




































CHAPTER 13



Boundary-Value Problems in Rectangular Coordinates
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Chapter 13 in Review

In this and the next two chapters, the emphasis will be on two procedures that are frequently used in
solving problems involving temperatures, oscillatory displacements, and potentials. These problems,
called boundary-value problems (BVPs) are described by relatively simple linear second-order
partial differential equations (PDEs). The thrust of both procedures is to find particular solutions of a
PDE by reducing it to two or more ordinary differential equations (ODEs).

We begin with the method of separation of variables for linear PDEs. This method applied to a
boundary-value problem leads naturally back to the important topics of Chapter 12; namely, Sturm–
Liouville problems, eigenvalues, eigenfunctions, and the expansion of a function in a series of
orthogonal functions.

13.1 Separable Partial Differential Equations

   Introduction  Partial differential equations (PDEs), like ordinary differential equations (ODEs),
are classified as linear or nonlinear. Analogous to a linear ODE (see (6) of Section 1.1), the
dependent variable and its partial derivatives appear only to the first power in a linear PDE. In this
and the chapters that follow, we are concerned only with linear partial differential equations.

   Linear Partial Differential Equation  If we let u denote the dependent variable and x and y the
independent variables, then the general form of a linear second-order partial differential equation
is given by

where the coefficients A, B, C, …, G are constants or functions of x and y. When G(x, y) = 0, equation
(1) is said to be homogeneous; otherwise, it is nonhomogeneous.



EXAMPLE 1  Linear Second-Order PDEs

The equations

are examples of linear second-order PDEs. The first equation is homogeneous and the second is
nonhomogeneous.

   Solution of a PDE  A solution of a linear partial differential equation (1) is a function u(x, y) of
two independent variables that possesses all partial derivatives occurring in the equation and that
satisfies the equation in some region of the xy-plane.

It is not our intention to examine procedures for finding general solutions of linear partial
differential equations. Not only is it often difficult to obtain a general solution of a linear second-
order PDE, but a general solution is usually not all that useful in applications. Thus our focus
throughout will be on finding particular solutions of some of the important linear PDEs, that is,
equations that appear in many applications.

   We are interested only in particular solutions of PDEs.

   Separation of Variables  Although there are several methods that can be tried to find particular
solutions of a linear PDE, in the method of separation of variables we seek to find a particular
solution of the form of a product of a function of x and a function of y,

u(x, y) = X(x)Y(y).

With this assumption, it is sometimes possible to reduce a linear PDE in two variables to two ODEs.
To this end we observe that

where the primes denote ordinary differentiation.

EXAMPLE 2  Using Separation of Variables

Find product solutions of 

SOLUTION  Substituting u(x, y) = X(x)Y(y) into the partial differential equation yields

X″Y = 4XY′.

After dividing both sides by 4XY, we have separated the variables:

Since the left-hand side of the last equation is independent of y and is equal to the right-hand side,
which is independent of x, we conclude that both sides of the equation are independent of x and y. In
other words, each side of the equation must be a constant. As a practical matter it is convenient to



write this real separation constant as –λ. From the two equalities,

we obtain the two linear ordinary differential equations

   See Example 2, Section 3.9 and Example 1, Section 12.5.

For the three cases for λ: zero, negative, or positive; that is, λ = 0, λ = –α2 < 0, and λ = α2 > 0, where
α > 0, the ODEs in (2) are, in turn,

Case I (λ = 0): The DEs in (3) can be solved by integration. The solutions are X = c1 + c2 x and Y =
c3. Thus a particular product solution of the given PDE is

Case II (λ = –α2): The general solutions of the DEs in (4) are

Case III (λ = α2): Finally, the general solutions of the DEs in (5) are

It is left as an exercise to verify that (6), (7), and (8) satisfy the given partial differential equation
uxx = 4uy. See Problem 29 in Exercises 13.1.

Separation of variables is not a general method for finding particular solutions; some linear partial
differential equations are simply not separable. You should verify that the assumption u = XY does not
lead to a solution for ∂2u/∂x2 – ∂u/∂y = x.

   Superposition Principle  The following theorem is analogous to Theorem 3.1.2 and is known as
the superposition principle.



Theorem 13.1.1 Superposition Principle
If u1, u2, …, uk are solutions of a homogeneous linear partial differential equation, then the linear
combination

u = c1u1 + c2u2 … + ckuk,

where the ci, i = 1, 2, …, k are constants, is also a solution.

Throughout the remainder of the chapter we shall assume that whenever we have an infinite set u1,
u2, u3, … of solutions of a homogeneous linear equation, we can construct yet another solution u by
forming the infinite series

where the ck, k = 1, 2, …, are constants.

   Classification of Equations  A linear second-order partial differential equation in two
independent variables with constant coefficients can be classified as one of three types. This
classification depends only on the coefficients of the second-order derivatives. Of course, we assume
that at least one of the coefficients A, B, and C is not zero.

Definition 13.1.1 Classification of Equations
The linear second-order partial differential equation

where A, B, C, D, E, F, and G are real constants, is said to be

EXAMPLE 3  Classifying Linear Second-Order PDEs

Classify the following equations:

SOLUTION   (a) By rewriting the given equation as



we can make the identifications A = 3, B = 0, and C = 0. Since B2 – 4AC = 0, the equation is
parabolic.

(b) By rewriting the equation as

we see that  The equation is hyperbolic.

(c) With  the equation is elliptic.

A detailed explanation of why we would want to classify a second-order partial differential
equation is beyond the scope of this text. But the answer lies in the fact that we wish to solve partial
differential equations subject to certain side conditions known as boundary and initial conditions. The
kinds of side conditions appropriate for a given equation depend on whether the equation is
hyperbolic, parabolic, or elliptic.

13.1  Exercises  Answers to selected odd-numbered problems begin on page ANS-30.

In Problems 1–16, use separation of variables to find, if possible, product solutions for the given
partial differential equation.

In Problems 17–26, classify the given partial differential equation as hyperbolic, parabolic, or
elliptic.



In Problems 27 and 28, show that the given partial differential equation possesses the indicated
product solution.

29.   Verify that each of the products u = X(x)Y(y) in (6), (7), and (8) satisfies the second-order PDE
in Example 2.

30.   Definition 13.1.1 generalizes to linear PDEs with coefficients that are functions of x and y.
Determine the regions in the xy-plane for which the equation

is hyperbolic, parabolic, or elliptic.

