LINEAR DIEFERENTIAL EQUATIONS
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Mﬁa mma ODE with Eo independent variable 7 is .
m+mmw+€uo (1.15)
‘.:6 characteristic nnrw:on
i m2+6m+9=0 (w23 ) medy =2

.“ F has a double root —3. Equation (1.15) has a general solution
(D)=(er+eyt)e
..‘,.H.C.mm:m the transformation again, one obtains

Y(x)=(c;+cylnx)x=3

uler equations appear in solutions of BYPs involving spherical geometry.

Determine the general solution for the equation y” —dy'+d4y=0.
~ Solve the different:al equation y”+2y'+2 y=0.

ﬂ.ua a general solution for y'—2y'—4y =0,
Hint: Show firs: that the characteristic equation has a root 2.

Solve the boundary value problem ¥ =y=0, y(0)=0, yi(m)=1
Find a general solution for y®—y=0. |

Solve the differential €quation y"’ —5y” +6y'=(.

, Determine a general solution for the equation x2y” —3xy'+3y=0.

Solve the BVP HN%:IM‘Q...TA&HO. »=Q, ‘-A_mvﬂmw.

e e s g e

Find a genera) solution for x2y” — xy*+5, =0,

Find a solution for the BVP ww‘.,+@.\+\_\uo, HO)=1; y(w/2)=2.

1]
i

R T A T D

b
i
<

42T

R S O R L R b B e e P o

CLASSIFICATION OF A LINEAR PDE OF SECOND ORDER - 9
1.5. LINEAR PDEs

A PDE is called /inear if L is a linear partial differential operator so that

Lu=f . (1.16)

The variable u is dependent and f is a function of the independent variables
alone. If the equation is not linear it is described as nonlinear. Equation (1.16)
is homogeneous if f=0; otherwise it is referred to as nonkomogeneous. A
solution for the equation is a function of independent variables which satisfies
(1.16). The order of a PDE is the order of its highest order derivative. The
following are examples of PDEs.

Lu=u,+u,=x(x+2y) (117
_ Lu=u,, +u, =0 (1.18)
Lu=u,u, +uu, =0 . (1.19)

Equation (1.17) is linear, nonhomogeneous of order 1 with a solution u=x.
The second equation (1.18) is linear, homogeneous of order 2. One can verify
that u=sin x, u=e”™*, u=g(x) and u=h(y—x) are all solutions of (1.18).
The functions g and 4 are arbitrary. The last equation (1.19) is nenlinear,
homogeneous of order 2. It has a solution u=sin(x+y).

For ODEs of nth order, general solutions are families of functions with
arbitrary constants. Instead of arbitrary constants, general solutions for PDEs
are arbitrary functions of definite functions. The last two solutions mentioned
for (1.18) were arbitrary functions g(x) and h(y—x). This implies that
functions e*, cosx, sin(y—x), (y—x)?, In(y—x), and all others that are
appropriately differentiable functions of x alone or y—x are solutions of
(1.18). Finding a particular solution from a general solution satisfying a
constraint may be a difficult task. It may be preferable to find a particular
solution satisfying specified conditions directly. a

L6. CLASSIFICATION OF A LINEAR PDE QF SECOND ORDER

A second order ﬁanmp. PDE with two independent variables has the form

Au, +Bu,+Cu,,+Du, +Eu,+Fu=G (1.20)

where coefficients 4,...,G are functions of x and y alone. The n@:mmos is
hyperbolic, elliptic, or parabolic at a specific point in a domain as

B*—44C : (121

Is positive, negative, or zero. The classification is analogous to : ...
geomgtry classification of conic sections. it can be shown by proper coz.:



LINEAR DIFFERENTIAL EQUATIONS

_nsformation that the nature of (1.20) is invariant and the sign of (1.21) is
naltered. Equation (1.20) can be classified different at different points.
Jould the coefficients 4,..., G be constants, then the equation is a sinfle type
o all points of the domain. For details of the classification; and information
on canonical forms and orpnmoﬁn.mmnw equations, the reader may refer to
gommerfeld [31, pp. 36-43]. Illustrations of the classification follow:

=

(2) txx—Hyy =0 is hyperbolic with B2 —44C =4,
(b) Uxx+ 1y, +u=xyiselliptic with B2 —44C=—4, B
(c) Uxxtu,—u,+u=0is parabolic with B> —44C=0."

