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(b) Use a CAS to obtain the graph of u(x, ) over the rectangular region defined by 0 <x <10, 0
<t <15. Assume ;=100 and £ = 1. Use 2D and 3D plots ofu(x, ) to verify your answer
to part (a).

31. Humans gather most of their information on the outside world through sight and sound. But many
creatures use chemical signals as their primary means of communication; for example,
honeybees, when alarmed, emit a substance and fan their wings feverishly to relay the warning
signal to the bees that attend to the queen. These molecular messages between members of the
same species are called pheromones. The signals may be carried by moving air or water or by a
diffusion process in which the random movement of gas molecules transports the chemical away
from its source. FIGURE 15.2.4shows an ant emitting an alarm chemical into the still air of a
tunnel. If c(x, ) denotes the concentration of the chemical x centimeters from the source at time ¢,
then c(x, ) satisfies

’.%=i—?5 r>=0,1t>=0,
and k is a positive constant. The emission of pheromones as a discrete pulse gives rise to a
boundary condition of the form

i
ax r=0

= —Ad).

where J(¢) is the Dirac delta function.

(a) Solve the boundary-value problem if it is further known that ¢(x, 0) = 0, x > 0, and lim,_,,
e(x, )=0,¢>0.

(b) Use a CAS to plot the graph of the solution in part (a) forx > 0 at the fixed times = 0.1, 1 =
05,t=1,t=2,t=5.

(¢) For a fixed time ¢, show that J"c(x. 1) dx = Ak, Thus Ak represents the total amount of chemical
discharged.
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FIGURE 15.2.4 Ants in Problem 31

15.3 Fourier Integral

= Introduction In preceding chapters, Fourier series were used to represent a functionf defined on
a finite interval (—p, p) or (0,L). Whenf and /' are piecewise continuous on such an interval, a
Fourier series represents the function on the interval and converges to the periodic extension off
outside the interval. In this way we are justified in saying that Fourier series are associated only with
periodic functions. We shall now derive, in a nonrigorous fashion, a means of representing certain
kinds of nonperiodic functions that are defined on either an infinite interval (—o, ) or a semi-infinite
interval (0, ).
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[l From Fourier Series to Fourier IntegralSuppose a functionf'is defined on (—p, p). If we use the

integral definitions of the coefficients (9), (10), and (11) of Section 12.2 in (8) of that section, then
the Fourier series of fon the interval is

o
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If we let an a, = na/p, Va = a, — a, = n/p, then (1) becomes

t ,
ftx) = ;(

We now expand the interval (—p, p) by letting p — co. Since p — co implies that Va — 0, the limit of
(2) has the form Hiny.5 3% Fla e which is suggestive of the definition of the integral f=r(s) da-
Thus if = 75 ar exists, the limit of the first term in (2) is zero and the limit of the sum becomes
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The result given in (3) is called the Fourier integral of f on the interval (—oo, o). As the following
summary shows, the basic structure of the Fourier integral is reminiscent of that of a Fourier series.

Definition 15.3.1 Fourier Integral
The Fourier integral of a function f defined on the interval (—oo, c0) is given by
flx) = ‘é’ [:ﬁ[fi(a} cos ax + Bleyjsin ax] de, (4)
where
Ale) = f_w flxycos v dx ()
Bla) = F_f{-tf}ﬁﬂ ax dx. (6)

[0  Convergence of a Fourier Integral Sufficient conditions under which a Fourier integral
converges to f{x) are similar to, but slightly more restrictive than, the conditions for a Fourier series.

Theorem 15.3.1 Conditions for Convergence

Let f and ' be piecewise continuous on every finite interval, and let / be absolutely integrable on (-
o0, 0).” Then the Fourier integral off on the interval converges to f{x) at a point of continuity. At a
point of discontinuity, the Fourier integral will converge to the average




fx+) + fia—)
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where f{x+) and f{x—) denote the limit of f at x from the right and from the left, respectively.

