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Preface

This text discusses partial differential equations in the engineering and physical sciences.
It is suited for courses whose titles include “Fourier series,” “orthogonal functions,”
or “boundary value problems.” It may also be used in courses on Green’s functions,
transform methods, or portions on advanced engineering mathematics and mathemat-
ical methods in the physical sciences. It is appropriate as an introduction to applied
mathematics.

Simple models (heat flow, vibrating strings, and membranes) are emphasized. Equa-
tions are formulated carefully from physical principles, motivating most mathematical
topics. Solution techniques are developed patiently. Mathematical results frequently are
given physical interpretations. Proofs of theorems (if given at all) are presented after ex-
planations based on illustrative examples. Over 1000 exercises of varying difficulty form
an essential part of this text. Answers are provided for those exercises marked with a star
(∗). Further details concerning the solutions for most of the starred exercises are available
in an instructor’s manual available for download through the Instructor Resource Center
at PearsonHigherEd.com.

Standard topics such as the method of separation of variables, Fourier series,
orthogonal functions, and Fourier transforms are developed with considerable detail. Fi-
nite difference numerical methods for partial differential equations are clearly presented
with considerable depth. A briefer presentation is made of the finite element method. This
text also has an extensive presentation of the method of characteristics for linear and
nonlinear wave equations, including discussion of the dynamics of shock waves for traffic
flow. Nonhomogeneous problems are carefully introduced, including Green’s functions for
Laplace’s, heat, and wave equations. Numerous topics are included, such as differentiation
and integration of Fourier series, Sturm–Liouville and multidimensional eigenfunctions,
Rayleigh quotient, Bessel functions for a vibrating circular membrane, and Legendre poly-
nomials for spherical problems. Some optional advanced material is included (for example,
asymptotic expansion of large eigenvalues, calculation of perturbed frequencies using the
Fredholm alternative, stability conditions for finite difference methods, and direct and
inverse scattering).

Applications briefly discussed include the lift and drag associated with fluid flow
past a circular cylinder, Snell’s law of refraction for light and sound waves, the derivation
of the eikonal equation from the wave equation, dispersion relations for water waves, wave
guides, and fiber optics.

The text has evolved from the author’s experiences teaching this material to dif-
ferent types of students at various institutions (MIT, UCSD, Rutgers, Ohio State, and
Southern Methodist University). Prerequisites for the reader are calculus and elemen-
tary ordinary differential equations. (These are occasionally reviewed in the text, where
necessary.) For the beginning student, the core material for a typical course consists of
most of Chapters 1–5 and 7. This will usually be supplemented by a few other topics.

xvii



xviii Preface

The text is somewhat flexible for an instructor, since most of Chapters 6–13 depend only
on Chapters 1–5. Chapter 11 on Green’s functions for the heat and wave equation is an
exception, since it requires Chapters 9 and 10.

Chapter 14 is more advanced, discussing linear and nonlinear dispersive waves, sta-
bility, and perturbation methods. It is self-contained and accessible to strong undergrad-
uates. Group velocity and envelope equations for linear dispersive waves, whose appli-
cations include the rainbow caustic of optics, are analyzed. Nonlinear dispersive waves
are discussed, including an introductory presentation of solitons for the weakly nonlinear
long wave equation (Korteweg–de Vries) and the weakly nonlinear wave envelope equation
(nonlinear Schrodinger). In addition, instability and bifurcation phenomena for partial
differential equations are discussed, along with perturbation methods (multiple scale and
boundary layer problems). In Chapter 14, I have attempted to show the vitality of the
contemporary study of partial differential equations in the context of physical problems.

The book also includes diffusion of a chemical pollutant, Galerkin numerical appro-
ximation for the frequencies, similarity solution for the heat equation, two-dimensional
Green’s function for the wave equation, nonuniqueness of shock velocity and its resolution,
spatial structure of traveling shock wave, stability and bifurcation theory for systems of
ordinary differential equations, two-spatial-dimensional wave envelope equations, analysis
of modulational instability, long wave instabilities, pattern formation for reaction diffusion
equations, and the Turing instability.

NEW TO THIS EDITION: In the fifth edition, I have made an effort to pre-
serve the fourth edition while making significant improvements. A simple and improved
presentation of the linearity principle is done in Chapter 2, showing that the heat equa-
tion is a linear equation. Chapter 4 contains a straightforward derivation of the vibrating
membrane, a great improvement over previous editions. I have added a few new, sim-
pler exercises. Many of the exercises in which partial differential equations are solved in
Chapters 2, 4, 5, 7, and 10 have been simplified by adding substantial hints, the core of a
typical first course. The questions are usually the same, so that users of previous editions
will not have difficulty adjusting to the new edition. In these exercises, often the hint
includes the separation of variables itself, so the problem is more straightforward for the
student. The student should obtain the correct answer to the initial and boundary value
problems for partial differential equations more easily.

TECHNOLOGY: There are over 200 figures to illustrate various concepts, which I
prepared using matlab. The matlab m-files for most of the mathematical figures may be
obtained from my web page: http://faculty.smu.edu/rhaberma. Modern technology is
especially important in its graphical ability, and I have tried to indicate throughout the
text places where three-dimensional visualization is helpful.

Overall, my object has been to explain clearly many fundamental aspects of partial
differential equations as an introduction to this vast and important field. After achieving
a certain degree of competence and understanding, the student can use this text as a
reference, but for additional information the reader should be prepared to refer to other
books such as the ones cited in the Bibliography.

Finally, it is hoped that this text enables the reader to find enjoyment in the study
of the relationships between mathematics and the physical sciences.
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C H A P T E R 1

Heat Equation

1.1 INTRODUCTION

We wish to discuss the solution of elementary problems involving partial differential
equations, the kinds of problems that arise in various fields of science and engineering.
A partial differential equation (PDE) is a mathematical equation containing partial
derivatives, for example,

∂u

∂t
+ 3

∂u

∂x
= 0. (1.1.1)

We could begin our study by determining what functions u(x, t) satisfy (1.1.1).
However, we prefer to start by investigating a physical problem. We do this for two reasons.
First, our mathematical techniques probably will be of greater interest to you when it
becomes clear that these methods analyze physical problems. Second, we will actually
find that physical considerations will motivate many of our mathematical developments.

Many diverse subject areas in engineering and the physical sciences are dominated
by the study of partial differential equations. No list could be all-inclusive. However, the
following examples should give you a feeling for the type of areas that are highly de-
pendent on the study of partial differential equations: acoustics, aerodynamics, elasticity,
electrodynamics, fluid dynamics, geophysics (seismic wave propagation), heat transfer,
meteorology, oceanography, optics, petroleum engineering, plasma physics (ionized liq-
uids and gases), and quantum mechanics.

We will follow a certain philosophy of applied mathematics in which the analysis of
a problem will have three stages:

1. Formulation
2. Solution
3. Interpretation

We begin by formulating the equations of heat flow describing the transfer of thermal
energy. Heat energy is caused by the agitation of molecular matter. Two basic processes
take place in order for thermal energy to move: conduction and convection. Conduction
results from the collisions of neighboring molecules in which the kinetic energy of vibration
of one molecule is transferred to its nearest neighbor. Thermal energy is thus spread by
conduction even if the molecules themselves do not move their location appreciably. In
addition, if a vibrating molecule moves from one region to another, it takes its thermal
energy with it. This type of movement of thermal energy is called convection. In order
to begin our study with relatively simple problems, we will study heat flow only in cases
in which the conduction of heat energy is much more significant than its convection. We

1



2 Chapter 1 Heat Equation

will thus think of heat flow primarily in the case of solids, although heat transfer in fluids
(liquids and gases) is also primarily by conduction if the fluid velocity is sufficiently small.

1.2 DERIVATION OF THE CONDUCTION OF HEAT IN A ONE-DIMENSIONAL ROD

Thermal energy density. We begin by considering a rod of constant cross-sectional
area A oriented in the x-direction (from x = 0 to x = L) as illustrated in Fig. 1.2.1.
We temporarily introduce the amount of thermal energy per unit volume as an unknown
variable and call it the thermal energy density:

e(x, t) ≡ thermal energy density.

We assume that all thermal quantities are constant across a section; the rod is one-
dimensional. The simplest way this may be accomplished is to insulate perfectly the
lateral surface area of the rod. Then no thermal energy can pass through the lateral
surface. The dependence on x and t corresponds to a situation in which the rod is not
uniformly heated; the thermal energy density varies from one cross section to another.

x = 0

A
φ(x,t)

x x = L

φ(x +Δ x,t)

x +Δ x

z

y
x

FIGURE 1.2.1 One-dimensional rod with heat energy flowing into and out of a thin slice.

Heat energy. We consider a thin slice of the rod contained between x and x+Δx
as illustrated in Fig. 1.2.1. If the thermal energy density is constant throughout the
volume, then the total energy in the slice is the product of the thermal energy density and
the volume. In general, the energy density is not constant. However, if Δx is exceedingly
small, then e(x, t) may be approximated as a constant throughout the volume so that

heat energy = e(x, t)A Δx,

since the volume of a slice is A Δx.

Conservation of heat energy. The heat energy between x and x + Δx changes
in time due only to heat energy flowing across the edges (x and x + Δx) and heat energy
generated inside (due to positive or negative sources of heat energy). No heat energy
changes are due to flow across the lateral surface, since we have assumed that the lateral
surface is insulated. The fundamental heat flow process is described by the word equation
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rate of change
of heat energy
in time

=
heat energy flowing
across boundaries
per unit time

+
heat energy generated
inside per unit time.

This is called conservation of heat energy. For the small slice, the rate of change of
heat energy is

∂

∂t
[e(x, t)A Δx] ,

where the partial derivative ∂
∂t is used because x is being held fixed.

Heat flux. Thermal energy flows to the right or left in a one-dimensional rod.
We introduce the heat flux:

φ(x, t) =
heat flux (the amount of thermal energy per unit
time flowing to the right per unit surface area).

If φ(x, t) < 0, it means that heat energy is flowing to the left. Heat energy flowing per
unit time across the boundaries of the slice is φ(x, t)A − φ(x + Δx, t)A, since the heat
flux is the flow per unit surface area and it must be multiplied by the surface area. If
φ(x, t) > 0 and φ(x + Δx, t) > 0, as illustrated in Fig. 1.2.1, then the heat energy flowing
per unit time at x contributes to an increase of the heat energy in the slice, whereas the
heat flow at x + Δx decreases the heat energy.

Heat sources. We also allow for internal sources of thermal energy:

Q(x, t) = heat energy per unit volume generated per unit time,

perhaps due to chemical reactions or electrical heating. Q(x, t) is approximately constant
in space for a thin slice, and thus the total thermal energy generated per unit time in the
thin slice is approximately Q(x, t)A Δx.

Conservation of heat energy (thin slice). The rate of change of heat energy
is due to thermal energy flowing across the boundaries and internal sources:

∂

∂t
[e(x, t)A Δx] ≈ φ(x, t)A − φ(x + Δx, t)A + Q(x, t)A Δx. (1.2.1)

Equation (1.2.1) is not precise because various quantities were assumed approximately
constant for the small cross-sectional slice. We claim that (1.2.1) becomes increasingly
accurate as Δx → 0. Before giving a careful (and mathematically rigorous) derivation,
we will just attempt to explain the basic ideas of the limit process, Δx → 0. In the limit
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as Δx → 0, (1.2.1) gives no interesting information, namely, 0 = 0. However, if we first
divide by Δx and then take the limit as Δx → 0, we obtain

∂e

∂t
= lim

Δx→0

φ(x, t) − φ(x + Δx, t)
Δx

+ Q(x, t), (1.2.2)

where the constant cross-sectional area has been cancelled. We claim that this result is
exact (with no small errors), and hence we replace the ≈ in (1.2.1) by = in (1.2.2). In
this limiting process, Δx → 0, t is being held fixed. Consequently, from the definition of
a partial derivative,

∂e

∂t
= −∂φ

∂x
+ Q. (1.2.3)

Conservation of heat energy (exact). An alternative derivation of conserva-
tion of heat energy has the advantage of our not being restricted to small slices. The
resulting approximate calculation of the limiting process (Δx → 0) is avoided. We con-
sider any finite segment (from x = a to x = b) of the original one-dimensional rod (see
Fig. 1.2.2). We will investigate the conservation of heat energy in this region. The total
heat energy is

∫ b

a
e(x, t)Adx, the sum of the contributions of the infinitesimal slices. Again

it changes only due to heat energy flowing through the side edges (x = a and x = b) and
heat energy generated inside the region, and thus (after canceling the constant A)

d

dt

∫ b

a

e dx = φ(a, t) − φ(b, t) +
∫ b

a

Q dx. (1.2.4)

Technically, an ordinary derivative d/dt appears in (1.2.4), since
∫ b

a
e dx depends only on

t, not also on x. However,

d

dt

∫ b

a

e dx =
∫ b

a

∂e

∂t
dx

if a and b are constants (and if e is continuous). This holds since inside the integral the
ordinary derivative now is taken keeping x fixed, and hence it must be replaced by a
partial derivative. Every term in (1.2.4) is now an ordinary integral if we notice that

0

φ(a,t) φ(b,t)

x = a x = b L

FIGURE 1.2.2 Heat energy flowing into and out of a finite segment of a rod.
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φ(a, t) − φ(b, t) = −
∫ b

a

∂φ

∂x
dx

(this1 being valid if φ is continuously differentiable). Consequently,

∫ b

a

(
∂e

∂t
+

∂φ

∂x
− Q

)
dx = 0.

This integral must be zero for arbitrary a and b; the area under the curve must be zero
for arbitrary limits. This is possible only if the integrand itself is identically zero.2 Thus,
we rederive (1.2.3) as

∂e

∂t
= −∂φ

∂x
+ Q. (1.2.5)

Equation (1.2.4), the integral conservation law, is more fundamental than the dif-
ferential form (1.2.5). Equation (1.2.5) is valid in the usual case in which the physical
variables are continuous.

A further explanation of the minus sign preceding ∂φ/∂x is in order. For example,
if ∂φ/∂x > 0 for a ≤ x ≤ b, then the heat flux φ is an increasing function of x. The
heat is flowing greater to the right at x = b than at x = a (assuming that b > a). Thus
(neglecting any effects of sources Q), the heat energy must decrease between x = a and
x = b, resulting in the minus sign in (1.2.5).

Temperature and specific heat. We usually describe materials by their tem-
perature,

u(x, t) = temperature,

not their thermal energy density. Distinguishing between the concepts of temperature and
thermal energy is not necessarily a trivial task. Only in the mid-1700s did the existence
of accurate experimental apparatus enable physicists to recognize that it may take differ-
ent amounts of thermal energy to raise two different materials from one temperature to
another larger temperature. This necessitates the introduction of the specific heat (or
heat capacity):

1This is one of the fundamental theorems of calculus.
2Most proofs of this result are inelegant. Suppose that f(x) is continuous and

∫ b
a f(x) dx = 0 for

arbitrary a and b. We wish to prove f(x) = 0 for all x. We can prove this by assuming that there exists a
point x0 such that f(x0) �= 0 and demonstrating a contradiction. If f(x0) �= 0 and f(x) is continuous, then
there exists some region near x0 in which f(x) is of one sign. Pick a and b to be in this region, and hence
∫ b

a f(x)dx �= 0 since f(x) is of one sign throughout. This contradicts the statement that
∫ b

a f(x)dx = 0,
and hence it is impossible for f(x0) �= 0. Equation (1.2.5) follows.
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c =
specific heat (the heat energy that must be supplied to a unit
mass of a substance to raise its temperature one unit).

In general, from experiments (and our definition) the specific heat c of a material depends
on the temperature u. For example, the thermal energy necessary to raise a unit mass
from 0◦C to 1◦C could be different from that needed to raise the mass from 85◦C to
86◦C for the same substance. Heat flow problems with the specific heat depending on the
temperature are mathematically quite complicated. (Exercise 1.2.6 briefly discusses this
situation.) Often for restricted temperature intervals, the specific heat is approximately
independent of the temperature. However, experiments suggest that different materials
require different amounts of thermal energy to heat up. Since we would like to formulate
the correct equation in situations in which the composition of our one-dimensional rod
might vary from position to position, the specific heat will depend on x, c = c(x). In many
problems, the rod is made of one material (a uniform rod), in which case we will let the
specific heat c be a constant. In fact, most of the solved problems in this text (as well as
other books) correspond to this approximation, c constant.

Thermal energy. The thermal energy in a thin slice is e(x, t)A Δx. However, it is
also defined as the energy it takes to raise the temperature from a reference temperature
0◦ to its actual temperature u(x, t). Since the specific heat is independent of temperature,
the heat energy per unit mass is just c(x)u(x, t). We thus need to introduce the mass
density ρ(x):

ρ(x) = mass density (mass per unit volume),

allowing it to vary with x, possibly due to the rod being composed of nonuniform material.
The total mass of the thin slice is ρA Δx. The total thermal energy in any thin slice is
thus c(x)u(x, t) · ρA Δx, so that

e(x, t)A Δx = c(x)u(x, t)ρA Δx.

In this way we have explained the basic relationship between thermal energy and tem-
perature:

e(x, t) = c(x)ρ(x)u(x, t). (1.2.6)

This states that the thermal energy per unit volume equals the thermal energy per unit
mass per unit degree times the temperature times the mass density (mass per unit
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volume). When the thermal energy density is eliminated using (1.2.6), conservation of
thermal energy [(1.2.3) or (1.2.5)] becomes

c(x)ρ(x)
∂u

∂t
= −∂φ

∂x
+ Q. (1.2.7)

Fourier’s law. Usually (1.2.7) is regarded as one equation in two unknowns, the
temperature u(x, t) and the heat flux (flow per unit surface area per unit time) φ(x, t).
How and why does heat energy flow? In other words, we need an expression for the
dependence of the flow of heat energy on the temperature field. First we summarize
certain qualitative properties of heat flow with which we are all familiar:

1. If the temperature is constant in a region, no heat energy flows.
2. If there are temperature differences, the heat energy flows from the hotter region to

the colder region.
3. The greater the temperature differences (for the same material), the greater is the

flow of heat energy.
4. The flow of heat energy will vary for different materials, even with the same tem-

perature differences.

Fourier (1768–1830) recognized properties 1 through 4 and summarized them (as well as
numerous experiments) by the formula

φ = −K0
∂u

∂x
, (1.2.8)

known as Fourier’s law of heat conduction. Here ∂u/∂x is the derivative of the tem-
perature; it is the slope of the temperature (as a function of x for fixed t); it represents
temperature differences (per unit length). Equation (1.2.8) states that the heat flux is pro-
portional to the temperature difference (per unit length). If the temperature u increases
as x increases (i.e., the temperature is hotter to the right), ∂u/∂x > 0, then we know
(property 2) that heat energy flows to the left. This explains the minus sign in (1.2.8).

We designate the coefficient of proportionality K0. It measures the ability of the
material to conduct heat and is called the thermal conductivity. Experiments indicate
that different materials conduct heat differently; K0 depends on the particular material.
The larger K0 is, the greater the flow of heat energy with the same temperature differences.
A material with a low value of K0 would be a poor conductor of heat energy (and ideally
suited for home insulation). For a rod composed of different materials, K0 will be a
function of x. Furthermore, experiments show that the ability to conduct heat for most
materials is different at different temperatures, K0(x, u). However, just as with the specific
heat c, the dependence on the temperature is often not important in particular problems.
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Thus, throughout this text we will assume that the thermal conductivity K0 depends
only on x,K0(x). Usually, in fact, we will discuss uniform rods in which K0 is a constant.

Heat equation. If Fourier’s law, (1.2.8), is substituted into the conservation of
heat energy equation, (1.2.7), a partial differential equation results:

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ Q. (1.2.9)

We usually think of the sources of heat energy Q as being given, and the only unknown
being the temperature u(x, t). The thermal coefficients c, ρ,K0 all depend on the material
and hence may be functions of x. In the special case of a uniform rod, in which c, ρ,K0

are all constants, the partial differential equation (1.2.9) becomes

cρ
∂u

∂t
= K0

∂2u

∂x2
+ Q.

If, in addition, there are no sources, Q = 0, then after dividing by the constant cρ, the
partial differential equation becomes

∂u

∂t
= k

∂2u

∂x2
, (1.2.10)

where the constant k,

k =
K0

cρ
,

is called the thermal diffusivity, the thermal conductivity divided by the product of
the specific heat and mass density. Equation (1.2.10) is often called the heat equation;
it corresponds to no sources and constant thermal properties. If heat energy is initially
concentrated in one place, (1.2.10) will describe how the heat energy spreads out, a phys-
ical process known as diffusion. Other physical quantities besides temperature smooth
out in much the same manner, satisfying the same partial differential equation (1.2.10).
For this reason, (1.2.10) is also known as the diffusion equation. For example, the con-
centration u(x, t) of chemicals (such as perfumes and pollutants) satisfies the diffusion
equation (1.2.8) in certain one-dimensional situations.

Initial conditions. The partial differential equations describing the flow of heat
energy, (1.2.9) or (1.2.10), have one time derivative. When an ordinary differential equation
has one derivative, the initial value problem consists of solving the differential equation
with one initial condition. Newton’s law of motion for the position x of a particle yields a
second-order ordinary differential equation, md2x/dt2 = forces. It involves second deriva-
tives. The initial value problem consists of solving the differential equation with two initial
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conditions, the initial position x and the initial velocity dx/dt. From these pieces of infor-
mation (including the knowledge of the forces), by solving the differential equation with
the initial conditions, we can predict the future motion of a particle in the x-direction.
We wish to do the same process for our partial differential equation, that is, predict the
future temperature. Since the heat equations have one time derivative, we must be given
one initial condition (IC) (usually at t = 0), the initial temperature. It is possible that
the initial temperature is not constant, but depends on x. Thus, we must be given the
initial temperature distribution,

u(x, 0) = f(x).

Is this enough information to predict the future temperature? We know the initial tem-
perature distribution and know that the temperature changes according to the partial
differential equation (1.2.9) or (1.2.10). However, we need to know that happens at the
two boundaries, x = 0 and x = L. Without knowing this information, we cannot predict
the future. Two conditions are needed corresponding to the second spatial derivatives
present in (1.2.9) or (1.2.10), usually one condition at each end. We discuss these bound-
ary conditions in the next section.

Diffusion of a chemical pollutant. Let u(x, t) be the density or concentra-
tion of the chemical per unit volume. Consider a one-dimensional region (Fig. 1.2.2)
between x = a and x = b with constant cross-sectional area A. The total amount of the
chemical in the region is

∫ b

a
u(x, t)Adx. We introduce the flux φ(x, t) of the chemical,

the amount of the chemical per unit surface flowing to the right per unit time. The rate
of change with respect to time of the total amount of chemical in the region equals the
amount of chemical flowing in per unit time minus the amount of chemical flowing out
per unit time. Thus, after canceling the constant cross-sectional area A, we obtain the
integral conservation law for the chemical concentration:

d

dt

∫ b

a

u(x, t) dx = φ(a, t) − φ(b, t). (1.2.11)

Since d
dt

∫ b

a
u(x, t) dx =

∫ b

a
∂u
∂t dx and φ(a, t)−φ(b, t) = − ∫ b

a
∂φ
∂x dx, it follows that

∫ b

a
(∂u

∂t +
∂φ
∂x ) dx = 0. Since the integral is zero for arbitrary regions, the integrand must be zero, and
in this way we derive the differential conservation law for the chemical concentration:

∂u

∂t
+

∂φ

∂x
= 0. (1.2.12)

In solids, chemicals spread out from regions of high concentration to regions of low con-
centration. According to Fick’s law of diffusion, the flux is proportional to ∂u

∂x , the
spatial derivative of the chemical concentration:
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φ = −k
∂u

∂x
. (1.2.13)

If the concentration u(x, t) is constant in space, there is no flow of the chemical. If the
chemical concentration is increasing to the right (∂u

∂x > 0), then atoms of chemicals
migrate to the left, and vice versa. The proportionality constant k is called the chemical
diffusivity, and it can be measured experimentally. When Fick’s law (1.2.13) is used in
the basic conservation law (1.2.12), we see that the chemical concentration satisfies the
diffusion equation:

∂u

∂t
= k

∂2u

∂x2
, (1.2.14)

since we are assuming as an approximation that the diffusivity is constant. Fick’s law of
diffusion for chemical concentration is analogous to Fourier’s law for heat diffusion. Our
derivations are quite similar.

EXERCISES 1.2

1.2.1. Briefly explain the minus sign:

(a) in conservation law (1.2.3) or (1.2.5) if Q = 0

(b) in Fourier’s law (1.2.8)

(c) in conservation law (1.2.12), ∂u
∂t = −∂φ

∂x

(d) in Fick’s law (1.2.13)

1.2.2. Derive the heat equation for a rod assuming constant thermal properties and no
sources.

(a) Consider the total thermal energy between x and x + Δx.

(b) Consider the total thermal energy between x = a and x = b.

1.2.3. Derive the heat equation for a rod assuming constant thermal properties with variable
cross-sectional area A(x) assuming no sources by considering the total thermal energy
between x = a and x = b.

1.2.4. Derive the diffusion equation for a chemical pollutant.

(a) Consider the total amount of the chemical in a thin region between x and x+Δx.

(b) Consider the total amount of the chemical between x = a and x = b.

1.2.5. Derive an equation for the concentration u(x, t) of a chemical pollutant if the chemical
is produced due to chemical reaction at the rate of αu(β − u) per unit volume.

1.2.6. Suppose that the specific heat is a function of position and temperature, c(x, u).

(a) Show that the heat energy per unit mass necessary to raise the temperature
of a thin slice of thickness Δx from 0◦ to u(x, t) is not c(x)u(x, t), but instead∫ u
0

c(x, ū) dū.

(b) Rederive the heat equation in this case. Show that (1.2.3) remains unchanged.
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1.2.7. Consider conservation of thermal energy (1.2.4) for any segment of a one-dimensional
rod a ≤ x ≤ b. By using the fundamental theorem of calculus,

∂

∂b

∫ b

a

f(x) dx = f(b),

derive the heat equation (1.2.9).
*1.2.8. If u(x, t) is known, give an expression for the total thermal energy contained in a rod

(0 < x < L).
1.2.9. Consider a thin one-dimensional rod without sources of thermal energy whose lateral

surface area is not insulated.

(a) Assume that the heat energy flowing out of the lateral sides per unit surface
area per unit time is w(x, t). Derive the partial differential equation for the
temperature u(x, t).

(b) Assume that w(x, t) is proportional to the temperature difference between the
rod u(x, t) and a known outside temperature γ(x, t). Derive

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
− P

A
[u(x, t) − γ(x, t)]h(x), (1.2.15)

where h(x) is a positive x-dependent proportionality, P is the lateral perimeter,
and A is the cross-sectional area.

(c) Compare (1.2.15) with the equation for a one-dimensional rod whose lateral
surfaces are insulated, but with heat sources.

(d) Specialize (1.2.15) to a rod of circular cross section with constant thermal prop-
erties and 0◦ outside temperature.

*(e) Consider the assumptions in part (d). Suppose that the temperature in the rod
is uniform [i.e., u(x, t) = u(t)]. Determine u(t) if initially u(0) = u0.

1.3 BOUNDARY CONDITIONS

In solving the heat equation, either (1.2.9) or (1.2.10), one boundary condition (BC)
is needed at each end of the rod. The appropriate condition depends on the physical
mechanism in effect at each end. Often the condition at the boundary depends on both
the material inside and outside the rod. To avoid a more difficult mathematical prob-
lem, we will assume that the outside environment is known, not significantly altered by
the rod.

Prescribed temperature. In certain situations, the temperature of the end of
the rod, for example, x = 0, may be approximated by a prescribed temperature,

u(0, t) = uB(t), (1.3.1)

where uB(t) is the temperature of a fluid bath (or reservoir) with which the rod is in
contact.
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Insulated boundary. In other situations, it is possible to prescribe the heat flow
rather than the temperature,

−K0(0)
∂u

∂x
(0, t) = φ(t), (1.3.2)

where φ(t) is given. This is equivalent to giving one condition for the first derivative,
∂u/∂x, at x = 0. The slope is given at x = 0. Equation (1.3.2) cannot be integrated in x
because the slope is known only at one value of x. The simplest example of the prescribed
heat flow boundary condition is when an end is perfectly insulated (sometimes we omit
the “perfectly”). In this case, there is no heat flow at the boundary. If x = 0 is insulated,
then

∂u

∂x
(0, t) = 0. (1.3.3)

Newton’s law of cooling. When a one-dimensional rod is in contact at the
boundary with a moving fluid (e.g., air), then neither the prescribed temperature nor
the prescribed heat flow may be appropriate. For example, let us imagine a very warm
rod in contact with cooler moving air. Heat will leave the rod, heating up the air. The
air will then carry the heat away. This process of heat transfer is called convection.
However, the air will be hotter near the rod. Again, this is a complicated problem; the
air temperature will actually vary with distance from the rod (ranging between the bath
and rod temperatures). Experiments show that, as a good approximation, the heat flow
leaving the rod is proportional to the temperature difference between the bar and the
prescribed external temperature. This boundary condition is called Newton’s law of
cooling. If it is valid at x = 0, then

−K0(0)
∂u

∂x
(0, t) = −H[u(0, t) − uB(t)], (1.3.4)

where the proportionality constant H is called the heat transfer coefficient (or the
convection coefficient). This boundary condition3 involves a linear combination of u and
∂u/∂x. We must be careful with the sign of proportionality. If the rod is hotter than
the bath [u(0, t) > uB(t)], then usually heat flows out of the rod at x = 0. Thus, heat
is flowing to the left, and in this case, the heat flow would be negative. That is why we
introduced a minus sign in (1.3.4) (with H > 0). The same conclusion would have been
reached had we assumed that u(0, t) < uB(t). Another way to understand the signs in
(1.3.4) is to again assume that u(0, t) > uB(t). The temperature is hotter to the right at
x = 0, and we should expect the temperature to continue to increase to the right. Thus,
∂u/∂x should be positive at x = 0. Equation (1.3.4) is consistent with this argument. In
Exercise 1.3.1 you are asked to derive, in the same manner, that the equation for Newton’s
law of cooling at a right endpoint x = L is

−K0(L)
∂u

∂x
(L, t) = H[u(L, t) − uB(t)], (1.3.5)

3For another situation in which (1.3.4) is valid, see Berg and McGregor (1966).
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where uB(t) is the external temperature at x = L. We immediately note the significant
sign difference between the left boundary (1.3.4) and the right boundary (1.3.5).

The coefficient H in Newton’s law of cooling is experimentally determined. It de-
pends on properties of the rod, as well as fluid properties (including the fluid velocity). If
the coefficient is very small, then very little heat energy flows across the boundary. In the
limit as H → 0, Newton’s law of cooling approaches the insulated boundary condition.
We can think of Newton’s law of cooling for H �= 0 as representing an imperfectly insu-
lated boundary. If H → ∞, the boundary condition approaches the one for prescribed
temperature, u(0, t) = uB(t). This is most easily seen by dividing (1.3.4), for example,
by H:

−K0(0)
H

∂u

∂x
(0, t) = −[u(0, t) − uB(t)].

Thus, H → ∞ corresponds to no insulation at all.

Summary. We have described three different kinds of boundary conditions. For
example, at x = 0,

u(0, t) = uB(t) prescribed temperature

−K0(0)∂u
∂x (0, t) = φ(t) prescribed heat flux

−K0(0)∂u
∂x (0, t) = −H[u(0, t) − uB(t)]. Newton’s law of cooling

These same conditions could hold at x = L, noting that the change of sign (−H be-
coming H) is necessary for Newton’s law of cooling. One boundary condition occurs at
each boundary. It is not necessary that both boundaries satisfy the same kind of bound-
ary condition. For example, it is possible for x = 0 to have a prescribed oscillating
temperature

u(0, t) = 100 − 25 cos t,

and for the right end, x = L, to be insulated,

∂u

∂x
(L, t) = 0.

EXERCISES 1.3

1.3.1. Consider a one-dimensional rod, 0 ≤ x ≤ L. Assume that the heat energy flowing out
of the rod at x = L is proportional to the temperature difference between the end
temperature of the bar and the known external temperature. Derive (1.3.5); briefly,
physically explain why H > 0;

*1.3.2. Two one-dimensional rods of different materials joined at x = x0 are said to be in
perfect thermal contact if the temperature is continuous at x = x0:

u(x0−, t) = u(x0+, t)

and no heat energy is lost at x = x0 (i.e., the heat energy flowing out of one flows into
the other). What mathematical equation represents the latter condition at x = x0?
Under what special condition is ∂u/∂x continuous at x = x0?
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*1.3.3. Consider a bath containing a fluid of specific heat cf and mass density ρf that
surrounds the end x = L of a one-dimensional rod. Suppose that the bath is rapidly
stirred in a manner such that the bath temperature is approximately uniform through-
out, equaling the temperature at x = L, u(L, t). Assume that the bath is thermally
insulated except at its perfect thermal contact with the rod, where the bath may be
heated or cooled by the rod. Determine an equation for the temperature in the bath.
(This will be a boundary condition at the end x = L.) (Hint: See Exercise 1.3.2.)

1.4 EQUILIBRIUM TEMPERATURE DISTRIBUTION

1.4.1 Prescribed Temperature

Let us now formulate a simple, but typical, problem of heat flow. If the thermal coefficients
are constant and there are no sources of thermal energy, then the temperature u(x, t) in
a one-dimensional rod 0 ≤ x ≤ L satisfies

∂u

∂t
= k

∂2u

∂x2
. (1.4.1)

The solution of this partial differential equation must satisfy the initial condition

u(x, 0) = f(x) (1.4.2)

and one boundary condition at each end. For example, each end might be in contact with
different large baths, such that the temperature at each end is prescribed:

u(0, t) = T1(t)
u(L, t) = T2(t).

(1.4.3)

One aim of this text is to enable the reader to solve the problem specified by (1.4.1)–
(1.4.3).

Equilibrium temperature distribution. Before we begin to attack such an ini-
tial and boundary value problem for partial differential equations, we discuss a physically
related question for ordinary differential equations. Suppose that the boundary conditions
at x = 0 and x = L were steady (i.e., independent of time),

u(0, t) = T1 and u(L, t) = T2,

where T1 and T2 are given constants. We define an equilibrium or steady-state solution
to be a temperature distribution that does not depend on time, that is, u(x, t) = u(x).
Since ∂/∂t u(x) = 0, the partial differential equation becomes k(∂2u/∂x2) = 0, but partial
derivatives are not necessary, and thus

d2u

dx2
= 0. (1.4.4)
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The boundary conditions are

u(0) = T1

u(L) = T2.
(1.4.5)

In doing steady-state calculations, the initial conditions are usually ignored. Equation
(1.4.4) is a rather trivial second-order ordinary differential equation (ODE). Its general
solution may be obtained by integrating twice. Integrating (1.4.4) yields du/dx = C1, and
integrating a second time shows that

u(x) = C1x + C2. (1.4.6)

We recognize (1.4.6) as the general equation of a straight line. Thus, from the boundary
conditions (1.4.5), the equilibrium temperature distribution is the straight line that equals
T1 at x = 0 and T2 at x = L, as sketched in Fig. 1.4.1. Geometrically there is a unique
equilibrium solution for this problem. Algebraically, we can determine the two arbitrary
constants, C1 and C2, by applying the boundary conditions, u(0) = T1 and u(L) = T2:

u(0) = T1 implies T1 = C2

u(L) = T2 implies T2 = C1L + C2.
(1.4.7)

It is easy to solve (1.4.7) for the constants C2 = T1 and C1 = (T2 − T1)/L. Thus, the
unique equilibrium solution for the steady-state heat equation with these fixed boundary
conditions is

u(x) = T1 +
T2 − T1

L
x. (1.4.8)

FIGURE 1.4.1 Equilibrium
temperature distribution.

x = 0

u(x)

x = L

T1

T2

Approach to equilibrium. For the time-dependent problem, (1.4.1) and (1.4.2),
with steady boundary conditions (1.4.5), we expect the temperature distribution u(x, t)
to change in time; it will not remain equal to its initial distribution f(x). If we wait a very,
very long time, we would imagine that the influence of the two ends should dominate. The
initial conditions are usually forgotten. Eventually, the temperature is physically expected
to approach the equilibrium temperature distribution, since the boundary conditions are
independent of time:

lim
t→∞u(x, t) = u(x) = T1 +

T2 − T1

L
x. (1.4.9)
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In Section 8.2 we will solve the time-dependent problem and show that (1.4.9) is satisfied.
However, if a steady state is approached, it is more easily obtained by directly solving
the equilibrium problem.

1.4.2 Insulated Boundaries

As a second example of a steady-state calculation, we consider a one-dimensional rod,
again with no sources and with constant thermal properties, but this time with insulated
boundaries at x = 0 and x = L. The formulation of the time-dependent problem is

PDE:
∂u

∂t
= k

∂2u

∂x2
(1.4.10)

IC: u(x, 0) = f(x) (1.4.11)

BC1:
∂u

∂x
(0, t) = 0 (1.4.12)

BC2:
∂u

∂x
(L, t) = 0. (1.4.13)

The equilibrium problem is derived by setting ∂u/∂t = 0. The equilibrium temperature
distribution satisfies

ODE: d2u

dx2
= 0 (1.4.14)

BC1: du

dx
(0) = 0 (1.4.15)

BC2: du

dx
(L) = 0, (1.4.16)

where the initial condition is neglected (for the moment). The general solution of
d2u/dx2 = 0 is again an arbitrary straight line,

u = C1x + C2. (1.4.17)

The boundary conditions imply that the slope must be zero at both ends. Geometrically,
any straight line that is flat (zero slope) will satisfy (1.4.15) and (1.4.16), as illustrated
in Fig. 1.4.2.

The solution is any constant temperature. Algebraically, from (1.4.17), du/dx = C1

and both boundary conditions imply C1 = 0. Thus,

u(x) = C2 (1.4.18)



Section 1.4 Equilibrium Temperature Distribution 17

FIGURE 1.4.2 Various constant
equilibrium temperature
distributions (with insulated
ends).

x = Lx = 0

u(x)

for any constant C2. Unlike the first example (with fixed temperatures at both ends),
here there is not a unique equilibrium temperature. Any constant temperature is an
equilibrium temperature distribution for insulated boundary conditions. Thus, for the
time-dependent initial value problem, we expect

lim
t→∞u(x, t) = C2;

if we wait long enough, a rod with insulated ends should approach a constant temperature.
This seems physically quite reasonable. However, it does not make sense that the solution
should approach an arbitrary constant; we ought to know what constant it approaches. In
this case, the lack of uniqueness was caused by the complete neglect of the initial condition.
In general, the equilibrium solution will not satisfy the initial condition. However, the
particular constant equilibrium solution is determined by considering the initial condition
for the time-dependent problem (1.4.11). Since both ends are insulated, the total thermal
energy is constant. This follows from the integral conservation of thermal energy of the
entire rod [see (1.2.4)] or by just integrating (1.4.10) from x = 0 to x = L:

d

dt

∫ L

0

cρu dx = −K0
∂u

∂x
(0, t) + K0

∂u

∂x
(L, t). (1.4.19)

Since both ends are insulated,
∫ L

0

cρu dx = constant. (1.4.20)

One implication of (1.4.20) is that the initial thermal energy must equal the final (limt→∞)
thermal energy. The initial thermal energy is cρ

∫ L

0
f(x) dx, since u(x, 0) = f(x), while the

equilibrium thermal energy is cρ
∫ L

0
C2 dx = cρC2L, since the equilibrium temperature

distribution is a constant u(x, t) = C2. The constant C2 is determined by equating these
two expressions for the constant total thermal energy, cρ

∫ L

0
f(x) dx = cρC2L. Solving for

C2 shows that the desired unique steady-state solution should be

u(x) = C2 =
1
L

∫ L

0

f(x) dx, (1.4.21)

the average of the initial temperature distribution. It is as though the initial condition
is not entirely forgotten. Later we will find a u(x, t) that satisfies (1.4.10)–(1.4.13) and
show that limt→∞ u(x, t) is given by (1.4.21).
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EXERCISES 1.4

1.4.1. Determine the equilibrium temperature distribution for a one-dimensional rod with
constant thermal properties with the following sources and boundary conditions:

∗ (a) Q = 0, u(0) = 0, u(L) = T

(b) Q = 0, u(0) = T , u(L) = 0

(c) Q = 0,
∂u

∂x
(0) = 0, u(L) = T

∗ (d) Q = 0, u(0) = T ,
∂u

∂x
(L) = α

(e)
Q

K0
= 1, u(0) = T1, u(L) = T2

∗ (f)
Q

K0
= x2, u(0) = T ,

∂u

∂x
(L) = 0

(g) Q = 0, u(0) = T ,
∂u

∂x
(L) + u(L) = 0

∗ (h) Q = 0,
∂u

∂x
(0) − [u(0) − T ] = 0,

∂u

∂x
(L) = α

In these you may assume that u(x, 0) = f(x).
1.4.2. Consider the equilibrium temperature distribution for a uniform one-dimensional

rod with sources Q/K0 = x of thermal energy, subject to the boundary conditions
u(0) = 0 and u(L) = 0.

*(a) Determine the heat energy generated per unit time inside the entire rod.

(b) Determine the heat energy flowing out of the rod per unit time at x = 0 and at
x = L.

(c) What relationships should exist between the answers in parts (a) and (b)?

1.4.3. Determine the equilibrium temperature distribution for a one-dimensional rod com-
posed of two different materials in perfect thermal contact at x = 1. For 0 < x < 1,
there is one material (cρ = 1, K0 = 1) with a constant source (Q = 1), whereas for
the other 1 < x < 2, there are no sources (Q = 0, cρ = 2, K0 = 2) (see Exercise
1.3.2) with u(0) = 0 and u(2) = 0.

1.4.4. If both ends of a rod are insulated, derive from the partial differential equation that
the total thermal energy in the rod is constant.

1.4.5. Consider a one-dimensional rod 0 ≤ x ≤ L of known length and known constant
thermal properties without sources. Suppose that the temperature is an unknown
constant T at x = L. Determine T if we know (in the steady state) both the tem-
perature and the heat flow at x = 0.

1.4.6. The two ends of a uniform rod of length L are insulated. There is a constant source
of thermal energy Q0 �= 0, and the temperature is initially u(x, 0) = f(x).

(a) Show mathematically that there does not exist any equilibrium temperature
distribution. Briefly explain physically.

(b) Calculate the total thermal energy in the entire rod.

1.4.7. For the following problems, determine an equilibrium temperature distribution (if one
exists). For what values of β are there solutions? Explain physically.

∗ (a)
∂u

∂t
=

∂2u

∂x2
+ 1, u(x, 0) = f(x),

∂u

∂x
(0, t) = 1,

∂u

∂x
(L, t) = β



Section 1.5 Derivation of the Heat Equation in Two or Three Dimensions 19

(b)
∂u

∂t
=

∂2u

∂x2
, u(x, 0) = f(x),

∂u

∂x
(0, t) = 1,

∂u

∂x
(L, t) = β

(c)
∂u

∂t
=

∂2u

∂x2
+ x − β, u(x, 0) = f(x),

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

1.4.8. Express the integral conservation law for the entire rod with constant thermal prop-
erties. Assume the heat flow is known to be different constants at both ends. By
integrating with respect to time, determine the total thermal energy in the rod.
(Hint: Use the initial condition.)

(a) Assume there are no sources.

(b) Assume the sources of thermal energy are constant.

1.4.9. Derive the integral conservation law for the entire rod with constant thermal prop-
erties by integrating the heat equation (1.2.10) (assuming no sources). Show the
result is equivalent to (1.2.4).

1.4.10. Suppose ∂u
∂t = ∂2u

∂x2 + 4, u(x, 0) = f(x), ∂u
∂x (0, t) = 5, ∂u

∂x (L, t) = 6. Calculate the
total thermal energy in the one-dimensional rod (as a function of time).

1.4.11. Suppose ∂u
∂t = ∂2u

∂x2 + x, u(x, 0) = f(x), ∂u
∂x (0, t) = β, ∂u

∂x (L, t) = 7.

(a) Calculate the total thermal energy in the one-dimensional rod (as a function of
time).

(b) From part (a), determine a value of β for which an equilibrium exists. For this
value of β, determine lim

t→∞u(x, t).

1.4.12. Suppose the concentration u(x, t) of a chemical satisfies Fick’s law (1.2.13), and the
initial concentration is given as u(x, 0) = f(x). Consider a region 0 < x < L in which
the flow is specified at both ends −k ∂u

∂x (0, t) = α and −k ∂u
∂x (L, t) = β. Assume α

and β are constants.

(a) Express the conservation law for the entire region.

(b) Determine the total amount of chemical in the region as a function of time
(using the initial condition).

(c) Under what conditions is there an equilibrium chemical concentration, and what
is it?

1.4.13. Do Exercise 1.4.12 if α and β are functions of time.

1.5 DERIVATION OF THE HEAT EQUATION IN TWO OR THREE DIMENSIONS

Introduction. In Section 1.2 we showed that for the conduction of heat in a one-
dimensional rod the temperature u(x, t) satisfies

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ Q.

In cases in which there are no sources (Q = 0) and the thermal properties are constant,
the partial differential equation becomes

∂u

∂t
= k

∂2u

∂x2
,
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where k = K0/cρ. Before we solve problems involving these partial differential equations,
we will formulate partial differential equations corresponding to heat flow problems in
two or three spatial dimensions. We will find the derivation to be similar to the one used
for one-dimensional problems, although important differences will emerge. We propose to
derive new and more complex equations (before solving the simpler ones) so that, when
we do discuss techniques for the solutions of PDEs, we will have more than one example
to work with.

Heat energy. We begin our derivation by considering any arbitrary subregion R,
as illustrated in Fig. 1.5.1. As in the one-dimensional case, conservation of heat energy is
summarized by the following word equation:

Rate of change
of heat energy =

heat energy flowing
across the boundaries
per unit time

+
heat energy generated
inside per unit time,

where the heat energy within an arbitrary subregion R is

heat energy =
∫∫
R

∫
cρu dV,

instead of the one-dimensional integral used in Section 1.2.

FIGURE 1.5.1 Three-dimensional
subregion R.

Heat flux vector and normal vectors. We need an expression for the flow
of heat energy. In a one-dimensional problem, the heat flux φ is defined to the right
(φ < 0 means flowing to the left). In a three-dimensional problem, the heat flows in some
direction, and hence the heat flux is a vector φ. The magnitude of φ is the amount of
heat energy flowing per unit time per unit surface area. However, in considering conser-
vation of heat energy, it is only the heat flowing across the boundaries per unit time that
is important. If, as at point A in Fig. 1.5.2, the heat flow is parallel to the boundary, then
there is no heat energy crossing the boundary at that point. In fact, it is only the normal
component of the heat flow that contributes (as illustrated by point B in Fig. 1.5.2). At
any point, there are two normal vectors, an inward and an outward normal n. We will
use the convention of utilizing only the unit outward normal vector n̂ (where the ˆ
stands for a unit vector).
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A
B

φ
φ

θφ ˙ n̂

FIGURE 1.5.2 Outward normal component of heat flux vector.

Conservation of heat energy. At each point the amount of heat energy flowing
out of the region R per unit time per unit surface area is the outward normal component
of the heat flux vector. From Fig. 1.5.2 at point B, the outward normal component of
the heat flux vector is |φ| cos θ = φ · n/|n| = φ · n̂. If the heat flux vector φ is directed
inward, then φ · n̂ < 0 and the outward flow of heat energy is negative. To calculate the
total heat energy flowing out of R per unit time, we must multiply φ · n̂ by the differential
surface area dS and “sum” over the entire surface that encloses the region R. This4 is
indicated by the closed surface integral

∫∫
�
�
�
�φ · n̂ dS. This is the amount of heat energy

(per unit time) leaving the region R and (if positive) results in a decreasing of the total
heat energy within R. If Q is the rate of heat energy generated per unit volume, then
the total heat energy generated per unit time is

∫∫∫
R

Q dV . Consequently, conservation
of heat energy for an arbitrary three-dimensional region R becomes

d

dt

∫∫
R

∫
cρu dV = −

∫∫
�

�

�

�φ · n̂ dS +
∫∫
R

∫
Q dV. (1.5.1)

Divergence theorem. In one dimension, a way in which we derived a partial
differential relationship from the integral conservation law was to notice (via the funda-
mental theorem of calculus) that

φ(a) − φ(b) = −
∫ b

a

∂φ

∂x
dx;

that is, the flow through the boundaries can be expressed as an integral over the entire
region for one-dimensional problems. We claim that the divergence theorem is an analog-
ous procedure for functions of three variables. The divergence theorem deals with a vector
A (with components Ax, Ay and Az)

A = Axî + Ay ĵ + Azk̂,

and its divergence defined as follows:

∇ · A ≡ ∂

∂x
Ax +

∂

∂y
Ay +

∂

∂z
Az. (1.5.2)

4Sometimes the notation φn is used instead of φ · n̂, meaning the outward normal component of φ.



22 Chapter 1 Heat Equation

Note that the divergence of a vector is a scalar. The divergence theorem states that
the volume integral of the divergence of any continuously differentiable vector
A is the closed surface integral of the outward normal component of A:

∫∫
R

∫
∇ · A dV =

∫∫
�
�
�
�A · n̂ dS. (1.5.3)

This is also known as Gauss’s theorem. It can be used to relate certain surface integrals to
volume integrals, and vice versa. It is very important and very useful (both immediately
and later in this text). We omit a derivation, which may be based on repeating the
one-dimensional fundamental theorem in all three dimensions.

Application of the divergence theorem to heat flow. In particular, the
closed surface integral that arises in the conservation of heat energy (1.5.1), corresponding
to the heat energy flowing across the boundary per unit time, can be written as a volume
integral according to the divergence theorem, (1.5.3). Thus, (1.5.1) becomes

d

dt

∫∫
R

∫
cρu dV = −

∫∫
R

∫
∇ · φ dV +

∫∫
R

∫
Q dV. (1.5.4)

We note that the time derivative in (1.5.4) can be put inside the integral (since R is fixed
in space) if the time derivative is changed to a partial derivative. Thus, all the expressions
in (1.5.4) are volume integrals over the same volume, and they can be combined into one
integral: ∫∫

R

∫ [
cρ

∂u

∂t
+ ∇ · φ − Q

]
dV = 0. (1.5.5)

Since this integral is zero for all regions R, it follows (as it did for one-dimensional
integrals) that the integrand itself must be zero:

cρ
∂u

∂t
+ ∇ · φ − Q = 0

or, equivalently,

cρ
∂u

∂t
= −∇ · φ + Q. (1.5.6)

Equation (1.5.6) reduces to (1.2.3) in the one-dimensional case.

Fourier’s law of heat conduction. In one-dimensional problems, from experi-
ments according to Fourier’s law, the heat flux φ is proportional to the derivative of the
temperature, φ = −K0 ∂u/∂x. The minus sign is related to the fact that thermal energy
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flows from hot to cold. ∂u/∂x is the change in temperature per unit length. These same
ideas are valid in three dimensions. In the appendix, we derive that the heat flux vector
φ is proportional to the temperature gradient

(
∇u ≡ ∂u

∂x î + ∂u
∂y ĵ + ∂u

∂z k̂
)
:

φ = −K0∇u, (1.5.7)

known as Fourier’s law of heat conduction, where again K0 is called the thermal
conductivity. Thus, in three dimensions the gradient ∇u replaces ∂u/∂x.

Heat equation. When the heat flux vector, (1.5.7), is substituted into the conser-
vation of heat energy equation, (1.5.6), a partial differential equation for the temperature
results:

cρ
∂u

∂t
= ∇ · (K0∇u) + Q. (1.5.8)

In the cases in which there are no sources of heat energy (Q = 0) and the thermal
coefficients are constant, (1.5.8) becomes

∂u

∂t
= k∇ · (∇u), (1.5.9)

where k = K0/cρ is again called the thermal diffusivity. From their definitions, we calcu-
late the divergence of the gradient of u:

∇ · (∇u) =
∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)
+

∂

∂z

(
∂u

∂z

)
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
≡ ∇2u. (1.5.10)

This expression ∇2u is defined to be the Laplacian of u. Thus, in this case

∂u

∂t
= k∇2u. (1.5.11)

Equation (1.5.11) is often known as the heat or diffusion equation in three spatial
dimensions. The notation ∇2u is often used to emphasize the role of the del operator ∇:

∇ ≡ ∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂.

Note that ∇u is ∇ operating on u, while ∇ · A is the vector dot product of del with A.
Furthermore, ∇2 is the dot product of the del operator with itself or

∇ ·∇ =
∂

∂x

(
∂

∂x

)
+

∂

∂y

(
∂

∂y

)
+

∂

∂z

(
∂

∂z

)

operating on u, hence the notation del squared, ∇2.
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Initial boundary value problem. In addition to (1.5.8) or (1.5.11), the tem-
perature satisfies a given initial distribution,

u(x, y, z, 0) = f(x, y, z).

The temperature also satisfies a boundary condition at every point on the surface that
encloses the region of interest. The boundary condition can be of various types (as in the
one-dimensional problem). The temperature could be prescribed,

u(x, y, z, t) = T (x, y, z, t),

everywhere on the boundary where T is a known function of t at each point of the bound-
ary. It is also possible that the flow across the boundary is prescribed. Frequently, we
might have the boundary (or part of the boundary) insulated. This means that there is
no heat flow across that portion of the boundary. Since the heat flux vector is −K0∇u,
the heat flowing out will be the unit outward normal component of the heat flow vec-
tor, −K0∇u · n̂, where n̂ is a unit outward normal to the boundary surface. Thus, at an
insulated surface,

∇u · n̂ = 0.

Recall that ∇u·n̂ is the directional derivative of u in the outward normal direction; it is
also called the normal derivative.5

Often Newton’s law of cooling is a more realistic condition at the boundary. It states
that the heat energy flowing out per unit time per unit surface area is proportional to
the difference between the temperature at the surface u and the temperature outside the
surface ub. Thus, if Newton’s law of cooling is valid, then at the boundary

−K0∇u · n̂ = H(u − ub). (1.5.12)

Note that usually the proportionality constant H > 0, since if u > ub, then we expect
that heat energy will flow out and −K0∇u · n̂ will be greater than zero. Equation (1.5.12)
verifies the two forms of Newton’s law of cooling for one-dimensional problems. In partic-
ular, at x = 0, n̂ = −î and the left-hand side (l.h.s.) of (1.5.12) becomes K0 ∂u/∂x, while
at x = L, n̂ = î and the l.h.s. of (1.5.12) becomes −K0∂u/∂x [see (1.3.4) and (1.3.5)].

Steady state. If the boundary conditions and any sources of thermal energy are
independent of time, it is possible that there exist steady-state solutions to the heat
equation satisfying the given steady boundary condition:

0 = ∇ · (K0∇u) + Q.

Note that an equilibrium temperature distribution u(x, y, z) satisfies a partial differential
equation when more than one spatial dimension is involved. In the case with constant
thermal properties, the equilibrium temperature distribution will satisfy

∇2u = − Q

K0
, (1.5.13)

known as Poisson’s equation.
5Sometimes (in other books and references) the notation ∂u/∂n is used. However, to calculate ∂u/∂n

we usually calculate the dot product of the two vectors, ∇u and n̂, ∇u · n̂, so we will not use the notation
∂u/∂n in this text.
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If, in addition, there are no sources (Q = 0), then

∇2u = 0; (1.5.14)

the Laplacian of the temperature distribution is zero. Equation (1.5.14) is known as
Laplace’s equation. It is also known as the potential equation, since the gravitational
and electrostatic potentials satisfy (1.5.14) if there are no sources. We will solve a number
of problems involving Laplace’s equation in later sections.

Two-dimensional problems. All the previous remarks about three-dimensional
problems are valid if the geometry is such that the temperature depends only on x, y,
and t. For example, Laplace’s equation in two dimensions, x and y, corresponding to
equilibrium heat flow with no sources (and constant thermal properties) is

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0,

since ∂2u/∂z2 = 0. Two-dimensional results can be derived directly (without taking a
limit of three-dimensional problems), by using fundamental principles in two dimensions.
We will not repeat the derivation. However, we can easily outline the results. Every time
a volume integral (

∫∫∫
R
· · · dV ) appears, it must be replaced by a surface integral over

the entire two-dimensional plane region (
∫∫

R
· · · dS). Similarly, the boundary contribution

for three-dimensional problems, which is the closed surface integral
∫∫
�
�
�
� · · · dS, must be

replaced by the closed line integral
∮ · · · dτ , an integration over the boundary of the two-

dimensional plane surface. These results are not difficult to derive since the divergence
theorem in three dimensions,

∫∫
R

∫
∇ · A dV =

∫∫
�

�

�

�A · n̂ dS, (1.5.15)

is valid in two dimensions, taking the form
∫∫
R

∇ · A dS =
∮

A · n̂ dτ. (1.5.16)

Sometimes (1.5.16) is called Green’s theorem, but we prefer to refer to it as the two-
dimensional divergence theorem. In this way only one equation need be familiar to the
reader, namely (1.5.15); the conversion to two-dimensional form involves changing only
the number of integral signs.

Polar and cylindrical coordinates. The Laplacian,

∇2u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
, (1.5.17)
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is important for the heat equation (1.5.11) and its steady-state version (1.5.14), as well
as for other significant problems in science and engineering. Equation (1.5.17) written
in (1.5.17) in Cartesian coordinates is most useful when the geometrical region under
investigation is a rectangle or a rectangular box. Other coordinate systems are frequently
useful. In practical applications, we may need the formula that expresses the Laplacian in
the appropriate coordinate system. In circular cylindrical coordinates, with r the radial
distance from the z-axis and θ the angle

x = r cos θ
y = r sin θ
z = z,

(1.5.18)

the Laplacian can be shown to equal the following formula:

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
+

∂2u

∂z2
. (1.5.19)

There may be no need to memorize this formula, as it can often be looked up in a reference
book. As an aid in minimizing errors, it should be noted that every term in the Laplacian
has the dimension of u divided by two spatial dimensions [just as in Cartesian coordinates,
(1.5.17)]. Since θ is measured in radians, which have no dimensions, this remark aids in
remembering to divide ∂2u/∂θ2 by r2. In polar coordinates (by which we mean a two-
dimensional coordinate system with z fixed, usually z = 0), the Laplacian is the same
as (1.5.19) with ∂2u/∂z2 = 0 since there is no dependence on z. Equation (1.5.19) can
be derived (see the Exercises) using the chain rule for partial derivatives, applicable for
changes of variables.

In some physical situations it is known that the temperature does not depend on
the polar angle θ; it is said to be circularly or axially symmetric. In that case

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂z2
. (1.5.20)

Spherical coordinates. Geophysical problems as well as electrical problems with
spherical conductors are best solved using spherical coordinates (ρ, θ, φ). The radial dis-
tance is ρ, the angle from the pole (z-axis) is φ, and the cylindrical (or azimuthal) angle
is θ. Note that if ρ is constant and the angle φ is a constant, a circle is generated with
radius ρ sin φ (as shown in Fig. 1.5.3) so that

x = ρ sin φ cos θ
y = ρ sin φ sin θ
z = ρ cos φ.

(1.5.21)
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φ ρ

x = L

ρ sinφ
θ

Area
magnified

FIGURE 1.5.3 Spherical coordinates.

The angle from the pole ranges from 0 to π (while the usual cylindrical angle ranges from
0 to 2π). It can be shown that the Laplacian satisfies

∇2u =
1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin φ

∂

∂φ

(
sin φ

∂u

∂φ

)
+

1
ρ2 sin2 φ

∂2u

∂θ2
. (1.5.22)

EXERCISES 1.5

1.5.1. Let c(x, y, z, t) denote the concentration of a pollutant (the amount per unit volume).

(a) What is an expression for the total amount of pollutant in the region R?
(b) Suppose that the flow J of the pollutant is proportional to the gradient of the

concentration. (Is this reasonable?) Express conservation of the pollutant.
(c) Derive the partial differential equation governing the diffusion of the pollutant.

*1.5.2. For conduction of thermal energy, the heat flux vector is φ = −K0∇u. If in addition
the molecules move at an average velocity V , a process called convection, then
briefly explain why φ = −K0∇u + cρuV . Derive the corresponding equation for
heat flow, including both conduction and convection of thermal energy (assuming
constant thermal properties with no sources).

1.5.3. Consider the polar coordinates

x = r cos θ

y = r sin θ.

(a) Since r2 = x2+y2, show that ∂r
∂x = cos θ, ∂r

∂y = sin θ, ∂θ
∂y = cos θ

r , and ∂θ
∂x =

− sin θ
r .

(b) Show that r̂ = cos θî + sin θĵ and θ̂ = − sin θî + cos θĵ.

(c) Using the chain rule, show that ∇ = r̂ ∂
∂r + θ̂ 1

r
∂

∂θ and hence ∇u = ∂u
∂r r̂ +

1
r

∂u
∂θ θ̂.
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(d) If A = Arr̂ + Aθθ̂, show that ∇·A = 1
r

∂
∂r (rAr) + 1

r
∂

∂θ (Aθ), since ∂r̂/∂θ = θ̂

and ∂θ̂/∂θ = −r̂ follows from part (b).

(e) Show that ∇2u = 1
r

∂
∂r

(
r ∂u

∂r

)
+ 1

r2
∂2u
∂θ2 .

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the special
case of Exercise 1.5.3(e) if u(r) only.

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where r2 = x2+y2.
We will derive the heat equation for this problem. Consider any circular annulus
a ≤ r ≤ b.

(a) Show that the total heat energy is 2π
∫ b
a

cρur dr.

(b) Show that the flow of heat energy per unit time out of the annulus at r = b is
−2πbK0∂u/∂r |r=b. A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation without
sources:

∂u

∂t
=

k

r

∂

∂r

(
r
∂u

∂r

)
.

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r.
1.5.7. Derive the heat equation in two dimensions by using Green’s theorem, (1.5.16), the

two-dimensional form of the divergence theorem.
1.5.8. If Laplace’s equation is satisfied in three dimensions, show that∫∫

�

�

�

�∇u·n̂ dS = 0

for any closed surface. (Hint: Use the divergence theorem.) Give a physical interpre-
tation of this result (in the context of heat flow).

1.5.9. Determine the equilibrium temperature distribution inside a circular annulus (r1 ≤
r ≤ r2):

*(a) if the outer radius is at temperature T2 and the inner at T1

(b) if the outer radius is insulated and the inner radius is at temperature T1

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ≤ r0) if the
boundary is fixed at temperature T0.

*1.5.11. Consider
∂u

∂t
=

k

r

∂

∂r

(
r
∂u

∂r

)
, a < r < b,

subject to

u(r, 0) = f(r),
∂u

∂r
(a, t) = β, and

∂u

∂r
(b, t) = 1.

Using physical reasoning, for what value(s) of β does an equilibrium temperature
distribution exist?

1.5.12. Assume that the temperature is spherically symmetric, u = u(r, t), where r is the
distance from a fixed point (r2 = x2 + y2 + z2). Consider the heat flow (without
sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 4π
∫ b
a

cρur2 dr.

(b) Show that the flow of heat energy per unit time out of the spherical shell at
r = b is −4πb2K0 ∂u/∂r |r=b. A similar result holds at r = a.
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(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

∂u

∂t
=

k

r2

∂

∂r

(
r2 ∂u

∂r

)
.

*1.5.13. Determine the steady-state temperature distribution between two concentric spheres
with radii 1 and 4, respectively, if the temperature of the outer sphere is maintained
at 80◦ and the inner sphere at 0◦ (see Exercise 1.5.12).

1.5.14. Isobars are lines of constant temperature. Show that isobars are perpendicular to
any part of the boundary that is insulated.

1.5.15. Derive the heat equation in three dimensions assuming constant thermal properties
and no sources.

1.5.16. Express the integral conservation law for any three-dimensional object. Assume there
are no sources. Also assume the heat flow is specified, ∇u · n̂ = g(x, y, z), on the
entire boundary and does not depend on time. By integrating with respect to time,
determine the total thermal energy. (Hint: Use the initial condition.)

1.5.17. Derive the integral conservation law for any three dimensional object (with constant
thermal properties) by integrating the heat equation (1.5.11) (assuming no sources).
Show that the result is equivalent to (1.5.1).

Orthogonal curvilinear coordinates. A coordinate system (u, v, w) may be in-
troduced and defined by x = x(u, v, w), y = y(u, v, w), and z = z(u, v, w). The radial
vector r ≡ x̂i + yĵ + zk̂. Partial derivatives of r with respect to a coordinate are
in the direction of the coordinate. Thus, for example, a vector in the u-direction
∂r/∂u can be made a unit vector êu in the u-direction by dividing by its length
hu = |∂r/∂u| called the scale factor: êu = 1

hu
∂r/∂u.

1.5.18. Determine the scale factors for cylindrical coordinates.
1.5.19. Determine the scale factors for spherical coordinates.
1.5.20. The gradient of a scalar can be expressed in terms of the new coordinate system

∇g = a ∂r/∂u+b ∂r/∂v+c ∂r/∂w, where you will determine the scalars a, b, c. Using
dg = ∇g·dr, derive that the gradient in an orthogonal curvilinear coordinate system
is given by

∇g =
1
hu

∂g

∂u
êu +

1
hv

∂g

∂v
êv +

1
hw

∂g

∂w
êw. (1.5.23)

An expression for the divergence is more difficult to derive, and we will just state
that if a vector p is expressed in terms of this new coordinate system p = puêu +
pvêv + pwêw, then the divergence satisfies

∇ · p =
1

huhvhw

[
∂

∂u
(hvhwpu) +

∂

∂v
(huhwpv) +

∂

∂w
(huhvpw)

]
. (1.5.24)

1.5.21. Using (1.5.23) and (1.5.24), derive the Laplacian in an orthogonal curvilinear co-
ordinate system:

∇2T =
1

huhvhw

[
∂

∂u

(
hvhw

hu

∂T

∂u

)
+

∂

∂v

(
huhw

hv

∂T

∂v

)
+

∂

∂w

(
huhv

hw

∂T

∂w

)]
.

(1.5.25)

1.5.22. Using (1.5.25), derive the Laplacian for cylindrical coordinates.
1.5.23. Using (1.5.25), derive the Laplacian for spherical coordinates.
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1.5.24. Derive the three-dimensional heat equation assuming constant thermal properties
and assuming there are no sources of thermal energy. (Hint : Use an arbitrary three-
dimensional region, and use the divergence theorem.)

1.5.25. Suppose a sphere of radius 2 satisfies ∂u
∂t = ∇2u+5 with u(x, y, z, 0) = f(x, y, z) and

on the surface of the sphere it is given that ∇u · n̂ = 6, where n̂ is a unit outward
normal vector. Calculate the total thermal energy for this sphere as a function of
time. (Hint : Use the divergence theorem.)

APPENDIX TO 1.5: REVIEW OF GRADIENT AND A DERIVATION OF FOURIER’S
LAW OF HEAT CONDUCTION

Experimentally, for isotropic6 materials (i.e., without preferential directions) heat flows
from hot to cold in the direction in which temperature differences are greatest.
The heat flow is proportional (with proportionality constant K0, the thermal conductiv-
ity) to the rate of change of temperature in this direction.

The change in the temperature Δu is

Δu = u(x + Δx, t) − u(x, t) ≈ ∂u

∂x
Δx +

∂u

∂y
Δy +

∂u

∂z
Δz.

In the direction α̂ = α1î + α2ĵ + α3k̂,Δx = Δsα̂, where Δs is the distance between
x and x + Δx. Thus, the rate of change of the temperature in the direction α̂ is the
directional derivative:

∂u

∂s
= lim

Δs→0

Δu

Δs
= α1

∂u

∂x
+ α2

∂u

∂y
+ α3

∂u

∂z
= α ·∇u,

where it has been convenient to define the following vector:

∇u ≡ ∂u

∂x
î +

∂u

∂y
ĵ +

∂u

∂z
k̂, (1.5.26)

called the gradient of the temperature. From the property of dot products, if θ is the
angle between α̂ and ∇u, then the directional derivative is |∇u| cos θ since |α̂| = 1.
The largest rate of change of u (the largest directional derivative) is |∇u| > 0, and it
occurs if θ = 0 (i.e., in the direction of the gradient). Since this derivative is positive, the
temperature increase is greatest in the direction of the gradient. Since heat energy flows
in the direction of decreasing temperatures, the heat flow vector is in the opposite
direction to the heat gradient. It follows that

φ = −K0∇u, (1.5.27)

6Examples of nonisotropic materials are certain crystals and grainy woods.
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FIGURE 1.5.4 The gradient is perpendicular to level surfaces of the temperature.

since |∇u| equals the magnitude of the rate of change of u (in the direction of the gradient).
This again is called Fourier’s law of heat conduction. Thus, in three dimensions, the
gradient ∇u replaces ∂u/∂x.

Another fundamental property of the gradient is that it is normal (perpendicular) to
the level surfaces. It is easier to illustrate this in a two-dimensional problem (see Fig. 1.5.4)
in which the temperature is constant along level curves (rather than level surfaces). To
show that the gradient is perpendicular, consider the surface on which the temperature
is the constant T0, u(x, y, z, t) = T0. We calculate the differential of both sides (at a fixed
time) along the surface. Since T0 is constant, dT0 = 0. Therefore, using the chain rule of
partial derivatives,

du =
∂u

∂x
dx +

∂u

∂y
dy +

∂u

∂z
dz = 0. (1.5.28)

Equation (1.5.28) can be written as
(

∂u

∂x
î +

∂u

∂y
ĵ +

∂u

∂z
k̂

)
· (dx î + dy ĵ + dz =, k̂) = 0

or
∇u · (dx î + dy ĵ + dz k̂) = 0. (1.5.29)

dxî + dyĵ + dzk̂ represents any vector in the tangent plane of the level surface. From
(1.5.29), its dot product with ∇u is zero; that is, ∇u is perpendicular to the tangent
plane. Thus, ∇u is perpendicular to the surface u = constant.

We have thus learned two properties of the gradient, ∇u:

1. Direction: ∇u is perpendicular to the surface u = constant. ∇u is also in the direction
of the largest directional derivative. (u increases in the direction of the gradient.)

2. Magnitude: |∇u| is the largest value of the directional derivative.



C H A P T E R 2

Method of Separation
of Variables

2.1 INTRODUCTION

In Chapter 1 we developed from physical principles an understanding of the heat equa-
tion and its corresponding initial and boundary conditions. We are ready to pursue the
mathematical solution of some typical problems involving partial differential equations.
We will use a technique called the method of separation of variables. You will have
to become an expert in this method, and so we will discuss quite a few examples. We will
emphasize problem-solving techniques, but we must also understand how not to misuse
the technique.

A relatively simple, but typical, problem for the equation of heat conduction occurs
for a one-dimensional rod (0 ≤ x ≤ L) when all the thermal coefficients are constant.
Then the PDE,

∂u

∂t
= k

∂2u

∂x2
+

Q(x, t)
cρ

,
t > 0
0 < x < L,

(2.1.1)

must be solved subject to the initial condition,

u(x, 0) = f(x), 0 < x < L, (2.1.2)

and two boundary conditions. For example, if both ends of the rod have prescribed tem-
perature, then

u(0, t) = T1(t)

u(L, t) = T2(t),
t > 0. (2.1.3)

The method of separation of variables is used when the partial differential equation and
the boundary conditions are linear and homogeneous, concepts we now explain.

2.2 LINEARITY

As in the study of ordinary differential equations, the concept of linearity will be very
important for us. A linear operator L satisfies the linearity property

L(c1u1 + c2u2) = c1L(u1) + c2L(u2) (2.2.1)

32
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for any two functions u1 and u2, where c1 and c2 are arbitrary constants. We introduce
the heat operator:

L(u) =
∂u

∂t
− k

∂2u

∂x2
. (2.2.2)

We first show the heat operator is also a linear operator and satisfies the linearity property

L(c1u1 + c2u2) =
∂

∂t
(c1u1 + c2u2) − k

∂2

∂x2
(c1u1 + c2u2)

= c1
∂u1

∂t
+ c2

∂u2

∂t
− kc1

∂2u1

∂x2
− kc2

∂2u2

∂x2

= c1

(
∂u1

∂t
− k

∂2u1

∂x2

)
+ c2

(
∂u2

∂t
− k

∂2u2

∂x2

)

= c1L(u1) + c2L(u2).

A linear equation for the unknown u is of the form

L(u) = f, (2.2.3)

where L is a linear operator and f is known. The heat equation is a linear partial differ-
ential equation:

L(u) =
∂u

∂t
− k

∂2u

∂x2
= f(x, t), (2.2.4)

or, in the more common form,

∂u

∂t
= k

∂2u

∂x2
+ f(x, t). (2.2.5)

If f = 0, then (2.2.5) becomes L(u) = 0, called a linear homogeneous equation.
Examples of linear homogeneous partial differential equations include the heat equation,

∂u

∂t
− k

∂2u

∂x2
= 0. (2.2.6)

From (2.2.1) it follows that L(0) = 0 (let c1 = c2 = 0). Therefore, u = 0 is always a
solution of a linear homogeneous equation. For example, u = 0 satisfies the heat equation
(2.2.6). We call u = 0 the trivial solution of a linear homogeneous equation. The simplest
way to test whether an equation is homogeneous is to substitute the function u identically
equal to zero. If u ≡ 0 satisfies a linear equation, then it must be that f = 0 and hence
the linear equation is homogeneous. Otherwise, if f �= 0, the equation is said to be
nonhomogeneous.
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The fundamental property of linear operators (2.2.1) allows solutions of linear equa-
tions to be added together in the following sense:

Principle of Superposition
If u1 and u2 satisfy a linear homogeneous equation, then an arbitrary linear
combination of them, c1u1 + c2u2, also satisfies the same linear homogeneous
equation.

The proof of this relies on the definition of a linear operator. Suppose that u1 and u2

are two solutions of a linear homogeneous equation. That means that L(u1) = 0 and
L(u2) = 0. Let us calculate L(c1u1 + c2u2). From the definition of a linear operator,

L(c1u1 + c2u2) = c1L(u1) + c2L(u2).

Since u1 and u2 are homogeneous solutions, it follows that L(c1u1+c2u2) = 0. This means
that c1u1 + c2u2 satisfies the linear homogeneous equation L(u) = 0 if u1 and u2 satisfy
the same linear homogeneous equation.

The concepts of linearity and homogeneity also apply to boundary conditions, in
which case the variables are evaluated at specific points. Examples of linear boundary
conditions are the conditions we have discussed:

u(0, t) = f(t) (2.2.7)
∂u

∂x
(L, t) = g(t) (2.2.8)

∂u

∂x
(0, t) = 0 (2.2.9)

−K0
∂u

∂x
(L, t) = h[u(L, t) − g(t)]. (2.2.10)

Only (2.2.9) is satisfied by u ≡ 0 (of the linear conditions) and hence is homogeneous. It
is not necessary that a boundary condition be u(0, t) = 0 for u ≡ 0 to satisfy it.

EXERCISES 2.2

2.2.1. Show that any linear combination of linear operators is a linear operator.
2.2.2. (a) Show that L(u) = ∂

∂x

[
K0(x) ∂u

∂x

]
is a linear operator.

(b) Show that usually L(u) = ∂
∂x

[
K0(x, u) ∂u

∂x

]
is not a linear operator.

2.2.3. Show that ∂u
∂t = k ∂2u

∂x2 +Q(u, x, t) is linear if Q = α(x, t)u+β(x, t) and, in addition,
homogeneous if β(x, t) = 0.

2.2.4. In this exercise we derive superposition principles for nonhomogeneous problems.

(a) Consider L(u) = f . If up is a particular solution, L(up) = f , and if u1 and
u2 are homogeneous solutions, L(ui) = 0, show that u = up + c1u1 + c2u2 is
another particular solution.

(b) If L(u) = f1 + f2, where upi is a particular solution corresponding to fi, what
is a particular solution for f1 + f2?
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2.2.5 If L is a linear operator, show that L(
∑M

n=1 cnun) =
∑M

n=1 cnL(un). Use this result
to show that the principle of superposition may be extended to any finite number
of homogeneous solutions.

2.3 HEAT EQUATION WITH ZERO TEMPERATURES AT FINITE ENDS

2.3.1 Introduction

Partial differential equation (2.1.1) is linear, but it is homogeneous only if there are no
sources, Q(x, t) = 0. The boundary conditions (2.1.3) are also linear, and they too are
homogeneous only if T1(t) = 0 and T2(t) = 0. We thus first propose to study

PDE: ∂u

∂t
= k

∂2u

∂x2

0 < x < L
t > 0 (2.3.1)

BC:
u(0, t) = 0
u(L, t) = 0 (2.3.2)

IC: u(x, 0) = f(x). (2.3.3)

The problem consists of a linear homogeneous partial differential equation with linear
homogeneous boundary conditions. There are two reasons for our investigating this type
of problem, (2.3.1)–(2.3.3), besides the fact that we claim it can be solved by the method
of separation of variables. First, this problem is a relevant physical problem corresponding
to a one-dimensional rod (0 < x < L) with no sources and both ends immersed in a 0◦

temperature bath. We are very interested in predicting how the initial thermal energy
(represented by the initial condition) changes in this relatively simple physical situation.
Second, it will turn out that in order to solve the nonhomogeneous problem (2.1.1)–(2.1.3),
we will need to know how to solve the homogeneous problem, (2.3.1)–(2.3.3).

2.3.2 Separation of Variables

In the method of separation of variables, we attempt to determine solutions in the
product form

u(x, t) = φ(x)G(t), (2.3.4)

where φ(x) is only a function of x and G(t) only a function of t. Equation (2.3.4) must
satisfy the linear homogeneous partial differential equation (2.3.1) and boundary condi-
tions (2.3.2), but for the moment we set aside (ignore) the initial condition. The product
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solution, (2.3.4), usually does not satisfy the initial conditions. Later we will explain how
to satisfy the initial conditions.

Let us be clear from the beginning—we do not give any reasons why we chose the
form (2.3.4). (Daniel Bernoulli invented this technique in the 1700s. It works because
it reduces a PDE to ODEs, as we shall see.) We substitute the assumed product form,
(2.3.4), into the partial differential equation (2.3.1):

∂u

∂t
= φ(x)

dG

dt

∂2u

∂x2
=

d2φ

dx2
G(t),

and consequently the heat equation (2.3.1) implies that

φ(x)
dG

dt
= k

d2φ

dx2
G(t). (2.3.5)

We note that we can “separate variables” by dividing both sides of (2.3.5) by φ(x)G(t):

1
G

dG

dt
= k

1
φ

d2φ

dx2
.

Now the variables have been “separated” in the sense that the left-hand side is only a
function of t and the right-hand side only a function of x. We can continue in this way,
but it is convenient (i.e., not necessary) also to divide by the constant k, and thus

1
kG

dG

dt︸ ︷︷ ︸
function
of t only

=
1
φ

d2φ

dx2︸ ︷︷ ︸
function
of x only

. (2.3.6)

This could be obtained directly from (2.3.5) by dividing by kφ(x)G(t). How is it possible
for a function of time to equal a function of space? If x and t are both to be arbitrary
independent variables, then x cannot be a function of t (or t a function of x) as seems
to be specified by (2.3.6). The important idea is that we claim it is necessary that both
sides of (2.3.6) must equal the same constant:

1
kG

dG

dt
=

1
φ

d2φ

dx2
= −λ, (2.3.7)

where λ is an arbitrary constant known as the separation constant.1 We will explain
momentarily the mysterious minus sign, which was introduced only for convenience.

1As further explanation for the constant in (2.3.7), let us say the following. Suppose that the left-hand
side of (2.3.7) is some function of t, (1/kG) dG/dt = w(t). If we differentiate with respect to x, we get
zero: 0 = d/dx(1/φ d2φ/dx2). Since 1/φ d2φ/dx2 is only a function of x, this implies that 1/φ d2φ/dx2

must be a constant, its derivative equaling zero. In this way (2.3.7) follows.
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Equation (2.3.7) yields two ordinary differential equations, one for G(t) and one for
φ(x):

d2φ

dx2
= −λφ (2.3.8)

dG

dt
= −λkG. (2.3.9)

We reiterate that λ is a constant, and it is the same constant that appears in both
(2.3.8) and (2.3.9). The product solutions, u(x, t) = φ(x)G(t), must also satisfy the two
homogeneous boundary conditions. For example, u(0, t) = 0 implies that φ(0)G(t) = 0.
There are two possibilities. Either G(t) ≡ 0 (the meaning of ≡ is identically zero, for all
t) or φ(0) = 0. If G(t) ≡ 0, then from (2.3.4), the assumed product solution is identically
zero, u(x, t) ≡ 0. This is not very interesting. [u(x, t) ≡ 0 is called the trivial solution
since u(x, t) ≡ 0 automatically satisfies any homogeneous PDE and any homogeneous
BC.] Instead, we look for nontrivial solutions. For nontrivial solutions, we must have

φ(0) = 0. (2.3.10)

By applying the other boundary condition, u(L, t) = 0, we obtain in a similar way that

φ(L) = 0. (2.3.11)

Product solutions, in addition to satisfying two ordinary differential equations, (2.3.8)
and (2.3.9), must also satisfy boundary conditions (2.3.10) and (2.3.11).

2.3.3 Time-Dependent Ordinary Differential Equation

The advantage of the product method is that it transforms a partial differential equation,
which we do not know how to solve, into two ordinary differential equations. The bound-
ary conditions impose two conditions on the x-dependent ordinary differential equation
(ODE). The time-dependent equation has no additional conditions, just

dG

dt
= −λkG. (2.3.12)

Let us solve (2.3.12) first before we discuss solving the x-dependent ODE with its two
homogeneous boundary conditions. Equation (2.3.12) is a first-order linear homogeneous
differential equation with constant coefficients. We can obtain its general solution quite
easily. Nearly all constant-coefficient (linear and homogeneous) ODEs can be solved by
seeking exponential solutions, G = ert, where in this case by substitution the characteristic
polynomial is r = −λk. Therefore, the general solution of (2.3.12) is

G(t) = ce−λkt. (2.3.13)

We have remembered that for linear homogeneous equations, if e−λkt is a solution, then
ce−λkt is a solution (for any arbitrary multiplicative constant c). The time-dependent
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solution is a simple exponential. Recall that λ is the separation constant, which for the
moment is arbitrary. However, eventually we will discover that only certain values of λ
are allowable. If λ > 0, the solution exponentially decays as t increases (since k > 0). If
λ < 0, the solution exponentially increases, and if λ = 0, the solution remains constant in
time. Since this is a heat conduction problem and the temperature u(x, t) is proportional
to G(t), we do not expect the solution to grow exponentially in time. Thus, we expect
λ ≥ 0; we have not proved that statement, but we will do so later. When we see any
parameter we often automatically assume it is positive, even though we shouldn’t. Thus,
it is rather convenient that we have discovered that we expect λ ≥ 0. In fact, that is
why we introduced the expression −λ when we separated variables [see (2.3.7)]. If we had
introduced μ (instead of −λ), then our previous arguments would have suggested that
μ ≤ 0. In summary, when separating variables in (2.3.7), we mentally solve the time-
dependent equation and see that G(t) does not exponentially grow only if the separation
constant was ≤ 0. We then introduce −λ for convenience, since we would now expect
λ ≥ 0. We next show how we actually determine all allowable separation constants. We
will verify mathematically that λ ≥ 0, as we expect by the physical arguments presented
previously.

2.3.4 Boundary Value (Eigenvalue) Problem

The x-dependent part of the assumed product solution, φ(x), satisfies a second-order
ODE with two homogeneous boundary conditions:

d2φ

dx2
= −λφ

φ(0) = 0
φ(L) = 0.

(2.3.14)

We call (2.3.14) a boundary value problem for ordinary differential equations. In
the usual first course in ordinary differential equations, only initial value problems are
specified. For example (think of Newton’s law of motion for a particle), we solve second-
order differential equations (m d2y/d2t = F ) subject to two initial conditions [y(0) and
dy/dt(0) given] both at the same time. Initial value problems are quite nice, as usually
there exist unique solutions to initial value problems. However, (2.3.14) is quite different.
It is a boundary value problem, since the two conditions are not given at the same
place (e.g., x = 0) but at two different places, x = 0 and x = L. There is no simple
theory that guarantees that the solution exists or is unique to this type of problem. In
particular, we note that φ(x) = 0 satisfies the ODE and both homogeneous boundary
conditions, no matter what the separation constant λ is, even if λ < 0; it is referred to
as the trivial solution of the boundary value problem. It corresponds to u(x, t) ≡ 0,
since u(x, t) = φ(x)G(t). If solutions of (2.3.14) had been unique, then φ(x) ≡ 0 would
be the only solution; we would not be able to obtain nontrivial solutions of a linear
homogeneous PDE by the product (separation of variables) method. Fortunately, there
are other solutions of (2.3.14). However, there do not exist nontrivial solutions of (2.3.14)
for all values of λ. Instead, we will show that there are certain special values of λ, called
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eigenvalues2 of the boundary value problem (2.3.14), for which there are nontrivial
solutions, φ(x). A nontrivial φ(x), which exists only for certain values of λ, is called an
eigenfunction corresponding to the eigenvalue λ.

Let us try to determine the eigenvalues λ. In other words, for what values of λ
are there nontrivial solutions of (2.3.14)? We solve (2.3.14) directly. The second-order
ODE is linear and homogeneous with constant coefficients: Two independent solutions
are usually obtained in the form of exponentials, φ = erx. Substituting this exponential
into the differential equation yields the characteristic polynomial r2 = −λ. The solutions
corresponding to the two roots have significantly different properties depending on the
value of λ. There are four cases:

1. λ > 0, in which the two roots are purely imaginary and are complex conjugates of
each other, r = ±i

√
λ.

2. λ = 0, in which the two roots coalesce and are equal, r = 0, 0.
3. λ < 0, in which the two roots are real and unequal, r = ±√−λ, one positive and one

negative. (Note that in this case −λ is positive, so that the square root operation is
well defined.)

4. λ itself complex.

We will ignore the last case (as most of you would have done anyway) since we will later
(Chapter 5) prove that λ is real in order for a nontrivial solution of the boundary value
problem (2.3.14) to exist. From the time-dependent solution, using physical reasoning, we
expect that λ ≥ 0; perhaps then it will be unnecessary to analyze case 3. However, we
will demonstrate a mathematical reason for the omission of this case.

Eigenvalues and eigenfunctions (λ > 0). Let us first consider the case in
which λ > 0. The boundary value problem is

d2φ

dx2
= −λφ (2.3.15)

φ(0) = 0 (2.3.16)
φ(L) = 0 (2.3.17)

If λ > 0, exponential solutions φ = erx satisfy r2 = −λ and hence r = ±i
√

λ and
have imaginary exponents, e±i

√
λx. In this case, the solutions oscillate. If we desire real

independent solutions, the choices cos
√

λx and sin
√

λx are usually made (cos
√

λx and
sin

√
λx are each linear combinations of e±i

√
λx). Thus, the general solution of (2.3.15) is

φ = c1 cos
√

λx + c2 sin
√

λx, (2.3.18)

an arbitrary linear combination of two independent solutions. (The linear combination
may be chosen from any two independent solutions.) cos

√
λx and sin

√
λx are usually the

most convenient, but ei
√

λx and e−i
√

λx can be used. In some examples, other independent
2The word eigenvalue comes from the German word eigenwert, meaning characteristic value.
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solutions are chosen. For example, Exercise 2.3.2(f) illustrates the advantage of sometimes
choosing cos

√
λ(x − a) and sin

√
λ(x − a) as independent solutions.

We now apply the boundary conditions. φ(0) = 0 implies that

0 = c1.

The cosine term vanishes, since the solution must be zero at x = 0. Thus, φ(x) =
c2 sin

√
λx. Only the boundary condition at x = L has not been satisfied. φ(L) = 0

implies that
0 = c2 sin

√
λL.

Either c2 = 0 or sin
√

λL = 0. If c2 = 0, then φ(x) ≡ 0 since we already determined that
c1 = 0. This is the trivial solution, and we are searching for those values of λ that have
nontrivial solutions. The eigenvalues λ must satisfy

sin
√

λL = 0. (2.3.19)
√

λL must be a zero of the sine function. A sketch of sin z (see Fig. 2.3.1) or our knowledge
of the sine function shows that

√
λL = nπ.

√
λL must equal an integral multiple of π,

where n is a positive integer since
√

λ > 0 (n = 0 is not appropriate since we assumed
that λ > 0 in this derivation). The eigenvalues λ are

λ =
(nπ

L

)2

, n = 1, 2, 3, . . . . (2.3.20)

The eigenfunction corresponding to the eigenvalue λ = (nπ/L)2 is

φ(x) = c2 sin
√

λx = c2 sin
nπx

L
, (2.3.21)

where c2 is an arbitrary multiplicative constant. Often we pick a convenient value for c2;
for example, c2 = 1. We should remember, though, that any specific eigenfunction can
always be multiplied by an arbitrary constant, since the PDE and BCs are linear and
homogeneous.

sinz

2 3 4 zπ π π π

FIGURE 2.3.1 Zeros of sin z.
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Eigenvalue (λ = 0). Now we will determine if λ = 0 is an eigenvalue for (2.3.15)
subject to the boundary conditions (2.3.16), (2.3.17). λ = 0 is a special case. If λ = 0,
(2.3.15) implies that

φ = c1 + c2x,

corresponding to the double-zero roots, r = 0, 0 of the characteristic polynomial.3 To
determine whether λ = 0 is an eigenvalue, the homogeneous boundary conditions must
be applied. φ(0) = 0 implies that 0 = c1, and thus φ = c2x. In addition, φ(L) = 0
implies that 0 = c2L. Since the length L of the rod is positive (�= 0), c2 = 0 and thus
φ(x) ≡ 0. This is the trivial solution, so we say that λ = 0 is not an eigenvalue for this
problem [(2.3.15) and (2.3.16), (2.3.17)]. Be wary, though; λ = 0 is an eigenvalue for other
problems and should be looked at individually for any new problem you may encounter.

Eigenvalues (λ < 0). Are there any negative eigenvalues? If λ < 0, the
solution of

d2φ

dx2
= −λφ (2.3.22)

is not difficult, but you may have to be careful. The roots of the characteristic polynomial
are r = ±√−λ, so solutions are e

√−λx and e−
√−λx. If you do not like the notation

√−λ,
you may prefer what is equivalent (if λ < 0), namely

√|λ|. However,
√|λ| �= √

λ since
λ < 0. It is convenient to let

λ = −s

in the case in which λ < 0. Then s > 0, and the differential equation (2.3.22) becomes

d2φ

dx2
= sφ (2.3.23)

Two independent solutions are e+
√

sx and e−
√

sx, since s > 0. The general solution is

φ = c1e
√

sx + c2e
−√

sx. (2.3.24)

Frequently, we instead use the hyperbolic functions. As a review, the definitions of the
hyperbolic functions are

cosh z ≡ ez + e−z

2
and sinh z ≡ ez − e−z

2
,

simple linear combinations of exponentials. These are sketched in Fig. 2.3.2. Note that
sinh 0 = 0 and cosh 0 = 1 (the results analogous to those for trigonometric functions).
Also note that d/dz cosh z = sinh z and d/dz sinh z = cosh z, quite similar to trigonometric
functions, but easier to remember because of the lack of the annoying appearance of any

3Please do not say that φ = c1 cos
√

λx + c2 sin
√

λx is the general solution for λ = 0. If you do that,
you find for λ = 0 that the general solution is an arbitrary constant. Although an arbitrary constant
solves (2.3.15) when λ = 0, (2.3.15) is still a linear second-order differential equation; its general solution

must be a linear combination of two independent solutions. It is possible to choose sin
√

λx/
√

λ as a
second independent solution so that as λ → 0, it agrees with the solution x. However, this involves too
much work. It is better just to consider λ = 0 as a separate case.
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minus signs in the differentiation formulas. If hyperbolic functions are used instead of
exponentials, the general solution of (2.3.23) can be written as

φ = c3 cosh
√

sx + c4 sinh
√

sx, (2.3.25)

a form equivalent to (2.3.24). To determine if there are any negative eigenvalues (λ < 0,
but s > 0 since λ = −s), we again apply the boundary conditions. Either form (2.3.24)
or (2.3.25) can be used; the same answer is obtained either way. From (2.3.25), φ(0) = 0
implies that 0 = c3, and hence φ = c4 sinh

√
sx. The other boundary condition, φ(L) = 0,

implies that c4 sinh
√

sL = 0. Since
√

sL > 0 and since sinh is never zero for a positive
argument (see Fig. 2.3.2), it follows that c4 = 0. Thus, φ(x) ≡ 0. The only solution of
(2.3.23) for λ < 0 that solves the homogeneous boundary conditions is the trivial solution.
Thus, there are no negative eigenvalues. For this example, the existence of negative eigen-
values would have corresponded to exponential growth in time. We did not expect such
solutions on physical grounds, and here we have verified mathematically in an explicit
manner that there cannot be any negative eigenvalues for this problem. In some other
problems there can be negative eigenvalues. Later (Section 5.3) we will formulate a theory,
involving the Rayleigh quotient, in which we will know before we start many problems
that there cannot be negative eigenvalues. This will at times eliminate calculations such
as the ones just performed.

FIGURE 2.3.2 Hyperbolic
functions.

z

coshz
sinhz

Eigenfunctions—summary. We summarize our results for the boundary value
problem resulting from separation of variables:

d2φ

dx2
+ λφ = 0

φ(0) = 0
φ(L) = 0.

This boundary value problem will arise many times in the text. It is helpful to nearly
memorize the result that the eigenvalues λ are all positive (not zero or negative),

λ =
(nπ

L

)2

,
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n = 1

n = 3

n = 2

0 L

FIGURE 2.3.3 Eigenfunctions sinnπx/L and their zeros.

where n is any positive integer, n = 1, 2, 3, . . . , and the corresponding eigenfunctions are

φ(x) = sin
nπx

L
.

If we introduce the notation λ1 for the first (or lowest) eigenvalue, λ2 for the next, and so
on, we see that λn = (nπ/L)2, n = 1, 2, . . . . The corresponding eigenfunctions are some-
times denoted φn(x), the first few of which are sketched in Fig. 2.3.3. All eigenfunctions
are (of course) zero at both x = 0 and x = L.

Spring-mass analog. We have obtained solutions of d2φ/dx2 = −λφ. Here we
present the analog of this to a spring-mass system, which some of you may find helpful.
A spring-mass system subject to Hooke’s law satisfies md2y/dt2 = −ky, where k > 0 is
the spring constant. Thus, if λ > 0, the ODE (2.3.15) may be thought of as a spring-mass
system with a restoring force. Thus, if λ > 0, the solution should oscillate. We should
not be surprised that the BCs (2.3.16), (2.3.17) can be satisfied for λ > 0; a nontrivial
solution of the ODE, which is zero at x = 0, has a chance of being zero again at x = L
since there is a restoring force and the solution of the ODE oscillates. We have shown
that this can happen for specific values of λ > 0. However, if λ < 0, then the force is not
restoring. It would seem less likely that a nontrivial solution that is zero at x = 0 could
possibly be zero again at x = L. We must not always trust our intuition entirely, so we
have verified these facts mathematically.

2.3.5 Product Solutions and the Principle of Superposition

In summary, we obtained product solutions of the heat equation, ∂u/∂t = k∂2u/∂x2,
satisfying the specific homogeneous boundary conditions u(0, t) = 0 and u(L, t) = 0 only
corresponding to λ > 0. These solutions, u(x, t) = φ(x)G(t), have G(t) = ce−λkt and
φ(x) = c2 sin

√
λx, where we determined from the boundary conditions [φ(0) = 0 and
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φ(L) = 0] the allowable values of the separation constant λ, λ = (nπ/L)2. Here n is a
positive integer. Thus, product solutions of the heat equation are

u(x, t) = B sin
nπx

L
e−k(nπ/L)2t, n = 1, 2, . . . , (2.3.26)

where B is an arbitrary constant (B = cc2). This is a different solution for each n.
Note that as t increases, these special solutions exponentially decay, in particular, for
these solutions, limt→∞ u(x, t) = 0. In addition, u(x, t) satisfies a special initial condition,
u(x, 0) = B sin nπx/L.

Initial value problems. We can use the simple product solutions (2.3.26) to
satisfy an initial value problem if the initial condition happens to be just right. For
example, suppose that we wish to solve the following initial value problem:

PDE:
∂u

∂t
= k

∂2u

∂x2

BC: u(0, t) = 0
u(L, t) = 0

IC: u(x, 0) = 4 sin
3πx

L
.

Our product solution u(x, t) = B sin nπx/L · e−k(nπ/L)2t satisfies the initial condition
u(x, 0) = B sin nπx/L. Thus, by picking n = 3 and B = 4, we will have satisfied the
initial condition. Our solution of this example is thus

u(x, t) = 4 sin
3πx

L
e−k(3π/L)2t.

It can be proved that this physical problem (as well as most we consider) has a unique
solution. Thus, it does not matter what procedure we used to obtain the solution.

Principle of superposition. The product solutions appear to be very special,
since they may be used directly only if the initial condition happens to be of the ap-
propriate form. However, we wish to show that these solutions are useful in many other
situations; in fact, in all situations. Consider the same PDE and BCs, but instead subject
to the initial condition

u(x, 0) = 4 sin
3πx

L
+ 7 sin

8πx

L
.

The solution of this problem can be obtained by adding together two simpler solutions
obtained by the product method:

u(x, t) = 4 sin
3πx

L
e−k(3π/L)2t + 7 sin

8πx

L
e−k(8π/L)2t.

We immediately see that this solves the initial condition (substitute t = 0) as well as the
boundary conditions (substitute x = 0 and x = L). Only slightly more work shows that
the partial differential equation has been satisfied. This is an illustration of the principle
of superposition.
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Superposition (extended). The principle of superposition can be extended to
show that if u1, u2, u3, . . . , uM are solutions of a linear homogeneous problem, then any
linear combination of these is also a solution, c1u1+c2u2+c3u3+. . .+cMuM =

∑M
n=1 cnun,

where cn are arbitrary constants. Since we know from the method of separation of variables
that sin nπx/L · e−k(nπ/L)2t is a solution of the heat equation (solving zero boundary
conditions) for all positive n, it follows that any linear combination of these solutions is
also a solution of the linear homogeneous heat equation. Thus,

u(x, t) =
M∑

n=1

Bn sin
nπx

L
e−k(nπ/L)2t (2.3.27)

solves the heat equation (with zero boundary conditions) for any finite M . We have added
solutions to the heat equation, keeping in mind that the “amplitude” B could be different
for each solution, yielding the subscript Bn. Equation (2.3.27) shows that we can solve
the heat equation if initially

u(x, 0) = f(x) =
M∑

n=1

Bn sin
nπx

L
, (2.3.28)

that is, if the initial condition equals a finite sum of the appropriate sine functions. What
should we do in the usual situation in which f(x) is not a finite linear combination of the
appropriate sine functions? We claim that the theory of Fourier series (to be described
with considerable detail in Chapter 3) states that

1. Any function f(x) (with certain very reasonable restrictions, to be discussed later)
can be approximated (in some sense) by a finite linear combination of sinnπx/L.

2. The approximation may not be very good for small M , but gets to be a better and
better approximation as M is increased (see Section 5.10).

3. If we consider the limit as M → ∞, then not only is (2.3.28) the best approximation
to f(x) using combinations of the eigenfunctions, but (again in some sense) the
resulting infinite series will converge to f(x) [with some restrictions on f(x), to be
discussed].

We thus claim (and clarify and make precise in Chapter 3) that “any” initial condition
f(x) can be written as an infinite linear combination of sinnπx/L, known as a type of
Fourier series:

f(x) =
∞∑

n=1

Bn sin
nπx

L
. (2.3.29)

What is more important is that we also claim that the corresponding infinite series is the
solution of our heat conduction problem:

u(x, t) =
∞∑

n=1

Bn sin
nπx

L
e−k(nπ/L)2t. (2.3.30)
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Analyzing infinite series such as (2.3.29) and (2.3.30) is not easy. We must discuss the
convergence of these series as well as briefly discuss the validity of an infinite series solution
of our entire problem. For the moment, let us ignore these somewhat theoretical issues
and concentrate on the construction of these infinite series solutions.

2.3.6 Orthogonality of Sines

One very important practical point has been neglected. Equation (2.3.30) is our solution
with the coefficients Bn satisfying (2.3.29) (from the initial conditions), but how do we
determine the coefficients Bn? We assume it is possible that

f(x) =
∞∑

n=1

Bn sin
nπx

L
, (2.3.31)

where this is to hold over the region of the one-dimensional rod, 0 ≤ x ≤ L. We will
assume that standard mathematical operations are also valid for infinite series. Equation
(2.3.31) represents one equation in an infinite number of unknowns, but it should be
valid at every value of x. If we substitute a thousand different values of x into (2.3.31),
each of the thousand equations would hold, but there would still be an infinite number
of unknowns. This is not an efficient way to determine the Bn. Instead, we frequently
will employ an extremely important technique based on noticing (perhaps from a table
of integrals) that the eigenfunctions sinnπx/L satisfy the following integral property:

∫ L

0

sin
nπx

L
sin

mπx

L
dx =

{
0 m �= n
L/2 m = n,

(2.3.32)

where m and n are positive integers. This can be derived (Exercise 2.3.5) using trigono-
metric addition formulas. However, perhaps we can suggest just to memorize (2.3.32).

To use these conditions, (2.3.32), to determine Bn, we multiply both sides of (2.3.31)
by sinmπx/L (for any fixed integer m, independent of the “dummy” index n):

f(x) sin
mπx

L
=

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
. (2.3.33)

Next we integrate (2.3.33) from x = 0 to x = L:

∫ L

0

f(x) sin
mπx

L
dx =

∞∑
n=1

Bn

∫ L

0

sin
nπx

L
sin

mπx

L
dx. (2.3.34)

For finite series, the integral of a sum of terms equals the sum of the integrals. We assume
that this is valid for this infinite series. Now we evaluate the infinite sum. From the integral
property (2.3.32), we see that each term of the sum is zero whenever n �= m. In summing
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over n, eventually n equals m. It is only for that one value of n (i.e., n = m) that there
is a contribution to the infinite sum. The only term that appears on the right-hand side
of (2.3.34) occurs when n is replaced by m:

∫ L

0

f(x) sin
mπx

L
dx = Bm

∫ L

0

sin2 mπx

L
dx.

Since the integral on the right equals L/2, we can solve for Bm:

Bm =

∫ L

0

f(x) sin
mπx

L
dx

∫ L

0

sin2 mπx

L
dx

=
2
L

∫ L

0

f(x) sin
mπx

L
dx. (2.3.35)

This result is very important, and so is the method by which it was obtained. Try to learn
both. The integral in (2.3.35) is considered to be known since f(x) is the given initial con-
dition. The integral cannot usually be evaluated, in which case numerical integrations (on
a computer) may need to be performed to get explicit numbers for Bm, m = 1, 2, 3, . . . .

You will find that the formula (2.3.32),
∫ L

0
sin2 nπx/L dx = L/2, is quite useful

in many different circumstances, including applications having nothing to do with the
material of this text. One reason for its applicability is that there are many periodic
phenomena in nature (sinωt), and usually energy or power is proportional to the square
(sin2 ωt). The average energy is then proportional to

∫ 2π/ω

0
sin2 ωt dt divided by the period

2π/ω. It is worthwhile to memorize that the average over a full period of sine or cosine
squared is 1

2 . Thus, the integral over any number of complete periods of the square of a
sine or cosine is one half the length of the interval. In this way

∫ L

0
sin2 nπx/L dx = L/2,

since the interval 0 to L is either a complete or a half-period of sinnπx/L.

∫ L

0
A(x)B(x) dx = 0,

Orthogonality. Two vectors A = a1̂i + a2̂j + a3k̂ and B = b1̂i + b2̂j + b3k̂ are
orthogonal (perpendicular) if A ·B = a1b1 +a2b2 +a3b3 = 0. In a similar manner, we say
that the functions A(x) and B(x) are orthogonal over the interval 0 ≤ x ≤ L. We borrow
the terminology “orthogonal” from perpendicular vectors because

∫ L

0
A(x)B(x) dx = 0 is

analogous to a zero dot product, as is explained further in the appendix to this section.
A set of functions each member of which is orthogonal to every other member is called
an orthogonal set of functions. An example is that of the functions sinnπx/L, the
eigenfunctions of the boundary value problem

d2φ

dx2
+ λφ = 0 with φ(0) = 0 and φ(L) = 0.
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They are mutually orthogonal because of (2.3.32). Therefore, we call (2.3.32) an orthog-
onality condition.

In fact, we will discover that for most other boundary value problems, the eigen-
functions will form an orthogonal set of functions (with certain modifications discussed
in Chapter 5 with respect to Sturm–Liouville eigenvalue problems).

2.3.7 Formulation, Solution, and Interpretation of an Example

As an example, let us analyze our solution in the case in which the initial temperature is
constant, 100◦C. This corresponds to a physical problem that is easy to reproduce in the
laboratory. Take a one-dimensional rod and place the entire rod in a large tub of boiling
water (100◦C). Let it sit there for a long time. After a while (we expect) the rod will be
100◦C throughout. Now insulate the lateral sides (if that had not been done earlier) and
suddenly (at t = 0) immerse the two ends in large well-stirred baths of ice water, 0◦C.
The mathematical problem is

PDE:
∂u

∂t
= k

∂2u

∂x2
, t > 0, 0 < x < L (2.3.36)

BC:
u(0, t) = 0
u(L, t) = 0, t > 0 (2.3.37)

IC: u(x, 0) = 100, 0 < x < L. (2.3.38)

According to (2.3.30) and (2.3.35), the solution is

u(x, t) =
∞∑

n=1

Bn sin
nπx

L
e−k(nπ/L)2t, (2.3.39)

where

Bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx (2.3.40)

and f(x) = 100. Recall that the coefficient Bn was determined by having (2.3.39) satisfy
the initial condition,

f(x) =
∞∑

n=1

Bn sin
nπx

L
. (2.3.41)

We calculate the coefficients Bn from (2.3.40):

Bn =
2
L

∫ L

0

100 sin
nπx

L
dx =

200
L

(
− L

nπ
cos

nπx

L

)∣∣∣∣
L

0

=
200
nπ

(1 − cos nπ) =

{
0 n even
400
nπ

n odd

(2.3.42)
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FIGURE 2.3.4 Time dependence of temperature u(x, t).

since cos nπ = (−1)n, which equals 1 for n even and −1 for n odd. The solution (2.3.39)
is graphed in Fig. 2.3.4. The series (2.3.41) will be studied further in Chapter 3. In
particular, we must explain the intriguing situation that the initial temperature equals
100 everywhere, but the series (2.3.41) equals 0 at x = 0 and x = L (due to the boundary
conditions).

Approximations to the initial value problem. We have now obtained the
solution to the initial value problem (2.3.36)–(2.3.38) for the heat equation with zero
boundary conditions (x = 0 and x = L) and initial temperature distribution equaling
100. The solution is (2.3.39), with Bn given by (2.3.42). The solution is quite com-
plicated, involving an infinite series. What can we say about it? First, we notice that
limt→∞ u(x, t) = 0. The temperature distribution approaches a steady state, u(x, t) = 0.
This is not surprising physically since both ends are at 0◦; we expect all the initial heat
energy contained in the rod to flow out the ends. The equilibrium problem, d2u/dx2 = 0
with u(0) = 0 and u(L) = 0, has a unique solution, u ≡ 0, agreeing with the limit as t
tends to infinity of the time-dependent problem.

One question of importance that we can answer is the manner in which the solution
approaches steady state. If t is large, what is the approximate temperature distribution,
and how does it differ from the steady state 0◦? We note that each term in (2.3.39) decays
at a different rate. The more oscillations in space, the faster the decay. If t is such that
kt(π/L)2 is large, then each succeeding term is much smaller than the first. We can then
approximate the infinite series by only the first term:

u(x, t) ≈ 400
π

sin
πx

L
e−k(π/L)2t. (2.3.43)

The larger t is, the better this is as an approximation. Even if kt(π/L)2 = 1
2 , this is not

a bad approximation since

e−k(3π/L)2t

e−k(π/L)2t
= e−8(π/L)2kt = e−4 = 0.018 . . . .



50 Chapter 2 Method of Separation of Variables

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6
0

20

40

60

80

100

120

x

--First term
-Infinite series

u(x, t)

kt(π/L)2

FIGURE 2.3.5 Time dependence of temperature (using the infinite series) compared to the
first term. Note the first term is a good approximation if the time is not too small.

Thus, if kt(π/L)2 ≥ 1
2 , we can use the simple approximation. We see that for these times

the spatial dependence of the temperature is just the simple rise and fall of sinπx/L, as
illustrated in Fig. 2.3.5. The peak amplitude, occurring in the middle x = L/2, decays
exponentially in time. For kt(π/L)2 less than 1

2 , the spatial dependence cannot be ap-
proximated by one simple sinusoidal function; more terms are necessary in the series. The
solution can be easily computed, using a finite number of terms. In some cases, many
terms may be necessary, and there would be better ways to calculate u(x, t).

2.3.8 Summary

Let us summarize the method of separation of variables as it appears for the one example:

PDE:
∂u

∂t
= k

∂2u

∂x2

BC: u(0, t) = 0

u(L, t) = 0

IC: u(x, 0) = f(x).

1. Make sure that you have a linear and homogeneous PDE with linear and homoge-
neous BC.

2. Temporarily ignore the nonzero IC.
3. Separate variables (determine differential equations implied by the assumption of

product solutions) and introduce a separation constant.
4. Determine separation constants as the eigenvalues of a boundary value problem.
5. Solve other differential equations. Record all product solutions of the PDE obtain-

able by this method.
6. Apply the principle of superposition (for a linear combination of all product solu-

tions).
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7. Attempt to satisfy the initial condition.
8. Determine coefficients using the orthogonality of the eigenfunctions.

These steps should be understood, not memorized. It is important to note that

1. The principle of superposition applies to solutions of the PDE (do not add up
solutions of various different ordinary differential equations).

2. Do not apply the initial condition u(x, 0) = f(x) until after the principle of super-
position.

EXERCISES 2.3

2.3.1. For the following partial differential equations, what ordinary differential equations
are implied by the method of separation of variables?

∗ (a)
∂u

∂t
=

k

r

∂

∂r

(
r
∂u

∂r

)
(b)

∂u

∂t
= k

∂2u

∂x2
− v0

∂u

∂x

∗ (c)
∂2u

∂x2
+

∂2u

∂y2
= 0 (d)

∂u

∂t
=

k

r2

∂

∂r

(
r2 ∂u

∂r

)

∗ (e)
∂u

∂t
= k

∂4u

∂x4
∗ (f)

∂2u

∂t2
= c2

∂2u

∂x2

2.3.2. Consider the differential equation

d2φ

dx2
+ λφ = 0.

Determine the eigenvalues λ (and corresponding eigenfunctions) if φ satisfies the
following boundary conditions. Analyze three cases (λ > 0, λ = 0, λ < 0). You may
assume that the eigenvalues are real.
(a) φ(0) = 0 and φ(π) = 0

*(b) φ(0) = 0 and φ(1) = 0

(c)
dφ

dx
(0) = 0 and

dφ

dx
(L) = 0 (If necessary, see Section 2.4.1.)

*(d) φ(0) = 0 and
dφ

dx
(L) = 0

(e)
dφ

dx
(0) = 0 and φ(L) = 0

*(f) φ(a) = 0 and φ(b) = 0 (You may assume that λ > 0.)

(g) φ(0) = 0 and
dφ

dx
(L) + φ(L) = 0 (If necessary, see Section 5.8.)

2.3.3. Consider the heat equation
∂u

∂t
= k

∂2u

∂x2
,

subject to the boundary conditions

u(0, t) = 0 and u(L, t) = 0.

Solve the initial value problem if the temperature is initially
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(a) u(x, 0) = 6 sin 9πx
L (b) u(x, 0) = 3 sin πx

L − sin 3πx
L

∗ (c) u(x, 0) = 2 cos 3πx
L (d) u(x, 0) =

{
1 0 < x ≤ L/2
2 L/2 < x < L

(e) u(x, 0) = f(x)

[Your answer in part (c) may involve certain integrals that do not need to be eval-
uated.]

2.3.4. Consider
∂u

∂t
= k

∂2u

∂x2
,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f(x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

∫ L

0

sin
nπx

L
sin

mπx

L
dx for n > 0, m > 0.

Use the trigonometric identity

sin a sin b =
1
2

[cos(a − b) − cos(a + b)] .

*2.3.6. Evaluate ∫ L

0

cos
nπx

L
cos

mπx

L
dx for n ≥ 0, m ≥ 0.

Use the trigonometric identity

cos a cos b =
1
2

[cos(a + b) + cos(a − b)] .

(Be careful if a − b = 0 or a + b = 0.)
2.3.7. Consider the following boundary value problem (if necessary, see Section 2.4.1):

∂u

∂t
= k

∂2u

∂x2
with

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, and u(x, 0) = f(x).

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there are no
separated solutions which exponentially grow in time. [Hint: The answer is

u(x, t) = A0 +
∞∑

n=1

Ane−λnkt cos
nπx

L
.

]

What is λn?
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(c) Show that the initial condition, u(x, 0) = f(x), is satisfied if

f(x) = A0 +
∞∑

n=1

An cos
nπx

L
.

(d) Using Exercise 2.3.6, solve for A0 and An(n ≥ 1).
(e) What happens to the temperature distribution as t → ∞? Show that it ap-

proaches the steady-state temperature distribution (see Section 1.4).
*2.3.8. Consider

∂u

∂t
= k

∂2u

∂x2
− αu.

This corresponds to a one-dimensional rod either with heat loss through the lateral
sides with outside temperature 0◦ (α > 0, see Exercise 1.2.4) or with insulated
lateral sides with a heat sink proportional to the temperature. Suppose that the
boundary conditions are

u(0, t) = 0 and u(L, t) = 0.

(a) What are the possible equilibrium temperature distributions if α > 0?
(b) Solve the time-dependent problem [u(x, 0) = f(x)] if α > 0. Analyze the tem-

perature for large time (t → ∞) and compare to part (a).
*2.3.9. Redo Exercise 2.3.8 if α < 0. [Be especially careful if −α/k = (nπ/L)2.]
2.3.10. For two- and three-dimensional vectors, the fundamental property of dot products,

A · B = |A||B| cos θ, implies that

|A · B| ≤ |A||B|. (2.3.44)

In this exercise, we generalize this to n-dimensional vectors and functions, in which
case (2.3.44) is known as Schwarz’s inequality. [The names of Cauchy and
Buniakovsky are also associated with (2.3.44).]
(a) Show that |A− γB|2 > 0 implies (2.3.44), where γ = A · B/B · B.
(b) Express the inequality using both

A · B =
∞∑

n=1

anbn =
∞∑

n=1

ancn
bn

cn
.

*(c) Generalize (2.3.44) to functions. [Hint: Let A · B mean the integral∫ L
0

A(x)B(x) dx.]

2.3.11. Solve the heat equation
∂u

∂t
= k

∂2u

∂x2

subject to the following conditions:

u(0, t) = 0 u(L, t) = 0 u(x, 0) = f(x).

What happens as t → ∞? [Hints:

1. It is known that if u(x, t) = φ(x) G(t), then
1

kG

dG

dt
=

1
φ

d2φ

dx2
.

2. Use formula sheet.]
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APPENDIX TO 2.3: ORTHOGONALITY OF FUNCTIONS

Two vectors A and B are orthogonal if A · B = 0. In component form, A = a1î+a2ĵ+a3k̂
and B = b1î+ b2ĵ + b3k̂; A and B are orthogonal if

∑
i aibi = 0. A function A(x) can be

thought of as a vector. If only three values of x are important, x1, x2, and x3, then the
components of the function A(x) (thought of as a vector) are A(x1) ≡ a1, A(x2) ≡ a2,
and A(x3) ≡ a3. The function A(x) is orthogonal to the function B(x) (by definition) if∑

i aibi = 0. However, in our problems, all values of x between 0 and L are important.
The function A(x) can be thought of as an infinite-dimensional vector, whose components
are A(xi) for all xi on some interval. In this manner, the function A(x) would be said
to be orthogonal to B(x) if

∑
i A(xi)B(xi) = 0, where the summation was to include all

points between 0 and L. It is thus natural to define the function A(x) to be orthogonal
to B(x) if

∫ L

0
A(x)B(x) dx = 0. The integral replaces the vector dot product; both are

examples of “inner products.”
In vectors, we have the three mutually perpendicular (orthogonal) unit vectors î, ĵ,

and k̂, known as the standard basis vectors. In component form,

A = a1î + a2ĵ + a3k̂.

a1 is the projection of A in the î direction, and so on. Sometimes we wish to represent
A in terms of other mutually orthogonal vectors (which may not be unit vectors) u, v,
and w, called an orthogonal set of vectors. Then

A = αuu + αvv + αww.

To determine the coordinates αu, αv, αw with respect to this orthogonal set, u, v, and w,
we can form certain dot products. For example,

A · u = αuu · u + αvv · u + αww · u.

Note that v · u = 0 and w · u = 0, since we assumed that this new set was mutually
orthogonal. Thus, we can easily solve for the coordinate αu, of A in the u-direction,

αu =
A · u

u · u
. (2.3.45)

(αuu is the vector projection of A in the u-direction.)
For functions, we can do a similar thing. If f(x) can be represented by a linear

combination of the orthogonal set, sinnπx/L, then

f(x) =
∞∑

n=1

Bn sin
nπx

L
,

where the Bn may be interpreted as the coordinates of f(x) with respect to the “direction”
(or basis vector) sinnπx/L. To determine these coordinates, we take the inner product
with an arbitrary basis function (vector) sinnπx/L, where the inner product of two
functions is the integral of their product. Thus, as before,

∫ L

0

f(x) sin
mπx

L
dx =

∞∑
n=1

Bn

∫ L

0

sin
nπx

L
sin

mπx

L
dx.
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Since sin nπx/L is an orthogonal set of functions,
∫ L

0
sin nπx/L sin mπx/L dx = 0 for

n �= m. Hence, we solve for the coordinate (coefficient) Bn:

Bn =

∫ L

0
f(x) sin nπx/L dx∫ L

0
sin2 nπx/L dx

. (2.3.46)

This is seen to be the same idea as the projection formula (2.3.45). Our standard formula
(2.3.33),

∫ L

0
sin2 nπx/L dx = L/2, returns (2.3.46) to the more familiar form,

Bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx. (2.3.47)

Both formulas (2.3.45) and (2.3.46) are divided by something. In (2.3.45) it is u ·u, or the
length of the vector u squared. Thus,

∫ L

0
sin2 nπx/L dx may be thought of as the length

squared of sinnπx/L (although here length means nothing other than the square root of
the integral). In this manner, the length squared of the function sinnπx/L is L/2, which
is an explanation of the appearance of the term 2/L in (2.3.47).

2.4 WORKED EXAMPLES WITH THE HEAT EQUATION
(OTHER BOUNDARY VALUE PROBLEMS)

2.4.1 Heat Conduction in a Rod with Insulated Ends

Let us work out in detail the solution (and its interpretation) of the following problem
defined for 0 ≤ x ≤ L and t ≥ 0:

PDE: ∂u

∂t
= k

∂2u

∂x2
(2.4.1)

BC1: ∂u

∂x
(0, t) = 0 (2.4.2)

BC2: ∂u

∂x
(L, t) = 0 (2.4.3)

IC: u(x, 0) = f(x). (2.4.4)

As a review, this is a heat conduction problem in a one-dimensional rod with con-
stant thermal properties and no sources. This problem is quite similar to the problem
treated in Section 2.3, the only difference being the boundary conditions. Here the ends
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are insulated, whereas in Section 2.3, the ends were fixed at 0◦. Both the partial differ-
ential equation and the boundary conditions are linear and homogeneous. Consequently,
we apply the method of separation of variables. We may follow the general procedure
described in Section 2.3.8. The assumption of product solutions,

u(x, t) = φ(x)G(t), (2.4.5)

implies from the PDE as before that

dG

dt
= −λkG (2.4.6)

d2φ

dx2
= −λφ, (2.4.7)

where λ is the separation constant. Again,

G(t) = ce−λkt. (2.4.8)

The insulated boundary conditions, (2.4.2) and (2.4.3), imply that the separated solutions
must satisfy dφ/dx(0) = 0 and dφ/dx(L) = 0. The separation constant λ is then deter-
mined by finding those λ for which nontrivial solutions exist for the following boundary
value problem:

d2φ

dx2
= −λφ (2.4.9)

dφ

dx
(0) = 0 (2.4.10)

dφ

dx
(L) = 0. (2.4.11)

Although the ordinary differential equation for the boundary value problem is the same
one as previously analyzed, the boundary conditions are different. We must repeat some
of the analysis. Once again, three cases should be discussed: λ > 0, λ = 0, λ < 0 (since
we will assume the eigenvalues are real).

For λ > 0, the general solution of (2.4.9) is again

φ = c1 cos
√

λx + c2 sin
√

λx. (2.4.12)

We need to calculate dφ/dx to satisfy the boundary conditions:

dφ

dx
=

√
λ
(
−c1 sin

√
λx + c2 cos

√
λx

)
. (2.4.13)
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The boundary condition dφ/dx(0) = 0 implies that 0 = c2

√
λ, and hence c2 = 0, since

λ > 0. Thus, φ = c1 cos
√

λx and dφ/dx = −c1

√
λ sin

√
λx. The eigenvalues λ and their

corresponding eigenfunctions are determined from the remaining boundary condition,
dφ/dx(L) = 0:

0 = −c1

√
λ sin

√
λL.

As before, for nontrivial solutions, c1 �= 0, and hence sin
√

λL = 0. The eigenvalues for
λ > 0 are the same as the previous problem,

√
λL = nπ or

λ =
(nπ

L

)2

, n = 1, 2, 3 . . . , (2.4.14)

but the corresponding eigenfunctions are cosines (not sines),

φ(x) = c1 cos
nπx

L
, n = 1, 2, 3 . . . . (2.4.15)

The resulting product solutions of the PDE are

u(x, t) = A cos
nπx

L
e−(nπ/L)2kt, n = 1, 2, 3 . . . , (2.4.16)

where A is an arbitrary multiplicative constant.
Before applying the principle of superposition, we must see if there are any other

eigenvalues. If λ = 0, then
φ = c1 + c2x, (2.4.17)

where c1 and c2 are arbitrary constants. The derivative of φ is

dφ

dx
= c2.

Both boundary conditions, dφ/dx(0) = 0 and dφ/dx(L) = 0, give the same condition,
c2 = 0. Thus, there are nontrivial solutions of the boundary value problem for λ = 0,
namely, φ(x) equaling any constant

φ(x) = c1. (2.4.18)

The time-dependent part is also a constant, since e−λkt for λ = 0 equals 1. Thus, another
product solution of both the linear homogeneous PDE and BCs is u(x, t) = A, where A
is any constant.

We do not expect there to be any eigenvalues for λ < 0, since in this case the time-
dependent part grows exponentially. In addition, it seems unlikely that we would find a
nontrivial linear combination of exponentials that would have a zero slope at both x = 0
and x = L. In Exercise 2.4.4, you are asked to show that there are no negative eigenvalues
for λ < 0.

In order to satisfy the initial condition, we use the principle of superposition. We
should take a linear combination of all product solutions of the PDE (not just those
corresponding to λ > 0). Thus,

u(x, t) = A0 +
∞∑

n=1

An cos
nπx

L
e−(nπ/L)2kt. (2.4.19)
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It is interesting to note that this is equivalent to

u(x, t) =
∞∑

n=0

An cos
nπx

L
e−(nπ/L)2kt (2.4.20)

since cos 0 = 1 and e0 = 1. In fact, (2.4.20) is often easier to use in practice. We prefer the
form (2.4.19) in the beginning stages of the learning process, since it more clearly shows
that the solution consists of terms arising from the analysis of two somewhat distinct
cases, λ = 0 and λ > 0.

The initial condition u(x, 0) = f(x) is satisfied if

f(x) = A0 +
∞∑

n=1

An cos
nπx

L
, (2.4.21)

for 0 ≤ x ≤ L. The validity of (2.4.21) will also follow from the theory of Fourier series.
Let us note that in the previous problem, f(x) was represented by a series of sines. Here
f(x) consists of a series of cosines and the constant term. The two cases are different due
to the different boundary conditions. To complete the solution, we need to determine the
arbitrary coefficients A0 and An(n ≥ 1). Fortunately, from integral tables it is known
that cos nπx/L satisfies the following orthogonality relation:

∫ L

0

cos
nπx

L
cos

mπx

L
dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 n �= m

L

2
n = m �= 0

L n = m = 0

(2.4.22)

for n and m nonnegative integers. Note that n = 0 or m = 0 corresponds to a constant
1 contained in the integrand. The constant L/2 is another application of the statement
that the average of the square of a sine or cosine function is 1

2 . The constant L in (2.4.22)
is quite simple since for n = m = 0, (2.4.22) becomes

∫ L

0
dx = L. Equation (2.4.22) states

that the cosine functions (including the constant function) form an orthogonal set of
functions. We can use that idea, in the same way as before, to determine the coefficients.
Multiplying (2.4.21) by cosmπx/L and integrating from 0 to L yields

∫ L

0

f(x) cos
mπx

L
dx =

∞∑
n=0

An

∫ L

0

cos
nπx

L
cos

mπx

L
dx.

This holds for all m, m = 0, 1, 2 . . .. The case in which m = 0 corresponds just to
integrating (2.4.21) directly. Using the orthogonality results, it follows that only the mth
term in the infinite sum contributes:∫ L

0

f(x) cos
mπx

L
dx = Am

∫ L

0

cos2
mπx

L
dx.
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The factor
∫ L

0
cos2 mπx/L dx has two different cases: m = 0 and m �= 0. Solving for Am

yields

A0 =
1
L

∫ L

0

f(x) dx (2.4.23)

(m ≥ 1) Am =
2
L

∫ L

0

f(x) cos
mπx

L
dx. (2.4.24)

The two different formulas are a somewhat annoying feature of this series of cosines.
They are simply caused by the factors L/2 and L in (2.4.22).

There is a significant difference between the solutions of the PDE for λ > 0 and the
solution for λ = 0. All the solutions for λ > 0 decay exponentially in time, whereas the
solution for λ = 0 remains constant in time. Thus, as t → ∞, the complicated infinite
series solution (2.4.19) approaches steady state:

lim
t→∞u(x, t) = A0 =

1
L

∫ L

0

f(x) dx.

Not only is the steady-state temperature constant, A0, but we recognize the constant
A0 as the average of the initial temperature distribution. This agrees with information
obtained previously. Recall from Section 1.4 that the equilibrium temperature distribution
for the problem with insulated boundaries is not unique. Any constant temperature is an
equilibrium solution, but using the ideas of conservation of total thermal energy, we know
that the constant must be the average of the initial temperature.

2.4.2 Heat Conduction in a Thin Insulated Circular Ring

We have investigated a heat flow problem whose eigenfunctions are sines and one whose
eigenfunctions are cosines. In this subsection, we illustrate a heat flow problem whose
eigenfunctions are both sines and cosines.

Let us formulate the appropriate initial boundary value problem if a thin wire (with
lateral sides insulated) is bent into the shape of a circle, as illustrated in Fig. 2.4.1. For
reasons that will not be apparent for a while, we let the wire have length 2L (rather
than L, as for the two previous heat conduction problems). Since the circumference of a

FIGURE 2.4.1 Thin circular ring.

x = L
x = –L

x = 0
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circle is 2πr, the radius is r = 2L/2π = L/π. If the wire is thin enough, it is reasonable
to assume that the temperature in the wire is constant along cross sections of the bent
wire. In this situation, the wire should satisfy a one-dimensional heat equation, where the
distance is actually the arc length x along the wire:

∂u

∂t
= k

∂2u

∂x2
. (2.4.25)

We have assumed that the wire has constant thermal properties and no sources. It is
convenient in this problem to measure the arc length x, such that x ranges from −L to
+L (instead of the more usual 0 to 2L).

Let us assume that the wire is very tightly connected to itself at the ends (x = −L
to x = +L). The conditions of perfect thermal contact should hold there (see Exercise
1.3.2). The temperature u(x, t) is continuous there:

u(−L, t) = u(L, t). (2.4.26)

Also, since the heat flux must be continuous there (and the thermal conductivity is
constant everywhere), the derivative of the temperature is also continuous:

∂u

∂x
(−L, t) =

∂u

∂x
(L, t). (2.4.27)

The two boundary conditions for the partial differential equation are (2.4.26) and (2.4.27).
The initial condition is that the initial temperature is a given function of the position
along the wire:

u(x, 0) = f(x). (2.4.28)

The mathematical problem consists of the linear homogeneous PDE (2.4.25) subject to
linear homogeneous BCs (2.4.26), (2.4.27). As such, we will proceed in the usual way to
apply the method of separation of variables. Product solutions u(x, t) = φ(x)G(t) for the
heat equation have been obtained previously, where G(t) = ce−λkt. The corresponding
boundary value problem is

d2φ

dx2
= −λφ (2.4.29)

φ(−L) = φ(L) (2.4.30)
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dφ

dx
(−L) =

dφ

dx
(L). (2.4.31)

The boundary conditions (2.4.30) and (2.4.31) each involve both boundaries (sometimes
called the mixed type). The specific boundary conditions (2.4.30) and (2.4.31) are referred
to as periodic boundary conditions since although the problem can be thought of
physically as being defined only for −L < x < L, it is often thought of as being defined
periodically for all x; the temperature will be periodic (x = x0 is the same physical point
as x = x0 + 2L, and hence must have the same temperature).

If λ > 0, the general solution of (2.4.29) is again

φ = c1 cos
√

λx + c2 sin
√

λx.

The boundary condition φ(−L) = φ(L) implies that

c1 cos
√

λ(−L) + c2 sin
√

λ(−L) = c1 cos
√

λL + c2 sin
√

λL.

Since cosine is an even function, cos
√

λ(−L) = cos
√

λL, and since sine is an odd function,
sin

√
λ(−L) = − sin

√
λL, it follows that φ(−L) = φ(L) is satisfied only if

c2 sin
√

λL = 0. (2.4.32)

Before solving (2.4.32), we analyze the second boundary condition, which involves the
derivative,

dφ

dx
=

√
λ
(
−c1 sin

√
λx + c2 cos

√
λx

)
.

Thus, dφ/dx(−L) = dφ/dx(L) is satisfied only if

c1

√
λ sin

√
λL = 0, (2.4.33)

where the evenness of cosines and the oddness of sines have again been used. Conditions
(2.4.32) and (2.4.33) are easily solved. If sin

√
λL �= 0, then c1 = 0 and c2 = 0, which is

just the trivial solution. Thus, for nontrivial solutions,

sin
√

λL = 0,

which determines the eigenvalues λ. We find (as before) that
√

λL = nπ or, equivalently,
that

λ =
(nπ

L

)2

, n = 1, 2, 3 . . . . (2.4.34)

We chose the wire to have length 2L so that the eigenvalues have the same formula as
before (This will mean less to remember, as all our problems have a similar answer).
However, in this problem (unlike the others), there are no additional constraints that c1

and c2 must satisfy. Both are arbitrary. We say that both sinnπx/L and cos nπx/L are
eigenfunctions corresponding to the eigenvalue λ = (nπ/L)2,

φ(x) = cos
nπx

L
, sin

nπx

L
, n = 1, 2, 3 . . . . (2.4.35)
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In fact, any linear combination of cosnπx/L and sinnπx/L is an eigenfunction:

φ(x) = c1 cos
nπx

L
+ c2 sin

nπx

L
, (2.4.36)

but this is always to be understood when the statement is made that both are eigenfunc-
tions. There are thus two infinite families of product solutions of the partial differential
equation, n = 1, 2, 3 . . . ,

u(x, t) = cos
nπx

L
e−(nπ/L)2kt and u(x, t) = sin

nπx

L
e−(nπ/L)2kt. (2.4.37)

All of these correspond to λ > 0.
If λ = 0, the general solution of (2.4.29) is

φ = c1 + c2x.

The boundary condition φ(−L) = φ(L) implies that

c1 − c2L = c1 + c2L.

Thus, c2 = 0, φ(x) = c1 and dφ/dx = 0. The remaining boundary condition, (2.4.30), is
automatically satisfied. We see that

φ(x) = c1.

Any constant is an eigenfunction, corresponding to the eigenvalue zero. Sometimes we
say that φ(x) = 1 is the eigenfunction, since it is known that any multiple of an eigen-
function is always an eigenfunction. Product solutions u(x, t) are also constants in this
case. Note that there is only one independent eigenfunction corresponding to λ = 0, while
for each positive eigenvalue in this problem, λ = (nπ/L)2, there are two independent
eigenfunctions, sinnπx/L and cos nπx/L. Not surprisingly, it can be shown that there
are no eigenvalues in which λ < 0.

The principle of superposition must be used before applying the initial condition.
The most general solution obtainable by the method of separation of variables consists of
an arbitrary linear combination of all product solutions:

u(x, t) = a0 +
∞∑

n=1

an cos
nπx

L
e−(nπ/L)2kt +

∞∑
n=1

bn sin
nπx

L
e−(nπ/L)2kt. (2.4.38)

The constant a0 is the product solution corresponding to λ = 0, whereas two families of
arbitrary coefficients, an and bn, are needed for λ > 0. The initial condition u(x, 0) = f(x)
is satisfied if

f(x) = a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
. (2.4.39)
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Here the function f(x) is a linear combination of both sines and cosines (and a constant),
unlike the previous problems, where either sines or cosines (including the constant term)
were used. Another crucial difference is that (2.4.39) should be valid for the entire ring,
which means that −L ≤ x ≤ L, whereas the series of just sines or cosines was valid
for 0 ≤ x ≤ L. The theory of Fourier series will show that (2.4.39) is valid and, more
important, that the previous series of just sines or cosines are but special cases of the
series in (2.4.39).

For now, we wish just to determine the coefficients a0, an, and bn from (2.4.39).
Again the eigenfunctions form an orthogonal set since integral tables verify the following
orthogonality conditions:

∫ L

−L

cos
nπx

L
cos

mπx

L
dx =

⎧⎨
⎩

0 n �= m
L n = m �= 0
2L n = m = 0

(2.4.40)

∫ L

−L

sin
nπx

L
sin

mπx

L
dx =

{
0 n �= m
L n = m �= 0

(2.4.41)

∫ L

−L

sin
nπx

L
cos

mπx

L
dx = 0, (2.4.42)

where n and m are arbitrary (nonnegative) integers. The constant eigenfunction corre-
sponds to n = 0 or m = 0. Integrals of the square of sines or cosines (n = m) are evaluated
again by the “half the length of the interval” rule. The last of these formulas, (2.4.42), is
particularly simple to derive, since sine is an odd function and cosine is an even function.4

Note that, for example, cosnπx/L is orthogonal to every other eigenfunction [sines from
(2.4.42), cosines and the constant eigenfunction from (2.4.40)].

The coefficients are derived in the same manner as before. A few steps are saved by
noting (2.4.39) is equivalent to

f(x) =
∞∑

n=0

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
.

If we multiply this by both cosmπx/L and sinmπx/L and then integrate from x = −L
to x = +L, we obtain

4The product of an odd and an even function is odd. By antisymmetry, the integral of an odd function
over a symmetric interval is zero.
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∫ L

−L

f(x)

⎧⎪⎨
⎪⎩

cos
mπx

L

sin
mπx

L

⎫⎪⎬
⎪⎭ dx =

∞∑
n=0

an

∫ L

−L

cos
nπx

L

⎧⎪⎨
⎪⎩

cos
mπx

L

sin
mπx

L

⎫⎪⎬
⎪⎭ dx

+
∞∑

n=1

bn

∫ L

−L

sin
nπx

L

⎧⎪⎨
⎪⎩

cos
mπx

L

sin
mπx

L

⎫⎪⎬
⎪⎭ dx.

If we utilize (2.4.40)–(2.4.42), we find that

∫ L

−L

f(x) cos
mπx

L
dx = am

∫ L

−L

cos2
mπx

L
dx

∫ L

−L

f(x) sin
mπx

L
dx = bm

∫ L

−L

sin2 mπx

L
dx.

Solving for the coefficients in a manner that we are now familiar with yields

(m ≥ 1)

a0 =
1

2L

∫ L

−L

f(x) dx

am =
1
L

∫ L

−L

f(x) cos
mπx

L
dx

bm =
1
L

∫ L

−L

f(x) sin
mπx

L
dx.

(2.4.43)

The solution to the problem is (2.4.38), where the coefficients are given by (2.4.43).

2.4.3 Summary of Boundary Value Problems

In many problems, including the ones we have just discussed, the specific simple constant-
coefficient differential equation,

d2φ

dx2
= −λφ,

forms the fundamental part of the boundary value problem. We collect in the table in
one place the relevant formulas for the eigenvalues and eigenfunctions for the typical
boundary conditions already discussed. You will find it helpful to understand these results
because of their enormous applicability throughout this text. It is important to note
that, in these cases, whenever λ = 0 is an eigenvalue, a constant is the eigenfunction
(corresponding to n = 0 in cos nπx/L). For closed-book examinations, instructors might
find it useful to provide Table 2.4.1, though it may be helpful for students just to memorize
all cases.
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TABLE 2.4.1: Boundary Value Problems for
d2φ

dx2
= −λφ

Boundary
conditions

φ(0) = 0

φ(L) = 0

dφ

dx
(0) = 0

dφ

dx
(L) = 0

φ(−L) = φ(L)

dφ

dx
(−L) =

dφ

dx
(L)

Eigenvalues
λn

(nπ

L

)2

n = 1, 2, 3, . . .

(nπ

L

)2

n = 0, 1, 2, 3, . . .

(nπ

L

)2

n = 0, 1, 2, 3, . . .

Eigenfunctions sin
nπx

L
cos

nπx

L
sin

nπx

L
and cos

nπx

L

Series f(x) =

∞∑

n=1

Bn sin
nπx

L
f(x) =

∞∑

n=0

An cos
nπx

L

f(x) =

∞∑

n=0

an cos
nπx

L

+

∞∑

n=1

bn sin
nπx

L

Coefficients Bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx

A0 =
1

L

∫ L

0
f(x) dx

An =
2

L

∫ L

0
f(x) cos

nπx

L
dx

a0 =
1

2L

∫ L

−L
f(x) dx

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx

EXERCISES 2.4

*2.4.1. Solve the heat equation ∂u/∂t = k∂2u/∂x2, 0 < x < L, t > 0, subject to

∂u

∂x
(0, t) = 0 t > 0

∂u

∂x
(L, t) = 0 t > 0.

(a) u(x, 0) =
{

0 x < L/2
1 x > L/2 (b) u(x, 0) = 6 + 4 cos

3πx

L

(c) u(x, 0) = −2 sin
πx

L
(d) u(x, 0) = −3 cos

8πx

L
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*2.4.2. Solve
∂u

∂t
= k

∂2u

∂x2
with

∂u

∂x
(0, t) = 0

u(L, t) = 0

u(x, 0) = f(x).

For this problem you may assume that no solutions of the heat equation exponen-
tially grow in time. You may also guess appropriate orthogonality conditions for the
eigenfunctions.

*2.4.3. Solve the eigenvalue problem
d2φ

dx2
= −λφ

subject to

φ(0) = φ(2π) and
dφ

dx
(0) =

dφ

dx
(2π).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2φ

dx2
= −λφ subject to

dφ

dx
(0) = 0 and

dφ

dx
(L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a thin
wire. The equation for a circular wire of finite thickness is the two-dimensional heat
equation (in polar coordinates). Show that this reduces to (2.4.25) if the temperature
does not depend on r and if the wire is very thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular ring of
Section 2.4.2:

(a) directly from the equilibrium problem (see Section 1.4)
(b) by computing the limit as t → ∞ of the time-dependent problem

2.4.7. Solve the heat equation
∂u

∂t
= k

∂2u

∂x2
.

[Hints: It is known that if u(x, t) = φ(x) G(t), then
1

kG

dG

dt
=

1
φ

d2φ

dx2
. Appropri-

ately assume λ > 0. Assume the eigenfunctions φn(x) satisfy the following integral
condition (orthogonality):

∫ L

0

φn(x)φm(x)dx =

{
0 n �= m

L/2 n = m

subject to the following conditions:

(a) u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x)

(b) u(0, t) = 0,
∂u

∂x
(L, t) = 0, u(x, 0) = f(x)

(c)
∂u

∂x
(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x)

(d)
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, u(x, 0) = f(x) and modify orthogonality condition

[using Table 2.4.1.]
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2.5 LAPLACE’S EQUATION: SOLUTIONS AND QUALITATIVE PROPERTIES

2.5.1 Laplace’s Equation Inside a Rectangle

In order to obtain more practice, we consider a different kind of problem that can be ana-
lyzed by the method of separation of variables. We consider steady-state heat conduction
in a two-dimensional region. To be specific, consider the equilibrium temperature inside
a rectangle (0 ≤ x ≤ L, 0 ≤ y ≤ H) when the temperature is a prescribed function
of position (independent of time) on the boundary. The equilibrium temperature u(x, y)
satisfies Laplace’s equation with the following boundary conditions:

PDE: ∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0 (2.5.1)

BC1: u(0, y) = g1(y) (2.5.2)

BC2: u(L, y) = g2(y) (2.5.3)

BC3: u(x, 0) = f1(x) (2.5.4)

BC4: u(x,H) = f2(x), (2.5.5)

where f1(x), f2(x), g1(y), and g2(y) are given functions of x and y, respectively. Here the
partial differential equation is linear and homogeneous, but the boundary conditions, al-
though linear, are not homogeneous. We will not be able to apply the method of separation
of variables to this problem in its present form, because when we separate variables, the
boundary value problem (determining the separation constant) must have homogeneous
boundary conditions. In this example, all the boundary conditions are nonhomogeneous.
We can get around this difficulty by noting that the original problem is nonhomogeneous
due to the four nonhomogeneous boundary conditions. The idea behind the principle of
superposition can be used sometimes for nonhomogeneous problems (see Exercise 2.2.4).
We break our problem into four problems, each having one nonhomogeneous condition.
We let

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y), (2.5.6)

where each ui(x, y) satisfies Laplace’s equation with one nonhomogeneous boundary
condition and the related three homogeneous boundary conditions, as diagrammed in
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FIGURE 2.5.1 Laplace’s equation inside a rectangle.

Fig. 2.5.1. Instead of directly solving for u, we will indicate how to solve for u1, u2, u3,
and u4. Why does the sum satisfy our problem? We check to see that the PDE and the four
nonhomogeneous BCs will be satisfied. Since u1, u2, u3, and u4 satisfy Laplace’s equation,
which is linear and homogeneous, u ≡ u1 + u2 + u3 + u4 also satisfies the same linear and
homogeneous PDE by the principle of superposition. At x = 0 : u1 = 0, u2 = 0, u3 = 0,
and u4 = g1(y). Therefore, at x = 0 : u = u1 + u2 + u3 + u4 = g1(y), the desired non-
homogeneous condition. In a similar manner we can check that all four nonhomogeneous
conditions have been satisfied.

The method to solve for any of the ui(x, y) is the same; only certain details differ.
We will solve only for u4(x, y) and will leave the rest for the Exercises:

PDE:
∂2u4

∂x2
+

∂2u4

∂y2
= 0 (2.5.7)

BC1: u4(0, y) = g1(y) (2.5.8)

BC2: u4(L, y) = 0 (2.5.9)

BC3: u4(x, 0) = 0 (2.5.10)

BC4: u4(x,H) = 0. (2.5.11)
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We propose to solve this problem by the method of separation of variables. We begin by
ignoring the nonhomogeneous condition u4(0, y) = g1(y). Eventually, we will add together
product solutions to synthesize g1(y). We look for product solutions

u4(x, y) = h(x)φ(y). (2.5.12)

From the three homogeneous boundary conditions, we see that

h(L) = 0 (2.5.13)
φ(0) = 0 (2.5.14)

φ(H) = 0. (2.5.15)

The y-dependent solution φ(y) has two homogeneous boundary conditions and will be-
come an eigenvalue problem in y, whereas the x-dependent solution h(x) has only one
homogeneous boundary condition. If (2.5.12) is substituted into Laplace’s equation, we
obtain

φ(y)
d2h

dx2
+ h(x)

d2φ

dy2
= 0.

The variables can be separated by dividing by h(x)φ(y), so that

1
h

d2h

dx2
= − 1

φ

d2φ

dy2
. (2.5.16)

The left-hand side is a function only of x, while the right-hand side is a function only
of y. Both must equal a separation constant. Do we want to use −λ or λ? One will
be more convenient. If the separation constant is negative (as it was before), (2.5.16)
implies that h(x) oscillates and φ(y) is composed of exponentials. This seems doubtful,
since the homogeneous boundary conditions (2.5.13)–(2.5.15) show that the y-dependent
solution satisfies two homogeneous conditions: φ(y) must be zero at y = 0 and at y = H.
Exponentials in y are not expected to work. On the other hand, if the separation constant
is positive, (2.5.16) implies that h(x) is composed of exponentials that and φ(y) oscillates.
This seems more reasonable, and we thus introduce the separation constant λ (but we do
not assume λ ≥ 0):

1
h

d2h

dx2
= − 1

φ

d2φ

dy2
= λ. (2.5.17)

This results in two ordinary differential equations:

d2h

dx2
= λh

d2φ

dy2
= −λφ.

The x-dependent problem is not a boundary value problem, since it does not have two
homogeneous boundary conditions:

d2h

dx2
= λh (2.5.18)
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h(L) = 0. (2.5.19)

However, the y-dependent problem is a boundary value problem and will be used to
determine the eigenvalues λ (separation constants):

d2φ

dy2
= −λφ (2.5.20)

φ(0) = 0 (2.5.21)

φ(H) = 0. (2.5.22)

This boundary value problem is one that has arisen before, but here the length of
the interval is H. All the eigenvalues are positive, λ > 0. The eigenfunctions are clearly
sines, since φ(0) = 0. Furthermore, the condition φ(H) = 0 implies that

λ =
(nπ

H

)2

φ(y) = sin
nπy

H

n = 1, 2, 3, . . . . (2.5.23)

To obtain product solutions we now must solve (2.5.18) with (2.5.19). Since λ = (nπ/H)2,

d2h

dx2
=
(nπ

H

)2

h. (2.5.24)

The general solution is a linear combination of exponentials or a linear combination of hy-
perbolic functions. Either can be used, but neither is particularly suited for solving the ho-
mogeneous boundary condition h(L) = 0. We can obtain our solution more expeditiously
if we note that both coshnπ(x − L)/H and sinhnπ(x − L)/H are linearly independent
solutions of (2.5.24). The general solution can be written as a linear combination of these
two:

h(x) = a1 cosh
nπ

H
(x − L) + a2 sinh

nπ

H
(x − L), (2.5.25)

although it should now be clear that h(L) = 0 implies that a1 = 0 (since cosh 0 = 1 and
sinh 0 = 0). As we could have guessed originally,

h(x) = a2 sinh
nπ

H
(x − L). (2.5.26)

The reason (2.5.25) is the solution (besides the fact that it solves the DE) is that it is
a simple translation of the more familiar solution, cosh nπx/L and sinhnπx/L. We are
allowed to translate solutions of differential equations only if the differential equation
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does not change (said to be invariant) upon translation. Since (2.5.24) has constant
coefficients, thinking of the origin being at x = L (namely, x′ = x − L) does not affect
the differential equation, since d2h/dx′2 = (nπ/H)2h according to the chain rule. For
example, cosh nπx′/H = cosh nπ(x − L)/H is a solution.

Product solutions are

u4(x, y) = A sin
nπy

H
sinh

nπ

H
(x − L). (2.5.27)

You might now check that Laplace’s equation is satisfied as well as the three required
homogeneous conditions. It is interesting to note that one part (the y) oscillates and the
other (the x) does not. This is a general property of Laplace’s equation, not restricted to
this geometry (rectangle) or to these boundary conditions.

We want to use these product solutions to satisfy the remaining condition, the non-
homogeneous boundary condition u4(0, y) = g1(y). Product solutions do not satisfy non-
homogeneous conditions. Instead, we again use the principle of superposition. If (2.5.27)
is a solution, so is

u4(x, y) =
∞∑

n=1

An sin
nπy

H
sinh

nπ

H
(x − L). (2.5.28)

Evaluating at x = 0 will determine the coefficients An from the nonhomogeneous bound-
ary condition:

g1(y) =
∞∑

n=1

An sin
nπy

H
sinh

nπ

H
(−L).

This is the same kind of series of sine functions we have already briefly discussed, if we
associate An sinhnπ(−L)/H as its coefficients. Thus (by the orthogonality of sinnπy/H
for y between 0 and H),

An sinh
nπ

H
(−L) =

2
H

∫ H

0

g1(y) sin
nπy

H
dy.

Since sinhnπ(−L)/H is never zero, we can divide by it and obtain finally a formula for
the coefficients:

An =
2

H sinhnπ(−L)/H

∫ H

0

g1(y) sin
nπy

H
dy. (2.5.29)

Equation (2.5.28) with coefficients determined by (2.5.29) is the solution only for u4(x, y).
The original u(x, y) is obtained by adding together four such solutions.
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2.5.2 Laplace’s Equation Inside a Circular Disk

Suppose that we had a thin circular disk of radius a (with constant thermal properties and
no sources) with the temperature prescribed on the boundary, as illustrated in Fig. 2.5.2.
If the temperature on the boundary is independent of time, then it is reasonable to
determine the equilibrium temperature distribution. The temperature satisfies Laplace’s
equation, ∇2u = 0. The geometry of this problem suggests that we use polar coordinates,
so that u = u(r, θ). In particular, on the circle, r = a, the temperature distribution is a
prescribed function of θ, u(a, θ) = f(θ). The problem we want to solve is

PDE: ∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0 (2.5.30)

BC: u(a, θ) = f(θ). (2.5.31)

FIGURE 2.5.2 Laplace’s equation
inside a circular disk.

At first glance it would appear that we cannot use separation of variables because there are
no homogeneous subsidiary conditions. However, the introduction of polar coordinates re-
quires some discussion that will illuminate the use of the method of separation of variables.
If we solve Laplace’s equation on a rectangle (see Section 2.5.1), 0 ≤ x ≤ L, 0 ≤ y ≤ H,
then conditions are necessary at the endpoints of definition of the variables: x = 0, L and
y = 0, H. Fortunately, these coincide with the physical boundaries. However, for polar
coordinates, 0 ≤ r ≤ a and −π ≤ θ ≤ π (where there is some freedom in our definition
of the angle θ). Mathematically, we need conditions at the endpoints of the coordinate
system, r = 0, a and θ = −π, π. Here, only r = a corresponds to a physical boundary.
Thus, we need conditions motivated by considerations of the physical problem at r = 0
and at θ = ±π. Polar coordinates are singular at r = 0; for physical reasons, we will
prescribe that the temperature is finite or, equivalently, bounded there:

boundedness at origin |u(0, θ)| < ∞. (2.5.32)

Conditions are needed at θ = ±π for mathematical reasons. It is similar to the circular
wire situation. θ = −π corresponds to the same points as θ = π. Although there really
is not a boundary, we say that the temperature is continuous there and the heat flow in
the θ-direction is continuous, which imply
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periodicity

u(r,−π) = u(r, π)

∂u

∂θ
(r,−π) =

∂u

∂θ
(r, π),

(2.5.33)

as though the two regions were in perfect thermal contact there (see Exercise 1.3.2).
Equations (2.5.33) are called periodicity conditions; they are equivalent to u(r, θ) =
u(r, θ + 2π). We note that subsidiary conditions (2.5.32) and (2.5.33) are all linear and
homogeneous (it’s easy to check that u ≡ 0 satisfies these three conditions). In this
form, the mathematical problem appears somewhat similar to Laplace’s equation inside
a rectangle. There are four conditions. Here, fortunately, only one is nonhomogeneous,
u(a, θ) = f(θ). This problem is thus suited for the method of separation of variables.

We look for special product solutions,

u(r, θ) = φ(θ)G(r), (2.5.34)

that satisfy the PDE (2.5.30) and the three homogeneous conditions (2.5.32) and (2.5.33).
Note that (2.5.34) does not satisfy the nonhomogeneous boundary condition (2.5.31).
Substituting (2.5.34) into the periodicity conditions shows that

φ(−π) = φ(π)

dφ

dθ
(−π) =

dφ

dθ
(π);

(2.5.35)

the θ-dependent part also satisfies the periodic boundary conditions. Thus, φ(θ) will
satisfy an eigenvalue problem, where θ is the angular variable. The product form will
satisfy Laplace’s equation if

1
r

d

dr

(
r
dG

dr

)
φ(θ) +

1
r2

G(r)
d2φ

dθ2
= 0.

The variables are not separated by dividing by G(r)φ(θ) since 1/r2 remains multiplying
the θ-dependent terms. Instead, divide by (1/r2)G(r)φ(θ), in which case

r

G

d

dr

(
r
dG

dr

)
= − 1

φ

d2φ

dθ2
= λ. (2.5.36)

The separation constant is introduced as λ (rather than −λ) since there are two homoge-
neous conditions in θ, (2.5.35), and we therefore expect oscillations in θ. Equation (2.5.36)
yields two ordinary differential equations. The boundary value problem to determine the
separation constant is
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d2φ

dθ2
= −λφ

φ(−π) = φ(π)

dφ

dθ
(−π) =

dφ

dθ
(π).

(2.5.37)

The eigenvalues λ are determined in the usual way. In fact, this is one of the three
standard problems, the identical problem as for the circular wire (with L = π). Thus, the
eigenvalues are

λ =
(nπ

L

)2

= n2, (2.5.38)

with the corresponding eigenfunctions being both

sin nθ and cos nθ. (2.5.39)

The case n = 0 must be included (with only a constant being the eigenfunction).
The r-dependent problem is

r

G

d

dr

(
r
dG

dr

)
= λ = n2, (2.5.40)

which when written in the more usual form becomes

r2 d2G

dr2
+ r

dG

dr
− n2G = 0. (2.5.41)

Here, the condition at r = 0 has already been discussed. We have prescribed |u(0, θ)| < ∞.
For the product solutions, u(r, θ) = φ(θ)G(r), it follows that the condition at the origin
is that G(r) must be bounded there,

|G(0)| < ∞. (2.5.42)

Equation (2.5.41) is linear and homogeneous but has nonconstant coefficients. There
are exceedingly few second-order linear equations with nonconstant coefficients that we
can solve easily. Equation (2.5.41) is one such case, an example of an equation known
by a number of different names: equidimensional or Cauchy or Euler. The simplest
way to solve (2.5.41) is to note that for the linear differential operator in (2.5.41), any
power G = rp reproduces itself.5 On substituting G = rp into (2.5.41), we determine that
[p(p − 1) + p − n2]rp = 0. Thus, there usually are two distinct solutions

p = ±n,

5For constant-coefficient linear differential operators, exponentials reproduce themselves.
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except when n = 0, in which case there is only one independent solution in the form rp.
For n �= 0, the general solution of (2.5.41) is

G = c1r
n + c2r

−n. (2.5.43)

For n = 0 (and n = 0 is important since λ = 0 is an eigenvalue in this problem), one
solution is r0 = 1 or any constant. A second solution for n = 0 is most easily obtained from
(2.5.40). If n = 0, d

dr

(
r dG

dr

)
= 0. By integration, r dG/dr is constant, or, equivalently,

dG/dr is proportional to 1/r. The second independent solution is thus ln r. Thus, for
n = 0, the general solution of (2.5.41) is

G = c̄1 + c̄2 ln r. (2.5.44)

Equation (2.5.41) has only one homogeneous condition to be imposed, |G(0)| < ∞, so it
is not an eigenvalue problem. The boundedness condition would not have imposed any
restrictions on the problems we have studied previously. However, here (2.5.43) or (2.5.44)
shows that solutions may approach ∞ as r → 0. Thus, for |G(0)| < ∞, c2 = 0 in (2.5.43)
and c̄2 = 0 in (2.5.44). The r-dependent solution (which is bounded at r = 0) is

G(r) = c1r
n, n ≥ 0,

where for n = 0 this reduces to just an arbitrary constant.
Product solutions by the method of separation of variables, which satisfy the three

homogeneous conditions, are

rn cos nθ(n ≥ 0) and rn sin nθ(n ≥ 1).

Note that as in rectangular coordinates for Laplace’s equation, oscillations occur in one
variable (here θ) and do not occur in the other variable (r). By the principle of superpo-
sition, the following solves Laplace’s equation inside a circle:

u(r, θ) =
∞∑

n=0

Anrn cos nθ +
∞∑

n=1

Bnrn sin nθ,
0 ≤ r < a
−π < θ ≤ π.

(2.5.45)

In order to solve the nonhomogeneous condition, u(a, θ) = f(θ),

f(θ) =
∞∑

n=0

Anan cos nθ +
∞∑

n=1

Bnan sin nθ, −π < θ ≤ π. (2.5.46)

The prescribed temperature is a linear combination of all sines and cosines (including a
constant term, n = 0). This is exactly the same question that we answered in Section 2.4.2
with L = π if we let Anan be the coefficient of cos nθ and Bnan be the coefficient of sin nθ.
Using the orthogonality formulas, it follows that
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(n ≥ 1)

A0 =
1
2π

∫ π

−π

f(θ) dθ

Anan =
1
π

∫ π

−π

f(θ) cos nθ dθ

Bnan =
1
π

∫ π

−π

f(θ) sin nθ dθ.

(2.5.47)

Since an �= 0, the coefficients An and Bn can be uniquely solved for from (2.5.47).
Equation (2.5.45) with coefficients given by (2.5.47) determines the steady-state

temperature distribution inside a circle. The solution is relatively complicated, often re-
quiring the numerical evaluation of two infinite series. For additional interpretations of
this solution, see Chapter 9, on Green’s functions.

2.5.3 Fluid Flow Outside a Circular Cylinder (Lift)

In heat flow, conservation of thermal energy can be used to derive Laplace’s equation
∇2u = 0 under certain assumptions. In fluid dynamics, conservation of mass and conser-
vation of momentum can be used to also derive Laplace’s equation:

∇2ψ = 0,

in the following way. In the Exercises, it is shown that conservation of mass for a fluid
along with the assumption of a constant mass density ρ yields

∇ · u = 0, or in two dimensions
∂u

∂x
+

∂v

∂y
= 0, (2.5.48)

where the velocity has x- and y-components u = (u, v). A stream function ψ is often
introduced that automatically satisfies (2.5.48):

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (2.5.49)

Often streamlines (ψ = constant) are graphed that will be parallel to the fluid flow. It
can be shown that in some circumstances the fluid is irrotational (∇×u = 0) so that the
stream function satisfies Laplace’s equation:

∇2ψ = 0. (2.5.50)

The simplest example is a constant flow in the x-direction u = (U, 0), in which case
the stream function is ψ = Uy, clearly satisfying Laplace’s equation.

As a first step in designing airplane wings, scientists have considered the flow around
a circular cylinder of radius a. For more details we refer the interested reader to Acheson
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[1990]. The velocity potential must satisfy Laplace’s equation, which as before in polar
coordinates is (2.5.30). We will assume that far from the cylinder the flow is uniform, so
that as an approximation for large r,

ψ ≈ Uy = Ur sin θ, (2.5.51)

since we will use polar coordinates. The boundary condition is that the radial component
of the fluid flow must be zero at r = a. The fluid flow must be parallel to the boundary,
and hence we can assume

ψ(a, θ) = 0. (2.5.52)

By separation of variables, including the n = 0 case given by (2.5.44),

ψ(r, θ) = c2 + c1 ln r +
∞∑

n=1

(Anrn + Bnr−n) sin nθ, (2.5.53)

where the cos nθ terms could be included (but would vanish). By applying the boundary
condition at r = a, we find

c2 + c1 ln a = 0

Anan + Bna−n = 0,

so that

ψ(r, θ) = c1 ln
r

a
+

∞∑
n=1

An

(
rn − a2n

rn

)
sin nθ. (2.5.54)

In order for the fluid velocity to be approximately a constant at infinity with ψ ≈ Uy =
Ur sin θ for large r, An = 0 for n ≥ 2 and A1 = U. Thus,

ψ(r, θ) = c1 ln
r

a
+ U

(
r − a2

r

)
sin θ. (2.5.55)

It can be shown in general that the fluid velocity in polar coordinates can be obtained
from the stream function: ur = 1

r
∂ψ
∂θ , uθ = −∂ψ

∂r . Thus, the θ-component of the fluid
velocity is uθ = − c1

r − U(1 + a2

r2 ) sin θ. The circulation is defined to be
∫ 2π

0
uθr dθ =

−2πc1. For a given velocity at infinity, different flows depending on the circulation around
a cylinder are illustrated in Fig. 2.5.3.

The pressure p of the fluid exerts a force in the direction opposite to the outward
normal to the cylinder (x

a , y
a ) = (cos θ, sin θ). The drag (x-direction) and lift (y-direction)

forces (per unit length in the z direction) exerted by the fluid on the cylinder are

F = −
∫ 2π

0

p (cos θ, sin θ) a dθ. (2.5.56)
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Ua

c1 = 0
Ua

c1
< 2

Ua

c1 = 2
Ua

c1
> 2

FIGURE 2.5.3 Flow past cylinder and lift = 2πρc1U .

For steady flows such as this one, the pressure is determined from Bernoulli’s condition

p +
1
2
ρ |u|2 = constant. (2.5.57)

Thus, the pressure is lower where the velocity is higher. If the circulation is clockwise
around the cylinder (a negative circulation), then intuitively (which can be verified) the
velocity will be higher above the cylinder than below, and the pressure will be lower on the
top of the cylinder, and hence lift (a positive force in the y-direction) will be generated.
At the cylinder ur = 0, so that there |u|2 = u2

θ. It can be shown that the x-component of
the force, the drag, is zero, but the y-component, the lift, is given by (since the integral
involving the constant vanishes)

Fy =
1
2
ρ

∫ 2π

0

[
−c1

r
− U

(
1 +

a2

r2

)
sin θ

]2

sin θ a dθ (2.5.58)

Fy = ρ
c1

a
U2

∫ 2π

0

sin2 θ a dθ = ρ2πc1U, (2.5.59)

which has been simplified since
∫ 2π

0
sin θ dθ =

∫ 2π

0
sin3 θ dθ = 0 due to the oddness

of the sine function. The lift vanishes if the circulation is zero. A negative circulation
(positive c1) results in a lift force on the cylinder by the fluid.
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In the real world, the drag is more complicated. Boundary layers exist due to the
viscous nature of the fluid. The pressure is continuous across the boundary layer so that
the preceding analysis is still often valid. However, things get much more complicated
when the boundary layer separates from the cylinder, in which case a more substantial
drag force occurs (which has been ignored in this elementary treatment). A plane will fly
if the lift is greater than the weight of the plane. However, to fly fast, a powerful engine
is necessary to apply a force in the x-direction to overcome the drag.

2.5.4 Qualitative Properties of Laplace’s Equation

Sometimes the method of separation of variables will not be appropriate. If quantitative
information is desired, numerical methods (see Chapter 6) may be necessary. In this sub-
section we briefly describe some qualitative properties that may be derived for Laplace’s
equation.

Mean value theorem. Our solution of Laplace’s equation inside a circle, ob-
tained in Section 2.5.2 by the method of separation of variables, yields an important
result. If we evaluate the temperature at the origin, r = 0, we discover from (2.5.45) that

u(0, θ) = a0 =
1
2π

∫ π

−π

f(θ) dθ;

the temperature there equals the average value of the temperature at the edges of the
circle. This is called the mean value property for Laplace’s equation. It holds in general
in the following specific sense. Suppose that we wish to solve Laplace’s equation in any
region R (see Fig. 2.5.4). Consider any point P inside R and a circle of any radius r0

(such that the circle is inside R). Let the temperature on the circle be f(θ), using polar
coordinates centered at P . Our previous analysis still holds, and thus the temperature
at any point is the average of the temperature along any circle of radius r0

(lying inside R) centered at that point.

FIGURE 2.5.4 Circle within any
region.

r0P

Maximum principles. We can use this to prove the maximum principle for
Laplace’s equation: In steady state, assuming no sources the temperature cannot
attain its maximum in the interior (unless the temperature is a constant everywhere).
The proof is by contradiction. Suppose that the maximum was at point P , as illustrated
in Fig. 2.5.4. However, this should be the average of all points on any circle (consider the
circle drawn). It is impossible for the temperature at P to be larger. This contradicts the
original assumption, which thus cannot hold. We should not be surprised by the maximum



80 Chapter 2 Method of Separation of Variables

principle. If the temperature was largest at point P , then in time the concentration of heat
energy would diffuse and in steady state the maximum could not be in the interior. By
letting ψ = −u, we can also show that the temperature cannot attain its minimum in the
interior. It follows that in steady state the maximum and minimum temperatures
occur on the boundary.

Well-posedness and uniqueness. The maximum principle is a very important
tool for further analysis of partial differential equations, especially in establishing qualita-
tive properties (see, e.g., Protter and Weinberger [1967]). We say that a problem is well
posed if there exists a unique solution that depends continuously on the nonhomogeneous
data (i.e., the solution varies a small amount if the data are slightly changed). This is
an important concept for physical problems. If the solution changed dramatically with
only a small change in the data, then any physical measurement would have to be exact
in order for the solution to be reliable. Fortunately, most standard problems in partial
differential equations are well posed. For example, the maximum principle can be used to
prove that Laplace’s equation ∇2u = 0 with u specified as u = f(x) on the boundary is
well posed.

Suppose that we vary the boundary data a small amount such that

∇2v = 0 with v = g(x)

on the boundary, where g(x) is nearly the same as f(x) everywhere on the boundary. We
consider the difference between these two solutions, w = u − v. Due to the linearity,

∇2w = 0 with w = f(x) − g(x)

on the boundary. The maximum (and minimum) principles for Laplace’s equation imply
that the maximum and minimum occur on the boundary. Thus, at any point inside,

min(f(x) − g(x)) ≤ w ≤ max(f(x) − g(x)). (2.5.60)

Since g(x) is nearly the same as f(x) everywhere, w is small, and thus the solution v is
nearly the same as u; the solution of Laplace’s equation slightly varies if the boundary
data are slightly altered.

We can also prove that the solution of Laplace’s equation is unique. We prove this by
contradiction. Suppose that there are two solutions, u and v satisfying Laplace’s equation
that satisfy the same boundary condition [i.e., let (f(x) = g(x))]. If we again consider the
difference (w = u − v), then the maximum and minimum principles imply [see (2.5.60)]
that inside the region

0 ≤ w ≤ 0.

We conclude that w = 0 everywhere inside, and thus u = v, proving that if a solution
exists, it must be unique. These properties (uniqueness and continuous dependence on
the data) show that Laplace’s equation with u specified on the boundary is a well-posed
problem.
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Solvability condition. If on the boundary the heat flow −K0∇u · n̂ is speci-
fied instead of the temperature, Laplace’s equation may have no solutions [for a one-
dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate ∇2u = 0 over the
entire two-dimensional region

0 =
∫∫

∇2u dx dy =
∫∫

∇ · (∇u) dx dy.

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise 1.5.8)

0 =
∮

∇u · n̂ ds. (2.5.61)

Since ∇u · n̂ is proportional to the heat flow through the boundary, (2.5.61) implies that
the net heat flow through the boundary must be zero in order for a steady state to
exist. This is clear physically, because otherwise there would be a change (in time) of the
thermal energy inside, violating the steady-state assumption. Equation (2.5.61) is called
the solvability condition or compatibility condition for Laplace’s equation.

EXERCISES 2.5

2.5.1. Solve Laplace’s equation inside a rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ H, with the fol-
lowing boundary conditions [Hint: Separate variables. If there are two homogeneous
boundary conditions in y, let u(x, y) = h(x)φ(y), and if there are two homogeneous
boundary conditions in x, let u(x, y) = φ(x)h(y).]:

∗(a) ∂u
∂x (0, y) = 0, ∂u

∂x (L, y) = 0, u(x, 0) = 0, u(x, H) = f(x)

(b) ∂u
∂x (0, y) = g(y), ∂u

∂x (L, y) = 0, u(x, 0) = 0, u(x, H) = 0

∗(c) ∂u
∂x (0, y) = 0, u(L, y) = g(y), u(x, 0) = 0, u(x, H) = 0

(d) u(0, y) = g(y), u(L, y) = 0, ∂u
∂y (x, 0) = 0, u(x, H) = 0

∗(e) u(0, y) = 0, u(L, y) = 0, u(x, 0) − ∂u
∂y (x, 0) = 0, u(x, H) = f(x)

(f) u(0, y) = f(y), u(L, y) = 0, ∂u
∂y (x, 0) = 0, ∂u

∂y (x, H) = 0

(g) ∂u
∂x (0, y) = 0, ∂u

∂x (L, y) = 0, u(x, 0) =
{

0 x > L/2
1 x < L/2,

∂u
∂y (x, H) = 0

(h) u(0, y) = 0, u(L, y) = g(y), u(x, 0) = 0, u(x, H) = 0

2.5.2. Consider u(x, y) satisfying Laplace’s equation inside a rectangle (0 < x < L, 0 <
y < H) subject to the boundary conditions

∂u
∂x (0, y) = 0, ∂u

∂y (x, 0) = 0

∂u
∂x (L, y) = 0, ∂u

∂y (x, H) = f(x).
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*(a) Without solving this problem, briefly explain the physical condition under which
there is a solution to this problem.

(b) Solve this problem by the method of separation of variables. Show that the
method works only under the condition of part (a). [Hint: You may use (2.5.16)
without derivation.]

(c) The solution [part (b)] has an arbitrary constant. Determine it by consideration
of the time-dependent heat equation (1.5.11) subject to the initial condition

u(x, y, 0) = g(x, y).

*2.5.3. Solve Laplace’s equation outside a circular disk (r ≥ a) subject to the boundary
condition [Hint: In polar coordinates,

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

it is known that if u(r, θ) = φ(θ) G(r), then r
G

d
dr

(
r dG

dr

)
= − 1

φ
d2φ
dθ2 .]:

(a) u(a, θ) = ln 2 + 4 cos 3θ

(b) u(a, θ) = f(θ)

You may assume that u(r, θ) remains finite as r → ∞.
*2.5.4. For Laplace’s equation inside a circular disk (r ≤ a), using (2.5.45) and (2.5.47),

show that

u(r, θ) =
1
π

∫ π

−π

f(θ̄)

[
−1

2
+

∞∑
n=0

(
r

a

)n
cos n(θ − θ̄)

]
dθ̄.

Using cos z = Re [eiz ], sum the resulting geometric series to obtain Poisson’s integral
formula.

2.5.5. Solve Laplace’s equation inside the quarter-circle of radius 1 (0 ≤ θ ≤ π/2,
0 ≤ r ≤ 1) subject to the boundary conditions [Hint: In polar coordinates,

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

it is known that if u(r, θ) = φ(θ) G(r), then r
G

d
dr

(
r dG

dr

)
= − 1

φ
d2φ
dθ2 .]:

∗ (a) ∂u
∂θ (r, 0) = 0, u

(
r, π

2

)
= 0, u(1, θ) = f(θ)

(b) ∂u
∂θ (r, 0) = 0, ∂u

∂θ

(
r, π

2

)
= 0, u(1, θ) = f(θ)

∗ (c) u(r, 0) = 0, u
(
r, π

2

)
= 0, ∂u

∂r (1, θ) = f(θ)

(d) ∂u
∂θ (r, 0) = 0, ∂u

∂θ

(
r, π

2

)
= 0, ∂u

∂r (1, θ) = g(θ)

Show that the solution [part (d)] exists only if
∫ π/2
0

g(θ) dθ = 0. Explain this con-
dition physically.
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2.5.6. Solve Laplace’s equation inside a semicircle of radius a(0 < r < a, 0 < θ < π)
subject to the boundary conditions [Hint: In polar coordinates,

∇2u =
1
r

∂

∂r

(
r

∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

it is known that if u(r, θ) = φ(θ) G(r), then r
G

d
dr

(
r dG

dr

)
= − 1

φ
d2φ
dθ2 .]:

*(a) u = 0 on the diameter and u(a, θ) = g(θ)

(b) the diameter is insulated and u(a, θ) = g(θ)

2.5.7. Solve Laplace’s equation inside a 60◦ wedge of radius a subject to the boundary
conditions [Hint: In polar coordinates,

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

it is known that if u(r, θ) = φ(θ) G(r), then r
G

d
dr

(
r dG

dr

)
= − 1

φ
d2φ
dθ2 .]:

(a) u(r, 0) = 0, u
(
r, π

3

)
= 0, u(a, θ) = f(θ)

∗ (b) ∂u
∂θ (r, 0) = 0, ∂u

∂θ

(
r, π

3

)
= 0, u(a, θ) = f(θ)

2.5.8. Solve Laplace’s equation inside a circular annulus (a < r < b) subject to the bound-
ary conditions [Hint: In polar coordinates,

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

it is known that if u(r, θ) = φ(θ) G(r), then r
G

d
dr

(
r dG

dr

)
= − 1

φ
d2φ
dθ2 .]:

∗ (a) u(a, θ) = f(θ), u(b, θ) = g(θ)

(b) ∂u
∂r (a, θ) = 0, u(b, θ) = g(θ)

(c) ∂u
∂r (a, θ) = f(θ), ∂u

∂r (b, θ) = g(θ)

If there is a solvability condition, state it and explain it physically.
*2.5.9. Solve Laplace’s equation inside a 90◦ sector of a circular annulus (a < r < b, 0 <

θ < π/2) subject to the boundary conditions [Hint: In polar coordinates,

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

it is known that if u(r, θ) = φ(θ) G(r), then r
G

d
dr

(
r dG

dr

)
= − 1

φ
d2φ
dθ2 .]:

(a) u(r, 0) = 0, u(r, π/2) = 0, u(a, θ) = 0, u(b, θ) = f(θ)

(b) u(r, 0) = 0, u(r, π/2) = f(r), u(a, θ) = 0, u(b, θ) = 0

2.5.10. Using the maximum principles for Laplace’s equation, prove that the solution of
Poisson’s equation, ∇2u = g(x), subject to u = f(x) on the boundary, is unique.

2.5.11. Do Exercise 1.5.8.
2.5.12. (a) Using the divergence theorem, determine an alternative expression for

∫∫∫
u ∇2u

dx dy dz.
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(b) Using part (a), prove that the solution of Laplace’s equation ∇2u = 0 (with u
given on the boundary) is unique.

(c) Modify part (b) if ∇u · n̂ = 0 on the boundary.

(d) Modify part (b) if ∇u · n̂ + hu = 0 on the boundary. Show that Newton’s law
of cooling corresponds to h > 0.

2.5.13. Prove that the temperature satisfying Laplace’s equation cannot attain its minimum
in the interior.

2.5.14. Show that the “backward” heat equation

∂u

∂t
= −k

∂2u

∂x2
,

subject to u(0, t) = u(L, t) = 0 and u(x, 0) = f(x), is not well posed. [Hint: Show
that if the data are changed an arbitrarily small amount, for example,

f(x) → f(x) +
1
n

sin
nπx

L

for large n, then the solution u(x, t) changes by a large amount.]
2.5.15. Solve Laplace’s equation inside a semi-infinite strip (0 < x < ∞, 0 < y < H) subject

to the boundary conditions [Hint: In Cartesian coordinates, ∇2u = ∂2u
∂x2 + ∂2u

∂y2 = 0,

inside a semi-infinite strip (0 ≤ y ≤ H and 0 ≤ x < ∞), it is known that if
u(x, y) = F (x) G(y), then 1

F
d2F
dx2 = − 1

G
d2G
dy2 .]:

(a) ∂u
∂y (x, 0) = 0, ∂u

∂y (x, H) = 0, u(0, y) = f(y)

(b) u(x, 0) = 0, u(x, H) = 0, u(0, y) = f(y)

(c) u(x, 0) = 0, u(x, H) = 0, ∂u
∂x (0, y) = f(y)

(d) ∂u
∂y (x, 0) = 0, ∂u

∂y (x, H) = 0, ∂u
∂x (0, y) = f(y)

Show that the solution [part (d)] exists only if
∫H
0

f(y) dy = 0.
2.5.16. Consider Laplace’s equation inside a rectangle 0 ≤ x ≤ L, 0 ≤ y ≤ H, with the

boundary conditions

∂u

∂x
(0, y) = 0,

∂u

∂x
(L, y) = g(y),

∂u

∂y
(x, 0) = 0,

∂u

∂y
(x, H) = f(x).

(a) What is the solvability condition and its physical interpretation?

(b) Show that u(x, y) = A(x2 − y2) is a solution if f(x) and g(y) are constants
[under the conditions of part (a)].

(c) Under the conditions of part (a), solve the general case [nonconstant f(x) and
g(y)]. [Hints: Use part (b) and the fact that f(x) = fav + [f(x) − fav], where
fav = 1

L

∫ L
0

f(x) dx.]

2.5.17. Show that the mass density ρ(x, t) satisfies ∂ρ
∂t + ∇ · (ρu) = 0 due to conservation

of mass.
2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show that

∇ · u = 0.
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2.5.19. Show that the streamlines are parallel to the fluid velocity.
2.5.20. Show that anytime there is a stream function, ∇× u = −k̂∇2ψ.
2.5.21. From u = ∂ψ

∂y and v = − ∂ψ
∂x , derive ur = 1

r
∂ψ
∂θ , uθ = − ∂ψ

∂r .

2.5.22. Show the drag force is zero for a uniform flow past a cylinder including circulation.
2.5.23. Consider the velocity uθ at the cylinder. Where do the maximum and minimum

occur?
2.5.24. Consider the velocity uθ at the cylinder. If the circulation is negative, show that the

velocity will be larger above the cylinder than below.
2.5.25. A stagnation point is a place where u = 0. For what values of the circulation does

a stagnation point exist on the cylinder?
2.5.26. For what values of θ will ur = 0 off the cylinder? For these θ, where (for what values

of r) will uθ = 0 also?
2.5.27. Show that ψ = α sin θ

r satisfies Laplace’s equation. Show that the streamlines are
circles. Graph the streamlines.

2.5.28. Solve Laplace’s equation inside a rectangle:

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0

subject to the boundary conditions

u(0, y) = g(y) u(x, 0) = 0
u(L, y) = 0 u(x, H) = 0.

2.5.29. Solve Laplace’s equation inside a circle of radius a,

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

subject to the boundary condition

u(a, θ) = f(θ).



C H A P T E R 3

Fourier Series

3.1 INTRODUCTION

In solving partial differential equations by the method of separation of variables, we have
discovered that important conditions [e.g., the initial condition, u(x, 0) = f(x)] could be
satisfied only if f(x) could be equated to an infinite linear combination of eigenfunctions
of a given boundary value problem. Three specific cases have been investigated. One
yielded a series involving sine functions, one yielded a series of cosines only (including a
constant term), and the third yielded a series that included all of these previous terms.

We will begin by investigating series with both sines and cosines, because we will
show that the others are just special cases of this more general series. For problems with
the periodic boundary conditions on the interval −L ≤ x ≤ L, we asked whether the
following infinite series (known as a Fourier series) makes sense:

f(x) = a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
. (3.1.1)

Does the infinite series converge? Does it converge to f(x)? Is the resulting infinite series
really a solution of the partial differential equation (and does it also satisfy all the other
subsidiary conditions)? Mathematicians tell us that none of these questions have simple
answers. Nonetheless, Fourier series usually work quite well (especially in situations where
they arise naturally from physical problems). Joseph Fourier developed this type of series
in his famous treatise on heat flow in the early 1800s.

The first difficulty that arises is that we claim (3.1.1) will not be valid for all func-
tions f(x). However, (3.1.1) will hold for some kinds of functions and will need only a
small modification for other kinds of functions. In order to communicate various concepts
easily, we will discuss only functions f(x) that are piecewise smooth. A function f(x) is
piecewise smooth (on some interval) if the interval can be broken up into pieces (or
sections) such that in each piece the function f(x) is continuous1 and its derivative df/dx
is also continuous. The function f(x) may not be continuous, but the only kind of discon-
tinuity allowed is a finite number of jump discontinuities. A function f(x) has a jump
discontinuity at a point x = x0 if the limit from the left

[
f(x−

0 )
]

and the limit from
the right

[
f(x+

0 )
]

both exist (and are unequal), as illustrated in Fig. 3.1.1. An example
of a piecewise smooth function is sketched in Fig. 3.1.2. Note that f(x) has two jump
discontinuities at x = x1 and at x = x3. Also, f(x) is continuous for x1 ≤ x ≤ x3, but
df/dx is not continuous for x1 ≤ x ≤ x3. Instead, df/dx is continuous for x1 ≤ x ≤ x2

1We do not give a definition of a continuous function here. However, one known useful fact is that if
a function approaches ∞ at some point, then it is not continuous in any interval including that point.
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FIGURE 3.1.1 Jump discontinuity
at x = x0.

x0

f(x0)

f(x0
+)

FIGURE 3.1.2 Example of a
piecewise smooth function.

x1 x2 x3

f(x)

FIGURE 3.1.3 Example of a
function that is not piecewise
smooth. f(x) = x1/3

and x2 ≤ x ≤ x3. The interval can be broken up into pieces in which both f(x) and df/dx
are continuous. In this case there are four pieces, x ≤ x1, x1 ≤ x ≤ x2, x2 ≤ x ≤ x3, and
x ≥ x3. Almost all functions occurring in practice (and certainly most that we discuss in
this book) will be piecewise smooth. Let us briefly give an example of a function that is
not piecewise smooth. Consider f(x) = x1/3, as sketched in Fig. 3.1.3. It is not piecewise
smooth on any interval that includes x = 0, because df/dx = 1/3x−2/3 is ∞ at x = 0. In
other words, any region including x = 0 cannot be broken up into pieces such that df/dx
is continuous.

3LL−L−3L

FIGURE 3.1.4 Periodic extension of f(x) = 3
2x.
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Each function in the Fourier series is periodic with period 2L. Thus, the Fourier
series of f (x) on the interval –L ≤ x ≤ L is periodic with period 2L. The function
f(x) does not need to be periodic. We need the periodic extension of f(x). To sketch
the periodic extension of f(x), simply sketch f(x) for −L ≤ x ≤ L and then continually
repeat the same pattern with period 2L by translating the original sketch for −L ≤ x ≤ L.
For example, let us sketch in Fig. 3.1.4 the periodic extension of f(x) = 3

2x [the function
f(x) = 3

2x is sketched in dotted lines for |x| > L]. Note the difference between f(x) and
its periodic extension.

3.2 STATEMENT OF CONVERGENCE THEOREM

Definitions of Fourier coefficients and a Fourier series. We will be forced to
distinguish carefully between a function f(x) and its Fourier series over the interval −L ≤
x ≤ L:

Fourier series = a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
. (3.2.1)

The infinite series may not even converge, and if it converges, it may not converge to f(x).
However, if the series converges, we learned in Chapter 2 how to determine the Fourier
coefficients a0, an, then bn using certain orthogonality integrals, (2.3.32). We will use
those results as the definition of the Fourier coefficients:

a0 =
1

2L

∫ L

−L

f(x) dx

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx.

(3.2.2)

The Fourier series of f(x) over the interval −L ≤ x ≤ L is defined to be the
infinite series (3.2.1), where the Fourier coefficients are given by (3.2.2). We
immediately note that a Fourier series does not exist unless, for example, a0 exists [i.e.,
unless | ∫ L

−L
f(x) dx| < ∞]. This eliminates certain functions from our consideration. For

example, we do not ask what is the Fourier series of f(x) = l/x2.
Even in situations in which

∫ L

−L
f(x) dx exists, the infinite series may not converge;

furthermore, if it converges, it may not converge to f(x). We use the notation

f(x) ∼ a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
,
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where ∼ means that f(x) is on the left-hand side and the Fourier series of f(x) (on the
interval −L ≤ x ≤ L) is on the right-hand side (even if the series diverges), but the two
functions may be completely different. The symbol ∼ is read as “has the Fourier series
(on a given interval).”

Convergence theorem for Fourier series. At first, we state a theorem sum-
marizing certain properties of Fourier series:

If f(x) is piecewise smooth on the interval −L ≤ x ≤ L, then the Fourier
series of f(x) converges
1. to the periodic extension of f(x), where the periodic extension is

continuous;
2. to the average of the two limits, usually

1
2

[f(x+) + f(x−)] ,

where the periodic extension has a jump discontinuity.

We refer to this as Fourier’s theorem. It is a remarkable theorem.
Mathematically, if f(x) is piecewise smooth, then for −L < x < L (excluding the

endpoints),
f(x+) + f(x−)

2
= a0 +

∞∑
n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
, (3.2.3)

where the Fourier coefficients are given by (3.2.2). At points where f(x) is continuous,
f(x+) = f(x−), and hence (3.2.4) implies that for −L < x < L,

f(x) = a0 +
∞∑

n=1

an cos nπx
L +

∞∑
n=1

bn sin nπx
L . (3.2.4)

The Fourier series actually converges to f(x) at points between −L and +L, where f(x)
is continuous. At the endpoints, x = L or x = −L, the infinite series converges to the
average of the two values of the periodic extension. Outside the range −L ≤ x ≤ L, the
Fourier series converges to a value easily determined using the known periodicity (with
period 2L) of the Fourier series.

We have derived the Fourier series using the orthogonality of the eigenfunctions.
However, we want to remember the result, not the detailed calculation of the trigono-
metric integrals. We may want to just memorize (3.2.4), the handy phrase “nπx

L ”, and
the coefficients of the series by practice or tables. In Chapter 5, we will show that the
orthogonality of the eigenfuctions follows automatically from the differential equation and
the homogeneous boundary conditions.

Sketching Fourier series. Now we are ready to apply Fourier’s theorem. To
sketch the Fourier series of f(x) (on the interval −L ≤ x ≤ L), we
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1. Sketch f(x) (preferably for −L ≤ x ≤ L only).
2. Sketch the periodic extension of f(x).

