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Boundary-Value Problems in Other Coordinate Systems

CHAPTER CONTENTS

14.1   Problems in Polar Coordinates
14.2   Problems in Cylindrical Coordinates
14.3   Problems in Spherical Coordinates

Chapter 14 in Review

In the previous chapter we utilized Fourier series to solve boundary-value problems that were
described in the Cartesian or rectangular coordinate system. In this chapter we will finally put to
practical use the theory of Fourier–Bessel series (Section 14.2) and Fourier–Legendre series
(Section 14.3) in the solution of boundary-value problems described, respectively in cylindrical
coordinates and in spherical coordinates.

14.1 Problems in Polar Coordinates

   Introduction All the boundary-value problems that have been considered so far have been
expressed in terms of rectangular coordinates. If, however, we wish to find temperatures in a circular
disk, a circular cylinder, or in a sphere, we would naturally try to describe the problems in polar
coordinates, cylindrical coordinates, or spherical coordinates, respectively.

Because we consider only steady-state temperature problems in polar coordinates in this section,
the first thing that must be done is to convert the familiar Laplace’s equation in rectangular
coordinates to polar coordinates.

   Laplacian in Polar Coordinates The relationships between polar coordinates in the plane and
rectangular coordinates are given by

See FIGURE 14.1.1. The first pair of equations transform polar coordinates (r, θ) into rectangular
coordinates (x, y); the second pair of equations enable us to transform rectangular coordinates into
polar coordinates. These equations also make it possible to convert the two-dimensional Laplacian of
the function u, ∇2u = ∂2u/∂x2+∂2u/∂y2, into polar coordinates. You are encouraged to work through
the details of the Chain Rule and show that

FIGURE 14.1.1 Polar coordinates of a point (x, y) are (r, θ)
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Adding (1) and (2) and simplifying yields the Laplacian of u in polar coordinates:

In this section we shall concentrate only on boundary-value problems involving Laplace’s equation
in polar coordinates:

Our first example is the Dirichlet problem for a circular disk. We wish to solve Laplace’s equation
(3) for the steady-state temperature u (r, θ) in a circular disk or plate of radius c when the
temperature of the circumference is u (c, θ) = f(θ), 0 < θ < 2π. See FIGURE 14.1.2. It is assumed that
the two faces of the plate are insulated. This seemingly simple problem is unlike any we have
encountered in the previous chapter.

FIGURE 14.1.2 Dirichlet problem for a circular plate

EXAMPLE 1  Steady Temperatures in a Circular Plate

Solve Laplace’s equation (3) subject to u (c, θ) = f(θ), 0 < θ < 2π.

SOLUTION  Before attempting separation of variables we note that the single boundary condition is
nonhomogeneous. In other words, there are no explicit conditions in the statement of the problem that
enable us to determine either the coefficients in the solutions of the separated ODEs or the required
eigenvalues. However, there are some implicit conditions.

First, our physical intuition leads us to expect that the temperature u(r, θ) should be continuous and
therefore bounded inside the circle r = c. In addition, the temperature u(r, θ) should be single-valued;
this means that the value of u should be the same at a specified point in the plate regardless of the
polar description of that point. Since (r, θ + 2π) is an equivalent description of the point (r, θ), we
must have u(r, θ) = u(r, θ + 2π). That is, u(r, θ) must be periodic in θ with period 2π. If we seek a
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product solution u = R(r)Θ(θ), then Θ(θ) needs to be 2π-periodic.
With all this in mind, we choose to write the separation constant in the separation of variables as

λ:

The separated equations are then

We are seeking a solution of the problem

Although (6) is not a regular Sturm–Liouville problem, nonetheless the problem generates
eigenvalues and eigenfunctions. The latter form an orthogonal set on the interval [0, 2π]. Of the three
possible general solutions of (5),

we can dismiss (8) as inherently non-periodic unless c1 = c2 = 0. Similarly, solution (7) is non-
periodic unless we define c2 = 0. The remaining constant solution Θ(θ) = c1, c1 ≠ 0, can be assigned
any period and so λ = 0 is an eigenvalue. Finally, solution (9) will be 2π-periodic if we take α = n,
where n = 1, 2,.… * The eigenvalues of (6) are then λ0 = 0 and λn = n2, n = 1, 2,…. If we correspond
λ0 = 0 with n = 0, the eigenfunctions of (6) are

When λn = n2, n = 0, 1, 2,.… the solutions of the Cauchy–Euler DE (4) are

Now observe in (11) that r-n = 1/rn. In either of the solutions (10) or (11), we must define c4 = 0 in
order to guarantee that the solution u is bounded at the center of the plate (which is r = 0). Thus
product solutions un = R(r)Θ(θ) for Laplace’s equation in polar coordinates are

where we have replaced c3c1 by A0 for n = 0 and by An for n = 1, 2,.…; the product c3c2 has been
replaced by Bn. The superposition principle then gives

By applying the boundary condition at r = c to the result in (12) we recognize



For example, note that cos n(θ + 2π) = cos(nθ + 2nπ) = cos nθ.

as an expansion of f in a full Fourier series. Consequently we can make the identifications

That is,

The solution of the problem consists of the series given in (12), where the coefficients A0, An, and Bn
are defined in (13), (14), and (15), respectively.

