the information given in the figure to construct
a mathematical model for the number of pounds
of salt x1(t) and x2(t) at time t in tanks A and B,
respectively.



(b) Find a relationship between the variables x1(t)
and x2(t) that holds at time t. Explain why this
relationship makes intuitive sense. Use this rela-
tionship to help find the amount of salt in tank B at
t � 30 min.

8. Three large tanks contain brine, as shown in Figure 3.3.7.
Use the information in the figure to construct a mathe-
matical model for the number of pounds of salt x1(t),
x2(t), and x3(t) at time t in tanks A, B, and C, respectively.
Without solving the system, predict limiting values of
x1(t), x2(t), and x3(t) as t : �.
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11. Consider the competition model defined by

,

where the populations x(t) and y(t) are measured in
thousands and t in years. Use a numerical solver to
analyze the populations over a long period of time for
each of the following cases:
(a) x(0) � 1, y(0) � 1
(b) x(0) � 4, y(0) � 10
(c) x(0) � 9, y(0) � 4
(d) x(0) � 5.5, y(0) � 3.5

Networks

12. Show that a system of differential equations that
describes the currents i2(t) and i3(t) in the electrical
network shown in Figure 3.3.8 is

�R1
di2

dt
� R2

di3

dt
�

1

C
i3 � 0.

L
di2

dt
� L

di3

dt
� R1i2 � E(t)

dy

dt
� y(1.7 � 0.1y � 0.15x)

dx

dt
� x(1 � 0.1x � 0.05y)

FIGURE 3.3.7 Mixing tanks in Problem 8

mixture
4 gal/min

mixture
4 gal/min

mixture
4 gal/min

pure water
4 gal/min

B
150 gal

C
100 gal

A
200 gal

Predator-Prey Models

9. Consider the Lotka-Volterra predator-prey model
defined by

,

where the populations x(t) (predators) and y(t) (prey)
are measured in thousands. Suppose x(0) � 6 and 
y(0) � 6. Use a numerical solver to graph x(t) and y(t).
Use the graphs to approximate the time t � 0 when
the two populations are first equal. Use the graphs to
approximate the period of each population.

Competition Models

10. Consider the competition model defined by

,

where the populations x(t) and y(t) are measured in
thousands and t in years. Use a numerical solver to
analyze the populations over a long period of time for
each of the following cases:
(a) x(0) � 1.5, y(0) � 3.5
(b) x(0) � 1, y(0) � 1
(c) x(0) � 2, y(0) � 7
(d) x(0) � 4.5, y(0) � 0.5

dy

dt
� y(1 � 0.1y � 0.3x)

dx

dt
� x(2 � 0.4x � 0.3y)

dy

dt
� 0.2y � 0.025xy

dx

dt
� �0.1x � 0.02xy

R1E

i1 L i2
i3

C

R2

FIGURE 3.3.8 Network in Problem 12

i1 i2

i3R1

R2 R3

E L1 L2

FIGURE 3.3.9 Network in Problem 13

13. Determine a system of first-order differential equations
that describes the currents i2(t) and i3(t) in the electrical
network shown in Figure 3.3.9.

14. Show that the linear system given in (18) describes
the currents i1(t) and i2(t) in the network shown in
Figure 3.3.4. [Hint: dq�dt � i3.]



Additional Nonlinear Models

15. SIR Model A communicable disease is spread through-
out a small community, with a fixed population of n peo-
ple, by contact between infected individuals and people
who are susceptible to the disease. Suppose that everyone
is initially susceptible to the disease and that no one leaves
the community while the epidemic is spreading. At time t,
let s(t), i(t), and r(t) denote, in turn, the number of people
in the community (measured in hundreds) who are sus-
ceptible to the disease but not yet infected with it, the
number of people who are infected with the disease, and
the number of people who have recovered from the dis-
ease. Explain why the system of differential equations

where k1 (called the infection rate) and k2 (called the
removal rate) are positive constants, is a reasonable
mathematical model, commonly called a SIR model,
for the spread of the epidemic throughout the commu-
nity. Give plausible initial conditions associated with
this system of equations.

16. (a) In Problem 15, explain why it is sufficient to
analyze only

.

(b) Suppose k1 � 0.2, k2 � 0.7, and n � 10. Choose
various values of i(0) � i0, 0 
 i0 
 10. Use a
numerical solver to determine what the model pre-
dicts about the epidemic in the two cases s0 � k2�k1

and s0 � k2�k1. In the case of an epidemic, estimate
the number of people who are eventually infected.

Project Problems

17. Concentration of a Nutrient Suppose compartments
A and B shown in Figure 3.3.10 are filled with fluids and

di

dt
� �k2i � k1si

ds

dt
� �k1si

dr

dt
� k2i,

di

dt
� �k2i � k1si

ds

dt
� �k1si
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are separated by a permeable membrane. The figure is
a compartmental representation of the exterior and
interior of a cell. Suppose, too, that a nutrient necessary
for cell growth passes through the membrane. A model
for the concentrations x(t) and y(t) of the nutrient in
compartments A and B, respectively, at time t is given by
the linear system of differential equations

,

where VA and VB are the volumes of the compartments,
and k� 0 is a permeability factor. Let x(0) � x0 and
y(0) � y0 denote the initial concentrations of the nutri-
ent. Solely on the basis of the equations in the system
and the assumption x0 � y0 � 0, sketch, on the same set
of coordinate axes, possible solution curves of the sys-
tem. Explain your reasoning. Discuss the behavior of
the solutions over a long period of time.

18. The system in Problem 17, like the system in (2), can be
solved with no advanced knowledge. Solve for x(t) and
y(t) and compare their graphs with your sketches in
Problem 17. Determine the limiting values of x(t) and
y(t) as t : �. Explain why the answer to the last ques-
tion makes intuitive sense.

19. Solely on the basis of the physical description of the
mixture problem on page 107 and in Figure 3.3.1, dis-
cuss the nature of the functions x1(t) and x2(t). What is
the behavior of each function over a long period of
time? Sketch possible graphs of x1(t) and x2(t). Check
your conjectures by using a numerical solver to obtain
numerical solution curves of (3) subject to the initial
conditions x1(0) � 25, x2(0) � 0.

20. Newton’s Law of Cooling/Warming As shown in
Figure 3.3.11, a small metal bar is placed inside con-
tainer A, and container A then is placed within a much
larger container B. As the metal bar cools, the ambient
temperature TA(t) of the medium within container A
changes according to Newton’s law of cooling. As con-
tainer A cools, the temperature of the medium inside
container B does not change significantly and can be
considered to be a constant TB. Construct a mathematical

dy

dt
�

�

VB

(x � y)

dx

dt
�

�

VA

(y � x)

FIGURE 3.3.10 Nutrient flow through a membrane in
Problem 17
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FIGURE 3.3.11 Container within a container in Problem 20
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metal
bar



model for the temperatures T(t) and TA(t), where T(t) is
the temperature of the metal bar inside container A. As in
Problems 1 and 18, this model can be solved by using
prior knowledge. Find a solution of the system subject to
the initial conditions T(0) � T0, TA(0) � T1.

Contributed Problem

21. A Mixing Problem A
pair of tanks are connected
as shown in Figure 3.3.12.
At t � 0, tank A contains
500 liters of liquid, 200 of which are ethanol, and tank B
contains 100 liters of liquid, 7 of which are ethanol.
Beginning at t � 0, 3 liters of 20% ethanol solution are
added per minute. An additional 2 L/min are pumped
from tank B back into tank A. The result is continuously
mixed, and 5 L/min are pumped into tank B. The con-
tents of tank B are also continuously mixed. In addition
to the 2 liters that are returned to tank A, 3 L/min are dis-
charged from the system. Let P(t) and Q(t) denote the
number of liters of ethanol in tanks A and B at time t. We
wish to find P(t). Using the principle that 

rate of change � input rate of ethanol � output rate of ethanol,

we obtain the system of first-order differential equations

(19)

(20)

(a) Qualitatively discuss the behavior of the system.
What is happening in the short term? What happens
in the long term?

dQ

dt
� 5� P

500�� 5� Q

100��
P

100
�

Q

20
.

dP

dt
� 3(0.2) � 2� Q

100�� 5� P

500�� 0.6 �
Q

50
�

P

100
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FIGURE 3.3.12 Mixing tanks in Problem 21
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3 L/min

mixture
2 L/min

B
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A
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ethanol solution
3 L/min

mixture
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(b) We now attempt to solve this system. When (19) is
differentiated with respect to t, we obtain

Substitute (20) into this equation and simplify.

(c) Show that when we solve (19) for Q and substitute
it into our answer in part (b), we obtain

(d) We are given that P(0) � 200. Show that
Then solve the differential equation in

part (c) subject to these initial conditions.

(e) Substitute the solution of part (d) back into (19) and
solve for Q(t).

(f) What happens to P(t) and Q(t) as ?t : �

P�(0) � �63
50.

100
d 2P

dt 2 � 6
dP

dt
�

3

100
P � 3.

d 2P

dt 2 �
1

50

dQ

dt
�

1

100

dP

dt
.

CHAPTER 3 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-4.

Answer Problems 1 and 2 without referring back to the text.
Fill in the blank or answer true or false.

1. If P(t) � P0e0.15t gives the population in an environment
at time t, then a differential equation satisfied by P(t)
is .

2. If the rate of decay of a radioactive substance is
proportional to the amount A(t) remaining at time t, then
the half-life of the substance is necessarily T � �(ln 2)�k.
The rate of decay of the substance at time t � T is one-
half the rate of decay at t � 0.

3. In March 1976 the world population reached 4 billion.
At that time, a popular news magazine predicted that
with an average yearly growth rate of 1.8%, the world
population would be 8 billion in 45 years. How does this
value compare with the value predicted by the model

that assumes that the rate of increase in population is
proportional to the population present at time t?

4. Air containing 0.06% carbon dioxide is pumped into a
room whose volume is 8000 ft3. The air is pumped in at
a rate of 2000 ft3/min, and the circulated air is then
pumped out at the same rate. If there is an initial con-
centration of 0.2% carbon dioxide in the room, deter-
mine the subsequent amount in the room at time t. What
is the concentration of carbon dioxide at 10 minutes?
What is the steady-state, or equilibrium, concentration
of carbon dioxide?

5. Solve the differential equation

dy

dx
� � y

1s2 � y2



of the tractrix. See Problem 26 in Exercises 1.3. Assume
that the initial point on the y-axis in (0, 10) and that the
length of the rope is x � 10 ft.

6. Suppose a cell is suspended in a solution containing a
solute of constant concentration Cs. Suppose further
that the cell has constant volume V and that the area of
its permeable membrane is the constant A. By Fick’s
law the rate of change of its mass m is directly propor-
tional to the area A and the difference Cs � C(t), where
C(t) is the concentration of the solute inside the cell
at time t. Find C(t) if m � V � C(t) and C(0) � C0. See
Figure 3.R.1.
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9. An LR series circuit has a variable inductor with the
inductance defined by

.

Find the current i(t) if the resistance is 0.2 ohm, the
impressed voltage is E(t) � 4, and i(0) � 0. Graph i(t).

10. A classical problem in the calculus of variations is to
find the shape of a curve � such that a bead, under the
influence of gravity, will slide from point A(0, 0) to
point B(x1, y1) in the least time. See Figure 3.R.2. It can
be shown that a nonlinear differential for the shape y(x)
of the path is y[1 � (y�)2] � k, where k is a constant.
First solve for dx in terms of y and dy, and then use the
substitution y � k sin2u to obtain a parametric form of
the solution. The curve � turns out to be a cycloid.

L(t) � �1 �
1

10
t,

0,

0 � t 
 10

t  10

concentration
C(t)

concentration
Cs

molecules of solute
diffusing through
cell membrane

FIGURE 3.R.1 Cell in Problem 6

7. Suppose that as a body cools, the temperature of the
surrounding medium increases because it completely
absorbs the heat being lost by the body. Let T(t) and
Tm(t) be the temperatures of the body and the medium
at time t, respectively. If the initial temperature of the
body is T1 and the initial temperature of the medium
is T2, then it can be shown in this case that Newton’s
law of cooling is dT�dt � k(T � Tm), k 
 0, where
Tm � T2 � B(T1 � T ), B � 0 is a constant.

(a) The foregoing DE is autonomous. Use the phase
portrait concept of Section 2.1 to determine the
limiting value of the temperature T(t) as t : �.
What is the limiting value of Tm(t) as t : �?

(b) Verify your answers in part (a) by actually solving
the differential equation.

(c) Discuss a physical interpretation of your answers in
part (a).

8. According to Stefan’s law of radiation the absolute
temperature T of a body cooling in a medium at constant
absolute temperature Tm is given by

,

where k is a constant. Stefan’s law can be used over a
greater temperature range than Newton’s law of cooling.

(a) Solve the differential equation.

(b) Show that when T � Tm is small in comparison to
Tm then Newton’s law of cooling approximates
Stefan’s law. [Hint: Think binomial series of the
right-hand side of the DE.]

dT

dt
� k(T 4 � T 4

m )

FIGURE 3.R.2 Sliding bead in Problem 10

x

y

B(x1, y1)

A(0, 0)

bead

mg

11. A model for the populations of two interacting species
of animals is

Solve for x and y in terms of t.

12. Initially, two large tanks A and B each hold 100 gallons
of brine. The well-stirred liquid is pumped between the
tanks as shown in Figure 3.R.3. Use the information
given in the figure to construct a mathematical model
for the number of pounds of salt x1(t) and x2(t) at time t
in tanks A and B, respectively.

dy

dt
� k2xy.

dx

dt
� k1x(� � x)

FIGURE 3.R.3 Mixing tanks in Problem 12

2 lb/gal
7 gal/min

mixture
5 gal/min

A
100 gal

B
100 gal

mixture
3 gal/min

mixture
1 gal/min

mixture
4 gal/min



When all the curves in a family G(x, y, c1) � 0 intersect
orthogonally all the curves in another family H(x, y, c2) � 0,
the families are said to be orthogonal trajectories of each
other. See Figure 3.R.4. If dy�dx � f (x, y) is the differential
equation of one family, then the differential equation for the
orthogonal trajectories of this family is dy�dx � �1�f (x, y).
In Problems 13 and 14 find the differential equation of the
given family. Find the orthogonal trajectories of this family.
Use a graphing utility to graph both families on the same set
of coordinate axes.
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where length is measured in meters (m) and time in
seconds (s):

Q � volumetric flow rate (m3/s)
A � cross-sectional flow area, perpendicular to the

flow direction (m2)
K � hydraulic conductivity (m/s)
L � flow path length (m)
�h � hydraulic head difference (m).

Since the hydraulic head at a specific point is the sum of
the pressure head and the elevation, the flow rate can be
rewritten as

where

p � water pressure (N/m2)
r� water density (kg/m3)
g � gravitational acceleration (m/s2)
y � elevation (m).

A more general form of the equation results when the
limit of �h with respect to the flow direction (x as shown
in Figure 3.R.5) is evaluated as the flow path length

Performing this calculation yields

where the sign change reflects the fact that the hydraulic
head always decreases in the direction of flow. The
volumetric flow per unit area is called the Darcy flux q
and is defined by the differential equation

(1)

where q is measured in m/s.

(a) Assume that the fluid density r and the Darcy flux q
are functions of x. Solve (1) for the pressure p. You
may assume that K and g are constants.

(b) Suppose the Darcy flux is negatively valued, that is,
q 
 0. What does this say about the ratio p�r?
Specifically, is the ratio between the pressure and
the density increasing or decreasing with respect
to x? Assume that the elevation y of the cylinder is
fixed. What can be said about the ratio p�r if the
Darcy flux is zero?

(c) Assume that the fluid density r is constant. Solve
(1) for the pressure p(x) when the Darcy flux is pro-
portional to the pressure, that is, q � ap, where a is
a constant of proportionality. Sketch the family of
solutions for the pressure.

(d) Now if we assume that the pressure p is constant
but the density r is a function of x, then Darcy flux
is a function of x. Solve (1) for the density r(x).

q �
Q

A
� �K

d

dx 

p

rg
� y�,

Q � �AK
d

dx 

p

rg
� y�,

L : 0.

Q � AK

�
 p

rg
� y�

L
,

FIGURE 3.R.4 Orthogonal trajectories

tangents

H(x, y, c2) = 0

G(x, y, c1) = 0

13. y � �x � 1 � c1ex 14.

Contributed Problem

15. Aquifers and Darcy’s
Law According to the
Sacramento, California,
Department of Utilities, approximately 15% of the water
source for Sacramento comes from aquifers. Unlike
water sources such as rivers or lakes that lie above
ground, an aquifer is an underground layer of a porous
material that contains water. The water may reside in the
void spaces between rocks or in the cracks of the rocks.
Because of the material lying above, the water is sub-
jected to pressure that drives the fluid motion.

Darcy’s law is a generalized relationship to describe
the flow of a fluid through a porous medium. It shows the
flow rate of a fluid through a container as a function of
the cross sectional area, elevation and fluid pressure. The
configuration that we will consider in this problem is
what is called a one-dimensional flow problem. Consider
the flow column as shown in Figure 3.R.5. As indicated
by the arrows, the fluid flow is from left to right through
a container with a circular cross section. The container
is filled with a porous material (for example, pebbles,
sand, or cotton) that allows for the fluid to flow. At the
entrance and the exit of the container are piezometers
that measure the hydraulic head, that is, the water pres-
sure per unit weight, by reporting the height of the water
column. The difference in the water heights in the
pizeometers is denoted �h. For this configuration Darcy
experimentally calculated that

Q � AK
�h

L

y �
1

x � c1

David Zeigler
Assistant Professor
Department of Mathematics 

and Statistics
CSU Sacramento



Solve (1) for the density r(x) when the Darcy flux is
proportional to the density, q � br, where b is a
constant of proportionality.

(e) Assume that the Darcy flux is q(x) � sin e�x and the
density function is 

Use a CAS to plot the pressure p(x) over the interval
. Suppose that K�g � �1 and that the

pressure at the left end point (x � 0) is normalized
to 1. Assume that the elevation y is constant.
Explain the physical implications of your result.

0 � x � 2p

r(x) �
1

1 � ln(2 � x)
.

(f) Consider the solution corresponding to P(0) � 0.
How would a small change in P(0) affect that
solution?

Logistic Growth Model: As you saw in part
(d), the exponential growth model above becomes
unrealistic for very large t. What limits the algae
population? Assume that the water flow provides a
steady source of nutrients and carries away all waste
materials. In that case the major limiting factor is
the area of the spillway. We might model this as
follows: Each algae-algae interaction stresses the
organisms involved. This causes additional morta-
lity. The number of such possible interactions is
proportional to the square of the number of organ-
isms present. Thus a reasonable model would be

where k and m are positive constants. In this partic-
ular case take and 

(g) Create a direction field for this differential equation
and sketch the solution curve. 

(h) Solve this differential equation and graph the solu-
tion. Compare your graph to the sketch from part (g).

(i) Describe the equilibrium solutions of this auto-
nomous differential equation.

(j) According to this model, what happens as ?

(k) In our model, P(0) � 1. Describe how a change in
P(0) would affect the solution.

(l) Consider the solution corresponding to P(0) � 0.
How would a small change in P(0) affect that
solution?

(m) Consider the solution corresponding to P(0) � k�m.
How would a small change in P(0) affect that
solution?

A Nonautonomous Model: Suppose that the
flow of water across the spillway is decreasing in time,
so the prime algae habitat also shrinks in time. This
would increase the effect of crowding. A reasonable
model now would be

where n would be determined by the rate at which the
spillway is drying. In our example, take k and m as
above and .

(n) Create a direction field for this differential equation
and sketch the solution curve. 

(o) Describe the constant solutions of this nonauto-
nomous differential equation.

(p) According to this model, what happens as ?
What happens if you change the value of P(0)?

t : �

n � 1
10

dP

dt
� kP � m(1 � nt)P2,

t : �

m � 1
500.k � 1

12

dP

dt
� kP � mP2,
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FIGURE 3.R.5 Flow in Problem 15

Δh

Q

A

L

x

y

Contributed Problem

16. Population Growth 
Models We can use direc-
tion fields to obtain a great
deal of information about population growth models.
In this problem you can create direction fields by hand
or use a computer algebra system to create detailed ones.
At time t � 0 a thin sheet of water begins pouring
over the concrete spillway of a dam. At the same time,
1000 algae are attached to the spillway. We will be mod-
eling P(t), the number of algae (in thousands) present
after t hours.

Exponential Growth Model: We assume that
the rate of population change is proportional to the
population present: dP�dt � kP. In this particular case
take 

(a) Create a direction field for this differential equation
and sketch the solution curve. 

(b) Solve this differential equation and graph the solu-
tion. Compare your graph to the sketch from part (a).

(c) Describe the equilibrium solutions of this auto-
nomous differential equation.

(d) According to this model, what happens as ? 

(e) In our model, P(0) � 1. Describe how a change in
P(0) would affect the solution.

t : �

k � 1
12.

Michael Prophet, Ph.D
Doug Shaw, Ph.D
Associate Professors
Mathematics Department
University of Northern Iowa
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4 HIGHER-ORDER DIFFERENTIAL
EQUATIONS
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4.1.1 Initial-Value and Boundary-Value Problems

4.1.2 Homogeneous Equations

4.1.3 Nonhomogeneous Equations

4.2 Reduction of Order

4.3 Homogeneous Linear Equations with Constant Coefficients

4.4 Undetermined Coefficients—Superposition Approach

4.5 Undetermined Coefficients—Annihilator Approach

4.6 Variation of Parameters

4.7 Cauchy-Euler Equation

4.8 Solving Systems of Linear DEs by Elimination

4.9 Nonlinear Differential Equations

CHAPTER 4 IN REVIEW

We turn now to the solution of ordinary differential equations of order two or

higher. In the first seven sections of this chapter we examine the underlying theory

and solution methods for certain kinds of linear equations. The elimination method

for solving systems of linear equations is introduced in Section 4.8 because this

method simply uncouples a system into individual linear equations in each

dependent variable. The chapter concludes with a brief examinations of nonlinear

higher-order equations. 



PRELIMINARY THEORY—LINEAR EQUATIONS

REVIEW MATERIAL
● Reread the Remarks at the end of Section 1.1
● Section 2.3 (especially pages 54–58)

INTRODUCTION In Chapter 2 we saw that we could solve a few first-order differential equations
by recognizing them as separable, linear, exact, homogeneous, or perhaps Bernoulli equations. Even
though the solutions of these equations were in the form of a one-parameter family, this family,
with one exception, did not represent the general solution of the differential equation. Only in the
case of linear first-order differential equations were we able to obtain general solutions, by paying
attention to certain continuity conditions imposed on the coefficients. Recall that a general solution
is a family of solutions defined on some interval I that contains all solutions of the DE that are
defined on I. Because our primary goal in this chapter is to find general solutions of linear higher-order
DEs, we first need to examine some of the theory of linear equations.
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4.1

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

INITIAL-VALUE PROBLEM In Section 1.2 we defined an initial-value problem
for a general nth-order differential equation. For a linear differential equation an
nth-order initial-value problem is

Solve:

Subject to: .

(1)

Recall that for a problem such as this one we seek a function defined on some interval
I, containing x0, that satisfies the differential equation and the n initial conditions
specified at x0: y(x0) � y0, y�(x0) � y1, . . . , y(n�1)(x0) � yn�1. We have already seen
that in the case of a second-order initial-value problem a solution curve must pass
through the point (x0, y0) and have slope y1 at this point.

EXISTENCE AND UNIQUENESS In Section 1.2 we stated a theorem that gave
conditions under which the existence and uniqueness of a solution of a first-order
initial-value problem were guaranteed. The theorem that follows gives sufficient
conditions for the existence of a unique solution of the problem in (1).

THEOREM 4.1.1 Existence of a Unique Solution

Let an(x), an�1(x), . . . , a1(x), a0(x) and g(x) be continuous on an interval I
and let an(x) � 0 for every x in this interval. If x � x0 is any point in this
interval, then a solution y(x) of the initial-value problem (1) exists on the
interval and is unique.

EXAMPLE 1 Unique Solution of an IVP

The initial-value problem

3y� � 5y� � y� � 7y � 0, y(1) � 0, y�(1) � 0, y�(1) � 0

y(x0) � y0, y�(x0) � y1 , . . . ,  y(n�1)(x0) � yn�1

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 � 	 	 	 � a1(x)
dy

dx
� a0(x)y � g(x)



possesses the trivial solution y � 0. Because the third-order equation is linear with
constant coefficients, it follows that all the conditions of Theorem 4.1.1 are fulfilled.
Hence y � 0 is the only solution on any interval containing x � 1.

EXAMPLE 2 Unique Solution of an IVP

You should verify that the function y � 3e2x � e�2x � 3x is a solution of the initial-
value problem

Now the differential equation is linear, the coefficients as well as g(x) � 12x are
continuous, and a2(x) � 1 � 0 on any interval I containing x � 0. We conclude from
Theorem 4.1.1 that the given function is the unique solution on I.

The requirements in Theorem 4.1.1 that ai(x), i � 0, 1, 2, . . . , n be continuous
and an(x) � 0 for every x in I are both important. Specifically, if an(x) � 0 for some x
in the interval, then the solution of a linear initial-value problem may not be unique
or even exist. For example, you should verify that the function y � cx2 � x � 3 is a
solution of the initial-value problem

on the interval (��, �) for any choice of the parameter c. In other words, there is no
unique solution of the problem. Although most of the conditions of Theorem 4.1.1
are satisfied, the obvious difficulties are that a2(x) � x2 is zero at x � 0 and that the
initial conditions are also imposed at x � 0.

BOUNDARY-VALUE PROBLEM Another type of problem consists of solving a
linear differential equation of order two or greater in which the dependent variable y
or its derivatives are specified at different points. A problem such as

Solve:

Subject to:

is called a boundary-value problem (BVP). The prescribed values y(a) � y0 and
y(b) � y1 are called boundary conditions. A solution of the foregoing problem is a
function satisfying the differential equation on some interval I, containing a and b,
whose graph passes through the two points (a, y0) and (b, y1). See Figure 4.1.1.

For a second-order differential equation other pairs of boundary conditions
could be

where y0 and y1 denote arbitrary constants. These three pairs of conditions are just
special cases of the general boundary conditions

The next example shows that even when the conditions of Theorem 4.1.1 are
fulfilled, a boundary-value problem may have several solutions (as suggested in
Figure 4.1.1), a unique solution, or no solution at all.

�2y(b) � �2y�(b) � �2.

�1y(a) � �1y�(a) � �1

y�(a) � y0,    y�(b) � y1,

y(a) � y0,    y�(b) � y1

y�(a) � y0,    y(b) � y1

y(a) � y0,  y(b) � y1

a2(x)
d 2y

dx2 � a1(x)
dy

dx
� a0(x)y � g(x)

x2y� � 2xy� � 2y � 6,  y(0) � 3,  y�(0) � 1

y� � 4y � 12x,  y(0) � 4,  y�(0) � 1.
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FIGURE 4.1.1 Solution curves of a
BVP that pass through two points

I

solutions of the DE

(b, y1)

(a, y0)

x

y



EXAMPLE 3 A BVP Can Have Many, One, or No Solutions

In Example 4 of Section 1.1 we saw that the two-parameter family of solutions of the
differential equation x� � 16x � 0 is

(2)

(a) Suppose we now wish to determine the solution of the equation that further
satisfies the boundary conditions x(0) � 0, x(p�2) � 0. Observe that the first
condition 0 � c1 cos 0 � c2 sin 0 implies that c1 � 0, so x � c2 sin 4t. But when
t � p�2, 0 � c2 sin 2p is satisfied for any choice of c2, since sin 2p � 0. Hence
the boundary-value problem

(3)

has infinitely many solutions. Figure 4.1.2 shows the graphs of some of the
members of the one-parameter family x � c2 sin 4t that pass through the two
points (0, 0) and (p�2, 0).

(b) If the boundary-value problem in (3) is changed to

, (4)

then x(0) � 0 still requires c1 � 0 in the solution (2). But applying x(p�8) � 0 to 
x � c2 sin 4t demands that 0 � c2 sin(p�2) � c2 �1. Hence x � 0 is a solution of
this new boundary-value problem. Indeed, it can be proved that x � 0 is the only
solution of (4).

(c) Finally, if we change the problem to

, (5)

we find again from x(0) � 0 that c1 � 0, but applying x(p�2) � 1 to 
x � c2 sin 4t leads to the contradiction 1 � c2 sin 2p � c2 � 0 � 0. Hence 
the boundary-value problem (5) has no solution.

4.1.2 HOMOGENEOUS EQUATIONS

A linear nth-order differential equation of the form

(6)

is said to be homogeneous, whereas an equation

(7)

with g(x) not identically zero, is said to be nonhomogeneous. For example, 
2y� � 3y� � 5y � 0 is a homogeneous linear second-order differential equation,
whereas x3y� � 6y� � 10y � ex is a nonhomogeneous linear third-order differen-
tial equation. The word homogeneous in this context does not refer to coefficients
that are homogeneous functions, as in Section 2.5.

We shall see that to solve a nonhomogeneous linear equation (7), we must first
be able to solve the associated homogeneous equation (6).

To avoid needless repetition throughout the remainder of this text, we
shall, as a matter of course, make the following important assumptions when

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 � 	 	 	 � a1(x)
dy

dx
� a0(x)y � g(x),

an(x)
dny

dxn � an�1(x)
dn�1y

dxn�1 � 	 	 	 � a1(x)
dy

dx
� a0(x)y � 0

x� � 16x � 0,  x(0) � 0,  x ��

2� � 1

x� � 16x � 0,  x(0) � 0,  x ��

8� � 0

x� � 16x � 0,  x(0) � 0,  x ��

2� � 0

x � c1 cos 4t � c2 sin 4t.
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FIGURE 4.1.2 Some solution curves
of (3)
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stating definitions and theorems about linear equations (1). On some common
interval I,

• the coefficient functions ai(x), i � 0, 1, 2, . . . , n and g(x) are continuous;
• an(x) � 0 for every x in the interval.

DIFFERENTIAL OPERATORS In calculus differentiation is often denoted by
the capital letter D—that is, dy�dx � Dy. The symbol D is called a differential
operator because it transforms a differentiable function into another function. For
example, D(cos 4x) � �4 sin 4x and D(5x3 � 6x2) � 15x2 � 12x. Higher-order
derivatives can be expressed in terms of D in a natural manner:

where y represents a sufficiently differentiable function. Polynomial expressions
involving D, such as D � 3, D2 � 3D � 4, and 5x3D3 � 6x2D2 � 4xD � 9, are
also differential operators. In general, we define an nth-order differential opera-
tor or polynomial operator to be

L � an(x)Dn � an�1(x)Dn�1 � 	 	 	 � a1(x)D � a0(x). (8)

As a consequence of two basic properties of differentiation, D(cf (x)) � cDf (x), c is a
constant, and D{ f (x) � g(x)} � Df (x) � Dg(x), the differential operator L possesses
a linearity property; that is, L operating on a linear combination of two differentiable
functions is the same as the linear combination of L operating on the individual func-
tions. In symbols this means that

L{a f (x) � bg(x)} � aL( f (x)) � bL(g(x)), (9)

where a and b are constants. Because of (9) we say that the nth-order differential
operator L is a linear operator.

DIFFERENTIAL EQUATIONS Any linear differential equation can be expressed in
terms of the D notation. For example, the differential equation y� � 5y� � 6y � 5x � 3
can be written as D2y � 5Dy � 6y � 5x � 3 or (D2 � 5D � 6)y � 5x � 3. Using (8),
we can write the linear nth-order differential equations (6) and (7) compactly as

respectively.

SUPERPOSITION PRINCIPLE In the next theorem we see that the sum, or
superposition, of two or more solutions of a homogeneous linear differential equa-
tion is also a solution.

THEOREM 4.1.2 Superposition Principle—Homogeneous Equations

Let y1, y2, . . . , yk be solutions of the homogeneous nth-order differential
equation (6) on an interval I. Then the linear combination

where the ci, i � 1, 2, . . . , k are arbitrary constants, is also a solution on the
interval.

PROOF We prove the case k � 2. Let L be the differential operator defined in
(8), and let y1(x) and y2(x) be solutions of the homogeneous equation L( y) � 0. If
we define y � c1y1(x) � c2y2(x), then by linearity of L we have

L( y) � L{c1y1(x) � c2y2(x)} � c1 L(y1) � c2 L(y2) � c1 � 0 � c2 � 0 � 0.

y � c1y1(x) � c2y2(x) � 	 	 	 � ckyk(x),

L(y) � 0    and    L(y) � g(x),

d

dx �
dy

dx� �
d 2y

dx2 � D(Dy) � D2y    and, in general,    
dny

dxn � Dny,
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COROLLARIES TO THEOREM 4.1.2

(A) A constant multiple y � c1y1(x) of a solution y1(x) of a homogeneous
linear differential equation is also a solution.

(B) A homogeneous linear differential equation always possesses the trivial
solution y � 0.

EXAMPLE 4 Superposition—Homogeneous DE

The functions y1 � x2 and y2 � x2 ln x are both solutions of the homogeneous linear
equation x3y� � 2xy� � 4y � 0 on the interval (0, �). By the superposition principle
the linear combination

is also a solution of the equation on the interval.

The function y � e7x is a solution of y� � 9y� � 14y � 0. Because the differen-
tial equation is linear and homogeneous, the constant multiple y � ce7x is also a
solution. For various values of c we see that y � 9e7x, y � 0, , . . . are all
solutions of the equation.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE The next two con-
cepts are basic to the study of linear differential equations.

DEFINITION 4.1.1 Linear Dependence/Independence

A set of functions f1(x), f2(x), . . . , fn(x) is said to be linearly dependent on an
interval I if there exist constants c1, c2, . . . , cn, not all zero, such that

for every x in the interval. If the set of functions is not linearly dependent on
the interval, it is said to be linearly independent.

In other words, a set of functions is linearly independent on an interval I if the only
constants for which

for every x in the interval are .
It is easy to understand these definitions for a set consisting of two functions 

f1(x) and f2(x). If the set of functions is linearly dependent on an interval, then
there exist constants c1 and c2 that are not both zero such that for every x in the
interval, c1 f1(x) � c2 f2(x) � 0. Therefore if we assume that c1 � 0, it follows that
f1(x) � (�c2�c1) f2(x); that is, if a set of two functions is linearly dependent, then one
function is simply a constant multiple of the other. Conversely, if f1(x) � c2 f2(x)
for some constant c2, then (�1) � f1(x) � c2 f2(x) � 0 for every x in the interval.
Hence the set of functions is linearly dependent because at least one of the constants
(namely, c1 � �1) is not zero. We conclude that a set of two functions f1(x) and f2(x)
is linearly independent when neither function is a constant multiple of the other on
the interval. For example, the set of functions f1(x) � sin 2x, f2(x) � sin x cos x is
linearly dependent on (��, �) because f1(x) is a constant multiple of f2(x). Recall
from the double-angle formula for the sine that sin 2x � 2 sin x cos x. On the other
hand, the set of functions f1(x) � x, f2(x) � �x � is linearly independent on (��, �).
Inspection of Figure 4.1.3 should convince you that neither function is a constant
multiple of the other on the interval.

c1 � c2 � 	 	 	 � cn � 0

c1 f1(x) � c2 f2(x) � 	 	 	 � cn fn(x) � 0

c1 f1(x) � c2 f2(x) � 	 	 	 � cn fn(x) � 0

y � �15e7x

y � c1x2 � c2x2 ln x
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FIGURE 4.1.3 Set consisting of f1 and
f2 is linearly independent on (��, �)

f1 = x

x

y

f2 = |x |

x

y

(a)

(b)



It follows from the preceding discussion that the quotient f2(x)�f1(x) is not a con-
stant on an interval on which the set f1(x), f2(x) is linearly independent. This little fact
will be used in the next section.

EXAMPLE 5 Linearly Dependent Set of Functions

The set of functions f1(x) � cos2x, f2(x) � sin2x, f3(x) � sec2x, f4(x) � tan2x is
linearly dependent on the interval (�p�2, p�2) because

when c1 � c2 � 1, c3 � �1, c4 � 1. We used here cos2x � sin2x � 1 and
1 � tan2x � sec2x.

A set of functions f1(x), f2(x), . . . , fn(x) is linearly dependent on an interval if
at least one function can be expressed as a linear combination of the remaining
functions.

EXAMPLE 6 Linearly Dependent Set of Functions

The set of functions , f3(x) � x � 1, f4(x) � x2 is
linearly dependent on the interval (0, �) because f2 can be written as a linear combi-
nation of f1, f3, and f4. Observe that

for every x in the interval (0, �).

SOLUTIONS OF DIFFERENTIAL EQUATIONS We are primarily interested in
linearly independent functions or, more to the point, linearly independent solutions
of a linear differential equation. Although we could always appeal directly to
Definition 4.1.1, it turns out that the question of whether the set of n solutions
y1, y2, . . . , yn of a homogeneous linear nth-order differential equation (6) is linearly
independent can be settled somewhat mechanically by using a determinant.

DEFINITION 4.1.2 Wronskian

Suppose each of the functions f1(x), f2(x), . . . , fn(x) possesses at least n � 1
derivatives. The determinant

where the primes denote derivatives, is called the Wronskian of the
functions.

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let y1, y2, . . . , yn be n solutions of the homogeneous linear nth-order
differential equation (6) on an interval I. Then the set of solutions is linearly
independent on I if and only if W(y1, y2, . . . , yn ) � 0 for every x in the
interval.

W( f1, f2, . . . , fn ) � �
f1

f 1�

	
	

	
f1

(n�1)

f2

f 2�

	
	

	
f2

(n�1)

	 	 	

	 	 	

	 	 	

fn

f n�

	
	

	
fn

(n�1)
�,

f2(x) � 1 � f1(x) � 5 � f3(x) � 0 � f4(x)

f1(x) � 1x � 5, f2(x) � 1x � 5x

c1 cos2x � c2 sin2x � c3 sec2x � c4 tan2x � 0
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It follows from Theorem 4.1.3 that when y1, y2, . . . , yn are n solutions of (6) on
an interval I, the Wronskian W( y1, y2, . . . , yn) is either identically zero or never zero
on the interval.

A set of n linearly independent solutions of a homogeneous linear nth-order
differential equation is given a special name.

DEFINITION 4.1.3 Fundamental Set of Solutions

Any set y1, y2, . . . , yn of n linearly independent solutions of the homoge-
neous linear nth-order differential equation (6) on an interval I is said to be a
fundamental set of solutions on the interval.

The basic question of whether a fundamental set of solutions exists for a linear
equation is answered in the next theorem.

THEOREM 4.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear nth-order
differential equation (6) on an interval I.

Analogous to the fact that any vector in three dimensions can be expressed as a
linear combination of the linearly independent vectors i, j, k, any solution of an nth-
order homogeneous linear differential equation on an interval I can be expressed as a
linear combination of n linearly independent solutions on I. In other words, n linearly
independent solutions y1, y2, . . . , yn are the basic building blocks for the general
solution of the equation.

THEOREM 4.1.5 General Solution—Homogeneous Equations

Let y1, y2, . . . , yn be a fundamental set of solutions of the homogeneous linear
nth-order differential equation (6) on an interval I. Then the general solution of
the equation on the interval is

where ci, i � 1, 2, . . . , n are arbitrary constants.

Theorem 4.1.5 states that if Y(x) is any solution of (6) on the interval, then con-
stants C1, C2, . . . , Cn can always be found so that

We will prove the case when n � 2.

PROOF Let Y be a solution and let y1 and y2 be linearly independent solutions of
a2y� � a1y� � a0y � 0 on an interval I. Suppose that x � t is a point in I for which
W(y1(t), y2(t)) � 0. Suppose also that Y(t) � k1 and Y�(t) � k2. If we now examine
the equations

it follows that we can determine C1 and C2 uniquely, provided that the determinant of
the coefficients satisfies

�y1(t)

y1�(t)

y2(t)

y2�(t)
� � 0.

C1y�1(t) � C2y�2(t) � k2,

C1y1(t) � C2y2(t) � k1

Y(x) � C1y1(x) � C2y2(x) � 	 	 	 � Cnyn(x).

y � c1y1(x) � c2y2(x) � 	 	 	 � cnyn(x),
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But this determinant is simply the Wronskian evaluated at x � t, and by assumption,
W � 0. If we define G(x) � C1y1(x) � C2y2(x), we observe that G(x) satisfies the
differential equation since it is a superposition of two known solutions; G(x) satisfies
the initial conditions

and Y(x) satisfies the same linear equation and the same initial conditions.
Because the solution of this linear initial-value problem is unique (Theorem 4.1.1),
we have Y(x) � G(x) or Y(x) � C1y1(x) � C2y2(x).

EXAMPLE 7 General Solution of a Homogeneous DE

The functions y1 � e3x and y2 � e�3x are both solutions of the homogeneous linear
equation y� � 9y � 0 on the interval (��, �). By inspection the solutions are lin-
early independent on the x-axis. This fact can be corroborated by observing that the
Wronskian

for every x. We conclude that y1 and y2 form a fundamental set of solutions, and
consequently, y � c1e3x � c2e�3x is the general solution of the equation on the
interval.

EXAMPLE 8 A Solution Obtained from a General Solution

The function y � 4sinh 3x � 5e3x is a solution of the differential equation in
Example 7. (Verify this.) In view of Theorem 4.1.5 we must be able to obtain this
solution from the general solution y � c1e3x � c2e�3x. Observe that if we choose 
c1 � 2 and c2 � �7, then y � 2e3x � 7e�3x can be rewritten as

The last expression is recognized as y � 4 sinh 3x � 5e�3x.

EXAMPLE 9 General Solution of a Homogeneous DE

The functions y1 � ex, y2 � e2x, and y3 � e3x satisfy the third-order equation
y� � 6y� � 11y� � 6y � 0. Since

for every real value of x, the functions y1, y2, and y3 form a fundamental set of solu-
tions on (��, �). We conclude that y � c1ex � c2e2x � c3e3x is the general solution
of the differential equation on the interval.

4.1.3 NONHOMOGENEOUS EQUATIONS

Any function yp, free of arbitrary parameters, that satisfies (7) is said to be a particular
solution or particular integral of the equation. For example, it is a straightforward
task to show that the constant function yp � 3 is a particular solution of the
nonhomogeneous equation y� � 9y � 27.

W(ex, e2x, e3x) � p e
x

ex

ex

e2x

2e2x

4e2x

e3x

3e3x

9e3x
p � 2e6x � 0

y � 2e3x � 2e�3x � 5e�3x � 4�e3x � e�3x

2 � � 5e�3x.

W(e3x, e�3x) � � e3x

3e3x

e�3x

�3e�3x � � �6 � 0

G(t) � C1y1(t) � C2y2(t) � k1    and    G�(t) � C1y�1(t) � C2y�2(t) � k2;
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Now if y1, y2, . . . , yk are solutions of (6) on an interval I and yp is any particular
solution of (7) on I, then the linear combination

(10)

is also a solution of the nonhomogeneous equation (7). If you think about it, this makes
sense, because the linear combination c1y1(x) � c2y2(x) �	 	 	� ckyk(x) is trans-
formed into 0 by the operator L � anDn � an�1Dn�1 � 	 	 	 � a1D � a0, whereas yp

is transformed into g(x). If we use k � n linearly independent solutions of the nth-order
equation (6), then the expression in (10) becomes the general solution of (7).

THEOREM 4.1.6 General Solution—Nonhomogeneous Equations

Let yp be any particular solution of the nonhomogeneous linear nth-order differ-
ential equation (7) on an interval I, and let y1, y2, . . . , yn be a fundamental set of
solutions of the associated homogeneous differential equation (6) on I. Then the
general solution of the equation on the interval is

where the ci, i � 1, 2, . . . , n are arbitrary constants.

PROOF Let L be the differential operator defined in (8) and let Y(x) and yp(x)
be particular solutions of the nonhomogeneous equation L(y) � g(x). If we define
u(x) � Y(x) � yp(x), then by linearity of L we have

L(u) � L{Y(x) � yp(x)} � L(Y(x)) � L(yp(x)) � g(x) � g(x) � 0.

This shows that u(x) is a solution of the homogeneous equation L(y) � 0. Hence
by Theorem 4.1.5, , and so

or

COMPLEMENTARY FUNCTION We see in Theorem 4.1.6 that the general solu-
tion of a nonhomogeneous linear equation consists of the sum of two functions:

The linear combination , which is the
general solution of (6), is called the complementary function for equation (7). In
other words, to solve a nonhomogeneous linear differential equation, we first solve
the associated homogeneous equation and then find any particular solution of the
nonhomogeneous equation. The general solution of the nonhomogeneous equation
is then

y � complementary function � any particular solution
� yc � yp.

EXAMPLE 10 General Solution of a Nonhomogeneous DE

By substitution the function is readily shown to be a particular solu-
tion of the nonhomogeneous equation

(11)y� � 6y� � 11y� � 6y � 3x.

yp � �11
12 � 1

2 x

yc(x) � c1y1(x) � c2y2(x) � 	 	 	 � cnyn(x)

y � c1y1(x) � c2y2(x) � 	 	 	 � cnyn(x) � yp(x) � yc(x) � yp(x).

Y(x) � c1y1(x) � c2y2(x) � 	 	 	 � cnyn(x) � yp(x).

Y(x) � yp(x) � c1y1(x) � c2y2(x) � 	 	 	 � cnyn(x)

u(x) � c1y1(x) � c2y2(x) � 	 	 	 � cnyn(x)

y � c1y1(x) � c2y2(x) � 	 	 	 � cn yn(x) � yp ,

y � c1y1(x) � c2y2(x) � 	 	 	 � ckyk(x) � yp
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To write the general solution of (11), we must also be able to solve the associated
homogeneous equation

But in Example 9 we saw that the general solution of this latter equation on the in-
terval (��, �) was yc � c1ex � c2e2x � c3e3x. Hence the general solution of (11)
on the interval is

ANOTHER SUPERPOSITION PRINCIPLE The last theorem of this discussion
will be useful in Section 4.4 when we consider a method for finding particular solu-
tions of nonhomogeneous equations.

THEOREM 4.1.7 Superposition Principle—Nonhomogeneous 

Equations

Let , , . . . , be k particular solutions of the nonhomogeneous linear
nth-order differential equation (7) on an interval I corresponding, in turn, to k
distinct functions g1, g2, . . . , gk. That is, suppose denotes a particular solu-
tion of the corresponding differential equation

(12)

where i � 1, 2, . . . , k. Then

(13)

is a particular solution of

(14)

PROOF We prove the case k � 2. Let L be the differential operator defined in (8)
and let and be particular solutions of the nonhomogeneous equations
L( y) � g1(x) and L( y) � g2(x), respectively. If we define , we
want to show that yp is a particular solution of L( y) � g1(x) � g2(x). The result
follows again by the linearity of the operator L:

EXAMPLE 11 Superposition—Nonhomogeneous DE

You should verify that

It follows from (13) of Theorem 4.1.7 that the superposition of , and ,

is a solution of

y � � 3y� � 4y � �16x2 � 24x � 8 � 2e2x � 2xex � ex.

g1(x) g3(x)g2(x)

y � yp1
� yp2

� yp3
� �4x2 � e2x � xex,

yp3
yp1

, yp2

yp3
� xex  is a particular solution of  y� � 3y� � 4y � 2xex � ex.

yp2
� e2x  is a particular solution of  y� � 3y� � 4y � 2e2x,

yp1
� �4x2  is a particular solution of  y� � 3y� � 4y � �16x2 � 24x � 8,

L(yp) � L{yp1
(x) � yp2

(x)} � L( yp1
(x)) � L( yp2

(x)) � g1(x) � g2(x).

yp � yp1
(x) � yp2

(x)
yp2

(x)yp1
(x)

� g1(x) � g2(x) � 	 	 	 � gk(x).

an(x)y(n) � an�1(x)y(n�1) � 	 	 	 � a1(x)y� � a0(x)y

yp � yp1
(x) � yp2

(x) � 	 	 	 � ypk
(x)

an(x)y(n) � an�1(x)y(n�1) � 	 	 	 � a1(x)y� � a0(x)y � gi(x),

ypi

ypk
yp2

yp1

y � yc � yp � c1ex � c2e2x � c3e3x �
11

12
�

1

2
x.

y� � 6y� � 11y� � 6y � 0.
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NOTE If the are particular solutions of (12) for i � 1, 2, . . . , k, then the linear
combination

where the ci are constants, is also a particular solution of (14) when the right-hand
member of the equation is the linear combination

Before we actually start solving homogeneous and nonhomogeneous linear
differential equations, we need one additional bit of theory, which is presented in the
next section.

REMARKS

This remark is a continuation of the brief discussion of dynamical systems
given at the end of Section 1.3.

A dynamical system whose rule or mathematical model is a linear nth-order
differential equation

is said to be an nth-order linear system. The n time-dependent functions y(t),
y�(t), . . . , y(n�1)(t) are the state variables of the system. Recall that their val-
ues at some time t give the state of the system. The function g is variously
called the input function, forcing function, or excitation function. A solu-
tion y(t) of the differential equation is said to be the output or response of the
system. Under the conditions stated in Theorem 4.1.1, the output or response
y(t) is uniquely determined by the input and the state of the system prescribed
at a time t0 —that is, by the initial conditions y(t0), y�(t0), . . . , y(n�1)(t0).

For a dynamical system to be a linear system, it is necessary that the super-
position principle (Theorem 4.1.7) holds in the system; that is, the response of
the system to a superposition of inputs is a superposition of outputs. We have
already examined some simple linear systems in Section 3.1 (linear first-order
equations); in Section 5.1 we examine linear systems in which the mathe-
matical models are second-order differential equations.

an(t)y(n) � an�1(t)y(n�1) � 	 	 	 � a1(t)y� � a0(t)y � g(t)

c1g1(x) � c2g2(x) � 	 	 	 � ckgk(x).

yp � c1yp1
� c2yp2

� 	 	 	 � ckypk
,

ypi
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EXERCISES 4.1 Answers to selected odd-numbered problems begin on page ANS-4.

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

In Problems 1–4 the given family of functions is the general
solution of the differential equation on the indicated interval.
Find a member of the family that is a solution of the initial-
value problem.

1. y � c1ex � c2e�x, (��, �);
y� � y � 0, y(0) � 0, y�(0) � 1

2. y � c1e4x � c2e�x, (��, �);
y� � 3y� � 4y � 0, y(0) � 1, y�(0) � 2

3. y � c1x � c2x ln x, (0, �);
x2y� � xy� � y � 0, y(1) � 3, y�(1) � �1

4. y � c1 � c2 cos x � c3 sin x, (��, �);
y� � y� � 0, y(p) � 0, y�(p) � 2, y�(p) � �1

5. Given that y � c1 � c2x2 is a two-parameter family of
solutions of xy� � y� � 0 on the interval (��, �),
show that constants c1 and c2 cannot be found so that a
member of the family satisfies the initial conditions
y(0) � 0, y�(0) � 1. Explain why this does not violate
Theorem 4.1.1.

6. Find two members of the family of solutions in
Problem 5 that satisfy the initial conditions y(0) � 0,
y�(0) � 0.

7. Given that x(t) � c1 cos vt � c2 sin vt is the general
solution of x� � v2x � 0 on the interval (��, �),
show that a solution satisfying the initial conditions
x(0) � x0, x�(0) � x1 is given by

x(t) � x0 cos �t �
x1

�
 sin �t.



8. Use the general solution of x� � v2x � 0 given in
Problem 7 to show that a solution satisfying the initial
conditions x(t0) � x0, x�(t0) � x1 is the solution given in
Problem 7 shifted by an amount t0:

In Problems 9 and 10 find an interval centered about x � 0 for
which the given initial-value problem has a unique solution.

9. (x � 2)y� � 3y � x, y(0) � 0, y�(0) � 1

10. y� � (tan x)y � ex, y(0) � 1, y�(0) � 0

11. (a) Use the family in Problem 1 to find a solution of
y� � y � 0 that satisfies the boundary conditions
y(0) � 0, y(1) � 1.

(b) The DE in part (a) has the alternative general solu-
tion y � c3 cosh x � c4 sinh x on (��, �). Use this
family to find a solution that satisfies the boundary
conditions in part (a).

(c) Show that the solutions in parts (a) and (b) are
equivalent

12. Use the family in Problem 5 to find a solution of
xy� � y� � 0 that satisfies the boundary conditions
y(0) � 1, y�(1) � 6.

In Problems 13 and 14 the given two-parameter family is a
solution of the indicated differential equation on the interval
(��, �). Determine whether a member of the family can be
found that satisfies the boundary conditions.

13. y � c1ex cos x � c2ex sin x; y� � 2y� � 2y � 0

(a) y(0) � 1, y�(p) � 0 (b) y(0) � 1, y(p) � �1

(c) y(0) � 1, (d) y(0) � 0, y(p) � 0.

14. y � c1x2 � c2x4 � 3; x2y� � 5xy� � 8y � 24

(a) y(�1) � 0, y(1) � 4 (b) y(0) � 1, y(1) � 2
(c) y(0) � 3, y(1) � 0 (d) y(1) � 3, y(2) � 15

4.1.2 HOMOGENEOUS EQUATIONS

In Problems 15–22 determine whether the given set of func-
tions is linearly independent on the interval (��, �).

15. f1(x) � x, f2(x) � x2, f3(x) � 4x � 3x2

16. f1(x) � 0, f2(x) � x, f3(x) � ex

17. f1(x) � 5, f2(x) � cos2x, f3(x) � sin2x

18. f1(x) � cos 2x, f2(x) � 1, f3(x) � cos2x

19. f1(x) � x, f2(x) � x � 1, f3(x) � x � 3

20. f1(x) � 2 � x, f2(x) � 2 � �x �

y��

2� � 1

x(t) � x0 cos �(t � t0 ) �
x1

�
 sin �(t � t0 ).
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21. f1(x) � 1 � x, f2(x) � x, f3(x) � x2

22. f1(x) � ex, f2(x) � e�x, f3(x) � sinh x

In Problems 23–30 verify that the given functions form a
fundamental set of solutions of the differential equation on
the indicated interval. Form the general solution.

23. y� � y� � 12y � 0; e�3x, e4x, (��, �)

24. y� � 4y � 0; cosh 2x, sinh 2x, (��, �)

25. y� � 2y� � 5y � 0; ex cos 2x, ex sin 2x, (��, �)

26. 4y� � 4y� � y � 0; ex/2, xex/2, (��, �)

27. x2y� � 6xy� � 12y � 0; x3, x4, (0, �)

28. x2y� � xy� � y � 0; cos(ln x), sin(ln x), (0, �)

29. x3y� � 6x2y� � 4xy� � 4y � 0; x, x�2, x�2 ln x, (0, �)

30. y(4) � y� � 0; 1, x, cos x, sin x, (��, �)

4.1.3 NONHOMOGENEOUS EQUATIONS

In Problems 31–34 verify that the given two-parameter fam-
ily of functions is the general solution of the nonhomoge-
neous differential equation on the indicated interval.

31. y� � 7y� � 10y � 24ex;
y � c1e2x � c2e5x � 6ex, (��, �)

32. y� � y � sec x;
y � c1 cos x � c2 sin x � x sin x � (cos x) ln(cos x),
(�p�2, p�2)

33. y� � 4y� � 4y � 2e2x � 4x � 12;
y � c1e2x � c2xe2x � x2e2x � x � 2, (��, �)

34. 2x2y� � 5xy� � y � x2 � x;

35. (a) Verify that and are, respec-
tively, particular solutions of

and

(b) Use part (a) to find particular solutions of

and

36. (a) By inspection find a particular solution of 

y� � 2y � 10.

(b) By inspection find a particular solution of 

y� � 2y � �4x.

(c) Find a particular solution of y� � 2y � �4x � 10.
(d) Find a particular solution of y� � 2y � 8x � 5.

y� � 6y� � 5y � �10x2 � 6x � 32 � e2x.

y� � 6y� � 5y � 5x2 � 3x � 16 � 9e2x

y� � 6y� � 5y � 5x2 � 3x � 16.

y� � 6y� � 5y � �9e2x

yp2
� x2 � 3xyp1

� 3e2x

y � c1x�1/2 � c2x�1 � 1
15 x2 � 1

6 x, (0, �)



Discussion Problems

37. Let n � 1, 2, 3, . . . . Discuss how the observations
Dnxn�1 � 0 and Dnxn � n! can be used to find the gen-
eral solutions of the given differential equations.

(a) y� � 0 (b) y� � 0 (c) y(4) � 0

(d) y� � 2 (e) y� � 6 (f) y(4) � 24

38. Suppose that y1 � ex and y2 � e�x are two solutions of
a homogeneous linear differential equation. Explain
why y3 � cosh x and y4 � sinh x are also solutions of
the equation.

39. (a) Verify that y1 � x3 and y2 � �x �3 are linearly
independent solutions of the differential equation
x2y� � 4xy� � 6y � 0 on the interval (��, �).

(b) Show that W( y1, y2) � 0 for every real number x.
Does this result violate Theorem 4.1.3? Explain.

(c) Verify that Y1 � x3 and Y2 � x2 are also linearly
independent solutions of the differential equation
in part (a) on the interval (��, �).

(d) Find a solution of the differential equation satisfy-
ing y(0) � 0, y�(0) � 0.
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(e) By the superposition principle, Theorem 4.1.2,
both linear combinations y � c1y1 � c2y2 and
Y � c1Y1 � c2Y2 are solutions of the differential
equation. Discuss whether one, both, or neither of
the linear combinations is a general solution of the
differential equation on the interval (��, �).

40. Is the set of functions f1(x) � ex�2, f2(x) � ex�3 lin-
early dependent or linearly independent on (��, �)?
Discuss.

41. Suppose y1, y2, . . . , yk are k linearly independent solu-
tions on (��, �) of a homogeneous linear nth-order
differential equation with constant coefficients. By
Theorem 4.1.2 it follows that yk�1 � 0 is also a solution
of the differential equation. Is the set of solutions
y1, y2, . . . , yk, yk�1 linearly dependent or linearly inde-
pendent on (��, �)? Discuss.

42. Suppose that y1, y2, . . . , yk are k nontrivial solutions of
a homogeneous linear nth-order differential equation
with constant coefficients and that k � n � 1. Is the set
of solutions y1, y2, . . . , yk linearly dependent or linearly
independent on (��, �)? Discuss.

REDUCTION OF ORDER

REVIEW MATERIAL
● Section 2.5 (using a substitution)
● Section 4.1

INTRODUCTION In the preceding section we saw that the general solution of a homogeneous
linear second-order differential equation

(1)

is a linear combination y � c1y1 � c2y2, where y1 and y2 are solutions that constitute a linearly inde-
pendent set on some interval I. Beginning in the next section, we examine a method for determining
these solutions when the coefficients of the differential equation in (1) are constants. This method,
which is a straightforward exercise in algebra, breaks down in a few cases and yields only a single
solution y1 of the DE. It turns out that we can construct a second solution y2 of a homogeneous equa-
tion (1) (even when the coefficients in (1) are variable) provided that we know a nontrivial solution
y1 of the DE. The basic idea described in this section is that equation (1) can be reduced to a linear
first-order DE by means of a substitution involving the known solution y1. A second solution y2 of
(1) is apparent after this first-order differential equation is solved.

a2(x)y� � a1(x)y� � a0(x)y � 0

4.2

REDUCTION OF ORDER Suppose that y1 denotes a nontrivial solution of (1) and
that y1 is defined on an interval I. We seek a second solution y2 so that the set consist-
ing of y1 and y2 is linearly independent on I. Recall from Section 4.1 that if y1 and
y2 are linearly independent, then their quotient y2�y1 is nonconstant on I—that is,
y2(x)�y1(x) � u(x) or y2(x) � u(x)y1(x). The function u(x) can be found by substituting
y2(x) � u(x)y1(x) into the given differential equation. This method is called reduction
of order because we must solve a linear first-order differential equation to find u.



EXAMPLE 1 A Second Solution by Reduction of Order

Given that y1 � ex is a solution of y� � y � 0 on the interval (��, �), use reduction
of order to find a second solution y2.

SOLUTION If y � u(x)y1(x) � u(x)ex, then the Product Rule gives

and so

Since ex � 0, the last equation requires u� � 2u� � 0. If we make the substitution
w � u�, this linear second-order equation in u becomes w� � 2w � 0, which is a
linear first-order equation in w. Using the integrating factor e2x, we can write

. After integrating, we get w � c1e�2x or u� � c1e�2x. Integrating

again then yields Thus

. (2)

By picking c2 � 0 and c1 � �2, we obtain the desired second solution, y2 � e�x.
Because W(ex, e�x) � 0 for every x, the solutions are linearly independent on
(��, �).

Since we have shown that y1 � ex and y2 � e�x are linearly independent solu-
tions of a linear second-order equation, the expression in (2) is actually the general
solution of y� � y � 0 on (��, �).

GENERAL CASE Suppose we divide by a2(x) to put equation (1) in the standard
form

(3)

where P(x) and Q(x) are continuous on some interval I. Let us suppose further that
y1(x) is a known solution of (3) on I and that y1(x) � 0 for every x in the interval. If
we define y � u(x)y1(x), it follows that

This implies that we must have

(4)

where we have let w � u�. Observe that the last equation in (4) is both linear and
separable. Separating variables and integrating, we obtain

.

We solve the last equation for w, use w � u�, and integrate again:

.u � c1 � e�	P dx

y1
2 dx � c2

ln� wy1
2 � � �� P dx � c    or    wy1

2 � c1e�	P dx

dw

w
� 2

y�1
y1

dx � P dx � 0

y1u � � (2y�1 � Py1)u� � 0    or    y1w� � (2y�1 � Py1)w � 0,

y � � Py� � Qy � u[y1 � Py1 � Qy1] � y1u� � (2y1 � Py1)u� � 0.� � �

zero

y� � uy�1 � y1u�, y� � uy�1 � 2y�1u� � y1u �

y� � P(x)y� � Q(x)y � 0,

y � u(x)ex � �
c1

2
e�x � c2ex

u � �1
2 c1e�2x � c2.

d

dx
 [e2xw] � 0

y� � y � ex(u � � 2u�) � 0.

y� � uex � exu�, y� � uex � 2exu� � exu �,
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By choosing c1 � 1 and c2 � 0, we find from y � u(x)y1(x) that a second solution of
equation (3) is

(5)

It makes a good review of differentiation to verify that the function y2(x) defined in
(5) satisfies equation (3) and that y1 and y2 are linearly independent on any interval
on which y1(x) is not zero.

EXAMPLE 2 A Second Solution by Formula (5)

The function y1 � x2 is a solution of x2y� � 3xy� � 4y � 0. Find the general solu-
tion of the differential equation on the interval (0, �).

SOLUTION From the standard form of the equation,

we find from (5)

.

The general solution on the interval (0, �) is given by y � c1y1 � c2y2; that is,
y � c1x2 � c2x2 ln x.

REMARKS

(i) The derivation and use of formula (5) have been illustrated here because this
formula appears again in the next section and in Sections 4.7 and 6.2. We use (5)
simply to save time in obtaining a desired result. Your instructor will tell you
whether you should memorize (5) or whether you should know the first princi-
ples of reduction of order.

(ii) Reduction of order can be used to find the general solution of a nonhomo-
geneous equation a2(x)y� � a1(x)y� � a0(x)y � g(x) whenever a solution y1 of
the associated homogeneous equation is known. See Problems 17–20 in
Exercises 4.2.

� x2 � dx

x
� x2 ln x

; e3	d x /x � eln x3
� x3y2 � x2 � e3	dx /x

x4 dx

y� �
3

x
y� �

4

x2 y � 0,

y2 � y1(x) � e�	P(x) dx

y1
2(x)

dx.
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EXERCISES 4.2 Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1–16 the indicated function y1(x) is a solution
of the given differential equation. Use reduction of order or
formula (5), as instructed, to find a second solution y2(x).

1. y� � 4y� � 4y � 0; y1 � e2x

2. y� � 2y� � y � 0; y1 � xe�x

3. y� � 16y � 0; y1 � cos 4x

4. y� � 9y � 0; y1 � sin 3x

5. y� � y � 0; y1 � cosh x

6. y� � 25y � 0; y1 � e5x

7. 9y� � 12y� � 4y � 0; y1 � e2x/3

8. 6y� � y� � y � 0; y1 � ex/3

9. x2y� � 7xy� � 16y � 0; y1 � x4

10. x2y� � 2xy� � 6y � 0; y1 � x2

11. xy� � y� � 0; y1 � ln x

12. 4x2y� � y � 0; y1 � x1/2 ln x

13. x2y� � xy� � 2y � 0; y1 � x sin(ln x)

14. x2y� � 3xy� � 5y � 0; y1 � x2 cos(ln x)



15. (1 � 2x � x2)y� � 2(1 � x)y� � 2y � 0; y1 � x � 1

16. (1 � x2)y� � 2xy� � 0; y1 � 1

In Problems 17–20 the indicated function y1(x) is a solution
of the associated homogeneous equation. Use the method
of reduction of order to find a second solution y2(x) of the
homogeneous equation and a particular solution of the given
nonhomogeneous equation.

17. y� � 4y � 2; y1 � e�2x

18. y� � y� � 1; y1 � 1

19. y� � 3y� � 2y � 5e3x; y1 � ex

20. y� � 4y� � 3y � x; y1 � ex

Discussion Problems

21. (a) Give a convincing demonstration that the second-
order equation ay� � by� � cy � 0, a, b, and c con-
stants, always possesses at least one solution of the
form , m1 a constant.

(b) Explain why the differential equation in part (a)
must then have a second solution either of the form

y1 � em1x
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or of the form , m1 and m2

constants.

(c) Reexamine Problems 1–8. Can you explain why the
statements in parts (a) and (b) above are not
contradicted by the answers to Problems 3–5?

22. Verify that y1(x) � x is a solution of xy� � xy� � y � 0.
Use reduction of order to find a second solution y2(x) in
the form of an infinite series. Conjecture an interval of
definition for y2(x).

Computer Lab Assignments

23. (a) Verify that y1(x) � ex is a solution of 

xy� � (x � 10)y� � 10y � 0.

(b) Use (5) to find a second solution y2(x). Use a CAS to
carry out the required integration.

(c) Explain, using Corollary (A) of Theorem 4.1.2, why
the second solution can be written compactly as

.y2(x) � �
10

n�0

1

n!
xn

y2 � xem1xy2 � em2 x

HOMOGENEOUS LINEAR EQUATIONS

WITH CONSTANT COEFFICIENTS

REVIEW MATERIAL
● Review Problem 27 in Exercises 1.1 and Theorem 4.1.5
● Review the algebra of solving polynomial equations (see the Student Resource 

and Solutions Manual)

INTRODUCTION As a means of motivating the discussion in this section, let us return to first-
order differential equations—more specifically, to homogeneous linear equations ay� � by � 0,
where the coefficients a � 0 and b are constants. This type of equation can be solved either by
separation of variables or with the aid of an integrating factor, but there is another solution method,
one that uses only algebra. Before illustrating this alternative method, we make one observation:
Solving ay� � by � 0 for y� yields y� � ky, where k is a constant. This observation reveals the
nature of the unknown solution y; the only nontrivial elementary function whose derivative is a
constant multiple of itself is an exponential function emx. Now the new solution method: If we substi-
tute y � emx and y� � memx into ay� � by � 0, we get

Since emx is never zero for real values of x, the last equation is satisfied only when m is a solution or
root of the first-degree polynomial equation am � b � 0. For this single value of m, y � emx is a
solution of the DE. To illustrate, consider the constant-coefficient equation 2y� � 5y � 0. It is not
necessary to go through the differentiation and substitution of y � emx into the DE; we merely have
to form the equation 2m � 5 � 0 and solve it for m. From we conclude that is a
solution of 2y� � 5y � 0, and its general solution on the interval (��, �) is 

In this section we will see that the foregoing procedure can produce exponential solutions for
homogeneous linear higher-order DEs,

(1)

where the coefficients ai, i � 0, 1, . . . , n are real constants and an � 0.

any(n) � an�1y(n�1) � 	 	 	 � a2y� � a1y� � a0y � 0,

y � c1e�5x/2.
y � e�5x/2m � �5

2

amemx � bemx � 0    or    emx (am � b) � 0.

4.3



AUXILIARY EQUATION We begin by considering the special case of the second-
order equation

(2)

where a, b, and c are constants. If we try to find a solution of the form y � emx, then
after substitution of y� � memx and y� � m2emx, equation (2) becomes

As in the introduction we argue that because emx � 0 for all x, it is apparent that the
only way y � emx can satisfy the differential equation (2) is when m is chosen as a
root of the quadratic equation

(3)

This last equation is called the auxiliary equation of the differential equa-
tion (2). Since the two roots of (3) are and

there will be three forms of the general solution of
(2) corresponding to the three cases:

• m1 and m2 real and distinct (b2 � 4ac � 0),
• m1 and m2 real and equal (b2 � 4ac � 0), and
• m1 and m2 conjugate complex numbers (b2 � 4ac 
 0).

We discuss each of these cases in turn.

CASE I: DISTINCT REAL ROOTS Under the assumption that the auxiliary equa-
tion (3) has two unequal real roots m1 and m2, we find two solutions, and

We see that these functions are linearly independent on (��, �) and hence
form a fundamental set. It follows that the general solution of (2) on this interval is

(4)

CASE II: REPEATED REAL ROOTS When m1 � m2, we necessarily obtain only
one exponential solution, . From the quadratic formula we find that
m1 � �b�2a since the only way to have m1 � m2 is to have b2 � 4ac � 0. It follows
from (5) in Section 4.2 that a second solution of the equation is

(5)

In (5) we have used the fact that �b�a � 2m1. The general solution is then

(6)

CASE III: CONJUGATE COMPLEX ROOTS If m1 and m2 are complex, then we
can write m1 � a� ib and m2 � a� ib, where a and b� 0 are real and i2 � �1.
Formally, there is no difference between this case and Case I, and hence

However, in practice we prefer to work with real functions instead of complex
exponentials. To this end we use Euler’s formula:

where u is any real number.* It follows from this formula that

(7)ei�x � cos �x � i sin �x    and    e�i�x � cos �x � i sin �x,

ei� � cos � � i sin �,

y � C1e(a�i�)x � C2e(a�i�)x.

y � c1e
m1x � c2xem1x.

y2 � em1x � e2m1x

e2m1x
dx � em1x � dx � xem1x.

y1 � em1x

y � c1em1x � c2em2x.

y2 � em2x.
y1 � em1x

m2 � (�b � 1b2 � 4ac)�2a,
m1 � (�b � 1b2 � 4ac)�2a

am2 � bm � c � 0.

am2emx � bmemx � cemx � 0    or    emx(am2 � bm � c) � 0.

ay� � by� � cy � 0,

134 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

*A formal derivation of Euler’s formula can be obtained from the Maclaurin series by

substituting x � iu, using i2 � �1, i3 � �i, . . . , and then separating the series into real and imaginary
parts. The plausibility thus established, we can adopt cos u � i sin u as the definition of eiu.

ex � �
�

n�0

xn

n!



where we have used cos(�bx) � cos bx and sin(�bx) � �sin bx. Note that by first
adding and then subtracting the two equations in (7), we obtain, respectively,

Since y � C1e(a�ib)x � C2e(a�ib)x is a solution of (2) for any choice of the constants C1

and C2, the choices C1 � C2 � 1 and C1 � 1, C2 � �1 give, in turn, two solutions:

But

and

Hence from Corollary (A) of Theorem 4.1.2 the last two results show that eax cos bx
and eax sin bx are real solutions of (2). Moreover, these solutions form a fundamen-
tal set on (��, �). Consequently, the general solution is

(8)

EXAMPLE 1 Second-Order DEs

Solve the following differential equations.

(a) 2y� � 5y� � 3y � 0 (b) y� � 10y� � 25y � 0 (c) y� � 4y� � 7y � 0

SOLUTION We give the auxiliary equations, the roots, and the corresponding gen-
eral solutions.

(a) 2m2 � 5m � 3 � (2m � 1)(m � 3) � 0, , m2 � 3

From (4), y � c1e�x/2 � c2e3x.

(b) m2 � 10m � 25 � (m � 5)2 � 0, m1 � m2 � 5

From (6), y � c1e5x � c2xe5x.

(c)

From (8) with 

EXAMPLE 2 An Initial-Value Problem

Solve 4y� � 4y� � 17y � 0, y(0) � �1, y�(0) � 2.

SOLUTION By the quadratic formula we find that the roots of the auxiliary
equation 4m2 � 4m � 17 � 0 are . Thus from
(8) we have y � e�x/2(c1 cos 2x � c2 sin 2x). Applying the condition y(0) � �1,
we see from e0(c1 cos 0 � c2 sin 0) � �1 that c1 � �1. Differentiating
y � e�x/2(�cos 2x � c2 sin 2x) and then using y�(0) � 2 gives 2c2 � � 2 or c2 � .
Hence the solution of the IVP is y � e�x/2(�cos 2x � sin 2x). In Figure 4.3.1 we
see that the solution is oscillatory, but y : 0 as x : � and �y � : � as x : ��.

TWO EQUATIONS WORTH KNOWING The two differential equations

,y� � k2y � 0    and    y� � k2y � 0

3
4

3
4

1
2

m1 � �1
2 � 2i and m2 � �1

2 � 2i

� � �2, � � 23, y � e�2x (c1 cos 23x � c2 sin 23x).
m2 � 4m � 7 � 0, m1 � �2 � 23i,  m2 � �2 � 23i

m1 � �1
2

y � c1eax cos �x � c2eax sin �x � eax(c1 cos �x � c2 sin �x).

y2 � eax(ei�x � e�i�x) � 2ieax sin �x.

y1 � eax(ei�x � e�i�x) � 2eax cos �x

y1 � e(a�i�)x � e(a�i�)x    and    y2 � e(a�i�)x � e(a�i�)x.

ei�x � e�i�x � 2 cos �x    and    ei�x � e�i�x � 2i sin �x.
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FIGURE 4.3.1 Solution curve of IVP
in Example 2
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where k is real, are important in applied mathematics. For y� � k2y � 0 the auxiliary
equation m2 � k2 � 0 has imaginary roots m1 � ki and m2 � �ki. With a� 0 and
b� k in (8) the general solution of the DE is seen to be

(9)

On the other hand, the auxiliary equation m2 � k2 � 0 for y� � k2y � 0 has distinct
real roots m1 � k and m2 � �k, and so by (4) the general solution of the DE is

(10)

Notice that if we choose in (10), we get the particu-
lar solutions . Since
cosh kx and sinh kx are linearly independent on any interval of the x-axis, an alternative
form for the general solution of y� � k2y � 0 is

(11)

See Problems 41 and 42 in Exercises 4.3.

HIGHER-ORDER EQUATIONS In general, to solve an nth-order differential
equation (1), where the ai, i � 0, 1, . . . , n are real constants, we must solve an nth-
degree polynomial equation

(12)

If all the roots of (12) are real and distinct, then the general solution of (1) is

It is somewhat harder to summarize the analogues of Cases II and III because the
roots of an auxiliary equation of degree greater than two can occur in many combi-
nations. For example, a fifth-degree equation could have five distinct real roots, or
three distinct real and two complex roots, or one real and four complex roots, or five
real but equal roots, or five real roots but two of them equal, and so on. When m1 is a
root of multiplicity k of an nth-degree auxiliary equation (that is, k roots are equal
to m1), it can be shown that the linearly independent solutions are

and the general solution must contain the linear combination

Finally, it should be remembered that when the coefficients are real, complex
roots of an auxiliary equation always appear in conjugate pairs. Thus, for example,
a cubic polynomial equation can have at most two complex roots.

EXAMPLE 3 Third-Order DE

Solve y� � 3y� � 4y � 0.

SOLUTION It should be apparent from inspection of m3 � 3m2 � 4 � 0 that one
root is m1 � 1, so m � 1 is a factor of m3 � 3m2 � 4. By division we find

so the other roots are m2 � m3 � �2. Thus the general solution of the DE is
y � c1ex � c2e�2x � c3xe�2x.

m3 � 3m2 � 4 � (m � 1)(m2 � 4m � 4) � (m � 1)(m � 2)2,

c1em1x � c2xem1x � c3x2em1x � 	 	 	 � ckxk�1em1x.

em1x,  xem1x,  x2em1x, . . . ,  xk�1em1x

y � c1em1x � c2em2x � 	 	 	 � cnemnx.

anmn � an�1m
n�1 � 	 	 	 � a2m

2 � a1m � a0 � 0.

y � c1 cosh kx � c2 sinh kx.

y � 1
2 (ekx � e�kx) � cosh kx and y � 1

2 (ekx � e�kx) � sinh kx
c1 � c2 � 1

2 and c1 � 1
2, c2 � �1

2

y � c1ekx � c2e�kx.

y � c1 cos kx � c2 sin kx.
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EXAMPLE 4 Fourth-Order DE

Solve 

SOLUTION The auxiliary equation m4 � 2m2 � 1 � (m2 � 1)2 � 0 has roots
m1 � m3 � i and m2 � m4 � �i. Thus from Case II the solution is

By Euler’s formula the grouping C1eix � C2e�ix can be rewritten as

after a relabeling of constants. Similarly, x(C3eix � C4e�ix) can be expressed as
x(c3 cos x � c4 sin x). Hence the general solution is

Example 4 illustrates a special case when the auxiliary equation has repeated
complex roots. In general, if m1 � a � ib, b� 0 is a complex root of multiplicity k
of an auxiliary equation with real coefficients, then its conjugate m2 � a � ib is also
a root of multiplicity k. From the 2k complex-valued solutions

we conclude, with the aid of Euler’s formula, that the general solution of the corre-
sponding differential equation must then contain a linear combination of the 2k real
linearly independent solutions

In Example 4 we identify k � 2, a � 0, and b� 1.
Of course the most difficult aspect of solving constant-coefficient differential equa-

tions is finding roots of auxiliary equations of degree greater than two. For example, to
solve 3y� � 5y� � 10y� � 4y � 0, we must solve 3m3 � 5m2 � 10m � 4 � 0.
Something we can try is to test the auxiliary equation for rational roots. Recall that
if m1 � p�q is a rational root (expressed in lowest terms) of an auxiliary equation

with integer coefficients, then p is a factor of a0 and q is
a factor of an. For our specific cubic auxiliary equation, all the factors of a0 � �4 and
an � 3 are p: �1, �2, �4 and q: �1, �3, so the possible rational roots are

. Each of these numbers can then be tested—say, by
synthetic division. In this way we discover both the root and the factorization

The quadratic formula then yields the remaining roots m2 � �1 � i and
m3 � �1 � i. Therefore the general solution of 3y� � 5y� � 10y� � 4y � 0 is
y � c1ex/3 � e�x(c2 cos x � c3 sin x).

USE OF COMPUTERS Finding roots or approximation of roots of auxiliary equa-
tions is a routine problem with an appropriate calculator or computer software.
Polynomial equations (in one variable) of degree less than five can be solved by means
of algebraic formulas using the solve commands in Mathematica and Maple. For aux-
iliary equations of degree five or greater it might be necessary to resort to numerical
commands such as NSolve and FindRoot in Mathematica. Because of their capability
of solving polynomial equations, it is not surprising that these computer algebra

2323
23

23

3m3 � 5m2 � 10m � 4 � (m � 1
3)(3m2 � 6m � 12).

m1 � 1
3

p>q: �1, �2, �4, �1
3, �2

3, �4
3

anmn � 	 	 	 � a1m � a0 � 0

eax sin �x, xeax sin �x, x2eax sin �x,   . . . , xk�1eax sin �x.

eax cos �x, xeax cos �x, x2eax cos �x,  . . . , xk�1eax cos �x,

e(a�i�)x, xe(a�i�)x, x2e(a�i�)x,  . . . , xk�1e(a�i�)x,

e(a�i�)x, xe(a�i�)x, x2e(a�i�)x,  . . . , xk�1e(a�i�)x,

y � c1 cos x � c2 sin x � c3x cos x � c4x sin x.

c1 cos x � c2 sin x

y � C1eix � C2e�ix � C3xeix � C4xe�ix.

d 4y

dx4 � 2
d 2y

dx2 � y � 0.

4.3 HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS ● 137

■ There is more on
this in the SRSM.



systems are also able, by means of their dsolve commands, to provide explicit solu-
tions of homogeneous linear constant-coefficient differential equations.

In the classic text Differential Equations by Ralph Palmer Agnew* (used by the
author as a student) the following statement is made:

It is not reasonable to expect students in this course to have computing skill and
equipment necessary for efficient solving of equations such as

(13)

Although it is debatable whether computing skills have improved in the intervening
years, it is a certainty that technology has. If one has access to a computer algebra sys-
tem, equation (13) could now be considered reasonable. After simplification and some
relabeling of output, Mathematica yields the (approximate) general solution

Finally, if we are faced with an initial-value problem consisting of, say, a
fourth-order equation, then to fit the general solution of the DE to the four initial
conditions, we must solve four linear equations in four unknowns (the c1, c2, c3, c4

in the general solution). Using a CAS to solve the system can save lots of time. See
Problems 59 and 60 in Exercises 4.3 and Problem 35 in Chapter 4 in Review.

� c3e0.476478x cos(0.759081x) � c4e0.476478x sin(0.759081x).

y � c1e�0.728852x cos(0.618605x) � c2e�0.728852x sin(0.618605x)

4.317
d 4y

dx4 � 2.179
d 3y

dx3 � 1.416
d 2y

dx2 � 1.295
dy

dx
� 3.169y � 0.
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*McGraw-Hill, New York, 1960.

EXERCISES 4.3 Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1–14 find the general solution of the given
second-order differential equation.

1. 4y� � y� � 0 2. y� � 36y � 0

3. y� � y� � 6y � 0 4. y� � 3y� � 2y � 0

5. y� � 8y� � 16y � 0 6. y� � 10y� � 25y � 0

7. 12y� � 5y� � 2y � 0 8. y� � 4y� � y � 0

9. y� � 9y � 0 10. 3y� � y � 0

11. y� � 4y� � 5y � 0 12. 2y� � 2y� � y � 0

13. 3y� � 2y� � y � 0 14. 2y� � 3y� � 4y � 0

In Problems 15–28 find the general solution of the given
higher-order differential equation.

15. y� � 4y� � 5y� � 0

16. y� � y � 0

17. y� � 5y� � 3y� � 9y � 0

18. y� � 3y� � 4y� � 12y � 0

19.
d 3u

dt3 �
d 2u

dt2 � 2u � 0

20.

21. y� � 3y� � 3y� � y � 0

22. y� � 6y� � 12y� � 8y � 0

23. y(4) � y� � y� � 0

24. y(4) � 2y� � y � 0

25.

26.

27.

28.

In Problems 29–36 solve the given initial-value problem.

29. y� � 16y � 0, y(0) � 2, y�(0) � �2

30.
d 2y

d�2 � y � 0, y��

3� � 0, y���

3� � 2

2
d 5x

ds5 � 7
d 4x

ds4 � 12
d 3x

ds3 � 8
d 2x

ds2 � 0

d 5u

dr5 � 5
d 4u

dr4 � 2
d 3u

dr3 � 10
d 2u

dr2 �
du

dr
� 5u � 0

d 4y

dx4 � 7
d 2y

dx2 � 18y � 0

16
d 4y

dx4 � 24
d 2y

dx2 � 9y � 0

d 3x

dt3 �
d 2x

dt2 � 4x � 0



31.

32. 4y� � 4y� � 3y � 0, y(0) � 1, y�(0) � 5

33. y� � y� � 2y � 0, y(0) � y�(0) � 0

34. y� � 2y� � y � 0, y(0) � 5, y�(0) � 10

35. y� � 12y� � 36y� � 0, y(0) � 0, y�(0) � 1, y�(0) � �7

36. y� � 2y� � 5y� � 6y � 0, y(0) � y�(0) � 0, y�(0) � 1

In Problems 37–40 solve the given boundary-value problem.

37. y� � 10y� � 25y � 0, y(0) � 1, y(1) � 0

38. y� � 4y � 0, y(0) � 0, y(p) � 0

39.

40. y� � 2y� � 2y � 0, y(0) � 1, y(p) � 1

In Problems 41 and 42 solve the given problem first using
the form of the general solution given in (10). Solve again,
this time using the form given in (11).

41. y� � 3y � 0, y(0) � 1, y�(0) � 5

42. y� � y � 0, y(0) � 1, y�(1) � 0

In Problems 43–48 each figure represents the graph of a
particular solution of one of the following differential
equations:

(a) y� � 3y� � 4y � 0 (b) y� � 4y � 0

(c) y� � 2y� � y � 0 (d) y� � y � 0

(e) y� � 2y� � 2y � 0 (f) y � � 3y� � 2y � 0

Match a solution curve with one of the differential equa-
tions. Explain your reasoning.

y� � y � 0, y�(0) � 0, y���

2� � 0

d 2y

dt2 � 4
dy

dt
� 5y � 0, y(1) � 0, y�(1) � 2
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Discussion Problems

49. The roots of a cubic auxiliary equation are m1 � 4 and
m2 � m3 � �5. What is the corresponding homogeneous
linear differential equation? Discuss: Is your answer
unique?

50. Two roots of a cubic auxiliary equation with real coef-
ficients are and m2 � 3 � i. What is the corre-
sponding homogeneous linear differential equation?

m1 � �1
2

x

y

x

y

FIGURE 4.3.2 Graph for Problem 43

FIGURE 4.3.3 Graph for Problem 44

43.

44.

x

y

FIGURE 4.3.4 Graph for Problem 45

45.

x

y

FIGURE 4.3.5 Graph for Problem 46

46.

π x

y

π x

y

FIGURE 4.3.6 Graph for Problem 47

FIGURE 4.3.7 Graph for Problem 48

47.

48.



51. Find the general solution of y� � 6y� � y� � 34y � 0
if it is known that y1 � e�4x cos x is one solution.

52. To solve y(4) � y � 0, we must find the roots of
m4 � 1 � 0. This is a trivial problem using a CAS
but can also be done by hand working with complex
numbers. Observe that m4 � 1 � (m2 � 1)2 � 2m2.
How does this help? Solve the differential equation.

53. Verify that is a particular
solution of y(4) � y � 0. Reconcile this particular solu-
tion with the general solution of the DE.

54. Consider the boundary-value problem y� � ly � 0,
y(0) � 0, y(p�2) � 0. Discuss: Is it possible to
determine values of l so that the problem possesses
(a) trivial solutions? (b) nontrivial solutions?

Computer Lab Assignments

In Problems 55–58 use a computer either as an aid in
solving the auxiliary equation or as a means of directly
obtaining the general solution of the given differential

y � sinh x � 2 cos (x � p>6)
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equation. If you use a CAS to obtain the general solution,
simplify the output and, if necessary, write the solution in
terms of real functions.

55. y� � 6y� � 2y� � y � 0

56. 6.11y� � 8.59y� � 7.93y� � 0.778y � 0

57. 3.15y(4) � 5.34y� � 6.33y� � 2.03y � 0

58. y(4) � 2y� � y� � 2y � 0

In Problems 59 and 60 use a CAS as an aid in solving
the auxiliary equation. Form the general solution of the dif-
ferential equation. Then use a CAS as an aid in solving the
system of equations for the coefficients ci, i � 1, 2, 3, 4 that
results when the initial conditions are applied to the general
solution.

59. 2y(4) � 3y� � 16y� � 15y� � 4y � 0,
y(0) � �2, y�(0) � 6, y�(0) � 3, y�(0) �

60. y(4) � 3y� � 3y� � y� � 0,
y(0) � y�(0) � 0, y�(0) � y�(0) � 1

1
2

UNDETERMINED COEFFICIENTS—SUPERPOSITION

APPROACH*

REVIEW MATERIAL
● Review Theorems 4.1.6 and 4.1.7 (Section 4.1)

INTRODUCTION To solve a nonhomogeneous linear differential equation

(1)

we must do two things: 

• find the complementary function yc and
• find any particular solution yp of the nonhomogeneous equation (1). 

Then, as was discussed in Section 4.1, the general solution of (1) is y � yc � yp. The complemen-
tary function yc is the general solution of the associated homogeneous DE of (1), that is,

.

In Section 4.3 we saw how to solve these kinds of equations when the coefficients were constants.
Our goal in the present section is to develop a method for obtaining particular solutions.

an y(n) � an�1 y(n�1) � 	 	 	 � a1 y� � a0 y � 0

an y (n) � an�1 y (n�1) � 	 	 	 � a1 y� � a0y � g(x),

4.4

*Note to the Instructor: In this section the method of undetermined coefficients is developed from the
viewpoint of the superposition principle for nonhomogeneous equations (Theorem 4.7.1). In Section 4.5
an entirely different approach will be presented, one utilizing the concept of differential annihilator
operators. Take your pick.



METHOD OF UNDETERMINED COEFFICIENTS The first of two ways we
shall consider for obtaining a particular solution yp for a nonhomogeneous linear DE
is called the method of undetermined coefficients. The underlying idea behind
this method is a conjecture about the form of yp, an educated guess really, that is
motivated by the kinds of functions that make up the input function g(x). The general
method is limited to linear DEs such as (1) where

• the coefficients ai, i � 0, 1, . . . , n are constants and
• g(x) is a constant k, a polynomial function, an exponential function eax,

a sine or cosine function sin bx or cos bx, or finite sums and products
of these functions.

NOTE Strictly speaking, g(x) � k (constant) is a polynomial function. Since a con-
stant function is probably not the first thing that comes to mind when you think of
polynomial functions, for emphasis we shall continue to use the redundancy
“constant functions, polynomials, . . . . ”

The following functions are some examples of the types of inputs g(x) that are
appropriate for this discussion:

That is, g(x) is a linear combination of functions of the type

g(x) � sin 3x � 5x cos 2x, g(x) � xex sin x � (3x2 � 1)e�4x.

g(x) � 10, g(x) � x2 � 5x,    g(x) � 15x � 6 � 8e�x,
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P(x) � an xn � an�1 xn�1 � 	 	 	 � a1x � a0,    P(x) eax,  P(x) eax sin �x,  and  P(x) eax cos �x,

where n is a nonnegative integer and a and b are real numbers. The method of
undetermined coefficients is not applicable to equations of form (1) when

and so on. Differential equations in which the input g(x) is a function of this last kind
will be considered in Section 4.6.

The set of functions that consists of constants, polynomials, exponentials
eax, sines, and cosines has the remarkable property that derivatives of their sums
and products are again sums and products of constants, polynomials, exponen-
tials eax, sines, and cosines. Because the linear combination of derivatives 

must be identical to g(x), it seems
reasonable to assume that yp has the same form as g(x).

The next two examples illustrate the basic method.

EXAMPLE 1 General Solution Using Undetermined Coefficients

Solve (2)

SOLUTION Step 1. We first solve the associated homogeneous equation
y� � 4y� � 2y � 0. From the quadratic formula we find that the roots of the auxil-
iary equation m2 � 4m � 2 � 0 are and . Hence
the complementary function is

Step 2. Now, because the function g(x) is a quadratic polynomial, let us assume a
particular solution that is also in the form of a quadratic polynomial:

yp � Ax2 � Bx � C.

yc � c1e�(2�16)x � c2e(�2�16)x.

m2 � �2 � 16m1 � �2 � 16

y� � 4y� � 2y � 2x2 � 3x � 6.

an y(n)
p � an�1 yp

(n�1) � 	 	 	 � a1 yp� � a0 yp

g(x) � ln x, g(x) �
1

x
, g(x) � tan x, g(x) � sin�1x,



We seek to determine specific coefficients A, B, and C for which yp is a solution
of (2). Substituting yp and the derivatives

into the given differential equation (2), we get

Because the last equation is supposed to be an identity, the coefficients of like powers
of x must be equal:

That is,

Solving this system of equations leads to the values A � �1, , and C � �9.
Thus a particular solution is

Step 3. The general solution of the given equation is

EXAMPLE 2 Particular Solution Using Undetermined Coefficients

Find a particular solution of y� � y� � y � 2 sin 3x.

SOLUTION A natural first guess for a particular solution would be A sin 3x. But
because successive differentiations of sin 3x produce sin 3x and cos 3x, we are
prompted instead to assume a particular solution that includes both of these terms:

Differentiating yp and substituting the results into the differential equation gives,
after regrouping,

or

From the resulting system of equations,

we get  and . A particular solution of the equation is

As we mentioned, the form that we assume for the particular solution yp is an
educated guess; it is not a blind guess. This educated guess must take into consider-
ation not only the types of functions that make up g(x) but also, as we shall see in
Example 4, the functions that make up the complementary function yc.

yp �
6

73
 cos 3x �

16

73
 sin 3x.

B � �16
73A � 6

73

�8A � 3B � 0,    3A � 8B � 2,

equal

�8A � 3B cos 3x � 3A � 8B sin 3x � 0 cos 3x � 2 sin 3x.

y �p � y�p � yp � (�8A � 3B) cos 3x � (3A � 8B) sin 3x � 2 sin 3x

yp � A cos 3x � B sin 3x.

y � yc � yp � c1e�(2�16)x � c1e(�2�16)x � x2 �
5

2
x � 9.

yp � �x2 �
5

2
x � 9.

B � �5
2

�2A � 2,    8A � 2B � �3,    2A � 4B � 2C � 6.

equal

�2A x2 � 8A � 2B x � 2A � 4B � 2C � 2x2 � 3x � 6

y�p � 4y�p � 2yp � 2A � 8Ax � 4B � 2Ax2 � 2Bx � 2C � 2x2 � 3x � 6.

y�p � 2Ax � B    and    y�p � 2A
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EXAMPLE 3 Forming yp by Superposition

Solve (3)

SOLUTION Step 1. First, the solution of the associated homogeneous equation 
y� � 2y� � 3y � 0 is found to be yc � c1e�x � c2e3x.

Step 2. Next, the presence of 4x � 5 in g(x) suggests that the particular solution
includes a linear polynomial. Furthermore, because the derivative of the product xe2x

produces 2xe2x and e2x, we also assume that the particular solution includes both
xe2x and e2x. In other words, g is the sum of two basic kinds of functions:

Correspondingly, the superposition principle for nonhomogeneous equations
(Theorem 4.1.7) suggests that we seek a particular solution

where . Substituting

into the given equation (3) and grouping like terms gives

yp � Ax � B � Cxe2x � Ee2x

yp1
� Ax � B and yp2

� Cxe2x � Ee2x

yp � yp1
� yp2

,

g(x) � g1(x) � g2(x) � polynomial � exponentials.

y� � 2y� � 3y � 4x � 5 � 6xe2x.
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(4)y�p � 2y�p � 3yp � �3Ax � 2A � 3B � 3Cxe2x � (2C � 3E )e2x � 4x � 5 � 6xe2x.

From this identity we obtain the four equations

The last equation in this system results from the interpretation that the coefficient of
e2x in the right member of (4) is zero. Solving, we find , , C � �2, and

. Consequently,

Step 3. The general solution of the equation is

In light of the superposition principle (Theorem 4.1.7) we can also approach
Example 3 from the viewpoint of solving two simpler problems. You should verify
that substituting

and

yields, in turn, . A particular solution of (3)
is then .

The next example illustrates that sometimes the “obvious” assumption for the
form of yp is not a correct assumption.

EXAMPLE 4 A Glitch in the Method

Find a particular solution of y� � 5y� � 4y � 8ex.

SOLUTION Differentiation of ex produces no new functions. Therefore proceeding
as we did in the earlier examples, we can reasonably assume a particular solution of
the form yp � Aex. But substitution of this expression into the differential equation

yp � yp1
� yp2

yp1
� �4

3 x � 23
9  and yp2

� ��2x � 4
3�e2x

yp2
� Cxe2x � Ee2x     into    y� � 2y� � 3y � 6xe2x

yp1
� Ax � B  into y� � 2y� � 3y � 4x � 5

y � c1e�x � c2e3x �
4

3
x �

23

9
� �2x �

4

3� e2x.

yp � �
4

3
x �

23

9
� 2xe2x �

4

3
e2x.

E � �4
3

B � 23
9A � �4

3

�3A � 4,    �2A � 3B � �5,    �3C � 6,    2C � 3E � 0.



yields the contradictory statement 0 � 8ex, so we have clearly made the wrong guess
for yp.

The difficulty here is apparent on examining the complementary function
yc � c1ex � c2e4x. Observe that our assumption Aex is already present in yc. This
means that ex is a solution of the associated homogeneous differential equation, and
a constant multiple Aex when substituted into the differential equation necessarily
produces zero.

What then should be the form of yp? Inspired by Case II of Section 4.3, let’s see
whether we can find a particular solution of the form

Substituting and into the differential equation
and simplifying gives

From the last equality we see that the value of A is now determined as A � � .
Therefore a particular solution of the given equation is 

The difference in the procedures used in Examples 1 – 3 and in Example 4
suggests that we consider two cases. The first case reflects the situation in
Examples 1 – 3.

CASE I No function in the assumed particular solution is a solution of the asso-
ciated homogeneous differential equation.

In Table 4.1 we illustrate some specific examples of g(x) in (1) along with the
corresponding form of the particular solution. We are, of course, taking for granted
that no function in the assumed particular solution yp is duplicated by a function in
the complementary function yc.

yp � �8
3 xex.

8
3

y�p � 5y�p � 4yp � �3Aex � 8ex.

y�p � Axex � 2Aexy�p � Axex � Aex

yp � Axex.
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TABLE 4.1 Trial Particular Solutions

g(x) Form of yp

1. 1 (any constant) A

2. 5x � 7 Ax � B

3. 3x2 � 2 Ax2 � Bx � C

4. x3 � x � 1 Ax3 � Bx2 � Cx � E

5. sin 4x A cos 4x � B sin 4x

6. cos 4x A cos 4x � B sin 4x

7. e5x Ae5x

8. (9x � 2)e5x (Ax � B)e5x

9. x2e5x (Ax2 � Bx � C)e5x

10. e3x sin 4x Ae3x cos 4x � Be3x sin 4x

11. 5x2 sin 4x (Ax2 � Bx � C) cos 4x � (Ex2 � Fx � G) sin 4x

12. xe3x cos 4x (Ax � B)e3x cos 4x � (Cx � E)e3x sin 4x

EXAMPLE 5 Forms of Particular Solutions—Case I

Determine the form of a particular solution of

(a) y� � 8y� � 25y � 5x3e�x � 7e�x (b) y� � 4y � x cos x

SOLUTION (a) We can write g(x) � (5x3 � 7)e�x. Using entry 9 in Table 4.1 as
a model, we assume a particular solution of the form

Note that there is no duplication between the terms in yp and the terms in the comple-
mentary function yc � e4x(c1 cos 3x � c2 sin 3x).

yp � (Ax3 � Bx2 � Cx � E)e�x.



(b) The function g(x) � x cos x is similar to entry 11 in Table 4.1 except, of course,
that we use a linear rather than a quadratic polynomial and cos x and sin x instead of
cos 4x and sin 4x in the form of yp:

Again observe that there is no duplication of terms between yp and
yc � c1 cos 2x � c2 sin 2x.

If g(x) consists of a sum of, say, m terms of the kind listed in the table, then (as in
Example 3) the assumption for a particular solution yp consists of the sum of the trial
forms corresponding to these terms:

The foregoing sentence can be put another way.

Form Rule for Case I The form of yp is a linear combination of all linearly
independent functions that are generated by repeated differentiations of g(x).

EXAMPLE 6 Forming yp by Superposition—Case I

Determine the form of a particular solution of

SOLUTION

Corresponding to 3x2 we assume

Corresponding to � 5 sin 2x we assume

Corresponding to 7xe6x we assume

The assumption for the particular solution is then

No term in this assumption duplicates a term in yc � c1e2x � c2e7x.

CASE II A function in the assumed particular solution is also a solution of the
associated homogeneous differential equation.

The next example is similar to Example 4.

EXAMPLE 7 Particular Solution—Case II

Find a particular solution of y� � 2y� � y � ex.

SOLUTION The complementary function is yc � c1ex � c2xex. As in Example 4,
the assumption yp � Aex will fail, since it is apparent from yc that ex is a solution of
the associated homogeneous equation y� � 2y� � y � 0. Moreover, we will not be
able to find a particular solution of the form yp � Axex, since the term xex is also
duplicated in yc. We next try

Substituting into the given differential equation yields 2Aex � ex, so Thus a
particular solution is yp � 1

2 x2ex.
A � 1

2.

yp � Ax2ex.

yp � yp1
� yp2

� yp3
� Ax2 � Bx � C � E cos 2x � F sin 2x � (Gx � H)e6x.

yp3
� (Gx � H)e6x.

yp2
� E cos 2x � F sin 2x.

yp1
� Ax2 � Bx � C.

y� � 9y� � 14y � 3x2 � 5 sin 2x � 7xe6x.

yp � yp1
� yp2

� 	 	 	 � ypm
.

yp1
, yp2

, . . . , ypm

yp � (Ax � B) cos x � (Cx � E) sin x.
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Suppose again that g(x) consists of m terms of the kind given in Table 4.1, and
suppose further that the usual assumption for a particular solution is

where the are the trial particular solution forms corresponding to
these terms. Under the circumstances described in Case II, we can make up the
following general rule.

Multiplication Rule for Case II If any contains terms that duplicate terms in
yc, then that must be multiplied by xn, where n is the smallest positive integer
that eliminates that duplication.

EXAMPLE 8 An Initial-Value Problem

Solve y� � y � 4x � 10 sin x, y(p) � 0, y�(p) � 2.

SOLUTION The solution of the associated homogeneous equation y� � y � 0
is yc � c1 cos x � c2 sin x. Because g(x) � 4x � 10 sin x is the sum of a linear
polynomial and a sine function, our normal assumption for yp, from entries 2 and 5
of Table 4.1, would be the sum of and :

(5)

But there is an obvious duplication of the terms cos x and sin x in this assumed form
and two terms in the complementary function. This duplication can be eliminated by
simply multiplying by x. Instead of (5) we now use

(6)

Differentiating this expression and substituting the results into the differential
equation gives

and so A � 4, B � 0, �2C � 10, and 2E � 0. The solutions of the system are
immediate: A � 4, B � 0, C � �5, and E � 0. Therefore from (6) we obtain
yp � 4x � 5x cos x. The general solution of the given equation is

We now apply the prescribed initial conditions to the general solution of the
equation. First, y(p) � c1 cos p � c2 sin p � 4p � 5p cos p � 0 yields c1 � 9p,
since cos p � �1 and sin p� 0. Next, from the derivative

and

we find c2 � 7. The solution of the initial-value is then

EXAMPLE 9 Using the Multiplication Rule

Solve y� � 6y� � 9y � 6x2 � 2 � 12e3x.

SOLUTION The complementary function is yc � c1e3x � c2xe3x. And so, based on
entries 3 and 7 of Table 4.1, the usual assumption for a particular solution would be

yp � Ax2 � Bx � C � Ee3x.

yp1
yp2

y � 9� cos x � 7 sin x � 4x � 5x cos x.

y�(�) � �9� sin � � c2 cos � � 4 � 5� sin � � 5 cos � � 2

y� � �9� sin x � c2 cos x � 4 � 5x sin x � 5 cos x

y � yc � yp � c1 cos x � c2 sin x � 4x � 5x cos x.

y�p � yp � Ax � B � 2C sin x � 2E cos x � 4x � 10 sin x,

yp � Ax � B � Cx cos x � Ex sin x.

yp2

yp � Ax � B � C cos x � E sin x.

yp2
� C cos x � E sin xyp1

� Ax � B

ypi

ypi

ypi
, i � 1, 2, . . . , m

yp � yp1
� yp2

� 	 	 	 � ypm
,
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Inspection of these functions shows that the one term in is duplicated in yc. If
we multiply by x, we note that the term xe3x is still part of yc. But multiplying

by x2 eliminates all duplications. Thus the operative form of a particular
solution is

Differentiating this last form, substituting into the differential equation, and collecting
like terms gives

yp � Ax2 � Bx � C � Ex2e3x.

yp2

yp2

yp2
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y�p � 6y�p � 9yp � 9Ax2 � (�12A � 9B)x � 2A � 6B � 9C � 2Ee3x � 6x2 � 2 � 12e3x.

It follows from this identity that A � , B � , C � , and E � �6. Hence the general

solution y � yc � yp is y � c1e3x � c2xe3x � x2 � x � � 6x2e3x.

EXAMPLE 10 Third-Order DE—Case I

Solve y� � y� � ex cos x.

SOLUTION From the characteristic equation m3 � m2 � 0 we find m1 � m2 � 0
and m3 � �1. Hence the complementary function of the equation is 
yc � c1 � c2x � c3e�x. With g(x) � ex cos x, we see from entry 10 of Table 4.1 that
we should assume that

Because there are no functions in yp that duplicate functions in the complementary
solution, we proceed in the usual manner. From

we get �2A � 4B � 1 and �4A � 2B � 0. This system gives and ,
so a particular solution is . The general solution of the
equation is

EXAMPLE 11 Fourth-Order DE—Case II

Determine the form of a particular solution of y(4) � y� � 1 � x2e�x.

SOLUTION Comparing yc � c1 � c2x � c3x2 � c4e�x with our normal assumption
for a particular solution

we see that the duplications between yc and yp are eliminated when is multiplied
by x3 and is multiplied by x. Thus the correct assumption for a particular solution
is yp � Ax3 � Bx3e�x � Cx2e�x � Exe�x.

yp2

yp1

yp � A � Bx2e�x � Cxe�x � Ee�x,

yp1
yp2

y � yc � yp � c1 � c2x � c3e�x �
1

10
ex cos x �

1

5
ex sin x.

yp � � 1
10 e

x cos x � 1
5 ex sin x

B � 1
5A � � 1

10

y��p � y�p � (�2A � 4B)ex cos x � (�4A � 2B)ex sin x � ex cos x

yp � Aex cos x � Bex sin x.

2
3

8
9

2
3

2
3

8
9

2
3



REMARKS

(i) In Problems 27–36 in Exercises 4.4 you are asked to solve initial-value
problems, and in Problems 37–40 you are asked to solve boundary-value
problems. As illustrated in Example 8, be sure to apply the initial conditions or
the boundary conditions to the general solution y � yc � yp. Students often
make the mistake of applying these conditions only to the complementary
function yc because it is that part of the solution that contains the constants
c1, c2, . . . , cn.

(ii) From the “Form Rule for Case I” on page 145 of this section you see why
the method of undetermined coefficients is not well suited to nonhomogeneous
linear DEs when the input function g(x) is something other than one of the four
basic types highlighted in color on page 141. For example, if P(x) is a polyno-
mial, then continued differentiation of P(x)eax sin bx will generate an indepen-
dent set containing only a finite number of functions—all of the same type,
namely, a polynomial times eax sin bx or a polynomial times eax cos bx. On
the other hand, repeated differentiation of input functions such as g(x) � ln x
or g(x) � tan�1x generates an independent set containing an infinite number of
functions:

derivatives of  tan�1x:  1

1 � x2
, �2x

(1 � x2)2
, �2 � 6x2

(1 � x2)3
, . . . .

derivatives of  ln x:  1

x
, �1

x2
, 2

x3
, . . . ,
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EXERCISES 4.4 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–26 solve the given differential equation by
undetermined coefficients.

