
truncated cone, has a linear taper y = cx as shown in cross section in Figure 5.2.1(b), the
moment of inertia of a cross section with respect to an axis perpendicular to the xy-plane is
I = πr4, where r = y and y = cx. Hence we can write I(x) = I0(x/b)4, where I0 = I(b) = π
(cb)4. Substituting I(x) into the differential equation in (24), we see that the deflection in
this case is determined from the BVP

where λ = Pb4/EI0. Use the results of Problem 33 to find the critical loads Pn for the
tapered column. Use an appropriate identity to express the buckling modes yn(x) as a single
function.

(b)   Use a CAS to plot the graph of the first buckling mode y1(x) corresponding to the Euler load
P1 when b = 11 and a = 1.

FIGURE 5.2.1 Tapered column in Problem 34

   Discussion Problems
35.   Discuss how you would define a regular singular point for the linear third-order differential

equation

a3(x)y′″ + a2(x)y″ + a1(x)y′ + a0(x)y = 0.

36.   Each of the differential equations

x3y″ + y = 0   and   x2y″ + (3x – 1)y′ + y = 0

has an irregular singular point at x = 0. Determine whether the method of Frobenius yields a
series solution of each differential equation about x = 0. Discuss and explain your findings.

37.   We have seen that x = 0 is a regular singular point of any Cauchy–Euler equation ax2y″ + bxy′ +
cy = 0. Are the indicial equation (14) for a Cauchy–Euler equation and its auxiliary equation
related? Discuss.

5.3 Special Functions

   Introduction  The two differential equations
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occur frequently in advanced studies in applied mathematics, physics, and engineering. They are
called Bessel’s equation of order v and Legendre’s equation of order n, respectively. Naturally,
solutions of (1) are called Bessel functions and solutions of (2) are called Legendre functions.
When we solve (1) we shall assume that v ≥ 0, whereas in (2) we shall consider only the case when v
is a nonnegative integer. Since we shall seek series solutions of each equation about x = 0, we
observe that the origin is a regular singular point of Bessel’s equation but is an ordinary point of
Legendre’s equation.

5.3.1   Bessel Functions

 The Solution  Because x = 0 is a regular singular point of Bessel’s equation, we know that there
exists at least one solution of the form . Substituting the last expression into (1) then
gives

From (3) we see that the indicial equation is r2 – v2 = 0 so that the indicial roots are r1 = v and r2 = –
v. When r1 = v, (3) becomes

Therefore, by the usual argument we can write (1 + 2v)c1 = 0 and

or

The choice c1 = 0 in (4) implies c3 = c5 = c7 = … = 0, so for k = 0, 2, 4, … we find, after letting k + 2
= 2n, n = 1, 2, 3, …, that
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Thus

It is standard practice to choose c0 to be a specific value—namely,

where (1 + v) is the gamma function. See Appendix II. Since this latter function possesses the
convenient property (1 + α) = α (α), we can reduce the indicated product in the denominator of (6)
to one term. For example,

Hence we can write (6) as

 Bessel Functions of the First Kind  The series solution  is usually denoted by Jv(x):

If v ≥ 0, the series converges at least on the interval [0, ∞). Also, for the second exponent r2 = –v we
obtain, in exactly the same manner,

The functions Jv(x) and J–v(x) are called Bessel functions of the first kind of order v and – v,
respectively. Depending on the value of v, (8) may contain negative powers of x and hence converge
on the interval (0, ∞).*

