(\)

(b) Use a CAS to obtain the graph of u(x, ) over the rectangular region defined by 0 <x <10, 0
<t <15. Assume ;=100 and £ = 1. Use 2D and 3D plots ofu(x, ) to verify your answer
to part (a).

31. Humans gather most of their information on the outside world through sight and sound. But many
creatures use chemical signals as their primary means of communication; for example,
honeybees, when alarmed, emit a substance and fan their wings feverishly to relay the warning
signal to the bees that attend to the queen. These molecular messages between members of the
same species are called pheromones. The signals may be carried by moving air or water or by a
diffusion process in which the random movement of gas molecules transports the chemical away
from its source. FIGURE 15.2.4shows an ant emitting an alarm chemical into the still air of a
tunnel. If c(x, ) denotes the concentration of the chemical x centimeters from the source at time ¢,
then c(x, ) satisfies

’.%=i—?5 r>=0,1t>=0,
and k is a positive constant. The emission of pheromones as a discrete pulse gives rise to a
boundary condition of the form

i
ax r=0

= —Ad).

where J(¢) is the Dirac delta function.

(a) Solve the boundary-value problem if it is further known that ¢(x, 0) = 0, x > 0, and lim,_,,
e(x, )=0,¢>0.

(b) Use a CAS to plot the graph of the solution in part (a) forx > 0 at the fixed times = 0.1, 1 =
05,t=1,t=2,t=5.

(¢) For a fixed time ¢, show that J"c(x. 1) dx = Ak, Thus Ak represents the total amount of chemical
discharged.

F= TR

—=

; ;

FIGURE 15.2.4 Ants in Problem 31

15.3 Fourier Integral

= Introduction In preceding chapters, Fourier series were used to represent a functionf defined on
a finite interval (—p, p) or (0,L). Whenf and /' are piecewise continuous on such an interval, a
Fourier series represents the function on the interval and converges to the periodic extension off
outside the interval. In this way we are justified in saying that Fourier series are associated only with
periodic functions. We shall now derive, in a nonrigorous fashion, a means of representing certain
kinds of nonperiodic functions that are defined on either an infinite interval (—o, ) or a semi-infinite
interval (0, ).



(2]
[l From Fourier Series to Fourier IntegralSuppose a functionf'is defined on (—p, p). If we use the

integral definitions of the coefficients (9), (10), and (11) of Section 12.2 in (8) of that section, then
the Fourier series of fon the interval is

o

¥ b £ 'P
() cos r:T?T rdr) Cos %;Lx- + ( ‘ () sin nTt dr) sin % \?} (1)

T

VPN % g kS (
o= S J_Pﬂ!)ct + Eﬂz

=1L %l=p

If we let an a, = na/p, Va = a, — a, = n/p, then (1) becomes

t ,
ftx) = ;(

We now expand the interval (—p, p) by letting p — co. Since p — co implies that Va — 0, the limit of
(2) has the form Hiny.5 3% Fla e which is suggestive of the definition of the integral f=r(s) da-
Thus if = 75 ar exists, the limit of the first term in (2) is zero and the limit of the sum becomes

£ P

f(r) COS & rdr) cos a;x + (J

]

St sin a,t dr) sin a,,):‘j| Aa. (2}

1
T

‘wa)sas L[

l e oo g= ;
flx) = = L KJ flt)cos ar-dr) Cos @y + ([ J(1) sinat a’r) sin@x

[~ =0 E e

da, {3)

The result given in (3) is called the Fourier integral of f on the interval (—oo, o). As the following
summary shows, the basic structure of the Fourier integral is reminiscent of that of a Fourier series.

Definition 15.3.1 Fourier Integral
The Fourier integral of a function f defined on the interval (—oo, c0) is given by
flx) = ‘é’ [:ﬁ[fi(a} cos ax + Bleyjsin ax] de, (4)
where
Ale) = f_w flxycos v dx ()
Bla) = F_f{-tf}ﬁﬂ ax dx. (6)

[0  Convergence of a Fourier Integral Sufficient conditions under which a Fourier integral
converges to f{x) are similar to, but slightly more restrictive than, the conditions for a Fourier series.

Theorem 15.3.1 Conditions for Convergence

Let f and ' be piecewise continuous on every finite interval, and let / be absolutely integrable on (-
o0, 0).” Then the Fourier integral off on the interval converges to f{x) at a point of continuity. At a
point of discontinuity, the Fourier integral will converge to the average




fx+) + fia—)
) a

“~

where f{x+) and f{x—) denote the limit of f at x from the right and from the left, respectively.

EXAMPLE 1| Fourier Integral Representation

Find the Fourier integral representation of the piecewise-continuous function

SOLUTION The function, whose graph is shown in FIGURE 15.3.1 satisfies the hypotheses of
Theorem 15.3.1. Hence from (5) and (6) we have at once

Ale) = flx)cos ax dy
J—oe
2 ‘s

flxycosax dx + | flxycosaxdy
;)

0
= fixycosaxdx + [
J—oe 0

= | cosaxdy =:
Rid]

2 3
i sin 2«

oD a2

Bla)y = flysinaxdy = J sineey dy =
[¥]

1 — cos2a

d—es
¥
L

Yot -

FIGURE 15.3.1 Function f in Example 1

Substituting these coefficients into (4) then gives

_ L[ fsin2 {1~ cos2
Jix)y = ~L Ksm a)cos ox + (w-s—ﬂ)sinml de.
.]‘_n. 2 a 3 cu -

When we use trigonometric identities, the last integral simplifies to

J) 7= dex.

2 [ sinacosaly — 1)
= m

43

Pt

*This means that the integral J | f| dy CONVEIEES.

¥ T0D

The Fourier integral can be used to evaluate integrals. For example, atx = 1 it follows from
Theorem 15.3.1 that (7) converges to f{1); that s,



(1)

G » .
J sift e

"
doe = —,
’ 2

The latter result is worthy of special note since it cannot be obtained in the “usual” manner; the
integrand (sin x)/x does not possess an antiderivative that is an elementary function.

[1 Cosine and Sine Integrals Whenf is an even function on the interval (-, o), then the product
fx) cosax is also an even function, whereas f{x) sinax is an odd function. As a consequence of
property (g) of Theorem 12.3.1, B(a) = 0, and so (4) becomes

9

flx)y=— [ ([ f(fycos at da‘) cos ax dev.
T o N

Here we have also used property (f) of Theorem 12.3.1 to write

O

f(fycos at dr.

J f(tcos at df = 2
+ = 40

Similarly, when fis an odd function on (—o, ©), products f{x) cos ax and f{x) sin ax are odd and even
functions, respectively. Therefore 4(a) = 0 and

ftxy = % r U F(ysin et {Ia‘) sin e de.
B )

We summarize in the following definition.

Definition 15.3.2 Fourier Cosine and Sine Integrals

(i) The Fourier integral of an even function on the interval (—, o) is the cosine integral

DS

Jix) = %J Alc)cos aex dev, (8}

&}

where

Ala) = ] fx)cos ax dy. {9)
M0
(ii) The Fourier integral of an odd function on the interval (—o0, o) is the sine integral
2 o«
Jixy == [ Bia)sin ax da, (10}

o0

where

Bia) = L Jixysin qx dy. (11)

EXAMPLE 2| Cosine Integral Representation

Find the Fourier integral representation of the function



FIGURE 15.3.2 Function f'in Example 2

SOLUTION It is apparent from FIGURE 15.3.2 that /'is an even function. Hence we representf by
the Fourier cosine integral (8). From (9) we obtain

oo a o
Ala) = [ fycosaxdy = | flxyeosardy + | flx)cosax dx
<0 <0 g
& sin aee
= J cosax dy = .
0 (a4
and so
2 [* sin ae cos a:
fy == T da, (12)

@ —

11 £

The integrals (8) and (10) can be used whenf is neither odd nor even and defined only on the half-
line (0, «). In this case (8) represents f on the interval (0, ) and its even (but not periodic) extension
to (—o, 0), whereas (10) represents / on (0, ) and its odd extension to the interval (—o, 0). The next
example illustrates this concept.

EXAMPLE 3| Cosine and Sine Integral Representations

Represent f{x) = €%, x > 0 (a) by a cosine integral; (b) by a sine integral.

SOLUTION The graph of the function is given in FIGURE 15.3.3.
(a) Using integration by parts, we find

rod

Ala) = J e~veos ay dy =
D 1 + o

5.

¥
1

FIGURE 15.3.3 Function fin Example 3

Therefore from (8) the cosine integral of fis



o) a

) = cos ax 3
3 = aoy.,
; itk T

(b) Similarly, we have

00

Bla) = J e sinax dx =

0
From (10) the sine integral of f'is then

2
FA

iy =2 " asinax
’ W,-[) 1 +F ﬂz

p
P

()

™

(a) Cosine integral

x

(b} Sine integral

FIGURE 15.3.4 In Example 3, () is the even extension of £; (b) is the odd extension of f

FIGURE 15.3.4shows the graphs of the functions and their extensions represented by the tw

integrals.

Complex Form The Fourier integral (4) also possesses an equivalentcomplex form, or
exponential form, that is analogous to the complex form of a Fourier series (see Section 12.4). If (5)

and (6) are substituted into (4), then

f) =

A0 ca

a
1 4+

{13)

(14)

[ j F(O[ cos at cos aex + sin o sin ax]di de



()
[ fi[cosait — x) + isina(t — x)] dt da (16)

l rOg oD
= — 1 (e dr dee
TT —o0e To0

il

A : ([ f(r}e’“’z!r) e "o, (17

2T S N

We note that (15) follows from the fact that the integrand is an even function of a. In (16) we have
simply added zero to the integrand,

{ J J fitysin et — xydt da = 0,

=

because the integrand is an odd function of a.. The integral in (17) can be expressed as

1 =0

o = _J Claje dai (19)
2 e

where

e

Clay = | _fweax (19)
This latter form of the Fourier integral will be put to use in the next section when we return to the
solution of boundary-value problems.

[0 Use of Computers The convergence of a Fourier integral can be examined in a manner that 1s
similar to graphing partial sums of a Fourier series. To illustrate, let’s use the results in parts (a) and
(b) of Example 3. By definition of an improper integral, the Fourier cosine integral representation of
flx) = e, x>0 in (13) can be written as f{x) = limy,_,Fy,(x), where

gz
2 COs X
=,

40

= Tr e

and x is treated as a parameter. Similarly, the Fourier sine integral representation of f{x) = ¢™ in (14)
can be written as f{x) = limy,_,,Gy(x), where
.2 (*asinex
Gol®) = J | +a°

m

o,



{b) Gyplx)

FIGURE 15.3.5 Graphs of partial integrals

Because the Fourier integrals (13) and (14) converge, the graphs of the partial integrals F(x) and
Gy(x) for a specified value of b > 0 will be an approximation to the graph of f'and its even and odd
extensions shown in Figure 15.3.4(a) and 15.3.4(b), respectively. The graphs of F}(x) and G(x) for
b = 20 given in FIGURE 15.3.5were obtained using Mathematica and its NIntegrate application.

See Problem 21 in Exercises 15.3. \ | X
M, A Lo e 16 19

15.3| Exercises Answers to selected odd-numbered problems begin on page ANS-35.

In Problems 1-6, find the Fourier integral representation of the given function.

L. 0, £ —1
: =1 =gl
flx)y=" 5 iy
0, x|
2. . o
= {4 T < x< 2w
0, X = 2n
3 0, ¥
f(',.r)={x_ 0= x=73
0, x =3
4. 0. ¥
Foy= {sinx, Q=X
0, X



(4)

In Problems 7—12, represent the given function by an appropriate cosine or sine integral.

7. 0, x<—1
=R, Eop oL A )
flx) = 5, - S|
0, xr=1
8. 0, x| <
flxy= A4 m, < x| <2
{ 0, k| >2
9
wrcsi o J [%h ;-f:. T
10.
o) = {1 W <@
=

11.
12.

flx)y= e Msinx

flx) = xe™H
In Problems 13—16, find the cosine and sine integral representations of the given function.

13. fly=e ™ k>0,x>0
14. f@y=e7—e ¥ x>0

15. fy=xe x>0

16. fxy=e*cosx, x>0

In Problems 17 and 18, solve the given integral equation for the function .

17. o |
fx)cosaxdy=¢e"
o

18.

ki 1, 0<m<l

Xrsinardr = §
Flxysinoxe {0

Jo 3 = |

19. (a) Use (7) to show that ' Si“_?-x s

2"

o4
[Hint: o is a dummy variable of integration. ]

(b) Show in general that, for k>0, E" Sinv ke o 3;_ .

20. Use the complex form (19) to find the Fourier integral representation of f{x) = ¢ ™. Show that the
result is the same as that obtained from (8) and (9).



LINEAR DIEFERENTIAL EQUATIONS

4 *

L Bdd L A {dy gl
E - x H . dx?, x?|di? ar |’ T | '
Mﬁa mma ODE with Eo independent variable 7 is .
m+mmw+€uo (1.15)
‘.:6 characteristic nnrw:on
i m2+6m+9=0 (w23 ) medy =2

.“ F has a double root —3. Equation (1.15) has a general solution
(D)=(er+eyt)e
..‘,.H.C.mm:m the transformation again, one obtains

Y(x)=(c;+cylnx)x=3

uler equations appear in solutions of BYPs involving spherical geometry.

Determine the general solution for the equation y” —dy'+d4y=0.
~ Solve the different:al equation y”+2y'+2 y=0.

ﬂ.ua a general solution for y'—2y'—4y =0,
Hint: Show firs: that the characteristic equation has a root 2.

Solve the boundary value problem ¥ =y=0, y(0)=0, yi(m)=1
Find a general solution for y®—y=0. |

Solve the differential €quation y"’ —5y” +6y'=(.

, Determine a general solution for the equation x2y” —3xy'+3y=0.

Solve the BVP HN%:IM‘Q...TA&HO. »=Q, ‘-A_mvﬂmw.

e e s g e

Find a genera) solution for x2y” — xy*+5, =0,

Find a solution for the BVP ww‘.,+@.\+\_\uo, HO)=1; y(w/2)=2.

1]
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CLASSIFICATION OF A LINEAR PDE OF SECOND ORDER - 9
1.5. LINEAR PDEs

A PDE is called /inear if L is a linear partial differential operator so that

Lu=f . (1.16)

The variable u is dependent and f is a function of the independent variables
alone. If the equation is not linear it is described as nonlinear. Equation (1.16)
is homogeneous if f=0; otherwise it is referred to as nonkomogeneous. A
solution for the equation is a function of independent variables which satisfies
(1.16). The order of a PDE is the order of its highest order derivative. The
following are examples of PDEs.

Lu=u,+u,=x(x+2y) (117
_ Lu=u,, +u, =0 (1.18)
Lu=u,u, +uu, =0 . (1.19)

Equation (1.17) is linear, nonhomogeneous of order 1 with a solution u=x.
The second equation (1.18) is linear, homogeneous of order 2. One can verify
that u=sin x, u=e”™*, u=g(x) and u=h(y—x) are all solutions of (1.18).
The functions g and 4 are arbitrary. The last equation (1.19) is nenlinear,
homogeneous of order 2. It has a solution u=sin(x+y).