According to Fourier’s theorem, the Fourier series converges (here converge means
“equals”) to the periodic extension, where the periodic extension is continuous (which
will be almost everywhere). However, at points of jump discontinuity of the periodic
extension, the Fourier series converges to the average. Therefore, there is a third step:

3. Mark an “×” at the average of the two values at any jump
discontinuity of the periodic extension.

EXAMPLE

Consider

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x <
L

2

1 x >
L

2
.

(3.2.5)

We would like to determine the Fourier series of f(x) on −L ≤ x ≤ L. We begin by
sketching f(x) for all x in Fig. 3.2.1 (although we need only the sketch for −L ≤ x ≤ L.)
Note that f(x) is piecewise smooth, so we can apply Fourier’s theorem. The periodic
extension of f(x) is sketched in Fig. 3.2.2. Often the understanding of the process is
made clearer by sketching at least three full periods, −3L ≤ x ≤ 3L, even though in the
applications to partial differential equations, only the interval −L ≤ x ≤ L is absolutely
needed. The Fourier series of f(x) equals the periodic extension of f(x), wherever the
periodic extension is continuous (i.e., at all x except the points of jump discontinuity,
which are x = L/2, L, L/2 + 2L, −L, L/2 − 2L, etc.). According to Fourier’s theorem,
at these points of jump discontinuity, the Fourier series of f(x) must converge to the
average. These points should be marked, perhaps with an ×, as in Fig. 3.2.2. At x = L/2
and x = L (as well as x = L/2 ± 2nL and x = L± 2nL), the Fourier series converges to
the average, 1

2 . In summary, for this example,

a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 x = −L
0 −L < x < L/2
1
2 x = L/2
1 L/2 < x < L
1
2 x = L.

Fourier series can converge to rather strange functions, but they are not so different from
the original function.
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f(x)

L/2

FIGURE 3.2.1 Sketch of f(x).

L/2

x x x x x x

L 3L
x

−3L −L 0

FIGURE 3.2.2 Fourier series of f(x).

Fourier coefficients. For a given f(x), it is not necessary to calculate the Fourier
coefficients in order to sketch the Fourier series of f(x). However, it is important to know
how to calculate the Fourier coefficients, given by (3.2.2). The calculation of Fourier co-
efficients can be an algebraically involved process. Sometimes it is an exercise in the
method of integration by parts. Often, calculations can be simplified by judiciously using
integral tables or computer algebra systems. In any event, we can always use a com-
puter to approximate the coefficients numerically. As an overly simple example but one
that illustrates some important points, consider f(x) given by (3.2.5). From (3.2.2), the
coefficients are

a0 =
1

2L

∫ L

−L

f(x) dx =
1

2L

∫ L

L/2

dx =
1
4

(3.2.6)

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx =

1
L

∫ L

L/2

cos
nπx

L
dx =

1
nπ

sin
nπx

L

∣∣∣∣∣
L

L/2

=
1

nπ

(
sin nπ − sin

nπ

2

)
(3.2.7)

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx =

1
L

∫ L

L/2

sin
nπx

L
dx =

−1
nπ

cos
nπx

L

∣∣∣∣∣
L

L/2

=
1

nπ

(
cos

nπ

2
− cos nπ

)
. (3.2.8)

We omit simplifications that arise by noting that sinnπ = 0, cos nπ = (−1)n, and so on.
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EXERCISES 3.2

3.2.1. For the following functions, sketch the Fourier series of f(x) (on the interval −L ≤
x ≤ L). Compare f(x) to its Fourier series:
(a) f(x) = 1 ∗ (b) f(x) = x2

(c) f(x) = 1 + x ∗ (d) f(x) = ex

(e) f(x) =
{

x x < 0
2x x > 0 ∗ (f) f(x) =

{
0 x < 0
1 + x x > 0

(g) f(x) =
{

x x < L/2
0 x > L/2

3.2.2. For the following functions, sketch the Fourier series of f(x) (on the interval −L ≤
x ≤ L) and determine the Fourier coefficients:

∗ (a) f(x) = x (b) f(x) = e−x

∗ (c) f(x) = sin
πx

L
(d) f(x) =

{
0 x < 0
x x > 0

(e) f(x) =
{

1 |x| < L/2
0 |x| > L/2 ∗ (f) f(x) =

{
0 x < 0
1 x > 0

(g) f(x) =
{

1 x < 0
2 x > 0

3.2.3. Show that the Fourier series operation is linear: that is, show that the Fourier series
of c1f(x) + c2g(x) is the sum of c1 times the Fourier series of f(x) and c2 times the
Fourier series of g(x).

3.2.4. Suppose that f(x) is piecewise smooth. What value does the Fourier series of f(x)
converge to at the endpoint x = −L? at x = L?

3.3 FOURIER COSINE AND SINE SERIES

In this section we show that the series of only sines (and the series of only cosines) are
special cases of a Fourier series.

3.3.1 Fourier Sine Series

Odd functions. An odd function is a function with the property f(−x) = −f(x). The
sketch of an odd function for x < 0 will be minus the mirror image of f(x) for x > 0,
as illustrated in Fig. 3.3.1. Examples of odd functions are f(x) = x3 (in fact, any odd
power) and f(x) = sin 4x. The integral of an odd function over a symmetric interval is
zero (any contribution from x > 0 will be cancelled by a contribution from x < 0).

f(x)

x

FIGURE 3.3.1 An odd function.
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Fourier series of odd functions. Let us calculate the Fourier coefficients of an
odd function:

a0 =
1

2L

∫ L

−L

f(x) dx = 0

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx = 0.

Both are zero because the integrand, f(x) cos nπx/L, is odd [being the product of an
even function cos nπx/L and an odd function f(x)]. Since an = 0, all the cosine functions
(which are even) will not appear in the Fourier series of an odd function. The Fourier
series of an odd function is an infinite series of odd functions (sines):

f(x) ∼
∞∑

n=1

bn sin
nπx

L
, (3.3.1)

if f(x) is odd. In this case formulas for the Fourier coefficients bn may be simplified:

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx =

2
L

∫ L

0

f(x) sin
nπx

L
dx, (3.3.2)

since the integral of an even function over the symmetric interval −L to +L is twice
the integral from 0 to L. For odd functions, information about f(x) is needed only for
0 ≤ x ≤ L.

Fourier sine series. However, only occasionally are we given an odd function
and asked to compute its Fourier series. Instead, frequently series of only sines arise in
the context of separation of variables. Recall that the temperature in a one-dimensional
rod 0 < x < L with zero-temperature ends [u(0, t) = u(L, t) = 0] satisfies

u(x, t) =
∞∑

n=1

Bn sin
nπx

L
e−(nπ/L)2kt, (3.3.3)

where the initial condition u(x, 0) = f(x) is satisfied if

f(x) =
∞∑

n=1

Bn sin
nπx

L
. (3.3.4)

f(x) must be represented as a series of sines; (3.3.4) appears in the same form as (3.3.1).
However, there is a significant difference. In (3.3.1) f(x) is given as an odd function and
is defined for −L ≤ x ≤ L. In (3.3.4), f(x) is defined only for 0 ≤ x ≤ L (it is just the
initial temperature distribution); f(x) is certainly not necessarily odd. If f(x) is given
only for 0 ≤ x ≤ L, then it can be extended as an odd function; see Fig. 3.3.2, called the
odd extension of f(x). The odd extension of f(x) is defined for −L ≤ x ≤ L. Fourier’s
theorem will apply [if the odd extension of f(x) is piecewise smooth, which just requires
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−L

f(x)

L0

FIGURE 3.3.2 Odd extension of f(x).

that f(x) is piecewise smooth for 0 ≤ x ≤ L]. Moreover. since the odd extension of f(x)
is certainly odd, its Fourier series involves only sines:

the odd extension of f(x) ∼
∞∑

n=1

Bn sin nπx/L, −L ≤ x ≤ L,

where Bn are given by (3.3.2). However, we are interested only in what happens between
x = 0 and x = L. In that region, f(x) is identical to its odd extension:

f(x) ∼
∞∑

n=1

Bn sin
nπx

L
, 0 ≤ x ≤ L, (3.3.5)

where

Bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx. (3.3.6)

We call this the Fourier sine series of f(x) (on the interval 0 ≤ x ≤ L). This series
(3.3.5) is nothing but an example of a Fourier series. As such, we can simply apply
Fourier’s theorem; just remember that f(x) is defined only for 0 ≤ x ≤ L. We may think
of f(x) as being odd (although it is not necessarily) by extending f(x) as an odd function.
Formula (3.3.6) is very important but does not need to be memorized. It can be derived
from the formulas for a Fourier series simply by assuming that f(x) is odd. [It is more
accurate to say that we consider the odd extension of f(x).] Formula (3.3.6) is a factor
of 2 larger than the Fourier series coefficients since the integrand is even. In (3.3.6) the
integrals are only from x = 0 to x = L.
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According to Fourier’s theorem, sketching the Fourier sine series of f(x) is easy:

1. Sketch f(x)(for 0 < x < L).
2. Sketch the odd extension of f(x).
3. Extend as a periodic function (with period 2L).
4. Mark an × at the average at points where the odd periodic extension of

f(x) has a jump discontinuity.

EXAMPLE

As an example, we show how to sketch the Fourier sine series of f(x) = 100. We consider
f(x) = 100 only for 0 ≤ x ≤ L. We begin by sketching in Fig. 3.3.3 its odd extension.
The Fourier sine series of f(x) equals the Fourier series of the odd extension of f(x). In
Fig. 3.3.4 we repeat periodically the odd extension (with period 2L). At points of discon-
tinuity, the average is marked with an ×. According to Fourier’s theorem (as illustrated
in Fig. 3.3.4), the Fourier sine series of 100 actually equals 100 for 0 < x < L, but the
infinite series does not equal 100 at x = 0 and x = L:

100 =
∞∑

n=1

Bn sin
nπx

L
, 0 < x < L. (3.3.7)

−L
x

L

100

0

FIGURE 3.3.3 Odd extension of f(x) = 100.

−3L −L L 3L0
xxxxxxx

FIGURE 3.3.4 Fourier sine series of f(x) = 100.
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At x = 0, Fig. 3.3.4 shows that the Fourier sine series converges to 0, because at x = 0
the odd property of the sine series yields the average of 100 and −100, which is 0. For
similar reasons, the Fourier sine series also converges to 0 at x = L. These observations
agree with the result of substituting x = 0 (and x = L) into the infinite series of sines.
The Fourier coefficients are determined from (3.3.6) as before [see (2.3.42)]:

Bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx =

200
L

∫ L

0

sin
nπx

L
dx =

{
0 n even
400
nπ n odd.

(3.3.8)

PHYSICAL EXAMPLE

One of the simplest examples is the Fourier sine series of a constant. This problem arose
in trying to solve the one-dimensional heat equation with zero boundary conditions and
constant initial temperature, 100◦:

PDE:
∂u

∂t
= k

∂2u

∂x2
, 0 < x < L, t > 0

BC1: u(0, t) = 0
BC2: u(L, t) = 0

IC: u(x, 0) = f(x) = 100◦.

We recall from Section 2.3 that the method of separation of variables implied that

u(x, t) =
∞∑

n=1

Bn sin
nπx

L
e−(nπ/L)2kt. (3.3.9)

The initial conditions are satisfied if

100 = f(x) =
∞∑

n=1

Bn sin
nπx

L
, 0 < x < L.

This may be interpreted as the Fourier sine series of f(x) = 100 [see (3.3.8)]. Equivalently,
Bn may be determined from the orthogonality of sinnπx/L [see (2.3.42)].

Mathematically, the Fourier series of the initial condition has a rather bizarre
behavior at x = 0 (and at x = L). In fact, for this problem, the physical situation is
not very well defined at x = 0 (at t = 0). This might be illustrated in a space-time dia-
gram, Fig. 3.3.5. We note that Fig. 3.3.5 shows that the domain of our problem is t ≥ 0
and 0 ≤ x ≤ L. However, there is a conflict that occurs at x = 0, t = 0 between the
initial condition and the boundary condition. The initial condition (t = 0) prescribes the
temperature to be 100◦ even as x → 0, whereas the boundary condition (x = 0) prescribes
the temperature to be 0◦ even as t → 0. Thus, the physical problem has a discontinuity
at x = 0, t = 0. In the actual physical world, the temperature cannot be discontinu-
ous. We introduced a discontinuity into our mathematical model by “instantaneously”
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u = 100◦x = 0 x = L
x

t

u = 0◦ u = 0◦

FIGURE 3.3.5 Boundary and initial conditions.

transporting (at t = 0) the rod from a 100◦ bath to a 0◦ bath at x = 0. It actually takes a
finite time, and the temperature would be continuous. Nevertheless, the transition from
0◦ to 100◦ would occur over an exceedingly small distance and time. We introduce the
temperature discontinuity to approximate the more complicated real physical situation.
Fourier’s theorem thus illustrates how the physical discontinuity at x = 0 (initially, at
t = 0) is reproduced mathematically. The Fourier sine series of 100◦ (which represents the
physical solution at t = 0) has the nice property that it equals 100◦ for all x inside the rod,
0 < x < L (thus satisfying the initial condition there), but it equals 0◦ at the boundaries,
x = 0 and x = L (thus also satisfying the boundary conditions). The Fourier sine series of
100◦ is a strange mathematical function, but so is the physical approximation for which
it is needed.

Finite number of terms in Fourier series computations and the Gibbs
phenomenon. Let us gain some confidence in the validity of Fourier series. The Fourier
sine series of f(x) = 100 states that

100 =
400
π

(
sin πx/L

1
+

sin 3πx/L

3
+

sin 5πx/L

5
+ · · ·

)
. (3.3.10)

Do we believe (3.3.10)? Certainly, it is not valid at x = 0 (as well as the other boundary
x = L), since at x = 0 every term in the infinite series is zero (they cannot add to 100).
However, the theory of Fourier series claims that (3.3.10) is valid everywhere except the
two ends. For example, we claim it is valid at x = L/2. Substituting x = L/2 into (3.3.10)
shows that

100 =
400
π

(
1 − 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · ·

)
or

π

4
= 1 − 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · · .

At first this may seem strange. However, it is Euler’s formula for π. It can be used to
compute π (although very inefficiently); it can also be shown to be true without rely-
ing on the theory of infinite trigonometric series (see Exercise 3.3.17). The validity of
(3.3.10) for other values of x, 0 < x < L, may also surprise you. We will sketch the
left- and right-hand sides of (3.3.10), hopefully convincing you of their equality. We will
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sketch the r.h.s. by adding up the contribution of each term of the series. Of course, we
cannot add up the required infinite number of terms; we will settle for a finite number
of terms. In fact, we will sketch the sum of the first few terms to see how the series
approaches the constant 100 as the number of terms increases. It is helpful to know that
400/π = 127.32395 . . . (although for rough sketching 125 or 130 will do). The first term
(400/π) sin πx/L by itself is the basic first rise and fall of a sine function; it is not a good
approximation to the constant 100, as illustrated in Fig. 3.3.6. On the other hand, for just
one term in an infinite series, it is not such a bad approximation. The next term to be
added is (400/3π) sin 3πx/L. This is a sinusoidal oscillation, with one third the amplitude
and one third the period of the first term. It is positive near x = 0 and x = L, where
the approximation needs to be increased, and it is negative near x = L/2, where the
approximation needs to be decreased. It is sketched in dashed lines and then added to
the first term in Fig. 3.3.7. Note that the sum of the two nonzero terms already seems to

L0

100

FIGURE 3.3.6 First term of Fourier sine series of f(x) = 100.

L0

100

FIGURE 3.3.7 First two nonzero terms of Fourier sine series of f(x) = 100.
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be a considerable improvement over the first term. Computer plots of some partial sums
are given in Fig. 3.3.8.

Actually, a lot can be learned from Fig. 3.3.8. Perhaps now it does seem reasonable
that the infinite series converges to 100 for 0 < x < L. The worst places (where the finite
series differs most from 100) are getting closer and closer to x = 0 and x = L as the
number of terms increases. For a finite number of terms in the series, the solution starts
from zero at x = 0 and shoots up beyond 100, what we call the primary overshoot.
It is interesting to note that Fig. 3.3.8 illustrates the overshoot vividly. We can even
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3 5

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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x/L

51

FIGURE 3.3.8 Various partial sums of Fourier sine series of f(x) = 100. Using 51 terms
(including n = 51), the finite series is a good approximation to f(x) = 100 away from the
endpoints. Near the endpoints (where there is a jump discontinuity of 200, there is a 9%
overshoot (Gibbs phenomenon).
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extrapolate to guess what happens for 1000 terms. The series should become more and
more accurate as the number of terms increases. We might expect the overshoot to vanish
as n → ∞, but put a straight edge on the points of maximum overshoot. It just does not
seem to approach 100. Instead, it is far away from that, closer to 118. This overshoot is
an example of the Gibbs phenomenon. In general (for large n), there is an overshoot
(and corresponding undershoot) of approximately 9% of the jump discontinuity. In this
case (see Fig. 3.3.4), the Fourier sine series of f(x) = 100 jumps from −100 to +100 at
x = 0. Thus, the finite series will overshoot by about 9% of 200, or approximately 18.
The Gibbs phenomenon occurs only when a finite series of eigenfunctions approximates
a discontinuous function.

Further example of a Fourier sine series. We consider the Fourier sine series
of f(x) = x. f(x) = x is sketched on the interval 0 ≤ x ≤ L in Fig. 3.3.9a. The odd-
periodic extension of f(x) is sketched in Fig. 3.3.9b. The jump discontinuity of the odd-
periodic extension at x = (2n − 1)L shows that, for example, the Fourier sine series of
f(x) = x converges to zero at x = L. In contrast, f(L) �= 0. We note that the Fourier
sine series of f(x) = x actually equals x for −L < x < L,

x =
∞∑

n=1

Bn sin
nπx

L
, −L < x < L. (3.3.11)

The Fourier coefficients are determined from (3.3.6):

Bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx =

2
L

∫ L

0

x sin
nπx

L
dx =

2L

nπ
(−1)n+1, (3.3.12)

where the integral can be evaluated by integration by parts (or by a table).

−3L −L L 3L

u(x)

(a) (b)

x x x x

FIGURE 3.3.9 (a) f(x) = x and (b) its Fourier sine series.

EXAMPLE

We now consider the Fourier sine series of f(x) = cos πx/L. This may seem strange to
ask for a sine series expansion of an even function, but in applications often the function
is given only from 0 ≤ x ≤ L and must be expanded in a series of sines due to the
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boundary conditions. cosπx/L is sketched in Fig. 3.3.10a. It is an even function, but
its odd extension is sketched in Fig. 3.3.10b. The Fourier sine series of f(x) equals the
Fourier series of the odd extension of f(x). Thus, we repeat the sketch in Fig. 3.3.10b
periodically (see Fig. 3.3.11), placing an × at the average of the two values at the jump
discontinuities. The Fourier sine series representation of cosπx/L is

cos
πx

L
∼

∞∑
n=1

Bn sin
nπx

L
, 0 ≤ x ≤ L,

where with some effort we obtain

Bn =
2
L

∫ L

0

cos
πx

L
sin

nπx

L
dx =

{
0 n odd

4n

π(n2−1)
n even. (3.3.13)

(a)

(b)

−L L

−L L

FIGURE 3.3.10 (a) f(x) = cos πx/L and (b) its odd extension.

−3L −L −L 3L
xx xx x x x x

FIGURE 3.3.11 Fourier sine series of f(x) = cos πx/L.
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According to Fig. 3.3.11 (based on Fourier’s theorem), equality holds for 0 < x < L, but
not at x = 0 and not at x = L:

cos
πx

L
=

∞∑
n=1

Bn sin
nπx

L
, 0 < x < L.

At x = 0 and at x = L, the infinite series must converge to 0, since all terms in the
series are 0 there. Figure 3.3.11 agrees with this. You may be a bit puzzled by an aspect
of this problem. You may have recalled that sinnπx/L is orthogonal to cos mπx/L, and
thus expected all the Bn in (3.3.12) to be 0. However, Bn �= 0. The subtle point is
that you should remember that cosmπx/L and sinnπx/L are orthogonal on the interval
−L ≤ x ≤ L,

∫ L

−L
cos mπx/L sin nπx/L dx = 0; they are not orthogonal on 0 ≤ x ≤ L.

3.3.2 Fourier Cosine Series

Even functions. Similar ideas are valid for even functions, in which f(−x) = f(x).
Let us develop the basic results. The sine coefficients of a Fourier series will be zero for
an even function,

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx = 0,

since f(x) is even. The Fourier series of an even function is a representation of f(x)
involving an infinite sum of only even functions (cosines):

f(x) ∼
∞∑

n=0

an cos
nπx

L
, (3.3.14)

if f(x) is even. The coefficients of the cosines may be evaluated using information about
f(x) only between x = 0 and x = L, since

a0 =
1

2L

∫ L

−L

f(x) dx =
1
L

∫ L

0

f(x) dx (3.3.15)

(n ≥ 1) an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx =

2
L

∫ L

0

f(x) cos
nπx

L
dx, (3.3.16)

using the fact that for f(x) even, f(x) cos nπx/L is even.
Often, f(x) is not given as an even function. Instead, in trying to represent an

arbitrary function f(x) using an infinite series of cosnπx/L, the eigenfunctions of the
boundary value problem d2φ/dx2 = −λφ with dφ/dx (0) = 0 and dφ/dx (L) = 0, we
wanted

f(x) =
∞∑

n=0

An cos
nπx

L
, (3.3.17)

only for 0 < x < L. We had previously determined the coefficients An to be the same
as given by (3.3.15) and (3.3.16), but our reason was because of the orthogonality of
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FIGURE 3.3.12 Even extension of f(x).

cos nπx/L. To relate (3.3.17) to a Fourier series, we simply introduce the even extension
of f(x), an example being illustrated in Fig. 3.3.12. If f(x) is piecewise smooth for
0 ≤ x ≤ L, then its even extension will also be piecewise smooth, and hence Fourier’s
theorem can be applied to the even extension of f(x). Since the even extension of f(x) is
an even function, the Fourier series of the even extension of f(x) will have only cosines:

even extension of f(x) ∼
∞∑

n=0

an cos
nπx

L
, −L ≤ x ≤ L,

where an is given by (3.3.15) and (3.3.16). In the region of interest, 0 ≤ x ≤ L, f(x) is
identical to the even extension. The resulting series in that region is called the Fourier
cosine series of f(x) (on the interval 0 ≤ x ≤ L):

f(x) ∼
∞∑

n=0

An cos
nπx

L
, 0 ≤ x ≤ L (3.3.18)

A0 =
1
L

∫ L

0

f(x) dx (3.3.19)

An =
2
L

∫ L

0

f(x) cos
nπx

L
dx. (3.3.20)

The Fourier cosine series of f(x) is exactly the Fourier series of the even extension of
f(x). Since we can apply Fourier’s theorem, we have an algorithm to sketch the Fourier
cosine series of f(x):



104 Chapter 3 Fourier Series

1. Sketch f(x) (for 0 < x < L).
2. Sketch the even extension of f(x).
3. Extend as a periodic function (with period 2L).
4. Mark × at points of discontinuity at the average.

EXAMPLE

We consider the Fourier cosine series of f(x) = x. f(x) is sketched in Fig. 3.3.13a [note
that f(x) is odd!]. We consider f(x) only from x = 0 to x = L and then extend it in
Fig. 3.3.13b as an even function. Next, we sketch the Fourier series of the even extension,
by periodically extending the even extension (see Fig. 3.3.14). Note that between x = 0
and x = L, the Fourier cosine series has no jump discontinuities. The Fourier cosine series
of f(x) = x actually equals x, so that

x =
∞∑

n=0

An cos
nπx

L
, 0 ≤ x ≤ L. (3.3.21)

The coefficients are given by the following integrals:

A0 =
1
L

∫ L

0

x dx =
1
L

1
2
x2

∣∣∣∣∣
L

0

=
L

2
(3.3.22)

An =
2
L

∫ L

0

x cos
nπx

L
dx =

2
L

L2

n2π2

(
cos

nπx

L
− nπx

L
sin

nπx

L

)∣∣∣L
0

=
2L

(nπ)2
(cos nπ − 1).

(3.3.23)

The latter integral was integrated by parts
∫

udv = uv − ∫
udv, where u = x and dv =

cos nπx
L dx, so that du = dx and v = L

nπ sin nπx
L . Integrals can also be evaluated by tables

or a symbolic computation program.

(a) (b)

−L L
xx

f(x)

FIGURE 3.3.13 (a) f(x) = x, (b) its even extension.
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−L
x

L 3L−3L 0

FIGURE 3.3.14 Fourier cosine series of the even extension of f(x).

3.3.3 Representing f (x) by Both a Sine and Cosine Series

It may be apparent that any function f(x) (which is piecewise smooth) may be represented
both as a Fourier sine series and as a Fourier cosine series. The one you would use is
dictated by the boundary conditions (if the problem arose in the context of a solution
to a partial differential equation using the method of separation of variables). It is also
possible to use a Fourier series (including both sines and cosines). As an example, we
consider the sketches of the Fourier, Fourier sine, and Fourier cosine series of

f(x) =

⎧⎨
⎩

−L
2 sin πx

L x < 0
x 0 < x < L

2

L − x x > L
2 .

The graph of f(x) is sketched for −L < x < L in Fig. 3.3.15. The Fourier series of f(x) is
sketched by repeating this pattern with period 2L. On the other hand, for the Fourier sine
(cosine) series, first sketch the odd (even) extension of the function f(x) before repeating
the pattern. These three are sketched in Fig. 3.3.16. Note that for −L ≤ x ≤ L, only the
Fourier series of f(x) actually equals f(x). However, for all three cases, the series equals
f(x) over the region 0 ≤ x ≤ L.

−L L0

f(x)

x

FIGURE 3.3.15 The graph of f(x) for −L < x < L.
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x
3LL−L−3L 0

x
3LL−L−3L 0

x
3LL−L−3L 0

(a)

(b)

(c)

FIGURE 3.3.16 (a) Fourier series of f(x); (b) Fourier sine series of f(x); (c) Fourier cosine
series of f(x).

3.3.4 Even and Odd Parts

Let us consider the Fourier series of a function f(x) that is not necessarily even or odd:

f(x) ∼ a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
, (3.3.24)

where

a0 =
1

2L

∫ L

−L

f(x) dx

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx.

It is interesting to see that a Fourier series is the sum of a series of cosines and a series of
sines. For example,

∑∞
n=1 bn sin nπx/L is not, in general, the Fourier sine series of f(x),

because the coefficients, bn = 1/L
∫ L

−L
f(x) sin nπx/L dx, are not, in general, the same as

the coefficients of a Fourier sine series [2/L
∫ L

0
f(x) sin nπx/L dx]. This series of sines by

itself ought to be the Fourier sine series of some function; let us determine this function.
Equation (3.3.24) shows that f(x) is represented as a sum of an even function (for

the series of cosines must be an even function) and an odd function (similarly, the sine
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series must be odd). This is a general property of functions, since for any function it is
rather obvious that

f(x) =
1
2

[f(x) + f(−x)] +
1
2

[f(x) − f(−x)] . (3.3.25)

Note that the first bracketed term is an even function; we call it the even part of f(x).
The second bracketed term is an odd function, called the odd part of f(x):

fe(x) ≡ 1
2

[f(x) + f(−x)] and fo(x) ≡ 1
2
[f(x) − f(−x)]. (3.3.26)

In this way, any function is written as the sum of an odd function (the odd part) and an
even function (the even part). For example, if f(x) = 1/(1 + x),

1
1 + x

=
1
2

[
1

1 + x
+

1
1 − x

]
+

1
2

[
1

1 + x
− 1

1 − x

]
=

1
1 − x2

− x

1 − x2
.

This is the sum of an even function, 1/(1 − x2), and an odd function, −x/(1 − x2).
Consequently, the Fourier series of f(x) equals the Fourier series of fe(x) [which is a
cosine series since fe(x) is even] plus the Fourier series of fo(x) (which is a sine series
since fo(x) is odd). This shows that the series of sines (cosines) that appears in (3.3.17)
is the Fourier sine (cosine) series of fo(x)(fe(x)). We summarize our result with the
statement:

The Fourier series of f(x) equals the Fourier sine series of fo(x) plus
the Fourier cosine series of fe(x), where fe(x)= 1

2 [f(x) + f(−x)], and
fo(x) = 1

2 [f(x) − f(−x)].

Please do not confuse this result with even and odd extensions. For example, the even
part of f(x) = 1

2 [f(x) + f(−x)], while the

even extension of f(x) =
{

f(x) x > 0
f(−x) x < 0.

3.3.5 Continuous Fourier Series

The convergence theorem for Fourier series shows that the Fourier series of f(x) may be a
different function than f(x). Nevertheless, over the interval of interest, they are the same
except at those few points where the periodic extension of f(x) has a jump discontinuity.
Sine (cosine) series are analyzed in the same way, where instead the odd (even) periodic
extension must be considered. In addition to points of jump discontinuity of f(x) itself,
the various extensions of f(x) may introduce a jump discontinuity. From the examples in
the preceding section, we observe that sometimes the resulting series does not have any
jump discontinuities. In these cases the Fourier series of f(x) will actually equal f(x) in
the range of interest. Also, the Fourier series itself will be a continuous function.

It is worthwhile to summarize the conditions under which a Fourier series is
continuous:
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For piecewise smooth f(x), the Fourier series of f(x) is continuous
and converges to f(x) for −L ≤ x ≤ L if and only if f(x) is
continuous and f(−L) = f(L).

It is necessary for f(x) to be continuous; otherwise, there will be a jump discontinuity
[and the Fourier series of f(x) will converge to the average]. In Fig. 3.3.17 we illustrate
the significance of the condition f(−L) = f(L). We illustrate two continuous functions,
only one of which satisfies f(−L) = f(L). The condition f(−L) = f(L) insists that the
repeated pattern (with period 2L) will be continuous at the endpoints. The preceding
boxed statement is a fundamental result for all Fourier series. It explains the following
similar theorems for Fourier sine and cosine series.

Consider the Fourier cosine series of f(x) [f(x) has been extended as an even func-
tion]. If f(x) is continuous, is the Fourier cosine series continuous? An example that is
continuous for 0 ≤ x ≤ L is sketched in Fig. 3.3.18. First we extend f(x) evenly and then
periodically. It is easily seen that

For piecewise smooth f(x), the Fourier cosine series of f(x) is continuous
and converges to f(x) for 0 ≤ x ≤ L if and only if f(x) is continuous.

−3L −L L 3L

(a)

x

xxxx

0

−3L −L L 3L

(b)

x
0

FIGURE 3.3.17 Fourier series of a continuous function with (a) f(−L) �= f(L) and (b)
f(−L) = f(L).
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−3L −L L 3L
x

0

FIGURE 3.3.18 Fourier cosine series of a continuous function.

We note that no additional conditions on f(x) are necessary for the cosine series to be
continuous [besides f(x) being continuous]. One reason for this result is that if f(x) is
continuous for 0 ≤ x ≤ L, then the even extension will be continuous for −L ≤ x ≤ L.
Also note that the even extension is the same at ±L. Thus, the periodic extension will
automatically be continuous at the endpoints.

Compare this result to what happens for a Fourier sine series. Four examples are
considered in Fig. 3.3.19, all continuous functions for 0 ≤ x ≤ L. From the first three

3LL−L−3L
0

(d)

3LL−L−3L 0

(c)

x
L−L−3L 0

(b)

3LL−L−3L 0

(a)

x

x

x

3L

xxxxxxx

xxxx

xx

FIGURE 3.3.19 Fourier sine series of a continuous function with (a) f(0) �= 0 and f(L) �= 0;
(b) f(0) = 0 but f(L) �= 0; (c) f(L) = 0 but f(0) �= 0; and (d) f(0) = 0 and f(L) = 0.



110 Chapter 3 Fourier Series

examples, we see that it is possible for the Fourier sine series of a continuous function to
be discontinuous. It is seen that

For piecewise smooth functions f(x), the Fourier sine series of f(x)
is continuous and converges to f(x) for 0 ≤ x ≤ L if and only if
f(x) is continuous and both f(0) = 0 and f(L) = 0.

If f(0) �= 0, then the odd extension of f(x) will have a jump discontinuity at x = 0, as
illustrated in Figs. 3.3.19a and c. If f(L) �= 0, then the odd extension at x = −L will be
of opposite sign from f(L). Thus, the periodic extension will not be continuous at the
endpoints if f(L) �= 0 as in Figs. 3.3.19a and b.

EXERCISES 3.3

3.3.1. For the following functions, sketch f(x), the Fourier series of f(x), the Fourier sine
series of f(x), and the Fourier cosine series of f(x):
(a) f(x) = 1 (b) f(x) = 1 + x

(c) f(x) =
{

x x < 0
1 + x x > 0 ∗ (d) f(x) = ex

(e) f(x) =
{

2 x < 0
e−x x > 0

3.3.2. For the following functions, sketch the Fourier sine series of f(x) and determine its
Fourier coefficients:

(a) f(x) = cos πx/L
[Verify formula (3.3.13).] (b) f(x) =

⎧⎨
⎩

1 x < L/6
3 L/6 < x < L/2
0 x > L/2

(c) f(x) =
{

0 x < L/2
x x > L/2 ∗ (d) f(x) =

{
1 x < L/2
0 x > L/2

3.3.3. For the following functions, sketch the Fourier sine series of f(x). Also, roughly
sketch the sum of a finite number of nonzero terms (at least the first two) of the
Fourier sine series:
(a) f(x) = cos πx/L [Use formula (3.3.13).]

(b) f(x) =
{

1 x < L/2
0 x > L/2

(c) f(x) = x [Use formula (3.3.12).]
3.3.4. Sketch the Fourier cosine series of f(x) = sinπx/L. Briefly discuss.
3.3.5. For the following functions, sketch the Fourier cosine series of f(x) and determine

its Fourier coefficients:

(a) f(x) = x2 (b) f(x) =

⎧⎨
⎩

1 x < L/6
3 L/6 < x < L/2
0 x > L/2

(c) f(x) =
{

0 x < L/2
x x > L/2

3.3.6. For the following functions, sketch the Fourier cosine series of f(x). Also, roughly
sketch the sum of a finite number of nonzero terms (at least the first two) of the
Fourier cosine series:
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(a) f(x) = x [Use formulas (3.3.22) and (3.3.23).]

(b) f(x) =
{

0 x < L/2
1 x > L/2 [Use carefully formulas (3.2.6) and (3.2.7).]

(c) f(x) =
{

0 x < L/2
1 x > L/2 [Hint: Add the functions in parts (b) and (c).]

3.3.7. Show that ex is the sum of an even and an odd function.
3.3.8. (a) Determine formulas for the even extension of any f(x). Compare to the formula

for the even part of f(x).

(b) Do the same for the odd extension of f(x) and the odd part of f(x).

(c) Calculate and sketch the four functions of parts (a) and (b) if

f(x) =
{

x x > 0
x2 x < 0.

Graphically add the even and odd parts of f(x). What occurs? Similarly, add
the even and odd extensions. What occurs then?

3.3.9. What is the sum of the Fourier sine series of f(x) and the Fourier cosine series of
f(x)? [What is the sum of the even and odd extensions of f(x)?]

*3.3.10. If f(x) =
{

x2 x < 0
e−x x > 0

, what are the even and odd parts of f(x)?

3.3.11. Given a sketch of f(x), describe a procedure to sketch the even and odd parts of
f(x).

3.3.12. (a) Graphically show that the even terms (n even) of the Fourier sine series of any
function on 0 ≤ x ≤ L are odd (antisymmetric) around x = L/2.

(b) Consider a function f(x) that is odd around x = L/2. Show that the odd
coefficients (n odd) of the Fourier sine series of f(x) on 0 ≤ x ≤ L are zero.

*3.3.13. Consider a function f(x) that is even around x = L/2. Show that the even coefficients
(n even) of the Fourier sine series of f(x) on 0 ≤ x ≤ L are zero.

3.3.14. (a) Consider a function f(x) that is even around x = L/2. Show that the odd
coefficients (n odd) of the Fourier cosine series of f(x) on 0 ≤ x ≤ L are zero.

(b) Explain the result of part (a) by considering a Fourier cosine series of f(x) on
the interval 0 ≤ x ≤ L/2.

3.3.15. Consider a function f(x) that is odd around x = L/2. Show that the even coefficients
(n even) of the Fourier cosine series of f(x) on 0 ≤ x ≤ L are zero.

3.3.16. Fourier series can be defined on other intervals besides −L ≤ x ≤ L. Suppose that
g(y) is defined for a ≤ y ≤ b. Represent g(y) using periodic trigonometric functions
with period b − a. Determine formulas for the coefficients. [Hint: Use the linear
transformation

y =
a + b

2
+

b − a

2L
x.]

3.3.17. Consider ∫ 1

0

dx

1 + x2
.

(a) Evaluate explicitly.

(b) Use the Taylor series of 1/(1+x2) (itself a geometric series) to obtain an infinite
series for the integral.

(c) Equate part (a) to part (b) in order to derive a formula for π.
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3.3.18. For continuous functions,

(a) Under what conditions does f(x) equal its Fourier series for all x, −L ≤ x ≤ L?

(b) Under what conditions does f(x) equal its Fourier sine series for all x,
0 ≤ x ≤ L?

(c) Under what conditions does f(x) equal its Fourier cosine series for all x, 0 ≤
x ≤ L?

3.4 TERM-BY-TERM DIFFERENTIATION OF FOURIER SERIES

In solving partial differential equations by the method of separation of variables, the
homogeneous boundary conditions sometimes suggest that the desired solution is an in-
finite series of either sines or cosines. For example, we consider one-dimensional heat
conduction with zero boundary conditions. As before, we want to solve the initial bound-
ary value problem

∂u

∂t
= k

∂2u

∂x2
(3.4.1)

u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x). (3.4.2)

By the method of separation of variables combined with the principle of superposition
(taking a finite linear combination of solutions), we know that

u(x, t) =
N∑

n=1

Bn sin
nπx

L
e−(nπ/L)2kt

solves the partial differential equation and the two homogeneous boundary conditions.
To satisfy the initial conditions, in general an infinite series is needed. Does the infinite
series

u(x, t) =
∞∑

n=1

Bn sin
nπx

L
e−(nπ/L)2kt (3.4.3)

satisfy our problem? The theory of Fourier sine series shows that the Fourier coeffi-
cients Bn can be determined to satisfy any (piecewise smooth) initial condition [i.e.,
Bn = 2/L

∫ L

0
f(x) sin nπx/L dx]. To see if the infinite series actually satisfies the partial

differential equation, we substitute (3.4.3) into (3.4.1). If the infinite Fourier series can
be differentiated term by term, then

∂u

∂t
= −

∞∑
n=1

k
(nπ

L

)2

Bn sin
nπx

L
e−(nπ/L)2kt

and
∂2u

∂x2
= −

∞∑
n=1

(nπ

L

)2

Bn sin
nπx

L
e−(nπ/L)2kt.

Thus, the heat equation (∂u/∂t = k∂2u/∂x2) is satisfied by the infinite Fourier series
obtained by the method of separation of variables, if term-by-term differentiation of a
Fourier series is valid.
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Term-by-term differentiation of infinite series. Unfortunately, infinite series
(even convergent infinite series) cannot always be differentiated term by term. It is not
always true that

d

dx

∞∑
n=1

cnun =
∞∑

n=1

cn
dun

dx
;

the interchange of operations of differentiation and infinite summation is not always justi-
fied. However, we will find that in solving partial differential equations, all the procedures
we have performed on the infinite Fourier series are valid. We will state and prove some
needed theorems concerning the validity of term-by-term differentiation of just the type
of Fourier series that arise in solving partial differential equations.

COUNTEREXAMPLE

Even for Fourier series, term-by-term differentiation is not always valid. To illustrate the
difficulty in term-by-term differentiation, consider the Fourier sine series of x (on the
interval 0 ≤ x ≤ L) sketched in Fig. 3.4.1:

x = 2
∞∑

n=1

L

nπ
(−1)n+1 sin

nπx

L
, on 0 ≤ x < L,

−3L −L L 3L
x xx x

FIGURE 3.4.1 Fourier cosine series of f(x) = x.

as obtained earlier [see (3.3.11) and (3.3.12)]. If we differentiate the function on the left-
hand side, then we have the function 1. However, if we formally differentiate term by term
the function on the right, then we arrive at

2
∞∑

n=1

(−1)n+1 cos
nπx

L
.

This is a cosine series, but it is not the cosine series of f(x) = 1 (the cosine series of 1 is
just 1). Thus, Fig. 3.4.1 is an example where we cannot differentiate term by term.2

2In addition, the resulting infinite series doe not even converge anywhere, since the nth term does not
approach zero.
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Fourier series. We claim that this difficulty occurs any time the Fourier series
of f(x) has a jump discontinuity. Term-by-term differentiation is not justified in these
situations. Instead, we claim (and prove in an exercise) that

A Fourier series that is continuous can be differentiated term by
term if f ′(x) is piecewise smooth.

An alternative form of this theorem is written if we remember the condition for the Fourier
series to be continuous:

If f (x ) is piecewise smooth, then the Fourier series of a continuous
function f(x) can be differentiated term by term if f(−L) = f(L).

The result of term-by-term differentiation is the Fourier series of f ′(x), which may not
be continuous. Similar results for sine and cosine series are of more frequent interest to
the solution of our partial differential equations.

Fourier cosine series. For Fourier cosine series,

If f ′(x) is piecewise smooth, then a continuous Fourier cosine series
of f(x) can be differentiated term by term.

The result of term-by-term differentiation is the Fourier sine series of f ′(x), which may
not be continuous. Recall that f(x) needs only to be continuous for its Fourier cosine
series to be continuous. Thus, this theorem can be stated in the following alternative
form:

If f ′(x) is piecewise smooth, then the Fourier cosine series of a
continuous function f(x) can be differentiated term by term.

These statements apply to the Fourier cosine series of f(x):

f(x) =
∞∑

n=0

An cos
nπx

L
, 0 ≤ x ≤ L, (3.4.4)

where the = sign means that the infinite series converges to f(x) for all x (0 ≤ x ≤ L)
since f(x) is continuous. Mathematically, these theorems state that term-by-term differ-
entiation is valid,
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f ′(x) ∼ −
∞∑

n=1

(nπ

L

)
An sin

nπx

L
, (3.4.5)

where ∼ means equality where the Fourier sine series of f ′(x) is continuous and means
the series converges to the average where the Fourier sine series of f ′(x) is discontinuous.

EXAMPLE

Consider the Fourier cosine series of x [see (3.3.21), (3.3.22), and (3.3.23)],

x =
L

2
− 4L

π2

∑
n odd
only

1
n2

cos
nπx

L
, 0 ≤ x ≤ L, (3.4.6)

−3L −L 0 L 3L

FIGURE 3.4.2 Fourier sine series of f(x) = x.

as sketched in Fig. 3.4.2. Note the continuous nature of this series for 0 ≤ x ≤ L, which
results in the = sign in (3.4.6). The derivative of this Fourier cosine series is sketched in
Fig. 3.4.3: it is the Fourier sine series of f(x) = 1. The Fourier sine series of f(x) = 1
can be obtained by term-by-term differentiation of the Fourier cosine series of f(x) = x.
Assuming that term-by-term differentiation of (3.4.6) is valid as claimed, it follows that

−3L −L 0 L 3L

FIGURE 3.4.3 Fourier sine series of df/dx.
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1 ∼ 4
π

∑
n odd
only

1
n

sin
nπx

L
, (3.4.7)

which is, in fact, correct [see (3.3.8)].

Fourier sine series. A similar result is valid for Fourier sine series:

If f ′(x) is piecewise smooth, then a continuous Fourier sine series
of f(x) can be differentiated term by term.

However, if f(x) is continuous, then the Fourier sine series is continuous only if f(0) = 0
and f(L) = 0. Thus, we must be careful in differentiating term by term a Fourier sine
series. In particular,

If f ′(x) is piecewise smooth, then the Fourier sine series of a con-
tinuous function f(x) can be differentiated term by term only if
f(0) = 0 and f(L) = 0.

Proofs. The proofs of these theorems are all quite similar. We include one since
it provides a way to learn more about Fourier series and their differentiability. We
will prove the validity of term-by-term differentiation of the Fourier sine series of a
continuous function f(x), in the case when f ′(x) is piecewise smooth and f(0) =
0 = f(L):

f(x) ∼
∞∑

n=1

Bn sin
nπx

L
, (3.4.8)

where Bn are expressed below. An equality holds in (3.4.8) only if f(0) = 0 = f(L).
If f ′(x) is piecewise smooth, then f ′(x) has a Fourier cosine series

f ′(x) ∼ A0 +
∞∑

n=1

An cos
nπx

L
, (3.4.9)

where A0 and An are expressed in (3.4.10) and (3.4.11). This series will not converge
to f ′(x) at points of discontinuity of f ′(x). We will have succeeded in showing a
Fourier sine series may be term-by-term differentiated if we can verify that

f ′(x) ∼
∞∑

n=1

(nπ

L

)
Bn cos

nπx

L
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[i.e., if A0 = 0 and An = (nπ/L)Bn]. The Fourier cosine series coefficients are
derived from (3.4.9). If we integrate by parts, we obtain

A0 =
1
L

∫ L

0

f ′(x) dx =
1
L

[f(L) − f(0)] (3.4.10)

(n �= 0) An =
2
L

∫ L

0

f ′(x) cos
nπx

L
dx =

2
L

[
f(x) cos

nπx

L

∣∣∣L
0

+
nπ

L

∫ L

0

f(x) sin
nπx

L
dx

]
. (3.4.11)

But from (3.4.8), Bn is the Fourier sine series coefficient of f(x),

Bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx,

and thus for n �= 0,

An =
nπ

L
Bn +

2
L

[(−1)nf(L) − f(0)] . (3.4.12)

We thus see by comparing Fourier cosine coefficients that the Fourier sine series can
be term-by-term differentiated only if both f(L) − f(0) = 0 (so that A0 = 0) and
(−1)nf(L)−f(0) = 0 [so that An = (nπ/L)Bn]. Both of these conditions hold only if

f(0) = f(L) = 0,

exactly the conditions for a Fourier sine series of a continuous function to be con-
tinuous. Thus, we have completed the proof. However, this demonstration has given
us more information. Namely, it gives the formula to differentiate the Fourier sine
series of a continuous function when the series is not continuous. We have that

If f ′(x) is piecewise smooth, then the Fourier sine series of a continuous
function f(x),

f(x) ∼
∞∑

n=1

Bn sin
nπx

L
,

cannot, in general, be differentiated term by term. However,

f ′(x) ∼ 1
L

[f(L) − f(0)]+
∞∑

n=1

[
nπ

L
Bn +

2
L

((−1)nf(L) − f(0))
]

cos
nπx

L
.

(3.4.13)

In this proof, it may appear that we never needed f(x) to be continuous.
However, we applied integration by parts in order to derive (3.4.9). In the usual



118 Chapter 3 Fourier Series

presentation in calculus, integration by parts is stated as being valid if both u(x)
and v(x) and their derivatives are continuous. This is overly restrictive for our work.
As is clarified somewhat in an exercise, we state that integration by parts is valid
if only u(x) and v(x) are continuous. It is not necessary for their derivatives to be
continuous. Thus, the result of integration by parts is valid only if f(x) is continuous.

EXAMPLE

Let us reconsider the Fourier sine series of f(x) = x,

x ∼ 2
∞∑

n=1

L

nπ
(−1)n+1 sin

nπx

L
. (3.4.14)

We already know that (d/dx)x = 1 does not have a Fourier cosine series that results from
term-by-term differentiation of (3.4.14) since f(L) �= 0. However, (3.4.13) may be applied
since f(x) is continuous [and f ′(x) is piecewise smooth]. Noting that f(0) = 0, f(L) = L,
and (nπ/L)Bn = 2(−1)n+1, it follows that the Fourier cosine series of df/dx is

df

dx
∼ 1.

The constant function 1 is exactly the Fourier cosine series of df/dx since f = x implies
that df/dx = 1. Thus, the r.h.s. of (3.4.13) gives the correct expression for the Fourier
cosine series of f ′(x) when the Fourier sine series of f(x) is known, even if f(0) �= 0
and/or f(L) �= 0.

Method of eigenfunction expansion. Let us see how our results concerning
the conditions under which a Fourier series may be differentiated term by term may
be applied to our study of partial differential equations. We consider the heat equation
(3.4.1) with zero boundary conditions at x = 0 and x = L. We will show that (3.4.3) is
the correct infinite series representation of the solution of this problem. We will show this
by utilizing an alternative scheme to obtain (3.4.3) known as the method of eigenfunc-
tion expansion, whose importance is that it may also be used when there are sources
or the boundary conditions are not homogeneous (see Exercises 3.4.9–3.4.12 and Chap-
ter 7). We begin by assuming that we have a solution u(x, t) that is continuous such that
∂u/∂t, ∂u/∂x, and ∂2u/∂x2 are also continuous. Now we expand the unknown solution
u(x, t) in terms of the eigenfunctions of the problem (with homogeneous boundary condi-
tions). In this example, the eigenfunctions are sinnπx/L, suggesting a Fourier sine series
for each time:

u(x, t) ∼
∞∑

n=1

Bn(t) sin
nπx

L
; (3.4.15)

the Fourier sine coefficients Bn will depend on time, Bn(t).
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The initial condition [u(x, 0) = f(x)] is satisfied if

f(x) ∼
∞∑

n=1

Bn(0) sin
nπx

L
, (3.4.16)

determining the Fourier sine coefficient initially,

Bn(0) =
2
L

∫ L

0

f(x) sin
nπx

L
dx. (3.4.17)

All that remains is to investigate whether the Fourier sine series representation of u(x, t),
(3.4.15), can satisfy the heat equation, ∂u/∂t = k∂2u/∂x2. To do that, we must dif-
ferentiate the Fourier sine series. It is here that our results concerning term-by-term
differentiation are useful.

First we need to compute two derivatives with respect to x. If u(x, t) is continuous,
then the Fourier sine series of u(x, t) can be differentiated term by term if u(0, t) = 0 and
u(L, t) = 0. Since these are exactly the boundary conditions on u(x, t), it follows from
(3.4.15) that

∂u

∂x
∼

∞∑
n=1

nπ

L
Bn(t) cos

nπx

L
. (3.4.18)

Since ∂u/∂x is also assumed to be continuous, an equality holds in (3.4.18). Furthermore,
the Fourier cosine series of ∂u/∂x can now be term-by-term differentiated, yielding

∂2u

∂x2
∼ −

∞∑
n=1

(nπ

L

)2

Bn(t) sin
nπx

L
. (3.4.19)

Note the importance of the separation of variables solution. Sines were differentiated at the
stage in which the boundary conditions occurred that allowed sines to be differentiated.
Cosines occurred with no boundary condition, consistent with the fact that a Fourier
cosine series does not need any subsidiary conditions in order to be differentiated. To
complete the substitution of the Fourier sine series into the partial differential equation,
we need only to compute ∂u/∂t. If we can also term-by-term differentiate with respect to
t, then

∂u

∂t
∼

∞∑
n=1

dBn

dt
sin

nπx

L
. (3.4.20)

If this last term-by-term differentiation is justified, we see that the Fourier sine series
(3.4.15) solves the partial differential equation if

dBn

dt
= −k

(nπ

L

)2

Bn(t). (3.4.21)

The Fourier sine coefficient Bn(t) satisfies a first-order linear differential equation with
constant coefficients. The solution of (3.4.21) is

Bn(t) = Bn(0)e−(nπ/l)2kt,
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where Bn(0) is given by (3.4.17). Thus, we have derived that (3.4.3) is valid, justifying
the method of separation of variables.

Can we justify term-by-term differentiation with respect to the parameter t? The
following theorem states the conditions under which this operation is valid:

The Fourier series of a continuous function u(x, t) (depending on a parameter t)

u(x, t) = a0(t) +
∞∑

n=1

[
an(t) cos

nπx

L
+ bn(t) sin

nπx

L

]

can be differentiated term by term with respect to the parameter t, yielding
∂

∂t
u(x, t) ∼ a′

0(t) +
∞∑

n=1

[
a′

n(t) cos
nπx

L
+ b′n(t) sin

nπx

L

]

if ∂u/∂t is piecewise smooth.

We omit its proof (see Exercise 3.4.7), which depends on the fact that

∂

∂t

∫ L

−L

g(x, t) dx =
∫ L

−L

∂g

∂t
dx

is valid if g is continuous.
In summary, we have verified that the Fourier sine series is actually a solution of

the heat equation satisfying the boundary conditions u(0, t) = 0 and u(L, t) = 0. Now we
have two reasons for choosing a Fourier sine series for this problem. First, the method of
separation of variables implies that if u(0, t) = 0 and u(L, t) = 0, then the appropriate
eigenfunctions are sinnπx/L. Second, we now see that all the differentiations of the infinite
sine series are justified, where we need to assume that u(0, t) = 0 and u(L, t) = 0, exactly
the physical boundary conditions.

EXERCISES 3.4

3.4.1. The integration-by-parts formula

∫ b

a

u
dv

dx
dx = uv

∣∣∣∣∣
b

a

−
∫ b

a

v
du

dx
dx

is known to be valid for functions u(x) and v(x), which are continuous and have
continuous first derivatives. However, we will assume that u, v, du/dx, and dv/dx
are continuous only for a ≤ x ≤ c and c ≤ x ≤ b; we assume that all quantities may
have a jump discontinuity at x = c.

*(a) Derive an expression for
∫ b
a

u dv/dx dx in terms of
∫ b
a

v du/dx dx.

(b) Show that this reduces to the integration-by-parts formula if u and v are con-
tinuous across x = c. It is not necessary for du/dx and dv/dx to be continuous
at x = c.
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3.4.2. Suppose that f(x) and df/dx are piecewise smooth. Prove that the Fourier series of
f(x) can be differentiated term by term if the Fourier series of f(x) is continuous.

3.4.3. Suppose that f(x) is continuous [except for a jump discontinuity at x = x0, f(x−
0 ) =

α and f(x+
0 ) = β] and df/dx is piecewise smooth.

*(a) Determine the Fourier sine series of df/dx in terms of the Fourier cosine series
coefficients of f(x).

(b) Determine the Fourier cosine series of df/dx in terms of the Fourier sine series
coefficients of f(x).

3.4.4. Suppose that f(x) and df/dx are piecewise smooth.
(a) Prove that the Fourier sine series of a continuous function f(x) can be differen-

tiated term by term only if f(0) = 0 and f(L) = 0.
(b) Prove that the Fourier cosine series of a continuous function f(x) can be differ-

entiated term by term.
3.4.5. Using (3.3.13) determine the Fourier cosine series of sinπx/L.
3.4.6. There are some things wrong in the following demonstration. Find the mistakes and

correct them.
In this exercise we attempt to obtain the Fourier cosine coefficients of ex:

ex = A0 +
∞∑

n=1

An cos
nπx

L
. (3.4.22)

Differentiating yields

ex = −
∞∑

n=1

nπ

L
An sin

nπx

L
,

the Fourier sine series of ex. Differentiating again yields

ex = −
∞∑

n=1

(
nπ

L

)2
An cos

nπx

L
. (3.4.23)

Since Equations (3.4.22) and (3.4.23) give the Fourier cosine series of ex, they must
be identical. Thus,

A0 = 0
An = 0

}
(obviously wrong!).

By correcting the mistakes, you should be able to obtain A0 and An without using
the typical technique, that is, An = 2/L

∫ L
0

ex cos nπx/L dx.
3.4.7. Prove that the Fourier series of a continuous function u(x, t) can be differentiated

term by term with respect to the parameter t if ∂u/∂t is piecewise smooth.
3.4.8. Consider

∂u

∂t
= k

∂2u

∂x2

subject to

∂u/∂x(0, t) = 0, ∂u/∂x(L, t) = 0, and u(x, 0) = f(x).

Solve in the following way. Look for the solution as a Fourier cosine series. Assume
that u and ∂u/∂x are continuous and ∂2u/∂x2 and ∂u/∂t are piecewise smooth.
Justify all differentiations of infinite series.
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*3.4.9. Consider the heat equation with a known source q(x, t):

∂u

∂t
= k

∂2u

∂x2
+ q(x, t) with u(0, t) = 0 and u(L, t) = 0.

Assume that q(x, t) (for each t > 0) is a piecewise smooth function of x. Also assume
that u and ∂u/∂x are continuous functions of x (for t > 0) and ∂2u/∂x2 and ∂u/∂t
are piecewise smooth. Thus,

u(x, t) =
∞∑

n=1

bn(t) sin
nπx

L
.

Justify spatial term-by-term differentiation. What ordinary differential equation
does bn(t) satisfy? Do not solve this differential equation.

3.4.10. Modify Exercise 3.4.9 if instead ∂u/∂x(0, t) = 0 and ∂u/∂x(L, t) = 0.
3.4.11. Consider the nonhomogeneous heat equation (with a steady heat source):

∂u

∂t
= k

∂2u

∂x2
+ g(x).

Solve this equation with the initial condition

u(x, 0) = f(x)

and the boundary conditions

u(0, t) = 0 and u(L, t) = 0.

Assume that a continuous solution exists (with continuous derivatives). [Hints:
Expand the solution as a Fourier sine series (i.e., use the method of eigenfunction
expansion). Expand g(x) as a Fourier sine series. Solve for the Fourier sine series of
the solution. Justify all differentiations with respect to x.]

*3.4.12. Solve the following nonhomogeneous problem:

∂u

∂t
= k

∂2u

∂x2
+ e−t + e−2t cos

3πx

L
[assume that 2 �= k(3π/L)2]

subject to
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, and u(x, 0) = f(x).

Use the following method. Look for the solution as a Fourier cosine series. Justify
all differentiations of infinite series (assume appropriate continuity).

3.4.13. Consider
∂u

∂t
= k

∂2u

∂x2

subject to
u(0, t) = A(t), u(L, t) = 0, and u(x, 0) = g(x).

Assume that u(x, t) has a Fourier sine series. Determine a differential equation for
the Fourier coefficients (assume appropriate continuity).
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3.5 TERM-BY-TERM INTEGRATION OF FOURIER SERIES

In doing mathematical manipulations with infinite series, we must remember that some
properties of finite series do not hold for infinite series. In particular, Section 3.4 indicated
that we must be especially careful differentiating term by term an infinite Fourier series.
The following theorem, however, enables us to integrate Fourier series without caution:

A Fourier series of piecewise smooth f(x) can always be integrated termby
term, and the result is a convergent infinite series that always converges to
the integral of f(x) for −L ≤ x ≤ L (even if the original Fourier series has
jump discontinuities).

Remarkably, the new series formed by term-by-term integration is continuous. However,
the new series may not be a Fourier series.

To quantify this statement, let us suppose that f(x) is piecewise smooth and hence
has a Fourier series in the range −L ≤ x ≤ L (not necessarily continuous):

f(x) ∼ a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
. (3.5.1)

We will prove our claim that we can just integrate this result term by term:

∫ x

−L

f(t) dt ∼ a0(x + L) +
∞∑

n=1

(
an

∫ x

−L

cos
nπt

L
dt + bn

∫ x

−L

sin
nπt

L
dt

)
.

Performing the indicated integration yields

∫ x

−L

f(t) dt ∼ a0(x + L) +
∞∑

n=1

[
an

nπ/L
sin

nπx

L
+

bn

nπ/L

(
cos nπ − cos

nπx

L

)]
. (3.5.2)

We will actually show that the preceding statement is valid with an = sign. If term-by-
term integration from −L to x of a Fourier series is valid, then any definite integration is
also valid since ∫ b

a

=
∫ b

−L

−
∫ a

−L

.

EXAMPLE

Term-by-term integration has some interesting applications. Recall that the Fourier sine
series for f(x) = 1 is given by

1 ∼ 4
π

(
sin

πx

L
+

1
3

sin
3πx

L
+

1
5

sin
5πx

L
+ · · ·

)
, (3.5.3)
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where ∼ is used since (3.5.3) is an equality only for 0 < x < L. Integrating term by term
from 0 to x results in

x ∼ 4L

π2

(
1 +

1
32

+
1
52

+ · · ·
)
− 4L

π2

(
cos

πx

L
+

cos 3πx/L

32
+

cos 5πx/L

52
+ · · ·

)
,

0 ≤ x ≤ L,
(3.5.4)

where because of our theorem the = sign can be used. We immediately recognize that
(3.5.4) should be the Fourier cosine series of the function x. It was obtained by integrating
the Fourier sine series of f(x) = 1. However, an infinite series of constants appears in
(3.5.4); it is the constant term of the Fourier cosine series of x. In this way we can
evaluate that infinite series,

4L

π2

(
1 +

1
32

+
1
52

+ · · ·
)

=
1
L

∫ L

0

x dx =
1
2
L.

Thus, we obtain the usual form for the Fourier cosine series for x,

x =
L

2
− 4L

π2

(
cos

πx

L
+

cos 3πx/L

32
+

cos 5πx/L

52
+ · · ·

)
, 0 ≤ x ≤ L. (3.5.5)

The process of deriving new series from old ones can be continued. Integrating (3.5.5)
from 0 to x yields

x2

2
=

L

2
x − 4L2

π3

(
sin

πx

L
+

sin 3πx/L

33
+

sin 5πx/L

53
+ · · ·

)
. (3.5.6)

This example illustrates that integrating a Fourier series term by term does not necessarily
yield another Fourier series. However, (3.5.6) can be looked at as either yielding

1. the Fourier sine series of x2/2 − (L/2)x, or
2. the Fourier sine series of x2/2, where the Fourier sine series of x is needed first [see

(3.3.11) and (3.3.12)].

An alternative procedure is to perform indefinite integration. In this case an arbi-
trary constant must be included and evaluated. For example, reconsider the Fourier sine
series of f(x) = 1, (3.5.3). By term-by-term indefinite integration, we derive the Fourier
cosine series of x,

x = c − 4L

π2

(
cos

πx

L
+

cos 3πx/L

32
+

cos 5πx/L

52
+ · · ·

)
.

The constant of integration is not arbitrary; it must be evaluated. Here c is again the
constant term of the Fourier cosine series of x, c = (1/L)

∫ L

0
x dx = L/2.
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Proof on integrating Fourier series. Consider

F (x) =
∫ x

−L

f(t) dt. (3.5.7)

This integral is a continuous function of x since f(x) is piecewise smooth. F (x) has a
continuous Fourier series only if F (L) = F (−L) [otherwise, remember that the periodic
nature of the Fourier series implies that the Fourier series does not converge to F (x) at
the endpoints x = ±L]. However, note that from the definition (3.5.7),

F (−L) = 0 and F (L) =
∫ L

−L

f(t) dt = 2La0.

Thus, in general, F (x) does not have a continuous Fourier series. In Fig. 3.5.1, F (x) is
sketched, illustrating the fact that usually F (−L) �= F (L). However, consider the straight
line connecting the point F (−L) to F (L), y = a0(x+L). G(x), defined to be the difference
between F (x) and the straight line,

G(x) ≡ F (x) − a0(x + L), (3.5.8)

will be zero at both ends, x = ±L,

G(−L) = G(L) = 0,

as illustrated in Fig. 3.5.1. G(x) is also continuous. Thus, G(x) satisfies the properties
that enable the Fourier series of G(x) actually to equal G(x):

G(x) = A0 +
∞∑

n=1

(
An cos

nπx

L
+ Bn sin

nπx

L

)
, (3.5.9)

where the = sign is emphasized. These Fourier coefficients can be computed as

An =
1
L

∫ L

−L

[F (x) − a0(x + L)] cos
nπx

L
dx (n �= 0).

−L

F(x)

L

2La0

FIGURE 3.5.1 F (x) with F (−L) �= F (L).
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The x-term can be dropped since it is odd (i.e.,
∫ L

−L
x cos nπx/L dx = 0). The resulting

expression can be integrated by parts as follows:

u = F (x) − a0L, dv = cos
nπx

L
dx

du =
dF

dx
dx = f(x) dx, v =

L

nπ
sin

nπx

L
,

yielding

An =
1
L

[
(F (x) − a0L)

sin nπx/L

nπ/L

∣∣∣∣
L

−L

− L

nπ

∫ L

−L

f(x) sin
nπx

L
dx

]
= − bn

nπ/L
, (3.5.10)

where we have recognized that bn is the Fourier sine coefficient of f(x). In a similar
manner (which we leave as an exercise), it can be shown that

Bn =
an

nπ/L
,

where an is the Fourier cosine coefficient of f(x). A0 can be calculated in a different
manner (the previous method will not work). Since G(L) = 0 and the Fourier series of
G(x) is pointwise convergent, from (3.5.9) it follows that

0 = A0 +
∞∑

n=1

An cos nπ = A0 −
∞∑

n=1

bn

nπ/L
cos nπ

since An = −bn/(nπ/L). Thus, we have shown from (3.5.9) that

F (x) = a0(x + L) +
∞∑

n=1

[
an

nπ/L
sin

nπx

L
+

bn

nπ/L

(
cos nπ − cos

nπx

L

)]
, (3.5.11)

exactly the result of simple term-by-term integration. However, notice that (3.5.11) is not
the Fourier series of F (x), since a0x appears. Nonetheless, (3.5.11) is valid. We have now
justified term-by-term integration of Fourier series.

EXERCISES 3.5

3.5.1. Consider

x2 ∼
∞∑

n=1

bn sin
nπx

L
. (3.5.12)

(a) Determine bn from (3.3.11), (3.3.12), and (3.5.6).
(b) For what values of x is (3.5.12) an equality?

*(c) Derive the Fourier cosine series for x3 from (3.5.12). For what values of x will
this be an equality?

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.
(b) From part (a), determine the Fourier sine series of x3.
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3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of xm, m odd.
*3.5.4. Suppose that coshx ∼ ∑∞

n=1 bn sin nπx/L.

(a) Determine bn by correctly differentiating this series twice.

(b) Determine bn by integrating this series twice.

3.5.5. Show that Bn in (3.5.9) satisfies Bn = an/(nπ/L), where an is defined by (3.5.1).
3.5.6. Evaluate

1 +
1
22

+
1
32

+
1
42

+
1
52

+
1
62

+ · · ·

by evaluating (3.5.5) at x = 0.
*3.5.7. Evaluate

1 − 1
33

+
1
53

− 1
73

+ · · ·

using (3.5.6).

3.6 COMPLEX FORM OF FOURIER SERIES

With periodic boundary conditions, we have found the theory of Fourier series to be quite
useful:

f(x) ∼ a0 +
∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (3.6.1)

where

a0 =
1

2L

∫ L

−L

f(x) dx (3.6.2)

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx (3.6.3)

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx. (3.6.4)

To introduce complex exponentials instead of sines and cosines, we use Euler’s formulas

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

It follows that

f(x) ∼ a0 +
1
2

∞∑
n=1

(an − ibn) einπx/L +
1
2

∞∑
n=1

(an + ibn) e−inπx/L. (3.6.5)

In order to have only e−inπx/L, we change the dummy index in the first summation,
replacing n by −n. Thus,

f(x) ∼ a0 +
1
2

−∞∑
n=−1

[
a(−n) − ib(−n)

]
e−inπx/L +

1
2

∞∑
n=1

(an + ibn) e−inπx/L.
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From the definition of an and bn, (3.6.3) and (3.6.4), a(−n) = an and b(−n) = −bn. Thus,
if we define

c0 = a0

cn =
an + ibn

2
,

then f(x) becomes simply

f(x) ∼
∞∑

n=−∞
cne−inπx/L. (3.6.6)

Equation (3.6.6) is known as the complex form of the Fourier series of f(x).3 It is
equivalent to the usual form. It is more compact to write, but it is used only infrequently.
In this form the complex Fourier coefficients are

cn =
1
2

(an + ibn) =
1

2L

∫ L

−L

f(x)
(
cos

nπx

L
+ i sin

nπx

L

)
dx (n �= 0).

We immediately recognize a simplification, using Euler’s formula. Thus, we derive a for-
mula for the complex Fourier coefficients

cn =
1

2L

∫ L

−L

f(x)einπx/L dx (all n). (3.6.7)

Notice that the complex Fourier series representation of f(x) has e−inπx/L and is summed
over the discrete integers corresponding to the sum over the discrete eigenvalues. The
complex Fourier coefficients, on the other hand, involve e+inπx/L and are integrated over
the region of definition of f(x) (with periodic boundary conditions), namely, −L ≤ x ≤ L.
If f(x) is real, c−n = cn (see Exercise 3.6.2).

Complex orthogonality. There is an alternative way to derive the formula for
the complex Fourier coefficients. Always, in the past, we have determined Fourier coef-
ficients using the orthogonality of the eigenfunctions. A similar idea holds here. How-
ever, here the eigenfunctions e−inπx/L are complex. For complex functions the concept of
orthogonality must be slightly modified. A complex function φ is said to be orthogonal
to a complex function ψ (over an interval a ≤ x ≤ b) if

∫ b

a
φψ dx = 0, where φ is the

complex conjugate of φ. This guarantees that the length squared of a complex function
f , defined by

∫ b

a
ff dx, is positive (this would not have been valid for

∫ b

a
ff dx since f is

complex).

3As before, an equal sign appears if f(x) is continuous [and periodic, f(−L) = f(L)]. At a jump
discontinuity of f(x) in the interior, the series converges to [f(x+) + f(x−)]/2.
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Using this notion of orthogonality, the eigenfunctions e−inπx/L, −∞ < n < ∞, can
be verified to form an orthogonal set because by simple integration

∫ L

−L

(e−imπx/L)e−inπx/L dx =
{

0 n �= m
2L n = m,

since
(e−imπx/L) = eimπx/L.

Now to determine the complex Fourier coefficients cn, we multiply (3.6.6) by einπx/L and
integrate from −L to +L (assuming that the term-by-term use of these operations is
valid). In this way

∫ L

−L

f(x)eimπx/L dx =
∞∑

n=−∞
cn

∫ L

−L

eimπx/Le−inπx/L dx.

Using the orthogonality condition, the sum reduces to one term, n = m. Thus,

∫ L

−L

f(x)eimπx/L dx = 2Lcm,

which explains the 1/2L in (3.6.7) as well as the switch of signs in the exponent.

EXERCISES 3.6

*3.6.1. Consider

f(x) =

⎧⎨
⎩

0 x < x0

1/Δ x0 < x < x0 + Δ
0 x > x0 + Δ.

Assume that x0 > −L and x0+Δ < L. Determine the complex Fourier coefficients cn.
3.6.2. If f(x) is real, show that c−n = cn.



C H A P T E R 4

Wave Equation: Vibrating
Strings and Membranes

4.1 INTRODUCTION

At this point in our study of partial differential equations, the only physical problem we
have introduced is the conduction of heat. To broaden the scope of our discussions, we
now investigate the vibrations of perfectly elastic strings and membranes. We begin by
formulating the governing equations for a vibrating string from physical principles. The
appropriate boundary conditions will be shown to be similar in a mathematical sense to
those boundary conditions for the heat equations. Examples will be solved by the method
of separation of variables.

4.2 DERIVATION OF A VERTICALLY VIBRATING STRING

A vibrating string is a complicated physical system. We would like to present a sim-
ple derivation. A string vibrates only if it is tightly stretched. Consider a horizontally
stretched string in its equilibrium configuration, as illustrated in Fig. 4.2.1. We imagine
that the ends are tied down in some way (to be described in Section 4.3), maintaining
the tightly stretched nature of the string. You may wish to think of stringed musical in-
struments as examples. We begin by tracking the motion of each particle that comprises
the string. We let α be the x-coordinate of a particle when the string is in the horizontal
equilibrium position. The string moves in time; it is located somewhere other than the
equilibrium position at time t, as illustrated in Fig. 4.2.1. The trajectory of particle α is
indicated with both horizontal and vertical components.

We will assume the slope of the string is small, in which case it can be shown
that the horizontal displacement v can be neglected. As an approximation, the motion
is entirely vertical, x = α. In this situation, the vertical displacement u depends on
x and t:

y = u(x, t). (4.2.1)

Derivations including the effect of a horizontal displacement are necessarily complicated
(see Weinberger [1965] and Antman [1980]). In general (x �= α), it is best to let y = u(α, t).

Newton’s law. We consider an infinitesimally thin segment of the string con-
tained between x and x + Δx (as illustrated in Fig. 4.2.2). In the unperturbed (yet

130
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(x, y)

Equilibrium configuration

(highly stretched)

Perturbed string

u

v

α

FIGURE 4.2.1 Vertical and horizontal displacements of a particle on a highly stretched
string.

stretched) horizontal position, we assume that the mass density ρ0(x) is known. For the
thin segment, the total mass is approximately ρ0(x) Δx. Our object is to derive a partial
differential equation describing how the displacement u changes in time. Accelerations
are due to forces; we must use Newton’s law. For simplicity we will analyze Newton’s law
for a point mass:

F = ma. (4.2.2)

We must discuss the forces acting on this segment of the string. There are body forces,
which we assume act only in the vertical direction (e.g., the gravitational force), as well as
forces acting on the ends of the segment of string. We assume that the string is perfectly
flexible; it offers no resistance to bending. This means that the force exerted by the rest
of the string on the endpoints of the segment of the string is in the direction tangent to
the string. This tangential force is known as the tension in the string, and we denote its
magnitude by T (x, t). In Fig. 4.2.2 we show that the force due to the tension (exerted
by the rest of the string) pulls at both ends in the direction of the tangent, trying to
stretch the small segment. To obtain components of the tensile force, the angle θ between
the horizon and the string is introduced. The angle depends on both the position x and
time t. Furthermore, the slope of the string may be represented as either dy/dx or tan θ:

T(x, t)

θ(x + Δx, t)

x x + Δx

θ(x,t)

T(x + Δx, t)

FIGURE 4.2.2 Stretching of a finite segment of string, illustrating the tensile forces.
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slope =
dy

dx
= tan θ(x, t) =

∂u

∂x
. (4.2.3)

The horizontal component of Newton’s law prescribes the horizontal motion, which
we claim is small and can be neglected. The vertical equation of motion states that the
mass ρ0(x) Δx times the vertical component of acceleration (∂2u/∂t2, where ∂/∂t is used
since x is fixed for this motion) equals the vertical component of the tensile forces plus
the vertical component of the body forces:

ρ0(x) Δx
∂2u

∂t2
= T (x + Δx, t) sin θ(x + Δx, t)

− T (x, t) sin θ(x, t) + ρ0(x) Δx Q(x, t),
(4.2.4)

where T (x, t) is the magnitude of the tensile force and Q(x, t) is the vertical component
of the body force per unit mass. Dividing (4.2.4) by Δx and taking the limit as Δx → 0
yields

ρ0(x)
∂2u

∂t2
=

∂

∂x
[T (x, t) sin θ(x, t)] + ρ0(x)Q(x, t). (4.2.5)

For small angles θ,
∂u

∂x
= tan θ =

sin θ

cos θ
≈ sin θ,

and hence (4.2.5) becomes

ρ0(x)
∂2u

∂t2
=

∂

∂x

(
T

∂u

∂x

)
+ ρ0(x)Q(x, t). (4.2.6)

Perfectly elastic strings. The tension of a string is determined by experiments.
Real strings are nearly perfectly elastic, by which we mean that the magnitude of the
tensile force T (x, t) depends only on the local stretching of the string. Since the angle θ is
assumed to be small, the stretching of the string is nearly the same as for the unperturbed
highly stretched horizontal string, where the tension is constant, T0 (to be in equilibrium).
Thus, the tension T (x, t) may be approximated by a constant T0. Consequently,
the small vertical vibrations of a highly stretched string are governed by

ρ0(x)
∂2u

∂t2
= T0

∂2u

∂x2
+ Q(x, t)ρ0(x). (4.2.7)

One-dimensional wave equation. If the only body force per unit mass is grav-
ity, then Q(x, t) = −g in (4.2.7). In many such situations, this force is small (relative to
the tensile force ρ0g � |T0∂

2u/∂x2|) and can be neglected. Alternatively, gravity sags the
string, and we can calculate the vibrations with respect to the sagged equilibrium position.
In either way we are often led to investigate (4.2.7) in the case in which Q(x, t) = 0,

ρ0(x)
∂2u

∂t2
= T0

∂2u

∂x2
(4.2.8)
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or

∂2u

∂t2
= c2 ∂2u

∂x2
, (4.2.9)

where c2 = T0/ρ0(x). Equation (4.2.9) is called the one-dimensional wave equation.
The notation c2 is introduced because T0/ρ0(x) has the dimension of velocity squared.
We will show that c is a very important velocity. For a uniform string, c is constant.

EXERCISES 4.2

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position uE(x) if Q(x, t) =
−g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(x, t) = u(x, t) − uE(x) satisfies (4.2.9).
4.2.2. Show that c2 has the dimensions of velocity squared.
4.2.3. Consider a particle whose x-coordinate (in horizontal equilibrium) is designated by

α. If its vertical and horizontal displacements are u and v, respectively, determine its
position x and y. Then show that

dy

dx
=

∂u/∂α

1 + ∂v/∂α
.

4.2.4. Derive equations for horizontal and vertical displacements without ignoring v. Assume
that the string is perfectly flexible and that the tension is determined by an experi-
mental law.

4.2.5. Derive the partial differential equation for a vibrating string in the simplest possible
manner. You may assume the string has constant mass density ρ0, you may assume the
tension T0 is constant, and you may assume small displacements (with small slopes).

4.3 BOUNDARY CONDITIONS

The partial differential equation for a vibrating string, (4.2.7) or (4.2.8), has a second-
order spatial partial derivative. We will apply one boundary condition at each end, just
as we did for the one-dimensional heat equation.

The simplest boundary condition is that of a fixed end, usually fixed with zero
displacement. For example, if a string is fixed (with zero displacement) at x = L, then

u(L, t) = 0. (4.3.1)

Alternatively, we might vary an end of the string in a prescribed way:

u(L, t) = f(t). (4.3.2)

Both (4.3.1) and (4.3.2) are linear boundary conditions; (4.3.2) is nonhomogeneous, while
(4.3.1) is homogeneous.

Variable support boundary conditions (optional). A more unusual bound-
ary condition occurs if one end of the string is attached to a dynamical system. Let us



134 Chapter 4 Wave Equation: Vibrating Strings and Membranes

my(t)

ys(t)

FIGURE 4.3.1 Spring-mass system with a variable support attached to a stretched string.

suppose that the left end, x = 0, of a string is attached to a spring-mass system, as
illustrated in Fig. 4.3.1. We will insist that the motion be entirely vertical. To accomplish
this, we must envision the mass to be on a vertical track (possibly frictionless). The track
applies a horizontal force to the mass when necessary to prevent the large horizontal
component of the tensile force from turning over the spring-mass system. The string is
attached to the mass so that if the position of the mass is y(t), so is the position of the
left end:

u(0, t) = y(t). (4.3.3)

However, y(t) is unknown and itself satisfies an ordinary differential equation determined
from Newton’s laws. We assume that the spring has unstretched length l and obeys
Hooke’s law with spring constant k. To make the problem even more interesting, we let
the support of the spring move in some prescribed way, ys(t). Thus, the length of the
spring is y(t) − ys(t) and the stretching of the spring is y(t) − ys(t) − l. According to
Newton’s law (using Hooke’s law with spring constant k),

m
d2y

dt2
= −k(y(t) − ys(t) − l) + other forces on mass.

The other vertical forces on the mass are a tensile force applied by the string T (0, t)
sin θ(0, t) and a force g(t) representing any other external forces on the mass. Recall that
we must be restricted to small angles, such that the tension is nearly constant, T0. In that
case, the vertical component is approximately T0∂u/∂x:

T (0, t) sin θ(0, t) ≈ T (0, t)
sin θ(0, t)
cos θ(0, t)

= T (0, t)
∂u

∂x
(0, t) ≈ T0

∂u

∂x
(0, t),

since for small angles cos θ ≈ 1. In this way the boundary condition at x = 0 for a
vibrating string attached to a spring-mass system [with a variable support ys(t) and an
external force g(t)] is
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m
d2

dt2
u(0, t) = −k(u(0, t) − ys(t) − l) + T0

∂u

∂x
(0, t) + g(t). (4.3.4)

Let us consider some special cases in which there are no external forces on the mass,
g(t) = 0. If, in addition, the mass is sufficiently small so that the forces on the mass are
in balance, then

T0
∂u

∂x
(0, t) = k(u(0, t) − uE(t)), (4.3.5)

where uE(t) is the equilibrium position of the mass, uE(t) = ys(t)+l. This form, known as
the nonhomogeneous elastic boundary condition, is exactly analogous to Newton’s law of
cooling [with an external temperature of uE(t)] for the heat equation. If the equilibrium
position of the mass coincides with the equilibrium position of the string, uE(t) = 0, the
homogeneous version of the elastic boundary condition results:

T0
∂u

∂x
(0, t) = ku(0, t). (4.3.6)

∂u/∂x is proportional to u. Since for physical reasons T0 > 0 and k > 0, the signs in
(4.3.6) are prescribed. This is the same choice of signs that occurs for Newton’s law of
cooling. A diagram (Fig. 4.3.2) illustrates both the correct and incorrect choices of signs.
This figure shows that (assuming u = 0 is an equilibrium position for both string and
mass) if u > 0 at x = 0, then ∂u/∂x > 0, in order to get a balance of vertical forces on
the massless spring-mass system. A similar argument shows that there is an important
sign change if the elastic boundary condition occurs at x = L:

T0
∂u

∂x
(L, t) = −k(u(L, t) − uE(t)), (4.3.7)

the same sign change we obtained for Newton’s law of cooling.
For a vibrating string, another boundary condition that can be discussed is the free

end. It is not literally free. Instead, the end is attached to a frictionless vertically moving
track as before and is free to move up and down. There is no spring-mass system, nor

Correct Incorrect

Equilibrium position

of spring

FIGURE 4.3.2 Boundary conditions for massless spring-mass system.



136 Chapter 4 Wave Equation: Vibrating Strings and Membranes

external forces. However, we can obtain this boundary condition by taking the limit as
k → 0 of either (4.3.6) or (4.3.7):

T0
∂u

∂x
(L, t) = 0. (4.3.8)

This says that the vertical component of the tensile force must vanish at the end since
there are no other vertical forces at the end. If the vertical component did not vanish,
the end would have an infinite vertical acceleration. Boundary condition (4.3.8) is exactly
analogous to the insulated boundary condition for the one-dimensional heat equation.

EXERCISES 4.3

4.3.1. If m = 0, which of the diagrams for the right end shown in Fig. 4.3.3 is possibly
correct? Briefly explain. Assume that the mass can move only vertically.

m

Equilibrium position

m

of spring

(a) (b)

FIGURE 4.3.3

4.3.2. Consider two vibrating strings connected at x = L to a spring-mass system on a
vertical frictionless track as in Fig. 4.3.4. Assume that the spring is unstretched when
the string is horizontal (the spring has a fixed support). Also suppose that there is an
external force f(t) acting on the mass m.

(a) What “jump” conditions apply at x = L relating the string on the left to the
string on the right?

(b) In what situations is this mathematically analogous to perfect thermal contact?

m

FIGURE 4.3.4
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4.4 VIBRATING STRING WITH FIXED ENDS

In this section we solve the one-dimensional wave equation, which represents a uniform
vibrating string without external forces,

PDE:
∂2u

∂t2
= c2 ∂2u

∂x2
, (4.4.1)

where c2 = T0/ρ0, subject to the simplest homogeneous boundary conditions,

BC1:
u(0, t) = 0

u(L, t) = 0,
(4.4.2)

both ends being fixed with zero displacement. Since the partial differential equation (4.4.1)
contains the second time derivative, two initial conditions are needed. We prescribe both
u(x, 0) and ∂u/∂t(x, 0):

IC:
u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x),

(4.4.3)

corresponding to being given the initial position and the initial velocity of each segment
of the string. These two initial conditions are not surprising, as the wave equation was
derived from Newton’s law by analyzing each segment of the string as a particle; ordinary
differential equations for particles require both initial position and velocity.

Since both the partial differential equation and the boundary conditions are linear
and homogeneous, the method of separation of variables is attempted. As with the heat
equation, the nonhomogeneous initial conditions are put aside temporarily. We look for
special product solutions of the form

u(x, t) = φ(x)h(t). (4.4.4)

Substituting (4.4.4) into (4.4.1) yields

φ(x)
d2h

dt2
= c2h(t)

d2φ

dx2
. (4.4.5)

Dividing by φ(x)h(t) separates the variables, but it is more convenient to divide addi-
tionally by the constant c2, since then the resulting eigenvalue problem will not contain
the parameter c2:

1
c2

1
h

d2h

dt2
=

1
φ

d2φ

dx2
= −λ. (4.4.6)
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A separation constant is introduced since (1/c2)(1/h)(d2h/dt2) depends only on t and
(1/φ)(d2φ/dx2) depends only on x. The minus sign is inserted purely for convenience.
With this minus sign, let us explain why we expect that λ > 0. We need the two ordinary
differential equations that follow from (4.4.6):

d2h

dt2
= −λc2h (4.4.7)

and
d2φ

dx2
= −λφ. (4.4.8)

The two homogeneous boundary conditions (4.4.2) show that

φ(0) = φ(L) = 0. (4.4.9)

Thus, (4.4.8) and (4.4.9) form a boundary value problem. Instead of first reviewing the
solution of (4.4.8) and (4.4.9), let us analyze the time-dependent ODE (4.4.7). If λ > 0,
the general solution of (4.4.7) is a linear combination of sines and cosines,

h(t) = c1 cos c
√

λt + c2 sin c
√

λt. (4.4.10)

If λ = 0, h(t) = c1 + c2t, and if λ < 0, h(t) is a linear combination of exponentially
growing and decaying solutions in time. Since we are solving a vibrating string, it should
seem more reasonable that the time-dependent solutions oscillate. This does not prove
that λ > 0. Instead, it serves as an immediate motivation for choosing the minus sign in
(4.4.6). Now by analyzing the boundary value problem, we may indeed determine that
the eigenvalues are nonnegative.

The boundary value problem is

d2φ

dx2
= −λφ

φ(0) = 0
φ(L) = 0.

Although we could solve this by proceeding through three cases, we ought to recall that
all the eigenvalues are positive. In fact,

λ =
(nπ

L

)2

, n = 1, 2, 3 . . . ,

and the corresponding eigenfunctions are sinnπx/L. The time-dependent part of the
solution has been obtained previously, (4.4.10). Thus, there are two families of product
solutions: sinnπx/L sin nπct/L and sinnπx/L cos nπct/L. The principle of superposition
then implies that we should be able to solve the initial value problem by considering a
linear combination of all product solutions:

u(x, t) =
∞∑

n=1

(
An sin

nπx

L
cos

nπct

L
+ Bn sin

nπx

L
sin

nπct

L

)
. (4.4.11)
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The initial conditions (4.4.3) are satisfied if

f(x) =
∑∞

n=1 An sin
nπx

L

g(x) =
∑∞

n=1 Bn
nπc

L
sin

nπx

L
.

(4.4.12)

The boundary conditions have implied that sine series are important. There are two
initial conditions and two families of coefficients to be determined. From our previous
work on Fourier sine series, we know that sinnπx/L forms an orthogonal set. An will be
the coefficients of the Fourier sine series of f(x), and Bnnπc/L will be for the Fourier
sine series of g(x):

An =
2
L

∫ L

0

f(x) sin
nπx

L
dx

Bn
nπc

L
=

2
L

∫ L

0

g(x) sin
nπx

L
dx.

(4.4.13)

Let us interpret these results in the context of musical stringed instruments (with
fixed ends). The vertical displacement is composed of a linear combination of simple
product solutions,

sin
nπx

L

(
An cos

nπct

L
+ Bn sin

nπct

L

)
.

These are called the normal modes of vibration. The intensity of the sound produced
depends on the amplitude,1

√
A2

n + B2
n. The time dependence is simple harmonic with

circular frequency (the number of oscillations in 2π units of time) equaling nπc/L,
where c =

√
T0/ρ0. The sound produced consists of the superposition of these infinite

number of natural frequencies (n = 1, 2, . . .). The normal mode n = 1 is called the first
harmonic or fundamental. In the case of a vibrating string, the fundamental mode has a
circular frequency of πc/L.2 The larger the natural frequency, the higher the pitch of the
sound produced. To produce a desired fundamental frequency, c =

√
T0/ρ0 or L can be

varied. Usually, the mass density is fixed. Thus, the instrument is tuned by varying the
tension T0; the larger T0, the higher the fundamental frequency. While playing a stringed
instrument, the musician can also vary the pitch by varying the effective length L, by
clamping down the string. Shortening L makes the note higher. The nth normal mode is
called the nth harmonic. For vibrating strings (with fixed ends), the frequencies of the
higher harmonics are all integral multiples of the fundamental. It is not necessarily true
for other types of musical instruments. This is thought to be pleasing to the ear.

Let us attempt to illustrate the motion associated with each normal mode. The
fundamental and higher harmonics are sketched in Fig. 4.4.1. To indicate what these look
like, we sketch for various values of t. At each t, each mode looks like a simple oscillation
in x. The amplitude varies periodically in time. These are called standing waves. In
all cases there is no displacement at both ends due to the boundary conditions. For the

1An cos ωt + Bn sin ωt =
√

A2
n + B2

n sin(ωt + θ), where θ = tan−1 An/Bn.
2Frequencies are usually measured in cycles per second, not cycles per 2π units of time. The funda-

mental thus has a frequency of c/2L, cycles per second.



140 Chapter 4 Wave Equation: Vibrating Strings and Membranes

second harmonic (n = 2), the displacement is also zero for all time in the middle x = L/2.
x = L/2 is called a node for the second harmonic. Similarly, there are two nodes for the
third harmonic. This can be generalized: The nth harmonic has n − 1 nodes.3

It is interesting to note that the vibration corresponding to the second harmonic
looks like two identical strings each with length L/2 vibrating in the fundamental mode,
since x = L/2 is a node. We should find that the frequencies of vibration are identical;
that is, the frequency for the fundamental (n = 1) with length L/2 should equal the
frequency for the second harmonic (n = 2) with length L. The formula for the frequency
ω = nπc/L verifies this observation.

Each standing wave can be shown to be composed of two traveling waves. For
example, consider the term sin nπx/L sin nπct/L. From trigonometric identities,

sin
nπx

L
sin

nπct

L
=

1
2

cos
nπ

L
(x − ct)︸ ︷︷ ︸

wave traveling
to the right

(with velocity c)

− 1
2

cos
nπ

L
(x + ct)︸ ︷︷ ︸

wave traveling
to the left

(with velocity − c)

. (4.4.14)

In fact, since the solution (4.4.11) to the wave equation consists of a superposition of
standing waves, it can be shown that this solution is a combination of just two waves
(each rather complicated)—one traveling to the left at velocity −c with fixed shape and
the other to the right at velocity c with a different fixed shape. We are claiming that the
solution to the one-dimensional wave equation can be written as

u(x, t) = R(x − ct) + S(x + ct),

even if the boundary conditions are not fixed at x = 0 and x = L. We will show and
discuss this further in the Exercises and in Chapter 12.

EXERCISES 4.4

4.4.1. Consider vibrating strings of uniform density ρ0 and tension T0.

*(a) What are the natural frequencies of a vibrating string of length L fixed at both
ends?

*(b) What are the natural frequencies of a vibrating string of length H, which is fixed
at x = 0 and “free” at the other end [i.e., ∂u/∂x(H, t) = 0]? Sketch a few modes
of vibration as in Fig. 4.4.1.

(c) Show that the modes of vibration for the odd harmonics (i.e., n = 1, 3, 5, . . .) of
part (a) are identical to modes of part (b) if H = L/2. Verify that their natural
frequencies are the same. Briefly explain using symmetry arguments.

4.4.2. In Section 4.2 it was shown that the displacement u of a nonuniform string satisfies

ρ0
∂2u

∂t2
= T0

∂2u

∂x2
+ Q,

3You can visualize experimentally this result by rapidly oscillating at the appropriate frequency one
end of a long rope that is tightly held at the other end. The result appears more easily for an expandable
spiral telephone cord or a “slinky.”
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FIGURE 4.4.1 Normal modes of vibration for a string.
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where Q represents the vertical component of the body force per unit length. If Q = 0,
the partial differential equation is homogeneous. A slightly different homogeneous
equation occurs if Q = αu.

(a) Show that if α < 0, the body force is restoring (toward u = 0). Show that if
α > 0, the body force tends to push the string further away from its unperturbed
position u = 0.

(b) Separate variables if ρ0(x) and α(x) but T0 is constant for physical reasons.
Analyze the time-dependent ordinary differential equation.

*(c) Specialize part (b) to the constant coefficient case. Solve the initial value problem
if α < 0:

u(0, t) = 0, u(x, 0) = 0

u(L, t) = 0,
∂u

∂t
(x, 0) = f(x).

What are the frequencies of vibration?

4.4.3. Consider a slightly damped vibrating string that satisfies

ρ0
∂2u

∂t2
= T0

∂2u

∂x2
− β

∂u

∂t
.

(a) Briefly explain why β > 0.

*(b) Determine the solution (by separation of variables) that satisfies the boundary
conditions

u(0, t) = 0 and u(L, t) = 0

and the initial conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x).

You can assume that this frictional coefficient β is relatively small (β2 < 4π2

ρ0T0/L2).

4.4.4. Redo Exercise 4.4.3(b) by the eigenfunction expansion method.
4.4.5. Redo Exercise 4.4.3(b) if 4π2ρ0T0/L2 < β2 < 16π2ρ0T0/L2.
4.4.6. For (4.4.1)–(4.4.3), from (4.4.11) show that

u(x, t) = R(x − ct) + S(x + ct),

where R and S are some functions.
4.4.7. If a vibrating string satisfying (4.4.1)–(4.4.3) is initially at rest, g(x) = 0, show that

u(x, t) =
1
2
[F (x − ct) + F (x + ct)],

where F (x) is the odd-periodic extension of f(x). [Hints:

1. For all x, F (x) =
∑∞

n=1 An sin nπx
L .

2. sin a cos b = 1
2 [sin(a + b) + sin(a − b)].]

Comment: This result shows that the practical difficulty of summing an infinite number
of terms of a Fourier series may be avoided for the one-dimensional wave equation.
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4.4.8. If a vibrating string satisfying (4.4.1)–(4.4.3) is initially unperturbed, f(x) = 0, with
the initial velocity given, show that

u(x, t) =
1
2c

∫ x+ct

x−ct

G(x̄) dx̄,

where G(x) is the odd-periodic extension of g(x). [Hints:

1. For all x, G(x) =
∑∞

n=1 Bn
nπc
L sin nπx

L .

2. sin a sin b = 1
2 [cos(a − b) − cos(a + b)].]

See the comment after Exercise 4.4.7.
4.4.9. From (4.4.1), derive conservation of energy for a vibrating string,

dE

dt
= c2

∂u

∂x

∂u

∂t

∣∣∣∣
L

0

, (4.4.15)

where the total energy E is the sum of the kinetic energy, defined by
∫ L
0

1
2

(
∂u
∂t

)2
dx,

and the potential energy, defined by
∫ L
0

c2

2

(
∂u
∂x

)2
dx.

4.4.10. What happens to the total energy E of a vibrating string (see Exercise 4.4.9)

(a) If u(0, T ) = 0 and u(L, t) = 0?
(b) If ∂u

∂x (0, t) = 0 and u(L, t) = 0?

(c) If u(0, t) = 0 and ∂u
∂x (L, t) = −γu(L, t) with γ > 0?

(d) If γ < 0 in part (c)?

4.4.11. Show that the potential and kinetic energies (defined in Exercise 4.4.9) are equal for
a traveling wave, u = R(x − ct).

4.4.12. Using (4.4.15), prove that the solution of (4.4.1)–(4.4.3) is unique.
4.4.13. (a) Using (4.4.15), calculate the energy of one normal mode.

(b) Show that the total energy, when u(x, t) satisfies (4.4.11), is the sum of the
energies contained in each mode.

4.5 VIBRATING MEMBRANE

The heat equation in one spatial dimension is ∂u/∂t = k∂2u/∂x2. In two or three dimen-
sions, the temperature satisfies ∂u/∂t = k∇2u. In a similar way, the vibration of a string
(one dimension) can be extended to the vibration of a membrane (two dimensions).

The vertical displacement of a vibrating string satisfies the one-dimensional wave
equation

∂2u

∂t2
= c2 ∂2u

∂x2
.

There are important physical problems that solve

∂2u

∂t2
= c2∇2u = c2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (4.5.1)

known as the two-dimensional wave equation. An example of a physical problem that
satisfies a two-dimensional wave equation is the vibration of a highly-stretched membrane.
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This can be thought of as a two-dimensional vibrating string. We again introduce the
displacement z = u(x, y, t), which depends on x, y, and t (as illustrated in Fig. 4.5.1). If all
slopes (i.e., ∂u/∂x and ∂u/∂y) are small, then, as an approximation, we may assume that
the vibrations are entirely vertical and the tension is approximately constant. Then the
mass density (mass per unit surface area), ρ0(x, y), of the membrane in the unperturbed
position does not change appreciably when the membrane is perturbed.

We assume all slopes (∂u
∂x and ∂u

∂y ) are small, so that, as an approximation, the
vibrations are entirely vertical and the tension is approximately constant. We consider
any small rectangular segment of the membrane between x and x+Δx and y and y +Δy
as illustrated in Fig 4.5.1. Here, T0 is the constant force per unit length exerted by the
stretched membrane on any edge of this section of the membrane. Newton’s law for the
vertical motion of the small segment at (x, y) is

m
∂2u

∂t2
(x, y, t) = F, (4.5.2)

where F is the sum of all the vertical forces and m is the mass of this section of the
membrane:

m = ρ0ΔxΔy,

where ρ0 is the mass density of the membrane (mass per unit area). The vertical forces
are the vertical components of the tensile forces in effect along all four sides. For example,
on the side where x is fixed at x + Δx, y varies from y to y + Δy, the vertical component
of tension (per unit length) is sinφ, where φ is the angle of inclination for fixed y. Since
φ is assumed small, sin φ ≈ tan φ = ∂u/∂x, where this is to be evaluated at each value
of y. To determine the entire contribution at this one edge, we must sum up (integrate)
from y to y + Δy for fixed x. However, φ will not vary by much, and we claim that
we may approximate sin φ by ∂u/∂x(x + Δx, y) for all y from y to y + Δy. Thus, the

u(x,y,t)

u(x,y + Δy,t)

(x,y)

T0

T0

T0

T0

(x + Δx,y)

(x + Δx, y + Δy)
(x, y + Δy)

φ

FIGURE 4.5.1 Slightly stretched membrane with approximately constant tension T0.
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total contribution to the vertical component of tension for this one side is obtained by
multiplying the value at each point by the length of the side Δy:

T0Δy
∂u

∂x
(x + Δx, y),

Furthermore, we should check the sign. If ∂u/∂x > 0 (as illustrated in Fig. 4.5.1), then
the vertical component of the tensile force is upward at x + Δx (but downward at x). In
a similar way, we can analyze the vertical components along the other sides. Thus,

ρ0ΔxΔy
∂2u

∂t2
(x, y, t) = T0[Δy

∂u

∂x
(x + Δx, y) − Δy

∂u

∂x
(x, y)

+ Δx
∂u

∂y
(x, y + Δy) − Δx

∂u

∂y
(x, y)], (4.5.3)

Using the Taylor series (linearization), f(x + Δx, y) ≈ f(x, y) + Δx∂f/∂x and g(x, y +
Δy) ≈ g(x, y) + Δy∂g/∂y), where f = ∂u/∂x and g = ∂u/∂y, we obtain

ρ0ΔxΔy
∂2u

∂t2
(x, y, t) = T0 ΔxΔy

[
∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)]
= T0 ΔxΔy

[
∂2u

∂x2
+

(
∂2u

∂y2

)]
.

(4.5.4)

Dividing (4.5.4) by ρ0ΔxΔy and taking the limit as both Δx → 0 and Δy → 0 yields the
two-dimensional wave equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (4.5.5)

where again c2 = T0/ρ0. We postpone the solution of problems involving a vibrating
membrane until Chapter 7.

EXERCISES 4.5

4.5.1. If a membrane satisfies an “elastic” boundary condition, show that

T0∇u · n̂ = −ku (4.5.6)

if there is a restoring force per unit length proportional to the displacement, where n̂
is a unit normal of the two-dimensional boundary.

4.5.2. Derive the two-dimensional wave equation for a vibrating membrane.

4.6 REFLECTION AND REFRACTION OF ELECTROMAGNETIC
(LIGHT) AND ACOUSTIC (SOUND) WAVES

Disturbances in a uniform media frequently satisfy the three-dimensional wave
equation:

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
. (4.6.1)

In a fluid, small displacements u to a uniform mass density ρ and pressure p satisfy (4.6.1),
where the coefficient c satisfies c2 = ∂p

∂ρ . In electrodynamics, each component of a system
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of vector fields satisfies (4.6.1), where c2 = c2
light/με can be related to the speed of light

in a vacuum c2
light and the permeability μ and the dielectric constant ε.

Special plane traveling wave solutions of (4.6.1) exist of the form

u = Aei(k1x+k2y+k3z−ωt) = Aei(k·x−ωt). (4.6.2)

(The real or imaginary part has physical significance.) A is the constant amplitude. The
vector k, called the wave vector, is in the direction of the wave (perpendicular to
the wave fronts k ·x−ωt = constant). The magnitude of the wave vector k ≡ |k| is the
wave number since it can be shown (see the Exercises) to equal the number of waves in
2π distance in the direction of the wave (in the k-direction). (The wave length = 2π

k .)
The temporal frequency ω for plane wave solutions of the wave equations is deter-

mined by substituting (4.6.2) into (4.6.1):

ω2 = c2k2, (4.6.3)

where k2 = k2
1+ k2

2+ k2
3. It is important that ω is a function of k satisfying (4.6.3). As in

one dimension, it can be shown that

traveling wave or phase velocity =
ω

k
= ±c. (4.6.4)

The plane wave solution corresponds to one component of a multidimensional Fourier
series (transform—see Chapter 10) if the wave equation is defined in a finite (infinite)
region. As we show in the next subsection, frequently plane waves are considered to be
generated at infinity.

4.6.1 Snell’s Law of Refraction

We assume that we have two different materials (different mass densities for sound waves
or different dielectric constants for electromagnetic waves) extending to infinity with a
plane boundary between them. We assume the wave speed is c+ for z > 0 and c− for
z < 0, as shown in Fig. 4.6.1. We assume that there is an incident plane wave satisfying
(4.6.2) [with wave vector kI and frequency ω = ω+(kI) = c+kI ] propagating from infinity
with z > 0 with amplitude A = 1, which we normalize to 1. We assume that the incident
wave makes an angle θI with the normal.

We assume that there is a reflected wave in the upper media satisfying (4.6.2) [with
unknown wave vector kR and frequency ω = ω+(kR) = c+kR] with unknown complex
amplitude R. Due to the wave equation being linear, the solution in the upper media is
the sum of the incident and reflected waves:

u = ei(kI ·x−ω+(c+kI)t) + Rei(kR·x−ω+(c+kR)t) for z > 0. (4.6.5)

We will show that the wave vector of the reflected wave is determined by the familiar
relationship that the angle of reflection equals the angle of incidence.

In the lower media z < 0, we assume that a refracted wave exists, which we call
a transmitted wave and introduce the subscript T . We assume that the transmitted
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FIGURE 4.6.1 Reflected and refracted (transmitted) waves.

wave satisfies (4.6.2) [with unknown wave number vector kT and frequency ω = ω−(kT ) =
c−kT ] with unknown complex amplitude T :

u = Tei(kT ·x−ω−(c−kT )t) for z < 0. (4.6.6)

In addition, we will show that this refracted wave may or may not exist as prescribed by
Snell’s law of refraction.

There are two boundary conditions that must be satisfied at the interface between
the two materials z = 0. One of the conditions is that u must be continuous. At z = 0,

ei(kI ·x−ω+(c+kI)t) + Rei(kR·x−ω+(c+kR)t) = Tei(kT ·x−ω−(c−kT )t). (4.6.7)

Since this must hold for all time, the frequencies of the three waves must be the same:

ω+(kI) = ω+(kR) = ω−(kT ). (4.6.8)

From the frequency equation (4.6.3), we conclude that the reflected wave has the same
wavelength as the incident wave, but the refracted wave has a different wavelength:

c+kI = c+kR = c−kT . (4.6.9)

From (4.6.7), k1 and k2 (the projection of k in the x- and y-directions) must be the same
for all three waves. Since kI = kR, the z-component of the reflected wave must be minus
the z-component of the incident wave. Thus, the angle of reflection equals the angle
of incidence,

θR = θI , (4.6.10)

where the angles are measured with respect to the normal to the surface. Note that
k · x = k |x| cos φ is the same for all three waves, where φ is the angle between k and x
with z = 0. Thus, for the transmitted wave, the angle of transmission (refraction) satisfies

kI sin θI = kT sin θT .



148 Chapter 4 Wave Equation: Vibrating Strings and Membranes

Using (4.6.9), Snell’s law follows:

sin θT

sin θI
=

kI

kT
=

c−
c+

. (4.6.11)

Many important and well-known results from optics follow from Snell’s law. For
example, in the usual case of the upper media (c+) being air and the lower media (c−)
water, then it is known that c+ > c−. In this case, from Snell’s law (4.6.11) sin θT < sin θI ,
so that the transmitted wave is refracted toward the normal (as shown in Fig. 4.6.1).

If c+ < c−, then Snell’s law (4.6.11) predicts in some cases that sin θT > 1, which
is impossible. There is a critical angle of incidence sin θI = c+

c−
at which total internal

reflection first occurs. For larger angles, the transmitted solution is not a plane wave but
is an evanescent wave exponentially decaying, as we describe in a later subsection. The
refracted plane wave does not exist.

4.6.2 Intensity (Amplitude) of Reflected and Refracted Waves

Here we will assume that a refracted plane wave exists. With these laws for the reflected
and refracted waves, the one boundary condition (4.6.7) for the continuity of u becomes
simply

1 + R = T. (4.6.12)

We cannot solve for either amplitude R or T without the second boundary condition.
The second boundary condition can be slightly different in different physical applications.
Thus, the results of this subsection do not apply to all physical problems, but the method
we use may be applied in all cases and the results obtained may be slightly different.

We assume the second boundary condition is ∂u
∂z = 0 at z = 0. From (4.6.5) and

(4.6.6), it follows that
k3I

+ k3R
R = k3T

T. (4.6.13)

From Fig. 4.6.1, the z-components of the wave number of three waves satisfy

k3I
= −kI cos θI

k3R
= kR cos θR = kI cos θI (4.6.14)

k3T
= −kT cos θT = −kI

sin θI

sin θT
cos θT ,

where we have recalled that the reflected wave satisfies k3R
= −k3I

and we have used
Snell’s law (4.6.11) to simplify the z-component of the wave number of the transmitted
wave. Using (4.6.14), the second boundary condition (4.6.13) becomes (after dividing by
−kI cos θI)

1 − R =
sin θI

sin θT

cos θT

cos θI
T. (4.6.15)



Section 4.6 Reflection and Refraction of Electromagnetic 149

The complex amplitudes of reflection and transmission can be determined by adding the
two linear equations, (4.6.12) and (4.6.15),

T =
2

1 + sin θI

sin θT

cos θT

cos θI

=
2 sin θT cos θI

sin(θT + θI)

R =
2 sin θT cos θI − sin(θT + θI)

sin(θT + θI)
=

sin(θT − θI)
sin(θT + θI)

.

4.6.3 Total Internal Reflection

If sin θI
c−
c+

> 1, then Snell’s law cannot be satisfied for a plane transmitted (refracted)

wave u = Tei(kT ·x−ω−(c−kT )t) in the lower media. Because of the boundary condition at
z = 0, the x- and y-components of the wave number of a solution must be the same as for
the incident wave. Thus, the transmitted wave number should satisfy

−→
kT = (k1I

, k2I
, k3I

).
If we apply Snell’s law (4.6.11) and solve for k3T

,

k3T
= ±

√
k2

I

(
c2
+

c2−
− sin2 θI

)
, (4.6.16)

since k2
1 +k2

2 = k2 sin2 θ. We find that k3T
is imaginary, suggesting that there are solutions

of the wave equation (in the lower media),

∂2u

∂t2
= c2

−

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
, (4.6.17)

which exponentially grow and decay in z. We look for a product solution of the form

u(x, y, z, t) = w(z)ei(k1x+k2y−ωt), (4.6.18)

where k1 and k2 are the wave numbers associated with the incident wave and ω is the
frequency of the incident wave. We insist that (4.6.18) satisfy (4.6.17) so that

d2w

dz2
=

(
k2
1 + k2

2 − ω2

c2−

)
w = k2

I

(
sin2 θI −

c2
+

c2−

)
w.

Thus, w(z) is a linear combination of exponentially growing and decaying terms in z.
Since we want our solution to decay exponentially as z → −∞, we choose the solution to
the wave equation in the lower media to be

u(x, y, z, t) = Te
kI

√
sin2 θI−

c2+
c2−

z

ei(k1x+k2y−ωt),

instead of the plane wave. This is a horizontal two-dimensional plane wave whose ampli-
tude exponentially decays in the −z-direction. It is called an evanescent wave (expo-
nentially decaying in the −z-direction).
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The continuity of u and ∂u
∂z at z = 0 is satisfied if

1 + R = T (4.6.19)

ik3I
(1 − R) = TkI

√
sin2 θI −

c2
+

c2−
. (4.6.20)

These equations can be simplified and solved for the reflection coefficient and T (the
amplitude of the evanescent wave at z = 0). R (and T ) will be complex, corresponding
to phase shifts of the reflected (and evanescent) wave.

EXERCISES 4.6

4.6.1. Show that for a plane wave given by (4.6.2), the number of waves in 2π distance in
the direction of the wave (the k-direction) is k ≡ |k|.

4.6.2. Show that the phase of a plane wave stays the same moving in the direction of the
wave if the velocity is

ω

k
.

4.6.3. In optics, the index of refraction is defined as n =
clight

c
. Express Snell’s law using the

indices of refraction.
4.6.4. Find R and T for the evanescent wave by solving the simultaneous equations (4.6.19)

and (4.6.20).
4.6.5. Find R and T by assuming that k3I = ±iβ, where β is defined by (4.6.16). Which sign

do we use to obtain exponential decay as z → −∞?



C H A P T E R 5

Sturm–Liouville Eigenvalue
Problems

5.1 INTRODUCTION

We have found the method of separation of variables to be quite successful in solving
some homogeneous partial differential equations with homogeneous boundary conditions.
In all examples we have analyzed so far, the boundary value problem that determines the
needed eigenvalues (separation constants) has involved the simple ordinary differential
equation

d2φ

dx2
+ λφ = 0. (5.1.1)

Explicit solutions of this equation determined the eigenvalues λ from the homogeneous
boundary conditions. The principle of superposition resulted in our needing to analyze
infinite series. We pursued three different cases (depending on the boundary conditions):
Fourier sine series, Fourier cosine series, and Fourier series (both sines and cosines).
Fortunately, we verified by explicit integration that the eigenfunctions were orthogonal.
This enabled us to determine the coefficients of the infinite series from the remaining
nonhomogeneous condition.

In this section we further explain and generalize these results. We show that the
orthogonality of the eigenfunctions can be derived even if we cannot solve the defining
differential equation in terms of elementary functions [as in (5.1.1)]. Instead, orthogonality
is a direct result of the differential equation. We investigate other boundary value problems
resulting from separation of variables that yield other families of orthogonal functions.
These generalizations of Fourier series will not always involve sines and cosines since
(5.1.1) is not necessarily appropriate in every situation.

5.2 EXAMPLES

5.2.1 Heat Flow in a Nonuniform Rod

In Section 1.2 we showed that the temperature u in a nonuniform rod solves the following
partial differential equation:

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ Q, (5.2.1)

where Q represents any possible sources of heat energy. Here, in order to consider the
case of a nonuniform rod, we allow the thermal coefficients c, ρ, and K0 to depend on x.
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The method of separation of variables can be applied only if (5.2.1) is linear and
homogeneous. Usually, to make (5.2.1) homogeneous, we consider only situations without
sources. Q = 0. However, we will be slightly more general. We will allow the heat source
Q to be proportional to the temperature u,

Q = αu, (5.2.2)

in which case

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ αu. (5.2.3)

We also allow α to depend on x (but not on t), as though the specific types of sources
depend on the material. Although Q �= 0, (5.2.3) is still a linear and homogeneous partial
differential equation. To understand the effect of this source Q, we present a plausible
physical situation in which terms such as Q = αu might arise. Suppose that a chemical
reaction generates heat (called an exothermic reaction) corresponding to Q > 0. Conceiv-
ably, this reaction could be more intense at higher temperatures. In this way the heat
energy generated might be proportional to the temperature and thus α > 0 (assuming
that u > 0). Other types of chemical reactions (known as endothermic) would remove
heat energy from the rod and also could be proportional to the temperature. For positive
temperatures (u > 0), this corresponds to α < 0. In our problem, α = α(x), and hence it
is possible that α > 0 in some parts of the rod and α < 0 in other parts. We summarize
these results by noting that if α(x) < 0 for all x, then heat energy is being taken out
of the rod, and vice versa. Later in our mathematical analysis, we will correspondingly
discuss the special case α(x) < 0.

Equation (5.2.3) is suited for the method of separation of variables if, in addition,
we assume that there is one homogeneous boundary condition (as yet unspecified) at each
end, x = 0 and x = L. We have already analyzed cases in which α = 0 and c, ρ, and K0

are constant. In separating variables, we substitute the product form,

u(x, t) = φ(x)h(t), (5.2.4)

into (5.2.3), which yields

cρφ(x)
dh

dt
= h(t)

d

dx

(
K0

dφ

dx

)
+ αφ(x)h(t).

Dividing by φ(x)h(t) does not necessarily separate variables since cρ may depend on x.
However, dividing by cρφ(x)h(t) is always successful:

1
h

dh

dt
=

1
cρφ

d

dx

(
K0

dφ

dx

)
+

α

cρ
= −λ. (5.2.5)
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The separation constant −λ has been introduced with a minus sign because in this form
the time-dependent equation [following from (5.2.5)],

dh

dt
= −λh, (5.2.6)

has exponentially decaying solutions if λ > 0. Solutions to (5.2.6) exponentially grow if
λ < 0 (and are constant if λ = 0). Solutions exponentially growing in time are not usually
encountered in physical problems. However, for problems in which α > 0 for at least part
of the rod, thermal energy is being put into the rod by the exothermic reaction, and hence
it is possible for there to be some negative eigenvalues (λ < 0).

The spatial differential equation implied by separation of variables is

d

dx

(
K0

dφ

dx

)
+ αφ + λcρφ = 0, (5.2.7)

which forms a boundary value problem when complemented by two homogeneous bound-
ary conditions. This differential equation is not d2φ/dx2 + λφ = 0. Neither does (5.2.7)
have constant coefficients, because the thermal coefficients K0, c, ρ, and α are not con-
stant. In general, one way in which nonconstant-coefficient differential equations occur is
in situations where physical properties are nonuniform.

Note that we cannot decide on the appropriate convenient sign for the separa-
tion constant by quickly analyzing the spatial ordinary differential equation (5.2.7) with
its homogeneous boundary conditions. Usually we will be unable to solve (5.2.7) in the
variable-coefficient case, other than by a numerical approximate solution on the computer.
Consequently, we will describe in Section 5.3 certain important qualitative properties of
the solution of (5.2.7). Later, with a greater understanding of (5.2.7), we will return to
reinvestigate heat flow in a nonuniform rod. For now, let us describe another example
that yields a boundary value problem with nonconstant coefficients.

5.2.2 Circularly Symmetric Heat Flow

Nonconstant-coefficient differential equations can also arise if the physical parameters
are constant. In Section 1.5 we showed that if the temperature u in some plane two-
dimensional region is circularly symmetric (so that u depends only on time t and on
the radial distance r from the origin), then u solves the linear and homogeneous partial
differential equation

∂u

∂t
= k

1
r

∂

∂r

(
r
∂u

∂r

)
, (5.2.8)

under the assumption that all the thermal coefficients are constant.
We apply the method of separation of variables by seeking solutions in the form of

a product:
u(r, t) = φ(r)h(t).
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Equation (5.2.8) then implies that

φ(r)
dh

dt
=

kh(t)
r

d

dr

(
r
dφ

dr

)
.

Dividing by φ(r)h(t) separates the variables, but also dividing by the constant k is con-
venient since it eliminates this constant from the resulting boundary value problem:

1
k

1
h

dh

dt
=

1
rφ

d

dr

(
r
dφ

dr

)
= −λ. (5.2.9)

The two ordinary differential equations implied by (5.2.9) are

dh

dt
= −λkh (5.2.10)

d

dr

(
r
dφ

dr

)
+ λrφ = 0. (5.2.11)

The separation constant is denoted −λ since we expect solutions to exponentially decay
in time, as is implied by (5.2.10) if λ > 0. The nonconstant coefficients in (5.2.11) are
due to geometric factors introduced by the use of polar coordinates. Later in this text
(Section 7.7) we will show that (5.2.11) can be solved using Bessel functions. However,
the general discussions in the remainder of this chapter will be quite valuable in our
understanding of this problem.

Let us consider the appropriate homogeneous boundary conditions for circularly
symmetric heat flow in two different geometries: inside a circular annulus (as illustrated in
Fig. 5.2.1a) and inside a circle (as illustrated in Fig. 5.2.1b). In both cases we assume that
all boundaries are fixed at zero temperature. For the annulus, the boundary conditions
for (5.2.11) are that the temperature should be zero at the inner (r = a) and outer (r = b)
concentric circular walls:

u(a, t) = 0 and u(b, t) = 0.

Both of these boundary conditions are exactly of the type we have already studied. How-
ever, for the circle, the same second-order differential equation (5.2.11) has only one

FIGURE 5.2.1 (a) Circular annulus; (b) circle.
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boundary condition, u(b, t) = 0. Since the physical variable r ranges from r = 0 to r = b,
we need a homogeneous boundary condition at r = 0 for mathematical reasons. (This is
the same problem that occurred in studying Laplace’s equation inside a cylinder. How-
ever, in that situation a nonhomogeneous condition was given at r = b.) On the basis
of physical reasoning, we expect that the condition at r = 0 is that the temperature is
bounded there, |u(0, t)| < ∞. This is an example of a singularity condition. It is homo-
geneous; it is the boundary condition that we apply at r = 0. Thus, we have homogeneous
conditions at both r = 0 and r = b for the circle.

5.3 STURM–LIOUVILLE EIGENVALUE PROBLEMS

5.3.1 General Classification

Differential equation. A boundary value problem consists of a linear homogeneous
differential equation and corresponding linear homogeneous boundary conditions. All of
the differential equations for boundary value problems that have been formulated in this
text can be put in the following form:

d

dx

(
p
dφ

dx

)
+ qφ + λσφ = 0, (5.3.1)

where λ is the eigenvalue. Here the variable x is defined on a finite interval a < x < b.
Four examples are as follows:

1. Simplest case:
d2φ

dx2
+ λφ = 0; in which case, p = 1, q = 0, σ = 1.

2. Heat flow in a nonuniform rod:
d

dx

(
K0

dφ

dx

)
+ αφ + λcρφ = 0; in which case,

p = K0, q = α, σ = cρ.

3. Vibrations of a nonuniform string: T0
d2φ

dx2
+ αφ + λρ0φ = 0; in which case, p = T0

(constant), q = α, σ = ρ0 (see Exercise 5.3.1).

4. Circularly symmetric heat flow:
d

dr

(
r
dφ

dr

)
+λrφ = 0; here the independent variable

x = r and p(x) = x, q(x) = 0, σ(x) = x.

Many interesting results are known concerning any equation in the form (5.3.1). Equation
(5.3.1) is known as a Sturm–Liouville differential equation, named after two famous
mathematicians active in the mid-1800s who studied it.

Boundary conditions. The linear homogeneous boundary conditions that we
have studied are of the form to follow. We also introduce some mathematical terminology:
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Heat flow Vibrating string Mathematical
terminology

φ = 0 Fixed (zero)
temperature

Fixed (zero)
displacement

First kind or
Dirichlet condition

dφ

dx
= 0 Insulated Free Second kind or

Neumann condition

dφ

dx
= ±hφ(

+left end
−right end

) (Homogeneous)
Newton’s law of
cooling 0◦

outside
temperature,
h = H/K0, h > 0
(physical)

(Homogeneous)
Elastic boundary
condition
h = k/T0, h > 0
(physical)

Third kind or Robin
condition

φ(−L) = φ(L)
dφ

dx
(−L) =

dφ

dx
(L)

Perfect thermal
contact

— Periodicity condition
(example of
mixed type)

|φ(0)| < ∞ Bounded
temperature

— Singularity
condition

5.3.2 Regular Sturm–Liouville Eigenvalue Problem

A regular Sturm–Liouville eigenvalue problem consists of the Sturm–Liouville differential
equation,

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ + λσ(x)φ = 0, a < x < b, (5.3.2)

subject to the boundary conditions that we have discussed (excluding periodic and sin-
gular cases):

β1φ(a) + β2
dφ

dx
(a) = 0

β3φ(b) + β4
dφ

dx
(b) = 0,

(5.3.3)

where βi are real. In addition, to be called regular, the coefficients p, q, and σ must be real
and continuous everywhere (including the endpoints) and p > 0 and σ > 0 everywhere
(also including the endpoints). For the regular Sturm–Liouville eigenvalue problem, many
important general theorems exist. In Section 5.5 we will prove these results, and in Sections
5.7 and 5.8 we will develop some more interesting examples that illustrate the significance
of the general theorems.
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Statement of theorems. At first let us just state (in one place) all the theorems
we will discuss more fully later (and in some cases prove). For any regular Sturm–Liouville
problem, all of the following theorems are valid:

1. All the eigenvalues λ are real.
2. There exist an infinite number of eigenvalues:

λ1 < λ2 < . . . < λn < λn+1 < . . . .
a. There is a smallest eigenvalue, usually denoted λ1.
b. There is not a largest eigenvalue and λn → ∞ as n → ∞.

3. Corresponding to each eigenvalue λn, there is an eigenfunction, denoted
φn(x) (which is unique to within an arbitrary multiplicative constant).
φn(x) has exactly n − 1 zeros for a < x < b.

4. The eigenfunctions φn(x) form a “complete” set, meaning that any
piecewise smooth function f(x) can be represented by a generalized
Fourier series of the eigenfunctions:

f(x) ∼
∞∑

n=1

anφn(x).

Furthermore, this infinite series converges to [f(x+) + f(x−)]/2
for a < x < b (if the coefficients an are properly chosen).

5. Eigenfunctions belonging to different eigenvalues are orthogonal relative
to the weight function σ(x). In other words,∫ b

a

φn(x)φm(x)σ(x) dx = 0 if λn �= λm.

6. Any eigenvalue can be related to its eigenfunction by the
Rayleigh quotient:

λ =
−pφ dφ/dx|ba +

∫ b

a
[p(dφ/dx)2 − qφ2] dx∫ b

a
φ2σ dx

,

where the boundary conditions may somewhat simplify this expression.

It should be mentioned that for Sturm–Liouville eigenvalue problems that are not “reg-
ular,” these theorems may be valid. An example of this is illustrated in Sections 7.7
and 7.8.

5.3.3 Example and Illustration of Theorems

We will individually illustrate the meaning of these theorems (before proving many of
them in Section 5.5) by referring to the simplest example of a regular Sturm–Liouville
problem:

d2φ

dx2
+ λφ = 0

φ(0) = 0
φ(L) = 0.

(5.3.4)
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The constant-coefficient differential equation has zero boundary conditions at both ends.
As we already know, the eigenvalues and corresponding eigenfunctions are

λn =
(nπ

L

)2

with φn(x) = sin
nπx

L
, n = 1, 2, 3, . . . ,

giving rise to a Fourier sine series.
1. Real eigenvalues. Our theorem claims that all eigenvalues λ of a regular Sturm–

Liouville problem are real. Thus, the eigenvalues of (5.3.4) should all be real. We know
that the eigenvalues are (nπ/L)2, n = 1, 2, . . . . However, in determining this result (see
Section 2.3.4) we analyzed three cases: λ > 0, λ = 0, and λ < 0. We did not bother to
look for complex eigenvalues because it is a relatively difficult task and we would have
obtained no additional eigenvalues other than (nπ/L)2. This theorem (see Section 5.5 for
its proof) is thus very useful. It guarantees that we do not even have to consider λ being
complex.

2. Ordering of eigenvalues. There is an infinite number of eigenvalues for (5.3.4),
namely, λ = (nπ/L)2 for n = 1, 2, 3, . . . . Sometimes we use the notation λn = (nπ/L)2.
Note that there is a smallest eigenvalue, λ1 = (π/L)2, but no largest eigenvalue, since
λn → ∞ as n → ∞. Our theorem claims that this idea is valid for any regular Sturm–
Liouville problem.

3. Zeros of eigenfunctions. For the eigenvalues of (5.3.4), λn = (nπ/L)2, the
eigenfunctions are known to be sinnπx/L. We use the notation φn(x) = sin nπx/L. The
eigenfunction is unique (to within an arbitrary multiplicative constant).

An important and interesting aspect of this theorem is that we claim that for all
regular Sturm–Liouville problems, the nth eigenfunction has exactly (n − 1) zeros, not
counting the endpoints. The eigenfunction φ1 corresponding to the smallest eigenvalue
(λ1, n = 1) should have no zeros in the interior. The eigenfunction φ2 corresponding to the
next-smallest eigenvalue (λ2, n = 2) should have exactly one zero in the interior, and so on.
We use our eigenvalue problem (5.3.4) to illustrate these properties. The eigenfunctions
φn(x) = sin nπx/L are sketched in Fig. 5.3.1 for n = 1, 2, 3. Note that the theorem is
verified (since we count zeros only at interior points); sinπx/L has no zeros between x = 0
and x = L, sin 2πx/L has one zero between x = 0 and x = L, and sin 3πx/L has two
zeros between x = 0 and x = L.

4. Series of eigenfunctions. According to this theorem, the eigenfunctions can
always be used to represent any piecewise smooth function f(x),

f(x) ∼
∞∑

n=1

anφn(x). (5.3.5)

Thus, for our example (5.3.4),

f(x) ∼
∞∑

n=1

an sin
nπx

L
.
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n = 1: sinπx/L

n = 2: sin2πx/L

n = 3: sin3πx/L

x = Lx = 0

FIGURE 5.3.1 Zeros of eigenfunctions sinnπx/L.

We recognize this as a Fourier sine series. We know that any piecewise smooth function
can be represented by a Fourier sine series and the infinite series converges to [f(x+) +
f(x−)]/2 for 0 < x < L. It converges to f(x) for 0 < x < L if f(x) is continuous there.
This theorem thus claims that the convergence properties of Fourier sine series are valid for
all series of eigenfunctions of any regular Sturm–Liouville eigenvalue problem. Equation
(5.3.5) is referred to as an expansion of f(x) in terms of the eigenfunctions φn(x) or, more
simply, as an eigenfunction expansion. It is also called a generalized Fourier series of
f(x). The coefficients an are called the coefficients of the eigenfunction expansion or
the generalized Fourier coefficients. The fact that rather arbitrary functions may be
represented in terms of an infinite series of eigenfunctions will enable us to solve partial
differential equations by the method of separation of variables.

5. Orthogonality of eigenfunctions. The preceding theorem enables a function
to be represented by a series of eigenfunctions, (5.3.5). Here we will show how to determine
the generalized Fourier coefficients, an. According to the important theorem we are now
describing, the eigenfunctions of any regular Sturm–Liouville eigenvalue problem will
always be orthogonal. The theorem states that a weight σ(x) must be introduced into the
orthogonality relation:

∫ b

a

φn(x)φm(x)σ(x) dx = 0 if λn �= λm. (5.3.6)

Here σ(x) is the possibly variable coefficient that multiplies the eigenvalue λ in the differ-
ential equation defining the eigenvalue problem. Since corresponding to each eigenvalue
there is only one eigenfunction, the statement “if λn �= λm” in (5.3.6) may be replaced
by “if n �= m.” For the Fourier sine series example, the defining differential equation is
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d2φ/dx2 + λφ = 0, and hence a comparison with the form of the general Sturm–Liouville
problem shows that σ(x) = 1. Thus, in this case the weight is 1, and the orthogonality
condition,

∫ L

0
sin nπx/L sin mπx/Ldx = 0, follows if n �= m, as we already know.

As with Fourier sine series, we use the orthogonality condition to determine the
generalized Fourier coefficients. In order to utilize the orthogonality condition (5.3.6), we
must multiply (5.3.5) by φm(x) and σ(x). Thus,

f(x)φm(x)σ(x) =
∞∑

n=1

anφn(x)φm(x)σ(x),

where we assume these operations on infinite series are valid, and hence introduce equal
signs. Integrating from x = a to x = b yields

∫ b

a

f(x)φm(x)σ(x) dx =
∞∑

n=1

an

∫ b

a

φn(x)φm(x)σ(x) dx.

Since the eigenfunctions are orthogonal [with weight σ(x)], all the integrals on the right-
hand side vanish except when n reaches m:

∫ b

a

f(x)φm(x)σ(x) dx = am

∫ b

a

φ2
m(x)σ(x) dx.

The integral on the right is nonzero since the weight σ(x) must be positive (from the defi-
nition of a regular Sturm–Liouville problem), and hence we may divide by it to determine
the generalized Fourier coefficient am:

am =

∫ b

a

f(x)φm(x)σ(x) dx

∫ b

a

φ2
m(x)σ(x) dx

. (5.3.7)

In the example of a Fourier sine series, a = 0, b = L, φn = sin nπx/L, and σ(x) = 1.
Thus, if we recall the known integral that

∫ L

0
sin2 nπx/L dx = L/2, (5.3.7) reduces to the

well-known formula for the coefficients of the Fourier sine series. It is not always possible
to evaluate the integral in the denominator of (5.3.7) in a simple way.

6. Rayleigh quotient. In Section 5.6 we will prove that the eigenvalue may be
related to its eigenfunction in the following way:

λ =
−pφ dφ/dx|ba +

∫ b

a

[p(dφ/dx)2 − qφ2] dx

∫ b

a
φ2σ dx

, (5.3.8)

known as the Rayleigh quotient. The numerator contains integrated terms and terms
evaluated at the boundaries. Since the eigenfunctions cannot be determined without know-
ing the eigenvalues, this expression is never used directly to determine the eigenvalues.
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However, interesting and significant results can be obtained from the Rayleigh quotient
without solving the differential equation. Consider the Fourier sine series example (5.3.4)
that we have been analyzing: a = 0, b = L, p(x) = 1, q(x) = 0, and σ(x) = 1. Since
φ(0) = 0 and φ(L) = 0, the Rayleigh quotient implies that

λ =

∫ L

0
(dφ/dx)2dx∫ L

0
φ2 dx

. (5.3.9)

Although this does not determine λ, since φ is unknown, it gives useful information.
Both the numerator and the denominator are ≥ 0. Since φ cannot be identically zero
and be called an eigenfunction, the denominator cannot be zero. Thus, λ ≥ 0 follows
from (5.3.9). Without solving the differential equation, we immediately conclude that
there cannot be any negative eigenvalues. When we first determined eigenvalues for this
problem, we worked rather hard to show that there were no negative eigenvalues (see
Section 2.3). Now we can simply apply the Rayleigh quotient to eliminate the possibility
of negative eigenvalues for this example. Sometimes, as we shall see later, we can also
show that λ ≥ 0 in harder problems.

Furthermore, even the possibility of λ = 0 can sometimes be analyzed using the
Rayleigh quotient. For the simple problem (5.3.4) with zero boundary conditions, φ(0) = 0
and φ(L) = 0, let us see if it is possible for λ = 0 directly from (5.3.9). λ = 0 only if
dφ/dx = 0 for all x. Then, by integration, φ must be a constant for all x. However, from
the boundary conditions [either φ(0) = 0 or φ(L) = 0], that constant must be zero. Thus,
λ = 0 only if φ = 0 everywhere. But if φ = 0 everywhere, we do not call φ an eigenfunction.
Thus, λ = 0 is not an eigenvalue in this case, and we have further concluded that λ > 0;
all the eigenvalues must be positive. This is concluded without using solutions of the
differential equation. The known eigenvalues in this example, λn = (nπ/L)2, n = 1, 2, . . . ,
are clearly consistent with the conclusions from the Rayleigh quotient. Other applications
of the Rayleigh quotient will appear in later sections.

EXERCISES 5.3

*5.3.1. Do Exercise 4.4.2(b). Show that the partial differential equation may be put into
Sturm–Liouville form.

5.3.2. Consider

ρ
∂2u

∂t2
= T0

∂2u

∂x2
+ αu + β

∂u

∂t
.

(a) Give a brief physical interpretation. What signs must α and β have to be
physical?

(b) Allow ρ, α, andβ to be functions of x. Show that separation of variables works
only if β = cρ, where c is a constant.

(c) If β = cρ, show that the spatial equation is a Sturm–Liouville differential equa-
tion. Solve the time equation.

*5.3.3. Consider the non-Sturm–Liouville differential equation

d2φ

dx2
+ α(x)

dφ

dx
+ [λβ(x) + γ(x)]φ = 0.
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Multiply this equation by H(x). Determine H(x) such that the equation may be
reduced to the standard Sturm–Liouville form:

d

dx

[
p(x)

dφ

dx

]
+ [λσ(x) + q(x)]φ = 0.

Given α(x), β(x), and γ(x), what are p(x), σ(x), and q(x)?
5.3.4. Consider heat flow with convection (see Exercise 1.5.2):

∂u

∂t
= k

∂2u

∂x2
− V0

∂u

∂x
.

(a) Show that the spatial ordinary differential equation obtained by separation of
variables is not in Sturm–Liouville form.

*(b) Solve the initial boundary value problem

u(0, t) = 0
u(L, t) = 0
u(x, 0) = f(x).

(c) Solve the initial boundary value problem

∂u
∂x (0, t) = 0
∂u
∂x (L, t) = 0

u(x, 0) = f(x).

5.3.5. For the Sturm–Liouville eigenvalue problem,

d2φ

dx2
+ λφ = 0 with

dφ

dx
(0) = 0 and

dφ

dx
(L) = 0,

verify the following general properties:

(a) There is an infinite number of eigenvalues with a smallest but no largest.

(b) The nth eigenfunction has n − 1 zeros.

(c) The eigenfunctions are complete and orthogonal.

(d) What does the Rayleigh quotient say concerning negative and zero eigenvalues?

5.3.6. Redo Exercise 5.3.5 for the Sturm–Liouville eigenvalue problem

d2φ

dx2
+ λφ = 0 with

dφ

dx
(0) = 0 and φ(L) = 0.

5.3.7. Which of statements 1–5 of the theorems of this section are valid for the following
eigenvalue problem?

d2φ
dx2 + λφ = 0 with

φ(−L) = φ(L)
dφ
dx (−L) = dφ

dx (L).
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5.3.8. Show that λ ≥ 0 for the eigenvalue problem

d2φ

dx2
+ (λ − x2)φ = 0 with

dφ

dx
(0) = 0,

dφ

dx
(1) = 0.

Is λ = 0 an eigenvalue?
5.3.9. Consider the eigenvalue problem

x2 d2φ

dx2
+ x

dφ

dx
+ λφ = 0 with φ(1) = 0 and φ(b) = 0. (5.3.10)

(a) Show that multiplying by 1/x puts this in the Sturm–Liouville form. (This
multiplicative factor is derived in Exercise 5.3.3.)

(b) Show that λ ≥ 0.

*(c) Since (5.3.10) is an equidimensional equation, determine all positive eigenvalues.
Is λ = 0 an eigenvalue? Show that there is an infinite number of eigenvalues
with a smallest but no largest.

(d) The eigenfunctions are orthogonal with what weight according to Sturm–Liouville
theory? Verify the orthogonality using properties of integrals.

(e) Show that the nth eigenfunction has n − 1 zeros.

5.3.10. Reconsider Exercise 5.3.9 with the boundary conditions

dφ

dx
(1) = 0 and

dφ

dx
(b) = 0.

5.4 WORKED EXAMPLE: HEAT FLOW IN A NONUNIFORM ROD WITHOUT SOURCES

In this section we illustrate the application to partial differential equations of some of
the general theorems on regular Sturm–Liouville eigenvalue problems. Consider the heat
flow in a nonuniform rod (with possibly nonconstant thermal properties c, ρ,K0) without
sources; see Section 1.2 or 5.2.1. At the left end, x = 0, the temperature is prescribed to
be 0◦, and the right end is insulated. The initial temperature distribution is given. The
mathematical formulation of this problem is

PDE: cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
(5.4.1)

BC:
u(0, t) = 0

∂u

∂x
(L, t) = 0

(5.4.2)

IC: u(x, 0) = f(x). (5.4.3)
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Since the partial differential equation and the boundary conditions are linear and
homogeneous, we seek special solutions (ignoring the initial condition) in the product
form:

u(x, t) = φ(x)h(t). (5.4.4)

After separation of variables (for details, see Section 5.2.1), we find that the time part
satisfies the ordinary differential equation

dh

dt
= −λh, (5.4.5)

while the spatial part solves the following regular Sturm–Liouville eigenvalue problem:

d

dx

(
K0

dφ

dx

)
+ λcρφ = 0 (5.4.6)

φ(0) = 0 (5.4.7)

dφ

dx
(L) = 0. (5.4.8)

According to our theorems concerning Sturm–Liouville eigenvalue problems, there is an
infinite sequence of eigenvalues λn and corresponding eigenfunctions φn(x). We assume
that φn(x) are known (it might be a difficult problem to determine approximately the
first few using numerical methods, but nevertheless it can be done). The time-dependent
part of the differential equation is easily solved,

h(t) = ce−λnt. (5.4.9)

In this way we obtain an infinite sequence of product solutions of the partial differential
equation

u(x, t) = φn(x)e−λnt. (5.4.10)

According to the principle of superposition, we attempt to satisfy the initial condition
with an infinite linear combination of these product solutions:

u(x, t) =
∞∑

n=1

anφn(x)e−λnt. (5.4.11)
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This infinite series has the property that it solves the PDE and the homogeneous BCs.
We will show that we can determine the as-yet unknown constants an from the initial
condition

u(x, 0) = f(x) =
∞∑

n=1

anφn(x). (5.4.12)

Our theorems imply that any piecewise smooth f(x) can be represented by this type
of series of eigenfunctions. The coefficients an are the generalized Fourier coefficients
of the initial condition. Furthermore, the eigenfunctions are orthogonal with a weight
σ(x) = c(x)ρ(x), determined from the physical properties of the rod:

∫ L

0

φn(x)φm(x)c(x)ρ(x) dx = 0 for n �= m.

Using these orthogonality formulas, the generalized Fourier coefficients are

an =

∫ L

0

f(x)φn(x)c(x)ρ(x) dx

∫ L

0

φ2
n(x)c(x)ρ(x) dx

. (5.4.13)

We claim that (5.4.11) is the desired solution, with coefficients given by (5.4.13).
In order to give a minimal interpretation of the solution, we should ask what happens

for large t. Since the eigenvalues form an increasing sequence, each succeeding term in
(5.4.11) is exponentially smaller than the preceding term for large t. Thus, for large time
the solution may be accurately approximated by

u(x, t) ≈ a1φ1(x)e−λ1t. (5.4.14)

This approximation is not very good if a1 = 0, in which case (5.4.14) should begin with
the first nonzero term. However, often the initial temperature f(x) is nonnegative (and
not identically zero). In this case, we will show from (5.4.13) that a1 �= 0:

a1 =

∫ L

0
f(x)φ1(x)c(x)ρ(x) dx∫ L

0
φ2

1(x)c(x)ρ(x) dx
. (5.4.15)

It follows that a1 �= 0, because φ1(x) is the eigenfunction corresponding to the lowest
eigenvalue and has no zeros; φ1(x) is of one sign. Thus, if f(x) > 0, it follows that a1 �= 0,
since c(x) and ρ(x) are positive physical functions. In order to sketch the solution for
large fixed t, (5.4.14) shows that all that is needed is the first eigenfunction. At the very
least, a numerical calculation of the first eigenfunction is easier than the computation of
the first hundred.

For large time, the “shape” of the temperature distribution in space stays approx-
imately the same in time. Its amplitude grows or decays in time depending on whether
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λ1 > 0 or λ1 < 0 (it would be constant in time if λ1 = 0). Since this is a heat flow problem
with no sources and with zero temperature at x = 0, we certainly expect the temperature
to be exponentially decaying toward 0◦ (i.e., we expect that λ1 > 0). Although the right
end is insulated, heat energy should flow out the left end since there u = 0. We now prove
mathematically that all λ > 0. Since p(x) = K0(x), q(x) = 0, and σ(x) = c(x)ρ(x), it
follows from the Rayleigh quotient that

λ =

∫ L

0
K0(x)(dφ/dx)2 dx∫ L

0
φ2c(x)ρ(x) dx

, (5.4.16)

where the boundary contribution to (5.4.16) vanished due to the specific homogeneous
boundary conditions, (5.4.7) and (5.4.8). It immediately follows from (5.4.16) that all
λ ≥ 0, since the thermal coefficients are positive. Furthermore, λ > 0, since φ = con-
stant is not an allowable eigenfunction [because φ(0) = 0]. Thus, we have shown that
limt→∞ u(x, t) = 0 for this example.

EXERCISES 5.4
5.4.1. Consider

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ αu,

where c, ρ, K0, and α are functions of x, subject to

u(0, t) = 0
u(L, t) = 0
u(x, 0) = f(x).

Assume that the appropriate eigenfunctions are known.

(a) Show that the eigenvalues are positive if α < 0 (see Section 5.2.1).
(b) Solve the initial value problem.
(c) Briefly discuss limt→∞ u(x, t).

5.4.2. Consider the one-dimensional heat equation for nonconstant thermal properties

c(x)ρ(x)
∂u

∂t
=

∂

∂x

[
K0(x)

∂u

∂x

]

with the initial condition u(x, 0) = f(x). [Hint : Suppose it is known that if u(x, t) =
φ(x) h(t), then

1
h

dh

dt
=

1
c(x)ρ(x)φ

d

dx

[
K0(x)

dφ

dx

]
= −λ.

You may assume the eigenfuctions are known. Briefly discuss limt→∞ u(x, t). Solve
the initial value problem:

(a) with boundary conditions u(0, t) = 0 and u(L, t) = 0
*(b) with boundary conditions ∂u

∂x (0, t) = 0 and ∂u
∂x (L, t) = 0,

Derive coefficients using orthogonality.]
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*5.4.3. Solve
∂u

∂t
= k

1
r

∂

∂r

(
r
∂u

∂r

)

with u(r, 0) = f(r), u(0, t) bounded, and u(a, t) = 0. You may assume that the
corresponding eigenfunctions, denoted φn(r), are known and are complete. (Hint:
See Section 5.2.2.)

5.4.4. Consider the following boundary value problem:

∂u

∂t
= k

∂2u

∂x2
with

∂u

∂x
(0, t) = 0 and u(L, t) = 0.

Solve such that u(x, 0) = sin πx/L (initial condition). (Hint: If necessary, use a table
of integrals.)

5.4.5. Consider

ρ
∂u2

∂t2
= T0

∂2u

∂x2
+ αu,

where ρ(x) > 0, α(x) < 0, and T0 is constant, subject to

u(0, t) = 0, u(x, 0) = f(x)

u(L, t) = 0, ∂u
∂t (x, 0) = g(x).

Assume that the appropriate eigenfunctions are known. Solve the initial value
problem.

*5.4.6. Consider the vibrations of a nonuniform string of mass density ρ0(x). Suppose that
the left end at x = 0 is fixed and the right end obeys the elastic boundary condi-
tion: ∂u/∂x = −(k/T0)u at x = L. Suppose that the string is initially at rest with a
known initial position f(x). Solve this initial value problem. (Hints: Assume that the
appropriate eigenvalues and corresponding eigenfunctions are known. What differ-
ential equations with what boundary conditions do they satisfy? The eigenfunctions
are orthogonal with what weighting function?)

5.5 SELF-ADJOINT OPERATORS AND STURM–LIOUVILLE
EIGENVALUE PROBLEMS

Introduction. In this section we prove some of the properties of regular Sturm–Liouville
eigenvalue problems:

d

dx

[
p(x)

dφ

dx

]
+ q(x)φ + λσ(x)φ = 0 (5.5.1)

β1φ(a) + β2
dφ

dx
(a) = 0 (5.5.2)

β3φ(b) + β4
dφ

dx
(b) = 0, (5.5.3)
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where βi are real and where, on the finite interval (a ≤ x ≤ b), p, q, σ are real continuous
functions and p, σ are positive [p(x) > 0 and σ(x) > 0]. At times we will make some
comments on the validity of our results if some of these restrictions are removed.

The proofs of these statements are somewhat difficult. We will not prove that there
are an infinite number of eigenvalues. We will have to rely for understanding on the
examples already presented and on some further examples developed in later sections. For
Sturm–Liouville eigenvalue problems that are not regular, there may be no eigenvalues
at all. However, in most cases of physical interest (on finite intervals) there will still be
an infinite number of discrete eigenvalues. We also will not attempt to prove that any
piecewise smooth function can be expanded in terms of the eigenfunctions of a regular
Sturm–Liouville problem (known as the completeness property). We will not attempt to
prove that each succeeding eigenfunction has one additional zero (oscillates one more
time).

Linear operators. The proofs we will investigate are made easier to follow by
the introduction of operator notation. Let L stand for the linear differential operator
d/dx[p(x) d/dx] + q(x). An operator acts on a function and yields another function. The
notation means that for this L acting on the function y(x),

L(y) ≡ d

dx

[
p(x)

dy

dx

]
+ q(x)y. (5.5.4)

Thus, L(y) is just a shorthand notation. For example, if L ≡ d2/dx2 + 6, then L(y) =
d2y/dx2 + 6y or L(e2x) = 4e2x + 6e2x = 10e2x.

The Sturm–Liouville differential equation is rather cumbersome to write over and
over again. The use of the linear operator notation is somewhat helpful. Using the operator
notation

L(φ) + λσ(x)φ = 0, (5.5.5)

where λ is an eigenvalue and φ the corresponding eigenfunction, L can operate on any
function, not just an eigenfunction.

Lagrange’s identity. Most of the proofs we will present concerning Sturm–
Liouville eigenvalue problems are immediate consequences of an interesting and funda-
mental formula known as Lagrange’s identity. For convenience, we will use the operator
notation. We calculate uL(v)−vL(u), where u and v are any two functions (not necessarily
eigenfunctions). Recall that

L(u) =
d

dx

(
p
du

dx

)
+ qu and L(v) =

d

dx

(
p
dv

dx

)
+ qv,

and hence

uL(v) − vL(u) = u
d

dx

(
p
dv

dx

)
+ uqv − v

d

dx

(
p
du

dx

)
− vqu, (5.5.6)
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where a simple cancellation of uqv − vqu should be noted. The right-hand side of (5.5.6)
is manipulated to an exact differential:

uL(v) − vL(u) =
d

dx

[
p

(
u

dv

dx
− v

du

dx

)]
, (5.5.7)

known as the differential form of Lagrange’s identity. To derive (5.5.7), we note
from the product rule that

u
d

dx

(
p
dv

dx

)
=

d

dx

[
u

(
p
dv

dx

)]
−
(

p
dv

dx

)
du

dx
,

and similarly

v
d

dx

(
p
du

dx

)
=

d

dx

[
v

(
p
du

dx

)]
−
(

p
du

dx

)
dv

dx
.

Equation (5.5.7) follows by subtracting these two. Later [see (5.5.21)] we will use the
differential form, (5.5.7).

Green’s formula. The integral form of Lagrange’s identity is also known as
Green’s formula. It follows by integrating (5.5.7):

∫ b

a

[uL(v) − vL(u)] dx = p

(
u

dv

dx
− v

du

dx

)∣∣∣∣∣
b

a

(5.5.8)

for any functions1 u and v. This is a very useful formula.

EXAMPLE

If p = 1 and q = 0 (in which case L = d2/dx2), (5.5.7) simply states that

u
d2v

dx2
− v

d2u

dx2
=

d

dx

(
u

dv

dx
− v

du

dx

)
,

which is easily independently checked. For this example, Green’s formula is

∫ b

a

(
u

d2v

dx2
− v

d2u

dx2

)
dx =

(
u

dv

dx
− v

du

dx

)∣∣∣∣∣
b

a

.

1The integration requires du/dx and dv/dx to be continuous.
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Self-adjointness. As an important case of Green’s formula, suppose that u and
v are any two functions, but with the additional restriction that the boundary terms
happen to vanish,

p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
b

a

= 0.

Then, from (5.5.8),
∫ b

a
[uL(v) − vL(u)] dx = 0.

Let us show how it is possible for the boundary terms to vanish. Instead of being
arbitrary functions, we restrict u and v to both satisfy the same set of homogeneous
boundary conditions. For example, suppose that u and v are any two functions that
satisfy the following set of boundary conditions:

φ(a) = 0
dφ
dx (b) + hφ(b) = 0.

Since both u and v satisfy these conditions, it follows that

u(a) = 0
du
dx (b) + hu(b) = 0

and
v(a) = 0

dv
dx (b) + hv(b) = 0;

otherwise, u and v are arbitrary. In this case, the boundary terms for Green’s formula
vanish:

p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
b

a

= p(b)
[
u(b)

dv

dx
(b) − v(b)

du

dx
(b)
]

= p(b)[−u(b)hv(b) + v(b)hu(b)] = 0.

Thus, for any functions u and v both satisfying these homogeneous boundary conditions,
we know that ∫ b

a

[uL(v) − vL(u)] dx = 0.

In fact, we claim (see Exercise 5.5.1) that the boundary terms also vanish for any two
functions u and v that both satisfy the same set of boundary conditions of the type
that occur in the regular Sturm–Liouville eigenvalue problems (5.5.2) and (5.5.3). Thus,
when discussing any regular Sturm–Liouville eigenvalue problem, we have the following
theorem:

If u and v are any two functions satisfying the same set of
homogeneous boundary conditions (of the regular Sturm–
Liouville type), then

∫ b

a
[uL(v) − vL(u)] dx = 0.

(5.5.9)

When (5.5.9) is valid, we say that the operator L (with the corresponding boundary
conditions) is self-adjoint.2

2We usually avoid in this text an explanation of an adjoint operator. Here L equals its adjoint and
so is called self-adjoint.
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The boundary terms also vanish in circumstances other than for boundary
conditions of the regular Sturm–Liouville type. Two important further examples will
be discussed briefly. The periodic boundary condition can be generalized (for
nonconstant-coefficient operators) to

φ(a) = φ(b) and p(a)
dφ

dx
(a) = p(b)

dφ

dx
(b).

In this situation, (5.5.9) also can be shown (see Exercise 5.5.1) to be valid. Another
example in which the boundary terms in Green’s formula vanish is the “singular” case.
The singular case occurs if the coefficient of the second derivative of the differential
operator is zero at an endpoint; for example, if p(x) = 0 at x = 0 [i.e., p(0) = 0]. At a
singular endpoint, a singularity condition is imposed. The usual singularity condition at
x = 0 is φ(0) bounded. It can also be shown that (5.5.9) is valid (see Exercise 5.5.1) if
both u and v satisfy this singularity condition at x = 0 and any regular Sturm–Liouville
type of boundary condition at x = b.

Orthogonal eigenfunctions. We now will show the usefulness of Green’s for-
mula. We will begin by proving the important orthogonality relationship for Sturm–
Liouville eigenvalue problems. For many types of boundary conditions, eigenfunctions
corresponding to different eigenvalues are orthogonal with weight σ(x). To
prove that statement, let λn and λm be eigenvalues with corresponding eigenfunctions
φn(x) and φm(x). Using the operator notation, the differential equations satisfied by these
eigenfunctions are

L(φn) + λnσ(x)φn = 0 (5.5.10)
L(φm) + λmσ(x)φm = 0. (5.5.11)

In addition, both φn and φm satisfy the same set of homogeneous boundary conditions.
Since u and v are arbitrary functions, we may let u = φm and v = φn in Green’s formula:

∫ b

a

[φmL(φn) − φnL(φm)] dx = p(x)
(

φm
dφn

dx
− φn

dφm

dx

)∣∣∣∣∣
b

a

.

L(φn) and L(φm) may be eliminated from (5.5.10) and (5.5.11). Thus,

(λm − λn)
∫ b

a

φnφmσ dx = p(x)
(

φm
dφn

dx
− φn

dφm

dx

)∣∣∣∣∣
b

a

, (5.5.12)

corresponding to multiplying (5.5.10) by φm, multiplying (5.5.11) by φn, subtracting the
two, and then integrating. We avoided these steps (especially the integration) by applying
Green’s formula. For many different kinds of boundary conditions (i.e., regular Sturm–
Liouville types, periodic case, and the singular case), the boundary terms vanish if u
and v both satisfy the same set of homogeneous boundary conditions. Since u and v are
eigenfunctions, they satisfy this condition, and thus (5.5.12) implies that

(λm − λn)
∫ b

a

φnφmσ dx = 0. (5.5.13)
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If λm �= λn, then it immediately follows that

∫ b

a

φnφmσ dx = 0. (5.5.14)

In other words, eigenfunctions (φn and φm) corresponding to different eigenvalues (λn �=
λm) are orthogonal with weight σ(x).

Real eigenvalues. We can use the orthogonality of eigenfunctions to prove that
the eigenvalues are real. Suppose that λ is a complex eigenvalue and φ(x) the correspond-
ing eigenfunction (also allowed to be complex since the differential equation defining the
eigenfunction would be complex):

L(φ) + λσφ = 0. (5.5.15)

We introduce the notation − for the complex conjugate (e.g., if z = x+iy, then z = x−iy).
Note that if z = 0, then z = 0. Thus, the complex conjugate of (5.5.15) is also valid:

L(φ) + λσφ = 0, (5.5.16)

assuming that the coefficient σ is real and hence σ = σ. The complex conjugate of L(φ)
is exactly L operating on the complex conjugate of φ,L(φ) = L(φ), since the coefficients
of the linear differential operator are also real (see Exercise 5.5.7). Thus,

L(φ) + λσφ = 0. (5.5.17)

If φ satisfies boundary conditions with real coefficients, then φ satisfies the same boundary
conditions. For example, if dφ/dx + hφ = 0 at x = a, then by taking complex conjugates,
dφ/dx + hφ = 0 at x = a. Equation (5.5.17) and the boundary conditions show that φ
satisfies the Sturm–Liouville eigenvalue problem, but with the eigenvalue being λ. We
have thus proved the following theorem3: If λ is a complex eigenvalue with cor-
responding eigenfunction φ, then λ is also an eigenvalue with corresponding
eigenfunction φ.

However, we will show that λ cannot be complex. As we have shown, if λ is an
eigenvalue, then so too is λ. According to our fundamental orthogonality theorem, the
corresponding eigenfunctions (φ and φ) must be orthogonal (with weight σ). Thus, from
(5.5.13),

(λ − λ)
∫ b

a

φφσ dx = 0. (5.5.18)

Since φφ = |φ|2 ≥ 0 (and σ > 0), the integral in (5.5.18) is ≥0. In fact, the integral can
equal zero only if φ ≡ 0, which is prohibited since φ is an eigenfunction. Thus, (5.5.18)
implies that λ = λ, and hence λ is real; all the eigenvalues are real. The eigenfunctions
can always be chosen to be real.

3A “similar” type of theorem follows from the quadratic formula: For a quadratic equation with real
coefficients, if λ is a complex root, then so is λ. This also holds for any algebraic equation with real
coefficients.
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Unique eigenfunctions (regular and singular cases). We next prove that
there is only one eigenfunction corresponding to an eigenvalue (except for the case of
periodic boundary conditions). Suppose that there are two different eigenfunctions φ1

and φ2 corresponding to the same eigenvalue λ. We say λ is a “multiple” eigenvalue with
multiplicity 2. In this case, both

L(φ1) + λσφ1 = 0
L(φ2) + λσφ2 = 0. (5.5.19)

Since λ is the same in both expressions,

φ2L(φ1) − φ1L(φ2) = 0. (5.5.20)

This can be integrated by some simple manipulations. However, we avoid this algebra by
simply quoting the differential form of Lagrange’s identity:

φ2L(φ1) − φ1L(φ2) =
d

dx

[
p

(
φ2

dφ1

dx
− φ1

dφ2

dx

)]
. (5.5.21)

From (5.5.20) it follows that

p

(
φ1

dφ2

dx
− φ2

dφ1

dx

)
= constant. (5.5.22)

Often we can evaluate the constant from one of the boundary conditions. For ex-
ample, if dφ/dx + hφ = 0 at x = a, a short calculation shows that the constant = 0. In
fact, we claim (Exercise 5.5.10) that the constant also equals zero if at least one of the
boundary conditions is of the regular Sturm–Liouville type (or of the singular type). For
any of these boundary conditions it follows that

φ1
dφ2

dx
− φ2

dφ1

dx
= 0. (5.5.23)

This is equivalent to d/dx(φ2/φ1) = 0, and hence for these boundary conditions

φ2 = cφ1. (5.5.24)

This shows that any two eigenfunctions φ1 and φ2 corresponding to the same eigenvalue
must be an integral multiple of each other for the preceding boundary conditions. The two
eigenfunctions are dependent; there is only one linearly independent eigenfunction; the
eigenfunction is unique.

Nonunique eigenfunctions (periodic case). For periodic boundary condi-
tions, we cannot conclude that the constant in (5.5.22) must be zero. Thus, it is possible
that φ2 �= cφ1 and that there might be two different eigenfunctions corresponding to the
same eigenvalue.
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For example, consider the simple eigenvalue problem with periodic boundary cond-
itions,

d2φ

dx2
+ λφ = 0

φ(−L) = φ(L)

dφ

dx
(−L) =

dφ

dx
(L).

(5.5.25)

We know that the eigenvalue 0 has any constant as the unique eigenfunction. The other
eigenvalues, (nπ/L)2, n = 1, 2, . . ., each have two linearly independent eigenfunctions,
sin nπx/L and cos nπx/L. This, we know, gives rise to a Fourier series. However, (5.5.25)
is not a regular Sturm–Liouville eigenvalue problem, since the boundary conditions are
not of the prescribed form. Our theorem about unique eigenfunctions does not apply; we
may have two4 eigenfunctions corresponding to the same eigenvalue. Note that it is still
possible to have only one eigenfunction, as occurs for λ = 0.

Nonunique eigenfunctions (Gram–Schmidt orthogonalization). We can
solve for generalized Fourier coefficients (and correspondingly we are able to solve some
partial differential equations) because of the orthogonality of the eigenfunctions. However,
our theorem states that eigenfunctions corresponding to different eigenvalues are automat-
ically orthogonal [with weight σ(x)]. For the case of periodic (or mixed-type) boundary
conditions, it is possible for there to be more than one independent eigenfunction corre-
sponding to the same eigenvalue. For these multiple eigenvalues the eigenfunctions are
not automatically orthogonal to each other. In the appendix to Section 7.5 we will show
that we always are able to construct the eigenfunctions such that they are orthogonal by
a process called Gram–Schmidt orthogonalization.

EXERCISES 5.5

5.5.1. A Sturm–Liouville eigenvalue problem is called self-adjoint if

p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
b

a

= 0

because then
∫ b
a [uL(v) − vL(u)] dx = 0 for any two functions u and v satisfying the

boundary conditions. Show that the following yield self-adjoint problems:

(a) φ(0) = 0 and φ(L) = 0

(b) dφ
dx (0) = 0 and φ(L) = 0

(c) dφ
dx (0) − hφ(0) = 0 and dφ

dx (L) = 0

(d) φ(a) = φ(b) and p(a)dφ
dx (a) = p(b)dφ

dx (b)

(e) φ(a) = φ(b) and dφ
dx (a) = dφ

dx (b) [self-adjoint only if p(a) = p(b)]

4No more than two independent eigenfunctions are possible, since the differential equation is of second
order.
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(f) φ(L) = 0 and [in the situation in which p(0) = 0] φ(0) bounded and limx→0 p(x)
dφ
dx = 0

*(g) Under what conditions is the following self-adjoint (if p is constant)?

φ(L) + αφ(0) + β dφ
dx (0) = 0

dφ
dx (L) + γφ(0) + δ dφ

dx (0) = 0

5.5.2. Prove that the eigenfunctions corresponding to different eigenvalues (of the following
eigenvalue problem) are orthogonal:

d

dx

[
p(x)

dφ

dx

]
+ q(x)φ + λσ(x)φ = 0

with the boundary conditions

φ(1) = 0

φ(2) − 2dφ
dx (2) = 0.

What is the weighting function?
5.5.3. Consider the eigenvalue problem L(φ) = −λσ(x)φ, subject to a given set of homo-

geneous boundary conditions. Suppose that

∫ b

a
[uL(v) − vL(u)] dx = 0

for all functions u and v satisfying the same set of boundary conditions. Prove
that eigenfunctions corresponding to different eigenvalues are orthogonal (with what
weight?).

5.5.4. Give an example of an eigenvalue problem with more than one eigenfunction corre-
sponding to an eigenvalue.

5.5.5. Consider

L =
d2

dx2
+ 6

d

dx
+ 9.

(a) Show that L(erx) = (r + 3)2erx.

(b) Use part (a) to obtain solutions of L(y) = 0 (a second-order constant-coefficient
differential equation).

(c) If z depends on x and a parameter r, show that

∂

∂r
L(z) = L

(
∂z

∂r

)
.

(d) Using part (c), evaluate L(∂z/∂r) if z = erx.

(e) Obtain a second solution of L(y) = 0, using part (d).

5.5.6. Prove that if x is a root of a sixth-order polynomial with real coefficients, then x is
also a root.
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5.5.7. For

L =
d

dx

(
p

d

dx

)
+ q

with p and q real, carefully show that

L(φ) = L(φ).

5.5.8. Consider a fourth-order linear differential operator,

L =
d4

dx4
.

(a) Show that uL(v) − vL(u) is an exact differential.

(b) Evaluate
∫ 1
0 [uL(v) − vL(u)] dx in terms of the boundary data for any functions

u and v.

(c) Show that
∫ 1
0 [uL(v) − vL(u)] dx = 0 if u and v are any two functions satisfying

the boundary conditions

φ(0) = 0, φ(1) = 0

dφ
dx (0) = 0, d2φ

dx2 (1) = 0.

(d) Give another example of boundary conditions such that

∫ 1

0
[uL(v) − vL(u)] dx = 0.

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

d4φ

dx4
+ λexφ = 0,

show that the eigenfunctions corresponding to different eigenvalues are ortho-
gonal. What is the weighting function?

*5.5.9. For the eigenvalue problem
d4φ

dx4
+ λexφ = 0

subject to the boundary conditions

φ(0) = 0, φ(1) = 0

dφ
dx (0) = 0, d2φ

dx2 (1) = 0,

show that the eigenvalues are less than or equal to zero (λ ≤ 0). (Don’t worry; in a
physical context that is exactly what is expected.) Is λ = 0 an eigenvalue?

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary conditions is
of the regular Sturm–Liouville type.

(b) Do part (a) if one boundary condition is of the singular type.
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5.5.11. *(a) Suppose that

L = p(x)
d2

dx2
+ r(x)

d

dx
+ q(x).

Consider ∫ b

a

vL(u) dx.

By repeated integration by parts, determine the adjoint operator L∗ such that

∫ b

a

[uL∗(v) − vL(u)] dx = H(x)

∣∣∣∣∣
b

a

.

What is H(x)? Under what conditions does L = L∗, the self-adjoint case?
[Hint: Show that

L∗ = p
d2

dx2
+
(

2
dp

dx
− r

)
d

dx
+
(

d2p

dx2
− dr

dx
+ q

)
.

]

(b) If

u(0) = 0 and
du

dx
(L) + u(L) = 0,

what boundary conditions should v(x) satisfy for H(x)|L0 = 0, called the adjoint
boundary conditions?

5.5.12. Consider nonself-adjoint operators as in Exercise 5.5.11. The eigenvalues λ may be
complex as well as their corresponding eigenfunctions φ.

(a) Show that if λ is a complex eigenvalue with corresponding eigenfunction φ, then
the complex conjugate λ is also an eigenvalue with eigenfunction φ.

(b) The eigenvalues of the adjoint L∗ may be different from the eigenvalues of L.
Using the result of Exercise 5.5.11, show that the eigenfunctions of L(φ) +
λσφ = 0 are orthogonal with weight σ (in a complex sense) to eigenfunctions of
L∗(ψ)+νσψ = 0 if the eigenvalues are different. Assume that ψ satisfies adjoint
boundary conditions. You should also use part (a).

5.5.13. Using the result of Exercise 5.5.11, prove the following part of the Fredholm alter-
native (for operators that are not necessarily self-adjoint): A solution of L(u) = f(x)
subject to homogeneous boundary conditions may exist only if f(x) is orthogonal
to all solutions of the homogeneous adjoint problem.

5.5.14. If L is the following first-order linear differential operator

L = p(x)
d

dx
,

then determine the adjoint operator L∗ such that

∫ b

a

[uL∗(v) − vL(u)] dx = B(x)

∣∣∣∣∣
b

a

.

What is B(x)? [Hint: Consider
∫ b
a

vL(u) dx and integrate by parts.]
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5.5.15. Consider the eigenvalue problem d
dr (r dφ

dr ) + λ r φ = 0 (0 < r < 1), subject to the
boundary conditions |φ(0)| < ∞ (you may also assume dφ

dr is bounded) and dφ
dr (1) = 0.

Prove that eigenfunctions corresponding to different eigenvalues are orthogonal.
(With what weight?)

5.5.16. Consider the one-dimensional wave equation for nonconstant density so that

∂2u

∂t2
= c2(x)

∂2u

∂x2

subject to the boundary conditions u(0, t) = 0, u(L, t) = 0 and the initial conditions
u(x, 0) = 0, ∂u

∂t (x, 0) = f(x). [Hint: Suppose it is known that if u(x, t) = φ(x)G(t),
then

1
G

d2G

dt2
=

c2(x)
φ

d2φ

dx2
= −λ.]

(a) With the initial conditions u(x, 0) = 0, ∂u
∂t (x, 0) = f(x), prove that eigen-

functions corresponding to different eigenvalues are orthogonal (with what
weight?).

(b) With the initial conditions u(x, 0) = f(x), ∂u
∂t (x, 0) = 0, assume eigenfunctions

are orthogonal (with what weight?). Derive coefficients using orthogonality.

5.5.17. Consider the one-dimensional wave equation with c constant,

∂2u

∂t2
= c2

∂2u

∂x2
+ q(x, t),

subject to the boundary conditions u(0, t) = 0, u(L, t) = 0, and the initial conditions
u(x, 0) = f(x), ∂u

∂t (x, 0) = 0.

(a) Use the method of eigenfunction expansion (justify spatial term-by-term
differentiation)

u(x, t) =
∑

bn(t)φn(x).

What are the eigenfunctions φn(x)? What ordinary differential equation does
bn(t) satisfy? Do not solve this ordinary differential equation.

(b) What is the general solution of the differential equation for bn(t) if q(x, t) = 0?
Solve for bn(t) including initial conditions.

5.5.18. Prove Green’s formula for the Sturm–Liouville operator L(y) = d
dx (p dy

dx ) + qy.

APPENDIX TO 5.5: MATRIX EIGENVALUE PROBLEM AND ORTHOGONALITY
OF EIGENVECTORS

The matrix eigenvalue problem
Ax = λx, (5.5.26)

where A is an n × n real matrix (with entries aij) and x is an n-dimensional column
vector (with components xi), has many properties similar to those of the Sturm–Liouville
eigenvalue problem.
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Eigenvalues and eigenvectors. For all values of λ, x = 0 is a “trivial” solution
of the homogeneous linear system (5.5.26). We ask, for what values of λ are there nontrivial
solutions? In general, (5.5.26) can be rewritten as

(A − λI)x = 0, (5.5.27)

where I is the identity matrix. According to the theory of linear equations (elementary
linear algebra), a nontrivial solution exists only if

det[A − λI] = 0. (5.5.28)

Such values of λ are called eigenvalues, and the corresponding nonzero vectors x called
eigenvectors.

In general, (5.5.28) yields an nth-degree polynomial (known as the characteristic
polynomial) that determines the eigenvalues; there will be n eigenvalues (but they may
not be distinct). Corresponding to each distinct eigenvalue, there will be an eigenvector.

EXAMPLE

If A =
[

2 1
6 1

]
, then the eigenvalues satisfy

0 = det
[

2 − λ 1
6 1 − λ

]
= (2 − λ)(1 − λ) − 6 = λ2 − 3λ − 4 = (λ − 4)(λ + 1),

the characteristic polynomial. The eigenvalues are λ = 4 and λ = −1. For λ = 4, (5.5.26)
becomes

2x1 + x2 = 4x1 and 6x1 + x2 = 4x2,

or, equivalently, x2 = 2x1. The eigenvector
[

x1

x2

]
= x1

[
1
2

]
is an arbitrary multiple of[

1
2

]
for λ = 4. For λ = −1,

2x1 + x2 = −x1 and 6x1 + x2 = −x2,

and thus the eigenvector
[

x1

x2

]
= x1

[
1
−3

]
is an arbitrary multiple of

[
1
−3

]
.

Green’s formula. The matrix A may be thought of as a linear operator in the
same way that

L =
d

dx

(
p

d

dx

)
+ q
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is a linear differential operator. A operates on n-dimensional vectors producing an n-
dimensional vector, while L operates on functions and yields a function. In analyzing the
Sturm–Liouville eigenvalue problem, Green’s formula was important:

∫ b

a

[uL(v) − vL(u)] dx = p

(
u

dv

dx
− v

du

dx

)∣∣∣∣∣
b

a

,

where u and v are arbitrary functions. Often, the boundary terms vanished. For vectors,
the dot product is analogous to integration, a · b =

∑
i aibi, where ai and bi are the ith

components of, respectively, a and b (see Section 2.3 Appendix). By direct analogy to
Green’s formula, we would be led to investigate u · Av and v · Au, where u and v are
arbitrary vectors. Instead, we analyze u · Av and v · Bu, where B is any n × n matrix:

u · Av =
∑

i(ui

∑
j aijvj) =

∑
i

∑
j aijuivj

v · Bu =
∑

i(vi

∑
j bijuj) =

∑
i

∑
j bijujvi =

∑
i

∑
j bjiuivj ,

where an alternative expression for v ·Bu was derived by interchanging the roles of i and
j. Thus,

u · Av − v · Bu =
∑

i

∑
j

(aij − bji)uivj .

If we let B equal the transpose of A (i.e., bji = aij), whose notation is B = At, then we
have the following theorem:

u · Av − v · Atu = 0, (5.5.29)

analogous to Green’s formula.

Self-adjointness. The difference between A and its transpose, At, in (5.5.29)
causes insurmountable difficulties for us. We will thus restrict our attention to symmetric
matrices, in which case A = At. For symmetric matrices,

u · Av − v · Au = 0, (5.5.30)

and we will be able to use this result to prove the same theorems about eigenvalues and
eigenvectors for matrices as we proved about Sturm–Liouville eigenvalue problems.

For symmetric matrices, eigenvectors corresponding to different eigen-
values are orthogonal. To prove this, suppose that u and v are eigenvectors corre-
sponding to λ1 and λ2, respectively:

Au = λ1u and Av = λ2v.
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If we directly apply (5.5.30), then

(λ2 − λ1)u · v = 0.

Thus, if λ1 �= λ2 (different eigenvalues), the corresponding eigenvectors are orthogonal in
the sense that

u · v = 0. (5.5.31)

We leave as an exercise the proof that the eigenvalues of a symmetric real matrix are real.

EXAMPLE

The eigenvalues of the real symmetric matrix
[

6 2
2 3

]
are determined from (6 − λ)

(3 − λ) − 4 = λ2 − 9λ + 14 = (λ − 7)(λ − 2) = 0. For λ = 2, the eigenvector satisfies

6x1 + 2x2 = 2x1 and 2x1 + 3x2 = 2x2,

and hence
[

x1

x2

]
= x1

[
1
−2

]
. For λ = 7, it follows that

6x1 + 2x2 = 7x1 and 2x1 + 3x2 = 7x2,

and the eigenvector is
[

x1

x2

]
= x2

[
2
1

]
. As we have just proved for any real symmetric

matrix, the eigenvectors are orthogonal,
[

1
−2

]
·
[

2
1

]
= 2 − 2 = 0.

Eigenvector expansions. For real symmetric matrices it can be shown that if
an eigenvalue repeats R times, there will be R independent eigenvectors corresponding
to that eigenvalue. These eigenvectors are automatically orthogonal to any eigenvectors
corresponding to a different eigenvalue. The Gram–Schmidt procedure (see Section 6.5
Appendix) can be applied so that all R eigenvectors corresponding to the same eigen-
value can be constructed to be mutually orthogonal. In this manner, for real symmetric
n×n matrices, n orthogonal eigenvectors can always be obtained. Since these vectors are
orthogonal, they span the n-dimensional vector space and may be chosen as basis vectors.
Any vector v may be represented in a series of the eigenvectors:

v =
n∑

i=1

ciφi, (5.5.32)

where φi is the ith eigenvector. For regular Sturm–Liouville eigenvalue problems, the
eigenfunctions are complete, meaning that any (piecewise smooth) function can be rep-
resented in terms of an eigenfunction expansion

f(x) ∼
∞∑

i=1

ciφi(x). (5.5.33)
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This is analogous to (5.5.32). In (5.5.33) the Fourier coefficients ci are determined by the
orthogonality of the eigenfunctions. Similarly, the coordinates ci in (5.5.32) are determined
by the orthogonality of the eigenvectors. We dot Equation (5.5.32) into φm:

v · φm =
n∑

i=1

ciφi · φm = cmφm · φm,

since φi · φm = 0, i �= m, determining cm.

Linear systems. Sturm–Liouville eigenvalue problems arise in separating vari-
ables for partial differential equations. One way in which the matrix eigenvalue problem
occurs is in “separating” a linear homogeneous system of ordinary differential equations
with constant coefficients. We will be very brief. A linear homogeneous first-order system
of differential equations may be represented by

dv

dt
= Av, (5.5.34)

where A is an n× n matrix and v is the desired n-dimensional vector solution. v usually
satisfies given initial conditions, v(0) = v0. We seek special solutions of the form of simple
exponentials:

v(t) = eλtφ, (5.5.35)

where φ is a constant vector. This is analogous to seeking product solutions by the method
of separation of variables. Since dv/dt = λeλtφ, it follows that

Aφ = λφ. (5.5.36)

Thus, there exist solutions to (5.5.34) of the form (5.5.35) if λ is an eigenvalue of A and φ
is a corresponding eigenvector. We now restrict our attention to real symmetric matrices
A. There will always be n mutually orthogonal eigenvectors φi. We have obtained n
special solutions to the linear homogeneous system (5.5.34). A principle of superposition
exists, and hence a linear combination of these solutions also satisfies (5.5.34):

v =
n∑

i=1

cie
λitφi. (5.5.37)

We attempt to determine ci so that (5.5.37) satisfies the initial conditions, v(0) = v0:

v0 =
n∑

i=1

ciφi.
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Here, the orthogonality of the eigenvectors is helpful, and thus, as before,

ci =
v0 · φi

φi · φi
.

EXERCISES 5.5 APPENDIX

5.5A.1. Prove that the eigenvalues of real symmetric matrices are real.
5.5A.2. (a) Show that the matrix

A =
[

1 0
2 1

]

has only one independent eigenvector.

(b) Show that the matrix

A =
[

1 0
0 1

]

has two independent eigenvectors.
5.5A.3. Consider the eigenvectors of the matrix

A =
[

6 4
1 3

]
.

(a) Show that the eigenvectors are not orthogonal.

(b) If the “dot product” of two vectors is defined as follows,

a · b =
1
4
a1b1 + a2b2,

show that the eigenvectors are orthogonal with this dot product.

5.5A.4. Solve dv/dt = Av using matrix methods if

*(a) A =
[

6 2
2 3

]
, v(0) =

[
1
2

]

(b) A =
[ −1 2

2 4

]
, v(0) =

[
2
3

]

5.5A.5. Show that the eigenvalues are real and the eigenvectors orthogonal:

(a) A =
[

2 1
1 −4

]

*(b) A =
[

3 1 − i
1 + i 1

]
(see Exercise 5.5A.6)

5.5A.6. For a matrix A whose entries are complex numbers, the complex conjugate of the
transpose is denoted by AH . For matrices in which AH = A (called Hermitian):

(a) Prove that the eigenvalues are real.

(b) Prove that eigenvectors corresponding to different eigenvalues are orthogonal
(in the sense that φi ·φm= 0, where denotes the complex conjugate).
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5.6 RAYLEIGH QUOTIENT

The Rayleigh quotient can be derived from the Sturm–Liouville differential equation,

d

dx

[
p(x)

dφ

dx

]
+ q(x)φ + λσ(x)φ = 0, (5.6.1)

by multiplying (5.6.1) by φ and integrating:
∫ b

a

[
φ

d

dx

(
p
dφ

dx

)
+ qφ2

]
dx + λ

∫ b

a

φ2σ dx = 0.

Since
∫ b

a
φ2σ dx > 0, we can solve for λ:

λ =
− ∫ b

a

[
φ d

dx

(
pdφ

dx

)
+ qφ2

]
dx∫ b

a
φ2σ dx

. (5.6.2)

Integration by parts [
∫

u dv = uv−∫ v du, where u = φ, dv = d/dx(p dφ/dx) dx and hence
du = dφ/dx dx, v = p dφ/dx] yields an expression involving the function φ evaluated at
the boundary:

λ =
−pφdφ

dx

∣∣∣b
a

+
∫ b

a

[
p
(

dφ
dx

)2

− qφ2

]
dx

∫ b

a
φ2σ dx

,
(5.6.3)

known as the Rayleigh quotient. In Sections 5.3 and 5.4 we have indicated some appli-
cations of this result. Further discussion will be given in Section 5.7.

Nonnegative eigenvalues. Often in physical problems, the sign of λ is quite
important. As shown in Section 5.2.1, dh/dt + λh = 0 in certain heat flow problems.
Thus, positive λ corresponds to exponential decay in time, while negative λ corresponds
to exponential growth. On the other hand, in certain vibration problems (see Section 5.7),
d2h/dt2 = −λh. There, only positive λ corresponds to the “usually” expected oscillations.
Thus, in both types of problems we often expect λ ≥ 0:

The Rayleigh quotient (5.6.3) directly proves that λ ≥ 0 if

(a) −p φdφ
dx

∣∣∣b
a
≥ 0, and

(b) q ≤ 0.

(5.6.4)

We claim that both (a) and (b) are physically reasonable conditions for nonnegative
λ. Consider the boundary constraint, −pφ dφ/dx|ba ≥ 0. The simplest types of homoge-
neous boundary conditions, φ = 0 and dφ/dx = 0, do not contribute to this boundary
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term, satisfying (a). The condition dφ/dx = hφ (for the physical cases of Newton’s law
of cooling or the elastic boundary condition) has h > 0 at the left end, x = a. Thus, it
will have a positive contribution at x = a. The sign switch at the right end, which occurs
for this type of boundary condition, will also cause a positive contribution. The periodic
boundary condition [e.g., φ(a) = φ(b) and p(a) dφ/dx(a) = p(b) dφ/dx(b)] as well as the
singularity condition [φ(a) bounded, if p(a) = 0] also do not contribute. Thus, in all these
cases −pφ dφ/dx|ba ≥ 0.

The source constraint q ≤ 0 also has a meaning in physical problems. For heat flow
problems, q ≤ 0 corresponds (q = α, Q = αu) to an energy-absorbing (endothermic)
reaction, while for vibration problems, q ≤ 0 corresponds (q = α, Q = αu) to a restoring
force.

Minimization principle. The Rayleigh quotient cannot be used to determine
explicitly the eigenvalue (since φ is unknown). Nonetheless, it can be quite useful in esti-
mating the eigenvalues. This is because of the following theorem: The minimum value
of the Rayleigh quotient for all continuous functions satisfying the boundary
conditions (but not necessarily the differential equation) is the lowest eigenvalue:

λ1 = min
−pu du/dx|ba +

∫ b

a

[
p (du/dx)2 − qu2

]
dx

∫ b

a

u2σ dx

, (5.6.5)

where λ1 represents the smallest eigenvalue. The minimization includes all continuous
functions that satisfy the boundary conditions. The minimum is obtained only for
u = φ1(x), the lowest eigenfunction. For example, the lowest eigenvalue is important
in heat flow problems (see Section 5.4).

Trial functions. Before proving (5.6.5), we will indicate how (5.6.5) is applied
to obtain bounds on the lowest eigenvalue. Equation (5.6.5) is difficult to apply directly
since we do not know how to minimize over all functions. However, let uT be any contin-
uous function satisfying the boundary conditions; uT is known as a trial function. We
compute the Rayleigh quotient of this trial function, RQ[uT ]:

λ1 ≤ RQ[uT ] =
−puT duT /dx|ba +

∫ b

a

[
p (duT /dx)2 − qu2

T

]
dx∫ b

a
u2

T σ dx
. (5.6.6)

We have noted that λ1 must be less than or equal to the quotient since λ1 is the minimum
of the ratio for all functions. Equation (5.6.6) gives an upper bound for the lowest
eigenvalue.
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EXAMPLE

Consider the well-known eigenvalue problem

d2φ

dx2
+ λφ = 0

φ(0) = 0
φ(1) = 0.

We already know that λ = n2π2(L = 1), and hence the lowest eigenvalue is λ1 = π2. For
this problem, the Rayleigh quotient simplifies, and (5.6.6) becomes

λ1 ≤
∫ 1

0
(duT /dx)2 dx∫ 1

0
u2

T dx
. (5.6.7)

Trial functions must be continuous and satisfy the homogeneous boundary conditions, in
this case, uT (0) = 0 and uT (1) = 0. In addition, we claim that the closer the trial function
is to the actual eigenfunction, the more accurate is the bound of the lowest eigenvalue.
Thus, we also choose trial functions with no zeros in the interior, since we already know
theoretically that the lowest eigenfunction does not have a zero. We will compute the
Rayleigh quotient for the three trial functions sketched in Fig. 5.6.1. For

uT =

{
x, x < 1

2

1 − x, x > 1
2 ,

(5.6.7) becomes

λ1 ≤
∫ 1/2

0
dx +

∫ 1

1/2
dx∫ 1/2

0
x2 dx +

∫ 1

1/2
(1 − x)2 dx

=
1

1
24 + 1

24

= 12,

x = 0 x = 1

(a)

x = 0 x = 1

(b)

x = 0 x = 1

(c)

uT =
x

1 − x x > 0.5
x < 0.5

uT = x − x2 uT = sinπx

FIGURE 5.6.1 Trial functions: are continuous, satisfy the boundary conditions, and are of
one sign.
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a fair upper bound for the exact answer π2 (π2 ≈ 9.8696 . . .). For uT = x − x2, (5.6.7)
becomes

λ1 ≤
∫ 1

0
(1 − 2x)2 dx∫ 1

0
(x − x2)2 dx

=

∫ 1

0
(1 − 4x + 4x2) dx∫ 1

0
(x2 − 2x3 + x4) dx

=
1 − 2 + 4

3
1
3 − 1

2 + 1
5

= 10,

a more accurate bound. Since uT = sin πx is the actual lowest eigenfunction, the Rayleigh
quotient for this trial function will exactly equal the lowest eigenvalue. Other applications
of the Rayleigh quotient will be shown in later sections.

Proof. It is usual to prove the minimization property of the Rayleigh quotient using
a more advanced branch of applied mathematics known as the calculus of variations.
We do not have the space here to develop that material properly. Instead, we will
give a proof based on eigenfunction expansions. We again calculate the Rayleigh
quotient (5.6.3) for any function u that is continuous and satisfies the homogeneous
boundary conditions. In this derivation, the equivalent form of the Rayleigh quotient,
(5.6.2), is more useful:

RQ[u] =
− ∫ b

a
uL(u) dx∫ b

a
u2σ dx

, (5.6.8)

where the operator notation is quite helpful. We expand the rather arbitrary function
u in terms of the (usually unknown) eigenfunctions φn(x):

u =
∞∑

n=1

anφn(x). (5.6.9)

L is a linear differential operator. We expect that

L(u) =
∞∑

n=1

anL(φn(x)), (5.6.10)

since this is valid for finite series. In Chapter 7 we show that (5.6.10) is valid if
u is continuous and satisfies the same homogeneous boundary conditions as the
eigenfunctions φn(x). Here, φn are eigenfunctions, and hence L(φn) = −λnσφn.
Thus, (5.6.10) becomes

L(u) = −
∞∑

n=1

anλnσφn, (5.6.11)

which can be thought of as the eigenfunction expansion of L(u). If (5.6.11) and
(5.6.9) are substituted into (5.6.8) and different dummy summation indices are uti-
lized for the product of two infinite series, we obtain

RQ[u] =

∫ b

a
(
∑∞

m=1

∑∞
n=1 amanλnφnφmσ) dx∫ b

a
(
∑∞

m=1

∑∞
n=1 amanφnφmσ) dx

. (5.6.12)
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We now do the integration in (5.6.12) before the summation. We recall that the
eigenfunctions are orthogonal (

∫ b

a
φnφmσ dx = 0 if n �= m), which implies that

(5.6.12) becomes

RQ[u] =
∑∞

n=1 a2
nλn

∫ b

a
φ2

nσ dx∑∞
n=1 a2

n

∫ b

a
φ2

nσ dx
. (5.6.13)

This is an exact expression for the Rayleigh quotient in terms of the generalized
Fourier coefficients an of u. We denote λ1 as the lowest eigenvalue (λ1 < λn for
n > 1). Thus,

RQ[u] ≥ λ1

∑∞
n=1 a2

n

∫ b

a
φ2

nσ dx∑∞
n=1 a2

n

∫ b

a
φ2

nσ dx
= λ1. (5.6.14)

Furthermore, the equality in (5.6.14) holds only if an = 0 for n > 1 (i.e., only
if u = a1φ1). We have shown that the smallest value of the Rayleigh quotient is
the lowest eigenvalue λ1. Moreover, the Rayleigh quotient is minimized only when
u = a1φ1 (i.e., when u is the lowest eigenfunction).