1. y� � 3y� � 2y � 6

2. 4y� � 9y � 15

3. y� � 10y� � 25y � 30x � 3

4. y� � y� � 6y � 2x

5. y� � y� � y � x2 � 2x

6. y� � 8y� � 20y � 100x2 � 26xex

7. y� � 3y � �48x2e3x

8. 4y� � 4y� � 3y � cos 2x

9. y� � y� � �3

10. y� � 2y� � 2x � 5 � e�2x

11.

12. y� � 16y � 2e4x

13. y� � 4y � 3 sin 2x

14. y� � 4y � (x2 � 3) sin 2x

15. y� � y � 2x sin x

y� � y� �
1

4
y � 3 � ex/2

1

4

16. y� � 5y� � 2x3 � 4x2 � x � 6

17. y� � 2y� � 5y � ex cos 2x

18. y� � 2y� � 2y � e2x(cos x � 3 sin x)

19. y� � 2y� � y � sin x � 3 cos 2x

20. y� � 2y� � 24y � 16 � (x � 2)e4x

21. y� � 6y� � 3 � cos x

22. y� � 2y� � 4y� � 8y � 6xe2x

23. y� � 3y� � 3y� � y � x � 4ex

24. y� � y� � 4y� � 4y � 5 � ex � e2x

25. y(4) � 2y� � y � (x � 1)2

26. y(4) � y� � 4x � 2xe�x

In Problems 27–36 solve the given initial-value problem.

27. y� � 4y � �2,

28. 2y� � 3y� � 2y � 14x2 � 4x � 11, y(0) � 0, y�(0) � 0

29. 5y� � y� � �6x, y(0) � 0, y�(0) � �10

30. y� � 4y� � 4y � (3 � x)e�2x, y(0) � 2, y�(0) � 5

31. y� � 4y� � 5y � 35e�4x, y(0) � �3, y�(0) � 1

y��

8� �
1

2
, y���

8� � 2



32. y� � y � cosh x, y(0) � 2, y�(0) � 12

33. , x(0) � 0, x�(0) � 0

34. , x(0) � 0, x�(0) � 0

35. y� � 2y� � y� � 2 � 24ex � 40e5x,

36. y� � 8y � 2x � 5 � 8e�2x, y(0) � �5, y�(0) � 3,
y�(0) � �4

In Problems 37–40 solve the given boundary-value problem.

37. y� � y � x2 � 1, y(0) � 5, y(1) � 0

38. y� � 2y� � 2y � 2x � 2, y(0) � 0, y(p) � p

39. y� � 3y � 6x, y(0) � 0, y(1) � y�(1) � 0

40. y� � 3y � 6x, y(0) � y�(0) � 0, y(1) � 0

In Problems 41 and 42 solve the given initial-value problem
in which the input function g(x) is discontinuous. [Hint:
Solve each problem on two intervals, and then find a solution
so that y and y� are continuous at x � p�2 (Problem 41) and
at x � p (Problem 42).]

41. y� � 4y � g(x), y(0) � 1, y�(0) � 2, where

42. y� � 2y� � 10y � g(x), y(0) � 0, y�(0) � 0, where

Discussion Problems

43. Consider the differential equation ay� � by� � cy � ekx,
where a, b, c, and k are constants. The auxiliary
equation of the associated homogeneous equation is
am2 � bm � c � 0.

(a) If k is not a root of the auxiliary equation, show
that we can find a particular solution of the form
yp � Aekx, where A � 1�(ak2 � bk � c).

(b) If k is a root of the auxiliary equation of multiplicity
one, show that we can find a particular solution of
the form yp � Axekx, where A � 1�(2ak � b).
Explain how we know that k � �b�(2a).

(c) If k is a root of the auxiliary equation of multiplicity
two, show that we can find a particular solution of the
form y � Ax2ekx, where A � 1�(2a).

44. Discuss how the method of this section can be used
to find a particular solution of y� � y � sin x cos 2x.
Carry out your idea.

g(x) � �20, 0 � x � �

0, x � �

g(x) � �sin x, 0 � x � �>2
0,  x � �>2

y�(0) � �9
2y�(0) � 5

2,
y(0) � 1

2,

d 2x

dt 2 � �2x � F0 cos �t

d 2x

dt2 � �2x � F0 sin �t
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45. Without solving, match a solution curve of y� � y � f (x)
shown in the figure with one of the following functions:
(i) f (x) � 1, (ii) f (x) � e�x,

(iii) f (x) � ex, (iv) f (x) � sin 2x,
(v) f (x) � ex sin x, (vi) f (x) � sin x.

Briefly discuss your reasoning.

x

y

FIGURE 4.4.1 Solution curve

FIGURE 4.4.3 Solution curve

FIGURE 4.4.4 Solution curve

FIGURE 4.4.2 Solution curve

x

y

x

y

x

y

(a)

(b)

(c)

(d)

Computer Lab Assignments

In Problems 46 and 47 find a particular solution of the given
differential equation. Use a CAS as an aid in carrying out
differentiations, simplifications, and algebra.

46. y� � 4y� � 8y � (2x2 � 3x)e2x cos 2x
� (10x2 � x � 1)e2x sin 2x

47. y(4) � 2y� � y � 2 cos x � 3x sin x



FACTORING OPERATORS When the coefficients ai, i � 0, 1, . . . , n are real
constants, a linear differential operator (1) can be factored whenever the characteris-
tic polynomial anmn � an�1mn�1 � 	 	 	 � a1m � a0 factors. In other words, if r1 is
a root of the auxiliary equation

then L � (D � r1) P(D), where the polynomial expression P(D) is a linear differential
operator of order n � 1. For example, if we treat D as an algebraic quantity, then the
operator D2 � 5D � 6 can be factored as (D � 2)(D � 3) or as (D � 3)(D � 2). Thus
if a function y � f (x) possesses a second derivative, then

This illustrates a general property:

Factors of a linear differential operator with constant coefficients commute.

A differential equation such as y� � 4y� � 4y � 0 can be written as

(D2 � 4D � 4)y � 0 or (D � 2)(D � 2)y � 0 or (D � 2)2y � 0.

ANNIHILATOR OPERATOR If L is a linear differential operator with constant
coefficients and f is a sufficiently differentiable function such that

then L is said to be an annihilator of the function. For example, a constant function
y � k is annihilated by D, since Dk � 0. The function y � x is annihilated by the
differential operator D2 since the first and second derivatives of x are 1 and 0,
respectively. Similarly, D3x2 � 0, and so on.

The differential operator Dn annihilates each of the functions

1, x, x2, . . . , xn�1. (3)

L( f (x)) � 0,

(D2 � 5D � 6)y � (D � 2)(D � 3)y � (D � 3)(D � 2)y.

anmn � an�1mn�1 � 	 	 	 � a1m � a0 � 0,
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UNDETERMINED COEFFICIENTS—ANNIHILATOR APPROACH

REVIEW MATERIAL
● Review Theorems 4.1.6 and 4.1.7 (Section 4.1)

INTRODUCTION We saw in Section 4.1 that an nth-order differential equation can be written

(1)

where Dky � dky�dxk, k � 0, 1, . . . , n. When it suits our purpose, (1) is also written as L(y) � g(x),
where L denotes the linear nth-order differential, or polynomial, operator

(2)

Not only is the operator notation a helpful shorthand, but also on a very practical level the
application of differential operators enables us to justify the somewhat mind-numbing rules for
determining the form of particular solution yp that were presented in the preceding section. In this
section there are no special rules; the form of yp follows almost automatically once we have found
an appropriate linear differential operator that annihilates g(x) in (1). Before investigating how this
is done, we need to examine two concepts.

anDn � an�1Dn�1 � 	 	 	 � a1D � a0.

anDny � an�1Dn�1y � 	 	 	 � a1Dy � a0y � g(x),

4.5



As an immediate consequence of (3) and the fact that differentiation can be done
term by term, a polynomial

(4)

can be annihilated by finding an operator that annihilates the highest power of x.
The functions that are annihilated by a linear nth-order differential operator L

are simply those functions that can be obtained from the general solution of the
homogeneous differential equation L(y) � 0.

The differential operator (D � a)n annihilates each of the functions

eax, xeax, x2eax, . . . , xn�1eax. (5)

To see this, note that the auxiliary equation of the homogeneous equation
(D � a)ny � 0 is (m � a)n � 0. Since a is a root of multiplicity n, the general
solution is

(6)

EXAMPLE 1 Annihilator Operators

Find a differential operator that annihilates the given function.

(a) 1 � 5x2 � 8x3 (b) e�3x (c) 4e2x � 10xe2x

SOLUTION (a) From (3) we know that D4x3 � 0, so it follows from (4) that

(b) From (5), with a� �3 and n � 1, we see that

(c) From (5) and (6), with a� 2 and n � 2, we have

When a and b, b � 0 are real numbers, the quadratic formula reveals that
[m2 � 2am � (a2 � b2)]n � 0 has complex roots a � ib, a � ib, both of multi-
plicity n. From the discussion at the end of Section 4.3 we have the next result.

The differential operator [D2 � 2aD � (a2 � b2)]n annihilates each of the
functions

(7)

EXAMPLE 2 Annihilator Operator

Find a differential operator that annihilates 5e�x cos 2x � 9e�x sin 2x.

SOLUTION Inspection of the functions e�x cos 2x and e�x sin 2x shows that
a � �1 and b� 2. Hence from (7) we conclude that D2 � 2D � 5 will annihilate
each function. Since D2 � 2D � 5 is a linear operator, it will annihilate any linear
combination of these functions such as 5e�x cos 2x � 9e�x sin 2x.

e�x cos �x, xe�x cos �x, x2e�x cos �x, . . . , xn�1e�x cos �x,

e�x sin �x, xe�x sin �x, x2e�x sin �x, . . . , xn�1e�x sin �x.

(D � 2)2(4e2x � 10xe2x) � 0.

(D � 3)e�3x � 0.

D4(1 � 5x2 � 8x3) � 0.

y � c1eax � c2xeax � 	 	 	 � cnxn�1eax.

c0 � c1x � c2x2 � 	 	 	 � cn�1xn�1
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When a � 0 and n � 1, a special case of (7) is

(8)

For example, D2 � 16 will annihilate any linear combination of sin 4x and cos 4x.
We are often interested in annihilating the sum of two or more functions. As we

have just seen in Examples 1 and 2, if L is a linear differential operator such
that L(y1) � 0 and L(y2) � 0, then L will annihilate the linear combination
c1y1(x) � c2y2(x). This is a direct consequence of Theorem 4.1.2. Let us now suppose
that L1 and L2 are linear differential operators with constant coefficients such that L1

annihilates y1(x) and L2 annihilates y2(x), but L1(y2) � 0 and L2(y1) � 0. Then the
product of differential operators L1L2 annihilates the sum c1y1(x) � c2y2(x). We can
easily demonstrate this, using linearity and the fact that L1L2 � L2L1:

For example, we know from (3) that D2 annihilates 7 � x and from (8) that 
D2 � 16 annihilates sin 4x. Therefore the product of operators D2(D2 � 16) will
annihilate the linear combination 7 � x � 6 sin 4x.

NOTE The differential operator that annihilates a function is not unique. We saw
in part (b) of Example 1 that D � 3 will annihilate e�3x, but so will differential
operators of higher order as long as D � 3 is one of the factors of the operator. For
example, (D � 3)(D � 1), (D � 3)2, and D3(D � 3) all annihilate e�3x. (Verify this.)
As a matter of course, when we seek a differential annihilator for a function y � f (x),
we want the operator of lowest possible order that does the job.

UNDETERMINED COEFFICIENTS This brings us to the point of the preceding
discussion. Suppose that L(y) � g(x) is a linear differential equation with constant
coefficients and that the input g(x) consists of finite sums and products of the func-
tions listed in (3), (5), and (7)—that is, g(x) is a linear combination of functions of
the form

where m is a nonnegative integer and a and b are real numbers. We now know
that such a function g(x) can be annihilated by a differential operator L1 of
lowest order, consisting of a product of the operators Dn, (D � a)n, and 
(D2 � 2aD � a2 � b2)n. Applying L1 to both sides of the equation L(y) � g(x)
yields L1L(y) � L1(g(x)) � 0. By solving the homogeneous higher-order equation
L1L(y) � 0, we can discover the form of a particular solution yp for the original
nonhomogeneous equation L( y) � g(x). We then substitute this assumed form into
L(y) � g(x) to find an explicit particular solution. This procedure for determining
yp, called the method of undetermined coefficients, is illustrated in the next
several examples.

Before proceeding, recall that the general solution of a nonhomogeneous
linear differential equation L(y) � g(x) is y � yc � yp, where yc is the comple-
mentary function —that is, the general solution of the associated homogeneous
equation L(y) � 0. The general solution of each equation L(y) � g(x) is defined
on the interval (��, �).

k (constant), xm, xme�x, xme�x cos �x, and xme�x sin �x,

L1L2(y1 � y2) � L1L2(y1) � L1L2(y2)

� L2L1(y1) � L1L2(y2)

� L2[L1(y1)] � L1[L2(y2)] � 0.

zero zero

(D2 � �2) �cos �x

sin �x
� 0.
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EXAMPLE 3 General Solution Using Undetermined Coefficients

Solve (9)

SOLUTION Step 1. First, we solve the homogeneous equation y� � 3y� � 2y � 0.
Then, from the auxiliary equation m2 � 3m � 2 � (m � 1)(m � 2) � 0 we find
m1 � �1 and m2 � �2, and so the complementary function is

yc � c1e�x � c2e�2x.

Step 2. Now, since 4x2 is annihilated by the differential operator D3, we see that
D3(D2 � 3D � 2)y � 4D3x2 is the same as

D3(D2 � 3D � 2)y � 0. (10)

The auxiliary equation of the fifth-order equation in (10),

m3(m2 � 3m � 2) � 0 or m3(m � 1)(m � 2) � 0,

has roots m1 � m2 � m3 � 0, m4 � �1, and m5 � �2. Thus its general solution
must be

y � c1 � c2x � c3x2 � . (11)

The terms in the shaded box in (11) constitute the complementary function of the
original equation (9). We can then argue that a particular solution yp of (9) should
also satisfy equation (10). This means that the terms remaining in (11) must be the
basic form of yp:

(12)

where, for convenience, we have replaced c1, c2, and c3 by A, B, and C, respectively.
For (12) to be a particular solution of (9), it is necessary to find specific coefficients
A, B, and C. Differentiating (12), we have

and substitution into (9) then gives

Because the last equation is supposed to be an identity, the coefficients of like powers
of x must be equal:

That is (13)

Solving the equations in (13) gives A � 7, B � �6, and C � 2. Thus
yp � 7 � 6x � 2x2.

Step 3. The general solution of the equation in (9) is y � yc � yp or

y � c1e�x � c2e�2x � 7 � 6x � 2x2.

2C � 4,    2B � 6C � 0,    2A � 3B � 2C � 0.

equal

2C x2 � 2B � 6C x � 2A � 3B � 2C � 4x2 � 0x � 0.

y�p � 3y�p � 2yp � 2C � 3B � 6Cx � 2A � 2Bx � 2Cx2 � 4x2.

y�p � B � 2Cx,    y�p � 2C,

yp � A � Bx � Cx2,

c4e�x � c5e�2x

y� � 3y� � 2y � 4x2.
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EXAMPLE 4 General Solution Using Undetermined Coefficients

Solve (14)

SOLUTION Step 1. The auxiliary equation for the associated homogeneous equa-
tion y� � 3y� � 0 is m2 � 3m � m(m � 3) � 0, so yc � c1 � c2e3x.

Step 2. Now, since (D � 3)e3x � 0 and (D2 � 1) sin x � 0, we apply the differen-
tial operator (D � 3)(D2 � 1) to both sides of (14):

(15)

The auxiliary equation of (15) is

Thus y �

After excluding the linear combination of terms in the box that corresponds to yc, we
arrive at the form of yp:

Substituting yp in (14) and simplifying yield

Equating coefficients gives 3A � 8, �B � 3C � 0, and 3B � C � 4. We find ,
, and , and consequently,

Step 3. The general solution of (14) is then

EXAMPLE 5 General Solution Using Undetermined Coefficients

Solve (16)

SOLUTION The complementary function is yc � c1 cos x � c2 sin x. Now by com-
paring cos x and x cos x with the functions in the first row of (7), we see that a � 0
and n � 1, and so (D2 � 1)2 is an annihilator for the right-hand member of the equa-
tion in (16). Applying this operator to the differential equation gives

Since i and �i are both complex roots of multiplicity 3 of the auxiliary equation of
the last differential equation, we conclude that

y �

We substitute

into (16) and simplify:

� x cos x � cos x.

y�p � yp � 4 Ex cos x � 4 Cx sin x � (2B � 2C ) cos x � (�2A � 2E) sin x

yp � Ax cos x � Bx sin x � Cx2 cos x � Ex2 sin x

� c3x cos x � c4x sin x � c5x2 cos x � c6x2 sin x.c1 cos x � c2 sin x

(D2 � 1)2 (D2 � 1)y � 0    or    (D2 � 1)3y � 0.

y� � y � x cos x � cos x.

y � c1 � c2e3x �
8

3
xe3x �

6

5
 cos x �

2

5
 sin x.

yp �
8

3
xe3x �

6

5
 cos x �

2

5
 sin x.

C � �2
5B � 6

5

A � 8
3

y�p � 3y�p � 3Ae3x � (�B � 3C) cos x � (3B � C ) sin x � 8e3x � 4 sin x.

yp � Axe3x � B cos x � C sin x.

� c3xe3x � c4 cos x � c5 sin x.c1 � c2e3x

(m � 3)(m2 � 1)(m2 � 3m) � 0    or    m(m � 3)2(m2 � 1) � 0.

(D � 3)(D2 � 1)(D2 � 3D)y � 0.

y� � 3y� � 8e3x � 4 sin x.
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Equating coefficients gives the equations 4E � 1, �4C � 0, 2B � 2C � �1, and
�2A � 2E � 0, from which we find , C � 0, and . Hence the
general solution of (16) is

.

EXAMPLE 6 Form of a Particular Solution

Determine the form of a particular solution for

(17)

SOLUTION The complementary function for the given equation is
yc � c1ex � c2xex.

Now from (7), with a � �2, b� 1, and n � 1, we know that

Applying the operator D2 � 4D � 5 to (17) gives

(18)

Since the roots of the auxiliary equation of (18) are �2 � i, �2 � i, 1, and 1, we
see from

y �

that a particular solution of (17) can be found with the form

EXAMPLE 7 Form of a Particular Solution

Determine the form of a particular solution for

(19)

SOLUTION Observe that

Therefore D3(D � 2)3(D � 5) applied to (19) gives

or

The roots of the auxiliary equation for the last differential equation are easily seen to
be 0, 0, 0, 0, 2, 2, 2, 2, 2, and 5. Hence

D4(D � 2)5(D � 5)y � 0.

D3(D � 2)3(D � 5)(D3 � 4D2 � 4D)y � 0

D3(5x2 � 6x) � 0,    (D � 2)3x2e2x � 0,    and    (D � 5)e5x � 0.

y�� � 4y� � 4y� � 5x2 � 6x � 4x2e2x � 3e5x.

yp � Ae�2x cos x � Be�2x sin x.

� c3e�2x cos x � c4e�2x sin xc1ex � c2xex

(D2 � 4D � 5)(D2 � 2D � 1)y � 0.

(D2 � 4D � 5)e�2x cos x � 0.

y� � 2y� � y � 10e�2x cos x.

y � c1 cos x � c2 sin x �
1

4
x cos x �

1

2
x sin x �

1

4
x2 sin x

E � 1
4A � 1

4, B � �1
2
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y � c1 � c2x � c3x2 � c4x3 �  c5e2x � c6xe2x � c7x2e2x � c8x3e2x � c9x4e2x � c10e5x. (20)

Because the linear combination corresponds to the complemen-
tary function of (19), the remaining terms in (20) give the form of a particular solu-
tion of the differential equation:

SUMMARY OF THE METHOD For your convenience the method of undeter-
mined coefficients is summarized as follows.

yp � Ax � Bx2 � Cx3 � Ex2e2x � Fx3e2x � Gx4e2x � He5x.

c1 � c5e2x � c6xe2x



UNDETERMINED COEFFICIENTS—ANNIHILATOR APPROACH

The differential equation L(y) � g(x) has constant coefficients, and the
function g(x) consists of finite sums and products of constants, polynomials,
exponential functions eax, sines, and cosines.

(i) Find the complementary solution yc for the homogeneous equation
L(y) � 0.

(ii) Operate on both sides of the nonhomogeneous equation L(y) � g(x)
with a differential operator L1 that annihilates the function g(x).

(iii) Find the general solution of the higher-order homogeneous differential
equation L1L(y) � 0.

(iv) Delete from the solution in step (iii) all those terms that are duplicated
in the complementary solution yc found in step (i). Form a linear
combination yp of the terms that remain. This is the form of a
particular solution of L(y) � g(x).

(v) Substitute yp found in step (iv) into L(y) � g(x). Match coefficients
of the various functions on each side of the equality, and solve the
resulting system of equations for the unknown coefficients in yp.

(vi) With the particular solution found in step (v), form the general
solution y � yc � yp of the given differential equation.

REMARKS

The method of undetermined coefficients is not applicable to linear differential
equations with variable coefficients nor is it applicable to linear equations with
constant coefficients when g(x) is a function such as

and so on. Differential equations in which the input g(x) is a function of this
last kind will be considered in the next section.

g(x) � ln x,    g(x) �
1

x
,    g(x) � tan x,    g(x) � sin�1 x,

156 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 4.5 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–10 write the given differential equation in the
form L(y) � g(x), where L is a linear differential operator
with constant coefficients. If possible, factor L.

1. 9y� � 4y � sin x 2. y � � 5y � x2 � 2x

3. y� � 4y� � 12y � x � 6 4. 2y� � 3y� � 2y � 1

5. y� � 10y� � 25y� � ex 6. y� � 4y� � ex cos 2x

7. y� � 2y� � 13y� � 10y � xe�x

8. y� � 4y� � 3y� � x2 cos x � 3x

9. y(4) � 8y� � 4

10. y(4) � 8y� � 16y � (x3 � 2x)e4x

In Problems 11–14 verify that the given differential operator
annihilates the indicated functions.

11. D4; y � 10x3 � 2x 12. 2D � 1; y � 4ex /2

13. (D � 2)(D � 5); y � e2x � 3e�5x

14. D2 � 64; y � 2 cos 8x � 5 sin 8x

In Problems 15–26 find a linear differential operator that
annihilates the given function.

15. 1 � 6x � 2x3 16. x3(1 � 5x)

17. 1 � 7e2x 18. x � 3xe6x

19. cos 2x 20. 1 � sin x

21. 13x � 9x2 � sin 4x 22. 8x � sin x � 10 cos 5x

23. e�x � 2xex � x2ex 24. (2 � ex)2

25. 3 � ex cos 2x 26. e�x sin x � e2x cos x



In Problems 27–34 find linearly independent functions that
are annihilated by the given differential operator.

27. D5 28. D2 � 4D

29. (D � 6)(2D � 3) 30. D2 � 9D � 36

31. D2 � 5 32. D2 � 6D � 10

33. D3 � 10D2 � 25D 34. D2(D � 5)(D � 7)

In Problems 35–64 solve the given differential equation by
undetermined coefficients.

35. y� � 9y � 54 36. 2y� � 7y� � 5y � �29

37. y� � y� � 3 38. y� � 2y� � y� � 10

39. y� � 4y� � 4y � 2x � 6

40. y� � 3y� � 4x � 5

41. y� � y� � 8x2 42. y � � 2y� � y � x3 � 4x

43. y� � y� � 12y � e4x 44. y� � 2y� � 2y � 5e6x

45. y� � 2y� � 3y � 4ex � 9

46. y� � 6y� � 8y � 3e�2x � 2x

47. y� � 25y � 6 sin x

48. y� � 4y � 4 cos x � 3 sin x � 8

49. y� � 6y� � 9y � �xe4x

50. y� � 3y� � 10y � x(ex � 1)

51. y� � y � x2ex � 5

52. y� � 2y� � y � x2e�x

53. y� � 2y� � 5y � ex sin x

54. y� � y� �
1

4
y � ex(sin 3x � cos 3x)
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55. y� � 25y � 20 sin 5x 56. y� � y � 4 cos x � sin x

57. y� � y� � y � x sin x 58. y� � 4y � cos2x

59. y� � 8y� � �6x2 � 9x � 2

60. y� � y� � y� � y � xex � e�x � 7

61. y� � 3y� � 3y� � y � ex � x � 16

62. 2y� � 3y� � 3y� � 2y � (ex � e�x)2

63. y(4) � 2y� � y� � ex � 1

64. y(4) � 4y� � 5x2 � e2x

In Problems 65–72 solve the given initial-value problem.

65. y� � 64y � 16, y(0) � 1, y�(0) � 0

66. y� � y� � x, y(0) � 1, y�(0) � 0

67. y� � 5y� � x � 2, y(0) � 0, y�(0) � 2

68. y� � 5y� � 6y � 10e2x, y(0) � 1, y�(0) � 1

69. y� � y � 8 cos 2x � 4 sin x,

70. y� � 2y� � y� � xex � 5, y(0) � 2, y�(0) � 2,
y�(0) � �1

71. y� � 4y� � 8y � x3, y(0) � 2, y�(0) � 4

72. y(4) � y� � x � ex, y(0) � 0, y�(0) � 0, y�(0) � 0,
y�(0) � 0

Discussion Problems

73. Suppose L is a linear differential operator that factors
but has variable coefficients. Do the factors of L com-
mute? Defend your answer.

y��

2�� �1, y���

2�� 0

VARIATION OF PARAMETERS

REVIEW MATERIAL
● Variation of parameters was first introduced in Section 2.3 and used again in Section 4.2.

A review of those sections is recommended. 

INTRODUCTION The procedure that we used to find a particular solution yp of a linear first-order
differential equation on an interval is applicable to linear higher-order DEs as well. To adapt the
method of variation of parameters to a linear second-order differential equation

(1)

we begin by putting the equation into the standard form

(2)

by dividing through by the lead coefficient a2(x). Equation (2) is the second-order analogue of the
standard form of a linear first-order equation: dy�dx � P(x)y � f (x). In (2) we suppose that P(x),
Q(x), and f (x) are continuous on some common interval I. As we have already seen in Section 4.3,
there is no difficulty in obtaining the complementary function yc, the general solution of the asso-
ciated homogeneous equation of (2), when the coefficients are constant.

y� � P(x)y� � Q(x)y � f (x)

a2(x)y� � a1(x)y� � a0(x)y � g(x),

4.6



ASSUMPTIONS Corresponding to the assumption yp � u1(x)y1(x) that we used in
Section 2.3 to find a particular solution yp of dy�dx � P(x)y � f (x), for the linear
second-order equation (2) we seek a solution of the form

(3)

where y1 and y2 form a fundamental set of solutions on I of the associated homoge-
neous form of (1). Using the Product Rule to differentiate yp twice, we get

Substituting (3) and the foregoing derivatives into (2) and grouping terms yields

zero zero

y�p � u1y�1 � y�1u�1 � y1u �1 � u�1y�1 � u2y�2 � y�2u�2 � y2u �2 � u�2y�2.

y�p � u1y�1 � y1u�1 � u2y�2 � y2u�2

yp � u1(x)y1(x) � u2(x)y2(x),

158 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

(4)�
d

dx
 [y1u�1 � y2u�2] � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2 � f (x).

�
d

dx
 [y1u�1] �

d

dx
 [y2u�2] � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2

� y2u �2 � u�2y�2 � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2

y�p � P(x)y�p � Q(x)yp � u1[y�1 � Py�1 � Qy1] � u2[y�2 � Py�2 � Qy2] � y1u �1 � u�1y�1

Because we seek to determine two unknown functions u1 and u2, reason dictates that
we need two equations. We can obtain these equations by making the further assump-
tion that the functions u1 and u2 satisfy This assumption does not
come out of the blue but is prompted by the first two terms in (4), since if we demand
that , then (4) reduces to . We now have our
desired two equations, albeit two equations for determining the derivatives and

By Cramer’s Rule, the solution of the system

can be expressed in terms of determinants:

, (5)

where . (6)

The functions u1 and u2 are found by integrating the results in (5). The determinant
W is recognized as the Wronskian of y1 and y2. By linear independence of y1 and y2

on I, we know that W(y1(x), y2(x)) � 0 for every x in the interval.

SUMMARY OF THE METHOD Usually, it is not a good idea to memorize for-
mulas in lieu of understanding a procedure. However, the foregoing procedure is
too long and complicated to use each time we wish to solve a differential equation.
In this case it is more efficient to simply use the formulas in (5). Thus to solve
a2y� � a1y� � a0y � g(x), first find the complementary function yc � c1y1 � c2y2

and then compute the Wronskian W( y1(x), y2(x)). By dividing by a2, we put the
equation into the standard form y� � Py� � Qy � f (x) to determine f (x). We find
u1 and u2 by integrating and , where W1 and W2 are defined
as in (6). A particular solution is yp � u1y1 � u2y2. The general solution of the
equation is then y � yc � yp.

u�2 � W2>Wu�1 � W1>W

W � �y1

y�1

y2

y�2�,    W1 � � 0

f (x)

y2

y�2�,    W2 � �y1

y�1

0

f (x)�

u�1 �
W1

W
� �

y2 f (x)

W
    and    u�2 �

W2

W
�

y1 f (x)

W

y�1u�1 � y�2u�2 � f (x)

y1u�1 � y2u�2 � 0

u�2.
u�1

y�1u�1 � y�2u�2 � f (x)y1u�1 � y2u�2 � 0

y1u�1 � y2u�2 � 0.



EXAMPLE 1 General Solution Using Variation of Parameters

Solve y� � 4y� � 4y � (x � 1)e2x.

SOLUTION From the auxiliary equation m2 � 4m � 4 � (m � 2)2 � 0 we have
yc � c1e2x � c2xe2x. With the identifications y1 � e2x and y2 � xe2x, we next com-
pute the Wronskian:

Since the given differential equation is already in form (2) (that is, the coefficient of
y� is 1), we identify f (x) � (x � 1)e2x. From (6) we obtain

W(e2x, xe2x) � � e2x

2e2x

xe2x

2xe2x � e2x� � e4x.
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W1 � �         0(x � 1)e2x

xe2x

2xe2x � e2x � � �(x � 1)xe4x,    W2 � � e2x

2e2x

  0

(x � 1)e2x � � (x � 1)e4x,

and so from (5)

It follows that and . Hence

and

EXAMPLE 2 General Solution Using Variation of Parameters

Solve 4y� � 36y � csc 3x.

SOLUTION We first put the equation in the standard form (2) by dividing by 4:

Because the roots of the auxiliary equation m2 � 9 � 0 are m1 � 3i and m2 � �3i, the
complementary function is yc � c1 cos 3x � c2 sin 3x. Using y1 � cos 3x, y2 � sin 3x,
and , we obtain

Integrating

gives ln�sin 3x �. Thus a particular solution is

The general solution of the equation is

yp � �
1

12
x cos 3x �

1

36
 (sin 3x) ln� sin 3x �.

u1 � � 1
12 x and u2 � 1

36

u�1 �
W1

W
� �

1

12
    and    u�2 �

W2

W
�

1

12

cos 3x

sin 3x

W1 � � 0
1
4 csc 3x

   sin 3x

3 cos 3x� � �
1

4
,    W2 � �      cos 3x

�3 sin 3x

0
1
4 csc 3x� �

1

4

cos 3x

sin 3x
.

W(cos 3x, sin 3x) � � cos 3x

�3 sin 3x

sin 3x

3 cos 3x� � 3,

f (x) � 1
4 csc 3x

y� � 9y �
1

4
 csc 3x.

y � yc � yp � c1e2x � c2xe2x �
1

6
x3e2x �

1

2
x2e2x.

yp � ��
1

3
x3 �

1

2
x2�e2x � �1

2
x2 � x�xe2x �

1

6
x3e2x �

1

2
x2e2x

u2 � 1
2 x2 � xu1 � �1

3 x3 � 1
2 x2

u�1 � �
(x � 1)xe4x

e4x � �x2 � x,    u�2 �
(x � 1)e4x

e4x � x � 1.

(7)y � yc � yp � c1 cos 3x � c2 sin 3x �
1

12
x cos 3x �

1

36
 (sin 3x) ln� sin 3x �.



Equation (7) represents the general solution of the differential equation on, say,
the interval (0, p�6).

CONSTANTS OF INTEGRATION When computing the indefinite integrals of 
and , we need not introduce any constants. This is because

EXAMPLE 3 General Solution Using Variation of Parameters

Solve 

SOLUTION The auxiliary equation m2 � 1 � 0 yields m1 � �1 and m2 � 1.
Therefore yc � c1ex � c2e�x. Now W(ex, e�x) � �2, and

Since the foregoing integrals are nonelementary, we are forced to write

and so (8)

In Example 3 we can integrate on any interval [x0, x] that does not contain the
origin.

HIGHER-ORDER EQUATIONS The method that we have just examined for
nonhomogeneous second-order differential equations can be generalized to linear
nth-order equations that have been put into the standard form

(9)

If yc � c1y1 � c2y2 � 	 	 	 � cnyn is the complementary function for (9), then a
particular solution is

where the , k � 1, 2, . . . , n are determined by the n equations

(10)

y1
(n�1)u�1 � y2

(n�1)u�2 � 	 	 	 � yn
(n�1)u�n � f (x).

	
	

	
	
	

	

y�1u�1 � y�2u�2 � 	 	 	 � y�nu�n � 0

y1u�1 � y2u�2 � 	 	 	 � ynu�n � 0

u�k

yp � u1(x)y1(x) � u2(x)y2(x) � 	 	 	 � un(x)yn(x),

y(n) � Pn�1(x)y(n�1) � 	 	 	 � P1(x)y� � P0(x)y � f (x).

y � yc � yp � c1ex � c2e�x �
1

2
ex �x

x0

e�t

t
dt �

1

2
e�x �x

x0

et

t
dt.

yp �
1

2
ex �x

x0

e�t

t
dt �

1

2
e�x �x

x0

et

t
dt,

u�2 �
ex(1>x)

�2
, u2 � �

1

2
�x

x0

et

t
dt.

u�1 � �
e�x(1>x)

�2
,    u1 �

1

2
�x

x0

e�t

t
dt,

y� � y �
1

x
.

� C1y1 � C2y2 � u1y1 � u2y2.

� (c1 � a1)y1 � (c2 � b1)y2 � u1y1 � u2y2

y � yc � yp � c1y1 � c2y2 � (u1 � a1)y1 � (u2 � b1)y2

u�2

u�1
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The first n � 1 equations in this system, like in (4), are assumptions
that are made to simplify the resulting equation after yp � u1(x)y1(x) � 	 	 	 �
un(x)yn(x) is substituted in (9). In this case Cramer’s rule gives

where W is the Wronskian of y1, y2, . . . , yn and Wk is the determinant obtained by
replacing the kth column of the Wronskian by the column consisting of the right-
hand side of (10) —that is, the column consisting of (0, 0, . . . , f (x)). When n � 2,
we get (5). When n � 3, the particular solution is yp � u1y1 � u2y2 � u3y3, where
y1, y2, and y3 constitute a linearly independent set of solutions of the associated
homogeneous DE and u1, u2, u3 are determined from

(11)u�1 �
W1

W
,    u�2 �

W2

W
,    u�3 �

W3

W
,

u�k �
Wk

W
, k � 1, 2, . . . , n,

y1u�1 � y2u�2 � 0
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W1 � p 0

0

f (x)

y2

y�2
y�2

y3

y�3
y�3

p ,  W2 � p y1

y�1
y�1

0

0

f (x)

y3

y�3
y�3

p ,  W3 � p y1

y�1
y�1

y2

y�2
y�2

0

0

f (x)
p ,  and  W � p y1

y�1
y�1

y2

y�2
y�2

y3

y�3
y�3

p .
See Problems 25 and 26 in Exercises 4.6.

REMARKS

(i) Variation of parameters has a distinct advantage over the method of
undetermined coefficients in that it will always yield a particular solution yp

provided that the associated homogeneous equation can be solved. The pre-
sent method is not limited to a function f (x) that is a combination of the four
types listed on page 141. As we shall see in the next section, variation of
parameters, unlike undetermined coefficients, is applicable to linear DEs
with variable coefficients.

(ii) In the problems that follow, do not hesitate to simplify the form of yp.
Depending on how the antiderivatives of and are found, you might not
obtain the same yp as given in the answer section. For example, in Problem 3
in Exercises 4.6 both yp � sin x � x cos x and yp � sin x � x cos x
are valid answers. In either case the general solution y � yc � yp simplifies to
y � c1 cos x � c2 sin x � x cos x. Why?1

2

1
2

1
4

1
2

1
2

u�2u�1

EXERCISES 4.6 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18 solve each differential equation by varia-
tion of parameters.

1. y� � y � sec x 2. y� � y � tan x

3. y� � y � sin x 4. y� � y � sec u tan u

5. y� � y � cos2x 6. y� � y � sec2x

7. y� � y � cosh x 8. y� � y � sinh 2x

9. 10. y� � 9y �
9x

e3xy� � 4y �
e2x

x

11.

12.

13. y� � 3y� � 2y � sin ex

14. y� � 2y� � y � et arctan t

15. y� � 2y� � y � e�t ln t 16.

17. 3y� � 6y� � 6y � ex sec x

18. 4y� � 4y� � y � ex/211 � x2

2y� � 2y� � y � 41x

y� � 2y� � y �
ex

1 � x2

y� � 3y� � 2y �
1

1 � ex



In Problems 19–22 solve each differential equation by
variation of parameters, subject to the initial conditions
y(0) � 1, y�(0) � 0.

19. 4y� � y � xex/2

20. 2y� � y� � y � x � 1

21. y� � 2y� � 8y � 2e�2x � e�x

22. y� � 4y� � 4y � (12x2 � 6x)e2x

In Problems 23 and 24 the indicated functions are known lin-
early independent solutions of the associated homogeneous
differential equation on (0, �). Find the general solution of
the given nonhomogeneous equation.

23. ;

y1 � x�1/2 cos x, y2 � x�1/2 sin x

24. x2y� � xy� � y � sec(ln x);

y1 � cos(ln x), y2 � sin(ln x)

In Problems 25 and 26 solve the given third-order differen-
tial equation by variation of parameters.

25. y� � y� � tan x 26. y� � 4y� � sec 2x

Discussion Problems

In Problems 27 and 28 discuss how the methods of unde-
termined coefficients and variation of parameters can be
combined to solve the given differential equation. Carry out
your ideas.

27. 3y� � 6y� � 30y � 15 sin x � ex tan 3x

28. y� � 2y� � y � 4x2 � 3 � x�1ex

29. What are the intervals of definition of the general solu-
tions in Problems 1, 7, 9, and 18? Discuss why the inter-
val of definition of the general solution in Problem 24 is
not (0, �).

x2y� � xy� � (x2 � 1
4)y � x3/2
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30. Find the general solution of x4y� � x3y� � 4x2y � 1
given that y1 � x2 is a solution of the associated homo-
geneous equation.

31. Suppose yp(x) � u1(x)y1(x) � u2(x)y2(x), where u1 and
u2 are defined by (5) is a particular solution of (2) on an
interval I for which P, Q, and f are continuous. Show
that yp can be written as

(12)

where x and x0 are in I,

(13)

and W(t) � W(y1(t), y2(t)) is the Wronskian. The func-
tion G(x, t) in (13) is called the Green’s function for the
differential equation (2).

32. Use (13) to construct the Green’s function for the differ-
ential equation in Example 3. Express the general solu-
tion given in (8) in terms of the particular solution (12).

33. Verify that (12) is a solution of the initial-value problem

on the interval I. [Hint: Look up Leibniz’s Rule for
differentiation under an integral sign.]

34. Use the results of Problems 31 and 33 and the Green’s
function found in Problem 32 to find a solution of the
initial-value problem

using (12). Evaluate the integral.

y� � y � e2x,  y(0) � 0,  y�(0) � 0

d 2y

dx2 � P
dy

dx
� Qy � f(x),  y(x0) � 0,  y�(x0) � 0.

G(x, t) �
y1(t)y2(x) � y1(x)y2(t)

W(t)
,

yp(x) � �x

x0

G(x, t) f(t) dt,

CAUCHY-EULER EQUATION

REVIEW MATERIAL
● Review the concept of the auxiliary equation in Section 4.3.

INTRODUCTION The same relative ease with which we were able to find explicit solutions of
higher-order linear differential equations with constant coefficients in the preceding sections does
not, in general, carry over to linear equations with variable coefficients. We shall see in Chapter 6
that when a linear DE has variable coefficients, the best that we can usually expect is to find a
solution in the form of an infinite series. However, the type of differential equation that we consider
in this section is an exception to this rule; it is a linear equation with variable coefficients whose
general solution can always be expressed in terms of powers of x, sines, cosines, and logarithmic
functions. Moreover, its method of solution is quite similar to that for constant-coefficient equations
in that an auxiliary equation must be solved.

4.7



CAUCHY-EULER EQUATION A linear differential equation of the form

where the coefficients an, an�1, . . . , a0 are constants, is known as a Cauchy-Euler
equation. The observable characteristic of this type of equation is that the degree
k � n, n � 1, . . . , 1, 0 of the monomial coefficients xk matches the order k of
differentiation dky�dxk:

As in Section 4.3, we start the discussion with a detailed examination of the
forms of the general solutions of the homogeneous second-order equation

.

The solution of higher-order equations follows analogously. Also, we can solve the
nonhomogeneous equation ax2y� � bxy� � cy � g(x) by variation of parameters,
once we have determined the complementary function yc.

NOTE The coefficient ax2 of y� is zero at x � 0. Hence to guarantee that the
fundamental results of Theorem 4.1.1 are applicable to the Cauchy-Euler equation,
we confine our attention to finding the general solutions defined on the interval
(0, �). Solutions on the interval (��, 0) can be obtained by substituting t � �x into
the differential equation. See Problems 37 and 38 in Exercises 4.7.

METHOD OF SOLUTION We try a solution of the form y � xm, where m is to be
determined. Analogous to what happened when we substituted emx into a linear equa-
tion with constant coefficients, when we substitute xm, each term of a Cauchy-Euler
equation becomes a polynomial in m times xm, since

ax2 d 2y

dx2 � bx
dy

dx
� cy � 0

anxn � an�1xn�1 � . . . .
dny
––––
dxn

dn�1y
––––––
dxn�1

same same

anxn dny

dxn � an�1xn�1 dn�1y

dxn�1 � 	 	 	 � a1x
dy

dx
� a0y � g(x),
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akxk dky

dxk � akxkm(m � 1)(m � 2) 	 	 	 (m � k � 1)xm�k � akm(m � 1)(m � 2) 	 	 	 (m � k � 1)xm.

For example, when we substitute y � xm, the second-order equation becomes

ax2 d 2y

dx2 � bx
dy

dx
� cy � am(m � 1)xm � bmxm � cxm � (am(m � 1) � bm � c)xm.

Thus y � xm is a solution of the differential equation whenever m is a solution of the
auxiliary equation

(1)

There are three different cases to be considered, depending on whether the roots of
this quadratic equation are real and distinct, real and equal, or complex. In the last
case the roots appear as a conjugate pair.

CASE I: DISTINCT REAL ROOTS Let m1 and m2 denote the real roots of (1) such
that m1 � m2. Then and form a fundamental set of solutions. Hence
the general solution is

(2)y � c1xm1 � c2xm2.

y2 � xm2y1 � xm1

am(m � 1) � bm � c � 0    or    am2 � (b � a)m � c � 0.



EXAMPLE 1 Distinct Roots

Solve 

SOLUTION Rather than just memorizing equation (1), it is preferable to assume
y � xm as the solution a few times to understand the origin and the difference
between this new form of the auxiliary equation and that obtained in Section 4.3.
Differentiate twice,

and substitute back into the differential equation:

if m2 � 3m � 4 � 0. Now (m � 1)(m � 4) � 0 implies m1 � �1, m2 � 4, so
y � c1x�1 � c2x4.

CASE II: REPEATED REAL ROOTS If the roots of (1) are repeated (that is,
m1 � m2), then we obtain only one solution—namely, When the roots of the
quadratic equation am2 � (b � a)m � c � 0 are equal, the discriminant of the coef-
ficients is necessarily zero. It follows from the quadratic formula that the root must
be m1 � �(b � a)�2a.

Now we can construct a second solution y2, using (5) of Section 4.2. We first
write the Cauchy-Euler equation in the standard form

and make the identifications P(x) � b�ax and Thus

The general solution is then

(3)

EXAMPLE 2 Repeated Roots

Solve 

SOLUTION The  substitution y � xm yields

4x2 d 2y

dx2 � 8x
dy

dx
� y � xm(4m(m � 1) � 8m � 1) � xm(4m2 � 4m � 1) � 0

4x2 d 2y

dx2 � 8x
dy

dx
� y � 0.

y � c1xm1 � c2xm1 ln x.

� xm1� dx

x
� xm1 ln x.

; �2m1 � (b � a)/a� xm1� x�b /a � x(b�a)/adx

; e�(b / a)ln x � eln x�b / a
� x�b / a� xm1� x�b /a � x�2m1 dx

y2 � xm1� e�(b /a)ln x

x2m1
dx

�(b>ax) dx � (b>a) ln x.

d 2y

dx2 �
b

ax

dy

dx
�

c

ax2 y � 0

y � xm1.

� xm(m(m � 1) � 2m � 4) � xm(m2 � 3m � 4) � 0

x2 d 2y

dx2 � 2x
dy

dx
� 4y � x2 � m(m � 1)xm�2 � 2x � mxm�1 � 4xm

dy

dx
� mxm�1,    

d 2y

dx2 � m(m � 1)xm�2,

x2 d 2y

dx2 � 2x
dy

dx
� 4y � 0.
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when 4m2 � 4m � 1 � 0 or (2m � 1)2 � 0. Since , the general solution is
y � c1x�1/2 � c2x�1/2 ln x.

For higher-order equations, if m1 is a root of multiplicity k, then it can be shown
that

are k linearly independent solutions. Correspondingly, the general solution of the dif-
ferential equation must then contain a linear combination of these k solutions.

CASE III: CONJUGATE COMPLEX ROOTS If the roots of (1) are the conjugate
pair m1 � a � ib, m2 � a � ib, where a and b� 0 are real, then a solution is

But when the roots of the auxiliary equation are complex, as in the case of equations
with constant coefficients, we wish to write the solution in terms of real functions
only. We note the identity

which, by Euler’s formula, is the same as

xib � cos(b ln x) � i sin(b ln x).

Similarly, x�ib � cos(b ln x) � i sin(b ln x).

Adding and subtracting the last two results yields

xib � x�ib � 2 cos(b ln x) and xib � x�ib � 2i sin(b ln x),

respectively. From the fact that y � C1xa�ib � C2xa�ib is a solution for any values of
the constants, we see, in turn, for C1 � C2 � 1 and C1 � 1, C2 � �1 that

or

are also solutions. Since W(xa cos(b ln x), xa sin(b ln x)) � bx2a�1 � 0, b � 0 on
the interval (0, �), we conclude that

constitute a fundamental set of real solutions of the differential equation. Hence the
general solution is

(4)

EXAMPLE 3 An Initial-Value Problem

Solve 

SOLUTION The y� term is missing in the given Cauchy-Euler equation; neverthe-
less, the substitution y � xm yields

when 4m2 � 4m � 17 � 0. From the quadratic formula we find that the roots are
and . With the identifications and b� 2 we see from

(4) that the general solution of the differential equation is

By applying the initial conditions to the foregoing solution
and using ln 1 � 0, we then find, in turn, that c1 � �1 and c2 � 0. Hence the solution

y(1) � �1, y�(1) � �1
2

y � x1/2[c1 cos(2 ln x) � c2 sin(2 ln x)].

� � 1
2m2 � 1

2 � 2im1 � 1
2 � 2i

4x2y� � 17y � xm(4m(m � 1) � 17) � xm(4m2 � 4m � 17) � 0

4x2y� � 17y � 0, y(1) � �1, y�(1) � �1
2.

y � x�[c1 cos(� ln x) � c2 sin(� ln x)].

y1 � x� cos(� ln x)    and    y2 � x� sin(� ln x)

y1 � 2x� cos(� ln x)    and    y2 � 2ix� sin(� ln x)

y1 � x�(xi� � x�i�)    and    y2 � x�(xi� � x�i�)

xi� � (eln x)i� � ei� ln x,

y � C1x��i� � C2x��i�.

xm1,  xm1 ln x,  xm1(ln x)2, . . . ,  xm1(ln x)k�1

m1 � �1
2

4.7 CAUCHY-EULER EQUATION ● 165

x

y

_1

0

1

1

x

y

25 50 75

10

5

100

(a) solution for 0 
 �x 1

(b) solution for 0 
 �x 100

FIGURE 4.7.1 Solution curve of IVP
in Example 3



of the initial-value problem is y � �x1/2 cos(2 ln x). The graph of this function,
obtained with the aid of computer software, is given in Figure 4.7.1. The particular
solution is seen to be oscillatory and unbounded as .

The next example illustrates the solution of a third-order Cauchy-Euler equation.

EXAMPLE 4 Third-Order Equation

Solve 

SOLUTION The first three derivatives of y � xm are

so the given differential equation becomes

dy

dx
� mxm�1,    

d 2y

dx2 � m(m � 1)xm�2,    
d 3y

dx3 � m(m � 1)(m � 2)xm�3,

x3 d 3y

dx3 � 5x2 d 2y

dx2 � 7x
dy

dx
� 8y � 0.

x : �
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� xm(m3 � 2m2 � 4m � 8) � xm(m � 2)(m2 � 4) � 0.

� xm(m(m � 1)(m � 2) � 5m(m � 1) � 7m � 8)

x3 d 3y

dx3 � 5x2 d 2y

dx2 � 7x
dy

dx
� 8y � x3m(m � 1)(m � 2)xm�3 � 5x2m(m � 1)xm�2 � 7xmxm�1 � 8xm

In this case we see that y � xm will be a solution of the differential equation
for m1 � �2, m2 � 2i, and m3 � �2i. Hence the general solution is 
y � c1x�2 � c2 cos(2 ln x) � c3 sin(2 ln x).

The method of undetermined coefficients described in Sections 4.5 and 4.6
does not carry over, in general, to linear differential equations with variable coeffi-
cients. Consequently, in our next example the method of variation of parameters is
employed.

EXAMPLE 5 Variation of Parameters

Solve x2y� � 3xy� � 3y � 2x4ex.

SOLUTION Since the equation is nonhomogeneous, we first solve the associated
homogeneous equation. From the auxiliary equation (m � 1)(m � 3) � 0 we
find yc � c1x � c2x3. Now before using variation of parameters to find a particular
solution yp � u1y1 � u2y2, recall that the formulas and ,
where W1, W2, and W are the determinants defined on page 158, were derived
under the assumption that the differential equation has been put into the standard
form y� � P(x)y� � Q(x)y � f (x). Therefore we divide the given equation by x2,
and from

we make the identification f (x) � 2x2ex. Now with y1 � x, y2 � x3, and

y� �
3

x
y� �

3

x2 y � 2x2ex

u�2 � W2>Wu�1 � W1>W

W � �x1 x3

3x2� � 2x3,  W1 � � 0

2x2ex

x3

3x2� � �2x5ex,  W2 � �x1 0

2x2ex� � 2x3ex,

we find u�1 � �
2x5ex

2x3 � �x2ex    and    u�2 �
2x3ex

2x3 � ex.



The integral of the last function is immediate, but in the case of we integrate
by parts twice. The results are u1 � �x2ex � 2xex � 2ex and u2 � ex. Hence
yp � u1y1 � u2y2 is

Finally,

REDUCTION TO CONSTANT COEFFICIENTS The similarities between the
forms of solutions of Cauchy-Euler equations and solutions of linear equations with
constant coefficients are not just a coincidence. For example, when the roots of the
auxiliary equations for ay� � by� � cy � 0 and ax2y� � bxy� � cy � 0 are distinct
and real, the respective general solutions are

(5)

In view of the identity eln x � x, x � 0, the second solution given in (5) can be
expressed in the same form as the first solution:

where t � ln x. This last result illustrates the fact that any Cauchy-Euler equation can
always be rewritten as a linear differential equation with constant coefficients by
means of the substitution x � et. The idea is to solve the new differential equation
in terms of the variable t, using the methods of the previous sections, and, once the
general solution is obtained, resubstitute t � ln x. This method, illustrated in the last
example, requires the use of the Chain Rule of differentiation.

EXAMPLE 6 Changing to Constant Coefficients

Solve x2y� � xy� � y � ln x.

SOLUTION With the substitution x � et or t � ln x, it follows that

Substituting in the given differential equation and simplifying yields

Since this last equation has constant coefficients, its auxiliary equation is
m2 � 2m � 1 � 0, or (m � 1)2 � 0. Thus we obtain yc � c1et � c2 tet.

By undetermined coefficients we try a particular solution of the form yp � A � Bt.
This assumption leads to �2B � A � Bt � t, so A � 2 and B � 1. Using y � yc � yp,
we get

so the general solution of the original differential equation on the interval (0, �) is
y � c1x � c2x ln x � 2 � ln x.

y � c1et � c2 tet � 2 � t,

d 2y

dt2 � 2
dy

dt
� y � t.

�
1

x �
d 2y

dt2

1

x� �
dy

dt ��
1

x2� �
1

x2 �d 2y

dt2 �
dy

dt�.

; Product Rule and Chain Rule
d 2y

dx2 �
1

x

d

dx �
dy

dt� �
dy

dt ��
1

x2�

; Chain Rule
dy

dx
�

dy

dt

dt

dx
�

1

x

dy

dt

y � c1em1 ln x � c2em2 ln x � c1em1t � c2em2 t,

y � c1em1 x � c2em2 x    and    y � c1xm1 � c2xm2, x � 0.

y � yc � yp � c1x � c2x3 � 2x2ex � 2xex.

yp � (�x2ex � 2xex � 2ex)x � exx3 � 2x2ex � 2xex.

u�1
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EXERCISES 4.7 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18 solve the given differential equation.

1. x2y� � 2y � 0 2. 4x2y� � y � 0

3. xy� � y� � 0 4. xy� � 3y� � 0

5. x2y� � xy� � 4y � 0 6. x2y� � 5xy� � 3y � 0

7. x2y� � 3xy� � 2y � 0 8. x2y� � 3xy� � 4y � 0

9. 25x2y� � 25xy� � y � 0 10. 4x2y� � 4xy� � y � 0

11. x2y� � 5xy� � 4y � 0 12. x2y� � 8xy� � 6y � 0

13. 3x2y� � 6xy� � y � 0 14. x2y� � 7xy� � 41y � 0

15. x3y� � 6y � 0 16. x3y� � xy� � y � 0

17. xy(4) � 6y� � 0

18. x4y(4) � 6x3y� � 9x2y� � 3xy� � y � 0

In Problems 19–24 solve the given differential equation by
variation of parameters.

19. xy� � 4y� � x4

20. 2x2y� � 5xy� � y � x2 � x

21. x2y� � xy� � y � 2x 22. x2y� � 2xy� � 2y � x4ex

23. x2y� � xy� � y � ln x 24.

In Problems 25–30 solve the given initial-value problem.
Use a graphing utility to graph the solution curve.

25. x2y� � 3xy� � 0, y(1) � 0, y�(1) � 4

26. x2y� � 5xy� � 8y � 0, y(2) � 32, y�(2) � 0

27. x2y� � xy� � y � 0, y(1) � 1, y�(1) � 2

28. x2y� � 3xy� � 4y � 0, y(1) � 5, y�(1) � 3

29.

30.

In Problems 31–36 use the substitution x � et to transform
the given Cauchy-Euler equation to a differential equation
with constant coefficients. Solve the original equation by
solving the new equation using the procedures in
Sections 4.3–4.5.

31. x2y� � 9xy� � 20y � 0

32. x2y� � 9xy� � 25y � 0

33. x2y� � 10xy� � 8y � x2

34. x2y� � 4xy� � 6y � ln x2

x2y� � 5xy� � 8y � 8x6, y�1
2 � � 0, y��1

2 � � 0

xy� � y� � x, y(1) � 1, y�(1) � �1
2

x2y� � xy� � y �
1

x � 1

35. x2y� � 3xy� � 13y � 4 � 3x

36. x3y� � 3x2y� � 6xy� � 6y � 3 � ln x3

In Problems 37 and 38 solve the given initial-value problem
on the interval (��, 0).

37. 4x2y� � y � 0, y(�1) � 2, y�(�1) � 4

38. x2y� � 4xy� � 6y � 0, y(�2) � 8, y�(�2) � 0

Discussion Problems

39. How would you use the method of this section to solve

Carry out your ideas. State an interval over which the
solution is defined.

40. Can a Cauchy-Euler differential equation of lowest
order with real coefficients be found if it is known that
2 and 1 � i are roots of its auxiliary equation? Carry
out your ideas.

41. The initial-conditions y(0) � y0, y�(0) � y1 apply to
each of the following differential equations:

x2y� � 0,

x2y� � 2xy� � 2y � 0,

x2y� � 4xy� � 6y � 0.

For what values of y0 and y1 does each initial-value
problem have a solution?

42. What are the x-intercepts of the solution curve shown
in Figure 4.7.1? How many x-intercepts are there for

?

Computer Lab Assignments

In Problems 43–46 solve the given differential equation by
using a CAS to find the (approximate) roots of the auxiliary
equation.

43. 2x3y� � 10.98x2y� � 8.5xy� � 1.3y � 0

44. x3y� � 4x2y� � 5xy� � 9y � 0

45. x4y(4) � 6x3y� � 3x2y� � 3xy� � 4y � 0

46. x4y(4) � 6x3y� � 33x2y� � 105xy� � 169y � 0

47. Solve x3y� � x2y� � 2xy� � 6y � x2 by variation of
parameters. Use a CAS as an aid in computing roots of
the auxiliary equation and the determinants given in
(10) of Section 4.6.

0 
 x 
 1
2

(x � 2)2y� � (x � 2)y� � y � 0?



SYSTEMATIC ELIMINATION The elimination of an unknown in a system of
linear differential equations is expedited by rewriting each equation in the system in
differential operator notation. Recall from Section 4.1 that a single linear equation

where the ai, i � 0, 1, . . . , n are constants, can be written as

If the nth-order differential operator factors
into differential operators of lower order, then the factors commute. Now, for exam-
ple, to rewrite the system

in terms of the operator D, we first bring all terms involving the dependent variables
to one side and group the same variables:

x� � y� � �4x � 2y � e�t

x� � 2x� � y� � x � 3y � sin t

anDn � an�1D(n�1) � 	 	 	 � a1D � a0

(anDn � an�1D(n�1) � 	 	 	 � a1D � a0)y � g(t).

any(n) � an�1y(n�1) � 	 	 	 � a1y� � a0y � g(t),
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SOLVING SYSTEMS OF LINEAR DEs BY ELIMINATION

REVIEW MATERIAL
● Because the method of systematic elimination uncouples a system into distinct linear ODEs in

each dependent variable, this section gives you an opportunity to practice what you learned in
Sections 4.3, 4.4 (or 4.5), and 4.6.

INTRODUCTION Simultaneous ordinary differential equations involve two or more equations that
contain derivatives of two or more dependent variables—the unknown functions—with respect to a
single independent variable. The method of systematic elimination for solving systems of differential
equations with constant coefficients is based on the algebraic principle of elimination of variables. We
shall see that the analogue of multiplying an algebraic equation by a constant is operating on an ODE
with some combination of derivatives.

4.8

x� � 2x� � x � y� � 3y � sin t

  x� � 4x � y� � 2y � e�t     is the same as    
(D2 � 2D � 1)x � (D2 � 3)y � sin t

    (D � 4)x � (D � 2)y � e�t.

SOLUTION OF A SYSTEM A solution of a system of differential equations is a
set of sufficiently differentiable functions x � f1(t), y � f2(t), z � f3(t), and so on
that satisfies each equation in the system on some common interval I.

METHOD OF SOLUTION Consider the simple system of linear first-order
equations

(1)

Operating on the first equation in (1) by D while multiplying the second by �3 and
then adding eliminates y from the system and gives D2x � 6x � 0. Since the roots of
the auxiliary equation of the last DE are and , we obtain

(2)x(t) � c1e�16t � c2e16t.

m2 � �16m1 � 16

dx

dt
� 3y

dy

dt
� 2x

    or, equivalently,    
Dx � 3y � 0

2x � Dy � 0.



Multiplying the first equation in (1) by 2 while operating on the second by D and
then subtracting gives the differential equation for y, D2y � 6y � 0. It follows
immediately that

(3)

Now (2) and (3) do not satisfy the system (1) for every choice of c1, c2, c3, and
c4 because the system itself puts a constraint on the number of parameters in a solu-
tion that can be chosen arbitrarily. To see this, observe that substituting x(t) and y(t)
into the first equation of the original system (1) gives, after simplification,

Since the latter expression is to be zero for all values of t, we must have
and These two equations enable us to write

c3 as a multiple of c1 and c4 as a multiple of c2 :

. (4)

Hence we conclude that a solution of the system must be

You are urged to substitute (2) and (3) into the second equation of (1) and verify
that the same relationship (4) holds between the constants.

EXAMPLE 1 Solution by Elimination

Solve

(5)

SOLUTION Operating on the first equation by D � 3 and on the second by D and
then subtracting eliminates x from the system. It follows that the differential equation
for y is

Since the characteristic equation of this last differential equation is
m2 � m � 6 � (m � 2)(m � 3) � 0, we obtain the solution

(6)

Eliminating y in a similar manner yields (D2 � D � 6)x � 0, from which we find

(7)

As we noted in the foregoing discussion, a solution of (5) does not contain four in-
dependent constants. Substituting (6) and (7) into the first equation of (5) gives

From 4c1 � 2c3 � 0 and �c2 � 3c4 � 0 we get c3 � �2c1 and .
Accordingly, a solution of the system is

Because we could just as easily solve for c3 and c4 in terms of c1 and c2, the
solution in Example 1 can be written in the alternative form

x(t) � c3e2t � c4e�3t,    y(t) � �
1

2
c3e2t � 3c4e�3t.

x(t) � �2c1e2t �
1

3
c2e�3t,    y(t) � c1e2t � c2e�3t.

c4 � �1
3 c2

(4c1 � 2c3)e2t � (�c2 � 3c4)e�3t � 0.

x(t) � c3e2t � c4e�3t.

y(t) � c1e2t � c2e�3 t.

[(D � 3)(D � 2) � 2D]y � 0    or    (D2 � D � 6)y � 0.

 (D � 3)x �   2y � 0.

Dx �  (D � 2 )y � 0

x(t) � c1e�16t � c2e16 t,    y(t) � �
16

3
c1e�16 t �

16

3
c2e16 t.

c3 � �
16

3
c1    and    c4 �

16

3
c2

16c2 � 3c4 � 0.�16c1 � 3c3 � 0

��16c1 � 3c3�e�16 t � �16c2 � 3c4�e16 t � 0.

y(t) � c3e�16t � c4e16t.
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It sometimes pays to keep one’s eyes open when solving systems. Had we solved
for x first in Example 1, then y could be found, along with the relationship between the
constants, using the last equation in the system (5). You should verify that substituting
x(t) into yields Also note in the initial dis-
cussion that the relationship given in (4) and the solution y(t) of (1) could also have
been obtained by using x(t) in (2) and the first equation of (1) in the form

EXAMPLE 2 Solution by Elimination

Solve (8)

SOLUTION First we write the system in differential operator notation:

(9)

Then, by eliminating x, we obtain

or

Since the roots of the auxiliary equation m(m2 � 4) � 0 are m1 � 0, m2 � 2i, and
m3 � �2i, the complementary function is yc � c1 � c2 cos 2t � c3 sin 2t. To deter-
mine the particular solution yp, we use undetermined coefficients by assuming that
yp � At3 � Bt2 � Ct. Therefore

The last equality implies that 12A � 1, 8B � 2, and 6A � 4C � 0; hence
, and . Thus

(10)

Eliminating y from the system (9) leads to

It should be obvious that xc � c4 cos 2t � c5 sin 2t and that undetermined coeffi-
cients can be applied to obtain a particular solution of the form xp � At2 � Bt � C.
In this case the usual differentiations and algebra yield and so

(11)

Now c4 and c5 can be expressed in terms of c2 and c3 by substituting (10)
and (11) into either equation of (8). By using the second equation, we find, after com-
bining terms,

so c5 � 2c4 � 2c2 � 0 and 2c5 � c4 � 2c3 � 0. Solving for c4 and c5 in terms of c2

and c3 gives c4 � � (4c2 � 2c3) and c5 � (2c2 � 4c3). Finally, a solution of (8)
is found to be

y(t) � c1 � c2 cos 2t � c3 sin 2t �
1

12
t3 �

1

4
t2 �

1

8
t.

x(t) � �
1

5
 (4c2 � 2c3) cos 2t �

1

5
 (2c2 � 4c3) sin 2t �

1

4
t2 �

1

8
,

1
5

1
5

(c5 � 2c4 � 2c2) sin 2t � (2c5 � c4 � 2c3) cos 2t � 0,

x � xc � xp � c4 cos 2t � c5 sin 2t �
1

4
t2 �

1

8
.

xp � �1
4 t2 � 1

8,

[(D � 4) � D(D � 1)]x � t2    or    (D2 � 4)x � �t2.

y � yc � yp � c1 � c2 cos 2t � c3 sin 2t �
1

12
t3 �

1

4
t2 �

1

8
t.

C � �1
8A � 1

12, B � 1
4

y�p � 4y�p � 12At2 � 8Bt � 6A � 4C � t2 � 2t.

y�p � 3At2 � 2Bt � C, y�p � 6At � 2B, y��p � 6A,

 (D3 � 4D)y � t2 � 2t.

 [(D � 1)D2 � (D � 4)D]y � (D � 1)t2 � (D � 4)0

  (D � 1)x � Dy � 0.
 (D � 4)x � D2y � t2

x� � x � y� � 0.
x� � 4x � y� � t2

y � 1
3 Dx � �1

3 26c1e�16t � 1
3 26c2e16t.

y � �1
2 c3e2t � 3c4e�3t.y � 1

2 (Dx � 3x)
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■ This might save
you some time.



EXAMPLE 3 A Mixture Problem Revisited

In (3) of Section 3.3 we saw that the system of linear first-order differential equations

is a model for the number of pounds of salt x1(t) and x2(t) in brine mixtures in tanks
A and B, respectively, shown in Figure 3.3.1. At that time we were not able to solve
the system. But now, in terms of differential operators, the foregoing system can be
written as

Operating on the first equation by multiplying the second equation by 
adding, and then simplifying gives (625D2 � 100D � 3)x1 � 0. From the auxiliary
equation

we see immediately that x1(t) � c1e�t/ 25 � c2e�3t/ 25. We can now obtain x2(t) by
using the first DE of the system in the form In this manner we
find the solution of the system to be

In the original discussion on page 107 we assumed that the initial conditions were
x1(0) � 25 and x2(0) � 0. Applying these conditions to the solution yields 
c1 � c2 � 25 and 2c1 � 2c2 � 0. Solving these equations simultaneously gives

Finally, a solution of the initial-value problem is

The graphs of both of these equations are given in Figure 4.8.1. Consistent with the
fact that pure water is being pumped into tank A we see in the figure that x1(t) : 0
and x2(t) : 0 as t : �.

x1(t) �
25

2
e�t / 25 �

25

2
e�3t / 25,    x2(t) � 25e�t / 25 � 25e�3t / 25.

c1 � c2 � 25
2 .

x1(t) � c1e�t / 25 � c2e�3t / 25,    x2(t) � 2c1e�t / 25 � 2c2e�3t / 25.

x2 � 50(D � 2
25)x1.

625m2 � 100m � 3 � (25m � 1)(25m � 3) � 0

1
50,D � 2

25,

�
2

25
x1 � �D �

2

25�x2 � 0.

�D �
2

25�x1 �   1

50
x2 � 0

dx2

dt
�

2

25
x1 �

2

25
x2

dx1

dt
� �

2

25
x1 �

1

50
x2
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FIGURE 4.8.1 Pounds of salt in tanks
A and B
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EXERCISES 4.8 Answers to selected odd-numbered problems begin on page ANS-6.

In Problems 1–20 solve the given system of differential
equations by systematic elimination.

1. 2.

3. 4.

dy

dt
� x � 2

dy

dt
� x � t

dx

dt
� 4y � 1

dx

dt
� �y � t

dy

dt
� x � 2y

dy

dt
� x

dx

dt
� 4x � 7y

dx

dt
� 2x � y

5. (D2 � 5)x � 2y � 0
�2x � (D2 � 2)y � 0

6. (D � 1)x � (D � 1)y � 2
3x � (D � 2)y � �1

7. 8.

9. Dx � D2y � e3t

(D � 1)x � (D � 1)y � 4e3t

dx

dt
�

dy

dt
� �x � 4y

d 2y

dt2 � 4x � et

d 2x

dt2 �
dy

dt
� �5x

d 2x

dt2 � 4y � et



10. D2x � Dy � t
(D � 3)x � (D � 3)y � 2

11. (D2 � 1)x � y � 0
(D � 1)x � Dy � 0

12. (2D2 � D � 1)x � (2D � 1)y � 1
(D � 1)x � Dy � �1

13.

14.

15. (D � 1)x � (D2 � 1)y � 1
(D2 � 1)x � (D � 1)y � 2

16. D2x � 2(D2 � D)y � sin t
x � Dy � 0

17. Dx � y 18. Dx � z � et

Dy � z (D � 1)x � Dy � Dz � 0
Dz � x x � 2y � Dz � et

19. 20.

In Problems 21 and 22 solve the given initial-value problem.

21. 22.

x(1) � 0, y(1) � 1 x(0) � 0, y(0) � 0

Mathematical Models

23. Projectile Motion A projectile shot from a gun has
weight w � mg and velocity v tangent to its path of
motion. Ignoring air resistance and all other forces acting
on the projectile except its weight, determine a system of
differential equations that describes its path of motion.
See Figure 4.8.2. Solve the system. [Hint: Use Newton’s
second law of motion in the x and y directions.]

dy

dt
� �3x � 2y

dy

dt
� 4x � y

dx

dt
� y � 1

dx

dt
� �5x � y

dz

dt
� �x � y

dz

dt
� x � y

dy

dt
� �y � z

dy

dt
� x � z

dx

dt
� �x � z

dx

dt
� 6y

�
d2x

dt2 �
dx

dt
� x � y � 0

dx

dt
�

dy

dt
� et

dx

dt
� x �

dy

dt
� 5et

 2 
dx

dt
� 5x �

dy

dt
� et
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FIGURE 4.8.2 Path of projectile in Problem 23
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v

FIGURE 4.8.3 Forces in Problem 24

k

v

θ

24. Projectile Motion with Air Resistance Determine a
system of differential equations that describes the path
of motion in Problem 23 if air resistance is a retarding
force k (of magnitude k) acting tangent to the path of the
projectile but opposite to its motion. See Figure 4.8.3.
Solve the system. [Hint: k is a multiple of velocity,
say, cv.]

Discussion Problems

25. Examine and discuss the following system:

Computer Lab Assignments

26. Reexamine Figure 4.8.1 in Example 3. Then use a root-
finding application to determine when tank B contains
more salt than tank A.

27. (a) Reread Problem 8 of Exercises 3.3. In that problem
you were asked to show that the system of differen-
tial equations

is a model for the amounts of salt in the connected
mixing tanks A, B, and C shown in Figure 3.3.7.
Solve the system subject to x1(0) � 15, x2(t) � 10,
x3(t) � 5.

(b) Use a CAS to graph x1(t), x2(t), and x3(t) in the
same coordinate plane (as in Figure 4.8.1) on the
interval [0, 200].

(c) Because only pure water is pumped into Tank A, it
stands to reason that the salt will eventually be
flushed out of all three tanks. Use a root-finding
application of a CAS to determine the time when
the amount of salt in each tank is less than or equal
to 0.5 pound. When will the amounts of salt x1(t),
x2(t), and x3(t) be simultaneously less than or equal
to 0.5 pound?

dx3

dt
�

2

75
x2 �

1

25
x3

dx2

dt
�

1

50
x1 �

2

75
x2

dx1

dt
� �

1

50
x1

 (D � 1)x � 2(D � 1)y � 1.
Dx � 2Dy � t2



SOME DIFFERENCES There are several significant differences between linear
and nonlinear differential equations. We saw in Section 4.1 that homogeneous lin-
ear equations of order two or higher have the property that a linear combination of
solutions is also a solution (Theorem 4.1.2). Nonlinear equations do not possess
this property of superposability. See Problems 1 and 18 in Exercises 4.9. We can
find general solutions of linear first-order DEs and higher-order equations with con-
stant coefficients. Even when we can solve a nonlinear first-order differential equa-
tion in the form of a one-parameter family, this family does not, as a rule, represent
a general solution. Stated another way, nonlinear first-order DEs can possess singu-
lar solutions, whereas linear equations cannot. But the major difference between
linear and nonlinear equations of order two or higher lies in the realm of solvability.
Given a linear equation, there is a chance that we can find some form of a solution
that we can look at—an explicit solution or perhaps a solution in the form of an
infinite series (see Chapter 6). On the other hand, nonlinear higher-order differen-
tial equations virtually defy solution by analytical methods. Although this might
sound disheartening, there are still things that can be done. As was pointed out at
the end of Section 1.3, we can always analyze a nonlinear DE qualitatively and
numerically.

Let us make it clear at the outset that nonlinear higher-order differential equations
are important—dare we say even more important than linear equations?—because as
we fine-tune the mathematical model of, say, a physical system, we also increase the
likelihood that this higher-resolution model will be nonlinear.

We begin by illustrating an analytical method that occasionally enables us to
find explicit/implicit solutions of special kinds of nonlinear second-order differential
equations.

REDUCTION OF ORDER Nonlinear second-order differential equations
F(x, y�, y�) � 0, where the dependent variable y is missing, and F(y, y�, y�) � 0,
where the independent variable x is missing, can sometimes be solved by using first-
order methods. Each equation can be reduced to a first-order equation by means of
the substitution u � y�.

The next example illustrates the substitution technique for an equation of the form
F(x, y�, y�) � 0. If u � y�, then the differential equation becomes F(x, u, u�) � 0. If we
can solve this last equation for u, we can find y by integration. Note that since we are
solving a second-order equation, its solution will contain two arbitrary constants.

EXAMPLE 1 Dependent Variable y Is Missing

Solve y� � 2x(y�)2.
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NONLINEAR DIFFERENTIAL EQUATIONS

REVIEW MATERIAL
● Sections 2.2 and 2.5
● Section 4.2
● A review of Taylor series from calculus is also recommended.

INTRODUCTION The difficulties that surround higher-order nonlinear differential equations
and the few methods that yield analytic solutions are examined next. Two of the solution methods
considered in this section employ a change of variable to reduce a second-order DE to a first-order
DE. In that sense these methods are analogous to the material in Section 4.2.

4.9



SOLUTION If we let u � y�, then du�dx � y�. After substituting, the second-order
equation reduces to a first-order equation with separable variables; the independent
variable is x and the dependent variable is u:

The constant of integration is written as for convenience. The reason should be
obvious in the next few steps. Because u�1 � 1�y�, it follows that

and so

Next we show how to solve an equation that has the form F( y, y�, y�) � 0. Once
more we let u � y�, but because the independent variable x is missing, we use this
substitution to transform the differential equation into one in which the independent
variable is y and the dependent variable is u. To this end we use the Chain Rule to
compute the second derivative of y:

In this case the first-order equation that we must now solve is

EXAMPLE 2 Independent Variable x Is Missing

Solve yy� � ( y�)2.

SOLUTION With the aid of u � y�, the Chain Rule shown above, and separation of
variables, the given differential equation becomes

Integrating the last equation then yields ln�u � � ln�y � � c1, which, in turn, gives u � c2y,
where the constant has been relabeled as c2. We now resubstitute u � dy�dx, sepa-
rate variables once again, integrate, and relabel constants a second time:

USE OF TAYLOR SERIES In some instances a solution of a nonlinear initial-value
problem, in which the initial conditions are specified at x0, can be approximated by a
Taylor series centered at x0.

� dy

y
� c2 � dx    or    ln� y � � c2x � c3    or    y � c4ec2x.

�ec1

y�u
du

dy� � u2    or    
du

u
�

dy

y
.

F�y, u, u
du

dy� � 0.

y� �
du

dx
�

du

dy
 dy

dx
� u

du

dy
.

y � �� dx

x2 � c1
2    or    y � �

1

c1
 tan�1 x

c1
� c2.

dy

dx
� �

1

x2 � c1
2
,

c1
2

�u�1 � x2 � c1
2.

� u�2 du � � 2x dx

du

dx
� 2xu2    or    

du

u2 � 2x dx
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EXAMPLE 3 Taylor Series Solution of an IVP

Let us assume that a solution of the initial-value problem

(1)

exists. If we further assume that the solution y(x) of the problem is analytic at 0, then
y(x) possesses a Taylor series expansion centered at 0:

(2)

Note that the values of the first and second terms in the series (2) are known
since those values are the specified initial conditions y(0) � �1, y�(0) � 1.
Moreover, the differential equation itself defines the value of the second derivative
at 0: y�(0) � 0 � y(0) � y(0)2 � 0 � (�1) � (�1)2 � �2. We can then find
expressions for the higher derivatives y�, y(4), . . . by calculating the successive
derivatives of the differential equation:

(3)

(4)

(5)

and so on. Now using y(0) � �1 and y�(0) � 1, we find from (3) that y�(0) � 4. From
the values y(0) � �1, y�(0) � 1, and y�(0) � �2 we find y(4)(0) � �8 from (4). With
the additional information that y�(0) � 4, we then see from (5) that y(5)(0) � 24.
Hence from (2) the first six terms of a series solution of the initial-value problem (1) are

USE OF A NUMERICAL SOLVER Numerical methods, such as Euler’s method or
the Runge-Kutta method, are developed solely for first-order differential equations and
then are extended to systems of first-order equations. To analyze an nth-order initial-
value problem numerically, we express the nth-order ODE as a system of n first-order
equations. In brief, here is how it is done for a second-order initial-value problem: First,
solve for y�—that is, put the DE into normal form y� � f (x, y, y�)—and then let y� � u.
For example, if we substitute y� � u in

(6)

then y� � u� and y�(x0) � u(x0), so the initial-value problem (6) becomes

However, it should be noted that a commercial numerical solver might not require*

that you supply the system.

Subject to:  y(x0) � y0, u(x0) � u0.

Solve:    �y� � u

u� � f(x, y, u)

d 2y

dx2 � f (x, y, y�),  y(x0 ) � y0,  y�(x0 ) � u0,

y(x) � �1 � x � x2 �
2

3
x3 �

1

3
x4 �

1

5
x5 � 	 	 	 .

y(5)(x) �
d

dx
 (y� � 2yy � � 2(y�)2) � y� � 2yy� � 6y�y�,

y(4)(x) �
d

dx
 (1 � y� � 2yy�) � y� � 2yy� � 2(y�)2

y�(x) �
d

dx
 (x � y � y2) � 1 � y� � 2yy�

y(x) � y(0) �
y�(0)

1!
x �

y�(0)

2!
x2 �

y�(0)

3!
x3 �

y(4)(0)

4!
x4 �

y(5)(0)

5!
x5 � 	 	 	 .

y� � x � y � y2,  y(0) � �1,  y�(0) � 1
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*Some numerical solvers require only that a second-order differential equation be expressed in normal
form y� � f (x, y, y�). The translation of the single equation into a system of two equations is then built
into the computer program, since the first equation of the system is always y� � u and the second
equation is u� � f (x, y, u).



EXAMPLE 4 Graphical Analysis of Example 3

Following the foregoing procedure, we find that the second-order initial-value prob-
lem in Example 3 is equivalent to

with initial conditions y(0) � �1, u(0) � 1. With the aid of a numerical solver we get
the solution curve shown in blue in Figure 4.9.1. For comparison the graph of the fifth-
degree Taylor polynomial is shown in red.
Although we do not know the interval of convergence of the Taylor series obtained in
Example 3, the closeness of the two curves in a neighborhood of the origin suggests
that the power series may converge on the interval (�1, 1).

QUALITATIVE QUESTIONS The blue graph in Figure 4.9.1 raises some questions
of a qualitative nature: Is the solution of the original initial-value problem oscillatory
as ? The graph generated by a numerical solver on the larger interval shown in
Figure 4.9.2 would seem to suggest that the answer is yes. But this single example—
or even an assortment of examples—does not answer the basic question as to whether
all solutions of the differential equation y� � x � y � y2 are oscillatory in nature.
Also, what is happening to the solution curve in Figure 4.9.2 when x is near �1? What
is the behavior of solutions of the differential equation as ? Are solutions
bounded as ? Questions such as these are not easily answered, in general, for
nonlinear second-order differential equations. But certain kinds of second-order
equations lend themselves to a systematic qualitative analysis, and these, like their
first-order relatives encountered in Section 2.1, are the kind that have no explicit
dependence on the independent variable. Second-order ODEs of the form

equations free of the independent variable x, are called autonomous. The differen-
tial equation in Example 2 is autonomous, and because of the presence of the x term
on its right-hand side, the equation in Example 3 is nonautonomous. For an in-depth
treatment of the topic of stability of autonomous second-order differential equations
and autonomous systems of differential equations, refer to Chapter 10 in Differential
Equations with Boundary-Value Problems.

F(y, y�, y�) � 0    or    
d 2y

dx2 � f (y, y�),

x : �
x : ��

x : �

T5(x) � �1 � x � x2 � 2
3 x3 � 1

3 x4 � 1
5 x5

du

dx
� x � y � y2

dy

dx
� u
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EXERCISES 4.9 Answers to selected odd-numbered problems begin on page ANS-6.

In Problems 1 and 2 verify that y1 and y2 are solutions of the
given differential equation but that y � c1y1 � c2y2 is, in
general, not a solution.

1. (y�)2 � y2; y1 � ex, y2 � cos x

2.

In Problems 3–8 solve the given differential equation by
using the substitution u � y�.

3. y� � ( y�)2 � 1 � 0 4. y� � 1 � ( y�)2

yy� �
1

2
 ( y�)2; y1 � 1, y2 � x2

5. x2y� � ( y�)2 � 0 6. (y � 1)y� � ( y�)2

7. y� � 2y( y�)3 � 0 8. y2y� � y�

9. Consider the initial-value problem

y� � yy� � 0, y(0) � 1, y�(0) � �1.

(a) Use the DE and a numerical solver to graph the
solution curve.

(b) Find an explicit solution of the IVP. Use a graphing
utility to graph this solution.

(c) Find an interval of definition for the solution in
part (b).

FIGURE 4.9.2 Numerical solution
curve for the IVP in (1)

y

10 20

x

FIGURE 4.9.1 Comparison of two
approximate solutions

y

x

Taylor
polynomial

solution curve 
generated by a 
numerical solver 



10. Find two solutions of the initial-value problem

Use a numerical solver to graph the solution curves.

In Problems 11 and 12 show that the substitution u � y� leads
to a Bernoulli equation. Solve this equation (see Section 2.5).

11. xy� � y� � ( y�)3 12. xy� � y� � x( y�)2

In Problems 13–16 proceed as in Example 3 and obtain the
first six nonzero terms of a Taylor series solution, centered
at 0, of the given initial-value problem. Use a numerical
solver and a graphing utility to compare the solution curve
with the graph of the Taylor polynomial.

13. y� � x � y2, y(0) � 1, y�(0) � 1

14. y� � y2 � 1, y(0) � 2, y�(0) � 3

15. y� � x2 � y2 � 2y�, y(0) � 1, y�(0) � 1

16. y� � ey, y(0) � 0, y�(0) � �1

17. In calculus the curvature of a curve that is defined by a
function y � f (x) is defined as

Find y � f (x) for which k� 1. [Hint: For simplicity,
ignore constants of integration.]

Discussion Problems

18. In Problem 1 we saw that cos x and ex were solutions of
the nonlinear equation ( y�)2 � y2 � 0. Verify that sin x
and e�x are also solutions. Without attempting to solve the
differential equation, discuss how these explicit solutions
can be found by using knowledge about linear equations.
Without attempting to verify, discuss why the linear
combinations y � c1ex � c2e�x � c3 cos x � c4 sin x and
y � c2e�x � c4 sin x are not, in general, solutions, but

� �
y�

[1 � ( y�)2]3 /2.

( y�)2 � ( y�)2 � 1,  y��

2� �
1

2
, y���

2� �
13

2
.
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the two special linear combinations y � c1ex � c2e�x

and y � c3 cos x � c4 sin x must satisfy the differential
equation.

19. Discuss how the method of reduction of order con-
sidered in this section can be applied to the third-order
differential equation . Carry out your
ideas and solve the equation.

20. Discuss how to find an alternative two-parameter fam-
ily of solutions for the nonlinear differential equation
y� � 2x( y�)2 in Example 1. [Hint: Suppose that is
used as the constant of integration instead of .]

Mathematical Models

21. Motion in a Force Field A mathematical model for
the position x(t) of a body moving rectilinearly on the
x-axis in an inverse-square force field is given by

Suppose that at t � 0 the body starts from rest from the
position x � x0, x0 � 0. Show that the velocity of
the body at time t is given by v2 � 2k2(1�x � 1�x0).
Use the last expression and a CAS to carry out the inte-
gration to express time t in terms of x.

22. A mathematical model for the position x(t) of a moving
object is

.

Use a numerical solver to graphically investigate the so-
lutions of the equation subject to x(0) � 0, x�(0) � x1,
x1  0. Discuss the motion of the object for t  0 and
for various choices of x1. Investigate the equation

in the same manner. Give a possible physical interpreta-
tion of the dx�dt term.

d 2x

dt2 �
dx

dt
� sin x � 0

d 2x

dt2 � sin x � 0

d 2x

dt2 � �
k2

x2.

�c1
2

�c1
2

y� � 11 � (y�)2

CHAPTER 4 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-6.

Answer Problems 1–4 without referring back to the text. Fill
in the blank or answer true or false.

1. The only solution of the initial-value problem 
y� � x2y � 0, y(0) � 0, y�(0) � 0 is __________.

2. For the method of undetermined coefficients, the
assumed form of the particular solution yp for
y� � y � 1 � ex is __________.

3. A constant multiple of a solution of a linear differential
equation is also a solution. __________

4. If the set consisting of two functions f1 and f2 is linearly
independent on an interval I, then the Wronskian 
W( f1, f2) � 0 for all x in I. __________

5. Give an interval over which the set of two functions
f1(x) � x2 and f2(x) � x �x � is linearly independent.



Then give an interval over which the set consisting of
f1 and f2 is linearly dependent.

6. Without the aid of the Wronskian, determine whether
the given set of functions is linearly independent or
linearly dependent on the indicated interval.

(a) f1(x) � ln x, f2(x) � ln x2, (0, �)

(b) f1(x) � xn, f2(x) � xn�1, n � 1, 2, . . . , (��, �)

(c) f1(x) � x, f2(x) � x � 1, (��, �)

(d)

(e) f1(x) � 0, f2(x) � x, (�5, 5)

(f) f1(x) � 2, f2(x) � 2x, (��, �)

(g) f1(x) � x2, f2(x) � 1 � x2, f3(x) � 2 � x2, (��, �)

(h) f1(x) � xex�1, f2(x) � (4x � 5)ex,
f3(x) � xex, (��, �)

7. Suppose m1 � 3, m2 � �5, and m3 � 1 are roots of
multiplicity one, two, and three, respectively, of an aux-
iliary equation. Write down the general solution of the
corresponding homogeneous linear DE if it is

(a) an equation with constant coefficients,

(b) a Cauchy-Euler equation.

8. Consider the differential equation ay� � by� � cy � g(x),
where a, b, and c are constants. Choose the input func-
tions g(x) for which the method of undetermined coeffi-
cients is applicable and the input functions for which the
method of variation of parameters is applicable.

(a) g(x) � ex ln x (b) g(x) � x3 cos x

(c) (d) g(x) � 2x�2ex

(e) g(x) � sin2x (f )

In Problems 9–24 use the procedures developed in this
chapter to find the general solution of each differential
equation.

9. y� � 2y� � 2y � 0

10. 2y� � 2y� � 3y � 0

11. y� � 10y� � 25y� � 0

12. 2y� � 9y� � 12y� � 5y � 0

13. 3y� � 10y� � 15y� � 4y � 0

14. 2y(4) � 3y� � 2y� � 6y� � 4y � 0

15. y� � 3y� � 5y � 4x3 � 2x

16. y� � 2y� � y � x2ex

17. y� � 5y� � 6y� � 8 � 2 sin x

g(x) �
ex

sin x

g(x) �
sin x

ex

f1(x) � cos�x �
�

2�, f2(x) � sin x, (��, �)
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18. y� � y� � 6

19. y� � 2y� � 2y � ex tan x

20.

21. 6x2y� � 5xy� � y � 0

22. 2x3y� � 19x2y� � 39xy� � 9y � 0

23. x2y� � 4xy� � 6y � 2x4 � x2

24. x2y� � xy� � y � x3

25. Write down the form of the general solution y � yc � yp

of the given differential equation in the two cases v� a
and v� a. Do not determine the coefficients in yp.

(a) y� � v2y � sin ax (b) y� � v2y � eax

26. (a) Given that y � sin x is a solution of

y(4) � 2y� � 11y� � 2y� � 10y � 0,

find the general solution of the DE without the aid of a
calculator or a computer.

(b) Find a linear second-order differential equation
with constant coefficients for which y1 � 1 and
y2 � e�x are solutions of the associated homoge-
neous equation and is a particular
solution of the nonhomogeneous equation.

27. (a) Write the general solution of the fourth-order DE
y(4) � 2y� � y � 0 entirely in terms of hyperbolic
functions.

(b) Write down the form of a particular solution of
y(4) � 2y� � y � sinh x.

28. Consider the differential equation 

x2y� � (x2 � 2x)y� � (x � 2)y � x3.

Verify that y1 � x is one solution of the associated
homogeneous equation. Then show that the method of
reduction of order discussed in Section 4.2 leads to a
second solution y2 of the homogeneous equation as well
as a particular solution yp of the nonhomogeneous equa-
tion. Form the general solution of the DE on the interval
(0, �).

In Problems 29–34 solve the given differential equation
subject to the indicated conditions.

29.

30. y� � 2y� � y � 0, y(�1) � 0, y�(0) � 0

31. y� � y � x � sin x, y(0) � 2, y�(0) � 3

32. y� � y � sec3x, y(0) � 1, y�(0) �
1

2

y� � 2y� � 2y � 0, y��

2� � 0, y(�) � �1

yp � 1
2 x2 � x

y� � y �
2ex

ex � e�x



33. y�y� � 4x, y(1) � 5, y�(1) � 2

34. 2y� � 3y2, y(0) � 1, y�(0) � 1

35. (a) Use a CAS as an aid in finding the roots of the aux-
iliary equation for

12y(4) � 64y� � 59y� � 23y� � 12y � 0.

Give the general solution of the equation.

(b) Solve the DE in part (a) subject to the initial condi-
tions y(0) � �1, y�(0) � 2, y�(0) � 5, y�(0) � 0.
Use a CAS as an aid in solving the resulting
systems of four equations in four unknowns.

36. Find a member of the family of solutions of
whose graph is tangent to the

x-axis at x � 1. Use a graphing utility to graph the
solution curve.

xy� � y� � 1x � 0
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In Problems 37–40 use systematic elimination to solve the
given system.

37.

38.

39.

40.

 5x � (D � 3)y � cos 2t

(D � 2 )x � (D � 1)y � sin 2t

�3x � (D � 4 )  y � �7et

 (D �  2)x �y � �et

dy

dt
� 3x � 4y � 4t

dx

dt
� 2x � y � t � 2

dx

dt
� 2

dy

dt
� y � 3

dx

dt
�

dy

dt
� 2x � 2y � 1
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5
5.1 Linear Models: Initial-Value Problems

5.1.1 Spring/Mass Systems: Free Undamped Motion

5.1.2 Spring/Mass Systems: Free Damped Motion

5.1.3 Spring/Mass Systems: Driven Motion

5.1.4 Series Circuit Analogue

5.2 Linear Models: Boundary-Value Problems

5.3 Nonlinear Models

CHAPTER 5 IN REVIEW

We have seen that a single differential equation can serve as a mathematical model

for diverse physical systems. For this reason we examine just one application, the

motion of a mass attached to a spring, in great detail in Section 5.1. Except for

terminology and physical interpretations of the four terms in the linear equation

ay� � by� � cy � g(t), the mathematics of, say, an electrical series circuit is

identical to that of vibrating spring/mass system. Forms of this linear second-order

DE appear in the analysis of problems in many diverse areas of science and

engineering. In Section 5.1 we deal exclusively with initial-value problems,

whereas in Section 5.2 we examine applications described by boundary-value

problems. In Section 5.2 we also see how some boundary-value problems lead to

the important concepts of eigenvalues and eigenfunctions. Section 5.3 begins with

a discussion on the differences between linear and nonlinear springs; we then show

how the simple pendulum and a suspended wire lead to nonlinear models.

MODELING WITH HIGHER-ORDER
DIFFERENTIAL EQUATIONS



LINEAR MODELS: INITIAL-VALUE PROBLEMS

REVIEW MATERIAL
● Sections 4.1, 4.3, and 4.4
● Problems 29–36 in Exercises 4.3
● Problems 27–36 in Exercises 4.4

INTRODUCTION In this section we are going to consider several linear dynamical systems in
which each mathematical model is a second-order differential equation with constant coefficients
along with initial conditions specified at a time that we shall take to be t � 0:

.

Recall that the function g is the input, driving function, or forcing function of the system. A solution
y(t) of the differential equation on an interval I containing t � 0 that satisfies the initial conditions is
called the output or response of the system.

a
d 2y

dt2 � b
dy

dt
� cy � g(t), y(0) � y0, y�(0) � y1
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5.1

5.1.1 SPRING/MASS SYSTEMS: 
FREE UNDAMPED MOTION

HOOKE’S LAW Suppose that a flexible spring is suspended vertically from a rigid
support and then a mass m is attached to its free end. The amount of stretch, or elonga-
tion, of the spring will of course depend on the mass; masses with different weights
stretch the spring by differing amounts. By Hooke’s law the spring itself exerts a restor-
ing force F opposite to the direction of elongation and proportional to the amount of
elongation s. Simply stated, F � ks, where k is a constant of proportionality called the
spring constant. The spring is essentially characterized by the number k. For example,
if a mass weighing 10 pounds stretches a spring foot, then implies
k � 20 lb/ft. Necessarily then, a mass weighing, say, 8 pounds stretches the same
spring only foot.

NEWTON’S SECOND LAW After a mass m is attached to a spring, it stretches
the spring by an amount s and attains a position of equilibrium at which its
weight W is balanced by the restoring force ks. Recall that weight is defined by
W � mg, where mass is measured in slugs, kilograms, or grams and g � 32 ft /s2,
9.8 m/s2, or 980 cm/s2, respectively. As indicated in Figure 5.1.1(b), the condition
of equilibrium is mg � ks or mg � ks � 0. If the mass is displaced by an amount
x from its equilibrium position, the restoring force of the spring is then k(x � s).
Assuming that there are no retarding forces acting on the system and assuming that
the mass vibrates free of other external forces — free motion — we can equate
Newton’s second law with the net, or resultant, force of the restoring force and the
weight:

(1)

The negative sign in (1) indicates that the restoring force of the spring acts opposite
to the direction of motion. Furthermore, we adopt the convention that displacements
measured below the equilibrium position are positive. See Figure 5.1.2.

d 2x
–––
dt 2

� �k(s � x) � mg � � kx � mg � ks � �kx.m

zero

2
5

10 � k � 1
2�

1
2

m

(a) (b) (c)

unstretched

motion

l

equilibrium
position

mg − ks = 0

m

l
l + s

s

x

FIGURE 5.1.1 Spring/mass system

m

x = 0

x < 0

x > 0

FIGURE 5.1.2 Direction below the
equilibrium position is positive.



DE OF FREE UNDAMPED MOTION By dividing (1) by the mass m, we obtain
the second-order differential equation d2x�dt2 � (k�m)x � 0, or

, (2)

where v2 � k�m. Equation (2) is said to describe simple harmonic motion or
free undamped motion. Two obvious initial conditions associated with (2) are
x(0) � x0 and x�(0) � x1, the initial displacement and initial velocity of the mass,
respectively. For example, if x0 � 0, x1 
 0, the mass starts from a point below the
equilibrium position with an imparted upward velocity. When x�(0) � 0, the mass is
said to be released from rest. For example, if x0 
 0, x1 � 0, the mass is released
from rest from a point �x0 � units above the equilibrium position.

EQUATION OF MOTION To solve equation (2), we note that the solutions of its
auxiliary equation m2 � v2 � 0 are the complex numbers m1 � vi, m2 � �vi. Thus
from (8) of Section 4.3 we find the general solution of (2) to be

. (3)

The period of motion described by (3) is T � 2p�v. The number T represents the time
(measured in seconds) it takes the mass to execute one cycle of motion. A cycle is one
complete oscillation of the mass, that is, the mass m moving from, say, the lowest point
below the equilibrium position to the point highest above the equilibrium position and
then back to the lowest point. From a graphical viewpoint T � 2p�v seconds is the
length of the time interval between two successive maxima (or minima) of x(t). Keep
in mind that a maximum of x(t) is a positive displacement corresponding to the mass
attaining its greatest distance below the equilibrium position, whereas a minimum of
x(t) is negative displacement corresponding to the mass attaining its greatest height
above the equilibrium position. We refer to either case as an extreme displacement of
the mass. The frequency of motion is f � 1�T � v�2p and is the number of cycles
completed each second. For example, if x(t) � 2 cos 3p t � 4 sin 3p t, then the period
is T � 2p�3p� 2�3 s, and the frequency is f � 3�2 cycles/s. From a graphical view-
point the graph of x(t) repeats every second, that is, , and cycles of
the graph are completed each second (or, equivalently, three cycles of the graph are
completed every 2 seconds). The number (measured in radians per second)
is called the circular frequency of the system. Depending on which text you read, both
f � v�2p and v are also referred to as the natural frequency of the system. Finally,
when the initial conditions are used to determine the constants c1 and c2 in (3), we say
that the resulting particular solution or response is the equation of motion.

EXAMPLE 1 Free Undamped Motion

A mass weighing 2 pounds stretches a spring 6 inches. At t � 0 the mass is released
from a point 8 inches below the equilibrium position with an upward velocity of .
Determine the equation of motion.

SOLUTION Because we are using the engineering system of units, the measure-
ments given in terms of inches must be converted into feet: ; .
In addition, we must convert the units of weight given in pounds into units of mass.
From m � W�g we have slug. Also, from Hooke’s law, 
implies that the spring constant is k � 4 lb/ft. Hence (1) gives

.

The initial displacement and initial velocity are , , where the neg-
ative sign in the last condition is a consequence of the fact that the mass is given an
initial velocity in the negative, or upward, direction.

x�(0) � �4
3x(0) � 2

3

1

16

d 2x

dt2 � �4x  or  d 2x

dt2 � 64x � 0

2 � k � 1
2�m � 2

32 � 1
16

8 in. � 2
3 ft6 in. � 1

2 ft

4
3 ft /s

� � 1k>m
3
2x(t � 2

3) � x(t)2
3

x(t) � c1 cos �t � c2 sin �t

d 2x

dt2 � �2x � 0
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Now v2 � 64 or v � 8, so the general solution of the differential equation is

. (4)

Applying the initial conditions to x(t) and x�(t) gives and . Thus the
equation of motion is

. (5)

ALTERNATIVE FORM OF X(t) When c1 � 0 and c2 � 0, the actual amplitude A
of free vibrations is not obvious from inspection of equation (3). For example,
although the mass in Example 1 is initially displaced foot beyond the equilibrium
position, the amplitude of vibrations is a number larger than . Hence it is often con-
venient to convert a solution of form (3) to the simpler form

, (6)

where and f is a phase angle defined by

. (7)

To verify this, we expand (6) by the addition formula for the sine function:

. (8)

It follows from Figure 5.1.3 that if f is defined by

,

then (8) becomes

.

EXAMPLE 2 Alternative Form of Solution (5)

In view of the foregoing discussion we can write solution (5) in the alternative
form x(t) � A sin(8t � f). Computation of the amplitude is straightforward,

, but some care should be exercised in
computing the phase angle f defined by (7). With and we find
tan f � �4, and a calculator then gives tan�1(�4) � �1.326 rad. This is not the
phase angle, since tan�1(�4) is located in the fourth quadrant and therefore con-
tradicts the fact that sin f � 0 and cos f 
 0 because c1 � 0 and c2 
 0. Hence
we must take f to be the second-quadrant angle f � p � (�1.326) � 1.816 rad.
Thus (5) is the same as

. (9)

The period of this function is T � 2p�8 � p�4 s.

Figure 5.1.4(a) illustrates the mass in Example 2 going through approximately
two complete cycles of motion. Reading from left to right, the first five positions
(marked with black dots) correspond to the initial position of the mass below the
equilibrium position , the mass passing through the equilibrium position(x � 2

3)

x(t) �
117

6
 sin(8t � 1.816)

c2 � �1
6c1 � 2

3

A � 2(2
3)2 � (�1

6)2 � 217
36  0.69 ft

A
c1

A
 cos �t � A

c2

A
 sin �t � c1 cos �t � c2 sin �t � x(t)

sin � �
c1

1c1
2 � c2

2
�

c1

A
,  cos � �

c2

1c1
2 � c2

2
�

c2

A

A sin �t cos � � � cos �t sin � � (� sin �)cos �t � (� cos �)sin �t

sin � �
c1

A

cos � �
c2

A
� tan � �

c1

c2

A � 2c1
2 � c2

2

x(t) � A sin(�t � �)

2
3

2
3

x(t) �
2

3
 cos 8t �

1

6
 sin 8t

c2 � �1
6c1 � 2

3

x(t) � c1 cos 8t � c2 sin 8t
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for the first time heading upward (x � 0), the mass at its extreme displacement above
the equilibrium position , the mass at the equilibrium position for the
second time heading downward (x � 0), and the mass at its extreme displacement
below the equilibrium position . The black dots on the graph of (9),
given in Figure 5.1.4(b), also agree with the five positions just given. Note, however,
that in Figure 5.1.4(b) the positive direction in the tx-plane is the usual upward
direction and so is opposite to the positive direction indicated in Figure 5.1.4(a).
Hence the solid blue graph representing the motion of the mass in Figure 5.1.4(b) is
the reflection through the t-axis of the blue dashed curve in Figure 5.1.4(a).

Form (6) is very useful because it is easy to find values of time for which
the graph of x(t) crosses the positive t-axis (the line x � 0). We observe that
sin(vt � f) � 0 when vt � f � np, where n is a nonnegative integer.

SYSTEMS WITH VARIABLE SPRING CONSTANTS In the model discussed
above we assumed an ideal world—a world in which the physical characteristics of
the spring do not change over time. In the nonideal world, however, it seems reason-
able to expect that when a spring/mass system is in motion for a long period, the
spring will weaken; in other words, the “spring constant” will vary—or, more specif-
ically, decay—with time. In one model for the aging spring the spring constant k
in (1) is replaced by the decreasing function K(t) � ke�at, k � 0, a� 0. The linear
differential equation mx� � ke�atx � 0 cannot be solved by the methods that were
considered in Chapter 4. Nevertheless, we can obtain two linearly independent solu-
tions using the methods in Chapter 6. See Problem 15 in Exercises 5.1, Example 4 in
Section 6.3, and Problems 33 and 39 in Exercises 6.3.

(x � 117�6)

(x � �117�6)
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When a spring/mass system is subjected to an environment in which the
temperature is rapidly decreasing, it might make sense to replace the constant k
with K(t) � kt, k � 0, a function that increases with time. The resulting model,
mx� � ktx � 0, is a form of Airy’s differential equation. Like the equation for
an aging spring, Airy’s equation can be solved by the methods of Chapter 6. See
Problem 16 in Exercises 5.1, Example 3 in Section 6.1, and Problems 34, 35, and
40 in Exercises 6.3.

5.1.2 SPRING/MASS SYSTEMS: 
FREE DAMPED MOTION

The concept of free harmonic motion is somewhat unrealistic, since the motion
described by equation (1) assumes that there are no retarding forces acting on the
moving mass. Unless the mass is suspended in a perfect vacuum, there will be at
least a resisting force due to the surrounding medium. As Figure 5.1.5 shows, the
mass could be suspended in a viscous medium or connected to a dashpot damping
device.

DE OF FREE DAMPED MOTION In the study of mechanics, damping forces
acting on a body are considered to be proportional to a power of the instantaneous
velocity. In particular, we shall assume throughout the subsequent discussion that
this force is given by a constant multiple of dx�dt. When no other external forces are
impressed on the system, it follows from Newton’s second law that

, (10)

where b is a positive damping constant and the negative sign is a consequence of the
fact that the damping force acts in a direction opposite to the motion.

Dividing (10) by the mass m, we find that the differential equation of free
damped motion is d2x�dt2 � (b�m)dx�dt � (k�m)x � 0 or

, (11)

where . (12)

The symbol 2l is used only for algebraic convenience because the auxiliary equation
is m2 � 2lm � v2 � 0, and the corresponding roots are then

.

We can now distinguish three possible cases depending on the algebraic sign of
l2 � v2. Since each solution contains the damping factor e�lt, l � 0, the displace-
ments of the mass become negligible as time t increases.

CASE I: L2 � V2 � 0 In this situation the system is said to be overdamped
because the damping coefficient b is large when compared to the spring constant k.
The corresponding solution of (11) is or

. (13)

This equation represents a smooth and nonoscillatory motion. Figure 5.1.6 shows
two possible graphs of x(t).

x(t) � e��t (c1e1�2��2t � c2e�1�2��2t)

x(t) � c1em1t � c2em2t

m1 � �� � 2�2 � �2,    m2 � �� � 2�2 � �2

2� �
�

m
,  �2 �

k

m

d 2x

dt2 � 2�
dx

dt
� �2x � 0

m
d 2x

dt2 � �kx � �
dx

dt
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CASE II: L2 � V2 � 0 The system is said to be critically damped because any
slight decrease in the damping force would result in oscillatory motion. The general
solution of (11) is or

. (14)

Some graphs of typical motion are given in Figure 5.1.7. Notice that the motion is
quite similar to that of an overdamped system. It is also apparent from (14) that the
mass can pass through the equilibrium position at most one time.