Observe in Example 1 that corresponding to each positive eigenvalue, λn = n2, n = 1, 2,.…, there
are two different eigenfunctions—namely, cos nθ and sin nθ. In this situation the eigenvalues are
sometimes called double eigenvalues.

EXAMPLE 2  Steady Temperatures in a Semicircular Plate

Find the steady-state temperature u(r, θ) in the semicircular plate shown in FIGURE 14.1.3.

SOLUTION  The boundary-value problem is

FIGURE 14.1.3 Semicircular plate in Example 2
Defining u = R(r)Θ(θ) and separating variables gives
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and

The homogeneous conditions stipulated at the boundaries θ = 0 and θ = π translate into Θ(0) = 0 and
Θ(π) = 0. These conditions together with equation (17) constitute a regular Sturm–Liouville problem:

This familiar problem* possesses eigenvalues λn = n2 and eigenfunctions Θ(θ) = c2 sin n θ, n = 1, 2,.
… Also, by replacing λ by n2 the solution of (16) is R(r) = c3rn + c4r-n. The reasoning used in
Example 1; namely, that we expect a solution u of the problem to be bounded at r = 0, prompts us to
define c4 = 0. Therefore un = R(r)Θ(θ) = Anrn sin n θ and

The remaining boundary condition at r = c gives the Fourier sine series

Hence the solution of the problem is given by

14.1  Exercises  Answers to selected odd-numbered problems begin on page ANS-33.

In Problems 1–4, find the steady-state temperature u(r, θ) in a circular plate of radius 1 if the
temperature on the circumference is as given.
1.   

2.   

3.   
4.   
5.   If the boundaries θ = 0 and θ = π of a semicircular plate of radius 2 are insulated, we then have

Find the steady-state temperature u(r, θ) if
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where u0 is a constant.
6.   Find the steady-state temperature u(r, θ) in a semicircular plate of radius 1 if the boundary-

conditions are

where u0 is a constant.
7.   Find the steady-state temperature u(r, θ) in the plate in the shape of an annulus bounded between

two concentric circles of radius a and b, a < b, shown in FIGURE 14.1.4. [Hint: Proceed as in
Example 1.]

FIGURE 14.1.4 Annular plate in Problem 7

8.   If the boundary-conditions for the annular plate in Figure 14.1.4 are

where u0 and u1 are constants, show that the steady-state temperature is given by

[Hint: Try a solution of the form u(r, θ) = v(r, θ) + ψ(r).]
9.   Find the steady-state temperature u(r, θ) in the annular plate shown in Figure 14.1.4 if the

boundary conditions are

10.   Find the steady-state temperature u(r, θ) in the annular plate shown in Figure 14.1.4 if a = 1, b =
2, and

11.   Find the steady-state temperature u(r, θ) in the semiannular plate shown in FIGURE 14.1.5 if
the boundary conditions are

LENOVO
Highlight



FIGURE 14.1.5 Semiannular plate in Problem 11

12.   Find the steady-state temperature u(r, θ) in the semiannular plate shown in Figure 14.1.5 if a =
1, b = 2, and

where u0 is a constant.
13.   Find the steady-state temperature u(r, θ) in the quarter-circular plate shown in FIGURE 14.1.6.

FIGURE 14.1.6 Quarter plate in Problem 13

14.   Find the steady-state temperature u(r, θ) in the quarter-circular plate shown in Figure 14.1.6 if
the boundaries θ = 0 and θ = π/2 are insulated, and

15.   Find the steady-state temperature u(r, θ) in the infinite wedge-shaped plate shown in FIGURE
14.1.7. [Hint: Assume that the temperature is bounded as r → 0 and as r → ∞.]

FIGURE 14.1.7 Wedge-shaped plate in Problem 15

16.   The plate in the first quadrant shown in FIGURE 14.1.8 is one-eighth of the annular plate in



Figure 14.1.4. Find the steady-steady temperature u(r, θ).

FIGURE 14.1.8 Plate in Problem 16

17.   Solve the exterior Dirichlet problem for a circular disk of radius c shown in FIGURE 14.1.9. In
other words, find the steady-state temperature u(r, θ) in a plate that coincides with the entire xy-
plane in which a circular hole of radius c has been cut out around the origin and the temperature
on the circumference of the hole is f(θ). [Hint: Assume that the temperature u is bounded as r →
∞.]