Now some care must be taken in writing the general solution of (1). When v = 0, it is apparent that
(7) and (8) are the same. If v > 0 and r1 – r2 = v – (–v) = 2v is not a positive integer, it follows from
Case I of Section 5.2 that Jv(x) and J–v(x) are linearly independent solutions of (1) on (0, ∞), and so
the general solution on the interval is y = c1Jv(x) + c2J–v(x). But we also know from Case II of
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Section 5.2 that when r1 – r2 = 2v is a positive integer, a second series solution of (1) may exist. In
this second case we distinguish two possibilities. When v = m = positive integer, J–m(x) defined by
(8) and Jm(x) are not linearly independent solutions. It can be shown that J–m is a constant multiple of
Jm (see Property (i) on page 277). In addition, r1 – r2 = 2v can be a positive integer when v is half an
odd positive integer. It can be shown in this latter event that Jv(x) and J–v(x) are linearly independent.
In other words, the general solution of (1) on (0, ∞) is

The graphs of y = J0(x) (blue) and y = J1(x) (red) are given in FIGURE 5.3.1.

FIGURE 5.3.1 Bessel functions of the first kind for n = 0, 1, 2, 3, 4

 
*When we replace x by |x|, the series given in (7) and (8) converge for 0 < |x| < ∞.

EXAMPLE 1  General Solution: v Not an Integer

By identifying v2 =  and v =  we can see from (9) that the general solution of the equation x2y″ + xy′
+ (x2 – )y = 0 on (0, ∞) is y = c1J1/2(x) + c2J–1/2(x).

 Bessel Functions of the Second Kind  If v ≠ integer, the function defined by the linear combination

and the function Jn(x) are linearly independent solutions of (1). Thus another form of the general
solution of (1) is y = c1Jv(x) + c2Yv(x), provided v ≠ integer. As v → m, m an integer, (10) has the
indeterminate form 0/0. However, it can be shown by L’Hôpital’s rule that  exists.
Moreover, the function

and Jm(x) are linearly independent solutions of x2y″ + xy′ + (x2 – m2)y = 0. Hence for any value of v
the general solution of (1) on the interval (0, ∞) can be written as

Yv(x) is called the Bessel function of the second kind of order v. FIGURE 5.3.2 shows the graphs
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of Y0(x) (blue) and y1(x) (red).

FIGURE 5.3.2 Bessel functions of the second kind for n = 0, 1, 2, 3, 4

EXAMPLE 2  General Solution: v an Integer

By identifying v2 = 9 and v = 3 we see from (11) that the general solution of the equation x2y″ + xy′ +
(x2 – 9)y = 0 on (0, ∞) is y = c1J3(x) + c2Y3(x).

 DEs Solvable in Terms of Bessel Functions  Sometimes it is possible to transform a differential
equation into equation (1) by means of a change of variable. We can then express the solution of the
original equation in terms of Bessel functions. For example, if we let t = αx, α > 0, in

then by the Chain Rule,

Accordingly (12) becomes

The last equation is Bessel’s equation of order v with solution y = c1Jv(t) + c2Yv(t). By resubstituting
t = αx in the last expression we find that the general solution of (12) on the interval (0, ∞) is

Equation (12), called the parametric Bessel equation of order v, and its general solution (13) are
very important in the study of certain boundary-value problems involving partial differential
equations that are expressed in cylindrical coordinates.
Another equation that bears a resemblance to (1) is the modified Bessel equation of order v,

This DE can be solved in the manner just illustrated for (12). This time if we let t = ix, where i2 = –
1, then (14) becomes

Since solutions of the last DE are Jv(t) and Yv(t) , complex-valued solutions of equation (14) are
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Jv(ix) and Yv(ix). A real-valued solution, called the modified Bessel function of the first kind of
order v, is defined in terms of Jv(ix):

See Problem 21 in Exercises 5.3. Analogous to (10), the modified Bessel function of the second
kind of order v ≠ integer is defined to be

and for integral v = n,

FIGURE 5.3.3 Modified Bessel function of the first kind for n = 0, 1, 2, 3, 4

Because Iv and Kv are linearly independent on the interval (0, ∞) for any value of v, the general
solution of (14) is

FIGURE 5.3.4 Modified Bessel function of the second kind for n = 0, 1, 2, 3, 4

The graphs of I0(x) (blue) and I1(x) (red) are given in FIGURE 5.3.3 and the graphs K0(x) (blue)
and K1(x) (red) are shown in FIGURE 5.3.4. Unlike the Bessel functions of the first and second
kinds, the graphs of the modified Bessel functions of the first kind and second kind are not oscillatory.
Moreover, the graphs in Figures 5.3.3 and 5.3.4 illustrate the fact that the modified Bessel functions
In(x) and Kn(x), n = 0, 1, 2, … have no real zeros in the interval (0, ∞). Also, note that Kn(x) → ∞ as
x → 0+.