CASE III: L2 � V2 � 0 In this case the system is said to be underdamped, since
the damping coefficient is small in comparison to the spring constant. The roots m1

and m2 are now complex:

.

Thus the general solution of equation (11) is

. (15)

As indicated in Figure 5.1.8, the motion described by (15) is oscillatory; but because
of the coefficient e�lt, the amplitudes of vibration as .

EXAMPLE 3 Overdamped Motion

It is readily verified that the solution of the initial-value problem

is . (16)

The problem can be interpreted as representing the overdamped motion of a mass on
a spring. The mass is initially released from a position 1 unit below the equilibrium
position with a downward velocity of 1 ft /s.

To graph x(t), we find the value of t for which the function has an
extremum — that is, the value of time for which the first derivative (velocity) is
zero. Differentiating (16) gives , so x�(t) � 0 implies that

or . It follows from the first derivative test, as well as our
physical intuition, that x(0.157) � 1.069 ft is actually a maximum. In other
words, the mass attains an extreme displacement of 1.069 feet below the equilib-
rium position.

We should also check to see whether the graph crosses the t-axis—that is,
whether the mass passes through the equilibrium position. This cannot happen in this
instance because the equation x(t) � 0, or , has the physically irrelevant solu-
tion .

The graph of x(t), along with some other pertinent data, is given in
Figure 5.1.9.

EXAMPLE 4 Critically Damped Motion

A mass weighing 8 pounds stretches a spring 2 feet. Assuming that a damping force
numerically equal to 2 times the instantaneous velocity acts on the system, determine
the equation of motion if the mass is initially released from the equilibrium position
with an upward velocity of 3 ft /s.

t � 1
3 ln 2

5 � �0.305
e3t � 2

5

t � 1
3 ln 8

5 � 0.157e3t � 8
5

x�(t) � �5
3 e�t � 8

3 e�4t

x(t) �
5

3
e�t �

2

3
e�4t

d 2x

dt2 � 5
dx

dt
� 4x � 0, x(0) � 1, x�(0) � 1

t : �: 0

x(t) � e��t (c1 cos 1�2 � �2t � c2 sin 1�2 � �2t)

m1 � �� � 1�2 � �2i,    m2 � �� � 1�2 � �2i

x(t) � e��t(c1 � c2t)

x(t) � c1em1t � c2tem1t

5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 187

t

x

underdamped
undamped

t

x

FIGURE 5.1.7 Motion of a critically
damped system

FIGURE 5.1.8 Motion of an
underdamped system

1 32 t

x
5
3x = −e−t e−4t2

3

(a)

t x(t)

1 0.601
1.5 0.370
2 0.225
2.5 0.137
3 0.083

(b)

FIGURE 5.1.9 Overdamped system



SOLUTION From Hooke’s law we see that 8 � k(2) gives k � 4 lb/ft and that
W � mg gives slug. The differential equation of motion is then

. (17)

The auxiliary equation for (17) is m2 � 8m � 16 � (m � 4)2 � 0, so m1 � m2 � � 4.
Hence the system is critically damped, and

. (18)

Applying the initial conditions x(0) � 0 and x�(0) � �3, we find, in turn, that c1 � 0
and c2 � �3. Thus the equation of motion is

. (19)

To graph x(t), we proceed as in Example 3. From x�(t) � �3e�4t(1 � 4t) we
see that x�(t) � 0 when . The corresponding extreme displacement is

. As shown in Figure 5.1.10, we interpret this value
to mean that the mass reaches a maximum height of 0.276 foot above the
equilibrium position.

EXAMPLE 5 Underdamped Motion

A mass weighing 16 pounds is attached to a 5-foot-long spring. At equilibrium the
spring measures 8.2 feet. If the mass is initially released from rest at a point 2 feet
above the equilibrium position, find the displacements x(t) if it is further known that
the surrounding medium offers a resistance numerically equal to the instantaneous
velocity.

SOLUTION The elongation of the spring after the mass is attached is 8.2 � 5 � 3.2 ft,
so it follows from Hooke’s law that 16 � k(3.2) or k � 5 lb/ft. In addition,

slug, so the differential equation is given by

. (20)

Proceeding, we find that the roots of m2 � 2m � 10 � 0 are m1 � �1 � 3i and
m2 � �1 � 3i, which then implies that the system is underdamped, and

. (21)

Finally, the initial conditions x(0) � �2 and x�(0) � 0 yield c1 � �2 and ,
so the equation of motion is

. (22)

ALTERNATIVE FORM OF x(t) In a manner identical to the procedure used on
page 184, we can write any solution

in the alternative form

, (23)

where and the phase angle f is determined from the equations

.sin � �
c1

A
,  cos � �

c2

A
,  tan � �

c1

c2

A � 1c1
2 � c2

2

x(t) � Ae��t sin(1�2 � �2t � �)

x(t) � e��t (c1 cos 1�2 � �2t � c2 sin 1�2 � �2t)

x(t) � e�t ��2 cos 3t �
2

3
 sin 3t�

c2 � �2
3

x(t) � e�t(c1 cos 3t � c2 sin 3t)

1

2

d 2x

dt2 � �5x �
dx

dt
    or    

d 2x

dt2 � 2
dx

dt
� 10x � 0

m � 16
32 � 1

2

x(1
4) � �3(1

4)e�1 � �0.276 ft
t � 1

4

x(t) � �3te�4t

x(t) � c1e
�4t � c2te�4t

1

4

d2x

dt2 � �4x � 2
dx

dt
  or  d 2x

dt2 � 8
dx

dt
� 16x � 0

m � 8
32 � 1

4
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The coefficient Ae�lt is sometimes called the damped amplitude of vibrations.
Because (23) is not a periodic function, the number is called the
quasi period and is the quasi frequency. The quasi period is the
time interval between two successive maxima of x(t). You should verify, for the equa-
tion of motion in Example 5, that and f � 4.391. Therefore an equiv-
alent form of (22) is

.

5.1.3 SPRING/MASS SYSTEMS: DRIVEN MOTION

DE OF DRIVEN MOTION WITH DAMPING Suppose we now take into
consideration an external force f (t) acting on a vibrating mass on a spring. For
example, f (t) could represent a driving force causing an oscillatory vertical
motion of the support of the spring. See Figure 5.1.11. The inclusion of f (t) in the
formulation of Newton’s second law gives the differential equation of driven or
forced motion:

. (24)

Dividing (24) by m gives

, (25)

where F(t) � f(t)�m and, as in the preceding section, 2l� b�m, v2 � k�m. To solve
the latter nonhomogeneous equation, we can use either the method of undetermined
coefficients or variation of parameters.

EXAMPLE 6 Interpretation of an Initial-Value Problem

Interpret and solve the initial-value problem

. (26)

SOLUTION We can interpret the problem to represent a vibrational system consist-
ing of a mass ( slug or kilogram) attached to a spring (k � 2 lb/ft or N/m).
The mass is initially released from rest unit (foot or meter) below the equilibrium
position. The motion is damped (b � 1.2) and is being driven by an external peri-
odic (T � p�2 s) force beginning at t � 0. Intuitively, we would expect that even
with damping, the system would remain in motion until such time as the forcing
function was “turned off,” in which case the amplitudes would diminish. However,
as the problem is given, f (t) � 5 cos 4t will remain “on” forever.

We first multiply the differential equation in (26) by 5 and solve

by the usual methods. Because m1 � �3 � i, m2 � �3 � i, it follows that
xc(t) � e�3t(c1 cos t � c2 sin t). Using the method of undetermined coefficients,
we assume a particular solution of the form xp(t) � A cos 4t � B sin 4t. Differentiating
xp(t) and substituting into the DE gives

.x�p � 6x�p � 10xp � (�6A � 24B) cos 4t � (�24A � 6B) sin 4t � 25 cos 4t

dx2

dt2 � 6
dx

dt
� 10x � 0

1
2

m � 1
5

1

5

d 2x

dt2 � 1.2
dx

dt
� 2x � 5 cos 4t, x(0) �

1

2
, x�(0) � 0

d 2x

dt2 � 2�
dx

dt
� �2x � F(t)

m
d 2x

dt2 � �kx � � 
dx

dt
� f(t)

x(t) �
2110

3
e�t sin(3t � 4.391)

A � 2110�3

1�2 � �2 �2�
2� �1�2 � �2
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The resulting system of equations

yields and . It follows that

. (27)

When we set t � 0 in the above equation, we obtain . By differentiating
the expression and then setting t � 0, we also find that . Therefore the
equation of motion is

. (28)

TRANSIENT AND STEADY-STATE TERMS When F is a periodic function, such
as F(t) � F0 sin gt or F(t) � F0 cos gt, the general solution of (25) for l� 0 is
the sum of a nonperiodic function xc(t) and a periodic function xp(t). Moreover, xc(t)
dies off as time increases—that is, . Thus for large values of time,
the displacements of the mass are closely approximated by the particular solution
xp(t). The complementary function xc(t) is said to be a transient term or transient
solution, and the function xp(t), the part of the solution that remains after an interval
of time, is called a steady-state term or steady-state solution. Note therefore
that the effect of the initial conditions on a spring/mass system driven by F is
transient. In the particular solution (28), is a transient term,
and is a steady-state term. The graphs of these two
terms and the solution (28) are given in Figures 5.1.12(a) and 5.1.12(b), respectively.

EXAMPLE 7 Transient/Steady-State Solutions

The solution of the initial-value problem

,

where x1 is constant, is given by

Solution curves for selected values of the initial velocity x1 are shown in Figure 5.1.13.
The graphs show that the influence of the transient term is negligible for about
t � 3p�2.

DE OF DRIVEN MOTION WITHOUT DAMPING With a periodic impressed
force and no damping force, there is no transient term in the solution of a problem.
Also, we shall see that a periodic impressed force with a frequency near or the same
as the frequency of free undamped vibrations can cause a severe problem in any
oscillatory mechanical system.

EXAMPLE 8 Undamped Forced Motion

Solve the initial-value problem

, (29)

where F0 is a constant and g� v.

d 2x

dt2 � �2x � F0 sin �t, x(0) � 0, x�(0) � 0

x(t) � (x1 � 2) e�t sin t � 2 sin t.

transient steady-state

d 2x

dt2 � 2
dx

dt
� 2x � 4 cos t � 2 sin t, x(0) � 0, x�(0) � x1

xp(t) � � 25
102 cos 4t � 50

51 sin 4t
e�3t (38

51 cos t � 86
51 sin t)

limt:� xc (t) � 0

x(t) � e�3t�38

51
 cos t �

86

51
 sin t� �

25

102
 cos 4t �

50

51
 sin 4t

c2 � �86
51

c1 � 38
51

x(t) � e�3t(c1 cos t � c2 sin t) �
25

102
 cos 4t �

50

51
 sin 4t

B � 50
51A � � 25

102

�6A � 24B � 25,  �24A � 6B � 0
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SOLUTION The complementary function is xc(t) � c1 cos vt � c2 sin vt. To obtain a
particular solution, we assume xp(t) � A cos gt � B sin gt so that

.

Equating coefficients immediately gives A � 0 and B � F0�(v2 � g2). Therefore

.

Applying the given initial conditions to the general solution

yields c1 � 0 and c2 � �gF0�v(v2 � g2). Thus the solution is

. (30)

PURE RESONANCE Although equation (30) is not defined for g� v, it is
interesting to observe that its limiting value as can be obtained by applying
L’Hôpital’s Rule. This limiting process is analogous to “tuning in” the frequency of
the driving force (g�2p) to the frequency of free vibrations (v�2p). Intuitively, we
expect that over a length of time we should be able to substantially increase the
amplitudes of vibration. For g� v we define the solution to be

(31)

As suspected, when , the displacements become large; in fact, 
when tn � np�v, n � 1, 2, . . . . The phenomenon that we have just described is
known as pure resonance. The graph given in Figure 5.1.14 shows typical motion
in this case.

In conclusion it should be noted that there is no actual need to use a limiting
process on (30) to obtain the solution for g� v. Alternatively, equation (31) follows
by solving the initial-value problem

directly by conventional methods.
If the displacements of a spring/mass system were actually described by a func-

tion such as (31), the system would necessarily fail. Large oscillations of the mass
would eventually force the spring beyond its elastic limit. One might argue too that
the resonating model presented in Figure 5.1.14 is completely unrealistic because it
ignores the retarding effects of ever-present damping forces. Although it is true that
pure resonance cannot occur when the smallest amount of damping is taken into con-
sideration, large and equally destructive amplitudes of vibration (although bounded
as ) can occur. See Problem 43 in Exercises 5.1.t : �

d 2x

dt2 � �2x � F0 sin �t, x(0) � 0, x�(0) � 0

� x(tn) � B �t : �

�
F0

2�2 sin �t �
F0

2�
t cos �t.

� F0
�sin �t � �t cos �t

�2�2

� F0 lim
� :�

�sin �t � �t cos �t

�2��

x(t) � lim
� :�

F0
�� sin �t � � sin �t

�(�2 � �2)
� F0 lim

� :�

d

d�
 (�� sin �t � � sin �t)

d

d�
 (�3 � ��2)

� : �

x(t) �
F0

�(�2 � �2)
(�� sin �t � � sin �t),  � � �

x(t) � c1 cos �t � c2 sin �t �
F0

�2 � �2 sin �t

xp(t) �
F0

�2 � �2 sin �t

x�p � �2xp � A(�2 � �2) cos �t � B(�2 � �2) sin �t � F0 sin �t
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5.1.4 SERIES CIRCUIT ANALOGUE

LRC SERIES CIRCUITS As was mentioned in the introduction to this chapter, many
different physical systems can be described by a linear second-order differential equa-
tion similar to the differential equation of forced motion with damping:

. (32)

If i(t) denotes current in the LRC series electrical circuit shown in Figure 5.1.15,
then the voltage drops across the inductor, resistor, and capacitor are as shown in
Figure 1.3.3. By Kirchhoff’s second law the sum of these voltages equals the voltage
E(t) impressed on the circuit; that is,

. (33)

But the charge q(t) on the capacitor is related to the current i(t) by i � dq�dt, so (33)
becomes the linear second-order differential equation

. (34)

The nomenclature used in the analysis of circuits is similar to that used to
describe spring/mass systems.

If E(t) � 0, the electrical vibrations of the circuit are said to be free. Because
the auxiliary equation for (34) is Lm2 � Rm � 1�C � 0, there will be three forms of
the solution with R � 0, depending on the value of the discriminant R2 � 4L�C. We
say that the circuit is

,

,

and .

In each of these three cases the general solution of (34) contains the factor e�Rt/2L, so
as . In the underdamped case when q(0) � q0, the charge on the

capacitor oscillates as it decays; in other words, the capacitor is charging and dis-
charging as . When E(t) � 0 and R � 0, the circuit is said to be undamped,
and the electrical vibrations do not approach zero as t increases without bound; the
response of the circuit is simple harmonic.

EXAMPLE 9 Underdamped Series Circuit

Find the charge q(t) on the capacitor in an LRC series circuit when L � 0.25 henry (h),
R � 10 ohms (!), C � 0.001 farad (f), E(t) � 0, q(0) � q0 coulombs (C), and i(0) � 0.

SOLUTION Since 1�C � 1000, equation (34) becomes

.

Solving this homogeneous equation in the usual manner, we find that the circuit is un-
derdamped and q(t) � e�20t(c1 cos 60t � c2 sin 60t). Applying the initial conditions,
we find c1 � q0 and . Thus

.q(t) � q0e
�20t�cos 60t �

1

3
 sin 60t�

c2 � 1
3 q0

1

4
q� � 10q� � 1000q � 0  or  q� � 40q� � 4000q � 0

t : �

t : �q(t) : 0

underdamped if R2 � 4L /C 
 0

critically damped if R2 � 4L /C � 0

overdamped if R2 � 4L /C � 0

L
d 2q

dt2 � R
dq

dt
�

1

C
q � E(t)

L
di

dt
� Ri �

1

C
q � E(t)

m
d 2x

dt2 � �
dx

dt
� kx � f(t)
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Using (23), we can write the foregoing solution as

.

When there is an impressed voltage E(t) on the circuit, the electrical vibrations
are said to be forced. In the case when R � 0, the complementary function qc(t) of
(34) is called a transient solution. If E(t) is periodic or a constant, then the particu-
lar solution qp(t) of (34) is a steady-state solution.

EXAMPLE 10 Steady-State Current

Find the steady-state solution qp(t) and the steady-state current in an LRC series cir-
cuit when the impressed voltage is E(t) � E0 sin gt.

SOLUTION The steady-state solution qp(t) is a particular solution of the differential
equation

.

Using the method of undetermined coefficients, we assume a particular solution of
the form qp(t) � A sin gt � B cos gt. Substituting this expression into the differen-
tial equation, simplifying, and equating coefficients gives

It is convenient to express A and B in terms of some new symbols.

If

If

Therefore A � E0X�(�gZ2) and B � E0R�(�gZ2), so the steady-state charge is

.

Now the steady-state current is given by :

. (35)

The quantities X � Lg� 1�Cg and defined in Example 11 are
called the reactance and impedance, respectively, of the circuit. Both the reactance
and the impedance are measured in ohms.

Z � 1X2 � R2

ip(t) �
E0

Z �R

Z
 sin �t �

X

Z
 cos �t�

ip(t) � q�p(t)

qp(t) � �
E0X

�Z2 sin �t �
E0R

�Z2 cos �t

Z � 1X2 � R2,    then    Z 2 � L2�2 �
2L

C
�

1

C2�2 � R2.

X � L� �
1

C�
,    then    X2 � L2�2 �

2L

C
�

1

C2�2
.

A �

E0�L� �
1

C��
�� �L2�2 �

2L

C
�

1

C2� 2 � R2�
,    B �

E0R

�� �L2�2 �
2L

C
�

1

C2� 2 � R2�
.

L
d 2q

dt2 � R
dq

dt
�

1

C
q � E0 sin �t

q(t) �
q01 10

3
e�20t sin(60t � 1.249)
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EXERCISES 5.1 Answers to selected odd-numbered problems begin on page ANS-7.

5.1.1 SPRING/MASS SYSTEMS: 
FREE UNDAMPED MOTION

1. A mass weighing 4 pounds is attached to a spring whose
spring constant is 16 lb/ft. What is the period of simple
harmonic motion?

2. A 20-kilogram mass is attached to a spring. If the fre-
quency of simple harmonic motion is 2�p cycles/s,
what is the spring constant k? What is the frequency
of simple harmonic motion if the original mass is
replaced with an 80-kilogram mass?

3. A mass weighing 24 pounds, attached to the end of
a spring, stretches it 4 inches. Initially, the mass is
released from rest from a point 3 inches above the equi-
librium position. Find the equation of motion.

4. Determine the equation of motion if the mass in
Problem 3 is initially released from the equilibrium
position with a downward velocity of 2 ft /s.

5. A mass weighing 20 pounds stretches a spring 6 inches.
The mass is initially released from rest from a point
6 inches below the equilibrium position.

(a) Find the position of the mass at the times t � p�12,
p�8, p�6, p�4, and 9p�32 s.

(b) What is the velocity of the mass when t � 3p�16 s?
In which direction is the mass heading at this
instant?

(c) At what times does the mass pass through the equi-
librium position?

6. A force of 400 newtons stretches a spring 2 meters.
A mass of 50 kilograms is attached to the end of the
spring and is initially released from the equilibrium
position with an upward velocity of 10 m/s. Find the
equation of motion.

7. Another spring whose constant is 20 N/m is suspended
from the same rigid support but parallel to the
spring/mass system in Problem 6. A mass of 20 kilo-
grams is attached to the second spring, and both masses
are initially released from the equilibrium position with
an upward velocity of 10 m/s.

(a) Which mass exhibits the greater amplitude of
motion?

(b) Which mass is moving faster at t � p�4 s? At
p�2 s?

(c) At what times are the two masses in the same
position? Where are the masses at these times? In
which directions are the masses moving?

8. A mass weighing 32 pounds stretches a spring 2 feet.
Determine the amplitude and period of motion if the
mass is initially released from a point 1 foot above the

equilibrium position with an upward velocity of 2 ft/s.
How many complete cycles will the mass have com-
pleted at the end of 4p seconds?

9. A mass weighing 8 pounds is attached to a spring. When
set in motion, the spring/mass system exhibits simple
harmonic motion. Determine the equation of motion if
the spring constant is 1 lb/ft and the mass is initially
released from a point 6 inches below the equilibrium
position with a downward velocity of . Express the
equation of motion in the form given in (6).

10. A mass weighing 10 pounds stretches a spring foot.
This mass is removed and replaced with a mass of
1.6 slugs, which is initially released from a point foot
above the equilibrium position with a downward veloc-
ity of . Express the equation of motion in the form
given in (6). At what times does the mass attain a dis-
placement below the equilibrium position numerically
equal to the amplitude?

11. A mass weighing 64 pounds stretches a spring 0.32 foot.
The mass is initially released from a point 8 inches
above the equilibrium position with a downward veloc-
ity of 5 ft /s.

(a) Find the equation of motion.

(b) What are the amplitude and period of motion?

(c) How many complete cycles will the mass have com-
pleted at the end of 3p seconds?

(d) At what time does the mass pass through the equi-
librium position heading downward for the second
time?

(e) At what times does the mass attain its extreme
displacements on either side of the equilibrium
position?

(f ) What is the position of the mass at t � 3 s?

(g) What is the instantaneous velocity at t � 3 s?

(h) What is the acceleration at t � 3 s?

(i) What is the instantaneous velocity at the times when
the mass passes through the equilibrium position?

(j) At what times is the mass 5 inches below the equi-
librium position?

(k) At what times is the mass 5 inches below the equi-
librium position heading in the upward direction?

12. A mass of 1 slug is suspended from a spring whose
spring constant is 9 lb/ft. The mass is initially released
from a point 1 foot above the equilibrium position
with an upward velocity of . Find the times
at which the mass is heading downward at a velocity
of 3 ft /s.

13. Under some circumstances when two parallel springs,
with constants k1 and k2, support a single mass, the

13 ft /s

1
2

5
4 ft/s

1
3

1
4

3
2 ft/s



effective spring constant of the system is given by
k � 4k1k2 �(k1 � k2). A mass weighing 20 pounds
stretches one spring 6 inches and another spring
2 inches. The springs are attached to a common rigid
support and then to a metal plate. As shown in
Figure 5.1.16, the mass is attached to the center of
the plate in the double-spring arrangement. Determine
the effective spring constant of this system. Find the
equation of motion if the mass is initially released
from the equilibrium position with a downward velocity
of 2 ft /s.

14. A certain mass stretches one spring foot and another
spring foot. The two springs are attached to a common
rigid support in the manner described in Problem 13 and
Figure 5.1.16. The first mass is set aside, a mass weigh-
ing 8 pounds is attached to the double-spring arrange-
ment, and the system is set in motion. If the period
of motion is p�15 second, determine how much the
first mass weighs.

15. A model of a spring/mass system is 4x� � e�0.1tx � 0.
By inspection of the differential equation only, dis-
cuss the behavior of the system over a long period of
time.

16. A model of a spring/mass system is 4x� � tx � 0.
By inspection of the differential equation only, dis-
cuss the behavior of the system over a long period of
time.

5.1.2 SPRING/MASS SYSTEMS: 
FREE DAMPED MOTION

In Problems 17–20 the given figure represents the graph of
an equation of motion for a damped spring/mass system.
Use the graph to determine

(a) whether the initial displacement is above or below the
equilibrium position and

(b) whether the mass is initially released from rest, heading
downward, or heading upward.

1
2

1
3

17.

5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 195

20 lb

k1 2k

FIGURE 5.1.16 Double-spring system in 
Problem 13

t

x

t

x

t

x

t

x

FIGURE 5.1.17 Graph for Problem 17

FIGURE 5.1.19 Graph for Problem 19

FIGURE 5.1.18 Graph for Problem 18

FIGURE 5.1.20 Graph for Problem 20

18.

20.

21. A mass weighing 4 pounds is attached to a spring whose
constant is 2 lb/ft. The medium offers a damping force
that is numerically equal to the instantaneous velocity.
The mass is initially released from a point 1 foot above
the equilibrium position with a downward velocity of
8 ft /s. Determine the time at which the mass passes
through the equilibrium position. Find the time at which
the mass attains its extreme displacement from the equi-
librium position. What is the position of the mass at this
instant?

19.



22. A 4-foot spring measures 8 feet long after a mass weigh-
ing 8 pounds is attached to it. The medium through
which the mass moves offers a damping force numeri-
cally equal to times the instantaneous velocity. Find
the equation of motion if the mass is initially released
from the equilibrium position with a downward velocity
of 5 ft /s. Find the time at which the mass attains its
extreme displacement from the equilibrium position.
What is the position of the mass at this instant?

23. A 1-kilogram mass is attached to a spring whose constant
is 16 N/m, and the entire system is then submerged in a
liquid that imparts a damping force numerically equal to
10 times the instantaneous velocity. Determine the equa-
tions of motion if

(a) the mass is initially released from rest from a point
1 meter below the equilibrium position, and then

(b) the mass is initially released from a point 1 meter
below the equilibrium position with an upward
velocity of 12 m/s.

24. In parts (a) and (b) of Problem 23 determine whether the
mass passes through the equilibrium position. In each
case find the time at which the mass attains its extreme
displacement from the equilibrium position. What is the
position of the mass at this instant?

25. A force of 2 pounds stretches a spring 1 foot. A mass
weighing 3.2 pounds is attached to the spring, and the
system is then immersed in a medium that offers a
damping force that is numerically equal to 0.4 times the
instantaneous velocity.

(a) Find the equation of motion if the mass is initially
released from rest from a point 1 foot above the
equilibrium position.

(b) Express the equation of motion in the form given
in (23).

(c) Find the first time at which the mass passes through
the equilibrium position heading upward.

26. After a mass weighing 10 pounds is attached to a 5-foot
spring, the spring measures 7 feet. This mass is removed
and replaced with another mass that weighs 8 pounds.
The entire system is placed in a medium that offers a
damping force that is numerically equal to the instanta-
neous velocity.

(a) Find the equation of motion if the mass is initially
released from a point foot below the equilibrium
position with a downward velocity of 1 ft /s.

(b) Express the equation of motion in the form given
in (23).

(c) Find the times at which the mass passes through the
equilibrium position heading downward.

(d) Graph the equation of motion.

27. A mass weighing 10 pounds stretches a spring 2 feet. The
mass is attached to a dashpot device that offers a damping

1
2

12

force numerically equal to b (b� 0) times the instanta-
neous velocity. Determine the values of the damping con-
stant b so that the subsequent motion is (a) overdamped,
(b) critically damped, and (c) underdamped.

28. A mass weighing 24 pounds stretches a spring 4 feet.
The subsequent motion takes place in medium that offers
a damping force numerically equal to b (b� 0) times
the instantaneous velocity. If the mass is initially
released from the equilibrium position with an upward
velocity of 2 ft /s, show that when the equa-
tion of motion is

.

5.1.3 SPRING/MASS SYSTEMS: 
DRIVEN MOTION

29. A mass weighing 16 pounds stretches a spring feet. The
mass is initially released from rest from a point 2 feet
below the equilibrium position, and the subsequent
motion takes place in a medium that offers a damping
force that is numerically equal to the instantaneous
velocity. Find the equation of motion if the mass is
driven by an external force equal to f(t) � 10 cos 3t.

30. A mass of 1 slug is attached to a spring whose constant
is 5 lb/ft. Initially, the mass is released 1 foot below
the equilibrium position with a downward velocity of
5 ft /s, and the subsequent motion takes place in a
medium that offers a damping force that is numerically
equal to 2 times the instantaneous velocity.

(a) Find the equation of motion if the mass is driven by an
external force equal to f(t) � 12 cos 2t � 3 sin 2t.

(b) Graph the transient and steady-state solutions on the
same coordinate axes.

(c) Graph the equation of motion.

31. A mass of 1 slug, when attached to a spring, stretches it
2 feet and then comes to rest in the equilibrium position.
Starting at t � 0, an external force equal to f(t) � 8 sin 4t
is applied to the system. Find the equation of motion if
the surrounding medium offers a damping force that is
numerically equal to 8 times the instantaneous velocity.

32. In Problem 31 determine the equation of motion if the
external force is f(t) � e�t sin 4t. Analyze the displace-
ments for .

33. When a mass of 2 kilograms is attached to a spring
whose constant is 32 N/m, it comes to rest in the equi-
librium position. Starting at t � 0, a force equal to
f(t) � 68e�2t cos 4t is applied to the system. Find the
equation of motion in the absence of damping.

34. In Problem 33 write the equation of motion in the form
x(t) � Asin(vt � f) � Be�2tsin(4t � u). What is the
amplitude of vibrations after a very long time?

t : �

1
2

8
3

x(t) �
�3

1� 2 � 18
e�2�t/3 sinh 

2

3
1�2 � 18t

� � 312
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35. A mass m is attached to the end of a spring whose con-
stant is k. After the mass reaches equilibrium, its support
begins to oscillate vertically about a horizontal line L
according to a formula h(t). The value of h represents the
distance in feet measured from L. See Figure 5.1.21.

(a) Determine the differential equation of motion if
the entire system moves through a medium offer-
ing a damping force that is numerically equal to
b(dx�dt).

(b) Solve the differential equation in part (a) if the spring
is stretched 4 feet by a mass weighing 16 pounds and
b� 2, h(t) � 5 cos t, x(0) � x�(0) � 0.

(b) Evaluate .

40. Compare the result obtained in part (b) of Problem 39
with the solution obtained using variation of parameters
when the external force is F0 cos vt.

41. (a) Show that x(t) given in part (a) of Problem 39 can
be written in the form

.

(b) If we define , show that when " is
small an approximate solution is

.

When " is small, the frequency g�2p of the
impressed force is close to the frequency v�2p of
free vibrations. When this occurs, the motion is as
indicated in Figure 5.1.22. Oscillations of this
kind are called beats and are due to the fact that
the frequency of sin "t is quite small in compari-
son to the frequency of sin g t. The dashed curves,
or envelope of the graph of x(t), are obtained from
the graphs of �(F0 �2"g) sin "t. Use a graphing
utility with various values of F0, ", and g to verify
the graph in Figure 5.1.22.

x(t) �
F0

2"�
 sin "t sin �t

" � 1
2 (� � �)

x(t) �
�2F0

�2 � �2 sin 
1

2
 (� � �)t sin 

1

2
 (� � �)t

lim
�:�

F0

�2 � �2 (cos �t � cos �t)

36. A mass of 100 grams is attached to a spring whose
constant is 1600 dynes/cm. After the mass reaches equi-
librium, its support oscillates according to the formula
h(t) � sin 8t, where h represents displacement from its
original position. See Problem 35 and Figure 5.1.21.

(a) In the absence of damping, determine the equation
of motion if the mass starts from rest from the equi-
librium position.

(b) At what times does the mass pass through the equi-
librium position?

(c) At what times does the mass attain its extreme
displacements?

(d) What are the maximum and minimum displace-
ments?

(e) Graph the equation of motion.

In Problems 37 and 38 solve the given initial-value problem.

37.

38.

39. (a) Show that the solution of the initial-value problem

is .x(t) �
F0

�2 � �2 (cos �t � cos �t)

d 2x

dt2 � �2x � F0 cos �t, x(0) � 0, x�(0) � 0

d 2x

dt2 � 9x � 5 sin 3t,  x(0) � 2, x�(0) � 0

x(0) � �1, x�(0) � 1

d 2x

dt2 � 4x � �5 sin 2t � 3 cos 2t,
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L
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FIGURE 5.1.21 Oscillating support in Problem 35

t

x

FIGURE 5.1.22 Beats phenomenon in Problem 41

Computer Lab Assignments

42. Can there be beats when a damping force is added to the
model in part (a) of Problem 39? Defend your position
with graphs obtained either from the explicit solution of
the problem

or from solution curves obtained using a numerical
solver.

43. (a) Show that the general solution of

d 2x

dt2 � 2�
dx

dt
� �2x � F0 sin �t

d2x

dt2 � 2�
dx

dt
� �2x � F0cos �t, x(0) � 0, x�(0) � 0



is

where and the phase angles f
and u are, respectively, defined by sin f � c1 �A,
cos f � c2 �A and

,

.

(b) The solution in part (a) has the form
x(t) � xc(t) � xp(t). Inspection shows that xc(t) is tran-
sient, and hence for large values of time, the solution
is approximated by xp(t) � g(g) sin(gt � u), where

.

Although the amplitude g(g) of xp(t) is bounded as
show that the maximum oscillations will

occur at the value . What is the
maximum value of g? The number 
is said to be the resonance frequency of the system.

(c) When F0 � 2, m � 1, and k � 4, g becomes

.

Construct a table of the values of g1 and g(g1) corre-
sponding to the damping coefficients b� 2, b� 1,

, and . Use a graphing utility to
obtain the graphs of g corresponding to these damp-
ing coefficients. Use the same coordinate axes. This
family of graphs is called the resonance curve or
frequency response curve of the system. What is
g1 approaching as ? What is happening to the
resonance curve as ?

44. Consider a driven undamped spring/mass system
described by the initial-value problem

.

(a) For n � 2, discuss why there is a single frequency
g1�2p at which the system is in pure resonance.

(b) For n � 3, discuss why there are two frequencies
g1�2p and g2�2p at which the system is in pure
resonance.

(c) Suppose v� 1 and F0 � 1. Use a numerical solver
to obtain the graph of the solution of the initial-value
problem for n � 2 and g� g1 in part (a). Obtain the
graph of the solution of the initial-value problem for
n � 3 corresponding, in turn, to g� g1 and g� g2

in part (b).

d 2x

dt2 � �2x � F0 sinn �t, x(0) � 0, x�(0) � 0

� : 0
� : 0

� � 1
4� � 3

4, � � 1
2

g(�) �
2

1(4 � �2 )2 � �2�2

1�2 � 2�2/2�
�1 � 1�2 � 2�2

t : �,

g(�) �
F0

1(�2 � �2)2 � 4�2�2

 cos � �
�2 � � 2

1(�2 � �2)2 � 4�2� 2

 sin � �
�2��

1(�2 � �2)2 � 4�2� 2

A � 1c1
2 � c2

2

�
F0

1(�2 � �2)2 � 4�2�2
 sin(�t � � ),

x(t) � Ae�lt sin�2v2 � l2t � f�

5.1.4 SERIES CIRCUIT ANALOGUE

45. Find the charge on the capacitor in an LRC series circuit
at t � 0.01 s when L � 0.05 h, R � 2 !, C � 0.01 f,
E(t) � 0 V, q(0) � 5 C, and i(0) � 0 A. Determine the
first time at which the charge on the capacitor is equal to
zero.

46. Find the charge on the capacitor in an LRC series
circuit when , R � 20 !, , E(t) � 0 V,
q(0) � 4 C, and i(0) � 0 A. Is the charge on the capaci-
tor ever equal to zero?

In Problems 47 and 48 find the charge on the capacitor and
the current in the given LRC series circuit. Find the maxi-
mum charge on the capacitor.

47. , R � 10 !, , E(t) � 300 V, q(0) � 0 C,
i(0) � 0 A

48. L � 1 h, R � 100 !, C � 0.0004 f, E(t) � 30 V, 
q(0) � 0 C, i(0) � 2 A

49. Find the steady-state charge and the steady-state current
in an LRC series circuit when L � 1 h, R � 2 !,
C � 0.25 f, and E(t) � 50 cos t V.

50. Show that the amplitude of the steady-state current in
the LRC series circuit in Example 10 is given by E0�Z,
where Z is the impedance of the circuit.

51. Use Problem 50 to show that the steady-state current
in an LRC series circuit when , R � 20 !,
C � 0.001 f, and E(t) � 100 sin 60t V, is given by
ip(t) � 4.160 sin(60t � 0.588).

52. Find the steady-state current in an LRC series
circuit when , R � 20 !, C � 0.001 f, and 
E(t) � 100 sin 60t � 200 cos 40t V.

53. Find the charge on the capacitor in an LRC series circuit
when , R � 10 !, C � 0.01 f, E(t) � 150 V,
q(0) � 1 C, and i(0) � 0 A. What is the charge on the
capacitor after a long time?

54. Show that if L, R, C, and E0 are constant, then the
amplitude of the steady-state current in Example 10 is a
maximum when . What is the maximum
amplitude?

55. Show that if L, R, E0, and g are constant, then the
amplitude of the steady-state current in Example 10 is a
maximum when the capacitance is C � 1�Lg2.

56. Find the charge on the capacitor and the current in an LC
circuit when L � 0.1 h, C � 0.1 f, E(t) � 100 sin gt V,
q(0) � 0 C, and i(0) � 0 A.

57. Find the charge on the capacitor and the current in an
LC circuit when E(t) � E0 cos gt V, q(0) � q0 C, and
i(0) � i0 A.

58. In Problem 57 find the current when the circuit is in
resonance.

� � 1>1LC

L � 1
2 h

L � 1
2 h

L � 1
2 h

C � 1
30 fL � 5

3 h

C � 1
300 fL � 1

4 h
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LINEAR MODELS: BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
● Problems 37–40 in Exercises 4.3
● Problems 37–40 in Exercises 4.4

INTRODUCTION The preceding section was devoted to systems in which a second-order math-
ematical model was accompanied by initial conditions—that is, side conditions that are specified on
the unknown function and its first derivative at a single point. But often the mathematical descrip-
tion of a physical system demands that we solve a homogeneous linear differential equation subject
to boundary conditions—that is, conditions specified on the unknown function, or on one of its
derivatives, or even on a linear combination of the unknown function and one of its derivatives at
two (or more) different points.

5.2

DEFLECTION OF A BEAM Many structures are constructed by using girders or
beams, and these beams deflect or distort under their own weight or under the influence
of some external force. As we shall now see, this deflection y(x) is governed by a rela-
tively simple linear fourth-order differential equation.

To begin, let us assume that a beam of length L is homogeneous and has uniform
cross sections along its length. In the absence of any load on the beam (including its
weight), a curve joining the centroids of all its cross sections is a straight line called
the axis of symmetry. See Figure 5.2.1(a). If a load is applied to the beam in a verti-
cal plane containing the axis of symmetry, the beam, as shown in Figure 5.2.1(b),
undergoes a distortion, and the curve connecting the centroids of all cross sections is
called the deflection curve or elastic curve. The deflection curve approximates the
shape of the beam. Now suppose that the x-axis coincides with the axis of symmetry
and that the deflection y(x), measured from this axis, is positive if downward. In the
theory of elasticity it is shown that the bending moment M(x) at a point x along the
beam is related to the load per unit length w(x) by the equation

. (1)

In addition, the bending moment M(x) is proportional to the curvature k of the elas-
tic curve

, (2)

where E and I are constants; E is Young’s modulus of elasticity of the material of the
beam, and I is the moment of inertia of a cross section of the beam (about an axis
known as the neutral axis). The product EI is called the flexural rigidity of the beam.

Now, from calculus, curvature is given by k� y��[1 � (y�)2]3/2. When the
deflection y(x) is small, the slope y�  0, and so [1 � (y�)2]3/2  1. If we let k  y�,
equation (2) becomes M � EI y�. The second derivative of this last expression is

. (3)

Using the given result in (1) to replace d2M�dx2 in (3), we see that the deflection y(x)
satisfies the fourth-order differential equation

. (4)EI
d 4y

dx4 � w(x)

d 2M

dx2 � EI
d 2

dx2 y� � EI
d 4y

dx4

M(x) � EI�

d2M

dx2 � w(x)

axis of symmetry

deflection curve

(a)

(b)

FIGURE 5.2.1 Deflection of a
homogeneous beam



Boundary conditions associated with equation (4) depend on how the ends of the
beam are supported. A cantilever beam is embedded or clamped at one end and
free at the other. A diving board, an outstretched arm, an airplane wing, and a bal-
cony are common examples of such beams, but even trees, flagpoles, skyscrapers,
and the George Washington Monument can act as cantilever beams because they
are embedded at one end and are subject to the bending force of the wind. For
a cantilever beam the deflection y(x) must satisfy the following two conditions at
the embedded end x � 0:

• y(0) � 0 because there is no deflection, and
• y�(0) � 0 because the deflection curve is tangent to the x-axis (in other

words, the slope of the deflection curve is zero at this point).

At x � L the free-end conditions are

• y�(L) � 0 because the bending moment is zero, and
• y�(L) � 0 because the shear force is zero.

The function F(x) � dM�dx � EI d3y�dx3 is called the shear force. If an end of
a beam is simply supported or hinged (also called pin supported and fulcrum
supported) then we must have y � 0 and y� � 0 at that end. Table 5.1 summarizes
the boundary conditions that are associated with (4). See Figure 5.2.2.

EXAMPLE 1 An Embedded Beam

A beam of length L is embedded at both ends. Find the deflection of the beam if a con-
stant load w0 is uniformly distributed along its length—that is, w(x) � w0, 0 
 x 
 L.

SOLUTION From (4) we see that the deflection y(x) satisfies

.

Because the beam is embedded at both its left end (x � 0) and its right end (x � L),
there is no vertical deflection and the line of deflection is horizontal at these points.
Thus the boundary conditions are

.

We can solve the nonhomogeneous differential equation in the usual manner (find yc

by observing that m � 0 is root of multiplicity four of the auxiliary equation m4 � 0
and then find a particular solution yp by undetermined coefficients), or we can simply
integrate the equation d4y�dx4 � w0�EI four times in succession. Either way, we
find the general solution of the equation y � yc � yp to be

.

Now the conditions y(0) � 0 and y�(0) � 0 give, in turn, c1 � 0 and c2 � 0, whereas the

remaining conditions y(L) � 0 and y�(L) � 0 applied to 
yield the simultaneous equations 

 2c3 L � 3c4 L2 �
w0

6EI
L3 � 0.

c3 L2 � c4 L3 �
w0

24EI
L4 � 0

y(x) � c3x2 � c4x3 �
w0

24EI
x4

y(x) � c1 � c2x � c3x2 � c4x3 �
w0

24EI
x4

y(0) � 0,    y�(0) � 0,  y(L) � 0,    y�(L) � 0

EI
d 4y

dx4 � w0
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x = 0 x = L

(a) embedded at both ends

(b) cantilever beam: embedded at
the left end, free at the right
end

(c) simply supported at both ends

x = 0 x = L

x = 0 x = L

FIGURE 5.2.2 Beams with various end
conditions

TABLE 5.1

Ends of the Beam Boundary Conditions

embedded y � 0, y� � 0
free y� � 0, y� � 0
simply supported
or hinged y � 0, y� � 0



Solving this system gives c3 � w0L2�24EI and c4 � �w0L�12EI. Thus the deflection is

or . By choosing w0 � 24EI, and L � 1, we obtain the 

deflection curve in Figure 5.2.3.

EIGENVALUES AND EIGENFUNCTIONS Many applied problems demand
that we solve a two-point boundary-value problem (BVP) involving a linear differen-
tial equation that contains a parameter l. We seek the values of l for which the
boundary-value problem has nontrivial, that is, nonzero, solutions.

EXAMPLE 2 Nontrivial Solutions of a BVP

Solve the boundary-value problem

.

SOLUTION We shall consider three cases: l � 0, l 
 0, and l � 0.

CASE I: For l� 0 the solution of y� � 0 is y � c1x � c2. The conditions y(0) � 0
and y(L) � 0 applied to this solution imply, in turn, c2 � 0 and c1 � 0. Hence for l� 0
the only solution of the boundary-value problem is the trivial solution y � 0.

CASE II: For l
 0 it is convenient to write l� �a2, where a denotes a positive
number. With this notation the roots of the auxiliary equation m2 � a2 � 0 are m1 � a
and m2 � �a. Since the interval on which we are working is finite, we choose to write
the general solution of y� � a2y � 0 as y � c1 cosh ax � c2 sinh ax. Now y(0) is

,

and so y(0) � 0 implies that c1 � 0. Thus y � c2 sinh ax. The second condition,
y(L) � 0, demands that c2 sinh aL � 0. For a � 0, sinh aL � 0; consequently, we
are forced to choose c2 � 0. Again the only solution of the BVP is the trivial solu-
tion y � 0.

CASE III: For l � 0 we write l � a2, where a is a positive number. Because the
auxiliary equation m2 � a2 � 0 has complex roots m1 � ia and m2 � �ia, the
general solution of y� � a2y � 0 is y � c1 cos ax � c2 sin ax. As before, y(0) � 0
yields c1 � 0, and so y � c2 sin ax. Now the last condition y(L) � 0, or

,

is satisfied by choosing c2 � 0. But this means that y � 0. If we require c2 � 0, then
sin aL � 0 is satisfied whenever aL is an integer multiple of p.

.

Therefore for any real nonzero c2, y � c2 sin(npx�L) is a solution of the problem for
each n. Because the differential equation is homogeneous, any constant multiple of a
solution is also a solution, so we may, if desired, simply take c2 � 1. In other words,
for each number in the sequence

�1 �
�2

L2, �2 �
4�2

L2 , �3 �
9�2

L2 , 	 	 	 ,

�L � n� or  � �
n�

L
 or  �n � �n

2 � �n�

L �
2

,  n � 1, 2, 3, . . . 

c2 sin �L � 0

y(0) � c1 cosh 0 � c2 sinh 0 � c1 � 1 � c2 � 0 � c1

y� � �y � 0, y(0) � 0,  y(L) � 0

y(x) �
w0

24EI
x2(x � L)2

y(x) �
w0L2

24EI
x2 �

w0L

12EI
x3 �

w0

24EI
x4
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x

y

1

0.5

FIGURE 5.2.3 Deflection curve for
Example 1

■ Note that we use
hyperbolic functions
here. Reread “Two
Equations Worth
Knowing” on
page 135.



the corresponding function in the sequence

is a nontrivial solution of the original problem.

The numbers ln � n2p2�L2, n � 1, 2, 3, . . . for which the boundary-value
problem in Example 2 possesses nontrivial solutions are known as eigenvalues. The
nontrivial solutions that depend on these values of ln, yn � c2 sin(npx�L) or simply
yn � sin(npx�L), are called eigenfunctions.

BUCKLING OF A THIN VERTICAL COLUMN In the eighteenth century
Leonhard Euler was one of the first mathematicians to study an eigenvalue problem
in analyzing how a thin elastic column buckles under a compressive axial force.

Consider a long, slender vertical column of uniform cross section and length L.
Let y(x) denote the deflection of the column when a constant vertical compressive
force, or load, P is applied to its top, as shown in Figure 5.2.4. By comparing bend-
ing moments at any point along the column, we obtain

, (5)

where E is Young’s modulus of elasticity and I is the moment of inertia of a cross
section about a vertical line through its centroid.

EXAMPLE 3 The Euler Load

Find the deflection of a thin vertical homogeneous column of length L subjected to a
constant axial load P if the column is hinged at both ends.

SOLUTION The boundary-value problem to be solved is

.

First note that y � 0 is a perfectly good solution of this problem. This solution has
a simple intuitive interpretation: If the load P is not great enough, there is no
deflection. The question then is this: For what values of P will the column bend? In
mathematical terms: For what values of P does the given boundary-value problem
possess nontrivial solutions?

By writing l � P�EI, we see that

is identical to the problem in Example 2. From Case III of that discussion we see
that the deflections are yn(x) � c2 sin(npx�L) corresponding to the eigenvalues
ln � Pn �EI � n2p 2 �L2, n � 1, 2, 3, . . . . Physically, this means that the column
will buckle or deflect only when the compressive force is one of the values
Pn � n2p 2EI�L2, n � 1, 2, 3, . . . . These different forces are called critical
loads. The deflection corresponding to the smallest critical load P1 � p 2EI�L2,
called the Euler load, is y1(x) � c2 sin(px�L) and is known as the first buckling
mode.

The deflection curves in Example 3 corresponding to n � 1, n � 2, and n � 3
are shown in Figure 5.2.5. Note that if the original column has some sort of physical
restraint put on it at x � L �2, then the smallest critical load will be P2 � 4p2EI�L2,
and the deflection curve will be as shown in Figure 5.2.5(b). If restraints are put on
the column at x � L �3 and at x � 2L �3, then the column will not buckle until the

y� � �y � 0,  y(0) � 0, y(L) �  0

EI
d 2y

dx2 � Py � 0, y(0) � 0, y(L) � 0

EI
d 2y

dx2 � �Py   or   EI
d 2y

dx2 � Py � 0

y1 � sin
�

L
x, y2 � sin

2�

L
x, y3 � sin

3�

L
x, 	 	 	 ,
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L

(a) (b)

P

x = 0

x

y

x = L

FIGURE 5.2.4 Elastic column
buckling under a compressive force

L L

x

(b)

y

x

(c)

y

x

L

(a)

y

FIGURE 5.2.5 Deflection curves
corresponding to compressive forces 
P1, P2, P3



critical load P3 � 9p2EI�L2 is applied, and the deflection curve will be as shown in
Figure 5.2.5(c). See Problem 23 in Exercises 5.2.

ROTATING STRING The simple linear second-order differential equation

(6)

occurs again and again as a mathematical model. In Section 5.1 we saw (6) in the
forms d2x�dt2 � (k�m)x � 0 and d2q�dt2 � (1�LC)q � 0 as models for, respec-
tively, the simple harmonic motion of a spring/mass system and the simple harmonic
response of a series circuit. It is apparent when the model for the deflection of a thin
column in (5) is written as d2y�dx2 � (P�EI)y � 0 that it is the same as (6). We
encounter the basic equation (6) one more time in this section: as a model that defines
the deflection curve or the shape y(x) assumed by a rotating string. The physical situ-
ation is analogous to when two people hold a jump rope and twirl it in a synchronous
manner. See Figures 5.2.6(a) and 5.2.6(b).

Suppose a string of length L with constant linear density r (mass per unit length)
is stretched along the x-axis and fixed at x � 0 and x � L. Suppose the string is then
rotated about that axis at a constant angular speed v. Consider a portion of the string
on the interval [x, x � �x], where �x is small. If the magnitude T of the tension T,
acting tangential to the string, is constant along the string, then the desired differen-
tial equation can be obtained by equating two different formulations of the net force
acting on the string on the interval [x, x � �x]. First, we see from Figure 5.2.6(c) that
the net vertical force is

. (7)

When angles u1 and u2 (measured in radians) are small, we have sin u2  tan u2 and
sin u1  tan u1. Moreover, since tan u2 and tan u1 are, in turn, slopes of the lines con-
taining the vectors T2 and T1, we can also write

.

Thus (7) becomes

. (8)

Second, we can obtain a different form of this same net force using Newton’s second
law, F � ma. Here the mass of the string on the interval is m � r �x; the centripetal
acceleration of a body rotating with angular speed v in a circle of radius r is a � rv2.
With �x small we take r � y. Thus the net vertical force is also approximated by

, (9)

where the minus sign comes from the fact that the acceleration points in the direction
opposite to the positive y-direction. Now by equating (8) and (9), we have

F  �(� �x)y�2

F  T [ y�(x � �x) � y�(x)]

tan �2 � y�(x � �x)   and   tan �1 � y�(x)

F � T sin �2 � T sin �1

y� � �y � 0
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(a)

(b)

(c)

ω

x = 0 x = L

y(x)

xx x + Δx

1θ 2θ

T2

T1

FIGURE 5.2.6 Rotating string and
forces acting on it

(10)
y�(x � �x) � y�(x)
–––––––––––––––––

�x
T [y�(x � �x) � y�(x)] � �(r�x)yv2 T � rv2y � 0.or

difference quotient

For �x close to zero the difference quotient in (10) is approximately the second
derivative d2y�dx2. Finally, we arrive at the model

. (11)

Since the string is anchored at its ends x � 0 and x � L, we expect that the solution
y(x) of equation (11) should also satisfy the boundary conditions y(0) � 0 and
y(L) � 0.

T
d 2y

dx2 � ��2y � 0



REMARKS

(i) Eigenvalues are not always easily found, as they were in Example 2;
you might have to approximate roots of equations such as tan x � �x or
cos x cosh x � 1. See Problems 34–38 in Exercises 5.2.

(ii) Boundary conditions applied to a general solution of a linear differential
equation can lead to a homogeneous algebraic system of linear equations in
which the unknowns are the coefficients ci in the general solution. A homoge-
neous algebraic system of linear equations is always consistent because it
possesses at least a trivial solution. But a homogeneous system of n linear
equations in n unknowns has a nontrivial solution if and only if the determi-
nant of the coefficients equals zero. You might need to use this last fact in
Problems 19 and 20 in Exercises 5.2.
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EXERCISES 5.2 Answers to selected odd-numbered problems begin on page ANS-8.

Deflection of a Beam

In Problems 1–5 solve equation (4) subject to the appropriate
boundary conditions. The beam is of length L, and w0 is a
constant.

1. (a) The beam is embedded at its left end and free at its
right end, and w(x) � w0, 0 
 x 
 L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 24EI and L � 1.

2. (a) The beam is simply supported at both ends, and
w(x) � w0, 0 
 x 
 L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 24EI and L � 1.

3. (a) The beam is embedded at its left end and simply sup-
ported at its right end, and w(x) � w0, 0 
 x 
 L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 48EI and L � 1.

4. (a) The beam is embedded at its left end and simply sup-
ported at its right end, and w(x) � w0 sin(px�L),
0 
 x 
 L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 2p3EI and L � 1.

(c) Use a root-finding application of a CAS (or a
graphic calculator) to approximate the point in the
graph in part (b) at which the maximum deflection
occurs. What is the maximum deflection?

5. (a) The beam is simply supported at both ends, and
w(x) � w0x, 0 
 x 
 L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 36EI and L � 1.

(c) Use a root-finding application of a CAS (or a
graphic calculator) to approximate the point in the

graph in part (b) at which the maximum deflection
occurs. What is the maximum deflection?

6. (a) Find the maximum deflection of the cantilever beam
in Problem 1.

(b) How does the maximum deflection of a beam that is
half as long compare with the value in part (a)?

(c) Find the maximum deflection of the simply sup-
ported beam in Problem 2.

(d) How does the maximum deflection of the simply
supported beam in part (c) compare with the value
of maximum deflection of the embedded beam in
Example 1?

7. A cantilever beam of length L is embedded at its right
end, and a horizontal tensile force of P pounds is applied
to its free left end. When the origin is taken at its free end,
as shown in Figure 5.2.7, the deflection y(x) of the beam
can be shown to satisfy the differential equation

.

Find the deflection of the cantilever beam if 
w(x) � w0x, 0 
 x 
 L, and y(0) � 0, y�(L) � 0.

EIy� � Py � w(x)
x

2

xO
P

y
L

x

w0x

FIGURE 5.2.7 Deflection of cantilever beam in Problem 7 



8. When a compressive instead of a tensile force is applied
at the free end of the beam in Problem 7, the differential
equation of the deflection is

.

Solve this equation if w(x) � w0x, 0 
 x 
 L, and
y(0) � 0, y�(L) � 0.

Eigenvalues and Eigenfunctions

In Problems 9–18 find the eigenvalues and eigenfunctions
for the given boundary-value problem.

9. y� � ly � 0, y(0) � 0, y(p) � 0

10. y� � ly � 0, y(0) � 0, y(p�4) � 0

11. y� � ly � 0, y�(0) � 0, y(L) � 0

12. y� � ly � 0, y(0) � 0, y�(p�2) � 0

13. y� � ly � 0, y�(0) � 0, y�(p) � 0

14. y� � ly � 0, y(�p) � 0, y(p) � 0

15. y� � 2y� � (l� 1)y � 0, y(0) � 0, y(5) � 0

16. y� � (l� 1)y � 0, y�(0) � 0, y�(1) � 0

17. x2y� � xy� � ly � 0, y(1) � 0, y(ep) � 0

18. x2y� � xy� � ly � 0, y�(e�1) � 0, y(1) � 0

In Problems 19 and 20 find the eigenvalues and eigenfunc-
tions for the given boundary-value problem. Consider only
the case l� a4, a � 0.

19. y (4) � ly � 0, y(0) � 0, y�(0) � 0, y(1) � 0,
y�(1) � 0

20. y (4) � ly � 0, y�(0) � 0, y�(0) � 0, y(p) � 0,
y�(p) � 0

Buckling of a Thin Column

21. Consider Figure 5.2.5. Where should physical restraints
be placed on the column if we want the critical load to be
P4? Sketch the deflection curve corresponding to this load.

22. The critical loads of thin columns depend on the end
conditions of the column. The value of the Euler load P1

in Example 3 was derived under the assumption that the
column was hinged at both ends. Suppose that a thin
vertical homogeneous column is embedded at its base
(x � 0) and free at its top (x � L) and that a constant
axial load P is applied to its free end. This load either
causes a small deflection d as shown in Figure 5.2.8 or
does not cause such a deflection. In either case the dif-
ferential equation for the deflection y(x) is

.EI
d2y

dx2 � Py � P#

EIy� � �Py � w(x)
x

2
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(a) What is the predicted deflection when d � 0?

(b) When d � 0, show that the Euler load for this col-
umn is one-fourth of the Euler load for the hinged
column in Example 3.

23. As was mentioned in Problem 22, the differential equa-
tion (5) that governs the deflection y(x) of a thin elastic
column subject to a constant compressive axial force P
is valid only when the ends of the column are hinged. In
general, the differential equation governing the deflection
of the column is given by

.

Assume that the column is uniform (EI is a constant)
and that the ends of the column are hinged. Show that
the solution of this fourth-order differential equation
subject to the boundary conditions y(0) � 0, y�(0) � 0,
y(L) � 0, y�(L) � 0 is equivalent to the analysis in
Example 3.

24. Suppose that a uniform thin elastic column is hinged at
the end x � 0 and embedded at the end x � L.

(a) Use the fourth-order differential equation given in
Problem 23 to find the eigenvalues ln, the critical
loads Pn, the Euler load P1, and the deflections yn(x).

(b) Use a graphing utility to graph the first buckling
mode.

Rotating String

25. Consider the boundary-value problem introduced in the
construction of the mathematical model for the shape of
a rotating string:

.

For constant T and r, define the critical speeds of angu-
lar rotation vn as the values of v for which the boundary-
value problem has nontrivial solutions. Find the critical
speeds vn and the corresponding deflections yn(x).

T
d2y

dx2 � ��2y � 0,  y(0) � 0, y(L) � 0

d2

dx2 �EI
d2y

dx2� � P
d2y

dx2 � 0

y
x =  0

x = L
P

δ

x

FIGURE 5.2.8 Deflection of vertical column in 
Problem 22



26. When the magnitude of tension T is not constant, then a
model for the deflection curve or shape y(x) assumed by
a rotating string is given by

.

Suppose that 1 
 x 
 e and that T(x) � x2.

(a) If y(1) � 0, y(e) � 0, and rv2 � 0.25, show that
the critical speeds of angular rotation are

and the corresponding
deflections are

yn(x) � c2x�1/2 sin(np ln x), n � 1, 2, 3, . . . .

(b) Use a graphing utility to graph the deflection curves
on the interval [1, e] for n � 1, 2, 3. Choose c2 � 1.

Miscellaneous Boundary-Value Problems

27. Temperature in a Sphere Consider two concentric
spheres of radius r � a and r � b, a 
 b. See
Figure 5.2.9. The temperature u(r) in the region
between the spheres is determined from the boundary-
value problem

,

where u0 and u1 are constants. Solve for u(r).

r
d2u

dr2 � 2
du

dr
� 0,  u(a) � u0, u(b) � u1

�n � 1
22(4n2�2 � 1)>�

d

dx 
T(x)
dy

dx� � ��2y � 0
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where u0 and u1 are constants. Show that

.

Discussion Problems

29. Simple Harmonic Motion The model mx� � kx � 0
for simple harmonic motion, discussed in Section 5.1,
can be related to Example 2 of this section.

Consider a free undamped spring/mass system for
which the spring constant is, say, k � 10 lb/ft. Deter-
mine those masses mn that can be attached to the spring
so that when each mass is released at the equilibrium
position at t � 0 with a nonzero velocity v0, it will then
pass through the equilibrium position at t � 1 second.
How many times will each mass mn pass through the
equilibrium position in the time interval 0 
 t 
 1?

30. Damped Motion Assume that the model for the
spring/mass system in Problem 29 is replaced by mx� �
2x� � kx � 0. In other words, the system is free but is
subjected to damping numerically equal to 2 times the
instantaneous velocity. With the same initial conditions
and spring constant as in Problem 29, investigate
whether a mass m can be found that will pass through
the equilibrium position at t � 1 second.

In Problems 31 and 32 determine whether it is possible to
find values y0 and y1 (Problem 31) and values of L � 0
(Problem 32) so that the given boundary-value problem has
(a) precisely one nontrivial solution, (b) more than one
solution, (c) no solution, (d) the trivial solution.

31. y� � 16y � 0, y(0) � y0, y(p�2) � y1

32. y� � 16y � 0, y(0) � 1, y(L) � 1

33. Consider the boundary-value problem

(a) The type of boundary conditions specified are called
periodic boundary conditions. Give a geometric
interpretation of these conditions.

(b) Find the eigenvalues and eigenfunctions of the
problem.

(c) Use a graphing utility to graph some of the eigen-
functions. Verify your geometric interpretation of
the boundary conditions given in part (a).

34. Show that the eigenvalues and eigenfunctions of the
boundary-value problem

are and yn � sin an x, respectively, where an,
n � 1, 2, 3, . . . are the consecutive positive roots of
the equation tan a � �a.

�n � � 2
n

y� � �y � 0,  y(0) � 0,  y(1) � y�(1) � 0

y� � �y � 0,  y(��) � y(�),  y�(��) � y�(�).

u(r) �
u0 ln(r>b) � u1 ln(r>a)

ln(a>b)

u = u1

u = u0

FIGURE 5.2.9 Concentric spheres in Problem 27

28. Temperature in a Ring The temperature u(r) in the
circular ring shown in Figure 5.2.10 is determined from
the boundary-value problem

,r
d2u

dr2 �
du

dr
� 0,  u(a) � u0, u(b) � u1

FIGURE 5.2.10 Circular ring in Problem 28

a

u = u1

u = u0

b



Computer Lab Assignments

35. Use a CAS to plot graphs to convince yourself that the
equation tan a � �a in Problem 34 has an infinite
number of roots. Explain why the negative roots of the
equation can be ignored. Explain why l� 0 is not an
eigenvalue even though a � 0 is an obvious solution of
the equation tan a � �a.

36. Use a root-finding application of a CAS to approximate
the first four eigenvalues l1, l2, l3, and l4 for the BVP
in Problem 34.
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In Problems 37 and 38 find the eigenvalues and eigenfunc-
tions of the given boundary-value problem. Use a CAS to
approximate the first four eigenvalues l1, l2, l3, and l4.

37.

38. y(4) � ly � 0, y(0) � 0, y�(0) � 0, y(1) � 0, y�(1) � 0
[Hint: Consider only l � a4, a � 0.]

y� � �y � 0, y(0) � 0, y(1) � 1
2 y�(1) � 0

NONLINEAR MODELS

REVIEW MATERIAL
● Section 4.9

INTRODUCTION In this section we examine some nonlinear higher-order mathematical
models. We are able to solve some of these models using the substitution method (leading to
reduction of the order of the DE) introduced on page 174. In some cases in which the model
cannot be solved, we show how a nonlinear DE can be replaced by a linear DE through a process
called linearization.

5.3

NONLINEAR SPRINGS The mathematical model in (1) of Section 5.1 has the
form

, (1)

where F(x) � kx. Because x denotes the displacement of the mass from its equilibrium
position, F(x) � kx is Hooke’s law—that is, the force exerted by the spring that tends
to restore the mass to the equilibrium position. A spring acting under a linear restoring
force F(x) � kx is naturally referred to as a linear spring. But springs are seldom per-
fectly linear. Depending on how it is constructed and the material that is used, a spring
can range from “mushy,” or soft, to “stiff,” or hard, so its restorative force may vary
from something below to something above that given by the linear law. In the case of
free motion, if we assume that a nonaging spring has some nonlinear characteristics,
then it might be reasonable to assume that the restorative force of a spring—that is,
F(x) in (1)—is proportional to, say, the cube of the displacement x of the mass beyond
its equilibrium position or that F(x) is a linear combination of powers of the displace-
ment such as that given by the nonlinear function F(x) � kx � k1x3. A spring whose
mathematical model incorporates a nonlinear restorative force, such as

, (2)

is called a nonlinear spring. In addition, we examined mathematical models in which
damping imparted to the motion was proportional to the instantaneous velocity dx�dt
and the restoring force of a spring was given by the linear function F(x) � kx. But these
were simply assumptions; in more realistic situations damping could be proportional to
some power of the instantaneous velocity dx�dt. The nonlinear differential equation

(3)m
d 2x

dt2 � � �dx

dt � dx

dt
� kx � 0

m
d 2x

dt2 � kx3 � 0    or    m
d 2x

dt2 � kx � k1x3 � 0

m
d 2x

dt2 � F(x) � 0



is one model of a free spring/mass system in which the damping force is proportional
to the square of the velocity. One can then envision other kinds of models: linear
damping and nonlinear restoring force, nonlinear damping and nonlinear restoring
force, and so on. The point is that nonlinear characteristics of a physical system lead
to a mathematical model that is nonlinear.

Notice in (2) that both F(x) � kx3 and F(x) � kx � k1x3 are odd functions of x.
To see why a polynomial function containing only odd powers of x provides a
reasonable model for the restoring force, let us express F as a power series centered
at the equilibrium position x � 0:

When the displacements x are small, the values of xn are negligible for n suffi-
ciently large. If we truncate the power series with, say, the fourth term, then
F(x) � c0 � c1x � c2x2 � c3x3. For the force at x � 0,

,

and for the force at �x 
 0,

to have the same magnitude but act in the opposite direction, we must have
F(�x) � �F(x). Because this means that F is an odd function, we must have c0 � 0
and c2 � 0, and so F(x) � c1x � c3x3. Had we used only the first two terms in the
series, the same argument yields the linear function F(x) � c1x. A restoring force with
mixed powers, such as F(x) � c1x � c2x2, and the corresponding vibrations are said
to be unsymmetrical. In the next discussion we shall write c1 � k and c3 � k1.

HARD AND SOFT SPRINGS Let us take a closer look at the equation in (1) in
the case in which the restoring force is given by F(x) � kx � k1x3, k � 0. The
spring is said to be hard if k1 � 0 and soft if k1 
 0. Graphs of three types of
restoring forces are illustrated in Figure 5.3.1. The next example illustrates
these two special cases of the differential equation m d2x�dt2 � kx � k1x3 � 0,
m � 0, k � 0.

EXAMPLE 1 Comparison of Hard and Soft Springs

The differential equations

(4)

and (5)

are special cases of the second equation in (2) and are models of a hard spring and
a soft spring, respectively. Figure 5.3.2(a) shows two solutions of (4) and
Figure 5.3.2(b) shows two solutions of (5) obtained from a numerical solver. The
curves shown in red are solutions that satisfy the initial conditions x(0) � 2,
x�(0) � �3; the two curves in blue are solutions that satisfy x(0) � 2, x�(0) � 0.
These solution curves certainly suggest that the motion of a mass on the hard spring
is oscillatory, whereas motion of a mass on the soft spring appears to be nonoscil-
latory. But we must be careful about drawing conclusions based on a couple of
numerical solution curves. A more complete picture of the nature of the solutions
of both of these equations can be obtained from the qualitative analysis discussed
in Chapter 10.

d 2x

dt2 � x � x3 � 0

d 2x

dt2 � x � x3 � 0

F(�x) � c0 � c1x � c2x2 � c3x3

F(x) � c0 � c1x � c2x2 � c3x3

F(x) � c0 � c1x � c2x2 � c3x3 � 	 	 	.
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F
linear spring

hard
spring

soft spring 

x

FIGURE 5.3.1 Hard and soft springs

(a) hard spring

(b) soft spring

x
  x(0)= 2,
x'(0)= _3

t

  x(0)= 2,
x'(0)= _3

t

x

x(0)= 2,
x'(0)= 0

  x(0)= 2,
x'(0)= 0

FIGURE 5.3.2 Numerical solution
curves



NONLINEAR PENDULUM Any object that swings back and forth is called a
physical pendulum. The simple pendulum is a special case of the physical pendu-
lum and consists of a rod of length l to which a mass m is attached at one end. In
describing the motion of a simple pendulum in a vertical plane, we make the simpli-
fying assumptions that the mass of the rod is negligible and that no external damping
or driving forces act on the system. The displacement angle u of the pendulum,
measured from the vertical as shown in Figure 5.3.3, is considered positive when
measured to the right of OP and negative to the left of OP. Now recall the arc s of a
circle of radius l is related to the central angle u by the formula s � lu. Hence angu-
lar acceleration is

.

From Newton’s second law we then have

.

From Figure 5.3.3 we see that the magnitude of the tangential component of the force
due to the weight W is mg sin u. In direction this force is �mg sin u because it points
to the left for u � 0 and to the right for u 
 0. We equate the two different versions
of the tangential force to obtain ml d2u�dt2 � �mg sin u, or

. (6)

LINEARIZATION Because of the presence of sin u, the model in (6) is non-
linear. In an attempt to understand the behavior of the solutions of nonlinear
higher-order differential equations, one sometimes tries to simplify the problem
by replacing nonlinear terms by certain approximations. For example, the
Maclaurin series for sin u is given by

so if we use the approximation sin u  u � u3�6, equation (6) becomes
d2u�dt2 � (g�l)u � (g�6l)u3 � 0. Observe that this last equation is the same
as the second nonlinear equation in (2) with m � 1, k � g�l, and k1 � �g�6l.
However, if we assume that the displacements u are small enough to justify using
the replacement sin u  u, then (6) becomes

. (7)

See Problem 22 in Exercises 5.3. If we set v2 � g�l, we recognize (7) as the differ-
ential equation (2) of Section 5.1 that is a model for the free undamped vibrations of
a linear spring/mass system. In other words, (7) is again the basic linear equation 
y� � ly � 0 discussed on page 201 of Section 5.2. As a consequence we say that
equation (7) is a linearization of equation (6). Because the general solution of (7) is
u(t) � c1 cos vt � c2 sin vt, this linearization suggests that for initial conditions
amenable to small oscillations the motion of the pendulum described by (6) will be
periodic.

EXAMPLE 2 Two Initial-Value Problems

The graphs in Figure 5.3.4(a) were obtained with the aid of a numerical solver and
represent solution curves of (6) when v2 � 1. The blue curve depicts the solution
of (6) that satisfies the initial conditions , whereas the red
curve is the solution of (6) that satisfies u�(0) � 2. The blue curve�(0) � 1

2,
�(0) � 1

2, ��(0) � 1
2

d 2�

dt2 �
g

l
� � 0

sin � � � �
� 3

3!
�

� 5

5!
� . . .

d 2�

dt2 �
g

l
 sin � � 0

F � ma � ml
d 2�

dt2

a �
d 2s

dt2 � l
d 2�

dt2
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W = mg
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l

FIGURE 5.3.3 Simple pendulum
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�

�

�

�

�
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1
2

1
2

1
2

1
2

1
2

1
2

FIGURE 5.3.4 Oscillating pendulum
in (b); whirling pendulum in (c)



represents a periodic solution—the pendulum oscillating back and forth as shown
in Figure 5.3.4(b) with an apparent amplitude A � 1. The red curve shows that u
increases without bound as time increases—the pendulum, starting from the same
initial displacement, is given an initial velocity of magnitude great enough to send
it over the top; in other words, the pendulum is whirling about its pivot as shown in
Figure 5.3.4(c). In the absence of damping, the motion in each case is continued
indefinitely.

TELEPHONE WIRES The first-order differential equation dy�dx � W�T1 is
equation (17) of Section 1.3. This differential equation, established with the aid
of Figure 1.3.7 on page 25, serves as a mathematical model for the shape of a flexi-
ble cable suspended between two vertical supports when the cable is carrying a
vertical load. In Section 2.2 we solved this simple DE under the assumption that
the vertical load carried by the cables of a suspension bridge was the weight of a
horizontal roadbed distributed evenly along the x-axis. With W � rx, r the weight
per unit length of the roadbed, the shape of each cable between the vertical supports
turned out to be parabolic. We are now in a position to determine the shape of a uni-
form flexible cable hanging only under its own weight, such as a wire strung between
two telephone posts. The vertical load is now the wire itself, and so if r is the linear
density of the wire (measured, say, in pounds per feet) and s is the length of the
segment P1P2 in Figure 1.3.7 then W � rs. Hence

. (8)

Since the arc length between points P1 and P2 is given by

, (9)

it follows from the fundamental theorem of calculus that the derivative of (9) is

. (10)

Differentiating (8) with respect to x and using (10) lead to the second-order equation

. (11)

In the example that follows we solve (11) and show that the curve assumed by
the suspended cable is a catenary. Before proceeding, observe that the nonlinear
second-order differential equation (11) is one of those equations having the form
F(x, y�, y�) � 0 discussed in Section 4.9. Recall that we have a chance of solving an
equation of this type by reducing the order of the equation by means of the substitu-
tion u � y�.

EXAMPLE 3 An Initial-Value Problem

From the position of the y-axis in Figure 1.3.7 it is apparent that initial conditions
associated with the second differential equation in (11) are y(0) � a and y�(0) � 0.

If we substitute u � y�, then the equation in (11) becomes . Sepa-

rating variables, we find that

.� du

11 � u2
�

�

T1
� dx    gives    sinh�1u �

�

T1
x � c1

du

dx
�

�

$1
11 � u2

d 2y

dx2 �
�

T1

ds

dx
    or    

d 2y

dx2 �
�

T1 B1 � �dy

dx�
2

ds

dx
� B1 � �dy

dx�
2

s � �x

0 B1 � �dy

dx�
2

dx

dy

dx
�

�s

$1
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Now, y�(0) � 0 is equivalent to u(0) � 0. Since sinh�1 0 � 0, c1 � 0, so 
u � sinh (rx�T1). Finally, by integrating both sides of

.

Using y(0) � a, cosh 0 � 1, the last equation implies that c2 � a � T1�r.
Thus we see that the shape of the hanging wire is given by

.

In Example 3, had we been clever enough at the start to choose a � T1�r,
then the solution of the problem would have been simply the hyperbolic cosine
y � (T1�r) cosh (rx�T1).

ROCKET MOTION In Section 1.3 we saw that the differential equation of a free-
falling body of mass m near the surface of the Earth is given by

,

where s represents the distance from the surface of the Earth to the object and the
positive direction is considered to be upward. In other words, the underlying
assumption here is that the distance s to the object is small when compared with the
radius R of the Earth; put yet another way, the distance y from the center of the Earth
to the object is approximately the same as R. If, on the other hand, the distance y to
the object, such as a rocket or a space probe, is large when compared to R, then we
combine Newton’s second law of motion and his universal law of gravitation to
derive a differential equation in the variable y.

Suppose a rocket is launched vertically upward from the ground as shown in
Figure 5.3.5. If the positive direction is upward and air resistance is ignored, then the
differential equation of motion after fuel burnout is

, (12)

where k is a constant of proportionality, y is the distance from the center of the
Earth to the rocket, M is the mass of the Earth, and m is the mass of the rocket. To
determine the constant k, we use the fact that when y � R, kMm�R2 � mg or
k � gR2�M. Thus the last equation in (12) becomes

. (13)

See Problem 14 in Exercises 5.3.

VARIABLE MASS Notice in the preceding discussion that we described the
motion of the rocket after it has burned all its fuel, when presumably its mass m is
constant. Of course, during its powered ascent the total mass of the rocket varies as
its fuel is being expended. The second law of motion, as originally advanced by
Newton, states that when a body of mass m moves through a force field with veloc-
ity v, the time rate of change of the momentum mv of the body is equal to applied or
net force F acting on the body:

. (14)

If m is constant, then (14) yields the more familiar form F � m dv�dt � ma, where
a is acceleration. We use the form of Newton’s second law given in (14) in the next
example, in which the mass m of the body is variable.

F �
d

dt
(mv)

d 2y

dt2 � �g
R2

y2

m
d 2y

dt2 � �k
Mm

y2     or    
d 2y

dt2 � �k
M

y2

m
d 2s

dt2 � �mg,    or simply    
d 2s

dt2 � �g

y � (T1>�) cosh(�x> T1) � a � T1>�

dy

dx
� sinh

�

T1
x,    we get    y �

T1

�
cosh

�

T1
x � c2
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FIGURE 5.3.5 Distance to rocket is
large compared to R.



EXAMPLE 4 Chain Pulled Upward by a Constant Force

A uniform 10-foot-long chain is coiled loosely on the ground. One end of the chain
is pulled vertically upward by means of constant force of 5 pounds. The chain weighs
1 pound per foot. Determine the height of the end above ground level at time t. See
Figure 5.3.6.

SOLUTION Let us suppose that x � x(t) denotes the height of the end of the chain in
the air at time t, v � dx�dt, and the positive direction is upward. For the portion of the
chain that is in the air at time t we have the following variable quantities:

Thus from (14) we have

(15)

Because v � dx�dt, the last equation becomes

. (16)

The nonlinear second-order differential equation (16) has the form F(x, x�, x�) � 0,
which is the second of the two forms considered in Section 4.9 that can possibly
be solved by reduction of order. To solve (16), we revert back to (15) and use v � x�

along with the Chain Rule. From the second equation in (15)

can be rewritten as

. (17)

On inspection (17) might appear intractable, since it cannot be characterized as any
of the first-order equations that were solved in Chapter 2. However, by rewriting
(17) in differential form M(x,v)dx � N(x,v)dv � 0, we observe that although the
equation

(18)

is not exact, it can be transformed into an exact equation by multiplying it by an
integrating factor. From (Mv � Nx)�N � 1�x we see from (13) of Section 2.4 that
an integrating factor is When (18) is multiplied by m(x) � x, the
resulting equation is exact (verify). By identifying �f ��x � xv2 � 32x2 � 160x,
�f ��v � x2v and then proceeding as in Section 2.4, we obtain

. (19)

Since we have assumed that all of the chain is on the floor initially, we have
x(0) � 0. This last condition applied to (19) yields c1 � 0. By solving the algebraic
equation for v � dx�dt � 0, we get another first-order
differential equation,

.
dx

dt
� B160 �

64
3

x

1
2 x2v2 � 32

3 x3 � 80x2 � 0

1

2
x2v2 �

32

3
x3 � 80x2 � c1

e�dx/x � eln x � x.

(v2 � 32x � 160)dx � xv dv � 0

xv
dv

dx
� v2 � 160 � 32x

dv

dt
�

dv

dx

dx

dt
� v

dv

dx

x
d 2x

dt2 � �dx

dt�
2

� 32x � 160

Product Rule

� v �  160 � 32x.x( v) � 5 � x or
x

–––
32

d
–––
dt

dv
–––
dt

dx
–––
dt

net force: F � 5 � W � 5 � x.

mass:  m � W>g � x>32,

weight:  W � (x ft) � (1 lb/ft) � x,
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x(t)

5 lb
upward
force

FIGURE 5.3.6 Chain pulled upward
by a constant force 



The last equation can be solved by separation of variables. You should verify that

. (20)

This time the initial condition x(0) � 0 implies that . Finally, by
squaring both sides of (20) and solving for x, we arrive at the desired result,

(21)

The graph of (21) given in Figure 5.3.7 should not, on physical grounds, be taken at
face value. See Problem 15 in Exercises 5.3.

x(t) �
15

2
�

15

2 �1 �
4110

15
t�

2

.

c2 � �3110�8

�
3

32 �160 �
64

3
x�

1/2

� t � c2
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FIGURE 5.3.7 Graph of (21) for 
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EXERCISES 5.3 Answers to selected odd-numbered problems begin on page ANS-8.

To the Instructor In addition to Problems 24 and 25, all
or portions of Problems 1–6, 8–13, 15, 20, and 21 could
serve as Computer Lab Assignments.

Nonlinear Springs

In Problems 1–4, the given differential equation is model of
an undamped spring/mass system in which the restoring force
F(x) in (1) is nonlinear. For each equation use a numerical
solver to plot the solution curves that satisfy the given initial
conditions. If the solutions appear to be periodic use the solu-
tion curve to estimate the period T of oscillations.

1.

2.

3.

4.

5. In Problem 3, suppose the mass is released from
the initial position x(0) � 1 with an initial velocity
x�(0) � x1. Use a numerical solver to estimate the
smallest value of �x1� at which the motion of the mass
is nonperiodic.

6. In Problem 3, suppose the mass is released from an initial
position x(0) � x0 with the initial velocity x�(0) � 1. Use
a numerical solver to estimate an interval a � x0 � b for
which the motion is oscillatory.

7. Find a linearization of the differential equation in
Problem 4.

x(0) � 1, x�(0) � 1; x(0) � 3, x�(0) � �1

d 2x

dt2 � xe0.01x � 0,

x(0) � 1, x�(0) � 1; x(0) � 3
2, x�(0) � �1

d 2x

dt2 � 2x � x2 � 0,

x(0) � 1, x�(0) � 1; x(0) � �2, x�(0) � 2

d 2x

dt2 � 4x � 16x3 � 0,

x(0) � 1, x�(0) � 1; x(0) � 1
2, x�(0) � �1

d 2x

dt2 � x3 � 0,

8. Consider the model of an undamped nonlinear
spring/mass system given by x� � 8x � 6x3 � x5 � 0.
Use a numerical solver to discuss the nature of the
oscillations of the system corresponding to the initial
conditions:

In Problems 9 and 10 the given differential equation is a
model of a damped nonlinear spring/mass system. Predict
the behavior of each system as . For each equation use
a numerical solver to obtain the solution curves satisfying
the given initial conditions.

9.

10.

11. The model mx� � kx � k1x3 � F0cosvt of an
undamped periodically driven spring/mass system is
called Duffing’s differential equation. Consider the
initial-value problem x� � x � k1x3 � 5 cos t, x(0) � 1,
x�(0) � 0. Use a numerical solver to investigate the
behavior of the system for values of k1 � 0 ranging from
k1 � 0.01 to k1 � 100. State your conclusions.

12. (a) Find values of k1 
 0 for which the system in
Problem 11 is oscillatory.

(b) Consider the initial-value problem

x� � x � k1x3 � , x(0) � 0, x�(0) � 0.

Find values for k1 
 0 for which the system is 
oscillatory.

cos 3
2 t

x(0) � 0, x�(0) � 3
2; x(0) � �1, x�(0) � 1

d 2x

dt2 �
dx

dt
� x � x3 � 0,

x(0) � �3, x�(0) � 4; x(0) � 0, x�(0) � �8

d 2x

dt2 �
dx

dt
� x � x3 � 0,

t : �

x(0) � 2, x�(0) � 0;  x(0) � �12, x�(0) � �1.

x(0) � 12, x�(0) � 1;  x(0) � 2, x�(0) � 1
2;

x(0) � 1, x�(0) � 1; x(0) � �2, x�(0) � 1
2;



Nonlinear Pendulum

13. Consider the model of the free damped nonlinear pen-
dulum given by

.

Use a numerical solver to investigate whether the motion
in the two cases l2 � v2 � 0 and l2 � v2 
 0 corre-
sponds, respectively, to the overdamped and under-
damped cases discussed in Section 5.1 for spring/mass
systems. Choose appropriate initial conditions and val-
ues of l and v.

Rocket Motion

14. (a) Use the substitution v � dy�dt to solve (13) for v in
terms of y. Assuming that the velocity of the rocket
at burnout is v � v0 and y  R at that instant, show
that the approximate value of the constant c of
integration is .

(b) Use the solution for v in part (a) to show that the
escape velocity of the rocket is given by .
[Hint: Take and assume v � 0 for all time t.]

(c) The result in part (b) holds for any body in the solar
system. Use the values g � 32 ft/s2 and R � 4000 mi
to show that the escape velocity from the Earth is
(approximately) v0 � 25,000 mi/h.

(d) Find the escape velocity from the Moon if the
acceleration of gravity is 0.165g and R � 1080 mi.

Variable Mass

15. (a) In Example 4, how much of the chain would you
intuitively expect the constant 5-pound force to be
able to lift?

(b) What is the initial velocity of the chain?

(c) Why is the time interval corresponding to x(t)  0
given in Figure 5.3.7 not the interval I of definition of
the solution (21)? Determine the interval I. How
much chain is actually lifted? Explain any difference
between this answer and your prediction in part (a).

(d) Why would you expect x(t) to be a periodic solution?

16. A uniform chain of length L, measured in feet, is held
vertically so that the lower end just touches the floor.
The chain weighs 2 lb/ft. The upper end that is held is
released from rest at t � 0 and the chain falls straight
down. If x(t) denotes the length of the chain on the floor
at time t, air resistance is ignored, and the positive direc-
tion is taken to be downward, then

.

(a) Solve for v in terms of x. Solve for x in terms of t.
Express v in terms of t.

(L � x)
d 2x

dt2 � �dx

dt�
2

� Lg

y : �
v0 � 12gR

c � �gR � 1
2 v0

2

d 2�

dt2 � 2�
d�

dt
� �2 sin� � 0
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(b) Determine how long it takes for the chain to fall
completely to the ground.

(c) What velocity does the model in part (a) predict for
the upper end of the chain as it hits the ground?

Miscellaneous Mathematical Models

17. Pursuit Curve In a naval exercise a ship S1 is pursued by
a submarine S2 as shown in Figure 5.3.8. Ship S1 departs
point (0, 0) at t � 0 and proceeds along a straight-line
course (the y-axis) at a constant speed v1. The submarine
S2 keeps ship S1 in visual contact, indicated by the straight
dashed line L in the figure, while traveling at a constant
speed v2 along a curve C. Assume that ship S2 starts at the
point (a, 0), a � 0, at t � 0 and that L is tangent to C.

(a) Determine a mathematical model that describes the
curve C.

(b) Find an explicit solution of the differential equation.
For convenience define r � v1�v2.

(c) Determine whether the paths of S1 and S2 will ever
intersect by considering the cases r � 1, r 
 1, and
r � 1.

[Hint: , where s is arc length measured

along C.]

dt

dx
�

dt

ds

ds

dx

S2

x

y

S1

L

C

FIGURE 5.3.8 Pursuit curve in Problem 17

18. Pursuit Curve In another naval exercise a destroyer
S1 pursues a submerged submarine S2. Suppose that S1

at (9, 0) on the x-axis detects S2 at (0, 0) and that S2

simultaneously detects S1. The captain of the destroyer
S1 assumes that the submarine will take immediate eva-
sive action and conjectures that its likely new course is
the straight line indicated in Figure 5.3.9. When S1 is at
(3, 0), it changes from its straight-line course toward the
origin to a pursuit curve C. Assume that the speed of
the destroyer is, at all times, a constant 30 mi/h and
that the submarine’s speed is a constant 15 mi/h.

(a) Explain why the captain waits until S1 reaches (3, 0)
before ordering a course change to C.

(b) Using polar coordinates, find an equation r � f(u)
for the curve C.

(c) Let T denote the time, measured from the initial
detection, at which the destroyer intercepts the sub-
marine. Find an upper bound for T.



Discussion Problems

19. Discuss why the damping term in equation (3) is
written as

.

20. (a) Experiment with a calculator to find an interval
0 � u 
 u1, where u is measured in radians, for
which you think sin u  u is a fairly good estimate.
Then use a graphing utility to plot the graphs of
y � x and y � sin x on the same coordinate axes
for 0 � x � p�2. Do the graphs confirm your
observations with the calculator?

(b) Use a numerical solver to plot the solution curves of
the initial-value problems

and

for several values of u0 in the interval 0 � u 
 u1

found in part (a). Then plot solution curves of the
initial-value problems for several values of u0 for
which u0 � u1.

21. (a) Consider the nonlinear pendulum whose oscillations
are defined by (6). Use a numerical solver as an aid to
determine whether a pendulum of length l will oscil-
late faster on the Earth or on the Moon. Use the same
initial conditions, but choose these initial conditions
so that the pendulum oscillates back and forth.

(b) For which location in part (a) does the pendulum
have greater amplitude?

(c) Are the conclusions in parts (a) and (b) the same
when the linear model (7) is used?

Computer Lab Assignments

22. Consider the initial-value problem

for a nonlinear pendulum. Since we cannot solve the
differential equation, we can find no explicit solution of

d 2�

dt2 � sin� � 0,  � (0) �
�

12
, ��(0) � �

1

3

d 2�

dt2 � � � 0,    � (0) � �0,  ��(0) � 0

d 2�

dt2 � sin� � 0,  � (0) � �0,  ��(0) � 0

��dx

dt � dx

dt
  instead of  � �dx

dt�
2
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this problem. But suppose we wish to determine the first
time t1 � 0 for which the pendulum in Figure 5.3.3,
starting from its initial position to the right, reaches the
position OP—that is, the first positive root of u(t) � 0.
In this problem and the next we examine several ways to
proceed.

(a) Approximate t1 by solving the linear problem
d2u�dt2 � u � 0, u(0) � p�12,

(b) Use the method illustrated in Example 3 of Section
4.9 to find the first four nonzero terms of a Taylor
series solution u(t) centered at 0 for the nonlinear
initial-value problem. Give the exact values of all
coefficients.

(c) Use the first two terms of the Taylor series in
part (b) to approximate t1.

(d) Use the first three terms of the Taylor series in
part (b) to approximate t1.

(e) Use a root-finding application of a CAS (or a
graphic calculator) and the first four terms of the
Taylor series in part (b) to approximate t1.

(f ) In this part of the problem you are led through
the commands in Mathematica that enable you to
approximate the root t1. The procedure is easily
modified so that any root of u(t) � 0 can be
approximated. (If you do not have Mathematica,
adapt the given procedure by finding the corre-
sponding syntax for the CAS you have on hand.)
Precisely reproduce and then, in turn, execute each
line in the given sequence of commands.

sol � NDSolve[{y�[t] � Sin[y[t]] �� 0,
y[0] �� Pi/12, y�[0] �� �1/3}, 
y, {t, 0, 5}] //Flatten

solution � y[t] /.sol
Clear[y]
y[t_]: � Evaluate[solution]
y[t]
gr1 � Plot[y[t], {t, 0, 5}]
root � FindRoot[y[t] �� 0, {t, 1}]

(g) Appropriately modify the syntax in part (f ) and find
the next two positive roots of u(t) � 0.

23. Consider a pendulum that is released from rest from an
initial displacement of u0 radians. Solving the linear
model (7) subject to the initial conditions u(0) � u0,
u�(0) � 0 gives . The period of
oscillations predicted by this model is given by the
familiar formula . The inter-
esting thing about this formula for T is that it does not
depend on the magnitude of the initial displacement u0.
In other words, the linear model predicts that the time it
would take the pendulum to swing from an initial dis-
placement of, say, u0 � p�2 (� 90°) to �p�2 and back
again would be exactly the same as the time it would take
to cycle from, say, u0 � p�360 (� 0.5°) to �p�360.
This is intuitively unreasonable; the actual period must
depend on u0.

T � 2� �1g/l � 2�1l/g

�(t) � �0 cos 1g/l t

��(0) � �1
3.

S2

L

x

y

S1

C

θ
(3, 0) (9, 0)

FIGURE 5.3.9 Pursuit curve in Problem 18



If we assume that g � 32 ft/s2 and l � 32 ft, then
the period of oscillation of the linear model is T � 2p s.
Let us compare this last number with the period
predicted by the nonlinear model when u0 � p�4. Using
a numerical solver that is capable of generating hard
data, approximate the solution of

on the interval 0 � t � 2. As in Problem 22, if t1 denotes
the first time the pendulum reaches the position OP in
Figure 5.3.3, then the period of the nonlinear pendulum is
4t1. Here is another way of solving the equation u(t) � 0.
Experiment with small step sizes and advance the time,
starting at t � 0 and ending at t � 2. From your hard data
observe the time t1 when u(t) changes, for the first time,
from positive to negative. Use the value t1 to determine
the true value of the period of the nonlinear pendulum.
Compute the percentage relative error in the period esti-
mated by T � 2p.

Contributed Problem

24. The Ballistic Pendulum
Historically, to maintain
quality control over muni-
tions (bullets) produced by an assembly line, the manu-
facturer would use a ballistic pendulum to determine
the muzzle velocity of a gun, that is, the speed of a
bullet as it leaves the barrel. The ballistic pendulum
(invented in 1742) is simply a plane pendulum consist-
ing of a rod of negligible mass to which a block of wood
of mass mw is attached. The system is set in motion by
the impact of a bullet that is moving horizontally at the
unknown velocity vb; at the time of the impact, which
we take as t � 0, the combined mass is mw � mb, where
mb is the mass of the bullet imbedded in the wood. In (7)
we saw that in the case of small oscillations, the angular
displacement u(t) of a plane pendulum shown in
Figure 5.3.3 is given by the linear DE u� � (g�l)u � 0,
where u � 0 corresponds to motion to the right of
vertical. The velocity vb can be found by measuring the
height h of the mass mw � mb at the maximum displace-
ment angle umax shown in Figure 5.3.10.

d 2�

dt2 � sin � � 0,  �(0) �
�

4
, ��(0) � 0
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Intuitively, the horizontal velocity V of the com-
bined mass (wood plus bullet) after impact is only a
fraction of the velocity vb of the bullet, that is,

Now, recall that a distance s traveled by a particle mov-
ing along a circular path is related to the radius l and
central angle u by the formula s � lu. By differentiating
the last formula with respect to time t, it follows that
the angular velocityv of the mass and its linear velocity v
are related by v � lv. Thus the initial angular velocity
v0 at the time t at which the bullet impacts the wood
block is related to V by V � lv0 or

(a) Solve the initial-value problem

(b) Use the result from part (a) to show that

(c) Use Figure 5.3.10 to express cos umax in terms of l
and h. Then use the first two terms of the Maclaurin
series for cos u to express umax in terms of l and h.
Finally, show that vb is given (approximately) by

(d) Use the result in part (c) to find vb when mb � 5 g,
mw � 1 kg, and h � 6 cm.

vb � �mw � mb

mb
�22gh.

vb � �mw � mb

mb
�2lg umax.

d 2u

dt2 �
g

l
u � 0,  u(0) � 0,  u�(0) � v0.

v0 � � mb

mw � mb
� vb

l
.

V � � mb

mw � mb
�vb.

Warren S. Wright
Professor
Mathematics Department
Loyola Marymount University

V

h

l
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mw
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�

m w

�

FIGURE 5.3.10 Ballistic pendulum

CHAPTER 5 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-8.

Answer Problems 1–8 without referring back to the text. Fill
in the blank or answer true/false.

1. If a mass weighing 10 pounds stretches a spring 
2.5 feet, a mass weighing 32 pounds will stretch it

feet.

2. The period of simple harmonic motion of mass weigh-
ing 8 pounds attached to a spring whose constant is
6.25 lb/ft is seconds.

3. The differential equation of a spring/mass system is
x� � 16x � 0. If the mass is initially released from a
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point 1 meter above the equilibrium position with a
downward velocity of 3 m/s, the amplitude of vibra-
tions is meters.

4. Pure resonance cannot take place in the presence of a
damping force. 

5. In the presence of a damping force, the displacements
of a mass on a spring will always approach zero as

.

6. A mass on a spring whose motion is critically damped
can possibly pass through the equilibrium position
twice.

7. At critical damping any increase in damping will result
in an system.

8. If simple harmonic motion is described by
, the phase angle f is

when the initial conditions are and x�(0) � 1.

In Problems 9 and 10 the eigenvalues and eigenfunc-
tions of the boundary-value problem y� � ly � 0, y�(0) � 0,
y�(p) � 0 are ln � n2, n � 0, 1, 2, . . . , and y � cos nx,
respectively. Fill in the blanks.

9. A solution of the BVP when l� 8 is y �
because .

10. A solution of the BVP when l� 36 is y �
because .

11. A free undamped spring/mass system oscillates with a
period of 3 seconds. When 8 pounds are removed from
the spring, the system has a period of 2 seconds. What
was the weight of the original mass on the spring?

12. A mass weighing 12 pounds stretches a spring 2 feet. The
mass is initially released from a point 1 foot below the
equilibrium position with an upward velocity of 4 ft/s.

(a) Find the equation of motion.

(b) What are the amplitude, period, and frequency of
the simple harmonic motion?

(c) At what times does the mass return to the point
1 foot below the equilibrium position?

(d) At what times does the mass pass through the
equilibrium position moving upward? Moving
downward?

(e) What is the velocity of the mass at ?

(f ) At what times is the velocity zero?

13. A force of 2 pounds stretches a spring 1 foot. With one
end held fixed, a mass weighing 8 pounds is attached
to the other end. The system lies on a table that imparts
a frictional force numerically equal to times the
instantaneous velocity. Initially, the mass is displaced
4 inches above the equilibrium position and released
from rest. Find the equation of motion if the motion
takes place along a horizontal straight line that is taken
as the x-axis.

3
2

t � 3p>16 s

x(0) � �1
2

x � (22>2)sin(2t � f)

t : �

14. A mass weighing 32 pounds stretches a spring 6 inches.
The mass moves through a medium offering a damping
force that is numerically equal to b times the instanta-
neous velocity. Determine the values of b� 0 for which
the spring/mass system will exhibit oscillatory motion.

15. A spring with constant k � 2 is suspended in a liquid
that offers a damping force numerically equal to 4 times
the instantaneous velocity. If a mass m is suspended from
the spring, determine the values of m for which the sub-
sequent free motion is nonoscillatory.

16. The vertical motion of a mass attached to a spring 
is described by the IVP 

. Determine the maximum vertical
displacement of the mass.

17. A mass weighing 4 pounds stretches a spring 18 inches.
A periodic force equal to f(t) � cos gt � sin gt is
impressed on the system starting at t � 0. In the absence
of a damping force, for what value of g will the system
be in a state of pure resonance?

18. Find a particular solution for x� � 2lx� � v2x � A,
where A is a constant force.

19. A mass weighing 4 pounds is suspended from a spring
whose constant is 3 lb/ft. The entire system is immersed
in a fluid offering a damping force numerically equal
to the instantaneous velocity. Beginning at t � 0, an
external force equal to f(t) � e�t is impressed on the
system. Determine the equation of motion if the mass is
initially released from rest at a point 2 feet below the
equilibrium position.

20. (a) Two springs are attached in series as shown in
Figure 5.R.1. If the mass of each spring is ignored,
show that the effective spring constant k of the
system is defined by 1�k � 1�k1 � 1�k2.

(b) A mass weighing W pounds stretches a spring
foot and stretches a different spring foot. The two

springs are attached, and the mass is then attached to
the double spring as shown in Figure 5.R.1. Assume
that the motion is free and that there is no damping
force present. Determine the equation of motion if
the mass is initially released at a point 1 foot below
the equilibrium position with a downward velocity of

.

(c) Show that the maximum speed of the mass is
2
323g � 1.

2
3 ft /s

1
4

1
2

x(0) � 4, x�(0) � 2

1
4 x� � x� � x � 0,

k2

k1

FIGURE 5.R.1 Attached springs in Problem 20



21. A series circuit contains an inductance of L � 1 h, a
capacitance of C � 10�4 f, and an electromotive force
of E(t) � 100 sin 50t V. Initially, the charge q and
current i are zero.

(a) Determine the charge q(t).

(b) Determine the current i(t).

(c) Find the times for which the charge on the capacitor
is zero.

22. (a) Show that the current i(t) in an LRC series circuit

satisfies , where E�(t)

denotes the derivative of E(t).

(b) Two initial conditions i(0) and i�(0) can be specified
for the DE in part (a). If i(0) � i0 and q(0) � q0,
what is i�(0)?

23. Consider the boundary-value problem

.

Show that except for the case l� 0, there are two
independent eigenfunctions corresponding to each
eigenvalue.

24. A bead is constrained to slide along a frictionless rod of
length L. The rod is rotating in a vertical plane with a
constant angular velocity v about a pivot P fixed at the
midpoint of the rod, but the design of the pivot allows
the bead to move along the entire length of the rod. Let
r(t) denote the position of the bead relative to this rotat-
ing coordinate system as shown in Figure 5.R.2. To
apply Newton’s second law of motion to this rotating
frame of reference, it is necessary to use the fact that the
net force acting on the bead is the sum of the real forces
(in this case, the force due to gravity) and the inertial
forces (coriolis, transverse, and centrifugal). The math-
ematics is a little complicated, so we just give the result-
ing differential equation for r:

.

(a) Solve the foregoing DE subject to the initial
conditions r(0) � r0, r�(0) � v0.

(b) Determine the initial conditions for which the bead
exhibits simple harmonic motion. What is the min-
imum length L of the rod for which it can accom-
modate simple harmonic motion of the bead?

(c) For initial conditions other than those obtained in
part (b), the bead must eventually fly off the rod.
Explain using the solution r(t) in part (a).

(d) Suppose v � 1 rad/s. Use a graphing utility to
graph the solution r(t) for the initial conditions
r(0) � 0, r�(0) � v0, where v0 is 0, 10, 15, 16, 16.1,
and 17.

m
d 2r

dt2 � m�2r � mg sin �t

y� � �y � 0,  y(0) � y(2�),  y�(0) � y�(2�)

L
d 2i

dt2 � R
di

dt
�

1

C
i � E�(t)

218 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

(e) Suppose the length of the rod is L � 40 ft. For each
pair of initial conditions in part (d), use a root-
finding application to find the total time that the
bead stays on the rod.

bead

P

r (
t)

tω

FIGURE 5.R.2 Rotating rod in Problem 24

rigid
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x = 0

x(t) < 0 x(t) > 0

m

m

(a) equilibrium

(b) motion

FIGURE 5.R.3 Sliding spring/mass system in Problem 25

25. Suppose a mass m lying on a flat, dry, frictionless sur-
face is attached to the free end of a spring whose con-
stant is k. In Figure 5.R.3(a) the mass is shown at the
equilibrium position x � 0, that is, the spring is neither
stretched nor compressed. As shown in Figure 5.R.3(b),
the displacement x(t) of the mass to the right of the equi-
librium position is positive and negative to the left.
Derive a differential equation for the free horizontal
(sliding) motion of the mass. Discuss the difference
between the derivation of this DE and the analysis lead-
ing to (1) of Section 5.1.

26. What is the differential equation of motion in
Problem 25 if kinetic friction (but no other damping
forces) acts on the sliding mass? [Hint: Assume that the
magnitude of the force of kinetic friction is fk � mmg,
where mg is the weight of the mass and the constant
m � 0 is the coefficient of kinetic friction. Then con-
sider two cases, x� � 0 and x� 
 0. Interpret these cases
physically.]
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6 SERIES SOLUTIONS OF LINEAR
EQUATIONS

6.1 Solutions About Ordinary Points

6.1.1 Review of Power Series

6.1.2 Power Series Solutions

6.2 Solutions About Singular Points

6.3 Special Functions

6.3.1 Bessel’s Equation

6.3.2 Legendre’s Equation

CHAPTER 6 IN REVIEW

Up to now we have primarily solved linear differential equations of order two or

higher when the equation had constant coefficients. The only exception was the

Cauchy-Euler equation studied in Section 4.7. In applications, higher-order linear

equations with variable coefficients are just as important as, if not more important

than, differential equations with constant coefficients. As pointed out in Section 4.7,

even a simple linear second-order equation with variable coefficients such as

y� � xy � 0 does not possess solutions that are elementary functions. But we can

find two linearly independent solutions of y� � xy � 0; we shall see in Sections 6.1

and 6.3 that the solutions of this equation are defined by infinite series.

In this chapter we shall study two infinite-series methods for finding solutions

of homogeneous linear second-order DEs a2(x)y� � a1(x)y� � a0 (x)y � 0 where

the variable coefficients a2(x), a1(x), and a0(x) are, for the most part, simple

polynomials.



SOLUTIONS ABOUT ORDINARY POINTS

REVIEW MATERIAL
● Power Series (see any Calculus Text)

INTRODUCTION In Section 4.3 we saw that solving a homogeneous linear DE with constant
coefficients was essentially a problem in algebra. By finding the roots of the auxiliary equation,
we could write a general solution of the DE as a linear combination of the elementary functions
xk, xke�x, xke�x cos �x, and xke�xsin �x, where k is a nonnegative integer. But as was pointed out
in the introduction to Section 4.7, most linear higher-order DEs with variable coefficients cannot
be solved in terms of elementary functions. A usual course of action for equations of this sort is
to assume a solution in the form of infinite series and proceed in a manner similar to the method
of undetermined coefficients (Section 4.4). In this section we consider linear second-order DEs
with variable coefficients that possess solutions in the form of power series.

We begin with a brief review of some of the important facts about power series. For a more
comprehensive treatment of the subject you should consult a calculus text.
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6.1

6.1.1 REVIEW OF POWER SERIES

Recall from calculus that a power series in x � a is an infinite series of the form

Such a series is also said to be a power series centered at a. For example, the power
series is centered at a � �1. In this section we are concerned
mainly with power series in x, in other words, power series such as

that are centered at a � 0. The following list
summarizes some important facts about power series.

• Convergence A power series is convergent at a
specified value of x if its sequence of partial sums {SN(x)} converges—that is,

exists. If the limit does not exist at x,

then the series is said to be divergent.
• Interval of Convergence Every power series has an interval of convergence.

The interval of convergence is the set of all real numbers x for which the series
converges.

• Radius of Convergence Every power series has a radius of convergence R.
If R � 0, then the power series converges for
and diverges for If the series converges only at its center a,
then R � 0. If the series converges for all x, then we write R � �. Recall that
the absolute-value inequality is equivalent to the simultaneous
inequality a � R 
 x 
 a � R. A power series might or might not converge
at the endpoints a � R and a � R of this interval.

• Absolute Convergence Within its interval of convergence a power series
converges absolutely. In other words, if x is a number in the interval of
convergence and is not an endpoint of the interval, then the series of
absolute values converges. See Figure 6.1.1.

• Ratio Test Convergence of a power series can often be determined by the
ratio test. Suppose that cn � 0 for all n and that

lim
n:� � cn�1(x � a)n�1

cn(x � a)n �� � x � a � lim
n:� �cn�1

cn
� � L.