For ODEs of nth order, general solutions are families of functions with
arbitrary constants. Instead of arbitrary constants, general solutions for PDEs
are arbitrary functions of definite functions. The last two solutions mentioned
for (1.18) were arbitrary functions g(x) and h(y—x). This implies that
functions e*, cosx, sin(y—x), (y—x)?, In(y—x), and all others that are
appropriately differentiable functions of x alone or y—x are solutions of
(1.18). Finding a particular solution from a general solution satisfying a
constraint may be a difficult task. It may be preferable to find a particular
solution satisfying specified conditions directly. a

L6. CLASSIFICATION OF A LINEAR PDE QF SECOND ORDER

A second order ﬁanmp. PDE with two independent variables has the form

Au, +Bu,+Cu,,+Du, +Eu,+Fu=G (1.20)

where coefficients 4,...,G are functions of x and y alone. The n@:mmos is
hyperbolic, elliptic, or parabolic at a specific point in a domain as

B*—44C : (121

Is positive, negative, or zero. The classification is analogous to : ...
geomgtry classification of conic sections. it can be shown by proper coz.:



LINEAR DIFFERENTIAL EQUATIONS

_nsformation that the nature of (1.20) is invariant and the sign of (1.21) is
naltered. Equation (1.20) can be classified different at different points.
Jould the coefficients 4,..., G be constants, then the equation is a sinfle type
o all points of the domain. For details of the classification; and information
on canonical forms and orpnmoﬁn.mmnw equations, the reader may refer to
gommerfeld [31, pp. 36-43]. Illustrations of the classification follow:

=

(2) txx—Hyy =0 is hyperbolic with B2 —44C =4,
(b) Uxx+ 1y, +u=xyiselliptic with B2 —44C=—4, B
(c) Uxxtu,—u,+u=0is parabolic with B> —44C=0."

(d) .. +xu,, =0 is elliptic, parabolic, or hyperbolic as x>0, x=0, or
" x<0 since B* —4AC=—4x.

17.: BOUNDARY VALUE PROBLEMS WITH PDEs
—_ =i
. A mathematical problem composed of a PDE and certain constraints on the

£ boundary of the domain is called a boundary vaiue problem. If u is the
£ dependent variable of the PDE it must satisfy the PDE in a domain of its
independent variables and also constraint equations involving u and ap-
¥ propriate partial derivatives of u. .

- Problems involving time ¢ as one of the independent variables of the PDE
¢ may have a condition given at one specified time, frequently when +=0. Such a

+ constraint is referred to as an initial condition. If all the supplementary
~ conditions are initizl conditions then the problem is an initial value problem. A

& problem that has both initial and boundary conditions is properly called an

5 35&.3§an valve problem. In the literature one often finds the use of the

“terminology boundary value problem to include the initial-boundary value
- problem or mixed problem. In the problem

e e

. w(x)=atu(x,1), (0<x<l,1>0) (1.22)
| %.cu::.cup (1>0) (1.23)
u(x,0)=f(x), (0<x<1) ° (1.24)

&n condition (1.24) is an initial condition, while (1.23) are boundary condi-
ons. The problem: (122)~(1.24) is an initial-boundary value problem or
MEHE.w 2 boundary value problem depending on one’s preference. .
: mEm.Hmna and uniqueness are important topics for mo:ume or initial value
‘Problems of PDEs, At this time we indicate: only a Cauchy-Xovalevsky

Mﬁo*“.”u moasunmnw nd order PDE with initial conditions. For details see
Eimanoglon and Thoe [39, pp. 100-1091. -

T R A R T

o

HA

G RS iR e g IR B T i B T

et

B R M T ST

BOUNDARY VALUE m_IOwEHm WITH PDEs ) 1
Theorem.* Let

e

uy=Ft, xu s uge,] (1.25)
be the PDE with initial conditions
u(0,x)=f(x)
u,(0, x)=g(x) (126)

Functions f(x) and g(x) are defined on an interval of the x axis containing the
origin. Assume that f(x) and g(x) are analytic in a neighborhood of the origin
and F is analytic in a neighborhood of the point (0,0, f(0). g(0). 7(0).
£’(0), f7(0)). Then the problem (1.25), (1.26) has a unique analytic solution
u(x, ) in a neighborhood of the origin. .

The Cauchy-Kovalevsky thedrem . serves as an example of an existence-
uniqueness theorem for an IVP with a PDE. At a later time we will investigate
properties of existence and uniqueness for a few problems of mathematical
physics. -~

A mathematical problem is well posed if it has a unique solution thai
depends continuously on initial or boundary data. The last requirement
implied above is sometimes referred to as stability. For a mathematical model
to describe a specified phenomenon, a small modification in the original data
should result only in a small variation of the solution. Even though most of our
problems are well posed, it is important to know that there are probléms that
fail to meet these conditions. From a family of examples attributed to
Hadamard [16, p. 33-34] the elliptic equation s n e e

EAHIT:E‘”O. .IOOAHAS. p\VD
with the initial conditions on the x axis ;
u(x,0)=0, —0 XX
:»Ak.ovﬂml.\ﬂmmb nx, —oco<x<oo
has the solution
! e
u(x, y)= ——sinnxsinhny ~(1.27)

As n—co, m..}lmE nx—0, but for x50 the solution ml_\m\: sin nxsinh ny —on
far any y#=0. The solution (1.27) fails to depend continuously on the initjsl
data, and therefore is unstabie. ' :

[~ U & . . — ——-



LINEAR Uaﬁmég EQUATIONS

_ g. SECOND ORDER LINEAR PDEs WITH

“FOne of the mmaﬁ_mmﬁ... ¢quations in this category is a second order partial

- Jerivative equal to 2 function of the independent variables. Illustrations of this
ype follow.

Example L. Finda solution for the PDE

- =
K.C.lkmv

3
u,=2-+/(x)

=T

=where f/(x) is an arbit-ary function of x only. A second integration reiative to
with y fixed produces the solution

3.3
u==2"47(x)+g(y)

gwhere g(y) is an arbitrary functien of » alone. Anticipating an integration
Frelative to x. we select an arbitrary function f’(x) in derivative form in the first
Step.

: H.Hnmﬂ.w_wm_m Solve E.n PDE

£with the supplementary conditions
= :.,.A.H.OVHHH and :Ak.ovnﬂma ,

w.,m:ﬁnmqmszw the PDE relative to y, one obtains , : -

E , u,=e’+f(x) o o :
nature of. the first supplementary condition we determine Sx)
ng u. ,. ..

Due 10 the

u (x,.0)=x>=1+f(x)

fx)=x=1

AT,

SR

Tty

)
2
T
=8

oo

SECOND Oﬁ.cm..”. LINEAR PDEs WITH ﬁOZm.n_PZ.._.. COEFFICIENTS . 13
Therefore, .
u,=e’+x'—1

Integrating a second time Hm_mme.n. to y, one finds

u=e’+x3y—y+g(x)
To determine g(x) we use the second condition,

u(x.0)=e*=1+g(x)
It follows that

B g(x)=e*~1

The solution for the problem is

u=e¥+x3y—yptes—1

For a second type, we consider the equation with second partial derivatives

only _
: T:k+w_=.c.+ Cu,, =0 r (1.25)
where A4, B, and C are real constants. Let ) .
u=f(y+mx) (1.29)

be a proposed solution. We attempt to find m so that (1.29) satisfies (1.28). If f

is a solution of (1.28) it must be twice differentiable. Substituting (1.29) into
(1.28), we obtain . : ‘

Am?*f“( y+mx)+Bm “(y+mx)+Cf*(p+mx) =0

If f7(y+mx)#0,

: ‘ Am*+Bm+C=0 | (1.30)

The polynomial equation (1.30) is a characteristic equation. If it has &ﬂ?ﬁ. ‘
roots m=m, and m=m, then u=f(y+m,x) and u=g(y+m.,x) are solytions -

of (1.28). The linear combination

:NMMH+§_HV+WA&+§.HM.V. ,. 7 ﬂ /

f e Amns
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“If m, and m, are distinct and new variables

r=y-+mx and s=ytmyx (1.32)

(1.33)

ot .rwm T Equation (1.33) can be simplified so that the coefficients of
i=and-u,, are both zero, and

u,,=0 (1.34)
Equation (1.34) is 4 special type solvable by integration. It has the solution
. u=f(r)+g(s)

,N_,.nﬁﬁm&um r and s as given in (1.32) one obtains the solution (1.31).
‘The d’Alembert solution of the wave equation

~

,:L.wl.l..ﬁ.‘.m:xwano (1.35)

hyperbolic. The auxiliary equation is

(1.36)
‘& The transformation (1.32) becomes
. r=x+¢ and s=x—ct (1.37)

.n.-:.m..ﬁ.wﬁ as describzd above, we obtain

u=f(x+ct)+g(x—ct)

1€ solution of the wave equation.

; solutions of the characteristic equation (1.30) may be (a) real and
ca .(b) double, or (c) conjugate (imaginary part nonzero) complex num-
vﬂ,m. m.vn. discriminant for the quadratic- equation (1.30) is the same as the
Summant for (1.28). Therefore, a hyperbolic PDE (1.28) is matched by real
mm.l.wn m,_mcbn_ﬁ roots ir: (1.30); an elliptic equation (1.28) is paired with conjugate

Z complex roots in (1.30); and a parabolic equation (1.28) is associated with a
szdouble root in (1.30). : C

is a mooa Ewwﬂmmos of the transformation described in (1.32). Equation (1.35)
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If my =rm, in (1.30), then B2 —44C=0. The two roots ate m, = —B/24. A
second solution for (1.28) is

u=xg(y+mx) —

This result can be verified if m,=m,=—B/2A is employed. In this case

u=f(y+mx)+xg(y+mx) (1.38)
is a general solution for (1.28). One can show that
u=f(y+mx)+yg(y+mx) (1.39)

is a general solution of (1.28) also.

. 2z qLi=L
Example 1.8. Find a general solution for u, +4u,, +4u,, =0. i

rx
This equation is parabolic. The characteristic equation has a double root

—2. A general solution using (1.38) is
u=f(y-2x)y*xg(y—2x)
If (1.39) is used |
u=f(y—2x)+yg(y—2x)
isa mmunrw._ solution.

Example 1.9. Determine a solution for u,, +4u,, =0. wmhT AR - ’
The discriminant B2 —4A4C<0. Therefore, the equation is elliptic. The

characteristic equation has toots =2i. The general solution is written in the

same form as (1.31). For this PDE - :

u=f(y—2ix)+g(y+2ix)

is a general solution.

By comparison with an ODE one may suspect the existence of an n.xvou.n:-.
tial solution for the homogeneous PDE

. M Au,, +Bu,,+Cu,,+Du, +Eu,+ Fu=0 _ (140
: , : :
where the coefficients 4, ..., F are real constants. Let

= Nnh..-_w.e

A
where a'and B are real, be a propesed solution. Substituting (1.41) in t1.40)

e
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Example 1.11. ' Examine

. " obtains the condition
U

: e s Aa® +BaBf+CB* +Da+EB+F=0 (1.42) Uyx 1w=k..‘+=§lunw+mzx+=ﬂo

for a general solution.
Let u=e***#¥ and obtain a nwﬁmoﬁﬂm:n equation ’

: Em ncm&.m:n Q._EEO: (1.42), one may solve for B as a function of a or e as
?nncon of B. >mm_._5a that we solve moq B and obtain B(«) and Bi(a). A
ticular solution

o2 —2aB+B2—2p+2a+1=0
E“.N_Nnkﬁ_m._nnu.v.+.~.A.N_mnk+.munnv.—. 'y

The double root is
" B=a+l

An exponential form of a solution is |

g =ty 2w Fu=0 (1.43)

u=e?| K je®*t7) + K, xe™= ]

77

T b DT R e i G

W
..

Substitute the exponential function

48

A general mowmmow.

B y=eox+8y

u=e?[ f(x+y)+xg(x+y)]
n (1.43). The characteristic equation

e

can be verified.

o

a2 —pf*—2a+1=0
Certain cases may arise in (1.42) where linear factors with imaginary
elements appear. .

Example 1.12.  Investigate a solution for the equation

—

S

:aa+=§|N=w+=Ho (1.45)

Let

R R e T e L ek

7]

nlll.mnk.T.m.v.

.W. be a proposed solution. The characteristic equation .

m a?+p*—2B+1=0

w has two linear factors with imaginary elements for which .
ﬂ Mm B=1=xia

fﬁwﬁ the left member of (1.42) has distinct linear factors, the type of

vrmn»:o: Ewoc.,wma is possible. The case of a qnﬁnmsa linear factor may be

ey

An exponential solution is

.

u=e’[eot=+in featx—iN]  (146)

TR P



LINEAR DIFFERENTIAL EQUATIONS

. =k general solution for (1.45) is suggested by (1.46)

— u=e'| f(x+iy) +g(x—i)] (1.47)

In some situations the exponential procedure may produce a set of useful
articular solutions, but fail to suggest a general solution.

ample 1.13. Determine a solution for the equation

sy hu b 4u=0

ol +B*+4=0

ith

_. pe=ifiTa
[ the exponential substitution is followed then .
| u= mnaﬂﬂ_mm«y&+ﬁum lEL
: .m.m&.smon can b= expressed
:Hmnaﬁa_ cos ,\wﬂe;.bmmwmb ot +hL
K, and K, are properly related to M, and M, using mEmH.m identity.
.pﬁmon (1.40) can be mo?nm almost like an OUm if only partial derivatives

.__E espect to one variable appear. Arbitrary constants of the ODE solution
¢ arbitrary functions of the remaining variable. .

B ' SECOND ORDER LINEAR PDEs WITH CONSTANT COEFFICIENTS

Ry

R R R

has a solution
u=c;e* +c,e’

Arbitrary constants ¢, and M.M. are replaced by arbitrary functions of x alone.
The general solution becomes

-u=e¥f(x)+e’g(x)

Other PDEs may be solved by using comparable solutions of ODEs.

Example 1.15. Find a solution for the FPDE

o ——

xu,, +2u, =y

We observe that the equation may be written
. [xu, +2u]=p?
ay <

By integrating, we obtain

3

x:.«+~:HNmr+ﬁ.«V

Dividing by x, with y fixed, one recognizes a linear differential equation of first
order

3
u +m.:H%|+\.Tnv
. x 3x X

x

The integrating factor is x2. This equation may be displayed
82N
o (x*u)= 3 +xf(x)

Integrating the most recent equation, we obtain
. 4

)

243
xru= 2 (x) + G ()

An explicit form of the solution is

y? 1
=H|ml+ﬂkv+lmmcu
%




ore information regarding Section 1.8,
nd [18; Chapter 8].

he bouadary value problem

50)=s0>

. .E—..-.” Huv_a E.ﬂﬁcq Ev”.ku.. axﬁ.ﬁu #V“OOM X
& -
| %) Determine a solution for u ,=cosx if
and u(m, y)=msin y.
13

(2) yuHxu, =V
(b)) XU TRXYVUL +y? Uy, i =1,
Q) Mg t2u, T 3u,,=0. B
= (d) Il ™ 200, sy, =0.
£ (9 w, atu :..no.. a>0.
B (D, u,—2u ,.d..+ Nz.é.nho.
Solve the equations (¢)—(f)-

:H_Ax+n&+mﬁxln$

mation s==)—3x, r=y+x.