Proceeding as we did in (12) and (13), we see that the general solution of the parametric form of
the modified Bessel equation of order v

x2y″ + xy′ – (α2x2 + v2) y = 0



on the interval (0, ∞) is

y = c1Iv(αx) + c2 Kv(αx).

Yet another equation, important because many differential equations fit into its form by appropriate
choices of the parameters, is

Although we shall not supply the details, the general solution of (18),

can be found by means of a change in both the independent and the dependent variables: 
 w(z). If p is not an integer, then Yp in (19) can be replaced by J–p.

EXAMPLE 3  Using (18)

Find the general solution of xy″ + 3y′ + 9y = 0 on (0, ∞).

Solution  By writing the given DE as

we can make the following identifications with (18):

1 – 2a = 3, b2c2 = 9, 2c – 2 = –1,   and   a2 – p2c2 = 0.

The first and third equations imply a = –1 and c = . With these values the second and fourth
equations are satisfied by taking b = 6 and p = 2. From (19) we find that the general solution of the
given DE on the interval (0, ∞) is y = x–1[c1J2(6x1/2) + c2Y2(6x1/2)].

EXAMPLE 4  The Aging Spring Revisited

Recall that in Section 3.8 we saw that one mathematical model for the free undamped motion of a
mass on an aging spring is given by mx″ + ke–atx = 0, α > 0. We are now in a position to find the
general solution of the equation. It is left as a problem to show that the change of variables 

 transforms the differential equation of the aging spring into

The last equation is recognized as (1) with v = 0 and where the symbols x and s play the roles of y
a nd x, respectively. The general solution of the new equation is x = c1J0(s) + c2Y0(s). If we
resubstitute s, then the general solution of mx″ + ke–atx = 0 is seen to be



See Problems 33 and 43 in Exercises 5.3.

The other model discussed in Section 5.1 of a spring whose characteristics change with time was
mx″ + ktx = 0. By dividing through by m we see that the equation x″ + (k/m)tx = 0 is Airy’s equation,
y″ + α2xy = 0. See Example 2 in Section 5.1. The general solution of Airy’s differential equation can
also be written in terms of Bessel functions. See Problems 34, 35, and 44 in Exercises 5.3.

 Properties  We list below a few of the more useful properties of Bessel functions of the first and
second kinds of order m, m = 0, 1, 2, …:

Note that Property (ii) indicates that Jm(x) is an even function if m is an even integer and an odd
function if m is an odd integer. The graphs of Y0(x) and Y1(x) in Figure 5.3.2 illustrate Property (iv):
Ym(x) is unbounded at the origin. This last fact is not obvious from (10). The solutions of the Bessel
equation of order 0 can be obtained using the solutions y1(x) in (21) and y2(x) in (22) of Section 5.2.
It can be shown that (21) of Section 5.2 is y1(x) = J0(x), whereas (22) of that section is

The Bessel function of the second kind of order 0, Y0(x), is then defined to be the linear combination 
. That is,

where γ = 0.57721566 … is Euler’s constant. Because of the presence of the logarithmic term, it is
apparent that Y0(x) is discontinuous at x = 0.

 Numerical Values  The first five nonnegative zeros of J0(x) , J1(x) , Y0(x), and Y1(x) are given in
Table 5.3.1. Some additional functional values of these four functions are given in Table 5.3.2.

