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SOLUTIONS TO EXERCISES

CHAPTER 1
1.2 Ordered field axioms.

1.2.0. a) False. Let a =2/3,b=1,c= -2, and d = —1.

b) False. Let a = —4, b= —1, and ¢ = 2.

c) True. Sincea <bandb<a+c¢ la—b=b—a<a+c—a=c

d) True. No a € R satisfies a < b — ¢ for all £ > 0, so the inequality is vacuously satisfied. If you want a more
constructive proof, if b <0 thena <b—e<040=0. If b >0, then fore =b,a <b—ec=0.

1.2.1. a) If a < b then a 4 ¢ < b+ ¢ by the Additive Property. If a = b then a + ¢ = b+ ¢ since + is a function.
Thus a + ¢ < b+ ¢ holds for all a < b.

b) If ¢ = 0 then ac = 0 = be so we may suppose ¢ > 0. If a < b then ac < be by the Multiplicative Property. If
a = b then ac = be since - is a function. Thus ac < be holds for all ¢ < b and ¢ > 0.

1.2.2. a) Suppose 0 < a < b and 0 < ¢ < d. Multiplying the first inequality by ¢ and the second by b, we have
0 < ac < bc and be < bd. Hence by the Transitive Property, ac < bd.

b) Suppose 0 < a < b. By (7), 0 < a® < b2. If \/a > Vb then a = (y/a)? > (Vb)? = b, a contradiction.

¢) If 1/a < 1/b, then the Multiplicative Property implies b = ab(1/a) < ab(1/b) = a, a contradiction. If 1/6 <0
then b = b?(1/b) < 0 a contradiction.

d) To show these statements may not hold when a < 0, let a = -2, b= —1, ¢ =2 and d = 5. Then a < b and
¢ < d but ac = —4 is not less than bd = —5, a® = 4 is not less than b2 = 1, and 1/a = —1/2 is not less than
1/b=—1.

1.2.3. a) By definition,

— 2
w_w,:m;a_<w2a):§:a

and

- 2
f+w,:m;a+(w2a):%gZML

b) By Definition 1.1, if @ > 0 then a™ = (a+a)/2 = a and if a < 0 then a™ = (—a+a)/2 = 0. Similarly, a= =0
fa>0anda” = —aifa<0.

1.2.4. a) 2z + 1| < Tif and only if =7 <22 +1 < 7 if and only if — —4 <z < 3.

b) |2 —z| <2if and only if -2 <2 — 2 < 2 if and only if -4 < —z < 0 if and only if 0 < z < 4.

¢) |2 =3z +1| < 2% if and only if —2% < 23 -3z +1 < 2® if and only if 3z —1 > 0 and 22° —3x+1 > 0. The first
inequality is equivalent to # > 1/3. Since 22° — 32 + 1 = (z — 1)(222 + 2z — 1) implies that 2 = 1, (=14 v/3)/2,
the second inequality is equivalent to (—1 —v/3)/2 < = < (=1 ++/3)/2 or # > 1. Therefore, the solution is
(1/3,(v3-1)/2) U (1, 00).

d) We cannot multiply by the denominator z — 1 unless we consider its sign.

Case 1. x —1 > 0. Then x < x — 1 s0 0 < —1, i.e., this case is empty.

Case 2. x — 1 < 0. Then by the Second Multiplicative Property, x > x — 1 so 0 > —1, i.e., every number from
this case works. Thus the solution is (—oo, 1).

e) Case 1. 4z% —1 > 0. Cross multiplying, we obtain 422 < 422 — 1, i.e., this case is empty.

Case 2. 42> —1 < 0. Then by the Second Multiplicative Property, 42 > 422 — 1, i.e., 0 > —1. Thus the
solution is (—1/2,1/2).

1.2.5. a) Suppose @ > 2. Thena—1>1s01 < +va—1<a—1 Dby (6). Therefore, 2 <b=1++a—1
14+ (a—1)=a.

b) Suppose 2 < a < 3. Then0 <a—2<1s00<a—2 < +/a—2<1by (6). Therefore, 0 < a <2++/a—2=0b.
c¢) Suppose 0 < a < 1. Then 0 > —a > —1,0 0 < 1 —a < 1. Hence /1 — a is real and by (6), 1 —a < /1 —a.
Therefore, b=1—+v1—-a<1—-(l—a)=a.

d) Suppose 3 <a <5. Then1l <a—2<3s01<+va—2<a—2by (6). Therefore, 3 <2+ +va—2=">b<a.



1.2.6. a +b—2Vab = (va—vb)? > 0 for all a,b € [0,00). Thus 2vab < a + b and G(a,b) < A(a,b). On
the other hand, since 0 < a < b we have A(a,b) = (a +b)/2 < 2b/2 = b and G(a,b) = Vab > Va® = a. Finally,
A(a,b) = G(a,b) if and only if 2v/ab = a + b if and only if (v/a — v/b)?> = 0 if and only if \/a = V/b if and only if

a=b.

1.2.7. a) Since |z + 2| < |z| + 2, |z| < 2 implies |22 — 4] = |z + 2| |z — 2| < 4|z — 2|.

b) Since |z + 3| < |z| + 3, |z| < 1 implies |2% + 2z — 3| = |z + 3| |z — 1| < 4]z — 1|.

¢) Since |z — 2| < |z| +2, =3 < x < 2 implies |22 + 2 — 6| = |z + 3| |z — 2| < 6|z — 2|.

d) Since the minimum of 22 +z —1 on (—1,0) is —1.25, —1 < z < 0 implies |2 — 2z + 1| = |22+ 2z —1]]z - 1] <
5|z — 1|/4.

1.2.8. a) Since (1 —n)/(1 — n?) = 1/(1 + n), the inequality is equivalent to 1/(n + 1) < .01 = 1/100. Since
1+ n >0 for all n € N, it follows that n + 1 > 100, i.e., n > 99.

b) By factoring, we see that the inequality is equivalent to 1/(2n+ 1) < 1/40, i.e., 2n+1 > 40. Thus n > 39/2,
i.e., n > 20.

c¢) The inequality is equivalent to n2 4+ 1 > 500. Thus n > V499 ~ 22.33, i.e., n > 23.

1.2.9. a) mn~ ! 4 pg! = mggin"! +pginn~t = (mg+ pn)n~l¢™!. But n"l¢ 'ng = 1 and uniqueness
of multiplicative inverses implies (nq)~! = n~1¢~!. Therefore, mn~! + pg~! = (mgq + pn)(ng)~!. Similarly,

mn~Y(pg~!) = mpn~lq¢~! = mp(ng)~!. By what we just proved and (2),

m  —m m—m 0

n n n n

Therefore, by the uniqueness of additive inverses, —(m/n) = (—m)/n. Similarly, (m/n)(n/m) = (mn)/(mn) =
mn(mn)~! =1, so (m/n)~! = n/m by the uniqueness of multiplicative inverses.

b) Any subset of R which contains 0 and 1 will satisfy the Associative and Commutative Properties, the
Distributive Law, and have an additive identity 0 and a multiplicative identity 1. By part a), Q satisfies the
Closure Properties, has additive inverses, and every nonzero ¢ € Q has a multiplicative inverse. Therefore, Q
satisfies Postulate 1.

c)lfreQ,zeR\Qbut ¢g:=r+2x € Q, then z = g —r € Q, a contradiction. Similarly, if rz € Q and r # 0,
then x € Q, a contradiction. However, the product of any irrational with 0 is a rational.

d) By the First Multiplicative Property, mn~! < pg~! if and only if mq = mn~lgn < pg~'ng = np.

1.2.10. 0 < (cb — ad)? = ¢?b* — 2abcd + a*d? implies 2abed < c?b? + a?d?. Adding a?b? + c2d? to both sides,
we conclude that (ab + cd)? < (a? + c2)(b? + d?).

1.2.11. Let P := R™.

a) Let z € R. By the Trichotomy Property, either > 0, —z > 0, or z = 0. Thus P satisfies i). If z > 0 and
y > 0, then by the Additive Property, x +y > 0 and by the First Multiplicative Property, zy > 0. Thus P satisfies
ii).

b) To prove the Trichotomy Property, suppose a,b € R. By i), either a —b € P, b—a = —(a —b) € P, or
a — b= 0. Thus either a > b, b > a, or a = b.

To prove the Transitive Property, suppose a < b and b < ¢. Then b — a,c — b € P and it follows from ii) that
c—a=b—a+c—-beP,ie,c>a.

Since b —a = (b+¢) — (a+ ¢), it is clear that the Additive Property holds.

Finally, suppose a < b, i.e., b—a € P. If ¢ > 0 then ¢ € P and it follows from ii) that bc — ac = (b — a)c € P,
ie., be>ac. If ¢ <0 then —c € P, so ac —bc = (b—a)(—c) € P, ie., ac > be.

1.3 The Completeness Axiom.

1.3.0. a) True. If AN B = (), then sup(A N B) := —oo and there is nothing to prove. If AN B # @, then use
the Monotone Property.

b) True. If z € A, then z < sup A. Since € > 0, we have ex < esup A, so the latter is an upper bound of B. It
follows that sup B < esup A. On the other hand, if x € A, then ex € B, so ex < sup B, i.e., sup B/¢ is an upper
bound for A. It follows that sup A < sup B/e.

c) True. If z € A and y € B, then z +y < sup A 4 sup B, so sup(A + B) < sup A + sup B. If this inequality is
strict, then sup(A + B) —sup B < sup A, and it follows from the Approximation Property that there is an ag € A
such that sup(A+ B) —sup B < ag. This implies that sup(A+ B) —ag < sup B, so by the Approximation Property
again, there is a by € B such that sup(A+ B) —ag < by. We conclude that sup(A + B) < ag + bo, a contradiction.
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d) False. Let A =B =10,1]. Then A— B =[-1,1] so sup(A —B) =1%# 0 =sup A —sup B.

1.3.1. a) Since 22 + 2z — 3 = 0 implies # = 1,-3, inf E = -3, supE = 1. b) Since 22 — 2z + 3 > 22
implies z < 3/2, inf E = 0, sup F = 3/2. c¢) Since p?/¢®> < 5 implies p/q < /5, inf B = 0, supE = /5. d)
Since 1+ (—1)"/n =1 —1/n when n is odd and 1 + 1/n when n is even, inf £ = 0 and sup £ = 3/2. ¢) Since
1/n+ (=1)" = 1/n+ 1 when n is even and 1/n — 1 when n is odd, inf E = —1 and sup £ = 3/2. f) Since
2 —(=1)"/n? =2 —1/n? when n is even and 2 + 1/n? when n is odd, inf E = 7/4 and sup E = 3.

1.3.2. Since a — 1/n < a+ 1/n, choose r,, € Q such that a —1/n < r, <a+1/n,ie, |a—1r,| <1/n.

1.3.3. a < b implies a — v/2 < b — /2. Choose r € Q such that a — v2 <r <b—+/2. Then a < r++2 < b.
By Exercise 1.2.9¢, r + V/2 is irrational. Thus set E=r+ V2.

1.3.4. If m is a lower bound of E then so is any m < m. If m and m are both infima of F then m < m and
m <m,ie., m=m.

1.3.5. Suppose that E is a bounded, nonempty subset of Z. Since —F is a bounded, nonempty subset of Z, it
has a supremum by the Completeness Axiom, and that supremum belongs to —F by Theorem 1.15. Hence by the
Reflection Principle, inf ' = —sup(—FE) € —(—E) =E.

1.3.6. a) Let € > 0 and m = inf E. Since m+ ¢ is not a lower bound of E, there is an a € E such that m+¢€ > a.
Thus m + € > a > m as required.

b) By Theorem 1.14, there is an a € F such that sup(—F) — € < —a < sup(—FE). Hence by the Second
Multiplicative Property and Theorem 1.20, inf E + ¢ = —(sup(—FE) —¢) > a > —sup(—F) = inf E.

1.3.7. a) Let x be an upper bound of F and z € E. If M is any upper bound of E then M > z. Hence by
definition, z is the supremum of E.

b) The correct statement is: If x is a lower bound of F and z € F then x = inf E.

PROOF. —z is an upper bound of —F and —z € —E so —x = sup(—FE). Thus x = —sup(—F) = inf E.

c) If E is the set of points x,, such that z,, = 1 — 1/n for odd n and z, = 1/n for even n, then supE = 1,
inf E = 0, but neither 0 nor 1 belong to E.

1.3.8. Since A C E, any upper bound of E is an upper bound of A. Since A is nonempty, it follows from
the Completeness Axiom that A has a supremum. Similarly, B has a supremum. Moreover, by the Monotone
Property, sup A,sup B < sup F.

Set M := max{sup A, sup B} and observe that M is an upper bound of both A and B. If M < sup E, then
there is an « € F such that M < x < sup E. But z € E implies x € A or x € B. Thus M is not an upper bound
for one of the sets A or B, a contradiction.

1.3.9. By induction, 2" > n. Hence by the Archimedean Principle, there is an n € N such that 2" > 1/(b—a).
Let F := {k € N : 2"b < k}. By the Archimedean Principle, F is nonempty. Hence let mg be the least element in
E and set ¢ = (mo — 1)/2™. Since b > 0, mg > 1. Since my is least in E, it follows that mg — 1 < 2"b, i.e., ¢ < b.
On the other hand, mg € E implies 2"b < my, so

1.3.10. Since |z,| < M, the set E,, = {&n,Zpt1,...} is bounded for each n € N. Thus s, := sup E,, exists
and is finite by the Completeness Axiom. Moreover, since E,,+1 C E,, it follows from the Monotone Property,
Sp > Sp41 for each n € N. Thus s1 > s9 > ...

By the Reflection Principle, it follows that t; <t <---.

Or, if you prefer a more direct approach, o, := sup{—xpn, —Zn41,...} satisfies 1 > o9 > .... Since t, = —op,
for n € N, it follows from the Second Multiplicative Property that t; <ts < ....

1.3.11. Let E={n€Z:n <a}. lf a >0, then 0 € E. If a < 0, then by the Archimedean Principle, there
is an m € N such that m > —a, i.e., n :== —m € E. Thus F is nonempty. Since F is bounded above (by a), it
follows from the Completeness Axiom and Theorem 1.15 that ng = sup E exists and belongs to E.

Set k = ng + 1. Since k > sup F, k cannot belong to F, i.e., a < k. On the other hand, since ng € E and
b—a>1,

k=ny+1<a+1l<a+(b—a)=0.

We conclude that a < k < b.



1.4 Mathematical Induction.

1.4.0. a) False. If a = —b =1 and n = 2, then (a + b)" = 0 is NOT greater than b* = 1.

b) False. If a = —3, b =1, and n = 2, then (a + b)™ = 4 is not less than or equal to b = 1.

¢) True. If n is even, then n — k and k are either both odd or both even. If they’re both odd, then a”~*b* is the
product of two negative numbers, hence positive. If they’re both even, then a™ *b* is the product of two positive
numbers, hence positive. Thus by the Binomial Formula,

n

a+b)" = " a" bk = a™ + na” "o+ n a" FbF = @™ + na™ b + C.
k k

k=0 k=2

Since C' is a sum of positive numbers, the promised inequality follows at once.
d) True. By the Binomial Formula,

1 (1 a-2\" &\ 1(@-2"F S (n\(@—2)"F
3= (ot 5) =2 (1) ar srme = 2 (1) o

k=

1.4.1. a) By hypothesis, 1 > 2. Suppose z,, > 2. Then by Exercise 1.2.5a, 2 < 2,41 < &,. Thus by induction,
2 < xpy1 <z, for all m € N.

b) By hypothesis, 2 < x; < 3. Suppose 2 < x,, < 3. Then by Exercise 1.2.5b, 0 < z,, < Zn41. Thus by
induction, 0 < x,, < x,+1 for all n € N.

¢) By hypothesis, 0 < z; < 1. Suppose 0 < z,, < 1. Then by Exercise 1.2.5¢, 0 < Z,,+1 < Zp,. Thus by induction
this inequality holds for all n € IN.

d) By hypothesis, 3 < x; < 5. Suppose 3 < z,, < 5. Then by Exercise 1.2.5d, 3 < z,+1 < . Thus by
induction this inequality holds for all n € N.

1.4.2.2) 0=(1—-1)" =3 ()1 =Dk =37 (1) (-D*.

b) (a+ b)n L +TLCL”71b+ cee bn 2 a” +na”*1b.

¢) By b), (1+1/n)" > 1" +nl1""1(1/n) = 2.

d) 2" =(1+1)" =37, (1) so X7, () =2" — 1. On the other hand Y;'—) 2¥ = 2" — 1 by induction.

1.4.3. a) This inequality holds for n = 3. If it holds for some n > 3 then
2n+1)+1=2n+1+2<2"+2<2" +2" =211
b) The inequality holds for n = 1. If it holds for n then
n+1<2"+1<2% +n<2" 42" =2"
c¢) Now n? < 2" + 1 holds for n = 1,2, and 3. If it holds for some n > 3 then by a),
(n+1)2=n?+2n+1<2" 42" =" <onfl g,
d) We claim that 3n? +3n +1 < 2-3" for n = 3,4,.... This inequality holds for n = 3. Suppose it holds for

some n. Then
3(n+1)2+3n+1)+1=3n>+3n+1+6n+6<2-3"+6(n+1).

Similarly, induction can be used to establish 6(n + 1) < 4-3™ for n > 1. (It holds for n = 1, and if it holds for n
then 6(n+2) =6(n+1)+6<4-3"+6 <4-3"+8-3" =4-3""L) Therefore,

3(n+1)2+3n+1)+1<2-3"+6(n+1)<2-3"+4.3"=2.3""

Thus the claim holds for all n > 3.
Now n? < 3" holds by inspection for n = 1,2, 3. Suppose it holds for some n > 3. Then

(n+1)3:n3+3n2+3n+1§3n+2.3n:3n+1.
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1.4.4. a) The formula holds for n = 1. If it holds for n then

1 1 2
Zk:m+n+1:(n+1)(ﬁ+1):w.
2 2 2
k=1
b) The formula holds for n = 1. If it holds for n then
n+1
o nn+1)2n+1) o n+1 _(n+1)(n+2)(2n+3)
;k = 1) == —(2n+1)+6(n+1)) = G .

a—1 1 a—1 1
Z ak 1_a7+an+1*1_an+1’

d) The formula holds for n = 1. If it holds for n then

n+1

an? —1 o+ 1
S @2k 1)? = %4—(2714—1)2 = %(2712—#-571—0—3)
k=1
_ 2n+1 _ (n+1)(4n* +8n+3)

2n+3)(n+1)

(n+1)4n+1)2-1)
3 )

3

1.4.5. 0 < a™ < b" holds for n = 1. If it holds for n then by (7), 0 < a™t! < b1,
By convention, Vb >0. If Va < /b is false, then Va > Vb > 0. Taking the nth power of this inequality, we
obtain a = ({/a)” > (¥/b)" = b, a contradiction.

1.4.6. The result is true for n = 1. Suppose it’s true for some odd number > 1, i.e., 2271 4 327~ = 5/ for
some £,n € N. Then
22n+1 + 32n+1 — 4. 22n—1 + 9 . 32n—1 —4. 5£+ 5 . 32n—1

is evidently divisible by 5. Thus the result is true by induction.

1.4.7. We first prove that 2n! +2 < (n+ 1)! for n = 2,3,.... It’s true for n = 2. Suppose that it’s true for
some n > 2. Then by the inductive hypothesis,

2+ 1)!+2=2n+1)n!+2=2n1+242n-n! < (n+ 1) 4 2n-nl
But 2 < n+ 1 so we continue the inequality above by
2+ +2<(n+Dl4+n-n+D!=n+2) - (n+1)! = (n+2)!

as required.
To prove that 2 < n!+ 2, notice first that it’s true for n = 1. If it’s true for some n > 1, then by the inequality
already proved,
2ntl = 2. 9" <2(p! +2) =2n! +24+2< (n4+ 1) +2

as required.

1.4.8. If n =1 or n = 2, the result is trivial. If n > 3, then by the Binomial Formula,

2":(1+1)”=Zn:(z> > <§) =—”(”_1g("_2).

k=0

1.4.9. a) If m = k2, then /m = k by definition. On the other hand, if m is not a perfect square, then by
Remark 1.28, y/m is irrational. In particular, it cannot be rational.
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b) If vn + 3+ /1 € Q then n+3+2v/n + 3/n+n = (v/n + 3+/n)? € Q. Since Q is closed under subtraction
and division, it follows that v/n2 + 3n € Q. In particular, n? 4 3n = m? for some m € N. Now n? + 3n is a perfect
square when n = 1 but if n > 1 then

n+1)?=n’+2n+l<n’+2n+n=n+4+3n=<n’+4n+4=(n+2)>
Therefore, the original expression is rational if and only if n = 1.

c) By repeating the steps in b), we see that the original expression is rational if and only if n(n+7) = n?>+7n = m
for some m € N. If n > 9 then

2

(n+3)2=n>+6n+9<n®+Tn<n®+8n+16 = (n+4)>%

Thus the original expression cannot be rational when n > 9. On the other hand, it is easy to check that n? 4+ 7n is
not a perfect square for n = 1,2,...,8 but is a perfect square, namely 144 = 122, when n = 9. Thus the original
expression is rational if and only if n = 9.

1.4.10. The result holds for n = 0 since ¢g — bg = 1 and a% + b% = cg. Suppose that ¢,_1 — b,_1 = 1 and
aZ_, +b2_, = c2_; hold for some n > 0. By definition, ¢, — b, = ¢,—1 —by—1 = 1, so by induction, this difference
is always 1. Moreover, by the Binomial Formula, the inductive hypothesis, and what we just proved,

a2 + b2 = (an_1+2)2+ (2an_1 + by + 2)?

=ah_y a1 +4+ (20,1 +2) +2by 1 (20,1 +2) + 05,

o1+ 2(an—1+2) + (2051 +2)* + 2(cp1 — 1)(2a5-1 +2)
A L+ (2001 +2)% +2¢,1(2an_1 +2)

= (2ap_1+cn1 +2)* =c2.

1.5 Inverse Functions and Images.

1.5.0. a) False. Since (sinz)’ = cosz is negative on [r/2,37/2], f is 1-1 there, but the domain of arcsinz is
[—7/2,m/2]. Thus here, f~!(x) = arcsin(m — z).
b) True. By elementary set algebra and Theorem 1.37,

(A NFB) VIO = FTHANB)UFTHC) D fTH(ANB) #0.

c) False. If X =[0,2], A =[0,1] and B = {1}, then B\ A=0 but (A\ B)°=1(0,1)° =[1,2].

d) False. Let f(z) =2+ 1for —1 <a <0and f(z) =2z — 1 for 0 <z < 1. Then f takes [—1,1] onto [—1,1]
and f(0) =1, but f~1(f(0)) = f~'(1) = {0,1}.

1.5.1. ) fis 1-1since f'(z) =3 > 0 for x € R. If y = 3z — 7 then # = (y+7)/3. Therefore f~!(z) = (z+7)/3.
By looking at the graph, we see that f(E) = R.

B) fis 1-1since f'(z) = —e'/* /2% > 0 for z € (0,00). If y = €'/® then logy = 1/x, i.e., = 1/ logy. Therefore,
f~Y(z) = 1/logz. By looking at the graph, we see that f(E) = (1, 00).

v) fis 1-1 on (n/2,37/2) because f'(x) = sec?x > 0 there. The inverse is f~!(x) = arctan(x — 7). By looking
at the graph, we see that f(F) = (—o0,00).

d) Since f/(z) =2z +2 < 0 for x < —6, f is 1-1 on [~o0, —6]. Since y = 22 + 2z — 5 is a quadratic in z, we
have z = (=2 £ /4 +4(5+y))/2 = -1+ /6 +y. But x is negative on (—oo, —6], so we must use the negative
sign. Hence f~1(x) = —1 — /6 + z. By looking at the graph, we see that f(E) = [19, co).

¢) By definition,

3+ 2 <0
flxy=<¢ xz+2 0<z<2
3z —2 x> 2.

Thus f is strictly increasing, hence 1-1, and
(x—2)/3 x <2
fTHa)=q =—-2 2<r<4
(r+2)/3 x >4,
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ie., f71(z) = (x + |z — 2| — |x — 4])/3. By looking at the graph, we see that f(E) = (—oc, 00).
¢) Since f'(z) = (1 — 2?)/(2? + 1)? is never zero on (—1,1), f is 1-1 on [—1,1]. By the quadratic formula,
y = f(x) implies z = (1 £ /1 — 4y?)/2y. Since x € [—1, 1] we must take the minus sign. Hence

1 (1—-+v1-—42?)/2x z#0
(@) =
0 xz=0.
By looking at the graph, we see that f(E) = (—0.5,0.5).

1.5.2. a) f decreases and f(—1) =5, f(2) = —4. Therefore, f(E) = (—4,5). Since f(z) = —1 implies z = 1
and f(z) = 2 implies = 0, we also have f~1(E) = (0, 1).

b) The graph of f is a parabola whose absolute minimum is 1 at = 0 and whose maximum on (—1,2] is 5 at
x = 2. Therefore, f(E) = [1,5]. Since f takes 1 to 2, f~}(E) = [-1,1].

c¢) The graph of f is a parabola whose absolute maximum is 1 at © = 1. Since f(—2) = —8, it follows that
f(E) =[-8,1]. Since 2 — 2 = —2 implies z = 1 £ /3, we also have f~1(E) = [L — /3,1 + V3].

d) The graph of z? — 2z + 2 is a parabola whose minimum is 1 at = 1. Since log increases on (0, 00),
f(1) = log(1) = 0, and f(3) = log(5), it follows that f(E) = [0,log(5)]. Since 3 = log(x? + = + 1) implies
r=1++e3 -1, we also have

FFUB)=1—Ve3 —1,1)U(1,1+Ve3 —1].
e) Since cosz is periodic with maximum 1 and minimum —1, f(E) = [-1,1]. Since cosz is nonnegative when
(4k — D) /2 <z < (4k + 1)7/2 for some k € Z, it follows that

FUE) = |4k — /2, (4k + 1)7/2].

kecZ

1.5.3. a) The minimum of 2—2 on [0, 1] is —2 and the maximum of 2+1 on [0, 1] is 2. Thus Uzepoqj[z—2,2+1] =
[—2,2].

b) The maximum of x —1 on [0, 1] is 0 and the minimum of z+1 on [0, 1] is 1. Thus Nge(o,1j[z —1,2+1] = (0,1].

c¢) The minimum of 1/k for k € N is 0 and 0 € [—1/k,1/k] for all k € N. Thus Ngen[—1/k, 1/k] = {0}.

d) The maximum of 1/k for k € N is 1. Thus Ugen[—1/k,0] = [—1,0].

e) The maximum of 1/k for k € N is 1 and the minimum of —k for k € N is —oo. Thus Ugen|[—k, 1/k) = (=00, 1).

f) The maximum of (k—1)/k and the minimum of (k+1)/k for k € Nis 1. Thus Ngen[(k—1)/k, (k+1)/k) = {1}.

1.5.4. Suppose z belongs to the left side of (16), i.e., x € X and = ¢ NgcaF,. By definition, z € X and
x ¢ E, for some o € A. Therefore, x € ES for some a € A, i.e., x belongs to the right side of (16). These steps
are reversible.

1.5.5. a) By definition, z € f~1(UseaFEs) if and only if f(z) € E, for some a € A if and only if z €
UaEAfil(Ea)‘

b) By definition, € f~1(Naeca E,) if and only if f(z) € E, for all o € A if and only if x € Npeaf 1 (Eq)-

c) To show f(f~Y(E)) = E, let x € E. Since E C f(X), choose a € X such that z = f(a). By definition,
a € f7YE)soz = f(a) € f(f~H(E)). Conversely, if z € f(f~1(E)), then x = f(a) for some a € f~1(E). By
definition, this means x = f(a) and f(a) € E. In particular, z € E.

To show E C f~1(f(E)), let z € E. Then f(x) € f(E), so by definition, z € f~1(f(E)).

1.5.6. a) Let C' =[0,1] and B = [—1,0]. Then C'\ B = {0} and f(C) = f(B) = [0,1]. Thus f(C \ B) = {0} #
0= f(C)\f(B).
b) Let E = [0,1]. Then f(E) =1[0,1] so f~Y(f(E))=[-1,1] #[0,1] = E.

1.5.7. a) implies b). By definition, f(A\ B) 2 f(A)\ f(B) holds whether f is 1-1 or not. To prove the reverse
inequality, suppose f is 1-1 and y € f(A\ B). Then y = f(a) for some a € A\ B. Since f is 1-1, a = f~1({y}).
Thus y # f(b) for any b € B. In particular, y € f(A) \ f(B).

b) implies c). By definition, A C f~1(f(A)) holds whether f is 1-1 or not. Conversely, suppose x € f~1(f(A)).
Then f(x) € f(A) so f(z) = f(a) for some a € A. If z ¢ A, then it follows from b) that f(A4) = f(A\ {z}) =
FAN f{z}), ie., f(z) & f(A), a contradiction.

¢) implies d). By Theorem 1.37, f(AN B) C f(A) N f(B). Conversely, suppose y € f(A) N f(B). Then
y = f(a) = f(b) for some a € Aand b € B. If y ¢ f(ANB) then a ¢ B and b ¢ A. Consequently,
FY(f({a})) 2 {a,b} D {a}, which contradicts c).

d) implies a). If f is not 1-1 then there exist a,b € X such that a # b and y := f(a) = f(b). Hence by d),
{y} = f{a}) N f({b}) =0, a contradiction.



1.6 Countable and uncountable sets.

1.6.0. a) False. The function f(z) =z for z € N and f(z) =1 for 2 € R\ N takes R onto N, but R is not at
most countable.

b) False. The sets A,, := {% :k € Nand —2™ < k < 2™} are finite, hence at most countable. Since the dyadic
rationals are the union of the A,,’s as m ranges over N, they must be at most countable by Theorem 1.42ii.

c¢) True. If B were at most countable, then its subset f(A) would be at most countable by Theorem 1.41, i.e.,
there is a function g which takes f(A) onto N. Hence by Exercise 1.6.5a, g o f takes A onto N. It follows from
Lemma 1.40 that A is at most countable, a contradiction.

d) False, beguiling as it seems! Let E,, = {0,1,...,9} and define f on E; x E3 x --- by taking each point
(z1,x9,...) onto the number with decimal expansion 0.z1z5 - --. Clearly (see the proof of Remark 1.39), f takes
E onto [0,1]. Since [0, 1] is uncountable, it follows from 1.6.0c that Eq x F3 X - -- is uncountable.

1.6.1. The function 2z — 1 is 1-1 and takes N onto {1,3,5,...}. Thus this set is countable by definition.
1.6.2. By two applications of Theorem 1.42i, Q x Q is countable, hence Q® := (Q x Q) x Q is also countable.

1.6.3. Let g be a function that takes A onto B. If A is at most countable, then by Lemma 1.40 there is a
function f which takes N onto A. It follows (see Exercise 1.6.5a) that g o f takes N onto B. Hence by Lemma
1.40, B is at most countable, a contradiction.

1.6.4. By definition, there is an n € N and a 1-1 function ¢ which takes Z := {1,2,...,n} onto A. Let
P(x) := f(P(x)) for x € Z. Since f and ¢ are 1-1, ¢(x) = ¥ (y) implies ¢(x) = ¢(y) implies z = y. Moreover,
since f and ¢ are onto, given b € B there is an a € A such that f(a) = b, and an x € Z such that ¢(x) = a, hence
P(x) = f(¢p(x)) = f(a) =b. Thus ¢ is 1-1 from Z onto B. By definition, then, B is finite.

1.6.5. a) Repeat the proof in Exercise 1.6.4 without referring to N and Z.

b) By the definition of By, it is clear that f takes A onto By. Suppose f = f~Y(y) for some z,y € By.
Since f is 1-1 from A onto By, it follows from Theorem 1.30 that x = f(f~ (1‘)) f(f~Y(y)) =y. Thus f~!is
1-1 on By.

c) If f is 1-1 (respectively, onto), then it follows from part a) that g o f is 1-1 (respectively, onto).

Conversely, if go f is 1-1 (respectively, onto), then by parts a) and b), f = g~ logo f is 1-1 (respectively, onto).

1.6.6. a) We prove this result by induction on n.

Suppose n = 1. Since ¢ : {1} — {1}, it must satisfy ¢(1) = 1. In particular, in this case ¢ is both 1-1 and onto
and there is nothing to prove.

Suppose that the result holds for some integer n > 1 and let ¢ : {1,2,...,n+ 1} — {1,2,...,n 4+ 1}. Set
ko = ¢(n + 1) and define 9 by
L < ko

q’b(@:{é—l 0> k.

The 1 is 1-1 from {1,2,..., ko — 1, ko +1,...,n+ 1} onto {1,2,...,n}.

Suppose ¢ is 1-1 on {1,2,...,n+ 1}. Then ¢ is 1-1 on {1,2,...,n}, hence ¢y o ¢ is 1-1 from {1,2,...,n} into
{1,2,...,n}. It follows from the inductive hypothesis that 1 o ¢ takes {1,2,...,n} onto {1,2,...,n}. By Exercise
1.6.5, ¢ takes {1,2,...,n} onto {1,2,..., kg —1,ko+1,...,n+ 1}. Since ¢(n+ 1) = ko, we conclude that ¢ takes
{1,2,...,n+ 1} onto {1,2,...,n+ 1}.

Conversely, if ¢ takes {1,2,...,n+1} onto {1,2,...,n+1}, then ¢ takes {1,2,...,n} onto {1,2,...,kg—1,ko+
1,...,n+ 1}, so o ¢ takes {1,2,...,n} onto {1,2,...,n}. It follows from the inductive hypothesis that 1) o ¢ is
1-1 on {1,2,...,n}. Hence by Exercise 1.6.5 and construction, ¢ is 1-1 on {1,2,...,n+ 1}.

b) We may suppose that E is nonempty. Hence by hypothesis, there is an n € N and a 1-1 function ¢ from E
onto {1,2,...,n}. Moreover, by Exercise 1.6.5b, the function ¢! is 1-1 from {1,2,...,n} onto E.

Consider the function ¢~!o f o . Clearly, it takes {1,2,...,n} into {1,2,...,n}. Hence by part a), ¢~to fo¢
is 1-1 if and only if it is onto. In particular, it follows from Exercise 1.6.5¢ that f is 1-1 if and only if f is onto.

1.6.7. a) Let ¢ =k/j. If k =0 then n? =1 is a root of the polynomial x — 1. If k > 0 then n? is a root of the
polynomial 7 — nF. If k < 0 then n9 is a root of the polynomial n=*27 — 1. Thus n? is algebraic.

b) By Theorem 1.42, there are countably many polynomials with integer coefficients. Each polynomial of degree
n has at most n roots. Hence the class of algebraic numbers of degree n is a countable union of finite sets, hence
countable.



¢) Since any number is either algebraic or transcendental, R is the union of the set of algebraic numbers and
the set of transcendental numbers. By b), the former set is countable. Therefore, the latter must be uncountable
by the argument of Remark 1.43.



CHAPTER 2

2.1 Limits of Sequences.

2.1.0. a) True. If z,, converges, then there is an M > 0 such that |z,| < M. Choose by Archimedes an N € N
such that N > M/e. Then n > N implies |z, /n| < M/n < M/N <e.

b) False. x,, = v/n does not converge, but z,/n =1/y/n — 0 as n — oo.

c) False. x,, = 1 converges and y,, = (—1)" is bounded, but z,y, = (—1)™ does not converge.

d) False. x,, = 1/n converges to 0 and y,, = n? > 0, but z,y, = n does not converge.

2.1.1. a) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 1/e. Thus n > N
implies

[(2—1/n)—2]=|1/n| <1/N <e.

b) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 72 /2. Thus n > N implies

1+7/vn—1|=|r/v/n| <n/VN <e.

¢) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 3/e. Thus n > N implies
3(14+1/n) —3|=|3/n| <3/N <e.

d) By the Archimedean Principle, given £ > 0 there is an N € N such that N > 1/ V/3e. Thus n > N implies

|(2n? +1)/(3n%) — 2/3| = [1/(3n?)| < 1/(3N?) < e.

2.1.2. a) By hypothesis, given ¢ > 0 there is an N € N such that n > N implies |z, — 1| < &/2. Thus n > N
implies
1 +2z, —3| =2z, — 1| <e.

b) By hypothesis, given € > 0 there is an N € N such that n > N implies x,, > 1/2 and |z, — 1| < ¢/4. In
particular, 1/z, < 2. Thus n > N implies

[(rxy — 2) /@y — (7 = 2)| =2 |(xy, — 1) /| < 4|z, — 1| <e.

c¢) By hypothesis, given € > 0 there is an N € N such that n > N implies =, > 1/2 and |z, — 1| < /(1 + 2e).
Thus n > N and the triangle inequality imply

@2 — )an — (1— )| = Jan — 1] '1+ =

<l — 1 <1+i) <t — 1|(1+2¢) < e.

|

2.1.3. a) If np = 2k, then 3 — (—1)™ = 2 converges to 2; if ny = 2k + 1, then 3 — (—=1)™ = 4 converges to 4.

b) If ng = 2k, then (—1)3" +2 = (-1)%% 4 2 = 1 4+ 2 = 3 converges to 3; if ny, = 2k + 1, then (—1)3" +2 =
(—1)0k+3 4 2 = —1 42 =1 converges to 1.

c) If ng, = 2k, then (ng—(—1)"*ni—1)/n, = —1/(2k) converges to 0; if np, = 2k+1, then (np—(—1)" ni—1)/n; =
(2ng — 1)/n, = (4k +1)/(2k + 1) converges to 2.

2.1.4. Suppose z, is bounded. By Definition 2.7, there are numbers M and m such that m < z,, < M for all
n € N. Set C := max{1, |M|,|m|}. Then C >0, M < C, and m > —C'". Therefore, —C < z,, < C, i.e., |z,| < C
for all n € N.

Conversely, if |z,| < C for all n € N, then z,, is bounded above by C' and below by —C.

2.1.5. If C' = 0, there is nothing to prove. Otherwise, given ¢ > 0 use Definition 2.1 to choose an N € N such
that n > N implies |b,| = b, < £/|C|. Hence by hypothesis, n > N implies

|zn — a| < |Clb, < e.

By definition, z,, — a as n — co.

2.1.6. If z,, = a for all n, then |x,, —a| = 0 is less than any positive ¢ for all n € N. Thus, by definition, =, — a
as n — oo.
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2.1.7. a) Let a be the common limit point. Given € > 0, choose N € N such that n > N implies |z,, — a| and
|yn, — a| are both < &/2. By the Triangle Inequality, n > N implies

|Zn, = Yn| < |20 —al + |yn —a] <e.

By definition, =, —y, — 0 as n — oc.

b) If n converges to some a, then givene =1/2, 1 =|(n+1) —n| < |(n+1) —a|+ |n — a| < 1 for n sufficiently
large, a contradiction.

¢) Let #, = n and y, = n+ 1/n. Then |z, — y,| = 1/n — 0 as n — oo, but neither z,, nor y, converges.

2.1.8. By Theorem 2.6, if ,, — a then z,, — a. Conversely, if z,, — a for every subsequence, then it
converges for the “subsequence” x,,.

2.2 Limit Theorems.

2.2.0. a) False. Let x,, = n? and y,, = —n and note by Exercise 2.2.2a that x,, + y, — 00 as n — co.

b) True. Let ¢ > 0. If 2, — —oc0 as n — oo, then choose N € N such that n > N implies x,, < —1/¢. Then
Zn < 0 so |z,| = —x, > 0. Multiply =, < —1/e by e/(—x,) which is positive. We obtain —e < 1/z,, ie.,
1/z,| = —1/x, <e.

c) False. Let x, = (—1)"/n. Then 1/z, = (—1)"n has no limit as n — oco.
d) True. Since (2 — ) = 2%log2 — 1 > 1 for all © > 2, i.e., 2 — x is increasing on [2,00). In particular,
2 — 2 >22_-2>0,ie., 2% >z for x > 2. Thus, since z,, — 00 as n — oo, we have 2%» > z,, for n large, hence

1
27 < — — 0
Tn

as n — oQ.

2.2.1. a) |z,| < 1/n — 0 as n — oo and we can apply the Squeeze Theorem.

b) 2n/(n? + ) = (2/n)/(1 + 7/n?) — 0/(1 + 0) = 0 by Theorem 2.12.

c) (V2n+1)/(n++v2) = (vV2/y/n) + (1/n))/(1 + (v/2/n)) — 0/(1 + 0) = 0 by Exercise 2.2.5 and Theorem
2.12.

d) An easy induction argument shows that 2n 41 < 2" for n = 3,4,.... We will use this to prove that n? < 2"
for n =4,5,.... It’s surely true for n = 4. If it’s true for some n > 4, then the inductive hypothesis and the fact
that 2n + 1 < 2™ imply

(n+1)?=n?+2n+1<2"42n+1<2" 42" =2""!

so the second inequality has been proved.
Now the second inequality implies n/2" < 1/n for n > 4. Hence by the Squeeze Theorem, n/2" — 0 as n — oco.

2.2.2. a) Let M € R and choose by Archimedes an N € N such that N > max{M,2}. Then n > N implies
n2—n=nn—-1)>NN-1)>M2-1)=M.

b) Let M € R and choose by Archimedes an N € N such that N > —M/2. Notice that n > 1 implies —3n < —3
so 1 —3n < —2. Thus n > N implies n — 3n2 =n(1 —3n) < —2n < —2N < M.

¢) Let M € R and choose by Archimedes an N € N such that N > M. Then n > N implies (n? + 1)/n =
n+1/n>N+0> M.

d) Let M € R satisfy M < 0. Then 2 +sinf > 2 —1 = 1 implies n?(2 +sin(n® +n+1)) >n%-1>0> M for
all n € N. On the other hand, if M > 0, then choose by Archimedes an N € N such that N > v/M. Then n > N
implies n2(2 + sin(n® + n+1)) >n?-1> N2 > M.

2.2.3. a) Following Example 2.13,

2+3n—4n>  (2/n?)+(3/n)—4 -4

1-2n+3n2  (1/n2)—(2/n)+3 3
as n — 0.
b) Following Example 2.13,
nd+n—2 1+ (1/n?) —(2/n®)
2n3 +n—2 2+ (1/n2) — (2/n3)

1
=
2

as n — Q.
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¢) Rationalizing the expression, we obtain

s o BT EWET24VE) _ mta
In+2—vn= St 2+ n T VBnt2+vn

as n — oo by the method of Example 2.13. (Multiply top and bottom by 1/4/n.)
d) Multiply top and bottom by 1/4/n to obtain

Vin+1—vn  _ yA4+1l/n—y1-1/n 2-1 1
VIn+1l-vn+2 J9+1/n—+/1+2/n 3-1 2

2.2.4. a) Clearly,
Tn E_‘Tny_xyn_zny_xy"'_ry_xyn

Yn Y YYn YYn
Thus
Tn X 1 ||
—_ §7|$7L—$|+ ‘yn_y|
Yn Yy |yn| |yyn|
Since y # 0, |yn| > |y|/2 for large n. Thus
Ty X 2 2|x|
— -~ < e -2+ Ty —yl =0
yn Yl lyl [yl

as n — oo by Theorem 2.12i and ii. Hence by the Squeeze Theorem, z,, /y, — x/y as n — oo.

b) By symmetry, we may suppose that © = y = co. Since y,, — oo implies y,, > 0 for n large, we can apply
Theorem 2.15 directly to obtain the conclusions when a > 0. For the case o < 0, z,, > M implies ax,, < aM.
Since any My € R can be written as aM for some M € R, we see by definition that x,, — —oc0 as n — oo.

2.2.5. Case 1. x = 0. Let € > 0 and choose N so large that n > N implies |z,| < 2. By (8) in 1.1, \/z, < ¢
forn> N, ie., /x, — 0asn— co.
Case 2. x > 0. Then

Vv = (Vi - va) (

Since /x, > 0, it follows that

\/:1:7+\/5) Ty, —

Vi +VE) T et E

|Tn — |
VIn — V| < ——.
‘ n f| — \/5
This last quotient converges to 0 by Theorem 2.12. Hence it follows from the Squeeze Theorem that /z,, — /&
as n — oo.

2.2.6. By the Density of Rationals, there is an r,, between x + 1/n and z for each n € N. Since |z —r,| < 1/n,
it follows from the Squeeze Theorem that r, — x as n — oo.

2.2.7. a) By Theorem 2.9 we may suppose that |z| = co. By symmetry, we may suppose that x = co. By
definition, given M € R, there is an N € N such that n > N implies x,, > M. Since w, > x,, it follows that
wy, > M for all n > N. By definition, then, w, — oo as n — co.

b) If « and y are finite, then the result follows from Theorem 2.17. If x = y = +o00 or —x = y = o0, there is
nothing to prove. It remains to consider the case = oo and y = —oo. But by Definition 2.14 (with M = 0),
xn > 0>y, for n sufficiently large, which contradicts the hypothesis x,, < y,.