X
:Hw%.—,lw ..vnc& dao

Determine a solution for u, 2w Fu, Fu,Tu
After finding 8 as a function of o, propos
nify .:H general solution. !

T by 809

; H
4 Classify the {npllowing PDEs as hyperbolic, parabolic or elliptic:

=2 o LINEAR DIFFERENTIAL EQUATIONS

the reader may consult

13

5 The d’Alembert solution of the wave equation (1.35) is

% Solve the wave equation if u(x,0)=0 and FOPSHﬁ.S.
~E-6. (a) Determine 2 general solution for equation 4(c) by using the transfor-

b) ”.,= u(0, yy=9 and u,(0, y)=¢(») in (a). show that

=0 by letting u=
¢ a general solution.

PR R R

ol

2.
ik

SRR

A

SEFAKA LIUIN VUK -V rssarasee—

8. . Using the .mcdmm.ﬁcmﬁﬁ u=ea*+B¥ (a) find an exponential solution for’
A:Hulzt._lm: TAu = (b) propose and verify a general solution for
the equation. L ' :

Solve the PDE xu, ,+3u,= A

1f m:ﬁ+m:¢+ﬁzénmﬁa. y), 4, B, and C are constants, then the
equation has a general solution -

w=u (%) (%, 7)

where u(x, y)isa general solution of Au,,+Bu,,+ Cu,,=0 and u,(x. ¥)
is a particular solution of the original equation. Find a general solution
for the following equations:
(a) :x.ﬁ.lw:é.._.wzﬁﬂm.x

. (b) :2..:31m=§”&b y.

19. SEPARATION OF VARIABLES

It is assumed in this method that the solution of a PDE can be expressed in the
form of a product of functions of single independent variables. Using this
procedure we produce an equation with one mernber a function of a single
variable and the other member a function of the remaining variables. Each .
member can be a constant but not 2 function of all the original independent

variables. This process 18 illustrated in the following examples.

|

Example 1.16.

Find a solution for the PDE

(1.48)

_ u,=4u,,
using the separation of variables. ’
We assume that the solution of (1.48) has the form
w(x, 1)=X(x)T(¢) (1.49)

where X1s a function of x alone and T is a function of Hmwoao.wmmmﬁaﬁm C-nau
into (1.48) we obtain . o o
/

M

XT'=4X"T
After dividing by 4XT, one has the variables separated in the form
L
4T X




[T\ _
k)

Nl\

7=9(x)

=00

the mmEn constant, say a” or —a’
If a? is used-(1.50) becomes
uu.\ .N\: ”

=— =«

4T~ X
“Result (1.52) is equivalent to two ODEs

T'—4a*T=0
X" —a*X=0

T=de**"
k”m_ﬁnk +mHN|QH

umn_.num the solutions of (1.54) in (1.49) we find a solution

u(x, t Hma.nr_ﬂﬁ__mna + G~
_.cb_nan G lhm_ und C Ix:wu

tc H —a® is used Emﬂnma of a? in (1.52) the two OUmm are
T'+4a’T=0

X" 4o X=0

u;”\m_..mlan: |

X=Bf}cos ax+ Bfsinax

, %mm_:a:m ¢ is an arbitrary function of x alone, the solution of (1.51) is

(1.51)

is violates the condition that T is a function of ¢ alone unless ¢(x) is a
noE.Sbr A similar partial differentiation of (1.50) relative to x leads to a PDE

<m._a only if (1) is oo:mﬂmnn ﬁﬁ.nmoﬂm both members of (1.50) must be equal

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

ﬂﬁﬁ ﬁ{:-.‘;ﬁ‘ ;‘ﬁu Sl Ili-‘l‘ '-n“’&fﬁfmm- &

s

AR RSN

g

PR e S B

CHEIRIRI Y

SEPARATION OF VARIABLES .

Using the solutions of (1.56) in G.A.mu we have

—4 ol .
u=e~**[Cfcos ax+ C¥sinax]

In Eo& of our BVPs a bounded solution will be necessary. The constants a* or
—a? must be selected to satisfy this requirement.

Example 1.17. Determine a solution for
u,=a*(u, +u,) ‘. A:.ud
Since three independent variables appear in (1.57), we let
u(x, y,t)=T(t)X(x)¥(y) (1.58)
Equation (1.57) has the form .
H\.&%Hnuﬁﬁw‘:uﬁr TXY") . C.‘.MB

after substituting (1.58) in the PDE. Equation (1.59) has another form

HJ\ _ lx\__\ M\\‘ =
MI % v - (1.60)
Partially differentiating 2 60) relative to x, then y, and finally 1, we :Bm
respectively @
m M‘\s _ )
= (%) =0
3 (1" T e
_ o e
9 (T
a A humﬁw =
Solutions of the three PDEs of (1.61) are
. 7 =
_ . wﬂnlmm . e
qlh
I.I!HITH +8? u
a*




LINEAR DIFFERENTIAL EQUATIONS

X'+a2X=0
Y”+B2Y=0

7'+ (a?+B%)a?T=0

X=Bcosax+B,sinax
Y=CcosBy+ C,sin Sy ’ "

T=Aexp[— (o +muvni

w[ﬂnuv_ul (a? +m~v,n~m:.mﬂ,8m ax+B}sinax][C,cos By+ C,sin By]

. m__z.._.?.o_u_mna of- mathematical physics, yet it fails for Ems«.wUmm.mbu..
yint-U [25, pp. 128-129] shows that the second order PDE* with

itab coefficients in x and y

H.H.. Pty -TGA.«.%vxs\+b?,%v:u +mﬁh.wv:\.‘.+kﬁmw.&vxwﬁw
. . . (1.63)

s Mﬂﬁﬁmza when a functional multiplier 1/[¢(x, y)] converts the new equa-
) R

-)_,m_w...txdﬁn.ﬁ.x. V)XY'+D(x, y) X'Y+E(x, y) XY’ +F(x, y) XY=0

.._,Ex:fm_A55\:i”?v%rmkixw%Tu??muC: XY=0
x mwwumm: rules wmz. the workability of this method are a bit elusive. Types of
nmmn.ﬁ._:& nnnwﬂwnm. kinds of coordinate sysiems, and forms of boundary
tons are all Important items for the success of the procedure. .

———

rlllll.llllllnnllllnl.

SEPARATION OF VARIABLES : = 25
\(M, & & ﬁ\v / M&mv

1. Test the following PDEs for the method of separation of variables. If the
method is successful, solve the PDE.

Exercises 1.4 .

(a) wu,,—u=0.

ﬁdv ::I:.&H”Or

(c) :.ﬁl:.s‘lm:aﬂo.

(d) w, —u,+2u,—~2u,+u=0. .
(&) tu,—x?u,=0.

o (2+xHu,+u, =0 .

o 19 u—ytu,,—yu,=0.
1) r_..C.”O. B
S w—utu, = 2x.
() we=u,—u,=0.
k) u=u,. -

2. Find a solution for the boundary (or initial) value problems:
(a) u,—u.,=0, u(x,0)=u(0, 1)=0. .
(b) up—u,,—2u,=0, u(0, y)=u(x,0)=0. L
(c) u(0,1)=0.

...Lh” :Rk.

3. (a) Show that the equation with constant coefficients
Au, +Bu,,+Cu,=0

is separable if Em.n@amwnmnﬁm meet proper conditions. Determine.
appropriate conditions. Note: Let u(x, y)=X{(x)Y(y) and show. that -

a result i
_ X'\ B{X\(Y)\_
1] *2 i (¥)=0 ,
is obtained from u
X BX Y cyY” - . ) . 7
-0 xtaxytavyTt
wwnm_@q show that . ® e
. Y +AY=0 and .N:!ylw.xe._-wumknc

are related ODEs.
~(b) Find a solution for u,,—u,,+u, =0 by separating variables.

P
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Boundary-Value Problems in Rectangular Coordinates

CHAPTER CONTENTS

13.1 Separable Partial Differential Equations

13.2 Classical PDEs and Boundary-Value Problems
13.3 Heat Equation

13.4 Wave Equation

13.5 Laplace’s Equation

13.6 Nonhomogeneous BVPs

13.7 Orthogonal Series Expansions

13.8 Fourier Series in Two Variables
Chapter 13 in Review

In this and the next two chapters, the emphasis will be on two procedures that are frequently used in
solving problems involving temperatures, oscillatory displacements, and potentials. These problems,
called boundary-value problems (BVPs) are described by relatively simple linear second-orde1
partial differential equations (PDEs). The thrust of both procedures is to find particular solutions of ¢
PDE by reducing it to two or more ordinary differential equations (ODEs).

We begin with the method of separation of variables for linear PDEs. This method applied to ¢
boundary-value problem leads naturally back to the important topics of Chapter 12; namely, Sturm-
Liouville problems, eigenvalues, eigenfunctions, and the expansion of a function in a series of
orthogonal functions.

13.1 Separable Partial Differential Equations

— Introduction Partial differential equations (PDEs), like ordinary differential equations (ODEs)
are classified as /inear or nonlinear. Analogous to a linear ODE (see (6) of Section 1.1), the
dependent variable and its partial derivatives appear only to the first power in a linear PDE. In this
and the chapters that follow, we are concerned only with linear partial differential equations.

[] Linear Partial Differential Equation If we letu denote the dependent variable and x and y the
independent variables, then the general form of a linear second-order partial differential equation
is given by

a*u 8u 31 du

T LR alic B A iy SR} (1)
ax- dxdy ay- dx &y

where the coefficients 4, B, C, ..., G are constants or functions of x and y. When G(x, y) = 0, equation
(1) 1s said to be homogeneous; otherwise, it is nonhomogeneous.



EXAMPLE 1| Linear Second-Order PDEs

The equations

a’u a’u ' i

=t =—a=10 ad. =y

dx” ay” dx™ ay
are examples of linear second-order PDEs. The first equation is homogeneous and the second it
nonhomogeneous. =

[] Solution of a PDE A solution of a linear partial differential equation (1) is a function u(x, y) of
two independent variables that possesses all partial derivatives occurring in the equation and that
satisfies the equation in some region of the xy-plane.

It is not our intention to examine procedures for finding general solutions of linear partial
differential equations. Not only is it often difficult to obtain a general solution of a linear second-
order PDE, but a general solution is usually not all that useful in applications. Thus our focus
throughout will be on finding particular solutions of some of the important linear PDEs, that is.
equations that appear in many applications.

4 We are interested only in particular solutions of PDEs.

[] Separation of Variables Although there are several methods that can be tried to find particular
solutions of a linear PDE, in themethod of separation of variables we seek to find a particular
solution of the form of a product of a function of x and a function of y,

u(x, y) = X() X(y).

With this assumption, it is sometimes possible to reduce a linear PDE in two variables to two ODEs
To this end we observe that

du
dx % T Tyt

where the primes denote ordinary differentiation.

EXAMPLE 2| Using Separation of Variables

Find product solutions of ™% _ 4%
dx- vy

SOLUTION Substituting u(x, y) = X(x)¥(y) into the partial differential equation yields
X'Y=4XY.

After dividing both sides by 4XY, we have separated the variables:
il

X, ¥

Since the left-hand side of the last equation is independent of y and is equal to the right-hand side,
which is independent of x, we conclude that both sides of the equation are independent of x and y. In
other words, each side of the equation must be a constant. As a practical matter it is convenient to



write this real separation constant as —4. From the two equalities,

i

x_ vy A

we obtain the two linear ordinary differential equations
X"+4\XX=0 and Y +A¥=0. (2)

p See Example 2, Section 3.9 and Example 1, Section 12.5.

For the three cases for A: zero, negative, or positive; that is, A =0, 1 =—a? <0, and 1 = a® > 0, where
a > 0, the ODEs in (2) are, in turn,

X"=0 and Y =0, (3
X"—4a’X=0 and VY —oY=0, (4)
X"+4a’X=0 and VY +¥=0. {5)

Case I (A = 0): The DEs in (3) can be solved by integration. The solutions areX =c; + ¢, x and ¥ =
c3. Thus a particular product solution of the given PDE 1s

u=XY¥Y= It'| T E'}Tj‘t"_‘., = .'—1| + .B|.]..'. 15”

where we have replaced c,c; and c;c; by A, and B, respectively.

Case II (). = —a?): The general solutions of the DEs in (4) are

&y

X =c,cosh2ax+ c;sinh2ax and ¥ =cge
respectively. Thus, another particular product solution of the PDE is
u = XY = (¢, cosh 2ax + ¢5 sinh Em']c't-,e":’
or U= A_?a’“;‘ cosh 2ax + E':f“z" sinh 2eex, {7

where A, = ¢, and B; = e5¢;.

Case I1I (). = ¢?): Finally, the general solutions of the DEs in (5) are

oy

X=ccos2ax+ cysinZax and ¥ = ce ™"
respectively. These results give yet another particular solution
= Ase ¥ cos 2ax + Bye 7Y sin 2ax, (8)

“"hefe ..";_'; — CCy ;:'IJ'.H:I B_‘; — Cgly. E

It is left as an exercise to verify that (6), (7), and (8) satisfy the given partial differential equation
Uy, = 4u,,. See Problem 29 in Exercises 13.1.

Separation of variables is not a general method for finding particular solutions; some linear partial
differential equations are simply not separable. You should verify that the assumption # = XY does not
lead to a solution for 6%u/0x* — Ou/dy = x.

[] Superposition Principle The following theorem is analogous to Theorem 3.1.2 and is known as
the superposition principle.



Theorem 13.1.1 Superposition Principle

Ifuy, u,, ..., u; are solutions of a homogeneous linear partial differential equation, then the linear
combination

u=ciuy+coy ... +cpuy,

where the ¢;, i =1, 2, ..., k are constants, is also a solution.

Throughout the remainder of the chapter we shall assume that whenever we have an infinite set u,
Uy, U3, ... of solutions of a homogeneous linear equation, we can construct yet another solution u by
forming the infinite series

= -z_{'_(:l'-ll_.::
k=1
where the ¢, k=1, 2, ..., are constants.

[]  Classification of Equations A linear second-order partial differential equation in two
independent variables with constant coefficients can be classified as one of three types. This
classification depends only on the coefficients of the second-order derivatives. Of course, we assume
that at least one of the coefficients 4, B, and C is not zero.

Definition 13.1.1 Classification of Equations

The linear second-order partial differential equation

au & u 3 i au B
+ C—+D—+ E—+ Fu= G,

A = n .
dx~ axay v ax ay

where 4, B, C, D, E, F, and G are real constants, 1s said to be
hyperbolicif B> — 4AC = 0,
parabolic if B> — 4AC =0,
elliptic if B — 4AC < 0.