��
n�0 � cn(x � a)n �

� x � a � 
 R

� x � a � � R.
� x � a � 
 R��

n�0 cn(x � a)n

lim
N : �

SN (x) � lim
N : �

�N
n�0 cn(x � a)n

��
n�0 cn(x � a)n

��
n�1 2n�1xn � x � 2x2 � 4x3 � 	 	 	

��
n�0 (x � 1)n

�
�

n�0
cn(x � a)n � c0 � c1(x � a) � c2(x � a)2 � 	 	 	.

x
a a + Ra − R

divergence divergence 
absolute

convergence 

series may
converge or diverge

at endpoints

FIGURE 6.1.1 Absolute convergence
within the interval of convergence and
divergence outside of this interval



If L 
 1, the series converges absolutely; if L � 1, the series diverges;
and if L � 1, the test is inconclusive. For example, for the power series

the ratio test gives

the series converges absolutely for or or
1 
 x 
 5. This last inequality defines the open interval of convergence.
The series diverges for , that is, for x � 5 or x 
 1. At the left
endpoint x � 1 of the open interval of convergence, the series of constants

is convergent by the alternating series test. At the right
endpoint x � 5, the series is the divergent harmonic series. The
interval of convergence of the series is [1, 5), and the radius of convergence
is R � 2.

• A Power Series Defines a Function A power series defines a function
whose domain is the interval of convergence of

the series. If the radius of convergence is R � 0, then f is continuous, differ-
entiable, and integrable on the interval (a � R, a � R). Moreover, f�(x)
and 	f (x)dx can be found by term-by-term differentiation and integration.
Convergence at an endpoint may be either lost by differentiation or
gained through integration. If is a power series in x, then
the first two derivatives are and
Notice that the first term in the first derivative and the first two terms in the
second derivative are zero. We omit these zero terms and write

(1)

These results are important and will be used shortly.
• Identity Property If for all numbers x in the

interval of convergence, then cn � 0 for all n.
• Analytic at a Point A function f is analytic at a point a if it can be

represented by a power series in x � a with a positive or infinite radius
of convergence. In calculus it is seen that functions such as ex, cos x, sin x,
ln(1 � x), and so on can be represented by Taylor series. Recall, for
example, that

��
n�0 cn(x � a)n � 0, R � 0

y� � �
�

n�1
cnnxn�1    and    y� � �

�

n�2
cnn(n � 1)xn�2.

y� � ��
n�0 n(n � 1)xn�2.y� � ��

n�0 nxn�1
y � ��

n�0 cnxn

f (x) � ��
n�0 cn(x � a)n

� �
n�1 (1>n)

��
n�1 ((�1)n>n)

� x � 3 � � 2

� x � 3 � 
 21
2 � x � 3 � 
 1

lim
n:� � (x � 3)n�1

2n�1(n � 1)

(x � 3)n

2nn
� � � x � 3 �  lim

n:�

n

2(n � 1)
�

1

2
� x � 3 �;

��
n�1(x � 3)n>2nn
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(2)ex � 1 �
x

1!
�

x2

2!
� . . .,    sin x � x �

x3

3!
�

x5

5!
� . . .,    cos x � 1 �

x2

2!
�

x4

4!
�

x6

6!
� . . .

for These Taylor series centered at 0, called Maclaurin series,
show that ex, sin x, and cos x are analytic at x � 0.

• Arithmetic of Power Series Power series can be combined through the
operations of addition, multiplication, and division. The procedures for
power series are similar to those by which two polynomials are added,
multiplied, and divided—that is, we add coefficients of like powers of x,
use the distributive law and collect like terms, and perform long division.
For example, using the series in (2), we have

� x � 
 �.

� x � x2 �
x3

3
�

x5

30
� 	 	 	.

� (1)x � (1)x2 � ��
1

6
�

1

2�x3 � ��
1

6
�

1

6�x4 � � 1

120
�

1

12
�

1

24�x5 � 	 	 	

exsin x � �1 � x �
x2

2
�

x3

6
�

x4

24
� 	 	 	��x �

x3

6
�

x5

120
�

x7

5040
� 	 	 	�



EXAMPLE 1 Adding Two Power Series

Write as a single power series whose general
term involves xk.

SOLUTION To add the two series, it is necessary that both summation indices start
with the same number and that the powers of x in each series be “in phase”; that is, if
one series starts with a multiple of, say, x to the first power, then we want the other
series to start with the same power. Note that in the given problem the first series
starts with x0, whereas the second series starts with x1. By writing the first term of the
first series outside the summation notation,

we see that both series on the right-hand side start with the same power of x—namely,
x1. Now to get the same summation index, we are inspired by the exponents of x; we let
k � n � 2 in the first series and at the same time let k � n � 1 in the second series. The
right-hand side becomes

(3)

Remember that the summation index is a “dummy” variable; the fact that k � n � 1
in one case and k � n � 1 in the other should cause no confusion if you keep in
mind that it is the value of the summation index that is important. In both cases
k takes on the same successive values k � 1, 2, 3, . . . when n takes on the values
n � 2, 3, 4, . . . for k � n � 1 and n � 0, 1, 2, . . . for k � n � 1. We are now in a
position to add the series in (3) term by term:

(4)

If you are not convinced of the result in (4), then write out a few terms on both
sides of the equality.

�
�

n�2
n(n�1)cnxn�2 � �

�

n�0
cnxn�1 � 2c2 � �

�

k�1
[(k � 2)(k � 1)ck�2 � ck�1]xk.

same

same

2c2 � � (k � 2)(k � 1)ck�2xk � � ck�1xk.
k�1

�

k�1

�

series starts
with x
for n � 3

series starts
with x
for n � 0

� n(n � 1)cnxn�2 � � cnxn�1 � 2 	 1c2x 0 � � n(n � 1)cnxn�2 � � cnxn�1,
n�2

�

n�0

�

n�3

�

n�0

�

��
n�2 n(n � 1)cnxn�2 � ��

n�0 cnxn�1
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Since the power series for ex and sin x converge for the product
series converges on the same interval. Problems involving multipli-
cation or division of power series can be done with minimal fuss by using a
CAS.

SHIFTING THE SUMMATION INDEX For the remainder of this section, as well
as this chapter, it is important that you become adept at simplifying the sum of two
or more power series, each expressed in summation (sigma) notation, to an
expression with a single As the next example illustrates, combining two or more
summations as a single summation often requires a reindexing—that is, a shift in the
index of summation.

�.

� x � 
 �,



6.1.2 POWER SERIES SOLUTIONS

A DEFINITION Suppose the linear second-order differential equation

(5)

is put into standard form

(6)

by dividing by the leading coefficient a2(x). We have the following definition.

DEFINITION 6.1.1 Ordinary and Singular Points

A point x0 is said to be an ordinary point of the differential equation (5) if
both P(x) and Q(x) in the standard form (6) are analytic at x0. A point that is
not an ordinary point is said to be a singular point of the equation.

Every finite value of x is an ordinary point of the differential equation
y� � (ex)y� � (sin x)y � 0. In particular, x � 0 is an ordinary point because, as we
have already seen in (2), both ex and sin x are analytic at this point. The negation in the
second sentence of Definition 6.1.1 stipulates that if at least one of the functions P(x)
and Q(x) in (6) fails to be analytic at x0, then x0 is a singular point. Note that x � 0 is a
singular point of the differential equation y� � (ex)y� � (ln x)y � 0 because Q(x) � ln x
is discontinuous at x � 0 and so cannot be represented by a power series in x.

POLYNOMIAL COEFFICIENTS We shall be interested primarily in the case when
(5) has polynomial coefficients. A polynomial is analytic at any value x, and a ratio-
nal function is analytic except at points where its denominator is zero. Thus if a2(x),
a1(x), and a0(x) are polynomials with no common factors, then both rational functions
P(x) � a1(x)�a2(x) and Q(x) � a0(x)�a2(x) are analytic except where a2(x) � 0. It
follows, then, that:

x � x0 is an ordinary point of (5) if a2(x0) � 0 whereas x � x0 is a singular point
of (5) if a2(x0) � 0.

For example, the only singular points of the equation (x2 � 1)y� � 2xy� � 6y � 0 are
solutions of x2 � 1 � 0 or x � �1. All other finite values* of x are ordinary points.
Inspection of the Cauchy-Euler equation ax2y� � bxy� � cy � 0 shows that it has
a singular point at x � 0. Singular points need not be real numbers. The equation
(x2 � 1)y� � xy� � y � 0 has singular points at the solutions of x2 � 1 � 0—namely,
x � �i. All other values of x, real or complex, are ordinary points.

We state the following theorem about the existence of power series solutions
without proof.

THEOREM 6.1.1 Existence of Power Series Solutions

If x � x0 is an ordinary point of the differential equation (5), we can always find
two linearly independent solutions in the form of a power series centered at x0 ,
that is, . A series solution converges at least on some
interval defined by where R is the distance from x0 to the closest
singular point.

� x � x0 � 
 R,
y � ��

n�0 cn(x � x0)n

y� � P(x)y� � Q(x)y � 0

a2(x)y� � a1(x)y� � a0(x)y � 0
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*For our purposes, ordinary points and singular points will always be finite points. It is possible for an
ODE to have, say, a singular point at infinity.



A solution of the form is said to be a solution about the
ordinary point x0. The distance R in Theorem 6.1.1 is the minimum value or the
lower bound for the radius of convergence of series solutions of the differential equa-
tion about x0.

In the next example we use the fact that in the complex plane the distance
between two complex numbers a � bi and c � di is just the distance between the two
points (a, b) and (c, d ).

EXAMPLE 2 Lower Bound for Radius of Convergence

The complex numbers 1 � 2i are singular points of the differential equation
(x2 � 2x � 5)y� � xy� � y � 0. Because x � 0 is an ordinary point of the equation,
Theorem 6.1.1 guarantees that we can find two power series solutions about 0, that is,
solutions that look like Without actually finding these solutions, we
know that each series must converge at least for because is the
distance in the complex plane from 0 (the point (0, 0)) to either of the numbers 1 � 2i
(the point (1, 2)) or 1 � 2i (the point (1, �2)). However, one of these two solutions is
valid on an interval much larger than in actual fact this solution
is valid on (��, �) because it can be shown that one of the two power series solutions
about 0 reduces to a polynomial. Therefore we also say that is the lower bound for
the radius of convergence of series solutions of the differential equation about 0.

If we seek solutions of the given DE about a different ordinary point, say, x � �1,
then each series converges at least for because
the distance from �1 to either 1 � 2i or 1 � 2i is

NOTE In the examples that follow, as well as in Exercises 6.1, we shall, for the
sake of simplicity, find power series solutions only about the ordinary point x � 0. If
it is necessary to find a power series solution of a linear DE about an ordinary point
x0 � 0, we can simply make the change of variable t � x � x0 in the equation (this
translates x � x0 to t � 0), find solutions of the new equation of the form

and then resubstitute t � x � x0.

FINDING A POWER SERIES SOLUTION The actual determination of a power
series solution of a homogeneous linear second-order DE is quite analogous to what
we did in Section 4.4 in finding particular solutions of nonhomogeneous DEs by the
method of undetermined coefficients. Indeed, the power series method of solving a
linear DE with variable coefficients is often described as “the method of undetermined
series coefficients.” In brief, here is the idea: We substitute into the
differential equation, combine series as we did in Example 1, and then equate all coef-
ficients to the right-hand side of the equation to determine the coefficients cn. But
because the right-hand side is zero, the last step requires, by the identity property in the
preceding bulleted list, that all coefficients of x must be equated to zero. No, this does
not mean that all coefficients are zero; this would not make sense—after all, Theorem
6.1.1 guarantees that we can find two solutions. Example 3 illustrates how the single
assumption that leads to two sets of
coefficients, so we have two distinct power series y1(x) and y2(x), both expanded
about the ordinary point x � 0. The general solution of the differential equation is
y � C1y1(x) � C2y2(x); indeed, it can be shown that C1 � c0 and C2 � c1.

EXAMPLE 3 Power Series Solutions

Solve y� � xy � 0.

SOLUTION Since there are no finite singular points, Theorem 6.1.1 guarantees
two power series solutions centered at 0, convergent for Substituting� x � 
 �.

y � ��
n�0 cnxn � c0 � c1x � c2x2 � 	 	 	

y � ��
n�0 cnxn

y � ��
n�0 cnt n,

R � 18 � 212.
� x � 
 212y � ��

n�0 cn(x � 1)n

15

�15 
 x 
 15;

R � 15� x � 
 15
y � ��

n�0 cnxn.

y � ��
n�0 cn(x � x0)n
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and the second derivative (see (1)) into
the differential equation gives

(7)

In Example 1 we already added the last two series on the right-hand side of the
equality in (7) by shifting the summation index. From the result given in (4),

(8)

At this point we invoke the identity property. Since (8) is identically zero, it is neces-
sary that the coefficient of each power of x be set equal to zero—that is, 2c2 � 0
(it is the coefficient of x0), and

(9)

Now 2c2 � 0 obviously dictates that c2 � 0. But the expression in (9), called a
recurrence relation, determines the ck in such a manner that we can choose a certain
subset of the set of coefficients to be nonzero. Since (k � 1)(k � 2) � 0 for all val-
ues of k, we can solve (9) for ck�2 in terms of ck�1:

(10)

This relation generates consecutive coefficients of the assumed solution one at a time
as we let k take on the successive integers indicated in (10):

and so on. Now substituting the coefficients just obtained into the original
assumption

; c8 is zerok � 9,    c11 � �
c8

10 � 11
� 0

k � 8,    c10 � �
c7

9 � 10
�

1

3 � 4 � 6 � 7 � 9 � 10
c1

k � 7,    c9 � �
c6

8 � 9
�

1

2 � 3 � 5 � 6 � 8 � 9
c0

; c5 is zerok � 6,    c8 � �
c5

7 � 8
� 0

k � 5,    c7 � �
c4

6 � 7
�

1

3 � 4 � 6 � 7
c1

k � 4,    c6 � �
c3

5 � 6
�

1

2 � 3 � 5 � 6
c0

; c2 is zerok � 3,    c5 � �
c2

4 � 5
� 0

k � 2,    c4 � �
c1

3 � 4

k � 1,    c3 � �
c0

2 � 3

ck�2 � �
ck�1

(k � 1)(k � 2)
 ,    k � 1, 2, 3, . . . .

(k � 1)(k � 2)ck�2 � ck�1 � 0,    k � 1, 2, 3, . . . .

y� � xy � 2c2 � �
�

k�1
[(k � 1)(k � 2)ck�2 � ck�1]xk � 0.

y� � xy � �
�

n�2
cnn(n � 1)xn�2 � x �

�

n�0
cnxn � �

�

n�2
cnn(n � 1)xn�2 � �

�

n�0
cnxn�1.

y� � ��
n�2 n(n � 1)cnxn�2y � ��

n�0 cnxn
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y � c0 � c1x � c2x2 � c3x3 � c4x4 � c5x5 � c6x6 � c7x7 � c8x8 � c9x9 � c10x10 � c11x11 � 	 	 	,



�
c1

3 � 4 � 6 � 7
x7 � 0 �

c0

2 � 3 � 5 � 6 � 8 � 9
x9 �

c1

3 � 4 � 6 � 7 � 9 � 10
x10 � 0 � 	 	 	.

y � c0 � c1x � 0 �
c0

2 � 3
x3 �

c1

3 � 4
x4 � 0 �

c0

2 � 3 � 5 � 6
x6
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we get

After grouping the terms containing c0 and the terms containing c1, we obtain
y � c0y1(x) � c1y2(x), where

y2(x) � x �
1

3 � 4
x4 �

1

3 � 4 � 6 � 7
x7 �

1

3 � 4 � 6 � 7 � 9 � 10
x10 � 	 	 	 � x � �

�

k�1

(�1)k

3 � 4 	 	 	 (3k)(3k � 1)
x3k�1.

y1(x) � 1 �
1

2 � 3
x3 �

1

2 � 3 � 5 � 6
x6 �

1

2 � 3 � 5 � 6 � 8 � 9
x9 � 	 	 	 � 1 � �

�

k�1

(�1)k

2 � 3 	 	 	 (3k � 1)(3k)
x3k

Because the recursive use of (10) leaves c0 and c1 completely undetermined,
they can be chosen arbitrarily. As was mentioned prior to this example, the linear
combination y � c0y1(x) � c1y2(x) actually represents the general solution of the
differential equation. Although we know from Theorem 6.1.1 that each series solu-
tion converges for this fact can also be verified by the ratio test.

The differential equation in Example 3 is called Airy’s equation and is
encountered in the study of diffraction of light, diffraction of radio waves around the
surface of the Earth, aerodynamics, and the deflection of a uniform thin vertical
column that bends under its own weight. Other common forms of Airy’s equation are
y� � xy � 0 and y� � �2xy � 0. See Problem 41 in Exercises 6.3 for an application
of the last equation.

EXAMPLE 4 Power Series Solution

Solve (x2 � 1)y� � xy� � y � 0.

SOLUTION As we have already seen on page 223, the given differential equation has
singular points at x � �i, and so a power series solution centered at 0 will converge at
least for 
 1, where 1 is the distance in the complex plane from 0 to either i or �i.
The assumption and its first two derivatives (see (1)) lead toy � ��

n�0 cnxn
� x �

� x � 
 �,

(x 2 � 1) � n(n � 1)cnxn�2 � x � ncnxn�1 � � cnxn

n�2

�

n�1

�

n�0

�

� � n(n � 1)cnxn � � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�2

�

n�2

�

n�1

�

n�0

�

� 2c2 � c0 � 6c3x � � [k(k � 1)ck � (k � 2)(k � 1)ck�2 � kck � ck]xk

k�2

�

� 2c2 � c0 � 6c3x � � [(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2]xk � 0.
k�2

�

� � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�4

�

n�2

�

n�2

�

� 2c2x 0 � c0x 0 � 6c3x � c1x � c1x � � n(n� 1)cnxn

n�2

�

k�n

k�n�2 k�n k�n



From this identity we conclude that 2c2 � c0 � 0, 6c3 � 0, and

Thus

Substituting k � 2, 3, 4, . . . into the last formula gives

and so on. Therefore

c10 � �
7

10
c8 �

3 � 5 � 7

2 � 4 � 6 � 8 � 10
c0 �

1 � 3 � 5 � 7

255!
c0,

; c7 is zeroc9 � �
6

9
c7 � 0,

c8 � �
5

8
c6 � �

3 � 5

2 � 4 � 6 � 8
c0 � �

1 � 3 � 5

244!
c0

; c5 is zeroc7 � �
4

7
c5 � 0

c6 � �
3

6
c4 �

3

2 � 4 � 6
c0 �

1 � 3

233!
c0

; c3 is zeroc5 � �
2

5
c3 � 0

c4 � �
1

4
c2 � �

1

2 � 4
c0 � �

1

222!
c0

ck�2 �
1 � k

k � 2
ck ,    k � 2, 3, 4, . . . .

c3 � 0

c2 �
1

2
c0

(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2 � 0.
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� c0y1(x) � c1y2(x).

� c0
1 �
1

2
x2 �

1

222!
x4 �

1 � 3

233!
x6 �

1 � 3 � 5

244!
x8 �

1 � 3 � 5 � 7

255!
x10 � 	 	 	� � c1x

y � c0 � c1x � c2x2 � c3x3 � c4x4 � c5x5 � c6x6 � c7x7 � c8x8 � c9x9 � c10 x10 � 	 	 	

The solutions are the polynomial y2(x) � x and the power series

EXAMPLE 5 Three-Term Recurrence Relation

If we seek a power series solution for the differential equation

we obtain and the three-term recurrence relation

It follows from these two results that all coefficients cn, for n  3, are expressed in
terms of both c0 and c1. To simplify life, we can first choose c0 � 0, c1 � 0; this

ck�2 �
ck � ck�1

(k � 1)(k � 2)
,    k � 1, 2, 3, . . . .

c2 � 1
2 c0

y� � (1 � x)y � 0,

y � ��
n�0 cnxn

y1(x) � 1 �
1

2
x2 � �

�

n�2
(�1)n�11 � 3 � 5 	 	 	 �2n � 3�

2nn!
x2n ,    � x � 
 1.



yields coefficients for one solution expressed entirely in terms of c0. Next, if
we choose c0 � 0, c1 � 0, then coefficients for the other solution are expressed
in terms of c1. Using in both cases, the recurrence relation for
k � 1, 2, 3, . . . gives

c2 � 1
2 c0
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c5 �
c3 � c2

4 � 5
�

c0

4 � 5 

1

6
�

1

2� �
c0

30

c4 �
c2 � c1

3 � 4
�

c0

2 � 3 � 4
�

c0

24

c3 �
c1 � c0

2 � 3
�

c0

2 � 3
�

c0

6

c2 �
1

2
c0

c0 � 0, c1 � 0

c5 �
c3 � c2

4 � 5
�

c1

4 � 5 � 6
�

c1

120

c4 �
c2 � c1

3 � 4
�

c1

3 � 4
�

c1

12

c3 �
c1 � c0

2 � 3
�

c1

2 � 3
�

c1

6

c2 �
1

2
c0 � 0

c0 � 0, c1 � 0

and so on. Finally, we see that the general solution of the equation is
y � c0y1(x) � c1y2(x), where

and

Each series converges for all finite values of x.

NONPOLYNOMIAL COEFFICIENTS The next example illustrates how to find a
power series solution about the ordinary point x0 � 0 of a differential equation when
its coefficients are not polynomials. In this example we see an application of the
multiplication of two power series.

EXAMPLE 6 DE with Nonpolynomial Coefficients

Solve y� � (cos x)y � 0.

SOLUTION We see that x � 0 is an ordinary point of the equation because, as we
have already seen, cos x is analytic at that point. Using the Maclaurin series for cos x
given in (2), along with the usual assumption and the results in (1),
we find

y � ��
n�0 cnxn

y2(x) � x �
1

6
x3 �

1

12
x4 �

1

120
x5 � 	 	 	.

y1(x) � 1 �
1

2
x2 �

1

6
x3 �

1

24
x4 �

1

30
x5 � 	 	 	

� 2c2 � c0 � (6c3 � c1)x � �12c4 � c2 �
1

2
c0�x2 � �20c5 � c3 �

1

2
c1�x3 � 	 	 	 � 0.

� 2c2 � 6c3x � 12c4x2 � 20c5x3 � 	 	 	 � �1 �
x2

2!
�

x4

4!
� 	 	 	�(c0 � c1x � c2x2 � c3x3 � 	 	 	)

y� � (cos x)y � �
�

n�2
n(n � 1)cnxn�2 � �1 �

x2

2!
�

x4

4!
�

x6

6!
� 	 	 	��

�

n�0
cnxn

It follows that

2c2 � c0 � 0,    6c3 � c1 � 0,    12c4 � c2 �
1

2
c0 � 0,    20c5 � c3 �

1

2
c1 � 0,



and so on. This gives By group-
ing terms, we arrive at the general solution y � c0y1(x) � c1y 2(x), where

Because the differential equation has no finite singular points, both power series con-
verge for

SOLUTION CURVES The approximate graph of a power series solution
can be obtained in several ways. We can always resort to graphing

the terms in the sequence of partial sums of the series—in other words, the graphs of
the polynomials For large values of N, SN (x) should give us an
indication of the behavior of y(x) near the ordinary point x � 0. We can also obtain
an approximate or numerical solution curve by using a solver as we did in Section
4.9. For example, if you carefully scrutinize the series solutions of Airy’s equation in
Example 3, you should see that y1(x) and y2(x) are, in turn, the solutions of the initial-
value problems

(11)

The specified initial conditions “pick out” the solutions y1(x) and y2(x) from
y � c0y1(x) � c1y2(x), since it should be apparent from our basic series assumption

that y(0) � c0 and y�(0) � c1. Now if your numerical solver requires
a system of equations, the substitution y� � u in y� � xy � 0 gives y� � u� � �xy,
and so a system of two first-order equations equivalent to Airy’s equation is

(12)

Initial conditions for the system in (12) are the two sets of initial conditions in (11)
rewritten as y(0) � 1, u(0) � 0, and y(0) � 0, u(0) � 1. The graphs of y1(x)
and y2(x) shown in Figure 6.1.2 were obtained with the aid of a numerical solver.
The fact that the numerical solution curves appear to be oscillatory is consistent
with the fact that Airy’s equation appeared in Section 5.1 (page 186) in the form
mx� � ktx � 0 as a model of a spring whose “spring constant” K(t) � kt increases
with time.

REMARKS

(i) In the problems that follow, do not expect to be able to write a solution in
terms of summation notation in each case. Even though we can generate as
many terms as desired in a series solution either through the use
of a recurrence relation or, as in Example 6, by multiplication, it might not be
possible to deduce any general term for the coefficients cn. We might have to
settle, as we did in Examples 5 and 6, for just writing out the first few terms of
the series.

(ii) A point x0 is an ordinary point of a nonhomogeneous linear second-order
DE y� � P(x)y� � Q(x)y � f (x) if P(x), Q(x), and f (x) are analytic at x0.
Moreover, Theorem 6.1.1 extends to such DEs; in other words, we can
find power series solutions of nonhomogeneous
linear DEs in the same manner as in Examples 3–6. See Problem 36 in
Exercises 6.1.

y � ��
n�0 cn (x � x0)n

y � ��
n�0 cnxn

u� � �xy.

y� � u

y � ��
n�0 cnxn

y� � xy � 0,  y(0) � 0, y�(0) � 1.

y� � xy � 0,  y(0) � 1, y�(0) � 0,

SN (x) � �N
n�0 cnxn.

y(x) � ��
n�0 cnxn

� x � 
 �.

y1(x) � 1 �
1

2
x2 �

1

12
x4 � 	 	 	    and    y2(x) � x �

1

6
x3 �

1

30
x5 � 	 	 	.

c5 � 1
30 c1, . . . .c4 � 1

12 c0,c3 � �1
6 c1,c2 � �1

2 c0,
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FIGURE 6.1.2 Numerical solution
curves for Airy’s DE
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EXERCISES 6.1 Answers to selected odd-numbered problems begin on page ANS-8.

6.1.1 REVIEW OF POWER SERIES

In Problems 1–4 find the radius of convergence and interval
of convergence for the given power series.

1. 2.

3. 4.

In Problems 5 and 6 the given function is analytic at x � 0.
Find the first four terms of a power series in x. Perform the
multiplication by hand or use a CAS, as instructed.

5. 6.

In Problems 7 and 8 the given function is analytic at x � 0.
Find the first four terms of a power series in x. Perform the
long division by hand or use a CAS, as instructed. Give the
open interval of convergence.

7. 8.

In Problems 9 and 10 rewrite the given power series so that
its general term involves xk.

9. 10.

In Problems 11 and 12 rewrite the given expression as a sin-
gle power series whose general term involves xk.

11.

12.

In Problems 13 and 14 verify by direct substitution that the
given power series is a particular solution of the indicated
differential equation.

13.

14.

6.1.2 POWER SERIES SOLUTIONS

In Problems 15 and 16 without actually solving the given
differential equation, find a lower bound for the radius of
convergence of power series solutions about the ordinary
point x � 0. About the ordinary point x � 1.

15. (x2 � 25)y� � 2xy� � y � 0

16. (x2 � 2x � 10)y� � xy� � 4y � 0

y ��
�

n�0

(�1)n

22n(n!)2x2n, xy� � y� � xy � 0

y ��
�

n�1

(�1)n�1

n
xn, (x � 1)y� � y� � 0

�
�

n�2
n(n � 1)cnxn � 2 �

�

n�2
n(n � 1)cnxn�2 � 3 �

�

n�1
ncnxn

�
�

n�1
2ncnxn�1 ��

�

n�0
6cnxn�1

�
�

n�3
(2n � 1)cnxn�3�

�

n�1
ncnxn�2

1 � x

2 � x

1

cos x

e�x cos xsin x cos x

�
�

k�0
k!(x � 1)k�

�

k�1

(�1)k

10k (x � 5)k

�
�

n�0

(100)n

n!
(x � 7)n�

�

n�1

2n

n
xn

In Problems 17–28 find two power series solutions of the
given differential equation about the ordinary point x � 0.

17. y� � xy � 0 18. y� � x2y � 0

19. y� � 2xy� � y � 0 20. y� � xy� � 2y � 0

21. y� � x2y� � xy � 0 22. y� � 2xy� � 2y � 0

23. (x � 1)y� � y� � 0 24. (x � 2)y � � xy� � y � 0

25. y� � (x � 1)y� � y � 0

26. (x2 � 1)y� � 6y � 0

27. (x2 � 2)y� � 3xy� � y � 0

28. (x2 � 1)y� � xy� � y � 0

In Problems 29–32 use the power series method to solve the
given initial-value problem.

29. (x � 1)y� � xy� � y � 0, y(0) � �2, y�(0) � 6

30. (x � 1)y� � (2 � x)y� � y � 0, y(0) � 2, y�(0) � �1

31. y� � 2xy� � 8y � 0, y(0) � 3, y�(0) � 0

32. (x2 � 1)y� � 2xy� � 0, y(0) � 0, y�(0) � 1

In Problems 33 and 34 use the procedure in Example 6 to
find two power series solutions of the given differential
equation about the ordinary point x � 0.

33. y� � (sin x)y � 0 34. y� � exy� � y � 0

Discussion Problems

35. Without actually solving the differential equation
(cos x)y� � y� � 5y � 0, find a lower bound for the
radius of convergence of power series solutions about
x � 0. About x � 1.

36. How can the method described in this section be used to
find a power series solution of the nonhomogeneous
equation y� � xy � 1 about the ordinary point x � 0?
Of y� � 4xy� � 4y � ex? Carry out your ideas by
solving both DEs.

37. Is x � 0 an ordinary or a singular point of the differen-
tial equation xy� � (sin x)y � 0? Defend your answer
with sound mathematics.

38. For purposes of this problem, ignore the graphs given in
Figure 6.1.2. If Airy’s DE is written as y� � �xy, what
can we say about the shape of a solution curve if x � 0
and y � 0? If x � 0 and y 
 0?

Computer Lab Assignments

39. (a) Find two power series solutions for y� � xy� � y � 0
and express the solutions y1(x) and y2(x) in terms of
summation notation.



(b) Use a CAS to graph the partial sums SN (x) for
y1(x). Use N � 2, 3, 5, 6, 8, 10. Repeat using the
partial sums SN (x) for y2(x).

(c) Compare the graphs obtained in part (b) with
the curve obtained by using a numerical solver. Use
the initial-conditions y1(0) � 1, y�1(0) � 0, and
y2(0) � 0, y�2(0) � 1.

(d) Reexamine the solution y1(x) in part (a). Express
this series as an elementary function. Then use (5)
of Section 4.2 to find a second solution of the equa-
tion. Verify that this second solution is the same as
the power series solution y2(x).
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40. (a) Find one more nonzero term for each of the solu-
tions y1(x) and y2(x) in Example 6.

(b) Find a series solution y(x) of the initial-value
problem y� � (cos x)y � 0, y(0) � 1, y�(0) � 1.

(c) Use a CAS to graph the partial sums SN (x) for the
solution y(x) in part (b). Use N � 2, 3, 4, 5, 6, 7.

(d) Compare the graphs obtained in part (c) with the
curve obtained using a numerical solver for the
initial-value problem in part (b).

6.2 SOLUTIONS ABOUT SINGULAR POINTS

REVIEW MATERIAL
● Section 4.2 (especially (5) of that section)

INTRODUCTION The two differential equations

y� � xy � 0 and xy� � y � 0

are similar only in that they are both examples of simple linear second-order DEs with variable
coefficients. That is all they have in common. Since x � 0 is an ordinary point of y� � xy � 0, we
saw in Section 6.1 that there was no problem in finding two distinct power series solutions centered
at that point. In contrast, because x � 0 is a singular point of xy� � y � 0, finding two infinite
series—notice that we did not say power series—solutions of the equation about that point becomes
a more difficult task.

The solution method that is discussed in this section does not always yield two infinite series
solutions. When only one solution is found, we can use the formula given in (5) of Section 4.2 to find
a second solution.

A DEFINITION A singular point x0 of a linear differential equation

(1)

is further classified as either regular or irregular. The classification again depends on
the functions P and Q in the standard form

(2)

DEFINITION 6.2.1 Regular and Irregular Singular Points

A singular point x0 is said to be a regular singular point of the differential
equation (1) if the functions p(x) � (x � x0) P(x) and q(x) � (x � x0)2Q(x)
are both analytic at x0. A singular point that is not regular is said to be an
irregular singular point of the equation.

The second sentence in Definition 6.2.1 indicates that if one or both of the func-
tions p (x) � (x � x0) P(x) and q(x) � (x � x0)2Q(x) fail to be analytic at x0, then
x0 is an irregular singular point.

y� � P(x)y� � Q(x)y � 0.

a2(x)y� � a1(x)y� � a0(x)y � 0



POLYNOMIAL COEFFICIENTS As in Section 6.1, we are mainly interested in
linear equations (1) where the coefficients a2(x), a1(x), and a0(x) are polynomials
with no common factors. We have already seen that if a2(x0) � 0, then x � x0 is a
singular point of (1), since at least one of the rational functions P(x) � a1(x)�a2(x)
and Q(x) � a0(x) �a2(x) in the standard form (2) fails to be analytic at that point.
But since a2(x) is a polynomial and x0 is one of its zeros, it follows from the Factor
Theorem of algebra that x � x0 is a factor of a2(x). This means that after a1(x)�a2(x)
and a0(x)�a2(x) are reduced to lowest terms, the factor x � x0 must remain, to some
positive integer power, in one or both denominators. Now suppose that x � x0 is a
singular point of (1) but both the functions defined by the products p(x) � (x � x0)
P(x) and q(x) � (x � x0)2Q(x) are analytic at x0. We are led to the conclusion that
multiplying P(x) by x � x0 and Q(x) by (x � x0)2 has the effect (through cancella-
tion) that x � x0 no longer appears in either denominator. We can now determine
whether x0 is regular by a quick visual check of denominators:

If x � x0 appears at most to the first power in the denominator of P(x) and at
most to the second power in the denominator of Q(x), then x � x0 is a regular
singular point. 

Moreover, observe that if x � x0 is a regular singular point and we multiply (2) by
(x � x0)2, then the original DE can be put into the form

(3)

where p and q are analytic at x � x0.

EXAMPLE 1 Classification of Singular Points

It should be clear that x � 2 and x � �2 are singular points of

After dividing the equation by (x2 � 4)2 � (x � 2)2(x � 2)2 and reducing the
coefficients to lowest terms, we find that

We now test P(x) and Q(x) at each singular point.
For x � 2 to be a regular singular point, the factor x � 2 can appear at

most to the first power in the denominator of P(x) and at most to the second
power in the denominator of Q(x). A check of the denominators of P(x) and
Q(x) shows that both these conditions are satisfied, so x � 2 is a regular singular
point. Alternatively, we are led to the same conclusion by noting that both rational
functions

are analytic at x � 2.
Now since the factor x � (�2) � x � 2 appears to the second power in the

denominator of P(x), we can conclude immediately that x � �2 is an irregular
singular point of the equation. This also follows from the fact that

is not analytic at x � �2.

p(x) � (x � 2)P(x) �
3

(x � 2)(x � 2)

p(x) � (x � 2)P(x) �
3

(x � 2)2    and    q(x) � (x � 2)2Q(x) �
5

(x � 2)2

P(x) �
3

(x � 2)(x � 2)2    and    Q(x) �
5

(x � 2)2(x � 2)2.

(x2 � 4)2y� � 3(x � 2)y� � 5y � 0.

 (x � x0)2y� � (x � x0)p(x)y� � q(x)y � 0,
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In Example 1, notice that since x � 2 is a regular singular point, the original
equation can be written as

As another example, we can see that x � 0 is an irregular singular point
of x3y� � 2xy� � 8y � 0 by inspection of the denominators of P(x) � �2�x2

and Q(x) � 8�x3. On the other hand, x � 0 is a regular singular point of
xy� � 2xy� � 8y � 0, since x � 0 and (x � 0)2 do not even appear in the respective
denominators of P(x) � �2 and Q(x) � 8�x. For a singular point x � x0 any
nonnegative power of x � x0 less than one (namely, zero) and any nonnegative power
less than two (namely, zero and one) in the denominators of P(x) and Q(x), respec-
tively, imply that x0 is a regular singular point. A singular point can be a complex
number. You should verify that x � 3i and x � �3i are two regular singular points
of (x2 � 9)y� � 3xy� � (1 � x)y � 0.

Any second-order Cauchy-Euler equation ax2y� � bxy� � cy � 0, where a, b,
and c are real constants, has a regular singular point at x � 0. You should verify that
two solutions of the Cauchy-Euler equation x2y� � 3xy� � 4y � 0 on the interval
(0, �) are y1 � x2 and y2 � x2 ln x. If we attempted to find a power series solution
about the regular singular point x � 0 (namely, ), we would succeed
in obtaining only the polynomial solution y1 � x2. The fact that we would not obtain
the second solution is not surprising because ln x (and consequently y2 � x2 ln x)
is not analytic at x � 0—that is, y2 does not possess a Taylor series expansion
centered at x � 0.

METHOD OF FROBENIUS To solve a differential equation (1) about a regular
singular point, we employ the following theorem due to Frobenius.

THEOREM 6.2.1 Frobenius’ Theorem

If x � x0 is a regular singular point of the differential equation (1), then there
exists at least one solution of the form

(4)

where the number r is a constant to be determined. The series will converge at
least on some interval 0 
 x � x0 
 R.

Notice the words at least in the first sentence of Theorem 6.2.1. This means
that in contrast to Theorem 6.1.1, Theorem 6.2.1 gives us no assurance that
two series solutions of the type indicated in (4) can be found. The method of
Frobenius, finding series solutions about a regular singular point x0, is similar to
the method of undetermined series coefficients of the preceding section in that we
substitute into the given differential equation and deter-
mine the unknown coefficients cn by a recurrence relation. However, we have an
additional task in this procedure: Before determining the coefficients, we must
find the unknown exponent r. If r is found to be a number that is not a nonnegative
integer, then the corresponding solution is not a power
series.

As we did in the discussion of solutions about ordinary points, we shall always
assume, for the sake of simplicity in solving differential equations, that the regular
singular point is x � 0.

y ���
n�0 cn(x � x0)n�r

y ���
n�0 cn(x � x0)n�r

y � (x � x0) r �
�

n�0
cn(x � x0)n � �

�

n�0
cn(x � x0)n�r,

y � ��
n�0 cnxn

(x � 2)2y � � (x � 2) y � � y � 0.

p(x) analytic
at x � 2

q(x) analytic
at x � 2

3
––––––––
(x � 2)2

5
––––––––
(x � 2)2
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EXAMPLE 2 Two Series Solutions

Because x � 0 is a regular singular point of the differential equation

(5)

we try to find a solution of the form Now

so

y� ��
�

n�0
(n � r)cnxn�r�1    and    y� ��

�

n�0
(n � r)(n � r � 1)cnxn�r�2,

y � ��
n�0 cnxn�r.

 3xy� � y� � y � 0,
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   � xr
r(3r � 2)c0x�1 ��
�

k�0
[(k � r � 1)(3k � 3r � 1)ck�1 � ck]xk� � 0,

1444442444443 123
k � n�1 k � n

� xr
r(3r � 2)c0x�1 � �
�

n�1
 (n � r)(3n � 3r � 2)cnxn�1 ��

�

n�0
cnxn�

� �
�

n�0
(n � r)(3n � 3r � 2)cnxn�r�1 � �

�

n�0
cnxn�r

  3xy� � y� � y � 3�
�

n�0
(n � r)(n � r � 1)cn xn�r�1 ��

�

n�0
(n � r)cnxn�r�1 ��

�

n�0
cnxn�r

which implies that r(3r � 2)c0 � 0

and

Because nothing is gained by taking c0 � 0, we must then have

(6)

and (7)

When substituted in (7), the two values of r that satisfy the quadratic equation (6),
and r2 � 0, give two different recurrence relations:

(8)

(9)

From (8) we find From (9) we find

r2 � 0,    ck�1 �
ck

(k � 1)(3k � 1)
,    k � 0, 1, 2, . . . .

r1 � 2
3,    ck�1 �

ck

(3k � 5)(k � 1)
,    k � 0, 1, 2, . . .

r1 � 2
3

ck�1 �
ck

(k � r � 1)(3k � 3r � 1)
,    k � 0, 1, 2, . . . .

r (3r � 2) � 0

 (k � r � 1)(3k � 3r � 1)ck�1 � ck � 0,    k � 0, 1, 2, . . . .

cn �
c0

n!5 � 8 � 11	 	 	 (3n � 2)
.

	
	

	

c4 �
c3

14 � 4
�

c0

4!5 � 8 � 11 � 14

c3 �
c2

11 � 3
�

c0

3!5 � 8 � 11

c2 �
c1

8 � 2
�

c0

2!5 � 8

c1 �
c0

5 � 1

cn �
c0

n!1 � 4 � 7 	 	 	 (3n � 2)
.

	
	

	

c4 �
c3

4 � 10
�

c0

4!1 � 4 � 7 � 10

c3 �
c2

3 � 7
�

c0

3!1 � 4 � 7

c2 �
c1

2 � 4
�

c0

2!1 � 4

c1 �
c0

1 � 1



Here we encounter something that did not happen when we obtained solutions
about an ordinary point; we have what looks to be two different sets of coeffi-
cients, but each set contains the same multiple c0. If we omit this term, the series
solutions are

(10)

(11)

By the ratio test it can be demonstrated that both (10) and (11) converge for all val-
ues of x—that is, Also, it should be apparent from the form of these
solutions that neither series is a constant multiple of the other, and therefore y1(x) and
y2(x) are linearly independent on the entire x-axis. Hence by the superposition prin-
ciple, y � C1y1(x) � C2y2(x) is another solution of (5). On any interval that does not
contain the origin, such as (0, �), this linear combination represents the general solu-
tion of the differential equation.

INDICIAL EQUATION Equation (6) is called the indicial equation of the prob-
lem, and the values and r2 � 0 are called the indicial roots, or exponents, of
the singularity x � 0. In general, after substituting into the given dif-
ferential equation and simplifying, the indicial equation is a quadratic equation in r
that results from equating the total coefficient of the lowest power of x to zero. We
solve for the two values of r and substitute these values into a recurrence relation
such as (7). Theorem 6.2.1 guarantees that at least one solution of the assumed series
form can be found.

It is possible to obtain the indicial equation in advance of substituting
into the differential equation. If x � 0 is a regular singular point of

(1), then by Definition 6.2.1 both functions p(x) � xP(x) and q(x) � x2Q(x), where 
P and Q are defined by the standard form (2), are analytic at x � 0; that is, the power
series expansions

y � ��
n�0 cnxn�r

y � ��
n�0 cnxn�r

r1 � 2
3

� x � 
 �.

y2(x) � x0
1 ��
�

n�1

1

n!1 � 4 � 7 	 	 	 (3n � 2)
xn�.

y1(x) � x2/3
1 ��
�

n�1

1

n!5 � 8 � 11	 	 	 (3n � 2)
xn�
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(12)p(x) � xP(x) � a0 � a1x � a2x2 � 	 	 	    and    q(x) � x2Q(x) � b0 � b1x � b2x2 � 	 	 	

are valid on intervals that have a positive radius of convergence. By multiplying (2)
by x2, we get the form given in (3):

(13)

After substituting and the two series in (12) into (13) and carrying
out the multiplication of series, we find the general indicial equation to be

(14)

where a0 and b0 are as defined in (12). See Problems 13 and 14 in Exercises 6.2.

EXAMPLE 3 Two Series Solutions

Solve 2xy� � (1 � x)y� � y � 0.

SOLUTION Substituting givesy � ��
n�0 cnxn�r

r(r � 1) � a0r � b0 � 0,

y � ��
n�0 cnxn�r

x2y� � x[xP(x)]y� � [x2Q(x)]y � 0.
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which implies that (15)

and (16)

k � 0, 1, 2, . . . . From (15) we see that the indicial roots are and r2 � 0.
For we can divide by in (16) to obtain

(17)

whereas for r2 � 0, (16) becomes

(18)

From (17) we find From (18) we find

ck�1 �
�ck

2k � 1
,    k � 0, 1, 2, . . . .

ck�1 �
�ck

2(k � 1)
,    k � 0, 1, 2, . . . ,

k � 3
2r1 � 1

2

r1 � 1
2

 (k � r � 1)(2k � 2r � 1)ck�1 � (k � r � 1)ck � 0,

r (2r � 1) � 0

cn �
(�1)nc0

2nn!
 .

	
	

	

c4 �
�c3

2 � 4
�

c0

24 � 4!

c3 �
�c2

2 � 3
�

�c0

23 � 3!

c2 �
�c1

2 �  2
�

c0

22 � 2!

c1 �
�c0

2 � 1

cn �
(�1)nc0

1 � 3 � 5 � 7 	 	 	 (2n � 1)
 .

	
	

	

c4 �
�c3

7
�

c0

1 � 3 � 5 � 7

c3 �
�c2

5
�

�c0

1 � 3 � 5

c2 �
�c1

3
�

c0

1 � 3

c1 �
�c0

1

Thus for the indicial root we obtain the solution

where we have again omitted c0. The series converges for x  0; as given, the series
is not defined for negative values of x because of the presence of x1/2. For r2 � 0 a
second solution is

On the interval (0, �) the general solution is y � C1y1(x) � C2y2(x).

y2(x) � 1 ��
�

n�1

(�1)n

1 � 3 � 5 � 7 	 	 	 (2n � 1)
xn ,    � x � 
 �.

y1(x) � x1/2
1 ��
�

n�1

(�1)n

2nn!
xn� ��

�

n�0

(�1)n

2nn!
xn�1/2 ,

r1 � 1
2

2xy � � (1 � x)y� � y � 2 � (n � r)(n � r � 1)cnxn�r�1 � � (n � r )cnxn�r�1

n�0

�

n�0

�

� � (n � r)(2n � 2r � 1)cnxn�r�1 � � (n � r � 1)cnxn�r

n�0

�

n�0

�

� xr [r(2r � 1)c0x�1 � � [(k � r � 1)(2k � 2r � 1)ck�1 � (k � r � 1)ck]xk],
k�0

�

� � (n � r)cnxn�r � � cnxn�r

n�0

�

n�0

�

� xr [r(2r � 1)c0x�1 � � (n � r)(2n � 2r � 1)cnxn�1 � � (n � r � 1)cnxn]
n�1

�

n�0

�

k�n�1 k�n



EXAMPLE 4 Only One Series Solution

Solve xy� � y � 0.

SOLUTION From xP(x) � 0, x2Q(x) � x and the fact that 0 and x are their own
power series centered at 0 we conclude that a0 � 0 and b0 � 0, so from (14) the
indicial equation is r (r � 1) � 0. You should verify that the two recurrence relations
corresponding to the indicial roots r1 � 1 and r2 � 0 yield exactly the same set of
coefficients. In other words, in this case the method of Frobenius produces only a
single series solution

THREE CASES For the sake of discussion let us again suppose that x � 0 is a
regular singular point of equation (1) and that the indicial roots r1 and r2 of the
singularity are real. When using the method of Frobenius, we distinguish three cases
corresponding to the nature of the indicial roots r1 and r2. In the first two cases the
symbol r1 denotes the largest of two distinct roots, that is, r1 � r2. In the last case
r1 � r2.

CASE I: If r1 and r2 are distinct and the difference r1 � r2 is not a positive integer,
then there exist two linearly independent solutions of equation (1) of the form

This is the case illustrated in Examples 2 and 3.

Next we assume that the difference of the roots is N, where N is a positive
integer. In this case the second solution may contain a logarithm.

CASE II: If r1 and r2 are distinct and the difference r1 � r2 is a positive integer,
then there exist two linearly independent solutions of equation (1) of the form

(19)

(20)

where C is a constant that could be zero.

Finally, in the last case, the case when r1 � r2, a second solution will always
contain a logarithm. The situation is analogous to the solution of a Cauchy-Euler
equation when the roots of the auxiliary equation are equal.

CASE III: If r1 and r2 are equal, then there always exist two linearly independent
solutions of equation (1) of the form

(21)

(22)

FINDING A SECOND SOLUTION When the difference r1 � r2 is a positive
integer (Case II), we may or may not be able to find two solutions having the
form This is something that we do not know in advance but isy � ��

n�0 cnxn�r.

y2(x) � y1(x) ln x ��
�

n�1
bnxn�r1.

y1(x) ��
�

n�0
cnxn�r1,    c0 � 0,

y2(x) � Cy1(x) ln x ��
�

n�0
bnxn�r2,    b0 � 0,

y1(x) ��
�

n�0
cnxn�r1,    c0 � 0,

y1(x) � �
�

n�0
cn xn�r1,  c0 � 0,    y2(x) � �

�

n�0
bn xn�r2,  b0 � 0.

y1(x) ��
�

n�0

(�1)n

n!(n � 1)!
xn�1 � x �

1

2
x2 �

1

12
x3 �

1

144
x4 � 	 	 	.
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determined after we have found the indicial roots and have carefully examined the
recurrence relation that defines the coefficients cn. We just may be lucky enough
to find two solutions that involve only powers of x, that is, 
(equation (19)) and (equation (20) with C � 0). See Prob-
lem 31 in Exercises 6.2. On the other hand, in Example 4 we see that the difference
of the indicial roots is a positive integer (r1 � r2 � 1) and the method of Frobenius
failed to give a second series solution. In this situation equation (20), with C � 0,
indicates what the second solution looks like. Finally, when the difference r1 � r2 is
a zero (Case III), the method of Frobenius fails to give a second series solution; the
second solution (22) always contains a logarithm and can be shown to be equivalent
to (20) with C � 1. One way to obtain the second solution with the logarithmic term
is to use the fact that

(23)

is also a solution of y� � P(x)y� � Q(x)y � 0 whenever y1(x) is a known solution.
We illustrate how to use (23) in the next example.

EXAMPLE 5 Example 4 Revisited Using a CAS

Find the general solution of xy� � y � 0.

SOLUTION From the known solution given in Example 4,

we can construct a second solution y2(x) using formula (23). Those with the time,
energy, and patience can carry out the drudgery of squaring a series, long division,
and integration of the quotient by hand. But all these operations can be done with
relative ease with the help of a CAS. We give the results:

or

On the interval (0, �) the general solution is y � C1y1(x) � C2y2(x).

Note that the final form of y2 in Example 5 matches (20) with C � 1; the series
in the brackets corresponds to the summation in (20) with r2 � 0.

y2(x) � y1(x) ln x � 
�1 �
1

2
x �

1

2
x2 � 	 	 	�.

� y1(x) ln x � y1(x) 
�
1

x
�

7

12
x �

19

144
x2 � 	 	 	�,

� y1(x) 
�
1

x
� ln x �

7

12
x �

19

144
x2 � 	 	 	�

� y1(x)� 
 1

x2 �
1

x
�

7

12
�

19

72
x � 	 	 	�dx

� y1(x)� dx


 x2 � x3 �
5

12
x4 �

7

72
x5 � 	 	 	�

y2(x) � y1(x)� e�∫0dx

[y1(x)]2 dx � y1(x)� dx


 x �
1

2
x2 �

1

12
x3 �

1

144
x4 � 	 	 	�

2

y1(x) � x �
1

2
x2 �

1

12
x3 �

1

144
x4 � 	 	 	 ,

y2(x) � y1(x)� e�� P(x)dx

y2
1(x)

dx

y2(x) � ��
n�0 bnxn�r2

y1(x) � ��
n�0 cnxn�r1
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; after long division

; after multiplying out

; after integrating

; after squaring



REMARKS

(i) The three different forms of a linear second-order differential equation in
(1), (2), and (3) were used to discuss various theoretical concepts. But on a
practical level, when it comes to actually solving a differential equation using
the method of Frobenius, it is advisable to work with the form of the DE
given in (1).

(ii) When the difference of indicial roots r1 � r2 is a positive integer
(r1 � r2), it sometimes pays to iterate the recurrence relation using the
smaller root r2 first. See Problems 31 and 32 in Exercises 6.2.

(iii) Because an indicial root r is a solution of a quadratic equation, it could
be complex. We shall not, however, investigate this case.

(iv) If x � 0 is an irregular singular point, then we might not be able to find
any solution of the DE of form y ���

n�0 cnxn�r.
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EXERCISES 6.2 Answers to selected odd-numbered problems begin on page ANS-9.

In Problems 1–10 determine the singular points of the given
differential equation. Classify each singular point as regular
or irregular.

1. x3y� � 4x2y� � 3y � 0

2. x(x � 3)2y� � y � 0

3. (x2 � 9)2y� � (x � 3)y� � 2y � 0

4.

5. (x3 � 4x)y� � 2xy� � 6y � 0

6. x2(x � 5)2y� � 4xy� � (x2 � 25)y � 0

7. (x2 � x � 6)y� � (x � 3)y� � (x � 2)y � 0

8. x(x2 � 1)2y� � y � 0

9. x3(x2 � 25)(x � 2)2y� � 3x(x � 2)y� � 7(x � 5)y � 0

10. (x3 � 2x2 � 3x)2y� � x(x � 3)2y� � (x � 1)y � 0

In Problems 11 and 12 put the given differential equation
into form (3) for each regular singular point of the equation.
Identify the functions p(x) and q(x).

11. (x2 � 1)y� � 5(x � 1)y� � (x2 � x)y � 0

12. xy� � (x � 3)y� � 7x2y � 0

In Problems 13 and 14, x � 0 is a regular singular point
of the given differential equation. Use the general form of
the indicial equation in (14) to find the indicial roots of the
singularity. Without solving, discuss the number of series

y� �
1

x
y� �

1

(x � 1)3 y � 0

solutions you would expect to find using the method of
Frobenius.

13.

14. xy� � y� � 10y � 0

In Problems 15–24, x � 0 is a regular singular point of
the given differential equation. Show that the indicial roots
of the singularity do not differ by an integer. Use the method
of Frobenius to obtain two linearly independent series
solutions about x � 0. Form the general solution on (0, �).

15. 2xy� � y� � 2y � 0

16. 2xy� � 5y� � xy � 0

17.

18. 2x2y� � xy� � (x2 � 1)y � 0

19. 3xy� � (2 � x)y� � y � 0

20.

21. 2xy� � (3 � 2x)y� � y � 0

22.

23. 9x2y� � 9x2y� � 2y � 0

24. 2x2y� � 3xy� � (2x � 1)y � 0

In Problems 25–30, x � 0 is a regular singular point of
the given differential equation. Show that the indicial
roots of the singularity differ by an integer. Use the method

x2y� � xy� � (x2 � 4
9)y � 0

x2y� � (x � 2
9)y � 0

4xy� � 1
2 y� � y � 0

x2y� � (5
3 x � x2)y� � 1

3 y � 0
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of Frobenius to obtain at least one series solution about
x � 0. Use (23) where necessary and a CAS, if instructed,
to find a second solution. Form the general solution on
(0, �).

25. xy� � 2y� � xy � 0

26.

27. xy� � xy� � y � 0 28.

29. xy� � (1 � x)y� � y � 0 30. xy� � y� � y � 0

In Problems 31 and 32, x � 0 is a regular singular point of the
given differential equation. Show that the indicial roots of the
singularity differ by an integer. Use the recurrence relation
found by the method of Frobenius first with the larger root r1.
How many solutions did you find? Next use the recurrence
relation with the smaller root r2. How many solutions did
you find?

31. xy� � (x � 6)y� � 3y � 0

32. x(x � 1)y� � 3y� � 2y � 0

33. (a) The differential equation x4y� � 	y � 0 has an
irregular singular point at x � 0. Show that the sub-
stitution t � 1�x yields the DE

which now has a regular singular point at t � 0.

(b) Use the method of this section to find two series
solutions of the second equation in part (a) about the
regular singular point t � 0.

(c) Express each series solution of the original equation
in terms of elementary functions.

Mathematical Model

34. Buckling of a Tapered Column In Example 3 of
Section 5.2 we saw that when a constant vertical
compressive force or load P was applied to a thin
column of uniform cross section, the deflection y(x) was
a solution of the boundary-value problem

(24)

The assumption here is that the column is hinged at both
ends. The column will buckle or deflect only when the
compressive force is a critical load Pn.

(a) In this problem let us assume that the column is of
length L, is hinged at both ends, has circular cross
sections, and is tapered as shown in Figure 6.2.1(a).
If the column, a truncated cone, has a linear taper

EI
d 2y

dx2 � Py � 0,  y(0) � 0,  y(L) � 0.

d 2y

dt2 �
2

t

dy

dt
� �y � 0,

y� �
3

x
y� � 2y � 0

x2y� � xy� � (x2 � 1
4)y � 0

y � cx as shown in cross section in Figure 6.2.1(b),
the moment of inertia of a cross section with respect
to an axis perpendicular to the xy-plane is

where r � y and y � cx. Hence we can
write I(x) � I0(x�b)4, where 
Substituting I(x) into the differential equation in
(24), we see that the deflection in this case is
determined from the BVP

where 	 � Pb4�EI0. Use the results of Problem 33
to find the critical loads Pn for the tapered column.
Use an appropriate identity to express the buckling
modes yn(x) as a single function.

(b) Use a CAS to plot the graph of the first buckling
mode y1(x) corresponding to the Euler load P1

when b � 11 and a � 1.

x4 d 2y

dx2 � �y � 0,  y(a) � 0,  y(b) � 0,

I0 � I(b) � 1
4 �(cb)4.

I � 1
4 �r4,

x = a

y

P

x = b

y = cx
b − a = L

L

(a) (b)

x

FIGURE 6.2.1 Tapered column in Problem 34

Discussion Problems

35. Discuss how you would define a regular singular point
for the linear third-order differential equation

36. Each of the differential equations

has an irregular singular point at x � 0. Determine
whether the method of Frobenius yields a series solu-
tion of each differential equation about x � 0. Discuss
and explain your findings.

37. We have seen that x � 0 is a regular singular point of
any Cauchy-Euler equation ax2y� � bxy� � cy � 0.
Are the indicial equation (14) for a Cauchy-Euler equa-
tion and its auxiliary equation related? Discuss.

x3y� � y � 0    and    x2y� � (3x � 1)y� � y � 0

a3(x)y� � a2(x)y� � a1(x)y� � a0(x)y � 0.



6.3.1 BESSEL’S EQUATION

THE SOLUTION Because x � 0 is a regular singular point of Bessel’s equation,
we know that there exists at least one solution of the form 
Substituting the last expression into (1) gives

y � ��
n�0 cnxn�r.
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SPECIAL FUNCTIONS

REVIEW MATERIAL
● Sections 6.1 and 6.2

INTRODUCTION The two differential equations

(1)

(2)

occur in advanced studies in applied mathematics, physics, and engineering. They are called Bessel’s
equation of order � and Legendre’s equation of order n, respectively. When we solve (1) we shall
assume that �  0, whereas in (2) we shall consider only the case when n is a nonnegative integer.

  (1 � x2)y� � 2xy� � n(n � 1)y � 0

x2y� � xy� � (x2 � % 2)y � 0

6.3

(3)   � c0(r2 � % 2)xr � xr �
�

n�1
cn[(n � r)2 � % 2]xn � xr �

�

n�0
cnxn�2.

   � c0(r2 � r � r � % 2)xr � xr �
�

n�1
cn[(n � r)(n � r � 1) � (n � r) � %2]xn � xr �

�

n�0
cnxn�2

x2y� � xy� � (x2 � % 2)y � �
�

n�0
cn(n � r)(n � r � 1)xn�r � �

�

n�0
cn(n � r)xn�r � �

�

n�0
cnxn�r�2 � % 2 �

�

n�0
cnxn�r

From (3) we see that the indicial equation is r2 � �2 � 0, so the indicial roots are
r1 � � and r2 � ��. When r1 � �, (3) becomes

Therefore by the usual argument we can write (1 � 2�)c1 � 0 and

or (4)

The choice c1 � 0 in (4) implies that so for k � 0, 2, 4, . . .
we find, after letting k � 2 � 2n, n � 1, 2, 3, . . . , that

(5)c2n � �
c2n�2

22n(n � %)
.

c3 � c5 � c7 � 	 	 	 � 0,

ck�2 �
�ck

(k � 2)(k � 2 � 2%)
,    k � 0, 1, 2, . . . .

 (k � 2)(k � 2 � 2%)ck�2 � ck � 0

xn � cnn(n � 2n)xn � xn � cnxn�2

n�1

�

n�0

�

� xn [(1 � 2n)c1x � � [(k � 2)(k � 2 � 2n)ck�2 � ck]xk�2] � 0.
k�0

�

� xn [(1 � 2n)c1x � � cnn(n � 2n)xn � � cnxn�2]
n�2

�

n�0

�

k � n � 2 k � n



Thus

(6)

It is standard practice to choose c0 to be a specific value, namely,

where &(1 � �) is the gamma function. See Appendix I. Since this latter function
possesses the convenient property &(1 � �) � �&(�), we can reduce the indicated
product in the denominator of (6) to one term. For example,

Hence we can write (6) as

for n � 0, 1, 2, . . . .

BESSEL FUNCTIONS OF THE FIRST KIND Using the coefficients c2n just
obtained and r � �, a series solution of (1) is This solution is usu-
ally denoted by J�(x):

(7)

If �  0, the series converges at least on the interval [0, �). Also, for the second
exponent r2 � �� we obtain, in exactly the same manner,

(8)

The functions J�(x) and J��(x) are called Bessel functions of the first kind of order �
and ��, respectively. Depending on the value of �, (8) may contain negative powers
of x and hence converges on (0, �).*

Now some care must be taken in writing the general solution of (1). When � � 0,
it is apparent that (7) and (8) are the same. If � � 0 and r1 � r2 � � � (��) � 2�
is not a positive integer, it follows from Case I of Section 6.2 that J�(x) and J��(x) are
linearly independent solutions of (1) on (0, �), and so the general solution on the
interval is y � c1J�(x) � c2J��(x). But we also know from Case II of Section 6.2 that
when r1 � r2 � 2� is a positive integer, a second series solution of (1) may exist. In this
second case we distinguish two possibilities. When � � m � positive integer, J�m(x)
defined by (8) and Jm(x) are not linearly independent solutions. It can be shown that J�m

is a constant multiple of Jm (see Property (i) on page 245). In addition, r1 � r2 � 2�
can be a positive integer when � is half an odd positive integer. It can be shown in this

J�%(x) � �
�

n�0

(�1)n

n!&(1 � % � n) �
x

2�
2n�%

.

 J%(x) � �
�

n�0

(�1)n

n!&(1 � % � n) �
x

2�
2n�%

.

y � ��
n�0 c2n x2n�%.

c2n �
(�1)n

22n�% n!(1 � %)(2 � %) 	 	 	 (n � %)&(1 � %)
�

(�1)n

22n�% n!&(1 � % � n)

&(1 � % � 2) � (2 � %)&(2 � %) � (2 � %)(1 � %)&(1 � %).

&(1 � % � 1) � (1 � %)&(1 � %)

c0 �
1

2%&(1 � %)
,

c2n �
(�1)nc0

22nn!(1 � %)(2 � %) 	 	 	 (n � %)
,    n � 1, 2, 3, . . . .

	
	

	

c6 � �
c4

22 � 3(3 � %)
� �

c0

26 � 1 �  2 � 3(1 � %)(2 � %)(3 � %)

c4 � �
c2

22 � 2(2 � %)
�

c0

24 � 1 � 2(1 � %)(2 � %)

c2 � �
c0

22 � 1 � (1 � %)
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*When we replace x by |x |, the series given in (7) and (8) converge for 0 
 |x | 
 �.



latter event that J�(x) and J��(x) are linearly independent. In other words, the general
solution of (1) on (0, �) is

(9)

The graphs of y � J0(x) and y � J1(x) are given in Figure 6.3.1.

EXAMPLE 1 Bessel’s Equation of Order 

By identifying we can see from (9) that the general solution of the

equation on (0, �) is

BESSEL FUNCTIONS OF THE SECOND KIND If � � integer, the function
defined by the linear combination

(10)

and the function J�(x) are linearly independent solutions of (1). Thus another form of
the general solution of (1) is y � c1J� (x) � c2Y�(x), provided that � � integer. As

m an integer, (10) has the indeterminate form 0�0. However, it can be shown
by L’Hôpital’s Rule that exists. Moreover, the function

and Jm(x) are linearly independent solutions of x2y� � xy� � (x2 � m2)y � 0. Hence
for any value of � the general solution of (1) on (0, �) can be written as

(11)

Y� (x) is called the Bessel function of the second kind of order �. Figure 6.3.2 shows
the graphs of Y0(x) and Y1(x).

EXAMPLE 2 Bessel’s Equation of Order 3

By identifying �2 � 9 and � � 3, we see from (11) that the general solution of the
equation x2y� � xy� � (x2 � 9)y � 0 on (0, �) is y � c1J3(x) � c2Y3(x).

DES SOLVABLE IN TERMS OF BESSEL FUNCTIONS Sometimes it is possible
to transform a differential equation into equation (1) by means of a change of vari-
able. We can then express the solution of the original equation in terms of Bessel
functions. For example, if we let t � �x, � � 0, in

(12)

then by the Chain Rule,

Accordingly, (12) becomes

dy

dx
�

dy

dt

dt

dx
� �

dy

dt
    and    

d 2y

dx2 �
d

dt �
dy

dx�
dt

dx
� �2 d 2y

dt2 .

x2y� � xy� � (a2x2 � % 2)y � 0,

y � c1J%(x) � c2Y%(x).

Ym(x) � lim
% :m

Y%(x)

 lim% :m Y%(x)
% : m,

Y% (x) �
cos %�J%(x) � J�%(x)

 sin %�

y � c1J1/2(x) � c2J�1/2(x).x2y� � xy� � (x2 � 1
4)y � 0

% 2 � 1
4 and % � 1

2,

1
2

y � c1J%(x) � c2J�%(x),    % � integer.
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FIGURE 6.3.1 Bessel functions of
the first kind for n � 0, 1, 2, 3, 4
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FIGURE 6.3.2 Bessel functions of
the second kind for n � 0, 1, 2, 3, 4

� t

��
2

�2 d 2y

dt 2 � � t

���
dy

dt
� (t2 � % 2)y � 0    or    t2 d 2y

dt2 � t 
dy

dt
� (t2 � % 2)y � 0.

The last equation is Bessel’s equation of order � with solution y � c1J�(t) � c2Y�(t). By
resubstituting t � �x in the last expression, we find that the general solution of (12) is

(13)y � c1J%(�x) � c2Y%(�x).



Equation (12), called the parametric Bessel equation of order �, and its general
solution (13) are very important in the study of certain boundary-value problems
involving partial differential equations that are expressed in cylindrical coordinates.

Another equation that bears a resemblance to (1) is the modified Bessel equa-
tion of order �,

(14)

This DE can be solved in the manner just illustrated for (12). This time if we let
t � ix, where i2 � �1, then (14) becomes

Because solutions of the last DE are J�(t) and Y�(t), complex-valued solutions of (14)
are J�(ix) and Y�(ix). A real-valued solution, called the modified Bessel function of
the first kind of order �, is defined in terms of J�(ix):

(15)

See Problem 21 in Exercises 6.3. Analogous to (10), the modified Bessel function of
the second kind of order � � integer is defined to be

(16)

and for integer � � n,

Because I� and K� are linearly independent on the interval (0, �) for any value of v,
the general solution of (14) is

(17)

Yet another equation, important because many DEs fit into its form by appro-
priate choices of the parameters, is

(18)

Although we shall not supply the details, the general solution of (18),

(19)

can be found by means of a change in both the independent and the dependent

variables: If p is not an integer, then Yp in (19) can be

replaced by J�p.

EXAMPLE 3 Using (18)

Find the general solution of xy� � 3y� � 9y � 0 on (0, �).

SOLUTION By writing the given DE as

we can make the following identifications with (18):

The first and third equations imply that a � �1 and With these values the
second and fourth equations are satisfied by taking b � 6 and p � 2. From (19)

c � 1
2.

1 � 2a � 3,    b2c2 � 9,    2c � 2 � �1,    and    a2 � p2c2 � 0.

y� �
3

x
y� �

9

x
y � 0,

z � bxc, y(x) � �z

b�
a/c

w(z).

y � xa
c1Jp(bxc) � c2Yp(bxc)�,

y� �
1 � 2a

x
y� � �b2c2x2c�2 �

a2 � p2c2

x2 �y � 0,    p  0.

y � c1I%(x) � c2K% (x).

Kn(x) � lim
% :n

K%(x).

K%(x) �
�

2

I�% (x) � I% (x)

sin %�
,

I%(x) � i�% J% (ix).

t2 d 2y

dt2 � t
dy

dt
� (t2 � % 2)y � 0.

x2y� � xy� � (x2 � % 2)y � 0.
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we find that the general solution of the given DE on the interval (0, �) is

EXAMPLE 4 The Aging Spring Revisited

Recall that in Section 5.1 we saw that one mathematical model for the free undamped
motion of a mass on an aging spring is given by mx� � ke�� tx � 0, � � 0. We are
now in a position to find the general solution of the equation. It is left as a problem  

to show that the change of variables transforms the differential 
equation of the aging spring into

The last equation is recognized as (1) with � � 0 and where the symbols x
and s play the roles of y and x, respectively. The general solution of the new
equation is x � c1J0(s) � c2Y0(s). If we resubstitute s, then the general solution of
mx� � ke��tx � 0 is seen to be

See Problems 33 and 39 in Exercises 6.3.

The other model that was discussed in Section 5.1 of a spring whose character-
istics change with time was mx� � ktx � 0. By dividing through by m, we see that 

the equation is Airy’s equation y� � �2xy � 0. See Example 3 in

Section 6.1. The general solution of Airy’s differential equation can also be written
in terms of Bessel functions. See Problems 34, 35, and 40 in Exercises 6.3.

PROPERTIES We list below a few of the more useful properties of Bessel
functions of order m, m � 0, 1, 2, . . .:

(i) (ii)

(iii) (iv)

Note that Property (ii) indicates that Jm(x) is an even function if m is an even
integer and an odd function if m is an odd integer. The graphs of Y0(x) and Y1(x) in
Figure 6.3.2 illustrate Property (iv), namely, Ym(x) is unbounded at the origin. This
last fact is not obvious from (10). The solutions of the Bessel equation of order 0 can
be obtained by using the solutions y1(x) in (21) and y2(x) in (22) of Section 6.2. It can
be shown that (21) of Section 6.2 is y1(x) � J0(x), whereas (22) of that section is

The Bessel function of the second kind of order 0, Y0(x), is then defined to be the

linear combination for x � 0. That is,

where � � 0.57721566 . . . is Euler’s constant. Because of the presence of the
logarithmic term, it is apparent that Y0(x) is discontinuous at x � 0.

Y0(x) �
2

�
J0(x)
� �  ln

x

2� �
2

� �
�

k�1

(�1)k

(k!)2 �1 �
1

2
� 	 	 	 �

1

k��
x

2�
2k

,

Y0(x) �
2

�
 (� � ln 2)y1(x) �

2

�
y2(x)

y2(x) � J0(x)ln x � �
�

k�1

(�1)k

(k!)2 �1 �
1

2
� 	 	 	 �

1

k��
x

2�
2k

.

 lim
x:0�

Ym (x) � ��.Jm(0) � �0,

1,

m � 0

m � 0,

Jm(� x) � (�1)mJm(x),J�m(x) � (�1)mJm(x),

x� �
k

m
tx � 0

x(t) � c1J0�2

� B
k

m
e��t / 2� � c2Y0�2

� B
k

m
e��t / 2�.

s2 d 2x

ds2 � s
dx

ds
� s2x � 0.

s �
2

� B
k

m
e��t / 2

y � x�1[c1J2(6x1/2) � c2Y2(6x1/2)].
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NUMERICAL VALUES The first five nonnegative zeros of J0(x), J1(x), Y0(x), and
Y1(x) are given in Table 6.1. Some additional function values of these four functions
are given in Table 6.2.
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TABLE 6.2 Numerical Values of J0, J1, Y0, and Y1

x J0(x) J1(x) Y0(x) Y1(x)

0 1.0000 0.0000 — —
1 0.7652 0.4401 0.0883 �0.7812
2 0.2239 0.5767 0.5104 �0.1070
3 �0.2601 0.3391 0.3769 0.3247
4 �0.3971 �0.0660 �0.0169 0.3979
5 �0.1776 �0.3276 �0.3085 0.1479
6 0.1506 �0.2767 �0.2882 �0.1750
7 0.3001 �0.0047 �0.0259 �0.3027
8 0.1717 0.2346 0.2235 �0.1581
9 �0.0903 0.2453 0.2499 0.1043

10 �0.2459 0.0435 0.0557 0.2490
11 �0.1712 �0.1768 �0.1688 0.1637
12 0.0477 �0.2234 �0.2252 �0.0571
13 0.2069 �0.0703 �0.0782 �0.2101
14 0.1711 0.1334 0.1272 �0.1666
15 �0.0142 0.2051 0.2055 0.0211

TABLE 6.1 Zeros of J0, J1, Y0, and Y1

J0(x) J1(x) Y0(x) Y1(x)

2.4048 0.0000 0.8936 2.1971
5.5201 3.8317 3.9577 5.4297
8.6537 7.0156 7.0861 8.5960

11.7915 10.1735 10.2223 11.7492
14.9309 13.3237 13.3611 14.8974

DIFFERENTIAL RECURRENCE RELATION Recurrence formulas that relate
Bessel functions of different orders are important in theory and in applications. In the
next example we derive a differential recurrence relation.

EXAMPLE 5 Derivation Using the Series Definition

Derive the formula 

SOLUTION It follows from (7) that

xJ�% (x) � %J%(x) � xJ%�1(x).

The result in Example 5 can be written in an alternative form. Dividing
by x gives

J�% (x) �
%

x
J%(x) � �J%�1(x).

xJ�% (x) � %J% (x) � �xJ%�1(x)

xJv(x) � �  (  )2n�v
�

n�0

�

k � n � 1

(�1)n(2n � �)
–––––––––––––––
n! (1 � v � n)

x
–
2

L

� �J�(x) � x �  (  )2n���1

n�1

� (�1)n

–––––––––––––––––––––
(n � 1)! (1 � � � n)

x
–
2

L

� � �  (  )2n�v

n�0

� (�1)n

–––––––––––––––
n! (1 � � � n)

x
–
2

L � 2 �  (  )2n�v

n�0

� (�1)nn
–––––––––––––––
n! (1 � � � n)

x
–
2

L

� �J�(x) � x � � �J�(x) � xJ��1(x).  (  )2k���1

k�0

� (�1)k

–––––––––––––––
k! (2 � � � k)

x
–
2

L



This last expression is recognized as a linear first-order differential equation in J�(x).
Multiplying both sides of the equality by the integrating factor x�� then yields

(20)

It can be shown in a similar manner that

(21)

See Problem 27 in Exercises 6.3. The differential recurrence relations (20) and (21)
are also valid for the Bessel function of the second kind Y� (x). Observe that when
� � 0, it follows from (20) that

(22)

An application of these results is given in Problem 39 of Exercises 6.3.

SPHERICAL BESSEL FUNCTIONS When the order � is half an odd integer, that
is, the Bessel functions of the first kind J� (x) can be expressed in
terms of the elementary functions sin x, cos x, and powers of x. Such Bessel functions
are called spherical Bessel functions. Let’s consider the case when From (7),

In view of the property &(1 � �) � �&(�) and the fact that the values

of for n � 0, n � 1, n � 2, and n � 3 are, respectively,

In general,

Hence

Since the infinite series in the last line is the Maclaurin series for sin x, we have
shown that

(23)

It is left as an exercise to show that

(24)

See Problems 31 and 32 in Exercises 6.3.

J�1/2(x) � B
2

�x
cos x.

J1/2(x) � B
2

�x
sin x.

J1/2(x) ��
�

n�0

(�1)n

n!
(2n � 1)!

22n�1n!
1�

�x

2�
2n�1/2

� B
2

�x �
�

n�0

(�1)n

(2n � 1)!
x2n�1.

&�1 �
1

2
� n� �

(2n � 1)!

22n�1n!
1� .

&( 9
2) � &(1 � 7

2) � 7
2 &( 7

2) �
7 � 5

26 � 2!
1� �

7 � 6 � 5!

26 � 6 � 2!
1� �

7!

273!
1�.

&( 7
2) � &(1 � 5

2) � 5
2 &( 5

2) �
5 � 3

23 1� �
5 � 4 � 3 � 2 � 1

234 � 2
1� �

5!

252!
1�

&( 5
2) � &(1 � 3

2) � 3
2 &( 3

2) �
3

22 1�

&(3
2) � &(1 � 1

2) � 1
2 &( 1

2) � 1
2 1�

&(1 � 1
2 � n)

&(1
2) � 1�

J1/2(x) � �
�

n�0

(�1)n

n!&(1 � 1
2 � n) �

x

2�
2n�1/2

.

% � 1
2.

�1
2, �3

2, �5
2, . . . ,

J�0(x) � �J1(x)    and    Y �0(x) � �Y1(x).

d

dx
[x%J%(x)] � x%J% �1(x).

d

dx
[x�%J%(x)] � �x�%J%�1(x).
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6.3.2 LEGENDRE’S EQUATION

THE SOLUTION Since x � 0 is an ordinary point of Legendre’s equation (2), we
substitute the series shift summation indices, and combine series to gety � ��

k�0 ckxk ,
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� �
�

j�2
 [( j � 2)( j � 1)cj�2 � (n � j)(n � j � 1)cj]x j � 0

 (1 � x2)y� � 2xy� � n(n � 1)y � [n(n � 1)c0 � 2c2] � [(n � 1)(n � 2)c1 � 6c3]x

which implies that

or

(25)

If we let j take on the values 2, 3, 4, . . . , the recurrence relation (25) yields

and so on. Thus for at least we obtain two linearly independent power series
solutions:

(26)

Notice that if n is an even integer, the first series terminates, whereas y2(x) is an
infinite series. For example, if n � 4, then

Similarly, when n is an odd integer, the series for y2(x) terminates with xn; that is,
when n is a nonnegative integer, we obtain an nth-degree polynomial solution of
Legendre’s equation.

y1(x) � c0
1 �
4 � 5

2!
x2 �

2 � 4 � 5 � 7

4!
x4� � c0
1 � 10x2 �

35

3
x4�.

�
(n � 5)(n � 3)(n � 1)(n � 2)(n � 4)(n � 6)

7!
x7 � 	 	 	�.

y2(x) � c1
x �
(n � 1)(n � 2)

3!
x3 �

(n � 3)(n � 1)(n � 2)(n � 4)

5!
x5

�
(n � 4)(n � 2)n(n � 1)(n � 3)(n � 5)

6!
x6 � 	 	 	�

y1(x) � c0
1 �
n(n � 1)

2!
x2 �

(n � 2)n(n � 1)(n � 3)

4!
x4

� x � 
 1

c7 � �
(n � 5)(n � 6)

7 � 6
c5 � �

(n � 5)(n � 3)(n � 1)(n � 2)(n � 4)(n � 6)

7!
c1

c6 � �
(n � 4)(n � 5)

6 � 5
c4 � �

(n � 4)(n � 2)n(n � 1)(n � 3)(n � 5)

6!
c0

c5 � �
(n � 3)(n � 4)

5 � 4
c3 �

(n � 3)(n � 1)(n � 2)(n � 4)

5!
c1

c4 � �
(n � 2)(n � 3)

4 � 3
c2 �

(n � 2)n(n � 1)(n � 3)

4!
c0

cj�2 � �
(n � j)(n � j � 1)

( j � 2)( j � 1)
cj ,    j � 2, 3, 4, . . . .

c3 � �
(n � 1)(n � 2)

3!
c1

c2 � �
n(n � 1)

2!
c0

 ( j � 2)( j � 1)cj�2 � (n � j)(n � j � 1)cj � 0

 (n � 1)(n � 2)c1 � 6c3 � 0

n(n � 1)c0 � 2c2 � 0



Because we know that a constant multiple of a solution of Legendre’s equation
is also a solution, it is traditional to choose specific values for c0 or c1, depending on
whether n is an even or odd positive integer, respectively. For n � 0 we choose
c0 � 1, and for n � 2, 4, 6, . . .

whereas for n � 1 we choose c1 � 1, and for n � 3, 5, 7, . . .

For example, when n � 4, we have

LEGENDRE POLYNOMIALS These specific nth-degree polynomial solutions are
called Legendre polynomials and are denoted by Pn(x). From the series for y1(x)
and y2(x) and from the above choices of c0 and c1 we find that the first several
Legendre polynomials are

(27)

Remember, P0(x), P1(x), P2(x), P3(x), . . . are, in turn, particular solutions of the
differential equations

(28)

The graphs, on the interval [�1, 1], of the six Legendre polynomials in (27) are
given in Figure 6.3.3.

PROPERTIES You are encouraged to verify the following properties using the
Legendre polynomials in (27).

(i)

(ii) (iii)

(iv) (v)

Property (i) indicates, as is apparent in Figure 6.3.3, that Pn(x) is an even or odd
function according to whether n is even or odd.

RECURRENCE RELATION Recurrence relations that relate Legendre polynomi-
als of different degrees are also important in some aspects of their applications. We
state, without proof, the three-term recurrence relation

(29)

which is valid for k � 1, 2, 3, . . . . In (27) we listed the first six Legendre polynomials.
If, say, we wish to find P6(x), we can use (29) with k � 5. This relation expresses P6(x)
in terms of the known P4(x) and P5(x). See Problem 45 in Exercises 6.3.

(k � 1)Pk�1(x) � (2k � 1)xPk(x) � kPk�1(x) � 0,

P�n(0) � 0,  n evenPn(0) � 0,  n odd

Pn(�1) � (�1)nPn(1) � 1

Pn(�x) � (�1)nPn(x)

	
	

	
	
	

	

n � 0:

n � 1:

n � 2:

n � 3:

  (1 � x2)y � � 2xy� � 0,

 (1 � x2)y � � 2xy� � 2y � 0,

 (1 � x2)y � � 2xy� � 6y � 0,

 (1 � x2)y � � 2xy� � 12y � 0,

P0(x) � 1,           P1(x) � x,

P2(x) �
1

2
 (3x2 � 1),      P3(x) �

1

2
 (5x3 � 3x),

P4(x) �
1

8
 (35x4 � 30x2 � 3),    P5(x) �

1

8
 (63x5 � 70x3 � 15x).

y1(x) � (�1)4/2 1 � 3

2 � 4 
1 � 10x2 �
35

3
x4� �

1

8
 (35x4 � 30x2 � 3).

c1 � (�1)(n�1) /2 1 � 3 	 	 	 n

2 � 4 	 	 	 (n � 1)
.

c0 � (�1)n /2 1 � 3 	 	 	 (n � 1)

2 � 4 	 	 	 n
,
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x

y

1-1
-1

-0.5

0.5

1

-0.5 0.5

P1

P0

P2

FIGURE 6.3.3 Legendre polynomials
for n � 0, 1, 2, 3, 4, 5



Another formula, although not a recurrence relation, can generate the Legendre
polynomials by differentiation. Rodrigues’ formula for these polynomials is

(30)

See Problem 48 in Exercises 6.3.

REMARKS

(i) Although we have assumed that the parameter n in Legendre’s differential
equation (1 � x2)y� � 2xy� � n(n � 1)y � 0, represented a nonnegative inte-
ger, in a more general setting n can represent any real number. Any solution of
Legendre’s equation is called a Legendre function. If n is not a nonnegative
integer, then both Legendre functions y1(x) and y2(x) given in (26) are infinite
series convergent on the open interval (�1, 1) and divergent (unbounded) at
x � �1. If n is a nonnegative integer, then as we have just seen one of the
Legendre functions in (26) is a polynomial and the other is an infinite series
convergent for �1 
 x 
 1. You should be aware of the fact that Legendre’s
equation possesses solutions that are bounded on the closed interval [�1, 1]
only in the case when n � 0, 1, 2, . . . . More to the point, the only Legendre
functions that are bounded on the closed interval [�1, 1] are the Legendre poly-
nomials Pn(x) or constant multiples of these polynomials. See Problem 47 in
Exercises 6.3 and Problem 24 in Chapter 6 in Review.

(ii) In the Remarks at the end of Section 2.3 we mentioned the branch of math-
ematics called special functions. Perhaps a better appellation for this field of
applied mathematics might be named functions, since many of the functions
studied bear proper names: Bessel functions, Legendre functions, Airy func-
tions, Chebyshev polynomials, Gauss’s hypergeometric function, Hermite
polynomials, Jacobi polynomials, Laguerre polynomials, Mathieu functions,
Weber functions, and so on. Historically, special functions were the by-product
of necessity; someone needed a solution of a very specialized differential
equation that arose from an attempt to solve a physical problem.

Pn(x) �
1

2nn!

dn

dxn  (x2 � 1)n,    n � 0, 1, 2, . . . .
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EXERCISES 6.3 Answers to selected odd-numbered problems begin on page ANS-10.

6.3.1 BESSEL’S EQUATION

In Problems 1–6 use (1) to find the general solution of the
given differential equation on (0, �).

1.

2. x2y� � xy� � (x2 � 1)y � 0

3. 4x2y� � 4xy� � (4x2 � 25)y � 0

4. 16x2y� � 16xy� � (16x2 � 1)y � 0

5. xy� � y� � xy � 0

6.
d

dx
 [xy�] � �x �

4

x�y � 0

x2y� � xy� � �x2 � 1
9�y � 0

In Problems 7–10 use (12) to find the general solution of the
given differential equation on (0, �).

7. x2y� � xy� � (9x2 � 4)y � 0

8.

9.

10. x2y� � xy� � (2x2 � 64)y � 0

In Problems 11 and 12 use the indicated change of variable
to find the general solution of the given differential equation
on (0, �).

11. x2y� � 2xy� � �2x2y � 0; y � x�1/2v(x)

12. x2y� � (�2x2 � % 2 � 1
4)y � 0;  y � 1x v(x)

x2y� � xy� � �25x2 � 4
9�y � 0

x2y� � xy� � �36x2 � 1
4�y � 0



6.3 SPECIAL FUNCTIONS ● 251

In Problems 13–20 use (18) to find the general solution of
the given differential equation on (0, �).

13. xy� � 2y� � 4y � 0 14. xy� � 3y� � xy � 0

15. xy� � y� � xy � 0 16. xy� � 5y� � xy � 0

17. x2y� � (x2 � 2)y � 0

18. 4x2y� � (16x2 � 1)y � 0

19. xy� � 3y� � x3y � 0

20. 9x2y� � 9xy� � (x6 � 36)y � 0

21. Use the series in (7) to verify that I� (x) � i�� J� (ix) is a
real function.

22. Assume that b in equation (18) can be pure imaginary, that
is, b � �i, � � 0, i2 � �1. Use this assumption to express
the general solution of the given differential equation in
terms the modified Bessel functions In and Kn.

(a) y� � x2y � 0 (b) xy� � y� � 7x3y � 0

In Problems 23–26 first use (18) to express the general solu-
tion of the given differential equation in terms of Bessel func-
tions. Then use (23) and (24) to express the general solution in
terms of elementary functions.

23. y� � y � 0

24. x2y� � 4xy� � (x2 � 2)y � 0

25. 16x2y� � 32xy� � (x4 � 12)y � 0

26. 4x2y� � 4xy� � (16x2 � 3)y � 0

27. (a) Proceed as in Example 5 to show that

xJ��(x) � ��J�(x) � xJ��1(x).

[Hint: Write 2n � � � 2(n � �) � �.]

(b) Use the result in part (a) to derive (21).

28. Use the formula obtained in Example 5 along with
part (a) of Problem 27 to derive the recurrence relation

2�J� (x) � xJ��1(x) � xJ��1(x).

In Problems 29 and 30 use (20) or (21) to obtain the given
result.

29. 30. J�0 (x) � J�1(x) � �J1(x)

31. Proceed as on page 247 to derive the elementary form of
J�1/2(x) given in (24).

32. (a) Use the recurrence relation in Problem 28 along
with (23) and (24) to express J3/2(x), J�3/2(x), and
J5/2(x) in terms of sin x, cos x, and powers of x.

(b) Use a graphing utility to graph J1/2(x), J�1/2(x),
J3/2(x), J�3/2(x), and J5/2(x).

�x

0
rJ0(r)dr � xJ1(x)

33. Use the change of variables to show

that the differential equation of the aging spring 
mx� � ke�� tx � 0, � � 0, becomes

34. Show that is a solution of Airy’s

differential equation y� � �2xy � 0, x � 0, whenever
w is a solution of Bessel’s equation of order that
is, t � 0. [Hint: After
differentiating, substituting, and simplifying, then let

]
35. (a) Use the result of Problem 34 to express the general

solution of Airy’s differential equation for x � 0 in
terms of Bessel functions.

(b) Verify the results in part (a) using (18).

36. Use the Table 6.1 to find the first three positive eigenval-
ues and corresponding eigenfunctions of the boundary-
value problem

[Hint: By identifying 	 � �2, the DE is the parametric
Bessel equation of order zero.]

37. (a) Use (18) to show that the general solution of the
differential equation xy� � 	y � 0 on the interval
(0, �) is

(b) Verify by direct substitution that 
is a particular solution of the DE in the case 	 � 1.

Computer Lab Assignments

38. Use a CAS to graph the modified Bessel functions I0(x),
I1(x), I2(x) and K0(x), K1(x), K2(x). Compare these
graphs with those shown in Figures 6.3.1 and 6.3.2.
What major difference is apparent between Bessel func-
tions and the modified Bessel functions?

39. (a) Use the general solution given in Example 4 to
solve the IVP

Also use and along
with Table 6.1 or a CAS to evaluate coefficients.

(b) Use a CAS to graph the solution obtained in part (a)
for 0 � t � �.

Y�0(x) � �Y1(x)J�0(x) � �J1(x)

4x� � e�0.1tx � 0,  x(0) � 1,  x�(0) � �1
2.

y � 1xJ1(21x)

y � c11xJ1(21�x) � c21xY1(21�x).

y(x), y�(x) bounded as x : 0�, y(2) � 0.

xy� � y� � �xy � 0,

t � 2
3 �x3 /2.

t2w � � tw� � (t2 � 1
9)w � 0,

1
3,

y � x1 /2w(2
3 �x3 /2)

s2 d 2x

ds2 � s
dx

ds
� s2x � 0.

s �
2

� B
k

m
e�� t / 2
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40. (a) Use the general solution obtained in Problem 35 to
solve the IVP

Use a CAS to evaluate coefficients.

(b) Use a CAS to graph the solution obtained in part (a)
for 0 � t � 200.

41. Column Bending Under Its Own Weight A uniform
thin column of length L, positioned vertically with one
end embedded in the ground, will deflect, or bend away,
from the vertical under the influence of its own weight
when its length or height exceeds a certain critical value.
It can be shown that the angular deflection �(x) of the
column from the vertical at a point P(x) is a solution of
the boundary-value problem:

where E is Young’s modulus, I is the cross-sectional
moment of inertia, � is the constant linear density, and x
is the distance along the column measured from its base.
See Figure 6.3.4. The column will bend only for those
values of L for which the boundary-value problem has a
nontrivial solution.

(a) Restate the boundary-value problem by making the
change of variables t � L � x. Then use the results
of a problem earlier in this exercise set to express
the general solution of the differential equation in
terms of Bessel functions.

(b) Use the general solution found in part (a) to find a
solution of the BVP and an equation which defines
the critical length L, that is, the smallest value of
L for which the column will start to bend.

(c) With the aid of a CAS, find the critical length L
of a solid steel rod of radius r � 0.05 in., 
�g � 0.28 A lb/in., E � 2.6 � 107 lb/in.2, A � �r2,
and I � 1

4 �r4.

EI
d 2�

dx2 � #g(L � x)� � 0,  �(0) � 0, ��(L) � 0,

4x� � tx � 0,  x(0.1) � 1,  x�(0.1) � �1
2.

column of uniform cross section and hinged at both
ends, the deflection y(x) is a solution of the BVP:

(a) If the bending stiffness factor EI is proportional
to x, then EI(x) � kx, where k is a constant of
proportionality. If EI(L) � kL � M is the maxi-
mum stiffness factor, then k � M�L and so 
EI(x) � Mx�L. Use the information in Problem 37
to find a solution of

if it is known that is not zero at x � 0.

(b) Use Table 6.1 to find the Euler load P1 for the
column.

(c) Use a CAS to graph the first buckling mode y1(x)
corresponding to the Euler load P1. For simplicity
assume that c1 � 1 and L � 1.

43. Pendulum of Varying Length For the simple pendu-
lum described on page 209 of Section 5.3, suppose that
the rod holding the mass m at one end is replaced by a
flexible wire or string and that the wire is strung over a
pulley at the point of support O in Figure 5.3.3. In this
manner, while it is in motion in a vertical plane, the
mass m can be raised or lowered. In other words, the
length l(t) of the pendulum varies with time. Under
the same assumptions leading to equation (6) in Section
5.3, it can be shown* that the differential equation for
the displacement angle � is now

(a) If l increases at constant rate v and if l(0) � l0,
show that a linearization of the foregoing DE is

(31)

(b) Make the change of variables x � (l0 � vt)�v and
show that (31) becomes

(c) Use part (b) and (18) to express the general solution
of equation (31) in terms of Bessel functions.

(d) Use the general solution obtained in part (c) to solve
the initial-value problem consisting of equation (31)
and the initial conditions �(0) � �0, ��(0) � 0.
[Hints: To simplify calculations, use a further

change of variable u �
2

v
1g(l0 � vt) � 2B

g

v
x1/ 2.

d 2�

dx 2 �
2

x

d�

dx
�

g

vx
� � 0.

(l0 � vt)�� � 2v�� � g� � 0.

l�� � 2l��� � g sin � � 0.

1xY1(21�x)

M
x

L

d 2y

dx2 � Py � 0,  y(0) � 0,  y(L) � 0

EI
d 2y

dx2 � Py � 0,  y(0) � 0,  y(L) � 0.

*See Mathematical Methods in Physical Sciences, Mary Boas, John Wiley
& Sons, Inc., 1966. Also see the article by Borelli, Coleman, and Hobson
in Mathematics Magazine, vol. 58, no. 2, March 1985.

x = 0

x

θ

P(x)

ground

FIGURE 6.3.4 Beam in Problem 41

42. Buckling of a Thin Vertical Column In Example 3
of Section 5.2 we saw that when a constant vertical
compressive force, or load, P was applied to a thin
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Also, recall that (20) holds for both J1(u) and Y1(u).
Finally, the identity

will be helpful.]

(e) Use a CAS to graph the solution �(t) of the
IVP in part (d) when l0 � 1 ft, �0 � radian,
and Experiment with the graph using
different time intervals such as [0, 10], [0, 30],
and so on.

(f) What do the graphs indicate about the displacement
angle �(t) as the length l of the wire increases with
time?

6.3.2 LEGENDRE’S EQUATION

44. (a) Use the explicit solutions y1(x) and y2(x) of
Legendre’s equation given in (26) and the appropri-
ate choice of c0 and c1 to find the Legendre polyno-
mials P6(x) and P7(x).

(b) Write the differential equations for which P6(x)
and P7(x) are particular solutions.

45. Use the recurrence relation (29) and P0(x) � 1, P1(x) � x,
to generate the next six Legendre polynomials.

46. Show that the differential equation

sin �
d 2y

d� 2 � cos �
dy

d�
� n(n � 1)(sin �)y � 0

v � 1
60 ft/s.

1
10

�
2

�u
J1(u)Y2(u) � J2(u)Y1(u) �

can be transformed into Legendre’s equation by means
of the substitution x � cos �.

47. Find the first three positive values of 	 for which the
problem

has nontrivial solutions.

Computer Lab Assignments

48. For purposes of this problem ignore the list of Legendre
polynomials given on page 249 and the graphs given
in Figure 6.3.3. Use Rodrigues’ formula (30) to gener-
ate the Legendre polynomials P1(x), P2(x), . . . , P7(x).
Use a CAS to carry out the differentiations and
simplifications.

49. Use a CAS to graph P1(x), P2(x), . . . , P7(x) on the
interval [�1, 1].

50. Use a root-finding application to find the zeros of
P1(x), P2(x), . . . , P7 (x). If the Legendre polynomials
are built-in functions of your CAS, find zeros of
Legendre polynomials of higher degree. Form a con-
jecture about the location of the zeros of any Legendre
polynomial Pn(x), and then investigate to see whether it
is true.

y(0) � 0,  y(x), y�(x) bounded on [�1,1]

(1 � x2)y� � 2xy� � �y � 0,

CHAPTER 6 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-10.

In Problems 1 and 2 answer true or false without referring
back to the text.

1. The general solution of x2y� � xy� � (x2 � 1)y � 0 is
y � c1J1(x) � c2J�1(x).

2. Because x � 0 is an irregular singular point of
x3y� � xy� � y � 0, the DE possesses no solution that
is analytic at x � 0.

3. Both power series solutions of y� � ln(x � 1)y� � y � 0
centered at the ordinary point x � 0 are guaranteed
to converge for all x in which one of the following
intervals?

(a) (��, �) (b) (�1, �)

(c) (d) [�1, 1]

4. x � 0 is an ordinary point of a certain linear differential
equation. After the assumed solution isy � ��

n�0 cnxn

[�1
2,

1
2]

substituted into the DE, the following algebraic system
is obtained by equating the coefficients of x0, x1, x2,
and x3 to zero:

Bearing in mind that c0 and c1 are arbitrary, write down
the first five terms of two power series solutions of the
differential equation.

5. Suppose the power series is known
to converge at �2 and diverge at 13. Discuss whether
the series converges at �7, 0, 7, 10, and 11. Possible
answers are does, does not, might.

��
k�0 ck(x � 4)k

 20c5 � 8c4 � c3 � 2
3 c2 � 0.

 12c4 � 6c3 � c2 � 1
3 c1 � 0

 6c3 � 4c2 � c1 � 0

 2c2 � 2c1 � c0 � 0
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6. Use the Maclaurin series for sin x and cos x along with
long division to find the first three nonzero terms of a

power series in x for the function

In Problems 7 and 8 construct a linear second-order differen-
tial equation that has the given properties.

7. A regular singular point at x � 1 and an irregular
singular point at x � 0

8. Regular singular points at x � 1 and at x � �3

In Problems 9–14 use an appropriate infinite series method
about x � 0 to find two solutions of the given differential
equation.

9. 2xy� � y� � y � 0 10. y� � xy� � y � 0

11. (x � 1)y� � 3y � 0 12. y � � x2y� � x y � 0

13. xy� � (x � 2)y� � 2y � 0 14. (cos x)y� � y � 0

In Problems 15 and 16 solve the given initial-value problem.

15. y� � xy� � 2y � 0, y(0) � 3, y�(0) � �2

16. (x � 2)y� � 3y � 0, y(0) � 0, y�(0) � 1

17. Without actually solving the differential equation
(1 � 2 sin x)y� � xy � 0, find a lower bound for the
radius of convergence of power series solutions about
the ordinary point x � 0.

18. Even though x � 0 is an ordinary point of the differen-
tial equation, explain why it is not a good idea to try to
find a solution of the IVP

of the form Using power series, find a
better way to solve the problem.

In Problems 19 and 20 investigate whether x � 0 is an ordi-
nary point, singular point, or irregular singular point of
the given differential equation. [Hint: Recall the Maclaurin
series for cos x and ex.]

19. xy� � (1 � cos x)y� � x2y � 0

20. (ex � 1 � x)y� � xy � 0

21. Note that x � 0 is an ordinary point of the differential
equation y� � x2y� � 2xy � 5 � 2x � 10x3. Use the
assumption to find the general solution
y � yc � yp that consists of three power series centered
at x � 0.

22. The first-order differential equation dy�dx � x2 � y2

cannot be solved in terms of elementary functions.
However, a solution can be expressed in terms of Bessel
functions.

(a) Show that the substitution leads to the

equation u� � x2u � 0.

y � �
1

u

du

dx

y � ��
n�0 cnxn

y � ��
n�0 cnxn.

y� � xy� � y � 0,  y(1) � �6,  y�(1) � 3

f (x) �
sin x

cos x
.

(b) Use (18) in Section 6.3 to find the general solution
of u� � x2u � 0.

(c) Use (20) and (21) in Section 6.3 in the forms

and

as an aid to show that a one-parameter family of
solutions of dy�dx � x2 � y2 is given by

23. (a) Use (23) and (24) of Section 6.3 to show that

(b) Use (15) of Section 6.3 to show that

(c) Use part (b) to show that

24. (a) From (27) and (28) of Section 6.3 we know
that when n � 0, Legendre’s differential equation
(1 � x2)y� � 2xy� � 0 has the polynomial solu-
tion y � P0(x) � 1. Use (5) of Section 4.2 to show
that a second Legendre function satisfying the DE
for �1 
 x 
 1 is

(b) We also know from (27) and (28) of Section 6.3
that when n � 1, Legendre’s differential equation
(1 � x2)y� � 2xy� � 2y � 0 possesses the polyno-
mial solution y � P1(x) � x. Use (5) of Section 4.2
to show that a second Legendre function satisfying
the DE for �1 
 x 
 1 is

(c) Use a graphing utility to graph the logarithmic
Legendre functions given in parts (a) and (b).

25. (a) Use binomial series to formally show that

(b) Use the result obtained in part (a) to show that
Pn(1) � 1 and Pn(�1) � (�1)n. See Properties (ii)
and (iii) on page 249.

(1 � 2xt � t2)�1/2 � �
�

n�0
Pn(x)tn.

y �
x

2
 ln�1 � x

1 � x� � 1.

y �
1

2
 ln�1 � x

1 � x�.

K1/2(x) � B
�

2x
e�x.

I1/2(x) � B
2

�x
sinh x    and    I�1/2(x) � B

2

�x
 cosh x.

Y1/2(x) � �B
2

�x
 cos x.

y � x
J3 /4( 1

2 x2) � cJ�3 /4( 1
2 x2)

cJ1/4( 1
2 x2) � J�1/4( 1

2 x2).

J�% (x) � �
%

x
J% (x) � J%�1(x)

J�% (x) �
%

x
J% (x) � J%�1(x)



In the linear mathematical models for a physical system such as a spring/mass

system or a series electrical circuit, the right-hand member, or input, of the

differential equations

is a driving function and represents either an external force f (t) or an impressed

voltage E(t). In Section 5.1 we considered problems in which the functions f and E

were continuous. However, discontinuous driving functions are not uncommon.

For example, the impressed voltage on a circuit could be piecewise continuous and

periodic such as the “sawtooth” function shown above. Solving the differential

equation of the circuit in this case is difficult using the techniques of Chapter 4.

The Laplace transform studied in this chapter is an invaluable tool that simplifies

the solution of problems such as these.

m
d 2x

dt2 � b
dx

dt
� kx � f(t)    or    L

d 2q

dt2 � R
dq

dt
�

1

C
q � E(t)
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7.1 Definition of the Laplace Transform

7.2 Inverse Transforms and Transforms of Derivatives

7.2.1 Inverse Transforms

7.2.2 Transforms of Derivatives

7.3 Operational Properties I

7.3.1 Translation on the s-Axis

7.3.2 Translation on the t-Axis

7.4 Operational Properties II

7.4.1 Derivatives of a Transform

7.4.2 Transforms of Integrals

7.4.3 Transform of a Periodic Function

7.5 The Dirac Delta Function

7.6 Systems of Linear Differential Equations

CHAPTER 7 IN REVIEW

THE LAPLACE TRANSFORM7
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DEFINITION OF THE LAPLACE TRANSFORM

REVIEW MATERIAL
● Improper integrals with infinite limits of integration
● Partial fraction decomposition

INTRODUCTION In elementary calculus you learned that differentiation and integration are
transforms; this means, roughly speaking, that these operations transform a function into another
function. For example, the function f (x) � x2 is transformed, in turn, into a linear function and
a family of cubic polynomial functions by the operations of differentiation and integration:

and

Moreover, these two transforms possess the linearity property that the transform of a linear
combination of functions is a linear combination of the transforms. For a and b constants

and

provided that each derivative and integral exists. In this section we will examine a special type of
integral transform called the Laplace transform. In addition to possessing the linearity property the
Laplace transform has many other interesting properties that make it very useful in solving linear
initial-value problems.

�[� f (x) � � g(x)] dx � ��f (x) dx � ��g(x) dx

d

dx
 [� f (x) � � g(x)] � � f �(x) � � g�(x)

�x2 dx �
1

3
x3 � c.

d

dx
x2 � 2x

7.1

INTEGRAL TRANSFORM If f (x, y) is a function of two variables, then a definite
integral of f with respect to one of the variables leads to a function of the other vari-
able. For example, by holding y constant, we see that . Similarly, a
definite integral such as transforms a function f of the variable t into
a function F of the variable s. We are particularly interested in an integral transform,
where the interval of integration is the unbounded interval [0, �). If f (t) is defined for
t  0, then the improper integral is defined as a limit:

. (1)

If the limit in (1) exists, then we say that the integral exists or is convergent; if the
limit does not exist, the integral does not exist and is divergent. The limit in (1) will,
in general, exist for only certain values of the variable s.

A DEFINITION The function K(s, t) in (1) is called the kernel of the transform.
The choice K(s, t) � e�st as the kernel gives us an especially important integral
transform.

DEFINITION 7.1.1 Laplace Transform

Let f be a function defined for t  0. Then the integral

(2)

is said to be the Laplace transform of f, provided that the integral converges.

�{ f (t)} � ��

0
e�st f (t) dt

��

0
K(s, t) f (t) dt � lim

b : �
�b

0
K(s, t) f (t) dt

��
0 K(s, t) f (t) dt

�b
a K(s, t) f (t) dt

�2
1 2xy2 dx � 3y2
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When the defining integral (2) converges, the result is a function of s. In general
discussion we shall use a lowercase letter to denote the function being transformed
and the corresponding capital letter to denote its Laplace transform—for example,

.

EXAMPLE 1 Applying Definition 7.1.1

Evaluate .

SOLUTION From (2),

provided that s � 0. In other words, when s � 0, the exponent �sb is negative, and
as . The integral diverges for s 
 0.

The use of the limit sign becomes somewhat tedious, so we shall adopt the
notation ��0 as a shorthand for writing limb:� ( ) �b0. For example,

.

At the upper limit, it is understood that we mean as for s � 0.

EXAMPLE 2 Applying Definition 7.1.1

Evaluate .

SOLUTION From Definition 7.1.1 we have . Integrating by parts
and using s � 0, along with the result from Example 1, we obtain

.

EXAMPLE 3 Applying Definition 7.1.1

Evaluate .

SOLUTION From Definition 7.1.1 we have

The result follows from the fact that limt : � e�(s�3)t � 0 for s � 3 � 0 or
s � �3.

�
1

s � 3
, s � �3.