(d) .. +xu,, =0 is elliptic, parabolic, or hyperbolic as x>0, x=0, or
" x<0 since B* —4AC=—4x.

17.: BOUNDARY VALUE PROBLEMS WITH PDEs
—_ =i
. A mathematical problem composed of a PDE and certain constraints on the

£ boundary of the domain is called a boundary vaiue problem. If u is the
£ dependent variable of the PDE it must satisfy the PDE in a domain of its
independent variables and also constraint equations involving u and ap-
¥ propriate partial derivatives of u. .

- Problems involving time ¢ as one of the independent variables of the PDE
¢ may have a condition given at one specified time, frequently when +=0. Such a

+ constraint is referred to as an initial condition. If all the supplementary
~ conditions are initizl conditions then the problem is an initial value problem. A

& problem that has both initial and boundary conditions is properly called an

5 35&.3§an valve problem. In the literature one often finds the use of the

“terminology boundary value problem to include the initial-boundary value
- problem or mixed problem. In the problem

e e

. w(x)=atu(x,1), (0<x<l,1>0) (1.22)
| %.cu::.cup (1>0) (1.23)
u(x,0)=f(x), (0<x<1) ° (1.24)

&n condition (1.24) is an initial condition, while (1.23) are boundary condi-
ons. The problem: (122)~(1.24) is an initial-boundary value problem or
MEHE.w 2 boundary value problem depending on one’s preference. .
: mEm.Hmna and uniqueness are important topics for mo:ume or initial value
‘Problems of PDEs, At this time we indicate: only a Cauchy-Xovalevsky

Mﬁo*“.”u moasunmnw nd order PDE with initial conditions. For details see
Eimanoglon and Thoe [39, pp. 100-1091. -
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BOUNDARY VALUE m_IOwEHm WITH PDEs ) 1
Theorem.* Let

e

uy=Ft, xu s uge,] (1.25)
be the PDE with initial conditions
u(0,x)=f(x)
u,(0, x)=g(x) (126)

Functions f(x) and g(x) are defined on an interval of the x axis containing the
origin. Assume that f(x) and g(x) are analytic in a neighborhood of the origin
and F is analytic in a neighborhood of the point (0,0, f(0). g(0). 7(0).
£’(0), f7(0)). Then the problem (1.25), (1.26) has a unique analytic solution
u(x, ) in a neighborhood of the origin. .

The Cauchy-Kovalevsky thedrem . serves as an example of an existence-
uniqueness theorem for an IVP with a PDE. At a later time we will investigate
properties of existence and uniqueness for a few problems of mathematical
physics. -~

A mathematical problem is well posed if it has a unique solution thai
depends continuously on initial or boundary data. The last requirement
implied above is sometimes referred to as stability. For a mathematical model
to describe a specified phenomenon, a small modification in the original data
should result only in a small variation of the solution. Even though most of our
problems are well posed, it is important to know that there are probléms that
fail to meet these conditions. From a family of examples attributed to
Hadamard [16, p. 33-34] the elliptic equation s n e e

EAHIT:E‘”O. .IOOAHAS. p\VD
with the initial conditions on the x axis ;
u(x,0)=0, —0 XX
:»Ak.ovﬂml.\ﬂmmb nx, —oco<x<oo
has the solution
! e
u(x, y)= ——sinnxsinhny ~(1.27)

As n—co, m..}lmE nx—0, but for x50 the solution ml_\m\: sin nxsinh ny —on
far any y#=0. The solution (1.27) fails to depend continuously on the initjsl
data, and therefore is unstabie. ' :

[~ U & . . — ——-



LINEAR Uaﬁmég EQUATIONS

_ g. SECOND ORDER LINEAR PDEs WITH

“FOne of the mmaﬁ_mmﬁ... ¢quations in this category is a second order partial

- Jerivative equal to 2 function of the independent variables. Illustrations of this
ype follow.

Example L. Finda solution for the PDE

- =
K.C.lkmv

3
u,=2-+/(x)

=T

=where f/(x) is an arbit-ary function of x only. A second integration reiative to
with y fixed produces the solution

3.3
u==2"47(x)+g(y)

gwhere g(y) is an arbitrary functien of » alone. Anticipating an integration
Frelative to x. we select an arbitrary function f’(x) in derivative form in the first
Step.