 Discussion Problems

In Problems 31 and 32, discuss whether product solutions u = X(x)Y(y) can be found for the given
partial differential equation. [Hint: Use the superposition principle.]

13.2 Classical PDEs and Boundary-Value Problems

   Introduction  For the remainder of this and the next chapter we shall be concerned with finding
product solutions of the second-order partial differential equations



or slight variations of these equations. These classical equations of mathematical physics are known,
respectively, as the one-dimensional heat equation, the one-dimensional wave equation, and
Laplace’s equation in two dimensions. “One-dimensional” refers to the fact that x denotes a spatial
dimension whereas t represents time; “two dimensional” in (3) means that x and y are both spatial
dimensions. Laplace’s equation is abbreviated  where

is called the two-dimensional Laplacian of the function u. In three dimensions the Laplacian of u is

By comparing equations (1)–(3) with the linear second-order PDE given in Definition 13.1.1, with t
playing the part of y, we see that the heat equation (1) is parabolic, the wave equation (2) is
hyperbolic, and Laplace’s equation (3) is elliptic. This classification is important in Chapter 16.

   Heat Equation  Equation (1) occurs in the theory of heat flow—that is, heat transferred by
conduction in a rod or thin wire. The function u(x, t) is temperature. Problems in mechanical
vibrations often lead to the wave equation (2). For purposes of discussion, a solution u(x, t) of (2)
will represent the displacement of an idealized string. Finally, a solution u(x, y) of Laplace’s
equation (3) can be interpreted as the steady-state (that is, time-independent) temperature distribution
throughout a thin, two-dimensional plate.

Even though we have to make many simplifying assumptions, it is worthwhile to see how equations
such as (1) and (2) arise.

Suppose a thin circular rod of length L has a cross-sectional area A and coincides with the x-axis
on the interval [0, L]. See FIGURE 13.2.1. Let us suppose:

FIGURE 13.2.1 One-dimensional flow of heat

•   The flow of heat within the rod takes place only in the x-direction.
•   The lateral, or curved, surface of the rod is insulated; that is, no heat escapes from this surface.
•   No heat is being generated within the rod.
•   The rod is homogeneous; that is, its mass per unit volume ρ is a constant.
•   The specific heat γ and thermal conductivity K of the material of the rod are constants.



To derive the partial differential equation satisfied by the temperature u(x, t), we need two
empirical laws of heat conduction:

(i)   The quantity of heat Q in an element of mass m is

where u is the temperature of the element.
( i i ) The rate of heat flow Qt through the cross section indicated in  Figure 13.2.1 is

proportional to the area A of the cross section and the partial derivative with respect to x of
the temperature:

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is used to ensure that
Qt is positive for ux < 0 (heat flow to the right) and negative for ux > 0 (heat flow to the left). If the
circular slice of the rod shown in Figure 13.2.1 between x and  is very thin, then u(x, t) can be
taken as the approximate temperature at each point in the interval. Now the mass of the slice is 

 and so it follows from (4) that the quantity of heat in it is

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat builds up in the
slice at the net rate

By differentiating (6) with respect to t we see that this net rate is also given by

Equating (7) and (8) gives

Taking the limit of (9) as  finally yields (1) in the form*

It is customary to let  and call this positive constant the thermal diffusivity.

   Wave Equation  Consider a string of length L, such as a guitar string, stretched taut between two
points on the x-axis—say, x = 0 and x = L. When the string starts to vibrate, assume that the motion
takes place in the xy-plane in such a manner that each point on the string moves in a direction
perpendicular to the x-axis (transverse vibrations). As shown in FIGURE 13.2.2(a), let u(x, t)
denote the vertical displacement of any point on the string measured from the x-axis for t > 0. We
further assume:

•   The string is perfectly flexible.
•   The string is homogeneous; that is, its mass per unit length ρ is a constant.
•   The displacements u are small compared to the length of the string.



•   The slope of the curve is small at all points.
•   The tension T acts tangent to the string, and its magnitude T is the same at all points.
•   The tension is large compared with the force of gravity.
•   No other external forces act on the string.

FIGURE 13.2.2 Taut string anchored at two points on the x-axis

Now in Figure 13.2.2(b) the tensions T1 and T2 are tangent to the ends of the curve on the interval 
. For small values of θ1 and θ2 the net vertical force acting on the corresponding element Δs

of the string is then

where  is the mass of the string on  and so Newton’s second law
gives

or

If the limit is taken as  the last equation becomes  This of course is (2) with 



FIGURE 13.2.3 Steady-state temperatures in a rectangular plate

   Laplace’s Equation  Although we shall not present its derivation, Laplace’s equation in two and
three dimensions occurs in time-independent problems involving potentials such as electrostatic,
gravitational, and velocity in fluid mechanics. Moreover, a solution of Laplace’s equation can also be
interpreted as a steady-state temperature distribution. As illustrated in FIGURE 13.2.3, a solution
u(x, y) of (3) could represent the temperature that varies from point to point—but not with time—of a
rectangular plate.

We often wish to find solutions of equations (1), (2), and (3) that satisfy certain side conditions.

   Initial Conditions  Since solutions of (1) and (2) depend on time t, we can prescribe what
happens at t = 0; that is, we can give initial conditions (IC). If f(x) denotes the initial temperature
distribution throughout the rod in Figure 13.2.1, then a solution u(x, t) of (1) must satisfy the single
initial condition  On the other hand, for a vibrating string, we can specify its
initial displacement (or shape) f(x) as well as its initial velocity g(x). In mathematical terms we seek
a function u(x, t) satisfying (2) and the two initial conditions:

FIGURE 13.2.4 Plucked string

For example, the string could be plucked, as shown in FIGURE 13.2.4, and released from rest (g(x)
= 0).