�
�e�(s�3)t

s � 3 �
0

�

�{e�3t} � ��

0
e�st e�3t dt � ��

0
e�(s�3)t dt

�{e�3t}

�{t} �
�te�st

s ��

0
�

1

s
��

0
e�st dt �

1

s
�{1} �

1

s �
1

s� �
1

s2

lim
t : �

te�st � 0,
�{t} � ��

0 e�st t dt

�{t}

t : �e�st : 0

�{1} � ��

0
e�st (1) dt �

�e�st

s ��

0
�

1

s
,    s � 0

b : �e�sb : 0

� lim
b : �

�e�st

s �0

b
� lim

b : �

�e�sb � 1

s
�

1

s

�{1} � ��

0
e�st(1) dt � lim

b : �
�b

0
e�st dt

�{1}

�{ f (t)} � F(s),    �{g(t)} � G(s),    �{y(t)} � Y(s)
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EXAMPLE 4 Applying Definition 7.1.1

Evaluate .

SOLUTION From Definition 7.1.1 and integration by parts we have

At this point we have an equation with on both sides of the equality.
Solving for that quantity yields the result

.

� IS A LINEAR TRANSFORM For a linear combination of functions we can write

whenever both integrals converge for s � c. Hence it follows that

. (3)

Because of the property given in (3), � is said to be a linear transform. For example,
from Examples 1 and 2

,

and from Examples 3 and 4

.

We state the generalization of some of the preceding examples by means of the
next theorem. From this point on we shall also refrain from stating any restrictions on
s; it is understood that s is sufficiently restricted to guarantee the convergence of the
appropriate Laplace transform.

THEOREM 7.1.1 Transforms of Some Basic Functions

(a)

(b) (c)

(d) (e)

(f) (g) �{cosh kt} �
s

s2 � k2�{sinh kt} �
k

s2 � k2

�{cos kt} �
s

s2 � k2�{sin kt} �
k

s2 � k2

�{eat} �
1

s � a
�{tn} �

n!

sn�1,  n � 1, 2, 3, . . .

�{1} �
1

s

�{4e�3t � 10 sin 2t} � 4�{e �3t} � 10�{sin 2t} �
4

s � 3
�

20

s2 � 4

�{1 � 5t} � �{1} � 5�{t} �
1

s
�

5

s2

�{� f (t) � �g(t)} � ��{ f (t)} � ��{g(t)} � �F(s) � �G(s)

��

0
e�st [� f (t) � �g(t)] dt � � ��

0
e�st f (t) dt � � ��

0
e�st g(t) dt

�{sin 2t} �
2

s2 � 4
,    s � 0

�{sin 2t}

lim e�st cos 2t � 0, s � 0
t:�

Laplace transform of sin 2t

�e�st sin 2t
––––––––––––

s
2
–s

2
–s

�{sin 2t} � �   e�st sin 2t dt �

�{sin 2t}.

�   � �   e�st cos 2t dt
�

0

�

0

�

0

�e�st cos 2t
––––––––––––

s
2
–s�   �2

–s�

2
––
s2�

4
––
s2�

[ �   e�st sin 2t dt]�

0

�

0

� �   e�st cos 2t dt,        s � 0
�

0

�{sin 2t}
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t

f(t)

bt1 t3t2a

FIGURE 7.1.2 f is of exponential 
order c.

FIGURE 7.1.1 Piecewise continuous
function

f(t)

tT

Mect ( c > 0)f(t)

et2

t

f(t)

c

ect

FIGURE 7.1.4 is not of exponential
order

et2

SUFFICIENT CONDITIONS FOR EXISTENCE OF �{f(t)} The integral that
defines the Laplace transform does not have to converge. For example, neither

nor exists. Sufficient conditions guaranteeing the existence of
are that f be piecewise continuous on [0, �) and that f be of exponential order

for t � T. Recall that a function f is piecewise continuous on [0, �) if, in any inter-
val 0 � a � t � b, there are at most a finite number of points tk, k � 1, 2, . . . ,
n (tk�1 
 tk ) at which f has finite discontinuities and is continuous on each open
interval (tk�1, tk). See Figure 7.1.1. The concept of exponential order is defined in
the following manner.

�{ f (t)}
�{et2

}�{1> t}

t

e−t

2 cos t

et

(a) (b) (c)

t

et

t

2et

f (t) f (t)
f (t)

t

FIGURE 7.1.3 Three functions of exponential order c � 1

A function such as is not of exponential order, since, as shown in
Figure 7.1.4, its graph grows faster than any positive linear power of e for t � c � 0.

A positive integral power of t is always of exponential order, since, for c � 0,

is equivalent to showing that is finite for n � 1, 2, 3, . . . . The result fol-
lows by n applications of L’Hôpital’s Rule.

limt : � tn>ect

� tn � � Mect  or  � tn

ect� � M for t � T

f (t) � et2

THEOREM 7.1.2 Sufficient Conditions for Existence

If f is piecewise continuous on [0, �) and of exponential order c, then 
exists for s � c.

�{ f (t)}

DEFINITION 7.1.2 Exponential Order

A function f is said to be of exponential order c if there exist constants 
c, M � 0, and T � 0 such that � f (t) � � Mect for all t � T.

If f is an increasing function, then the condition � f (t) � � Mect, t � T, simply
states that the graph of f on the interval (T, �) does not grow faster than the graph
of the exponential function Mect, where c is a positive constant. See Figure 7.1.2.
The functions f (t) � t, f (t) � e�t, and f (t) � 2 cos t are all of exponential order
c � 1 for t � 0, since we have, respectively,

.

A comparison of the graphs on the interval (0, �) is given in Figure 7.1.3.

� t � � et, � e�t � � et,    and    � 2 cos t � � 2et
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PROOF By the additive interval property of definite integrals we can write

.

The integral I1 exists because it can be written as a sum of integrals over intervals
on which e�st f (t) is continuous. Now since f is of exponential order, there exist
constants c, M � 0, T � 0 so that � f (t) � � Mect for t � T. We can then write

for s � c. Since converges, the integral converges 
by the comparison test for improper integrals. This, in turn, implies that I2 exists
for s c. The existence of I1 and I2 implies that exists for 
s c.

EXAMPLE 5 Transform of a Piecewise Continuous Function

Evaluate �{ f (t)} where 

SOLUTION The function f, shown in Figure 7.1.5, is piecewise continuous and of
exponential order for t � 0. Since f is defined in two pieces, �{ f (t)} is expressed as
the sum of two integrals:

We conclude this section with an additional bit of theory related to the types of
functions of s that we will, generally, be working with. The next theorem indicates that
not every arbitrary function of s is a Laplace transform of a piecewise continuous func-
tion of exponential order.

�
2e�3s

s
,    s � 0.

� 0 �
2e�st

�s ��

3

�{ f (t)} � ��

0
e�st f (t) dt � �3

0
e�st (0) dt � ��

3
e�st (2) dt

f (t) � �0,  0 � t 
 3

2,  t  3.

�
�{ f (t)} � ��

0 e�st f (t) dt�

��
T � e�st f (t) � dt��

T Me�(s�c)t dt

� I2 � � ��

T
�e�st f (t) � dt � M ��

T
e�stect dt � M ��

T
e�(s�c)t dt � M

e�(s�c)T

s � c

�{ f(t)} � �T

0
e�st f(t) dt � ��

T
e�st f(t) dt � I1 � I2

t

y

3

2

FIGURE 7.1.5 Piecewise continuous
function

THEOREM 7.1.3 Behavior of F(s) as 

If f is piecewise continuous on (0, �) and of exponential order and
F(s) � �{ f (t)}, then lim

s:�
F(s) � 0.

s : �

PROOF Since f is of exponential order, there exist constants g, M1 � 0, and T � 0
so that � f (t) � � M1egt for t � T. Also, since f is piecewise continuous for 0 � t � T, it
is necessarily bounded on the interval; that is, � f (t) � � M2 � M2e0t. If M denotes the
maximum of the set {M1, M2} and c denotes the maximum of {0, g}, then

for s � c. As , we have , and so F(s) � �{ f (t)} : 0.� F(s) � : 0s : �

� F(s) � � ��

0
e�st� f (t) � dt � M ��

0
e�stect dt � M ��

0
e�(s�c)t dt �

M

s � c
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EXERCISES 7.1 Answers to selected odd-numbered problems begin on page ANS-10.

In Problems 1–18 use Definition 7.1.1 to find �{ f (t)}.

1.

2.

3.

4.

5.

6.

7.

f (t) � �0,

cos t,

0 � t 
 �>2
t  �>2

f (t) � �sin t,

0,

0 � t 
 �

t  �

f (t) � �2t � 1,

0,

0 � t 
 1

t  1

f (t) � � t,

1,

0 � t 
 1

t  1

f (t) � �4,

0,

0 � t 
 2

t  2

f (t) � ��1,

1,

0 � t 
 1

t  1

9.

FIGURE 7.1.7 Graph for Problem 8

FIGURE 7.1.8 Graph for Problem 9

FIGURE 7.1.9 Graph for Problem 10

t

f(t)
(2, 2)

1

1

FIGURE 7.1.6 Graph for Problem 7

t

f(t)
(2, 2)

1

1

t

f(t)

1

1

f(t)

a

c

b t

8.

10.

11. f (t) � et�7 12. f (t) � e�2t�5

13. f (t) � te4t 14. f (t) � t2e�2t

15. f (t) � e�t sin t 16. f (t) � et cos t

17. f (t) � t cos t 18. f (t) � t sin t

In Problems 19–36 use Theorem 7.1.1 to find �{ f (t)}.

19. f (t) � 2t4 20. f (t) � t5

21. f (t) � 4t � 10 22. f (t) � 7t � 3

23. f (t) � t2 � 6t � 3 24. f (t) � �4t2 � 16t � 9

25. f (t) � (t � 1)3 26. f (t) � (2t � 1)3

27. f (t) � 1 � e4t 28. f (t) � t2 � e�9t � 5

29. f (t) � (1 � e2t)2 30. f (t) � (et � e�t)2

31. f (t) � 4t2 � 5 sin 3t 32. f (t) � cos 5t � sin 2t

33. f (t) � sinh kt 34. f (t) � cosh kt

35. f (t) � et sinh t 36. f (t) � e�t cosh t

In Problems 37–40 find �{ f (t)} by first using a trigono-
metric identity.

37. f (t) � sin 2t cos 2t 38. f (t) � cos2t

39. f (t) � sin(4t � 5) 40.

41. One definition of the gamma function is given by the
improper integral &(�) � ��

0 t��1e�t dt, � � 0.

f (t) � 10 cos�t �
�

6�

REMARKS

(i) Throughout this chapter we shall be concerned primarily with functions
that are both piecewise continuous and of exponential order. We note, however,
that these two conditions are sufficient but not necessary for the existence of a
Laplace transform. The function f (t) � t�1/2 is not piecewise continuous on
the interval [0, �), but its Laplace transform exists. See Problem 42 in
Exercises 7.1.

(ii) As a consequence of Theorem 7.1.3 we can say that functions of s such as
F1(s) � 1 and F2(s) � s�(s � 1) are not the Laplace transforms of piecewise 
continuous functions of exponential order, since F1(s) 0 and F2(s) 0 as

. But you should not conclude from this that F1(s) and F2(s) are not Laplace
transforms. There are other kinds of functions.
s : �

:/:/
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(a) Show that &(a � 1) � a&(a).

(b) Show that .

42. Use the fact that and Problem 41 to find the
Laplace transform of

(a) f (t) � t�1/2 (b) f (t) � t1/2 (c) f (t) � t3/2.

Discussion Problems

43. Make up a function F(t) that is of exponential order but
where f (t) � F�(t) is not of exponential order. Make up
a function f that is not of exponential order but whose
Laplace transform exists.

44. Suppose that for s c1 and that
for s c2. When does 

45. Figure 7.1.4 suggests, but does not prove, that the func-
tion is not of exponential order. How doesf (t) � et 2

�{f1(t) � f2(t)} � F1(s) � F2(s)?

��{ f2(t)} � F2(s)
��{ f1(t)} � F1(s)

&(1
2) � 1�

�{t�} �
&(� � 1)

s��1 , � � �1

the observation that for and t
sufficiently large, show that for any c?

46. Use part (c) of Theorem 7.1.1 to show that

�{e(a�ib)t} � , where a and b are real

and i2 � �1. Show how Euler’s formula (page 134) can
then be used to deduce the results

.

47. Under what conditions is a linear function
f (x) � mx � b, m � 0, a linear transform?

48. The proof of part (b) of Theorem 7.1.1 requires
the use of mathematical induction. Show that if
�{tn�1} � (n � 1)!�sn is assumed to be true, then
�{tn} � n!�sn�1 follows.

�{eat sin bt} �
b

(s � a)2 � b2

�{eat cos bt} �
s � a

(s � a)2 � b2

s � a � ib

(s � a)2 � b2

et 2
� Mect

M � 0t2 � ln M � ct,

INVERSE TRANSFORMS AND TRANSFORMS

OF DERIVATIVES

REVIEW MATERIAL
● Partial fraction decomposition
● See the Student Resource and Solutions Manual

INTRODUCTION In this section we take a few small steps into an investigation of how
the Laplace transform can be used to solve certain types of equations for an unknown function.
We begin the discussion with the concept of the inverse Laplace transform or, more precisely,
the inverse of a Laplace transform F(s). After some important preliminary background material
on the Laplace transform of derivatives f �(t), f ��(t), . . . , we then illustrate how both the Laplace
transform and the inverse Laplace transform come into play in solving some simple ordinary
differential equations.

7.2

Transform Inverse Transform

e�3t � � �1� 1

s � 3��{e�3t} �
1

s � 3

t � � �1�1

s2��{t} �
1

s2

1 � � �1�1

s��{1} �
1

s

7.2.1 INVERSE TRANSFORMS

THE INVERSE PROBLEM If F(s) represents the Laplace transform of a function
f (t), that is, , we then say f (t) is the inverse Laplace transform of
F(s) and write . For example, from Examples 1, 2, and 3 of
Section 7.1 we have, respectively,

f(t) � � �1{F(s)}
�{ f(t)} � F(s)
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We shall see shortly that in the application of the Laplace transform to equa-
tions we are not able to determine an unknown function f (t) directly; rather, we are
able to solve for the Laplace transform F(s) of f (t); but from that knowledge
we ascertain f by computing . The idea is simply this: Suppose

is a Laplace transform; find a function f (t) such that 

We shall show how to solve this last problem in Example 2.
For future reference the analogue of Theorem 7.1.1 for the inverse transform is

presented as our next theorem.

�{f(t)} � F(s).F(s) �
�2s � 6

s2 � 4

f (t) � � �1{F(s)}

THEOREM 7.2.1 Some Inverse Transforms

(a)

(b) (c)

(d) (e)

(f) (g) cosh kt � � �1� s

s2 � k2�sinh kt � � �1� k

s2 � k2�

cos kt � � �1� s

s2 � k2�sin kt � � �1� k

s2 � k2�

eat � � �1� 1

s � a�tn � � �1� n!

sn�1�,  n � 1, 2, 3, . . .

1 � � �1�1

s�

In evaluating inverse transforms, it often happens that a function of s under con-
sideration does not match exactly the form of a Laplace transform F(s) given in a
table. It may be necessary to “fix up” the function of s by multiplying and dividing
by an appropriate constant.

EXAMPLE 1 Applying Theorem 7.2.1

Evaluate (a) (b) .

SOLUTION (a) To match the form given in part (b) of Theorem 7.2.1, we identify
n � 1 � 5 or n � 4 and then multiply and divide by 4!:

.

(b) To match the form given in part (d) of Theorem 7.2.1, we identify k2 � 7, so
. We fix up the expression by multiplying and dividing by :

.

� �1 IS A LINEAR TRANSFORM The inverse Laplace transform is also a linear
transform; that is, for constants a and b

, (1)

where F and G are the transforms of some functions f and g. Like (2) of Section 7.1,
(1) extends to any finite linear combination of Laplace transforms.

� �1{�F(s) � �G(s)} � �� �1{F(s)} � �� �1{G(s)}

� �1� 1

s2 � 7� �
1

17
� �1� 17

s2 � 7� �
1

17
 sin17t

17k � 17

� �1�1

s5� �
1

4!
� �1�4!

s5� �
1

24
t4

� �1� 1

s2 � 7�� �1�1

s5�
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EXAMPLE 2 Termwise Division and Linearity

Evaluate .

SOLUTION We first rewrite the given function of s as two expressions by means of
termwise division and then use (1):

� �1��2s � 6

s2 � 4 �

(2)

termwise
division

parts (e) and (d)
of Theorem 7.2.1 with k � 2

linearity and fixing
up constants

�2s � 6
–––––––––
s2 � 4

6
–
2

��1{ } � ��1{
� �2 cos 2t � 3 sin 2t.

} � �2��1{ ��1{} �
�2s

–––––––
s2 � 4

6
–––––––
s2 � 4 }2

–––––––
s2 � 4

s
–––––––
s2 � 4

�

PARTIAL FRACTIONS Partial fractions play an important role in finding inverse
Laplace transforms. The decomposition of a rational expression into component frac-
tions can be done quickly by means of a single command on most computer algebra
systems. Indeed, some CASs have packages that implement Laplace transform and
inverse Laplace transform commands. But for those of you without access to such
software, we will review in this and subsequent sections some of the basic algebra in
the important cases in which the denominator of a Laplace transform F(s) contains
distinct linear factors, repeated linear factors, and quadratic polynomials with no real
factors. Although we shall examine each of these cases as this chapter develops, it
still might be a good idea for you to consult either a calculus text or a current precal-
culus text for a more comprehensive review of this theory.

The following example illustrates partial fraction decomposition in the case
when the denominator of F(s) is factorable into distinct linear factors.

EXAMPLE 3 Partial Fractions: Distinct Linear Factors

Evaluate .

SOLUTION There exist unique real constants A, B, and C so that

Since the denominators are identical, the numerators are identical:

. (3)

By comparing coefficients of powers of s on both sides of the equality, we know that
(3) is equivalent to a system of three equations in the three unknowns A, B, and C.
However, there is a shortcut for determining these unknowns. If we set s � 1, s � 2,
and s � �4 in (3), we obtain, respectively,

,

and so , , and . Hence the partial fraction decomposition is

, (4)
s2 � 6s � 9

(s � 1)(s � 2)(s � 4)
� �

16>5
s � 1

�
25>6
s � 2

�
1>30

s � 4

C � 1
30B � 25

6A � �16
5

16 � A(�1)(5),  25 � B(1)(6),  and  1 � C(�5)(�6)

s2 � 6s � 9 � A(s � 2)(s � 4) � B(s � 1)(s � 4) � C(s � 1)(s � 2)

�
A(s � 2)(s � 4) � B(s � 1)(s � 4) � C(s � 1)(s � 2)

(s � 1)(s � 2)(s � 4)
.

s2 � 6s � 9

(s � 1)(s � 2)(s � 4)
�

A

s � 1
�

B

s � 2
�

C

s � 4

� �1� s2 � 6s � 9

(s � 1)(s � 2)(s � 4)�
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and thus, from the linearity of ��1 and part (c) of Theorem 7.2.1,

� �1� s2 � 6s � 9

(s � 1)(s � 2)(s � 4)� � �
16

5
� �1� 1

s � 1� �
25

6
� �1� 1

s � 2� �
1

30
� �1� 1

s � 4�

. (5)

7.2.2 TRANSFORMS OF DERIVATIVES

TRANSFORM A DERIVATIVE As was pointed out in the introduction to this
chapter, our immediate goal is to use the Laplace transform to solve differential
equations. To that end we need to evaluate quantities such as and

. For example, if f � is continuous for t  0, then integration by parts
gives

or (6)

Here we have assumed that as . Similarly, with the aid of (6),

or (7)

In like manner it can be shown that

(8)

The recursive nature of the Laplace transform of the derivatives of a function f should
be apparent from the results in (6), (7), and (8). The next theorem gives the Laplace
transform of the nth derivative of f. The proof is omitted.

�{ f �(t)} � s3F(s) � s2f (0) � sf�(0) � f �(0).

�{ f �(t)} � s2F(s) � sf (0) � f�(0).

; from (6)� s[sF(s) � f (0)] � f �(0)

� �f�(0) � s�{ f�(t)}

�{ f �(t)} � ��

0
e�st f �(t) dt � e�st f �(t) ��

0
� s ��

0
e�st f �(t) dt

t : �e�st f(t) : 0

�{ f�(t)} � sF(s) � f (0).

� �f (0) � s�{ f (t)}

�{ f�(t)} � ��

0
e�st f �(t) dt � e�st f (t) �0

�

� s ��

0
e�st f (t) dt

�{d2y>dt2}
�{dy>dt}

� �
16

5
et �

25

6
e2t �

1

30
e�4t

THEOREM 7.2.2 Transform of a Derivative

If f, f �, . . . , f (n�1) are continuous on [0, �) and are of exponential order and if
f (n)(t) is piecewise continuous on [0, �), then

where .F(s) � �{ f(t)}

�{ f (n)(t)} � snF(s) � sn�1f(0) � sn�2f �(0) � 	 	 	 � f (n�1)(0),

SOLVING LINEAR ODEs It is apparent from the general result given in
Theorem 7.2.2 that depends on and the n � 1 derivatives
of y(t) evaluated at This property makes the Laplace transform ideally suited
for solving linear initial-value problems in which the differential equation has con-
stant coefficients. Such a differential equation is simply a linear combination of terms
y, y�, y�, . . . , y(n):

y(0) � y0, y�(0) � y1, . . . , y(n�1)(0) � yn�1,

an

dny

dtn � an�1
dn�1y

dtn�1 � 	 	 	 � a0y � g(t),

t � 0.
Y(s) � �{y(t)}�{dny>dtn}
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where the ai, i � 0, 1, . . . , n and y0, y1, . . . , yn�1 are constants. By the linearity prop-
erty the Laplace transform of this linear combination is a linear combination of
Laplace transforms:

(9)

From Theorem 7.2.2, (9) becomes

,
(10)

where � G(s). In other words, the Laplace transform of
a linear differential equation with constant coefficients becomes an algebraic equa-
tion in Y(s). If we solve the general transformed equation (10) for the symbol Y(s), we
first obtain P(s)Y(s) � Q(s) � G(s) and then write

, (11)

where is a polynomial in s of degree
less than or equal to consisting of the various products of the coefficients
ai, . . . , n and the prescribed initial conditions y0, y1, . . . , yn�1, and G(s) is
the Laplace transform of g(t).* Typically, we put the two terms in (11) over the least
common denominator and then decompose the expression into two or more
partial fractions. Finally, the solution y(t) of the original initial-value problem is

, where the inverse transform is done term by term.
The procedure is summarized in the following diagram.

The next example illustrates the foregoing method of solving DEs, as well as
partial fraction decomposition in the case when the denominator of Y(s) contains a
quadratic polynomial with no real factors.

Apply Laplace Transform
Find unknown y(t)
that satisfies DE
and initial conditions

Transformed DE
becomes an algebraic

equation in Y(s)

Solve transformed
equation for Y(s)

Solution y(t)
of original IVP

Apply Inverse Transform −1

y(t) � � �1{Y(s)}

i � 1,
n � 1

P(s) � ansn � an�1sn�1 � 	 	 	 � a0, Q(s)

Y(s) �
Q(s)

P(s)
�

G(s)

P(s)

�{y(t)} � Y(s) and �{g(t)}

 � an�1[sn�1Y(s) � sn�2y(0) � 	 	 	 � y(n�2)(0)] � 	 	 	 � a0Y(s) � G(s)

an [snY(s) � sn�1y(0) � 	 	 	 � y(n�1)(0)]

an��dny

dtn� � an�1��d n�1y

dtn�1� � 	 	 	 � a0 �{y} � �{g(t)}.

*The polynomial P(s) is the same as the nth-degree auxiliary polynomial in (12) in Section 4.3 with the
usual symbol m replaced by s.

EXAMPLE 4 Solving a First-Order IVP

Use the Laplace transform to solve the initial-value problem

.

SOLUTION We first take the transform of each member of the differential 
equation:

. (12)��dy

dt� � 3�{y} � 13�{sin 2t}

dy

dt
� 3y � 13 sin 2t,  y(0) � 6
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From (6), , and from part (d) of Theorem 7.1.1,
, so (12) is the same as

.

Solving the last equation for Y(s), we get

. (13)

Since the quadratic polynomial s2 � 4 does not factor using real numbers, its
assumed numerator in the partial fraction decomposition is a linear polynomial in s:

.

Putting the right-hand side of the equality over a common denominator and equating
numerators gives 6s2 � 50 � A(s2 � 4) � (Bs � C)(s � 3). Setting s � �3 then
immediately yields A � 8. Since the denominator has no more real zeros, we equate
the coefficients of s2 and s: 6 � A � B and 0 � 3B � C. Using the value of A in the
first equation gives B � �2, and then using this last value in the second equation gives
C � 6. Thus

.

We are not quite finished because the last rational expression still has to be written as
two fractions. This was done by termwise division in Example 2. From (2) of that
example,

.

It follows from parts (c), (d), and (e) of Theorem 7.2.1 that the solution of the initial-
value problem is y(t) � 8e�3t � 2 cos 2t � 3 sin 2t.

y(t) � 8� �1� 1

s � 3� � 2� �1� s

s2 � 4� � 3� �1� 2

s2 � 4�

Y(s) �
6s2 � 50

(s � 3)(s2 � 4)
�

8

s � 3
�

�2s � 6

s2 � 4

6s2 � 50

(s � 3)(s2 � 4)
�

A

s � 3
�

Bs � C

s2 � 4

Y(s) �
6

s � 3
�

26

(s � 3)(s2 � 4)
�

6s2 � 50

(s � 3)(s2 � 4)

sY(s) � 6 � 3Y(s) �
26

s2 � 4
  or  (s � 3)Y(s) � 6 �

26

s2 � 4

�{sin 2t} � 2>(s2 � 4)
�{dy>dt} � sY(s) � y(0) � sY(s) � 6

EXAMPLE 5 Solving a Second-Order IVP

Solve y� � 3y� � 2y � e�4t, y(0) � 1, y�(0) � 5.

SOLUTION Proceeding as in Example 4, we transform the DE. We take the sum of
the transforms of each term, use (6) and (7), use the given initial conditions, use (c) of
Theorem 7.2.1, and then solve for Y(s):

. (14)

The details of the partial fraction decomposition of Y(s) have already been carried out
in Example 3. In view of the results in (4) and (5) we have the solution of the initial-
value problem

.y(t) � � �1{Y(s)} � �
16

5
et �

25

6
e2t �

1

30
e�4t

Y(s) �
s � 2

s2 � 3s � 2
�

1

(s2 � 3s � 2)(s � 4)
�

s2 � 6s � 9

(s � 1)(s � 2)(s � 4)

 (s2 � 3s � 2)Y(s) � s � 2 �
1

s � 4

s2Y(s) � sy(0) � y�(0) � 3[sY(s) � y(0)] � 2Y(s) �
1

s � 4

��d 2y

dt 2� � 3��dy

dt� � 2�{y} � �{e�4t}
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Examples 4 and 5 illustrate the basic procedure for using the Laplace transform
to solve a linear initial-value problem, but these examples may appear to demonstrate
a method that is not much better than the approach to such problems outlined in
Sections 2.3 and 4.3–4.6. Don’t draw any negative conclusions from only two
examples. Yes, there is a lot of algebra inherent in the use of the Laplace transform,
but observe that we do not have to use variation of parameters or worry about the
cases and algebra in the method of undetermined coefficients. Moreover, since
the method incorporates the prescribed initial conditions directly into the solution,
there is no need for the separate operation of applying the initial conditions to the
general solution of the DE to find specific
constants in a particular solution of the IVP.

The Laplace transform has many operational properties. In the sections that fol-
low we will examine some of these properties and see how they enable us to solve
problems of greater complexity.

y � c1y1 � c2y2 � 	 	 	 � cn yn � yp

s2 � 6s � 9
––––––––––––––––––––––
(s � 1)(s � 2)(s � 4)

1–––
30

�
s��4

 � � C.and

s2 � 6s � 9
––––––––––––––––––––––
(s � 1)(s � 2)(s � 4)

25–––
6

�
s�2

 � � B

REMARKS

(i) The inverse Laplace transform of a function F(s) may not be unique; in other
words, it is possible that and yet f1 � f2. For our purposes
this is not anything to be concerned about. If f1 and f2 are piecewise continuous
on [0, �) and of exponential order, then f1 and f2 are essentially the same. See
Problem 44 in Exercises 7.2. However, if f1 and f2 are continuous on [0, �) and

, then f1 � f2 on the interval.

(ii) This remark is for those of you who will be required to do partial fraction
decompositions by hand. There is another way of determining the coefficients
in a partial fraction decomposition in the special case when is
a rational function of s and the denominator of F is a product of distinct linear
factors. Let us illustrate by reexamining Example 3. Suppose we multiply both
sides of the assumed decomposition

(15)

by, say, s � 1, simplify, and then set s � 1. Since the coefficients of B and C on
the right-hand side of the equality are zero, we get

.

Written another way,

,

where we have shaded, or covered up, the factor that canceled when the left-
hand side was multiplied by s � 1. Now to obtain B and C, we simply evaluate
the left-hand side of (15) while covering up, in turn, s � 2 and s � 4:

s2 � 6s � 9

(s � 1) (s � 2)(s � 4) �
s�1

� �
16

5
� A

s2 � 6s � 9

(s � 2)(s � 4) �
s�1

� A    or    A � �
16

5

s2 � 6s � 9

(s � 1)(s � 2)(s � 4)
�

A

s � 1
�

B

s � 2
�

C

s � 4

�{ f(t)} � F(s)

�{ f1(t)} � �{ f2(t)}

�{ f1(t)} � �{ f2(t)}
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The desired decomposition (15) is given in (4). This special technique for
determining coefficients is naturally known as the cover-up method.

(iii) In this remark we continue our introduction to the terminology of
dynamical systems. Because of (9) and (10) the Laplace trans-
form is well adapted to linear dynamical systems. The polynomial

in (11) is the total coefficient of Y(s) in
(10) and is simply the left-hand side of the DE with the derivatives dky�dtk

replaced by powers sk, k � 0, 1, . . . , n. It is usual practice to call the recipro-
cal of P(s)—namely, W(s) � 1�P(s)—the transfer function of the system
and write (11) as

. (16)

In this manner we have separated, in an additive sense, the effects on the response
that are due to the initial conditions (that is, W(s)Q(s)) from those due to the
input function g (that is, W(s)G(s)). See (13) and (14). Hence the response y(t) of
the system is a superposition of two responses:

.

If the input is g(t) � 0, then the solution of the problem is
. This solution is called the zero-input response of the

system. On the other hand, the function is the output due
to the input g(t). Now if the initial state of the system is the zero state (all the
initial conditions are zero), then Q(s) � 0, and so the only solution of the initial-
value problem is y1(t). The latter solution is called the zero-state response of the
system. Both y0(t) and y1(t) are particular solutions: y0(t) is a solution of the IVP
consisting of the associated homogeneous equation with the given initial condi-
tions, and y1(t) is a solution of the IVP consisting of the nonhomogeneous equa-
tion with zero initial conditions. In Example 5 we see from (14) that the transfer
function is W(s) � 1�(s2 � 3s � 2), the zero-input response is

,

and the zero-state response is

.

Verify that the sum of y0(t) and y1(t) is the solution y(t) in Example 5 and that
y0(0) � 1, , whereas y1(0) � 0, .y�1(0) � 0y�0(0) � 5

y1(t) � � �1� 1

(s � 1)(s � 2)(s � 4)� � �
1

5
et �

1

6
e2t �

1

30
e�4t

y0(t) � � �1� s � 2

(s � 1)(s � 2)� � �3et � 4e2t

y1(t) � � �1{W(s)G(s)}
y0(t) � � �1{W(s)Q(s)}

y(t) � � �1{W(s)Q(s)} � � �1{W(s)G(s)} � y0(t) � y1(t)

Y(s) � W(s)Q(s) � W(s)G(s)

P(s) � ansn � an�1sn�1 � 	 	 	 � a0

EXERCISES 7.2 Answers to selected odd-numbered problems begin on page ANS-10.

7.2.1 INVERSE TRANSFORMS

In Problems 1–30 use appropriate algebra and Theorem 7.2.1
to find the given inverse Laplace transform.

1. 2.

3. 4.

5. 6. � �1�(s � 2)2

s3 �� �1�(s � 1)3

s4 �

� �1��2

s
�

1

s3�
2

�� �1�1

s2 �
48

s5�

� �1�1

s4�� �1�1

s3�

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. � �1� s � 1

s2 � 2�� �1�2s � 6

s2 � 9�

� �1� 1

4s2 � 1�� �1� 4s

4s2 � 1�

� �1� 10s

s2 � 16�� �1� 5

s2 � 49�

� �1� 1

5s � 2�� �1� 1

4s � 1�

� �1�4

s
�

6

s5 �
1

s � 8�� �1�1

s2 �
1

s
�

1

s � 2�
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17. 18.

19. 20.

21.

22.

23.

24.

25. 26.

27. 28.

29. 30.

7.2.2 TRANSFORMS OF DERIVATIVES

In Problems 31–40 use the Laplace transform to solve the
given initial-value problem.

31.

32.

33. y� � 6y � e4t, y(0) � 2

34. y� � y � 2 cos 5t, y(0) � 0

35. y� � 5y� � 4y � 0, y(0) � 1, y�(0) � 0

36. y� � 4y� � 6e3t � 3e�t, y(0) � 1, y�(0) � �1

37.

38. y� � 9y � et, y(0) � 0, y�(0) � 0

y� � y � 22 sin22t,  y(0) � 10,  y�(0) � 0

2
dy

dt
� y � 0,  y(0) � �3

dy

dt
� y � 1,  y(0) � 0

� �1� 6s � 3

s4 � 5s2 � 4�� �1� 1

(s2 � 1)(s2 � 4)�

� �1� 1

s4 � 9�� �1� 2s � 4

(s2 � s)(s2 � 1)�

� �1� s

(s � 2)(s2 � 4)�� �1� 1

s3 � 5s�

� �1� s2 � 1

s(s � 1)(s � 1)(s � 2)�

� �1� s

(s � 2)(s � 3)(s � 6)�

� �1� s � 3

�s � 13 ��s � 13 ��

� �1� 0.9s

(s � 0.1)(s � 0.2)�

� �1� 1

s2 � s � 20�� �1� s

s2 � 2s � 3�

� �1� s � 1

s2 � 4s�� �1� 1

s2 � 3s� 39. 2y� � 3y� � 3y� � 2y � e�t, y(0) � 0, y�(0) � 0,
y�(0) � 1

40. y� � 2y� � y� � 2y � sin 3t, y(0) � 0, y�(0) � 0,
y�(0) � 1

The inverse forms of the results in Problem 46 in
Exercises 7.1 are

In Problems 41 and 42 use the Laplace transform and these
inverses to solve the given initial-value problem.

41. y� � y � e�3t cos 2t, y(0) � 0

42. y� � 2y� � 5y � 0, y(0) � 1, y�(0) � 3

Discussion Problems

43. (a) With a slight change in notation the transform in (6)
is the same as

With f (t) � teat, discuss how this result in conjunc-
tion with (c) of Theorem 7.1.1 can be used to evalu-
ate .

(b) Proceed as in part (a), but this time discuss how to
use (7) with f (t) � t sin kt in conjunction with (d)
and (e) of Theorem 7.1.1 to evaluate .

44. Make up two functions f1 and f2 that have the same
Laplace transform. Do not think profound thoughts.

45. Reread Remark (iii) on page 269. Find the zero-input
and the zero-state response for the IVP in Problem 36.

46. Suppose f (t) is a function for which f �(t) is piecewise
continuous and of exponential order c. Use results in
this section and Section 7.1 to justify

,

where F(s) � �{ f (t)}. Verify this result with
f (t) � cos kt.

f (0) � lim
s: �

sF(s)

�{t sin kt}

�{teat}

�{ f �(t)} � s�{ f (t)} � f (0).

� �1� b

(s � a)2 � b2� � eat  sin bt.

� �1� s � a

(s � a)2 � b2� � eat cos bt

OPERATIONAL PROPERTIES I

REVIEW MATERIAL
● Keep practicing partial fraction decomposition
● Completion of the square

INTRODUCTION It is not convenient to use Definition 7.1.1 each time we wish to find the Laplace
transform of a function f (t). For example, the integration by parts involved in evaluating, say,

is formidable, to say the least. In this section and the next we present several labor-
saving operational properties of the Laplace transform that enable us to build up a more extensive list of
transforms (see the table in Appendix III) without having to resort to the basic definition and integration.

�{ett2 sin 3t}

7.3
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7.3.1 TRANSLATION ON THE s-AXIS

A TRANSLATION Evaluating transforms such as and is
straightforward provided that we know (and we do) and . In
general, if we know the Laplace transform of a function f, , it is pos-
sible to compute the Laplace transform of an exponential multiple of f , that is,

with no additional effort other than translating, or shifting, the transform
F(s) to This result is known as the first translation theorem or first
shifting theorem.

F(s � a).
�{eat f (t)},

�{ f (t)} � F(s)
�{cos 4t}�{t 3}

�{e�2t cos 4t}�{e5tt 3}

THEOREM 7.3.1 First Translation Theorem

If and a is any real number, then

.�{eat f(t)} � F(s � a)

�{ f(t)} � F(s)

PROOF The proof is immediate, since by Definition 7.1.1

.

If we consider s a real variable, then the graph of F(s � a) is the graph of F(s)
shifted on the s-axis by the amount �a �. If a � 0, the graph of F(s) is shifted a units to
the right, whereas if a 
 0, the graph is shifted �a � units to the left. See Figure 7.3.1.

For emphasis it is sometimes useful to use the symbolism

,

where means that in the Laplace transform F(s) of f (t) we replace the
symbol s wherever it appears by s � a.

s : s � a

�{eat f (t)} � �{ f (t)}� s:s�a

�{eat f (t)} � ��

0
e�steat f (t) dt � ��

0
e�(s�a)t f (t) dt � F(s � a)

s

F(s)

s = a , a > 0

F

F(s − a)

FIGURE 7.3.1 Shift on s-axis

EXAMPLE 1 Using the First Translation Theorem

Evaluate (a) (b) .

SOLUTION The results follow from Theorems 7.1.1 and 7.3.1.

(a)

(b)

INVERSE FORM OF THEOREM 7.3.1 To compute the inverse of F(s � a), we
must recognize F(s), find f (t) by taking the inverse Laplace transform of F(s), and
then multiply f (t) by the exponential function eat. This procedure can be summarized
symbolically in the following manner:

, (1)

where .
The first part of the next example illustrates partial fraction decomposition in the

case when the denominator of Y(s) contains repeated linear factors.

f(t) � � �1{F(s)}

� �1{F(s � a)} � � �1{F(s) �s:s�a} � eat f (t)

�{e�2t cos 4t} � �{cos 4t}� s:s�(�2) �
s

s2 � 16 �s:s�2
�

s � 2

(s � 2)2 � 16

�{e5tt3} � �{t3}� s: s�5 �
3!

s4 �
s:s�5

�
6

(s � 5)4

�{e�2t cos 4t}�{e5tt 3}
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EXAMPLE 2 Partial Fractions: Repeated Linear Factors

Evaluate (a) (b) .

SOLUTION (a) A repeated linear factor is a term (s � a)n, where a is a real number
and n is a positive integer  2. Recall that if (s � a)n appears in the denominator of a
rational expression, then the assumed decomposition contains n partial fractions
with constant numerators and denominators s � a, (s � a)2, . . . , (s � a)n. Hence with
a � 3 and n � 2 we write

.

By putting the two terms on the right-hand side over a common denominator, we
obtain the numerator 2s � 5 � A(s � 3) � B, and this identity yields A � 2 and
B � 11. Therefore

(2)

and (3)

Now 1�(s � 3)2 is F(s) � 1�s2 shifted three units to the right. Since ,
it follows from (1) that

.

Finally, (3) is . (4)

(b) To start, observe that the quadratic polynomial s2 � 4s � 6 has no real zeros and
so has no real linear factors. In this situation we complete the square:

. (5)

Our goal here is to recognize the expression on the right-hand side as some Laplace
transform F(s) in which s has been replaced throughout by s � 2. What we are 
trying to do is analogous to working part (b) of Example 1 backwards. The denom-
inator in (5) is already in the correct form—that is, s2 � 2 with s replaced by s � 2.
However, we must fix up the numerator by manipulating the constants:

.
Now by termwise division, the linearity of ��1, parts (e) and (d) of Theorem 7.2.1,

and finally (1),

(6)

(7)�
1

2
e�2t cos 12 t �

12

3
e�2t sin 12t.

�
1

2
� �1� s

s2 � 2 �s:s�2� �
2

312
� �1� 12

s2 � 2 �s:s�2�

� �1� s>2 � 5> 3
s2 � 4s � 6� �

1

2
� �1� s � 2

(s � 2)2 � 2� �
2

3
� �1� 1

(s � 2)2 � 2�

s>2 � 5> 3

(s � 2)2 � 2
�

1
2 (s � 2) � 2

3

(s � 2)2 � 2
�

1

2

s � 2

(s � 2)2 � 2
�

2

3

1

(s � 2)2 � 2

1
2s � 5

3 � 1
2 (s � 2) � 5

3 � 2
2 � 1

2 (s � 2) � 2
3

s>2 � 5>3
s2 � 4s � 6

�
s>2 � 5>3

(s � 2)2 � 2

� �1� 2s � 5

(s � 3)2� � 2e3t � 11e3tt

� �1� 1

(s � 3)2� � � �1�1

s2 �
s:s�3� � e3tt

� �1{1>s2} � t

� �1� 2s � 5

(s � 3)2� � 2� �1� 1

s � 3� � 11� �1� 1

(s � 3)2�.

2s � 5

(s � 3)2 �
2

s � 3
�

11

(s � 3)2

2s � 5

(s � 3)2 �
A

s � 3
�

B

(s � 3)2

� �1� s>2 � 5>3
s2 � 4s � 6�� �1� 2s � 5

(s � 3)2�



7.3 OPERATIONAL PROPERTIES I ● 273

EXAMPLE 3 An Initial-Value Problem

Solve y� � 6y� � 9y � t2e3t, y(0) � 2, y�(0) � 17.

SOLUTION Before transforming the DE, note that its right-hand side is similar to
the function in part (a) of Example 1. After using linearity, Theorem 7.3.1, and the
initial conditions, we simplify and then solve for :

.

The first term on the right-hand side was already decomposed into individual partial
fractions in (2) in part (a) of Example 2:

.

Thus . (8)

From the inverse form (1) of Theorem 7.3.1, the last two terms in (8) are

.

Thus (8) is .y(t) � 2e3t � 11te3t � 1
12t 4e3t

� �1�1

s2 �
s:s�3� � te3t    and    � �1�4!

s5 �
s:s�3� � t 4e3t

y(t) � 2� �1� 1

s � 3� � 11� �1� 1

(s � 3)2� �
2

4!
� �1� 4!

(s � 3)5�

Y(s) �
2

s � 3
�

11

(s � 3)2 �
2

(s � 3)5

Y(s) �
2s � 5

(s � 3)2 �
2

(s � 3)5

 (s � 3)2Y(s) � 2s � 5 �
2

(s � 3)3

 (s2 � 6s � 9)Y(s) � 2s � 5 �
2

(s � 3)3

s2Y(s) � sy(0) � y�(0) � 6[sY(s) � y(0)] � 9Y(s) �
2

(s � 3)3

�{y�} � 6�{y�} � 9�{y} � �{t2e3t}

Y(s) � �{ f (t)}

EXAMPLE 4 An Initial-Value Problem

Solve y� � 4y� � 6y � 1 � e�t, y(0) � 0, y�(0) � 0.

SOLUTION

Since the quadratic term in the denominator does not factor into real linear factors, the
partial fraction decomposition for Y(s) is found to be

.

Moreover, in preparation for taking the inverse transform we already manipulated the
last term into the necessary form in part (b) of Example 2. So in view of the results
in (6) and (7) we have the solution

Y(s) �
1>6

s
�

1>3
s � 1

�
s> 2 � 5> 3

s2 � 4s � 6

Y(s) �
2s � 1

s(s � 1)(s2 � 4s � 6)

 (s2 � 4s � 6)Y(s) �
2s � 1

s(s � 1)

s2Y(s) � sy(0) � y�(0) � 4[sY(s) � y(0)] � 6Y(s) �
1

s
�

1

s � 1

�{y�} � 4�{y�} � 6�{y} � �{1} � �{e�t}
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.�
1

6
�

1

3
e�t �

1

2
e�2t cos 12t �

12

3
e�2t sin 12t

y(t) �
1

6
� �1�1

s� �
1

3
� �1� 1

s � 1� �
1

2
� �1� s � 2

(s � 2)2 � 2� �
2

312
� �1� 12

(s � 2)2 � 2�

7.3.2 TRANSLATION ON THE t-AXIS

UNIT STEP FUNCTION In engineering, one frequently encounters functions 
that are either “off ” or “on.” For example, an external force acting on a mechanical
system or a voltage impressed on a circuit can be turned off after a period of time.
It is convenient, then, to define a special function that is the number 0 (off ) up to a
certain time t � a and then the number 1 (on) after that time. This function is called
the unit step function or the Heaviside function.

DEFINITION 7.3.1 Unit Step Function

The unit step function is defined to be

�(t � a) � �0,

1,

 0 � t 
 a

   t  a.

�(t � a)

Notice that we define only on the nonnegative t-axis, since this is all
that we are concerned with in the study of the Laplace transform. In a broader sense

for t 
 a. The graph of is given in Figure 7.3.2.
When a function f defined for t  0 is multiplied by , the unit step

function “turns off ” a portion of the graph of that function. For example, consider
the function f (t) � 2t � 3. To “turn off ” the portion of the graph of f for 0 � t 
 1,
we simply form the product (2t � 3) . See Figure 7.3.3. In general, the
graph of f (t) is 0 (off ) for 0 � t 
 a and is the portion of the graph of f (on)
for t  a.

The unit step function can also be used to write piecewise-defined functions in
a compact form. For example, if we consider 0 � t 
 2, 2 � t 
 3, and t  3
and the corresponding values of and , it should be apparent
that the piecewise-defined function shown in Figure 7.3.4 is the same as

. Also, a general piecewise-defined function of
the type

(9)

is the same as

. (10)

Similarly, a function of the type

(11)

can be written

(12)f (t) � g(t)[�(t � a) � �(t � b)].

f(t) � �0,

g(t),

0,

 0 � t 
 a

 a � t 
 b

    t  b

f(t) � g(t) � g(t) �(t � a) � h(t) �(t � a)

f(t) � �g(t),

h(t),

 0 � t 
 a

    t  a

f(t) � 2 � 3�(t � 2) � �(t � 3)

�(t � 3)�(t � 2)

�(t � a)
�(t � 1)

�(t � a)
�(t � a)�(t � a) � 0

�(t � a)

FIGURE 7.3.2 Graph of unit step
function

t

1

a

FIGURE 7.3.3 Function is
f(t) � (2t � 3) � (t � 1)

1

y

t

FIGURE 7.3.4 Function is
f (t) � 2 � 3�(t � 2) � �(t � 3)

−1

2

t

f(t)
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EXAMPLE 5 A Piecewise-Defined Function

Express in terms of unit step functions. Graph.

SOLUTION The graph of f is given in Figure 7.3.5. Now from (9) and (10) with 
a � 5, g(t) � 20t, and h(t) � 0 we get .

Consider a general function y � f (t) defined for t  0. The piecewise-defined
function

(13)

plays a significant role in the discussion that follows. As shown in Figure 7.3.6, for
a � 0 the graph of the function coincides with the graph of
y for (which is the entire graph of shifted a units to
the right on the t-axis), but is identically zero for 

We saw in Theorem 7.3.1 that an exponential multiple of f (t) results in a transla-
tion of the transform F(s) on the s-axis. As a consequence of the next theorem we see
that whenever F(s) is multiplied by an exponential function e�as, a � 0, the inverse
transform of the product e�as F(s) is the function f shifted along the t-axis in the man-
ner illustrated in Figure 7.3.6(b). This result, presented next in its direct transform ver-
sion, is called the second translation theorem or second shifting theorem.

0 � t 
 a.
y � f(t), t  0t  a� f(t � a)

y � f(t � a) �(t � a)

f(t � a) �(t � a) � �0,

f(t � a),

 0 � t 
 a

   t  a

f (t) � 20t � 20t �(t � 5)

f (t) � �20t,

0,

 0 � t 
 5

   t  5

FIGURE 7.3.5 Function is
f (t) � 20t � 20t�(t � 5)

100

5

f (t)

t

FIGURE 7.3.6 Shift on t-axis

(a) f(t), t  0

(b) f(t � a) (t � a)

t

f(t)

t

f(t)

a

zero for
0 � t 
 a

one for
t  a

�{ f (t � a) (t � a)} � �   e�stf (t � a) (t � a) dt � �   e�stf (t � a) (t � a) dt � �   e�stf (t � a) dt.� � �
a

0

�

a

�

a

Now if we let v � t � a, dv � dt in the last integral, then

THEOREM 7.3.2 Second Translation Theorem

If and a � 0, then

.�{ f(t � a) �(t � a)} � e�asF(s)

F(s) � �{ f(t)}

PROOF By the additive interval property of integrals,

can be written as two integrals:

�(t � a) dt��

0
e�st f (t � a)

.�{ f (t � a) �(t � a)} � ��

0
e�s(v�a) f (v) dv � e�as��

0
e�sv f (v) dv � e�as�{ f (t)}

We often wish to find the Laplace transform of just a unit step function. This can be
from either Definition 7.1.1 or Theorem 7.3.2. If we identify f (t) � 1 in Theorem 7.3.2,
then f (t � a) � 1, , and so

. (14)

For example, by using (14), the Laplace transform of the function in Figure 7.3.4 is

� 2
1

s
� 3

e�2s

s
�

e�3s

s
.

�{ f(t)} � 2�{1} � 3�{�(t � 2)} � �{�(t � 3)}

�{�(t � a)} �
e�as

s

F(s) � �{1} � 1>s
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INVERSE FORM OF THEOREM 7.3.2 If , the inverse form of
Theorem 7.3.2, a � 0, is

. (15)� �1{e�asF(s)} � f(t � a) �(t � a)

f(t) � � �1{F(s)}

EXAMPLE 6 Using Formula (15)

Evaluate .

SOLUTION (a) With the identifications a � 2, F(s) � 1�(s � 4), and
��1{F(s)} � e4t, we have from (15)

.

(b) With a � p�2, F(s) � s�(s2 � 9), and , (15) yields

.

The last expression can be simplified somewhat by using the addition formula for the 

cosine. Verify that the result is the same as 

ALTERNATIVE FORM OF THEOREM 7.3.2 We are frequently confronted with
the problem of finding the Laplace transform of a product of a function g and a unit
step function where the function g lacks the precise shifted form 
in Theorem 7.3.2. To find the Laplace transform of , it is possible to fix
up g(t) into the required form by algebraic manipulations. For example, if
we wanted to use Theorem 7.3.2 to find the Laplace transform of , we
would have to force into the form You should work through the
details and verify that is an identity. Therefore

where each term on the right-hand side can now be evaluated by Theorem 7.3.2. But
since these manipulations are time consuming and often not obvious, it is simpler to
devise an alternative version of Theorem 7.3.2. Using Definition 7.1.1, the definition
of , and the substitution u � t � a, we obtain

.

That is, . (16)�{g(t)�(t � a)} � e�as �{g(t � a)}

�{g(t) �(t � a)} � ��

a
e�st g(t) dt � ��

0
e�s(u�a) g(u � a) du

�(t � a)

�{t 2�(t � 2)} � �{(t � 2)2 � (t � 2) � 4(t � 2) � (t � 2) � 4�(t � 2)},

t2 � (t � 2)2 � 4(t � 2) � 4
f(t � 2).g(t) � t2

t2�(t � 2)
f(t � a)

g(t)�(t � a)
f(t � a)�(t � a)

�sin 3t ��t �
�

2�.

� �1� s

s2 � 9
e��s/2� � cos 3�t �

�

2� ��t �
�

2�
� �1{F(s)} � cos 3t

� �1� 1

s � 4
e�2s� � e4(t�2) �(t � 2)

(b) � �1� s

s2 � 9
e��s/2�(a) � �1� 1

s � 4
e�2s�

EXAMPLE 7 Second Translation Theorem—Alternative Form

Evaluate .

SOLUTION With g(t) � cos t and a � p, then g(t � p) � cos(t � p) � �cos t
by the addition formula for the cosine function. Hence by (16),

�{cos t �(t � �)} � �e��s �{cos t} � �
s

s2 � 1
e��s.

�{cos t �(t � �)}
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EXAMPLE 8 An Initial-Value Problem

Solve 

SOLUTION The function f can be written as , so by linear-
ity, the results of Example 7, and the usual partial fractions, we have

. (17)

Now proceeding as we did in Example 6, it follows from (15) with a � p that the
inverses of the terms inside the brackets are

Y(s) �
5

s � 1
�

3

2 
�
1

s � 1
e��s �

1

s2 � 1
e��s �

s

s2 � 1
e��s�

 (s � 1)Y(s) � 5 �
3s

s2 � 1
e��s

sY(s) � y(0) � Y(s) � �3
s

s2 � 1
e��s

�{y�} � �{y} � 3�{cos t �(t � �)}

f(t) � 3 cos t �(t � �)

y� � y � f(t),  y(0) � 5, where f(t) � �0,

3 cos t,

 0 � t 
 �

   t  �.

FIGURE 7.3.7 Graph of function
in (18)

_2

1
2
3
4
5

_ 1
t

y

2π π 3π
(18)

� �5e�t,

5e�t �
3

2
e�(t��) �

3

2
sin t �

3

2
cos t,

 0 � t 
 �

        t  �.

; trigonometric identities� 5e�t �
3

2
[e�(t��) � sin t � cos t] �(t � �)

y(t) � 5e�t �
3

2
e�(t ��) �(t � �) �

3

2
sin(t � �) �(t � �) �

3

2
cos(t � �) �(t � �)

We obtained the graph of (18) shown in Figure 7.3.7 by using a graphing utility.

BEAMS In Section 5.2 we saw that the static deflection y(x) of a uniform beam of
length L carrying load w(x) per unit length is found from the linear fourth-order
differential equation

(19)

where E is Young’s modulus of elasticity and I is a moment of inertia of a cross section
of the beam. The Laplace transform is particularly useful in solving (19) when w(x)
is piecewise-defined. However, to use the Laplace transform, we must tacitly assume
that y(x) and w(x) are defined on (0, �) rather than on (0, L). Note, too, that the next ex-
ample is a boundary-value problem rather than an initial-value problem.

EI
d4y

dx4 � w(x),

EXAMPLE 9 A Boundary-Value Problem

A beam of length L is embedded at both ends, as shown in Figure 7.3.8. Find the
deflection of the beam when the load is given by

w(x) � �w0�1 �
2

L
x�,

0,

     0 
 x 
 L>2
 L>2 
 x 
 L.

FIGURE 7.3.8 Embedded beam with
variable load

wall

x

y

L

w(x)

��1� 1

s � 1
e��s� � e�(t��) �(t � �),    ��1� 1

s2 � 1
e��s� � sin(t � �) �(t � �),

and .

Thus the inverse of (17) is

� �1� s

s2 � 1
e��s� � cos(t � �) �(t � �)
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SOLUTION Recall that because the beam is embedded at both ends, the boundary
conditions are y(0) � 0, y�(0) � 0, y(L) � 0, y�(L) � 0. Now by (10) we can express
w(x) in terms of the unit step function:

Transforming (19) with respect to the variable x gives

or

If we let c1 � y�(0) and c2 � y�(0), then

,

and consequently

Y(s) �
c1

s3 �
c2

s4 �
2w0

EIL 

L>2
s5 �

1

s6 �
1

s6 e�Ls/2�

s4Y(s) � sy�(0) � y�(0) �
2w0

EIL 

L>2

s
�

1

s2 �
1

s2 e�Ls/2�.

EI�s4Y(s) � s3y(0) � s2y�(0) � sy�(0) � y� (0)� �
2w0

L 
L>2
s

�
1

s2 �
1

s2 e�Ls/2�

�
2w0

L 
L

2
� x � �x �

L

2� ��x �
L

2��.

w(x) � w0�1 �
2

L
x� � w0�1 �

2

L
x� ��x �

L

2�

�
c1

2
x2 �

c2

6
x3 �

w0

60 EIL 

5L

2
x4 � x5 � �x �

L

2�
5

��x �
L

2��.

y(x) �
c1

2!
� �1�2!

s3� �
c2

3!
� �1�3!

s4� �
2w0

EIL 

L>2
4!

� �1�4!

s5� �
1

5!
� �1�5!

s6� �
1

5!
� �1�5!

s6 e�Ls/ 2��

Applying the conditions y(L) � 0 and y�(L) � 0 to the last result yields a system of
equations for c1 and c2:

Solving, we find c1 � 23w0L2�(960EI) and c2 � �9w0L�(40EI). Thus the deflec-
tion is given by

y(x) �
23w0L2

1920EI
x2 �

3w0L

80EI
x3 �

w0

60EIL 

5L

2
x4 � x5 � �x �

L

2�
5

��x �
L

2��.

c1 L � c2
L2

2
�

85w0L3

960EI
� 0.

c1
L2

2
� c2

L3

6
�

49w0L4

1920EI
� 0

EXERCISES 7.3 Answers to selected odd-numbered problems begin on page ANS-11.

7.3.1 TRANSLATION ON THE s-AXIS

In Problems 1–20 find either F(s) or f (t), as indicated.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10. ��e3t�9 � 4t � 10 sin 
t

2��
�{(1 � et � 3e�4t) cos 5t}

�{e�2t cos 4t}�{et sin 3t}

�{e2t(t � 1)2}�{t(et � e2t)2}

�{t10e�7t}�{t3e�2t}

�{te�6t}�{te10t}

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. � �1�(s � 1)2

(s � 2)4�� �1� 2s � 1

s2(s � 1)3�

� �1� 5s

(s � 2)2�� �1� s

(s � 1)2�

� �1� 2s � 5

s2 � 6s � 34�� �1� s

s2 � 4s � 5�

� �1� 1

s2 � 2s � 5�� �1� 1

s2 � 6s � 10�

� �1� 1

(s � 1)4�� �1� 1

(s � 2)3�
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In Problems 21–30 use the Laplace transform to solve the
given initial-value problem.

21. y� � 4y � e�4t, y(0) � 2

22. y� � y � 1 � tet, y(0) � 0

23. y� � 2y� � y � 0, y(0) � 1, y�(0) � 1

24. y� � 4y� � 4y � t3e2t, y(0) � 0, y�(0) � 0

25. y� � 6y� � 9y � t, y(0) � 0, y�(0) � 1

26. y� � 4y� � 4y � t3, y(0) � 1, y�(0) � 0

27. y� � 6y� � 13y � 0, y(0) � 0, y�(0) � �3

28. 2y� � 20y� � 51y � 0, y(0) � 2, y�(0) � 0

29. y� � y� � et cos t, y(0) � 0, y�(0) � 0

30. y� � 2y� � 5y � 1 � t, y(0) � 0, y�(0) � 4

In Problems 31 and 32 use the Laplace transform and
the procedure outlined in Example 9 to solve the given
boundary-value problem.

31. y� � 2y� � y � 0, y�(0) � 2, y(1) � 2

32. y� � 8y� � 20y � 0, y(0) � 0, y�(p) � 0

33. A 4-pound weight stretches a spring 2 feet. The weight
is released from rest 18 inches above the equilibrium
position, and the resulting motion takes place in a
medium offering a damping force numerically equal to

times the instantaneous velocity. Use the Laplace
transform to find the equation of motion x(t).

34. Recall that the differential equation for the instanta-
neous charge q(t) on the capacitor in an LRC series
circuit is given by

. (20)

See Section 5.1. Use the Laplace transform to find q(t)
when L � 1 h, R � 20 !, C � 0.005 f, E(t) � 150 V,
t � 0, q(0) � 0, and i(0) � 0. What is the current i(t)?

35. Consider a battery of constant voltage E0 that charges
the capacitor shown in Figure 7.3.9. Divide equa-
tion (20) by L and define 2l � R�L and v2 � 1�LC.
Use the Laplace transform to show that the solution
q(t) of q� � 2lq� � v2q � E0 �L subject to q(0) � 0,
i(0) � 0 is

q(t) � �
E0C
1 � e��t (cosh 1�2 � �2t

  �
�

1�2 � �2
 sinh 1�2 � �2t)�, � � �,

E0C[1 � e��t (1 � �t)],        � � �,

E0C
1 � e��t (cos 1�2 � �2t

  
�

�

1�2 � �2
sin 1�2 � �2t) �,

 � 
 �.

L
d 2q

dt2 � R
dq

dt
�

1

C
q � E(t)

7
8

36. Use the Laplace transform to find the charge q(t)
in an RC series circuit when q(0) � 0 and
E(t) � E0e�kt, k � 0. Consider two cases: k � 1�RC
and k � 1�RC.

7.3.2 TRANSLATION ON THE t-AXIS

In Problems 37–48 find either F(s) or f (t), as indicated.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

In Problems 49 – 54 match the given graph with one of 
the functions in (a)–(f ). The graph of f (t) is given in
Figure 7.3.10.

(a)

(b)

(c)

(d)

(e)

(f) f (t � a) �(t � a) � f (t � a) �(t � b)

f (t) �(t � a) � f(t) �(t � b)

f (t) � f (t) �(t � b)

f (t) �(t � a)

f (t � b) �(t � b)

f (t) � f (t) �(t � a)

� �1� e�2s

s2(s � 1)�� �1� e�s

s(s � 1)�

��1�se��s/2

s2 � 4�� �1� e��s

s2 � 1�

� �1�(1 � e�2s)2

s � 2 �� �1�e�2s

s3 �

��sin t ��t �
�

2���{cos 2t �(t � �)}

�{(3t � 1)�(t � 1)}�{t �(t � 2)}

�{e2�t �(t � 2)}�{(t � 1)�(t � 1)}

FIGURE 7.3.9 Series circuit in Problem 35

E0 R

C

L

FIGURE 7.3.10 Graph for Problems 49–54

t

f(t)

a b

49.

FIGURE 7.3.11 Graph for Problem 49

t

f(t)

a b
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FIGURE 7.3.12 Graph for Problem 50

t

f(t)

a b

FIGURE 7.3.13 Graph for Problem 51

t

f (t)

a b

FIGURE 7.3.14 Graph for Problem 52

t

f(t)

a b

FIGURE 7.3.15 Graph for Problem 53

t

f(t)

a b

FIGURE 7.3.16 Graph for Problem 54

t

f(t)

a b

50.

51.

52.

53.

54.

In Problems 55–62 write each function in terms of unit step
functions. Find the Laplace transform of the given function.

55.

56.

57. f (t) � �0,

t2,

 0 � t 
 1

 t  1

f (t) � �1,

0,

1,

 0 � t 
 4

 4 � t 
 5

 t  5

f (t) � �2,

�2,

 0 � t 
 3

 t  3

58.

59.

60. f (t) � �sin t,

0,

0 � t 
 2�

t  2�

f (t) � � t,

0,

0 � t 
 2

t  2

f (t) � �0,

sin t,

 0 � t 
 3�>2
 t  3�>2

61.

62.

FIGURE 7.3.18 Graph for Problem 62

3

2

1

staircase function

t

f(t)

1 2 3 4

FIGURE 7.3.17 Graph for Problem 61

1

rectangular pulse

tba

f(t)

In Problems 63–70 use the Laplace transform to solve the
given initial-value problem.

63. y� � y � f (t), y(0) � 0, where f (t) �

64. y� � y � f (t), y(0) � 0, where

65. y� � 2y � f (t), y(0) � 0, where

66. where

67. , y(0) � 1, y�(0) � 0

68. , y(0) � 0, y�(0) � 1

69. where

70. y� � 4y� � 3y � 1 � �(t � 2) � �(t � 4) � �(t � 6),
y(0) � 0, y�(0) � 0

f (t) � �
0,

1,

0,

0 � t 
 �

� � t 
 2�

       t  2�

y� � y � f(t), y(0) � 0, y�(0) � 1,

y� � 5y� � 6y � �(t � 1)

y � � 4y � sin t �(t � 2�)

f(t) � �1,

0,

0 � t 
 1

t  1

y� � 4y � f (t), y(0) � 0, y�(0) � �1,

f(t) � � t,

0,

0 � t 
 1

t  1

f (t) � � 1,

�1,

0 � t 
 1

t  1

�0,

5,

0 � t 
 1

t  1
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71. Suppose a 32-pound weight stretches a spring 2 feet. If the
weight is released from rest at the equilibrium position,
find the equation of motion x(t) if an impressed force
f (t) � 20t acts on the system for 0 � t 
 5 and is then
removed (see Example 5). Ignore any damping forces.
Use a graphing utility to graph x(t) on the interval [0, 10].

72. Solve Problem 71 if the impressed force f (t) � sin t acts
on the system for 0 � t 
 2p and is then removed.

In Problems 73 and 74 use the Laplace transform to find the
charge q(t) on the capacitor in an RC series circuit subject to
the given conditions.

73. q(0) � 0, R � 2.5 !, C � 0.08 f, E(t) given in
Figure 7.3.19

t

E(t)

3

5

FIGURE 7.3.19 E(t) in Problem 73

t

E(t)

1.5

30

30et

FIGURE 7.3.20 E(t) in Problem 74

74. q(0) � q0, R � 10 !, C � 0.1 f, E(t) given in
Figure 7.3.20

75. (a) Use the Laplace transform to find the current
i(t) in a single-loop LR series circuit when
i(0) � 0, L � 1 h, R � 10 !, and E(t) is as given
in Figure 7.3.21.

(b) Use a computer graphing program to graph i(t) for
0 � t � 6. Use the graph to estimate imax and
imin, the maximum and minimum values of the
current.

FIGURE 7.3.21 E(t) in Problem 75

FIGURE 7.3.22 E(t) in Problem 76

/2

1

−1

t

E(t)

3 /2π

sin t, 0 ≤ t < 3 /2

π π

π

t31

E(t)

E0

76. (a) Use the Laplace transform to find the charge q(t)
on the capacitor in an RC series circuit when 
q(0) � 0, R � 50 !, C � 0.01 f, and E(t) is as
given in Figure 7.3.22.

(b) Assume that E0 � 100 V. Use a computer graphing
program to graph q(t) for 0 � t � 6. Use the
graph to estimate qmax, the maximum value of
the charge.

77. A cantilever beam is embedded at its left end and free at
its right end. Use the Laplace transform to find the de-
flection y(x) when the load is given by

78. Solve Problem 77 when the load is given by

79. Find the deflection y(x) of a cantilever beam embedded
at its left end and free at its right end when the load is as
given in Example 9.

80. A beam is embedded at its left end and simply supported
at its right end. Find the deflection y(x) when the load is
as given in Problem 77.

Mathematical Model

81. Cake Inside an Oven Reread Example 4 in Section
3.1 on the cooling of a cake that is taken out of an
oven.

(a) Devise a mathematical model for the temperature of
a cake while it is inside the oven based on the fol-
lowing assumptions: At t � 0 the cake mixture is at
the room temperature of 70°; the oven is not pre-
heated, so at t � 0, when the cake mixture is placed
into the oven, the temperature inside the oven is also
70°; the temperature of the oven increases linearly
until t � 4 minutes, when the desired temperature
of 300° is attained; the oven temperature is a con-
stant 300° for t  4.

(b) Use the Laplace transform to solve the initial-value
problem in part (a).

w(x) � �
0,  

w0,

0,  

   0 
 x 
 L>3
 L>3 
 x 
 2L>3
  2L>3 
 x 
 L.

w(x) � �w0,

0,  

0 
 x 
 L> 2
 L>2 � x 
 L.
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Discussion Problems

82. Discuss how you would fix up each of the following
functions so that Theorem 7.3.2 could be used directly
to find the given Laplace transform. Check your an-
swers using (16) of this section.

(a) (b)

(c) (d)

83. (a) Assume that Theorem 7.3.1 holds when the sym-
bol a is replaced by ki, where k is a real number

�{(t2 � 3t)�(t � 2)}�{cos t �(t � �)}

�{et �(t � 5)}�{(2t � 1)�(t � 1)}

and i2 � �1. Show that can be used to
deduce

(b) Now use the Laplace transform to solve the initial-
value problem x� � v2x � cos vt, x(0) � 0,
x�(0) � 0.

�{t sin kt} �
2ks

(s2 � k2)2.

�{t cos kt} �
s2 � k2

(s2 � k2)2

�{tekti}

OPERATIONAL PROPERTIES II

REVIEW MATERIAL
● Definition 7.1.1
● Theorems 7.3.1 and 7.3.2

INTRODUCTION In this section we develop several more operational properties of the
Laplace transform. Specifically, we shall see how to find the transform of a function f (t) that is
multiplied by a monomial t n, the transform of a special type of integral, and the transform of a pe-
riodic function. The last two transform properties allow us to solve some equations that we have
not encountered up to this point: Volterra integral equations, integrodifferential equations, and or-
dinary differential equations in which the input function is a periodic piecewise-defined function.

7.4

7.4.1 DERIVATIVES OF A TRANSFORM

MULTIPLYING A FUNCTION BY tn The Laplace transform of the product of a
function f (t) with t can be found by differentiating the Laplace transform of f (t). To
motivate this result, let us assume that exists and that it is possible
to interchange the order of differentiation and integration. Then

;

that is, .

We can use the last result to find the Laplace transform of t2 f (t):

�{t f (t)} � �
d

ds
�{ f (t)}

d

ds
F(s) �

d

ds
��

0
e�st f (t) dt � ��

0

�

�s
[e�st f (t)] dt � ���

0
e�st t f (t) dt � ��{t f (t)}

F(s) � �{ f (t)}

.�{t2 f (t)} � �{t � t f (t)} � �
d

ds
�{t f (t)} � �

d

ds ��
d

ds
�{ f (t)}� �

d 2

ds2 �{ f (t)}

The preceding two cases suggest the general result for .�{tn f(t)}

THEOREM 7.4.1 Derivatives of Transforms

If and n � 1, 2, 3, . . . , then

.�{tn f(t)} � (�1)n dn

dsn F(s)

F(s) � �{ f (t)}
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EXAMPLE 1 Using Theorem 7.4.1

Evaluate .

SOLUTION With f (t) � sin kt, F(s) � k�(s2 � k2), and n � 1, Theorem 7.4.1 gives

.

If we want to evaluate and , all we need do, in turn, is
take the negative of the derivative with respect to s of the result in Example 1 and
then take the negative of the derivative with respect to s of .

NOTE To find transforms of functions tneat we can use either Theorem 7.3.1 or
Theorem 7.4.1. For example,

Theorem 7.3.1: .

Theorem 7.4.1: .�{te3t} � �
d

ds
�{e3t} � �

d

ds

1

s � 3
� (s � 3)�2 �

1

(s � 3)2

�{te3t} � �{t}s :s�3 �
1

s2 �
s:s�3

�
1

(s � 3)2

�{t 2 sin kt}

�{t 3 sin kt}�{t 2 sin kt}

�{t sin kt} � �
d

ds
�{sin kt} � �

d

ds �
k

s2 � k2� �
2ks

(s2 � k2)2

�{t sin kt}

EXAMPLE 2 An Initial-Value Problem

Solve x� � 16x � cos 4t, x(0) � 0, x�(0) � 1.

SOLUTION The initial-value problem could describe the forced, undamped, and
resonant motion of a mass on a spring. The mass starts with an initial velocity of
1 ft /s in the downward direction from the equilibrium position.

Transforming the differential equation gives

.

Now we just saw in Example 1 that

, (1)

and so with the identification k � 4 in (1) and in part (d) of Theorem 7.2.1, we obtain

7.4.2 TRANSFORMS OF INTEGRALS

CONVOLUTION If functions f and g are piecewise continuous on the interval
[0, �), then a special product, denoted by f � g, is defined by the integral

(2)

and is called the convolution of f and g. The convolution f � g is a function of t.
For example,

. (3)et � sin t � �t

0
e' 

sin(t � ') d' �
1

2
(�sin t � cos t � et)

f � g � �t

0
f (') g(t � ') d'

�
1

4
 sin 4t �

1

8
t sin 4t.

x(t) �
1

4
� �1� 4

s2 � 16� �
1

8
� �1� 8s

(s2 � 16)2�

� �1� 2ks

(s2 � k2)2� � t sin kt

(s2 � 16) X(s) � 1 �
s

s2 � 16
    or    X(s) �

1

s2 � 16
�

s

(s2 � 16)2
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It is left as an exercise to show that

that is, f � g � g � f. This means that the convolution of two functions is commutative.
It is not true that the integral of a product of functions is the product of the

integrals. However, it is true that the Laplace transform of the special product (2) is
the product of the Laplace transform of f and g. This means that it is possible to find
the Laplace transform of the convolution of two functions without actually evaluat-
ing the integral as we did in (3). The result that follows is known as the convolution
theorem.

�t

0
f(') g(t � ') d' � �t

0
f(t � ') g(') d' ;

THEOREM 7.4.2 Convolution Theorem

If f (t) and g(t) are piecewise continuous on [0, �) and of exponential 
order, then

.�{ f � g} � �{ f (t)} �{g(t)} � F(s)G(s)

PROOF Let

and .

Proceeding formally, we have

Holding t fixed, we let t � t � b, dt � db, so that

In the tt-plane we are integrating over the shaded region in Figure 7.4.1. Since f and
g are piecewise continuous on [0, �) and of exponential order, it is possible to inter-
change the order of integration:

F(s)G(s) � ��

0
f (') d'��

'

e�stg(t � ') dt.

� ��

0
f (') d'��

0
e�s('��)g(�) d�.

� ��

0
��

0
e�s('��) f (')g(�) d' d�

F(s)G(s) � ���

0
e�s' 

f (') d'�
 

���

0
e�s� 

g(�) d��

G(s) � �{g(t)} � ��

0
e�s�g(�) d�

F(s) � �{ f(t)} � ��

0
e�s' f(') d'

F(s) G(s) � ��

0
e�st dt �t

0
f (')g(t � ') d' � ��

0
e�st��t

0
f (') g(t � ') d'�dt � �{ f � g}.

EXAMPLE 3 Transform of a Convolution

Evaluate

SOLUTION With f (t) � et and g(t) � sin t, the convolution theorem states that
the Laplace transform of the convolution of f and g is the product of their Laplace
transforms:

� ��t

0
e' 

sin(t � ') d'�.

.���t

0
e' 

sin(t � ') d'� � �{et} � �{sin t} �
1

s � 1
�

1

s2 � 1
�

1

(s � 1)(s2 � 1)

FIGURE 7.4.1 Changing order of
integration from t first to t first

t

τ

τ

τ = t

: 0 to t

t:  to ∞

τ
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INVERSE FORM OF THEOREM 7.4.2 The convolution theorem is sometimes
useful in finding the inverse Laplace transform of the product of two Laplace
transforms. From Theorem 7.4.2 we have

(4)

Many of the results in the table of Laplace transforms in Appendix III can be derived
using (4). For example, in the next example we obtain entry 25 of the table:

. (5)�{sin kt � kt cos kt} �
2k3

(s2 � k2 )2

� �1{F(s)G(s)} � f � g.

EXAMPLE 4 Inverse Transform as a Convolution

Evaluate .

SOLUTION Let so that

.

In this case (4) gives

. (6)

With the aid of the trigonometric identity

and the substitutions A � kt and B � k(t � t) we can carry out the integration in (6):

Multiplying both sides by 2k3 gives the inverse form of (5).

TRANSFORM OF AN INTEGRAL When g(t) � 1 and ,
the convolution theorem implies that the Laplace transform of the integral of f is

. (7)

The inverse form of (7),

, (8)

can be used in lieu of partial fractions when sn is a factor of the denominator and
is easy to integrate. For example, we know for f (t) � sin t that
and so by (8)

� �1� 1

s2(s2 � 1)� � �t

0
(1 � cos ' ) d' � t � sin t

� �1� 1

s(s2 � 1)� � �t

0
sin ' d' � 1 � cos t

F(s) � 1>(s2 � 1),
f(t) � � �1{F(s)}

�t

0
f(') d' � � �1�F(s)

s �

���t

0
f(') d'� �

F(s)

s

�{g(t)} � G(s) � 1>s

�
sin kt � kt cos kt

2k3 .

�
1

2k2 
 1

2k
 sin k(2' � t) � ' cos kt�

t

0

� �1� 1

(s2 � k2)2� �
1

2k2 �t

0
[cos k(2' � t) � cos kt] d'

sin A cos B �
1

2
[cos(A � B) � cos(A � B)]

� �1� 1

(s2 � k2)2� �
1

k2 �t

0
sin k' sin k(t � ') d'

f(t) � g(t) �
1

k
� �1� k

s2 � k2� �
1

k
 sin kt

F(s) � G(s) �
1

s2 � k2

� �1� 1

(s2 � k2)2�
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and so on.

VOLTERRA INTEGRAL EQUATION The convolution theorem and the result in
(7) are useful in solving other types of equations in which an unknown function
appears under an integral sign. In the next example we solve a Volterra integral
equation for f (t),

. (9)

The functions g(t) and h(t) are known. Notice that the integral in (9) has the convo-
lution form (2) with the symbol h playing the part of g.

f(t) � g(t) � �t

0
f(') h(t � ') d'

� �1� 1

s3(s2 � 1)� � �t

0
(' � sin ' ) d' �

1

2
t2 � 1 � cos t

EXAMPLE 5 An Integral Equation

Solve .

SOLUTION In the integral we identify h(t � t) � et�t so that h(t) � et. We take
the Laplace transform of each term; in particular, by Theorem 7.4.2 the transform of
the integral is the product of and :

.

After solving the last equation for F(s) and carrying out the partial fraction
decomposition, we find

.

The inverse transform then gives

SERIES CIRCUITS In a single-loop or series circuit, Kirchhoff’s second law states
that the sum of the voltage drops across an inductor, resistor, and capacitor is equal
to the impressed voltage E(t). Now it is known that the voltage drops across an induc-
tor, resistor, and capacitor are, respectively,

,

where i(t) is the current and L, R, and C are constants. It follows that the current in a
circuit, such as that shown in Figure 7.4.2, is governed by the integrodifferential
equation

. (10)L
di

dt
� Ri(t) �

1

C
�t

0
i(') d' � E(t)

L
di

dt
,  Ri(t),  and 1

C
�t

0
i(') d'

� 3t2 � t3 � 1 � 2e�t.

f(t) � 3� �1�2!

s3� � � �1�3!

s4� � � �1�1

s� � 2� �1� 1

s � 1�

F(s) �
6

s3 �
6

s4 �
1

s
�

2

s � 1

F(s) � 3 �
2

s3 �
1

s � 1
� F(s) �

1

s � 1

�{et} � 1> (s � 1)�{ f(t)} � F(s)

f(t) � 3t2 � e�t � �t

0
f(') et�' d'  for f(t)

FIGURE 7.4.2 LRC series circuit

C

L
E R
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EXAMPLE 6 An Integrodifferential Equation

Determine the current i(t) in a single-loop LRC circuit when L � 0.1 h, R � 2 !,
C � 0.1 f, i(0) � 0, and the impressed voltage is

.

SOLUTION With the given data equation (10) becomes

Now by (7), � I(s)�s, where . Thus the Laplace

transform of the integrodifferential equation is

. ; by (16) of Section 7.3

Multiplying this equation by 10s, using s2 � 20s � 100 � (s � 10)2, and then solving
for I(s) gives

.

By partial fractions,

From the inverse form of the second translation theorem, (15) of Section 7.3, we
finally obtain

Written as a piecewise-defined function, the current is

Using this last expression and a CAS, we graph i(t) on each of the two intervals and
then combine the graphs. Note in Figure 7.4.3 that even though the input E(t) is
discontinuous, the output or response i(t) is a continuous function.

7.4.3 TRANSFORM OF A PERIODIC FUNCTION

PERIODIC FUNCTION If a periodic function has period T, T � 0, then
f (t � T ) � f (t). The next theorem shows that the Laplace transform of a periodic
function can be obtained by integration over one period.

i(t) � �12 � 12e�10t � 120te�10t,

�12e�10t � 12e�10(t�1) � 120te�10t � 1080(t � 1)e�10(t�1),

 0 � t 
 1

 t  1.

� 120te�10t � 1080(t � 1)e�10(t�1) �(t � 1).

i(t) � 12[1 � �(t � 1)] � 12[e�10t � e�10(t�1)�(t � 1)]

�
1>100

s � 10
e�s �

1>10

(s � 10)2 e�s �
1

(s � 10)2 e�s�.

I(s) � 1200 
1>100

s
�

1>100

s � 10
�

1>10

(s � 10)2 �
1>100

s
e�s

I(s) � 1200 
 1

s(s � 10)2 �
1

s(s � 10)2 e�s �
1

(s � 10)2 e�s�

0.1sI(s) � 2I(s) � 10
I(s)

s
� 120 
1

s2 �
1

s2 e�s �
1

s
e�s�

I(s) � �{i(t)}�{�t
0 i(') d'}

0.1
di

dt
� 2i � 10�t

0
i(') d' � 120t � 120t �(t � 1).

E(t) � 120t � 120t �(t � 1)

FIGURE 7.4.3 Graph of current i(t)
in Example 6

10.5 21.5 2.5

20
10

_30
_20
_ 10

t

i

THEOREM 7.4.3 Transform of a Periodic Function

If f (t) is piecewise continuous on [0, �), of exponential order, and periodic with
period T, then

�{ f (t)} �
1

1 � e�sT �T

0
e�st f (t) dt.
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PROOF Write the Laplace transform of f as two integrals:

.

When we let t � u � T, the last integral becomes

.

Therefore .

Solving the equation in the last line for proves the theorem.�{ f(t)}

�{ f(t)} � �T

0
e�st f(t) dt � e�sT �{ f(t)}

��

T
e�st f (t) dt � ��

0
e�s(u�T ) f (u � T ) du � e�sT ��

0
e�su f (u) du � e�sT �{ f (t)}

�{ f(t)} � �T

0
e�st f(t) dt � ��

T
e�st f(t) dt

EXAMPLE 7 Transform of a Periodic Function

Find the Laplace transform of the periodic function shown in Figure 7.4.4.

SOLUTION The function E(t) is called a square wave and has period T � 2. For 
0 � t 
 2, E(t) can be defined by

and outside the interval by f (t � 2) � f (t). Now from Theorem 7.4.3

. (11)�
1

s(1 � e�s)

; 1 � e�2s � (1 � e�s)(1 � e�s)�
1

1 � e�2s

1 � e�s

s

�{E(t)} �
1

1 � e�2s �2

0
e�st E(t) dt �

1

1 � e�2s 
�1

0
e�st � 1dt � �2

1
e�st � 0 dt�

E(t) � �1,

0,

 0 � t 
 1

 1 � t 
 2

EXAMPLE 8 A Periodic Impressed Voltage

The differential equation for the current i(t) in a single-loop LR series circuit is

. (12)

Determine the current i(t) when i(0) � 0 and E(t) is the square wave function shown
in Figure 7.4.4.

SOLUTION If we use the result in (11) of the preceding example, the Laplace trans-
form of the DE is

. (13)

To find the inverse Laplace transform of the last function, we first make use of geo-
metric series. With the identification x � e�s, s � 0, the geometric series

LsI(s) � RI(s) �
1

s(1 � e�s)
    or    I(s) �

1>L
s(s � R>L)

�
1

1 � e�s

L
di

dt
� Ri � E(t)

1

1 � x
� 1 � x � x2 � x3 � 	 	 	  becomes  1

1 � e�s � 1 � e�s � e�2s � e�3s � 	 	 	 .

t

E(t)

1

4321

FIGURE 7.4.4 Square wave
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From

we can then rewrite (13) as

1

s(s � R>L)
�

L>R
s

�
L>R

s � R>L

.�
1

R �
1

s
�

e�s

s
�

e�2s

s
�

e�3s

s
� 	 	 	� �

1

R �
1

s � R>L �
1

s � R>L e�s �
e�2s

s � R>L �
e�3s

s � R>L � 	 	 	�

I(s) �
1

R �1

s
�

1

s � R>L�(1 � e�s � e�2s � e�3s � 	 	 	)

By applying the form of the second translation theorem to each term of both series,
we obtain

�
1

R
(e�Rt/L � e�R(t�1)/L �(t � 1) � e�R(t�2)/L �(t � 2) � e�R(t�3)/L �(t � 3) � 	 	 	)

i(t) �
1

R
(1 � �(t � 1) � �(t � 2) � �(t � 3) � 	 	 	)

or, equivalently,

To interpret the solution, let us assume for the sake of illustration that R � 1, L � 1,
and 0 � t 
 4. In this case

i(t) �
1

R
(1 � e�Rt/L) �

1

R �
�

n�1
(�1)n (1�e�R(t�n)/L) �(t � n).

;i(t) � 1 � e�t � (1 � et�1) �(t � 1) � (1 � e�(t�2)) �(t � 2) � (1 � e�(t�3)) �(t � 3)

in other words,

The graph of i(t) for 0 � t 
 4, given in Figure 7.4.5, was obtained with the help
of a CAS.

i(t) � �
1 � e�t,

�e�t � e�(t�1),

1 � e�t � e�(t�1) � e�(t�2),

�e�t � e�(t�1) � e�(t�2) � e�(t�3),

 0 � t 
 1

 1 � t 
 2

 2 � t 
 3

 3 � t 
 4.21 3 4

2
1.5

1
0.5

t

i

FIGURE 7.4.5 Graph of current i(t) in
Example 8

EXERCISES 7.4 Answers to selected odd-numbered problems begin on page ANS-11.

7.4.1 DERIVATIVES OF A TRANSFORM

In Problems 1–8 use Theorem 7.4.1 to evaluate the given
Laplace transform.

1. 2.

3. 4.

5. 6.

7. 8.

In Problems 9–14 use the Laplace transform to solve
the given initial-value problem. Use the table of Laplace
transforms in Appendix III as needed.

9. y� � y � t sin t, y(0) � 0

10. y� � y � tet sin t, y(0) � 0

�{te�3t cos 3t}�{te2t sin 6t}

�{t2 cos t}�{t2 sinh t}

�{t sinh 3t}�{t cos 2t}

�{t3et}�{te�10t}

11. y� � 9y � cos 3t, y(0) � 2, y�(0) � 5

12. y� � y � sin t, y(0) � 1, y�(0) � �1

13. y� � 16y � f (t), y(0) � 0, y�(0) � 1, where

14. y� � y � f (t), y(0) � 1, y�(0) � 0, where

In Problems 15 and 16 use a graphing utility to graph the
indicated solution.

15. y(t) of Problem 13 for 0 � t 
 2p

16. y(t) of Problem 14 for 0 � t 
 3p

f(t) � �1,

sin t,

 0 � t 
 �>2
 t  �>2

f(t) � �cos 4t,

0,

  0 � t 
 �

 t  �
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In some instances the Laplace transform can be used to solve
linear differential equations with variable monomial coeffi-
cients. In Problems 17 and 18 use Theorem 7.4.1 to reduce
the given differential equation to a linear first-order DE
in the transformed function . Solve the first-
order DE for Y(s) and then find .

17. ty� � y� � 2t2, y(0) � 0

18. 2y� � ty� � 2y � 10, y(0) � y�(0) � 0

7.4.2 TRANSFORMS OF INTEGRALS

In Problems 19–30 use Theorem 7.4.2 to evaluate the given
Laplace transform. Do not evaluate the integral before
transforming.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Problems 31–34 use (8) to evaluate the given inverse
transform.

31. 32.

33. 34.

35. The table in Appendix III does not contain an entry for

.

(a) Use (4) along with the results in (5) to evaluate this
inverse transform. Use a CAS as an aid in evaluating
the convolution integral.

(b) Reexamine your answer to part (a). Could you have
obtained the result in a different manner?

36. Use the Laplace transform and the results of Problem 35
to solve the initial-value problem

.

Use a graphing utility to graph the solution.

y� � y � sin t � t sin t,  y(0) � 0, y�(0) � 0

� �1� 8k3s

(s2 � k2)3�

� �1� 1

s(s � a)2�� �1� 1

s3(s � 1)�

� �1� 1

s2(s � 1)�� �1� 1

s(s � 1)�

��t �t

0
' e�' d'���t �t

0
sin' d'�

���t

0
sin ' cos (t � ') d'����t

0
' et�' d'�

���t

0
' sin ' d'����t

0
e�' cos ' d'�

���t

0
cos ' d'����t

0
e' d'�

�{e2t � sin t}�{e�t � et cos t}

�{t2 � tet}�{1 � t3}

y(t) � � �1{Y(s)}
Y(s) � �{y(t)}

In Problems 37–46 use the Laplace transform to solve the
given integral equation or integrodifferential equation.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

In Problems 47 and 48 solve equation (10) subject to i(0) � 0
with L, R, C, and E(t) as given. Use a graphing utility to graph
the solution for 0 � t � 3.

47. L � 0.1 h, R � 3 !, C � 0.05 f,

48. L � 0.005 h, R � 1 !, C � 0.02 f,

7.4.3 TRANSFORM OF A PERIODIC
FUNCTION

In Problems 49–54 use Theorem 7.4.3 to find the Laplace
transform of the given periodic function.

49.

E(t) � 100[t � (t � 1)�(t � 1)]

E(t) � 100[�(t � 1) � �(t � 2)]

dy

dt
� 6y(t) � 9 �t

0
y(') d' � 1, y(0) � 0

y�(t) � 1 � sin t � �t

0
y(') d', y(0) � 0

t � 2 f (t) � �t

0
(e' � e�' ) f (t � ') d'

f (t) � 1 � t �
8

3
�t

0
(' � t)3 f (') d'

f (t) � cos t � �t

0
e�'  

f (t � ') d'

f (t) � �t

0
f (') d' � 1

f (t) � 2 �t

0
f (') cos (t � ') d' � 4e�t � sin t

f (t) � tet � �t

0
' f (t � ') d'

f (t) � 2t � 4 �t

0
sin ' f (t � ') d'

f (t) � �t

0
(t � ') f (') d' � t

FIGURE 7.4.6 Graph for Problem 49

1

meander function

t2aa

f(t)

3a 4a

1
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57. , b� 1, k � 5, f is the meander function in
Problem 49 with amplitude 10, and a � p, 0 � t 
 2p.

58. m � 1, b� 2, k � 1, f is the square wave in Problem 50
with amplitude 5, and a � p, 0 � t 
 4p.

Discussion Problems

59. Discuss how Theorem 7.4.1 can be used to find

.

60. In Section 6.3 we saw that ty� � y� � ty � 0 is Bessel’s
equation of order n� 0. In view of (22) of that section
and Table 6.1 a solution of the initial-value problem
ty� � y� � ty � 0, y(0) � 1, y�(0) � 0, is y � J0(t). Use
this result and the procedure outlined in the instructions
to Problems 17 and 18 to show that

.

[Hint: You might need to use Problem 46 in
Exercises 7.2.]

61. (a) Laguerre’s differential equation

ty� � (1 � t)y� � ny � 0

is known to possess polynomial solutions when n is
a nonnegative integer. These solutions are naturally
called Laguerre polynomials and are denoted by
Ln(t). Find y � Ln(t), for n � 0, 1, 2, 3, 4 if it is
known that Ln(0) � 1.

(b) Show that

,

where and y � Ln(t) is a polynomial
solution of the DE in part (a). Conclude that

.

This last relation for generating the Laguerre poly-
nomials is the analogue of Rodrigues’ formula for
the Legendre polynomials. See (30) in Section 6.3.

Computer Lab Assignments

62. In this problem you are led through the commands in
Mathematica that enable you to obtain the symbolic
Laplace transform of a differential equation and the so-
lution of the initial-value problem by finding the inverse
transform. In Mathematica the Laplace transform of
a function y(t) is obtained using LaplaceTransform
[y[t], t, s]. In line two of the syntax we replace
LaplaceTransform [y[t], t, s] by the symbol Y. (If you
do not have Mathematica, then adapt the given proce-
dure by finding the corresponding syntax for the CAS
you have on hand.)

Ln(t) �
et

n!

dn

dtn tne�t,    n � 0, 1, 2, . . .

Y(s) � �{y}

��et

n!

dn

dtn tne�t� � Y(s)

�{J0(t)} �
1

1s2 � 1

� �1�ln
s � 3

s � 1�

m � 1
2

FIGURE 7.4.7 Graph for Problem 50

FIGURE 7.4.8 Graph for Problem 51

FIGURE 7.4.9 Graph for Problem 52

FIGURE 7.4.10 Graph for Problem 53

1

square wave

t2aa

f(t)

3a 4a

sawtooth function

t2bb

a

f(t)

3b 4b

1

triangular wave

t2

f(t)

3 41

1

full-wave rectification of sin t

t

f(t)

432π π π π

50.

51.

52.

53.

FIGURE 7.4.11 Graph for Problem 54

432π π π π

1

half-wave rectification of sin t

t

f(t)54.

In Problems 55 and 56 solve equation (12) subject to
i(0) � 0 with E(t) as given. Use a graphing utility to graph
the solution for 0 � t 
 4 in the case when L � 1 and R � 1.

55. E(t) is the meander function in Problem 49 with
amplitude 1 and a � 1.

56. E(t) is the sawtooth function in Problem 51 with
amplitude 1 and b � 1.

In Problems 57 and 58 solve the model for a driven
spring/mass system with damping

where the driving function f is as specified. Use a graphing
utility to graph x(t) for the indicated values of t.

m
d 2x

dt2 � �
dx

dt
� kx � f (t),  x(0) � 0, x�(0) � 0,
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Consider the initial-value problem

.

Load the Laplace transform package. Precisely reproduce
and then, in turn, execute each line in the following
sequence of commands. Either copy the output by hand
or print out the results.

diffequat � y �[t] � 6y�[t] � 9y[t] �� t Sin[t]
transformdeq � LaplaceTransform [diffequat, t, s] /.

{y[0] � � 2, y�[0] � � �1,
LaplaceTransform [y[t], t, s] � � Y}

soln � Solve[transformdeq, Y]//Flatten
Y � Y/.soln
InverseLaplaceTransform[Y, s, t]

y� � 6y� � 9y � t sin t,  y(0) � 2, y�(0) � �1

63. Appropriately modify the procedure of Problem 62 to
find a solution of

.

64. The charge q(t) on a capacitor in an LC series circuit is
given by

.

Appropriately modify the procedure of Problem 62 to
find q(t). Graph your solution.

q(0) � 0, q�(0) � 0

d 2q

dt2 � q � 1 � 4�(t � �) � 6�(t � 3�),

y(0) � 0, y�(0) � 0, y�(0) � 1

y� � 3y� � 4y � 0,

THE DIRAC DELTA FUNCTION

INTRODUCTION In the last paragraph on page 261, we indicated that as an immediate conse-
quence of Theorem 7.1.3, F(s) � 1 cannot be the Laplace transform of a function f that is piecewise
continuous on [0, �) and of exponential order. In the discussion that follows we are going to intro-
duce a function that is very different from the kinds that you have studied in previous courses. We
shall see that there does indeed exist a function—or, more precisely, a generalized function—whose
Laplace transform is F(s) � 1.

7.5

UNIT IMPULSE Mechanical systems are often acted on by an external force (or
electromotive force in an electrical circuit) of large magnitude that acts only for a
very short period of time. For example, a vibrating airplane wing could be struck by
lightning, a mass on a spring could be given a sharp blow by a ball peen hammer, and
a ball (baseball, golf ball, tennis ball) could be sent soaring when struck violently by
some kind of club (baseball bat, golf club, tennis racket). See Figure 7.5.1. The graph
of the piecewise-defined function

(1)

a � 0, t0 � 0, shown in Figure 7.5.2(a), could serve as a model for such a force. For a
small value of a, da (t � t0) is essentially a constant function of large magnitude that is
“on” for just a very short period of time, around t0. The behavior of da(t � t0) as 
is illustrated in Figure 7.5.2(b). The function da(t � t0) is called a unit impulse,
because it possesses the integration property .

DIRAC DELTA FUNCTION In practice it is convenient to work with another type of
unit impulse, a “function” that approximates da(t � t0) and is defined by the limit

(2)#(t � t0) � lim
a : 0

#a(t � t0 ).

��
0 #a(t � t0 ) dt � 1

a : 0

#a(t � t0) � �
0,

1

2a
,

0,

0 � t 
 t0 � a

  t0 � a � t 
 t0 � a

t  t0 � a,

FIGURE 7.5.1 A golf club applies a
force of large magnitude on the ball for a
very short period of time
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The latter expression, which is not a function at all, can be characterized by the two
properties

.

The unit impulse d(t � t0) is called the Dirac delta function.
It is possible to obtain the Laplace transform of the Dirac delta function by the for-

mal assumption that .

THEOREM 7.5.1 Transform of the Dirac Delta Function

For t0 � 0, (3)

PROOF To begin, we can write da(t � t0 ) in terms of the unit step function by
virtue of (11) and (12) of Section 7.3:

By linearity and (14) of Section 7.3 the Laplace transform of this last expression is

(4)

Since (4) has the indeterminate form 0�0 as , we apply L’Hôpital’s Rule:

.

Now when t0 � 0, it seems plausible to conclude from (3) that

.

The last result emphasizes the fact that d(t) is not the usual type of function that we have
been considering, since we expect from Theorem 7.1.3 that �{ f (t)} : 0 as s : �.

EXAMPLE 1 Two Initial-Value Problems

Solve y� � y � 4d(t � 2p) subject to

(a) y(0) � 1, y�(0) � 0 (b) y(0) � 0, y�(0) � 0.

The two initial-value problems could serve as models for describing the motion of a
mass on a spring moving in a medium in which damping is negligible. At t � 2p the
mass is given a sharp blow. In (a) the mass is released from rest 1 unit below the
equilibrium position. In (b) the mass is at rest in the equilibrium position.

SOLUTION (a) From (3) the Laplace transform of the differential equation is

.

Using the inverse form of the second translation theorem, we find

.

Since sin(t � 2p) � sin t, the foregoing solution can be written as

(5)y(t) � �cos t,      0 � t 
 2�

cos t � 4 sin t,   t  2�.

y(t) � cos t � 4 sin (t � 2�) �(t � 2�)

s2Y(s) � s � Y(s) � 4e�2�s    or    Y(s) �
s

s2 � 1
�

4e�2�s

s2 � 1

�{#(t)} � 1

�{#(t � t0)} � lim
a : 0

�{#a(t � t0)} � e�st0 lim
a : 0�

esa � e�sa

2sa � � e�st0

a : 0

�{#a(t � t0)} �
1

2a 

e�s(t0�a)

s
�

e�s(t0�a)

s � � e�st0�esa � e�sa

2sa �.

#a(t � t0) �
1

2a
[�(t � (t0 � a)) � �(t � (t0 � a))].

�{#(t � t0)} � e�st0.

�{#(t � t0)} � lima : 0 �{#a(t � t0)}

(i) #(t � t0) � ��,

0,

t � t0 t � t0
    and    (ii)��

0
#(t � t0) dt � 1

FIGURE 7.5.2 Unit impulse

(b) behavior of �a as a � 0

tt0

y

tt0 − a

2a
1/2a

t0

y

t0 + a

(a) graph of �a(t � t0)
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In Figure 7.5.3 we see from the graph of (5) that the mass is exhibiting simple
harmonic motion until it is struck at t � 2p. The influence of the unit impulse is to
increase the amplitude of vibration to for t � 2p.

(b) In this case the transform of the equation is simply

and so

(6)

The graph of (6) in Figure 7.5.4 shows, as we would expect from the initial conditions
that the mass exhibits no motion until it is struck at t � 2p.

REMARKS

(i) If d(t � t0) were a function in the usual sense, then property (i) on page 293
would imply rather than . Because the
Dirac delta function did not “behave” like an ordinary function, even though its
users produced correct results, it was met initially with great scorn by mathe-
maticians. However, in the 1940s Dirac’s controversial function was put on a
rigorous footing by the French mathematician Laurent Schwartz in his book
La Théorie de distribution, and this, in turn, led to an entirely new branch of
mathematics known as the theory of distributions or generalized functions.
In this theory (2) is not an accepted definition of d(t � t0), nor does one speak
of a function whose values are either � or 0. Although we shall not pursue this
topic any further, suffice it to say that the Dirac delta function is best character-
ized by its effect on other functions. If f is a continuous function, then

(7)

can be taken as the definition of d(t � t0). This result is known as the sifting
property, since d(t � t0) has the effect of sifting the value f (t0) out of the
set of values of f on [0, �). Note that property (ii) (with f (t) � 1) and (3) (with
f (t) � e�st) are consistent with (7).

(ii) The Remarks in Section 7.2 indicated that the transfer function of a
general linear nth-order differential equation with constant coefficients is
W(s) � 1�P(s), where . The transfer
function is the Laplace transform of function w(t), called the weight function
of a linear system. But w(t) can also be characterized in terms of the discus-
sion at hand. For simplicity let us consider a second-order linear system in
which the input is a unit impulse at t � 0:

.

Applying the Laplace transform and using shows that the trans-
form of the response y in this case is the transfer function

�{#(t)} � 1

a2y� � a1y� � a0y � #(t), y(0) � 0, y�(0) � 0

P(s) � ansn � an�1sn�1 � 	 	 	 � a0

��

0
f(t) #(t � t0) dt � f(t0)

��
0 #(t � t0) dt � 1��

0 #(t � t0) dt � 0

� �0,   0 � t 
 2�

4 sin t,  t  2�.

y(t) � 4 sin (t � 2�) �(t � 2�)

Y(s) �
4e�2�s

s2 � 1
,

117

FIGURE 7.5.4 No motion until mass
is struck at t � 2p

FIGURE 7.5.3 Mass is struck at t � 2p

t

y

1

−1 2 4π π

t

y

1

−1 2 4π π

.Y(s) �
1

a2s2 � a1s � a0
�

1

P(s)
� W(s)  and  so y � � �1� 1

P(s)� � w(t)

From this we can see, in general, that the weight function y � w(t) of an nth-order
linear system is the zero-state response of the system to a unit impulse. For this
reason w(t) is also called the impulse response of the system.
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COUPLED SPRINGS Two masses m1 and m2 are connected to two springs A and
B of negligible mass having spring constants k1 and k2, respectively. In turn the two
springs are attached as shown in Figure 7.6.1. Let x1(t) and x2(t) denote the vertical
displacements of the masses from their equilibrium positions. When the system is in
motion, spring B is subject to both an elongation and a compression; hence its net
elongation is x2 � x1. Therefore it follows from Hooke’s law that springs A and B
exert forces �k1x1 and k2(x2 � x1), respectively, on m1. If no external force is
impressed on the system and if no damping force is present, then the net force on m1

is �k1x1 � k2(x2 � x1). By Newton’s second law we can write

.m1
d 2x1

dt2 � �k1x1 � k2(x2 � x1)

EXERCISES 7.5 Answers to selected odd-numbered problems begin on page ANS-12.

In Problems 1–12 use the Laplace transform to solve the
given initial-value problem.

1. y� � 3y � d(t � 2), y(0) � 0

2. y� � y � d(t � 1), y(0) � 2

3. y� � y � d(t � 2p), y(0) � 0, y�(0) � 1

4. y� � 16y � d(t � 2p), y(0) � 0, y�(0) � 0

5.

6. y� � y � d(t � 2p) � d(t � 4p), y(0) � 1, y�(0) � 0

7. y� � 2y� � d(t � 1), y(0) � 0, y�(0) � 1

8. y� � 2y� � 1 � d(t � 2), y(0) � 0, y�(0) � 1

9. y� � 4y� � 5y � d(t � 2p), y(0) � 0, y�(0) � 0

10. y� � 2y� � y � d(t � 1), y(0) � 0, y�(0) � 0

11. y� � 4y� � 13y � d(t � p) � d(t � 3p),
y(0) � 1, y�(0) � 0

12. y� � 7y� � 6y � et � d(t � 2) � d(t � 4),
y(0) � 0, y�(0) � 0

13. A uniform beam of length L carries a concentrated load
w0 at . The beam is embedded at its left end andx � 1

2L

y(0) � 0, y�(0) � 0

y� � y � # (t � 1
2�) � # (t � 3

2�),

is free at its right end. Use the Laplace transform to
determine the deflection y(x) from

where y(0) � 0, y�(0) � 0, y�(L) � 0, and y�(L) � 0.

14. Solve the differential equation in Problem 13 subject to
y(0) � 0, y�(0) � 0, y(L) � 0, y�(L) � 0. In this case
the beam is embedded at both ends. See Figure 7.5.5.

EI
d 4y

dx4 � w0 #�x � 1
2 L�,

FIGURE 7.5.5 Beam in Problem 14

x

y

L

w0

Discussion Problems

15. Someone tells you that the solutions of the two IVPs

are exactly the same. Do you agree or disagree? Defend
your answer.

y� � 2y� � 10y � 0,

y� � 2y� � 10y � #(t),

   y(0) � 0,  y�(0) � 1

   y(0) � 0,  y�(0) � 0

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

REVIEW MATERIAL
● Solving systems of two equations in two unknowns

INTRODUCTION When initial conditions are specified, the Laplace transform of each equation
in a system of linear differential equations with constant coefficients reduces the system of DEs to a
set of simultaneous algebraic equations in the transformed functions. We solve the system of
algebraic equations for each of the transformed functions and then find the inverse Laplace trans-
forms in the usual manner.

7.6
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52.5 107.5 1512.5
_ 0.4

0.2
0.4

_ 0.2

t

x1

(a) plot of x1(t) vs. t

(b) plot of x2(t) vs. t

52.5 107.5 1512.5
_ 0.4

0.2
0.4

_ 0.2

t

x2

FIGURE 7.6.2 Displacements of the
two masses

Similarly, the net force exerted on mass m2 is due solely to the net elongation of
B; that is, �k2(x2 � x1). Hence we have

.

In other words, the motion of the coupled system is represented by the system of
simultaneous second-order differential equations

(1)

In the next example we solve (1) under the assumptions that k1 � 6, k2 � 4,
m1 � 1, m2 � 1, and that the masses start from their equilibrium positions with
opposite unit velocities.

EXAMPLE 1 Coupled Springs

Solve
(2)

subject to 

SOLUTION The Laplace transform of each equation is

where . The preceding system is the
same as

(3)

Solving (3) for X1(s) and using partial fractions on the result yields

and therefore

Substituting the expression for X1(s) into the first equation of (3) gives

and

� �
12

5
 sin 12t �

13

10
 sin 213t.

x2(t) � �
2

512
� �1� 12

s2 � 2� �
3

5112
� �1� 112

s2 � 12�

X2(s) � �
s2 � 6

(s2 � 2)(s2 � 12)
� �

2>5
s2 � 2

�
3>5

s2 � 12

� �
12

10
 sin 12t �

13

5
 sin 213t.

x1(t) � �
1

512
� �1� 12

s2 � 2� �
6

5112
� �1� 112

s2 � 12�

X1(s) �
s2

(s2 � 2)(s2 � 12)
� �

1>5
s2 � 2

�
6>5

s2 � 12
,

�4 X1(s) � (s2 � 4) X2(s) � �1.

