
10.   Hermite′s differential equation

y″– 2xy′ + 2ny = 0, n = 0, 1, 2, …,

has polynomial solutions Hn(x). Put the equation in self-adjoint form and give an orthogonality
relation.

11.   Consider the regular Sturm–Liouville problem:

(a)   Find the eigenvalues and eigenfunctions of the boundary-value problem. [Hint: Let x = tan π
and then use the Chain Rule.]
(b)   Give an orthogonality relation.

12.   (a) Find the eigenfunctions and the equation that defines the eigenvalues for the boundary-value
problem

(b) Use Table 5.3.1 of Section 5.3 to find the approximate values of the first four eigenvalues α1,
α2, α3, and α4.

   Discussion Problem
13.   Consider the special case of the regular Sturm–Liouville problem on the interval [a, b]:

Is α = 0 an eigenvalue of the problem? Defend your answer.

   Computer Lab Assignments
14.   (a) Give an orthogonality relation for the Sturm–Liouville problem in Problem 1.

(b) Use a CAS as an aid in verifying the orthogonality relation for the eigenfunctions y1 and y2
that correspond to the first two eigenvalues α1 and α2, respectively.

15.   (a) Give an orthogonality relation for the Sturm–Liouville problem in Problem 2.
(b) Use a CAS as an aid in verifying the orthogonality relation for the eigenfunctions y1 and y2
that correspond to the first two eigenvalues α1 and α2, respectively.

12.6   Bessel and Legendre Series

   Introduction Fourier series, Fourier cosine series, and Fourier sine series are three ways of
expanding a function in terms of an orthogonal set of functions. But such expansions are by no means
limited to orthogonal sets of trigonometric functions. We saw in Section 12.1 that a function f defined
on an interval (a, b) could be expanded, at least in a formal manner, in terms of any set of functions
{fn(x)} that is orthogonal with respect to a weight function on [a, b]. Many of these orthogonal series
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expansions or generalized Fourier series derive from Sturm–Liouville problems that, in turn, arise
from attempts to solve linear partial differential equations serving as models for physical systems.
Fourier series and orthogonal series expansions (the latter includes the two series considered in this
section) will appear in the subsequent consideration of these applications in Chapters 13 and 14.

12.6.1 Fourier–Bessel Series
We saw in Example 3 of Section 12.5 that for a fixed value of n the set of Bessel functions {Jn(αi x)},
i = 1, 2, 3, …, is orthogonal with respect to the weight function p(x) = x on an interval [0, b] when the
αi are defined by means of a boundary condition of the form

The eigenvalues of the corresponding Sturm–Liouville problem are λi = α2
i. From (7) and (8) of

Section 12.1 the orthogonal series expansion or generalized Fourier series of a function f defined on
the interval (0, b) in terms of this orthogonal set is

where

The square norm of the function Jn(αix) is defined by (11) of Section 12.1:

The series (2) with coefficients (3) is called a Fourier–Bessel series.

   Differential Recurrence Relations The differential recurrence relations that were given in (20)
and (21) of Section 5.3 are often useful in the evaluation of the coefficients (3). For convenience we
reproduce those relations here:

   Square Norm The value of the square norm (4) depends on how the eigenvalues λi = α2
i are

defined. If y = Jn(αx), then we know from Example 3 of Section 12.5 that

After we multiply by 2xy′, this equation can be written as

Integrating the last result by parts on [0, b] then gives
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Since y = Jn(αx), the lower limit is zero for n > 0 because Jn(0) = 0. For n = 0, the quantity [xy′]2 +
α2x2y2 is zero at x = 0. Thus

where we have used the Chain Rule to write 
We now consider three cases of the boundary condition (1).