EXAMPLE 3| Classifying Linear Second-Order PDEs

Classify the following equations:

2 2 2
a7 du du dou dou d-u

@) 3= (h) —=— c) —+—=0.
ax=  ay ax=  ay” ax=  ay”

SOLUTION (a) By rewriting the given equation as

2 n
d°l dil

Tax? ay



we can make the identifications 4 = 3, B = 0, and C = 0. Since B> — 44C = 0, the equation is
parabolic.

(b) By rewriting the equation as

weseethat 4 = |, B=0.c= —1.and B? — 44C = —4{1)(—1) = 0. The equation is hyperbolic.
(©) With 4 = 1, =0, C = 1.and B> — 44C = —4(1)(1) < 0, the equation is elliptic. =

A detailed explanation of why we would want to classify a second-order partial differential
equation is beyond the scope of this text. But the answer lies in the fact that we wish to solve partial
differential equations subject to certain side conditions known as boundary and initial conditions. The
kinds of side conditions appropriate for a given equation depend on whether the equation is
hyperbolic, parabolic, or elliptic.

13.1 | Exercises Answers to selected odd-numbered problems begin on page ANS-30.

In Problems 1-16, use separation of variables to find, if possible, product solutions for the given
partial differential equation.

du du du ., du
T == 2 —Ht3—=10
dx dy dx ay
3 u tu,=u 4 u,=u, +u
an i du du
B. x—=y— B y—+x—=0
dx dy dx dy
i u & u au a*u
1. —+—+—=0 8 y—+u=10
dx~ dxdy dy” dxdy
au du & u du
. k——u=— k=010 k—=—5k=>0
dx~ dt dx~ dar
, 0% a*u
WM. a—=——=
dx- air -
L ou 0% du
1 a =% — >
dx~ df= dr
i 9 u o
13— +—+2%— k=0
dx*  ay° ot
. &u d7u
W o — = % o, tu,=u
ax” ay- e

16. au, — g = u, g aconstant

In Problems 17-26, classify the given partial differential equation as hyperbolic, parabolic, or
elliptic.



-

du d U d7H

1. —e s =
dx~ dgxdy dy~
#u L i u
18. 3—+ 5 + —=10
dx” dxdy dy”
#u i #u au
19. —+ 6 +0—=10
dx- dxdy dy~
i u u a%u
W ——nr— o B
dx~ dxdy dy~
au 9 u 3u au di
. —=9- 2 = —+2—=0
ax* dxdy dxdy dy~ ax
#u % a7u #*u du du
B kbt —— 0=
dx dxdy dy™ ax ay
&2“, I.:i':f!'
B —F ==u
dx dy-
o au a’u i i
8 oAt == 26. k R e |
ax- at- dx© dr

In Problems 27 and 28, show that the given partial differential equation possesses the indicated
product solution.

"8 I du du
I Rl =i
L ar®

Fodr at’
u = e e Jfar) + c,Yyiar))
1 au 1 o
i b i
dr- Far r= ag”
u = (c,cos afl + ¢, sin af)cy™ + c ™)

29. Verify that each of the products u = X(x) X(y) in (6), (7), and (8) satisfies the second-order PDE
in Example 2.

Ll

30. Definition 13.1.1 generalizes to linear PDEs with coefficients that are functions ofx and y.
Determine the regions in the xy-plane for which the equation

iu a’u a’u s
+ (x+F 2y) Fis—sebaytr=i0

(xy + 1) s :
xdy GAY

=

dx

is hyperbolic, parabolic, or elliptic.

= Discussion Problems

In Problems 31 and 32, discuss whether product solutions u = X(x) ¥(y) can be found for the given
partial differential equation. [Hint¢: Use the superposition principle. ]

au a%u ol
3N ——u=0 2 —+—=0
dx~ dxdy dx

13.2 Classical PDEs and Boundary-Value Problems

= Introduction For the remainder of this and the next chapter we shall be concerned with finding
product solutions of the second-order partial differential equations



k 3 S k=10 “}
&= (2)

Sy (3)

ax?  ay?

or slight variations of these equations. These classical equations of mathematical physics are known,
respectively, as the one-dimensional heat equation, the one-dimensional wave equation, and
Laplace’s equation in two dimensions. “One-dimensional” refers to the fact thatx denotes a spatial
dimension whereas ¢ represents time; “two dimensional” in (3) means that x and y are both spatial

dimensions. Laplace’s equation is abbreviated g2, = o, where
u & u

Viu=—+ —
ox” dy

is called the two-dimensional Laplacian of the function u. In three dimensions the Laplacian of u 1s

G #’u #u i
Vom = ——+ —=r——
ax= dy” az -

By comparing equations (1)—(3) with the linear second-order PDE given in Definition 13.1.1, withz
playing the part ofy, we see that the heat equation (1) is parabolic, the wave equation (2) is
hyperbolic, and Laplace’s equation (3) is elliptic. This classification is important in Chapter 16.

[] Heat Equation Equation (1) occurs in the theory of heat flow—that is, heat transferred by
conduction in a rod or thin wire. The functionu(x, ¢) is temperature. Problems in mechanical
vibrations often lead to the wave equation (2). For purposes of discussion, a solutionu(x, ¢) of (2)
will represent the displacement of an idealized string. Finally, a solution u(x, y) of Laplace’s
equation (3) can be interpreted as the steady-state (that is, time-independent) temperature distribution
throughout a thin, two-dimensional plate.

Even though we have to make many simplifying assumptions, it is worthwhile to see how equations
such as (1) and (2) arise.

Suppose a thin circular rod of length L has a cross-sectional area 4 and coincides with the x-axis
on the interval [0, L]. See FIGURE 13.2.1. Let us suppose:

cross section of area A
|

1% T ™
O el Bl il

T2, ! |
e '\ I“r—--—-- ki

0 X x+Ax L x

FIGURE 13.2.1 One-dimensional flow of heat

» The flow of heat within the rod takes place only in the x-direction.

» The lateral, or curved, surface of the rod is insulated; that is, no heat escapes from this surface.
* No heat is being generated within the rod.

» The rod is homogeneous; that is, its mass per unit volume p is a constant.

» The specific heat y and thermal conductivity K of the material of the rod are constants.



To derive the partial differential equation satisfied by the temperature u(x, ¢), we need two
empirical laws of heat conduction:

(i) The quantity of heat Q in an element of mass m is

O = ymu, (4)

where u is the temperature of the element.
(11) The rate of heat flow Q, through the cross section indicated in Figure 13.2.1 is

proportional to the area A of the cross section and the partial derivative with respect to x of
the temperature:

0,= —K Au,. (5)

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is used to ensure that
Q;, 1s positive for u, <0 (heat flow to the right) and negative for u, > 0 (heat flow to the left). If the

circular slice of the rod shown in Figure 13.2.1 between x and , + A, 1s very thin, then u(x, ¢) can be
taken as the approximate temperature at each point in the interval. Now the mass of the slice is
m = p(A Ax), and so it follows from (4) that the quantity of heat in it is

0 =vypAAxu. (B)

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat builds up in the
slice at the net rate

—KAu(x,t) — [ KAux + Ax, )] = K Alufx + Ax, 1) — u(x, ] (7)

By differentiating (6) with respect to t we see that this net rate is also given by

0, = ypA Ax u,. (8)
Equating (7) and (8) gives
4 Ax, ) — w8
iu_,_,[.x Ax, ) w,lx, 1) _— (9)
¥ Ax

Taking the limit of (9) as s, _, ¢ finally yields (1) in the form™
K

— Uy = U
e

It is customary to let k = k7yp and call this positive constant the thermal diffusivity.

[] Wave Equation Consider a string of length L, such as a guitar string, stretched taut between two
points on the x-axis—say, x = 0 and x = L. When the string starts to vibrate, assume that the motion
takes place in the xy-plane in such a manner that each point on the string moves in a direction
perpendicular to the x-axis (transverse vibrations). As shown in FIGURE 13.2.2(a) letu(x, ¢)
denote the vertical displacement of any point on the string measured from the x-axis for z > 0. We
further assume:

» The string is perfectly flexible.
 The string is homogeneous; that is, its mass per unit length p is a constant.
» The displacements u are small compared to the length of the string.



The slope of the curve is small at all points.

The tension T acts tangent to the string, and its magnitude 7 1s the same at all points.
The tension is large compared with the force of gravity.

No other external forces act on the string.

u
As o
| Hix. )
/
o—?\
f } :
0 x x+Ax L *

ia) Segment of string

el
T,
1] x x+Ax x

(b} Enlargement of segment

FIGURE 13.2.2 Taut string anchored at two points on the x-axis

Now in Figure 13.2.2(b) the tensions T; and T, are tangent to the ends of the curve on the interval
[x.x + A¢]. For small values of 0| and 0, the net vertical force acting on the corresponding element As
of the string is then

Tsinf, — Tsinf, =Ttan @, — Ttan 0,
= Tlu x + Ax, 1) — udx, O]
where T'=IT,|=IT,l. Now p As= pAx 1s the mass of the string on . x+ A). and so Newton’s second law
gives
Tlufx + Ax.t) —ulx. 0] = p Ax u,
or

w(x + Ax,f) —uix,f) p
= =l
Ax o

If the limit is taken as Ar — o, the last equation becomes i, = (p/T)u,. This of course is (2) with ;2 = 77p.



temperature as a
function of position thermometer
on the hot plate [

FIGURE 13.2.3 Steady-state temperatures in a rectangular plate

[] Laplace’s Equation Although we shall not present its derivation, Laplace’s equation in two and
three dimensions occurs in time-independent problems involving potentials such as electrostatic,
gravitational, and velocity in fluid mechanics. Moreover, a solution of Laplace’s equation can also be
interpreted as a steady-state temperature distribution. As illustrated in FIGURE 13.2.3 a solution
u(x, y) of (3) could represent the temperature that varies from point to point—but not with time—of a
rectangular plate.

We often wish to find solutions of equations (1), (2), and (3) that satisfy certain side conditions.

] Initial Conditions Since solutions of (1) and (2) depend on time#, we can prescribe what
happens at ¢ = 0; that is, we can give initial conditions (IC). Iff(x) denotes the initial temperature
distribution throughout the rod in Figure 13.2.1, then a solution u(x, #) of (1) must satisfy the single
initial condition u(x, 0) = f(x), 0 < x < L. On the other hand, for a vibrating string, we can specify its
initial displacement (or shape) f(x) as well as its initial velocity g(x). In mathematical terms we seek
a function u(x, ¢) satisfying (2) and the two initial conditions:

: i
ulx,0) = fix), — = g(x), O0<x<L (10

Ul" =0

u

h I<
I
0 i = |'-u'=|:}/’FL -
atx=0 atx=1L

FIGURE 13.2.4 Plucked string

For example, the string could be plucked, as shown in FIGURE 13.2.4, and released from rest (g(x)
=0).

[] Boundary Conditions The string in Figure 13.2.4 is secured to the x-axis atx = 0 and x = L for
all time. We interpret this by the two boundary conditions (BC):

w0.0=0, wl =0 t=0.



Note that in this context the functionf'in (10) is continuous, and consequently f{0) =0 and /(L) = 0. In
general, there are three types of boundary conditions associated with equations (1), (2), and (3). On a
boundary we can specify the values of one of the following:

di

; o G
(i) u, (1) —, or (1) — + hi, haconstant.
dn dan

Here ou/On denotes the normal derivative of u (the directional derivative ofu in the direction
perpendicular to the boundary). A boundary condition of the first type (i) is called a Dirichlet
condition; a boundary condition of the second type (ii) is called a Neumann condition; and a
boundary condition of the third type (iii) is known as a Robin condition. For example, fors > 0 a
typical condition at the right-hand end of the rod in Figure 13.2.1 can be

(i) w(L.t) = u,, u,aconstant,

(i) — =0, or

(HE): 7— = —h(u(L, t) — u,), h >0 and u, constants.

Condition (i)' simply states that the boundary x = L is held by some means at a constant temperature
ug for all time # > 0. Condition (i7)" indicates that the boundary x = L 1s insulated. From the empirical

law of heat transfer, the flux of heat across a boundary (that is, the amount of heat per unit area per
unit time conducted across the boundary) is proportional to the value of the normal derivative ou/on
of the temperature u. Thus when the boundary x = L 1s thermally insulated, no heat flows into or out of
the rod and so
Mg
ax |.=;
We can interpret (iii)’ to mean that seat is lost from the right-hand end of the rod by being in contact
with a medium, such as air or water, that is held at a constant temperature. From Newton’s law of
cooling, the outward flux of heat from the rod is proportional to the difference between the
temperature u(L, ¢) at the boundary and the temperature u,, of the surrounding medium. We note that if

heat is lost from the left-hand end of the rod, the boundary condition is

ﬂ = h(u(0, 1) — u,).

0X |y=n
The change in algebraic sign is consistent with the assumption that the rod is at a higher temperature
than the medium surrounding the ends so that 0, ) = u, and w(l. r) = u,. Atx =0 and x =L, the slopes
u (0, ¢) and u,(L, ) must be positive and negative, respectively.

Of course, at the ends of the rod we can specify different conditions at the same time. For example,
we could have
di

= =0 and wll.t) =, t=0
0X lx=0 '

We note that the boundary condition in (7)" 1s homogeneous ifu, = 0; ifu, # 0, the boundary



condition is nonhomogeneous. The boundary condition (i7)’ is homogeneous; (ii7)’ is homogeneous if
u,, = 0 and nonhomogeneous if u,, # 0.

[] Boundary-Value Problems Problems such as

5 O°H d i

Solve: al—=—, 0<x<L t>0
dx” ar~
Subjectto: (BC) w(0,6)=0, wil,t)=10, t=0 (11)
= du —
(IC) wuix,0) =fix), — =glx), 0x <L
of |ip
and
au a'u :
Solve: T et Pl S S | o T
ot aii
=l =0,=| =00<v<b
0 ly=n 0X |y=q .

Subject to: (BC) {12}

w(x,00 =0, wx,b) =fix), 0<x<a
are called boundary-value problems. The problems in (11) and (12) are classified as homogeneous
BVPs since the partial differential equation and the boundary conditions are homogeneous.

[ Variations The partial differential equations (1), (2), and (3) must be modified to take into
consideration internal or external influences acting on the physical system. More general forms of the
one-dimensional heat and wave equations are, respectively,

-

du du
k—+Flx, g u) = — (13)
dx” it
and
L &u ; ! u
a—t+Fxtwu) =—. (14)
ax- ar -

For example, if there is heat transfer from the lateral surface of a rod into a surrounding medium that
1s held at a constant temperature u,,, then the heat equation (13) 1s

-

a7 aid
k—=—hlu— u) =—,
ax* af

where / 1s a constant. In (14) the function F' could represent the various forces acting on the string.