 (s2 � 10) X1(s) �  4X2(s) � 1

X1(s) � �{x1(t)} and X2(s) � �{x2(t)}

�4X1(s) � s2X2(s) � sx2(0) � x2� (0) � 4X2(s) � 0,

s2X1(s) � sx1(0) � x1�(0) � 10X1(s) � 4X2(s) � 0

x1(0) � 0, x�1(0) � 1, x2(0) � 0, x�2(0) � �1.

�4x1 � x�2 � 4x2 � 0

x�1 � 10x1 � 4x2 � 0

m2x�2 � �k2(x2 � x1).

m1x�1 � �k1x1 � k2(x2 � x1)

m2
d 2x2

dt2 � �k2(x2 � x1)

m2

k1

k2

k1

k (x2 − x1)2

k (x2 − x1)2

x2

x1 = 0

x2 = 0

x1

x1

A

m1

B m1

m2m2

(a) equilibrium (b) motion (c) forces

m1

FIGURE 7.6.1 Coupled spring/mass
system
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Finally, the solution to the given system (2) is

(4)

The graphs of x1 and x2 in Figure 7.6.2 reveal the complicated oscillatory motion of
each mass.

NETWORKS In (18) of Section 3.3 we saw the currents i1(t) and i2(t) in the
network shown in Figure 7.6.3, containing an inductor, a resistor, and a capacitor,
were governed by the system of first-order differential equations

(5)

We solve this system by the Laplace transform in the next example.

EXAMPLE 2 An Electrical Network

Solve the system in (5) under the conditions E(t) � 60 V, L � 1 h, R � 50 !,
C � 10�4 f, and the currents i1 and i2 are initially zero.

SOLUTION We must solve

subject to i1(0) � 0, i2(0) � 0.
Applying the Laplace transform to each equation of the system and simplifying

gives

where and . Solving the system for I1 and I2 and
decomposing the results into partial fractions gives

Taking the inverse Laplace transform, we find the currents to be

i2(t) �
6

5
�

6

5
e�100t � 120te�100t.

i1(t) �
6

5
�

6

5
e�100t � 60te�100t

I2(s) �
12,000

s(s � 100)2 �
6>5

s
�

6>5
s � 100

�
120

(s � 100)2.

I1(s) �
60s � 12,000

s(s � 100)2 �
6>5

s
�

6>5
s � 100

�
60

(s � 100)2

I2(s) � �{i2(t)}I1(s) � �{i1(t)}

�200I1(s) � (s � 200)I2(s) � 0,

sI1(s) �  50I2(s) �
60

s

 50(10�4)
di2

dt
� i2 � i1 � 0

di1

dt
� 50i2 � 60

RC
di2

dt
� i2 � i1 � 0.

L
di1

dt
� Ri2 � E(t)

x2(t) � �
12

5
 sin 12t �

13

10
 sin 213t.

x1(t) � �
12

10
 sin 12t �

13

5
 sin 213t

FIGURE 7.6.3 Electrical network

R

i1 L i2
i3

CE
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Note that both i1(t) and i2(t) in Example 2 tend toward the value
as t : �. Furthermore, since the current through the capacitor is

i3(t) � i1(t) � i2(t) � 60te�100t, we observe that as .

DOUBLE PENDULUM Consider the double-pendulum system consisting of a
pendulum attached to a pendulum shown in Figure 7.6.4. We assume that the system
oscillates in a vertical plane under the influence of gravity, that the mass of each rod
is negligible, and that no damping forces act on the system. Figure 7.6.4 also shows
that the displacement angle u1 is measured (in radians) from a vertical line extending
downward from the pivot of the system and that u2 is measured from a vertical line
extending downward from the center of mass m1. The positive direction is to the
right; the negative direction is to the left. As we might expect from the analysis lead-
ing to equation (6) of Section 5.3, the system of differential equations describing the
motion is nonlinear:

t : �i3(t) : 0
E>R � 6

5

FIGURE 7.6.4 Double pendulum

1θ

2θ

l1

m1

m2

l2

(6)
m2l2

2�2� � m2l1l2�1� cos (�1 � �2) � m2l1l2(�1�)2 sin (�1 � �2) � m2l2g sin �2 � 0.

 (m1 � m2)l1
2�1� � m2l1l2�2� cos (�1 � �2) � m2l1l2(�2�)2 sin (�1 � �2) � (m1 � m2)l1g sin �1 � 0

But if the displacements u1(t) and u2(t) are assumed to be small, then the approximations
cos(u1 � u2)  1, sin(u1 � u2)  0, sin u1  u1, sin u2  u2 enable us to replace system
(6) by the linearization

(7)

EXAMPLE 3 Double Pendulum

It is left as an exercise to fill in the details of using the Laplace transform to solve
system (7) when m1 � 3, m2 � 1, l1 � l2 � 16, u1(0) � 1, u2(0) � �1, ,
and . You should find that

(8)

With the aid of a CAS the positions of the two masses at t � 0 and at subsequent
times are shown in Figure 7.6.5. See Problem 21 in Exercises 7.6.

�2(t) �
1

2
 cos 

2

13
t �

3

2
 cos 2t.

�1(t) �
1

4
 cos 

2

13
t �

3

4
 cos 2t

��2(0) � 0
��1(0) � 0

m2l2
2�2� � m2l1l2�1� � m2l2g�2 � 0.

(m1 � m2)l1
2�1� � m2l1l2�2� � (m1 � m2)l1g�1 � 0

(a) t � 0 (b) t � 1.4 (c) t � 2.5 (d) t � 8.5

FIGURE 7.6.5 Positions of masses on double pendulum at various times
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EXERCISES 7.6 Answers to selected odd-numbered problems begin on page ANS-12.

In Problems 1–12 use the Laplace transform to solve the
given system of differential equations.

1. 2.

x(0) � 0, y(0) � 1 x(0) � 1, y(0) � 1

3. 4.

x(0) � �1, y(0) � 2 x(0) � 0, y(0) � 0

5.

x(0) � 0, y(0) � 0

6.

x(0) � 0, y(0) � 1

7. 8.

x(0) � 0, x�(0) � �2, x(0) � 1, x�(0) � 0,

y(0) � 0, y�(0) � 1 y(0) � �1, y�(0) � 5

9. 10.

x(0) � 8, x�(0) � 0, x(0) � 0, y(0) � 0,

y(0) � 0, y�(0) � 0 y�(0) � 0, y�(0) � 0

11.

x(0) � 0, x�(0) � 2, y(0) � 0

12.

x(0) � 0,  y(0) � 1
2

dy

dt
� 3x � y � �(t � 1)

dx

dt
� 4x � 2y � 2�(t � 1)

d 2x

dt2 � 3y � te�t

d 2x

dt2 � 3
dy

dt
� 3y � 0

dx

dt
� 2x � 2

d 3y

dt3 � 0
d 2x

dt2 �
d 2y

dt2 � 4t

dx

dt
� 4x �

d 3y

dt3 � 6 sin t
d 2x

dt2 �
d 2y

dt2 � t2

d 2y

dt2 �
dy

dt
� 4

dx

dt
� 0

d 2y

dt2 � y � x � 0

d 2x

dt2 �
dx

dt
�

dy

dt
� 0

d 2x

dt2 � x � y � 0

dx

dt
�  dy

dt
� 2y � 0

dx

dt
� x �

dy

dt
� y � 0

    
dx

dt
�

dy

dt
� 3x � 3y � 2

2
dx

dt
�

dy

dt
� 2x � 1

dx

dt
� x �

dy

dt
� y � etdy

dt
� 5x � y

dx

dt
� 3x �

dy

dt
� 1

dx

dt
� x � 2y

dy

dt
� 8x � t

dy

dt
� 2x

dx

dt
� 2y � etdx

dt
� �x � y

13. Solve system (1) when k1 � 3, k2 � 2, m1 � 1, m2 � 1
and x1(0) � 0, , x2(0) � 1, .

14. Derive the system of differential equations describing the
straight-line vertical motion of the coupled springs shown
in Figure 7.6.6. Use the Laplace transform to solve the
system when k1 � 1, k2 � 1, k3 � 1, m1 � 1, m2 � 1 and
x1(0) � 0, , x2(0) � 0, .x�2(0) � 1x�1(0) � �1

x�2(0) � 0x�1(0) � 1

k

m2

k2

3

x2 = 0

m1

k1

x1 = 0

FIGURE 7.6.6 Coupled springs in Problem 14

15. (a) Show that the system of differential equations for
the currents i2(t) and i3(t) in the electrical network
shown in Figure 7.6.7 is

(b) Solve the system in part (a) if R � 5 !, L1 � 0.01 h,
L2 � 0.0125 h, E � 100 V, i2(0) � 0, and i3(0) � 0.

(c) Determine the current i1(t).

L2
di3

dt
� Ri2 � Ri3 � E(t).

L1
di2

dt
� Ri2 � Ri3 � E(t)

FIGURE 7.6.7 Network in Problem 15

L1

R

E

i1 i2
i3

L2

16. (a) In Problem 12 in Exercises 3.3 you were asked to
show that the currents i2(t) and i3(t) in the electrical
network shown in Figure 7.6.8 satisfy

�R1
di2

dt
� R2

di3

dt
�

1

C
i3 � 0.

L
di2

dt
� L

di3

dt
� R1i2 � E(t)
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Solve the system if R1 � 10 !, R2 � 5 !, L � 1 h,
C � 0.2 f,

i2(0) � 0, and i3(0) � 0.

(b) Determine the current i1(t).

E(t) � �120,

0,

0 � t 
 2

t  2,

Computer Lab Assignments

21. (a) Use the Laplace transform and the information
given in Example 3 to obtain the solution (8) of the
system given in (7).

(b) Use a graphing utility to graph u1(t) and u2(t) in the
tu-plane. Which mass has extreme displacements of
greater magnitude? Use the graphs to estimate the
first time that each mass passes through its equilib-
rium position. Discuss whether the motion of the
pendulums is periodic.

(c) Graph u1(t) and u2(t) in the u1u2-plane as parametric
equations. The curve defined by these parametric
equations is called a Lissajous curve.

(d) The positions of the masses at t � 0 are given
in Figure 7.6.5(a). Note that we have used 
1 radian  57.3°. Use a calculator or a table
application in a CAS to construct a table of values
of the angles u1 and u2 for t � 1, 2, . . . , 10 s. Then
plot the positions of the two masses at these times.

(e) Use a CAS to find the first time that u1(t) � u2(t)
and compute the corresponding angular value. Plot
the positions of the two masses at these times.

(f) Utilize the CAS to draw appropriate lines to sim-
ulate the pendulum rods, as in Figure 7.6.5. Use
the animation capability of your CAS to make a
“movie” of the motion of the double pendulum
from t � 0 to t � 10 using a time increment of
0.1. [Hint: Express the coordinates (x1(t), y1(t))
and (x2(t), y2(t)) of the masses m1 and m2, respec-
tively, in terms of u1(t) and u2(t).]

FIGURE 7.6.8 Network in Problem 16

R1E

i1 L i2
i3

C

R2

17. Solve the system given in (17) of Section 3.3 when
R1 � 6 !, R2 � 5 !, L1 � 1 h, L2 � 1 h, E(t) � 50 sin t V,
i2(0) � 0, and i3(0) � 0.

18. Solve (5) when E � 60 V, , R � 50 !,
C � 10�4 f, i1(0) � 0, and i2(0) � 0.

19. Solve (5) when E � 60 V, L � 2 h, R � 50 !,
C � 10�4 f, i1(0) � 0, and i2(0) � 0.

20. (a) Show that the system of differential equations for the
charge on the capacitor q(t) and the current i3(t) in
the electrical network shown in Figure 7.6.9 is

(b) Find the charge on the capacitor when L � 1 h,
R1 � 1 !, R2 � 1 !, C � 1 f,

i3(0) � 0, and q(0) � 0.

E(t) � �0,

50e�t,

0 
 t 
 1

t  1,

L
di3

dt
� R2i3 �

1

C
q � 0.

R1
dq

dt
�

1

C
q � R1i3 � E(t)

L � 1
2 h

FIGURE 7.6.9 Network in Problem 20

R1

E

i1 i2

i3

LC

R2

CHAPTER 7 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-12.

In Problems 1 and 2 use the definition of the Laplace
transform to find .

1.

2. f (t) � �
0,

1,

0,

 0 � t 
 2

 2 � t 
 4

 t  4

f (t) � �t,

2 � t,

 0 � t 
 1

 t  1

�{ f (t)}
In Problems 3–24 fill in the blanks or answer true or false.

3. If f is not piecewise continuous on [0, �), then 
will not exist. _______

4. The function f (t) � (et )10 is not of exponential order.
_______

5. F(s) � s2�(s2 � 4) is not the Laplace transform of a
function that is piecewise continuous and of exponential
order. _______

�{ f (t)}
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6. If and , then 

. _______

7. _______ 8. _______

9. _______ 10. _______

11. _______

12. _______

13. _______

14. _______

15. _______

16. _______

17. _______

18. _______

19. _______

20. _______

21. exists for s � _______.

22. If , then _______.

23. If and k � 0, then 

_______.

24. _______ whereas 

_______.

In Problems 25–28 use the unit step function to find an
equation for each graph in terms of the function y � f (t),
whose graph is given in Figure 7.R.1.

�{eat�t
0 f (') d'} �

�{�t
0 ea' f (') d'} �

�{eat f (t � k)�(t � k)} �

�{ f(t)} � F(s)

�{te8t f (t)} ��{ f (t)} � F(s)

�{e�5t}

� �1� 1

L2s2 � n2�2� �

� �1� s � �

s2 � �2 e�s� �

� �1�e�5s

s2 � �

� �1� s

s2 � 10s � 29� �

� �1� 1

s2 � 5� �

� �1� 1

(s � 5)3� �

� �1� 1

3s � 1� �

� �1�20

s6� �

�{sin 2t �(t � �)} �

�{t sin 2t} �

�{e�3t sin 2t} ��{sin 2t} �

�{te�7t} ��{e�7t} �

� �1{F(s)G(s)} � f (t)g(t)

�{g(t)} � G(s)�{ f (t)} � F(s)

In Problems 29–32 express f in terms of unit step functions.
Find and .�{et f (t)}�{ f (t)}

FIGURE 7.R.2 Graph for Problem 25

t0
t

y

t0
t

y

y = f(t)

FIGURE 7.R.1 Graph for Problems 25–28

25.

FIGURE 7.R.3 Graph for Problem 26

FIGURE 7.R.4 Graph for Problem 27

FIGURE 7.R.5 Graph for Problem 28

t0
t

y

t0
t

y

t0
t

y

t1

26.

27.

28.

29.

30.

31.

32.

FIGURE 7.R.6 Graph for Problem 29

FIGURE 7.R.7 Graph for Problem 30

FIGURE 7.R.8 Graph for Problem 31

FIGURE 7.R.9 Graph for Problem 32

1

1

2 3 4 t

f (t)

2

1

−1
t

f (t)

π π π3

π πy = sin 3 t, ≤ t ≤

1 2 3

2

1

t

f (t)
(3, 3)

1 2

1

t

f (t)



In Problems 33–38 use the Laplace transform to solve the
given equation.

33. y� � 2y� � y � et, y(0) � 0, y�(0) � 5

34. y� � 8y� � 20y � tet, y(0) � 0, y�(0) � 0

35. y� � 6y� � 5y � t � t �(t � 2), y(0) � 1, y�(0) � 0

36. y� � 5y � f (t), where 

37.

38.

In Problems 39 and 40 use the Laplace transform to solve
each system.

39. x� � y � t 40. x� � y� � e2t

4x � y� � 0 2x� � y� � �e2t

x(0) � 1, y(0) � 2 x(0) � 0, y(0) � 0,
x�(0) � 0, y�(0) � 0

41. The current i(t) in an RC series circuit can be deter-
mined from the integral equation

,

where E(t) is the impressed voltage. Determine i(t)
when R � 10 !, C � 0.5 f, and E(t) � 2(t2 � t).

42. A series circuit contains an inductor, a resistor, and a
capacitor for which , R � 10 !, and C � 0.01 f,
respectively. The voltage

is applied to the circuit. Determine the instantaneous
charge q(t) on the capacitor for t � 0 if q(0) � 0 and
q�(0) � 0.

43. A uniform cantilever beam of length L is embedded at
its left end (x � 0) and free at its right end. Find the
deflection y(x) if the load per unit length is given by

.

44. When a uniform beam is supported by an elastic
foundation, the differential equation for its deflection
y(x) is

,

where k is the modulus of the foundation and �ky is the
restoring force of the foundation that acts in the direction
opposite to that of the load w(x). See Figure 7.R.10. For

EI
d 4y

dx4 � ky � w(x)

w(x) �
2w0

L 
L

2
� x � �x �

L

2� ��x �
L

2��

E(t) � �10,

0,

0 � t 
 5

  t  5

L � 1
2 h

Ri �
1

C
�t

0
i(') d' � E(t)

�t

0
f (') f (t � ') d' � 6t3

y�(t) � cos t � �t

0
y(') cos(t � ') d', y(0) � 1

f (t) � �t2,

0,

0 � t 
 1

t  1
, y(0) � 1

algebraic convenience suppose that the differential equa-
tion is written as

,

where a � (k�4EI)1/4. Assume L � p and a � 1. Find
the deflection y(x) of a beam that is supported on an
elastic foundation when

(a) the beam is simply supported at both ends and a con-
stant load w0 is uniformly distributed along its length,

(b) the beam is embedded at both ends and w(x) is a
concentrated load w0 applied at x � p�2.

[Hint: In both parts of this problem use entries 35 and
36 in the table of Laplace transforms in Appendix III.]

d 4y

dx4 � 4a4y �
w(x)

EI

FIGURE 7.R.10 Beam on elastic foundation in Problem 44

0 x

y

L

w(x)

elastic foundation

FIGURE 7.R.11 Coupled pendulums in Problem 45

1θ
θ2

m

ll

m

45. (a) Suppose two identical pendulums are coupled by
means of a spring with constant k. See Figure 7.R.11.
Under the same assumptions made in the discussion
preceding Example 3 in Section 7.6, it can be shown
that when the displacement angles u1(t) and u2(t)
are small, the system of linear differential equations
describing the motion is

Use the Laplace transform to solve the system when
u1(0) � u0, u1�(0) � 0, u2(0) � c0, u2�(0) � 0, where
u0 and c0 constants. For convenience let v2 � g�l,
K � k�m.

(b) Use the solution in part (a) to discuss the motion
of the coupled pendulums in the special case when
the initial conditions are u1(0) � u0, u1�(0) � 0,
u2(0) � u0, u2�(0) � 0. When the initial conditions
are u1(0) � u0, u1�(0) � 0, u2(0) � �u0, u2�(0) � 0.

�2� �
g

l
�2 �

k

m
 (�1 � �2).

�1� �
g

l
�1 � �

k

m
 (�1 � �2)
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8.1 Preliminary Theory—Linear Systems
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8.2.1 Distinct Real Eigenvalues

8.2.2 Repeated Eigenvalues

8.2.3 Complex Eigenvalues

8.3 Nonhomogeneous Linear Systems

8.3.1 Undetermined Coefficients

8.3.2 Variation of Parameters

8.4 Matrix Exponential

CHAPTER 8 IN REVIEW

We encountered systems of differential equations in Sections 3.3, 4.8, and 7.6 and

were able to solve some of these systems by means of either systematic elimination

or the Laplace transform. In this chapter we are going to concentrate only on

systems of linear first-order differential equations. Although most of the systems

that are considered could be solved using elimination or the Laplace transform, we

are going to develop a general theory for these kinds of systems and, in the case of

systems with constant coefficients, a method of solution that utilizes some basic

concepts from the algebra of matrices. We will see that this general theory and

solution procedure is similar to that of linear high-order differential equations

considered in Chapter 4. This material is fundamental to the analysis of nonlinear

first-order equations.



PRELIMINARY THEORY—LINEAR SYSTEMS

REVIEW MATERIAL
● Matrix notation and properties are used extensively throughout this chapter. It is imperative that

you review either Appendix II or a linear algebra text if you unfamiliar with these concepts.

INTRODUCTION Recall that in Section 4.8 we illustrated how to solve systems of n linear
differential equations in n unknowns of the form

(1)

where the Pij were polynomials of various degrees in the differential operator D. In this chapter
we confine our study to systems of first-order DEs that are special cases of systems that have the
normal form

A system such as (2) of n first-order equations is called a first-order system.

� g1(t,x1,x2, . . . ,xn)

� g2(t,x1,x2, . . . ,xn)

� gn(t,x1,x2, . . . ,xn).

dx1–––
dt

dx2–––
dt

dxn–––
dt

.

.

.
.
.
.

P11(D)x1 � P12(D)x2 � . . . � P1n(D)xn � b1(t)

P21(D)x1 � P22(D)x2 � . . . � P2n(D)xn � b2(t)

Pn1(D)x1 � Pn2(D)x2 � . . . � Pnn(D)xn � bn(t),

.

.

.
.
.
.
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8.1

LINEAR SYSTEMS When each of the functions g1, g2, . . . , gn in (2) is linear
in the dependent variables x1, x2, . . . , xn, we get the normal form of a first-order
system of linear equations:

We refer to a system of the form given in (3) simply as a linear system. We
assume that the coefficients aij as well as the functions fi are continuous on a
common interval I. When fi(t) � 0, i � 1, 2, . . . , n, the linear system (3) is said to
be homogeneous; otherwise, it is nonhomogeneous.

MATRIX FORM OF A LINEAR SYSTEM If X, A(t), and F(t) denote the respec-
tive matrices

x1(t)

x2(t)

xn(t)

X � ( ) ,

a11(t)

a21(t)

an1(t)

a1n(t)

a2n(t)

ann(t)

a12(t)

a22(t)

an2(t)

. . .

. . .

. . .

A(t) � ( ) ,

f1(t)

f2(t)

fn(t)

F(t) � ( ) ,.
.
.

.

.

.
.
.
.

.

.

.

� a11(t)x1 � a12(t)x2 � . . . � a1n(t)xn � f1(t)

� a21(t)x1 � a22(t)x2 � . . . � a2n(t)xn � f2(t)

� an1(t)x1 � an2(t)x2 � . . . � ann(t)xn � fn(t).

dx1–––
dt

dx2–––
dt

dxn–––
dt

.

.

.
.
.
.

(2)

(3)



then the system of linear first-order differential equations (3) can be written as

or simply (4)

If the system is homogeneous, its matrix form is then

(5)

EXAMPLE 1 Systems Written in Matrix Notation

(a) If , then the matrix form of the homogeneous system

(b) If , then the matrix form of the nonhomogeneous system

DEFINITION 8.1.1 Solution Vector

A solution vector on an interval I is any column matrix

whose entries are differentiable functions satisfying the system (4) on the
interval.

A solution vector of (4) is, of course, equivalent to n scalar equations 
x1 � f1(t), x2 � f2(t), . . . , xn � fn(t) and can be interpreted geometrically as a set
of parametric equations of a space curve. In the important case n � 2 the equations
x1 � f1(t), x2 � f2(t) represent a curve in the x1x2-plane. It is common practice to
call a curve in the plane a trajectory and to call the x1x2-plane the phase plane. We
will come back to these concepts and illustrate them in the next section.

x1(t)

x2(t)

xn(t)

X � ( ).
.
.

dx

dt
� 6x � y � z � t

  
dy

dt
� 8x � 7y � z � 10t

 dz

dt
� 2x � 9y � z �  6t

is X� � �6

8

2

1

7

9

1

�1

�1
�X � � t

10t

6t
�.

X � � x

y

z
�

dx

dt
� 3x � 4y

dy

dt
� 5x � 7y

is  X� � �3

5

4

�7�X.

X � �x

y�

X� � AX.

X� � AX � F.

(d
––
dt

x1

x2

xn

)
a11(t)

a21(t)

an1(t)

a1n(t)

a2n(t)

ann(t)

a12(t)

a22(t)

an2(t)

. . .

. . .

. . .

� ( (
x1

x2

xn

) � ()
f1(t)

f2(t)

fn(t)
).

.

.
.
.
.

.

.

.
.
.
.

.

.

.
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EXAMPLE 2 Verification of Solutions

Verify that on the interval (��, �)

are solutions of . (6)

SOLUTION From and we see that

and

Much of the theory of systems of n linear first-order differential equations is
similar to that of linear nth-order differential equations.

INITIAL-VALUE PROBLEM Let t0 denote a point on an interval I and

where the gi, i � 1, 2, . . . , n are given constants. Then the problem

(7)

is an initial-value problem on the interval.

THEOREM 8.1.1 Existence of a Unique Solution

Let the entries of the matrices A(t) and F(t) be functions continuous on a com-
mon interval I that contains the point t0. Then there exists a unique solution of
the initial-value problem (7) on the interval.

HOMOGENEOUS SYSTEMS In the next several definitions and theorems we are
concerned only with homogeneous systems. Without stating it, we shall always assume
that the aij and the fi are continuous functions of t on some common interval I.

SUPERPOSITION PRINCIPLE The following result is a superposition principle
for solutions of linear systems.

THEOREM 8.1.2 Superposition Principle

Let X1, X2, . . . , Xk be a set of solution vectors of the homogeneous system (5)
on an interval I. Then the linear combination

where the ci, i � 1, 2, . . . , k are arbitrary constants, is also a solution on the
interval.

X � c1X1 � c2X2 � 	 	 	 � ckXk,

Subject to:    X(t0) � X0

Solve: X� � A(t)X � F(t)

x1(t0)

x2(t0)

xn(t0)

X(t0) � ( and)
�1

�2

�n

X0 � ( ) ,.
.
.

.

.

.

AX2 � �1

5

3

3��
3e6t

5e6t� � � 3e6t � 15e6t

15e6t � 15e6t� � �18e6t

30e6t� � X�2 .

AX1 � �1

5

3

3��
e�2t

�e�2t� � � e�2t � 3e�2t

5e�2t � 3e�2t� � ��2e�2t

2e�2t� � X�1,

X�2 � �18e6t

30e6t�X�1 � ��2e�2t

2e�2t�

X� � �1

5

3

3�X

X1 � � 1

�1�e�2t � � e�2t

�e�2t �    and    X2 � �3

5�e6t � �3e6t

5e6t�
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It follows from Theorem 8.1.2 that a constant multiple of any solution vector of a
homogeneous system of linear first-order differential equations is also a solution.

EXAMPLE 3 Using the Superposition Principle

You should practice by verifying that the two vectors

are solutions of the system

(8)

By the superposition principle the linear combination

is yet another solution of the system.

LINEAR DEPENDENCE AND LINEAR INDEPENDENCE We are primarily in-
terested in linearly independent solutions of the homogeneous system (5).

DEFINITION 8.1.2 Linear Dependence/Independence

Let X1, X2, . . . , Xk be a set of solution vectors of the homogeneous system
(5) on an interval I. We say that the set is linearly dependent on the interval
if there exist constants c1, c2, . . . , ck, not all zero, such that

for every t in the interval. If the set of vectors is not linearly dependent on the
interval, it is said to be linearly independent.

The case when k � 2 should be clear; two solution vectors X1 and X2 are linearly
dependent if one is a constant multiple of the other, and conversely. For k � 2 a set of
solution vectors is linearly dependent if we can express at least one solution vector as
a linear combination of the remaining vectors.

WRONSKIAN As in our earlier consideration of the theory of a single ordi-
nary differential equation, we can introduce the concept of the Wronskian
determinant as a test for linear independence. We state the following theorem
without proof.

THEOREM 8.1.3 Criterion for Linearly Independent Solutions

Let X1 � (
x11

x21

xn1

x12

x22

xn2

) , X2� ( . . . ,) ,

x1n

x2n

xnn

Xn� ( ).
.
.

.

.

.
.
.
.

c1X1 � c2X2 � 	 	 	 � ckXk � 0

X � c1X1 � c2X2 � c1�
cos t

�1
2 cos t � 1

2 sin t

�cos t � sin t � � c2�
0

et

0�

X� � �
1

1

�2

0

1

0

1

0

�1�X.

X1 � �
cos t

�1
2 cos t � 1

2 sin t

�cos t � sin t � and X2 � �
0

et

0�
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be n solution vectors of the homogeneous system (5) on an interval I. Then the
set of solution vectors is linearly independent on I if and only if the Wronskian

(9)

for every t in the interval.

It can be shown that if X1, X2, . . . , Xn are solution vectors of (5), then for every
t in I either or Thus if we can
show that W � 0 for some t0 in I, then W � 0 for every t, and hence the solutions are
linearly independent on the interval.

Notice that, unlike our definition of the Wronskian in Section 4.1, here the
definition of the determinant (9) does not involve differentiation.

EXAMPLE 4 Linearly Independent Solutions

In Example 2 we saw that and are solutions of 

system (6). Clearly, X1 and X2 are linearly independent on the interval (��, �), since
neither vector is a constant multiple of the other. In addition, we have

for all real values of t.

DEFINITION 8.1.3 Fundamental Set of Solutions

Any set of n linearly independent solution vectors of the
homogeneous system (5) on an interval I is said to be a fundamental set of
solutions on the interval.

THEOREM 8.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous system (5) on
an interval I.

The next two theorems are the linear system equivalents of Theorems 4.1.5
and 4.1.6.

THEOREM 8.1.5 General Solution—Homogeneous Systems

Let be a fundamental set of solutions of the homogeneous
system (5) on an interval I. Then the general solution of the system on the
interval is

where the ci, i � 1, 2, . . . , n are arbitrary constants.

X � c1X1 � c2X2 � 	 	 	 � cnXn ,

X1, X2, . . . , Xn

X1, X2, . . . , Xn

W(X1, X2) � � e�2t

�e�2t

3e6t

5e6t� � 8e4t � 0

X2 � �3

5�e6tX1 � � 1

�1�e�2t

W(X1, X2, . . . , Xn) � 0.W(X1, X2, . . . , Xn) � 0

W(X1,X2, . . . ,Xn) � � � � 0

x11

x21

xn1

x1n

x2n

xnn

x12

x22

xn2

. . .

. . .

. . .

.

.

.
.
.
.
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EXAMPLE 5 General Solution of System (6)

From Example 2 we know that and are linearly 

independent solutions of (6) on (��, �). Hence X1 and X2 form a fundamental set
of solutions on the interval. The general solution of the system on the interval
is then

(10)

EXAMPLE 6 General Solution of System (8)

The vectors

are solutions of the system (8) in Example 3 (see Problem 16 in Exercises 8.1). Now

for all real values of t. We conclude that X1, X2, and X3 form a fundamental set of
solutions on (��, �). Thus the general solution of the system on the interval is the
linear combination X � c1X1 � c2X2 � c3X3; that is,

NONHOMOGENEOUS SYSTEMS For nonhomogeneous systems a particular
solution Xp on an interval I is any vector, free of arbitrary parameters, whose entries
are functions that satisfy the system (4).

THEOREM 8.1.6 General Solution—Nonhomogeneous Systems

Let Xp be a given solution of the nonhomogeneous system (4) on an interval
I and let

denote the general solution on the same interval of the associated homo-
geneous system (5). Then the general solution of the nonhomogeneous sys-
tem on the interval is

The general solution Xc of the associated homogeneous system (5) is
called the complementary function of the nonhomogeneous system (4).

X � Xc � Xp.

Xc � c1X1 � c2X2 � 	 	 	 � cnXn

X � c1�
cos t

�1
2 cos t � 1

2 sin t

�cos t � sin t
� � c2�

0

1

0�et � c3�
sin t

�1
2 sin t � 1

2 cos t

�sin t � cos t
�.

W(X1, X2, X3) � p cos t

�1
2 cos t � 1

2 sin t

�cos t � sin t

0

et

0

sin t

�1
2 sin t � 1

2 cos t

�sin t � cos t
p � et � 0

X1 � �
cos t

�1
2 cos t � 1

2 sin t

�cos t � sin t
�,  X2 � �

0

1

0�et,  X3 � �
sin t

�1
2 sin t � 1

2 cos t

�sin t � cos t
�

X � c1X1 � c2X2 � c1� 1

�1�e�2t � c2�3

5�e6t.

X2 � �3

5�e6tX1 � � 1

�1�e�2t
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EXAMPLE 7 General Solution—Nonhomogeneous System

The vector is a particular solution of the nonhomogeneous system

(11)

on the interval (��, �). (Verify this.) The complementary function of (11) on 

the same interval, or the general solution of , was seen in (10) of

Example 5 to be . Hence by Theorem 8.1.6

is the general solution of (11) on (��, �).

X � Xc � Xp � c1 � 1

�1�e�2t � c2�3

5�e6t � � 3t � 4

�5t � 6�

Xc � c1� 1

�1�e�2t � c2�3

5�e6t

X� � �1

5

3

3�X

X� � �1

5

3

3�X � �12t � 11

�3 �

Xp � � 3t � 4

�5t � 6�
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EXERCISES 8.1 Answers to selected odd-numbered problems begin on page ANS-13.

In Problems 1–6 write the linear system in matrix form.

1. 2.

3. 4.

5.

6.

In Problems 7–10 write the given system without the use of
matrices.

7. X� � � 4

�1

2

3�X � � 1

�1�et

dz

dt
� y � 6z � e�t

dy

dt
� 5x � 9z � 4e�tcos 2t

dx

dt
� �3x � 4y � e�tsin 2t

dz

dt
� x � y � z � t2 � t � 2

dy

dt
� 2x � y � z � 3t2

dx

dt
� x � y � z � t � 1

dz

dt
� �x � z

dz

dt
� 10x � 4y � 3z

dy

dt
� x � 2z

dy

dt
� 6x � y

dx

dt
� x � y

dx

dt
� �3x � 4y � 9z

dy

dt
� 5x

dy

dt
� 4x � 8y

dx

dt
� 4x � 7y

dx

dt
� 3x � 5y

8.

9.

10.

In Problems 11–16 verify that the vector X is a solution of
the given system.

11.

12.

13.

14. X� � � 2

�1

1

0�X; X � �1

3�et � � 4

�4� tet

X� � ��1

1

1
4

�1�X; X � ��1

2�e�3t/2

dy

dt
� �2x � 4y; X � � 5 cos t

3 cos t � sin t�et

dx

dt
� �2x � 5y

dy

dt
� 4x � 7y; X � �1

2�e�5t

dx

dt
� 3x � 4y

d

dt �
x

y� � �3

1

�7

1��
x

y� � �4

8�sin t � � t � 4

2t � 1�e4t

d

dt �
x

y

z
� � �

1

3

�2

�1

�4

5

2

1

6��
x

y

z
� � �

1

2

2�e�t � �
3

�1

1�t

X� � �
7

4

0

5

1

�2

�9

1

3�X � �
0

2

1�e5t � �
8

0

3�e�2t



15.

16.

In Problems 17–20 the given vectors are solutions of a
system X� � AX. Determine whether the vectors form a
fundamental set on the interval (��, �).

17.

18.

19.

20.

In Problems 21–24 verify that the vector Xp is a particular
solution of the given system.

21.

dy

dt
� 3x � 2y � 4t � 18; Xp � � 2

�1�t � �5

1�

dx

dt
� x � 4y � 2t � 7

X1 � �
1

6

�13�, X2 � �
1

�2

�1�e�4t, X3 � �
2

3

�2�e3t

X3 � �
3

�6

12� � t�
2

4

4�

 X1 � �
1

�2

4� � t�
1

2

2�, X2 � �
1

�2

4�,

X1 � � 1

�1�et, X2 � �2

6�et � � 8

�8� tet

X1 � �1

1�e�2t, X2 � � 1

�1�e�6t

X� � �
1

1

�2

0

1

0

1

0

�1�X; X � �
sin t

�1
2 sin t � 1

2 cos t

�sin t � cos t �

X� � �
1

6

�1

2

�1

�2

1

0

�1�X; X � �
1

6

�13�
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22.

23.

24.

25. Prove that the general solution of

on the interval (��, �) is

26. Prove that the general solution of

on the interval (��, �) is

� �1

0� t2 � ��2

4� t � �1

0�.

X � c1� 1

�1 � 12�e12t � c2� 1

�1 � 12�e�12t

X� � ��1

�1

�1

1�X � �1

1� t2 � � 4

�6� t � ��1

5�

X � c1�
6

�1

�5�e�t � c2�
�3

1

1�e�2t � c3�
2

1

1�e3t.

X� � �
0

1

1

6

0

1

0

1

0�X

X� � �
1

�4

�6

2

2

1

3

0

0�X � �
�1

4

3�sin 3t; Xp � �
sin 3t

0

cos 3t�

X� � �2

3

1

4�X � �1

7�et; Xp � �1

1�et � � 1

�1� tet

X� � �2

1

1

�1�X � ��5

2�; Xp � �1

3�

HOMOGENEOUS LINEAR SYSTEMS

REVIEW MATERIAL
● Section II.3 of Appendix II
● Also the Student Resource and Solutions Manual

INTRODUCTION We saw in Example 5 of Section 8.1 that the general solution of the 

homogeneous system is

.

Because the solution vectors X1 and X2 have the form 

, i � 1, 2, Xi � �k1

k2
�e�i t

X � c1X1 � c2X2 � c1� 1

�1�e�2t � c2�3

5�e6t

X� � �1

5

3

3�X

8.2



where k1, k2, l1, and l2 are constants, we are prompted to ask whether we can always find a solution
of the form

(1)

for the general homogeneous linear first-order system

(2)

where A is an n � n matrix of constants.

X� � AX,

X � (
k1

k2

kn

)elt � Kelt.
.
.
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EIGENVALUES AND EIGENVECTORS If (1) is to be a solution vector of
the homogeneous linear system (2), then X� � Klelt, so the system becomes
Klelt � AKelt. After dividing out elt and rearranging, we obtain AK � lK or
AK � lK � 0. Since K � IK, the last equation is the same as

(3)

The matrix equation (3) is equivalent to the simultaneous algebraic equations

Thus to find a nontrivial solution X of (2), we must first find a nontrivial solution
of the foregoing system; in other words, we must find a nontrivial vector K that
satisfies (3). But for (3) to have solutions other than the obvious solution

, we must have

This polynomial equation in l is called the characteristic equation of the matrix A;
its solutions are the eigenvalues of A. A solution K � 0 of (3) corresponding to
an eigenvalue l is called an eigenvector of A. A solution of the homogeneous system
(2) is then X � Kelt.

In the discussion that follows we examine three cases: real and distinct eigen-
values (that is, no eigenvalues are equal), repeated eigenvalues, and, finally, complex
eigenvalues.

8.2.1 DISTINCT REAL EIGENVALUES

When the n � n matrix A possesses n distinct real eigenvalues l1, l2, . . . , ln, then a
set of n linearly independent eigenvectors K1, K2, . . . , Kn can always be found, and

is a fundamental set of solutions of (2) on the interval (��, �).

THEOREM 8.2.1 General Solution—Homogeneous Systems

Let l1, l2, . . . , ln be n distinct real eigenvalues of the coefficient matrix A of the
homogeneous system (2) and let K1, K2, . . . , Kn be the corresponding eigen-
vectors. Then the general solution of (2) on the interval (��, �) is given by

X � c1K1e�1t � c2K2e�2t � 	 	 	 � cnKne�nt.

X1 � K1e�1t,    X2 � K2e�2t,    . . . ,    Xn � Kne�nt

det(A � �I) � 0.

k1 � k2 � 	 	 	 � kn � 0

(a11 � l)k1 � a12k2 � . . . � a1nkn � 0

a2nkn � 0a21k1 � (a22 � l)k2 � . . . �

                      

an1k1 �            an2k2 � . . . � (ann � l)kn � 0.

.

.

.
.
.
.

(A � �I)K � 0.



EXAMPLE 1 Distinct Eigenvalues

Solve

(4)

SOLUTION We first find the eigenvalues and eigenvectors of the matrix of
coefficients.

From the characteristic equation

we see that the eigenvalues are l1 � �1 and l2 � 4.
Now for l1 � �1, (3) is equivalent to

Thus k1 � �k2. When k2 � �1, the related eigenvector is

For �2 � 4 we have

so therefore with k2 � 2 the corresponding eigenvector is

Since the matrix of coefficients A is a 2 � 2 matrix and since we have found two lin-
early independent solutions of (4),

we conclude that the general solution of the system is

(5)

PHASE PORTRAIT You should keep firmly in mind that writing a solution of a
system of linear first-order differential equations in terms of matrices is simply an
alternative to the method that we employed in Section 4.8, that is, listing the individ-
ual functions and the relationship between the constants. If we add the vectors on the
right-hand side of (5) and then equate the entries with the corresponding entries in
the vector on the left-hand side, we obtain the more familiar statement

As was pointed out in Section 8.1, we can interpret these equations as parametric
equations of curves in the xy-plane or phase plane. Each curve, corresponding to
specific choices for c1 and c2, is called a trajectory. For the choice of constants
c1 � c2 � 1 in the solution (5) we see in Figure 8.2.1 the graph of x(t) in the
tx-plane, the graph of y(t) in the ty-plane, and the trajectory consisting of the points

x � c1e�t � 3c2e4t,    y � �c1e�t � 2c2e4t.

X � c1X1 � c2X2 � c1� 1

�1�e�t � c2�3

2�e4t.

X1 � � 1

�1�e�t    and    X2 � �3

2�e4 t,

K2 � �3

2�.

k1 � 3
2 k2;

 2k1 � 3k2 � 0

�2k1 � 3k2 � 0

K1 � � 1

�1�.

 2k1 � 2k2 � 0.

 3k1 � 3k2 � 0

det(A � �I) � �2 � �

2

3

1 � �� � �2 � 3� � 4 � (� � 1)(� � 4) � 0

dy

dt
� 2x �  y.

dx

dt
� 2x � 3y
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FIGURE 8.2.1 A particular solution
from (5) yields three different curves in
three different planes



(x(t), y(t)) in the phase plane. A collection of representative trajectories in the phase
plane, as shown in Figure 8.2.2, is said to be a phase portrait of the given linear
system. What appears to be two red lines in Figure 8.2.2 are actually four red
half-lines defined parametrically in the first, second, third, and fourth quadrants
by the solutions X2, �X1, �X2, and X1, respectively. For example, the Cartesian
equations , and y � �x, x � 0, of the half-lines in the first and fourth
quadrants were obtained by eliminating the parameter t in the solutions x � 3e4t,
y � 2e4t, and x � e�t, y � �e�t, respectively. Moreover, each eigenvector can be
visualized as a two-dimensional vector lying along one of these half-lines. The

eigenvector lies along in the first quadrant, and lies

along y � �x in the fourth quadrant. Each vector starts at the origin; K2 terminates
at the point (2, 3), and K1 terminates at (1, �1).

The origin is not only a constant solution x � 0, y � 0 of every 2 � 2 homoge-
neous linear system X� � AX, but also an important point in the qualitative study of
such systems. If we think in physical terms, the arrowheads on each trajectory
in Figure 8.2.2 indicate the direction that a particle with coordinates (x(t), y(t)) on
that trajectory at time t moves as time increases. Observe that the arrowheads, with
the exception of only those on the half-lines in the second and fourth quadrants,
indicate that a particle moves away from the origin as time t increases. If we imagine
time ranging from �� to �, then inspection of the solution x � c1e�t � 3c2e4t,
y � �c1e�t � 2c2e4t, c1 � 0, c2 � 0 shows that a trajectory, or moving particle,
“starts” asymptotic to one of the half-lines defined by X1 or �X1 (since e4t is negli-
gible for ) and “finishes” asymptotic to one of the half-lines defined by X2

and �X2 (since e�t is negligible for ).
We note in passing that Figure 8.2.2 represents a phase portrait that is typical of

all 2 � 2 homogeneous linear systems X� � AX with real eigenvalues of opposite
signs. See Problem 17 in Exercises 8.2. Moreover, phase portraits in the two cases
when distinct real eigenvalues have the same algebraic sign are typical of all such
2 � 2 linear systems; the only difference is that the arrowheads indicate that a parti-
cle moves away from the origin on any trajectory as when both l1 and l2 are
positive and moves toward the origin on any trajectory when both l1 and l2 are neg-
ative. Consequently, we call the origin a repeller in the case l1 � 0, l2 � 0 and an
attractor in the case l1 
 0, l2 
 0. See Problem 18 in Exercises 8.2. The origin in
Figure 8.2.2 is neither a repeller nor an attractor. Investigation of the remaining case
when l� 0 is an eigenvalue of a 2 � 2 homogeneous linear system is left as an
exercise. See Problem 49 in Exercises 8.2.

EXAMPLE 2 Distinct Eigenvalues

Solve

(6)

SOLUTION Using the cofactors of the third row, we find

and so the eigenvalues are l1 � �3, l2 � �4, and l3 � 5.

det(A � �I) � p�4 � �

1

0

1

5 � �

1

   1

�1

�3 � �
p � �(� � 3)(� � 4)(� � 5) � 0,

dz

dt
� y � 3z.

dy

dt
�  x � 5y � z

dx

dt
� �4x � y � z

t : �

t : �
t : ��

K1 � � 1

�1�y � 2
3 xK2 � �3

2�

y � 2
3 x, x � 0
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FIGURE 8.2.2 A phase portrait of
system (4)



For l1 � �3 Gauss-Jordan elimination gives

Therefore k1 � k3 and k2 � 0. The choice k3 � 1 gives an eigenvector and corre-
sponding solution vector

(7)

Similarly, for l2 � �4

implies that k1 � 10k3 and k2 � �k3. Choosing k3 � 1, we get a second eigenvector
and solution vector

(8)

Finally, when l3 � 5, the augmented matrices

yield (9)

The general solution of (6) is a linear combination of the solution vectors in (7),
(8), and (9):

USE OF COMPUTERS Software packages such as MATLAB, Mathematica,
Maple, and DERIVE can be real time savers in finding eigenvalues and eigenvectors
of a matrix A.

8.2.2 REPEATED EIGENVALUES

Of course, not all of the n eigenvalues l1, l2, . . . , ln of an n � n matrix A need be
distinct; that is, some of the eigenvalues may be repeated. For example, the charac-
teristic equation of the coefficient matrix in the system

(10)X� � �3

2

�18

�9�X

X � c1�1

0

1
�e�3t � c2� 10

�1

1
�e�4t � c3�1

8

1
�e5t.

K3 � �
1

8

1�,    X3 � �
1

8

1�e5t.

(A � 5I �0) � ( ��9

1

0

1

�1

�8

0

0

0

1

0

1
) ( �1

0

0

�1

�8

0

0

0

0

0

1

0
)row

operations

K2 � �
10

�1

1�,    X2 � �
10

�1

1�e�4t.

(A � 4I �0) � ( �0

1

0

1

�1

1

0

0

0

1

9

1
) ( �1

0

0

�10

1

0

0

0

0

0

1

0
)row

operations

K1 � �
1

0

1�,    X1 � �
1

0

1�e�3t.

(A � 3I �0) � ( ��1

1

0

1

�1

0

0

0

0

1

8

1
) ( �1

0

0

�1

0

0

0

0

0

0

1

0
).row

operations
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is readily shown to be (l � 3)2 � 0, and therefore l1 � l2 � �3 is a root of multi-
plicity two. For this value we find the single eigenvector

(11)

is one solution of (10). But since we are obviously interested in forming the general
solution of the system, we need to pursue the question of finding a second solution.

In general, if m is a positive integer and (l � l1)m is a factor of the characteristic
equation while (l � l1)m�1 is not a factor, then l1 is said to be an eigenvalue of mul-
tiplicity m. The next three examples illustrate the following cases:

(i) For some n � n matrices A it may be possible to find m linearly inde-
pendent eigenvectors K1, K2, . . . , Km corresponding to an eigenvalue
�1 of multiplicity m � n. In this case the general solution of the system
contains the linear combination

(ii) If there is only one eigenvector corresponding to the eigenvalue l1 of
multiplicity m, then m linearly independent solutions of the form

where Kij are column vectors, can always be found.

EIGENVALUE OF MULTIPLICITY TWO We begin by considering eigenvalues
of multiplicity two. In the first example we illustrate a matrix for which we can find
two distinct eigenvectors corresponding to a double eigenvalue.

EXAMPLE 3 Repeated Eigenvalues

Solve 

SOLUTION Expanding the determinant in the characteristic equation

yields �(l� 1)2(l � 5) � 0. We see that l1 � l2 � �1 and l3 � 5.
For l1 � �1 Gauss-Jordan elimination immediately gives

(A � I �0) � ( �2

�2

2

2

�2

2

0

0

0

�2

2

�2
) ( �1

0

0

�1

1

0

0

0

0

0

1

0
).row

operations

det(A � �I) � p 1 � �

�2

   2

�2

1 � �

�2

   2

�2

1 � �
p � 0

X� � �
1

�2

2

�2

1

�2

2

�2

1�X.

X1 � K11el1t

X2 � K21tel1t � K22el1t

               
Xm � Km1 el1t � Km2 el1t � . . . � Kmmel1t, 

tm�1
––––––––
(m � 1)!

tm�2
––––––––
(m � 2)!

.

.

.

c1K1e�1t � c2K2e�1t � 	 	 	 � cmKme�1t.

K1 � �3

1�,    so    X1 � �3

1�e�3t
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The first row of the last matrix means k1 � k2 � k3 � 0 or k1 � k2 � k3. The choices
k2 � 1, k3 � 0 and k2 � 1, k3 � 1 yield, in turn, k1 � 1 and k1 � 0. Thus two
eigenvectors corresponding to l1 � �1 are

Since neither eigenvector is a constant multiple of the other, we have found two
linearly independent solutions,

corresponding to the same eigenvalue. Last, for l3 � 5 the reduction

implies that k1 � k3 and k2 � �k3. Picking k3 � 1 gives k1 � 1, k2 � �1; thus a
third eigenvector is

We conclude that the general solution of the system is

The matrix of coefficients A in Example 3 is a special kind of matrix known
as a symmetric matrix. An n � n matrix A is said to be symmetric if its transpose
AT (where the rows and columns are interchanged) is the same as A—that is, if
AT � A. It can be proved that if the matrix A in the system X� � AX is symmetric
and has real entries, then we can always find n linearly independent eigen-
vectors K1, K2, . . . , Kn, and the general solution of such a system is as given in
Theorem 8.2.1. As illustrated in Example 3, this result holds even when some of the
eigenvalues are repeated.

SECOND SOLUTION Now suppose that l1 is an eigenvalue of multiplicity two
and that there is only one eigenvector associated with this value. A second solution
can be found of the form

, (12)

where
and)K � (

k1

k2

kn

) .P � (
p1

p2

pn

.

.

.
.
.
.

X2 � Kte�1t � Pe�1t

X � c1�
1

1

0�e�t � c2�
0

1

1�e�t � c3�
1

�1

1�e5t.

K3 � �
1

�1

1�.

(A � 5I �0) � ( ��4

�2

2

2

�2

�4

0

0

0

�2

�4

�2
) ( �1

0

0

�1

1

0

0

0

0

0

1

0
)row

operations

X1 � �
1

1

0�e�t     and    X2 � �
0

1

1�e�t,

K1 � �
1

1

0�    and    K2 � �
0

1

1�.
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To see this, we substitute (12) into the system X� � AX and simplify:

Since this last equation is to hold for all values of t, we must have

(13)

and (14)

Equation (13) simply states that K must be an eigenvector of A associated with l1.
By solving (13), we find one solution . To find the second solution X2, we
need only solve the additional system (14) for the vector P.

EXAMPLE 4 Repeated Eigenvalues

Find the general solution of the system given in (10).

SOLUTION From (11) we know that l1 � �3 and that one solution is

. Identifying , we find from (14) that we must

now solve

.

Since this system is obviously equivalent to one equation, we have an infinite num-
ber of choices for p1 and p2. For example, by choosing p1 � 1, we find .

However, for simplicity we shall choose so that p2 � 0. Hence .

Thus from (12) we find . The general solution of (10) is  

then X � c1X1 � c2X2 or

By assigning various values to c1 and c2 in the solution in Example 4, we
can plot trajectories of the system in (10). A phase portrait of (10) is given in
Figure 8.2.3. The solutions X1 and �X1 determine two half-lines 
and , respectively, shown in red in the figure. Because the single
eigenvalue is negative and as on every trajectory, we have

as . This is why the arrowheads in Figure 8.2.3 indicate
that a particle on any trajectory moves toward the origin as time increases and why
the origin is an attractor in this case. Moreover, a moving particle or trajectory

, approaches (0, 0)
tangentially to one of the half-lines as . In contrast, when the repeated eigen-
value is positive, the situation is reversed and the origin is a repeller. See Problem 21
in Exercises 8.2. Analogous to Figure 8.2.2, Figure 8.2.3 is typical of all 2 � 2
homogeneous linear systems X� � AX that have two repeated negative eigenvalues.
See Problem 32 in Exercises 8.2.

EIGENVALUE OF MULTIPLICITY THREE When the coefficient matrix A has
only one eigenvector associated with an eigenvalue l1 of multiplicity three, we can

t : �
y � c1e�3t � c2te�3t, c2 � 0x � 3c1e�3t � c2(3te�3t � 1

2e
�3t),

t : �(x(t), y(t)) : (0, 0)
t : �e�3t : 0

y � 1
3 x, x 
 0

y � 1
3 x, x � 0

X � c1�3

1�e�3t � c2
�3

1� te�3t � �
1
2

0�e�3t�.

X2 � �3

1� te�3t � �
1
2

0�e�3t

P � �
1
2

0�p1 � 1
2

p2 � 1
6

(A � 3I)P � K    or    
6p1 � 18p2 � 3

2p1 � 6p2 � 1

K � �3

1� and P � �p1

p2
�X1 � �3

1�e�3t

X1 � Ke�1t

(A � �1I)P � K.

(A � �1I)K � 0

(AK � �1K)te�1t � (AP � �1P � K)e�1t � 0.
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find a second solution of the form (12) and a third solution of the form

, (15)

where

By substituting (15) into the system X� � AX, we find that the column vectors K, P,
and Q must satisfy

(16)

(17)

and (18)

Of course, the solutions of (16) and (17) can be used in forming the solutions X1

and X2.

EXAMPLE 5 Repeated Eigenvalues

Solve .

SOLUTION The characteristic equation (l � 2)3 � 0 shows that l1 � 2 is an
eigenvalue of multiplicity three. By solving (A � 2I)K � 0, we find the single
eigenvector

We next solve the systems (A � 2I)P � K and (A � 2I)Q � P in succession and
find that

Using (12) and (15), we see that the general solution of the system is

.

REMARKS

When an eigenvalue l1 has multiplicity m, either we can find m linearly
independent eigenvectors or the number of corresponding eigenvectors is less
than m. Hence the two cases listed on page 316 are not all the possibilities under
which a repeated eigenvalue can occur. It can happen, say, that a 5 � 5 matrix
has an eigenvalue of multiplicity five and there exist three corresponding lin-
early independent eigenvectors. See Problems 31 and 50 in Exercises 8.2.

X � c1�
1

0

0�e2t � c2
�
1

0

0�te2t � �
0

1

0�e2t�� c3
�
1

0

0� t2

2
e2t � �

0

1

0� te2t � �
0

�6
5
1
5
�e2t�

P � �
0

1

0�    and    Q � �
0

�6
5
1
5
�.

K � �
1

0

0�.

X� � �
2

0

0

1

2

0

6

5

2�X

 (A � �1I)Q � P.

 (A � �1I)P � K

 (A � �1I)K � 0

and),K � (
k1

k2

kn

.

.

. ),P � (
p1

p2

pn

.

.

. ).Q � (
q1

q2

qn

.

.

.

X3 � K
t2

2
e�1t � Pte�1t � Qe�1t
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1e
�1t

K2 � K1�2 � �1

X � c1� 1

1 � 2i�e(5�2i )t � c2� 1

1 � 2i�e(5�2i )t.

K2 � � 1

1 � 2i�,    X2 � � 1

1 � 2i�e(5�2i)t.

K1 � � 1

1 � 2i�,    X1 � � 1

1 � 2i�e(5�2i)t.

 5k1 � (1 � 2i)k2 � 0.

 (1 � 2i)k1 �  k2 � 0

det(A � �I) � �6 � �

5

�1

4 � �� � �2 � 10� � 29 � 0.

dx

dt
� 6x � y

dy

dt
� 5x � 4y
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*When the characteristic equation has real coefficients, complex eigenvalues always appear in conjugate
pairs.
†Note that the second equation is simply (1 � 2i) times the first.

8.2.3 COMPLEX EIGENVALUES

If l1 � a � bi and l2 � a � bi, b 	 0, i2 � �1 are complex eigenvalues of the
coefficient matrix A, we can then certainly expect their corresponding eigenvectors
to also have complex entries.*

For example, the characteristic equation of the system

(19)

is

From the quadratic formula we find l1 � 5 � 2i, l2 � 5 � 2i.
Now for l1 � 5 � 2i we must solve

Since k2 � (1 � 2i)k1,† the choice k1 � 1 gives the following eigenvector and
corresponding solution vector:

In like manner, for l2 � 5 � 2i we find

We can verify by means of the Wronskian that these solution vectors are linearly
independent, and so the general solution of (19) is

(20)

Note that the entries in K2 corresponding to l2 are the conjugates of the
entries in K1 corresponding to l1. The conjugate of l1 is, of course, l2. We
write this as and . We have illustrated the following general
result.

THEOREM 8.2.2 Solutions Corresponding to a Complex Eigenvalue

Let A be the coefficient matrix having real entries of the homogeneous sys-
tem (2), and let K1 be an eigenvector corresponding to the complex eigenvalue
l1 � a� ib, a and b real. Then

are solutions of (2).

K1e�1t    and    K



It is desirable and relatively easy to rewrite a solution such as (20) in terms of
real functions. To this end we first use Euler’s formula to write

Then, after we multiply complex numbers, collect terms, and replace c1 � c2 by C1

and (c1 � c2)i by C2, (20) becomes

(21)

where

and

It is now important to realize that the vectors X1 and X2 in (21) constitute a linearly
independent set of real solutions of the original system. Consequently, we are justi-
fied in ignoring the relationship between C1, C2 and c1, c2, and we can regard C1 and
C2 as completely arbitrary and real. In other words, the linear combination (21) is
an alternative general solution of (19). Moreover, with the real form given in (21) we
are able to obtain a phase portrait of the system in (19). From (21) we find x(t) and
y(t) to be

By plotting the trajectories (x(t), y(t)) for various values of C1 and C2, we obtain the
phase portrait of (19) shown in Figure 8.2.4. Because the real part of l1 is 5 � 0,

as . This is why the arrowheads in Figure 8.2.4 point away from the
origin; a particle on any trajectory spirals away from the origin as . The origin
is a repeller.

The process by which we obtained the real solutions in (21) can be generalized.
Let K1 be an eigenvector of the coefficient matrix A (with real entries)
corresponding to the complex eigenvalue l1 � a � ib. Then the solution vectors in
Theorem 8.2.2 can be written as

By the superposition principle, Theorem 8.1.2, the following vectors are also
solutions:

Both and are real numbers for any complex
number z � a � ib. Therefore, the entries in the column vectors and

are real numbers. By defining

(22)

we are led to the following theorem.

B1 �
1

2
 (K1 � K1)    and    B2 �

i

2
 (�K1 � K1),

1
2 i(�K1 � K1)

1
2(K1 � K1)

1
2 i(�z � z) � b1

2 (z � z) � a

X2 �
i

2
(�K1e�1t � K1e�1t ) �

i

2
(�K1 � K1)e�t cos �t �

1

2
(K1 � K1)e�t sin �t.

X1 �
1

2
(K1e�1t � K1e�1t ) �

1

2
(K1 � K1)e�t cos �t �

i

2
(�K1 � K1)e�t sin �t

K1e�1t � K1e�te�i�t � K1e�t(cos �t � i sin �t).

K1e�1t � K1e�tei�t � K1e�t(cos �t � i sin �t)

t : �
t : �e5t : �

y � (C1 � 2C2)e5t cos 2t � (2C1 � C2)e5t sin 2t.

x � C1e
5t cos 2t � C2e

5t sin 2t

X2 � 
� 0

�2�cos 2t � �1

1�sin 2t�e5t.

X1 � 
�1

1�cos 2t � � 0

�2�sin 2t�e5t

X � C1X1 � C2X2 ,

e(5�2i )t � e5te�2ti � e5t(cos 2t � i sin 2t).

e(5�2i )t � e5te2ti � e5t(cos 2t � i sin 2t)
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FIGURE 8.2.4 A phase portrait of
system (19)

x

y



THEOREM 8.2.3 Real Solutions Corresponding to a Complex 

Eigenvalue

Let l1 � a� ib be a complex eigenvalue of the coefficient matrix A in the
homogeneous system (2) and let B1 and B2 denote the column vectors defined
in (22). Then

(23)

are linearly independent solutions of (2) on (��, �).

The matrices B1 and B2 in (22) are often denoted by

(24)

since these vectors are, respectively, the real and imaginary parts of the eigenvector
K1. For example, (21) follows from (23) with

EXAMPLE 6 Complex Eigenvalues

Solve the initial-value problem

(25)

SOLUTION First we obtain the eigenvalues from

The eigenvalues are l1 � 2i and . For l1 the system

gives k1 � �(2 � 2i)k2. By choosing k2 � �1, we get

Now from (24) we form

Since a � 0, it follows from (23) that the general solution of the system is

(26)� c1�2 cos 2t � 2 sin 2t

�cos 2t � � c2�2 cos 2t � 2 sin 2t

�sin 2t �.

X � c1
� 2

�1�cos 2t � �2

0�sin 2t� � c2
�2

0�cos 2t � � 2

�1�sin 2t�

B1 � Re(K1) � � 2

�1�    and    B2 � Im(K1) � �2

0�.

K1 � �2 � 2i

�1 � � � 2

�1� � i�2

0�.

   �k1 � (�2 � 2i)k2 � 0

(2 � 2i ) k1 �   8k2 � 0

�2 � �1 � �2i

det(A � �I) � �2 � �

�1

8

�2 � �� � �2 � 4 � 0.

X� � � 2

�1

8

�2�X,  X(0) � � 2

�1�.

B1 � Re(K1) � �1

1�   and   B2 � Im(K1) � � 0

�2�.

K1 � � 1

1 � 2i� � �1

1� � i� 0

�2�,

B1 � Re(K1)    and    B2 � Im(K1)

X2 � [B2 cos �t � B1 sin �t]e�t

X1 � [B1 cos �t � B2 sin �t]e�t
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Some graphs of the curves or trajectories defined by solution (26) of the system
are illustrated in the phase portrait in Figure 8.2.5. Now the initial condition

or, equivalently, x(0) � 2 and y(0) � �1 yields the algebraic system

2c1 � 2c2 � 2, �c1 � �1, whose solution is c1 � 1, c2 � 0. Thus the solution 

to the problem is . The specific trajectory defined 

parametrically by the particular solution x � 2 cos 2t � 2 sin 2t, y � �cos 2t is the
red curve in Figure 8.2.5. Note that this curve passes through (2, �1).

REMARKS

In this section we have examined exclusively homogeneous first-order systems
of linear equations in normal form X� � AX. But often the mathematical
model of a dynamical physical system is a homogeneous second-order system
whose normal form is X� � AX. For example, the model for the coupled
springs in (1) of Section 7.6,

(27)

can be written as
where

Since M is nonsingular, we can solve for X� as X� � AX, where A � M�1K.
Thus (27) is equivalent to

(28)

The methods of this section can be used to solve such a system in two ways:

• First, the original system (27) can be transformed into a first-order system
by means of substitutions. If we let and , then and

and so (27) is equivalent to a system of four linear first-order DEs:

or

By finding the eigenvalues and eigenvectors of the coefficient matrix A in
(29), we see that the solution of this first-order system gives the complete
state of the physical system—the positions of the masses relative to the
equilibrium positions (x1 and x2) as well as the velocities of the masses
(x3 and x4) at time t. See Problem 48(a) in Exercises 8.2.

x�4 �
k2

m2
x1 �

k2

m2
x2

x�3 � �� k1

m1
�

k2

m1
�x1 �

k2

m1
x2

x�2 � x 4

x�1 � x 3

x�4 � x�2

x�3 � x�1x�2 � x4x�1 � x3

X� � ��
k1

m1
�

k2

m1

k2

m2

k2

m1

�
k2

m2

�X.

M � �m1

0

0

m2
�,    K � ��k1 � k2

k2

k2

�k2
�,    and    X � �x1(t)

x2(t)
�.

MX� � KX,

m2x�2 � �k2(x2 � x1),

m1x�1 � �k1x1 � k2(x2 � x1)

X � �2 cos 2t � 2 sin 2t

�cos 2t �

X(0) � � 2

�1�

FIGURE 8.2.5 A phase portrait of
system (25)

x

y

(2, _1)

X� � X. (29)�
   0

   0

�
k1

m1
�

k2

m1

  k2

m2

 0

 0

k2

m1

�
k2

m2

1

0

0

0

0

1

0

0
�



• Second, because (27) describes free undamped motion, it can be argued
that real-valued solutions of the second-order system (28) will have
the form

, (30)

where V is a column matrix of constants. Substituting either of the
functions in (30) into X� � AX yields (A � v2I)V � 0. (Verify.)
By identification with (3) of this section we conclude that l� �v2

represents an eigenvalue and V a corresponding eigenvector of A. It can
be shown that the eigenvalues , i � 1, 2 of A are negative, and
so is a real number and represents a (circular) frequency
of vibration (see (4) of Section 7.6). By superposition of solutions the
general solution of (28) is then

(31)

where V1 and V2 are, in turn, real eigenvectors of A corresponding to l1

and l2.
The result given in (31) generalizes. If are

distinct negative eigenvalues and V1, V2, . . . , Vn are corresponding real
eigenvectors of the n � n coefficient matrix A, then the homogeneous
second-order system X� � AX has the general solution

(32)

where ai and bi represent arbitrary constants. See Problem 48(b) in
Exercises 8.2.

X � �
n

i�1
(ai cos �i t � bi sin �i t)Vi ,

��1
2, ��2

2, . . . , ��n
2

� (c1 cos �1t � c2 sin �1t)V1 � (c3 cos �2t � c4 sin �2t)V2,

X � c1V1 cos �1t � c2V1 sin �1t � c3V2 cos �2t � c4V2 sin �2t

�i � 1��i

�i � ��i
2

X � V cos �t    and    X � V sin �t
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EXERCISES 8.2 Answers to selected odd-numbered problems begin on page ANS-13.

8.2.1 DISTINCT REAL EIGENVALUES

In Problems 1–12 find the general solution of the given
system.

1. 2.

3. 4.

5. 6.

7. 8.

dz

dt
� 5y � 2z

dz

dt
� y � z

dy

dt
� 5x � 10y � 4z

dy

dt
� 2y

dx

dt
� 2x � 7y

dx

dt
� x � y � z

X� � ��6

�3

2

1�XX� � �10

8

�5

�12�X

dy

dt
�

3

4
x � 2y

dy

dt
� �

5

2
x � 2y

dx

dt
� �

5

2
x � 2y

dx

dt
� �4x � 2y

dy

dt
� x � 3y

dy

dt
� 4x � 3y

dx

dt
� 2x � 2y

dx

dt
� x � 2y

9.

10.

11.

12.

In Problems 13 and 14 solve the given initial-value problem.

13.

14. X� � �
1

0

1

1

2

1

4

0

1�X, X(0) � �
1

3

0�
X� � �

1
2

1

0

�1
2
�X, X(0) � �3

5�

X� � �
�1

4

0

4

�1

0

2

�2

6�X

X� � �
�1

3
4
1
8

�1

�3
2
1
4

0

3

�1
2
�X

X� � �
1

0

1

0

1

0

1

0

1�X

X� � �
�1

1

0

1

2

3

0

1

�1�X



Computer Lab Assignments

In Problems 15 and 16 use a CAS or linear algebra software
as an aid in finding the general solution of the given system.

15.

16.

17. (a) Use computer software to obtain the phase portrait
of the system in Problem 5. If possible, include
arrowheads as in Figure 8.2.2. Also include four
half-lines in your phase portrait.

(b) Obtain the Cartesian equations of each of the four
half-lines in part (a).

(c) Draw the eigenvectors on your phase portrait of the
system.

18. Find phase portraits for the systems in Problems 2 and 4.
For each system find any half-line trajectories and
include these lines in your phase portrait.

8.2.2 REPEATED EIGENVALUES

In Problems 19–28 find the general solution of the given
system.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. X� � �
4

0

0

1

4

0

0

1

4�XX� � �
1

2

0

0

2

1

0

�1

0�X

X� � �
1

0

0

0

3

�1

0

1

1�XX� � �
5

1

0

�4

0

2

0

2

5�X

dz

dt
� 4x � 2y � 3z

dz

dt
� x � y � z

dy

dt
� 2x � 2z

dy

dt
� x � y � z

dx

dt
� 3x � 2y � 4z

dx

dt
� 3x � y � z

X� � �12

4

�9

0�XX� � ��1

�3

3

5�X

dy

dt
� �5x � 4y

dy

dt
� 9x � 3y

dx

dt
� �6x � 5y

dx

dt
� 3x � y

X� � �
 1

 0

 1

 0

�2.8

0

5.1

2

1

0

  2

  0

�3

�3.1

  0

�1.8

�1

 0

 4

 1.5

0

3

0

0

1
�X

X� � �
0.9

0.7

1.1

2.1

6.5

1.7

3.2

4.2

3.4�X
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In Problems 29 and 30 solve the given initial-value problem.

29.

30.

31. Show that the 5 � 5 matrix

has an eigenvalue l1 of multiplicity 5. Show that three
linearly independent eigenvectors corresponding to l1

can be found.

Computer Lab Assignments

32. Find phase portraits for the systems in Problems 20
and 21. For each system find any half-line trajectories
and include these lines in your phase portrait.

8.2.3 COMPLEX EIGENVALUES

In Problems 33–44 find the general solution of the given
system.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. X� � �
4

0

�4

0

6

0

1

0

4�XX� � �
1

�1

�1

�1

1

0

2

0

1�X

dz

dt
� �4x � 3z

dz

dt
� y

dy

dt
� 3x � 6z

dy

dt
� �z

dx

dt
� 2x � y � 2z

dx

dt
� z

X� � �1

1

�8

�3�XX� � �4

5

�5

�4�X

dy

dt
� �2x � 6y

dy

dt
� �2x � 3y

dx

dt
� 4x � 5y

dx

dt
� 5x � y

dy

dt
� �2x � y

dy

dt
� 5x � 2y

dx

dt
� x � y

dx

dt
� 6x � y

A � �
2

0

0

0

0

1

2

0

0

0

0

0

2

0

0

0

0

0

2

0

0

0

0

1

2
�

X� � �
0

0

1

0

1

0

1

0

0�X, X(0) � �
1

2

5�
X� � � 2

�1

4

6�X, X(0) � ��1

6�



43. 44.

In Problems 45 and 46 solve the given initial-value problem.

45.

46.

Computer Lab Assignments

47. Find phase portraits for the systems in Problems 36, 37,
and 38.

48. (a) Solve (2) of Section 7.6 using the first method
outlined in the Remarks (page 323)—that is, express
(2) of Section 7.6 as a first-order system of four lin-
ear equations. Use a CAS or linear algebra software
as an aid in finding eigenvalues and eigenvectors of
a 4 � 4 matrix. Then apply the initial conditions to
your general solution to obtain (4) of Section 7.6.

(b) Solve (2) of Section 7.6 using the second method out-
lined in the Remarks—that is, express (2) of Section
7.6 as a second-order system of two linear equations.
Assume solutions of the form X � V sin vt and

X� � �6

5

�1

4�X, X(0) � ��2

8�

X� � �
1

1

1

�12

2

1

�14

�3

�2�X,  X(0) � �
4

6

�7�

X� � �
2

�1

�1

4

�2

0

4

0

�2�XX� � �
2

�5

0

5

�6

0

1

4

2�X

326 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

X � V cos vt. Find the eigenvalues and eigenvec-
tors of a 2 � 2 matrix. As in part (a), obtain (4) of
Section 7.6.

Discussion Problems

49. Solve each of the following linear systems.

(a) (b)

Find a phase portrait of each system. What is the geo-
metric significance of the line y � �x in each portrait?

50. Consider the 5 � 5 matrix given in Problem 31. Solve
the system X� � AX without the aid of matrix methods,
but write the general solution using matrix notation. Use
the general solution as a basis for a discussion of how the
system can be solved using the matrix methods of this
section. Carry out your ideas.

51. Obtain a Cartesian equation of the curve defined
parametrically by the solution of the linear system in
Example 6. Identify the curve passing through (2, �1)
in Figure 8.2.5 [Hint: Compute x2, y2, and xy.]

52. Examine your phase portraits in Problem 47. Under
what conditions will the phase portrait of a 2 � 2
homogeneous linear system with complex eigenvalues
consist of a family of closed curves? consist of a family
of spirals? Under what conditions is the origin (0, 0) a
repeller? An attractor?

X� � � 1

�1

1

�1�XX� � �1

1

1

1�X

NONHOMOGENEOUS LINEAR SYSTEMS

REVIEW MATERIAL
● Section 4.4 (Undetermined Coefficients)
● Section 4.6 (Variation of Parameters)

INTRODUCTION In Section 8.1 we saw that the general solution of a nonhomogeneous linear
system X� � AX � F(t) on an interval I is X � Xc � Xp, where 
is the complementary function or general solution of the associated homogeneous linear system
X� � AX and Xp is any particular solution of the nonhomogeneous system. In Section 8.2 we saw
how to obtain Xc when the coefficient matrix A was an n � n matrix of constants. In the present
section we consider two methods for obtaining Xp.

The methods of undetermined coefficients and variation of parameters used in Chapter 4 to
find particular solutions of nonhomogeneous linear ODEs can both be adapted to the solution of
nonhomogeneous linear systems X� � AX � F(t). Of the two methods, variation of parameters
is the more powerful technique. However, there are instances when the method of undetermined
coefficients provides a quick means of finding a particular solution.

Xc � c1X1 � c2X2 � 	 	 	 � cnXn

8.3

8.3.1 UNDETERMINED COEFFICIENTS

THE ASSUMPTIONS As in Section 4.4, the method of undetermined coefficients
consists of making an educated guess about the form of a particular solution vector
Xp; the guess is motivated by the types of functions that make up the entries of the



column matrix F(t). Not surprisingly, the matrix version of undetermined coefficients
is applicable to X� � AX � F(t) only when the entries of A are constants and the
entries of F(t) are constants, polynomials, exponential functions, sines and cosines,
or finite sums and products of these functions.

EXAMPLE 1 Undetermined Coefficients

Solve the system on (��, �).

SOLUTION We first solve the associated homogeneous system

The characteristic equation of the coefficient matrix A,

yields the complex eigenvalues l1 � i and . By the procedures of
Section 8.2 we find

Now since F(t) is a constant vector, we assume a constant particular solution vector

. Substituting this latter assumption into the original system and equat-

ing entries leads to

Solving this algebraic system gives a1 � 14 and b1 � 11, and so a particular solution

is . The general solution of the original system of DEs on the interval

(��, �) is then X � Xc � Xp or

EXAMPLE 2 Undetermined Coefficients

Solve the system on (��, �).

SOLUTION The eigenvalues and corresponding eigenvectors of the associated

homogeneous system are found to be l1 � 2, l2 � 7, ,

and . Hence the complementary function is

Xc � c1� 1

�4�e2t � c2�1

1�e7t.

K2 � �1

1�
K1 � � 1

�4�X� � �6

4

1

3�X

X� � �6

4

1

3�X � � 6t

�10t � 4�

X � c1�cos t � sin t

cos t � � c2�cos t � sin t

�sin t � � �14

11�.

Xp � �14

11�

 0 � �a1 � b1 � 3.

 0 � �a1 � 2b1 � 8

Xp � �a1

b1
�

Xc � c1�cos t � sin t

cos t � � c2�cos t � sin t

�sin t �.

�2 � �1 � �i

det(A � �I) � ��1 � �

�1

2

1 � �� � �2 � 1 � 0,

X� � ��1

�1

2

1�X.

X� � ��1

�1

2

1�X � ��8

3�
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Now because F(t) can be written , we shall try to find a

particular solution of the system that possesses the same form:

Substituting this last assumption into the given system yields

or

From the last identity we obtain four algebraic equations in four unknowns

Solving the first two equations simultaneously yields a2 � �2 and b2 � 6. We then
substitute these values into the last two equations and solve for a1 and b1. The results
are . It follows, therefore, that a particular solution vector is

.

The general solution of the system on (��, �) is X � Xc � Xp or

.

EXAMPLE 3 Form of Xp

Determine the form of a particular solution vector Xp for the system

SOLUTION Because F(t) can be written in matrix terms as

a natural assumption for a particular solution would be

Xp � �a3

b3
�e�t � �a2

b2
�t � �a1

b1
�.

F(t) � ��2

1�e�t � � 0

�5� t � �1

7�

dy

dt
� �x � y � e�t � 5t � 7.

dx

dt
� 5x � 3y � 2e�t � 1

X � c1�   1

�4�e2t � c2�1

1�e7t � ��2

6� t � ��
4
7

10
7
�

Xp � ��2

6� t � ��4
7

10
7
�

a1 � �4
7, b1 � 10

7

6a2 �  b2 �  6 � 0

4a2 � 3b2 � 10 � 0
    and    

6a1 �  b1 � a2  � 0

4a1 � 3b1 � b2 � 4 � 0.

�0

0� � � (6a2 � b2 � 6)t � 6a1 � b1 � a2

(4a2 � 3b2 � 10)t � 4a1 � 3b1 � b2 � 4�.

�a2

b2
� � �6

4

1

3�
�
a2

b2
� t � �a1

b1
�� � � 6

�10� t � �0

4�

Xp � �a2

b2
� t � �a1

b1
�.

F(t) � � 6

�10� t � �0

4�
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REMARKS

The method of undetermined coefficients for linear systems is not as straightfor-
ward as the last three examples would seem to indicate. In Section 4.4 the form
of a particular solution yp was predicated on prior knowledge of the comple-
mentary function yc. The same is true for the formation of Xp. But there are fur-
ther difficulties: The special rules governing the form of yp in Section 4.4 do not
quite carry to the formation of Xp. For example, if F(t) is a constant vector, as
in Example 1, and l� 0 is an eigenvalue of multiplicity one, then Xc contains
a constant vector. Under the Multiplication Rule on page 146 we would 

ordinarily try a particular solution of the form . This is not the

proper assumption for linear systems; it should be . 

Similarly, in Example 3, if we replace e�t in F(t) by e2t (l� 2 is an eigenvalue),
then the correct form of the particular solution vector is

Rather than delving into these difficulties, we turn instead to the method of
variation of parameters.

8.3.2 VARIATION OF PARAMETERS

A FUNDAMENTAL MATRIX If X1, X2, . . . , Xn is a fundamental set of solutions
of the homogeneous system X� � AX on an interval I, then its general solution on the
interval is the linear combination 

(1)

The last matrix in (1) is recognized as the product of an n � n matrix with an
n � 1 matrix. In other words, the general solution (1) can be written as the product

, (2)

where C is an n � 1 column vector of arbitrary constants c1, c2, . . . , cn and the n � n
matrix, whose columns consist of the entries of the solution vectors of the system
X� � AX,

is called a fundamental matrix of the system on the interval.

x11

x21

xn1

�(t) � ( ),
x1n

x2n

xnn

x12

x22

xn2

. . .

. . .

. . .

.

.

.
.
.
.

X � �(t)C

x11

x21

xn1

x12

x22

xn2

x1n

x2n

xnn

c1x11 � c2x12 � . . . � cnx1n

c1x21 � c2x22 � . . . � cnx2n

c1xn1 � c2xn2 � . . . � cnxnn

X � c1( ) � c2( ) � . . .  � cn( ) � ( ) ..
.
.

.

.

.
.
.
.

.

.

.

X � c1X1 � c2X2 � 	 	 	 � cnXn or

Xp � �a4

b4
� te2t � �a3

b3
�e2t � �a2

b2
� t � �a1

b1
�.

Xp � �a2

b2
� t � �a1

b1
�

Xp � �a1

b1
� t
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In the discussion that follows we need to use two properties of a fundamental
matrix:

• A fundamental matrix is nonsingular.
• If is a fundamental matrix of the system X� � AX, then

. (3)

A reexamination of (9) of Theorem 8.1.3 shows that det is the same as the
Wronskian W(X1, X2, . . . , Xn). Hence the linear independence of the columns
of on the interval I guarantees that det for every t in the interval. Since

is nonsingular, the multiplicative inverse exists for every t in the interval.
The result given in (3) follows immediately from the fact that every column of 
is a solution vector of X� � AX.

VARIATION OF PARAMETERS Analogous to the procedure in Section 4.6 we
ask whether it is possible to replace the matrix of constants C in (2) by a column ma-
trix of functions

(4)

is a particular solution of the nonhomogeneous system

. (5)

By the Product Rule the derivative of the last expression in (4) is

. (6)

Note that the order of the products in (6) is very important. Since U(t) is a column
matrix, the products and are not defined. Substituting (4) and (6)
into (5) gives

(7)

Now if we use (3) to replace , (7) becomes

or (8)

Multiplying both sides of equation (8) by gives

.

Since , we conclude that a particular solution of (5) is

. (9)

To calculate the indefinite integral of the column matrix in (9), we inte-
grate each entry. Thus the general solution of the system (5) is X � Xc � Xp or

. (10)

Note that it is not necessary to use a constant of integration in the evaluation of
for the same reasons stated in the discussion of variation of parame-

ters in Section 4.6.
���1(t)F(t) dt

X � �(t)C � �(t)���1(t)F(t) dt

��1(t)F(t)

Xp � �(t)���1(t)F(t) dt

Xp � �(t)U(t)

U�(t) � ��1(t)F(t)    and so    U(t) � ���1(t)F(t) dt

��1(t)

�(t)U�(t) � F(t).

�(t)U�(t) � A�(t)U(t) � A�(t)U(t) � F(t)

��(t)

�(t)U�(t) � ��(t)U(t) � A�(t)U(t) � F(t).

U(t)��(t)U�(t)�(t)

X�p � �(t)U�(t) � ��(t)U(t)

X� � AX � F(t)

u1(t)

u2(t)

un(t)

U(t) � ( Xp � �(t)U(t)so).
.
.

�(t)
��1(t)�(t)

�(t) � 0�(t)

�(t)

��(t) � A�(t)

�(t)
�(t)
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EXAMPLE 4 Variation of Parameters

Solve the system

(11)

on (��, �).

SOLUTION We first solve the associated homogeneous system

. (12)

The characteristic equation of the coefficient matrix is

,

so the eigenvalues are l1 � �2 and l2 � �5. By the usual method we find that the

eigenvectors corresponding to l1 and l2 are, respectively, and

. The solution vectors of the system (11) are then

.

The entries in X1 form the first column of , and the entries in X2 form the second
column of . Hence

.

From (9) we obtain

Hence from (10) the general solution of (11) on the interval is

.� c1�1

1�e�2t � c2� 1

�2�e�5t � �
6
5
3
5
� t � �

27
50
21
50
� � �

1
4
1
2
� e�t

X � �e�2t

e�2t

e�5t

�2e�5t��c1

c2
� � �

6
5 t � 27

50 � 1
4 e�t

3
5 t � 21

50 � 1
2 e�t �

� �
6
5 t � 27

50 � 1
4 e�t

3
5 t � 21

50 � 1
2 e�t �.

� �e�2t

e�2t

e�5t

�2e�5t��  te2t � 1
2 e2t � 1

3e
t

1
5 te5t � 1

25 e5t � 1
12 e4t�

� �e�2t

e�2t

e�5t

�2e�5t� ��2te2t � 1
3 et

 te5t � 1
3 e4t� dt

Xp � �(t)���1(t)F(t) dt � �e�2t

e�2t

e�5t

�2e�5t� � �
2
3 e2t

1
3 e5t

1
3 e2t

�1
3 e5t�� 3t

e�t� dt

�(t) � �e�2t

e�2t

e�5t

�2e�5t�    and    ��1(t) � �
2
3e2t

1
3 e5t

1
3 e2t

�1
3 e5t�

�(t)
�(t)

X1 � �1

1�e�2t � �e�2t

e�2t�    and    X2 � � 1

�2�e�5t � � e�5t

�2e�5t�

K2 � � 1

�2�
K1 � �1

1�

det(A � �I) � ��3 � �

2

1

�4 � �� � (� � 2)(� � 5) � 0

X� � ��3

2

1

�4�X

X� � ��3

2

1

�4�X � � 3t

e�t�
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INITIAL-VALUE PROBLEM The general solution of (5) on an interval can be
written in the alternative manner

, (13)

where t and t0 are points in the interval. This last form is useful in solving (5) subject
to an initial condition X(t0) � X0, because the limits of integration are chosen so that
the particular solution vanishes at t � t0. Substituting t � t0 into (13) yields

from which we get . Substituting this last result into
(13) gives the following solution of the initial-value problem:

. (14)X � �(t)��1(t0)X0 � �(t) �t

t0

��1(s)F(s) ds

C � ��1(t0)X0X0 � �(t0)C

X � �(t)C � �(t) �t

t0

��1(s)F(s) ds
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EXERCISES 8.3 Answers to selected odd-numbered problems begin on page ANS-14.

8.3.1 UNDETERMINED COEFFICIENTS

In Problems 1–8 use the method of undetermined coeffi-
cients to solve the given system.

1.

2.

3.

4.

5.

6.

7.

8.

9. Solve subject to

.X(0) � ��4

5�

X� � ��1

3

�2

4�X � �3

3�

X� � �0

0

5

0

5

0

5

0

0
�X � � 5

�10

40
�

X� � �1

0

0

1

2

0

1

3

5
�X � � 1

�1

2
�e4t

X� � ��1

�1

5

1�X � � sin t

�2 cos t�

X� � �4

9

1
3

6�X � ��3

10�et

X� � �1

4

�4

1�X � �4t � 9e6t

�t � e6t�

X� � �1

3

3

1�X � ��2t2

t � 5�

dy

dt
� �x � 11y � 6

dx

dt
� 5x � 9y � 2

dy

dt
� �x � 2y � 5

dx

dt
� 2x � 3y � 7

10. (a) The system of differential equations for the currents
i2(t) and i3(t) in the electrical network shown in
Figure 8.3.1 is

.

Use the method of undetermined coefficients to
solve the system if R1 � 2 !, R2 � 3 !, L1 � 1 h,
L2 � 1 h, E � 60 V, i2(0) � 0, and i3(0) � 0.

(b) Determine the current i1(t).

d

dt �
i2

i3
� � ��R1>L1

�R1>L2

�R1>L1

�(R1 � R2)>L2
��i2

i3
� � �E>L1

E>L2
�

FIGURE 8.3.1 Network in Problem 10

R1 R2

L1 L2

i1
i2

i3

E

8.3.2 VARIATION OF PARAMETERS

In Problems 11–30 use variation of parameters to solve the
given system.

11.

12.

13. X� � �3
3
4

�5

�1�X � �   1

�1�et/2

dy

dt
� 3x � 2y � 4t

dx

dt
� 2x � y

dy

dt
� 2x � 2y � 1

dx

dt
� 3x � 3y � 4



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

In Problems 31 and 32 use (14) to solve the given initial-
value problem.

31.

32. X� � �1

1

�1

�1�X � �1>t
1>t�, X(1) � � 2

�1�

X� � � 3

�1

�1

3�X � �4e2t

4e4t�, X(0) � �1

1�

X� � �3

1

1

�1

1

�1

�1

�1

1
�X � � 0

t

2et�
X� � �1

1

0

1

1

0

0

0

3
�X � � et

e2t

te3t�
X� � �1

1

�2

�1�X � �tan t

1 �

X� � � 1

�1
2

2

1�X � �csc t

sec t�et

X� � � 0

�1

1

0�X � � 1

cot t�

X� � � 0

�1

1

0�X � � 0

sec t tan t�

X� � �2

8

�2

�6�X � �1

3�
e�2t

t

X� � �1

1

�1

1�X � �cos t

sin t�et

X� � �1

1

�1

1�X � �3

3�et

X� � �0

1

�1

0�X � �sec t

0 �

X� � � 3

�2

2

�1�X � �1

1�

X� � � 3

�2

2

�1�X � �2e�t

e�t �

X� � �1

1

8

�1�X � �e�t

tet �

X� � �1

1

8

�1�X � �12

12� t

X� � � 0

�1

2

3�X � � 2

e�3t�

X� � � 0

�1

2

3�X � � 1

�1�et

X� � �2

4

�1

2�X � � sin 2t

2 cos 2t�e2t
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33. The system of differential equations for the currents i1(t)
and i2(t) in the electrical network shown in Figure 8.3.2 is

.

Use variation of parameters to solve the system
if R1 � 8 !, R2 � 3 !, L1 � 1 h, L2 � 1 h,
E(t) � 100 sin t V, i1(0) � 0, and i2(0) � 0.

d

dt �
i1

i2
� � ��(R1 � R2)>L2

R2>L1

R2>L2

�R2>L1
��i1

i2
� � �E>L2

0 �

FIGURE 8.3.2 Network in Problem 33

i1
i2

i3R1

R2E L1

L2

Discussion Problems

34. If y1 and y2 are linearly independent solutions of the
associated homogeneous DE for y� � P(x)y� �
Q(x)y � f (x), show in the case of a nonhomogeneous
linear second-order DE that (9) reduces to the form of
variation of parameters discussed in Section 4.6

Computer Lab Assignments

35. Solving a nonhomogeneous linear system
X� � AX � F(t) by variation of parameters when A is a
3 � 3 (or larger) matrix is almost an impossible task to
do by hand. Consider the system

(a) Use a CAS or linear algebra software to find the
eigenvalues and eigenvectors of the coefficient
matrix.

(b) Form a fundamental matrix and use the com-
puter to find .

(c) Use the computer to carry out the computations of:

where C is a
column matrix of constants c1, c2, c3, and c4.

(d) Rewrite the computer output for the general solu-
tion of the system in the form X � Xc � Xp, where
Xc � c1X1 � c2X2 � c3X3 � c4X4.

�(t)C, and �(t)C � ���1(t)F(t) dt,

��1(t)F(t), ���1(t)F(t) dt, �(t)���1(t)F(t) dt,

��1(t)
�(t)

X� � �
2

�1

0

0

�2

3

0

0

2

0

4

2

1

3

�2

�1
�X � �

tet

e�t

e2t

1
�.



HOMOGENEOUS SYSTEMS We shall now see that it is possible to define a ma-
trix exponential eAt so that

(1)

is a solution of the homogeneous system X� � AX. Here A is an n � n matrix of
constants, and C is an n � 1 column matrix of arbitrary constants. Note in (1) that the
matrix C post multiplies eAt because we want eAt to be an n � n matrix. While the
complete development of the meaning and theory of the matrix exponential would
require a thorough knowledge of matrix algebra, one way of defining eAt is inspired
by the power series representation of the scalar exponential function eat:

. (2)

The series in (2) converges for all t. Using this series, with 1 replaced by the identity
I and the constant a replaced by an n � n matrix A of constants, we arrive at a defi-
nition for the n � n matrix eAt.

DEFINITION 8.4.1 Matrix Exponential

For any n � n matrix A,

. (3)

It can be shown that the series given in (3) converges to an n � n matrix for
every value of t. Also, A2 � AA, A3 � A(A2), and so on.

DERIVATIVE OF eAt The derivative of the matrix exponential is analogous to the

differentiation property of the scalar exponential . To justify

, (4)

we differentiate (3) term by term:

d

dt
eAt � AeAt

d

dt
eat � aeat

eAt � I � At � A2 t2

2!
� 	 	 	 � Ak tk

k!
� 	 	 	 � �

�

k�0
Ak tk

k!

eat � 1 � at � a2 t2

2!
� 	 	 	 � ak tk

k!
� 	 	 	 � �

�

k�0
ak tk

k!

X � eAtC
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MATRIX EXPONENTIAL

REVIEW MATERIAL
● Appendix II.1 (Definitions II.10 and II.11)

INTRODUCTION Matrices can be used in an entirely different manner to solve a system of
linear first-order differential equations. Recall that the simple linear first-order differential equation
x� � ax, where a is constant, has the general solution x � ceat, where c is a constant. It seems
natural then to ask whether we can define a matrix exponential function eAt, where A is a matrix of
constants, so that a solution of the linear system X� � AX is eAt.

8.4

� A
I � At � A2 t2

2!
� 	 	 	� � AeAt.

d

dt
eAt �

d

dt 
I � At � A2 t2

2!
� 	 	 	 � Ak tk

k!
� 	 	 	� � A � A2t �

1

2!
A3t2 � 	 	 	



Because of (4), we can now prove that (1) is a solution of X� � AX for every n � 1
vector C of constants:

eAt IS A FUNDAMENTAL MATRIX If we denote the matrix exponential eAt

by the symbol �(t), then (4) is equivalent to the matrix differential equation
��(t) � A�(t) (see (3) of Section 8.3). In addition, it follows immediately from
Definition 8.4.1 that �(0) � eA0 � I, and so det �(0) � 0. It turns out that these two
properties are sufficient for us to conclude that �(t) is a fundamental matrix of the
system X� � AX.

NONHOMOGENEOUS SYSTEMS We saw in (4) of Section 2.4 that the general
solution of the single linear first-order differential equation x� � ax � f (t), where a
is a constant, can be expressed as

.

For a nonhomogeneous system of linear first-order differential equations it can be
shown that the general solution of X� � AX � F(t), where A is an n � n matrix of
constants, is

. (5)

Since the matrix exponential eAt is a fundamental matrix, it is always nonsingular and
e�As � (eAs)�1. In practice, e�As can be obtained from eAt by simply replacing t by �s.

COMPUTATION OF eAt The definition of eAt given in (3) can, of course, always
be used to compute eAt. However, the practical utility of (3) is limited by the fact that
the entries in eAt are power series in t. With a natural desire to work with simple and
familiar things, we then try to recognize whether these series define a closed-form
function. See Problems 1–4 in Exercises 8.4. Fortunately, there are many alternative
ways of computing eAt; the following discussion shows how the Laplace transform
can be used.

USE OF THE LAPLACE TRANSFORM We saw in (5) that X � eAt is a solution of
X� � AX. Indeed, since eA0 � I, X � eAt is a solution of the initial-value problem

. (6)

If , then the Laplace transform of (6) is

.

Multiplying the last equation by (sI � A)�1 implies that x(s) � (sI � A)�1

I � (sI � A)�1. In other words, 

(7)

EXAMPLE 1 Matrix Exponential

Use the Laplace transform to compute eAt for .A � �1

2

�1

�2�

eAt � ��1{(sI � A)�1}.

�{eAt} � (sI � A)�1 or

sx(s) � X(0) � Ax(s)    or    (sI � A)x(s) � I

x(s) � �{X(t)} � �{eAt}

X� � AX,  X(0) � I

X � Xc � Xp � eAtC � eAt�t

t0

e�AsF(s) ds

x � xc � xp � ceat � eat�t

t0

e�asf (s) ds

X� �
d

dt
eAtC � AeAtC � A(eAtC) � AX.
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SOLUTION First we compute the matrix sI � A and find its inverse:

Then we decompose the entries of the last matrix into partial fractions:

. (8)

It follows from (7) that the inverse Laplace transform of (8) gives the desired result,

.

USE OF COMPUTERS For those who are willing to momentarily trade under-
standing for speed of solution, eAt can be computed with the aid of computer software.
See Problems 27 and 28 in Exercises 8.4.

eAt � �2 � e�t

2 � 2e�t

�1 � e�t

�1 � 2e�t�

(sI � A)�1 � �
2

s
�

1

s � 1

2

s
�

2

s � 1

�
1

s
�

1

s � 1

�
1

s
�

2

s � 1
�

 (sI � A)�1 � �s � 1

�2

1

s � 2�
�1

� �
s � 2

s(s � 1)

2

s(s � 1)

�1

s(s � 1)

s � 1

s(s � 1)
�.

sI � A � �s � 1

�2

1

s � 2�,
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EXERCISES 8.4 Answers to selected odd-numbered problems begin on page ANS-14.

In Problems 1 and 2 use (3) to compute eAt and e�At.

1. 2.

In Problems 3 and 4 use (3) to compute eAt.

3. 4.

In Problems 5–8 use (1) to find the general solution of the
given system.

5. 6.

7. 8.

In Problems 9–12 use (5) to find the general solution of the
given system.

9. X� � �1

0

0

2�X � � 3

�1�

X� � �0

3

5

0

0

1

0

0

0
�XX� � � 1

1

�2

1

1

�2

1

1

�2
�X

X� � �0

1

1

0�XX� � �1

0

0

2�X

A � �0

3

5

0

0

1

0

0

0
�A � � 1

1

�2

1

1

�2

1

1

�2
�

A � �0

1

1

0�A � �1

0

0

2�
10.

11.

12.

13. Solve the system in Problem 7 subject to the initial
condition

.

14. Solve the system in Problem 9 subject to the initial
condition

.

In Problems 15–18 use the method of Example 1 to com-
pute eAt for the coefficient matrix. Use (1) to find the general
solution of the given system.

15. 16.

17. 18. X� � � 0

�2

1

�2�XX� � �5

1

�9

�1�X

X� � �4

1

�2

1�XX� � � 4

�4

3

�4�X

X(0) � �4

3�

X(0) � � 1

�4

6
�

X� � �0

1

1

0�X � �cosh t

sinh t�

X� � �0

1

1

0�X � �1

1�

X� � �1

0

0

2�X � � t

e4t�



Let P denote a matrix whose columns are eigenvectors
K1, K2, . . . , Kn corresponding to distinct eigenvalues
l1, l2, . . . , ln of an n � n matrix A. Then it can be shown
that A � PDP�1, where D is defined by

(9)

In Problems 19 and 20 verify the foregoing result for the
given matrix.

19. 20.

21. Suppose A � PDP�1, where D is defined as in (9). Use
(3) to show that eAt � PeDtP�1.

22. Use (3) to show that

where D is defined as in (9).

In Problems 23 and 24 use the results of Problems 19–22 to
solve the given system.

23. 24.

Discussion Problems

25. Reread the discussion leading to the result given in (7).
Does the matrix sI � A always have an inverse? Discuss.

X� � �2

1

1

2�XX� � � 2

�3

1

6�X

el1t

0

0

eDt �( ) ,

0

0

elnt

0

el2t

0

. . .

. . .

. . .

.

.

.
.
.
.

A � �2

1

1

2�A � � 2

�3

1

6�

l1

0

0

D � ( ).
0

0

ln

0

l2

0

. . .

. . .

. . .

.

.

.
.
.
.
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26. A matrix A is said to be nilpotent if there exists
some integer m such that Am � 0. Verify that

is nilpotent. Discuss why it is 

relatively easy to compute eAt when A is nilpotent.
Compute eAt and then use (1) to solve the system
X� � AX.

Computer Lab Assignments

27. (a) Use (1) to find the general solution of

. Use a CAS to find eAt. Then use 

the computer to find eigenvalues and eigenvectors 

of the coefficient matrix and form the 

general solution in the manner of Section 8.2.
Finally, reconcile the two forms of the general solu-
tion of the system.

(b) Use (1) to find the general solution of

. Use a CAS to find eAt. In the

case of complex output, utilize the software to do
the simplification; for example, in Mathematica, if
m � MatrixExp[A t] has complex entries, then
try the command Simplify[ComplexExpand[m]].

28. Use (1) to find the general solution of

.

Use MATLAB or a CAS to find eAt.

X� � �
�4

0

�1

0

0

�5

0

3

6

0

1

0

0

�4

0

2
�X

X� � ��3

2

�1

�1�X

A � �4

3

2

3�

X� � �4

3

2

3�X

A � ��1

�1

�1

1

0

1

1

1

1
�

CHAPTER 8 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-15.

In Problems 1 and 2 fill in the blanks.

1. The vector is a solution of

for k � __________.

2. The vector is solution of 

the initial-value problem 

for c1 � __________ and c2 � __________.

X� � �1

6

10

�3�X, X(0) � �2

0�
X � c1��1

1�e�9t � c2�5

3�e7t

X� � �1

2

4

�1�X � �8

1�

X � k�4

5�
3. Consider the linear system .

Without attempting to solve the system, determine
which one of the vectors

is an eigenvector of the coefficient matrix. What is
the solution of the system corresponding to this
eigenvector?

K1 � �0

1

1
�, K2 � � 1

1

�1
�, K3 � � 3

1

�1
�, K4 � � 6

2

�5
�

X� � � 4

1

�1

6

3

�4

6

2

�3
�X



4. Consider the linear system X� � AX of two differential
equations, where A is a real coefficient matrix. What is
the general solution of the system if it is known that

l1 � 1 � 2i is an eigenvalue and is a corre-

sponding eigenvector?

In Problems 5–14 solve the given linear system.

5. 6.

7. 8.

9. 10.

11.

12.

13. X� � ��1

�2

1

1�X � � 1

cot t�

X� � � 1

�1
2

2

1�X � � 0

et tan t�

X� � �2

0

8

4�X � � 2

16t�

X� � �0

1

2

2

1

2

1

�2

�1
�XX� � �1

0

4

�1

1

3

1

3

1
�X

X� � ��2

�2

5

4�XX� � � 1

�2

2

1�X

dy

dt
� 2x � 4y

dy

dt
� �x

dx

dt
� �4x � 2y

dx

dt
� 2x � y

K1 � �1

i�
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14.

15. (a) Consider the linear system X� � AX of three first-
order differential equations, where the coefficient
matrix is

and l � 2 is known to be an eigenvalue of multi-
plicity two. Find two different solutions of the sys-
tem corresponding to this eigenvalue without using
a special formula (such as (12) of Section 8.2).

(b) Use the procedure of part (a) to solve

.

16. Verify that is a solution of the linear system

for arbitrary constants c1 and c2. By hand, draw a phase
portrait of the system.

X� � � 1

0

0

1�X

X � �c1

c2
�et

X� � �1

1

1

1

1

1

1

1

1
�X

A � � 5

3

�5

3

5

�5

3

3

�3
�

X� � � 3

�1

1

1�X � ��2

1�e2t



9 NUMERICAL SOLUTIONS
OF ORDINARY DIFFERENTIAL
EQUATIONS

9.1 Euler Methods and Error Analysis

9.2 Runge-Kutta Methods

9.3 Multistep Methods

9.4 Higher-Order Equations and Systems

9.5 Second-Order Boundary-Value Problems

CHAPTER 9 IN REVIEW

Even if it can be shown that a solution of a differential equation exists, we might not

be able to exhibit it in explicit or implicit form. In many instances we have to be

content with an approximation of the solution. If a solution exists, it represents a set

of points in the Cartesian plane. In this chapter we continue to explore the basic

idea of Section 2.6, that is, utilizing the differential equation to construct an

algorithm to approximate the y-coordinates of points on the actual solution curve.

Our concentration in this chapter is primarily on first-order IVPs dy�dx � f(x, y),

y(x0) � y0. We saw in Section 4.9 that numerical procedures developed for first-

order DEs extend in a natural way to systems of first-order equations, and so we can

approximate solutions of a higher-order equation by recasting it as a system of first-

order DEs. Chapter 9 concludes with a method for approximating solutions of

linear second-order boundary-value problems.

339



A COMPARISON In Problem 4 in Exercises 2.6 you were asked to use Euler’s
method to obtain the approximate value of y(1.5) for the solution of the initial-value
problem y� � 2xy, y(1) � 1. You should have obtained the analytic solution

and results similar to those given in Tables 9.1 and 9.2.y � ex2�1
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EULER METHODS AND ERROR ANALYSIS

REVIEW MATERIAL
● Section 2.6

INTRODUCTION In Chapter 2 we examined one of the simplest numerical methods for
approximating solutions of first-order initial-value problems y� � f(x, y), y(x0) � y0. Recall that the
backbone of Euler’s method is the formula

(1)

where f is the function obtained from the differential equation y� � f(x, y). The recursive use of (1)
for n � 0, 1, 2, . . . yields the y-coordinates y1, y2, y3, . . . of points on successive “tangent lines” to
the solution curve at x1, x2, x3, . . . or xn � x0 � nh, where h is a constant and is the size of the step
between xn and xn�1. The values y1, y2, y3, . . . approximate the values of a solution y(x) of the IVP
at x1, x2, x3, . . . . But whatever advantage (1) has in its simplicity is lost in the crudeness of its
approximations.

yn�1 � yn � hf (xn, yn),

9.1

TABLE 9.1 Euler’s Method with h � 0.1

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73
1.20 1.4640 1.5527 0.0887 5.71
1.30 1.8154 1.9937 0.1784 8.95
1.40 2.2874 2.6117 0.3244 12.42
1.50 2.9278 3.4903 0.5625 16.12

TABLE 9.2 Euler’s Method with h � 0.05

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1000 1.1079 0.0079 0.72
1.10 1.2155 1.2337 0.0182 1.47
1.15 1.3492 1.3806 0.0314 2.27
1.20 1.5044 1.5527 0.0483 3.11
1.25 1.6849 1.7551 0.0702 4.00
1.30 1.8955 1.9937 0.0982 4.93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
1.50 3.1733 3.4903 0.3171 9.08

In this case, with a step size h � 0.1 a 16% relative error in the calculation of
the approximation to y(1.5) is totally unacceptable. At the expense of doubling the
number of calculations, some improvement in accuracy is obtained by halving the
step size to h � 0.05.

ERRORS IN NUMERICAL METHODS In choosing and using a numerical
method for the solution of an initial-value problem, we must be aware of the various
sources of errors. For some kinds of computation the accumulation of errors might
reduce the accuracy of an approximation to the point of making the computation use-
less. On the other hand, depending on the use to which a numerical solution may be
put, extreme accuracy might not be worth the added expense and complication.

One source of error that is always present in calculations is round-off error.
This error results from the fact that any calculator or computer can represent numbers
using only a finite number of digits. Suppose, for the sake of illustration, that we have



a calculator that uses base 10 arithmetic and carries four digits, so that is repre-
sented in the calculator as 0.3333 and is represented as 0.1111. If we use this 
calculator to compute for x � 0.3334, we obtain

With the help of a little algebra, however, we see that

so when . This exam-
ple shows that the effects of round-off error can be quite serious unless some care is
taken. One way to reduce the effect of round-off error is to minimize the number of
calculations. Another technique on a computer is to use double-precision arithmetic
to check the results. In general, round-off error is unpredictable and difficult to ana-
lyze, and we will neglect it in the error analysis that follows. We will concentrate on
investigating the error introduced by using a formula or algorithm to approximate the
values of the solution.