We thus have a minimization theorem for the lowest eigenvalue λ1. We can
ask if there are corresponding theorems for the higher eigenvalues. Interesting gen-
eralizations immediately follow from (5.6.13). If we insist that a1 = 0, then

RQ[u] =
∑∞

n=2 a2
nλn

∫ b

a
φ2

nσ dx∑∞
n=2 a2

n

∫ b

a
φ2

nσ dx
. (5.6.15)

This means that in addition we are restricting our function u to be orthogonal to φ1,
since a1 =

∫ b

a
uφ1σ dx/

∫ b

a
φ2

1σ dx. We now proceed in a similar way. Since λ2 < λn

for n > 2, it follows that
RQ[u] ≥ λ2,

and furthermore the equality holds only if an = 0 for n > 2 [i.e., u = a2φ2(x)]
since a1 = 0 already. We have just proved the following theorem: The minimum
value for all continuous functions u(x) that are orthogonal to the lowest eigenfunc-
tion and satisfy the boundary conditions is the next-to-lowest eigenvalue. Further
generalizations also follow directly from (5.6.13).

EXERCISES 5.6

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound for the
lowest eigenvalue of

(a) d2φ
dx2 + (λ − x2)φ = 0 with dφ

dx (0) = 0 and φ(1) = 0

(b) d2φ
dx2 + (λ − x)φ = 0 with dφ

dx (0) = 0 and dφ
dx (1) + 2φ(1) = 0

*(c) d2φ
dx2 + λφ = 0 with φ(0) = 0 and dφ

dx (1) + φ(1) = 0 (See Exercise 5.8.10.)
5.6.2. Consider the eigenvalue problem

d2φ

dx2
+ (λ − x2)φ = 0

subject to dφ
dx (0) = 0 and dφ

dx (1) = 0. Show that λ > 0 (be sure to show that λ �= 0).
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5.6.3. Prove that (5.6.10) is valid in the following way. Assume L(u)/σ is piecewise smooth
so that

L(u)
σ

=
∞∑

n=1

bnφn(x).

Determine bn. [Hint: Using Green’s formula (5.5.5), show that bn = −anλn if u and
du/dx are continuous and if u satisfies the same homogeneous boundary conditions
as the eigenfunctions φn(x).]

5.6.4. Consider the eigenvalue problem d
dr (r dφ

dr ) + λrφ = 0 (0 < r < 1), subject to
the boundary conditions |φ(0)| < ∞ (you may also assume dφ

dr is bounded) and
dφ
dr (1) = 0.

(a) Prove that λ > 0.
(b) Solve the initial value problem. You may assume the eigenfunctions are known.

Derive coefficients using orthogonality.

5.7 WORKED EXAMPLE: VIBRATIONS OF A NONUNIFORM STRING

Some additional applications of the Rayleigh quotient are best illustrated in a physical
problem. Consider the vibrations of a nonuniform string [constant tension T0, but variable
mass density ρ(x)] without sources (Q = 0): See Section 4.2. We assume that both ends are
fixed with zero displacement. The mathematical equations for the initial value problem are

PDE: ρ
∂2u

∂t2
= T0

∂2u

∂x2
(5.7.1)

BC:
u(0, t) = 0
u(L, t) = 0 (5.7.2)

IC:
u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x).

(5.7.3)

Again since the partial differential equation and the boundary conditions are linear
and homogeneous, we are able to apply the method of separation of variables. We look
for product solutions:

u(x, t) = φ(x)h(t), (5.7.4)

ignoring the nonzero initial conditions. It can be shown that h(t) satisfies

d2h

dt2
= −λh, (5.7.5)
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while the spatial part solves the following regular Sturm–Liouville eigenvalue problem:

T0
d2φ

dx2
+ λρ(x)φ = 0

φ(0) = 0

φ(L) = 0.

(5.7.6)

Usually, we presume that the infinite sequence of eigenvalues λn and corresponding eigen-
functions φn(x) are known. However, in order to analyze (5.7.5), it is necessary to know
something about λ. From physical reasoning, we certainly expect λ > 0 since we expect
oscillations, but we will show that the Rayleigh quotient easily guarantees that λ > 0.
For (5.7.6), the Rayleigh quotient (5.6.3) becomes

λ =
T0

∫ L

0

(dφ/dx)2 dx

∫ L

0

φ2ρ(x) dx

. (5.7.7)

Clearly, λ ≥ 0 (and as before it is impossible for λ = 0 in this case). Thus, λ > 0.
We now are assured that the solution of (5.7.5) is a linear combination of sin

√
λt and

cos
√

λt. There are two families of product solutions of the partial differential equation,
sin

√
λnt φn(x) and cos

√
λnt φn(x). According to the principle of superposition, the

solution is

u(x, t) =
∞∑

n=1

an sin
√

λnt φn(x) +
∞∑

n=1

bn cos
√

λnt φn(x). (5.7.8)

We need to show only that the two families of coefficients can be obtained from the initial
conditions:

f(x) =
∞∑

n=1

bnφn(x) and g(x) =
∞∑

n=1

an

√
λnφn(x). (5.7.9)

Thus, bn are the generalized Fourier coefficient of the initial position f(x), while an

√
λn

are the generalized Fourier coefficients for the initial velocity g(x). Thus, due to the
orthogonality of the eigenfunction [with weight ρ(x)], we can easily determine an and bn:

bn =

∫ L

0

f(x)φn(x)ρ(x) dx

∫ L

0

φ2
nρ dx

(5.7.10)
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an

√
λn =

∫ L

0

g(x)φn(x)ρ(x) dx

∫ L

0

φ2
nρ dx

, (5.7.11)

The Rayleigh quotient can be used to obtain additional information about the lowest
eigenvalue λ1. (Note that the lowest frequency of vibration is

√
λ1.) We know that

λ1 = min
T0

∫ L

0
(du/dx)2 dx∫ L

0
u2ρ(x) dx

. (5.7.12)

We have already shown (see Section 5.6) how to use trial functions to obtain an upper
bound on the lowest eigenvalue. This is not always convenient since the denominator in
(5.7.12) depends on the mass density ρ(x). Instead, we will develop another method for
an upper bound. By this method we will also obtain a lower bound.

Let us suppose, as is usual, that the variable mass density has upper and lower
bounds,

0 < ρmin ≤ ρ(x) ≤ ρmax.

For any u(x) it follows that

ρmin

∫ L

0

u2 dx ≤
∫ L

0

u2ρ(x) dx ≤ ρmax

∫ L

0

u2 dx.

Consequently, from (5.7.12),

T0

ρmax
min

∫ L

0
(du/dx)2 dx∫ L

0
u2 dx

≤ λ1 ≤ T0

ρmin
min

∫ L

0
(du/dx)2 dx∫ L

0
u2 dx

. (5.7.13)

We can evaluate the expressions in (5.7.13), since we recognize the minimum of
∫ L

0
(du/dx)2

dx/
∫ L

0
u2 dx subject to u(0) = 0 and u(L) = 0 as the lowest eigenvalue of a different

problem: namely, one with constant coefficients,

d2φ

dx2
+ λφ = 0

φ(0) = 0 and φ(L) = 0.

We already know that λ = (nπ/L)2, and hence the lowest eigenvalue for this problem is
λ1 = (π/L)2. But the minimization property of the Rayleigh quotient implies that

λ1 = min

∫ L

0
(du/dx)2 dx∫ L

0
u2 dx

.
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Finally, we have proved that the lowest eigenvalue of our problem with variable coefficients
satisfies the following inequality:

T0

ρmax

(π

L

)2

≤ λ1 ≤ T0

ρmin

(π

L

)2

.

We have obtained an upper and a lower bound for the smallest eigenvalue. By taking
square roots,

π

L

√
T0

ρmax
≤
√

λ1 ≤ π

L

√
T0

ρmin
.

The physical meaning of this is clear: the lowest frequency of oscillation of a variable string
lies in between the lowest frequencies of vibration of two constant-density strings, one with
the minimum density and the other with the maximum. Similar results concerning the
higher frequencies of vibration are also valid but are harder to prove (see Weinberger
[1965] or Courant and Hilbert [1953]).

EXERCISES 5.7

*5.7.1. Determine an upper and a (nonzero) lower bound for the lowest frequency of vibra-
tion of a nonuniform string fixed at x = 0 and x = 1 with c2 = 1 + 4α2

(
x − 1

2

)2.
5.7.2. Consider heat flow in a one-dimensional rod without sources with nonconstant ther-

mal properties. Assume that the temperature is zero at x = 0 and x = L. Sup-
pose that cρmin ≤ cρ ≤ cρmax, and Kmin ≤ K0(x) ≤ Kmax. Obtain an upper and
(nonzero) lower bound on the slowest exponential rate of decay of the product so-
lution.

5.7.3. Assume (5.7.1)–(5.7.6) are valid. Consider the one-dimensional wave equation with
nonconstant density so that c2(x)

∂2u

∂t2
= c2(x)

∂2u

∂x2
.

(a) Prove that eigenfunctions corresponding to different eigenvalues are orthogonal
(with what weight?).

(b) Use the Rayleigh quotient to prove that λ > 0.
(c) Solve the initial value problem. You may assume the eigenfunctions are known.

Derive coefficients using orthogonality.

5.8 BOUNDARY CONDITIONS OF THE THIRD KIND

Introduction. So far we have analyzed two general varieties of boundary value prob-
lems: very specific, easily solved ones (such as the ones that give rise to Fourier sine
series, Fourier cosine series, or Fourier series), and somewhat abstract Sturm–Liouville
eigenvalue problems, where our theorems guaranteed many needed properties. In one case
the differential equation had constant coefficients (with simple boundary conditions), and
in the other we discussed differential equations with variable coefficients.
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In this section we analyze problems with a boundary condition of the third kind.
The boundary value problems will also be easily solved (since the differential equation will
still have constant coefficients). However, due to its boundary conditions, it will illustrate
more convincingly the general ideas of Sturm–Liouville eigenvalue problems.

PHYSICAL EXAMPLES

We consider some simple problems with constant physical parameters. Heat flow in a
uniform rod satisfies

∂u

∂t
= k

∂2u

∂x2
, (5.8.1)

while a uniform vibrating string solves

∂2u

∂t2
= c2 ∂2u

∂x2
. (5.8.2)

In either case we suppose that the left end is fixed, but the right end satisfies a homoge-
neous boundary condition of the third kind:

u(0, t) = 0 (5.8.3)

∂u

∂x
(L, t) = −hu(L, t). (5.8.4)

Recall that, for heat conduction, (5.8.4) corresponds to Newton’s law of cooling if h > 0,
and for the vibrating string problem, (5.8.4) corresponds to a restoring force if h > 0, the
so-called elastic boundary condition. We note that usually in physical problems h ≥ 0.
However, for mathematical reasons we will investigate both cases with h < 0 and h ≥ 0.
If h < 0, the vibrating string has a destabilizing force at the right end, while for the heat
flow problem, thermal energy is being constantly put into the rod through the right end.

Sturm–Liouville eigenvalue problem. After separation of variables,

u(x, t) = G(t)φ(x), (5.8.5)

the time part satisfies the following ordinary differential equations:

heat flow:
dG

dt
= −λkG (5.8.6)

vibrating string:
d2G

dt2
= −λc2G. (5.8.7)

We wish to concentrate on the effect of the third type of boundary condition (5.8.4). For ei-
ther physical problem, the spatial part, φ(x), satisfies the following regular Sturm–Liouville
eigenvalue problem:
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d2φ

dx2
+ λφ = 0 (5.8.8)

φ(0) = 0 (5.8.9)

dφ

dx
(L) + hφ(L) = 0, (5.8.10)

where h is a given fixed constant. If h ≥ 0, this is what we call the “physical” case, while
if h < 0, we call it the “nonphysical” case. Although the differential equation (5.8.8) has
constant coefficients, the boundary conditions will give rise to some new ideas. For the
moment we ignore certain aspects of our theory of Sturm–Liouville eigenvalue problems
(except for the fact that the eigenvalues are real). In solving (5.8.8) we must consider
three distinct cases: λ > 0, λ < 0, and λ = 0. This will be especially important when we
analyze the nonphysical case h < 0.

Positive eigenvalues. If λ > 0, the solution of the differential equation is a linear
combination of sines and cosines:

φ(x) = c1 cos
√

λx + c2 sin
√

λx. (5.8.11)

The boundary condition φ(0) = 0 implies that 0 = c1, and hence

φ(x) = c2 sin
√

λx. (5.8.12)

Clearly, sine functions are needed to satisfy the zero condition at x = 0. We will need the
first derivative,

dφ

dx
= c2

√
λ cos

√
λx.

Thus, the boundary condition of the third kind, (5.8.10), implies that

c2(
√

λ cos
√

λL + h sin
√

λL) = 0. (5.8.13)

If c2 = 0, (5.8.12) shows that φ ≡ 0, which cannot be an eigenfunction. Thus, eigenvalues
exist for λ > 0 for all values of λ that satisfy

√
λ cos

√
λL + h sin

√
λL = 0. (5.8.14)
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The more elementary case h = 0 will be analyzed later. Equation (5.8.14) is a transcen-
dental equation for the positive eigenvalues λ (if h �= 0). In order to solve (5.8.14), it is
convenient to divide by cos

√
λL to obtain an expression for tan

√
λL:

tan
√

λL = −
√

λ

h
. (5.8.15)

We are allowed to divide by cos
√

λL because it is not zero [if cos
√

λL = 0, then
sin

√
λL �= 0 and (5.8.14) would not be satisfied]. We could have obtained an expression

for cotangent rather than tangent by dividing (5.8.14) by sin
√

λL, but we are presuming
that the reader feels more comfortable with the tangent function.

Graphical technique (λ > 0). Equation (5.8.15) is a transcendental equation.
We cannot solve it exactly. However, let us describe a graphical technique to obtain infor-
mation about the eigenvalues. In order to graph the solution of a transcendental equation,
we introduce an artificial coordinate z. Let

z = tan
√

λL (5.8.16)

and thus also

z = −
√

λ

h
. (5.8.17)

Now the simultaneous solution of (5.8.16) and (5.8.17) (i.e., their points of intersection)
corresponds to solutions of (5.8.15). Equation (5.8.16) is a pure tangent function (not
compressed) as a function of

√
λL, where

√
λL > 0 since λ > 0. We sketch (5.8.16)

in Fig. 5.8.1. We note that the tangent function is periodic with period π; it is zero at√
λL = 0, π, 2π, and so on, and it approaches ±∞ as

√
λL approaches π/2, 3π/2, 5π/2,

and so on. We will intersect the tangent function with (5.8.17). Since we are sketching
our curves as functions of

√
λL, we will express (5.8.17) as a function of

√
λL. This is

easily done by multiplying the numerator and denominator of (5.8.17) by L:

z = −
√

λL

hL
. (5.8.18)

As a function of
√

λL, (5.8.18) is a straight line with slope −1/hL. However, this line is
sketched quite differently depending on whether h > 0 (physical case) or h < 0 (nonphys-
ical case).

Positive eigenvalues (physical case, h > 0). The intersection of the two curves
is sketched in Fig. 5.8.1 for the physical case (h > 0). There are an infinite number of
intersections; each corresponds to a positive eigenvalue. (We exclude

√
λL = 0 since we

have assumed throughout that λ > 0.) The eigenfunctions are φ = sin
√

λx, where the
allowable eigenvalues are determined graphically.



196 Chapter 5 Sturm–Liouville Eigenvalue Problems

z

π/2 π 3π/2 2π

hL

λL

λL

tan λL =
−

hL

λL
z =

−
λ1L

λ2L

FIGURE 5.8.1 Graphical determination of positive eigenvalues (h > 0).

We cannot determine these eigenvalues exactly. However, we know from Fig. 5.8.1
that

π

2
<
√

λ1L < π, (5.8.19)

3π

2
<
√

λ2L < 2π, (5.8.20)

and so on. It is interesting to note that as n increases, the intersecting points more closely
approach the position of the vertical portions of the tangent function. We thus are able
to obtain the following approximate (asymptotic) formula for the eigenvalues:

√
λnL ∼

(
n − 1

2

)
π (5.8.21)

as n → ∞. This becomes more and more accurate as n → ∞. An asymptotic formula
for the large eigenvalues similar to (5.8.21) exists even for cases where the differential
equation cannot be explicitly solved. We will discuss this in Section 5.9.

To obtain accurate values, a numerical method such as Newton’s method (as often
described in elementary calculus texts) can be used. A practical scheme is to use New-
ton’s numerical method for the first few roots, until you reach a root whose solution is
reasonably close to the asymptotic formula, (5.8.21) (or improvements to this elementary
asymptotic formula). Then, for larger roots, the asymptotic formula (5.8.21) is accurate
enough.

Positive eigenvalues (nonphysical case, h < 0). The nonphysical case (h < 0)
also will be a good illustration of various general ideas concerning Sturm–Liouville eigen-
value problems. If h < 0, positive eigenvalues again are determined by graphically sketch-
ing (5.8.15), tan

√
λL = −√

λ/h. The straight line (here with positive slope) must intersect
the tangent function. It intersects the “first branch” of the tangent function only if the
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(a) (b) (c)

π/2 λL
ππ /2 ππ /2 π

zzz

λL λL

FIGURE 5.8.2 Graphical determination of positive eigenvalues: (a) 0 > hL > −1; (b)
hL = −1; (c) hL < −1.

slope of the straight line is greater than 1 (see Fig. 5.8.2a). We are using the property
of the tangent function that its slope is 1 at x = 0 and its slope increases along the first
branch. Thus, if h < 0 (the nonphysical case), there are two major subcases (−1/hL > 1
and 0 < −1/hL < 1) and a minor subcase (−1/hL = 1). We sketch these three cases
in Fig. 5.8.2. In each of these three figures, there are an infinite number of intersections,
corresponding to an infinite number of positive eigenvalues. The eigenfunctions are again
sin

√
λx.
In these cases, the graphical solutions also show that the large eigenvalues are ap-

proximately located at the singularities of the tangent function. Equation (5.8.21) is again
asymptotic; the larger is n, the more accurate is (5.8.21).

Zero eigenvalue. Is λ = 0 an eigenvalue for (5.8.8)–(5.8.10)? Equation (5.8.11)
is not the general solution of (5.8.8) if λ = 0. Instead,

φ = c1 + c2x; (5.8.22)

the eigenfunction must be a straight line. The boundary condition φ(0) = 0 makes c1 = 0,
insisting that the straight line goes through the origin,

φ = c2x. (5.8.23)

Finally, dφ/dx(L) + hφ(L) = 0 implies that

c2(1 + hL) = 0. (5.8.24)

If hL �= −1 (including all physical situations, h > 0), it follows that c2 = 0, φ = 0, and
thus λ = 0 is not an eigenvalue. However, if hL = −1, then from (5.8.24) c2 is arbitrary,
and λ = 0 is an eigenvalue with eigenfunction x.
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Negative eigenvalues. We do not expect any negative eigenvalues in the physical
situations [see (5.8.6) and (5.8.7)]. If λ < 0, we introduce s = −λ, so that s > 0. Then
(5.8.8) becomes

d2φ

dx2
= sφ. (5.8.25)

The zero boundary condition at x = 0 suggests that it is more convenient to express the
general solution of (5.8.25) in terms of the hyperbolic functions:

φ = c1 cosh
√

sx + c2 sinh
√

sx. (5.8.26)

Only the hyperbolic sines are needed, since φ(0) = 0 implies that c1 = 0:

φ = c2 sinh
√

sx

dφ

dx
= c2

√
s cosh

√
sx.

(5.8.27)

The boundary condition of the third kind, dφ/dx(L) + hφ(L) = 0, implies that

c2(
√

s cosh
√

sL + h sinh
√

sL) = 0. (5.8.28)

At this point it is apparent that the analysis for λ < 0 directly parallels that which
occurred for λ > 0 (with hyperbolic functions replacing the trigonometric functions).
Thus, since c2 �= 0,

tanh
√

sL = −
√

s

h
= −

√
sL

hL
. (5.8.29)

Graphical solution for negative eigenvalues. Negative eigenvalues are deter-
mined by the graphical solution of transcendental equation (5.8.29). Here properties of
the hyperbolic tangent function are quite important. tanh is sketched as a function of√

sL in Fig. 5.8.3. Let us note some properties of the tanh function that follow from its
definition:

tanhx =
sinhx

cosh x
=

ex − e−x

ex + e−x
.
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1

hL = −1−1 < hL < 0 hL < −1

z = tanh

sL

sL

h > 0 (physical)

FIGURE 5.8.3 Graphical determination of negative eigenvalues.

As
√

sL → ∞, tanh
√

sL asymptotes to 1. We will also need to note that the slope5

of tanh equals 1 at
√

sL = 0 and decreases toward zero as
√

sL → ∞. This function must
be intersected with the straight line implied by the r.h.s. of (5.8.29). The same four cases
appear, as sketched in Fig. 5.8.3. In physical situations (h > 0), there are no intersections
with

√
sL > 0; there are no negative eigenvalues in the physical situations (h > 0). All

the eigenvalues are nonnegative. However, if hL < −1 (and only in these situations),
then there is exactly one intersection; there is one negative eigenvalue (if hL < −1).
If we denote the intersection by s = s1, the negative eigenvalue is λ = −s1, and the
corresponding eigenfunction is φ = sinh

√
s1x. In nonphysical situations, there are a finite

number of negative eigenvalues (one if hL < −1, none otherwise).

Special case h = 0. Although if h = 0, the boundary conditions are not of
the third kind, the eigenvalues and eigenfunctions are still of interest. If h = 0, then all
eigenvalues are positive [see (5.8.24) and (5.8.28)] and easily explicitly determined from
(5.8.14):

λ =
[
(n − 1/2)π

L

]2

, n = 1, 2, 3 . . . .

The eigenfunctions are sin
√

λx.

Summary. We have shown there to be five somewhat different cases depending
on the value of the parameter h in the boundary condition. Table 5.8.1 summarizes the
eigenvalues and eigenfunctions for these cases.

In some sense there actually are only three cases: If −1 < hL, all the eigenvalues
are positive; if hL = −1, there are no negative eigenvalues, but zero is an eigenvalue; and
if hL < −1, there are still an infinite number of positive eigenvalues, but there is also one
negative one.

5d/dx tanh x = sech2x = 1/ cosh2 x.
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TABLE 5.8.1: Eigenfunctions for (5.8.8)–(5.8.10)

λ > 0 λ = 0 λ < 0

Physical h > 0 sin
√

λx

h = 0 sin
√

λx

−1 < hL < 0 sin
√

λx

Nonphysical hL = −1 sin
√

λx x

hL < −1 sin
√

λx sinh
√

s1x

Rayleigh quotient. We have shown by explicitly solving the eigenvalue problem,

d2φ

dx2
+ λφ = 0 (5.8.30)

φ(0) = 0 (5.8.31)
dφ

dx
(L) + hφ(L) = 0, (5.8.32)

that in physical problems (h ≥ 0) all the eigenvalues are positive, while in nonphysical
problems (h < 0) there may or may not be negative eigenvalues. We will show that the
Rayleigh quotient is consistent with this result:

λ =
−pφdφ

dx

∣∣∣b
a

+
∫ b

a

[
p
(

dφ
dx

)2

− qφ2

]
dx

∫ b

a
φ2σ dx

=
hφ2(L) +

∫ L

0

(
dφ
dx

)2

dx∫ L

0
φ2 dx

(5.8.33)

since from (5.8.30), p(x) = 1, σ(x) = 1, q(x) = 0, and a = 0, b = L, and where the
boundary conditions (5.8.31) and (5.8.32) have been utilized to simplify the boundary
terms in the Rayleigh quotient. If h ≥ 0 (the physical cases), it readily follows from (5.8.33)
that the eigenvalues must be positive, exactly what we concluded by doing the explicit
calculations. However, if h < 0 (nonphysical case), the numerator of the Rayleigh quotient
contains a negative term hφ2(L) and a positive term

∫ L

0
(dφ/dx)2 dx. It is impossible to

make any conclusions concerning the sign of λ. Thus, it may be possible to have negative
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eigenvalues if h < 0. However, we are unable to conclude that there must be negative
eigenvalues. A negative eigenvalue occurs only when |hφ2(L)| >

∫ L

0
(dφ/dx)2 dx. From

the Rayleigh quotient we cannot determine when this happens. It is only from an explicit
calculation that we know that a negative eigenvalue occurs only if hL < −1.

Zeros of eigenfunctions. The Sturm–Liouville eigenvalue problem that we have
been discussing in this section,

d2φ

dx2
+ λφ = 0

φ(0) = 0
dφ

dx
(L) + hφ(L) = 0,

(5.8.34)

is a good example for illustrating the general theorem concerning the zeros of the eigen-
functions. The theorem states that the eigenfunction corresponding to the lowest eigen-
value has no zeros in the interior. More generally, the nth eigenfunction has n − 1 zeros.

π/2 3π/2 2ππ
λL

λ2L
λ3L

λ4L

z

FIGURE 5.8.4 Positive eigenvalues (hL < −1).

There are five cases of (5.8.34) worthy of discussion: h > 0, h = 0,−1 < hL < 0,
hL = −1, hL < −1. However, the line of reasoning used in investigating the zeros of
the eigenfunctions is quite similar in all cases. For that reason we will analyze only one
case (hL < −1) and leave the others for the exercises. In this case (hL < −1) there
is one negative eigenvalue (with corresponding eigenfunction sinh

√
s1x) and an infinite

number of positive eigenvalues (with corresponding eigenfunctions sin
√

λx). We will need
to analyze carefully the positive eigenvalues and so we reproduce Fig. 5.8.2c (as Fig. 5.8.4),
used for the graphical determination of the eigenvalues in hL < −1. We designate the
intersections starting from λn, n = 2, since the lowest eigenvalue is negative, λ1 = −s1.
Graphically, we are able to obtain bounds for these eigenvalues:

π <
√

λ2L <
3π

2
(5.8.35)

2π <
√

λ3L <
5π

2
, (5.8.36)



202 Chapter 5 Sturm–Liouville Eigenvalue Problems

which is easily generalized as

(n − 1)π <
√

λnL < (n − 1/2)π, n ≥ 2. (5.8.37)

Let us investigate zeros of the eigenfunctions. The lowest eigenfunction is sinh
√

s1x.
Since the hyperbolic sine function is never zero (except at the end x = 0), we have verified
one part of the theorem. The eigenfunction corresponding to the lowest eigenvalue does not
have a zero in the interior. The other eigenfunctions are sin

√
λnx, sketched in Fig. 5.8.5.

In this figure the endpoint x = 0 is clearly marked, but x = L depends on λ. For example,
for λ3, the endpoint x = L occurs at

√
λ3L, which is sketched in Fig. 5.8.5 due to (5.8.36).

As x varies from 0 to L, the eigenfunction is sketched in Fig. 5.8.5 up to the dashed line.
This eigenfunction has two zeros (

√
λ3x = π and 2π). This reasoning can be used for any

of these eigenfunctions. Thus, the number of zeros for the nth eigenfunction corresponding
to λn is n−1, exactly as the general theorem specifies. Our theorem does not state that the
eigenfunction corresponding to the lowest positive eigenvalue has no zeros. Instead, the
eigenfunction corresponding to the lowest eigenvalue has no zeros. To repeat,
in this example the lowest eigenvalue is negative and its corresponding eigenfunction has
no zeros.

π

sin

3π
λx

x = 0

λ3L

2π

λx

FIGURE 5.8.5 Zeros of the eigenfunctions sin
√

λx.

Heat flow with a nonphysical boundary condition. To understand further
the boundary condition of the third kind, let us complete the investigation of one example.
We consider heat flow in a uniform rod:

PDE:
∂u

∂t
= k

∂2u

∂x2

BC1: u(0, t) = 0

BC2:
∂u

∂x
(L, t) = −hu(L, t)

IC: u(x, 0) = f(x). (5.8.38)

We assume that the temperature is zero at x = 0 and that the “nonphysical” case (h < 0)
of the boundary condition of the third kind is imposed at x = L. Thermal energy flows
into the rod at x = L [if u(L, t) > 0].

Separating variables,
u(x, t) = φ(x)G(t), (5.8.39)
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yields
dG

dt
= −λkG (5.8.40)

d2φ

dx2
+ λφ = 0 (5.8.41)

φ(0) = 0 (5.8.42)

dφ

dx
(L) + hφ(L) = 0. (5.8.43)

The time part is an exponential, G = ce−λkt. Here, we consider only the case in which

hL < −1.

Then there exists one negative eigenvalue (λ1 = −s1), with corresponding eigenfunction
sinh

√
s1x, where s1 is determined as the unique solution of tanh

√
sL = −√

s/h. The
time part exponentially grows. All the other eigenvalues λn are positive. For these the
eigenfunctions are sin

√
λx (where tan

√
λx = −√

λ/h has an infinite number of solutions),
while the corresponding time-dependent part exponentially decays, being proportional to
e−λkt. The forms of the product solutions are sin

√
λx e−λkt and sinh

√
s1x es1kt. Here, the

somewhat “abstract” notation may be considered more convenient; the product solutions
are φn(x)e−λnkt, where the eigenfunctions are

φn(x) =

{
sinh

√
s1x n = 1

sin
√

λnx n > 1.

According to the principle of superposition, we attempt to satisfy the initial value problem
with a linear combination of all possible production solutions:

u(x, t) =
∞∑

n=1

anφn(x)e−λnkt.

The initial condition, u(x, 0) = f(x), implies that

f(x) =
∞∑

n=1

anφn(x).
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Since the coefficient σ(x) = 1 in (5.8.41), the eigenfunctions φn(x) are orthogonal with
weight 1. Thus, we know that the generalized Fourier coefficients of the initial condition
f(x) are

an =

∫ L

0
f(x)φn(x) dx∫ L

0
φ2

n dx
=

⎧⎨
⎩

∫ L

0
f(x) sinh

√
s1x dx

/∫ L

0
sinh2 √s1x dx n = 1∫ L

0
f(x) sin

√
λnx dx

/∫ L

0
sin2

√
λnx dx n ≥ 2.

In particular, we could show
∫ L

0
sin2

√
λnx dx �= L/2. Perhaps we should emphasize one

additional point. We have utilized the theorem that states that eigenfunctions correspond-
ing to different eigenvalues are orthogonal; it is guaranteed that

∫ L

0
sin

√
λnx sin

√
λmx dx

= 0(n �= m) and
∫ L

0
sin

√
λnx sinh

√
s1x dx = 0. We do not need to verify these by inte-

gration (although it can be done).
Other problems with boundary conditions of the third kind appear in the Exercises.

EXERCISES 5.8

5.8.1. Consider
∂u

∂t
= k

∂2u

∂x2

subject to u(0, t) = 0, ∂u
∂x (L, t) = −hu(L, t), and u(x, 0) = f(x).

(a) Solve if hL > −1.
(b) Solve if hL = −1.

5.8.2. Consider the eigenvalue problem (5.8.8)–(5.8.10). Show that the nth eigenfunction
has n − 1 zeros in the interior if
(a) h > 0 (b) h = 0

∗ (c) −1 < hL < 0 (d) hL = −1
5.8.3. Consider the eigenvalue problem

d2φ

dx2
+ λφ = 0,

subject to dφ
dx (0) = 0 and dφ

dx (L) + hφ(L) = 0 with h > 0.

(a) Prove that λ > 0 (without solving the differential equation).
*(b) Determine all eigenvalues graphically. Obtain upper and lower bounds. Estimate

the large eigenvalues.
(c) Show that the nth eigenfunction has n − 1 zeros in the interior.

5.8.4. Redo Exercise 5.8.3 parts (b) and (c) only if h < 0.
5.8.5. Consider

∂u

∂t
= k

∂2u

∂x2

with ∂u
∂x (0, t) = 0, ∂u

∂x (L, t) = −hu(L, t), and u(x, 0) = f(x).
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(a) Solve if h > 0.
(b) Solve if h < 0.

5.8.6. Consider (with h > 0)
∂2u

∂t2
= c2

∂2u

∂x2

∂u

∂x
(0, t) − hu(0, t) = 0, u(x, 0) = f(x)

∂u

∂x
(L, t) = 0,

∂u

∂t
(x, 0) = g(x).

[Hint : Suppose it is known that if u(x, t) = φ(x)G(t), then

1
c2G

d2G

dt2
=

1
φ

d2φ

dx2
= −λ.]

(a) Show that there are an infinite number of different frequencies of oscillation.
(b) Estimate the large frequencies of oscillation.
(c) Solve the initial value problem.

*5.8.7. Consider the eigenvalue problem

d2φ

dx2
+ λφ = 0 subject to φ(0) = 0 and φ(π) − 2

dφ

dx
(0) = 0.

(a) Show that usually ∫ π

0

(
u

d2v

dx2
− v

d2u

dx2

)
dx �= 0

for any two functions u and v satisfying these homogeneous boundary condi-
tions.

(b) Determine all positive eigenvalues.
(c) Determine all negative eigenvalues.
(d) Is λ = 0 an eigenvalue?
(e) Is it possible that there are other eigenvalues besides those determined in parts

(b)–(d)? Briefly explain.

5.8.8. Consider the boundary value problem

d2φ

dx2
+ λφ = 0 with

φ(0) − dφ

dx
(0) = 0

φ(1) +
dφ

dx
(1) = 0.

(a) Using the Rayleigh quotient, show that λ ≥ 0. Why is λ > 0?
(b) Prove that eigenfunctions corresponding to different eigenvalues are orthogonal.

*(c) Show that

tan
√

λ =
2
√

λ

λ − 1
.

Determine the eigenvalues graphically. Estimate the large eigenvalues.
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(d) Solve
∂u

∂t
= k

∂2u

∂x2

with
u(0, t) − ∂u

∂x
(0, t) = 0

u(1, t) +
∂u

∂x
(1, t) = 0

u(x, 0) = f(x).

You may call the relevant eigenfunctions φn(x) and assume that they are known.
5.8.9. Consider the eigenvalue problem

d2φ

dx2
+ λφ = 0 with φ(0) =

dφ

dx
(0) and φ(1) = β

dφ

dx
(1).

For what values (if any) of β is λ = 0 an eigenvalue?
5.8.10. Consider the special case of the eigenvalue problem of Section 5.8:

d2φ

dx2
+ λφ = 0 with φ(0) = 0 and

dφ

dx
(1) + φ(1) = 0.

*(a) Determine the lowest eigenvalue to at least two or three significant figures using
tables or a calculator.

*(b) Determine the lowest eigenvalue using a root-finding algorithm (e.g., Newton’s
method) on a computer.

(c) Compare either part (a) or (b) to the bound obtained using the Rayleigh quo-
tient [see Exercise 5.6.1(c)].

5.8.11. Determine all negative eigenvalues for

d2φ

dx2
+ 5φ = −λφ with φ(0) = 0 and φ(π) = 0.

5.8.12. Consider ∂2u/∂t2 = c2∂2u/∂x2 with the boundary conditions

u = 0 at x = 0

m
∂2u

∂t2
= −T0

∂u

∂x
− ku at x = L.

(a) Give a brief physical interpretation of the boundary conditions.
(b) Show how to determine the frequencies of oscillation. Estimate the large fre-

quencies of oscillation.
(c) Without attempting to use the Rayleigh quotient, explicitly determine if there

are any separated solutions that do not oscillate in time. (Hint: There are none.)
(d) Show that the boundary condition is not self-adjoint: that is, show

∫ L

0

(
un

d2un

dx2
− um

d2un

dx2

)
dx �= 0

even when un and um are eigenfunctions corresponding to different eigenvalues.

*5.8.13. Simplify
∫ L
0

sin2
√

λx dx when λ is given by (5.8.15).
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5.9 LARGE EIGENVALUES (ASYMPTOTIC BEHAVIOR)

For the variable-coefficient case, the eigenvalues for the Sturm–Liouville differential
equation,

d

dx

[
p(x)

dφ

dx

]
+ [λσ(x) + q(x)]φ = 0, (5.9.1)

usually must be calculated numerically. We know that there will be an infinite number of
eigenvalues with no largest one. Thus, there will be an infinite sequence of large eigenval-
ues. In this section we state and explain reasonably good approximations to these large
eigenvalues and corresponding eigenfunctions. Thus, numerical solutions will be needed
for only the first few eigenvalues and eigenfunctions.

A careful derivation with adequate explanations of the asymptotic method would
be lengthy. Nonetheless, some motivation for our result will be presented. We begin by
attempting to approximate solutions of the differential equation (5.9.1) if the unknown
eigenvalue λ is large (λ � 1). Interpreting (5.9.1) as a spring-mass system (x is time, φ is
position) with time-varying parameters is helpful. Then (5.9.1) has a large restoring force
[−λσ(x)φ] such that we expect the solution to have rapid oscillation in x. Alternatively,
we know that eigenfunctions corresponding to large eigenvalues have many zeros. Since
the solution oscillates rapidly, over a few periods (each small) the variable coefficients
are approximately constant. Thus, near any point x0, the differential equation may be
approximated crudely by one with constant coefficients:

p(x0)
d2φ

dx2
+ λσ(x0)φ ≈ 0, (5.9.2)

since in addition λσ(x) � q(x). According to (5.9.2), the solution is expected to oscillate
with “local” spatial (circular) frequency

frequency =

√
λσ(x0)
p(x0)

. (5.9.3)

This frequency is large (λ � 1), and thus the period is small, as assumed. The frequency
(and period) depends on x, but it varies slowly; that is, over a few periods (a short

(λσ/p)1/2
2π (σp)−1/4

FIGURE 5.9.1 Liouville–Green asymptotic solution of differential equation showing rapid
oscillation (or, equivalently, relatively slowly varying amplitude).
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distance) the period hardly changes. After many periods, the frequency (and period) may
change appreciably. This slowly varying period will be illustrated in Fig. 5.9.1.

From (5.9.2) one might expect the amplitude of oscillation to be constant. However,
(5.9.2) is only an approximation. Instead, we should expect the amplitude to be approx-
imately constant over each period. Thus, both the amplitude and frequency are slowly
varying:

φ(x) = A(x) cos ψ(x), (5.9.4)

where sines can also be used. The appropriate asymptotic formula for the phase ψ(x)
can be obtained using the ideas we have just outlined. Since the period is small, only the
values of x near any x0 are needed to understand the oscillation implied by (5.9.4). Using
the Taylor series of ψ(x), we obtain

φ(x) = A(x) cos[ψ(x0) + (x − x0)ψ′(x0) + · · · ]. (5.9.5)

This is an oscillation with local frequency ψ′(x0). Thus, the derivative of the phase
is the local frequency. From (5.9.2) we have motivated that the local frequency should
be [λσ(x0)/p(x0)]1/2. Thus, we expect

ψ′(x0) = λ1/2

[
σ(x0)
p(x0)

]1/2

. (5.9.6)

This reasoning turns out to determine the phase correctly:

ψ(x) = λ1/2

∫ x [σ(x0)
p(x0)

]1/2

dx0. (5.9.7)

Note that the phase does not equal the frequency times x (unless the frequency is con-
stant).

Precise asymptotic techniques6 beyond the scope of this text determine the slowly
varying amplitude. It is known that two independent solutions of the differential equation
can be approximated accurately (if λ is large) by

φ(x) ≈ (σp)−1/4 exp

[
±iλ1/2

∫ x(σ

p

)1/2

dx0

]
, (5.9.8)

where sines and cosines may be used instead. A rough sketch of these solutions (using
sines or cosines) is given in Fig. 5.9.1. The solution oscillates rapidly. The envelope of
the wave is the slowly varying function (σp)−1/4, indicating the relatively slow amplitude
variation. The local frequency is (λσ/p)1/2, corresponding to the period 2π/(λσ/p)1/2.

6These results can be derived by various ways, such as the W.K.B.(J.) method (which should be called
the Liouville–Green method) or the method of multiple scales. References for these asymptotic techniques
include books by Bender and Orszag [1999], Kevorkian and Cole [1996], and Nayfeh [2002].
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To determine the large eigenvalues, we must apply the boundary conditions to the
general solution (5.9.8). For example, if φ(0) = 0, then

φ(x) = (σp)−1/4 sin

(
λ1/2

∫ x

0

(
σ

p

)1/2

dx0

)
+ · · · . (5.9.9)

The second boundary condition, for example, φ(L) = 0, determines the eigenvalues:

0 = sin

(
λ1/2

∫ L

0

(
σ

p

)1/2

dx0

)
+ · · · .

Thus, we derive the asymptotic formula for the large eigenvalues λ1/2
∫ L

0
(σ

p )1/2dx0 ≈ nπ,
or, equivalently,

λ ∼
[
nπ

/∫ L

0

(
σ

p

)1/2

dx0

]2

, (5.9.10)

valid if n is large. Often, this formula is reasonably accurate even when n is not very
large. The eigenfunctions are given approximately by (5.9.9), where (5.9.10) should be
used. Note that q(x) does not appear in these asymptotic formulas; q(x) does not affect
the eigenvalue to leading order. However, more accurate formulas exist that take q(x) into
account.

EXAMPLE

Consider the eigenvalue problem

d2φ

dx2
+ λ(1 + x)φ = 0

φ(0) = 0
φ(1) = 0.

Here p(x) = 1, σ(x) = 1+x, q(x) = 0, and L = 1. Our asymptotic formula (5.9.10) for the
eigenvalues is

λ ∼
[

nπ∫ 1

0
(1 + x0)1/2 dx0

]2

=
n2π2[

2
3 (1 + x0)3/2

∣∣1
0

]2 =
n2π2

4
9

(
23/2 − 1

)2 . (5.9.11)

In Table 5.9.1 we compare numerical results (using an accurate numerical scheme on the
computer) with the asymptotic formula. Equation (5.9.11) is even a reasonable approx-
imation if n = 1. The percent or relative error of the asymptotic formula improves as n
increases. However, the error stays about the same (though small). There are improve-
ments to (5.9.10) that account for the approximately constant error.
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TABLE 5.9.1: Eigenvalues λn

Numerical answer* Asymptotic formula
n (assumed accurate) (5.9.11) Error
1 6.548395 6.642429 0.094034
2 26.464937 26.569718 0.104781
3 59.674174 59.781865 0.107691
4 106.170023 106.278872 0.108849
5 165.951321 166.060737 0.109416
6 239.0177275 239.1274615 0.109734
7 325.369115 325.479045 0.109930

*Courtesy of E. C. Gartland, Jr.

EXERCISES 5.9

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-
functions for

d

dx

(
p(x)

dφ

dx

)
+ [λσ(x) + q(x)]φ = 0

if the boundary conditions are

(a) dφ
dx (0) = 0 and dφ

dx (L) = 0

*(b) φ(0) = 0 and dφ
dx (L) = 0

(c) φ(0) = 0 and dφ
dx (L) + hφ(L) = 0

5.9.2. Consider
d2φ

dx2
+ λ(1 + x)φ = 0

subject to φ(0) = 0 and φ(1) = 0. Roughly sketch the eigenfunctions for λ large.
Take into account amplitude and period variations.

5.9.3. Consider for λ � 1
d2φ

dx2
+ [λσ(x) + q(x)]φ = 0.

*(a) Substitute

φ = A(x) exp
[
iλ1/2

∫ x

0

σ1/2(x0) dx0

]
.

Determine a differential equation for A(x).

(b) Let A(x) = A0(x)+λ−1/2A1(x)+ · · · . Solve for A0(x) and A1(x). Verify (5.9.8).

(c) Suppose that φ(0) = 0. Use A1(x) to improve (5.9.9).

(d) Use part (c) to improve (5.9.10) if φ(L) = 0.

*(e) Obtain a recursion formula for An(x).
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5.10 APPROXIMATION PROPERTIES

In many practical problems of solving partial differential equations by separation of vari-
ables, it is impossible to compute and work with an infinite number of terms of the infinite
series. It is more usual to use a finite number of terms.7 In this section, we briefly discuss
the use of a finite number of terms of generalized Fourier series.

We have claimed that any piecewise smooth function f(x) can be represented by a
generalized Fourier series of the eigenfunctions,

f(x) ∼
∞∑

n=1

anφn(x). (5.10.1)

Due to the orthogonality [with weight σ(x)] of the eigenfunctions, the generalized Fourier
coefficients can be determined easily:

an =

∫ b

a
f(x)φn(x)σ(x) dx∫ b

a
φ2

nσ dx
. (5.10.2)

However, suppose that we can use only the first M eigenfunctions to approximate a
function f(x),

f(x) ≈
M∑

n=1

αnφn(x). (5.10.3)

What should the coefficients αn be? Perhaps if we use a finite number of terms, there would
be a better way to approximate f(x) than by using the generalized Fourier coefficients,
(5.10.2). We will pick these new coefficients αn so that

∑M
n=1 αnφn(x) is the “best”

approximation to f(x). There are many ways to define the “best,” but we will show a
way that is particularly useful. In general, the coefficients αn will depend on M . For
example, suppose that we choose M = 10 and calculate at α1, . . . , α10 so that (5.10.3)
is “best” in some way. After this calculation, we may decide that the approximation in
(5.10.3) is not good enough, so we may wish to include more terms, for example, M = 11.
We would then have to recalculate all 11 coefficients that make (5.10.3) “best” with
M = 11. We will show that there is a way to define best such that the coefficients αn

do not depend on M ; that is, in going from M = 10 to M = 11 only one additional
coefficient need be computed, namely, α11.

Mean-square deviation. We define best approximation as the approximation
with the least error. However, error can be defined in many different ways. The differ-
ence between f(x) and its approximation

∑M
n=1 αnφn(x) depends on x. It is possible

for f(x) − ∑M
n=1 αnφn(x) to be positive in some regions and negative in others. One

possible measure of the error is the maximum of the deviation over the entire interval:
max|f(x) −∑M

n=1 αnφn(x)|. This is a reasonable definition of the error, but it is rarely

7Often, for numerical answers to problems in partial differential equations you may be better off using
direct numerical methods.
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used, since it is very difficult to choose the αn to minimize this maximum deviation.
Instead, we usually define the error to be the mean-square deviation,

E ≡
∫ b

a

[
f(x) −

M∑
n=1

αnφn(x)

]2

σ(x) dx. (5.10.4)

Here a large penalty is paid for the deviation being large on even a small interval. We
introduce a weight factor σ(x) in our definition of the error because we will show that it is
easy to minimize this error only with the weight σ(x). σ(x) is the same function that ap-
pears in the differential equation defining the eigenfunctions φn(x); the weight appearing
in the error is the same weight as needed for the orthogonality of the eigenfunctions.

The error, defined by (5.10.4), is a function of the coefficients α1, α2, . . . , αM . To
minimize a function of M variables, we usually use the first-derivative condition. We insist
that the first partial derivative with respect to each αi is zero:

∂E

∂αi
= 0, i = 1, 2, . . . ,M.

We calculate each partial derivative and set it equal to zero:

0 =
∂E

∂αi
= −2

∫ b

a

[
f(x) −

M∑
n=1

αnφn(x)

]
φi(x)σ(x) dx, i = 1, 2, . . . ,M, (5.10.5)

where we have used the fact that ∂/∂αi(
∑M

n=1 αnφn(x)) = φi(x). There are M equations,
(5.10.5), for the M unknowns. This would be rather difficult to solve, except for the fact
that the eigenfunctions are orthogonal with the same weight σ(x) that appears in (5.10.5).
Thus, (5.10.5) becomes∫ b

a

f(x)φi(x)σ(x) dx = αi

∫ b

a

φ2
i (x)σ(x) dx.

The ith equation can be solved easily for αi. In fact, αi = ai [see (5.10.2)]; all first
partial derivatives are zero if the coefficients are chosen to be the generalized Fourier
coefficients. We should still show that this actually minimizes the error (not just a local
critical point, where all first partial derivatives vanish). We in fact will show that the
best approximation (in the mean-square sense using the first M eigenfunctions) occurs
when the coefficients are chosen to be the generalized Fourier coefficients: In
this way (1) the coefficients are easy to determine, and (2) the coefficients are independent
of M .

Proof. To prove that the error E is actually minimized, we will not use partial
derivatives. Instead, our derivation proceeds by expanding the square deviation in
(5.10.4):

E =
∫ b

a

(
f2 − 2

M∑
n=1

αnfφn +
M∑

n=1

M∑
l=1

αnαlφnφ1

)
σ dx. (5.10.6)
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Some simplification again occurs due to the orthogonality of the eigenfunctions:

E =
∫ b

a

(
f2 − 2

M∑
n=1

αnfφn +
M∑

n=1

α2
nφ2

n

)
σ dx. (5.10.7)

Each αn appears quadratically:

E =
M∑

n=1

[
α2

n

∫ b

a

φ2
nσ dx − 2αn

∫ b

a

fφnσ dx

]
+
∫ b

a

f2σ dx, (5.10.8)

and this suggests completing the square,

E =
M∑

n=1

⎡
⎢⎣
∫ b

a

φ2
nσ dx

(
αn −

∫ b

a
fφnσ dx∫ b

a
φ2

nσ dx

)2

−
(∫ b

a
fφnσ dx

)2

∫ b

a
φ2

nσ dx

⎤
⎥⎦+

∫ b

a

f2σ dx.

(5.10.9)
The only term that depends on the unknowns αn appears in a nonnegative way. The
minimum occurs only if that first term vanishes, determining the best coefficients,

αn =

∫ b

a
fφnσ dx∫ b

a
φ2

nσ dx
, (5.10.10)

the same result as obtained using the simpler first derivative condition.

Error. In this way (5.10.9) shows that the minimal error is

E =
∫ b

a

f2σ dx −
M∑

n=1

α2
n

∫ b

a

φ2
nσ dx, (5.10.11)

where (5.10.10) has been used. Equation (5.10.11) shows that as M increases, the
error decreases. Thus, we can think of a generalized Fourier series as an approxi-
mation scheme. The more terms in the truncated series that are used, the
better the approximation.

EXAMPLE

For a Fourier sine series, where σ(x) = 1, φn(x) = sin nπx/L and
∫ L

0
sin2 nπx/L dx = L/2,

it follows that

E =
∫ L

0

f2 dx − L

2

M∑
n=1

α2
n. (5.10.12)
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Bessel’s inequality and Parseval’s equality. Since E ≥ 0 [see (5.10.4)], it
follows from (5.10.11) that

∫ b

a

f2σ dx ≥
M∑

n=1

α2
n

∫ b

a

φ2
nσ dx, (5.10.13)

known as Bessel’s inequality. More importantly, we claim that for any Sturm–Liouville
eigenvalue problem, the eigenfunction expansion of f(x) converges in the mean to f(x),
by which we mean [see (5.10.4)] that

lim
M→∞

E = 0;

the mean-square deviation vanishes as M → ∞. This shows Parseval’s equality:

∫ b

a

f2σ dx =
∞∑

n=1

α2
n

∫ b

a

φ2
nσ dx. (5.10.14)

Parseval’s equality, (5.10.14), is a generalization of the Pythagorean theorem. For a
right triangle, c2 = a2 + b2. This has an interpretation for vectors. If v = âi + bĵ, then
v · v = |v|2 = a2 + b2. Here a and b are components of v in an orthogonal basis of unit
vectors. Here we represent the function f(x) in terms of our orthogonal eigenfunctions

f(x) =
∞∑

n=1

anφn(x).

If we introduce eigenfunctions with unit length, then

f(x) =
∞∑

n=1

anlφn(x)
l

,

where l is the length of φn(x):

l2 =
∫ b

a

φ2
nσ dx.

Parseval’s equality simply states that the length of f squared,
∫ b

a
f2σ dx, equals the sum

of squares of the components of f (using an orthogonal basis of functions of unit length),
(anl)2 = a2

n

∫ b

a
φ2

nσ dx.
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EXERCISES 5.10

5.10.1. Consider the Fourier sine series for f(x) = 1 on the interval 0 ≤ x ≤ L. How many
terms in the series should be kept so that the mean-square error is 1% of

∫ L
0

f2σ dx?
5.10.2. Obtain a formula for an infinite series using Parseval’s equality applied to the

(a) Fourier sine series of f(x) = 1 on the interval 0 ≤ x ≤ L

*(b) Fourier cosine series of f(x) = x on the interval 0 ≤ x ≤ L

(c) Fourier sine series of f(x) = x on the interval 0 ≤ x ≤ L

5.10.3. Consider any function f(x) defined for a ≤ x ≤ b. Approximate this function by a
constant. Show that the best such constant (in the mean-square sense, i.e., mini-
mizing the mean-square deviation) is the constant equal to the average of f(x) over
the interval a ≤ x ≤ b.

5.10.4. (a) Using Parseval’s equality, express the error in terms of the tail of a series.
(b) Redo part (a) for a Fourier sine series on the interval 0 ≤ x ≤ L.
(c) If f(x) is piecewise smooth, estimate the tail in part (b). (Hint: Use integration

by parts.)
5.10.5. Show that if

L(f) =
d

dx

(
p

df

dx

)
+ qf,

then

−
∫ b

a

fL(f) dx = −pf
df

dx

∣∣∣∣∣
b

a

+
∫ b

a

[
p

(
df

dx

)2

− qf2

]
dx

if f and df/dx are continuous.
5.10.6. Assuming that the operations of summation and integration can be interchanged,

show that if
f =

∑
αnφn and g =

∑
βnφn,

then for normalized eigenfunctions
∫ b

a

fgσ dx =
∞∑

n=1

αnβn,

a generalization of Parseval’s equality.
5.10.7. Using Exercises 5.10.5 and 5.10.6, prove that

−
∞∑

n=1

λnα2
n = −pf

df

dx

∣∣∣∣∣
b

a

+
∫ b

a

[
p

(
df

dx

)2

− qf2

]
dx. (5.10.15)

[Hint: Let g = L(f), assuming that term-by-term differentiation is justified.]
5.10.8. According to Schwarz’s inequality (proved in Exercise 2.3.10), the absolute value of

the pointwise error satisfies
∣∣∣∣∣f(x) −

M∑
n=1

αnφn

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=M+1

αnφn

∣∣∣∣∣ ≤
{ ∞∑

n=M+1

|λn|α2
n

}1/2{ ∞∑
n=M+1

φ2
n

|λn|

}1/2

.

(5.10.16)
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Furthermore, Chapter 9 introduces a Green’s function G(x, x0), which is shown to
satisfy

∞∑
n=1

φ2
n

λn
= −G(x, x). (5.10.17)

Using (5.10.15), (5.10.16), and (5.10.17), derive an upper bound for the pointwise
error (in cases in which the generalized Fourier series is pointwise convergent). Ex-
amples and further discussion of this are given by Weinberger [1995].



C H A P T E R 6

Finite Difference
Numerical Methods
for Partial Differential Equations

6.1 INTRODUCTION

Partial differential equations are often classified. Equations with the same classification
have qualitatively similar mathematical and physical properties. We have studied pri-
marily the simplest prototypes. The heat equation (∂u/∂t = k∂2u/∂x2) is an example of
a parabolic partial differential equation. Solutions usually exponentially decay in time
and approach an equilibrium solution. Information and discontinuities propagate at an
infinite velocity. The wave equation (∂2u/∂t2 = c2∂2u/∂x2) typifies hyperbolic partial
differential equations. There are modes of vibration. Information propagates at a finite
velocity, and thus discontinuities persist. Laplace’s equation (∂2u/∂x2 + ∂2u/∂y2 = 0) is
an example of an elliptic partial differential equation. Solutions usually satisfy maximum
principles. The terminology parabolic, hyperbolic, and elliptic result from transformation
properties of the conic sections (e.g., see Weinberger, 1995).

In previous chapters, we have studied various methods to obtain explicit solutions
of some partial differential equations of physical interest. Except for the one-dimensional
wave equation, the solutions were rather complicated, involving an infinite series or an
integral representation. In many current situations, detailed numerical calculations of
solutions of partial differential equations are needed. Our previous analyses suggest com-
putational methods (e.g., the first 100 terms of a Fourier series). However, usually there
are more efficient methods to obtain numerical results, especially if a computer is to be
utilized. In this chapter we develop finite difference methods to numerically approximate
solutions of the different types of partial differential equations (i.e., parabolic, hyperbolic,
and elliptic). We will describe only the heat, wave, and Laplace’s equations, but algo-
rithms for more complicated problems (including nonlinear ones) will become apparent.

6.2 FINITE DIFFERENCES AND TRUNCATED TAYLOR SERIES

Polynomial approximations. The fundamental technique for finite difference numer-
ical calculations is based on polynomial approximations to f(x) near x = x0. We let
x = x0 + Δx, so that Δx = x − x0. If we approximate f(x) by a constant near x = x0,
we choose f(x0). A better approximation (see Fig. 6.2.1) to f(x) is its tangent line at
x = x0:

217
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f(x0) + Δxf (x0)

f(x)

f(x0)
Δx = x − x0

x0

f(x0) + Δxf (x0) + 1
2
(Δx)2f (x0)

FIGURE 6.2.1 Taylor polynomials.

f(x) ≈ f(x0) + (x − x0)︸ ︷︷ ︸
Δx

df

dx
(x0), (6.2.1)

a linear approximation (a first-order polynomial). We can also consider a quadratic ap-
proximation to f(x), f(x) ≈ f(x0) + Δxf ′(x0) + (Δx)2f ′′(x0)/2!, whose value, first, and
second derivatives at x = x0 equal that for f(x). Each such succeeding higher-degree
polynomial approximation to f(x) is more and more accurate if x is near enough to x0

(i.e., if Δx is small).

Truncation error. A formula for the error in these polynomial approximations
is obtained directly from

f(x) = f(x0) + Δxf ′(x0) + · · · + (Δx)n

n!
f (n)(x0) + Rn, (6.2.2)

known as the Taylor series with remainder. The remainder Rn (also called the trun-
cation error) is known to be in the form of the next term of the series, but evaluated
at a usually unknown intermediate point:

Rn =
(Δx)n+1

(n + 1)!
f (n+1)(ξn+1), where x0 < ξn+1 < x = x0 + Δx. (6.2.3)

For this to be valid, f(x) must have n + 1 continuous derivatives.

EXAMPLE

The error in the tangent line approximation is given by (6.2.3) with n = 1:

f(x0 + Δx) = f(x0) + Δx
df

dx
(x0) +

(Δx)2

2!
d2f

dx2
(ξ2), (6.2.4)



Section 6.2 Finite Differences and Truncated Taylor Series 219

called the extended mean value theorem. If Δx is small, then ξ2 is contained in a
small interval, and the truncation error is almost determined (provided that d2f/dx2 is
continuous),

R ≈ (Δx)2

2
d2f

dx2
(x0).

We say that the truncation error is O(Δx)2, “order delta-x squared,” meaning that

|R| ≤ C(Δx)2,

since we usually assume that d2f/dx2 is bounded (|d2f/dx2| < M). Thus, C = M/2.

First-derivative approximations. Through the use of Taylor series, we are able
to approximate derivatives in various ways. For example, from (6.2.4),

df

dx
(x0) =

f(x0 + Δx) − f(x0)
Δx

− Δx

2
d2f

dx2
(ξ2). (6.2.5)

We thus introduce a finite difference approximation, the forward difference approxi-
mation to df/dx:

df

dx
(x0) ≈ f(x0 + Δx) − f(x0)

Δx
. (6.2.6)

This is nearly the definition of the derivative. Here we use a forward difference (but do
not take the limit as Δx → 0). Since (6.2.5) is valid for all Δx, we can let Δx be replaced
by −Δx and derive the backward difference approximation to df/dx:

df

dx
(x0) =

f(x0 − Δx) − f(x0)
−Δx

+
Δx

2
d2f

dx2
(ξ2) (6.2.7)

and hence

df

dx
(x0) ≈ f(x0 − Δx) − f(x0)

−Δx
=

f(x0) − f(x0 − Δx)
Δx

. (6.2.8)

By comparing (6.2.5) to (6.2.6) and (6.2.7) to (6.2.8), we observe that the truncation error
is O(Δx) and nearly identical for both forward and backward difference approximations
of the first derivative.

To obtain a more accurate approximation for df/dx(x0), we can average the forward
and backward approximations. By adding (6.2.5) and (6.2.7),

2
df

dx
(x0) =

f(x0 + Δx) − f(x0 − Δx)
Δx

+
Δx

2

[
d2f

dx2
(ξ2) −

d2f

dx2
(ξ2)

]
. (6.2.9)
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Since ξ2 is near ξ2, we expect the error nearly to cancel and thus be much less than O(Δx).
To derive the error in this approximation, we return to the Taylor series for f(x0 − Δx)
and f(x0 + Δx):

f(x0 + Δx) = f(x0) + Δxf ′(x0) +
(Δx)2

2!
f ′′(x0) +

(Δx)3

3!
f ′′′(x0) + · · · (6.2.10)

f(x0 − Δx) = f(x0) − Δxf ′(x0) +
(Δx)2

2!
f ′′(x0) − (Δx)3

3!
f ′′′(x0) + . . . . (6.2.11)

Subtracting (6.2.10) from (6.2.11) yields

f(x0 + Δx) − f(x0 − Δx) = 2Δxf ′(x0) +
2
3!

(Δx)3f ′′′(x0) + . . . .

We thus expect that

f ′(x0) =
f(x0 + Δx) − f(x0 − Δx)

2Δx
− (Δx)2

6
f ′′′(ξ3), (6.2.12)

which is proved in an exercise. This leads to the centered difference approximation to
df/dx(x0):

f ′(x0) ≈ f(x0 + Δx) − f(x0 − Δx)
2Δx

. (6.2.13)

Equation (6.2.13) is usually preferable since it is more accurate [the truncation error is
O(Δx)2] and involves the same number (2) of function evaluations as both the forward
and backward difference formulas. However, as we will show later, it is not always better
to use the centered difference formula.

These finite difference approximations to df/dx are consistent, meaning that the
truncation error vanishes as Δx → 0. More accurate finite difference formulas exist, but
they are used less frequently.

EXAMPLE

Consider the numerical approximation of df/dx(1) for f(x) = log x using Δx = 0.1. Unlike
practical problems, here we know the exact answer, df/dx(1) = 1. Using a hand calculator
[x0 = 1,Δx = 0.1, f(x0 + Δx) = f(1.1) = log(1.1) = 0.0953102 and f(x0 − Δx) =
log(0.9) = −0.1053605] yields the numerical results reported in Table 6.2.1. Theoretically,
the error should be an order of magnitude Δx smaller for the centered difference. We
observe this phenomenon. To understand the error further, we calculate the expected
error E using an estimate of the remainder. For forward or backward differences,

E ≈
∣∣∣∣Δx

2
d2f

dx2
(1)

∣∣∣∣ =
0.1
2

= +0.05,

whereas for a centered difference,

E ≈ (Δx)2

6
d3f

dx3
(1) =

(0.1)2

6
2 = 0.00333 . . . .
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TABLE 6.2.1:

Forward Backward Centered

Difference formula 0.953102 1.053605 1.00335
|Error| 4.6898% 5.3605% 0.335%

These agree quite well with our actual tabulated errors. Estimating the errors this way is
rarely appropriate since usually the second and third derivatives are not known to begin
with.

Second derivatives. By adding (6.2.10) and (6.2.11), we obtain

f (x0 + Δx) + f (x0 − Δx) = 2f (x0) + (Δx)2 f ′′(x0) +
2(Δx)4

4!
f (iv)(x0) + . . . .

We thus expect that

f ′′(x0) =
f (x0 + Δx) − 2f (x0) + f (x0 − Δx)

(Δx)2
− (Δx)2

12
f (iv)(ξ). (6.2.14)

This yields a finite difference approximation for the second derivative with an O(Δx)2

truncation error:

d2f

dx2
(x0) ≈ f (x0 + Δx) − 2f (x0) + f (x0 − Δx)

(Δx)2
. (6.2.15)

Equation (6.2.15) is called the centered difference approximation for the second deriva-
tive since it also can be obtained by repeated application of the centered difference formu-
las for first derivatives (see Exercise 6.2.2). The centered difference approximation for the
second derivative involves three function evaluations, f(x0−Δx), f(x0), and f(x0 +Δx).
The respective “weights,” 1/(Δx)2, −2/(Δx)2, and 1/(Δx)2, are illustrated in Fig. 6.2.2.
In fact, in general, the weights must sum to zero for any finite difference approximation
to any derivative.

x0 x0 + Δxx0 − Δx

1 −2 1

FIGURE 6.2.2 Weights for centered difference approximation of second derivative.
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Partial derivatives. In solving partial differential equations, we analyze func-
tions of two or more variables, for example, u(x, y), u(x, t), and u(x, y, t). Numerical
methods often use finite difference approximations. Some (but not all) partial deriva-
tives may be obtained using our earlier results for functions of one variable. For example
if u(x, y), then ∂u/∂x is an ordinary derivative du/dx, keeping y fixed. We may use the
forward, backward, or centered difference formulas. Using the centered difference formula,

∂u

∂x
(x0, y0) ≈ u (x0 + Δx, y0) − u (x0 − Δx, y0)

2Δx
.

For ∂u/∂y, we keep x fixed and thus obtain

∂u

∂y
(x0, y0) ≈ u (x0, y0 + Δy) − u (x0, y0 − Δy)

2Δy
,

using the centered difference formula. These are both two-point formulas, which we illus-
trate in Fig. 6.2.3.

centered
difference
∂u
∂y

centered
difference
∂u
∂x

(x0, y0 + Δy)

(x0, y0 − Δy)

(x0 − Δx, y0) (x0 + Δx, y0)

FIGURE 6.2.3 Points for first partial derivatives.

In physical problems we often need the Laplacian ∇2u = ∂2u/∂x2 + ∂2u/∂y2. We
use the centered difference formula for second derivatives (6.2.15), adding the formula for
x fixed to the one for y fixed:

∇2u(x0, y0) ≈ u (x0 + Δx, y0) − 2u (x0, y0) + u (x0 − Δx, y0)
(Δx)2

+
u (x0, y0 + Δy) − 2u (x0, y0) + u (x0, y0 − Δy)

(Δy)2
.

(6.2.16)

Here the error is the larger of O(Δx)2 and O(Δy)2. We often let Δx = Δy, obtaining the
standard five-point finite difference approximation to the Laplacian ∇2,

∇2u(x0, y0) ≈
u (x0 + Δx, y0) + u (x0 − Δx, y0) + u (x0, y0 + Δy)

+ u (x0, y0 − Δy) − 4u (x0, y0)
(Δx)2

,
(6.2.17)
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1 1

1

1

−4

∇2 with Δx = Δy

FIGURE 6.2.4 Weights for the Laplacian (Δx = Δy).

as illustrated in Fig. 6.2.4, where Δx = Δy. Note that the relative weights again sum
to zero.

Other formulas for derivatives may be found in “Numerical Interpolation, Differen-
tiation, and Integration” by P. J. Davis and I. Polonsky (Chapter 25 of Abramowitz and
Stegun [1974]).

EXERCISES 6.2

6.2.1. (a) Show that the truncation error for the centered difference approximation of the
first derivative (6.2.13) is −(Δx)2f ′′′(ξ3)/6. [Hint: Consider the Taylor series of
g(Δx) = f(x + Δx) − f(x − Δx) as a function of Δx around Δx = 0.]

(b) Explicitly show that (6.2.13) is exact for any quadratic polynomial.
6.2.2. Derive (6.2.15) by twice using the centered difference approximation for first

derivatives.
6.2.3. Derive the truncation error for the centered difference approximation of the second

derivative.
6.2.4. Suppose that we did not know (6.2.15) but thought it possible to approximate

d2f/dx2(x0) by an unknown linear combination of the three function values, f(x0 −
Δx), f(x0), and f(x0 + Δx):

d2f

dx2
≈ af(x0 − Δx) + bf(x0) + cf(x0 + Δx).

Determine a, b, and c by expanding the right-hand side in a Taylor series around x0

using (6.2.10) and (6.2.11) and equating coefficients through d2f/dx2(x0).
6.2.5. Derive the most accurate five-point approximation for f ′(x0) involving f(x0), f(x0±

Δx), and f(x0 ± 2Δx). What is the order of magnitude of the truncation error?
*6.2.6. Derive an approximation for ∂2u/∂x∂y whose truncation error is O(Δx)2. (Hint:

Twice apply the centered difference approximations for first-order partial derivatives.)
6.2.7. How well does 1

2 [f(x) + f(x + Δx)] approximate f(x + Δx/2) (i.e., what is the
truncation error)?
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6.3 HEAT EQUATION

6.3.1 Introduction

In this subsection we introduce a numerical finite difference method to solve the one-
dimensional heat equation without sources on a finite interval 0 < x < L:

∂u

∂t
= k

∂2u

∂x2

u(0, t) = 0
u(L, t) = 0
u(x, 0) = f(x).

(6.3.1)

6.3.2 A Partial Difference Equation

We will begin by replacing the partial differential equation at the point x = x0, t = t0
by an approximation based on our finite difference formulas for the derivatives. We can
do this in many ways. Eventually, we will learn why some ways are good and others bad.
Somewhat arbitrarily we choose a forward difference in time for ∂u/∂t:

∂u

∂t
(x0, t0) =

u (x0, t0 + Δt) − u (x0, t0)
Δt

− Δt

2
∂2u

∂t2
(x0, η1),

where t0 < η1 < t0 + Δt. For spatial derivatives we introduce our spatial centered
difference scheme

∂2u

∂x2
(x0, t0) =

u (x0 + Δx, t0) − 2u (x0, t0) + u (x0 − Δx, t0)
(Δx)2

− (Δx)2

12
∂4u

∂x4
(ξ1, t0),

where x0 < ξ1 < x0 + Δx. The heat equation at any point x = x0, t = t0 becomes

u (x0, t0 + Δt) − u (x0, t0)
Δt

= k
u (x0 + Δx, t0) − 2u (x0, t0) + u (x0 − Δx, t0)

(Δx)2
+ E,

(6.3.2)
exactly, where the discretization (or truncation) error is

E =
Δt

2
∂2u

∂t2
(x0, η1) − k(Δx)2

12
∂4u

∂x4
(ξ1, t0). (6.3.3)

Since E is unknown, we cannot solve (6.3.2). Instead, we introduce the approximation
that results by ignoring the truncation error:

u (x0, t0 + Δt) − u (x0, t0)
Δt

≈ k
u (x0 + Δx, t0) − 2u (x0, t0) + u (x0 − Δx, t0)

(Δx)2
. (6.3.4)

To be more precise, we introduce ũ(x0, t0), an approximation at the point x =
x0, t = t0 of the exact solution u(x0, t0). We let the approximation ũ(x0, t0) solve (6.3.4)
exactly,

ũ (x0, t0 + Δt) − ũ (x0, t0)
Δt

= k
ũ (x0 + Δx, t0) − 2ũ (x0, t0) + ũ (x0 − Δx, t0)

(Δx)2
. (6.3.5)
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FIGURE 6.3.1 Space-time
discretization.

x0 x1 x2 xN

t

x

0 L

ũ(x0, t0) is the exact solution of an equation that is only approximately correct. We hope
that the desired solution u(x0, t0) is accurately approximated by ũ(x0, t0).

Equation (6.3.5) involves points separated a distance Δx in space and Δt in time.
We thus introduce a uniform mesh Δx and a constant discretization time Δt. A space-
time diagram (Fig. 6.3.1) illustrates our mesh and time discretization on the domain of
our initial boundary value problem. We divide the rod of length L into N equal intervals,
Δx = L/N . We have x0 = 0, x1 = Δx, x2 = 2Δx, . . . , xN = NΔx = L. In general,

xj = jΔx. (6.3.6)

Similarly, we introduce time step sizes Δt such that

tm = mΔt. (6.3.7)

The exact temperature at the mesh point u(xj , tm) is approximately ũ(xj , tm), which
satisfies (6.3.5). We introduce the following notation:

ũ(xj , tm) ≡ u
(m)
j , (6.3.8)

indicating the exact solution of (6.3.5) at the jth mesh point at time tm. Equation (6.3.5)
will be satisfied at each mesh point x0 = xj at each time t0 = tm (excluding the space-
time boundaries). Note that x0 + Δx becomes xj + Δx = xj+1 and t0 + Δt becomes
tm + Δt = tm+1. Thus,

u
(m+1)
j − u

(m)
j

Δt
= k

u
(m)
j+1 − 2u

(m)
j + u

(m)
j−1

(Δx)2
, (6.3.9)
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for j = 1, . . . , N−1 and m starting from 1. We call (6.3.9) a partial difference equation.
The local truncation error is given by (6.3.3); it is the larger of O(Δt) and O(Δx)2. Since
E → 0 as Δx → 0 and Δt → 0, the approximation (6.3.9) is said to be consistent with
the partial differential equation (6.3.1).

In addition, we insist that u
(m)
j satisfies the initial conditions (at the mesh points)

u
(0)
j = u(x, 0) = f(x) = f(xj), (6.3.10)

where xj = jΔx for j = 0, . . . , N . Similarly, u
(m)
j satisfies the boundary conditions (at

each time step)

u
(m)
0 = u(0, t) = 0 (6.3.11)

u
(m)
N = u(L, t) = 0. (6.3.12)

If there is a physical (and thus mathematical) discontinuity at the initial time at any
boundary point, then we can analyze u

(0)
0 or u

(0)
N in different numerical ways.

6.3.3 Computations

Our finite difference scheme (6.3.9) involves four points, three at the time tm and one at
the advanced time tm+1 = tm + Δt, as illustrated by Fig. 6.3.2. We can “march forward
in time” by solving for u

(m+1)
j , starred in Fig. 6.3.2:

u
(m+1)
j = u

(m)
j + s

(
u

(m)
j+1 − 2u

(m)
j + u

(m)
j−1

)
, (6.3.13)

where s is a dimensionless parameter.

s = k
Δt

(Δx)2
. (6.3.14)

FIGURE 6.3.2 Marching forward
in time.

x

t

(xj, tm)

*
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u
(m+1)
j is a linear combination of the specified three earlier values. We begin our com-

putation using the initial condition u
(0)
j = f(xj), for j = 1, . . . , N − 1. Then (6.3.13)

specifies the solution u
(1)
j at time Δt, and we continue the calculation. For mesh points

adjacent to the boundary (i.e., j = 1 or j = N − 1), (6.3.13) requires the solution on the
boundary points (j = 0 or j = N). We obtain these values from the boundary conditions.
In this way we can easily solve our discrete problem numerically. Our proposed scheme
is easily programmed for a personal computer (or programmable calculator or symbolic
computation program).

Propagation speed of disturbances. As a simple example, suppose that the
initial conditions at the mesh points are zero except for 1 at some interior mesh point
far from the boundary. At the first time step, (6.3.13) will imply that the solution is zero
everywhere except at the original nonzero mesh point and its two immediate neighbors.
This process continues as illustrated in Fig. 6.3.3. Stars represent nonzero values. The
isolated initial nonzero value spreads out at a constant speed (until the boundary has
been reached). This disturbance propagates at velocity Δx/Δt. However, for the heat
equation, disturbances move at an infinite speed (see Chapter 10). In some sense our
numerical scheme poorly approximates this property of the heat equation. However, if
the parameter s is fixed, then the numerical propagation speed is

Δx

Δt
=

kΔx

s(Δx)2
=

k

sΔx
.

As Δx → 0 (with s fixed), this speed approaches ∞ as is desired.

Computed example. To compute with (6.3.13), we must specify Δx and Δt.
Presumably, our solution will be more accurate with smaller Δx and Δt. Certainly, the
local truncation error will be reduced. An obvious disadvantage of decreasing Δx and Δt
will be the resulting increased time (and money) necessary for any numerical computation.
This trade-off usually occurs in numerical calculations. However, there is a more severe
difficulty that we will need to analyze. To indicate the problem, we will compute using
(6.3.13). First, we must choose Δx and Δt. In our calculations we fix Δx = L/10 (nine
interior points and two boundary points). Since our partial difference equation (6.3.13)
depends primarily on s = kΔt/(Δx)2, we pick Δt so that, as examples, s = 1/4 and
s = 1. In both cases we assume u(x, 0) = f(x) is the specific initial condition sketched in
Fig. 6.3.4, and the zero boundary conditions (6.3.11) and (6.3.12). The exact solution of
the partial differential equation is

FIGURE 6.3.3 Propagation speed
of disturbances. Δx

Δt
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FIGURE 6.3.4 Initial condition.

0.75L L0.5L0

u(x, t) =
∞∑

n=1

an sin
nπx

L
e−k(nπ/L)2t

an =
2
L

∫ L

0

f(x) sin
nπx

L
dx,

(6.3.15)

as described in Chapter 2. It shows that the solution decays exponentially in time and
approaches a simple sinusoidal (sinπx/L) shape in space for large t. Elementary com-
puter calculations of our numerical scheme, (6.3.13), for s = 1

4 and s = 1, are sketched in
Fig. 6.3.5 (with smooth curves sketched through the nine interior points at fixed values
of t). For s = 1

4 these results seem quite reasonable, agreeing with our qualitative under-
standing of the exact solution. On the other hand, the solution of (6.3.13) for s = 1 is
absurd. Its most obvious difficulty is the negative temperatures. The solution then grows
wildly in time with rapid oscillations in space and time. None of these phenomena are
associated with the heat equation. The finite difference approximation yields unusable
results if s = 1. In the next subsection we explain these results. We must understand how
to pick s = k(Δt)/(Δx)2 so that we are able to obtain reasonable numerical solutions.

6.3.4 Fourier–von Neumann Stability Analysis

Introduction. In this subsection we analyze the finite difference scheme for the heat
equation obtained by using a forward difference in time and a centered difference in space:

pde1: u
(m+1)
j = u

(m)
j + s

(
u

(m)
j+1 − 2u

(m)
j + u

(m)
j−1

)
(6.3.16)

IC: u
(0)
j = f(xj) = fj (6.3.17)

BC:
u

(m)
0 = 0

u
(m)
N = 0,

(6.3.18)

1pde here means partial difference equation.
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FIGURE 6.3.5 Computations for the heat equation s = k(Δt)/(Δx)2: (a) s = 1
4 stable and

(b) s = 1 unstable.
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where s = k(Δt)/(Δx)2, xj = jΔx, t = mΔt, and hopefully u(xj , t) ≈ u
(m)
j . We will

develop von Neumann’s ideas of the 1940s based on Fourier-type analysis.

Eigenfunctions and product solutions. In Section 6.3.5 we show that the
method of separation of variables can be applied to the partial difference equation. There
are special product solutions with wave number α of the form

u
(m)
j = eiαxQt/Δt = eiαjΔxQm. (6.3.19)

By substituting (6.3.19) into (6.3.16) and canceling eiαxQm, we obtain

Q = 1 + s(eiαΔx − 2 + e−iαΔx) = 1 − 2s[1 − cos(αΔx)]. (6.3.20)

Q is the same for positive and negative α. Thus, a linear combination of e±iαx may be
used. The boundary condition u

(m)
0 = 0 implies that sinαx is appropriate, while u

(m)
N = 0

implies that α = nπ/L. Thus, there are solutions of (6.3.16) with (6.3.18) of the form

u
(m)
j = sin

nπx

L
Qt/Δt, (6.3.21)

where Q is determined from (6.3.20),

Q = 1 − 2s

[
1 − cos

(
nπΔx

L

)]
, (6.3.22)

and n = 1, 2, 3, . . . , N −1, as will be explained. For partial differential equations there are
an infinite number of eigenfunctions (sinnπx/L, n = 1, 2, 3, . . .). However, we will show
that for our partial difference equation there are only N − 1 independent eigenfunctions
(sin nπx/L, n = 1, 2, 3, . . . , N − 1):

φj = sin
nπx

L
= sin

nπjΔx

L
= sin

nπj

N
, (6.3.23)

the same eigenfunctions as for the partial differential equation (in this case). For example,
for n = N , φj = sinπj = 0 (for all j). Furthermore, φj for n = N + 1 is equivalent to φj

for n = N − 1 since

sin
(N + 1)πj

N
= sin

(
πj

N
+ jπ

)
= sin

(
πj

N
− jπ

)
= − sin

(N − 1)πj

N
.

In Fig. 6.3.6 we sketch some of these “eigenfunctions” (for N = 10). For the partial
difference equation due to the discretization, the solution is composed of only N − 1



Section 6.3 Heat Equation 231

(a)

(b)

(c)

j = 5

j = 0 j = 10

j = 5

j = 0 j = 10

(n = 1)φj = sin πj
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(n = 2)φj = sin 2πj

10

(n = 9)φj = sin 9πj

10

= (−1)j sin πj

10

FIGURE 6.3.6 Eigenfunctions for the discrete problem.

waves. This number of waves equals the number of independent mesh points (excluding
the endpoints). The wave with the smallest wavelength is

sin
(N − 1)πx

L
= sin

(N − 1)πj

N
= (−1)j+1 sin

πj

N
,

which alternates signs at every point. The general solution is obtained by the principle of
superposition, introducing N − 1 constants βn:

u
(m)
j =

N−1∑
n=1

βn sin
nπx

L

[
1 − 2s

(
1 − cos

nπ

N

)]t/Δt

, (6.3.24)

where

s =
kΔt

(Δx)2
.

These coefficients can be determined from the N − 1 initial conditions, using the discrete
orthogonality of the eigenfunctions sinnπj/N . The analysis of this discrete Fourier series
is described in Exercises 6.3.3 and 6.3.4.

Comparison to partial differential equation. The product solutions u
(m)
j of

the partial difference equation may be compared with the product solutions u(x, t) of the
partial differential equation:
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u
(m)
j = sin

nπx

L

[
1 − 2s

(
1 − cos

nπ

N

)]t/Δt

,

u(x, t) = sin
nπx

L
e−k(nπ/L)2t,

n = 1, 2, . . . , N − 1

n = 1, 2, . . . ,

where s = kΔt/(Δx)2. For the partial differential equation, each wave exponentially de-
cays, e−k(nπ/L)2t. For the partial difference equation, the time dependence (corresponding
to the spatial part sinnπx/L) is

Qm =
[
1 − 2s

(
1 − cos

nπ

N

)]t/Δt

. (6.3.25)

Stability. If Q > 1, there is exponential growth in time, while exponential decay
occurs if 0 < Q < 1. The solution is constant in time if Q = 1. However, in addition, it is
possible for there to be a convergent oscillation in time (−1 < Q < 0), a pure oscillation
(Q = −1), and a divergent oscillation (Q < −1). These possibilities are discussed and
sketched in Section 6.3.5. The value of Q will determine stability. If |Q| ≤ 1 for all
solutions, we say that the numerical scheme is stable. Otherwise, the scheme is unstable.

We return to analyze Qm = Qt/Δt, where Q = 1 − 2s(1 − cos nπ/N). Here Q ≤ 1;
the solution cannot be a purely growing exponential in time. However, the solution may
be a convergent or divergent oscillation as well as being exponentially decaying. We do
not want the numerical scheme to have divergent oscillations in time.2 If s is too large,
Q may become too negative.

Since Q ≤ 1, the solution will be “stable” if Q ≥ −1. To be stable, 1 − 2s(1 −
cos nπ/N) ≥ −1 for n = 1, 2, 3, . . . N − 1, or, equivalently,

s ≤ 1
1 − cos nπ/N

for n = 1, 2, 3, . . . , N − 1.

For stability, s must be less than or equal to the smallest, n = N − 1,

s ≤ 1
1 − cos(N − 1)π/N

.

To simplify the criteria, we note that 1−cos(N−1)π/N < 2, and hence we are guaranteed
that the numerical solution will be stable if s ≤ 1

2 :

s ≤ 1
2

<
1

1 − cos(N − 1)π/N
. (6.3.26)

In practice, we cannot be stable with s much larger than 1
2 , since cos(N − 1)π/N =

− cos π/N , and hence for N large, 1 − cos(N − 1)π/N ≈ 2.

2Convergent oscillations do not duplicate the behavior of the partial differential equation. However,
they at least decay. We tolerate oscillatory decaying terms.
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If s > 1
2 , usually Q < −1 (but not necessarily) for some n. Then the numerical

solution will contain a divergent oscillation. We call this a numerical instability. If
s > 1

2 , the most rapidly “growing” solution corresponds to a rapid oscillation (n = N −1)
in space. The numerical instability is characterized by divergent oscillation in
time (Q < −1) of a rapidly oscillatory (n = N −1) solution in space. Generally,
if we observe computer output of this form, we probably have a numerical scheme that is
unstable, and hence not reliable. This is what we observed numerically when s = 1. For
s = 1

4 , the solution behaved quite reasonably. However, for s = 1 a divergent oscillation
was observed in time, rapidly varying in space.

Since s = kΔt/(Δx)2, the restriction s ≤ 1
2 says that

Δt ≤
1
2 (Δx)2

k
. (6.3.27)

This puts a practical constraint on numerical computations. The time steps Δt must not
be too large (otherwise the scheme becomes unstable). In fact, since Δx must be small
(for accurate computations), (6.3.27) shows that the time step must be exceedingly small.
Thus, the forward time, centered spatial difference approximation for the heat equation
is somewhat expensive to use.

To minimize calculations, we make Δt as large as possible (maintaining stability).
Here s = 1

2 would be a good value. In this case, the partial difference equation becomes

u
(m+1)
j =

1
2

[
u

(m)
j+1 + u

(m)
j−1

]
.

The temperature at time Δt later is the average of the temperatures to the left and right.

Convergence. As a further general comparison between the difference and differ-
ential equations, we consider the limits of the solution of the partial difference equation
as Δx → 0 (N → ∞) and Δt → 0. We will show that the time dependence of the dis-
cretization converges to that of the heat equation if n/N � 1 (as though we fix n and let
N → ∞). If n/N � 1, then cos nπ/N ≈ 1 − 1

2 (nπ/N)2 from its Taylor series, and hence

Qt/Δt ≈
[
1 − s

(nπ

N

)2
]t/Δt

=
[
1 − kΔt

(nπ

L

)2
]t/Δt

, (6.3.28)

where N = L/Δx. Thus, as Δt → 0,

Qt/Δt → e−k(nπ/L)2t (6.3.29)

since e may be defined as e = limz→0(1 + z)1/z. If n/N � 1, then by more careful
analysis [taking logs of (6.3.28)], it can be shown that Qm − exp(−k(nπ/L)2t) = O(Δt).
It is usually computed with fixed s. To improve a computation, we cut Δx in half (and
thus Δt will be decreased by a factor of 4). Thus, if n/N � 1 with s fixed, numerical
errors (at fixed x and t) are cut by a factor of 4 if the discretization step size Δx is halved
(and time step Δt is cut in four). All computations should be done with s satisfying the
stability condition.
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However, difficulties may occur in practical computations if n/N is not small. These
are the highly spatially oscillatory solutions of the partial difference equation. For the heat
equation these are the only waves that may cause difficulty.

Lax equivalency theorem. The relationship between convergence and stability
can be generalized. The Lax equivalency theorem states that for consistent finite
difference approximations of time-dependent linear partial differential equations that are
well posed, the numerical scheme converges if it is stable and it is stable if it converges.

A simplified determination of the stability condition. It is often convenient
to analyze the stability of a numerical method quickly. From our analysis (based on the
method of separation of variables), we have shown that there are special solutions to the
difference equation that oscillate in x:

u
(m)
j = eiαxQt/Δt, (6.3.30)

where
x = jΔx and t = mΔt.

From the boundary conditions α is restricted. Often, to simplify the stability analysis,
we ignore the boundary conditions and allow α to be any value.3 In this case, stability
follows from (6.3.20) if s ≤ 1

2 .

Random walk. The partial difference equation (6.3.16) may be put in the form

u
(m+1)
j = su

(m)
j−1 + (1 − 2s)u(m)

j + su
(m)
j+1. (6.3.31)

In the stable region, s ≤ 1
2 ; this may be interpreted as a probability problem known as a

random walk. Consider a “drunkard” who in each unit of time Δt stands still or walks
randomly to the left or to the right one step Δx. We do not know precisely where that
person will be. We let u

(m)
j be the probability that a drunkard is located at point j at

time mΔt. We suppose that the person is equally likely to move one step Δx to the left or
to the right in time Δt, with probability s each. Note that for this interpretation s must
be less than or equal to 1

2 . The person cannot move further than Δx in time Δt; thus, the
person stays still with probability 1− 2s. The probability that the person will be at jΔx
at the next time (m + 1)Δt is then given by (6.3.31): It is the sum of the probabilities of
the three possible events. For example, the person might have been there at the previous
time with probability u

(m)
j and did not move with probability 1 − 2s; the probability of

this compound event is (1 − 2s)u(m)
j . In addition, the person might have been one step

to the left with probability u
(m)
j−1 [or right with probability u

(m)
j+1] and moved one step in

the appropriate direction with probability s.

3Our more detailed stability analysis showed that the unstable waves occur only for very short
wavelengths. For these waves, the boundary is perhaps expected to have the least effect.
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FIGURE 6.3.7 Pascal’s triangle.

The largest time step for stable computations s = 1
2 corresponds to a random

walk problem with zero probability of standing still. If the initial position is known with
certainty, then

u
(0)
j =

{
1 j = initial known location
0 j = otherwise.

Thereafter, the person moves to the left or right with probability 1
2 . This yields the

binomial probability distribution as illustrated by Pascal’s triangle (see Fig. 6.3.7).

6.3.5 Separation of Variables for Partial Difference Equations
and Analytic Solutions of Ordinary
Difference Equations

The partial difference equation can be analyzed by the same procedure we used for partial
differential equations—we separate variables. We begin by assuming that (6.3.16) has
special product solutions of the form

u
(m)
j = φjhm. (6.3.32)

By substituting (6.3.19) into (6.3.16), we obtain

φjhm+1 = φjhm + s(φj+1hm − 2φjhm + φj−1hm).

Dividing this by φjhm separates the variables:

hm+1

hm
= 1 + s

(
φj+1 + φj−1

φj
− 2

)
= +λ,

where λ is a separation constant.



236 Chapter 6 Finite Difference Numerical Methods for Partial Differential Equations

The partial difference equation thus yields two ordinary difference equations. The
difference equation in discrete time is of first order (meaning involving one difference):

hm+1 = +λhm. (6.3.33)

The separation constant λ (as in partial differential equations) is determined by a bound-
ary value problem, here a second-order difference equation,

φj+1 + φj−1 = −
(−λ + 1 − 2s

s

)
φj , (6.3.34)

with two homogeneous boundary conditions from (6.3.18):

φ0 = 0 (6.3.35)
φN = 0. (6.3.36)

First-order difference equations. First-order linear homogeneous difference
equations with constant coefficients, such as (6.3.33), are easy to analyze. Consider

hm+1 = λhm, (6.3.37)

where λ is a constant. We simply note that

h1 = λh0, h2 = λh1 = λ2h0, and so on.

Thus, the solution is
hm = λmh0, (6.3.38)

where h0 is an initial condition for the first-order difference equation.
An alternative way to obtain (6.3.38) is to assume that a homogeneous solution

exists in the form hm = Qm. Substitution of this into (6.3.37) yields Qm+1 = λQm or
Q = λ, rederiving (6.3.38). This latter technique is analogous to the substitution of ert

into constant-coefficient homogeneous differential equations.
The solution (6.3.38) is sketched in Fig. 6.3.8 for various values of λ. Note that if

λ > 1, then the solution exponentially grows [λm = em log λ = e(log λ/Δt)t since m = t/Δt].
If 0 < λ < 1, the solution exponentially decays. Furthermore, if −1 < λ < 0, the solution
has an oscillatory (and exponential) decay, known as a convergent oscillation. On the
other hand, if λ < −1, the solution has a divergent oscillation.

In some situations we might even want to allow λ to be complex. Using the polar
form of a complex number, λ = reiθ, r = |λ| and θ = arg λ (or angle), we obtain

λm = rmeimθ = |λ|m(cos mθ + i sin mθ). (6.3.39)

For example, the real part is |λ|m cos mθ. As a function of m, λm oscillates (with period
m = 2π/θ = 2π/ arg λ). The solution grows in discrete time m if |λ| > 1 and decays if
|λ| < 1.
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FIGURE 6.3.8 Solutions of first-order difference equations.

We now can summarize (including the complex case). The solution λm of hm+1 =
λhm remains bounded as m increases (t increases) if |λ| ≤ 1. It grows if |λ| > 1.

Second-order difference equations. Difference equation (6.3.34) has constant
coefficients [since (−λ + 1 − 2s)/s is independent of the step j]. An analytic solution
can be obtained easily. For any constant-coefficient difference equation, homogeneous
solutions may be obtained by substituting φj = Qj , as we could do for first-order difference
equations [see (6.3.38)].

The boundary conditions, φ0 = φN = 0, suggest that the solution may oscillate. This
usually occurs if Q is complex with |Q| = 1, in which case an equivalent substitution is

φj = (|Q|eiθ)j = eiθj = eiθ(x/Δx) = eiαx, (6.3.40)

since j = x/Δx, defining α = θ/Δx = (arg Q)/Δx. In Exercise 6.3.2 it is shown that
(6.3.34) implies that |Q| = 1, so that (6.3.40) may be used. Substituting (6.3.40) into
(6.3.34) yields an equation for the wave number α:

eiαΔx + e−iαΔx =
λ − 1 + 2s

s

or, equivalently,

2 cos(αΔx) =
λ − 1 + 2s

s
. (6.3.41)
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This yields two values of α (one the negative of the other), and thus instead of φj = eiαx

we use a linear combination of e±iαx, or

φj = c1 sin αx + c2 cos αx. (6.3.42)

The boundary conditions, φ0 = φN = 0, imply that c2 = 0 and α = nπ/L, where
n = 1, 2, 3, . . . . Thus,

φj = sin
nπx

L
= sin

nπjΔx

L
= sin

nπj

N
. (6.3.43)

Further analysis follows that of the preceding subsection.

6.3.6 Matrix Notation

A matrix4 notation is often convenient for analyzing the discretization of partial differen-
tial equations. For fixed t, u(x, t) is a function only of x. Its discretization u

(m)
j is defined

at each of the N +1 mesh points (at every time step). We introduce a vector u of dimen-
sion N +1 that changes at each time step; it is a function of m, u(m). The jth component
of u(m) is the value of u(x, t) at the jth mesh point:

(
u(m)

)
j

= u
(m)
j . (6.3.44)

The partial difference equation is

u
(m+1)
j = u

(m)
j + s

(
u

(m)
j+1 − 2u

(m)
j + u

(m)
j−1

)
. (6.3.45)

If we apply the boundary conditions, u
(m)
0 = u

(m)
N = 0, then

u
(m+1)
1 = u

(m)
1 + s

(
u

(m)
2 − 2u

(m)
1 + u

(m)
0

)
= (1 − 2s)u(m)

1 + su
(m)
2 .

A similar equation is valid for u
(m+1)
N−1 . At each time step there are N − 1 unknowns. We

introduce the N − 1 × N − 1 tridiagonal matrix A with all entries zero except for the
main diagonal (with entries 1 − 2s) and neighboring diagonals (with entries s):

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2s s 0 0 0 0 0
s 1 − 2s s 0 0 0 0
0 s 1 − 2s s 0 0 0
0 0 · · · · · · · · · 0 0
0 0 0 s 1 − 2s s 0
0 0 0 0 s 1 − 2s s
0 0 0 0 0 s 1 − 2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.3.46)

4This section requires some knowledge of linear algebra.
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The partial difference equation becomes the following vector equation:

u(m+1) = Au(m). (6.3.47)

The vector u changes in a straightforward way. We start with u(0) representing the initial
condition. By direct computation,

u(1) = Au(0)

u(2) = Au(1) = A2u(0),

and thus
u(m) = Amu(0). (6.3.48)

The matrix A raised to the mth power describes how the initial condition influences the
solution at the mth time step (t = mΔt).

To understand this solution, we introduce the eigenvalues μ of the matrix A, the
values μ such that there are nontrivial vector solutions ξ:

Aξ = μξ. (6.3.49)

The eigenvalues satisfy
det[A − μI] = 0, (6.3.50)

where I is the identity matrix. Nontrivial vectors ξ that satisfy (6.3.49) are called eigen-
vectors corresponding to μ. Since A is an (N − 1) × (N − 1) matrix, A has N − 1
eigenvalues. However, some of the eigenvalues may not be distinct, there may be multiple
eigenvalues (or degeneracies). For a distinct eigenvalue, there is a unique eigenvector
(to within a multiplicative constant); in the case of a multiple eigenvalue (of multiplicity
k), there may be at most k linearly independent eigenvectors. If for some eigenvalue there
are less than k eigenvectors, we say the matrix is defective. If A is real and symmetric
[as (6.3.46) is], it is known that any possible multiple eigenvalues are not defective. Thus,
the matrix A has N − 1 eigenvectors (which can be shown to be linearly independent).
Furthermore, if A is real and symmetric, the eigenvalues (and consequently the eigenvec-
tors) are real and the eigenvectors are orthogonal (see Section 5.5 Appendix). We let μn

be the nth eigenvalue and ξn the corresponding eigenvector.
We can solve vector equation (6.3.47) (equivalent to the partial difference equation)

using the method of eigenvector expansion. (This technique is analogous to using an
eigenfunction expansion to solve the partial differential equation.) Any vector can be
expanded in a series of the eigenvectors:

u(m) =
N−1∑
n=1

c(m)
n ξn. (6.3.51)

The vector changes with m (time), and thus the constants c
(m)
n depend on m (time):

u(m+1) =
N−1∑
n=1

c(m+1)
n ξn. (6.3.52)
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However, from (6.3.47),

u(m+1) = Au(m) =
N−1∑
n=1

c(m)
n Aξn =

N−1∑
n=1

c(m)
n μnξn, (6.3.53)

where (6.3.51) and (6.3.49) have been used. By comparing (6.3.52) and (6.3.53), we de-
termine a first-order difference equation with constant coefficients for c

(m)
n :

c(m+1)
n = μnc(m)

n . (6.3.54)

This is easily solved,
c(m)
n = c(0)

n (μn)m, (6.3.55)

and thus

u(m) =
N−1∑
n=1

c
(0)
n (μn)mξn. (6.3.56)

c
(0)
n can be determined from the initial condition.

From (6.3.56), the growth of the solution as t increases (m increases) depends on
(μn)m, where m = t/Δt. We recall that since μn is real,

(μn)m =

⎧⎪⎪⎨
⎪⎪⎩

exponential growth μn > 1
exponential decay 0 < μn < 1
convergent oscillation −1 < μn < 0
divergent oscillation μn < −1.

This numerical solution is unstable if any eigenvalue μn > 1 or any μn < −1.
We need to obtain the N − 1 eigenvalues μ of A:

Aξ = μξ. (6.3.57)

We let ξj be the jth component of ξ. Since A is given by (6.3.46), we can rewrite
(6.3.57) as

sξj+1 + (1 − 2s)ξj + sξj−1 = μξj (6.3.58)

with
ξ0 = 0 and ξN = 0. (6.3.59)

Equation (6.3.58) is equivalent to

ξj+1 + ξj−1 =
(

μ + 2s − 1
s

)
ξj . (6.3.60)

By comparing (6.3.60) with (6.3.34), we observe that the eigenvalues μ of A are the
eigenvalues λ of the second-order difference equation obtained by separation of variables.
Thus [see (6.3.20)],

μ = 1 − 2s (1 − cos(αΔx)) , (6.3.61)
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where α = nπ/L for n = 1, 2, . . . , N − 1. As before, the scheme is usually unstable if
s > 1

2 . To summarize this simple case, the eigenvalues can be explicitly determined using
Fourier-type analysis.

In more difficult problems it is rare that the eigenvalues of large matrices can be
obtained easily. Sometimes the Gershgorin circle theorem (see Strang [1993] for an
elementary proof) is useful: Every eigenvalue of A lies in at least one of the circles
c1, . . . , cN−1 in the complex plane where ci has its center at the ith diagonal
entry and its radius equal to the sum of the absolute values of the rest of that
row. If aij are the entries of A, then all eigenvalues μ lie in at least one of the following
circles:

|μ − aii| ≤
N−1∑
j = 1
(j �= i)

|aij |. (6.3.62)

For our matrix A, the diagonal elements are all the same 1 − 2s and the rest of the
row sums to 2s (except the first and last rows, which sum to s). Thus, two circles are
|μ − (1 − 2s)| < s and the other N − 3 circles are

|μ − (1 − 2s)| < 2s. (6.3.63)

All eigenvalues lie in the resulting regions [the biggest of which is given by (6.3.63)], as
sketched in Fig. 6.3.9. Since the eigenvalues μ are also known to be real, Fig. 6.3.9 shows
that

1 − 4s ≤ μ ≤ 1.

Stability is guaranteed if −1 ≤ μ ≤ 1, and thus, the Gershgorin circle theorem implies
that the numerical scheme is stable if s ≤ 1

2 . If s > 1
2 , the Gershgorin circle theorem does

not imply the scheme is unstable.

Complex s-plane

1−4s 1−2s 1

FIGURE 6.3.9 Gershgorin circles for A corresponding to discretization of the heat equation.
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6.3.7 Nonhomogeneous Problems

The heat equation with sources may be computed in the same way. Consider

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

u(0, t) = A(t)
u(L, t) = B(t)
u(x, 0) = f(x).

As before, we use a forward difference in time and a centered difference in space. We
obtain the following numerical approximation:

u
(m+1)
j − u

(m)
j

Δt
=

k

(Δx)2
(
u

(m)
j+1 − 2u

(m)
j + u

(m)
j−1

)
+ Q(j Δx,mΔt)

u
(m)
0 = A(mΔt)

u
(m)
N = B(mΔt)
u

(0)
j = f(jΔx).

The solution is easily computed by solving for u
(m+1)
j . We claim that our stability analysis

for homogeneous problems is valid for nonhomogeneous problems. Thus, we compute with
s = kΔt/(Δx)2 ≤ 1

2 .

6.3.8 Other Numerical Schemes

The numerical scheme for the heat equation, which uses the centered difference in space
and forward difference in time, is stable if s = kΔt/(Δx)2 ≤ 1

2 . The time step is small
[being proportional to (Δx)2]. We might desire a less expensive scheme. The truncation
error is the sum of terms, one proportional to Δt and the other to (Δx)2. If s is fixed (for
example, s = 1

2 ), both errors are O(Δx)2 since Δt = s(Δx)2/k.

Richardson’s scheme. For a less expensive scheme, we might try a more accurate
time difference. Using centered differences in both space and time was first proposed by
Richardson in 1927:

u
(m+1)
j − u

(m−1)
j

Δt
=

k

(Δx)2
(
u

(m)
j+1 − 2u

(m)
j + u

(m)
j−1

)
(6.3.64)

or
u

(m+1)
j = u

(m−1)
j + s

(
u

(m)
j+1 − 2u

(m)
j + u

(m)
j−1

)
, (6.3.65)

where again s = kΔt/(Δx)2. Here the truncation error is the sum of a (Δt)2 and (Δx)2

terms. Although in some sense this scheme is more accurate than the previous one, (6.3.65)
should never be used. Exercise 6.3.12(a) shows that this numerical method is always
unstable.
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Crank–Nicolson scheme. Crank and Nicolson (in 1947) suggested an alterna-
tive way to utilize centered differences. The forward difference in time

∂u

∂t
≈ u(t + Δt) − u(t)

Δt

may be interpreted as the centered difference around t+Δt/2. The error in approximating
∂u/∂t(t + Δt/2) is O(Δt)2. Thus, we discretize the second derivative at t + Δt/2 with
a centered difference scheme. Since this involves functions evaluated at this in-between
time, we take the average at t and t + Δt. This yields the Crank–Nicolson scheme,

u
(m+1)
j − u

(m)
j

Δt
=

k

2

[
u

(m)
j+1 − 2u

(m)
j + u

(m)
j−1

(Δx)2
+

u
(m+1)
j+1 − 2u

(m+1)
j + u

(m+1)
j−1

(Δx)2

]
. (6.3.66)

It is not obvious, but nevertheless true (Exercise 6.3.13), that the truncation error remains
the sum of two terms, one (Δx)2 and the other (Δt)2. The advantage of the Crank–
Nicolson method is that the scheme is stable for all s = kΔt/(Δx)2, as is shown in
Exercise 6.3.12(b). Δt can be as large as desired. We can choose Δt to be proportional to
Δx [rather than (Δx)2]. The error is then O(Δx)2, an equivalent accuracy as the earlier
scheme with much less work (computing). Crank–Nicolson is a practical method. However,
the Crank–Nicolson scheme (see Fig. 6.3.10) involves six points (rather than four for the
simpler stable method), three of which are at the advanced time. We cannot directly
march forward in time with (6.3.66). Instead, to advance one time step, (6.3.66) requires
the solution of a linear system of N − 1 equations. The scheme (6.3.66) is called implicit
[while (6.3.13) is called explicit]. The matrices involved are tridiagonal, and thus the
linear system may be solved using Gauss elimination easily (and relatively inexpensively)
even if N is large.

6.3.9 Other Types of Boundary Conditions

If ∂u/∂x = g(t) at x = 0 (rather than u being given at x = 0), then we must introduce
a numerical approximation for the boundary condition. Since the discretization of the

t

x + Δxxx − Δx

t + Δt

FIGURE 6.3.10 Implicit Crank–Nicolson scheme.
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partial differential equation has an O(Δx)2 truncation error, we may introduce an equal
error in the boundary condition by using a centered difference in space:

∂u

∂x
≈ u(x + Δx, t) − u(x − Δx, t)

2Δx
.

In this case the boundary condition ∂u/∂x = g(t) at x = 0 becomes

u
(m)
1 − u

(m)
−1

2Δx
= g(t) = g(mΔt) = gm. (6.3.67)

We use (6.3.67) to obtain an expression for the temperature at the fictitious point (x−1 =
−Δx):

u
(m)
−1 = u

(m)
1 − 2Δxgm. (6.3.68)

In this way we determine the value at the fictitious point initially, u
(0)
−1. This fictitious point

is needed to compute the boundary temperature at later times via the partial difference
equation. If we use forward difference in time and centered difference in space, (6.3.16)
can now be applied for j = 0 to j = N − 1. For example, at x = 0 (j = 0),

u
(m+1)
0 = u

(m)
0 + s

(
u

(m)
1 − 2u

(m)
0 + u

(m)
−1

)

= u
(m)
0 + s

(
u

(m)
1 − 2u

(m)
0 + u

(m)
1 − 2Δxgm

)
,

where (6.3.68) has been used. In this way a partial differential equation can be solved
numerically with boundary conditions involving the derivative. (The fictitious point is
eliminated between the boundary condition and the partial differential equation.)

EXERCISES 6.3

6.3.1. (a) Show that the truncation error for our numerical scheme, (6.3.3), becomes much
smaller if k(Δt)/(Δx)2 = 1

6 . [Hint: u satisfies the partial differential equation
in (6.3.1).]

(b) If kΔt/(Δx)2 = 1
6 , determine the order of magnitude of the truncation error.

6.3.2. By letting φj = Qj , show that (6.3.34) is satisfied only if |Q| = 1. [Hint: First show
that

Q2 +
(−λ + 1 − 2s

s

)
Q + 1 = 0.

]

6.3.3. Define L(φ) = φj+1 + φj−1 + γφj .

(a) Show that uL(v) − vL(u) = wj+1 − wj , where wj = uj−1vj − vj−1uj .

(b) Since summation is analogous to integration, derive the discrete version of
Green’s formula,

N−1∑
i=1

[uL(v) − vL(u)] = wN − w0.
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(c) Show that the right-hand side of part (b) vanishes if both u and v satisfy the
homogeneous boundary conditions (6.3.18).

(d) Letting γ = (1 − 2s)/s, the eigenfunctions φ satisfy L(φ) = (λ/s)φ. Show that
eigenfunctions corresponding to different eigenvalues are orthogonal in the sense
that

N−1∑
i=1

φiψi = 0.

*6.3.4. (a) Using Exercise 6.3.3, determine βn in (6.3.24) from the initial conditions u
(0)
j =fj .

(b) Evaluate the normalization constant

N−1∑
j=1

sin2 nπj

N

for each eigenfunction (i.e., fix n). (Hint: Use the double-angle formula and a
geometric series.)

6.3.5. Show that at each successive mesh point the sign of the solution alternates for the
most unstable mode (of our numerical scheme for the heat equation, s > 1

2 ).
6.3.6. Evaluate 1/[1−cos(N−1)π/N ]. What conclusions concerning stability do you reach?

(a) N = 4 (b) N = 6 (c) N = 8 *(d) N = 10
(e) Asymptotically for large N

6.3.7. Numerically compute solutions to the heat equation with the temperature initially
given in Fig. 6.3.4. Use (6.3.16)–(6.3.18) with N = 10. Do for various s (discuss
stability):
(a) s = 0.49 (b) s = 0.50 (c) s = 0.51 (d) s = 0.52

6.3.8. Under what condition will an initially positive solution [u(x, 0) > 0] remain positive
[u(x, t) > 0] for our numerical scheme (6.3.9) for the heat equation?

6.3.9. Consider
d2u

dx2
= f(x) with u(0) = 0 and u(L) = 0.

(a) Using the centered difference approximation for the second derivative and di-
viding the length L into three equal mesh lengths (see Section 6.3.2), derive
a system of linear equations for an approximation to u(x). Use the notation
xi = iΔx, fi = f(xi), and ui = u(xi). (Note: x0 = 0, x1 = 1

3L, x2 = 2
3L,

x3 = L.)

*(b) Write the system as a matrix system Au = f . What is A?

(c) Solve for u1 and u2.

(d) Show that a “Green’s function” matrix G can be defined:

ui =
∑

j

Gijfj (u = Gf).

What is G? Show that it is symmetric, Gij = Gji.

6.3.10. Suppose that in a random walk, at each Δt the probability of moving to the right
Δx is a and the probability of moving to the left Δx is also a. The probability of
staying in place is b (2a + b = 1).



246 Chapter 6 Finite Difference Numerical Methods for Partial Differential Equations

(a) Formulate the difference equation for this problem.

*(b) Derive a partial differential equation governing this process Δx → 0 and Δt → 0
such that

lim
Δx → 0
Δt → 0

(Δx)2

Δt
=

k

s
.

(c) Suppose that there is a wall (or cliff) on the right at x = L with the property
that after the wall is reached, the probability of moving to the left is a, to the
right c, and for staying in place 1 − a − c. Assume that no one returns from
x > L. What condition is satisfied at the wall? What is the resulting boundary
condition for the partial differential equation? (Let Δx → 0 and Δt → 0 as
before.) Consider the two cases c = 0 and c �= 0.

6.3.11. Suppose that, in a two-dimensional random walk, at each Δt it is equally likely to
move right Δx or left or up Δy or down (as illustrated in Fig. 6.3.11).

(a) Formulate the difference equation for this problem.

(b) Derive a partial differential equation governing this process if Δx → 0, Δy → 0,
and Δt → 0 such that

lim
Δx → 0
Δt → 0

(Δx)2

Δt
=

k1

s
and lim

Δy → 0
Δt → 0

(Δy)2

Δt
=

k2

s
.

FIGURE 6.3.11 Figure for
Exercise 6.3.11.

6.3.12. Use a simplified determination of stability [i.e., substitute u
(m)
j = eiαxQt/Δt], to

investigate the following:

(a) Richardson’s centered difference in space and time scheme for the heat equation,
(6.3.65)

(b) Crank–Nicolson scheme for the heat equation, (6.3.66)

6.3.13. Investigate the truncation error for the Crank–Nicolson method, (6.3.66).
6.3.14. For the following matrices,

1. Compute the eigenvalue.

2. Compute the Gershgorin row circles.
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3. Compare (1) and (2) according to the theorem.

(a)
[

1 0
1
2 2

]
(b)

[
1 0
3 2

]
*(c)

⎡
⎣ 1 2 −3

2 4 −6
0 1

3 2

⎤
⎦

6.3.15. For the examples in Exercise 6.3.14, compute the Gershgorin (column) circles. Show
that a corresponding theorem is valid for them.

6.3.16. Using forward differences in time and centered differences in space, analyze care-
fully the stability of the difference scheme if the boundary condition for the heat
equation is

∂u

∂x
(0) = 0 and

∂u

∂x
(L) = 0.

(Hint: See Section 6.3.9.) Compare your result to the one for the boundary conditions
u(0) = 0 and u(L) = 0.

6.3.17. Solve on a computer [using (6.3.9)] the heat equation ∂u/∂t = ∂2u/∂x2 with
u(0, t) = 0, u(1, t) = 0, u(x, 0) = sinπx with Δx = 1/100. Compare to analytic
solution at x = 1/2, t = 1 by computing the error there (the difference between the
analytic solution and the numerical solution). Pick Δt so that
(a) s = 0.4 (c) to improve the calculation in part (a),

let Δx = 1/200 but keep s = 0.4
(b) s = 0.6 (d) compare the errors in parts (a) and (c)

6.4 TWO-DIMENSIONAL HEAT EQUATION

Similar ideas may be applied to numerically compute solutions of the two-dimensional
heat equation

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
.

We introduce a two-dimensional mesh (or lattice), where for convenience we assume that
Δx = Δy. Using a forward difference in time and the formula for the Laplacian based on
a centered difference in both x and y [see (6.2.17)], we obtain

u
(m+1)
j,l − u

(m)
j,l

Δt
=

k

(Δx)2
[
u

(m)
j+1,l + u

(m)
j−1,l + u

(m)
j,l+1 + u

(m)
j,l−1 − 4u

(m)
j,l

]
, (6.4.1)

where u
(m)
j,l ≈ u(jΔx, lΔy,mΔt). We march forward in time using (6.4.1).

Stability analysis. As before, the numerical scheme may be unstable. We per-
form a simplified stability analysis, and thus ignore the boundary conditions. We investi-
gate possible growth of spatially periodic waves by substituting

u
(m)
j,l = Qt/Δtei(αx+βy) (6.4.2)
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into (6.4.1). We immediately obtain

Q = 1 + s
(
eiαΔx + e−iαΔx + eiβΔy + e−iβΔy − 4

)
= 1 + 2s(cos αΔx + cos βΔy − 2),

where s = kΔt/(Δx)2 and Δx = Δy. To ensure stability, −1 < Q < 1, and hence we
derive the stability condition for the two-dimensional heat equation

s =
kΔt

(Δx)2
≤ 1

4
. (6.4.3)

EXAMPLE

As an elementary example, yet one in which an exact solution is not available, we consider
the heat equation on an L-shaped region sketched in Fig. 6.4.1. We assume that the tem-
perature is initially zero. Also, on the boundary u = 1000 at x = 0, but u = 0 on the rest
of the boundary. We compute with the largest stable time step, s = 1

4

[
Δt = (Δx)2/4k

]
,

so that (6.4.1) becomes

u
(m+1)
j,l =

[
u

(m)
j+1,l + u

(m)
j−1,l + u

(m)
j,l+1 + u

(m)
j,l−1

]
4

. (6.4.4)

In this numerical scheme, the temperature at the next time is the average of the four
neighboring mesh (or lattice) points at the present time. We choose Δx = 1

10 (Δt =
1/400k) and sketch the numerical solution in Figs. 6.4.2 and 6.4.3. We draw contours
of approximately equal temperature in order to observe the thermal energy invading the
interior of this region.

The partial difference equation is straightforward to apply if the boundary is com-
posed entirely of mesh points. Usually, this is unlikely, in which case some more compli-
cated procedure must be applied for the boundary condition.
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FIGURE 6.4.1 Initial condition.
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FIGURE 6.4.2 Numerical computation of temperature in an L-shaped region.
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FIGURE 6.4.3 Numerical computation of temperature in an L-shaped region.

EXERCISES 6.4

*6.4.1. Derive the stability condition (ignoring the boundary condition) for the two-
dimensional heat equation if Δx �= Δy.

6.4.2. Derive the stability condition (including the effect of the boundary condition) for
the two-dimensional heat equation with u(x, y) = 0 on the four sides of a square if
Δx = Δy.

6.4.3. Derive the stability condition (ignoring the boundary condition) for the three-
dimensional heat equation if Δx = Δy = Δz.

6.4.4. Solve numerically the heat equation on a rectangle 0 < x < 1, 0 < y < 2 with the
temperature initially zero. Assume that the boundary conditions are zero on three
sides, but u = 1 on one long side.
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6.5 WAVE EQUATION

We may also compute solutions to the one-dimensional wave equation by introducing
finite difference approximations. Using centered differences in space and time, the
wave equation,

∂2u

∂t2
= c2 ∂2u

∂x2
, (6.5.1)

becomes the following partial difference equation:

u
(m+1)
j − 2u

(m)
j + u

(m−1)
j

(Δt)2
= c2

u
(m)
j+1 − 2u

(m)
j + u

(m)
j−1

(Δx)2
. (6.5.2)

The truncation error is the sum of a term of O(Δx)2 and one of O(Δt)2. By solving
(6.5.2) for u

(m+1)
j , the solution may be marched forward in time. Three levels of time are

involved in (6.5.2), as indicated in Fig. 6.5.1. u(x, t) is needed “initially” at two values
of t (0 and −Δt) to start the calculation. We use the two initial conditions for the wave
equation, u(x, 0) = f(x) and ∂u/∂t(x, 0) = g(x), to compute at m = 0 and at m = −1.
Using a centered difference in time for ∂u/∂t [so as to maintain an O(Δt)2 truncation
error] yields

u
(0)
j = f(xj) = f(jΔx) (6.5.3)

u
(1)
j − u

(−1)
j

2Δt
= g(xj) = g(jΔx). (6.5.4)

To begin the calculation we must compute u
(−1)
j . The initial conditions, (6.5.3) and (6.5.4),

are two equations in three unknowns, u
(−1)
j , u

(0)
j , and u

(1)
j . The partial difference equation

at t = 0 provides a third equation:

u
(1)
j = 2u(0)

j − u
(−1)
j +

c2

(Δx/Δt)2
(
u

(0)
j−1 − 2u

(0)
j + u

(0)
j+1

)
. (6.5.5)

x + Δxxx − Δx

t

t + Δt

t − Δt

FIGURE 6.5.1 Marching forward in time for the wave equation.
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u
(1)
j may be eliminated from (6.5.4) and (6.5.5) since u

(0)
j is known from (6.5.3). In this

way we can solve for u
(−1)
j . Once u

(−1)
j and u

(0)
j are known, the later values of u may be

computed via (6.5.2). Boundary conditions may be analyzed as before.

Stability. Our limited experience should already suggest that a stability analysis
is important. To determine if any spatially periodic waves grow, we substitute

u
(m)
j = Qt/Δteiαx (6.5.6)

into (6.5.2), yielding

Q − 2 +
1
Q

= σ, (6.5.7)

where

σ =
c2

(Δx/Δt)2
(
eiαΔx − 2 + e−iαΔx

)
=

2c2

(Δx/Δt)2
[cos(αΔx) − 1] . (6.5.8)

Equation (6.5.7) is a quadratic equation for Q since (6.5.2) involves three time levels and
two time differences:

Q2 − (σ + 2)Q + 1 = 0 and thus Q =
σ + 2 ±√

(σ + 2)2 − 4
2

. (6.5.9)

The two roots correspond to two ways in which waves evolve in time. If −2 < σ + 2 < 2,
the roots are complex conjugates of each other. In this case (as discussed earlier)

Qm = (reiθ)m = rmeimθ,

where r = |Q| and θ = arg Q. Since

|Q|2 =
(σ + 2)2

4
+

4 − (σ + 2)2

4
= 1,

the solution oscillates for fixed x as m (time) increases if −2 < σ + 2 < 2. This is similar
to the wave equation itself, which permits time-periodic solutions when the spatial part
is periodic (e.g., sinnπx/L cos nπct/L). If σ+2 > 2 or σ+2 < −2, the roots are real with
product equal to 1 [see (6.5.9)]. Thus, one root will be greater than 1 in absolute value,
giving rise to an unstable behavior.

The solution will be stable if −2 < σ + 2 < 2 or −4 < σ < 0. From (6.5.8) we
conclude that our numerical scheme is stable if

c

Δx/Δt
≤ 1, (6.5.10)

known as the Courant stability condition (for the wave equation). Here c is the speed
of propagation of signals for the wave equation and Δx/Δt is the speed of propagation of
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signals for the discretization of the wave equation. Thus, we conclude that for stability,
the numerical scheme must have a greater propagation speed than the wave
equation itself. In this way the numerical scheme will be able to account for the real
signals being propagated. The stability condition again limits the size of the time step,
in this case

Δt ≤ Δx

c
. (6.5.11)

Convergence. The time-dependent part oscillates if −2 < σ+2 < 2 (the criterion
for stability):

Qt/Δt = ei t
Δt arg Q. (6.5.12)

We note that if αΔx is small (where α is the wave number, usually nπ/L), then cos(αΔX)≈
1 − 1

2 (αΔx)2 from its Taylor series. Thus, the parameter σ is small and negative:

σ ≈ −1
2
(αΔx)2

2c2

(Δx/Δt)2
.

In this case the temporal frequency of the solutions of the partial difference equations is

arg Q

Δt
=

tan−1

(√
4−(σ+2)2

σ+2

)

Δt
≈

(√
4−(σ+2)2

σ+2

)

Δt
≈

(√−σ
)

Δt
≈ cα, (6.5.13)

since σ is very small and negative and tanφ ≈ φ for small angles φ. Equation (6.5.13)
shows that the temporal frequency of the partial difference equation approaches the fre-
quency of the partial differential equation. Perhaps this is clearer by remembering that α
is the wave number usually nπ/L. Thus, if αΔx is small, the partial difference equation
has solutions that are approximately the same as the partial differential equation:

Qt/Δteiαx = ei 1
Δt arg Qeiαx ≈ eiαxeicαt.

It can also be shown that the error (difference between the solutions of the partial dif-
ference and differential equations at fixed x and t) is O(Δt) if αΔx is small. It is usual
to compute with fixed Δx/Δt. To improve a computation, we cut Δx in half (and thus
Δt will be decreased by a factor of 2). Thus, if αΔx � 1 with Δx/Δt fixed, numerical
errors (at fixed x and t) are cut in half if the discretization step size Δx is halved (and
time step Δt is halved). All computations should be done satisfying the Courant stability
condition (6.5.10).

EXERCISES 6.5

6.5.1. Modify the Courant stability condition for the wave equation to account for the
boundary condition u(0) = 0 and u(L) = 0.

6.5.2. Consider the wave equation subject to the initial conditions

u(x, 0) =

{
1 L

4 < x < 3L
4

0 otherwise

∂u

∂t
(x, 0) = 0
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and the boundary conditions
u(0, t) = 0
u(L, t) = 0.

Use nine interior mesh points and compute using centered differences in space and
time. Compare to the exact solution.
(a) Δt = Δx/2c

(b) Δt = Δx/c

(c) Δt = 2Δx/c

6.5.3. For the wave equation, u(x, t) = f(x − ct) is a solution, where f is an arbitrary
function. If c = Δx/Δt, show that um

j = f(xj − ctm) is a solution of (6.5.2) for
arbitrary f .

6.5.4. Show that the conclusion of Exercise 6.5.3 is not valid if c �= Δx/Δt.
6.5.5. Consider the first-order wave equation

∂u

∂t
+ c

∂u

∂x
= 0.

(a) Determine a partial difference equation by using a forward difference in time
and a centered difference in space.

*(b) Analyze the stability of this scheme (without boundary conditions).
*6.5.6. Modify Exercise 6.5.5 for centered difference in space and time.
6.5.7. Solve on a computer [using (6.5.2)] the wave equation ∂2u/∂t2 = ∂2u/∂x2 with

u(0, t) = 0, u(1, t) = 0, u(x, 0) = sinπx and ∂u/∂t(x, 0) = 0 with Δx = 1/100. For
the initial condition for the first derivative ∂u/∂t(x, 0) = 0, use a forward difference
instead of the centered difference (3.5.4). Compare to analytic solution at x = 1/2,
t = 1 by computing the error there (the difference between the analytic solution and
the numerical solution). Pick Δt so that
(a) Δx/Δt = 1.5 (b) Δx/Δt = 0.5
(c) To improve the calculation in part (a), let Δx = 1/200 but keep Δx/Δt = 1.5.
(d) Compare the errors in parts (a) and (c).

6.6 LAPLACE’S EQUATION

Introduction. Laplace’s equation

∇2u = 0 (6.6.1)

is usually formulated in some region such that one condition must be satisfied along the
entire boundary. A time variable does not occur, so that a numerical finite difference
method must proceed somewhat differently than for the heat or wave equations.

Using the standard centered difference discretization, Laplace’s equation in two
dimensions becomes the following partial difference equation (assuming that Δx = Δy):

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l

(Δx)2
= 0, (6.6.2)

where, hopefully, uj,l ≈ u(j Δx, l Δy).
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The boundary condition may be analyzed in the same way as for the heat and
wave equations. In the simplest case it is specified along the boundary (composed of
mesh points). The temperatures at the interior mesh points are the unknowns. Equation
(6.6.2) is valid at each of these interior points. Some of the terms in (6.6.2) are determined
from the boundary conditions, but most terms remain unknown. Equation (6.6.2) can be
written as a linear system. Gaussian elimination can be used, but in many practical
situations the number of equations and unknowns (equaling the number of interior mesh
points) is too large for efficient numerical calculations. This is especially true in three
dimensions, where even a coarse 20 × 20 × 20 grid will generate 8000 linear equations in
8000 unknowns.

By rearranging (6.6.2), we derive

uj,l =
uj+1,l + uj−1,l + uj,l+1 + uj,l−1

4
. (6.6.3)

The temperature uj,l must be the average of its four neighbors. Thus, the solution of the
discretization of Laplace’s equation satisfies a mean value property. Also, from (6.6.3) we
can prove discrete maximum and minimum principles. These properties are analogous to
similar results for Laplace’s equation itself (see Section 2.5.4).

Jacobi iteration. Instead of solving (6.6.3) exactly, it is more usual to use an
approximate iterative scheme. One should not worry very much about the errors in solving
(6.6.3) if they are small since (6.6.3) already is an approximation of Laplace’s equation.

We cannot solve (6.6.3) directly since the four neighboring temperatures are not
known. However, the following procedure will yield the solution. We can make an initial
guess of the solution and use the averaging principle (6.6.3) to “update” the solution:

u
(new)
j,l =

1
4

(uj+1,l + uj−1,l + uj,l−1 + uj,l+1)
(old)

.

We can continue to do this, a process called Jacobi iteration. We introduce the notation
u

(0)
j,l for the initial guess, u

(1)
j,l for the first iterate [determined from u

(0)
j,l ], u

(2)
j,l for the second

iterate (determined from u
(1)
j,l ), and so on. Thus, the (m + 1)st iterate satisfies

u
(m+1)
j,l =

1
4

(
u

(m)
j+1,l + u

(m)
j−1,l + u

(m)
j,l+1 + u

(m)
j,l−1

)
. (6.6.4)

If the iterates converge, by which we mean that if

lim
m→∞u

(m+1)
j,l = vj,l,

then (6.6.4) shows that vj,l satisfies the discretization of Laplace’s equation (6.6.3).
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Equation (6.6.4) is well suited for a computer. We cannot allow m → ∞. In practice,
we stop the iteration process when u

(m+1)
j,l − u

(m)
j,l is small (for all j and l). Then u

(m+1)
j,l

will be a reasonably good approximation to the exact solution vj,l. (Recall that vj,l itself
is only an approximate solution of Laplace’s equation.)

The changes that occur at each updating may be emphasized by writing Jacobi
iteration as

u
(m+1)
j,l = u

(m)
j,l +

1
4

(
u

(m)
j+1,l + u

(m)
j−1,l + u

(m)
j,l+1 + u

(m)
j,l−1 − 4u

(m)
j,l

)
. (6.6.5)

In this way Jacobi iteration is seen to be the standard discretization (centered spa-
tial and forward time differences) of the two-dimensional diffusion equation, ∂u/∂t =
k(∂2u/∂x2+∂2u/∂y2), with s = k Δt/(Δx)2 = 1

4 [see (6.4.4)]. Each iteration corresponds
to a time step Δt = (Δx)2/4k. The earlier example of computing the heat equation on an
L-shaped region (see Section 6.4) is exactly Jacobi iteration. For large m we see the
solution approaching values independent of m. The resulting spatial distribution is an
accurate approximate solution of the discrete version of Laplace’s equation (satisfying
the given boundary conditions).

Although Jacobi iteration converges, it will be shown to converge very slowly. To
analyze roughly the rate of convergence, we investigate the decay of spatial oscillations
for an L × L square (Δx = Δy = L/N). In (6.6.4), m is analogous to time (t = mΔt),
and (6.6.4) is analogous to the type of partial difference equation analyzed earlier. Thus,
we know that there are special solutions

u
(m)
j,l = Qmei(αx+βy), (6.6.6)

where α = n1π/L, β = n2π/L, nj = 1, 2, . . . , N −1. We assume that in this calculation
there are zero boundary conditions along the edge. The solution should converge to zero
as m → ∞; we will determine the speed of convergence in order to know how many
iterations are expected to be necessary. Substituting (6.6.6) into (6.6.4) yields

Q =
1
4
(
eiαΔx + e−iαΔx + eiβΔy + e−iβΔy

)
=

1
2

(cos αΔx + cos βΔy) .

Since −1 < Q < 1 for all α and β, it follows from (6.6.6) that limm→∞ u
(m)
j,l = 0, as desired.

However, the convergence can be very slow. The slowest rate of convergence occurs for
Q nearest to 1. This happens for the smallest and largest α and β, α = β = π/L and
α = β = (N − 1)π/L, in which case

|Q| = cos
πΔx

L
= cos

π

N
≈ 1 − π2

2
1

N2
, (6.6.7)

since Δx = L/N and N is large. In this case |Q|m is approximately
[
1 − 1

2 (π/N)2
]m.

This represents the error associated with the worst spatial oscillation on a square. If N
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is large, this error converges slowly to zero. For example, for the error to be reduced by
a factor of 1

2 , [
1 − 1

2

( π

N

)2
]m

=
1
2
.

Solving for m using natural logarithms yields

m log
[
1 − 1

2

( π

N

)2
]

= − log 2.

A simpler formula is obtained since π/N is small. From the Taylor series for x small,
log(1− x) ≈ −x, it follows that the number of iterations m necessary to reduce the error
by 1

2 is approximately

m =
log 2

1
2 (π/N)2

= N2 2 log 2
π2

,

using Jacobi iteration. The number of iterations required may be quite large, proportional
to N2, the number of lattice points squared (just to reduce the error in half).

Gauss–Seidel iteration. Jacobi iteration is quite time-consuming to compute
with. More important, there is a scheme that is easier to implement and that converges
faster to the solution of the discretized version of Laplace’s equation. It is usual in Jacobi
iteration to obtain the updated temperature u

(m+1)
j,l first in the lower left spatial region.

Then we scan completely across a row of mesh points (from left to right) before updating
the temperature on the next row above (again from left to right), as indicated in Fig. 6.6.1.
For example,

u
(m+1)
3,8 =

1
4

(
u

(m)
2,8 + u

(m)
3,7 + u

(m)
3,9 + u

(m)
4,8

)
.

In Jacobi iteration we use the old values u
(m)
2,8 , u

(m)
3,7 , u

(m)
3,9 , and u

(m)
4,8 even though new

values for two, u
(m+1)
3,7 and u

(m+1)
2,8 , already have been calculated. In doing a computer

implementation of Jacobi iteration, we cannot destroy immediately the old values (as we
have shown some are needed even after new values have been calculated).

The calculation will be easier to program if old values are destroyed as soon as a
new one is calculated. We thus propose to use the updated temperatures when they are
known. For example,

FIGURE 6.6.1 Gauss–Seidel
iteration. 2,7 2,8 2,9

3,7 3,8 3,9

4,7 4,8 4,9
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u
(m+1)
3,8 =

1
4

(
u

(m+1)
2,8 + u

(m)
4,8 + u

(m+1)
3,7 + u

(m)
3,9

)
.

In general, we obtain

u
(m+1)
j,l =

1
4

(
u

(m+1)
j−1,l + u

(m)
j+1,l + u

(m+1)
j,l−1 + u

(m)
j,l+1

)
, (6.6.8)

known as Gauss–Seidel iteration. If this scheme converges, the solution will satisfy the
discretized version of Laplace’s equation.

There is no strong reason at this point to believe this scheme converges faster than
Jacobi iteration. To investigate the speed at which Gauss–Seidel converges (for a square),
we substitute again

u
(m)
j,l = Qmei(αx+βy), (6.6.9)

where
α =

n1π

L
, β =

n2π

L
, ni = 1, 2, . . . , N − 1.

The result is that

Q =
1
4
[
eiαΔx + eiβΔy + Q

(
e−iαΔx + e−iβΔy

)]
. (6.6.10)

To simplify the algebra, we let

z =
eiαΔx + eiβΔy

4
= ξ + iη, (6.6.11)

and thus obtain Q = z/(1− z). Q is complex, Q = |Q|eiθ, u
(m)
j,l = |Q|meiθmei(αx+βy). The

convergence rate is determined from |Q|,

|Q|2 =
zz

(1 − z)(1 − z)
=

|z|2
1 + |z|2 − 2Re(z)

=
ξ2 + η2

1 + ξ2 + η2 − 2ξ
=

ξ2 + η2

(1 − ξ)2 + η2
.

(6.6.12)

Since |z| < 1
2 and thus |ξ| < 1

2 , it follows that |Q| < 1, yielding the convergence of
Gauss–Seidel iteration. However, the rate of convergence is slow if |Q| is near 1. Equation
(6.6.12) shows that |Q| is near 1 only if ξ is near 1

2 , which (6.6.11) requires α and β to
be as small as possible. For a square, α = π/L and β = π/L, and thus

ξ =
1
2

cos
πΔx

L
and η =

1
2

sin
πΔx

L
.

Therefore,

|Q|2 =
1

5 − 4 cos πΔx/L
=

1
5 − 4 cos π/N

≈ 1
1 + 2(π/N)2

≈ 1 − 2
( π

N

)2

,
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since π/N is small. Thus

|Q| ≈ 1 −
( π

N

)2

.

This |Q| is twice as far from 1 compared to Jacobi iteration [see (6.6.7)]. By doing the
earlier analysis, half the number of iterations are required to reduce the error by any fixed
fraction. Jacobi iteration should never be used. Gauss–Seidel iteration is a feasible and
better alternative.

S-O-R. Both Jacobi and Gauss–Seidel iterative schemes require the number of
iterations to be proportional to N2, where N is the number of intervals (in one dimension).
A remarkably faster scheme is successive overrelaxation, or simply S-O-R.

Gauss–Seidel can be rewritten to emphasize the change that occurs at each iteration,

u
(m+1)
j,l = u

(m)
j,l +

1
4

[
u

(m)
j−1,l + u

(m+1)
j+1,l + u

(m)
j,l−1 + u

(m+1)
j,l+1 − 4u

(m)
j,l

]
.

The bracketed term represents the change after each iteration as u
(m)
j,l is updated to

u
(m+1)
j,l . Historically, it was observed that one might converge faster if larger or smaller

changes were introduced. Gauss–Seidel iteration with a relaxation parameter ω yields
an S-O-R iteration:

u
(m+1)
j,l = u

(m)
j,l + ω

[
u

(m)
j−1,l + u

(m+1)
j+1,l + u

(m)
j,l−1 + u

(m+1)
j,l+1 − 4u

(m)
j,l

]
. (6.6.13)

If ω = 1
4 , this reduces to Gauss–Seidel. If S-O-R converges, it clearly converges to the

discretized version of Laplace’s equation. We will choose ω so that (6.6.13) converges as
fast as possible.

We again introduce
u

(m)
j,l = Qmei(αx+βy)

in order to investigate the rate of convergence, where α = n1π/L, β = n2π/L, ni =
1, 2, . . . , N − 1. We obtain

Q = 1 + ω
[
(eiαΔx + eiβΔy + Q

(
e−iαΔx + e−iβΔy

)− 4
]
.

The algebra here is somewhat complicated. We let z = ω
(
eiαΔx + eiβΔy

)
= ξ + iη and

obtain Q = (1 − 4ω + z)/(1 − z). Q is complex; |Q| determines the convergence rate:

|Q|2 =
(1 − 4ω + ξ)2 + η2

(1 − ξ)2 + η2
.

Again |z| < 2ω and thus |ξ| < 2ω. In Exercise 6.6.1 we show |Q| < 1 if ω < 1
2 , guaranteeing

the convergence of S-O-R. If ω < 1
2 , |Q| is near 1 only if ξ is near 2ω. This occurs only
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if α and β are as small as possible; (for a square) α = π/L and β = π/L and thus
ξ = 2ω cos πΔx/L and η = 2ω sin πΔx/L. In this way

|Q|2 =
4ω2 + (1 − 4ω)2 + (1 − 4ω)4ω cos(π/N)

4ω2 + 1 − 4ω cos(π/N)
.

Exercise 6.6.1 shows that |Q|2 is minimized if ω = 1
2 − (√

2/2
)√

1 − cos π/N . Since π/N
is large, we use (for a square) ω = 1

2 (1 − π/N), in which case

|Q| ≈ 1 − π

2N
;

see Exercise 6.6.2. With the proper choice of ω, |Q|, although still near 1, is an order of
magnitude further away from 1 than for either Jacobi or Gauss–Seidel iteration. In fact
(see Exercise 6.6.2), errors are reduced by 1

2 in S-O-R with the number of iterations being
proportional to N (not N2).

For nonsquare regions, the best ω for S-O-R is difficult to approximate. However,
there exist computer library routines that approximate ω. Thus, often S-O-R is a practical,
relatively quickly convergent iterative scheme for Laplace’s equation.

Other improved schemes have been developed, including the alternating direction-
implicit (ADI) method, which was devised in the mid-1950s by Peaceman, Douglas, and
Rachford. More recent techniques exist, and it is suspected that better techniques will be
developed in the future.

EXERCISES 6.6

6.6.1. (a) Show that |Q| < 1 if ω < 1
2 in S-O-R.

(b) Determine the optimal relaxation parameter ω in S-O-R for a square, by mini-
mizing |Q|2.

6.6.2. (a) If ω = 1
2 (1 − π/N), show that |Q| ≈ 1 − π/2N (for large N) in S-O-R.

(b) Show that with this choice the number of iterations necessary to reduce the
error by 1

2 is proportional to N (not N2).
6.6.3. Describe a numerical scheme to solve Poisson’s equation

∇2u = f(x, y),

(assuming that Δx = Δy) analogous to

(a) Jacobi iteration

(b) Gauss–Seidel iteration

(c) S-O-R

6.6.4. Describe a numerical scheme (based on Jacobi iteration) to solve Laplace’s equation
in three dimensions. Estimate the number of iterations necessary to reduce the error
in half.

6.6.5. Modify Exercise 6.6.4 for Gauss–Seidel iteration.
6.6.6. Show that Jacobi iteration corresponds to the two-dimensional diffusion equation,

by taking the limit as Δx = Δy → 0 and Δt → 0 in some appropriate way.
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6.6.7. What partial differential equation does S-O-R correspond to? (Hint: Take the limit
as Δx = Δy → 0 and Δt → 0 in various ways.) Specialize your result to Gauss–Seidel
iteration by letting ω = 1

4 .
6.6.8. Consider Laplace’s equation on a square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with u = 0 on three

sides and u = 1 on the fourth.

(a) Solve using Jacobi iteration (let Δx = Δy = 1
10 ).

(b) Solve using Gauss–Seidel iteration (let Δx = Δy = 1
10 ).

(c) Solve using S-0-R iteration [let Δx = Δy = 1
10 and ω = 1

2 (1 − π/10)].

(d) Solve by separation of variables. Evaluate numerically the first 10 or 20 terms.

(e) Compare as many of the previous parts as you did.

6.7 FINITE ELEMENT METHOD

In our modern world, many interesting physical problems formulated by partial differential
equations are solved on the computer (including personal computers). Finite difference
methods may be used to approximate the continuous partial differential equation by a
large number of difference equations. We describe another method known as the finite
element method. For more in-depth explanations, we refer the reader to Strang (1986).

6.7.1 Approximation with Nonorthogonal Functions
(Weak Form of the Partial Differential Equation)

We solve a relatively simple partial differential equation, Poisson’s equation in two di-
mensions with homogeneous boundary conditions,

∇2u = f(x, y) with u = 0 on the closed boundary, (6.7.1)

where f(x, y) is given. In problems whose geometry is not rectangular or circular, the
method of separation of variables may be difficult or impossible. As an example, we
consider the complicated 10-sided polygonal geometry as illustrated in Fig. 6.7.1.

We approximate the solution with a large number of test functions Ti(x, y), which
have nothing to do with the partial differential equation nor their eigenfunctions. However,
we assume the test functions satisfy the corresponding homogeneous boundary conditions:

Ti(x, y) = 0 on the closed boundary. (6.7.2)

FIGURE 6.7.1 Region (polygonal
example).
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We introduce U(x, y), an approximation to the solution u(x, y) using a series (linear
combination) of these test functions (instead of a series of eigenfunctions):

U(x, y) =
n∑

j=1

UjTj(x, y). (6.7.3)

In practice, we use a large number n of test functions, and with computers today thousands
are easily included.

We cannot insist that our approximation satisfies the partial differential equation
(6.7.1). Instead, we determine the n constants so that the approximation satisfies the n
conditions known as the weak form of the partial differential equation. We insist that the
left- and right-hand sides of the partial differential equation (6.7.1) when multiplied by
each trial function Ti(x, y) and integrated over the entire region are the same:

∫∫
R

∇2uTi dA =
∫∫
R

fTi dA, (6.7.4)

where dA = dx dy. We can simplify this by integrating the left-hand side by parts. Using
∇ · (Ti∇u) = Ti∇2u + ∇Ti · ∇u, we obtain

∫∫
R

[∇ · (Ti∇u) −∇Ti · ∇u] dA =
∫∫
R

fTi dA. (6.7.5)

Now we use the (two-dimensional) divergence theorem (
∫∫
R

∇ · −→B dA =
∮ −→

B · n̂ ds, where

ds is differential arc length), and we obtain
∫∫
R

∇Ti · ∇u dA =
∮

Ti∇u · n̂ ds − ∫∫
R

fTi dA.

Since the boundary contribution vanishes,
∮

Ti∇u · n̂ ds = 0, because the trial func-
tions satisfy the homogeneous boundary conditions (6.7.2), we obtain the weak form
(Galerkin) of the partial differential equation:

∫∫
R

∇Ti · ∇u dA = −
∫∫
R

fTi dA. (6.7.6)

All solutions u(x, y) of the partial differential equation (6.7.1) satisfy the weak form
(6.7.6). We insist that our approximation U(x, y) (6.7.3) satisfies the weak form:

n∑
j=1

Uj

∫∫
R

∇Ti · ∇Tj dA = −
∫∫

R

fTi dA. (6.7.7)

This is n equations for the n unknown coefficients Ui (one equation for each test function).
We introduce the symmetric stiffness matrix K with entries Kij = Kji:

Kij =
∫∫

R

∇Ti · ∇Tj dA (6.7.8)
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and the vector F with entries Fi:

Fi = −
∫∫

R

fTi dA. (6.7.9)

The n equations, (6.7.7),
n∑

j=1

KijUj = Fi, (6.7.10)

can be written in matrix form:
KU = F. (6.7.11)

With given test functions, the right-hand side of (6.7.11) is known. Our solution is

U = K−1F. (6.7.12)

However, a computational solution will usually be obtained without finding the general
inverse of the usually very large n × n matrix K .

Orthogonal two-dimensional eigenfunctions. If the boundary was exception-
ally simple, then we could use trial functions that are two-dimensional eigenfunctions
Ti(x, y) = φi(x, y) satisfying

∇2φi = −λiφi. (6.7.13)

These eigenfunctions are orthogonal in a two-dimensional sense (see Section 7.5):∫∫
R

φiφj dA = 0 if i �= j. (6.7.14)

In the Exercises we show that integration by parts is not necessary, so that there is an
alternate expression for the stiffness matrix that can be derived directly from (6.7.4):

Kij = −
∫∫

R

Ti∇2Tj dA = −
∫∫

R

φi∇2φj dA = λj

∫∫
R

φiφj dA, (6.7.15)

using (6.7.13). Using the two-dimensional orthogonality of eigenfunctions (6.7.14), we see
that the stiffness matrix is diagonal:

Kij = 0 if i �= j. (6.7.16)

The diagonal elements from (6.7.15) are given by

Kii = λi

∫∫
R

φ2
i dA. (6.7.17)

The approximate solution is given by the finite series (6.7.3), where the coefficients are
easily determined from (6.7.11) or (6.7.12) (if λ = 0 is not an eigenvalue):

Ui =
Fi

Kii
, (6.7.18)
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where Kii is given by (6.7.17). This approximate solution is a truncation of an infinite
series of orthogonal functions. An example of this infinite series is described in a small
portion of Section 8.6.

Galerkin numerical approximation for frequencies (eigenvalues). Sup-
pose we wish to obtain a numerical approximation to the frequencies of vibration of a
membrane with shape perhaps as sketched in Fig. 6.7.1. In Section 7.2, it is shown that a
vibrating membrane satisfies the two-dimensional wave equation ∂2u

∂t2 = c2∇2u with u = 0
on the boundary. After separation of time, u = φ(x, y)h(t), the frequencies of vibration
c
√

λ are determined from the eigenvalue problem

∇2φ = −λφ (6.7.19)

with φ = 0 on the boundary. Since (6.7.19) corresponds to (6.7.1) with the right-hand
side f(x) = −λφ, the Galerkin method may be used to approximate the eigenvalues and
the eigenfunctions. The eigenfunction can be approximated by a series of test functions
(6.7.3), φ(x, y) =

∑n
j=1 φjTj(x, y). Using the weak form (6.7.6) of the partial differential

equation (6.7.19), the left-hand side of (6.7.7) can be again written in terms of the stiffness
matrix K . However, the right-hand side of (6.7.7) using f(x) = −λφ involves a different
matrix M , so that the matrix form (6.7.11) becomes

Kφ = λMφ, (6.7.20)

where we introduce the vector φ with entries φj and the symmetric mass matrix M with
entries given by

Mij =
∫ ∫

R

TiTj dA. (6.7.21)

The n eigenvalues of (6.7.20) or M−1K approximate the eigenvalues of (6.7.19). The
approximation improves as n increases. Strang (1986) shows that instead of computing
the eigenvalues of M−1K directly, it is better to use the Cholesky decomposition of the
mass matrix M .

Finite elements. The trial functions we will use are not orthogonal so that the
stiffness matrix will not be diagonal. However, finite elements will yield a stiffness matrix
that has many zeros, known as a sparse matrix. In practice, the stiffness matrix is quite
large and general methods to obtain its inverse as needed in (6.7.12) are not practical.
However, there are practical methods to obtain the inverse since we will show that the
stiffness matrix will be sparse.

6.7.2 The Simplest Triangular Finite Elements

One of the simplest ways to approximate any region is to break up the region into small
triangles. The approximation improves as the number of triangles increases (and the size
of the largest triangle decreases). We describe the method for a polygonal region. There
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FIGURE 6.7.2 Triangulated region
(not unique).

are many ways to divide the region up into triangles (forming a triangular mesh). You
can begin by dividing the region into triangles in a somewhat arbitrary way.

Let us first describe a very coarse mesh for our 10-sided figure (see Fig. 6.7.1). We
somewhat arbitrarily pick 4 interior points forming 16 triangles (see Fig. 6.7.2). In general,

number of triangles
= number of boundary triangles − 2 + 2 (number of interior points). (6.7.22)

This is easily seen by counting the interior angles of the triangles (180 times the number
of triangles) in a different way. Each interior point is completely surrounded (360 times
the number of interior points) and the angles around the boundary points are the interior
angles of a polygon (180 times number of sides minus 2).

The four interior points (xi, yi) give four unknowns U(xi, yi). This gives us a four-
dimensional vector space. We choose the test functions as the simplest basis functions
of the four-dimensional vector space. We choose the test function T1(x, y) such that
T1(x1, y1) = 1, T1(x2, y2) = 0, T1(x3, y3) = 0, T1(x4, y4) = 0. Similarly, the test function
T2(x, y) is chosen to satisfy T2(x1, y1) = 0, T2(x2, y2) = 1, T2(x3, y3) = 0, T2(x4, y4) =
0, and so on. This is easily generalized to many more than three interior points (test
functions).

Our approximation to the partial differential equation is (6.7.3), a linear combination
of the four test functions,

U(x, y) =
4∑

j=1

UjTj(x, y).

Note that we have the very nice property that

U(x1, y1) = U1

U(x2, y2) = U2 (6.7.23)
U(x3, y3) = U3

U(x4, y4) = U4.

Here the coefficients are precisely the function evaluated at the nth point. That is why we
use the notation Uj for the coefficients. In this way we have obtained a set of difference
equations (6.7.10) or (6.7.11), where the stiffness matrix will be shown to be sparse.
Because of (6.7.23), these represent difference equations for the value of u at each interior
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point. Thus, the difference equations derived by the finite element method are usually
different from the difference equations that are derived by finite difference methods.

Our trial functions need to be defined everywhere, not just at the interior points.
There are different finite elements, and we describe the simplest. We assume each trial
function is linear (and looks line a simple plane) in each triangular region. Each trial
function will be peaked at 1 and will linearly and continuously decay to 0 within the set
of triangles that surrounds that vertex. Each trial function looks like a pyramid. Each
trial function will be identically zero for those regions that do not connect
to the one peaked vertex. The four trial functions for this problem are illustrated in
Fig. 6.7.3. When there is a large number of degrees of freedom (vertices, trial functions),
then each trial function is identically zero over most of region.

FIGURE 6.7.3 Four trial functions (one corresponds to each interior point).

Calculation of stiffness matrix . The stiffness matrix,

Kij =
∫∫

R

∇Ti · ∇Tj dA, (6.7.24)

is best calculated by summing up (called assembling) its contributions for each small
triangular finite element. The entries of the stiffness matrix will be non-zero, only for its
diagonal entries and for entries corresponding to adjacent interior vertices. The entries
for the stiffness matrix will be zero, corresponding to non-adjacent interior vertices (since
each trial function is mostly zero). The stiffness matrix will be sparse when there are
many interior points.

The diagonal entries of the stiffness matrix corresponding to a specific interior vertex
will be assembled only from the triangles that surround that interior vertex. The entries
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of the stiffness matrix corresponding to adjacent interior vertices will be assembled from
the two small triangles with the side in common from the line connecting the two adjacent
interior vertices.

For a specific triangle with interior angles θi, it can be shown (in the Exercises) that
the diagonal contributions satisfy

k11 = portion of K11 due to specific triangle =
1

2 tan θ2
+

1
2 tan θ3

, etc.,

and the contributions to adjacent vertices are

k12 = portion of K12 due to specific triangle = − 1
2 tan θ3

, etc.

Mesh refinement. We begin with a specific mesh (for example, with four interior
points as in Fig. 6.7.2). Then it is usual to obtain a finer mesh by subdividing each triangle
by connecting the midpoints of each side. In this way each triangle becomes four similar
triangles (see Fig. 6.7.4). Keeping similar triangles in the process can make numerical
procedures somewhat easier since the above preceding formula shows that additional
calculations are not needed for the stiffness matrix after the first mesh.

FIGURE 6.7.4 Refined mesh
(each triangle).

EXERCISES 6.7

6.7.1. Consider a polygonal region of your choice. Sketch the trial functions:
(a) Assuming 5-sided figure with 2 interior points
(b) Assuming 5-sided figure with 3 interior points
(c) Assuming 5-sided figure with 5 interior points
(d) Assuming 5-sided figure with 7 interior points

6.7.2. For the finite elements of Exercise 6.7.1, which entries of the stiffness matrix are
zero?

6.7.3. Derive a formula for Kij from (6.7.4).
6.7.4. Show that

∫∫
R

(∇U)2 dA = UT KU . Thus, the entire matrix K can be identified by

calculating this integral.
6.7.5. Show (by completing square of quadratics) that the minimum of∫∫

R

[
1
2
(∇U)2 − f(x, y)U

]
dA,

where U satisfies (6.7.3), occurs when KU = F .
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6.7.6. Consider a somewhat arbitrary triangle (as illustrated in Fig. 6.7.5) with P1 =
(0, 0), P2 = (L, 0), P3 = (D, H) and interior angles θi. The solution on the triangle
will be linear U = a + bx + cy.

(0,0) (L,0)

(D,H)

θ1

θ3

θ2P1

P3

P2

FIGURE 6.7.5 Triangular finite element.

(a) Show that
∫∫
R

(∇U)2 dA = (b2 + c2) 1
2LH.

(b) The coefficients a, b, c are determined by the conditions at the three vertices

U(Pi) = Ui. Demonstrate that a = U1, b = U2−U1
L , and c =

U3 − U1 − D
L (U2 − U1)

H
.

(c) Show that
1

tan θ1
=

D

H
,

1
tan θ2

= L−D
H , and using tan θ3 = − tan(θ1 + θ2) =

tan θ1 + tan θ2

tan θ1 tan θ2 − 1
, show that

1
tan θ3

=
H

L
− D

H
+

D2

HL
.

(d) Using Exercise 6.7.4 and parts (a)–(c) of this exercise, show that for the contri-

bution from this one triangle, K12 = − 1
2 tan θ3

. The other entries of the stiffness

matrix follow in this way.

6.7.7. Continue with part (d) of Exercise 6.7.6 to obtain
(a) K11 (b) K22 (c) K33 (d) K23 (e) K13



C H A P T E R 7

Higher-Dimensional
Partial Differential Equations

7.1 INTRODUCTION

In our discussion of partial differential equations, we have solved many problems by the
method of separation of variables, but all involved only two independent variables:

∂2u

∂x2
+

∂2u

∂y2
= 0

∂u

∂t
= k

∂2u

∂x2
,

∂2u

∂t2
= c2 ∂2u

∂x2

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
, ρ

∂2u

∂t2
= T0

∂2u

∂x2
.

In this chapter we show how to extend the method of separation of variables to problems
with more than two independent variables.

In particular, we discuss techniques to analyze the heat equation (with constant
thermal properties) in two and three dimensions,

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
(two dimensions) (7.1.1)

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
(three dimensions) (7.1.2)

for various physical regions with various boundary conditions. Also of interest will be the
steady-state heat equation, Laplace’s equation, in three dimensions,

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0.

In all these problems, the partial differential equation has at least three independent
variables. Other physical problems, not related to the flow of thermal energy, may also
involve more than two independent variables. For example, the vertical displacement u of
a vibrating membrane satisfies the two-dimensional wave equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
.

268
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It should also be mentioned that in acoustics, the perturbed pressure u satisfies the three-
dimensional wave equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
.

We will discuss and analyze some of these problems.

7.2 SEPARATION OF THE TIME VARIABLE

We will show that similar methods can be applied to a variety of problems. We will begin
by discussing the vibrations of a membrane of any shape, and follow that with some
analysis for the conduction of heat in any two- or three-dimensional region.

7.2.1 Vibrating Membrane: Any Shape

Let us consider the displacement u of a vibrating membrane of any shape. Later (Sections
7.3 and 7.7) we will specialize our result to rectangular and circular membranes. The
displacement u(x, y, t) satisfies the two-dimensional wave equation:

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
. (7.2.1)

The initial conditions will be

u(x, y, 0) = α(x, y) (7.2.2)
∂u

∂t
(x, y, 0) = β(x, y), (7.2.3)

but as usual they will be ignored at first when separating variables. A homogeneous
boundary condition will be given along the entire boundary; u = 0 on the boundary is the
most common condition. However, it is possible, for example, for the displacement to be
zero on only part of the boundary and for the rest of the boundary to be “free.” There
are many other possible boundary conditions.

Let us now apply the method of separation of variables. We begin by showing that
the time variable can be separated out from the problem for a membrane of any shape
by seeking product solutions of the following form:

u(x, y, t) = h(t)φ(x, y). (7.2.4)

Here φ(x, y) is an as yet unknown function of the two variables x and y. We do not
(at this time) specify further φ(x, y) since we might expect different results in different
geometries or with different boundary conditions. Later, we will show that for rectangular
membranes φ(x, y) = F (x)G(y), while for circular membranes φ(x, y) = F (r)G(θ); that
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is, the form of further separation depends on the geometry. It is for this reason that
we begin by analyzing the general form (7.2.4). In fact, for most regions that are not
geometrically as simple as rectangles and circles, φ(x, y) cannot be separated further.
If (7.2.4) is substituted into the equation for a vibrating membrane, (7.2.1), then the
result is

φ(x, y)
d2h

dt2
= c2h(t)

(
∂2φ

∂x2
+

∂2φ

∂y2

)
. (7.2.5)

We will attempt to proceed as we did when there were only two independent variables.
Time can be separated from (7.2.5) by dividing by h(t)φ(x, y) (and an additional division
by the constant c2 is convenient):

1
c2

1
h

d2h

dt2
=

1
φ

(
∂2φ

∂x2
+

∂2φ

∂y2

)
= −λ. (7.2.6)

The left-hand side of the first equation is a function only of time, while the right-hand side
is a function only of space (x and y). Thus, the two (as before) must equal a separation
constant. Again, we must decide what notation is convenient for the separation constant,
λ or −λ. A quick glance at the resulting ordinary differential equation for h(t) shows
that −λ is more convenient (as will be explained). We thus obtain two equations, but
unlike the case of two independent variables, one of the equations is itself still a partial
differential equation:

d2h

dt2
= −λc2h (7.2.7)

∂2φ

∂x2
+

∂2φ

∂y2
= −λφ. (7.2.8)

The notation −λ for the separation constant was chosen because the time-dependent dif-
ferential equation (7.2.7) has oscillatory solutions if λ > 0, although this is not guaranteed
at the moment. If λ > 0, then h is a linear combination of sin c

√
λt and cos c

√
λt; it oscil-

lates with frequency c
√

λ. The values of λ determine the natural frequencies of oscillation
of a vibrating membrane. To show that λ > 0, we must analyze the resulting eigenvalue
problem, (7.2.8), where φ is subject to a homogeneous boundary condition along the en-
tire boundary (e.g., φ = 0 on the boundary). Here the eigenvalue problem itself involves
a linear homogeneous partial differential equation. Shortly, we will show that λ > 0 by
introducing a Rayleigh quotient applicable to (7.2.8). Before analyzing (7.2.8), we will
show that it arises in other contexts.
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7.2.2 Heat Conduction: Any Region

We will analyze the flow of thermal energy in any two-dimensional region. We begin by
seeking product solutions of the form

u(x, y, t) = h(t)φ(x, y) (7.2.9)

for the two-dimensional heat equation, assuming constant thermal properties and no
sources, (7.1.1). By substituting (7.2.9) into (7.1.1) and after dividing by kh(t)φ(x, y), we
obtain

1
k

1
h

dh

dt
=

1
φ

(
∂2φ

∂x2
+

∂2φ

∂y2

)
. (7.2.10)

A separation constant in the form −λ is introduced so that the time-dependent part of the
product solution exponentially decays (if λ > 0) as expected, rather than exponentially
grows. Then, the two equations are

dh

dt
= −λkh

∂2φ

∂x2
+

∂2φ

∂y2
= −λφ.

(7.2.11)

The eigenvalue λ relates to the decay rate of the time-dependent part. The eigenvalue λ
is determined by the boundary value problem, again consisting of the partial differential
equation (7.2.11) with a corresponding boundary condition on the entire boundary of the
region.

For heat flow in any three-dimensional region, (7.1.2) is valid. A product solution,

u(x, y, z, t) = h(t)φ(x, y, z), (7.2.12)

may still be sought, and after separating variables, we obtain equations similar to (7.2.11),

dh

dt
= −λkh

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= −λφ.

(7.2.13)

The eigenvalue λ is determined by finding those values of λ for which nontrivial solutions
of (7.2.13) exist, subject to a homogeneous boundary condition on the entire boundary.
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7.2.3 Summary

In situations described in this section, the spatial part φ(x, y) or φ(x, y, z) of the solution
of the partial differential equation satisfies the eigenvalue problem consisting of the partial
differential equation,

∇2φ = −λφ, (7.2.14)

with φ satisfying appropriate homogeneous boundary conditions, which may be of the
form [see (1.5.2) and (4.5.5)]

αφ + β∇φ · n̂ = 0, (7.2.15)

where α and β can depend on x, y, and z. If β = 0, (7.2.15) is the fixed boundary
condition. If α = 0, (7.2.15) is the insulated or free boundary condition. If both α �= 0
and β �= 0, then (7.2.15) is the higher-dimensional version of Newton’s law of cooling or
the elastic boundary condition. In Section 7.4 we will describe general results for this two-
or three-dimensional eigenvalue problem, similar to our theorems concerning the general
one-dimensional Sturm–Liouville eigenvalue problem. However, first we will describe the
solution of a simple two-dimensional eigenvalue problem in a situation in which φ(x, y)
may be further separated, producing two one-dimensional eigenvalue problems.

EXERCISES 7.2

7.2.1. For a vibrating membrane of any shape that satisfies (7.2.1), show that (7.2.14)
results after separating time.

7.2.2. For heat conduction in any two-dimensional region that satisfies (7.1.1), show that
(7.2.14) results after separating time.

7.2.3. (a) Obtain product solutions, φ = f(x)g(y), of (7.2.14) that satisfy φ = 0 on the
four sides of a rectangle. (Hint: If necessary, see Section 7.3.)

(b) Using part (a), solve the initial value problem for a vibrating rectangular mem-
brane (fixed on all sides).

(c) Using part (a), solve the initial value problem for the two-dimensional heat
equation with zero temperature on all sides.

7.3 VIBRATING RECTANGULAR MEMBRANE

In this section we analyze the vibrations of a rectangular membrane, as sketched in
Figure 7.3.1. The vertical displacement u(x, y, t) of the membrane satisfies the two-
dimensional wave equation,

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
. (7.3.1)
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y = H

y = 0
x = 0 x = L

FIGURE 7.3.1 Rectangular membrane.

We suppose that the boundary is given such that all four sides are fixed with zero dis-
placement:

u(0, y, t) = 0, u(x, 0, t) = 0 (7.3.2)
u(L, y, t) = 0, u(x,H, t) = 0. (7.3.3)

We ask what is the displacement of the membrane at time t if the initial position and
velocity are given:

u(x, y, 0) = α(x, y) (7.3.4)
∂u

∂t
(x, y, 0) = β(x, y). (7.3.5)

As we indicated in Section 7.2.1, since the partial differential equation and the
boundary conditions are linear and homogeneous, we apply the method of separation of
variables. First, we separate only the time variable by seeking product solutions in the
form

u(x, y, t) = h(t)φ(x, y). (7.3.6)

According to our earlier calculation, we are able to introduce a separation constant −λ,
and the following two equations result:

d2h

dt2
= − λc2h (7.3.7)

∂2φ

∂x2
+

∂2φ

∂y2
= − λφ. (7.3.8)

We will show that λ > 0, in which case h(t) is a linear combination of sin c
√

λt and
cos c

√
λt. The homogeneous boundary conditions imply that the eigenvalue problem is

∂2φ

∂x2
+

∂2φ

∂y2
= −λφ (7.3.9)

φ(0, y) = 0, φ(x, 0) = 0
φ(L, y) = 0, φ(x,H) = 0; (7.3.10)
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that is, φ = 0 along the entire boundary. We call (7.3.9)–(7.3.10) a two-dimensional
eigenvalue problem.

The eigenvalue problem itself is a linear homogeneous PDE in two independent vari-
ables with homogeneous boundary conditions. As such (since the boundaries are simple),
we can expect that (7.3.9)–(7.3.10) can be solved by separation of variables in Cartesian
coordinates. In other words, we look for product solutions of (7.3.9)–(7.3.10) in the form

φ(x, y) = f(x)g(y). (7.3.11)

Before beginning our calculations, let us note that it follows from (7.3.6) that our as-
sumption (7.3.11) is equivalent to

u(x, y, t) = f(x)g(y)h(t), (7.3.12)

a product of functions of each independent variable. We claim, as we show in an appendix
to this section, that we could obtain the same result by substituting (7.3.12) into the
wave equation (7.3.1) as we now obtain by substituting (7.3.11) into the two-dimensional
eigenvalue problem (7.3.9):

g(y)
d2f

dx2
+ f(x)

d2g

dy2
= −λf(x)g(y). (7.3.13)

The x and y parts may be separated by dividing (7.3.13) by f(x)g(y) and rearranging
terms:

1
f

d2f

dx2
= −λ − 1

g

d2g

dy2
= −μ. (7.3.14)

Since the first expression is a function only of x, while the second is a function only
of y, we introduce a second separation constant. We choose it to be −μ so that the
easily solved equation, d2f/dx2 = −μf , has oscillatory solutions (as expected) if μ > 0.
Two ordinary differential equations result from the separation of variables of a partial
differential equation with two independent variables:

d2f

dx2
= −μf (7.3.15)

d2g

dy2
= −(λ − μ)g. (7.3.16)

Equations (7.3.15) and (7.3.16) contain two separation constants λ and μ, both of which
must be determined. In addition, h(t) solves an ordinary differential equation:

d2h

dt2
= −λc2h. (7.3.17)
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When we separate variables for a partial differential equation in three variables, u(x, y, t) =
f(x)g(y)h(t), we obtain three ordinary differential equations, one a function of each in-
dependent coordinate. However, there will be only two separation constants.

To determine the separation constants, we need to use the homogeneous boundary
conditions (7.3.10). The product form (7.3.11) then implies that

f(0) = 0 and f(L) = 0
g(0) = 0 and g(H) = 0. (7.3.18)

Of our three ordinary differential equations, only two will be eigenvalue problems. There
are homogeneous boundary conditions in x and y. Thus,

d2f

dx2
= −μf with f(0) = 0 and f(L) = 0 (7.3.19)

is a Sturm–Liouville eigenvalue problem in the x-variable, where μ is the eigenvalue and
f(x) is the eigenfunction. Similarly, the y-dependent problem is a regular Sturm–Liouville
eigenvalue problem:

d2g

dy2
= −(λ − μ)g with g(0) = 0 and g(H) = 0. (7.3.20)

Here λ is the eigenvalue and g(y) the corresponding eigenfunction.
Not only are both (7.3.19) and (7.3.20) Sturm–Liouville eigenvalue problems, but

they are both ones we should be quite familiar with. Without going through the well-
known details, the eigenvalues are

μn =
(nπ

L

)2

, n = 1, 2, 3, . . . , (7.3.21)

and the corresponding eigenfunctions are

fn(x) = sin
nπx

L
. (7.3.22)

This determines the allowable values of the separation constant μn.
For each value of μn, (7.3.20) is still an eigenvalue problem. There are an infinite

number of eigenvalues λ for each n. Thus, λ should be double subscripted, λnm. In fact,
from (7.3.20) the eigenvalues are

λnm − μn =
(mπ

H

)2

, m = 1, 2, 3, . . . , (7.3.23)

where we must use a different index to represent the various y-eigenvalues (for each value
of n). The corresponding y-eigenfunction is

gnm(y) = sin
mπy

H
. (7.3.24)
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The separation constant λnm can now be determined from (7.3.23):

λnm = μn +
(mπ

H

)2

=
(nπ

L

)2

+
(mπ

H

)2

, (7.3.25)

where n = 1, 2, 3, . . . and m = 1, 2, 3, . . . . The two-dimensional eigenvalue problem (7.3.9)
has eigenvalues λnm given by (7.3.25) and eigenfunctions given by the product of the two
one-dimensional eigenfunctions. Using the notation φnm(x, y) for the two-dimensional
eigenfunction corresponding to the eigenvalue λnm, we have

φnm(x, y) = sin
nπx

L
sin

mπy

H
,

n = 1, 2, 3, . . .
m = 1, 2, 3, . . . .

(7.3.26)

Note how easily the homogeneous boundary conditions are satisfied.
From (7.3.25) we have explicitly shown that all the eigenvalues are positive (for

this problem). Thus, the time-dependent part of the product solutions are (as previ-
ously guessed) sin c

√
λnmt and cos c

√
λnmt, oscillations with natural frequencies c

√
λnm =

c
√

(nπ/L)2 + (mπ/H)2, n = 1, 2, 3, . . . and m = 1, 2, 3, . . . . In considering the displace-
ment u, we have obtained two doubly-infinite families of product solutions:
sinnπx/L sin mπy/H sin c

√
λnmt and sinnπx/L sin mπy/H cos c

√
λnmt. As with the

vibrating string, each of these special product solutions is known as a mode of vibration.
We sketch in Fig. 7.3.2 a representation of some of these modes. In each, we sketch level
contours of displacement in dotted lines at a fixed t. As time varies, the shape stays the
same; only the amplitude varies periodically. Each mode is a standing wave. Curves along
which the displacement is always zero in a mode are called nodal curves and are sketched
in solid lines. Cells are apparent with neighboring cells always being out of phase; that
is, when one cell has a positive displacement, the neighbor has negative displacement (as
represented by the + and − signs).

The principle of superposition implies that we should consider a linear combination
of all possible product solutions. Thus, we must include both families, summing over both
n and m,

u(x, y, t) =
∞∑

m=1

∞∑
n=1

Anm sin
nπx

L
sin

mπy

H
cos c

√
λnmt

+
∞∑

m=1

∞∑
n=1

Bnm sin
nπx

L
sin

mπy

H
sin c

√
λnmt.

(7.3.27)

The two families of coefficients Anm and Bnm hopefully will be determined from the two
initial conditions. For example, u(x, y, 0) = α(x, y) implies that

α(x, y) =
∞∑

m=1

( ∞∑
n=1

Anm sin
nπx

L

)
sin

mπy

H
. (7.3.28)
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FIGURE 7.3.2 Nodal curves for modes of a vibrating rectangular membrane.

The series in (7.3.28) is an example of what is called a double Fourier series. In-
stead of discussing the theory, we show one method to calculate Anm from (7.3.28). (In
Section 7.4 we will discuss a simpler way.) For fixed x, we note that

∑∞
n=1 Anm sin nπx/L

depends only on m. Furthermore, it must be the coefficients of the Fourier sine series in
y of α(x, y) over 0 < y < H. From our theory of Fourier sine series, we therefore know
that we may easily determine the coefficients:

∞∑
n=1

Anm sin
nπx

L
=

2
H

∫ H

0

α(x, y) sin
mπy

H
dy, (7.3.29)

for each m. Equation (7.3.29) is valid for all x; the right-hand side is a function of
x (not y, because y is integrated from 0 to H). For each m, the left-hand side is a
Fourier sine series in x; in fact, it is the Fourier sine series of the right-hand side,
2/H

∫ H

0
α(x, y) sin mπy/H dy. The coefficients of this Fourier sine series in x are easily

determined:
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Anm =
2
L

∫ L

0

[
2
H

∫ H

0

α(x, y) sin
mπy

H
dy

]
sin

nπx

L
dx. (7.3.30)

This may be simplified to one double integral over the entire rectangular region, rather
than two iterated one-dimensional integrals. In this manner we have determined one set
of coefficients from one of the initial conditions.

The other coefficients Bnm can be determined in a similar way. In particular, from
(7.3.27), ∂u/∂t(x, y, 0) = β(x, y), which implies that

β(x, y) =
∞∑

n=1

∞∑
m=1

c
√

λnmBnm sin
nπx

L
sin

mπy

H
. (7.3.31)

Thus, again using a Fourier sine series in y and a Fourier sine series in x, we obtain

c
√

λnmBnm =
4

LH

∫ L

0

∫ H

0

β(x, y) sin
mπy

H
sin

nπx

L
dy dx. (7.3.32)

The solution of our initial value problem is the doubly infinite series given by (7.3.27),
where the coefficients are determined by (7.3.30) and (7.3.32).

We have shown that when all three independent variables separate for a partial
differential equation, there results three ordinary differential equations, two of which are
eigenvalue problems. In general, for a partial differential equation in N variables that
completely separates, there will be N ordinary differential equations, N − 1 of which are
one-dimensional eigenvalue problems (to determine the N − 1 separation constants). We
have already shown this for N = 3 (this section) and N = 2.

EXERCISES 7.3

7.3.1. Consider the heat equation in a two-dimensional rectangular region 0 < x < L,
0 < y < H,

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)

subject to the initial condition

u(x, y, 0) = α(x, y).

[Hint : You many assume without derivation that product solutions u(x, y, t) =
φ(x, y)h(t) = f(x)g(y)h(t) satisfy dh

dt = −λkh, the two-dimensional eigenvalue prob-
lem ∇2φ + λφ = 0 with further separation

d2f

dx2
= −μf,

d2g

dy2
+ (λ − μ)g = 0,

or you may use results of the two-dimensional eigenvalue problem.]
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Solve the initial value problem and analyze the temperature as t → ∞ if the bound-
ary conditions are

*(a) u(0, y, t) = 0, u(L, y, t) = 0, u(x, 0, t) = 0, u(x, H, t) = 0

(b)
∂u

∂x
(0, y, t) = 0,

∂u

∂x
(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x, H, t) = 0

*(c)
∂u

∂x
(0, y, t) = 0,

∂u

∂x
(L, y, t) = 0, u(x, 0, t) = 0, u(x, H, t) = 0

(d) u(0, y, t) = 0,
∂u

∂x
(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x, H, t) = 0

(e) u(0, y, t) = 0, u(L, y, t) = 0, u(x, 0, t) = 0,
∂u

∂y
(x, H, t) + hu(x, H, t) = 0 (h > 0)

7.3.2. Consider the heat equation in a three-dimensional box-shaped region,
0 < x < L, 0 < y < H, 0 < z < W ,

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

subject to the initial condition

u(x, y, z, 0) = α(x, y, z).

[Hint : You many assume without derivation that the product solutions u(x, y, z, t) =
φ(x, y, z)h(t) satisfy dh

dt = −λkh and satisfy the three-dimensional eigenvalue prob-
lem ∇2φ + λφ = 0, or you may use results of the three-dimensional eigenvalue
problem.]

Solve the initial value problem and analyze the temperature as t → ∞ if the bound-
ary conditions are
(a) u(0, y, z, t) = 0,

∂u

∂y
(x, 0, z, t) = 0,

∂u

∂z
(x, y, 0, t) = 0,

u(L, y, z, t) = 0,
∂u

∂y
(x, H, z, t) = 0, u(x, y, W, t) = 0

*(b)
∂u

∂x
(0, y, z, t) = 0,

∂u

∂y
(x, 0, z, t) = 0,

∂u

∂z
(x, y, 0, t) = 0,

∂u

∂x
(L, y, z, t) = 0,

∂u

∂y
(x, H, z, t) = 0,

∂u

∂z
(x, y, W, t) = 0

7.3.3. Solve
∂u

∂t
= k1

∂2u

∂x2
+ k2

∂2u

∂y2

on a rectangle (0 < x < L, 0 < y < H) subject to

u(x, y, 0) = α(x, y),
u(0, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

u(L, y, t) = 0,
∂u

∂y
(x, H, t) = 0.

7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < x < L, 0 <
y < H)

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
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subject to the initial conditions

u(x, y, 0) = 0 and
∂u

∂t
(x, y, 0) = α(x, y).

[Hint : You many assume without derivation that the product solutions u(x, y, t) =
φ(x, y)h(t) satisfy d2h

dt2
= −λc2h and the two-dimensional eigenvalue problem ∇2φ+

λφ = 0, and you may use results of the two-dimensional eigenvalue problem.]

Solve the initial value problem if
(a) u(0, y, t) = 0, u(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x, H, t) = 0

*(b)
∂u

∂x
(0, y, t) = 0,

∂u

∂x
(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0,

∂u

∂y
(x, H, t) = 0

(c) u(0, y, t) = 0, u(L, y, t) = 0, u(x, 0, t) = 0, u(x, H, t) = 0.

7.3.5. Consider
∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
− k

∂u

∂t
with k > 0.

(a) Give a brief physical interpretation of this equation.
(b) Suppose that u(x, y, t) = f(x)g(y)h(t). What ordinary differential equations are

satisfied by f , g, and h?
7.3.6. Consider Laplace’s equation

∇2u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top is z = H,
and the bottom is z = 0. Assume that

∂

∂z
u(x, y, 0) = 0

u(x, y, H) = α(x, y)

and u = 0 on the “lateral” sides.
(a) Separate the z-variable in general.

*(b) Solve for u(x, y, z) if the region is a rectangular box, 0 < x < L, 0 < y < W,
0 < z < H.

7.3.7. Consider solve Laplace’s equation

∇2u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0,

FIGURE 7.3.3
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in a box 0 < x < L, 0 < y < W, 0 < z < H. [Hint : If there are homogeneous
conditions in x and y, you many assume without derivation that the product solu-
tions u(x, y, z) = φ(x, y)h(z) satisfy d2h

dz2 = λh and the two-dimensional eigenvalue
problem ∇2φ + λφ = 0, and you may use results of the two-dimensional eigenvalue
problem. If there are homogeneous conditions in two other directions, then make
the corresponding changes.] Solve the equation subject to the boundary conditions

(a)
∂u

∂x
(0, y, z) = 0, u(x, 0, z) = 0, u(x, y, 0) = α(x, y)

∂u

∂x
(L, y, z) = 0, u(x, W, z) = 0, u(x, y, H) = 0

(b) u(0, y, z) = 0, u(x, 0, z) = 0, u(x, y, 0) = 0,

u(L, y, z) = 0, u(x, W, z) = α(x, z), u(x, y, H) = 0

*(c)
∂u

∂x
(0, y, z) = 0,

∂u

∂y
(x, 0, z) = 0,

∂u

∂z
(x, y, 0) = 0

∂u

∂x
(L, y, z) = α(y, z),

∂u

∂y
(x, W, z) = 0,

∂u

∂z
(x, y, H) = 0

*(d)
∂u

∂x
(0, y, z) = 0,

∂u

∂y
(x, 0, z) = 0,

∂u

∂z
(x, y, 0) = 0

u(L, y, z) = α(y, z),
∂u

∂y
(x, W, z) = 0,

∂u

∂z
(x, y, H) = 0

APPENDIX TO 7.3: OUTLINE OF ALTERNATIVE METHOD
TO SEPARATE VARIABLES

An alternative (and equivalent) method to separate variables for

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
(7.3.33)

is to assume product solutions of the form

u(x, y, t) = f(x)g(y)h(t). (7.3.34)

By substituting (7.3.34) into (7.3.33) and dividing by c2f(x)g(y)h(t), we obtain

1
c2

1
h

d2h

dt2
=

1
f

d2f

dx2
+

1
g

d2g

dy2
= −λ, (7.3.35)

after introducing a separation constant −λ. This shows that

d2h

dt2
= −λc2h. (7.3.36)

Equation (7.3.35) can be separated further,

1
f

d2f

dx2
= −λ − 1

g

d2g

dy2
= −μ, (7.3.37)



282 Chapter 7 Higher-Dimensional Partial Differential Equations

enabling a second separation constant −μ to be introduced:

d2f

dx2
= −μf (7.3.38)

d2g

dy2
= −(λ − μ)g. (7.3.39)

In this way, we have derived the same three ordinary differential equations (with two
separation constants).

7.4 STATEMENTS AND ILLUSTRATIONS OF THEOREMS
FOR THE EIGENVALUE PROBLEM ∇2φ+λφ = 0

In solving the heat equation and the wave equation in any two- or three-dimensional
region R (with constant physical properties, such as density), we have shown that the
spatial part φ(x, y, z) of product form solutions u(x, y, z, t) = φ(x, y, z)h(t) satisfies the
following multidimensional eigenvalue problem:

∇2φ + λφ = 0, (7.4.1)

with
aφ + b∇φ · n̂ = 0 (7.4.2)

on the entire boundary. Here a and b can depend on x, y, and z. Equation (7.4.1) is known
as the Helmholtz equation.

Equation (7.4.1) can be generalized to

∇ · (p∇φ) + qφ + λσφ = 0, (7.4.3)

where p, q, and σ are functions of x, y, and z. This eigenvalue problem [with boundary
condition (7.4.2)] is directly analogous to the one-dimensional regular Sturm–Liouville
eigenvalue problem. We prefer to deal with a somewhat simpler case of (7.4.1), corre-
sponding to p = σ = 1 and q = 0. We will state and prove results for (7.4.1). We leave
the discussion of (7.4.3) to some exercises (in Section 7.5).

Only for very simple geometries [for example, rectangles (see Section 7.3), or circles
(see Section 7.7)] can (7.4.1) be solved explicitly. In other situations, we may have to rely
on numerical treatments. However, certain general properties of (7.4.1) are quite useful,
all analogous to results we understand for the one-dimensional Sturm–Liouville problem.
The reasons for the analogy will be discussed in the next section. We begin by simply
stating the theorems for the two-dimensional case of (7.4.1) and (7.4.2):
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Theorem

1. All the eigenvalues are real.
2. There exist an infinite number of eigenvalues. There is a smallest eigenvalue,

but no largest one.
3. Corresponding to an eigenvalue, there may be many eigenfunctions (unlike

regular Sturm–Liouville eigenvalue problems).
4. The eigenfunctions φ(x, y) form a “complete” set, meaning that any piece-

wise smooth function f(x, y) can be represented by a generalized Fourier
series of the eigenfunctions:

f(x, y) ∼
∑

λ

aλφλ(x, y). (7.4.4)

Here
∑

λ aλφλ means a linear combination of all the eigenfunctions. The
series converges in the mean if the coefficients aλ are chosen correctly.

5. Eigenfunctions belonging to different eigenvalues (λ1 and λ2) are orthogonal
relative to the weight σ(σ = 1) over the entire region R. Mathematically,

∫∫
R

φλ1φλ2 dx dy = 0 if λ1 �= λ2, (7.4.5)

where
∫∫

R
dx dy represents an integral over the entire region R. Further-

more, different eigenfunctions belonging to the same eigenvalue can be made
orthogonal by the Gram–Schmidt process (see Section 7.5). Thus, we may
assume that (7.4.5) is valid even if λ1 = λ2 as long as φλ1 is linearly inde-
pendent of φλ2 .

6. An eigenvalue λ can be related to the eigenfunction by the Rayleigh quo-
tient:

λ =
− ∮

φ∇φ · n̂ ds +
∫∫

R
|∇φ|2 dx dy∫∫

R
φ2 dx dy

. (7.4.6)

The boundary conditions often simplify the boundary integral.

Here n̂ is a unit outward normal and
∮

ds is a closed line integral over the entire boundary
of the plane two-dimensional region, where ds is the differential arc length. The three-
dimensional result is nearly identical;

∫∫
must be replaced by

∫∫∫
and the boundary line

integral
∮

ds must be replaced by the boundary surface integral
∫∫
�
�
�
�dS, where dS is the

differential surface area.

EXAMPLE

We will prove some of these statements in Section 7.5. To understand their meaning,
we will show how the example of Section 7.3 illustrates most of these theorems. For the
vibrations of a rectangular (0 < x < L, 0 < y < H) membrane with fixed zero boundary
conditions, we have shown that the relevant eigenvalue problem is
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∇2φ + λφ = 0
φ(0, y) = 0, φ(x, 0) = 0

φ(L, y) = 0, φ(x,H) = 0.
(7.4.7)

We have determined that the eigenvalues and corresponding eigenfunctions are

λnm =
(nπ

L

)2

+
(mπ

H

)2

,
n = 1, 2, 3, . . .
m = 1, 2, 3, . . .

with φnm(x, y) = sin
nπx

L
sin

mπy

H
.

(7.4.8)

1. Real eigenvalues. In our calculation of the eigenvalues for (7.4.7) we assumed
that the eigenfunctions existed in a product form. Under that assumption, (7.4.8)
showed the eigenvalues to be real. Our theorem guarantees that the eigenvalues will
always be real.

2. Ordering of eigenvalues. There is a doubly infinite set of eigenvalues for (7.4.7),
namely, λnm = (nπ/L)2 + (mπ/H)2 for n = 1, 2, 3, . . . and m = 1, 2, 3, . . . . There
is a smallest eigenvalue, λ11 = (π/L)2 + (π/H)2, but no largest eigenvalue.

3. Multiple eigenvalues. For ∇2φ + λφ = 0, our theorem states that, in general, it
is possible for there to be more than one eigenfunction corresponding to the same
eigenvalue. To illustrate this, consider (7.4.7) in the case in which L = 2H. Then

λnm =
π2

4H2

(
n2 + 4m2

)
(7.4.9)

with
φnm = sin

nπx

2H
sin

mπy

H
. (7.4.10)

We note that it is possible to have different eigenfunctions corresponding to the
same eigenvalue. For example, n = 4, m = 1 and n = 2, m = 2 yield the same
eigenvalue:

λ41 = λ22 =
π2

4H2
20.

For n = 4, m = 1, the eigenfunction is φ41 = sin 4πx/2H sin πy/H, while for n = 2,
m = 2, φ22 = sin 2πx/2H sin 2πy/H. The nodal curves for these eigenfunctions are
sketched in Fig. 7.4.1. They are different eigenfunctions with the same eigenvalue,
λ = (π2/4H2)20. It is not surprising that the eigenvalue is the same, since a mem-
brane vibrating in these modes has cells of the same dimensions: one H ×H/2 and
the other H/2 × H. By symmetry they will have the same natural frequency (and
hence the same eigenvalue since the natural frequency is c

√
λ). In fact, in general

by symmetry [as well as by formula (7.4.9)], λ(2n)m = λ(2m)n.
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L = 2H

H

n = 2
m = 2

L = 2H

H

n = 4
m = 1

FIGURE 7.4.1 Nodal curves for eigenfunctions with the same eigenvalue (symmetric).

However, it is also possible for more than one eigenfunction to occur for reasons
having nothing to do with symmetry. For example, n = 1, m = 4 and n = 7,
m = 2 yield the same eigenvalue: λ14 = λ72 = (π2/4H2)65. The corresponding
eigenfunctions are φ14 = sin πx/2H sin 4πy/H and φ72 = sin 7πx/2H sin 2πy/H,
which are sketched in Fig. 7.4.2. It is only coincidental that both of these shapes
vibrate with the same frequency. In these situations, it is possible for two eigenfunc-
tions to correspond to the same eigenvalue. We can find situations with even more
multiplicities (or degeneracies). Since λ14 = λ72 = (π2/4H2)65, it is also true that
λ28 = λ(14)4 = (π2/4H2)260. However, by symmetry, λ28 = λ(16)1 and λ(14)4 = λ87.
Thus,

λ28 = λ(16)1 = λ(14)4 = λ87 =
(

π2

4H2

)
260.