Case I: If we choose A2 = 1 and B2 = 0, then (1) is

There are an infinite number of positive roots xt = αib of (8) (see Figure 5.3.1) that define
the αi as αi = xi/b. The eigenvalues are positive and are then λi = α2i = x2i/b2. No new
eigenvalues result from the negative roots of (8) since Jn(–x) = (–1)nJn(x). (See page 277.)
The number 0 is not an eigenvalue for any n since Jn(0) = 0 for n = 1, 2, 3, … and J0(0) =
1. In other words, if λ = 0, we get the trivial function (which is never an eigenfunction) for
n = 1, 2, 3, …, and for n = 0, λ = 0 (or equivalently, α = 0) does not satisfy the equation in
(8). When (6) is written in the form x J′n(x) = n Jn(x) – x Jn+1(x), it follows from (7) and
(8) that the square norm of Jn(αi x) is

Case II: If we choose A2 = h ≤ 0, B2 = b, then (1) is

Equation (10) has an infinite number of positive roots xi = αib for each positive integer n =
1, 2, 3, …. As before, the eigenvalues are obtained from λi = α2

i = x2
i/b2. λ = 0 is not an

eigenvalue for n = 1, 2, 3, …. Substituting λibJ′n(αib) = –hJn(αib) into (7), we find that the
square norm of Jn(αix) is now

Case III: If h = 0 and n = 0 in (10), the αi are defined from the roots of

Even though (12) is just a special case of (10), it is the only situation for which λ = 0 is an
eigenvalue. To see this, observe that for n = 0, the result in (6) implies that J′0(αb) = 0 is
equivalent to J1(αb) = 0. Since x1 = αib = 0 is a root of the last equation, α1 = 0, and
because J0(0) = 1 is nontrivial, we conclude from λ1 = α2

1 = x2
1/b2 that λ1 = 0 is an

eigenvalue. But obviously we cannot use (11) when α1 = 0, h = 0, and n = 0. However,



from the square norm (4) we have

For αi > 0 we can use (11) with h = 0 and n = 0:

The following definition summarizes three forms of the series (2) corresponding to the square
norms in the three cases.

Definition 12.6.1   Fourier–Bessel Series
The Fourier–Bessel series of a function f defined on the interval (0, b) is given by
(i)

where the αi are defined by Jn(αb) = 0.
(ii)

where the αi are defined by hJn(αb) + αbJ′n(αb) = 0.
(iii)

where the αi are defined by J′0(αb) = 0.

   Convergence of a Fourier–Bessel Series Sufficient conditions for the convergence of a Fourier–
Bessel series are not particularly restrictive.

Theorem 12.6.1   Conditions for Convergence
Let f and f′ be piecewise continuous on the interval [0, b]. Then for all x in the interval (0, b), the
Fourier–Bessel series of f converges to f (x) at a point where f is continuous and to the average

at a point where f is discontinous.
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EXAMPLE 1  Expansion in a Fourier–Bessel Series

Expand f(x) = x, 0 < x 3, in a Fourier–Bessel series, using Bessel functions of order on that satisfy the
boundary condition J1(3α) = 0.

SOLUTION   We use (15) where the coefficients ci are given by (16) with b = 3:

To evaluate this integral we let t = αix, dx = dt/αi, x2 = t2/α2
i, and use (5) in the form 

Therefore the desired expansion is

You are asked to find the first four values of the αi for the foregoing Bessel series in Problem 1 in
Exercises 12.6.

EXAMPLE 2  Expansion in a Fourier–Bessel Series

If the αi in Example 1 are defined by J1(3α) + αJ′1(3α) = 0, then the only thing that changes in the
expansion is the value of the square norm. Multiplying the boundary condition by 3 gives 3J1(3α) +
3αJ′1(3α) = 0, which now matches (10) when h = 3, b = 3, and n = 1. Thus (18) and (17) yield, in
turn,

and

   Use of Computers Since Bessel functions are “built-in functions” in a CAS, it is a straight-
forward task to find the approximate values of the αi and the coefficients ci in a Fourier–Bessel
series. For example, in (9) we can think of xi = αib as a positive root of the equation hJn(x) + x J′n(x)
= 0. Thus in Example 2 we have used a CAS to find the first five positive roots xi of 3J1(x) + xJ′

1(x)
= 0 and from these roots we obtain the first five values of αi: α1 = x1/3 = 0.98320, α2 = x2/3 =
1.94704, α3 = x3/3 = 2.95758, α4 = x4/3 = 3.98538, and α5 = x5/3 = 5.02078. Knowing the roots xi =
3αi and the αi, we again use a CAS to calculate the numerical values of J2(3αi), J2

1(3αi), and finally
the coefficients ci. In this manner we find that the fifth partial sum S5(x) for the Fourier–Bessel series
representation of f(x) = x, 0 < x < 3 in Example 2 is
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S5(x) = 4.01844 J1(0.98320x) –1.86937 J1(1.94704x)

       + 1.07106 J1(2.95758x) –0.70306 J1(3.98538x) + 0.50343 J1(5.02078x).