For example, when external, damping, and elastic restoring forces are taken into account, (14)
assumes the form

external force

external force damping restoring force
i
- {'J:H . o :]:H
i e i S (15)
dx- di di =
\ S




Remarks

The analysis of a wide variety of diverse phenomena yields the mathematical models (1), (2), or (3)
or their generalizations involving a greater number of spatial variables. For example, (1) is
sometimes called the diffusion equation since the diffusion of dissolved substances in solution is
analogous to the flow of heat in a solid. The functionc(x, ¢) satisfying the partial differential
equation in this case represents the concentration of the dissolved substance. Similarly, equation (2)
and its generalization (15) arise in the analysis of the flow of electricity in a long cable or
transmission line. In this setting (2) 1s known as the telegraph equation. It can be shown that under
certain assumptions the currenti(x, #) and the voltage v(x, ¢) in the line satisfy two partial
differential equations identical to (2) (or (15)). The wave equation (2) also appears in fluid
mechanics, acoustics, and elasticity. Laplace’s equation (3) is encountered in determining the static
displacement of membranes.

13.2 | Exercises Answers to selected odd-numbered problems begin on page ANS-31.

In Problems 1-6, a rod of length L coincides with the interval [0, L] on the x-axis. Set up the
boundary-value problem for the temperature u(x, 7).
1. The left end is held at temperature zero, and the right end is insulated. The initial temperature is
f(x) throughout.
2. The left end 1s held at temperature u,, and the right end 1s held at temperature u;. The initial
temperature is zero throughout.
3. The left end is held at temperature 100°, and there is heat transfer from the right end into the
surrounding medium at temperature zero. The initial temperature is f{x) throughout.
4. There is heat transfer from the left end into a surrounding medium at temperature 20°, and the
right end is insulated. The initial temperature is f{x) throughout.

5. The left end is at temperature sin(zt/L), the right end is held at zero, and there is heat transfer
from the lateral surface of the rod into the surrounding medium held at temperature zero. The
initial temperature is f{x) throughout.

6. The ends are insulated, and there is heat transfer from the lateral surface of the rod into the
surrounding medium held at temperature 50°. The initial temperature is 100° throughout.

In Problems 7-10, a string of length L coincides with the interval [0, L] on the x-axis. Set up the
boundary-value problem for the displacement u(x, ?).
7. The ends are secured to the x-axis. The string is released from rest from the initial displacement
x(L —x).
8. The ends are secured to the x-axis. Initially the string is undisplaced but has the initial velocity
sin(zx/L).
9. The left end is secured to the x-axis, but the right end moves in a transverse manner according to
sin rt. The string 1s released from rest from the initial displacement f{x). For ¢ > 0 the transverse
vibrations are damped with a force proportional to the instantaneous velocity.

10. The ends are secured to the x-axis, and the string is initially at rest on that axis. An external



vertical force proportional to the horizontal distance from the left end acts on the string for ¢ > 0.

In Problems 11 and 12, set up the boundary-value problem for the steady-state temperature u(x, ).

11. A thin rectangular plate coincides with the region in the xy-plane defined byn=r=4. 0=y = 2.
The left end and the bottom of the plate are insulated. The top of the plate is held at tempefature
zero, and the right end of the plate is held at temperature f{y).

12. A semi-infinite plate coincides with the region defined by 0 = x = =, v=0. The left end is held at
temperature e, and the right end is held at temperature 100° for 0 <y < 1 and temperature zero
for y > 1. The bottom of the plate is held at temperature f{x).

13.3 Heat Equation

— Introduction Consider a thin rod of length L with an initial temperature f(x) throughout and
whose ends are held at temperature zero for all time r > 0. If the rod shown in FIGURE 13.3.]
satisfies the assumptions given on page 693, then the temperature u(x, ¢) in the rod is determined from
the boundary-value problem

k "'_'{ = ﬂ O x5, =0 {1}
dx” ol
Bl = 0. Wl H=0. 1=10 (2)
u(x,0) = f(ix), 0 <x< L {3)
u=0 u=0

—
\ I'-. z

[} L X

FIGURE 13.3.1 Find the temperature « in a finite rod

In the discussion that follows next we show how to solve this BVP using the method of separation o1
variables introduced in Section 13.1.

[] Solution of the BVP Using the product u(x, 1) = x(x)7(1), and —4 as the separation constant, leads to

A "

and
X ax=10 (5)
T+ kAT =0. (6)

Now the boundary conditions in (2) become (0, 1y = X(0)7(r) = 0 and u(L. 1) = X(L)T(r) = 0. Since the last
equalities must hold for all time 7, we must have X(0) = 0 and X(L) = 0. These homogeneous boundary
conditions together with the homogeneous ODE (5) constitute a regular Sturm—Liouville problem:

X'"+AX=0, X(0h=0, X(L)=0. (7)

The solution of this BVP was discussed in detail in Example 2 of Section 3.9 and on page 675 o
Section 12.5. In that example, we considered three possible cases for the parameter 4: zero, negative,



and positive. The corresponding general solutions of the DEs are

Xfl.] =Gy + Ca X, A= D ‘B}
X(x) = ¢;coshax + ¢;sinhax, A= —a’* =<0 {9)
Xi(x) = ¢y cosax + o, sinax, A=atsy {10}

Recall, when the boundary conditions X(0) = 0 and X(L) = 0 are applied to (8) and (9) these solutions
yield only X(x) = 0 and so we are left with the unusable result u = 0. Applying the first boundary
condition X(0) = 0 to the solution in (10) gives ¢; = 0. Therefore X(x) =c¢, sinax. The second

boundary condition X(L) = 0 now implies
X(L)=c;sinal = 0. {11)

Ifc, =0, then X = 0 so thatu = 0. But (11) can be satisfied for ¢, # 0 when sinaL = 0. This last
equation implies that 4 = nw or @ = na/L, where n = 1. 2. 3..... Hence (7) possesses nontrivial solutions

when \ = o2 = ,25%1% n=1.2,3,.... The values 4, and the corresponding solutions
Xix) = o, ﬁitt?.h = 125 ... (12)

are the eigenvalues and eigenfunctions, respectively, of the problem in (7).
The general solution of (6) is () = ¢.e <=/, and s0

nw

T x, (13)

u, = X(x)T() = Ae7H /L) gin

where we have replaced the constant c,c5 by 4,,. The products u,(x, ) given in (13) satisfy the partial

differential equation (1) as well as the boundary conditions (2) for each value of the positive integer
n. However, in order for the functions in (13) to satisfy the initial condition (3), we would have to
choose the coefficient 4, in such a manner that

iylx, 0) = f(x) = A, sin ?1 {14)

In general, we would not expect condition (14) to be satisfied for an arbitrary, but reasonable, choice
of /. Therefore we are forced to admit that u,(x, ¢) is not a solution of the problem given in (1)—(3).

Now by the superposition principle the function

i — Rt HAT
“{-1'-.* ) = E“” [=1 EA”(_, E(n o= /L) e LJ ¥ *15}
n=1 E

n=1

must also, although formally, satisfy equation (1) and the conditions in (2). If we substitute # = 0 into
(15), then

) ) e .onm
ulx, 0y = fix) = z_.ﬂl,g sin—=x.
n=1

This last expression is recognized as the half-range expansion off in a sine series. If we make the
identification 4, =b,,n=1, 2,3, ..., it follows from (5) of Section 12.3 that

e R
) s IL Jfilx) sin T.x' dx. (16)



We conclude that a solution of the boundary-value problem described in (1), (2), and (3) is given by
the infinite series

Yoo

S o e =
uix, r) = i; |: | f{x) sin %.‘r Lf.".')L'_'QI'H-T- E¥ sin %1 (17)
In the special case when the initial temperature is u(x, 0) = 100, L =z, and k£ = 1, you should verify

that the coefficients (16) are given by

Ei}[}[[ — (=1

Ap =
]

and that the series (17) is

. PR
ulx, ) = — 2[ te "™ sin nx. {18)

r=1 r

[] Use of Computers The solution u in (18) is a function of two variables and as such its graphis a
surface in 3-space. We could use the 3D-plot application of a computer algebra system to
approximate this surface by graphing partial sums S, (x, ) over a rectangular region defined by

0=x=m 0=¢=T Alternatively, with the aid of the 2D-plot application of a CAS we plot the solutior

u(x, t) on the x-interval [0, ] for increasing values of time . See FIGURE 13.3.2(a) InFigure

13.3.2(b) the solution u(x, t) is graphed on the t-interval [0, 6] for increasing values of x (x = 0 is the

left end and x = /2 is the midpoint of the rod of length L = ). Both sets of graphs verify that which is
apparent in (18)—namely, u(x, 1) — 0 as r —cc.
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various fixed times

I - =2
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,-'*'1

x = /6

] | 2 3 4 5 f
(B wix, £) graphed as a
function of ¢ for
various fixed positions

FIGURE 13.3.2 Graphs obtained using partial sums of (18)

13.3 | Exercises Answers to selected odd-numbered problems begin on page ANS-31.




In Problems 1 and 2, solve the heat equation (1) subject to the given conditions. Assume a rod of
length L.
w0, =0 wl,H=0

S {L 0<x<Lj2
MED =0 L2<x<lL

2 mﬁn=ﬂ~mLﬁ=D
T ou(x,0) =x(L — x)

3. Find the temperature u(x, ¢) in a rod of length L if the initial temperature is f{x) throughout and if
the ends x = 0 and x = L are insulated.

4. Solve Problem 3 1f L =2 and
e B 0<x=<1
£ {[I. | <= a= 2

5. Suppose heat is lost from the lateral surface of a thin rod of length L into a surrounding medium
at temperature zero. If the linear law of heat transfer applies, then the heat equation takes on the
form

1.

s 0ol £50,
dx* ot

h a constant. Find the temperaturé u(x, t) if the 1nitial temperature 1s f(x) throughout and the ends
x =0 and x = L are insulated. See FIGURE 13.3.3.

insulated o lnsullated

RO "/

heat transfer from
lateral surface of
the rod

FIGURE 13.3.3 Rod in Problem 5
6. Solve Problem 5 if the ends x = 0 and x = L are held at temperature zero.
7. A thin wire coinciding with the x-axis on the interval [-L, L] 1s bent into the shape of a circle so

that the ends x = —L and x = L are joined. Under certain conditions the temperature u(x, ¢) in the
wire satisfies the boundary-value problem

a7 du

kb—5=— —L<x<L t>0,
ax” al

wi—L.fh=wl. bty t =0

aul

dX

did

,t=0
x=L

r=-L X

alx, ) = flx), —L<x<L,
Find the temperature u(x, ¢).

8. Find the temperature u(x, ¢) for the boundary-value problem (1)_(3)whenZ = 1 andf(x) = 100 sin 6mx.
[Hint: Look closely at (13) and (14).]

= Computer Lab Assignments



9. (a) Solve the heat equation (1) subject to
w0, H =0, a(l00,0)=0, t=0
RPN )+ 0=x=50
“50 = 08100 - 1, 50 <x = 100
(b) Use the 3D-plot application of your CAS to graph the partial sumS;(x, ) consisting of the

first five nonzero terms of the solution in part (a) for o = x = 100. o = r = 200. Assume that k =
1.6352. Experiment with various three-dimensional viewing perspectives of the surface
(called the ViewPoint option in Mathematica).

= Discussion Problems

10. InFigure 13.3.2(b) we have the graphs ofu(x, ¢) on the interval
[0, 6] for x = 0, x = 7/12, x = =/6, x = /4, and x = =/2. Describe or sketch the graphs of u(x, f) on the same
time 1nterval but for the fixed values , = 3,4,y = 52/6, x = 117712, and x = 7.

13.4 Wave Equation

— Introduction We are now in a position to solve the boundary-value problem (11) discussed in
Section 13.2. The vertical displacementu(x, ¢) of a string of length L that is freely vibrating in the
vertical plane shown in Figure 13.2.2(a) 1s determined from

-

P LI:H :
ey & U Dy e (1)
dx= dt=
w0,y =10, wffty=0,t=0 (2)
! aut !
wx. M =ik —1 =gx)k 0x<L (3)

af |i=q

[] Solution of the BVP With the usual assumption that u(x, ) = X(x)7(¢), separating variables in
(1) gives

so that
X' +AX=0 (4}

"+ alAT =0 (5)
As in Section 13.3, the boundary conditions (2) translate into X(0) = 0 and X(L) = 0. The ODE in (4
along with these boundary-conditions is the regular Sturm-Liouville problem

X"+ AX =0 X(0)=0, X(L)=0. (6)

Of the usual three possibilities for the parameter a: A = 0,4 = —o? < 0,and A = o > 0, only the last choice
leads to nontrivial solutions. Corresponding to , = .2 = . the general solution of (4) is

X{x) = ¢y cos ax + oy sin .



X(0) = 0 and X(L) = 0 indicate thatc; = 0 and ¢, sinaL = 0. The last equation again implies that
of = nmora = nm/l.  The eigenvalues and corresponding eigenfunctions of (6) are

A, = ntw/L? and X(x) = ¢, sin ”Ta n=1,2.3,.... The general solution of the second-order equation (5) is then

na . nwd
r + ¢4 5in

Tit) = cyco8 i

By rewriting ¢,c5 as 4, and ¢,c, as B, solutions that satisfy both the wave equation (1) and boundary
conditions (2) are

s
nwa . Hma by
o, = [.4,, cos } t + B, sin : !) sin f.x' (7)

and

I nmda pma N . onw :
wix; )y = T_II A, cos t+ B, sin !J sin —. (8)
=i\ I 3 L

Setting ¢ = 0 in (8) and using the initial condition u(x, 0) = f(x) gives

ulx, 0) = fix) = E.A,, sin —x.
=] L

Since the last series is a half-range expansion for f'in a sine series, we can write 4, =, :

=
~ L
“

A =—
" Lh

i

fia) sin f_‘ dx. (9)

To determine B, we differentiate (8) with respect to ¢ and then set # = 0:

au i nma . nwda nd nd onm
E[_”jlu I

— = —— sin t+ B,——cos sin—ux
dt L L il ; L

A=l

- i

ait - fard A
= = plx) = » | B, )5'111—1_
at 3 E( i ¢ L

=1 A=

In order for this last series to be the half-range sine expansion of the initial velocity g on the interval,
the total coefficient B, nwa/L must be given by the form b,, in (5) of Section 12.3—that 1s,

L
| . R
[ glx)sin T xdx

2
£ Lk

from which we obtain

2 n
;= 2{x) sin I_ d. (10)

nwa

The solution of the boundary-value problem (1)—(3) consists of the series (8) with coefficients 4,
and B, defined by (9) and (10), respectively.

We note that when the string is released from rest, then g(x) = 0 for every x in the interval [0, L]
and consequently B, = 0.