Here, there are four eigenfunctions corresponding to the same eigenvalue.

4a. Series of eigenfunctions. According to this theorem, (7.4.4), the eigenfunctions
of ∇2φ + λφ = 0 can always be used to represent any piecewise smooth function
f(x, y). In our illustrative example, (7.4.7),

∑
λ becomes a double sum,

L = 2H

H

n = 1
m = 4

L = 2H

H

n = 7
m = 2

FIGURE 7.4.2 Nodal curves for eigenfunction with the same eigenvalue (asymmetric).
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f(x, y) ∼
∞∑

n=1

∞∑
m=1

anm sin
nπx

L
sin

mπy

H
. (7.4.11)

5. Orthogonality of eigenfunctions. We will show that the multidimensional or-
thogonality of the eigenfunctions, as expressed by (7.4.5) for any two different eigen-
functions, can be used to determine the generalized Fourier coefficients in (7.4.4).1

We will do this in exactly the way we did for one-dimensional Sturm–Liouville eigen-
function expansions. We simply multiply (7.4.4) by φλi

and integrate over the entire
region R:

∫∫
R

fφλi
dx dy =

∑
λ

aλ

∫∫
R

φλφλi
dx dy. (7.4.12)

Since the eigenfunctions are all orthogonal to each other (with weight 1 because
∇2φ + λφ = 0), it follows that

∫∫
R

fφλi
dx dy = aλi

∫∫
R

φ2
λi

dx dy, (7.4.13)

or, equivalently,

aλi
=

∫∫
R

fφλi
dx dy∫∫

R
φ2

λi
dx dy

. (7.4.14)

There is no difficulty in forming (7.4.14) from (7.4.13) since the denominator of
(7.4.14) is necessarily positive.

For the special case that occurs for a rectangle with fixed zero boundary condi-
tions, (7.4.7), the generalized Fourier coefficients anm are given by (7.4.14):

anm =

∫ H

0

∫ L

0
f(x, y) sin nπx

L sin mπy
H dx dy∫ H

0

∫ L

0
sin2 nπx

L sin2 mπy
H dx dy

. (7.4.15)

The integral in the denominator may be easily shown to equal (L/2)(H/2) by calcu-
lating two one-dimensional integrals; in this way we rederive (7.3.30). In this case,
(7.4.11), the generalized Fourier coefficient anm can be evaluated in two equivalent
ways:

(a) Using one two-dimensional orthogonality formula for the eigenfunctions of
∇2φ + λφ = 0

(b) Using two one-dimensional orthogonality formulas

1If there is more than one eigenfunction corresponding to the same eigenvalue, then we assume that
the eigenfunctions have been made orthogonal (if necessary by the Gram–Schmidt process).



Section 7.5 Green’s Formula, Self-Adjoint Operators, and Multidimensional Eigenvalue 287

4b. Convergence. As with any Sturm–Liouville eigenvalue problem (see Section 5.10),
a finite series of the eigenfunctions of ∇2φ + λφ = 0 may be used to approximate
a function f(x, y). In particular, we could show that if we measure error in the
mean-square sense,

E ≡
∫∫
R

(
f −

∑
λ

aλφλ

)2

dx dy, (7.4.16)

with weight function 1, then this mean-square error is minimized by the coefficients
aλ being chosen by (7.4.14), the generalized Fourier coefficients. It is known that
the approximation improves as the number of terms increases. Furthermore, E → 0
as all the eigenfunctions are included. We say that the series

∑
λ aλφλ converges

in the mean to f .

EXERCISES 7.4

7.4.1. Consider the eigenvalue problem

∇2φ + λφ = 0

∂φ

∂x
(0, y) = 0, φ(x, 0) = 0

∂φ

∂x
(L, y) = 0, φ(x, H) = 0.

*(a) Show that there is a doubly infinite set of eigenvalues.

(b) If L = H, show that most eigenvalues have more than one eigenfunction.

(c) Show that the eigenfunctions are orthogonal in a two-dimensional sense using
two one-dimensional orthogonality relations.

7.4.2. Without using the explicit solution of (7.4.7), show that λ ≥ 0 from the Rayleigh
quotient, (7.4.6).

7.4.3. If necessary, see Section 7.5:

(a) Derive that
∫∫

(u∇2v − v∇2u) dx dy =
∮

(u∇v − v∇u) · n̂ ds.

(b) From part (a), derive (7.4.5).

7.4.4. Derive (7.4.6). If necessary, see Section 7.6. [Hint : Multiply (7.4.1) by φ and integrate.]

7.5 GREEN’S FORMULA, SELF-ADJOINT OPERATORS, AND MULTIDIMENSIONAL
EIGENVALUE PROBLEMS

Introduction. In this section we prove some of the properties of the multidimensional
eigenvalue problem:

∇2φ + λφ = 0 (7.5.1)
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with

β1φ + β2∇φ · n̂ = 0 (7.5.2)

on the entire boundary. Here β1 and β2 are real functions of the location in space. As
with Sturm–Liouville eigenvalue problems, we will simply assume that there is an infinite
number of eigenvalues for (7.5.1) with (7.5.2) and that the resulting set of eigenfunctions
is complete. Proofs of these statements are difficult and are beyond the intent of this text.
The proofs for various other properties of the multidimensional eigenvalue problem are
quite similar to corresponding proofs for the one-dimensional Sturm–Liouville eigenvalue
problem. We introduce the Laplacian operator

L ≡ ∇2, (7.5.3)

in which case the notation for the multidimensional eigenvalue problem becomes

L(φ) + λφ = 0. (7.5.4)

By comparing (7.5.4) to (7.4.3), we notice that the weight function for this multidimen-
sional problem is expected to be 1.

Multidimensional Green’s formula. The proofs for the one-dimensional
Sturm–Liouville eigenvalue problem depended on uL(v)−vL(u) being an exact differential
(known as Lagrange’s identity). The corresponding integrated form (known as Green’s
formula) was also needed. Similar identities will be derived for the Laplacian opera-
tor, L = ∇2, a multidimensional analog of the Sturm–Liouville differential operator.
We will calculate uL(v) − vL(u) = u∇2v − v∇2u. We recall that ∇2u = ∇ · (∇u) and
∇ · (aB) = a∇ · B + ∇a · B (where a is a scalar and B a vector). Thus,

∇ · (u∇v) = u∇2v + ∇u · ∇v
∇ · (v∇u) = v∇2u + ∇v · ∇u.

(7.5.5)

By subtracting these,

u∇2v − v∇2u = ∇ · (u∇v − v∇u). (7.5.6)

The differential form, (7.5.6), is the multidimensional version of Lagrange’s identity,
(5.5.7). Instead of integrating from a to b as we did for one-dimensional problems, we
integrate over the entire two-dimensional region:

∫∫
R

(
u∇2v − v∇2u

)
dx dy =

∫∫
R

∇ · (u∇v − v∇u) dx dy.

The right-hand side is in the correct form to apply the divergence theorem (recall that∫∫
R
∇ · A dx dy =

∮
A · n̂ ds). Thus,
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∫∫
R

(
u∇2v − v∇2u

)
dx dy =

∮
(u∇v − v∇u) · n̂ ds. (7.5.7)

Equation (7.5.7) is analogous to Green’s formula, (5.5.8). It is known as Green’s second
identity,2 but we will just refer to it as Green’s formula.

We have shown that L = ∇2 is a multidimensional self-adjoint operator in the
following sense:

If u and v are any two functions such that
∮

(u∇v − v∇u) · n̂ ds = 0, (7.5.8)

then ∫∫
R

[
u∇2v − v∇2u

]
dx dy = 0, (7.5.9)

where L = ∇2.

In many problems, prescribed homogeneous boundary conditions will cause the boundary
term to vanish. For example, (7.5.8) and thus (7.5.9) are valid if u and v both vanish on
the boundary. Again for three-dimensional problems,

∫∫
must be replaced by

∫∫∫
and

∮
must be replaced by

∫∫
�
�
�
�.

Orthogonality of the eigenfunctions. As with the one-dimensional Sturm–
Liouville eigenvalue problem, we can prove a number of theorems directly from Green’s
formula (7.5.7). To show eigenfunctions corresponding to different eigenvalues are or-
thogonal, we consider two eigenfunctions φ1 and φ2 corresponding to the eigenvalues
λ1 and λ2:

∇2φ1 + λ1φ1 = 0 or L(φ1) + λ1φ1 = 0

∇2φ2 + λ2φ2 = 0 or L(φ2) + λ2φ2 = 0.
(7.5.10)

If both φ1 and φ2 satisfy the same homogeneous boundary conditions, then (7.5.8) is
satisfied, in which case (7.5.9) follows. Thus

∫∫
R

(−φ1λ2φ2 + φ2λ1φ1) dx dy = (λ1 − λ2)
∫∫
R

φ1φ2 dx dy = 0.

2Green’s first identity arises from integrating (7.5.5) [rather than (7.5.6)] with v = u and applying the
divergence theorem.
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If λ1 �= λ2, then ∫∫
R

φ1φ2 dx dy = 0, (7.5.11)

which means that eigenfunctions corresponding to different eigenvalues are orthogonal
(in a multidimensional sense with weight 1). If two or more eigenfunctions correspond
to the same eigenvalue, they can be made orthogonal to each other (as well as all other
eigenfunctions) by a procedure shown in the appendix of this section known as the Gram–
Schmidt method.

We can now prove that the eigenvalues will be real. The proof is left for an exercise
since the proof is identical to that used for the one-dimensional Sturm–Liouville problem
(see Section 5.5).

EXERCISES 7.5

7.5.1. The vertical displacement of a nonuniform membrane satisfies

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
,

where c depends on x and y. Suppose that u = 0 on the boundary of an irregularly
shaped membrane.

(a) Show that the time variable can be separated by assuming that

u(x, y, t) = φ(x, y)h(t).

Show that φ(x, y) satisfies the eigenvalue problem

∇2φ + λσ(x, y)φ = 0 with φ = 0 on the boundary. (7.5.12)

What is σ(x, y)?

(b) If the eigenvalues are known (and λ > 0), determine the frequencies of vibration.

7.5.2. See Exercise 7.5.1. Consider the two-dimensional eigenvalue problem given in (7.5.12).

(a) Prove that the eigenfunctions belonging to different eigenvalues are orthogonal
using Green’s formula (with what weight?).

(b) Prove that all the eigenvalues are real.

(c) Do Exercise 7.6.1.

7.5.3. Redo Exercise 7.5.2 if the boundary condition is instead

(a) ∇φ · n̂ = 0 on the boundary

(b) ∇φ · n̂ + h(x, y)φ = 0 on the boundary

(c) φ = 0 on part of the boundary and ∇φ · n̂ = 0 on the rest of the boundary

7.5.4. Consider the heat equation in three dimensions with no sources but with nonconstant
thermal properties

cρ
∂u

∂t
= ∇ · (K0∇u),
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where cρ and K0 are functions of x, y, and z. Assume that u = 0 on the boundary.
Show that the time variable can be separated by assuming that

u(x, y, z, t) = φ(x, y, z)h(t).

Show that φ(x, y, z) satisfies the eigenvalue problem

∇ · (p∇φ) + λσ(x, y, z)φ = 0 with φ = 0 on the boundary. (7.5.13)

What are σ(x, y, z) and p(x, y, z)?
7.5.5. See Exercise 7.5.4. Consider the three-dimensional eigenvalue problem given in (7.5.13).

(a) Prove that the eigenfunctions belonging to different eigenvalues are orthogonal
(with what weight?).

(b) Prove that all the eigenvalues are real.
(c) Do Exercise 7.6.3.

7.5.6. Derive an expression for ∫∫
[uL(v) − vL(u)] dx dy

over a two-dimensional region R, where

L = ∇2 + q(x, y) [i.e., L(u) = ∇2u + q(x, y)u].

7.5.7. Consider Laplace’s equation ∇2u = 0 in a three-dimensional region R (where u is the
temperature). Suppose that the heat flux is given on the boundary (not necessarily a
constant).
(a) Explain physically why

∫∫
�
�
�
�∇u · n̂ dS = 0.

(b) Show this mathematically.
7.5.8. Suppose that in a three-dimensional region R

∇2φ = f(x, y, z)

with f given and ∇φ · n̂ = 0 on the boundary.
(a) Show mathematically that (if there is a solution)∫∫

R

∫
f dx dy dz = 0.

(b) Briefly explain physically (using the heat flow model) why condition (a) must
hold for a solution. What happens in a heat flow problem if∫∫

R

∫
f dx dy dz > 0?

7.5.9. Show that the boundary term (7.5.8) vanishes if both u and v satisfy (7.5.2):
(a) Assume that β2 �= 0.
(b) Assume β2 = 0 for part of the boundary.

7.5.10. Evaluate ∇ · (φ∇φ).
7.5.11. Derive Green’s formula (for L = ∇2) in three dimensions.
7.5.12. For the two-dimensional eigenvalue problem ∇2φ = −λφ with φ = 0 on the boundary,

show that eigenfunctions corresponding to different eigenvalues are orthogonal using
Green’s formula.
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APPENDIX TO 7.5: GRAM–SCHMIDT METHOD

We wish to show in general that eigenfunctions corresponding to the same eigenvalue can
be made orthogonal. The process is known as Gram–Schmidt orthogonalization. Let
us suppose that φ1, φ2, . . . , φn are independent eigenfunctions corresponding to the same
eigenvalue. We will form a set of n-independent eigenfunctions denoted ψ1, ψ2, . . . , ψn that
are mutually orthogonal, even if φ1, . . . , φn are not. Let ψ1 = φ1 be any one eigenfunction.
Any linear combination of the eigenfunctions is also an eigenfunction (since they satisfy
the same linear homogeneous differential equation and boundary conditions). Thus, ψ2 =
φ2+cψ1 is also an eigenfunction (automatically independent of ψ1), where c is an arbitrary
constant. We choose c so that ψ2 = φ2 + cψ1 is orthogonal to ψ1:

∫∫
R

ψ1ψ2 dx dy = 0
becomes ∫∫

R

(φ2 + cψ1)ψ1 dx dy = 0.

c is uniquely determined:

c =
− ∫∫

R
φ2ψ1 dx dy∫∫

R
ψ2

1 dx dy
. (7.5.14)

Since there may be more than two eigenfunctions corresponding to the same eigenvalue,
we continue this process.

A third eigenfunction is ψ3 = φ3 + c1ψ1 + c2ψ2, where we choose c1 and c2 so that

ψ3 is orthogonal to the previous two:
∫∫

R
ψ3

(
ψ1

ψ2

)
dx dy = 0. Thus,

∫∫
R

(φ3 + c1ψ1 + c2ψ2)
(

ψ1

ψ2

)
dx dy = 0.

However, ψ2 is already orthogonal to ψ1, and hence

∫∫
R

φ3ψ1 dx dy + c1

∫∫
R

ψ2
1 dx dy = 0

∫∫
R

φ3ψ2 dx dy + c2

∫∫
R

ψ2
2 dx dy = 0,

easily determining the two constants. This process can be used to determine n mutually
orthogonal eigenfunctions. In general,

ψj = φj −
j−1∑
i=1

(∫∫
R

φjψi dx dy∫∫
R

ψ2
i dx dy

)
ψi.

We have shown that even in the case of a multiple eigenvalue, we are always able to
restrict our attention to orthogonal eigenfunctions, if necessary by this Gram–Schmidt
construction.
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7.6 RAYLEIGH QUOTIENT AND LAPLACE’S EQUATION

7.6.1 Rayleigh Quotient

In Section 5.6, we obtained the Rayleigh quotient for the one-dimensional Sturm–Liouville
eigenvalue problem. The result was obtained by multiplying the differential equation by
φ, integrating over the entire region, solving for λ, and simplifying using integration by
parts. We will derive a similar result for

∇2φ + λφ = 0. (7.6.1)

We proceed as before by multiplying (7.6.1) by φ. Integrating over the entire two-
dimensional region and solving for λ yields

λ =
− ∫∫

R
φ∇2φ dx dy∫∫

R
φ2 dx dy

. (7.6.2)

Next, we want to generalize integration by parts to multi-dimensional functions. Integra-
tion by parts is based on the product rule for the derivative, d/dx(fg) = f dg/dx+g df/dx.
Instead of using the derivative, we use a product rule for the divergence, ∇ · (fg) =
f∇·g+g ·∇f . Letting f = φ and g = ∇φ, it follows that ∇·(φ∇φ) = φ∇·(∇φ)+∇φ ·∇φ.
Since ∇ · (∇φ) = ∇2φ and ∇φ · ∇φ = |∇φ|2,

φ ∇2φ = ∇ · (φ ∇φ) − |∇φ|2. (7.6.3)

Using (7.6.3) in (7.6.2) yields an alternative expression for the eigenvalue,

λ =
− ∫ ∫

R
∇ · (φ∇φ) dx dy +

∫ ∫
R
|∇φ|2 dx dy∫ ∫

R
φ2 dx dy

. (7.6.4)

Now we use (again) the divergence theorem to evaluate the first integral in the numerator
of (7.6.4). Since

∫∫
R
∇ · A dx dy =

∮
A · n̂ ds, it follows that

λ =
−

∮
φ∇φ · n̂ ds +

∫∫
R

|∇φ|2 dx dy∫∫
R

φ2 dx dy

, (7.6.5)

known as the Rayleigh quotient. This is quite similar to the Rayleigh quotient for
Sturm–Liouville eigenvalue problems. Note that there is a boundary contribution for
each: −pφ dφ/dx|ba for (5.6.3) and − ∮

φ∇φ · n̂ ds for (7.6.5).

EXAMPLE

We consider any region in which the boundary condition is φ = 0 on the entire boundary.
Then

∮
φ∇φ · n̂ ds = 0, and hence from (7.6.5), λ ≥ 0. If λ = 0, then (7.6.5) implies that

0 =
∫∫
R

|∇φ|2 dx dy. (7.6.6)
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Thus,

∇φ =
∂φ

∂x
î +

∂φ

∂y
ĵ = 0 (7.6.7)

everywhere. From (7.6.7) it follows that ∂φ/∂x = 0 and ∂φ/∂y = 0 everywhere. Thus,
φ is a constant everywhere, but since φ = 0 on the boundary, φ = 0 everywhere. φ = 0
everywhere is not an eigenfunction, and thus we have shown that λ = 0 is not an eigen-
value. In conclusion, λ > 0.

7.6.2 Time-Dependent Heat Equation and Laplace’s Equation

Equilibrium solutions of the time-dependent heat equation satisfy Laplace’s equation.
Solving Laplace’s equation ∇2φ = 0 subject to homogeneous boundary conditions corre-
sponds to investigating whether λ = 0 is an eigenvalue for (7.6.1).

Zero temperature boundary condition. Consider ∇2φ = 0 subject to
φ = 0 along the entire boundary. It can be concluded from (7.6.6) that
φ = 0 everywhere inside the region (since λ = 0 is not an eigenvalue). For an
object of any shape subject to the zero temperature boundary condition on the entire
boundary, the steady-state (equilibrium) temperature distribution is zero temperature,
which is somewhat obvious physically. For the time-dependent heat equation ∂u

∂t = k∇2u,
(7.6.1) arises by separation of variables, and since λ > 0 (from the Rayleigh quotient), we
can prove that u(x, y, t) → 0 as t → ∞, the time-dependent temperature approaches the
equilibrium temperature distribution for large time.

Insulated boundary condition. Consider ∇2φ = 0 subject to ∇φ · n̂ = 0
along the entire boundary. It can be concluded from (7.6.6) that φ = c =
arbitrary constant everywhere inside the region (since λ = 0 is an eigenvalue and
φ = c is the eigenfunction). The constant equilibrium solution can be determined from
the initial value problem for the time-dependent diffusion (heat) equation ∂u

∂t = k∇2u.
The fundamental integral conservation law (see Section 1.5) using the entire region is
d
dt

∫ ∫
u dx dy = k

∮ ∇u · n̂ ds = 0, where we have used the insulated boundary condition.
Thus, the total thermal energy

∫ ∫
u dx dy is constant in time, and its equilibrium value

(t → ∞),
∫ ∫

c dx dy = cA, equals its initial value (t = 0),
∫ ∫

f(x, y) dx dy. In this
way, c = 1

A

∫ ∫
f(x, y) dx dy, so that the constant equilibrium temperature with insulated

boundaries must be the average of the initial temperature distribution. Here A is the
area of the two-dimensional region. For the time-dependent heat equation with insulated
boundary conditions, it can be shown that u(x, y, t) → c = 1

A

∫ ∫
f(x, y) dx dy as t → ∞

since λ ≥ 0 (with φ = 1 corresponding to λ = 0 from the Rayleigh quotient) (i.e.,
the time-dependent temperature approaches the equilibrium temperature distribution for
large time).

Similar results hold in three dimensions.
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EXERCISES 7.6

7.6.1. See Exercise 7.5.1. Consider the two-dimensional eigenvalue problem with σ > 0

∇2φ + λσ(x, y)φ = 0 with φ = 0 on the boundary.

(a) Prove that λ ≥ 0.

(b) Is λ = 0 an eigenvalue, and if so, what is the eigenfunction?

7.6.2. Redo Exercise 7.6.1 if the boundary condition is instead

(a) ∇φ · n̂ = 0 on the boundary

(b) ∇φ · n̂ + h(x, y)φ = 0 on the boundary

(c) φ = 0 on part of the boundary and ∇φ · n̂ = 0 on the rest of the boundary

7.6.3. Redo Exercise 7.6.1 if the differential equation is

∇ · (p∇φ) + λσ(x, y, z)φ = 0

with boundary condition

(a) φ = 0 on the boundary

(b) ∇φ · n̂ = 0 on the boundary

7.6.4. (a) If ∇2φ = 0 with φ = 0 on the boundary, prove that φ = 0 everywhere. (Hint: Use
the fact that λ = 0 is not an eigenvalue for ∇2φ = −λφ.)

(b) Prove that there cannot be two different solutions of the problem

∇2u = f(x, y, z)

subject to the given boundary condition u = g(x, y, z) on the boundary. [Hint:
Consider u1 − u2 and use part (a).]

7.6.5. Derive the Rayleigh quotient in three dimensions for ∇2φ = −λφ.

7.7 VIBRATING CIRCULAR MEMBRANE AND BESSEL FUNCTIONS

7.7.1 Introduction

An interesting application of both one-dimensional (Sturm–Liouville) and multi-
dimensional eigenvalue problems occurs when considering the vibrations of a circular
membrane. The vertical displacement u satisfies the two-dimensional wave equation,

PDE:
∂2u

∂t2
= c2∇2u. (7.7.1)

The geometry suggests that we use polar coordinates, in which case u = u(r, θ, t). We
assume that the membrane has zero displacement at the circular boundary, r = a:

BC: u(a, θ, t) = 0. (7.7.2)
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The initial position and velocity are given:

IC:
u(r, θ, 0) = α(r, θ)

∂u

∂t
(r, θ, 0) = β(r, θ).

(7.7.3)

7.7.2 Separation of Variables

We first separate out the time variable by seeking product solutions,

u(r, θ, t) = φ(r, θ)h(t). (7.7.4)

Then, as shown earlier, h(t) satisfies

d2h

dt2
= −λc2h, (7.7.5)

where λ is a separation constant. From (7.7.5), the natural frequencies of vibration are
c
√

λ (if λ > 0). In addition, φ(r, θ) satisfies the two-dimensional eigenvalue problem

∇2φ + λφ = 0, (7.7.6)

with φ = 0 on the entire boundary, r = a:

φ(a, θ) = 0. (7.7.7)

We will attempt to obtain solutions of (7.7.6) in the product form appropriate for
polar coordinates,

φ(r, θ) = f(r)g(θ), (7.7.8)

since for the circular membrane 0 < r < a, −π < θ < π. This is equivalent to originally
seeking solutions to the wave equation in the form of a product of functions of each
independent variable, u(r, θ, t) = f(r)g(θ)h(t). We substitute (7.7.8) into (7.7.6); in polar
coordinates ∇2φ = 1/r ∂/∂r(r ∂φ/∂r) + 1/r2 ∂2φ/∂θ2, and thus ∇2φ + λφ = 0 becomes

g(θ)
r

d

dr

(
r
df

dr

)
+

f(r)
r2

d2g

dθ2
+ λf(r)g(θ) = 0. (7.7.9)

r and θ may be separated by multiplying by r2 and dividing by f(r)g(θ):

−1
g

d2g

dθ2
=

r

f

d

dr

(
r
df

dr

)
+ λr2 = μ. (7.7.10)

We introduce a second separation constant in the form μ because our experience with
circular regions (see Sections 2.4.2 and 2.5.2) suggests that g(θ) must oscillate in order to
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satisfy the periodic conditions in θ. Our three differential equations, with two separation
constants, are thus

d2h

dt2
= −λc2h (7.7.11)

d2g

dθ2
= −μg (7.7.12)

r
d

dr

(
r
df

dr

)
+

(
λr2 − μ

)
f = 0. (7.7.13)

Two of these equations must be eigenvalue problems. However, ignoring the initial con-
ditions, the only given boundary condition is f(a) = 0, which follows from u(a, θ, t) = 0
or φ(a, θ) = 0. We must remember that −π < θ < π and 0 < r < a. Thus, both θ and
r are defined over finite intervals. As such, there should be boundary conditions at both
ends. The periodic nature of the solution in θ implies that

g(−π) = g(π) (7.7.14)

dg

dθ
(−π) =

dg

dθ
(π). (7.7.15)

We already have a condition at r = a. Polar coordinates are singular at r = 0; a singularity
condition must be introduced there. Since the displacement must be finite, we conclude
that

|f(0)| < ∞.

7.7.3 Eigenvalue Problems (One-Dimensional)

After separating variables, we have obtained two eigenvalue problems. We are quite
familiar with the θ-eigenvalue problem, (7.7.12) with (7.7.14) and (7.7.15). Although
it is not a regular Sturm–Liouville problem due to the periodic boundary conditions, we
know that the eigenvalues are

μm = m2, m = 0, 1, 2, . . . . (7.7.16)

The corresponding eigenfunctions are both

g(θ) = sin mθ and g(θ) = cos mθ, (7.7.17)

although for m = 0, this reduces to one eigenfunction (not two as for m �= 0). This
eigenvalue problem generates a full Fourier series in θ, as we already know. m is the
number of crests in the θ-direction.
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For each integral value of m, (7.7.13) helps to define an eigenvalue problem for λ:

r
d

dr

(
r
df

dr

)
+ (λr2 − m2)f = 0 (7.7.18)

f(a) = 0 (7.7.19)

|f(0)| < ∞. (7.7.20)

Since (7.7.18) has nonconstant coefficients, it is not surprising that (7.7.18) is somewhat
difficult to analyze. Equation (7.7.18) can be put in the Sturm–Liouville form by dividing
it by r:

d

dr

(
r
df

dr

)
+

(
λr − m2

r

)
f = 0, (7.7.21)

or Lf + λrf = 0, where L = d/dr (r d/dr)−m2/r. By comparison to the general Sturm–
Liouville differential equation,

d

dx

[
p(x)

dφ

dx

]
+ qφ + λσφ = 0,

with independent variable r, we have that x = r, p(r) = r, σ(r) = r, and q(r) = −m2/r.
Our problem is not a regular Sturm–Liouville problem due to the behavior at the origin
(r = 0):

1. The boundary condition (7.7.20) at r = 0, is not of the correct form.
2. p(r) = 0 and σ(r) = 0 at r = 0 (and hence are not positive everywhere).
3. q(r) approaches ∞ as r → 0 [and hence q(r) is not continuous] for m �= 0.

However, we claim that all the statements concerning regular Sturm–Liouville problems
are still valid for this important singular Sturm–Liouville problem. To begin with, there
are an infinite number of eigenvalues (for each m). We designate the eigenvalues as λnm,
where m = 0, 1, 2, . . . and n = 1, 2, . . ., and the eigenfunctions fnm(r). For each fixed m,
these eigenfunctions are orthogonal with weight r [see (7.7.21)], since it can be shown
that the boundary terms vanish in Green’s formula (see Exercise 5.5.1). Thus,∫ a

0

fmn1fmn2r dr = 0 for n1 �= n2. (7.7.22)

Shortly, we will state more explicit facts about these eigenfunctions.
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7.7.4 Bessel’s Differential Equation

The r-dependent separation of variables solution satisfies a “singular” Sturm–Liouville
differential equation, (7.7.21). An alternative form is obtained by using the product rule
of differentiation and by multiplying by r:

r2 d2f

dr2
+ r

df

dr
+

(
λr2 − m2

)
f = 0. (7.7.23)

There is some additional analysis of (7.7.23) that can be performed. Equation (7.7.23)
contains two parameters, m and λ. We already know that m is an integer, but the allowable
values of λ are as yet unknown. It would be quite tedious to solve (7.7.23) numerically
for various values of λ (for different integral values of m). Instead, we might notice that
the simple scaling transformation,

z =
√

λr, (7.7.24)

removes the dependence of the differential equation on λ:

z2 d2f

dz2
+ z

df

dz
+

(
z2 − m2

)
f = 0. (7.7.25)

We note that the change of variables (7.7.24) may be performed3 since we showed in
Section 7.6 from the multidimensional Rayleigh quotient that λ > 0 (for ∇2φ + λφ = 0)
anytime φ = 0 on the entire boundary, as it is here. We can also show that λ > 0 for
this problem using the one-dimensional Rayleigh quotient based on (7.7.18)–(7.7.20) (see
Exercise 7.7.13). Equation (7.7.25) has the advantage of not depending on λ; less work
is necessary to compute solutions of (7.7.25) than of (7.7.23). However, we have gained
more than that because (7.7.25) has been investigated for over 150 years. It is now known
as Bessel’s differential equation of order m.

7.7.5 Singular Points and Bessel’s Differential Equation

In this subsection we briefly develop some of the properties of Bessel’s differential equation.
Equation (7.7.25) is a second-order linear differential equation with variable coefficients.
We will not be able to obtain an exact closed-form solution of (7.7.25) involving elementary
functions. To analyze a differential equation, one of the first things we should do is search
for any special values of z that might cause some difficulties. z = 0 is a singular point of
(7.7.25).

3In other problems, if λ = 0, then the transformation (7.7.24) is invalid. However, (7.7.24) is unneces-
sary for λ = 0 since in this case (7.7.23) becomes an equidimensional equation and can be solved (as in
Section 2.5.2).
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Perhaps we should define a singular point of a differential equation. We refer to the
standard form:

d2f

dz2
+ a(z)

df

dz
+ b(z)f = 0.

If a(z) and b(z) and all their derivatives are finite at z = z0, then z = z0 is called an
ordinary point. Otherwise, z = z0 is a singular point. For Bessel’s differential equation,
a(z) = 1/z and b(z) = 1 − m2/z2. All finite4 z except z = 0 are ordinary points. z = 0 is
a singular point [since, for example, a(0) does not exist].

In the neighborhood of any ordinary point, it is known from the theory of differential
equations that all solutions of the differential equation are well behaved [i.e., f(z) and
all its derivatives exist at any ordinary point]. We thus are guaranteed that all solutions
of Bessel’s differential equation are well behaved at every finite point except possibly at
z = 0. The only difficulty can occur in the neighborhood of z = 0. We will investigate
the expected behavior of solutions of Bessel’s differential equation in the neighborhood
of z = 0. We will describe a crude (but important) approximation. If z is very close to 0,
then we should expect that z2f in Bessel’s differential equation can be ignored, since it
is much smaller than m2f .5 We do not ignore z2 d2f/dz2 or z df/dz because although z
is small, it is possible that derivatives of f are large enough so that z df/dz is as large as
−m2f . Dropping z2f yields

z2 d2f

dz2
+ z

df

dz
− m2f ≈ 0, (7.7.26)

a valid approximation near z = 0. The advantage of this approximation is that (7.7.26) is
exactly solvable, since it is an equidimensional (also known as a Cauchy or Euler) equation
(see Section 2.5.2). Equation (7.7.26) can be solved by seeking solutions in the form

f ≈ zs. (7.7.27)

By substituting (7.7.27) into (7.7.26) we obtain a quadratic equation for s,

s(s − 1) + s − m2 = 0, (7.7.28)

known as the indicial equation. Thus, s2 = m2, and the two roots (indices) are s = ±m.
If m �= 0 (in which case we assume m > 0), then we obtain two independent approximate
solutions:

f ≈ zm and f ≈ z−m (m > 0). (7.7.29)

However, if m = 0, we obtain only one independent solution f ≈ z0 = 1. A second solution
is easily derived from (7.7.26). If m = 0,

z2 d2f

dz2
+ z

df

dz
≈ 0 or z

d

dz

(
z

df

dz

)
≈ 0.

4With an appropriate definition, it can be shown that z = ∞ is not an ordinary point for Bessel’s
differential equation.

5Even if m = 0, we still claim that z2f can be neglected near z = 0, and the result will give a
reasonable approximation.
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Thus, z df/dz is constant, and, in addition to f ≈ 1, it is also possible for f ≈ ln z. In
summary, for m = 0, two independent solutions have the expected behavior near z = 0,

f ≈ 1 and f ≈ ln z (m = 0). (7.7.30)

The general solution of Bessel’s differential equation will be a linear combination of
two independent solutions, satisfying (7.7.29) if m �= 0 and (7.7.30) if m = 0. We have
obtained the expected approximate behavior only near z = 0. More will be discussed in
the next subsection. Because of the singular point at z = 0, it is possible for solutions not
to be well behaved at z = 0. We see from (7.7.29) and (7.7.30) that independent solutions
of Bessel’s differential equation can be chosen such that one is well behaved at z = 0 and
one solution is not well behaved at z = 0 [note that for one solution, limz→0 f(z) = ±∞].

7.7.6 Bessel Functions and Their Asymptotic Properties (Near z =0)

We continue to discuss Bessel’s differential equation of order m,

z2 d2f

dz2
+ z

df

dz
+

(
z2 − m2

)
f = 0. (7.7.31)

As motivated by the previous discussion, we claim there are two types of solutions, solu-
tions that are well behaved near z = 0 and solutions that are singular at z = 0. Different
values of m yield a different differential equation. Its corresponding solution will depend
on m. We introduce the standard notation for a well-behaved solution of (7.7.31), Jm(z),
called the Bessel function of the first kind of order m. In a similar vein, we intro-
duce the notation for a singular solution of Bessel’s differential equation, Ym(z), called
the Bessel function of the second kind of order m. You can solve a lot of problems
using Bessel’s differential equation by just remembering that Ym(z) approaches ±∞ as
z → 0.

The general solution of any linear homogeneous second-order differential equation is
a linear combination of two independent solutions. Thus, the general solution of Bessel’s
differential equation (7.7.31) is

f = c1Jm(z) + c2Ym(z). (7.7.32)

Precise definitions of Jm(z) and Ym(z) are given in Section 7.8. However, for our imme-
diate purposes, we simply note that they satisfy the following asymptotic properties for
small z (z → 0):

Jm(z) ∼
{

1

1
2mm!z

m

m = 0

m > 0

Ym(z) ∼
{ 2

π ln z

− 2m(m−1)!
π z−m

m = 0

m > 0.

(7.7.33)
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It should be seen that (7.7.33) is consistent with our approximate behavior, (7.7.29) and
(7.7.30). We see that Jm(z) is bounded as z → 0, whereas Ym(z) is not.

7.7.7 Eigenvalue Problem Involving Bessel Functions

In this section we determine the eigenvalues of the singular Sturm–Liouville problem
(m fixed):

d

dr

(
r
df

dr

)
+

(
λr − m2

r

)
f = 0 (7.7.34)

f(a) = 0 (7.7.35)

|f(0)| < ∞. (7.7.36)

By the change of variables z =
√

λr, (7.7.34) becomes Bessel’s differential equation,

z2 d2f

dz2
+ z

df

dz
+

(
z2 − m2

)
f = 0.

The general solution is a linear combination of Bessel functions, f = c1Jm(z) + c2Ym(z).
The scale change implies that in terms of the radial coordinate r,

f = c1Jm(
√

λr) + c2Ym(
√

λr). (7.7.37)

Applying the homogeneous boundary conditions (7.7.35) and (7.7.36) will determine the
eigenvalues. f(0) must be finite. However, Ym(0) is infinite. Thus, c2 = 0, implying that

f = c1Jm(
√

λr). (7.7.38)

Thus, the condition f(a) = 0 determines the eigenvalues:

Jm(
√

λa) = 0. (7.7.39)

We see that
√

λa must be a zero of the Bessel function Jm(z). Later in Section 7.8.1, we
show that a Bessel function is a decaying oscillation. There is an infinite number of zeros
of each Bessel function Jm(z). Let zmn designate the nth zero of Jm(z). Then

√
λa = zmn or λmn =

(zmn

a

)2

. (7.7.40)
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For each m, there is an infinite number of eigenvalues, and (7.7.40) is analogous to
λ = (nπ/L)2, where nπ are the zeros of sin x.

EXAMPLE

Consider J0(z), sketched in detail in Fig. 7.7.1. From accurate tables, it is known that
the first zero of J0(z) is z = 2.4048255577... . Other zeros are recorded in Fig. 7.7.1. The
eigenvalues are λ0n = (z0n/a)2. Separate tables of the zeros are available. The Handbook
of Mathematical Functions (Abramowitz and Stegun, 1974) is one source. Alternatively,
over 700 pages are devoted to Bessel functions in A Treatise on the Theory of Bessel
Functions by Watson (1995).

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1
J0(z)

z01 = 2.40483...

z01

z02 = 5.52008...
z03 = 8.65373...
z04 = 11.79153...

z02 z03 z04

FIGURE 7.7.1 Sketch of J0(z) and its zeros.

Eigenfunctions. The eigenfunctions are thus

Jm

(√
λmnr

)
= Jm

(
zmn

r

a

)
, (7.7.41)

for m = 0, 1, 2, . . . , n = 1, 2, . . . . For each m, these are an infinite set of eigenfunctions for
the singular Sturm–Liouville problem, (7.7.34)–(7.7.36). For fixed m, they are orthogonal
with weight r [as already discussed, see (7.7.22)]:

∫ a

0

Jm

(√
λmpr

)
Jm

(√
λmqr

)
r dr = 0, p �= q. (7.7.42)

It is known that this infinite set of eigenfunctions (m fixed) is complete. Thus, any piece-
wise smooth function of r can be represented by a generalized Fourier series of the eigen-
functions:

α(r) =
∞∑

n=1

anJm

(√
λmnr

)
, (7.7.43)

where m is fixed. This is sometimes known as a Fourier–Bessel series. The coefficients
can be determined by the orthogonality of the Bessel functions (with weight r):

an =

∫ a

0
α(r)Jm

(√
λmnr

)
r dr∫ a

0
J2

m

(√
λmnr

)
r dr

. (7.7.44)
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This illustrates the one-dimensional orthogonality of the Bessel functions. We omit the
evaluation of the normalization integrals

∫ a

0
J2

m

(√
λmnr

)
r dr (e.g., see Churchill [1972]

or Berg and McGregor [1966]).

7.7.8 Initial Value Problem for a Vibrating Circular Membrane

The vibrations u(r, θ, t) of a circular membrane are described by the two-dimensional
wave equation, (7.7.1), with u being fixed on the boundary, (7.7.2), subject to the initial
conditions (7.7.3). When we apply the method of separation of variables, we obtain four
families of product solutions, u(r, θ, t) = f(r)g(θ)h(t):

Jm

(√
λmnr

) {
cos mθ
sin mθ

} {
cos c

√
λmnt

sin c
√

λmnt

}
. (7.7.45)

To simplify the algebra, we will assume that the membrane is initially at rest,

∂u

∂t
(r, θ, 0) = β(r, θ) = 0.

Thus, the sin c
√

λmnt-terms in (7.7.45) will not be necessary. Then according to the
principle of superposition, we attempt to satisfy the initial value problem by considering
the infinite linear combination of the remaining product solutions:

u(r, θ, t) =
∞∑

m=0

∞∑
n=1

AmnJm

(√
λmnr

)
cos mθ cos c

√
λmnt

+
∞∑

m=1

∞∑
n=1

BmnJm

(√
λmnr

)
sin mθ cos c

√
λmnt. (7.7.46)

The initial position u(r, θ, 0) = α(r, θ) implies that

α(r, θ) =
∞∑

m=0

( ∞∑
n=1

AmnJm

(√
λmnr

))
cos mθ

+
∞∑

m=1

( ∞∑
n=1

BmnJm

(√
λmnr

))
sin mθ. (7.7.47)

By properly arranging the terms in (7.7.47), we see that this is an ordinary Fourier series
in θ. Their Fourier coefficients are Fourier–Bessel series (note that m is fixed). Thus,
the coefficients may be determined by the orthogonality of Jm

(√
λmnr

)
with weight

r [as in (7.7.44)]. As such, we can determine the coefficients by repeated application
of one-dimensional orthogonality. Two families of coefficients Amn and Bmn (including
m = 0) can be determined from one initial condition since the periodicity in θ yielded
two eigenfunctions corresponding to each eigenvalue.

However, it is somewhat easier to determine all the coefficients using two-dimensional
orthogonality. Recall that for the two-dimensional eigenvalue problem,

∇2φ + λφ = 0
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with φ = 0 on the circle of radius a, the two-dimensional eigenfunctions are the doubly
infinite families

φλ(r, θ) = Jm

(√
λmnr

) {
cos mθ
sin mθ

}
.

Thus,
α(r, θ) =

∑
λ

Aλφλ(r, θ), (7.7.48)

where
∑

λ stands for a summation over all eigenfunctions [actually two double sums, in-
cluding both sinmθ and cos mθ as in (7.7.47)]. These eigenfunctions φλ(r, θ) are orthogonal
(in a two-dimensional sense) with weight 1. We then immediately calculate Aλ (repre-
senting both Amn and Bmn),

Aλ =
∫ ∫

α(r, θ)φλ(r, θ) dA∫ ∫
φ2

λ(r, θ) dA
. (7.7.49)

Here dA = r dr dθ. In two dimensions, the weighting function is constant. However,
for geometric reasons, dA = r dr dθ. Thus, the weight r that appears in the one-
dimensional orthogonality of Bessel functions is just a geometric factor.

7.7.9 Circularly Symmetric Case

In this subsection, as an example, we consider the vibrations of a circular membrane, with
u = 0 on the circular boundary, in the case in which the initial conditions are circularly
symmetric (meaning independent of θ). We could consider this as a special case of the
general problem, analyzed in Section 7.7.8. An alternative method, which yields the same
result, is to reformulate the problem. The symmetry of the problem, including the initial
conditions, suggests that the entire solution should be circularly symmetric; there should
be no dependence on the angle θ. Thus,

u = u(r, t) and ∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
since

∂2u

∂θ2
= 0.

The mathematical formulation is thus

PDE:
∂2u

∂t2
=

c2

r

∂

∂r

(
r
∂u

∂r

)
(7.7.50)

BC: u(a, t) = 0 (7.7.51)

IC:
u(r, 0) = α(r)

∂u

∂t
(r, 0) = β(r).

(7.7.52)
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We note that the partial differential equation has two independent variables. We need not
study this problem in this chapter, which is reserved for problems with more than two
independent variables. We could have analyzed this problem earlier. However, as we will
see, Bessel functions are the radially dependent functions, and thus it is more natural to
discuss this problem in the present part of this text.

We will apply the method of separation of variables to (7.7.50)–(7.7.52). Looking
for product solutions,

u(r, t) = φ(r)h(t), (7.7.53)

yields
1
c2

1
h

d2h

dt2
=

1
rφ

d

dr

(
r
dφ

dr

)
= −λ, (7.7.54)

where −λ is introduced because we suspect that the displacement oscillates in time. The
time-dependent equation,

d2h

dt2
= −λc2h,

has solutions sin c
√

λt and cos c
√

λt if λ > 0. The eigenvalue problem for the separation
constant is

d

dr

(
r
dφ

dr

)
+ λrφ = 0 (7.7.55)

φ(a) = 0 (7.7.56)

|φ(0)| < ∞. (7.7.57)

Since (7.7.55) is in the form of a Sturm–Liouville problem, we immediately know that
eigenfunctions corresponding to distinct eigenvalues are orthogonal with weight r.

From the Rayleigh quotient, we could show that λ > 0. Thus, we may use the
transformation

z =
√

λr, (7.7.58)

in which case (7.7.55) becomes

d

dz

(
z
dφ

dz

)
+ zφ = 0 or z2 d2φ

dz2
+ z

dφ

dz
+ z2φ = 0. (7.7.59)

We may recall that Bessel’s differential equation of order m is

z2 d2φ

dz2
+ z

dφ

dz
+

(
z2 − m2

)
φ = 0, (7.7.60)
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with solutions being Bessel functions of order m,Jm(z) and Ym(z). A comparison with
(7.7.60) shows that (7.7.59) is Bessel’s differential equation of order 0. The general solution
of (7.7.59) is thus a linear combination of the zeroth-order Bessel functions:

φ = c1J0(z) + c2Y0(z) = c1J0

(√
λr

)
+ c2Y0

(√
λr

)
, (7.7.61)

in terms of the radial variable. The singularity condition at the origin (7.7.57) shows that
c2 = 0, since Y0

(√
λr

)
has a logarithmic singularity at r = 0:

φ = c1J0

(√
λr

)
. (7.7.62)

Finally, the eigenvalues are determined by the condition at r = a, (7.7.56), in which case

J0

(√
λa

)
= 0. (7.7.63)

Thus,
√

λa must be a zero of the zeroth Bessel function. We thus obtain an infinite number
of eigenvalues, which we label λ1, λ2, . . . .

We have obtained two infinite families of product solutions

J0

(√
λnr

)
sin c

√
λnt and J0

(√
λnr

)
cos c

√
λnt.

According to the principle of superposition, we seek solutions to our original problem,
(7.7.50)–(7.7.52), in the form

u(r, t) =
∞∑

n=1

anJ0

(√
λnr

)
cos c

√
λnt +

∞∑
n=1

bnJ0

(√
λnr

)
sin c

√
λnt. (7.7.64)

As before, we determine the coefficients an and bn from the initial conditions. u(r, 0) =
α(r) implies that

α(r) =
∞∑

n=1

anJ0

(√
λnr

)
. (7.7.65)

The coefficients an are thus the Fourier–Bessel coefficients (of order 0) of α(r). Since
J0

(√
λnr

)
forms an orthogonal set with weight r, we can easily determine an,

an =

∫ a

0

α(r)J0

(√
λnr

)
r dr

∫ a

0

J2
0

(√
λnr

)
r dr

. (7.7.66)

In a similar manner, the initial condition ∂/∂t u(r, 0) = β(r) determines bn.
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EXERCISES 7.7

*7.7.1. Solve as simply as possible:
∂2u

∂t2
= c2∇2u

with u(a, θ, t) = 0, u(r, θ, 0) = 0 and ∂u
∂t (r, θ, 0) = α(r) sin 3θ.

7.7.2. Solve as simply as possible:

∂2u

∂t2
= c2∇2u subject to

∂u

∂r
(a, θ, t) = 0

with initial conditions
(a) u(r, θ, 0) = 0,

∂u

∂t
(r, θ, 0) = β(r) cos 5θ

(b) u(r, θ, 0) = 0,
∂u

∂t
(r, θ, 0) = β(r)

(c) u(r, θ, 0) = α(r, θ),
∂u

∂t
(r, θ, 0) = 0

*(d)u(r, θ, 0) = 0,
∂u

∂t
(r, θ, 0) = β(r, θ)

7.7.3. Consider a vibrating quarter-circular membrane, 0 < r < a, 0 < θ < π/2, with u = 0
on the entire boundary. [Hint : You may assume without derivation that λ > 0 and
that product solutions

u(r, θ, t) = φ(r, θ)h(t) = f(r)g(θ)h(t)

satisfy

∇2φ + λφ = 0
dh

dt
= −λkh

d2g

dθ2
= −μg

r
d

dr

(
r
df

dr

)
+ (λr2 − μ)f = 0.]

*(a) Determine an expression for the frequencies of vibration.

(b) Solve the initial value problem if

u(r, θ, 0) = g(r, θ),
∂u

∂t
(r, θ, 0) = 0.

(c) Solve the wave equation inside a quarter-circle, subject to the conditions

∂u

∂r
(a, θ, t) = 0, u(r, 0, t) = 0

u
(
r,

π

2
, t

)
= 0, u(r, θ, 0) = 0

∂u

∂t
(r, θ, 0) = β(r, θ)
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7.7.4. Consider the displacement u(r, θ, t) of a “pie-shaped” membrane of radius a (and
angle π/3 = 60◦) that satisfies

∂2u

∂t2
= c2∇2u.

Assume that λ > 0. Determine the natural frequencies of oscillation if the boundary
conditions are

(a) u(r, 0, t) = 0, u(r, π/3, t) = 0,
∂u

∂r
(a, θ, t) = 0

(b) u(r, 0, t) = 0, u(r, π/3, t) = 0, u(a, θ, t) = 0

*7.7.5. Consider the displacement u(r, θ, t) of a membrane whose shape is a 90◦ sector of
an annulus, a < r < b, 0 < θ < π/2, with the conditions that u = 0 on the entire
boundary. Determine the natural frequencies of vibration.

7.7.6. Consider the displacement u(r, θ, t) of a circular membrane satisfying

∂2u

∂t2
= c2∇2u

subject to the boundary condition

u(a, θ, t) = −∂u

∂r
(a, θ, t).

(a) Show that this membrane only oscillates.

(b) Obtain an expression that determines the natural frequencies.

(c) Solve the initial value problem if

u(r, θ, 0) = 0,
∂u

∂t
(r, θ, 0) = α(r) sin 3θ.

7.7.7. Solve the heat equation
∂u

∂t
= k∇2u

inside a circle of radius a with zero temperature around the entire boundary, if
initially

u(r, θ, 0) = f(r, θ).

Briefly analyze limt→∞ u(r, θ, t). Compare this to what you expect to occur using
physical reasoning as t → ∞.

*7.7.8. Solve Exercise 7.7.7, but with the entire boundary insulated.
7.7.9. Solve the heat equation

∂u

∂t
= k∇2u

inside a semicircle of radius a, and briefly analyze the limt→∞ if the initial conditions
are

u(r, θ, 0) = f(r, θ)
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and the boundary conditions are
(a) u(r, 0, t) = 0, u(r, π, t) = 0,

∂u

∂r
(a, θ, t) = 0

*(b)
∂u

∂θ
(r, 0, t) = 0,

∂u

∂θ
(r, π, t) = 0,

∂u

∂r
(a, θ, t) = 0

(c)
∂u

∂θ
(r, 0, t) = 0,

∂u

∂θ
(r, π, t) = 0, u(a, θ, t) = 0

(d) u(r, 0, t) = 0, u(r, π, t) = 0, u(a, θ, t) = 0

*7.7.10. Solve for u(r, t) if it satisfies the circularly symmetric heat equation

∂u

∂t
= k

1
r

∂

∂r

(
r
∂u

∂r

)

subject to the conditions
u(a, t) = 0
u(r, 0) = f(r).

Briefly analyze the limt→∞.
7.7.11. Solve Exercise 7.7.10 with the boundary condition

∂u

∂r
(a, t) = 0

but the same initial condition
7.7.12. For the following differential equations, what is the expected approximate behavior

of all solutions near x = 0?

*(a) x2 d2y

dx2
+ (x − 6)y = 0 (b) x2 d2y

dx2
+

(
x2 +

3
16

)
y = 0

*(c) x2 d2y

dx2
+ (x + x2)

dy

dx
+ 4y = 0 (d) x2 d2y

dx2
+ (x + x2)

dy

dx
− 4y = 0

*(e) x2 d2y

dx2
− 4x

dy

dx
+

(
6 + x3

)
y = 0 (f) x2 d2y

dx2
+

(
x +

1
4

)
y = 0

7.7.13. Using the one-dimensional Rayleigh quotient, show that λ > 0 as defined by (7.7.18)–
(7.7.20).

7.7.14. Solve the wave equation inside a 45◦(π
4 ) sector of a circle,

∂2u

∂t2
= c2∇2u = c2

[
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2

]
,

subject to the conditions

u(a, θ, t) = 0, u(r, 0, t) = 0

u
(
r,

π

4
, t

)
= 0, u(r, θ, 0) = α(r, θ)

∂u

∂t
(r, θ, 0) = 0.

[Hint : You many assume without derivation that λ > 0 and that product solutions

u(r, θ, t) = φ(r, θ)h(t) = f(r)g(θ)h(t)
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satisfy
(∇2φ + λφ = 0)

d2h

dt2
= −λc2h

d2g

dθ2
= −μg

r
d

dr

(
r
df

dr

)
+ (λr2 − μ)f = 0.]

7.7.15. Solve the wave equation inside a 30◦(π
6 ) sector of a circle. [Hint : See hints for

Exercise 7.7.14.]

∂2u

∂t2
= c2∇2u = c2

[
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2

]
,

subject to the conditions

u(a, θ, t) = 0, u(r, 0, t) = 0

u
(
r,

π

6
, t

)
= 0, u(r, θ, 0) = 0

∂u

∂t
(r, θ, 0) = β(r, θ).

7.7.16. Solve the heat equation inside a quarter-circle,

∂u

∂t
= k∇2u = k

[
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2

]
,

subject to the conditions

∂u

∂t
(a, θ, t) = 0, u(r, 0, t) = 0

u
(
r,

π

2
, t

)
= 0, u (r, θ, 0) = α(r, θ).

[Hint : You many assume without derivation that λ > 0 and that product solutions

u(r, θ, t) = φ(r, θ)h(t) = f(r)g(θ)h(t)

satisfy
(∇2φ + λφ = 0)

dh

dt
= −λkh

d2g

dθ2
= −μg

r
d

dr

(
r
df

dr

)
+ (λr2 − μ)f = 0.]
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7.8 MORE ON BESSEL FUNCTIONS

7.8.1 Qualitative Properties of Bessel Functions

It is helpful to have some understanding of the sketch of Bessel functions. Let us rewrite
Bessel’s differential equation as

d2f

dz2
= −

(
1 − m2

z2

)
f − 1

z

df

dz
, (7.8.1)

in order to compare it with the equation describing the motion of a spring-mass system
(unit mass, spring “constant” k, and frictional coefficient c):

d2y

dt2
= −ky − c

dy

dt
.

The equilibrium is y = 0. Thus, we might think of Bessel’s differential equation as rep-
resenting a time-varying frictional force (c = 1/t) and a time-varying “restoring” force
(k = 1 − m2/t2). The latter force is a variable restoring force only for t > m (z > m).
We might expect the solutions of Bessel’s differential equation to be similar to a damped
oscillator (at least for z > m). The larger z gets, the closer the variable spring constant
k approaches 1, and the more the frictional force tends to vanish. The solution should
oscillate with frequency approximately 1 but should slowly decay. This is similar to an un-
derdamped spring-mass system, but the solutions to Bessel’s differential equation should
decay more slowly than any exponential since the frictional force is approaching zero.
Detailed plots of Bessel functions are sketched in Fig. 7.8.1, verifying these points. Note
that for small z,

J0(z) ≈ 1, Y0(z) ≈ 2
π

ln z

J1(z) ≈ 1
2
z, Y1(z) ≈ − 2

π
z−1

J2(z) ≈ 1
8
z2, Y2(z) ≈ − 4

π
z−2.

(7.8.2)

0 5 10
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
J0(z)

z
0 5 10

−1

−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Y0(z)

Y1(z)

z

J1(z)

−0.8
−0.6

FIGURE 7.8.1 Sketch of various Bessel functions.
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These sketches vividly show a property worth memorizing: Bessel functions of
the first and second kind look like decaying oscillations. In fact, it is known
that Jm(z) and Ym(z) may be accurately approximated by simple algebraically decaying
oscillations for large z:

Jm(z) ∼
√

2
πz

cos
(
z − π

4
− m

π

2

)
as z → ∞

Ym(z) ∼
√

2
πz

sin
(
z − π

4
− m

π

2

)
as z → ∞.

(7.8.3)

These are known as asymptotic formulas, meaning that the approximations improve as
z → ∞. In Section 5.9 we claimed that approximation formulas similar to (7.8.3) always
exist for any Sturm–Liouville problem for the large eigenvalues λ � 1. Here λ � 1 implies
that z � 1 since z =

√
λr and 0 < r < a (as long as r is not too small).

A derivation of (7.8.3) requires facts beyond the scope of this text. However, infor-
mation such as (7.8.3) is readily available from many sources.6 We notice from (7.8.3) that
the only difference in the approximate behavior for large z of all these Bessel functions is
the precise phase shift. We also note that the frequency is approximately 1 (and period
2π) for large z, consistent with the comparison with a spring-mass system with vanishing
friction and k → 1. Furthermore, the amplitude of oscillation,

√
2/πz, decays more slowly

as z → ∞ than the exponential rate of decay associated with an underdamped oscillator,
as previously discussed qualitatively.

7.8.2 Asymptotic Formulas for the Eigenvalues

Approximate values of the zeros of the eigenfunctions Jm(z) may be obtained using these
asymptotic formulas, (7.8.3). For example, for m = 0, for large z

J0(z) ∼
√

2
πz

cos
(
z − π

4

)
.

The zeros approximately occur when z −π/4 = −π/2 + sπ, but s must be large (in order
for z to be large). Thus, the large zeros are given approximately by

z ∼ π

(
s − 1

4

)
(7.8.4)

for large integral s. We claim that formula (7.8.4) becomes more and more accurate as
n increases. In fact, since the formula is reasonably accurate already for n = 2 or 3 (see
Table 7.8.1), it may be unnecessary to compute the zero to a greater accuracy than is

6A personal favorite, highly recommended to students with a serious interest in the applica-
tions of mathematics to science and engineering, is Handbook of Mathematical Functions, edited by
M. Abramowitz and I. A. Stegun, originally published inexpensively by the National Bureau of Standards
in 1964 and in 1974 reprinted by Dover in paperback. This has been updated (2010) by NIST and edited
by Olver, Lozier, Bolsvert, and Clark.
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TABLE 7.8.1: Zeros of J0(z)

Large z formula Percentage
n z0n Exact (7.8.4) Error error z0n − z0(n−1)

1 z01 2.40483... 2.35619 0.04864 2.0 —
2 z02 5.52008... 5.49779 0.02229 0.4 3.11525
3 z03 8.65373... 8.63938 0.01435 0.2 3.13365
4 z04 11.79153... 11.78097 0.01156 0.1 3.13780

given by (7.8.4). A further indication of the accuracy of the asymptotic formula is that
we see that the differences of the first few eigenvalues are already nearly π (as predicted
for the large eigenvalues).

7.8.3 Zeros of Bessel Functions and Nodal Curves

We have shown that the eigenfunctions are Jm

(√
λmnr

)
, where λmn = (zmn/a)2, zmn

being the nth zero of Jm(z). Thus, the eigenfunctions are

Jm

(
zmn

r

a

)
.

For example, for m = 0, the eigenfunctions are J0(z0nr/a), where the sketch of J0(z) is
reproduced in Fig. 7.8.2 (and the zeros are marked). As r ranges from 0 to a, the argument
of the eigenfunction J0(z0nr/a) ranges from 0 to the nth zero, z0n. At r = a, z = z0n (the
nth zero). Thus, the nth eigenfunction has n−1 zeros in the interior. Although originally
stated for regular Sturm–Liouville problems, it is also valid for singular problems (if
eigenfunctions exist).

The separation of variables solution of the wave equation is

u(r, θ, t) = f(r)g(θ)h(t),

where

u(r, θ, t) = Jm

(
zmn

r

a

) {
sin mθ
cos mθ

} {
sin c

√
λmnt

cos c
√

λmnt

}
, (7.8.5)

0 2 4 6 8 10 12 14
−0.5

0

0.5

1
J0(z)

z01 z02 z03 z04 z = z0nr/a

FIGURE 7.8.2 Sketch of J0(z) and its zeros.
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n = 1
m = 0

n = 2
m = 0

n = 3
m = 0

n = 1
m = 3

n = 2
m = 3

FIGURE 7.8.3 Normal nodes and nodal curves for a vibrating circular membrane.

known as a normal mode of oscillation and is graphed for fixed t in Fig. 7.8.3. For each
m �= 0, there are four families of solutions (for m = 0, there are two families). Each mode
oscillates with a characteristic natural frequency, c

√
λmn. At certain positions along the

membrane, known as nodal curves, the membrane will be unperturbed for all time (for
vibrating strings, we called these positions nodes). The nodal curve for the sinmθ mode
is determined by

Jm

(
zmn

r

a

)
sin mθ = 0. (7.8.6)

The nodal curve consists of all points where sinmθ = 0 or Jm(zmnr/a) = 0; sinmθ is
zero along 2m distinct rays, θ = sπ/m, s = 1, 2, . . . , 2m. In order for there to be a zero
of Jm(zmnr/a) for 0 < r < a, zmnr/a must equal an earlier zero of Jm(z), zmnr/a =
zmp, p = 1, 2, . . . , n− 1. Thus there are n− 1 circles along which Jm(zmnr/a) = 0 besides
r = a. We illustrate this for m = 3, n = 2 in Fig. 7.8.3, where the nodal circles are
determined from a table.
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7.8.4 Series Representation of Bessel Functions

The usual method of discussing Bessel functions relies on series solution methods for
differential equations. We will obtain little useful information by pursuing this topic.
However, some may find it helpful to refer to the formulas that follow.

First we review some additional results concerning series solutions around z = 0 for
second-order linear differential equations:

d2f

dz2
+ a(z)

df

dz
+ b(z)f = 0. (7.8.7)

Recall that z = 0 is an ordinary point if both a(z) and b(z) have Taylor series around
z = 0. In this case we are guaranteed that all solutions may be represented by a convergent
Taylor series,

f =
∞∑

n=0

anzn = a0 + a1z + a2z
2 + · · ·,

at least in some neighborhood of z = 0.
If z = 0 is not an ordinary point, then we call it a singular point (e.g., z = 0 is

a singular point of Bessel’s differential equation). If z = 0 is a singular point, we cannot
state that all solutions have Taylor series around z = 0. However, if a(z) = R(z)/z and
b(z) = S(z)/z2, with R(z) and S(z) having Taylor series, then we can say more about
solutions of the differential equation near z = 0. For this case, which is known as a
regular singular point, the coefficients a(z) and b(z) can have at worst a simple pole
and double pole, respectively. It is possible for the coefficients a(z) and b(z) not to be
that singular. For example, if a(z) = 1+ z and b(z) = (1− z3)/z2, then z = 0 is a regular
singular point. Bessel’s differential equation in the form (7.8.7) is

d2f

dz2
+

1
z

df

dz
+

z2 − m2

z2
f = 0.

Here R(z) = 1 and S(z) = z2 − m2; both have Taylor series around z = 0. Therefore,
z = 0 is a regular singular point for Bessel’s differential equation.

For a regular singular point at z = 0, it is known by the method of Frobenius
that at least one solution of the differential equation is in the form

f = zp
∞∑

n=0

anzn; (7.8.8)

that is, zp times a Taylor series, where p is one of the solutions of the quadratic indicial
equation. One method to obtain the indicial equation is to substitute f = zp into the
corresponding equidimensional equation that results by replacing R(z) by R(0) and S(z)
by S(0). Thus

p(p − 1) + R(0)p + S(0) = 0

is the indicial equation. If the two values of p (the roots of the indicial equation) differ by
a noninteger, then two independent solutions exist in the form (7.8.8). If the two roots



Section 7.8 More on Bessel Functions 317

of the indicial equation are identical, then only one solution is in the form (7.8.8), and
the other solution is more complicated but always involves logarithms. If the roots differ
by an integer, then sometimes both solutions exist in the form (7.8.8), while other times
form (7.8.8) exists only corresponding to the larger root p, and a series beginning with the
smaller root p must be modified by the introduction of logarithms. Details of the method
of Frobenius are presented in most elementary differential equations texts.

For Bessel’s differential equation, we have shown that the indicial equation is

p(p − 1) + p − m2 = 0,

since R(0) = 1 and S(0) = −m2. Its roots are ±m. If m = 0, the roots are identical.
Form (7.8.8) is valid for one solution, while logarithms must enter the second solution.
For m �= 0 the roots of the indicial equation differ by an integer. Detailed calculations
also show that logarithms must enter. The following infinite series can be verified by
substitution and are often considered as definitions of Jm(z) and Ym(z):

Jm(z) =
∞∑

k=0

(−1)k(z/2)2k+m

k!(k + m)!
(7.8.9)

Ym(z) =
2
π

[(
log

z

2
+ γ

)
Jm(z) − 1

2

m−1∑
k=0

(m − k − 1)!(z/2)2k−m

k!

+
1
2

∞∑
k=0

(−1)k+1 [ϕ(k) + ϕ(k + m)]
(z/2)2k+m

k!(m + k)!

]
,

(7.8.10)

where

(i) ϕ(k) = 1 + 1
2 + 1

3 + · · · + 1/k, φ(0) = 0.
(ii) γ = limk→∞[ϕ(k) − ln k] = 0.5772157 . . . , known as Euler’s constant.
(iii) If m = 0,

∑m−1
k=0 ≡ 0.

We have obtained these from the previously mentioned handbook edited by Abramowitz
and Stegun.

EXERCISES 7.8

7.8.1. The boundary value problem for a vibrating annular membrane 1 < r < 2 (fixed at
the inner and outer radii) is

d

dr

(
r
df

dr

)
+

(
λr − m2

r

)
f = 0

with f(1) = 0 and f(2) = 0, where m = 0, 1, 2, . . . .

(a) Show that λ > 0.

*(b) Obtain an expression that determines the eigenvalues.

(c) For what value of m does the smallest eigenvalue occur?
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*(d) Obtain an upper and lower bound for the smallest eigenvalue.
(e) Using a trial function, obtain an upper bound for the smallest eigenvalue.
(f) Compute approximately the smallest eigenvalue from part (b) using tables of

Bessel functions. Compare with parts (d) and (e).

7.8.2. Consider the temperature u(r, θ, t) in a quarter-circle of radius a satisfying

∂u

∂t
= k∇2u

subject to the conditions

u(r, 0, t) = 0, u(a, θ, t) = 0
u(r, π/2, t) = 0, u(r, θ, 0) = G(r, θ).

(a) Show that the boundary value problem is

d

dr

(
r
df

dr

)
+

(
λr − μ

r

)
f = 0

with f(a) = 0 and f(0) bounded.
(b) Show that λ > 0 if μ ≥ 0.
(c) Show that for each μ, the eigenfunction corresponding to the smallest eigenvalue

has no zeros for 0 < r < a.
*(d) Solve the initial value problem.

7.8.3. Reconsider Exercise 7.8.2 with the boundary conditions

∂u

∂θ
(r, 0, t) = 0,

∂u

∂θ

(
r,

π

2
, t

)
= 0, u(a, θ, t) = 0.

7.8.4. Consider the boundary value problem

d

dr

(
r
df

dr

)
+

(
λr − m2

r

)
f = 0

with f(a) = 0 and f(0) bounded. For each integer m, show that the nth eigenfunction
has n − 1 zeros for 0 < r < a.

7.8.5. Using the known asymptotic behavior as z → 0 and as z → ∞, roughly sketch for
all z > 0
(a) J4(z) (b) Y1(z) (c) Y0(z)
(d) J0(z) (e) Y5(z) (f) J2(z)

7.8.6. Determine approximately the large frequencies of vibration of a circular membrane.
7.8.7. Consider Bessel’s differential equation

z2 d2f

dz2
+ z

df

dz
+

(
z2 − m2

)
f = 0.

Let f = y/z1/2. Derive that

d2y

dz2
+ y

(
1 +

1
4
z−2 − m2z−2

)
= 0.
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*7.8.8. Using Exercise 7.8.7, determine exact expressions for J1/2(z) and Y1/2(z). Use and
verify (7.8.3) and (7.7.33) in this case.

7.8.9. In this exercise use the result of Exercise 7.8.7. If z is large, verify as much as possible
concerning (7.8.3).

7.8.10. In this exercise use the result of Exercise 7.8.7 in order to improve on (7.8.3):

(a) Substitute y = eizw(z) and show that

d2w

dz2
+ 2i

dw

dz
+

γ

z2
w = 0, where γ =

1
4
− m2.

(b) Substitute w =
∑∞

n=0 βnz−n. Determine the first few terms βn (assuming that
β0 = 1).

(c) Use part (b) to obtain an improved asymptotic solution of Bessel’s differential
equation. For real solutions, take real and imaginary parts.

(d) Find a recurrence formula for βn. Show that the series diverges. (Nonetheless,
a finite series is very useful.)

7.8.11. In order to “understand” the behavior of Bessel’s differential equation as z → ∞, let
x = 1/z. Show that x = 0 is a singular point, but an irregular singular point. [The
asymptotic solution of a differential equation in the neighborhood of an irregular
singular point is analyzed in an unmotivated way in Exercise 7.8.10. For a more
systematic presentation, see advanced texts on asymptotic or perturbation methods
(such as Bender and Orszag, 1999).]

7.8.12. The smallest eigenvalue for (7.7.34)–(7.7.36) for m = 0 is λ = (z01/a)2. Determine
a reasonably accurate upper bound by using the Rayleigh quotient with a trial
function. Compare to the exact answer.

7.8.13. Explain why the nodal circles in Fig. 7.8.3 are nearly equally spaced.

7.9 LAPLACE’S EQUATION IN A CIRCULAR CYLINDER

7.9.1 Introduction

Laplace’s equation,
∇2u = 0, (7.9.1)

represents the steady-state heat equation (without sources). We have solved Laplace’s
equation in a rectangle (Section 2.5.1) and Laplace’s equation in a circle (Section 2.5.2).
In both cases, when variables were separated, oscillations occur in one direction but not
in the other. Laplace’s equation in a rectangular box can also be solved by the method of
separation of variables. As shown in some exercises in Chapter 7, the three independent
variables yield two eigenvalue problems that have oscillatory solutions and solutions in
the remaining direction that are not oscillatory.

A more interesting problem is to consider Laplace’s equation in a circular cylinder
of radius a and height H. Using circular cylindrical coordinates,

x = r cos θ
y = r sin θ
z = z,
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Laplace’s equation is
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
+

∂2u

∂z2
= 0. (7.9.2)

We prescribe u (perhaps temperature) on the entire boundary of the cylinder:

top: u(r, θ,H) = β(r, θ)
bottom: u(r, θ, 0) = α(r, θ)
lateral side: u(a, θ, z) = γ(θ, z).

There are three nonhomogeneous boundary conditions. One approach is to break the
problem up into the sum of three simpler problems, each solving Laplace’s equation,

∇2ui = 0, i = 1, 2, 3,

where u = u1 +u2 +u3. This is illustrated in Fig. 7.9.1. In this way, each problem satisfies
two homogeneous boundary conditions, but the sum satisfies the desired nonhomogeneous
conditions. We separate variables once, for all three cases, and then proceed to solve each
problem individually.

++=

u1 = 0u = γ(θ,z) u3 = γ(θ,z)u2 = 0

∇2u = 0 ∇2u1 = 0 ∇2u2 = 0 ∇2u3 = 0

u2 = 0 u3 = 0

u3 = 0u2 = α(r, θ)u1 = 0u = α(r, θ)

u1 = β(r, θ)u = β(r, θ)

FIGURE 7.9.1 Laplace’s equation in a circular cylinder.

7.9.2 Separation of Variables

We begin by looking for product solutions,

u(r, θ, z) = f(r)g(θ)h(z), (7.9.3)

for Laplace’s equation. Substituting (7.9.3) into (7.9.2) and dividing by f(r)g(θ)h(z) yields

1
rf

d

dr

(
r
df

dr

)
+

1
r2

1
g

d2g

dθ2
+

1
h

d2h

dz2
= 0. (7.9.4)
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We immediately can separate the z-dependence, and hence

1
h

d2h

dz2
= λ. (7.9.5)

Do we expect oscillations in z? From Fig. 7.9.1 we see that oscillations in z should be
expected for the u3-problem but not necessarily for the u1- or u2-problem. Perhaps λ < 0
for the u3-problem but not for the u1- and u2-problems. Thus, we do not specify λ at this
time. The r- and θ-parts also can be separated if (7.9.4) is multiplied by r2 [and (7.9.5)
is utilized]:

r

f

d

dr

(
r
df

dr

)
+ λr2 = −1

g

d2g

dθ2
= μ. (7.9.6)

A second separation constant μ is introduced, with the anticipation that μ > 0 because of
the expected oscillations in θ for all three problems. In fact, the implied periodic boundary
conditions in θ dictate that

μ = m2 (7.9.7)

and that g(θ) can be either sin mθ or cos mθ, where m is a nonnegative integer, m =
0, 1, 2, . . . . A Fourier series in θ will be appropriate for all these problems.

In summary, the θ-dependence is sin mθ and cos mθ, and the remaining two differ-
ential equations are

d2h

dz2
= λh (7.9.8)

r
d

dr

(
r
df

dr

)
+

(
λr2 − m2

)
f = 0. (7.9.9)

These two differential equations contain only one unspecified parameter λ. Only one will
become an eigenvalue problem. The eigenvalue problem needs two homogeneous bound-
ary conditions. Different results occur for the various problems, u1, u2, and u3. For the
u3-problem, there are two homogeneous boundary conditions in z, and thus (7.9.8) will
become an eigenvalue problem [and (7.9.9) will have nonoscillatory solutions]. However,
for the u1- and u2-problems, there do not exist two homogeneous boundary conditions in
z. Instead, there should be two homogeneous conditions in r. One of these is at r = a.
The other must be a boundedness condition at r = 0, which occurs due to the singular
nature of polar (or circular cylindrical) coordinates at r = 0 and the singular nature of
(7.9.9) at r = 0:

|f(0)| < ∞. (7.9.10)

Thus, we will find that for the u1- and u2-problems, (7.9.9) will be the eigenvalue problem.
The solution of (7.9.9) will oscillate, whereas the solution of (7.9.8) will not oscillate. We
next describe the details of all three problems.
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7.9.3 Zero Temperature on the Lateral Sides and on the Bottom or Top

The mathematical problem for u1 is

∇2u1 = 0 (7.9.11)

u1(r, θ, 0) = 0 (7.9.12)

u1(r, θ,H) = β(r, θ) (7.9.13)

u1(a, θ, z) = 0. (7.9.14)

The temperature is zero on the bottom. By separation of variables in which the
nonhomogeneous condition (7.9.13) is momentarily ignored, u1 = f(r)g(θ)h(z). The
θ-part is known to equal sinmθ and cos mθ (for integral m ≥ 0). The z-dependent equa-
tion, (7.9.8), satisfies only one homogeneous condition, h(0) = 0. The r-dependent equa-
tion will become a boundary value problem determining the separation constant λ. The
two homogeneous boundary conditions are

f(a) = 0 (7.9.15)
|f(0)| < ∞. (7.9.16)

The eigenvalue problem, (7.9.9) with (7.9.15) and (7.9.16), is one that was analyzed in
Section 7.8. There we showed that λ > 0 (by directly using the Rayleigh quotient).
Furthermore, we showed that the general solution of (7.9.9) is a linear combination of
Bessel functions of order m with argument

√
λr:

f(r) = c1Jm

(√
λr

)
+ c2Ym

(√
λr

)
= c1Jm

(√
λr

)
, (7.9.17)

which has been simplified using the singularity condition, (7.9.16). Then the homogeneous
condition, (7.9.15), determines λ:

Jm

(√
λa

)
= 0. (7.9.18)

Again,
√

λa must be a zero of the mth Bessel function, and the notation λmn is used to
indicate the infinite number of eigenvalues for each m. The eigenfunction Jm

(√
λmnr

)
oscillates in r.

Since λ > 0, the solution of (7.9.8) that satisfies h(0) = 0 is proportional to

h(z) = sinh
√

λz. (7.9.19)
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No oscillations occur in the z-direction. There are thus two doubly infinite families of
product solutions:

sinh
√

λmnz Jm

(√
λmnr

) {
sin mθ
cos mθ

}
, (7.9.20)

oscillatory in r and θ, but nonoscillatory in z. The principle of superposition implies that
we should consider

u(r, θ, z) =
∞∑

m=0

∞∑
n=1

Amn sinh
√

λmnz Jm

(√
λmnr

)
cos mθ

+
∞∑

m=1

∞∑
n=1

Bmn sinh
√

λmnz Jm

(√
λmnr

)
sin mθ.

(7.9.21)

The nonhomogeneous boundary condition, (7.9.13), u1(r, θ,H) = β(r, θ), will determine
the coefficients Amn and Bmn. It will involve a Fourier series in θ and a Fourier–Bessel
series in r. Thus we can solve Amn and Bmn using the two one-dimensional orthogo-
nality formulas. Alternatively, the coefficients are more easily calculated using the two-
dimensional orthogonality of Jm

(√
λmnr

)
cos mθ and Jm

(√
λmnr

)
sin mθ (see Section 7.8).

We omit the details.
In a similar manner, one can obtain u2. We leave as an exercise the solution of this

problem.

7.9.4 Zero Temperature on the Top and Bottom

A somewhat different mathematical problem arises if we consider the situation in which
the top and bottom are held at zero temperature. The problem for u3 is

∇2u3 = 0 (7.9.22)

u3(r, θ, 0) = 0 (7.9.23)

u3(r, θ,H) = 0 (7.9.24)

u3(a, θ, z) = γ(θ, z). (7.9.25)

We may again use the results of the method of separation of variables. The period-
icity again implies that the θ-part will relate to a Fourier series (i.e., sinmθ and cos mθ).
However, unlike what occurred in Section 7.9.3, the z-equation has two homogeneous
boundary conditions:
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d2h

dz2
= λh (7.9.26)

h(0) = 0 (7.9.27)

h(H) = 0. (7.9.28)

This is the simplest Sturm–Liouville eigenvalue problem (in a somewhat different form).
In order for h(z) to oscillate and satisfy (7.9.27) and (7.9.28), the separation constant λ
must be negative. In fact, we should recognize that

λ = −
(nπ

H

)2

, n = 1, 2, . . . (7.9.29)

h(z) = sin
nπz

H
. (7.9.30)

The boundary conditions at the top and bottom imply that we will be using an ordinary
Fourier sine series in z.

We have oscillations in z and θ. The r-dependent solution should not be oscillatory;
they satisfy (7.9.9), which, using (7.9.29), becomes

r
d

dr

(
r
df

dr

)
+

(
−

(nπ

H

)2

r2 − m2

)
f = 0. (7.9.31)

A homogeneous condition, in the form of a singularity condition, exists at r = 0,

|f(0)| < ∞, (7.9.32)

but there is no homogeneous condition at r = a.
Equation (7.9.31) looks similar to Bessel’s differential equation but has the wrong

sign in front of the r2-term. It cannot be changed into Bessel’s differential equation using
a real transformation. If we let

s = i
(nπ

H

)
r (7.9.33)

where i =
√−1, then (7.9.31) becomes

s
d

ds

(
s
df

ds

)
+

(
s2 − m2

)
f = 0 or s2 d2f

ds2
+ s

df

ds
+

(
s2 − m2

)
f = 0.

We recognize this as exactly Bessel’s differential equation, and thus

f = c1Jm(s) + c2Y (s) or f = c1Jm

(
i
nπ

H
r
)

+ c2Ym

(
i
nπ

H
r
)

. (7.9.34)
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Therefore, the solution of (7.9.31) can be represented in terms of Bessel functions of
an imaginary argument. This is not very useful since Bessel functions are not usually
tabulated in this form.

Instead, we introduce a real transformation that eliminates the dependence on nπ/H
of the differential equation:

w =
nπ

H
r.

Then (7.9.31) becomes

w2 d2f

dw2
+ w

df

dw
+

(−w2 − m2
)
f = 0. (7.9.35)

Again the wrong sign appears for this to be Bessel’s differential equation. Equation
(7.9.35) is a modification of Bessel’s differential equation, and its solutions, which have
been well tabulated, are known as modified Bessel functions.

Equation (7.9.35) has the same kind of singularity at w = 0 as Bessel’s differential
equation. As such, the singular behavior could be determined by the method of Frobenius.7

Thus, we can specify one solution to be well defined at w = 0, called the modified Bessel
function of order m of the first kind, denoted Im(w). Another independent solution,
which is singular at the origin, is called the modified Bessel function of order m of
the second kind, denoted Km(w). Both Im(w) and Km(w) are well-tabulated functions.
We will need very little information concerning Im(w) and Km(w). The general solution
of (7.9.31) is thus

f = c1Km

(nπ

H
r
)

+ c2Im

(nπ

H
r
)

. (7.9.36)

Since Km is singular at r = 0 and Im is not, it follows that c1 = 0 and f(r) is proportional
to Im(nπr/H). We simply note that both Im(w) and Km(w) are non oscillatory and are
not zero for w > 0. A discussion of this and further properties are given in Section 7.9.5.

There are thus two doubly infinite families of product solutions:

Im

(nπ

H
r
)

sin
nπz

H
cos mθ and Im

(nπ

H
r
)

sin
nπz

H
sin mθ. (7.9.37)

These solutions are oscillatory in z and θ, but nonoscillatory in r. The principle of super-
position, equivalent to a Fourier sine series in z and a Fourier series in θ, implies that

u3(r, θ, z) =
∞∑

m=0

∞∑
n=1

EmnIm

(nπ

H
r
)

sin
nπz

H
cos mθ

+
∞∑

m=1

∞∑
n=1

Fmn Im

(nπ

H
r
)

sin
nπz

H
sin mθ.

(7.9.38)

7Here it is easier to use the complex transformation (7.9.33). Then the infinite series representation
for Bessel functions is valid for complex arguments, avoiding additional calculations.
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The coefficients Emn and Fmn can be determined [if Im(nπa/H) �= 0] from the nonhomo-
geneous equation (7.9.25) either by two iterated one-dimensional orthogonality results or
by one application of two-dimensional orthogonality. In the next section we will discuss
further properties of Im(nπa/H), including the fact that it has no positive zeros.

In this way the solution for Laplace’s equation inside a circular cylinder has been
determined given any temperature distribution along the entire boundary.

7.9.5 Modified Bessel Functions

The differential equation that defines the modified Bessel functions is

w2 d2f

dw2
+ w

df

dw
+

(−w2 − m2
)
f = 0. (7.9.39)

Two independent solutions are denoted Km(w) and Im(w). The behavior in the neigh-
borhood of the singular point w = 0 is determined by the roots of the indicial equation,
±m, corresponding to approximate solutions near w = 0 of the forms w±m (for m �= 0),
w0 and w0 lnw (for m = 0). We can choose the two independent solutions such that one
is well behaved at w = 0 and the other is singular.

A good understanding of these functions comes from also analyzing their behavior
as w → ∞. Roughly speaking, for large w, (7.9.39) can be rewritten as

d2f

dw2
≈ − 1

w

df

dw
+ f. (7.9.40)

Thinking of this as Newton’s law for a particle with certain forces, the −1/w df/dw-term
is a weak damping force tending to vanish as w → ∞. We might expect as w → ∞ that

d2f

dw2
≈ f,

which suggests that the solution should be a linear combination of an exponentially grow-
ing ew- and exponentially decaying e−w-term. In fact, the weak damping has its effects
(just as it did for ordinary Bessel functions). We state (but do not prove) a more ad-
vanced result, namely, that the asymptotic behavior for large w of solutions of (7.9.39)
are approximately e±w/w1/2. Thus, both Im(w) and Km(w) are linear combinations of
these two, one exponentially growing and the other decaying.

There is only one independent linear combination that decays as w → ∞. There are
many combinations that grow as w → ∞. We define Km(w) to be a solution that decays
as w → ∞. It must be proportional to e−w/w1/2, and it is defined uniquely by

Km(w) ∼
√

π

2
e−w

w1/2
, (7.9.41)

as w → ∞. As w → 0 the behavior of Km(w) will be some linear combination of the two
different behaviors (e.g., wm and w−m for m �= 0). In general, it will be composed of both
and hence will be singular at w = 0. In more advanced treatments, it is shown that
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Km(w) ∼
{

lnw m = 0
1
2 (m − 1)!(1

2w)−m m �= 0, (7.9.42)

as w → 0. The most important fact about this function is that Km(w) exponentially
decays as w → ∞ but is singular at w = 0.

Since Km(w) is singular at w = 0, we would like to define a second solution Im(w)
that is not singular at w = 0. Im(w) is defined uniquely such that

Im(w) ∼ 1
m!

(
1
2
w

)m

, (7.9.43)

as w → 0. As w → ∞, the behavior of Im(w) will be some linear combination of the
two different asymptotic behaviors (e±w/w1/2). In general, it will be composed of both
and hence is expected to exponentially grow as w → ∞. In more advanced works, it is
shown that

Im(w) ∼
√

1
2πw

ew, (7.9.44)

as w → ∞. The most important facts about this function is that Im(w) is well behaved
at w = 0 but grows exponentially as w → ∞.

Some modified Bessel functions are sketched in Fig. 7.9.2. Although we have not
proved it, note that Im(w) and Km(w) are not both zero for w > 0.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

w

K0(w)
K1(w)

I1(w)

I0(w)

FIGURE 7.9.2 Various modified Bessel functions (from Abramowitz and Stegun, 1974).
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EXERCISES 7.9

7.9.1. Solve Laplace’s equation inside a circular cylinder subject to the boundary conditions
(a) u(r, θ, 0) = α(r, θ), u(r, θ, H) = 0, u(a, θ, z) = 0

*(b) u(r, θ, 0) = α(r) sin 7θ, u(r, θ, H) = 0, u(a, θ, z) = 0

(c) u(r, θ, 0) = 0, u(r, θ, H) = β(r) cos 3θ,
∂u

∂r
(a, θ, z) = 0

(d)
∂u

∂z
(r, θ, 0) = α(r) sin 3θ,

∂u

∂z
(r, θ, H) = 0,

∂u

∂r
(a, θ, z) = 0

(e)
∂u

∂z
(r, θ, 0) = α(r, θ),

∂u

∂z
(r, θ, H) = 0,

∂u

∂r
(a, θ, z) = 0

For (e) only, under what condition does a solution exist?
7.9.2. Solve Laplace’s equation inside a semicircular cylinder, subject to the boundary

conditions
(a) u(r, θ, 0) = 0, u(r, θ, H) = α(r, θ), u(r, 0, z) = 0,

u(r, π, z) = 0, u(a, θ, z) = 0

*(b) u(r, θ, 0) = 0,
∂u

∂z
(r, θ, H) = 0, u(r, 0, z) = 0,

u(r, π, z) = 0, u(a, θ, z) = β(θ, z)

(c)
∂

∂z
u(r, θ, 0) = 0,

∂

∂z
u(r, θ, H) = 0,

∂u

∂θ
(r, 0, z) = 0,

∂u

∂θ
(r, π, z) = 0,

∂u

∂r
(a, θ, z) = β(θ, z)

For (c) only, under what condition does a solution exist?

(d) u(r, θ, 0) = 0, u(r, 0, z) = 0, u(a, θ, z) = 0,

u(r, θ, H) = 0,
∂u

∂θ
(r, π, z) = α(r, z)

7.9.3. Solve the heat equation
∂u

∂t
= k∇2u

inside a quarter-circular cylinder (0 < θ < π/2 with radius a and height H) subject
to the initial condition

u(r, θ, z, 0) = f(r, θ, z).
Briefly explain what temperature distribution you expect to be approached as
t → ∞. Consider the following boundary conditions:

(a) u(r, θ, 0) = 0, u(r, θ, H) = 0, u(r, 0, z) = 0,

u(r, π/2, z) = 0, u(a, θ, z) = 0

*(b)
∂u

∂z
(r, θ, 0) = 0,

∂u

∂z
(r, θ, H) = 0,

∂u

∂θ
(r, 0, z) = 0,

∂u

∂θ
(r, π/2, z) = 0,

∂u

∂r
(a, θ, z) = 0

(c) u(r, θ, 0) = 0, u(r, θ, H) = 0,
∂u

∂θ
(r, 0, z) = 0,

u(r, π/2, z) = 0,
∂u

∂r
(a, θ, z) = 0
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7.9.4. Solve the heat equation
∂u

∂t
= k∇2u

inside a cylinder (of radius a and height H) subject to the initial condition

u(r, θ, z, 0) = f(r, z),

independent of θ, if the boundary conditions are

*(a) u(r, θ, 0, t) = 0, u(r, θ, H, t) = 0, u(a, θ, z, t) = 0

(b)
∂u

∂z
(r, θ, 0, t) = 0,

∂u

∂z
(r, θ, H, t) = 0,

∂u

∂r
(a, θ, z, t) = 0

(c) u(r, θ, 0, t) = 0, u(r, θ, H, t) = 0,
∂u

∂r
(a, θ, z, t) = 0

7.9.5. Determine the three ordinary differential equations obtained by separation of vari-
ables for Laplace’s equation in spherical coordinates

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
sin φ

∂

∂φ

(
sin φ

∂u

∂φ

)
+

1
sin2 φ

∂2u

∂θ2
= 0.

7.9.6. Solve Laplace’s equation inside a cylinder,

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
+

∂2u

∂z2
= 0.

whose cross-section is pie-shaped with included angle π
3 , subject to the temperature

being zero everywhere on the boundary except the bottom:

u(a, θ, z) = 0, u(r, 0, z) = 0

u(r, θ, H) = 0, u
(
r,

π

3
, z

)
= 0

u(r, θ, 0) = α(r, θ).

[Hint : You may assume without derivation that λ > 0 and that product solutions

u(r, θ, z) = φ(r, θ)h(z) = f(r)g(θ)h(z)

satisfy
(∇2φ + λφ = 0)

d2h

dz2
= −λh

d2g

dθ2
= −μg

r
d

dr

(
r
df

dr

)
+ (λr2 − μ)f = 0.]

Note: 0 < r < a, 0 < θ < π
3 , and 0 < z < H.
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7.10 SPHERICAL PROBLEMS AND LEGENDRE POLYNOMIALS

7.10.1 Introduction

Problems in a spherical geometry are of great interest in many applications. In the
exercises, we consider the three-dimensional heat equation inside the spherical earth.
Here, we consider the three-dimensional wave equation that describes the vibrations of
the earth:

∂2u

∂t2
= c2∇2u, (7.10.1)

where u is a local displacement. In geophysics, the response of the real earth to point
sources is of particular interest due to earthquakes and nuclear testing. Solid vibrations
of the real earth are more complicated than (7.10.1). Compressional waves called P for
primary are smaller than shear waves called S for secondary, arriving later because they
propagate at a smaller velocity. There are also long (L) period surface waves, which are the
most destructive in severe earthquakes because their energy is confined to a thin region
near the surface. Real seismograms are more complicated because of scattering of waves
due to the interior of the earth not being uniform. Measuring the vibrations is frequently
used to determine the interior structure of the earth needed not only in seismology but
also in mineral exploration, such as petroleum engineering. All displacements solve wave
equations. Simple mathematical models are most valid for the destructive long waves, since
the variations in the earth are averaged out for long waves. For more details, see Aki and
Richards (1980), Quantitative Seismology. We use spherical coordinates (ρ, θ, φ), where
φ is the angle from the pole and θ is the usual cylindrical angle. The boundary condition
we assume is u(a, θ, φ, t) = 0, and the initial displacement and velocity distribution is
given throughout the entire solid:

u(r, θ, φ, 0) = F (ρ, θ, φ) (7.10.2)
∂u

∂t
(r, θ, φ, 0) = G(ρ, θ, φ). (7.10.3)

Problems with nonhomogeneous boundary conditions are treated in Chapter 8.

7.10.2 Separation of Variables and One-Dimensional Eigenvalue Problems

We use the method of separation of variables. As before, we first introduce product
solutions of space and time:

u(ρ, θ, φ, t) = w(ρ, θ, φ)h(t). (7.10.4)

We have already separated space and time, so that we know

d2h

dt2
= − λc2h (7.10.5)

∇2w + λw = 0, (7.10.6)

where the first separation constant λ satisfies the multidimensional eigenvalue problem
(7.10.6), subject to being zero on the boundary of the sphere. The frequencies of vibration
of the solid sphere are given by c

√
λ.



Section 7.10 Spherical Problems and Legendre Polynomials 331

Using the equation for the Laplacian in spherical coordinates (reference from
Chapter 1), we have

1
ρ2

∂

∂ρ

(
ρ2 ∂w

∂ρ

)
+

1
ρ2 sin φ

∂

∂φ

(
sin φ

∂w

∂φ

)
+

1
ρ2 sin2 φ

∂2w

∂θ2
+ λw = 0. (7.10.7)

We seek product solutions of the form

w(ρ, θ, φ) = f(ρ)q(θ)g(φ). (7.10.8)

To save some algebra, since the coefficients in (7.10.7) do not depend on θ and w is
periodic in θ with period 2π, we note that it is clear that the eigenfunctions in θ are
cos mθ and sinmθ, corresponding to the periodic boundary conditions associated with
the usual Fourier series in θ on the interval −π ≤ θ ≤ π. In this case the term ∂2w

∂θ2 in
(7.10.7) may be replaced by −m2w. We substitute (7.10.8) into (7.10.7), multiply by ρ2,
divide by f(ρ)q(θ)g(φ), and introduce the third (counting −m2 as number two) separation
constant μ:

1
f

d

dρ

(
ρ2 df

dρ

)
+ λρ2 = − 1

g sin φ

d

dφ

(
sin φ

dg

dφ

)
+

m2

sin2 φ
= μ. (7.10.9)

The two ordinary differential equations that are the fundamental part of the eigenvalue
problems in φ and ρ are

d

dρ

(
ρ2 df

dρ

)
+

(
λρ2 − μ

)
f = 0 (7.10.10)

d

dφ

(
sin φ

dg

dφ

)
+

(
μ sin φ − m2

sin φ

)
g = 0. (7.10.11)

The homogeneous boundary conditions associated with (7.10.10) and (7.10.11) will be dis-
cussed shortly. We will solve (7.10.11) first because it does not depend on the eigenvalues
λ of (7.10.10).

Equation (7.10.11) is a Sturm–Liouville differential equation (for each m) in the
angular coordinate φ with eigenvalue μ and nonnegative weight sinφ since φ is defined
from φ = 0 (North Pole) to φ = π (South Pole). However, (7.10.11) is not a regular
Sturm–Liouville problem since p = sin φ must be greater than 0 and sinφ = 0 at both
ends. There is no physical boundary condition at the singular endpoints. Instead we will
insist that the solution is bounded at each endpoint: |g(0)| < ∞ and |g(π)| < ∞. We
claim that the usual properties of eigenvalues and eigenfunctions are valid. In particular,
there is an infinite set of eigenfunctions (for each fixed m) corresponding to different
eigenvalues μnm, and these eigenfunctions will be an orthogonal set with weight sinφ.

Equation (7.10.10) is a Sturm–Liouville differential equation (for each m and n) in
the radial coordinate ρ with eigenvalue λ and weight ρ2. One homogeneous boundary
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condition is f(a) = 0. Equation (7.10.10) is a singular Sturm–Liouville problem because
of the zero at ρ = 0 in the coefficient in front of df/dρ. Spherical coordinates are singular
at ρ = 0, and solutions of the Sturm–Liouville differential equation must be bounded
there: |f(0)| < ∞. We claim that this singular problem still has an infinite set of eigen-
functions (for each fixed m and n) corresponding to different eigenvalues λknm, and these
eigenfunctions will form an orthogonal set with weight ρ2.

7.10.3 Associated Legendre Functions and Legendre Polynomials

A (not obvious) change of variables has turned out to simplify the analysis of the differ-
ential equation that defines the orthogonal eigenfunctions in the angle φ:

x = cos φ. (7.10.12)

As φ goes from 0 to π, this is a one-to-one transformation in which x goes from 1 to −1.
We will show that both endpoints remain singular points. Derivatives are transformed by
the chain rule, d

dφ = dx
dφ

d
dx = − sin φ d

dx . In this way (7.10.11) becomes, after dividing by
sin φ and recognizing that sin2 φ = 1 − cos2 φ = 1 − x2:

d

dx

[(
1 − x2

) dg

dx

]
+

(
μ − m2

1 − x2

)
g = 0. (7.10.13)

This is also a Sturm–Liouville equation, and eigenfunctions will be orthogonal in x with
weight 1. This corresponds to the weight sinφ with respect to φ since dx = − sin φ dφ.
Equation (7.10.13) has singular points at x = ±1, which we will show are regular singular
points (see Section 7.8.4). It is helpful to understand the local behavior near each singular
point using a corresponding elementary equidimensional (Euler) equation. We analyze
(7.10.13) near x = 1 (and claim due to symmetry that the local behavior near x = −1
will be the same). The troublesome coefficients 1−x2 = (1−x)(1+x) can be approximated
by −2(x − 1) near x = 1, Thus (7.10.13) may be approximated near x = 1 by

−2
d

dx

[
(x − 1)

dg

dx

]
+

m2

2(x − 1)
g ≈ 0 (7.10.14)

since only the singular term that multiplies g is significant. Equation (7.10.14) is an
equidimensional (Euler) differential equation whose exact solutions are easy to obtain by
substituting g = (x − 1)p, from which we obtain p2 = m2/4 or p = ±m/2. If m �= 0,
we conclude that one independent solution is bounded near x = 1 [and approximated by
(x − 1)m/2], and the second independent solution is unbounded [and approximated by
(x − 1)−m/2].

Since we want our solution to be bounded at x = 1, we can use only the one solution
that is bounded at x = 1. When we compute this solution (perhaps numerically) at
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x = −1, its behavior must be a linear combination of the two local behaviors near x = −1.
Usually, the solution that is bounded at x = 1 will be unbounded at x = −1. Only for
certain very special values of μmn (which we have called the eigenvalues) will the solution
of (7.10.13) be bounded at both x = ±1. To simplify significantly the presentation, we
will not explain the mysterious but elegant result that the only values of μ for which the
solution is bounded at x = ±1 are

μ = n(n + 1), (7.10.15)

where n is an integer with some restrictions we will mention. It is quite remarkable that the
eigenvalues do not depend on the important parameter m. Equation (7.10.13) is a linear
differential equation whose two independent solutions are called associated Legendre
functions (spherical harmonics) of the first Pm

n (x) and second kind Qm
n (x). The first

kind is bounded at both x = ±1 for integer n, so that the eigenfunctions are given by
g(x) = Pm

n (x).

If m =0: Legendre polynomials. m = 0 corresponds to solutions of the partial
differential equation with no dependence on the cylindrical angle θ. In this case, the
differential equation (7.10.13) becomes

d

dx

[(
1 − x2

) dg

dx

]
+ n(n + 1)g = 0, (7.10.16)

given that it can be shown that the eigenvalues satisfy (7.10.15). By series methods it can
be shown that there are elementary Taylor series solutions around x = 0 that terminate
(hence, a polynomial) only when μ = n(n + 1), and hence are bounded at x = ±1 when
μ = n(n + 1). It can be shown (not easily) that if μ �= n(n + 1), then the solution to the
differential equation is not bounded at either ±1. These important bounded solutions are
called Legendre polynomials and are not difficult to compute:

n = 0: P0(x) = 1
n = 1: P1(x) = x = cos φ

n = 2: P2(x) =
1
2

(
3x2 − 1

)
=

1
4

(3 cos 2φ + 1) .

(7.10.17)

These have been chosen such that they equal 1 at x = 1 (φ = 0, North Pole). It can be
shown that the Legendre polynomials satisfy Rodrigues’ formula:

Pn(x) =
1

2nn!
dn

dxn

(
x2 − 1

)n
. (7.10.18)

Since Legendre polynomials are orthogonal with weight 1, they can be obtained using
the Gram–Schmidt procedure (see Appendix of Section 7.5). We graph (see Fig. 7.10.1)
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−1 1 −1 1 −1 1

0 π 0 π 0 π

P0(x) = 1 P1(x) = x P2(x) = 1
2 (3x2 − 1)

P0(cosφ) = 1 P1(cosφ) = cosφ P2(cosφ) = 1
4 (3cos2φ + 1)

FIGURE 7.10.1 Legendre polynomials.

in x and φ the first few eigenfunctions (Legendre polynomials). It can be shown that the
Legendre polynomials are a complete set of polynomials, and therefore there are no other
eigenvalues besides μ = n(n + 1).

If m > 0: The associated Legendre functions. Remarkably, the eigenvalues
when m > 0 are basically the same as when m = 0 and are given by (7.10.15). Even
more remarkable is that the eigenfunctions when m > 0 (which we have called associ-
ated Legendre functions) can be related to the eigenfunctions when m = 0 (Legendre
polynomials):

g(x) = Pm
n (x) =

(
1 − x2

)m/2 dm

dxm
Pn(x). (7.10.19)

We note that Pn(x) is the nth-degree Legendre polynomial. The mth derivative will be
zero if n < m. Thus, the eigenfunctions exist only for n ≥ m, and the eigenvalues do
depend weakly on m. The infinite number of eigenvalues is

μ = n(n + 1), (7.10.20)

with the restriction that n ≥ m. These formulas are also valid when m = 0; the associated
Legendre functions when m = 0 are the Legendre polynomials, P 0

n(x) = Pn(x).
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7.10.4 Radial Eigenvalue Problems

The radial Sturm–Liouville differential equation, (7.10.10), with μ = n(n + 1),

d

dρ

(
ρ2 df

dρ

)
+

(
λρ2 − n(n + 1)

)
f = 0, (7.10.21)

has the restriction n ≥ m for fixed m. The boundary conditions are f(a) = 0, and the
solution should be bounded at ρ = 0. Equation (7.10.21) is nearly Bessel’s differential
equation. The parameter λ can be eliminated by instead considering

√
λρ as the indepen-

dent variable. However, the result is not quite Bessel’s differential equation. It is easy to
show (see the Exercises) that if Zp(x) solves Bessel’s differential equation (7.7.25) of order
p, then f(ρ) = ρ−1/2Zn+ 1

2
(
√

λρ), called spherical Bessel functions, satisfy (7.10.21).
Since the radial eigenfunctions must be bounded at ρ = 0, we have

f(ρ) = ρ−1/2Jn+ 1
2
(
√

λρ), (7.10.22)

for n ≥ m. [If we recall the behavior of the Bessel functions at the origin (7.7.33), we
can verify that these solutions are bounded at the origin. In fact, they are zero at the
origin except for n = 0.] The eigenvalues λ are determined by applying the homogeneous
boundary condition at ρ = a:

Jn+ 1
2
(
√

λa) = 0. (7.10.23)

The eigenvalues are determined by the zeros of the Bessel functions of order n+ 1
2 . There

are an infinite number of eigenvalues for each n and m. Note that the frequencies of
vibration are the same for all values of m ≤ n.

The spherical Bessel functions can be related to trigonometric functions:

x−1/2Jn+ 1
2
(x) = xn

(
− 1

x

d

dx

)n (
sin x

x

)
. (7.10.24)

7.10.5 Product Solutions, Modes of Vibration, and the Initial Value Problem

Product solutions for the wave equation in three dimensions are

u(ρ, θ, φ, t) =
{

cos c
√

λt

sin c
√

λt

}
ρ−1/2Jn+ 1

2
(
√

λρ)
{

cos mθ
sin mθ

}
Pm

n (cos φ),

where the frequencies of vibration are determined from (7.10.23). There are four possi-

ble solutions, one from each pair. The angular parts Y m
n ≡

{
cos mθ
sin mθ

}
Pm

n (cos φ) are
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called surface harmonics of the first kind. Initial value problems are solved by using
superposition of these infinite modes, summing over m,n, and the infinite radial eigen-
functions characterized by the zeros of the Bessel functions. The weights of the three
one-dimensional orthogonality give rise to dθ, sin φ dφ, ρ2 dρ, which is equivalent to or-
thogonality in three dimensions with weight 1, since the differential volume in spherical
coordinates is dV = ρ2 sin φdρ dφ dθ. This can be checked using the Jacobian J of the
original transformation since dx dy dz = J dρ dθ dφ and

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ρ

∂x

∂φ

∂x

∂θ

∂y

∂ρ

∂y

∂φ

∂y

∂θ

∂z

∂ρ

∂z

∂φ

∂z

∂θ

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
sin φ cos θ ρ cos φ cos θ −ρ sin φ sin θ
sin φ sin θ ρ cos φ sin θ ρ sin φ cos θ

cos φ −ρ sin φ 0

∣∣∣∣∣∣ = ρ2 sin φ.

Normalization integrals for associated Legendre functions can be found in reference books
such as Abramowitz and Stegun:

∫ 1

−1

[Pm
n (x)]2 dx =

(
n +

1
2

)−1 (n + m)!
(n − m)!

(7.10.25)

EXAMPLE

For the purely radial mode n = 0 (m = 0 only), using (7.10.24) the frequencies of vibration
satisfy sin(

√
λa) = 0, so that

circular frequency = c
√

λ =
jπc

a
,

where a is the radius of the earth, for example. The fundamental mode j = 1 has circular
frequency πc

a radians per second or a frequency of c
2a cycles per second (hertz) or a period

of 2a
c seconds. For the earth we can take a = 6000 km and c = 5 km/s, giving a period of

12000
5 = 2400 seconds or 40 minutes.

7.10.6 Laplace’s Equation Inside a Spherical Cavity

In electrostatics, it is of interest to solve Laplace’s equation inside a sphere with the
potential u specified on the boundary ρ = a:

∇2u = 0 (7.10.26)

u(a, θ, φ) = F (θ, φ). (7.10.27)
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This corresponds to determining the electric potential given the distribution of the po-
tential along the spherical conductor. We can use the previous computations, where we
solved by separation of variables. The θ and φ equations and their solutions will be the
same, a Fourier series in θ involving cosmθ and sinmθ and a generalized Fourier series in
φ involving the associated Legendre functions Pm

n (cos φ). However, we need to insist that
λ = 0, so that the radial equation (7.10.21) will be different and will not be an eigenvalue
problem:

d

dρ

(
ρ2 df

dρ

)
− n(n + 1))f = 0. (7.10.28)

Here (7.10.28) is an equidimensional equation and can be solved exactly by substituting
f = ρr. By substitution we have r(r + 1) − n(n + 1) = 0, which is a quadratic equation
with two different roots r = n and r = −n − 1 since n is an integer. Since the potential
must be bounded at the center ρ = 0, we reject the unbounded solution ρ−n−1. Product
solutions for Laplace’s equation are

ρn

{
cos mθ
sin mθ

}
Pm

n (cos φ), (7.10.29)

so that the solution of Laplace’s equation is in the form

u(ρ, θ, φ) =
∞∑

m=0

∞∑
n=m

ρn[Amn cos mθ + Bmn sin mθ]Pm
n (cos φ). (7.10.30)

The nonhomogeneous boundary condition implies that

F (θ, φ) =
∞∑

m=0

∞∑
n=m

an[Amn cos mθ + Bmn sin mθ]Pm
n (cos φ). (7.10.31)

By orthogonality, for example,

anBmn =

∫∫
F (θ, φ) sin mθPm

n (cos φ) sin φ dφ dθ∫∫
sin2 mθ [Pm

n (cos φ)]2 sin φ dφ dθ

. (7.10.32)

A similar expression exists for Amn.

EXAMPLE

In electrostatics, it is of interest to determine the electric potential inside a conducting
sphere if the hemispheres are at different constant potentials. This can be done experimen-
tally by separating two hemispheres by a negligibly thin insulated ring. For convenience,
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we assume the upper hemisphere is at potential +V and the lower hemisphere at po-
tential −V . The boundary condition at ρ = a is cylindrically (azimuthally) symmetric;
there is no dependence on the angle θ. We solve Laplace’s equation under this simplifying
circumstance, or we can use the general solution obtained previously. We follow the later
procedure. Since there is no dependence on θ, all terms for the Fourier series in θ will be
zero in (7.10.30) except for the m = 0 term. Thus, the solution of Laplace’s equation with
cylindrical symmetry can be written as a series involving the Legendre polynomials:

u(ρ, φ) =
∞∑

n=0

AnρnPn(cos φ). (7.10.33)

The boundary condition becomes

V for 0 < φ < π/2 (0 < x < 1)
−V for π/2 < φ < π(−1 < x < 0)

}
=

∞∑
n=0

AnanPn(cos φ). (7.10.34)

Thus, using orthogonality (in x = cos φ) with weight 1,

Anan =

∫ 0

−1
−V Pn(x) dx +

∫ 1

0
V Pn(x) dx∫ 1

−1
[Pn(x)]2 dx

=

⎧⎨
⎩

0 for n even

2
∫ 1

0

V Pn(x) dx
/∫ 1

−1

[Pn(x)]2 dx for n odd,
(7.10.35)

since Pn(x) is even for n even, Pn(x) is odd for n odd, and the potential on the surface
of the sphere is an odd function of x. Using the normalization integral (7.10.25) for
the denominator and Rodrigues’ formula for Legendre polynomials, (7.10.18), for the
numerator, it can be shown that

u(ρ, φ) = V

[
3
2

ρ

a
P1(cos φ) − 7

8

(ρ

a

)3

P3 (cos φ) +
11
16

(ρ

a

)5

P5(cos φ) + . . .

]
. (7.10.36)

For a more detailed discussion of this, see Jackson (1998), Classical Electrodynamics.

EXERCISES 7.10

7.10.1. Solve the initial value problem for the wave equation∂2u
∂t2

= c2∇2u inside a sphere of

radius a subject to the boundary condition u(a, θ, φ, t) = 0 and the initial conditions

(a) u(ρ, θ, φ, 0) = F (ρ, θ, φ) and
∂u

∂t
(ρ, θ, φ, 0) = 0

(b) u(ρ, θ, φ, 0) = 0 and
∂u

∂t
(ρ, θ, φ, 0) = G(ρ, θ, φ)

(c) u(ρ, θ, φ, 0) = F (ρ, φ) and
∂u

∂t
(ρ, θ, φ, 0) = 0
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(d) u(ρ, θ, φ, 0) = 0 and
∂u

∂t
(ρ, θ, φ, 0) = G(ρ, φ)

(e) u(ρ, θ, φ, 0) = F (ρ, φ) cos 3θ and
∂u

∂t
(ρ, θ, φ, 0) = 0

(f) u(ρ, θ, φ, 0) = F (ρ) sin 2θ and
∂u

∂t
(ρ, θ, φ, 0) = 0

(g) u(ρ, θ, φ, 0) = F (ρ) and
∂u

∂t
(ρ, θ, φ, 0) = 0

(h) u(ρ, θ, φ, 0) = 0 and
∂u

∂t
(ρ, θ, φ, 0) = G(ρ)

7.10.2. Solve the initial value problem for the heat equation ∂u
∂t = k∇2u inside a sphere of

radius a subject to the boundary condition u(a, θ, φ, t) = 0 and the initial conditions

(a) u(ρ, θ, φ, 0) = F (ρ, θ, φ)

(b) u(ρ, θ, φ, 0) = F (ρ, φ)

(c) u(ρ, θ, φ, 0) = F (ρ, φ) cos θ

(d) u(ρ, θ, φ, 0) = F (ρ)

7.10.3. Solve the initial value problem for the heat equation ∂u
∂t = k∇2u inside a sphere

of radius a subject to the boundary condition ∂u
∂ρ (a, θ, φ, t) = 0 and the initial

conditions

(a) u(ρ, θ, φ, 0) = F (ρ, θ, φ)

(b) u(ρ, θ, φ, 0) = F (ρ, φ)

(c) u(ρ, θ, φ, 0) = F (ρ, φ) sin 3θ

(d) u(ρ, θ, φ, 0) = F (ρ)

7.10.4. Using the one-dimensional Rayleigh quotient, show that μ ≥ 0 (if m ≥ 0) as defined
by (7.10.11). Under what conditions does μ = 0?

7.10.5. Using the one-dimensional Rayleigh quotient, show that μ ≥ 0 (if m ≥ 0) as defined
by (7.10.13). Under what conditions does μ = 0?

7.10.6. Using the one-dimensional Rayleigh quotient, show that λ ≥ 0 (if n ≥ 0) as defined
by (7.10.6) with the boundary condition f(a) = 0. Can λ = 0?

7.10.7. Using the three-dimensional Rayleigh quotient, show that λ ≥ 0 as defined by
(7.10.11) with u(a, θ, φ, t) = 0. Can λ = 0?

7.10.8. Differential equations related to Bessel’s differential equation. Use this to show that

x2 d2f

dx2
+ x(1 − 2a − 2bx)

df

dx
+ [a2 − p2 + (2a − 1)bx + (d2 + b2)x2]f = 0 (7.10.37)

has solutions xaebxZp(dx), where Zp(x) satisfies Bessel’s differential equation (7.7.25).
By comparing (7.10.21) and (7.10.37), we have a = − 1

2 , b = 0, 1
4 − p2 = −n(n + 1),

and d2 = λ. We find that p = (n + 1
2 ).

7.10.9. Solve Laplace’s equation inside a sphere ρ < a subject to the following boundary
conditions on the sphere:

(a) u(a, θ, φ) = F (φ) cos 4θ

(b) u(a, θ, φ) = F (φ)
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(c)
∂u

∂ρ
(a, θ, φ) = F (φ) cos 4θ

(d)
∂u

∂ρ
(a, θ, φ) = F (φ) with

∫ π
0

F (φ) sin φ dφ = 0

(e)
∂u

∂ρ
(a, θ, φ) = F (θ, φ) with

∫ π
0

∫ 2π
0

F (θ, φ) sin φ dθ dφ = 0

7.10.10. Solve Laplace’s equation outside a sphere ρ > a subject to the potential given on
the sphere:

(a) u(a, θ, φ) = F (θ, φ)

(b) u(a, θ, φ) = F (φ), with cylindrical (azimuthal) symmetry

(c) u(a, θ, φ) = V in the upper hemisphere, −V in the lower hemisphere (do not
simplify; do not evaluate definite integrals)

7.10.11. Solve Laplace’s equation inside a sector of a sphere ρ < a with 0 < θ < π
2 subject to

u(ρ, 0, φ) = 0 and u(ρ, π
2 , φ) = 0 and the potential given on the sphere: u(a, θ, φ) =

F (θ, φ).
7.10.12. Solve Laplace’s equation inside a hemisphere ρ < a with z > 0 subject to u = 0

at z = 0 and the potential given on the hemisphere: u(a, θ, φ) = F (θ, φ). [Hint : Use
symmetry and solve a different problem, a sphere with the antisymmetric potential
on the lower hemisphere.]

7.10.13. Show that Rodrigues’ formula agrees with the given Legendre polynomials for n = 0,
n = 1, and n = 2.

7.10.14. Show that Rodrigues’ formula satisfies the differential equation for Legendre poly-
nomials.

7.10.15. Derive (7.10.36) using (7.10.35), (7.10.18), and (7.10.25).



C H A P T E R 8

Nonhomogeneous Problems

8.1 INTRODUCTION

In the previous chapters we have developed only one method to solve partial differential
equations: the method of separation of variables. In order to apply the method of sepa-
ration of variables, the partial differential equation (with n independent variables) must
be linear and homogeneous. In addition, we must be able to formulate a problem with
linear and homogeneous boundary conditions for n− 1 variables. However, some of the
most fundamental physical problems do not have homogeneous conditions.

8.2 HEAT FLOW WITH SOURCES AND NONHOMOGENEOUS
BOUNDARY CONDITIONS

Time-independent boundary conditions. As an elementary example of a nonho-
mogeneous problem, consider the heat flow (without sources) in a uniform rod of length
L with the temperature fixed at the left end at A◦ and the right at B◦. If the initial
condition is prescribed, the mathematical problem for the temperature u(x, t) is

PDE:
∂u

∂t
= k

∂2u

∂x2
(8.2.1)

BC1: u(0, t) = A (8.2.2)

BC2: u(L, t) = B (8.2.3)

IC: u(x, 0) = f(x). (8.2.4)

The method of separation of variables cannot be used directly since for even this simple
example the boundary conditions are not homogeneous.

Equilibrium temperature. To analyze this problem, we first obtain an equilib-
rium temperature distribution, uE(x). If such a temperature distribution exists, it must
satisfy the steady-state (time-independent) heat equation,

341
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d2uE

dx2
= 0, (8.2.5)

as well as the given time-independent boundary conditions,

uE(0) = A (8.2.6)
uE(L) = B. (8.2.7)

We ignore the initial conditions in defining an equilibrium temperature distribution. As
shown in Section 1.4, (8.2.5) implies that the temperature distribution is linear, and
the unique one that satisfies (8.2.2) and (8.2.3) can be determined geometrically or
algebraically:

uE(x) = A +
B − A

L
x, (8.2.8)

which is sketched in Fig. 8.2.1. Usually, uE(x) will not be the desired time-dependent
solution, since it satisfies the initial conditions (8.2.4) only if f(x) = A + [(B − A)/L]x.

FIGURE 8.2.1 Equilibrium
temperature distribution.

0 Lx

A

B

uE(x)

Displacement from equilibrium. For more general initial conditions, we con-
sider the temperature displacement from the equilibrium temperature,

v(x, t) ≡ u(x, t) − uE(x). (8.2.9)

Instead of solving for u(x, t), we will determine v(x, t). Since ∂v/∂t = ∂u/∂t and
∂2v/∂x2 = ∂2u/∂x2 [note that uE(x) is linear in x], it follows that v(x, t) also satisfies the
heat equation

∂v

∂t
= k

∂2v

∂x2
. (8.2.10)

Furthermore, both u(x, t) and uE(x) equal A at x = 0 and equal B at x = L, and hence
their difference is zero at x = 0 and at x = L:

v(0, t) = 0 (8.2.11)
v(L, t) = 0. (8.2.12)
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Initially, v(x, t) equals the difference between the given initial temperature and the equi-
librium temperature,

v(x, 0) = f(x) − uE(x). (8.2.13)

Fortunately, the mathematical problem for v(x, t) is a linear homogeneous partial dif-
ferential equation with linear homogeneous boundary conditions. Thus, v(x, t) can be
determined by the method of separation of variables. In fact, this problem is one we have
encountered in (2.3.1)–(2.3.3). Hence, we note that from (2.3.30),

v(x, t) =
∞∑

n=1

an sin
nπx

L
e−k(nπ/L)2t, (8.2.14)

where the initial conditions imply that

f(x) − uE(x) =
∞∑

n=1

an sin
nπx

L
, (8.2.15)

Thus, an equals the Fourier sine coefficients of f(x) − uE(x):

an =
2
L

∫ L

0

[f(x) − uE(x)] sin
nπx

L
dx. (8.2.16)

From (8.2.9) we easily obtain the desired temperature, u(x, t) = uE(x) + v(x, t). Thus,

u(x, t) = uE(x) +
∞∑

n=1

an sin
nπx

L
e−k(nπ/L)2t, (8.2.17)

where an is given by (8.2.16) and uE(x) is given by (8.2.8). As t → ∞, u(x, t) → uE(x)
irrespective of the initial conditions. The temperature approaches its equilibrium
distribution for all initial conditions.

Steady nonhomogeneous terms. The previous method also works if there are
steady sources of thermal energy:

PDE:
∂u

∂t
= k

∂2u

∂x2
+ Q(x) (8.2.18)

BC:
u(0, t) = A
u(L, t) = B

(8.2.19)
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IC: u(x, 0) = f(x). (8.2.20)

If an equilibrium solution exists (see Exercise 1.4.6 for a somewhat different example in
which an equilibrium solution does not exist), then we determine it and again consider
the displacement from equilibrium,

v(x, t) = u(x, t) − uE(x).

We can show that v(x, t) satisfies a linear homogeneous partial differential equation
(8.2.10) with linear homogeneous boundary conditions (8.2.11) and (8.2.12). Thus, again
u(x, t) → uE(x) as t → ∞.

Time-dependent nonhomogeneous terms. Unfortunately, nonhomogeneous
problems are not always as easy to solve as the previous examples. In order to clarify
the situation, we again consider the heat flow in a uniform rod of length L. However, we
make two substantial changes. First, we introduce temperature-independent heat sources
distributed in a prescribed way throughout the rod. Thus, the temperature will solve the
following nonhomogeneous partial differential equation:

PDE:
∂u

∂t
= k

∂2u

∂x2
+ Q(x, t). (8.2.21)

Here the sources of thermal energy Q(x, t) vary in space and time. In addition, we allow the
temperature at the ends to vary in time. This yields time-dependent and nonhomogeneous
linear boundary conditions,

BC:
u(0, t) = A(t)
u(L, t) = B(t), (8.2.22)

instead of the time-independent ones, (8.2.3) and (8.2.4). Again the initial temperature
distribution is prescribed:

IC: u(x, 0) = f(x). (8.2.23)

The mathematical problem defined by (8.2.21)–(8.2.23) consists of a nonhomogeneous
partial differential equation with nonhomogeneous boundary conditions.

Related homogeneous boundary conditions. We claim that we cannot always
reduce this problem to a homogeneous partial differential equation with homogeneous
boundary conditions, as we did for the first example of this section. Instead, we will find it
quite useful to note that we can always transform our problem into one with homogeneous
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boundary conditions, although in general the partial differential equation will remain
nonhomogeneous. We consider any reference temperature distribution r(x, t) (the
simpler the better) with only the property that it satisfy the given nonhomogeneous
boundary conditions. In our example, this means only that

r(0, t) = A(t)
r(L, t) = B(t).

It is usually not difficult to obtain many candidates for r(x, t). Perhaps the simplest
choice is

r(x, t) = A(t) +
x

L
[B(t) − A(t)], (8.2.24)

although there are other possibilities.1 Again the difference between the desired solution
u(x, t) and the chosen function r(x, t) (now not necessarily an equilibrium solution) is
employed:

v(x, t) ≡ u(x, t) − r(x, t). (8.2.25)

Since both u(x, t) and r(x, t) satisfy the same linear (although nonhomogeneous) bound-
ary condition at both x = 0 and x = L, it follows that v(x, t) satisfies the related homo-
geneous boundary conditions:

v(0, t) = 0 (8.2.26)

v(L, t) = 0. (8.2.27)

The partial differential equation satisfied by v(x, t) is derived by substituting

u(x, t) = v(x, t) + r(x, t)

into the heat equation with sources, (8.2.21). Thus,

∂v

∂t
= k

∂2v

∂x2
+

[
Q(x, t) − ∂r

∂t
+ k

∂2r

∂x2

]
≡ k

∂2v

∂x2
+ Q. (8.2.28)

In general, the partial differential equation for v(x, t) is of the same type as for u(x, t),
but with a different nonhomogeneous term, since r(x, t) usually does not satisfy the
homogeneous heat equation. The initial condition is also usually altered:

v(x, 0) = f(x) − r(x, 0) = f(x) − A(0) − x

L
[B(0) − A(0)] ≡ g(x). (8.2.29)

It can be seen that in general, only the boundary conditions have been made homoge-
neous. In Section 8.3 we will develop a method to analyze nonhomogeneous problems
with homogeneous boundary conditions.

1Other choices for r(x, t) yield equivalent solutions to the original nonhomogeneous problem.
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EXERCISES 8.2

8.2.1. Solve the heat equation with time-independent sources and boundary conditions

∂u

∂t
= k

∂2u

∂x2
+ Q(x)

u(x, 0) = f(x)

if an equilibrium solution exists. Analyze the limits as t → ∞. If no equilibrium exists,
explain why and reduce the problem to one with homogeneous boundary conditions
(but do not solve). Assume

*(a) Q(x) = 0, u(0, t) = A,
∂u

∂x
(L, t) = B

(b) Q(x) = 0,
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = B �= 0

(c) Q(x) = 0,
∂u

∂x
(0, t) = A �= 0,

∂u

∂x
(L, t) = A

*(d) Q(x) = k, u(0, t) = A, u(L, t) = B

(e) Q(x) = k,
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

(f) Q(x) = sin
2πx

L
,

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

8.2.2. Consider the heat equation with time-dependent sources and boundary conditions

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

u(x, 0) = f(x).

Reduce the problem to one with homogeneous boundary conditions if

*(a)
∂u

∂x
(0, t) = A(t) and

∂u

∂x
(L, t) = B(t)

(b) u(0, t) = A(t) and
∂u

∂x
(L, t) = B(t)

*(c)
∂u

∂x
(0, t) = A(t) and u(L, t) = B(t)

(d) u(0, t) = 0 and
∂u

∂x
(L, t) + h(u(L, t) − B(t)) = 0

(e)
∂u

∂x
(0, t) = 0 and

∂u

∂x
(L, t) + h(u(L, t) − B(t)) = 0

8.2.3. Solve the two-dimensional heat equation with circularly symmetric time-
independent sources, boundary conditions, and initial conditions (inside a circle)

∂u

∂t
=

k

r

∂

∂r

(
r
∂u

∂r

)
+ Q(r)

with
u(r, 0) = f(r) and u(a, t) = T.
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8.2.4. Solve the two-dimensional heat equation

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)

subject to the time-independent boundary conditions

u(0, y, t) = 0,
∂

∂y
u(x, 0, t) = 0

u(L, y, t) = 0, u(x, H, t) = g(x)

and the initial condition
u(x, y, 0) = f(x, y).

Analyze the limit as t → ∞.
8.2.5. Solve the initial value problem for a two-dimensional heat equation inside a circle (of

radius a) with time-independent boundary conditions

∂u

∂t
= k∇2u

u(a, θ, t) = g(θ)

u(r, θ, 0) = f(r, θ).

8.2.6. Solve the wave equation with time-independent sources

∂2u

∂t2
= c2

∂2u

∂x2
+ Q(x)

u(x, 0) = f(x)

∂

∂t
u(x, 0) = g(x)

if an “equilibrium” solution exists. Analyze the behavior for large t. If no equilib-
rium exists, explain why and reduce the problem to one with homogeneous boundary
conditions. Assume that

*(a) Q(x) = 0, u(0, t) = A, u(L, t) = B

(b) Q(x) = 1, u(0, t) = 0, u(L, t) = 0
(c) Q(x) = 1, u(0, t) = A, u(L, t) = B

[Hint : Add problems (a) and (b).]
*(d) Q(x) = sin πx

L , u(0, t) = 0, u(L, t) = 0

8.3 METHOD OF EIGENFUNCTION EXPANSION WITH HOMOGENEOUS BOUNDARY
CONDITIONS (DIFFERENTIATING SERIES OF EIGENFUNCTIONS)

In Section 8.2 we showed how to introduce a problem with homogeneous boundary condi-
tions, even if the original problem of interest has nonhomogeneous boundary conditions.
For that reason we will investigate nonhomogeneous linear partial differential equations
with homogeneous boundary conditions. For example, consider

PDE:
∂v

∂t
= k

∂2v

∂x2
+ Q(x, t) (8.3.1)
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BC:
v(0, t) = 0
v(L, t) = 0 (8.3.2)

IC: v(x, 0) = g(x). (8.3.3)

We will solve this problem by the method of eigenfunction expansion. Con-
sider the eigenfunctions of the related homogeneous problem. The related homogeneous
problem is

∂u

∂t
= k

∂2u

∂x2

u(0, t) = 0

u(L, t) = 0.

(8.3.4)

The eigenfunctions of this related homogeneous problem satisfy

d2φ

dx2
+ λφ = 0

φ(0) = 0

φ(L) = 0.

(8.3.5)

We know that the eigenvalues are λn = (nπ/L)2, n = 1, 2, . . . , and the corresponding
eigenfunctions are φn(x) = sin nπx/L. However, the eigenfunctions will be different for
other problems. We do not wish to emphasize the method of eigenfunction expansion
solely for this one example. Thus, we will speak in some generality. We assume that
the eigenfunctions (of the related homogeneous problem) are known, and we designate
them φn(x). The eigenfunctions satisfy a Sturm–Liouville eigenvalue problem and as
such they are complete (any piecewise smooth function may be expanded in a series of
these eigenfunctions). The method of eigenfunction expansion, employed to solve
the nonhomogeneous problem (8.3.1) with homogeneous boundary conditions,
(8.3.2), consists of expanding the unknown solution v(x, t) in a series of the
eigenfunction of the related homogeneous problem:

v(x, t) =
∞∑

n=1

an(t)φn(x). (8.3.6)

For each fixed t, v(x, t) is a function of x, and hence v(x, t) will have a generalized Fourier
series. In our example, φn(x) = sinnπx/L, and this series is an ordinary Fourier sine series.
The generalized Fourier coefficients are an, but the coefficients will vary as t changes. Thus,
the generalized Fourier coefficients are functions of time, an(t). At first glance expansion
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(8.3.6) may appear similar to what occurs in separating variables for homogeneous prob-
lems. However, (8.3.6) is substantially different. Here an(t) are not the time-dependent
separated solutions e−k(nπ/L)2t. Instead, an(t) are just the generalized Fourier coefficients
for v(x, t). We will determine an(t) and show that usually an(t) is not proportional to
e−k(nπ/L)2t.

Equation (8.3.6) automatically satisfies the homogeneous boundary conditions. We
emphasize this by stating that both v(x, t) and φn(x) satisfy the same homogeneous
boundary conditions. The initial condition is satisfied if

g(x) =
∞∑

n=1

an(0)φn(x).

Due to the orthogonality of the eigenfunctions [with weight 1 in this problem because of
the constant coefficient in (8.3.5)], we can determine the initial values of the generalized
Fourier coefficients:

an(0) =

∫ L

0
g(x)φn(x) dx∫ L

0
φ2

n(x) dx
. (8.3.7)

“All” that remains is to determine an(t) such that (8.3.6) solves the nonhomogeneous
partial differential equation (8.3.1). We will show in two different ways that an(t) satisfies
a first-order differential equation in order for (8.3.6) to satisfy (8.3.1).

One method to determine an(t) is by direct substitution. This is easy to do but
requires calculation of ∂v/∂t and ∂2v/∂x2. Since v(x, t) is an infinite series, the differen-
tiation can be a delicate process. We simply state that with some degree of generality, if
v and ∂v/∂x are continuous and if v(x, t) solves the same homogeneous boundary
conditions as does φn(x), then the necessary term-by-term differentiations
can be justified. For the cases of Fourier sine and cosine series, a more detailed investi-
gation of the properties of the term-by-term differentiation of these series was presented
in Section 3.4, which proved this result. For the general case, we omit a proof. However,
we obtain the same solution in Section 8.4 by an alternative method, which thus justifies
the somewhat simpler technique of the present section. We thus proceed to differentiate
v(x, t) term-by-term:

∂v

∂t
=

∞∑
n=1

dan(t)
dt

φn(x)

∂2v

∂x2
=

∞∑
n=1

an(t)
d2φn(x)

dx2
= −

∞∑
n=1

an(t)λnφn(x),

since φn(x) satisfies d2φn/dx2 + λnφn = 0. Substituting these results into (8.3.1) yields

∞∑
n=1

[
dan

dt
+ λnkan

]
φn(x) = Q(x, t). (8.3.8)
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The left-hand side is the generalized Fourier series for Q(x, t). Due to the orthogonality
of φn(x), we obtain a first-order differential equation for an(t):

dan

dt
+ λnkan =

∫ L

0
Q(x, t)φn(x) dx∫

0
φ2

n(x) dx
≡ qn(t). (8.3.9)

The right-hand side is a known function of time (and n), namely, the Fourier coefficient
of Q(x, t):

Q(x, t) =
∞∑

n=1

qn(t)φn(x).

Equation (8.3.9) requires an initial condition, and sure enough an(0) equals the generalized
Fourier coefficients of the initial condition [see (8.3.7)].

Equation (8.3.9) is a nonhomogeneous linear first-order equation. Perhaps the easiest
method2 to solve it [unless qn(t) is particularly simple] is to multiply it by the integrating
factor eλnkt. Thus,

eλnkt

(
dan

dt
+ λnkan

)
=

d

dt
(aneλnkt) = qneλnkt.

Integrating from 0 to t yields

an(t)eλnkt − an(0) =
∫ t

0

qn(τ)eλnkτ dτ.

We solve for an(t) and obtain

an(t) = an(0)e−λnkt + e−λnkt

∫ t

0

qn(τ)eλnkτ dτ. (8.3.10)

Note that an(t) is in the form of a constant, an(0), times the homogeneous solution e−λnkt

plus a particular solution. This completes the method of eigenfunction expansions. The
solution of our nonhomogeneous partial differential equation with homogeneous boundary
conditions is

v(x, t) =
∞∑

n=1

an(t)φn(x),

where φn(x) = sin nπx/L, λn = (nπ/L)2, an(t) is given by (8.3.10), qn(τ) is given by
(8.3.9), and an(0) is given by (8.3.7). The solution is rather complicated.

As a check, if the problem was homogeneous, Q(x, t) = 0, then the solution
simplifies to

v(x, t) =
∞∑

n=1

an(t)φn(x),

2Another method is variation of parameters.
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where
an(t) = an(0)e−λnkt

and an(0) is given by (8.3.7), exactly the solution obtained by separation of variables.

EXAMPLE

As an elementary example, suppose that for 0 < x < π (i.e., L = π),

∂u

∂t
=

∂2u

∂x2
+ e−t sin 3x, subject to

⎧⎨
⎩

u(0, t) = 0,
u(π, t) = 1,
u(x, 0) = f(x).

To make the boundary conditions homogeneous, we introduce the displacement from
equilibrium v(x, t) = u(x, t) − x/π, in which case

∂v

∂t
=

∂2v

∂x2
+ e−t sin 3x, subject to

⎧⎪⎨
⎪⎩

v(0, t) = 0,
v(π, t) = 0,
v(x, 0) = f(x) − x

π
.

The eigenfunctions are sinnπx/L = sin nx (since L = π), and thus

v(x, t) =
∞∑

n=1

an(t) sin nx. (8.3.11)

This eigenfunction expansion is substituted into the PDE, yielding

∞∑
n=1

(
dan

dt
+ n2an

)
sin nx = e−t sin 3x.

Thus, the unknown Fourier sine coefficients satisfy

dan

dt
+ n2an =

{
0 n �= 3,
e−t n = 3.

The solution of this does not require (8.3.10):

an(t) =

⎧⎪⎨
⎪⎩

an(0)e−n2t, n �= 3,
1
8
e−t +

[
a3(0) − 1

8

]
e−9t, n = 3,

(8.3.12)

where

an(0) =
2
π

∫ π

0

[
f(x) − x

π

]
sin nx dx. (8.3.13)

The solution to the original nonhomogeneous problem is given by u(x, t) = v(x, t) + x/π,
where v is given by (8.3.11) with an(t) determined from (8.3.12) and (8.3.13).
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EXERCISES 8.3

8.3.1. Solve the initial value problem for the heat equation with time-dependent sources

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

u(x, 0) = f(x)

subject to the following boundary conditions:

(a) u(0, t) = 0,
∂u

∂x
(L, t) = 0

(b) u(0, t) = 0, u(L, t) + 2
∂u

∂x
(L, t) = 0

*(c) u(0, t) = A(t),
∂u

∂x
(L, t) = 0

(d) u(0, t) = A �= 0, u(L, t) = 0

(e)
∂u

∂x
(0, t) = A(t),

∂u

∂x
(L, t) = B(t)

*(f)
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0

(g) Specialize part (f) to the case Q(x, t) = Q(x) (independent of t) such
that

∫ L
0

Q(x) dx �= 0. In this case, show that there are no time-
independent solutions. What happens to the time-dependent solution
as t → ∞? Briefly explain.

8.3.2. Consider the heat equation with a steady source

∂u

∂t
= k

∂2u

∂x2
+ Q(x)

subject to the initial and boundary conditions:

u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f(x).

Obtain the solution by the method of eigenfunction expansion. Show that the solution
approaches a steady-state solution.

*8.3.3. Solve the initial value problem

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ qu + f(x, t),

where c, ρ, K0, and q are functions of x only, subject to the conditions

u(0, t) = 0, u(L, t) = 0, and u(x, 0) = g(x).

Assume that the eigenfunctions are known. [Hint : Let L ≡ d
dx

(
K0

d
dx

)
+ q.]

8.3.4. Consider
∂u

∂t
=

1
σ(x)

∂

∂x

[
K0(x)

∂u

∂x

]
(K0 > 0, σ > 0)
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with the boundary conditions and initial conditions

u(x, 0) = g(x), u(0, t) = A, and u(L, t) = B.

*(a) Find a time-independent solution, u0(x).

(b) Show that limt→∞ u(x, t) = f(x) independent of the initial conditions. [Show
that f(x) = u0(x).]

*8.3.5. Solve

∂u

∂t
= k∇2u + f(r, t)

inside the circle (r < a) with u = 0 at r = a and initially u(r, 0) = 0.
8.3.6. Solve

∂u

∂t
=

∂2u

∂x2
+ e−2t sin 5x

subject to u(0, t) = 1, u(π, t) = 0, and u(x, 0) = 0.
*8.3.7. Solve

∂u

∂t
=

∂2u

∂x2

subject to u(0, t) = 0, u(L, t) = t, and u(x, 0) = 0.

8.4 METHOD OF EIGENFUNCTION EXPANSION USING GREEN’S FORMULA
(WITH OR WITHOUT HOMOGENEOUS BOUNDARY CONDITIONS)

In this section we reinvestigate problems that may have nonhomogeneous boundary con-
ditions. We still use the method of eigenfunction expansion. For example, consider

PDE:
∂u

∂t
= k

∂2u

∂x2
+ Q(x, t) (8.4.1)

BC:
u(0, t) = A(t)
u(L, t) = B(t) (8.4.2)

IC: u(x, 0) = f(x). (8.4.3)
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The eigenfunctions of the related homogeneous problem,

d2φn

dx2
+ λnφn = 0 (8.4.4)

φn(0) = 0 (8.4.5)

φn(L) = 0, (8.4.6)

are known to be φn(x) = sin nπx/L, corresponding to the eigenvalues λn = (nπ/L)2. Any
piecewise smooth function can be expanded in terms of these eigenfunctions. Thus, even
though u(x, t) satisfies nonhomogeneous boundary conditions, it is still true that

u(x, t) =
∞∑

n=1

bn(t)φn(x). (8.4.7)

Actually, the equality in (8.4.7) cannot be valid at x = 0 and at x = L since φn(x)
satisfies the homogeneous boundary conditions, while u(x, t) does not. Nonetheless, we
use the = notation, where we understand that the ∼ notation is more proper. It is
difficult to determine bn(t) by substituting (8.4.7) into (8.4.1); the required term-by-term
differentiations with respect to x are not justified since u(x, t) and φn(x) do not satisfy
the same homogeneous boundary conditions [∂2u/∂x2 �= ∑∞

n=1 bn(t)d2φn/dx2]. However,
term-by-term differentiation in time were shown valid in Section 3.4:

∂u

∂t
=

∞∑
n=1

dbn

dt
φn(x). (8.4.8)

We will determine a first-order differential equation for bn(t). Unlike in Section 8.3, it will
be obtained without calculating spatial derivatives of an infinite series of eigenfunctions.
From (8.4.8) it follows that

∞∑
n=1

dbn

dt
φn(x) = k

∂2u

∂x2
+ Q(x, t),

and thus

dbn

dt
=

∫ L

0

[
k

∂2u

∂x2
+ Q(x, t)

]
φn(x) dx

∫ L

0
φ2

n dx
. (8.4.9)

Equation (8.4.9) allows the partial differential equation to be satisfied. Already we note
the importance of the generalized Fourier series of Q(x, t):

Q(x, t) =
∞∑

n=1

qn(t)φn(x), where qn(t) =

∫ L

0
Q(x, t)φn(x) dx∫ L

0
φ2

n dx
.
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Thus, (8.4.9) simplifies to

dbn

dt
= qn(t) +

∫ L

0

k
∂2u

∂x2
φn(x) dx

∫ L

0

φ2
n dx

. (8.4.10)

We will show how to evaluate the integral in (8.4.10) in terms of bn(t), yielding a first-order
differential equation.

If we integrate
∫ L

0
∂2u/∂x2φn(x) dx twice by parts, then we would obtain the desired

result. However, this would be a considerable effort. There is a better way; we have
already performed the required integration by parts in a more general context. Perhaps
the operator notation, L ≡ ∂2/∂x2, will help to remind you of the result we need. Using
L = ∂2/∂x2, ∫ L

0

∂2u

∂x2
φn(x) dx =

∫ L

0

φnL(u) dx.

Now this may be simplified by employing Green’s formula (derived by repeated integra-
tions in Section 5.5). Let us restate Green’s formula:

∫ L

0

[uL(v) − vL(u)] dx = p

(
u

dv

dx
− v

du

dx

)∣∣∣∣∣
L

0

, (8.4.11)

where L is any Sturm–Liouville operator [L ≡ d/dx(p d/dx) + q]. In our context, L =
∂2/∂x2 (i.e., p=1, q=0). Partial derivatives may be used, since ∂/∂x = d/dx with t fixed.
Thus,

∫ L

0

(
u

∂2v

∂x2
− v

∂2u

∂x2

)
dx =

(
u

∂v

∂x
− v

∂u

∂x

)∣∣∣∣∣
L

0

. (8.4.12)

Here we let v=φn(x). Often both u and φn satisfy the same homogeneous boundary condi-
tions, and the right-hand side vanishes. Here φn(x) = sin nπx/L satisfies
homogeneous boundary conditions, but u(x, t) does not [u(0, t) = A(t) and u(L, t) =
B(t)]. Using dφn/dx = (nπ/L) cos nπx/L, the right-hand side of (8.4.12) simplifies to
(nπ/L)[B(t)(−1)n − A(t)]. Furthermore,

∫ L

0
ud2φn/dx2 dx = −λn

∫ L

0
uφn dx since

d2φn/dx2 + λnφn = 0. Thus, (8.4.12) becomes

∫ L

0

φn
∂2u

∂x2
dx = −λn

∫ L

0

uφndx − nπ

L
[B(t)(−1)n − A(t)].
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Since bn(t) are the generalized Fourier coefficients of u(x, t), we know that

bn(t) =

∫ L

0
uφndx∫ L

0
φ2

ndx
=

2
L

∫ L

0

u sin
nπx

L
dx.

Finally, (8.4.10) reduces to a first-order differential equation for bn(t):

dbn

dt
+ kλnbn = qn(t) +

k(nπ/L)[A(t) − (−1)nB(t)]∫ L

0

φ2
n(x) dx

.
(8.4.13)

The nonhomogeneous terms arise in two ways: qn(t) is due to the source terms in the PDE,
while the term involving A(t) and B(t) is a result of the nonhomogeneous boundary
conditions at x = 0 and x = L. Equation (8.4.13) is again solved by introducing the
integrating factor ekλnt. The required initial condition for bn(t) follows from the given
initial condition, u(x, 0) = f(x):

f(x) =
∞∑

n=1

bn(0)φn(x)

bn(0) =

∫ L

0

f(x)φn(x) dx

∫ L

0

φ2
n dx

.

It is interesting to note that the differential equation for the coefficients bn(t) for problems
with nonhomogeneous boundary conditions is quite similar to the one that occurred in
the preceding section for homogeneous boundary conditions; only the nonhomogeneous
term is modified.

If the boundary conditions are homogeneous, u(0, t) = 0 and u(L, t) = 0, then
(8.4.13) reduces to

dbn

dt
+ kλnbn = qn(t),

the differential equation derived in the preceding section. Using Green’s formula is an
alternative procedure to derive the eigenfunction expansion. It can be used even if the
boundary conditions are homogeneous. In fact, it is this derivation that justifies the
differentiation of infinite series of eigenfunctions used in Section 8.3.

We now have two procedures to solve nonhomogeneous partial differential equations
with nonhomogeneous boundary conditions. By subtracting any function that just solves
the nonhomogeneous boundary conditions, we can solve a related problem with homo-
geneous boundary conditions by the eigenfunction expansion method. Alternatively, we
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can solve directly the original problem with nonhomogeneous boundary conditions by the
method of eigenfunction expansions. In both cases we need the eigenfunction expansion
of some function w(x, t):

w(x, t) =
∞∑

n=1

an(t)φn(x).

If w(x, t) satisfies the same homogeneous boundary conditions as φn(x), then we claim
that this series will converge reasonably fast. However, if w(x, t) satisfies nonhomogeneous
boundary conditions, then not only will the series not satisfy the boundary conditions (at
x = 0 and x = L), but the series will converge more slowly everywhere. Thus, the advan-
tage of reducing a problem to homogeneous boundary conditions is that the corresponding
series converges faster.

EXERCISES 8.4

8.4.1. In these exercises, do not make a reduction to homogeneous boundary conditions.
Solve the initial value problem for the heat equation with time-dependent sources

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

u(x, 0) = f(x)

subject to the following boundary conditions:

(a) u(0, t) = A(t),
∂u

∂x
(L, t) = B(t)

*(b)
∂u

∂x
(0, t) = A(t),

∂u

∂x
(L, t) = B(t)

8.4.2. Use the method of eigenfunction expansions to solve, without reducing to homogeneous
boundary conditions,

∂u

∂t
= k

∂2u

∂x2

u(x, 0) = f(x), u(0, t) = A
u(L, t) = B

where A and B are constants.
8.4.3. Consider

c(x)ρ(x)
∂u

∂t
=

∂

∂x

[
K0(x)

∂u

∂x

]
+ q(x)u + f(x, t)

u(x, 0) = g(x), u(0, t) = α(t)
u(L, t) = β(t).

Assume that the eigenfunctions φn(x) of the related homogeneous problem are known.
(a) Solve without reducing to a problem with homogeneous boundary conditions.
(b) Solve by first reducing to a problem with homogeneous boundary conditions.

8.4.4. Reconsider

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

u(x, 0) = f(x), u(0, t) = 0
u(L, t) = 0.
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Assume that the solution u(x, t) has the appropriate smoothness, so that it may be
represented by a Fourier cosine series,

u(x, t) =
∞∑

n=0

cn(t) cos
nπx

L
.

Solve for dcn/dt. Show that cn satisfies a first-order nonhomogeneous ordinary dif-
ferential equation, but part of the nonhomogeneous term is not known. Make a brief
philosophical conclusion.

8.5 FORCED VIBRATING MEMBRANES AND RESONANCE

The method of eigenfunction expansion may also be applied to nonhomogeneous partial
differential equations with more than two independent variables. An interesting example
is a vibrating membrane of arbitrary shape. In our previous analysis of membranes, vibra-
tions were caused by the initial conditions. Another mechanism that will put a membrane
into motion is an external force. The linear nonhomogeneous partial differential equation
that describes a vibrating membrane is

∂2u

∂t2
= c2∇2u + Q(x, y, t), (8.5.1)

where Q(x, y, t) represents a time- and spatially dependent external force. To be com-
pletely general, there should be some boundary condition along the boundary of the
membrane. However, it is more usual for a vibrating membrane to be fixed with zero
vertical displacement. Thus, we will specify this homogeneous boundary condition,

u = 0, (8.5.2)

on the entire boundary. Both the initial position and initial velocity are specified:

u(x, y, 0) = α(x, y) (8.5.3)

∂u

∂t
(x, y, 0) = β(x, y). (8.5.4)

To use the method of eigenfunction expansion, we must assume that we “know” the
eigenfunctions of the related homogeneous problem. By applying the method of separation
of variables to (8.5.1) with Q(x, y, t) = 0, where the boundary condition is (8.5.2), we
obtain the problem satisfied by the eigenfunctions:

∇2φ = −λφ, (8.5.5)
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with φ = 0 on the entire boundary. We know that these eigenfunctions are complete, and
that different eigenfunctions are orthogonal (in a two-dimensional sense) with weight 1.
We have also shown that λ > 0. However, the specific eigenfunctions depend on the
geometric shape of the region. Explicit formulas can be obtained only for certain rel-
atively simple geometries. Recall that for a rectangle (0 ≤ x ≤ L, 0 ≤ y ≤ H) the
eigenvalues are λnm = (nπ/L)2 + (mπ/H)2, and the corresponding eigenfunctions are
φnm(x, y) = sinnπx/L sin mπy/H, where n = 1, 2, 3, . . . and m = 1, 2, 3 . . . . Also, for a
circle of radius a, we have shown that the eigenvalues are λmn = (zmn/a)2, where zmn are
the nth zeros of the Bessel function of order m,Jm(zmn) = 0, and the corresponding eigen-
functions are both Jm(zmnr/a) sin mθ and Jm(zmnr/a) cos mθ, where n = 1, 2, 3, . . . and
m = 0, 1, 2, 3, . . . .

In general, we designate the related homogeneous eigenfunctions φi(x, y). Any
(piecewise smooth) function, including the desired solution for our forced vibrating mem-
brane, may be expressed in terms of an infinite series of these eigenfunctions. Thus,

u(x, y, t) =
∑

i

Ai(t)φi(x, y). (8.5.6)

Here the
∑

i represents a summation over all eigenfunctions. For membranes it will include
a double sum if we are able to separate variables for ∇2φ + λφ = 0.

Term-by-term differentiation. We will obtain an ordinary differential equa-
tion for the time-dependent coefficients, Ai(t). The differential equation will be derived
in two ways: direct substitution (with the necessary differentiation of infinite series of
eigenfunctions) and use of the multidimensional Green’s formula. In either approach, we
need to assume there are no difficulties with the term-by-term differentiation of (8.5.6)
with respect to t. Thus,

∂2u

∂t2
=

∑
i

d2Ai

dt2
φi(x, y). (8.5.7)

Term-by-term spatial differentiations are allowed since both u and φi solve the same
homogeneous boundary conditions:

∇2u =
∑

i

Ai(t)∇2φi(x, y). (8.5.8)

This would not be valid if u �= 0 on the entire boundary. Since ∇2φi = −λiφi, it follows
that (8.5.1) becomes ∑

i

(
d2Ai

dt2
+ c2λiAi

)
φi = Q(x, y, t). (8.5.9)

If we expand Q(x, y, t) in terms of these same eigenfunctions,

Q(x, y, t) =
∑

i

qi(t)φi(x, y), where qi(t) =
∫∫

Qφi dx dy∫∫
φ2

i dx dy
, (8.5.10)
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then

d2Ai

dt2
+ c2λiAi = qi(t). (8.5.11)

Thus, Ai solves a linear nonhomogeneous second-order differential equation.

Green’s formula. An alternative way to derive (8.5.11) is to use Green’s formula.
We begin this derivation by determining d2Ai/dt2 directly from (8.5.7), using only the
two-dimensional orthogonality of φi(x, y) (with weight 1):

d2Ai

dt2
=

∫∫
∂2u

∂t2
φi dx dy∫∫

φ2
i dx dy

. (8.5.12)

We then eliminate ∂2u/∂t2 from the partial differential equation (8.5.1):

d2Ai

dt2
=

∫∫
(c2∇2u + Q)φi dx dy∫∫

φ2
i dx dy

. (8.5.13)

Recognizing the latter integral as the generalized Fourier coefficients of Q [see (8.5.10)],
we have that

d2Ai

dt2
= qi(t) +

∫∫
c2∇2u φi dx dy∫∫

φ2
i dx dy

. (8.5.14)

It is now appropriate to use the two-dimensional version of Green’s formula:
∫∫

(φi∇2u − u∇2φi) dx dy =
∮

(φi∇u − u∇φi) · n̂ ds, (8.5.15)

where ds represents the differential arc length along the boundary and n̂ is a unit out-
ward normal to the boundary. In our situation, u and φi satisfy homogeneous boundary
conditions, and hence the boundary term in (8.5.15) vanishes:

∫∫
(φi∇2u − u∇2φi) dx dy = 0. (8.5.16)

Equation (8.5.16) is perhaps best remembered as
∫∫

[uL(v) − vL(u)] dx dy = 0, where
L = ∇2. If the membrane did not have homogeneous boundary conditions, then (8.5.15)
would be used instead of (8.5.16), as we did in Section 8.4. The advantage of the use
of Green’s formula is that we can also solve the problem if the boundary condition was
nonhomogeneous. Through the use of (8.5.16),

∫∫
φi∇2u dx dy =

∫∫
u∇2φi dx dy = −λi

∫∫
uφi dx dy = −λiAi(t)

∫∫
φ2

i dx dy,
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since ∇2φi + λiφi = 0 and since Ai(t) is the generalized Fourier coefficient of u(x, y, t):

Ai(t) =
∫∫

uφi dx dy∫∫
φ2

i dx dy
. (8.5.17)

Consequently, we derive from (8.5.14) that

d2Ai

dt2
+ c2λiAi = qi, (8.5.18)

the same second-order differential equation as already derived [see (8.5.11)], justifying the
simpler term-by-term differentiation performed there.

Variation of parameters. We will need some facts about ordinary differential
equations in order to solve (8.5.11) or (8.5.18). Equation (8.5.18) is a second-order linear
nonhomogeneous differential equation with constant coefficients (since λic

2 is constant).
The general solution is a particular solution plus a linear combination of homogeneous
solutions. In this problem, the homogeneous solutions are sin c

√
λit and cos c

√
λit since

λi > 0. A particular solution can always be obtained by variation of parameters. However,
the method of undetermined coefficients is usually easier and should be used if qi(t) is
a polynomial, exponential, sine, or cosine (or products and/or sums of these). Using the
method of variation of parameters (see Section 9.3.2), it can be shown that the general
solution of (8.5.18) is

Ai(t) = c1 cos c
√

λit + c2 sin c
√

λit +
∫ t

0

qi(τ)
sin c

√
λi(t − τ)

c
√

λi

dτ. (8.5.19)

Using this form, the initial conditions may be easily satisfied:

Ai(0) = c1 (8.5.20)
dAi

dt
(0) = c2c

√
λi. (8.5.21)

From the initial conditions (8.5.3) and (8.5.4), it follows that

Ai(0) =
∫∫

α(x, y)φi(x, y) dx dy∫∫
φ2

i dx dy
(8.5.22)

dAi

dt
(0) =

∫∫
β(x, y)φi(x, y) dx dy∫∫

φ2
i dx dy

. (8.5.23)

The solution, in general, for a forced vibrating membrane is

u(x, y, t) =
∑

i

Ai(t)φi(x, y),

where φi, is given by (8.5.5) and Ai(t) is determined by (8.5.19)–(8.5.23).
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If there is no external force, Q(x, y, t) = 0 [i.e., qi(t) = 0], then Ai(t) = c1 cos c
√

λit +
c2 sin c

√
λit. In this situation, the solution is

u(x, y, t) =
∑

i

(ai cos c
√

λit + bi sin c
√

λit)φi(x, y),

exactly the solution obtained by separation of variables. The natural frequencies of oscil-
lation of a membrane are c

√
λi.

Periodic forcing. We have just completed the analysis of the vibrations of an
arbitrarily shaped membrane with arbitrary external forcing. We could easily specialize
this result to rectangular and circular membranes. Instead of doing that, we continue to
discuss an arbitrarily shaped membrane. However, let us suppose that the forcing function
is purely oscillatory in time; specifically,

Q(x, y, t) = Q(x, y) cos ωt; (8.5.24)

that is, the forcing frequency is ω. We do not specify the spatial dependence, Q(x, y).
The eigenfunction expansion of the forcing function is also needed. From (8.5.10) it follows
that

qi(t) = γi cos ωt, (8.5.25)

where γi are constants,

γi =
∫∫

Q(x, y)φi(x, y) dx dy∫∫
φ2

i dx dy
.

From (8.5.18), the generalized Fourier coefficients solve the second-order differential
equation,

d2Ai

dt2
+ c2λiAi = γi cos ωt. (8.5.26)

Since the r.h.s. of (8.5.26) is simple, a particular solution is more easily obtained by the
method of undetermined coefficients [rather than by using the general form (8.5.19)].
Homogeneous solutions are again a linear combination of sin c

√
λit and cos c

√
λit, repre-

senting the natural frequencies c
√

λi of the membrane. The membrane is being forced at
frequency ω.

The solution of (8.5.26) is not difficult. We might guess that a particular solution is
in the form3

Ai(t) = Bi cos ωt. (8.5.27)

Substituting (8.5.27) into (8.5.26) shows that

Bi(c2λi − ω2) = γi or Bi =
γi

c2λi − ω2
,

3If the first derivative term was present in (8.5.26), representing a frictional force, then a particular
solution must include both cos ωt and sin ωt.
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but this division is valid only if ω2 �= c2λi. The physical meaning of this result is that if
the forcing frequency ω is different from a natural frequency, then a particular solution is

Ai(t) =
γi cos ωt

c2λi − ω2
, (8.5.28)

and the general solution is

Ai(t) =
γi cos ωt

c2λi − ω2
+ c1 cos c

√
λit + c2 sin c

√
λit. (8.5.29)

Ai(t) represents the amplitude of the mode φ(x, y). Each mode is composed of a vibration
at its natural frequency c

√
λi and a vibration at the forcing frequency ω. The closer these

two frequencies are (for a given mode), the larger the amplitude of that mode.

Resonance. However, if the forcing frequency ω is the same as one of the
natural frequencies c

√
λi, then a phenomenon known as resonance occurs. Mathemat-

ically, if ω2 = c2λi, then for those modes [i.e., only those φi(x, y) such that ω2 = c2λi],
(8.5.27) is not the appropriate solution since the r.h.s. of (8.5.26) is a homogeneous so-
lution. Instead, the solution is not periodic in time. The amplitude of oscillations grows
proportionally to t. Some algebra shows that a particular solution of (8.5.26) is

Ai(t) =
γi

2ω
t sin ωt, (8.5.30)

and hence the general solution is

Ai(t) =
γi

2ω
t sin ωt + c1 cos ωt + c2 sin ωt, (8.5.31)

where ω = c
√

λi, for any mode that resonates. At resonance, natural modes corresponding
to the forcing frequency grow unbounded in time. The other oscillating modes remain
bounded. After a while, the resonating modes will dominate. Thus, the spatial structure
of a solution will be primarily due to the eigenfunctions of the resonant modes. The other
modes are not significantly excited. We present a brief derivation of (8.5.30), which avoids
some tedious algebra. If ω2 �= c2λi, we obtain the general solution (8.5.28) relatively easily.
Unfortunately, we cannot take the limit as ω → c

√
λi since the amplitude then approaches

infinity. However, from (8.5.29) we see that

Ai(t) =
γi

c2λi − ω2
(cos ωt − cos c

√
λit) (8.5.32)

is also an allowable solution4 if ω2 �= c2λi. However, (8.5.32) may have a limit as
ω2 → c2λi, since Ai(t) is in the form of 0/0 as ω → c

√
λi. We calculate the limit of

(8.5.32) as ω → c
√

λi using l’Hôpital’s rule:

Ai(t) = lim
ω→c

√
λi

γi(cos ωt − cos c
√

λit)
c2λi − ω2

= lim
ω→c

√
λi

−γit sin ωt

−2ω
,

verifying (8.5.30).
4This solution corresponds to the initial conditions Ai(0) = 0, dAi/dt = 0.
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The displacement of the resonant mode cannot grow indefinitely, as (8.5.31) suggests.
The mathematics is correct, but some physical assumptions should be modified. Perhaps
it is appropriate to include a frictional force, which limits the growth as is shown in
an exercise. Alternatively, perhaps the mode grows to such a large amplitude that the
linearization assumption, needed in a physical derivation of the two-dimensional wave
equation, is no longer valid; a different partial differential equation should be appropriate
for sufficiently large displacements. Perhaps the amplitude growth due to resonance would
result in the snapping of the membrane (but this is not likely to happen until after the
linearization assumption has been violated).

Note that we have demonstrated the result for any geometry. The introduction of
the details of rectangular or circular geometries might just cloud the basic mathematical
and physical phenomena.

Resonance for a vibrating membrane is similar mathematically to resonance for
spring-mass systems (also without friction). In fact, resonance occurs for any mechanical
system when a forcing frequency equals one of the natural frequencies. Disasters such as
the infamous Tacoma Bridge collapse and various jet airplane crashes have been blamed
on resonance phenomena.

EXERCISES 8.5

8.5.1. By substitution show that

y(t) =
1
ω0

∫ t

0

f(t) sinω0(t − t) dt

is a particular solution of
d2y

dt2
+ ω2

0y = f(t).

What is the general solution? What solution satisfies the initial conditions y(0) = y0

and dy
dt (0) = v0?

8.5.2. Consider a vibrating string with time-dependent forcing

∂2u

∂t2
= c2

∂2u

∂x2
+ Q(x, t)

u(0, t) = 0, u(x, 0) = f(x),

u(L, t) = 0,
∂u

∂t
(x, 0) = 0.

(a) Solve the initial value problem.
*(b) Solve the initial value problem if Q(x, t) = g(x) cos ωt. For what values of ω does

resonance occur?
8.5.3. Consider a vibrating string with friction and time-periodic forcing

∂2u

∂t2
= c2

∂2u

∂x2
− β

∂u

∂t
+ g(x) cos ωt

u(0, t) = 0, u(x, 0) = f(x),

u(L, t) = 0,
∂u

∂t
(x, 0) = 0.
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(a) Solve this initial value problem if β is moderately small (0 < β < 2cπ/L).
(b) Compare this solution to Exercise 8.5.2(b).

8.5.4. Solve the initial value problem for a vibrating string with time-dependent forcing

∂2u

∂t2
= c2

∂2u

∂x2
+ Q(x, t), u(x, 0) = f(x),

∂u

∂t
(x, 0) = 0,

subject to the following boundary conditions. Do not reduce to homogeneous bound-
ary conditions:
(a) u(0, t) = A(t), u(L, t) = B(t)

(b) u(0, t) = 0,
∂u

∂x
(L, t) = 0

(c)
∂u

∂x
(0, t) = A(t), u(L, t) = 0

8.5.5. Solve the initial value problem for a membrane with time-dependent forcing and fixed
boundaries (u = 0)

∂2u

∂t2
= c2∇2u + Q(x, y, t),

u(x, y, 0) = f(x, y),
∂u

∂t
(x, y, 0) = 0,

if the membrane is
(a) a rectangle (0 < x < L, 0 < y < H)
(b) a circle (r < a)

*(c) a semicircle (0 < θ < π, r < a)
(d) a circular annulus (a < r < b)

8.5.6. Consider the displacement u(r, θ, t) of a forced semicircular membrane of radius α
(Fig. 8.5.1) that satisfies the partial differential equation

1
c2

∂2u

∂t2
=

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
+ g(r, θ, t),

with the homogeneous boundary conditions:

u(r, 0, t) = 0, u(r, π, t) = 0, and
∂u

∂r
(α, θ, t) = 0

and the initial conditions

u(r, θ, 0) = H(r, θ) and
∂u

∂t
(r, θ, 0) = 0.

FIGURE 8.5.1

u = 0
(zero displacement)

= 0 (free)∂u
∂r

α
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*(a) Assume that u(r, θ, t) =
∑∑

a(t)φ(r, θ), where φ(r, θ) are the eigenfunctions
of the related homogeneous problem. What initial conditions does a(t) satisfy?
What differential equation does a(t) satisfy?

(b) What are the eigenfunctions?

(c) Solve for u(r, θ, t). (Hint: See Exercise 8.5.1.)

8.6 POISSON’S EQUATION

We have applied the method of eigenfunction expansion to nonhomogeneous time-
dependent boundary value problems for PDEs (with or without homogeneous boundary
conditions). In each case, the method of eigenfunction expansion,

u =
∑

i

ai(t)φi,

yielded an initial value problem for the coefficients ai(t), where φi are the related homo-
geneous eigenfunctions satisfying, for example,

d2φ

dx2
+ λφ = 0 or ∇2φ + λφ = 0.

Time-independent nonhomogeneous problems must be solved in a slightly different
way. Consider the equilibrium temperature distribution with time-independent sources
that satisfies Poisson’s equation,

∇2u = Q, (8.6.1)

where Q is related to the sources of thermal energy. For now we do not specify the
geometric region. However, we assume the temperature is specified on the entire boundary,

u = α,

where α is given and usually not constant. This problem is nonhomogeneous in two ways
due to: the forcing function Q and the boundary condition α. We can decompose the
equilibrium temperature into two parts, u = u1 + u2, one u1 due to the forcing and the
other u2 due to the boundary condition:

∇2u1 = Q, ∇2u2 = 0
u1 = 0 on the boundary, u2 = α on the boundary.

It is easily checked that u = u1 +u2 satisfies Poisson’s equation and the nonhomogeneous
BC. The problem for u2 is the solution of Laplace’s equation (with nonhomogeneous
boundary conditions). For simple geometries this can be solved by the method of separa-
tion of variables (where in Sections 2.5.1 and 7.9.1 we showed how homogeneous boundary
conditions could be introduced).
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Thus, at first in this section, we focus our attention on Poisson’s equation

∇2u1 = Q,

with homogeneous boundary conditions (u1 = 0 on the boundary). Since u1 satisfies
homogeneous BC, we should expect that the method of eigenfunction expansion is ap-
propriate. The problem can be analyzed in two somewhat different ways: (1) We can
expand the solutions in eigenfunctions of the related homogeneous problem, coming from
separation of variables of ∇2u1 = 0 (as we did for the time-dependent problems) or (2)
we can expand the solution in the eigenfunctions

∇2φ + λφ = 0.

The two methods are different (but are related).

One-dimensional eigenfunctions. To be specific, let us consider the two-
dimensional Poisson’s equation in a rectangle with zero boundary conditions:

∇2u1 = Q, (8.6.2)

as illustrated in Fig. 8.6.1. We first describe the use of one-dimensional eigenfunctions. The
related homogeneous problem, ∇2u1 = 0, which is Laplace’s equation, can be separated (in
rectangular coordinates). We may recall that the solution oscillates in one direction, and
it is a combination of exponentials in the other direction. Thus, eigenfunctions of the re-
lated homogeneous problem (needed for the method of eigenfunction expansion) might be
x-eigenfunctions or y-eigenfunctions. Since we have two homogeneous boundary condi-
tions in both directions, we can use either x-dependent or y-dependent eigenfunctions.
Without loss of generality, we use x-dependent eigenfunctions, which are sinnπx/L since
u1 = 0 at x = 0 and x = L. The method of eigenfunction expansion consists of expanding
u1(x, y) in a series of these eigenfunctions:

u1 =
∞∑

n=1

bn(y) sin
nπx

L
, (8.6.3)

where the sine coefficients bn(y) are functions of y. Differentiating (8.6.3) twice with
respect to y and substituting this into Poisson’s equation, (8.6.2), yields

∞∑
n=1

d2bn

dy2
sin

nπx

L
+

∂2u1

∂x2
= Q. (8.6.4)

∂2u1/∂x2 can be determined in two related ways (as we also showed for nonhomogeneous
time-dependent problems): use term-by-term differentiation with respect to x of the series
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∇2u1 = Q

u1 = 0

u1 = 0

u1 = 0u1 = 0

FIGURE 8.6.1 Poisson equation in a rectangle.

(8.6.3), which is more direct, or by use of Green’s formula. In either way, we obtain, from
(8.6.4),

∞∑
n=1

[
d2bn

dy2
−

(nπ

L

)2

bn

]
sin

nπx

L
= Q, (8.6.5)

since both u1 and sinnπx/L satisfy the same homogeneous boundary conditions. Thus,
the Fourier sine coefficients satisfy the following second-order ordinary differential
equation:

d2bn

dy2
−

(nπ

L

)2

bn =
2
L

∫ L

0

Q(x, y) sin
nπx

L
dx ≡ qn(y), (8.6.6)

where the right-hand side is the sine coefficient of Q,

Q =
∞∑

n=1

qn sin
nπx

L
. (8.6.7)

We must solve (8.6.6). Two conditions are needed. We have satisfied Poisson’s equation
and the boundary condition at x = 0 and x = L. The boundary condition at y = 0 (for
all x), u1 = 0, and that at y = H (for all x), u1 = 0, imply that

bn(0) = 0 and bn(H) = 0. (8.6.8)

Thus, the unknown coefficients in the method of eigenfunction expansion [see (8.6.6)]
themselves solve a one-dimensional nonhomogeneous boundary value problem. Compare
this result to the time-dependent nonhomogeneous PDE problems, in which the coeffi-
cients satisfied one-dimensional initial value problems. One-dimensional boundary value
problems are more difficult to satisfy than initial value problems. Later we will discuss
boundary value problems for ordinary differential equations. We will find different ways
to solve (8.6.6) subject to the BC (8.6.8). One form of the solution we can obtain using
the method of variation of parameters (see Section 9.3.2) is
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bn(y) = sinh
nπ(H − y)

L

∫ y

0

qn(ξ) sinh
nπξ

L
dξ

+ sinh
nπy

L

∫ H

y

qn(ξ) sinh
nπ(H − ξ)

L
dξ.

(8.6.9)

Thus, we can solve Poisson’s equation (with homogeneous boundary conditions) using the
x-dependent related one-dimensional homogeneous eigenfunctions. Problems with nonho-
mogeneous boundary conditions can be solved in the same way, introducing the appro-
priate modifications following from the use of Green’s formula with nonhomogeneous
conditions. In Exercise 8.6.1, the same problem is solved using the y-dependent related
homogeneous eigenfunctions.

Two-dimensional eigenfunctions. A somewhat different way to solve Poisson’s
equation,

∇2u1 = Q, (8.6.10)

on a rectangle with zero BC is to consider the related two-dimensional eigenfunctions:

∇2φ = −λφ

with φ = 0 on the boundary. For a rectangle, we know that this implies a sine series in x
and a sine series in y:

φnm = sin
nπx

L
sin

mπy

H

λnm =
(nπ

L

)2

+
(mπ

H

)2

.

The method of eigenfunction expansion consists of expanding the solution u1 in terms of
these two-dimensional eigenfunctions:

u1 =
∞∑

n=1

∞∑
m=1

bnm sin
nπx

L
sin

mπy

H
. (8.6.11)

Here bnm are constants (not a function of another variable) since u1 depends only on x
and y. The substitution of (8.6.11) into Poisson’s equation (8.6.10) yields

∞∑
n=1

∞∑
m=1

−bnmλnm sin
nπx

L
sin

mπy

H
= Q,
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since ∇2φnm = −λnmφnm. The Laplacian can be evaluated by term-by-term differenti-
ation since both u1 and φnm satisfy the same homogeneous boundary conditions. The
eigenfunctions φnm are orthogonal (in a two-dimensional sense) with weight 1. Thus,

−bnmλnm =

∫ H

0

∫ L

0
Q sin nπx/L sin mπy/H dx dy∫ H

0

∫ L

0
sin2 nπx/L sin2 mπy/H dx dy

, (8.6.12)

determining the bnm. The expression on the r.h.s. of (8.6.12) is recognized as the gen-
eralized Fourier coefficients of Q. Dividing by λnm to solve for bnm poses no difficulty
since λnm > 0 (explicitly or by use of the Rayleigh quotient). It is easier to obtain the
solution using the expansion in terms of two-dimensional eigenfunctions than using one-
dimensional ones. However, doubly infinite series such as (8.6.11) may converge quite
slowly. Numerical methods may be preferable except in simple cases. In Exercise 8.6.2 we
show that the Fourier sine coefficients in y of bn(y) [see (8.6.3)] equal bnm [see (8.6.11)].
This shows the equivalence of the one- and two-dimensional eigenfunction expansion ap-
proaches.

Nonhomogeneous boundary conditions (any geometry). The two-
dimensional eigenfunctions can also be directly used for Poisson’s equation subject to
nonhomogeneous boundary conditions. It is no more difficult to indicate the solution for
a rather general geometry. Suppose that

∇2u = Q, (8.6.13)

with u = α on the boundary. Consider the eigenfunctions φi of ∇2φ = −λφ with φ = 0
on the boundary. We represent u in terms of these eigenfunctions:

u =
∑

i

biφi. (8.6.14)

Now, it is no longer true that
∇2u =

∑
i

bi∇2φi,

since u does not satisfy homogeneous boundary conditions. Instead, from (8.6.14) we
know that

bi =
∫∫

uφi dx dy∫∫
φ2

i dx dy
= − 1

λi

∫∫
u∇2φi dx dy∫∫

φ2
i dx dy

, (8.6.15)

since ∇2φi = −λiφi. We can evaluate the numerator using Green’s two-dimensional
formula:

∫∫
(u∇2v − v∇2u) dx dy =

∮
(u∇v − v∇u) · n̂ ds. (8.6.16)
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Letting v = φi, we see
∫∫

u∇2φi dx dy =
∫∫

φi∇2u dx dy +
∮

(u∇φi − φi∇u) · n̂ ds.

However, ∇2u = Q, and on the boundary φi = 0 and u = α. Thus,

bi = − 1
λi

∫∫
φiQ dx dy +

∮
α∇φi · n̂ ds∫∫

φ2
i dx dy

. (8.6.17)

This is the general expression for bi, since λi, φi, α, and Q are considered to be known.
Again, dividing by λi causes no difficulty, since λi > 0 from the Rayleigh quotient. For
problems in which λi = 0, see Section 9.4.

If u also satisfies homogeneous boundary conditions, α = 0, then (8.6.17) becomes

bi = − 1
λi

∫∫
φiQ dx dy∫∫
φ2

i dx dy
,

agreeing with (8.6.12) in the case of a rectangular region. This shows that (8.6.11) may be
term-by-term differentiated if u and φ satisfy the same homogeneous boundary conditions.

EXERCISES 8.6

8.6.1. Solve

∇2u = Q(x, y)

on a rectangle (0 < x < L, 0 < y < H) subject to

(a) u(0, y) = 0, u(x, 0) = 0,

u(L, y) = 0, u(x, H) = 0.

Use a Fourier sine series in y.

*(b) u(0, y) = 0, u(x, 0) = 0,

u(L, y) = 1, u(x, H) = 0.

Do not reduce to homogeneous boundary conditions.

(c) Solve part (b) by first reducing to homogeneous boundary conditions.

*(d)
∂u

∂x
(0, y) = 0,

∂u

∂y
(x, 0) = 0,

∂u

∂x
(L, y) = 0,

∂u

∂y
(x, H) = 0.

In what situations are there solutions?

(e)
∂u

∂x
(0, y) = 0, u(x, 0) = 0,

∂u

∂x
(L, y) = 0,

∂u

∂y
(x, H) = 0.
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8.6.2. The solution of (8.6.6),
d2bn

dy2
−

(
nπ

L

)2
bn = qn(y),

subject to bn(0) = 0 and bn(H) = 0 is given by (8.6.9).

(a) Solve this instead by letting bn(y) equal a Fourier sine series.
(b) Show that this series is equivalent to (8.6.9).
(c) Show that this series is equivalent to the answer obtained by an expansion in the

two-dimensional eigenfunctions, (8.6.11).

8.6.3. Solve (using two-dimensional eigenfunctions) ∇2u = Q(r, θ) inside a circle of radius
a subject to the given boundary condition. In what situations are there solutions?

*(a) u(a, θ) = 0 (b)
∂u

∂r
(a, θ) = 0

(c) u(a, θ) = f(θ) (d)
∂u

∂r
(a, θ) = g(θ)

8.6.4. Solve Exercise 8.6.3 using one-dimensional eigenfunctions.
8.6.5. Consider

∇2u = Q(x, y)

inside an unspecified region with u = 0 on the boundary. Suppose that the eigenfunc-
tions ∇2φ = −λφ subject to φ = 0 on the boundary are known. Solve for u(x, y).

*8.6.6. Solve the following example of Poisson’s equation:

∇2u = e2y sinx

subject to the following boundary conditions:

u(0, y) = 0, u(x, 0) = 0
u(π, y) = 0, u(x, L) = f(x).

8.6.7. Solve

∇2u = Q(x, y, z)

inside a rectangular box (0 < x < L, 0 < y < H, 0 < z < W ) subject to u = 0 on the
six sides.

8.6.8. Solve

∇2u = Q(r, θ, z)

inside a circular cylinder (0 < r < a, 0 < θ < 2π, 0 < z < H) subject to u = 0 on the
sides.

8.6.9. On a rectangle (0 < x < L, 0 < y < H) consider

∇2u = Q(x, y)

with ∇u · n̂ = 0 on the boundary.
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(a) Show that a solution exists only if
∫∫

Q(x, y) dx dy = 0. Briefly explain, using
physical reasoning.

(b) Solve using the method of eigenfunction expansion. Compare to part (a). (Hint:
λ = 0 is an eigenvalue.)

(c) If
∫∫

Q dx dy = 0, determine the arbitrary constant in the solution of part (b)
by consideration of the time-dependent problem ∂u

∂t
= k(∇2u − Q), subject to

the initial condition u(x, y, 0) = g(x, y).

8.6.10. Reconsider Exercise 8.6.9 for an arbitrary two-dimensional region.



C H A P T E R 9

Green’s Functions for
Time-Independent Problems

9.1 INTRODUCTION

Solutions to linear partial differential equations are nonzero due to initial conditions, non-
homogeneous boundary conditions, and forcing terms. If the partial differential equation
is homogeneous and there is a set of homogeneous boundary conditions, then we usually
attempt to solve the problem by the method of separation of variables. In Chapter 8 we
developed the method of eigenfunction expansions to obtain solutions in cases in which
there were forcing terms (and/or nonhomogeneous boundary conditions).

In this chapter, we will primarily consider problems without initial conditions (ordi-
nary differential equations and Laplace’s equation with sources). We will show that there
is one function for each problem called the Green’s function, which can be used to describe
the influence of both nonhomogeneous boundary conditions and forcing terms. We will
develop properties of these Green’s functions and show direct methods to obtain them.
Time-dependent problems with initial conditions, such as the heat and wave equations,
are more difficult. They will be used as motivation, but a detailed study of their Green’s
functions will not be presented until Chapter 11.

9.2 ONE-DIMENSIONAL HEAT EQUATION (OPTIONAL)

We begin by reanalyzing the one-dimensional heat equation with no sources and homo-
geneous boundary conditions:

∂u

∂t
= k

∂2u

∂x2
(9.2.1)

u(0, t) = 0 (9.2.2)

u(L, t) = 0 (9.2.3)

u(x, 0) = g(x). (9.2.4)

374
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In Chapter 2, according to the method of separation of variables, we obtained

u(x, t) =
∞∑

n=1

an sin
nπx

L
e−k(nπ/L)2t, (9.2.5)

where the initial condition implied that an are the coefficients of the Fourier sine series
of g(x),

g(x) =
∞∑

n=1

an sin
nπx

L
(9.2.6)

an =
2
L

∫ L

0

g(x) sin
nπx

L
dx. (9.2.7)

We examine this solution (9.2.5) more closely in order to investigate the effect of the
initial condition g(x). We eliminate the Fourier sine coefficients from (9.2.7) (introducing
a dummy integration variable x0):

u(x, t) =
∞∑

n=1

[
2
L

∫ L

0

g(x0) sin
nπx0

L
dx0

]
sin

nπx

L
e−k(nπ/L)2t.

If we interchange the order of operations of the infinite summation and integration, we
obtain

u(x, t) =
∫ L

0

g(x0)

( ∞∑
n=1

2
L

sin
nπx0

L
sin

nπx

L
e−k(nπ/L)2t

)
dx0. (9.2.8)

We define the quantity in parentheses as the influence function for the initial condition.
It expresses the fact that the temperature at position x at time t is due to the initial
temperature at x0. To obtain the temperature u(x, t), we sum (integrate) the influences
of all possible initial positions.

Before further interpreting this result, it is helpful to do a similar analysis for a
more general heat equation including sources, but still having homogeneous boundary
conditions:

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t) (9.2.9)

u(0, t) = 0 (9.2.10)

u(L, t) = 0 (9.2.11)

u(x, 0) = g(x). (9.2.12)
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This nonhomogeneous problem is suited for the method of eigenfunction expansions,

u(x, t) =
∞∑

n=1

an(t) sin
nπx

L
. (9.2.13)

This Fourier sine series can be differentiated term by term since both sin nπx/L and u(x, t)
solve the same homogeneous boundary conditions. Hence, an(t) solves the following first-
order differential equation:

dan

dt
+ k
(nπ

L

)2

an = qn(t) =
2
L

∫ L

0

Q(x, t) sin
nπx

L
dx, (9.2.14)

where qn(t) are the coefficients of the Fourier sine series of Q(x, t),

Q(x, t) =
∞∑

n=1

qn(t) sin
nπx

L
. (9.2.15)

The solution of (9.2.14) [using the integrating factor ek(nπ/L)2t] is

an(t) = an(0)e−k(nπ/L)2t + e−k(nπ/L)2t

∫ t

0

qn(t0)ek(nπ/L)2t0 dt0. (9.2.16)

an(0) are the coefficients of the Fourier sine series of the initial condition, u(x, 0) = g(x):

g(x) =
∞∑

n=1

an(0) sin
nπx

L
(9.2.17)

an(0) =
2
L

∫ L

0

g(x) sin
nπx

L
dx. (9.2.18)

These Fourier coefficients may be eliminated, yielding

u(x, t) =
∞∑

n=1

[(
2
L

∫ L

0

g(x0) sin
nπx0

L
dx0

)
e−k(nπ/L)2t

+ e−k(nπ/L)2t

∫ t

0

(
2
L

∫ L

0

Q(x0, t0) sin
nπx0

L
dx0

)
ek(nπ/L)2t0 dt0

]
sin

nπx

L
.

After interchanging the order of performing the infinite summation and the integration
(over both x0 and t0), we obtain

u(x, t) =
∫ L

0

g(x0)

( ∞∑
n=1

2
L

sin
nπx0

L
sin

nπx

L
e−k(nπ/L)2t

)
dx0

+
∫ L

0

∫ t

0

Q(x0, t0)

( ∞∑
n=1

2
L

sin
nπx0

L
sin

nπx

L
e−k(nπ/L)2(t−t0)

)
dt0 dx0.
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We therefore introduce the Green’s function for the heat equation, G(x, t;x0, t0),

G(x, t;x0, t0) =
∞∑

n=1

2
L

sin
nπx0

L
sin

nπx

L
e−k(nπ/L)2(t−t0). (9.2.19)

We have shown that

u(x, t) =
∫ L

0

g(x0)G(x, t;x0, 0) dx0

+
∫ L

0

∫ t

0

Q(x0, t0)G(x, t;x0, t0) dt0 dx0.

(9.2.20)

The Green’s function at t0 = 0, G(x, t;x0, 0), expresses the influence of the initial tem-
perature at x0 on the temperature at position x and time t. In addition, G(x, t;x0, t0)
shows the influence on the temperature at the position x and time t of the forcing term
Q(x0, t0) at position x0 and time t0. Instead of depending on the source time t0 and the
response time t, independently, we note that the Green’s function depends only on the
elapsed time t − t0:

G(x, t;x0, t0) = G(x, t − t0;x0, 0).

This occurs because the heat equation has coefficients that do not change in time; the
laws of thermal physics are not changing. The Green’s function exponentially decays in
elapsed time (t−t0) [see (9.2.19)]. For example, this means that the influence of the source
at time t0 diminishes rapidly. It is only the most recent sources of thermal energy that
are important at time t.

Equation (9.2.19) is an extremely useful representation of the Green’s function if
time t is large. However, for small t the series converges more slowly. In Chapter 11 we
will obtain an alternative representation of the Green’s function useful for small t.

In (9.2.20) we integrate over all positions x0. The solution is the result of adding
together the influences of all sources and initial temperatures. We also integrate the
sources over all past times 0 < t0 < t. This is part of a causality principle. The
temperature at time t is due only to the thermal sources that acted before time t. Any
future sources of heat energy cannot influence the temperature now.

Among the questions we will investigate later for this and other problems are the
following:

1. Are there more direct methods to obtain the Green’s function?
2. Are there any simpler expressions for the Green’s function [can we simplify (9.2.19)]?
3. Can we explain the relationships between the influence of the initial condition and

the influence of the forcing terms?
4. Can we easily account for nonhomogeneous boundary conditions?
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EXERCISES 9.2

9.2.1. Consider
∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

u(x, 0) = g(x).

In all cases, obtain formulas similar to (9.2.20) by introducing a Green’s function.
(a) Use Green’s formula instead of term-by-term spatial differentiation if

u(0, t) = 0 and u(L, t) = 0.

(b) Modify part (a) if

u(0, t) = A(t) and u(L, t) = B(t).

Do not reduce to a problem with homogeneous boundary conditions.
(c) Solve using any method if

∂u

∂x
(0, t) = 0 and

∂u

∂x
(L, t) = 0.

*(d) Use Green’s formula instead of term-by-term differentiation if

∂u

∂x
(0, t) = A(t) and

∂u

∂x
(L, t) = B(t).

9.2.2. Solve by the method of eigenfunction expansion

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+ Q(x, t)

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = g(x), if c, ρ and K0 are functions of
x. Assume that the eigenfunctions are known. Obtain a formula similar to (9.2.20)
by introducing a Green’s function.

*9.2.3. Solve by the method of eigenfunction expansion

∂2u

∂t2
= c2

∂2u

∂x2
+ Q(x, t)

u(0, t) = 0, u(x, 0) = f(x)

u(L, t) = 0,
∂u

∂t
(x, 0) = g(x).

Define functions (in the simplest possible way) such that a relationship similar to
(9.2.20) exists. It must be somewhat different due to the two initial conditions. (Hint:
See Exercise 8.5.1.)

9.2.4. Modify Exercise 9.2.3 (using Green’s formula if necessary) if instead
(a) ∂u

∂x (0, t) = 0 and ∂u
∂x (L, t) = 0

(b) u(0, t) = A(t) and u(L, t) = 0

(c) ∂u
∂x (0, t) = 0 and ∂u

∂x (L, t) = B(t)
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9.3 GREEN’S FUNCTIONS FOR BOUNDARY VALUE PROBLEMS FOR ORDINARY
DIFFERENTIAL EQUATIONS

9.3.1 One-Dimensional Steady-State Heat Equation

Introduction. Investigating the Green’s functions for the time-dependent heat equa-
tion is not an easy task. Instead, we first investigate a simpler problem. Most of the
techniques discussed will be valid for more difficult problems.

We will investigate the steady-state heat equation with homogeneous boundary
conditions, arising in situations in which the source term Q(x, t) = Q(x) is independent
of time:

0 = k
d2u

dx2
+ Q(x).

We prefer the form

d2u

dx2
= f(x), (9.3.1)

in which case f(x) = −Q(x)/k. The boundary conditions we consider are

u(0) = 0 and u(L) = 0. (9.3.2)

We will solve this problem in many different ways in order to suggest methods for other,
harder problems.