EXAMPLE 1| Fourier Integral Representation

Find the Fourier integral representation of the piecewise-continuous function

SOLUTION The function, whose graph is shown in FIGURE 15.3.1 satisfies the hypotheses of
Theorem 15.3.1. Hence from (5) and (6) we have at once

Ale) = flx)cos ax dy
J—oe
2 ‘s

flxycosax dx + | flxycosaxdy
;)

0
= fixycosaxdx + [
J—oe 0

= | cosaxdy =:
Rid]

2 3
i sin 2«

oD a2

Bla)y = flysinaxdy = J sineey dy =
[¥]

1 — cos2a

d—es
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FIGURE 15.3.1 Function f in Example 1

Substituting these coefficients into (4) then gives

_ L[ fsin2 {1~ cos2
Jix)y = ~L Ksm a)cos ox + (w-s—ﬂ)sinml de.
.]‘_n. 2 a 3 cu -

When we use trigonometric identities, the last integral simplifies to

J) 7= dex.

2 [ sinacosaly — 1)
= m

43

Pt

*This means that the integral J | f| dy CONVEIEES.
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The Fourier integral can be used to evaluate integrals. For example, atx = 1 it follows from
Theorem 15.3.1 that (7) converges to f{1); that s,
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The latter result is worthy of special note since it cannot be obtained in the “usual” manner; the
integrand (sin x)/x does not possess an antiderivative that is an elementary function.

[1 Cosine and Sine Integrals Whenf is an even function on the interval (-, o), then the product
fx) cosax is also an even function, whereas f{x) sinax is an odd function. As a consequence of
property (g) of Theorem 12.3.1, B(a) = 0, and so (4) becomes

9

flx)y=— [ ([ f(fycos at da‘) cos ax dev.
T o N

Here we have also used property (f) of Theorem 12.3.1 to write

O

f(fycos at dr.

J f(tcos at df = 2
+ = 40

Similarly, when fis an odd function on (—o, ©), products f{x) cos ax and f{x) sin ax are odd and even
functions, respectively. Therefore 4(a) = 0 and

ftxy = % r U F(ysin et {Ia‘) sin e de.
B )

We summarize in the following definition.

Definition 15.3.2 Fourier Cosine and Sine Integrals

(i) The Fourier integral of an even function on the interval (—, o) is the cosine integral

DS

Jix) = %J Alc)cos aex dev, (8}

&}

where

Ala) = ] fx)cos ax dy. {9)
M0
(ii) The Fourier integral of an odd function on the interval (—o0, o) is the sine integral
2 o«
Jixy == [ Bia)sin ax da, (10}

o0

where

Bia) = L Jixysin qx dy. (11)

EXAMPLE 2| Cosine Integral Representation

Find the Fourier integral representation of the function



FIGURE 15.3.2 Function f'in Example 2

SOLUTION It is apparent from FIGURE 15.3.2 that /'is an even function. Hence we representf by
the Fourier cosine integral (8). From (9) we obtain

oo a o
Ala) = [ fycosaxdy = | flxyeosardy + | flx)cosax dx
<0 <0 g
& sin aee
= J cosax dy = .
0 (a4
and so
2 [* sin ae cos a:
fy == T da, (12)
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The integrals (8) and (10) can be used whenf is neither odd nor even and defined only on the half-
line (0, «). In this case (8) represents f on the interval (0, ) and its even (but not periodic) extension
to (—o, 0), whereas (10) represents / on (0, ) and its odd extension to the interval (—o, 0). The next
example illustrates this concept.

EXAMPLE 3| Cosine and Sine Integral Representations

Represent f{x) = €%, x > 0 (a) by a cosine integral; (b) by a sine integral.

SOLUTION The graph of the function is given in FIGURE 15.3.3.
(a) Using integration by parts, we find

rod

Ala) = J e~veos ay dy =
D 1 + o

5.
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1

FIGURE 15.3.3 Function fin Example 3

Therefore from (8) the cosine integral of fis
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) = cos ax 3
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(b) Similarly, we have

00

Bla) = J e sinax dx =

0
From (10) the sine integral of f'is then
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(a) Cosine integral

x

(b} Sine integral

FIGURE 15.3.4 In Example 3, () is the even extension of £; (b) is the odd extension of f

FIGURE 15.3.4shows the graphs of the functions and their extensions represented by the tw

integrals.