   Boundary Conditions  The string in Figure 13.2.4 is secured to the x-axis at x = 0 and x = L for
all time. We interpret this by the two boundary conditions (BC):



Note that in this context the function f in (10) is continuous, and consequently f(0) = 0 and f(L) = 0. In
general, there are three types of boundary conditions associated with equations (1), (2), and (3). On a
boundary we can specify the values of one of the following:

Here ∂u/∂n denotes the normal derivative of u (the directional derivative of u in the direction
perpendicular to the boundary). A boundary condition of the first type (i) is called a Dirichlet
condition; a boundary condition of the second type (ii) is called a Neumann condition; and a
boundary condition of the third type (iii) is known as a Robin condition. For example, for t > 0 a
typical condition at the right-hand end of the rod in Figure 13.2.1 can be

Condition (i)′ simply states that the boundary x = L is held by some means at a constant temperature
u0 for all time t > 0. Condition (ii)′ indicates that the boundary x = L is insulated. From the empirical
law of heat transfer, the flux of heat across a boundary (that is, the amount of heat per unit area per
unit time conducted across the boundary) is proportional to the value of the normal derivative ∂u/∂n
of the temperature u. Thus when the boundary x = L is thermally insulated, no heat flows into or out of
the rod and so

We can interpret (iii)′ to mean that heat is lost from the right-hand end of the rod by being in contact
with a medium, such as air or water, that is held at a constant temperature. From Newton’s law of
cooling, the outward flux of heat from the rod is proportional to the difference between the
temperature u(L, t) at the boundary and the temperature um of the surrounding medium. We note that if
heat is lost from the left-hand end of the rod, the boundary condition is

The change in algebraic sign is consistent with the assumption that the rod is at a higher temperature
than the medium surrounding the ends so that  and x = L, the slopes
ux(0, t) and ux(L, t) must be positive and negative, respectively.

Of course, at the ends of the rod we can specify different conditions at the same time. For example,
we could have

We note that the boundary condition in (i)′ is homogeneous if u0 = 0; if u0 ≠ 0, the boundary



condition is nonhomogeneous. The boundary condition (ii)′ is homogeneous; (iii)′ is homogeneous if
um = 0 and nonhomogeneous if um ≠ 0.

   Boundary-Value Problems  Problems such as

are called boundary-value problems. The problems in (11) and (12) are classified as homogeneous
BVPs since the partial differential equation and the boundary conditions are homogeneous.

   Variations  The partial differential equations (1), (2), and (3) must be modified to take into
consideration internal or external influences acting on the physical system. More general forms of the
one-dimensional heat and wave equations are, respectively,

and

For example, if there is heat transfer from the lateral surface of a rod into a surrounding medium that
is held at a constant temperature um, then the heat equation (13) is

where h is a constant. In (14) the function F could represent the various forces acting on the string.
For example, when external, damping, and elastic restoring forces are taken into account, (14)
assumes the form
external force



Remarks
The analysis of a wide variety of diverse phenomena yields the mathematical models (1), (2), or (3)
or their generalizations involving a greater number of spatial variables. For example, (1) is
sometimes called the diffusion equation since the diffusion of dissolved substances in solution is
analogous to the flow of heat in a solid. The function c(x, t) satisfying the partial differential
equation in this case represents the concentration of the dissolved substance. Similarly, equation (2)
and its generalization (15) arise in the analysis of the flow of electricity in a long cable or
transmission line. In this setting (2) is known as the telegraph equation. It can be shown that under
certain assumptions the current i(x, t) and the voltage v(x, t) in the line satisfy two partial
differential equations identical to (2) (or (15)). The wave equation (2) also appears in fluid
mechanics, acoustics, and elasticity. Laplace’s equation (3) is encountered in determining the static
displacement of membranes.

13.2  Exercises  Answers to selected odd-numbered problems begin on page ANS-31.

In Problems 1–6, a rod of length L coincides with the interval [0, L] on the x-axis. Set up the
boundary-value problem for the temperature u(x, t).
1.   The left end is held at temperature zero, and the right end is insulated. The initial temperature is

f(x) throughout.
2.   The left end is held at temperature u0, and the right end is held at temperature u1. The initial

temperature is zero throughout.
3.   The left end is held at temperature 100°, and there is heat transfer from the right end into the

surrounding medium at temperature zero. The initial temperature is f(x) throughout.
4.   There is heat transfer from the left end into a surrounding medium at temperature 20°, and the

right end is insulated. The initial temperature is f(x) throughout.
5.   The left end is at temperature sin(πt/L), the right end is held at zero, and there is heat transfer

from the lateral surface of the rod into the surrounding medium held at temperature zero. The
initial temperature is f(x) throughout.

6.   The ends are insulated, and there is heat transfer from the lateral surface of the rod into the
surrounding medium held at temperature 50°. The initial temperature is 100° throughout.

In Problems 7–10, a string of length L coincides with the interval [0, L] on the x-axis. Set up the
boundary-value problem for the displacement u(x, t).
7.   The ends are secured to the x-axis. The string is released from rest from the initial displacement

x(L – x).
8.   The ends are secured to the x-axis. Initially the string is undisplaced but has the initial velocity

sin(πx/L).
9.   The left end is secured to the x-axis, but the right end moves in a transverse manner according to

sin πt. The string is released from rest from the initial displacement f(x). For t > 0 the transverse
vibrations are damped with a force proportional to the instantaneous velocity.

10.   The ends are secured to the x-axis, and the string is initially at rest on that axis. An external



vertical force proportional to the horizontal distance from the left end acts on the string for t > 0.

In Problems 11 and 12, set up the boundary-value problem for the steady-state temperature u(x, y).
11.   A thin rectangular plate coincides with the region in the xy-plane defined by 

The left end and the bottom of the plate are insulated. The top of the plate is held at temperature
zero, and the right end of the plate is held at temperature f(y).

12.   A semi-infinite plate coincides with the region defined by  The left end is held at
temperature e–y, and the right end is held at temperature 100° for 0 < y ≤ 1 and temperature zero
for y > 1. The bottom of the plate is held at temperature f(x).

13.3 Heat Equation

   Introduction  Consider a thin rod of length L with an initial temperature f(x) throughout and
whose ends are held at temperature zero for all time t > 0. If the rod shown in FIGURE 13.3.1
satisfies the assumptions given on page 693, then the temperature u(x, t) in the rod is determined from
the boundary-value problem

FIGURE 13.3.1 Find the temperature u in a finite rod

In the discussion that follows next we show how to solve this BVP using the method of separation of
variables introduced in Section 13.1.