Summary. We will describe three fundamental methods to obtain Green’s
functions:

1. Variation of parameters (valid only for ordinary differential equations)
2. Method of eigenfunction expansion
3. Using the defining differential equation for the Green’s function

In addition, steady-state Green’s functions can be obtained as the limit as t → ∞ of the
solution with steady sources. To obtain Green’s functions for partial differential equations,
we will discuss one important additional method. It will be described in Section 9.5.

9.3.2 The Method of Variation of Parameters (Optional)

There are more direct ways to obtain the solution of (9.3.1) with (9.3.2). We consider a
nonhomogeneous problem

L(u) =
d2u

dx2
= f(x), (9.3.3)

defined for 0 < x < L, subject to two homogeneous boundary conditions,

u(0) = 0 and u(L) = 0, (9.3.4)
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where L is the Sturm–Liouville operator:

L ≡ d

dx

(
p

d

dx

)
+ q. (9.3.5)

For this simple steady-state heat equation of the preceding subsection, p = 1 and q = 0,
so that L = d2/dx2.

Nonhomogeneous ordinary differential equations can always be solved by the method
of variation of parameters if two1 linearly independent solutions of the homogeneous
problem are known, u1(x) and u2(x). The homogeneous differential equation is

d2y

dx2
= 0. (9.3.6)

Two homogeneous solutions of (9.3.1) are 1 and x. However, the algebra is easier if we pick
u1(x) to be a homogeneous solution satisfying one of the boundary conditions u(0) = 0
and u2(x) to be a homogeneous solution satisfying the other boundary condition:

u1(x) = x (9.3.7)

u2(x) = L − x. (9.3.8)

We briefly review this technique. In the method of variation of parameters, a particular
solution of (9.3.3) is sought in the form

u = v1 · u1 + v2 · u2 = v1x + v2(L − x), (9.3.9)

where v1 and v2 are functions of x to be determined. The original differential equation
has one unknown function, so that the extra degree of freedom allows us to assume du/dx
is the same as if v1 and v2 were constants:

du

dx
= v1

du1

dx
+ v2

du2

dx
= v1 − v2.

Since v1 and v2 are not constant, this is valid only if the other terms, arising from the
variation of v1 and v2, vanish:

dv1

dx
x +

dv2

dx
(L − x) = 0. (9.3.10)

The differential equation
d2u

dx2
= f(x) is then satisfied if

dv1

dx
· 1 +

dv2

dx
· (−1) = f(x). (9.3.11)

1Actually, only one homogeneous solution is necessary as the method of reduction of order is a proce-
dure for obtaining a second homogeneous solution if one is known.
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The method of variation of parameters at this stage yields two linear equations for the
unknowns dv1/dx and dv2/dx. The solution is obtained by elimination. We multiply
(9.3.11) by L − x and add (9.3.10), and we obtain

dv1

dx
= f

L − x

L
(9.3.12)

dv2

dx
= −f

x

L
. (9.3.13)

By integrating (9.3.12) and (9.3.13), we obtain

v1(x) =
1
L

∫ x

0

f(x0)(L − x0) dx0 + c1

v2(x) = − 1
L

∫ x

0

f(x0)x0 dx0 + c2,

which is needed in the method of variation of parameters (u = u1v1+u2v2). The boundary
condition u(0) = 0 yields 0 = c2L, whereas u(L) = 0 yields

0 =
∫ L

0

f(x0)(L − x0) dx0 + c1L,

so that v1(x) = − 1
L

∫ L

x
f(x0)(L − x0) dx0. Thus, the solution of the nonhomogeneous

boundary value problem is

u(x) = − x

L

∫ L

x

f(x0)(L − x0) dx0 − L − x

L

∫ x

0

f(x0)x0 dx0. (9.3.14)

We will transform (9.3.14) into the desired form,

u(x) =
∫ L

0

f(x0)G(x, x0) dx0. (9.3.15)

By comparing (9.3.14) with (9.3.15), we obtain

G(x, x0) =

⎧⎪⎪⎨
⎪⎪⎩

−x(L − x0)
L

x < x0

−x0(L − x)
L

x > x0.

(9.3.16)

A sketch and interpretation of this solution will be given in Section 9.3.5. Although
somewhat complicated, the symmetry can be seen:

G(x, x0) = G(x0, x).
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The solution also can be derived by directly integrating (9.3.1) twice:

u =
∫ x

0

[∫ x0

0

f(x̄) dx̄

]
dx0 + c1x + c2. (9.3.17)

In Exercise 9.3.2 you are asked to show that (9.3.16) can be obtained from (9.3.17) by
interchanging the order of integration in (9.3.17) or by integrating (9.3.17) by parts.

9.3.3 The Method of Eigenfunction Expansion for Green’s Functions

In Chapter 8, nonhomogeneous partial differential equations were solved by the eigen-
function, expansion method. Here we show how to apply the same ideas to the general
Sturm–Liouville nonhomogeneous ordinary differential equation:

L(u) = f(x) (9.3.18)

subject to two homogeneous boundary conditions. We introduce a related eigenvalue
problem,

L(φ) = −λσφ, (9.3.19)

subject to the same homogeneous boundary conditions. The weight σ here can be chosen
arbitrarily. However, there is usually at most one choice of σ(x) such that the differential
equation (9.3.19) is in fact well known.2 We solve (9.3.18) by seeking u(x) as a generalized
Fourier series of the eigenfunctions

u(x) =
∞∑

n=1

anφn(x). (9.3.20)

We can differentiate this twice term by term3 since both φn(x) and u(x) solve the same
homogeneous boundary conditions:

∞∑
n=1

anL(φn) = −
∞∑

n=1

anλnσφn = f(x),

where (9.3.19) has been used. The orthogonality of the eigenfunctions (with weight σ)
implies that

−anλn =

∫ b

a

f(x)φn dx

∫ b

a

φ2
nσ dx

. (9.3.21)

2For example, if L = d2/dx2, we pick σ = 1 giving trigonometric functions, but if L = d
dx

(
x d

dx

)
− m2

x
,

we pick σ = x so that Bessel functions occur.
3Green’s formula can be used to justify this step (see Section 8.4).
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The solution of the boundary value problem for the nonhomogeneous ordinary differential
equation is thus (after interchanging summation and integration)

u(x) =
∫ b

a

f(x0)
∞∑

n=1

φn(x)φn(x0)

−λn

∫ b

a

φ2
nσ dx

dx0 =
∫ b

a

f(x0)G(x, x0) dx0. (9.3.22)

For this problem, the Green’s function has the representation in terms of the eigenfunc-
tions:

G(x, x0) =
∞∑

n=1

φn(x)φn(x0)

−λn

∫ b

a

φ2
nσ dx

.

Again the symmetry is explicitly shown. Note the appearance of the eigenvalues λn in the
denominator. The Green’s function does not exist if one of the eigenvalues is zero. This
will be explained in Section 9.4. For now we assume that all λn �= 0.

EXAMPLE

For the boundary value problem
d2u

dx2
= f(x)

u(0) = 0 and u(L) = 0,

the related eigenvalue problem,
d2φ

dx2
= −λφ

φ(0) = 0 and φ(L) = 0,

is well known. The eigenvalues are λn = (nπ/L)2, n = 1, 2, 3, and the corresponding
eigenfunctions are sinnπx/L. The Fourier sine series of u(x) is given by (9.3.20). In
particular,

u(x) =
∫ L

0

f(x0)G(x, x0) dx0,

where the Fourier sine series of the Green’s function is

G(x, x0) = − 2
L

∞∑
n=1

sin nπx/L sin nπx0/L

(nπ/L)2
(9.3.23)

from equation after (9.3.22), agreeing with the answer (9.3.56) obtained by the limit as
t → ∞ of the time-dependent problem.
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9.3.4 The Dirac Delta Function and Its Relationship to Green’s Functions

We have shown that

u(x) =
∫ L

0
f(x0)G(x, x0) dx0, (9.3.24)

where we have obtained different representations of the Green’s function. The Green’s
function shows the influence of each position x0 of the source on the solution at x. In this
section, we will find a more direct way to derive (9.3.24) and to determine the Green’s
function.

Dirac delta function. Our source f(x) represents a forcing of our system at
all points. f(x) is sketched in Fig. 9.3.1. In order to isolate the effect of each individual
point, we decompose f(x) into a linear combination of unit pulses of duration Δx (see
Fig. 9.3.2):

f(x) ≈
∑

i

f(xi)(unit pulse starting at x = xi).

This is somewhat reminiscent of the definition of an integral. Only Δx is missing, which
we introduce by multiplying and dividing by Δx:

f(x) = lim
Δx→0

∑
i

f(xi)
unit pulse

Δx
Δx. (9.3.25)

In this way we have motivated a rectangular pulse of width Δx and height 1/Δx, sketched
in Fig. 9.3.3. It has unit area. In the limit as Δx → 0, this approaches an infinitely

x1

f(x)

x1 + Δx

FIGURE 9.3.1 Piecewise constant representation of a typical function.

x1 + Δx

1

x1

FIGURE 9.3.2 Pulse with unit height.
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x1

1
Δx

Δx

FIGURE 9.3.3 Rectangular pulse with unit area.

concentrated pulse (not really a function) δ(x − xi), which would be zero everywhere
except ∞ at x = xi, still with unit area:

δ(x − xi) =
{

0 x �= xi

∞ x = xi.
(9.3.26)

We can think of δ(x − xi) as a concentrated source or impulsive force at x = xi.
According to (9.3.25), we have

f(x) =
∫

f(xi)δ(x − xi) dxi. (9.3.27)

Since δ(x− xi) is not a function, we define it as an operator with the property that
for any continuous f(x):

f(x) =
∫ ∞

−∞
f(xi)δ(x − xi) dxi, (9.3.28)

as is suggested by (9.3.27). We call δ(x−xi) the Dirac delta function.4 It is so concen-
trated that in integrating it with any continuous function f(xi), it “sifts” out the value
at xi = x. The Dirac delta function may be motivated by the “limiting function” of any
sequence of concentrated pulses (the shape need not be rectangular).

Other important properties of the Dirac delta function are that it has unit area:

1 =
∫ ∞

−∞
δ(x − xi) dxi; (9.3.29)

it operates like an even function

δ(x − xi) = δ(xi − x). (9.3.30)

This means that the definition (9.3.28) may be used without worrying about whether
δ(x − xi) or δ(xi − x) appears. The Dirac delta function is also the derivative of the
Heaviside unit step function H(x − xi):

H(x − xi) ≡
{

0 x < xi

1 x > xi;
(9.3.31)

4Named after Paul Dirac, a 20th-century mathematical physicist (1902–1984).



386 Chapter 9 Green’s Functions for Time-Independent Problems

δ(x − xi) =
d

dx
H(x − xi); (9.3.32)

H(x − xi) =
∫ x

−∞
δ(x0 − xi) dx0; (9.3.33)

it has the following scaling property:

δ[c(x − xi)] =
1
|c|δ(x − xi). (9.3.34)

These properties are proved in the Exercises.

Green’s function. The solution of the nonhomogeneous problem

L(u) = f(x), a < x < b (9.3.35)

subject to two homogeneous boundary conditions is

u(x) =
∫ b

a

f(x0)G(x, x0) dx0. (9.3.36)

Here, the Green’s function is the influence function for the source f(x). As an example,
suppose that f(x) is a concentrated source at x = xs, f(x) = δ(x−xs). Then the response
u(x) at x, satisfies

u(x) =
∫ b

a

δ(x0 − xs)G(x, x0) dx0 = G(x, xs)

due to (9.3.28). This yields the fundamental interpretation of the Green’s function
G(x, xs); it is the response at x due to a concentrated source at xs:

L [G(x, xs)] = δ(x − xs), (9.3.37)

where G(x, xs) will also satisfy the same homogeneous boundary conditions at x = a and
x = b.

As a check, let us verify that (9.3.36) satisfies (9.3.35). To satisfy (9.3.35), we must
use the operator L (in the simple case, L = d2/dx2):

L(u) =
∫ b

a

f(x0)L [G(x, x0)] dx0 =
∫ b

a

f(x0)δ(x − x0) dx0 = f(x),

where the fundamental property of both the Green’s function (9.3.37) and the Dirac delta
function (9.3.28) has been used.
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Often, (9.3.37) with two homogeneous boundary conditions is thought of as an
independent definition of the Green’s function. In this case, we might want to derive
(9.3.36), the representation of the solution of the nonhomogeneous problem in terms of
the Green’s function satisfying (9.3.37). The usual method to derive (9.3.36) involves
Green’s formula: ∫ b

a

[uL(v) − vL(u)] dx = p

(
u

dv

dx
− v

du

dx

)∣∣∣∣∣
b

a

. (9.3.38)

If we let v = G(x, x0), then the right-hand side vanishes since both u(x) and G(x, x0)
satisfy the same homogeneous boundary conditions. Furthermore, from the respective
differential equations (9.3.35) and (9.3.37), it follows that

∫ b

a

[u(x)δ(x − x0) − G(x, x0)f(x)] dx = 0.

Thus, from the definition of the Dirac delta function,

u(x0) =
∫ b

a

f(x)G(x, x0) dx.

If we interchange the variables x and x0, we obtain (9.3.36):

u(x) =
∫ b

a

f(x0)G(x0, x) dx0 =
∫ b

a

f(x0)G(x, x0) dx0, (9.3.39)

since the Green’s function is known to be symmetric [see (9.3.16)], G(x0, x) = G(x, x0).

Maxwell’s reciprocity. The symmetry of the Green’s function is very important.
We will prove it without using the eigenfunction expansion. Instead, we will directly use
the defining differential equation (9.3.37). We again use Green’s formula (9.3.38). Here we
let u = G(x, x1) and v = G(x, x2). Since both satisfy the same homogeneous boundary
conditions, it follows that the right-hand side is zero. In addition, L(u) = δ(x−x1) while
L(v) = δ(x − x2), and thus

∫ b

a

[G(x, x1)δ(x − x2) − G(x, x2)δ(x − x1)] dx = 0.

From the fundamental property of the Dirac delta function, it follows that

G(x1, x2) = G(x2, x1), (9.3.40)

proving the symmetry from the differential equation defining the Green’s function. This
symmetry is remarkable; we call it Maxwell’s reciprocity. The response at x1 due
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to a concentrated source at x1 is the same as the response at x2 due to a
concentrated source at x2. This is not physically obvious.

Jump conditions. The Green’s function G(x, xs) may be determined from
(9.3.37). For x < xs, G(x, xs) must be a homogeneous solution satisfying the homo-
geneous boundary condition at x = a. A similar procedure is valid for x > xs. Jump
conditions across x = xs are determined from the singularity in (9.3.37). If G(x, xs) has
a jump discontinuity at x = xs, then dG/dx has a delta function singularity at x = xs,
and d2G/dx2 would be more singular than the right-hand side of (9.3.37). Thus, the
Green’s function G(x, xs) is continuous at x = xs. However, dG/dx is not con-
tinuous at x = xs; it has a jump discontinuity obtained by integrating (9.3.37) across
x = xs. We illustrate this method in the next example and leave further discussion to the
Exercises.

EXAMPLE

Consider the solution of the steady-state heat flow problem

d2u

dx2
= f(x)

u(0) = 0 and u(L) = 0.
(9.3.41)

We have shown that the solution can be represented in terms of the Green’s function:

u(x) =
∫ L

0

f(x0)G(x, x0) dx0, (9.3.42)

where the Green’s function satisfies the following problem:

d2G(x, x0)
dx2

= δ(x − x0)

G(0, x0) = 0 and G(L, x0) = 0.
(9.3.43)

One reason for defining the Green’s function by the differential equation is that it
gives an alternative (and often easier) way to calculate the Green’s function. Here x0

is a parameter, representing the position of a concentrated source. For x �= x0 there
are no sources, and hence the steady-state heat distribution G(x, x0) must be linear
(d2G/dx2 = 0):

G(x, x0) =
{

a + bx x < x0

c + dx x > x0,
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x0

G(x, x0)

0 L

FIGURE 9.3.4 Green’s function before application of jump conditions at x = x0.

but the constants may be different. The boundary condition at x = 0 applies for x < x0.
G(0, x0) = 0 implies that a = 0. Similarly, G(L, x0) = 0 implies that c + dL = 0:

G(x, x0) =
{

bx x < x0

d(x − L) x > x0.

This preliminary result is sketched in Fig. 9.3.4.
The two remaining constants are determined by two conditions at x = x0. The

temperature G(x, x0) must be continuous at x = x0,

G(x0−, x0) = G(x0+, x0), (9.3.44)

and there is a jump in the derivative of G(x, x0), most easily derived by integrating the
defining differential equation (9.3.43) from x = x0− to x = x0+:

dG

dx

∣∣∣∣
x=x0+

− dG

dx

∣∣∣∣
x=x0−

= 1. (9.3.45)

Equation (9.3.44) implies that
bx0 = d(x0 − L),

while (9.3.45) yields
d − b = 1.

By solving these simultaneously, we obtain

d =
x0

L
and b =

x0 − L

L
,
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and thus

G(x, x0) =

⎧⎪⎨
⎪⎩

− x

L
(L − x0) x < x0

−x0

L
(L − x) x > x0,

(9.3.46)

(x0, −x0(L − x0)/L)

x0

G(x, x0)

0 L

FIGURE 9.3.5 Green’s function.

agreeing with (9.3.16). We sketch the Green’s function in Fig. 9.3.5. The negative nature
of this Green’s function is due to the negative concentrated source of thermal energy,
−δ(x − x0), since 0 = d2G/dx2(x, 0) − δ(x − x0).

The symmetry of the Green’s function (proved earlier) is apparent in all represen-
tations we have obtained. For example, letting L = 1,

G(x, x0) =
{−x(1 − x0) x < x0

−x0(1 − x) x > x0
and G

(
1
2
,
1
5

)
= G

(
1
5
,
1
2

)
= − 1

10
.

We sketch G(x, 1
5 ) and G(x, 1

2 ) in Fig. 9.3.6. Their equality cannot be explained by simple
physical symmetries.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

G(x,0.5)
G(x,0.2)

0.2 0.50 1

FIGURE 9.3.6 Illustration of Maxwell’s reciprocity.

For the steady-state heat equation, we have obtained two Green’s functions, (9.3.46)
and (9.3.23). They appear quite different. In Exercise 9.3.1 they are shown to be the same.
In particular, (9.3.46) yields a piecewise smooth function (actually continuous), and its
Fourier sine series can be shown to be given by (9.3.23).
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9.3.5 Nonhomogeneous Boundary Conditions

We have shown how to use Green’s functions to solve nonhomogeneous differential equa-
tions with homogeneous boundary conditions. In this subsection we extend these ideas to
include problems with nonhomogeneous boundary conditions:

d2u

dx2
= f(x) (9.3.47)

u(0) = α and u(L) = β. (9.3.48)

We will use the same Green’s function as we did previously with problems with homoge-
neous boundary conditions:

d2G

dx2
= δ(x − x0) (9.3.49)

G(0, x0) = 0 and G(L, x0) = 0; (9.3.50)

the Green’s function always satisfies the related homogeneous boundary con-
ditions.

To obtain the representation of the solution of (9.3.47) with (9.3.48) involving the
Green’s function, we again utilize Green’s formula, with v = G(x, x0):

∫ L

0

[
u(x)

d2G(x, x0)
dx2

− G(x, x0)
d2u

dx2

]
dx = u

dG(x, x0)
dx

− G(x, x0)
du

dx

∣∣∣∣∣
L

0

.

The right-hand side now does not vanish since u(x) does not satisfy homogeneous bound-
ary conditions. Instead, using only the definitions of our problem (9.3.47)–(9.3.48) and
the Green’s function (9.3.49)–(9.3.50), we obtain

∫ L

0

[u(x)δ(x − x0) − G(x, x0)f(x)] dx = u(L)
dG(x, x0)

dx

∣∣∣∣∣
x=L

− u(0)
dG(x, x0)

dx

∣∣∣∣
x=0

.

We analyze this as before. Using the property of the Dirac delta function (and reversing
the roles of x and x0) and using the symmetry of the Green’s function, we obtain

u(x) =
∫ L

0

f(x0)G(x, x0) dx0 + β
dG(x, x0)

dx0

∣∣∣∣∣
x0=L

− α
dG(x, x0)

dx0

∣∣∣∣
x0=0

. (9.3.51)
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This is a representation of the solution of our nonhomogeneous problem (including non-
homogeneous boundary conditions) in terms of the standard Green’s function. We must
be careful in evaluating the boundary terms. In our problem, we have already shown that

G(x, x0) =

⎧⎪⎨
⎪⎩

− x

L
(L − x0) x < x0

−x0

L
(L − x) x > x0.

The derivative with respect to the source position of the Green’s function is thus

dG(x, x0)
dx0

=

⎧⎨
⎩

x

L
x < x0

−
(
1 − x

L

)
x > x0.

Evaluating this at the endpoints yields

dG(x, x0)
dx0

∣∣∣∣
x0=L

=
x

L
and

dG(x, x0)
dx0

∣∣∣∣
x0=0

= −
(
1 − x

L

)
.

Consequently,

u(x) =
∫ L

0

f(x0)G(x, x0) dx0 + β
x

L
+ α

(
1 − x

L

)
. (9.3.52)

The solution is the sum of a particular solution of (9.3.42) satisfying homogeneous bound-
ary conditions obtained earlier,

∫ L

0
f(x0)G(x, x0) dx0, and a homogeneous solution satis-

fying the two required nonhomogeneous boundary conditions, β(x/L) + α(1 − x/L).

9.3.6 Limit of Time-Dependent Problem

One way (not the most obvious nor easiest) to solve (9.3.1) is to analyze our solution
(9.2.20) of the time-dependent problem, obtained in the preceding section, in the special
case of a steady source:

u(x, t) =
∫ L

0

g(x0)G(x, t;x0, 0) dx0

+
∫ L

0

− kf(x0)
(∫ t

0

G(x, t;x0, t0) dt0

)
dx0,

(9.3.53)

where

G(x, t;x0, t0) =
∞∑

n=1

2
L

sin
nπx0

L
sin

nπx

L
e−k(nπ/L)2(t−t0). (9.3.54)

As t → ∞, G(x, t;x0, 0) → 0 such that the effect of the initial condition u(x, 0) = g(x)
vanishes at t → ∞. However, even though G(x, t;x0, t0) → 0 as t → ∞, the steady source
is still important as t → ∞ since

∫ t

0

e−k(nπ/L)2(t−t0) dt0 =
e−k(nπ/L)2(t−t0)

k(nπ/L)2

∣∣∣∣∣
t

t0=0

=
1 − e−k(nπ/L)2t

k(nπ/L)2
.
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Thus, as t → ∞,

u(x, t) → u(x) =
∫ L

0

f(x0)G(x, x0) dx0, (9.3.55)

where

G(x, x0) = −
∞∑

n=1

2
L

sin nπx0/L sin nπx/L

(nπ/L)2
. (9.3.56)

Here we obtained the steady-state temperature distribution u(x) by taking the limit as
t → ∞ of the time-dependent problem with a steady source Q(x) = −kf(x). G(x, x0) is
the influence or Green’s function for the steady-state problem. The symmetry,

G(x, x0) = G(x0, x),

will be discussed later.

EXERCISES 9.3

9.3.1. The Green’s function for (9.3.1) is given explicitly by (9.3.16). The method of eigen-
function expansion yields (9.3.23). Show that the Fourier sine series of (9.3.16) yields
(9.3.23).

9.3.2. (a) Derive (9.3.17).
(b) Integrate (9.3.17) by parts to derive (9.3.16).
(c) Instead of part (b), simplify the double integral in (9.3.17) by interchanging the

orders of integration. Derive (9.3.16) this way.
9.3.3. Consider

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

subject to u(0, t) = 0, ∂u
∂x (L, t) = 0, and u(x, 0) = g(x).

(a) Solve by the method of eigenfunction expansion.
(b) Determine the Green’s function for this time-dependent problem.
(c) If Q(x, t) = Q(x), take the limit as t → ∞ of part (b) in order to determine the

Green’s function for

d2u

dx2
= f(x) with u(0) = 0 and

du

dx
(L) = 0.

9.3.4. (a) Derive (9.3.29) from (9.3.28). [Hint: Let f(x) = 1.]
(b) Show that (9.3.33) satisfies (9.3.31).
(c) Derive (9.3.30). [Hint : Show for any continuous f(x) that∫ ∞

−∞
f(x0)δ(x − x0) dx0 =

∫ ∞

−∞
f(x0)δ(x0 − x) dx0

by letting x0 − x = s in the integral on the right.]
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(d) Derive (9.3.34). [Hint: Evaluate
∫∞
−∞ f(x)δ[c(x − x0)] dx by making the change

of variables y = c(x − x0).]
9.3.5. Consider

d2u

dx2
= f(x) with u(0) = 0 and

du

dx
(L) = 0.

*(a) Solve by direct integration.

*(b) Solve by the method of variation of parameters.

*(c) Determine G(x, x0) so that (9.3.15) is valid.

(d) Solve by the method of eigenfunction expansion. Show that G(x, x0) is given by
(9.3.23).

9.3.6. Consider

d2G

dx2
= δ(x − x0) with G(0, x0) = 0 and

dG

dx
(L, x0) = 0.

*(a) Solve directly.

*(b) Graphically illustrate G(x, x0) = G(x0, x).

(c) Compare to Exercise 9.3.5.

9.3.7. Redo Exercise 9.3.5 with the following change:
du

dx
(L) + hu(L) = 0, h > 0.

9.3.8. Redo Exercise 9.3.6 with the following change:
dG

dx
(L) + hG(L) = 0, h > 0.

9.3.9. Consider
d2u

dx2
+ u = f(x) with u(0) = 0 and u(L) = 0.

Assume that (nπ/L)2 �= 1 (i.e., L �= nπ for any n).

(a) Solve by the method of variation of parameters.

*(b) Determine the Green’s function so that u(x) may be represented in terms of it
[see (9.3.15)].

9.3.10. Redo Exercise 9.3.9 using the method of eigenfunction expansion.

9.3.11. Consider

d2G

dx2
+ G = δ(x − x0) with G(0, x0) = 0 and G(L, x0) = 0.

*(a) Solve for this Green’s function directly. Why is it necessary to assume that
L �= nπ?

(b) Show that G(x, x0) = G(x0, x).

9.3.12. For the following problems, determine a representation of the solution in terms of
the Green’s function. Show that the nonhomogeneous boundary conditions can also
be understood using homogeneous solutions of the differential equation:

(a)
d2u

dx2
= f(x), u(0) = A,

du

dx
(L) = B. (See Exercise 9.3.6.)
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(b)
d2u

dx2
+ u = f(x), u(0) = A, u(L) = B. Assume L �= nπ. (See Exercise 9.3.11.)

(c)
d2u

dx2
= f(x), u(0) = A,

du

dx
(L) + hu(L) = 0. (See Exercise 9.3.8.)

9.3.13. Consider the one-dimensional infinite space wave equation with a periodic source of
frequency ω:

∂2φ

∂t2
= c2

∂2φ

∂x2
+ g(x)e−iωt. (9.3.57)

(a) Show that a particular solution φ = u(x)e−iωt of (9.3.57) is obtained if u satisfies
a nonhomogeneous Helmholtz equation

d2u

dx2
+ k2u = f(x).

*(b) The Green’s function G(x, x0) satisfies

d2G

dx2
+ k2G = δ(x − x0).

Determine this infinite space Green’s function so that the corresponding φ(x, t)
is an outward-propagating wave.

(c) Determine a particular solution of (9.3.57).

9.3.14. Consider L(u) = f(x) with L = d
dx

(
p d

dx

)
+ q. Assume that the appropriate Green’s

function exists. Determine the representation of u(x) in terms of the Green’s function
if the boundary conditions are nonhomogeneous:

(a) u(0) = α and u(L) = β

(b)
du

dx
(0) = α and

du

dx
(L) = β

(c) u(0) = α and
du

dx
(L) = β

*(d) u(0) = α and
du

dx
(L) + hu(L) = β

9.3.15. Consider L(G) = δ(x−x0) with L = d
dx

(
p d

dx

)
+q subject to the boundary conditions

G(0, x0) = 0 and G(L, x0) = 0. Introduce for all x two homogeneous solutions, y1

and y2, such that each solves one of the homogeneous boundary conditions:

L(y1) = 0, L(y2) = 0

y1(0) = 0, y2(L) = 0
dy1

dx
(0) = 1,

dy2

dx
(L) = 1.

Even if y1 and y2 cannot be explicitly obtained, they can be easily calculated nu-
merically on a computer as two initial value problems. Any homogeneous solution
must be a linear combination of the two.
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*(a) Solve for G(x, x0) in terms of y1(x) and y2(x). You may assume that y1(x) �=
cy2(x).

(b) What goes wrong if y1(x) = cy2(x) for all x and why?

9.3.16. Reconsider (9.3.41), whose solution we have obtained, (9.3.46). For (9.3.41), what
are y1 and y2 in Exercise 9.3.15? Show that G(x, x0) obtained in Exercise 9.3.15
reduces to (9.3.46) for (9.3.41).

9.3.17. Consider

L(u) = f(x) with L =
d

dx

(
p

d

dx

)
+ q

u(0) = 0 and u(L) = 0.

Introduce two homogeneous solutions y1 and y2, as in Exercise 9.3.15.

(a) Determine u(x) using the method of variation of parameters.

(b) Determine the Green’s function from part (a).

(c) Compare to Exercise 9.3.15.

9.3.18. Reconsider Exercise 9.3.17. Determine u(x) by the method of eigenfunction expan-
sion. Show that the Green’s function satisfies (9.3.23).

9.3.19. (a) If a concentrated source is placed at a node of some mode (eigenfunction),
show that the amplitude of the response of that mode is zero. [Hint: Use the
result of the method of eigenfunction expansion and recall that a node x∗ of an
eigenfunction means anyplace where φn(x∗) = 0.]

(b) If the eigenfunctions are sinnπx/L and the source is located in the middle,
x0 = L/2, show that the response will have no even harmonics.

9.3.20. Derive the eigenfunction expansion of the Green’s function (9.3.23) directly from
the defining differential equation (9.3.41) by letting

G(x, x0) =
∞∑

n=1

anφn(x).

Assume that term-by-term differentiation is justified.
*9.3.21. Solve

dG

dx
= δ(x − x0) with G(0, x0) = 0.

Show that G(x, x0) is not symmetric even though δ(x − x0) is.
9.3.22. Solve

dG

dx
+ G = δ(x − x0) with G(0, x0) = 0.

Show that G(x, x0) is not symmetric even though δ(x − x0) is.
9.3.23. Solve

d4G

dx4
= δ(x − x0)

G(0, x0) = 0, G(L, x0) = 0

dG

dx
(0, x0) = 0,

d2G

dx2
(L, x0) = 0.
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9.3.24. Use Exercise 9.3.23 to solve

d4u

dx4
= f(x)

u(0) = 0, u(L) = 0

du

dx
(0) = 0,

d2u

dx2
(L) = 0.

(Hint: Exercise 5.5.8 is helpful.)
9.3.25. Use the convolution theorem for Laplace transforms to obtain particular solutions of

(a)
d2u

dx2
= f(x) (See Exercise 9.3.5.)

*(b)
d4u

dx4
= f(x) (See Exercise 9.3.24.)

9.3.26. Determine the Green’s function satisfying
d2G

dx2
− G = δ(x − x0):

(a) Directly on the interval 0 < x < L with G(0, x0) = 0 and G(L, x0) = 0

(b) Directly on the interval 0 < x < L with G(0, x0) = 0 and
dG

dx
(L, x0) = 0

(c) Directly on the interval 0 < x < L with
dG

dx
(0, x0) = 0 and

dG

dx
(L, x0) = 0

(d) Directly on the interval 0 < x < ∞ with G(0, x0) = 0

(e) Directly on the interval 0 < x < ∞ with
dG

dx
(0, x0) = 0

(f) Directly on the interval −∞ < x < ∞

APPENDIX TO 9.3: ESTABLISHING GREEN’S FORMULA WITH DIRAC
DELTA FUNCTIONS

Green’s formula is very important when analyzing Green’s functions. However, our deriva-
tion of Green’s formula requires integration by parts. Here we will show that Green’s
formula, ∫ b

a

[uL(v) − vL(u)] dx = p

(
u

dv

dx
− v

du

dx

)∣∣∣∣∣
b

a

, (9.3.58)

where L =
d

dx

(
p

d

dx

)
+ q, is valid even if v is a Green’s function,

L(v) = δ(x − x0). (9.3.59)

We will derive (9.3.58). We calculate the left-hand side of (9.3.58). Since there is a sin-
gularity at x = x0, we are not guaranteed that (9.3.58) is valid. Instead, we divide the
region into three parts:

∫ b

a

=
∫ x0−

a

+
∫ x0+

x0−
+
∫ b

x0+

.
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In the regions that exclude the singularity, a ≤ x ≤ x0− and x0+ ≤ x ≤ b, Green’s
formula can be used. In addition, due to the property of the Dirac delta function,

∫ x0+

x0−
[uL(v) − vL(u)] dx =

∫ x0+

x0−
[uδ(x − x0) − vL(u)] dx = u(x0),

since
∫ x0+

x0− vL(u) dx = 0. Thus, we obtain

∫ b

a

[uL(v) − vL(u)] dx = p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
x0−

a

+ p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
b

x0+

+ u(x0)

= p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
b

a

+ p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
x0−

x0+

+ u(x0). (9.3.60)

Since u, du/dx, and v are continuous at x = x0, it follows that

p

(
u

dv

dx
− v

du

dx

)∣∣∣∣
x0−

x0+

= p(x0)u(x0)
dv

dx

∣∣∣∣
x0−

x0+

.

However, by integrating (9.3.59), we know that p dv/dx|x0+
x0− = 1. Thus, (9.3.58) follows

from (9.3.60). Green’s formula may be utilized even if Green’s functions are present.

9.4 FREDHOLM ALTERNATIVE AND GENERALIZED GREEN’S FUNCTIONS

9.4.1 Introduction

If λ = 0 is an eigenvalue, then the Green’s function does not exist. In order to understand
the difficulty, we reexamine the nonhomogeneous problem:

L(u) = f(x), (9.4.1)

subject to homogeneous boundary conditions. By the method of eigenfunction expansion,
in the preceding section we obtained

u =
∞∑

n=1

anφn(x), (9.4.2)

where by substitution

−anλn =

∫ b

a

f(x)φn(x) dx

∫ b

a

φ2
nσ dx

. (9.4.3)

If λn = 0 (for some n, often the lowest eigenvalue), there may not be any solutions to the
nonhomogeneous boundary value problem. In particular, if

∫ b

a
f(x)φn(x) dx �= 0, for the

eigenfunction corresponding to λn = 0, then (9.4.3) cannot be satisfied. This warrants
further investigation.
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EXAMPLE

Let us consider the following simple nonhomogeneous boundary value problem:

d2u

dx2
= ex with

du

dx
(0) = 0 and

du

dx
(L) = 0. (9.4.4)

After one integration, we get
du

dx
= ex + c.

The two boundary conditions cannot be satisfied as they are contradictory:

0 = 1 + c
0 = eL + c,

unless L = 0. There is no guarantee that there are any solutions to a nonhomogeneous
boundary value problem when λ = 0 is an eigenvalue for the related eigenvalue problem
[d2φn/dx2 = −λnφn, with dφn/dx(0) = 0 and dφn/dx(L) = 0], which is the case here.

In this example, from one physical point of view, we are searching for an equilibrium
temperature distribution. Since there are sources and the boundary conditions are of the
insulated type, we know that an equilibrium temperature can exist only if there is no net
input of thermal energy: ∫ L

0

ex dx = 0,

which is not valid. Since thermal energy is being constantly removed, there can be no
equilibrium (0 = d2u/dx2 − ex).

Zero eigenvalue. If λ = 0 is an eigenvalue, we have shown that there may be
difficulty in solving

L(u) = f(x), (9.4.5)

subject to homogeneous boundary conditions. The eigenfunctions φn satisfy

L(φn) = −λnσφn,

subject to the same homogeneous boundary conditions. Thus, if λ = 0 is an eigenvalue,
the corresponding eigenfunction φh(x) satisfies

L(φh) = 0 (9.4.6)

with the same homogeneous boundary conditions. Thus, φh(x) is a nontrivial homoge-
neous solution of (9.4.5). This is important: Nontrivial homogeneous solutions of
(9.4.5) solving the same homogeneous boundary conditions are equivalent to
eigenfunctions corresponding to the zero eigenvalue. If there are no nontrivial
homogeneous solutions (solving the same homogeneous boundary conditions), then λ = 0
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is not an eigenvalue. If there are nontrivial homogeneous solutions, then λ = 0 is an
eigenvalue.

The notion of a nontrivial homogeneous solution is less confusing than can be a zero
eigenvalue. For example, consider

d2u

dx2
+ u = ex with u(0) = 0 and u(π) = 0. (9.4.7)

Are there nontrivial homogeneous solutions? The answer is yes, φ = sin x. However, it
may cause some confusion to say that λ = 0 is an eigenvalue (although it is true). The
definition of the eigenvalues for (9.4.7) is

d2φ

dx2
+ φ = −λφ with φ(0) = 0 and φ(π) = 0.

This is best written as d2φ/dx2 + (λ + 1)φ = 0. Therefore, λ + 1 = (nπ/L)2 = n2,
n = 1, 2, 3, . . . , and it is now clear that λ = 0 is an eigenvalue (corresponding to n = 1).

9.4.2 Fredholm Alternative

Important conclusions can be reached from (9.4.3), obtained by the method of eigenfunc-
tion expansion. The Fredholm alternative summarizes these results for nonhomogeneous
problems

L(u) = f(x), (9.4.8)

subject to homogeneous boundary conditions (of the self-adjoint type). Either

1. u = 0 is the only homogeneous solution (i.e., λ = 0 is not an
eigenvalue), in which case the nonhomogeneous problem has
a unique solution, or

2. There are nontrivial homogeneous solutions φh(x) (i.e., λ = 0
is an eigenvalue), in which case the nonhomogeneous problem
has no solutions or an infinite number of solutions.

Let us describe in more detail what occurs if φh(x) is a nontrivial homogeneous
solution. By (9.4.3) there are an infinite number of solutions of (9.4.8) a solv-
ability condition if

∫ b

a

f(x)φh(x) dx = 0, (9.4.9)

because the corresponding an is arbitrary. These nonunique solutions correspond to an
arbitrary additive multiple of a homogeneous solution φh(x). Equation (9.4.9) corresponds
to the forcing function being orthogonal to the homogeneous solution (with weight 1). If
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∫ b

a

f(x)φh(x) dx �= 0, (9.4.10)

then the nonhomogeneous problem (with homogeneous boundary conditions) has no so-
lutions. These results are illustrated in Table 9.4.1.

TABLE 9.4.1: Number of Solutions of L(u) = f(x) Subject to Homogeneous Boundary
Conditions

# of solutions
∫ b

a

f(x)φh(x) dx

φh = 0 (λ �= 0) 1 0
φh �= 0 (λ = 0) ∞ 0
φh �= 0 (λ = 0) 0 �= 0

A different phrasing of the Fredholm alternative states that for the nonhomoge-
neous problem (9.4.8) with homogeneous boundary conditions, solutions exist
only if the forcing function is orthogonal to all homogeneous solutions.5 Note
that if u = 0 is the only homogeneous solution, then f(x) is automatically orthogonal to
it (in a somewhat trivial way), and there is a solution.

Part of the Fredholm alternative can be shown without using an eigenfunction ex-
pansion. If the nonhomogeneous problem has a solution, then

L(u) = f(x).

All homogeneous solutions, φh(x), satisfy

L(φh) = 0.

We now use Green’s formula with v = φh and obtain

∫ b

a

[u · 0 − φhf(x)] dx = 0 or
∫ b

a

f(x)φh(x) dx = 0,

since u and φh satisfy the same homogeneous boundary conditions.

EXAMPLES

We consider three examples. First, suppose that

d2u

dx2
= ex with

du

dx
(0) = 0 and

du

dx
(L) = 0. (9.4.11)

5Here the operator L is self-adjoint. For non-self-adjoint operators, the solutions exist if the forcing
function is orthogonal to all solutions of the corresponding homogeneous adjoint problem (see Exercises
5.5.11–5.5.14).
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u = 1 is a homogeneous solution. According to the Fredholm alternative, there is a solution
to (9.4.11) only if ex is orthogonal to this homogeneous solution. Since

∫ L

0
ex · 1 dx �= 0,

there are no solutions of (9.4.11).
For another example, suppose that

d2u

dx2
+ 2u = ex with u(0) = 0 and u(π) = 0.

Since there are no solutions of the corresponding homogeneous problem6 (other than
u = 0), the Fredholm alternative implies that there is a unique solution. However, to
obtain that solution we must use standard techniques to solve nonhomogeneous differential
equations, such as the methods of undetermined coefficients, variation of parameters, or
eigenfunction expansion (using sinnx).

As a more nontrivial example, we consider

d2u

dx2
+
(π

L

)2

u = β + x with u(0) = 0 and u(L) = 0.

Since φ = sinπx/L is a solution of the homogeneous problem, the nonhomogeneous
problem has a solution only if the right-hand side is orthogonal to sinπx/L:

0 =
∫ L

0

(β + x) sin
πx

L
dx.

This can be used to determine the only value of β for which there is a solution:

β =
−
∫ L

0

x sin πx/L dx

∫ L

0

sin πx/Ldx

= −L

2
.

However, again the Fredholm alternative cannot be used to actually obtain the solu-
tion, u(x).

9.4.3 Generalized Green’s Functions

In this section, we will analyze

L(u) = f (9.4.12)

subject to homogeneous boundary conditions when λ = 0 is an eigenvalue. If
a solution to (9.4.12) exists, we will produce a particular solution of (9.4.12) by defining
and constructing a modified or generalized Green’s function.

6For d2φ/dx2 + λφ = 0, with φ(0) = 0 and φ(L) = 0, the eigenvalues are (nπ/L)2. Here 2 �= n2.
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If λ = 0 is not an eigenvalue, then there is a unique solution of the nonhomoge-
neous boundary value problem, (9.4.12), subject to homogeneous boundary conditions.
In Section 9.3 we represented the solution using a Green’s function G(x, x0) satisfying

L [G(x, x0)] = δ(x − x0), (9.4.13)

subject to the same homogeneous boundary conditions.
Here we analyze the case in which λ = 0 is an eigenvalue: There are nontrivial

homogeneous solutions φh(x) of (9.4.12), L(φh) = 0. We will assume that there are
solutions of (9.4.12), that is, ∫ b

a

f(x)φh(x) dx = 0. (9.4.14)

However, the Green’s function defined by (9.4.13) does not exist for all x0 following from
(9.4.10) since δ(x − x0) is not orthogonal to solutions of the homogeneous problem for
all x0: ∫ b

a

δ(x − x0)φh(x) dx = φh(x0) �≡ 0.

Instead, we introduce a simple comparison problem that has a solution. δ(x − x0) is not
orthogonal to φh(x) because it has a “component in the direction” φh(x). However, there
is a solution of (9.4.12) for all x0 for the forcing function

δ(x − x0) + cφh(x),

if c is properly chosen. In particular, we determine c easily such that this function is
orthogonal to φh(x):

0 =
∫ b

a

φh(x) [δ(x − x0) + cφh(x)] dx = φh(x0) + c

∫ b

a

φ2
h(x) dx.

Thus, we introduce the generalized Green’s function Gm(x, x0), which satisfies

L [Gm(x, x0)] = δ(x − x0) − φh(x)φh(x0)∫ b

a

φ2
h(x) dx

,
(9.4.15)

subject to the same homogeneous boundary conditions.
Since the right-hand side of (9.4.15) is orthogonal to φh(x), unfortunately there are

an infinite number of solutions. In Exercise 9.4.9 it is shown that the generalized Green’s
function can be chosen to be symmetric:

Gm(x, x0) = Gm(x0, x). (9.4.16)
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If gm(x, x0) is one symmetric generalized Green’s function, then the following is also a
symmetric generalized Green’s function:

Gm(x, x0) = gm(x, x0) + βφh(x0)φh(x)

for any constant β (independent of x and x0). Thus, there are an infinite number of
symmetric generalized Green’s functions. We can use any of these.

We use Green’s formula to derive a representation formula for u(x) using the gen-
eralized Green’s function. Letting u = u(x) and v = Gm(x, x0), Green’s formula states
that ∫ b

a

{u(x)L [Gm(x, x0)] − Gm(x, x0)L [u(x)]} dx = 0,

since both u(x) and Gm(x, x0) satisfy the same homogeneous boundary conditions. The
defining differential equations (9.4.12) and (9.4.15) imply that

∫ b

a

{
u(x)

[
δ(x − x0) − φh(x)φh(x0)∫ b

a
φ2

h(x̄) dx̄

]
− Gm(x, x0)f(x)

}
dx = 0.

Using the fundamental Dirac delta property (and reversing the roles of x and x0) yields

u(x) =
∫ b

a

f(x0)Gm(x, x0) dx0 +
φh(x)∫ b

a
φ2

h(x̄) dx̄

∫ b

a

u(x0)φh(x0) dx0,

where the symmetry of Gm(x, x0) has also been utilized. The last expression is a multiple
of the homogeneous solution, and thus a simple particular solution of (9.4.12) is

u(x) =
∫ b

a

f(x0)Gm(x, x0) dx0, (9.4.17)

the same form as occurs when u = 0 is not an eigenvalue [see (9.3.36)].

EXAMPLE

The simplest example of a problem with a nontrivial homogeneous solution is

d2u

dx2
= f(x) (9.4.18)

du

dx
(0) = 0 and

du

dx
(L) = 0. (9.4.19)

A constant is a homogeneous solution (eigenfunction corresponding to the zero eigen-
value). For a solution to exist, by the Fredholm alternative,7

∫ L

0
f(x) dx = 0. We assume

f(x) is of this type [e.g., f(x) = x − L/2]. The generalized Green’s function Gm(x, x0)
satisfies

7Physically, with insulated boundaries, there must be zero net thermal energy generated for equilib-
rium.
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d2Gm

dx2
= δ(x − x0) + c (9.4.20)

dGm

dx
(0) = 0 and

dGm

dx
(L) = 0, (9.4.21)

since a constant is the eigenfunction. For there to be such a generalized Green’s function,
the r.h.s. must be orthogonal to the homogeneous solutions:∫ L

0

[δ(x − x0) + c] dx = 0 or c = − 1
L

.

We use properties of the Dirac delta function to solve (9.4.20) with (9.4.21). For
x �= x0,

d2Gm

dx2
= − 1

L
.

By integration

dGm

dx
=

⎧⎪⎨
⎪⎩

− x

L
x < x0

− x

L
+ 1 x > x0,

(9.4.22)

where the constants of integration have been chosen to satisfy the boundary conditions
at x = 0 and x = L. The jump condition for the derivative (dGm/dx|x0+

x0− = 1), obtained
by integrating (9.4.20), is already satisfied by (9.4.22). We integrate again to obtain
Gm(x, x0). Assuming that Gm(x, x0) is continuous at x = x0 yields

Gm(x, x0) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
L

x2

2
+ x0 + c(x0) x < x0

− 1
L

x2

2
+ x + c(x0) x > x0.

c(x0) is an arbitrary additive constant that depends on x0 and corresponds to an arbitrary
multiple of the homogeneous solution. This is the representation of all possible generalized
Green’s functions. Often, we desire Gm(x, x0) to be symmetric. For example, Gm(x, x0) =
Gm(x0, x) for x < x0 yields

− 1
L

x2
0

2
+ x0 + c(x) = − 1

L

x2

2
+ x0 + c(x0)

or

c(x0) = − 1
L

x2
0

2
+ β,

where β is an arbitrary constant. Thus, finally we obtain the generalized Green’s function,

Gm(x, x0) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
L

(x2 + x2
0)

2
+ x0 + β x < x0

− 1
L

(x2 + x2
0)

2
+ x + β x > x0.

(9.4.23)

A solution of (9.4.18)–(9.4.19) is given by (9.4.17) with Gm(x, x0) given previously.
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An alternative generalized Green’s function. In order to solve problems with
homogeneous solutions, we could introduce instead a comparison problem satisfying non-
homogeneous boundary conditions. For example, the Neumann function Ga is defined by

d2Ga

dx2
= δ(x − x0) (9.4.24)

dGa

dx
(0) = −c (9.4.25)

dGa

dx
(L) = c. (9.4.26)

Physically, this represents a unit negative source −δ(x− x0) of thermal energy with heat
energy flowing into both ends at the rate of c per unit time. Thus, physically there will
be a solution only if 2c = 1. This can be verified by integrating (9.4.24) from x = 0
to x = L or by using Green’s formula. This alternate generalized Green’s function can
be obtained in a manner similar to the previous one. In terms of this Green’s function,
the representation of the solution of a nonhomogeneous problem can be obtained using
Green’s formula (see Exercise 9.4.12).

EXERCISES 9.4

9.4.1. Consider

L(u) = f(x) with L =
d

dx

(
p

d

dx

)
+ q

subject to two homogeneous boundary conditions. All homogeneous solutions φh (if
they exist) satisfy L(φh) = 0 and the same two homogeneous boundary conditions.
Apply Green’s formula to prove that there are no solutions u if f(x) is not orthogonal
(weight 1) to all φh(x).

9.4.2. Modify Exercise 9.4.1 if
L(u) = f(x)

u(0) = α and u(L) = β.

*(a) Determine the condition for a solution to exist.
(b) If this condition is satisfied, show that there are an infinite number of solutions

using the method of eigenfunction expansion.

9.4.3. Without determining u(x), how many solutions are there of

d2u

dx2
+ γu = sinx

(a) If γ = 1 and u(0) = u(π) = 0?
*(b) If γ = 1 and du

dx (0) = du
dx (π) = 0?

(c) If γ = −1 and u(0) = u(π) = 0?
(d) If γ = 2 and u(0) = u(π) = 0?

9.4.4. For the following examples, obtain the general solution of the differential equation
using the method of undetermined coefficients. Attempt to solve the boundary con-
ditions, and show that the result is consistent with the Fredholm alternative:
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(a) Equation (9.4.7)

(b) Equation (9.4.11)

(c) Example after (9.4.11)

(d) Second example after (9.4.11)

9.4.5. Are there any values of β for which there are solutions of

d2u

dx2
+ u = β + x

u(−π) = u(π) and
du

dx
(−π) =

du

dx
(π)?

*9.4.6. Consider
d2u

dx2
+ u = 1.

(a) Find the general solution of this differential equation. Determine all solutions
with u(0) = u(π) = 0. Is the Fredholm alternative consistent with your result?

(b) Redo part (a) if du
dx (0) = du

dx (π) = 0.

(c) Redo part (a) if du
dx (−π) = du

dx (π) and u(−π) = u(π).

9.4.7. Consider
d2u

dx2
+ 4u = cos x

du

dx
(0) =

du

dx
(π) = 0.

(a) Determine all solutions using the hint that a particular solution of the differen-
tial equation is in the form, up = A cos x.

(b) Determine all solutions using the eigenfunction expansion method.

(c) Apply the Fredholm alternative. Is it consistent with parts (a) and (b)?

9.4.8. Consider
d2u

dx2
+ u = cos x,

which has a particular solution of the form, up = Ax sin x.

*(a) Suppose that u(0) = u(π) = 0. Find all solutions. Is your result consistent with
the Fredholm alternative?

(b) Answer the same questions as in part (a) if u(−π) = u(π) and du
dx (−π) = du

dx (π).

9.4.9. (a) Since (9.4.15) (with homogeneous boundary conditions) is solvable, there is an
infinite number of solutions. Suppose that gm(x, x0) is one such solution that
is not orthogonal to φh(x). Show that there is a unique generalized Green’s
function Gm(x, x0) that is orthogonal to φh(x).

(b) Assume that Gm(x, x0) is the generalized Green’s function that is orthogonal to
φh(x). Prove that Gm(x, x0) is symmetric. [Hint: Apply Green’s formula with
Gm(x, x1) and Gm(x, x2).]
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*9.4.10. Determine the generalized Green’s function that is needed to solve

d2u

dx2
+ u = f(x)

u(0) = α and u(π) = β.

Assume that f(x) satisfies the solvability condition (see Exercise 9.4.2). Obtain a
representation of the solution u(x) in terms of the generalized Green’s function.

9.4.11. Consider
d2u

dx2
= f(x) with

du

dx
(0) = 0 and

du

dx
(L) = 0.

A different generalized Greens function may be defined:

d2Ga

dx2
= δ(x − x0)

dGa

dx
(0) = 0

dGa

dx
(L) = c.

*(a) Determine c using mathematical reasoning.

*(b) Determine c using physical reasoning.

(c) Explicitly determine all possible Ga(x, x0).

*(d) Determine all symmetric Ga(x, x0).

*(e) Obtain a representation of the solution u(x) using Ga(x, x0).

9.4.12. The alternate generalized Green’s function (Neumann function) satisfies

d2Ga

dx2
= δ(x − x0)

dGa

dx
(0) = −c

dGa

dx
(L) = c, where we have shown c = 1

2 .

(a) Determine all possible Ga(x, x0).

(b) Determine all symmetric Ga(x, x0).

(c) Determine all Ga(x, x0) that are orthogonal to φh(x).

(d) What relationship exists between β and γ for there to be a solution to

d2u

dx2
= f(x) with

du

dx
(0) = β and

du

dx
(L) = γ?

In this case, derive the solution u(x) in terms of a Neumann function, defined
above.

9.4.13. Consider d2u
dx2 + u = f(x) with u(0) = 1 and u(π) = 4. How many solutions are

there, and how does this depend on f(x)? Do not determine u(x).
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9.4.14. Consider d2u
dx2 + u = f(x) with periodic boundary conditions u(−L) = u(L) and

du
dx (−L) = du

dx (L). Note that φh = sin πx
L and φh = cos πx

L are homogeneous
solutions.
(a) Under what condition is there a solution?
(b) Suppose a generalized Green’s function satisfies

d2Gm

dx2
+ Gm = δ(x − x0) + c1 cos

πx

L
+ c2 sin

πx

L

with periodic boundary conditions. What are the constants c1 and c2? Do not
solve for Gm(x, x0).

(c) Assume that the generalized Green’s function is symmetric. Derive a represen-
tation for u(x) in terms of Gm(x, x0).

9.5 GREEN’S FUNCTIONS FOR POISSON’S EQUATION

9.5.1 Introduction

In Sections 9.3 and 9.4 we discussed Green’s functions for Sturm–Liouville–type ordinary
differential equations L(u) = f , where L = d/dx(p d/dx) + q. Before discussing Green’s
functions for time-dependent partial differential equations (such as the heat and wave
equations), we will analyze Green’s functions for Poisson’s equation, a time-independent
partial differential equation:

L(u) = f, (9.5.1)

where L = ∇2, the Laplacian. At first, we will assume that u satisfies homogeneous
boundary conditions. Later we will show how to use the same ideas to solve problems
with nonhomogeneous boundary conditions. We will begin by assuming that the region
is finite, as illustrated in Fig. 9.5.1. The extension to infinite domains will be discussed
in some depth.

One-dimensional Green’s functions were introduced to solve the nonhomogeneous
Sturm–Liouville problem. Key relationships were provided by Green’s formula. The analysis
of Green’s functions for Poisson’s equation is quite similar. We will frequently use Green’s
formula for the Laplacian, either in its two- or three-dimensional forms:

∫∫∫ (
u∇2v − v∇2u

)
dV =

∫∫
�

�

�

� (u∇v − v∇u) · n̂ dS

∫∫ (
u∇2v − v∇2u

)
dA =

∮
(u∇v − v∇u) · n̂ ds.

FIGURE 9.5.1 Finite
two-dimensional region.
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We will assume that these formulas are valid even for the more exotic functions we will
be discussing.

9.5.2 Multidimensional Dirac Delta Function and Green’s Functions

The Green’s function is defined as the solution to the nonhomogeneous problem with
a concentrated source, subject to homogeneous boundary conditions. We define a two-
dimensional Dirac delta function as an operator with a concentrated source with unit
volume. It is the product of two one-dimensional Dirac delta functions. If the source is
concentrated at x = x0(x = xî + yĵ,x0 = x0î + y0ĵ), then

δ (x − x0) = δ(x − x0)δ(y − y0). (9.5.2)

Similar ideas hold in three dimensions. The fundamental operator property of this multi-
dimensional Dirac delta function is that

∫ ∞

−∞

∫ ∞

−∞
f(x)δ (x − x0) dA = f(x0) (9.5.3)

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x − x0)δ(y − y0) dA = f(x0, y0), (9.5.4)

in vector or two-dimensional component form, where f(x) = f(x, y). We will use the
vector notation.

Green’s function. In order to solve the nonhomogeneous partial differential
equation

∇2u = f(x), (9.5.5)

subject to homogeneous conditions along the boundary, we introduce the Green’s function
G(x,x0) for Poisson’s equation8:

∇2G(x,x0) = δ(x − x0), (9.5.6)

subject to the same homogeneous boundary conditions. Here G(x,x0) represents the
response at x due to a source at x0.

8Sometimes this is called the Green’s function for Laplace’s equation.
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Representation formula using Green’s function. Green’s formula (in its two-
dimensional form) with v = G(x,x0) becomes∫∫ (

u∇2G − G∇2u
)

dA = 0,

since both u(x) and G(x,x0) solve the same homogeneous boundary conditions such that∮
(u∇G − G∇u)·n̂ ds vanishes. From (9.5.5) and (9.5.6), it follows that

u(x0) =
∫∫

f(x)G(x,x0) dA.

If we reverse the role of x and x0, we obtain

u(x) =
∫∫

f(x0)G(x0,x) dA0.

As we will show, the Green’s function is symmetric:

G(x,x0) = G(x0,x), (9.5.7)

and hence

u(x) =
∫∫

f(x0)G(x,x0) dA0. (9.5.8)

This shows how the solution of the partial differential equation may be computed if the
Green’s function is known.

Symmetry. As in one-dimensional problems, to show the symmetry of the Green’s
function we use Green’s formula with G(x,x1) and G(x,x2). Since both satisfy the same
homogeneous boundary conditions, we have∫∫ [

G(x,x1)∇2G(x,x2) − G(x,x2)∇2G(x,x1)
]

dA = 0.

Since ∇2G(x,x1) = δ(x − x1) and ∇2G(x,x2) = δ(x − x2), it follows using the fun-
damental property of the Dirac delta function that G(x1,x2) = G(x2,x1); the Green’s
function is symmetric.

9.5.3 Green’s Functions by the Method of Eigenfunction Expansion
and the Fredholm Alternative

One method to solve Poisson’s equation in a finite region with homogeneous boundary
conditions,

∇2u = f(x), (9.5.9)
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is to use an eigenfunction expansion. We consider the related eigenfunctions, ∇2φ = −λφ,
subject to the same homogeneous boundary conditions. We assume that the eigenvalues λ
and corresponding eigenfunctions φλ(x) are known. Simple examples occur in rectangular
and circular regions. We solve for u(x) using the method of eigenfunction expansion:

u(x) =
∑

λ

aλφλ(x). (9.5.10)

Since u(x) and φλ(x) solve the same homogeneous boundary condition, we expect to be
able to differentiate term by term:

f = ∇2u =
∑

λ

aλ∇2φλ(x) = −
∑

λ

λaλφλ(x).

This can be verified using Green’s formula. Due to the multidimensional orthogonality of
φλ(x), it follows that

−λaλ =
∫ ∫

f(x0)φλ(x0) dA0∫ ∫
φ2

λ dA
. (9.5.11)

If λ = 0 is not an eigenvalue, then we can determine aλ. The representation of the solution
u(x) follows from 9.5.10 after interchanging

∑
λ and

∫ ∫
:

u(x) =
∫ ∫

f(x0)G(x,x0) dA0, (9.5.12)

where the eigenfunction expansion of the Green’s function is given by

G(x,x0) =
∑

λ

φλ(x)φλ(x0)
−λ
∫ ∫

φ2
λ dA

. (9.5.13)

This is the natural generalization of the one-dimensional result (ordinary differential
equation) corresponding to the Green’s function for a nonhomogeneous Sturm–Liouville
boundary value problem (see Section 9.3.3).

EXAMPLE

For a rectangle, 0 < x < L, 0 < y < H, with zero boundary conditions on all four sides,
we have shown (see Chapter 7) that the eigenvalues are λnm = (nπ/L)2 +(mπ/H)2 (n =
1, 2, 3, . . . and m = 1, 2, 3, . . .) and the corresponding eigenfunctions are φλ(x) =
sin(nπx/L) sin mπy/H. In this case, the normalization constants are

∫∫
φ2

λ dx dy = L
2 · H

2 .
The Green’s function can be expanded in a series of these eigenfunctions, a Fourier sine
series in x and y,

G(x,x0) =
−4
LH

∞∑
n=1

∞∑
m=1

sin nπx/L sin mπy/H sin nπx0/L sin mπy0/H

(nπ/L)2 + (mπ/H)2
.

Later in this section, as well as in Exercise 9.5.22(a), we will obtain alternative forms of
this Green’s function.
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Fredholm alternative. We show that there is a Fredholm alternative as in Sec-
tion 9.4. If λ �= 0, we have obtained a unique solution of the nonhomogeneous problem
(9.5.9) subject to homogenous boundary conditions. As before, difficulties occur if λ = 0
is an eigenvalue. In this case there is at least one nontrivial homogeneous solution φh of
Laplace’s equation ∇2φh = 0 (the homogeneous equation related to Poisson’s equation)
satisfying homogeneous boundary conditions. From (9.5.11), it follows that for the nonho-
mogeneous boundary value problem (9.5.9) subject to homogeneous boundary conditions,
exactly one of the following statements holds:

There is an infinite number of solutions if the right-hand side is
orthogonal to all homogeneous solutions

∫ ∫
f(x0)φh(x0) dA0 = 0.

From (9.5.11) the corresponding aλ is arbitrary.
(9.5.14)

There are no solutions if
∫ ∫

f(x0)φh(x0) dA0 �= 0. (9.5.15)

EXAMPLE

If the entire boundary is insulated, ∇φ · n̂ = 0, then φh equaling any constant is a non-
trivial solution of ∇2φ = 0 satisfying the boundary conditions. φh = 1 is the eigenfunction
corresponding to λ = 0. Solutions of ∇2u = f(x) then exist only if

∫∫
f(x) dA = 0. Phys-

ically for a steady-state heat equation with insulated boundaries, the net heat energy
generated must be zero. This is just the two-dimensional version of the problem discussed
in Section 9.4. In particular, we could introduce in some way a generalized Green’s func-
tion (which is also known as a Neumann function). We leave any discussion of this
for the Exercises. For the remainder of Section 9.5 we will assume that λ = 0 is not an
eigenvalue.

9.5.4 Direct Solution of Green’s Functions (One-Dimensional Eigenfunctions) (Optional)

Green’s functions can also be obtained by more direct methods. Consider the Green’s
function for Poisson’s equation,

∇2G(x,x0) = δ(x − x0), (9.5.16)

inside a rectangle with zero boundary conditions, as illustrated in Fig. 9.5.2. Instead of
solving for this Green’s function using a series of two-dimensional eigenfunctions (see
Section 9.5.3), we will use one-dimensional eigenfunctions, a sine series in either x or y
due to the boundary conditions. Using a Fourier sine series in x,

G(x,x0) =
∞∑

n=1

an(y) sin
nπx

L
. (9.5.17)
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0

G = 0

H

G = 00

G = 0

L

G = 0

(x0, y0)

FIGURE 9.5.2 Green’s function for Poisson’s equation on a rectangle.

By substituting (9.5.17) into (9.5.16), we obtain [since both G(x,x0) and sin(nπx/L)
satisfy the same set of homogeneous boundary conditions]

∞∑
n=1

[
d2an

dy2
−
(nπ

L

)2

an

]
sin

nπx

L
= δ(x − x0)δ(y − y0)

or
d2an

dy2
−
(nπ

L

)2

an =
2
L

∫ L

0

δ(x − x0)δ(y − y0) sin
nπx

L
dx

=
2
L

sin
nπx0

L
δ(y − y0).

(9.5.18)

The boundary conditions at y = 0 and y = H imply that the Fourier coefficients must
satisfy the corresponding boundary conditions,

an(0) = 0 and an(H) = 0. (9.5.19)

Equation (9.5.18) with boundary conditions (9.5.19) may be solved by a Fourier sine series
in y, but this will yield the earlier double-sine series analysis. On the other hand, since the
nonhomogeneous term for an(y) is a one-dimensional Dirac delta function, we may solve
(9.5.18) as we have done for Green’s functions. The differential equation is homogeneous
if y �= y0. In addition, if we utilize the boundary conditions, we obtain

an(y) =

⎧⎪⎨
⎪⎩

cn sinh
nπy

L
sinh

nπ(y0 − H)
L

y < y0

cn sinh
nπ(y − H)

L
sinh

nπy0

L
y > y0,

where in this form continuity at y = y0 is automatically satisfied. In addition, we integrate
(9.5.18) from y0− to y0+ to obtain the jump in the derivative:

dan

dy

∣∣∣∣
y0+

y0−

=
2
L

sin
nπx0

L

or

cn
nπ

L

[
sinh

nπy0

L
cosh

nπ(y0 − H)
L

− sinh
nπ(y0 − H)

L
cosh

nπy0

L

]
=

2
L

sin
nπx0

L
.

(9.5.20)
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Using an addition formula for hyperbolic functions, we obtain

cn =
2 sin nπx0/L

nπ sinhnπH/L
.

This yields the Fourier sine series (in x) representation of the Green’s function

G(x,x0) =
∞∑

n=1

2 sin nπx0/L sin nπx/L

nπ sinhnπH/L

⎧⎪⎪⎨
⎪⎪⎩

sinh
nπ(y0 − H)

L
sinh

nπy

L
y < y0

sinh
nπ(y − H)

L
sinh

nπy0

L
y > y0.

(9.5.21)

The symmetry is exhibited explicitly. In the preceding subsection this same Green’s func-
tion was represented as a double Fourier sine series in both x and y.

A third representation of this Green’s function is also possible. Instead of using a
Fourier sine series in x, we could have used a Fourier sine series in y. We omit the nearly
identical analysis.

9.5.5 Using Green’s Functions for Problems with Nonhomogeneous Boundary Conditions

As with one-dimensional problems, the same Green’s function determined in Sections
9.5.2–9.5.4, ∇2G = δ(x − x0) [with G(x,x0) satisfying homogeneous boundary condi-
tions], may be used to solve Poisson’s equation ∇2u = f(x) subject to nonhomogeneous
boundary conditions.

For example, consider

∇2u = f(x) (9.5.22)

with

u = h(x) (9.5.23)

on the boundary. The Green’s function is defined by

∇2G = δ(x − x0), (9.5.24)

with

G(x,x0) = 0 (9.5.25)

for x on the boundary (x0 is often not on the boundary). The Green’s function satisfies the
related homogeneous boundary conditions. To obtain the Green’s function representation
of the solution of (9.5.22) and (9.5.23), we again employ Green’s formula,∫∫ (

u∇2G − G∇2u
)

dA =
∮

(u∇G − G∇u) · n̂ ds.
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Using the defining differential equations and the boundary conditions,∫∫
[u(x)δ(x − x0) − f(x)G(x,x0)] dA =

∮
h(x)∇G · n̂ ds,

and thus,

u(x0) =
∫∫

f(x)G(x,x0) dA +
∮

h(x)∇G(x,x0) · n̂ ds.

We interchange x and x0, and we use the symmetry of G(x,x0) to obtain

u(x) =
∫∫

f(x0)G(x,x0) dA0 +
∮

h(x0)∇x0G(x,x0) · n̂ ds0. (9.5.26)

We must be especially careful with the closed line integral, representing the effect of the
nonhomogeneous boundary condition. ∇x0 is a symbol for the gradient with respect to
the position of the source,

∇x0 ≡ ∂

∂x0
î +

∂

∂y0
ĵ.

So, G(x,x0) is the influence function for the source term, while ∇x0G(x,x0) · n̂
is the influence function for the nonhomogeneous boundary conditions. Let us attempt
to give an interpretation to the influence function for the nonhomogeneous boundary
conditions, ∇x0G(x,x0) · n̂. This is an ordinary derivative with respect to the source
position in the normal direction. Using the definition of a directional derivative,

∇x0G(x,x0) · n̂ = lim
Δs→0

G(x,x0 + Δsn̂) − G(x,x0)
Δs

.

This yields an interpretation of this normal derivative of the Green’s function.
G(x,x0 + Δsn̂)/Δs is the response to a positive source of strength 1/Δs located at
x0 +Δsn̂, while −G(x,x0)/Δs is the response to a negative source (strength −1/Δs) lo-
cated at x0. The influence function for the nonhomogeneous boundary condition consists
of two concentrated sources of opposite effects whose strength is 1/Δs and distance apart
is Δs, in the limit as Δs → 0. This is called a dipole source. Thus, this nonhomogeneous
boundary condition has an equivalent effect as a surface distribution of dipoles.

9.5.6 Infinite Space Green’s Functions

In Sections 9.5.2–9.5.4, we obtained representations of the Green’s function for Poisson’s
equation, ∇2G(x,x0) = δ(x − x0). However, these representations were complicated.
The resulting infinite series do not give a very good understanding of the effect at x of
a concentrated source at x0. As we will show, the difficulty is caused by the presence of
boundaries.

In order to obtain simpler representations, we begin by considering solving Poisson’s
equation

∇2u = f(x)

in infinite space with no boundaries. We introduce the Green’s function G(x,x0)
defined by
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∇2G = δ(x − x0), (9.5.27)

to be valid for all x. Since this is a model of steady-state heat flow with a concentrated
source located at x = x0 with no boundaries, there should be a solution that is symmetric
around the source point x = x0. Our results are somewhat different in two and three di-
mensions. We simultaneously solve both. We let r represent radial distance (from x = x0)
in two dimensions and ρ represent radial distance (from x = x0) in three dimensions:

two three
r = x − x0 ρ = x − x0

r = |r| = |x − x0| ρ = |ρ| = |x − x0|

=
√

(x − x0)2 + (y − y0)2 =
√

(x − x0)2 + (y − y0)2 + (z − z0)2.

(9.5.28)

Our derivation continues with three-dimensional results in parentheses and on the right.
We assume that G(x,x0) depends only on r (ρ):

G(x,x0) = G(r) = G(|x − x0|) G(x,x0) = G(ρ) = G(|x − x0|).
Away from the source r �= 0 (ρ �= 0), the forcing function is zero [∇2G(x,x0) = 0]. In two
dimensions we look for circularly symmetric solutions of Laplace’s equation for r �= 0 (in
three dimensions the solutions should be spherically symmetric). From our earlier work,

1
r

d

dr

(
r
dG

dr

)
= 0, (r �= 0)

1
ρ2

d

dρ

(
ρ2 dG

dρ

)
= 0. (ρ �= 0)

The general solution can be obtained by integration:

G(r) = c1 ln r + c2 G(ρ) =
c3

ρ
+ c4. (9.5.29)

We will determine the constants that account for the singularity at the source.
We can obtain the appropriate singularity by integrating (9.5.27) around a small circle
(sphere) of radius r (ρ):∫∫

∇2G dA = 1
∫∫∫

∇2G dV = 1∫∫
∇·(∇G) dA =

∮
∇G · n̂ ds = 1

∫∫∫
∇·(∇G) dV =

∫∫
�

�

�

�∇G · n̂ dS = 1,

where the divergence theorem has been used. In two dimensions, the derivative of the
Green’s function normal to a circle, ∇G · n̂, is ∂G/∂r (in three dimensions ∂G/∂ρ). It
depends only on the radial distance [see (9.5.29)]. On the circle (sphere) the radius is
constant. Thus,

2πr
∂G

∂r
= 1 4πρ2 ∂G

∂ρ
= 1,

since the circumference of a circle is 2πr (the surface area of a sphere is 4πρ2). In other
problems involving infinite space Green’s functions, it may be necessary to consider the
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limit of an infinitesimally small circle (sphere). Thus, we will express the singularity
condition as

lim
r→0

r
∂G

∂r
=

1
2π

lim
ρ→0

ρ2 ∂G

∂ρ
=

1
4π

. (9.5.30)

From (9.5.29) and (9.5.30),

c1 =
1
2π

c3 = − 1
4π

.

c2 and c4 are arbitrary, indicating that the infinite space Green’s function for Poisson’s
equation is determined to within an arbitrary additive constant. For convenience, we let
c2 = 0 and c4 = 0:

G(x,x0) =
1
2π

ln r G(x,x0) = − 1
4πρ

r = |x − x0| ρ = |x − x0|

=
√

(x − x0)2 + (y − y0)2 =
√

(x − x0)2 + (y − y0)2 + (z − z0)2.

(9.5.31)

Note that these are symmetric. These infinite space Green’s functions are themselves
singular at the concentrated source. (This does not occur in one dimension.)

In order to obtain the solution of Poisson’s equation, ∇2u = f(x), in infinite space,
using the infinite space Green’s function, we need to utilize Green’s formula:∫∫ (

u∇2G − G∇2u
)

dA

=
∮

(u∇G − G∇u) · n̂ ds

∫∫∫ (
u∇2G − G∇2u

)
dV

=
∫∫
�

�

�

� (u∇G − G∇u) · n̂ dS.
(9.5.32)

The closed line integral
∮

(closed surface integral
∫∫
�
�
�
�) represents integrating over the

entire boundary. For infinite space problems with no boundaries, we must consider large
circles (spheres) and take the limit as the radius approaches infinity. We would like the
contribution to this closed integral “from infinity” to vanish:

lim
|x|→∞

∮
(u∇G − G∇u) · n̂ ds = 0 lim

|x|→∞

∫∫
�

�

�

� (u∇G − G∇u) · n̂ dS = 0. (9.5.33)

In this case, using the defining differential equations, integrating (9.5.32) with the Dirac
delta function, and reversing the roles of x and x0 [using the symmetry of G(x,x0)] yields
a representation formula for a solution of Poisson’s equation in infinite space:

u(x) =
∫∫

f(x0)G(x,x0) dA0 u(x) =
∫∫∫

f(x0)G(x,x0) dV0, (9.5.34)

where G(x,x0) is given by (9.5.31).
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The condition necessary for (9.5.33) to be valid is obtained by integrating in polar
(spherical) coordinates centered at x = x0:

lim
r→∞r

(
u

∂G

∂r
− G

∂u

∂r

)
= 0 lim

ρ→∞ρ2

(
u

∂G

∂ρ
− G

∂u

∂ρ

)
= 0,

since ds = r dθ [dS = ρ2 sin φ dφ dθ]. By substituting the known Green’s functions, we
obtain conditions that must be satisfied at ∞ in order for the “boundary” terms to vanish
there:

lim
r→∞

(
u − r ln r

∂u

∂r

)
= 0 lim

ρ→∞

(
u + ρ

∂u

∂ρ

)
= 0. (9.5.35)

These are important conditions. For example, they are satisfied if u ∼ 1/r (u ∼ 1/ρ) as
r → ∞ (ρ → ∞). There are solutions of Poisson’s equation in infinite space other than
the solutions given by (9.5.34), but they do not satisfy these decay estimates (9.5.35).

9.5.7 Green’s Functions for Bounded Domains Using Infinite Space Green’s Functions

In this subsection we solve for the Green’s function,

∇2G = δ(x − x0), (9.5.36)

on a bounded two-dimensional domain, subject to homogeneous boundary conditions.
We have already discussed some methods of solution only for simple geometries, and even
these involve a considerable amount of computation. However, we now know a particular
solution of (9.5.36), namely, the infinite space Green’s function

Gp(x,x0) =
1
2π

ln r =
1
2π

ln |x − x0| =
1
2π

ln
√

(x − x0)2 + (y − y0)2. (9.5.37)

Unfortunately, this infinite space Green’s function will not solve the homogeneous bound-
ary conditions. Instead, consider

G(x,x0) =
1
2π

ln |x − x0| + v(x,x0). (9.5.38)

v(x,x0) represents the effect of the boundary. It will be a homogeneous solution, solving
Laplace’s equation,

∇2v = 0,

subject to some nonhomogeneous boundary condition. For example, if G = 0 on the
boundary, then v = −(1/2π) ln |x−x0| on the boundary. v(x,x0) may be solved by stan-
dard methods for Laplace’s equation based on separation of variables (if the geometry
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allows). It may be quite involved to calculate v(x,x0); nevertheless, this representation of
the Green’s function is quite important. In particular, since v(x,x0) will be well behaved
everywhere, including x = x0, (9.5.38) shows that the Green’s function on a finite
domain will have the same singularity at source location x = x0 as does the in-
finite space Green’s function. This can be explained in a somewhat physical manner.
The response at a point due to a concentrated source nearby should not depend signifi-
cantly on any boundaries. This technique represented by (9.5.38) removes the singularity.

9.5.8 Green’s Functions for a Semi-Infinite Plane (y > 0) Using Infinite Space Green’s
Functions: The Method of Images

The infinite space Green’s function can be used to obtain Green’s functions for certain
semi-infinite problems. Consider Poisson’s equation in the two-dimensional semi-infinite
region y > 0:

∇2u = f(x), (9.5.39)

subject to a nonhomogeneous condition (given temperature) on y = 0:

u(x, 0) = h(x). (9.5.40)

The defining problem for the Green’s function,

∇2G(x,x0) = δ(x − x0), (9.5.41)

satisfies the corresponding homogeneous boundary conditions,

G(x, 0;x0, y0) = 0, (9.5.42)

as illustrated in Fig. 9.5.3. Here we use the notation G(x,x0) = G(x, y;x0, y0). The semi-
infinite space (y > 0) has no sources except a concentrated source at x = x0. The infinite
space Green’s function, (1/2π) ln |x − x0|, is not satisfactory since it will not be zero at
y = 0.

FIGURE 9.5.3 Image source for a semi-infinite plane.
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Image source. There is a simple way to obtain a solution that is zero at y = 0.
Consider an infinite space problem (i.e., no boundaries) with source δ(x−x0) at x = x0,
and a negative image source −δ(x − x∗

0) at x = x∗
0 (where x0 = x0î + y0ĵ and x∗

0 =
x0î − y0ĵ):

∇2G = δ(x − x0) − δ(x − x∗
0). (9.5.43)

According to the principle of superposition for nonhomogeneous problems, the response
should be the sum of two individual responses:

G =
1
2π

ln |x − x0| − 1
2π

ln |x − x∗
0|. (9.5.44)

By symmetry, the response at y = 0 due to the source at x = x∗
0 should be minus the

response at y = 0 due to the source at x = x0. Thus, the sum should be zero at y = 0
(as we will verify shortly). We call this the method of images. In this way, we have
obtained the Green’s function for Poisson’s equation on a semi-infinite space (y > 0):

G(x,x0) =
1
2π

ln
|x − x0|
|x − x∗

0|
=

1
4π

ln
(x − x0)2 + (y − y0)2

(x − x0)2 + (y + y0)2
. (9.5.45)

Let us check that this is the desired solution. Equation (9.5.43), which is satisfied by
(9.5.45), is not (9.5.41). However, in the upper half-plane (y > 0), δ(x − x∗

0) = 0, since
x = x∗

0 is in the lower half-plane. Thus, for y > 0, (9.5.41) is satisfied. Furthermore, we
now show that at y = 0, G(x,x0) = 0:

G(x,x0)|y=0 =
1
4π

ln
(x − x0)2 + y2

0

(x − x0)2 + y2
0

=
1
4π

ln 1 = 0.

Solution. To solve Poisson’s equation with nonhomogeneous boundary condi-
tions, we need the solution’s representation in terms of this Green’s function, (9.5.45).
We again use Green’s formula. We need to consider a large semicircle (in the limit as the
radius tends to infinity):
∫∫

(u∇2G − G∇2u) dA =
∮

(u∇G − G∇u) · n̂ ds =
∫ ∞

−∞

(
G

∂u

∂y
− u

∂G

∂y

)∣∣∣∣
y=0

dx,

since for the wall the outward unit normal is n̂ = −ĵ and since the contribution at
∞ tends to vanish if u → 0 sufficiently fast [in particular, from (9.5.35) if limr→∞(u −
r ln r ∂u/∂r) = 0]. Substituting the defining differential equations and interchanging x
and x0 [using the symmetry of G(x,x0)] shows that

u(x) =
∫∫

f(x0)G(x,x0) dA0 −
∫ ∞

−∞
h(x0)

∂

∂y0
G(x,x0)

∣∣∣∣
y0=0

dx0, (9.5.46)
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since G = 0 on y = 0. This can be obtained directly from (9.5.26). G(x,x0) from (9.5.45)
is given by

G(x,x0) =
1
4π

[
ln
(
(x − x0)2 + (y − y0)2

)− ln
(
(x − x0)2 + (y + y0)2

)]
.

Thus,

∂

∂y0
G(x,x0) =

1
4π

[ −2(y − y0)
(x − x0)2 + (y − y0)2

− 2(y + y0)
(x − x0)2 + (y + y0)2

]
.

Evaluating this at y0 = 0 (corresponding to the source point on the boundary) yields

∂

∂y0
G(x,x0)

∣∣∣∣
y0=0

= − y/π

(x − x0)2 + y2
. (9.5.47)

This is an example of a dipole source (see Section 9.5.5).

EXAMPLE

Consider Laplace’s equation for the two-dimensional semi-infinite space (y > 0):

∇2u = 0
u(x, 0) = h(x). (9.5.48)

Equation (9.5.46) can be utilized with a zero source term. Here the solution is due only
to the nonhomogeneous boundary condition. Using the normal derivative of the Green’s
function, (9.5.47), we obtain

u(x, y) =
y

π

∫ ∞

−∞
h(x0)

1
(x − x0)2 + y2

dx0. (9.5.49)

The influence function for the boundary condition h(x) is not the Green’s function, but

− ∂

∂y0
G(x,x0)

∣∣∣∣
y0=0

=
y

π [(x − x0)2 + y2]
.

This is not only an influence function, but it is the dipole source described in Section 9.5.5,
which is an elementary solution of Laplace’s equation corresponding to the boundary
condition itself being a delta function. In Chapter 10 we will obtain the same answer
using Fourier transform techniques rather than using Green’s functions.
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Insulated boundaries. If the boundary condition at y = 0 for the Green’s func-
tion is the insulated kind ∂/∂y G(x,x0)|y=0 = 0, then a positive image source must be
used for y < 0. In this way, equal sources of thermal energy are located at x = x0 and
x = x∗

0. By symmetry, no heat will flow across y = 0, as desired. The resulting solution
is obtained in an exercise.

9.5.9 Green’s Functions for a Circle: The Method of Images

The Green’s function for Poisson’s equation for a circle of radius a (with zero boundary
conditions),

∇2G(x,x0) = δ(x − x0) (9.5.50)

G(x,x0) = 0 for |x| = a, (9.5.51)

rather remarkably is obtained using the method of images. The idea is that for geometric
reasons there exists an image point x = x∗

0 (as sketched in Fig. 9.5.4) such that the
response along the circumference of a circle is constant. Consider an infinite space Green’s
function corresponding to a source at x = x0 and a negative image source at x = x∗

0,
where we do not define x∗

0 yet:

∇2G(x,x0) = δ(x − x0) − δ(x − x∗
0). (9.5.52)

According to the principle of superposition, the solution will be the sum of the two infinite
space Green’s functions. We also introduce a constant homogeneous solution of Laplace’s
equation so that

G(x,x0) =
1
2π

ln |x − x0| − 1
2π

ln |x − x∗
0| + c =

1
4π

ln
|x − x0|2
|x − x∗

0|2
+ c. (9.5.53)

We will show that there exists a point x∗
0 such that G(x,x0) given by (9.5.53) vanishes

on the circle |x| = a. In order for this to occur,

|x − x0|2 = k|x − x∗
0|2 (9.5.54)

when |x| = a (where c = −1/4π ln k).

φ

X

X X

X X
X

X

FIGURE 9.5.4 Green’s function for Poisson’s equation for a circle (image source).
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We show that there is an image point x∗
0 along the same radial line as the source

point x0 as illustrated in Fig. 9.5.4:

x∗
0 = γx0. (9.5.55)

We introduce the angle φ between x and x0 (the same as the angle between x and x∗
0).

Therefore,
|x − x0|2 = (x − x0)·(x − x0) = |x|2 + |x0|2 − 2x · x0

= |x|2 + |x0|2 − 2|x||x0| cos φ

|x − x∗
0|2 = (x − x∗

0)·(x − x∗
0) = |x|2 + |x∗

0|2 − 2x · x∗
0

= |x|2 + |x∗
0|2 − 2|x||x∗

0| cos φ,

(9.5.56)

otherwise known as the law of cosines. Equation (9.5.54) will be valid on the circle |x| = a
[using (9.5.55)] only if

a2 + r2
0 − 2ar0 cos φ = k

(
a2 + γ2r2

0 − 2aγr0 cos φ
)
,

where r0 = |x0|. This must hold for all angles φ, requiring γ and k to satisfy the following
two equations:

a2 + r2
0 = k

(
a2 + γ2r2

0

)
−2ar0 = k (−2aγr0) .

We obtain k = 1/γ, and thus

a2 + r2
0 =

1
γ

a2 + γr2
0 or γ =

a2

r2
0

.

The image point is located at

x∗
0 =

a2

r2
0

x0.

Note that |x∗
0| = a2/r0 (the product of the radii of the source and image points is the

radius squared of the circle). The closer x0 is to the center of the circle, the farther the
image point moves away.

Green’s function. From k = l/γ = r2
0/a2, we obtain the Green’s function

G(x,x0) =
1
4π

ln
( |x − x0|2a2

|x − x∗
0|2r2

0

)
.

Using the law of cosines, (9.5.56),

G(x,x0) =
1
4π

ln
(

a2

r2
0

r2 + r2
0 − 2rr0 cos φ

r2 + r∗20 − 2rr∗0 cos φ

)
,
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where r = |x|, r0 = |x0|, and r∗0 = |x∗
0|. Since r∗0 = a2/r0,

G(x,x0) =
1
4π

ln
(

a2

r2
0

r2 + r2
0 − 2rr0 cos φ

r2 + a4/r2
0 − 2ra2/r0 cos φ

)
,

or, equivalently,

G(x,x0) =
1
4π

ln
(

a2 r2 + r2
0 − 2rr0 cos φ

r2r2
0 + a4 − 2rr0a2 cos φ

)
, (9.5.57)

where φ is the angle between x and x0 and r = |x| and r0 = |x0|. In these forms, it can
be seen that on the circle r = a, G(x,x0) = 0.

Solution. The solution of Poisson’s equation is directly represented in terms of
the Green’s function. In general, from (9.5.26),

u(x) =
∫∫

f(x0)G(x,x0) dA0 +
∮

h(x0)∇x0G(x,x0) · n̂ ds0. (9.5.58)

This line integral on the circular boundary can be evaluated. It is best to use polar
coordinates (ds0 = a dθ0), in which case

∮
h(x0)∇x0G(x,x0) · n̂ ds0 =

∫ 2π

0

h(θ0)
∂

∂r0
G(x,x0)

∣∣∣∣
r0=a

a dθ0, (9.5.59)

where r0 = |x0|. From (9.5.57),

∂G

∂r0
=

1
4π

(
2r0 − 2r cos φ

r2 + r2
0 − 2rr0 cos φ

− 2r2r0 − 2ra2 cos φ

r2r2
0 + a4 − 2rr0a2 cos φ

)
.

Evaluating this for source points on the circle r0 = a yields

∂G

∂r0

∣∣∣∣
r0=a

=
1
4π

2a − 2r cos φ − (2r2/a − 2r cos φ)
r2 + a2 − 2ar cos φ

=
a

2π

1 − (r/a)2

r2 + a2 − 2ar cos φ
,

(9.5.60)

θ0

θ

FIGURE 9.5.5 Polar coordinates.
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where φ is the angle between x and x0. If polar coordinates are used for both x and x0,
then φ = θ − θ0, as indicated in Fig. 9.5.5.

EXAMPLE

For Laplace’s equation, ∇2u = 0 [i.e., f(x) = 0 in Poisson’s equation] inside a circle with
u(x, y) = h(θ) at r = a, we obtain from (9.5.58)–(9.5.60) in polar coordinates

u(r, θ) =
1
2π

∫ 2π

0

h(θ0)
a2 − r2

r2 + a2 − 2ar cos(θ − θ0)
dθ0, (9.5.61)

known as Poisson’s formula. Previously, we obtained a solution of Laplace’s equation in
this situation by the method of separation of variables (see Section 2.5.2). It can be shown
that the infinite series solution so obtained can be summed to yield Poisson’s formula (see
Exercise 9.5.18).

EXERCISES 9.5

9.5.1. Consider (9.5.10), the eigenfunction expansion for G(x,x0). Assume that ∇2G has
some eigenfunction expansion. Using Green’s formula, verify that ∇2G may be ob-
tained by term-by-term differentiation of (9.5.10).

9.5.2. (a) Solve
∇2u = f(x, y)

on a rectangle (0 < x < L, 0 < y < H) with u = 0 on the boundary using the
method of eigenfunction expansion.

(b) Write the solution in the form

u(x) =
∫ L

0

∫ H

0

f(x0)G(x,x0) dx0 dy0.

Show that this G(x,x0) is the Green’s function obtained previously.
9.5.3. Using the method of (multidimensional) eigenfunction expansion, determine

G(x,x0) if
∇2G = δ(x− x0)

(a) inside the rectangle (0 < x < L, 0 < y < H) and

at x = 0, G = 0; at y = 0,
∂G

∂y
= 0

at x = L,
∂G

∂x
= 0; at y = H,

∂G

∂y
= 0

(b) inside the rectangular-shaped box (0 < x < L, 0 < y < H, 0 < z < W ) with
G = 0 on the six sides
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*(c) inside the semicircle (0 < r < a, 0 < θ < π) with G = 0 on the entire boundary

(d) inside the quarter-circle (0 < r < a, 0 < θ < π/2) with G = 0 on the straight
sides and ∂G/∂r = 0 at r = a

*9.5.4. Consider in some three-dimensional region

∇2u = f

with u = h(x) on the boundary. Represent u(x) in terms of the Green’s function
(assumed to be known).

9.5.5. Consider inside a circle of radius a

∇2u = f

with

u(a, θ) = h1(θ) for 0 < θ < π

∂u

∂r
(a, θ) = h2(θ) for −π < θ < 0.

Represent u(r, θ) in terms of the Green’s function (assumed to be known).
9.5.6. Consider ∇2u = f(x) in two dimensions, satisfying homogeneous boundary condi-

tions. Suppose that φh is a homogeneous solution,

∇2φh = 0,

satisfying the same homogeneous boundary conditions. There may be more than
one function φh.

(a) Show that there are no solutions u(x) if
∫∫

f(x)φh(x) dA �= 0 for any φh(x).

(b) Show that there are an infinite number of solutions if
∫∫

f(x)φh(x) dA = 0.

9.5.7. Consider in three dimensions

∇2u = f(x)
with on the boundary

∇u·n̂ = 0.

⎫⎬
⎭ (9.5.62)

(a) Show that φh = 1 is a homogeneous solution satisfying homogeneous boundary
conditions.

(b) Under what condition is there a solution of (9.5.62)?

(c) What problem defines a generalized Green’s function for (9.5.62)? (Do not at-
tempt to determine a generalized Green’s function.)

(d) Assume that the generalized Green’s function is symmetric. Derive a represen-
tation formula for u(x) in terms of your generalized Green’s function.

9.5.8. Redo Exercise 9.5.7 if on the boundary ∇u · n̂ = h(x).
9.5.9. Using the method of one-dimensional eigenfunction expansion, determine G(x,x0) if

∇2G = δ(x− x0)
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(a) inside the rectangle (0 < x < L, 0 < y < H) and

at x = 0, G = 0; at y = 0,
∂G

∂y
= 0

at x = L,
∂G

∂x
= 0; at y = H,

∂G

∂y
= 0.

Use y-dependent eigenfunctions.

*(b) inside the semicircle (0 < r < a, 0 < θ < π) with G = 0 on the entire boundary.
Use θ-dependent eigenfunctions.

*9.5.10. Consider the wave equation with a periodic source of frequency ω > 0

∂2φ

∂t2
= c2∇2φ + g(x)e−iωt.

Show that a particular solution at the same frequency, φ = u(x)e−iωt, satisfies a
nonhomogeneous Helmholtz equation

∇2u + k2u = f(x). [What are k2 and f(x)?]

The Green’s function satisfies

∇2G + k2G = δ(x− x0).

(a) What is Green’s formula for the operator ∇2 + k2?

(b) In infinite three-dimensional space, show that

G =
c1eikρ + c2e−ikρ

ρ
.

Choose c1 and c2 so that the corresponding φ(x, t) is an outward-propagating
wave. (Hint : Make the unmotivated change of variables G = h/ρ.)

(c) In infinite two-dimensional space, show that the Green’s function is a linear
combination of Bessel functions. Determine the constants so that the corre-
sponding φ(x, t) is an outward-propagating wave for r sufficiently large. [Hint:
See (7.7.33) and (7.8.3).]

9.5.11. (a) Determine the Green’s function for y > 0 (in two dimensions) for ∇2G =
δ(x− x0) subject to ∂G/∂y = 0 on y = 0. (Hint: Consider a positive source at
x0 and a positive image source at x∗

0.)

(b) Use part (a) to solve ∇2u = f(x) with

∂u

∂y
= h(x) at y = 0.

Ignore the contribution at ∞.
9.5.12. Modify Exercise 9.5.11 if the physical region is y < 0.
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*9.5.13. Modify Exercise 9.5.11 if the region is three-dimensional with y > 0. [Note that h(x)
in part (b) becomes h(x, z).]

*9.5.14. Using the method of images, solve

∇2G = δ(x− x0)

in the first quadrant (x ≥ 0 and y ≥ 0) with G = 0 on the boundaries.
9.5.15. (a) Reconsider Exercise 9.5.14 if G = 0 at x = 0 and ∂G/∂y = 0 at y = 0.

(b) Use part (a) to solve (x ≥ 0 and y ≥ 0)

∇2u = f(x, y)
u(0, y) = g(y)

∂u

∂y
(x, 0) = h(x).

9.5.16. (a) Using the method of images, solve

∇2G = δ(x− x0)

in the 60◦ wedge-shaped region (0 < θ < π/3, 0 < r < ∞) with G = 0 on the
boundaries.

(b) For what other angled wedges can the method of images be used?
9.5.17. A generalized Green’s function Gm(x,x0) satisfies

∇2Gm = δ(x− x0) + c

with
∇Gm·n̂ = 0

on the boundary of the rectangle (0 < x < L, 0 < y < H).

(a) Show that the method of eigenfunction expansion (two-dimensional) works only
for c = −1/LH. For this c, determine Gm(x,x0). If possible, make Gm(x,x0)
symmetric.

(b) Show that the method of eigenfunction expansion (one-dimensional) works only
for c = −1/LH. For this c, determine Gm(x,x0). If possible, make Gm(x,x0)
symmetric.

9.5.18. Solve ∇2u = 0 inside a circle of radius a with u(x, y) = h(θ) at r = a, using the
method of separation of variables. Show that

u(r, θ) =
∫ 2π

0

h(θ0)I(r, θ, θ0) dθ0.

Show that the infinite series for I(r, θ, θ0) can be summed yielding Poisson’s formula
(9.5.61).

*9.5.19. Determine the Green’s function G(x,x0) inside the semicircle (0 < r < a, 0 < θ < π)

∇2G = δ(x− x0)

with G = 0 on the boundary.



430 Chapter 9 Green’s Functions for Time-Independent Problems

9.5.20. Modify Exercise 9.5.19 if G = 0 on r = a, but ∂G/∂θ = 0 on θ = 0 and θ = π.
9.5.21. Determine the Green’s function G(x,x0) inside the sphere of radius a

∇2G = δ(x− x0)

with G = 0 on the boundary.
9.5.22. Use the method of multiple images to obtain the Green’s function G(x,x0)

∇2G = δ(x− x0)

(a) inside the rectangle (0 < x < L, 0 < y < H) if G = 0 at x = 0 and x = L and
G = 0 at y = 0 and y = H

(b) inside the infinite strip (0 < x < L, −∞ < y < ∞) if G = 0 at x = 0 and
∂G/∂x = 0 at x = L

*(c) inside the infinite strip (0 < x < L, −∞ < y < ∞, −∞ < z < ∞) if G = 0 at
x = 0 and G = 0 at x = L

(d) inside the semi-infinite strip (0 < x < L, 0 < y < ∞) if G = 0 along the
boundaries

(e) inside the semi-infinite strip (0 < x < L, −∞ < y < 0) if G = 0 at x = 0, G = 0
at x = L, and ∂G/∂y = 0 at y = 0

9.5.23. Determine a particular solution of

∇2u = f(x)

in infinite two-dimensional space if f(x) = g(r), where r = |x|:
(a) Use the infinite space Green’s function (9.5.31).
(b) Use a Green’s function for the ordinary differential equation

1
r

d

dr

(
r
du

dr

)
= g(r).

(c) Compare parts (a) and (b).
9.5.24. Consider in two dimensions ∇2u = f(x)

(a) with u = h(x) on the boundary. How many solutions are there, and how does
this depend on f(x) and h(x)? Do not determine u(x, y).

(b) with ∇u · n̂ = h(x) on the boundary. How many solutions are there, and how
does this depend on f(x) and h(x)? Do not determine u(x, y).

9.6 PERTURBED EIGENVALUE PROBLEMS

9.6.1 Introduction

When a small change (called a perturbation) is made to a problem that we know how
to solve, then the resulting problem may not have a simple exact solution. Here, we will
develop an approximate (asymptotic) procedure to analyze perturbed eigenvalue prob-
lems. Nonhomogeneous boundary value problems with nontrivial homogeneous solutions
will occur, and hence our development in Section 9.4 of the Fredholm alternative will be
helpful. We begin with an elementary mathematical example before considering the more
interesting case of a perturbed circular membrane.
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9.6.2 Mathematical Example

The simplest example of a perturbed eigenvalue problem is

d2φ

dx2
+ (λ + εf(x)) φ = 0 (9.6.1)

with
φ(0) = 0 and φ(L) = 0. (9.6.2)

If ε = 0, this is the usual eigenvalue problem [λ = (nπ/L)2, φ = sin nπx/L]. If ε is a small
nonzero parameter, then the coefficient deviates from a constant by a small given amount,
εf(x). It is known that the eigenvalues and eigenfunctions are well-behaved functions of ε:

λ = λ0 + ελ1 + · · · and φ = φ0 + εφ1 + · · · . (9.6.3)

This is called a perturbation expansion. By substituting (9.6.3) into (9.6.1), we obtain

d2

dx2
(φ0 + εφ1 + · · · ) + [λ0 + ελ1 + · · · + εf(x)] (φ0 + εφ1 + · · · ) = 0. (9.6.4)

Equation (9.6.4) is valid for all ε. The terms without ε must equal zero (resulting from
letting ε = 0). Thus,

d2φ0

dx2
+ λ0φ0 = 0. (9.6.5)

The boundary conditions [obtained by substituting (9.6.3) into (9.6.2)] are φ0(0) = 0 and
φ0(L) = 0. Consequently, as expected, the leading-order eigenvalues λ0 and corresponding
eigenfunctions φ0 are the same as those of the unperturbed problem (ε = 0):

λ0 =
(nπ

L

)2

and φ0 = sin
nπx

L
, (9.6.6)

where n = 1, 2, 3, . . . . A more precise notation would be λ
(0)
n .

The ε terms in (9.6.4) must also vanish:

d2φ1

dx2
+ λ0φ1 = −f(x)φ0 − λ1φ0, (9.6.7)

where
φ1(0) = 0 and φ1(L) = 0 (9.6.8)

follow from (9.6.2). This is a nonhomogeneous differential equation with homogeneous
boundary conditions. We note that φ0 = sin(nπx/L) is a nontrivial homogeneous solution
satisfying the homogeneous boundary conditions. Thus, by the Fredholm alternative, there
is a solution to (9.6.7)–(9.6.8) only if the right-hand side of (9.6.7) is orthogonal to φ0:

0 =
∫ L

0

f(x)φ2
0 dx + λ1

∫ L

0

φ2
0 dx. (9.6.9)
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From (9.6.9) we determine the resulting perturbation of the eigenvalue:

λ1 = −

∫ L

0

f(x)φ2
0 dx

∫ L

0

φ2
0 dx

= − 2
L

∫ L

0

f(x)φ2
0 dx. (9.6.10)

Instead of using the Fredholm alternative, we could have applied the method of eigen-
function expansion to (9.6.7) with (9.6.8). In this latter way, we obtain φ1 as well as λ1

given by (9.6.10).

9.6.3 Vibrating Nearly Circular Membrane

For a physical problem involving similar ideas, consider the vibrations of a nearly circular
membrane with mass impurities. We have already determined (see Section 7.7) the natural
frequencies for a circular membrane with constant mass density. We want to know how
these frequencies are changed due to small changes in both the density and geometry. In
general, a vibrating membrane satisfies the two-dimensional wave equation

∂2u

∂t2
= c2∇2u, (9.6.11)

where c2 = T/ρ may be a function of r and θ. We assume that u = 0 on the boundary.
By separating variables, u(r, θ, t) = φ(r, θ)h(t), we obtain

d2h

dt2
= −λh and ∇2φ = − λ

c2
φ. (9.6.12)

Here, the separation constants λ are such that
√

λ are the natural frequencies of oscillation.
We know how to solve this problem (see Section 7.7) if c2 is constant and the membrane
is circular. However, we want to consider the case in which the constant mass density is
slightly perturbed (perhaps due to a small imperfection), ρ = ρ0 + ερ1(r, θ), where the
perturbation of the density ερ1(r, θ) is given and ε is a very small parameter (0 < |ε| 
 1).
Thus

1
c2

=
ρ

T
=

ρ0 + ερ1(r, θ)
T

=
1
c2
0

+ ε
ρ1(r, θ)

T
,

where c0 is the sound speed for a uniform membrane. The perturbed eigenvalue problem
is to solve the partial differential equation

∇2φ = −λ

(
1
c2
0

+ ε
ρ1(r, θ)

T

)
φ, (9.6.13)

subject to φ = 0 on the boundary:

φ(a + εg(θ), θ) = 0, (9.6.14)

since we express a perturbed circle as r = a + εg(θ) with g(θ) given.
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Boundary condition. The boundary condition (9.6.14) is somewhat difficult;
we may wish to consider the simple case in which the boundary is circular [r = a or
g(θ) = 0]. In general, φ = 0 along a complicated boundary, which is near to the simpler
boundary r = a. This suggests that we utilize a Taylor series, in which case (9.6.14) may
be replaced by

φ + εg(θ)
∂φ

∂r
+

ε2g2(θ)
2!

∂2φ

∂r2
+ · · · = 0, (9.6.15)

evaluated at r = a.

Perturbation expansion. To solve (9.6.13) with (9.6.15), we assume the eigen-
values and eigenfunctions depend on the small parameter such that

φ = φ0 + εφ1 + · · · and λ = λ0 + ελ1 + · · · . (9.6.16)

We substitute (9.6.16) into (9.6.13) and (9.6.15). The terms of order ε0 are

∇2φ0 = −λ0φ0

c2
0

(9.6.17)

with φ0 = 0 at r = a. Thus, λ0 are the known unperturbed eigenvalues, and φ0 are
the corresponding known eigenfunctions for a circular membrane with uniform density ρ0

(see Section 7.7). We are most interested in determining λ1, the leading-order change of
each eigenvalue due to the perturbed density and shape. We will determine λ1 by consid-
ering the equations for φ1 obtained by keeping only the ε-terms when the perturbation
expansions (9.6.16) are substituted into (9.6.13) and (9.6.15):

∇2φ1 +
λ0

c2
0

φ1 = −λ1

c2
0

φ0 − λ0

T
ρ1(r, θ)φ0, (9.6.18)

subject to the boundary condition (at r = a)

φ1 = −g(θ)
∂φ0

∂r
. (9.6.19)

The right-hand side of (9.6.18) contains the known perturbation of the density ρ1 and
the unknown perturbation of each eigenvalue λ1, whereas the right-hand side of (9.6.19)
involves the known perturbation of the shape (r = a + εg(θ)).

Compatibility condition. Boundary value problem (9.6.18) with (9.6.19) is a
nonhomogeneous partial differential equation with nonhomogeneous boundary conditions.
Most importantly, there is a nontrivial homogeneous solution, φ1h

= φ0; the leading-order
eigenfunction satisfies the corresponding homogeneous partial differential equation and
the homogeneous boundary conditions [see (9.6.17)]. Thus, there is a solution to (9.6.18)–
(9.6.19) only if the compatibility equation is valid. This is most easily obtained using
Green’s formula (with u = φ0 and v = φ1):∫∫

[φ0L(φ1) − φ1L(φ0)] dA =
∮

(φ0∇φ1 − φ1∇φ0) · n̂ ds. (9.6.20)
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The right-hand side of (9.6.20) does not vanish since φ1 does not satisfy homogeneous
boundary conditions. Using (9.6.17) and (9.6.18)–(9.6.19) yields the solvability condition

−
∫∫

φ0

(
λ1

c2
0

φ0 +
λ0

T
ρ1(r, θ)φ0

)
dA =

∮
g(θ)

∂φ0

∂r
∇φ0 · n̂ ds. (9.6.21)

We easily determine the perturbed eigenvalue λ1 from (9.6.21):

λ1 =

λ0

T

∫∫
ρ1(r, θ)φ2

0r dr dθ +
∫ 2π

0

g(θ)
(

∂φ0

∂r

)2

a dθ

− 1
c2
0

∫∫
φ2

0r dr dθ

, (9.6.22)

using ∇φ0·n̂ = ∂φ0/∂r (evaluated at r = a), dA = r dr dθ, and ds = a dθ. The eigenvalues
decrease if the density is increased (ρ1 > 0) or if the membrane is enlarged [g(θ) > 0].

As is elaborated on in the Exercises, this result is valid only if there is one eigen-
function φ0 corresponding to the eigenvalue λ0. In fact, for a circular membrane, usually
there are two eigenfunctions corresponding to each eigenvalue (from sinmθ and cos mθ).
Both must be considered.

If we were interested in φ1, it could now be obtained from (9.6.18) using the method
of eigenfunction expansion. However, in many applications, it is the perturbed eigenvalues
(here frequencies) that are of greater importance.

Fredholm alternative. If g(θ) = 0, then φ0 and φ1 satisfy the same set of ho-
mogeneous boundary conditions. Then (9.6.21) is equivalent to the Fredholm alternative;
that is, solutions exist to (9.6.18) with (9.6.19) if and only if the right-hand side of (9.6.18)
is orthogonal to the homogeneous solution φ0. Equation (9.6.21) shows the appropriate
modification for nonhomogeneous boundary conditions.

EXERCISES 9.6

9.6.1. Consider the perturbed eigenvalue problem (9.6.1). Determine the perturbations of
the eigenvalue λ1 if

(a) dφ
dx (0) = 0 and dφ

dx (L) = 0

(b) φ(0) = 0 and dφ
dx (L) = 0

9.6.2. Reconsider Exercise 9.6.1. Determine the perturbations of the eigenvalues λ1 and
the eigenfunctions φ1 using the method of eigenfunction expansion:

(a) dφ
dx (0) = 0 and dφ

dx (L) = 0

(b) φ(0) = 0 and dφ
dx (L) = 0

(c) φ(0) = 0 and φ(L) = 0

9.6.3. Reconsider Exercise 9.6.1 subject to the periodic boundary conditions φ(−L) = φ(L)
and dφ/dx (−L) = dφ/dx (L). For n �= 0, the eigenvalue problem is degenerate if
ε = 0; that is, there is more than one eigenfunction [sin(nπx/L) and cos(nπx/L)]
corresponding to the same eigenvalue. Determine the perturbed eigenvalues λ1. Show
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that the eigenvalue splits. This means that if ε �= 0, there is one eigenfunction for
each eigenvalue, but as ε → 0, two eigenvalues will approach each other (coalesce),
yielding eigenvalues with two eigenfunctions. [Hint: It is necessary to consider a
linear combination of both eigenfunctions (ε = 0). For each eigenvalue, determine
the specific combination of these eigenfunctions that is the unique eigenfunction when
ε �= 0.]

9.6.4. Reconsider Exercise 9.6.1 subject to the boundary conditions φ(0) = 0 and φ(L) = 0.
Do additional calculations to obtain λ2. Insist that the eigenfunctions are normal-
ized,

∫ L
0

φ2 dx = 1. This is solved for λ1 in the text.
9.6.5. Consider the nonlinearly perturbed eigenvalue problem:

d2φ

dx2
+ λφ = εφ3

with φ(0) = 0 and φ(L) = 0. Determine the perturbation of the eigenvalue λ1. Since
the problem is nonlinear, the amplitude is important. Assume

∫ L
0

φ2 dx = a2. Sketch
a as a function of λ.

9.6.6. Consider a vibrating string with approximately uniform tension T and mass density
ρ0 + ερ1(x) subject to fixed boundary conditions. Determine the changes in the
natural frequencies induced by the mass variation.

9.6.7. Consider a uniform membrane of fixed shape with known frequencies and known
natural modes of vibration. Suppose the mass density is perturbed. Determine how
the frequencies are perturbed. You may assume there is only one mode of vibration
for each frequency.

9.6.8. For a circular membrane, determine the change in the natural frequencies of the
circularly symmetric (m = 0) eigenfunctions due to small mass and shape variations.

9.6.9. Consider a circular membrane r = a. For noncircularly symmetric eigenfunctions
(m �= 0), (9.6.18) is valid with φ0 = c1φ

(1)
0 + c2φ

(2)
0 , where φ

(1)
0 and φ

(2)
0 are two

mutually orthogonal eigenfunctions corresponding to the same eigenvalue λ0. Here,
c1 and c2 are arbitrary constants.

(a) Determine a homogeneous linear system of equations for c1 and c2 derived from
the fact that φ1 has two homogeneous solutions φ

(1)
0 and φ

(2)
0 . This will be the

compatibility condition for (9.6.18) with (9.6.19).

(b) Solve the linear system of part (a) to determine the perturbed frequencies and
the corresponding natural modes of vibration.

9.7 SUMMARY

We have calculated a few examples of time-independent Green’s functions by some dif-
ferent techniques:

1. Limit of time-dependent problem
2. Variation of parameter (ordinary differential equation only)
3. Eigenfunction expansion of Green’s function
4. Direct solution of differential equation defining Green’s function
5. Use of infinite space Green’s function:
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a. Removal of singularity

b. Method of images

For time-independent problems, perhaps the best techniques are based on infinite
space Green’s functions. We will find the same to be true for time-dependent problems.
In that case, we will need to discuss more techniques to solve partial differential equa-
tions in an infinite domain. For that reason in Chapter 10, we investigate solutions of
homogeneous partial differential equations on infinite domains using Fourier transforms.
Then in Chapter 11 we return to nonhomogeneous problems for time-dependent partial
differential equations using Green’s functions.



C H A P T E R 10

Infinite Domain Problems:
Fourier Transform Solutions
of Partial Differential Equations

10.1 INTRODUCTION

Most of the partial differential equations that we have analyzed previously were defined
on finite regions (e.g., heat flow in a finite one-dimensional rod or in enclosed two- or
three-dimensional regions). The solutions we obtained depended on conditions at these
boundaries. In this chapter we analyze problems that extend indefinitely in at least one
direction. Physical problems never are infinite, but by introducing a mathematical model
with infinite extent, we are able to determine the behavior of problems in situations
in which the influence of actual boundaries is expected to be negligible. We will solve
problems with infinite or semi-infinite extent by generalizing the method of separation of
variables.

10.2 HEAT EQUATION ON AN INFINITE DOMAIN

We begin by considering heat conduction in one dimension, unimpeded by any boundaries.
For the simplest case with constant thermal properties and no sources, the temperature
u(x, t) satisfies the heat equation,

∂u

∂t
= k

∂2u

∂x2
, (10.2.1)

defined for all x,−∞ < x < ∞. We impose an initial condition,

u(x, 0) = f(x). (10.2.2)

We would like to use (10.2.1) to predict the future temperature.
For problems in a finite region, boundary conditions are needed at both ends (usually

x = 0 and x = L). Frequently, problems on an infinite domain (−∞ < x < ∞) seem to be
posed without any boundary conditions. However, usually there are physical conditions
at ±∞, even if they are not stated as such. In the simplest case, suppose that the initial
temperature distribution f(x) approaches 0 as x → ±∞. This means that initially for

437
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all x sufficiently large, the temperature is approximately 0. Physically, for all time the
temperature approaches 0 as x → ±∞:

u(−∞, t) = 0 and u(∞, t) = 0.

In this way, our problem has homogeneous “boundary” conditions.

Separation of variables. From our previous experience, we note that the
expression sin nπx

L e−k( nπ
L )2t solves the heat equation (10.2.1) for integer n, as well as

cos nπx
L e−k( nπ

L )2t. In fact, it is clear that

u = e−iωxe−kω2t (10.2.3)

solves the partial differential equation (10.2.1) for arbitrary real ω both positive and
negative. We will superimpose solutions of this type (10.2.3) by integrating over ω the
continuous spectrum, instead of summing over the discrete spectrum corresponding to
the Fourier series. This is the solution presented in (10.2.11). We provide more details for
the interested reader.

We separate variables as before:

u(x, t) = φ(x)h(t), (10.2.4)

so that
1
kh

dh

dt
=

1
φ

d2φ

dx2
= −λ.

This yields the same pair of ordinary differential equations as for a finite geometry,

dh

dt
= −λkh (10.2.5)

d2φ

dx2
= −λφ. (10.2.6)

Determining the separation constant λ is not difficult, but it is very subtle in this case;
doing the obvious will be wrong. We would expect that the boundary conditions at ±∞
for φ(x) are φ(−∞) = 0 and φ(∞) = 0. However, we would quickly see that there are no
values of λ for which there are nontrivial solutions of d2φ/dx2 = −λφ that approach 0 at
both x = ±∞. For example, for λ > 0, φ = c1 cos

√
λx+c2 sin

√
λx, and these solutions do

not approach 0 as x → ±∞. As we will verify later, the correct boundary condition for the
separated spatial part φ(x) at x = ±∞ is different from the boundary condition for u(x, t)
at x = ±∞. Instead, we specify that φ(x) is just bounded at x = ±∞, |φ(−∞)| < ∞, and
|φ(∞)| < ∞. This is rather strange, but later we will show that although |φ(±∞)| < ∞,
the eventual solution of the partial differential equation (after superposition) will in fact
satisfy u(±∞, t) = 0.
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Eigenvalue problem. We thus claim that the boundary value problem of interest
on an infinite domain is

d2φ

dx2
+ λφ = 0 (10.2.7)

|φ(±∞)| < ∞. (10.2.8)

Let us determine those values of λ for which both |φ(±∞)| < ∞. If λ < 0, the solution is
a linear combination of exponentially growing and exponentially decaying solutions. It is
impossible for both |φ(±∞)| < ∞; there are no negative eigenvalues. However, if λ > 0,
then

φ = c1 cos
√

λx + c2 sin
√

λx.

This solution remains bounded for all x no matter what λ is (λ > 0). Thus, all values of
λ > 0 are eigenvalues. Furthermore, the eigenfunctions are both sines and cosines (since
both c1 and c2 are arbitrary). We can also verify that λ = 0 is an eigenvalue whose
eigenfunction is a constant and hence bounded. This is very similar to a Fourier series
in that both sines and cosines (including a constant) are eigenfunctions. However, in a
Fourier series, the eigenvalues were discrete, λ = (nπ/L)2, whereas here all non-negative
values of λ are allowable. The set of eigenvalues for a problem is sometimes referred to
as the spectrum. In this case, we have a continuous spectrum, λ ≥ 0 (rather than
discrete).

Superposition principle. The time-dependent ordinary differential equation is
easily solved, h = ce−λkt, and thus we obtain the following product solutions:

sin
√

λx e−λkt and cos
√

λx e−λkt,

for all λ ≥ 0. The principle of superposition suggests that we can form another solution
by the most general linear combination of these. Instead of summing over all λ ≥ 0, we
integrate:

u(x, t) =
∫ ∞

0

[c1(λ) cos
√

λx e−λkt + c2(λ) sin
√

λx e−λkt] dλ,

where c1(λ) and c2(λ) are arbitrary functions of λ. This is a generalized principle of
superposition. It may be verified by direct computation that the integral satisfies (10.2.1).
It is usual to let λ = ω2, so that

u(x, t) =
∫ ∞

0

[A(ω) cos ωx e−kω2t + B(ω) sin ωx e−kω2t] dω, (10.2.9)
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where A(ω) and B(ω) are arbitrary functions.1 This is analogous to the solution for finite
regions (with periodic boundary conditions):

u(x, t) = a0 +
∞∑

n=1

[
an cos

nπx

L
e−k(nπ/L)2t + bn sin

nπx

L
e−k(nπ/L)2t

]
.

In order to solve for the arbitrary functions A(ω) and B(ω), we must insist that (10.2.9)
satisfies the initial condition u(x, 0) = f(x):

f(x) =
∫ ∞

0

[A(ω) cos ωx + B(ω) sin ωx] dω. (10.2.10)

In later sections, we will explain that there exist A(ω) and B(ω) such that (10.2.10) is
valid for most functions f(x). More importantly, we will discover how to determine A(ω)
and B(ω).

Complex exponentials. The x -dependent eigenfunctions were determined to
be sin

√
λx and cos

√
λx for all λ ≥ 0. Sometimes different independent solutions are

utilized. One possibility is to use the complex functions ei
√

λx and e−i
√

λx for all λ ≥ 0.
If we introduce ω =

√
λ, then the x-dependent eigenfunctions become eiωx and e−iωx

for all ω ≥ 0. Alternatively, we may consider only e−iωx,2 but for all ω (including both
positive and negatives). Thus, as explained further in Section 10.3, the product solutions
are e−iωxe−kω2t for all ω. The generalized principle of superposition implies that a solution
of the heat equation on an infinite interval is

u(x, t) =
∫ ∞

−∞
c(ω)e−iωxe−kω2t dω. (10.2.11)

This can be shown to be equivalent to (10.2.9) using Euler’s formulas (see Exercise 10.2.1).
In this form, the initial condition u(x, 0) = f(x) is satisfied if

f(x) =
∫ ∞

−∞
c(ω)e−iωx dω. (10.2.12)

u(x, t) is real if f(x) is real (see Exercises 10.2.1 and 10.2.2). We need to understand
(10.2.12). In addition, we need to determine the “coefficients” c(ω).

1To be precise, note that c1(λ) dλ = c1(ω2)2ω dω = A(ω) dω.
2It is conventional to use e−iωx rather than eiωx. |ω| is the wave number, the number of waves in 2π

distance. It is a spatial frequency.
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EXERCISES 10.2

*10.2.1. Determine complex c(ω) so that (10.2.11) is equivalent to (10.2.9) with real A(ω) and
B(ω). Show that c(−ω) = c(ω), where the overbar denotes the complex conjugate.

10.2.2. If c(−ω) = c(ω) (see Exercise 10.2.1), show that u(x, t) given by (10.2.11) is real.

10.3 FOURIER TRANSFORM PAIR

10.3.1 Motivation from Fourier Series Identity

In solving boundary value problems on a finite interval (−L < x < L, with periodic
boundary conditions), we can use the complex form of a Fourier series (see Section 3.6):

f(x+) + f(x−)
2

=
∞∑

n=−∞
cne−inπx/L. (10.3.1)

Here f(x) is represented by a linear combination of all possible sinusoidal functions
that are periodic with period 2L. The complex Fourier coefficients were determined in
Section 3.6,

cn =
1

2L

∫ L

−L

f(x)einπx/L dx. (10.3.2)

The entire region of interest −L < x < L is the domain of integration. We will extend
these ideas to functions defined for −∞ < x < ∞ and apply it to the heat equation (in
the next section).

The Fourier series identity follows by substituting (10.3.2) for cn (and using a
dummy integration variable x to distinguish it from the spatial position x):

f(x+) + f(x−)
2

=
∞∑

n=−∞

[
1

2L

∫ L

−L

f(x)einπx/L dx

]
e−inπx/L. (10.3.3)

For periodic functions, −L < x < L, the allowable wave numbers ω (number of
waves in 2π distance) are the infinite set of discrete values (see Fig. 10.3.1),

ω =
nπ

L
= 2π

n

2L
.

ω
3π/L2π/Lπ/L0−π/L

FIGURE 10.3.1 Discrete wave numbers.



442 Chapter 10 Infinite Domain Problems: Fourier Transform Solutions

The wavelengths are 2L/n, integral partitions of the original region of length 2L. The
distance between successive values of the wave number is

Δω =
(n + 1)π

L
− nπ

L
=

π

L
;

they are equally spaced. From (10.3.3).

f(x+) + f(x−)
2

=
∞∑

n=−∞

Δω

2π

∫ L

−L

f(x)eiωx dx e−iωx. (10.3.4)

10.3.2 Fourier Transform

We will show that the fundamental Fourier integral identity may be roughly defined as the
limit of (10.3.3) or (10.3.4) as L → ∞. In other words, functions defined for −∞ < x < ∞
may be thought of in some sense as periodic functions with an infinite period.

The values of ω are the square root of the eigenvalues. As L → ∞, and Δω → 0
they become closer and closer. The eigenvalues approach a continuum; all possible wave
numbers are allowable. The function f(x) should be represented by a “sum” (which we
will show becomes an integral) of waves of all possible wavelengths. Equation (10.3.4)
represents a sum of rectangles (starting from ω = −∞ and going to ω = +∞) of base
Δω and height (1/2π)[

∫ L

−L
f(x)eiωx dx] e−iωx. As L → ∞, this height is not significantly

different from
1
2π

∫ ∞

−∞
f(x)eiωx dx e−iωx.

Thus, as L → ∞ we expect that the areas of the rectangles approach the Riemann sum.
Since Δω → 0 as L → ∞, (10.3.4) becomes the Fourier integral identity:

f(x+) + f(x−)
2

=
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f(x)eiωxdx

]
e−iωx dω. (10.3.5)

A careful proof of this fundamental identity (see Exercise 10.3.9) closely parallels the
somewhat complicated proof for the convergence of a Fourier series.

Fourier transform. We now accept (10.3.5) as fact. We next introduce F (ω) and
define it to be the Fourier transform of f(x):

F (ω) ≡ 1
2π

∫ ∞

−∞
f(x)eiωx dx. (10.3.6)
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From (10.3.5), it then follows that

f(x+) + f(x−)
2

=
∫ ∞

−∞
F (ω)e−iωx dω. (10.3.7)

The multiplicative constant 1
2π in the definition (10.3.6) of the Fourier transform

is somewhat arbitrary. We can put any multiplicative factor in front of the integrals in
(10.3.6) and (10.3.7) as long as their product is 1

2π . Some other books choose 1√
2π

in both
for symmetry, so that you must be careful in using tables to make sure the definitions are
the same.

If f(x) is continuous, then [f(x+) + f(x−)]/2 = f(x). Equation (10.3.7) shows
that f(x) is composed of waves e−iωx of all3 wave numbers ω (and all wavelengths);
it is known as the Fourier integral representation of f(x), or simply the Fourier
integral. F (ω), the Fourier transform of f(x), represents the amplitude of the wave
with wave number ω; it is analogous to the Fourier coefficients of a Fourier series. It is
determined by integrating over the entire infinite domain. Compare this to (10.3.2), where
for periodic functions defined for −L < x < L, integration occurred only over that finite
interval. Similarly, f(x) may be determined from (10.3.7) if the Fourier transform F (ω)
is known. f(x), as determined from (10.3.7), is called the inverse Fourier transform
of F (ω).

These relationships, (10.3.6) and (10.3.7), are quite important. They are also known
as the Fourier transform pair. In (10.3.7), when you integrate over ω (called the
transform variable), a function of x occurs, whereas in (10.3.6) when you integrate over
x, a function of ω results. One integrand contains e−iωx; the other has eiωx. It is difficult
to remember which is which. It hardly matters, but we must be consistent throughout.
We claim that (10.3.6) and (10.3.7) are valid if f(x) satisfies

∫ ∞
−∞ |f(x)| dx < ∞, in which

case we say that f(x) is absolutely integrable.4

An alternative notation F [f(x)] is sometimes used for F (ω), the Fourier transform
of f(x), given by (10.3.6). Similarly, the inverse Fourier transform of F (ω) is given the
notation F−1[F (ω)].

10.3.3 Inverse Fourier Transform of a Gaussian

In Section 10.4, in order to complete our solution of the heat equation, we will need the
inverse Fourier transform of the “bell-shaped” curve, known as a Gaussian, sketched in
Fig. 10.3.2. The function g(x), whose Fourier transform is G(ω), is given by

G(ω) = e−βω2
,

3Not just wave number nπ/L as for periodic problem for −L < x < L.
4If f(x) is piecewise smooth and if f(x) → 0 as x → ±∞ sufficiently fast, then f(x) is absolutely

integrable. However, there are other kinds of functions that are absolutely integrable for which the Fourier
transform pair may be used.
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β = 10

β= 1

ω

G(ω) = exp(−βω2)

FIGURE 10.3.2 Bell-shaped Gaussian.

g(x) =
∫ ∞

−∞
G(ω)e−iωx dω =

∫ ∞

−∞
e−βω2

e−iωx dω, (10.3.8)

according to (10.3.7). By evaluating the integral in (10.3.8), we will derive shortly (in the
appendix to this section) that

g(x) =
√

π

β
e−x2/4β (10.3.9)

if G(ω) = e−βω2
. As a function of x, g(x) is also bell-shaped. We will have shown

the unusual result that the inverse Fourier transform of a Gaussian is itself a
Gaussian.

This result can be used to obtain the Fourier transform F (ω) of a Gaussian e−αx2
.

Due to the linearity of the Fourier transform pair, the Fourier transform of e−x2/4β is√
β/πe−βω2

. Letting α = 1/4β, the Fourier transform of e−αx2
is 1/

√
4απe−ω2/4α. Thus,

the Fourier transform of a Gaussian is also a Gaussian. We summarize these results in
Table 10.3.1. If α is small, then f(x) is a “broadly spread” Gaussian; its Fourier transform
is “sharply peaked” near ω = 0. On the other hand, if f(x) is a narrowly peaked Gaussian
function corresponding to α being large, its Fourier transform is broadly spread.

TABLE 10.3.1: Fourier Transform of a Gaussian

f(x) =
∫ ∞

−∞
F (ω)e−iωx dω F (ω) =

1
2π

∫ ∞

−∞
f(x)eiωx dx

e−αx2 1√
4πα

e−ω2/4α

√
π

β
e−x2/4β e−βω2
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APPENDIX TO 10.3: DERIVATION OF THE INVERSE FOURIER
TRANSFORM OF A GAUSSIAN

The inverse Fourier transform of a Gaussian e−βω2
is given by (10.3.8):

g(x) =
∫ ∞

−∞
e−βω2

e−iωxdω.

It turns out that g(x) solves an elementary ordinary differential equation, since

g′(x) =
∫ ∞

−∞
−iωe−βω2

e−iωxdω

can be simplified using an integration by parts:

g′(x) =
i

2β

∫ ∞

−∞

d

dω
(e−βω2

)e−iωxdω = − x

2β

∫ ∞

−∞
e−βω2

e−iωxdω = − x

2β
g(x).

The solution of the initial value problem for this ordinary differential equation (by sepa-
ration) is

g(x) = g(0)e−x2/4β .

Here
g(0) =

∫ ∞

−∞
e−βω2

dω.

The dependence on β in the preceding integral can be determined by the transformation
z =

√
βω (dz =

√
β dω), in which case

g(0) =
1√
β

∫ ∞

−∞
e−z2

dz.

This yields the desired result, (10.3.9), since it is well known (but we will show) that

I =
∫ ∞

−∞
e−z2

dz =
√

π. (10.3.10)

Perhaps you have not seen (10.3.10) derived. The
∫ ∞
−∞ e−z2

dz can be evaluated by
a remarkably unusual procedure. We do not know yet how to evaluate I, but we will show
that I2 is easy. Introducing different dummy integration variables for each I, we obtain

I2 =
∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dx dy.

We will evaluate this double integral, although each single integral is unknown. Polar
coordinates are suggested:

x = r cos θ
y = r sin θ,

x2 + y2 = r2, dx dy = r dr dθ.
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The region of integration is the entire two-dimensional plane. Thus,

I2 =
∫ 2π

0

∫ ∞

0

e−r2
r dr dθ =

∫ 2π

0

dθ

∫ ∞

0

re−r2
dr.

Both of these integrals are easily evaluated; I2 = 2π · 1
2

= π, completing the proof of

(10.3.10).

Derivation using complex variables. By completing the square, g(x) becomes

g(x) =
∫ ∞

−∞
e−β[ω2+i(x/β)ω]dω =

∫ ∞

−∞
e−β[ω+i(x/2β)]2e−x2/4βdω

= e−x2/4β

∫ ∞

−∞
e−β[ω+i(x/2β)]2dω.

The change of variables s = ω + i(x/2β) (ds = dω) appears to simplify the calculation,

g(x) = e−x2/4β

∫ ∞

−∞
e−βs2

ds. (10.3.11)

However, although (10.3.11) is correct, we have not given the correct reasons. Actually,
the change of variables s = ω + i(x/2β) introduces complex numbers into the calculation.
Since ω is being integrated “along the real axis” from ω = −∞ to ω = +∞, the variable s
has nonzero imaginary part and does not vary along the real axis as indicated by (10.3.11).
Instead,

g(x) = e−x2/4β

∫ ∞+i(x/2β)

−∞+i(x/2β)

e−βs2
ds. (10.3.12)

The full power of the theory of complex variables is necessary to show that (10.3.11) is
equivalent to (10.3.12).

This is not the place to attempt to teach complex variables, but a little hint of
what is involved may be of interest to many readers. We sketch a complex s-plane in
Fig. 10.3.3. To compute integrals from −∞ to +∞, we integrate from a to b (and later
consider the limits as a → −∞ and b → +∞). Equation (10.3.11) involves integrating
along the real axis, while (10.3.12) involves shifting off the real axis [with s having a
constant imaginary part, Im(s) = ix/2β]. According to Cauchy’s theorem (from complex
variables), the closed line integral is zero,

∮
e−βs2

ds = 0, since the integrand e−βs2
has no

“singularities” inside (or on) the contour. Here, we use a rectangular contour, as sketched
in Fig. 10.3.3. The closed line integral is composed of four simpler integrals, and hence∫

c1

+
∫

c2

+
∫

c3

+
∫

c4

= 0.

It can be shown that in the limit as a → −∞ and b → +∞, both
∫

c2
= 0 and

∫
c4

= 0,
since the integrand is exponentially vanishing on that path (and these paths are finite, of
length x/2β). Thus,
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Complex s-plane

a b

x
2βC1

C2

C3

C4

ω + i

FIGURE 10.3.3 Closed contour integral in the complex plane.

∫ ∞+i(x/2β)

−∞+i(x/2β)

e−βs2
ds +

∫ −∞

∞
e−βω2

dω = 0.

This verifies that (10.3.11) is equivalent to (10.3.12) (where we use
∫ −∞
∞ = − ∫ ∞

−∞).

EXERCISES 10.3

10.3.1. Show that the Fourier transform is a linear operator; that is, show that

(a) F [c1f(x) + c2g(x)] = c1F (ω) + c2G(ω)

(b) F [f(x)g(x)] �= F (ω)G(ω)

10.3.2. Show that the inverse Fourier transform is a linear operator; that is, show that

(a) F−1[c1F (ω) + c2G(ω)] = c1f(x) + c2g(x)

(b) F−1[F (ω)G(ω)] �= f(x)g(x)

10.3.3. Let F (ω) be the Fourier transform of f(x). Show that if f(x) is real, then F ∗(ω) =
F (−ω), where ∗ denotes the complex conjugate.

10.3.4. Show that

F
[∫

f(x; α) dα

]
=

∫
F (ω; α) dα.

10.3.5. If F (ω) is the Fourier transform of f(x), show that the inverse Fourier transform
of eiωβF (ω) is f(x − β). This result is known as the shift theorem for Fourier
transforms.

*10.3.6. If

f(x) =
{

0 |x| > a
1 |x| < a,

determine the Fourier transform of f(x). (The answer is given in the table of Fourier
transforms in Section 10.4.4.)

*10.3.7. If F (ω) = e−|ω|α(α > 0), determine the inverse Fourier transform of F (ω). (The
answer is given in the table of Fourier transforms in Section 10.4.4.)

10.3.8. If F (ω) is the Fourier transform of f(x), show that −idF/dω is the Fourier transform
of xf(x).
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10.3.9. (a) Multiply (10.3.6) by e−iωx, and integrate from −L to L to show that

∫ L

−L

F (ω)e−iωx dω =
1
2π

∫ ∞

−∞
f(x)

2 sinL(x − x)
x − x

dx. (10.3.13)

(b) Derive (10.3.7). For simplicity, assume that f(x) is continuous. [Hints: Rewrite
f(x) = f(x) + f(x) − f(x). Use the sine integral,

∫ ∞
0

sin s
s ds = π

2 . Integrate
(10.3.13) by parts and then take the limit as L → ∞.]

*10.3.10. Consider the circularly symmetric heat equation on an infinite two-dimensional
domain:

∂u

∂t
=

k

r

∂

∂r

(
r
∂u

∂r

)

u(0, t) bounded

u(r, 0) = f(r).

(a) Solve by separation. It is usual to let

u(r, t) =
∫ ∞

0

A(s)J0(sr)e−s2kts ds,

in which case the initial condition is satisfied if

f(r) =
∫ ∞

0

A(s)J0(sr)s ds.

A(s) is called the Fourier–Bessel or Hankel transform of f(r).

(b) Use Green’s formula to evaluate
∫ L
0

J0(sr)J0(s1r)r dr. Determine an approxi-
mate expression for large L using (7.8.3).

(c) Apply the answer of part (b) to part (a) to derive A(s) from f(r). (Hint: See
Exercise 10.3.9.)

10.3.11. (a) If f(x) is a function with unit area, show that the scaled and stretched function
(1/α)f(x/α) also has unit area.

(b) If F (ω) is the Fourier transform of f(x), show that F (αω) is the Fourier trans-
form of (1/α)f(x/α).

(c) Show that part (b) implies that broadly spread functions have sharply peaked
Fourier transforms near ω = 0, and vice versa.

10.3.12. Show that limb→∞
∫ b+ix/2α
b

e−αs2
ds = 0, where s = b + iy (0 < y < x/2α).

10.3.13. Evaluate I =
∫ ∞
0

e−kω2t cos ωx dω in the following way: determine ∂I/∂x, and then
integrate by parts.

10.3.14. The gamma function Γ(x) is defined as follows:

Γ(x) =
∫ ∞

0

tx−1e−t dt.
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Show that

(a) Γ(1) = 1 (b) Γ(x + 1) = xΓ(x)

(c) Γ(n + 1) = n! (d) Γ
(

1
2

)
= 2

∫ ∞

0

e−t2 dt =
√

π

(e) What is Γ
(

3
2

)
?

10.3.15. (a) Using the definition of the gamma function in Exercise 10.3.14, show that

Γ(x) = 2
∫ ∞

0

u2x−1e−u2
du.

(b) Using double integrals in polar coordinates, show that

Γ(z)Γ(1 − z) =
π

sin πz
.

[Hint: It is known from complex variables that

2
∫ π/2

0

(tan θ)2z−1 dθ =
π

sin πz
.

]

*10.3.16. Evaluate ∫ ∞

0

ype−kyn

dy

in terms of the gamma function (see Exercise 10.3.14).
10.3.17. From complex variables, it is known that

∮
e−iω3/3 dω = 0

for any closed contour. By considering the limit as R → ∞ of the 30◦ pie-shaped
wedge (of radius R) sketched in Fig. 10.3.4, show that

∫ ∞

0

cos
(

ω3

3

)
dω =

√
3

2
3−2/3Γ

(
1
3

)
∫ ∞

0

sin
(

ω3

3

)
dω =

1
2
3−2/3Γ

(
1
3

)
.

Exercise 10.3.16 may be helpful.

π/6
R

Re−iπ/6

FIGURE 10.3.4
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10.3.18. (a) For what α does αe−β(x−x0)
2

have unit area for −∞ < x < ∞?

(b) Show that the limit as β → ∞ of the resulting function in part (a) satisfies the
properties of the Dirac delta function δ(x − x0).

(c) Obtain the Fourier transform of δ(x − x0) in two ways:

1. Take the transform of part (a) and take the limit as β → ∞.
2. Use integration properties of the Dirac delta function.

(d) Show that the transform of δ(x − x0) is consistent with the following idea:
“Transforms of sharply peaked functions are spread out (contain a significant
amount of many frequencies).”

(e) Show that the Fourier transform representation of the Dirac delta function is

δ(x − x0) =
1
2π

∫ ∞

−∞
e−iω(x−x0) dω. (10.3.14)

Why is this not mathematically precise? However, what happens if x = x0?
Similarly,

δ(ω − ω0) =
1
2π

∫ ∞

−∞
e−ix(ω−ω0) dx. (10.3.15)

(f) Equation (10.3.15) may be interpreted as an orthogonality relation for the eigen-
functions e−iωx. If

f(x) =
∫ ∞

−∞
F (ω)e−iωx dω,

determine the “Fourier coefficient (transform)” F (ω) using the orthogonality
condition (10.3.15).

10.4 FOURIER TRANSFORM AND THE HEAT EQUATION

10.4.1 Heat Equation

In this subsection we begin to illustrate how to use Fourier transforms to solve the heat
equation on an infinite interval. Earlier we showed that e−iωxe−kω2t for all ω solves the
heat equation, ∂u/∂t = k∂2u/∂x2. A generalized principle of superposition showed that
the heat equation is solved by

u(x, t) =
∫ ∞

−∞
c(ω)e−iωxe−kω2t dω. (10.4.1)

The initial condition u(x, 0) = f(x) is satisfied if

f(x) =
∫ ∞

−∞
c(ω)e−iωx dω. (10.4.2)
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From the definition of the Fourier transform, we observe that (10.4.2) is a Fourier integral
representation of f(x). Thus, c(ω) is the Fourier transform of the initial temperature
distribution f(x):

c(ω) =
1
2π

∫ ∞

−∞
f(x)eiωx dx. (10.4.3)

Equations (10.4.1) and (10.4.3) describe the solution of our initial value problem for the
heat equation.5

In this form, this solution is too complicated to be of frequent use. We therefore
describe a simplification. We substitute c(ω) into the solution, recalling that the x in
(10.4.3) is a dummy variable (and hence we introduce x):

u(x, t) =
∫ ∞

−∞

[
1
2π

∫ ∞

−∞
f(x)eiωx dx

]
e−iωxe−kω2t dω.

Instead of doing the x integration first, we interchange the orders:

u(x, t) =
1
2π

∫ ∞

−∞
f(x)

[∫ ∞

−∞
e−kω2te−iω(x−x) dω

]
dx. (10.4.4)

Equation (10.4.4) shows the importance of g(x), the inverse Fourier transform of e−kω2t:

g(x) =
∫ ∞

−∞
e−kω2te−iωx dω. (10.4.5)

Thus, the integrand of (10.4.4) contains g(x − x), not g(x).

Influence function. We need to determine the function g(x) whose Fourier trans-
form is e−kω2t [and then make it a function of x−x, g(x−x)]. e−kω2t is a Gaussian. From
the previous section (or most tables of Fourier transforms; see Section 10.4.4), letting
β = kt, we obtain the Gaussian g(x) =

√
π/kt e−x2/4kt, and thus the solution of the heat

equation is

u(x, t) =
∫ ∞

−∞
f(x)

1√
4πkt

e−(x−x)2/4kt dx. (10.4.6)

This form clearly shows the solution’s dependence on the entire initial temperature dis-
tribution, u(x, 0) = f(x). Each initial temperature “influences” the temperature at time
t. We define

G(x, t;x, 0) =
1√

4πkt
e−(x−x)2/4kt (10.4.7)

5In particular, in Exercise 10.4.2 we show that u → 0 as x → ∞, even though e−iωx/→ 0 as x → ∞.
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and call it the influence function. Its relationship to an infinite space Green’s function
for the heat equation will be explained in Chapter 11. Equation (10.4.7) measures in some
sense the effect of the initial (t = 0) temperature at position x on the temperature at time
t at location x. As t → 0, the influence function becomes more and more concentrated.
In fact, in Exercise 10.3.18 it is shown that

lim
t→0+

1√
4πkt

e−(x−x)2/4kt = δ(x − x)

(the Dirac delta function of Chapter 9), thus verifying that (10.4.6) satisfies the initial
conditions.

The solution (10.4.6) of the heat equation on an infinite domain was derived in a
complicated fashion using Fourier transforms. We required that

∫ ∞
−∞ |f(x)|dx < ∞, a

restriction on the initial temperature distribution, in order for the Fourier transform to
exist. However, the final form of the solution does not even refer to Fourier transforms.
Thus, we never need to calculate any Fourier transforms to utilize (10.4.6). In fact, we
claim that the restriction

∫ ∞
−∞ |f(x)|dx < ∞ on (10.4.6) is not necessary. Equation (10.4.6)

is valid (although the derivation we gave is not), roughly speaking, whenever the integral
in (10.4.6) converges.

Fundamental solution of the heat equation. We consider solving the heat
equation subject to an initial condition concentrated at x = 0, u(x, 0) = f(x) = δ(x),
where δ(x) is the Dirac delta function with properties described in Section 9.3.4. According
to (10.4.6), the solution of the heat equation with this initial condition is

u(x, t) =
∫ ∞
−∞ δ(x̄) 1√

4πkt
e−(x−x̄)2/4kt dx̄ = 1√

4πkt
e−x2/4kt, (10.4.8)

using the basic property of the Dirac delta function. This is one of the most elementary
solutions of the heat equation on an infinite domain, and it is called the fundamental
solution. It is sketched in Fig. 10.4.1. The fundamental solution of the heat equation

kt = 2

x = x
x

kt = 1/10

(4πkt)−1/2exp[−(x−x)2/4kt]

FIGURE 10.4.1 Fundamental solution for the heat equation.
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is the same as the infinite space Green’s function for the heat equation, which will be
explained in Chapter 11.

EXAMPLE

To investigate how discontinuous initial conditions propagate, we consider the following
interesting initial condition:

u(x, 0) = f(x) =
{

0 x < 0
100 x > 0.

We thus ask how the thermal energy, initially uniformly concentrated in the right half of
a rod, diffuses into the entire rod. According to (10.4.6),

u(x, t) =
100√
4πkt

∫ ∞

0

e−(x−x)2/4kt dx =
100√

π

∫ ∞

−x/
√

4kt

e−z2
dz,

where the integral has been simplified by introducing the change of variables, z =
(x − x)/

√
4kt (dz = dx/

√
4kt). The integrand no longer depends on any parameters.

The integral represents the area under a Gaussian (or normal) curve, as illustrated in
Fig. 10.4.2. Due to the evenness of e−z2

,
∫ ∞

−x/
√

4kt

=
∫ ∞

0

+
∫ x/

√
4kt

0

.

Since, as shown earlier,
∫ ∞
0

e−z2
dz =

√
π/2,

u(x, t) = 50 +
100√

π

∫ x/
√

4kt

0

e−z2
dz. (10.4.9)

−x/(4kt)1/2

exp(−z2)

x/(4kt)1/20
z

FIGURE 10.4.2 Area under a Gaussian.

The temperature is constant whenever x/
√

4kt is constant, the parabolas sketched
in the x-t plane in Fig. 10.4.3. x/

√
4kt is called the similarity variable. For example,

the distance between 60◦ and 75◦ increases proportionally to
√

t. The temperature dis-
tribution spreads out, a phenomenon known as diffusion. The temperature distribution
given by (10.4.9) is sketched in Fig. 10.4.4 for various fixed values of t.
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u = 0 u = 100

x

t

u = 50
= Constant

x

kt4

FIGURE 10.4.3 Curves of constant temperatures.
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FIGURE 10.4.4 Temperature diffusion in an infinite rod.

We note that the temperature is nonzero at all x for any positive t (t > 0) even
though u = 0 for x < 0 at t = 0. The thermal energy spreads at an infinite prop-
agation speed. This is a fundamental property of the diffusion equation. It contrasts
with the finite propagation speed of the wave equation, described in Chapter 12 (see also
Section 10.6.1).

The area under the normal curve is well tabulated. We can express our solution in
terms of the error function, erf z = (2/

√
π)

∫ z

0
e−t2 dt, or the complementary error

function, erfc z = (2/
√

π)
∫ ∞

z
e−t2 dt = 1 − erf z. Using these functions, the solution

satisfying
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u(x, 0) =
{

0 x < 0
100 x > 0

is

u(x, t) = 50
[
1 + erf

(
x√
4kt

)]
= 50

[
2 − erfc

(
x√
4kt

)]
.

Similarity solution. We seek very special solutions of the diffusion equation,
∂u
∂t

= k ∂2u
∂x2 , with the property that the solutions remain the same under the elementary

spatial scaling x = Lx′. The partial differential equation will remain the same only if time
is scaled, t = L2t′. For the solution to be the same in both scalings,

u(x, t) = f(x/t1/2),

and ξ = x/t1/2 is called the similarity variable. Since ∂u
∂t

= − 1
2

x
t3/2 f ′(ξ) and ∂2u

∂x2 =
1
t
f ′′(ξ), it follows that f(ξ) solves the following linear ordinary differential equation:

−1
2
ξf ′ = kf ′′.

This is a first-order equation for f ′, whose general solution (following from separation) is

f ′ = c1e
− ξ2

4k .

Integrating yields a similarity solution of the diffusion equation

u(x, t) = f(x/t1/2) = c2 + c1

∫ x/t1/2

0

e−
s2
4k ds = c2 + c3

∫ x/
√

4kt

0

e−z2
dz,

where the dimensionless form (s =
√

4kz) is better. This can also be derived by dimen-
sional analysis. These self-similar solutions must have very special self-similar initial
conditions, which have a step at x = 0, so that these solutions correspond precisely
to (10.4.9). The fundamental solution (10.4.7) could be obtained by instead assuming
u = t−

1
2 g(ξ), which can be shown to be correct for the Dirac delta function initial condi-

tion. There are other solutions that can be obtained in related ways, but we restrict our
attention to these elementary results.

10.4.2 Fourier Transforming the Heat Equation: Transforms of Derivatives

We have solved the heat equation on an infinite interval:

∂u

∂t
= k

∂2u

∂x2
, −∞ < x < ∞

u(x, 0) = f(x).
(10.4.10)
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Using separation of variables, we motivated the introduction of Fourier transforms. If
we know that we should be using Fourier transforms, we can avoid separating variables.
Here we describe this simpler method; we Fourier transform in the spatial variable the
entire problem. From the heat equation, (10.4.10), the Fourier transform of ∂u/∂t equals
k times the Fourier transform of ∂2u/∂x2:

F
[
∂u

∂t

]
= kF

[
∂2u

∂x2

]
. (10.4.11)

Thus, we need to calculate Fourier transforms of derivatives of u(x, t). We begin by
defining the spatial Fourier transform of u(x, t),

F [u] = U(ω, t) =
1
2π

∫ ∞

−∞
u(x, t)eiωx dx. (10.4.12)

Note that it is also a function of time; it is an ordinary Fourier transform with t fixed. To
obtain a Fourier transform (in space), we multiply by eiωx and integrate. Spatial Fourier
transforms of time derivatives are not difficult:

F
[
∂u

∂t

]
=

1
2π

∫ ∞

−∞

∂u

∂t
eiωx dx =

∂

∂t

[
1
2π

∫ ∞

−∞
u(x, t)eiωx dx

]
=

∂

∂t
U(ω, t). (10.4.13)

The spatial Fourier transform of a time derivative equals the time
derivative of the spatial Fourier transform.

More interesting (and useful) results occur for the spatial Fourier transform of spatial
derivatives:

F
[
∂u

∂x

]
=

1
2π

∫ ∞

−∞

∂u

∂x
eiωx dx =

ueiωx

2π

∣∣∣∣
∞

−∞
− iω

2π

∫ ∞

−∞
u(x, t)eiωx dx, (10.4.14)

which has been simplified using integration by parts:

df =
∂u

∂x
dx, g = eiωx

f = u, dg = iωeiωx dx.

If u → 0 as x → ±∞, then the endpoint contributions of integration by parts vanish.
Thus, (10.4.14) becomes

F
[
∂u

∂x

]
= −iωF [u] = −iωU(ω, t). (10.4.15)

In a similar manner, Fourier transforms of higher derivatives may be obtained:

F
[
∂2u

∂x2

]
= −iωF

[
∂u

∂x

]
= (−iω)2U(ω, t). (10.4.16)
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In general, the Fourier transform of the nth derivative of a function
with respect to x equals (−iω)n times the Fourier transform of the
function, assuming that u(x, t) → 0 sufficiently fast as x → ±∞.6

using (10.4.13) and (10.4.16), (10.4.11) becomes

∂

∂t
U(ω, t) = k(−iω)2U(ω, t) = −kω2U(ω, t). (10.4.17)

The Fourier transform operation converts a linear partial differen-
tial equation with constant coefficients into an ordinary differential
equations, since spatial derivatives are transformed into algebraic
multiples of the transform.

Equation (10.4.17) is a first-order constant-coefficient differential equation. Its gen-
eral solution is

U(ω, t) = c e−kω2t.

However, ∂/∂t is an ordinary derivative keeping ω fixed, and thus c is constant if ω is
fixed. For other fixed values of ω, c may be a different constant; c depends on ω. c is
actually an arbitrary function of ω, c(ω). Indeed, you may easily verify by substitution
that

U(ω, t) = c(ω)e−kω2t (10.4.18a)

solves (10.4.17). To determine c(ω) we note from (10.4.18a) that c(ω) equals the ini-
tial value of the transform [obtained by transforming the initial condition, f(x)] c(ω) =
1/2π

∫ ∞
−∞ f(x)eiωx dx:

Ū(w, t) = F (w)e−kw2t. (10.4.18b)

This is the same result as obtained by separation of variables. We could reproduce the
entire solution obtained earlier. Instead, we will show a simpler way to obtain those
results.

10.4.3 Convolution Theorem

We observe that U(ω, t) is the product of two functions of ω, c(ω) and e−kω2t, both trans-
forms of other functions; c(ω) is the transform of the initial condition f(x), and e−kω2t

6We also need higher derivatives to vanish as x → ±∞. Furthermore, each integration by parts is not
valid unless the appropriate function is continuous.
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is the transform of some function (fortunately, since e−kω2t is a Gaussian, we know that
it is the transform of another Gaussian,

√
π/kt e−x2/4kt). The mathematical problem of

inverting a transform that is a product of transforms of known functions occurs very fre-
quently (especially in using the Fourier transform to solve partial differential equations).
Thus, we study this problem in some generality.

Suppose that F (ω) and G(ω) are the Fourier transforms of f(x) and g(x), respec-
tively:

F (ω) =
1
2π

∫ ∞

−∞
f(x)eiωx dx, G(ω) =

1
2π

∫ ∞

−∞
g(x)eiωx dx

f(x) =
∫ ∞

−∞
F (ω)e−iωx dω, g(x) =

∫ ∞

−∞
G(ω)e−iωx dω.

(10.4.19)

We will determine the function h(x) whose Fourier transform H(ω) equals the product
of the two transforms:

H(ω) = F (ω)G(ω) (10.4.20)

h(x) =
∫ ∞

−∞
H(ω)e−iωx dω =

∫ ∞

−∞
F (ω)G(ω)e−iωx dω. (10.4.21)

We eliminate either F (ω) or G(ω) using (10.4.19); it does not matter which:

h(x) =
1
2π

∫ ∞

−∞
F (ω)

[∫ ∞

−∞
g(x)eiωx dx

]
e−iωx dω.

Assuming that we can interchange orders of integration, we obtain

h(x) =
1
2π

∫ ∞

−∞
g(x)

[∫ ∞

−∞
F (ω)e−iω(x−x) dω

]
dx.

We now recognize the inner integral as f(x − x) [see (10.4.19)], and thus

h(x) =
1
2π

∫ ∞

−∞
g(x)f(x − x) dx. (10.4.22)

The integral in (10.4.22) is called the convolution of g(x) and f(x); it is sometimes
denoted g ∗ f . The inverse Fourier transform of the product of two Fourier
transforms is 1/2π times the convolution of the two functions.

If we let x − x = w (dx = −dw but
∫ −∞
∞ = − ∫ ∞

−∞), we obtain an alternative form,

h(x) =
1
2π

∫ ∞

−∞
f(w)g(x − w) dw, (10.4.23)

which would be denoted f ∗ g. Thus, g ∗ f = f ∗ g.
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Heat equation. We now apply the convolution theorem to our partial differential
equation. The transform U(ω, t) of the solution u(x, t) is the product of c(ω) and e−kω2t,
where c(ω) is the transform of the initial temperature distribution and e−kω2t is the
transform of

√
π/kt e−x2/4kt. Thus, according to the convolution theorem,

u(x, t) =
1
2π

∫ ∞

−∞
f(x)

√
π

kt
e−(x−x)2/4ktdx.

This is the same result as obtained (and discussed) earlier. In summary, the procedure is
as follows:

1. Fourier transform the partial differential equation in one of the variables.
2. Solve the ordinary differential equation.
3. Apply the initial conditions, determining the initial Fourier transform.
4. Use the convolution theorem.

By using the convolution theorem, we avoid for each problem substituting the inverse
Fourier transform and interchanging the order of integration.

Parseval’s identity. Since h(x) is the inverse Fourier transform of F (ω)G(ω),
the convolution theorem can be stated in the following form:

1
2π

∫ ∞

−∞
g(x)f(x − x) dx =

∫ ∞

−∞
F (ω)G(ω)e−iωx dω. (10.4.24)

Equation (10.4.24) is valid for all x. In particular, at x = 0,

1
2π

∫ ∞

−∞
g(x)f(−x) dx =

∫ ∞

−∞
F (ω)G(ω) dω. (10.4.25)

An interesting result occurs if we pick g(x) such that

g∗(x) = f(−x). (10.4.26)

Here ∗ is the complex conjugate. [For real functions, g(x) is the reflection of f(x) around
x = 0.] In general, their Fourier transforms are related:

F (ω) =
1
2π

∫ ∞

−∞
f(x)eiωx dx =

1
2π

∫ ∞

−∞
f(−s)e−iωs ds

=
1
2π

∫ ∞

−∞
g∗(x)e−iωx dx = G∗(ω),

(10.4.27)
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where we let s = −x. Thus, (10.4.25) becomes Parseval’s identity:

1
2π

∫ ∞

−∞
g(x)g∗(x) dx =

∫ ∞

−∞
G(ω)G∗(ω) dω, (10.4.28)

where g(x)g∗(x) = |g(x)|2 and G(ω)G∗(ω) = |G(ω)|2. We showed a similar relationship
for all generalized Fourier series (see Section 5.10). This result, (10.4.28), is given the
following interpretation. Often energy per unit distance is proportional to |g(x)|2, and
thus 1/2π

∫ ∞
−∞ |g(x)|2 dx represents the total energy. From (10.4.28), |G(ω)|2 may be

defined as the energy per unit wave number (the spectral energy density). All the

TABLE 10.4.1: Fourier Transform

f(x) =
∫ ∞

−∞
F (ω)e−iωx dω F (ω) =

1
2π

∫ ∞

−∞
f(x)eiωx dx Reference

e−αx2

√
π

β
e−x2/4β

1√
4πα

e−ω2/4α

e−βω2

⎫⎬
⎭

Gaussian
(Section 10.3.3)

∂f

∂t

∂f

∂x

∂2f

∂x2

∂F

∂t

−iωF (ω)

(−iω)2F (ω)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Derivatives
(Section 10.4.2)

1
2π

∫ ∞

−∞
f(x)g(x − x)dx F (ω)G(ω)

Convolution
(Section 10.4.3)

δ(x − x0)
1
2π

eiωx0
Dirac delta function
(Exercise 10.3.18)

f(x − β) eiωβF (ω)
Shifting theorem
(Exercise 10.3.5)

xf(x) −i
dF

dω

Multiplication by x
(Exercise 10.3.8)

2α

x2 + α2
e−|ω|α Exercise 10.3.7

f(x) =
{

0 |x| > a
1 |x| < a

1
π

sin aω

ω
Exercise 10.3.6
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energy is contained within all the wave numbers. The Fourier transform G(ω) of a
function g(x) is a complex quantity whose magnitude squared is the spectral
energy density (the amount of energy per unit wave number).

10.4.4 Summary of Properties of the Fourier Transform

Tables of Fourier transforms exist and can be very helpful. The results we have obtained
are summarized in Table 10.4.1.

We list below some important and readily available tables of Fourier transforms.
Beware of various different notations.

F. Oberhettinger, Tabellen zur Fourier Transformation, Springer-Verlag, New York,
1957.

R.V. Churchill, Operational Mathematics, 3rd ed., McGraw-Hill, New York, 1972.
G. A. Campbell and R. M. Foster, Fourier Integrals for Practical Applications, Van

Nostrand, Princeton, NJ, 1948.

EXERCISES 10.4

10.4.1. Using Green’s formula, show that

F
[

d2f

dx2

]
= −ω2F (ω) +

eiωx

2π

(
df

dx
− iωf

)∣∣∣∣
∞

−∞
.

10.4.2. For the heat equation, u(x, t) is given by (10.4.1). Show that u → 0 as x → ∞ even
though φ(x) = e−iωx does not decay as x → ∞. (Hint: Integrate by parts.)

10.4.3. *(a) Solve the diffusion equation with convection:

∂u

∂t
= k

∂2u

∂x2
+ c

∂u

∂x
, −∞ < x < ∞

u(x, 0) = f(x).

[Hint: Use the convolution theorem and the shift theorem (see Exercise 10.3.5).]
(b) Consider the initial condition to be δ(x). Sketch the corresponding u(x, t) for

various values of t > 0. Comment on the significance of the convection term
c ∂u/∂x.

10.4.4. (a) Solve
∂u

∂t
= k

∂2u

∂x2
− γu, −∞ < x < ∞

u(x, 0) = f(x).

(b) Does your solution suggest a simplifying transformation?
10.4.5. Consider

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t), −∞ < x < ∞

u(x, 0) = f(x).

(a) Show that a particular solution for the Fourier transform U is

U = e−kω2t
∫ t

0

Q(ω, τ)ekω2τ dτ.
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(b) Determine U .
*(c) Solve for u(x, t) (in the simplest form possible).

*10.4.6. The Airy function Ai(x) is the unique solution of

d2y

dx2
− xy = 0

that satisfies
(1) limx→±∞ y = 0

(2) y(0) = 3−2/3/Γ( 2
3 ) = 3−2/3Γ( 1

3 )
√

3/2π = 1/π
∫ ∞
0

cos(ω3/3) dω (it is not neces-
sary to look at Exercises 10.3.15 and 10.3.17).

Determine a Fourier transform representation of the solution of this problem, Ai(x).
(Hint: See Exercise 10.3.8.)

10.4.7. (a) Solve the linearized Korteweg–deVries equation

∂u

∂t
= k

∂3u

∂x3
, −∞ < x < ∞

u(x, 0) = f(x).

(b) Use the convolution theorem to simplify.
*(c) See Exercise 10.4.6 for a further simplification.
(d) Specialize your result to the case in which

f(x) =
{

0 x < 0
1 x > 0.

10.4.8. Solve
∂2u

∂x2
+

∂2u

∂y2
= 0,

0 < x < L
−∞ < y < ∞

subject to
u(0, y) = g1(y)
u(L, y) = g2(y).

10.4.9. Solve
∂2u

∂x2
+

∂2u

∂y2
= 0,

y > 0
−∞ < x < ∞

subject to
u(x, 0) = f(x).

(Hint: If necessary, see Section 10.6.3.)
10.4.10. Solve

∂2u

∂t2
= c2

∂2u

∂x2
, −∞ < x < ∞

u(x, 0) = f(x) t > 0

∂u

∂t
(x, 0) = 0.

(Hint: If necessary, see Section 10.6.1.)
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10.4.11. Derive an expression for the Fourier transform of the product f(x)g(x).
10.4.12. Solve the heat equation, −∞ < x < ∞,

∂u

∂t
= k

∂2u

∂x2
t > 0

subject to the condition u(x, 0) = f(x).

10.5 FOURIER SINE AND COSINE TRANSFORMS:
THE HEAT EQUATION ON SEMI-INFINITE INTERVALS

10.5.1 Introduction

The Fourier series has been introduced to solve partial differential equations on the finite
interval −L < x < L with periodic boundary conditions. For problems defined on the
interval 0 < x < L, special cases of Fourier series, the sine and cosine series, were analyzed
in order to satisfy the appropriate boundary conditions.

On an infinite interval, −∞ < x < ∞, instead we use the Fourier transform. In
this section we show how to solve partial differential equations on a semi-infinite interval,
0 < x < ∞. We will introduce special cases of the Fourier transform, known as the sine
and cosine transforms. The modifications of the Fourier transform will be similar to
the ideas we used for series on finite intervals.

10.5.2 Heat Equation on a Semi-Infinite Interval I

We will motivate the introduction of Fourier sine and cosine transforms by considering a
simple physical problem. If the temperature is fixed at 0◦ at x = 0, then the mathematical
problem for heat diffusion on a semi-infinite interval x > 0 is

PDE:
∂u

∂t
= k

∂2u

∂x2
, x > 0 (10.5.1)

BC: u(0, t) = 0 (10.5.2)

IC: u(x, 0) = f(x). (10.5.3)

Here, we have one boundary condition, which is homogeneous.
If we separate variables,

u(x, t) = φ(x)h(t),

for the heat equation, we obtain as before

dh

dt
= −λkh (10.5.4)
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d2φ

dx2
= −λφ. (10.5.5)

The boundary conditions to determine the allowable eigenvalues λ are

φ(0) = 0 (10.5.6)

limx→∞ |φ(x)| < ∞. (10.5.7)

The latter condition corresponds to limx→∞ u(x, t) = 0, since we usually assume that
limx→∞ f(x) = 0.

There are nontrivial solutions of (10.5.5) with (10.5.6) and (10.5.7) only for all
positive λ (λ > 0),

φ(x) = c1 sin
√

λx = c1 sin ωx, (10.5.8)

where, as with the Fourier transform, we prefer the variable ω =
√

λ. Here ω > 0 only.
The corresponding time-dependent part is

h(t) = ce−λkt = ce−ktω2
, (10.5.9)

and thus product solutions are

u(x, t) = A sin ωx e−ktω2
. (10.5.10)

The generalized principle of superposition implies that we should seek a solution to
the initial value problem in the form

u(x, t) =
∫ ∞

0

A(ω) sin ωx e−kω2tdω. (10.5.11)

The initial condition u(x, 0) = f(x) is satisfied if

f(x) =
∫ ∞

0

A(ω) sin ωx dω. (10.5.12)

In the next subsection, we will show that A(ω) is the Fourier sine transform of f(x); we
will show that A(ω) can be determined from (10.5.12):

A(ω) =
2
π

∫ ∞

0

f(x) sin ωx dx. (10.5.13)
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10.5.3 Fourier Sine and Cosine Transforms

In the preceding subsection we are asked to represent a function using only sine functions.
We already know how to represent a function using complex exponentials, the Fourier
transform:

f(x) =
1
γ

∫ ∞

−∞
F (ω)e−iωx dω (10.5.14)

F (ω) =
γ

2π

∫ ∞

−∞
f(x)eiωx dx. (10.5.15)

Recall that (10.5.14)–(10.5.15) is valid for any γ.

Fourier sine transform. Since we want to use only sin ωx (for all ω), we consider
cases in which f(x) is an odd function. If our physical region is x ≥ 0, then our functions
do not have physical meaning for x < 0. In this case we can define these functions in any
way we choose for x < 0; we introduce the odd extension of the given f(x). If f(x) is odd
in this way, then its Fourier transform F (ω) can be simplified:

F (ω) =
γ

2π

∫ ∞

−∞
f(x)(cos ωx + i sin ωx) dx =

2iγ

2π

∫ ∞

0

f(x) sin ωx dx, (10.5.16)

since f(x) cos ωx is odd in x and f(x) sin ωx is even in x. Note that F (ω) is an odd
function of ω [when f(x) is an odd function of x]. Thus, in a similar manner,

f(x) =
1
γ

∫ ∞

−∞
F (ω)(cos ωx − i sin ωx) dω =

−2i

γ

∫ ∞

0

F (ω) sin ωx dω. (10.5.17)

We can choose γ in any way that we wish. Note that the product of the coefficients in
front of both integrals must be (2iγ/2π) · (−2i/γ) = 2/π for Fourier transforms rather
than 1/2π. For convenience, we let −2i/γ = 1 (i.e., γ = −2i) so that if f(x) is odd,

f(x) =
∫ ∞

0

F (ω) sin ωx dω (10.5.18)

F (ω) =
2
π

∫ ∞

0

f(x) sin ωx dx. (10.5.19)

Others may prefer a symmetric definition, −2i/γ =
√

2/π. These are called the Fourier
sine transform pair. F (ω) is called the sine transform of f(x), sometimes denoted
S[f(x)], while f(x) is the inverse sine transform of F (ω), S−1[F (ω)]. Equations
(10.5.18) and (10.5.19) are related to the formulas for the Fourier transform of an odd
function of x.
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If the sine transform representation of f(x) (10.5.18) is utilized, then zero is always
obtained at x = 0. This occurs even if limx→0 f(x) �= 0. Equation (10.5.18) as written is
not always valid at x = 0. Instead, the odd extension of f(x) has a jump discontinuity at
x = 0 [if limx→0 f(x) �= 0], from −f(0) to f(0). The Fourier sine transform representation
of f(x) converges to the average, which is zero (at x = 0).

Fourier cosine transform. Similarly, if f(x) is an even function, we can derive
the Fourier cosine transform pair:

f(x) =
∫ ∞

0

F (ω) cos ωx dω (10.5.20)

F (ω) =
2
π

∫ ∞

0

f(x) cos ωx dx. (10.5.21)

Other forms are equivalent (as long as the product of the two numerical factors is again
2/π). F (ω) is called the cosine transform of f(x), sometimes denoted C[f(x)], while
f(x) is the inverse cosine transform of F (ω), C−1[F (ω)]. Again if f(x) is defined only
for x > 0, then in order to use the Fourier cosine transform, we must introduce the even
extension of f(x).

Short tables of both the Fourier sine and cosine transforms appear at the end of
this section (Tables 10.5.1 and 10.5.2).

10.5.4 Transforms of Derivatives

In Section 10.5.2 we derived important properties of the Fourier transform of derivatives.
Here, similar results for the Fourier sine and cosine transform will be shown.

Our definitions of the Fourier cosine and sine transforms are

C[f(x)] =
2
π

∫ ∞

0

f(x) cos ωx dx (10.5.22)

S[f(x)] =
2
π

∫ ∞

0

f(x) sin ωx dx. (10.5.23)

Integration by parts can be used to obtain formulas for the transforms of first derivatives:

C

[
df

dx

]
=

2
π

∫ ∞

0

df

dx
cos ωx dx =

2
π

f(x) cos ωx

∣∣∣∣
∞

0

+ ω
2
π

∫ ∞

0

f(x) sin ωx dx

S

[
df

dx

]
=

2
π

∫ ∞

0

df

dx
sin ωx dx =

2
π

f(x) sin ωx

∣∣∣∣
∞

0

− ω
2
π

∫ ∞

0

f(x) cos ωx dx.
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We have assumed that f(x) is continuous. We obtain the following formulas:

C

[
df

dx

]
= − 2

π
f(0) + ωS[f ] (10.5.24)

S

[
df

dx

]
= −ωC[f ], (10.5.25)

assuming that f(x) → 0 as x → ∞. Sine and cosine transforms of first derivatives
always involve the other type of semi-infinite transform. Thus, if a partial differential
equation contains first derivatives with respect to a potential variable to be transformed,
the Fourier sine or Fourier cosine transform will never work. Do not use Fourier sine or
cosine transforms in this situation. Note that for the heat equation, ∂u/∂t = k ∂2u/∂x2,
the variable to be transformed is x. No first derivatives in x appear.

Transforms of second derivatives have simpler formulas. According to (10.5.24) and
(10.5.25),

C

[
d2f

dx2

]
= − 2

π

df

dx
(0) + ωS

[
df

dx

]
= − 2

π

df

dx
(0) − ω2C[f ] (10.5.26)

S

[
d2f

dx2

]
= −ωC

[
df

dx

]
=

2
π

ωf(0) − ω2S[f ]. (10.5.27)

We learn some important principles from (10.5.26) and (10.5.27). In order to use the
Fourier cosine transform to solve a partial differential equation (containing a second
derivative) defined on a semi-infinite interval (x ≥ 0), df/dx(0) must be known. Simi-
larly, the Fourier sine transform may be used for semi-infinite problems if f(0)
is known. Furthermore, problems are more readily solved if the boundary conditions are
homogeneous. If f(0) = 0, then a Fourier sine transform will often yield a relatively simple
solution. If df/dx(0) = 0, then a Fourier cosine transform will often be extremely conve-
nient. These conditions are not surprising. If f(0) = 0, separation of variables motivates
the use of sines only. Similarly, df/dx(0) = 0 implies the use of cosines.

10.5.5 Heat Equation on a Semi-Infinite Interval II

Let us show how to utilize the formulas for the transforms of derivatives to solve partial
differential equations. We consider a problem that is somewhat more general than the
one presented earlier. Suppose that we are interested in the heat flow in a semi-infinite
region with the temperature prescribed as a function of time at x = 0:
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PDE:
∂u

∂t
= k

∂2u

∂x2
(10.5.28)

BC: u(0, t) = g(t) (10.5.29)

IC: u(x, 0) = f(x). (10.5.30)

The boundary condition u(0, t) = g(t) is nonhomogeneous. We cannot use the method
of separation of variables. Since 0 < x < ∞, we may wish to use a transform. Since u
is specified at x = 0, we should try to use Fourier sine transforms (and not the Fourier
cosine transform). Thus, we introduce U(ω, t), the Fourier sine transform of u(x, t):

U(ω, t) =
2
π

∫ ∞

0

u(x, t) sin ωx dx. (10.5.31)

The partial differential equation (10.5.28) becomes an ordinary differential equation,

∂U

∂t
= k

(
2
π

ωg(t) − ω2U

)
, (10.5.32)

using (10.5.27). The initial condition yields the initial value of the Fourier sine transform:

U(ω, 0) =
2
π

∫ ∞

0

f(x) sin ωx dx. (10.5.33)

Solving (10.5.32) is somewhat complicated in general (involving the integrating factor
ekω2t; see Section 8.3). We leave discussion of this to the Exercises.

EXAMPLE

In the special case with homogeneous boundary conditions, g(t) = 0, it follows from
(10.5.32) that

U(ω, t) = c(ω)e−kω2t, (10.5.34)

where, from the initial condition,

c(ω) =
2
π

∫ ∞

0

f(x) sin ωx dx. (10.5.35)

The solution is thus

u(x, t) =
∫ ∞

0

c(ω)e−kω2t sin ωx dω. (10.5.36)
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This is the solution obtained earlier by separation of variables. To simplify this solution,
we note that c(ω) is an odd function of ω. Thus,

u(x, t) =
1
2

∫ ∞

−∞
c(ω)e−kω2t sin ωx dω =

∫ ∞

−∞

c(ω)
2i

e−kω2teiωxdω. (10.5.37)

If we introduce the odd extension of f(x), then

c(ω)
2i

=
2
π

∫ ∞

0

f(x)
sin ωx

2i
dx =

1
π

∫ ∞

−∞
f(x)

sin ωx

2i
dx =

1
2π

∫ ∞

−∞
f(x)e−iωx dx.

(10.5.38)

We note that (10.5.37) and (10.5.38) are exactly the results for the heat equation on an
infinite interval. Thus,

u(x, t) =
1√

4πkt

∫ ∞

−∞
f(x)e−(x−x)2/4ktdx.

Here, f(x) has been extended to −∞ < x < ∞ as an odd function [f(−x) = −f(x)]. In
order to utilize only f(x) for x > 0, we use the oddness property

u(x, t) =
1√

4πkt

[∫ 0

−∞
−f(−x)e−(x−x)2/4ktdx +

∫ ∞

0

f(x)e−(x−x)2/4ktdx

]
.

In the first integral, we let x = −x (and then we replace x by x). In this manner

u(x, t) =
1√

4πkt

∫ ∞

0

f(x)
[
e−(x−x)2/4kt − e−(x+x)2/4kt

]
dx. (10.5.39)

The influence function for the initial condition is in brackets. We will discuss this solution
further in Chapter 11. An equivalent (and simpler) method to obtain (10.5.39) from
(10.5.34) and (10.5.35) is to use the convolution theorem for Fourier sine transforms (see
Exercise 10.6.6).

10.5.6 Tables of Fourier Sine and Cosine Transforms

We present short tables of the Fourier sine transform (Table 10.5.1) and Fourier cosine
transform (Table 10.5.2).
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TABLE 10.5.1: Fourier Sine Transform

f(x) =
∫ ∞

0

F (ω) sin ωx dω
S[f(x)] = F (ω)

=
2

π

∫ ∞

0

f(x) sin ωx dx
Reference

df

dx

d2f

dx2

−ωC[f(x)]
2
π

ωf(0) − ω2F (ω)

⎫⎬
⎭

Derivatives
(Section 10.5.4)

x

x2 + β2
e−ωβ Exercise 10.5.1

e−εx 2
π
· ω

ε2 + ω2
Exercise 10.5.2

1
2
π
· 1
ω

Exercise 10.5.9

1

π

∫ ∞

0

f(x)[g(x − x) − g(x + x)]dx

=
1

π

∫ ∞

0

g(x)[f(x + x) − f(x − x)]dx

S[f(x)]C[g(x)]
Convolution

(Exercise 10.5.6)

TABLE 10.5.2: Fourier Cosine Transform

f(x) =
∫ ∞

0

F (ω) cos ωx dω
C[f(x)] = F (ω)

=
2

π

∫ ∞

0

f(x) cos ωx dx
Reference

df

dx

d2f

dx2

− 2
π

f(0) + ωS[f(x)]

− 2
π

df

dx
(0) − ω2F (ω)

⎫⎪⎪⎬
⎪⎪⎭

Derivatives
(Section 10.5.4)

β

x2 + β2
e−ωβ Exercise 10.5.1

e−εx 2
π
· ε

ε2 + ω2
Exercise 10.5.2

e−αx2
2

1√
4πα

e−ω2/4α Exercise 10.5.3
∫ ∞

0

g(x)[f(x − x) + f(x + x)]dx F (ω)G(ω)
Convolution

(Exercise 10.5.7)
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EXERCISES 10.5

10.5.1. Consider F (ω) = e−βω, β > 0 (ω ≥ 0).

(a) Derive the inverse Fourier sine transform of F (ω).

(b) Derive the inverse Fourier cosine transform of F (ω).

10.5.2. Consider f(x) = e−αx, α > 0 (x ≥ 0).

(a) Derive the Fourier sine transform of f(x).

(b) Derive the Fourier cosine transform of f(x).

*10.5.3. Derive either the Fourier cosine transform of e−αx2
or the Fourier sine transform of

e−αx2
.

10.5.4. (a) Derive (10.5.26) using Green’s formula.

(b) Do the same for (10.5.27).
10.5.5. (a) Show that the Fourier sine transform of f(x) is an odd function of ω (if defined

for all ω).

(b) Show that the Fourier cosine transform of f(x) is an even function of ω (if
defined for all ω).

10.5.6. There is an interesting convolution-type theorem for Fourier sine transforms. Sup-
pose that we want h(x) but know its sine transform H(ω) to be a product

H(ω) = S(ω)C(ω),

where S(ω) is the sine transform of s(x) and C(ω) is the cosine transform of c(x).
Assuming that c(x) is even and s(x) is odd, show that

h(x) =
1
π

∫ ∞

0

s(x)[c(x − x) − c(x + x)] dx =
1
π

∫ ∞

0

c(x)[s(x + x) − s(x − x)] dx.

10.5.7. Derive the following; If a Fourier cosine transform in x, H(ω), is the product of two
Fourier cosine transforms,

H(ω) = F (ω)G(ω),

then
h(x) =

1
π

∫ ∞

0

g(x)[f(x − x) + f(x + x)] dx.

In this result, f and g can be interchanged.
10.5.8. Solve (10.5.1)–(10.5.3) using the convolution theorem of Exercise 10.5.6. Exercise

10.5.3 may be of some help.
10.5.9. Let S[f(x)] designate the Fourier sine transform.

(a) Show that

S[e−εx] =
2
π

ω

ε2 + ω2
for ε > 0.

Show that limε→0+ S[e−εx] = 2/πω. We will let S[1] = 2/πω. Why isn’t S[1]
technically defined?

(b) Show that

S−1

[
2/π

ω

]
=

2
π

∫ ∞

0

sin z

z
dz,

which is known to equal 1.
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*10.5.10. Determine the inverse cosine transform of ωe−αω. (Hint: Use differentiation with
respect to a parameter.)

*10.5.11. Consider
∂u

∂t
= k

∂2u

∂x2
,

x > 0
t > 0

u(0, t) = 1

u(x, 0) = f(x).

(a) Solve directly using sine transforms. (Hint: Use Exercise 10.5.8 and the convo-
lution theorem, Exercise 10.5.6.)

(b) If f(x) → 1 as x → ∞, let v(x, t) = u(x, t) − 1 and solve for v(x, t).

(c) Compare part (b) to part (a).

10.5.12. Solve
∂u

∂t
= k

∂2u

∂x2
(x > 0)

∂u

∂x
(0, t) = 0

u(x, 0) = f(x).

10.5.13. Solve (10.5.28)–(10.5.30) by solving (10.5.32).
10.5.14. Consider

∂u

∂t
= k

∂2u

∂x2
− v0

∂u

∂x
(x > 0)

u(0, t) = 0
u(x, 0) = f(x).

(a) Show that the Fourier sine transform does not yield an immediate solution.

(b) Instead, introduce

u = e[x−(v0/2)t]v0/2kw,

and show that
∂w

∂t
= k

∂2w

∂x2

w(0, t) = 0

w(x, 0) = f(x)e−v0x/2k.

(c) Use part (b) to solve for u(x, t).

10.5.15. Solve
∂2u

∂x2
+

∂2u

∂y2
= 0,

0 < x < L
0 < y < ∞

u(x, 0) = 0
u(0, y) = g1(y)
u(L, y) = g2(y).

(Hint: If necessary, see Section 10.6.2.)
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10.5.16. Solve
∂2u

∂x2
+

∂2u

∂y2
= 0,

0 < x < ∞
0 < y < ∞

u(0, y) = g(y)
∂

∂y
u(x, 0) = 0.

(Hint: If necessary, see Section 10.6.4.)
10.5.17. The effect of periodic surface heating (either daily or seasonal) on the interior of

the earth may be modeled by

∂u

∂t
= k

∂2u

∂x2
, 0 < x < ∞

u(x, 0) = 0

u(0, t) = Aeiσ0t,

where the real part of u(x, t) is the temperature (and x measures distance from the
surface).
(a) Determine U(ω, t), the Fourier sine transform of u(x, t).

*(b) Approximate U(ω, t) for large t.
(c) Determine the inverse sine transform of part (b) in order to obtain an approxi-

mation for u(x, t) valid for large t. [Hint: See Exercise 10.5.2(a) or Table 10.5.1.]
(d) Sketch the approximate temperature (for fixed large t).
(e) At what distance below the surface are temperature variations negligible?

10.5.18. Reconsider Exercise 10.5.17. Determine u(x, t) exactly. (Hint: See Exercise 10.5.6.)
10.5.19. (a) Determine a particular solution of Exercise 10.5.17, satisfying the boundary

condition but not the initial condition, of the form u(x, t) = F (x)G(t).
(b) Compare part (a) with either Exercise 10.5.17 or 10.5.18.

10.5.20. Solve the heat equation, 0 < x < ∞,

∂u

∂t
= k

∂2u

∂x2
,

subject to the conditions u(0, t) = 0 and u(x, 0) = f(x).

10.6 WORKED EXAMPLES USING TRANSFORMS

10.6.1 One-Dimensional Wave Equation on an Infinite Interval

Previously, we have analyzed vibrating strings on a finite interval, usually 0 ≤ x ≤ L.
Here we will study a vibrating string on an infinite interval. The best way to analyze
vibrating strings on an infinite (or semi-infinite) interval is to use the method of charac-
teristics, which we describe in Chapter 12. There, concepts of wave propagation are more
completely discussed. Here we will analyze only the following example, to show briefly
how Fourier transforms can be used to solve the one-dimensional wave equation:

PDE:
∂2u

∂t2
= c2 ∂2u

∂x2
, −∞ < x < ∞ (10.6.1)
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IC1: u(x, 0) = f(x) (10.6.2)

IC2:
∂u

∂t
(x, 0) = 0. (10.6.3)

We give the initial position f(x) of the string but insist that the string is at rest,
∂u/∂t(x, 0) = 0, in order to simplify the mathematics.

Product solutions can be obtained by separation of variables. Instead, we will intro-
duce the Fourier transform in x of u(x, t):

U(ω, t) =
1
2π

∫ ∞

−∞
u(x, t)eiωx dx (10.6.4)

u(x, t) =
∫ ∞

−∞
U(ω, t)e−iωx dω. (10.6.5)

Taking the Fourier transform of the one-dimensional wave equation yields

∂2U

∂t2
= −c2ω2U, (10.6.6)

with the initial conditions becoming

U(ω, 0) =
1
2π

∫ ∞

−∞
f(x)eiωx dx (10.6.7)

∂

∂t
U(ω, 0) = 0. (10.6.8)

The general solution of (10.6.6) is a linear combination of sines and cosines:

U(ω, t) = A(ω) cos cωt + B(ω) sin cωt. (10.6.9)

The initial conditions imply that

B(ω) = 0 (10.6.10)

A(ω) = U(ω, 0) =
1
2π

∫ ∞

−∞
f(x)eiωx dx. (10.6.11)

Using the inverse Fourier transform, the solution of the one-dimensional wave equation is

u(x, t) =
∫ ∞

−∞
U(ω, 0) cos cωt e−iωx dω, (10.6.12)

where U(ω, 0) is the Fourier transform of the initial position.
The solution can be considerably simplified. Using Euler’s formula,
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u(x, t) =
1
2

∫ ∞

−∞
U(ω, 0)

[
e−iω(x−ct) + e−iω(x+ct)

]
dω. (10.6.13)

However, U(ω, 0) is the Fourier transform of f(x), and hence

f(x) =
∫ ∞

−∞
U(ω, 0)e−iωxdω. (10.6.14)

By comparing (10.6.13) and (10.6.14), we obtain D’Alembert’s solution

u(x, t) =
1
2

[f(x − ct) + f(x + ct)] . (10.6.15)

For an infinite string (started at rest), the solution is the sum of two terms, 1
2f(x−ct)

and 1
2f(x + ct). 1

2f(x− ct) is a waveform of fixed shape. Its height stays fixed if x− ct =
constant, and thus dx/dt = c. For example, the origin corresponds to x = ct. Assuming
that c > 0, this fixed shape moves to the right with velocity c. It is called a traveling
wave. Similarly, 1

2f(x + ct) is a wave of fixed shape traveling to the left (at velocity −c).
Our interpretation of this result is that if started at rest, the initial position of the string
breaks in two, half moving to the left and half moving to the right at equal speeds c; the
solution is the simple sum of these two traveling waves.

10.6.2 Laplace’s Equation in a Semi-Infinite Strip

The mathematical problem for steady-state heat conduction in a semi-infinite strip (0 <
x < L, y > 0) is

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0 (10.6.16)

u(0, y) = g1(y) (10.6.17)

u(L, y) = g2(y) (10.6.18)

u(x, 0) = f(x). (10.6.19)

We assume that g1(y) and g2(y) approach zero as y → ∞. In Fig. 10.6.1 we illustrate
the three nonhomogeneous boundary conditions and the useful simplification
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+=

u(x,0) = f(x)

u(0,y) =g1(y)

u1(x,0) = 0 u2(x,0) = f(x)

u1(0,y) = g1(y) u2(0,y) = 0

∇2u = 0 ∇2u1 = 0 ∇2u2 = 0

u2(L,y) = 0u1(L,y) = g2(y)u(L,y) = g2(y)

FIGURE 10.6.1 Laplace’s equation in a semi-infinite strip.

u(x, y) = u1(x, y) + u2(x, y). (10.6.20)

Here both u1 and u2 satisfy Laplace’s equation. Separation of variables for Laplace’s
equation in the semi-infinite strip geometry provides motivation for our approach:

u(x, y) = φ(x)θ(y), (10.6.21)

in which case
d2φ

dx2
= −λφ (10.6.22)

d2θ

dy2
= λθ. (10.6.23)

Two homogeneous boundary conditions are necessary for an eigenvalue problem. That is
why we divided our problem into two parts.

Zero temperature sides. For the u2-problem, u2 = 0 at both x = 0 and x = L.
Thus, the differential equation in x is an eigenvalue problem, defined over a finite interval.
The boundary conditions are exactly those of a Fourier sine series in x. The y-dependent
solutions are exponentials. For u2, separated solutions are

u2(x, y) = sin
nπx

L
e−nπy/L and u2(x, y) = sin

nπx

L
e+nπy/L.

The principle of superposition implies that

u2(x, y) =
∞∑

n=1

an sin
nπx

L
e−nπy/L +

∞∑
n=1

bn sin
nπx

L
enπy/L. (10.6.24)

There are two other conditions on u2:

u2(x, 0) = f(x) (10.6.25)

lim
y→∞u2(x, y) = 0. (10.6.26)
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Since u2 → 0 as y → ∞, bn = 0. The nonhomogeneous condition is

f(x) =
∞∑

n=1

an sin
nπx

L
, (10.6.27)

and thus an are the Fourier sine coefficients of the nonhomogeneous boundary condition
at y = 0:

an =
2
L

∫ L

0

f(x) sin
nπx

L
dx. (10.6.28)

Using these coefficients, the solution is

u2(x, y) =
∞∑

n=1

an sin
nπx

L
e−nπy/L. (10.6.29)

There is no need to use Fourier transforms for the u2-problem. The partial differential
equation for u2 could have been analyzed much earlier in this text (e.g., in Chapter 2).