2.2.8. a) Take the limit of z,,41 = 1 — /1 —z,, asn — co. We obtain z = 1 — /1 -, ie., 22 — 2 = 0.
Therefore, x = 0, 1.

b) Take the limit of 2,41 = 2+ v/x, — 2 as n — co. We obtain z = 2+ +/z — 2, i.e., 22 — 52 +6 = 0. Therefore,
x = 2,3. But ; > 3 and induction shows that x,,4+1 =2+ Vx, —2 > 24+ +1/3 — 2 = 3, so the limit must be x = 3.

c) Take the limit of z,.1 = /2 + =, as n — co. We obtain x = /2 +x, i.e., 22 — z — 2 = 0. Therefore,
x =2,—1. But x,11 = V2 + z, > 0 by definition (all square roots are nonnegative), so the limit must be z = 2.

This proof doesn’t change if 1 > —2, so the limit is again x = 2.
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2.29. a)Let E={k€Z:k>0andk < 10" !y}. Since 10"y < 10, E C {0,1,...,9}. Hence w :=sup E €
E. Tt follows that w < 10"+1y, ie., w/10""! < y. On the other hand, since w + 1 is not the supremum of F,
w+ 1> 10"y, Therefore, y < w/10"+! 4 1/107+1

b) Apply a) for n = 0 to choose x; = w such that x1/10 < z < x1/10 + 1/10. Suppose

S = Y qor < Z
k=1 k=1
Then 0 < 2 — s, < 1/10", so by a) choose 2, such that x,11/10"" < 2 — s, < T, 41/10"T +1/10"H e,
n+1 n+1
DIEEEE Z T 10n+1
k=1

c¢) Combine b) with the Squeeze Theorem.
d) Since an easy induction proves that 9" > n for all n € N, we have 97" < 1/n. Hence the Squeeze Theorem
implies that 97" — 0 as n — oo. Hence, it follows from Exercise 1.4.4c and definition that

4 w9 4 1 1 4 1
4999 = — +nlin§o};2fok =g Jm_ o <1— @) =15t 1= 0%
Similarly,

n
. 9 . 1
o990 = i 32 e = i (1-5:) =1

k=1
2.3 The Bolzano—Weierstrass Theorem.

2.3.0. a) False. z, = 1/4+ 1/(n + 4) is strictly decreasing and |z,| < 1/4+1/5 < 1/2, but z,, — 1/4 as
n — 00.

b) True. Since (n—1)/(2n —1) — 1/2 as n — oo, this factor is bounded. Since | cos(n? +n + 1)| < 1, it follows
that {z,} is bounded. Hence it has a convergent subsequence by the Bolzano—Weierstrass Theorem.

c) False. x,, =1/2 — 1/n is strictly increasing and |z,| < 1/2 <1+ 1/n, but z, — 1/2 as n — cc.

d) False. x, = (14 (—1)")n satisfies x,, = 0 for n odd and x,, = 2n for n even. Thus zo;11 — 0 as k — oo, but
2, is NOT bounded.

2.3.1. Suppose that —1 < z,_; <0 for somen >0. Then 0 <z, 1 +1<1s00<x,_1+1<+/2,_1+1and
it follows that x,—1 < v/Zn—1 +1 —1 = z,,. Moreover, \/z,—1 +1—1<1—1= 0. Hence by induction, z,, is
increasing and bounded above by 0. It follows from the Monotone Convergence Theorem that z,, — a as n — oo.
Taking the limit of \/z,_; + 1 — 1 = x,, we see that a®> + a = 0, i.e., a = —1,0. Since z,, increases from xy > —1,
the limit is 0. If 2o = —1, then x,, = —1 for all n. If o = 0, then z,, = 0 for all n.

Finally, it is easy to verify that if xo = ¢ for £ = —1 or 0, then x,, = ¢ for all n, hence z,, — ¢ as n — oco.

2.3.2. If 1 = 0 then z,, = 0 for all n, hence converges to 0. If 0 < x; < 1, then by 1.4.1c, x,, is decreasing
and bounded below. Thus the limit, a, exists by the Monotone Convergence Theorem. Taking the limit of
Tpy1 =1—+1—z,, a8 n — 00, we have a =1 — /1 —a, i.e., a = 0,1. Since ;1 < 1, the limit must be zero.

Finally,
Tpyr  1—=V1—-z,  1—-(1—2,) 1 1

T T _xn(lJr\/lfxn)_)l—i—l_i'

2.3.3. Case 1. xg = 2. Then z,, = 2 for all n, so the limit is 2.

Case 2. 2 < xp < 3. Suppose that 2 < z,_; < 3forsomen > 1. Then0 < 2, 1—2 <180 /Zp_1 — 2 > Tp_1—2,
ie, Tp =24+\Tp_1 —2 > xy_1. Moreover, z, = 2++/z,—1 — 2 < 2+1 = 3. Hence by induction, z,, is increasing
and bounded above by 3. It follows from the Monotone Convergence Theorem that x, — a as n — oco. Taking
the limit of 2 + v/x,,_1 — 2 = x,, we see that a> —5a + 6 = 0, i.e., a = 2,3. Since z,, increases from xy > 2, the
limit is 3.

Case 3. xg > 3. Suppose that x,,_1 > 3 for some n > 1. Then x,,_1 —2 > 150 VTp_1—2 < xp1 — 2, e,
Tn =24 \/ZTpn-1 — 2 < Tp_1. Moreover, z, = 2+ /T,—1 — 2 > 2+ 1 = 3. Hence by induction, z,, is decreasing
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and bounded above by 3. By repeating the steps in Case 2, we conclude that x,, decreases from zy > 3 to the
limit 3.

2.3.4. Case 1. o < 1. Suppose x,_1 < 1. Then
2$n—1 1+ Tn—1

2
Tp_1 = 5 < 5 :xn<§=1.

Thus {z,} is increasing and bounded above, so z,, — z. Taking the limit of z,, = (1 + z,_1)/2 as n — 00, we see
that z = (1 4+ x)/2, i.e., x = 1.
Case 2. xg > 1. If ,,_1 > 1 then

Thus {z,} is decreasing and bounded below. Repeating the argument in Case 1, we conclude that z, — 1 as
n — 00.

2.3.5. The result is obvious when z = 0. If > 0 then by Example 2.2 and Theorem 2.6,

lim 2" Y = lim 2™ =1.
n—oo m—0o0
If # < 0 then since 2n — 1 is odd, we have by the previous case that z'/("—1) = —(—x)l/(g"*l) — —1asn — oo.

2.3.6. a) Suppose that {z,} is increasing. If {x,} is bounded above, then there is an € R such that z,, —
(by the Monotone Convergence Theorem). Otherwise, given any M > 0 there is an N € N such that zy > M.
Since {z,} is increasing, n > N implies z,, > xnx > M. Hence z,, — 00 as n — oo.

b) If {x,} is decreasing, then —x,, is increasing, so part a) applies.

2.3.7. Choose by the Approximation Property an z; € E such that supE —1 < 27 <sup E. Since supE ¢ F,
we also have zy < sup E. Suppose 21 < g < --- < 2, in F have been chosen so that sup F — 1/n < z,, < sup E.
Choose by the Approximation Property an z,41 € E such that max{z,,supFE — 1/(n + 1)} < zp+1 < supFE.
Then supFE —1/(n+1) < 41 < sup E and z,, < ,,41. Thus by induction, 21 < z2 < ... and by the Squeeze
Theorem, x,, — sup £ as n — oo.

2.3.8. a) This follows immediately from Exercise 1.2.6.

b) By a), Znt+1 = (Tn + yn)/2 < 22,/2 = x,. Thus yp41 < Tpy1 < -+ < 1. Similarly, y, = \/¥2 < \/Tnln =
Yn+1 implies Tpi1 > Ynt1 > Yn -+ > y1. Thus {x,} is decreasing and bounded below by y; and {y,} is increasing
and bounded above by ;.

c) By b),

T T Ty —
it —Ypyg = XY g It Un o In—Un
2 2 2
Hence by induction and a), 0 < Tp41 — Ynt1 < (x1 —y1)/2™.

d) By b), there exist x,y € R such that z,, | z and y, Ty as n — oco. By ¢), |z —y| < (x1 —y1) - 0 = 0. Hence

T =y.

2.3.9. Since zg = 1 and yo = 0,

1’3&1 - 2y721+1 = (vn + Qyn)Z —2(x, + yn)2
= 42 = = (1) (a0~ 290) = (1)

Notice that ;1 = 1 = 3. fy,—1 >n—1and 2,1 > 1 then y, = 21 +yp—1 > 1+ (n—1) = n and
Ty = Tp-1 +2Yyp—1 > 1. Thus 1/y, — 0 as n — oo and x,, > 1 for all n € N. Since

1
=— =0
Y2

x; — 2yn

Y2

n
In _9
y2

: ’

as n — 00, it follows that x, /y, — £v/2 as n — co. Since ,,,y, > 0, the limit must be v/2.
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2.3.10. a) Notice 29 > yo > 1. If 2,1 > yn—1 > 1 then y2 | — 2p_1Yn—1 = Yn-1Un—1 — Tn_1) > 0 s0
yn—l(yn—l + xn—l) < an—lyn—l- In particular:

It follows that /T, > /yn—1 > 1, 80 ,, > \/TpYn—1 = Yn > 1-1 = 1. Hence by induction, x,, > y,, > 1 for all
n € N.
Now y,, < x, implies 2y,, < x,, + y,. Thus

_ 2z,yn
Tppl = ——— < Ty,
Tn +Yn

Hence, {z,} is decreasing and bounded below (by 1). Thus by the Monotone Convergence Theorem, x,, — = for
some z € R.

On the other hand, y,1 is the geometric mean of z, 11 and y,, so by Exercise 1.2.6, y,4+1 > yn. Since y, is
bounded above (by (), we conclude that y, — y as n — oo for some y € R.

b) Let n — oo in the identity yn,11 = \/Tn1Yn. We obtain, from part a), y = /7y, i.e., z = y. A direct
calculation yields yg > 3.141557494 and z7 < 3.14161012.

2.4 Cauchy sequences.

2.4.0. a) False. a, = 1 is Cauchy and b, = (—1)" is bounded, but a,b, = (—1)" does not converge, hence
cannot be Cauchy by Theorem 2.29.

b) False. a, = 1 and b, = 1/n are Cauchy, but a, /b, = n does not converge, hence cannot be Cauchy by
Theorem 2.29.

¢) True. If (a, + b,)~! converged to 0, then given any M € R, M # 0, there is an N € N such that n > N
implies |an + bn| ™t < 1/|M]|. Tt follows that n > N implies |a, + b,| > |[M| > 0 > M. In particular, |a, + by|
diverges to co. But if a,, and b,, are Cauchy, then by Theorem 2.29, a,,+b, — x where z € R. Thus |a,,+b,| — |z|,
NOT oc.

d) False. If zor = logk and z,, = 0 for n # 2*  then zor — 29x—1 = log(k/(k — 1)) — 0 as k — oo, but x;, does
not converge, hence cannot be Cauchy by Theorem 2.29.

2.4.1. Since (2n? +3)/(n® +5n? +3n+1) — 0 as n — oo, it follows from the Squeeze Theorem that x, — 0
as n — oo. Hence by Theorem 2.29, x,, is Cauchy.

2.4.2. If z,, is Cauchy, then there is an N € N such that n > N implies |z, — xn| < 1. Since x,, —zy € Z, it
follows that x,, = zy for all n > N. Thus set a := zxn.

2.4.3. Suppose z, and y, are Cauchy and let £ > 0.
a) If a« = 0, then ax,, =0 for all n € N, hence is Cauchy. If « # 0, then there is an N € N such that n,m > N
implies |z, — 2., | < €/|a|. Hence
lax, — azy| < |af |z, —z,| <e

for n,m > N.
b) There is an N € N such that n,m > N implies |, — T | and |y, — ym| are < £/2. Hence

for n,m > N.

¢) By repeating the proof of Theorem 2.8, we can show that every Cauchy sequence is bounded. Thus choose
M > 0 such that |z,| and |y, | are both < M for all n € N. There is an N € N such that n,m > N implies
|z, — @] and |y, — ym| are both < £/(2M). Hence

‘xnyn - (x’my’m)l S |xn - x'm| ‘yml + |xn| ‘yn - yml <e

for n,m > N.

2.4.4. Let s, = Zz;ll zp for n=2,3,.... If m > n then Sy,11 — sp = >4, Tk. Therefore, s, is Cauchy by
hypothesis. Hence s,, converges by Theorem 2.29.
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2.4.5. Let z, = >_;_,(—1)*/k for n € N. Suppose n and m are even and m > n. Then

(=D 1 1 1 1
S.sz:% k" n n+l n+2 m—-1 m)’

Each term in parentheses is positive, so the absolute value of S is dominated by 1/n. Similar arguments prevail
for all integers n and m. Since 1/n — 0 as n — oo, it follows that x,, satisfies the hypotheses of Exercise 2.4.4.
Hence x,, must converge to a finite real number.

2.4.6. By Exercise 1.4.4c, if m > n then

m m

1 1 1 1
Iwm+1—xn|:|2(ﬂck+1—xk)|§Zafk: (1—67,1—(1—@7)) a1

k=n k=n

Thus |zZpm+1 — zp] < (1/a™ —1/a™)/(a —1) — 0 as n,m — oo since a > 1. Hence {z,} is Cauchy and must
converge by Theorem 2.29.

2.4.7. a) Suppose a is a cluster point for some set E and let » > 0. Since F N (a — r,a + r) contains infinitely
many points, so does EN (a —r,a +7) \ {a}. Hence this set is nonempty. Conversely, if EN(a — s,a + s) \ {a}
is always nonempty for all s > 0 and r > 0 is given, choose 1 € E N (a — r,a + r). If distinct points z1,...,
have been chosen so that x, € EN(a —r,a+r) and s := min{|z; — al,...,|zr — a|}, then by hypothesis there is
an Tx41 € EN(a—s,a+ s). By construction, x,11 does not equal any z; for 1 < j < k. Hence z1,...,x,41 are
distinct points in E N (a — r,a + r). By induction, there are infinitely many points in EN (a — r,a + r).

b) If E is a bounded infinite set, then it contains distinct points z1, 3, .... Since {z,} C E, it is bounded. It
follows from the Bolzano—Weierstrass Theorem that x,, contains a convergent subsequence, i.e., there is an a € R
such that given r > 0 there is an N € N such that &k > N implies |z,, — a] < r. Since there are infinitely many
zp,’s and they all belong to E, a is by definition a cluster point of E.

2.4.8. a) To show E := [a,}] is sequentially compact, let z:, € E. By the Bolzano-Weierstrass Theorem, x,,
has a convergent subsequence, i.e., there is an zy € R and integers nj, such that x,,, — z¢ as k — oco. Moreover,
by the Comparison Theorem, z,, € F implies g € E. Thus E is sequentially compact by definition.

b) (0,1) is bounded and 1/n € (0,1) has no convergent subsequence with limit in (0, 1).

¢) [0,00) is closed and n € [0, 00) is a sequence which has no convergent subsequence.

2.5 Limits supremum and infimum.

2.5.1. a) Since 3 — (—1)" = 2 when n is even and 4 when n is odd, limsup,,_, . , = 4 and liminf,, . @, = 2.

b) Since cos(nw/2) = 0 if n is odd, 1 if n = 4m and —1 if n = 4m + 2, limsup,, . ¢, = 1 and liminf,,_, o x,, =
—1.

¢) Since (—1)"*! + (=1)"/n = —1 + 1/n when n is even and 1 — 1/n when n is odd, limsup,,_, ., z, = 1 and
liminf,, .o x, = —1.

d) Since z,, — 1/2 as n — oo, limsup,,_, o, ©n = liminf, o x, = 1/2 by Theorem 2.36.

e) Since |y,| < M, |y,/n| < M/n — 0 as n — co. Therefore, limsup,,_,, @, = liminf,_,, x, = 0 by Theorem
2.36.

f) Since n(1+ (=1)") +n"1((=1)" — 1) = 2n when n is even and —2/n when n is odd, limsup,,_, ., Z,, = 0o and
liminf,,_ o x, = 0.

g) Clearly z,, — 0o as n — oo. Therefore, limsup,,_, . «, = liminf,,_, 2, = 0o by Theorem 2.36.

2.5.2. By Theorem 1.20,

liminf(—z,) := lim (inf (—z)) = — lim (sup z) = — limsup z,.
n—00 n—oo k>n n—00 k>p n—00

A similar argument establishes the second identity.

2.5.3. a) Since lim,—, o0 (SUpy>, Tk) < 7, there is an N € N such that supys y xp <7, i.e., z, < r forall k > N.

b) Since lim,, o (SUpy,, ¥x) > 7, there is an N € N such that supy x ¥x > 7, i.e., there is a k; € N such that
Tk, > 7. Suppose k, € N have been chosen so that ky < ky < --- < k; and zy, > r for v = 1,2,...,j. Choose
N > k; such that sup;s y 2r > r. Then there is a kj;1 > N > k; such that x,,, > r. Hence by induction, there
are distinct natural numbers ki,ka,... such that x, >r for all j € N.

i+1
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2.5.4. a) Since infy>p x + infi>, Y is a lower bound of z; +y; for any j > n, we have infy>,, z +infy>, yp <
inf;>p(z; + y;j). Taking the limit of this inequality as n — oo, we obtain

n—oo n—oo n

liminf z,, + liminf y,, <liminf(z, + y).

Note, we used Corollary 1.16 and the fact that the sum on the left is not of the form co — co. Similarly, for each
Jj=zmn,

inf (zg + yx) < z; +y; < supxy + ;.

k>n k>n

Taking the infimum of this inequality over all j > n, we obtain infy>, (zx +yr) < supy>,, x +inf;>, y;. Therefore,

liminf(z, + y,) < limsup z,, + liminf y,,.
n—oo n—oo

n—oo

The remaining two inequalities follow from Exercise 2.5.2. For example,
limsup z,, + liminf y,, = — liminf(—z,) — limsup(—y,)
n—oo n—oo n—oo n—oo
< —liminf(—x, — yn) = imsup(z, + yn)-
n—oo n—oo

b) It suffices to prove the first identity. By Theorem 2.36 and a),

lim z, + liminf y, <liminf(z, + y,).
n—oo n—oo n—oo

To obtain the reverse inequality, notice by the Approximation Property that for each n € N there is a j, > n

such that infp>, (zr + yr) > 5, —1/n +y;,. Hence

inf (z), + yi) > L + inf
inf (z zj ——+in
Pad kT Yk Jn n s Yk
for all n € N. Taking the limit of this inequality as n — oo, we obtain

liminf(z, + y,) > lim @, + liminf y,.
¢) Let z,, = (=1)" and y,, = (—1)"*!. Then the limits infimum are both —1, the limits supremum are both 1,
but z, + y, =0— 0 as n — oco. If z,, = (—1)" and y,, = 0 then

liminf(x, + y,) = —1 < 1 = limsup z,, + liminf y,,.
n—oo n—oo

n—oo

2.5.5. a) For any j > n, z; < SUPg>p, Tk and y; < supys, yr- Multiplying these inequalities, we have
LjY;5 S (Sukan mk)(sukan yk)7 i'e'7
sup z;y; < (sup zy)(sup yg).
ji>n k>n k>n

Taking the limit of this inequality as n — oo establishes a). The inequality can be strict because if

1 B 0 n even
In = n = 1 n odd

then limsup,,, . (Tnyn) = 0 < 1 = (limsup,,_, ., Z»)(limsup,,_, . Yn)-
b) By a),

liminf(x,y,) = — limsup(—x,y,) > — limsup(—x,,) limsup y,, = liminf z,, lim sup y,, .
n—oo n—o0 n—o0 n—oo n—00 n—oo

2.5.6. Case 1. x = co. By hypothesis, C' := limsup,,_, ., ¥n > 0. Let M > 0 and choose N € N such that
n > N implies x,, > 2M/C and sup,,> y yn > C/2. Then supys n(Tryr) > Tnyn > (2M/C)y,, for any n > N and

supy> v (Tryx) > (2M/C) sup,,> § yn > M. Therefore, limsup,, _, . (Tnyn) = 0.
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Case 2. 0 < x < co. By Exercise 2.5.6a and Theorem 2.36,

lim sup(z,yn) < (limsup z,,)(limsup y,,) = = limsup y,,.

n—oo n—oo n—oo n—oo

On the other hand, given € > 0 choose n € N so that x > x — € for k > n. Then zxyr, > (z — €)yx for each k > n,
i.e., supg>, (Thyr) > (7 — €) supys, yr. Taking the limit of this inequality as n — oo and as € — 0, we obtain

lim sup(z,y,) > xlimsup y,.

n—oo n—0oo

2.5.7. Tt suffices to prove the first identity. Let s = inf,,en(Supy>,, Z)-
Case 1. s = 0o. Then supy, T = oo for all n € N so by definition,

limsup z, = lim (sup zx) = 00 = s.
n—oo nN—=00 k>n

Case 2. s = —oo. Let M > 0 and choose N € N such that sup,s y r < —M. Then supys,, £x < supysy Tk <
—M for all n > N, i.e., limsup,,_, ., Tn = —00. N N N

Case 3. —o0 < s < —oo. Let € > 0 and use the Approximation Property to choose N € N such that
SUpgsn Tk < 8+ €. Since supys., Tr < supysy Tk < s + € for all n > N, it follows that

s—e<s<suprr <Ss+e
k>n

for n > N, ie., limsup,,_, .z, = s.

2.5.8. It suffices to establish the first identity. Let s = liminf, . .

Case 1. s = 0. Then by Theorem 2.35 there is a subsequence k; such that x, — 0, i.e., l/xkj — 00 as j — 00.
In particular, supys, (1/xx) = oo for all n € N, i.e., limsup,,_, . (1/x,) =00 =1/s.

Case 2. s = 0o. Then xy — 00, i.e., 1/x), — 0, as k — oo. Thus by Theorem 2.36, limsup,, . (1/x,) = 0= 1/s.

Case 3. 0 < s < 0o. Fix j > n. Since 1/ infy>, x3, > 1/x; implies 1/infy>, 21 > sup;s,(1/z;), it is clear that
1/s > limsup,,_,.(1/z,). On the other hand, given ¢ > 0 and n € N, choose j > N such that infy>, z; +€ > z;,
ie., 1/(infy>p xp +€) < 1/z; < supys, (1/z5). Taking the limit of this inequality as n — oo and as € — 0, we
conclude that 1/s < limsup,, . (1/x,).

2.5.9. If z,, — 0, then |z,| — 0. Thus by Theorem 2.36, limsup,,_, ., |z,| = 0. Conversely, if limsup,, . |z,| <

0, then
0 < liminf |z,| < limsup |z,| <0,
n—oo

n—oo

implies that the limits supremum and infimum of |z,,| are equal (to zero). Hence by Theorem 2.36, the limit exists
and equals zero.
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CHAPTER 3
3.1 Two—Sided Limits.

3.1.0. a) True. Since |z" sin(z~")| < |z|™ and |z|™ — 0 as 2 — 0 (by Theorem 3.8), it follows from the Squeeze
Theorem that 2" sin(z™") — 0 as z — 0.

b) False. See Example 3.7.

c) False. Let a =0, f(z) = x, and g(x) = 1/2? for x # 0 and g(0) = 0. Then for x # 0 we have f(z)g(z) = 1/x
which has no limit as z — 0.

d) False. Let f(x) =sin(1/z) and g(xz) = 1. Then f has no limit as  — 0, but the limit of g is 1.

3.1.1. a) Let € > 0 and set § := min{1,&/7}. Since § < 1, |z — 2| < § implies |z + 1| < 7. Thus
If(z) = L| = |2® + 2z — 8| = |z + 4| |z —2| <76 < ¢

for every = which satisfies 0 < |z — 2| < 6.
b) Let € > 0 and set § := e. Notice that (z2 4+ x —2)/(z — 1) = = + 2 for every = which satisfies |z — 1| > 0.
Thus
[f(z) - Ll=lz—1]<d=¢
for every x which satisfies 0 < |z — 1] < 4.
c¢) Let € > 0 and set § := min{1,£/9}. Since 6 < 1, |z — 1| < § implies |22 + x + 3| < 9. Thus

If(z) =Ll =23 +22 -3 =z —1||z® + 2+ 3| <9 < ¢

for every = which satisfies 0 < |z — 1| < 6.
d) Let € > 0 and set § := ¥/e. Since |sin 6| < 1 no matter what 6 is, we have

If(z) — L| = |z®sin(e™ )| < 6% 1 =

for every = which satisfies 0 < |z| < 4.

3.1.2. a) If z, =4/((2n + 1)7), then z, — 0 but tan(1/x,) = (—1)" has no limit. Thus lim,_.tan(1/z) does
not exist.

b) Since |z cos((x? + 1)/23)| < |z| for all z # 0, it follows from the Squeeze Theorem that lim, ¢ x cos((z? +
1)/2%) = 0.

c) If z, =1+ 1/n, then x,, — 1 and 1/logx, — 400 as n — oo. On the other hand, if z, = 1 — 1/n, then
xn — 1 and 1/logx, — —o0 as n — oco. Thus lim,_, logz does not exist.

3.1.3. a) By Remark 3.4 and Theorem 3.8,

. ox?4+22-3 . (2+3)(z—1) . x+3 4
lim ——— =lm ——F—5 =lim ———=-=2
z—1 a3 —x s=1z(z—1)(x+1) a—=1z(z+1) 2

b) By Remark 3.4 and Theorem 3.8,

n 1
lim Z =limz" '+ - +2+1=14---41+1=n.

rz—1 I — r—1

¢) By Theorem 3.8, the limit is 0/ cos0 = 0/1 = 0.
d) Clearly, 2sin? 242z — 2z cos® x = 2(x+1)sin® z = (z+1)(1 —cos(2z)). Since 1 —cos?(2z) = (1—cos(2z))(1+
cos(2x)), it follows that
2sin? x + 2z — 2z cos® x z+1 1 1

1 — cos?(2x) ~ 1+ cos(22) T 1tcos0 2
as x — 0.
e) Since sin(1/z?) is dominated by 1 and tanx — 0 as x — 0, it follows from Theorem 3.9 that this limit is zero.

3.1.4. a) Let z,, € I\ {a} converge to a. By Theorem 2.9i, h(x,) — L as n — oo. Hence by the Sequential
Characterization of Limits, h(z) — L as * — a.

b) Similarly, by Theorem 2.9ii f(zy)g(z,) — 0 for all z,, € I'\ {a} which converge to a. Hence by the Sequential
Characterization of Limits, f(z)g(xz) — 0 as x — a.
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3.1.5. Let f(x) — Land g(x) > M asx — a, and z,, € I\{a} converge to a. By the Sequential Characterization
of Limits, f(z,) — L and g(x,) — M as n — oo. Hence by Theorem 2.17, L < M.

3.1.6. a) By Theorem 1.16, 0 < ||f(z)| — |L|| < |f(z) — L|. It follows from the Squeeze Theorem that
|f(z)| — |L| as © — o through E.

b) If f(x) = |z|/x then |f(z)|=1— 1 as z — 0, but f(z) has no limit as x — 0.

3.1.7. a) Since f(z) < |f(z)| it is clear that f*(z) > 0 and f~(z) > 0. Also f — f~ = 2f/2 = f and

ff+fm=2f1/2=1f1
b) By Exercise 3.1.6, | f(z)| — |L| as * — x( through E. Hence by Theorem 3.8 and part a), f*(z) — LT and
f~(z) = L™ as © — g through FE.

3.1.8. a) By symmetry, it suffices to show the first identity.
Case 1. f(x) = g(x). Then (fV g)(x) = f(z) and |f(z) — g(z)

F(z) + g(x) +2 |f(2) + g(2)] _ 2f2<f> = f(z) = (f V 9)(2).

Case 2. f(x) < g(x). Then (f V g)(x) = g(x) and |f(z) — g(x)| = g(x) — f(x) so

() + g(x) g‘f(x) tolol _ 29596) =g(x) = (/v g)(@).

= f(x) —g(x) so

b) If f(x) — L and g(z) — M as © — =z through E then f(z)+ g(x) — L + M by Theorem 3.8, and
|f(z) + g(z)| — |L + M| by Exercise 3.1.6. Thus by part a), (f Vg)(z) - (L+ M+ |L— M|)/2 =LV M as
z — o through E. A similar argument works for f A g.

3.1.9. Let u
i M) S =m)
2 2
By Definition 3.1, there is a § > 0 such that 0 < |x — a| < J implies f(a) — e < f(x) < f(a) + . Observe that
these inequalities also hold for x = a.
Fix z such that |z — a| < d. By the choice of §, the definition of €, and a little algebra that

M~ f(a) _ M+ f(a)
2 2

f(x) < fla) + =M —e.

Similarly, f(z) > f(a) —e=m +e¢.
3.2 One—Sided Limits and Limits at Infinity.

3.2.0. a) False. If f(z) = 22 +1 = g(z), then f(x) — oo, g(x) > 0 for all z, but f(z)/g(z) = 1 does not
converge to 0.
b) False. If f(z) = —2? and g(z) = 1, then f(z) — 0 as z — 0+ and g(x) > 1, but g(z)/f(z) = —1/2%2 — —o0
as x — 0+.
¢) True. Given € > 0, choose M € R such that x > M implies f(x) > 1/e. Then 2 > M implies | sin(2? + z +
1)/f(@) < 1/f(x) < c.
d) True. Let P(z) = anz™ + -+ + ap and Q(x) = bypz™ + - - - + by, where m > n. Dividing top and bottom by
™, we have
P(x)  apa" ™ +ap_1a" " 4 4 ag/a™
Qz) by + -+ +boz ™™ '

If m = n, then 2"~™ =1 for x # 0 and 2"~™ % — 0 as x — +oo for all k > 0. Thus P(z)/Q(z) converges to
an /by as © — £oo. On the other hand, if m > n, then 2"~ — 0 as # — %00 too. Hence, P(z)/z™ — 0 as
x — to0. Since Q(x)/z™ — by, we conclude that P(z)/Q(x) — 0 as x — +oo.

3.2.1. a) Let L = —1 and notice that V22 = —z when < 0. Let ¢ > 0 and set § = 1. If —§ < x < 0, then
flx)=—z/z=-1so|f(z)—L|l=|-1+1=0<e.

b) Let L = 0 and suppose € > 0. Set M = 1/\/e. If x > M, then |f(z) — L| < 1/2% < 1/M? =¢.

c) Let L = —oo and suppose without loss of generality that M < 0. Set 6 = min{—1/(2M),1}. If -1 <z <
—1+44, then —1 <z < 0since § <1. Hence, 0 <1 -2 <2and 22 —1<0. Thus0<1—22=(1—-2)(1+2z) <
20 < —1/M, i.e., 1/(1 —2%) > —M. We conclude that f(z) =1/(2? — 1) < M.
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d) Let L = oo and suppose without loss of generality that M > 0. Set 6 = min{1/(7M),1}. If 1 <z <1+ 4,
then 1 < 2 < 2since 6 < 1. Thus 5 < 2z +3 < 7and 0 < z —1 < §. It follows that 0 < 222+ 2 — 3 =
(z —1)(2z + 3) < 78 < 1/M. Therefore, 1/(22% + x —3 > M. f(z) > |2M|/2 = M. Since 3—x >3 -2 =1, we
conclude that (z —3)(3 —z —22%) = (3 —2)/(222 + 2 - 3) > M.

e) Let L = 0 and suppose that ¢ > 0. Set M = -1 —1/e. If 2 < M, then z+1 < —1/e < 0so |z + 1| =
—(x4+1) > 1/e. Since |cos(8))| < 1 for any 0, it follows that |f(xz) — L| = —|cos(tanz)|/(z+1) < —1/(z+1) < e.

3.2.2. a) 2®—2%2—4 = (x—2)(2®+2+2) and 2?2 —4 = (v+2)(z—2) so (2 —2%—4) /(2% —4) = (2?+2+2)/(z+2) —
8/4=2asx— 2—.
b) Multiplying top and bottom by 1/22 we have

522 +3z—2  5+3/x—2/a?
322 —2x+1 3-—2/x+1/x2

—

5
3
as & — 00.

c) —1/2? - 0 as x — —00 50 e~ Ve 0 =1,

d) 22+ 22 —1 — —1 as & — 0+ and sinz is positive as & — 0+, so e® 271 /sinz — e~ /0+ = 00 as x — 0+.

e) sin(z + m/2) — sin(r/2) = 1 as * — 0— and /cosz — 1 is negative as © — 0— so sin(z + 7/2)/+/cosz — 1 —
1/0— = —oc0as ¢ — 0—.

f) Since sin? 2 = 1 — cos? z, it follows from factoring that

v1—cosx 1
sinz 1+ cosx

so the limit is 1/v/2 = v/2/2.
3.2.3. a) The result holds for n = 0,1 by Example 3.2. Hence by Theorem 3.8,

lim z" = (lim )" = af
r—xqg r—xqo
for all n € N.
b) By Theorem 3.8 and part a),

lim P(z) = lim (apx™ + -+ ao) = anxy + -+ - + ao = P(xo).

T—x0 T—x0

3.2.4. a) If g(z) — oo as © — a, then given M € R, choose § > 0 such that 0 < |z — a| < § implies g(z) > M.
Since f(x) > g(x), we also have f(x) > M. By definition, g(z) — co as ¢ — a.
b) Let £ > 0 and choose M € R such that & > M implies |f(x) — L| < € and |h(z) — L| < €. By hypothesis,
this means
L—e< f(z) <glx) <h(z) <L+e.

Therefore, z > M implies |g(z) — L| < e.

3.2.5. Suppose f(x) — L as © — oo. Let € > 0 and choose M € R such that > M implies |f(z) — L| <e. If
Z, — 00 as n — 00, choose N € N such that n > N implies z,, > M. Then |f(x,) — L| < e for all n > N, i.e.,
f(z,) = L as n — oo.

Conversely, suppose f(z) does not converge to L as © — oo. Then there is an ¢y > 0 such that given n > 0
there is an z,, > n satisfying f(z,) > L + ¢ or f(z,) < L — €, i.e., |f(zn) — L| > €. Thus z,, — oo but f(x,)
does not converge to L as n — oo.

3.2.6. Given zg € [0, 1], choose g, € QN [0, 1] such that ¢, — ¢ as n — co. By Theorem 3.6, f(g,) — f(zo).
If f(¢) =0 for all ¢ € QNJ0,1], it follows that f(z¢) = 0. Thus f(x) = 0 for all € [0,1]. The converse is trivial.

3.2.7. By Exercise 3.2.3b and symmetry, it suffices to prove P(z)/(z — zg) — 00 as & — zo+. Since mg :=
P(z)/2 > 0 use 3.2.3b again to choose dy > 0 such that 0 < mg < P(x) for |x — x| < do. Let M > 0 and set
0 = min{dg,mo/M?}. If z9 < & < xo + 9 then P(z)/(x — x0) > mo/d > mo(M/my) = M. Hence by definition,
P(z)/(xz — z9) — o0 as & — xo+.

3.2.8. Let € > 0. Set €, := supy>,, | f(k+1) — f(k) — L| and notice by hypothesis that €, — 0 as n — oo. Thus
choose Ny such that ey, < £/2.
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Let n > Ny and write f(n) = (f(n) — f(n—1)) + -+ (f(No + 1) — f(No)) + f(No). Thus

‘f(”)_L’_'(f(n)f(nl))+"'+(f(N0+1)f(No))(”NO)L+N0L+f(N0)

n n n

— N, NoL N,
S(n 0)50+| oL + f(No)|
n n

NoL N,
50+‘ 0 +nf( 0)\.

<

Thus if N is so big that n > N implies |[NoL + f(No)|/n < /2, then the estimate above can be continued as
|f(n)/n—L|<e/24+¢€/2=c¢.

3.3 Continuity.

3.3.0. a) True. By the Extreme Value Theorem, there exist zar, Zm € [a,b] such that f(z,,) = « = inf{f(z) :
x € [a,b]} and f(zp) = B :=sup{f(z) : © € [a,b]}. Thus o, 8 € J. If t € (o, §), then by the Intermediate Value
Theorem, there is a « € [a,b] such that f(x) =t, i.e., t € J. We have shown that [a, 8] C J. On the other hand,
if t € J then t = f(z) for some z € [a, b] so by the choice of @ and 3, o <t < 3, i.e., J C [a, ]

b) True. Let h(z) = g(x) — f(z). By hypothesis, h(a) > 0 and h(b) < 0. Hence by the Intermediate Value
Theorem, there is a ¢ € [a, b] such that h(c) = 0, i.e., such that f(c) = g(c).

c¢) True. If f is continuous at a, then by Theorem 3.22, fg is too. Conversely, if fg is continuous at a and f is
continuous and nonzero at a, then g = fg/f is continuous at a by Theorem 3.22.

d) False. Let f(z) =2—zforx <1, f(z) =1/x for . > 1, g(x) =1 — x for < 0 and g(z) = —x for z > 0.
Since f(z) > 0 for all z and g is continuous on (0, c0), it is clear that f and g o f are continuous but g is not.

3.3.1. a) By Theorem 3.24, e and Vsinz are continuous on R. Since cosz # 0 for x € [0,1], it follows from
Theorem 3.22 that e*” v/sin x/ cosx is continuous on [0, 1].

b) x —1# 0 for z € [0,1), so f(z) := (22 +x — 2)/(x — 1) is continuous on [0,1) by Theorem 3.22. Since
f(z) > 3asxz — 1and f(1) := 3, it follows from Remark 3.20 that f(x) is continuous on [0, 1].

c¢) x # 0 for x € (0,1], so f(z) := e~ /% is continuous on (0, 1] by Theorem 3.22. Since —1/x — —o00 as z — 0+
implies that e~/ — ¢~ = 0 =: f(0), it follows that from Remark 3.20 that f is continuous on [0, 1].

d) vzsin(1/z) is continuous for x > 0 by Theorem 3.22. Since 0 < /z|sin(1l/x)| < /z, it follows from the
Squeeze Theorem that f(z) — 0 =: f(0) as # — 0+. Thus f is continuous on [0, 1].

3.3.2. a) Consider f(x) = e® — 3. This function is continuous, and f(—1) = 1/e—1 < 0 < 1 = f(0). Hence
by the Intermediate Value Theorem, there is an = (between —1 and 0) such that f(z) = 0.

b) Consider f(x) = e — 2cosx — 1. This function is continuous, and f(0) = -2 <0 < e+ 1= f(1). Hence by
the Intermediate Value Theorem, there is an z (between 0 and 1) such that f(z) = 0.

c¢) Consider f(z) = 2% 4+ 3z — 2. This function is continuous, and f(0) = —1 < 0 < 3 = f(1). Hence by the
Intermediate Value Theorem, there is an 2 (between 0 and 1) such that f(z) = 0.

3.3.3. By Exercise 3.1.6, | f| is continuous on [a, b]. Hence it follows from the Extreme Value Theorem that |f|
is bounded on [a, ], i.e., sup ¢, [f(2)| is finite.

3.3.4. Let g(x) = f(x) —x. Since f(z) € [a,b] for all x € [a, b], it is clear that f(a) > a and f(b) < b. Therefore,
g(a) = f(a)—a >0 and g(b) = f(b) —b < 0. Since g is continuous on [a, b], it follows from the Intermediate Value
Theorem that there is a ¢ € [a,b] such that g(c) = 0, i.e., such that f(c) =c.

3.3.5. Since M — f(z) > 0, it follows from the Sign Preserving Property that there is an interval I centered at
xg such that M — f(z) > 0, i.e., f(z) < M for all z € I.

3.3.6. Let f(x)=1ifx € Q, f(x) =0if z ¢ Q, and g(x) =1 — f(z). Then f(z) + g(z) =1 and f(z)g(x) =0
for all x € R. Hence f + g and fg are continuous on R even though f and g are nowhere continuous.

3.3.7. If g is continuous at a then so is f + g by Theorem 3.8. Conversely, if f and f 4 g are continuous at a
thensoisg=(f+g)— f.
3.3.8. a) f(0) = f(0+0) = f(0)+ f(0) = 2f(0) implies f(0) = 0. For each z € R, f(2z) = f(z + ) =

f(z) + f(z) = 2f(z). And 0 = f(0) = f(z —z) = f(z) + f(—=) implies f(—z) = —f(z). Hence we see by
induction that f(nz) = f(z+--- + ) =nf(x) holds for all n € Z.

A~
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b) Fix € R. By part a), f(z) = f(mxz/m) = mf(x/m). Thus f(x/m) = f(x)/m for m € N. Combining these
statements, if ¢ € Q then ¢ = n/m so

for x € R.

¢) Suppose f is continuous at 0 and = € R. If z,, — = then z,, —z — 0, i.e., |f(z,) — f(z)| = |f(zn —x)] = 0
as n — o0o. Thus f is continuous on R. The converse is trivial.

d) Let m = f(1) and fix x € R. Choose ¢, € Q such that ¢, — x as n — co. Then by b) and c),

fl@) = f(lim g, -1) = lim f(gy-1) = lim g, f(1) = ma.

n—oo n—oo

3.3.9. a) f(0) = f(0+0) = £(0)£(0) = f2(0) implies £(0) = 0 or 1. But f has range (0,00) so f(0) = 1. For
each z € R, 1 = f(0) = f(x — z) = f(z)f(—x). Therefore, f(—z) =1/f(z).

b) Fix z € R. By induction, f(nz) = f(z + -+ ) = f*(x) for n € N. Also, f(z) = f(mz/m) = f™(x/m)
implies f(x/m) = %/ f(z) for m € N. Combining these statements, if ¢ € Q then ¢ = n/m so

flaa) = £ (za) = " () = (@)™ = /" (@) = f(a)

for € R. In particular, f(q) = f(¢-1) = f4(1) for all ¢ € Q.

c¢) Suppose f is continuous at 0 and = € R. If z,, — « then z, —x — 0, i.e., f(z, — ) — f(0) =1 as n — occ.
Therefore,

f(@y
f@)
as n — oo. Thus f is continuous on R. The converse is trivial.

d) Let a = f(1) and fix € R. Choose ¢, € Q such that ¢, — = as n — oo. Then by b) and c),

)

[f(xn) = f(@)| = /()] | — 1= lf@|1f (@) f(=2) = 1 = f(@)||f (@n —2) =1 = 0

flz)=f(lim g, -1) = nh_)ngof(qn -1) = lim f?(1) = lim a% =a".

n—oo n—oo n—oo

3.3.10. Let N € N be so large that |z| > N implies f(x) > f(0). By the Extreme Value Theorem, f has an
absolute minimum on [—N, NJ, say f(z,,) = m. Since m < f(0) < f(x) for all x ¢ [—N, N], it follows that m is
the absolute minimum of f on R.

3.3.11. a) Fix a > 1 and for each z € R consider the set
E,:={a?:q€eQ and g¢<z}.

By the density of rationals, there are many ¢ € Q such that ¢ < . Thus E, is nonempty. Moreover, if ¢y € Q
satisfies qo > x and g € E,, then gy > ¢, so by hypothesis a? < a%. Thus E, is bounded above by a?. It follows
from the Completeness Axiom that A(xz) = sup E, exists for every x € R.

To compute the value of A(xz) when z = py € Q. Notice by hypothesis that ¢ < pg implies a? < a?°. Thus
it is clear that A(py) < a”°. On the other hand, since a? € E,, it is also the case that A(py) > a”°. Thus
aPo = A(po)

b) Suppose that < y. Since ¢ < z and x < y imply ¢ < y, it is clear by definition that a® < a¥. On the other
hand, choose p < ¢ in Q such that x < p < ¢ < y. Since a > 1, it follows from definition and hypothesis that

a®* <aP <a? <d¥,
thus a” < a¥.
¢) Let € > 0. Since a’/™ — 1 as n — oo (see Example 2.21), choose an N € N such that |a*/Y — 1| < £/a®.

Suppose that § = 1/(2N) and |zg — 2| < §. If 2 < =g, choose r,q € Q such that ¢ < z < zy < r and
r—q<25=1/N. By part a),

[a* —a*| =a™ —a® <a" —af=a’ (a""1-1) < a’””(al/N -1 <e.
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Similarly, if > xg, choose r < xy < 2 < ¢ such that ¢ —r < 1/N. Then
la®™ —a®| = a® —a®™ < a? —a" =a" (a7 —1) < a® (/N —1) <e.

Thus by definition, a” is continuous on R when a > 1.
d) Let x,y € R. Use Density of Rationals to choose ¢, and ¢, € Q such that ¢,, — = and ¢, — y. Thus by the
continuity of a®, Theorem 3.8, and the fact that the laws of exponents hold for rational powers, we conclude that

a® = lim a'»t9 = lim a'"a% = a®aV.
Similarly, (a®)¥ = a®¥ and a=* = 1/a".
e) Notice 0 < b < 1 implies 1/b > 1. Thus b* := (1/b)~* defines b*, and by parts a) and c), b* is a continuous
extension of b7 from Q to R which satisfies the exponential properties.
Finally, if < y and 0 < b < 1, then —x > —y and by b), b* = (1/b)™* > (1/b)"¥ = b¥. Thus b® is decreasing
(not increasing) when b € (0,1).