1 Plucked String A special case of the boundary-value problem in (1)—(3) when g(x) = 0 is a



model of a plucked string. We can see the motion of the string by plotting the solution or
displacement u(x, #) for increasing values of time ¢ and using the animation feature of a CAS. Some
frames of a movie generated in this manner are given in FIGURE 13.4.1 You are asked to emulate
the results given in the figure by plotting a sequence of partial sums of (8). See Problems 7, 8, and 27
in Exercises 13.4.
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FIGURE 13.4.1 Frames of plucked-string movie
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FIGURE 13.4.2 First three standing waves

[] Standing Waves Recall from the derivation of the wave equation in Section 13.2 that the
constant a appearing in the solution of the boundary-value problem in (1)—(3) is given by /77, where
p 1s mass per unit length and 7" is the magnitude of the tension in the string. When 7' is large enough,



the vibrating string produces a musical sound. This sound is the result of standing waves. The solution
(8) is a superposition of product solutions called standing waves or normal modes:

wix, ) = (X, 1) + talx, 1) + sz, 8) + -,

In view of (6) and (7) of Section 3.8, the product solutions (7) can be written as

‘ra T

t+ d:,,)r;inT.r. {11)

ux, 1) = C, s'mll

where C,= VA> + B and &, isdefined by sind, = A/C, and cos &, = B,/C,. Forn=1,2.3.... the standing waves are
essentially the graphs of sin(nzx/L), with a time-varying amplitude given by

. [ nma
C, sin

7 i o u':,,).

% i

Alternatively, we see from (11) that at a fixed value of x each product function u,(x, #) represents

simple harmonic motion with amplitude ¢, |sin(nm/L)| and frequency f, = na/2L. In other words, each point
on a standing wave vibrates with a different amplitude but with the same frequency. When n = 1,

uylx, 1) = C sin (?r F: d:q) sin %1

is called the first standing wave, the first normal mode, or the fundamental mode of vibration.

The first three standing waves, or normal modes, are shown in FIGURE 13.4.2 The dashed graphs

represent the standing waves at various values of time. The points in the interval (0, L), for which

sin(nm/L)x = 0, correspond to points on a standing wave where there is no motion. These points are

called nodes. For example, in Figures 13.4.2(b) and (c) we see that the second standing wave has one

node at L/2 and the third standing wave has two nodes at L/3 and 2L/3. In general, the nth normal
mode of vibration has n — 1 nodes.

The frequency

) 1 .'IF

I s~ N B

of the first normal mode is called the fundamental frequency or first harmonic and 1s directly

related to the pitch produced by a stringed instrument. It is apparent that the greater the tension on the

string, the higher the pitch of the sound. The frequenciesf, of the other normal modes, which are

integer multiples of the fundamental frequency, are called overtones. The second harmonic is the first
overtone, and so on.

[] Superposition Principle The superposition principle, Theorem 13.1.1, is the key in making the
method of separation of variables an effective means of solving certain kinds of boundary-value
problems involving linear partial differential equations. Sometimes a problem can also be solved by
using a superposition of solutions of two easier problems. If we can solve each of the problems,



Problem 1 FProblem 2
N .

I 3 r 3

ﬁ_-:'.l:.'n .i':m 5 6'2.'.'3 -:'i:ug
——r=r— < E >0 a—=—, 0<x<L, t=>0

dx” at dx” ai-
u, (0, ) = 0, il ) =0, t>0 ux(0,1) = 0, L, 6y =10, t>0 (12)
. gy _ ity
wy(x, 0) = fix), — =0, 0<x<L slx, 0) = 0, . =glx), 0<=x<1L
of |;=p at =0

then a solution of (1)~(3) is given by u(x. 1) = uy(x. 1) + us(x,1). To see this we know that
u(x, 1) = u,(x, 1) + u,(x, 1) 18 @ solution of the homogeneous equation in (1) because of Theorem 13.1.1.
Moreover, u(x, t) satisfies the boundary condition (2) and the initial conditions (3) because, in turn,

C_{u{{l D=uf0,0+u(0.0=0+0=0
wll, ) = (L, 1) + w(L,t) =0 +0=0,

and
wix, 0) = wy(x, 0) + wyix, 0) = fix) + 0 = flx)
ICS au ity

il

dis

=0 + glx) = glx).

=0

t=0 dt |;—g dt

You are encouraged to try this method to obtain (8), (9), and (10). See Problems 5 and 14 in
Exercises 13.4.

13.4 | Exercises Answers to selected odd-numbered problems begin on page ANS-31.

In Problems 1-6, solve the wave equation (1) subject to the given conditions.

1. w0, nH =0, wLOy=0, =0

l dei |
u(x,0) = 7x(L = x), 2 =0, 0<x<L

dtl;=p
2 wo,nH=0, wWlLn=0 =0
au
ux,0)=0, —| =x(L—x), 0<x<L
df |;=a
L wl, =0, wmH)=0, t=10
il
uix,0) = 0, = =sinx, 0<x<
df ;=g

4 w0,H=0, ww.n)=0, t>0

l 5 5 did
wlx, 0y = —x(m™ — x7), — =0, 0<x<'ao
(i ol =0
B w0, H=0, wl, =0, t=0
dit
w(x, ) =1 — x), — =xl —x) 0=<x=1
o lr=0
6. 0, ) =0, wa, ) =0, t=0
v did
u(x, M) = 0.01 sin 3mwx, — =0, 0<x<w
r=0

In Problems 7—10, a string is tied to the x-axis at x =0 and at x = L and its initial displacement



ux, 0) = fix).0 < x < L, 1S shown in the figure. Find u(x, ¢) if the string is released from rest.

1. flx)
h
Li2 r -
FIGURE 13.4.3 Initial displacement for Problem 7
8. fix)
h
Li3 i

FIGURE 13.4.4 Initial displacement for Problem 8

9. fix)
h

L3 2143 L
FIGURE 13.4.5 Initial displacement for Problem 9
10. fix)
h
2Li3 .
L3 o

—h

FIGURE 13.4.6 Initial displacement for Problem 10

11. The longitudinal displacement of a vibrating elastic bar shown in FIGURE 13.4.7satisfies the
wave equation (1) and the conditions

du die|

- =0, — =0, t=0

0¥ y=g 0x|,_p
du

wrx, ) =x, — = ik
o =0

The boundary conditions atx = 0 andx =L are called free-end conditions. Find the
displacement u(x, t).



12.

13.
14.

15.

16.

FIGURE 13.4.7 Elastic bar in Problem 11

A model for the motion of a vibrating string whose ends are allowed to slide on frictionless
sleeves attached to the vertical axes x = 0 and x = L is given by the wave equation (1) and the
conditions

dut an
= =iy w— =0,t=0
ax =0 dx =L
DU :
ulx. ) = fix), — = g(x), 0 <x=< L.
atl; =g

See FIGURE 13.4.8 The boundary conditions indicate that the motion is such that the slope of
the curve is zero at its ends for # > 0. Find the displacement u(x, ¢).

J

=
o

x

0 L

FIGURE 13.4.8 String whose ends are attached to frictionless sleeves in Problem 12
In Problem 10, determine the value of u(1/2. 1) for t = 0.

Rederive the results given in (8), (9), and (10), but this time use the superposition principle
discussed on page 703.

A string 1s stretched and secured on the x-axis atx = 0 and , = ; for s = 0. If the transverse
vibrations take place in a medium that imparts a resistance proportional to the instantaneous
velocity, then the wave equation takes on the form

8%u #*u dif
e L
ax” at” of

Find the displacement u(x, ¢) if the string starts from rest from the initial displacement f{x).
Show that a solution of the boundary-value problem

0<p<1 r=0.

i u #u
P et i T O<x<m t>0
dx~ dat=
. N =0 ww,H=0,t>0
X, 0 < x < arf?
wix, 0) = { N
m T X, 71_..-"2 =X N TE
di )
w2 =0 0<x T
dt | ;=
is
._1_ oo [_ k+1 R
U= tgﬁmm‘ — DxcosV(2k — 12 + 1.
= le — L)



17. Consider the boundary-value problem given in (1)—(3) of this section. Ifg(x) =0 on 0 <x <L,
show that the solution of the problem can be written as

1
wlx, ) = = [ flx+ afy + f(x — ar)].
[Hint: Use the identity
2 sin @, cos B, = sin(f, + B,) + sin(d;, — 6,).]

18. The vertical displacement u(x, ¢) of an infinitely long string is determined from the initial-value

problem
5 a’u &u
af = ——y ool elioogd =0
ox " ar-
{13)
o di ;
ulx, ) = flx), — = g(x).

& P

This problem can be solved without separating variables.

(a) Show that the wave equation can be put into the form gy;mas =0 by means of the
substitutions ¢ = x + ar and , = , — 4

(b) Integrate the partial differential equation in part (a), first with respect to # and then with
respect to ¢, to show that ,\ 1) = Fix + ar) + Gix — ar), Where I/ and G are arbitrary twice
differentiable functions, is a solution of the wave equation. Use this solution and the given
initial conditions to show that

gls)ds + ¢

X

, - I
Fix) = E'ﬁ” + E

rx

- l I
and Gy = =] gl&)ds—
2 2y

where x 1s arbitrary and c is a constant of integration.

(c) Use the results in part (b) to show that

X+

1 1
wlx, 1) = o [flx+ ad) + f(x —af)] + j—| ais) ds. (14)

Ll Jy—ar

Note that when the initial velocity g(x) = 0 we obtain

l
wx, ) = 5 [f(x + af) + fix —at)], —no<x<"na

The last solution can be interpreted as a superposition of two traveling waves, one moving
to the right (that is, i f(x — ar)) and one moving to the left (L ¢(x + ). Both waves travel with
speed a and have the same basic shape as the initial displacement f(x). The form ofu(x, ¢)
given in (14) is called d’ Alembert’s solution.

In Problems 19-21, use d’ Alembert’s solution (14) to solve the initial-value problem in Problem 18
subject to the given initial conditions.



19.
20.
21.
22

23.

flx) = sinx, glx) =1

flx)=sinx, gx) =cosx

flx) =0, g(x) = sin 2x

Suppose f(y) = 1/(1 + %), g(x)=0, and a = 1 for the initial-value problem given in Problem 18.
Graph d’ Alembert’s solution in this case at the time 1 =0, =1, and 7 = 3.
The transverse displacement u(x, ¢) of a vibrating beam of length L is determined from a fourth-
order partial differential equation

-

i ErJ'.'.' d i

a”

axt  or?

=0,0<x<L =0

If the beam issimply supported, as shown in FIGURE 13.4.9 the boundary and initial
conditions are

w, =0, wL.ty=0,¢t>10

a*u a*u
— =0, - =0, r>0
dx” |.=g 0xX" |y =g,
. i —
wlx, 1) = flx), — =g(x), 0 <x <L
[

F=u

Solve for u(x, ¢). [Hint: For convenience use A = o* when separating variables.]

|

0

2
FIGURE 13.4.9 Simply supported beam in Problem 23

|
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24.

If the ends of the beam in Problem 23 are embedded at x = 0 and x = L, the boundary conditions
become, for ¢ > 0,

w0, =0, w(l, =10

dii au
— =0 — = .

0x |ymp dx r=1L

(a) Show that the eigenvalues of the problem are ) = s2/12 wherex,, n =1, 2, 3, ..., are the
positive roots of the equation cosh x cos x = 1.

(b) Show graphically that the equation in part (a) has an infinite number of roots.

(c) Use a CAS to find approximations to the first four eigenvalues. Use four decimal places.

25. A model for an infinitely long string that is initially held at the three points (-1, 0), (1, 0), and (O,

1) and then simultaneously released at all three points at time # = 0 is given by (13) with

1 — |x|, x| =
flxy = { s : and glx) = 0.
x

=1
0, = 1



(a) Plot the initial position of the string on the interval [-6, 6].
(b) Use a CAS to plot d’Alembert’s solution (14) on [-6, 6] fort = 0.2k, k=0, 1, 2, ..., 25.
Assume that a = 1.

(c) Use the animation feature of your computer algebra system to make a movie of the solution.
Describe the motion of the string over time.

26. An infinitely long string coinciding with the x-axis is struck at the origin with a hammer whose
head is 0.2 inch in diameter. A model for the motion of the string is given by (13) with

1, |x =0.1

(x) =0 and glx) = i
/ 2 {ﬂ. x| = 0.1.

(a) Use a CAS to plot d’Alembert’s solution (14) on [-6, 6] fort = 0.2k, k=0, 1, 2, ..., 25.
Assume thata = 1.

(b) Use the animation feature of your computer algebra system to make a movie of the solution.
Describe the motion of the string over time.

27. The model of the vibrating string in Problem 7 1s called a plucked string.
(a) Use a CAS to plot the partial sum S¢(x, ¢); that is, the first six nonzero terms of your solution
u(x, t), fort=0.1k, k=0, 1,2, ..., 20. Assume thata=1,2=1,and L = .

(b) Use the animation feature of your computer algebra system to make a movie of the solution
to Problem 7.

insulated insulated

X
| =0

FIGURE 13.5.1 Find the temperature u in a rectangular plate

13.5 Laplace’s Equation

— Introduction Suppose we wish to find the steady-state temperature u(x, y) in a rectangular plate
whose vertical edges x =0 and x = a are insulated, and whose upper and lower edges y=5b and y =0
are maintained at temperatures f(x) and 0, respectively. See FIGURE 13.5.1 When no heat escapes
from the lateral faces of the plate, we solve the following boundary-value problem:

#*u a~i Lo o -
—+—==00<x<=a 0=y<bh (1)
ax®

aH : ol
— i

0% |y 1Y M.

=0, 0<y<bh (2}

wx, 0y =10, wx, b)) =Ffilx), 0 <x<a. (3)

[1 Solution of the BVP With u(x, y) = X(x) X(y), separation of variables in (1) leads to



X 1

R = —A

X ¥
X"+ AX =0 (4)
" =AY =0 {5)

The three homogeneous boundary conditions in (2) and (3) translate into X'(0) = 0, X'(a) = 0, and ¥(0)
= (. The Sturm-Liouville problem associated with the equation in (4) 1s then

X¥+2X=0 X(0)=0X"a =0 (6)

Examination of the cases corresponding toA = 0,1 = —a?> < 0, and A =a? > 0, where a > 0, has
already been carried out in Example 1 in Section 12.5. For convenience a shortened version of tha
analysis follows.

For 4 =0, (6) becomes

X'=0 X(0)=0Xa) =0

The solution of the ODE isX = ¢ + ¢,x. The boundary condition X’(0) = 0 then implies ¢, = 0, and so
X =c;. Note that for anyc;, this constant solution satisfies the second boundary condition
X'(a) = 0. By imposing ¢, £ 0, X = ¢, 15 @ nontrivial solution of the BVP (6). For — —,* =, (6) possesses
no nontrivial solution. For , = 42~ g (6) becomes

X" +aX =0, X(0)=0,X1a)=0.