: H.Hnmﬂ.w_wm_m Solve E.n PDE

£with the supplementary conditions
= :.,.A.H.OVHHH and :Ak.ovnﬂma ,

w.,m:ﬁnmqmszw the PDE relative to y, one obtains , : -

E , u,=e’+f(x) o o :
nature of. the first supplementary condition we determine Sx)
ng u. ,. ..

Due 10 the

u (x,.0)=x>=1+f(x)

fx)=x=1

AT,

SR

Tty

)
2
T
=8

oo

SECOND Oﬁ.cm..”. LINEAR PDEs WITH ﬁOZm.n_PZ.._.. COEFFICIENTS . 13
Therefore, .
u,=e’+x'—1

Integrating a second time Hm_mme.n. to y, one finds

u=e’+x3y—y+g(x)
To determine g(x) we use the second condition,

u(x.0)=e*=1+g(x)
It follows that

B g(x)=e*~1

The solution for the problem is

u=e¥+x3y—yptes—1

For a second type, we consider the equation with second partial derivatives

only _
: T:k+w_=.c.+ Cu,, =0 r (1.25)
where A4, B, and C are real constants. Let ) .
u=f(y+mx) (1.29)

be a proposed solution. We attempt to find m so that (1.29) satisfies (1.28). If f

is a solution of (1.28) it must be twice differentiable. Substituting (1.29) into
(1.28), we obtain . : ‘

Am?*f“( y+mx)+Bm “(y+mx)+Cf*(p+mx) =0

If f7(y+mx)#0,

: ‘ Am*+Bm+C=0 | (1.30)

The polynomial equation (1.30) is a characteristic equation. If it has &ﬂ?ﬁ. ‘
roots m=m, and m=m, then u=f(y+m,x) and u=g(y+m.,x) are solytions -

of (1.28). The linear combination

:NMMH+§_HV+WA&+§.HM.V. ,. 7 ﬂ /

f e Amns
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“If m, and m, are distinct and new variables

r=y-+mx and s=ytmyx (1.32)

(1.33)

ot .rwm T Equation (1.33) can be simplified so that the coefficients of
i=and-u,, are both zero, and

u,,=0 (1.34)
Equation (1.34) is 4 special type solvable by integration. It has the solution
. u=f(r)+g(s)

,N_,.nﬁﬁm&um r and s as given in (1.32) one obtains the solution (1.31).
‘The d’Alembert solution of the wave equation

~

,:L.wl.l..ﬁ.‘.m:xwano (1.35)

hyperbolic. The auxiliary equation is

(1.36)
‘& The transformation (1.32) becomes
. r=x+¢ and s=x—ct (1.37)

.n.-:.m..ﬁ.wﬁ as describzd above, we obtain

u=f(x+ct)+g(x—ct)

1€ solution of the wave equation.

; solutions of the characteristic equation (1.30) may be (a) real and
ca .(b) double, or (c) conjugate (imaginary part nonzero) complex num-
vﬂ,m. m.vn. discriminant for the quadratic- equation (1.30) is the same as the
Summant for (1.28). Therefore, a hyperbolic PDE (1.28) is matched by real
mm.l.wn m,_mcbn_ﬁ roots ir: (1.30); an elliptic equation (1.28) is paired with conjugate

Z complex roots in (1.30); and a parabolic equation (1.28) is associated with a
szdouble root in (1.30). : C

is a mooa Ewwﬂmmos of the transformation described in (1.32). Equation (1.35)
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If my =rm, in (1.30), then B2 —44C=0. The two roots ate m, = —B/24. A
second solution for (1.28) is

u=xg(y+mx) —

This result can be verified if m,=m,=—B/2A is employed. In this case

u=f(y+mx)+xg(y+mx) (1.38)
is a general solution for (1.28). One can show that
u=f(y+mx)+yg(y+mx) (1.39)

is a general solution of (1.28) also.

. 2z qLi=L
Example 1.8. Find a general solution for u, +4u,, +4u,, =0. i

rx
This equation is parabolic. The characteristic equation has a double root

—2. A general solution using (1.38) is
u=f(y-2x)y*xg(y—2x)
If (1.39) is used |
u=f(y—2x)+yg(y—2x)
isa mmunrw._ solution.