Zero temperature bottom. For the u1-problem, the second homogeneous bound-
ary condition is less apparent:

u1(x, 0) = 0 (10.6.30)

lim
y→∞u1(x, y) = 0. (10.6.31)

The y-dependent part is the boundary value problem. As y → ∞, the “separated” so-
lution must remain bounded (they do not necessarily vanish). The appropriate solutions
of (10.6.23) are sines and cosines (corresponding to λ < 0). The homogeneous boundary
condition at y = 0, (10.6.30), implies that only sines should be used. Instead of continu-
ing to discuss the method of separation of variables, we now introduce the Fourier sine
transform in y:

u1(x, y) =
∫ ∞

0

U1(x, ω) sin ωy dω (10.6.32)

U1(x, ω) =
2
π

∫ ∞

0

u1(x, y) sin ωy dy. (10.6.33)

We directly take the Fourier sine transform with respect to y of Laplace’s equation,
(10.6.16). The properties of the transform of derivatives shows that Laplace’s equation
becomes an ordinary differential equation:

∂2

∂x2
U1(x, ω) − ω2U1(x, ω) = 0. (10.6.34)
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The boundary condition at y = 0, u1(x, 0) = 0, has been used to simplify our result. The
solution of (10.6.34) is a linear combination of nonoscillatory (exponential) functions. It
is most convenient (although not necessary) to utilize the following hyperbolic functions:

U1(x, ω) = a(ω) sinh ωx + b(ω) sinhω(L − x). (10.6.35)

The two nonhomogeneous conditions at x = 0 and x = L yield

U1(0, ω) = b(ω) sinh ωL =
2
π

∫ ∞

0

g1(y) sin ωy dy (10.6.36)

U1(L, ω) = a(ω) sinh ωL =
2
π

∫ ∞

0

g2(y) sin ωy dy. (10.6.37)

U1(x, ω), the Fourier sine transform of u1(x, y), is given by (10.6.35), where a(ω) and
b(ω) are obtained from (10.6.36) and (10.6.37).7 This completes the somewhat compli-
cated solution of Laplace’s equation in a semi-infinite channel. It is the sum of a solution
obtained using a Fourier sine series and one using a Fourier sine transform.

Nonhomogeneous boundary conditions. If desired, Laplace’s equation
(10.6.16) with three nonhomogeneous boundary conditions, (10.6.17)–(10.6.19), can be
solved by directly applying a Fourier sine transform in y without decomposing the prob-
lem into two:

u(x, y) =
∫ ∞

0

U(x, ω) sin ωy dω. (10.6.38)

Since the boundary condition at y = 0, u(x, 0) = f(x), is nonhomogeneous, an extra term
is introduced into the Fourier sine transform of Laplace’s equation (10.6.16):

∂2U

∂y2
− ω2U = − 2

π
ωf(x). (10.6.39)

In this case, the Fourier sine transform satisfies a second-order linear constant-coefficient
nonhomogeneous ordinary differential equation. This equation must be solved with two
nonhomogeneous boundary conditions at x = 0 and x = L. Equation (10.6.39) can be
solved by variation of parameters. This solution is probably more complicated than the
one consisting of a sum of a series and a transform. Furthermore, this solution has a jump
discontinuity at y = 0; the integral in (10.6.38) equals zero at y = 0 but converges to f(x)
as y → 0. Usually, breaking the problem into two problems is preferable.

7Unfortunately, U1(x, ω) is not the product of the transforms of two simple functions. Hence, we do
not use the convolution theorem.
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10.6.3 Laplace’s Equation in a Half-Plane

If the temperature is specified to equal f(x) on an infinite wall, y = 0, then the steady-
state temperature distribution for y > 0 satisfies Laplace’s equation,

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0, (10.6.40)

subject to the boundary condition,

u(x, 0) = f(x). (10.6.41)

If f(x) → 0 as x → ±∞, then there are three other implied boundary conditions:

lim
x→+∞u(x, y) = 0 (10.6.42)

lim
x→−∞u(x, y) = 0 (10.6.43)

lim
y→+∞u(x, y) = 0; (10.6.44)

the temperature approaches zero at large distances from the wall.
The method of separation of variables suggests the use of a Fourier transform in x,

since there are two homogeneous boundary conditions as x → ±∞:

u(x, y) =
∫ ∞

−∞
U(ω, y)e−iωx dω (10.6.45)

U(ω, y) =
1
2π

∫ ∞

−∞
u(x, y)eiωx dx. (10.6.46)

By taking the Fourier transform in x of (10.6.40), we obtain the ordinary differential
equation satisfied by the Fourier transform,

∂2U

∂y2
− ω2U = 0. (10.6.47)

Since u(x, y) → 0 as y → +∞, its Fourier transform in x also vanishes as y → +∞,

U(ω, y) → 0, as y → +∞. (10.6.48)

In addition, at y = 0, U(ω, 0) is the Fourier transform of the boundary condition,

U(ω, 0) =
1
2π

∫ ∞

−∞
f(x)eiωx dx. (10.6.49)
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We must be careful solving (10.6.47). The general solution is

U(ω, y) = a(ω)eωy + b(ω)e−ωy, (10.6.50)

which is of interest for all ω [see (10.6.45)]. There are two boundary conditions to
determine the two arbitrary functions a(ω) and b(ω). Equation (10.6.48) states that
U(ω, y) → 0 as y → +∞. At first you might think that this implies that a(ω) = 0,
but that is not correct. Instead, for U(ω, y) to vanish as y → +∞, a(ω) = 0 only for
ω > 0. If ω < 0, then b(ω)e−ωy grows exponentially as y → +∞. Thus, b(ω) = 0 for
ω < 0. We have shown that

U(ω, y) =
{

a(ω)eωy for ω < 0
b(ω)e−ωy for ω > 0,

where a(ω) is arbitrary for ω < 0 and b(ω) is arbitrary for ω > 0. It is more convenient
to note that this is equivalent to

U(ω, y) = c(ω)e−|ω|y, (10.6.51)

for all ω. The nonhomogeneous boundary condition (10.6.41) now shows that c(ω) is
the Fourier transform of the temperature at the wall, f(x). This completes our solution.
However, we will determine a simpler representation of the solution.

Application of the convolution theorem. The easiest way to simplify the solu-
tion is to note that U(ω, y) is the product of two Fourier transforms. f(x) has the Fourier
transform c(ω), and some function g(x, y), as yet unknown, has the Fourier transform
e−|ω|y. Using the convolution theorem, the solution of our problem is

u(x, y) =
1
2π

∫ ∞

−∞
f(x)g(x − x, y) dx. (10.6.52)

We now need to determine what function g(x, y) has the Fourier transform e−|ω|y.
According to the inversion integral, (10.3.7)

g(x, y) =
∫ ∞

−∞
e−|ω|ye−iωx dω,

which may be integrated directly:

g(x, y) =
∫ 0

−∞
eωye−iωx dω +

∫ ∞

0

e−ωye−iωx dω

=
eω(y−ix)

y − ix

∣∣∣∣
0

−∞
+

e−ω(y+ix)

−(y + ix)

∣∣∣∣
∞

0

=
1

y − ix
+

1
y + ix

=
2y

x2 + y2
.
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Thus, the solution to Laplace’s equation in semi-infinite space (y > 0) subject to
u(x, 0) = f(x) is

u(x, y) =
1
2π

∫ ∞

−∞
f(x)

2y

(x − x)2 + y2
dx. (10.6.53)

This solution was derived assuming f(x) → 0 as x → ±∞. In fact, it is valid in other
cases, roughly speaking, as long as the integral is convergent. In Chapter 9 we obtained
(10.6.53) through use of the Green’s function. It was shown [see (9.5.47)] that the influence
function for the nonhomogeneous boundary condition [see (10.6.53)] is the outward normal
derivative (with respect to source points) of the Green’s function:

− ∂

∂y
G(x, y;x, y)

∣∣∣∣
y=0

=
y

π

1
(x − x) + y2

,

where G(x,x0) is the Green’s function, the influence function for sources in the half-plane
(y > 0).

EXAMPLE

A simple, but interesting, solution arises if

f(x) =
{

0 x < 0
1 x > 0.

(10.6.54)

This boundary condition corresponds to the wall uniformly heated to two different tem-
peratures. We will determine the equilibrium temperature distribution for y > 0. From
(10.6.53),

u(x, y) =
1
2π

∫ ∞

0

2y

y2 + (x − x)2
dx =

1
π

tan−1

(
x − x

y

)∣∣∣∣
∞

0

=
1
π

[
tan−1(∞) − tan−1

(−x

y

)]
=

1
π

[
π

2
+ tan−1

(
x

y

)]
.

(10.6.55)

Some care must be used in evaluating the inverse tangent function along a continuous
branch. Figure 10.6.2, in which the tangent and inverse tangent functions are sketched,
is helpful. If we introduce the usual angle θ from the x-axis,

θ = tan−1
(y

x

)
=

π

2
− tan−1

(
x

y

)
,

then the temperature distribution becomes

u(x, y) = 1 − θ

π
. (10.6.56)



482 Chapter 10 Infinite Domain Problems: Fourier Transform Solutions

tan−1z

zz
π/2

−π/2

π/2

−π/2

tanz

FIGURE 10.6.2 Tangent and inverse tangent functions.

We can check this answer independently. Reconsider this problem, but pose it in the usual
polar coordinates. Laplace’s equation is

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
= 0,

and the boundary conditions are u(r, 0) = 1 and u(r,−π) = 0. The solution depends on
only the angle, u(r, θ) = u(θ), in which case

d2u

dθ2
= 0,

subject to u(0) = 1 and u(π) = 0, confirming (10.6.56). This result and more complicated
ones for Laplace’s equation can be obtained using conformal mappings in the complex
plane.

10.6.4 Laplace’s Equation in a Quarter-Plane

In this subsection we consider the steady-state temperature distribution within a quarter-
plane (x > 0, y > 0) with the temperature given on one of the semi-infinite walls and the
heat flow (gradient of temperature) given on the other:

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0 (10.6.57)

u(0, y) = g(y), y > 0 (10.6.58)

∂u

∂y
(x, 0) = f(x), x > 0. (10.6.59)
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= +

u(x,0) = f(x)

∇2u = 0 ∇2u1 = 0 ∇2u2 = 0

∂
∂y

u2(x,0) = f(x)∂
∂y

u1(x,0) = 0∂
∂y

u(0,y) = g(y) u1(0,y) = g(y) u2(0,y) = 0

FIGURE 10.6.3 Laplace’s equation in a quarter-plane.

We assume that g(y) → 0 as y → ∞ and f(x) → 0 as x → ∞, such that u(x, y) → 0 as
both x → ∞ and y → ∞. There are two nonhomogeneous boundary conditions. Thus, it
is convenient to decompose the problem into two, as illustrated in Fig. 10.6.3:

u = u1(x, y) + u2(x, y), (10.6.60)

where

∇2u1 = 0 (10.6.61)

u1(0, y) = g(y) (10.6.62)

∂

∂y
u1(x, 0) = 0 (10.6.63)

∇2u2 = 0 (10.6.64)

u2(0, y) = 0 (10.6.65)

∂

∂y
u2(x, 0) = f(x). (10.6.66)

Here, we will analyze only the problem for u1, leaving the u2-problem for an exercise.
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Cosine transform in y. The u1-problem can be analyzed in two different ways.
The problem is semi-infinite in both x and y. Since u1 is given at x = 0, a Fourier sine
transform in x can be used. However, ∂u1/∂y is given at y = 0, and hence a Fourier cosine
transform in y can also be used. In fact, ∂u1/∂y = 0 at y = 0. Thus, we prefer to use a
Fourier cosine transform in y since we expect the resulting ordinary differential equation
to be homogeneous:

u1(x, y) =
∫ ∞

0

U1(x, ω) cos ωy dω (10.6.67)

U1(x, ω) =
2
π

∫ ∞

0

u1(x, y) cos ωy dy. (10.6.68)

If the u1-problem is Fourier cosine transformed in y, then we obtain

∂2U1

∂x2
− ω2U1 = 0. (10.6.69)

The variable x ranges from 0 to ∞. The two boundary conditions for this ordinary dif-
ferential equation are

U1(0, ω) =
2
π

∫ ∞

0

g(y) cos ωy dy and lim
x→∞U1(x, ω) = 0. (10.6.70)

The general solution of (10.6.69) is

U1(x, ω) = a(ω)e−ωx + b(ω)eωx, (10.6.71)

for x > 0 and ω > 0 only. From the boundary conditions (10.6.70), it follows that

b(ω) = 0 and a(ω) =
2
π

∫ ∞

0

g(y) cos ωy dy. (10.6.72)

Convolution theorem. A simpler form of the solution can be obtained using a
convolution theorem for Fourier cosine transforms. We derived the following in Exercise
10.5.7, where we assume f(x) is even:
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If a Fourier cosine transform in x, H(ω), is the product of two
Fourier cosine transforms, H(ω) = F (ω)G(ω), then

h(x) =
1
π

∫ ∞

0

g(x) [f(x − x) + f(x + x)] dx.

(10.6.73)

In our problem, U1(x, ω), the Fourier cosine transform of u1(x, y), is the product of a(ω),
the Fourier cosine transform of g(y), and e−ωx:

U1(x, ω) = a(ω)e−ωx.

We use the cosine transform pair [see (10.6.67–68)] to obtain the function Q(y),
which has the Fourier cosine transform e−ωx:

Q(y) =
∫ ∞

0

e−ωx cos ωy dω =
∫ ∞

0

e−ωx eiωy + e−iωy

2
dω

=
1
2

(
1

x − iy
+

1
x + iy

)
=

x

x2 + y2
.

Thus, according to the convolution theorem,

u1(x, y) =
x

π

∫ ∞

0

g(y)
[

1
x2 + (y − y)2

+
1

x2 + (y + y)2

]
dy. (10.6.74)

This result also could have been obtained using the Green’s function method (see
Chapter 9). In this case, appropriate image sources may be introduced so as to utilize the
infinite space Green’s function for Laplace’s equation.

Sine transform in x. An alternative method to solve for u1(x, y) is to use the
Fourier sine transform in x:

u1(x, y) =
∫ ∞

0

U1(ω, y) sin ωx dω

U1(ω, y) =
2
π

∫ ∞

0

u1(x, y) sin ωx dx.

The ordinary differential equation for U1(ω, y) is nonhomogeneous:

∂2U1

∂y2
− ω2U1 = − 2

π
ωg(y).

This equation must be solved with the following boundary conditions at y = 0 and y = ∞:

∂U1

∂y
(ω, 0) = 0 and lim

y→∞U1(ω, y) = 0.

This approach is further discussed in the Exercises.
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10.6.5 Heat Equation in a Plane (Two-Dimensional Fourier Transforms)

Transforms can be used to solve problems that are infinite in both x and y. Consider the
heat equation in the x-y plane, −∞ < x < ∞, −∞ < y < ∞:

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
, (10.6.75)

subject to the initial condition

u(x, y, 0) = f(x, y). (10.6.76)

If we separate variables, we obtain product solutions of the form

u(x, y, t) = e−iω1xe−iω2ye−k(ω2
1+ω2

2)t

for all ω1 and ω2. Corresponding to u → 0 as x → ±∞ and y → ±∞ are the bound-
ary conditions that the separated solutions remain bounded, x → ±∞ and y → ±∞.
Thus, these types of solutions are valid for all real ω1 and ω2. A generalized principle of
superposition implies that the form of the integral representation of the solution is

u(x, y, t) =
∫ ∞

−∞

∫ ∞

−∞
A(ω1, ω2)e−iω1xe−iω2ye−k(ω2

1+ω2
2)t dω1 dω2. (10.6.77)

The initial condition is satisfied if

f(x, y) =
∫ ∞

−∞

∫ ∞

−∞
A(ω1, ω2)e−iω1xe−iω2y dω1 dω2.

We will show that we can determine A(ω1, ω2),

A(ω1, ω2) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(x, y)eiω1xeiω2y dx dy, (10.6.78)

completing the solution. A(ω1, ω2) is called the double Fourier transform of f(x, y).

Double Fourier transforms. We have used separation of variables to motivate
two-dimensional Fourier transforms. Suppose that we have a function of two vari-
ables f(x, y) that decays sufficiently fast as x and y → ±∞. The Fourier transform in x
(keeping y fixed, with transform variable ω1) is

F (ω1, y) =
1
2π

∫ ∞

−∞
f(x, y)eiω1x dx;
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its inverse is
f(x, y) =

∫ ∞

−∞
F (ω1, y)e−iω1x dω1.

F (ω1, y) is a function of y that also can be Fourier transformed (here with transform
variable ω2):

F̃ (ω1, ω2) = 1
2π

∫ ∞

−∞
F (ω1, y)eiω2y dy

F (ω1, y) =
∫ ∞

−∞
F̃ (ω1, ω2)e−iω2y dω2.

Combining these, we obtain the two-dimensional (or double) Fourier transform
pair:

F̃ (ω1, ω2) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(x, y)eiω1xeiω2y dx dy (10.6.79)

f(x, y) =
∫ ∞

−∞

∫ ∞

−∞
F̃ (ω1, ω2)e−iω1xe−iω2y dω1 dω2. (10.6.80)

Wave number vector. Let us motivate a more convenient notation. When using
eiωx we refer to ω as the wave number (the number of waves in 2π distance). Here we
note that

eiω1xeiω2y = ei(ω1x+ω2y) = eiω · r,

where r is a position vector8 and ω is a wave number vector:

r = xî + yĵ (10.6.81)

ω = ω1î + ω2ĵ. (10.6.82)

To interpret eiω · r, we discuss, for example, its real part, cos(ω · r) = cos(ω1x + ω2y).
The crests are located at ω1x + ω2y = n(2π), sketched in Fig. 10.6.4. The direction
perpendicular to the crests is ∇(ω1x+ω2y) = ω1î+ω2ĵ = ω. This is called the direction
of the wave. Thus, the wave number vector is in the direction of the wave. We introduce
the magnitude ω of the wave number vector,

ω2 = ω · ω = |ω|2 = ω2
1 + ω2

2 .

The unit vector in the wave direction is ω/ω. If we move a distance s in the wave direction
(from the origin), then r = sω/ω. Thus,

ω · r = sω and cos(ω · r) = cos(ωs).

Thus, ω is the number of waves in 2π distance (in the direction of the wave). We have
justified the name wave number vector for ω; that is, the wave number vector is in
the direction of the wave and its magnitude is the number of waves in 2π
distance (in the direction of the wave).

8In other contexts, we use the notation x for the position vector. Thus r = x.
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ω1x + ω2y = 2πγ

ω1x + ω2y = 0

FIGURE 10.6.4 Two-dimensional wave and its crests.

Using the position vector r = xî + yĵ and the wave number vector ω = ω1î + ω2ĵ,
the double Fourier transform pair, (10.6.79) and (10.6.80), becomes

F (ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(r)eiω · r d2r (10.6.83)

f(r) =
∫ ∞

−∞

∫ ∞

−∞
F (ω)e−iω · r d2ω, (10.6.84)

where f(r) = f(x, y), d2r = dx dy, d2ω = dω1 dω2, and F (ω) is the double Fourier
transform of f(r).

Using the notation F [u(x, y, t)] for the double spatial Fourier transform of
u(x, y, t), we have the following easily verified fundamental properties:

F
[
∂u

∂t

]
=

∂

∂t
F [u] (10.6.85)

F
[
∂u

∂x

]
= −iω1F [u] (10.6.86)

F
[
∂u

∂y

]
= −iω2F [u] (10.6.87)

F [∇2u
]

= −ω2F [u], (10.6.88)

where ω2 = ω · ω = ω2
1 + ω2

2 , as long as u decays sufficiently rapidly as x and y → ±∞.
A short table of the double Fourier transform appears at the end of this subsection.
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Heat equation. Instead of using the method of separation of variables, the two-
dimensional heat equation (10.6.75) can be directly solved by applying the double Fourier
transform it:

∂U

∂t
= −kω2U, (10.6.89)

where U is the double spatial Fourier transform of u(x, y, t):

F [u] = U(ω, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
u(x, y, t)eiω · r dx dy. (10.6.90)

The elementary solution of (10.6.89) is

U(ω, t) = A(ω)e−kω2t. (10.6.91)

Applying (10.6.76), A(ω) is the Fourier transform of the initial condition:

A(ω) = U(ω, 0) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(x, y)eiω · r dx dy. (10.6.92)

Thus, the solution of the two-dimensional heat equation is

u(x, y, t) =
∫ ∞

−∞

∫ ∞

−∞
U(ω, t)e−iω · r dω1 dω2

=
∫ ∞

−∞

∫ ∞

−∞
A(ω)e−kω2te−iω · r dω1 dω2.

(10.6.93)

This verifies what was suggested earlier by separation of variables.

Application of convolution theorem. In an exercise, we show that a convo-
lution theorem holds directly for double Fourier transforms: If H(ω) = F (ω)G(ω),
then

h(r) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(r0)g(r − r0) dx0 dy0. (10.6.94)

For the two-dimensional heat equation, we have shown that U(ω, t) is the product of
e−kω2t and A(ω), the double Fourier transform of the initial condition. Thus, we need to
determine the function whose double Fourier transform is e−kω2t:∫ ∞

−∞

∫ ∞

−∞
e−kω2te−iω · r dω1 dω2 =

∫ ∞

−∞
e−kω2

1te−iω1x dω1

∫ ∞

−∞
e−kω2

2te−iω2y dω2

=
√

π

kt
e−x2/4kt

√
π

kt
e−y2/4kt =

π

kt
e−r2/4kt.
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The inverse transform of e−kω2t is the product of the two one-dimensional inverse trans-
forms; it is a two-dimensional Gaussian, (π/kt)e−r2/4kt, where r2 = x2 + y2. In this
manner, the solution of the initial value problem for the two-dimensional heat equation
on an infinite plane is

u(x, y, t) =
∫ ∞

−∞

∫ ∞

−∞
f(x0, y0)

1
4πkt

exp
[
− (x − x0)2 + (y − y0)2

4kt

]
dx0 dy0. (10.6.95)

The influence function for the initial condition is

g(x, y, t;x0, y0, 0) =
1

4πkt
exp

[
− (x − x0)2 + (y − y0)2

4kt

]
=

1
4πkt

e−|r−r0|2/4kt.

It expresses the effect at x, y (at time t) due to the initial heat energy at x0, y0.
The influence function is the fundamental solution of the two-dimensional heat equa-
tion, obtained by letting the initial condition be a two-dimensional Dirac delta function,
f(x, y) = δ(x)δ(y), concentrated at the origin. The fundamental solution for the
two-dimensional heat equation is the product of the fundamental solutions of
two one-dimensional heat equations.

10.6.6 Table of Double Fourier Transforms

We present a short table of double Fourier transforms (Table 10.6.1).

TABLE 10.6.1: Double Fourier Transform

f(r)

=

∫ ∞

−∞

∫ ∞

−∞
F (ω)e−iω·r dω1 dω

F (ω)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(r)eiω·r dx dy

Reference

∂f

∂x
,
∂f

∂y
∇2f

−iω1F (ω), −iω2F (ω)

−ω2F (ω)

⎫⎬
⎭

Derivatives
(Section 10.6.5)

π
β e−r2/4β e−βω2 Gaussian

(Section 10.6.5)
f(r − β) eiω · βF (ω) Exercise 10.6.8

1
(2π)2

∫∞
−∞

∫∞
−∞ f(r0)g(r − r0) dx0 dy0 F (ω)G(ω)

Convolution
(Exercise 10.6.7)
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EXERCISES 10.6

10.6.1. Solve
∂2u

∂x2
+

∂2u

∂y2
= 0 for 0 < y < H,−∞ < x < ∞,

subject to

*(a) u(x, 0) = f1(x) and u(x, H) = f2(x)

(b) ∂
∂y u(x, 0) = f1(x) and u(x, H) = f2(x)

(c) u(x, 0) = 0 and ∂u
∂y (x, H) + hu(x, H) = f(x)

10.6.2. Solve
∂2u

∂x2
+

∂2u

∂y2
= 0 for 0 < x < L, y > 0

subject to the following boundary conditions. If there is a solvability condition, state
it and explain it physically:

(a) ∂u
∂x (0, y) = 0, ∂u

∂x (L, y) = g(y), ∂u
∂y (x, 0) = 0

*(b) u(0, y) = g1(y), ∂u
∂x (L, y) = 0, ∂u

∂y (x, 0) = 0

(c) ∂u
∂x (0, y) = 0, ∂u

∂x (L, y) = 0, ∂u
∂y (x, 0) = f(x)

(d) ∂u
∂x (0, y) = g1(y), ∂u

∂x (L, y) = g2(y), u(x, 0) = f(x)

10.6.3. (a) Solve

∂2u

∂x2
+

∂2u

∂y2
= 0 for x < 0,−∞ < y < ∞,

subject to u(0, y) = g(y).

(b) Determine the simplest form of the solution if

g(y) =
{

0 |y| > 1
1 |y| < 1.

10.6.4. Solve

∂2u

∂x2
+

∂2u

∂y2
= 0 for x > 0, y > 0

subject to

*(a) u(0, y) = 0 and ∂u
∂y (x, 0) = f(x) [Hint: Invert ∂U

∂y .]

(b) u(0, y) = 0 and u(x, 0) = f(x)

10.6.5. Reconsider Exercise 10.6.4(a). Let w = ∂u/∂y. Show that w satisfies Exercise
10.6.4(b). In this manner solve both Exercises 10.6.4(a) and (b).

10.6.6. Consider (10.6.61) with (10.6.62)–(10.6.63). In the text we, introduce the Fourier
cosine transform in y. Instead, here we introduce the Fourier sine transform in x.
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(a) Solve for U1(ω, y) if
∂2U1

∂y2
− ω2U1 = − 2

π ωg(y)

∂U1
∂y (ω, 0) = 0

limy→∞ U1(ω, y) = 0.

[Hint: See (9.3.9)–(9.3.14) or (13.3.10), using exponentials.]

(b) Derive u1(x, y). Show that (10.6.74) is valid.

10.6.7. Derive the two-dimensional convolution theorem, (10.6.94).
10.6.8. Derive the following shift theorem for two-dimensional Fourier transforms: The in-

verse transform of eiω · βF (ω) is f(r − β).
10.6.9. Solve

∂u

∂t
+ v0 · ∇u = k∇2u

t > 0
−∞ < x < ∞, −∞ < y < ∞

subject to the initial condition

u(x, y, 0) = f(x, y).

(Hint: See Exercise 10.6.7.) Show how the influence function is altered by the con-
vection term v0 · ∇u.

10.6.10. Solve
∂u

∂t
= k1

∂2u

∂x2
+ k2

∂2u

∂y2

t > 0
−∞ < x < ∞, −∞ < y < ∞

subject to the initial condition

u(x, y, 0) = f(x, y).

10.6.11. Consider
∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
,

x > 0
y > 0

subject to the initial condition

u(x, y, 0) = f(x, y).

Solve with the following boundary conditions:

*(a) u(0, y, t) = 0 and u(x, 0, t) = 0

(b)
∂u

∂x
(0, y, t) = 0 and

∂u

∂y
(x, 0, t) = 0

(c) u(0, y, t) = 0 and
∂u

∂y
(x, 0, t) = 0

10.6.12. Consider
∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
,

0 < x < L
y > 0

subject to the initial condition

u(x, y, 0) = f(x, y).
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Solve with the following boundary conditions:

∗ (a) u(0, y, t) = 0, u(L, y, t) = 0, u(x, 0, t) = 0

(b) u(0, y, t) = 0, u(L, y, t) = 0, ∂u
∂y (x, 0, t) = 0

(c)
∂u

∂x
(0, y, t) = 0,

∂u

∂x
(L, y, t) = 0,

∂u

∂y
(x, 0, t) = 0

10.6.13. Solve

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2

)
,

t > 0
0 < y < H

−∞ < x < ∞

subject to the initial condition

u(x, y, 0) = f(x, y)

and the boundary conditions
u(x, 0, t) = 0

u(x, H, t) = 0.

10.6.14. (a) Without deriving or applying a convolution theorem, solve for u(x, y, z, t):

∂u

∂t
= k

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

such that

u(x, y, z, 0) = f(x, y, z)

u(x, y, 0, t) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

with

t > 0
−∞ < x < ∞
−∞ < y < ∞
0 < z < ∞.

(b) Simplify your answer (developing convolution ideas, as needed).
10.6.15. Consider

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0, z > 0

u(x, y, 0) = f(x, y). −∞ < x < ∞, −∞ < y < ∞

*(a) Determine the double Fourier transform of u.

*(b) Solve for u(x, y, z) by calculating the inversion integral in polar coordinates.
[Hints: It is easier first to solve for w, where u = ∂w/∂z. Then the following
integral may be useful:

∫ 2π

0

dθ

a2 sin2 θ + b2 cos2 θ
=

2π

ab
.

(This integral may be derived using the change of variables z = eiθ and the
theory of complex variables.)]

(c) Compare your result with the Green’s function result.
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10.6.16. Consider Laplace’s equation
∇2u = 0

inside a quarter-circle (Fig. 10.6.5) (a finite region) subject to the boundary con-
ditions

u(a, θ) = f(θ), u(r, 0) = g1(r), u
(
r,

π

2

)
= g2(r).

FIGURE 10.6.5

u = g2(r)

u = g1(r)

u = f(θ)

(a) Divide u = u1 + u2 + u3 into three problems such that

u1(a, θ) = 0, u2(a, θ) = 0, u3(a, θ) = f(θ)

u1(r, 0) = g1(r), u2(r, 0) = 0, u3(r, 0) = 0

u1

(
r, π

2

)
= 0, u2

(
r, π

2

)
= g2(r), u3

(
r, π

2

)
= 0.

Solve for u3(r, θ).
*(b) Solve for u2(r, θ). [Hints: Try to use the method of separation of variables,

u2(r, θ) = φ(r)h(θ). Show that φ(r) = sin[
√

λ ln(r/a)] for all λ > 0. It will be
necessary to use a Fourier sine transform in the variable ρ = − ln(r/a).] [Com-
ments: Here, a singular Sturm–Liouville problem on a finite interval occurs that
has a continuous spectrum. For the wave equation on a quarter-circle, the cor-
responding singular Sturm–Liouville problem (involving Bessel functions) has
a discrete spectrum.]

10.6.17. Reconsider the problem for u2(r, θ) described in Exercise 10.6.16(b). Introduce the
independent variable ρ = − ln(r/a) instead of r. [Comment: In complex variables
this is the conformal transformation

w = − ln
(

z

a

)
, where z = x + iy

(i.e., ln(z/a) = ln |z/a| + iθ).]
(a) Determine the partial differential equation for u2 in the variables ρ and θ.

Sketch the boundary in Cartesian coordinates, ρ and θ.
(b) Solve this problem. (Hint: Section 10.6.2 may be helpful.)
(c) Compare to Exercise 10.6.16.

*10.6.18. Solve
∂2u

∂t2
= c2

∂2u

∂x2
, −∞ < x < ∞, t > 0

u(x, 0) = 0,

∂u
∂t (x, 0) = g(x).

(Hint: Use the convolution theorem and see Exercise 10.3.6.)
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10.6.19. For the problem in Section 10.6.1, we showed that

U(ω, t) = F (ω) cos cωt.

Obtain u(x, t) using the convolution theorem. (Hint: cos cωt does not have an or-
dinary inverse Fourier transform. However, obtain the inverse Fourier transform of
cos cωt using Dirac delta functions.)

10.6.20. Consider Exercise 10.6.17 for u3(r, θ) rather than u2(r, θ).
10.6.21. Solve the wave equation, −∞ < x < ∞,

∂2u

∂t2
= c2

∂2u

∂x2

(a) subject to the conditions u(x, 0) = f(x) and ∂u
∂t (x, 0) = 0

(b) subject to the conditions u(x, 0) = 0 and ∂u
∂t (x, 0) = g(x)

10.6.22. Solve ∂2u
∂x2 + ∂2u

∂y2 = 0, with x > 0 and y > 0, subject to u(x, 0) = 0, u(0, y) = g(y).
Simplify as much as possible.

10.7 SCATTERING AND INVERSE SCATTERING

In our previous work, we have studied eigenvalue problems with a discrete spectrum
and eigenvalue problems with a continuous spectrum. In this section, we briefly study
an eigenvalue problem with both a continuous spectrum and a discrete spectrum. One
motivation of this is from separation of variables [ψ(x, t) = e−iλtφ(x)] for the normalized
version of the Schrodinger equation from quantum mechanics, i∂ψ

∂t = −∂2ψ
∂x2 + u(x)ψ.

If the potential u(x) is time independent, then we obtain the boundary value problem

d2φ

dx2
+ (λ − u(x))φ = 0. (10.7.1)

We will assume u(x) decays sufficiently fast as x → ±∞ so that we will be interested in
solutions to the partial differential equation that decay to zero as x → ±∞. If u(x) = 0,
then λ = k2 > 0 is the continuous spectrum so that φ(x) = e±ikx corresponds to the
Fourier transform. If u(x) �= 0, then the differential equation (10.7.1) usually cannot be
solved exactly, so that we will discuss theoretical aspects of (10.7.1). We claim that there
is always a continuous spectrum analogous to the Fourier transform and that there may
also be a discrete spectrum.

Continuous spectrum. If u(x) → 0 sufficiently fast as x → ±∞, then intu-
itively (which can be derived mathematically) φ(x) should be approximated by e±ikx as
x → ±∞. It is helpful to imagine that e−ikx corresponds to a left-going wave [since the cor-
responding time-dependent solution e−ikxe−ik2t = e−ik(x+kt) is left-going for k > 0] and
that e+ikx corresponds to a right-going wave. We analyze a special solution of (10.7.1) that
corresponds to an incoming wave (left-going from the right as x → +∞) of unit amplitude.
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The variable coefficient (potential) u(x) causes some reflection, and the amplitude trans-
mitted is also changed so that

φ(x) ∼ e−ikx + R(k)e+ikx as x → +∞ (10.7.2)

φ(x) ∼ T (k)e−ikx as x → −∞, (10.7.3)

where R(k) is called the reflection coefficient and T (k) the transmission coefficient.
The reflection and transmission coefficients are complex and can be shown to satisfy
a conservation of energy equation |R|2 + |T |2 = 1. Other solutions to (10.7.1) can be
obtained.

Discrete spectrum. There can be a discrete set of negative eigenvalues λ that
satisfy (10.7.1) subject to the boundary condition that φ(x) → 0 as x → ±∞:

λ = −κ2
n(with κn > 0), n = 1, 2,. . . , N. (10.7.4)

The corresponding eigenfunctions φn(x) are known as bound states and may be chosen
to satisfy

φn(x) ∼ cne−κnxas x → +∞ (10.7.5)

∫ ∞
−∞ φ2

n(x) dx = 1. (10.7.6)

In order for the integral to be finite, the eigenfunction must decay exponentially as both
x → ±∞. Other normalizations (10.7.6) of the bound states are possible. In general,
for bound states (λ < 0), it can be shown from differential equation (10.7.1) that if the
coefficient λ − u(x) < 0 for all x, then the solution is like an exponential of one kind for
all x and cannot be a bound state. Thus we conclude that a necessary (but not sufficient)
condition for a bound state is that u(x) must be less than zero somewhere.

Example of continuous spectrum: Delta function potential

As an elementary example, we assume the potential u(x) is a Dirac delta function

u(x) = Uδ(x), (10.7.7)

and we assume φ is continuous and dφ
dx satisfies the corresponding jump condition. The

differential equation is easy for x �= 0 so that (10.7.2) and (10.7.3) are valid not only
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asymptotically but also for x > 0 and x < 0, respectively. The continuity of φ(x) at x = 0
implies

1 + R(k) = T (k). (10.7.8)

The jump condition dφ
dx

∣∣∣0+
0−

= Uφ(0) becomes

−ik + ikR(k) + ikT (k) = UT (k). (10.7.9)

Some elementary algebraic steps are necessary to show that R(k) = U
2ik−U and T (k) =

2ik
2ik−U . In this example we can show that |R|2 + |T |2 = 1, which is a general result.

Example of discrete eigenvalues and eigenfunctions: Delta function potential.

For the delta function potential (10.7.7), (10.7.5) is valid for x > 0, while it is simpler to
note that φn(x) = bneκnx for x < 0. The continuity at x = 0 implies that bn = cn. The

jump condition at x = 0, dφn

dx

∣∣∣0+
0−

= Uφn(0), becomes −cnκn − cnκn = Ucn. From this we

obtain
κn = −1

2
U. (10.7.10)

Since κn > 0, there are no discrete eigenvalues for the delta function potential if U > 0,
but there is exactly one discrete negative eigenvalue if U < 0, namely,

λ = −κ2
n = −1

4
U2. (10.7.11)

A bound state exists only for the negative delta function, which is consistent with the
necessary condition mentioned previously: that u(x) must be less than zero somewhere
for a bound state to exist.

Inverse scattering. For a long time, theorists wondered whether a unique po-
tential could be determined from the reflection and transmission coefficients. Gelfand and
Levitan (1955) proved the remarkable result that the potential could be uniquely deter-
mined if the reflection and transmission coefficients were supplemented by the knowledge
of the discrete spectrum. In particular, the potential could be reconstructed from

u(x) = −2
d

dx
K(x, x), (10.7.12)

where K(x, y) is the unique solution of the Gelfand–Levitan–Marchenko nonhomogeneous
linear integral equation

K(x, y) + F (x + y) +
∫ ∞

x

K(x, z)F (y + z)dz = 0, for y > x. (10.7.13)
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The kernel and nonhomogeneous term F (s) is the generalized inverse Fourier transform of
the reflection coefficient R(k) (10.7.2) and hence includes contributions from the discrete
spectrum (10.7.5) as well:

F (s) =
∑N

n=1 c2
ne−κns +

1
2π

∫ ∞

−∞
R(k)eiks dk. (10.7.14)

Here λ = −κ2
n are the discrete eigenvalues, and cn are related to the bound states.

EXERCISES 10.7

10.7.1. Consider the step potential u(x) = U for −1 < x < 1 and u(x) = 0 otherwise.

(a) Find reflection and transmission coefficients if U < 0.

(b) By solving (10.7.1), determine the discrete spectrum (λ = −κ2 with κ > 0).
[Hints: (i) Since we claim λ − u(x) must be greater than zero somewhere, you
may assume U < λ = −κ2. (ii) The algebra is easier if even and odd bound
states are analyzed separately.]

(c) Find reflection and transmission coefficients (for all positive λ) if U > 0.

10.7.2. Show that |R|2 + |T |2 = 1 for the delta function potential in the text.
10.7.3. (a) Show that the Wronskian W (φ1, φ2) = φ1φ1

2 − φ2φ1
1 of two independent solu-

tions of (10.7.1) is a constant.

(b) φ(x) satisfying (10.7.2) and (10.7.3) and its complex conjugate φ∗(x) are two
linearly independent solutions of (10.7.1). By computing the Wronskian of these
two solutions using the asymptotic conditions as x → ±∞, show that |R|2 +
|T |2 = 1.

10.7.4. Orthogonality conditions

(a) Show that the discrete eigenfunctions are orthogonal to eigenfunctions of the
continuous spectrum.

(b) Show that one discrete eigenfunction is orthogonal to another discrete eigen-
function.

10.7.5. (a) Show that a pole of the transmission coefficient in the upper-half complex
k-plane corresponds to a value of the discrete spectrum.

(b) Verify that this occurs for the delta function example in the text.
10.7.6. A reflectionless potential is one in which the reflection coefficient is zero for all

k. Find an example of a reflectionless potential by solving the Gelfand–Levitan–
Marchenko integral equation (10.7.13). Assume there is one discrete eigenvalue
λ = −κ2, and assume the corresponding coefficient c2 is given. (Hint: The inte-
gral equation is separable.)
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Green’s Functions for Wave
and Heat Equations

11.1 INTRODUCTION

In Chapter 9 we had some success in obtaining Green’s functions for time-independent
problems. One particularly important idea was the use of infinite space Green’s functions.
Here we will analyze Green’s functions for the heat and wave equations. Problems with
one, two, and three spatial dimensions will be considered. We will derive Green’s formulas
for the heat and wave equation and use them to represent the solution of nonhomogeneous
problems (nonhomogeneous sources and nonhomogeneous boundary conditions) in terms
of the Green’s function. We will obtain elementary formulas for these infinite space Green’s
functions. For the wave equation, we will derive the one-dimensional infinite space Green’s
function by utilizing the general solution of the one-dimensional wave equation. We will
derive the infinite space Green’s function for the three-dimensional wave equation by
making a well-known transformation to a one-dimensional wave equation. For the heat
equation, we will derive the infinite space Green’s function by comparing the Green’s
function with the appropriate solution of the initial value problem for the infinite space
heat equation solved in Chapter 10.

11.2 GREEN’S FUNCTIONS FOR THE WAVE EQUATION

11.2.1 Introduction

In this section we solve the wave equation with possibly time-dependent sources,

∂2u

∂t2
= c2∇2u + Q(x, t), (11.2.1)

subject to the two initial conditions,

u(x, 0) = f(x) (11.2.2)

∂u

∂t
(x, 0) = g(x). (11.2.3)

499
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If the problem is on a finite or semi-infinite region, then in general, u(x, t) will satisfy
nonhomogeneous conditions on the boundary. We will determine simultaneously how to
solve this problem in one, two, and three dimensions. (In one dimension ∇2 = ∂2/∂x2.)

We introduce the Green’s function G(x, t;x0, t0) as a solution due to a concentrated
source at x = x0 acting instantaneously only at t = t0:

∂2G

∂t2
= c2∇2G + δ(x − x0)δ(t − t0), (11.2.4)

where δ(x − x0) is the Dirac delta function of the appropriate dimension. For finite
or semi-infinite problems, G will satisfy the related homogeneous boundary conditions
corresponding to the nonhomogeneous ones satisfied by u(x, t).

The Green’s function is the response at x at time t due to a source located at x0 at
time t0. Since we desire the Green’s function G to be the response due only to this source
acting at t = t0 (not due to some nonzero earlier conditions), we insist that the response
G will be zero before the source acts (t < t0):

G(x, t;x0, t0) = 0 for t < t0, (11.2.5)

known as the causality principle (see Section 9.2).
The Green’s function G(x, t;x0, t0) depends on only the time after the occurrence

of the concentrated source. If we introduce the elapsed time, T = t − t0,

∂2G

∂T 2
= c2∇2G + δ(x − x0)δ(T )

G = 0 for T < 0,

then G is also seen to be the response due to a concentrated source at x = x0 at T = 0.
We call this the translation property,

G(x, t;x0, t0) = G(x, t − t0;x0, 0). (11.2.6)

11.2.2 Green’s Formula for the Wave Equation

Before solving for the Green’s function (in various dimensions), we will show how the
solution of the nonhomogeneous wave equation (11.2.1) (with nonhomogeneous initial
and boundary conditions) is obtained using the Green’s function. For time-independent
problems (nonhomogeneous Sturm–Liouville type or the Poisson equation), the relation-
ship between the nonhomogeneous solution and the Green’s function was obtained using
Green’s formula:
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Sturm–Liouville operator [L = d/dx(p d/dx) + q]:

∫ b

a

[uL(v) − vL(u)] dx = p

(
u

dv

dx
− v

du

dx

)∣∣∣∣∣
b

a

. (11.2.7)

Three-dimensional Laplacian (L = ∇2):
∫∫∫

[uL(v) − vL(u)] d3x =
∫∫
�

�

�

�(u∇v − v∇u) · n̂ dS, (11.2.8)

where d3x = dV = dx dy dz. There is a corresponding result for the two-dimensional
Laplacian.

To extend these ideas to the nonhomogeneous wave equation, we introduce the
appropriate linear differential operator:

L =
∂2

∂t2
− c2∇2. (11.2.9)

Using this notation, the nonhomogeneous wave equation (11.2.1) satisfies

L(u) = Q(x, t), (11.2.10)

while the Green’s function (11.2.4) satisfies

L(G) = δ(x − x0)δ(t − t0). (11.2.11)

For the wave operator L [see (11.2.9)], we will derive a Green’s formula analogous to
(11.2.7) and (11.2.8). We will use a notation corresponding to three dimensions but
will make clear modifications (when necessary) for one and two dimensions. For time-
dependent problems, L has both space and time variables. Formulas analogous to (11.2.7)
and (11.2.8) are expected to exist, but integration will occur over both space x and time
t. Since for the wave operator

uL(v) − vL(u) = u
∂2v

∂t2
− v

∂2u

∂t2
− c2(u∇2v − v∇2u),

the previous Green’s formulas will yield the new “Green’s formula for the wave
equation”:

∫ tf

ti

∫∫∫
[uL(v) − vL(u)] d3x dt

=
∫∫∫ (

u
∂v

∂t
− v

∂u

∂t

)∣∣∣∣
tf

ti

d3x − c2

∫ tf

ti

(∫∫
�

�

�

�(u∇v − v∇u) · n̂ dS

)
dt,

(11.2.12)
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x
x = a

t = tf

t

x = b

t = ti

FIGURE 11.2.1 Space-time boundaries for a one-dimensional wave equation.

where
∫∫∫

indicates integration over the three-dimensional space (
∫ b

a
for one-dimensional

problems) and
∫∫
�
�
�
� indicates integration over its boundary (|ba for one-dimensional prob-

lems). The terms on the right-hand side represent contributions from the boundaries: the
spatial boundaries for all time and the temporal boundaries (t = ti and t = tf ) for all
space. These space-time boundaries are illustrated (for a one-dimensional problem) in
Fig. 11.2.1.

For example, if both u and v satisfy the usual type of homogeneous boundary
conditions (in space, for all time), then

∫∫
�
�
�
�(u∇v − v∇u) · n̂ dS = 0, but

∫∫∫ (
u

∂v

∂t
− v

∂u

∂t

)∣∣∣∣
tf

ti

d3x

may not equal zero due to contributions from the “initial” time ti and “final” time tf .

11.2.3 Reciprocity

For time-independent problems, we have shown that the Green’s function is symmetric,
G(x,x0) = G(x0,x). We proved this result using Green’s formula for two different Green’s
functions [G(x,x1) and G(x,x2)]. The result followed because the boundary terms in
Green’s formula vanished.

For the wave equation there is a somewhat analogous property. The Green’s function
G(x, t;x0, t0) satisfies

∂2G

∂t2
− c2∇2G = δ(x − x0)δ(t − t0), (11.2.13)

subject to the causality principle,

G(x, t;x0, t0) = 0 for t < t0. (11.2.14)

G will be nonzero for t > t0. To utilize Green’s formula (to prove reciprocity), we need
a second Green’s function. If we choose it to be G(x, t;xA, tA), then the contribution∫ tf

ti

∫∫
�
�
�
�(u∇v − v∇u) · n̂ dS dt on the spatial boundary (or infinity) vanishes, but the

contribution
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∫∫∫ (
u

∂v

∂t
− v

∂u

∂t

)∣∣∣∣
tf

ti

d3x

on the time boundary will not vanish at both t = ti and t = tf . In time, our problem
is an initial value problem, not a boundary value problem. If we let ti ≤ t0 in Green’s
formula, the “initial” contribution will vanish.

For a second Green’s function, we are interested in varying the source time t,
G(x, t1;x1, t), what we call the source-varying Green’s function. From the trans-
lation property,

G(x, t1;x1, t) = G(x,−t;x1,−t1), (11.2.15)

since the elapsed times are the same [−t − (−t1) = t1 − t]. By causality, these are zero if
t1 < t (or, equivalently, −t < −t1):

G(x, t1;x1, t) = 0, t > t1. (11.2.16)

We call this the source-varying causality principle. By introducing this Green’s func-
tion, we will show that the “final” contribution from Green’s formula may vanish.

To determine the differential equation satisfied by the source-varying Green’s func-
tion, we let t = −τ , in which case, from (11.2.15),

G(x, t1;x1, t) = G(x, τ ;x1,−t1).

This is the ordinary (variable-response position) Green’s function, with τ being the time
variable. It has a concentrated source located at x = x1 when τ = −t1 (t = t1):(

∂2

∂τ2
− c2∇2

)
G(x, t1;x1, t) = δ(x − x1)δ(t − t1).

Since τ = −t, from the chain rule ∂/∂τ = −∂/∂t, but ∂2/∂τ2 = ∂2/∂t2. Thus, the wave
operator is symmetric in time, and therefore

(
∂2

∂t2
− c2∇2

)
G(x, t1;x1, t) = L[G(x, t1;x1, t)] = δ(x − x1)δ(t − t1).

(11.2.17)

A reciprocity formula results from Green’s formula (11.2.12) using two Green’s func-
tions, one with varying response time,

u = G(x, t;x0, t0), (11.2.18)

and one with varying source time,

v = G(x, t1;x1, t). (11.2.19)
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Both satisfy partial differential equations involving the same wave operator, L = ∂2

∂t2 −
c2∇2. We integrate from t = −∞ to t = +∞ in Green’s formula (11.2.12) (i.e., ti = −∞
and tf = +∞). Since both Green’s functions satisfy the same homogeneous boundary
conditions, Green’s formula (11.2.12) yields

∫ ∞

−∞

∫∫∫
[uδ(x − x1)δ(t − t1) − vδ(x − x0)δ(t − t0)] d3x dt

=
∫∫∫ (

u
∂v

∂t
− v

∂u

∂t

)∣∣∣∣
+∞

−∞
d3x. (11.2.20)

From the causality principles, u and ∂u/∂t vanish for t < t0, and v and ∂v/∂t vanish for
t > t1. Thus, the r.h.s. of (11.2.20) vanishes. Consequently, using the properties of the
Dirac delta function, u at x = x1, t = t1 equals v at x = x0, t = t0:

G(x1, t1;x0, t0) = G(x0, t1;x1, t0), (11.2.21)

the reciprocity formula for the Green’s function for the wave equation. Assuming that
t1 > t0, the response at x1 (at time t1) due to a source at x0 (at time t0) is the same
as the response at x0 (at time t1) due to a source at x1, as long as the elapsed times
from the sources are the same. In this case it is seen that interchanging the source and
location points has no effect, what we called Maxwell reciprocity for time-independent
Green’s functions.

11.2.4 Using the Green’s Function

As with our earlier work, the relationship between the Green’s function and the solution
of the nonhomogeneous problem is established using the appropriate Green’s formula,
(11.2.12). We let

u = u(x, t) (11.2.22)

v = G(x, t0;x0, t) = G(x0, t0;x, t), (11.2.23)

where u(x, t) is the solution of the nonhomogeneous wave equation satisfying

L(u) = Q(x, t)

subject to the given initial conditions for u(x, 0) and ∂u/∂t(x, 0), and where
G(x, t0;x0, t) is the source-varying Green’s function satisfying (11.2.17):

L[G(x, t0;x0, t)] = δ(x − x0)δ(t − t0)

subject to the source-varying causality principle

G(x, t0;x0, t) = 0 for t > t0.
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G satisfies homogeneous boundary conditions, but u may not. We use Green’s formula
(11.2.12) with ti = 0 and tf = t0+; we integrate just beyond the appearance of a concen-
trated source at t = t0:∫ t0+

0

∫∫∫
[u(x, t)δ(x − x0)δ(t − t0) − G(x, t0;x0, t)Q(x, t)]d3x dt

=
∫∫∫ (

u
∂v

∂t
− v

∂u

∂t

)∣∣∣∣
t0+

0

d3x − c2

∫ t0+

0

[∫∫
�

�

�

�(u∇v − v∇u) · n̂ dS

]
dt.

At t = t0+, v = 0 and ∂v/∂t = 0, since we are using the source-varying Green’s function.
We obtain, using the reciprocity formula (11.2.21),

u(x0, t0) =
∫ t0+

0

∫∫∫
G(x0, t0;x, t)Q(x, t) d3x dt

+
∫∫∫ [

∂u

∂t
(x, 0)G(x0, t0;x, 0) − u(x, 0)

∂

∂t
G(x0, t0;x, 0)

]
d3x

−c2

∫ t0+

0

[∫∫
�

�

�

� (u(x, t)∇G(x0, t0;x, t) − G(x0, t0;x, t)∇u(x, t)) · n̂ dS

]
dt.

It can be shown that t0+ may be replaced by t0 in these limits. If the roles of x and x0

are interchanged (as well as t and t0), we obtain a representation formula for u(x, t) in
terms of the Green’s function G(x, t;x0, t0):

u(x, t) =
∫ t

0

∫∫∫
G(x, t;x0, t0)Q(x0, t0) d3x0 dt0

+
∫∫∫ [

∂u

∂t0
(x0, 0)G(x, t;x0, 0) − u(x0, 0)

∂

∂t0
G(x, t; x0, 0)

]
d3x0

−c2
∫ t

0

[∫∫
�

�

�

�(u(x0, t0)∇x0G(x, t;x0, t0)−G(x, t;x0, t0)∇x0u(x0, t0)) · n̂ dS0

]
dt0.

(11.2.24)

Note that ∇x0 means a derivative with respect to the source position. Equation (11.2.24)
expresses the response due to the three kinds of nonhomogeneous terms: source terms,
initial conditions, and nonhomogeneous boundary conditions. In particular, the initial
position u(x0, 0) has an influence function

− ∂

∂t0
G(x, t;x0, 0)

(meaning the source time derivative evaluated initially), while the influence function for
the initial velocity is G(x, t;x0, 0).

Furthermore, for example, if u is given on the boundary, then G satisfies the related
homogeneous boundary condition; that is, G = 0 on the boundary. In this case the
boundary term in (11.2.24) simplifies to
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−c2

∫ t

0

[∫∫
�

�

�

�u(x0, t0)∇x0G(x, t;x0, t0) · n̂ dS0

]
dt0.

The influence function for this nonhomogeneous boundary condition is

−c2∇x0G(x, t;x0, t0) · n̂.

This is −c2 times the source outward normal derivative of the Green’s function.

11.2.5 Green’s Function for the Wave Equation

We recall that the Green’s function for the wave equation satisfies (11.2.4) and (11.2.5):

∂2G

∂t2
− c2∇2G = δ(x − x0)δ(t − t0) (11.2.25)

G(x, t;x0, t0) = 0 for t < t0, (11.2.26)

subject to homogeneous boundary conditions. We will describe the Green’s function in a
different way.

11.2.6 Alternate Differential Equation for the Green’s Function

Using Green’s formula, the solution of the wave equation with homogeneous boundary
conditions and with no sources, Q(x, t) = 0, is represented in terms of the Green’s func-
tion by (11.2.24),

u(x, t) =
∫∫∫ [

∂u

∂t0
(x0, 0)G(x, t;x0, 0) − u(x0, 0)

∂

∂t0
G(x, t;x0, 0)

]
d3x0.

From this we see that G is also the influence function for the initial condition for the
derivative ∂u

∂t , while − ∂G
∂t0

is the influence function for the initial condition for u. If we
solve the wave equation with the initial conditions u = 0 and ∂u

∂t = δ(x − x0), the
solution is the Green’s function itself. Thus, the Green’s function G(x, t;x0, t0) satisfies
the ordinary wave equation with no sources,

∂2G

∂t2
− c2∇2G = 0, (11.2.27)

subject to homogeneous boundary conditions and the specific concentrated initial condi-
tions at t = t0:

G = 0 (11.2.28)

∂G

∂t
= δ(x − x0). (11.2.29)
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The Green’s function for the wave equation can be determined directly from the
initial value problem (11.2.27)–(11.2.29) rather than from its defining differential
equation (11.2.4) or (11.2.26). Exercise 11.2.9 outlines another derivation of (11.2.27)–
(11.2.29) in which the defining equation (11.2.4) is integrated from t0− until t0+.

11.2.7 Infinite Space Green’s Function for the One-Dimensional Wave Equation
and d’Alembert’s Solution

We will determine the infinite space Green’s function by solving the one-dimensional
wave equation, ∂2G

∂t2 − c2 ∂2G
∂x2 = 0, subject to initial conditions (11.2.28) and (11.2.29).

In Chapter 12 (briefly mentioned in Chapter 4) it is shown that there is a remarkable
general solution of the one-dimensional wave equation,

G = f(x − ct) + g(x + ct), (11.2.30)

where f(x−ct) is an arbitrary function moving to the right with velocity c and g(x+ct) is
an arbitrary function moving to the left with velocity −c. It can be verified by direct
substitution that (11.2.30) solves the wave equation. For ease, we assume t0 = 0 and
x0 = 0. Since from (11.2.28), G = 0 at t = 0, it follows that in this case g(x) = −f(x),
so that G = f(x − ct) − f(x + ct). We calculate ∂G

∂t = −cdf(x−ct)
d(x−ct) − cdf(x+ct)

d(x+ct) . In order to

satisfy the initial condition (11.2.29), δ(x) = ∂G
∂t |t=0 = −2cdf(x)

dx . By integration, f(x) =
− 1

2cH(x)+k, where H(x) is the Heaviside step function (and k is an unimportant constant
of integration):

G(x, t; 0, 0) =
1
2c

[H(x + ct) − H(x − ct)] =
{

0 |x| > ct
1
2c |x| < ct.

(11.2.31)

Thus, the infinite space Green’s function for the one-dimensional wave equation
is an expanding rectangular pulse moving at the wave speed c, as is sketched
in Fig. 11.2.2. Initially (in general, at t = t0), it is located at one point x = x0. Each end
spreads out at velocity c. In general,

t = t0
x = x0

x = x0 − c(t − t0) x = x0 + c(t − t0)

FIGURE 11.2.2 Green’s function for the one-dimensional wave equation.
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G(x, t;x0, t0) =
1
2c

{H[(x − x0) + c(t − t0)] − H[(x − x0) − c(t − t0)]}.

(11.2.32)

D’Alembert’s solution. To illustrate the use of this Green’s function, consider
the initial value problem for the wave equation without sources on an infinite domain
−∞ < x < ∞:

∂2u

∂t2
= c2 ∂2u

∂x2
(11.2.33)

u(x, 0) = f(x) (11.2.34)

∂u

∂t
(x, 0) = g(x). (11.2.35)

In the formula (11.2.24), the boundary contribution1 vanishes since G = 0 for x sufficiently
large (positive or negative); see Fig. 11.2.2. Since there are no sources, u(x, t) is caused
only by the initial conditions:

u(x, t) =
∫ ∞

−∞

[
g(x0)G(x, t;x0, 0) − f(x0)

∂

∂t0
G(x, t;x0, 0)

]
dx0.

We need to calculate ∂
∂t0

G(x, t;x0, 0) from (11.2.32). Using properties of the derivative of
a step function [see (9.3.32)], it follows that

∂

∂t0
G(x, t;x0, t0) =

1
2

[−δ (x − x0 + c(t − t0)) − δ (x − x0 − c(t − t0))]

and thus,
∂

∂t0
G(x, t;x0, 0) =

1
2
[−δ(x − x0 + ct) − δ(x − x0 − ct)].

Finally, we obtain the solution of the initial value problem:

u(x, t) =
f(x + ct) + f(x − ct)

2
+

1
2c

∫ x+ct

x−ct

g(x0) dx0. (11.2.36)

This is known as d’Alembert’s solution of the wave equation. It can be obtained more
simply by the method of characteristics (see Chapter 12). There we will discuss the phys-
ical interpretation of the one-dimensional wave equation.

1The boundary contribution for an infinite problem is the limit as L → ∞ of the boundaries of a finite
region, −L < x < L.



Section 11.2 Green’s Functions for the Wave Equation 509

Related problems. Semi-infinite or finite problems for the one-dimensional wave
equation can be solved by obtaining the Green’s function by the method of images. In
some cases, transform or series techniques may be used. Of greatest usefulness is the
method of characteristics.

11.2.8 Infinite Space Green’s Function for the Three-Dimensional Wave Equation
(Huygens’ Principle)

We solve the infinite space Green’s function using (11.2.27)–(11.2.29). The solution should
be spherically symmetric and depend only on the distance ρ = |x−x0|. Thus, the Green’s
function satisfies the spherically symmetric wave equation, ∂2G

∂t2 − c2 1
ρ2

∂
∂ρ (ρ2 ∂G

∂ρ ) = 0.
Through an unmotivated but very well-known transformation, G = h

ρ , the spherically
symmetric wave equation simplifies:

0 =
1
ρ

∂2h

∂t2
− c2

ρ2

∂

∂ρ

(
ρ
∂h

∂ρ
− h

)
=

1
ρ

(
∂2h

∂t2
− c2 ∂2h

∂ρ2

)
.

Thus, h satisfies the one-dimensional wave equation. In Chapter 12 it is shown that the
general solution of the one-dimensional wave equation can be represented by the sum of
left- and right-going waves moving at velocity c. Consequently, we obtain the exceptionally
significant result that the general solution of the spherically symmetric wave
equation is

G =
f(ρ − ct) + g(ρ + ct)

ρ
. (11.2.37)

f(ρ − ct) is spherically expanding at velocity c, while g(ρ + ct) is spherically contracting
at velocity c. To satisfy the initial condition (11.2.28), G = 0 at t = 0, g(ρ) = −f(ρ), and
hence G = f(ρ−ct)−f(ρ+ct)

ρ . We calculate ∂G
∂t = − c

ρ

[
df(ρ−ct)
d(ρ−ct) + df(ρ+ct)

d(ρ+ct)

]
. Thus, applying

the initial condition (11.2.29) yields

δ(x − x0) =
∂G

∂t

∣∣∣∣
t=0

= −2c

ρ

df(ρ)
dρ

.

Here δ(x−x0) is a three-dimensional delta function. The function f will be constant, which
we set to zero away from ρ = 0. We integrate in three-dimensional space over a sphere of
radius R and obtain

1 = −2c

∫ R

0

1
ρ

df

dρ
4πρ2 dρ = 8πc

∫ R

0

f dρ,

after an integration by parts using f = 0 for ρ > 0 (One way to justify integrating by
parts is to introduce the even extensions of f for ρ < 0 so that

∫ R

0
= 1

2

∫ R

−R
) . Thus,
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f = 1
4πcδ(ρ), where δ(ρ) is the one-dimensional delta function that is even and hence

satisfies
∫ R

0
δ(ρ) dρ = 1

2 . Consequently,

G =
1

4πcρ
[δ(ρ − ct) − δ(ρ + ct)]. (11.2.38)

However, since ρ > 0 and t > 0, the latter Dirac delta function is always zero. To be more
general, t should be replaced by t− t0. In this way we obtain the infinite space Green’s
function for the three-dimensional wave equation:

G(x, t;x0, t0) =
1

4πcρ
[δ(ρ − c(t − t0))], (11.2.39)

where ρ = |x − x0|. The Green’s function for the three-dimensional wave equation is
a spherical shell impulse spreading out from the source (x = x0 and t = t0) at radial
velocity c with an intensity decaying proportional to 1

ρ .

Huygens’ principle. We have shown that a concentrated source at x0 (at time
t0) influences the position x (at time t) only if |x − x0| = c(t − t0). The distance from
source to location equals c times the time. The point source emits a wave moving in all
directions at velocity c. At time t − t0 later, the source’s effect is located on a spherical
shell a distance c(t − t0) away. This is part of what is known as Huygens’ principle.

EXAMPLE

To be more specific, let us analyze the effect of sources, Q(x, t). Consider the wave equa-
tion with sources in infinite three-dimensional space with zero initial conditions. According
to Green’s formula (11.2.24),

u(x, t) =
∫ t

0

∫∫∫
G(x, t;x0, t0)Q(x0, t0) d3x0 dt0 (11.2.40)

since the “boundary” contribution vanishes. Using the infinite three-dimensional space
Green’s function,

u(x, t) =
1

4πc

∫ t

0

∫∫∫
1
ρ
δ[ρ − c(t − t0)]Q(x0, t0) d3x0 dt0, (11.2.41)

where ρ = |x − x0|. The only sources that contribute satisfy |x − x0| = c(t − t0). The
effect at x at time t is caused by all received sources; the velocity of propagation of each
source is c.
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11.2.9 Two-Dimensional Infinite Space Green’s Function

The two-dimensional Green’s function for the wave equation is not as simple as the one-
and three-dimensional cases. In Exercise 11.2.12 the two-dimensional Green’s function
is derived by the method of descent by using the three-dimensional solution with a two-
dimensional source. The signal again propagates with velocity c, so that the solution is zero
before the signal is received, that is for the elapsed time t− t0 < r

c , where r = |x−x0| in
two dimensions. However, once the signal is received, it is largest (infinite) at the moment
the signal is first received, and then the signal gradually decreases:

G(x, t;x0, t0) =

{
0 if r > c(t − t0)

1
2πc

1√
c2(t−t0)2−r2

if r < c(t − t0) . (11.2.42)

11.2.10 Summary

For the wave equation in any dimension, information propagates at velocity c. The Green’s
functions for the wave equation in one and three dimensions are different. Huygens’ princi-
ple is valid only in three dimensions in which the influence of a concentrated source is felt
only on the surface of the expanding sphere propagating at velocity c. In one dimension,
the influence is felt uniformly inside the expanding pulse. In two dimensions, the largest
effect occurs on the circumference corresponding to the propagation velocity c, but the
effect diminishes behind the pulse.

EXERCISES 11.2

11.2.1. (a) Show that for G(x, t;x0, t0), ∂G/∂t = −∂G/∂t0.

(b) Use part (a) to show that the response due to u(x, 0) = f(x) is the time
derivative of the response due to ∂u

∂t (x, 0) = f(x).
11.2.2. Express (11.2.24) for a one-dimensional problem.
11.2.3. If G(x, t;x0, t0) = 0 for x on the boundary, explain why the corresponding term in

(11.2.24) vanishes (for any x).
11.2.4. For the one-dimensional wave equation, sketch G(x, t; x0, t0) as a function of

(a) x with t fixed (x0, t0 fixed)

(b) t with x fixed (x0, t0 fixed)

11.2.5. (a) For the one-dimensional wave equation, for what values of x0 (x, t, t0 fixed) is
G(x, t; x0, t0) �= 0?

(b) Determine the answer to part (a) using the reciprocity property.
11.2.6. (a) Solve

∂2u

∂t2
= c2

∂2u

∂x2
+ Q(x, t), −∞ < x < ∞

with u(x, 0) = 0 and ∂u
∂t (x, 0) = 0.

*(b) What space-time locations of the source Q(x, t) influence u at position x1 and
time t1?
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11.2.7. Reconsider Exercise 11.2.6 if Q(x, t) = g(x)e−iωt.

*(a) Solve for u(x, t). Show that the influence function for g(x) is an outward-
propagating wave.

(b) Instead, determine a particular solution of the form u(x, t) = ψ(x)e−iωt. (See
Exercise 8.3.13.)

(c) Compare parts (a) and (b).

11.2.8. *(a) In three-dimensional infinite space, solve

∂2u

∂t2
= c2∇2u + g(x)e−iωt

with zero initial conditions, u(x, 0) = 0 and ∂u
∂t (x, 0) = 0. From your solution,

show that the influence function for g(x) is an outward-propagating wave.
(b) Compare with Exercise 9.5.10.

11.2.9. Consider the Green’s function G(x, t;x0, t0) for the wave equation. From (11.2.24)
we easily obtain the influence functions for Q(x0, t0), u(x0, 0), and ∂u/∂t0(x0, 0).
These results may be obtained in the following alternative way:

(a) For t > t0+ show that
∂2G

∂t2
= c2∇2G, (11.2.43)

where (by integrating from t0− to t0+)

G(x, t0+;x0, t0) = 0 (11.2.44)

∂G

∂t
(x, t0+;x0, t0) = δ(x− x0). (11.2.45)

From (11.2.32), briefly explain why G(x, t;x0, 0) is the influence function for
∂u
∂t0

(x0, 0).

(b) Let φ = ∂G/∂t. Show that for t > t0+,

∂2φ

∂t2
= c2∇2φ (11.2.46)

φ(x, t0+;x0, t0) = δ(x− x0) (11.2.47)

∂φ

∂t
(x, t0+;x0, t0) = 0. (11.2.48)

From (11.2.46)–(11.2.48), briefly explain why −∂G
∂t0

(x, t;x0, 0) is the influence
function for u(x0, 0).

11.2.10. Consider
∂2u

∂t2
= c2

∂2u

∂x2
+ Q(x, t), x > 0

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x)

u(0, t) = h(t).
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(a) Determine the appropriate Green’s function using the method of images.

*(b) Solve for u(x, t) if Q(x, t) = 0, f(x) = 0, and g(x) = 0.

(c) For what values of t does h(t) influence u(x1, t1)? Briefly interpret physically.

11.2.11. Reconsider Exercise 11.2.10:

(a) if Q(x, t) �= 0, but f(x) = 0, g(x) = 0, and h(t) = 0

(b) if f(x) �= 0, but Q(x, t) = 0, g(x) = 0, and h(t) = 0

(c) if g(x) �= 0, but Q(x, t) = 0, f(x) = 0, and h(t) = 0

11.2.12. Consider the Green’s function G(x, t;x1, t1) for the two-dimensional wave equation
as the solution of the following three-dimensional wave equation:

∂2u

∂t2
= c2∇2u + Q(x, t)

u(x, 0) = 0

∂u

∂t
(x, 0) = 0

Q(x, t) = δ(x − x1)δ(y − y1)δ(t − t1).

We will solve for the two-dimensional Green’s function by this method of descent
(descending from three dimensions to two dimensions).

*(a) Solve for G(x, t;x1, t1) using the general solution of the three-dimensional wave
equation. Here, the source Q(x, t) may be interpreted either as a point source in
two dimensions or as a line source in three dimensions. [Hint:

∫ ∞
−∞ · · · dz0 may

be evaluated by introducing the three-dimensional distance ρ from the point
source,

ρ2 = (x − x1)2 + (y − y1)2 + (z − z0)2.]

(b) Show that G is a function only of the elapsed time t−t1 and the two-dimensional
distance r from the line source,

r2 = (x − x1)2 + (y − y1)2.

(c) Where is the effect of an impulse felt after a time τ has elapsed? Compare to
the one- and three-dimensional problems.

(d) Sketch G for t − t1 fixed.

(e) Sketch G for r fixed.

11.2.13. Consider the three-dimensional wave equation. Determine the response to a unit
point source moving at the constant velocity v:

Q(x, t) = δ(x− vt).

11.2.14. Solve the wave equation in infinite three-dimensional space without sources, subject
to the initial conditions

(a) u(x, 0) = 0 and ∂u
∂t (x, 0) = g(x). The answer is called Kirchhoff’s formula,

although it is due to Poisson (according to Weinberger [1995]).
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(b) u(x, 0) = f(x) and ∂u
∂t (x, 0) = 0. [Hint: Use (11.2.24).]

(c) Solve part (b) in the following manner. Let v(x, t) = ∂
∂tu(x, t), where u(x, t)

satisfies part (a). [Hint: Show that v(x, t) satisfies the wave equation with
v(x, 0) = g(x) and ∂v

∂t (x, 0) = 0.]
11.2.15. Derive the one-dimensional Green’s function for the wave equation by considering

a three-dimensional problem with Q(x, t) = δ(x − x1)δ(t − t1). [Hint: Use polar
coordinates for the y0, z0 integration centered at y0 = y, z0 = z.]

11.3 GREEN’S FUNCTIONS FOR THE HEAT EQUATION

11.3.1 Introduction

We are interested in solving the heat equation with possibly time-dependent sources,

∂u

∂t
= k∇2u + Q(x, t), (11.3.1)

subject to the initial condition u(x, 0) = g(x). We will analyze this problem in one, two,
and three spatial dimensions. In this subsection we do not specify the geometric region or
the possibly nonhomogeneous boundary conditions. There can be three nonhomogeneous
terms: the source Q(x, t), the initial condition, and the boundary conditions.

We define the Green’s function G(x, t;x0, t0) as the solution of

∂G

∂t
= k∇2G + δ(x − x0)δ(t − t0) (11.3.2)

on the same region with the related homogeneous boundary conditions. Since the Green’s
function represents the temperature response at x (at time t) due to a concentrated
thermal source at x0 (at time t0), we will insist that this Green’s function is zero before
the source acts:

G(x, t;x0, t0) = 0 for t < t0, (11.3.3)

the causality principle.
Furthermore, we show that only the elapsed time t − t0 (from the initiation time

t = t0) is needed:

G(x, t;x0, t0) = G(x, t − t0;x0, 0), (11.3.4)

the translation property. Equation (11.3.4) is shown by letting T = t − t0, in which
case the Green’s function G(x, t;x0, t0) satisfies

∂G

∂T
= k∇2G + δ(x − x0)δ(T ) with G = 0 for T < 0.
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This is precisely the response due to a concentrated source at x = x0 at T = 0, implying
(11.3.4).

We postpone until later subsections the actual calculation of the Green’s function.
For now, we will assume that the Green’s function is known and ask how to represent the
temperature u(x, t) in terms of the Green’s function.

11.3.2 Non-Self-Adjoint Nature of the Heat Equation

To show how this problem relates to others discussed in this book, we introduce the linear
operator notation,

L =
∂

∂t
− k∇2, (11.3.5)

called the heat or diffusion operator. In previous problems the relation between the
solution of the nonhomogeneous problem and its Green’s function was based on Green’s
formulas. We have solved problems in which L is the Sturm–Liouville operator, the Lapla-
cian, and most recently the wave operator.

The heat operator L is composed of two parts. ∇2 is easily analyzed by Green’s
formula for the Laplacian [see (11.2.8)]. However, as innocuous as ∂/∂t appears, it is much
harder to analyze than any of the other previous operators. To illustrate the difficulty
presented by first derivatives, consider

L =
∂

∂t
.

For second-order Sturm–Liouville operators, elementary integrations yielded Green’s for-
mula. The same idea for L = ∂/∂t will not work. In particular,

∫
[uL(v) − vL(u)] dt =

∫ (
u

∂v

∂t
− v

∂u

∂t

)
dt

cannot be simplified. There is no formula to evaluate
∫

[uL(v) − vL(u)] dt. The operator
L = ∂/∂t is not self-adjoint. Instead, by standard integration by parts,

∫ b

a

uL(v) dt =
∫ b

a

u
∂v

∂t
dt = uv

∣∣∣∣∣
b

a

−
∫ b

a

v
∂u

∂t
dt,

and thus ∫ b

a

(
u

∂v

∂t
+ v

∂u

∂t

)
dt = uv

∣∣∣∣∣
b

a

. (11.3.6)

For the operator L = ∂/∂t, we introduce the adjoint operator,

L∗ = − ∂

∂t
. (11.3.7)
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From (11.3.6),

∫ b

a

[uL∗(v) − vL(u)] dt = −uv

∣∣∣∣∣
b

a

. (11.3.8)

This is analogous to Green’s formula.2

11.3.3 Green’s Formula for the Heat Equation

We now return to the nonhomogeneous heat problem:

L(u) = Q(x, t) (11.3.9)

L(G) = δ(x − x0)δ(t − t0), (11.3.10)

where

L =
∂

∂t
− k∇2. (11.3.11)

For the nonhomogeneous heat equation, our results are more complicated since we must
introduce the adjoint heat operator,

L∗ = − ∂

∂t
− k∇2. (11.3.12)

By a direct calculation,

uL∗(v) − vL(u) = −u
∂v

∂t
− v

∂u

∂t
+ k(v∇2u − u∇2v),

and thus Green’s formula for the heat equation is

∫ tf

ti

∫∫∫
[uL∗(v) − vL(u)] d3x dt

= −
∫∫∫

uv

∣∣∣∣
tf

ti

d3x + k

∫ tf

ti

∫∫
�

�

�

�(v∇u − u∇v) · n̂ dS dt.

(11.3.13)

2For a first-order operator, typically there is only one “boundary condition,” u(a) = 0. For the
integrated-by-parts term to vanish, we must introduce an adjoint boundary condition, v(b) = 0.
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We have integrated over all space and from some time t = ti to another time t = tf . We
have used (11.3.6) for the ∂/∂t-terms and Green’s formula (11.2.8) for the ∇2 operator.
The “boundary contributions” are of two types, the spatial part (over

∫∫
�
�
�
�
3) and a temporal

part (at the initial ti and final tf times). If both u and v satisfy the same homogeneous
boundary condition (of the usual types), then the spatial contributions vanish:

∫∫
�

�

�

�(v∇u − u∇v) · n̂ dS = 0.

Equation (11.3.13) will involve initial contributions (at t = ti) and final contributions
(t = tf ).

11.3.4 Adjoint Green’s Function

In order to eventually derive a representation formula for u(x, t) in terms of the Green’s
function G(x, t;x0, t0), we must consider summing up various source times. Thus, we
consider the source-varying Green’s function,

G(x, t1;x1, t) = G(x,−t;x1,−t1),

where the translation property has been used. This is precisely the procedure we employed
when analyzing the wave equation [see (11.2.15)]. By causality, these are zero if t > t1:

G(x, t1;x1, t) = 0 for t > t1. (11.3.14)

Letting τ = −t, we see that the source-varying Green’s function G(x, t1;x1, t) satisfies
(
− ∂

∂t
− k∇2

)
G(x, t1;x1, t) = δ(x − x1)δ(t − t1), (11.3.15)

as well as the source-varying causality principle (11.3.14). The heat operator L does not
occur. Instead, the adjoint heat operator L∗ appears:

L∗[G(x, t1;x1, t)] = δ(x − x1)δ(t − t1). (11.3.16)

We see that G(x, t1;x1, t) is the Green’s function for the adjoint heat operator (with the
source-varying causality principle). Sometimes it is called the adjoint Green’s function,
G∗(x, t;x1, t1). However, it is unnecessary to ever calculate or use it since

G∗(x, t;x1, t1) = G(x, t1;x1, t), (11.3.17)

and both are zero for t > t1.

3For infinite or semi-infinite geometries, we consider finite regions in some appropriate limit. The
boundary terms at infinity will vanish if u and v decay sufficiently fast.
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11.3.5 Reciprocity

As with the wave equation, we derive a reciprocity formula. Here, there are some small
differences because of the occurrence of the adjoint operator in Green’s formula, (11.3.13).
In (11.3.13) we introduce

u = G(x, t;x0, t0) (11.3.18)

v = G(x, t1;x1, t), (11.3.19)

the latter having been shown to be the source-varying or adjoint Green’s function. Thus,
the defining properties for u and v are

L(u) = δ(x − x0)δ(t − t0), L∗(v) = δ(x − x1)δ(t − t1)
u = 0 for t < t0, v = 0 for t > t1.

We integrate from t = −∞ to t = +∞ [i.e., ti = −∞ and tf = +∞ in (11.3.13)], obtaining

∫ ∞

−∞

∫∫∫
[G(x, t;x0, t0)δ(x − x1)δ(t − t1) − G(x, t1;x1, t)δ(x − x0)δ(t − t0)] d3x dt

= −
∫∫∫

G(x, t;x0, t0)G(x, t1;x1, t)
∣∣∣∣
t=∞

t=−∞
d3x,

since u and v both satisfy the same homogeneous boundary conditions, so that

∫∫
�

�

�

�(v∇u − u∇v) · n̂ dS

vanishes. The contributions also vanish at t = ±∞ due to causality. Using the properties
of the Dirac delta function, we obtain reciprocity:

G(x1, t1;x0, t0) = G(x0, t1;x1, t0). (11.3.20)

As we have shown for the wave equation [see (11.2.21)], interchanging the source and
location positions does not alter the responses if the elapsed times from the sources are
the same. In this sense the Green’s function for the heat (diffusion) equation is symmetric
because of Green’s formula.

11.3.6 Representation of the Solution Using Green’s Functions

To obtain the relationship between the solution of the nonhomogeneous problem and the
Green’s function, we apply Green’s formula (11.3.13) with u satisfying (11.3.1) subject
to nonhomogeneous boundary and initial conditions. We let v equal the source-varying
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or adjoint Green’s function, v = G(x, t0;x0, t). Using the defining differential equations
(11.3.9) and (11.3.10), Green’s formula (11.3.13) becomes

∫ t0+

0

∫∫∫
[uδ(x − x0)δ(t − t0) − G(x, t0;x0, t)Q(x, t)] d3x dt

=
∫∫∫

u(x, 0)G(x, t0;x0, 0)d3x

+ k

∫ t0+

0

∫∫
�

�

�

�[G(x, t0;x0, t)∇u − u∇G(x, t0;x0, t)] · n̂ dS dt,

since G = 0 for t > t0. Solving for u, we obtain

u(x0, t0) =
∫ t0

0

∫∫∫
G(x, t0;x0, t)Q(x, t) d3x dt

+
∫∫∫

u(x, 0)G(x, t0;x0, 0) d3x

+ k

∫ t0

0

∫∫
�

�

�

�[G(x, t0;x0, t)∇u − u∇G(x, t0;x0, t)] · n̂ dS dt.

It can be shown that the limits t0+ may be replaced by t0. We now (as before) interchange
x with x0 and t with t0. In addition, we use reciprocity and derive

u(x, t) =
∫ t

0

∫∫∫
G(x, t;x0, t0)Q(x0, t0) d3x0 dt0

+
∫∫∫

G(x, t;x0, 0)u(x0, 0) d3x0

+ k

∫ t

0

∫∫
�

�

�

�[G(x, t;x0, t0)∇x0u − u(x0, t0)∇x0G(x, t;x0, t0)] · n̂ dS0 dt0.

(11.3.21)

Equation (11.3.21) illustrates how the temperature u(x, t) is affected by the three non-
homogeneous terms. The Green’s function G(x, t;x0, t0) is the influence function for the
source term Q(x0, t0) as well as for the initial temperature distribution u(x0, 0) (if we eval-
uate the Green’s function at t0 = 0, as is quite reasonable). Furthermore, nonhomogeneous
boundary conditions are accounted for by the term k

∫ t

0

∫∫
�
�
�
�(G∇x0u−u∇x0G) · n̂ dS0 dt0.

Equation (11.3.21) illustrates the causality principle; at time t, the sources and bound-
ary conditions have an effect only for t0 < t. Equation (11.3.21) generalizes the results
obtained by the method of eigenfunction expansion in Section 8.2 for the one-dimensional
heat equation on a finite interval with zero boundary conditions.



520 Chapter 11 Green’s Functions for Wave and Heat Equations

EXAMPLE

Both u and its normal derivative seem to be needed on the boundary. To clarify the
effect of the nonhomogeneous boundary conditions, we consider an example in which the
temperature is specified along the entire boundary:

u(x, t) = uB(x, t) along the boundary.

The Green’s function satisfies the related homogeneous boundary conditions, in this case

G(x, t;x0, t0) = 0 for all x along the boundary.

Thus, the effect of this imposed temperature distribution is

−k

∫ t

0

∫∫
�

�

�

�uB(x0, t0)∇x0G(x, t;x0, t0) · n̂ dS0 dt0.

The influence function for the nonhomogeneous boundary conditions is minus k times the
normal derivative of the Green’s function (a dipole distribution).

One-dimensional case. It may be helpful to illustrate the modifications nec-
essary for one-dimensional problems. Volume integrals

∫∫∫
d3x0 become one-dimensional

integrals
∫ b

a
dx0. Boundary contributions on the closed surface

∫∫
�
�
�
�dS0 become contribu-

tions at the two ends x = a and x = b. For example, if the temperature is prescribed
at both ends, u(a, t) = A(t) and u(b, t) = B(t), then these nonhomogeneous boundary
conditions influence the temperature u(x, t):

−k

∫ t

0

∫∫
�

�

�

�uB(x0, t0)∇x0G(x, t;x0, t0) · n̂ dS0 dt0 becomes

−k

∫ t

0

[
B(t0)

∂G

∂x0
(x, t; b, t0) − A(t0)

∂G

∂x0
(x, t; a, t0)

]
dt0.

This agrees with results that could be obtained by the method of eigenfunction expansions
(Chapter 9) for nonhomogeneous boundary conditions.

11.3.7 Alternate Differential Equation for the Green’s Function

Using Green’s formula, we derived (11.3.21), which shows the influence of sources, non-
homogeneous boundary conditions, and as is initial condition for the heat equation. The
Green’s function for the heat equation is not only the influence function for the sources,
but also the influence function for the initial condition. If there are no sources, if the
boundary conditions are homogeneous, and if the initial condition is a delta function,
then the response is the Green’s function itself. The Green’s function G(x, t;x0, t0) may
be determined directly from the diffusion equation with no sources:

∂G

∂t
= k∇2G, (11.3.22)
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subject to homogeneous boundary conditions and the concentrated initial conditions at
t = t0:

G = δ(x − x0), (11.3.23)

rather than its defining differential equation (11.3.2).

11.3.8 Infinite Space Green’s Function for the Diffusion Equation

If there are no boundaries and no sources, ∂u
∂t = k∇2u with initial conditions u(x, 0) =

f(x), then (11.3.21) represents the solution of the diffusion equation in terms of its Green’s
function:

u(x, t) =
∫∫∫

u(x0, 0)G(x, t;x0, 0) d3x0 =
∫∫∫

f(x0)G(x, t;x0, 0) d3x0. (11.3.24)

Instead of solving (11.3.22), we note that this initial value problem was analyzed using the
Fourier transform in Chapter 10, and we obtained the one-dimensional solution (10.4.6):

u(x, t) =
∫ ∞

−∞
f(x0)

1√
4πkt

e−(x−x0)
2/4ktdx0. (11.3.25)

By comparing (11.3.24) and (11.3.25), we are able to determine the one-dimensional
infinite space Green’s function for the diffusion equation:

G(x, t;x0, 0) =
1√

4πkt
e−(x−x0)

2/4kt. (11.3.26)

Due to translational invariance, the more general Green’s function involves the elapsed
time:

G(x, t;x0, t0) =
1√

4πk(t − t0)
e−(x−x0)

2/4k(t−t0). (11.3.27)

For n dimensions (n = 1, 2, 3), the solution was also obtained in Chapter 10 (10.6.95),
and hence the n-dimensional infinite space Green’s function for the diffusion
equation is

G(x, t;x0, t0) =
[

1
4πk(t − t0)

]n

2
e−|x−x0|2/4k(t−t0). (11.3.28)

This Green’s function shows the symmetry of the response and source positions as long as
the elapsed time is the same. As with one-dimensional problems discussed in Section 10.4,
the influence of a concentrated heat source diminishes exponentially as one moves away
from the source. For small times (t near t0) the decay is especially strong.
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EXAMPLE

In this manner we can obtain the solution of the heat equation with sources on an infinite
domain:

∂u

∂t
= k∇2u + Q(x, t) (11.3.29)

u(x, 0) = f(x).

According to (11.3.21) and (11.3.28), the solution is

u(x, t) =
∫ t

0

∫ ∞

−∞

[
1

4πk(t − t0)

]n/2

e−(x−x0)
2/4k(t−t0)Q(x0, t0) dnx0 dt0

+
∫ ∞

−∞

(
1

4πkt

)n/2

e−(x−x0)
2/4ktf(x0) dnx0.

(11.3.30)

If Q(x, t) = 0, this simplifies to the solution obtained in Chapter 10 using Fourier trans-
forms directly without using the Green’s function.

11.3.9 Green’s Function for the Heat Equation (Semi-Infinite Domain)

In this subsection we obtain the Green’s function needed to solve the nonhomogeneous
heat equation on the semi-infinite interval in one dimension (x > 0), subject to a nonho-
mogeneous boundary condition at x = 0:

PDE:
∂u

∂t
= k

∂2u

∂x2
+ Q(x, t), x > 0, (11.3.31)

BC: u(0, t) = A(t) (11.3.32)

IC: u(x, 0) = f(x). (11.3.33)

Equation (11.3.21) can be used to determine u(x, t) if we can obtain the Green’s
function. The Green’s function G(x, t;x0, t0) is the response due to a concentrated source:

∂G

∂t
= k

∂2G

∂x2
+ δ(x − x0)δ(t − t0).
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The Green’s function satisfies the corresponding homogeneous boundary condition,

G(0, t;x0, t0) = 0,

and the causality principle,

G(x, t;x0, t0) = 0 for t < t0.

The Green’s function is determined by the method of images (see Section 9.5.8).
Instead of a semi-infinite interval with one concentrated positive source at x = x0, we
consider an infinite interval with an additional negative source (the image source) located
at x = −x0. By symmetry, the temperature G will be zero at x = 0 for all t. The Green’s
function is thus the sum of two infinite space Green’s functions:

G(x, t;x0, t0) =
1√

4πk(t − t0)

{
exp

[
− (x − x0)2

4k(t − t0)

]

− exp
[
− (x + x0)2

4k(t − t0)

]}
.

(11.3.34)

We note that the boundary condition at x = 0 is automatically satisfied.

11.3.10 Green’s Function for the Heat Equation (on a Finite Region)

For a one-dimensional rod, 0 < x < L, we have already determined in Chapter 9 the
Green’s function for the heat equation by the method of eigenfunction expansions. With
zero boundary conditions at both ends,

G(x, t;x0, t0) =
∞∑

n=1

2
L

sin
nπx

L
sin

nπx0

L
e−k(nπ/L)2(t−t0). (11.3.35)

We can obtain an alternative representation for this Green’s function by utilizing the
method of images. By symmetry (see Fig. 11.3.1), the boundary conditions at x = 0 and
at x = L are satisfied if positive concentrated sources are located at x = x0 + 2Ln and
negative concentrated sources are located at x = −x0 + 2Ln (for all integers n, −∞ <
n < ∞). Using the infinite space Green’s function, we have an alternative representation
of the Green’s function for a one-dimensional rod:

G(x, t;x0, t0) =
1√

4πk(t − t0)

∞∑
n=−∞

{
exp

[
− (x − x0 − 2Ln)2

4k(t − t0)

]

− exp
[
− (x + x0 − 2Ln)2

4k(t − t0)

]}
.

(11.3.36)
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−2L −L x = 0 x = L 2L 3L

FIGURE 11.3.1 Multiple image sources for the Green’s function for the heat equation for
a finite one-dimensional rod.

Each form has its own advantage. The eigenfunction expansion, (11.3.35), is an
infinite series that converges rapidly if (t − t0)k/L2 is large. It is thus most useful for
t � t0. In fact, if t � t0,

G(x, t;x0, t0) ≈ 2
L

sin
πx0

L
sin

πx

L
e−k(π/L)2(t−t0).

However, if the elapsed time t − t0 is small, then many terms of the infinite series are
needed.

Using the method of images, the Green’s function is also represented by an infinite
series, (11.3.36). The infinite space Green’s function (at fixed t) exponentially decays away
from the source position,

1√
4πk(t − t0)

e−(x−x0)
2/4k(t−t0).

It decays in space very sharply if t is near t0. If t is near t0, then only sources near the
response location x are important; sources far away will not be important (if t is near
t0); see Fig. 11.3.1. Thus, the image sources can be neglected if t is near t0 (and if x
or x0 is neither near the boundaries 0 or L, as is explained in Exercise 11.3.8). As an
approximation,

G(x, t;x0, t0) ≈ 1√
4πk(t − t0)

e−(x−x0)
2/4k(t−t0);

if t is near t0, the Green’s function with boundaries can be approximated
(in regions away from the boundaries) by the infinite space Green’s function. This
means that for small times the boundary can be neglected (away from the boundary).

To be more precise, the effect of every image source is much smaller than the actual
source if L2/k(t − t0) is large. This yields a better understanding of a “small time”
approximation. The Green’s function may be approximated by the infinite space Green’s
function if t − t0 is small (i.e., if t − t0 � L2/k, where L2/k is a ratio of physically
measurable quantities). Alternatively, this approximation is valid for a “long rod” in the
sense that L � √

k(t − t0).
In summary, the image method yields a rapidly convergent infinite series for the

Green’s function if L2/k(t − t0) � 1, while the eigenfunction expansion yields a rapidly
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convergent infinite series representation of the Green’s function if L2/k(t − t0) � 1. If
L2/k(t− t0) is neither small nor large, then the two expansions are competitive, but both
require at least a moderate number of terms.

EXERCISES 11.3

11.3.1. Show that for the Green’s functions defined by (11.3.2) with (11.3.3),

G∗(x, t;x0, t0) = G(x0, t0;x, t).

11.3.2. Consider

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t), x > 0

u(0, t) = A(t)

u(x, 0) = f(x).

(a) Solve if A(t) = 0 and f(x) = 0. Simplify this result if Q(x, t) = 1.
(b) Solve if Q(x, t) = 0 and A(t) = 0. Simplify this result if f(x) = 1.

*(c) Solve if Q(x, t) = 0 and f(x) = 0. Simplify this result if A(t) = 1.

*11.3.3. Determine the Green’s function for

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t), x > 0

∂u

∂x
(0, t) = A(t)

u(x, 0) = f(x).

11.3.4. Consider (11.3.34), the Green’s function for (11.3.31). Show that the Green’s func-
tion for this semi-infinite problem may be approximated by the Green’s function for
the infinite problem if

xx0

k(t − t0)
� 1 (i.e., t − t0 small).

Explain physically why this approximation fails if x or x0 is near the boundary.
11.3.5. Consider

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t)

u(x, 0) = f(x)

∂u

∂x
(0, t) = A(t)

∂u

∂x
(L, t) = B(t).

(a) Solve for the appropriate Green’s function using the method of eigenfunction
expansion.

(b) Approximate the Green’s function of part (a). Under what conditions is your
approximation valid?
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(c) Solve for the appropriate Green’s function using the infinite space Green’s
function.

(d) Approximate the Green’s function of part (c). Under what conditions is your
approximation valid?

(e) Solve for u(x, t) in terms of the Green’s function.

11.3.6. Determine the Green’s function for the heat equation subject to zero boundary
conditions at x = 0 and x = L by applying the method of eigenfunction expansions
directly to the defining differential equation. [Hint: The answer is given by (11.3.35).]

11.3.7. Derive the two-dimensional infinite space Green’s function by taking two-dimensional
transforms.

11.3.8. Derive the three-dimensional infinite space Green’s function by taking three-
dimensional transforms.



C H A P T E R 12

The Method of Characteristics
for Linear and Quasilinear
Wave Equations

12.1 INTRODUCTION

In previous chapters, we obtained certain results concerning the one-dimensional wave
equation,

∂2u

∂t2
= c2 ∂2u

∂x2
, (12.1.1)

subject to the initial conditions

u(x, 0) = f(x) (12.1.2)
∂u

∂t
(x, 0) = g(x). (12.1.3)

For a vibrating string with zero displacement at x = 0 and x = L, we obtained a
somewhat complicated Fourier sine series solution by the method of separation of variables
in Chapter 4:

u(x, t) =
∞∑

n=1

sin
nπx

L

(
an cos

nπct

L
+ bn sin

nπct

L

)
. (12.1.4)

Further analysis of this solution [see (4.4.14) and Exercises 4.4.7 and 4.4.8] shows that
the solution can be represented as the sum of a forward- and backward-moving wave. In
particular,

u(x, t) =
f(x − ct) + f(x + ct)

2
+

1
2c

∫ x+ct

x−ct

g(x0) dx0, (12.1.5)

where f(x) and g(x) are the odd-periodic extensions of the functions given in (12.1.2) and
(12.1.3). We also obtained (12.1.5) in Chapter 11 for the one-dimensional wave equation
without boundaries, using the infinite space Green’s function.

In this chapter we introduce the more powerful method of characteristics to solve
the one-dimensional wave equation. We will show that, in general, u(x, t) = F (x − ct) +
G(x + ct), where F and G are arbitrary functions. We will show that (12.1.5) follows
for infinite space problems. Then we will discuss modifications needed to solve semi-
infinite and finite domain problems. In Section 12.6, the method of characteristics will

527
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be applied to quasilinear partial differential equations. Traffic flow models will be intro-
duced in Section 12.6.2, and expansion waves will be discussed (Section 12.6.3). When
characteristics intersect, we will show that a shock wave must occur, and we will derive
an expression for the shock velocity. The dynamics of shock waves will be discussed in
considerable depth (Section 12.6.4). In Section 12.7, the method of characteristics will be
used to solve the eikonal equation, which we will derive from the wave equation.

12.2 CHARACTERISTICS FOR FIRST-ORDER WAVE EQUATIONS

12.2.1 Introduction

The one-dimensional wave equation can be rewritten as

∂2u

∂t2
− c2 ∂2u

∂x2
= 0. (12.2.1)

A short calculation shows that it can be “factored” in two ways:
(

∂

∂t
+ c

∂

∂x

) (
∂u

∂t
− c

∂u

∂x

)
= 0

(
∂

∂t
− c

∂

∂x

) (
∂u

∂t
+ c

∂u

∂x

)
= 0,

since the mixed second-derivative terms vanish in both. If we let

w =
∂u

∂t
− c

∂u

∂x
(12.2.2)

v =
∂u

∂t
+ c

∂u

∂x
, (12.2.3)

we see that the one-dimensional wave equation (involving second derivatives) yields two
first-order wave equations:

∂w

∂t
+ c

∂w

∂x
= 0 (12.2.4)

∂v

∂t
− c

∂v

∂x
= 0. (12.2.5)
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12.2.2 Method of Characteristics for First-Order Partial Differential Equations

We begin by discussing either one of these simple first-order partial differential equations:

∂w

∂t
+ c

∂w

∂x
= 0. (12.2.6)

The methods we will develop will be helpful in analyzing the one-dimensional wave equa-
tion (12.2.1). We consider the rate of change of w(x(t), t) as measured by a moving
observer, x = x(t). The chain rule1 implies that

d

dt
w(x(t), t) =

∂w

∂t
+

dx

dt

∂w

∂x
. (12.2.7)

The first term, ∂w/∂t, represents the change in w at the fixed position, while the term
(dx/dt)(∂w/∂x) represents the change due to the fact that the observer moves into a
region of possibly different w. Compare (12.2.7) with the partial differential equation for
w, Equation (12.2.6). It is apparent that if the observer moves with velocity c, that is, if

dx

dt
= c, (12.2.8)

then

dw

dt
= 0. (12.2.9)

Thus, w is constant. An observer moving with this special speed c would measure no
changes in w.

Characteristics. In this way, the partial differential equation (12.2.6) has been
replaced by two ordinary differential equations, (12.2.8) and (12.2.9). Integrating (12.2.8)
yields

x = ct + x0, (12.2.10)

1Here d/dt as measured by a moving observer is sometimes called the substantial derivative.
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x0

(x,t)

x

t

FIGURE 12.2.1 Characteristics for the first-order wave equation.

the equation for the family of parallel characteristics2 of (12.2.6), sketched in Fig. 12.2.1.
Note that at t = 0, x = x0. w(x, t) is constant along this line (not necessarily constant
everywhere). w propagates as a wave with wave speed c [see (12.2.8)].

General solution. If w(x, t) is given initially at t = 0,

w(x, 0) = P (x), (12.2.11)

then let us determine w at the point (x, t). Since w is constant along the characteristic,

w(x, t) = w(x0, 0) = P (x0).

Given x and t, the parameter is known from the characteristic, x0 = x − ct, and thus

w(x, t) = P (x − ct), (12.2.12)

which we call the general solution of (12.2.6).
We can think of P (x) as being an arbitrary function. To verify this, we substitute

(12.2.12) back into the partial differential equation (12.2.6). Using the chain rule,

∂w

∂x
=

dP

d(x − ct)
∂(x − ct)

∂x
=

dP

d(x − ct)

and

∂w

∂t
=

dP

d(x − ct)
∂(x − ct)

∂t
= −c

dP

d(x − ct)
.

Thus, it is verified that (12.2.6) is satisfied by (12.2.12). The general solution of a first-
order partial differential equation contains an arbitrary function, while the general solu-
tion to ordinary differential equations contains arbitrary constants.

2A characteristic is a curve along which a PDE reduces to an ODE.
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EXAMPLE

Consider

∂w

∂t
+ 2

∂w

∂x
= 0,

subject to the initial condition

w(x, 0) =

⎧⎨
⎩

0 x < 0
4x 0 < x < 1
0 x > 1.

We have shown that w is constant along the characteristics x−2t = constant, keeping its
same shape moving at velocity 2 (to the right). The important characteristics, x = 2t + 0
and x = 2t + 1, as well as a sketch of the solution at various times, appear in Fig. 12.2.2.
w(x, t) = 0 if x > 2t + 1 or if x < 2t. Otherwise, by shifting,

w(x, t) = 4(x − 2t) if 2t < x < 2t + 1.

To derive this analytic solution, we use the characteristic that starts at x = x0:

x = 2t + x0.

Along this characteristic, w(x, t) is constant. If 0 < x0 < 1, then

w(x, t) = w(x0, 0) = 4x0 = 4(x − 2t),

as before. This is valid if 0 < x0 < 1 or, equivalently, 0 < x − 2t < 1.

w = 0

0 w = 0
1

t = 3

x = 2t

x = 2t + 1

0 t = 2

1 t = 1
t = 0

FIGURE 12.2.2 Propagation for the first-order wave equation.

Same shape. In general, w(x, t) = P (x− ct). At fixed t, the solution of the first-
order wave equation is the same shape shifted a distance ct (distance = velocity times
time). We illustrate this in Fig. 12.2.3.
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x = 0 x = ct1

t = 0 t = t1

FIGURE 12.2.3 Shape invariance for the first-order wave equation.

EXAMPLE TO SOLVE INITIAL VALUE PROBLEM AND FIND GENERAL
SOLUTION

Consider
∂w

∂t
+ 3t2

∂w

∂x
= 2tw, (12.2.13)

subject to the initial conditions w(x, 0) = P (x). By the method of characteristics,

if
dx

dt
= 3t2, (12.2.14)

then
dw

dt
= 2tw. (12.2.15)

The characteristics are not straight lines but satisfy

x = t3 + x0, (12.2.16)

where the characteristics start (t = 0) at x = x0. Along the characteristics, by integrating
the ODE (12.2.15), we obtain

w = ket2 . (12.2.17)

To satisfy the initial condition at x0, w(x0, 0) = P (x0), we have P (x0) = k, so that the
solution of the initial value problem by the method of characteristics is

w(x, t) = P (x0)et2 = P (x − t3)et2 . (12.2.18)

Since P (x − t3) is an arbitrary function of (x − t3), (12.2.18) is the general
solution of the partial differential equation (12.2.13). The method of charac-
teristics can be used to determine the general solution in a slightly different
way. The arbitrary constants that solve the ordinary differential equations are
arbitrary functions of each other. In this way, k in (12.2.17) is an arbitrary function
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of x0 = x − t3, and we obtain directly from (12.2.17) the general solution of this partial
differential equation:

w(x, t) = f(x − t3)et2 , (12.2.19)

where f is an arbitrary function of x− t3. The initial value problem could now be solved
from the general solution (12.2.19).

Summary. The method of characteristics solves the first-order wave equation
(12.2.6). In Sections 12.3–12.5, this method is applied to solve the wave equation (12.1.1).
The reader may proceed directly to Section 12.6, where the method of characteristics is
described for quasilinear partial differential equations.

EXERCISES 12.2

12.2.1. Show that the wave equation can be considered as the following system of two
coupled first-order partial differential equations:

∂u

∂t
− c

∂u

∂x
= w

∂w

∂t
+ c

∂w

∂x
= 0.

*12.2.2. Solve
∂w

∂t
− 3

∂w

∂x
= 0 with w(x, 0) = cos x.

12.2.3. Solve
∂w

∂t
+ 4

∂w

∂x
= 0 with w(0, t) = sin 3t.

12.2.4. Solve
∂w

∂t
+ c

∂w

∂x
= 0 (c > 0)

for x > 0 and t > 0 if
w(x, 0) = f(x), x > 0
w(0, t) = h(t), t > 0.

12.2.5. Solve using the method of characteristics (if necessary, see Section 12.6):

(a)
∂w

∂t
+ c

∂w

∂x
= e2x with w(x, 0) = f(x)

*(b)
∂w

∂t
+ x

∂w

∂x
= 1 with w(x, 0) = f(x)

(c)
∂w

∂t
+ t

∂w

∂x
= 1 with w(x, 0) = f(x)

*(d)
∂w

∂t
+ 3t

∂w

∂x
= w with w(x, 0) = f(x)

*12.2.6. Consider (if necessary, see Section 12.6):
∂u

∂t
+ 2u

∂u

∂x
= 0 with u(x, 0) = f(x).

Show that the characteristics are straight lines.
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12.2.7. Consider Exercise 12.2.6 with

u(x, 0) = f(x) =

⎧⎨
⎩

1 x < 0
1 + x/L 0 < x < L
2 x > L.

(a) Determine equations for the characteristics. Sketch the characteristics.

(b) Determine the solution u(x, t). Sketch u(x, t) for t fixed.

*12.2.8. Consider Exercise 12.2.6 with

u(x, 0) = f(x) =
{

1 x < 0
2 x > 0.

Obtain the solution u(x, t) by considering the limit as L → 0 of the characteristics
obtained in Exercise 12.2.7. Sketch characteristics and u(x, t) for t fixed.

12.2.9. As motivated by the analysis of a moving observer, make a change of independent
variables from (x, t) to a coordinate system moving with velocity c, (ξ, t′), where
ξ = x − ct and t′ = t, in order to solve (12.2.6).

12.2.10. For the first-order “quasilinear” partial differential equation

a
∂u

∂x
+ b

∂u

∂y
= c,

where a, b, and c are functions of x, y, and u, show that the method of characteristics
(if necessary, see Section 12.6) yields

dx

a
=

dy

b
=

du

c
.

12.2.11. Do any of the following exercises from Section 12.6: 12.6.1, 12.6.2, 12.6.3, 12.6.8,
12.6.10, 12.6.11.

12.3 METHOD OF CHARACTERISTICS FOR THE ONE-DIMENSIONAL
WAVE EQUATION

12.3.1 General Solution

From the one-dimensional wave equation,

∂2u

∂t2
− c2 ∂2u

∂x2
= 0, (12.3.1)

we derived two first-order partial differential equations, ∂w
∂t + c∂w

∂x = 0 and ∂v
∂t − c ∂v

∂x = 0,
where w = ∂u

∂t − c∂u
∂x and v = ∂u

∂t + c∂u
∂x . We have shown that w remains the same shape

moving at velocity c:

w =
∂u

∂t
− c

∂u

∂x
= P (x − ct). (12.3.2)



Section 12.3 Method of Characteristics for the One-Dimensional Wave Equation 535

The problem for v is identical (replace c by −c). Thus, we could have shown that v is
translated unchanged at velocity −c:

v =
∂u

∂t
+ c

∂u

∂x
= Q(x + ct). (12.3.3)

By combining (12.3.2) and (12.3.3), we obtain, for example,

2
∂u

∂t
= P (x − ct) + Q(x + ct) and 2c

∂u

∂x
= Q(x + ct) − P (x − ct),

and thus

u(x, t) = F (x − ct) + G(x + ct), (12.3.4)

where F and G are arbitrary functions (−cF ′ = 1
2P and cG′ = 1

2Q). This result was
obtained by d’Alembert in 1747. Equation (12.3.4) is a remarkable result, as it
is a general solution of the one-dimensional wave equation, (12.3.1), a very
nontrivial partial differential equation.

The general solution is the sum of F (x − ct), a wave of fixed shape moving to
the right with velocity c, and G(x + ct), a wave of fixed shape moving to the left with
velocity −c. The solution may be sketched if F (x) and G(x) are known. We shift F (x)
to the right a distance ct shift G(x) to the left a distance ct, and add the two. Although
each shape is unchanged, the sum will in general be a shape that is changing in time. In
Section 12.3.2 we will show how to determine F (x) and G(x) from initial conditions.

Characteristics. Part of the solution is constant along the family of character-
istics x − ct = constant, while a different part of the solution is constant along x + ct =
constant. For the one-dimensional wave equation, (12.3.1), there are two families of char-
acteristic curves, as sketched in Fig. 12.3.1.

α β

x − ct = αx + ct = β

x

t

FIGURE 12.3.1 Characteristics for the one-dimensional wave equation.

Alternate derivation of the general solution. We may derive the general
solution of the wave equation, by making a somewhat unmotivated change of variables
to “characteristic coordinates” ξ = x − ct and η = x + ct moving with the velocities ±c.
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Using the chain rule, first derivatives are given by ∂
∂x = ∂

∂ξ + ∂
∂η and ∂

∂t = −c ∂
∂ξ + c ∂

∂η .
Substituting the corresponding second derivatives into the wave equation (12.3.1) yields

c2

(
∂2u

∂ξ2
− 2

∂2u

∂ξ∂η
+

∂2u

∂η2

)
= c2

(
∂2u

∂ξ2
+ 2

∂2u

∂ξ∂η
+

∂2u

∂η2

)
.

After canceling the terms c2(∂2u
∂ξ2 + ∂2u

∂η2 ), we obtain

4c2 ∂2u

∂ξ∂η
= 0.

By integrating with respect to ξ (fixed η), we obtain ∂u
∂η = g(η), where g(η) is an arbitrary

function of η. Now integrating with respect to η (fixed ξ) yields the general solution
(12.3.4), u = F (ξ)+G(η) = F (x−ct)+G(x+ct), where F and G are arbitrary functions.

12.3.2 Initial Value Problem (Infinite Domain)

In Section 12.3.1 we showed that the general solution of the one-dimensional wave
equation is

u(x, t) = F (x − ct) + G(x + ct). (12.3.5)

Here we will determine the arbitrary functions in order to satisfy the initial conditions:

u(x, 0) = f(x), −∞ < x < ∞ (12.3.6)

∂u

∂t
(x, 0) = g(x), −∞ < x < ∞. (12.3.7)

These initial conditions imply that

f(x) = F (x) + G(x) (12.3.8)
g(x)

c
= −dF

dx
+

dG

dx
. (12.3.9)

We solve for G(x) by eliminating F (x); for example, adding the derivative of (12.3.8) to
(12.3.9) yields

dG

dx
=

1
2

(
df

dx
+

g(x)
c

)
.



Section 12.3 Method of Characteristics for the One-Dimensional Wave Equation 537

By integrating this, we obtain

G(x) =
1
2
f(x) +

1
2c

∫ x

0

g(x) dx + k (12.3.10)

F (x) =
1
2
f(x) − 1

2c

∫ x

0

g(x) dx − k, (12.3.11)

where the latter equation was obtained from (12.3.8). k can be neglected since u(x, t) is
obtained from (12.3.5) by adding (12.3.10) and (12.3.11) (with appropriate shifts).

Sketching technique. The solution u(x, t) can be graphed based on (12.3.5) in
the following straightforward manner:

1. Given f(x) and g(x), obtain the graphs of

1
2
f(x) and

1
2c

∫ x

0

g(x) dx,

the latter by integrating first.
2. By addition and subtraction, form F (x) and G(x); see (12.3.10) and (12.3.11).
3. Translate (shift) F (x) to the right a distance ct and G(x) to the left ct.
4. Add the two shifted functions, thus satisfying (12.3.5).

Initially at rest. If a vibrating string is initially at rest [∂u
∂t (x, 0) = g(x) = 0],

then from (12.3.10) and (12.3.11) F (x) = G(x) = 1
2f(x). Thus,

u(x, t) =
1
2
[f(x − ct) + f(x + ct)]. (12.3.12)

The initial condition u(x, 0) = f(x) splits into two parts; half moves to the left and half
to the right.

EXAMPLE

Suppose that an infinite vibrating string is initially stretched into the shape of a single
rectangular pulse and is let go from rest. The corresponding initial conditions are

u(x, 0) = f(x) =
{

1 |x| < h
0 |x| > h

and
∂u

∂t
(x, 0) = g(x) = 0.

The solution is given by (12.3.12). By adding together these two rectangular pulses,
we obtain Fig. 12.3.2. The pulses overlap until the left end of the right-moving one passes
the right end of the other. Since each is traveling at speed c, they are moving apart at
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−h− ct h− ct −h+ ct h+ ct

−h−ct −h+ ct h− ct h+ ct

−h h

1

1/2

FIGURE 12.3.2 Initial value problem for the one-dimensional wave equation.
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velocity 2c. The ends are initially a distance 2h apart, and hence the time at which the
two pulses separate is

t =
distance
velocity

=
2h

2c
=

h

c
.

Important characteristics are sketched in Fig. 12.3.3. F stays constant moving to the right
at velocity c, while G stays constant moving to the left. From (12.3.10) and (12.3.11),

F (x) = G(x) =

⎧⎨
⎩

1
2

|x| < h

0 |x| > h.

This information also appears in Fig. 12.3.3.

t < h/c

(x0,t0)

x + ct = −h

x

t

F = 0 F = 0
G = 0 G = 0

F = 0 F = 1/2
G = 1/2 G = 0

F = 0
G = 0

F = 1/2
G = 1/2

F = G = 0 F = G = 1/2 F = G = 0−h h

x + ct = xh − ct = −h

x − ct = h

t > h/c

FIGURE 12.3.3 Method of characteristics for the one-dimensional wave equation.

EXAMPLE NOT AT REST

Suppose that an infinite string is initially horizontally stretched with prescribed initial
velocity as follows:

u(x, 0) = f(x) = 0

∂u

∂t
(x, 0) = g(x) =

{
1 |x| < h
0 |x| > h.

In Exercise 12.3.2 it is shown that this corresponds to instantaneously applying a constant
impulsive force to the entire region |x| < h, as though the string is being struck by a broad
(|x| < h) hammer. The calculation of the solution of the wave equation with these initial
conditions is more involved than in the preceding example. From (12.3.10) and (12.3.11),
we need

∫ x

0
g(x) dx, representing the area under g(x) from 0 to x:

2cG(x) = −2cF (x) =
∫ x

0

g(x) dx =

⎧⎨
⎩

−h x < −h
x −h < x < h
h x > h.
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FIGURE 12.3.4 Time evolution for a struck string.

The solution u(x, t) is the sum of F (x) shifted to the right (at velocity c) and G(x)
shifted to the left (at velocity c). F (x) and G(x) are sketched in Fig. 12.3.4, as is their
shifted sum. The striking of the broad hammer causes the displacement of the string to
gradually increase near where the hammer hit and to have this disturbance spread out
to the left and right as time increases. Eventually, the string reaches an elevated rest
position. Alternatively, the solution can be obtained in an algebraic way (see Exercise
12.3.5). The characteristics sketched in Fig. 12.3.3 are helpful.

12.3.3 D’Alembert’s Solution

The general solution of the one-dimensional wave equation can be simplified somewhat.
Substituting (12.3.10) and (12.3.11) into the general solution (12.3.5) yields

u(x, t) =
f(x + ct) + f(x − ct)

2
+

1
2c

[∫ x+ct

0

g(x) dx −
∫ x−ct

0

g(x) dx

]

or

u(x, t) =
f(x − ct) + f(x + ct)

2
+

1
2c

∫ x+ct

x−ct

g(x) dx, (12.3.13)

known as d’Alembert’s solution (obtained in Chapter 11 by using Green’s formula and
the infinite space Green’s function for the one-dimensional wave equation). It is a very
elegant result. However, for sketching solutions often it is easier to work directly with
(12.3.10) and (12.3.11), where these are shifted according to (12.3.5).

Domain of dependence and range of influence. The importance of the char-
acteristics x − ct = constant and x + ct = constant is clear. At position x at time t the
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x
_

(x,t)

x − ct x + ct

(a)

t

x
x0
(b)

x = x0 − ct

t

x = x0 + ct

FIGURE 12.3.5 (a) Domain of dependence; (b) range of influence.

initial position data are needed at x± ct, while all the initial velocity data between x− ct
and x + ct is needed. The region between x − ct and x + ct is called the domain of
dependence of the solution at (x, t), as sketched in Fig. 12.3.5. In addition, we sketch
the range of influence, the region affected by the initial data at one point.

Space- and timelike boundaries. Two initial conditions (12.3.6) and (12.3.7)
are specified along t = 0, which is the x-axis, called a spacelike boundary. In the next
section, it is shown that one boundary condition is specified at a fixed boundary—for
example, x = 0—along which time varies, so that x = 0 is called a timelike boundary.
For a subsonic moving boundary, moving at a speed less than the characteristic velocity
c, |dx

dt | < c, then one condition is specified on that moving boundary, and the boundary
is said to be timelike. For a supersonic moving boundary, moving at a speed greater
than the characteristic velocity c, |dx

dt | > c, two conditions are specified (but sometimes
information propagates out of the region), and the boundary is said to be spacelike. The
boundaries do not have to move at constant velocities.

EXERCISES 12.3

12.3.1. Suppose that u(x, t) = F (x − ct) + G(x + ct), where F and G are sketched in
Fig. 12.3.6. Sketch the solution for various times.

x = 0 x = 1

G(x)

x = 0 x = 2

F(x)

1

2

FIGURE 12.3.6

12.3.2. Suppose that a stretched string is unperturbed (horizontal, u = 0) and at rest
(∂u/∂t = 0). If an impulsive force is applied at t = 0, the initial value problem is
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∂2u

∂t2
= c2

∂2u

∂x2
+ α(x)δ(t)

u(x, t) = 0, t < 0.

(a) Without using explicit solutions, show that this is equivalent to

∂2u

∂t2
= c2

∂2u

∂x2
, t > 0,

subject to u(x, 0) = 0 and ∂u
∂t (x, 0) = α(x).

Thus, the initial velocity α(x) is equivalent to an impulsive force.
(b) Do part (a) using the explicit solution of both problems.

12.3.3. An alternative way to solve the one-dimensional wave equation (12.3.1) is based
on (12.3.2) and (12.3.3). Solve the wave equation by introducing a change of vari-
ables from (x, t) to two moving coordinates (ξ, η), one moving to the left (with
velocity −c) and one moving to the right (with velocity c):

ξ = x − ct and η = x + ct.

*12.3.4. Suppose that u(x, t) = F (x − ct). Evaluate:

(a)
∂u

∂t
(x, 0)

(b)
∂u

∂x
(0, t)

12.3.5. Determine analytic formulas for u(x, t) if

u(x, 0) = f(x) = 0

∂u

∂t
(x, 0) = g(x) =

{
1 |x| < h
0 |x| > h.

(Hint: Using characteristics as sketched in Fig. 12.3.3, show that there are two
distinct regions, t < h/c and t > h/c. In each, show that the solution has five
different forms, depending on x.)

12.3.6. Consider the three-dimensional wave equation

∂2u

∂t2
= c2∇2u.

Assume that the solution is spherically symmetric, so that

∇2u = (1/ρ2)(∂/∂ρ)(ρ2∂u/∂ρ).

(a) Make the transformation u = (1/ρ)w(ρ, t) and verify that

∂2w

∂t2
= c2

∂2w

∂ρ2
.

(b) Show that the most general spherically symmetric solution of the wave equation
consists of the sum of two spherically symmetric waves, one moving outward at
speed c and the other inward at speed c. Note the decay of the amplitude.
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12.4 SEMI-INFINITE STRINGS AND REFLECTIONS

We will solve the one-dimensional wave equation on a semi-infinite interval, x > 0:

PDE:
∂2u

∂t2
= c2 ∂2u

∂x2
(12.4.1)

IC1: u(x, 0) = f(x) (12.4.2)

IC2:
∂u

∂t
(x, 0) = g(x). (12.4.3)

A condition is necessary at the boundary x = 0. We suppose that the string is fixed at
x = 0:

BC: u(0, t) = 0. (12.4.4)

Although a Fourier sine transform can be used, we prefer to indicate how to use the
general solution and the method of characteristics:

u(x, t) = F (x − ct) + G(x + ct). (12.4.5)

As in Section 12.3, the initial conditions are satisfied if

G(x) =
1
2
f(x) +

1
2c

∫ x

0

g(x) dx, x > 0 (12.4.6)

F (x) =
1
2
f(x) − 1

2c

∫ x

0

g(x) dx, x > 0. (12.4.7)

However, it is very important to note that (unlike the case of the infinite string) (12.4.6)
and (12.4.7) are valid only for x > 0; the arbitrary functions are determined from the
initial conditions only for positive arguments. In the general solution, G(x + ct) requires
only positive arguments of G (since x > 0 and t > 0). On the other hand, F (x − ct)
requires positive arguments if x > ct, but requires negative arguments if x < ct. As
indicated by a space-time diagram, Fig. 12.4.1, the information that there is a fixed end
at x = 0 travels at a finite velocity c. Thus, if x > ct, the string does not know that there
is any boundary. In this case (x > ct), the solution is obtained as before [using (12.4.6)
and (12.4.7)],

u(x, t) =
f(x − ct) + f(x + ct)

2
+

1
2c

∫ x+ct

x−ct

g(x) dx, x > ct, (12.4.8)
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x

t

x < ct

x = ct

x > ct

FIGURE 12.4.1 Characteristic emanating from the boundary.

d’Alembert’s solution. However, here this is not valid if x < ct. Since x + ct > 0,

G(x + ct) =
1
2
f(x + ct) +

1
2c

∫ x+ct

0

g(x) dx,

as determined earlier. To obtain F for negative arguments, we cannot use the initial
conditions. Instead, the boundary condition must be utilized. u(0, t) = 0 implies that
[from (12.4.5)]

0 = F (−ct) + G(ct) for t > 0. (12.4.9)

Thus, F for negative arguments is −G of the corresponding positive argument:

F (z) = −G(−z) for z < 0. (12.4.10)

Thus, the solution for x − ct < 0 is

u(x, t) = F (x − ct) + G(x + ct) = G(x + ct) − G(ct − x)

=
1
2
[f(x + ct) − f(ct − x)] +

1
2c

[∫ x+ct

0

g(x) dx −
∫ ct−x

0

g(x) dx

]

=
1
2
[f(x + ct) − f(ct − x)] +

1
2c

∫ x+ct

ct−x

g(x) dx.

To interpret this solution, the method of characteristics is helpful. Recall that for
infinite problems, u(x, t) is the sum of F (moving to the right) and G (moving to the
left). For semi-infinite problems with x > ct, the boundary does not affect the charac-
teristics (see Fig. 12.4.2). If x < ct, then Fig. 12.4.3 shows the left-moving characteristic
(G constant) not affected by the boundary, but the right-moving characteristic emanates
from the boundary. F is constant moving to the right. Due to the boundary condition,
F + G = 0 at x = 0, the right-moving wave is minus the left-moving wave. The wave
inverts as it “bounces off” the boundary. The resulting right-moving wave −G(ct − x) is
called the reflected wave. For x < ct, the total solution is the reflected wave plus the
as-yet unreflected left-moving wave:

u(x, t) = G(x + ct) − G(−(x − ct)).
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x

t

x = ct

FIGURE 12.4.2 Characteristics.

x

t

x =ct

G constant
G constant

F constant

FIGURE 12.4.3 Reflected characteristics.

The negatively reflected wave −G(−(x − ct)) moves to the right. It behaves as if
initially at t = 0 it were −G(−x). If there were no boundary, the right-moving wave
F (x−ct) would be initially F (x). Thus, the reflected wave is exactly the wave that would
have occurred if

F (x) = −G(−x) for x < 0,

or, equivalently,

1
2
f(x) − 1

2c

∫ x

0

g(x) dx = −1
2
f(−x) − 1

2c

∫ −x

0

g(x) dx.

One way to obtain this is to extend the initial position f(x) for x > 0 as an odd function
[such that f(−x) = −f(x)] and also extend the initial velocity g(x) for x > 0 as an
odd function [then its integral,

∫ x

0
g(x) dx, will be an even function]. In summary, the

solution of the semi-infinite problem with u = 0 at x = 0 is the same as
an infinite problem with the initial positions and velocities extended as odd
functions.

As further explanation, suppose that u(x, t) is any solution of the wave equation.
Since the wave equation is unchanged when x is replaced by −x, u(−x, t) (and any multiple
of it) is also a solution of the wave equation. If the initial conditions satisfied by u(x, t) are
odd functions of x, then both u(x, t) and −u(−x, t) solve these initial conditions and the
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wave equation. Since the initial value problem has a unique solution, u(x, t) = −u(−x, t);
that is, u(x, t), which is odd initially, will remain odd for all time. Thus, odd initial
conditions yield a solution that will satisfy a zero boundary condition at x = 0.

EXAMPLE

Consider a semi-infinite string x > 0 with a fixed end u(0, t) = 0, which is initially at
rest, ∂u

∂t (x, 0) = 0, with an initial unit rectangular pulse,

f(x) =
{

1 4 < x < 5
0 otherwise.

Since g(x) = 0, it follows that

F (x) = G(x) =
1
2
f(x) =

{
1
2 4 < x < 5
0 otherwise (with x > 0).

F moves to the right; G moves to the left, negatively reflecting off x = 0. This can also be
interpreted as an initial condition (on an infinite domain) with f(x) and g(x) extended
as odd functions. The solution is sketched in Fig. 12.4.4. Note the negative reflection.

Problems with nonhomogeneous boundary conditions at x = 0 can be analyzed in
a similar way.

0 2 4 6 8 10
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50

60
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0

0.5

1

FIGURE 12.4.4 Reflected pulse.

EXERCISES 12.4

*12.4.1. Solve by the method of characteristics:

∂2u

∂t2
= c2

∂2u

∂x2
, x > 0,

subject to u(x, 0) = 0, ∂u
∂t (x, 0) = 0, and u(0, t) = h(t).
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*12.4.2. Determine u(x, t) if
∂2u

∂t2
= c2

∂2u

∂x2
for x < 0 only,

where

u(x, 0) = cos x, x < 0

∂u

∂t
(x, 0) = 0, x < 0

u(0, t) = e−t, t > 0.

Do not sketch the solution. However, draw a space-time diagram, including all im-
portant characteristics.

12.4.3. Consider the wave equation on a semi-infinite interval

∂2u

∂t2
= c2

∂2u

∂x2
for 0 < x < ∞

with the free boundary condition

∂u

∂x
(0, t) = 0

and the initial conditions

u(x, 0) =

⎧⎪⎨
⎪⎩

0 0 < x < 2

1 2 < x < 3,
∂u

∂t
(x, 0) = 0.

0 x > 3

Determine the solution. Sketch the solution for various times. (Assume that u is
continuous at x = 0, t = 0.)

12.4.4. (a) Solve for x > 0, t > 0 (using the method of characteristics):

∂2u

∂t2
= c2

∂2u

∂x2

u(x, 0) = f(x)
∂u

∂t
(x, 0) = g(x)

}
x > 0

∂u

∂x
(0, t) = 0, t > 0.

(Assume that u is continuous at x = 0, t = 0.)

(b) Show that the solution of part (a) may be obtained by extending the initial
position and velocity as even functions (around x = 0).

(c) Sketch the solution if g(x) = 0 and

f(x) =
{

1 4 < x < 5
0 otherwise.
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12.4.5. (a) Show that if u(x, t) and ∂u/∂t are initially even around x = x0, u(x, t) will
remain even for all time.

(b) Show that this type of even initial condition yields a solution that will satisfy
a zero derivative boundary condition at x = x0.

*12.4.6. Solve (x > 0, t > 0)

∂2u

∂t2
= c2

∂2u

∂x2

subject to the conditions u(x, 0) = 0, ∂u
∂t (x, 0) = 0, and ∂u

∂x (0, t) = h(t).
*12.4.7. Solve

∂2u

∂t2
= c2

∂2u

∂x2
,

x > 0
t > 0

subject to u(x, 0) = f(x), ∂u
∂t (x, 0) = 0, and ∂u

∂x (0, t) = h(t). (Assume that u is
continuous at x = 0, t = 0.)

12.4.8. Solve

∂2u

∂t2
= c2

∂2u

∂x2
with u(x, 0) = 0 and

∂u

∂t
(x, 0) = 0,

subject to u(x, t) = g(t) along x = c
2 t(c > 0).

12.5 METHOD OF CHARACTERISTICS FOR A VIBRATING STRING
OF FIXED LENGTH

In Chapter 4 we solved for the vibration of a finite string satisfying

PDE:
∂2u

∂t2
= c2 ∂2u

∂x2
(12.5.1)

BC:
u(0, t) = 0

u(L, t) = 0
(12.5.2)

IC:
u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x),

(12.5.3)

using Fourier series methods. We can obtain an equivalent, but in some ways more useful,
result by using the general solution of the one-dimensional wave equation:

u(x, t) = F (x − ct) + G(x + ct). (12.5.4)
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L

t

0

FIGURE 12.5.1 Characteristics.

The initial conditions are prescribed only for 0 < x < L, and hence the formulas for F (x)
and G(x) previously obtained are valid only for 0 < x < L:

F (x) =
1
2
f(x) − 1

2c

∫ x

0

g(x) dx (12.5.5)

G(x) =
1
2
f(x) +

1
2c

∫ x

0

g(x) dx. (12.5.6)

If 0 < x − ct < L and 0 < x + ct < L, which is the triangular region in Fig. 12.5.1, then
d’Alembert’s solution is valid:

u(x, t) =
f(x − ct) + f(x + ct)

2
+

1
2c

∫ x+ct

x−ct

g(x) dx. (12.5.7)

In this region, the string does not know that either boundary exists; the information that
there is a boundary propagates at velocity c from x = 0 and x = L.

If one’s position and time are such that signals from the boundary have already
arrived, then modifications in (12.5.7) must be made. The boundary condition at x = 0
implies that

0 = F (−ct) + G(ct) for t > 0, (12.5.8)

while at x = L we have

0 = F (L − ct) + G(L + ct) for t > 0. (12.5.9)

These, in turn, imply reflections and multiple reflections, as illustrated in Fig. 12.5.2.
Alternatively, a solution on an infinite domain without boundaries can be considered

that is odd around x = 0 and odd around x = L, as sketched in Fig. 12.5.3. In this way, the
zero condition at both x = 0 and x = L will be satisfied. We note that u(x, t) is periodic
with period 2L. In fact, we ignore the oddness around x = L, since periodic functions
that are odd around x = 0 are automatically odd around x = L. Thus, the simplest
way to obtain the solution is to extend the initial conditions as odd functions
(around x = 0) that are periodic (with period 2L). With these odd-periodic initial
conditions, the method of characteristics can be utilized as well as d’Alembert’s solution
(12.5.7).
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L

t

0

FIGURE 12.5.2 Multiply reflected characteristics.

L

−L

0
2L

FIGURE 12.5.3 Odd-periodic extension.

EXAMPLE

Suppose that a string is initially at rest with prescribed initial conditions u(x, 0) = f(x).
The string is fixed at x = 0 and x = L. Instead of using Fourier series methods, we
extend the initial conditions as odd functions around x = 0 and x = L. Equivalently,
we introduce the odd-periodic extension. (The odd-periodic extension is also used in the
Fourier series solution.) Since the string is initially at rest, g(x) = 0; the odd-periodic
extension is g(x) = 0 for all x. Thus, the solution of the one-dimensional wave equation
is the sum of two simple waves:

u(x, t) =
1
2
[fext(x − ct) + fext(x + ct)],

where fext(x) is the odd-periodic extension of the given initial position. This solution is
much simpler than the summation of the first 100 terms of its Fourier sine series.

Separation of variables. By separation of variables, the solution of the wave
equation with fixed boundary conditions [u(0, t) = 0 and u(L, t) = 0] satisfying the initial
conditions u(x, 0) = f(x) and ∂u

∂t = 0 is
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u(x, t) =
∞∑

n=1

ansin
nπx

L
cos

nπct

L
,

where the given initial conditions are specified only for [0, L]. To be precise, the infinite
Fourier series fext(x) equals the odd-periodic extension (with period 2L) of f(x): fext(x) =∑∞

n=1 an sin nπx
L . Using sin nπx

L cos nπct
L = 1

2 sin nπ(x+ct)
L + 1

2 sin nπ(x−ct)
L , we obtain

u(x, t) =
1
2
fext(x + ct) +

1
2
fext(x − ct),

which is the same result obtained by the method of characteristics.

EXERCISES 12.5

12.5.1. Consider
∂2u

∂t2
= c2

∂2u

∂x2

u(x, 0) = f(x)
∂u

∂t
(x, 0) = g(x)

⎫⎬
⎭ 0 < x < L

u(0, t) = 0

u(L, t) = 0.

(a) Obtain the solution by Fourier series techniques.
*(b) If g(x) = 0, show that part (a) is equivalent to the results of Chapter 12.
(c) If f(x) = 0, show that part (a) is equivalent to the results of Chapter 12.

12.5.2. Solve using the method of characteristics:

∂2u

∂t2
= c2

∂2u

∂x2

u(x, 0) = 0, u(0, t) = h(t)
∂u

∂t
(x, 0) = 0, u(L, t) = 0.

12.5.3. Consider
∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < 10

u(x, 0) = f(x) =
{

1 4 < x < 5
0 otherwise, u(0, t) = 0

∂u

∂t
(x, 0) = g(x) = 0,

∂u

∂x
(L, t) = 0.

(a) Sketch the solution using the method of characteristics.
(b) Obtain the solution using Fourier series–type techniques.
(c) Obtain the solution by converting to an equivalent problem on an infinite

domain.

12.5.4. How should initial conditions be extended if ∂u
∂x (0, t) = 0 and u(L, t) = 0?
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12.6 THE METHOD OF CHARACTERISTICS FOR QUASILINEAR PARTIAL
DIFFERENTIAL EQUATIONS

12.6.1 Method of Characteristics

Most of this text describes methods for solving linear partial differential equations (sep-
aration of variables, eigenfunction expansions, Fourier and Laplace transforms, Green’s
functions) that cannot be extended to nonlinear problems. However, the method of char-
acteristics, used to solve the wave equation, can be applied to partial differential equations
of the form

∂ρ

∂t
+ c

∂ρ

∂x
= Q, (12.6.1)

where c and Q may be functions of x, t, and ρ. When Q is not a linear function of ρ or, more
important to us, when the coefficient c depends on the unknown solution ρ, then (12.6.1) is
not linear. Superposition is not valid. Nonetheless (12.6.1) is called a quasilinear partial
differential equation, since it is linear in the first partial derivatives, ∂ρ/∂t and ∂ρ/∂x.
To solve (12.6.1), we again consider an observer moving in some prescribed way x(t). By
comparing (12.2.7) and (12.6.1), we obtain

dρ

dt
= Q(ρ, x, t) (12.6.2)

if

dx

dt
= c(ρ, x, t). (12.6.3)

The partial differential equation (12.6.1) reduces to two coupled ordinary differential
equations along the special trajectory or direction defined by (12.6.3), known as a char-
acteristic curve, or simply a characteristic for short. The velocity defined by (12.6.3)
is called the characteristic velocity, or local wave velocity. A characteristic starting
from x = x0, as illustrated in Fig. 12.6.1, is determined from the coupled differential

x = x
=

0
ρ = ρ(x0,0) = f(x0)

dρ
dt

= Q

dx
dt = c

t

x

FIGURE 12.6.1 Characteristic starting from x = x0 at time t = 0.
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equations (12.6.2) and (12.6.3) using the initial conditions ρ(x, 0) = f(x). Along the
characteristic, the solution ρ changes according to (12.6.2). Other initial positions yield
other characteristics, generating a family of characteristics.

EXAMPLE

If the local wave velocity c is a constant c0 and Q = 0, then the quasilinear partial differ-
ential equation (12.6.1) becomes the linear one, (12.2.6), which arises in the analysis of the
wave equation. In this example, the characteristics may be obtained by directly integrat-
ing (12.6.3) without using (12.6.2). Each characteristic has the same constant velocity,
c0. The family of characteristics are parallel straight lines, as sketched in Fig. 12.2.1.

Quasilinear in two-dimensional space. If the independent variables are x and
y instead of x and t, then a quasilinear first-order partial differential equation is usually
written in the form

a
∂ρ

∂x
+ b

∂ρ

∂y
= c, (12.6.4)

where a, b, and c may be functions of x, y, and ρ. The method of characteristics is
dρ

dx
=

c

a
(12.6.5)

if
dy

dx
=

b

a
. (12.6.6)

This is written in the following (easy to memorize) equivalent form:
dx

a
=

dy

b
=

dρ

c
. (12.6.7)

12.6.2 Traffic Flow

Traffic density and flow. As an approximation it is possible to model a congested
one-directional highway by a quasilinear partial differential equation. We introduce the
traffic density ρ(x, t), the number of cars per mile at time t located at position x. An
easily observed and measured quantity is the traffic flow q(x, t), the number of cars per
hour passing a fixed place x (at time t).

Conservation of cars. We consider an arbitrary section of roadway, between
x = a and x = b. If there are neither entrances nor exits on this segment of the road, then
the number of cars between x = a and x = b [N =

∫ b

a
ρ(x, t) dx, the definite integral of

the density] might still change in time. The rate of change of the number of cars, dN/dt,
equals the number per unit time entering at x = a [the traffic flow q(a, t) there] minus
the number of cars per unit time leaving at x = b [the traffic flow q(b, t) there]:

d

dt

∫ b

a

ρ(x, t) dx = q(a, t) − q(b, t). (12.6.8)
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Equation (12.6.8) is called the integral form of conservation of cars. As with heat flow,
a partial differential equation may be derived from (12.6.8) in several equivalent ways.
One way is to note that the boundary contribution may be expressed as an integral over
the region:

q(a, t) − q(b, t) = −
∫ b

a

∂

∂x
q(x, t) dx. (12.6.9)

Thus, by taking the time derivative inside the integral (making it a partial derivative)
and using (12.6.9), it follows that

∂ρ

∂t
+

∂q

∂x
= 0, (12.6.10)

since a and b are arbitrary (see Section 1.2). We call (12.6.10) conservation of cars.

Car velocity. The number of cars per hour passing a place equals the density of
cars times the velocity of cars. By introducing u(x, t) as the car velocity, we have

q = ρu. (12.6.11)

To derive (12.6.11), it may be helpful to consider the number of cars passing a fixed
observer in a short time Δt, the flow times time: qΔt. On the other hand, cars are moving
at velocity u, will have traveled a distance uΔt, with car density, cars per mile ρ, so that
the number of cars passing is ρuΔt.

In the mid-1950s, Lighthill and Whitham and, independently, Richards made a sim-
plifying assumption, namely, that the car velocity depends only on the density,
u = u(ρ), with cars slowing down as the traffic density increases (i.e., du/dp ≤ 0).
For further discussion, the interested reader is referred to Whitham [1999] and Haberman
[1998]. Under this assumption, the traffic flow is a function only of the traffic density,
q = q(ρ). In this case, conservation of cars (12.6.10) becomes

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (12.6.12)

where c(ρ) = q′(ρ), a quasilinear partial differential equation with Q = 0 [see (12.6.1)].
Here c(ρ) is considered to be a known function of the unknown solution ρ. In any physical
problem in which a density ρ is conserved and the flow q is a function of density, ρ satisfies
(12.6.12).

Elementary traffic model. In general, the car velocity u should be a decreasing
function of ρ. At zero density, cars move fastest, which we denote umax. At some maximum
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density ρmax, the car velocity will be zero. The simplest relationship which satisfies these
properties is u(ρ) = umax(1− (ρ/ρmax)), in which case from (12.6.11) the flow is given by
q(ρ) = umaxρ(1−(ρ/ρmax)) = umax(ρ−(ρ2/ρmax)), and the density wave velocity satisfies
c(ρ) = q′(ρ) = umax(1 − (2ρ/ρmax)).

12.6.3 Method of Characteristics (Q = 0)

The equations for the characteristics for (12.6.12) are

dρ

dt
= 0 (12.6.13)

along
dx

dt
= c(ρ). (12.6.14)

The characteristic velocity c is not constant but depends on the density ρ. It is known
as the density wave velocity. From (12.6.13), it follows that the density ρ remains
constant along each as-yet undetermined characteristic. The velocity of each character-
istic, c(ρ), will be constant, since ρ is constant. Each characteristic is thus a straight
line [as in the case in which c(ρ) is a constant c0]. However, different characteristics will
move at different constant velocities because they may start with different densities. The
characteristics, though each is straight, are not parallel to one another. Consider the char-
acteristic that is initially at the position x = x0, as shown in Fig. 12.6.2. Along the curve
dx/dt = c(ρ), dp/dt = 0 or ρ is constant. Initially ρ equals the value at x = x0 (i.e., at
t = 0). Thus, along this one characteristic,

ρ(x, t) = ρ(x0, 0) = f(x0), (12.6.15)

which is a known constant. The local wave velocity that determines the characteristic is
a constant, dx/dt = c(f(x0)). Consequently, this characteristic is a straight line,

x = c(f(x0))t + x0, (12.6.16)

since x = x0 at t = 0. Different values of x0 yield different straight-line characteristics,
perhaps as illustrated in Fig. 12.6.2. Along each characteristic, the traffic density ρ is
a constant; see (12.6.15). To determine the density at some later time, the characteris-
tic with parameter x0 that goes through that space-time point must be obtained from
(12.6.16).

FIGURE 12.6.2 Possibly
nonparallel straight-line
characteristics. x0

(x,t) = f(x0)

t

x

ρ
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Graphical solution. In practice, it is often difficult and not particularly inter-
esting to determine x0 from (12.6.16) as an explicit function of x and t. Instead, a graphical
procedure may be used to determine ρ(x, t). Suppose the initial density is as sketched in
Fig. 12.6.3. We know that each density ρ0 stays the same, moving at its own constant-
density wave velocity c(ρ0). At time t, the density ρ0 will have moved a distance c(ρ0)t,
as illustrated by the arrow in Fig. 12.6.3. This process must be carried out for a large
number of points (as is elementary to do on any computer). In this way, we could obtain
the density at time t.

x0 x0 + c(ρ0)t

ρ(x,t)

ρ(x,0)

x

FIGURE 12.6.3 Graphical solution.

Fanlike characteristics. As an example of the method of characteristics, we
consider the following initial value problem:

∂ρ

∂t
+ 2ρ

∂ρ

∂x
= 0

ρ(x, 0) =
{

3 x < 0
4 x > 0.

The density ρ(x, t) is constant moving with the characteristic velocity 2ρ:

dx

dt
= 2ρ.

Thus, the characteristics are given by

x = 2ρ(x0, 0)t + x0. (12.6.17)

If x0 > 0, then ρ(x0, 0) = 4, while if x0 < 0, then ρ(x0, 0) = 3. The characteristics,
sketched in Fig. 12.6.4, show that

ρ(x, t) =
{

4 x > 8t
3 x < 6t,

as illustrated in Fig. 12.6.5. The distance between ρ = 3 and ρ = 4 is increasing; we
refer to the solution as an expansion wave. But what happens for 6t < x < 8t? The
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x = 0

x = 6t

x = 8t

FIGURE 12.6.4 Characteristics (including the fanlike ones).

x = 6t x = 8t

ρ = 3
ρ = 4

ρ = x/2t

0
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0
0.5
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3

3.5

4

x
t

ρ

FIGURE 12.6.5 Expansion wave.

difficulty is caused by the initial density having a discontinuity at x = 0. We imagine
that all values of ρ between 3 and 4 are present initially at x = 0. There will be a
straight-line characteristic along which ρ equals each value between 3 and 4. Since these
characteristics start from x = 0 at t = 0, it follows from (12.6.17) that the equation for
these characteristics is

x = 2ρt, for 3 < ρ < 4,

also sketched in Fig. 12.6.4. In this way, we obtain the density in the wedge-shaped region,

ρ =
x

2t
for 6t < x < 8t,

which is linear in x (for fixed t). We note that the characteristics fan out from x = 6t to
x = 8t and hence are called fanlike characteristics. The resulting density is sketched
in Fig. 12.6.5. It could also be obtained by the graphical procedure.
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Red light turning green. We assume the elementary model of traffic flow, so
that the traffic density satisfies

∂ρ

∂t
+ umax

(
1 − 2ρ

ρmax

)
∂ρ

∂x
= 0.

Behind a red light (x = 0), the traffic density is maximum, while ahead of the light the
traffic density is zero, so that at the moment (t = 0) the light turns green, the initial
conditions are

ρ(x, 0) =
{

ρmax x < 0
0 x > 0.

The characteristic velocity is dx
dt = umax(1− 2ρ

ρmax
). The density is constant along the char-

acteristics so that the characteristics satisfy

x = umax

(
1 − 2ρ

ρmax

)
t + x0.

The characteristic velocity is umax for ρ = 0,while the characteristic velocity is −umax for
ρ = ρmax. Thus,

ρ(x, t) =
{

ρmax x < −umaxt
0 x > umaxt.

The information that the traffic light has turned green propagates backward at density
velocity −umax. That is why you have to wait after a light turns green before you can
move. The characteristics are similar to Fig. 12.6.4. To obtain the density elsewhere, we
note that there is a family of fanlike characteristics that all start at x0 = 0. Thus, in this
region, x = umax(1 − 2ρ

ρmax
)t. Given x and t in this region, we can solve for the density

ρ(x, t) =
ρmax

2

(
1 − x

umaxt

)
for − umaxt < x < umaxt.

The solution is similar to the expansion wave shown in Fig. 12.6.5, but for an expansion
wave for traffic flow, the higher density (slowly moving traffic) is behind the lower density
(faster moving traffic), as a result of the traffic light turning green.

12.6.4 Shock Waves

Intersecting characteristics. The method of characteristics will not always work as
we have previously described. For quasilinear partial differential equations, it is quite
usual for characteristics to intersect. The resolution will require the introduction of mov-
ing discontinuities called shock waves. In order to make the mathematical presentation
relatively simple, we restrict our attention to quasilinear partial differential equations
with Q = 0, in which case

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0. (12.6.18)

In Fig. 12.6.6 two characteristics are sketched, one starting at x = x1, with ρ = f(x1, 0) ≡
ρ1, and the other starting at x = x2 with ρ = f(x2, 0) ≡ ρ2. These characteristics inter-
sect if c(ρ1) > c(ρ2), the faster catching up to the slower. The density is constant along
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FIGURE 12.6.6 Intersecting
characteristics.

ρ = ρ2ρ = ρ1

c(ρ1) > c(ρ2)

x

characteristics. As time increases, the distance between the densities ρ1 and ρ2 decreases.
Thus, this is called a compression wave. We sketch the initial condition in Fig. 12.6.7a.
The density distribution becomes steeper as time increases (Figs. 12.6.7b and c). Eventu-
ally characteristics intersect; the theory predicts that the density is simultaneously ρ1 and
ρ2. If we continue to apply the method of characteristics, the faster-moving characteristic
passes the slower. Then we obtain Fig. 12.6.7d. The method of characteristics predicts
that the density becomes a “multivalued” function of position; that is, at some later time,
our mathematics predicts there will be three densities at some positions (as illustrated
in Fig. 12.6.7d). We say the density wave breaks. However, in many physical problems
(such as traffic flow) it makes no sense to have three values of density at one place.3 The
density must be a single-valued function of position.

FIGURE 12.6.7 Density wave
steepens (density becomes triple
valued).

ρ

(a) (b) (c) (d)

x

Discontinuous solutions. On the basis of the quasilinear partial differential
equation (12.6.18), we predicted the physically impossible phenomenon that the den-
sity becomes multivalued. Since the method of characteristics is mathematically justified,
it is the partial differential equation itself that must not be entirely valid. Some approx-
imation or assumption that we used must at times be invalid. We will assume that the
density (as illustrated in Fig. 12.6.8) and velocity have a jump discontinuity, which we
call a shock wave, or simply a shock.4 The shock occurs at some unknown position xs

3The partial differential equations describing the height of water waves near the shore (i.e., in shallow
water) are similar to the equations for traffic density waves. In this situation, the prediction of breaking
is then significant!

4The terminology shock wave is introduced because of the analogous behavior that occurs in gas
dynamics. There, changes in pressure and density of air, for example, propagate and are heard (due to
the sensitivity of the human ear). They are called sound waves. When fluctuations of pressure and density
are small, the equations describing sound waves can be linearized. Then sound is propagated at a constant
speed known as the sound speed. However, if the amplitudes of the fluctuations of pressure and density
are not small, then the partial differential equations are quasilinear. Characteristics may intersect. In this
case, the pressure and density can be modeled mathematically as being discontinuous, the result being
called a shock wave. Examples are the sound emitted from an explosion or the thunder resulting from
lightning. If a shock wave results from exceeding the sound barrier, it is known as a sonic boom.
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FIGURE 12.6.8 Density
discontinuity at x = xs(t).

xs(t)

ρ(xs+,t)

ρ(xs−,t)

ρ(x,t)

x

and propagates in time, so that xs(t). We introduce the notation xs− and xs+ for the
position of the shock on the two sides of the discontinuity. The shock velocity, dxs/dt, is
as yet unknown.

Shock velocity. On either side of the shock, the quasilinear partial differential
equation applies, ∂ρ

∂t + c(ρ) ∂ρ
∂x = 0, where c(ρ) = dq(ρ)

dρ . We need to determine how the
discontinuity propagates. If ρ is conserved even at a discontinuity, then the flow relative to
the moving shock on one side of the shock must equal the flow relative to the moving shock
on the other side. This statement of relative inflow equaling relative outflow becomes

ρ(xs−, t)
[
u(xs−, t) − dxs

dt

]
= ρ(xs+, t)

[
u(xs+, t) − dxs

dt

]
, (12.6.19)

since flow equals density times velocity (here relative velocity). Solving for the shock
velocity from (12.6.19) yields

dxs

dt
=

q(xs+, t) − q(xs−, t)
ρ(xs+, t) − ρ(xs−, t)

=
[q]
[ρ]

, (12.6.20)

where we recall that q = ρu and where we introduce the notation [q] and [ρ] for the
jumps in q and ρ, respectively. In gas dynamics, (12.6.20) is called the Rankine–Hugoniot
condition. In summary, for the conservation law ∂ρ

∂t
+ ∂q

∂x
= 0 (if the quantity∫

ρ dx is actually conserved), the shock velocity equals the jump in the flow
divided by the jump in the density of the conserved quantity. At points of
discontinuity, this shock condition replaces the use of the partial differential equation,
which is valid elsewhere. However, we have not yet explained where shocks occur and
how to determine ρ(xs+, t) and ρ(xs−, t).

Alternate derivation of the shock velocity. Let us consider the conservation
law, conservation of cars, (12.6.8), for a finite region (a < x < b) that includes the moving
shock (a < xs(t) < b) (see Figure 12.6.8):

d

dt

∫ b

a

ρdx = q(a, t) − q(b, t). (12.6.21)
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Since there is a discontinuity in the density, it is best to break the integral up into two
pieces:

d

dt

[∫ xs(t)

a

ρ(x, t) dx +
∫ b

xs(t)

ρ(x, t) dx

]
= q(a, t) − q(b, t).

Using Leibniz’s rule for the derivative of integrals with variable limits, we obtain
∫ xs(t)

a

∂ρ

∂t
dx +

dxs

dt
ρ(xs−, t) +

∫ b

xs(t)

∂ρ

∂t
dx − dxs

dt
ρ(xs+, t) = q(a, t) − q(b, t).

However, away from the shock, the solution is smooth, and the partial differential equation
∂ρ
∂t + ∂q

∂x = 0 is valid in each region a < x < xs andxs < x < b. The integrals
∫

∂q
∂xdx are

then easily computed so that

q(a, t) − q(xs−, t) +
dxs

dt
[ρ(xs−, t) − ρ(xs+, t)] + q(xs+, t) − q(b, t) = q(a, t) − q(b, t).

Canceling q(a, t) and q(b, t) then yields the fundamental equation for the shock velocity
(12.6.20):

dxs

dt
=

q(xs−, t) − q(xs+, t)
ρ(xs−, t) − ρ(xs+, t)

=
[q]
[ρ]

, (12.6.22)

where [ρ] and [q] are notations for the jump in density across the discontinuous shock and
the jump in the flow.

EXAMPLE

We consider the initial value problem

∂ρ

∂t
+ 2ρ

∂ρ

∂x
= 0

ρ(x, 0) =
{

4 x < 0
3 x > 0.

We assume that ρ is a conserved density. Putting the partial differential equation in con-
servation form (∂ρ

∂t + ∂q
∂x = 0) shows that the flow q = ρ2. Thus, if there is a discontinuity,

the shock velocity satisfies dx
dt = [q]/[ρ] = [ρ2]/[ρ]. The density ρ(x, t) is constant moving

at the characteristic velocity 2ρ:
dx

dt
= 2ρ.

Therefore, the equation for the characteristics is

x = 2ρ(x0, 0)t + x0.
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(a) (b) (c)

FIGURE 12.6.9 Shock caused by intersecting characteristics.

If x0 < 0, then ρ(x0, 0) = 4. This parallel group of characteristics intersects those starting
from x0 > 0 [with ρ(x0, 0) = 3] in the cross-hatched region in Fig. 12.6.9a. The method
of characteristics yields a multivalued solution of the partial differential equation. This
difficulty is remedied by introducing a shock wave (Fig. 12.6.9b), a propagating wave
indicating the path at which densities and velocities abruptly change (i.e., are discon-
tinuous). On one side of the shock, the method of characteristics suggests the density is
constant ρ = 4, and on the other side, ρ = 3. We do not know as yet the path of the
shock. The theory for such a discontinuous solution implies that the path for any shock
must satisfy the shock condition, (12.6.20). Substituting the jumps in flow and density
yields the following equation for the shock velocity:

dxs

dt
=

q(4) − q(3)
4 − 3

=
42 − 32

4 − 3
= 7,

since in this case q = ρ2. Thus, the shock moves at a constant velocity. The initial position
of the shock is known, giving a condition for this first-order ordinary differential equation.
In this case, the shock must initiate at xs = 0 at t = 0. Consequently, applying the initial
condition results in the position of the shock,

xs = 7t.

The resulting space-time diagram is sketched in Fig. 12.6.9c. For any time t > 0, the
traffic density is discontinuous, as shown in Fig. 12.6.10.

ρ = 3
ρ = 4

xs = 7t
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FIGURE 12.6.10 Density shock wave.
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Entropy condition. We note that as shown in Fig. 12.6.9c, the characteris-
tics must flow into the shock on both sides. The characteristic velocity on the left
(2ρ = 8)must be greater than the shock velocity (dxs

dt = 7), and the characteristic velocity
on the right (2ρ = 6)must be less than the shock velocity. This is a general principle,
called the entropy condition,

c(ρ(xs−)) >
dxs

dt
> c(ρ(xs+)). (12.6.23)

Nonuniqueness of shock velocity and its resolution. The shock velocity for
∂ρ
∂t + ∂q

∂x = 0, where q = q(ρ), is dxs

dt = [q]

[ρ]
. It is sometimes claimed that the shock velocity

is not unique because mathematically the partial differential equation can be multiplied
by any function of ρ and the resulting shock velocity would be different. For the previous
example of a shock with ρ = 4 and ρ = 3, dxs

dt = [q]

[ρ]
= [ρ2]

[ρ]
= 7. However, if we multiply

the PDE by ρ, we obtain ∂( 1
2 ρ2)

∂t
+ ∂( 2

3 ρ3)

∂x
= 0, so that the shock velocity assuming ρ2 is

conserved would be different: dxs

dt
= [q]

[ρ2]
= [ 43 ρ3]

[ρ2]
= 4

3
43−33

7 = 148
21 . However, the point of

view we wish to take is that only one of the conservation laws is the correct conservation
law from physical principles. For example, for traffic flow problems, ρ, not ρ2, is the
conserved quantity, and the shock velocity formula can be used only for the density that
is physically conserved.

Green light turns red. We assume that the traffic density satisfies the partial
differential equation corresponding to the elementary model of traffic flow:

∂ρ

∂t
+ umax

(
1 − 2ρ

ρmax

)
∂ρ

∂x
= 0.

Before the light turns red, we assume a very simple traffic situation in which the traffic
density is a constant ρ = ρ0 so that all cars are moving at the same velocity, u =
umax(1 − ρ0

ρmax
). We assume the green light (x = 0) turns red at t = 0. Behind the light

(x < 0), the traffic density is initially uniform ρ = ρ0, but the density is maximum
ρ = ρmax at the light itself since the cars are stopped there:

ρ(x, 0) = ρ0 for x < 0
ρ(0, t) = ρmax for t > 0.

The characteristic velocity is dx
dt = umax(1 − 2ρ

ρmax
). The characteristics from x = 0 move

backward since the characteristic velocity is −umax for ρ = ρmax. The characteristic
velocity is umax(1 − 2ρ0

ρmax
) for ρ = ρ0. The two parallel families of characteristics will

intersect because umax(1 − 2ρ0
ρmax

) > −umax. A shock will form separating ρ = ρ0 from
ρ = ρmax. The shock velocity is determined from (12.6.20):

dxs

dt
=

[q]
[ρ]

=
q(ρmax) − q(ρ0)

ρmax − ρ0
=

−q(ρ0)
ρmax − ρ0

,
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where we have noted that q(ρmax) = 0. Since the shock starts (t = 0) at x = 0, the shock
path is

xs =
−q(ρ0)

ρmax − ρ0
t.

The shock velocity is negative since q(ρ0) > 0, and the shock propagates backward. In
this case there is a formula, q(ρ0) = umax(1 − ρ0

ρmax
)ρ0,but we do not need it. The traffic

density is ρ0 before the shock and increases to ρmax at the shock (unlike Fig. 12.6.10).
Characteristics and the shock are qualitatively similar to Fig. 12.6.9c, but traffic shocks
occur when faster-moving traffic (lower density) is behind slower-moving traffic (higher
density). Here the shock velocity represents the line of stopped cars due to the red light
moving backward behind the light. Many accidents are caused by the suddenness of traffic
shock waves.

Conditions for shock formation. A shock forms if initially the characteristic
velocity c(ρ) = q′(ρ) is a decreasing function of x (so that faster waves are behind slower
waves). Thus, a shock forms if initially ∂

∂xq′(ρ) = q′′(ρ) ∂ρ
∂x < 0. It follows that for traffic

problems, where q′′(ρ) < 0, shocks form when the density is an increasing function of x,
and the density must increase with x at a shock. However, if q′′(ρ) > 0, then shocks form
only if ∂ρ

∂x < 0 so that the density must decrease at a shock. Otherwise, characteristics
do not intersect, and discontinuous initial conditions correspond to expansion waves. If
q′′(ρ) does not change signs, then discontinuous initial conditions result in either a shock
or an expansion wave.

Example with a shock and an expansion wave. If q′′(ρ) does change sign
at least once, then a discontinuous initial condition may result in both a shock and an
expansion wave. A simple mathematical example with this property is q = 1

3ρ3, so that
q′ = ρ2 and q′′ = 2ρ. If ρ < 0, this is similar to a traffic problem, but we will assume
initially that ρ is both positive and negative. As an example we assume the initial condition
is increasing from negative to positive:

∂ρ

∂t
+ ρ2 ∂ρ

∂x
= 0

ρ(x, 0) =
{−1 x < 0

2 x > 0.

Since ρ will be an increasing function of x, shocks can occur where q′′ = 2ρ < 0 (meaning
−1 < ρ < 0), while an expansion wave occurs for ρ > 0. In general, according to the
method of characteristics, ρ is constant moving at velocity ρ2, so that characteristics
satisfy

x = ρ2(x0, 0)t + x0.
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FIGURE 12.6.11 Characteristics
for shock and expansion wave.

ρ = 1 ρ = 2

x = 4t

x = t

x

t

Important characteristics that correspond to ρ = −1, ρ = 2, and (only at t = 0) ρ = 0
are graphed in Fig. 12.6.11. The density ρ = 2 for x > 4t. The expansion wave satisfies
x = ρ2(x0, 0)t, so that there

ρfan = +
√

x

t
,

where we have carefully noted that in this problem the expansion wave corresponds to
ρ > 0. (The characteristic x = 0t corresponding to ρ = 0 in some subtle sense bounds
the expansion wave ranging from ρ = 0 to ρ = 2.) However, the characteristics from
x0 < 0 in which ρ = −1 moving at velocity +1 intersect characteristics in the region of
the expansion wave. A nonuniform shock (nonconstant velocity) will form, separating
the region with constant density ρ = −1 from the expansion wave ρfan = +

√
x
t . The

path of the shock wave is determined from the shock condition

dx

dt
=

[q]
[ρ]

=
1
3

1 + (x
t )3/2

1 + (x
t )1/2

.

It is somewhat complicated to solve exactly this ordinary differential equation. In any
event, the ordinary differential equation could be solved (with care) numerically (let
y = x

t ). It can be shown that this nonuniform shock persists for these initial conditions.
In other problems (but not this one), this shock might no longer persist beyond some
time, in which case it would be replaced by a simpler uniform shock (constant velocity)
separating ρ = −1 and ρ = 2.

Diffusive conservation law. Here we will introduce a different way to under-
stand the relationship between the unique shock velocity and the unique conservation law.
Suppose the partial differential equation was diffusive, but only slightly different from the
one previously studied:

∂ρ

∂t
+ q′(ρ)

∂ρ

∂x
= ε

∂2ρ

∂x2
, (12.6.24)

where ε is a very small positive parameter, 0 < ε << 1. Note that ρ is conserved in
the sense that ∂ρ

∂t + ∂
∂x (q − ε ∂ρ

∂x ) = 0. Under most circumstances the partial differential
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equation can be accurately approximated by the equation with ε = 0, which can be solved
by the method of characteristics. The term ε ∂2ρ

∂x2 would be important only where ∂2ρ
∂x2

was large, near a region in which the density changes rapidly in a short distance, what
we have called a shock. This (12.6.24) could be derived by assuming the car velocity
satisfies u = q

ρ − ε∂ρ/∂x
ρ , which corresponds to drivers slowing down if they see increased

density ahead ( ∂ρ
∂x > 0). We are interested in solving (12.6.24) with initial conditions that

approach two different constants ρ1 and ρ2 as x → ±∞. This would correspond to a
transition wave between the two constant states. There are two very different cases, one
corresponding to shocklike initial conditions and the other corresponding to expansion-
type initial conditions. We will show that a traveling transition wave exists only for the
shocklike case.

Velocity of traveling shock wave. There are no methods to find the general
solution of such nonlinear partial differential equations, (12.6.24), so we look for very
special traveling wave solutions with unknown traveling wave velocity c:

ρ = f(ξ) = f(x − ct), (12.6.25)

where ξ is the spatial coordinate moving with velocity c. Substituting (12.6.25) into
(12.6.24) yields a second-order nonlinear ordinary differential equation:

(−c + q′(f))
df

dξ
= ε

d2f

dξ2
, (12.6.26)

which can be integrated to yield a first-order nonlinear differential equation:

−A − cf + q(f) = ε
df

dξ
, (12.6.27)

where −A a constant. We will determine the two constants c and A , though the velocity
is more important. To satisfy the condition that f → ρ1 and ρ2 as x → ±∞, it follows that

−A − cρ1 + q(ρ1) = 0 (12.6.28)

−A − cρ2 + q(ρ2) = 0. (12.6.29)

By subtracting (12.6.28) from (12.6.29), we determine the traveling wave speed:

c =
q(ρ2) − q(ρ1)

ρ2 − ρ1
=

[q]
[ρ]

. (12.6.30)

Thus, the traveling wave velocity equals the shock velocity, but we will show
that this is valid for the shock-like conditions and not valid for the expansion wave-like
conditions.
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Spatial structure of traveling shock wave. The first-order autonomous dif-
ferential equation (12.6.27) can be analyzed using a one-dimensional phase portrait. We
need to know properties of q(ρ). For the traffic flow problem, we assume, as graphed in
Fig. 12.6.12, that q′′(ρ) < 0, since that corresponds to experiments for traffic flow as well
as our simple example. We are concerned with the difference between q(f) and the straight
line A + cf . We adjust the constant A so that there are two intersections, which we call
ρ1 and ρ2. These are equilibrium solutions and must satisfy (12.6.28) and (12.6.29). It is
very important that we label the solutions such that ρ2 > ρ1 . For (12.6.27), df

dξ is a known
function of f , and it is graphed in the top portion of Fig. 12.6.12. The one-dimensional
phase line is graphed in the bottom portion of Fig. 12.6.12 for the autonomous first-order
ordinary differential equation (12.6.27). We note that in the upper half-plane df

dξ > 0 and
hence f is an increasing function of ξ, and right arrows are introduced, indicating that f
increases as ξ increases. Similarly, in the lower half-plane f is a decreasing function of ξ.
Solutions with f > ρ2 or f < ρ1 explode either forward or backward in the traveling wave
coordinate ξ and are of no interest to us. The only bounded traveling wave solutions cor-
respond to ρ1 < f < ρ2. Most important, f is an increasing function of ξ for ρ1 < f < ρ2,
and thus it is graphed in Fig. 12.6.13 as a traveling wave with the property that f → ρ1

as x − ct → −∞ and f → ρ2 as x − ct → ∞. This is important as it corresponds to the
case corresponding to the shock wave (ρ2 > ρ1) for traffic flow equations. It can be shown
that if ε is small, then the transition from ρ1 to ρ2 occurs in a thin region. The moving
discontinuity is a good approximation to the more precise continuous traveling wave. We
have shown that their velocities are the same. Thus, the traveling wave corresponds to

FIGURE 12.6.12 Phase line for
traveling shock wave.
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what we still call a shock wave. In fact, as ε → 0, the spatial structure of the continuous
traveling wave approaches the discontinuous shock wave.

Formation of a shock. We have described the propagation of shock waves. In
the examples previously considered, the density was initially discontinuous, and the shock
wave formed immediately. However, we will now show that shock waves take a finite
time to form if the initial density is continuous, and we will compute that finite time.
Suppose the initial condition is such that characteristics intersect as shown in Fig. 12.6.6
because faster-moving characteristics are behind more slowly moving characteristics. For
the partial differential equation ∂ρ

∂t + c(ρ) ∂ρ
∂x = 0, where the density wave velocity is

c(ρ) = q′(ρ), the family of straight-line characteristics [along which the density ρ(x, t) =
ρ(x0, 0) = f(x0) is constant determined from the given initial conditions] satisfies

x = c[f(x0)]t + x0 = F (x0)t + x0, (12.6.31)

where we have introduced a simplifying notation for the constant-density wave velocity
F (x0) = c[f(x0)]. Any characteristic starting between the two intersecting characteristics
shown in Fig. 12.6.6 will almost certainly intersect one of the other two characteristics at
an earlier time. Thus, it is usual for neighboring characteristics to intersect, and we first
discuss that.

Caustic (envelope of a family of curves, rays, or characteristics). The
family of characteristics (12.6.31) for the quasilinear partial differential equation may
converge as shown in Fig. 12.6.6. We wish to explain the envelope of the characteristics
shown in Fig. 12.6.14. To be more general, we consider instead of (12.6.31) any family of
curves parameterized by x0:

G(x, t, x0) = 0. (12.6.32)

A caustic is an envelope of the family of curves, and we claim that it simultaneously
satisfies (12.6.32) and the partial derivative of (12.6.32) with respect to the parameter x0:

∂

∂x0
G(x, t, x0) = 0. (12.6.33)

To prove that (12.6.33) is valid, we consider the intersection of neighboring curves, namely,
(12.6.32) and G(x, t, x0 + Δx0) = 0. Using the Taylor series, this becomes G(x, t, x0) +
Δx0

∂
∂x0

G(x, t, x0) + · · · = 0. By using (12.6.32), dividing by Δx0, and taking the limit
Δx0 → 0, (12.6.33) is proved.

FIGURE 12.6.14 Formation of
caustic, envelope of
characteristics.
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Caustic for the characteristics for the partial differential equation. In
our example, the family of characteristics is straight lines, (12.6.31), G(x, t, x0) = 0 =
F (x0)t+x0−x, where F (x0) = c[f(x0)]. Thus, the caustic (envelope of the characteristics
or rays) is formed by simultaneously solving 0 = F ′(x0)t + 1. This gives the parametric
representation of the caustic (easily graphed numerically from given initial conditions):

x = − F (x0)
F ′(x0)

+ x0 (12.6.34)

t = − 1
F ′(x0)

. (12.6.35)

Characteristics will intersect (t > 0) only if F ′(x0) < 0. Since F (x0) = c[f(x0)], we con-
clude that neighboring characteristics will intersect if they emanate from regions where the
characteristic velocity is locally decreasing (faster-moving characteristics behind slower
characteristics). The caustic is shown in Fig. 12.6.14. It is shown in Section 14.6.2 that
the caustic has a cusp.

Initiation of a shock. The solution stays continuous until the finite time at which
the caustic appears. A shock wave begins at this time. The times for the caustic are given
by (12.6.35). To determine the first time that characteristics intersect, we must minimize
the intersection times. The absolute minimum of t given by (12.6.35) corresponds to an
absolute minimum of F ′(x0) since F ′(x0) < 0. Hence, the shock starts at t given by
(12.6.35), where x0 corresponds to the minimum of F ′(x0) and satisfies F ′′(x0) = 0.

Triple valuedness. Inside the caustic (after the caustic has formed), look care-
fully at Fig. 12.6.14 to see that three different characteristics (marked 3) go through each
space-time point, corresponding to the solution of the partial differential equation being
triple valued as shown in Fig. 12.6.15 or 12.6.7d. Outside the caustic, a unique character-
istic (marked 1) goes through each point, and the solution is single valued. The caustic
is the boundary between these two regions. We will show that the slope of the solution is
infinite (see Fig. 12.6.15) along the caustic. Since ρ(x, t) = f(x0), we have

xs(t)

FIGURE 12.6.15 Whitham’s equal-area principle.



570 Chapter 12 The Method of Characteristics for Linear and Quasilinear Wave Equations

∂ρ

∂x
= f ′(x0)

∂x0

∂x
=

f ′(x0)
F ′(x0)t + 1

,

using the partial derivative of (12.6.31) with respect to x, 1 = [F ′(x0)t+1]∂x0
∂x . The slope

is infinite at the caustic, satisfying (12.6.35).

Shock dynamics. The triple-valued folded-over solution (within the caustic)
makes no sense. Instead, as discussed earlier, a shock wave exists satisfying the shock
condition dxs

dt = [q]
[ρ] , but here the shock wave begins at the cusp of the caustic at a

time determined by minimizing the time in (12.6.35). This gives a differential equation
for the position of the shock, but the shock does not necessarily have constant velocity.
The shock is located somewhere within the caustic. Whitham [1999] has shown that the
correct location of the shock may be determined by cutting off the lobes to form equal
areas (Fig. 12.6.15). The reason for this is that the method of characteristics conserves
cars and that, when a shock is introduced, the number of cars (represented by the area∫

ρ dx) must also be the same as it is initially.

12.6.5 Quasilinear Example

Consider the quasilinear example

∂ρ

∂t
− ρ

∂ρ

∂x
= −2ρ, (12.6.36)

subject to the initial conditions
ρ(x, 0) = f(x). (12.6.37)

This could model a traffic flow problem (with ρ a scaled version of the density), where
cars are not conserved but instead leave the roadway (at exits) at a rate proportional to
the density (as though cars exit the highway to avoid congestion).

The method of characteristics yields

dρ

dt
= −2ρ, (12.6.38)

along the characteristic
dx

dt
= −ρ. (12.6.39)

These equations are sometimes written in the equivalent form

dρ

−2ρ
=

dx

−ρ
= dt. (12.6.40)

Sometimes the coupled system of ordinary differential equations can be directly
solved. In this case the ordinary differential equation for ρ may be solved first and its
solution used to determine the characteristic x. Because of the initial condition (12.6.37),
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we introduce the parameter x0 representing the characteristic that emanates from x = x0

(at t = 0). From (12.6.38), along the characteristic, we obtain

ρ(x, t) = ρ(x0, 0)e−2t = f(x0)e−2t. (12.6.41)

The parameter x0 is constant along each characteristic. The solution (density) exponen-
tially decays along the characteristic as time increases. Thus, the characteristic velocity
becomes

dx

dt
= −f(x0)e−2t.

By integrating the velocity, we obtain the position of the characteristic:

x =
1
2
f(x0)e−2t − 1

2
f(x0) + x0, (12.6.42)

since x must equal x0 at t = 0. Here, the characteristics are not straight lines. The
parametric representation of the solution is obtained from (12.6.41), where x0 should
be considered as a function of x and t from (12.6.42). Usually, an explicit solution is
impractical.

Explicit solution of an initial value problem. For the quasilinear partial
differential equation (12.6.36), suppose the initial conditions are

ρ(x, 0) = f(x) = x.

In this case, from (12.6.42), the characteristics satisfy

x =
1
2
x0e

−2t +
1
2
x0.

Thus, an explicit solution can be obtained:

x0 =
2x

1 + e−2t
.

Note that for each x and t there is only one characteristic x0 (because the initial condition
was chosen such that the family of characteristics does not intersect itself). From (12.6.41),
the solution of the initial value problem for the partial differential equation is

ρ(x, t) =
2xe−2t

1 + e−2t
=

2x

1 + e2t
.

General solution. Quasilinear partial differential equations have general solu-
tions (as with the linear wave equation). Without specifying initial conditions, integrating
(12.6.38) and (12.6.39) yields

ρ(x, t) = c1e
−2t

x =
1
2
c1e

−2t + c2.

In general, one constant can be an arbitrary function of the other constant. Thus, we
obtain the general solution of (12.6.36),

x =
1
2
ρ + f(ρe2t).
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EXERCISES 12.6

12.6.1. Determine the solution ρ(x, t) satisfying the initial condition ρ(x, 0) = f(x) if

*(a)
∂ρ

∂t
= 0 (b)

∂ρ

∂t
= −3ρ + 4e7t

*(c)
∂ρ

∂t
= −3xρ (d)

∂ρ

∂t
= x2tρ

*12.6.2. Determine the solution of ∂ρ/∂t = ρ that satisfies ρ(x, t) = 1 + sinx along x = −2t.
12.6.3. Suppose ∂ρ

∂t + c0
∂ρ
∂x = 0 with c0 constant.

*(a) Determine ρ(x, t) if ρ(x, 0) = sinx.
*(b) If c0 > 0, determine ρ(x, t) for x > 0 and t > 0, where ρ(x, 0) = f(x) for x > 0

and ρ(0, t) = g(t) for t > 0.
(c) Show that part (b) cannot be solved if c0 < 0.

*12.6.4. If u(ρ) = α + βρ, determine α and β such that u(0) = umax and u(ρmax) = 0.

(a) What is the flow as a function of density? Graph the flow as a function of the
density.

(b) At what density is the flow maximum? What is the corresponding velocity?
What is the maximum flow (called the capacity)?

12.6.5. Redo Exercise 12.6.4 if u(ρ) = umax

(
1 − ρ3

ρ3
max

)
.

12.6.6. Consider the traffic flow problem

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0.

Assume u(ρ) = umax(1 − ρ
ρmax

). Solve for ρ(x, t) if the initial conditions are

(a) ρ(x, 0) = ρmax for x < 0 and ρ(x, 0) = 0 for x > 0. This corresponds to the
traffic density that results after an infinite line of stopped traffic is started by
a red light turning green.

(b) ρ(x, 0) =

⎧⎪⎨
⎪⎩

ρmax x < 0
ρmax

2
0 < x < a

0 x > a

(c) ρ(x, 0) =

⎧⎨
⎩

3ρmax

5
x < 0

ρmax

5
x > 0

12.6.7. Solve the following problems:

(a)
∂ρ

∂t
+ ρ2 ∂ρ

∂x
= 0, ρ(x, 0) =

{
3 x < 0
4 x > 0

(b)
∂ρ

∂t
+ 4ρ

∂ρ

∂x
= 0, ρ(x, 0) =

{
2 x < 1
3 x > 1

(c)
∂ρ

∂t
+ 3ρ

∂ρ

∂x
= 0, ρ(x, 0) =

⎧⎨
⎩

1 x < 0
2 0 < x < 1
4 x > 1

(d)
∂ρ

∂t
+ 6ρ

∂ρ

∂x
= 0 for x > 0 only,

ρ(x, 0) = 5 x > 0
ρ(0, t) = 2 t > 0
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12.6.8. Solve subject to the initial condition ρ(x, 0) = f(x):

*(a)
∂ρ

∂t
+ c

∂ρ

∂x
= e−3x (b)

∂ρ

∂t
+ 3x

∂ρ

∂x
= 4

*(c)
∂ρ

∂t
+ t

∂ρ

∂x
= 5 (d)

∂ρ

∂t
+ 5t

∂ρ

∂x
= 3ρ

*(e)
∂ρ

∂t
− t2

∂ρ

∂x
= −ρ (f)

∂ρ

∂t
+ t2

∂ρ

∂x
= 0

*(g)
∂ρ

∂t
+ x

∂ρ

∂x
= t

12.6.9. Determine a parametric representation of the solution satisfying ρ(x, 0) = f(x):

*(a)
∂ρ

∂t
− ρ2 ∂ρ

∂x
= 3ρ (b)

∂ρ

∂t
+ ρ

∂ρ

∂x
= t

*(c)
∂ρ

∂t
+ t2ρ

∂ρ

∂x
= −ρ (d)

∂ρ

∂t
+ ρ

∂ρ

∂x
= −xρ

12.6.10. Solve ∂ρ
∂t + t2 ∂ρ

∂x = 4ρ for x > 0 and t > 0 with ρ(0, t) = h(t) and ρ(x, 0) = 0.

12.6.11.*Solve ∂ρ
∂t + (1 + t) ∂ρ

∂x = 3ρ for t > 0 and x > −t/2 with ρ(x, 0) = f(t) for x > 0
and ρ(x, t) = g(t) along x = −t/2.

12.6.12. Consider (12.6.8) if there is a moving shock x, such that a < xs(t) < b.
By differentiating the integral [with a discontinuous integrand at xs(t)], derive
(12.6.20).

12.6.13. Suppose that, instead of u = U(ρ), a car’s velocity u is

u = U(ρ) − ν

ρ

∂ρ

∂x
,

where ν is a constant.

(a) What sign should ν have for this expression to be physically reasonable?

(b) What equation now describes conservation of cars?

(c) Assume that U(ρ) = umax(1 − ρ/ρmax). Derive Burgers’ equation:

∂ρ

∂t
+ umax

[
1 − 2ρ

ρmax

]
∂ρ

∂x
= ν

∂2ρ

∂x2
.

12.6.14. Consider Burgers’ equation as derived in Exercise 12.6.13. Suppose that a solution
exists as a density wave moving without change of shape at velocity V, ρ(x, t) =
f(x − V t).

*(a) What ordinary differential equation is satisfied by f?

(b) Integrate this differential equation once. By graphical techniques show that a
solution exists such that f → ρ2 as x → +∞ and f → ρ1 as x → −∞ only if
ρ2 > ρ1. Roughly sketch this solution. Give a physical interpretation of this
result.

*(c) Show that the velocity of wave propagation, V , is the same as the shock velocity
separating ρ = ρ1 from ρ = ρ2 (occurring if ν = 0).



574 Chapter 12 The Method of Characteristics for Linear and Quasilinear Wave Equations

12.6.15. Consider Burgers’ equation as derived in Exercise 12.6.13. Show that the change
of dependent variables

ρ =
νρmax

umax

φx

φ
,

introduced independently by E. Hopf in 1950 and J. D. Cole in 1951, transforms
Burgers’ equation into a diffusion equation, ∂φ

∂t + umax
∂φ
∂x = ν ∂2φ

∂x2 . Use this to
solve the initial value problem ρ(x, 0) = f(x) for −∞ < x < ∞. [In Whitham
[1999] it is shown that this exact solution can be asymptotically analyzed as ν → 0
using Laplace’s method for exponential integrals to show that ρ(x, t) approaches
the solution obtained for ν = 0 using the method of characteristics with shock
dynamics.]

12.6.16. Suppose that the initial traffic density is ρ(x, 0) = ρ0 for x < 0 and ρ(x, 0) = ρ1

for x > 0. Consider the two cases, ρ0 < ρ1 and ρ1 < ρ0. For which of the preceding
cases is a density shock necessary? Briefly explain.

12.6.17. Consider a traffic problem, with u(ρ) = umax(1 − ρ
ρmax

). Determine ρ(x, t) if

*(a) ρ(x, 0) =

⎧⎨
⎩

ρmax

5
x < 0

3ρmax

5
x > 0

(b) ρ(x, 0) =

⎧⎨
⎩

ρmax

3
x < 0

2ρmax

3
x > 0

12.6.18. Assume that u(ρ) = umax(1 − ρ2

ρ2
max

). Determine the traffic density ρ (for t > 0) if
ρ(x, 0) = ρ1 for x < 0 and ρ(x, 0) = ρ2 for x > 0.
(a) Assume that ρ2 > ρ1. *(b) Assume that ρ2 < ρ1.

12.6.19. Solve the following problems (assuming ρ is conserved):

(a)
∂ρ

∂t
+ ρ2 ∂ρ

∂x
= 0, ρ(x, 0) =

{
4 x < 0
3 x > 0

(b)
∂ρ

∂t
+ 4ρ

∂ρ

∂x
= 0, ρ(x, 0) =

{
3 x < 1
2 x > 1

(c)
∂ρ

∂t
+ 3ρ

∂ρ

∂x
= 0, ρ(x, 0) =

⎧⎨
⎩

4 x < 0
2 0 < x < 1
1 x > 1

(d)
∂ρ

∂t
+ 6ρ

∂ρ

∂x
= 0 for x > 0 only, ρ(x, 0) = 2 x > 0

ρ(0, t) = 5 t > 0
12.6.20. Redo Exercise 12.6.19, assuming that ρ2 is conserved.
12.6.21. Compare Exercise 12.6.19(a) with 12.6.20(a). Show that the shock velocities are

different.
12.6.22. Solve ∂ρ

∂t + ρ2 ∂ρ
∂x = 0. If a nonuniform shock occurs, give only its differential

equation. Do you believe the nonuniform shock persists or is eventually replaced
by a uniform shock?

(a) ρ(x, 0) =
{−1 x < 0

3 x > 0 (b) ρ(x, 0) =
{−2 x < 0

1 x > 0

(c) ρ(x, 0) =
{

1 x < 0
−3 x > 0 (d) ρ(x, 0) =

{
2 x < 0
−1 x > 0

12.6.23. Solve ∂ρ
∂t − ρ2 ∂ρ

∂x = 0 . If a nonuniform shock occurs, give only its differential
equation. Do you believe the nonuniform shock persists or is eventually replaced
by a uniform shock?
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(a) ρ(x, 0) =
{−2 x < 0

1 x > 0 (b) ρ(x, 0) =
{−1 x < 0

4 x > 0

(c) ρ(x, 0) =
{

1 x < 0
−3 x > 0 (d) ρ(x, 0) =

{
5 x < 0
−2 x > 0

12.7 FIRST-ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

12.7.1 Eikonal Equation Derived from the Wave Equation

For simplicity we consider the two-dimensional wave equation

∂2E

∂t2
= c2

(
∂2E

∂x2
+

∂2E

∂y2

)
. (12.7.1)

Plane waves and their reflections were analyzed in Section 4.6. Nearly plane waves exist
under many circumstances. If the coefficient c is not constant but varies slowly, then over
a few wavelengths the wave sees nearly constant c. However, over long distances (relative
to short wavelengths) we may be interested in the effects of variable c. Another situation
in which nearly plane waves arise is the reflection of a plane wave by a curved boundary
(or reflection and refraction by a curved interface between two media with different indices
of refraction). We assume the radius of curvature of the boundary is much longer than
typical wavelengths. In many of these situations the temporal frequency ω is fixed (by an
incoming plane wave). Thus,

E = A(x, y)e−iωt, (12.7.2)

where that A(x, y) satisfies the Helmholtz or reduced wave equation:

−ω2A = c2

(
∂2A

∂x2
+

∂2A

∂y2

)
. (12.7.3)

Again the temporal frequency ω is fixed (and given), but c = c(x, y) for inhomogeneous
media or c = constant for uniform media. In uniform media (c = constant), plane waves
of the form E = A0e

i(k1x+k2y−ωt) or

A = A0e
i(k1x+k2y) (12.7.4)

exist if
ω2 = c2(k2

1 + k2
2). (12.7.5)

For nearly plane waves, we introduce the phase u(x, y) of the reduced wave equation:

A(x, y) = R(x, y)eiu(x,y). (12.7.6)

The wave numbers k1 and k2 for uniform media are usually called p and q, respectively,
and are defined by

p =
∂u

∂x
(12.7.7)

q =
∂u

∂y
. (12.7.8)
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As an approximation (which can be derived using perturbation methods), it can be shown
that the (slowly varying) wave numbers satisfy (12.7.5), corresponding to the given tem-
poral frequency associated with plane waves,

ω2 = c2(p2 + q2). (12.7.9)

This is a first-order nonlinear partial differential equation (not quasilinear) for the phase
u(x, y), known as the eikonal equation:

ω2

c2
=

(
∂u

∂x

)2

+
(

∂u

∂y

)2

, (12.7.10)

where ω is a fixed reference temporal frequency and c = c(x, y) for inhomogeneous me-
dia or c = constant for uniform media. Sometimes the index of refraction n(x, y) is
introduced proportional to 1

c . The amplitude R(x, y) solves equations (which we do not
discuss) known as the transport equations, which describe the propagation of energy of
these nearly plane waves.

12.7.2 Solving the Eikonal Equation in Uniform Media and Reflected Waves

The simplest example of the eikonal equation (12.7.10) occurs in uniform media (c =
constant):

(
∂u

∂x

)2

+
(

∂u

∂y

)2

=
ω2

c2
, (12.7.11)

where ω and c are constants. Rather than solve for u(x, y) directly, we will show that it
is easier to solve first for p = ∂u

∂x and q = ∂u
∂y . Thus, we consider

p2 + q2 =
ω2

c2
. (12.7.12)

Differentiating (12.7.11) or (12.7.12) with respect to x yields

p
∂p

∂x
+ q

∂q

∂x
= 0.

Since ∂q
∂x = ∂p

∂y , p satisfies a first-order quasilinear partial differential equation:

p
∂p

∂x
+ q

∂p

∂y
= 0. (12.7.13)
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Equation (12.7.13) may be solved by the method of characteristics [see specifically
(12.6.7)]:

dx

p
=

dy

q
=

dp

0
. (12.7.14)

If there is a boundary condition for p, then (12.7.14) can be solved for p since q =

±
√

ω2

c2 − p2 [from (12.7.12)]. Since (12.7.14) shows that p is constant along each charac-
teristic, it also follows from (12.7.14) that each characteristic is a straight line. In this
way p can be determined. However, given p = ∂u

∂x , integrating for u is not completely
straightforward.

We have differentiated the eikonal equation with respect to x. If instead we differ-
entiate with respect to y, we obtain

p
∂p

∂y
+ q

∂q

∂y
= 0.