3.4 Uniform continuity.

3.4.0 a) False. Let f(z) =z and g(z) =1 if + < 2 and 2 if © > 2. Then f is uniformly continuous on (0, co)
and g is positive and bounded, but f(z)g(x) is not continuous at x = 2 so cannot be uniformly continuous.

b) True. By 'Hopital’s Rule, xlog(1/2) — 0 as # — 0+, so use Theorem 3.40.

c) False. Let m = —b = 1. Then cosx/(mz + b) — cos1/0— = —oo as © — 1—, so by Theorem 3.40, this
function cannot possibly be uniformly continuous on (0, 1).

d) True. Both f and g are bounded on [a,b] by the Extreme Value Theorem. Since g(z) # 0, it follows from
the Intermediate Value Theorem that either g(z) > 0 or g(z) < 0 for all « € [a,b]. We may suppose g(z) > 0.
By the Extreme Value Theorem, g(z) > ¢y > 0 for € [a,b]. Therefore, f/g is uniformly continuous on [a, b] by
Exercise 3.4.5d.

3.4.1. a) Let e >0 and let § =¢/3. If z,a € (0,1) and |z — a| < §, then

@)= F@)] = |z —al e +a+1] < 3o —al <35 =e.

b) Let e >0 and let § =¢/4. If z,a € (0,1) and |z — a| < §, then
|f(x) = fla)] = |z — a| [2* + za + a® — 1| < 4|z — q] <4i:s.

c)Let e >0and let § =¢/3. If z,a € (0,1) and |z — a| < §, then

|f(z) = f(a)| < |z(sin2z —sin2a)| + |(z — a) sin 24|

§2\sin(a:—a)|+|ac—a\§3|w—a|<3§:£.

3.4.2. a) By L’Hopital’s Rule, sinz/z — 1 as ¢ — 0. Therefore, f is uniformly continuous on (0, 1) by Theorem
3.39.

b) By the Squeeze Theorem, xcos(1/x2) — 0 as & — 0. Therefore, f is uniformly continuous on (0,1) by
Theorem 3.39.

c¢) By L’Hopital’s Rule, zlogz — 0 as x — 0+. Therefore, f is uniformly continuous on (0, 1) by Theorem 3.39.

d) By I'Hépital’s Rule, (1 — 22)'/* — 1 as  — 04. Therefore, f is uniformly continuous on (0,1) by Theorem
3.39.

3.4.3. If @ > 0 then |z®sin(l/z)| < z* — 0 as & — 0+4. Thus z*sin(1/z) is uniformly continuous on (0, 1) for
all a > 0.

If « <0and z, =2/((2n + 1)m) then % sin(1/z,) = (—1)"z% does not converge as n — oo, i.e., z*sin(1l/z)
has no limit as * — 0+. Therefore,  sin(1/x) is not uniformly continuous on (0,1) when a <0.

3.4.4. a) Given € > 0 choose N so large that > N implies |f(z) — L| < ¢/3. By Theorem 3.40, f is uniformly
continuous on [0, N]. Thus there is a 6 > 0 such that |z — y| < § and z,y € [0, N] implies | f(z) — f(y)| < ¢/3.
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Let z,y € [0,00) and suppose |z —y| < J. If z,y € [0, N], then |f(z) — f(y)| < e. If both z,y ¢ [0, N] then
|f(x) = fy)| < |f(z) = L|+|f(y) — L| < 2¢/3 < e. If one of the pair z,y belongs to [0, N] and the other does not,
for example, if z € [0, N] and y ¢ [0, N], then |z — N| < |z — y| < §. Thus

€ € ¢
17() — F)] < 17@) — SN+ F(N) = LI+ 7() ~ Ll < S+ S+ 5 =
b) Since f(z) = 1/(z% + 1) is continuous on R and 1/(2? + 1) — 0 as 2 — oo, f is uniformly continuous on
[0,00) by part a). But f(—z) = f(z). Hence f is uniformly continuous on R by symmetry.

3.4.5. a) Given € > 0 choose ¢ > 0 such that z,y € F and |z —y| < ¢ imply | f(z)— f(y)| and |g(z) —g(y)| < €/2.
If x,y € E and |z — y| < 0 then

€

226.

€
(f +9)(@) = (f + 9) )| < [f(2) = Fu)l + lg(z) —g(y)] < 5 +
A similar argument proves a.f is uniformly continuous on F.
b) Let M = sup{l+|f(z)|+|g(z)| : # € E}. Then M > 0 and both |f(z)| and |g(z)| are less than M for = € E.
Given € > 0 choose ¢ > 0 such that z,y € E and |z —y| < 0 imply |f(z) — f(y)| and |g(z) — g(y)| < €/(2M). If
x,y € E and |z — y| < 0 then

(£9)(@) = (F9)W)] < 9| |f (@) = Fw)] + [F@)9(x) = g(y)| < M + Mo = .

2 is not (see Example

¢) Let f(z) = x = g(x). Then f and g are uniformly continuous on R but (fg)(z) = =
3.36).

d) If g(x) > €p > 0, then 1/g is continuous on E and bounded by 1/¢;. Moreover, since g is uniformly continuous
on E and
1 L= l9(x) — 9(y)]

9@ gy) " 9@ e

1/g is uniformly continuous on E. Hence by b), f/g := f(1/g) is uniformly continuous on E.
e) Let f(z) = x and g(x) = 2%. Then f and g are uniformly continuous on (0,1), but (f/g)(x) = 1/z is not
uniformly continuous on (0, 1).

< e lg(x) —g(y),

3.4.6. a) Suppose I has endpoints a,b. By Theorem 3.39, there is a continuous function g on [a, b] such that
f(z) = g(z) for all z € I. By the Extreme Value Theorem, g is bounded on [a,b]. Therefore, f is bounded on
ICla,b).

b) f(x) = x is uniformly continuous on [0,00) but not bounded there. On the other hand, f(x) = 1/x is
continuous on (0, 1) but not bounded there either.

3.4.7. Since f is uniformly continuous on [0, 1], given € > 0 there is a § > 0 such that z,y € [0,1] and [z —y| <
imply |f(z) — f(y)] < e. Choose N € N so large that N > (b —a)/d and set =, = a + k(b — a)/N. Then
a=x9 <11 <--<zxny=>b,and |ry —xp_1| = (b—a)/N < d by the choice of N for all k.

Fix k € {1,2,..., N} and observe by the choice of § that z*,y* € [xr_1,xk] imply that |f(z*) — f(y*)| < e
But by the Extreme Value Theorem, there exist z*,y* € [zr_1,zk] such that f(z*) = sup Ej and f(y*) = inf Ej.
Consequently,

| sup By — inf By, |= [f(2z*) = f(y*)| < e

3.4.8. a) By symmetry, we need only show f(b—) exists. Let L = sup{f(z) : = € (a,b)}. Since f is bounded,
L < 0o by the Completeness Axiom. Given € > 0 choose by the Approximation Property an x¢ € (a,b) such that
L — € < f(xo). Since f is increasing, L — e < f(zo) < f(z) < L for all o < z < b. Hence by definition, f(b—)
exists and is equal to L.

b) Suppose f is increasing and continuous on (a,b). By part a), f(a+) and f(b—) exist. Thus the function
defined by g(z) = f(z), z € (a,b), g(a) = f(a+) and ¢g(b) = f(b—) is continuous on [a,b]. Thus f is uniformly
continuous on (a,b) by Theorem 3.40. The converse is trivial.

¢) g(x) = —1/x is increasing and continuous on (0, 1) but not uniformly continuous there.

3.4.9. Suppose P is a polynomial of degree 0 or 1, i.e., P(x) = ma +b. Let ¢ > 0 and set 6 = ¢/(|m| + 1). If
|z —y| < d then
|P(z) = P(y)| < [mllz — y| < [m]

¢ <
€.
|m|+1
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Thus P is uniformly continuous on R.
Suppose P is a polynomial of degree n > 1, i.e., P(z) = anz™ + -+ -+ a1z + ao, an, 7 0. Suppose without loss of

generality that a,, > 0. Then

P n—
(z) :anx+an_1+a‘ 2+ ag

— 0

an—1 pn—1

as * — 00, i.e., P(x) — 00 as x — 00. Now P(x) — P(y) = (x — y)Q(z,y) where
Qz,y) = an(@" ™'+ +y" )+ tas(z +y) +ar
By the argument above, Q(x,y) — oo as x,y — oo. If P were uniformly continuous on R, then given 0 < e < 1

there is a § > 0 such that |z — y| < § implies |P(z) — P(y)| < €. Let z,, — oo and set y, = =, + §/2. Then
Xy Yn — 00 S0 choose N so large that Q(zn,yn) > 2/4. Since |y — yn| = §/2 < §, we have

2
1= g‘xN —yn| <|zy —yn||Q(zN,yn)| = |P(zn) — P(yn)| < €

a contradiction.
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CHAPTER 4
4.1 The Derivative.

4.1.0. a) False. g(x) = |z| is not differentiable at = 0, but ¢g2(z) = 22 is.

b) True. If f is differentiable, then f is continuous on [a, b]. Since [a,b] is a closed, bounded interval, it follows
from Theorem 3.39 that f is uniformly continuous on [a, b].

c) False. Let f(z) =1/x—1for  # 0 and f(0) = 0. Then f is differentiable on (0,1) and f(0) = f(1) = 0, but
f is not even continuous on [0, 1].

d) True. By Theorem 3.40, it suffices to prove that f is continuously extendable from the right at = a, i.e.,
that if z,, € (a,b] and z,, — a, then f(z,) — L for some L € R. We claim that L = 0. If not, then some
xy, satisfies |f(xn, )| > o for k € N, so |f(zn,)|/(Tn, —a) > €0/(xn, — a). But this cannot be, since the later
converges to oo as k — oo. Thus f(z,) — 0 as n — oo, and f(a) := 0 continuously extends f from (a,b] to [a,b].

4.1.1. a) (f(a+h) — f(a))/h=(2ah+h?+h)/h=2a+h+1—2a+1ash— 0.
. b) 53y rationalizing the numerator, (f(a + h) — f(a))/h = (Va+ h —+/a)/h =1/(Va+ h + /a) — 1/2\/a as
¢) (fla+h) — f(@)/h = (—h/ala+h))/h = —1/a(a+ h) — —1/a? as h — 0.

4.1.2. a) Let n € N. If n = 1 then f'(z9) = 1 for all zp € R. Suppose n > 1 and z # zy. Since
(f(@) = f(20))/(x — o) = (2" — x})/(x — xo) = 2™+ + -+ + 2571, it is clear that f'(zo) = nzp '

b) It’s clear for n = 0. Let n € —N and z¢ > 0. Since —n € N, we have by algebra and part a that
xr" — .7361 _ -’Ean —x " ) xnxg N nxan—l . I,Zn _ nmg—I.
Tr — X Tr — X

Thus the function 2™ is differentiable at xo and f(xq) = nay '

4.1.3. Clearly, |fo(z)| < |z|*. If @ > 0 then |2|* — 0 as z — 0. Thus by the Squeeze Theorem, f,(z) — 0=
f(0) as ¢ — 0, i.e., f, is continuous at x = 0. If @ > 1 then

foz(h) _fot(o)l < |h|a71 =0
h -

as h — 0. Thus f!(0) = 0 by the Squeeze Theorem.
The graph of f; has no tangent at x = 0 because it oscillates between y = x and y = —z. The graph of f; has
a tangent at © = 0 because it is trapped between y = 2 and y = —22, hence squeezed flat at = 0.

4.1.4. Since |f(x)| < |z|® for all x € I, f(0) = 0. Thus by hypothesis,

f0+h) —f(O)‘ _ )l o1
h i '

Since o > 1, this last number converges to zero as h — 0 in I. It follows from the Squeeze Theorem that f is
differentiable at 0 € I, and its derivative is zero.

Set f(z) = |z|. Then f satisfies the hypotheses with & = 1 and I = [—1,1], but f is not differentiable at
0€[-1,1].

4.1.5. a) 1 = ¢y = 1+ cosz implies cosz = 0, i.e.,, x = (2k + 1)x/2 for k € Z. Thus the points are
(a,b) = ((2k + V)7/2, (=1)* + (2k + 1)7/2) for k € Z.

b) The tangent line at (a,b) is y = b + 6a(x — a). If it passes through (—1,—7), then 3a2 + 6a — 9 = 0, i.e.,
a =1, —3. Thus the points are (1,5) and (-3, 29).

4.1.6. For z < 0 we have (™ (z) = 0 for all n € N. Thus we need only check whether f[(onio)(O) =0. Forz >0

we have f(z) = 23, so

f(h) = £(0)

/ 1 . T 2
fi0,00(0) = lim, 5 = lim A% =0.
Thus f/(0) = 0 exists. For z > 0 we have f’'(z) = 322, so
" T f(h) B f(O) T _
0e) (0) = iy, = = i 3 =0.



Thus f”(0) = 0 exists. For > 0 we have f”(x) = 6z, so

ooy = fim IO g 20,

Thus f"’(0) does not exist. Hence, n = 1,2. It won’t work for n > 4 either because f"” is not defined at z = 0 so
no higher derivative exists by definition.

4.1.7. a) Let y,, — x¢ € (0,00). If f is continuous at = = 1 then |f(zo) — f(yn)| = |f(zo/yn)| — |f(1)] =0 as
n — o0, i.e., f is continuous at xg. The converse is trivial.
b),c) If f is differentiable at = 1 then for any x € (0, c0),

flath) = fx) _ flz+h)/z) 1 (f(1+(h/$))) S
h/x x

h h x
as h — 0. Thus f/(z) exists. The converse is trivial.

4.1.8. a) If f has a local maximum at xo then f(zo + h) — f(xo) <0 for h small. Hence

< 0 when A > 0 and > 0 when h < 0.

f(xo +h) — f(zo) f(@o +h) — f(z0)
h h

b) If f is differentiable at x then taking the limit of both inequalities in part a), we obtain estimates of the
derivative of f at xp. Indeed, 0 < f'(x¢) <0, i.e., f'(zg) = 0.

¢) Since f has a local maximum at z¢ if and only if —f has a local minimum, it follows from b) that if f is
differentiable at zo and f has a local minimum at xg then f/(z) = 0.

d) If f(x) = 23 then f/(x) = 322 is zero at = 0 but f(0) is neither a local maximum nor a local minimum.

4.1.9. a) Suppose that f is odd and differentiable on I and = € I. For h so small that x £ h € I, we have
f(=x+h)=—f(x —h) and —f(—z) = f(x). Therefore,

e ) fem ) - f)
h—0+ h h—0+ —h h—0—

fa+h) -~ f@) _
R )

i.e., the right derivative of f at —z equals f/(z). A similar argument proves that the left derivative of f at x is
even. b) Repeat the argument in part a), but this time, f(—x + h) = f(x — h) and f(—z) = f(z).

4.2 Differentiability Theorems.

4.2.0. a) True. Apply the Product Rule twice: (fgh) = (fg)'h+ (fg)h' = f'gh+ fg'h + fgh'.
b) True. Apply the Chain Rule twice and the Product Rule once: (go f)"(a) = (¢'(f(a)) - f'(a)) = (¢"(f(a)) -
f'(@) - f'(a) + g'(f(a)) - f"(a) = ¢'(f(a)) f"(a) + ¢" (f(a))(f'(a))?.
c¢) True. It’s true for n = 1. If it’s true for some n > 1, then by the Inductive Hypothesis, definition, and the
Sum Rule,
(f+ 9 = (f00) 4 gy = flrth) 4 gD,

d) False. Let a # 0, f(x) = g(z) = 22, and n = 2. Then (f/g)" = 0 but

o(0)f" () + J(a)g"(a) _ da?
g%(a) ab

is not zero.

4.2.1. a) By the Product Rule,

(fg)'(2) = f(2)g(2) + f(2)¢'(2) = 3a + c.

b) By the Quotient Rule,




¢) By the Chain Rule,

(g0 £)(3) =g (f(3))f'(3) = be.
d) By the Chain Rule,

(fo9)(2)=f(9(2)g'(2) = be.

4.2.2. a) By the Product and Chain Rules, ¢'(x) = 222 f'(22?) + f(z?), so ¢'(2) = 8f'(4) + f(4) = 8e + 3.

b) By the Power and Chain Rules, ¢'(z) = 2f(vz) - f'(v/Z)/(2y/7), s0 ¢'(4) = 2f(2) - f'(2)/(2V4) = 7.
c¢) By the Quotient and Chain Rules,

f(@®) 1 —a-322f'(2?)

9= Tl R

so g'(V2) = (f(2) = 6/'(2)/f*(2) = (1 - 3m)/2.
4.2.3 (%) = (e*1°87) = qe*18® /3 = az*~! for all x > 0.
4.2.4. By Exercise 4.1.2a, (z")" = na"~! for each n € N. If P(z) = a,2" + --- + ag, then it follows from

Theorem 4.10 that P’(z) = na,z" 4+ --- 4 a1 exists and is a polynomial. Hence by induction, P*) exists for all
k € N (and in fact is evidently zero for large k).

4.2.5. a) If f(a) #0, |f(a+ h)| > |f(a)]/2 > 0 for h small (like the proof of Lemma 3.28).
b) Choose h # 0 small enough so that f(a + h) # 0. Using f(a)f(a + h) as a common denominator, we have

1 1 fla) = f(a+h)

fla+h)  fla) — fla)f(a+h)

Dividing this by h and taking the limit as h — 0, we find that 1/ f is differentiable at a with derivative — f'(a)/f2(a).
c¢) Using part b) and the product rule,

I . r_ /.1_ i/:gfl_fgl

4.2.6. By the Product Rule, this formula holds for n = 1. Suppose it holds for some n > 1. Then

(f9)" Y = ((f9)™) = (Z <Z) f(k)g("k))

k=0

— (n (k+1) (n—k) — (n (k) (n—k+1)
2 (e 32 (1)

" n n el —
— frg0) 4 3 ((k " 1> . (k)) 0 gnH1=k) 4 £(0) g(n+1)
k=1
n+1

n+1 bl
:Z( N )f(k)g( +1-k)
k=0

by Lemma 1.25.
4.2.7. a) It is well-known that if A, B € R and m € N, then

A™ —B™ = (A—-B)(A" '+ A" 2B+ ...+ AB™ " = B™).

Thus the desired identity follows from setting A = 27 and B = a9, where ¢ = n/m.
b) Let x,a € (0,00) and ¢ = n/m. By part a,

x? — al " —a” m— m—1)\—
Y T 7 a -(:L‘II( 1)+...+a’1(‘1)) 1::y(1‘)-2($).
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n—1 (m—1)

By Exercise 4.1.2, y(x) — na as ¢ — a. Since z(z) contains m terms, it is easy to see that z(z) — ma?
as © — a. Therefore, 7 is differentiable at a and the value of its derivative there is

na™1. (maq(m—l))—l _ qan—l—qm-‘rq — qaq—l_
4.2.8. Clearly, f'(x) exists when x # 0. By definition,
h/(1+e'") —0 1
/ = 1. e s i 1. —
7(0) B0t h W0t 1+ el/h

Since this limit is 1 as h — 0—, f is not differentiable at = = 0.

4.2.9. a) By assumptions ii) and vi), 0 < |sinz| < |z| for z € [-7/2,7/2]. Thus by the Squeeze Theorem
and assumption i), sinz — 0 = sin(0) as 2 — 0. Hence by assumptions iii) and i), cosz = 1 — 2sin?(z/2) —
1 —2sin?(0) = 1 = cos(0) as = — 0.

b) Let ¢y € R. By assumption iv) and part a), sinx = sin((z—xz¢)+z0) = sin(x—x0) cos xg+cos(z—x¢) sin xg —
0+ sinzg = sinzg as & — x. Hence by assumption iii), cosz = 1 — 2sin*(x/2) — 1 — 2sin*(x/2) = coszg as
xr — Xg.

c) Let « € (0,7/2]. By assumption vi), 0 < cosz < sinz/x < 1. Hence by part a) and the Squeeze Theorem,
sinz/x — 1 as © — 0+. In particular, it follows from assumption ii) that sinz/z — 1 as © — 0.

Let = € (0,7/2]. By assumption i), cos?z < cosx. Hence by assumptions iii) and vi),

OS1*COSI§1*COSZI:SiHQI§CL‘2,

ie,0<(1—cosz)/z <z — 0asz— 0+. In particular, it follows from assumption ii) that (1 — cosz)/z — 0 as
z — 0.
d) Let z € R. By assumption iv) and part ¢),

sin(z + h) —sinz | cosh—1 sinh )
W =sinz — + cosx h —sinx-0+cosx-1=cosx

as h — 0.
e) By assumption v), part d), and the Chain Rule, (cosz)’ = —cos(n/2 — 2) = —sinz. Hence it follows from
the Quotient Rule and assumption iii) that

= = Ssec” x.

. ! .
sinz cos? z + sin’ x 9
cos? x

(tanz)’ = (

COS T

4.3 The Mean Value Theorem.

4.3.0. a) True. If z < y belong to [a,b], then f(x) < f(y) and g(z) < g(y). Adding these inequalities, we

obtain f(z) + g(z) < f(y) + g(v)-

b) False. f(x) = g(x) = x are increasing on [—1,0] but f(z)g(z) = 2% is decreasing on [—1,0].

¢) True. The function g(z) = f(z) for € (a,b) and g(a) = f(a+) is continuous on [a, z] for every x € (a,b).
Thus by the Mean Value Theorem, there is a ¢ € (a,b) such that

f(@) = flat) = g(z) — g(a) = ¢'(c)(z — a) = f'(c)(z — a).

d) True. For any = € (a,b), by the Mean Value Theorem, there are points ¢, d between a and = such that
[f(x) = f(a)] = (z = a)|f'(0)] < (z = a)lg'(d)| = lg(z) — g(a)|.

4.3.1. a) Let f(x) =e” —2x —0.7. Since z > 1, f'(z) = e* — 2 > 0. Hence by Theorem 4.17i, f increases on
[1,00). In particular,
e* -2 —-07> f(1)=e—2.7>0.

b) Let f(x) = /x —logz — 0.6. Since = > 4,

F(@) = 1/(2Va) — 1/a = ;—jf >0
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Hence by Theorem 4.17i, f increases on [4,00). In particular,
Vz —logz —0.6 > f(4) =2 —log4 > 0.

¢) Let f(x) = 2|z| — sin? 2 and suppose first that = > 0. Then f'(z) = 2 — 2sinz cosz > 0. Hence by Theorem
4.17i, f increases on [0,00). In particular,

2z —sin®x > f(0) = 0,

ie., sin?z < 2|z| when z > 0. On the other hand, if z < 0, then by what we just showed, sin® z = sin?(—z) <
2(—x) = 2|z|.
d) Let f(z) = e* —1+4sinz. Since > 0, f'(z) = €* + cosz > 1+ cosz > 0. Hence by Theorem 4.17i, f
increases on [0,00). In particular,
e* —1+sinz > f(0) =

4.3.2. By the Mean Value Theorem, 2 = f(2) — f(0) = 2f’(c) for some ¢ € (0,2). Thus f'(c) = 1, ie,
1€ 10,2).

4.3.3. If a and b are roots of f, then by the Mean Value Theorem, 0 = f(b) — f(a) = (b — a)f’(c) for some
€ (a,b). Hence c is a root of f’.

4.3.4. Suppose M > 0 satisfies |f'(x)| < M for all € (a,b). Let € > 0 and set 6 = /M. By the Mean Value
Theorem, if z,y € (a,b) and |z — y| < ¢, then

[f(@) = fW)l =)z —yl < M|z —y| <e.

4.3.5. By the Mean Value Theorem, |f(z) — 1| = |f(z) — f(0)] = |(z — 0) f'(c)| = |z| - | f'(¢)] for some ¢ € (0, z).
Since |f'(c)] < 1, it follows that |f(z)| < |f(z) — 1|+ 1 < |z|+ 1 for all x € R.

4.3.6. By the Mean Value Theorem, f(c) = f(¢) — f(a) = (¢ —a)f'(x1) and f(c) = f(c ) f(b) = (c—=b)f (x2 )
for some 1,22 € (a,b). If f(c) > 0, then ¢ —a > 0 and ¢ — b < 0 imply that f'(z1) > 0 > f'(z2). If f(c) <0,
then ¢ —a > 0 and ¢ — b < 0 imply that f/(z1) <0 < f'(z2).

4.3.7. By the Monotone Property for Suprema, F' is increasing on [a,b]. Hence by Theorem 4.18, f has one-
sided limits at each point in [a,b]. By symmetry, it suffices to prove that f is left continuous at each ¢ € (a,b].
Suppose not, i.e., that F(c) — limy—,.— F(2) =: g9 > 0. Then there is a o > 0 such that 0 < ¢ — 2 < J§p implies
F(c) — F(z) > e0/2.

By the Extreme Value Theorem, there is a ty € [a,c] such that f(to) = F(c). Since f is continuous, we can
choose a § € (0,dp) such that [t —¢o| < 0 implies | f(t) — f(to)| < €0/2. Fix xo with 0 < ¢ — 2y < . By the choice
of &g, we have F(xy) < F(c). Since f(t) < F(xo) for all ¢t € [a, ], it follows that tg € (xg,c]. In particular,
|zo — to] < ¢ — o < &. By the choice of d, we conclude that F(zq) > f(zo) > f(to) —€0/2 = F(c) — £0/2, i.e.,
F(c) — F(x0) < &0/2 contrary to the choice of zg.

4.3.8. By the Mean Value Theorem, 0 < f(z1) — f(z2) = (x1 — x2)f'(c1) for some 1 < ¢; < x2 and
0 < f(zs) — f(xe) = (x5 — x2) f'(c2) for some x5 < ¢3 < 3. Thus f'(c1) <0 < f'(c2). Applying the Mean Value
Theorem to f, there is a ¢ € (¢1,c2) such that 0 < f'(c2) — f/(c1) = (e2 — ¢1) f”(¢). Since ¢ > ¢1, it follows that
1"(c) > 0.

4.3.9. Let A represent the limit of {f(n)}. By the Mean Value Theorem, f(n + 1) — f(n) = f’(c,) for some
¢n € (nyn+ 1), n € N. Since ¢, — 00 as n — o0, it follows that

0=A-A= lim (f(n+1)— f(n)) = lim f'(c,) = L.

n—oo n—oo

4.3.10. a) By Exercise 4.1.8, f'(x9) = 0. Let 6 > 0. Since f(xo) is a proper local maximum, there is a
¢ € (zg — 0,z0) such that f(c) < f(zo). Hence by the Mean Value Theorem there is an 1 € (¢, x¢) such that
0 < f(mg) — f(c) = f'(x1). A similar argument shows there is an x5 > x¢ such that f/(z2) < 0.

b) The statement is: If f is differentiable on (a,b) and has a proper local minimum at zo, then f’(z¢) =0 and
given § > 0 there exist 1 < x9 < @2 such that f'(z1) <0, f'(xz2) >0, and |z; — zo| < ¢ for j =1,2.
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PROOF. The function g := —f has a proper local maximum at zp, hence by part a), such x,zs exist which
satisfy ¢'(z1) > 0 and ¢'(z2) < 0. Since f' = —¢/, it follows that f'(z1) < 0 and f'(z2) > 0.

4.3.11. Since E is a nonempty subset of [a,b], sup E is a finite real number which belongs to [a,b]. Since
f is increasing, f(x) < f(sup E) for every # € E. Therefore, sup f(E) < f(supE). Let zx € E such that
xr — sup E as k — oo. Since f is continuous, f(zx) — f(sup E). Therefore, sup f(E) > f(zy) for all k implies
sup f(E) = f(sup E).

4.3.12. Suppose ¢ € (a,b) is a point of discontinuity of f’. Since f’ is increasing, f'(c—) and f’(c+) exist by
Theorem 4.18. Since ¢ is a point of discontinuity, it follows that f/'(c—) < f’(c+). Thus by Darboux’s Theorem,
there is an x¢ between a and b such that f/'(c—) < f'(z¢) < f'(c+), a contradiction of the fact that f’ is monotone
on (a,b).

4.4 Taylor’s Theorem and 1’Hé6pital’s Rule.

4.4.0. a) False. logz is NOT real-valued for = < 0.

b) True. Since |sin(1/z)/z"| < 1/x for x > 1, it follows from the Squeeze Theorem that this limit exists and
equals 0.

c) False, but it’s not a ’Hépital problem. 07°° = oo is not indeterminate.

d) False. Let f(x) = 23 + 2. Then f'(z) =322 +1 > 1 for all x € (0,0), but 2%/f(z) < 1/z — 0 as z — oc.

4.4.1. a) If f(z) = cosz, then f?™)(z) = (=1)"cosz and f?"~V(x) = (~1)"sinz. Thus
B n (71)1%:21@

b) By Taylor’s Formula, there is a ¢ between z and 0 such that | cos 2— Py, (z)| = |(=1)"*!(sinc)-z2"+1|/(2n+1).
Thus |cosz — Py (2)] < 1/(2n+ 1)! for z € [-1,1].

¢) 1/(2n+1)! < 0.00000005 implies (2n+1)! > 20,000,000. Since 9! = 362,880 and 11! = 39,916, 800, it follows
that n > 5.

4.4.2. a) If f(z) = logx, then f(™(z) = (=1)""'(n — 1)!/2™. Thus

n ()R — 1)k

k
k=0

b) By Taylor’s Formula, there is a ¢ between x and 1 such that | logz— P, (z)| = |(=1)"(z—1)"*|/(c" 1 (n+1)).
Since z € [1,2], we have [t — 1| =2 —1 <1 and ¢ > 1. Thus |logz — P,(z)| <1/(n+1) for z € [1,2].
¢) 1/(n+ 1) <0.0005 implies (n + 1) > 2000, i.e., n > 1999.

4.4.3. By Taylor’s Formula, there is a ¢ between z and 0 such that

S (n+ 1)

" ecmn+1
n! >

e‘rf <1+x+.+7
Since x > 0 implies 2"t! > 0 and e® > 1, it follows that

ex>1+9:+---+x—'.
n.

4.4.4. By Taylor’s Formula, there is a ¢ between z and 0 such that

sing — | & — -+ (=12t (=D)™FHi(sine) 2?2 R
(2n +1)! 2n 1 2)! ' R.

Since z € (0,7) implies 2"t > 0 and sinc > 0, it follows that R > 0 when n + 1 is even, i.e., when n = 2m — 1
and R < 0 when n + 1 is odd, i.e., when n = 2m. Therefore,
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4.4.5. a) lim, osin?(5z) /2% = (sin(5z)/x)? = (lim,_¢ 5 cos(5z)/1)? = 25.

b) lim, o4 (cosx — e%)/(log(1 + 22)) = lim, o4 (— sinz — €%)/(2x/(1 + 2?)) = —cc.

¢) lim, ,olog(x/sinz)/x? = lim, o(sinz — zcosz)/(22%sinx) = lim, .oxsinz/(22%cosx + 4rsinz)
lim,_osinz/(2z cosz + 4sinx) = lim, ¢ cos z/(6 cos x — 2xsinz) = 1/6. Therefore, the original limit is e!/6.

d) limg— o4 log(1 — 22) /z = limg— o+ (1 — 22) 71 (—22)/1 = limz—o+ —22/(1 — 2?) = 0. Thus the original limit is
eV =1.

e) lim, . log z/(sin(7z)) = lim, 1 (1/2) /(7 cos(mx)) = —1/m.

f) limg_o4 log(logz)/(1/z) = limgz—os(1/(zlogx)/(—1/2?) = limy_ot —z/logz = limz_ oy —1/(1/x) = 0.
Thus the original limit is e® = 1.

g) Multiplying top and bottom by (v22 + 2 4+ vV22)(v222 — 1 + v/222) we obtain

2 V222 -1+ V2? _ \/271/x2+\[ L 93
-1 Va?+2+Va? \/erf

as ¥ — 00.
h) Multiplying top and bottom by (vz + 4 + vz + 1)(v/z + 3+ v/z + 1) we obtain

3V +3+voe+1 31+3/z+/1+1/xz 3
— = — — =
2Vr+4+Ve+1 2\/1+4/z+\/1+1/z 2

as r — OQ.

4.4.6. a) Let f(z) = logz/x®. Since f(z) — 0 as x — oo, f(z) < 1 for large z. Also, 0 = f'(z) =
(1 — alogz)/z*t" implies logz = 1/a, ie., = e'/* Since f'(z) > 0 when = < e/ and f'(z) < 0 when
x> e/ C, = f(e!/*) = 1/(ae) is the absolute maximum of f on [1,00). Note that C, — 0o as & — 0+ and
Cy, — 0as a— .

b) The statements are: £ < e* for x large, and there is a constant B, such that z* < B,e” for all z € (0, c0),
By — 1lasa— 0+, and B, — 0 as @ — oo. Let f(z) = 2%/e®. Then 0 = f/(z) = 2% 1(a — x)/e® implies = = a.
Since f’(x) > 0 when z < o and f'(z) < 0 when = > «, B, := f(a) = (a/e)® is the absolute maximum of f on
(0,00). By L’Hépital’s Rule, B, — 1 as a — 0+ and B, — 0 as a — oo.

4.4.7. a) f'(z) = 2671/372/1‘3 is evidently continuous for z # 0. Also, by L’'Hépital’s Rule, lim,_o f'(z) =
limg_o(2/23)/e}/*” = lim,_o(6/24)/(2¢"/%° J23) = limy_o(3/2)/e}/*" = lim,_o(3/22)/(2¢"/*° J23) = 0. On the
other hand, f’(0) := limy_o(e —1/R _ 0)/h = limhﬂo(l/h)/el/h2 = 0. Thus f’ exists and is continuous on R.

b) We first prove that the functions g(x) = e~1/a" /z¥ satisfy g(z) — 0 as 2 — 0 for all integers k& > 0. Indeed,
this surely holds for £ = 0. Suppose it holds for some all k € [0, j] for some j > 0. Then

T YT D/ (1) /a0

L= hm = lim = lim = lim
z—0 i+l z—0 61/12 z—0 261/12/1‘3 z—0 261/I2

If j —1 <0 then 1/:ch'*1 = 2'7J is bounded near 0, hence L = 0. If k:=j —1>0then 0 < k < j. Hence L =0
by the inductive hypothesis. Therefore, g(z) — 0 as z — 0 for all £ > 0.
Next, notice by part a) that f/(z) = (2/.’173)671/932 for x # 0 and f'(0) = 0. Suppose

{ S i palar/aR)e w20

* (n)
) £ ) = )

Then f+)(z) = S0 (= kag/aF et/ 43 ,I:[:7L+2(2ak/xk+3)e*1/m2. Moreover, by the claim and (*),
1 & 2
(n+1) — 1 - ) ky,—1/z* _ —
f (0) : ilg%) - (k_g +2(ak/1’ )e 0) 0.

Hence by induction, given n € N, there are integers N = N(n) € N, and a;, = afcn) € Z such that (*) holds.
Moreover, by the claim,

(n+1) _ k+1 —1/1 k+3 —1/17 — 0= (n+1)
ilﬂ%f (z) hm ( Z (—kar/x + Z (2ax/x"T")e > / (0).

k=n+2 k=n+2
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In particular, f(™) exists and is continuous on R for all n € N and £ (0) = 0.

4.4.8. The Taylor polynomials P = Pf:f{‘ at xg = a and xg = b are zero. Thus by Taylor’s Formula, there is
an x; between a and ¢ such that
(c—a)"

fle) = ™ (@)

and an x5 between b and ¢ such that
n (C _ b)n
Fle) = £ () 2

Since n is odd, (¢ — b)"/n! < 0 and (c — a)"/n! > 0. Since f(c) is the product of these factors and f(™(xz;), it
follows that the f(™(z;)’s must have different signs.

4.4.9. a) Let f(z) = sin(z + 7). Since sin(z + 7) = —sinz, we have by Taylor’s formula that

3

|sin(z 4+ ) 4+ 6| = |6 — sind| = | — cosc]| % <

b) Let 6o = |z — m|. By a), |(x — 7) +sinx| = |5 + sin(o + )| < |z — 7[3/3! = 63 /3! < §3/3.

4.4.10. We may suppose that B = +o0. Consider the quotient g/f. By hypothesis, g and f are differentiable
on I\ {a}, the limit of g/f is of the form 0/0 or co/oo, and the limit of ¢’/ f’ is zero. Moreover, since B = co, we
know that f’(z) cannot be zero for large z. If A =0, then f(z) = f(z) — f(a) = f'(¢)(z — a) # 0, and if A = oo,
then f(x) is large, hence also nonzero for large x. It follows that there is an interval J C I which either contains
a or has a as an endpoint on which both f and f’ are never zero. Hence all the hypotheses of L’Hépital’s Rule
are satisfied by ¢/f for the case when B = 0. Since that case has been proved in the text, it follows that

glx) _ . g(x)

lim =—= = lim =0.
Tr—a Tr—a !
oaf(z) e f(@)

But B = oo implies that f(z)/g(x) is positive for large . In particular, we conclude that f(z)/g(z) — 0o = B as
x — a through I.
4.4.11. Let f(a) = g(a) =0 and = € I\ {a}. By the Generalized Mean Value Theorem,

for some ¢ between x and a. Since ¢ € I, we have by hypothesis that this last quotient is < M. Therefore,
£(@)l/lg@)| < M.

If f(z) = 2+ 100 and g(x) = 22, then |f'/g'| = |1/x| < 1 for z € (1,00), but (z + 100)/z? is not less than or
equal to 1 when z = 2.

4.5 Inverse Functions.

4.5.0. a) False because I need not be an interval. For example, f(z) =z for x < 0 and =1 — z for z > 0 is
1-1 on [—1,0) U (0, 1] but increases on the left half interval and decreases on the right half interval.
b) False. By the Inverse Function Theorem,

0= (/1Y) = ﬁ

implies 0 = 1, a contradiction.
c) False. Let f and g be as in the solution to 3.3.0d. Then both f and g are strictly decreasing, hence 1-1 on

R.
d) True. Since (go f)~! = f~1og™!, combining the Inverse Function Theorem and the Chain Rule yields

1y _ 1 _ 1
(oo 7)™ WO) = GG - P alg @)~ 70 Fla)

34




4.5.1. a) By the Inverse Function Theorem,

1 1
~1y/(9) — _
YD = 555 7
b) By the Inverse Function Theorem,
1 1
—1y/ 2) — _
(@) = =

¢) By the Product Rule and the Inverse Function Theorem,

e Y@ ="' Y@ +9 @U@
1 1 1
g0 o) T

4.5.2. a) By the Intermediate Value Theorem, f((0,00)) = (0,00). Also, f'(z) = 582(21‘612) + 2z =
2ze (z2 +1) > 0 when = > 0, so f is strictly increasing, hence 1-1 on (0,00). Since f’(x) exists and is nonzero
for all x € (0, 00), it follows from Theorem 4.33 that f~! is differentiable on (0,00) and (f~1)(x) = 1/f'(f~*(z)).

b) f~(e) = 1. Thus by part a), (f~1)'(e) = 1/f'(1) = 1/(4e).

4.5.3. Let f(z) = sinx. Then f'(z) = cosz > 0 for z € (—7n/2,7/2) and f(-n/2,7/2) = (—1,1). Hence
by Theorem 4.33, f~!(z) := arcsinz is differentiable on (—1,1) with (arcsinz)’ = 1/cosy for z = siny. But by
trigonometry, cosy = v/1 — 2. Hence (arcsinz)’ = 1/v/1 — 22. Similarly, (arctanz)’ = 1/sec?y = 1/(1 + 2?) for
x =tany € (—00,00).

4.5.4. a) Since f'(z) # 0 and f’ is continuous, it follows from the Intermediate Value Theorem that either
f'>0o0n (a,b) or f <0on (a,b). Thus either f is strictly increasing on (a,b) and takes (a,b) into (f(a+), f(b—))
or f is strictly decreasing and takes (a,b) into (f(b—), f(a+)). In both cases, f is onto by the Intermediate Value
Theorem.

b) By Theorem 4.33, f~! is differentiable on (c,d) and (f~1)'(z) = 1/f(f~1(x)). Let =, — xo € (c,d).
Then f~"(zn) — f~(z) by Theorem 4.32. Thus (f~)'(zn) = 1/f'(f(@n)) — 1/1(f~ (z0)) = (/=) (z0) as
n — oo. Hence by the Sequential Characterization of Continuity, (f~!)’ is continuous at x.

c)Leta=—1,b=1, and f(z) = 2°. Then f’(0) =0 and f~!(z) = ¢z has no derivative at = = 0.

d) Since the range of tanz on (—7/2,7/2) is (—00,0), ¢ = —o0 and d = oo.

4.5.5. a) Since L(z) is the inverse of a” and (a*)¥ = a™¥, it is easy to see that L(z¥) = yL(z) for all x € (0, 00)
and y € R. Since Theorem 4.32 implies that L is continuous on (0, 00), it follows from hypothesis that

Jim tL(1+1/t)) = lim L((1 + 1/t)") = L(a) = 1.

b) Fix h > 0 and let y = a™ — 1. Since L(x) is the inverse function of a®, we have L(1 +y) = h. Therefore,

a -1 y 1

h L(1+y) tL(1+1/t)

for t = 1/y. But h — 0+ implies that y — 0+ hence ¢t — co. We conclude by part a) that

h—1
lim a4 = lim ——— =
h—0+ h t—oo tL(1+ 1/t)

A similar argument shows that (a” —1)/h — 1 as h — 0—.
¢) By part b) and hypothesis, if f(z) = a*, then

z+h _ x h_]_
, ki a a — 4" i a _
) = fim = = e i

d) By the Inverse Function Theorem and part c¢), L is differentiable on (0, c0) and

1 1

/ . —_
L'(z) = @~
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4.5.6. a) Suppose that z1 # x5 belong to I. By the Mean Value Theorem, there is a ¢ between z; and x4
such that f(z2) — f(z1) = f'(¢)(z2 — x1). Since f'(c) # 0, it follows that f(z2) # f(x1), i.e., that fis 1-1 on I.
Since differentiability implies continuity, it follows from the Inverse Function Theorem that f~! is differentiable
on f(I), and (f1)(z) = 1/f/(f~(a).

b) Since f’ is continuous and nonzero on the closed, bounded interval I, we know from the Extreme Value
Theorem that there is a ¢ € I such that |f/(z)| > |f/(c)| > 0 for all z € I. By part a, then, | f~(z)| < 1/|f'(c)| < o
forall x € 1.

4.5.7. By 4.5.6a, f~! is differentiable on [c,d]. Let x € [c,d]. Since d — ¢ > 2, choose =2 € [c,d] such that
x — z9 = 1. Apply the Mean Value Theorem and the Inverse Function Theorem to f~!. We find that there is
an zo € (¢, d) such that
+1

7M@) = £ 7M@) = () (0 = 22) = g

Thus set x1 = f~1(z0).

4.5.8. By 4.5.6a, f~! is differentiable on [a,b]. Hence by the Generalized Mean Value Theorem, for each
x € [a,b] there exists a ¢ between a and z such that

FE(f ) = @) = () (©(f(z) = f(a)).
Set x1 = ¢, 22 = f~1(c), and apply the Inverse Function Theorem. We conclude that

/ 1 “1yyy = f@) = fla)
Fla)(f @) = f(a) = T )

4.5.9. Since f is 1-1 and f’(z) # 0 for each x € (a,b), we have for each y = f(z), = € (a,b), that (f~1)(y) =
1/f(x) by Theorem 4.33. Hence by hypothesis, f'(x)/a = 1/f'(z), i.e., (f'(x))? = « for each x € (a,b). We
conclude that f/'(z) = £y/a, i.e., f(z) = £y/az + ¢ for some ¢ € R.

4.5.10. Suppose f'(xg) > 0. Since f’ is continuous, it follows from the sign preserving lemma that there is
an interval I C (a,b) containing x¢ such that f’(x) > 0 for all € I. In particular, f is 1-1 (actually monotone
increasing) on I. By Exercise 4.5.4b, it follows that f takes I onto some interval J, and f~! is continuously
differentiable on J.

4.5.11. Suppose f’ is not strictly monotone on [a,b], in fact, not strictly increasing. Then there are numbers
21 < 2 < x3 in [a,b] such that f'(xo) < f'(x3) < f'(x2). Thus by Theorem 4.23, there is an x¢ € (z1,x2) such
that f/(zo) = f’(x3). This contradicts the fact that f’ is 1-1 on [a,b]. A similar argument works if f is not strictly
decreasing.
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CHAPTER 5
5.1 The Riemann Integral.

5.1.0. a) False. See Example 5.12.

b) False. Let f(z) =1 for x € Q and f(z) = —1 for x ¢ Q. Repeating the argument in Example 5.12, we can
prove that f is not integrable on [0, 1]. However, |f| =1 is integrable on [0, 1].

c) False. If f is NOT integrable, the symbol f: f(x) dz makes no sense.

d) False. If f(z) = 1/x for x € [-1,0) and f(z) =0 for z € [0,1], then f is not integrable because it’s not even
bounded below, so the lower Riemann sums are not finite.

5.1.1. a) L(f, P) = 0.5£(0) +0.5f(0.5) + f(1) = 17/16.

U(f,P)=0.5f(0.5)+0.5f(1) + f(2) = 137/16.

The lower one is closer because y = % is concave up on [0, 2], hence closer to the lower sum approximation than
the upper sum approximation.

b) L(f,P) = 0.5f(0.5) + 0.5f(1) + f(2) = 11/8.

U(f,P)=0.5f(0)+0.5f(0.5) + f(1) = 39/8.

The upper one is closer because y = 3—z? is concave down on [0, 2], hence closer to the upper sum approximation
than the lower sum approximation.

c) L(f,P) =0.5f(0) + 0.5f(0.5) + f(1) =~ 0.2485860.

U(f,P)=0.5f(0.5)+0.5f(1) + f(2) ~ 0.5386697.