   Solution of the BVP  Using the product  and –λ as the separation constant, leads to

and

Now the boundary conditions in (2) become  Since the last
equalities must hold for all time t, we must have X(0) = 0 and X(L) = 0. These homogeneous boundary
conditions together with the homogeneous ODE (5) constitute a regular Sturm–Liouville problem:

The solution of this BVP was discussed in detail in Example 2 of Section 3.9 and on page 675 of
Section 12.5. In that example, we considered three possible cases for the parameter λ: zero, negative,



and positive. The corresponding general solutions of the DEs are

Recall, when the boundary conditions X(0) = 0 and X(L) = 0 are applied to (8) and (9) these solutions
yield only X(x) = 0 and so we are left with the unusable result u = 0. Applying the first boundary
condition X(0) = 0 to the solution in (10) gives c1 = 0. Therefore X(x) = c2 sin αx. The second
boundary condition X(L) = 0 now implies

If c2 = 0, then X = 0 so that u = 0. But (11) can be satisfied for c2 ≠ 0 when sin αL = 0. This last
equation implies that  Hence (7) possesses nontrivial solutions
when  The values λn and the corresponding solutions

are the eigenvalues and eigenfunctions, respectively, of the problem in (7).
The general solution of (6) is , and so

where we have replaced the constant c2c3 by An. The products un(x, t) given in (13) satisfy the partial
differential equation (1) as well as the boundary conditions (2) for each value of the positive integer
n. However, in order for the functions in (13) to satisfy the initial condition (3), we would have to
choose the coefficient An in such a manner that

In general, we would not expect condition (14) to be satisfied for an arbitrary, but reasonable, choice
of f. Therefore we are forced to admit that un(x, t) is not a solution of the problem given in (1)–(3).
Now by the superposition principle the function

must also, although formally, satisfy equation (1) and the conditions in (2). If we substitute t = 0 into
(15), then

This last expression is recognized as the half-range expansion of f in a sine series. If we make the
identification An = bn, n = 1, 2, 3, …, it follows from (5) of Section 12.3 that



We conclude that a solution of the boundary-value problem described in (1), (2), and (3) is given by
the infinite series

In the special case when the initial temperature is u(x, 0) = 100, L = π, and k = 1, you should verify
that the coefficients (16) are given by

and that the series (17) is

   Use of Computers  The solution u in (18) is a function of two variables and as such its graph is a
surface in 3-space. We could use the 3D-plot application of a computer algebra system to
approximate this surface by graphing partial sums Sn(x, t) over a rectangular region defined by 

 Alternatively, with the aid of the 2D-plot application of a CAS we plot the solution
u(x, t) on the x-interval [0, π] for increasing values of time t. See FIGURE 13.3.2(a). In Figure
13.3.2(b) the solution u(x, t) is graphed on the t-interval [0, 6] for increasing values of x (x = 0 is the
left end and x = π/2 is the midpoint of the rod of length L = π). Both sets of graphs verify that which is
apparent in (18)—namely, 

FIGURE 13.3.2 Graphs obtained using partial sums of (18)

13.3  Exercises  Answers to selected odd-numbered problems begin on page ANS-31.



In Problems 1 and 2, solve the heat equation (1) subject to the given conditions. Assume a rod of
length L.

1.   

2.   

3.   Find the temperature u(x, t) in a rod of length L if the initial temperature is f(x) throughout and if
the ends x = 0 and x = L are insulated.

4.   Solve Problem 3 if L = 2 and

5.   Suppose heat is lost from the lateral surface of a thin rod of length L into a surrounding medium
at temperature zero. If the linear law of heat transfer applies, then the heat equation takes on the
form

h a constant. Find the temperature u(x, t) if the initial temperature is f(x) throughout and the ends
x = 0 and x = L are insulated. See FIGURE 13.3.3.

FIGURE 13.3.3 Rod in Problem 5
6.   Solve Problem 5 if the ends x = 0 and x = L are held at temperature zero.
7.   A thin wire coinciding with the x-axis on the interval [–L, L] is bent into the shape of a circle so

that the ends x = –L and x = L are joined. Under certain conditions the temperature u(x, t) in the
wire satisfies the boundary-value problem

Find the temperature u(x, t).
8.   Find the temperature u(x, t) for the boundary-value problem 

[Hint: Look closely at (13) and (14).]

 Computer Lab Assignments



9.   (a) Solve the heat equation (1) subject to

(b)   Use the 3D-plot application of your CAS to graph the partial sum S5(x, t) consisting of the
first five nonzero terms of the solution in part (a) for   Assume that k =
1.6352. Experiment with various three-dimensional viewing perspectives of the surface
(called the ViewPoint option in Mathematica).

 Discussion Problems
10.   In Figure 13.3.2(b) we have the graphs of u(x, t) on the interval 

 Describe or sketch the graphs of u(x, t) on the same
time interval but for the fixed values  and x = π.

13.4 Wave Equation

   Introduction  We are now in a position to solve the boundary-value problem (11) discussed in
Section 13.2. The vertical displacement u(x, t) of a string of length L that is freely vibrating in the
vertical plane shown in Figure 13.2.2(a) is determined from

   Solution of the BVP  With the usual assumption that u(x, t) = X(x)T(t), separating variables in
(1) gives

so that

As in Section 13.3, the boundary conditions (2) translate into X(0) = 0 and X(L) = 0. The ODE in (4)
along with these boundary-conditions is the regular Sturm–Liouville problem

Of the usual three possibilities for the parameter  only the last choice
leads to nontrivial solutions. Corresponding to  the general solution of (4) is



X(0) = 0 and X(L) = 0 indicate that c1 = 0 and c2 sin αL = 0. The last equation again implies that 
 The eigenvalues and corresponding eigenfunctions of (6) are 

 The general solution of the second-order equation (5) is then

By rewriting c2c3 as An and c2c4 as Bn, solutions that satisfy both the wave equation (1) and boundary
conditions (2) are

and

Setting t = 0 in (8) and using the initial condition u(x, 0) = f(x) gives

Since the last series is a half-range expansion for f in a sine series, we can write An = bn:

To determine Bn we differentiate (8) with respect to t and then set t = 0:

In order for this last series to be the half-range sine expansion of the initial velocity g on the interval,
the total coefficient Bnnπa/L must be given by the form bn in (5) of Section 12.3—that is,

from which we obtain

The solution of the boundary-value problem (1)–(3) consists of the series (8) with coefficients An
and Bn defined by (9) and (10), respectively.

We note that when the string is released from rest, then g(x) = 0 for every x in the interval [0, L]
and consequently Bn = 0.

   Plucked String  A special case of the boundary-value problem in (1)–(3) when g(x) = 0 is a



model of a plucked string. We can see the motion of the string by plotting the solution or
displacement u(x, t) for increasing values of time t and using the animation feature of a CAS. Some
frames of a movie generated in this manner are given in FIGURE 13.4.1. You are asked to emulate
the results given in the figure by plotting a sequence of partial sums of (8). See Problems 7, 8, and 27
in Exercises 13.4.