Example 1.9. Determine a solution for u,, +4u,, =0. wmhT AR - ’
The discriminant B2 —4A4C<0. Therefore, the equation is elliptic. The

characteristic equation has toots =2i. The general solution is written in the

same form as (1.31). For this PDE - :

u=f(y—2ix)+g(y+2ix)

is a general solution.

By comparison with an ODE one may suspect the existence of an n.xvou.n:-.
tial solution for the homogeneous PDE

. M Au,, +Bu,,+Cu,,+Du, +Eu,+ Fu=0 _ (140
: , : :
where the coefficients 4, ..., F are real constants. Let

= Nnh..-_w.e

A
where a'and B are real, be a propesed solution. Substituting (1.41) in t1.40)

e
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Example 1.11. ' Examine

. " obtains the condition
U

: e s Aa® +BaBf+CB* +Da+EB+F=0 (1.42) Uyx 1w=k..‘+=§lunw+mzx+=ﬂo

for a general solution.
Let u=e***#¥ and obtain a nwﬁmoﬁﬂm:n equation ’

: Em ncm&.m:n Q._EEO: (1.42), one may solve for B as a function of a or e as
?nncon of B. >mm_._5a that we solve moq B and obtain B(«) and Bi(a). A
ticular solution

o2 —2aB+B2—2p+2a+1=0
E“.N_Nnkﬁ_m._nnu.v.+.~.A.N_mnk+.munnv.—. 'y

The double root is
" B=a+l

An exponential form of a solution is |

g =ty 2w Fu=0 (1.43)

u=e?| K je®*t7) + K, xe™= ]

77

T b DT R e i G
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Substitute the exponential function

48

A general mowmmow.

B y=eox+8y

u=e?[ f(x+y)+xg(x+y)]
n (1.43). The characteristic equation

e

can be verified.

o

a2 —pf*—2a+1=0
Certain cases may arise in (1.42) where linear factors with imaginary
elements appear. .

Example 1.12.  Investigate a solution for the equation

—

S

:aa+=§|N=w+=Ho (1.45)

Let

R R e T e L ek

7]

nlll.mnk.T.m.v.

.W. be a proposed solution. The characteristic equation .

m a?+p*—2B+1=0

w has two linear factors with imaginary elements for which .
ﬂ Mm B=1=xia

fﬁwﬁ the left member of (1.42) has distinct linear factors, the type of

vrmn»:o: Ewoc.,wma is possible. The case of a qnﬁnmsa linear factor may be

ey

An exponential solution is

.

u=e’[eot=+in featx—iN]  (146)

TR P



LINEAR DIFFERENTIAL EQUATIONS

. =k general solution for (1.45) is suggested by (1.46)

— u=e'| f(x+iy) +g(x—i)] (1.47)

In some situations the exponential procedure may produce a set of useful
articular solutions, but fail to suggest a general solution.

ample 1.13. Determine a solution for the equation

sy hu b 4u=0

ol +B*+4=0

ith

_. pe=ifiTa
[ the exponential substitution is followed then .
| u= mnaﬂﬂ_mm«y&+ﬁum lEL
: .m.m&.smon can b= expressed
:Hmnaﬁa_ cos ,\wﬂe;.bmmwmb ot +hL
K, and K, are properly related to M, and M, using mEmH.m identity.
.pﬁmon (1.40) can be mo?nm almost like an OUm if only partial derivatives

.__E espect to one variable appear. Arbitrary constants of the ODE solution
¢ arbitrary functions of the remaining variable. .

B ' SECOND ORDER LINEAR PDEs WITH CONSTANT COEFFICIENTS

Ry

R R R

has a solution
u=c;e* +c,e’

Arbitrary constants ¢, and M.M. are replaced by arbitrary functions of x alone.
The general solution becomes

-u=e¥f(x)+e’g(x)

Other PDEs may be solved by using comparable solutions of ODEs.