The upper one is closer because y = sin(z/5) is concave down on [0, 2], hence closer to the upper sum approxi-
mation than the lower sum approximation.

5.1.2. a) The points are obviously increasing, beginning with 0/n = 0 and ending with n/n = 1.
b) By definition,

1 1
L(f.Py) < (L) / f(z)dz < (U) / f(z)dz < U(f. P,)

for each n € N. If we let n — oo, then

lim L(f, P,) /f dr < ( /f dm<hm U(f, Pp).

n—oo

Since these two limits are equal, it follows that

n—oo

L)/O f(ac)dx:(U)/O fl@)dz = lim U(f,P,) :=1.

Thus f is integrable on [0, 1] and its integral equals I.
«) Since f(x) = x is increasing, M; = z; := j/n and m; = x;_1 := (j — 1)/n. Thus

n n
1 1
U(faPn)_ Z T Tj— 1 i Tj— 1) ;Zl E_’O
j=1 j=1
as n — 00, so f is integrable by Definition 5.9. Since
1< (n+1) 1
U bn) =52 k= =57 —3
k=1
as n — 0o, folﬂcdx =1/2.
() Since f(z) = x? is increasing on [0,00), M; = 275 := (j/n)* and m; = z5_; := ((j — 1)/n)*. Thus

n

U Pa) = L, Pa) = (% = a0)(ay = 251) = 5 D (2~ 1) = 1 =0

j=1 j=1

as n — 00, so f is integrable by Definition 5.9. Since

Ul P = 3w = D@t D)

613

Wi
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as n — 0o, fol z?dx =1/3.
) Since the cases n odd and n even are similar, we will suppose that n is even. In this case, M; = m; = 0
when j <n/2, M; =m; =1 when j >n/2+1, and M;(f) =1=m;(f)+ 1 otherwise. Thus

UG Pa) = DU P = - 4 - = 2 =0

n

as n — 00, so f is integrable by Definition 5.9. Since

n

1 2n—n 1
UlfP) =~ 3 1= o

2n
k=n/2

as n — 0o, fol fz)dx =1/2.

5.1.3. a) Let € > 0 and suppose that f is bounded on [a,b], say by M > 0, and continuous on [a, b] except at a
finite set E. Choose a partition {xg,x1,...,Zan+1} of [a,b] such that each x € E belongs to [zak, Tar+1] for some

0<k<mn,and
n
Z |Tok — Tok41] = —
4M
k=0

Let Ey := Up_,[z2x—1,®2x] and observe that f is continuous (hence, uniformly continuous) on Ey. Thus choose

0 > 0 such that .

|z —y| <6 and z,y € Ey imply |f(z) — f(y)| < —a)

Let Py = {to,t1,...,tm} be a refinement of P obtained by adding enough points so that || Pyl < 4.
For each j = 0,1,...,m, let I; := [t;,t;y1], |I;| = t; — tj—1, M; = sup f(I;), and m; = inf f(I;). Since f is
bounded by M and ||Py|| < 4, it is clear that

2M when I; C [xak, Zak+1] for some k
M]‘ — mj S
€/(2b — 2a) when I; C [zog—1, z2;) for some k .

Therefore,

U(f,Po) = L(f,Po) = >,  (My—mp)|Ll+ > (M;—my)|l|

I;Clrok,x2r41] I;Clwag—1,T2k]

€ n

<2M Y Ll g DI
2(b—a) “
I;Clzok,Tart1] Jj=1

€

=2M - — -(b—a)=c¢e.
R - P =€

b) Since L(f, P) = 0 for all partitions P, (L) fo x)dz = 0. On the other hand, glven € > 0, choose an integer
n > 1 so large that 1/n < ¢/2 and choose § > 0 so small that 2(n — 1)d < ¢/2. Define z;’s by

If P={xo,x1,...,%T2n—2} then My (f) =1 for all odd k, Ma(f) = 1, and My(f) =0 for all even k > 2. Hence

n—1
2 2
U(f,P) == W="42n—1)<e/2+¢/2=e
(f,P) n+; S+2An-1)5<e/2+¢€/2=¢
Thus ( fo x)dz < € and it follows that (U) fo x)dx = 0. Hence f is integrable on [0, 1] and fo z)dx = 0.
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5.1.4. a) If f(xg) # 0 then given € > 0 choose by the Sign Preserving Property a § > 0 such that |f(z)| > € for
|z — 20| < 4. Let P be any partition which satisfies z;_1 = zy — § and z; = ¢ + J for some j. Then m;(|f|) > ¢
and it follows that

b
L)/ |f(@)]dz = L(|f], P) = m;(|f)(z; — xj-1) = €(20) > 0

b) Suppose fab |f(z)|dx =0. If f(xq) # O for some xg € [a,b], then by part a), fab | f(z)|dz > 0, a contradiction.
Thus f(z) =0 for all = € [a,b]. The converse is trivial.
c¢) No. If f(z) = x, then fil f(z)dx =0but f(x) #0 for all x # 0.

5.1.5. By hypothesis, fcd fx)dx = fadf(x) doz — [7 f(z)dz = 0 for all ¢,d € [a,b]. If f(zo) > O for some
Zo € [a,b] then by the Sign Preserving Property there is a nondegenerate interval [c, d] C [a, b] such that f(z) > €
for x € [¢,d]. Therefore, fcd f(z)dx > eg(d — ¢) > 0, a contradiction. A similar argument shows f(zg) < 0 is also
impossible. Thus f(z) = 0 for all z € [a, b]. The converse is trivial.

5.1.6. Let m be the number of points in E. Since f and g are bounded, choose C' > 0 such that |f(z)| < C
and |g(z)| < C for x € [a,b]. Since f is integrable, there is a partition P of [a, ] such that || P|| < €/(8mC),

b b
U(f,P)</f(x)dx+% and L(f,P)>/f(x)dx_§

Let Py = PUE := {xy,. .. xn} Set A={j: ENzj_1,2;] # 0} and B ={1,2,...,n} \ A and observe that
M;(g) < C for all j and M, (g) M, (f) for all j € B. Also notice, since a point of E can belong to at most two

mtervauls of the form [z;_, xj] that the number of points in A is at most 2m. Finally, since Py is finer than P,
U(f,Po) <U(f,P). Therefore,

Ulg, Py) = ZM Amj—i—ZM(g Az;

JEA JjEB

=> (M (f)Az; +U(f, Po)
JEA

<> 2CAz; + U(f,P)
JEA

<4m07+/f d:r+*

:/a f(z)dx +e.

It follows that (U) ff g(x)dz < fab f(x) dz+e. Taking the limit of this inequality as e — 0, we obtain (U) fab g(x)dzx <
ff f(z) dx. Repeating this argument using lower sums and lower integrals, we obtain (L) f; g(x)dx > ff f(z)de.
We conclude that g is integrable and f; g(z)dx = f: f(x)dz

5.1.7. a) Let P; and P, be partitions of [a,b], and let P = Py U P,. Since M;(f +g) < M,;(f)+ M;(g), we have
b
0) [ (@) + 9N do < U +9.P) S ULP)+ U0, P) < UL P) + Ulg. )
Taking the infimum of this inequality over all partitions P; and P, we obtain (U) f;( f(@)+g(z)) dz < ( f f(z) dz+
(U) f; g(x)dx. A similar argument establishes an analogous inequality for lower integrals.
b) Let P be a partition of [a,b], Pp = PU{c}, P, = Py NJa,c], and P» = Py N|c,b]. Since Py is finer than P,

c b
U(f,P) > U(f, Po) = U(f, P) + U(f, P) > (U) / f(@) dz + (U) / f(x) da

Thus (U) f;f(m) dz > (U) fac f(z)dz+ (U) fcb f(z)dz. On the other hand, if P; is a partition of [a,c] and P, is a
partition of [¢,b] then P = P; U P, is a partition of [a,b] and

b
0) [ f@)ds <UGLP) = UL P) + UL P,
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Taking the infimum of this inequality first over all partitions P; of [a, c] and then over all partitions Py of [c, b],

we obtain (U) f; flx)dz < (U) [ f(z)dx+ (V) fcb f(x) dz. Hence these quantities are equal. A similar argument
establishes an analogous identity for lower integrals.

5.1.8. Given € > 0, let P be any partition of [a, b] which satisfies | P|| < €/((f(b) — f(a)). Since f is increasing,
M; = f(z;) and m; = f(x;_1) for all j. Thus by telescoping,

D MG(F) = my()) ey —x5-1) <Y (Flay) = Fla )P = (F(b) = @) Pl <e.
7j=1 j=1
In particular, f is integrable on [a, b].

5.1.9. Let ¢ > 0 and choose a partition P = {zq,...,2,} of [a,b] such that U(f, P) — L(f, P) < 2y/ce. Fix
x,y € [xrp_1,2k]. Since |f(u)| > ¢ > 0 for all u € [a,b], we have by rationalizing the numerator that

WF@ - Vi) < ((VF@) = VIOV @) + VW)l _ 1)~ fw)l

2y/c 2y/c
It follows that \/f(z) < (Mi(f) — mi(f))/(2Vc) + +/f(y) for all © € [ry_1,2;]. Taking the supremum over

x € [xg—1,2k] and then the mﬁmum over y € [zr_1,zk], we have proved that My (v/f) — mp(v/f) < (Mp(f) —
mg(f))/(24/c) for k =1,2,...n. We conclude by the choice of P that

U, P)—L(\/f, P) < U(f’P;\—/EL(fvP) .

5.1.10. Suppose f is integrable on [a,b]. By definition, there is a partition P. of [a,b] such that U(f, P.) —
L(f,P.) < e. By Remark 5.8, if P is finer than P. then

U(f,P)—L(f,P) SU(fvpe)_L(f7PE)<E

The converse is trivial.
5.2 Riemann Sums.

5.2.0. a) True. Combine (6) and (7).

b) True. If f is integrable on [a,b], then by Corollary 5.23, so are f" for all n € N. Since P(f) is a linear
combination of f™’s and constants, it too is integrable on [a,b] by Theorem 5.19.

c¢) True. Let M be the maximum of f on [a,b]. By the Extreme Value Theorem, there is an zg € [a,b] such
that f(zg) = M. Hence, the cited result follows immediately from the Second Mean Value Theorem for integrals.

d) False, even if f were positive on [a,b]. Indeed, let f(z) = = + 2, g(x) = z, and [a,b] = [-1,1]. Then for all

Zo,
1

/(:1: +2z)d ff#O—(mo—l—?)/ x dz.

-1

5.2.1. a) [x+ 1] =z+1ifz>—-1and [+ 1] = —x — 1 if < —1. Thus the graph of y = |+ 1] for z € [-2, 2]
consists of two triangles, the left one with base 1 and altitude 1, and the right one with base 3 and altitude 3.
Therefore, f_22 |z 4+ 1]dz =1/2(1) + 1/2(9) = 5.

b) Since

—2x —1 r<-—1
e+ 1|+ |z =¢ 1 —-1<2<0
20+ 1 x>0,

the graph of the integrand consists of two trapezoids on either side of a square. Hence
2

/ (2 + 1)+ ) de = 1-(3+1)/2+1+2- (5+1)/2 = 9.
—2
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c) y = Va2 — 22 implies 22 + y? = a?. Thus the graph of y = Va2 — 22 is a semicircle centered at the origin of
radius a. Hence the integral represents the area of that semicircle, i.e.,

@ 1
/ Va2 —x2dx = iﬂ'aQ.

d) By completing the square, y = v/2x + 22 implies (v — 1)2 + 4% = 1. Thus y = V22 + 22 is a semicircle
centered at (1,0) of radius 1. Hence y = 5 + v2z + 22 is a semicircle mounted on a rectangle with base 2 and

altitude 5. It follows that )
/ (5 + V22 + 22) dw = 1o+g.
0

5.2.2. a) By the First Mean Value Theorem for Integrals, there is a ¢ € [a, D] such that

0— /ab F@)a™ dz = f(c) /ab sz = f(c)- 1.

Since n is even, ™ > 0. Since a < b, I is not zero. Thus f(c) = 0.
b) Let f =1, n=1, and [a,b] = [-1,1].
c¢)If a+b#0, then I #0 for all n € N whether odd or even.

5.2.3. a) By Exercise 4.4.4, 22 — 25/3! < sin(2?) < 22 — 25/3! + 210/5!. Thus
1 1 1
0.3095 ~ / (z% — 2%/3)) dx < / sin(x?) dz < / (z% — 2%/3! + 21°/5!) dx ~ 0.3103.
0 0 0

b) By Taylor’s Formula, e =1+a2+ x*/2 + 25 /6 + e°2® /24 for some ¢ between x and 0. But

8
x
0<e— <

1
5 i ~0.1132617 and / (14 2% + 2*/2 + 25/6) da ~ 1.4571429.
0

ThuS 1
1.4571429 < / ¢ dx < 1.5704046.
0

5.2.4. 0 < e ¥ <1forallye[0,z] and f > 0 on [0,z], so by the Second Mean Value Theorem for Integrals,

there is an g(z) := xo such that
xX

| " rway= [ )y

0 g(z)
Note: Yes, there may be more than one z( given z, but just pick one and call it g(z).

5.2.5. Let M = sup,c(o,y) f(¥). By the Comparison Theorem,

1/nf o
n"‘/ f(z)dz M M
0

< =
- nb nB—a’

s
Since 8 > a, n?~® — 0o as n — co. Hence it follows from the Squeeze Theorem that n® fl/n

o flx)dr — 0 as

n — oQ.

5.2.6. a) Since f is bounded, choose m, M such that m < f(z) < M for = € [a,b]. Then by the Comparison
Theorem,

m/abgnw)dxs[lbf<x>gn<x>dxsM/abgn(mdx

for all n € N. By hypothesis, the two outer sequences converge to 0 as n — oo. Hence by the Squeeze Theorem,
the sequence in the middle converges to 0 as n — oo.
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b) This follows immediately from part a) since
L ™ty 1
/ x2dr = —— ‘ =
0 n+1'0 n+4+1
as n — oo.
5.2.7. By Theorem 5.20, >}'_, f”“ flx)dx = fm"“ f(z) dz. Hence by Theorem 5.26,

lk+1 Tp41 b
lim Z/ dx = lim f(x)dx:/ f(z)dx

5.2.8. a) Since f is continuous on [a,b] and M > 0, choose by the Approximation Property and the Sign
Preserving Property a nondegenerate interval I C [a, b] such that f(z) > M —e for & € I. Then (M —e)™ < |f(x)|™
for z € I and |f(z)|™ < M™ for x € [a,b]. It follows from the Comparison Theorem that

b
(M>fWHh§KU@W%wS/~U@Wﬂxéwﬁwfﬂ

b) If M = 0 then |f| = 0 and the result is trivial. If M > 0 then choose € > 0 so small that M —¢/2 > 0. By
part a), choose I so that

'fL

(M |I|1/" </ f(z |"dx> < Mlb— a|/n.

holds. By Example 2.21, |I|'/™ and (b — a)'/™ — 1 as n — oco. Since ¢ := (M —¢€)/(M — ¢/2) < 1, choose n so
large that |I|'/" > ¢ and (b —a)'/™ < (M + ¢)/M. Tt follows that

M—ezé(M—§)<(M ) < (/ |f(x |”dx> n<M(MJ\;6>—M+e

Hence by definition, (fab |f ()| dz)*/™ — M as n — oc.

5.2.9. By Theorem 5.20, it suffices to show f is integrable on each I := [z_1,2%]. Let g be the continuous
extension of f to I. By Theorem 3.40, g is uniformly continuous on I. Thus given € > 0 there is a § > 0 such that

) poyl<o ad wyel imply |o(@) - o) < 5.

Now f is bounded on I by M := sup,c; |g(x)| + | f(zr—1)| + |f(zx)|. Let P = {to,...,tn} be a partition of I
which satisfies ¢

P|| < min{d, —}.

1Pl < minfs, <)

Since f = g on [t1,tn—1], it follows from (*),

N
U(f,pP)—L(f. P Z m;(f))(t; —tj-1)
- N—-1
< 2M(t; —to) + |Zt —tj 1)+ 2M(ty —tn_1)
=2
. J
<§+*—€

Thus f is integrable on 1.

5.2.10. By Theorems 5.19 and 5.22, f + g and |f — g| are integrable on [a, b], hence so are [V ¢g:= ((f +g) +
[f —gl)/2and fAg:=((f+9)—|f—gl)/2.

5.2.11. a) If f is not bounded above on [a, b], then choose sy and si in [a, b] such that s — sg and f(si) — o0
as k — 0o. By symmetry, we may suppose that so # a and that s < sg.

Let P = {xo,...,z,} be a partition of [a,b]. Choose jy such that so € (z,_1,zj,]. Fix t; € [z;_1, ;] for j # jo.
Since f(sk)At;, — oo, we can choose t;, = s, k large, so that S(f, P,t;) > M.

b) If the Riemann sums converge to I(f), then there is a partition P such that |S(f, P,t;)| < [I(f)| + 1 for all
choices of t; € [zj_1,z,]. But by part a) and symmetry, if f is unbounded on [a, b], then there are t; € [z,_1, z;]
such that |S(f, P, t;)| > |I(f)| + 1, a contradiction.
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5.3 The Fundamental Theorem of Calculus.

5.3.0. a) True. Since g is increasing on [a,b], ¢’(x) > 0 for all 2 € [a,b]. Thus, by the Fundamental Theorem
of Calculus and the Chain Rule,
F'(z) = f(9(x)) - ¢'(x) 20-0=0.

b) True. First, since g is continuous and nonzero on [a,b], 1/g is continuous, hence integrable on [a,b]. In
particular, all the functions which appear in this problem are products of integrable and/or continuous functions,
hence integrable. Thus the expressions on the right side of statement b) are both well defined.

To prove that they are equal, notice by the Quotient Rule that

[@Y _ oy f@)g @
g("”)<g<x>) =l@=-=

It follows that the sum of integrals on the right side of statement b) is just the indefinite integral of f’. But by
the Fundamental Theorem of Calculus and the fact that f(a) = 0, we have

/ " pyde = f(z) - fa) = f(@)

as required.
c¢) True. By the Product Rule and the Fundamental Theorem of Calculus,

b b
[ (G @te) + £ @) da = [ (f@)gl))'dz = F0)9(8) - (@)

Thus the left-most integral equals zero if and only if f(a)g(a) = f(b)g(b).
d) False. The function f might take [a, b] to something outside the domain of g. For example, if a = 0, b = 1,
g(z) = /x and f(xz) = —=z, then g(f(x)) does not exist, so the integral on the right side of part d) is not defined.

5.3.1. a) By the Chain Rule

d [~
F'(m):f% : f)ydt = —f(2?) - 2.

b) By the Chain Rule

Fla) =L </ () dt — / (1) dt) = 302 () — 2 f(a?).
dx 0 0
c¢) By the Chain and Product Rules
/ d .
F'(z) = xcosxf(xcosx)ﬁ(xcosx) =z cosxf(xcosx)(cosx — xsinz).

d) Let u = — ¢ so du = dzx. Then by the Fundamental Theorem of Calculus,
d [ d [°
— t—x)dt = — du = f(-x).
o[ re-oa= L [ = )

5.3.2. a) 1 <z <4 implies 1 < /x <2, i.e.,1<2/y/x. Thus by the Comparison Theorem and wu-substitution,

/14f(\/§)dx<2/14f(\>/§) dx=4/12f<u>du:20,

b) 1/v/2 < 2 < 1 implies 1/2v2 < 2% < 1, ie., 1 < 1/2% < 2¢/2. Thus by the Comparison Theorem and

u-substitution,
1 1 1/22 1 /2
/ f(1/x2)dxg/ I /:)dxzf/ f(u)du:é.
1/\/5 1/\/5 X 2 1 2
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c) Use u-substitution. If u = z + 1 then du = dx and 2? = u% — 2u + 1. Thus
1 2
| e 1ydn = [ 20 - 20f(w) + ) du=9-2-6+5 =2,
0 1
5.3.3. a) If z = tan 6 then dz = sec® 6 df so
1 /4
/ 2 f(a? + 1) de = / tan® @ sec? 0.f (sec? 0) df.
0 0
If u = sec? § then du = 2sec@ - secftan 6 df. Since tan3 f = tan(sec? — 1), it follows that

/4 12 1 1
/ tangesec20f(se(329)d9=f/ (u—1)f(u)du==-(2-3)=—=.
o 2/, 2 2

b) If x = sin § then dx = cos 0 df so

de.

/ﬁ/z 23 f(VI— 22) p /”/3 sin® 0 cos 0 f (cos )
— “dx =
0 N 0 cosf

If u = cos @ then du = —sin @ df. Since sin® @ = sin §(1 — cos? §), it follows that

/3 1/2
/ sin39f(cosﬁ)d9:—/ (1—u?)f(u)du=3—T7=—4.

0 1

5.3.4. a) Let u =logz and dv = f’(x) dz. By parts,

/jf’(gg)logacdleogacf(a:) ’i —/j@dm > f(e) — f(e) =0.

b) Let u = €® and dv = f'(x) dz. By parts,

/01 e f'(z) dz = e” f(x) ‘é —/01 e’ f(x) de = —/Olel'f(m)dx.

c¢) Let u = f(z) and dv = ¢'(x) dz. By parts,
/ ' f@)d (@) de = f(x)glx) [} J " g(@) /(@) d.
0 0

By hypothesis, either f(0) =0 or g(0) = 0, and either f(e) =0 or g(e) = 0. Thus f(x)g(x) ‘Z: 0-0=0.
5.3.5. By the Fundamental Theorem of Calculus and the First Mean Value Theorem for Integrals,

b b
f(b) — f(a) = / (b dt = f'(x) / dt = f(z0)(b — a)

for some xy between a and b.

5.3.6. Take the derivative of 0 = ozfac f(z)dx + ﬂff f(z) dz with respect to ¢. By the Fundamental Theorem
of Calculus we obtain 0 = af(c) — Bf(c) = (a — ) f(c) for all ¢ € [a,b]. Since a # G, it follows that f(c) = 0 for
all ¢ € [a,].

5.3.7. a) Since 1/t is continuous on (0, 00), it follows from the Fundamental Theorem of Calculus that L(z) is

differentiable at each point = € (0,00) with L'(z) = 1/z. If 0 < 21 < x2 then

T2t -
L(xy) — L(z1) :/ = > T2~ 21

1

> 0.
T2
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Thus L is strictly increasing on (0, 00).

b) Clearly, ffn(l/t) dt > Zi:_ll 1/(k+1) > n/2 for n > 1. Thus L(2") — oo as n — oo. Since L is strictly
increasing, it follows that L(x) — oo as * — co. A similar argument shows that L(z) — —oco as z — 0+.
¢) Using the substitution ¢t = u4, we obtain

q

O T 2]

t 1 u

d) Using the substitution u = ¢/z, we obtain

T Ty Y
L(zy) = / dt +/ dt = L(z)+ du = L(z) + L(y).
1t 1t 1 u

e) L(e) = limy—0o L((1 + 1/n)™) = limp oo L(1 + 1/n)/(1/n). Since L(1) = 0 by definition and L(x) is
continuous at & = 1, this limit is of the form 0/0. Hence by L’Hépital’s Rule, L(e) = lim,, o, 1/(1 + 1/n) = 1.

5.3.8. a) By Exercise 5.3.7, L is differentiable and strictly increasing, hence 1-1, on (0,00), and takes (0, 00)
onto R. Hence by Theorems 4.32 and 4.33, E(x) := L~!(x) is differentiable and strictly increasing on R with
E'(z) =1/L'(y) for y = E(x). Since L'(y) = 1/y, it follows that E'(xz) = E(z). Since L(1) = 0 and L(e) = 1, we
also have F(0) =1 and E(1) =e.

b) By Exercise 5.3.7b, E(z) — o0 as ¢ — oo, and E(z) — 0 as ¢ — —oo.

c) Let y = E(zq) and ¢t = E(z). By definition and Exercise 5.3.7c, L(y) = xq = ¢L(t) = L(t?). Since L is 1-1,
we have y =9, i.e., E(xzq) = (E(z))9. Hence by part a), E(q) = E(1-q) = (E(1))? =¢? for all ¢ € Q.

d) Let s = E(x), t = E(y), and w = E(z + y). By definition and Exercise 5.3.7d, L(w) = x +y = L(s) + L(¢) =
L(st). Hence, w = st, i.e., E(z +y) = E(x)E(y).

e) Suppose « > 0 and z < y. Then L(x) < L(y) and aL(z) < aL(y). Since E is increasing and z* = E(aL(z)),
it follows that ® < y®. A similar argument proves that 2% > y® when a < 0 and z < y. By part d),

2**0 = E((a + B)L(x)) = E(aL(x))E(BL(z)) = 22"
and 2% - 27% = F(a — o) = E(0) = 1, i.e., 1/2* = 2~“. Finally, by the Chain Rule,

(%) = (E(aL(x))) = E(aL(z)) - oL/ (z) = 202 = qzol,
T
5.3.9. Using the substitution y = f(z) and integrating by parts, we have
O b -

/f( : I (y)dy:/ xf'(z)dx =z f(x) !a —/ flz)de.

Therefore, f; f(z)dz + fff((ab)) [l(z)dx = zf(x) |Z: bf(b) —af(a).

5.3.10. By Theorem 5.34, f o ¢ - |¢'| is integrable on [a,b]. But ¢’ is never zero, so |¢'| = +¢'. Moreover, since
¢’ is nonzero, its reciprocal is continuous on [a, b], hence integrable there. Therefore, by the product theorem
(Corollary 5.23),

1
foo=foo- ¢
is integrable on [a, b].
5.3.11. By Corollary 5.23 and the Fundamental Theorem of Calculus, it suffices to prove that f~1 and f/™
are integrable for all m € N. Let € > 0 and choose a partition P = {zg,1,...,z,} such that
U(f,P) — L(f, P) < min{C,e, c e},
where C,, := (m + 1)c(m=1/™_ Since f(z) > ¢ > 0 for all z € [a, b], it is easy to see that if z,y € [z;_1,2;],then

M;(f) =m;(f) _ M;(f) —m;(f)

/m () — f1/m
fl (z) fl (y) < (m + 1)C(m71)/m B Chn
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(see Exercise 4.2.7) and that
L1 M) —my(f)
f@)  fly) ~ c? '
It follows that M;(f'/™) —m;(f'/™) < (M;(f) —m;(f))/Cpm and M;(1/f) =m;(1/f) < (M;(f) =m;(f))/c*. Tn
particular, U(f'/™, P) — L(f'/™, P) < € by the choice of P.

5.3.12. Since
(2n)!  (n+1)(n+2)---(2n)
nln® nm
and 41 49 )
i L e S L
n n n n

is a partition of [1,2] with norm 1/n, it is easy to see that log(a,) is a Riemann sum of ff log x dz. Thus log(a,)

converges to ff log « dz. Hence

2
4

lim log(a,) = / logzder = (zlogx — x |i: log (7) .
1 e

n—oo

Since e® is continuous, we conclude that a,, — 4/e as n — co.
5.4 Improper Riemann Integration.

5.4.0. a) False. Let a =0, b = 1. Define f and g on [0,1] by: f(z) =1 when x € Q and f(z) =0 when z ¢ Q,
and g(z) = 1+ (y/x)~!. Then |f| < g and g is absolutely integrable on [0,1] (the integral has value 3), but f is
NOT even locally integrable on (0,1) much less improperly integrable.

b) True. By the Extreme Value Theorem, there is an € > 0 such that |g(z)| > ¢ for all « € [a,b]. Thus f/g is
locally integrable and |f|/|g| < h/e holds everywhere on (a, b). Hence this quotient is absolutely integrable by the
Comparison Test.

c¢) True. Since +/f is continuous, it is locally integrable on (a,b). If f(z) < 1, then /f(z) < 1 < 1+ f(z).

If f(x) > 1, then v/f(z) < f(x) < 14 f(x). Thus \/f(z) < 1+ f(z) for all z € (a,b). The function 1 + f is
absolutely integrable on (a,b) by hypothesis and the fact that b — a < oo. Thus +/f is absolutely integrable on
(a,b) by the Comparison Theorem.

d) True. Since f and g are absolutely integrable on (a,b), it follows from Theorem 5.42 and the Comparison
Theorem that any finite linear combination of f, g, and |f — g| is absolutely integrable on (a, ). Hence by Exercise
3.18, f Vg and f A g are absolutely integrable on (a,b).

54.1. a) [“(1+z)/23de = [[T23de+ [[T22dr =1/2+1=3/2.
b) Using the substitution u = 23, dr = 322 dv, we have

0 5 I 1
/ z2e® da:/(1+ac2):§/ e”duzg.

—0o0 —00

¢) Using the substitution u = sinz, du = cos = dz, we have foﬂ/Q cosz/Vsinxdr = fol w3 du = 3/2.
d) Integrating by parts and using ’Hépital’s Rule, we obtain

1
/ logzdr = zlogx — x |(1J: —1.
0

5.4.2. a) If p # 1 then [*da/a? = 2'7P/(1 - p) }TO Now z17P has a finite limit as # — oo if and only if
1—p>0,ie,p>1 Whenp=1, the integral is log x |?o which diverges. Thus the integral converges if and only
ifp>1.

b) If p # 1 then fol dx/a? = z17P/(1 — p) }(1) Now z!'~P has a finite limit as 2 — 04 if and only if 1 — p > 0,
i.e,, p < 1. When p = 1, the integral is log x ‘(1) which diverges. Thus the integral converges if and only if p < 1.

c¢) Using the substitution v = logz, du = dz/x, we have f:o dz/(zloglP z) = floo du/uP. Thus by part a), this
integral converges if and only if p > 1.
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d) 0 < [Fdx/(1+aP) < fol dz/(1 4 aP) + [ dx/aP. Thus the integral converges for all p > 1 by part a). If
p=1then [[°dz/(1+x)=log(l+ ) |go which diverges. Finally, if p < 1 then

/ *  dx / *©  dx 1 / ° dx
> >3 —
0 1 + xP 1 1 + xP 2 1 xP
since 22P > 1+ 2P for > 1. Thus the integral diverges for p < 1 by part a).
e) Since a > 0 implies log” x > 1 for x > 0, f(z) > P for all z € [1,00). Hence f(z) cannot be improperly

integrable if p < 1. On the other hand, if p > 1, choose ¢ > 0 such that p — 1 > ¢ and a constant C' such that
logx < 29/? for all x > C. Then z > C implies

Since p — ¢ > 1, it follows from the comparison test that f(z) is improperly integrable on [1, c0).

5.4.3. Since p > 0, integration by parts yields

oo M oo oo
sin z COST |00 cos cos
dx = — |, —p — dx =cos(l) —p — dz.
1 P xP 1 rp+ 1 P+

By Remark 5.46 and Exercise 5.4.2a, this last integral is absolutely integrable since p + 1 > 1. Hence sinz /2P is
improperly integrable on [1, 0c0) for all p > 0.

Similarly, f:o cosz/ log? x dz = —sin(e) + pfcoo sinz/(xlog?™! x) dz. By Remark 5.46 and Exercise 5.4.2c, this
last integral converges absolutely since p + 1 > 1. Thus cosxz/log? x is improperly integrable on [e, co) for all
p>0.

5.4.4. a) fooo sinxdxr = —cosx |go Since cos x has no limit as x — oo, this integral diverges.

b) Since fil dv/z? = f£)1 dr/x? + fol dx/x?, this integral diverges by Exercise 5.4.2b.

c¢) For z > 1, sin(1/z) = |sin(1/z)| < 1/z. Hence by the Comparison Theorem and Exercise 5.4.2a the integral
converges: [ (1/z)sin(1/z)dx < [[°(1/2?) dx < co.

d) Substitute u = sinz, du = cosz dz, i.e., do = du/v/1 — u2, to obtain

sin 1

logu
0 \/]. — u2

Since sin 1 < 1, this last integral is improper only at u = 0. But by I’'Hopital’s Rule,

. —logu . 2Vu—ud
lim ———= lim ——— =0.
u=0+ /1 —u2)/u u—=0+ 1+u?

1
1 ::/ log(sinz) dz = du.
0

Thus |log ulv/u/v1 —u? = —logu/v1 — u? is bounded on [0, sin 1], i.e., there is an M > 0 such that [logu|/v1 — u? <
1/y/u. Since the later is integrable on [0, sin 1], it follows from the Comparison Test that I converges absolutely.

e) Since |1 — cosz|/2? < 2/2?, the integral [ (1 — cosz)/z* dx converges. On the other hand, by L’Hépital’s
Rule, (1 —cosz)/2z? — 1/2 as & — 0. Therefore, fol(l —cosz)/x? dz is a Riemann integral. Therefore, the original
integral converges.

5.4.5. By Exercise 5.4.2b, 1/4/x is integrable on (0, 1), but 1/z = (1//x)(1/+/x) is not.

5.4.6. a) Choose a < by < b such that f(x)/g(x) < 2L+ 1 for all by < x < b. Since g is nonnegative, we have
f(z) < (2L + 1)g(x) for x € (bo,b). Hence by the Comparison Theorem, f is improperly integrable on [a, ).

b) Choose a < by < b such that f(x)/g(x) > M := min{L/2,1} for all by < x < b. Notice that M > 0. Since
g is nonnegative, we have f(x) > Mg(x) for = € (by,b). Hence by the Comparison Theorem, f is not improperly
integrable on [a, b).

5.4.7. a) Suppose L > 0. If f(z) — L as x — oo, then choose N € N such that f(z) > L/2 for x > N. By
the Comparison Theorem, f:,o f(z)dz > f;o L/2dx = o0, a contradiction. A similar argument handles the case
L <0.
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b) Clearly, fON f)de =1/2+1/4+---+1/2N"1 =1-1/2N"1 — 1 as N — oco. The limit does not exist
because f(n) — 1 but f(n+1/2) — 0 as n — oc.

5.4.8. Let b € [1,00) and n > 1. By Exercise 5.3.10, f(2™) is locally integrable on [1,00). Since z"~! > 1 when
x > 1, we have

’ n b n—1 n _l o
[ isands < [T tipenide = - [ 1)

Taking the limit of this last inequality as b — oo, we see that f(z") is absolutely integrable on [1,00) for each
n > 1. Thus by Theorem 5.48,
oo
/ f@™) dx
1

Since f is absolutely integrable on [1,00), this last integral converges to 0 as n — oo. Hence by the Squeeze
Theorem, [ f(z")dz — 0 as n — oo.

0<

< [Tensalas =1 [ )

5.4.9. Integrating by parts and applying L’Hopital’s Rule, we obtain

o0 oo
/ e dr =e ! +/ na" te Fdr = ...
1 1

:e’1(1+n+n(n—1)+---+n!)+/ nle”* dx
1
=e '(I+n+n(n—1)+---+2nl).

Therefore,
1 oo

1 1 "1
- n_—x — -1 = = -1 —
/) z'e Tdxr=e <n!+(n—1)!+ +1+1) e <kz;)k!>.

In particular, (1/n!) [~ 2"e " dz — e e =1as n — occ.

5.4.10. a) Clearly, sinz > /2/2 for z € [r/4,7/2]. Since f(z) := sinx — 2z/m has no local minima in [0, 7 /4]
and f(0) =0 < f(w/4), we also have sinx > 2z /m for z € [0, 7/4]. Hence

/2 .
/ e—asinz g,
0

Using the substitution ¢ = 2ax/w, dt = 2a/wdz, this last integral can be estimated by

/4 a/2 oo
/ eiQ“I/”dle/ eftdtgl/ eftdtgl.
0 2a 0 2a 0 2a

We claim that e=*V2/2 < \/2/(ae). If this claim holds, then the estimates above yield

w/2 )
/ e—aSlHI dx
0

It remains to prove the claim.

Let ¢(x) = ze~®. Then 0 = ¢'(x) = z(—e~*) + ¢~ * implies z = 1. By the first derivative test, ¢(1) = 1/e is
a local maximum. Since ¢(0) = 0 and ¢(x) — 0 as © — oo, it follows that 1/e is the maximum of ¢ on [0, c0).
Hence, e~ < 1/(ze) for all z > 0. In particular, e=?V2/2 < \/2/(ae).

Note: If we replace ¢ by g(x) = sinx — 2v/2x /7, then the same argument shows g(x) > 0 for x € [0,7/4], and

we obtain
/2 ; T o3 T T 1
/ e—asinz .. < Zefa 2/2 + < < + 1> ,
0

2av/2 T 2av/2 e
an improvement over the estimate we already obtained.

w/4 ) /2 ) /4
< / e—asinz g, +/ emasine o < ze—a\/i/Q +/ e—2az/7‘r dr.
0 /4 4 0

<

Tomavaz T ™2 oom w1 Y L9076
4 2a dae  2a  2a \eV2
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b) The same estimates can be obtained. Indeed, using the substitution y = 7/2 — &, dy = —dx, we have

/2 w/2 )
/ e—(l cos T dx — / e—(l smy dy.
0 0

5.5 Functions of Bounded Variation.

5.5.1. a) Fix £ € N. The inequality holds if 4k? > 4k? — 1, i.e., if 1 > 0. Thus the inequality holds for all
k € N.
b) By the Comparison Theorem,

2" = kg 1 21
,d - ,d - hl

for all n € N.
c¢) Let 29 = 0, 290 = 1, and @ = yan_y, for 0 < k < 2", where y, ' = \/(2k + 1)7/2. Then {xg,z1,..., 290} is
a partition of [0, 1]. Since sin(1/y2) = (—1)*, we have

2n 1 5 2"=1
Var(¢>)22|¢( k) — O(Th- 1|—Z|xk+xk == Z4k2
k=1

Hence it follows from parts a) and b) that 22 o) — d(zk_1)| > 2log(2") /x for all n € N. Since n/m — oo
as n — oo, we conclude that ¢ is not of bounded variation on [0, 1].

5.5.2. a) Fix k € N. The inequality holds if 8k* + 2k% < 16k* —8k% + 1, i.e., if 0 < 8k* — 10k% + 1. By calculus,
this function increases when k& > /5/8. Hence, 8k* —10k%2+1 >0 for all k> 2.
b) By the Comparison Theorem,

k+1 n—1 1 n 1
1 =1 —dxr>1 —_— = —
+/ — dx +Z/ 5 dx +Zl 1) 2 2

for all n € N.

c) Let x;l (2k+1)m/2 for k € N and notice that {z,,, z,—1, ..., 21,20} forms a partition of [2/(2n+1)m, 2/7].
(These x1,’s have been chosen so that ¢ achieves its maximum variation.) Since sin(1/x3) = (—1)F, parts a) and
b) imply that

_ 2, .2
S [0 = dlox1)| = o laf +afal = 133 ey < 2 <1
k=1 k=1 k=1
for all n € N.

Let {yo,...,yn} be any partition of [0,1]. Choose n € N so large that x,, < y;. Temporarily set 2,11 = yo = 0
and z_; = yy = 1. Since adding points only increases variation, e.g., |f(yj4+1) — f(y;)| < |f(yj41) — f(zx)| +
|f(zk) — f(y;)|, we may suppose that {zo,...,2n} C {yo,...,yn}-

Fix k € [-1,n — 1] and choose p,v such that zp11 = y, < Yuy1 < -+ < Yutr = Tk. Since ¢ is monotone
between the x1’s, we can telescope to obtain

pAtv

Z l6(y5) — ¢(yj+1)| = [p(rt1) — d(2)]-

It is also clear that |¢(z,) — ¢(0)| and |$(1) — #(xo)| are both < 1. Hence,

N-1 n
S 16(y551) — 0(u7)] = |6(@a) — 6(O0)] + 3 6ens1) — dan)| + 6(1) — é(w0)| < 3.
j=0 k=1

We conclude that Var (¢) < 3, i.e., ¢ is of bounded variation on [0, 1].
5.5.3. ) X, lad(zi) — ad(@n-1)] = la] Sy [#ar) — $lan—1)| so Var(ag) < a]Var(s).
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b) By Remark 5.53,

Z |p(xp)(xr) — Plap—1)Y(xR—1)] < Z (zr)| |P(zr) — d(xR—1)|
k=1 k=1

n

+ 3 [é(@r-)| [ (ar) — d(zr-1)]

<MY b(@) = dlax—1)| + MY [th(zx) — (k1)

k=1 k=1
Therefore, Var(¢) < MVar(¢) + M Var(v).
¢) By hypothesis,

n

1
kzzls‘bxk

1

)

P(xk) — P(zh—1)
paell IRCICIALICTERY)

6 ) 1o P(@r-1)|-
k=1

Therefore, Var(1/¢) < e2Var(¢).

5.5.4. If ¢ is uniformly continuous then ¢ is continuous. Conversely, suppose that ¢ is continuous on (a,b)
and of bounded variation on [a,b]. Since ¢ is the difference of two increasing functions, it follows from Theorem
4.18 that ¢ has left and right limits at each point in [a,b]. Thus ¢ is continuously extendable to [a,b]. Hence by
Theorem 3.40, ¢ is uniformly continuous on (a,b).

5.5.5. a) Repeat the proof of Remark 5.51.

b) Since ¢/ (z) = z2/3/3, ¢(x) is unbounded at z = 0 and ¢ is strictly increasing on [—1,1]. Hence by Remark
5.52, ¢ is of bounded variation on [—1,1].

5.5.6. a) Since polynomials are C! on R, they are of bounded variation on any [a,b] by Remark 5.51.

b) By the Mean Value Theorem,

n

D 1P(ax) = Plar-1)l = ) ek — zxal [P (cr)| < (b —a) - sup |P(2)].
k=1

k=1 xe[avb]
However, the supremum of P’(z) on [a,b] occurs at © = a, x = b, or © = r;, where r1,...,ry, are the roots of P”
which lie in [a,b]. Since P” is of degree N — 2, m < N — 2. Therefore,
Var (P) < (b—a) - sup |P'(z)| < (b—a) max{|P'(r1)|,....|P (rp)|,|P'(a)],|P'(b)[}
z€la,b]

is an estimate which involves no more than N points.

5.5.7. By Theorem 5.56, |¢(z) — ¢p(x0)| < P(x) — P(xg). If @ is continuous at z¢ then &(x) — P(xg) — 0 as
x — 9. Thus by the Squeeze Theorem, ¢(x) — ¢p(xo) — 0 as © — xg, i.e., ¢ is continuous at xg.

5.5.8. By the Comparison Theorem,

S P (k) — Flop 1|<2/ lde < s 1710 —a)
k=1 k-1 *

€la,

5.5.9. Let {x0,...,2,} be a partition of [a,b]. Then by the Fundamental Theorem of Calculus,

SO 1) — fa ol =S| [ F)ds
j=1 j=1]"%i-1
S @) de
Jz—;/zj_l



Taking the supremum of this last inequality over all partitions of [a, b], we obtain

b
Varf < [ 1@ da,

On the other hand, by the Mean Value Theorem,
DI ay) = flai0)l = Y1 (el — 1) = > my(f) (@) —x-1)-
j=1 j=1 j=1

Taking the supremum of this inequality over all partitions of [a, b], we conclude that

b b
Var 2 (2) [ 17/ @)ldo = [ 17/@)]ds

Note: If f’ is bounded, we obtain

b b
@ [ @lde < Varf < @) [ 17 @) da.

For the first inequality, repeat the argument above. For the second inequality, observe that for any partitions P
and @, we can use the Mean Value Theorem to obtain

V(f,P)<V(f,PUQ)<U(fl.PUQ) <U(f],Q).

5.6 Convex Functions.

5.6.1. If f and g are convex on I and =,y € I, then f(az + (1 — a)y) + glaz + (1 — a)y) < af(z) + (1 —
a)f(y) + ag(x) + (1 — a)g(y) = a(f(z) + g(x)) + (1 — ) (f(y) + g(y)). Thus f + g is convex on I. If ¢ > 0 then
cflar+ (1 —a)y) < caf(z)+c¢(l —a)f(y). Thus cf is convex on I.

5.6.2. Let f,, be convex on I. For eachn € N and z,y € I, fu(ax+ (1 —a)y) < afp(z)+ (1 —«a)fn(y). Taking
the limit of this inequality as n — oo, we obtain f(az + (1 —a)y) < af(z) + (1 —a)f(y). Thus f is convex on I.

5.6.3. By Remark 5.59, if f is both convex and concave on I then f and the chord from (¢, f(c)) to (d, f(d))
coincide for every ¢ < d in I. Hence the graph y = f(z), « € I, is a straight line, i.e., f(x) = mz + b for some
m,b € R and all x € I. The converse is trivial.

5.6.4. Fix z € (0,00). Since f"(x) = p(p — 1)aP~2, it is clear that f”(z) > 0 when p > 1 and f”(z) < 0 when
0 < p < 1. Therefore, the result follows immediately from Theorem 5.61.

5.6.5. Let a<c<xz<d<b. Then

el UL

r —cC

Let Ry be the rectangle with base [c,z] and height f(z—), and R be the rectangle with base [z,d] and height
f(z+). Then
Area(R Area(R
Area(Ry) _ fla—) < flat) = Area(Rp)

Tr—c d—x

Since f increases on [a, b], it follows that

! /x Fiyde < Arealf)  Area(Ry) 1 /d F(t)dt = 7F(d()i_F(x).

r—c -~ r—¢ T d—x “d-=x

We conclude by Remark 5.60 that F is convex on [a, b].
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5.6.6. Let © = (b—a)u+a and ¢(u) = f((b—a)u+a). By a change of variables formula and Jensen’s Inequality,

(/:If(:v)ldw>2 - ((b—a>/01|¢<u>|du>2

1

<00 [ lowP i
b

—(b-a) [ If@) d.