FIGURE 14.1.9 Infinite plate in Problem 17

18.   Consider the steady-state temperature u(r, θ) in the semiannular plate shown in Figure 14.1.5
with a = 1, b = 2, and boundary conditions

Show that in this case the choice of λ = –α2 in (4) and (5) leads to eigenvalues and
eigenfunctions. Find the steady-steady temperature u(r, θ).

   Computer Lab Assignment
19.   (a)   Find the series solution for u(r, θ) in Example 1 when

See Problem 1.
(b)   Use a CAS or a graphing utility to plot the partial sum S5(r, θ) consisting of the first five

nonzero terms of the solution in part (a) for r = 0.9, r = 0.7, r = 0.5, r = 0.3, r = 0.1.
Superimpose the graphs on the same coordinate axes.

(c)   Approximate the temperatures u(0.9, 1.3), u(0.7, 2), u(0.5, 3.5), u(0.3, 4), u(0.1, 5.5). Then



approximate u(0.9, 2π – 1.3), u(0.7, 2π – 2), u(0.5, 2π – 3.5), u(0.3, 2π – 4), u(0.1, 2π –
5.5).

(d)   What is the temperature at the center of the circular plate? Why is it appropriate to call this
value the average temperature in the plate? [Hint: Look at the graphs in part (b) and look at
the numbers in part (c).]

   Discussion Problems
20.   Solve the Neumann problem for a circular plate:

Give the compatibility condition. [Hint: See Problem 21 of Exercises 13.5.]
21.   Consider the annular plate shown in Figure 14.1.4. Discuss how the steady-state temperature

u(r, θ) can be found when the boundary conditions are

14.2 Problems in Cylindrical Coordinates

   Introduction In this section we are going to consider boundary-value problems involving forms
of the heat and wave equation in polar coordinates and a form of Laplace’s equation in cylindrical
coordinates. There is a commonality throughout the examples and most of the exercises—the
boundary-value problem possesses radial symmetry.

   Radial Symmetry The two-dimensional heat and wave equations

expressed in polar coordinates are, in turn,

where u = u(r, θ, t). To solve a boundary-value problem involving either of these equations by
separation of variables we must define u = R(r)Θ(θ)T(t). As in Section 13.8, this assumption leads to
multiple infinite series. See Problem 17 in Exercises 14.2. In the discussion that follows we shall
consider the simpler, but still important, problems that possess radial symmetry—that is, problems
in which the unknown function u is independent of the angular coordinate θ. In this case the heat and
wave equations in (1) take, in turn, the forms

where u = u (r, t). Vibrations described by the second equation in (2) are said to be radial
vibrations.
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The first example deals with the free undamped radial vibrations of a thin circular membrane. We
assume that the displacements are small and that the motion is such that each point on the membrane
moves in a direction perpendicular to the xy-plane (transverse vibrations)—that is, the u-axis is
perpendicular to the xy-plane. A physical model to keep in mind while studying this example is a
vibrating drumhead.

EXAMPLE 1  Radial Vibrations of a Circular Membrane

Find the displacement u(r, t) of a circular membrane of radius c clamped along its circumference if
its initial displacement is f(r) and its initial velocity is g(r). See FIGURE 14.2.1.

FIGURE 14.2.1 Initial displacement of circular membrane in Example 1

SOLUTION  The boundary-value problem to be solved is

Substituting u = R(r)T(t) into the partial differential equation and separating variables gives

Note in (3) we have returned to our usual separation constant –λ. The two equations obtained from
(3) are

and

Because of the vibrational nature of the problem, equation (5) suggests that we use only λ = α2 > 0, α
> 0. Now (4) is not a Cauchy–Euler equation but is the parametric Bessel differential equation of
order v = 0; that is, rR” + R’ + α2rR = 0. From (13) of Section 5.3 the general solution of the last
equation is
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The general solution of the familiar equation (5) is

T(t) = c3cosaαt + c4sinaαt

Now recall, the Bessel function of the second kind of order zero has the property that Y0(αr) → –∞ as
r → 0+, and so the implicit assumption that the displacement u(r, t) should be bounded at r = 0 forces
us to define c2 = 0 in (6). Thus R(r) = c1J0(αr).

Since the boundary condition u(c, t) = 0 is equivalent to R(c) = 0, we must have c1J0(αc) = 0. We
rule out c1 = 0 (this would lead to a trivial solution of the PDE), so consequently

If xn = αnc are the positive roots of (7), then αn = xn/c and so the eigenvalues of the problem are λn =
α2

n, = x2
n/c2 and the eigenfunctions are c1J0(αnr). Product solutions that satisfy the partial differential

equation and the boundary condition are

where we have done the usual relabeling of the constants. The superposition principle then gives

The given initial conditions determine the coefficients An and Bn.
Setting t = 0 in (9) and using u(r, 0) = f (r) gives

This last result is recognized as the Fourier–Bessel expansion of the function f on the interval (0, c).
Hence by a direct comparison of (7) and (10) with (8) and (15) of Section 12.6 we can identify the
coefficients An with those given in (16) of Section 12.6:

Next, we differentiate (9) with respect to t, set t = 0, and use ut(r, 0) = g(r):

This is now a Fourier–Bessel expansion of the function g. By identifying the total coefficient aαnBn
with (16) of Section 12.6 we can write

Finally, the solution of the given boundary-value problem is the series (9) with coefficients An and Bn
defined in (11) and (12), respectively.



