

Birzeit University Mathematics Department Math331Quiz 3

Instructor: Dr. Ala Talahmeh

Name:

Section: (1)

First Semester 2019/2020

Number:....

Date: 07/10/2019

Question I [10 points]. A radioactive material, such as the isotope thorium-234, disintegrates at a rate proportional to the amount currently present. If Q(t) is the amount present at time t, then

$$\frac{dQ}{dt} = -rQ,$$

where r > 0 is the decay rate.

- a. If 100 mg of thorium-234 decays to 82.04 mg in 1 week, determine the decay rate r.
- b. Find an expression for the amount of thorium-234 present at any time t.

Sol. We need to solve
$$\frac{1}{2} \frac{d\varphi}{dt} = -r \varphi$$
 (2)
 $\varphi(0) = 100$, $\varphi(1) = 82.04$
Thereofy $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

Good Luck

key

Birzeit University Mathematics Department Math331 Quiz 3

Instructor: Dr. Ala Talahmeh

Name:.....

Section: (5)

First Semester 2019/2020

Number:....

Date: 08/10/2019

Question I [10 points]. Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 150 L of a dye solution with a concentration of 1 g/L. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 2 L/min, the well-stirred solution flowing out at the same rate. Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value.

Sol. Let QUI be the amount of dye for all t.

$$\frac{d\varphi}{dt} = \text{rate in - rate out}$$

$$= O - \left(\frac{\varphi}{150}\right)(2)$$

$$\Rightarrow \boxed{d\varphi = -\frac{1}{75}\varphi, \varphi(0) = 150} \ \Theta$$

or
$$\left[\frac{d\varphi}{\varphi} = -\int_{75}^{1} dt\right] = \int_{75}^{1} t + c$$

$$CP(0) = A = 150$$
 $CP(0) = A = 150$
 $CP(0) = A =$

Nows we need to find t such that QH = 100 x150 = 1.5

Good Luck