FIGURE 13.4.1 Frames of plucked-string movie

FIGURE 13.4.2 First three standing waves

   Standing Waves  Recall from the derivation of the wave equation in Section 13.2 that the
constant a appearing in the solution of the boundary-value problem in (1)–(3) is given by  where
ρ is mass per unit length and T is the magnitude of the tension in the string. When T is large enough,



the vibrating string produces a musical sound. This sound is the result of standing waves. The solution
(8) is a superposition of product solutions called standing waves or normal modes:

In view of (6) and (7) of Section 3.8, the product solutions (7) can be written as

where  the standing waves are
essentially the graphs of sin(nπx/L), with a time-varying amplitude given by

Alternatively, we see from (11) that at a fixed value of x each product function un(x, t) represents
simple harmonic motion with amplitude  In other words, each point
on a standing wave vibrates with a different amplitude but with the same frequency. When n = 1,

is called the first standing wave, the first normal mode, or the fundamental mode of vibration.
The first three standing waves, or normal modes, are shown in FIGURE 13.4.2. The dashed graphs
represent the standing waves at various values of time. The points in the interval (0, L), for which
sin(nπ/L)x = 0, correspond to points on a standing wave where there is no motion. These points are
called nodes. For example, in Figures 13.4.2(b) and (c) we see that the second standing wave has one
node at L/2 and the third standing wave has two nodes at L/3 and 2L/3. In general, the nth normal
mode of vibration has n – 1 nodes.

The frequency

of the first normal mode is called the fundamental frequency or first harmonic and is directly
related to the pitch produced by a stringed instrument. It is apparent that the greater the tension on the
string, the higher the pitch of the sound. The frequencies fn of the other normal modes, which are
integer multiples of the fundamental frequency, are called overtones. The second harmonic is the first
overtone, and so on.

   Superposition Principle  The superposition principle, Theorem 13.1.1, is the key in making the
method of separation of variables an effective means of solving certain kinds of boundary-value
problems involving linear partial differential equations. Sometimes a problem can also be solved by
using a superposition of solutions of two easier problems. If we can solve each of the problems,



then a solution of  To see this we know that 
 is a solution of the homogeneous equation in (1) because of Theorem 13.1.1.

Moreover, u(x, t) satisfies the boundary condition (2) and the initial conditions (3) because, in turn,

and

You are encouraged to try this method to obtain (8), (9), and (10). See Problems 5 and 14 in
Exercises 13.4.

13.4  Exercises  Answers to selected odd-numbered problems begin on page ANS-31.

In Problems 1–6, solve the wave equation (1) subject to the given conditions.

In Problems 7–10, a string is tied to the x-axis at x = 0 and at x = L and its initial displacement 



 is shown in the figure. Find u(x, t) if the string is released from rest.

FIGURE 13.4.3 Initial displacement for Problem 7

FIGURE 13.4.4 Initial displacement for Problem 8

FIGURE 13.4.5 Initial displacement for Problem 9

FIGURE 13.4.6 Initial displacement for Problem 10
11.   The longitudinal displacement of a vibrating elastic bar shown in FIGURE 13.4.7 satisfies the

wave equation (1) and the conditions

The boundary conditions at x = 0 and x = L are called free-end conditions. Find the
displacement u(x, t).



FIGURE 13.4.7 Elastic bar in Problem 11
12.   A model for the motion of a vibrating string whose ends are allowed to slide on frictionless

sleeves attached to the vertical axes x = 0 and x = L is given by the wave equation (1) and the
conditions

See FIGURE 13.4.8. The boundary conditions indicate that the motion is such that the slope of
the curve is zero at its ends for t > 0. Find the displacement u(x, t).

FIGURE 13.4.8 String whose ends are attached to frictionless sleeves in Problem 12
13.   In Problem 10, determine the value of 
14.   Rederive the results given in (8), (9), and (10), but this time use the superposition principle

discussed on page 703.
15.   A string is stretched and secured on the x-axis at x = 0 and  If the transverse

vibrations take place in a medium that imparts a resistance proportional to the instantaneous
velocity, then the wave equation takes on the form

Find the displacement u(x, t) if the string starts from rest from the initial displacement f(x).
16.   Show that a solution of the boundary-value problem



17.   Consider the boundary-value problem given in (1)–(3) of this section. If g(x) = 0 on 0 <x < L,
show that the solution of the problem can be written as

[Hint: Use the identity

18.   The vertical displacement u(x, t) of an infinitely long string is determined from the initial-value
problem

This problem can be solved without separating variables.
(a)   Show that the wave equation can be put into the form  by means of the

substitutions  and 
(b)   Integrate the partial differential equation in part (a), first with respect to η and then with

respect to ξ, to show that  where F and G are arbitrary twice
differentiable functions, is a solution of the wave equation. Use this solution and the given
initial conditions to show that

where x0 is arbitrary and c is a constant of integration.
(c)   Use the results in part (b) to show that

Note that when the initial velocity g(x) = 0 we obtain

The last solution can be interpreted as a superposition of two traveling waves, one moving
to the right (that is,  and one moving to the left  Both waves travel with
speed a and have the same basic shape as the initial displacement f(x). The form of u(x, t)
given in (14) is called d’Alembert’s solution.

In Problems 19–21, use d’Alembert’s solution (14) to solve the initial-value problem in Problem 18
subject to the given initial conditions.



19.   
20.   
21.   
22.   Suppose  and a = 1 for the initial-value problem given in Problem 18.

Graph d’Alembert’s solution in this case at the time t = 0, t = 1, and t = 3.
23.   The transverse displacement u(x, t) of a vibrating beam of length L is determined from a fourth-

order partial differential equation

If the beam is simply supported, as shown in FIGURE 13.4.9, the boundary and initial
conditions are

Solve for u(x, t). [Hint: For convenience use λ = α4 when separating variables.]

FIGURE 13.4.9 Simply supported beam in Problem 23

 Computer Lab Assignments
24.   If the ends of the beam in Problem 23 are embedded at x = 0 and x = L, the boundary conditions

become, for t > 0,

(a)   Show that the eigenvalues of the problem are  where xn, n = 1, 2, 3, …, are the
positive roots of the equation cosh x cos x = 1.

(b)   Show graphically that the equation in part (a) has an infinite number of roots.
(c)   Use a CAS to find approximations to the first four eigenvalues. Use four decimal places.