   Standing Waves Analogous to (11) of Section 13.4, the product solutions (8) are called standing
waves. For n = 1, 2, 3, …, the standing waves are basically the graph of J0(αnr) with the time varying
amplitude

An cos aαnt + Bn sin aαnt.

FIGURE 14.2.2 Standing waves

The standing waves at different values of time are represented by the dashed graphs in FIGURE
14.2.2. The zeros of each standing wave in the interval (0, c) are the roots of J0(αnr) = 0 and
correspond to the set of points on a standing wave where there is no motion. This set of points is
called a nodal line. If (as in Example 1) the positive roots of J0(αnc) = 0 are denoted by xn, then xn =
αnc implies αn = xn/c and consequently the zeros of the standing waves are determined from



Now from Table 5.3.1, the first three positive zeros of J0 are (approximately) x1 = 2.4, x2 = 5.5, and
x3 = 8.7. Thus for n = 1, the first positive root of

Since we are seeking zeros of the standing waves in the open interval (0, c), the last result means that
the first standing wave has no nodal line. For n = 2, the first two positive roots of

Thus the second standing wave has one nodal line defined by r = x1c/x2 = 2.4c/5.5. Note that r ≈
0.44c < c. For n = 3, a similar analysis shows that there are two nodal lines defined by r = x1c/x3 =
2.4c/8.7 and r = x2c/x3 = 5.5c/8.7. In general, the nth standing wave has n – 1 nodal lines r = x1c/xn, r
= x2c/xn,…, r = xn-1c/xn. Since r = constant is an equation of a circle in polar coordinates, we see in
Figure 14.2.2 that the nodal lines of a standing wave are concentric circles.

   Use of Computers It is possible to see the effect of a single drumbeat for the model solved in
Example 1 by means of the animation capabilities of a computer algebra system. In Problem 20 in
Exercises 14.2 you are asked to find the solution given in (9) when

Some frames of a “movie” of the vibrating drumhead are given in FIGURE 14.2.3.

FIGURE 14.2.3 Frames of a CAS “movie”

   Laplacian in Cylindrical Coordinates From FIGURE 14.2.4 we can see that the relationship
between the cylindrical coordinates of a point in space and its rectangular coordinates is given by

x = r cos θ, y = r sin θ, z = z.

It follows immediately from the derivation of the Laplacian in polar coordinates (see Section 14.1)
that the Laplacian of a function u in cylindrical coordinates is
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FIGURE 14.2.4 Cylindrical coordinates of a point (x, y, z) are (r, θ, z)

EXAMPLE 2  Steady Temperatures in a Circular Cylinder

Find the steady-state temperature in the circular cylinder shown in FIGURE 14.2.5.

SOLUTION  The boundary conditions suggest that the temperature u has radial symmetry.
Accordingly, u(r, z) is determined from

Using u = R(r)Z(z) and separating variables gives

FIGURE 14.2.5 Finite cylinder in Example 2

and

For the choice λ = α2 > 0, α > 0, the general solution of (14) is
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R(r) = c1J0(αr) + c2Y0(αr)

and since a solution of (15) is defined on the finite interval [0, 2], we write its general solution as

Z(z) = c3 cosh αz + c4 sinh αz.

As in Example 1, the assumption that the temperature u is bounded at r = 0 demands that c2 = 0. The
condition u(2, z) = 0 implies R(2) = 0. This equation,

defines the positive eigenvalues λn = α2
n of the problem. Last, Z(0) = 0 implies c3 = 0. Hence we

have R = c1J0(αnr), Z) = c4 sinh αnz,

un = R(r)Z(z) = An sinh αnzJ0(αnr)

and

The remaining boundary condition at z = 4 then yields the Fourier–Bessel series

so that in view of (16) the coefficients are defined by (16) of Section 12.6,

To evaluate the last integral we first use the substitution t = αnr, followed by [tJ0(t)] = tJ0(t). From

we obtain

Finally, the temperature in the cylinder is

Do not conclude from two examples that every boundary-value problem in cylindrical coordinates
gives rise to a Fourier–Bessel series.