Taking the square root of this inequality, we conclude that

b b 1/2
/If(x)\dscs(b—a)”2 (/ fQ(m)dm> .

5.6.7. These are all straight forward applications of Jensen’s Inequality.
a) Since (e*)” =e” > 0 for all x € R, e” is convex on R. Apply Jensen for ¢(x) = e*.
On the other hand, if 7 < 1, then (by Exercise 5.6.4) ¢(z) = 2'/" is convex on [0,00). Hence by Jensen’s

inequality,
(f @l ) " (/ @ i) < | (@) d = / @) do

b) Let p < ¢q. By Exercise 5.6.4, ¢(x) = 29/? is convex on [0, 00). Hence by Jensen’s inequality,

([ 17w dx)l/p -(o([ If(x)I”dfc))l/q ([ ¢>(|f(x)|”)dw)l/q -([ If(x)"dw>1/q-

c) If p < g, if f is locally integrable on (0,1), and if the improper integral

il= ([ If(x)qd:c>1/q

is finite, then the improper integral || f||, is also finite. To prove this, combine the inequality in part b) above with
the Comparison Theorem for improper integrals.

5.6.8. a) Let E := {z € [a,b] : f(x) > yo}. Since a € FE and E is bounded above by b, 2o := sup E is a finite
real number. By the Approximation Property, choose z,, € E such that xz,, — x¢. Since f is continuous and
f(x,) > yo for all n € N, we have f(z9) > yo. On the other hand, if f(xzg) > yo then choose hg > 0 such that
o + ho < b and f(xg + ho) > yo. Then 29 + hy € E so xg cannot be the supremum of E. This contradiction
proves that f(xo) = yo. Finally, since g = sup E we have f(zo + h) < yo = f(zo) for any h > 0. Hence
DRf(J)o) = limh_,0+(f($0 + h) - f(l’o))/h < 0.

b) If f(b) < f(a) then by part a), given yo € (f(b), f(a)) there is an zo € (a,b) such that yo = f(zo) and
Dgrf(z0) <0. In particular, there are uncountably many z¢ € (a,b) which satisfy Dgf(z0) < 0.

c¢) If f is not increasing on (a,b) then there are points ¢ < d in (a, b) such that f(d) < f(c). Hence by part b),
Dprf(z) <0 for uncountably many z € (¢,d) C (a,b), a contradiction.

d) Dryg(x) = Drf(x) +1/n > Drf(x) > 0 for all but countably many x € (a, b).

e) By parts ¢) and d), g,(z) := f(z) + x/n is increasing on (a,b). Thus given x; < w2,

f(w) = lim g, (1) < lim gn(x2) = f(22)-
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CHAPTER 6
6.1 Introduction.

6.1.0. a) False. a; = 1/k is strictly decreasing to 0 but >~ 1/k diverges.

b) False. The series associated with a;, = (—1)* and by, = (—1)*** both diverge, but > p (g +by) = > 5o 0=
0.

c¢) True. For example, if Y 7 (ar + by) and > o, ap converge, then > ;- br = > oo (ak + by — ag) =
S opeq(ak + b)) — > po a converges by Theorem 6.10.

d) True. By algebra and telescoping

> (ax —ari2) =D (ax — k1) + > (akt1 — akr2) = (a1 — a) + (az — a).

k=1 k=1 k=1

6.1.1. a) 3707 (DM /e = 5T ((—1/e)f = 1/(1+1/e) =¢/(1+e).

D) Yopso(=1)F T /mh = = 5 o (—1/m)h = —1/(1+ 1/7%) = —n? /(7 + 1).

€) Do AN/ =36 377 (4/9)" = 36(4/9)?/(1 — 4/9) = 64/5.

d) Yoo (BF T+ (=3)F) /782 = (5 32720 (5/7)% + 5o (=3/7)%) /7% = (5/2+ 1/10) /7 = 13/35.
6.1.2. a) 0% 1/(k(k+1)) = 0% (1/k — 1/(k+1)) = 1 — limy_oo 1/k = 1.

b) Yore 12/(k+2)(k+3) = =3> o (2k/(k+2) — 2k +2)/(k+3)) = —3(2/3 - 2) = 4.

c) log(k(k +2)/(k +1)?) = log(k/(k + 1)) —log((k + 1)/(k + 2)). Therefore, by telescoping we obtain

Zlog(k:(k: +2)/(k +1)?) = log(2/3) — klingo log(k/(k+ 1)) = log(2/3).
k=2

d) Since 2sin(a — b) cos(a + b) = sin(2a) — sin(2b), we have

- 1 1 1 1 —, . 2 2
];2sin(% - k—}—l)COS(E - m) = ;(sinz —sinm) =sin2 — 0 =sin2.

6.1.3. a) cos(1/k?) — cos0 = 1. Hence this series diverges by the Divergence Test.

b) By L’'Hopital’s Rule, (1 — 1/k)* — e~1. Hence this series diverges by the Divergence Test.

) sp =Y p_y(k+1)/k* > t, :=>}_, 1/k. Since t, — oo, it follows from the Squeeze Theorem that s,, — oo
as n — oo. Therefore, the original series diverges.

6.1.4. Since ag41 —2a + ar—1 = (ag+1 — ak) + (ag—1 — ax), this series is the sum of two telescopic series. Hence

o0 o0 o0
Z(akﬂ —2ap +ap—1) = Z(ak+1 —ay) + Z(akfl —ay)=L—a1+a—L=a—a.
k=1 k=1 k=1

6.1.5. By telescoping,

-1 lz| <1

Z(xzk — 2Dy = (-1 4 klim )y =40 x| =1
k=1 diverges |z| > 1.

6.1.6. a) Let s, := > ;_, ax. If Y 77 | ai converges then s,, — s for some s € R. By Theorem 2.8, convergent
sequences are bounded. Therefore, {s,} is bounded.

b) The partials sums of Y ;= ,(—1)* assume only the values —1,0, hence are bounded. But the series itself
diverges by the Divergence Test.

6.1.7. a) Let 2,y € I. By the Mean Value Theorem,

F@) - F) = P -0 = (1- £8) -
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Thus by hypothesis, |F(z) — F(y)| < r|z —y|.
b) By a) and induction, |xn+1 - In‘ = |F(mn) - F(xn—l)‘ < T|xn - -Tn—l‘ < rn|x1 - -7:0|'
c) Since zg € I and F(I) C I, all z,,’s belong to I. Thus by b) and Geometric series, if m = n + k then

[T — 20| < (X" 47" +~'+r"+k_l)|;1:1 — x| < |x1 — o).

r
1—r
Since ™ — 0 as n — o0, we see that z,, is Cauchy, hence converges to some b € I, since [ is closed. Taking the
limit of 41 =z, — f(z,,)/f'(a), we obtain b =b— f(b)/f'(a). We conclude that f(b) = 0.

6.1.8. a) Since the a;’s are decreasing, kasr = agp +- -+ a2k < a1+ Appo+- -+ agk = Z?ikﬂ aj. Let € >0

and choose N so large that |Z?ik+1 a;| < e for k > N. Then |kag| < € for k > N, ie., 2kagr, — 0 as k — oco.

On the other hand, since 0 < (2k + 1)aggs1 < 2kasy + agr — 0 as k — oo, it follows from the Squeeze Theorem
that (2k + 1)agky1 — 0 as k — oo.

b) Clearly, sant2 = S2n+1/(2n+1)—1/(2n+2) > sa,, and Sop4+1 = S2n—1 —1/(2n) +1/(2n+1) < s2,—1. Also,
0 < sopt1— Son = 1/(2n+ 1) — 0 as n — co. Hence by the Squeeze Theorem, s2,41 — S2, — 0 as n — oo.

¢) By part b), {s2,} is increasing and bounded above by s; = 1, {s2,4+1} is decreasing and bounded below by
s2 =1/2, and S25,41 — San, — 0 as n — oo. Hence both these sequences converge to the same value, i.e., the series
> rey (=1)FF1/k converges. However, k - (—1)F*1 /k = (—=1)¥*! does not converge to 0 as k — oo.

n n N n N
6.1.9. a) ‘Ek:l by — nb| = |Zk=1(bk —b)| < Zk:l |brx — b] + Zk=N+1 |br — b| < Zk:l |bx — b + M(n — N).
b) Set B, = (b1 + -+ + by)/n. Let € > 0 and choose N so large that |by — b| < € for £ > N. By part a),
1B, — b| < (e, by — b| + e(n — N))/n. Since N is fixed, S>n_, [bx — b|/n — 0 and (n — N)/n — 1 as n — oc.

Consequently, limsup,,_,., |Bn — b| < e. Since € > 0 was arbitrary, it follows that limsup,,_, . |Bn» — b = 0.
Therefore, B,, — b converges to 0 as n — oo.
¢) If by = (—1)* then B,, = —1/n if n is odd and 0 if n is even, so B,, — 0 as n — oo. However, by does not

converge as k — oo.

6.1.10. a) 0, = Z;S(l —k/n)ay = Z;&(n —K)ag/n = (nag+ (n—1a1+ -+ an_1)/n = (ao + (ag +a1) +
et (aptar+-Fan_1))/n=_(s1+---+sp)/n.

b) If 72 jar = L then s,, — L as n — co. Hence by part a) and Exercise 6.1.9b, 0,, — L as n — oo, ie.,
> e ak is Cesaro summable to L.

¢) Since s, = Z;é(—l)k is 1 when n is odd and 0 when n is even, the corresponding averages are given by

P { (n+1)/(2n) when n is odd

1/2 when n is even.

Therefore, o, — 1/2 as n — oo although > p- ((—1)* diverges.

d) Suppose ZZOZO ay, diverges. Since ay > 0, it follows that s, — oo as n — oo. Hence given M > 0, choose N
so large that s, > M for n > N. Then o,, > ZZ;JI\,sk/n > (n— N)M/n. Since (n — N)/n — 1 as n — oo, it
follows that o, > M/2 for n large, i.e., 6, — 00 as n — oo.

6.1.11. Let € > 0 and choose N so large that >27 . [ax|/k < /2. Since N is fixed, Zszl ar/(j+k) — 0 as

j — co. Hence we can choose J so large that j > .J implies | S, ax/(j + k)| < €/2. Consequently, if j > J then
(since k + j > k)

+iw<e
. .

k=N+1

N ar
>

> a
> - ’“ks
k:l‘]+ k=1

6.1.12. Fix n > 2. By hypothesis,

n—l—li no_ 1
n+2 n+l (n+1)(n+2)’

na, =

SO

L 1 71( 1 1 )
"Tan+1)n+2) 2\nn+1) (+Dn+2))’

54



By telescoping, we have

Since a; = 2/3, we conclude that

6.2 Series with nonnegative terms.

6.2.0. a) False. If ar, = 1/k? and by, = 1/k, then ay/by — 0 as k — oo and Y -, ai converges, but > ;- bg
does not.

b) True. By hypothesis, 0 < aj < a®. Since 0 < a < 1, the Geometric series >, ; a® converges. thus by the
Comparison Theorem, 220:1 ap converges.

¢) True. By hypothesis, ax11 < a2 for all kK € N. Choose N € N such that |ay| < 1/2 for K > N. Then
ant1 < % < 1/4, anyo < a?vﬂ < 1/16, and in general, ay,p < 1/4* for k = 1,2,.... Since the Geometric
series Y77 | (1/4)" converges, it follows from the Comparison Theorem that Y ° \ | ax converges.

d) False. Let f(k) = 1/2* and f:“ f(z)dz > 1/k. (Such a function can be constructed by making f piecewise

linear on each [k, k + 1], its graph forming a triangle whose peak occurs at the midpoint of [k, k 4+ 1] with height
2/k.) Then Y37, f(k) =1 converges but [ f(z) dz = oo.

6.2.1. a) It converges by the Limit Comparison Test, since

(2k+5)/(3k3 +2k—1) 2
1/k2 —370

as k — o0o.

b) It converges by the Comparison Test and the Geometric Series Test, since 0 < (k — 1)/(k2%) < 1/2*.

¢) Since p > 1, choose @ > 0 such that p — a > 1. But |logz| < Cz?*, so logk/kP < C/kP~“. Hence the series
converges by the Comparison Test and the p-Series test.

d) Since logk < Vk for k large, k% log® k/e* < k*/e* for k large. But by six applications of ’'Hopital’s Rule,

k4 /ek kS 6!
. tim o 8
koo 1/k2 Koo €F  hvao ek 0

But ZZ.;1 e~k is a geometric series which converges, so by Theorem 6.16ii, ZZ.;1 k4/ek converges. Thus the
original series converges by the Comparison Test.
e) It converges by the Limit Comparison Test, since

(VEk 4 ) /(2 + k¥/5)
1/k:11/10

—1#0

as k — oo.
f) k > 3 implies logk > log3 > loge = 1, so logk > p := log3. Thus k'°¢* > kP for k > 3, and it follows from
the Comparison Test that >, | k~'°8* converges.

6.2.2. a) It diverges by the Limit Comparison Test since

(Bk3+k—4)/(Bk* —kK*+1) 3

1/k —570

as k — oo.
b) Since (Vk/k) > (1/k), this series diverges by the Comparison Test.
¢) (k+1)/k > 1 so the terms of this series are all > 1. Thus the original series diverges by the Divergence Test.
d) Let f(z) = (z(logz)P)~! for z > 0. Since

f'(x) = —(zlog” x)"(plog’ ' x + logP ) <0
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for x > 1, f(z) is decreasing for x > 1. Since

/ dx /Oodu
e — — =00
. xlogf x 1 uP

for p < 1, this series diverges by the Integral Test.

6.2.3. Let M > a; and note that 1/(k+ 1)? < 1/kP for all kK € N. Thus the series a/(k + 1)? has nonnegative
terms and is dominated by M/kP. It follows from the Comparison Test and the p-Series Test that this series
converges for all p > 1.

6.2.4. Since log?(k 4 1) > log? k, we have

Zklog E+1) —

But by the Integral Test, this last series converges when p > 1. Hence by the Comparison Test, the original series
converges when p > 1. Similarly,

oo 1 ) 1 - .
,;klog”(kﬂ Z (k+1)logP(k + 1) :kg

=2

diverges when p < 1.

6.2.5. When p > 0 use the Comparison Test, since in this case, k¥ > 1 for all k € N, so the series is dominated
by >"2=, |ax|. When p < 0, the result is false, since ar, = 1/k*~P generates a convergent series by the p-Series Test
(1 — p is GREATER than 1 in this case), but |ag|/kP = 1/k which generates the harmonic series, which diverges.

6.2.6. a) If a, /b, — 0 then a, < b, for n large. If ZZ‘;1 b, converges, then it follows from the Comparison
Test that Y - | aj converges.

b) If a,, /b, — oo then a, > b, for n large. If 220:1 b, diverges, then it follows from the Comparison Test that
> pe, ai diverges.

6.2.7 Since by, — 0, it surely is bounded. Thus ajby is nonnegative and dominated by May. Hence the product
converges by the Comparison Test. Notice, we really only need that one of the series is bounded and the other
convergent.

6.2.8. Notice that ak + b # 0 for k € N, since otherwise, b/a = —k € Z. Also notice that (1/kq")/|1/(ak +
b)g*)| = |ak + b|/k — |a| # 0. Since ak + b and a are both positive or both negative for large k, the terms
1/(ak + b)q* are eventually all positive or all negative. It follows from the Limit Comparison Test that we need
only consider > p- , (kg*)~!

If 0 < ¢ <1then 1/¢* > 1s0 > 77 (kg®)™t > Y22, 1/k = oo diverges. If ¢ > 1 then the geometric series
S (kg®) ™t <3727 1/¢% < co. Thus the original series diverges when 0 < ¢ < 1 and converges when ¢ > 1.

6.2.9. If 5, := 22:1 ay, converges then so does sgp,41. Thus

o0
Z(a% + agp41) = lim (a2 +a3) + -+ (agn + a2n41) = Hm sop41
1 n—oo n—oo

converges. Conversely, if L := "7 (a2 + azj41) converges then

2n—+1 n 2n 2n+1
E E asp + asgp41) — L and E ap = —Q2p41 + § ap — L
k=2 k=1 k=2 k=2

as n — oo. Therefore, > p-, ay = a1 + L converges.

6.2.10. If p < 0, then the series diverges by the Divergence Test. If p > 0, then log(log(log k)) > 2/p for large
k implies that plog(log(logk)) > 2 for large k. It follows that

1 1 1 1

log(log k))p log k - eplog k-log(log(log k)) < e2logk ﬁ

Thus the original series converges by the Comparison Test.
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6.3 Absolute Convergence.

6.3.0. a) True. Since
lim sup |ag|*/* = lim sup |az|*/* = ao
k—o0 k—o00

by Remark 6.22iii and ag < 1, it follows from the Root Test that > .-, af is absolutely convergent.

b) False. If ay = 1/k?, then Y "5 ay, is absolutely convergent, but |ay|'/* — 1 as k — oo.

c) False. If ay = —1/k and by = 1/k?, then ax < by for all k € N and Y ;- by converges absolutely, but
> e ay diverges.

d) True. If ;7 aj converges absolutely, then |a| < 1 for large k. But |ay| < 1 implies |aZ| < |ag|. Hence,
la2| < |ag| for large k, and it follows from the Comparison Theorem that > ;- , a} converges absolutely.

6.3.1. a) Since [1/(k+ 1)!]/[1/k!] =1/(k+ 1) — 0 as k — oo, this series converges by the Ratio Test.

b) Since {/1/k* = 1/k — 0 as k — oo, this series converges by the Root Test.

c) Since (7F+1/(k+ 1)V /(7% /k!) = n/(k +1) — 0 as k — oo, this series converges by the Ratio Test.

d) Since by L'Hopital’s Rule ¥/ (k/(k + 1))¥* = (k/(k+ 1))k — e~! as k — oo, this series converges by the Root
Test.

6.3.2. a) The Ratio Test gives 1, but the series converges by the Comparison Test since k > ¢® implies log k > 5

SO
K3 _ K3 1
(k+1)logk (k+1)5 k2’
b) It converges by the Ratio Test, since
(k+1)100/ek+1 ((kJrl)/k)lOO 1
= — —
k100 / ek e e
as k — oo.
¢) It converges by the Root Test, since
k+1 1
Ya = - <1
R EIREE
d) It converges by the Ratio Test, since
|ak+1| _ 2k +1 =0
|ag]| (2k +1)(2k + 2)
ask — oo.
e) It converges by the Root Test, since
1/,C:(k:—l)! (k—l)!zl 0
Jax T R T
as k — oo.
f) It converges by the Root Test, since
3+ (=1)*

Vo ="

has a limit supremum of 4/5.
g) It diverges by the Root Test, since

has a limit supremum of 4 /7.

6.3.3. a) By the Integral Test (see Exercise 6.2.2d) it converges for all p > 1 and diverges for 0 < p < 1. It also
diverges for p < 0 by the Divergence Test. Therefore, this series converges if and only if p > 1.

b) It diverges for all p > 0 since logk < CkY? implies 1/log? k > 1/k for k > 2. If p < 0, then the series
diverges by the Divergence Test.
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¢) If p = 0, the series obviously doesn’t make sense, so we can suppose that p # 0. We shall use the Ratio Test.

Since
1 (k + l) 1
_ L
T\ k Ip|

as k — 00, > p, kP /p* converges absolutely when |p| > 1 and diverges when [p| < 1. By inspection, it does not
converge absolutely when |p| = 1. Therefore, the series converges absolutely if and only if |p| > 1.
d) Since

Q41
ag

1VE(RP —1) kP
ke ti2 ke —1

as k — o0, it follows from the Limit Comparison Test and the p-Series Test that this series converges if and only
ifp+1/2>1,ie,p>1/2.

e) Rationalizing the numerator, the terms of this series look like 1/(v/k?P + 1 + kP). By the Limit Comparison
Test, Y po; 1/Vk? +1 converges if and only if > 7, 1/kP converges, i.e., if and only if p > 1. Since 2kP <
VE?P + 14+ kP < 2¢/k?P 4+ 1 implies 1/(2VEk?P +1) < 1/(VEk?P + 1+kP) < 1/(2kP), it follows from the Comparison
Test that the original series converges if and only if p > 1.

f) We shall use the Ratio Test. Since

k
_ o <@> L
k e

as k — oo, by L’Hopital’s Rule, > ;2 257k!/k* converges absolutely when 2P < e, i.e., when p < log,(e), and

Ak+1
ak

diverges when p > log,(e). When p = log,(e), we compare the series with v/k. Indeed, by Stirling’s Formula,
el k!
(F) /\/E—> \/271'750

as k — oo. Therefore, the original series diverges when p = log,(e).

6.3.4. Notice that {/|ara®| = ¥ay |z] — a|z| as k — co. Hence if a # 0, then it follows from the Root Test
that this series converges absolutely when a|z| < 1, i.e., |z| < 1/a. If a = 0, then the limit is zero for all z, so by
the Root Test the series converges absolutely for all z € R.

6.3.5. Notice that all (—1)*a;’s are nonnegative. Hence > pe; ax converges absolutely by the Ratio Test, since

_ (1+(k+1)sin (kil»_l H%

6.3.6. a) Since a; > 0,0 < E;\Ll ag; < Z;’;l ax; = Ay, for all N € N. Hence by the Comparison Test,

Gf41
ag

as k — oo by L’Hopital’s Rule.

o) o~ N ) SIS
)IDILTED 3) SITED SFTES ) e
j=1lk=1 k=1j=1 k=1 k=1j=1

Taking the limit of this inequality as N — oo we obtain the desired inequality.
b) By part a), .- ar; < oo. Hence by reversing the roles of k and j, we obtain the reverse inequality.
¢) By inspection, Z;ozl aj =0 for all k € N but > 72 ap; = 1if j =1 and 0 if j > 1. Therefore,

ZZakj :07&1:ZZCL]CJ

k=1j=1 j=1k=1

6.3.7. a) Since ar — 0 as k — 00, |ax| < 1 for k large. Hence |agx|P < |ax| for k large and it follows from the
Comparison Test that >y, |ax|P converges.

b) If 377, kPay, converges for some p > 1, then kPa, — 0 as k — oo, i.e., kP|ag| < 1 for large k. Thus |ay| < 1/kP
for large k. Since p > 1, it follows from the Comparison Test that Y -, |ax| converges, a contradiction.
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6.3.8. a) The middle inequality is obvious since the infimum of a set is always less than or equal to its supremum.

To prove the right-most inequality, suppose that r = limsup,_, . ag+1/ax. We may suppose that r # co. For
any ro > r, by Remark 6.22i, there is an N € N such that k¥ > N implies agt1/ar < 9. Fix j € N. It follows
that

2 J
AN+ S AN1j-1T0 S aN4j—2T) < - < anry,

ie., ap < aNrg_N for all £k > N. In particular, if n > N, then

sup ay < (aNrgN)l/k “79.
k>n

Taking the limit of this last inequality as & — oo, we see that limsup;_, ., /ar < ro. Finally, letting 7o | 7, we
conclude that limsup,,_,, &ax < 7, as required.

To prove the left-most inequality, repeat the steps above, using part a) in place of Remark 6.22i, but with
infimum in place of supremum and r; < r in place of 1y > r, proves part c).

d) If |bg+1/bk| — 7 as k — oo, then by Remark 6.22iii and part b), lim sup,,_, o [bg+1]/|bk| = r = liminf_ o [brs1|/|bk]-
We conclude from part c that limsup;,_, ’\“/W = liminfy_. W = r. But if we translate this back into ¢-§
language, we conclude that ’(/W —ras k — oo.

6.3.9. By hypothesis,

k=1 k=1
Therefore,
> 1 1 =1 I R
I o e
Pt (2k —1) Pt k Pt (2k) 6 24 8

6.3.10. Since each a; and —a,, is either ay, or 0, it suffices to show there are integers 0 < ky <71 < ky <1y <...
such that if by = af, by = a7, ..., by, = a,jﬁ bpy+1 = —ap, ..oy bey = —a. 4, by = a;rlﬂ, ..., and
Sp = 2?21 bj, then liminf, . s, = x and limsup,,_, ., s» = y. We suppose for simplicity that z and y are both
finite.

Since Y "p-, af = oo, choose an integer k1 € N least such that

+

Sky = b1 +ba + -+ + by, ::af+a;+...+a;€i—l > .

Since ky is least, si,—1 <y, hence s, <y + bg,. Similarly, since Zkoil a, = oo we can choose an integer r1 > ky
least such that
Spp i =by+bo+ - +by =55, —a] —-—a,_

r1—k1

<uzx,
and s,, > x + b,,. Since the —a, ’s are nonpositive, it is clear that s, < s3, <y + by, for ky < £ < ry,. Therefore,
s, >y and x4+0b, <sp<y+by

for all ky < ¢ < r;. By a similar argument, if ko > r; is least such that sz, > y, then s,, <z and z+b, <
s¢ <y + by, for all r1 < £ < ko. In particular,

y< sup 8¢ <y—+max{bg,,bk,} <y+ sup by.
kq <t<ks £>k1

In the same way, if 79 > ko is least such that s,, < x, then

x+ inf by < sup sy <.
f2r r1 <<

Continuing this process, we generate integers k1 < r1 < kg < rg < ... such that for each j € N,

y< sup s <y+supb; and x+ inf b < inf  sp <.
kj<t<kji1 1>k £2>r; T SE<Tj41

59



The first of these inequalities implies
y < sup sp <y + sup by.
0>k; 0>k;
Taking the limit of this inequality as j — oo, bearing in mind that by the Divergence Test b,, — 0 as n — o0, we
conclude that
y <limsups, <y+limsupb, =y.

n— 00 n—o0

This proves s, has limit supremum y. A similar argument establishes that s, has limit infimum z.

6.3.11. By Exercise 4.4.4 and the Squeeze Theorem, it suffices to show that s, := > jo(—1) 2?1 /(2k + 1)!
converges as m — oo for all z € R. But it does converge by the Ratio Test:

(=D 3/ (2k 4+ 3)!| 2|

(CDFa?1 2k + 1)) |~ 2k+2)(2k+3) ’

for all z € R. A similar argument works for the cosine series.
6.4 Alternating series.

6.4.0. a) True. If Zzozl by, converges, then its partial sums are bounded. Hence apply Dirichlet’s Test to a, | 0
and > po  b.

b) False. Let ay = (—=1)¥/k. Then Y ;2 (—1)*ar, = > 7, 1/k which diverges.

c) False. Let ay = 1/k if k is odd and a, = 2/k if k is even. Then

2 1 k+1

2k 2k+1 2k2+k

a2k — k41 =

The series associated with this last fraction diverges by the Limit Comparison Test (compare it with 1/k). There-
fore, Y32, (—1)kay diverges.

d) False. Let aj, = 1/k? if k is odd and a3, = 2/k? if k is even. Since 2k+1 < k? for k > 3 implies (k+1)% < 2k2,
it is easy to check that aj is not monotone when k& > 3. On the other hand, ZZil(—l)kak converges absolutely

by the Comparison Test since
oo

= 1
Z|ak|§22ﬁ<oo.
k=1

k=1

6.4.1. a) Clearly, 1/kP | 0 as k — oo for all p > 0. Therefore, the series converges by the Alternating Series
Test.

b) By Example 6.32, > - sin(kz) has bounded partial sums for all € R. Hence the series converges by the
Dirichlet Test.

¢) Since (1 — cos(1/z))’ = —sin(1/x)/2* < 0 for > 1, 1 — cos(1/k) is decreasing. Thus the original series
converges by the Alternating Series Test.

d) Since (x/3%) = (3% -1 — xlog3-3%)/3%® = (1 — xlog3)/3” < 0 for x > 1, k/3* is decreasing. Thus the
original series converges by the Alternating Series Test.

e) Let f(z) = w/2 — arctanx. Since f/(z) = —1/(1+22) <0 for all z € R, f(k) | 0 as k — oo. Hence this
series converges by the Alternating Series Test.

6.4.2. a) By the Ratio Test, this series converges for all |z| < 1 and diverges for all |x| > 1. It diverges at x =1
(the harmonic series) and converges at * = —1 (an alternating series). Thus it converges if and only if z € [—1,1).

b) Since 2°F/2F = (23/2)*, this series is geometric. Hence, it converges if and only if |2®| < 2, i.e., if and only
ifz e (—\'“‘/i \3/5)

c¢) By the Ratio Test, this series converges when |z| < 1 and diverges when || > 1. When = 1 it converges
by the Alternating Series Test. When z = —1 it diverges by the Limit Comparison Test (compare it with 1/k).

d) The absolute value of the ratio of successive terms of this series is given by

kVE+ Lo+ 2|/((k + 1)VE + 2).

Thus by the Ratio Test, this series converges when |z 4+ 2| < 1 (i.e., when —3 < z < —1) and diverges when
|z +2| > 1. If 2 = —1 or z = —3, this series is > ;- (£1)¥/(kv/k + 1) which converges absolutely by the Limit
Comparison Test, since > po; k=3/2 < 0o. Therefore, the original series converges if and only if = € [~3, —1].
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6.4.3. a) Since [(k + 1)3/(k + 2)!]/[k3/(k + 1)!] = (k+ 1)3/(k*(k +2)) — 0 as k — oo, this series converges
absolutely by the Ratio Test.
b) Since

(=1)(=3)...(1 —2k)(—1 —2k)/(1-4...(3k —2)(3k + 1)) | |-1—2k 2
(—1)(=3)...(1—2k)/(1-4...(3k — 2)) ‘_‘3“1‘_’3
this series converges absolutely by the Ratio Test.

c) Since ((k +2)*1/ (" (k + 2)1))/((k + 1)*/(p*kY)) = ((k +2)/(k + 1))** - (1/p) — ¢/p as k — oo and
e/p < 1, this series converges absolutely by the Ratio Test.

d) Let f(z) = /z/(z+1) for z > 0. Since f'(z) = (1 —)/(2v/x(x +1)%) < 0 for > 1, f is strictly decreasing
on (1,00). Thus f(k) | 0 as K — oo and this series converges by the Alternating Series Test. On the other
hand, (Vk/(k+1))/(1/Vk) = k/(k+1) — 1 as k — oo. Hence it follows from the Limit Comparison Test that
S22, Vk/(k +1) diverges. Hence the original series is conditionally convergent.

e) Since (Vk + 1/kF1/2)/(1/k*) = VE+1/Vk — 1 as k — oo, this series converges absolutely by the Limit
Comparison Test.

<1,

6.4.4. If by | b, then b, — b | 0 as k — o0o. Moreover, if Zzozl ag converges, then it surely has bounded partial
sums. Hence by Dirichlet’s Test, Y r- ; ax(by, — b) converges, say to s. But > ,-; axb converges, so we can add it
to both sides of s = > "7 ar(by —b) = > po; arbr — > e axb. We obtain

[e o] o0
Z apby, = Z arb + s.
k=1 k=1

6.4.5. By Abel’s Formula, Y ,_, arby = bps, + ZZ;II Sk (bg — br—1). Take the limit of this identity as n — oo,
bearing in mind that s,, is bounded and b, — 0 as n — oo. We obtain Y ;- | arby = > poq sk(bk — br—1)-

6.4.6. By Abel’'s Formula, > }_  apby = By man — Z;Tln Bym(ak+1 — ax) where By, ., := >, _ by By
hypothesis, |B,,,m| < 2M. Hence

n—1
< 2Mlan| +2M Y lagi1 — axl.

k=m

Z akbk

k=m

Since a, — 0 and Y ;- a1 — ax| < oo, it follows that >, ; arbi is Cauchy, hence convergent.

6.4.7. Let ¢, := Y ;- agby for n € N. Given € > 0 choose N so large that by, > 0 and |¢;| < €/2 for k > N.
By Abel’s Formula,

n n n n—1
Z _ Z aby _ch—ckH _ Cm — Cnt1 Z 1 1

k=m k=m

Now 1/b, — 0 as n — 00 so

o) n—1 1 1
> = Jim 3 ) (5 )
k=m

= br+1 b

and this limit must exist. Let m > N. Since the 1/b;’s are decreasing, we have by telescoping that

oo
D a

k=m

LU el (L —0) <2suplenl (1) < €
—_ - — sup |c — — sup (¢ — —.

We conclude that [by, Y oo, ax| < € for m > N, ie., by > pe, ar — 0 as m — co.

<2 sup [eyl
k>m

6.4.8. By a sum angle formula and telescoping, we see that 2sin(z/2) >"}_, cos(kz) = Y ;_, (sin((k — 1/2)z) —
sin((k 4+ 1/2)x)) = sin(z/2) — sin((n 4+ 1/2)x). Thus

1> cos(ka)| < 1/]sin(z/2)| < oo

k=1

61



for each fixed € (0,27). Hence by Dirichlet’s Test, > aj cos(kx) converges for each xz € (0,27). When z = 0,
the series converges if and only if >, a converges.

6.4.9. By a sum angle formula and telescoping, we see that 2sinz Y ;_, sin(2k + 1)z = >_;_, (cos((2k)z) —
cos((2k + 2)x) = cos(2x) — cos((2n + 2)z). Thus

n
|Zsin(2k + 1)z <2/|sinz| < oo
k=1

for each fixed z € (0, 7)U(w, 27). Hence by Dirichlet’s Test, > ay sin(2k+1)x converges for each x € (0, m)U(m, 27).
Since the series is identically zero when x = 0, 7, 2, it converges everywhere on [0, 27]. But sin(2k+ 1)z is periodic
of period 27. Hence this series converges everywhere on R.

6.5 Estimation of series.

6.5.1. a) Let f(z) = /2 — arctanz. Since f'(z) = —1/(1 +22) <0 for all z € R, f(k) | 0 as k — oo. Hence
this series converges by the Alternating Series Test. Since f(100) = 0.00999, n = 100 terms will estimate the value
to an accuracy of 1072,

b) Let f(z) = 2%27% = 2%e7*182, Since f'(z) = 2277(2 — xlog2) < 0 for all z > 2/log?2, f(x) is strictly
decreasing for x large. Therefore, the series converges by the Alternating Series Test. Since f(15) = 0.0068, n = 15
terms will estimate the value to an accuracy of 1072,

c) Let a = (2-4...2k)/(1-3...(2k — 1)k?) and observe that

aps1/ar = (2k +2)k?/((2k + 1) (k + 1)) = 2k*/(2k* + 3k +1) < 1.
Thus ajy1 < ay. Moreover, a; = (2/3)(4/5) ... ((2k —2)/(2k —1)) - (2k/k?) < 2/k — 0 as k — oco. Therefore, this

series converges by the Alternating Series Test. Since ag ~= .0105 and a19 ~ .0055, n = 10 terms will estimate
the value to an accuracy of 1072,

6.5.2. a) p > 1 (see Exercise 6.2.4).
b) Let f(x) =1/(xlogP(xz + 1). By Theorem 6.35,

—/:Of(ﬂc)d-rﬁsn—sSf(n)—/:of(x)d%

SO

s — sa] < f(n)+/oof(w)dw-

Since

. Jo zlogP(@4+1) ~ ), wlogP(z)  (p—1)log? t(n)’
it follows that

| < N 1 PR 1 ( 1 )
S—Sp| S S .
nlogf(n+1)  (p—1)log’ *(n) = n(p—1) \log" ' (n)

6.5.3. a) Since [1/(k+ D!]/[1/k!] = 1/(k+ 1) — 0 as k — o0, this series converges by the Ratio Test. The
ratio is less than or equal to 1/3 for k > N = 1. Hence by Remark 6.40, |s,, — s| is dominated by (1/3)"/(2/3) =
(1/2)(1/3)"=1. For n = 7, this last ratio is about 0.00069 still a little too big, but it’s about 0.00023 < 0.0005 for
n = 8.

b) Since ¥/1/kF =1/k — 0 as k — oo, this series converges by the Root Test. The root is less than or equal to
1/2 for k > N = 2. Hence by Remark 6.40, |s, — s| is dominated by (1/2)"*1/(1/2) = (1/2)" for n > 2. Since
1/2™ =~ 0.00098 for n = 10 and ~ 0.00049 for n = 11, choose n = 11.

c) Since (2841 /(k+1)!)/(2%/k!) = 2/(k+1) — 0 as k — oo, this series converges by the Ratio Test. The ratio is
less than or equal to 1/2 for k > N = 2. Hence by Remark 6.40, |s,, — s| is dominated by (22/2!)(1/2)""1/(1/2) =
(1/2)"~3. Thus by the calculations in part b), choose n = 14.

d) Since by L’'Hépital’s Rule {/(k/(k + 1))** = (k/(k+1))* — e~! as k — oo, this series converges by the Root
Test. The root is less than or equal to 1/2 for £ > N = 1 by Example 4.30. Hence by Theorem 6.40, |s,, — s| is
dominated by (1/2)"+1/(1/2) = (1/2)". Thus by the calculations in part b), choose n = 11.
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6.5.4. Fix n > N. If |aps1]/|ar| < o for k > N, then |ayi1| < zlay|, lanie] < 2%|an], ..., hence |ax| <
lan|2*=N for any k > N. Hence given n > N,

& > LN gn—N+1
0<s—sn= > la[<lan| D 2"V =lan] -z’
k=n+1 k=n+1

6.6 Additional tests.

6.6.1. a) The ratio of successive terms of this series is

2k +3

1.
%t2

Hence ag41 > ar > 0, so the series diverges by the Divergence Test.
b) The ratio of successive terms of this series is

2k+1 _, 4, 2
2k+5  2k+5 k+5/2

Hence it converges absolutely by Raabe’s Test.
¢) Let uw = log k and note that u — oo as k — co. Now for k > e,

log(1/|ax|) _ log(log k's™5%)  (loglogk)? _ log*u

log k log k logk = u

But the limit of this last quotient is (by L’Hopital’s Rule twice)

21 (1 21
i 2logu-(/u) . 2logu

U— 00 1 U— 00 u

Hence the series diverges by the Logarithmic Test.
d) Applying L’Hopital’s Rule twice, we obtain

. klog(VE/(VE —1)) log(Vk/(Vk — 1))

=1 =1l
el log k el logk/k
V-1 . —k2/2VE
= lim lim
k—oo  \k k—oo (VK —1)2(1 —logk)
. . —Vk/2
= lim lim
k—oo (Vk —1)2 k—oo 1 —logk
_ —1/(4Vk) B

Hence the series converges absolutely by the Logarithmic Test.

6.6.2. a) It converges absolutely for all p > 0 by the Ratio Test, since

(k+1)/e+tDr g1 1 1
= — —
k/ekp kep ep

for all p > 0. If p < 0, this series diverges by the Divergence Test.

b) Since log((log k)P'°8*) /log k = ploglogk — oo if p > 0, this series converges absolutely for all p > 0 by the
Logarithmic Test. It diverges for p < 0 by the Divergence Test.

c¢) It converges absolutely for all |p| < 1/e by the Ratio Test, since

E+1\"
= |p| 5 — |ple <1

(p(k +1))*/(k +1)!
(pk)*/k!

7 p(k—}—l)kJrl
(k4 1)ER
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for all |p| < 1/e. Similarly, if |p| > 1/e, this series diverges by the Ratio Test. If p = 1/e, then the terms of the
series become
Kk o
e’“ - k! e\/E

by Stirling’s Formula. By the Comparison Test and the p-Series Test, the original series diverges. For p = —1/e,
the series converges conditionally by the Alternating Series Test and what we just proved.

6.6.3. a) By L'Hopital’s Rule, £/1/(logk)gk — e =1 as k — oo so the Root Test yields r = 1. However, the
series converges by the Logarithmic Test since log((log k)'°8%)/log k = loglogk — 0o as k — oo.

b) The ratio of consecutive terms of this series is (2k + 1)/(2k 4+ 4) which converges to 1 as k — co. However,
since (2k +1)/(2k +4) =1 — (3/2)/(k + 2), the series converges by Raabe’s Test.

6.6.4. Since the range of f is positive, |f(k)| = f(k) for all £ € N. Moreover, by L’Hopital’s Rule,
/
s/ L P/

k—oo  logk koo 1]k =@

By the Logarithmic Test, if —« > 1, then this series converges absolutely. Hence it surely converges.

6.6.5. If p > 1 is infinite, let ¢ = 2. If p > 1 is finite, let ¢ = ,/p. Note that in either case, ¢ > 1. By hypothesis,
k(1 — |ag+1/ak]) > ¢ for k large. (Indeed, in either case, ¢ < p so this expression is eventually bigger than g.)
The inequality implies |axt1/ax| < 1 — ¢/k for k large. Since ¢ > 1, it follows from Raabe’s Test that > .- | ax
converges absolutely.
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CHAPTER 7

7.1 Uniform Convergence of Sequences.

7.1.1. a) Given € > 0 choose N so large that N > max{lal,|b|}/e. Then n > N and z € [a,b] imply
|z/n| < max{]al,|b|}/N < e. Hence x/n — 0 uniformly on [a, b].

b) Given z € (0,1), nx — oo, hence 1/(nx) — 0 as n — oo. If {1/(nz)} were uniformly convergent, then
there is an N € N such that |1/(Nz)| <1 for all 2 € (0,1). Applying this inequality to 2 = 1/(2N) we obtain
2=1/(N-(1/(2N)) < 1, a contradiction.

7.1.2. a) Since (336 4+ 3)/N — 0 as N — oo, given ¢ > 0, we can choose N € N so that 0 < (3% +3)/N < e.
Since z € [1,3] implies |3 — 35| < 3 + 336 and 2® + na® > 0+ n = n, it follows that

nz® +3 33

_ .36 36 36
- 3 =2 <3+3 §3+3
23 + nx

234 nx6 - p N

<e

for all z € [1,3] and n > N. Hence (nz® + 3)/(z* + nz®) — 233 uniformly on [1, 3], so by Theorem 7.10,

3 99 3 34

3 3+ —1
lim 7?7+ dr = / 233 de = .
n—oo [; a3 + nxoo 1 34

b) Since e > 1 implies e*N > 1 and e*N — 1 as N — oo, given € > 0, we can choose N € N so that
0 < etN —1<e. Since x € [0,2] implies e’ /m < et/ it follows that

|ez2/”71|:ez2/"71§e4/”71§e4/N71<5

for all z € [0,2] and n > N. Hence ¢* /" — 1 uniformly on [0, 2], so by Theorem 7.10,

2 2
lim e’ /"dmz/ dx = 2.
0 0

n—0o0o

¢) Let # € [0,3]. Since sin(x/n) > 0 for n > 3, we have g(z) := \/sin(z/n) +z+1+vVr+1>VI+/1=2
for n > 3. Given € > 0, choose N € N so that N > 3 and 2/N < e. Since 0 < sin(z/n) < z/n, it follows by
rationalizing the numerator that

sin(z/n)+z+1—(z+1)
Vein(z/n) +z+ 1+ Vo +1

x/n <3 -
— < —<e¢
2 T 2n

|Vsin(z/n)+z+1—Vz +1| =

for all z € [0,3] and n > N. Hence /sin(z/n) + z + 1 — v/z + 1 uniformly on [0, 3], so by Theorem 7.10,

3 3

2 14

lim vsin(xz/n) +z + ldx :/ v+ ldr = g(er 1)%/2 ‘2: 3
0 0

n—oo

7.1.3. Choose N so large that |f(z) — fn(z)| < 1 forall z € F and n > N. Set M := sup,cp |fn(z)| and
observe by the Triangle Inequality that |f(z)] < |f(z) — fn(2)] + |fn(x)] < 1+ M for all x € E. Therefore,
lfn(@)] <|f(x)|+1<(A+M)+1=2+ M foralln> N and = € E, i.e., {f,}n>n is uniformly bounded on E.
In particular, -

|fn(z)] < M :=max{2+ M, sup |fi(z)],..., sup |fn-1(2)]} < o0
z€[a,b] z€[a,b]
foralln € N and z € E.

7.1.4. Since g is continuous on [a, b], it is bounded by the Extreme Value Theorem, i.e., there is a C' > 0 such
that |g(z)| < C for all z € [a,b]. Since f is bounded and {f,} is uniformly bounded, there is an M > 0 such
that max{|f,(z) — f(z)| : = € [a,b],n € N} < M. Given € > 0 choose § > 0 so small that « < z < a+ ¢ or
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b>x >b— ¢ implies |g(z)| < ¢/M. By hypothesis, f, — f uniformly on [a 4+ §,b — 4]. Thus choose N so large
that « € [a+0,b — 6] and n > N imply |f,,(z) — f(z)] <¢/C. If n > N and = € [a,b] then

(e/C)-C=c¢ z € la+0,b— 0]

(o) = (gt = 1) — sl < { 17070 mERER TS

Therefore, f,g — fg uniformly on [a, b].

7.1.5. a) Given € > 0 choose N so large that n > N and z € E imply |f.(z) — f(z)| < ¢/ max{2, |a| + 1} and
lgn(z) — g(x)| < ¢/ max{2, |a| + 1}. Then n > N and x € E imply

€

9~ ¢

[(f +9)(@) = (fo + 90)(@)| < [f(2) = fu(@)[ +[9(z) — gn(2)] < §+

and
€

l(af)(z) = (afu)(@)] = || [f(z) = fulz)] < |a\m <e

b) See Theorem 2.12.