A first-order quasilinear partial differential equation for q can be obtained by again using
∂q
∂x = ∂p

∂y :

p
∂q

∂x
+ q

∂q

∂y
= 0. (12.7.15)

Thus, dx
p = dy

q = dq
0 , which, when combined with (12.7.14), yields the more general result

dx

p
=

dy

q
=

dp

0
=

dq

0
. (12.7.16)

However, usually we want to determine u so that we wish to determine how u varies along
this characteristic: du = ∂u

∂xdx+ ∂u
∂y dy = p dx+ q dy = p2 dx

p + q2 dy
8 = (p2 + q2)dx

p = ω2

c2
dx
p ,

where we have used (12.7.16) and (12.7.12). Thus, for the eikonal equation,

dx

p
=

dy

q
=

dp

0
=

dq

0
=

du

ω2/c2
. (12.7.17)

The characteristics are straight lines since p and q are constants along the characteristics.

Reflected waves. We consider ei(kI ·x−ωt), an elementary incoming plane wave
where kI represents the given constant incoming wave number vector and where
ω = c |kI |. We assume the plane wave reflects off a curved boundary (as illustrated in
Fig. 12.7.1), which we represent with a parameter τ as x = x0(τ) and y = y0(τ). We
introduce the unknown reflected wave, R(x, y)eiu(x,y)e−iωt, and we wish to determine the
phase u(x, y) of the reflected wave. The eikonal equation

p2 + q2 =
ω2

c2
= |kI |2

can be interpreted as saying the slowly varying reflected wave number vector (p, q) has the
same length as the constant incoming wave number vector (physically, the slowly varying
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FIGURE 12.7.1 Reflected wave
from curved boundary.

y = y0(τ)
kI

kR
x = x0(τ)

reflected wave will always have the same wave length as the incident wave). We assume the
boundary condition on the curved boundary is that the total field is zero (other boundary
conditions yield the same equations for the phase): 0 = ei(kI ·x−ωt) + R(x, y)eiu(x,y)e−iωt.
Thus, on the boundary, the phase of the incoming wave and the phase of the reflected
wave must be the same:

u(x0, y0) = kI · x0. (12.7.18)

Taking the derivative of (12.7.18) with respect to the parameter τ shows that

∂u

∂x

dx0

dτ
+

∂u

∂y

dy0

dτ
= p

dx0

dτ
+ q

dy0

dτ
= kR · dx0

dτ
= kI · dx0

dτ
, (12.7.19)

where we have noted that the vector (p, q) is the unknown reflected wave number vector
kR (because p and q are constant along the characteristic). Since dx0

dτ is a vector tangent
to the boundary, (12.7.19) shows that the tangential component of the incoming and
reflecting wave numbers must be the same. Since the magnitude of the incident and
reflecting wave number vectors are the same, it follows that the normal component of the
reflected wave must be minus the normal component of the incident wave. Thus, the angle
of reflection off a curved boundary is the same as the angle of incidence. Thus, at any
point along the boundary the constant value of p and q is known for the reflected wave.

Because q = ±
√

ω2

c2 − p2, there are two solutions of the eikonal equation; one represents
the incoming wave and the other (of interest to us) the reflected wave. To obtain the
phase of the reflected wave, we must solve the characteristic equations (12.7.17) for the
eikonal equation with the boundary condition specified by (12.7.18). Since for uniform
media ω2

c2 = |kI |2 is a constant, the differential equation for u along the characteristic,
du

dx
= ω2

c2
1
p = |kI |2

p , can be integrated (since p is constant) using the boundary condition
to give

u(x, y) =
|kI |2

p
(x − x0) + kI · x0,

along a specific characteristic. The equation for the characteristics p(y − y0) = q(x − x0)
corresponds to the angle of reflection equaling the angle of incidence. Since p2+q2 = |kI |2,
the more pleasing representation of the phase (solution of the eikonal equation) follows
along a specific characteristic:

u(x, y) = p(x − x0) + q(y − y0) + kI · x0, (12.7.20)

where u(x0, y0) = kI · x0 is the phase of the incident wave on the boundary.
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Wave front. The characteristic direction is the direction in which the light prop-
agates. For the eikonal equation, according to (12.7.14), dx

p = dy
q . This is also valid for

nonuniform media. Light propagates (characteristic direction) in the direction of the gra-
dient of the phase, ∇u, since ∇u = ∂u

∂x i + ∂u
∂y j = pi + qj = p

dx (dx i + dy j). Thus, light
rays propagate normal to the wave fronts.

12.7.3 First-Order Nonlinear Partial Differential Equations

Any first-order nonlinear partial differential equation can be put in the form

F

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0. (12.7.21)

As with the eikonal equation example of the previous subsection, we show that p = ∂u
∂x

and q = ∂u
∂y solve quasilinear partial differential equations, and hence (12.7.21) can be

solved by the method of characteristics. Using p and q gives

F (x, y, u, p, q) = 0. (12.7.22)

Taking the partial derivative of (12.7.22) with respect to x, we obtain

Fx + Fup + Fp
∂p

∂x
+ Fq

∂q

∂x
= 0,

where we use the subscript notation for partial derivatives. For example, Fu ≡ ∂F
∂u , keeping

x, y, p, and q constant. Since ∂q
∂x = ∂p

∂y , we obtain a quasilinear partial differential equation
for p:

Fp
∂p

∂x
+ Fq

∂p

∂y
= −Fx − Fup.

Thus, the method of characteristics for p yields

dx

Fp
=

dy

Fq
=

dp

−Fx − Fup
. (12.7.23)

Similarly, taking the partial derivative of (12.7.22) with respect to y yields

Fy + Fuq + Fp
∂p

∂y
+ Fq

∂q

∂y
= 0.

Here ∂q
∂x = ∂p

∂y yields a quasilinear partial differential equation for q:

Fp
∂q

∂x
+ Fq

∂q

∂y
= −Fy − Fuq.

The characteristic direction is the same as in (12.7.23), so that (12.7.23) is amended to
become

dx

Fp
=

dy

Fq
=

dp

−Fx − Fup
=

dq

−Fy − Fuq
. (12.7.24)
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In order to solve for u, we want to derive a differential equation for u(x, y) along the
characteristics:

du =
∂u

∂x
dx +

∂u

∂y
dy = p dx + q dy = pFp

dx

Fp
+ qFq

dy

Fq
= (pFp + qFq)

dx

Fp
.

The complete system to solve for p, q, and u is

dx

Fp
=

dy

Fq
=

dp

−Fx − Fup
=

dq

−Fy − Fuq
=

du

pFp + qFq
. (12.7.25)

EXERCISES 12.7

12.7.1. Show that light rays propagate normal to the wave fronts for nonuniform media.
12.7.2. For the normalized eikonal equation for uniform media, (∂u

∂x )2+(∂u
∂y )2 = 1,

(a) Derive a partial differential equation for q without using (12.7.25).

(b) Use the method of characteristics for q, assuming q is given at y = 0.

(c) Show that the result is the same as using (12.7.25).



C H A P T E R 13

Laplace Transform Solution
of Partial Differential Equations

13.1 INTRODUCTION

We have introduced some techniques to solve linear partial differential equations. For
problems with a simple geometry, the method of separation of variables motivates using
Fourier series, its various generalizations, or variants of the Fourier transform. Of most
importance is the type of boundary condition, including whether the domain is finite,
infinite, or semi-infinite. In some problems a Green’s function can be utilized, while for
the one-dimensional wave equation, the method of characteristics exists. Whether or not
any of these methods may be appropriate, numerical methods (introduced in Chapter 6)
are often most efficient.

Another technique, to be elaborated on in this chapter, relies on the use of Laplace
transforms. Most problems in partial differential equations that can be analyzed by Laplace
transforms also can be analyzed by one of our earlier techniques, and substantially equiv-
alent answers can be obtained. The use of Laplace transforms is advocated by those who
feel more comfortable with them than with our other methods. Instead of taking sides, we
will present the elementary aspects of Laplace transforms in order to enable the reader
to become somewhat familiar with them. However, whole books1 have been written con-
cerning their use in partial differential equations. Consequently, in this chapter we only
briefly discuss Laplace transforms and describe their application to partial differential
equations with only a few examples.

13.2 PROPERTIES OF THE LAPLACE TRANSFORM

13.2.1 Introduction

Definition. One technique for solving ordinary differential equations (mostly with con-
stant coefficients) is to introduce the Laplace transform of f(t) as follows:

L[f(t)] = F (s) =
∫ ∞

0

f(t)e−st dt. (13.2.1)

1For example, Churchill (1972).

581
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For the Laplace transform to be defined, the integral in (13.2.1) must converge. For many
functions, f(t), s is restricted. For example, if f(t) approaches a nonzero constant as
t → ∞, then the integral converges only if s > 0. If s is complex, s = Re(s)+ i Im(s), and
e−st = e−Re(s)t[cos(Im(s)t)− i sin(Im(s)t)], then it follows in this case that Re(s) > 0 for
convergence.

We will assume that the reader has studied (at least briefly) Laplace transforms.
We will quickly review the important properties of Laplace transforms. Tables exist,2 and
we include a short one here. The Laplace transform of some elementary functions can
be obtained by direct integration. Some fundamental properties can be derived from the
definition; these and others are summarized in Table 13.2.1.

From the definition of the Laplace transform, f(t) is needed only for t > 0. So that
there is no confusion, we usually define f(t) to be zero for t < 0. One formula (13.2.2l)
requires the Heaviside unit step function:

H(t − b) =
{

0 t < b
1 t > b.

(13.2.2)

Inverse Laplace transforms. If instead we are given F (s) and want to calculate
f(t), then we can also use the same tables. f(t) is called the inverse Laplace transform
of F (s). The notation f(t) = L−1[F (s)] is also used. For example, from Table 13.2.1, the
inverse Laplace transform of 1/(s − 3) is e3t, L−1[1/(s − 3)] = e3t.

Not all functions of s have inverse Laplace transforms. From (13.2.1) we notice that
if f(t) is any type of ordinary function, then F (s) → 0 as s → ∞. All functions in our
table have this property.

13.2.2 Singularities of the Laplace Transform

We note that when f(t) is a simple exponential, f(t) = eat, the growth rate a is also the
point at which its Laplace transform F (s) = 1/(s − a) has a singularity. As s → a, the
Laplace transform approaches ∞. We claim in general that as a check in any calculation,
the singularities of a Laplace transform F (s) (the zeros of its denominator) corre-
spond (in some way) to the exponential growth rates of f(t). We refer to this as
the singularity property of Laplace transforms. Later we will show this using complex
variables. Throughout this chapter we illustrate this correspondence.

EXAMPLES

For now we briefly discuss some examples. Both the Laplace transforms ω/(s2 + ω2) and
s/(s2 + ω2) have singularities at s2 + ω2 = 0 or s = ±iω. Thus, their inverse Laplace
transforms will involve exponentials est, where s = ±iω. According to Table 13.2.1, their
inverse Laplace transforms are, respectively, sin ωt and cos ωt, which we know from Euler’s
formulas can be represented as linear combinations of e±iωt.

2Some better ones are in Churchill (1972); CRC Standard Mathematical Tables (2002) (from
Churchill’s table); Abramowitz and Stegun (1974) (also has Churchill’s table); and Roberts and Kaufman
(1966).
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TABLE 13.2.1: Laplace Transforms (short table of formulas and properties)

f(t) F (s) ≡ L[f(t)] ≡
∫ ∞

0

f(t)e−st dt

Elementary functions
(Exercises 13.2.1

and 13.2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
s

(13.2.2a)

tn(n > −1) n!s−(n+1) (13.2.2b)

eat 1
s − a

(13.2.2c)

sin ωt
ω

s2 + ω2
(13.2.2d)

cos ωt
s

s2 + ω2
(13.2.2e)

sinh at = 1
2 (eat − e−at) 1

2

(
1

s−a − 1
s+a

)
= a

s2−a2 (13.2.2f)

cosh at = 1
2 (eat + e−at) 1

2

(
1

s−a + 1
s+a

)
= s

s2−a2 (13.2.2g)

Fundamental properties
(Section 13.2.3 and

Exercise 13.2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

df

dt
sF (s) − f(0) (13.2.2h)

d2f

dt2
s2F (s) − sf(0) − df

dt
(0) (13.2.2i)

−tf(t)
dF

ds
(13.2.2j)

eatf(t) F (s − a) (13.2.2k)

H(t − b)f(t − b) e−bsF (s) (b > 0) (13.2.2l)

Convolution
(Section 13.2.4)

∫ t

0

f(t − t)g(t) dt F (s)G(s) (13.2.2m)

Dirac delta function
(Section 13.2.4) δ(t − b) e−bs (b ≥ 0) (13.2.2n)

Inverse transform
(Section 13.7)

1
2πi

∫ γ+i∞

γ−i∞
F (s)est ds F (s) (13.2.2o)

Miscellaneous
(Exercise 13.2.9)

{
t−1/2e−a2/4t

√
π
s e−a

√
s (a ≥ 0) (13.2.2p)

t−3/2e−a2/4t 2
√

π
a e−a

√
s (a > 0) (13.2.2q)
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As another example, consider the Laplace transform F (s) = 3/[s(s2 + 4)]. One
method to determine f(t) is to use partial fractions (with real factors):

3
s(s2 + 4)

=
a

s
+

bs + c

s2 + 4
=

3/4
s

+
−(3/4)s
s2 + 4

.

Now the inverse transform is easy to obtain using tables:

f(t) =
3
4
− 3

4
cos 2t.

As a check we note that 3/[s(s2+4)] has singularities at s = 0 and s = ±2i. The singularity
property of Laplace transforms then implies that its inverse Laplace transform must be
a linear combination of e0t and e±2it, as we have already seen.

Partial fractions. In doing inverse Laplace transforms, we are frequently faced
with the ratio of two polynomials q(s)/p(s). To be a Laplace transform, it must ap-
proach 0 as s → ∞. Thus, we can assume that the degree of p is greater than the de-
gree of q. A partial fraction expansion will yield immediately the desired inverse Laplace
transform. We describe this technique only in the case in which the roots of the de-
nominator are simple; there are no repeated or multiple roots. First we factor the
denominator:

p(s) = α(s − s1)(s − s2) · · · (s − sn),

where s1, . . . , sn are the n distinct roots of p(s), also called the simple poles of q(s)/p(s).
The partial fraction expansion of q(s)/p(s) is

q(s)
p(s)

=
c1

s − s1
+

c2

s − s2
+ · · · + cn

s − sn
. (13.2.3)

The coefficients ci of the partial fraction expansion can be obtained by cumbersome
algebraic manipulations using a common denominator. A more elegant and sometimes
quicker method utilizes the singularities si of q(s)/p(s). To determine ci, we multiply
(13.2.3) by s− si and then take the limit as s → si. All the terms except ci vanish on the
right:

ci = lim
s→si

(s − si)q(s)
p(s)

. (13.2.4)

Often, this limit is easy to evaluate. Since s−si is a factor of p(s), we cancel it in (13.2.4)
and then evaluate the limit.
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EXAMPLE

Using complex roots,

3
s(s2 + 4)

=
c1

s
+

c2

s + 2i
+

c3

s − 2i
,

where

c1 = lim
s→0

s
3

s(s2 + 4)
=

3
4

c2 = lim
s→−2i

(s + 2i)
3

s(s2 + 4)
= lim

s→−2i
(s + 2i)

3
s(s + 2i)(s − 2i)

= −3
8

c3 = lim
s→2i

(s − 2i)
3

s(s2 + 4)
= lim

s→2i
(s − 2i)

3
s(s + 2i)(s − 2i)

= −3
8
.

Simple poles. In some problems, we can make the algebra even easier. The limit
in (13.2.4) is 0/0 since p(si) = 0 [s = si is a root of p(s)]. L’Hôpital’s rule for evaluating
0/0 yields

ci = lim
s→si

d/ds[(s − si)q(s)]
d/ds p(s)

=
q(si)
p′(si)

. (13.2.5)

Equation (13.2.5) is valid only for simple poles.
Once we have a partial fraction expansion of a Laplace transform, its inverse trans-

form may be easily obtained. In summary, if

F (s) =
q(s)
p(s)

, (13.2.6)

then by inverting (13.2.3),

f(t) =
n∑

i=1

q(si)
p′(si)

esit, (13.2.7)

where we assumed that p(s) has only simple poles at s = si.

EXAMPLE

To apply this formula for q(s)/p(s) = 3/[s(s2 +4)], we let q(s) = 3 and p(s) = s(s2 +4) =
s3 + 4s. We need p′(s) = 3s2 + 4. Thus, if

F (s) =
3

s(s2 + 4)
=

c1

s
+

c2

s + 2i
+

c3

s − 2i
,
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then

c1 =
q(0)
p′(0)

=
3
4
, c2 =

q(−2i)
p′(−2i)

=
3
−8

, and c3 =
q(2i)
p′(2i)

= −3
8
,

as before. For this example,

f(t) =
3
4
− 3

8
e−2it − 3

8
e2it =

3
4
− 3

4
cos 2t.

Quadratic expressions (completing the square). Inverse Laplace transforms
for quadratic expressions

F (s) =
αs + β

as2 + bs + c

can be obtained by partial fractions if the roots are real or complex. However, if the roots
are complex, it is often easier to complete the square. For example, consider

F (s) =
1

s2 + 2s + 8
=

1
(s + 1)2 + 7

,

whose roots are s = −1± i
√

7. Since a function of s+1 appears, we use (13.22k) in Table
13.2.1 which is known as the shift theorem,

F (s) = G(s + 1), where G(s) =
1

s2 + 7
.

According to the shift theorem, the inverse transform of G(s + 1) is (using a = −1)
f(t) = e−tg(t), where g(t) is the inverse transform of 1/(s2 + 7). From Table 13.2.1,
g(t) = (1/

√
7) sin

√
7t and thus

f(t) =
1√
7
e−t sin

√
7t.

This result is consistent with the singularity property; the solution is a linear combination
of est, where s = −1 ± i

√
7.

13.2.3 Transforms of Derivatives

One of the most useful properties of the Laplace transform is the way in which it operates
on derivatives. For example, by elementary integration by parts,

L
[
df

dt

]
=

∫ ∞

0

df

dt
e−st dt = fe−st

∣∣∣∣
∞

0

+ s

∫ ∞

0

fe−st dt = sF (s) − f(0). (13.2.8)
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Similarly,

L
[
d2f

dt2

]
= sL

[
df

dt

]
− df

dt
(0) = s(sF (s) − f(0)) − df

dt
(0) = s2F (s) − sf(0) − df

dt
(0).

(13.2.9)

This property shows that the transform of derivatives can be evaluated in terms of the
transform of the function. Certain “initial” conditions are needed. For the transform of the
first derivative df/dt, f(0) is needed. For the transform of the second derivative d2f/dt2,
f(0) and df/dt(0) are needed. These are just the types of information that are known if
the variable t is time. Usually, if a Laplace transform is used, the independent variable
t is time. Furthermore, the Laplace transform method will often simplify if the initial
conditions are all zero.

Application to ordinary differential equations. For ordinary differential
equations, the use of the Laplace transform reduces the problem to an algebraic equation.
For example, consider

d2y

dt2
+ 4y = 3

with y(0) = 1
dy

dt
(0) = 5.

Taking the Laplace transform of the differential equation yields

s2Y (s) − s − 5 + 4Y (s) =
3
s
,

where Y (s) is the Laplace transform of y(t). Thus,

Y (s) =
1

s2 + 4

(
3
s

+ s + 5
)

=
3

s(s2 + 4)
+

s

s2 + 4
+

5
s2 + 4

.

The inverse transforms of s/(s2+4) and 5/(s2+4) are easily found in tables. The function
whose transform is 3/[s(s2 + 4)] has been obtained in different ways. Thus,

y(t) =
3
4
− 3

4
cos 2t + cos 2t +

5
2

sin 2t.

13.2.4 Convolution Theorem

Another method to obtain the inverse Laplace transform of 3/[s(s2 + 4)] is to use the
convolution theorem. We begin by stating and deriving the convolution theorem. Often,
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as in this example, we need to obtain the function whose Laplace transform is the product
of two transforms, F (s)G(s). The convolution theorem states that

L−1[F (s)G(s)] = g ∗ f =
∫ t

0

g(t)f(t − t) dt, (13.2.10)

where g ∗ f is called the convolution of g and f . Here f(t) = L−1[F (s)] and g(t) =
L−1[G(s)]. Equivalently, the convolution theorem states

L
[∫ t

0

g(t)f(t − t) dt

]
= F (s)G(s). (13.2.11)

By letting t−t = w, we also derive that g∗f = f ∗g; the order is of no importance. Earlier,
when studying Fourier transforms (see Section 10.4), we also introduced the convolution
of g and f in a slightly different way,

g ∗ f ≡
∫ ∞

−∞
f(t − t)g(t) dt.

However, in the context of Laplace transforms, both f(t) and g(t) are zero for t < 0, and
thus (13.2.10) follows since f(t − t) = 0 for t > t and g(t) = 0 for t < 0.

Laplace transform of Dirac delta functions. One derivation of the convolution
theorem uses the Laplace transform of a Dirac delta function:

L [δ(t − b)] =
∫ ∞

0

δ(t − b)e−st dt = e−sb, (13.2.12)

if b > 0. Thus, the inverse Laplace transform of an exponential is a Dirac delta function:

L−1
[
e−sb

]
= δ(t − b). (13.2.13)

In the limit as b → 0, we also obtain

L [δ(t − 0+)] = 1 and L−1[1] = δ(t − 0+). (13.2.14)



Section 13.2 Properties of the Laplace Transform 589

Derivation of convolution theorem. To derive the convolution theorem, we
introduce two transforms F (s) and G(s) and their product F (s)G(s):

F (s) =
∫ ∞

0

f(t)e−st dt (13.2.15)

G(s) =
∫ ∞

0

g(t)e−st dt (13.2.16)

F (s)G(s) =
∫ ∞

0

∫ ∞

0

f(t)g(T )e−s(t+T ) dT dt. (13.2.17)

h(t) is the inverse Laplace transform of F (s)G(s):

h(t) = L−1[F (s)G(s)] =
∫ ∞

0

∫ ∞

0

f(t)g(T )L−1
[
e−s(t+T )

]
dt dT,

where the linearity of the inverse Laplace transform has been utilized. However, the inverse
Laplace transform of an exponential is a Dirac delta function (13.2.13), and thus

h(t) =
∫ ∞

0

∫ ∞

0

f(t)g(T )δ[t − (t + T )] dt dT.

Performing the T integration first, we obtain a contribution only at T = t− t. Therefore,
the fundamental property of Dirac delta functions implies that

h(t) =
∫ t

0

f(t)g(t − t) dt,

the convolution theorem for Laplace transforms.

EXAMPLE

Determine the function whose Laplace transform is 3/[s(s2 + 4)], using the convolution
theorem. We introduce

F (s) =
3
s

[so that f(t) = 3] and G(s) =
1

s2 + 4

[
so that g(t) =

1
2

sin 2t

]
.

It follows from the convolution theorem that the inverse transform of (3/s)[1/(s2 + 4)] is∫ t

0
f(t − t)g(t) dt:

∫ t

0

3 · 1
2

sin 2t dt = −3
4

cos 2t

∣∣∣∣
t

0

=
3
4
(1 − cos 2t),

as we obtained earlier using the partial fraction expansion.
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EXERCISES 13.2

13.2.1. From the definition of the Laplace transform (i.e., using explicit integration), deter-
mine the Laplace transform of f(t) =:
(a) 1 (b) eat

(c) sin ωt [Hint: sinωt = Im(eiωt).] (d) cos ωt [Hint: cos ωt = Re(eiωt).]
(e) sinh at (f) cosh at
(g) H(t − t0), t0 > 0

13.2.2. The gamma function Γ(x) was defined in Exercise 10.3.14. Derive that L[tn] =
Γ(n + 1)/sn+1 for n > −1. Why is this not valid for n ≤ −1?

13.2.3. Derive the following fundamental properties of Laplace transforms:
(a) L[−tf(t)] = dF/ds

(b) L[eatf(t)] = F (s − a)
(c) L[H(t − b)f(t − b)] = e−bsF (s) (b > 0)

*13.2.4. Using Table 13.2.1, determine the Laplace transform of
∫ t
0
f(t) dt in terms of F (s).

13.2.5. Using Table 13.2.1, determine the Laplace transform of f(t) =:
(a) t3e−2t *(b) t sin 4t

(c) H(t − 3) *(d) e3t sin 4t

(e) te−4t cos 6t *(f) f(t) =

⎧⎨
⎩

0 t < 5
t2 5 < t < 8
0 8 < t

(g) t2H(t − 1) *(h) (t − 1)4H(t − 1)
13.2.6. Using Table 13.2.1, determine the inverse Laplace transform of F (s) =:

(a)
1

s2 + 4
(b)

e−3s

s2 − 4
(c) s−3 (d) (s − 4)−7

*(e)
s

s2 + 8s + 7
(f)

2s + 1
s2 − 4s + 9

(g)
s

(s2 + 1)(s2 + 4)
(h)

s

s2 − 4s − 5

(i)
s

s2 − 4s − 5
(1 − 4e−7s) *(j)

s + 2
s(s2 + 9)

(1 − 5e−4s)

(k)
1

(s + 1)2
(l)

1
(s2 + 1)2

13.2.7. Solve the following ordinary differential equations using Laplace transforms:

(a)
d2y

dt2
+ 3

dy

dt
+ y = t3 with y(0) = 7 and

dy

dt
(0) = 5

*(b)
dy

dt
+ y = 1 with y(0) = 2

(c) dy
dt + 3y =

{
4e−t t < 8
2 t > 8 with y(0) = 1

*(d) d2y

dt2
+ 5dy

dt − 6y =
{

0 0 < t < 3
e−t t > 3 with y(0) = 3 and

dy

dt
(0) = 7

(e)
d2y

dt2
+ y = cos t with y(0) = 0 and

dy

dt
(0) = 0

*(f)
d2y

dt2
+ 4y = sin t with y(0) = 0 and

dy

dt
(0) = 0
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13.2.8. Derive the convolution theorem for Laplace transforms without using the Dirac
delta function. [Hint: Introduce the variable z = t + T in order to evaluate the
double integral (13.2.17).]

13.2.9. In this exercise we will determine

I = L{t−3/2e−a2/4t} and J = L{t−1/2e−a2/4t}.
(a) Determine a relationship between I and J by substituting the expression u =

s1/2t1/2 − (a/2)t−1/2 into
∫ ∞
−∞ e−u2

du =
√

π.
(b) Determine a relationship between I and J by introducing the change of vari-

ables sw = (a2/4)t−1 into the definition of I.
(c) Derive that I = (2

√
π/a)e−a

√
s and J = (

√
π/s)e−a

√
s using parts (a) and (b).

13.3 GREEN’S FUNCTIONS FOR INITIAL VALUE PROBLEMS FOR ORDINARY
DIFFERENTIAL EQUATIONS

The convolution theorem is very useful in solving nonhomogeneous ordinary differential
equations. For example, consider

α
d2y

dt2
+ β

dy

dt
+ γy = f(t), (13.3.1)

subject to zero3 initial conditions

y(0) = 0 (13.3.2)
dy

dt
(0) = 0. (13.3.3)

Taking the Laplace transform of the differential equation (13.3.1) yields

(αs2 + βs + γ)Y (s) = F (s) or Y (s) = F (s) · 1
αs2 + βs + γ

, (13.3.4)

where Y (s) and F (s) are the Laplace transforms of y(t) and f(t), respectively. The solu-
tion y(t) can be obtained using the convolution theorem:

y(t) =
∫ t

0

f(t0)q(t − t0) dt0, (13.3.5)

where q(t) is the inverse Laplace transform of 1/(αs2+βs+γ). We can determine q(t) using
tables and/or partial fractions. This result, (13.3.5), will be equivalent to the solution of
nonhomogeneous problems as is usually obtained by the method of variation of parameters
in most elementary texts on ordinary differential equations.

There is an important alternative interpretation of this result. q(t) is the solution of
(13.3.1) if F (s) = 1. The inverse Laplace transform of F (s) = 1 is f(t) = δ(t − 0+) [see
(13.2.14)]. Thus, q(t) is the response due to an impulse at t = 0+:

3Nonzero initial conditions can be analyzed by adding appropriate homogeneous solutions of the
differential equation.
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α
d2q

dt2
+ β

dq

dt
+ γq = δ(t − 0+)

q(0) = 0

dq

dt
(0) = 0.

(13.3.6)

We can introduce the terminology of Chapters 9 and 11. We call q(t) the Green’s func-
tion for the initial value problem, the response at t due to a concentrated source at
t = 0:

q(t) = G(t, 0).

The convolution theorem shows that we are interested in q(t − t0):

q(t − t0) = G(t − t0, 0).

However, due to the constant coefficients present in (13.3.6), the response at t due to
an impulse at t0, G(t, t0), is the same as the response due to an impulse at 0 if the
elapsed time is the same:

G(t, t0) = G(t − t0, 0), (13.3.7)

the translation property of the Green’s function. Thus,

q(t − t0) = G(t, t0).

Therefore, from (13.3.5), through the use of Laplace transforms, we have obtained a rep-
resentation of the solution of the nonhomogeneous initial value problem (13.3.1)–(13.3.3)
involving the Green’s function

y(t) =
∫ t

0

f(t0)G(t, t0) dt0. (13.3.8)

The solution is the generalized superposition of all sources acting before the time t, an
example of the causality principle for initial value problems for ordinary differential
equations. In this form, the result appears quite similar to our results concerning Green’s
functions for boundary value problems for ordinary and partial differential equations. Here
the Green’s function h(t) = G(t, 0) is simply the inverse Laplace transform of 1/(αs2 +
βs + γ).

EXAMPLE

Consider the differential equation

α2 d2y

dt2
− γ2y = f(t). (13.3.9)

The solution that satisfies zero initial conditions is

y(t) =
∫ t

0

f(t0)G(t, t0) dt0,



Section 13.4 A Signal Problem for the Wave Equation 593

where the Green’s function G(t, t0) satisfies q(t− t0) = G(t, t0). We introduce the Laplace
transform of q(t):

L[q(t)] =
1

α2s2 − γ2
=

1

α2(s2 − γ2

α2 )
.

Directly from tables, we may obtain the Green’s function, G(t, 0),

G(t, 0) = q(t) =
1
α2

α

γ
sinh

γ

α
t.

Thus, the solution of (13.3.9) is

y(t) =
1

αγ

∫ t

0

f(t0) sinh
γ

α
(t − t0) dt0, (13.3.10)

where y(0) = 0 and dy
dt (0) = 0.

EXERCISES 13.3

13.3.1. By using Laplace transforms, determine the effect of the initial conditions in terms
of the Green’s function for the initial value problem

α
d2y

dt2
+ β

dy

dt
+ γy = 0,

subject to y(0) = y0 and dy
dt (0) = v0.

*13.3.2. What is the Green’s function for

d2y

dt2
+ y = f(t)

with y(0) = 0 and dy
dt (0) = 0? Solve for y(t).

13.3.3. (a) Do Exercise 9.3.25(a).

(b) Do Exercise 9.3.25(b).
13.3.4. Show that for t > t0, G(t, t0) for (13.3.1)–(13.3.3) satisfies

α
d2G

dt2
+ β

dG

dt
+ γG = 0

with G(t0, t0) = 0 and dG
dt (t0, t0) = 1

α .
13.3.5. Solve Exercise 13.3.2 using Exercise 13.3.4.

13.4 A SIGNAL PROBLEM FOR THE WAVE EQUATION

Using Laplace transforms to solve partial differential equations often requires great skill in
the use of Laplace transforms. We pursue only some relatively simple examples.4 Consider

4For more difficult examples, see Churchill (1972) and Weinberger (1995).
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a semi-infinite string (x > 0), whose motion is caused only by a time-dependent boundary
condition at x = 0:

PDE:
∂2u

∂t2
= c2 ∂2u

∂x2
(13.4.1)

BC: u(0, t) = f(t) (13.4.2)

IC:
u(x, 0) = 0

∂u

∂t
(x, 0) = 0.

(13.4.3)

The string is initially horizontal and at rest. The left end is being moved vertically (while
maintaining the large tension). Since the problem is defined for all x > 0, we need a
boundary condition as x → ∞:

lim
x→∞u(x, t) = 0. (13.4.4)

All the initial conditions of this problem are zero. Consequently, the use of Laplace
transforms in the time variable is expected to yield a simple solution:

L[u(x, t)] = U(x, s) =
∫ ∞

0

u(x, t)e−st dt.

As with ordinary differential equations, we take the Laplace transform in the time variable
of (13.4.1),

L
[
∂2u

∂t2

]
= s2L[u] − su(x, 0) − ∂u

∂t
(x, 0) = s2L[u]. (13.4.5)

Here, we also need the Laplace transforms in the time variable of partial derivatives with
respect to x. We obtain

L
[
∂2u

∂x2

]
=

∫ ∞

0

∂2u

∂x2
e−st dt =

∂2

∂x2

∫ ∞

0

u(x, t)e−st dt =
∂2

∂x2
L[u]. (13.4.6)

In this manner, the Laplace transform of a partial differential equation yields an “ordi-
nary” differential equation

s2U(x, s) = c2 ∂2U

∂x2
, (13.4.7)

defined for 0 < x < ∞. At x = 0, u(x, t) is given for all t, and thus its Laplace transform
is known:

U(0, s) =
∫ ∞

0

u(0, t)e−st dt =
∫ ∞

0

f(t)e−st dt = F (s), (13.4.8)
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where F (s) is the Laplace transform of the boundary condition. Also, since u(x, t) → 0
as x → ∞ (for all fixed t), we have the same result for its Laplace transform,

lim
x→∞U(x, s) = 0. (13.4.9)

The general solution of (13.4.7) is

U(x, s) = A(s)e−(s/c)x + B(s)e(s/c)x,

where A(s) and B(s) are arbitrary functions of the transform variable s. For s > 0 [more
precisely Re(s) > 0], B(s) = 0 to satisfy the decay as x → ∞, (13.4.9). In addition, the
boundary condition at x = 0, (13.4.8), implies that A(s) = F (s), and thus

U(x, s) = F (s)e−(s/c)x. (13.4.10)

To invert this transform, we could use the convolution theorem. Instead, a quick glance
at Table 13.2.1 shows that an exponential multiple in the transform yields a time shift in
the solution. Consequently,

u(x, t) = H
(
t − x

c

)
f

(
t − x

c

)
, (13.4.11)

where H is the Heaviside unit step function. The solution is zero for x > ct. In fact,
the solution is constant whenever x − ct is constant. The solution travels as a wave of
fixed shape at velocity c. We obtained similar results in Chapter 12 using the method
of characteristics. We illustrate this in a space-time diagram in Fig. 13.4.1. The signal
propagates with velocity c, and thus at time t it has traveled only a distance ct. If x > ct,
the “wiggling” of the string at x = 0 has not been noticed.

u(0,t) = f(t)

x = ct

u(x,t) = 0

(x, 0) = 0

t

x
u(x, 0) = 0
∂u
∂t

FIGURE 13.4.1 Signal problem for the one-dimensional wave equation.
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However, it is educational to obtain the same result using the convolution theorem.
Since U(x, s) = F (s)e−(s/c)x,

u(x, t) =
∫ t

0

f(t0)g(t − t0) dt0,

where e−(s/c)x is the Laplace transform of g(t). From a table of Laplace transforms (as
can be easily verified), g(t) = δ(t − x/c). Thus,

u(x, t) =
∫ t

0

f(t0)δ
(
t − t0 − x

c

)
dt0 =

{
0 t < x/c
f(t − x/c) t > x/c,

which is equivalent to (13.4.11).

EXERCISES 13.4

13.4.1. Solve
∂2u

∂t2
= c2

∂2u

∂x2

subject to ∂u
∂x (0, t) = f(t), u(x, 0) = 0, and ∂u

∂t (x, 0) = 0.
13.4.2. Solve

∂w

∂t
= c

∂w

∂x
, c < 0, x > 0, t > 0

w(0, t) = f(t)
w(x, 0) = 0.

*13.4.3. Solve
∂2u

∂t2
= c2

∂2u

∂x2
, −∞ < x < ∞

u(x, 0) = sinx

∂u

∂t
(x, 0) = 0.

*13.4.4. Consider
∂u

∂t
= k

∂2u

∂x2
, x > 0

u(x, 0) = 0
u(0, t) = f(t).

Determine the Laplace transform of u(x, t). Invert to obtain u(x, t). (Hint: See
Table 13.2.1 of Laplace transforms.)

13.4.5. Reconsider Exercise 13.4.4 if instead the boundary and initial conditions are

u(x, 0) = 0 and
∂u

∂x
(0, t) = f(t).

13.4.6. Reconsider Exercise 13.4.4 if f(t) = Aeiσ0t (see Exercise 10.5.17).
(a) Determine an expression for u(x, t) using Laplace transforms.

(b) Simplify part (a) with the change of variables w = x/2
√

t − t, where t is the
variable of integration in part (a).

(c) Approximate u(x, t) if t is large.
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13.5 A SIGNAL PROBLEM FOR A VIBRATING STRING OF FINITE LENGTH

In partial differential equations, the Laplace inversion integrals that are needed are often
not as simple as in Section 13.4. We illustrate this for a vibrating string of length L initially
at rest in the horizontal equilibrium position subject to the following time-dependent
boundary condition at one end x = L:

PDE:
∂2u

∂t2
= c2 ∂2u

∂x2
(13.5.1)

BC:
u(0, t) = 0
u(L, t) = b(t) (13.5.2)

IC:
u(x, 0) = 0

∂u

∂t
(x, 0) = 0.

(13.5.3)

The zero initial conditions facilitate the use of the Laplace transform in t of u(x, t):

U(x, s) =
∫ ∞

0

e−stu(x, t) dt. (13.5.4)

By transforming (13.5.1), U(x, s) satisfies the ordinary differential equation

s2U = c2 ∂2U

∂x2
, (13.5.5)

subject to the boundary conditions

U(0, s) = 0 (13.5.6)

U(L, s) = B(s), (13.5.7)

where B(s) is the Laplace transform of b(t). We can easily determine U(x, s):

U(x, s) = B(s)
sinh(s/c)x
sinh(s/c)L

. (13.5.8)

The convolution theorem implies that

u(x, t) =
∫ t

0

b(t0)f(t − t0) dt0, (13.5.9)

where f(t) is the inverse Laplace transform of

F (s) =
sinh(s/c)x
sinh(s/c)L

. (13.5.10)
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To obtain this inverse Laplace transform is not straightforward. One method to
obtain the inverse transform of (13.5.10) is to attempt to use our elementary tables, in
which primarily exponentials appear. We note that

sinh(s/c)x
sinh(s/c)L

=
e(s/c)x − e−(s/c)x

e(s/c)L − e−(s/c)L
=

e(s/c)x − e−(s/c)x

e(s/c)L(1 − e−(2s/c)L)
.

However, due to the denominator, this cannot be analyzed in a simple way. Instead, we
can introduce an infinite series of exponentials based on the geometric series [1/(1−x) =
1 + x + x2 + · · · , if |x| < 1]

F (s) =
e(s/c)x − e−(s/c)x

e(s/c)L(1 − e−(2s/c)L)

= e−(s/c)L(e(s/c)x − e−(s/c)x)(1 + e−(2L/c)s + e−(4L/c)s + · · · )

=
∞∑

n=0

{
exp

[
−s

(
2nL − x + L

c

)]
− exp

[
−s

(
2nL + x + L

c

)]}
.

(13.5.11)

These are all decaying exponentials since x < L, and hence each can be inverted using
formula (13.2.2n) in Table 13.2.1. The Laplace transform is a linear combination of

exp
[
−s

(
2nL ± x + L

c

)]
(n ≥ 0).

The inverse Laplace transform of F (s) is thus a linear combination of Dirac delta func-
tions, δ[t − (2nL ± x + L)/c]:

f(t) =
∞∑

n=0

[
δ

(
t − 2nL − x + L

c

)
− δ

(
t − 2nL + x + L

c

)]
.

Since f(t− t0) in (13.5.9) is the influence function for the boundary condition, these
Dirac delta functions represent signals whose travel times are (2nL ± x + L)/c [elapsed
from the signal time t0]. These can be interpreted as direct signals and their reflections off
the boundaries x0 = 0 and x0 = L. Since the nonhomogeneous boundary condition is at
x0 = L, we imagine these signals are initiated there (at t = t0). The signal can travel to
x in different ways, as illustrated in Fig. 13.5.1. The direct signal must travel a distance
L−x at velocity c, yielding the retarded time (L−x)/c (corresponding to n = 0). A signal
can also arrive at x by additionally making an integral number of complete circuits, an
added travel distance of 2Ln. The other terms correspond to waves first reflecting off the
wall x0 = 0 before impinging on x. In this case the total travel distance is L + x + 2nL
(n ≥ 0). Further details of the solution are left as exercises.

Using Laplace transforms (and inverting in the way described in this section) yields
a representation of the solution as an infinite sequence of reflecting waves. Similar results
can be obtained by the method of characteristics (see Chapter 12) or (in some cases) by
using the method of images (sequences of infinite space Green’s functions).

Alternatively, in subsequent sections, we will describe the use of contour integrals in
the complex plane to invert Laplace transforms. This technique will yield a significantly
different representation of the same solution.
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t = (L + x)/c

L

t

0 x

t = (L − x)/c

FIGURE 13.5.1 Space-time signal paths.

EXERCISES 13.5

13.5.1. Consider

∂2u

∂t2
= c2

∂2u

∂x2
, −∞ < x < ∞

u(x, 0) = f(x)

∂u

∂x
(x, 0) = g(x).

Solve using Laplace transforms

(a) if g(x) = 0

(b) if f(x) = 0

13.5.2. (a) Using the results of this section, invert (13.5.8) based on the convolution theo-
rem. Solve for u(x, t).

(b) Without using the convolution theorem, from (13.5.8) and (13.5.11), determine
u(x, t).

*13.5.3. Solve for u(x, t) using Laplace transforms:

∂2u

∂t2
= c2

∂2u

∂x2

u(0, t) = 0, u(x, 0) = 0
∂u

∂x
(L, t) = b(t),

∂u

∂t
(x, 0) = 0.

13.5.4. Reconsider Exercise 13.5.3 if instead

(a) ∂u
∂x (0, t) = 0 and u(L, t) = b(t)

(b) ∂u
∂x (0, t) = 0 and ∂u

∂x (L, t) = b(t)

13.5.5. Solve for u(x, t) using Laplace transforms:

∂u

∂t
= k

∂2u

∂x2
, −∞ < x < ∞

u(x, 0) = f(x).

(Hint: See Table 13.2.1 of Laplace transforms.)
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13.5.6. Solve for u(x, t) using Laplace transforms:

∂u

∂t
= k

∂2u

∂x2

subject to u(x, 0) = f(x), u(0, t) = 0, and u(L, t) = 0. By what other method(s) can
this representation of the solution be obtained?

13.6 THE WAVE EQUATION AND ITS GREEN’S FUNCTION

The Laplace transform can be used to determine the relationship between solutions of
nonhomogeneous partial differential equations and its corresponding Green’s function.
Consider the wave equation on a finite interval (0 < x < L) with sources and time-
dependent boundary conditions

PDE:
∂2u

∂t2
= c2 ∂2u

∂x2
+ q(x, t) (13.6.1)

BC:
u(0, t) = a(t)
u(L, t) = b(t) (13.6.2)

IC:
u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x).

(13.6.3)

Green’s function. The Green’s function G(x, t;x0, t0) satisfies

∂2G

∂t2
= c2 ∂2G

∂x2
+ δ(x − x0)δ(t − t0) (13.6.4)

G(0, t;x0, t0) = 0 (13.6.5)
G(L, t;x0, t0) = 0 (13.6.6)

subject to the causality principle

G(x, t;x0, t0) = 0 for t < t0. (13.6.7)

Laplace transform of Green’s function. In this section we determine the
Green’s function using the Laplace transform. The transform of (13.6.4)–(13.6.6) yields

s2G = c2 ∂2G

∂x2
+ δ(x − x0)e−st0 (13.6.8)

G(0, s;x0, t0) = 0 (13.6.9)

G(L, s;x0, t0) = 0, (13.6.10)
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where G(x, s;x0, t0) is the Laplace transform in time of G(x, t;x0, t0). The transform
of (13.6.4) simplifies because the causality principle implies that G satisfies zero initial
conditions (if t0 > 0).

The Laplace transform of the Green’s function satisfies (13.6.8), an ordinary dif-
ferential equation of the Green’s function type. To satisfy the boundary conditions,
G(x, s;x0, t0) must be proportional to sinh(s/c)x for x < x0 and proportional to sinh(s/c)
(L − x) for x > x0. Since it will be symmetric, we know that

G(x, s;x0, t0) =

{
γ sinh s

c (L − x0) sinh s
cx x < x0

γ sinh s
cx0 sinh s

c (L − x) x > x0,
(13.6.11)

where γ is a constant (independent of x and x0). In this manner the continuity of G at
x = x0 is automatically satisfied. The additional jump condition,

0 = c2 dG

dx

∣∣∣∣
x0+

x0−
+ e−st0 ,

determines γ:

0 = −c2γ
s

c

[
sinh

s

c
x0 cosh

s

c
(L − x0) + sinh

s

c
(L − x0) cosh

s

c
x0

]
+ e−st0 .

By using an addition formula for hyperbolic functions [sinh(a + b) = sinh a cosh b +
cosh a sinh b], we obtain

γ =
e−st0

cs sinh(s/c)L
. (13.6.12)

In Exercise 13.6.2 the Green’s function itself is obtained by determining the inverse
Laplace transform of (13.6.11) with (13.6.12).

Representation of solution in terms of the Green’s function. We investi-
gate further using Laplace transforms the relationships between u(x, t) and its Green’s
function. To simplify some of our work, we consider the special case of Section 13.5,
q(x, t) = 0, a(t) = 0, f(x) = 0, and g(x) = 0; the only nonhomogeneous term is the
boundary condition at x = L. In the preceding section we showed (13.5.8) that

U(x, s) = B(s)
sinh(s/c)x
sinh(s/c)L

. (13.6.13)

Here we will relate this to the Laplace transform of the Green’s function (13.6.11) with
(13.6.12). Since the source satisfies x0 = L, we need G for x < x0:

G(x, s;x0, t0) =
e−st0 sinh(s/c)(L − x0) sinh(s/c)x

cs sinh(s/c)L
. (13.6.14)

To compare this with (13.6.13), we take the derivative with respect to x0:

∂G

∂x0
(x, s;x0, t0) = −e−st0 cosh(s/c)(L − x0) sinh(s/c)x

c2 sinh(s/c)L
.
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We note that at x0 = L and t0 = 0,

∂G

∂x0
(x, s;L, 0) = − sinh(s/c)x

c2 sinh(s/c)L
, (13.6.15)

similar to the term appearing in (13.6.13). Thus,

U(x, s) = −c2B(s)
∂G

∂x0
(x, s;L, 0).

Using the convolution theorem, we obtain

u(x, t) = −c2

∫ t

0

b(t0)
∂G

∂x0
(x, t − t0;L, 0) dt0,

which may be replaced by the more usual expression,

u(x, t) = −c2

∫ t

0

b(t0)
∂G

∂x0
(x, t;L, t0) dt0, (13.6.16)

due to the time-translation invariance of the Green’s function. Equation (13.6.16), ob-
tained using Laplace transforms, is equivalent to the representation formula (11.2.24)
obtained using Green’s formula for the special case q(x, t) = 0, a(t) = 0, f(x) = 0, and
g(x) = 0. The general case (11.2.24) may be derived in the same way.

EXERCISES 13.6

13.6.1. (a) Determine the Laplace transform of u(x, t) satisfying (13.6.1)–(13.6.3).
(b) Represent u(x, t) in terms of its Green’s function using Laplace transforms [i.e.,

use (13.6.11) with (13.6.12)].
13.6.2. Determine the Green’s function by inverting (13.6.11) with (13.6.12). Show that

signals are appropriately reflected.
13.6.3. Determine the Laplace transform of the Green’s function for the wave equation if

the boundary conditions are
(a) u(0, t) = a(t) and ∂u

∂x (L, t) = b(t)

(b) ∂u
∂x (0, t) = a(t) and ∂u

∂x (L, t) = b(t)
13.6.4. Consider

∂u

∂t
= k

∂2u

∂x2
+ q(x, t), x > 0

t > 0
u(0, t) = h(t)
u(x, 0) = f(x).

*(a) Determine the Laplace transform of the Green’s function for this exercise.
(b) Determine U(x, s) if f(x) = 0 and q(x, t) = 0 (see Exercise 13.4.4).
(c) By comparing parts (a) and (b), derive a representation of u(x, t) in terms of

the Green’s function [if f(x) = 0 and q(x, t) = 0]. Compare with (11.3.21).
(d) From part (a), determine the Green’s function. (Hint: See Table 13.2.1 of

Laplace transforms.)
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13.6.5. Reconsider Exercise 13.6.4 if

(a) h(t) = 0 and q(x, t) = 0

(b) h(t) = 0 and f(x) = 0

13.6.6. Reconsider Exercise 13.6.4 if, instead, the boundary condition were

∂u

∂x
(0, t) = h(t).

[Restrict attention to f(x) = 0 and q(x, t) = 0.]

13.7 INVERSION OF LAPLACE TRANSFORMS USING CONTOUR INTEGRALS
IN THE COMPLEX PLANE

Laplace transforms sometimes can be inverted by using tables. However, one of the most
important properties of Laplace transforms is that they can be inverted by a contour
integral in the complex plane. Furthermore, we will show how to evaluate this integral
using results from the theory of functions of a complex variable.

Fourier and Laplace transforms. First we show that the Laplace transform
can be considered a special case of the Fourier transform. As a review, we introduce g(x)
and its Fourier transform G(ω):

G(ω) =
1
2π

∫ ∞

−∞
g(x)eiωx dx (13.7.1)

g(x) =
∫ ∞

−∞
G(ω)e−iωx dω. (13.7.2)

Suppose, as is usual for functions that will be Laplace transformed, we discuss functions
g(x) that are zero for x < 0:

g(x) =
{

0 x < 0
2πf(x)e−γx x > 0.

(13.7.3)

The e−γx is introduced (and γ chosen) so that g(x) automatically decays sufficiently
rapidly as x → ∞ for certain f(x). For this function, the Fourier transform pair (13.7.1)–
(13.7.2) becomes

G(ω) =
∫ ∞

0

f(x)e−(−iω+γ)x dx

2πf(x)e−γx =
∫ ∞

−∞
G(ω)e−iωx dω (x > 0).

If we introduce
s = γ − iω (ds = −i dω)
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and

F (s) ≡ G(ω) = G

(
s − γ

−i

)
, (13.7.4)

then using t instead of x (x = t) yields

F (s) =
∫ ∞

0

f(t)e−st dt (13.7.5)

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
F (s)est ds (t > 0). (13.7.6)

Equation (13.7.5) shows that F (s) is the Laplace transform of f(t). (We usually use t
instead of x when discussing Laplace transforms.) F(s) is also the Fourier transform of

g(t) =
{

0 t < 0
2πf(t)e−γt t > 0.

More importantly, given the Laplace transform F (s), (13.7.6) shows how to com-
pute its inverse Laplace transform. It involves a line integral in the complex s-plane,
as illustrated in Fig. 13.7.1. From the theory of complex variables, it can be shown that
the line integral is to the right of all singularities of F (s). Other than that, the evaluation
of the integral is independent of the value of γ. All singularities are in the “left half-plane.”

Complex s-plane

γ

FIGURE 13.7.1 Line integral in complex s-plane for inverse Laplace transforms.

Cauchy’s theorem and residues. We give only an extremely brief discussion
of evaluating integrals using the theory of complex variables. The fundamental tool is
Cauchy’s theorem, which states that if g(s) is analytic (no singularities) at all points
inside and on a closed contour C, then the closed line integral is zero:

∮
c

g(s) ds = 0. (13.7.7)
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Closed line integrals are nonzero only due to singularities of g(s). The residue theo-
rem states that the closed line integral (counterclockwise) can be evaluated in terms of
contributions (called residues) of the singularities sn inside the contour (if there are no
branch points, which usually are square-root or logarithmic-type singularities):

∮
c

g(s) ds = 2πi
∑

n

res (sn). (13.7.8)

The evaluation of residues is often straightforward. If g(s) = R(s)/Q(s) has simple poles
at simple zeros sn of Q(s) inside the contour, then in complex variables it is shown that

res (sn) =
R(sn)
Q′(sn)

, (13.7.9)

and thus ∮
c

g(s) ds = 2πi
∑

n

R(sn)
Q′(sn)

. (13.7.10)

Inversion integral. The inversion integral for Laplace transforms is not a closed
line integral but instead an infinite straight line (with constant real part γ) to the right of
all singularities. In order to utilize a finite closed line integral, we can consider either of the
two large semicircles illustrated in Fig. 13.7.2. We will allow the radius to approach infinity
so that the straight part of the closed contour approaches the desired infinite straight line.
We want the line integral along the arc of the circle to vanish as the radius approaches
infinity. The integrand F (s)est in the inversion integral (13.7.6) must be sufficiently small.
Since F (s) → 0 as s → ∞ [see Section 13.2 or (13.7.5)], we will need est to vanish as the
radius approaches infinity. If t < 0, est exponentially decays as the radius increases only
on the right-facing semicircle (real part of s > 0). Thus, if t < 0, we “close the contour”
to the right. Since there are no singularities to the right and the contribution of the large
semicircle vanishes, we conclude that

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
F (s)est ds = 0

FIGURE 13.7.2 Closing the line integrals.
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if t < 0; when we use Laplace transforms, we insist that f(t) = 0 for t < 0. Of more
immediate importance is our analysis of the inversion integral (13.7.6) for t > 0. If t > 0,
est exponentially decays in the left half-plane (real part of s < 0). Thus, if t > 0, we close
the contour to the left. There is a contribution to the integral from all the singularities.
For t > 0, the inverse Laplace transform of F (s) is

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
F (s)est ds =

1
2πi

∮
F (s)est ds =

∑
n

res (sn). (13.7.11)

This is valid if F (s) has no branch points. The summation includes all singularities (since
the path is to the right of all singularities).

Simple poles. If F (s) = p(s)/q(s) [so that g(s) = p(s)est/q(s)] and if all the
singularities of the Laplace transform F (s) are simple poles [at simple zeros of q(s)], then
res (sn) = p(sn)esnt/q′(sn), and thus

f(t) =
∑

n

p(sn)
q′(sn)

esnt. (13.7.12)

Equation (13.7.12) is the same result we derived earlier by partial fractions if F (s) is a
rational function [i.e., if p(s) and q(s) are polynomials].

EXAMPLE OF THE CALCULATION OF THE INVERSE LAPLACE TRANSFORM

Consider F (s) = (s2 + 2s + 4)/[s(s2 + 1)]. The inverse transform yields

f(t) =
∑

n

res (sn).

The poles of F (s) are the zeros of s(s2 + 1), namely, s = 0,±i. The residues at these
simple poles are

res (0) = 4e0t = 4

res (sn = ±i) =
s2

n + 2sn + 4
3s2

n + 1
esnt =

3 + 2sn

−2
esnt.

Thus,

f(t) = 4 +
(
−3

2
− i

)
eit +

(
−3

2
+ i

)
e−it = 4 − 3

2
· 2 cos t − i · 2i sin t

= 4 − 3 cos t + 2 sin t,

using Euler’s formulas. In the next section, we apply these ideas to solve for the inverse
Laplace transform that arises in a partial differential equation’s problem.
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EXERCISES 13.7

13.7.1. Use the inverse theory for Laplace transforms to determine f(t) if F (s) =:

(a) 1/(s − a)

*(b) 1/(s2 + 9)

(c) (s + 3)/(s2 + 16)

13.7.2. The residue b−1 at a singularity s0 of f(s) is the coefficient of 1/(s − s0) in an
expansion of f(s) valid near s = s0. In general,

f(s) =
∞∑

m=−∞
bm(s − s0)m,

called a Laurent series or expansion.

(a) For a simple pole, the most negative power is m = −1 (bm = 0 for m < −1). In
this case, show that

res (s0) = lim
s→s0

(s − s0)f(s).

(b) If s0 is a simple pole and f(s) = R(s)/Q(s) [with Q(s0) = 0, R(s0) �= 0, and
dQ/ds(s0) �= 0], show that

res (s0) =
R(s0)
Q′(s0)

,

assuming that both R(s) and Q(s) have Taylor series around s0.

(c) For an Mth-order pole, the most negative power is m = −M (bm = 0 for m <
−M). In this case, show that

res (s0) =
1

(M − 1)!
dM−1

dsM−1

[
(s − s0)Mf(s)

]∣∣∣∣
s=s0

. (13.7.13)

(d) In part (c), show that the M appearing in (13.7.13) may be replaced by any
integer greater than M .

13.7.3. Using Exercise 13.7.2, determine f(t) if F (s) =

(a) 1/s3

(b) 1/(s2 + 4)2

13.7.4. If |F (s)| < α/r2 for large r ≡ |s|, prove that
∫

cR

F (s)est ds → 0 as r → ∞ for t > 0,

where CR is any arc of a circle in the left half-plane (Re s ≤ 0). [If |F (s)| < α/r
instead, it is more difficult to prove the same conclusion. The latter case is equivalent
to Jordan’s lemma in complex variables.]
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13.8 SOLVING THE WAVE EQUATION USING LAPLACE TRANSFORMS
(WITH COMPLEX VARIABLES)

In Section 13.6 we showed that

PDE:
∂2u

∂t2
= c2 ∂2u

∂x2
(13.8.1)

BC:
u(0, t) = 0
u(L, t) = b(t) (13.8.2)

IC:
u(x, 0) = 0

∂u

∂t
(x, 0) = 0

(13.8.3)

could be analyzed by introducing U(x, s), the Laplace transform in t of u(x, t). We ob-
tained u(x, t),

u(x, t) = −c2

∫ t

0

b(t0)
∂G

∂x0
(x, t;L, t0) dt0, (13.8.4)

in terms of the Green’s function. The Laplace transform of this influence function was
known [see (13.6.15)]:

∂G

∂x0
(x, s;L, 0) = F (s) = − sinh(x/c)s

c2 sinh(L/c)s
. (13.8.5)

In this section we use the complex inversion integral for the Laplace transform:

∂G

∂x0
(x, t;L, 0) =

1
2πi

∫ γ+i∞

γ−i∞
− sinh(x/c)s

c2 sinh(L/c)s
est ds. (13.8.6)

The singularities of F (s) only are simple poles sn, located at the zeros of the denominator:

sinh
L

c
sn = 0. (13.8.7)

However, s = 0 is not a pole since, near s = 0, F (s) ≈ −(x/c)s/[c2(L/c)s] �≈ ∞. There is
an infinite number of these poles located on the imaginary axis:

L

c
sn = inπ, n = ±1, ±2, ±3, . . . . (13.8.8)
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The location of the poles, sn = ic(nπ/L), corresponds to the eigenvalues, λ = (nπ/L)2.
This follows from the singularity property of Laplace transforms (see Section 13.2). The
singularity of the Laplace transform [s = ic(nπ/L)] corresponds to a complex exponential
solution [eic(nπ/L)t].

The residue at each pole may be evaluated:

res (sn) =
R(sn)
Q′(sn)

=
− sinh(x/c)snesnt

cL cosh(L/c)sn
=

−i sin /nπx/L/ei(nπct/L)

cL cos nπ
,

since sinh ix = i sin x and cosh ix = cos x. Thus, the influence function for this problem is

∂

∂x0
G(x, t;L, 0) =

∞∑
n = −∞
(n �= 0)

−i sin /nπx/L/ei(nπct/L)

cL cos nπ

=
2
cL

∞∑
n=1

(−1)n sin
nπx

L
sin

nπct

L
,

(13.8.9)

where the positive and negative n contributions have been combined into one term. Fi-
nally, using (13.8.4), we obtain

u(x, t) =
∞∑

n=1

An(t) sin
nπx

L
, where An = −(−1)n 2c

L

∫ t

0

b(t0) sin
nπc

L
(t − t0) dt0,

the same result as would be obtained by the method of eigenfunction expansion.
The influence function is an infinite series of the eigenfunctions. For homogeneous

problems with homogeneous boundary conditions, inverting the Laplace transform using
an infinite sequence of poles also will yield a series of eigenfunctions, the same result as
obtained by separation of variables. In fact, it is the Laplace transform method that is
often used to prove the validity of the method of separation of variables.

EXERCISES 13.8

*13.8.1. Solve for u(x, t) using Laplace transforms:

∂2u

∂t2
= c2

∂2u

∂x2

u(x, 0) = f(x),
∂u

∂t
(x, 0) = 0, u(0, t) = 0, u(L, t) = 0.

Invert the Laplace transform of u(x, t) using the residue theorem for contour integrals
in the s-plane. Show that this yields the same result as derivable by separation of
variables.

13.8.2. Modify Exercise 13.8.1 if instead
(a) u(x, 0) = 0 and ∂u

∂t (x, 0) = g(x)

(b) u(0, t) = 0 and ∂u
∂x (L, t) = 0

(c) ∂u
∂x (0, t) = 0 and ∂u

∂x (L, t) = 0
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13.8.3. Solve for u(x, t) using Laplace transforms:

∂u

∂t
= k

∂2u

∂x2

subject to u(x, 0) = f(x), u(0, t) = 0, and u(L, t) = 0.
Invert the Laplace transform of u(x, t) using the residue theorem for contour integrals
in the complex s-plane. By what other method can this representation of the solution
be obtained? (Compare to Exercise 13.5.6.)

13.8.4. Consider

∂2u

∂t2
= c2

∂2u

∂x2
+ sin σ0t

u(x, 0) = 0, u(0, t) = 0
∂u

∂t
(x, 0) = 0, u(L, t) = 0.

(a) Solve using Laplace transforms (with contour inversion) if σ0 �= c(mπ/L).

(b) Solve if σ0 = c(3π/L). Show that resonance occurs (see Section 8.5).



C H A P T E R 14

Dispersive Waves: Slow
Variations, Stability, Nonlinearity,
and Perturbation Methods

14.1 INTRODUCTION

This chapter is intentionally concise, giving the instructor or reader just an overview
of many more advanced and important topics in partial differential equations. In
Section 14.2, we introduce the dispersion relation, a relationship between the wave num-
ber and frequency, and show the important distinction between phase velocity and group
velocity. Examples of dispersive waves discussed are water waves (14.2) and, more exten-
sively, wave guides (14.3) and fiber optics (14.4). In Section 14.5, the importance of group
velocity in the propagation of linear dispersive waves is developed using the method of sta-
tionary phase. In Section 14.6, we show that dispersive waves may be more easily analyzed
by allowing the amplitude, wave number, and frequency to be slowly varying functions
of space and time. Slowly varying waves are shown (14.6) to be solved by the method
of characteristics, which may form caustics, as we describe. By assuming that the wave
number and frequency are nearly constant, in Section 14.7 we derive a wave envelope
equation known as the Schrödinger equation. We also derive the linearized Korteweg–de
Vries equation and show its application to the caustic of a rainbow. We analyze soli-
tary waves for the corresponding nonlinear dispersive wave equations and briefly discuss
solitons and the inverse scattering transform. Section 14.8 describes bifurcation phenom-
ena and stability analysis for partial differential equations, including an introduction to
dynamical systems for ordinary differential equations (14.8.1). We discuss a typical un-
stable equilibrium for a partial differential equation in Section 14.8.3, giving rise to a
neutral stability curve and showing how patterns arise in partial differential equations.
Such slightly unstable dispersive wave situations are analyzed in Section 14.8.5, deriving
in a simple way the linearized complex Ginzburg–Landau equation. In Section 14.8.6 we
describe bifurcation phenomena for partial differential equations. Nonlinear terms give
rise to the complex Ginzburg–Landau equation, and we analyze the modulational insta-
bility. Section 14.8.7 introduces the long-wave instability. Pattern formation for reaction–
diffusion equations and the Turing instability are presented in considerable detail in
Section 14.8.8. The last two sections describe singular perturbation methods, indepen-
dent from most of the rest of the text. To facilitate learning these perturbation methods,
we begin by presenting a few simpler examples from ordinary differential equations. We
introduce in Section 14.9 singular perturbation problems that are solved by the method
of multiple scales, doing the wave equation in a slowly varying media (14.9.4) and slowly

611
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varying dispersive waves (14.9.5). Boundary layer problems are solved in Section 14.10
by the method of matched asymptotic expansions. Section 14.10.2 presents a partial dif-
ferential equation example that corresponds to diffusion of a pollutant dominated by
convection.

14.2 DISPERSIVE WAVES AND GROUP VELOCITY

14.2.1 Traveling Waves and the Dispersion Relation

Solutions for linear partial differential equations in uniform media (constant coefficients),
when the boundary conditions are particularly simple, often may be obtained in a way
that is equivalent to but perhaps simpler than the method of separation of variables.
Since the form of the solution is known from our experience in separating variables, we
may directly substitute into the partial differential equation

wave propagation nonwave propagation
one dim ei(kx−ωt) eikxeσt

two dim ei(k · x−ωt) eikxeσt.

In finite rectangular geometries with homogeneous boundary conditions such as zero-
ends, zero-slope, or periodic, k(k) represents one of the discrete wave numbers (vectors)
permitted by the appropriate Fourier series. The wavelength is 2π

k , and hence the wave
number k is the number of periods in 2π distance. In infinite geometries (or semi-infinite
geometries with appropriate homogeneous boundary condition), k(k) represents a con-
tinuous wave number (vector) permitted by the appropriate Fourier transform. In these
problems, ω is the temporal frequency, and σ represents the exponential time dependence
of the solution of the partial differential equation. (In this chapter we use k for wave
number and ω for temporal frequency, while in the rest of the book k is the diffusivity
for the heat equation and ω is the spatial wave number. We hope this does note cause
confusion.)

In general, to solve partial differential equations that correspond to wave-
propagation problems, we will find that the temporal frequency is a real function of
the wave number

ω = ω(k), (14.2.1)

which we call the dispersion relation. In multidimensional problems ω = ω(k), meaning
ω = ω(k1, k2, k3). We will do a few examples shortly. For one-dimensional wave propaga-
tion, ei(kx−ωt) = eik(x−ω

k t), so that this substitution represents a traveling wave with
wave or phase velocity = ω(k)

κ . If the velocity really depends on the wave number,
then waves of different lengths will move at different velocities. Since initial conditions
are composed of many different wavelengths (via Fourier analysis), initial conditions will
generally spread out or disperse. This will be shown more clearly later. Meanwhile, we say
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a wave-propagation problem is dispersive if the wave velocity depends on the wave num-
ber, and specifically if the wave velocity is not constant. To be nondispersive,

ω(k)

κ
=

constant, so that ω(k) = constant×k. More technically, we say a one-dimensional prob-
lem is dispersive if dω

dk �= constant. In higher dimensions, a partial differential equation is
dispersive if ∇kω = ( ∂ω

∂k1
, ∂ω

∂k2
, ∂ω

∂k3
) �= constant vector.

EXAMPLE REAL SOLUTIONS

Consider the partial differential equation (considered in Chapter 12)

∂u

∂t
= c

∂u

∂x
, (14.2.2)

to be solved as an initial value problem for all x. By substituting u = ei(kx−ωt), we obtain
first −iω = cik, and then the dispersion relation

ω = −ck.

The velocity = ω
k = −c is constant for all k, so we say that (14.2.2) is nondispersive.

Each wave number moves at the same velocity −c. Thus, we expect an arbitrary initial
condition to move as a permanent wave without change of shape, moving at velocity
−c. This can be shown using the Fourier transform:

u(x, t) =
∫ +∞

−∞
A(k)ei(kx−ωt)dk =

∫ +∞

−∞
A(k)eik(x+ct)dk, (14.2.3)

using (14.2.2). To relate this to the initial condition u(x, 0) = f(x):

u(x, 0) = f(x) =
∫ +∞

−∞
A(k)eikxdk. (14.2.4)

We can solve for A(k), but it is not necessary. From (14.2.3) and (14.2.4), we see that

u(x, t) = f(x + ct). (14.2.5)

This is shown by the method of characteristics in Chapter 12.
One solution is Aei(kx−ω(k)t), with A a constant. You may not like this solution

because it is not real. To show how real solutions of this kind can be derived, we simply
note that both k and −k are allowable wave numbers. Thus, by superposition, an allowable
solution of the differential equation is Aei(kx−ω(k)t) + Aei(−kx−ω(−k)t) = A(ei(kx−ω(k)t) +
e−i(kx−ω(k)t) = 2A cos(kx − ω(k)t), since ω(k) is an odd function of k. In many (but
not all) problems it is possible to create real solutions in this way. Thus, most physical
scientists use the notation Aei(kx−ωt) to represent a real wave. Be careful if the partial
differential equation itself is nonlinear or not real.
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EXAMPLE LINEARIZED KORTEWEG–DE VRIES EQUATION

This linear partial differential equation arises in many physical situations, especially as
an approximation for long waves (waves whose wavelengths are long compared with other
length scales in a physical problem) when more general dispersion exists:

∂u

∂t
+ c

∂u

∂x
= β

∂3u

∂x3
.

We will discuss its derivation later in this chapter. The traveling wave assumption,
u = ei(kx−ωt), yields −iω + c(ik) = β(ik)3, from which we obtain the dispersion
relation:

ω = ck + βk3. (14.2.6)

The phase velocity is not a constant but depends on the wave number: ω
k = c + βk2.

Here, dω
dk �= constant, so we have our first example of a dispersive wave. Using a Fourier

transform,

u(x, t) =
∫ +∞

−∞
A(k)ei(kx−ωt)dk =

∫ +∞

−∞
A(k)ei(k(x−ct)−βk3t)dk.

We cannot learn much directly from this exact solution, which is typical of dispersive
wave problems. Later in this chapter, we show a method for analyzing dispersive wave
problems based on approximating the exact solution for long distances and large times.

Operator result for dispersion relations. For an elementary traveling wave
solution of a linear dispersive wave, u(x, t) = Aei(kx−ωt), where A represents a constant
amplitude. Note that

∂u

∂t
= −iωu

∂u

∂x
= iku.

Thus, it is often useful to note that wave number and frequency are equivalent to the
appropriate multiplication of the spatial and temporal differential operators:

∂

∂t
⇒ −iω(k) or ω(k) ⇒ i

∂

∂t
(14.2.7)

∂

∂x
⇒ ik or k ⇒ −i

∂

∂x
. (14.2.8)

We will find these observations useful when we discuss wave envelope equations.
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14.2.2 Group Velocity I

Linear dispersive waves ei(kx−ωt) are characterized by the frequency depending on the
wave number so that the phase velocity ω(k)

k depends on the wave number. Waves of
different lengths have different phase velocities. However, it turns out that for dispersive
waves, there is a more important velocity, the group velocity, which is important because
energy moves at this velocity (not the phase velocity). This is not particularly easy to
show, so we begin by discussing a simple example. Instead of considering a continuum of
waves of all wave numbers (using Fourier transforms), we consider a solution that consists
of just two waves with nearby wave numbers, k and k + Δk, where Δk is very small. For
convenience we choose waves of the form cos(kx − ω(k)t), and for simplicity we assume
that both waves have the same constant amplitude A:

u(x, t) = A cos(kx − ω(k)t) + A cos[(k + Δk)x − ω(k + Δk)t].

Using the trigonometric addition formula for cosines [cos θ + cos φ = 2 cos 1
2 (θ + φ) cos 1

2
(θ − φ)], we obtain

u(x, t) = 2A cos
[(

k +
Δk

2

)
x − ω(k) + ω(k + Δk)

2
t

]
cos

[
Δk

2
x − ω(k + Δk) − ω(k)

2
t

]
.

The sum is a product of two trigonometric functions whose spatial behavior differs. One
wave number is k+ Δk

2 , nearly the same as the original two wave numbers, while the other
has a very small wave number, Δk

2 , corresponding to a very large wavelength. The solution
has two vastly different length scales. To graph the solution (at fixed t), we first graph the
very long sinusoidal wave. Periodically (with a relatively short wavelength) the solution
lies on this long wave and on its negative, as graphed in Fig. 14.2.1. The rapidly oscillating
waves have their amplitude slowly changing in space. The two waves alternatively interfere
constructively or destructively. The long wave acts as a wave envelope of the short
waves. Between each zero of the wave envelope, there appears a group of short waves.
The short waves are nearly the individual dispersive waves with one wave number k + Δk

2
and a phase velocity nearly the phase velocity of an individual dispersive wave:

ω(k + Δk
2 )

k + Δk
2

≈ ω(k) + ω(k + Δk)
2(k + Δk

2 )
≈ ω(k)

k
.

Phase
velocity
= ω/k

Group
velocity
= dω/dk

FIGURE 14.2.1 Group and phase velocity.
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However, the wave envelope or the group of waves moves with an entirely different velocity,
ω(k+Δk)−ω(k)

Δk . In the limit as Δk → 0, this is called the group velocity:

group velocity ≡ dω

dk
. (14.2.9)

In some sense, to be discussed later in more detail, the amplitude of a group of dispersive
waves moves with the group velocity. Energy moves with the group velocity. The individual
waves appear to move through the wave envelope since the phase velocity is usually
different from the group velocity.

EXAMPLE

For the linearized KdV equation, the dispersion relation is (14.2.6), ω = ck +βk3. In this
case

phase velocity =
ω

k
= c + βk2

group velocity =
dω

dk
= c + 3βk2.

It is even possible that the group velocity is in the opposite direction from the phase
velocity. This could occur, for example, if c + 3βk2 > 0, while c + βk2 < 0.

Water waves. For surface water waves, it is known that the dispersion relation is
ω2 = gk tanh kh, where g = 9.8 m/s2 is the gravitational constant and h is the constant
depth of the water. For deep water waves, kh >> 1, so that tanh kh � 1, the dispersion
relation can be approximated by ω2 = gk or ω = ±√

gk. For deep water waves, ω
k = ±√

g
k ,

while the group velocity is dω
dk = ± 1

2

√
g
k . For deep water waves, the group velocity is half

the phase velocity. Most of the waves at a beach are generated from storms far away. Most
of these waves are deep water waves, since the typical depth of the ocean is 5 km. The

group velocity = 1
2

√
gL
2π , since the wave number can be related to the wave length L = 2π

k .
The longer waves have larger group velocities. If a localized storm generates waves of all
wavelengths, the longer waves move faster and will arrive at a distant shoreline sooner.
Thus, the changing frequencies at the shoreline are due to these different arrival times.
(The frequency observed at a beach is meaningful since the frequency of a wave stays
the same as the depth changes slowly.) Thus, at the beach the longer waves with smaller
frequencies (longer periods) will be observed first and will be a precursor to the other
waves (and perhaps the storm system itself coming ashore). The interested reader is
referred to Kinsman (1984).

EXERCISES 14.2

14.2.1. For the following one-dimensional partial differential equations, find the dispersion
relation:

(a) ∂2u

∂t2
= c2 ∂2u

∂x2
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(b) ∂2u

∂t2
= −γ2 ∂4u

∂x4

*(c) i∂u
∂t = ∂2u

∂x2

(d) ∂2u
∂t2

= c2 ∂2u
∂x2 − u

14.2.2. For the following two-dimensional partial differential equations, find the dispersion
relation:
(a) ∂2u

∂t2
= c2(∂2u

∂x2 + ∂2u
∂y2 )

(b) ∂2u
∂t2

= c21
∂2u
∂x2 + c22

∂2u
∂y2

14.2.3. Show that any linear partial differential equation with a one-mode dispersion relation
ω = ω(k) will have real solutions if the dispersion relation is odd, ω(−k) = −ω(k).

14.2.4. Show that any linear partial differential equation (with higher spatial dimensions)
with a one-mode dispersion relation ω = ω(k) will have real solutions if the disper-
sion relation is odd, ω(−k) = −ω(k).

*14.2.5. Water waves satisfy ∂2φ
∂x2 + ∂2φ

∂y2 = 0 for y ≤ 0, where φ is a velocity potential such
that the fluid velocity can be found from u = ∇φ. The boundary condition at a
flat bottom y = −h is ∂φ

∂y = 0 there. For water waves of very small amplitude
(still of great physical interest), the boundary condition at the unknown free surface
y = s(x, t) can be approximated by the two conditions ∂φ

∂t + gs = 0 and ∂s
∂t = ∂φ

∂y ,
applied at y = 0, where g is the gravitational constant. Find the dispersion relation
by assuming φ = A(y)ei(kx−ωt) and s = Bei(kx−ωt).

14.2.6. Determine the dispersion relation for water waves with surface tension by replacing
∂φ
∂t + gs = 0 by∂φ

∂t + gs− γ
ρ

∂2s
∂x2 = 0, where γ is the coefficient of surface tension and

ρ is the constant mass density of water [Whitham, 1999].
*14.2.7. Determine the dispersion relation for deep water waves by solving Exercise 14.2.5

with the condition∂φ
∂y → 0 as y → −∞ instead of ∂φ

∂y = 0 at y = −h.
14.2.8. Derive the dispersion relation for an internal wave assuming a two-fluid model with

density ρ1 for y ≥ 0 and density ρ2 for y ≤ 0. In Exercise 14.2.5 one of the boundary
conditions corresponding to zero pressure is now replaced by the pressure being
continuous: ρ1(∂φ

∂t + gs) = ρ2(∂φ
∂t + gs) at y = 0. The other condition at y = 0 holds

for both fluids. Assume y → ±∞.
14.2.9. Compare phase and group velocities for

(a) ∂u
∂t = β ∂3u

∂x3

(b) i∂u
∂t = ∂2u

∂x2

(c) ∂2u
∂t2

= c2 ∂2u
∂x2 − u. Show that the phase velocity is greater than the sound speed

c, but the group velocity is less than the sound speed c.
14.2.10. Determine the group velocity for water waves satisfying ω2 = gk tanh kh.
14.2.11. Tsunamis (water waves generated by earthquakes) are long waves with kh � 1. Show

that long waves satisfy ω = ±k
√

gh. Approximate the phase (and group velocity)
for tsunamis assuming the ocean is 5 km deep.

14.3 WAVE GUIDES

In wave propagation problems (where physical phenomena are described by the wave
equation or other partial differential equations), local disturbances decay rapidly in three-
dimensional space. In order to communicate efficiently in a three-dimensional world,
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energy must be confined to two or one dimension. Wave guides are introduced for this
purpose for electromagnetic (light) or acoustic (sound) waves. Typical wave guides are
long, hollow tubes with a circular cross section that (as we will show) can be designed to
permit the propagation of electromagnetic or acoustic waves in one dimension. Acoustic
waves solve the three-dimensional wave equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
. (14.3.1)

Electromagnetic waves satisfy a system of wave equations, more complicated because
the different components of the electric and magnetic fields are coupled through various
boundary conditions. However, the mathematical procedures to analyze these electromag-
netic waves are the same as for acoustic waves so that to simplify the presentation we
will restrict our attention to the three-dimensional wave equation (14.3.1).

There are a few new ideas in analyzing wave guides, so we wish to make our math-
ematical analysis as easy to follow as possible. Therefore, we will analyze a wave guide
with a rectangular cross section rather than the more realistic circular cross section (see
Fig. 14.3.1). The analysis of rectangular wave guides (0 < y < L, 0 < z < H) uses the
trigonometric functions of a Fourier series, while circular wave guides require Bessel func-
tions. We leave circular wave guides to the Exercises, but we assure the reader that the
circular problem presents no new problems once the rectangular wave guide is understood.

For electromagnetic waves, different boundary conditions apply for different phe-
nomena. We choose to study the boundary condition that u = 0 on the boundary of the
wave guide. Solutions of the partial differential equation (14.3.1) will be in the form

u = ei(kx−ωt) sin
nπy

L
sin

mπz

H
, n = 1, 2, 3, . . . and m = 1, 2, 3, . . . , (14.3.2)

corresponding to Fourier sine series in y and z due to the boundary conditions. The trav-
eling wave ei(kx−ωt) in the x-direction corresponds to a Fourier transform in x. Solutions
to the initial value problem for (14.3.1) are obtained by summing over n and m and

z = 0 z = H
y = 0

y = L

(a) (b)

xx

x
y

z

FIGURE 14.3.1 (a) Rectangular and (b) circular wave guides.
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integrating over k. Substituting (14.3.2) into (14.3.1) yields the all-natural frequencies of
vibration ω for the wave guide, the dispersion relation

ω2 = c2

[
k2 +

(nπ

L

)2

+
(mπ

H

)2
]

, n = 1, 2, 3, . . . and m = 1, 2, 3, . . . . (14.3.3)

This also follows by separation of variables. It is important to distinguish between the
continuous nature of k and the discrete nature of n and m. Each solution (14.3.2) is called
a mode of the wave guide. There is a doubly infinite set of modes, n = 1, 2, 3, . . . and m =
1, 2, 3, . . . . Each mode (fixed m and n) is dispersive. The group velocity can be obtained
by differentiating (14.3.3) with respect to the wave number k, 2ω dω

dk = c22k, so that

dω

dk
= c2 k

ω
.

For wave guides, the group velocity is in the same direction as the phase velocity ω
k . For

wave guides, waves whose phase travels to the left have energy that travels to the left.
(For other partial differential equations, the phase and the energy do not have to travel
in the same direction.) In Fig. 14.3.2 we graph the frequency as a function of the wave
number for the first few modes. There is a lowest natural frequency, which is called a
cut-off frequency, for reasons to be described. It occurs for n = 1,m = 1 with k = 0
(infinitely long waves):

ωc = c

√(π

L

)2

+
( π

H

)2

. (14.3.4)

The propagation of waves in wave guides occurs by forcing the wave guide in some way
with a forcing frequency ωf . Roughly speaking, resonance is involved. We will show that
if the forcing frequency is greater than the cut-off frequency (ωf > ωc), then some kind
of resonance is possible in which a wave propagates along the wave guide with constant
amplitude. Given a specific forcing frequency ω = ωf , the dispersion relation (14.3.3)
determines the wave number kf (for each n and m) that will propagate:

kf ≡ ±
√

ω2
f

c2
−

[(nπ

L

)2

+
(mπ

H

)2
]
.

k

ω

ωc

n = 1
m = 1

FIGURE 14.3.2 Dispersion relation for various modes of a wave guide.
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The number of waves that can propagate depends on ωf , and from Fig. 14.3.2 the larger
ωf , the more modes that can propagate. We will show that if the forcing frequency is less
than the cut-off frequency (ωf < ωc), then the response of the system is much smaller.

14.3.1 Response to Concentrated Periodic Sources with Frequency ωf

To understand how a wave guide responds to periodic forcing, we consider a periodic
source concentrated inside the wave guide at x = x0, y = y0, z = z0 with forcing fre-
quency ωf :

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
+ e−iωf tδ(x − x0)δ(y − y0)δ(z − z0). (14.3.5)

We assume the same boundary conditions u = 0 on the boundary. Because of the boundary
conditions, we seek a solution as a double Fourier sine series in y and z:

u(x, y, z, t) =
∑∞

n=1

∑∞
m=1

Anm(x, t) sin
nπy

L
sin

mπz

H
. (14.3.6)

The equation that the amplitudes Anm satisfy (dropping subscripts for convenience) is

∂2A

∂t2
= c2 ∂2A

∂x2
− c2

[(nπ

L

)2

+
(mπ

H

)2
]

A

+
4

LH
e−iωf tδ(x − x0) sin

nπy0

L
sin

mπz0

H
. (14.3.7)

The amplitude of each mode satisfies (14.3.7), a one-dimensional wave equation (in the
propagation direction x of the wave guide) with an extra restoring force and a concentrated
periodic source. Since (14.3.7) has simple periodic forcing, we can find a particular solution
of (14.3.7) with the same periodic forcing:

A(x, t) = G(x, x0)e−iωf t, (14.3.8)

where the one-dimensional Green’s function G(x, x0) for each mode (fixed n and m) along
the wave guide satisfies

c2 d2G

dx2
+

{
ω2

f − c2

[(nπ

L

)2

+
(mπ

H

)2
]}

G =
4

LH
δ(x − x0) sin

nπy0

L
sin

mπz0

H
. (14.3.9)

14.3.2 Green’s Function If Mode Propagates

Since the right-hand side of (14.3.9) is a Dirac delta function in space, the differential
equation is solved by using homogeneous solutions for x < x0 and for x > x0 and applying
the jump condition as described in Chapter 8. There are two cases for the homogeneous
solutions, depending on whether the forcing frequency (ωf ) is greater than or less than
the natural frequency of the nmth mode.
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If the forcing frequency is greater than the natural frequency of the particular mode
(n and m fixed), then homogeneous solutions are sin kfx and cos kfx, where kf : is pre-
cisely the wave number that would occur using the dispersion relation (14.3.3) if the

frequency was prescribed to be ωf .: kf ≡
√

ω2
f

c2 − [(nπ
L )2 + (mπ

H )2]. However, the differen-
tial equation in x (14.3.9) does not have any boundary conditions in x. Even if we insist
the solution is bounded in x, all of these solutions are bounded in x. There is no easy,
mathematically precise way to derive a unique Green’s function. Instead we apply a ra-
diation condition (which follows from more advanced mathematics). It is clearer, using
equivalent homogeneous solutions, that e±ikf (x−x0). According to (14.3.8), to obtain the
amplitude of the (n − m)th mode, we must multiply by e−iωf t. Thus, the homogeneous
solutions for the (n − m)th mode correspond to e±ikf (x−x0)−iωf t. These are seen to be
one-dimensional waves whose energy is propagating to the left and right. Since we have
a source at x = x0, the radiation condition asserts that we have waves with energy
moving to the right for x > x0 and waves with energy moving to the left for x < x0. In
this way [if ωf is greater than the natural frequency of the (n − m)th mode], we derive
that the Green’s function

G(x, x0) =
4

2ikfLHc2
sin

nπy0

L
sin

mπz0

H

{
eikf (x−x0) for x > x0

e−ikf (x−x0) for x < x0,

where we have also applied the jump condition following from (14.3.9) that

dG

dx

∣∣∣∣
x=x0+

x=x0−
=

4
LHc2

sin
nπy0

L
sin

mπz0

H
.

Thus, the amplitude of the (m − n)th mode is quite simple and corresponds to a wave
with energy propagating outward in the wave guide (due to the concentrated source) if
the forcing frequency is greater than the natural frequency of that mode. Since ωf is
given, the wave number is discrete. From (14.3.6), the solution in the wave guide consists
of a sum of all electromagnetic or acoustic waves with energy traveling outward with wave
numbers kf corresponding to a given forcing frequency ωf . These solutions are traveling
waves; they do not decay in space or time as they travel away from the source.

14.3.3 Green’s Function If Mode Does Not Propagate

We continue to consider part of the response that generates the (m − n)th mode with
structure sin nπy

L sin mπz
H transverse to the wave guide. The amplitude of this mode due

to the concentrated periodic source satisfies (14.3.9). If the forcing frequency is less
than the natural frequency of the (m − n)th mode, then the homogeneous solutions
of (14.3.9) are not sinusoidal but are growing and decaying exponentials e±βf x, where

βf =
√

(nπ
L )2 + (mπ

H )2 − ω2
f

c2 > 0. We insist our solution is bounded for all x. Thus, the
solution must exponentially decay both for x > x0 and for x < x0. Thus, the Green’s
function (14.3.9) is given by

G(x, x0) =
4

−2βfLHc2
sin

nπy0

L
sin

mπz0

H

{
e−βf (x−x0) for x > x0

eβf (x−x0) for x < x0.
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For example, for x > x0, we have a simple exact elementary solution of the three-
dimensional wave equation, u = Be−βf x sin nπy

L sin mπz
H e−iωf t, called an evanescent

wave.

14.3.4 Design Considerations

Often it is desirable to design a wave guide such that only one wave propagates at a given
frequency. Otherwise the signal is more complicated, composed of two or more waves with
different wavelengths but the same frequency. This can be accomplished easily only for
the mode with the lowest frequency (here n = 1, m = 1). We design the wave guide
such that the desired frequency is slightly greater than the cut-off frequency. For a square
(L = H) wave guide, satisfying the three-dimensional wave equation, ωc = cπ

L

√
2 < ωf .

The next-lowest frequency corresponds to n = 1 and m = 2 (or m = 1 and n = 2):
ω2 = cπ

L

√
5. To guarantee that only one wave of frequency ωf propagates, we insist that

cπ

L

√
2 < ωf <

cπ

L

√
5.

If we assume that the material through which the electromagnetic or acoustic wave travels
is fixed, then we would know c. The lengths of the sides would satisfy

cπ

ωf

√
2 < L <

cπ

ωf

√
5.

EXERCISES 14.3

14.3.1. Consider a two-dimensional wave equation ∂2u
∂t2

= c2(∂2u
∂x2 + ∂2u

∂y2 ) with u = 0 at y = 0
and y = L.

(a) Determine the dispersion relation.

(b) Determine a cut-off frequency.

(c) For what forcing frequencies will only one mode propagate?

14.3.2. Redo Exercise 14.3.1 with the boundary condition ∂u
∂y = 0 at y = 0 and y = L. (Do

not call n = 0 a propagating wave.)
14.3.3. Consider the three-dimensional wave equation ∂2u

∂t2
= c2(∂2u

∂x2 + ∂2u
∂y2 + ∂2u

∂z2 ) inside a
circular conductor (y2 + z2 = a2) with u = 0 at r = a. Only consider circularly
symmetric solutions where u = u(r, x, t) propagating in the x-direction.

(a) Determine the dispersion relation.

(b) Determine a cut-off frequency.

(c) For what forcing frequencies will only one mode propagate?

14.3.4. Redo Exercise 14.3.3, but do not make the assumption that the solution is circularly
symmetric.

14.3.5. Consider the three-dimensional wave equation ∂2u
∂t2

= c2(∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 ) inside

a rectangular conductor with u = 0 at y = 0 and y = L and ∂u
∂z = 0 at z = 0 and

z = H. Answer the same questions as for Exercise 14.3.1.
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14.3.6. Determine the Green’s function corresponding to a propagating mode for

(a) Exercise 14.3.1

(b) Exercise 14.3.2

(c) Exercise 14.3.4

(d) Exercise 14.3.5

14.3.7. Determine the Green’s function when a mode is not propagating for

(a) Exercise 14.3.1

(b) Exercise 14.3.2

(c) Exercise 14.3.4

(d) Exercise 14.3.5

14.3.8. Show that allowable traveling wave modes that can propagate in a rectangular wave
guide of this section have zero amplitude if the concentrated source is located at a
node of that mode.

14.3.9. Using the radiation condition (involving group velocity), determine the Green’s
function for the following partial differential equations:

*(a) ∂u
∂t = ∂3u

∂x3 + e−iωf tδ(x)

(b) ∂u
∂t = −∂3u

∂x3 + e−iωf tδ(x)

(c) i∂u
∂t = ∂2u

∂x2 + e−iωf tδ(x) (analyze both cases ωf > 0 and ωf < 0)

14.4 FIBER OPTICS

In wave guides of the previous section, energy is confined to one dimension by a hollow
metallic conductor. In this section we will show that energy can be confined to one
dimension in a fundamentally different way. Information in the form of electromagnetic
waves can also be propagated in a wave guide made up of a non-conducting (dielectric)
material such as glass. Typically, a fiber consists of a narrow glass core surrounded by a
thicker glass clad with different optical properties with a protective jacket, as shown in
Fig. 14.4.1. To make the problem a little simpler, we assume the cladding is infinitely thick.
We will show that a small glass core can be designed so that most of the light energy
propagates in the thin core. To enable us to obtain interesting results quickly, we will
assume incorrectly that the physics of fiber optics is described by the three-dimensional
wave equation.

FIGURE 14.4.1 Fiber with circular
cross section.

Cladding

Core
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A realistic problem with polar coordinates is analyzed in the Exercises. Here, we
simplify the problem further. We imagine a two-dimensional region with an inner core
(from y = −L to y = L) and an outer core that extends to infinity in both directions
y → ±∞. This geometric region is symmetric around y = 0. We claim that all solutions
can be made either symmetric or antisymmetric around y = 0. We analyze here only one
of these problems, namely, the antisymmetric modes. Thus, we solve a two-dimensional
wave guide for y > 0, subject to the antisymmetry boundary condition:

u = 0 at y = 0. (14.4.1)

We assume the two-dimensional wave equation is valid in each region (as shown in
Fig. 14.4.2) with different propagation constants, so that there is velocity for each re-
gion c1 and c2:

∂2u

∂t2
= c2

2

(
∂2u

∂x2
+

∂2u

∂y2

)
, y > L (14.4.2)

∂2u

∂t2
= c2

1

(
∂2u

∂x2
+

∂2u

∂y2

)
, L > y > 0. (14.4.3)

Conditions depending on the physics occur on the boundary between the two different
media. We assume that

u and
∂u

∂y
are both continuous at y = L (14.4.4)

(often in electromagnetic wave propagation ∂u/∂y is not continuous, but some physical
constant in each region times ∂u/∂y is continuous).

Cladding

Cladding

Inner core

y = L

Antisymmetric modes
(u = 0 at y = 0)

y = 0

y = L
utt = c2

2∇2u

utt = c2
1∇2u

y = −L

FIGURE 14.4.2 Fiber with plane cross section.
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We want waves to propagate in the x-direction, ei(kx−ωt). One of our goals is to
determine the dispersion relation ω = ω(k). The boundary condition forces the horizontal
and time structure of the solution to be the same in both materials:

u = B(y)ei(kx−ωt), y > L (14.4.5)

u = A(y)ei(kx−ωt), L > y > 0. (14.4.6)

Substituting the traveling wave assumption (14.4.5) and (14.4.6) into the wave equations
(14.4.2) and (14.4.3) yields ordinary differential equations for the transverse structure in
each material of the wave guide:

−ω2B = c2
2

(
d2B

dy2
− k2B

)
, y > L,

d2B

dy2
=

(
k2 − ω2

c2
2

)
B

−ω2A = c2
1

(
d2A

dy2
− k2A

)
, L > y > 0,

d2A

dy2
=

(
k2 − ω2

c2
1

)
A.

(14.4.7)

We want to investigate those frequencies for which most of the energy propagates
in the core 0 < y < L. Thus, we assume that ω is such that the transverse behavior is
oscillatory in the core and exponential in the “cladding”:

k2 − ω2

c2
2

> 0, but k2 − ω2

c2
1

< 0. (14.4.8)

From (14.4.8), the frequency must satisfy

c1|k| < |ω| < c2|k|.
To have this kind of wave guide, it is necessary (but not sufficient) that c1 < c2. The wave
speed in the core must be smaller than the wave speed in the cladding. Under conditions
(14.4.8), the solutions of (14.4.7) show that in the core and the cladding

u = B0e
−
√

k2−ω2

c22
y
ei(kx−ωt), y > L

u = A0 sin

√
ω2

c2
1

− k2yei(kx−ωt), L > y > 0,

where A0 and B0 are constants. We have assumed the solution exponentially decays in
the cladding, and we have used the antisymmetric boundary condition (14.4.1) at y = 0.

The dispersion relation is determined by satisfying the two continuity conditions
(14.4.4) at the interface between the two media:

B0e
−
√

k2−ω2

c22
L

= A0 sin

√
ω2

c2
1

− k2L

−B0

√
k2 − ω2

c2
2

e
−
√

k2−ω2

c22
L

= A0

√
ω2

c2
1

− k2 cos

√
ω2

c2
1

− k2L.
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These are two linear homogeneous equations in two unknowns (A0 and B0). By elimination
or the determinant condition, the solution will usually be zero except when

det

⎡
⎢⎢⎢⎢⎢⎣

sin

√
ω2

c2
1

− k2L −e
−
√

k2−ω2

c22
L

√
ω2

c2
1

− k2 cos

√
ω2

c2
1

− k2L

√
k2 − ω2

c2
2

e
−
√

k2−ω2

c22
L

⎤
⎥⎥⎥⎥⎥⎦

= 0.

This condition will be the dispersion relation
√

k2 − ω2

c2
2

sin

√
ω2

c2
1

− k2L +

√
ω2

c2
1

− k2 cos

√
ω2

c2
1

− k2L = 0,

or, equivalently,

tan

√
ω2

c2
1

− k2L = −

√
ω2

c2
1

− k2

√
k2 − ω2

c2
2

. (14.4.9)

Solutions ω of (14.4.9) for a given k are the dispersion relation.
In designing wave guides, we specify ω and determine k from (14.4.9). To determine

solutions of (14.4.9), we graph in Fig. 14.4.3 the ordinary tangent function as a function of
β ≡

√
ω2

c2
1
− k2L and the right-hand side of (14.4.9) also as a function of β. Intersections

are solutions. The qualitative features of the right-hand side are not difficult since the

= ωL
1/2)(1

c1
2

1
c2
2−β

π/2 π 3π/2
β

FIGURE 14.4.3 Graphical solution of traveling wave modes in fiber.
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right-hand side is always negative. In addition, the right-hand side is 0 at β = 0, and
the right-hand side is infinite at k = ω

c2

(
which means β = ωL

√
1
c2
1
− 1

c2
2

)
, as graphed

in Fig. 14.4.3. From the figure, we conclude that if ωL
√

1
c2
1
− 1

c2
2

< π
2 , there are no

intersections, so that there are no modes that propagate in the inner core. This gives a
cut-off frequency ωc =

π
2

L
√

1
c21

− 1
c22

= π
2L

c1c2√
c2
2−c2

1

below which there are no wave guide–type

modes. However, the desirable situation of only one mode propagating in the core of the
fiber occurs if π

2 < ωL
√

1
c2
1
− 1

c2
2

< 3π
2 or π

2L
c1c2√
c2
2−c2

1

< ω < 3π
2L

c1c2√
c2
2−c2

1

. It is interesting

to note that if c2 is only slightly greater than c1, a large range of large frequencies will
support one wave that travels with its energy focused in the core of the fiber. All the
other solutions will not be traveling waves along the fiber.

EXERCISES 14.4

14.4.1. Determine the dispersion relation for materials described by (14.4.2) and (14.4.3) with
the energy primarily in the core:
(a) For symmetric modes
(b) For antisymmetric modes with the boundary conditions at the interface of the

two materials that u and c∂u
∂y are continuous

(c) For antisymmetric modes where the cladding goes to y = H > L with u = 0
there

(d) For symmetric modes where the cladding goes to y = H > L with u = 0 there
14.4.2. For antisymmetric modes, determine the dispersion relation for materials described

by (14.4.2) and (14.4.3) with the energy distributed throughout the core and the
cladding?

14.4.3. Consider antisymmetric modes described by (14.4.2) and (14.4.3). For what frequencies
will waves not propagate in the core and not propagate in the cladding?

14.4.4. Determine the dispersion relation for a fiber with a circular cross section solving the
three-dimensional wave equation with coefficient c1 for r < L and c2 for r > L (with
u and ∂u

∂r continuous at r = L) with energy primarily in the core:
(a) Assuming the solutions are circularly symmetric
(b) Assuming the solutions are not circularly symmetric
(c) Assuming the solutions are circularly symmetric but the cladding stops at r = H,

where u = 0

14.5 GROUP VELOCITY II AND THE METHOD OF STATIONARY PHASE

The solution of linear dispersive partial differential equations with a dispersion relation
ω = ω(k) is of the form

u(x, t) =
∫ ∞

−∞
G(k)ei(kx−ω(k)t)dk =

∫ ∞

−∞
G(k)eit[k x

t −ω(k)]dk. (14.5.1)

The function G(k) is related to the Fourier transform of the initial condition u(x, 0).
Although this integral can be numerically evaluated for fixed x and t, this is a tedious
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process and little would be learned about the partial differential equation. There are some
well-known analytic approximations based on t being large (with x

t fixed), which we now
discuss.

14.5.1 Method of Stationary Phase

We begin by analyzing integrals depending on a parameter t:

I(t) =
∫ b

a

G(k)eitφ(k)dk. (14.5.2)

Later we will specialize our results to linear dispersive waves where the integral is specifi-
cally described by (14.5.1). For large values of t, the integrand in (14.5.2) oscillates quickly,
as shown in Fig. 14.5.1. We expect significant cancellation, so that we expect I(t) to be
small for large t. In the Exercises (by integration by parts) it is shown that

I(t) = O

(
1
t

)
if φ′(k) �= 0.

The formula by integration by parts includes a boundary contribution and an in-
tegral. For infinite domains of integration, often the integral is much smaller since the
boundary contribution vanishes and the integral can be integrated by parts again, making
it smaller. If φ(k) is flat somewhere [φ′(k0) = 0], then there is less cancellation. That part
of the integrand contributes the most. We claim that for large t, the largest contribution
to the integral (14.5.2) comes from points near where the phase is stationary, places k0

where

φ′(k0) = 0. (14.5.3)

k

k = a

k = b

G(k)
G(k)cos[tφ(k)]

FIGURE 14.5.1 Oscillatory integral cancellation (t large).
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We begin by assuming that φ(k) has one stationary point between a and b. We claim that
the largest contribution to the integral comes from a small neighborhood of k0, so that
for large t

I(t) ∼
∫ k0+ε

k0−ε

G(k)eitφ(k)dk,

where ε is small (and to justify this approximation we must let ε vanish in some way as
t → ∞). Furthermore, G(k) can be approximated by G(k0) [if G(k0) �= 0], and φ(k) can
be approximated by its Taylor series around k = k0:

I(t) ∼ G(k0)
∫ k0+ε

k0−ε

eit[φ(k0)+
(k−k0)2

2! φ′′(k0)+
(k−k0)3

3! φ′′′(k0)+···] dk,

using (14.5.3). If we assume that ε is small enough for large t such that ε3t is small, then

the cubic multiplicative term eit
(k−k0)3

3! φ′′′(k0) can be approximated by 1. Thus,

I(t) ∼ G(k0)eitφ(k0)

∫ k0+ε

k0−ε

eit
(k−k0)2

2! φ′′(k0) dk.

The following linear change of variables simplifies the exponent in the integrand:

y = (k − k0)
(

t |φ′′(k0)|
2

)1
2

,

in which case

I(t) ∼
√

2G(k0)eitφ(k0)

(t |φ′′(k0)|)12
∫ +ε

(
t|φ′′(k0)|

2

)1
2

−ε

(
t|φ′′(k0)|

2

)1
2

ei(signφ′′(k0))y
2
dy.

We can choose ε so that εt
1
2 is large as t → ∞. However, recall that ε3t must be small.

(For those of you who are skeptical, we can satisfy both by choosing ε = t−p for any p
between 1

3 and 1
2 .) In this way, the limits approach ±∞ as t → ∞. Thus,

I(t) ∼ 2
√

2G(k0)eitφ(k0)

(t |φ′′(k0)|)12
∫ ∞

0

ei(signφ′′(k0))y
2
dy.

The integral is just a number, albeit an interesting one. It is known that

∫ ∞

0

cos(y2) dy =
∫ ∞

0

sin(y2) dy =
1
2

√
π

2
.

Thus, with a little gamesmanship (algebra based on 1 + i =
√

2ei π
4 ), we can obtain what

is called the
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Method of Stationary Phase

The asymptotic expansion of the integral I(t) =
∫ b

a
G(k)eitφ(k)dk

as t → ∞ is given by

I(t) ∼
(

2π

t |φ′′(k0)|
)1

2

G(k0)eitφ(k0)ei(sign φ′′(k0))
π
4 (14.5.4)

[assuming there is a simple stationary point k0 satisfying φ′(k0) = 0
with φ′′(k0) �= 0)].

The symbol ∼ (read “is asymptotic to”) means that the right-hand side is a good approx-
imation to the left and that approximation improves as t increases. The most important
part of this result is that I(t) is small for large t but much larger than the contribution
for regions without stationary points:

I(t) = O

(
1
t
1
2

)
,

for a simple stationary point [assuming φ′(k0) = 0 with φ′′(k0) �= 0]. The asymptotic
approximation to the integral is just the integrand of the integral evaluated at the sta-
tionary point multiplied by an amplitude factor and a phase factor. In many applications
the phase shift is not particularly important.

If there is more than one stationary point, the approximation to the integral is the
sum of the contribution from each stationary point since the integral can be broken up
into pieces with one stationary point each.

14.5.2 Application to Linear Dispersive Waves

Here, we consider a linear dispersive partial differential equation that has elementary
solutions of the form ei(kx−ωt), where ω satisfies the dispersion relation ω = ω(k). Each
mode of the solution to the initial value problem has the form

u(x, t) =
∫ ∞

−∞
A(k)ei[kx−ω(k)t]dk =

∫ ∞

−∞
A(k)eit[k x

t −ω(k)]dk, (14.5.5)

where A(k) is related to the Fourier transform of the initial condition. Usually this integral
cannot be evaluated explicitly. Numerical methods could be used, but little can be learned
this way concerning the underlying physical processes. However, important approximate
behavior for large x and t can be derived using the method of stationary phase. To use the
method of stationary phase, we assume t is large (and x

t is fixed). For large t, destructive
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ω′(k0) = x/t

x

t

k0 constant

moving with group velocity

FIGURE 14.5.2 Wave number moves with group velocity.

interference occurs and the integral is small. The largest contribution to the integral
(14.5.5) occurs from any point k0 where the phase is stationary:

x

t
= ω′(k0). (14.5.6)

Given x and t, (14.5.6) determines the stationary point k0, as shown in Fig. 14.5.2. Ac-
cording to the method of stationary phase (14.5.4), the following is a good approximation
for large x and t:

u(x, t) ∼ A(k0)
∣∣∣∣ 2π

tω′′(k0)

∣∣∣∣
1
2

ei[k0x−ω(k0)t]e−i(sign ω′′(k0))
π
4 (14.5.7)

since φ′′ = −ω′′, where k0 satisfies (14.5.6). (We ignore in our discussion the usually
constant phase factor.) The solution (14.5.7) looks like an elementary plane traveling
wave with wave number k0 and frequency ω(k0), whose amplitude decays. The solution
is somewhat more complicated as the wave number and frequency are not constant. The
wave number and frequency depend on x and t, satisfying (14.5.6). However, the wave
number and frequency are nearly constant since they change slowly in space and time.
Thus, the solution is said to be a slowly varying dispersive wave. The solution is a
relatively elementary sinusoidal wave with a specific wavelength at any particular place,
but the wavelength changes appreciably only over many wavelengths (see Fig. 14.5.3).

Equation (14.5.6) shows the importance of the group velocity. The wave number is
a function of x and t. To understand how the wave number travels, imagine an initial
condition in which all the wave numbers are simultaneously concentrated near x = 0 at
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FIGURE 14.5.3 Slowly varying dispersive wave.

t = 0. (This is a reasonable assumption since we are approximating the solution for large
values of x, and from that point of view the initial condition is localized near x = 0.)
Equation (14.5.6) shows that at later times each wave number is located at a position
that is understood if the wave number moves at its group velocity ω′(k0). In more
advanced discussions, it can be shown that the energy propagates with the group velocity
(not the phase velocity). Energy is propagated with all wave numbers. If there is a largest
group velocity, then energy cannot travel faster than it. If one is located at a position
such that x

t is greater than the largest group velocity, then there are no stationary points.
If there are no stationary points, the solution (14.5.5) is much smaller than the results
(14.5.7) obtained by the method of stationary phase. It is possible for more than one
point to be stationary (in which case the solution is the sum of terms of the form to be
presented).

The amplitude decays (as t → ∞) because the partial differential equation is disper-
sive. The solution is composed of waves of different wavelengths, and their corresponding
phase velocities are different. The wave then spreads apart (disperses).

EXERCISES 14.5

14.5.1. Consider ut = uxxx.

(a) Solve the initial value problem.

(b) Approximate the solution for large x and t using the method of stationary phase.

(c) From (b), solve for the wave number as a function of x and t.

(d) From (b), graph lines in space-time along which the wave number is constant.

(e) From (b), graph lines in space-time along which the phase is constant (called
phase lines).

14.5.2. Consider ut = iuxx.

(a) Solve the initial value problem.

(b) Approximate the solution for large x and t using the method of stationary phase.

(c) From (b), solve for the wave number as a function of x and t.
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(d) From (b), graph lines in space-time along which the wave number is constant.
(e) From (b), graph lines in space-time along which the phase is constant (called

phase lines).
14.5.3. Consider the dispersion relation ω = 1

3k3 − 1
2k2.

(a) Find a partial differential equation with this dispersion relation.
*(b) Where in space-time are there 0, 1, 2, 3, . . . waves?

14.5.4. Assume (14.5.5) is valid for a dispersive wave. Suppose the maximum of the group
velocity ω′(k) occurs at k = k1. This also corresponds to a rainbow caustic (see
Fig. 14.6.8).
(a) Show that there are two stationary points if x < ω′(k1)t and no stationary points

if x > ω′(k1)t.
(b) State (but do not prove) the order of magnitude of the wave envelope in each

region.
(c) Show thatω′′(k1) = 0 with usually ω′′′(k1) < 0.
(d) Approximate the integral in (14.5.5) by the region near k1 to derive

u(x, t) ∼A(k1)ei(k1x−ω(k1)t)

×
∫ k1+ε

k1−ε

ei[(k−k1)(x−ω′(k1)t)−ω′′′(k1)
3! (k−k1)

3t] dk. (14.5.8)

(e) Introduce instead the integration variable s, k−k1 = s

(
t|ω′′′(k1)|

2 )
1
3
, and show that

the following integral is important:
∫∞
−∞ ei(ps+ 1

3 s3) ds, where p = x−ω′(k1)t

(
t|ω′′′(k1)|

2 )
1
3
.

(f) The Airy function is defined as Ai(z) = 1
π

∫∞
0

cos(zs + 1
3s3) ds. Do not show

that it satisfies the ordinary differential equation Ai′′(z) = z Ai(z). Express the
wave solution in terms of this Airy function.

(g) As z → ±∞, the Airy function has the following well-known properties:

Ai(z) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
π
|z|− 1

4 sin
(

2
3
|z| 32 +

π

4

)
z → −∞

1
2
√

π
z−

1
4 exp

(
−2

3
z

3
2

)
z → +∞.

(14.5.9)

Using this, show that the solution decays at the appropriate rates in each region.
14.5.5. By integrating by parts, show that I(t) given by (14.5.2) is O( 1

t ) if φ′(k) 
= 0.
14.5.6. Approximate (for large t) I(t) given by (14.5.2) if there is one stationary point k0

with φ′(k0) = 0 and φ′′(k0) = 0 but φ′′′(k0) 
= 0. Do not prove your result. What is
the order of magnitude for large t?

14.5.7. The coefficients of Fourier sine and cosine series can be observed to decay for large
n. If f(x) is continuous [and f ′(x) is piecewise smooth], show by integrating by parts
(twice) that for large n

(a) 2
L

∫ L
0

f(x) cos nπx
L dx = O( 1

n2 )

(b) 2
L

∫ L
0

f(x) sin nπx
L dx = O( 1

n2 ) if f(0) = f(L) = 0
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14.5.8. Consider utt = uxx − u.
(a) Solve the initial value problem.
(b) Approximate the solution for large x and large t using the method of stationary

phase.
(c) Assume the group velocity is zero at k = 0, the group velocity steadily increases,

and the group velocity approaches 1 as k → ∞. How many wave numbers are
there as a function of x and t?

14.6 SLOWLY VARYING DISPERSIVE WAVES (GROUP VELOCITY AND CAUSTICS)

14.6.1 Approximate Solutions of Dispersive Partial Differential Equations

In this section we will show how to obtain approximate solutions to dispersive partial
differential equations. Some of these results follow from the method of stationary phase
(and generalizations). However, we attempt here to develop material independent of the
section on the method of stationary phase.

Linear dispersive waves have solutions of the form u(x, t) = Aei(kx−ωt), where the
dispersion relation ω = ω(k) is known from the partial differential equation. Arbitrary
initial conditions can be satisfied by expressions such as

u(x, t) =
∫ ∞

−∞
A(k)ei(kx−ω(k)t) dk,

which are often too complicated to be directly useful. We wish to consider classes of so-
lutions that are slightly more complicated than an elementary traveling wave u(x, t) =
Aei(kx−ωt). For these elementary traveling waves, the wave is purely periodic with a
constant amplitude A and a constant O(1) wave number (wavelength). We want to imag-
ine that over very long distances and very large times, there are solutions in which the
amplitude and the wave number might change. For example, this might be due to ini-
tial conditions in which the wave number and/or amplitude are not constant but slowly
change over long distances. We introduce a slowly varying wave train with a slowly
varying amplitude A(x, t) and a phase θ(x, t):

u(x, t) = A(x, t)eiθ(x,t). (14.6.1)

The wave number and frequency will be slowly varying, and they are defined in the
manner that would be used if the wave were a simple traveling wave:

slowly varying wave number k ≡ ∂θ

∂x
(14.6.2)

slowly varying frequency ω ≡ −∂θ

∂t
. (14.6.3)
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From (14.6.2) and (14.6.3), we derive a conservation law,

∂k

∂t
+

∂ω

∂x
= 0, (14.6.4)

which is called conservation of waves (see Exercises 14.6.3 and 14.6.4 for further dis-
cussion of this). We claim that with uniform media, the frequency ω will satisfy the usual
dispersion relation

ω = ω(k), (14.6.5)

even though the solution (14.6.1) is not an elementary traveling wave upon which (14.6.5)
was derived. This can be derived using perturbation methods, but the derivation involves
more technical details than we have time to discuss here.

If the dispersion relation (14.6.5) is substituted into conservation of waves (14.6.4),
we determine a first-order quasi-linear (really nonlinear) partial differential equation that
the wave number k(x, t) must satisfy:

∂k

∂t
+

dω

dk

∂k

∂x
= 0. (14.6.6)

The initial value problem can be solved using the method of characteristics (Section 12.6):

if
dx

dt
=

dω

dk
, then

dk

dt
= 0, (14.6.7)

showing that the wave number stays constant moving with the group velocity. The char-
acteristics are straight lines but not parallel in general (see Fig. 14.6.1), since the char-
acteristic velocity, the group velocity, dω

dk , depends on k. The coupled system of ordinary

x(0) = ξ

x =

t

x

dω
dk

(k(ξ,0))t +ξ

FIGURE 14.6.1 Characteristics for propagation of dispersive waves.
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differential equations is easy to solve. If the characteristic (moving observer) is parame-
terized by its initial position ξ, x(0) = ξ, then the solution of (14.6.7) is

k(x, t) = k(ξ, 0), (14.6.8)

where the equation for the straight-line characteristics follows from (14.6.7):

x =
dω

dk
(k(ξ, 0))t + ξ. (14.6.9)

Given x and t, we can try to solve for ξ from (14.6.9), so that ξ is considered a function
of x and t. Once k(x, t) is obtained, the phase can be determined by integrating (14.6.2)
and (14.6.3).

The dispersion relation ω = ω(k) can be interpreted using (14.6.2) and (14.6.3) as
a nonlinear partial differential equation for the unknown phase:

−∂θ

∂t
= ω

(
∂θ

∂x

)
, (14.6.10)

called the Hamilton–Jacobi equation. In the specific case in which the original partial
differential equation is the two-dimensional wave equation, then (14.6.10) is called the
eikonal equation. However, the simplest way to solve (14.6.10) for θ is to use the method
of characteristics as preceding (see also Section 12.7):

dθ

dt
= θt + θx

dx

dt
= −ω + k

dω

dk
.

Since ω and dω
dk depend only on k, and k is a constant moving with the group velocity,

θ(x, t) =
(
−ω + k

dω

dk

)
t + θ(ξ, 0),

where θ(ξ, 0) is the initial phase, which should be given. The phase can be expressed in
a more physically intuitive way using (14.6.9):

θ(x, t) = k(x − ξ) − ωt + θ(ξ, 0).

14.6.2 Formation of a Caustic

We consider a linear partial differential equation with a dispersion relation ω = ω(k). We
assume a slowly varying wave exists of the form u(x, t) = A(x, t)eiθ(x,t) with k ≡ ∂θ

∂x and
ω ≡ −∂θ

∂t . The wave number propagates according to the nonlinear partial differential
equation

∂k

∂t
+ ω′(k)

∂k

∂x
= 0, (14.6.11)

which approximates the original linear partial differential equation. Equation (14.6.11)
can be solved by the method of characteristics, but here we consider problems in which
the characteristics intersect (see Fig. 14.6.2). We assume the initial condition is such that
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k is a smooth function of x. We will show that initial conditions can be chosen so that the
wave number evolves from being single valued to being triple valued. Using the method
of characteristics [dk

dt = 0 if dx
dt = ω′(k)] yields

k(x, t) = k(ξ, 0), (14.6.12)

where ξ is the location of the characteristic at t = 0 and where we assume that the initial
distribution for k is given. The equation for the characteristics is

x = ω′(k(ξ, 0))t + ξ = F (ξ)t + ξ, (14.6.13)

where we introduce F (ξ) as the velocity of the characteristics. The characteristics are
straight lines, and some of them are graphed in Fig. 14.6.2. Characteristics intersect if
characteristics to the right move more slowly, F ′(ξ) < 0, as shown in Fig. 14.6.2.

Neighboring characteristics intersect (and are visible as the boundary between
lighter and darker regions) at a curve called a caustic. In Fig. 14.6.3 we show the caustic
generated by a computer-drawn plot of a family of straight-line characteristics satisfying
(14.6.13). [It can be shown that the amplitude A(x, t) predicted by the appropriate slow
variation or geometrical optics or ray theory becomes infinite on a caustic.] This is the
same focusing process for light waves, which is why it is called a caustic (caustic means
“capable of burning,” as the location where light can be focused to burn material). Light

x=F(ξ)t + ξ

ξγ
x

FIGURE 14.6.2 Intersection of characteristics.

(xc,tc)

ξc

x

FIGURE 14.6.3 Caustic formed from characteristics.
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FIGURE 14.6.4 Caustic formed by reflected rays of nonparabolic reflector.

waves can focus and form a caustic as they bounce off a nonparabolic reflector (using the
angle of incidence equaling the angle of reflection as shown in Fig. 14.6.4). If you look
carefully, you will see three reflected rays reaching each point within the caustic, while
only one reflected ray reaches points outside the caustic.

This caustic [envelope of a family of curves (14.6.13)] can be obtained analytically
by simultaneously solving (14.6.13) with the derivative of (14.6.13) with respect to ξ (as
described in Section 12.6):

0 = F ′(ξ)t + 1 or, equivalently, t =
−1

F ′(ξ)
, (14.6.14)

which determines the time at which the caustic occurs (for a given characteristic). We
must assume the initial conditions are such that F ′(ξ) < 0 in order for the time to be
positive. (The spatial position of the caustic is x = − F (ξ)

F ′(ξ) + ξ, giving the parametric
representation of the caustic.) It can be shown that ∂k

∂x is infinite at the caustic, so that
the caustic is the location of the turning points of the triple-valued wave-number curve.
Two solutions coalesce on the caustic.

The caustic first forms at

tc =
−1

F ′(ξc)
and xc = F (ξc)tc + ξc, (14.6.15)

where ξc is the position where F ′(ξ) has a negative minimum (see Fig. 14.6.5), so that

F ′′(ξc) = 0 (14.6.16)

with
F ′′′(ξc) > 0. (14.6.17)
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dF/dξγ
ξc ξγ

FIGURE 14.6.5 Minimum (first intersection).

We will show that the caustic is cusp shaped in the neighborhood of its formation.
We will assume that x is near xc and t is near tc so that the parameter ξ is near ξc. The
solution can be determined in terms of ξ:

k(x, t) = k(ξ, 0) = k(ξc, 0) + kξ(ξc, 0)(ξ − ξc) + . . . . (14.6.18)

Thus, the wave number is approximately a constant, and the spatial and temporal depen-
dence of the wave number are approximately proportional to ξ − ξc. To determine how
ξ − ξc depends on x and t (near the first focusing time of the caustic), we approximate
the characteristics (14.6.13) for ξ near ξc. Using a Taylor series for F (ξ), we obtain

x = F (ξc)t + ξc + (ξ − ξc)[F ′(ξc)t + 1] +
(ξ − ξc)2

2!
F ′′(ξc)t +

(ξ − ξc)3

3!
F ′′′(ξc)t + . . . .

(14.6.19)
If we note that t = tc + t − tc, then using (14.6.15) and (14.6.16), (14.6.19) becomes

x − xc − F (ξc)(t − tc) = (ξ − ξc)F ′(ξc)(t − tc) +
(ξ − ξc)3

3!
F ′′′(ξc)tc, (14.6.20)

where in the last expression we have approximated t by tc since t − tc is small. Equa-
tion (14.6.20) shows the importance of F (ξc), the (group) velocity of the critical charac-
teristic.

Equation (14.6.20) is a cubic equation. Each root corresponds to a characteristic
for a given x and t. To understand the cubic, we introduce X = x − xc − F (ξc)(t − tc),
T = t− tc, and s = ξ − ξc. We recall F ′(ξc) < 0 and F ′′′(ξc) > 0, so that for convenience
we choose F ′(ξc) = −1 and F ′′′(ξc)tc = 2, so that X is an elementary cubic function of s,

X = −sT +
1
3
s3. (14.6.21)

For elementary graphing for fixed T , we need dX
ds = −T + s2. We see that there are no

critical points if T < 0 (t < tc), so that X(s) is graphed on its side in Fig. 14.6.6 and
s(X) is single valued corresponding to one root for t < tc. However, if T > 0 (t > tc),
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FIGURE 14.6.6 Smooth solution
becoming triple valued.

Caustic

Caustic

t > tct = tct < tc

ξγ

x−xc−F(ξc)(t−tc)

FIGURE 14.6.7 Cusped caustic.

x = F(ξc)t + ξc

(xc,tc)

ξc

two elementary critical points, as seen in Fig. 14.6.6, are located at s = ±T 1/2, which
corresponds to the caustic. For t > tc, there are three real roots within the caustic region
shown in Figs. 14.6.6 and 14.6.7. In this scaling the caustic satisfies 0 = −T +s2, so that
s = ±T 1/2. Using (14.6.21), the caustic is located at X = s(−T + 1

3s2) = − 2
3sT = ∓ 2

3T 3/2

and is cusp shaped (see Fig. 14.6.7) because dx
dt = F (ξc) at t = 0.

The characteristics form a caustic. Reflected waves from a nonparabolic reflector
form this kind of caustic, as shown in Fig. 14.6.3. Near the caustic, the approximations
that yielded the nonlinear partial differential equations (14.6.11) are no longer valid.
Instead, near the caustic we must return to the original linear partial differential equation
and obtain a different solution. The triple-valued solution predicted by the method of
characteristics is meaningful and corresponds to the linear superposition of three slowly
varying waves. We explain this in the next sections. (When characteristics intersect and
form a caustic, the energy focuses, and the amplitude increases dramatically, though not
to infinity, as predicted by slow variation theory, ray theory, or geometrical optics.)

The curved portions of caustics (away from the cusp) are described in Exercises
14.6.5 and 14.7.1. In Exercise 14.5.4 and in Section 14.7.2, we describe a straight-line
caustic that separates a region with two rays from a region with no rays. This is the
explanation of the rainbow. Parallel light rays from the sun (see Fig. 14.6.8) pass through
water droplets (using Snell’s law of refraction) before reflecting internally. There is a
minimum angle at which the intensity is large. The wave speed of light in the water
depends a little bit on the wavelength (color) so that the minimum angle is slightly
different for the different colors. This gives rise to the common rainbow.
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FIGURE 14.6.8 Caustic formed by
refraction and reflection through
water droplet. Rays

of the sun

Caustic

Water droplet

EXERCISES 14.6

*14.6.1. The solution (14.5.7) obtained by the method of stationary phase has the phase
θ(x, t) = k0x−ω(k0)t, where k0 is a function of x and t given by the formula (14.5.6)
for a stationary point. Determine the k and ω defined by (14.6.2) and (14.6.3).

14.6.2. In a uniform rectangular wave guide, we have learned that for a particular mode,
ω2 = c2[k2 + (nπ

L )2 + (mπ
H )2]. Let us consider a slowly varying rectangular wave

guide in a uniform media, where the width L = L(x) varies slowly in the propagation
direction. We claim that

ω2 = c2

[
k2 +

(
nπ

L(x)

)2

+
(

mπ

H

)2
]

.

What partial differential equation (do not solve it) does the wave number k(x, t)
satisfy?

14.6.3. Assume the number of waves is conserved. k
2π is the number of waves per unit

spatial distance, and ω
2π is the number of waves per unit time. Consider the number

of waves between two fixed points x = a and x = b.

(a) Explain why the number of waves between x = a and x = b is 1
2π

∫ b
a

k(x, t) dx.

(b) If the number of waves is conserved, show that d
dt

∫ b
a

k(x, t) dx = ω(a, t)−ω(b, t).

(c) From part (b), derive that ∂k
∂t + ∂ω

∂x = 0.

14.6.4. Reconsider Exercise 14.6.3:

(a) Why does d
dt

∫ x2(t)
x1(t)

k(x, t) dx = 0 if the endpoints are not constant but move
with the phase velocity?

(b) By differentiating the integral in part (a), derive ∂k
∂t + ∂ω

∂x = 0.
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14.6.5. Curved caustic. We wish to analyze any one small portion of the curved caustic
(see Fig. 14.6.3) away from the cusp. Characteristics of a dispersive wave problem
(14.6.11) satisfy (14.6.12) and (14.6.13). At each point (xc, tc) in space and time
along the curved caustic, there is a specific characteristic ξc. We analyze the region
near this point, and we will determine the region in which there are two and zero
characteristics. The caustic will satisfy (14.6.14), so that (14.6.15) is also valid.
However, we will assume F ′′(ξc)
= 0. Assuming that ξ is near ξc, it follows that
(14.6.18) is still valid.

(a) If x is near xc and t is near tc, derive that the following quadratic is valid
instead of the cubic (14.6.20):

x − xc − F (ξc)(t − tc) = (ξ − ξc)F ′(ξc)(t − tc) +
(ξ − ξc)2

2!
F ′′(ξc)tc. (14.6.22)

(b) Using (14.6.22), in what region are there two and zero characteristics? Show
that your answer depends on the sign of F ′′(ξc).

14.6.6. Consider ∂u
∂t = β(x, t)∂3u

∂x3 , where β(x, t) is a slowly varying coefficient. We assume
the dispersion relation is ω = β(x, t)k3.

(a) If β(x, t) is constant, determine k and the characteristics.
(b) If β(x, t) is constant, determine the phase θ along characteristics.
(c) If β(x, t) is not constant, what differential equations determine k and the char-

acteristics?
(d) If β(x, t) is not constant, what differential equations determine θ along charac-

teristics?
(e) If β(t) only, determine the characteristics and θ.

14.7 WAVE ENVELOPE EQUATIONS (CONCENTRATED WAVE NUMBER)

For linear dispersive partial differential equations, plane traveling waves of the form
u(x, t) = Aei(kx−ω(k)t) exist with constant wave number k. The most general situations
are somewhat difficult to analyze since they involve the superposition of all wave numbers
using a Fourier transform. A greater understanding can be achieved by considering some
important special situations.

In Section 14.6 we assume that the wave number is slowly varying. Here, instead
we assume most of the energy is concentrated in one wave number k0. We assume the
solution of the original partial differential equation is in the form

u(x, t) = A(x, t)ei[k0x−ω(k0)t]. (14.7.1)

We assume the amplitude A(x, t) is not constant but varies slowly in space and time.
The amplitude A(x, t) acts as an wave envelope of the traveling wave, and our goal is
to determine a partial differential equation that describes the propagation of that wave
envelope A(x, t). Some ways in which energy can be concentrated into one wave number
are as follows:
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1. The initial conditions can be chosen with one wave number but with the amplitude
slowly varying as in (14.7.1).

2. It is known that arbitrary initial conditions with all wave numbers disperse (spread
out). The wave number is known to move with the group velocity. If one is investigating
the solution in some special region of space and time, then in that region most of the
energy may be concentrated in one wave number.

3. Rays along which the wave number is constant may focus and form a caustic. In
a caustic energy is focused in one wave number.

We will determine partial differential equations that the wave envelope A(x, t) will
always satisfy for any dispersive wave equation. We first note that since u(x, t) has the
exact solution u(x, t) = ei[kx−ω(k)t] for all k, it follows that the partial differential equation
for A(x, t) must have the very special but simple exact solution

A(x, t) = ei[(k−k0)x−(ω(k)−ω(k0))t].

We note that ∂A
∂x = i(k − k0)A and ∂A

∂t = −i(ω(k) − ω(k0))A. In this way we have
shown that first- and higher-derivative operators acting on the amplitude correspond to
elementary multiplications:

−i
∂

∂x
⇐⇒ k − k0 (14.7.2)

i
∂

∂t
⇐⇒ ω(k) − ω(k0). (14.7.3)

The partial differential equation for the wave amplitude follows from the dispersion
relation ω = ω(k). Since we assume energy is focused in the wave number k0, we can use
a Taylor series for the dispersion relation around the special wave number k0:

ω(k) = ω(k0) + ω′(k0)(k − k0) +
ω′′(k0)

2!
(k − k0)2 +

ω′′′(k0)
3!

(k − k0)3 + . . . . (14.7.4)

Moving ω(k0) to the left-hand side, using the operator relations, and dividing by i yields
the wave envelope equation in all cases:

∂A

∂t
+ ω′(k0)

∂A

∂x
= i

ω′′(k0)
2!

∂2A

∂x2
+

ω′′′(k0)
3!

∂3A

∂x3
+ . . . . (14.7.5)

This shows the importance of the group velocity cg = ω′(k0). These results can also be
obtained by perturbation methods.

14.7.1 Schrödinger Equation

To truncate the Taylor expansion (14.7.4) in a useful and accurate way, we must as-
sume that k − k0 is small. From (14.7.2) it follows that the spatial derivatives of the
wave envelope must be small. This corresponds to the assumptions of a slowly varying
wave amplitude alluded to earlier. The wave amplitude must not change much over one
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wavelength 2π
k0

for the wave envelope equation (14.7.5) to be valid. Each spatial derivative
of the amplitude in (14.7.5) is smaller. Thus, if ω′′(k0) �= 0, we are justified in using the
Schrödinger equation,

∂A

∂t
+ ω′(k0)

∂A

∂x
= i

ω′′(k0)
2!

∂2A

∂x2
, (14.7.6)

the approximation that results from ignoring the third and higher derivatives. Anytime
energy is focused in one wave number (called the nearly monochromatic approxima-
tion), u(x, t) ≈ A(x, t)ei(k0x−ω(k0)t), the wave amplitude or wave envelope satisfies the
Schrödinger equation (14.7.6). The Schrödinger equation is a linear partial differential
equation with plane wave solutions A = ei(αx−Ω(α)t) so that its dispersion relation is
quadratic: Ω(α) = ω′(k0)α + ω′′(k0)

2! α2. The solution of the Schrödinger equation corre-
sponding to an infinite domain can be obtained by Fourier transforms:

A(x, t) =
∫ ∞

−∞
G(α)ei[α(x−ω′(k0)t)−ω′′(k0)

2! α2t] dα. (14.7.7)

In this nearly monochromatic approximation, the dispersive term is small. However,
the dispersion cannot be ignored if we wish to understand the behavior for relatively long
times. Perhaps the relations between space and time are better understood, making a
change of variables to a coordinate system moving with the group velocity:

X = x − ω′(k0)t (14.7.8)
T = t. (14.7.9)

In this moving coordinate system the Schrödinger equation has the following simpler form:

∂A

∂T
− ω′(k0)

∂A

∂X
+ ω′(k0)

∂A

∂X
=

∂A

∂T
= i

ω′′(k0)
2!

∂2A

∂X2
.

In this way, small spatial derivatives are balanced by small time derivatives (in the moving
coordinate system).

Caustics. Away from caustics, slowly varying linear dispersive waves can be an-
alyzed approximately by the method of characteristics. However, this approximation
fails near the caustic, where characteristics focus the energy. Near a caustic the solu-
tion is more complicated. In the region near this caustic (x near xc and t near tc), the
wave energy is focused in one wave number [the critical value kc = k(ξc, 0)] so that
u(x, t) ≈ A(x, t)ei(kc(x−xc)−ω(kc)(t−tc)), and the wave amplitude A(x, t) approximately
solves the linear Schrödinger equation whose solutions are given by (14.7.7). We may
replace x by x − xc and t by t − tc in (14.7.7), though this corresponds to a different
arbitrary function G(α). We wish to determine the complex function G(α) = R(α)eiΦ(α),
which agrees with the known caustic behavior:

A(x, t) =
∫ ∞

−∞
R(α)eiΦ(α)ei[α(x−xc−ω′(kc)(t−tc))−ω′′(kc)

2! α2(t−tc)] dα. (14.7.10)
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This exact solution can be approximated by evaluating the phase at the value of α at
which the phase is stationary:

x − xc − ω′(kc)(t − tc) − ω′′(kc)α(t − tc) + Φ′(α) = 0. (14.7.11)

By comparing (14.7.11) with the fundamental cubic equation (14.6.20), first we see that
α = kξ(ξ − ξc), since from (14.6.13), F ′ = ω′′kξ. It follows that Φ′(α) = −α3

3!
F ′′′(ξc)

k3
ξ

tc,

so that Φ(α) = −α4

4!
F ′′′(ξc)

k3
ξ

tc. In this way, we derive an integral representation of the
solution in the neighborhood of a cusped caustic:

A(x, t) =
∫ ∞

−∞
e

i[α(x−xc−ω′(kc)(t−tc))−ω′′(kc)
2! α2(t−tc)−α4

4!
F ′′′(ξc)

k3
ξ

tc]
dα, (14.7.12)

where for simplicity we have taken R(α) = 1. Equation (14.7.12) is known as the Pearcey
integral, though Brillouin seems to have been the first to study it. Stationary points for
(14.7.12) satisfy the cubic (14.7.11), so that asymptotically the number of oscillatory
phases varies from one outside the cusped caustic to three inside.

14.7.2 Linearized Korteweg–de Vries Equation

Usually, the wave envelope satisfies the Schrödinger equation (14.7.6). However, if wave
energy is focused in one wave number and that wave number corresponds to a maximum or
minimum of the group velocity ω′(k), then ω′′(k0) = 0. Usually, when the group velocity is
at an extrema, then the wave envelope is approximated by the linearized Korteweg–de
Vries equation:

∂A

∂t
+ ω′(k0)

∂A

∂x
=

ω′′′(k0)
3!

∂3A

∂x3
, (14.7.13)

which follows directly from (14.7.5). The dispersive term is small, but over large times its
effects must be kept. [The transformation (14.7.8) and (14.7.9) corresponding to moving
with the group velocity could be used.]

Long waves. Partial differential equations arising from physical problems usually
have odd dispersion relations ω(−k) = −ω(k) so that the phase velocities corresponding
to k and −k are the same. For that reason, here we assume the dispersion relation is odd.
Long waves are waves with wavelengths much longer than any other length scale in the
problem. For long waves, the wave number k will be small. The approximate dispersion
relation for long waves can be obtained from the Taylor series of the dispersion relation:

ω(k) = ω(0) + ω′(0)k +
ω′′(0)

2!
k2 +

ω′′′(0)
3!

k3 + · · · = ω′(0)k +
ω′′′(0)

3!
k3 + · · · , (14.7.14)
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since for odd dispersion relations ω(0) = 0 and ω′′(0) = 0. Thus, because of the usual
operator assumptions (14.2.7) and (14.2.8) (k = −i ∂

∂x and ω = i ∂
∂t ), long waves should

satisfy the linearized Korteweg–de Vries (linearized KdV) equation:

∂u

∂t
+ ω′(0)

∂u

∂x
=

ω′′′(0)
3!

∂3u

∂x3
.

This can be understood in another way. If energy is focused in one wave (long wave)
k0 = 0, then the wave amplitude equation follows from (14.7.5):

∂A

∂t
+ ω′(0)

∂A

∂x
=

ω′′′(0)
3!

∂3A

∂x3
+ . . . .

Here the solution and the wave envelope are the same, satisfying the same partial differ-
ential equation because for nearly monochromatic waves

u(x, t) = A(x, t)ei(k0x−ω(k0)t) = A(x, t)

since k0 = 0 and ω(0) = 0. The group velocity for long waves (with an odd dispersion
relation) is obtained by differentiating (14.7.14), ω′(k) = ω′(0)+ ω′′′(0)

2 k2 + . . . . Thus, the
group velocity has a minimum or maximum for long waves (k = 0). Thus, the first or last
waves often observed will be long waves. To understand how long waves propagate, we just
study the linearized Korteweg–de Vries equation. Since it is dispersive, the amplitudes
observed should be very small (as shown by the method of stationary phase). Large-
amplitude long dispersive waves must have an alternate explanation (see the next section).

Maximum group velocity and rainbow caustic. We briefly investigate the
solution that occurs (from the method of stationary phase) when the group velocity
ω′(k) has a maximum. Thus, ω′′(k1) = 0 , in which case the linearized KdV (14.7.13)
governs. Specifically, following from (14.5.8) in Exercise 14.5.4, the wave envelope satisfies

A(x, t) =
∫ ∞

−∞
ei[(k−k1)(x−ω′(k1)t)− (k−k1)3

3! ω′′′(k1)t] dk.

From this it can be seen that A(x, t) satisfies the linearized KdV (14.7.13), as should
follow theoretically from (14.7.14). This is perhaps easier to see using a coordinate system
moving with the group velocity, in which case very

AT = −AXXX

[since ω′′′(k1) < 0]. Further analysis in Exercise 14.5.4 shows that

A(x, t) =
1

t1/3
Ai

(
x − ω′(k1)t

t1/3

)
,

where Ai is an Airy function. Thus, A(x, t) should be a similarity solution of the
linearized KdV. It will be instructive to show the form taken by similarity solutions of
the linearized KdV:

A(X, t) =
1

t1/3
f

(
X

t1/3

)
=

1
t1/3

f(ξ),



Section 14.7 Wave Envelope Equations (Concentrated Wave Number) 647

where the similarity variable ξ is given by

ξ =
X

t1/3
.

Derivatives with respect to X are straightforward ( ∂
∂X = ∂

∂ξ
∂ξ
∂X = 1

t1/3
∂
∂ξ ), but we must

be more careful with t-derivatives. The linearized KdV (AT = −AXXX) becomes

−1
3

1
t4/3

f +
1

t1/3
f ′

(
−1

3
ξ

t

)
= − 1

t1/3

1
t
f ′′′,

which, after multiplying by t4/3 , becomes a third-order ordinary differential equation
(− 1

3f − 1
3f ′ξ = −f ′′′) that can be integrated to − 1

3fξ = −f ′′ + c. The constant c = 0
(since we want f → 0 as ξ → +∞), and hence the similarity solution of the linearized
KdV is related to Airy’s equation:

f ′′ − 1
3
fξ = 0.

Here, regions with two and zero characteristics are caused by a maximum group velocity.
Regions with two and zero characteristics are separated by a straight-line characteristic
(caustic) x = ω′(k1)t with ω′′(k1) = 0. This is the same situation that occurs for the
characteristics for a rainbow (see Fig. 14.6.8), where there is a maximum group velocity.

14.7.3 Nonlinear Dispersive Waves: Korteweg–de Vries Equation

These amplitude equations, the Schrödinger equation (14.7.6) or the linearized Korteweg–
de Vries equation (14.7.13), balance small spatial and temporal changes (especially when
viewed from moving coordinate systems). Often in physical problems small nonlinear
terms have been neglected, and they are often just as important as the small dispersive
terms. The specific nonlinear terms can be derived for each specific application using
multiple-scale singular perturbation methods (which are beyond the scope of this text).
In different physical problems, the nonlinear terms frequently have similar forms (since
they are derived as small but finite amplitude expansions much like Taylor series approx-
imations for the amplitude).

For long waves, the usual nonlinearity that occurs yields the Korteweg–de Vries
(KdV) equation:

∂u

∂t
+ [ω′(0) + βu]

∂u

∂x
=

ω′′′(0)
3!

∂3u

∂x3
. (14.7.15)

If for the moment we ignore the dispersive term ∂3u

∂x3 , then (14.7.15) is a quasi-linear
partial differential equation solvable by the method of characteristics. The characteristic
velocity, ω′(0)+βu, can be thought of as the linearization around u = 0 (small-amplitude
approximation) of some unknown characteristic velocity f(u). Taller waves move faster
or slower (depending on β) and smooth initial conditions steepen (and eventually break).
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Some significant effort (usually using perturbation methods corresponding to long waves)
is required to derive the coefficient β from the equations of motion for a specific physical
problem. Korteweg and de Vries first derived (14.7.15) in 1895 when trying to understand
unusually persistent surface water waves observed in canals.

The KdV equation is an interesting model nonlinear partial differential equation
because two different physical effects are present. There is an expectation that solutions
of the KdV equation decay due to the dispersive term. However, the nonlinear term causes
waves to steepen. By moving with the linearized group velocity and scaling x and u, we
obtain the standard form of the KdV equation:

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0. (14.7.16)

We limit our discussion here to elementary traveling wave solutions of the KdV equation:

u(x, t) = f(ξ), where ξ = x − ct. (14.7.17)

When (14.7.17) is substituted into (14.7.16), a third-order ordinary differential equation
arises:

f ′′′ − cf ′ + 6ff ′ = 0.

This can be integrated to yield a nonlinear second-order ordinary differential equation (of
the type corresponding to F = ma in mechanics, where a = f ′′):

f ′′ + 3f2 − cf − A = 0, (14.7.18)

where A is a constant. Multiplying by f ′ and integrating with respect to ξ yields an
equation corresponding to conservation of energy [if (14.7.18) were Newton’s law]:

1
2
(f ′)2 + f3 − 1

2
cf2 − Af = E, (14.7.19)

where E is the constant total energy [and 1
2 (f ′)2 represents kinetic energy and f3 −

1
2cf2−Af potential energy]. In Fig. 14.7.1 we graph the potential energy as a function of
f . Critical points for the potential occur if 3f2−cf −A = 0, corresponding to equilibrium
solutions of (14.7.18). The discriminant of this quadratic (b2−4ac) is c2+12A. If c2+12A ≤
0, then the potential energy is monotonically increasing, and it can be shown that the
traveling waves are not bounded. Thus, we assume c2 + 12A > 0, in which case two
equilibria exist. Constant-energy lines (in the potential energy sketch) enable us to draw
the phase portrait in Fig. 14.7.1. We note that one equilibria is a saddle point (fmin) and
the other is a center.

Periodic traveling waves (cnoidal waves). Most of the bounded traveling
waves are periodic. Some analysis is performed in the Exercises.
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Potential

V = f3 − 0.5 f2 − Afc

(c2 + 12A > 0)

fmin
f

fmax

FIGURE 14.7.1 Potential and phase portrait for traveling wave for the KdV equation.

Solitary traveling waves. If the constant energy E is just right, then the trav-
eling wave has an infinite period. The cubic potential energy has two coincident roots at
fmin and a larger single root at fmax > fmin, so that

1
2
(f ′)2 = −(f − fmax)(f − fmin)2. (14.7.20)

The phase portrait shows that solution has a single maximum at f = fmax and tails off
exponentially to f = fmin. It is graphed in Fig. 14.7.2 and is called a solitary wave. This
permanent traveling wave exists when the steepening effects of the nonlinearity balance
the dispersive term. An expression for the wave speed can be obtained by comparing the
quadratic terms in (14.7.19) and (14.7.20): 1

2c = fmax + 2fmin = 3fmin + (fmax − fmin).
The simplest example is when fmin = 0, requiring fmax > 0, in which case

1
2
c = fmax. (14.7.21)

These solitary waves occur only for fmax > 0, as sketched in Fig. 14.7.2. Thus, taller
waves move faster (to the right). There is an analytic formula for these solitary waves. If
fmin = 0, it can be shown that

u(x, t) =
1
2
c sech2

[
1
2
√

c(x − ct)
]

, (14.7.22)

where c > 0 is given by (14.7.21). This shows that the taller waves (which move faster)
are more sharply peaked.
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fmax > fmin

c = 6fmin + 2(fmax − fmin)

ξ = x − ct

fmax

fmin

FIGURE 14.7.2 Solitary wave for the KdV equation.

14.7.4 Solitons and Inverse Scattering

For many other nonlinear partial differential equations, solitary waves exist. For most
nonlinear dispersive wave equations, no additional analytic results are known since the
equations are nonlinear. Modern numerical experiments usually show that solitary waves
of different velocities interact in a somewhat complex way. However, for the KdV equa-
tion (14.7.16) Zabusky and Kruskal [1965] showed that different solitary waves interact
like particles (preserving their amplitude exactly after interaction) and hence are called
solitons. These solitons have become quite important because it has been shown that
solutions of this form develop even if the initial conditions are not in this shape and
that this property also holds for many other nonlinear partial differential equations that
describe other physically interesting nonlinear dispersive waves. In attempting to under-
stand these numerical experiments, Gardner, Greene, Kruskal, and Miura [1967] showed
that the nonlinear KdV equation could be related to a scattering problem associated
with the Schrodinger eigenvalue problem (see Section 10.7) and the time evolution of
the scattering problem. Lax [1968] generalized this to two linear nonconstant differential
operators L and M that depend on an unknown function u(x, t):

Lφ = λφ (14.7.23)
∂φ

∂t
= Mφ. (14.7.24)

The operator L describes the spectral (scattering) problem with φ the usual eigenfunction,
and M describes how the eigenfunctions evolve in time. The consistency of these equations
[solving both for L∂φ

∂t by taking the time derivative of (14.7.23)] yields L∂φ
∂t = LMφ =

−∂L
∂t φ+λ∂φ

∂t + dλ
dt φ = −∂L

∂t φ+MLφ+ dλ
dt φ, where (14.7.23) and (14.7.24) have been used.

The spectral parameter is constant (dλ
dt = 0) if and only if an equation known as

Lax’s equation holds:
∂L

∂t
+ LM − ML = 0, (14.7.25)

which in practice will be a nonlinear partial differential equation for u(x, t) since the
commutator LM − ML of two nonconstant operators is usually nonzero.
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In an exercise, it is shown that for the specific operators

L = − ∂2

∂x2
+ u (14.7.26)

M = γ − ∂u

∂x
+ 6u

∂

∂x
− 4

∂3

∂x3
, (14.7.27)

where γ is a constant, Lax’s equation is a version of the Korteweg–de Vries equation:

∂u

∂t
− 6u

∂u

∂x
+

∂3u

∂x3
= 0. (14.7.28)

Inverse scattering transform. The initial value problem for the KdV equation
on the infinite interval −∞ < x < ∞ is solved by utilizing the difficult relationships
between the nonlinear KdV equation and the linear scattering problem for −∞ < x < ∞.
The eigenfunction φ satisfies the Schrodinger eigenvalue problem

∂2φ

∂x2
+ (λ − u(x, t))φ = 0. (14.7.29)

Here time is an unusual parameter. In the brief Section 10.7 on inverse scattering, we
claimed that the potential u(x, t) for fixed t can be reconstructed from the scattering
data at that fixed t:

u(x, t) = −2
∂

∂x
K(x, x, t), (14.7.30)

using the unique solution of the Gelfand–Levitan–Marchenko integral equation:

K(x, y, t) + F (x + y, t) +
∫ ∞

x

K(x, z, t)F (y + z, t) dz = 0, for y > x. (14.7.31)

Here the nonhomogeneous term and the kernel are related to the inverse Fourier transform
of the reflection coefficient R(k, t) (defined in Section 10.7), including a contribution from
the bound states (discrete eigenvalues λ = −κ2

n):

F (s, t) =
N∑

n=1

c2
n(t)e−κns +

1
2π

∫ ∞

−∞
R(k, t)eiksdk. (14.7.32)
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Here the scattering data depend on a parameter, time. Unfortunately, we do not know
the time-dependent scattering data since only u(x, 0) is given as the initial condition for
the KdV equation. Thus, at least the initial scattering data can be determined, and we
assume those data are known. If the initial condition has discrete eigenvalues, then these
discrete eigenvalues for the time evolution u(x, t) of the KdV equation miraculously do
not change in time because we have shown that dλ

dt = 0 for the KdV equation. However,
for the KdV equation it has also been shown that the time-dependent scattering data can
be determined easily from the initial scattering data using only (14.7.29) with (14.7.26)
and (14.7.27):

R(k, t) = R(k, 0)e8ik3t (14.7.33)

cn(t) = cn(0)e4κ3
nt. (14.7.34)

This method is called the inverse scattering transform. The initial condition is trans-
formed to the scattering data, and the scattering data satisfy a simple time-dependent
linear ordinary differential equation whose solution appears in (14.7.33) and (14.7.34).
The time-dependent solution is then obtained by an inverse scattering procedure.

It can be shown that the solution of the inverse scattering transform corresponding
to a initial condition that is a reflectionless potential with one discrete eigenvalue yields the
solitary wave solution discussed earlier. However, solutions can be obtained corresponding
to initial conditions that are reflectionless potentials with two or more discrete eigenvalues.
The corresponding solutions to the KdV equation are interacting, strongly nonlinear
solitary waves with exact interaction properties first observed numerically by Zabusky and
Kruskal [1965]. We have been very brief. Ablowitz, Kaup, Newell, and Segur developed
a somewhat simpler procedure, equivalent to (14.7.23) and (14.7.24), which is described
(along with many other things) in the books by Ablowitz and Segur [1981] and Ablowitz
and Clarkson [1991].

14.7.5 Nonlinear Schrödinger Equation

When wave energy is focused in one wave number, u(x, t) = A(x, t)ei(k0x−ω(k0)t), the wave
amplitude of a linear dispersive wave can be approximated by (14.7.6). Small temporal
changes are balanced by small spatial changes. If the underlying physical equations are
nonlinear, small but finite amplitude effects can be developed using perturbation methods.
In many situations, the nonlinearity and spatial dispersion balance in the following way.
The amplitude is said to solve the (cubic) nonlinear Schrödinger equation (NLS):

∂A

∂t
+ ω′(k0)

∂A

∂x
= i

ω′′(k0)
2!

∂2A

∂x2
+ iβ |A|2 A. (14.7.35)

To understand the nonlinear aspects of this equation, first note that there is a solution
with the wave amplitude constant in space: u(x, t) = A(t)ei(k0x−ω(k0)t) if ∂A

∂t = iβ |A|2 A.
To solve this differential equation, we let A = reiθ, in which case by equating the real
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and imaginary parts, we obtain dθ
dt = βr2 and dr

dt = 0. Thus, A(t) = r0e
iβr2

0t , which
corresponds to u(x, t) = r0e

iβr2
0t ei(k0x−ω(k0)t). Here the frequency ω(k0, |A|) = ω(k0) −

β|A|2 depends on the amplitude r0 = |A|. It is fairly typical that the frequency depends
on the amplitude of the wave in this way as an approximation for small wave amplitudes.
When spatial dependence is included, the nonlinear dispersive wave equation, (14.7.35),
results.

We will show that the NLS has solutions that correspond to an oscillatory traveling
wave with a wave envelope shaped like a solitary wave. We let

A(x, t) = r(x, t)ei(θ(x,t)) = r(x, t)ei(αx−Ωt),

where r(x, t) is real and represents the amplitude of an elementary traveling wave with
wave number α and frequency Ω. The wave number α is arbitrary, but we will deter-
mine the frequency Ω corresponding to this solitary wave envelope. Since Ax = (rx +
iαr)ei(αx−Ωt), it follows that Axx = (rxx + 2iαrx − α2r)ei(αx−Ωt). The real part of the
NLS (14.7.35) yields

rt + [ω′(k0) + αω′′(k0)]rx = 0. (14.7.36)

The method of characteristics can be applied to (14.7.36), and it shows that

r(x, t) = r(x − ct),

where the wave speed of the solitary wave envelope satisfies

c = ω′(k0) + αω′′(k0). (14.7.37)

This shows the magnitude of the complex amplitude stays constant, moving with the
group velocity. Since α represents a small perturbed wave number, this is just an approx-
imation of the group velocity at the wave number k0 +α. The imaginary part of the NLS
(14.7.35) yields

−Ωr + ω′(k0)αr =
ω′′(k0)

2!
(rxx − α2r) + βr3.

We can rewrite this as the nonlinear ordinary differential equation

0 = rxx + δr + γr3, (14.7.38)

where γ = 2β
ω′′(k0)

and δ = −α2 + 2Ω−ω′(k0)α
ω′′(k0)

. Multiplying (14.7.38) by rx and integrating
yields the energy equation:

1
2
(rx)2 +

δ

2
r2 +

γ

4
r4 = E = 0.

We have chosen E = 0 in order to look for a wave envelope with the property that r → 0
as x → ∞. The potential δ

2r2 + γ
4 r4 is graphed in Fig. 14.7.3. From the potential, the
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FIGURE 14.7.3 Potential and
phase portrait for NLS.

Potential

V = 0.5δr2 + 0.25γr4

(δ < 0,γ > 0)

rmax

phase portrait (rx as a function of r) is obtained (Fig. 14.7.3), which shows that a solitary
wave (Fig. 14.7.4) exists only if γ > 0 [corresponding to β having the same sign as ω′′(k0)]
and δ < 0. Here the nonlinearity prevents the wave packet from dispersing.

The maximum value of r, the amplitude of the solitary wave envelope, is given by
r2
max = −2 δ

γ = − δ
β ω′′(k0). This equation can be used to determine the frequency Ω if

rmax is known:

Ω = ω′(k0)α +
ω′′(k0)

2
α2 − β

2
r2
max. (14.7.39)

In addition to the frequency caused by the perturbed wave number, there is an
amplitude dependence of the frequency. It can be shown that this wave envelope soliton
with r → 0 as x → ∞ for the NLS (14.7.35) is given by

A(x, t) = rmax sech
[√

β

ω′′(k0)
rmax(x − ct)

]
ei(αx−Ωt),

where Ω is given by (14.7.39) and c given by (14.7.37). (Note that α and rmax are arbi-
trary.) The real part of A(x, t) is sketched in Fig. 14.7.4. Note that the phase velocity
of the individual waves is different from the velocity of the wave envelope. These wave
envelope solitary waves are known as wave envelope solitons because of surprising
exact nonlinear interaction properties.

FIGURE 14.7.4 Solitary wave for
the amplitude is used to obtain
wave envelope soliton for the
NLS equation.

Solitary wave
for NLS

Envelope soliton
from NLS

rmax
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EXERCISES 14.7

14.7.1. Curved caustic. Near a curved caustic the wave number is approximately a con-
stant k0 = kc = k(ξc, 0) so that the Schrödinger equation (14.7.6) applies.

(a) From (14.7.7) [assuming R(α) = 1], using the fundamental quadratic (14.6.22),
derive that

A(x, t) =
∫ ∞

−∞
e
i[α(x−xc−ω′(kc)(t−tc))−ω′′(kc)

2! α2(t−tc)−α3
3!

F ′′(ξc)
k2

ξ

tc]
dα.

To make the algebra easier for (b)–(d), consider

B(z, τ) =
∫ ∞

−∞
ei[βz+β2τ+β3/3] dβ.

(b) Show that B satisfies a dimensionless form of the Schrödinger equation Bτ =
−iBzz.

(c) Show that the quadratic term in the integrand can be transformed away by
letting β = γ − τ , in which case

B(z, τ) = ei(−τz+ 2
3 τ3)

∫ ∞

−∞
ei[γ(z−τ2)+γ3/3] dγ.

(d) This describes the intensity of light inside the caustic. The remaining integral
is an Airy function, usually defined as

Ai(x) =
1
2π

∫ ∞

−∞
ei[γx+γ3/3] dγ.

Express B(z, τ) in terms of an Airy function. [It can be shown that this Airy
function satisfies w′′ − xw = 0. The asymptotic expansion for large arguments
of the Airy function can be used to show that the curved caustic (related to the
Airy function) separates a region with two rays from a region with zero rays.]

(e) Determine A(x, t) in terms of the Airy function.

14.7.2. The dispersion relation for water waves is ω2 = gk tanh kh, where g is the usual
gravitational acceleration and h is the constant depth. Determine the coefficients of
the linearized KdV equation that is valid for long waves.

14.7.3. Sketch a phase portrait that shows that periodic and solitary nonlinear waves exist:

(a) Modified KdV equation: ∂u
∂t + 6u2 ∂u

∂x + ∂3u
∂x3 = 0

(b) Klein–Gordon equation: ∂2u
∂t2

− ∂2u
∂x2 + u − u3 = 0

(c) Sine-Gordon equation: ∂2u
∂t2

− ∂2u
∂x2 + sin u = 0

14.7.4. Determine an integral formula for the period of periodic solutions of the KdV equa-
tion. Determine the wave speed in terms of the three roots of the cubic equation.
Periodic solutions cannot be represented in terms of sinusoidal functions. Instead
it can be shown that the solution is related to the Jacobian elliptic function cn
and hence are called cnoidal waves. If you wish a project, study Jacobian elliptic
functions in Abramowitz and Stegun [1974] or elsewhere.
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14.7.5. Derive (using integral tables) the formula in the text for the solitary wave for

(a) the KdV equation

(b) the nonlinear Schrodinger equation

(c) derive solution for the modified KdV (see Exercise 14.7.3a)

14.7.6. Using differentiation formulas and identities for hyperbolic functions, verify the for-
mula in the text for the solitary wave for

(a) the KdV equation

(b) the nonlinear Schrödinger equation

14.7.7. If the eigenfunction satisfies the Schrödinger equation but the time evolution of the
eigenfunction satisfies ∂φ

∂t = P ∂φ
∂x + Qφ, show that the equations are consistent only

if Q = − 1
2

∂P
∂x and u(x, t) satisfies the partial differential equation ut = − 1

2Pxxx +
2Px(u − λ) + Pux.

*14.7.8. Refer to Exercise 14.7.7. If P = A + Bλ+ Cλ2 with C constant, determine A and B
and a nonlinear partial differential equation for u(x, t).

14.7.9. Show that Lax’s equation is the Korteweg–de Vries equation for operators L and M
given by (14.7.26) and (14.7.27). [Hint: Compute the compatibility of (14.7.23) and
(14.7.24) directly using (14.7.26) and (14.7.27).]

14.7.10. Using the definitions of the reflection and transmission coefficients in Section 10.7,
derive (14.7.33). In doing so, you should also derive that γ = 4ik3 in (14.7.27). The
bound states are more complicated.

14.7.11. Assume the initial condition for the KdV equation is a reflectionless potential
R(k, 0) = 0 with one discrete eigenvalue. Solve the Gelfand–Levitan–Marchenko
integral equation (it is separable) and show that u(x, t) is the solitary (soliton) wave
described earlier.

14.7.12. Generalize Exercise 14.7.11 to the case of a reflectionless potential with two discrete
eigenvalues. The integral equation is still separable. The solution represents the
interaction of two solitons.

14.8 STABILITY AND INSTABILITY

14.8.1 Brief Ordinary Differential Equations and Bifurcation Theory

Equilibrium solutions of partial differential equations may be stable or unstable. We will
briefly develop these ideas first for ordinary differential equations, which are more fully
discussed in many recent books on dynamical systems, such as the ones by Glendinning
[1994], Strogatz [1994], and Verhulst [1997].

First-order ordinary differential equations. The concepts of equilibrium and
stability are perhaps simplest in the case of autonomous first-order ordinary differential
equations:

dx

dt
= f(x). (14.8.1)
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An equilibrium solution x0 is a solution of (14.8.1) independent of time:

0 = f(x0). (14.8.2)

An equilibrium solution is stable if all nearby initial conditions stay near the equilib-
rium. If there exists a nearby initial condition for which the solution goes away from the
equilibrium, we say the equilibrium is unstable.

To analyze whether x0 is stable or unstable requires considering only the differential
equation (14.8.1) near x0. We approximate the differential equation using a Taylor series
of f(x) around x0 [the linearization or tangent line approximation for f(x) near x0]:

dx

dt
= f(x) = f(x0) + (x − x0)f ′(x0) + . . . .

We usually can ignore the nonlinear terms since we assume x is near x0. Since x0 is an
equilibrium, f(x0) = 0, and the differential equation (14.8.1) can be approximated by a
linear differential equation (with constant coefficients):

dx

dt
= (x − x0)f ′(x0). (14.8.3)

The solution of (14.8.3) is straightforward: x − x0 = cef ′(x0)t. We conclude that

the equilibrium x0 is stable if f ′(x0) < 0
the equilibrium x0 is unstable if f ′(x0) > 0.

If f ′(x0) = 0, the neglected nonlinear terms are needed to determine the stability of x0.

EXAMPLE OF BIFURCATION POINT

We wish to study how solutions of differential equations depend on a parameter R. As a
specific elementary example, we begin by considering

dx

dt
= R − x2. (14.8.4)

For an equilibrium, x2 = R. If R > 0, there are two equilibria, x = ±√
R. These two

equilibria coalesce to x = 0 when R = 0. If R < 0, there are no equilibria. R = 0 is called
a bifurcation point because the number of equilibria changes there. In other examples,
different kinds of bifurcation occur. Sometimes a bifurcation diagram (as in Fig. 14.8.1)
is drawn in which the equilibria are graphed as a function of the parameter R. The stability
of the equilibria can be determined using the linearization (see the Exercises). However,
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R

x

FIGURE 14.8.1 One-dimensional phase portrait and bifurcation diagram for an example
of a saddle-node bifurcation.

in the figure we illustrate the determination of stability using a one-dimensional phase
portrait. We fix the parameter R (drawing a vertical line). If dx

dt > 0, we introduce
upward arrows (and downward arrows if dx

dt < 0). In this example (14.8.4), if x is large
and positive, then dx

dt < 0 (and the sign of dx
dt changes each time an equilibria is reached

since in this example the roots are simple roots). Thus we see in this example that the
upper branch (x > 0) is stable and the lower branch (x < 0) is unstable.

Definition of a bifurcation point. First-order differential equations that de-
pend on a parameter R may be written:

dx

dt
= f(x,R). (14.8.5)

First, we just study equilibrium solutions x0:

0 = f(x0, R).

Generally, the equilibrium x0 will depend on the parameter R. From our previous discus-
sion, x0 will be stable if fx(x0, R) < 0 and unstable if fx(x0, R) > 0. (In specific examples
the stability can be determined using one-dimensional phase portraits, as in the previous
example.)

We wish to investigate how one specific equilibrium changes as the parameter
changes a small amount. We assume there is a special value of the parameter of interest
Rc and we know an equilibrium corresponding to that value xc, so that

0 = f(xc, Rc).

If R is near Rc, we assume that x0 will be near xc. Thus, we use a Taylor series for a
function of two variables:

0 = f(x0, R) = f(xc, Rc) + (x0 − xc)fx(xc, Rc) + (R − Rc)fR(xc, Rc) + . . . .
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As an approximation, for R near Rc we conclude that usually the equilibrium is changed
by a small amount:

x0 − xc = −fR

fx
(R − Rc) + . . . . (14.8.6)

This is guaranteed to occur if fx �= 0. Thus, the number of equilibria cannot change if
fx �= 0. Equation (14.8.6) is the tangent line approximation to the bifurcation diagram.

The only interesting things can happen when fx = 0. A point (x,R) is called a
bifurcation point if

f(x,R) = 0 at the same time fx(x,R) = 0. (14.8.7)

The number of equilibria can change only at a bifurcation point. Also, the stability of an
equilibria may change at a bifurcation point since an equilibrium is stable if fx < 0 and
unstable if fx > 0.

We reconsider the previous example (14.8.4), in which 0 = f(x,R) = R − x2. The
bifurcation point can be determined by insisting that simultaneously fx = −2x = 0. We
see the bifurcation point is x = 0, in which case R = 0.

Saddle-node bifurcation. In this subsection, we will show that the type of bi-
furcation illustrated by (14.8.4) is typical. We consider the first-order problem depending
on the parameter R:

dx

dt
= f(x,R). (14.8.8)

We assume that we have found a bifurcation point (xc, Rc) satisfying

f(xc, Rc) = 0 and fx(xc, Rc) = 0. (14.8.9)

Since we are interested in solving the differential equation if R is near Rc, we will, in
addition, assume that x is near xc. Thus, we approximate the differential equation using
the Taylor series of f(x,R) around (xc, Rc):

dx

dt
= f(x,R)

= f(xc, Rc) + (x − xc)fx(xc, Rc) + (R − Rc)fR(xc, Rc)

+
1
2
(x − xc)2fxx(xc, Rc) + . . . .

This simplifies since (xc, Rc) is a bifurcation point satisfying (14.8.9):

dx

dt
= (R − Rc)fR(xc, Rc) +

1
2
(x − xc)2fxx(xc, Rc) + . . . . (14.8.10)
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It can be shown that the other terms in the Taylor series are much smaller, such as terms
containing (R − Rc)2, (x − xc)(R − Rc), and (x − xc)3 because we will be assuming R
is near Rc and x is near xc with (x − xc)2 = O(R − Rc). Thus, we will be justified (as
an approximation valid near the bifurcation point) in ignoring these other higher-order
terms. The bifurcation diagram near (xc, Rc) will be approximately parabolic (similar to
Fig. 14.8.1), which is derived by considering the equilibrium associated with the simple
approximate differential equation (14.8.10). Here, the bifurcation point is (xc, Rc). The
parabola can open to the left or right depending on the signs of fR and fxx. For this
to be a good approximation, we assume fR(xc, Rc) �= 0 and fxx(xc, Rc) �= 0. Whenever
fR(xc, Rc) �= 0 and fxx(xc, Rc) �= 0, the bifurcation point is a turning point, which
is also known as a saddle-node bifurcation (for complicated reasons discussed briefly
later). The stability of the equilibria can be determined in each case by a one-dimensional
phase portrait. One branch (depending again on the signs of the Taylor coefficients) of
equilibrium will be stable and the other branch unstable.

Other bifurcations. Other kinds of bifurcations (see the Exercises) such as
transcritical (exchange of stabilities) and pitchfork will occur if fR(xc, Rc) = 0 or if
fxx(xc, Rc) = 0.

Systems of first-order differential equations. Consider a system of first-order
autonomous differential equations:

d
⇀
x

dt
=

⇀

f (⇀
x) =

[
f(⇀

x)
g(⇀

x)

]
. (14.8.11)

Equilibria ⇀
x0 satisfy

⇀

f ( ⇀
x0) = 0. To analyze the stability of an equilibrium, we consider ⇀

x
near ⇀

x0, and thus use a Taylor series. The displacement from equilibrium is introduced,
⇀
y = ⇀

x − ⇀
x0, and we obtain the linear system instead of (14.8.3) involving the Jacobian

matrix J evaluated at the equilibrium

d
⇀
y

dt
= J

⇀
y, (14.8.12)

where

J =
[

J11 J12

J21 J22

]
=

[ ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]∣∣∣∣∣
⇀
x=

⇀
x0.

(14.8.13)
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To solve the linear systems of differential equation, we substitute ⇀
y(t) = eλt⇀

v , in which
case

J
⇀
v = λ

⇀
v or (J − λI)⇀

v = 0, (14.8.14)

so that λ are the eigenvalues of the Jacobian matrix J and ⇀
v the corresponding

eigenvectors. For nontrivial solutions, the eigenvalues are obtained from the determinant
condition

0 = det(J − λI)= det
[

J11 − λ J12

J21 J22 − λ

]
, (14.8.15)

so that

λ2 − Tλ + D = (λ − λ1)(λ − λ2) = λ2 − (λ1 + λ2)λ + λ1λ2 = 0, (14.8.16)

where the trace J = T = J11 + J22 and determinant J = D = J11J22 − J12J21

have been introduced and where the quadratic has been factored with two roots λ1 and
λ2, which are the two eigenvalues. By comparing the two forms of the quadratic, the
product of the eigenvalues equals the determinant and the sum of the eigenvalues equals
the trace:

∏
λi = detJ (14.8.17)

∑
λi = trJ. (14.8.18)

This is also valid for n by n matrices.

Stability for systems. To be unstable, the displacement from the equilibrium
must grow for some initial condition. To be stable, the displacement should stay near the
equilibrium for all initial conditions. Since solutions are proportional to eλt and λ may
be real or complex:

The equilibrium is unstable if one eigenvalue has Re(λ) > 0.

The equilibrium is stable if all eigenvalues satisfy Re(λ) < 0.
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Stable
spiral

Unstable
spiral

(Unstable) saddle

Unstable
node

Stable
node

trace

det 4 det = (trace)2

FIGURE 14.8.2 Stability (and phase portrait) of 2 by 2 matrices in terms of the determinant
and trace.

Furthermore, the trace and determinant are particularly useful to analyze the stability of
the equilibrium for 2 by 2 matrices, as summarized in Fig. 14.8.2. The well-known result
(as we will explain) is that the equilibrium is stable if and only if both tr J < 0
and det J > 0. This is particularly useful when we study the Turing bifurcation. For
real eigenvalues, the change from stable to unstable can occur only with one eigenvalue
negative and other eigenvalue zero (changing from negative to positive), so that

∏
λi =

det J = 0 and
∑

λi = tr J < 0, which corresponds to a saddle-node (described later),
transcritical, or pitchfork bifurcation. For complex eigenvalues, the change from stable
to unstable can occur only with imaginary eigenvalues so that

∏
λi = det J > 0 and∑

λi = tr J = 0, which corresponds to the Hopf bifurcation described later. In detail,

0 = det(J−λI) = det
[

J11 − λ J12

J21 J22 − λ

]
= λ2−Tλ+D = 0, and thus λ = T±√

T 2−4D
2 . If

the eigenvalues are real (4D < T 2), the stable case (both λ negative whose phase portrait
is a stable node) has

∏
λi = det J > 0 and

∑
λi = tr J < 0, the unstable node (both

λ positive) has
∏

λi = det J > 0 and
∑

λi = tr J > 0, and the unstable saddle point
(one λ positive and the other negative) has

∏
λi = det J < 0 with positive or negative

trace. If the eigenvalues are complex (4D > T 2),
∏

λi = |λ|2 = det J > 0, and unstable
spirals have

∑
λi = tr J > 0 while stable spirals have

∑
λi = tr J < 0.

Bifurcation theory for systems. Suppose there is a first-order system that
depends on a parameter R:

d
⇀
x

dt
=

⇀

f (⇀
x,R). (14.8.19)

An equilibrium solution satisfies
⇀

f ( ⇀
x0, R) = 0 so that, in general, the equilibrium ⇀

x0

depends on the parameter R. Suppose, at some value of the parameter R = Rc = 0,
the equilibrium is known to be at ⇀

xc =
⇀

0, for convenience, so that
⇀

f (
⇀

0 , 0) =
⇀

0. We
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first ask how the equilibrium changes as we vary R near 0. Using a Taylor series, we
have 0 = R

⇀

f R + J
⇀
x0, where J is again the Jacobian matrix (evaluated at the known

equilibrium). We can solve for the equilibrium ⇀
x0 uniquely, ⇀

x0 = −RJ−1
⇀

f R (known
as the implicit function theorem), except if J−1 doesn’t exist. The case in which J−1

doesn’t exist corresponds to det J = 0, so that one eigenvalue (λ = 0) of the Jacobian
matrix is zero. We analyze 2 by 2 systems, and we assume the second eigenvalue is
negative. It can be shown that the two-dimensional system is reduced to a one-dimensional
system because the solutions exponentially decay in one direction. The solutions decay to
the other direction (called the center manifold), on which a first-order equation such as
(14.8.8) is valid. We assume a turning point occurs, but transcritical and pitchfork
bifurcations are also possible. Each branch of the turning point bifurcation for our first-
order differential equation represents an equilibrium, one stable (a negative growth rate)
and one unstable (with a positive growth rate). For the two-dimensional problem, the
stable branch of equilibria has two negative growth rates or eigenvalues (one hidden)
and is called a stable node. An unstable equilibrium has one visible positive growth
rate (and one hidden negative growth rate). The unstable equilibrium is called a saddle
point (growing in one direction, decaying in the other direction). Thus, the turning point
bifurcation is called a saddle-node bifurcation because the stable branch is a branch
of (stable) nodes and the unstable branch is a branch of saddle points. The two branches
coalesce at the bifurcation point. The importance of (14.8.8) is that it describes bifurcation
phenomena even for higher-order systems, provided one eigenvalue is zero and the others
have negative real parts.

Hopf bifurcation. For systems, at some value of the parameter Rh, called a
Hopf bifurcation, it is possible that an equilibrium exists with the eigenvalues of the
Jacobian matrix purely imaginary λ = ±iω, corresponding to a frequency ω. According
to the implicit function theorem, the equilibrium will exist for R near Rh since λ �= 0. In
general the equilibrium changes from being stable to unstable since the growth rate (eλt)
is complex (λ = s ± iω), with the real part changing from negative (s < 0) to positive
(s > 0). The careful nonlinear analysis of Hopf bifurcation is too involved and would divert
us from our main purposes. Hopf bifurcation is similar to the stability problem for the
partial differential equation, which we will discuss shortly. We give only a crude analysis
of the nonlinearity in Section 14.8.6, to which we refer the reader. There are two cases
of Hopf bifurcation (see Fig. 14.8.5). In one case, called supercritical Hopf bifurcation, a
stable periodic solution exists (R > Rh) only when the equilibrium is unstable, and for
subcritical Hopf bifurcation, an unstable periodic solution exists (R < Rh) only when the
equilibrium is stable.

14.8.2 Elementary Example of a Stable Equilibrium for a Partial Differential Equation

In this book, all the equilibrium solutions of partial differential equations that have been
considered so far are stable. For example, consider the heat equation

∂u

∂t
= K

∂2u

∂x2
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with prescribed nonzero temperature at two ends, u(0, t) = A and u(L, t) = B. The
equilibrium solution is ue(x) = A + (B − A) x

L . To determine whether the equilibrium is
stable, we consider initial conditions that are near to this: u(x, 0) = ue(x) + g(x), where
g(x) is small. We let

u(x, t) = ue(x) + v(x, t),

where v(x, t) is the displacement from the equilibrium. We determine that v(x, t)
satisfies

∂v

∂t
= K

∂2v

∂x2
, with v(0, t) = 0, v(L, t) = 0, and v(x, 0) = g(x).

Using our earlier results, we have

v(x, t) =
∞∑

n=1

an sin
nπx

L
e−K( nπ

L )2t,

where an can be determined from the initial conditions (but we do not need it here).
Since v(x, t) → 0 as t → ∞, it follows that u(x, t) → ue(x) as t → ∞. We say that the
equilibrium solution ue(x) is (asymptotically) stable.

If u(x, t) − ue(x) is bounded as t → ∞ [and we assume initially u is near ue(x)],
then we say the equilibrium solution is stable. If for some initial condition [near ue(x)]
u(x, t) − ue(x) is large as t → ∞, then we say ue(x) is unstable.

In general, the displacement from an equilibrium satisfies a linear partial differential
equation that will have an infinite number of degrees of freedom (modes). If one or more
of the modes exponentially increases in time, the equilibrium will be unstable. To be
stable, all the modes must have time dependence that exponentially decays or oscillates.

14.8.3 Typical Unstable Equilibrium for a Partial Differential Equation
and Pattern Formation

One physical example of an instability is the heating from below of a fluid between two
parallel plates. The interest for this type of problem is generated from meteorology in
which much of the interesting weather phenomena are due to the sun’s heating at the
surface of the earth. For the simpler situation of heating the bottom plate, it can be
observed in simple experiments that if the bottom plate is gently heated, then a simple
state of conductive heat flow arises [solving the usual heat equation, so that the conduc-
tive state satisfies u = u(0) + y

L (u(L) − u(0)) if the bottom is y = 0 and the top y = L].
Heating the bottom of the fluid causes the bottom portions of the fluid to be less dense
than the top. Due to buoyancy, there is a tendency for the fluid to move (the less dense
hot fluid rising and the more dense cold falling). The partial differential equations that de-
scribe this must include Newton’s laws for the velocity of the fluid in addition to the heat
equation for the temperature. The gravitational force tends to stabilize the situation, and
the buoyant force tends to destabilize the situation. Experimentally it is observed that if
the bottom is heated sufficiently, then the conductive state becomes unstable. The fluid
tends to move more dramatically and rotating cells of fluid are formed between the plates
(reminiscent of large-scale atmospheric motions). A preferred horizontal length scale of
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motion is observed when no horizontal length scales are present to begin with. This pro-
cess of pattern formation is fundamental in physical and natural sciences. We wish to
explain these types of features. However, a good mathematical model of this buoyancy
instability is perhaps a little too difficult for a first example.

We will analyze the following partial differential equation (which will have many
desirable features), which is related to the linearized Kuramoto–Sivashinsky equation:

∂u

∂t
= −u − R

∂2u

∂x2
− ∂4u

∂x4
. (14.8.20)

We note that u = 0 is considered to be an equilibrium solution of (14.8.20). We assume
R > 0 is a parameter of interest. To understand this equation, we substitute u = ei(kx−ωt)

or u = eσteikx. In either way, we find

σ = −1 + Rk2 − k4. (14.8.21)

The growth rate is a function of R and k. In this example, the exponential growth rate
σ is real for all values of the wave number k (for all wavelengths). It is very important
to distinguish between σ > 0 (exponential growth) and σ < 0 (exponential decay). In
Fig. 14.8.3, we graph regions of exponential growth and exponential decay by graphing
σ = 0:

σ = 0 if R =
1
k2

+ k2.

This neutral stability curve, which separates stable from unstable (see Fig. 14.8.3),
has a vertical asymptote at k = 0 and for large k is approximately the parabola R = k2.
There is only one critical point, an absolute minimum, where dR

dk = 0. To determine the
minimum, we note that 0 = −2 1

k3 + 2k yields kc = 1, in which case Rc = 1 + 1 = 2.
If R < Rc, then we say u = 0 is stable because the time dependence of all modes (all

k

R

kc = 1

Rc = 2
R > Rc

σ = 0

σ > 0
σ < 0

Exponential
growth

Exponential
decay

FIGURE 14.8.3 Neutral stability curve.
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values of k) exponentially decays. If R > Rc, then there is a band of wave numbers that
grow exponentially. If any of these wave numbers occurs, then we say u = 0 is unstable.
For example, if the partial differential equation (14.8.20) is to be solved on the infinite
interval, then all values of k are relevant (from the Fourier transform), and we say that
u = 0 is unstable if R > Rc. Typically experiments are performed in which R is gradually
increased from a value in which u = 0 is stable to a value in which u = 0 is unstable. If
R is slightly greater than the critical value Rc, then we expect waves to grow for wave
numbers in a small band surrounding kc = 1. Thus, we expect the solution to involve the
wavelength 2π

kc
, a preferred wavelength. This is the way that patterns form in nature from

rather arbitrary initial conditions.
However (this is a little subtle), if the boundary conditions (after separation) are

u(0) = u′′(0) = 0 and u(L) = u′′(L) = 0, then it can be shown that the eigenfunctions are
sin nπx

L , so that k takes on the discrete values k = nπ
L . If R is not much greater than Rc,

then there is only a thin band of unstable wave numbers, and it is possible that u = 0 is
stable. The first instability could occur when R is some specific value greater than Rc and
would correspond to specific value of n = nc. Patterns would be expected to be formed
with this different wavelength 2L

nc
. In the rest of this chapter we will assume we are solving

partial differential equations on the infinite interval.
In Fig. 14.8.4, an alternate method is used to illustrate the growth rate. We graph

the growth rate σ = σ(k,R) given by (14.8.21) for fixed R. We note that σ < 0 for all k
if R < Rc = 2. At R = Rc = 2, the growth rate first becomes zero at k = kc = 1:

σ(kc, Rc) = 0 (14.8.22)

σk(kc, Rc) = 0 (14.8.23)

σkk(kc, Rc) < 0. (14.8.24)

If R is slightly greater than Rc, then there is a band of wave numbers near kc in which
σ > 0. This is the same band of unstable wave numbers shown in Fig. 14.8.3. This band

k

σγ

kc

R = Rc

R > Rc

R < Rc

Growth rate

FIGURE 14.8.4 Growth rate as function of wave number.
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of unstable wave numbers can be estimated (if R is slightly greater than Rc) using the
Taylor series of a function of two variables for σ(k,R) around k = kc and R = Rc:

σ(k,R) = σ(kc, Rc) + σk(kc, Rc)(k − kc) +
1
2
σkk(kc, Rc)(k − kc)2+

+ . . . + σR(kc, Rc)(R − Rc) + . . . .

This simplifies due to (14.8.22) and (14.8.23):

σ(k,R) =
1
2
σkk(kc, Rc)(k − kc)2 + σR(kc, Rc)(R − Rc) + . . . . (14.8.25)

It can be shown that other terms in the Taylor series can be neglected. Since the band
of unstable wave numbers terminates at σ(k,R) = 0, we have as an approximation that
unstable wave numbers satisfy for R > Rc

|k − kc| <

√−2σR

σkk
(R − Rc).

We also need to assume that
σR(kc, Rc) > 0, (14.8.26)

since (at fixed k = kc) we want σ to be increasing at R = Rc (from σ < 0 to σ > 0).
In other linear partial differential equations, the exponential time dependence is

complex, est = e(σ−iω)t. Thus, σ is the real part of s and −ω is the imaginary part of s,
where ω(k) is a frequency.

14.8.4 Ill-posed Problems

A linear time-dependent partial differential equation is said to be ill posed if the largest
exponential growth rate is positive but unbounded for allowable wave numbers. When
a problem is ill posed, it suggests that the partial differential equation does not correctly
model some physical phenomena. Instead some important physics has been ignored or
incorrectly modeled.

We show that the backward (in time) heat equation

∂u

∂t
= −∂2u

∂x2
(14.8.27)

is ill posed because the exponential growth rate (u = eσteikx) is

σ = k2.

u = 0 is unstable because σ > 0 for values of k of interest. However, the growth rate
is positive and unbounded as k → ∞, and thus (14.8.27) is ill posed. This difficulty
occurs when k → ∞, which corresponds to indefinitely short waves (the wavelengths
approaching zero). The backward heat equation is even ill posed with zero boundary
conditions at x = 0 and x = L, since then k = nπ

L and the growth rate is positive and
unbounded as n → ∞. (If indefinitely short wavelengths could be excluded, then the
backward heat equation would not be ill posed.)
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Without the fourth derivative, (14.8.20) would be ill posed like the backward heat
equation. However, the fourth derivative term in (14.8.20) prevents short waves from
growing. Although u = 0 is unstable for (14.8.20), for fixed R > Rc = 2 the largest
growth rate is bounded. From (14.8.21), σmax = −1 + 1

4R2 (which is finite).

14.8.5 Slightly Unstable Dispersive Waves and the Linearized Complex
Ginzburg–Landau Equation

For linear purely dispersive waves, solutions of the partial differential equation are in the
form ei(kx−ωt), where the frequency ω is real and said to satisfy the dispersion relation
ω = ω(k). For other partial differential equations, the frequency is not real. We prefer
to analyze these more general problems using the complex growth rate s = σ − iω:
eikxest = eikxe(σ−iω)t. If σ > 0 for some allowable k, we say that u = 0 is unstable. Often
the partial differential equation depends on a parameter R in which the solution u = 0 is
stable for R < Rc and becomes unstable at R = Rc. As in Section 14.7, we assume there
is a preferred wave number kc such that the real exponential growth rate σ(k,R) satisfies
(14.8.22), (14.8.23), (14.8.24), and (14.8.26) near k = kc and R = Rc.

In this section we will assume R is slightly greater than Rc so that u = 0 is unsta-
ble, but the largest positive value of σ will be small, so we call u = 0 slightly unstable.
In this case, there is a small band of unstable wave numbers near kc. We expect that
energy is focused in one wave number kc. We have discussed (in Section 14.6) the nearly
monochromatic assumption u(x, t) = A(x, t)ei(k0x−ω(k0)t) for purely dispersive waves and
have shown that the wave envelope approximately satisfies the linear Schrödinger equa-
tion, ∂A

∂t + ω′(k0)∂A
∂x = iω′′(k0)

2!
∂2A
∂x2 . Here, we wish to generalize that result to the case

of slightly unstable waves, where the time dependence is oscillatory and exponential,
est = e(σ−iω)t. At R = Rc and k = kc, the exponential growth is zero σ(kc, Rc) = 0, but
often there is a nonzero critical frequency ω(kc, Rc). Thus, as before, we expect A(x, t)
to be the wave envelope of an elementary oscillatory traveling wave:

u(x, t) = eikxes(k,R)t = A(x, t)ei[kcx−ω(kc,Rc)t], (14.8.28)

so that

A(x, t) = ei(k−kc)xe[s(k,r)−s(kc,Rc)]t.

There are elementary solutions for u of the form u = eikxe[σ(k,R)−iω(k,R)]t. If we apply our
earlier ideas concerning spatial and temporal derivatives, (14.7.2) and (14.7.3), we have
here

−i
∂

∂x
⇐⇒ (k − kc) (14.8.29)

∂

∂t
⇐⇒ s(k,R) − s(kc, Rc) = s(k,R) + iω(kc, Rc). (14.8.30)



Section 14.8 Stability and Instability 669

We can derive a partial differential equation that the amplitude A(x, t) satisfies by con-
sidering the Taylor expansion of s(k,R) around k = kc and R = Rc:

s(k,R) = s(kc, Rc) + sk(k − kc) +
skk

2!
(k − kc)2 + . . . + sR(R − Rc) + . . . . (14.8.31)

All partial derivatives are to be evaluated at k = kc and R = Rc. We will assume
(k − kc)2 = O(R −Rc), so that it can be shown that other terms in the Taylor series are
smaller than the ones kept. Recall that s(k,R) is complex, s(k,R) = σ(k,R) − iω(k,R),
so that sR and skk are complex. However, sk = σk − iωk = −iωk since σk = 0 at k = kc

and R = Rc from (14.8.23). From (14.8.31), using (14.8.29) and (14.8.30), we obtain

∂A

∂t
= −isk

∂A

∂x
− skk

2!
∂2A

∂x2
+ sR(R − Rc)A.