Example 1.15. Find a solution for the FPDE

o ——

xu,, +2u, =y

We observe that the equation may be written
. [xu, +2u]=p?
ay <

By integrating, we obtain

3

x:.«+~:HNmr+ﬁ.«V

Dividing by x, with y fixed, one recognizes a linear differential equation of first
order

3
u +m.:H%|+\.Tnv
. x 3x X

x

The integrating factor is x2. This equation may be displayed
82N
o (x*u)= 3 +xf(x)

Integrating the most recent equation, we obtain
. 4

)

243
xru= 2 (x) + G ()

An explicit form of the solution is

y? 1
=H|ml+ﬂkv+lmmcu
%




ore information regarding Section 1.8,
nd [18; Chapter 8].

he bouadary value problem

50)=s0>

. .E—..-.” Huv_a E.ﬂﬁcq Ev”.ku.. axﬁ.ﬁu #V“OOM X
& -
| %) Determine a solution for u ,=cosx if
and u(m, y)=msin y.
13

(2) yuHxu, =V
(b)) XU TRXYVUL +y? Uy, i =1,
Q) Mg t2u, T 3u,,=0. B
= (d) Il ™ 200, sy, =0.
£ (9 w, atu :..no.. a>0.
B (D, u,—2u ,.d..+ Nz.é.nho.
Solve the equations (¢)—(f)-

:H_Ax+n&+mﬁxln$

mation s==)—3x, r=y+x.

X
:Hw%.—,lw ..vnc& dao

Determine a solution for u, 2w Fu, Fu,Tu
After finding 8 as a function of o, propos
nify .:H general solution. !

T by 809

; H
4 Classify the {npllowing PDEs as hyperbolic, parabolic or elliptic:

=2 o LINEAR DIFFERENTIAL EQUATIONS

the reader may consult

13

5 The d’Alembert solution of the wave equation (1.35) is

% Solve the wave equation if u(x,0)=0 and FOPSHﬁ.S.
~E-6. (a) Determine 2 general solution for equation 4(c) by using the transfor-

b) ”.,= u(0, yy=9 and u,(0, y)=¢(») in (a). show that

=0 by letting u=
¢ a general solution.
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8. . Using the .mcdmm.ﬁcmﬁﬁ u=ea*+B¥ (a) find an exponential solution for’
A:Hulzt._lm: TAu = (b) propose and verify a general solution for
the equation. L ' :

Solve the PDE xu, ,+3u,= A

1f m:ﬁ+m:¢+ﬁzénmﬁa. y), 4, B, and C are constants, then the
equation has a general solution -

w=u (%) (%, 7)

where u(x, y)isa general solution of Au,,+Bu,,+ Cu,,=0 and u,(x. ¥)
is a particular solution of the original equation. Find a general solution
for the following equations:
(a) :x.ﬁ.lw:é.._.wzﬁﬂm.x

. (b) :2..:31m=§”&b y.

19. SEPARATION OF VARIABLES

It is assumed in this method that the solution of a PDE can be expressed in the
form of a product of functions of single independent variables. Using this
procedure we produce an equation with one mernber a function of a single
variable and the other member a function of the remaining variables. Each .
member can be a constant but not 2 function of all the original independent

variables. This process 18 illustrated in the following examples.

|

Example 1.16.

Find a solution for the PDE

(1.48)

_ u,=4u,,
using the separation of variables. ’
We assume that the solution of (1.48) has the form
w(x, 1)=X(x)T(¢) (1.49)

where X1s a function of x alone and T is a function of Hmwoao.wmmmﬁaﬁm C-nau
into (1.48) we obtain . o o
/

M

XT'=4X"T
After dividing by 4XT, one has the variables separated in the form
L
4T X




[T\ _
k)

Nl\

7=9(x)

=00

the mmEn constant, say a” or —a’
If a? is used-(1.50) becomes
uu.\ .N\: ”

=— =«

4T~ X
“Result (1.52) is equivalent to two ODEs

T'—4a*T=0
X" —a*X=0

T=de**"
k”m_ﬁnk +mHN|QH

umn_.num the solutions of (1.54) in (1.49) we find a solution

u(x, t Hma.nr_ﬂﬁ__mna + G~
_.cb_nan G lhm_ und C Ix:wu

tc H —a® is used Emﬂnma of a? in (1.52) the two OUmm are
T'+4a’T=0

X" 4o X=0

u;”\m_..mlan: |

X=Bf}cos ax+ Bfsinax

, %mm_:a:m ¢ is an arbitrary function of x alone, the solution of (1.51) is

(1.51)

is violates the condition that T is a function of ¢ alone unless ¢(x) is a
noE.Sbr A similar partial differentiation of (1.50) relative to x leads to a PDE

<m._a only if (1) is oo:mﬂmnn ﬁﬁ.nmoﬂm both members of (1.50) must be equal

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

ﬂﬁﬁ ﬁ{:-.‘;ﬁ‘ ;‘ﬁu Sl Ili-‘l‘ '-n“’&fﬁfmm- &
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SEPARATION OF VARIABLES .