¢) Given € > 0 choose M > 0 so large that sup{|f(z)|,|g(z)| : x € E} < M. Choose N; so large that n > N;
and = € E imply |f.(x) — f(z)| < ¢/(3M) and |gn(z) — g(x)| < €/(3M). Since g, — g and g is bounded by M,
choose N so large that |g,(z)] < 2M for alln > Ny and « € E. If n > N := max{Ny, N2} and z € E then

2 €

(f9)(@) = (fagn)(@)] < (@) = fa(@)lgn(@)] + f(2)llg(2) = gn(@)| < 5 + 5 =€

d) Let fn(z) = 1/n and g,(z) = 1/x. Then f, — 0 uniformly on R and g, (z) — 1/x uniformly on (0, c0), in
particular, on (0,1), as n — oo. However, by Exercise 7.1.1b, f,(x)g,(z) = 1/(nz) does not converges uniformly
on (0,1).

7.1.6. Given € > 0 choose § > 0 so small that x,y € E and |z —y| < ¢ imply |fn(z) — fv(y)| <€¢/3. fz,y € E
and |z — y| < 4, then

lf (@) = f(y)l <[f (@) = (@) + v () = In@) 4+ [In () = Fy)] <e

Hence f is uniformly continuous on FE.

7.1.7. Let € > 0 and choose ¢ such that |z — y| < ¢ implies |f(z) — f(y)| < e. Let x € R and choose N such
that n > N implies |y, | < . If n > N, then |z + y, — x| = |yn| < 6, so |fn(z) — f(z)| = |f(z +yn) — f(2)] <e.

7.1.8. Choose N so large that [a,b] C [-N,N]. Let € [a,b] and n > N. Then > —N > —n, z/n > —1, and
it follows from Bernoulli’s Inequality that (1 + z/n)" T e® for n > N.
Let n > N, z > 0, and set f(z) =¢e” — (1 + z/n)". Then

n—1 n
f'(.r):ew—(l—l—f) zew—(l—l-g) >0
n n
since 1 + z/n > 1. Thus f takes its maximum on [a,b] at & = b. Therefore,
n b n
ez—(1+f) ‘Seb— <1+7) =0
n n

as n — oo. It follows that (1 + z/n)™ — e uniformly on [a, b]. In particular,

b an b
lim (1 + —) e Pdr = / dr =b—a.
n—oo [, n a

7.1.9. a) By the Extreme Value Theorem, f is bounded on [a, b] and there are positive numbers ¢y and M such
that ¢y < |g(z)| < M for all x € [a,b]. Hence 1/M < 1/|g(x)| < 1/¢p for all x € [a,b] and it follows that 1/g is
bounded on [a,b] and 1/(2M) < 1/|gn(x)| < €0 for large n and all z € [a,b], i.e., 1/g, is defined and bounded on
[a,b]. Hence by Exercise 7.1.5¢, frn/gn = fn - (1/gn) — f-(1/g) = f/g uniformly on [a,b] as n — co.
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b) Let f,(x) = 1/n and g,(z) = . Then f, — 0 uniformly on R, |g,,| > 0 for z # 0, and g, () — x uniformly
n (0,00), in particular, on (0,1), as n — oo. However, by Exercise 7.1.1b, fn(z)/gn(z) = 1/(nz) does not
converges uniformly on (0,1).

7.1.10. Given € > 0 choose Ny so large that k > Ng and « € E imply | fr(x) — f(x)| < €/2. Since fo;l | fre(z) —

f(z)| is bounded on E, choose N such that (1/n) fjil |fu(z) — f(z)]| <e/2foralln > Nandzx e E. lf x € E
and n > max{ Ny, N} then

lN 1 Ny €, €
ﬁkz::lfk(x)* Z|fk z)[+ 3 (*7)<§+§*€-

7.1.11. Since f is integrable, there is an M > 0 such that |f(x)| < M for all z € [0,1]. Choose ng € N so that
1—bp, <e€/(2M) and N > ng so large that |f,(z) — f(x)| < ¢/2 for n > N and z € [0, 1]. Suppose n > N and
x € [0,1]. Since the b,’s are increasing, b, < 1 for all n € N and n > ng imply that 1 — b, < 1 — b,,. Therefore,

b, by 1
x)dx—/o fule) de s/o lf(x)—fn(x)\dwr/bnIf(w)ldx

s%wa(l—bn)s

+

N
Y

7.2 Uniform Convergence of Series.

7.2.1. a) Since |sin(z/k?)| < |z|/k? < max{|al,|b|}/k? for any = € [a,b], this series converges uniformly on
[a,b] by the Weierstrass M—Test.

b) Let I = [a,00) C (0,00). Then x € I implies e %* < e7%®. Since this last series converges (it’s Geometric
with r = e~® < 1), the original series converges uniformly on [a,b] by the Weierstrass M—Test.

7.2.2. Clearly, |z*| < r* for 2 € [a,b] and r = max{]al, |b|}. Since [a,b] C (—1,1) implies r < 1 and the
geometric series ZZO:() r* converges, it follows from the Weierstrass M-Test that the original series converges
uniformly on [a, b].

7.2.3. a) Since |2FT/(k 4+ D)!|/|z*/k!| = |z|/(k + 1) — 0 as k — oo, this series converges pointwise on R by
the Ratio Test. Moreover, since @ € [a,b] implies |z|*/k! < c*/k!, where ¢ := max{|al, |[b|}, it follows from the

Weierstrass M—Test that the original series converges uniformly on [a, b].
b) Integrating term by term, we have

rkt

/E(x :I; 1<:+1) "= E(b) — E(a).

¢) Clearly, E(0) = 1. Differentiating term by term, we obtain E'(z) = Y ;- ,2"/k! = E(z). Thus y = E(z)
solves the initial value problem 3’ —y = 0, y(0) = 1.

7.2.4. The series converges uniformly on R by the Weierstrass M—-Test. Hence integrating term by term, we

obtain 12
=1 [ km
/ f(z :Zﬁ/o coskxdx—zk351n(2)

k=1

Since sin(kw/2) = —1 when k = 3,7,..., sin(kn/2) =1 when k = 1,5,..., and sin(knr/2) = 0 when k = 2,4, ...,
it follows that

/ f :,; 2% — k;%ﬂ

7.2.5. Since |sin(z/(k+1))/k| < |z|/(k(k + 1)), the series converges uniformly on any closed bounded interval
[a,b] by the Weierstrass M—Test. In fact, for any = € R,

x/(k—i—l’ Zk ||Z< k+1)_‘x|'
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Finally, the derived series > -, cos(z/(k + 1))/(k(k 4+ 1)) converges uniformly on R by the Weierstrass M—Test.
Hence differentiating term by term, we obtain

cos(z/(k +1))
Z k(k+1)

()] = SZ kﬂ

k=1

7.2.6. The series f(z) := > 7, sin(z/k)/k converges uniformly on [0,1] by the Weierstrass M-Test. Hence
integrating term by term,

1 L gin (2 = 3 1 cos 3 — cos 1
/0 f(z)dx = ; ;%sm(%) dxka:lk( k ( )‘0 ;(1 (k))
But |f(z)] <Y pe  1/k* <1432, 1/(k(k—1)) = 2. Hence | > pe (1 — cos(1/k))| < fol |f(2)] dx < 2.

7.2.7. Let F,, ,, :=> 1 _,, fx. Choose M > 0 so large that |g1(z)] < M for z € E. Since {g,} is decreasing and
nonnegative, it follows that |g,(z)| < |g1(z)| < M for all z € E.

Given € > 0 choose N so large that |Fy, . (z)| < €/(3M) for € E and m,k > N. Let € E and m,k > N. By
Abel’s Formula,

Z fe(@)gr(z)| < |F nm )| |gn(z)| + Z | Frem ()] (gr (%) — grt1(x))
k=m
< a7 M+ 537 9n(@) —90(@) < 5+ 537 (2M) =

7.2.8. a) Fix n > 0 and = € R. Since the absolute value of the ratio of consecutive terms of the series defining
B, is |z/2|/((k4+ 1)(n+k+1)) — 0 as k — 00, B,(x) converges by the Ratio Test. Moreover, by the Weierstrass
M-Test, By, (z) converges uniformly on each closed bounded interval [a, b].

b) Differentiating term by term,

/ (=1)F(n + 2k) raxyn+2k-1
B"("”):I; 2%!(n + k)! (5)

and

1 > (—l)k(n +2k)(n + 2k — 1) a\n+2k-2
Bie) =2 1Kl + )] (3) :

(Both these series converge uniformly on [a, b] by the argument in part a).) Therefore,
*B!(z) + zB! (m) —n?B,(x)

n+2k n? x\ nt2k
2k —1 1—— —
k'n+k )((n—i— )+ n+2k) (2)

i (n + 2k) Ank + 4k> (E)”W’C
k:' (n+k)! n+ 2k 2
_1)k-

- z:l -~ 1 N(n+ k—1)! (2)n+2k—2 = —2*By(2).

Thus 22B.!(z) + 2B/, (z) + (22 — n?)B,,(z) = 0 for all z € R.
¢) By the Product Rule,

(z" B, (z))" = 2" B, (x) + na""' B, ()

n (—=1)*(n +2k) sa\n+2k-1 n+2k—1
= kzo 2k'n+k (3) e ZQk'(n+k) (3)



7.2.9. By Example 6.32, D, () := vy sin(kz) < 1/]sin(z/2)| for z € (0, 27). Since [a,b] C (0,27), it follows
that | Dy, (z)] < 1/|sin(¢/2)| for ¢ = max{]al, |b|}. In particular, the original series converges uniformly on [a,b] by
the Dirichlet Test.

7.2.10. Fix z € [a,]]. Since

1/n
(*) fulx) = (£ 1/n (Z > < nl/nfn(m)

and n'/" — 1 as n — oo, it is clear by the Squeeze Theorem that ( k ik (x))l/n converges pointwise to f(x) as

n — o0o. Is it uniform?

Let € > 0. Since f is a uniform limit of continuous functions, f is continuous on [a,b]. Hence, by the Extreme
Value Theorem, there is an M > 0 such that |f(z)| < M for all z € [a,b]. Since f,, — f uniformly and n'/™ — 1,
as n — 00, choose an N so large that n > N implies

[fal@) = f@)] < § and /" 1] < 55

Notice by (*) that
n 1/n
fl@) = n'" folz) < fla) - (Z fz?(w)) < flx) = fnl@),

i.e., that

n 1/n

- (Z fl?(fﬂ)) < max{|f(«) = fa(@)],[f (@) = n'/" f(2)[} =2 n(z)

k=1

for all = € [a,b] and all n € N. But n > N implies that |f(z) — fn(z)] < /4 < € and

|[f(@) =" fu(@)] < (@) 11— n'/"| + 01 /? f(2) = ful2)] < MW +2* =

for all € [a,b]. (We have used the fact that n'/™ < 2 for all n € N. If you don’t want to verify this, note that since

nt/™ — 1, n'/™ is surely < 2 for large n.) Thus n(z) < € for all z € [a,b]. It follows that (3)_, f,?(x))l/" — f(z)
uniformly on [a,b] as n — oo. We conclude that the integrals of this sequence converges to the integral of f(x) as
required.

7.3 Power Series.

7.3.1. a) R =1 since

lak] k (2k +2)? )
= . — 1.
lap+1|]  (2k+1)2  k+1
b) Since
0 j odd
laj| =< 37 Jj = 2k where k is even

19 j = 2k where k is odd

it is clear that limsup;_, la;|1/7 =3, s0 R=1/3.

c) Since
‘aj| _ { 0 ] j# k2
3k ,] = k2
it is clear that limsup,_, |a;|'/7 =3, s0 R =1/3.
d) Since
0] = { 0 ) j# K3
kk j — k3

it is clear that limsup;_, |a;|"/7 = lim,_.c k¥ =1, 50 R =1.
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7.3.2. a) The radius of convergence is R = limy_.o V28 = 2. If 2 = 42 then 2¥/2F = +1 and the series
diverges by the Divergence Test. Therefore, the interval of convergence is (—2, 2).

b) Since {/|(—1)% + 3|* = 2 when k is odd and 4 when £ is even, the radius of convergence is R = 1/4. If x = 3/4
or z = 5/4 then the even terms of the series are 1 and the series diverges by the Divergence Test. Therefore, the
interval of convergence is (3/4,5/4).

c¢) By Theorem 7.22 and L’Hépital’s Rule, the radius of convergence is
R =limy_ o log((k+1)/k)/log((k+2)/(k+1)) = 1. At x = 1, the series telescopes to lim,,_,, logn = 0o, hence
diverges. At x = —1 the series alternates. Since (log((z + 1)/x))’ = —(z(z + 1))~ < 0 for > 0, the terms of
this series decrease monotonically to 0. Hence by the Alternating Series Test, the series converges for x = —1.
Therefore, the interval of convergence is [—1, 1).

d) By Theorem 7.22, the radius of convergence is R = limy_,o(k 4+ 2)/(2k + 1) = 1/2, i.e., the series converges
when 22 < 1/2. At x = £1//2 the terms satisfy

ak+1_2k+1_1_ 3/2
ar  2k+4 E+2

Hence the series converges at © = 4+1/1/2 by Raabe’s Test. Therefore, the interval of convergence is [~1/+v/2,1/v/2].

7.3.3. a) Since |a;| = |ax| when j = 2k and |a;| = 0 when j is odd, we have limsup, . |a;|"/7 =

= limsup,,_,, /|ax|"/¥ = 1/V/R so the radius of convergence is v/R.

b) limsupy_, . |a?|'/* = limsup,,_, .. (lax|*/¥)? = 1/R? so the radius of convergence is R?.

7.3.4. Let R, represent the radius of convergence of ZZC:O axz® and R, represent the radius of convergence
of 312, brxk. Since |ag|'/* < |bg|'/* for large k, it is clear by definition that R, > R,. Hence if Yoreo bzh
converges on an open interval I then I C (—Ry, Rp) € (—Rq, Ry). Thus Y ;2 apa® converges on I.

Let I =[-1,1), ay = (=1)*/k, by = 1/k for k € N. Then |ax| = |bx| and > - | bga* converges on I. However,
Yooy apz® does not converge for # = —1, hence does not converge on I.

7.3.5. Since |ak\1/k < MY* 1 as k — oo, the radius of convergence of f satisfies R > 1.

7.3.6. a) Let f(x) = > ;= arz®. By hypothesis and observation, f(z) converges for x = 0 and = = 1. Hence
by Theorem 7.21, R > 1 and f(x) converges for all z € [0, 1]. In particular, it follows from Abel’s Theorem that
L:= f(1) =lim,_;_ f(r). Hence > ., ai is Abel summable to L.

b) The Geometric Series

o0 [ee]

DI

k=0 k=0

converges for any 0 < r < 1. Thus > ;- (—1)* is Abel summable to 1/2.

7.3.7. a) For |z| < 1, f(z) = (3/z) e, (@®)* = (3/x)(23/(1 — 23)) = 322 /(1 — 23). It does not converge at
x = £1. Therefore, f(z) = 322/(1 — 23) for z € (—1,1).
b) For |z| < 1, zf(z) = Y ey ka*~1 so

T e 2
g(x) ::/0 tf(t)dt:Zxk = 133_1;.
k=2

Hence zf(z) = ¢'(x) = (z%/(1 — x))’ = (2z — 2?)/(1 — x)2. The series does not converge at x = £1. Therefore,
flx)=(2-1)/(1 —2)? for z € (-1,1).

¢)For 1 —az| <1, (1 —2)f(z) = > e (2k/(k+ 1)1 — )" so (1 —2)f(z)) = =23 4o k(1 — x)*. Let
g(x) =332, k(1 —z)k. Then

oo

k=1

(Note: g(x)/(1—=) is defined at z = 1 and equals 1.) Thus g(x)/(1—2) = (1—-1/x) = 1/2?,i.e., g(z) = (1—z) /22
Hence,
(1—z)f(x) =— /1 g(x)de = 2/1 (1 - l) dt = 2(logz + % —1).

t 2
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The series does not converge at x = 0,2. Therefore, f(x) = 2(logz + 1/ —1)/(1 — x) for z € (0,2), x # 1, and

f(1)=o.
d) For |z] < 1, 23 f(2) = Y pe g 23D /(K + 1) so (23 f(z)) = 33 o 2*+2 = 322 /(1 — 2®). Hence

T2 1= gy,
3 3
P =3 [ oga=— [ = logli- o

The series converges at x = —1. Therefore, f(x) = log(1/(1 — 23))/23 for x € [-1,1), x # 0, and f(0) =

7.3.8. Suppose limsup |ay/ar+1| < R. By Exercise 2.5.8 liminf |ag41/ak| > 1/r for some r < R. Hence
it follows from definition that |ag1/ax| > 1/r = v*/rk*! for k large, say k > N. In particular, £ > N implies
lagr®| > |ag_1r*"1 > -+ > |anr™| > 0. Therefore, Y 7=, axr” diverges by the Divergence Test, which contradicts
the fact that » < R and R is the radius of convergence. On the other hand, if liminf|ay/ag+1| > R then
limsup |agy1/ak| < 1/r for some r > R, i.e., |ags1/ax| < 1/r = r¥/rF*+1 for k large. Hence axr* is eventually
decreasing, in particular, bounded above, say by M. If R < rq < r then it follows that akrlg < M(ro/r)F for

k large. Since the geometric series Y po,(ro/r)* < oo, it follows from the Comparison Test that Y o, axry
converges, which contradicts the fact that ro > R and R is the radius of convergence.

7.3.9. The coefficients of this power series are given by ay = ((—1)* +4)7*. Since /ay = 1/3 if k is odd and
1/5 if k is even, the radius of convergence of this series is R = 3. Thus the series converges uniformly on any
closed subinterval of (—3,3). Differentiating term by term, we obtain

for 0 < x < 3. Now [ g(t)dt =Y ;2 a*/3% = 2/(3 — z) by Theorem 6.7, so g(z) = (z/(3 — x)) = 3/(3 — x)*.
Hence |f/(x)] < 3/(3 — )% for 0 < z < 3.

7.3.10. Since ay, | 0 as k — oo, the radius of convergence of the power series
o0
Yot

is greater than or equal to 1 (see the proof of Exercise 7.3.5), i.e., f(z) converges for all x € [0,1). By the
Alternating Series Test, Zzozo(—l)kak converges, so f(1) converges. Hence by Abel’s Theorem, f is uniformly
continuous on [0, 1]. In particular, given € > 0 there is a ¢ > 0 such that |z — y| < § and z,y € [0, 1] imply

oo

Z Fay(x —y)‘ lf(x) = fy)| <e

7.3.11. a) Since

Zlogk log(n!) and /logx:nlognfnJrl,
1

we have by Theorem 6.35 that
0 <log(n!) —nlogn+n—1<logn.

Exponentiating this inequality, we have

n!

1< —e" <.

nn

Therefore,
n" < n! enfl < nn+1

for all n € N.

b) The radius of convergence of this power series is 1/e. The series diverges at © = 1/e because its terms satisfy
n"/(nle™) > 1/(ne) by part a). It converges at x = —1/e by the Alternating Series Test but evidently does not
converge absolutely. Thus the series converges absolutely on (—1/e,1/e).
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7.4 Analytic Functions.

7.4.1. a) By Example 7.44, cosz = Y o, (—1)k2?* /(2k)! for z € R. Substituting 2z for z, we have cos(2z) =
Y no(—4)ka?k /(2k)! for € R. Thus

2 _ 2 e (A)ka?t
x‘+cos(2x)=1—=x +kZ=2W

for x € R.
b) By Example 7.45, 37 = 1983 = Y~ 'k log® 3/k! for all 2 € R. Thus by Theorem 7.33

2 2k loghF 23
231 — z g
. kzﬁ (k—2)!

for x € R.

c) Since cos?

x — sin? z = cos(2z), it follows from Example 7.44 that

o o e (DR S (4R
cos a:fbln2x—kzzow _27

for z € R.
d) By Example 7.45, e* — 1 = > 72 zF/kl = 2} ;7 2% /(k + 1)!. Hence (e —1)/z = Y ;o 2"/(k + 1)! for
z € R.

7.4.2. a) For |z| < 1 we have by the Geometric series and Theorem 7.33 that

o

1fx5 _ Iz_:(_x)S _ ;(_1)k$5k+1.

k=0 =0

b) By Theorem 7.33 and Example 7.45,

e’ o 2" - ko k N AT
e (T8) (Bere) -2 (5 9)-

k=0 k=0

for |z| < 1.
¢) Since |z| < 1 implies t = [#2 — 1| =1 — 22 € (0,1) and (—1)¥+1(=1)* = —1, we have by Example 7.49

O (L)1 _gp2)k < .
SR R

for |z| < 1.
d) Integrating the binomial series term by term,

aresinT = /0 \/% - g/or <_2/2> (—1)F42F dt = i <_;/2) H%;Li

k=0

for all |z] < 1.

7.4.3. a) Since f(x) = e® implies f*)(z) = e for all k& > 1, the Taylor expansion of ¢® at x = 1 is e* =
Y reg el —1)%/k! valid on R by Theorem 7.43.

b) By Example 7.49, log, 2° = 5logz/log2 = 5 ;= (=1)*"1(z — 1)*/(klog2) for 0 < z < 2. The series
converges at z = 2 by the alternating series test but diverges at @ = 0. Hence this expansion is valid on (0, 2].

¢) If f(x) = 2% —x + 5 then f/(z) = 322 — 1, f'(z) = 6z, fO(z) = 6, and f*)(z) = 0 for all k > 4. Thus
f()y =5, f(1)=2, f"(1) =6, fG(1) =6, and f* (1) = 0 for all k > 3. Hence f is analytic on every bounded
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interval by Theorem 7.43 and 23 —x +5 = 5+ 2(x — 1) + 3(x — 1)? + (x — 1)3. In particular, this expansion is
valid on R.
d) Since f(1) =1, f/(1) =1/2, /(1) = =1/2% and ™ (1) = (=1)""'1-3---(2n — 3)/2" for n > 2, we have

Loz —1 (D3 (2 - 3)
Ve=1+ 2 +kZ:2 2.4 (2k) (x — 1"

The radius of convergence is R = 1, i.e., the endpoints of the interval of convergence are 0 and 2. Since the ratio of
successive coefficients is (2k —1)(2k+2) =1—(3/2)/(k+1), it follows from Raabe’s Test that the series converges
absolutely at both endpoints. Thus the expansion is valid for = € [0, 2].

7.4.4. Since P*)(z) = 0 for k > n and 2 € R, the Taylor series truncates. Thus set By = P*) () /k!.
7.4.5. We begin with a general observation. If f is even and differentiable, then f’(0) = 0. Indeed,

f/(0) = lim M: lim w:_ lim M:_f’(o).

h—0— h h—0+ —h h—0+ h

a) Suppose that f is odd. By iterating Exercise 4.1.9, we see that all derivatives of f of even order are even
functions. Hence, by our opening observation, f(2¥)(0) = 0 for all ¥ € N. Thus the Taylor series contains only
odd terms.

b) Suppose that f is even. By iterating Exercise 4.1.9, we see that all derivatives of f of odd order are even
functions. Hence, by our opening observation, f(*=1)(0) = 0 for all k € N. Thus the Taylor series contains only
even terms.

7.4.6. Using the substitution u = a — z, du = —dz, we have

o 0
/ gj"f(nJrl)(a —x)dr = / (a— u)nf(n+1)(u) du.
0 a

Thus by Theorem 7.50 (with 2o = 0), R}:°(a) — 0 as n — oo, for all @ € R. Hence by definition, f(z) =
S o FR(0)2* /k! for € R.

7.4.7. a) Fix z € [~1,1]. By Theorem 4.24, ¢ = Y372 22 /k! + e°2™ /n! for some ¢ between 0 and z. Since
ez /n)| < 3/nl, it follows that |e*” — S iza @ k| < 3/n! for all x € [~1,1]. Therefore,
1 2 nd 1 .’1}2k 3
-
/0 kZ:O o K! n!
Since fol 22% /Kl dz = 1/((2k + 1)k!), this completes the proof of part a).

b) Notice that 3/n! < 1075 holds when n > 9. Since 22:0 1/((2k+1)k!) = 1.4626713, it follows from part a) that
14626613 < [ ¢*” dz < 1.4626813. By symmetry, then, 2.9253226 = 2 - (1.4626613) < [, ¢*” dz < 2.9253626.

7.4.8. If f is analytic on (a,b) then given zo € (a,b), f(z) = Y neo f*¥ (20)(x — 20)* /! has a positive radius
of convergence. Hence by Theorem 7.30, f'(z) = Y po, f*)(20)(z — 20)*~!/(k — 1)! also has a positive radius of
convergence. Thus f’(x) is analytic on (a,b). The converse follows similarly integrating term by term.

7.4.9. Modifying the proof of Theorem 7.43, we see that f is analytic. Thus the Taylor polynomials f,, of f
converge to f uniformly on [a,b] C I. Let C' > 0 satisfy |f(z)| < C for z € I. Given ¢ > 0, choose N such that
n > N implies | f, (z)— f(2)| < ¢/C fora € [a,b]. Thenn > N implies |(f-f,) ()~ f*(z)] = [f(2)[ [ fo(2)—f(2)] <&
for x € [a,b], i.e., f - fn — f? uniformly on [a,b] as n — co. But by hypothesis,

b n b
/ f(x)'fn(ﬂc)d%:Zak/ f(x)zFdz =0
@ k=0

a

for all n € N. Therefore, fab f%(x)dz = 0. Since f2 > 0, we conclude that f2, hence f, is identically zero on [a, b].
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7.4.10. Since f is continuous, the hypothesis implies |f(z)| = 0 for all = € (a,b), i.e., f =0 on (a,b). But 0 is
analytic on (—o0,00), so by Theorem 7.56, f =0 on R.

7.4.11. Choose k € N such that £ < < k+ 1 and let € (0,1). Since (’Z) > 1 and z* > 2P, it follows from
the Binomial Series expansion that

(14+2)° >1+ (i)xk > 1427
Let a,b € R. If a =0, b= 0, or |a| = |b], then
*) (Jal + [61)7 > al” + [b}

obviously holds. If a # 0 # b, then we may suppose |a| < |b|. Applying the above inequality to « = |a|/|b| verifies
(*) in this case as well. Thus (*) holds for all a,b € R. By induction,

n n B
Z jax]” < (Z |ak|>
k=1 k=1

for n € N. Taking the limit of this inequality as n — oo establishes the given inequality.
7.5 Applications.

7.5.1. Let f(x) = 2% + 322 + 42 + 1. Since f'(x) = 322 + 62 + 4, f is increasing and has only one real root. By
Newton’s method,
oy 4+ 3xh g +Ar, g +1 22 4327 41
322 | 4+ 6w, 1 +4 3x3_1 + 61,1 +4

Using an initial guess of g = 0, we obtain 1 = —.25, 2o = —.313953. = —.31766. = —.3176721...,
Ty = —.3176721....

7.5.2. b) Let a = 3, b = 4, and f(xz) = sinx. Then f'(z) = cosz, f”’(z) = —sinz. Therefore, we can set
M = 0.75 and €y = 0.65364. Then e¢q/M = 0.8636912, ro = .15 and r = 0.1736732. If 29 = 3 is the initial guess,
then |zg — 7| < .15 and by the proof of Theorem 7.58, |z, — m| < (0.1736732)"(.15), i.e., |z4 — 7| < 0.000136465.
Using a calculator, we see that x1 = 3.142546543, x5 = 3.141592653, x3 = 3.141592654, and x4, = 3.141592654.
My calculator will not show more than nine places, so I cannot tell how many more digits we picked up going from
x3 to z4. Nevertheless, it is clear that |z4 — 7| < 0.0000000005 which is much smaller than 0.000136465.

Tp = Tp—1 —

7.5.3. The proof is by induction on n. It is true for n = 0 by Weierstrass’ Theorem. Suppose there is a function
g € C"1 such that g exists nowhere on R. Set f(x) = [ g(t)dt. Then f()(z) = g("~V(z) is continuous but
F+D) = () exists nowhere on R. Hence by 1nduct10n this result holds for all n € N.

7.5.4. The line tangent to y = f(x) at (zn—1, f(zn—1)) has equation y = f(zn_1) + f'(zn-1)(x — Tp_1). To
find its z-intercept, set y = 0. Solving for x, we obtain x = z,_1 — f(2n—1)/f'(£n—1) as promised.

7.5.5. Suppose there exist ¢,p € N such that

y = Z 2k>' :Zw et
Then
(*) (=P (2p)lg/p — (—1)PT(2p)! Y (—1 = Y (=DFTTp)l/(2k).
k=0 k=p+1

Now (2p)!/(2k)! € N for each 0 < k < p, so the left side of (*) is an integer. On the other hand, the right side
lies between 1/((2p+1)(2p+2)) and 1/((2p+1)(2p+2)) —1/((2p+1)(2p+2)(2p+ 3)(2p +4)), i.e., is a number
between 0 and 1. This contradiction proves that cos(1) is irrational.

7.5.6. Let |f"(x)| < M and choose rg < €g/M. Let § > 0 be so small that §/¢y < r2 and suppose |f(zg)| < d.
We claim that |z, — z,_1| < r§ " for n € N. Note by (19) that

6

€0

<r2

|1 — 0| =

f/
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Hence the claim holds for n = 1. If it holds for some n € N then by Taylor’s Formula,

[f(@n)l = [f(zn) = f(@n-1) + fzn-1)|
= |f(xn) - f(mnfl) - f/(xnfl)(xn - mnfl)l S M|xn - mn71‘2-

Therefore, 2,41 — 2n| = | f(@0)/f(zn)] < M|2y —20_1]?/e0 < ra" ™' <7372, Thus the claim holds for all n € N.
Now [@n 41— Tm| < [Tng1 — |+ + [Tt — | < Do, g 7T = ™2 /(1—r). Therefore, {z,} is Cauchy,
so converges to some ¢ € R. Taking the limit of (19) as n — oo, we obtain ¢ = ¢ — f(c)/f’(c), i.e., f(c) = 0.

7.5.7. a) Since f(B,) — f(an) = f(Bn) — f(z) + f(z) — f(an), and

6n_x T — Qp

1= ,
anan 5n7an

We have

Lt (1) (220)-

(i) (=)

b) Let v = f/(z). Then both terms on the right side of part a) which end in —y converge to zero as n — oco.
Since x € [ay,, Br), it is also clear that

B

— X
—— <1 and
anan n — Qn

=%

Hence, by the Squeeze Theorem, the right side of part a) converges to 0 + 0 = 0. We conclude that

n—oo /Gn — Qi
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SOLUTIONS TO EXERCISES

CHAPTER 8
8.1 Algebraic Structure.

811 a) x—y| < |x—al + |z —y| <2+3=5.

By vector algebra and the Cauchy-Schwarz inequality, |x-y—x-z| = |x-(y—2z)| < ||%]| [y —z|| < 2-(3+4) = 14.
By vector algebra and Cauchy-Schwarz, |x-(y —2z) —y-(x—2)|=|(y —%x) 2| < ||x—y]| ||z]| <2-3 =6.
By vector algebra and Cauchy-Schwarz, | ||x —y[? —x-x| =] —2x-y+y y|=|(-2x+y)-y| <2-1=2.
By Theorem 8.9 and Remark 8.10, |[x xz —y x z|| = |[(x —y) x z|| < 2-3 =6.

f) By Cauchy-Schwarz and Remark 8.10, |x - (y x z)| < ||x||||y] [|z]] <1-2-3 =6.

b)
c)
d)
e)

8.1.2. a) By Cauchy-Schwarz, [|3v|| < |a-b][[c|+|a-c[[[b] +|c-b] [[a]| < 3[al| [[b]| [lc[| < 3, so [|v]| <3/3 = 1.

b) By Cauchy-Schwarz, |a-c—b-d|=|a-c—a-b+a-b—b-d| < |a]| ||b—c||+ b/ [la—d| < |[b—c||+|la—d].

¢) By Theorem 8.9 and Cauchy-Schwarz, |a-(bxc)|? = |[(axb)-c|? < ||laxb]||?||c||? = (|a||? |[b]*—(a-b)?) ||c||?> <
(1—la-b?)|lc|?> <1—la-bJ% Thus y/la- (b xc)[2+|a-b2 < 1.

8.1.3. It is clear that equality holds if either x = 0 or y = 0. Are there any others?

Suppose that neither x nor y is zero. By the proof of Theorem 8.5, the only place an inequality slipped in is
on the left side of (3); all other steps in the proof were identities. Thus we get equality in the Cauchy-Schwarz
inequality if and only if ||x — ty|| = 0, i.e., if and only if x = ty. But this is exactly what it means for x to be
parallel to y.

8.1.4. a) Let 0 be the angle between ¢(t1) — ¢(to) and ¢(t2) — ¢(to). Since ¢(t1) — ¢(to) = (1 — to)b and
d)(tg) — ¢(t()) = (tQ — t())b, it follows that

(ty — to)(t2 — to)|bI*

cosf = ==+l
|ty — to| [t2 — tol ||b|?

Thus 60 is 0 or 7.

b) By definition, a and b are parallel if and only if a = tb, i.e., |a-b| = |t| |a]> = ||a|| |[b||. In view of (2), this
happens if and only if | cos @] = 1, i.e., if and only if 8 is 0 or =,

On the other hand, a and b are orthogonal if and only if a-b = 0. By (2), this occurs if and only if the angle
between them is /2.

8.1.5. Let a, b, ¢ denote the vertices of A, and C be the line segment between a and b. Since L is the line
segment between (a+ c)/2 and (b + ¢)/2, L has direction

a+c_b+c a—b

2 2 2

V=

and length ||v||. Since v is parallel to b — a, L is parallel to C. Finally, the length of L equals ||a — b||/2, which
is exactly half the length of C.

8.1.6. a) (4,5,6) — (1,2,3) = (3,3,3), (0,4,2) — (1,2,3) = (—1,2, 1), and (3,3,3)-(~1,2, —1) = 0, so the sides
of this triangle emanating from (1,2, 3) are orthogonal.

b) Let (a,b,c) be a nonzero vector in the plane z = x orthogonal to (1, —1,0). Then a = ¢ and 0 = (a,b,¢) -
(1,-1,0) = a — b, i.e., such a vector must have the form (a,a,a), a # 0.

c¢) Let (a,b,c) be a nonzero vector orthogonal to (3,2,—5), i.e., 0 = (a,b,¢) - (3,2,-5) = 3a + 2b — 5e. If
a+b+c=4then b= (20—8a)/7, ¢c = (8 + a)/7. Thus such a vector has the form (a, (20 — 8a)/7, (8 + a)/7),
a # 0.

8.1.7. By symmetry, we may use any side of ). The longest diagonal of this cube is x := (b,b,...,b) —
(a,a,...,a) = (b—a,...,b—a). If § is the angle between this longest side and the “first” side of Q, y :=
(a —b,0,...,0), then by definition,

. N2
cost = Xy _ (b—a)

[yl V(b —a)*
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Thus 6 = arccos(1/+/n). For n = 3, this is about 54.74 degrees.

8.1.8. a) The Associative Property is proved in the text. By the Commutative Property of real numbers,
X+y = (xlv'“axn) + (yla"'ayn) = (1‘1 +y17'~'7$n +yn) = (yl +x17-"7yn +xn) = y+X and X'y =
Tyt T Y =Y Tt Y T =Y X

By the Distributive and Commutative Properties of real numbers, x-(y+2) = (21,...,2,) (y1+21, - -, Yn+2n) =
ri(yr+21)+ 2 (Yn+20) =191+ -+ Ty + 2121+ -+ Tp2y = Xy +x- 2. The rest of these identities
follow in a similar way from corresponding properties of real numbers.

b) By definition, x X x = (2923 — Tow3, 103 — 123, T122 — T1x2) = 0, and x X y = (Z2y3 — Z3Y2, T3Yy1 —
T1Y3, T1Y2 — Tay1) = —(—T2Y3 + Tay2, —T3y1 + T1Y3, —T1Y2 + T2y1) = —y X X. This proves i)

(ax) x y = (awoys — ax3y2, 0T3y1 — aT1Ys3, ax1Ys — axay1) = o(x X y) = (2(ays) — w3(ays), z3(ay:) —
z1(ays), z1(ay2) — z2(ayr)) = x X (ay), so ii) holds.

By parts iv) and v), [xxy[|* = (xxy)-(xxy) = x-(y x (xx¥)) = x-((y ¥)x— (y-x)y) = (y-¥)(x-x) — (x-¥)*.
Thus vi) holds

) Ix x yll = sin6llxl Iyl < 1- [x1l Iyl

8.1.9. By the Cauchy—Schwarz Inequality,

n n 1/2 n 1/2
Tn ::Z|akbk‘E(‘a1|:---7‘an|)'(|b1‘7---a|bn|)S <Z|al€2> <Z|bk|2>
k=0 k=0 k=0

for all n € N. Notice that |ax|* = a? and the sequence x, is monotone increasing. Hence it follows from
the Monotone Convergence Theorem and hypothesis that x,, converges to a finite real number as n — oo, i.e.,
> re; arby is absolutely convergent.

8.1.10. Homogeneity and positive definiteness are obvious. To show the triangle inequality holds, let a =
(a1,...,m) and b = (by,...,b,). Then

la+blly =" lax +bel < Y laxl + [b| = l[all + [b]1,
k=1 k=1

and
la+bllec = sup |ax +bi| < sup |ax| + sup [bi| =alls + [|blo-
1<k<n 1<k<n 1<k<n

8.2 Planes and Linear Transformations.

8.2.1. a) By definition, a — b and a — c lie in the plane. Since a, b, ¢ do not lie on the same straight line,
Remark 8.10 implies that d := (a — b) x (a — ¢) is nonzero. Thus by Theorem 8.9vii, d is a normal to the plane.
Hence, by the point-normal form, d - (x — a) = 0 is an equation of the plane through a, b, c.

b) The line is parallel to a, so a “lies in the plane.” Since b — ¢ is another vector that lies in the plane, it follows
from part a) that an equation of the plane is given by d - x = b - d, where d = a x (b — c).

8.2.2. a) Since (1,0,0,0) lies on the plane, the constant term in the equation of this plane must be nonzero.
By dividing by it, we may suppose that the equation of the plane looks like ax + by + cz + dw = 1. Since this
plane contains (2,1,0,0), (0,1,1,0), and (0,4,0,1), it follows that a =1, 2a+b=1,b+c=1, and 4b+d =1,
ie,a=1,b=—1,c=2,and d = 5. Thus an equation is x — y + 2z + 5w = 1.

b) As in part a), we may suppose that ax + by + ¢z + dw = 1. Since the plane contains ¢(0) = (0,0,0,1) and
o(1)=(1,1,1,1), wehave d=1and a+ b+ c+d =1, i.e., a+ b+ ¢ = 0. Since it also contains (0) = (1,0,1,0)
and ¥ (1) = (1,1,2,1), it follows that

a+b+c¢c=0
at+c=1
a+b+2c+d=1.
Solving these simultaneous equations, we have b= —1,¢=0,anda=d=1,ie,x—y+w = 1.
c) If the plane is parallel to 1 4 -+ + 2, = 7, then a normal is given by n = (1,1,...,1). Since Y .;_, k =
n(n +1)/2, it follows that an equation of this plane is z1 + -+ + z,, = n(n + 1)/2.
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8.2.3. All we have to do is find two lines which lie in parallel planes. We will choose two planes with normal
(0,0,1), e.g., z =0 and z = 1. Let ¢(t) = (0,0,0) + ¢(1,1,0) and 1(¢) = (0,0,1) + ¢(3,4,0). These lines are not
parallel because their “direction vectors” (1,1,0) and (3,4,1) are not parallel. If they intersect, say ¢(t) = ¥ (u),
then t = 3u, t = 4u, and 0 = 1, a contradiction. It follows that the lines do not intersect.

8.2.4. a) The columns of B are T(e;) = (0,1,1,1), T(e2) = (0,1,0,1), T(e3) = (0,0,—1,0), and T'(eq) =

(0,0,0,1).
byB=[1 -1 1]
c¢) The columns of B are T'(e;) = (1,—1), T'(ez) = --- = T(en—1) = (0,0), and T'(e,) = (—1,1).

8.2.5. a) T(1,0) = T(1,1) — T(0,1) = (1,7, —1), and T(0,1) = (4,0,1). Thus

b) (1,0,0) = a(1,1,0) + b(0,—1,1) + ¢(1,1,—1) implies b = ¢ = 1 and @ = 0. Thus 7'(1,0,0) = 7°(0, —1,1) +
T(1,1,-1) = (1,0) 4+ (1,2) = (2,2). Similarly, 7(0,1,0) = (e — 2,7 — 2) and 7'(0,0,1) = (e — 1,7 — 2). Thus

2 e—2 e—1
A_{Z m™—2 7T—2:|.

c¢) Let T(1,0,0 )

= (a,b). Note that 7(0,0,1,0) = 0.5(7°(0,1,1,0) — T(0,1,~1,0)) = 0.5((3,5) — (5,3)) =
(-1,1) and T(O ,0)

b)
0.5(7(0,1,1,0) + 7(0,1, ~1,0)) = 0.5((3,5) + (5,3)) = (4,4). Therefore,
a 4 -1 -7
A:{b 4 1 73]'

b) Let T(1,0,0,0) = (a,b,¢). Then T(0,1,0,0) = T(1,1,0,0) — T(1,0,0,0) = (5,4,1) — (a,b,¢) = (5 — a,4 —
b,1—c¢), so

“

a b5—a 1 -7
A=1|b 4-b 2 -3
c 1—¢ 0 1

8.2.6. By Theorem 8.9vii, a normal to the plane II is given by (b —a) x (c — a). Hence an equation of the
plane is given by

(b—a)x(c—a))-(z,y,2) =((b—a)x(c—a))-a
By Theorem 8.2, this can be rewritten as ((x,y,z) —a) - ((b —a) x (c — a)) = 0 which is equivalent to

r — ay Yy —az Z —das
det b1 — ay bQ—a2 b3—a3 =0
i —ap C2—Gaz2 C3—ag

by Theorem 8.9.

8.2.7. a) Let A represent the area of P and 6 represent the angle between a and b. The base of P is ||b|| and
its altitude is ||al| sin . Hence A = ||a||||b||sinf = ||]a x b|| by Remark 8.10.

b) Let V represent the volume of P and 6 represent the angle between a x b and c¢. By part a), V = ||ax b|| - h,
where h = ||c|| - | cos§]. But by (2), cosf = (a x b) - ¢/(||la x b|| ||c||). Therefore,

(axb)-c|

V =laxb|-h=laxb HCHW

=|(axb)- c|

8.2.8. If (zg, Yo, 20) lies on the plane IT then the distance is zero, and by definition, az¢ + byo + ¢z — d = 0.
Thus the formula is correct for this case.

If (20, Yo, 20) does not lie on the plane II then the distance h from IT to (o, yo, z0) is defined to be ||v|| where
v = (zo — 21, Yo — Y1, 20 — 21) is orthogonal to IT and (x1,y1,21) lies in IT. Let (z2,ya2, 22) be a point on II different
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from (x1,y1,21) and 6 represent the angle between w := (xg — @2, %0 — Y2, 20 — 22) and the normal (a, b, ¢) of II.
Then we can compute cos  two ways:

(W - (a,b,¢)]

" = | cos 0| = B
il f[(a; b, )l

[wil”
Since w - (a, b, ¢) = axg + byg + czp — d, it follows that h = |axg + byo + ¢z — d|/Va? + b% + 2.
8.2.9. By definition, B(z,y) = (zcosf + ysinf, —xsinf + y cos ). Thus
| B(z,y)||? = 2*(sin? 6 + cos? 0) + y?(sin® 0 + cos® 0) = 2 + y* = ||(=, v)|*.
If ¢ is the angle between (z,y) and B(x,y) then by (2) and what we just proved,

_ (zy) Blz,y) _ (22 + y?) cos f o
cosp = Iz, ) IB@ )l (@) |B(z, )] = cosd.

8.2.10. Since T is linear, if the components of f are differentiable, then

h h
It follows that T = [ f{(z) ... f}.(x)]. Therefore,
a) T = 2z

COS ™

e%
b) T = | 1/(3V/z2)
| 2z
r 0
0
c) T= 0
2z +1
L2z — 1

8.2.11. a) If ||x|| = 1, Theorem 8.17 implies ||T'(x)|| < ||T||. Taking the supremum of this inequality over all
Ix|| = 1, we obtain M; < ||T|.
b) If x # 0, then the norm of x/||x| is 1, so

2 ()

c¢) Taking the supremum of this last inequality over all x # 0, we obtain ||T']| < M;. Combining this with part
a), we have My = ||T|.

On the other hand, by part b) and Theorem 8.17, ||T'(x)|| < M ||x||. Thus the set used to define M, is nonempty,
bounded above by M; and bounded below by 0. Hence, by the Completeness Postulate, My exists and satisfies
My < M.

Finally, use the Approximation Property to choose Cj > 0 such that C% | M as k — oo and take the limit
of |T(x)|| < Cillx|| as k — oo. We obtain ||T'(x)] < Ma|x| for all x € R™. Taking the supremum of this last
inequality over all ||x|| = 1, we conclude that M; < Ms.

8.3 Topology of R™.

8.3.1. a) This is the plane without the z-axis. It is open but not connected since it is the union of the open
upper half plane and the open lower half plane.

b) This is the set of points on or inside the ellipse 22 + 4y? = 1. It is closed because its complement {(x,y) :
22 +4y? > 1} is open. It is evidently connected.