25.   A model for an infinitely long string that is initially held at the three points (–1, 0), (1, 0), and (0,
1) and then simultaneously released at all three points at time t = 0 is given by (13) with



(a)   Plot the initial position of the string on the interval [–6, 6].
(b)   Use a CAS to plot d’Alembert’s solution (14) on [–6, 6] for t = 0.2k, k = 0, 1, 2, …, 25.

Assume that a = 1.
(c)   Use the animation feature of your computer algebra system to make a movie of the solution.

Describe the motion of the string over time.
26.   An infinitely long string coinciding with the x-axis is struck at the origin with a hammer whose

head is 0.2 inch in diameter. A model for the motion of the string is given by (13) with

(a)   Use a CAS to plot d’Alembert’s solution (14) on [–6, 6] for t = 0.2k, k = 0, 1, 2, …, 25.
Assume that a = 1.

(b)   Use the animation feature of your computer algebra system to make a movie of the solution.
Describe the motion of the string over time.

27.   The model of the vibrating string in Problem 7 is called a plucked string.
(a)   Use a CAS to plot the partial sum S6(x, t); that is, the first six nonzero terms of your solution

u(x, t), for t = 0.1k, k = 0, 1, 2, …, 20. Assume that a = 1, h = 1, and L = π.
(b)   Use the animation feature of your computer algebra system to make a movie of the solution

to Problem 7.

FIGURE 13.5.1 Find the temperature u in a rectangular plate

13.5 Laplace’s Equation

   Introduction  Suppose we wish to find the steady-state temperature u(x, y) in a rectangular plate
whose vertical edges x = 0 and x = a are insulated, and whose upper and lower edges y = b and y = 0
are maintained at temperatures f(x) and 0, respectively. See FIGURE 13.5.1. When no heat escapes
from the lateral faces of the plate, we solve the following boundary-value problem:

   Solution of the BVP  With u(x, y) = X(x)Y(y), separation of variables in (1) leads to



The three homogeneous boundary conditions in (2) and (3) translate into X′(0) = 0, X′(a) = 0, and Y(0)
= 0. The Sturm–Liouville problem associated with the equation in (4) is then

Examination of the cases corresponding to λ = 0, λ = –α2 < 0, and λ = α2 > 0, where α > 0, has
already been carried out in Example 1 in Section 12.5. For convenience a shortened version of that
analysis follows.

For λ = 0, (6) becomes

The solution of the ODE is X = c1 + c2x. The boundary condition X′(0) = 0 then implies c2 = 0, and so
X = c1. Note that for any c1, this constant solution satisfies the second boundary condition 

 is a nontrivial solution of the BVP (6). For  (6) possesses
no nontrivial solution. For  (6) becomes

Applying the boundary condition X′(0) = 0 the solution  and so 
 The second boundary condition X′(a) = 0 applied to this last expression then gives 

 the last equation is satisfied when  or  The
eigenvalues of (6) are then 
By corresponding λ0 = 0 with n = 0, the eigenfunctions of (6) are

We must now solve equation (5) subject to the single homogeneous boundary condition Y(0) = 0.
First, for λ0 = 0 the DE in (5) is simply Y″ = 0, and thus its solution is Y = c3 + c4y. But Y(0) = 0
implies c3 = 0 so Y = c4y. Second, for  the DE in (5) is  Because 0 < y < b is

a finite interval, we write the general solution in terms of hyperbolic functions:

   Why hyperbolic functions? See page 675.

From this solution we see Y(0) = 0 again implies 
Thus product solutions un = X(x)Y(y) that satisfy the Laplace’s equation (1) and the three

homogeneous boundary conditions in (2) and (3) are

where we have rewritten c1c4 as A0 for n = 0 and as An for n = 1, 2, ….



The superposition principle yields another solution

Finally, by substituting y = b in (7) we see

is a half-range expansion of f in a Fourier cosine series. If we make the identifications A0b = a0/2 and 
 it follows from (2) and (3) of Section 12.3 that

and

The solution of the boundary-value problem (1)–(3) consists of the series in (7), with coefficients
A0 and An defined in (8) and (9), respectively.

   Dirichlet Problem  A boundary-value problem in which we seek a solution to an elliptic partial
differential equation such as Laplace’s equation  within a region R (in the plane or 3-space)
such that u takes on prescribed values on the entire boundary of the region is called a Dirichlet
problem. In Problem 1 in Exercises 13.5 you are asked to show that the solution of the Dirichlet
problem for a rectangular region

is



FIGURE 13.5.2 Surface is graph of partial sums when f(x) = 100 and a = b = 1 in (10)

In the special case when f(x) = 100, a = 1, b = 1, the coefficients An are given by 

With the help of a CAS the plot of the surface defined by u(x, y) over the region 
is given in FIGURE 13.5.2(a). You can see in the figure that boundary conditions are satisfied;
especially note that along  The isotherms, or curves, in the rectangular region
along which the temperature u(x, y) is constant can be obtained using the contour plotting capabilities
of a CAS and are illustrated in Figure 13.5.2(b). The isotherms can also be visualized as the curves
of intersection (projected into the xy-plane) of horizontal planes u = 80, u = 60, and so on, with the
surface in Figure 13.5.2(a). Notice that throughout the region the maximum temperature is u = 100 and
occurs on the portion of the boundary corresponding to y = 1. This is no coincidence. There is a
maximum principle that states a solution u of Laplace’s equation within a bounded region R with
boundary B (such as a rectangle, circle, sphere, and so on) takes on its maximum and minimum values
on B. In addition, it can be proved that u can have no relative extrema (maxima or minima) in the
interior of R. This last statement is clearly borne out by the surface shown in Figure 13.5.2(a).

   Superposition Principle  A Dirichlet problem for a rectangle can be readily solved by separation
of variables when homogeneous boundary conditions are specified on two parallel boundaries.
However, the method of separation of variables is not applicable to a Dirichlet problem when the
boundary conditions on all four sides of the rectangle are nonhomogeneous. To get around this
difficulty we break the boundary-value problem

into two problems, each of which has homogeneous boundary conditions on parallel boundaries, as
shown.



Suppose u1 and u2 are the solutions of Problems 1 and 2, respectively. If we define 
 it is seen that u satisfies all boundary conditions in the original problem (11).

For example,

and so on. Furthermore, u is a solution of Laplace’s equation by Theorem 13.1.1. In other words, by
solving Problems 1 and 2 and adding their solutions we have solved the original problem. This
additive property of solutions is known as the superposition principle. See FIGURE 13.5.3.