TABLE 5.3.1 Zeros of J0, J1, Y0, and Y1

TABLE 5.3.2 Numerical Values of J0, J1, Y0, and y1



 Differential Recurrence Relation  Recurrence formulas that relate Bessel functions of different
orders are important in theory and in applications. In the next example we derive a differential
recurrence relation.

EXAMPLES 5  Derivation Using the Series Definition

Derive the formula   xJ′v(x) = vJv(x) – xJv+ 1(x).

Solution  It follows from (7) that

The result in Example 5 can be written in an alternative form. Dividing xJ′v(x) – vJv(x) = –xJv+1(x)
by x gives

This last expression is recognized as a linear first-order differential equation in Jv(x). Multiplying
both sides of the equality by the integrating factor x–v then yields
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It can be shown in a similar manner that

See Problem 27 in Exercises 5.3. The differential recurrence relations (20) and (21) are also valid
for the Bessel function of the second kind Yv(x). Observe that when v = 0 it follows from (20) that

An application of these results is given in Problem 43 in Exercises 5.3.

 Bessel Functions of Half-Integral Order  When the order v is half an odd integer, that is, 
 Bessel functions of the first and second kinds can be expressed in terms of the

elementary functions sin x, cos x, and powers of x. To see this let’s consider the case when v = .
From (7) we have

In view of the properties the gamma function, (1 + α) = α (α) and the fact that  the values of
(1 +  + n) for n = 0, n = 1, n = 2, and n = 3 are, respectively,

 See Appendix II.

In general,

Hence,

The infinite series in the last line is the Maclaurin series for sin x, and so we have shown that

We leave it as an exercise to show that
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See Problems 31 and 32 in Exercises 5.3.
If n is an integer, then the order v = n +  is half an odd integer. Because cos(n + )π = 0 and sin(n

+ )π = cos nπ = (–1)n, we see from (10) that

For n = 0 and n = –1 in the last formula, we get, in turn, Y1/2(x) = – J–1/2 (x) and Y–1/2(x) = J1/2(x). In
view of (23) and (24) these results are the same as

and

 Spherical Bessel Functions  Bessel functions of half-integral order are used to define two more
important functions:

The function jn(x) is called the spherical Bessel function of the first kind and yn(x) is the spherical
Bessel function of the second kind. For example, by using (23) and (26) we see that for n = 0 the
expressions in (28) become

and

FIGURE 5.3.5 Spherical Bessel functions j0(x) and y0(x)

The graphs of jn(x) and yn(x) for n ≥ 0 are very similar to those given in Figures 5.3.1 and 5.3.2, that
is, both functions are oscillatory, and yn(x) becomes unbounded as x → 0+. The graphs of j0(x) (blue)
and y0(x) (red) are given in FIGURE 5.3.5. See Problems 39 and 40 in Exercises 5.3.
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Spherical Bessel functions arise in the solution of a special partial differential equation expressed
in spherical coordinates. See Problems 41 and 42 in Exercises 5.3 and Problem 14 in Exercises 14.3.

5.3.2   Legendre Functions

 The Solution  Since x = 0 is an ordinary point of Legendre’s equation (2), we substitute the series 
 shift summation indices, and combine series to get

(1 – x2)y″ – 2xy′ + n(n + 1)y = [n(n + 1)c0 + 2c2] + [(n – 1)(n + 2)c1 + 6c3]x

which implies that

or

Letting j take on the values 2, 3, 4, …, recurrence relation (29) yields

and so on. Thus for at least |x| < 1 we obtain two linearly independent power series solutions:
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Notice that if n is an even integer, the first series terminates, whereas y2(x) is an infinite series. For
example, if n = 4, then

Similarly, when n is an odd integer, the series for y2(x) terminates with xn; that is, when n is a
nonnegative integer, we obtain an nth-degree polynomial solution of Legendre’s equation.