¢) This is the set of points on or above the parabola which lie below the line y = 1. It is neither open nor closed.
However, it is connected.
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d) This is the set of points inside the two branches of the hyperbola 22 — y? = 1 which lie above the line y = —1
and below the line y = 1. It is open but not connected.

e) This is the set of points on the circle (x —1)2 +4? = 1 or on the x axis between 2 = 2 and = = 3. Tt is closed
and connected.

832 . LetyeV={zeR":s< ||z —al| <r}andlet e < min{|y —a|| — s, — |ly — al|}. If w € Bc(y) then
lw —all <flw =yl +lly—all <r—lly—all+ ]y —al =

and
[w—all >y —all = [lw=yll >y —al+s—[y—al =s.

Hence w € V and V is open by definition.
A similar argument shows that {zx € R" : ||z — a|| > r} and {x € R" : ||x — a|| < s} are both open, hence

E={zeR":s<p(x,a) <r}={zeR":|lz—qa|]|>r}Nn{z eR": ||z —a| < s}°

is closed.

8.3.3. a) It is connected (see Remark 9.34 for proof).

b) The set is “dumbbell” shaped. It almost looks connected, except that (—1,0) and (1,0) do not belong to the
set. Hence a separation can be made, e.g., by using the open sets V = {(x,y) : « < =1} and U = {(z,y) : ¢ > —1},
and applying Remark 8.29.

8.3.4. Since Ej is closed and F5 is open, and U = E1 N Ey, it is clear by definition that U is relatively open in
F4 and U is relatively closed in Fs.

8.3.5. By completing the square, {z* — 4z +y>+2 < 0} = B 5(2,0). Thus U = B1(0,0) N B, /5(2,0). It follows

that U is relatively open in B1(0,0) and relatively closed in B 5(2,0).

8.3.6. a) If C is relatively closed in E, then there is a closed set A such that C = EN A. Since E and A are
closed, it follows that C' is closed. Conversely, if C is closed, then C = E N C implies that C' is relatively closed
in F.

b) If C is relatively closed in F then C' = E'N A for some closed set A. But £\ C = E N A°. Since A€ is open,
it follows that E \ C' is relatively open in E. Conversely, if £\ C = ENV for some open V, then C = ENV*¢, so
C is relatively closed in F.

8.3.7. b) Suppose F is not connected. Then there exists a pair of open sets U,V which separates E. Let
2 € NaeaFEy. Since E C U UV we may suppose « € U. Choose ag € A such that V N E,, # 0. Since z € E,,,
we also have U N E,, # (). Therefore, the pair U,V separates E,,, a contradiction.

a) Use part b) with A = {1,2}.

c) If E is connected in R then E is an interval, hence E° is either empty or an interval, hence connected by
definition or Theorem 8.30.

d) The set E = B1(0,0)U B1(3,0)U{(x,0) : 1 <z < 2} is connected in R?, but E° = B1(0,0) U B1(3,0) is not.

8.3.8. a) Given x € V choose € := ¢, > 0 such that B.(z) C V. Then V C Ugzcy Bc(z). On the other hand,
Uzev Be(x) C V since each B, C V. Therefore V = U,cy B.(z) as required.

It is even easier for closed sets. Since every singleton is closed (see Remark 8.22), E = U,cg{x} is a decompo-
sition of F into closed sets.

8.3.9. Suppose E is closed and a ¢ E, but inf,cp || — al| = 0. Then by the Approximation Property, there
exist z; € E such that ||z; —a|| — 0, i.e., such that ; — a. But E is closed, so the limit of the z;’s, namely a,
must belong to F, a contradiction.

8.3.10. In R?, an ¢! ball at the origin is {(z,y) : |z| + |y| < 1}. Since y = 1 + z are lines with y- intercept 1, it
is easy to see that this ball is a diamond with vertices (1,0), (0,1), (—1,0), and (0, —1).

In R?, an £°° ball at the origin is {(z,y) : max{|z|, |y|} < 1}, i.e., |2| <1 and |y| < 1. Thus this ball is a square
with vertices (1,1), (1,-1), (=1,-1), and (—1,1).

8.4 Interior, Closure, and Boundary.

8.4.1. a) The closure is E U {0}, the interior is (}, the boundary is E'U {0}.
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b) The closure is [0, 1], the interior is E, the boundary is {1/n : n € N} U {0}.
c¢) The closure is R, the interior is R, the boundary is 0.
d) The closure is R, the interior is (J, the boundary is R.

8.4.2. a) This is the set of points on or inside the ellipse 2 + 432 = 1. It is closed because its complement
{(z,y) : 2% + 4y*> > 1} is open. E° = {(x,y) : 2% + 4y? < 1} and OF = {(z,y) : 22 + 4y*> = 1}.

b) This is the set of points on the circle (x —1)2 + 52 = 1 or on the z axis between z = 2 and 2 = 3. It is closed.
E° =0 and OF = E.

c¢) This is the set of points on or above the parabola which lie below the line y = 1. It is neither open nor
closed. E° = {(x,y) 1y >22,0<y <1}, E={(2,9) :y > 22,0 <y <1}, and OF = {(2,9) : y = 22,0 < y <
1}U{(z,1): -1 <z <1}

d) This is the set of points between the two branches of the hyperbola 22 — y? = 1 which lie above the line
y = —1 and below the line y = 1. Itisopen. £ = {22 —¢y?2<1,-1<y<1}and 0E = {22 —y?> =1,-1<y <
Bu{(z,1): —vV2<2<V2}U{(z,-1): —vV2 <z < V2}.

8.4.3. If A C B then A° is an open set contained in B. Hence by Theorem 8.32, A° C B°. Similarly, B is a
closed set containing A, hence A C B.

8.4.4. First, we prove that relatively open sets are closed under arbitrary unions, and relatively closed sets are
closed under arbitrary intersections.
Let B, be relatively open in F, i.e., B, = E NV, for open sets V, in R"™. Since

UBazEﬂ Uva,

acA a€A

and the union of V,’s is open by Theorem 8.24, it is clear that the union of the B,’s is relatively open in F.
Similarly for intersections of relatively closed sets.

Now, repeating the proof of Theorem 8.32, we see that the largest relatively open set which is a subset of A
is the union of all sets U C A such that U is relatively open in F, and the smallest relatively closed set which
contains A is the intersection of all sets B D A such that B is relatively closed in F.

8.4.5. Suppose z ¢ E° but B,.(z) C E. Then by Theorem 8.32, B,(z) C E° so z € E°, a contradiction.
Conversely, if B,(z) N E¢ # ) for all 7 > 0, then x ¢ E° because E° is open.

8.4.6. a) If F is connected in R then E is an interval, hence E° is either empty or an interval, hence connected
by definition or Theorem 8.30.
b) The set E = B1(0,0)U B1(3,0)U{(x,0) : 1 <z < 2} is connected in R?, but E° = B1(0,0) U B1(3,0) is not.

8.4.7. Suppose A is not connected. Then there is a pair of open sets U,V which separates A. We claim that
ENU # 0. f ENU = () then since ANU # (}, there exists a point z € UN (A\ E). But E C A C E implies
A\ECE\E=0E. Thus x € 9ENU. Since U is open it follows that ENU # B, a contradiction. This verifies
the claim. Similarly, E NV # (). Thus the pair U,V separates E, which contradicts the fact that E is connected.

8.4.8. a) By Remark 8.23, (§ and R" are clopen.

b) Suppose A is clopen and ) C A C E. Then U = A and V = E'\ A are nonempty relatively open subsets of
E,UNV =0,and E =U UV. Therefore, E is not connected.

Conversely, if F is not connected then there exist nonempty relatively open subsets U and V of E such that
UNV=0and E=UUV. Thus A:=U = E\ V is clopen and ) C A C E. In particular, E contains more than
two clopen sets.

¢) Let E be a nonempty, proper subset of R". By Theorem 8.32, E has no boundary if and only if £\ E° =
OF = (), i.e., if and only if E = E°. Thus E has no boundary if and only if E is clopen. This happens, by part b),
if and only if R"™ is not connected.

8.4.9. a) If A= (0,1) and B = [1,2] then (AU B)° = (0,2) but A°UB° = (0,1) U(1,2) # (0,2).

b)Iff A=Q and B= A°then ANB=0but ANB=RNR=R.

c) If A and B are as in part a), then (AU B) = {0,2} # {0,1,2} = dAUIB and (AN B) =0 # {0,1,2} =
0AUOB.

8.4.10. a) Let z € (AN B) N (A° U (9B)°).

Case 1. x € A°. Since B, (z) intersects A, it follows that = € JA.
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Case 2. x € (0B)¢. Since B,(z) intersects B, it follows that B,.(x) C B for small » > 0. Since B,(z) also
intersects A°U B¢, it must be the case that B,(x) intersects A°. In particular, z € JA.

b) Suppose z € I(ANB); i.e., suppose B, (x) intersects ANB and (ANB)¢ forallr > 0. If x ¢ (ANOB)U(BNIJA),
then x € (A°U(9B)¢)N(B°U(JA)°). But by part a), A°U(0B)¢ C A and B°U(JA)¢ C dB. Hence the intersection
is a subset of 0A N JB.

¢) Suppose x € I(ANDB). If z € (ANIB)U(BNOA), then there is nothing to prove. If x ¢ (ANOB)U(BNIA),
then by part b), x € 9ANIB. Hence x € (ANIB)U (BNOA)U (AN IB).

d)If A=(0,1) and B =[1,2], then 0(ANB)=0# {1} =0ANIB C (ANIB)U(BNIA)U(DANIB).

8.4.11. Part a) follows directly from Remark 8.27ii. To prove part b), let x € UNJA and suppose for a moment
that x € E°. Since U N E° is open (see Remark 8.27ii), there is an r > 0 such that B,(x) C UNE° C A. Thus
x ¢ OU, a contradiction. It follows that x € E'\ E° C JF.

Conversely, suppose x € U N JE. Since U C E implies U° C E° (see Exercise 8.4.3), it follows that x ¢ U°.
Thus, x e U\ U° CoU. 1

CHAPTER 9
9.1 Limits of Sequences.

9.1.1. a) Let ¢ > 0 and choose (by Archimedes) an N € N such that £ > N implies 1/k < ¢/2. Notice that
k* < k* for all k € N. If k > N, then

(1/k, 1 —1/k*) — (0,1)||* = 1/k* + 1/k* < 1/k* + 1/k* < €%

Thus k > N implies ||(1/k,1 —1/k*) — (0,1)]| < e.
b) Let ¢ > 0 and choose (by Archimedes) an N € N such that k¥ > N implies 1/k < £2/2. Recall that
|sin(k3)| < 1 for all k € N. If k£ > N, then

Il(k/(k+1),sin(k®)/k) — (1,0)]| = 1/(k + 1)? +sin? (k%) /k < 1/k* + 1/k < 2/k < 2.

Thus k£ > N implies ||(k/(k + 1),sin(k®)/k) — (1,0)| < e.

c) Let ¢ > 0 and choose (by Archimedes) an N; € N such that k& > N; implies 1/k < /2. Recall that
1/2F < 1/k and log(k + 1) — logk = log((k + 1)/k) — 0 as k — oo, so choose N so that log((k + 1)/k < /2. If
k> N := max{Ny, Ny}, then

[log(k + 1) —logk,1/2%) — (0,0)||*> = log®((k + 1)/k) +1/2%* < /4 + 1/k* < 2.

Thus k > N implies ||(log(k + 1) —logk,27%) — (0,0)| < e.

9.1.2. a) By Theorem 9.2, (1/k, (2k®> —k +1)/(k* +2k — 1)) — (0,2) as k — oc.
b) Since sinwk = 0 for all £ € N and cos(0) = 1, (1,sin7k,cos(1/k)) — (1,0,1) as k — oc.
¢) Since

b WH{:(k:—\/k:2+k)(k+\/k2+k): —k _)_1
E+VE2+k E+VE2+k 2

as k — oo and by I'Hépital’s Rule, k*/* — €0 = 1 as k — oo, we see by Theorem 9.2 that (k—v/k2 — k,kY/*,1/k) —
(-1/2,1,0) as k — oc.

9.1.3. a) By the Cauchy-Schwarz inequality and the Squeeze Theorem, ||xx - y&| < ||xk|| |lv&l < M||xk| — 0
as k — oo.
b) By Remark 8.10 and the Squeeze Theorem, ||xx X yi|| < ||Ixk|| [|lye] < M||xk|| — 0 as k — oo.

9.1.4. Let ¢ > 0 and choose N so that k > N implies |x; — a|| < £/2 and ||xx — yx|| < /2. Then &k > N
implies
lyr —all < [lxk — all + [lxr — y&ll <e

9.1.5. a) Repeat the proofs of Remark 2.4 and Theorem 2.6, replacing the absolute value by the norm sign.
b) Repeat the proofs of Theorem 2.8 and Remark 2.28, replacing the absolute value by the norm sign.

¢) Repeat the proof of Theorem 2.12; replacing the absolute value by the norm sign.

d) Repeat the proof of Theorem 2.29.
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9.1.6. a) Let x;, € E converge to some point a. Let U be relatively open in E, i.e., U = ENV for some open
Vin R". If a € U, then by Theorem 9.7, x;, € V for large k. Since x; € E too, it follows that x; € U for large k.

Conversely, if x; belongs to any relatively open set for large k then, since U = E N B.(a) is relatively open in
E and contains a, x;, € U C B.(a) for large k, i.e., x; — a as k — oo.

b) Let C be relatively closed in E, i.e., there is a closed set B such that C = E N B. By Theorem 9.8, x;, — a
and x; € C C B implies a € B. Since a € F, it follows that a € C.

Conversely, suppose C' C E contains all its limit points which stay in F. By Exercise 8 in 8.3, E'\ C is relatively
open in E, i.e., E\ C = ENV for some open V. Hence, C = ENV¢. Since V¢ is closed in R", it follows that C'
is relatively closed.

9.1.7. a) Let B be a closed ball of radius R and center a. If x; € B, then
) Ixx —all < M

for all £ € N. Hence by the triangle inequality, ||xx|| is bounded (by M + ||a]|). By Theorem 9.5, there is a
subsequence xj; which converges, say to b. Taking the limit of (*), as k; — oo, we see that ||b —al| < M, i.e.,
b € B. We conclude that B is sequentially compact.

b) The sequence (k,1,...,1) belongs to R™ but has no convergent subsequence.

9.1.8. a) If E N B,(a) contains infinitely many points, then surely £ N B,.(a) \ {a} is nonempty. Conversely,
suppose E N B,(a) \ {a} is nonempty for every » > 0. Fix r > 0 and let x; € EN B,.(a) \ {a}. Suppose distinct
points x; € E N By(a) have been chosen for each 1 < j < k. Let ro = min{r, ||a — x;|| : 1 < j < k}. Since ry > 0,
there is a point x; € EN By, (a)\ {a}. By the choice of 9, x5, belongs to £ N B,(a) and is distinct from the x;’s,
1 < j < k. By induction, there exist infinitely many points in E N B,.(a).

b) If E is infinite, then it contains a sequence x, of distinct points. Since F is bounded, the Bolzano—Weierstrass
Theorem implies that some subsequence xj; converges to a point a. It follows from Definition 9.1i), given any
r > 0, there is an N such that k¥ > N implies ||x; — a|| < r. Since the points of the original sequence were distinct,
it follows that a is a cluster point of F.

9.2 Heine-Borel Theorem.

9.2.1. If F is compact, then by Heine-Borel, E is closed (and bounded). If F is closed, then it is already
bounded because it is a subset of K. Thus by the Heine-Borel Theorem, F is compact.

9.2.2. Since E is bounded, there is an M such that ||x|| < M for all x € E. Hence, ||x|| < M forallx € K := E.
In particular, K is closed and bounded, hence compact by the Heine-Borel Theorem.
Since g(x) > f(x), it is clear that

X € Bf(x) (X) C Bf(x)(X) C Bg(x) (X)

for all x € E. Thus by Theorem 8.37ii,

Ec U Bf(x>(X) C U Bg(x)(x).

xeE xeE
Since E is closed and bounded, we conclude by the Heine-Borel Theorem that there exist xi,...,xy € E such
that
N
E CE C By, (x)).
j=1

9.2.3. For each z € E, choose 1 = r, > 0 and f,; > 0 such that f is C*® on R, f(¢t) =1 for ¢t € I.(z) :=
(x—=r,xz+r),and f(t) =0 for t ¢ J.(x) := (x — 2r,x + 2r). Since {I,.()}.cr covers the compact set E, there

exist finitely many x;’s in E such that
N

EC U IT'j(xj)

j=1

for r; = r(x;). Set f = Zi\;l fz; and V = U;V:l Jy,(x;). Since f is a finite sum of C* functions, it is C*° on

R. V is open since it is a union of open intervals. If 2 € E, then = € I, (z;) for some j, so f; () = 1. Thus
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f(x) > 04+ fz,(x)+---4+0=1forall 2 € E. Moreover, since f, is continuous on E* := U,ivzl[xkfrk,xk + 7k,
the Extreme Value Theorem implies that there are constants My, that |fs, | < My on E* for all k. Thus f(z) <<
Mi+---+My =: M forallz € E* D E. Finally, ifz ¢ V, then x ¢ J,, (z;) for all j. Thus f(x) = 0+0+---+0 = 0.

9.2.4. For each x € K, B,(x) N K = {x}. Since K is compact and is covered by {B,(x)(X)}xeck, there exist

X1,...,Xyn such that
N

K C U Br(xj)(xj)~
j=1

Thus

N N
K= Brx)(x) N K = | J{x;} = {x1,....xn}.
j=1 j=1

9.2.5. Let z € E. Since f,(x) > 0 and f, is continuous, choose by the Sign Preserving Property an r(z) > 0
such that f,(y) > 0 for y € B,(;)(x). By the Heine-Borel Theorem, there are points x; € E such that E C
U;-V:l By, (xj). Set f(y) = Z;VZI fz;(y). Since f is a finite sum of C* functions, it is C*°. Let y € E. Then
Y € By(g;)(x;) for some j. Since each f,; is nonnegative on B,.(,,)(z;), it follows from the choice of the r(x;)’s
that f(y) > fu;(y) > 0. On the other hand, if y ¢ E, then f; (y) = 0 for all j. In particular, f'(y), a sum of
zeros, is itself zero. Finally, since each f;; is increasing and nonconstant, there is a ¢t € £ such that f; (t) > 0

Thus f/(t) = Z]kvzl fa,(t) = f3,(t) > 0. In particular, f is nonconstant.

9.2.6. For each x € K, f is constant on Bs_(x) N K. Since K is compact and is covered by {B;, () }xex, there

exist x1,...,xy such that
N

K c | Bs,, ().
=1
Let x € K. Then x € Bs, (x;) for some 1 < j < N, so f(x) = f(x;). It follows that f(x) € {f(x1),..., f(xn)}
for all x € K. In particular, f(K) C {f(x1),...,f(xn)}, so f(K) is finite, say K = {yi1,...,ym}. But a
nonempty, finite set is nonempty connected if and only if it is a single point. Indeed, if M > 1, then set

r=min{||y; — y&| : j,k € [1, M]} and notice that the B,(y;)’s are open, nonempty, and disjoint, hence separate
f(K). Thus M =1 and f(x) = f(x;1) for all x € K. Since a € K, we conclude that f(x) = f(a) for all x € K.

9.2.7. a) Since both sets are nonempty and ||x — y|| is bounded below by 0, the dist (A, B) exists and is finite.
By the Approximation Property for Infima, choose x; € A and y; € B such that ||x; — yi|| — dist (A, B).
Since A and B are closed and bounded, use the Bolzano-Weierstrass Theorem to choose subsequences such that
X, — X0 € A and yx; — yo € B. Since AN B = (), xo # yo. Hence dist (A, B) = [|xo — yol > 0.

b) Let A = {(x,y) : y = 0} and B = {(z,y) : y = 1/z}. Then A and B are closed, AN B = §, but dist
(A, B) =0 because 1/ — 0 as © — 0.

9.2.8. Suppose that a < b. Set

o { e 2 A
' 0 t=0,

and observe by Exercise 4.4.7 that f is nonnegative and C* on R, f is positive on (a,b), and f = 0 on (a,b)c.
Since for each € K := E C V there exists an open interval I, such that 2 € I, C V, it follows that for each
x € K there is a C* function f, > 0 such that f, > 0 for z € I, and f, =0 for z ¢ I,.

Clearly, K is compact and {I,},cx is an open covering of K. Thus by the Heine-Borel Theorem, there exist
1,...,on € K such that K C U}, I, Set f = fo, + -+ fo. Then fis C* on R. If z € K, then z € I, for

some j, 5o f(x) > 0+4---+ fo; (x)+---+0> 0. Finally, if z ¢ V, then z ¢ I, for any j, so f(z) =04---+0=0.
9.3 Limits of Functions.
9.3.1. a) The domain of f is all (z,y) € R? such that x # 1 and y # 1. By Theorem 9.16,

r—1
li T r42) = .
() (1-1) (y— et ) ©.3)
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b) The domain of f is all (x,y) € R? such that = # 0, y # 0, and z/y # (2k + 1)w/2 for k € Z (for example,
tan(m/2) is undefined). By Theorem 9.16 and L’Hépital’s Rule,

. (y sinx
lim
(w,y)—(0,1) x

,tanf,gv2 +y% - xy) =(1,0,1).
Y

¢) The domain of f is all (z,y) € R? such that (z,y) # (0,0). Since z* +y4 < (224y?) 2%+ (2?2 +y Hy? = (22+y?)2,
(% +y*) /(e +y?) < 2?+y® — 0as (z,y) — (0,0). Since 2[zy| < (a2+y?), \/[oy[/ /22 + y? < (2?+y*)/271/3 =0

as (z,y) — (0,0). Therefore,
TN (e v U7 I P
(@y)—0,1) \ 22+ 427 322 42 e

d) The domain of f is all (x,y) € R? such that (x,y) # (1,1). The second component factors:

(y -V —1)
(z—1)2+(y—1)?

Hence it converges to 0 as (x,y) — (1,1) by the Squeeze Theorem. Therefore,

lim 22 -1 22y —2zy+y— (x—1)2 — (0,0)
(@) —(1,1) e

a?y —2zy+y— (z—1)?
24 y? -2 —2y+2

<ly—1].

y24+1 22 4+y?—22—2y+2

9.3.2. a) The iterated limits are 0. If 2 = y, then f(x,y) = sin®2/(22%) — 1/2 as 2 — 0. Thus this function
has no limit as (z,y) — (0,0).

b) Since lim,,_¢ lim,_,o f(z,y) = 1/2 and lim,_,¢ lim,_¢ f(z,y) = 1, this function has no limit as (z,y) — (0,0).

c) Since |z| and |y| are < /22 + 42, |f(z,y)| < 2(2? +y?)?/?7. This last term converges to 0 as (x,y) — (0,0)
since o < 1/2. Therefore, the limit exists and is 0.

9.3.3. a) Since
23—y
Lt <
as (z,y) — (0,0), the limit exists and is 0.

b) Since y*/(z? +y*) < 1 and a > 0, |f(z,y)| < |z%| — 0 as (z,y) — (0,0). Therefore, the limit exists and is 0.

0
x2+y \ylgjgﬂ2 <l|z|+yl —

9.3.4. Let a € R™. Suppose for a moment that the projection function fi(x) = z; has a limit as x — a and
satisfies fi(x) — fi(a) as x — a for each k € {1,...,n}. Then by Theorem 9.15 (the limit of the product is the
product of the limits), f{*(x)... fi»(x) = zJ* . CL‘J" — fI'(a)... fi(a) = @' ...al» as x — a for any nonnegative
integers ji,...,Jn. Hence by Theorem 9.15 (the limit of the sum is the sum of the limits), P(x) — P(a) as x — a.
In particular, it suffices to prove that f;(x) — f;(a).

Let € > 0 and set 0 =e. If ||x — al| < 6 then by Theorem 8.5, |f;(x) — f;j(a)| = |z; — aj| < 6 = e. Therefore,
fi(x) = fi(a) as x — a.

9.3.5. Let ¢ =1 and choose ¢ > 0 such that 0 < ||x — a|| < ¢ implies ||f(x — L|| < 1. Then | f(x)
for all x € Bs(a) \ {a}. Thus set V = Bs(a) and M = max{||f(a)]|, |L|| + 1}.

9.3.6. a) We begin by proving that if g(z,y) := f(z) and f(z) — f(a) as z — a, then g(z,y) — f(a) as
(z,y) — (a,b) no matter what b is. Indeed, let £ > 0 and choose § > 0 such that |x —a| < ¢ implies |f(x) — L| < e.
Then 0 < ||(z,y) — (a,b)|| < ¢ implies |z — a| < 6, so g(z,y) — f(a)| = |f(z) — L] < e.

Tterating what we just proved, using the fact that the limit of the product is the product of the limits, we see
that g(x) — fi(a1) - fu(an) as x — a.

b) Define f on R by f(z) =z for z # 0 and f(0) = 1. Then f(z) — 0 as x — 0, but g(z,y) = f(z)(y + 1) does
not have a limit as (z,y) — (0,0). Indeed, the vertical path = 0 yields g(0,y) = f(0)(y + 1) — 1 as y — 0 but
the horizontal path y = 0 yields g(z,y) = f(z)(0+ 1) — 0 as z — 0.

9.3.7. By the Mean Value Theorem, g(z) = g(z) — g(1) = ¢'(¢)(z — 1) for some ¢ between x and 1. Thus
lg(z)| > |z — 1]. It follows that

| < I +1

r—1 +1 +1
flaoy) < B |'y

|z =1yl
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If (z,y) — (1,b) for some b > 0, we can assume that 0 < yo < y < y; for some yo < b < y1, so [(y + 1)/y| <
(14+wv1)/yo =: M. Thus |f(z,y)] < M|z — 1|, and it follows from the Squeeze Theorem that f(x,y) — 0=: L as
(z,y) — (1,b). A similar argument works for b < 0.

9.3.8. a) Repeat the proof of Remark 3.4, replacing the absolute value by the norm sign.
b) Repeat the proof of Theorem 3.6, replacing the absolute value by the norm sign.
c¢) Repeat the proof of Theorem 3.8, replacing the absolute value by the norm sign.
d) Repeat the proof of Theorem 3.9, replacing the absolute value by the norm sign.

9.4 Continuous Functions.

9.4.1. a) f(0,7) = (0,1] is not open and we don’t expect it to be; f[0,n] = [0,1] is compact and connected
as Theorems 9.29 and 9.30 say it should; f(—1,1) = (—sin1,sin1) is open, big deal; f[—1,1] = [—sin1,sin1] is
compact and connected as Theorems 9.29 and 9.30 say it should.

g(0,7) = {1} is connected as Theorem 9.30 says it should; ¢[0, ] = {0,1} is compact but not connected-note
that Theorem 9.29 does not apply since g is not continuous; g(—1,1) = {—1,0, 1} is not open and we don’t expect
it to be; g[—1,1] = {-1,0,1} is compact but not connected—note that Theorem 9.29 does not apply since g is not
continuous.

b) f71(0,7) =...(0,7)U(2m, 37)U. .. is open as Theorem 9.26 says it should; f~1[0, 7] = ... [0, 7]U[2~, 3x]U. ..
is closed as Exercise 9.4.4 says it should; f~1(=1,1) = R\ {z : 2 = (2k + 1)7/2,k € Z} is open as Theorem 9.26
says it should; f=1[—1,1] = R is closed as Exercise 9.4.4 says it should.

g7 1(0,7) = (0, 00) is open, no big deal; g~1[0, 7] = [0, 00) is closed-note that Exercise 9.4.4 does not apply since
g is not continuous; g~'(—1,1) = {0} is not open and we don’t expect it to be; g~*[—1,1] = R is closed-note that
Exercise 9.4.4 does not apply since g is not continuous.

9.4.2. a) f(0,1) = (0,1) is open, no big deal; f[0,1) = [0, 1) is neither open nor closed; f[0, 1] = [0, 1] is compact
and connected as Theorems 9.29 and 9.30 say it should.

9(0,1) = (1,00) is connected as Theorem 9.30 says it should; g[0,1) = {0} U (1,00) is neither compact nor
connected—note that Theorems 9.29 and 9.30 do not apply since g is not continuous; ¢[0,1] = {0} U [1,00) is
neither compact nor connected—note that Theorems 9.29 and 9.30 do not apply since g is not continuous.

b) f~1(—1,1) = [0, 1) is relatively open in [0, 00), the domain of f as Theorem 9.26 says it should; f~[—1,1] =
[0, 1] is relatively closed in [0, 00) as Exercise 9.4.5a says it should.

g 1(—1,1) = (=00, —1) U (1, 00) U{0} is not open and g is not continuous; g=*[—1,1] = (—oo, —1]U[1,00) U {0}
is closed, no big deal-note that Exercise 9.4.4 does not apply since g is not continuous.

9.4.3. Recall that f~1(V) is relatively open in A if and only if f~*(E) = O N A for some open O in R™. But
the intersection of two open sets is an open set. Thus if A is open, then f~1(V) is relatively open in A if and only
if it is open in R™.

9.4.4. Suppose f is continuous on B, and that E is a closed subset of R™. If x5, € f~}(E) N B and x;, — a,
then x; € B and f(x)) € E. Since f is continuous, and both B and E are closed, it follows that a € B and
f(a) € E. Thus a € f~}(E) N B. By Theorem 9.8, then, f~1(E) N B is closed.

Conversely, suppose f~1(E) N B is closed for every closed E in R™ but f is NOT continuous at some a € B.
Then there is a sequence x; € B such that f(xj) does NOT converge to f(a). Hence, there is an 9 > 0 and k;
such that || f(x,) — f(a)|| > eo. Now f(xx, € BE (a) so x, € f~1(B¢ (a)) N B. Since this set is closed, the limit
a also belongs to it. In particular, f(a) ¢ B,(a), a contradiction.

9.4.5. a) By Exercise 8.3.8b, a set E is relatively open in some set B if and only if its complement B\ E is
relatively closed in B.

Suppose f is continuous on F and A is closed in R™. Then A€ is open in R™, so by Theorem 9.26, A :=
f7L(A°) N E is relatively open in E. This means that there is an open set V in R™ such that Ag = V N E. Since

Enf~Y(A)=E\Ay=ENnV*®
and V¢ is closed, it follows that f~!(A) N E is relatively closed in E. A similar argument proves that if f~1(A)NE
is relatively closed in E for all closed sets A in R, then f is continuous on E.
b) Let V be relatively open in f(E), i.e., V = U N f(E) for some U open in Y. By Theorem 9.26, f~{(U)NE
is relatively open in E. But by Theorem 1.37,
FUV)NE = [V AS(E) = £ (U N F(B) = [ (V)N E.

86



Hence f~1(V) is relatively open in E.
A similar proof using part b) in place of Theorem 9.26 proves that f~1(A)N E is relatively closed in E for every
A relatively closed in f(FE).

9.4.6. By Theorem 9.39, f(z,y) is continuous at every point (x,y) which satisfies z # y. Let (zg, y0) be a point
where o = yo. Since e='/* — 0 as t — 0+, given € > 0 choose § > 0 such that 0 < ¢ < § implies e~ /* < e. If
(2, y) = (z0,0)|| < 6/2 then [z —y| = | — zo + yo — y| < [z — 20| + |y — yol < 2[(z,y) — (z0,0)|| < J. Hence
e~ V=l < e ie., f(z,y) — 0= f(xo,y0) as (z,y) — (x0,y0). Thus f is continuous on R2.

9.4.7. a) Since f is continuous, so is || f||. Therefore, || f||x is finite and attained by the Extreme Value Theorem.
b) By definition, f, — f in C[a,b] if and only if given £ > 0 there is an N € N such that n > N implies

sup [fn(z) = f(z)] <e.

z€la,b]

Since this last statement is equivalent to | f,(z) — f(z)| < € for all « € [a,b], we have that f, — f in Cla,b] if and
only if f,, — f uniformly on [a, b].

c) By part b), if fi converges uniformly, then || fp— f;|| is small when & and j are large. Conversely, if || fr,— f;]| < e
for k,j > N, then f(x) is Cauchy in Y for each x € H. By Theorem 9.6, it follows that f; — some function f
pointwise on H. Letting j — oo in the inequality || fx — f;|| < €, we obtain || fx, — f|| < e for k > N. By part b),
then, fr — f uniformly on H.

9.4.8. By the proof of Lemma 3.38, if f is uniformly continuous, then f takes a Cauchy sequence in E to a
Cauchy sequence in R™. So, let x € E and choose z; € D such that z;, — z. Then f(xy) is Cauchy, hence
convergent in R™. Define g(x) := limy_ o f(z)). By the argument of Theorem 3.40, this definition is independent
of the sequence zj chosen to approximate x. Thus g is well defined on all of E. Moreover, g is continuous by the
Sequential Characterization of Limits.

9..4.9. Suppose without loss of generality that f(a) < f(b). By Theorem 9.30, f(E) is connected in R, which
by Theorem 8.30 means f(F) is an interval. Since f(a), f(b) € f(E), it follows that [f(a), f(b)] C f(E). In
particular, y € f(E).

9.4.10. a) Suppose E is polygonally connected but some pair of open sets U,V separates E. Let x; € ENU,
xo € ENV. Since E is polygonally connected, there is a continuous function f : [0,1] — F with f(0) = x; and
f(1) = x2. By Theorems 8.30 and 9.30, f([0,1]) is connected. But since f([0,1]) C E, U,V separates f([0,1]), a
contradiction.

b) Let x € U. Since F is open, choose r > 0 such that B,.(x) C E. Let y € B,.(x) and let P be a polygonal path
from x¢ to x which lies in E. Then the path P U L(x;y) goes from xq to y and lies in F, i.e., y € U. Therefore,
B,(x) C U and U is open.

¢) Suppose E is open and connected but not polygonally connected. By part b), given any x € E the set Uy
which can be polygonally connected to x through E is open. Since E is not polygonally connected, there exist
points xo # yo in E such that Ug, N Uy, = 0. Let U := Uy, and V := U{Uy, : Uy N Uyx, = 0}. Then U,V are
nonempty open sets, U NV = () and U UV = E. In particular, the pair U, V separates E, a contradiction.

9.5 Compact Sets.

9.5.1. a) Since 1/k — 0 as k — oo, this set is closed and bounded, hence compact.

b) This set is closed and bounded, hence compact.

c) This set is bounded but not closed. If we set H := {(0,y) : —1 <y < 1} then E'U H is closed and bounded,
hence compact.

d) The set is closed but not bounded (since (n,1/n) € E for all n € N). Therefore, E is neither compact nor is
it contained in any compact set.

9.5.2. Let A, B be compact sets. If {V,} is an open covering of AU B, then it is a covering of A and B. Since
these are compact sets, we can choose Vi,...,Vy to cover A and Vn41,..., V) to cover B. Clearly, Vi,...,Vy
covers AU B. Thus AU B is compact.

By Remark 9.37, A and B are closed sets, so by Theorem 8.24, AN B is a closed subset of the compact set A.
It follows from Remark 9.38 that A N B is compact.

9.5.3. Since F is compact, it is bounded by the Heine-Borel Theorem. Since it is nonempty, it follows from the
Completeness Axiom that E has a finite supremum. By the Approximation Property, choose x; € E such that
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) — sup E. Since FE is closed, we have by Theorem 9.8 that sup F = limyg_, x € E. A similar argument works
for inf E.

9.5.4. Suppose A is uncountable. Since each V, is nonempty, choose a point x, € V, for each a@ € A. Since
VaNVs =0 for a # 3, the set E = {z, : @ € A} is uncountable. But E C UgeaVa, hence by Lindelof’s Theorem,
E C Ugea,Va for some countable subset Ag of A. Since each V,, contains at most one xg, it follows that E is
countable, a contradiction.

The result is false if “open” is omitted. By Remark 1.41, the unit interval (0, 1) is uncountable, hence {z},¢(0,1)
is an uncountable collection of pairwise disjoint nonempty sets which covers the unit interval (0,1).

9.5.5. By Exercise 8.3.8, there exist € := ¢, > 0 such that V = Uzcy Be(z). But by Lindeldf (or using rational
centers and rational radii as in the proof of the Borel Covering Lemma), we can find open balls B; := B, (x;)
such that V C U;?‘;lBj. On the other hand, U;-’Clej C V since each B; C V. Therefore V = U;-";lBj as required.

9.5.6. a) Suppose E is compact, and let z; € E. By the Heine-Borel Theorem, zj, is bounded, hence (by
Bolzano—Weierstrass) has a convergent subsequence. Since all compact sets are closed, the limit of this subsequence
must belong to E. Thus F is sequentially compact.

b) By definition and Theorem 9.8, E is closed. It must also be bounded. Indeed, if not, e.g., if ||xx| — oo for
some ) € E, then choose (by sequential compactness) a convergent subsequence of xy, say Ty, . Since it converges,
it must be bounded. But ||z, || — oo so it cannot be bounded.

c) If E is compact, then by part a), F is sequentially compact. If E is sequentially compact, then by part b),
E is closed and bounded. Finally, if E is closed and bounded then (by the Heine-Borel Theorem) E is compact.

9.5.7. a) Suppose H is compact. Let £ := {Uy}aca be a relatively open covering of H. Choose V,, open in
R", such that U, = HNV,. Then {V,}aca is an open covering of H. Since H is compact, there exists a finite
subset Ay of A such that {V,}aea, covers H. In particular, {Us}aca, is a finite subcovering of £ which covers
H.

Conversely, suppose every relatively open covering of H has a finite subcover. If {V,, }4c4 is an open covering
of H then {H NV,}aea is a relatively open covering of H. Therefore, there exists a finite subset Ag of A such
that {H NV, }aca, covers H. In particular, {V,}aeca, covers H and H is compact.

b) If {V,} is an open covering of f(H), then {f~1(V,)} is a relatively open covering of H. By part a), there
exist aq,...,ay such that

N
Hc | (Va,)
j=1

Thus f(H) C Ujvzl Va,, ie., f(H) is compact.
9.6 Applications.

9.6.1. Since f > 0, the partial sums of Y ;- | fx are increasing on [a,b]. Hence by Dini’s Theorem the series
converges uniformly on [a,b] and can be integrated term by term.

9.6.2. By the Extreme Value Theorem, f; is bounded on E and by Dini’s Theorem, Y ;- | g = ¢ uniformly on
E. Hence by Exercise 7.2.7, >~ frgi converges uniformly on E.

9.6.3. Given € > 0, choose M so large that |f(z)| < €/2 for |z| > M. By Dini’s Theorem, f; — f uniformly on
[—M, M]. Hence there is an N so large that k£ > N and = € [-M, M] imply |fi(z) — f(z)| < e. Let k > N and
x € R. Ifx € [-M, M] then |fr(z)— f(z)| <e. Ufa ¢ [-M,M]then |fp(z)— f(z)| < |fr(@)|+|f(z)] <2|f(x)| <e.
Therefore, fy — f uniformly on R.

9.6.4. Let h >0 and t € R.

a) Qp(t —h,t+h) =1so0 wy(t) =1 for all ¢.

b) Qf(t — h,t +h) =0 for ¢t # 0 when h is small, and = 1 when ¢ = 0. Thus wy(t) =0 if ¢t # 0 and wy(0) = 1.

c) Q¢(—h,h) =2 for all h # 0 so w¢(0) = 2. Since f is continuous at any ¢ # 0, Q¢(t — h,t + h) gets smaller as
h — 0, so wg(t) =0 for ¢t # 0.

9.6.5. Set 6 = 2/k. If x > —1 then § > —1. Hence by Bernoulli’s Inequality, (1+z/k)*/ *+1) < 142/(k+1) for
all z > —1. Thus (1 —2/k)* is an increasing sequence of continuous functions. By L’Hépital’s Rule, this sequence
converges to e =% as k — oo for all x € R. Hence it follows from Dini’s Theorem that (1 —z/k)* — e~ as k — oo
uniformly on any compact subset of R. Here is a different argument which does not use Bernoulli’s Inequality.
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Let ¢(t) = tlog(1l — x/t). Notice that ¢'(t) = t(1 — z/t)" (z/t?) + log(1l — z/t) = u/(1 — u) + log(1 — u) for
u=ux/t. Let ¢(u) = u/(1 —u) +log(l — u), u € (=00, 1). Since 1'(u) = u/(1 — u)?, 1) has an absolute minimum
of 0 at 0. Thus ¥(u) > 0 for all u € (—oo, 1), i.e., ¢'(t) > 0 for all t > z. Thus ¢(¢) is increasing for ¢t > z, so
e?®) = (1 —x/k)* 1 e as k — oo for all z € R.

9.6.6. Since g is continuous, any point of discontinuity of f is a point of discontinuity of g o f and vice versa.
By Lebesgue’s Theorem, f is almost everywhere continuous. Thus go f is almost everywhere continuous, i.e., go f
is integrable by Lebesgue’s Theorem.

9.6.7. a) Fix x € [0,7/2] and let f(t) = 2t/(4t — 3z), t > 2. Since f'(t) = —62/(4t — 32)? < 0 for all ¢ and
Vu is increasing in u, the sequence sinx \/2k/(4k — 3z) is decreasing for each x € [0,7/2]. It converges to the
continuous function sinx y/1/2 as k — oo. Therefore, by Dini’s Theorem and Theorem 7.10,

/2 2% 1 /2 1
kILH;o ; sinx\/4k73x dr = \/;/0 sinx dr = \/;

b) Since f/(0) > 0 and f’ is continuous, f’(x) > 0 for = in some [0, a], @ > 0. In particular, f is increasing on
[0,a]. Fix 2 € [0,1] and choose kg so large that 1/kg < a. Then k/(k* +z) < k/(k> +0) = 1/k < a for k > k.
Moreover, if g(t) = t/(t*+z), t > 1, then ¢'(t) = (z —t?)/(t> + x)? < 0 for all t > \/z. It follows that the sequence
22 f(k/(k? + z)) is decreasing for each = € [0,1] for k > ky. It converges to the continuous function z2f(0) as
k — o00. Therefore, by Dini’s Theorem and Theorem 7.10,

) dx—/ola:Qf(O)dx—fgo).

. ! 2
i [ (s

c) Fix x € [0,1]. Set f(t) = (logt + x)/(t + =) and g(¢t) = 1 + x/t — logt — x, for ¢ > 1. Notice that
f'(t) =g(t)/(t+z)? and ¢'(t) = —z/t* — 1/t. Since ¢'(t) < 0 for all z > 0 and g(t) — —oc as t — oo, it follows
that g(t), hence f’(t), is negative for large t. Therefore, the sequence (log k+z)/(k+x) is eventually decreasing for
each x € [0, 1]. It converges to the continuous function 0 as k — oo, so by Dini’s Theorem, (logk+z)/(k+z) — 0
uniformly on [0,1] as k — oo. Thus cos((logk + z)/(k + z)) — cos0 = 1 uniformly on [0,1] as k — co. We

conclude by Theorem 7.10 that
1 1
log k 1
lim 22 cos <M) dr = / 22 de = =.
k—oo 0 k +x 0 4

d) Set 6 = z/k. If z > —1 then § > —1. Hence by Bernoulli’s Inequality, (1 4 z/k)*/*+1) <14 2/(k + 1) for
all z > —1. It follows from L’Hopital’s Rule that (1 + x/k)* T e® for € [—1,1]. Hence by Dini’s Theorem and

Theorem 7.10,
1

k 1 4_1
lim (1 + %) e’dr = / e dx = 67.
1

k—oo J_q 2e2

9.6.8. a) Since [0,1] N Q is countable, it can be covered by such a collection of intervals by Remark 9.42.
b) Since [0,1] is compact, [0,1] € UN_ I} for some N € N. If Ei\;l |I] < 1 then some point of [0,1] is
uncovered. Thus Zgil [T > 1.

9.6.9. a) By construction, Ey, hence E, can be covered by a finite collection of intervals of total length 2% /3F.
Since (2/3)% — 0 as k — oo, it follows that E is of measure zero.

b) By construction, to pass from Ej_1 to Ej, we eliminate each point which has a 1 as the kth digit in all of its
ternary expansions. Thus x € F if and only if z has a ternary expansion whose digits are never 1.

¢) Given z € E, let x = Y32, by, /3% where by # 1. Consider the function f(z) = > 7 (by/2)/2%. As z ranges
over E, the by’s exhibit all possible combinations of 0’s and 2’s, hence the binary coefficients of f(z) exhibit all
possible combinations of 0’s and 1’s. In particular, f takes E onto [0, 1]. It is clear by construction that f is 1-1.
Thus FE is uncountable.

d) It is clear by construction that f is increasing on [0,1]. Suppose f has a point of discontinuity z¢ € [0, 1].
By Theorem 4.18, 0 < f(zo—) < f(wo+) <, L., (f(wo—), f(zo+)) C [0,1] but (f(zo—), f(zo+)) N f([0,1]) = 0.
This contradicts the fact that f takes [0,1] onto [0, 1]. Therefore, f is continuous at each point z € [0, 1].
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CHAPTER 10
10.1 Introduction.

10.1.1. Since p(a,bd) is a nonnegative real number, it follows from Theorem 1.9 that p(a,b) = 0. Since p is
positive definite, we conclude that a = b.