EXAMPLE 3  Steady Temperatures in a Circular Cylinder

LENOVO
Highlight



Find the steady-state temperatures u(r, z) in the circular cylinder defined by 0 ≤ r ≤ 1, 0 ≤ z ≤ 1 if the
boundary conditions are

u(1, z) = 1 – z, 0 < z < 1

u(r, 0) = 0, u(r, 1) = 0, 0 < r < 1.

SOLUTION  Because of the nonhomogeneous condition specified at r = 1 we do not expect the
eigenvalues of the problem to be defined in terms of zeros of a Bessel function of the first kind. As
we did in Section 14.1 it is convenient in this problem to use λ as the separation constant. Thus from
(13) of Example 2 we see that separation of variables now gives the two ordinary differential
equations

rR” + R’ – λrR = 0 and Z” + λZ = 0.

You should verify that the two cases λ = 0 and λ = –α2 < 0 lead only to the trivial solution u = 0. In
the case λ = α2 > 0 the DEs are

rR” + R’ – α2rR = 0 and Z” + α2Z = 0.

   Review pages 275-276 of Section 5.3. See also Figures 5.3.3 and 5.3.4.

The first equation is the parametric form of Bessel’s modified DE of order n = 0. The solution of this
equation is R(r) = c1I0(αr) + c2K0(αr). We immediately define c2 = 0 because the modified Bessel
function of the second kind K0(αr) is unbounded at r = 0. Therefore, R(r) = c1I0(αr).

Now the eigenvalues and eigenfunctions of the Sturm–Liouville problem

Z” + α2Z = 0, Z(0) = 0, Z(1) = 0

are λn = n2π2, n = 1, 2, 3,… and Z(z) = c3 sin nπz. Thus product solutions that satisfy the PDE and the
homogeneous boundary conditions are

un = R(r)Z(z) = AnI0(nπr)sin nπz.

Next we form

The remaining condition at r = 1 yields the Fourier sine series

From (5) of Section 12.3 we can write

and



The steady-state temperature is then

14.2  Exercises  Answers to selected odd-numbered problems begin on page ANS-33.

1.   Find the displacement u(r, t ) in Example 1 if f (r) = 0 and the circular membrane is given an
initial unit velocity in the upward direction.

2.   A circular membrane of radius 1 is clamped along its circumference. Find the displacement u(r,
t) if the membrane starts from rest from the initial displacement f (r) = 1 – r2, 0 < r < 1. [Hint:
See Problem 10 in Exercises 12.6.]

3.   Find the steady-state temperature u(r, z) in the cylinder in Example 2 if the boundary conditions
are u(2, z) = 0, 0 < z < 4, u(r, 0) = u0, u(r, 4) = 0, 0 < r < 2.

4.   If the lateral side of the cylinder in Example 2 is insulated, then

(a)   Find the steady-state temperature u(r, z) when u(r, 4) = f(r), 0 < r < 2.
(b)   Show that the steady-state temperature in part (a) reduces to u(r, z) = u0z/4 when f(r) = u0.

[Hint: Use (12) of Section 12.6.]
In Problems 5–8, find the steady-state temperature u(r, z) in a finite cylinder defined by 0 ≤ r ≤ 1, 0 ≤
z ≤ 1 if the boundary conditions are as given.

5.   

6.   

7.   
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8.   

9.   The temperature in a circular plate of radius c is determined from the boundary-value problem

Solve for u(r, t).
10.   Solve Problem 9 if the edge r = c of the plate is insulated.
11.   When there is heat transfer from the lateral side of an infinite circular cylinder of radius 1 (see

FIGURE 14.2.6) into a surrounding medium at temperature zero, the temperature inside the
cylinder is determined from

Solve for u(r, t).

FIGURE 14.2.6 Infinite cylinder in Problem 11

12.   Find the steady-state temperature u(r, z) in a semi-infinite cylinder of radius 1 (z ≥ 0) if there is
heat transfer from its lateral side into a surrounding medium at temperature zero and if the
temperature of the base z = 0 is held at a constant temperature u0.

In Problems 13 and 14, use the substitution u(r, t) = v(r, t) + ψ(r) to solve the given boundary-value
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problem. [Hint: Review Section 13.6.]
13.   A circular plate is a composite of two different materials in the form of concentric circles. See

FIGURE 14.2.7. The temperature u(r, t ) in the plate is determined from the boundary-value
problem

FIGURE 14.2.7 Circular plate in Problem 13

14.   , 0 < r < 1, t > 0, β constant

u(1, t) = 0, t > 0
u(r, 0) = 0, 0 < r < 1.

15.   The horizontal displacement u(x, t) of a heavy chain of length L oscillating in a vertical plane
satisfies the partial differential equation

See FIGURE 14.2.8.
(a)   Using –λ as a separation constant, show that the ordinary differential equation in the spatial

variable x is xX” + X’ + λX = 0. Solve this equation by means of the substitution x = τ2/4.
(b)   Use the result of part (a) to solve the given partial differential equation subject to

[Hint: Assume the oscillations at the free end x = 0 are finite.]