FIGURE 13.5.3 Solution u = Solution u1 of Problem 1 + Solution u2 of Problem 2

We leave as exercises (see Problems 13 and 14 in Exercises 13.5) to show that a solution of
Problem 1 is

where

and that a solution of Problem 2 is

where



13.5  Exercises  Answers to selected odd-numbered problems begin on page ANS-31.

In Problems 1–10, solve Laplace’s equation (1) for a rectangular plate subject to the given boundary
conditions.

In Problems 11 and 12, solve Laplace’s equation (1) for the semi-infinite plate extending in the
positive y-direction. In each case assume that u(x, y) is bounded at y → ∞.



FIGURE 13.5.4 Semi-infinite Plate in Problem 11

FIGURE 13.5.5 Semi-infinite Plate in Problem 12

In Problems 13 and 14, solve Laplace’s equation (1) for a rectangular plate subject to the given
boundary conditions.

In Problems 15 and 16, use the superposition principle to solve Laplace’s equation (1) for a square
plate subject to the given boundary conditions.

17.   In Problem 16, what is the maximum value of the temperature u for 0 ≤ x ≤ 2, 0 ≤ y ≤ 2?

 Computer Lab Assignments
18.   (a) In Problem 1 suppose a = b = π and f(x) = 100x(π – x). Without using the solution u(x, y)

sketch, by hand, what the surface would look like over the rectangular region defined by 0 ≤
x ≤ π, 0 ≤ y ≤ π.

(b)   What is the maximum value of the temperature u for 0 ≤ x ≤ π, 0 ≤ y ≤ π?
(c)   Use the information in part (a) to compute the coefficients for your answer in Problem 1.

Then use the 3D-plot application of your CAS to graph the partial sum S5(x, y) consisting of



the first five nonzero terms of the solution in part (a) for 0 ≤ x ≤ π, 0 ≤ y ≤ π. Use different
perspectives and then compare with part (a).

19.   (a) Use the contour-plot application of your CAS to graph the isotherms u = 170, 140, 110, 80,
60, 30 for the solution of Problem 9. Use the partial sum S5(x, y) consisting of the first five
nonzero terms of the solution.

(b)   Use the 3D-plot application of your CAS to graph the partial sum S5(x, y).
20.   Use the contour-plot application of your CAS to graph the isotherms u = 2, 1, 0.5, 0.2, 0.1, 0.05,

0, –0.05 for the solution of Problem 10. Use the partial sum S5(x, y) consisting of the first five
nonzero terms of the solution.

 Discussion Problems
21.   Solve the Neumann problem for a rectangle:

(a)   Explain why a necessary condition for a solution u to exist is that g satisfy

This is sometimes called a compatibility condition. Do some extra reading and explain the
compatibility condition on physical grounds.

(b)   If u is a solution of the BVP, explain why u + c, where c is an arbitrary constant, is also a
solution.

22.   Consider the boundary-value problem

Discuss how the following answer was obtained

Carry out your ideas.



13.6 Nonhomogeneous BVPs

   Introduction  A boundary-value problem is said to be nonhomogeneous when either the partial
differential equation or the boundary conditions are nonhomogeneous. For example, a typical
nonhomogeneous BVP for the heat equation is

We can interpret this problem as a model for the temperature distribution u within a rod of length L
when heat is being generated internally at rate F(x, t); the temperatures at the ends of the rod vary
with time t. The method of separation of variables may not be applicable to a boundary-value
problem when the partial differential equation or boundary conditions are nonhomogeneous. For
example, when heat is generated at a constant rate r within the rod, the heat equation in (1) takes on
the form

Equation (2) is readily shown not to be separable. On the other hand, suppose we wish to solve the
usual heat equation kuxx = ut when the boundaries x = 0 and x = L are held at nonzero temperatures u0
and u1. Even though the substitution u(x, t) = X(x)r(t) separates the PDE, we quickly find ourselves at
an impasse in determining eigenvalues and eigenfunctions since no conclusion about X(0) and X(L)
can be drawn from u(0, t) = X(0)T(t) = u0 and u(L, t) = X(L)r(t) = u1.

   Change of Dependent Variable  In this section we consider certain types of nonhomogeneous
boundary-value problems that can be solved by changing the dependent variable u to a new dependent
variable v by means of the substitution u = v + ψ, where ψ is a function to be determined.

   Time-Independent PDE and BCs  We first consider a nonhomogeneous boundary-value problem
such as (1) where the heat source term F and the boundary-conditions are time independent:

In (3), u0 and u1 denote constants. By changing the dependent variable u to a new dependent variable
v by the substitution u(x, t) = v(x, t) + ψ(x), (3) can be reduced to two problems:



Notice that the ODE in Problem 1 can be solved by integration. Moreover, Problem 2 is a
homogeneous BVP that can be solved straightaway by separation of variables. A solution of the
original problem is then

There is nothing given above in the two problems that should be memorized, but work through the
substitution  each time as outlined in the next example.

EXAMPLE 1  Time-Independent PDE and BCs

Solve equation (2) subject to

SOLUTION   Both the partial differential equation and the condition at the right boundary x = 1 are
nonhomogeneous. If we let  then

since  Substituting these results in (4) into (3) gives

Equation (5) reduces to a homogeneous PDE if we demand that ψ be a function that satisfies the ODE

Integrating the last equation twice reveals that

Furthermore,

We have v(0, t) = 0 and v(1, t) = 0, provided we choose

Applying the latter two conditions to (6) gives, in turn, c2 = 0 and c1 = r/2k + u0. Consequently



Finally, the initial condition  implies   Thus to
determine v(x, t) we solve the new homogeneous boundary-value problem

by separation of variables. In the usual manner we find

where the initial condition v(x, 0) determines the Fourier sine coefficients:

A solution of the original problem is obtained by adding ψ(x) and v(x, t):

where the coefficients An are defined in (7).

Observe in (8) that  In the context of the given boundary-value problem, ψ is
called a steady-state solution. Since  is called a transient solution.