Applying the boundary conditionX'(0) = 0 the solution x = ¢, cos ax + ¢, sinaximpliese, =0 and so
X = ccos axv. The second boundary condition X'(a) = 0 applied to this last expression then gives
—¢,a sin @a = 0. Because @ > 0, the last equation is satisfied when aq = nw Or @ =nmia.n=1.2..... The
eigenvalues of (6) are then , and A, = R )

By corresponding A, = 0 withn = O the elgenﬁmctlons of (6) are

R

X=c.n=0, and X=¢cos—=x, n=12 ...
&

We must now solve equation (5) subject to the single homogeneous boundary condition ¥(0) = 0.
First, for Ay = 0 the DE in (5) 1s simply Y” = 0, and thus its solution is ¥ =c¢; +c4y. But {0) = 0
implies ¢; = 0 so Y =c4y. Second, for ), = »27%?, the DE in (5) 1sy» _ ’lﬁfz y — Because 0 <y <b is

o

a finite interval, we write the general solution in terms of hyperbolic functions:

Yiy) = ¢y cosh(nwyla) + ¢, sinh(nmyia).
4 Why hyperbolic functions? See page 675.
From this solution we see Y(0) = 0 again implies ¢, = 0 s0 ¥ = ¢, sinh(nmy/a).
Thus product solutionsu, =X(x)¥(y) that satisfy the Laplace’s equation (1) and the three

homogeneous boundary conditions in (2) and (3) are

., R@ n
Agy, n=0, and A;s ' COS x, n=12,...,

where we have rewritten cjc4 as Agforn=0and as 4, forn=1, 2, ....



The superposition principle yields another solution

nw LN TH

ulx, y) = Agy + '\;‘F‘L,,amh—fu cos —x. ]
n=1 £

Finally, by substituting y = b in (7) we see

= T R
wx, b) = fix) = Ayb + E ( A, sinh — h)cm— X,
LN | {E

rn=1

1s a half-range expansion of f'in a Fourier cosine series. If we make the identifications 4yb = ay/2 and
_,.':1_."= :i;jn]][”-'llj—h_,lrﬂ'y =g, n= ]’ 2-.. — lt fOllOWS ﬁom (2) aIld (3) Of SCCtiOl’l 12.3 that

A a
2A4,b = ;| fix) dx
2o
| [0
A, = flx) dx (8)

I:I!I} Jn

and

1T

7 T
= —| filx) cos —x dx
{l'_u._'_. a
¥ "
s |
".'Ilr.' = —_— | fl"l,:ll,_l,.l‘;_'l.:!'l.- 19'
nar |

asinh—# "
e

The solution of the boundary-value problem (1)—(3) consists of the series in (7), with coefficients
Ap and An defined in (8) and (9), respectively.

[] Dirichlet Problem A boundary-value problem in which we seek a solution to an elliptic partial
differential equation such as Laplace’s equation vz, — ; within a region R (in the plane or 3-space)
such that u takes on prescribed values on the entire boundary of the region is called a Dirichlet
problem. In Problem 1 in Exercises 13.5 you are asked to show that the solution of the Dirichle
problem for a rectangular region

a’u a’u
—zopi—=l=l): (elp=lgy O<w=ph
da dy~

w(,v) =0, wla,y)=20
w(x,0) =0, ulx,b)=fix)

1S
T T 2 i nw
(T ; T s et T

ysin—x where A, =————— | fix)sin—xdx. (10)
a .. hwh | a

a sinh

wix,v) = EA. mlh

n=1

i
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(b1 Isotherms

FIGURE 13.5.2 Surface is graph of partial sums when f{x) =100 anda=5 =1 1n (10)

. =1
narsinh nw

With the help of a CAS the plot of the surface defined byu(x, y) over the region g o=r=1.0=y=1
is given in FIGURE 13.5.2(a) You can see in the figure that boundary conditions are satisfied;
especially note that along y = 1. « = 100 for 0 = x = 1. The isotherms, or curves, in the rectangular region
along which the temperature u(x, y) is constant can be obtained using the contour plotting capabilities
of a CAS and are illustrated inFigure 13.5.2(b). The isotherms can also be visualized as the curves
of intersection (projected into the xy-plane) of horizontal planes u = 80, u = 60, and so on, with the
surface in Figure 13.5.2(a). Notice that throughout the region the maximum temperature is # = 100 and
occurs on the portion of the boundary corresponding to y = 1. This is no coincidence. There is a
maximum principle that states a solution u# of Laplace’s equation within a bounded region R with
boundary B (such as a rectangle, circle, sphere, and so on) takes on its maximum and minimum values
on B. In addition, it can be proved thatu can have no relative extrema (maxima or minima) in the
interior of R. This last statement is clearly borne out by the surface shown in Figure 13.5.2(a).

In the special case whenf(x) = 100, a = 1, b = 1, the coefficients 4, are given by A, =200

[] Superposition Principle A Dirichlet problem for a rectangle can be readily solved by separation
of variables when homogeneous boundary conditions are specified on two parallel boundaries.
However, the method of separation of variables is not applicable to a Dirichlet problem when the
boundary conditions on all four sides of the rectangle are nonhomogeneous. To get around this
difficulty we break the boundary-value problem

a7 a i

—+—=0, 0<x<g 0<y<b

dx~ dy

w0, y) =Fy), wayv=0G>y), 0<y<b (11)
ulx, 0) = filx), ulx,b)=glx), 0<<x<a

into two problems, each of which has homogeneous boundary conditions on parallel boundaries, as
shown.



Problem |1 Problem 2
o ot

r "\ '8 )
d:”ﬁl 4 L”J =0, 0<x<a O<y<bh {-F”f o d:ii: =0, 0<x<a 0<y<b

dx dy- ax dy~

w0, y) = 0, wla,v) =0, 0<y<bh (0, vy = Fiy), la, vy = Gly), 0=y =< b
wylx, 0) = filx). ulx. by =g(x), 0<x<a o, 0y = 0, lx, by =10, 0 < x < a

Supposeu; andu, are the solutions of Problems 1 and 2, respectively. If we define

u(x, v) = u,(x. ¥) + uslx. v), 1t 1s seen that u satisfies all boundary conditions in the original problem (11).
For example,

w0, y) = w0, ¥) + u5(0,y) = 0 + Fiy) = Fly)
wix, b) = wy(x, b) + wylx, b) = glx) + 0 = gix)
and so on. Furthermore, u is a solution of Laplace’s equation by Theorem 13.1.1. In other words, by

solving Problems 1 and 2 and adding their solutions we have solved the original problem. This
additive property of solutions is known as the superposition principle. See FIGURE 13.5.3.

¥ A ¥ : ¥
glx) i@, b glx) {a, i 0 (a b)
Fiy) V=0 Giv) = 0 e =10 0 + Fiy) -.;,-3“2 s Gy
x x ¥
flx fix) 0

FIGURE 13.5.3 Solution u = Solution u; of Problem 1 + Solution «, of Problem 2

We leave as exercises (see Problems 13 and 14 in Exercises 13.5) to show that a solution of
Problem 1 1s

HIT 1 R

; i na g
ix, ¥) = z {.ﬁ._., cosh—vy 4+ B, .*;th_\-J/mn o

n=1 a
where
.
4, = —| flx)sin—x dx
aly i
I 2% omw R
B,=—— (— | glx)sin xdx — A, cosh b )_.
s Ly ol a a
sinh b '
a

and that a solution of Problem 2 is

= nr : n .
(X, y) = 2 {A” cosh T +-8. nmhf—.x}a‘m P

P » 2 i

where



rb
T

A, =—| Fiy)sin—ydy
¥ i}-rl W :| " .
" \
l (l| z , T nr
B,=—|—| G{y)sin—ydy — A, cosh a |
Lo mm A\bl, 7 ", b
smh —a
b

13.5 | Exercises Answers to selected odd-numbered problems begin on page ANS-31.

In Problems 1-10, solve Laplace’s equation (1) for a rectangular plate subject to the given boundary
conditions.
1. w0, v) =0, wla.y) =10
wlx, ) =0, ulx. b) = fix)
2 w0, y)=0, wla,y)=0
dit

— =0, wix, b) =f(x)
dy fy=n0

3. w0, y)=0, uwla,y)=0
u(x,0) = fix), ulx,b)=10
i %__ﬁ_u — 0, %_ =0
wx,0)=x, wix.by=0
5. uwl.y)=0, u(l,y)=1—y

a du
= L M =0
d¥ |y=0 ay ly=1
: odu |
6. wll, v)=glv), —| =10
X |x—1
au du
— =0, — =0
dV |y=0 0y ly—=
an ; ;
T = w0, v), u(mw,yv) =1
dX lr=p

wa, M =0, wx,7)=0
8. w(D,y)=0, w(l,v) =0
o = uix, ), ulx, 1) = fix)

=0

dy

9. w0, y)=0, w(l,¥y)=0
wlx, 0) = 100, wix, 1) =200
10. w(D, v) = 10y, i
’ T odx

= —1
=1

wx, N =0, wix, D=0

In Problems 11 and 12, solve Laplace’s equation (1) for the semi-infinite plate extending in the
positive y-direction. In each case assume that u(x, y) is bounded at y — .



0 / =«

%
u=fix)

FIGURE 13.5.4 Semi-infinite Plate in Problem 11

12. o
b
7 7
e
insulated ’//’f 7 insulated
7 7
7 3
o F x

!
u=flx)

FIGURE 13.5.5 Semi-infinite Plate in Problem 12

In Problems 13 and 14, solve Laplace’s equation (1) for a rectangular plate subject to the giver
boundary conditions.

13. w0, v) =0, wla,yv)=0
wlx, 0) = fix), wlx, b) = g(x)
14. w0, v) = F(y). ula,v) = G(v)
ulx, ) =0, wlx,b)=0

In Problems 15 and 16, use the superposition principle to solve Laplace’s equation (1) for a square
plate subject to the given boundary conditions.

15 wl0.v)=1. ulz.v) =1
wlx, ) =0, wlx. 7) =1
16. w0, v) =0, w(2,y)=vy2—y)
0=<x<1
.

x,
wx, ) =0, uix,2)= {
' 2 —x l=x<12

17. InProblem 16, what is the maximum value of the temperature u for 0 <x <2,0<y <2?

= Computer Lab Assignments

18. (a) In Problem 1 supposea = b = x and f{x) = 100x(zx — x). Without using the solution u(x, y)
sketch, by hand, what the surface would look like over the rectangular region defined by 0 <
x<m0<y<m.

(b) What is the maximum value of the temperature u for 0 <x <z, 0 <y <z?

(¢) Use the information in part (a) to compute the coefficients for your answer in Problem 1.
Then use the 3D-plot application of your CAS to graph the partial sumS;(x, y) consisting of



the first five nonzero terms of the solution in part (a) for 0 <x <z, 0 <y <z Use different
perspectives and then compare with part (a).

19. (a) Use the contour-plot application of your CAS to graph the isothermsu = 170, 140, 110, 80,
60, 30 for the solution of Problem 9. Use the partial sumSs(x, y) consisting of the first five

nonzero terms of the solution.
(b) Use the 3D-plot application of your CAS to graph the partial sum S5(x, y).

20. Use the contour-plot application of your CAS to graph the isothermsu =2, 1, 0.5, 0.2, 0.1, 0.05,

0, —0.05 for the solution of Problem 10. Use the partial sumS5(x, y) consisting of the first five
nonzero terms of the solution.

= Discussion Problems

21. Solve the Neumann problem for a rectangle:

#u a*u

— =k DS O
dx dy-

o o

= =0, — =0,0=x=<a
d¥ lh=n d¥ bap

o ol

—] =0, —] =200 0<y<h
dX ly—p S r=a

(a) Explain why a necessary condition for a solution u to exist is that g satisfy

|'\I--»:I
| glyidy = 0.
Jo

This is sometimes called a compatibility condition. Do some extra reading and explain the
compatibility condition on physical grounds.

(b) Ifu is a solution of the BVP, explain why u + ¢, where ¢ is an arbitrary constant, is also a
solution.

22. Consider the boundary-value problem

d i a- i

—+ —=0,0<x<1,0<y<w
ax dy”
w0, v) = wpcosy, u(l, y) = up(l + cos2y)
du du
T =0, — = 0.
oy |y=0 Y ly=m

Discuss how the following answer was obtained

sinh(1 — x) i SR .
e ROR }51[1[13.1‘1:0:;2_1'.

sinh | zinh 2

wix, vh = wgx + uy

Carry out your ideas.



13.6 Nonhomogeneous BVPs

— Introduction A boundary-value problem is said to be nonhomogeneous when either the partial
differential equation or the boundary conditions are nonhomogeneous. For example, a typical
nonhomogeneous BVP for the heat equation is

#*u dil
k—tHxt)=— 0<x<L:#>0
ax- dt
ul(, 1) = uglth, w(L,t) = wir), t =0 (1)

wx, M =flx), 0 < x <L

We can interpret this problem as a model for the temperature distribution ©# within a rod of length L
when heat is being generated internally at rate F(x, ¢); the temperatures at the ends of the rod vary
with time . The method of separation of variables may not be applicable to a boundary-value
problem when the partial differential equation or boundary conditions are nonhomogeneous. For
example, when heat is generated at a constant rate » within the rod, the heat equation in (1) takes on
the form
Pty = (2)
dx” dr

Equation (2) is readily shown not to be separable. On the other hand, suppose we wish to solve the
usual heat equation ku,, = u, when the boundaries x = 0 and x = L are held at nonzero temperatures

and u;. Even though the substitution u(x, #) = X(x)r(¢) separates the PDE, we quickly find ourselves a

an impasse in determining eigenvalues and eigenfunctions since no conclusion about X(0) and X(L)
can be drawn from u(0, ) = X(0)7(¢) = ug and u(L, t) = X(L)r(¢) = u;.

[] Change of Dependent Variable In this section we consider certain types of nonhomogeneous
boundary-value problems that can be solved by changing the dependent variable u to a new dependent
variable v by means of the substitution u# = v + y, where y 1s a function to be determined.

[] Time-Independent PDE and BCs We first consider a nonhomogeneous boundary-value problem
such as (1) where the heat source term F' and the boundary-conditions are time independent:

-

d M du
k—tHx)=— Dt Lt >0
dx” at
w(0,0) = ug. w(L,t) =uy, t =0 {3)

““'rﬂj = f[.".']. 0<x<[.

In (3), uy and u; denote constants. By changing the dependent variable u to a new dependent variable
v by the substitution u(x, 1) = v(x, t) + y(x), (3) can be reduced to two problems:



Problem 1: {k" + F(x) = 0, (0) = uy, L) = u,

v _
axt  at
Wl =0 vwl.6) =10

vix, 0) = filx) — o(x).

Problem 2;

Notice that the ODE in Problem 1 can be solved by integration. Moreover, Problem 2 is
homogeneous BVP that can be solved straightaway by separation of variables. A solution of the
original problem is then

Solution u = Solution & of Problem 1 + Solution v of Problem 2.

There is nothing given above in the two problems that should be memorized, but work through the
substitution ,(x, 1) = v(x, 1) + w(x) €ach time as outlined in the next example.

EXAMPLE 1| Time-Independent PDE and BCs

Solve equation (2) subject to

w0, r) =0, u(l, 1) =uy t =0

ulx,0) = f(x), 0<x< 1.