FIGURE 14.2.8 Oscillating chain in Problem 15

16.   Consider the boundary-value problem

(a)   Use the substitution u(r, t) = v(r, t) + Bt in the preceding problem to show that v(r, t )
satisfies

Here B is a constant to be determined.
(b)   Now use the substitution v(r, t) = w(r, t) + ψ(r) to solve the boundary-value problem in part

(a). [Hint: You may need to review Section 3.5.]
(c)   What is the solution u(r, t) of the first problem?

17.   In this problem we consider the general case—that is, with u dependence—of the vibrating
circular membrane of radius c:

(a)   Assume that u = R(r)Θ(u)T(t) and the separation constants are –λ and –v. Show that the
separated differential equations are

T” + a2λT = 0, Θ” + vΘ = 0
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r2R2” + rR’ + (λr2 – v)R = 0.

(b)   Let λ = α2 and v = β2 and solve the separated equations in part (a).
(c)   Show that the eigenvalues and eigenfunctions of the problem are as follows:

Eigenvalues: v = n, n = 0, 1, 2,…
eigenfunctions: 1, cos n θ, sin n θ.
Eigenvalues: λni = xni/c, i = 1, 2, …, where, for each n, xni are the positive roots of
Jn(λc) = 0; eigenfunctions: Jn(λnir) = 0.

(d)   Use the superposition principle to determine a multiple series solution. Do not attempt to
evaluate the coefficients.

   Computer Lab Assignments
18.   (a)   Consider Example 1 with a = 1, c = 10, g(r) = 0, and f(r) = 1 – r/10, 0 < r < 10. Use a CAS

as an aid in finding the numerical values of the first three eigenvalues λ1, λ2, λ3 of the
boundary-value problem and the first three coefficients λ1, λ2, λ3 of the solution u(r, t)
given in (9). Write the third partial sum S3(r, t) of the series solution.

(b)   Use a CAS to plot the graph of S3(r, t) for t = 0, 4, 10, 12, 20.
19.   Solve Problem 9 with boundary conditions u(c, t) = 200, u(r, 0) = 0. With these imposed

conditions, one would expect intuitively that at any interior point of the plate, u(r, t) → 200 as t
→ ∞. Assume that c = 10 and that the plate is cast iron so that k = 0.1 (approximately). Use a
CAS as an aid in finding the numerical values of the first five eigenvalues λ1, λ2, λ3, λ4, λ5 of the
boundary-value problem and the five coefficients A1, A2, A3, A4, A5 in the solution u(r, t ). Let the
corresponding approximate solution be denoted by S5(r, t ). Plot S5(5 , t) and S5( 0 , t) on a
sufficiently large time interval [0, T]. Use the plots of S5(5, t) and S5(0, t) to estimate the times
(in seconds) for which u(5, t) ≈ 100 and u(0, t) ≈ 100. Repeat for u(5, t) ≈ 200 and u(0, t) ≈
200.

20.   Consider an idealized drum consisting of a thin membrane stretched over a circular frame of
radius 1. When such a drum is struck at its center, one hears a sound that is frequently described
as a dull thud rather than a melodic tone. We can model a single drumbeat using the boundary-
value problem solved in Example 1.
(a)   Find the solution u(r, t) given in (9) when c = 1, f(r) = 0, and

(b)   Show that the frequency of the standing wave un(r, t ) is fn = aλn/2π, where λn is the nth
positive zero of J0(x). Unlike the solution of the one-dimensional wave equation in Section
13.4, the frequencies are not integer multiples of the fundamental frequency f1. Show that f2
= 2.295f1 and f3 = 3.598f1. We say that the drumbeat produces anharmonic overtones. As a



result the displacement function u(r, t) is not periodic, and so our ideal drum cannot
produce a sustained tone.

(c)   Let a = 1, b = ¼, and v0 = 1 in your solution in part (a). Use a CAS to graph the fifth partial
sum S5(r, t) at the times t = 0, 0.1, 0.2, 0.3, …, 5.9, 6.0 on the interval [–1, 1]. Use the
animation capabilities of your CAS to produce a movie of these vibrations.

(d)   For a greater challenge, use the 3D plotting capabilities of your CAS to make a movie of
the motion of the circular drumhead that is shown in cross section in part (c). [Hint: There
are several ways of proceeding. For a fixed time, either graph u as a function of x and y
using  or use the equivalent of Mathematica’s RevolutionPlot3D.]

14.3 Problems in Spherical Coordinates

   Introduction In this section we continue our examination of boundary-value problems in different
coordinate systems. This time we are going to consider problems involving the heat, wave, and
Laplace’s equation in spherical coordinates.