Complex Form The Fourier integral (4) also possesses an equivalentcomplex form, or
exponential form, that is analogous to the complex form of a Fourier series (see Section 12.4). If (5)

and (6) are substituted into (4), then

f) =

A0 ca

a
1 4+

{13)

(14)

[ j F(O[ cos at cos aex + sin o sin ax]di de



()
[ fi[cosait — x) + isina(t — x)] dt da (16)

l rOg oD
= — 1 (e dr dee
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A : ([ f(r}e’“’z!r) e "o, (17
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We note that (15) follows from the fact that the integrand is an even function of a. In (16) we have
simply added zero to the integrand,

{ J J fitysin et — xydt da = 0,

=

because the integrand is an odd function of a.. The integral in (17) can be expressed as

1 =0

o = _J Claje dai (19)
2 e

where

e

Clay = | _fweax (19)
This latter form of the Fourier integral will be put to use in the next section when we return to the
solution of boundary-value problems.

[0 Use of Computers The convergence of a Fourier integral can be examined in a manner that 1s
similar to graphing partial sums of a Fourier series. To illustrate, let’s use the results in parts (a) and
(b) of Example 3. By definition of an improper integral, the Fourier cosine integral representation of
flx) = e, x>0 in (13) can be written as f{x) = limy,_,Fy,(x), where

gz
2 COs X
=,

40

= Tr e

and x is treated as a parameter. Similarly, the Fourier sine integral representation of f{x) = ¢™ in (14)
can be written as f{x) = limy,_,,Gy(x), where
.2 (*asinex
Gol®) = J | +a°

m

o,



{b) Gyplx)

FIGURE 15.3.5 Graphs of partial integrals

Because the Fourier integrals (13) and (14) converge, the graphs of the partial integrals F(x) and
Gy(x) for a specified value of b > 0 will be an approximation to the graph of f'and its even and odd
extensions shown in Figure 15.3.4(a) and 15.3.4(b), respectively. The graphs of F}(x) and G(x) for
b = 20 given in FIGURE 15.3.5were obtained using Mathematica and its NIntegrate application.

See Problem 21 in Exercises 15.3. \ | X
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15.3| Exercises Answers to selected odd-numbered problems begin on page ANS-35.

In Problems 1-6, find the Fourier integral representation of the given function.

L. 0, £ —1
: =1 =gl
flx)y=" 5 iy
0, x|
2. . o
= {4 T < x< 2w
0, X = 2n
3 0, ¥
f(',.r)={x_ 0= x=73
0, x =3
4. 0. ¥
Foy= {sinx, Q=X
0, X



(4)

In Problems 7—12, represent the given function by an appropriate cosine or sine integral.

7. 0, x<—1
=R, Eop oL A )
flx) = 5, - S|
0, xr=1
8. 0, x| <
flxy= A4 m, < x| <2
{ 0, k| >2
9
wrcsi o J [%h ;-f:. T
10.
o) = {1 W <@
=

11.
12.

flx)y= e Msinx

flx) = xe™H
In Problems 13—16, find the cosine and sine integral representations of the given function.

13. fly=e ™ k>0,x>0
14. f@y=e7—e ¥ x>0

15. fy=xe x>0

16. fxy=e*cosx, x>0

In Problems 17 and 18, solve the given integral equation for the function .

17. o |
fx)cosaxdy=¢e"
o

18.

ki 1, 0<m<l

Xrsinardr = §
Flxysinoxe {0

Jo 3 = |

19. (a) Use (7) to show that ' Si“_?-x s

2"

o4
[Hint: o is a dummy variable of integration. ]

(b) Show in general that, for k>0, E" Sinv ke o 3;_ .

20. Use the complex form (19) to find the Fourier integral representation of f{x) = ¢ ™. Show that the
result is the same as that obtained from (8) and (9).



