Not yet answered

Marked out of 4.00

▼ Flag question

The differential equation $xy' - y\sin x + y^3 = 0$ is

Select one:

- Linear
- Homogeneous
- Bernoulli
- None
- Exact

Question 20

Not yet answered

Marked out of 4.00

▼ Flag question

Not yet answered

Marked out of 4.00

A spherical raindrop evaporates at a rate proportional to its radius r. A differential equation for its volume is

Select one:

$$\bigvee V'(t) = -aV^3$$
 for some $a > 0$

•
$$V'(t) = -aV^{1/3}$$
 for some $a > 0$

None

$$\bigcirc V'(t) = -aV$$
 for some $a > 0$

$$\bigvee V'(t) = -aV^{2/3}$$
 for some $a > 0$

Clear my choice

in the interval (U, ∞) .

- A solution is not guaranteed to exist in the interval $(0, \infty)$.
- A solution exists on a subinterval of the interval $(0,\infty)$ but not necessarly on $(0,\infty)$
- None

Question 2

Not yet answered

Marked out of 4.00

The general solution of the differential equation $(y^4+1)dx+4xy^3dy=0$ is

- $y(x) = (\frac{c}{x} + 1)^{1/4}$
- None
- $y(x) = cx^{-1/4}$
- $y(x) = (\frac{c}{x} 1)^{1/4}$
- $y(x) = (cx 1)^{1/4}$

Consider the initial value problem
$$y'=y+t$$
, $y(0)=0$. Using Picard's method, select one:
$$\phi_n(t)=\sum_{k=1}^n\frac{t^k}{k!}$$

$$\phi_n(t)=\sum_{k=2}^{n+1}\frac{t^k}{k!}$$

$$\phi_n(t)=\sum_{k=1}^{n+1}\frac{t^k}{k!}$$
 None
$$\phi_n(t)=\sum_{k=2}^n\frac{t^k}{k!}$$

Water containing ${f 10}$ gramminute and is permitted to tank at $t=25$ min	of salt per Liter is poured into an emple leave the tank at a rate of 2 Liters p	oty tank at a rate of 4 Liters per er minute. The quantity of salt in the
Select one:		
○ 500 grám		
O None		
O 25 gram		
O 200 gram		

Not yet answered

Marked out of 4.00

▼ Flag question

The differential equation $x^2y+y^3=2xy^2y^\prime$ is

- Exact
- Homogeneous
- None
- Seperable
- Linear

Not yet answered

Marked out of 4.00

P Flag question

The largest interval in which a solution of the initial value problem

$$(t+1)(t-3)y'+\ln|t|y=t$$
, $y(1)=2$ is certain to exist

Select one:

- None
- $(0,\infty)$
- (0,3)
- (0,2)
- (-1,0)

Next page

← Lecture Notes Sec.3.1

Jump to...

Glucose is absorbed by the body at a rate proportional to the amount of glucose present in the bloodstream. Let λ denote the (positive) constant of proportionality. Suppose that glucose is injected at a constant rate r. Let G(t) be the amount of glucose in the body at time t. Then G(t) satisfies the differential equation $Select one: \qquad G'(t) = \lambda G(t) + r \\ G'(t) = -\lambda G(t) + r \\ G'(t) = -\lambda G(t) - r$ None $G'(t) = \lambda G(t) - r$ The solution of the initial value problem $\frac{dy}{dx} = 3x^2 + 9$, y(1) = 2 is given by

Not yet answered

Marked out of 4.00

▼ Flag question

The initial value problem $y^\prime = x(y-1)^{2/3}$, $y(x_0) = y_0$ has a unique solution if

Select one:

- $x_0 = 1$
- $x_0 \neq 1$
- $y_0 = 1$
- None
- $y_0 \neq 1$

Question 8

Not yet answered

Marked out of 4.00

The solution of the initial value problem y'y''=t, $y'(1)=1,y(1)=rac{1}{2}$ is

Select one:

- O None
- $\bigcirc y(t) = t \frac{1}{2}$
- $\bigcirc y(t) = \frac{t^2}{2}$
- y(t)=t
- $\bigcirc y(t) = t + \frac{1}{2}$

Clear my choice

The general solution of $y^\prime + y = y^2$ is

Select one:

- $\bigcirc y(t) = 1 + ce^t$
- $\bigcirc \ y(t) = rac{1}{-1+ce^t}$
- $\bigcirc \ y(t) = rac{1}{1+ce^t}$
- None
- $\bigcirc \ y(t) = \frac{1}{1+ce^{-t}}$

Clear my choice

None

Clear my choice

Question 10

Not yet answered

Marked out of 4.00

The differential equation $y^2x+2y^\prime e^x=0$ is

Select one:

- Seperable
- Linear
- None
- Homogeneous
- Exact

Next pag

← Lecture Notes Sec.3.1

Jump to...

Clear my choice

The general solution of $rac{dy}{dx}=e^{x-y}$ is

Select one:

$$\bigcirc \ y = \ln(-e^x + c)$$

$$\bigcirc \ y = \ln(e^{-x} + c)$$

$$\bullet \ y = \ln(e^x + c)$$

O None

$$y = \ln(x+c)$$

Clearmy choice

For the initial value problem $rac{dy}{dt}+rac{y}{t}=e^t$, y(1)=2

- A solution exists but is not guaranteed to be unique.
- A unique solution is guaranteed to exist in the interval $(0, \infty)$.
- A solution is not guaranteed to exist in the interval $(0, \infty)$.
- A solution exists on a subinterval of the interval $(0,\infty)$ but not necessarly on $(0,\infty)$
- None

My courses / ORDINARY DIFFERENTIAL EQU

The general solution of $y^\prime=xy^2$ is

Select one:

$$y = \frac{x^2y^3}{6} + c$$

O None

$$y=\pm e^{\sqrt{x^2\sqrt{2}+c}}$$

$$\bigcirc \ \ y = \frac{x^2y^2}{2} + c$$

•
$$y = \frac{-2}{x^2 + c}$$

Clear my choice

The general solution of $\frac{dy}{dx} = e^{x-y}$ is

Selections.

The solution of the differential equation $(3x^2+2xy^2)dx+2x^2ydy=0$ satisfies the implicit equation

Select one:

$$x^2 + x^3y^2 = c$$

$$x^2 + y^2 = c$$

None

$$x + x^2 y^2 = c$$

$$x^3 + x^2y^2 = c$$

Question 12

Not yet answered

Marked out of 4.00

The solution of the initial value problem y'y''=t , y'(1)=1 , $y(1)=\frac{1}{2}$ is

$$y(t)=rac{t^2}{2}$$

$$y(t) = t$$

$$y(t) = t - \frac{1}{2}$$

$$y(t) = t + \frac{1}{2}$$

ot yet nswered farked out of .00 Flag question	Water containing 10 gram of salt per Liter is poured into an empty tank at a rate of 4 Liters per minute and is permitted to leave the tank at a rate of 2 Liters per minute. The quantity of salt in the tank at $t=25$ min Select one: 500 gram 25 gram 200 gram 50 gram	9 10 17 18 25 Finish aft
Ouestan 2 Not yet answered Marked out of 4.00 P Flag question	The differential equation $y^2x+2y'e^x=0$ is Select one: O Homogeneous O Seperable O Linear O None O Exact	