TRUNCATION ERRORS FOR EULER’S METHOD In the sequence of values 
y1, y2, y3, . . . generated from (1), usually the value of y1 will not agree with the actual
solution at x1 —namely, y(x1)—because the algorithm gives only a straight-line
approximation to the solution. See Figure 2.6.2. The error is called the local truncation
error, formula error, or discretization error. It occurs at each step; that is, if we
assume that yn is accurate, then yn�1 will contain local truncation error.

To derive a formula for the local truncation error for Euler’s method, we use
Taylor’s formula with remainder. If a function y(x) possesses k � 1 derivatives that
are continuous on an open interval containing a and x, then

where c is some point between a and x. Setting k � 1, a � xn, and x � xn�1 � xn � h,
we get

or

Euler’s method (1) is the last formula without the last term; hence the local
truncation error in yn�1 is

The value of c is usually unknown (it exists theoretically), so the exact error cannot
be calculated, but an upper bound on the absolute value of the error is

In discussing errors that arise from the use of numerical methods, it is helpful to use
the notation O(hn). To define this concept, we let e(h) denote the error in a numerical
calculation depending on h. Then e(h) is said to be of order hn, denoted by O(hn), if there
exist a constant C and a positive integer n such that e(h) � Chn for h sufficiently small.
Thus the local truncation error for Euler’s method is O(h2). We note that, in general, if
e(h) in a numerical method is of order hn and h is halved, the new error is approximately
C(h�2)n � Chn�2n; that is, the error is reduced by a factor of 1�2n.

��

Mh2>2!, where M � max
xn
 x
 xn�1

� y�(x) �.

y�(c)
h2

2!
,    where  xn 
 c 
 xn�1.

yn�1

y(xn�1) � yn � hf (xn, yn) � y �(c) .
h2
––
2!

y(xn�1) � y(xn) � y�(xn)
h

1!
� y�(c)

h2

2!

y(x) � y(a) � y�(a)
x � a

1!
� 	 	 	 � y(k)(a)

(x � a)k

k!
� y(k�1)(c)

(x � a)k�1

(k � 1)!
,

x � 0.3334, (x2 � 1
9)�(x � 1

3)  0.3334 � 0.3333 � 0.6667

x2 �
1
9

x � 1
3

�
(x � 1

3)(x � 1
3)

x � 1
3

� x �
1

3
,

(0.3334)2 � 0.1111

0.3334 � 0.3333
�

0.1112 � 0.1111

0.3334 � 0.3333
� 1.

(x2 � 1
9) � (x � 1

3)
1
9

1
3
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EXAMPLE 1 Bound for Local Truncation Errors

Find a bound for the local truncation errors for Euler’s method applied to
y� � 2xy, y(1) � 1.

SOLUTION From the solution we get , so the local
truncation error is

where c is between xn and xn � h. In particular, for h � 0.1 we can get an upper
bound on the local truncation error for y1 by replacing c by 1.1:

From Table 9.1 we see that the error after the first step is 0.0337, less than the value
given by the bound.

Similarly, we can get a bound for the local truncation error for any of the five
steps given in Table 9.1 by replacing c by 1.5 (this value of c gives the largest value
of y�(c) for any of the steps and may be too generous for the first few steps). Doing
this gives

(2)

as an upper bound for the local truncation error in each step.

Note that if h is halved to 0.05 in Example 1, then the error bound is 0.0480,
about one-fourth as much as shown in (2). This is expected because the local trunca-
tion error for Euler’s method is O(h2).

In the above analysis we assumed that the value of yn was exact in the calcula-
tion of yn�1, but it is not because it contains local truncation errors from previous
steps. The total error in yn�1 is an accumulation of the errors in each of the previous
steps. This total error is called the global truncation error. A complete analysis of
the global truncation error is beyond the scope of this text, but it can be shown that
the global truncation error for Euler’s method is O(h).

We expect that, for Euler’s method, if the step size is halved the error will
be approximately halved as well. This is borne out in Tables 9.1 and 9.2 where the
absolute error at x � 1.50 with h � 0.1 is 0.5625 and with h � 0.05 is 0.3171,
approximately half as large.

In general it can be shown that if a method for the numerical solution of a
differential equation has local truncation error O(ha�1), then the global truncation
error is O(ha).

For the remainder of this section and in the subsequent sections we study meth-
ods that give significantly greater accuracy than does Euler’s method.

IMPROVED EULER’S METHOD The numerical method defined by the formula

(3)

where (4)

is commonly known as the improved Euler’s method. To compute yn�1 for
n � 0, 1, 2, . . . from (3), we must, at each step, first use Euler’s method (4) to obtain
an initial estimate . For example, with n � 0, (4) gives , and

then, knowing this value, we use (3) to get , where y1 � y0 � h
f (x0, y0) � f (x1, y*1 )

2

y*1 � y0 � hf (x0, y0)y*n�1

y*n�1 � yn � h f(xn, yn),

yn�1 � yn � h
f (xn, yn) � f (xn�1, y*n�1)

2
,

[2 � (4)(1.5)2]e((1.5)2�1) (0.1)2

2
� 0.1920

[2 � (4)(1.1)2]e((1.1)2�1) (0.1)2

2
� 0.0422.

y�(c)
h2

2
� (2 � 4c2)e(c2�1) h2

2
,

y� � (2 � 4x2)ex2�1y � ex2�1
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x1 � x0 � h. These equations can be readily visualized. In Figure 9.1.1 observe that
m0 � f (x0, y0) and are slopes of the solid straight lines shown passing
through the points (x0, y0) and , respectively. By taking an average of these

slopes, that is, , we obtain the slope of the parallel 

dashed skew lines. With the first step, rather than advancing along the line through
(x0, y0) with slope f (x0, y0) to the point with y-coordinate obtained by Euler’s
method, we advance instead along the red dashed line through (x0, y0) with slope mave

until we reach x1. It seems plausible from inspection of the figure that y1 is an
improvement over .

In general, the improved Euler’s method is an example of a predictor-corrector
method. The value of given by (4) predicts a value of y(xn), whereas the value of
yn�1 defined by formula (3) corrects this estimate.

EXAMPLE 2 Improved Euler’s Method

Use the improved Euler’s method to obtain the approximate value of y(1.5) for the
solution of the initial-value problem y� � 2xy, y(1) � 1. Compare the results for
h � 0.1 and h � 0.05.

SOLUTION With x0 � 1, y0 � 1, f(xn, yn) � 2xnyn, n � 0, and h � 0.1, we first
compute (4):

We use this last value in (3) along with x1 � 1 � h � 1 � 0.1 � 1.1:

The comparative values of the calculations for h � 0.1 and h � 0.05 are given in
Tables 9.3 and 9.4, respectively.

y1 � y0 � (0.1)
2x0y0 � 2x1y*1

2
� 1 � (0.1)

2(1)(1) � 2(1.1)(1.2)

2
� 1.232.

y*1 � y0 � (0.1)(2x0y0) � 1 � (0.1)2(1)(1) � 1.2.

y*n�1

y*1

y*1

mave �
f (x0, y0) � f (x1, y1*)

2

(x1, y*1 )
m1 � f (x1, y*1 )
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(x1, y1)

(x1, y*
1)

0

1

mave 

x

y

x0 x1

h

(x0, y0)

(x1, )

(x1, )

m0 = f(x0, y0)

m1 = f(x1, y*
1)

(x1, y(x1))

solution
curve

f(x0, y0) + f(x1, y*
1)

2mave =

FIGURE 9.1.1 Slope of red dashed
line is the average of m0 and m1

TABLE 9.4 Improved Euler’s Method with h � 0.05

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1077 1.1079 0.0002 0.02
1.10 1.2332 1.2337 0.0004 0.04
1.15 1.3798 1.3806 0.0008 0.06
1.20 1.5514 1.5527 0.0013 0.08
1.25 1.7531 1.7551 0.0020 0.11
1.30 1.9909 1.9937 0.0029 0.14
1.35 2.2721 2.2762 0.0041 0.18
1.40 2.6060 2.6117 0.0057 0.22
1.45 3.0038 3.0117 0.0079 0.26
1.50 3.4795 3.4904 0.0108 0.31

TABLE 9.3 Improved Euler’s Method with h � 0.1

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2320 1.2337 0.0017 0.14
1.20 1.5479 1.5527 0.0048 0.31
1.30 1.9832 1.9937 0.0106 0.53
1.40 2.5908 2.6117 0.0209 0.80
1.50 3.4509 3.4904 0.0394 1.13

A brief word of caution is in order here. We cannot compute all the values of 
first and then substitute these values into formula (3). In other words, we cannot use
the data in Table 9.1 to help construct the values in Table 9.3. Why not?

TRUNCATION ERRORS FOR THE IMPROVED EULER’S METHOD The local
truncation error for the improved Euler’s method is O(h3). The derivation of this
result is similar to the derivation of the local truncation error for Euler’s method.

y*n



Since the local truncation error for the improved Euler’s method is O(h3), the global
truncation error is O(h2). This can be seen in Example 2; when the step size is halved
from h � 0.1 to h � 0.05, the absolute error at x � 1.50 is reduced from 0.0394 to
0.0108, a reduction of approximately (1

2)
2

� 1
4.
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EXERCISES 9.1 Answers to selected odd-numbered problems begin on page ANS-15.

In Problems 1–10 use the improved Euler’s method to obtain
a four-decimal approximation of the indicated value. First
use h � 0.1 and then use h � 0.05.

1. y� � 2x � 3y � 1, y(1) � 5; y(1.5)

2. y� � 4x � 2y, y(0) � 2; y(0.5)

3. y� � 1 � y2, y(0) � 0; y(0.5)

4. y� � x2 � y2, y(0) � 1; y(0.5)

5. y� � e�y, y(0) � 0; y(0.5)

6. y� � x � y2, y(0) � 0; y(0.5)

7. y� � (x � y)2, y(0) � 0.5; y(0.5)

8.

9.

10. y� � y � y2, y(0) � 0.5; y(0.5)

11. Consider the initial-value problem y� � (x � y � 1)2,
y(0) � 2. Use the improved Euler’s method with
h � 0.1 and h � 0.05 to obtain approximate values
of the solution at x � 0.5. At each step compare the
approximate value with the actual value of the analytic
solution.

12. Although it might not be obvious from the differential
equation, its solution could “behave badly” near a point
x at which we wish to approximate y(x). Numerical pro-
cedures may give widely differing results near this
point. Let y(x) be the solution of the initial-value prob-
lem y� � x2 � y3, y(1) � 1.

(a) Use a numerical solver to graph the solution on the
interval [1, 1.4].

(b) Using the step size h � 0.1, compare the results
obtained from Euler’s method with the results from
the improved Euler’s method in the approximation
of y(1.4).

13. Consider the initial-value problem y� � 2y, y(0) � 1.
The analytic solution is y � e2x.

(a) Approximate y(0.1) using one step and Euler’s
method.

(b) Find a bound for the local truncation error in y1.

(c) Compare the error in y1 with your error bound.

(d) Approximate y(0.1) using two steps and Euler’s
method.

y� � xy2 �
y

x
, y(1) � 1; y(1.5)

y� � xy � 1y, y(0) � 1; y(0.5)

(e) Verify that the global truncation error for Euler’s
method is O(h) by comparing the errors in parts
(a) and (d).

14. Repeat Problem 13 using the improved Euler’s method.
Its global truncation error is O(h2).

15. Repeat Problem 13 using the initial-value problem
y� � x � 2y, y(0) � 1. The analytic solution is

16. Repeat Problem 15 using the improved Euler’s method.
Its global truncation error is O(h2).

17. Consider the initial-value problem y� � 2x � 3y � 1,
y(1) � 5. The analytic solution is

(a) Find a formula involving c and h for the local trunca-
tion error in the nth step if Euler’s method is used.

(b) Find a bound for the local truncation error in each
step if h � 0.1 is used to approximate y(1.5).

(c) Approximate y(1.5) using h � 0.1 and h � 0.05 with
Euler’s method. See Problem 1 in Exercises 2.6.

(d) Calculate the errors in part (c) and verify that the
global truncation error of Euler’s method is O(h).

18. Repeat Problem 17 using the improved Euler’s
method, which has a global truncation error O(h2). See
Problem 1. You might need to keep more than four
decimal places to see the effect of reducing the order
of the error.

19. Repeat Problem 17 for the initial-value problem y� � e�y,
y(0) � 0. The analytic solution is y(x) � ln(x � 1).
Approximate y(0.5). See Problem 5 in Exercises 2.6.

20. Repeat Problem 19 using the improved Euler’s
method, which has global truncation error O(h2). See
Problem 5. You might need to keep more than four
decimal places to see the effect of reducing the order
of error.

Discussion Problems

21. Answer the question “Why not?” that follows the three
sentences after Example 2 on page 343.

y(x) � 1
9 � 2

3 x � 38
9 e�3(x�1).

y � 1
2 x � 1

4 � 5
4 e�2x.



RUNGE-KUTTA METHODS Fundamentally, all Runge-Kutta methods are gener-
alizations of the basic Euler formula (1) of Section 9.1 in that the slope function f is
replaced by a weighted average of slopes over the interval xn � x � xn�1. That is,

(1)

Here the weights wi, i � 1, 2, . . . , m, are constants that generally satisfy 
w1 � w2 � 	 	 	 � wm � 1, and each ki, i � 1, 2, . . . , m, is the function f evalu-
ated at a selected point (x, y) for which xn � x � xn�1. We shall see that the ki are
defined recursively. The number m is called the order of the method. Observe that
by taking m � 1, w1 � 1, and k1 � f (xn, yn), we get the familiar Euler formula
yn�1 � yn � h f (xn, yn). Hence Euler’s method is said to be a first-order Runge-
Kutta method.

The average in (1) is not formed willy-nilly, but parameters are chosen so that
(1) agrees with a Taylor polynomial of degree m. As we saw in the preceding section,
if a function y(x) possesses k � 1 derivatives that are continuous on an open interval
containing a and x, then we can write

where c is some number between a and x. If we replace a by xn and x by
xn�1 � xn � h, then the foregoing formula becomes

where c is now some number between xn and xn�1. When y(x) is a solution of
y� � f (x, y) in the case k � 1 and the remainder is small, we see that a
Taylor polynomial y(xn�1) � y(xn) � hy�(xn) of degree one agrees with the
approximation formula of Euler’s method

A SECOND-ORDER RUNGE-KUTTA METHOD To further illustrate (1), we
consider now a second-order Runge-Kutta procedure. This consists of finding
constants or parameters w1, w2, a, and b so that the formula

(2)

where

k2 � f(xn � �h, yn � �hk1),

k1 � f (xn, yn)

yn�1 � yn � h(w1k1 � w2k2),

yn�1 � yn � hy�n � yn � h f (xn, yn).

1
2 h2y�(c)

y(xn�1) � y(xn � h) � y(xn) � hy�(xn) �
h2

2!
y�(xn) � 	 	 	 �

hk�1

(k � 1)!
y(k�1)(c),

y(x) � y(a) � y�(a)
x � a

1!
� y�(a)

(x � a)2

2!
� 	 	 	 � y(k�1)(c)

(x � a)k�1

(k � 1)!
,

weighted average

yn�1 � yn � h (w1k1 � w2k2 � … � wmkm).
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RUNGE-KUTTA METHODS

REVIEW MATERIAL
● Section 2.8 (see page 78)

INTRODUCTION Probably one of the more popular as well as most accurate numerical proce-
dures used in obtaining approximate solutions to a first-order initial-value problem y� � f(x, y),
y(x0) � y0 is the fourth-order Runge-Kutta method. As the name suggests, there are Runge-Kutta
methods of different orders.
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agrees with a Taylor polynomial of degree two. For our purposes it suffices to say that
this can be done whenever the constants satisfy

(3)

This is an algebraic system of three equations in four unknowns and has infinitely
many solutions:

(4)

where w2 � 0. For example, the choice yields ,
and so (2) becomes

where

Since xn � h � xn�1 and yn � hk1 � yn � hf(xn, yn), the foregoing result is rec-
ognized to be the improved Euler’s method that is summarized in (3) and (4) of
Section 9.1.

In view of the fact that w2 � 0 can be chosen arbitrarily in (4), there are many
possible second-order Runge-Kutta methods. See Problem 2 in Exercises 9.2.

We shall skip any discussion of third-order methods in order to come to the prin-
cipal point of discussion in this section.

A FOURTH-ORDER RUNGE-KUTTA METHOD A fourth-order Runge-Kutta
procedure consists of finding parameters so that the formula

(5)

where

agrees with a Taylor polynomial of degree four. This results in a system of 11 equa-
tions in 13 unknowns. The most commonly used set of values for the parameters
yields the following result:

(6)

While other fourth-order formulas are easily derived, the algorithm summarized in (6)
is so widely used and recognized as a valuable computational tool it is often referred to
as the fourth-order Runge-Kutta method or the classical Runge-Kutta method. It is (6)
that we have in mind, hereafter, when we use the abbreviation the RK4 method.

You are advised to look carefully at the formulas in (6); note that k2 depends on
k1, k3 depends on k2, and k4 depends on k3. Also, k2 and k3 involve approximations
to the slope at the midpoint of the interval defined by xn � x � xn�1.xn � 1

2 h

k4 � f (xn � h, yn � hk3).

k3 � f (xn � 1
2h, yn � 1

2hk2)
k2 � f (xn � 1

2h, yn � 1
2hk1)

k1 � f (xn, yn)

yn�1 � yn �
h

6
 (k1 � 2k2 � 2k3 � k4),

k4 � f (xn � �3h, yn � �4hk1 � �5hk2 � �6hk3),

k3 � f (xn � �2h, yn � �2hk1 � �3hk2)

k2 � f (xn � �1h, yn � �1hk1)

k1 � f (xn, yn)

yn�1 � yn � h(w1k1 � w2k2 � w3k3 � w4k4),

k1 � f (xn, yn)    and    k2 � f (xn � h, yn � hk1).

yn�1 � yn �
h

2
 (k1 � k2),

w1 � 1
2, � � 1, and � � 1w2 � 1

2

w1 � 1 � w2,    � �
1

2w2
,    and    � �

1

2w2
,

w1 � w2 � 1,    w2� �
1

2
,     and    w2� �

1

2
.
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EXAMPLE 1 RK4 Method

Use the RK4 method with h � 0.1 to obtain an approximation to y(1.5) for the solu-
tion of y� � 2xy, y(1) � 1.

SOLUTION For the sake of illustration let us compute the case when n � 0. From
(6) we find

and therefore

The remaining calculations are summarized in Table 9.5, whose entries are
rounded to four decimal places.

Inspection of Table 9.5 shows why the fourth-order Runge-Kutta method is
so popular. If four-decimal-place accuracy is all that we desire, there is no need to use
a smaller step size. Table 9.6 compares the results of applying Euler’s, the improved
Euler’s, and the fourth-order Runge-Kutta methods to the initial-value problem
y� � 2xy, y(1) � 1. (See Tables 9.1 and 9.3.)

�1 �
0.1

6
 (2 � 2(2.31) � 2(2.34255) � 2.715361) � 1.23367435.

y1 � y0 �
0.1

6
 (k1 � 2k2 � 2k3 � k4)

�2(x0 � 0.1)(y0 � 0.234255) � 2.715361

k4 � f(x0 � (0.1), y0 � (0.1)2.34255)

�2(x0 � 1
2 (0.1))(y0 � 1

2 (0.231)) � 2.34255

k3 � f (x0 � 1
2 (0.1), y0 � 1

2 (0.1)2.31)
�2(x0 � 1

2 (0.1))(y0 � 1
2 (0.2)) � 2.31

k2 � f (x0 � 1
2 (0.1), y0 � 1

2 (0.1)2)
k1 � f (x0, y0) � 2x0y0 � 2
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TABLE 9.5 RK4 Method with h � 0.1

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2337 1.2337 0.0000 0.00
1.20 1.5527 1.5527 0.0000 0.00
1.30 1.9937 1.9937 0.0000 0.00
1.40 2.6116 2.6117 0.0001 0.00
1.50 3.4902 3.4904 0.0001 0.00

TABLE 9.6 y� � 2xy, y(1) � 1

Comparison of numerical methods with h � 0.1 Comparison of numerical methods with h � 0.05

Improved Actual Improved Actual
xn Euler Euler RK4 value xn Euler Euler RK4 value

1.00 1.0000 1.0000 1.0000 1.0000 1.00 1.0000 1.0000 1.0000 1.0000
1.10 1.2000 1.2320 1.2337 1.2337 1.05 1.1000 1.1077 1.1079 1.1079
1.20 1.4640 1.5479 1.5527 1.5527 1.10 1.2155 1.2332 1.2337 1.2337
1.30 1.8154 1.9832 1.9937 1.9937 1.15 1.3492 1.3798 1.3806 1.3806
1.40 2.2874 2.5908 2.6116 2.6117 1.20 1.5044 1.5514 1.5527 1.5527
1.50 2.9278 3.4509 3.4902 3.4904 1.25 1.6849 1.7531 1.7551 1.7551

1.30 1.8955 1.9909 1.9937 1.9937
1.35 2.1419 2.2721 2.2762 2.2762
1.40 2.4311 2.6060 2.6117 2.6117
1.45 2.7714 3.0038 3.0117 3.0117
1.50 3.1733 3.4795 3.4903 3.4904

TRUNCATION ERRORS FOR THE RK4 METHOD In Section 9.1 we saw that
global truncation errors for Euler’s method and for the improved Euler’s method are,
respectively, O(h) and O(h2). Because the first equation in (6) agrees with a Taylor
polynomial of degree four, the local truncation error for this method is y(5)(c) h5�5!
or O(h5), and the global truncation error is thus O(h4). It is now obvious why Euler’s
method, the improved Euler’s method, and (6) are first-, second-, and fourth-order
Runge-Kutta methods, respectively.



EXAMPLE 2 Bound for Local Truncation Errors

Find a bound for the local truncation errors for the RK4 method applied to 
y� � 2xy, y(1) � 1.

SOLUTION By computing the fifth derivative of the known solution 
we get

(7)

Thus with c � 1.5, (7) yields a bound of 0.00028 on the local truncation error for
each of the five steps when h � 0.1. Note that in Table 9.5 the error in y1 is much less
than this bound.

Table 9.7 gives the approximations to the solution of the initial-value problem at
x � 1.5 that are obtained from the RK4 method. By computing the value of the ana-
lytic solution at x � 1.5, we can find the error in these approximations. Because the
method is so accurate, many decimal places must be used in the numerical solution
to see the effect of halving the step size. Note that when h is halved, from h � 0.1 to
h � 0.05, the error is divided by a factor of about 24 � 16, as expected.

ADAPTIVE METHODS We have seen that the accuracy of a numerical method for
approximating solutions of differential equations can be improved by decreasing the
step size h. Of course, this enhanced accuracy is usually obtained at a cost—namely,
increased computation time and greater possibility of round-off error. In general,
over the interval of approximation there may be subintervals where a relatively large
step size suffices and other subintervals where a smaller step is necessary to keep the
truncation error within a desired limit. Numerical methods that use a variable step
size are called adaptive methods. One of the more popular of the adaptive routines
is the Runge-Kutta-Fehlberg method. Because Fehlberg employed two Runge-
Kutta methods of differing orders, a fourth- and a fifth-order method, this algorithm
is frequently denoted as the RKF45 method.*

y(5)(c)
h5

5!
� (120c � 160c3 � 32c5)ec2�1 h5

5!
.

y(x) � e x2�1,

348 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

TABLE 9.7 RK4 Method

h Approx. Error

0.1 3.49021064 1.32321089 � 10�4

0.05 3.49033382 9.13776090 � 10�6

EXERCISES 9.2 Answers to selected odd-numbered problems begin on page ANS-15.

1. Use the RK4 method with h � 0.1 to approximate
y(0.5), where y(x) is the solution of the initial-value
problem y� � (x � y � 1)2, y(0) � 2. Compare this
approximate value with the actual value obtained in
Problem 11 in Exercises 9.1.

2. Assume that in (4). Use the resulting second-
order Runge-Kutta method to approximate y(0.5), where
y(x) is the solution of the initial-value problem in
Problem 1. Compare this approximate value with the ap-
proximate value obtained in Problem 11 in Exercises 9.1.

In Problems 3–12 use the RK4 method with h � 0.1 to
obtain a four-decimal approximation of the indicated value.

3. y� � 2x � 3y � 1, y(1) � 5; y(1.5)

4. y� � 4x � 2y, y(0) � 2; y(0.5)

5. y� � 1 � y2, y(0) � 0; y(0.5)

w2 � 3
4

6. y� � x2 � y2, y(0) � 1; y(0.5)

7. y� � e�y, y(0) � 0; y(0.5)

8. y� � x � y2, y(0) � 0; y(0.5)

9. y� � (x � y)2, y(0) � 0.5; y(0.5)

10.

11.

12. y� � y � y2, y(0) � 0.5; y(0.5)

13. If air resistance is proportional to the square of the instan-
taneous velocity, then the velocity v of a mass m dropped
from a given height is determined from

Let v(0) � 0, k � 0.125, m � 5 slugs, and g � 32 ft/s2.

m
dv

dt
� mg � kv2,    k � 0.

y� � xy2 �
y

x
, y(1) � 1; y(1.5)

y� � xy � 1y, y(0) � 1; y(0.5)

*The Runge-Kutta method of order four used in RKF45 is not the same as that given in (6).



(a) Use the RK4 method with h � 1 to approximate the
velocity v(5).

(b) Use a numerical solver to graph the solution of the
IVP on the interval [0, 6].

(c) Use separation of variables to solve the IVP and
then find the actual value v(5).

14. A mathematical model for the area A (in cm2) that a
colony of bacteria (B. dendroides) occupies is given by

Suppose that the initial area is 0.24 cm2.

(a) Use the RK4 method with h � 0.5 to complete the
following table:

dA

dt
� A(2.128 � 0.0432A).*

18. Consider the initial-value problem y� � 2x � 3y � 1,
y(1) � 5. The analytic solution is 

(a) Find a formula involving c and h for the local trunca-
tion error in the nth step if the RK4 method is used.

(b) Find a bound for the local truncation error in each
step if h � 0.1 is used to approximate y(1.5).

(c) Approximate y(1.5) using the RK4 method with
h � 0.1 and h � 0.05. See Problem 3. You will need
to carry more than six decimal places to see the effect
of reducing the step size.

19. Repeat Problem 18 for the initial-value problem y� � e�y,
y(0) � 0. The analytic solution is y(x) � ln(x � 1).
Approximate y(0.5). See Problem 7.

Discussion Problems

20. A count of the number of evaluations of the function f
used in solving the initial-value problem y� � f (x, y),
y(x0) � y0 is used as a measure of the computational
complexity of a numerical method. Determine the num-
ber of evaluations of f required for each step of Euler’s,
the improved Euler’s, and the RK4 methods. By consid-
ering some specific examples, compare the accuracy of
these methods when used with comparable computa-
tional complexities.

Computer Lab Assignments

21. The RK4 method for solving an initial-value problem
over an interval [a, b] results in a finite set of points that
are supposed to approximate points on the graph of the
exact solution. To expand this set of discrete points to
an approximate solution defined at all points on the
interval [a, b], we can use an interpolating function.
This is a function, supported by most computer algebra
systems, that agrees with the given data exactly and as-
sumes a smooth transition between data points. These
interpolating functions may be polynomials or sets of
polynomials joined together smoothly. In Mathematica
the command y�Interpolation[data] can be used to
obtain an interpolating function through the points
data � {{x0, y0}, {x1, y1}, . . . , {xn, yn}}. The inter-
polating function y[x] can now be treated like any other
function built into the computer algebra system.

(a) Find the analytic solution of the initial-value prob-
lem y� � �y � 10 sin 3x; y(0) � 0 on the interval
[0, 2]. Graph this solution and find its positive roots.

(b) Use the RK4 method with h � 0.1 to approximate a
solution of the initial-value problem in part (a).
Obtain an interpolating function and graph it. Find
the positive roots of the interpolating function of the
interval [0, 2].

y(x) � 1
9 � 2

3 x � 38
9 e�3(x�1).
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t (days) 1 2 3 4 5

A (observed) 2.78 13.53 36.30 47.50 49.40

A (approximated)

(b) Use a numerical solver to graph the solution of the
initial-value problem. Estimate the values A(1),
A(2), A(3), A(4), and A(5) from the graph.

(c) Use separation of variables to solve the initial-value
problem and compute the actual values A(1), A(2),
A(3), A(4), and A(5).

15. Consider the initial-value problem y� � x2 � y3, y(1) � 1.
See Problem 12 in Exercises 9.1.

(a) Compare the results obtained from using the RK4
method over the interval [1, 1.4] with step sizes
h � 0.1 and h � 0.05.

(b) Use a numerical solver to graph the solution of the
initial-value problem on the interval [1, 1.4].

16. Consider the initial-value problem y� � 2y, y(0) � 1.
The analytic solution is y(x) � e2x.

(a) Approximate y(0.1) using one step and the RK4
method.

(b) Find a bound for the local truncation error in y1.

(c) Compare the error in y1 with your error bound.

(d) Approximate y(0.1) using two steps and the RK4
method.

(e) Verify that the global truncation error for the RK4
method is O(h4) by comparing the errors in parts (a)
and (d).

17. Repeat Problem 16 using the initial-value problem
y� � �2y � x, y(0) � 1. The analytic solution is

y(x) � 1
2 x � 1

4 � 5
4 e�2x.

*See V. A. Kostitzin, Mathematical Biology (London: Harrap, 1939).



Contributed Problem

22. An Energy Approach
to Spring/Mass Systems
Consider a system consist-
ing of a mass M connected to a spring of elastic constant
k. We neglect any effects due to friction, and we assume
that a constant force F acts on the mass. If the spring is
elongated by an amount x(t), then the spring’s elastic
energy is . This elastic energy may be
converted to kinetic energy . The
potential energy is . The conservation of energy
principle implies that Eelas � Ekin � Epot � constant,
namely,

where C is a constant denoting the total energy in the
system. See Figure 9.2.2. 

(a) Consider the case of free motion, that is, set .
Show that the motion of the spring/mass system, for
which the initial position of the mass is , is
described by the following first-order initial-value
problem (IVP):

where .

(b) If we take the constant in part (a) to be show
that if you consider the positive square root, the IVP
reduces to

(8)

where .y � vx

dy

dt
� v21 � y2,  y(0) � 0,

C � 1,

v � 1k>M
�dx

dt�
2

� v2x2 � C,  x(0) � 0,

x � 0

F � 0

1

2
M�dx

dt�
2

�
1

2
kx2 � Fx � C,

Epot � Fx
Ekin � 1

2 M(dx>dt)2
Eelas � 1

2 x2
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(c) Solve the IVP in part (b) by using either Euler’s
method or the RK4 method. Use the numerical val-
ues for the mass and for the
spring constant.

(d) Notice that no matter how small you make your step
size h, the solution starts at the point (0, 0) and in-
creases almost linearly to the constant solution (x, 1).
Show that the numerical solution is described by

Does this solution realistically depict the motion of
the mass?

(e) The differential equation (8) is separable. Separate
the variables and integrate to obtain an analytic so-
lution. Does the analytic solution realistically depict
the spring’s motion?

(f) Here is another way to approach the problem nu-
merically. By differentiating both sides of (8) with
respect to t, show that you obtain the second-order
IVP with constant coefficients

(g) Solve the IVP in part (f) numerically using the RK4
method and compare with the analytic solution.

(h) Redo the above analysis for the case of forced mo-
tion. Take F � 10 N.

d 2y

dt2 � v2y � 0,  y(0) � 0,  y�(0) � 1.

y(t) � �sin t,  if 0 � t � p>8,

1,     if t � p>8.

k � 48 N/mM � 3 kg

Layachi Hadji 
Associate Professor
Mathematics Department
The University of Alabama

x

Fk

M

FIGURE 9.2.2 Spring/mass system

MULTISTEP METHODS

REVIEW MATERIAL
● Sections 9.1 and 9.2

INTRODUCTION Euler’s method, the improved Euler’s method, and the Runge-Kutta methods
are examples of single-step or starting methods. In these methods each successive value yn�1 is
computed based only on information about the immediately preceding value yn. On the other hand,
multistep or continuing methods use the values from several computed steps to obtain the value of
yn�1. There are a large number of multistep method formulas for approximating solutions of DEs,
but since it is not our intention to survey the vast field of numerical procedures, we will consider
only one such method here.
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ADAMS-BASHFORTH-MOULTON METHOD The multistep method that is
discussed in this section is called the fourth-order Adams-Bashforth-Moulton
method. Like the improved Euler’s method it is a predictor-corrector method—that
is, one formula is used to predict a value , which in turn is used to obtain a cor-
rected value yn�1. The predictor in this method is the Adams-Bashforth formula

(1)

for n  3. The value of is then substituted into the Adams-Moulton corrector

(2)

Notice that formula (1) requires that we know the values of y0, y1, y2, and y3 to
obtain y4. The value of y0 is, of course, the given initial condition. The local trunca-
tion error of the Adams-Bashforth-Moulton method is O(h5), the values of y1, y2, and
y3 are generally computed by a method with the same error property, such as the
fourth-order Runge-Kutta method.

EXAMPLE 1 Adams-Bashforth-Moulton Method

Use the Adams-Bashforth-Moulton method with h � 0.2 to obtain an approximation
to y(0.8) for the solution of

SOLUTION With a step size of h � 0.2, y(0.8) will be approximated by y4. To get
started, we use the RK4 method with x0 � 0, y0 � 1, and h � 0.2 to obtain

Now with the identifications x0 � 0, x1 � 0.2, x2 � 0.4, x3 � 0.6, and
f (x, y) � x � y � 1, we find

With the foregoing values the predictor (1) then gives

To use the corrector (2), we first need

y�4 � f (x4, y*4) � 0.8 � 1.42535975 � 1 � 1.22535975.

y*4 � y3 �
0.2

24
 (55y�3 � 59y�2 � 37y�1 � 9y�0 ) �1.42535975.

y�3 � f (x3, y3) � (0.6) � (1.22210646) � 1 � 0.82210646.

y�2 � f (x2, y2) � (0.4) � (1.09181796) � 1 � 0.49181796

y�1 � f (x1, y1) � (0.2) � (1.02140000) � 1 � 0.22140000

y�0 � f (x0, y0) � (0) � (1) � 1 � 0

y1 � 1.02140000,    y2 � 1.09181796,    y3 � 1.22210646.

y� � x � y � 1,  y(0) � 1.

y�n�1 � f (xn�1, y*n�1).

yn�1 � yn �
h

24
(9y�n�1 � 19y�n � 5y�n�1 � y�n�2)

y*n�1

y�n�3 � f (xn�3, yn�3)

y�n�2 � f (xn�2, yn�2)

y�n�1 � f (xn�1, yn�1)

y�n � f (xn, yn)

y*n�1 � yn �
h

24
 (55y�n � 59y�n�1 � 37y�n�2 � 9y�n�3),

y*n�1
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Finally, (2) yields 

You should verify that the actual value of y(0.8) in Example 1 is 
y(0.8) � 1.42554093. See Problem 1 in Exercises 9.3.

STABILITY OF NUMERICAL METHODS An important consideration in using
numerical methods to approximate the solution of an initial-value problem is the sta-
bility of the method. Simply stated, a numerical method is stable if small changes in
the initial condition result in only small changes in the computed solution. A numer-
ical method is said to be unstable if it is not stable. The reason that stability consid-
erations are important is that in each step after the first step of a numerical technique
we are essentially starting over again with a new initial-value problem, where the
initial condition is the approximate solution value computed in the preceding step.
Because of the presence of round-off error, this value will almost certainly vary at
least slightly from the true value of the solution. Besides round-off error, another
common source of error occurs in the initial condition itself; in physical applications
the data are often obtained by imprecise measurements.

One possible method for detecting instability in the numerical solution of a spe-
cific initial-value problem is to compare the approximate solutions obtained when
decreasing step sizes are used. If the numerical method is unstable, the error may
actually increase with smaller step sizes. Another way of checking stability is to
observe what happens to solutions when the initial condition is slightly perturbed (for
example, change y(0) � 1 to y(0) � 0.999).

For a more detailed and precise discussion of stability, consult a numerical
analysis text. In general, all of the methods that we have discussed in this chapter
have good stability characteristics.

ADVANTAGES AND DISADVANTAGES OF MULTISTEP METHODS Many
considerations enter into the choice of a method to solve a differential equation
numerically. Single-step methods, particularly the RK4 method, are often chosen
because of their accuracy and the fact that they are easy to program. However, a
major drawback is that the right-hand side of the differential equation must be eval-
uated many times at each step. For instance, the RK4 method requires four function
evaluations for each step. On the other hand, if the function evaluations in the
previous step have been calculated and stored, a multistep method requires only
one new function evaluation for each step. This can lead to great savings in time and
expense.

As an example, solving y� � f(x, y), y(x0) � y0 numerically using n steps by the
fourth-order Runge-Kutta method requires 4n function evaluations. The Adams-
Bashforth multistep method requires 16 function evaluations for the Runge-Kutta
fourth-order starter and n � 4 for the n Adams-Bashforth steps, giving a total of
n � 12 function evaluations for this method. In general the Adams-Bashforth multi-
step method requires slightly more than a quarter of the number of function evalua-
tions required for the RK4 method. If the evaluation of f(x, y) is complicated, the
multistep method will be more efficient.

Another issue that is involved with multistep methods is how many times the
Adams-Moulton corrector formula should be repeated in each step. Each time
the corrector is used, another function evaluation is done, and so the accuracy is
increased at the expense of losing an advantage of the multistep method. In prac-
tice, the corrector is calculated once, and if the value of yn�1 is changed by a large
amount, the entire problem is restarted using a smaller step size. This is often
the basis of the variable step size methods, whose discussion is beyond the scope
of this text.

y4 � y3 �
0.2

24
 (9y�4 � 19y�3 � 5y�2 � y�1) � 1.42552788.
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1. Find the analytic solution of the initial-value problem in
Example 1. Compare the actual values of y(0.2), y(0.4),
y(0.6), and y(0.8) with the approximations y1, y2, y3, and y4.

2. Write a computer program to implement the Adams-
Bashforth-Moulton method.

In Problems 3 and 4 use the Adams-Bashforth-Moulton
method to approximate y(0.8), where y(x) is the solution of
the given initial-value problem. Use h � 0.2 and the RK4
method to compute y1, y2, and y3.

3. y� � 2x � 3y � 1, y(0) � 1

4. y� � 4x � 2y, y(0) � 2

HIGHER-ORDER EQUATIONS AND SYSTEMS

REVIEW MATERIAL
● Section 1.1 (normal form of a second-order DE)
● Section 4.9 (second-order DE written as a system of first-order DEs)

INTRODUCTION So far, we have focused on numerical techniques that can be used to approximate
the solution of a first-order initial-value problem y� � f(x, y), y(x0) � y0. In order to approximate the so-
lution of a second-order initial-value problem, we must express a second-order DE as a system of two first-
order DEs. To do this, we begin by writing the second-order DE in normal form by solving for y� in terms
of x, y, and y�.

9.4

SECOND-ORDER IVPs A second-order initial-value problem

(1)

can be expressed as an initial-value problem for a system of first-order differen-
tial equations. If we let y� � u, the differential equation in (1) becomes the system

(2)

Since y�(x0) � u(x0), the corresponding initial conditions for (2) are then y(x0) � y0,
u(x0) � u0. The system (2) can now be solved numerically by simply applying a par-
ticular numerical method to each first-order differential equation in the system. For
example, Euler’s method applied to the system (2) would be

(3)

whereas the fourth-order Runge-Kutta method, or RK4 method, would be

(4)

 un�1 � un �
h

6
(k1 � 2k2 � 2k3 � k4)

yn�1 � yn �
h

6
(m1 � 2m2 � 2m3 � m4)

 un�1 � un � h f (xn, yn, un),

yn�1 � yn � hun

u� � f (x, y, u).

y� � u

y� � f (x, y, y�),  y(x0) � y0,  y�(x0) � u0

EXERCISES 9.3 Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 5–8 use the Adams-Bashforth-Moulton method
to approximate y(1.0), where y(x) is the solution of the given
initial-value problem. First use h � 0.2 and then use h � 0.1.
Use the RK4 method to compute y1, y2, and y3.

5. y� � 1 � y2, y(0) � 0

6. y� � y � cos x, y(0) � 1

7. y� � (x � y)2, y(0) � 0

8. y� � xy � 1y,  y(0) � 1



where

In general, we can express every nth-order differential equation
y(n) � f(x, y, y�, . . . , y(n�1)) as a system of n first-order equations using the
substitutions y � u1, y� � u2, y� � u3, . . . , y (n�1) � un.

EXAMPLE 1 Euler’s Method

Use Euler’s method to obtain the approximate value of y(0.2), where y(x) is the
solution of the initial-value problem

(5)

SOLUTION In terms of the substitution y� � u, the equation is equivalent to the
system

.

Thus from (3) we obtain

Using the step size h � 0.1 and y0 � 1, u0 � 2, we find

In other words, y(0.2)  1.39 and y�(0.2)  1.761.

With the aid of the graphing feature of a numerical solver, in Figure 9.4.1(a) we
compare the solution curve of (5) generated by Euler’s method (h � 0.1) on the
interval [0, 3] with the solution curve generated by the RK4 method (h � 0.1). From
Figure 9.4.1(b) it appears that the solution y(x) of (4) has the property that 
and .

If desired, we can use the method of Section 6.1 to obtain two power series
solutions of the differential equation in (5). But unless this method reveals that the DE
possesses an elementary solution, we will still only be able to approximate y(0.2) using
a partial sum. Reinspection of the infinite series solutions of Airy’s differential equa-
tion y� � xy � 0, given on page 226, does not reveal the oscillatory behavior of the
solutions y1(x) and y2(x) exhibited in the graphs in Figure 6.1.2. Those graphs were
obtained from a numerical solver using the RK4 method with a step size of h � 0.1.

SYSTEMS REDUCED TO FIRST-ORDER SYSTEMS Using a procedure similar
to that just discussed for second-order equations, we can often reduce a system of
higher-order differential equations to a system of first-order equations by first solv-
ing for the highest-order derivative of each dependent variable and then making
appropriate substitutions for the lower-order derivatives.

x : �
y(x) : 0

u2 � u1 � (0.1)[�x1u1 � y1] � 1.9 � (0.1)[�(0.1)(1.9) � 1.2] � 1.761.

y2 � y1 � (0.1)u1 � 1.2 � (0.1)(1.9) � 1.39

u1 � u0 � (0.1) [�x0u0 � y0] � 2 � (0.1)[�(0)(2) � 1] � 1.9

y1 � y0 � (0.1)u0 � 1 � (0.1)2 � 1.2

un�1 � un � h[�xnun � yn].

yn�1 � yn � hun

u� � �xu � y

y� � u

y� � xy� � y � 0,  y(0) � 1,  y�(0) � 2.

k4 � f (xn � h, yn � hm3, un � hk3).m4 � un � hk3

k3 � f (xn � 1
2 h, yn � 1

2 hm2, un � 1
2 hk2)m3 � un � 1

2hk2

k2 � f (xn � 1
2 h, yn � 1

2 hm1, un � 1
2 hk1)m2 � un � 1

2hk1

k1 � f (xn, yn, un)m1 � un
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curves generated by different methods



EXAMPLE 2 A System Rewritten as a First-Order System

Write

as a system of first-order differential equations.

SOLUTION Write the system as

and then eliminate y� by multiplying the second equation by 2 and subtracting. This
gives

.

Since the second equation of the system already expresses the highest-order derivative of
y in terms of the remaining functions, we are now in a position to introduce new vari-
ables. If we let x� � u and y� � v, the expressions for x� and y� become, respectively,

The original system can then be written in the form

It might not always be possible to carry out the reductions illustrated in Example 2.

NUMERICAL SOLUTION OF A SYSTEM The solution of a system of the form

can be approximated by a version of Euler’s, the Runge-Kutta, or the
Adams-Bashforth-Moulton method adapted to the system. For instance, the
RK4 method applied to the system

(6)

looks like this:

(7)

yn�1 � yn �
h

6
(k1 � 2k2 � 2k3 � k4),

xn�1 � xn �
h

6
(m1 � 2m2 � 2m3 � m4)

x(t0) � x0,    y(t0) � y0,

y� � g(t, x, y)

x� � f (t, x, y)

� f1(t,x1,x2, . . . ,xn)

� f2(t,x1,x2, . . . ,xn)

� fn(t,x1,x2, . . . ,xn)

.

.

.
.
.
.

dx1–––
dt

dx2–––
dt

dxn–––
dt

v� � 2x � 2y � 3t2.

u� � �9x � 4y � u � et � 6t2

y� � v

x� � u

v� � y� � 2x � 2y � 3t2.

u� � x� � �9x � 4y � u � et � 6t2

x� � �9x � 4y � x� � et � 6t2

y� � 3t2 � 2x � 2y

x� � 2y� � et � 5x � x�

�2x � y� � 2y � 3t2

x� � x� � 5x � 2y� � et
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where

(8)

k4 � g(tn � h, xn � hm3, yn � hk3).m4 � f(tn � h, xn � hm3, yn � hk3)

k3 � g(tn � 1
2 h, xn � 1

2 h m2, yn � 1
2 h k2)m3 � f (tn � 1

2 h, xn � 1
2 hm2, yn � 1

2 hk2)

k2 � g(tn � 1
2 h, xn � 1

2 h m1, yn � 1
2 h k1)m2 � f (tn � 1

2 h, xn � 1
2 hm1, yn � 1

2 hk1)
k1 � g(tn, xn, yn)m1 � f (tn, xn, yn)

EXAMPLE 3 RK4 Method

Consider the initial-value problem

Use the RK4 method to approximate x(0.6) and y(0.6). Compare the results for
h � 0.2 and h � 0.1.

SOLUTION We illustrate the computations of x1 and y1 with step size h � 0.2. With
the identifications f (t, x, y) � 2x � 4y, g(t, x, y) � �x � 6y, t0 � 0, x0 � �1, and
y0 � 6 we see from (8) that

Therefore from (7) we get

� 6 �
0.2

6
 (37 � 2(57) � 2(67.08) � 106.888) � 19.0683,

y1 � y0 �
0.2

6
 (k1 � 2k2 � 2k3 � k4)

��1 �
0.2

6
 (22 � 2(41.2) � 2(53.04) � 96.88) � 9.2453

x1 � x0 �
0.2

6
 (m1 � 2m2 � 2m3 � m4)

k4 � g(t0 � h, x0 � hm3, y0 � hk3) � g(0.2, 9.608, 19.416) � 106.888.

m4 � f (t0 � h, x0 � hm3, y0 � hk3) � f (0.2, 9.608, 19.416) � 96.88

k3 � g(t0 � 1
2 h, x0 � 1

2 hm2, y0 � 1
2 hk2) � g(0.1, 3.12, 11.7) � 67.08

m3 � f (t0 � 1
2 h, x0 � 1

2 hm2, y0 � 1
2 hk2) � f (0.1, 3.12, 11.7) � 53.04

k2 � g(t0 � 1
2 h, x0 � 1

2 hm1, y0 � 1
2 hk1) � g(0.1, 1.2, 9.7) � 57

m2 � f (t0 � 1
2 h, x0 � 1

2 hm1, y0 � 1
2 hk1) � f (0.1, 1.2, 9.7) � 41.2

k1 � g(t0, x0, y0) � g(0, �1, 6) � �1(�1) � 6(6) � 37

m1 � f (t0, x0, y0) � f (0, �1, 6) � 2(�1) � 4(6) � 22

x(0) � �1,    y(0) � 6.

y� � �x � 6y

x� � 2x � 4y

TABLE 9.8 h � 0.2

tn xn yn

0.00 �1.0000 6.0000
0.20 9.2453 19.0683
0.40 46.0327 55.1203
0.60 158.9430 150.8192

TABLE 9.9 h � 0.1

tn xn yn

0.00 �1.0000 6.0000
0.10 2.3840 10.8883
0.20 9.3379 19.1332
0.30 22.5541 32.8539
0.40 46.5103 55.4420
0.50 88.5729 93.3006
0.60 160.7563 152.0025



where, as usual, the computed values of x1 and y1 are rounded to four decimal
places. These numbers give us the approximation x1  x(0.2) and y1  y(0.2). The
subsequent values, obtained with the aid of a computer, are summarized in
Tables 9.8 and 9.9.

You should verify that the solution of the initial-value problem in Example 3 is
given by x(t) � (26t � 1)e4t, y(t) � (13t � 6)e4t. From these equations we see that
the actual values x(0.6) � 160.9384 and y(0.6) � 152.1198 compare favorably with
the entries in the last line of Table 9.9. The graph of the solution in a neighborhood
of t � 0 is shown in Figure 9.4.2; the graph was obtained from a numerical solver
using the RK4 method with h � 0.1.

In conclusion, we state Euler’s method for the general system (6):

yn�1 � yn � hg(tn, xn, yn).

xn�1 � xn � h f (tn, xn, yn)
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EXERCISES 9.4 Answers to selected odd-numbered problems begin on page ANS-16.

1. Use Euler’s method to approximate y(0.2), where y(x) is
the solution of the initial-value problem

Use h � 0.1. Find the analytic solution of the problem,
and compare the actual value of y(0.2) with y2.

2. Use Euler’s method to approximate y(1.2), where y(x) is
the solution of the initial-value problem

where x � 0. Use h � 0.1. Find the analytic solution of
the problem, and compare the actual value of y(1.2)
with y2.

In Problems 3 and 4 repeat the indicated problem using the
RK4 method. First use h � 0.2 and then use h � 0.1.

3. Problem 1

4. Problem 2

5. Use the RK4 method to approximate y(0.2), where y(x)
is the solution of the initial-value problem

First use h � 0.2 and then use h � 0.1.

6. When E � 100 V, R � 10 !, and L � 1 h, the sys-
tem of differential equations for the currents i1(t) and
i3(t) in the electrical network given in Figure 9.4.3 is

di3

dt
� 10i1 � 20i3,

di1

dt
� �20i1 � 10i3 � 100

y� � 2y� � 2y � et cos t,  y(0) � 1,  y�(0) � 2.

x2y� � 2xy� � 2y � 0,  y(1) � 4,  y�(1) � 9,

y� � 4y� � 4y � 0,  y(0) � �2,  y�(0) � 1.

where i1(0) � 0 and i3(0) � 0. Use the RK4 method to
approximate i1(t) and i3(t) at t � 0.1, 0.2, 0.3, 0.4, and
0.5. Use h � 0.1. Use a numerical solver to graph the
solution for 0 � t � 5. Use the graphs to predict the
behavior of i1(t) and i3(t) as .t : �

FIGURE 9.4.3 Network in Problem 6

i1 i2

i3R

R

L L

RE

t

x, y

_ 1

1 y(t)

x(t)

FIGURE 9.4.2 Numerical solution
curves for IVP in Example 3

In Problems 7–12 use the Runge-Kutta method to approxi-
mate x(0.2) and y(0.2). First use h � 0.2 and then use
h � 0.1. Use a numerical solver and h � 0.1 to graph the so-
lution in a neighborhood of t � 0.

7. x� � 2x � y 8. x� � x � 2y
y� � x y� � 4x � 3y
x(0) � 6, y(0) � 2 x(0) � 1, y(0) � 1

9. x� � �y � t 10. x� � 6x � y � 6t
y� � x � t y� � 4x � 3y � 10t � 4
x(0) � �3, y(0) � 5 x(0) � 0.5, y(0) � 0.2

11. x� � 4x � y� � 7t 12. x�� y�� 4t
x� � y� � 2y � 3t �x� � y� � y � 6t2 � 10
x(0) � 1, y(0) � �2 x(0) � 3, y(0) � �1
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SECOND-ORDER BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
● Section 4.1 (page 119)
● Exercises 4.3 (Problems 37–40)
● Exercises 4.4 (Problems 37–40)
● Section 5.2

INTRODUCTION We just saw in Section 9.4 how to approximate the solution of a second-
order initial-value problem 

y� � f (x, y, y�), y(x0) � y0, y�(x0) � u0.

In this section we are going to examine two methods for approximating a solution of a second-
order boundary-value problem

y� � f (x, y, y�), y(a) � a, y(b) � b.

Unlike the procedures that are used with second-order initial-value problems, the methods of
second-order boundary-value problems do not require writing the second-order DE as a system
of first-order DEs.

9.5

FINITE DIFFERENCE APPROXIMATIONS The Taylor series expansion,
centered at a point a, of a function y(x) is

If we set h � x � a, then the preceding line is the same as

For the subsequent discussion it is convenient then to rewrite this last expression in
two alternative forms:

(1)

and (2)

If h is small, we can ignore terms involving h4, h5, . . . since these values are negligi-
ble. Indeed, if we ignore all terms involving h2 and higher, then solving (1) and (2),
in turn, for y�(x) yields the following approximations for the first derivative:

(3)

(4)

Subtracting (1) and (2) also gives

(5)y�(x) 
1

2h
 [ y(x � h) � y(x � h)].

y�(x) 
1

h
 [y(x) � y(x � h)].

y�(x) 
1

h
 [y(x � h) � y(x)]

y(x � h) � y(x) � y�(x)h � y�(x)
h2

2
� y� (x)

h3

6
� 	 	 	 .

y(x � h) � y(x) � y�(x)h � y�(x)
h2

2
� y� (x)

h3

6
� 	 	 	

y(x) � y(a) � y�(a)
h

1!
� y�(a)

h2

2!
� y� (a)

h3

3!
� 	 	 	 .

y(x) � y(a) � y�(a)
x � a

1!
� y�(a)

(x � a)2

2!
� y� (a)

(x � a)3

3!
� 	 	 	 .



On the other hand, if we ignore terms involving h3 and higher, then by adding (1) and
(2), we obtain an approximation for the second derivative y�(x):

(6)

The right-hand sides of (3), (4), (5), and (6) are called difference quotients. The
expressions

and

are called finite differences. Specifically, y(x � h) � y(x) is called a forward
difference, y(x) � y(x � h) is a backward difference, and both y(x � h) � y(x � h)
and y(x � h) � 2y(x) � y(x � h) are called central differences. The results given in
(5) and (6) are referred to as central difference approximations for the derivatives
y� and y�.

FINITE DIFFERENCE METHOD Consider now a linear second-order boundary-
value problem

(7)

Suppose represents a regular partition of
the interval [a, b], that is, xi � a � ih, where i � 0, 1, 2, . . . , n and h � (b � a)�n.
The points

are called interior mesh points of the interval [a, b]. If we let

and if y� and y� in (7) are replaced by the central difference approximations (5) and (6),
we get

or, after simplifying,

(8)

The last equation, known as a finite difference equation, is an approximation
to the differential equation. It enables us to approximate the solution y(x) of (7)
at the interior mesh points x1, x2, . . . , xn�1 of the interval [a, b]. By letting i
take on the values 1, 2, . . . , n � 1 in (8), we obtain n � 1 equations in the n � 1
unknowns y1, y2, . . . , yn�1. Bear in mind that we know y0 and yn, since
these are the prescribed boundary conditions y0 � y(x0) � y(a) � a and
yn � y(xn) � y(b) � b.

In Example 1 we consider a boundary-value problem for which we can compare
the approximate values that we find with the actual values of an explicit solution.

EXAMPLE 1 Using the Finite Difference Method

Use the difference equation (8) with n � 4 to approximate the solution of the
boundary-value problem y� � 4y � 0, y(0) � 0, y(1) � 5.

�1 �
h

2
Pi�yi�1 � (�2 � h2Qi ) yi � �1 �

h

2
Pi�yi�1 � h2 fi.

yi�1 � 2 yi � yi�1

h2 � Pi

yi�1 � yi�1

2 h
� Qi yi � fi

yi � y (xi ),    Pi � P(xi ),    Qi � Q(xi ),    and    fi � f(xi )

x1 � a � h,    x2 � a � 2h, . . . ,    xn�1 � a � (n � 1)h

a � x0 
 x1 
 x2 
 	 	 	 
 xn�1 
 xn � b

y� � P(x)y� � Q(x)y � f(x),    y(a) � �,  y(b) � �.

y(x � h) � 2y(x) � y(x � h)

y(x � h) � y(x), y(x) � y(x � h), y(x � h) � y(x � h),

y�(x) 
1

h2 [y(x � h) � 2y(x) � y(x � h)].
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SOLUTION To use (8), we identify P(x) � 0, Q(x) � �4, f(x) � 0, and
. Hence the difference equation is

(9)

Now the interior points are , so for
i � 1, 2, and 3, (9) yields the following system for the corresponding y1, y2,
and y3:

With the boundary conditions y0 � 0 and y4 � 5 the foregoing system becomes

�2.25y1 � y2 � 0

y1 � 2.25y2 � y3 � 0

y2 � 2.25y3 � �5.

Solving the system gives y1 � 0.7256, y2 � 1.6327, and y3 � 2.9479.
Now the general solution of the given differential equation is y � c1 cosh 2x �

c2 sinh 2x. The condition y(0) � 0 implies that c1 � 0. The other boundary condition
gives c2. In this way we see that a solution of the boundary-value problem is 
y(x) � (5 sinh 2x)�sinh 2. Thus the actual values (rounded to four decimal places) of
this solution at the interior points are as follows: y(0.25) � 0.7184, y(0.5) � 1.6201,
and y(0.75) � 2.9354.

The accuracy of the approximations in Example 1 can be improved by using a
smaller value of h. Of course, the trade-off here is that a smaller value of h necessitates
solving a larger system of equations. It is left as an exercise to show that with , ap-
proximations to y(0.25), y(0.5), and y(0.75) are 0.7202, 1.6233, and 2.9386, respec-
tively. See Problem 11 in Exercises 9.5.

EXAMPLE 2 Using the Finite Difference Method

Use the difference equation (8) with n � 10 to approximate the solution of

SOLUTION In this case we identify P(x) � 3, Q(x) � 2, f (x) � 4x2, and 
h � (2 � 1)�10 � 0.1, and so (8) becomes

(10)

Now the interior points are x1 � 1.1, x2 � 1.2, x3 � 1.3, x4 � 1.4, x5 � 1.5, x6 � 1.6,
x7 � 1.7, x8 � 1.8, and x9 � 1.9. For i � 1, 2, . . . , 9 and y0 � 1, y10 � 6, (10) gives a
system of nine equations and nine unknowns:

1.15y7 � 1.98y6 � 0.85y5 � 0.1024

1.15y6 � 1.98y5 � 0.85y4 � 0.0900

1.15y5 � 1.98y4 � 0.85y3 � 0.0784

1.15y4 � 1.98y3 � 0.85y2 � 0.0676

1.15y3 � 1.98y2 � 0.85y1 � 0.0576

1.15y2 � 1.98y1 ��0.8016

1.15yi�1 � 1.98yi � 0.85yi�1 � 0.04x i
2.

y� � 3y�� 2y � 4x2,    y(1) � 1,  y(2) � 6.

h � 1
8

y4 � 2.25y3 � y2 � 0.

y3 � 2.25y2 � y1 � 0

y2 � 2.25y1 � y0 � 0

x1 � 0 � 1
4, x2 � 0 � 2

4, x3 � 0 � 3
4

yi�1 � 2.25yi � yi�1 � 0.

h � (1 � 0)>4 � 1
4

360 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS



We can solve this large system using Gaussian elimination or, with relative ease,
by means of a computer algebra system. The result is found to be y1 � 2.4047,
y2 � 3.4432, y3 � 4.2010, y4 � 4.7469, y5 � 5.1359, y6 � 5.4124, y7 � 5.6117,
y8 � 5.7620, and y9 � 5.8855.

SHOOTING METHOD Another way of approximating a solution of a boundary-
value problem y� � f(x, y, y�), y(a) � a, y(b) � b is called the shooting method.
The starting point in this method is the replacement of the boundary-value problem
by an initial-value problem

(11)

The number m1 in (11) is simply a guess for the unknown slope of the solution curve at
the known point (a, y(a)). We then apply one of the step-by-step numerical techniques
to the second-order equation in (11) to find an approximation b1 for the value of y(b). If
b1 agrees with the given value y(b) � b to some preassigned tolerance, we stop; other-
wise, the calculations are repeated, starting with a different guess y�(a) � m2 to obtain
a second approximation b2 for y(b). This method can be continued in a trial-and-error
manner, or the subsequent slopes m3, m4, . . . can be adjusted in some systematic way;
linear interpolation is particularly successful when the differential equation in (11) is
linear. The procedure is analogous to shooting (the “aim” is the choice of the initial
slope) at a target until the bull’s-eye y(b) is hit. See Problem 14 in Exercises 9.5.

Of course, underlying the use of these numerical methods is the assumption,
which we know is not always warranted, that a solution of the boundary-value prob-
lem exists.

REMARKS

The approximation method using finite differences can be extended to boundary-
value problems in which the first derivative is specified at a boundary—for
example, a problem such as y� � f(x, y, y�), y�(a) � a, y(b) � b. See Problem 13
in Exercises 9.5.

y� � f (x, y, y�),  y(a) � a, y�(a) � m1.

� 1.98y9 � 0.85y8 � �6.7556.

1.15y9 � 1.98y8 � 0.85y7 � 0.1296

1.15y8 � 1.98y7 � 0.85y6 � 0.1156
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In Problems 1–10 use the finite difference method and the
indicated value of n to approximate the solution of the given
boundary-value problem.

1. y� � 9y � 0, y(0) � 4, y(2) � 1; n � 4

2. y� � y � x2, y(0) � 0, y(1) � 0; n � 4

3. y� � 2y� � y � 5x, y(0) � 0, y(1) � 0; n � 5

4. y� � 10y� � 25y � 1, y(0) � 1, y(1) � 0; n � 5

5. y� � 4y� � 4y � (x � 1)e2x,
y(0) � 3, y(1) � 0; n � 6

6.

7. x2y� � 3xy� � 3y � 0, y(1) � 5, y(2) � 0; n � 8

y� � 5y� � 41x, y(1) � 1, y(2) � �1; n � 6

8. x2y� � xy� � y � ln x, y(1) � 0, y(2) � �2; n � 8

9. y� � (1 � x)y� � xy � x, y(0) � 0, y(1) � 2; n � 10

10. y� � xy� � y � x, y(0) � 1, y(1) � 0; n � 10

11. Rework Example 1 using n � 8.

12. The electrostatic potential u between two concentric
spheres of radius r � 1 and r � 4 is determined from

Use the method of this section with n � 6 to approxi-
mate the solution of this boundary-value problem.

d 2u

dr2 �
2

r

du

dr
� 0,  u(1) � 50,  u(4) � 100.

EXERCISES 9.5 Answers to selected odd-numbered problems begin on page ANS-16.



13. Consider the boundary-value problem y� � xy � 0,
y�(0) � 1, y(1) � �1.

(a) Find the difference equation corresponding to the
differential equation. Show that for i � 0, 1, 2, . . . ,
n � 1 the difference equation yields n equations in
n � 1 unknows y�1, y0, y1, y2, . . . , yn�1. Here y�1

and y0 are unknowns, since y�1 represents an
approximation to y at the exterior point x � �h and
y0 is not specified at x � 0.

(b) Use the central difference approximation (5) to
show that y1 � y�1 � 2h. Use this equation to elim-
inate y�1 from the system in part (a).
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(c) Use n � 5 and the system of equations found in
parts (a) and (b) to approximate the solution of the
original boundary-value problem.

Computer Lab Assignments

14. Consider the boundary-value problem y� � y� � sin (xy),
y(0) � 1, y(1) � 1.5. Use the shooting method to approx-
imate the solution of this problem. (The approximation
can be obtained using a numerical technique—say, the
RK4 method with h � 0.1; or, even better, if you have
access to a CAS such as Mathematica or Maple, the
NDSolve function can be used.)

CHAPTER 9 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1–4 construct a table comparing the indicated
values of y(x) using Euler’s method, the improved Euler’s
method, and the RK4 method. Compute to four rounded dec-
imal places. First use h � 0.1 and then use h � 0.05.

1. y� � 2 ln xy, y(1) � 2;
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

2. y� � sin x2 � cos y2, y(0) � 0;
y(0.1), y(0.2), y(0.3), y(0.4), y(0.5)

3.
y(0.6), y(0.7), y(0.8), y(0.9), y(1.0)

4. y� � xy � y2, y(1) � 1;
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

5. Use Euler’s method to approximate y(0.2), where 
y(x) is the solution of the initial-value problem
y� � (2x � 1)y � 1, y(0) � 3, y�(0) � 1. First use
one step with h � 0.2 and then repeat the calculations
using two steps with h � 0.1.

y� � 1x � y, y(0.5) � 0.5;

6. Use the Adams-Bashforth-Moulton method to approxi-
mate y(0.4), where y(x) is the solution of the initial-
value problem y� � 4x � 2y, y(0) � 2. Use h � 0.1
and the RK4 method to compute y1, y2, and y3.

7. Use Euler’s method with h � 0.1 to approximate x(0.2)
and y(0.2), where x(t), y(t) is the solution of the initial-
value problem

8. Use the finite difference method with n � 10 to
approximate the solution of the boundary-value problem
y� � 6.55(1 � x)y � 1, y(0) � 0, y(1) � 0.

x(0) � 1,    y(0) � 2.

y� � x � y

x� � x � y



Euler’s integral definition of the gamma function is

(1)

Convergence of the integral requires that x � 1 � �1 or x � 0. The recurrence
relation

(2)

which we saw in Section 6.3, can be obtained from (1) with integration by parts. Now
when and thus (2) gives

and so on. In this manner it is seen that when n is a positive integer, &(n � 1) � n!.
For this reason the gamma function is often called the generalized factorial
function.

Although the integral form (1) does not converge for x 
 0, it can be shown
by means of alternative definitions that the gamma function is defined for all real and
complex numbers except x � �n, n � 0, 1, 2, . . . . As a consequence, (2) is actually
valid for x � �n. The graph of &(x), considered as a function of a real variable x, is
as given in Figure I.1. Observe that the nonpositive integers correspond to vertical
asymptotes of the graph.

In Problems 31 and 32 of Exercises 6.3 we utilized the fact that 
This result can be derived from (1) by setting :

(3)

When we let t � u2, (3) can be written as But
so

Switching to polar coordinates u � r cos u, v � r sin u enables us to evaluate the
double integral:

Hence (4)[&(1
2)]

2
� �  or  &(1

2) � 1�.

4��

0
��

0
e�(u2�v2 ) du dv � 4�� / 2

0
��

0
e�r 2

r dr d� � �.

[&(1
2)]

2
� �2��

0
e�u2

du��2��

0
e�v2

dv� � 4��

0
��

0
e�(u2�v2) du dv.

��
0 e�u2

du � ��
0 e�v2

dv,
&(1

2) � 2 ��
0 e�u2

du.

&(1
2) � ��

0
t�1/2e�t dt.

x � 1
2

&(1
2) � 1�.

&(4) � 3&(3) � 3 � 2 � 1

&(3) � 2&(2) � 2 � 1

&(2) � 1&(1) � 1

x � 1, &(1) � ��
0 e�t dt � 1,

&(x � 1) � x&(x),

&(x) � ��

0
tx�1e�t dt.
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FIGURE I.1 Graph of for x
neither 0 nor a negative integer

&(x)

APP-1

Γ(x)
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EXAMPLE 1 Value of 

Evaluate 

SOLUTION In view of (2) and (4) it follows that, with 

Therefore &(�1
2) � �2&(1

2) � �21�.

&(1
2) � �1

2&(�1
2).

x � �1
2,

&(�1
2).

&(�1
2)

EXERCISES FOR APPENDIX I Answers to selected odd-numbered problems begin on page ANS-29.

1. Evaluate.

(a) &(5) (b) &(7)

(c) (d)

2. Use (1) and the fact that to evaluate

[Hint: Let t � x5.]

3. Use (1) and the fact that to evaluate

��

0
x4e�x3

dx.

&(5
3) � 0.89

��

0
x5e�x 5

dx.

&(6
5) � 0.92

&(�5
2)&(�3

2)

4. Evaluate [Hint: Let t � �ln x.]

5. Use the fact that to show that &(x)

is unbounded as 

6. Use (1) to derive (2) for x � 0.

x : 0�.

&(x) � �1

0
t x�1e�t dt

�1

0
x3 �ln

1

x�
3

dx.



II.1 BASIC DEFINITIONS AND THEORY

DEFINITION II.1 Matrix

A matrix A is any rectangular array of numbers or functions:

(1)

If a matrix has m rows and n columns, we say that its size is m by n (written
m � n). An n � n matrix is called a square matrix of order n.

The element, or entry, in the ith row and jth column of an m � n matrix A
is written aij. An m � n matrix A is then abbreviated as A � (aij)m�n or simply
A � (aij). A 1 � 1 matrix is simply one constant or function.

DEFINITION II.2 Equality of Matrices

Two m � n matrices A and B are equal if aij � bij for each i and j.

DEFINITION II.3 Column Matrix

A column matrix X is any matrix having n rows and one column:

A column matrix is also called a column vector or simply a vector.

DEFINITION II.4 Multiples of Matrices

A multiple of a matrix A is defined to be

where k is a constant or a function.

ka11

ka21

kam1

ka1n

ka2n

kamn

ka12

ka22

kam2

. . .

. . .

. . .

kA � ( ) � (kaij)m�n,.
.
.

.

.

.

b11

b21

bn1

X � ( ) � (bi1)n�1..
.
.

a11

a21

am1

a1n

a2n

amn

a12

a22

am2

. . .

. . .

. . .

A � ( .).
.
.

.

.

.
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EXAMPLE 1 Multiples of Matrices

(a) (b)

We note in passing that for any matrix A the product kA is the same as Ak. For
example,

DEFINITION II.5 Addition of Matrices

The sum of two m � n matrices A and B is defined to be the matrix

In other words, when adding two matrices of the same size, we add the correspond-
ing elements.

EXAMPLE 2 Matrix Addition

The sum of and is

EXAMPLE 3 A Matrix Written as a Sum of Column Matrices

The single matrix can be written as the sum of three column vectors:

The difference of two m � n matrices is defined in the usual manner:
A � B � A � (�B), where �B � (�1)B.

�3t2 � 2et

t2 � 7t

5t
�� �3t2

t2

0
� � � 0

7t

5t
� � ��2et

0

0
�� �3

1

0
� t 2 � �0

7

5
� t � ��2

0

0
�et.

�3t2 � 2et

t2 � 7t

5t
�

A � B � �   2 � 4 �1 � 7    3 � (�8)

   0 � 9    4 � 3    6 � 5

�6 � 1  10 � (�1) �5 � 2
� � �   6 6 �5

   9 7 11

�5 9 �3
�.

B � �4 7 �8

9 3 5

1 �1 2
�A � � 2 �1 3

0 4 6

�6 10 �5
�

A � B � (ai j � bi j)m�n.

e�3t �2

5� � �2e�3t

5e�3t� � �2

5� e�3t.

et � 1

�2

4
� � � et

�2et

4et�5 �2

4
1
5

�3

�1

6
� � �10

20

1

�15

�5

30
�



DEFINITION II.6 Multiplication of Matrices

Let A be a matrix having m rows and n columns and B be a matrix having
n rows and p columns. We define the product AB to be the m � p matrix

Note carefully in Definition II.6 that the product AB � C is defined only when
the number of columns in the matrix A is the same as the number of rows in B. The
size of the product can be determined from

Also, you might recognize that the entries in, say, the ith row of the final matrix AB
are formed by using the component definition of the inner, or dot, product of the ith
row of A with each of the columns of B.

EXAMPLE 4 Multiplication of Matrices

(a) For and 

(b) For and 

In general, matrix multiplication is not commutative; that is, AB � BA.

Observe in part (a) of Example 4 that whereas in part (b) 

the product BA is not defined, since Definition II.6 requires that the first matrix (in
this case B) have the same number of columns as the second matrix has rows.

We are particularly interested in the product of a square matrix and a column
vector.

BA � �30 53

48 82�,

AB � �5 � (�4) � 8 � 2 5 � (�3) � 8 � 0

1 � (�4) � 0 � 2 1 � (�3) � 0 � 0

2 � (�4) � 7 � 2 2 � (�3) � 7 � 0
� � ��4 �15

�4 �3

6 �6
�.

B � ��4 �3

2 0�,A � �5 8

1 0

2 7
�

AB � �4 � 9 � 7 � 6 4 � (�2) � 7 � 8

3 � 9 � 5 � 6 3 � (�2) � 5 � 8� � �78 48

57 34�.

B � �9 �2

6 8�,A � �4 7

3 5�

Am�nBn�p � Cm�p.

� ( � aikbkj)
m�p

.
k�1

n

a11b11 � a12b21 �

a21b11 � a22b21 �

am1b11 � am2b21 �

� a1nbn1

� a2nbn1

� amnbn1

� ( ).
.
.

. . .

. . .

. . .

a11b1p � a12b2p �

a21b1p � a22b2p �

am1b1p � am2b2p �

� a1nbnp

� a2nbnp

� amnbnp

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

a11

a21

am1

a1n

a2n

amn

a12

a22

am2

. . .

. . .

. . .

AB � ( ) ( ).
.
.

.

.

.

b11

b21

bn1

b1p

b2p

bnp

b12

b22

bn2

. . .

. . .

. . .

.

.

.
.
.
.
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EXAMPLE 5 Multiplication of Matrices

(a)

(b)

MULTIPLICATIVE IDENTITY For a given positive integer n the n � n matrix

is called the multiplicative identity matrix. It follows from Definition II.6 that for
any n � n matrix A.

Also, it is readily verified that if X is an n � 1 column matrix, then IX � X.

ZERO MATRIX A matrix consisting of all zero entries is called a zero matrix and
is denoted by 0. For example,

and so on. If A and 0 are m � n matrices, then

ASSOCIATIVE LAW Although we shall not prove it, matrix multiplication is
associative. If A is an m � p matrix, B a p � r matrix, and C an r � n matrix, then

is an m � n matrix.

DISTRIBUTIVE LAW If all products are defined, multiplication is distributive
over addition:

DETERMINANT OF A MATRIX Associated with every square matrix A of con-
stants is a number called the determinant of the matrix, which is denoted by det A.

EXAMPLE 6 Determinant of a Square Matrix

For we expand det A by cofactors of the first row:

� 3(20 � 2) � 6(8 � 1) � 2(4 � 5) � 18.

 det A � p 3  6  2

2  5  1

�1  2  4
p �  3�5 1

2 4� � 6� 2 1

�1 4� � 2� 2 5

�1 2�

A � � 3 6 2

2 5 1

�1 2 4
�

A(B � C) � AB � AC    and    (B � C)A � BA � CA.

A(BC) � (AB)C

A � 0 � 0 � A � A.

0 � �0

0�,    0 � �0 0

0 0�,    0 � �0 0

0 0

0 0
�,

AI � IA � A.

1

0

0

0

1

0

0

0

0

. . .

. . .

. . .

I � ( ).
.
.

0

0

1

.

.

.

��4 2

3 8��
x

y� � ��4x � 2y

3x � 8y�

�2 �1 3

0 4 5

1 �7 9
���3

6

4
� � �2 � (�3) � (�1) � 6 � 3 � 4

0 � (�3) �  4 � 6 � 5 � 4

1 � (�3) � (�7) � 6 � 9 � 4
� � � 0

44

�9
�
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It can be proved that a determinant det A can be expanded by cofactors using any
row or column. If det A has a row (or a column) containing many zero entries,
then wisdom dictates that we expand the determinant by that row (or column).

DEFINITION II.7 Transpose of a Matrix

The transpose of the m � n matrix (1) is the n � m matrix AT given by

In other words, the rows of a matrix A become the columns of its
transpose AT.

EXAMPLE 7 Transpose of a Matrix

(a) The transpose of is 

(b) If then  

DEFINITION II.8 Multiplicative Inverse of a Matrix

Let A be an n � n matrix. If there exists an n � n matrix B such that

where I is the multiplicative identity, then B is said to be the multiplicative
inverse of A and is denoted by B � A�1.

DEFINITION II.9 Nonsingular/Singular Matrices

Let A be an n � n matrix. If det A � 0, then A is said to be nonsingular. If
det A � 0, then A is said to be singular.

The following theorem gives a necessary and sufficient condition for a square
matrix to have a multiplicative inverse.

THEOREM II.1 Nonsingularity Implies A Has an Inverse

An n � n matrix A has a multiplicative inverse A�1 if and only if A is
nonsingular.

The following theorem gives one way of finding the multiplicative inverse for a
nonsingular matrix.

AB � BA � I,

XT � (5 0 3).X � �5

0

3
�,

AT � �3 2 �1

6 5 2

2 1 4
�.A � � 3 6 2

2 5 1

�1 2 4
�

a11

a12

a1n

am1

am2

amn

a21

a22

a2n

. . .

. . .

. . .

AT � ( .).
.
.

.

.

.
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THEOREM II.2 A Formula for the Inverse of a Matrix

Let A be an n � n nonsingular matrix and let Cij � (�1) i�jMij, where Mij is the
determinant of the (n � 1) � (n � 1) matrix obtained by deleting the ith row
and jth column from A. Then

(2)

Each Cij in Theorem II.2 is simply the cofactor (signed minor) of the corresponding
entry aij in A. Note that the transpose is utilized in formula (2).

For future reference we observe in the case of a 2 � 2 nonsingular matrix

that C11 � a22, C12 � �a21, C21 � �a12, and C22 � a11. Thus

(3)

For a 3 � 3 nonsingular matrix

and so on. Carrying out the transposition gives

(4)

EXAMPLE 8 Inverse of a 2 	 2 Matrix

Find the multiplicative inverse for 

SOLUTION Since det A � 10 � 8 � 2 � 0, A is nonsingular. It follows from
Theorem II.1 that A�1 exists. From (3) we find

Not every square matrix has a multiplicative inverse. The matrix 
is singular, since det A � 0. Hence A�1 does not exist.

EXAMPLE 9 Inverse of a 3 	 3 Matrix

Find the multiplicative inverse for A � � 2 2 0

�2 1 1

3 0 1
�.

A � �2 2

3 3�

A�1 �
1

2 �
10 �4

�2 1� � � 5 �2

�1 1
2
�.

A � �1 4

2 10�.

A�1 �
1

det A �C11 C21 C31

C12 C22 C32

C13 C23 C33
�.

C11 � �a 22 a 23

a32 a33
�,    C12 � � �a 21 a 23

a31 a33
�,    C13 � �a 21 a 22

a31 a32
�,

A � �a11 a12 a13

a 21 a 22 a 23

a31 a32 a33
�,

A�1 �
1

det A � a 22 �a 21

�a12 a11
�

T

�
1

det A � a 22 �a12

�a 21 a11
�.

A � �a11 a12

a 21 a 22
�

A�1 �
1

det A
 (Cij)T.
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SOLUTION Since det A � 12 � 0, the given matrix is nonsingular. The cofactors
corresponding to the entries in each row of det A are

If follows from (4) that

You are urged to verify that A�1A � AA�1 � I.

Formula (2) presents obvious difficulties for nonsingular matrices larger than
3 � 3. For example, to apply (2) to a 4 � 4 matrix, we would have to calculate
sixteen 3 � 3 determinants.* In the case of a large matrix there are more efficient
ways of finding A�1. The curious reader is referred to any text in linear algebra.

Since our goal is to apply the concept of a matrix to systems of linear first-order
differential equations, we need the following definitions.

DEFINITION II.10 Derivative of a Matrix of Functions

If A(t) � (aij(t))m�n is a matrix whose entries are functions differentiable on
a common interval, then

DEFINITION II.11 Integral of a Matrix of Functions

If A(t) � (aij(t))m�n is a matrix whose entries are functions continuous on a
common interval containing t and t0, then

To differentiate (integrate) a matrix of functions, we simply differentiate
(integrate) each entry. The derivative of a matrix is also denoted by A�(t).

EXAMPLE 10 Derivative/Integral of a Matrix

If X(t) � � sin 2t

e3t

8t � 1
�,   then   X�(t) � �

d

dt
 sin 2t

d

dt
e3t

d

dt
(8t � 1)

� � �2 cos 2t

3e3t

8
�

�t

t 0

A(s) ds � ��t

t 0

ai j (s) ds�
m�n

.

dA
dt

� � d

dt
ai j�

m�n

.

A�1 �
1

12 � 1 �2 2

5 2 �2

�3 6 6
� � �

1
12 �1

6
1
6

5
12

1
6 �1

6

�1
4

1
2

1
2

�.

C31 � �2 0

1 1� � 2 C32 � �� 2 0

�2 1� � �2   C33 � � 2 2

�2 1� � 6.

C21 � ��2 0

0 1� � �2   C22 � �2 0

3 1� � 2 C23 � ��2 2

3 0� � 6

C11 � �1 1

0 1� � 1 C12 � ���2 1

3 1� � 5 C13 � ��2 1

3 0� � �3
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*Strictly speaking, a determinant is a number, but it is sometimes convenient to refer to a determinant as
if it were an array.



and

II.2 GAUSSIAN AND GAUSS-JORDAN ELIMINATION

Matrices are an invaluable aid in solving algebraic systems of n linear equations in
n unknowns,

(5)

If A denotes the matrix of coefficients in (5), we know that Cramer’s rule could be
used to solve the system whenever det A � 0. However, that rule requires a herculean
effort if A is larger than 3 � 3. The procedure that we shall now consider has the dis-
tinct advantage of being not only an efficient way of handling large systems, but also
a means of solving consistent systems (5) in which det A � 0 and a means of solv-
ing m linear equations in n unknowns.

DEFINITION II.12 Augmented Matrix

The augmented matrix of the system (5) is the n � (n � 1) matrix

If B is the column matrix of the bi, i � 1, 2, . . . , n, the augmented matrix of (5)
is denoted by 

ELEMENTARY ROW OPERATIONS Recall from algebra that we can transform
an algebraic system of equations into an equivalent system (that is, one having the same
solution) by multiplying an equation by a nonzero constant, interchanging the posi-
tions of any two equations in a system, and adding a nonzero constant multiple of an
equation to another equation. These operations on equations in a system are, in turn,
equivalent to elementary row operations on an augmented matrix:

(i) Multiply a row by a nonzero constant.

(ii) Interchange any two rows.

(iii) Add a nonzero constant multiple of one row to any other row.

ELIMINATION METHODS To solve a system such as (5) using an augmented
matrix, we use either Gaussian elimination or the Gauss-Jordan elimination
method. In the former method we carry out a succession of elementary row opera-
tions until we arrive at an augmented matrix in row-echelon form:

(i) The first nonzero entry in a nonzero row is 1.

(ii) In consecutive nonzero rows the first entry 1 in the lower row appears to
the right of the first 1 in the higher row.

(iii) Rows consisting of all 0’s are at the bottom of the matrix.

(A�B).

a11

a21

an1

a1n

a2n

ann

a12

a22

an2

. . .

. . .

. . .
( .

.

.

b1

b2

bn

) ..
.
.

�

a11x1 � a12x2 � 	 	 	 � a1n xn � b1

a21x1 � a22x2 � 	 	 	 � a2nxn � b2

M                  M

an1x1 � an2x2 � 	 	 	 � annxn � bn.

�t

0
X(s) ds � �

�t
0 sin 2s ds
�t

0 e3s ds
�t

0 (8s � 1) ds
� � ��1

2 cos 2t � 1
2

1
3 e3t � 1

3

4t2 � t
�.
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In the Gauss-Jordan method the row operations are continued until we obtain an aug-
mented matrix that is in reduced row-echelon form. A reduced row-echelon matrix
has the same three properties listed above in addition to the following one:

(iv) A column containing a first entry 1 has 0’s everywhere else.

EXAMPLE 11 Row-Echelon/Reduced Row-Echelon Form

(a) The augmented matrices

are in row-echelon form. You should verify that the three criteria are satisfied.

(b) The augmented matrices

are in reduced row-echelon form. Note that the remaining entries in the columns
containing a leading entry 1 are all 0’s.

Note that in Gaussian elimination we stop once we have obtained an augmented
matrix in row-echelon form. In other words, by using different sequences of row
operations we may arrive at different row-echelon forms. This method then requires
the use of back-substitution. In Gauss-Jordan elimination we stop when we have
obtained the augmented matrix in reduced row-echelon form. Any sequence of row
operations will lead to the same augmented matrix in reduced row-echelon form.
This method does not require back-substitution; the solution of the system will be
apparent by inspection of the final matrix. In terms of the equations of the original
system, our goal in both methods is simply to make the coefficient of x1 in the first
equation* equal to 1 and then use multiples of that equation to eliminate x1 from other
equations. The process is repeated on the other variables.

To keep track of the row operations on an augmented matrix, we utilize the
following notation:

EXAMPLE 12 Solution by Elimination

Solve

using (a) Gaussian elimination and (b) Gauss-Jordan elimination.

 5x1 � 7x2 � 4x3 � 9

x1 � 2x2 � x3 � �1

 2x1 � 6x2 � x3 � 7

Symbol Meaning

Rij Interchange rows i and j
cRi Multiply the ith row by the nonzero constant c
cRi � Rj Multiply the ith row by c and add to the jth row

�1

0

0

0

1

0

0

0

0

7p  �1

0
�  and  �0

0

0

0

1

0

�6

0

0

1 � �6

4�

�1

0

0

5

1

0

0

0

0

2p  �1

0
�  and  �0

0

0

0

1

0

�6

0

2

1 � 2

4�

*We can always interchange equations so that the first equation contains the variable x1.



SOLUTION (a) Using row operations on the augmented matrix of the system, we
obtain
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( �2

1

5

1

�1

�4

7

�1

9

6

2

7
) ( �1

2

5

�1

1

�4

2

6

7

R12

�1

7

9
) ( �1

0

0

�1

3

1

2

2

�3

�1

9

14
)�2R1 � R2

�5R1 � R3

( �1

0

0

�1

1

�1

14

2

1

�3
) ( �1

0

0

�12

1

0

3R2 � R3

�1 ) ( �1

0

0

�1

1

2

1

0

�1

5
).R2 R3

1_
2

2__
113_

2
9_
2

3_
2

11__
2

55__
2

9_
2

3_
2

9_
2

The last matrix is in row-echelon form and represents the system

Substituting x3 � 5 into the second equation then gives x2 � �3. Substituting both
these values back into the first equation finally yields x1 � 10.

(b) We start with the last matrix above. Since the first entries in the second and third
rows are 1’s, we must, in turn, make the remaining entries in the second and
third columns 0’s:

The last matrix is now in reduced row-echelon form. Because of what the matrix
means in terms of equations, it is evident that the solution of the system is x1 � 10,
x2 � �3, x3 � 5.

EXAMPLE 13 Gauss-Jordan Elimination

Solve

SOLUTION We solve the system using Gauss-Jordan elimination:

In this case the last matrix in reduced row-echelon form implies that the original
system of three equations in three unknowns is really equivalent to two equations in
three unknowns. Since only z is common to both equations (the nonzero rows), we

� R2

� R3
1__

11

1__
11

( �1

4

2

�2

3

7

�7

5

19

3

1

�5
) ( �1

0

0

�2

11

11

3

�11

�11

�7

33

33
)�4R1 � R2

�2R1 � R3

( �1

0

0

�2

�1

�1

�7

�3

�3

3

1

1
) ( �1

0

0

1

�1

0

0

1

0

�3R2 � R1
�R2 � R3

1

�3

0
).

 2x � 5y � 7z � 19.

 4x � y � 3z � 5

x � 3y � 2z � �7

( �1

0

0

�1

1

�1

5

2

1

0
) ( �1

0

0

�4

1

0

1

0

�2R2 � R1

�10

5
) ( �1

0

0

0

0

1

0

1

0

10

�3

5
).    4R3 � R1

� R3 � R2
3_
23_

2
9_
2

3_
2

9_
2

  x3 � 5.

x2 �
3

2
x3 �

9

2

x1 � 2x2 � x3 � �1
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can assign its values arbitrarily. If we let z � t, where t represents any real number,
then we see that the system has infinitely many solutions: x � 2 � t, y � �3 � t,
z � t. Geometrically, these equations are the parametric equations for the line of
intersection of the planes x � 0y � z � 2 and 0x � y � z � 3.

USING ROW OPERATIONS TO FIND AN INVERSE Because of the number
of determinants that must be evaluated, formula (2) in Theorem II.2 is seldom
used to find the inverse when the matrix A is large. In the case of 3 � 3 or larger
matrices the method described in the next theorem is a particularly efficient means
for finding A�1.

THEOREM II.3 Finding A�1 Using Elementary Row Operations

If an n � n matrix A can be transformed into the n � n identity I by a
sequence of elementary row operations, then A is nonsingular. The same
sequence of operations that transforms A into the identity I will also trans-
form I into A�1.

It is convenient to carry out these row operations on A and I simultaneously
by means of an n � 2n matrix obtained by augmenting A with the identity I as
shown here:

The procedure for finding A�1 is outlined in the following diagram:

EXAMPLE 14 Inverse by Elementary Row Operations

Find the multiplicative inverse for 

SOLUTION We shall use the same notation as we did when we reduced an
augmented matrix to reduced row-echelon form:

A � � 2 0 1

�2 3 4

�5 5 6
�.

( A �  I )  (I � A�1).

Perform row operations
on A until I is obtained. This
means that A is nonsingular.

By simultaneously applying
the same row operations
to I, we get A�1.

(A � I) � (
a11

a21

an1

a1n

a2n

ann

a12

a22

an2

. . .

. . .

. . .

. . .

. . .

. . .

.

.

.

1

1

0

0

0

0

.

.

.
.
.
.

0

0

1

.

.

. ).�

( �2

�2

�5

1

4

6

0

3

5

1

0

0

0

1

0

0

0

1
) ( �1

�2

�5

4

6

0

3

5

0

0

0

1

0

0

0

1
)R1

2R1 � R2
5R1 � R3

1_
2

1_
2

1_
2 ( �1

0

0

5

0

3

5

1

0

1

0

0

0

1
)

1_
2

1_
2

17__
2

5_
2



Because I appears to the left of the vertical line, we conclude that the matrix to the
right of the line is

If row reduction of (A�I) leads to the situation

where the matrix B contains a row of zeros, then necessarily A is singular. Since fur-
ther reduction of B always yields another matrix with a row of zeros, we can never
transform A into I.

II.3 THE EIGENVALUE PROBLEM

Gauss-Jordan elimination can be used to find the eigenvectors of a square matrix.

DEFINITION II.13 Eigenvalues and Eigenvectors

Let A be an n � n matrix. A number l is said to be an eigenvalue of A if
there exists a nonzero solution vector K of the linear system

(6)

The solution vector K is said to be an eigenvector corresponding to the
eigenvalue l.

The word eigenvalue is a combination of German and English terms adapted
from the German word eigenwert, which, translated literally, is “proper value.”
Eigenvalues and eigenvectors are also called characteristic values and character-
istic vectors, respectively.

EXAMPLE 15 Eigenvector of a Matrix

Verify that is an eigenvector of the matrix

A � � 0 �1 �3

2 3 3

�2 1 1
�.

K � � 1

�1

1
�

AK � �K.

(A � I) (B � C),

row
operations

A�1 � ��2 5 �3

�8 17 �10

5 �10 6
�.

( �1

0

0 1

0

1

0 5

0

�10

0

0

6
)30R3

� R3 � R1

� R3 � R2

1_
2

1_
3

1_
3

1_
2

5_
3 ( �1

0

0

0

0

1

0

1

0

�2

�8

5

5

17

�10

�3

�10

6
).5_

3

1_
3

( �1

0

0

0

1

1

0

0

0

0)R2

R3 �R2 � R3
1_
5

1_
3

1_
2

1_
2

5_
3
17__
10

1_
3
1_
2

1_
3

1_
5

0

�

0

0)
1_
2

1_
3
1_
3

1_
5

( �1

0

0

0

1

0

1_
2

5_
3

1_
3

1__
30

1_
6
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SOLUTION By carrying out the multiplication AK, we see that

We see from the preceding line and Definition II.13 that l � �2 is an
eigenvalue of A.

Using properties of matrix algebra, we can write (6) in the alternative form

(7)

where I is the multiplicative identity. If we let

then (7) is the same as

(8)

Although an obvious solution of (8) is k1 � 0, k2 � 0, . . . , kn � 0, we are seeking
only nontrivial solutions. It is known that a homogeneous system of n linear equa-
tions in n unknowns (that is, bi � 0, i � 1, 2, . . . , n in (5)) has a nontrivial solution
if and only if the determinant of the coefficient matrix is equal to zero. Thus to find a
nonzero solution K for (7), we must have

(9)

Inspection of (8) shows that the expansion of det(A � lI) by cofactors results in an
nth-degree polynomial in l. The equation (9) is called the characteristic equation
of A. Thus the eigenvalues of A are the roots of the characteristic equation. To find
an eigenvector corresponding to an eigenvalue l, we simply solve the system of
equations (A � lI)K � 0 by applying Gauss-Jordan elimination to the augmented
matrix

EXAMPLE 16 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of 

SOLUTION To expand the determinant in the characteristic equation, we use the
cofactors of the second row:

From �l3 � l2 � 12l � �l(l � 4)(l � 3) � 0 we see that the eigenvalues
are l1 � 0, l2 � �4, and l3 � 3. To find the eigenvectors, we must now reduce

three times corresponding to the three distinct eigenvalues.(A � �I�0)

det(A � �I) � p 1 � � 2 1

6 �1 � � 0

�1 �2 �1 � �
p � ��3 � �2 � 12� � 0.

A � � 1 2 1

6 �1 0

�1 �2 �1
�.

(A � �I�0).

det(A � �I) � 0.

(a11 � l)k1 �

a21k1 �

an1k1 �

a12k2 �

(a22 � l)k2 �

an2k2 �

�

�

� (ann � l)kn � 0.

a1nkn � 0

a2nkn � 0.
.
.

.

.

.

. . .

. . .

. . .

K � �
k1

k2

M

kn

�,

(A � �I)K � 0,

AK � ( 0

2

�2

1

�1

1

�3

3

1

�1

3

1

1

�1

1

�2

2

�2
) ( ) � ( ) � (�2) ( ) � (�2)K.

eigenvalue



For l1 � 0 we have

Thus we see that and Choosing k3 � �13, we get the
eigenvector*

For l2 � �4,

K1 � � 1

6

�13
�.

k2 � � 6
13 k3.k1 � � 1

13 k3

6__
13

6__
13

1__
13

�6R1 � R2

R1 � R3

� R2
1__

13

(A � 0I � 0) � ( 1

6

�1

2

�1

�2

1

0

�1

0

0

0
) ( �� 1

0

0

1

�6

0

0

0

0

2

�13

0
)

�2R2 � R1( �1

0

0

2

1

0

1

0

0

0

0
) ( �1

0

0 0

0

0

0

0

1

0
).
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�R3
R31

� R2

� R3

(A � 4I � 0) � ( �5

6

�1

2

3

�2

1

0

3

0

0

0
) ( �1

6

5

�3

0

1

0

0

0

2

3

2
)

�2R2 � R1
�R2 � R3( �1

0

0

2

1

1

�3

�2

�2

0

0

0
) ( �1

0

0

1

�2

0

0

0

0

0

1

0
)�6R1 � R2

�5R1 � R3 ( �1

0

0

�3

18

16

0

0

0

2

�9

�8
)

1_
9
1_
8

implies that k1 � �k3 and k2 � 2k3. Choosing k3 � 1 then yields the second
eigenvector

Finally, for l3 � 3 Gauss-Jordan elimination gives

so k1 � �k3 and The choice of k3 � �2 leads to the third eigenvector:

When an n � n matrix A possesses n distinct eigenvalues l1, l2, . . . , ln, it can
be proved that a set of n linearly independent† eigenvectors K1, K2, . . . , Kn can be
found. However, when the characteristic equation has repeated roots, it may not be
possible to find n linearly independent eigenvectors for A.

K3 � � 2

3

�2
�.

k2 � �3
2 k3.

(A � 3I � 0) � ( ��2

6

�1

1

0

�4

0

0

0

2

�4

�2
) ( �1

0

0

1

0

0

0

0

0

1

0
),row

operations 3_
2

K2 � ��1

2

1
�.

*Of course k3 could be chosen as any nonzero number. In other words, a nonzero constant multiple of an
eigenvector is also an eigenvector.
†Linear independence of column vectors is defined in exactly the same manner as for functions.
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EXAMPLE 17 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of 

SOLUTION From the characteristic equation

we see that l1 � l2 � 5 is an eigenvalue of multiplicity two. In the case of a 2 � 2
matrix there is no need to use Gauss-Jordan elimination. To find the eigenvector(s)
corresponding to l1 � 5, we resort to the system in its equivalent form

It is apparent from this system that k1 � 2k2. Thus if we choose k2 � 1, we find the
single eigenvector

EXAMPLE 18 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of .

SOLUTION The characteristic equation

shows that l1 � 11 and that l2 � l3 � 8 is an eigenvalue of multiplicity two.
For l1 � 11 Gauss-Jordan elimination gives

Hence k1 � k3 and k2 � k3. If k3 � 1, then

Now for l2 � 8 we have

(A � 8I � 0) � ( �1

1

1

1

1

1

0

0

0

1

1

1
) ( �1

0

0

1

0

0

0

0

0

1

0

0
).row

operations

K1 � �1

1

1
�.

(A � 11I � 0) � ( ��2

1

1

1

1

�2

0

0

0

1

�2

1
) ( �1

0

0

�1

�1

0

0

0

0

0

1

0
).row

operations

det(A � �I) � p 9 � � 1 1

1 9 � � 1

1 1 9 � �
p � �(� � 11)(� � 8)2 � 0

A � �9 1 1

1 9 1

1 1 9
�

K1 � �2

1�.

�k1 � 2k2 � 0.

�2k1 � 4k2 � 0

(A � 5I�0)

det(A � �I) � �3 � � 4

�1 7 � �� � (� � 5)2 � 0

A � � 3 4

�1 7�.



In the equation k1 � k2 � k3 � 0 we are free to select two of the variables arbitrar-
ily. Choosing, on the one hand, k2 � 1, k3 � 0 and, on the other, k2 � 0, k3 � 1, we
obtain two linearly independent eigenvectors

K2 � ��1

1

0
�   and   K3 � ��1

0

1
�.
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EXERCISES FOR APPENDIX II Answers to selected odd-numbered problems begin on page ANS-29.

II.1 BASIC DEFINITIONS AND THEORY

1. If and find

(a) A � B (b) B � A (c) 2A � 3B

2. If and find

(a) A � B (b) B � A (c) 2(A � B)

3. If and find

(a) AB (b) BA (c) A2 � AA (d) B2 � BB

4. If and find

(a) AB (b) BA

5. If and 

find

(a) BC (b) A(BC) (c) C(BA) (d) A(B � C)

6. If and

find

(a) AB (b) BA (c) (BA)C (d) (AB)C

7. If and find

(a) ATA (b) BT B (c) A � BT

B � (2 4 5),A � � 4

8

�10
�

C � �1 2 4

0 1 �1

3 2 1
�,

A � (5 �6 7), B � � 3

4

�1
�,

C � �0 2

3 4�,A � � 1 �2

�2 4�, B � �6 3

2 1�,

B � ��4 6 �3

1 �3 2�,A � �1 4

5 10

8 12
�

B � ��1 6

3 2�,A � � 2 �3

�5 4�

B � � 3 �1

0 2

�4 �2
�,A � ��2 0

4 1

7 3
�

B � ��2 6

8 �10�,A � � 4 5

�6 9�
8. If and find

(a) A � BT (b) 2AT � BT (c) AT(A � B)

9. If and find

(a) (AB)T (b) BTAT

10. If and find

(a) AT � BT (b) (A � B)T

In Problems 11–14 write the given sum as a single column
matrix.

11.

12.

13.

14.

In Problems 15–22 determine whether the given matrix is
singular or nonsingular. If it is nonsingular, find A�1 using
Theorem II.2.

15. 16.

17. 18.

19. 20. A � � 3 2 1

4 1 0

�2 5 �1
�A � � 2 1 0

�1 2 1

1 2 1
�

A � �7 10

2 2�A � � 4 8

�3 �5�

A � �2 5

1 4�A � ��3 6

�2 4�

�1 �3 4

2 5 �1

0 �4 �2
� t�2t � 1

�t
� � ��t

1

4
� � � 2

8

�6
�

�2 �3

1 4��
�2

5� � ��1 6

�2 3��
�7

2�

3t� 2

t

�1
� � (t � 1)��1

�t

3
� � 2� 3t

4

�5t
�

4 ��1

2� � 2 �2

8� � 3 ��2

3�

B � ��3 11

�7 2�,A � � 5 9

�4 6�

B � � 5 10

�2 �5�,A � �3 4

8 1�

B � ��2 3

5 7�,A � �1 2

2 4�
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21. 22.

In Problems 23 and 24 show that the given matrix is
nonsingular for every real value of t. Find A�1(t) using
Theorem II.2.

23.

24.

In Problems 25–28 find dX�dt.

25. 26 .

27. 28.

29. Let Find

(a) (b) (c)

30. Let and Find

(a) (b)

(c) (d)

(e) A(t)B(t) (f)

(g)

II.2 GAUSSIAN AND GAUSS-JORDAN
ELIMINATION

In Problems 31–38 solve the given system of equations by
either Gaussian elimination or Gauss-Jordan elimination.

31. x � y � 2z � 14 32. 5x � 2y � 4z � 10
2x � y � z � 0 x � y � z � 9
6x � 3y � 4z � 1 4x � 3y � 3z � 1

33. y � z � �5 34. 3x � y � z � 4
5x � 4y � 16z � �10 4x � 2y � z � 7

x � y � 5z � 7 x � y � 3z � 6

�t

1
A(s)B(s) ds

d

dt
A(t)B(t)

�2

1
B(t) dt�1

0
A(t) dt

dB
dt

dA
dt

B(t) � � 6t 2

1> t 4t�.A(t) � �
1

t2 � 1
3t

t2 t
�

�t

0
A(s) ds�2

0
A(t) dt

dA
dt

A(t) � �e4t cos �t

2t 3t2 � 1�.

X � � 5te2t

t sin 3t�X � 2 � 1

�1�e2t � 4 �2

1�e�3t

X � �
1
2 sin 2t � 4 cos 2t

�3 sin 2t � 5 cos 2t�X � � 5e�t

2e�t

�7e�t�

A(t) � �2et sin t �2et cos t

et cos t et sin t�

A(t) � �2e�t e4t

4e�t 3e4t�

A � � 4 1 �1

6 2 �3

�2 �1 2
�A � �2 1 1

1 �2 �3

3 2 4
� 35. 2x � y � z � 4 36. x � 2z � 8

10x � 2y � 2z � �1 x � 2y � 2 z � 4
6x � 2y � 4z � 8 2x � 5y � 6 z � 6

37. x1 � x2 � x3 � x4 � �1 38. 2x1 � x2 � x3 � 0
x1 � x2 � x3 � x4 � 3 x1 � 3x2 � x3 � 0
x1 � x2 � x3 � x4 � 3 7x1 � x2 � 3x3 � 0

4x1 � x2 � 2x3 � x4 � 0

In Problems 39 and 40 use Gauss-Jordan elimination to
demonstrate that the given system of equations has no
solution.

39. x � 2y � 4z � 2 40. x1 � x2 � x3 � 3x4 � 1
2x � 4y � 3z � 1 x2 � x3 � 4x4 � 0
x � 2y � z � 7 x1 � 2x2 � 2x3 � x4 � 6

4x1 � 7x2 � 7x3 � 9

In Problems 41–46 use Theorem II.3 to find A�1 for the
given matrix or show that no inverse exists.

41. 42.

43. 44.

45. 46.

11.3 THE EIGENVALUE PROBLEM

In Problems 47–54 find the eigenvalues and eigenvectors of
the given matrix.

47. 48.

49. 50.

51. 52.

53. 54. �1 6 0

0 2 1

0 1 2
�� 0 4 0

�1 �4 0

0 0 �2
�

�3 0 0

0 2 0

4 0 1
��5 �1 0

0 �5 9

5 �1 0
�

�1 1
1
4 1���8 �1

16 0�

�2 1

2 1���1 2

�7 8�

A � �
1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0
�A � �

1 2 3 1

�1 0 2 1

2 1 �3 0

1 1 2 1
�

A � �1 2 3

0 1 4

0 0 8
�A � ��1 3 0

1 �2 1

0 1 2
�

A � �2 4 �2

4 2 �2

8 10 �6
�A � � 4 2 3

2 1 0

�1 �2 0
�



In Problems 55 and 56 show that the given matrix has
complex eigenvalues. Find the eigenvectors of the matrix.

55. 56.

Miscellaneous Problems

57. If A(t) is a 2 � 2 matrix of differentiable functions and
X(t) is a 2 � 1 column matrix of differentiable func-
tions, prove the product rule

58. Derive formula (3). [Hint: Find a matrix

for which AB � I. Solve for b11, b12, b21, and b22. Then
show that BA � I.]

B � �b11 b12

b21 b22
�

d

dt
 [A(t)X(t)] � A(t)X�(t) � A�(t)X(t).

�2 �1 0

5 2 4

0 1 2
���1 2

�5 1�
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59. If A is nonsingular and AB � AC, show that B � C.

60. If A and B are nonsingular, show that (AB)�1 � B�1A�1.

61. Let A and B be n � n matrices. In general, is

62. A square matrix A is said to be a diagonal matrix if
all its entries off the main diagonal are zero—that is,
aij � 0, i � j. The entries aii on the main diagonal may
or may not be zero. The multiplicative identity matrix I
is an example of a diagonal matrix.

(a) Find the inverse of the 2 � 2 diagonal matrix

when a11 � 0, a22 � 0.

(b) Find the inverse of a 3 � 3 diagonal matrix A
whose main diagonal entries aii are all nonzero.

(c) In general, what is the inverse of an n � n diagonal
matrix A whose main diagonal entries aii are all
nonzero?

A � �a11 0

0 a22
�

(A � B)2 � A2 � 2AB � B2?



APP-21

APPENDIX III

LAPLACE TRANSFORMS

f (t)

1. 1

2. t

3. tn n a positive integer

4. t�1/2

5. t1/2

6. ta

7. sin kt

8. cos kt

9. sin2 kt

10. cos2 kt

11. eat

12. sinh kt

13. cosh kt

14. sinh2kt

15. cosh2kt

16. teat

17. tn eat n a positive integer
n!

(s � a)n�1 ,

1

(s � a)2

s2 � 2k2

s(s2 � 4k2)

2k2

s(s2 � 4k2)

s

s2 � k2

k

s2 � k2

1

s � a

s2 � 2k2

s(s2 � 4k2)

2k2

s(s2 � 4k2)

s

s2 � k2

k

s2 � k2

&(� � 1)

s��1 , a � �1

1�

2s3/2

B
�

s

n!

sn�1 ,

1

s2

1

s

�{ f (t)} � F(s)
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f (t)

18. eat sin kt

19. eat cos kt

20. eat sinh kt

21. eat cosh kt

22. t sin kt

23. t cos kt

24. sin kt � kt cos kt

25. sin kt � kt cos kt

26. t sinh kt

27. t cosh kt

28.