Since we know that a constant multiple of a solution of Legendre’s equation is also a solution, it is
traditional to choose specific values for c0 or c1, depending on whether n is an even or odd positive
integer, respectively. For n = 0 we choose c0 = 1, and for n = 2, 4, 6, …,

whereas for n = 1 we choose c1 = 1, and for n = 3, 5, 7, …,

For example, when n = 4 we have

 Legendre Polynomials  These specific nth-degree polynomial solutions are called Legendre
polynomials and are denoted by Pn(x). From the series for y1(x) and y2(x) and from the above choices
of c0 and c1 we find that the first several Legendre polynomials are

Remember, P0(x), P1(x), P2(x), P3(x), …, are, in turn, particular solutions of the differential equations
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FIGURE 5.3.6 Legendre polynomials for n = 0, 1, 2, 3, 4, 5

The graphs, on the interval [– 1, 1], of the six Legendre polynomials in (31) are given in FIGURE
5.3.6.

 Properties  You are encouraged to verify the following properties for the Legendre polynomials in
(31):

Property (i) indicates, as is apparent in Figure 5.3.6, that Pn(x) is an even or odd function according
to whether n is even or odd.

 Recurrence Relation  Recurrence relations that relate Legendre polynomials of different degrees
are also important in some aspects of their applications. We state, without proof, the following three-
term recurrence relation

which is valid for k = 1, 2, 3, …. In (31) we listed the first six Legendre polynomials. If, say, we
wish to find P6(x), we can use (33) with k = 5. This relation expresses P6(x) in terms of the known
P4(x) and P5(x). See Problem 49 in Exercises 5.3.

Another formula, although not a recurrence relation, can generate the Legendre polynomials by
differentiation. Rodrigues’ formula for these polynomials is

See Problem 53 in Exercises 5.3.
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Remarks
Although we have assumed that the parameter n in Legendre’s differential equation

(1 – x2)y″ – 2xy′ + n(n + 1)y = 0

represented a nonnegative integer, in a more general setting n can represent any real number. If n is
not a nonnegative integer, then both Legendre functions y1(x) and y2(x) given in (30) are infinite
series convergent on the open interval (–1, 1) and divergent (unbounded) at x = ± 1. If n is a
nonnegative integer, then as we have just seen one of the Legendre functions in (30) is a polynomial
and the other is an infinite series convergent for –1 < x < 1. You should be aware of the fact that
Legendre’s equation possesses solutions that are bounded on the closed interval [–1, 1] only in the
case when n = 0, 1, 2, … More to the point, the only Legendre functions that are bounded on the
closed interval [–1, 1] are the Legendre polynomials Pn(x) or constant multiples of these
polynomials. See Problem 51 in Exercises 5.3 and Problem 24 in Chapter 5 in Review.

5.3  Exercises  Answers to selected odd-numbered problems begin on page ANS-12.

5.3.1  Bessel Functions
In Problems 1–6, use (1) to find the general solution of the given differential equation on (0, ∞).

1.   x2y″ + xy′ + (x2 – )y = 0
2.   x2y″ + xy′ + (x2 – 1)y = 0
3.   4x2y″ + 4xy′ + (4x2 – 25)y = 0
4.   16x2y″ + 16xy′ + (16x

2 – 1)y = 0
5.   xy″ + y′ + xy = 0
6.   

In Problems 7–10, use (12) to find the general solution of the given differential equation on the
interval (0, ∞).

7.   x2y″ + xy′ + (9x2 – 4)y = 0
8.   x2y″ + xy′ + (36x2 – )y = 0
9.   x2y″ + xy′ + (25x2 – ) y = 0

10.   x2y″ + xy′ + (2x2 – 64)y = 0

In Problems 11 and 12, use the indicated change of variable to find the general solution of the given
differential equation on the interval (0, ∞).
11.   x2y″ + 2xy′ + α2x2y = 0; y = x–1/2u(x)
12.   