FIGURE 14.3.1 Spherical coordinates of a point (x, y, z) are (r, θ, ϕ)

   Laplacian in Spherical Coordinates As shown in FIGURE 14.3.1, a point in 3-space is
described in terms of rectangular coordinates and in spherical coordinates. The rectangular
coordinates x, y, and z of the point are related to its spherical coordinates r, θ, and ϕ through the
equations

By using the equations in (1) it can be shown that the Laplacian ∇2u in the spherical coordinate
system is

As you might imagine, problems involving (1) can be quite formidable. Consequently we shall
consider only a few of the simpler problems that are independent of the azimuthal angle ϕ.

Our first example is the Dirichlet problem for a sphere.
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EXAMPLE 1  Steady Temperatures in a Sphere

Find the steady-state temperature u(r, θ) in the sphere shown in FIGURE 14.3.2.

SOLUTION  The temperature is determined from

u(c, θ) = f(θ), 0 < θ < π.

If u = R(r)Θ(θ), the partial differential equation separates as

and so

FIGURE 14.3.2 Dirichlet problem for a sphere in Example 1

After we substitute x = cos θ, 0 ≤ θ ≤ π, (4) becomes

The latter equation is a form of Legendre’s equation (see Problems 50 and 51 in Exercises 5.3). Now
the only solutions of (5) that are continuous and have continuous derivatives on the closed interval [–
1, 1] are the Legendre polynomials Pn(x) corresponding to λ = n(n + 1), n = 0, 1, 2,.… Thus we take
the solutions of (4) to be

Θ(θ) = Pn(cos θ).

Furthermore, when λ = n(n + 1), the general solution of the Cauchy–Euler equation (3) is

R(r) = c1rn + c2r—(n+1).
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Since we again expect u(r, θ) to be bounded at r = 0, we define c2 = 0. Hence un = AnrnPn(cos θ), and

At r = c,

Therefore Ancn are the coefficients of the Fourier–Legendre series (23) of Section 12.6:

It follows that the solution is

14.3  Exercises  Answers to selected odd-numbered problems begin on page ANS-33.

1.   Solve the problem in Example 1 if

Write out the first four nonzero terms of the series solution. [Hint: See Example 3, Section 12.6.]
2.   The solution u(r, θ) in Example 1 could also be interpreted as the potential inside the sphere due

to a charge distribution f(θ) on its surface. Find the potential outside the sphere.
3.   Find the solution of the problem in Example 1 if f(θ) = cos θ, 0 < θ < π. [Hint: P1(cos θ) = cos

θ. Use orthogonality.]
4.   Find the solution of the problem in Example 1 if f(θ) = 1 – cos 2θ, 0 < θ < π. [Hint: See Problem

18, Exercises 12.6.]
5.   Find the steady-state temperature u(r, θ) within a hollow sphere a < r < b if its inner surface r =

a is kept at temperature f (θ) and its outer surface r = b is kept at temperature zero. The sphere in
the first octant is shown in FIGURE 14.3.3.
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FIGURE 14.3.3 Hollow sphere in Problem 5

6.   The steady-state temperature in a hemisphere of radius c is determined from

u(r, π/2) = 0, 0 < r < c

u(c, θ) = f(θ), 0 < θ < π/2

Solve for u(r, θ). [Hint: Pn(0) = 0 only if n is odd. Also see Problem 20, Exercises 12.6.]
7.   Solve Problem 6 when the base of the hemisphere is insulated; that is,

8.   Solve Problem 6 for r > c.
9.   The time-dependent temperature within a sphere of radius 1 is determined from

u(1, t) = 100, t > 0

u(r, 0) = 0, 0 < r < 1.

Solve for u(r, t). [Hint: Verify that the left side of the partial differential equation can be written
as (ru). Let ru(r, t) = v(r, t) + ψ(r). Use only functions that are bounded as r → 0.]

10.   A uniform solid sphere of radius 1 at an initial constant temperature u0 throughout is dropped
into a large container of fluid that is kept at a constant temperature u1 (u1 > u0) for all time. See
FIGURE 14.3.4. Since there is heat transfer across the boundary r = 1, the temperature u(r, t) in
the sphere is determined from the boundary-value problem
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Solve for u(r, t). [Hint: Proceed as in Problem 9.]

FIGURE 14.3.4 Container in Problem 10

11.   Solve the boundary-value problem involving spherical vibrations:

[Hint: Write the left side of the partial differential equation as a2 (ru). Let v(r, t) = ru(r, t).]

12.   A conducting sphere of radius c is grounded and placed in a uniform electric field that has
intensity E in the z-direction. The potential u(r, θ) outside the sphere is determined from the
boundary-value problem

Show that
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[Hint: Explain why  cos θ Pn(cos θ) sin θ dθ = 0 for all nonnegative integers except n = 1. See
(24) of Section 12.6.]