The graph of S5(x) on the interval (0, 3) is shown in FIGURE 12.6.1(a). In Figure 12.6.1(b) we have
graphed S10(x) on the interval (0, 50). Notice that outside the interval of definition (0, 3) the series
does not converge to a periodic extension of f because Bessel functions are not periodic functions.
See Problems 11 and 12 in Exercises 12.6.

FIGURE 12.6.1 Partial sums of a Fourier–Bessel series

12.6.2   Fourier–Legendre Series
From Example 4 of Section 12.5 we know that the set of Legendre polynomials {Pn(x)}, n = 0, 1, 2,
…, is orthogonal with respect to the weight function p(x) = 1 on the interval [–1, 1]. Furthermore, it
can be proved that the square norm of a polynomial Pn(x) depends on n in the following manner:

The orthogonal series expansion of a function in terms of the Legendre polynomials is summarized in
the next definition.

Definition 12.6.2   Fourier–Legendre Series
The Fourier–Legendre series of a function f defined on the interval (–1, 1) is given by

where
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   Convergence of a Fourier–Legendre Series Sufficient conditions for convergence of a Fourier–
Legendre series are given in the next theorem.

Theorem 12.6.2   Conditions for Convergence
Let f and f′ be piecewise continuous on the interval [– 1, 1]. Then for all x in the interval (–1, 1), the
Fourier–Legendre series of f converges to f(x) at a point where f is continuous and to the average

at a point where f is discontinuous.

EXAMPLE 3  Expansion in a Fourier–Legendre Series

Write out the first four nonzero terms in the Fourier–Legendre expansion of

SOLUTION   The first several Legendre polynomials are listed on page 282. From these and (22)
we find

Hence

Like the Bessel functions, Legendre polynomials are built-in functions in computer algebra
systems such as Maple and Mathematica, and so each of the coefficients just listed can be found
using the integration application of such a program. Indeed, using a CAS, we further find that c6 = 0
and  The fifth partial sum of the Fourier–Legendre series representation of the function f
defined in Example 3 is then

The graph of S5(x) on the interval (–1, 1) is given in FIGURE 12.6.2.
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FIGURE 12.6.2 Partial sum S5(x) of Fourier–Legendre series in Example 3

   Alternative Form of Series In applications, the Fourier–Legendre series appears in an alternative
form. If we let x = cos θ, then x = 1 implies θ = 0, whereas x = –1 implies θ = π. Since dx = –sin θ
dθ, (21) and (22) become, respectively,

where f(cos π) has been replaced by F(θ)

12.6  Exercises  Answers to selected odd-numbered problems begin on page ANS-30.

12.6.1    Fourier–Bessel Series

In Problems 1 and 2, use Table 5.3.1 in Section 5.3.
1.   Find the first four αi > 0 defined by J1(3α) = 0.
2.   Find the first four αi ≤ 0 defined by J′0(2α) = 0

In Problems 3–6, expand f(x) = 1, 0 < x < 2, in a Fourier–Bessel series using Bessel functions of
order zero that satisfy the given boundary condition.

3.   J0(2α) = 0
4.   J′0(2α) = 0
5.   J0(2α) + 2αJ′0(2α) = 0
6.   J0(2α) + αJ′0(2α) = 0

In Problems 7–10, expand the given function in a Fourier–Bessel series using Bessel functions of the
same order as in the indicated boundary condition.

7. 

8. 

9. 
[Hint: t3 = t2·t.]