In Problems 13–20, use (18) to find the general solution of the given differential equation on the
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interval (0, ∞).
13.   xy″ + 2y′ + 4y = 0
14.   xy″ + 3y′ + xy = 0
15.   xy″ – y′ + xy = 0
16.   xy″ – 5y′ + xy = 0
17.   x2y″ + (x2 – 2)y = 0
18.   4x2y″ + (16x2 + 1)y = 0
19.   xy″ + 3y′ + x3y = 0
20.   9x2y + 9xy′ + (x6 – 36)y = 0
21.   Use the series in (7) to verify that Iv(x) = i–vJv (ix) is a real function.

22.   Assume that b in equation (18) can be pure imaginary; that is, b = βi, β > 0, i2 = –1. Use this
assumption to express the general solution of the given differential equation in terms of the
modified Bessel functions In and Kn.

(a)   y″ – x2y = 0
(b)   xy″ + y′ – 7x3y = 0

In Problems 23–26, first use (18) to express the general solution of the given differential equation in
terms of Bessel functions. Then use (23) and (24) to express the general solution in terms of
elementary functions.
23.   y″ + y = 0
24.   x2y″ + 4xy′ + (x2 + 2)y = 0
25.   16x2y″ + 32xy′ + (x4 – 12)y = 0
26.   4x2y″ – 4xy′ + (16x2 + 3)y = 0
27.   (a)   Proceed as in Example 5 to show that

xJ′v(x) = –vJv(x) + x Jv–1(x).

[Hint: Write 2n + v = 2(n + v) – v.]
(b)   Use the result in part (a) to derive (21).

28.   Use the formula obtained in Example 5 along with part (a) of Problem 27 to derive the
recurrence relation

2v Jn (x) = x Jv + 1(x) + xJv–1(x).

In Problems 29 and 30, use (20) or (21) to obtain the given result.
29.   

30.   J′0(x) = J–1(x) = – J1(x)

31.   (a) Proceed as on pages 279–280 to derive the elementary form of J–1/2(x) given in (24).
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(b)   Use v =–  along with (23) and (24) in the recurrence relation in Problem 28 to express J–

3/2(x) in terms of sin x, cos x, and powers of x.
(c)   Use a graphing utility to plot the graph of J–3/2(x).

32.   (a)   Use the recurrence relation in Problem 28 to express J3/2(x), J5/2(x), and J7/2(x) in terms of
sin x, cos x, and powers of x.

(b)   Use a graphing utility to plot the graphs of J3/2(x), J5/2(x), and J7/2(x) in the same coordinate
plane.

33.   Use the change of variables  to show that the differential equation of the aging

spring mx″ + ke–atx = 0, α > 0, becomes

34.   Show that  is a solution of Airy’s differential equation y″ + α2xy = 0, x > 0,
whenever w is a solution of Bessel’s equation of order ; that is, t2w″ + tw′ + (t2 – ) w = 0, t >
0. [Hint: After differentiating, substituting, and simplifying, then let 

35.   (a)   Use the result of Problem 34 to express the general solution of Airy’s differential equation
for x > 0 in terms of Bessel functions.

(b)   Verify the results in part (a) using (18).
36.   Use Table 5.3.1 to find the first three positive eigenvalues and corresponding eigenfunctions of

the boundary-value problem

xy″ + y′ + γxy = 0,

y(x), y′(x) bounded as x → 0+, y(2) = 0.

[Hint: By identifying γ = α2, the DE is the parametric Bessel equation of order zero.]
37.   (a)   Use (18) to show that the general solution of the differential equation xy″ + λy = 0 on the

interval (0, ∞) is

(b)   Verify by direct substitution that  is a particular solution of the DE in the case
λ = 1.

38.   (a)   Use (15) and (7) to show that

(b)   Use (15) and (8) to show that

(c)   Use (16) to express K1/2(x) in terms of elementary functions.