In Problems 13 and 14, you are asked to find a product solution u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) of
Helmholtz’s partial differential equation ∇2u + k2u = 0 where the Laplacian ∇2u is defined in (2).
13.   (a)   Proceed as in Example 1 but using u(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ) and the separation constant

n(n + 1) to show that the radial dependence of the solution u is defined by the equation

(b)   Now use the second separation constant m2 to show that the remaining separated equations
are

(c)   Use the substitution x = cos θ to show that the second differential equation in part (b)
becomes

14.   (a)   Assume that m and n are nonnegative integers. Then find a product solution u(r, θ, ϕ) =
R(r)Θ(θ)Φ(ϕ) of Helmholtz’s PDE using the general solution of the ODE in part (a), the
general solution of the first ODE in part (b), and a particular solution of the second ODE in
part (b) of Problem 13. [Hint: See Problems 41, 42(c), and 52 in Exercises 5.3.]

(b)   What product solution in part (a) would be bounded at the origin?

14  Chapter in Review  Answers to selected odd-numbered problems begin on page ANS-34.

In Problems 1 and 2, find the steady-state temperature u(r, θ) in a circular plate of radius c if the
temperature on the circumference is as given.

1.   

2.   

In Problems 3 and 4, find the steady-state temperature u(r, θ) in a semicircular plate of radius 1 if
boundary conditions are as given.



3.   

4.   

5.   Find the steady-state temperature u(r, θ) in a semicircular plate of radius c if the boundaries θ =
0 and θ = π are insulated and u(c, θ) = f(θ), 0 < θ < π.

6.   Find the steady-state temperature u(r, θ) in a semicircular plate of radius c if the boundary θ = 0
is held at temperature zero, the boundary θ = π is insulated, and u(c, θ) = f (θ), 0 < θ < π.

In Problems 7 and 8, find the steady-state temperature u(r, θ) in the plate shown in the figure.
7.   

FIGURE 14.R.1 Plate in Problem 7

8.   

FIGURE 14.R.2 Plate in Problem 8

9.   If the boundary conditions for an annular plate defined by 1 < r < 2 are

show that the steady-state temperature is

[Hint: See Figure 14.1.4. Also, use the identity sin2 θ = ½ (1 – cos 2θ).]
10.   Find the steady-state temperature u(r, θ) in the infinite plate shown in FIGURE 14.R.3.



FIGURE 14.R.3 Infinite plate in Problem 10

11.   Suppose heat is lost from the flat surfaces of a very thin circular plate of radius 1 into a
surrounding medium at temperature zero. If the linear law of heat transfer applies, the heat
equation assumes the form

See FIGURE 14.R.4. Find the temperature u(r, t ) if the edge r = 1 is kept at temperature zero
and if initially the temperature of the plate is unity throughout.

FIGURE 14.R.4 Circular plate in Problem 11

12.   Suppose xk is a positive zero of J0. Show that a solution of the boundary-value problem

is u(r, t) = u0 J0(xkr) cos axkt.
13.   Find the steady-state temperature u(r, z) in the cylinder in Figure 14.2.5 if the lateral side is kept

at temperature zero, the top z = 4 is kept at temperature 50, and the base z = 0 is insulated.
14.   Solve the boundary-value problem



15.   Find the steady-state temperature u(r, θ) in a sphere of unit radius if the surface is kept at

[Hint: See Problem 22 in Exercises 12.6.]
16.   Solve the boundary-value problem

[Hint: Proceed as in Problems 9 and 10 in Exercises 14.3, but let v(r, t) = ru(r, t ). See Section
13.7.]

17.   The function u(x) = Y0(αa)J0(αx) – J0(αa)Y0(αx), a > 0 is a solution of the parametric Bessel
equation

on the interval [a, b]. If the eigenvalues λn = α2
n are defined by the positive roots of the equation

Y0(αa)J0(αx) – J0(αa)Y0(αx) = 0,

show that the functions

um(x) = Y0(αma)J0(αmx) – J0(αma)Y0(αmx)

un(x) = Y0(αna)J0(αnx) – J0(αna)Y0(αnx)

are orthogonal with respect to the weight function p(x) = x on the interval [a, b]; that is,

[Hint: Follow the procedure on pages 676 and 677.]
18.   Use the results of Problem 17 to solve the following boundary-value problem for the

temperature u(r, t) in an annular plate:

19.   Discuss how to solve



with the boundary conditions given in FIGURE 14.R.5.

FIGURE 14.R.5 Cylinder in Problem 19

20.   Carry out your ideas and find u(r, z) in Problem 19. [Hint: Review (11) of Section 13.5.]

In Problems 21–24, solve the given boundary-value problem.
21.   

22.   

23.   

24.   

*The problem in (18) is Example 2 of Section 3.9 with L = π.


	PART 4 Partial Differential Equations
	14 Boundary-Value Problems in Other Coordinate Systems