10. 
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 Computer Lab Assignments
11.   (a) Use a CAS to graph y = 3J1(x) + xJ′1(x) on an interval so that the first five positive x-

intercepts of the graph are shown.
(b)   Use the root-finding capability of your CAS to approximate the first five roots xi of the

equation

(c)   Use the data obtained in part (b) to find the first five positive values of ai that satisfy

See Problem 7.
(d)   If instructed, find the first 10 positive values of αi.

12.   (a) Use the values of αi in part (c) of Problem 11 and a CAS to approximate the values of the
first five coefficients ci of the Fourier–Bessel series obtained in Problem 7.
(b)   Use a CAS to graph the partial sums SN(x), N = 1, 2, 3, 4, 5, of the Fourier–Bessel series in

Problem 7.
(c)   If instructed, graph the partial sum S10(x) for 0 < x < 4 and for 0 < x < 50.

 Discussion Problems
13.   If the partial sums in Problem 12 are plotted on a symmetric interval such as (–30, 30), would

the graphs possess any symmetry? Explain.
14.   (a) Sketch, by hand, a graph of what you think the Fourier–Bessel series in Problem 3 converges

to on the interval (–2, 2).
(b)   Sketch, by hand, a graph of what you think the Fourier–Bessel series would converge to on

the interval (–4, 4) if the values a i in Problem 7 were defined by 3J2(4α) + 4αJ′2(4α) = 0.
12.6.2 Fourier–Legendre Series

In Problems 15 and 16, write out the first five nonzero terms in the Fourier–Legendre expansion of the
given function. If instructed, use a CAS as an aid in evaluating the coefficients. Use a CAS to graph
the partial sum S5(x).
15.   

16.   f(x) = ex, –1 < x < 1
17.   The first three Legendre polynomials are P0(x) = 1, P1(x) = x, and . If x = cos θ,

then P0(cos θ) = 1 and P1(cos θ) = cos θ. Show that .
18.   Use the results of Problem 17 to find a Fourier–Legendre expansion (23) of .
19.   A Legendre polynomial Pn(x) is an even or odd function, depending on whether n is even or

odd. Show that if f is an even function on the interval (–1, 1), then (21) and (22) become,
respectively,
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20.   Show that if f is an odd function on the interval (–1, 1), then (21) and (22) become, respectively,

The series (25) and (27) can also be used when f is defined on only the interval (0, 1). Both series
represent f on (0, 1); but on the interval (–1, 0), (25) represents an even extension, whereas (27)
represents an odd extension. In Problems 21 and 22, write out the first four nonzero terms in the
indicated expansion of the given function. What function does the series represent on the interval (–1,
1)? Use a CAS to graph the partial sum S4(x).
21.   f(x) = x, 0 < x < 1; (25)
22.   f(x) = 1, 0 < x < 1; (27)

 Discussion Problems
23.   Why is a Fourier–Legendre expansion of a polynomial function that is defined on the interval (–

1, 1) necessarily a finite series?
24.   Use your conclusion from Problem 23 to find the finite Fourier–Legendre series of f(x) = x2. The

series of f(x) = x3. Do not use (21) and (22).

12 Chapter in Review  Answers to selected odd-numbered problems begin on page ANS-30.

In Problems 1–10, fill in the blank or answer true/false without referring back to the text.
1.   The functions f(x) = x2 – 1 and g(x) = x5 are orthogonal on the interval [–π, π]. _______
2.   The product of an odd function f with an odd function g is an ______ function.
3.   To expand f (x) = |x| + 1, – π < x < π, in an appropriate trigonometric series we would use a

____ series.
4.   y = 0 is never an eigenfunction of a Sturm–Liouville problem._
5.   λ = 0 is never an eigenvalue of a Sturm–Liouville problem. ____________
6.   If the function

is expanded in a Fourier series, the series will converge to ______ at x = –1, to ______ at x = 0,
and to ______ at x = 1.

7.   Suppose the function f(x) = x2 + 1, 0 < x < 3, is expanded in a Fourier series, a cosine series,
and a sine series. At x = 0, the Fourier series will converge to __________, the cosine series
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