   Time-Dependent PDE and BCs  We now return to the problem given in (1), where the heat
source term F and the boundary-conditions are time dependent. Intuitively one might expect that the
line of attack for this problem would be a natural extension of the procedure that worked in Example
1; namely, seek a solution of the form  While the latter form of the solution is
correct, it is usually not possible to find a function of two variables ψ(x, t) that reduces the problem
i n v(x, t) to a homogeneous one. To understand why this is so, let’s see what happens when 

 is substituted in (1). Since

(1) becomes

The boundary conditions on v in (10) will be homogeneous if we demand that



Were we, at this point, to follow the same steps in the method used in Example 1, we would try to
force the problem in (10) to be homogeneous by solving kψxx + F(x, t) = ψt and then imposing the
conditions in (11) on the solution ψ. In view of the fact that the defining equation for ψ is itself a
nonhomogeneous PDE, this is an unrealistic expectation. We try an entirely different tack by simply
constructing a function ψ that satisfies both conditions in (11). One such a function is given by

Reinspection of (10) shows that we have gained some additional simplification with this choice of ψ
since ψxx = 0. We now start over. This time if we substitute

the problem in (1) becomes

where  While the problem in (14) is still nonhomogeneous (the boundary conditions
are homogeneous but the partial differential equation is nonhomogeneous) it is a problem that we can
solve.

   Basic Strategy  The solution method for (14) is a bit involved, so before illustrating with a
specific example, we first outline the basic strategy:

Make the assumption that time-dependent coefficients vn(t) and Gn(t) can be found such that both
v(x, t) and G(x, t) in (14) can be expanded in the series

where sin(nπx/L) , n = 1, 2, 3, … are the eigenfunctions of  X(L) = 0
corresponding to the eigenvalues  This Sturm–Liouville problem would have been
obtained had separation of variables been applied to the associated homogeneous BVP of (14). In
(15), observe that the assumed series for v(x, t) already satisfies the boundary conditions in (14).
Now substitute the first series in (15) into the nonhomogeneous PDE in (14), collect terms, and equate
the resulting series with the actual series expansion found for G(x, t).

The next example illustrates this method.

EXAMPLE 2  Time-Dependent PDE and BCs

Solve



SOLUTION   We match this problem with (1) by identifying k = 1, L = 1, F(x, t) = 0, 
 We begin with the construction of ψ. From (12) we get

and then as indicated in (13), we use the substitution

to obtain the BVP for v(x, t):

The eigenvalues and eigenfunctions of the Sturm–Liouville problem

are found to be  we assume from (15) that
for fixed t, v and G can be written as Fourier sine series:

and

By treating t as a parameter, the coefficients Gn in (19) can be computed:

Hence,

We can determine the coefficients vn(t) by substituting (19) and (20) back into the PDE in (17). To
that end, the partial derivatives of v are

Writing the PDE as vt – vxx = (1 – x) sin t and using (20) and (21) we get



We then equate the coefficients of sin nπx on each side of the equality to get

For each n, the last equation is a linear first-order ODE whose general solution is

where Cn denotes the arbitrary constant. Therefore the assumed form of v(x, t) in (18) can be written

The Cn can be found by applying the initial condition v(x, 0) to (22). From the Fourier sine series,

we see that the quantity in the brackets represents the Fourier sine coefficients bn for x – 1. That is,

Therefore, 

By substituting the last result into (22) we obtain a solution of (17),

At long last, then, it follows from (16) that the desired solution u(x, t) is

Remarks
(i) If the boundary-value problem has homogeneous boundary conditions and a time-dependent term
F(x, t) in the PDE, then there is no need to change the dependent variable by substituting u(x, t) =
v(x, t) + ψ(x, t). For example, if u0 and u1 are 0 in a problem such as (1), then it follows from (12)
that ψ(x, t) = 0. The method of solution is basically a frontal attack on the PDE by assuming
appropriate orthogonal series expansions for u(x, t) and F(x, t). Again, if u0 and u1 are 0 in (1), the
solution begins with the assumptions in (15), where the symbols v and G are naturally replaced by u
and F, respectively. See Problems 13–16 in Exercises 13.6. In Problems 17 and 18 of Exercises
13.6 you will have to construct ψ(x, t) as illustrated in Example 2. See also Problem 20 in
Exercises 13.6.
(ii) Don’t put any special emphasis on the fact that we used the heat equation throughout the



foregoing discussion. The method outlined in Example 1 can be applied to the wave equation and
Laplace’s equation as well. See Problems 1–12 in Exercises 13.6. The method outlined in Example
2 is predicated on time dependence in the problem and so is not applicable to BVPs involving
Laplace’s equation.

13.6  Exercises  Answers to selected odd-numbered problems begin on page ANS-32.

 Time-Independent PDE and BCs

In Problems 1 and 2, solve the heat equation  t > 0 subject to the given conditions.
1.   

2.   

In Problems 3 and 4, solve the heat equation (2) subject to the given conditions.
3.   

4.   

5.   Solve the boundary-value problem

where A is a constant. The PDE is a form of the heat equation when heat is generated within a
thin rod due to radioactive decay of the material.

6.   Solve the boundary-value problem

The PDE is a form of the heat equation when heat is lost by radiation from the lateral surface of
a thin rod into a medium at temperature zero.

7.   Find a steady-state solution ψ(x) of the boundary-value problem

8.   Find a steady-state solution ψ(x) if the rod in Problem 7 is semi-infinite extending in the positive
x-direction, radiates from its lateral surface into a medium at temperature zero, and



9.   When a vibrating string is subjected to an external vertical force that varies with the horizontal
distance from the left end, the wave equation takes on the form

where A is constant. Solve this partial differential equation subject to

10.   A string initially at rest on the x-axis is secured on the x-axis at x = 0 and x = 1. If the string is
allowed to fall under its own weight for t > 0, the displacement u(x, t) satisfies

where g is the acceleration of gravity. Solve for u(x, t).
11.   Find the steady-state temperature u(x, y) in the semi-infinite plate shown in FIGURE 13.6.1.

Assume that the temperature is bounded as 

FIGURE 13.6.1 Semi-infinite plate in Problem 11
12.   The partial differential equation

where h > 0 is a constant, occurs in many problems involving electric potential and is known as
Poisson’s equation. Solve the above equation subject to the conditions

 Time-Dependent PDE and BCs

In Problems 13–18, solve the given boundary-value problem.

13.   



14.   

15.   

16.   

17.   

18.   

 Discussion Problems
19.   Consider the boundary-value problem

that is a model for the temperature u in a rod of length L. If u0 and u1 are different nonzero
constants, what would you intuitively expect the temperature to be at the center of the rod after a
very long period of time? Prove your assertion.

20.   Read (i) of the Remarks at the end of this section. Then discuss how to solve

Carry out your ideas by solving the above BVP with k = 1, L = 1, F(x, t) = tx, and f(x) = 0.

13.7 Orthogonal Series Expansions