39.   (a)   Use the first formula in (28) to find the spherical Bessel functions j1(x), j2(x), and j3(x).
(b)   Use a graphing utility to plot the graphs of j1(x) , j2(x) and j3(x) in the same coordinate

plane.
40.   (a)   Use the second formula in (28) to find the spherical Bessel functions y1(x), y2(x), and y3(x).

(b)   Use a graphing utility to plot the graphs of y1(x) , y2(x) and y3(x) in the same coordinate
plane.

41.   If n is an integer, use the substitution R(x) = (αx)–1/2 Z(x) to show that the differential equation

becomes

42.   (a)   In Problem 41, find the general solution of the DE in (36) on the interval (0, ∞).
(b)   Use part (a) to find the general solution of the DE in (35) on the interval (0, ∞).
(c)   Use part (b) to express the general solution of (35) in terms of the spherical Bessel

functions of the first and second kind defined in (28).

    Computer Lab Assignments
43.   (a)   Use the general solution given in Example 4 to solve the IVP

4x″ + e–0.1tx = 0, x(0) = 1, x′(0) = – .

Also use J′0(x) = – J1(x) and Y′0(x) = – Y1(x) along with Table 5.3.1 or a CAS to evaluate
coefficients.
(b)   Use a CAS to graph the solution obtained in part (a) for 0 ≤ t < ∞.

44.   (a)   Use the general solution obtained in Problem 35 to solve the IVP

4x″ + tx = 0, x(0.1) = 1, x′(0.1) = – .

Use a CAS to evaluate coefficients.
(b)   Use a CAS to graph the solution obtained in part (a) for 0 ≤ t ≤ 200.

45.   Column Bending Under Its Own Weight A uniform thin column of length L, positioned
vertically with one end embedded in the ground, will deflect, or bend away, from the vertical
under the influence of its own weight when its length or height exceeds a certain critical value. It
can be shown that the angular deflection θ(x) of the column from the vertical at a point P(x) is a
solution of the boundary-value problem

where E is Young’s modulus, I is the cross-sectional moment of inertia, δ is the constant linear



density, and x is the distance along the column measured from its base. See FIGURE 5.3.7.
The column will bend only for those values of L for which the boundary-value problem has a

nontrivial solution.
(a)   Restate the boundary-value problem by making the change of variables t = L – x. Then use

the results of a problem earlier in this exercise set to express the general solution of the
differential equation in terms of Bessel functions.

(b)   Use the general solution found in part (a) to find a solution of the BVP and an equation that
defines the critical length L; that is, the smallest value of L for which the column will start
to bend.

FIGURE 5.3.7 Column in Problem 45

(c)   With the aid of a CAS, find the critical length L of a solid steel rod of radius r = 0.05 in.,
δg = 0.28 A lb/in., E = 2.6 × 107 lb/in.2, A = πr2, and I =  πr4.

46.   Buckling of a Thin Vertical Column In Example 4 of Section 3.9 we saw that when a constant
vertical compressive force, or load, P was applied to a thin column of uniform cross section and
hinged at both ends, the deflection y(x) is a solution of the BVP:

(a)   If the bending stiffness factor EI is proportional to x, then EI(x) = kx, where k is a constant
of proportionality. If EI(L) = kL = M is the maximum stiffness factor, then k = M/L and so
EI(x) = Mx/L. Use the information in Problem 37 to find a solution of

if it is known that  is not zero at x = 0.
(b)   Use Table 5.3.1 to find the Euler load P1 for the column.
(c)   Use a CAS to graph the first buckling mode y1(x) corresponding to the Euler load P1. For

simplicity assume that c1 = 1 and L = 1.
47.   Pendulum of Varying Length For the simple pendulum described on page 187 of Section 3.11,

suppose that the rod holding the mass m at one end is replaced by a flexible wire or string and
that the wire is strung over a pulley at the point of support O in Figure 3.11.3. In this manner,
while it is in motion in a vertical plane, the mass m can be raised or lowered. In other words,



the length l(t) of the pendulum varies with time. Under the same assumptions leading to equation
(6) in Section 3.11, it can be shown* that the differential equation for the displacement angle θ is
now

1θ″ + 2l′θ′ + g sin θ = 0.