Since isk = ωk is the usual real group velocity, the complex wave amplitude solves a partial
differential equation known as the linearized complex Ginzburg–Landau (LCGL)
equation:

∂A

∂t
+ ωk

∂A

∂x
= −skk

2
∂2A

∂x2
+ sR(R − Rc)A. (14.8.32)

The diffusion coefficient (the coefficient in front of the second derivative) is complex since
skk = σkk − iωkk. In order for LCGL (14.8.32) to be well posed, the real part of the
diffusion coefficient −σkk/2 must be positive. This occurs because the real growth rate σ
has a local maximum there (14.8.24). Equation (14.8.32) is the wave envelope equation
that generalizes the linear Schrödinger equation to virtually any physical situation (in
any discipline) where u = 0 is slightly unstable. Wavelike solutions of (14.8.32) grow
exponentially in time.

Two spatial dimensions. It can be shown that in two-dimensional problems,
s(k1, k2, R), so that (14.8.29) is generalized to k1 − k10 = −i ∂

∂x and k2 − k20 = −i ∂
∂y . We

can orient our coordinate system so that the basic wave is in the x-direction, in which
case k20 = 0 and thus k10 = kc:

k1 − kc = −i
∂

∂x
(14.8.33)

k2 = −i
∂

∂y
. (14.8.34)

It can be shown that very little change is needed in (14.8.32). The linear term sk(k−kc) in
(14.8.31) yields the group velocity term in (14.8.32) so that ωk

∂A
∂x in one dimension

becomes ωk1
∂A
∂x + ωk2

∂A
∂y in two dimensions. We must be more careful with the quadratic

term. We assume the original physical partial differential equation has no preferential
direction, so that s(k)where k = |⇀k | =

√
k2
1 + k2

2. The Taylor series in (14.8.31) remains
valid. We must evaluate only the quadratic term (k − kc)2, where from (14.8.33) and
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(14.8.34) k1 is near kc but k2 is near zero. Using the Taylor series of two variables
(k1, k2) around (kc, 0) as an approximation,

k =
√

k2
1 + k2

2 = kc + 1(k1 − kc) +
1

2kc
k2
2 + . . . .

It is perhaps easier to first derive an expression for k2. It is very important to note that we
are assuming that (k1 − kc) has the same small size as k2

2. In particular, we are assuming
(k1 − kc)2 = O(k4

2) = O(R − Rc). In this way, we derive the equation known as the
linearized Newell–Whitehead–Segel equation:

∂A

∂t
+ ωk1

∂A

∂x
+ ωk2

∂A

∂y
= −skk

2

(
∂

∂x
− i

2kc

∂2

∂y2

)2

A + SR(R − Rc)A. (14.8.35)

When nonlinear terms are included using perturbation methods, the complex cubic non-
linearity γA|A|2 is added to right-hand side.

14.8.6 Nonlinear Complex Ginzburg–Landau Equation

The LCGL (14.8.32) describes the wave amplitude of a solution to a linear partial dif-
ferential equation when the solution u = 0 is slightly unstable. Linear partial differential
equations are often small-amplitude approximations of the real nonlinear partial differen-
tial equations of nature. Since solutions of (14.8.32) grow exponentially in time, eventu-
ally the solution is sufficiently large so that the linearization approximation is no longer
valid. Using perturbation methods, it can be shown that for most physical problems with
a slightly unstable solution, (14.8.32) must be modified to account for small nonlinear
terms. In this way u(x, t) can be approximated by A(x, t)ei[kcx−ω(kc,Rc)t] as before, but
A(x, t) satisfies the complex Ginzburg–Landau (CGL) equation:

∂A

∂t
+ ωk

∂A

∂x
= −skk

2
∂2A

∂x2
+ sR(R − Rc)A + γA |A|2 , (14.8.36)

where γ = α+iβ is an important complex coefficient that can be derived with considerable
effort for specific physical problems using perturbation methods. Note that the CGL
equation (14.8.36) generalizes the NLS equation (14.7.35) by having a complex coefficient
(skk = σkk − iωkk with σkk < 0) in front of the second derivative instead of an imaginary
coefficient, by having the instability term sR(R − Rc)A, and by the nonlinear coefficient
being complex. As with nearly all nonlinear partial differential equations, a complete
analysis of the initial value problem for CGL (14.8.36) is impossible. We will discuss only
some simpler results.

Bifurcation diagrams and the Landau equation. The amplitude equation
(14.8.36) has no spatial dependence if the original unstable problem is an ordinary differ-
ential equation or if the wave number is fixed at kc (as would occur if the partial differential
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equation was solved in a finite geometry). With no spatial dependence, the CGL ampli-
tude equation becomes an ordinary differential equation, the Landau equation,

dA

dt
= sR(R − Rc)A + γA |A|2 . (14.8.37)

The solution u = 0 becomes unstable [u(x, t) = A(t)ei[kcx−ω(kc,Rc)t]] with the frequency
ω(kc, Rc) at R = Rc. This is characteristic of a phenomenon in ordinary differential
equations known as Hopf bifurcation. We should recall that the coefficients sR = σR −
iωR and γ = α + iβ are complex with σR > 0 [see (14.8.26)]. The Landau equation can
be solved by introducing polar coordinates A(t) = r(t)eiθ(t). Since dA

dt = eiθ(t)(dr
dt + ir dθ

dt ),
it follows by appropriately taking real and imaginary parts that (14.8.37) becomes two
equations for the magnitude r and phase θ:

dr

dt
= σR(R − Rc)r + αr3 (14.8.38)

dθ

dt
= −ωR(R − Rc) + βr2. (14.8.39)

We assume σR > 0, corresponding to the solution u = 0 being stable for R < Rc and
unstable for R > Rc. The radial equation (14.8.38) is most important and can be solved
independently of the phase equation. First we look for equilibrium solutions re of the
radial equation (14.8.38):

0 = σR(R − Rc)re + αr3
e .

The equilibrium solution re = 0 corresponds to A = 0 or u = 0. We will shortly verify
what we should already know: that u = 0 (re = 0) is stable for R < Rc and unstable for
R > Rc. There is another important (nearby) equilibrium satisfying

0 = σR(R − Rc) + αr2
e .

For this nonzero equilibrium to exist, σR(R−Rc)
α < 0. If α < 0, the nonzero equilibrium

exists if R > Rc (and vice versa). We graph two cases (depending on whether α > 0
or α < 0) in Fig. 14.8.5; the equilibrium re as a function of the parameter R is known
as a bifurcation diagram. R = Rc is called a bifurcation point since the number of
equilibrium solutions changes (bifurcates) there. Since r = |A|, we restrict our attention to
r ≥ 0. However, these are only equilibrium solutions of the first-order nonlinear differential
equation (14.8.38).

To determine all solutions (not just equilibrium solutions) and determine whether
these equilibrium solutions are stable or unstable, we graph one-dimensional phase
portraits in Fig. 14.8.5. It is best to draw vertical lines (corresponding to fixing R)
and introduce arrows upward if r is increasing (dr

dt > 0) and arrows downward if r is
decreasing (dr

dt < 0). The sign of dr
dt is determined from the differential equation (14.8.38).
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RRc

α < 0

RRc

α > 0

FIGURE 14.8.5 Bifurcation diagram and one-dimensional phase portrait for Hopf bifur-
cation.

There are two cases depending on the sign of α (the real part of γ). In words, we describe
only the case in which α < 0, but both figures are presented. We note from (14.8.38)
that dr

dt < 0 (and introduce downward arrows) if r is sufficiently large in the case α < 0.
The direction of the arrows changes at the equilibria (if the equilibria are a simple root).
We now see that r = 0 (corresponding to u = 0) is stable if R < Rc since all nearby
solutions approach the equilibria as time increases, and r = 0 is unstable if R > Rc. The
bifurcated nonzero equilibria (which coalesce on r = 0 as R → Rc) exist only for R > Rc

and are stable (if α < 0). If α < 0 (α > 0), this is called supercritical (subcritical) Hopf
bifurcation because the nonzero equilibria exist for R greater (less) than Rc. It is usual in
bifurcation diagrams to mark unstable equilibria with dashed lines (and stable with solid
lines), and we have done so in Fig. 14.8.6. The nonlinearity has two possible effects: If
the nonlinearity is stabilizing (α < 0), then a stable solution is created for R > Rc. This
stable solution has small amplitude since re is proportional to (R − Rc)1/2, consistent
with our analysis based on Taylor series assuming R − Rc is small and r is near zero. If
the nonlinearity is destabilizing (α > 0), then an unstable solution is created for R < Rc.
If the nonlinearity is destabilizing (α > 0), a better question is what occurs if R > Rc?
In this case the linear dynamics are unstable, but the nonlinear terms do not stabilize
the solution. Instead it can be shown that the solution explodes (goes to infinity in a

RRc

α < 0

RRc

α > 0

FIGURE 14.8.6 Bifurcation diagram (including stability) for Hopf bifurcation.
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finite time). If R > Rc (and α > 0), there are no stable solutions with small amplitudes
amenable to a linear or weakly nonlinear analysis; we must understand the original fully
nonlinear problem.

The bifurcated equilibrium solution (stable or unstable) has r equaling a spe-
cific constant (depending on R − Rc). From (14.8.39) this bifurcated equilibrium solu-
tion (A = reiθ = ree

iθ) is actually a periodic solution with frequency ωR(R − Rc) −
βr2

e = (R − Rc)(αωR − βσR)/α. For the original partial differential equation [u =
A(x, t)ei[kcx−ω(kc,Rc)t]], the frequency is ω(kc, Rc)+ (R−Rc)(αωR −βσR)/α, correspond-
ing to dependence of the frequency on the parameter R and the equilibrium amplitude
|A|2 = r2

e . The bifurcated solution is periodic in time (with an unchanged wave number).
For this relatively simple Landau equation (14.8.37), the bifurcated solution is stable
when the zero solution is unstable (and vice versa).

Bifurcated solutions for complex Ginzburg–Landau equation. We will
show that the CGL equation (14.8.36) has elementary nonzero plane traveling wave
solutions

A(x, t) = A0e
i[Kx−Ωt+φ0], (14.8.40)

where A0 and φ0 are real constants. Since u = A(x, t)ei[kcx−ω(kc,Rc)t], it follows that the
wave number for u(x, t) is kc+K. Previously we have called k the wave number for u(x, t),
and thus

K = k − kc

and the frequency is ω(kc, Rc) + Ω. For CGL (14.8.36) to be valid, K must be small
(corresponding to the wave number being near kc). We show (14.8.40) are solutions by
substituting (14.8.40) into (14.8.36):

−iΩ + iωkK =
skk

2
K2 + sR(R − Rc) + γA2

0.

Since skk = σkk − iωkk (with σkk < 0), sR = σR − iωR (with σR > 0), and γ = α + iβ
are complex, we must take real and imaginary parts:

αA2
0 = −

[σkk

2
K2 + σR(R − Rc)

]
(14.8.41)

Ω = ωkK +
ωkk

2
K2 + ωR(R − Rc) − βA2

0. (14.8.42)

Solutions of the form (14.8.40) exist only if the right-hand side of (14.8.41) has the
same sign of α. In (14.8.41), we recognize σkk

2 K2 + σR(R − Rc) as the Taylor expansion
(14.8.25) of the growth rate σ(k, r). As before, there are two completely different cases
depending on the sign of α, the real part of the nonlinear coefficient γ. If α < 0 (the case
in which the nonlinearity is stabilizing for the simpler Landau equation), solutions exist
only if σkk

2 K2 +σR(R−Rc) > 0, which corresponds to the growth rate being positive (the
small band of exponentially growing wave numbers near kc that occurs only for R > Rc).
If α > 0 (the case in which the bifurcated solution is unstable for the simpler Landau
equation), solutions exist if σkk

2 K2 + σR(R − Rc) < 0, which corresponds to the growth
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rate being negative (excluding the small band of exponentially growing wave numbers
near kc). However, it is not easy to determine whether these solutions are stable. We will
briefly comment on this in the next subsection.

We should comment on (14.8.42), though it is probably less important than (14.8.41).
Equation (14.8.42) shows that the frequency for solutions (14.8.40) changes because the
frequency depends on the wave number, the parameter R, and the amplitude.

Stability of bifurcated solutions for complex Ginzburg–Landau equation.
It is difficult to determine the stability of these elementary traveling wave solutions of the
CGL equation (14.8.36). First we derive the modulational instability for the nonlinear
Schrödinger equation (the CGL when the coefficients are purely imaginary) and then
outline some results for the case in which the coefficients are real. The general case
(which we omit) is closer to the real case.

Modulational (Benjamin–Feir) instability. When the coefficients of the CGL
equation are purely imaginary (skk = −iωkk with σkk = 0, sR = σR − iωR with σR = 0,
and γ = iβ with α = 0), the CGL equation reduces to the nonlinear Schrödinger equation
(NLS):

∂A

∂t
+ ωk

∂A

∂x
= i

ωkk

2
∂2A

∂x2
+ iβA |A|2 . (14.8.43)

Actually, there is an additional term −iωR(R−Rc)A on the right-hand side of (14.8.43),
but we ignore it since that term can be shown to contribute only a frequency shift cor-
responding to changing the parameter R. This does not correspond to the instability
of u = 0 but instead describes a situation in which the energy is focused in one wave
number k0. The elementary traveling wave solution A(x, t) = A0e

i[Kx−Ωt+φ0] always ex-
ists for arbitrary A0. Equation (14.8.41) becomes 0 = 0, so that the amplitude A0 is
arbitrary, while (14.8.42) determines the frequency Ω. (A special example, frequently
discussed in optics, occurs with K = 0, in which case Ω = −βA2

0.) We will show (not
easily) that these solutions are stable if β has a different sign from ωkk, and thus in
some cases these nonlinear traveling waves will be observed. However, if β has the same
sign as ωkk, then these traveling waves are unstable, as first shown by Benjamin and
Feir in 1967. We follow Newell [1985]. We move with the group velocity so that the
ωk-term can be neglected in (14.8.43). We substitute A = reiφ into (14.8.43), assuming
nonconstant wave number k = φx and frequency Ω = −φt. We note Ax = (rx + ikr)eiφ,
At = (rt−iΩr)eiφ, and Axx = [rxx−k2r+i(2krx+kxr)]eiφ. Thus, the imaginary part gives
−Ωr = ωkk

2 (rxx − k2r) + βr3, the exact dispersion relation for the nonlinear Schrödinger
equation, and the real part yields an exact equation for the modulation of the amplitude:

rt +
ωkk

2
(2krx + kxr) = 0. (14.8.44)

Using the dispersion relation, conservation of waves kt + Ωx = 0 becomes

kt +
[ωkk

2

(
−rxx

r
+ k2

)
− βr2

]
x

= 0. (14.8.45)

Equations (14.8.44) and (14.8.45) give an exact representation of solutions of the nonlinear
Schrödinger equation. We note the simple exact solution k = 0, r = r0. From the
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dispersion relation, −Ω = βr2
0, which corresponds to the exact solution A = r0e

−iβr2
0t

of the nonlinear Schrödinger equation. To investigate the stability of this solution, we
linearize the nonlinear system by letting k = μk1 and r = r0 + μr1, where μ is small, and
obtain (after dropping the subscripts 1)

rt +
ωkk

2
kxr0 = 0 (14.8.46)

kt − ωkk

2
rxxx

r0
− 2βr0rx = 0. (14.8.47)

Eliminating kxt yields the linear constant-coefficient dispersive partial differential equation

rtt =
ωkk

2

(
−ωkk

2
rxxxx − 2βr2

0rxx

)
. (14.8.48)

We analyze (14.8.48) in the usual way by letting r = ei(αx−Ω1t), where α corresponds to a
sideband wave number. The dispersion relation for (14.8.48) is Ω2

1 = (ωkk

2 )2α4−ωkkβr2
0α

2.
If ωkk and β have opposite signs, the frequency Ω1 is real for all α, and this solution is
stable (to sidebands). The Benjamin–Feir sideband instability occurs when ωkk and
β have the same sign (called the focusing nonlinear Schrödinger) in which waves are

unstable for wave numbers satisfying 0 < α < 2
√

β
ωkk

|r0|. Sufficiently long-wave sideband
perturbations are unstable.

Recurrence for nonlinear Schrödinger equation. Analysis of the initial value
problem for (14.8.43) with periodic boundary conditions shows that (see Ablowitz and
Clarkson [1991]) more than one wavelength corresponding to an elementary Fourier series
may be unstable. At first, these unstable waves will grow exponentially in the manner
associated with a linear partial differential equation. However, eventually, the nonlinearity
prevents the growth from continuing. For the case in which the elementary solution is
unstable (β has the same sign as ωkk), experiments (Yuen and Lake [1975]), numerical
solutions (Yuen and Ferguson [1978]), and advanced theory remarkably show that the
solution nearly returns to its initial condition after a long time, and then the instability
nearly repeats over and over again. This phenomenon is called recurrence.

Stable and unstable finite amplitude waves. If u = 0 becomes unstable at
R = Rc with a preferred wave number k = kc but the growth rate is real (skk = σkk with
σkk < 0 and ωkk = 0, sR = σR with σR > 0 and ωR = 0) and the nonlinear coefficient is
real (γ = α), then the CGL (14.8.36) becomes

∂A

∂t
= −σkk

2
∂2A

∂x2
+ σR(R − Rc)A + αA |A|2 ,

where we have also assumed ωk = 0. The elementary traveling wave solution A(x, t) =
A0e

i[Kx−Ωt+φ0] corresponds to K = k−kc. Using our earlier result, (14.8.41) and (14.8.42),
solutions exist if

αA2
0 = −

[σkk

2
K2 + σR(R − Rc)

]
(14.8.49)

Ω = 0. (14.8.50)
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This solution is periodic in space and constant in time. As in the general case, if α < 0,
solutions exist only in the small band of exponentially growing wave numbers (|k − kc| <√

2σR(R−Rc)
−σkk

) that occur for R > Rc. However, Eckhaus in 1965 showed that these waves

are stable only in the smaller bandwidth |k − kc| < 1√
3

√
2σR(R−Rc)

−σkk
.

14.8.7 Long-Wave Instabilities

We again consider linear partial differential equations with solutions of the form u(x, t) =
eikxest = eikxe(σ−iω)t, allowing for unstable growth (σ > 0) or decay (σ < 0). If waves first
become unstable with wave number k �= 0, then usually the complex Ginzburg–Landau
equation (14.8.32) or (14.8.36) is valid. However, long waves k = 0usually become unstable
in a different manner. Usually, the growth rate σ(0) = 0 for k = 0. Otherwise, a spatially
uniform solution would grow or decay exponentially. The growth rate will be an even
function of k since waves with positive and negative wave numbers should grow at the
same rate. We use the Taylor series for small k and obtain σ(k) ∼ σkk

2 k2 (we will be more
accurate shortly). If long waves are stable, then σkk < 0. The simplest way that long
waves can become unstable, as we vary a parameter R, is for σkk to change signs at Rc,
so that for long waves near Rc, σ(k,R) ∼ σRkk

2 k2(R − Rc),with σRkk > 0. Since we wish
to investigate long waves for R near Rc, it is best to include the next term in the Taylor
series,

σ(k,R) ∼ σRkk

2
k2(R − Rc) +

σkkkk

4!
k4, (14.8.51)

with σRkk > 0. If the fourth-order term is stabilizing, σkkkk < 0, then we see that for
R > Rc there is a band of unstable (σ < 0) long waves k2 < − 12σRkk

σkkkk
(R − Rc). Since ω is

an odd function of k (for the phase velocity to be even),

ω(k,R) ∼ [ωk + ωkR(R − Rc) + . . .]k +
ωkkk

3!
k3. (14.8.52)

The term in brackets is an improved approximation for the group velocity. To find the
corresponding partial differential equation for long waves in the most general situation,
we allow purely dispersive terms. Since s = σ − iω = ∂

∂t and k = −i ∂
∂x , we obtain (after

moving with the group velocity)

ut = −σRkk

2
(R − Rc)uxx +

σkkkk

4!
uxxxx +

ωkkk

3!
uxxx. (14.8.53)

Using perturbations methods, the appropriate nonlinear term may be as simple as in the
Korteweg–de Vries equation (14.7.15) or more complicated, as in the long-wave instability
of thin-liquid films, as shown by Benney [1966].

14.8.8 Pattern Formation for Reaction–Diffusion Equations and the Turing Instability

In 1952 Turing (also known for breaking the German code for England in World War II
and the Turing machine in computer science) suggested that patterns in biological or-
ganisms (morphogenesis) might emerge from an instability of spatially dependent chemi-
cal concentrations described by partial differential equations. Particularly extensive and
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well-written presentations are given by Murray [1993] and Nicolis [1995]. General theory
exists, but we prefer to add spatial diffusion to a well-known example with two reacting
chemicals, known as the Brusselator due to Prigogine and Lefever [1968]:

∂u

∂t
= 1 − (b + 1)u + au2v + D1∇2u (14.8.54)

∂v

∂t
= bu − au2v + D2∇2v. (14.8.55)

There are four parameters, a > 0, b > 0, D1 > 0, D2 > 0, but we wish to vary only b.
We first determine all spatially uniform steady-state equilibria, which must satisfy both
1 − u[(b + 1) − auv] = 0 and u(b − auv) = 0. The second equation suggests u = 0, but
that cannot satisfy the first equation. Thus, the second yields auv = b, and the first now
yields u = 1. For this example, there is a unique uniform steady state u = 1 and v = b

a ,
corresponding to a chemical balance. In this example, there cannot be a bifurcation to a
different uniform steady state.

Linearization. To analyze the stability of the uniform steady state, we approxi-
mate the system of partial differential equations near the steady state. We introduce small
displacements from the uniform steady state: u−1 = u1 and v− b

a = v1. As in the stability
analysis of equilibria for systems of ordinary differential equations (see Section 14.8.1),
we linearize each chemical reaction, including the linear terms of the Taylor series for
functions of two variables. We must include the diffusive term, but that is elementary
since the equilibria are spatially constant. In this way we obtain a linear system of partial

differential equations that the displacements ⇀
u1 =

[
u1

v1

]
must satisfy:

∂
⇀
u1

∂t
= J

⇀
u1 +

[
D1 0
0 D2

]
∇2 ⇀

u1, (14.8.56)

where J is the usual Jacobian matrix evaluated at the uniform steady state,

J =

[
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

]
=

[−(b + 1) + 2auv au2

b − 2auv −au2

]
=

[
b − 1 a
−b −a

]
. (14.8.57)

Spatial and time dependence. The linear partial differential equation (14.8.56)
has constant coefficients, so elementary Fourier analysis based on separation of variables
is valid:

⇀
u1 = ei

⇀
k · ⇀

x ⇀
w(t). (14.8.58)

If there are no boundaries,
⇀

k is arbitrary, corresponding to using a Fourier transform.

Note that ∇2 ⇀
u1 = −k2ei

⇀
k · ⇀

x ⇀
w(t), where k = |⇀k |. In this way the time-dependent part

satisfies a linear system of ordinary differential equations with constant coefficients:

d
⇀
w

dt
= A

⇀
w, (14.8.59)
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where the matrix A is related to the Jacobian,

A = J −
[

D1k
2 0

0 D2k
2

]
=

[
b − 1 − D1k

2 a
−b −a − D2k

2

]
. (14.8.60)

Linear system. The linear system (14.8.59) is solved by letting ⇀
w(t) = eλt⇀

v ,
in which case A

⇀
v = λ

⇀
v , so that λ are the eigenvalues of the matrix A and ⇀

v the
corresponding eigenvectors. The eigenvalues are determined from

0 = det(A − λI) =
[

b − 1 − D1k
2 − λ a

−b −a − D2k
2 − λ

]
. (14.8.61)

The two eigenvalues satisfy

λ2 + λ(a − b + 1 + (D1 + D2)k2) + a + aD1k
2 − (b − 1)D2k

2 + D1D2k
4 = 0. (14.8.62)

The goal is to determine when the uniform state is stable or unstable as a function of the
four parameters and a function of the wave number k. The stability of the uniform state is
determined by the eigenvalues λ since solutions are proportional to eλt. The uniform state
is unstable if one eigenvalue is positive or has positive real part Re(λ) > 0. The uniform
state is stable if all eigenvalues have negative real parts Re (λ) < 0. For 2 × 2 matrices
A, it is best to note (see Section 14.8.1) that the solution is stable if and only if both
its trace < 0 and its determinant > 0. However, we first do a somewhat easier procedure
(which can also be used in higher-order problems but which has serious limitations). There
are two ways in which the solutions can change from stable to unstable.

One eigenvalue with λ = 0 [and all other eigenvalues with Re(λ) < 0].
If λ = 0, then from (14.8.62) it follows that we think of b as being a function of the wave
number k:

b = D1k
2 + 1 +

aD1

D2
+

a

D2k2
. (14.8.63)

The parameter b is graphed as a function of the wave number k in Fig. 14.8.7 (note
the asymptotic behavior as k → 0 and k → ∞). The function has a minimum bmin =
D1k

2
c + 1 + aD1

D2
+ a

D2k2
c

at a critical wave number kc,

k4
c =

a

D1D2
. (14.8.64)

Along this curve λ = 0, so that this curve may not be on the boundary of stability if
the other eigenvalue is positive. Another important question is which side of this curve is
stable and which side unstable? It is not easy to answer these questions. First determine
(perhaps numerically) the other eigenvalue at one point on this curve. Stability will remain
the same until this curve intersects any other curve for which stability changes. For
the portion of the curve in which stability changes, determine stability everywhere by
computing (perhaps numerically) all the eigenvalues at one point on each side of the
curve.
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λ =0λ = ± iω
kc

k

b

Stable

Unstable
Unstable

Unstable

FIGURE 14.8.7 Turing instability.

One set of complex conjugate eigenvalues satisfying λ = ±iω since
Re(λ) = 0 [and any other eigenvalues with Re(λ) < 0]. Complex conjugate
eigenvalues can be determined by substituting λ = ±iω into (14.8.62). The imaginary
part of (14.8.62) must vanish, so that b is a different function of k:

b = a + 1 + (D1 + D2)k2, (14.8.65)

and the frequency satisfies ω2 = a + aD1k
2 − (b − 1)D2k

2 + D1D2k
4. Thus, (14.8.65) is

not valid for all k, but for only those values where ω2 > 0. For the curve (14.8.65), b has
a minimum b = a + 1at k = 0. The portion of the curve with real frequency will separate
stable from unstable, but again in this way we do not know which side is stable and which
side unstable.

Necessary and sufficient (trace and determinant) condition for stability.
We will be careful in determining where the uniform state is stable. As shown in Fig. 14.8.2,
an equilibrium is stable if and only if for the matrix both its trace < 0 and its determinant
> 0. To be stable, both inequalities must be satisfied:

tr A = b − a − 1 − (D1 + D2)k2 < 0 (14.8.66)

det A = a + aD1k
2 − (b − 1)D2k

2 + D1D2k
4 > 0. (14.8.67)

This is more accurate than (14.8.63) and (14.8.65). (The determinant condition relates to
λ = 0, while the trace condition relates to complex eigenvalues.) By solving each inequality
in (14.8.66) and (14.8.67) for b, we see that the stable region is below the intersection of
the two curves (14.8.63) and (14.8.65).
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Pattern formation. There is a competition between these two minima a+1 and
bmin. If the parameter b is less than both, then the uniform state is stable. We assume
that we gradually increase b from the stable region. If the first instability occurs at k = 0
(infinite wavelength), this corresponds to an instability in the equilibrium solution of the
partial differential equation identical to the ordinary differential equation in which the
uniform state becomes unstable without developing any spatial structure. If the first in-
stability occurs at k = kc given by (14.8.64), there is a preferred wave number (preferred
wavelength 2π

kc
). From a uniform state, a pattern emerges with predictable wave-

length from the theory of the instability of the uniform state, and this would be
called a Turing instability. The case of a Turing instability is philosophically significant
since the spatial wavelength of patterns is predicted from the mathematical equations for
arbitrary initial conditions without spatial structure, explaining spatial structures ob-
served in nature. The pattern is a one-dimensional approximately linear wave with a
predictable wavelength 2π

kc
.

Complex Ginzburg–Landau. If the Turing instability occurs and the param-
eter b is slightly greater than its critical value, then there is a small band of unstable
wave numbers around kc. Energy will be focused in these wave numbers, and as dis-
cussed in Sections 14.8.5 and 14.8.6, the amplitude can be approximated by the complex
Ginzburg–Landau (CGL) equation (14.8.36) with the typical cubic nonlinearity γA|A|2,
which can be derived using perturbation methods. The complex coefficient γ = α+ iβ. To
get a crude understanding of the effect of the nonlinearity, we discuss the more elemen-
tary Landau equation (14.8.37) associated with Hopf bifurcation for ordinary differential
equations. In this way it is seen that if α > 0, the nonlinearity is destabilizing, while
if α < 0, the nonlinearity is stabilizing. It is not particularly easy to use perturbation
methods to determine whether α > 0 or α < 0. Is the pitchfork bifurcation subcritical or
supercritical? This can sometimes be determined by numerically computing the original
nonlinear partial differential equation for the parameter slightly greater than the value of
the instability. If there is an equilibrated solution with a simple spatial structure, it can
often be seen from the numerics, and the pattern that is formed is due to this type of
pitchfork bifurcation. On the other hand, if numerics do not show a solution with a simple
spatial structure as predicted by the nonlinear analysis, it is possible that the nonlinearity
is destabilizing, and the simple solution is unstable.

Two-dimensional patterns. In two-dimensional instability problems, there is a
preferred wave number |⇀k | = kc. Since

⇀

k is a vector, waves with any direction are possi-
ble, though they are all characterized by the same wavelength. This is a difficult subject,
and we make only a few brief remarks. The linear theory predicts that the solution can be
a complicated superposition of many of these waves. Hexagonal patterns are observed
in nature in a variety of different disciplines, and it is believed that they result from the
superposition of six

⇀

k differing each by 60◦. The wavelength of the hexagonal patterns is
predicted from the linear instability theory. Many systems of reaction–diffusion equations
seem to be characterized by having spiral wave patterns, as are now frequently ob-
served in the laboratory. Three-dimensional generalizations (see Scott [1999]) are called
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scroll waves and scroll rings. According to Winfree [1987], human cardiac arrhythmias
preceding heart attacks are characterized by waves with electrical activity like scroll rings.
The study of spiral and scroll wave solutions of partial differential equations and their
stability is an area of contemporary research.

EXERCISES 14.8

14.8.1. The (nonlinear) pendulum satisfies the ordinary differential equation d2x
dt2

+ sin x = 0,
where x is the angle. Equilibrium solutions satisfy sinx0 = 0. The natural position
is x0 = 0, and the inverted position is x0 = π. Determine whether an equilibrium
solution is stable or unstable by considering initial conditions near the equilibrium
and approximating the differential equation there. [Hint: Since x is near x0, we use
the Taylor series of sin x around x = x0.]

14.8.2. (a) Graph four bifurcation diagrams for saddle-node bifurcation at (xc, Rc) = (0, 0)
corresponding to different choices of signs of fR and fxx.

(b) Determine stability using one-dimensional phase diagrams.
14.8.3. Assume that at a bifurcation point (xc, Rc) = (0, 0), in addition to the usual criteria

for a bifurcation point, fR = 0 and fxx 
= 0. Using a Taylor series analysis, show
that as an approximation,

dx

dt
=

fxx

2
x2 + fxRRx +

fRR

2
R2.

(a) If f2
xR > fxxfRR, then the bifurcation is called transcritical. Analyze stability

using one-dimensional phase diagrams (assuming fxx > 0). Explain why the
transcritical bifurcation is also called exchange of stabilities.

(b) If f2
xR < fxxfRR, then show that the equilibrium is isolated to R = Rc only.

14.8.4. Assume that at a bifurcation point (xc, Rc) = (0, 0), in addition to the usual criteria
for a bifurcation point, fR = 0 and fxx = 0. Using a Taylor series analysis, show
that as an approximation,

dx

dt
= fxRRx +

fRRR

6
R3 + . . . .

Assume fxR > 0. Show there are two cases depending on the sign of fRRR. Analyze
stability using one-dimensional phase diagrams (assuming fxx > 0). Explain why
this bifurcation is called pitchfork bifurcation.

14.8.5. For the following examples, draw bifurcation diagrams examples and determine sta-
bility using one-dimensional phase portraits:
(a)

dx

dt
= 2x + 5R (g)

dx

dt
= Rx − x3

(b)
dx

dt
= −5x + 2R (h)

dx

dt
= Rx + x3

(c)
dx

dt
= 2x2 + 5R (i)

dx

dt
= −(x − 4)(x − eR)

(d)
dx

dt
= −2x2 − 5R (j)

dx

dt
= 1 + (R − 1)x + x2

(graph R as a function of x first)
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(e)
dx

dt
= xR + x2 (k)

dx

dt
= R2 + Rx + x2

(f)
dx

dt
= −(x − 3R)(x − 5R) (l)

dx

dt
= R2 + 4Rx + x2

14.8.6. Find (est = e(σ−iω)t) the exponential decay rate σ and the frequency ω for the
following partial differential equations:

(a)
∂u

∂t
= −u − R

∂2u

∂x2
− ∂4u

∂x4
− c

∂u

∂x

*(b)
∂u

∂t
= −u − R

∂2u

∂x2
− ∂4u

∂x4
+

∂3u

∂x3

(c)
∂u

∂t
= u +

1
R

∂2u

∂x2

14.8.7. Find (est = e(σ−iω)t) the exponential decay rate σ and the frequency ω. Briefly
explain why the following partial differential equations are ill posed or not:

(a)
∂u

∂t
= 4

∂u

∂x

(b)
∂u

∂t
= i

∂u

∂x

*(c)
∂u

∂t
= −i

∂u

∂x

(d)
∂u

∂t
= i

∂2u

∂x2

(e)
∂u

∂t
+ i

∂u

∂x
= i

∂2u

∂x2

(f)
∂u

∂t
− i

∂u

∂x
=

∂3u

∂x3

(g)
∂u

∂t
=

∂4u

∂x4

(h)
∂u

∂t
= −∂4u

∂x4

14.8.8. Derive (14.8.20) and (14.8.21).
14.8.9. Determine the dispersion relation for the linearized complex Ginzburg–Landau

equation.
14.8.10. Draw bifurcation diagrams and determine stability of the solutions using a one-

dimensional phase portrait for dr
dt = σR(R − Rc)r + αr3:

(a) Assume σR < 0 and α > 0.

(b) Assume σR < 0 and α < 0.

14.8.11. Under what circumstances (parameters) does the Turing bifurcation occur for lower
b than the bifurcation of the uniform state?

14.8.12. Consider the dynamical system that arises by ignoring diffusion in the model that
exhibits the Turing bifurcation.

(a) Show that a Hopf bifurcation occurs at b = 1 + a.

(b) Investigate numerically the dynamical system.
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14.9 SINGULAR PERTURBATION METHODS: MULTIPLE SCALES

Often problems of physical interest can be expressed as difficult mathematical problems
that are near (in some sense) to a problem that is easy to solve. For example, as in
Section 9.6, the geometric region may be nearly circular, and we wish to determine the
effect of the small perturbation. There we determined how the solution differs from the
solution corresponding to a circular geometry. We usually have (or can introduce) a small
parameter ε, and the solution (for example) u(x, y, t, ε) depends on ε. If

u(x, y, t, ε) = u0(x, y, t) + εu1(x, y, t) + . . . , (14.9.1)

the solution is said to be a regular perturbation problem. The first term (called
the leading-order term) u0(x, y, t) is often a well-known solution corresponding to the
unperturbed problem ε = 0. Usually, only the first few additional terms are needed, and
the higher-order terms such as u1(x, y, t) can be successively determined by substituting
the regular expansion into the original partial differential equation.

More difficult (and interesting) situations arise when a regular perturbation expan-
sion is not valid, in which case we call the problem a singular perturbation problem.
Whole books (for example, see the one by Kevorkian and Cole [1996]) exist on the sub-
ject. Sometimes simple expansions exist like (14.9.1), but expansions of different forms
are valid in different regions. In this case, boundary layer methods can be developed
(see Section 14.10). Sometimes different scaled variables (to be defined shortly) are simul-
taneously valid, in which case we use the method of multiple scales.

14.9.1 Ordinary Differential Equation: Weakly Nonlinearly Damped Oscillator

As a motivating example to learn the method of multiple scales in its simplest con-
text (ordinary differential equations), we consider a linear oscillator with small nonlinear
damping (proportional to the velocity cubed). We introduce dimensionless variables so
that the model ordinary differential equation is

d2u

dt2
+ u = −ε

(
du

dt

)3

, (14.9.2)

where ε is a small positive parameter, 0 < ε << 1. The perturbation corresponds to some
form of nonlinear damping because it is an odd function of the velocity du

dt .

Regular perturbation expansion (naive). We begin by assuming the solution
has a regular perturbation expansion:

u(t, ε) = u0(t) + εu1(t) + . . . . (14.9.3)
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By substituting (14.9.3) into (14.9.2) and comparing coefficients of ε to different powers,
we obtain

O(ε0) :
d2u0

dt2
+ u0 = 0 (14.9.4)

O(ε1) :
d2u1

dt2
+ u1 = −

(
du0

dt

)3

. (14.9.5)

The leading-order terms yield the unperturbed equation (14.9.4). The solution of
the unperturbed equation is periodic, a linear combination of sin t and cos t. We will use
instead complex exponentials (in order to simplify some of the later nonlinear calculations):

u0(t) = Aeit + A∗e−it. (14.9.6)

We use the complex amplitude A, and in order for the solution to be real we let the other
coefficient be A∗, the complex conjugate of A.

Using this leading-order solution (14.9.6), we obtain the differential equation for the
most important perturbed term u1:

d2u1

dt2
+ u1 = i(Aeit − A∗e−it)3 = i(A3e3it − 3A2A∗eit) + (∗), (14.9.7)

where (∗) stands for the complex conjugate of the other terms presented on the right-
hand side of (14.9.7). The right-hand side contains third harmonic terms e±3it and the
fundamental e±it. Using the method of undetermined coefficients, a particular solution
is easy to obtain corresponding to the third harmonic term. However, here in the reg-
ular perturbation method, the forcing frequency associated with eit equals the natural
frequency, and thus resonance occurs. The corresponding solution grows linearly in time
and is said to be secular. In this way, a particular solution of (14.9.7) is

u1(t) = i
A3

1 − 9
e3it + i#A2A∗teit + (∗),

where # is a number that could be computed (with some effort using the method of
undetermined coefficients), but we do not need to know its value. Homogeneous solutions
should also be included.

The regular expansion of the solution u0(t)+ εu1(t)+ . . . is a valid approximation if
εt is small. However, if t is large enough so that εt is an order 1 quantity or larger, then
the regular expansion is no longer valid because of the secular term.

The method of multiple scales. The regular perturbation expansion is not
valid for large times. However, the regular perturbation expansion suggests that interest-
ing dynamics occur when εt = O(1). If we are interested in the solution on that long time
scale, then we assume the solution u(t, T, ε) depends on two variables, a fast variable t
and a slow variable

T = εt, (14.9.8)
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known as the method of multiple scales. (Sometimes this is called the method of
slow variation.) We may use the chain rule

d

dt
=

∂

∂t
+ ε

∂

∂T
, (14.9.9)

where derivatives are now treated as partial derivatives (and a subscript notation for
partial derivatives will be used). In this case the equation for the nonlinearly damped
oscillator (14.9.2) becomes

utt + 2εutT + ε2uTT + u = −ε(ut + εuT )3. (14.9.10)

Now the regular expansion, u(t, T, ε) = u0(t, T ) + εu1(t, T ) + . . ., yields

O(ε0) :
∂2u0

∂t2
+ u0 = 0 (14.9.11)

O(ε1) :
∂2u1

∂t2
+ u1 = −

(
∂u0

∂t

)3

− 2
∂

∂T

(
∂u0

∂t

)
. (14.9.12)

Only the order ε term −2 ∂
∂T (∂u0

∂t ) differs from the naive perturbation expansion (14.9.4)
and (14.9.5).

The leading-order equation is the unperturbed linear oscillator, but we must re-
member that ∂

∂t means keeping T fixed. Thus, the general solution of (14.9.11) is

u0(t, T ) = A(T )eit + A∗(T )e−it, (14.9.13)

where A(T ) is an arbitrary complex function of the slow time variable.
Using (14.9.13), the first perturbed term satisfies

d2u1

dt2
+ u1 = i(Aeit − A∗e−it)3 − 2i

(
dA

dT
eit − dA∗

dT
e−it

)

= i(A3e3it − 3A2A∗eit) − 2i
dA

dT
eit + (∗).

(14.9.14)

We will determine A(T ) by eliminating secular terms in the perturbed problem. The
multiply scaled variables are introduced in order for the solution to be valid for long
times t = O(1

ε ). The secular terms (resonant terms on the right-hand side proportional
to eit) are not allowable, in which case we derive

2
dA

dT
= −3A2A∗. (14.9.15)
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Equation (14.9.15) can be derived in another way. Equation (14.9.14) is a nonhomo-
geneous linear differential equation with two homogeneous boundary conditions (here
the periodicity constraint). According to the Fredholm alternative, periodic solutions to
(14.9.14) exist only if the right-hand side is orthogonal to the solutions of the homoge-
neous differential equation satisfying homogeneous boundary conditions, in this case eit

and e−it. Equation (14.9.15) follows from this Fredholm alternative since from the theory
of Fourier series e3it is orthogonal to e±it on the interval 0 to 2π.

The differential equation for the slow variation of the complex amplitude can be
solved using the amplitude and phase form of a complex quantity,

A(T ) = r(T )eiφ(T ), (14.9.16)

in which case
u0(t, T ) = r(T )ei(t+φ(T )) + r(T )e−i(t+φ(T )) = 2r(T ) cos(t + φ(T )).

Thus, 2r(T ) is the real amplitude of oscillation, which slowly varies, and the phase of the
oscillation is t + φ(T ). Physically, the derivative of the phase with respect to time is the
frequency, and thus the frequency is 1 + ε dφ

dT .

Since dA
dT = ( dr

dT + i dφ
dT r)eiφ(T ) and A2A∗ = r3eiφ(T ), it follows from (14.9.15), using

the real and imaginary parts, that

2
dr

dT
= −3r3 (14.9.17)

r
dφ

dT
= 0. (14.9.18)

The one complex equation (14.9.15) is equivalent to two real equations, (14.9.17) and
(14.9.18). In this specific example, the phase shift φ(T ) is a constant. However, the
amplitude of oscillation decays due to the nonlinear damping satisfying (14.9.17). By
separation, dr

r3 = − 3
2dT . It follows after some algebra that the amplitude of oscillation

algebraically decays due to the small nonlinear damping:

r(T ) =
r(0)√

1 + 3r2(0)T
.

Typically, the phase (t + φ(T )) varies quickly while the amplitude [r(T )] varies slowly.
This is typical of problems with multiple scales. A graph of the solution is illuminating
since it shows the simultaneous appearance of two scaled variables. We call the oscillator
a slowly varying oscillator as the amplitude decays slowly.

14.9.2 Ordinary Differential Equation: Slowly Varying Oscillator

Solutions of oscillatory ordinary differential equations also may require the method of
multiple scales if the coefficients are slowly varying. Consider the spring-mass system
with slowly varying spring constant:
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d2u

dt2
+ ω2(εt)u = 0. (14.9.19)

This can also represent the propagation of light with a slowly varying index of refraction
ω(εt). The one-dimensional wave equation [∂2E

∂t2 = c2(x)∂2E
∂x2 ] in a variable spatial medium

with fixed temporal frequency ωf [E = u(x)e−iωf t] becomes −ω2
fu = c2(x)∂2E

∂x2 . This
is an ordinary differential equation in x which can be shown equivalent to the time-
dependent (14.9.19). If the typical length over which c(x) varies is much longer than a
typical wavelength 2πc

ωf
of solutions, then the medium is slowly varying.

Solutions of (14.9.19) depend on two variables: a fast phase θ and the slow time
T = εt. If the coefficient ω(εt) were a constant, then the frequency of vibration would
be ω. Intuitively, if ω varies very slowly, then the frequency of oscillations should change
slowly but be precisely ω(εt). Our notions of frequency are such that if we have a phase
θ, then dθ

dt is the frequency. Thus, we postulate that the fast phase satisfies exactly

dθ

dt
= ω(εt). (14.9.20)

[It can be shown that perturbation methods based on phases that do not satisfy (14.9.20)
will not work.] The following expressions for the fast phase are equivalent:

θ =
∫

ω(εt) dt =
∫

ω(T ) dT

ε
. (14.9.21)

We assume the solution u(θ, T, ε) depends on two variables: a fast phase θ [satisfying
(14.9.20)] and a slow time T = εt. According to the chain rule (the method of multiply
scaled variables),

d

dt
= ω(T )

∂

∂θ
+ ε

∂

∂T
. (14.9.22)

Since the operator in (14.9.22) does not have constant coefficients, we must calculate the
second derivative with care:

d2

dt2
=

(
ω(T )

∂

∂θ
+ ε

∂

∂T

)(
ω(T )

∂

∂θ
+ ε

∂

∂T

)

= ω2 ∂2

∂θ2
+ ε

(
2ω(T )

∂

∂T

∂

∂θ
+ ω′(T )

∂

∂θ

)
+ ε2 ∂2

∂T 2
.
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The differential equation (14.9.19) becomes

ω2 ∂2u

∂θ2
+ ε

(
2ω(T )

∂

∂T

∂u

∂θ
+ ω′(T )

∂u

∂θ

)
+ ε2 ∂2u

∂T 2
+ ω2u = 0. (14.9.23)

We now assume a perturbation expansion in the multiply scaled variables:

u(θ, T, ε) = u0(θ, T ) + εu1(θ, T ) + . . . . (14.9.24)

By substituting (14.9.24) into (14.9.23), we obtain a sequence of equations of which we
need only the first two:

O(ε0) : ω2

(
∂2u0

∂θ2
+ u0

)
= 0 (14.9.25)

O(ε1) : ω2

(
∂2u1

∂θ2
+ u1

)
= −2ω(T )

∂

∂T

∂u0

∂θ
− ω′(T )

∂u0

∂θ
. (14.9.26)

To leading order, the solution is an elementary slowly varying oscillator in the phase
variable θ:

u0(θ, T ) = A(T )eiθ + A∗(T )e−iθ, (14.9.27)

where A(T ) is an arbitrary function of the slow time variable T = εt, which we will deter-
mine shortly. Equation (14.9.27), with (14.9.20), shows that the slowly varying frequency
is ω, as we have insisted.

We substitute our form of solution (14.9.27) into (14.9.26) and obtain

ω2

(
∂2u1

∂θ2
+ u1

)
= −[2ω(T )A′(T ) + ω′(T )A(T )]ieiθ + (∗).

Coefficients on the right-hand side proportional to e±iθ are secular (resonant since the
forcing frequency equals the natural frequency), and they must be eliminated:

2ω(T )A′(T ) + ω′(T )A(T ) = 0. (14.9.28)

Equation (14.9.28) is a differential equation for the slowly varying complex amplitude.
Since A(T ) may be complex,

A(T ) = r(T )eiψ. (14.9.29)

However, it may be shown that ψ is a constant (in this problem), and the amplitude
satisfies

2ω(T )r′(T ) + ω′(T )r(T ) = 0. (14.9.30)
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This equation can be solved by separation or usual linear techniques or by just noticing
that

d

dT
(ω

1
2 r) = 0 (14.9.31)

is equivalent to (14.9.30). Thus, by integration,

r(T ) = cω− 1
2 , (14.9.32)

where c is an arbitrary constant.
This example illustrates the conservation of action first investigated by Einstein.

We will show that, with slowly varying coefficients, the energy is not conserved. However,
the action is conserved:

d

dT
(action) = 0, where action ≡ energy

frequency
.

The energy is defined to be the energy that would occur if the coefficients were constant.
If ω in our differential equation were constant, d2u

dt2 + ω2u = 0, then we would define the
energy as follows: E = 1

2 (du
dt )2 + ω2

2 u2 (kinetic energy plus potential energy). The solution
of the differential equation (in our complex notation) would be u = Aeiωt + A∗e−iωt =
2r cos(ωt+φ0). In this case the energy E = ω2

2 (2r)2(cos2 + sin2) = 2ω2r2. Thus, according
to the conservation of action,

d

dT

(
2ω2r2

ω

)
= 0,

equivalent to (14.9.32), which we have derived using the method of multiply-scaled vari-
ables. In more difficult problems, physicists use conservation of action to determine the
slow variation of the amplitude. Note that energy is not conserved:

dE

dT
=

d

dT
(ω2r2) �= 0,

according to (14.9.32). It is not easy to figure out how a slowly varying restoring force
puts energy into the system or takes energy out of the system. That is why conservation
of action is quite useful.

In summary, we have analyzed the linear differential equation with slowly varying
coefficients:

d2u

dt2
+ ω2(εt)u = 0. (14.9.33)

We have obtained the following approximate solution:

u(t) ≈ u0(θ, T ) = cω− 1
2 eiθ+ψ + (∗) = 2cω− 1

2 cos
(∫

ω(εt) dt + ψ

)
, (14.9.34)
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where c and ψ are arbitrary constants since θ satisfies

dθ

dt
= ω(εt). (14.9.35)

This is not difficult to memorize as the derivative of the phase can be obtained from the
physically intuitive notions of frequency. We just need to memorize the magical ampli-
tude factor of ω− 1

2 (or use conservation of action). This is a well-known formula for wave
propagation problems with variable media. It can also be used to approximate the eigen-
functions of any Sturm–Liouville problem for large eigenvalues (see Section 6.9). This
method is sometimes incorrectly called the WKB method, while perhaps Liouville–Green
(working independently in 1837) would be more appropriate. WKB (Wentzel, Kramers,
Brillouin) in the 1920s solved problems in which the coefficient ω2 evolves from positive
to negative (in the context of tunneling in quantum mechanics), obtaining connection for-
mulas between the oscillatory solutions as in (14.9.34) and the corresponding exponential
solutions.

14.9.3 Slightly Unstable Partial Differential Equation on Fixed Spatial Domain

We consider the following model weakly nonlinear partial differential equation:

∂u

∂t
= k

∂2u

∂x2
+ Ru − εu3, (14.9.36)

subject to the boundary conditions u(0, t) = 0 and u(L, t) = 0. The linearized problem
(ε = 0) has solutions sin nπx

L eσt, where σ = R − k(nπ
L )2. Some modes (fixed n) grow

exponentially depending on the parameter R. For n sufficiently large, the modes decay
exponentially (similar to the heat equation). The first instability (of u = 0) occurs when
R is slightly greater than k( π

L )2, in which case only the mode n = 1 exponentially grows;
all the other modes decay exponentially. Thus, we assume R = k( π

L )2 + εR1 with R1 > 0
so that

∂u

∂t
= k

∂2u

∂x2
+

[
k
(π

L

)2

+ εR1

]
u − εu3. (14.9.37)

It can be shown that a naive perturbation expansion fails on the long time scale:

T = εt. (14.9.38)

Thus, we use the method of multiple scales:

d

dt
=

∂

∂t
+ ε

∂

∂T
. (14.9.39)
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Using (14.9.39), the partial differential equation (14.9.37) becomes

∂u

∂t
= k

∂2u

∂x2
+ k

(π

L

)2

u + ε

[
− ∂u

∂T
+ R1u − u3

]
. (14.9.40)

Substituting the perturbation expansion u = u0 + εu1 + . . . into (14.9.40) yields

O(ε0) :
∂u0

∂t
= k

∂2u0

∂x2
+ k

(π

L

)2

u0 (14.9.41)

O(ε) :
∂u1

∂t
= k

∂2u1

∂x2
+ k

(π

L

)2

u1 − ∂u0

∂T
+ R1u0 − u3

0. (14.9.42)

We use an elementary solution of the leading-order equation (14.9.41):

u0 = A(T ) sin
πx

L
. (14.9.43)

The other modes can be included, but the other modes quickly decay exponentially in
time. The amplitude A(T ) of the slightly unstable mode sin πx

L is an arbitrary function
of the slow time. We will determine A(T ) by eliminating secular terms from the O(ε)
equation.

Using (14.9.43), the perturbed equation (14.9.42) becomes

∂u1

∂t
= k

∂2u1

∂x2
+ k

(π

L

)2

u1 − dA

dT
sin

πx

L
+ R1A sin

πx

L
− A3 sin3 πx

L
, (14.9.44)

to be solved with homogeneous boundary conditions u1(0, t) = 0 and u1(L, t) = 0. Since
(from trigonometric tables) sin3 πx

L = 3
4 sin πx

L − 1
4 sin 3πx

L , the nonlinearity generates the
third harmonic in x. The right-hand side of (14.9.44) involves only the first and third
harmonics, and thus (the method of eigenfunction expansion)

u1 = B1 sin
πx

L
+ B3 sin

3πx

L
. (14.9.45)

Substituting (14.9.45) into (14.9.44) yields ordinary differential equations for the
coefficients:

∂B1

∂t
= −dA

dT
+ R1A − 3

4
A3 (14.9.46)

∂B3

∂t
+ 8k

(π

L

)2

B3 =
1
4
A3. (14.9.47)

A particular solution [B3 = 1
32k (L

π )2A3] for the third harmonic is not needed since it is
not secular. Homogeneous solutions for the third harmonic in x decay exponentially.
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We consider (14.9.46) the higher-order term for the first harmonic. The terms on the
right-hand side of (14.9.46) are functions of the slow time T = εt and hence constant with
respect to the fast time variable t on the left-hand side. If a constant c were on the right-
hand side, the solution corresponding to it would be B1 = ct, algebraic growth in time.
This algebraic growth is not acceptable in the asymptotic expansion u = u0+εu1+. . . . All
the first harmonic in space terms on the right-hand side of (14.9.46) are secular, giving
rise to algebraic growth in time (proportional to t). The secular terms must be zero
(eliminating them), which implies that the amplitude A(T ) varies slowly and satisfies
(what we have called the Landau equation in Section 14.8.6)

dA

dT
= R1A − 3

4
A3. (14.9.48)

According to the linear theory (A small), the amplitude grows exponentially (if R1 > 0).
However, as shown in Fig. 14.9.1 using a one-dimensional phase portrait, the nonlinear-
ity prevents this growth. The amplitude A(T ) equilibrates (the limit as t → ∞) to

A = ±
√

4R1
3 (depending on the initial condition). This is referred to as pitchfork bifur-

cation, as can be seen from the bifurcation diagram in Fig. 14.9.1 (where the equilibrated
amplitude is graphed as a function of the parameter R1). If R1 > 0, A = 0 is unstable,

but A = ±
√

4R1
3 are stable. The parameter R1 measures the distance from the critical

value of the parameter R, εR1 = R − k( π
L )2.

R1

A

FIGURE 14.9.1 One-dimensional phase portrait and bifurcation diagram for pitchfork
bifurcation (Landau equation).

14.9.4 Slowly Varying Medium for the Wave Equation

The wave equation in a spatially variable two- or three-dimensional medium is

∂2E

∂t2
= c2(x, y, z)∇2E.

Plane waves in a uniform medium (c constant) satisfy E = E0e
i(k1x+k2y+k3z−iωt), where

k =
∣∣∣−→k

∣∣∣ = ω
c . For uniform medium, the spatial part of the phase can be defined as follows:
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θ ≡ k1x + k2y + k3z. Thus, the wave number vector satisfies k1 ≡ ∂θ
∂x , k2 ≡ ∂θ

∂y , k3 ≡ ∂θ
∂z ,

which can be summarized as
−→
k = ∇θ.

For nonuniform medium (spatially varying c), often the temporal frequency ω is
fixed (perhaps due to some incoming wave at infinity), E = ue−iωt, so that u satisfies the
reduced wave equation (also called the Helmholtz equation)

∇2u + n2u = 0, (14.9.49)

where n = ω
c is the index of refraction. Here, it is assumed that we have a slowly

varying medium, which means that the medium varies over a much longer distance
than typical wavelengths, so that n2 = n2(εx, εy, εz). For example, when x varies by a
very long distance O(1

ε ) (many wavelengths), the index of refraction can change. The
analogous one-dimensional problem was discussed in Section 14.9.2.

For a slowly varying wave train, we introduce a fast unknown phase θ and define
the wave number as we did for uniform media k1 ≡ ∂θ

∂x , k2 ≡ ∂θ
∂y , k3 ≡ ∂θ

∂z . Thus, the wave
number vector is defined as follows:

−→
k = ∇θ. (14.9.50)

We assume the solution depends on this fast phase θ and the slow spatial scales X = εx,
Y = εy, Z = εz. In the method of multiply scaled variables (by the chain rule),

∂

∂x
= k1

∂

∂θ
+ ε

∂

∂X

∂2

∂x2
=

(
k1

∂

∂θ
+ ε

∂

∂X

)(
k1

∂

∂θ
+ ε

∂

∂X

)

= k2
1

∂2

∂θ2
+ ε

(
2k1

∂

∂X

∂

∂θ
+ k1X

∂

∂θ

)
+ ε2 ∂2

∂X2
.

In general, using the vector notation (subscripts on the gradient operator mean spatial
derivatives with respect to the slow spatial variables),

∇2 = k2 ∂2

∂θ2
+ ε

(
2
−→
k · ∇X

∂

∂θ
+ ∇ · −→k ∂

∂θ

)
+ ε2∇2

X . (14.9.51)

Thus, the reduced wave equation (14.9.49) becomes

k2 ∂2u

∂θ2
+ ε

(
2
−→
k · ∇X

∂u

∂θ
+ ∇ · −→k ∂u

∂θ

)
+ ε2∇2

Xu + n2u = 0. (14.9.52)
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It can be shown (not easily) that the perturbation methods to follow will work only
if the eikonal equation is satisfied:

k2 = ∇θ · ∇θ = n2, (14.9.53)

where k =
∣∣∣−→k

∣∣∣. As described in Section 12.7, the eikonal equation says that the wave
number of a slowly varying wave is always the wave number associated with the infinite
plane wave (k = ω

c = n). The eikonal equation describes refraction for slowly varying
media (and is the basis of geometrical optics). The eikonal equation can be solved for
the phase θ by the method of characteristics (see Section 12.6).

Assuming the eikonal equation (14.9.53) is valid, (14.9.52) becomes

n2 ∂2u

∂θ2
+ ε

(
2
−→
k · ∇X

∂u

∂θ
+ ∇ · −→k ∂u

∂θ

)
+ ε2∇2

Xu + n2u = 0. (14.9.54)

We now introduce the perturbation expansion u = u0 + εu1 + . . . and obtain

O(ε0): n2

(
∂2u0

∂θ2
+ u0

)
= 0 (14.9.55)

O(ε): n2

(
∂2u1

∂θ2
+ u1

)
= −2

−→
k · ∇X

∂u0

∂θ
−∇ · −→k ∂u0

∂θ
. (14.9.56)

The leading-order solution of (14.9.55) is a slowly varying plane wave

u0 = A(X,Y, Z)eiθ. (14.9.57)

We will determine the slow dependence of the amplitude A by eliminating secular terms
from the next term in the perturbation expansion.

By substituting (14.9.57) into (14.9.56), the first perturbation satisfies

n2

(
∂2u1

∂θ2
+ u1

)
= −(2

−→
k · ∇XA + ∇ · −→k A)ieiθ. (14.9.58)

All the terms on the right-hand side of (14.9.58) are secular terms (resonant with forcing
frequency equaling the natural frequency). Thus, to obtain a valid asymptotic expansion
over the long distances associated with the slowly varying coefficient, the amplitude A
must satisfy the transport equation:

2
−→
k · ∇XA + ∇ · −→k A = 0. (14.9.59)
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Since
−→
k = ∇θ, an equivalent expression for the transport equation is

2∇θ · ∇XA + ∇2θA = 0. (14.9.60)

Elegant expressions (see, for example, Bleistein [1984]) for the amplitude A and phase
θ can be obtained using the method of characteristics. These equations are the basis of
Keller’s geometric theory of diffraction of plane waves by blunt objects (such as cylinders
or airplanes or submarines).

In summary, the leading-order solution of the reduced wave equation (∇2u + n2u=0)
for slowly varying media is

u0 = Aeiθ, (14.9.61)

where θ satisfies the eikonal equation (14.9.53) and A solves the transport equation
(14.9.59) or (14.9.60). Higher-order terms may be obtained.

14.9.5 Slowly Varying Linear Dispersive Waves (Including Weak Nonlinear Effects)

As a simple example of the method of multiply scaled variables for partial differential
equations, we consider the following model linear dispersive wave (with dimensionless
variables) with a weakly nonlinear perturbation:

∂2u

∂t2
− ∂2u

∂x2
+ u = εβu3. (14.9.62)

The unperturbed partial differential equation (ε = 0) is a linear wave equation with
an additional restoring force −u. Plane wave solutions of the unperturbed problem u =
ei(kx−ωt) satisfy the dispersion relation ω2 = k2 + 1, and hence the unperturbed problem
is a linear dispersive wave. For plane waves, we introduce the phase θ = kx − ωt such
that the wave number k = ∂θ

∂x and frequency ω = −∂θ
∂t .

We seek slowly varying plane wave solutions due either to initial conditions that are
slowly varying or to the perturbation. We introduce the unknown phase θ and define the
wave number and frequency as for plane waves:

k =
∂θ

∂x
(14.9.63)

ω = −∂θ

∂t
. (14.9.64)



696 Chapter 14 Dispersive Waves: Slow Variations, Stability, Nonlinearity

We assume initially that the wave number k may not be constant but may vary slowly,
changing appreciably only over many wavelengths. We assume that there are slow spatial
and temporal scales,

X = εx (14.9.65)

T = εt, (14.9.66)

of the same order of magnitude as induced by the perturbation to the partial differential
equation. We use the method of multiply scaled variables with the fast phase θ and
the slow spatial and temporal scales X,T . According to the chain rule,

∂

∂x
= k

∂

∂θ
+ ε

∂

∂X
(14.9.67)

∂

∂t
= −ω

∂

∂θ
+ ε

∂

∂T
. (14.9.68)

For the partial differential equation, we need the second derivatives

∂2

∂x2
=

(
k

∂

∂θ
+ ε

∂

∂X

)(
k

∂

∂θ
+ ε

∂

∂X

)
= k2 ∂2

∂θ2
+ ε

(
2k

∂

∂X

∂

∂θ
+ kX

∂

∂θ

)

+ ε2 ∂2

∂X2
(14.9.69)

∂2

∂t2
=

(
−ω

∂

∂θ
+ ε

∂

∂T

)(
−ω

∂

∂θ
+ ε

∂

∂T

)
= ω2 ∂2

∂θ2
+ ε

(
−2ω

∂

∂T

∂

∂θ
− ωT

∂

∂θ

)

+ ε2 ∂2

∂T 2
. (14.9.70)

Substituting these expressions (14.9.69) and (14.9.70) into the partial differential
equation (14.9.62) yields

(
ω2 − k2

) ∂2u

∂θ2
+ u + ε

(
−2ω

∂

∂T

∂u

∂θ
− ωT

∂u

∂θ
− 2k

∂

∂X

∂u

∂θ
− kX

∂u

∂θ

)

+ ε2

(
∂2u

∂T 2
− ∂2u

∂X2

)
= εβu3. (14.9.71)

We claim that the perturbation method that follows will not work unless the frequency
of the slowly varying wave satisfies the dispersion relation for elementary plane waves:

ω2 = k2 + 1. (14.9.72)
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The slowly varying wave number k and frequency ω (and phase θ) can be solved by
the method of characteristics from given initial conditions, as we outline later (and have
shown in Section 14.6). In particular, conservation of waves follows from the definitions
of k and ω [(14.9.63) and (14.9.64)]:

kT + ωX = 0. (14.9.73)

A quasilinear partial differential equation for the wave number k follows from (14.9.73)
using the dispersion relation (14.9.72):

kT + ωkkX = 0. (14.9.74)

Thus, the wave number stays constant moving with the group velocity (where in this
problem ωωk = k).

Using the dispersion relation (14.9.72), Equation (14.9.71) simplifies to

∂2u

∂θ2
+ u + ε

(
−2ω

∂

∂T

∂u

∂θ
− ωT

∂u

∂θ
− 2k

∂

∂X

∂u

∂θ
− kX

∂u

∂θ

)
+ ε2

(
∂2u

∂T 2
− ∂2u

∂X2

)
= εβu3.

(14.9.75)
Using a perturbation expansion u = u0 + εu1 + . . . , we obtain from (14.9.75)

O(ε0) :
∂2u0

∂θ2
+ u0 = 0 (14.9.76)

O(ε) :
∂2u1

∂θ2
+ u1 =

(
ωT + 2ω

∂

∂T

)
∂u0

∂θ

+
(

kX + 2k
∂

∂X

)
∂u0

∂θ
+ βu3

0. (14.9.77)

The solution of the leading-order equation (14.9.76) is a slowly varying (modulating)
plane wave

u0 = A(X,T )eiθ + (∗), (14.9.78)

where (∗) represents the complex conjugate. In general, A(X,T ) is the complex wave am-
plitude and will be determined by eliminating secular terms from the next order equation.

We now consider the O(ε) equation (14.9.77), whose right-hand side includes the
effect of the nonlinear perturbation and the slow variation assumptions. If the nonlinearity
is present (β �= 0), then the nonlinearity generates first and third harmonics since u3

0 =
A3e3iθ +3A2A∗eiθ +(∗). Substituting (14.9.78) into the right-hand side of (14.9.77) yields

∂2u1

∂θ2
+u1 = i

(
ωT A + 2ω

∂A

∂T

)
eiθ + i

(
kXA + 2k

∂A

∂X

)
eiθ +β(A3e3iθ +3A2A∗eiθ)+ (∗).

(14.9.79)
The first harmonic terms eiθ on the right-hand side of (14.9.79) are secular (resonant with
forcing frequency equaling the natural frequency). Eliminating the secular terms yields a
partial differential equation the wave amplitude A(X,T ) must satisfy:
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2ω
∂A

∂T
+ 2k

∂A

∂X
+ (ωT + kX)A − iβ3A2A∗ = 0. (14.9.80)

From this equation we see that the amplitude moves with the group velocity (since, for
this dispersion relation ω2 = k2 + 1, the group velocity is given by ωk = k

ω ), but the
amplitude is not constant, moving with the group velocity.

Multiplying (14.9.80) by A∗ and adding the complex conjugate yields an equation
that represents an important nontrivial physical concept:

∂

∂T
(ω |A|2) +

∂

∂X
(k |A|2) = 0, (14.9.81)

where we have used |A|2 = AA∗. Equation (14.9.81) is called conservation of wave
action and is a general principle. Conservation laws can be put in the form ∂p

dt + ∂q
dx = 0,

where p is the conserved quantity and q is its flux. Differential conservation laws follow
from integral conservation laws (as is briefly discussed in Section 1.2). Sometimes on in-
finite domains it can be shown that d

dt

∫∞
−∞ ρ dx = 0, and hence for all time

∫∞
−∞ ρ dx

equals its initial value (and is thus constant in time or conserved). The general statement
of conservation of wave action for linear dispersive partial differential equa-
tions even when the coefficients in the partial differential equation are slowly
varying is

∂

∂T

(
E

ω

)
+

∂

∂X

(
cg

E

ω

)
= 0. (14.9.82)

The wave action E
ω is conserved, where E is defined to be the average energy density

and cg is the usual group velocity. It can be shown for our example that E = ω2 |A|2.
Consequently, the flux of wave action satisfies cg

E
ω = k |A|2since in our example ωk = k

ω .
[If β = 0 and thus A could be real, this result would follow by just multiplying (14.9.80) by
A.] Wave action provides a generalization to linear partial differential equations of the idea
of action for linear ordinary differential equations. Action has been further generalized to
nonlinear dispersive partial differential equations by Whitham [1999].

In this example, the nonlinearity affects only the phase since the nonlinear force
here is just a restoring force. If the nonlinearity had been a damping force, the nonlin-
earity would have affected the amplitude (see the Exercises). To see how the nonlinear
perturbation effects the phase, we let

A = reiφ, (14.9.83)

where r = |A| has already been analyzed. Substituting (14.9.83) into (14.9.80) and keeping
only the imaginary part yields the equation for the phase (of the complex amplitude A):

2ω
∂φ

∂T
+ 2k

∂φ

∂X
= 3βr2, (14.9.84)
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which shows that the phase moves with the group velocity but evolves depending on
r2 = |A|2. Since ∂φ

∂T is a frequency and ∂φ
∂X a spatial wave number, (14.9.84) represents

the dependence of the spatial and temporal frequencies on the amplitude r = |A| due to
the nonlinear perturbation. (If β = 0, the phase φ would be constant if it were initially
constant.)

Typically, small perturbations of oscillatory phenomena cause small modulations
(slow variations) of the amplitude (as in Section 14.9.1) and the phase (as in this
subsection).

EXERCISES 14.9
In all of the following exercises, assume 0 < ε << 1. In Exercises 14.9.1–14.9.7, use the method
of multiple scales to obtain equations for the amplitude and phase.
14.9.1. d2u

dt2
+ u = −εdu

dt (compare to approximations of exact solution)

14.9.2. d2u
dt2

+ ω2(εt)u = −εdu
dt

*14.9.3. d2u
dt2

+ ω2(εt)u = −ε(du
dt )3

14.9.4. d2u
dt2

+ u = ε(u3 − du
dt )

*14.9.5. A linearized pendulum with varying length L can be shown to satisfy the following
equation:

d2u

dt2
+

g

L
u = −2

1
L

dL

dt

du

dt
.

Note that the right-hand side is not zero. Suppose L is a slowly varying length L =
L(εt). Use the method of multiple scales to obtain a solution valid when εt = O(1).
(Hint: 1

L
dL
dt = ε

L
dL
dT , where T = εt.)

14.9.6. Consider the system

d2x

dt2
+ 9x = εy3

d2y

dt2
+ y = 4εxy2.

(a) By discussing the frequencies, show why the slow time is T = εt.
(b) Obtain the leading-order equations (but do not solve them) that are valid for

T = O(1), describing the long-time behavior of this system.

14.9.7. Approximate the solution of Airy’s differential equation d2y
dx2 +xy = 0 in the region of

oscillation (assume large x can be interpreted as a slowly varying coefficient) using
the Liouville–Green approximation.

In Exercises 14.9.8–14.9.10, use the method of multiply scaled variables to obtain the equation
for the slowly varying amplitude and phase.

*14.9.8. ∂u
∂t = ∂3u

∂x3

14.9.9. ∂2u
∂t2

− ∂2u
∂x2 + u = εβ(∂u

∂t )3

14.9.10. ∂2u
∂t2

− c2 ∂2u
∂x2 + βu = 0, assuming c and β depend slowly on X and T . You may

assume the dispersion relation is still valid for slowly varying media.
14.9.11. Because the reduced wave equation (14.9.49) is linear, we can simple let u =

A(X, Y, Z)eiθ, where θ solves the eikonal equation (14.9.53). Find the exact equation
for A and the leading-order equation.
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14.10 SINGULAR PERTURBATION METHODS: BOUNDARY LAYERS METHOD
OF MATCHED ASYMPTOTIC EXPANSIONS

A large variety of significant physical problems [see Kevorkian and Cole (1996)] is de-
scribed by ordinary or partial differential equations, where different approximations are
valid in different regions (of space and/or time). Often one of the regions is much smaller
than another and is located at a boundary, and thus this thin region is referred to as a
boundary layer. Perturbation expansions can be determined in each region, but they
must be related by a procedure called the method of matched asymptotic expan-
sions. We begin with an elementary example of an ordinary differential equation to
explain the method of matched asymptotic expansions in its simplest context. Our sec-
ond (and last) example is a partial differential equation representing the convection of a
pollutant where diffusion is only important near a boundary.

14.10.1 Boundary Layer in an Ordinary Differential Equation

As an example to motivate the method of matched asymptotic expansions, we consider
the boundary value problem for the following second-order ordinary differential equation:

ε
d2u

dx2
− du

dx
+ 2xu = 0, (14.10.1)

subject to the two boundary conditions u(0) = 3 and u(1) = 2. We assume ε is a small
positive parameter, 0 < ε << 1. Even this elementary problem cannot be solved analyt-
ically because of the variable coefficient. Numerical methods are difficult to apply if ε is
small (and impossible if ε is sufficiently small). In addition, numerical methods often do
not add any insight into the boundary layer behavior we will derive.

Reduced problem. Intuitively, we expect that if ε is very small (10−8, for exam-
ple), then for all practical purposes the reduced first-order differential equation should
be a very good approximation:

− du

dx
+ 2xu = 0. (14.10.2)

The general solution of the reduced equation (14.10.2) (by separation or by an integrating
factor) has one arbitrary constant:

u = cex2
. (14.10.3)

Unfortunately, this solution has one arbitrary constant, which cannot be used to solve
these two boundary conditions (see Fig. 14.10.1). We will show that this solution is
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approximately valid almost everywhere. The constant c can be determined from one of
the boundary conditions, and we will determine which of the two boundary conditions
should be used to determine c. There is a thin region near one of the boundaries (called
a boundary layer) where (14.10.3) is not a good approximation.

00 11
(a) (b)

33

22

3  exp(x2)

2e−1 exp(x2)

FIGURE 14.10.1 (a) Solution of reduced equation can satisfy only one boundary condition;
(b) boundary layer at x = 1.

Boundary layer location and thickness. We are in trouble if ε is small since
neglecting the εd2u

dx2 -term reduces the differential equation to first order. Somewhere εd2u
dx2

cannot be neglected even though ε is small. We conclude that our simplifying approxima-
tion (14.10.2) or (14.10.3) may fail if somewhere d2u

dx2 is large. There are many possibilities,
some of which are that d2u

dx2 is large only near the left boundary x = 0, large only near the
right boundary x = 1, large only near some interior point, large only near both bound-
aries, or large everywhere. The main idea of a boundary layer will be a region where the
derivatives are large. Derivatives can be large if the solution u changes by an order 1
amount in a short distance x − x0 near some (unknown) point x0. The small distance
near x0 is called the boundary layer thickness, which we assume is O(εp), where p > 0
in order for the distance to be small:

x − x0 = εpX, (14.10.4)

or, equivalently,

X =
x − x0

εp
. (14.10.5)

Here, we are rescaling the independent variable x. The new variable X is called the
boundary layer variable. Derivatives will be large because of the chain rule du

dx = ε−p du
dX ,
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where we assume du
dX is O(1) in the boundary layer. Using the boundary layer variable

(14.10.5), the differential equation (14.10.1) becomes

ε1−2p d2u

dX2
− ε−p du

dX
+ 2(x0 + εpX)u = 0. (14.10.6)

Since ε is small, the middle term is large O(ε−p), much larger than the term 2(x0+εpX)u.
In order for the differential equation to imply some nontrivial balance, in this example,
the first and second terms must have the same order of magnitude:

1 − 2p = −p. (14.10.7)

We therefore conclude in this example that

p = 1, (14.10.8)

so that in this example the boundary layer thickness is O(ε1), x − x0 = εX.
However, we need to determine the location of the boundary layer. In the boundary

layer the first and second terms are both O(ε−1) larger than the remaining term. Roughly
(we will improve this later), the leading-order boundary layer equation is

d2u

dX2
− du

dX
= 0. (14.10.9)

The general solution of (14.10.9) is

u = A + BeX = A + Be
x−x0

ε , (14.10.10)

which is valid in the boundary layer. One term exponentially grows as x increases with
very large growth rate O( 1

ε ) on the x-scale. If x is more than O(ε) greater than x0, the
exponential term will be so large that it cannot connect to the solution of the reduced
equation. This kind of nearly unlimited exponential growth of the solution in a boundary
layer must be prevented. One way to prevent this fast exponential growth is to let B = 0.
If B = 0, the solution in the boundary layer is a constant, which is not acceptable since
derivatives of the solution are usually large in the boundary layer. Thus, we must include
Be

x−x0
ε in the boundary layer solution. In this problem, x0 cannot be some interior point

(or the left endpoint x0 = 0) since the solution in the boundary layer exponentially grows
too large if x > x0. Only if the boundary layer is located at the right endpoint x0 = 1 will
the undesirable large exponential growth not occur. If x0 = 1, then x cannot be greater
than x0:

x − 1 = εX. (14.10.11)

In this case, the leading-order boundary layer solution (14.10.10) (near x = 1) is

u = A + Be
x−1

ε (14.10.12)
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and decays exponentially (not grows) as the solution leaves the boundary layer. If x − 1
is negative, then e

x−1
ε is transcendentally small. The solution varies quickly (in a small

region), desirable for a boundary layer. Now that we know that the boundary layer in
this problem is located at the right end, we can proceed with the mathematical solution.

Outer expansion. We begin by determining an asymptotic expansion of the
solution of the differential equation away from any boundary layer. We introduce a per-
turbation expansion (which we assume is in the following elementary form):

u(x, ε) = u0(x) + εu1(x) + . . . . (14.10.13)

We call this the outer expansion, since it is valid away from a boundary layer. Since
ε is very small, we may need only a few terms in this expansion [sometimes only the
leading-order term u0(x)]. Substituting the perturbation expansion (14.10.13) into the
differential equation (14.10.1) yields

O(ε0) :
du0

dx
− 2xu0 = 0 (14.10.14)

O(ε1) :
du1

dx
− 2xu1 =

d2u0

dx2
. (14.10.15)

We will restrict our attention to the leading-order outer equation (14.10.14), whose
solution (as before) is

u0(x) = cex2
. (14.10.16)

However, now we know there is a boundary layer at x = 1, so that the outer solution
must solve the boundary condition at x = 0:

u0(0) = c = 3. (14.10.17)

The leading-order outer solution
u0(x) = 3ex2

(14.10.18)

satisfies the boundary condition at x = 0 but does not satisfy the boundary condition
at x = 1.

Inner (boundary layer) expansion. In the boundary layer near x = 1, we
introduce the inner variable x = 1 + εX (14.10.11). The exact inner (boundary layer)
equation follows by multiplying (14.10.6) by ε:

d2u

dX2
− du

dX
+ 2ε(1 + εX)u = 0. (14.10.19)

We can introduce a perturbation expansion of the solution valid in the boundary layer.
This is called the inner expansion or boundary layer expansion:

u = U0(X) + εU1(X) + . . . . (14.10.20)
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By substituting (14.10.20) into (14.10.19), we obtain

d2U0

dX2
− dU0

dX
= 0 (14.10.21)

d2U1

dX2
− dU1

dX
= −2U0. (14.10.22)

As we obtained earlier, the solution of the leading-order equation (14.10.21) is

U0(X) = A + BeX = A + Be
x−1

ε , (14.10.23)

when expressed in terms of the usual inner variable x. The boundary layer equation should
satisfy the boundary condition at x = 1. u(x = 1) = 2 becomes U0(X = 0) = 2. From
this we conclude that

2 = A + B. (14.10.24)

In this example the boundary layer equation is a second-order equation with two arbi-
trary constants. In this example, one condition is a boundary condition, while the second
condition will be that the outer solution must match the inner (boundary layer) solution.

Matching. We have obtained an outer expansion valid away from the boundary
layer,

u = 3ex2
+ εu1(x) + . . . , (14.10.25)

and an inner expansion valid in the boundary layer,

u = A + BeX + εU1(X) + . . . , (14.10.26)

where from the boundary condition 2 = A + B. These two asymptotic expansions must
be expansions of the same solution of the differential equation. We assume there is an
overlap region where both expansions are simultaneously valid. Thus, we equate the two
expansions in a manner that is called the method of matched asymptotic expan-
sions. The overlap region is near the boundary layer (from the point of view of the
outer solution) and far from the boundary layer (from the point of view of the scales
in the boundary layer). In simple examples (such as this one), the matching principle
states that

the inner limit of the outer solution =
the outer limit of the inner solution.

(14.10.27)

From the point of view of the outer solution, the inner limit is the limit as x → 1. In this
example, the outer limit means X → −∞. In this example,

lim
x→1

u0(x) + εu1(x) = lim
X→−∞

U0(X) + εU1(X). (14.10.28)
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Using only the leading-order terms, we have

lim
x→1

3ex2
= lim

X→−∞
A + BeX . (14.10.29)

Thus 3e = A. Since A + B = 2, we also have B = 2 − 3e. Consequently, in summary,
Leading-order outer solution (away from x = 1): u = 3ex2

Leading-order inner solution (near x = 1): u = 3e + (2 − 3e)eX ,
which is graphed in Fig. 14.10.1.

Often these inner and outer limits do not exist and must be replaced by the corre-
sponding asymptotic expansions:

the inner asymptotic expansion of the outer solution =
the outer asymptotic expansion of the inner solution.

(14.10.30)

These are two very different calculations that must be the same. In the case where x−1 =
εX, the two expansions are as follows:

1. Fixing x and letting ε → 0. (This means X → −∞, the outer expansion
of the inner solution.)
2. Fixing X and letting ε → 0. (This means x → 1, the inner expansion of
the outer solution.)

There are practical procedures that take into account the fact that often only the first few
terms are worth the effort of computation. Remember that ε is very small, and higher-
order terms are often negligible.

The form of the inner and outer expansions may have to be adjusted in other prob-
lems. Higher-order terms can be included and matched, but that is an important (and
often necessary) process that we do not have the time to develop. The asymptotic expan-
sions of the inner and outer solutions are often doable, but more effort is required than in
the elementary example here. Nonlinear problems can be more difficult and interesting.

14.10.2 Diffusion of a Pollutant Dominated by Convection

We will analyze one elementary example of a singular perturbation problem for a partial
differential equation by the boundary layer method (the method of matched asymptotic
expansions). We consider a pollutant with unknown chemical concentration u(x, y, t).
Without convection (the motion of a fluid) the concentration satisfies the diffusion equa-
tion ∂u

∂t = k(∂2u
∂x2 + ∂2u

∂y2 ). If the fluid moves at a known velocity −→v (where in fluid dynamics
it is shown that usually ∇ · −→v = 0), then the time derivative in the diffusion equation
should be replaced by the convective derivation (the time derivative moving with the
fluid) du

dt = ∂u
∂t + dx

dt
∂u
∂x + dy

dt
∂u
∂y = ∂u

∂t + −→v · ∇u:

∂u

∂t
+ −→v · ∇u = k

(
∂2u

∂x2
+

∂2u

∂y2

)
. (14.10.31)
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We consider an idealized situation in which the pollution is caused by a series of smoke
stacks (industrial parks), each of which we assume produces a known (but perhaps differ-
ent) level of pollution that does not change in time. Thus, we know the level of pollution on
the boundary of some region, and we wish to determine the steady-state level of pollution
inside the large region:

−→v · ∇u = k

(
∂2u

∂x2
+

∂2u

∂y2

)
. (14.10.32)

We first assume the convective atmospheric velocity is constant and in a somewhat general
direction −→v = âi + bĵ. In this case the steady equation for diffusion becomes

a
∂u

∂x
+ b

∂u

∂y
= ε

(
∂2u

∂x2
+

∂2u

∂y2

)
, (14.10.33)

where (for the convenience of singular perturbation methods) we have introduced ε as
a small (in some sense) diffusion coefficient. This is not an easy mathematical problem,
especially if the geometric region is not a rectangle.

Outer expansion. If ε is a very small parameter, we expect (as a good approx-
imation) that the following reduced first-order partial differential equation should be
important:

a
∂u0

∂x
+ b

∂u0

∂y
= 0. (14.10.34)

We justify this by introducing into (14.10.33) a regular perturbation expansion:

u = u0 + εu1 + . . . , (14.10.35)

whose leading-order term satisfies (14.10.34). Equation (14.10.34) can be solved by the
method of characteristics. If dy

dx = b
a , then du0

dx = 0 or u0 = constant. The characteristics
of the reduced equation (14.10.34) are ay − bx = constant. Thus,

u0 = f(ay − bx), (14.10.36)

where the arbitrary function f should be determined from one boundary condition. How-
ever, for the diffusion equation we have two boundary conditions (determined by the
manner in which the characteristics divide the boundary of the closed two-dimensional
region, as will be clearer by the specific example to follow). We will show that (14.10.36)
is valid away from a boundary layer (region where derivatives are large). In addition, we
will show that the boundary layer is located only at a specific portion of the boundary. We
call (14.10.35) the outer expansion and (14.10.36) the leading-order outer solution
since it is valid away from the boundary layer.

Simple example. For the rest of this subsection, we assume the fluid velocity is
in the positive y-direction −→v = (0, 1) so that the partial differential equation (14.10.33)
for steady diffusion becomes
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∂u

∂y
= ε

(
∂2u

∂x2
+

∂2u

∂y2

)
. (14.10.37)

The solution of the leading-order outer equation ∂u0
∂y = 0 is

u0 = f(x), (14.10.38)

an arbitrary function of x. We assume the characteristics (of the reduced equation) x =
constant divide the boundary of the geometric region into two pieces, which we call the
top y = yT (x) and bottom y = yB(x) (see Fig. 14.10.2). The boundary condition for the
diffusive partial differential equation is that the level of pollution is specified on the entire
boundary. We introduce two functions, the level of pollution on the top:

u = uT (x) on y = yT (x), (14.10.39)

and the level of pollution on the bottom:

u = uB(x) on y = yB(x). (14.10.40)

The one arbitrary function can satisfy one but not both of these conditions. On the
basis of physical intuition, we expect that since the atmosphere is moving in the positive
vertical direction, the wind caries the pollutant upward. We expect that the solution of
the reduced problem satisfies the boundary condition on the bottom:

u0 = f(x) = uB(x). (14.10.41)

Since this does not solve the boundary condition on the top, we expect that there is a
thin region near the top where derivatives are large and cannot be neglected. In the next
subsection, we show mathematically that the boundary layer is located on the top and
determine its thickness.

u = uT(x)

(a) (b)

u = uT(x)

u = uB(x) u = uB(x)

FIGURE 14.10.2 (a) Characteristics; (b) convection dominates (boundary layer at the top).



708 Chapter 14 Dispersive Waves: Slow Variations, Stability, Nonlinearity

Boundary layer (inner) expansion. We want to develop a procedure to deter-
mine where a boundary layer is allowed (and determine its thickness). We first analyze the
possibility that the boundary layer is located near the top. However, our mathematical
analysis will be general enough to show that the boundary layer in this example cannot
be located on the bottom. We introduce as a scaled set of independent spatial variables
(ξ,η) with unknown thickness O(εp) with p > 0:

ξ = x

η =
y − yT (x)

εp
.

(14.10.42)

Since the boundary is not necessarily straight, both x- and y-derivatives are large:

∂u

∂x
=

∂u

∂ξ
− y

′
T (x)
εp

∂u

∂η

∂u

∂y
=

1
εp

∂u

∂η
.

Second derivatives are needed:

∂2u

∂x2
=

(
∂

∂ξ
− y

′
T (x)
εp

∂

∂η

)(
∂u

∂ξ
− y

′
T (x)
εp

∂u

∂η

)
=

[y
′
T (x)]2

ε2p

∂2u

∂η2
+ . . . (14.10.43)

∂2u

∂y2
=

1
ε2p

∂2u

∂η2
. (14.10.44)

If only the leading-order terms are needed (in the boundary layer), we can avoid the
more complicated expressions for the second derivative. Substituting these expressions
(14.10.43) and (14.10.44) into our example (14.10.37), we obtain the leading-order equa-
tion u = U0(ξ, η) + . . . in a boundary layer:

1
εp

∂U0

∂η
= ε1−2pkT (ξ)

∂2U0

∂η2
, (14.10.45)

where the important coefficient is positive:

kT (ξ) = 1 + [y
′
T (x)]2. (14.10.46)

By balancing order of magnitudes of the largest terms in (14.10.45), we obtain

p = 1, (14.10.47)

so that the thickness of the boundary layer is O(ε1). Because derivatives are largest
in one direction, the partial differential equation to leading order reduces to an ordinary
differential equation:
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∂U0

∂η
= kT (ξ)

∂2U0

∂η2
. (14.10.48)

The general solution of (14.10.48) is

U0(ξ, η) = A(ξ) + B(ξ)e
η

kT (ξ) , (14.10.49)

where A(ξ) and B(ξ) are arbitrary functions of ξ since ∂
∂η involves ξ fixed.

Now it is possible to determine whether or not a boundary layer exists at the top (or
the bottom). The method of matched asymptotic expansions states that the boundary
layer solution must match the interior (outer) solution. Since

η =
y − yT (x)

ε
, (14.10.50)

the interior is approached by the limit process:

η → −∞ if the boundary layer is at the top
η → +∞ if the boundary layer is at the bottom.

Fast exponential growth (14.10.49) in a boundary layer is not allowed as the solution
becomes transcendentally large. However, exponential decay is typical. Since kT (ξ) > 0
and the corresponding kB(ξ) > 0, in this example we must prevent η → +∞ as one leaves
a boundary layer. This can be prevented only if the boundary layer for this problem is
located at the top. This is the same conclusion that we reached based on the physical
intuition that the pollution levels are convected into the interior of the region by the given
upward atmospheric velocity.

In this way we have obtained the leading-order solution in the boundary layer located
at the top:

U0(ξ, η) = A(ξ) + B(ξ)e
η

kT (ξ) . (14.10.51)

If the boundary layer is at the top, then the solution in the boundary layer should satisfy
the boundary condition at the top, which is u = uT (x) at y = yT (x). Since y = yT (x)
corresponds to η = 0, we satisfy the top boundary condition with

A(ξ) + B(ξ) = uT (ξ). (14.10.52)

The top boundary condition prescribes one condition for the two arbitrary functions A(ξ)
and B(ξ). The second condition (needed to determine the boundary layer solution) is that
the inner and outer solutions must match.

Matching of the inner and outer expansions. In summary, the leading-order
(outer) solution is valid away from a thin boundary layer near the top portion of the
boundary:

u0 = uB(x). (14.10.53)
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The leading-order (inner) solution in the boundary layer near the top is

U0 = A(x) + B(x)e
η

kT (x) , (14.10.54)

where the boundary layer variable is η = y−yT (x)
ε and where A(x) + B(x) = uT (x) to

satisfy the boundary condition at the top.
These two asymptotic expansions represent a good approximation to the solution

of the original partial differential equation in different regions. Since there is an overlap
region where both expansions are valid, the matching principle states that

the inner limit of the outer solution = the outer limit of the inner solution.

In this example, the inner limit is y → yT (x), and the outer limit is η → −∞. Thus,
matching the leading-order inner and outer solutions yields

lim
y→yT (x)

uB(x) = lim
η→−∞A(x) + B(x)e

η
kT (x) , (14.10.55)

or, equivalently,
uB(x) = A(x). (14.10.56)

Since A(x) + B(x) = uT (x), we have B(x) = uT (x) − uB(x). The leading-order solution
in the boundary layer is

U0 = uB(x) + [uT (x) − uB(x)]e
y−yT (x)
εkT (x) . (14.10.57)

The concentration of the pollutant is convected from the bottom into the interior, as
described by the leading-order outer solution (14.10.53). The leading-order inner solution
(14.10.57) shows that a thin boundary layer at the top exists (illustrated in Fig. 14.10.2)
in which diffusion dominates and the level of pollution suddenly changes from level in the
interior (convected from the bottom) to the level specified by the top boundary condition.

EXERCISES 14.10

In Exercises 14.10.1–14.10.7, find one term of the inner and outer expansions and match them:
14.10.1. εd2u

dx2 − 2du
dx + 3u = 0 with u(0) = 1 and u(1) = 2

14.10.2. εd2u
dx2 + 2du

dx − 3u = 0 with u(0) = 1 and u(1) = 2
*14.10.3. εd2u

dx2 − 4u = x with u(0) = 1 and u(1) = 2
14.10.4. εd2u

dx2 + εdu
dx − 9u = 0 with u(0) = 1 and u(1) = 2

14.10.5. εd2u
dx2 + 2e−xu = 8 with u(0) = 1 and u(1) = 2

*14.10.6. εd2u
dx2 + (2x + 1)du

dx + 2u = 0 with u(0) = 1 and u(1) = 2
14.10.7. εd2u

dx2 + 2e−xu = 8 with u(0) = 1 and u(1) = 2
14.10.8. Find an exact solution of Exercise 14.10.1 (and graph using software).
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14.10.9. Sometimes there can be a boundary layer within the boundary layer. Consider for
0 < x < 1 with 0 < ε << 1:

ε4 d2y

dx2
+ x2 dy

dx
− εy = 0 with y(0) = 1 and y(1) = 2.

You may assume (without verifying) that there is no boundary layer at x = 1.
Solve this problem, including two terms of the outer expansion. Show that two
different scalings near x = 0 are valid, a thin and thick one. Determine only one
term of these two other expansions. Match the outer solution to the thicker inner
solution, and match the thicker inner solution to the thinner inner solution.

14.10.10. Consider ε(∂2u
∂x2 + ∂2u

∂y2 ) = 4∂u
∂x + ∂u

∂y , with u specified on the boundaries of the square
0 < x < 1, 0 < y < 1. Using physical reasoning, where will there be a boundary
layer?

14.10.11. ε(∂2u
∂x2 + ∂2u

∂y2 ) = u− f(x, y) with boundary conditions on the unit square: u(x, 0) =
g(x), u(x, 1) = h(x), u(0, y) = r(y), and u(1, y) = s(y). Determine the leading-order
outer solution. To save time, just determine the leading-order inner solution in one
boundary layer (since the others are quite similar). Match these.
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Answers to Starred Exercises

1.2.8.
∫ L

0
cρu A dx

1.2.9. (e) u(t) = u0 exp
[
−
(

2h
cρr

)
t
]

1.3.2. K0(x0−)∂u
∂x (x0−, t) = K0(x0+)∂u

∂x (x0+, t)

1.3.3. V cfρf
∂u
∂t (L, t) = −K0(L)∂u

∂x (L, t)A, where V is the volume of the bath

1.4.1. (a) u(x) = Tx
L

(d) u = T + αx

(f) u(x) = −x4

12 + L3x
3 + T

(h) u = T + α(x + 1)

1.4.2. (a) K0L2

2

1.4.7. (a) β = 1 − L

1.5.2. ∂u
∂t + v·∇u = k∇2u − u∇·v (often, physically, ∇ · v = 0)

1.5.9. (a) u =
T1 ln

r2
r +T2 ln r

r1
ln

r2
r1

1.5.11. β = b
a

1.5.13. u(r) = 320
3

(
1 − 1

r

)

2.3.1. (a) dh
dt = −λkh and 1

r
d
dr

(
r dφ

dr

)
= −λφ

2.3.1. (c) d2φ
dx2 = −λφ and d2h

dy2 = λh

2.3.1. (e) 1
kh

dh
dt = 1

φ
d4φ
dx4 = λ

2.3.1. (f) 1
c2h

d2h
dt2 = 1

φ
d2φ
dx2 = −λ

2.3.2. (b) λ = (nπ/L)2 with L = 1 so that λ = n2π2, n = 1, 2, . . .

2.3.2. (d) λ =
[

(n− 1
2 )π

L

]2
, n = 1, 2, 3, . . .

2.3.2. (f) λ =
(

nπ
b−a

)2

, n = 1, 2, 3, . . .

716
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2.3.3. (c) u(x, t) =
∑∞

n=1 An sin nπx
L e−k(nπ/L)2t, where

An = 2
L

∫ L

0
2 cos 3πx

L sin nπx
L dx

2.3.4. (a) cρA
∑∞

n=1 Bne−k(nπ
L )2

t
(

1−cos nπ
nπ
L

)

2.3.4. (c) Heat energy equals initial heat energy plus the time integral of the flow in
of the heat energy at the boundaries.

2.3.6. 0(n �= m), L
2 (n = m �= 0), L(n = m = 0)

2.3.8. (a) u = 0

2.3.8. (b) u = e−αt
∑∞

n=1 bn sin nπx
L e−k(nπ/L)2t

2.3.9. (a) If
√

−α
k L = nπ, then u(x) = A sin nπx

L .

2.3.9. (b) If −α
k =

(
π
L

)2
, u(x, t) → B sin πx

L , as t → ∞. If −α
k <

(
π
L

)2, then u → 0
as t → ∞. However, if −α

k >
(

π
L

)2
, u → ∞ as t → ∞.

2.3.10. (c)
[∫ L

0
A(x)B(x) dx

]2
≤
(∫ L

0
A2 dx

)(∫ L

0
B2 dx

)

2.4.1. u = A0 +
∑∞

n=1 An cos nπ
L e−k(nπx/L)2t

(a) A0 = 1
2 , An = − 2

nπ sin nπ
2 (n �= 0)

(b) A0 = 6, A3 = 4, others = 0

(c) A0 = − 4
π , An = − 4

L

∫ L

0
sin πx

L cos nπx
L dx can easily be evaluated using

trigonometric identities or tables of integrals.

2.4.2. u(x, t) =
∑∞

n=1 cn cos (n− 1
2 )πx

L e−[(n−1/2)π/L]2kt, where

cn = 2
L

∫ L

0
f(x) cos (n− 1

2 )πx

L dx

2.4.3. λ = n2, φ = sin nx and cos nx, n = 0, 1, 2, 3, . . .

2.5.1. (a) u(x, y) = A0y +
∑∞

n=1 An cos nπx
L sinh nπy

L

2.5.1. (c) u(x, y) =
∑∞

n=1 An cosh nπx
H sin nπy

H , where

An cosh nπL
H = 2

H

∫H

0
g(y) sin nπy

H dy

2.5.1. (e) u(x, y) =
∑∞

n=1 Anhn(y) sin nπx
L , Anhn(H) = 2

L

∫ L

0
f(x) sin nπx

L dx,

where hn(y) = cosh nπy
L + L

nπ sinh nπy
L

2.5.2. (a)
∫ L

0
f(x) dx = 0

2.5.3. u(r, θ) =
∑∞

n=0 Anr−n cos nθ +
∑∞

n=1 Bnr−n sin nθ
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(a) A0 = ln 2, A3a
−3 = 4, other An = 0, Bn = 0

(b) See (2.5.47) with an replaced by a−n.

2.5.4. u(r, θ) = a2−r2

2π

∫ π

−π
f(θ̄) dθ̄

a2+r2−2ar cos(θ−θ̄)

2.5.5. (a) u(r, θ) =
∑∞

n=1 Anr2n−1 cos(2n − 1)θ

2.5.5. (c) u(r, θ) =
∑∞

n=1 Anr2n sin 2nθ, An = 2
πn

∫ π/2

0
f(θ) sin 2nθ dθ

2.5.6. (a) u(r, θ) =
∑∞

n=1 Bnrn sin nθ

2.5.7. (b) u(r, θ) =
∑∞

n=0 Anr3n cos 3nθ

2.5.8. (a) φ1(r) =

{
ln(r/a) n = 0(

r
a

)n − (a
r

)n
n �= 0

, φ2(r) =

{
ln(r/b) n = 0(

r
b

)n − ( b
r

)n
n �= 0

u(r, θ) =
∑∞

n=0 cos nθ [Anφ1(r) + Bnφ2(r)] +
∑∞

n=1 sin nθ [Cnφ1(r) + Dnφ2(r)]

Dnφ2(a) = 1
π

∫ π

−π
f(θ) sin nθ dθ, etc.

2.5.9. (a) u(r, θ) =
∑∞

n=1 An

[(
r
a

)2n − (a
r

)2n
]
sin 2nθ, where An

[(
b
a

)2n − (a
b

)2n
]

= 4
π

∫ π/2

0
f(θ) sin 2nθ dθ

2.5.9. (b) u(r, θ) =
∑∞

n=1 An sinh nπθ
ln(b/a) sin

[
nπ ln(r/a)

ln(b/a)

]
, where An sinh nπ2

2 ln(b/a)

= 2
ln(b/a)

∫ b

a
f(r) sin

[
nπ ln(r/a)

ln(b/a)

]
dr/r

3.2.1.

−3L −L L 3L
(b)

−3L −L
(d)

L 3L

x x x x
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−3L −L
(f)

L 3L

x

x

x

x

x

x

x

3.2.2. (a)

−3L −L

(a)

L 3L
x x x x

an = 0, bn = 2L
nπ (−1)n+1

3.2.2. (c)

−3L −L

(c)

L 3L

b1 = 1, all others = 0
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3.2.2. (f)

−3L −L

(f)
L 3L

x x x xx x x

a0 = 1
2 , other an = 0

bn = 2
nπ (n odd), other bn = 0

3.3.1. (d)

−L
(a)

L

f(x)

−3L −L

(b)

L 3L

Sine series

x x x xx x x

3.3.1. (d)

−3L −L
(c)

L 3L

Fourier series

x x x x

−3L −L
(d)

L 3L

Cosine series
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3.3.2.

−L

(d)

L

x

x

x

repeat periodically,

bn = 2
nπ

(
1 − cos nπ

2

)

3.3.10. fe(x) = 1
2 [f(x) + f(−x)] = 1

2

{
x2 + ex x < 0
x2 + e−x x > 0

fo(x) = 1
2 [f(x) − f(−x)] = 1

2

{
x2 − ex x < 0
e−x − x2 x > 0

3.3.13. bn = 2
L

∫ L

0
f(x) sin nπx/L dx, bn = 0 for n even, since sin nπx/L is odd around

L/2 for n even

3.4.1. (a)
∫ b

a
u dv

dx dx = uv
∣∣∣b
a

+ uv

∣∣∣∣
c−

c+

− ∫ b

a
v du

dx dx

3.4.3. (a) bn = 2
L sin nπx0

L (α − β) − nπ
L an

3.4.9. dbn

dt + k
(

nπ
L

)2
bn = 2

L

∫ L

0
q(x, t) sin nπx

L dx

3.4.12. u =
∑∞

n=0 An(t) cos nπx
L ,

n �= 0, 3 An(t) = An(0)e−k(nπ/L)2t

A0(t) = A0(0) + 1 − e−t

A3(t) = A3(0)e−k(3π/L)2t + e2t−e−k(3π/L)2t

k( 3π
L )2−2

,

with A0(0) = 1
L

∫ L

0
f(x) dx and (n �= 0) An(0) = 2

L

∫ L

0
f(x) cos nπx

L dx

3.5.1. (c)
(

x
L

)3 = 1
4 +
∑∞

n=1

{
6 (−1)n

(nπ)2 + 12 [1−(−1)n]
(nπ)4

}
cos nπx

L , 0 ≤ x ≤ L

3.5.4. bn = 2nπ
L2+n2π2 [1 − (−1)n cosh L]

3.5.7. π3/32
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3.6.1. Cm = 1
mπΔeimπ/L(x0+Δ/2) sin mπΔ

2L

4.4.1. (a) nπc
L , n = 1, 2, 3, . . .

4.4.1. (b) (m − 1
2 )πc/H, m = 1, 2, 3, . . .

4.4.2. (c) Frequencies of vibration are
√

λn =
√

(nπ/L)2T0−α
ρ0

4.4.3. (b) u = e−βt/2ρ0
∑∞

n=1 (an cos wnt + bn sin wnt) sin nπx
L , where

wn =
√

T0
ρ0

(
nπ
L

)2 − β2

4ρ2
0

5.3.1. T0
d2φ
dx2 + αφ + λρ0φ = 0

5.3.3. H = c1 exp
[∫ x

α(t) dt
]
, let c1 = 1. Then p(x) = H, q(x) = γH, and

σ(x) = βH.

5.3.4. (b) u = e
v0
2k x
∑∞

n=1 An sin nπx
L e−λnt, where An = 2

L

∫ L

0
f(x)e−

v0
2k x sin nπx

L dx.

Note that λ = v2
0

4k + k
(

nπ
L

)2.
5.3.9. (c) n = 1, 2, . . . . λ = (nπ/ ln b)2

5.4.2. u =
∑∞

n=1 anφn(x)e−λnt(with λ1 = 0, φ1 = 1)

5.4.3. u =
∑∞

n=1 anφn(r)e−λkt, where an =
∫ a
0 f(r)φn(r)r dr∫ a

0 φ2
n(r)r dr

5.4.6. u =
∑∞

n=1 Anφn(x) cos
√

λnt

5.5.1. (g) αδ − βγ = 1

5.5.9. λ =
− ∫ 1

0

(
d2φ

dx2

)2
dx∫ 1

0 exφ2 dx

5.5.11. (a) H(x) = p
(
u dv

dx − v du
dx

)
+ uv

(
dp
dx − r

)

5.5A.4. (a) v(t) = 4
5

[
2
1

]
e7t − 3

5

[
1

−2

]
e2t

5.5A.5. (b) λ = 2 ±√
3

5.6.1. (c) uT = ax + bx2 with a = 3, b = −2, λ1 ≤ 4 1
6

5.7.1. The circular frequency (cycles per 2π units of time) is
√

λ,
but the actual frequency is

√
λ/2π (cycles per 1 unit of time):

1
2
≤

√
λ

2π
≤ 1

2

√
1 + α2.



Answers to Starred Exercises 723

5.8.2. (c) By extension of Fig. 5.8.2a, (n − l)π <
√

λnL <
(
n − 1

2

)
π.

5.8.3. (b) (n − 1)π <
√

λnL <
(
n − 1

2

)
π, n = 1, 2, 3, . . .

5.8.7. (b) λ = 1/4 (c) none (d) no (e) yes

5.8.8. (c)
√

λn ∼ (n − 1)π

5.8.10. (a) λ1 ≈ 4.12 (b) λ1 = 4.11586 . . .

5.8.13. cos
√

λL = 1√
1+(λ/h2)

. Thus
∫ L

0
sin2

√
λx dx = L

2 + 1
2h[1+(λ/h2)] .

5.9.1. (b) λ1/2
∫ L

0
(σ/p)1/2 dx0 ≈ (n + 1

2

)
π

5.9.3. (a) A′′ + iλ1/2
(
2A′σ1/2 + 1

2σ−1/2σ′A
)

+ qA = 0

5.9.3. (e) An+1 = i
2σ−1/4

∫ x

0
σ−1/4 (A′′

n + qAn) dx0

5.10.2. (b) π4

96 = 1 + 1
34 + 1

54 + 1
74 + . . .

6.2.6. ∂2u
∂x∂y ≈ 1

4(Δx)2 [u(x + Δx, y + Δy) − u(x − Δx, y + Δy) − u(x + Δx, y − Δy)

+ u(x − Δx, y − Δy)] assuming that Δx = Δy

6.3.4. (a) βn =
∑N−1

j=1 fj sin nπj
N∑N−1

j=1 sin2 nπj
N

6.3.4. (b) N−1
2

6.3.6. (d) Stable if s < 0.5125

6.3.9. (b) A = 1
(Δx)2

[−2 1
1 −2

]

6.3.10. (b) ∂u
∂t = ka

s
∂2u
∂x2

6.3.14. (c) λ = 0, 3, 4; |λ − 1| ≤ 5, |λ − 4| ≤ 8, |λ − 2| ≤ 1
3

6.4.1. kΔt
[

1
(Δx)2 + 1

(Δy)2

]
≤ 1

2

6.5.5. (b) Unstable

6.5.6. (b) Stable if c
Δx/Δt ≤ 1

7.3.1. (a) u =
∑∞

n=1

∑∞
m=1 anm sin nπx

L sin mπy
H e−λnmkt,

where λnm =
(

nπ
L

)2 +
(

mπ
H

)2
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7.3.1. (c)

u =
∞∑

n=0

∞∑
m=1

anm cos
nπx

L
sin

mπy

H
e−λnmkt, where λnm =

(nπ

L

)2

+
(mπ

H

)2

7.3.2. (b) u =
∑∞

n=0

∑∞
m=0

∑∞

=0 anm
 cos nπx

L cos mπy
H cos 
πz

W e−λnm�kt,

where λnm
 =
(

nπ
L

)2 +
(

mπ
H

)2 +
(


π
W

)2
u(x, y, z, t) → a000 = 1

LHW

∫W

0

∫H

0

∫ L

0
f(x, y, z) dx dy dz as t → ∞

7.3.4. (b) u(x, y, t) =
∑∞

m=0

∑∞
n=0 Anm cos nπx

L cos mπy
H hnm(t)

hnm(t) =

{
t n = 0,m = 0

sin ωnmt otherwise,
where ω2

nm = c2π2
[
(n/L)2 + (m/H)2

]

Anmh′
nm(0) =

∫H

0

∫ L

0
f cos nπx

L cos mπy
H dx dy∫H

0

∫ L

0
cos2 nπx

L cos2 mπy
H dx dy

7.3.6. (b) u =
∑∞

n=1

∑∞
m=1 Anm sin nπx

L sin mπy
W cosh

√
λnmz,

where λnm = (nπ/L)2 + (mπ/W )2

7.3.7. (c)(d) u(x, y, z) =
∑∞

n=0

∑∞
m=0 Anm cos nπy

W cos mπz
H cosh βnmx,

where β2
nm = (nπ/W )2 + (mπ/H)2

For (c) a solution only exists if
∫H

0

∫W

0
f(y, z) dy dz = 0,

in which case A00 is arbitrary, and otherwise

Anmβnm sinhβnmL =

∫H

0

∫W

0
f cos nπy

W cos mπz
H dy dz∫H

0

∫W

0
cos2 nπy

W cos2 mπz
H dy dz

.

For (d) Anm cosh βnmL =
∫ H
0

∫ W
0 g cos nπy

W cos mπz
H dy dz∫ H

0

∫ W
0 cos2 nπy

W cos2 mπz
H dy dz

.

7.4.1. (a) λnm = (nπ/H)2 + (mπ/L)2, where n = 1, 2, 3, . . . and m = 0, 1, 2, . . .

7.7.1. u(r, θ, t) =
∑∞

n=1 AnJ3

(√
λ3nr

)
sin 3θ sin c

√
λ3nt

7.7.2. (d) u(r, θ, t) =
∑∞

m=0

∑∞
n=1 (Amn cos mθ + Bmn sinmθ)Hmn(r, t), where

Hmn(r, t) =

{
t m = 0, n = 1

Jm

(√
λmnr

)
sin c

√
λmnt otherwise with J ′

m

(√
λmna

)
= 0

Amn =

∫ π

−π

∫ a

0
β(r, θ)φmn(r) cos mθ r dr dθ∫ π

−π

∫ a

0
φ2

mn(r) cos2 mθ rdr dθ
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where

φmn(r) =

{
1 m = 0, n = 1

c
√

λmnJm

(√
λmnr

)
otherwise

and Bmn is the same as Amn with cosmθ above replaced by sinmθ.

7.7.3. (a) c
√

λmn, where J2m

(√
λmna

)
= 0

7.7.5. The frequencies are c
√

λ,
where J2m

(√
λa
)

Y2m

(√
λb
)
− J2m

(√
λb
)

Y2m

(√
λa
)

= 0.

7.7.8. For the heat equation, Section 7.7 is valid with (7.7.5) replaced by
dh/dt = −λkh. The boundary condition introduces more substantial changes.
The Rayleigh quotient shows λ ≥ 0 with λ = 0 only when φ(r, θ) is constant,
which means m = 0. The other eigenfunctions still satisfy (7.7.38) with the
boundary condition f ′(a) = 0 yielding J ′

m

(√
λa
)

= 0. Thus

φmn(r, θ) =

{
1 m = 0, n = 1

Jm

(√
λr
)

cos mθ otherwise.

As t → ∞, e−λmnkt → 0 except for m = 0, n = 1 since then λmn = 0. Thus
u(r, θ, t) → A01, where A01 =

(∫ π

−π

∫ a

0
f(r, θ)r dr dθ

)/(
πa2
)
.

7.7.9. (b) u(r, θ, t) =
∑∞

n=1

∑∞
m=0 Amnφmn(r) cos mθe−λmnkt,where

φmn(r) =
{

1 m = 0, n = 1
Jm

(√
λmnr

)
otherwise, where J ′

m(
√

λa) = 0

7.7.10. u(r, t) =
∑∞

n=1 anJ0

(√
λnr
)
e−λnkt, where J0

(√
λna
)

= 0

7.7.12. (a) y = c1(x−2 + . . .) + c2(x3 + . . .)

7.7.12. (c) y = c1 [cos(2 ln x) + . . .] + c2 [sin(2 ln x) + . . .]

7.7.12. (e) y = c1

(
x2 + . . .

)
+ c2

(
x3 + . . .

)

7.8.1. (b) Jm

(√
λ
)

Ym

(
2
√

λ
)
− Jm

(
2
√

λ
)

Ym

(√
λ
)

= 0

7.8.1. (d) 1
2π2 ≤ λ1 ≤ 2π2

7.8.2. (d) u(r, θ, t) =
∞∑

n=1

∞∑
m=1

cmnJ2m

(√
λmnr

)
sin 2mθe−λmnkt, where

J2m

(√
λmna

)
= 0

7.8.8. J1/2(z) =
√

2/πz sin z
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7.9.1. (b) u(r, θ, z) =
∑∞

n=1 An sinh
√

λ7n(H − z) J7

(√
λ7nr

)
sin 7θ, where

J7

(√
λ7na

)
= 0

7.9.2. (b) u(r, θ, z) =
∑∞

m=1

∑∞
n=1 AmnIm

[(
n − 1

2

)
π
H r
]
sin
(
n − 1

2

)
πz
H sin mθ

7.9.3. (b) u(r, θ, z, t) =
∑∞

n=1

∑∞
m=0

∑∞

=0 A
mnφ
mn (r, θ, z)e−λ�mnkt,

where λ
mn = (π/H)2 + λ′
mn and J ′

2m

(√
λ′

mna
)

= 0

φ
mn(r, θ, z) =

{
1 m = 0,  = 0, n = 1

cos 
πz
H cos 2mθJ2m

(√
λ′

mnr
)

otherwise

7.9.4. (a) u(r, z, t) =
∑∞

m=1

∑∞
n=1 AnmJ0

(√
λ′

nr
)
sin mπz

H e−λkt,

where λ = λ′ + (mπ/H)2 and J0

(√
λ′

na
)

= 0. Here,

Anm =

∫∫
f(r, z)J0

(√
λ′

nr
)
sin mπz

H r dr dz∫∫
J2

0

(√
λ′

nr
)
sin2 mπz

H r dr dz

.

8.2.1. (a) u(x, t) = A + Bx +
∑∞

n=1 an sin
(
n − 1

2

)
πx
L e−[(n−1/2)π/L]2kt,

where an = 2
L

∫ L

0
g(x) sin

(
n − 1

2

)
πx
L dx

8.2.1. (d) uE(x) = −x2

2 +
(

B−A
L + L

2

)
x + A.

8.2.2. (a) r(x, t) = A(t)x + [B(t)−A(t)]x2

2L

8.2.2. (c) r(x, t) = A(t)x + B(t) − LA(t)

8.2.6. (a) u(x, t) = A + (B − A) x
L +
∑∞

n=1 sin nπx
L

(
An cos nπct

L + Bn sin nπct
L

)
,

where An = 2
L

∫ L

0

{
f(x) − [A + (B − A) x

L

]}
sin nπx

L dx and

Bn = 2
nπc

∫ L

0
g(x) sin nπx

L dx

(d) uE(x) = L2

c2π2 sin πx
L

8.3.1. (c) u(x, t) = A(t) +
∑∞

n=1 Bn(t) sin (n− 1
2 )πx

L

8.3.1. (f) u(x, t) =
∑∞

n=0 An(t) cos nπx
L ,

where dAn

dt + k
(

nπ
L

)2
An =

∫ L

0

Q(x, t) cos nπx
L dx

∫ L

0

cos2 nπx
L dx
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8.3.3. u(x, t) =
∑∞

n=1 an(t)φn(x), where dan

dt = −λnan +

∫ L

0

φnf dx

∫ L

0

φ2
ncρ dx

8.3.4. (a) uE(x) = A + (B − A)

∫ x

0

dx̄
K0(x̄)∫ L

0

dx̄
K0

(x̄)

8.3.5. u(r, t) =
∑∞

n=1 An(t)J0(λ
1/2
n r), where J0(λ

1/2
n a) = 0

and where dAn

dt + kλnAn =

∫ a

0

f(r, t)J0(λ
1/2
n r)r dr

∫ a

0

J2
0 (λ1/2

n r)r dr

8.3.7. r(x, t) = x3

6L +
(

t
L − L

6

)
x

8.4.1. (b) u(x, t) =
∑∞

n=0 An(t) cos nπx
L , where

An(t) = e−k(nπ/L)2t

(
An(0)+

∫ t

0

ek(nπ/L)2 t̄

{
qn(t̄) +

Ink

L
[(−1)nB(t̄) − A(t̄)]

}
dt̄

)

with An(0) =

∫ L

0

f(x) cos nπx
L dx

∫ L

0

cos2 nπx
L dx

and qn(t) =

∫ L

0

Q(x,t) cos nπx
L dx

∫ L

0

cos2 nπx
L dx

and In =
{

1 n = 0
2 n 	= 0

8.5.2. (b) ω2 =
(

nπc
L

)2
8.5.5. (c) u(r, θ, t) =

∑∞
m=1

∑∞
n=1 Anm(t)Jm

(√
λnmr

)
sin mθ with Jm

(√
λnma

)
= 0,

where Anm = 1
c
√

λ

∫ t

0
Qnm(t̄) sin c

√
λnm(t − t̄) dt̄ + cnm cos c

√
λnmt,

Qnm =

∫∫
Q(x,y,t)Jm(

√
λnmr) sin mθ r dr dθ∫∫

J2
m(

√
λnmr) sin2 mθ r dr dθ

, cnm =

∫∫
f(x,y)Jm(

√
λnmr) sin mθ r dr dθ∫∫

J2
m(

√
λnmr) sin2 mθ r dr dθ

8.5.6. (a) 1
c2

d2a
dt2 + λa =

∫ π

0

∫ α

0

gφr dr dθ∫ π

0

∫ α

0

φ2r dr dθ

, where d
drJm

(
λ1/2α

)
= 0
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8.6.1. (b) u(x, y) =
∑∞

n=1

∑∞
m=1 Anm sin nπx

L sin mπy
H , where

Anm =
−Qnm− m

mL2 (−1)n[1−(−1)m]

(nπ/L)2+(mπ/H)2

(d) If
∫∫

Q dx dy = 0, then u =
∑∞

n=0

∑∞
m=0 Anm cos nπx

L cos mπy
H , where A00

is arbitrary and the others are given by

−Anm

[(nπ

L

)2

+
(mπ

H

)2
]

=

∫∫
Q cos

nπx

L
cos

mπy

H
dx dy∫∫

cos2
nπx

L
cos2

mπy

H
dx dy

.

8.6.3. (a) u(r, θ)=
∑∞

m=0

∑∞
n=1 Amn cos mθJm(

√
λmnr) +

∑∞
m=1

∑∞
n=1 Bmn

sinmθJm(
√

λmnr),

where Jm

(√
λmna

)
= 0 and

(
Amn

Bmn

)
=

−
1

λmn

∫∫
Q

⎛
⎝ cos mθ

sin mθ

⎞
⎠Jm(

√
λmnr)r dr dθ

∫∫ ⎛
⎝ cos2 mθ

sin2 mθ

⎞
⎠J2

m(
√

λmnr)r dr dθ

8.6.6. u(x, y) =
∑∞

n=1 an(y) sin nx, where an(y) = 1
3e2yδn1 + αn sinhny + βn cosh ny

and δn1 =
{

1 n = 1
0 n 	= 1

9.2.1. (d) G(x, t;x0, t0) =
∑∞

n=0
1
In

cos nπx
L cos nπx0

L e−k(nπ/L)2(t−t0),

where In =
{

L n = 0
L/2 n 	= 0

u(x, t) =
∫ L

0

g(x0)G(x, t;x0, 0)dx0 +
∫ L

0

∫ t

0

Q(x0, t0)G(x, t;x0, t0) dt0 dx0

+
∫ t

0

kB(t0)G(x, t;L, t0) dt0 −
∫ t

0

kA(t)G(x, t; 0, t0) dt0

9.2.3. G(x, t;x0, t0) =
∑∞

n=1
2
L sin nπx0

L sin nπx
L

sin nπc(t−t0)/L
nπc/L

u(x, t) =
∫ L

0

∫ t

0
Q(x0, t0)G(x, t;x0, t0)dt0 dx0 +

∫ L

0
g(x0)G(x, t;x0, 0) dx0

+
∫ L

0
f(x0)∂G

∂t (x, t;x0, 0) dx0

9.3.5. (a), (b) u(x) =
∫ x

0
(x − x0)f(x0) dx0 − x

∫ L

0
f(x0) dx0

9.3.5. (c) G(x, x0) =
{−x x < x0

−x0 x > x0

9.3.6. (a) See answer to 9.3.5(c).
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9.3.6. (b) 0 xx1x0

G(x0, x1) G(x1, x0) G(x, x0)

G(x, x1)

9.3.9. (b) See answer to 9.3.11.

9.3.11. (a) G(x, x0) =

⎧⎨
⎩

sin(x0−L) sin x
sin L x < x0

sin(x−L) sin x0
sin L x > x0

9.3.13. (b) G(x, x0) = 1
2ikeik|x−x0|

9.3.14. (d) u(x) =
∫ L

0
G(x, x0)f(x0) dx0 − αp(0) dG

dx0
(x, x0)

∣∣∣
x0=0

− βp(L)G(x, L)

9.3.15. (a) G(x, x0) =

⎧⎨
⎩

1
ky1(x)y2(x0) x < x0

1
ky1(x0)y2(x) x > x0,

where k is a constant

9.3.21. G(x, x0) =

{
0 x < x0

1 x > x0

9.3.25. (b) u(x) = 1
6

∫ x

0
f(t0)(x − t0)3 dt0

9.4.2. (a) 0 =
∫ L

0
φh(x)f(x) dx − αp(0)dφh

dx

∣∣∣
x=0

+ βp(L)dφh

dx

∣∣∣
x=L

9.4.3. (b) Infinite number of solutions

9.4.6. (a) u = 1 + c1 cos x + c2 sin x; no solutions

9.4.6. (b) c2 = 0, c1 arbitrary

9.4.6. (c) c1 and c2 arbitrary

9.4.8. (a) u = 1
2x sin x + c2 sinx
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9.4.10. Gm(x, x0) = a sin x sin x0+

⎧⎨
⎩

1
π (x cos x sinx0+x0 cos x0 sinx)− cos x0 sin x, x<x0

1
π (x0 cos x0 sin x+x cos x sin x0)− cos x sinx0, x>x0

u(x) =
∫ π

0
f(x0)Gm(x, x0) dx0−β

π (x cos x+sin x)−α
[

1
π (sin x + x cos x) − cos x

]
+ k sin x, where k is an arbitrary constant

9.4.11. (a), (b) c = 1

9.4.11. (d) Ga(x, x0) = α +
{

x0 x < x0

x x > x0,
where α is an arbitrary constant

9.4.11. (e) u(x) =
∫ L

0
f(x0)Ga(x, x0) dx0 + k1, where k1 is arbitrary

9.5.3. (c) G(r, θ; r0, θ0) =
∞∑

m=1

∞∑
n=1

sin mθ sin mθ0 Jm(
√

λmnr)Jm(
√

λmnr0)

−λ
∫∫

J2
m(

√
λmnr) sin2 mθ r dr dθ

,

where Jm(
√

λmna) = 0

9.5.4. See (9.5.23) with extra integral signs.

9.5.9. (b) G(x,x0) =
∑∞

m=1
sin mθ sin mθ0

mπ

⎧⎪⎨
⎪⎩
(

r
a

)m [( r0
a

)m −
(

a
r0

)m]
r < r0

(
r0
a

)m [( r
a

)m − (a
r

)m]
r > r0

9.5.10. (a) L = ∇2 + k2,
∫∫∫

[uL(v) − vL(u)] dV =
∫∫
�
�
�
�(u∇v − v∇u) · n̂ dS

9.5.10. (b) c2 = 0, c1 = −1
(4π) (c) G = 1

4 [Y0(kr) − iJ0(kr)]

9.5.13. (a) G(x,x0) = − 1
4π

[
1√

(x−x0)2+(y−y0)2+(z−z0)2
+ 1√

(x−x0)2+(y+y0)2+(z−z0)2

]

9.5.14. G(x,x0) = 1
4π ln [(x−x0)

2+(y−y0)
2][(x+x0)

2+(y+y0)
2]

[(x−x0)2+(y+y0)2][(x+x0)2+(y−y0)2]

9.5.19. G(x,x0) = 1
4π ln

[
a2 r2+r2

0−2rr0 cos(θ−θ0)

r2r2
0+a4−2rr0a2 cos(θ−θ0)

]
− 1

4π ln
[
a2 r2+r2

0−2rr0 cos(θ+θ0)

r2r2
0+a4−2rr0a2 cos(θ+θ0)

]

9.5.22. (c) G(x,x0) = − 1
4π

∑∞
n=−∞

(
1

|x−αn| − 1

|x−βn|

)
,

where αn = (x0 + 2Ln, y0, z0) and βn = (−x0 + 2Ln, y0, z0)

10.2.1. c(ω) =

⎧⎨
⎩

1
2 [A(−ω) − iB(−ω)] ω < 0

1
2 [A(ω) + iB(ω)] ω > 0

10.3.6. See Table 10.4.1.
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10.3.7. See Table 10.4.1.

10.3.10. (b)
∫ L

0
J0(sr)J0(s1r)r dr

≈ 2
π

−
√

s1/s cos(sL−π
4 ) sin(s1L−π

4 )+
√

s/s1 cos(s1L−π
4 ) sin(sL−π

4 )

s2−s2
1

10.3.10. (c) A(s1) =
∫∞
0

f(r)J0(s1r)r dr

10.3.16.
∫∞
0

ype−kyn

dy = 1
nk−(1+p)/nΓ

(
1+p

n

)

10.4.3. (a) u(x, t) = 1√
4πkt

∫∞
−∞ f(x)e−(x+ct−x)2/4ktdx

10.4.5. (c) u(x, t) = 1
2π

∫∞
−∞ f(x)

√
π
kte

−(x−x)2/4kt dx

+ 1
2π

∫ t

0

∫∞
−∞ Q(x, τ)

√
π

k(t−τ)e
−(x−x)2/4k(t−τ) dx dτ

10.4.6. Ai(x) = 1
π

∫∞
0

cos
(

ω3

3 + ωx
)

dω

10.4.7. (c) u(x, t) = 1/(3kt)1/3
∫∞
−∞ f(x)Ai

[
x−x

(3kt)1/3

]
dx

10.5.3. C[e−αx2
] = 2 1√

4πα
e−ω2/4α

10.5.10. C−1(ωe−ωα) = (α2−x2)
(α2+x2)2

10.5.11. u(x, t) = 1 + 1√
4πkt

∫∞
0

(f(x) − 1)
(
e−(x−x)2/4kt − e−(x+x)2/4kt

)
dx

10.5.17. (b) U(ω, t) ≈ (2/π)ωAeiσ0t

ω2+iσ0/k

10.6.1. (a) u(ω, y) = F2(ω) sinh ωy
sinh ωH + F1(ω) sinh ω(H−y)

sinh ωH , where u(ω, y) is the Fourier
transform of u(x, y)

10.6.2. (b) u(x, ω) = G1(ω) cosh ω(L−x)
cosh ωL , where u(x, ω) is the cosine transform of u(x, y)

10.6.4. (a) u(x, t) = 1
2π

∫∞
0

f(x) ln (x−x)2+y2

(x+x)2+y2 dx

10.6.11. (a) u(x, y, t) =
∫∞
0

∫∞
0

f(x0, y0) 1
4πkt

{
exp
[
−(x−x0)

2−(y−y0)
2

4kt

]

+exp
[
−(x+x0)

2−(y+y0)
2

4kt

]
− exp

[
−(x+x0)

2−(y−y0)
2

4kt

]

− exp
[
−(x−x0)

2−(y+y0)
2

4kt

]}
dx0 dy0

10.6.12. (a) u(x, y, t) =
∫∞
0

∑∞
n=1 An(ω, t) sin nπx

L sinωy dω, where

An(ω, t) = c(ω)e−k[ω2+(nπ/L)2]t
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and

c(ω) = 4
Lπ

∫∞
0

∫ L

0
f(x, y) sin nπx

L sinωy dx dy

10.6.15. (a) U = F (ω)e−ωz

10.6.15. (b) u(x, y, z) = z
2π

∫∞
−∞
∫∞
−∞

f(x0,y0)dx0 dy0

[(x−x0)2+(y−y0)2+z2]3/2

10.6.16. (b) u(r, θ) =
∫∞
0

A(ω) sinh ωθ sin
(
ω ln r

a

)
dω

10.6.18. u(x, t) = 1
2c

∫ x+ct

x−ct
g(x) dx

11.2.6. (b)

x0

(x,t)

x − ct x + ct

t0

11.2.7. (a) u(x, t) =
∫ x+ct

x−ct
g(x0) 1−e−iω(t−|x−x0|/c)

2iωc dx0

11.2.8. (a) Influence function =

{
0 if |x − x0| > ct

e−iω(t−r/c)

4πc2r if |x − x0| < ct
, where r = |x − x0|

11.2.10. (b) u(x, t) =

{
0 if x > ct

h
(
t − x

c

)
if x < ct

11.2.12. (a) G(x, t;x1, t1) =

⎧⎨
⎩

0 if r > c(t − t1)
1

2πc
√

c2(t−t1)2−r2
if r < c(t − t1)

11.3.2. (c) If A = 1, u(x, t) = 2√
π

∫∞
x/

√
4kt

e−η2
dη.

11.3.3. G(x, t;x0, t0) = 1√
4πk(t−t0)

{
exp
[
−(x−x0)

2

4k(t−t0)

]
+ exp

[
−(x+x0)

2

4k(t−t0)

]}

12.2.2. w(x, t) = cos(x + 3t)

12.2.5. (b) w(x, t) = t + f(xe−t)

12.2.5. (d) w(x, t) = etf(x − 3
2 t2)

12.2.6. x = 2f(x0)t + x0
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12.2.8. u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1 x ≤ 2t

x
2t 2t < x < 4t

2 x ≥ 4t

12.3.4. (a) ∂u
∂t (x, 0) = −cdF (x)

dx

12.3.4. (b) ∂u
∂x (0, t) = − 1

c
dF (−ct)

dt

12.4.1. u(x, t) =

{
0 if x > ct

h
(
t − x

c

)
if x < ct

12.4.2. u(x, t) =

{
cos x cos ct if x < −ct

e−(t+x/c) + sinx sin ct 0 > x > −ct

12.4.6. u(x, t) =

{
0 x > ct

−c
∫ t−x/c

0
h(t̄) dt̄ x < ct

12.4.7. u(x, t) =

⎧⎨
⎩

1
2 [f(x − ct) + f(x + ct)] if x > ct

1
2 [f(x + ct) + f(ct − x)] − c

∫ t−x/c

0
h(t̄) dt̄ if x < ct

12.5.1. (b) u(x, t) = 1
2 [f(x − ct) + f(x + ct)]

12.6.1. (a) ρ(x, t) = f(x)

12.6.1. (c) ρ(x, t) = f(x)e−3xt

12.6.2. ρ(x, t) = (1 + sinx)et+x/2

12.6.3. (a) ρ(x, t) = sin(x − c0t)

12.6.3. (b) ρ(x, t) =

⎧⎨
⎩

g
(
t − x

c0

)
x < c0t

f(x − c0t) x > c0t

12.6.4. (a) q = umaxρ
(
1 − ρ

ρmax

)

12.6.4. (b) ρ = ρmax/2, u = umax/2, q = ρmaxumax
4

12.6.8. (a) ρ(x, t) = e−3(x−ct)

3c

(
1 − e−3ct

)
+ f(x − ct)

(c) ρ(x, t) = 5t + f
(
x − 1

2 t2
)

(e) ρ(x, t) = e−tf
(
x + 1

3 t3
)

(g) ρ(x, t) = 1
2 t2 + f(xe−t)

12.6.9. (a) ρ(x, t) = e3tf(x0), where x = x0 − 1
6

(
e6t − 1

)
f2(x0)
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12.6.9. (c) ρ(x, t) = e−tf(x0), where x = x0 + f(x0)
∫ t

0
τ2e−τ dτ

12.6.11. ρ(x, t) =

{
e3tf
(
x − t − t2

2

)
x > t + t2

2

e3(t−τ)g(τ), where x = t + t2

2 − 3
2τ − τ2

2 , x < t + t2

2

12.6.14. (a) −V f ′ + umax

(
1 − 2f

ρmax

)
f ′ = vf ′′

12.6.14. (c) V = [q]
[ρ] = umax

(
1 − ρ1+ρ2

ρmax

)

12.6.17. (a) ρ(x, t) =

⎧⎨
⎩

ρmax
5 x < umaxt/5

3ρmax
5 x > umaxt/5

12.6.18. (b) ρ(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ1 x < umax

(
1 − 3 ρ2

1
ρ2
max

)
t

ρmax√
3

√
1 − x

umaxt otherwise

ρ2 x > umax

(
1 − 3ρ2

2
ρ2
max

)
t

13.2.4. L
[∫ t

0
f(t̄) dt̄

]
= F (s)

s

13.2.5. (b) 8s
(s2+16)2

(d) 4
s2−6s+25

(f) e−5s
(

2
s3 + 10

s2 + 25
s

)− e−8s
(

2
s3 + 16

s2 + 64
s

)
(h) 24e−s

s5

13.2.6. (e) 7
6e−7t − 1

6e−t

(j) 2
9 + 1

3 sin 3t − 2
9 cos 3t − 5H(t − 4)

[
2
9 + 1

3 sin 3(t − 4) − 2
9 cos 3(t − 4)

]
13.2.7. (b) y = 1 + e−t

(d) y =
{ 25

7 et − 4
7e−6t 0 < t < 3

− 1
10e−t + et

(
25
7 + 1

14e−6
)

+ e−6t
(

1
35e15 − 4

7

)
t > 3

(f) y = 1
3 sin t − 1

6 sin 2t

13.3.2. G(t, t0) = sin(t − t0)

13.4.3. u(x, t) = sinx cos ct

13.4.4. U(x, s) = F (s)e−
√

s/kx

13.5.3. U(x, s) = cB(s) sinh sx
c

s cosh sL
c
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13.6.4. (a) G(x, s;x0, t0) = e−st0√
sk

{
e−

√
s/k x0 sinh

√
s
kx x < x0

e−
√

s/k x sinh
√

s
kx0 x > x0

13.7.1. (b) f(t) = 1
3 sin 3t

13.8.1. u(x, t) =
∑∞

n=1 an sin nπx
L cos nπct

L , where an = 2
L

∫ L

0
f(x) sin nπx

L dx

14.2.1. (c) ω = −k2

14.2.5. ω2 = gk tanh kh

14.2.7. ω2 = g |k|

14.3.9. (a) Let k = ω
1/3
f and s = sign(ωf ). G(x, 0) = 1

3 (is
√

3 + 1)e−ikx/2+
√

3|k|x/2, for

x < 0 . G(x, 0) = 2
3eikx + 1

3 (is
√

3 − 1)e−ikx/2−√
3|k|x/2, for x > 0.

14.5.3. (b) two waves if x > − 1
4 t and zero waves if x < − 1

4 t

14.6.1. k = k0 and ω = ω(k0)

14.7.8. 2B = Cu + 2B0, 8A = −Cuxx + 3Cu2 + 4B0u + 8A0,
2ut = −Axxx + 4uAx + 2Aux

14.8.6. (b) σ = −1 + Rk2 − k4, ω = k3

14.8.7. (c) σ = k, ω = 0 ill posed since σ → ∞ as k → +∞
14.9.3. ψ = constant, and 2ω dr

dT + dω
dT r + 3ω3r3 = 0

14.9.5. u = cL−3/4 cos
(∫ √

g

L(εt)
dt + ψ

)

14.9.8. k = θx, ω = −θt, kT + 3k2kX = 0, u0 = Aeiθ + (∗), AT + 3k2AX + 3kkXA = 0

14.10.3. Outer u0 = −x
4 . Inner (right) U0 = − 1

4 + 9
4e2X , where x − 1 = ε1/2X.

Inner (left) U0 = e−2X , where x = ε1/2X.

14.10.6. Outer u0 = 6(2x + 1)−1. Inner U0 = 6 − 5e−X , where x = εX.
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Index

A

Ablowitz, M. J., 652, 675
Abramowitz, M., 223, 303, 313, 317,

327, 336, 582
Acheson, D. J., 76–77
Acoustics, 1, 269
Action, 689–690, 698
Adjoint, 167–174, 287–290
Adjoint Green’s function, 517
Adjoint heat operator, 516, 517
Adjoint operator, 170, 177, 515, 518
Adjoint problem, 177, 401
Airplane, 76–77, 364

See also Drag; Lift
Airy function, 462, 633, 646, 655
Airy’s differential equation, 699
Aki, K., 330
Antman, A. A., 130
Applied mathematics, 1
Approximations

asymptotic expansions, 612, 700,
704, 705, 709, 710

first derivative, 219, 223
nearly monochromatic, 644, 646, 668
partial derivatives, 222–223
polynomial, 218
quadratic, 218, 223

Assembling, 265
Associated Legendre functions,

332–334, 336, 337
Asymptotic expansions, 612, 700, 704,

705, 709, 710
Asymptotic formulas

Bessel functions, 301–304, 311–313
Asymptotic techniques, 208
Average, 17

See also Mean value theorem
Average energy, 698
Average value, 79
Axially symmetric, 26

B

Backward difference, 219, 220
Backward heat equation, 667
Bell-shaped curve, 443

See also Gaussian
Bender, C., 208, 319
Benjamin, 674, 675
Benney, D. J., 676
Berg, P. W., 12, 304
Bernoulli’s condition, 78
Bessel functions, 295–303, 312–313,

314–318, 322, 325, 326–327,
335–336, 382, 428, 494, 618

normalization integrals, 304
qualitative properties, 312–313
series representation, 316–317
See also Fourier–Bessel series

Bessel’s differential equation, 299–302,
306–307, 312, 316–319,
324–325, 335, 339

Bessel’s inequality, 214
Bifurcation, 611, 656, 657–663, 670–673,

677, 680–682, 692, 713
diagram, 658–660, 670, 671, 672,

681, 682, 692
Hopf, 574, 662–663, 671–672, 680,

682
pitchfork, 660, 662, 663, 680, 681,

692
point, 657–660, 663, 671, 681

Binomial probability distribution, 235
Bleistein, N., 695
Bound states, 496, 498, 651, 656
Boundary condition

adjoint, 516
bounded temperature, 156
boundedness, 72
elastic, 135, 145, 156, 167, 185, 193,

272
finite difference, 251

737
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first kind, 156
fixed, 15, 272, 365, 435, 541, 550
free end, 135
heat equation, 11–14
homogeneous, 32–35, 37–45
insulated, 12–13, 17, 56, 136, 294
linear, 32–34
mixed, 156, 174
Neumann, 156, 228, 406, 408, 413
Newton’s law of cooling, 12–13, 24,

84, 135, 156, 185, 193, 272
nonhomogeneous, 67, 341–373,

391–392, 398–399, 415–416,
478, 518–520

nonphysical, 194–200, 202–204
perfect thermal contact, 13, 14, 18,

60, 73, 136, 156
periodic, 61, 73, 171, 173, 174, 185,

297, 321, 331, 409, 434, 440,
441, 463, 675

perturbed, 430–434
Robin, 156
second kind, 156
singular, 156, 171, 299–301
singularity condition, 155, 156, 171,

185, 297, 307, 322, 324, 418
third kind, 156, 192–206
vibrating string, 130, 131, 133–140

Boundary layers
inner expansion, 703–708
location, 701–703
outer expansion, 703–706, 711
thickness, 701, 702, 707, 708
variable, 701, 702, 704, 710

Boundary value problem, 14, 24, 38–39,
42, 44, 47, 55–73

infinite domain, 437–498
See also Sturm–Liouville

eigenvalue problem
Boundedness, 72
Brillouin, 645, 690
Brusselator, 677
Buoyancy, 664, 665
Burgers’ equation, 573–574

C

Campbell, G. A., 461
Capacity, 5, 572
Car. See Traffic
Cauchy equation. See Equidimensional

equation
Cauchy’s theorem, 446, 604

conformal transformation, 494
Jordan’s lemma, 607
Laurent series, 607
poles, 584, 585, 605–606, 608–609
residues, 604, 605
singularities, 582–584, 604–606,

608
Causality principle, 377, 500, 502, 503,

504, 514, 517, 519, 523, 592,
600, 601

initial value problems, 591, 592
source-varying, 503, 504, 517

Caustic, 568–570, 611, 633, 634–647,
655

cusp-shaped, 640, 645
Center manifold, 663
Centered difference, 220–224, 228,

242–250
Characteristic values, 39

See also Eigenvalues
Characteristic velocity, 541, 552,

555–558, 561, 563–564, 569,
635

Characteristics, 473, 508–509, 527–580,
635–640, 642, 644, 653, 695,
706–707

envelope, 568, 569, 611, 614–616,
642–656, 668, 669

fanlike, 556–557
first-order wave equation, 528–534
intersecting, 558–560, 568
one-dimensional wave, 528,

534–543, 581, 595, 612
reflection, 543–546

Chemical concentration, 9–10, 19, 676,
705

Chemical pollutant, 9, 10
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Cholesky decomposition, 263
Churchill, R. V., 304, 461, 582, 591
Circle theorem, 241
Circularly symmetric, 28, 153–155, 305,

310, 346, 417, 435, 448, 622,
627

Circulation, 77, 78, 85
Clarkson, P. A., 652, 675
Cole, J. D., 208, 574, 683, 700
Compatibility condition, 81, 433, 435
Complementary error function, 454
Complete, 157, 162, 167, 181, 283
Completing the square, 213, 446, 586
Complex conjugates, 39, 172, 251
Complex Ginzburg–Landau, 611, 668,

669, 670, 673, 674, 676, 680,
682

Complex variables, 446, 449, 493, 494,
582, 604, 605, 607, 608–609

Compression wave, 559
Concentrated source, 385–386, 388, 390,

396, 410, 416–418, 420, 500,
503, 505, 510, 515, 522–523,
592, 621, 623

Condition for stability, 679
Conduction, 2–3, 7
Conductive state, 664
Conductivity, 7, 8, 23, 30, 60
Conformal transformation, 494
Conservation law, 5, 9, 10, 19, 21, 29,

294, 560, 563, 565, 635, 698
Conservation cars, 553, 554, 560,

573
Conservation energy, 143, 496, 648
Conservation heat, 2, 3, 4, 8, 20–23
Conservation waves, 635, 674, 697
Consistent, 220, 234
Continuous dependence, 80
Continuous spectrum, 438, 439,

494–496, 498
Contour integrals, 598, 603–607, 609,

610
Convection, 1, 12, 27, 162, 461, 492,

612, 700, 705, 707

Convection coefficient, 12
Convergence

iteration, 254–259
mean, 214
numerical method, 234, 242

Convergent oscillation, 232
Convolution theorem

double Fourier transform, 486–489,
490, 493

Fourier cosine transform, 466–471,
484–485, 491

Fourier sine transform, 464–469,
471–473, 477–478, 484–485,
491, 494, 543

Fourier transform, 450–463
Laplace transform, 581–610

Coordinate system
cylindrical, 25–29
moving, 542, 644, 647
polar, 26–27, 72, 77, 79, 154,

295–297, 425, 445, 449, 482,
493, 514, 624, 671

Cosine series. See Fourier cosine series
Cosine transform. See Fourier cosine

transform
Cosines

law of, 424
orthogonal, 47, 48

Courant, R., 192, 251, 252
Courant stability condition, 251, 252
Crank, 243
Crank–Nicolson scheme, 243, 246
Crashes, 364
Cubic equation, 639, 645, 655
Cut-off frequency, 619, 620, 622, 627
Cylindrical coordinates, 25, 26, 29, 319,

321

D

d’Alembert, 507–508, 535, 540, 544, 549
damped oscillator, 312, 683, 685
Davis, P. J., 223
Del operator, 23
Delta function. See Dirac delta function
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Dependence, domain of, 540–541
Derivative

directional, 24, 30–31, 416
See also Differentiation

Descent, method of, 511, 513
Determinant, 626, 661, 662, 678, 679
Deviation, mean-square, 211, 212,

214, 215
Difference equation (ordinary)

analytic solutions, 235–237
convergent oscillation, 232, 236
divergent oscillation, 232, 233, 236
first-order, 236–237, 240
oscillation, 232, 233
second-order, 236, 237

Difference methods, 217–267
See also Finite difference methods

Differential equations. See Differential
equations (ordinary); Partial
differential equations

Differential equations (ordinary)
Fredholm alternative, 400–407,

411–413, 434
Green’s function, 374–436
indicial equation, 300, 316–317, 326
initial value problems, 591, 592
integrating factor, 468, 700
linear systems, 182, 661
non-homogeneous, 380–383

See also Green’s function
ordinary point, 300, 316
reduction of order, 380
series solutions, 316, 333
singular point, 299–301, 316, 319,

326, 332
undetermined coefficients, 361, 402,

406, 684
variation of parameter, 380
Wronskian, 498

Differentiation
eigenfunctions, 347–366
Fourier series, 112–122
Fourier transform, 455–466
Laplace transform, 581–610

Diffusion, 8–10, 23, 255, 259, 294,
453–455, 515, 518, 520–521,
574, 611–612, 669, 676–677,
700, 705–706

pollutant, 8, 10, 27, 612, 700, 705,
707, 710

Diffusion equation, 8, 10, 23, 255, 259,
454, 455, 461, 518, 520–521,
574, 611, 676, 680,
705–706

See also Heat equation
Diffusion operator, 515
Diffusivity, 8, 10, 23, 612
Dipole source, 416, 422
Dirac delta function, 384–387, 391,

397–398, 405, 410–411, 414,
418, 450, 452, 455, 460, 490,
495, 496, 500, 504, 510, 518,
583, 588, 589, 591, 598, 620

Directional derivative, 24, 30–31,
416

Discontinuities, propagation, 217
Discrete eigenvalues, 128, 168, 497, 498,

651–652, 656
Discrete problems. See Finite difference

methods
Discrete spectrum, 438, 494–498
Discretization error. See Error:

truncation
Discretization time, 225
Dispersion relation, 612–646, 655, 668,

674–675, 682, 695–699
Dispersive waves, 611–710

slightly unstable, 668–670
Disturbances, propagation speed, 227,

252, 454
Divergence, 21–22

product rule, 293, 299
Divergence theorem, 21–22, 25, 28, 30,

81, 83, 261, 288, 293, 417
Domain of dependence, 540–541
Double Fourier transform

convolution, 480, 484–485
derivatives, 490
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Laplace’s equation, 494
shift theorem, 447, 461, 492

Double integrals, 449
Douglas, 259
Drag, 77–79, 85
Dynamical systems, 611, 656, 682

E

Eckhaus, 676
Eigenfunction expansion, 118, 122, 142,

159, 181, 187, 214, 239, 347,
351–378, 382–408, 412,
426–435, 519–526, 609, 691

eigenvector expansion, 239
See also Eigenfunctions

Eigenfunctions, 39–51, 57–70, 157–216,
283–314, 331–335, 351–372,
431–498

See also Eigenfunction expansion
complete, 157, 162, 167, 181, 283,

288
complex, 440, 441
differentiation, 349, 356, 359, 361
discrete, 231, 244
discrete orthogonality, 231
length, 214
nodal curves, 276, 277, 285, 314,

315
nonunique, 173
orthogonal, 54, 55, 157–183,

282–292, 331–333, 400–408
partial difference equations, 252
two-dimensional, 269–305

Eigenvalue problems
Bessel functions, 301–307
degenerate, 434
infinite domain, 437–438
matrix, 178–183
multidimensional, 282, 286,

288–299
nonlinear, 435
perturbed, 430, 432–435
Sturm–Liouville, 151–216
two-dimensional, 263–297

Eigenvalues, 38–42, 50, 51, 56, 57,
61, 62

asymptotic behavior, 207
asymptotic formula, 196, 208–209
bounds, 191, 201, 204
coalesce, 435
continuous, 438, 439
degeneracies, 239, 285
discrete, 438, 439, 441
graphical technique, 195
large, 204–209
lowest, 185–192, 201, 202
matrix, 178–183, 238–241, 245, 660,

663, 677, 679
minimization principle, 185
multiple, 239, 284
negative, 39, 42, 162, 198–206
nonnegative, 184, 213
positive, 39–46, 160–167, 194–205,

286, 298
Rayleigh quotient, 42, 157–166,

184–192, 200–206, 283,
293–294, 299, 306, 310, 319,
338, 370, 371

real, 156, 158, 168–183, 282–291
smallest, 157–163, 185–192, 283
splits, 434
zero, 40–46, 161, 194–202, 399

Eigenvector expansion, 239
Eigenvectors, 178–183, 239, 661, 678

independent, 181, 183
matrices, 178–179, 183
combine, 238–241
orthogonal, 171–183

Eikonal equation, 528, 575–580, 694,
695

Einstein, Albert, 689
Elapsed time, 377, 511, 513, 514, 521,

524, 592
Elastic boundary condition

membrane, 143–145
Electromagnetic waves, 146, 618,

623
Elliptic function, 655



742 Index

Energy
conservation of, 648
kinetic, 1, 143, 648, 689
potential, 143, 648, 649, 689
spectral, 460
vibrating string, 140–144

Entropy condition, 563
Envelope

characteristics, 555–560
wave, 641–656

Envelope equation, 611, 643
Envelope soliton, 654
Equation

homogeneous, 33
linear, 33
nonhomogeneous, 33

Equidimensional equation, 163, 299,
316

Equilibrium, 14–19, 341–347, 656–665,
679–681

displacement from, 342, 344, 351,
660–663

stable, 656–680, 692
unstable, 656–680, 690–692

Equilibrium temperature, 17, 341
Error, 209–259

discretization, 224, 230, 233, 238,
241, 243, 252–256

mean-square, 211, 214, 215
pointwise, 215
truncation, 218–225, 242–247, 250,

263
Error function, 454
Euler’s constant, 317
Even functions, 102, 547
Even part function, 107, 111
Exothermic reaction, 153
Expansion

asymptotic, 678, 700–710
inner, 703–711
matching, 704, 709
outer, 28, 29, 154, 317, 624,

703–706, 709–711
See also Eigenfunction expansion

F

Family of curves, 568, 638
Fanlike characteristics, 556–558
Ferguson, W. E., 675
Fiber optics, 611, 623
Finite difference methods

backward difference, 219, 220
boundary conditions, 243–244
centered difference, 220–223, 228,

242–253
consistent, 220, 234
convergence, 234, 252–259
Courant stability condition, 251,

252
first derivative, 219, 223, 253
forward difference, 219, 224, 228,

242–244, 247, 253
heat equation, 217, 224–234, 241,

245–249, 255
implicit, 243
Laplace’s equation, 253–259
Laplacian, 222, 223, 247
Lax equivalency theorem, 234
nonhomogeneous problems, 242
numerical instability, 233
propagation speed, 227, 252, 454
Richardson’s scheme, 242
S-O-R, 258–260
second derivative, 221–223, 243
stability analysis, 228, 234, 242,

247, 251
stable, 229, 232–235, 241–243, 248,

251
step size, 233, 252
unstable, 229, 232–234, 240–245,

247, 251
wave equation, 250–253, 263
weights, 221, 222, 336

Finite element method, 260, 265
triangular, 263, 265, 267
triangular finite elements, 263
weak form, 260, 261, 263

Finite series, 98, 99
Flexible. See Vibrating string
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Flow. See Heat Flow; Traffic flow
Flux. See Heat flux
Force, Impulsive, 385, 539, 541
Forcing, periodic, 362, 364
Forcing frequencies, membrane, 358,

359–366
Forward difference, 219, 224, 228,

242–244, 247, 253
Foster, R. M., 461
Fourier coefficients, 88–96, 123–129
Fourier cosine series, 102–127

continuous, 107–124
differentiation, 86–120
integration, 117–126
sketching, 98
See also Fourier series; Fourier sine

series
Fourier cosine transform, 466–469, 484,

485, 491
See also Fourier transform

Fourier sine transform
convolution theorem, 469, 471,

489–495
derivatives, 466–469
Laplace’s equation, 475–484

Fourier integral, 442, 443, 451
identity, 441, 442
See also Fourier transform

Fourier, Joseph, 86
Fourier series, 45, 86–129

continuous, 107–122
convergence, 88, 89
cosine series, 102–127
definition, 86, 88
differentiation, 112–120
discrete, 231, 244
double, 277
even part, 107, 111
finite series, 98, 99
generalized, 157–160, 190, 211, 282,

283
Gibbs phenomenon, 97, 99, 100
identity, 441, 442
integration, 117–126

linear, 92
odd part, 107, 111
other intervals, 111
overshoot, 99, 100
sine series, 92–127
sketching, 89
wave equation, 548–551
See also Fourier cosine series;

Fourier sine series
Fourier sine series

continuous, 107–110
Green’s functions, 384
heat equation, 96
integration, 123–126
Laplace’s equation, 475
sketching, 95
wave equation, 140–143
See also Fourier series; Fourier

cosine series
Fourier sine transform, 465–473,

477–495, 543
convolution, 469–472
derivatives, 466–467
Laplace’s equation, 475, 481–484
semi-infinite strip, 475
See also Fourier cosine transform;

Fourier tansform
Fourier’s law of heat conduction,

30–31
Fourier transform, 441–466, 473–498,

521, 581, 603, 604, 612–613,
618, 627, 630, 642, 651, 666,
677

Airy function, 462
causality principle, 504
convolution theorem, 458–462, 480
definition, 443
Dirac delta function, 450–453, 455,

460, 500, 510
Fourier integral, 442, 443, 451
Gaussian, 443–444, 451–454, 458,

460, 490
half-plane, 479, 481
heat equation, 450–469, 519–523
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integral, 439–446
inverse, 443–444
Laplace transform, 600–604
linear, 439, 441
pair, 441
product, 458, 459
shift theorem, 447, 461
spectral energy density, 461
variable, 441
vibrating string, 473
wave equation, 473, 474
See also Double Fourier transform;

Fourier cosine transform;
Fourier sine transform

Fourier’s theorem, 89, 90, 93–97,
102–104

Fourier–Bessel series, 303
Fredholm alternative, 177, 398–413,

430–434
Free end, 135
Frequency, 139, 146–149, 191–192,

207–209, 362–364, 611–635,
653–699

local, 207–209
membrane, 360–366
perturbed, 430, 432–435
slowly varying, 208, 576, 577,

631–644, 686–689, 692–699
spatial, 438–440

Fundamental mode, 139
Fundamental solution, 452, 455, 490

G

Galerkin method, 263
Galerkin numerical approximation, 263
Gamma function, 448, 590
Gardner, C. S., 650
Gartland, E. C., Jr., 210
Gas dynamics, 559, 560
Gauss-Seidel, 256, 257

Gauss’s theorem, 22
See also Divergence theorem

Gaussian, 443–444, 451–460, 490
Fourier transform, 441–452
two-dimensional, 486–490

Gaussian elimination, 254
Gelfand, I. M., 497, 498, 651, 656
Geometrical optics, 640, 694
Gibbs phenomenon, 97, 99, 100
Ginzburg–Landau equation, 611, 668,

670, 673, 676, 682
Glendinning, P., 656
Gradient, 23, 27, 29–31
Gram–Schmidt method, 292
Gram–Schmidt orthogonalization, 174,

292
Green. See Liouville–Green method
Green’s formula, 169–171, 353–369,

397–418, 500–506, 515–520
adjoint heat operator, 516, 517
adjoint operator, 177, 515, 518
Dirac delta function, 397
discrete, 244
heat operator, 515–517
Laplacian, 409, 501
linear algebra, 179
Sturm–Liouville operator, 501
two-dimensional, 367–373
wave operator, 501, 503, 515

Green’s function
adjoint, 515–517
bounded domains, 419
causality, 500, 503–505
circle, 423–426
defining differential equation, 387,

389
differential equations, 379–392
Dirac delta function, 384–387
discrete, 244
eigenfunction expansion, 382, 387,

379–408
Fourier transform, 422
Fredholm alternative, 404–408, 411,

413, 430–434
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generalized, 398–408
heat equation, 374–393, 450–453,

514–526
Helmholtz equation, 395, 428
infinite space, 395, 416–423,

430–436, 507–512, 521–522
infinite strip, 430
jump conditions, 388, 389
Laplace transform, 600–604
Laplace’s equation, 410–426,

477–484
matrix, 245
Maxwell’s reciprocity, 387, 390
modified, 402–408
Neumann function, 406, 408, 413
normal derivative, 416, 481, 506,

520
Poisson’s equation, 409–426
reciprocity, 387, 390, 502–505, 511,

518–519
rectangle, 426–430
response, 386, 387
semi-infinite, 522, 525, 527
semi-infinite plane, 420
singularity, 417–420
source, 377–397, 416–429, 500–524,

592, 620–622
source-varying, 503, 504, 517
sphere, 430
Sturm–Liouville, 382
symmetric, 518
time-dependent problems, 499–526
translation property, 500, 503, 517,

592
variation of parameter, 435
wave equation, 499–514
wedge-shaped region, 429

Green’s theorem, 28
Greene, J. M., 650
Group velocity, 611–636, 643–648, 669,

674, 676, 697–699
Growth rate, 582, 663–667, 673, 675,

702
unbounded, 667

H

Haberman, R., 554
Hankel transform, 448
Harmonics, 139, 140, 396, 691
Heat capacity, 5
Heat conduction

any region, 271
circular ring, 59, 66
insulated ends, 17, 55

Heat energy, 1–14, 18–31, 49, 52, 80,
151, 166, 377, 406, 413, 490

conservation of, 2, 3, 11, 19–22, 27
sources, 3–29
total, 2, 3, 6, 9–11, 18–29

Heat equation
backward, 84
boundary conditions, 9–18
circular, 309
conduction, 1, 7, 19, 22, 27–31
convection, 1, 12, 27, 162, 461, 492,

612, 700, 705, 707
convolution theorem, 457–462
cylinder, 326–329
finite difference methods, 224–249
finite region, 523
Fourier transform, 441–466
Green’s functions, 374, 379, 514,

518–525
infinite domain, 437–439, 443, 452,

508, 522
influence function, 451, 469, 481,

519, 520
initial condition, 14–19
insulated ends, 17, 55
long rod, 524
nonconstant thermal properties,

163, 192, 290
nonhomogeneous, 122
numerical methods, 224–249
parabolic, 217
plane, 486, 490
product solutions, 43, 44
propagation speed, 227, 454
ring, 59, 66
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semi-infinite, 463, 467, 473, 522,
525, 527

small time, 524
steady-sources

See also Poisson’s equation
surface heating, 473
three-dimensional, 279
two-dimensional, 247–248, 271–272,

276, 278
zero temperature ends, 93
See also Heat flow

Heat flow
circle, 154, 155
circular annulus, 154
convection, 1, 12, 27, 162, 461, 492,

612, 700, 705, 707
equilibrium temperature, 14–19,

67–71, 294, 341, 342, 366, 399,
481

exothermic reaction, 153
nonuniform rod, 151–155, 163
See also Heat equation

Heat flux, 3–7, 13, 20–23, 27, 60, 291
Heat flux vector, 20–23, 27

convection, 27
Heat operator, 34, 515–517

adjoint, 515–517
Green’s formula, 517, 518

Heat transfer coefficient, 12
Heaviside unit step function, 386, 582,

595
Helmholtz equation, 395, 428, 693

Green’s function, 427
nonhomogeneous, 394, 428

Hexagonal patterns, 680
Hilbert, D., 192
Hooke’s law, 43, 134
Hopf bifurcation

subcritical, 663, 672, 680
supercritical, 663, 672, 680

Hopf, E., 574, 662–663, 671–673, 680,
682

Hyperbolic functions, 41, 42, 198
addition formula, 415, 601

I

Images, method of, 420–423, 429, 436,
509, 513, 523–525, 598

Implicit finite difference, 243
Implicit function theorem, 663
Impulsive force, 385, 539–542
Index of refraction, 150, 576, 687,

693
Indicial equation, 300, 316, 326
Infinite space Green’s function. See

Green’s function
Influence functions, 375–393

boundary conditions, 391–392,
505–507, 518–520

heat equation, 450–490
See also Green’s function

Influence, range of, 540, 541
Initial condition

heat equation, 8
Newton’s law of motion, 38

Initial value problems, 38
Inner expansion, 703–705
Inner products, 54
Insulate, 2, 48
Insulation, 7, 13
Integral equation, 497, 498, 651,

656
Gelfand–Levitan–Marchenko, 497,

498, 651, 656
Integrating factor, 468, 700
Integration

Fourier series, 123–127
Integration

by parts, 100, 104, 117, 118
Inverse cosine transform. See Fourier

cosine transform
Inverse Fourier transform. See Fourier

transform
Inverse Laplace transform. See Laplace

transform
Inverse scattering, 495, 497, 611,

650–652
Inverse scattering transform, 611, 651,

652
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Inverse sine transform. See Fourier sine
transform

Isobars, 29
Isotropic, 30
Iteration

convergence, 252, 255–259
Gauss–Seidel, 256–257
Jacobi, 254–255
S-O-R, 258–260

J

Jackson, J. D., 338
Jacobi iteration, 254–259
Jordan’s lemma, 607
Jump conditions, Green’s functions,

387–390
Jump discontinuity, 86–88, 95–100

See also Gibbs phenomenon

K

Kaufman, H., 582
Keller, J. B., 695
Kevorkian, J., 208, 683, 700
Kinetic energy, 1, 143, 648, 689
Kinsman, B., 616
Klein–Gordon equation, 655
Korteweg–de Vries equation (KdV),

647–651
linearized, 645–648

Kramers, 690
Kruskal, M. D., 650, 652

L

Lagrange’s identity
differential form, 169, 173
integral form, 169

Lake, B. M., 675
Landau equation, 611, 668–676, 680,

682, 692
Landau–Ginzburg equation. See

Ginzburg–Landau equation
Laplace transform, 581–609

contour integrals, 598, 603, 609
convolution, 583, 587–591, 595,

597, 599, 602

definition, 581
derivative, 586, 601
Dirac delta function, 583, 588, 591
eigenfunction expansion, 609
Fourier transform, 603
gamma function, 590
Green’s function, 591–593,

600–603, 608
partial fractions, 584–586, 591, 606
poles, 584, 585, 605–609
separation of variables, 609
shift theorem, 586
singularity property, 582–586
wave equation, 593, 595, 600, 602,

608
Laplace’s equation, 25–27, 67–85,

253–259, 319–329, 336–340,
410–426, 475–484

circle, 429
circular annulus, 83
circular disk, 72, 82
cylinder, 280, 319–329
discretization, 251–256
elliptic, 217
finite difference, 250, 253
Fourier cosine transform, 484, 485
Fourier sine transform, 477, 478
Fourier transform, 479, 480
Green’s function, 409–430
maximum principle, 79, 80
mean value theorem, 79, 219
nonhomogeneous. See Poisson’s

equation
polar coordinates, 482
qualitative properties, 79, 80
rectangle, 67, 68, 71–72, 81, 84
solvability condition, 81, 83, 84
spherical cavity, 336
spherical coordinates, 26–29,

330–335
uniqueness, 80

Laplacian, 23–26
cylindrical coordinates, 25, 29
finite difference, 222
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Green’s formula, 409, 411, 412, 500
polar coordinates, 27

Laurent series, 607
Law of cosines, 424
Lax, P. D., 234, 650, 651, 656
Lax’s equation, 650, 651, 656
Lefever, 677
Legendre polynomials, 333–340

Rodrigues’ formula, 333, 340
Lift, 76–79
Light waves, 637
Lighthill, M. J., 554
Linear differential equations

constant coefficients, 119, 182, 191,
192

Linear equation, 34
Linear operator, 34, 168, 179, 447, 515

Fourier transform, 447
Linear system, 179, 243, 254, 435, 657

differential equations, 182, 656–663
Gaussian elimination, 254
numerical methods, 252–259

Linearity, 32, 33
Fourier series, 92

Linearized Korteweg–de Vries equation,
462, 611, 614, 645, 646

Liouville. See Sturm–Liouville
eigenvalue problem

Liouville–Green method, 208
Long waves, 614, 617, 619, 645–647,

655, 676

M

Mass density, 6–8
vibrating string, 130

Matched asymptotic expansions. See
Boundary layers

Matching principle, 704, 710
Matrix, 178–183, 238–241, 261–267,

660, 663, 677, 679
defective, 239
degeneracies, 239, 285
eigenvalues, 176–183, 239–241
eigenvectors, 178–183, 239

Gaussian elimination, 254
Hermitian, 183
sparse, 263–265
stiffness, 261–267
symmetric, 180–183, 261, 263
transpose, 180, 183
tridiagonal, 238, 243

Matrix eigenvalue problem, 178, 182
Maximum principle, 79, 80

Laplace’s equation, 79, 80
Maxwell’s reciprocity, 387, 390
McGregor, J. L., 304
Mean value theorem

extended, 219
Laplace’s equation, 79

Mean-square deviation, 211, 214, 215
Membranes. See Vibrating membrane
Mesh, 225–227, 245–256, 264–266
Mesh refinement, 266
Minimization principle

eigenvalues, 184–185
Rayleigh quotient, 184–192

Minimum principle
Laplace’s equation, 79, 80

Miura, R. M., 650
Modes of vibration, 140, 141, 217, 335,

435
Modulational instability, 611, 674
Multiple scales, 208, 611, 683–699
Murray, 677
Musical instruments, 130, 139

N

Natural frequencies, 139–140, 362–364,
432–435

membrane, 143–145, 360–366,
432–435

Nayfeh, A. H., 208
Neumann function, 406, 408, 413
Neutral stability curve, 611, 665
Newell, A. C., 652, 670, 674
Newton’s law, 12–14, 38, 130–137, 648

spring-mass system, 134–136
vibrating string, 130–145
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Newton’s law of cooling, 12–14, 24, 84,
135, 156, 185, 272

Nicolis, G., 677
Nodal curves, 276, 277, 285, 314, 315
Nodes, 140, 315, 396, 623, 658–662, 681
Nonhomogeneous equation, 326
Nonhomogeneous problems, 341–373

Fredholm alternative, 177, 398–413,
430–434

See also Green’s function
Nonisotropic materials, 30
Nonlinear partial differential equation,

576, 579, 636, 647–648, 670–682
Nonlinear Schrödinger equation (NLS),

652, 656, 674, 675
recurrence, 675

Nonorthogonal functions, 260
Nonuniform media, 579, 580
Normal, 20–24
Normal curve. See Gaussian
Normal vector, 20

outward, 20–24
Normalization integrals, 304, 336
Numerical instability, 226–260

O

Oberhettinger, F., 461
Odd extension, 94–96, 101, 110, 111,

465, 469
Odd functions, 92, 93, 545–550
Odd part, 107, 111
One-dimensional phase portrait, 567,

658, 660, 672, 682, 692
One-dimensional rod, 2–55
Operators

adjoint, 167, 174–177, 206, 287,
289, 400, 401, 515–517

diffusion, 518–521
Dirac delta function, 384
heat, 34
linear, 32–35, 168

Optics
fiber, 611, 623, 624, 627
geometrical, 640, 694

Order of error, 218–220
Ordinary differential equations. See

Differential equations
(ordinary)

Ordinary point, 299, 316
Orszag, S. A., 208, 319
Orthogonal curvilinear coordinates, 29

divergence, 30
gradient, 29
Laplacian, 29
scale factor, 29

Orthogonality
basis, 214
cosines, 57–63
eigenfunctions, 42–51, 171–177, 245
eigenfunctions (discrete), 175–182
unique, 173, 174
eigenvectors, 178–183
Fourier transform, 450
functions, 53–55
Gram–Schmidt, 174, 181, 283,

290–292, 333
sines, 46

Oscillation
amplitude, 208–209
convergent, 232, 240
divergent, 232, 233, 240
phase, 208

Oscillator, 312, 313, 683–688
damped, 312, 683, 685
slowly varying, 207, 208, 576, 577,

611, 631–644, 686–699
Outer expansion, 703, 704–706, 710
Overshoot, 99, 100

P

Parseval’s equality, 214–216
Partial difference equation, 224,

230–256
eigenfunctions, 230–232, 245, 260
Laplace’s equation, 253–259
product solutions, 230, 231, 235
random walk, 234, 245, 246
separation of variables, 230, 234,

235
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Partial differential equations
eigenfunction expansion method,

118–120
elliptic, 217
finite difference methods, 217–266
hyperbolic, 217
infinite series, 112–115, 121–123
linear, 32–35
nonlinear, 552–579, 636–640,

647–699
numerical methods, 217–267
parabolic, 217
quasilinear, 527–534, 552–560,

568–580
See also Fourier transform; Heat

equation; Laplace’s equation;
Laplace transform; Poisson’s
equation; Separation of
variables; Wave equation

Partial fractions, 584–586, 591, 606
Pascal’s triangle, 235
Pattern formation, 611, 665, 676,

680
Peaceman, 259
Pendulum, 681, 699
Perfect thermal contact, 13, 18, 60, 73,

136, 156
Perfectly insulated. See Insulation
Period

infinite, 644, 649, 651
slowly varying, 208

Periodic extension, 88–89, 95–109, 142,
550

Periodic forcing, 362, 364, 620
Periodicity conditions, 73
Perturbation

boundary condition, 433, 434
expansion, 683–697, 703–707,

710
frequencies, 432–435

Perturbation methods, 683–711
Phase portrait, 567, 649, 654, 655,

658–662, 672, 682, 692
one-dimensional, 680–682

Phase velocity, 611–618, 632, 641, 654,
676

Piecewise smooth function, 86, 122,
157, 158, 168, 211, 283, 303,
348, 354, 390

Poisson’s equation, 25, 83, 259, 260,
366–373, 409–426

circle, 416, 418, 423–426, 429
Fredholm alternative, 411, 413
Green’s function, 409–430
infinite space, 416–422
infinite strip, 430
Neumann function, 406, 408, 413
rectangle, 412–414, 426–430
sphere, 417, 418, 430
uniqueness, 80
wedge-shaped region, 429
Poisson’s formula, 426, 429
Polar coordinates, 27, 66, 72, 77,

79, 295–297, 425, 426, 445,
449, 482, 493, 514, 624, 671

Poles, 584, 585, 605–609
Poles of Laplace transform, 581–586
Pollutant, 9, 10, 27, 612, 700, 705, 707,

710
Polonsky, I., 223
Polynomial approximation, 217–218
Position vector, 487, 488
Potential, 77, 143, 336–338, 495–498,

617, 648–656, 689
Potential energy, 143, 648, 649, 689
Potential equation. See Laplace’s

equation
Pressure, 77, 78, 145, 269, 559, 617
Prigogine, 677
Principle of superposition. See

Superposition (principle of)
Probability problem, 234
Product solutions, 37, 43, 44, 50, 56, 57,

62, 69–76
partial difference equation, 224,

230–235
See also Separation of variables

Protter, M. H., 80
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Q

Qualitative properties
Laplace’s equation, 79–81

R

Rachford, 259
Radiation condition, 621, 623
Rainbow, 611, 633, 640, 646, 647
Random walk, 234, 245, 246
Range of influence, 540, 541
Rayleigh quotient, 42, 157–166,

184–192, 200–206, 283,
293–294, 299, 306, 310, 319,
339, 370, 371

derived, 184
minimization principle, 185

Rays, 315, 568, 569, 579, 580, 638–642,
655

Reciprocity, 387, 390, 502–506, 511,
518–520

See also Maxwell’s reciprocity
Reference temperature distribution, 345
Reflection coefficient, 150, 496–498, 651
Reflections, 543, 549, 575, 598
Refraction, 145–150, 575, 576, 640, 641,

687, 693, 694
Snell’s law, 146–150, 640

Relaxation parameter, 258, 259
See also S-O-R

Remainder, 154, 218, 220, 413
Residues, 604, 606
Resonance, 358, 363–366, 610, 619
Response. See Green’s function
Restoring force, 43, 145, 185, 193, 207,

312, 689, 695, 698
Richards, P. G., 330
Richards, P. I., 554
Richardson’s scheme, 242
Riemann sum, 442
Roberts, G. E., 582

S

Saddle-node, 659–660
S-O-R, 258–260

Scattering, 330, 495, 497, 611, 650–652
inverse, 495, 497, 611, 650–652

Scattering data, 651, 652
Schmidt. See Gram–Schmidt

orthogonalization
Schrödinger equation, 655, 656, 674

linear, 643
nonlinear, 652–653

Schwarz’s inequality, 215
Scott, 680
Scroll rings, 681
Scroll waves, 681
Secular, 684, 685, 688, 691, 694,

697
Segel, 670
Segur, H., 652
Seidel. See Gauss–Seidel
Self-adjoint, operator, 167–171,

176–179, 428
Self-similar, 455
Separation constant, 36–38

second, 274
Separation of variables, 32–85

alternative methods, 281–282
infinite domain, 437–438
Laplace transform, 606–609
orthogonality of functions, 54–55
partial difference equation,

230–235
summary, 50
time, 269–278
wave equation, 137, 140

Shift theorem
Fourier transform, 448
Laplace transform, 581–582

Shock velocity, 528, 560–566, 573
Shock waves, 528, 558, 564, 567

dynamics, 528, 559, 560, 570, 574
explosion, 559
initiation, 569
sonic boom, 559

Sideband instability, 675
Signals, reflections, 543, 549, 575, 598
Similarity solution, 455, 646, 647
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Sine functions
eigenfunctions, 39, 42–47
orthogonal, 47

Sine series. See Fourier sine series
Sine transform. See Fourier sine

transform
Singular perturbation methods, 611,

647, 683–705
Singular point, 299, 316, 319, 326
Singularity, 582–586, 607–609

Laplace transform, 581–586
logarithmic, 307

Singularity condition, 171, 185, 297,
307, 322, 324, 417

Green’s function, 417, 620–623
Slinky, 140
Slow variation. See Multiple scales
Slowly varying

amplitude, 207–209
dispersive waves, 634–656
frequency, 207–209, 634–641
media, 575–580, 690, 693–695, 699
oscillator, 683–688
period, 208–210
wave train, 634, 693

Snell’s law of refraction, 146–148
Solitons, 611, 650, 654, 656

envelope, 653, 654
Solvability condition, Laplace’s

equation, 81
Sound, 139, 145, 146, 432, 559, 618
Sound waves, 146, 559
Source

concentrated, 385–390, 416–419,
500–515, 521–523, 620–623

dipole, 416, 422, 520
heat energy, 1–14
line, 513
point, 513
See also Images

Spectral energy density, 460–461
Spectral parameter, 650
Spectrum

continuous, 439, 494–496, 498

discrete, 438–442, 494–498
Spherical coordinates, 26–29, 330–332,

336
Spherical problems, 330
Spiral telephone cord, 140
Spirals, 662
Spring-mass system, 43, 134–136, 312,

686
Stability analysis, 228, 234, 242, 247,

251, 611, 677
Stable, numerical scheme, 232–234

See also Stability analysis
Standing waves, 139, 140
Steady state, 14–17, 24–29, 379–392,

475–482
approach to, 15
temperature distribution, 14–19

See also Laplace’s equation
Stegun, I. A., 223, 303, 313, 317, 327,

336, 582, 655
Step function, 385, 507, 508, 582,

595
See also Heaviside unit step

function
Strang, G., 241, 260, 263
Stream function, 76, 77, 85
Streamlines, 76, 85
Stretching, vibrating string, 130
Strings. See Vibrating string
Strogatz, S. H., 656
Sturm–Liouville eigenvalue problem,

151–216, 287–288
approximation properties, 211
Bessel’s differential equation,

299–304
continuous spectrum, 494
differential equation, 151–155
eigenfunctions, 157–181, 187–189,

199–216
eigenvalues, 153, 157–209
Green’s function, 383
nonuniform vibrating string,

189–192
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Rayleigh quotient, 157, 160–166,
184–192, 200, 201, 205, 206

regular, 170–172
singular, 297–299
smallest eigenvalue, 157, 158, 185,

192, 282
theorems, 156, 157, 162–166

Sturm–Liouville operator
Green’s formula, 355, 356, 500

Successive over-relaxation. See S-O-R
Superposition, principle of, 34, 43

integral, 439
nonhomogeneous, 67–69

Surface tension, 617
Symmetry

axial, 26
circular, 26, 28
symmetric matrix, 178, 179
See also Reciprocity

T

Tacoma bridge, 364
Taylor series, 111, 217–223, 643–647,

657–681
Telephone cord, 140
Temperature, 5–8, 11–19, 22–26, 28–31,

32, 38, 48, 50–51, 53, 60–61,
66, 67, 72, 75, 76, 79, 80, 84,
93, 96, 97, 135, 143, 151–155,
163, 165, 192, 202, 225, 233,
244, 245, 248–249, 254, 256,
272, 279, 291, 294, 309, 318,
320, 322, 323, 326, 328,
341–344, 366, 375, 377, 393,
389, 399, 420, 437, 451, 452,
453, 454, 459, 463, 467, 473,
476–482, 514, 519, 520, 523,
664

average, 17, 27, 79
bounded, 155
differences in, 7, 30
equilibrium, 14–19, 24–28, 341–347
isobars, 29
maximum, 79, 80, 83, 85

minimum, 80, 84, 85
prescribed, 11–14
steady, 14–17, 76–80
steady-state, 14–29, 379–382

See also Equilibrium; Laplace’s
equation

See also Heat equation
Tension. See Vibrating membrane;

Vibrating string
Term-by-term differentiation

Fourier series, 112–122
parameter, 121

Term-by-term integration
Fourier series, 123–126

Thermal contact, perfect, 13, 18, 60, 73,
136, 155

Thermal energy, 1–29
density, 2, 6–9
propagation speed, 454
spread, 448, 450
See also Heat energy

Trace, 661–662, 678, 679
Traffic

capacity, 572
car velocity, 554, 555, 566
density, 553–575
flow, 553–573

Transform. See Fourier transform;
Laplace transform; Hankel
transform; Fourier sine
transform; Fourier cosine
transform

Translation invariance, 602
Transmission coefficient, 496, 498
Transport equation, 694
Traveling waves, 475, 612, 621, 627,

634, 642, 648, 649, 674
Trial function, 185, 186, 261, 265, 318,

319
Trivial solution, 38–42, 61
Tsunamis, 617
Turing, 611, 662, 676–682
Turing instability, 611, 676–681
Turning point, See Saddle-node
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Two-dimensional Fourier transform. See
Double Fourier transform

Two-dimensional problems, 25

U

Undershoot of a finite fourier series, 100
Undetermined coefficients, 361, 402,

406, 684
Uniqueness

Laplace’s equation, 80
Poisson’s equation, 83

Unstable numerical scheme, 232–234
See also Stability analysis

V

Variation of parameters, 361, 368,
379–381, 379–396, 402, 591

Vectors, 20–24, 180–183
eigenvectors, 178–183, 239, 661, 678
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wave number, 487, 488
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circular, 295–319, 432–435
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frequencies, 276, 290, 308, 318, 335,

362–364, 432–435
modes, 276, 277, 284, 335, 363,

364, 435
Newton’s law, 272, 326
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pie-shaped, 309
rectangular, 269, 272, 277–280, 283
resonance, 358, 363–365
tensile force, 131–136, 144

Vibrating string, 130–143, 155, 193,
276, 364, 435, 473, 527, 537,
548, 597

boundary conditions, 130, 133–142
damped, 142
derivation, 130–133
destabilizing force, 193
energy, 143

fixed end, 133
Fourier transform, 473, 474
free end, 135
frequency, 139, 191–192
friction, 364
fundamental, 139
gravity, 132
harmonics, 139, 140
infinite interval, 473
jump condition, 136
local stretching, 132
Newton’s law, 130–137
nodes, 140
nonuniform, 189, 192
perfectly flexible, 131, 133
reflections, 543, 549
resonance, 358, 363–365
signal problem, 593–596
spring-mass system, 134–136
standing waves, 139, 140
tension, 131–133, 139–143
time-dependent forcing, 364
traveling waves, 143
wave equation, 130, 132–149
See also Wave equation
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Water waves, 559, 611, 616–617, 648,
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Wave equation, 130, 132, 137, 140–143,
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635–647, 653, 694–707
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Courant stability condition, 251,
252

d’Alembert’s solution, 508, 540,
544, 549

descent, 511, 513
domain of dependence, 540,

541
finite difference, 250, 253
Fourier series, 137–143, 548–551
Fourier transform, 473
Green’s formula, 500–506
Green’s function, 393, 499–514
hyperbolic, 217
infinite interval, 473–475, 507–510
Laplace transform, 593–610
nonhomogeneous, 500
numerical methods, 249–252
one-dimensional, 132–150, 395,

500–513, 534–551
See also Vibrating string

propagation speed, 454
range of influence, 540, 541
reflections, 543, 549, 575, 598
separation of variables, 137–143
shape invariance, 532
signal problem, 593–596
sketching, 537, 540
three-dimensional, 509–511
traveling waves, 143, 507, 508,

540–542
two-dimensions. See Vibrating
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Wave front, 579
Wave guide, 617–626, 641
Wave number, 146–149, 440–443, 487,

488, 577, 578, 611–621,
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light, 145–150, 558–564, 572, 579,
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Sturm–Liouville Helmholtz (2-dim)

Eigenvalue

problem

d

dx

(
p

dφ

dx

)
+ (λσ + q)φ = 0 ∇2φ + λφ = 0

Operator L =
d

dx

(
p

d

dx

)
+ q L = ∇2

Green’s
formula

∫ b

a

[uL(v) − vL(u)] dx = p
(
u dv

dx
− v du

dx

)∣∣∣b
a

∫∫

R

(
u∇2v − v∇2u

)
dx dy

=

∮
(u∇v − v∇u) · n̂ ds

Rayleigh
quotient

λ =
−pφ dφ

dx

∣∣b
a

+
∫ b

a

[
p
(

dφ
dx

)2
− qφ2

]
dx

∫ b
a

φ2σ dx
λ =

− ∮
φ∇φ · n̂ ds +

∫∫
R
|∇φ|2 dx dy∫∫

R
φ2 dx dy



EIGENVALUE OR BOUNDARY VALUE PROBLEMS for d2φ
dx2 = −λφ

Boundary

conditions

φ(0) = 0

φ(L) = 0

dφ

dx
(0) = 0

dφ

dx
(L) = 0

φ(−L) = φ(L)

dφ

dx
(−L) =

dφ

dx
(L)

Eigenvalues

λn

(nπ

L

)2

n = 1, 2, 3, . . .

(nπ

L

)2

n = 0, 1, 2, 3, . . .

(nπ

L

)2

n = 0, 1, 2, 3, . . .

Eigenfunctions sin
nπx

L
cos

nπx

L
sin

nπx

L
and cos

nπx

L

Series f(x) =

∞∑

n=1

Bn sin
nπx

L
f(x) =

∞∑

n=0

An cos
nπx

L

f(x) =

∞∑

n=0

an cos
nπx

L

+

∞∑

n=1

bn sin
nπx

L

Coefficients Bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx

A0 =
1

L

∫ L

0
f(x) dx

An =
2

L

∫ L

0
f(x) cos

nπx

L
dx

a0 =
1

2L

∫ L

−L

f(x) dx

an =
1

L

∫ L

−L

f(x) cos
nπx

L
dx

bn =
1

L

∫ L

−L

f(x) sin
nπx

L
dx



FOURIER TRANSFORM

f(x) =

∫ ∞

−∞
F (ω)e−iωx dω F (ω) =

1

2π

∫ ∞

−∞
f(x)eiωx dx Reference

e−αx2

√
π

β
e−x2/4β

1√
4πα

e−ω2/4α

e−βω2

Gaussian
(Section 10.3.3)

∂f

∂t

∂f

∂x

∂2f

∂x2

∂F

∂t

−iωF (ω)

(−iω)2F (ω)

Derivatives
(Section 10.4.2)

1

2π

∫ ∞

−∞
f(x)g(x − x) dx F (ω)G(ω)

Convolution
(Section 10.4.3)

δ(x − x0)
1

2π
eiωx0

Dirac delta function
(Exercise 10.3.18)

f(x − β) eiωβF (ω)
Shifting theorem
(Exercise 10.3.5)

xf(x) −i
dF

dω

Multiplication by x
(Exercise 10.3.8)

2α

x2 + α2
e−|ω|α Exercise 10.3.7

f(x) =

{
0 |x| > a
1 |x| < a

1

π

sin aω

ω
Exercise 10.3.6

DOUBLE-FOURIER TRANSFORM

f(r) =

∫ ∞

−∞

∫ ∞

−∞
F (ω)e

−iω · r
dω1 dω2 F (ω) =

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(r)e

iω · r
dx dy Reference

∂f

∂x
,

∂f

∂y

∇2f

−iω1F (ω),−iω2F (ω)

− ω
2
F (ω)

Derivatives

(Section 10.6.5)

π

β
e
−r2/4β

e−βω2 Gaussian

(Section 10.6.5)

f(r − β) eiω · βF (ω) Exercise 10.6.8

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
f(r0)g(r − r0) dx0 dy0 F (ω)G(ω)

Convolution

(Exercise 10.6.7)



FOURIER SINE TRANSFORM

f(x) =

∫ ∞

0

F (ω) sin ωx dω S[f(x)] = F (ω) =
2

π

∫ ∞

0

f(x) sin ωx dx Reference

df

dx

d2f

dx2

− ωC[f(x)]

2

π
ωf(0) − ω2F (ω)

Derivatives
(Section 10.5.4)

x

x2 + β2 e−ωβ Exercise 10.5.1

e−εx 2

π
· ω

ε2 + ω2
Exercise 10.5.2

1
2

π
· 1

ω
Exercise 10.5.9

1

π

∫ ∞

0

f(x)[g(x − x) − g(x + x)]d x

=
1

π

∫ ∞

0

g(x)[f(x + x) − f(x − x)]d x

S[f(x)]C[g(x)]
Convolution

(Exercise 10.5.6)

FOURIER COSINE TRANSFORM

f(x) =

∫ ∞

0

F (ω) cos ωx dω C[f(x)] = F (ω) =
2

π

∫ ∞

0

f(x) cos ωx dx Reference

df

dx

d2f

dx2

− 2

π
f(0) + ωS[f(x)]

− 2

π

df

dx
(0) − ω2F (ω)

Derivatives
(Section 10.5.4)

β

x2 + β2
e−ωβ Exercise 10.5.1

e−εx 2

π
· ε

ε2 + ω2
Exercise 10.5.2

e−αx2
2

1√
4πα

e−ω2/4α Exercise 10.5.3

1

π

∫ ∞

0

g(x)[f(x − x) + f(x + x)]d x F (ω)G(ω)
Convolution

(Exercise 10.5.7)
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