Using the solutions of (1.56) in G.A.mu we have

—4 ol .
u=e~**[Cfcos ax+ C¥sinax]

In Eo& of our BVPs a bounded solution will be necessary. The constants a* or
—a? must be selected to satisfy this requirement.

Example 1.17. Determine a solution for
u,=a*(u, +u,) ‘. A:.ud
Since three independent variables appear in (1.57), we let
u(x, y,t)=T(t)X(x)¥(y) (1.58)
Equation (1.57) has the form .
H\.&%Hnuﬁﬁw‘:uﬁr TXY") . C.‘.MB

after substituting (1.58) in the PDE. Equation (1.59) has another form

HJ\ _ lx\__\ M\\‘ =
MI % v - (1.60)
Partially differentiating 2 60) relative to x, then y, and finally 1, we :Bm
respectively @
m M‘\s _ )
= (%) =0
3 (1" T e
_ o e
9 (T
a A humﬁw =
Solutions of the three PDEs of (1.61) are
. 7 =
_ . wﬂnlmm . e
qlh
I.I!HITH +8? u
a*
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X'+a2X=0
Y”+B2Y=0

7'+ (a?+B%)a?T=0

X=Bcosax+B,sinax
Y=CcosBy+ C,sin Sy ’ "

T=Aexp[— (o +muvni

w[ﬂnuv_ul (a? +m~v,n~m:.mﬂ,8m ax+B}sinax][C,cos By+ C,sin By]

. m__z.._.?.o_u_mna of- mathematical physics, yet it fails for Ems«.wUmm.mbu..
yint-U [25, pp. 128-129] shows that the second order PDE* with

itab coefficients in x and y

H.H.. Pty -TGA.«.%vxs\+b?,%v:u +mﬁh.wv:\.‘.+kﬁmw.&vxwﬁw
. . . (1.63)

s Mﬂﬁﬁmza when a functional multiplier 1/[¢(x, y)] converts the new equa-
) R

-)_,m_w...txdﬁn.ﬁ.x. V)XY'+D(x, y) X'Y+E(x, y) XY’ +F(x, y) XY=0

.._,Ex:fm_A55\:i”?v%rmkixw%Tu??muC: XY=0
x mwwumm: rules wmz. the workability of this method are a bit elusive. Types of
nmmn.ﬁ._:& nnnwﬂwnm. kinds of coordinate sysiems, and forms of boundary
tons are all Important items for the success of the procedure. .

———
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SEPARATION OF VARIABLES : = 25
\(M, & & ﬁ\v / M&mv

1. Test the following PDEs for the method of separation of variables. If the
method is successful, solve the PDE.

Exercises 1.4 .

(a) wu,,—u=0.

ﬁdv ::I:.&H”Or

(c) :.ﬁl:.s‘lm:aﬂo.

(d) w, —u,+2u,—~2u,+u=0. .
(&) tu,—x?u,=0.

o (2+xHu,+u, =0 .

o 19 u—ytu,,—yu,=0.
1) r_..C.”O. B
S w—utu, = 2x.
() we=u,—u,=0.
k) u=u,. -

2. Find a solution for the boundary (or initial) value problems:
(a) u,—u.,=0, u(x,0)=u(0, 1)=0. .
(b) up—u,,—2u,=0, u(0, y)=u(x,0)=0. L
(c) u(0,1)=0.

...Lh” :Rk.

3. (a) Show that the equation with constant coefficients
Au, +Bu,,+Cu,=0

is separable if Em.n@amwnmnﬁm meet proper conditions. Determine.
appropriate conditions. Note: Let u(x, y)=X{(x)Y(y) and show. that -

a result i
_ X'\ B{X\(Y)\_
1] *2 i (¥)=0 ,
is obtained from u
X BX Y cyY” - . ) . 7
-0 xtaxytavyTt
wwnm_@q show that . ® e
. Y +AY=0 and .N:!ylw.xe._-wumknc

are related ODEs.
~(b) Find a solution for u,,—u,,+u, =0 by separating variables.
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