(a)   If l increases at a constant rate v and if l(0) = l0, show that a linearization of the foregoing
DE is

(b)   Make the change of variables x = (l0 + vt)/v and show that (37) becomes

(c)   Use part (b) and (18) to express the general solution of equation (37) in terms of Bessel
functions.

(d)   Use the general solution obtained in part (c) to solve the initial-value problem consisting of
equation (37) and the initial conditions θ(0) = θ0, θ′(0) = 0. [Hints: To simplify calculations
use a further change of variable  Also, recall (20) holds for both

J1(u) and y1(u). Finally, the identity

will be helpful.]
(e)   Use a CAS to graph the solution θ(t) of the IVP in part (d) when l0 = 1 ft, θ0 =  radian, and

v =  ft/s. Experiment with the graph using different time intervals such as [0, 10], [0, 30],
and so on.

(f)   What do the graphs indicate about the displacement angle θ(t) as the length l of the wire
increases with time?

5.3.2  Legendre Functions
48.   (a)   Use the explicit solutions y1(x) and y2(x) of Legendre’s equation given in (30) and the

appropriate choice of c0 and c1 to find the Legendre polynomials P6(x) and P7(x).
(b)   Write the differential equations for which P6(x) and P7(x) are particular solutions.

49.   Use the recurrence relation (33) and P0(x) = 1, P1(x) = x, to generate the next six Legendre
polynomials.

 
*See Mathematical Methods in Physical Sciences, Mary Boas, John Wiley & Sons, 1966; Also see
the article by Borelli, Coleman, and Hobson in Mathematics Magazine, vol. 58, no. 2, March 1985.



50.   Show that the differential equation

can be transformed into Legendre’s equation by means of the substitution x = cos θ.
51.   Find the first three positive values of λ for which the problem

(1 – x2)y″ – 2xy′ + λy = 0,

y(0) = 0, y(x), y′(x) bounded on [–1, 1]

has nontrivial solutions.
52.   The differential equation

is known as the associated Legendre equation. When m = 0 this equation reduces to
Legendre’s equation (2). A solution of the associated equation is

where Pn(x), n = 0, 1, 2, … are the Legendre polynomials given in (31). The solutions  for m = 0,
1, 2, …, are called associated Legendre functions.

(a)   Find the associated Legendre functions , .
(b)   What can you say about  when m is an even nonnegative integer?
(c)   What can you say about  when m is an nonnegative integer and m > n?
(d)   Verify that  satisfies the associated Legendre equation when n = 1 and m = 1.

    Computer Lab Assignments
53.   For purposes of this problem, ignore the list of Legendre polynomials given on page 282 and the

graphs given in Figure 5.3.6. Use Rodrigues’ formula (34) to generate the Legendre polynomials
P1(x), P2(x), …, P7(x). Use a CAS to carry out the differentiations and simplifications.

54.   Use a CAS to graph P1(x), P2(x), …, P7(x) on the closed interval [– 1, 1].
55.   Use a root-finding application to find the zeros of P1(x) , P2(x), …, P7(x). If the Legendre

polynomials are built-in functions of your CAS, find the zeros of Legendre polynomials of higher
degree. Form a conjecture about the location of the zeros of any Legendre polynomial Pn(x), and
then investigate to see whether it is true.

5  Chapter in Review  Answers to selected odd-numbered problems begin on page ANS-12.

In Problems 1 and 2, answer true or false without referring back to the text.
1.   The general solution of x2y″ + xy′ + (x2 – 1)y = 0 is y = c1J1(x) + c2J–1(x)._____