SOLUTION Both the partial differential equation and the condition at the right boundaryx = 1 are
nonhomogeneous. If we let ucx, 1) = v(x, 1) + wix), then

;-F“ Eﬁ- = du av
— =i——if and —=— {4)
dx- ox- dr ot

since y, = 0. Substituting these results in (4) into (3) gives

atv av
k— + k" + r=—. (5)
ox - ol

Equation (5) reduces to a homogeneous PDE if we demand that y be a function that satisfies the ODE

.
k" +r=0 or ¢"= 3

Integrating the last equation twice reveals that

T
dr(x) = 2k = Sl St i o (6)

Furthermore,
w0, 1y =w0, 1)+ l(0)=10
wll.y=v(l.6)+ fi(l) = uy
We have v(0, ) =0 and v(1, ¢) = 0, provided we choose
W0y =0 and 1) = ug

Applying the latter two conditions to (6) gives, in turn, ¢, = 0 and ¢; = r/2k + u. Consequently



fi(x) = (— + H[-.) &

Finally, the initial condition u(x, 0) = v(x, 0) + drix) implies vix, 0) = wufx, 0) — wix) = F(x) — @r(x). Thus to
determine v(x, ¢) we solve the new homogeneous boundary-value problem
63'-* dv

k= 0 = 1, ¢ >0
Er.r it

v, =0, wl,.00=0 =0

wx, 0) = f(x) +_LT - (£—£+ u)n 0<x<1

by separation of variables. In the usual manner we find

(==
e ’
vix, 1) = EA,,e T sinnwx,

n=1

where the initial condition v(x, 0) determines the Fourier sine coefficients:

i \

fix) + —x2 — r— + Mg J ¥ | sin namx dx. {7

A, =2
" . ﬁ;' "".['

A solution of the original problem is obtained by adding w(x) and v(x, ?):

: F 2 8 I : = —.‘TFJ;'T!.'
ulxad) = —E.t + II&E + .'r.-.) x + F:Z:IA,_.& sin nwx, (8)

where the coefficients 4, are defined in (7). =

Observe in (8) thatu(x, r) — wix) as t — cc. In the context of the given boundary-value problem, y 1s
called a steady-state solution. Since vy, 1y — 0 as 1 — =0, v 1 called a transient solution.

[] Time-Dependent PDE and BCs We now return to the problem given in (1), where the heat
source term /" and the boundary-conditions are time dependent. Intuitively one might expect that the
line of attack for this problem would be a natural extension of the procedure that worked in Example
1; namely, seek a solution of the form . ) = vix, 1) + wix, r). While the latter form of the solution is
correct, it is usually not possible to find a function of two variables w(x, ¢) that reduces the problem
inv(x, t) to a homogeneous one. To understand why this is so, let’s see what happens when
w(x. 1) = vix, £) + wix, 1) 18 substituted in (1). Since

8% v 3% du dv Al
sy — e and o=l (9)
dx- dx~ dx~ ar ar dr
(1) becomes
) dv  dr
fIsir | + AESHL T
ax? dx’ i dt
v(0, 1) + (0, 1) = ug(n), WL, t) + L, t) = uglt) (10

vix, 0) = fix) — ¥lx, 0).

The boundary conditions on v in (10) will be homogeneous if we demand that



Ur(0, 1) = ug(r), WL, ) = uy?). {11)

Were we, at this point, to follow the same steps in the method used in Example 1, we would try to
force the problem in (10) to be homogeneous by solving ky, . + F(x, f) =y, and then imposing the
conditions in (11) on the solution y. In view of the fact that the defining equation for y is itself a
nonhomogeneous PDE, this is an unrealistic expectation. We try an entirely different tack by simply
constructing a function y that satisfies both conditions in (11). One such a function is given by

X
Wix, 1) = uglr) + E[up:'rj = ua(B)]. (12)

Reinspection of (10) shows that we have gained some additional simplification with this choice of i
since y,, = 0. We now start over. This time if we substitute

X
wlx, t) = vix, D) + wylt) + E[uﬁr] — uglt)] (13)

the problem in (1) becomes

v dv
ki ibG) =i 5ty £53500
dx~ fily

WO, =0 wWL=0,t>0 (14)

wWx, 0) = f{x) — (x,0), 0 <x <L,

where Gix, 1) = Fix, n — o,. While the problem in (14) is still nonhomogeneous (the boundary conditions
are homogeneous but the partial differential equation is nonhomogeneous) it is a problem that we can
solve.

[] Basic Strategy The solution method for (14) is a bit involved, so before illustrating with a
specific example, we first outline the basic strategy:

Make the assumption that time-dependent coefficients v, (¢) and G, (¢) can be found such that both
v(x, t) and G(x, ) in (14) can be expanded in the series

vix, 1) = iu,[r} 55[1%.1‘ and Gix, 1) = SGJ!] s‘in?.x} {15)
n=| n=1

where sin(nmx/L) ,n = 1, 2, 3, ... are the eigenfunctions of X + Ax = 0. X0y =0, X(L) = 0
corresponding to the eigenvalues ), = o? = »?7%/12. This Sturm-Liouville problem would have beer
obtained had separation of variables been applied to the associated homogeneous BVP of (14). Ir
(15), observe that the assumed series for v(x, ¢) already satisfies the boundary conditions in (14).
Now substitute the first series in (15) into the nonhomogeneous PDE in (14), collect terms, and equate
the resulting series with the actual series expansion found for G(x, 7).

The next example illustrates this method.

EXAMPLE 2| Time-Dependent PDE and BCs

Solve



#u dit
—immi—e) =l 1 )
dx - dt

w0, 1) = cost, wi(l.O) =0 t=>10
WM =0 0=<x<1.

SOLUTION  We match this problem with (1) by identifyingk = 1,L = 1, F(x, t) = 0,
ug(t) = cos £, uy(1) = 0, and f(x) = 0. We begin with the construction of y. From (12) we get

Yrix,t) =cost+x[0 —cost]=(1— x)cost,
and then as indicated in (13), we use the substitution
wlx, ) =vix,H + ({1 —x)cost {186)

to obtain the BVP for v(x, ©):

ity dv
—+ (]l —x)sint=— 0<x<1,t =0
dx~ ar
w0, =0, Wl,H=0,1t>=0 {17)

vix,=x—-1,0<x<1.
The eigenvalues and eigenfunctions of the Sturm-Liouville problem
Y¥+AX=0X0)=0 X(1)=0

are found to be A, = a: = wwandsinnwr,n=1,2,3,.... With G(x, ) = (1 — x) sinr W€ assume from (15) that

iy

for fixed 7, v and G can be written as Fourier sine series:

Ok
Vi = 2\*,,”3 sin RTX, {18)

n=1

and

(1 — x)sinr = EGREIJ gin NTx. {19)

n=1

By treating ¢ as a parameter, the coefficients G, in (19) can be computed:

o -1
”
G = —| (1 — x)sintsinnwxdy =2sint | (1 — x)sin nmxdy = —sin L.
Lo Jo n
Hence,
e 2
(1 — x)sin¢ = E sin f sin HTX. {20}
o

We can determine the coefficients v, (¢) by substituting (19) and (20) back into the PDE 1n (17). To
that end, the partial derivatives of v are

ﬂzl' e @ v &0 .
— = 21',,{”[—H'TT'} sinamx and — = E.L',;f.l’] sin RITX. (21}
dx n=1 dt mn=1

Writing the PDE as v, — v, = (1 —x) sin ¢ and using (20) and (21) we get



2aint |
sin X,

oo o n o
E[L',;:'!J + nrmv(t)] sin nwx = E
o n=l

1T

We then equate the coefficients of sin nzx on each side of the equality to get

2sin ¢

vy () + nlwiv () = ]
RT

For each n, the last equation is a linear first-order ODE whose general solution is

W

) + {_"Rt._,—.lllr%t

2 (H‘r‘ﬁin! — cost
T

2 it + 1

where C, denotes the arbitrary constant. Therefore the assumed form of v(x, #) in (18) can be written

h n*mlsint — cost DT
vix, 1) = E{E + Le ”“’7} SIn HITX. (22)

Py nmlnwt + 1)

The C, can be found by applying the initial condition v(x, 0) to (22). From the Fourier sine series,

i e
xi—il—= 2 {— + C,_.} sin RTY

naintm + 1)

n=1

we see that the quantity in the brackets represents the Fourier sine coefficients b, for x — 1. That is,

—2 [ —2 —2
— 4+, =2| (x— Dsinnwmxdx or ————+C, = g
na(ntat + 1) ' .|n ninta? + 1) " nmw
pi 2
Therefore, ¢, = ————— — —
' nminm + 1) N
By substituting the last result into (22) we obtain a solution of (17),
_ 2 = [mPalsint — cost 4 e WT1 gTWEI)
vix, ry = — T L SIM MTTX.
[y nin'a + 1) H

At long last, then, it follows from (16) that the desired solution u(x, ¢) is

Jat J’H:n—’? sint —cost+e """ e "7
wix.t) =1 —x)cost + TE Ty ; == a1 M.
C} B 1 n(n'aw* + 1) n

Remarks

(i) If the boundary-value problem has homogeneous boundary conditions and a time-dependent term
F(x, t) in the PDE, then there is no need to change the dependent variable by substitutingu(x, ¢) =
v(x, t) + y(x, t). For example, ifu, and u; are 0 in a problem such as (1), then it follows from (12)

that y(x, £) = 0. The method of solution is basically a frontal attack on the PDE by assuming
appropriate orthogonal series expansions for u(x, ¢) and F(x, ¢). Again, ifuy and u; are 0 in (1), the
solution begins with the assumptions in (15), where the symbols v and G are naturally replaced by u
and F, respectively. See Problems 13—16 in Exercises 13.6. In Problems 17 and 18 of Exercises
13.6 you will have to construct y(x, ¢) as illustrated in Example 2. See also Problem 20 in
Exercises 13.6.

(i) Don’t put any special emphasis on the fact that we used the heat equation throughout the




foregoing discussion. The method outlined in Example 1 can be applied to the wave equation and
Laplace’s equation as well. See Problems 1-12 in Exercises 13.6. The method outlined in Example
2 is predicated on time dependence in the problem and so is not applicable to BVPs involving
Laplace’s equation.

13.6 | Exercises Answers to selected odd-numbered problems begin on page ANS-32.

= Time-Independent PDE and BCs

In Problems 1 and 2, solve the heat equation ki, = u,, 0 <x<1,1> 0 subject to the given conditions.

1.
2.

w(,1) = up, w(l,)=0

wlx, 0) = fix)
w(,1) = up, w(l,)=0
wlx, 0) = fix)

In Problems 3 and 4, solve the heat equation (2) subject to the given conditions.

3.
4.

w0, 1) = wg,  u(l, 1) =y

wlx, 1 =0
w(0, 1) = wy, w(l, 1) = u
wixe, 0) = fix)

Solve the boundary-value problem

au : did

k— +AeP=— B>00<x<1,t>0
ox- of

w0, 0H0=0, wl.n=0 =0

wix,0)=fix), 0<x<1,
where 4 1s a constant. The PDE is a form of the heat equation when heat is generated within ¢
thin rod due to radioactive decay of the material.

Solve the boundary-value problem

au dif : :
k——hu=—0<x<q, t =10
dx~ irs

w0, 0)=0, wlm,t)=uy. t=0

wx,0)=0 0<x<m.
The PDE is a form of the heat equation when heat is lost by radiation from the lateral surface o
a thin rod into a medium at temperature zero.

Find a steady-state solution y(x) of the boundary-value problem

a*u ol
k——hu— up) =—,0<<x<1, ¢t >0
ax” at

wWD. H=uy uwl,t)=0,t>0
wx,0)=fix), 0<x<1.

Find a steady-state solution y(x) if the rod in Problem 7 is semi-infinite extending in the positive
x-direction, radiates from its lateral surface into a medium at temperature zero, and



9.

10.

11.

12.

W, =y, limuwxH=0 =0

X—r 0
wix,0) = fix), x=0.

When a vibrating string is subjected to an external vertical force that varies with the horizontal
distance from the left end, the wave equation takes on the form

L 0tu " u
[ it BT B ey
ox” dat~

where 4 is constant. Solve this partial differential equation subject to

wd,H=0 wl,n=0t=0

w(x,® =0, di =D e 1
o |r=0
A string initially at rest on the x-axis is secured on the x-axis atx = 0 and x = 1. If the string is
allowed to fall under its own weight for > 0, the displacement u(x, ¢) satisfies

9o N Wl W% |
dx- dr-
where g is the acceleration of gravity. Solve for u(x, ?).
Find the steady-state temperature u(x, y) in the semi-infinite plate shown in FIGURE 13.6.1

Assume that the temperature is bounded as x s co. [Hint: Use uix, v) = vix, v) + (v).]

y

W= Hp

1

u=10

x
0 =,

FIGURE 13.6.1 Semi-infinite plate in Problem 11
The partial differential equation

a-n d u
a + a
dx” dy”

where 4> 0 is a constant, occurs in many problems involving electric potential and 1s known as
Poisson’s equation. Solve the above equation subject to the conditions

= —h,

W) =0, ww.v)=1, y=0

wx, =0, 0<x<q.

= Time-Dependent PDE and BCs

In Problems 13—18, solve the given boundary-value problem.

13.

-
L

a i i dil
g ol - T A M e e T
ax” df

wl,n=0, wiw.H)=0, t=0

wx, =0, 0<x< .



—— ka0 i <t 20
dx- ar
14. :u i
= == e —s = L-L 1 . {-_]'
dx :'.r-[f' dx Y -

wx,0)=0, 0<x<.

-:'JEH au
— | %= xcost = a—, 0<x=1,t>0
i

15 ax?
w,H=0 wl =0 r=0
wx, ) =x(1l —x), 0=<x=<"1
#u 3 i
-+ sinxcost=—, 0<x<a, t =0
dx” at”

16. w0, =0, wlw,t)=0, t=0

ai

ux0)=0,=~| =00<x<m
df _—
' i
= <x<l1l.1t>0
17. ax” at

w0, H=sint, w(l,.t)y =0, t=0
wx, =0 0<<x<1

a*u di
— + %+ I=—0<x<1l,t=0

18. ax- dr

pilicy=a% =1 1310

wx, ) =x2, 0<x<1

= Discussion Problems
19. Consider the boundary-value problem

#u du
k—o=ir— D=l £330
dx” ot

w6 = wy. wil, 1y = u,
w(x,0) = fix),

that 1s a model for the temperature # in a rod of length L. Ifu, and u; are different nonzero

constants, what would you intuitively expect the temperature to be at the center of the rod after a
very long period of time? Prove your assertion.

20. Read (i) of the Remarks at the end of this section. Then discuss how to solve

-

0l did

k—+ HFHx,.)=— 0<x< L t>0
ax” dt

di dii

. =0, — =0,¢t=0

0X |y—p 0% |yer

wx,0) = fix), 0 < x < L.
Carry out your ideas by solving the above BVP with k=1, L =1, F(x, t) = tx, and f(x) = 0.

13.7 Orthogonal Series Expansions