29.

30. 1 � cos kt

31. kt � sin kt

32.

33.

34. sin kt sinh kt

35. sin kt cosh kt

36. cos kt sinh kt

37. cos kt cosh kt
s3

s4 � 4k4

k(s2 � 2k2)

s4 � 4k4

k(s2 � 2k2)

s4 � 4k4

2k2s

s4 � 4k4

s

(s2 � a2)(s2 � b2)

cos bt � cos at

a2 � b2

1

(s2 � a2)(s2 � b2)

a sin bt � b sin at

ab (a2 � b2)

k3

s2(s2 � k2)

k2

s(s2 � k2)

s

(s � a)(s � b)

aeat � bebt

a � b

1

(s � a)(s � b)

eat � ebt

a � b

s2 � k2

(s2 � k2)2

2ks

(s2 � k2)2

2k3

(s2 � k2)2

2ks2

(s2 � k2)2

s2 � k2

(s2 � k2)2

2ks

(s2 � k2)2

s � a

(s � a)2 � k2

k

(s � a)2 � k2

s � a

(s � a)2 � k2

k

(s � a)2 � k2

�{ f (t)} � F(s)



f (t)

38. J0(kt)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50. eat f (t) F(s � a)

51.

52. e�asF(s)

53. e�as

54. f (n)(t)

55. tn f(t)

56. F(s)G(s)

57. d(t) 1

58. d(t � t0) e�st0

�t

0
f (')g(t � ') d'

(�1)n dn

dsn F(s)

snF(s) � s(n�1) f (0) � 	 	 	 � f (n�1)(0)

�{ g(t � a)}g(t)�(t � a)

f (t � a)�(t � a)

e�as

s
�(t � a)

� erfc � a

21t�

be�a1s

s(1s � b)
�eabeb2 terfc �b1t �

a

21t�

e�a1s

1s(1s � b)
eabeb2t erfc �b1t �

a

21t�

e�a1s

s1s
2B

t

�
e�a2/4t � a erfc � a

21t�

e�a1s

s
erfc � a

21t�

e�a1sa

21�t3
e�a2/4t

e�a1s

1s

1

1�t
e�a2 /4t

1

2
 arctan 

a � b

s
�

1

2
 arctan 

a � b

s

sin at cos bt

t

arctan �a

s�
sin at

t

ln
s2 � k2

s2

2(1 � cosh kt)

t

ln
s2 � k2

s2

2(1 � cos kt)

t

ln
s � a

s � b

ebt � eat

t

1

1s2 � k2

�{ f (t)} � F(s)
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ANSWERS FOR SELECTED 
ODD-NUMBERED PROBLEMS

EXERCISES 1.1 (PAGE 10)

1. linear, second order 3. linear, fourth order
5. nonlinear, second order 7. linear, third order
9. linear in x but nonlinear in y

15. domain of function is [�2, �); largest interval of
definition for solution is (�2, �)

17. domain of function is the set of real numbers except
x � 2 and x � �2; largest intervals of definition for
solution are (��, �2), (�2, 2), or (2, �)

19. defined on (��, ln 2) or on (ln 2, �)

27. m � �2 29. m � 2, m � 3 31. m � 0, m � �1
33. y � 2 35. no constant solutions

EXERCISES 1.2 (PAGE 17)

1. y � 1�(1 � 4e�x)
3. y � 1�(x2 � 1); (1, �)
5. y � 1�(x2 � 1); (��, �)
7. x � �cos t � 8 sin t

9. 11.

13. y � 5e�x�1 15. y � 0, y � x3

17. half-planes defined by either y � 0 or y 
 0
19. half-planes defined by either x � 0 or x 
 0
21. the regions defined by y � 2, y 
 �2, or �2 
 y 
 2
23. any region not containing (0, 0)
25. yes
27. no
29. (a) y � cx

(b) any rectangular region not touching the y-axis
(c) No, the function is not differentiable at x � 0.

31. (b) y � 1�(1 � x) on (��, 1);
y � �1�(x � 1) on (�1, �);

(c) y � 0 on (��, �)

EXERCISES 1.3 (PAGE 27)

1.

3.

7.

9.

11. 13.
dh

dt
� �

c�

450
1h

dA

dt
�

7

600 � t
A � 6

dA

dt
�

1

100
A � 0; A(0) � 50

dx

dt
� kx(1000 � x)

dP

dt
� k1P � k2P2

dP

dt
� kP � r;

dP

dt
� kP � r

y � 3
2 ex � 1

2 e�xx � 13
4  cos t � 1

4 sin t

X �
et � 1

et � 2

15. 17.

19. 21.

23. 25.

27.

CHAPTER 1 IN REVIEW (PAGE 32)

1. 3. y� � k2y � 0

5. y� � 2y� � y � 0 7. (a), (d)
9. (b) 11. (b)

13. y � c1 and y � c2ex, c1 and c2 constants
15. y� � x2 � y2

17. (a) The domain is the set of all real numbers.
(b) either (��, 0) or (0, �)

19. For x0 � �1 the interval is (��, 0), and for x0 � 2 the
interval is (0, �).

21. (c) 23. (��, �)

25. (0, �) 27.

29.

31. y0 � �3, y1 � 0

33.

EXERCISES 2.1 (PAGE 41)

21. 0 is asymptotically stable (attractor); 3 is unstable
(repeller).

23. 2 is semi-stable.
25. �2 is unstable (repeller); 0 is semi-stable; 2 is

asymptotically stable (attractor).
27. �1 is asymptotically stable (attractor); 0 is unstable

(repeller).
39. 0 
 P0 
 h�k
41.

EXERCISES 2.2 (PAGE 50)

1. 3.

5. y � cx4 7. �3e�2y � 2e3x � c

9. 1
3 x3 ln x � 1

9 x3 � 1
2 y2 � 2y � ln � y � � c

y � 1
3 e�3x � cy � �1

5 cos 5x � c

1mg>k

dP

dt
� k(P � 200 � 10t)

y � 3
2 e3x�3 � 9

2 e�x�1 � 2x.

y � 1
2 e3x � 1

2 e�x � 2x

y � ��x2,

x2,

x 
 0

x  0

dy

dx
� 10y

dy

dx
�

�x � 1x2 � y2

y

dx

dt
� kx � r, k � 0

dA

dt
� k(M � A), k � 0

d 2r

dt2 �
gR2

r 2 � 0m
d 2x

dt2 � �kx

m
dv

dt
� mg � kv2L

di

dt
� Ri � E(t)
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11. 4 cos y � 2x � sin 2x � c
13. (ex � 1)�2 � 2(ey � 1)�1 � c

15. S � cekr 17.

19. ( y � 3)5 ex � c(x � 4)5 ey 21.

23. 25.

27. 29.

31. (a)

33. y � �1 and y � 1 are singular solutions of Problem 21;
of Problem 22

35. y � 1

37.

41. (a) (c)

49. y(x) � (4h�L2)x2 � a

EXERCISES 2.3 (PAGE 60)

1. y � ce5x, (��, �)

3. ; is transient

5. ; is transient

7. y � x�1 ln x � cx�1, (0, �); solution is transient
9. y � cx � x cos x, (0, �)

11. ; is transient

13. ; is transient

15. x � 2y6 � cy4, (0, �)
17. y � sin x � c cos x, (�p�2, p�2)
19. (x � 1)exy � x2 � c, (�1, �); solution is transient
21. (sec u � tan u)r � u � cos u � c, (�p�2, p�2)
23. y � e�3x � cx�1e�3x, (0, �); solution is transient
25. y � x�1ex � (2 � e)x�1, (0, �)

27.

29. (x � 1)y � x ln x � x � 21, (0, �)

31.

33.

35.

37.

47. E(t) � E0e�(t�4)/RC

y � ex2�1 � 1
2 1� ex2

 (erf(x) � erf(1))

y � �2x � 1 � 4e�2x,

4x2 ln x � (1 � 4e�2)x2,

0 � x � 1

x � 1

y � �
1
2 � 3

2 e�x2
,

(1
2 e � 3

2)e�x2
,

0 � x 
 1

x  1

y � �
1
2 (1 � e�2x),
1
2 (e6 � 1)e�2x,

0 � x � 3

x � 3

i �
E

R
� �i0 �

E

R�e�Rt /L , (��, �)

cx�2e�xy � 1
2 x�2ex � cx�2e�x, (0, �)

cx�4y � 1
7 x3 � 1

5 x � cx�4, (0, �)

ce�x3
y � 1

3 � ce�x3
, (��, �)

ce�xy � 1
4 e3x � ce�x, (��, �)

(��, �1
2 � 1

215)y � �1x2 � x � 1

y � 1 � 1
10 tan ( 1

10 x)

y � 0

y � 2, y � �2, y � 2
3 � e4x�1

3 � e4x�1

y � e�
x
4 e-t2

dty � 1
2 x � 13

2 11 � x2

y �
e�(1�1/x)

x
x � tan (4t � 3

4 �)

y � sin (1
2 x2 � c)

P �
cet

1 � cet

EXERCISES 2.4 (PAGE 68)

1. 3.

5. x2y2 � 3x � 4y � c 7. not exact

9.

11. not exact
13. xy � 2xex � 2ex � 2x3 � c
15. x3y3 � tan�1 3x � c

17.

19. t4y � 5t3 � ty � y3 � c

21.

23. 4ty � t2 � 5t � 3y2 � y � 8
25. y2 sin x � x3y � x2 � y ln y � y � 0
27. k � 10 29. x2y2 cos x � c
31. x2y2 � x3 � c 33. 3x2y3 � y4 � c

35.

37.

39. (c)

45. (a) (b) 12.7 ft /s

EXERCISES 2.5 (PAGE 74)

1.

3.

5.

7. ln(x2 � y2) � 2 tan�1( y�x) � c
9. 4x � y(ln�y � � c)2 11. y3 � 3x3 ln�x � � 8x3

13. ln�x � � ey/x � 1 15. y3 � 1 � cx�3

17. 19. et/y � ct

21.

23. y � �x � 1 � tan(x � c)
25. 2y � 2x � sin 2(x � y) � c
27. 4( y � 2x � 3) � (x � c)2

29.

35. (b)

EXERCISES 2.6 (PAGE 79)

1. y2 � 2.9800, y4 � 3.1151
3. y10 � 2.5937, y20 � 2.6533; y � ex

5. y5 � 0.4198, y10 � 0.4124
7. y5 � 0.5639, y10 � 0.5565
9. y5 � 1.2194, y10 � 1.2696

13. Euler: y10 � 3.8191, y20 � 5.9363
RK4: y10 � 42.9931, y20 � 84.0132

y �
2

x
� (�1

4 x � cx�3)�1

�cot(x � y) � csc(x � y) � x � 12 � 1

y�3 � �9
5 x�1 � 49

5 x�6

y�3 � x � 1
3 � ce3x

x � y ln�x � � cy

(x � y)ln� x � y � � y � c(x � y)

y � x ln�x � � cx

v(x) � 8B
x

3
�

9

x2

y2(x) � �x2 � 1x4 � x3 � 4

y1(x) � �x2 � 1x4 � x3 � 4

ey 2
(x2 � 4) � 20

�2ye3x � 10
3 e3x � x � c

1
3 x3 � x2y � xy2 � y � 4

3

�ln� cos x � � cos x sin y � c

xy3 � y2 cos x � 1
2 x2 � c

5
2 x2 �  4xy � 2y4 � cx2 � x � 3

2 y2 � 7y � c
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CHAPTER 2 IN REVIEW (PAGE 80)

1. �A�k, a repeller for k � 0, an attractor for k 
 0
3. true

5.

7. semi-stable for n even and unstable for n odd;
semi-stable for n even and asymptotically stable 
for n odd.

11. 2x � sin 2x � 2 ln( y2 � 1) � c
13. (6x � 1)y3 � �3x3 � c

15.

17.

19. y � csc x, (p, 2p)

21. (b)

EXERCISES 3.1 (PAGE 89)

1. 7.9 yr; 10 yr
3. 760; approximately 11 persons/yr
5. 11 h
7. 136.5 h
9. I(15) � 0.00098I0 or approximately 0.1% of I0

11. 15,600 years
13. T(1) � 36.67° F; approximately 3.06 min
15. approximately 82.1 s; approximately 145.7 s
17. 390°
19. about 1.6 hours prior to the discovery of the body
21. A(t) � 200 � 170e�t /50

23. A(t) � 1000 � 1000e�t /100

25.
27. 64.38 lb
29.

31.

33.

35. (a)

(b) as

(c)

39. (a)

(c) 33 1
3 seconds

v(t) �
�g

4k �
k

�
t � r0� �

�gr0

4k � r0

k

�
t � r0�

3

�
m

k �v0 �
mg

k �
s(t) �

mg

k
t �

m

k �v0 �
mg

k �e�kt/m

t : �v :
mg

k

v(t) �
mg

k
� �v0 �

mg

k �e�kt /m

i(t) � �60 � 60e�t /10,  0 � t � 20

60(e2 � 1)e�t /10,   t � 20

q(t) � 1
100 � 1

100 e�50t; i(t) � 1
2 e�50t

i(t) � 3
5 � 3

5 e�500t; i : 3
5 as t : �

A(t) � 1000 � 10t � 1
10 (100 � t)2; 100 min

y � 1
4 (x � 21y0 � x0)

2, (x0 � 21y0, �)

y � 1
4 � c(x2 � 4)�4

Q � ct�1 � 1
25 t4 (�1 � 5 ln t)

dy

dx
� ( y � 1)2 ( y � 3)3

41. (a)
43. (a) As .

(b) x(t) � r�k � (r�k)e�kt; (ln 2)�k
47. (c) 1.988 ft

EXERCISES 3.2 (PAGE 99)

1. (a) N � 2000

(b)

3. 1,000,000; 5.29 mo

5. (b)

(c) For 0 
 P0 
 1, time of extinction is

.

7. ;

time of extinction is

9. 29.3 g; as ; 0 g of A and 30 g of B

11. (a)

(b) or 30.36 min
13. (a) approximately 858.65 s or 14.31 min

(b) 243 s or 4.05 min

15. (a)

(b)

(c) ,

where c2 � �(m�k)ln cosh c1

17. (a) ,

where r is the weight density of water

(b)

(c)

19. (a) W � 0 and W � 2
(b) W(x) � 2 sech2(x � c1)
(c) W(x) � 2 sech2x

B
mg � �V

k

v(t) � B
mg � �V

k
tanh �1kmg � k�V

m
t � c1�

m
dv

dt
� mg � kv2 � �V

s(t) �
m

k
ln cosh �B

kg

m
t � c1� � c2

B
mg

k

where c1 � tanh�1 �B
k

mg
v0�

v(t) � B
mg

k
tanh �B

kg

m
t � c1�

576110 s

h(t) � �1H �
4Ah

Aw

t�
2

; I is 0 � t � 1HAw �4Ah

t : �X : 60

t �
2

13 
tan�1 5

13
� tan�1 �2P0 � 5

13 ��

P(t) �
5

2
�
13

2
tan
�

13

2
t � tan�1 �2P0 � 5

13 ��

t � �
1

3
ln

4(P0 � 1)

P0 � 4

P(t) �
4(P0 � 1) � (P0 � 4)e�3t

(P0 � 1) � (P0 � 4)e�3t

N(t) �
2000 et

1999 � et; N(10) � 1834

t : �, x(t) : r>kP(t) � P0 e(k1�k2)t
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EXERCISES 3.3 (PAGE 110)

1.

3. 5, 20, 147 days. The time when y(t) and z(t) are the
same makes sense because most of A and half of B
are gone, so half of C should have been formed.

5.

7. (a)

(b) x1(t) � x2(t) � 150; x2(30)  47.4 lb

13.

15. i(0) � i0, s(0) � n � i0, r(0) � 0

CHAPTER 3 IN REVIEW (PAGE 113)

1. dP�dt � 0.15P
3. P(45) � 8.99 billion

5.

7. (a)

(b)

9.

11.

13. x � �y � 1 � c2e�y

15. (a)

(b) The ratio is increasing; the ratio is constant.

(d) r(x) � �
Kp

g�Ky � �q(x) dx�
;  r(x) � B

Kp

2(CKp � bgx)

p(x) � �r(x)g�y �
1

K
� q(x) dx�

x(t) �
ac1e

ak1t

1 � c1e
ak1t

 , y(t) � c2 (1 � c1eak1t )k2 /k1

i(t) � �4t � 1
5 t2, 0 � t 
 10

20,     t  10

T(t) �
BT1 � T2

1 � B
�

T1 � T2

1 � B
ek(1�B)t

BT1 � T2

1 � B
,

BT1 � T2

1 � B

x � 10 ln�10 � 1100 � y2

y � � 1100 � y2

L2
di3

dt
� R1i2 � (R1 � R3) i3 � E(t)

L1
di2

dt
� (R1 � R2)i2 � R1i3 � E(t)

dx2

dt
� 2

x1

100 � t
� 3

x2

100 � t

dx1

dt
� 3

x2

100 � t
� 2

x1

100 � t

dx2

dt
� 2

25 x1 � 2
25 x2

dx1

dt
� 6 � 2

25 x1 � 1
50 x2

z(t) � x0 �1 �
�2

�2 � �1
e��1 t �

�1

�2 � �1
e��2 t�

y(t) �
x0�1

�2 � �1
 (e��1t � e��2 t)

x(t) � x0 e��1t

EXERCISES 4.1 (PAGE 128)

1.

3. y � 3x � 4x ln x
9. (��, 2)

11. (a) (b)

13. (a) y � ex cos x � ex sin x
(b) no solution
(c) y � ex cos x � e�p/2ex sin x
(d) y � c2ex sin x, where c2 is arbitrary

15. dependent 17. dependent
19. dependent 21. independent
23. The functions satisfy the DE and are linearly independent

on the interval since W(e�3x, e4x) � 7ex � 0;
y � c1e�3x � c2e4x.

25. The functions satisfy the DE and are linearly independent
on the interval since W(ex cos 2x, ex sin 2x) � 2e2x � 0;
y � c1ex cos 2x � c2ex sin 2x.

27. The functions satisfy the DE and are linearly
independent on the interval since W(x3, x4) � x6 � 0;
y � c1x3 � c2 x4.

29. The functions satisfy the DE and are linearly independent
on the interval since W(x, x�2, x�2 ln x) � 9x�6 � 0;
y � c1x � c2x�2 � c3x�2 ln x.

35. (b) yp � x2 � 3x � 3e2x;

EXERCISES 4.2 (PAGE 132)

1. y2 � xe2x 3. y2 � sin 4x
5. y2 � sinh x 7. y2 � xe2x/3

9. y2 � x4 ln�x � 11. y2 � 1
13. y2 � x cos (ln x) 15. y2 � x2 � x � 2
17. 19.

EXERCISES 4.3 (PAGE 138)

1. y � c1 � c2e�x/4 3. y � c1e3x � c2e�2x

5. y � c1e�4x � c2xe�4x 7. y � c1e2x /3 � c2e�x /4

9. y � c1cos 3x � c2sin 3x
11. y � e2x(c1cos x � c2sin x)
13.
15. y � c1 � c2e�x � c3e5x

17. y � c1e�x � c2e3x � c3xe3x

19. u � c1e t � e�t (c2cos t � c3sin t)
21. y � c1e�x � c2xe�x � c3x2e�x

23.
25.

27. u � c1er � c2rer � c3e�r � c4re�r � c5e�5r

29.
31.
33. y � 0

y � �1
3 e�(t�1) � 1

3 e5(t�1)

y � 2 cos 4x � 1
2 sin 4x

� c3 x cos 1213 x � c4 x sin 1
213 x

y � c1 cos 1
213 x � c2 sin 1

213 x
y � c1 � c2 x � e�x /2 (c3 cos 1

213 x � c4 sin 1
213 x)

y � e�x /3(c1 cos 1
3 12 x � c2 sin 1

3 12 x)

y2 � e2x, yp � 5
2 e3xy2 � e2x, yp � �1

2

yp � �2x2 � 6x � 1
3 e2x

y �
sinh x

sinh 1
y �

e

e2 � 1
 (ex � e�x)

y � 1
2 ex � 1

2 e�x



ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ● ANS-5

A
N

SW
ER

S 
FO

R 
SE

LE
C

TE
D

 O
D

D
-N

U
M

BE
RE

D
 P

RO
BL

EM
S 

 •
  C

H
A

PT
ER

 4

35.
37. y � e5x � xe5x

39. y � 0

41.

EXERCISES 4.4 (PAGE 148)

1. y � c1e�x � c2e�2x � 3
3.

5.

7.

9. y � c1 � c2ex � 3x
11.

13.

15.

17.

19.

21.

23.

25. y � c1 cos x � c2 sin x � c3x cos x � c4x sin x

� x2 � 2x � 3

27.
29. y � �200 � 200e�x/5 � 3x2 � 30x
31. y � �10e�2x cos x � 9e�2x sin x � 7e�4x

33.

35.

37. y � 6 cos x � 6(cot 1) sin x � x2 � 1

39.

41.

EXERCISES 4.5 (PAGE 156)

1. (3D � 2)(3D � 2)y � sin x
3. (D � 6)(D � 2)y � x � 6
5. D(D � 5)2y � ex

7. (D � 1)(D � 2)(D � 5)y � xe�x

9. D(D � 2)(D2 � 2D � 4)y � 4
15. D4 17. D(D � 2)
19. D2 � 4 21. D3(D2 � 16)
23. (D � 1)(D � 1)3 25. D(D2 � 2D � 5)
27. 1, x, x2, x3, x4 29. e6x, e�3x/2

31. 33. 1, e5x, xe5xcos 15x, sin 15x

y � �cos 2x � 5
6 sin 2x � 1

3 sin x,
2
3 cos 2x � 5

6 sin 2x,

0 � x � �>2
  x � �>2

y �
�4 sin 13x

sin 13 � 13 cos 13
� 2x

y � 11 � 11ex � 9xex � 2x � 12x2ex � 1
2 e5x

x �
F0

2�2 sin �t �
F0

2�
t cos �t

y � 12 sin 2 x � 1
2

y � c1ex � c2xex � c3x2ex � x � 3 � 2
3 x3ex

y � c1 � c2x � c3e6x � 1
4 x2 � 6

37 cos x � 1
37 sin x

� 12
25 sin 2x � 9

25 cos 2x

y � c1e�x � c2xe�x � 1
2 cos x

y � c1ex cos 2x � c2ex sin 2x � 1
4 xex sin 2x

y � c1 cos x � c2 sin x � 1
2 x2 cos x � 1

2 x sin x

y � c1 cos 2x � c2 sin 2x � 3
4 x cos 2x

y � c1ex/2 � c2xex/2 � 12 � 1
2 x2ex/2

y � c1 cos 13x � c2 sin 13x � (�4x2 � 4x � 4
3)e3x

y � c1e�2x � c2xe�2x � x2 � 4x � 7
2

y � c1e5x � c2xe5x � 6
5 x � 3

5

y � cosh 13x �
5

13
 sinh13x

y �
1

2 �1 �
5

13� e�13x �
1

2 �1 �
5

13� e13x;

y � 5
36 � 5

36 e�6x � 1
6 xe�6x

35. y � c1e�3x � c2e3x � 6
37. y � c1 � c2e�x � 3x
39.

41.

43.

45. y � c1e�x � c2e3x � ex � 3

47.

49.

51.

53.

55. y � c1cos 5x � c2sin 5x � 2x cos 5x

57.

� sin x � 2 cos x � x cos x

59.

61.

63.

65.

67.

69.

71.

EXERCISES 4.6 (PAGE 161)

1.

3.

5.

7.

9.

11. y � c1e�x � c2e�2x � (e�x � e�2x) ln(1 � ex)
13. y � c1e�2x � c2e�x � e�2x sin ex

15.

17.

19.

21.

23. y � c1x�1/2 cos x � c2x�1/2 sin x � x�1/2

25.

EXERCISES 4.7 (PAGE 168)

1. y � c1x�1 � c2x2

3. y � c1 � c2 ln x
5. y � c1 cos(2 ln x) � c2 sin(2 ln x)

� sin x ln� sec x � tan x �
y � c1 � c2 cos x � c3 sin x � ln� cos x �

y � 4
9 e�4x � 25

36 e2x � 1
4 e�2x � 1

9 e�x

y � 1
4 e�x/2 � 3

4 ex/2 � 1
8 x2ex/2 � 1

4 xex/2

� 1
3 ex cos x ln� cos x �

y � c1ex sin x � c2ex cos x � 1
3 xex sin x

y � c1e�t � c2te�t � 1
2 t2e�t ln t � 3

4 t2e�t

x0 � 0

y � c1e2x � c2e�2x � 1
4 �e2x ln� x � � e�2x�x

x0

e4 t

t
dt�,

y � c1ex � c2e�x � 1
2 x sinh x

y � c1 cos x � c2 sin x � 1
2 � 1

6 cos 2x

y � c1 cos x � c2 sin x � 1
2 x cos x

y � c1 cos x � c2 sin x � x sin x � cos x ln� cos x �

y � 2e2x cos 2x � 3
64 e2x sin 2x � 1

8 x3 � 3
16 x2 � 3

32 x

y � �� cos x � 11
3  sin x � 8

3 cos 2x � 2x cos x

y � � 41
125 � 41

125 e5x � 1
10 x2 � 9

25 x

y � 5
8 e�8x � 5

8 e8x � 1
4

y � c1 � c2x � c3ex � c4xex � 1
2 x2ex � 1

2 x2

y � c1ex � c2xex � c3x2ex � 1
6 x3ex � x � 13

y � c1 � c2x � c3e�8x � 11
256 x2 � 7

32 x3 � 1
16 x4

y � e�x/2�c1 cos
13

2
x � c2 sin 

13

2
x�

y � ex (c1cos 2x � c2sin 2x) � 1
3 ex sin x

y � c1e�x � c2ex � 1
6 x3ex � 1

4 x2ex � 1
4 xex � 5

y � c1e�3x � c2xe�3x � 1
49 xe4x � 2

343 e4x

y � c1 cos 5x � c2 sin 5x � 1
4 sin x

y � c1e�3x � c2e4x � 1
7 xe4x

y � c1 � c2x � c3e�x � 2
3 x4 � 8

3 x3 � 8x2

y � c1e�2x � c2x e�2x � 1
2 x � 1
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7.

9.

11. y � c1x�2 � c2x�2 ln x

13.

15.

17. y � c1 � c2x � c3x2 � c4x�3

19.

21. y � c1x � c2x ln x � x(ln x)2

23. y � c1x�1 � c2x � ln x

25. y � 2 � 2x�2 27. y � cos(ln x) � 2 sin(ln x)

29. 31. y � c1x�10 � c2x2

33.

35.

37. y � 2(�x)1/2 � 5(�x)1/2 ln(�x), x 
 0

EXERCISES 4.8 (PAGE 172)

1. x � c1et � c2 tet

y � (c1 � c2)et � c2 tet

3. x � c1 cos t � c2 sin t � t � 1
y � c1 sin t � c2 cos t � t � 1

5.

7.

9.

11.

13.

15.

17.

� (� 1
2 13c2 � 1

2 c3)e�t / 2 cos 12 13t

z � c1et � (�1
2 c2 � 1

2 13c3)e�t/2 sin 12 13t

� ( 1
2 13c2 � 1

2 c3)e�t/2 cos 12 13t

y � c1et � (�1
2 c2 � 1

2 13c3)e�t / 2 sin 12 13t

x � c1et � c2e�t / 2 sin 12 13t � c3e�t / 2 cos 12 13t

y � (c1 � c2 � 2) � (c2 � 1)t � c4e�t � 1
2 t2

x � c1 � c2t � c3et � c4e�t � 1
2 t2

y � �3
4 c1e4t � c2 � 5et

x � c1e4t � 4
3 et

� (1
2 13c2 � 3

2 c3)e�t/2 sin 12 13t

y � (�3
2 c2 � 1

2 13c3)e�t / 2 cos 12 13t

x � c1et � c2e�t/2 cos 12 13t � c3e�t/2 sin 12 13t

y � c1 � c2 sin t � c3 cos t � 4
15 e3t

x � c1 � c2 cos t � c3 sin t � 17
15 e3t

y � c1e2t � c2e�2t � c3 sin 2t � c4 cos 2t � 1
5 et

x � c1e2t � c2e�2t � c3 sin 2t � c4 cos 2t � 1
5 et

y � c1 sin t � c2 cos t � c3 sin16t � c4 cos16t

x � 1
2 c1 sin t � 1

2 c2 cos t � 2c3 sin16t � 2c4 cos16t

y � x2 [c1 cos(3 ln x) � c2 sin(3 ln x)] � 4
13 � 3

10 x

y � c1x�1 � c2x�8 � 1
30 x2

y � 3
4 � ln x � 1

4 x2

y � c1 � c2x5 � 1
5 x5 ln x

y � c1x3 � c2 cos(12 ln x) � c3 sin(12 ln x)

y � x�1/2[c1 cos(1
6 13 ln x) � c2 sin(1

6 13 ln x)]

y � c1 cos (1
5 ln x) � c2 sin (1

5 ln x)
y � c1x(2�16) � c2x(2�16) 19. x � �6c1e�t � 3c2e�2t � 2c3e3t

y � c1e�t � c2e�2t � c3e3t

z � 5c1e�t � c2e�2t � c3e3t

21. x � e�3t�3 � te�3t�3

y � �e�3t�3 � 2te�3t�3

23. mx� � 0
my� � �mg;
x � c1t � c2

EXERCISES 4.9 (PAGE 177)

3.

5.

7.

9.

11.

13.

15.

17.

CHAPTER 4 IN REVIEW (PAGE 178)

1. y � 0
3. false
5. (��, 0); (0, �)
7. y � c1e3x � c2e�5x � c3xe�5x � c4ex � c5xex � c6x2ex;

y � c1x3 � c2x�5 � c3x�5 ln x � c4x � c5x ln x � c6x (ln x)2

9.

11. y � c1 � c2e�5x � c3xe�5x

13.

15.

17.

19.

21. y � c1x�1/3 � c2x1/2

23. y � c1x2 � c2x3 � x4 � x2 ln x

25. (a)

;

� Bx sin �x, � � �

y � c1cos �x � c2sin �x � Ax cos �x

� B sin �x, � � �

y � c1cos �x � c2sin �x � A cos �x

� ex cos x ln� sec x � tan x �y � ex (c1 cos x � c2 sin x)

y � c1 � c2e2x � c3e3x � 1
5 sin x � 1

5 cos x � 4
3 x

� 46
125 x � 222

625

y � e3x / 2(c2 cos 12111x � c3 sin 12111x) � 4
5 x3 � 36

25 x2

y � c1e�x / 3 � e�3x / 2 (c2 cos 1
2 17x � c3 sin 1

2 17x)

y � c1e(1�13)x � c2e(1�13)x

y � �11 � x2

y � 1 � x � 1
2 x2 � 2

3 x3 � 1
4 x4 � 7

60 x5 � 	 	 	

y � 1 � x � 1
2 x2 � 1

2 x3 � 1
6 x4 � 1

10 x5 � 	 	 	

y � �
1

c1
11 � c2

1x2 � c2

y � tan (1
4 � � 1

2 x), �1
2 � 
 x 
 3

2 �

1
3 y3 � c1y � x � c2

y �
1

c2
1
ln� c1x � 1 � �

1

c1
x � c2

y � ln� cos (c1 � x) � � c2

y � �1
2 gt2 � c3t � c4
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(b)

27. (a) y � c1cosh x � c2sinh x � c3x cosh x
� c4x sinh x

(b) yp � Ax2 cosh x � Bx2 sinh x

29. y � ex�p cos x

31.

33. y � x2 � 4

37.
y � c1et � c2e2 t � 3

39. x � c1et � c2e5 t � tet

y � �c1et � 3c2e5t � te t � 2et

EXERCISES 5.1 (PAGE 194)

1.

3.

5. (a)

(b) 4 ft /s; downward

(c)

7. (a) the 20-kg mass

(b) the 20-kg mass; the 50-kg mass

(c) t � np, n � 0, 1, 2, . . . ; at the equilibrium position;
the 50-kg mass is moving upward whereas the 20-kg
mass is moving upward when n is even and
downward when n is odd.

9.

11. (a)

(b)

(c) 15 cycles
(d) 0.721 s

(e)

(f) x(3) � �0.597 ft (g) x�(3) � �5.814 ft /s
(h) x�(3) � 59.702 ft /s2 (i)

(j)

(k) 0.3545 �
n�

5
, n � 0, 1, 2, . . .

0.1451 �
n�

5
; 0.3545 �

n�

5
, n � 0, 1, 2, . . .

�81
3 ft/s

(2n � 1)�

20
� 0.0927, n � 0, 1, 2, . . .

5

6
 ft;

�

5

� 5
6 sin (10t � 0.927)

x(t) � �2
3 cos 10t � 1

2 sin 10t

x(t) �
1

2
 cos 2t �

3

4
 sin 2t �

113

4
sin (2t � 0.5880)

t �
(2n � 1)�

16
, n � 0, 1, 2, . . .

x ��

4� �
1

2
; x �9�

32� �
12

4

x ��

12� � �
1

4
; x ��

8 � � �
1

2
; x ��

6� � �
1

4
;

x(t) � �1
4 cos 416 t

12 �

8

x � �c1et � 3
2 c2e2t � 5

2

y � 13
4 ex � 5

4 e�x � x � 1
2 sin x

y � c1e�� x � c2e� x � Axe�x , � � �

y � c1e�� x � c2e� x � Ae�x , � � �;
13.

17. (a) above (b) heading upward
19. (a) below (b) heading upward

21. that is, the weight is approximately
0.14 ft below the equilibrium position.

23. (a)

(b)

25. (a)

(b)

(c) t � 1.294 s

27. (a) (b) (c)

29.

31.

33.

35. (a)

where 2l � b�m and v2 � k�m

(b)

37.

39. (b)

45. 4.568 C; 0.0509 s
47. q(t) � 10 � 10e�3t(cos 3t � sin 3t)

i(t) � 60e�3t sin 3t; 10.432 C

49.

53.

57.

�
E0C�

1 � � 2LC
 sin �t

i(t) � i0 cos 
t

1LC
�

1

1LC �q0 �
E0C

1 � � 2LC� sin
t

1LC

� 1LCi0 sin 
t

1LC
�

E0C

1 � � 2LC
 cos �t

q(t) � �q0 �
E0C

1 � � 2LC� cos
t

1LC

q(t) � �1
2 e�10t (cos 10t � sin 10t) � 3

2 ; 3
2 C

ip � 100
13  cos t � 150

13  sin t

qp � 100
13  sin t � 150

13  cos t

F0

2�
t sin �t

x(t) � �cos 2t � 1
8 sin 2t � 3

4 t sin 2t � 5
4 t cos 2t

� 32
13 sin t

x(t) � e�2t (�56
13 cos 2t � 72

13 sin 2t) � 56
13 cos t

d 2x

dt2 � 2�
dx

dt
� �2x � �2h(t),

m
d 2x

dt2 � �k(x � h) � �
dx

dt
  or

� 2e�2t sin 4t

x(t) � �1
2 cos 4t � 9

4 sin 4t � 1
2 e�2t cos 4t

x(t) � 1
4 e�4t � te�4t � 1

4 cos 4t

�
10

3
 (cos 3t � sin 3t)

x(t) � e�t / 2 ��
4

3
 cos 
147

2
t �

64

3147
 sin 
147

2
t�

0 
 � 
 5
2� � 5

2� � 5
2

x(t) �
15

2
e�2t sin (4t � 4.249)

x(t) � e�2t (�cos 4t � 1
2 sin 4t)

x(t) � �2
3 e�2t � 5

3 e�8t

x(t) � 4
3 e�2t � 1

3 e�8t

1
4 s; 1

2 s, x (1
2) � e�2;

120 lb/ft; x(t) �
13

12
 sin 813 t
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EXERCISES 5.2 (PAGE 204)

1. (a)

3. (a)

5. (a)

(c) x  0.51933, ymax  0.234799

7.

9. ln � n2, n � 1, 2, 3, . . . ; y � sin nx

11.

13. ln � n2, n � 0, 1, 2, . . . ; y � cos nx

15.

17. ln � n2, n � 1, 2, 3, . . . ; y � sin(n ln x)

19. ln � n4p4, n � 1, 2, 3, . . . ; y � sin npx

21. x � L�4, x � L�2, x � 3 L�4

25.

27.

EXERCISE 5.3 (PAGE 213)

7.

15. (a) 5 ft (b) (c) ; 7.5 ft

17. (a) .

When t � 0, x � a, y � 0, dy�dx � 0.

(b) When r � 1,

�
ar

1 � r2

y(x) �
a

2 

1

1 � r �
x

a�
1�r

�
1

1 � r �
x

a�
1�r

�

xy� � r11 � (y�)2

0 � t � 3
81104110 ft/s

d 2x

dt2 � x � 0

u(r) � �u0 � u1

b � a � ab

r
�

u1b � u0a

b � a

�n �
n�1T

L1�
, n � 1, 2, 3, . . . ; y � sin

n�x

L

�n �
n2�2

25
, n � 1, 2, 3, . . . ; y � e�x sin

n�x

5

y � cos
(2n � 1)�x

2L

�n �
(2n � 1)2�2

4L2 , n � 1, 2, 3, . . . ;

�
w0

2P
x2 �

w0EI

P2

� �w0EI

P2 sinh B
P

EI
L �

w0L1EI

P1P � sinh B
P

EI
x

cosh B
P

EI
L

y(x) � �
w0EI

P2 cosh B
P

EI
x

y(x) �
w0

360EI
(7L4x � 10L2x3 � 3x5)

y(x) �
w0

48EI
(3L2x2 � 5Lx3 � 2x4)

y(x) �
w0

24EI
(6L2x2 � 4Lx3 � x4)

When r � 1,

(c) The paths intersect when r 
 1.

CHAPTER 5 IN REVIEW (PAGE 216)

1. 8 ft
3.
5. False; there could be an impressed force driving the

system.
7. overdamped
9. y � 0 since l � 8 is not an eigenvalue

11. 14.4 lb 13.

15. 0 
 m � 2 17.

19.

21. (a)

(b)

(c)

25.

EXERCISES 6.1 (PAGE 230)

1.

3. R � 10, (�5, 15)

5.

7.

9.

11.

15. 5; 4

17.

19.

y2(x) � c1
x �
1

3!
x3 �

5

5!
x5 �

45

7!
x7 � 	 	 	�

y1(x) � c0
1 �
1

2!
x2 �

3

4!
x4 �

21

6!
x6 � 	 	 	�

�
1

10 � 9 � 7 � 6 � 4 � 3
x10 � 	 	 	�

y2(x) � c1
x �
1

4 � 3
x4 �

1

7 � 6 � 4 � 3
x7

�
1

9 � 8 � 6 � 5 � 3 � 2
x9 � 	 	 	�

y1(x) � c0
 1 �
1

3 � 2
x3 �

1

6 � 5 � 3 � 2
x6

2c1 � �
�

k�1
[2(k � 1)ck�1 � 6ck�1]xk

�
�

k�3
(k � 2) ck�2xk

1 � 1
2 x2 � 5

24 x4 � 61
720 x6 � 	 	 	 , (��>2, �>2)

x � 2
3 x3 � 2

15 x5 � 4
315 x7 � 	 	 	

R � 1
2, [�1

2,
1
2)

m
d 2x

dt2 � kx � 0

t �
n�

50
, n � 0, 1, 2, . . .

i(t) � �2
3 cos 100t � 2

3 cos 50t

q(t) � � 1
150 sin 100t � 1

75 sin 50t

x(t) � e�4t (26
17 cos 212 t � 28

17 12 sin 212 t) � 8
17 e�t

� � 8
3 13

x(t) � �2
3 e�2t � 1

3 e�4t

5
4 m

y(x) �
1

2 

1

2a
 (x2 � a2) �

1

a
ln

a

x�
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21.

23.

25.

27.

29.

� 8x � 2ex

31. y(x) � 3 � 12x2 � 4x4

33.

EXERCISES 6.2 (PAGE 239)

1. x � 0, irregular singular point

3. x � �3, regular singular point;
x � 3, irregular singular point

5. x � 0, 2i, �2i, regular singular points

7. x � �3, 2, regular singular points

9. x � 0, irregular singular point;
x � �5, 5, 2, regular singular points

11.

13.

15.

� C2
1 � 2x � 2 x2 �
23

3 � 3!
x3 � 	 	 	�

�
23

9 � 7 � 5 � 3!
x3 � 	 	 	�

y(x) � C1x3/2
 1 �
2

5
x �

22

7 � 5 � 2
x2

r1 � 3
2, r2 � 0

r1 � 1
3, r2 � �1

for x � �1: p(x) �
5(x � 1)

x � 1
, q(x) � x2 � x

for x � 1: p(x) � 5, q(x) �
x(x � 1)2

x � 1

y2(x) � c1 [x � 1
12 x4 � 1

180 x6 � 	 	 	]
y1(x) � c0 [1 � 1

6 x3 � 1
120 x5 � 	 	 	]

y(x) � �2 
1 �
1

2!
x2 �

1

3!
x3 �

1

4!
x4 � 	 	 	� � 6x

y2(x) � c1
x �
1

6
x3 �

14

2 � 5!
x5 �

34 � 14

4 � 7!
x7 � 	 	 	�

y1(x) � c0
1 �
1

4
x2 �

7

4 � 4!
x4 �

23 � 7

8 � 6!
x6 � 	 	 	�

y2(x) � c1 [x � 1
2 x2 � 1

2 x3 � 1
4 x4 � 	 	 	]

y1(x) � c0[1 � 1
2 x2 � 1

6 x3 � 1
6 x4 � 	 	 	]

y1(x) � c0; y2 (x) � c1 �
�

n�1

1

n
xn

�
82 � 52 � 22

10!
x10 � 	 	 	�

y2(x) � c1
x �
22

4!
x4 �

52 � 22

7!
x7

y1(x) � c0
1 �
1

3!
x3 �

42

6!
x6 �

72 � 42

9!
x9 � 	 	 	� 17.

19.

21.

23.

25. r1 � 0, r2 � �1

27. r1 � 1, r2 � 0

29. r1 � r2 � 0

where y1(x) � �
�

n�0

1

n!
xn � ex

�
1

3 � 3!
x3 �

1

4 � 4!
x4 � 	 	 	��

y(x) � C1y(x) � C2
y1(x) ln x � y1(x)��x �
1

4
x2

� 1
12 x3 � 1

72 x4 � 	 	 	]
y(x) � C1x � C2 [x ln x � 1 � 1

2 x2

�
1

x
[C1 sinh x � C2 cosh x]

� C1x�1 �
�

n�0

1

(2n � 1)!
x2n�1 � C2x�1 �

�

n�0

1

(2n)!
x2n

y(x) � C1 �
�

n�0

1

(2n � 1)!
x2n � C2x�1 �

�

n�0

1

(2n)!
x2n

� C2x1/3[1 � 1
2 x � 1

5 x2 � 7
120 x3 � 	 	 	]

y(x) � C1x2/3 [1 � 1
2 x � 5

28 x2 � 1
21 x3 � 	 	 	]

r1 � 2
3, r2 � 1

3

� C2
1 �
1

3
x �

1

6
x2 �

1

6
x3 � 	 	 	�

�
23 � 4

11 � 9 � 7
x3 � 	 	 	�

y(x) � C1x5/2
1 �
2 � 2

7
x �

22 � 3

9 � 7
x2

r1 � 5
2, r2 � 0

� C2
1 �
1

2
x �

1

5 � 2
x2 �

1

8 � 5 � 2
x3 � 	 	 	�

�
1

33 � 3!
x3 � 	 	 	�

y(x) � C1x1/3
1 �
1

3
x �

1

32 � 2
x2

r1 � 1
3 , r2 � 0

�
23

17 � 9 � 3!
x3 � 	 	 	�

� c2
1 � 2x �
22

9 � 2
x2

�
23

31 � 23 � 15 � 3!
x3 � 	 	 	�

y(x) � c1x7/8
1 �
2

15
x �

22

23 � 15 � 2
x2

r1 � 7
8, r2 � 0
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33. (b)

(c)

EXERCISES 6.3 (PAGE 250)

1. y � c1J1/3(x) � c2J�1/3(x)
3. y � c1J5/2(x) � c2J�5/2(x)
5. y � c1J0(x) � c2Y0(x)
7. y � c1J2(3x) � c2Y2(3x)
9. y � c1J2/3(5x) � c2J�2/3(5x)

11. y � c1x�1/2J1/2(ax) � c2 x�1/2J�1/2(ax)
13. y � x�1/2 [c1J1(4x1/2) � c2Y1(4x1/2)]
15. y � x [c1J1(x) � c2Y1(x)]
17. y � x1/2 [c1J3/2(x) � c2Y3/2(x)

19.

23. y � x1/2 [c1J1/2(x) � c2 J�1/2(x)]
� C1 sin x � C2 cos x

25.

35.

45. P2(x), P3(x), P4(x), and P5(x) are given in the text,
,

47. l1 � 2, l2 � 12, l3 � 30

CHAPTER 6 IN REVIEW (PAGE 253)

1. False

3.
7. x2(x � 1)y� � y� � y � 0
9.

11.

13. r1 � 3, r2 � 0

15.

17.
19. x � 0 is an ordinary point

1
6 �

� 2 [x � 1
2 x3 � 1

8 x5 � 1
48 x7 � 	 	 	]

y(x) � 3[1 � x2 � 1
3 x4 � 1

15 x6 � 	 	 	]
y2(x) � C2 [1 � x � 1

2 x2]
y1(x) � C1x3 [1 � 1

4 x � 1
20 x2 � 1

120 x3 � 	 	 	]

y2(x) � c1 [x � 1
2 x3 � 1

4 x4 � 	 	 	]
y1(x) � c0 [1 � 3

2 x2 � 1
2 x3 � 5

8 x4 � 	 	 	]
y2(x) � C2 [1 � x � 1

6 x2 � 1
90 x3 � 	 	 	]

y1(x) � C1x1/2 [1 � 1
3 x � 1

30 x2 � 1
630 x3 � 	 	 	]

r1 � 1
2, r2 � 0

[�1
2,

1
2]

P7(x) � 1
16 (429x7 � 693x5 � 315x3 � 35x)

P6(x) � 1
16 (231x6 � 315x4 � 105x2 � 5)

y � c1x1/2J1/3(2
3 ax3/2) � c2x1/2J�1/3(2

3 ax3/2)
� C1x�3/2sin(1

8 x2) � C2 x�3/2 cos(1
8 x2)

y � x�1/2 [c1J1/2(1
8 x2) � c2J�1/2(1

8 x2)]

y � x�1[c1J1/2(1
2 x2) � c2J�1/2(1

2 x2)]

y � C1x sin �1�

x � � C2x cos �1�

x �

y2(t) � t�1 �
�

n�0

(�1)n

(2n)!
(1� t)2n �

cos (1� t)
 

t

y1(t) � �
�

n�0

(�1)n

(2n � 1)!
(1� t)2n �

sin (1� t)
1�

 

t
21.

EXERCISES 7.1 (PAGE 261)

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. Use sinh to show that

35. 37.

39.

EXERCISES 7.2 (PAGE 269)

1. 3. t � 2t4

5. 7. t � 1 � e2t

9. 11.

13. 15. 2 cos 3t � 2 sin 3t

17. 19.

21. 0.3e0.1t � 0.6e�0.2t 23.

25. 27. �4 � 3e�t � cos t � 3 sin t

29. 31. y � �1 � et

33. 35. y � 4
3 e�t � 1

3 e�4ty � 1
10 e4t � 19

10 e�6t

1
3 sin t � 1

6 sin 2t

1
5 � 1

5 cos 15t

1
2 e2t � e3t � 1

2 e6t

3
4 e�3t � 1

4 et1
3 � 1

3 e�3t

cos
t

2

5
7 sin 7t1

4 e�t/4

1 � 3t � 3
2 t2 � 1

6 t3

1
2 t2

4 cos 5 � (sin 5)s

s2 � 16

2

s2 � 16

1

2(s � 2)
�

1

2s

�{sinh kt} �
k

s2 � k2.

kt �
ekt � e�kt

2

8

s3 �
15

s2 � 9

1

s
�

2

s � 2
�

1

s � 4

1

s
�

1

s � 4

6

s4 �
6

s3 �
3

s2 �
1

s

2

s3 �
6

s2 �
3

s

4

s2 �
10

s

48

s5

s2 � 1

(s2 � 1)2

1

s2 � 2s � 2

1

(s � 4)2

e7

s � 1

1

s
�

1

s2 �
1

s2 e�s

1

s
e�s �

1

s2 e�s1 � e��s

s2 � 1

1

s2 �
1

s2 e�s2

s
e�s �

1

s

�
1

32 � 2!
x6 �

1

33 � 3!
x9 � 	 	 	�

�
1

4 � 7 � 10
x10 � 	 	 	� � 
5

2
x2 �

1

3
x3

� c1
x �
1

4
x4 �

1

4 � 7
x7

y(x) � c0
1 �
1

3
x3 �

1

32 � 2!
x6 �

1

33 � 3!
x9 � 	 	 	�
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37.
39.
41.

EXERCISES 7.3 (PAGE 278)

1. 3.

5. 7.

9.

11. 13. e3t sin t
15. e�2t cos t � 2e�2t sin t 17. e�t � te�t

19.
21. y � te�4t � 2e�4t 23. y � e�t � 2te�t

25. 27.

29.
31. y � (e � 1)te�t � (e � 1)e�t

33.

37. 39.

41. 43.

45. 47.
49. (c) 51. (f)
53. (a)

55.

57.

59.

61.

63.
65.

67.

69.

71.

� 25
4 cos 4(t � 5) �(t � 5)

� 5
16 sin 4(t � 5) �(t � 5) � 25

4 �(t � 5)

x(t) � 5
4 t � 5

16 sin 4t � 5
4 (t � 5) �(t � 5)

� [1 � cos(t � 2�)] �(t � 2�)

y �  sin t � [1 � cos(t � �)]�(t � �)

� 1
3 sin (t � 2�) �(t � 2�)

y �  cos 2t � 1
6 sin 2(t � 2�) �(t � 2�)

� 1
2 (t � 1) �(t � 1) � 1

4 e�2(t�1) �(t � 1)

y � �1
4 � 1

2 t � 1
4 e�2t � 1

4 �(t � 1)

y � [5 � 5e�(t�1)] �(t � 1)

f (t) � �(t � a) � �(t � b); �{ f (t)} �
e�as

s
�

e�bs

s

f (t) � t � t �(t � 2); �{ f (t)} �
1

s2 �
e�2s

s2 � 2
e�2s

s

f (t) � t2 �(t � 1); �{ f (t)} � 2
e�s

s3 � 2
e�s

s2 �
e�s

s

f (t) � 2 � 4�(t � 3); �{ f (t)} �
2

s
�

4

s
e�3s

�(t � 1) � e�(t�1) �(t � 1)�sin t �(t � �)

1
2 (t � 2)2 �(t � 2)

s

s2 � 4
e��s

e�2s

s2 � 2
e�2s

s

e�s

s2

x(t) � �
3

2
e�7t/2cos

115

2
t �

7115

10
e�7t/2 sin

115

2
t

y � 1
2 � 1

2 et cos t � 1
2 et sin t

y � �3
2 e3t sin 2ty � 1

9 t � 2
27 � 2

27 e3t � 10
9 te3t

5 � t � 5e�t � 4 te�t � 3
2 t2 e�t

1
2 t2 e�2t

s

s2 � 25
�

s � 1

(s � 1)2 � 25
� 3

s � 4

(s � 4)2 � 25

3

(s � 1)2 � 9

1

(s � 2)2 �
2

(s � 3)2 �
1

(s � 4)2

6

(s � 2)4

1

(s � 10)2

y � 1
4 e�t � 1

4 e�3t cos 2t � 1
4 e�3t sin 2t

y � �8
9 e�t /2 � 1

9 e�2t � 5
18 et � 1

2 e�t

y � 10 cos t � 2 sin t � 12 sin 12 t 73.

75. (a)

(b) imax  0.1 at t  1.7, imin  �0.1 at t  4.7

77.

79.

81. (a) � k(T � 70 � 57.5t � (230 � 57.5t)�(t � 4))

EXERCISES 7.4 (PAGE 289)

1. 3.

5. 7.

9.

11.

13.

17. 19.

21. 23.

25. 27.

29. 31. et � 1

33. 37. f (t) � sin t

39. 41. f (t) � e�t

43. f (t) � 3
8 e2t � 1

8 e�2t � 1
2 cos 2t � 1

4 sin 2t

f (t) � �1
8 e�t � 1

8 et � 3
4 tet � 1

4 t2et

et � 1
2 t2 � t � 1

3s2 � 1

s2(s2 � 1)2

1

s2(s � 1)

s � 1

s[(s � 1)2 � 1]

1

s(s � 1)

s � 1

(s � 1)[(s � 1)2 � 1]

6

s5y � 2
3 t3 � c1t2

� 1
8 (t � �) sin 4(t � �)�(t � �)

y � 1
4 sin 4t � 1

8 t sin 4t

y � 2 cos 3t � 5
3 sin 3t � 1

6 t sin 3t

y � �1
2 e�t � 1

2 cos t � 1
2 t cos t � 1

2 t sin t

12s � 24

[(s � 2)2 � 36]2

6s2 � 2

(s2 � 1)3

s2 � 4

(s2 � 4)2

1

(s � 10)2

dT

dt

�
w0

60EIL 

5L

2
x4 � x5 � �x �

L

2�
5

��x �
L

2��

y(x) �
w0L2

48EI
x2 �

w0L

24EI
x3

�
w0

24EI �x �
L

2�
4

��x �
L

2�

y(x) �
w0L2

16EI
x2 �

w0L

12EI
x3 �

w0

24EI
x4

�
1

101
sin�t �

3�

2 � ��t �
3�

2 �

�
10

101
cos�t �

3�

2 � ��t �
3�

2 �

�
10

101
e�10(t�3�/2) ��t �

3�

2 �

i(t) �
1

101
e�10t �

1

101
cos t �

10

101
sin t

q(t) � 2
5 �(t � 3) � 2

5 e�5(t�3) �(t � 3)
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45.

47.

49.

51.

53.

55.

57.

EXERCISES 7.5 (PAGE 295)

1.

3.

5.

7.

9.

11.

13.

EXERCISES 7.6 (PAGE 299)

1. 3.

5. 7.

9.

11.

y � �1
3 � 1

3 e�t � 1
3 te�t

x � 1
2 t2 � t � 1 � e�t

y � �
2

3!
t3 �

1

4!
t 4

x � 8 �
2

3!
t3 �

1

4!
t 4

y � �1
2 t � 3

4 12 sin 12 ty � 8
3 e3t � 5

2 e2t � 1
6

x � �1
2 t � 3

4 12 sin 12 tx � �2e3t � 5
2 e2t � 1

2

y � 2 cos 3t � 7
3 sin 3ty � 1

3 e�2t � 2
3 et

x � �cos 3t � 5
3 sin 3tx � �1

3 e�2t � 1
3 et

y(x) � �
P0

EI �
L

4
x2 �

1

6
x3�, 0 � x 


L

2

P0L2

4EI �
1

2
x �

L

12�, L

2
� x � L

� 1
3 e�2(t�3�) sin 3(t � 3�) �(t � 3�)

� 1
3 e�2(t��) sin 3(t � �) �(t � �)

y � e�2t cos 3t � 2
3 e�2t sin 3t

y � e�2(t�2�) sin t �(t � 2�)

y � 1
2 � 1

2 e�2t � [1
2 � 1

2 e�2(t�1)] �(t � 1)

y � �cos t �(t � �
2) � cos t �(t � 3�

2 )
y � sin t � sin t �(t � 2�)

y � e3(t�2) �(t � 2)

� 1
3 e�(t�n�) sin 3(t � n�)]�(t � n�)

� 4 �
�

n�1
(�1)n [1 � e�(t�n�) cos 3(t � n�)

x(t) �  2(1 � e�t cos 3t � 1
3 e�t sin 3t)

�
2

R �
�

n�1
(�1)n (1 � e�R(t�n)/L)�(t � n)

i(t) �
1

R
(1 � e�Rt/L)

coth (�s>2)

s2 � 1

a

s �
1

bs
�

1

ebs � 1�

1 � e�as

s(1 � e�as)

� 100[e�10(t�2) � e�20(t�2)]�(t � 2)

i(t) �  100[e�10(t�1) � e�20(t�1)]�(t � 1)

y(t) � sin t � 1
2 t sin t

13.

15. (b)

(c) i1 � 20 � 20e�900t

17.

19.

CHAPTER 7 IN REVIEW (PAGE 300)

1. 3. false

5. true 7.

9. 11.

13. 15.

17.

19.

21. �5 23. e�k(s�a)F(s � a)

25. 27.

29. ;

;

31. ;

;

33.

35.

37.

39.

y � t � 9
4 e�2t � 1

4 e2t

x � �1
4 � 9

8 e�2t � 1
8 e2t

y � 1 � t � 1
2 t2

� 9
100 e�5(t�2) �(t � 2)

� 1
5 (t � 2) �(t � 2) � 1

4 e�(t�2) �(t � 2)

y � � 6
25 � 1

5 t � 3
2 e�t � 13

50 e�5t � 4
25 �(t � 2)

y � 5tet � 1
2 t2 et

�{et f (t)} �
2

s � 1
�

1

(s � 1)2 e�2(s�1)

�{ f (t)} �
2

s
�

1

s2 e�2s

f (t) � 2 � (t � 2) �(t � 2)

�
1

s � 1
e�4(s�1)

�{et f (t)} �
1

(s � 1)2 �
1

(s � 1)2 e�(s�1)

�{ f (t)} �
1

s2 �
1

s2 e�s �
1

s
e�4s

f (t) � t � (t � 1)�(t � 1) � �(t � 4)

f (t � t0)�(t � t0)f (t)�(t � t0)

cos � (t � 1)�(t � 1) � sin � (t � 1)�(t � 1)

e5t cos 2t � 5
2 e5t sin 2t

1
2 t2 e5t1

6 t5

4s

(s2 � 4)2

2

s2 � 4

1

s � 7

1

s2 �
2

s2 e�s

i2 �
6

5
�

6

5
e�100t cosh 5012 t �

612

5
e�100t sinh 5012 t

i1 �
6

5
�

6

5
e�100t cosh 5012 t �

912

10
e�100t sinh 5012 t

i3 � 30
13 e

�2t � 250
1469 e

�15t � 280
113 cos t � 810

113 sin t

i2 � �20
13 e

�2t � 375
1469 e

�15t � 145
113 cos t � 85

113 sin t

i3 � 80
9 � 80

9 e�900t

i2 � 100
9 � 100

9 e�900t

x2 �
2

5
 sin t �

16

15
 sin 16 t �

4

5
 cos t �

1

5
 cos 16 t

x1 �
1

5
 sin t �

216

15
sin 16 t �

2

5
 cos t �

2

5
 cos 16 t
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41. i(t) � �9 � 2t � 9e�t/5

43.

45. (a)

EXERCISES 8.1 (PAGE 310)

1. , where 

3.

5.

7.

9.

17. Yes; W(X1, X2) � �2e�8t � 0 implies that X1 and X2

are linearly independent on (��, �).
19. No; W(X1, X2, X3) � 0 for every t. The solution

vectors are linearly dependent on (��, �). Note
that X3 � 2X1 � X2.

EXERCISES 8.2 (PAGE 324)

1.

3.

5. X � c1 �5

2�e8t � c2 �1

4�e�10t

X � c1 �2

1�e�3t � c2 �2

5�et

X � c1 �1

2�e5t � c2 ��1

1�e�t

dz

dt
� �2x � 5y � 6z � 2e�t � t

dy

dt
� 3x � 4y � z � 2e�t � t

dx

dt
� x � y � 2z � e�t � 3t

dy

dt
� �x � 3y � et

dx

dt
� 4x � 2y � et

where X � �x

y

z
�

X� � �1

2

1

�1

1

1

1

�1

1
�X � � 0

�3t2

t2� � � t

0

�t
� � ��1

0

2
�,

X� � ��3

6

10

4

�1

4

�9

0

3
�X, where X � �x

y

z
�

X � �x

y�X� � �3 �5

4  8�X

�2(t) �
�0 � (0

2
 cos �t �

�0 � (0

2
 cos 1�2 � 2Kt

�1(t) �
�0 � (0

2
 cos �t �

�0 � (0

2
 cos 1�2 � 2Kt

�
1

5 �x �
L

2�
5

��x �
L

2��
y(x) �

w0

12EIL 
�
1

5
x5 �

L

2
x4 �

L2

2
x3 �

L3

4
x2

7.

9.

11.

13.

19.

21.

23.

25.

27.

29.

31. Corresponding to the eigenvalue l1 � 2 of multiplicity
five, the eigenvectors are

33.

35.

37. X � c1� 5 cos 3t

4 cos 3t � 3 sin 3t� � c2 � 5 sin3t

4 sin 3t � 3 cos 3t�

X � c1� cos t

�cos t � sin t�e4t � c2 � sin t

�sin t � cos t�e4t

X � c1� cos t

2 cos t � sin t�e4t � c2 � sin t

2 sin t � cos t�e4t

K1 � �
1

0

0

0

0
�,  K2 � �

0

0

1

0

0
� ,  K3 � �

0

0

0

1

0
�.

X � �7�2

1�e4t � 13�2t � 1

t � 1�e4t

� c3 
�0

1

1
� t2

2
et � �0

1

0
�tet � �

1
2

0

0
�et�

X � c1�0

1

1
�et � c2 
�0

1

1
�tet � �0

1

0
�et�

� c3 
� 2

0

�1
�te5t � ��1

2

�1
2

�1
�e5t�

X � c1��4

�5

2
� � c2 � 2

0

�1
�e5t

X � c1�1

1

1
�et � c2 �1

1

0
�e2t � c3 �1

0

1
�e2t

X � c1�1

1�e2t � c2
�1

1�te2t � ��1
3

0�e2t�

X � c1 �1

3� � c2 
�1

3�t � �
1
4

�1
4
��

X � 3�1

1�et / 2 � 2�0

1�e�t / 2

X � c1 � 4

0

�1
�e�t � c2 ��12

6

5
�e�t / 2 � c3 � 4

2

�1
�e�3t / 2

X � c1 ��1

0

1
�e�t � c2 �1

4

3
�e3t � c3 � 1

�1

3
�e�2t

X � c1 �1

0

0
�et � c2 �2

3

1
�e2t � c3 �1

0

2
�e�t
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39.

41.

43.

45.

EXERCISES 8.3 (PAGE 332)

1.

3.

5.

7.

9.

11.

13.

15.

17. X � c1�4

1�e3t � c2 ��2

1�e�3t � ��12

0�t � �
4
3
4
3
�

X � c1�2

1�et � c2�1

1�e2t � �3

3�et � �4

2� tet

X � c1�2

1�et / 2 � c2 �10

3�e3t / 2 � �
13
2

13
4
�tet / 2 � �

15
2
9
4
�et / 2

X � c1�1

1� � c2 �3

2�et � �11

11�t � �15

10�

X � 13� 1

�1�et � 2��4

6�e2t � ��9

6�

X � c1�1

0

0
�et � c2 �1

1

0
�e2t � c3 �1

2

2
�e5t � �

3
2
7
2

2
�e4 t

X � c1� 1

�3�e3t � c2 �1

9�e7t � �
55
36

�19
4
�et

� �
1
4

�1
4
�t � ��2

3
4
�

X � c1� 1

�1�e�2t � c2 �1

1�e4t � ��1
4
3
4
� t2

X � c1��1

1�e�t � c2 ��3

1�et � ��1

3�

� 6 �5 cos 5t � sin 5t

sin 5t

sin 5t
�

X � �� 25

�7

6
�et � �cos 5t � 5 sin 5t

cos 5t

cos 5t
�

� c3 �3 cos 3t � 4 sin 3t

�5 sin 3t

0
�e�2t

X � c1 � 28

�5

25
�e2t � c2 �4 cos 3t � 3 sin 3t

�5 cos 3t

0
�e�2t

X � c1�0

2

1
�et � c2 �sin t

cos t

cos t
�et � c3 � cos t

�sin t

�sin t
�et

X � c1�1

0

0
� � c2 ��cos t

cos t

sin t
�� c3 � sin t

�sin t

cos t
� 19.

21.

23.

25.

27.

29.

31.

33.

EXERCISES 8.4 (PAGE 336)

1.

3.

5.

7. X � c1�t � 1

t

�2t
� � c2 � t

t � 1

�2t
� � c3 � t

t

�2t � 1
�

X � c1�1

0�et � c2 �0

1�e2t

eAt � �t � 1

t

�2t

t

t � 1

�2t

t

t

�2t � 1
�

eAt � �et

0

0

e2t�;  e�At � �e�t

0

0

e�2t�

�
4

29�
83

69�sin t

�i1

i2
� � 2�1

3�e�2t �
6

29�
3

�1�e�12t �
4

29�
19

42�cos t

X � �2

2�te2t � ��1

1�e2t � ��2

2�te4t � �2

0�e4t

� � �1
4 e2t � 1

2 te2t

�et � 1
4 e2t � 1

2 te2t

1
2 t2e3t �

X � c1� 1

�1

0
� � c2 �1

1

0
�e2t � c3 �0

0

1
�e3t

� � cos t

�1
2 sin t�et ln� sin t � � �2 cos t

�sin t�et ln� cos t �

X � c1�2 sin t

cos t �et � c2 �2 cos t

�sin t�et � �3 sin t
3
2 cos t�tet

� � �sin t

sin t tan t� � �sin t

cos t� ln� cos t �

X � c1� cos t

�sin t� � c2 �sin t

cos t� � � cos t

�sin t�t

X � c1�cos t

sin t�et � c2 � sin t

�cos t�et � �cos t

sin t�tet

� ��sin t

cos t � ln� cos t �

X � c1�cos t

sin t� � c2 � sin t

�cos t� � �cos t

sin t�t

X � c1� 1

�1�et � c2� t
1
2 � t�et � �

1
2

�2�e�t
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9.

11.

13.

15.

17.

23.

CHAPTER 8 IN REVIEW (PAGE 337)

1.

5.

7.

9.

11.

13.

15. (b) X � c1��1

1

0
� � c2 ��1

0

1
� � c3�1

1

1
�e3t

� � sin t

sin t � cos t� ln� csc t � cot t �

X � c1� cos t

cos t � sin t� � c2 � sin t

sin t � cos t� � �1

1�

X � c1�1

0�e2t � c2 �4

1�e4t � � 16

�4�t � � 11

�1�

X � c1��2

3

1
�e2t � c2 �0

1

1
�e4t � c3 � 7

12

�16
�e�3t

X � c1� cos 2t

�sin 2t�et � c2 �sin 2t

cos 2t�et

X � c1� 1

�1�et � c2 
� 1

�1�tet � �0

1�et�
k � 1

3

X � c3 �1

1�e3t � c4 �1

3�e5t

X � c1�
3
2 e3t � 1

2 e5t

3
2 e3t � 3

2 e5t� � c2 ��1
2 e3t � 1

2 e5t

�1
2 e3t � 3

2 e5t� or

X � c1�1 � 3t

t �e2t � c2 � �9t

1 � 3t�e2t

eAt � �e2t � 3te2t

te2t

�9te2t

e2t � 3te2t�;

X � c3 � 3

�2�e2t � c4 � 1

�2�e�2t

X � c1�
3
2 e2t � 1

2 e�2t

�e2t � e�2t� � c2 �
3
4 e2t � 3

4 e�2t

�1
2 e2t � 3

2 e�2t� or

eAt � �
3
2 e2t � 1

2 e�2t

�e2t � e�2t

3
4 e2t � 3

4 e�2t

�1
2 e2t � 3

2 e�2t�;

X � �t � 1

t

�2t
� � 4� t

t � 1

�2t
� � 6� t

t

�2t � 1
�

X � c1�cosh t

sinh t � � c2 �sinh t

cosh t� � �1

1�

X � c3 �1

0�et � c4 �0

1�e2t � ��3
1
2
� EXERCISES 9.1 (PAGE 344)

1. for h � 0.1, y5 � 2.0801; for h � 0.05, y10 � 2.0592
3. for h � 0.1, y5 � 0.5470; for h � 0.05, y10 � 0.5465
5. for h � 0.1, y5 � 0.4053; for h � 0.05, y10 � 0.4054
7. for h � 0.1, y5 � 0.5503; for h � 0.05, y10 � 0.5495
9. for h � 0.1, y5 � 1.3260; for h � 0.05, y10 � 1.3315

11. for h � 0.1, y5 � 3.8254; for h � 0.05, y10 � 3.8840;
at x � 0.5 the actual value is y(0.5) � 3.9082

13. (a) y1 � 1.2

(b)

(c) Actual value is y(0.1) � 1.2214. Error is 0.0214.
(d) If h � 0.05, y2 � 1.21.
(e) Error with h � 0.1 is 0.0214. Error with h � 0.05

is 0.0114.

15. (a) y1 � 0.8

(b)

for 0 � c � 0.1.

(c) Actual value is y(0.1) � 0.8234. Error is 0.0234.
(d) If h � 0.05, y2 � 0.8125.
(e) Error with h � 0.1 is 0.0234. Error with h � 0.05

is 0.0109.

17. (a) Error is 19h2e�3(c�1).

(b)

(c) If h � 0.1, y5 � 1.8207.
If h � 0.05, y10 � 1.9424.

(d) Error with h � 0.1 is 0.2325. Error with h � 0.05
is 0.1109.

19. (a) Error is .

(b)

(c) If h � 0.1, y5 � 0.4198. If h � 0.05, y10 � 0.4124.
(d) Error with h � 0.1 is 0.0143. Error with h � 0.05

is 0.0069.

EXERCISES 9.2 (PAGE 348)

1. y5 � 3.9078; actual value is y(0.5) � 3.9082
3. y5 � 2.0533 5. y5 � 0.5463
7. y5 � 0.4055 9. y5 � 0.5493

11. y5 � 1.3333
13. (a) 35.7130

(c) v(t) � B
mg

k
 tanh B

kg

m
t; v(5) � 35.7678

�y�(c)
h2

2 � � (1)
(0.1)2

2
� 0.005

1

(c � 1)2

h2

2

y�(c)
h2

2
� 19(0.1)2(1) � 0.19

y�(c)
h2

2
� 5e�2c (0.1)2

2
� 0.025e�2c � 0.025

� 0.0244

y�(c)
h2

2
� 4e2c (0.1)2

2
� 0.02e2c � 0.02e0.2
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15. (a) for h � 0.1, y4 � 903.0282;
for h � 0.05, y8 � 1.1 � 1015

17. (a) y1 � 0.82341667

(b)

(c) Actual value is y(0.1) � 0.8234134413. Error is
3.225 � 10�6 � 3.333 � 10�6.

(d) If h � 0.05, y2 � 0.82341363.
(e) Error with h � 0.1 is 3.225 � 10�6. Error with

h � 0.05 is 1.854 � 10�7.

19. (a)

(b)

(c) From calculation with h � 0.1, y5 � 0.40546517.
From calculation with h � 0.05, y10 � 0.40546511.

EXERCISES 9.3 (PAGE 353)

1. y(x) � �x � ex; actual values are y(0.2) � 1.0214,
y(0.4) � 1.0918, y(0.6) � 1.2221, y(0.8) � 1.4255;
approximations are given in Example 1.

3. y4 � 0.7232
5. for h � 0.2, y5 � 1.5569; for h � 0.1, y10 � 1.5576
7. for h � 0.2, y5 � 0.2385; for h � 0.1, y10 � 0.2384

EXERCISES 9.4 (PAGE 357)

1. y(x) � �2e2x � 5xe2x; y(0.2) � �1.4918,
y2 � �1.6800

3. y1 � �1.4928, y2 � �1.4919
5. y1 � 1.4640, y2 � 1.4640
7. x1 � 8.3055, y1 � 3.4199;

x2 � 8.3055, y2 � 3.4199
9. x1 � �3.9123, y1 � 4.2857;

x2 � �3.9123, y2 � 4.2857
11. x1 � 0.4179, y1 � �2.1824;

x2 � 0.4173, y2 � �2.1821

EXERCISES 9.5 (PAGE 361)

1. y1 � �5.6774, y2 � �2.5807, y3 � 6.3226
3. y1 � �0.2259, y2 � �0.3356, y3 � �0.3308,

y4 � �0.2167
5. y1 � 3.3751, y2 � 3.6306, y3 � 3.6448, y4 � 3.2355,

y5 � 2.1411
7. y1 � 3.8842, y2 � 2.9640, y3 � 2.2064, y4 � 1.5826,

y5 � 1.0681, y6 � 0.6430, y7 � 0.2913

24

(c � 1)5

h5

5!
� 24

(0.1)5

5!
� 2.0000 � 10�6

y(5) (c)
h5

5!
�

24

(c � 1)5

h5

5!

� 3.333 � 10�6

y(5)(c)
h5

5!
� 40e�2c h5

5!
� 40e2(0) (0.1)5

5!

9. y1 � 0.2660, y2 � 0.5097, y3 � 0.7357, y4 � 0.9471,
y5 � 1.1465, y6 � 1.3353, y7 � 1.5149, y8 � 1.6855,
y9 � 1.8474

11. y1 � 0.3492, y2 � 0.7202, y3 � 1.1363, y4 � 1.6233,
y5 � 2.2118, y6 � 2.9386, y7 � 3.8490

13. (c) y0 � �2.2755, y1 � �2.0755, y2 � �1.8589,
y3 � �1.6126, y4 � �1.3275

CHAPTER 9 IN REVIEW (PAGE 362)

1. Comparison of numerical methods with h � 0.1:

Comparison of numerical methods with h � 0.05:

3. Comparison of numerical methods with h � 0.1:

Comparison of numerical methods with h � 0.05:

5. h � 0.2: y(0.2)  3.2; h � 0.1: y(0.2)  3.23
7. x(0.2)  1.62, y(0.2)  1.84

Improved
xn Euler Euler RK4

0.60 0.6024 0.6049 0.6049
0.70 0.7144 0.7193 0.7194
0.80 0.8356 0.8430 0.8431
0.90 0.9657 0.9755 0.9757
1.00 1.1044 1.1168 1.1169

Improved
xn Euler Euler RK4

0.60 0.6000 0.6048 0.6049
0.70 0.7095 0.7191 0.7194
0.80 0.8283 0.8427 0.8431
0.90 0.9559 0.9752 0.9757
1.00 1.0921 1.1163 1.1169

Improved
xn Euler Euler RK4

1.10 2.1469 2.1554 2.1556
1.20 2.3272 2.3450 2.3454
1.30 2.5409 2.5689 2.5695
1.40 2.7883 2.8269 2.8278
1.50 3.0690 3.1187 3.1197

Improved
xn Euler Euler RK4

1.10 2.1386 2.1549 2.1556
1.20 2.3097 2.3439 2.3454
1.30 2.5136 2.5672 2.5695
1.40 2.7504 2.8246 2.8278
1.50 3.0201 3.1157 3.1197
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A
Absolute convergence of a power 

series, 220
Absolute error, 78
Acceleration due to gravity, 24–25, 182 
Adams-Bashforth-Moulton method, 351 
Adams-Bashforth predictor, 351
Adams-Moulton corrector, 351 
Adaptive numerical method, 348
Addition:

of matrices, APP-4 
of power series, 221–222

Aging spring, 185, 245
Agnew, Ralph Palmer, 32, 138
Air resistance:

proportional to square of velocity, 29
proportional to velocity, 25

Airy’s differential equation, 186, 
226, 229, 245

solution curves, 229 
solution in terms of Bessel 

functions, 251 
solution in terms of power series,

224–226
Algebra of matrices, APP-3 
Algebraic equations, methods 

for solving, APP-10
Alternative form of second translation

theorem, 276 
Ambient temperature, 21
Amperes (A), 24 
Amplitude:

damped, 189 
of free vibrations, 184 

Analytic at a point, 221
Annihilator approach to method of

undetermined coefficients, 150
Annihilator differential operator, 150 
Approaches to the study of 

differential equations:
analytical, 26, 44, 75
numerical, 26, 75
qualitative, 26, 35, 37, 75 

Aquifers, 115
Archimedes’ principle, 29 
Arithmetic of power series, 221 
Associated homogeneous differential

equation, 120 
Associated homogeneous system, 309 
Asymptotically stable critical point, 

40–41
Attractor, 41, 314
Augmented matrix:

definition of, APP-10

elementary row operations on, APP-10 
in reduced row-echelon form, APP-11
in row-echelon form, APP-10

Autonomous differential equation:
first-order, 37
second-orer, 177

Auxiliary equation:
for Cauchy-Euler equations, 163
for linear equations with constant

coefficients, 134
roots of, 137

Axis of symmetry, 199

B
Backward difference, 359
Ballistic pendulum, 216 
Beams:

cantilever, 200 
deflection curve of, 199
embedded, 200
free, 200
simply supported, 200 
static deflection of, 199 
supported on an elastic foundation, 302

Beats, 197 
Bending of a thin column, 252
Bernoulli’s differential equation, 72
Bessel functions:

aging spring and, 245
differential recurrence relations for,

246–247
of first kind, 242
graphs of, 243 
modified of the first kind, 244
modified of the second kind, 244
numerical values of, 246
of order n, 242–243
of order , 247
properties of, 245 
recurrence relation for, 246–247, 251
of second kind, 243
spherical, 247 
zeros of, 246

Bessel’s differential equation: 
general solution of, 243
modified of order n, 244
of order n, 242 
parametric of order n, 244
solution of, 241–242 

Boundary conditions, 119, 200
periodic, 206 

Boundary-value problem:
mathematical models involving, 199

1
2

numerical methods for ODEs, 358 
for an ordinary differential equations,

119, 199 
shooting method for, 361 

Branch point, 109 
Buckling modes, 202 
Buckling of a tapered column, 240
Buckling of a thin vertical column, 202 
Buoyant force, 29
BVP, 119

C
Calculation of order hn, 341 
Cantilever beam, 200
Capacitance, 24
Carbon dating, 84
Carrying capacity, 94 
Catenary, 210 
Cauchy-Euler differential equation,

162–163
auxiliary equation for, 163 
method of solution for, 163
reduction to constant coefficients, 167 

Center of a power series, 220 
Central difference, 359 
Central difference approximation, 359
Chain pulled up by a constant 

force, 212 
Characteristic equation of a matrix,

312, APP-15
Characteristic values, APP-14 
Characteristic vectors, APP-14
Chemical reactions: 

first-order, 22, 83
second-order, 22, 97

Circuits, differential equations of, 
24, 29, 192

Circular frequency, 183, 324 
Clamped end of a beam, 200 
Classification of ordinary 

differential equations:
by linearity, 4 
by order, 3
by type, 2 

Closed form solution, 9 
Clepsydra, 103–104
Coefficient matrix, 304–305 
Cofactor, APP-8 
Column bending under its own 

weight, 252 
Column matrix, APP-3
Competition models, 109 
Competition term, 95 

INDEX
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Complementary error function, 59
Complementary function:

for a linear differential equation, 126
for a system of linear differential

equations, 309 
Concentration of a nutrient in a cell, 112 
Continuing method, 350 
Continuous compound interest, 89 
Convergent improper integral, 256
Convergent power series, 220 
Convolution of two functions, 283

commutative property of, 284
Convolution theorem, 284

inverse form of, 285
Cooling/Warming, Newton’s Law 

of, 21, 85–86 
Coulombs (C), 24 
Coupled pendulums, 302 
Coupled springs, 295–296, 299
Cover-up method, 268–269
Cramer’s Rule, 158, 161 
Critical loads, 202 
Critical point of an autonomous first-order

differential equation:
asymptotically stable, 40–41 
definition of, 37
isolated, 43 
semi-stable, 41 
unstable, 41 

Critical speeds, 205–206
Critically damped series circuit, 192
Critically damped spring/mass system, 187
Curvature, 178, 199 
Cycloid, 114 

D
Damped amplitude, 189
Damped motion, 186, 189 
Damped nonlinear pendulum, 214
Damping constant, 186 
Damping factor, 186 
Daphnia, 95 
Darcy’s law, 115
DE, 2 
Dead sea scrolls, 85 
Decay, radioactive, 21, 22, 83–84 
Decay constant, 84
Definition, interval of, 5
Deflection of a beam, 199 
Deflection curve, 199 
Density-dependent hypothesis, 94 
Derivative notation, 3 
Derivatives of a Laplace transform, 282
Determinant of a square matrix, APP-6

expansion by cofactors, APP-6
Diagonal matrix, APP-20 
Difference equation, 359

replacement for an ordinary differential
equation, 359

Difference quotients, 359 
Differential, exact, 63 

Differential equation:
autonomous, 37, 77
Bernoulli, 72 
Cauchy-Euler, 162–163 
definition of, 2 
exact, 63 
families of solutions for, 7 
first order, 34 
higher order, 117 
homogeneous, 53, 120, 133
homogeneous coefficients, 71
linear, 4, 53, 118–120 
nonautonomous, 37
nonhomogeneous, 53, 125, 140, 

150, 157
nonlinear, 4 
normal form of, 4
notation for, 3
order of, 3 
ordinary, 2
partial, 3
Riccati, 74
separable, 45
solution of, 5 
standard form of, 53, 131, 157, 

223, 231
systems of, 8 
type, 2

Differential equations as mathematical
models, 1, 19, 82, 181 

Differential form of a first-order 
equation, 3

Differential of a function of two 
variables, 63

Differential operator, 121, 150 
Differential recurrence relation, 246–247
Differentiation of a power series, 221
Dirac delta function:

definition of, 292–293
Laplace transform of, 293

Direction field of a first-order differential
equation, 35 

for an autonomous first-order
differential equation, 41

method of isoclines for, 37, 42
nullclines for, 42

Discontinuous coefficients, 58, 61
Discretization error, 341
Distributions, theory of, 294 
Divergent improper integral, 256 
Divergent power series, 220 
Domain:

of a function, 6
of a solution, 5–6 

Dot notation, 3 
Double pendulum, 298 
Double spring systems, 195, 

295–296, 299
Draining of a tank, 28, 100, 104–105 
Driven motion, 189 
Driving function, 60, 182
Drosophila, 95

Duffing’s differential equation, 213
Dynamical system, 27 

E
Effective spring constant, 195, 217 
Eigenfunctions of a boundary-value

problem, 181, 202
Eigenvalues of a boundary-value problem,

181, 202,
Eigenvalues of a matrix, 312, APP-14

complex, 320
distinct real, 312
repeated, 315

Eigenvalues of multiplicity m, 316 
Elastic curve, 199
Electrical series circuits, 24, 29, 87, 192

analogy with spring/mass systems, 192
Electrical networks, 109–110, 297
Electrical vibrations, 192

forced, 193
Elementary functions, 9
Elementary row operations, APP-10 

notation for, APP-11
Elimination methods:

for systems of algebraic 
equations, APP-10

for systems of ordinary differential
equations, 169

Embedded end of a beam, 200 
Environmental carrying capacity, 94 
Equality of matrices, APP-3
Equation of motion, 183 
Equilibrium point, 37
Equilibrium position, 182, 183
Equilibrium solution, 37
Error:

absolute, 78
discretization, 349 
formula, 349
global truncation, 342 
local truncation, 341–342, 343, 347 
percentage relative, 78 
relative, 78
round off, 340–341

Error function, 59
Escape velocity, 214
Euler load, 202
Euler’s constant, 245 
Euler’s formula, 134 

derivation of, 134
Euler’s method, 76

improved method, 342
for second-order differential 

equations, 353
for systems, 353, 357

Evaporation, 101
Exact differential, 63

criterion for, 63 
Exact differential equation, 63

method of solution for, 64
Excitation function, 128
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Existence of a power series solution, 223
Existence and uniqueness of a solution,

15, 118, 306
Existence, interval of, 5, 16
Explicit solution, 6
Exponential growth and decay, 83–84
Exponential matrix, 334
Exponential order, 259
Exponents of a singularity, 235
Extreme displacement, 183

F
Factorial function, APP-1
Falling body, 25, 29, 44, 91–92, 

101–102
Falling chain, 69–70, 75
Family of solutions, 7
Farads (f), 24
Fick’s law, 114 
Finite difference approximations, 358
Finite difference equation, 359
Finite differences, 359 
First buckling mode, 202 
First-order chemical reaction, 22, 83 
First-order differential equations:

applications of, 83–105
methods for solving, 44, 53, 62, 70

First-order initial-value problem, 13
First-order Runge-Kutta method, 345
First-order system of differential

equations, 304
linear system, 304

First translation theorem, 271 
inverse form of, 271

Flexural rigidity, 199 
Folia of Descartes, 11 
Forced electrical vibrations, 193
Forced motion of a spring/mass system,

189–190
Forcing function, 128, 182, 189
Forgetfulness, 30, 93
Formula error, 341 
Forward difference, 359
Fourth-order Runge-Kutta method, 78, 346

for second-order differential equations,
353–254

for systems of first-order equations,
355–356

Truncation errors for, 347
Free electrical vibrations, 192
Free-end conditions, 200
Free motion of a spring/mass system: 

damped, 186 
undamped, 182–183

Freely falling body, 24–25, 29, 91–92 
Frequency:

circular, 183
of motion, 183 
natural, 183

Frequency response curve, 198
Fresnel sine integral, 60, 62

Frobenius, method of, 233
three cases for, 237–238

Frobenius’ theorem, 233
Full-wave rectification of sine 

function, 291 
Functions defined by integrals, 59 
Fundamental matrix, 329 
Fundamental set of solutions:

existence of, 124, 308 
of a linear differential equation, 124
of a linear system, 308

G
g, 182
Galileo, 25
Gamma function, 242, 261, APP-1
Gauss’ hypergeometric function, 250
Gauss-Jordan elimination, 315, APP-10
Gaussian elimination, APP-10
General form of a differential equation, 3
General solution:

of Bessel’s differential equation,
242–243

of a Cauchy-Euler differential equation,
163–165

of a differential equation, 9, 56 
of a homogeneous linear differential

equation, 124, 134–135 
of a nonhomogeneous linear differential

equation, 126 
of a homogeneous system of linear

differential equations, 308, 312
of a linear first-order differential

equation, 56
of a nonhomogeneous system of linear

differential equations, 309 
Generalized factorial function, APP-1
Generalized functions, 294 
Global truncation error, 342 
Gompertz differential equation, 97
Green’s function, 162
Growth and decay, 83–84 
Growth constant, 84 

H
Half-life, 84 

of carbon-14, 84
of plutonium, 84
of radium-226, 84 
of uranium-238, 84

Half-wave rectification of sine 
function, 291

Hard spring, 208 
Harvesting of a fishery, model of, 

97, 99–100
Heart pacemaker, model of, 62, 93 
Heaviside function, 274
Henries (h), 24
Higher-order differential equations,

117, 181

Hinged ends of a beam, 200
Hole through the Earth, 30 
Homogeneous differential equation:

linear, 53, 120
with homogeneous coefficients, 71 

Homogeneous function of degree a, 71
Homogeneous systems:

of algebraic equations, APP-15
of linear first-order differential

equations, 304
Hooke’s law, 30, 182

I
Identity matrix, APP-6 
Immigration model, 102
Impedance, 193
Implicit solution, 6
Improved Euler method, 342 
Impulse response, 294 
Indicial equation, 235 
Indicial roots, 235 
Inductance, 24 
Inflection, points of, 44, 96
Inhibition term, 95
Initial condition(s), 13, 118 
Initial-value problem:

for an ordinary differential equation, 13,
118, 176

for a system of linear first-order
differential equations, 306 

Input, 60, 182 
Integral curve, 7
Integral of a differential equation, 7
Integral equation, 286
Integral, Laplace transform of, 285
Integral transform, 256

kernel of, 256
Integrating factor(s):

for a nonexact first-order differential
equation, 66–67

for a linear first-order differential
equation, 55

Integration of a power series, 221 
Integrodifferential equation, 286 
Interactions, number of, 107–108 
Interest compounded continuously, 89 
Interior mesh points, 359 
Interpolating function, 349 
Interval: 

of convergence, 220 
of definition, 5 
of existence, 5 
of existence and uniqueness, 15–16,

118, 306
of validity, 5

Inverse Laplace transform, 262–263 
linearity of, 263

Inverse matrix:
definition of, APP-7
by elementary row operations, APP-13
formula for, APP-8
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Irregular singular point, 231
Isoclines, 37, 42 
Isolated critical point, 43 
IVP, 13 

K
Kernel of an integral transform, 256 
Kinetic friction, 218
Kirchhoff’s first law, 109 
Kirchhoff’s second law, 24, 109 

L
Laguerre’s differential equation, 291
Laguerre polynomials, 291
Laplace transform: 

behavior as 260
convolution theorem for, 284 
definition of, 256
of a derivative, 265 
derivatives of, 282
of Dirac delta function, 293
existence, sufficient conditions for, 259 
of an integral, 284, 285 
inverse of, 262
of linear initial-value problem, 265–266
linearity of, 256
of a periodic function, 287
of systems of linear differential

equations, 295
tables of, 258, APP-21
translation theorems for, 271, 275
of unit step function, 275 

Lascaux cave paintings, dating of, 89
Law of mass action, 97
Leaking tanks, 23–24, 28–29, 100,

103–105
Least-squares line, 101
Legendre function, 250
Legendre polynomials, 249

graphs of, 249
properties of, 249
recurrence relation for, 249
Rodrigues’ formula for, 250

Legendre’s differential equation of 
order n, 241

solution of, 248–249
Leibniz notation, 3
Level curves, 48, 52
Level of resolution of a mathematical

model, 20
Libby, Willard, 84
Lineal element, 35
Linear dependence:

of functions, 122
of solution vectors, 307–308

Linear differential operator, 121
Linear independence:

of eigenvectors, APP-16 
of functions, 122 
of solutions, 123 

s : �,

of solution vectors, 307–308
and the Wronskian, 123 

Linear operator, 121
Linear ordinary differential equations: 

applications of, 83, 182, 199
auxiliary equation for, 134, 163 
complementary function for, 126 
definition of, 4
first order, 4, 53
general solution of, 56, 124, 126,

134–135, 163–165 
higher-order, 117
homogeneous, 53, 120, 133
initial-value problem, 118 
nonhomogeneous, 53, 120, 140, 

150, 157
particular solution of, 53–54, 125, 140,

150, 157, 231
standard forms for, 53, 131, 157, 160
superposition principles for, 121, 127

Linear regression, 102
Linear spring, 207
Linear system, 106, 128, 304 
Linear systems of algebraic equations,

APP-10
Linear systems of differential equations,

106, 304
matrix form of, 304–305
method for solving, 169, 295, 311, 

326, 334
Linear transform, 258
Linearity property, 256
Linearization:

of a differential equation, 209 
of a solution at a point, 76

Lissajous curve, 300
Local truncation error, 341
Logistic curve, 95
Logistic differential equation, 75, 95
Logistic function, 95–96
Losing a solution, 47 
Lotka-Volterra, equations of:

competition model, 109
predator-prey model, 108

LR series circuit, differential equation of,
29, 87

LRC series circuit, differential equation of,
24, 192

M
Malthus, Thomas, 20
Mass action, law of, 97
Mass matrix, 323
Mathematical model(s), 19–20

aging spring, 185–186, 245, 251 
bobbing motion of a floating barrel, 29
buckling of a thin column, 205
cables of a suspension bridge, 

25–26, 210
carbon dating, 84–85
chemical reactions, 22, 97–98

cooling/warming, 21, 28, 85–86
concentration of a nutrient in a 

cell, 112
constant harvest, 92 
continuous compound interest, 89
coupled pendulums, 298, 302
coupled springs, 217, 295–296, 299
deflection of beams, 199–201 
draining a tank, 28–29
double pendulum, 298
double spring, 194–195
drug infusion, 30
evaporating raindrop, 31
evaporation, 101 
falling body (with air resistance), 25, 30,

49, 100–101, 110
falling body (with no air resistance),

24–25, 100 
fluctuating population, 31
growth of capital, 21 
harvesting fisheries, 97
heart pacemaker, 62, 93
hole through the Earth, 30
immigration, 97, 102
pendulum motion, 209, 298 
population dynamics, 20, 27, 94
predator-prey, 108
pursuit curves, 214, 215
lifting a chain, 212–213
mass sliding down an inclined plane,

93–94
memorization, 30, 93
mixtures, 22–23, 86, 106–107
networks, 297
radioactive decay, 21
radioactive decay series, 62, 106
reflecting surface, 30, 101
restocking fisheries, 97
resonance, 191, 197–198
rocket motion, 211
rotating fluid, 31
rotating rod containing a sliding 

bead, 218 
rotating string, 203
series circuits, 24, 29, 87, 192–193
skydiving, 29, 92, 102 
solar collector, 101 
spread of a disease, 22, 112
spring/mass systems, 29–30, 182, 186,

189, 218, 295–296, 299, 302
suspended cables, 25, 52, 210
snowplow problem, 32
swimming a river, 103
temperature in a circular ring, 206
temperature in a sphere, 206
terminal velocity, 44
time of death, 90
tractrix, 30, 114
tsunami, shape of, 101
U.S. population, 99
variable mass, 211
water clock, 103–104
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Mathieu functions, 250
Matrices:

addition of, APP-4
associative law of, APP-6
augmented, APP-10
characteristic equation of, 312, APP-15 
column, APP-3 
definition of, APP-3
derivative of, APP-9
determinant of, APP-6
diagonal, APP-20 
difference of, APP-4
distributive law for, APP-6 
eigenvalue of, 312, APP-14
eigenvector of, 312, APP-14
element of, APP-3
elementary row operations on, APP-10
equality of, APP-3 
exponential, 334
fundamental, 329
integral of, APP-9
inverse of, APP-8, APP-13
multiples of, APP-3
multiplicative identity, APP-6 
multiplicative inverse, APP-7 
nilpotent, 337
nonsingular, APP-7 
product of, APP-5 
reduced row-echelon form of, APP-11 
row-echelon form of, APP-10
singular, APP-7
size, APP-3 
square, APP-3
symmetric, 317 
transpose of, APP-7
vector, APP-3
zero, APP-6

Matrix. See Matrices.
Matrix exponential:

computation of, 335 
definition of, 334
derivative of, 334

Matrix form of a linear system, 304–305
Meander function, 290
Memorization, mathematical model 

for, 30, 93
Method of Frobenius, 233
Method of isoclines, 37, 42
Method of undetermined coefficients, 

141, 152
Minor, APP-8
Mixtures, 22–23, 86–87, 106–107 
Modified Bessel equation of order n, 244
Modified Bessel functions:

of the first kind, 244
of the second kind, 244

Movie, 300
Multiplication:

of matrices, APP-4
of power series, 221

Multiplicative identity, APP-6
Multiplicative inverse, APP-7 

Multiplicity of eigenvalues, 315
Multistep method, 350

advantages of, 352
disadvantages of, 353 

N
n-parameter family of solutions, 7
Named functions, 250
Natural frequency of a system, 183
Networks, 109–110, 297 
Newton’s dot notation for differentiation, 3
Newton’s first law of motion, 24 
Newton’s law of cooling/warming:

with constant ambient temperature, 
21, 85 

with variable ambient temperature, 
90, 112 

Newton’s second law of motion, 24, 182
as the rate of change of momentum,

211–212
Newton’s universal law of gravitation, 30
Nilpotent matrix, 337
Nonelementary integral, 50
Nonhomogeneous linear differential

equation, 53, 120
general solution of, 56, 126
particular solution of, 53, 125
superposition for, 127

Nonhomogeneous systems of linear first-
order differential equations, 304, 305

general solution of, 309
particular solution of, 309

Nonlinear damping, 207 
Nonlinear ordinary differential equation, 4
Nonlinear pendulum, 208 
Nonlinear spring, 207

hard, 208
soft, 208

Nonlinear system of differential 
equations, 106

Nonsingular matrix, APP-7
Normal form:

of a linear system, 304
of an ordinary differential equation, 4
of a system of first-order equations, 304

Notation for derivatives, 3
nth-order differential operator, 121 
nth-order initial-value problem, 13, 118 
Nullcline, 42 
Numerical methods:

Adams-Bashforth-Moulton method, 351
adaptive methods, 348
applied to higher-order equations, 353
applied to systems, 353–354
errors in, 78, 340–342
Euler’s method, 76, 345
finite difference method, 359
improved Euler’s method, 342
multistep, 350 
predictor-corrector method, 343, 351 
RK4 method, 346

RKF45 method, 348 
shooting method, 361 
single-step, 350
stability of, 352
Truncation errors in, 341–342, 343, 347

Numerical solution curve, 78
Numerical solver, 78

O
ODE, 2
Ohms ( ), 24
Ohm’s Law, 88
One-dimensional phase portrait, 38
One-parameter family of solutions, 7 
Order, exponential, 259
Order of a differential equation, 3
Order of a Runge-Kutta method, 345
Ordinary differential equation, 2
Ordinary point of a linear second-order

differential equation, 223, 229
solution about, 220, 223

Orthogonal trajectories, 115
Output, 60, 128, 182
Overdamped series circuit, 192
Overdamped spring/mass system, 186 

P
Parametric Bessel equation of order n, 244
Partial differential equation, 2 
Partial fractions, 264, 268
Particular solution, 7

of a linear differential equation, 53–54,
125, 140, 150, 157, 231

of a system of linear differential
equations, 309, 326

PDE, 2
Pendulum:

ballistic, 216
double, 298
free damped, 214
linear, 209 
nonlinear, 209
period of, 215–216
physical, 209 
simple, 209
spring-coupled, 302
of varying length, 252

Percentage relative error, 78 
Period of simple harmonic motion, 183
Periodic boundary conditions, 206
Periodic function, Laplace transform 

of, 287
Phase angle, 184, 188 
Phase line, 38
Phase plane, 305, 313–314
Phase portrait(s): 

for first-order equations, 38
for systems of two linear first-order

differential equations, 313–314, 318,
321, 323

!
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Physical pendulum, 209
Piecewise-continuous functions, 259
Pin supported ends of a beam, 200
Points of inflection, 44
Polynomial operator, 121
Population models: 

birth and death, 92
fluctuating, 92
harvesting, 97, 99, 
logistic, 95–96, 99
immigration, 97, 102 
Malthusian, 20–21
restocking, 97

Power series, review of, 220 
Power series solutions: 

existence of, 223
method of finding, 223–229
solution curves of, 229

Predator-prey model, 107–108
Predictor-corrector method, 343
Prime notation, 3
Projectile motion, 173
Proportional quantities, 20
Pure resonance, 191
Pursuit curve, 214–215

Q
Qualitative analysis of a first-order

differential equation, 35–41
Quasi frequency, 189
Quasi period, 189 

R
Radioactive decay, 21, 83–85, 106
Radioactive decay series, 62, 106
Radius of convergence, 220
Raindrop, velocity of evaporating, 31, 92
Rate function, 35
Ratio test, 220
Rational roots of a polynomial 

equation, 137
RC series circuit, differential equation of,

29, 87–88
Reactance, 193
Reactions, chemical, 22, 97–98 
Rectangular pulse, 280 
Rectified sine wave, 291 
Recurrence relation, 225, 249, 251 

differential, 247 
Reduced row-echelon form of a matrix,

APP-11
Reduction of order, 130, 174 
Reduction to separation of variables

by a substitution, 73 
Regular singular point, 231
Regression line, 102 
Relative error, 78
Relative growth rate, 94
Repeated eigenvalues of a linear 

system, 316 

Repeller, 41, 314, 321
Resistance:

air, 25, 29, 44, 87–88, 91–92, 101
electrical, 24, 192–193

Resonance, pure, 191
Resonance curve, 198 
Resonance frequency, 198 
Response:

impulse, 294
of a system, 27, 182 
zero-input, 269 
zero-state, 269 

Restocking of a fishery, model of, 97 
Riccati’s differential equation, 74
RK4 method, 78, 346
RKF45 method, 348
Rocket motion, 211 
Rodrigues’ formula, 250
Rotating fluid, shape of, 31 
Rotating string, 203
Round-off error, 340 
Row-echelon form, APP-10 
Row operations, elementary, APP-10 
Runge-Kutta-Fehlberg method, 348
Runge-Kutta methods:

first-order, 345
fourth-order, 78, 345–348
second-order, 345
for systems, 355–356
truncation errors for, 347

S
Sawtooth function, 255, 291
Schwartz, Laurent, 294
Second-order chemical reaction, 22, 97 
Second-order homogeneous linear 

system, 323
Second-order initial-value problem, 13,

118, 353 
Second-order ordinary differential

equation as a system, 176, 353 
Second-order Runge-Kutta method, 345
Second translation theorem, 275

alternative form of, 276
inverse form of, 276

Semi-stable critical point, 41 
Separable first-order differential 

equation, 45
Separable variables, 45
Series:

power, 220
review of, 220–221
solutions of ordinary differential

equations, 223, 231, 233
Series circuits, differential equations of,

24, 87–88, 192 
Shifting the summation index, 222
Shifting theorems for Laplace transforms,

271, 275–276
Shooting method, 361
Shroud of Turin, dating of, 85, 89 

Sifting property, 294 
Simple harmonic electrical 

vibrations, 192
Simple harmonic motion of a spring/mass

system, 183
Simple pendulum, 209
Simply supported end of a beam, 200 
Sine integral function, 60, 62
Single-step method, 350
Singular matrix, APP-7
Singular point:

at , 223
irregular, 231
of a linear first-order differential

equation, 57 
of a linear second-order differential

equation, 223 
regular, 231

Singular solution, 7
SIR model, 112
Sky diving, 29, 92, 102
Sliding box, 93–94
Slope field, 35
Slope function, 35 
Snowplow problem, 32
Soft spring, 208
Solar collector, 30–31, 101
Solution curve, 5
Solution of an ordinary 

differential equation:
about an ordinary point, 224
about a singular point, 231
constant, 11
definition of, 5
equilibrium, 37
explicit, 6 
general, 9, 124, 126 
graph of, 5
implicit, 6
integral, 7
interval of definition for, 5
n-parameter family of, 7 
number of, 7
particular, 7, 53–54, 125, 140, 150, 

157, 231 
piecewise defined, 8 
singular, 7
trivial, 5

Solution of a system of 
differential equations:

defined, 8–9, 169, 305
general, 308–309
particular, 309

Solution vector, 305
Special functions, 59, 60, 250 
Specific growth rate, 94
Spherical Bessel functions, 247 
Spread of a communicable disease, 

22, 112
Spring constant, 182
Spring/mass systems: 

dashpot damping for, 186 

�
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Hooke’s law and, 29, 182, 295–296
linear models for, 182–192, 218,

295–296
nonlinear models for, 207–208

Springs, coupled, 217, 299 
Square matrix, APP-3 
Square wave, 288, 291 
Stability of a numerical method, 352 
Staircase function, 280
Standard form of a linear differential

equation, 53, 121, 157, 160
Starting methods, 350
State of a system, 20, 27, 128 
State variables, 27, 128
Stationary point, 37
Steady-state current, 88, 193
Steady-state solution, 88, 190, 193 
Steady state term, 88, 193
Stefan’s law of radiation, 114
Step size, 76
Streamlines, 70
Subscript notation, 3
Substitutions in a differential 

equation, 70
Summation index, shifting of, 222
Superposition principle:

for homogeneous linear differential
equations, 121

for homogeneous linear systems, 306
for nonhomogeneous linear differential

equations, 127
Suspended cables, 25
Suspension bridge, 25–26, 52
Symmetric matrix, 317
Synthetic division, 137
Systematic elimination, 169
Systems of linear differential equations,

methods for solving:
by Laplace transforms, 295
by matrices, 311 
by systematic elimination, 169

Systems of linear first-order differential
equations, 8, 304–305

existence of a unique solution for, 306
fundamental set of solutions for, 308
general solution of, 308, 309
homogeneous, 304, 311
initial-value problem for, 306
matrix form of, 304–305
nonhomogeneous, 304, 309, 326
normal form of, 304
solution of, 305
superposition principle for, 306
Wronskian for, 307–308

Systems of ordinary differential equations,
105, 169, 295, 303, 355

linear, 106, 304
nonlinear, 106
solution of, 8–9, 169, 305

Systems reduced to first-order systems,
354–355

T
Table of Laplace transforms, APP-21 
Tangent lines, method of, 75–76
Taylor polynomial, 177, 346
Taylor series, use of, 175–176
Telephone wires, shape of, 210
Temperature in a ring, 206
Temperature in a sphere, 206 
Terminal velocity of a falling body, 

44, 91, 101 
Theory of distributions, 294
Three-term recurrence relation, 227
Time of death, 90
Torricelli’s law, 23, 104 
Tractrix, 30, 113–114
Trajectories:

orthogonal, 115
parametric equations of, 305, 313 

Transfer function, 269 
Transient solution, 190
Transient term, 58, 60, 88, 190 
Translation theorems for Laplace

transform, 271, 275, 276
inverse forms of, 271, 276

Transpose of a matrix, APP-7
Triangular wave, 291 
Trivial solution, 5
Truncation error:

for Euler’s method, 341–342
global, 342
for Improved Euler’s method, 343–344
local, 341
for RK4 method, 347–348

Tsunami, 101 
Two-dimensional phase portrait, 314

U
Undamped spring/mass system, 181–182 
Underdamped series circuit, 192
Underdamped spring/mass system, 187
Undetermined coefficients:

for linear differential equations, 141, 152
for linear systems, 326 

Uniqueness theorems, 15, 118, 306

Unit impulse, 292
Unit step function, 274 

Laplace transform of, 274
Unstable critical point, 41
Unstable numerical method, 352
Unsymmetrical vibrations, 208 

V
Variable mass, 211
Variable spring constant, 185–186
Variables, separable, 45–46 
Variation of parameters:

for linear first-order differential
equations, 54 

for linear higher-order differential
equations, 158, 160–161

for systems of linear first-order
differential equations, 326, 329–330 

Vectors definition of, APP-3
solutions of systems of linear

differential equations, 305
Verhulst, P.F., 95
Vibrations, spring/mass systems, 182–191 
Virga, 31
Viscous damping, 25
Voltage drops, 24, 286 
Volterra integral equation, 286

W
Water clock, 103–104 
Weight, 182 
Weight function of a linear system, 294 
Weighted average, 345
Wire hanging under its own weight, 

25–26, 210 
Wronskian:

for a set of functions, 123 
for a set of solutions of a homogeneous

linear differential equation, 123 
for a set of solution vectors of a

homogeneous linear system, 308 

Y
Young’s modulus, 199

Z
Zero-input response, 269
Zero matrix, APP-6 
Zero-state response, 269
Zeros of Bessel functions, 246 
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