10.1.2. a) Suppose z,, is bounded. By Definition 10.13, there is a b € X and an M > 0 such that x,, € By (b),
i.e., p(xn,b) < M for all n € N. It follows from the triangle inequality that M + p(a,b) is an upper bound for the
nonempty set {p(x,,a) : n € N}. Hence by the Completeness Axiom, this set has a finite supremum.

Conversely, if this set has a finite supremum s for all ¢ € X, then let b = a € X. Then s > p(x,,b) for all
n € N, i.e., z, € By(b) for all n € N. Hence x,, is bounded by Definition 10.13

b) Apply part a) with a = 0 and p(a,b) = ||a — b||.

10.1.3. a) By Remark 8.7, for all j € {1,2,...,n} we have [2)| < |[xk]| < v/72]|x[loc. Thus z!) is bounded
in k for all j if and only if ||xg|| is bounded in k. By Exercise 10.1.2 (with a = 0), this is equivalent to {x;} is
bounded in R™.

b) See the proof of Theorem 9.2.

10.1.4. a) If x,, = a for all n, then p(x,,a) = 0 is less than any positive € for all n € N.
b) If &, — a in the discrete space, then for n large, o(z,,a) < 1. But by definition, o(x,,a) < 1 implies
o(xp,a) =0, ie., z, =a.

10.1.5. a) Let a be the common limit point. Given € > 0, choose N € N such that n > N implies
p(Tn,a), p(Yn,a) < €/2. By the Triangle Inequality, n > N implies

P(l“myn) < P(l’ma) + p(ynaa) <e.

By definition, p(z,,y,) — 0 as n — oo.
b) Let «, =n and y,, = n + 1/n. Then |z, — y,| = 1/n — 0 as n — oo, but neither z,, nor y,, converges.

10.1.6. By Theorem 10.14, if z,, — a then z,, — a. Conversely, if x,, is Cauchy and x,, — a, then given
€ > 0 there is an N such that n,k > N implies p(xy, Tn, ) < £/2. Hence, p(xn,a) < p(zy, Tn, ) + p(@n,,a) < e for
k large. By definition, then, x,, — a as n — oo.

10.1.7. If 2, is Cauchy, then there is an N such that n > N implies o(xn,z,) < 1. Since this last inequality
is satisfied only when x, = zy, it follows that x,, = xn := a for large n. In particular, x, — a as n — oo.

10.1.8. a) If f,, is Cauchy in Cla, b], then given £ > 0 there is an N such that m,n > N implies

|fr(@) = frn(@)] < || fn = fll < e

for all « € [a,b]. Thus f, is uniformly Cauchy. It follows from Lemma 7.11 that f,, — f uniformly on [a,b], i.e.,
that ||f, — f]l — 0 as n — oc.

b) Clearly, || f|l1 > 0 and ||f|l1 = 0 if and only if f = 0 (see Exercise 5.1.4b). Thus || f — g1 is positive definite.
Also, by the homogeneous property of integration, ||af||1 = |a|||f]l1, so ||f — g|l1 is homogeneous. Finally, by the
Comparison Theorem for Integrals, |f — g| < |f — h| + |h — g| implies that || f — g|x < ||f — k|1 + || — gl1, so
I/ — gll1 satisfies the triangle inequality.

c) Let @ = 0 and b = 1. By elementary integration, it is easy to see that if f,,(x) = =™, then || f, |1 = 1/(n+1) — 0
as n — oo. However, the limit of f,, is not continuous on [0, 1] (see Remark 7.3).

10.1.9. a) Repeat the argument of Remark 10.9 with £/2 in place of . This works since B, 3(z) C B:(z).
b) Let r = p(a,b)/2. If = belongs to the intersection of these balls, then
pla,b) < p(z,a) + p(z,b) < 2r = p(a,b),

a contradiction.

¢) By Remark 10.9, choose g, so such that B,,(z) C B,(a) and Bs,(z) C Bs(b). Let ¢ := min{rg,so} and
d := max{2r,2s}. If y € B.(z) then, since B.(z) C B,,(z) C B,(a), it is clear that y € B,.(a). Similarly,
y € Bs(b). Thus y € B,.(a) N Bs(b).

On the other hand, let y € B,(a) U B4(b). If y € B,.(a) then, since z € B,.(a) N Bs(b), we have

p(x,y) < p(z,a) + pla,y) <r+r=2r <d
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If y € Bs(b) then, since x € B,(a) N By(b), we have
p(x.y) < p(z,b) + p(b,y) < s+s=2s <d.

It follows that B,.(a) U Bs(b) C By(x).

10.1.10. a) Let E be sequentially compact. By Theorem 10.16, F must be closed. Suppose F is not bounded,
i.e., choose x, € F and a € X such that p(x,,a) > n for all n € N. Since F is sequentially compact, choose
ZTp, — bas k — oco. Then

ng < p(xnkaa) < p(xnk:b) + p(av b) <1 +p(a7b)

for k large. Letting k — oo, we conclude that 1+ p(a,b) = oo, a contradiction.
b) R is closed by Theorem 10.16. On the other hand {n} is a sequence in R which has no convergent subsequence.
¢) By the Bolzano—Weierstrass Theorem and Theorem 10.16, every closed bounded subset is sequentially com-
pact.

10.1.12. Modify the proofs of Remark 2.4, Theorems 2.6, 2.8, and Remark 2.28 by replacing the absolute value
signs by the metric p.

10.2 Limits of Functions.

10.2.1. a) Let € > 0 and 2 € R. By the Density Theorem for Irrationals, there are infinitely many points in
(z — e,z 4+€)N(R\ Q). Thus each point z € R is a cluster point of R\ Q.

b) Let € > 0 and z € [a,b]. If c = max{x—¢€,a} and d = min{z+¢,b} then ¢ < d and (z —€,z4+€)N[a,b) D (¢, d).
Since nondegenerate intervals always contain infinitely many points, it follows that every point in [a, b] is a cluster
point of [a,b). On the other hand, if z ¢ [a, b] then (z —¢,z+¢)N[a,b] = 0 for € < min{|z — al, | — b|}. Therefore,
x is not a cluster point of [a, b).

¢) Since E C Z, given any x € R, (x —1/2,2+1/2)N E contains at most one point. Therefore, F has no cluster
points.

d) E has no cluster points if F is finite. Suppose E is infinite. Given € > 0 choose N € N such that n > N
implies z, € (x —€,x +€). Then (z — €,2 4 €) N E contains infinitely many points, so x is a cluster point of E.
Let y € R with y # z, and set € = | — y|/2. Choose N € N such that n > N implies x,, € (x — €, + €). Then
(y—e,y+e€)NEC{xy,...,xN}, i.e., contains only finitely many points. Thus y is not a cluster point of FE.

e) Since £ C N, it has no cluster points. (See the argument which appears in c¢) above.)

10.2.2. a) If a is not a cluster point, then some B,.(a) contains only finitely many points of E \ {a}, say
Z1,...,xn. If welet s := min{r, p(z1,a),...,p(zn,a)}, then Bs(a) N E C {a}. But a € E, so Bs(a) N E = {a}.
Conversely, if Bs(a) N E = {a}, then this set does not contain infinitely many points, so a is not a cluster point
by definition.

b) Let a € R. If r < 1, then in the discrete space, B,(a) = {a}. Thus by part a), a cannot be a cluster point of
R.

10.2.3. If a is a cluster point for E, then let ,, € (By/,(a) N E)\ {a}. (Such points exist since this intersection
contains infinitely many points, hence at least one different from a.) Since p(z,,a) < 1/n, it follows from the
Squeeze Theorem that x, — a as n — oo.

Conversely, suppose z,, € E \ {a} and x,, — a as n — oo. Given r > 0, p(z,,a) is eventually smaller than r,
e.g., Br(a) N E contains x,, for some n;. Suppose distinct points z1,...,z,_1 have been chosen in B,.(a) N E.
Let s < min{p(z1,a), ..., p(xn—1,a)}. Then none of the x;’s chosen so far belong to Bs(a). But since z,, — a as
n — oo, there is an x,, € Bs(a) N E. But s < r, so Bs(a) C By(a). Thus z,, € B,(a) N E. By induction, then,
there exist infinitely many points z,,, in B,(a) N E. In particular, a is a cluster point of E.

10.2.4. a) Surely a set which has infinitely many points is nonempty. Conversely, if E N Bg(a) \ {a} is always
nonempty for all s > 0 and r > 0 is given, choose z1 € E N B,(a). If distinct points x1, ...,z have been chosen
so that x € EN B,(a) and s := min{p(x1,a), ..., p(zk,a)}, then by hypothesis there is an zx11 € EN Bs(a). By
construction, 41 does not equal any z; for 1 < j < k. Hence z1,..., 2541 are distinct points in EN B,(a). By
induction, there are infinitely many points in E N B,(a).

b) If E is a bounded infinite set, then it contains distinct points x1, 2, .... Since {z,} C E, it is bounded. It
follows from the Bolzano—Weierstrass Theorem that x,, contains a convergent subsequence, i.e., there is an a € R
such that given r > 0 there is an N € N such that & > N implies |z,, — a] < r. Since there are infinitely many
zn,’s and they all belong to E, a is by definition a cluster point of E.
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10.2.5. Modify the proofs of Remark 3.4, Theorems 3.6, 3.8, 3.9, and 3.10, replacing the absolute value signs
with the metric p.

10.2.6. Modify the proofs of Theorems 3.21 and 3.22, replacing the absolute value signs with the metric p.
10.2.7. Modify the proofs of Theorem 3.24, replacing the absolute value signs with the metric p.

10.2.8. a) If x,, € E, then z,, is bounded. Hence by the Bolzano—Weierstrass Property, there is an a € X such
that z,, — a as k — oo. But E is closed, so by Theorem 10.16, a € E.

b) Repeat the proof of Theorem 3.26.

c) M :=sup,cp f(x) is finite by part b). Hence by the Approximation Property for Suprema, choose z, € E
such that f(zy) — M. By part a), there is an a € E such that x,, — a. Since f is continuous, it follows that
f(zn,) — f(a) = M. A similar argument works for the infimum as well.

10.3 Interior, closure, and boundary.

10.3.1. a) The closure is E U {0}, the interior is (, the boundary is E U {0}.

b) The closure is [0, 1], the interior is E, the boundary is {1/n : n € N} U {0}.

¢) The closure is R, the interior is R, the boundary is .

d) By Theorem 1.18, the closure of Q is R and the interior of Q is the empty set, so the boundary of Q is R.

10.3.2. a) This is the set of points on or inside the ellipse 2 + 4y? = 1. It is closed because its complement
{(z,y) : 2% + 4y*> > 1} is open. E° = {(x,y) : 2° + 4y* < 1} and OF = {(z,y) : 22 + 4y*> = 1}.

b) This is the set of points on the circle (z —1)? +y? = 1 or on the x axis between z = 2 and z = 3. It is closed.
E° =0 and OF = E.

c¢) This is the set of points on or above the parabola which lie below the line y = 1. It is neither open nor
closed. E° = {(z,y) :y >22,0<y <1}, E={(2,9) :y > 22,0 <y <1}, and OF = {(z,) : y = 22,0 < y <
1}U{(z,1): =1 <z <1}

d) This is the set of points between the two branches of the hyperbola x> — y? = 1 which lie above the line
y = —1 and below the line y = 1. Tt isopen. £ = {22 —¢y?2 <1,-1<y<1}and dE = {22 —y?> =1,-1 <y <

Ju{(z,1): —vV2<z<V2}U{(z,-1): —vV2 <z <2}

10.3.3. Let y e V={x € X : s < p(z,a) < r} and let ¢ < min{p(y,a) — s, — p(y,a)}. If w € B.(y) then

p(w,a) < p(w,y) + p(y,a) <r—p(y,a) + p(y,a) =r

and
p(w,a) > p(y,a) — p(w,y) > p(y,a) + s — p(y,a) = s.

Hence w € V and V is open by definition.
A similar argument shows that {z € X : p(z,a) > r} and {z € X : p(z,a) < s} are both open, hence

E={reX:s<px,a)<r}={zxeX:plx,a)>r}°n{reX:plxa)<s}

is closed.
10.3.4. If A C B then A° is an open set contained in B. Hence by Theorem 10.34, A° C B°. Similarly, B is a

closed set containing A, hence A C B.

10.3.5. Suppose F is closed and a ¢ E. Then there is an € > 0 such that B.(a) N E = 0. Thus p(z,a) > € for
all z € E. Taking the infimum of this inequality over all x € E, we conclude that inf,cg p(x,a) > € > 0.

10.3.6. Suppose = ¢ E° but B,(z) C E. Then by Theorem 10.34, B,.(z) C E° so x € E°, a contradiction.
Conversely, if B,.(z) N E¢ # ) for all 7 > 0, then x ¢ E° because E° is open.

10.3.7. a) If A = (0,1) and B = [1,2] then (AU B)° = (0,2) but A° U B° = (0,1) U (1,2) # (0, 2).
b)If A=Qand B = A°then ANB=0but ANB=RNR=R.
¢) If A and B are as in part a), then 9(AUB) = {0,2} # {0,1,2} = 0AUOB and d(ANB) =0 # {1} = JANIB.

10.3.8. a) If V is open in Y, then given x € V there is ball By (x) = Bx(z) NY, open in Y, which contains z
and is a subset of V. It follows that

V=|JBx@)ny =UnY.
zeV
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But U is open in X by Theorem 10.31.

Conversely, if € V = UNY, then there is ball By, open in X, such that x € Bx C U. Hence x € BxNY C V,
ie, VisopeninY.

b) If E is closed in Y then Y \ E is open in Y, so by part a), Y\ E = U NY for some U open in X. Hence
E=ANY, where A=Y \U is closed in Y.

10.3.9. Suppose f : R — R is continuous and I = (a,b). Let z € f~1(I). By definition, f(x) € I. Since I is
open, there is an € > 0 such that (f(x)—e, f(z)+€) C I. Since f is continuous at x, choose § > 0 such that |[z—y| < 0
implies | f(z) — f(y)] < e. Then y € (z — d,x + 0) implies |f(z) — f(y)| <€, ie., f(y) € (f(z) — ¢, f(x) +¢€) C I
Thus (x — 8,7+ 6) C f~1(I) and f~1(I) is open by definition.

Conversely, let a € R, € > 0, and set I = (f(a) — ¢, f(a) + ¢€). Since a € f~1(I), choose by hypothesis a § > 0
such that (a — d,a +6) C f~1(I). Then |z — a| < § implies |f(x) — f(a)| < €. Therefore, f is continuous at a.

10.3.10. a) Given = € V choose € := €, > 0 such that B.(x) C V. Then V C Ugecy Be(z). On the other hand,
Uzev Be(x) C V since each B, C V. Therefore V = U,ecy Be(z) as required.

It is even easier for closed sets. Since every singleton is closed (see Remark 10.10), E = Uzeg{z} is a decom-
position of E into closed sets.

10.3.11. a) Let x € OE. Then there exist points 2, € By/i(x) N E for each k € N. By construction z € F
and xx — x as k — o0o. Since F is closed, it follows from Theorem 10.16 that x € E.

b) Suppose OF = E. If E° # () then there exists a point x € F° C E such that B,.(z) C E for some r > 0, i.e.,
B,.(z) N E° = (). Therefore, z ¢ OF, a contradiction.

Conversely, suppose E° = (). By part a), 9E C E. On the other hand, if z € F then since E° = ), B,.(x) is not
contained in E for any r > 0, i.e., B.(z) N E€ # ) for all r > 0. Hence x € OF.

c) Let E = {(z,y) : 22 + y?> = 1,2 # 1}. Then (1,0) is a boundary point of E which does not belong to E.

10.4 Compact Sets.

10.4.1. a) Since 1/k — 0 as k — oo, this set is closed and bounded, hence compact.

b) This set is closed and bounded, hence compact.

c¢) This set is bounded but not closed. If we set H := {(0,y) : =1 <y < 1} then E U H is closed and bounded,
hence compact.

d) The set is closed but not bounded (since (n,1/n) € E for all n € N). Therefore, E is neither compact nor is
it contained in any compact set.

10.4.2. Let A, B be compact sets. If {V,} is an open covering of AU B, then it is a covering of A and B. Since
these are compact sets, we can choose Vi,...,Vxy to cover A and Vn41,...,Va to cover B. Clearly, Vi,..., Vs
covers AU B. Thus AU B is compact.

By Remark 10.44, A and B are closed sets, so by Theorem 10.31, AN B is a closed subset of the compact set
A. Tt follows from Remark 10.45 that AN B is compact.

10.4.3. Since E is compact, it is bounded by Theorem 10.46. Since it is nonempty, it follows from the
Completeness Axiom that E has a finite supremum. By the Approximation Property, choose z; € E such that
) — sup E. Since F is closed, we have by Theorem 10.16 that sup F = limg_.., zx € E. A similar argument
works for inf F.

10.4.4. Suppose A is uncountable. Since each V, is nonempty, choose a point z,, € V,, for each a € A. Since
VaNVg =0 for a # B, the set E = {x, : a € A} is uncountable. But E C UyeaV,, hence by Lindelof’s Theorem,
E C Ugea, Vo for some countable subset Ag of A. Since each V,, contains at most one zg, it follows that E is
countable, a contradiction.

The result is false if “open” is omitted. By Remark 1.41, the unit interval (0,1) is uncountable, hence {z : = €
(0,1)} is an uncountable collection of pairwise disjoint nonempty sets which covers the unit interval (0,1).

10.4.5. By Exercise 10.3.10, there exist € := ¢, > 0 such that V = U,cy Bc(z). But X is separable, so it follows
from Lindelof’s Theorem that there exist open balls B; := B, (z;) such that V' C U2 B;. On the other hand,
}?0:133' C V since each B; C V. Therefore V' = U?‘;lBj as required.

10.4.6. Suppose that f is uniformly continuous on E. Thus given € > 0 there is a 6 > 0 such that p(z,y) < ¢

and x,y € E imply 7(f(x), f(y)) < e.
Let a € OF and let =, € E with z,, — a as n — oo. Clearly, x,, is Cauchy. By repeating the proof of Lemma
3.38 we can show that f(x,) is Cauchy. Since Y is complete, it follows that f(x,) — y for some y € Y. This
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y does not depend on the sequence z,. Indeed, if y, also converges to a, then p(z,,y,) < ¢ for large n, so
7(f(xn), f(yn)) < € for large n. Thus let g(a) :=y.

Do this for all a € OF to define g on OE. Define g on E by g = f. Since E = E U OE, it follows from the
sequential characterization of continuity and our construction that g is a continuous extension of f to E.

Conversely, since F is closed and bounded, it follows from the Heine-Borel Theorem that E is compact. Thus
by theorem 10.52, ¢ is uniformly continuous on E. We conclude that f = g is uniformly continuous on the subset
E.

Since X is complete and satisfies the Bolzano—Weierstrass Property

10.4.7. a) Since both sets are nonempty and p(z, y) is bounded below by 0, the dist (A4, B) exists and is finite. By
the Approximation Property for Infima, choose 3, € A and y, € B such that p(zk,yx) — dist (4, B). Since A and
B are compact (hence bounded—see Theorem 10.46), use the Bolzano-Weierstrass Property to choose subsequences
such that xy, — 2o € A and yp, — yo € B. Since AN B =0, xo # yo. Hence dist (A, B) = p(zo,y0) > 0.

b) Let A = {(z,y) : y = 0} and B = {(z,y) : y = 1/z}. Then A and B are closed, AN B = {, but dist
(A, B) =0 because 1/ — 0 as  — oo.

10.4.8. a) Suppose not, i.e., NH; = (. Then by DeMorgan’s Law, UH{ = X, in particular, {Hf} is an
open cover of Hy. Since H; is compact, choose IV so large that Hf,..., Hf; covers Hy. But since these sets are
nested, Hf C --- C Hg;, so the union of this covering is Hf,. Since H§, 2 H;, and Hy DO Hi, it follows that
) = H{ N Hy 2 Hy, which contradicts the hypothesis that H; is nonempty.

b) Every convergent sequence in E := (v/2,v/3)NQ must have a limit in Q and cannot converge to the irrational
endpoints, so by Theorem 10.16, E is closed. Since it is contained in a bounded interval, E is bounded. It is not
compact since we if we choose rationals a,, | v2 and b, T v/3, then {(an,bsn) N Q is a countably infinite open
covering of E which has no finite subcover.

¢) Let z,, be irrational which satisfy x, | v/2. By the argument in part b), (v/2,,) are closed and bounded,
but not compact. Moreover, it is obvious that they are nested. Of course, their intersection is () because v/2 ¢ Q.

10.4.9. Since sup,¢joq)[2"| = 1, [|falloc = 1 for all n € N. Suppose to the contrary there is a subsequence
{n} of integers such that ||fn, — fllcc — 0 as k — oco. Then |f,, () — f(z)] — 0 as k — oo for each z € [0, 1].
But 2™ — 0 when z € [0,1) and to 1 when = 1. Hence f(x) cannot be continuous at x = 1.

10.4.10. a) Suppose that H is compact and z; € H. There are two cases. Either there is an a € H such that
for each r > 0, B,.(a) contains z;, for infinitely many &’s, or for each a € H there exists an r, > 0 such that B, (a)
contains z for only finitely many k’s.

If the second case holds, then

Hc | B, ().

acH
Since H is compact, there are points aq,as, ..., an such that

N
HC B, (a)).

Jj=1

Since each B,.aj (a;) contains zy, for only finitely many k’s and z), € H for all k € N, it follows that N is finite, a
contradiction. Hence, the second case cannot hold.

Evidently, the first case holds. Let x, € Bi(a). Since B/s(a) contains xj for infinitely many &’s, choose
ky > ki such that x, € By 2(a). Continuing in this manner, we can choose integers k; < ko < ... such that
xy; € Byyj(a) for j € N. Since p(xy,,a) < 1/j, xx, converges to a.

b) Let E be sequentially compact. By Exercise 10.1.10, E is closed and bounded. Hence by the Heine—Borel
Theorem, F is compact. Conversely, if E is compact then by part a), E is sequentially compact.

10.5 Connected Sets.

10.5.1. a) Let R = [a,b] X [¢,d]. Since (z,y) € R implies ||(z,y)|| < |z| + |y| < max{|al, |b|} + max{|c|,|d|}, R
is bounded. If (xy,yx) € R converges to some (z,y) then a < z; < b implies a < z < b and similarly, ¢ <y < d.
Thus (z,y) € R and it follows from Theorem 10.16 that R is closed. Hence by the Heine- Borel Theorem, E is
compact. It also is connected because it cannot be broken into disjoint open pieces.

b) The set is bounded, but not closed (since (—2 + 1/n,0) belongs to the set but its limit, (—2,0) does not).
Hence by the Heine Borel Theorem, it is not compact. It is also not connected, because {(z,y) : x < 0} and
{(z,y) : © > 0} separates the set.

94



10.5.2. a) It is relatively open in {(x,y) : y > 0} because each of its points lies in a relative open ball which
stays inside the set. It is relatively closed in {(z,y) : 22 + 2y? < 6} because the limit of any convergent sequence
(in the SUBSPACE sense) in the set stays in the set.

b) It is relatively open in Bj(0,0) because each of its points lies in a relative open ball which stays inside the
set. It is relatively closed in B, 5(2,0) because the limit of any convergent sequence (in the SUBSPACE sense) in
the set stays in the set.

10.5.3. a) Let I and J be connected in R. Then I and J are intervals by Theorem 10.56. Hence I N J is empty
or an interval, hence connected by definition or Theorem 10.56.

Let A = {(z,y) : y = 2?} and B = {(z,y) : y = 1}. Then A and B are connected in R? but AN B =
{(-1,1),(1,1)} is not connected.

b) If E = (\,ca Ea is empty or contains a single point, then E is connected by definition. If E contains two
points, say a,b, then a,b € E, for every a € A. But F, is an interval, hence (a,b) C E, for all « € A, i.e.,
(a,b) C E. Hence FE is an interval, so connected by Theorem 10.56.

10.5.4. a) If F is connected in R then F is an interval, hence E° is either empty or an interval, hence connected
by definition or Theorem 10.56.
b) The set E = B1(0,0)U B1(3,0)U{(z,0) : 1 < z < 2} is connected in R?, but E° = B;(0,0) U B;(3,0) is not.

10.5.5. Suppose A is not connected. Then there is a pair of open sets U, V' which separates A. We claim that
ENU#0. If ENU = () then since ANU # (), there exists a point z € UN (A\ E). But E C A C E implies
A\ECFE\E=0E. Thus x € 9ENU. Since U is open it follows that ENU # (), a contradiction. This verifies
the claim. Similarly, £ NV # (). Thus the pair U,V separates E, which contradicts the fact that E is connected.

10.5.6. For each z € X, f is constant on B,. Since X is compact and is covered by {By}.cx, there exist
T1,...,xN such that

X = B,..
J

=

Il
—

J

Let z € X. Then x € By, for some 1 < j < N, so f(x) = f(x;). It follows that f(z) € {f(21),..., f(zn)} for
all x € X. In particular, f(X) C {f(z1),..., f(zn)}, so f(X) is finite, say X = {y1,...,yr}. But a finite set is
nonempty connected if and only if it is a single point. Indeed, if M > 1, then set r = min{p(y;, yx) : j, k € [1, M]}
and notice that the B, (y;)’s are open, nonempty, and disjoint, hence separate f(X). Hence, N =1, i.e., f(z) =

f(zq) for all z € X.

10.5.7. Suppose H is compact. Let £ := {U, }aca be a relatively open covering of H. Choose V,,, open in R",
such that U, = HNV,. Then {V,},ca is an open covering of H. Since H is compact, there exists a finite subset
Ap of A such that {V,}aca, covers H. In particular, {Us}aca, is a finite subcovering of £ which covers H.

Conversely, suppose every relatively open covering of H has a finite subcover. If {V,, }4c4 is an open covering
of H then {H NV,}aea is a relatively open covering of H. Therefore, there exists a finite subset Ag of A such
that {H NV, }aea, covers H. In particular, {V,}aeca, covers H and H is compact.

10.5.8. a) By Remark 10.11, # and X are clopen.

b) Suppose E is clopen and ) C E C X. Then U = F and V = X \ F are nonempty open sets, U NV = (), and
X = U UV. Therefore, X is not connected.

Conversely, if X is not connected then there exist nonempty open sets U and V such that UNV = ) and
X =UUV. Thus E:=U = X\ Vis clopen and ) C E C X. In particular, X contains more than two clopen
sets.

~10.5.9. Let E be a nonempty, proper subset of X. By Theorem 10.34, £ has no boundary if and only if
E\ E°=0F =1, i.e., if and only if F = E°. Thus E has no boundary if and only if F is clopen. This happens,
by Exercise 10.5.8, if and only if X is not connected.

10.5.10. a) Suppose E is polygonally connected but some pair of open sets U, V separates E. Let x; € ENU,
X2 € ENV. Since E is polygonally connected, there is a continuous function f : [0,1] — E with f(0) = x; and
f(1) = x2. By Theorems 10.56 and 10.62, f(]0,1]) is connected. But since f([0,1]) C E, U,V separates f([0,1]),
a contradiction.

b) Let x € U. Since E is open, choose r > 0 such that B,.(x) C E. Let y € B,.(x) and let P be a polygonal path
from xg to x which lies in E. Then the path P U L(x;y) goes from xq to y and lies in F, i.e., y € U. Therefore,
B,.(x) CU and U is open.
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¢) Suppose E is open and connected but not polygonally connected. By part b), given any x € E the set Uy
which can be polygonally connected to x through E is open. Since E is not polygonally connected, there exist
points xo # yo in E such that Ux, N Uy, = 0. Let U := Uy, and V := U{Uy, : Uy N Uy, = 0}. Then U,V are
nonempty open sets, U NV = () and U UV = E. In particular, the pair U, V separates E, a contradiction.

10.5.11. Suppose E is not connected. Then there exists a pair of open sets U,V which separates E. Let
2 € NaecaEy. Since E C U UV we may suppose x € U. Choose ag € A such that V N E,, # 0. Since z € E,,,
we also have U N E,, # (). Therefore, the pair U,V separates E,,, a contradiction.

10.6 Continuous Functions.

10.6.1. a) f(0,7) = (0,1] is not open and we don’t expect it to be; f[0, 7] = [0, 1] is compact and connected
as Theorems 10.61 and 10.62 say it should; f(—1,1) = (—sin1,sin 1) is open, big deal; f[—1,1] = [—sin1,sin1] is
compact and connected as Theorems 10.61 and 10.62 say it should.

g(0,7) = {1} is connected as Theorem 10.62 says it should; g[0, 7] = {0,1} is compact but not connected—note
that Theorem 10.61 does not apply since g is not continuous; g(—1,1) = {—1,0, 1} is not open and we don’t expect
it to be; g[—1,1] = {—1,0,1} is compact but not connected-note that Theorem 10.61 does not apply since g is
not continuous.

b) f71(0,7) = ...(0,7)U(27, 37)U... is open as Theorem 10.58 says it should; 1[0, 7] = ...[0, 7]U[27, 37]U. ..
is closed as Exercise 10.6.3 says it should; f~1(—1,1) = R\ {z : 2 = (2k+1)7/2,k € Z} is open as Theorem 10.58
says it should; f~'[—1,1] = R is closed as Exercise 10.6.3 says it should.

g~ 1(0,7) = (0,00) is open, no big deal; g=1[0,7] = [0,00) is closed-note that Exercise 10.6.3 does not apply
since g is not continuous; g~1(—1,1) = {0} is not open and we don’t expect it to be; g~[—1,1] = R is closed-note
that Exercise 10.6.3 does not apply since g is not continuous.

10.6.2. a) f(0,1) = (0,1) is open, no big deal; f[0,1) = [0,1) is neither open nor closed; f[0,1] = [0,1] is
compact and connected as Theorems 10.61 and 10.62 say it should.

9(0,1) = (1,00) is connected as Theorem 10.62 says it should; g[0,1) = {0} U (1, 00) is neither compact nor
connected—note that Theorems 10.61 and 10.62 do not apply since g is not continuous; ¢[0,1] = {0} U [1,00) is
neither compact nor connected—note that Theorems 10.61 and 10.62 do not apply since g is not continuous.

b) f~1(—1,1) = [0,1) is relatively open in [0, 00), the domain of f as Theorem 10.58 says it should; f~1[-1,1] =
[0,1] is relatively closed in [0, 00) as Exercise 10.6.4 says it should.

g H(—=1,1) = (=00, —1) U (1,00) U {0} is not open and g is not continuous; g=1[—1,1] = (—oo, —1JU[1, 00) U {0}
is closed, no big deal-note that Exercise 10.6.3 does not apply since g is not continuous.

10.6.3. Let C be closed in Y. Then Y\ C is open in Y, so by Theorems 10.58 and 1.37, f~1(Y\C) = X\ f~1(0)
is open in X, i.e., f~(C) is closed in X.

10.6.4. a) First, notice by definition and the fact that every subspace is a metric space in its own right, a set
is relatively open if and only if its complement is relatively closed.

Suppose f is continuous on E and A is closed in Y. Then A¢:=Y \ A is open in Y, so by Corollary 10.59,
Ag = f71(A°) N E is relatively open in E. This means that there is an open set V in X such that Ag = V N E.
Since

E\Ay=Enf YA =En(X\V)

and X \ V is closed, it follows that f=(A4) N E is relatively closed in E. A similar argument proves that if
f~1(A) N E is relatively closed in E for all closed sets A in Y, then f is continuous on E.

b) Let V be relatively open in f(FE), i.e., V.= UnN f(E) for some U open in Y. By Corollary 10.59, f~*(U)NE
is relatively open in E. But by Theorem 1.37,

FAVNE =Y (VN f(E) = f1UNfE)=fU)NE.

Hence f~1(V) N E is relatively open in E.
A similar proof, using part a) in place of Corollary 10.59, shows that f~!(A) N E is relatively closed in E for
all relatively closed sets A in f(E).

10.6.5. By Theorem 10.62, f(F) is connected in R. Hence by Theorem 10.56, f(F) is an interval. Since f(a)
and f(b) both belong to f(E), the interval (f(a), f(b)) is a subset of f(E). In particular, y € f(F) as required.

10.6.6. a) Since f is continuous, so is || f|| (modify the proof of Exercise 3.1.6). Therefore, ||f| g is finite and
attained by the Extreme Value Theorem.
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b), ¢) Repeat the proof of Exercise 9.4.7.

10.6.7. a) Repeat the proof of Exercise 3.4.5a,b. Compactness was used to prove fg is uniformly continuous
since both functions need to be bounded. Compactness is not needed to prove f + g is uniformly continuous.

b) If g is not zero, then 1/g is continuous on F, hence bounded by the Extreme Value Theorem.

c¢) By part b) and the Extreme Value Theorem, 1/|g(z¢)| = infecg 1/g(x) is positive. Hence by repeating the
proof of Exercise 3.4.5d, we see that f/g is uniformly continuous on E.

10.6.8. a) By the proof of Lemma 3.38, if f is uniformly continuous, then f takes a Cauchy sequence in X to
a Cauchy sequence in Y.

b) Let « € X. Since D is dense, choose z,, € D such that x,, — x. By part a, f(x,) is Cauchy, hence convergent
since Y is complete. Define g(z) := lim,_,~ f(x,). By the argument of Theorem 3.40, this definition is independent
of the sequence z,, € D chosen to approximate z. Thus g is well defined on all of X. (Note: Because the boundary
of [a, b] contained only isolated points, this and the Sequential Characterization of Limits was enough to conclude
that g was continuous on X. Here, we must also consider the possibility that the approximating sequence z,, — a
approaches through dD. It’s a little easier to resort to the e-§ definition of continuity.)

Define g(z) := f(z) when = € D and g(x) as above when z € X \ D. To show that g is continuous on X, let
€ > 0 and choose § > 0 such that

r,y€ D and p(x,y) <d imply 7(f(z),f(y)) <

Wl m

Fix zo,yo € X with p(zo,yo) < §/3. If 2o or yp belongs to D, set © = ¢ or y = yo. Otherwise, use the density of
D and the definition of g to choose x,y € D such that

Wl >
Wl >

. T((@).g(@0) < 5. and 7(S(4),9(0) < 5.

Wl m

plx,xz0) < 5, p(y,y0) <

Since p(z,y) < p(z,zo) + p(z0,y0) + p(yo,y) < 6 and x,y € D, we have 7(f(x), f(y)) < €/3. Therefore,

7(9(x0), 9(v0)) < 7(g(w0), f(x)) +7(f(2), f(¥) + 7(f(¥), 9(v0)) < €.

By definition, g is continuous on X.

10.6.9. Suppose that X is connected. By Theorems 10.62 and 10.56, f(X) is an interval. Since f is nonconstant,
f(X) contains more than one point. In particular, f(X) contains an open interval (a,b) for some a < b.

Now g(t) = (t — a)/(b — a) is a 1-1 function from (a,b) onto (0,1). Hence if X is countable, then so is (0,1).
This contradicts Remark 1.39.

10.7 Stone-Weierstrass Theorem.

10.7.1. a) Clearly, the collection, P, of polynomials on R is an algebra in C[a, b] that contains the constants.
If 1 # 22 and f(z) = z, then f(x1) # f(z2). Thus P separates points of the compact set [a,b]. By the
Stone-Weierstrass Theorem, then, there is a sequence of polynomials P, such that P, — f uniformly on [a,b] as
n — oo.

b) By part a) and the density of rationals, the polynomials with rational coefficients form a countable dense
subset of Cla, b].

10.7.2. Clearly, the collection, P, of polynomials on R™ is an algebra in C(A) that contains the constants.
If a,b) # (c¢,d), then either @ # c or b # d. If f(z,y) = x and g(x,y) = y, then either f(a,b) # f(c,d) or
g(a,b) # g(c,d). Thus P separates points of the compact set A. By the Stone-Weierstrass Theorem, then, there
is a sequence of polynomials P on R"™ such that P, — f uniformly on A as k — oc.

10.7.3. Since collection of functions with separated variables is an algebra that contains the constants and
separates points of the compact set R, the Stone-Weierstrass Theorem implies that there is a sequence of functions
with separated variables, Py, such that P, — f uniformly on A as k — oo.

10.7.4. By Exercise 10.7.1, there exist polynomials P, such that P, — f uniformly on [a,b]. By hypothesis,
ff f(z)P,(x) dx = 0 for all n. Thus by Theorem 7.10,

b b
/ f2(x)de = lim [ f(z)P(z)dz=0.

—
n o0 a
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Since f? > 0 and f is continuous, we conclude that f = 0 everywhere on [a, b].

10.7.5. By Exercise 10.7.3, there exist functions P, with separated variables such that P,, — f uniformly on
[a,b] X [c,d]. Notice that

/ b ( / Cuety) dy> w= | ' u(e) do / oy dy = / ' ( / " w@)o) dm) o,

Thus the result holds for any function with separated variables, e.g., for each P,,. Therefore, it follows from
Theorem 7.10 that

/ab (/Cdf(@y)dy) dr = lim_ ab (/chn(x,y)dy) dr = lim cd (/:Pn(x,y)dx> dy—/cd (/abf(x,y)dx>

10.7.6. a) If x,y € T and ®(z) = ®(y), then cosz = cosy and sinz = siny. If x # y, the first identity says
0 <z < 7 < y; the second identity says 0 < x < /2 < 37/2 < yor /2 < z < y < 37w/2. Since sinf and cos 6
are 1-1 on each of these “quarters” of T, it follows that = y. Thus ® is 1-1.

® takes T into Ty := 0B1(0,0). Since ® is continuous, ®(T) is connected in R2. But T(0) = T(27), so
®(T) = Tp. Thus D is onto.

b) Since || || is a metric on R? and ® is 1-1, it is easy to see that p(z,y) is a metric on 7.

¢) Since p(z,y) < r means ||®(z) — P(y)|| < r, it is easy to check that = € (0,27) and p(zk,x) — 0 implies that
2 — x in R, as k — oo. On the other hand, since ®(0) = ®(27), it is clear that p(zj,0) < r < 1 implies that
|zi| < r or |z, — 2w < r. Thus if f is continuous on (T, p), then f is continuous on [0,27) and f(27) := f(0)
is a continuous extension of f from T to [0,27]. Conversely, if f is continuous and periodic on [0, 27], then f is
continuous on (T, p).

d) 9B;(0,0) is compact in R? and ®~! is continuous from 9B;(0,0) to (T,p), so its image T is a compact
metric space by Theorem 10.61. The collection, P, of trigonometric polynomials are an algebra on C(T"). If
x € [0,7/2] U (m,3mw/2], then sinz # siny and if z € (7/2,7] U (37/2,27), then cosz # cosy. Therefore, P
separate the points of the compact set T. By the Stone-Weierstrass Theorem, then, given f € C(T), there is a
sequence of trigonometric polynomials P, such that P, — f uniformly on T.

10.7.7. Repeat the proof of 10.7.4 with trigonometric polynomials replacing classical polynomials.
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CHAPTER 11
11.1 Partial Derivatives and Partial Integrals.
11.1.1. a) fy = €Y, foy = €Y, f, = we¥, and fy, = €.

b) fo = —ysin(zy), fzy = —sin(zy) — zy cos(zy), f, = —zsin(zy), and f,, = —sin(zy) — zy cos(zy).
¢) fo=(1-2zy—2%)/(2% +1)%, foy, = —22/(2* +1)%, f, =1/(2®> + 1), and f,, = —2z/(2? + 1)°.

11.1.2. a) If (2,5y) # (0,0), then f, = (22° + 423y — 2zy*) /(22 + 3?)2. By definition,
f(h,0) — f(0,0) h* -0

= lim

h h—0 h

£2(0,0) = lim =0.
Since |f,(z,y)| < 2|z|(22+y?)? /(22 +42)? = 2|z| — 0 as (z,y) — (0,0), it follows that f, is continuous everywhere
on R2.

b) If (x,y) # (0,0), then f, = (22/3) - (222 + 4y?)/(x? + y*)*/3. By definition,

_ o f(0) = f(0,0) L RPRPP -0 s
12(0,0) = flLIH%) h N flllg%) h N flgl%)h =0

Since | f.(z,y)| < (2/3) - 4(z® + y?)%/2/(2® + y*)¥/? < 3(2® + y?)V/® — 0 as (x,y) — (0,0), it follows that f, is
continuous everywhere on R2.

11.1.3. Let x € B,.(a) and set h := x — a. Then by the one-dimensional Mean Value Theorem, there exist ¢
between xj and aj such that

f(x)—f(a) :f(mlax%"'vxn)_f(alax%"wmn)
+ flar, 22, ..., 2pn) — flar,a2,23,...,&n) + -
+ flar,...,an—1,2n) — flas,...,an)

= ($1 - al)fll (61,1’2, .- -71‘n) +o 4+ (l’n - a/n)fa:n(a17 .- -7an—1acn)'

For each k =1,2,...,n,set dy, = (a1,...,0k—1,Ck, Tk+t1,-- -, Lpn) and observe that dj, € B,.(a). It follows from the
calculation above and hypothesis that f(x) — f(a) =0+---+ 0= 0. In particular, f(x) = f(a) for all x € B,(a).

11.1.4. The integrable function g is bounded, so choose M > 0 such that |g(z)| < M for all = € [a,b]. Since
f is continuous on the compact set H, f is uniformly continuous. Thus given ¢ > 0 there is a 6 > 0 such that
y,w € [¢,d] and |y — w| < ¢ implies | f(z,y) — f(z,w)| < ¢/(M(b— a)). Therefore,

b b
F(y) - Fw)| = / 9(@)(f () — flo,w)) da| < M / @) — Fa,w)|de < e.

11.1.5. a) Since €%’ +* is continuous on [0,1] x [~1,1], it follows from Theorem 11.4 that fol eV gy
fole”‘dx:e—l as y — 0.
b) Notice that sin(e®y — y> +m — e”) is C* on [0,1] x [—1,1]. It follows from Theorem 11.5 that

d [* . , ! . ,
. / sin(e®y —y> + 7 — e®) dx = / (e® — 3y?) cos(e®y — y* + 7 — %) du.
Y Jo 0

At y = 1 we obtain fol(ex —3)cos(m — 1)dx = (e — 4) cos(m — 1).

¢) The partial with respect to 2 of /23 + 3 + 23 — 2 equals 32%(2® + y® + 2% — 2)~/2/2. Since ,y, 2 € [1, 3]
implies 3 + y3 4+ 23 —2 > 3 — 2 =1 > 0, this partial exists and is continuous on [1, 3] x [1,3] x [1,3]. The same
things happens for the partials with respect to y and z. Thus by Theorem 11.5,

3 3
ag/ x2\/x3+y3+z372daﬁ:§/ 2?23 4+ 4> + 22 —2)7Y? da.
T J1 1

2
At (z,y) = (1,1) we obtain 1.5 f13 273/%2dz =3 — /3.
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11.1.6. a) Since f and |z — 1| are continuous on R, the intergand is continuous on R2. Hence by Theorem 11.4,
2 1 2
I:/ f(jz —1))eldx = f(l—x)da:—l—/ flz—1)dz.
0 0 1
Changing variables (u =1 — z and w = x — 1), we have
0 1
I:—/ f(u)du+/ fw)ydw=1+1=2.
1 0
b) By Theorem 11.4 and parts, the integral in question is
e +/ f(z)coszdx =e —/ f(z)sinzdz =e—e=0.
0 0

c¢) By Theorem 11.5,
d Y ! e
df/ fly)emvty dy:/ yf(y)e™ ™V dy.
L Jo 0

At 2 =0, we obtain (after a change of variables y = /x and 2y dy = dz)
1 ) 1 1
| wrwer ay=35 [ stvaeraa=s.
0 0

11.1.7. a) Forz € [0,1] and y > 0, |zcosy/¥T—z+y| <1/¥T—z+y <1/¢Y1—x and

1
dx 3 13
/ = —51-2)P =5 <0
0

V1 —x 2

Thus the original integral converges uniformly on (0, 00) by the Weierstrass-M Test. Hence it follows from Theorem

11.8 that

! 01 —u 9

I T Cosy d /1 x d J
1m —F——ar = —adr = — —au = .
y—0+ Jo 1 —r+y 0 J1—=x 1 \3/6 10

b) Since [e=*¥sinz/z| < e=*¥ < e~*/2 for y € [1/2,3/2], f;o(e_zy sinx/x) dz converges uniformly on [1/2,3/2]
by the Weierstrass-M Test. Hence it follows from Theorem 11.9 that

d [ e ®Wsinx &
——dr = — e Tsinx dr
s

dy Jr @

at y = 1. Integrating by parts twice, we obtain

oo oo oo
/ e Tsinxdr = / e “cosxdr=e " — / e Tsinxdx,
s s T

ie., [*e "sinzdr = —e /2. Therefore, 0/0y([ " (e”"¥sinx/z)dx) = e~ /2 when y = 1.

11.1.8. a) Since | cos(z? +y?)| < 1 for any y € (—o0, 00) and fol dz/\/x < 00, it follows from the Weierstrass-M
Test that fol cos(z? + y?)/v/z dx converges uniformly on (—oc, 00).

b) By definition, fooc e~ Wdr = —e ™ /y |SO: 1/y. Given € > 0 choose N so large that e™™ < e. Then
1/y — fON e~™dx| = le"NV/y| < eV < esince y > 1. Thus [~ e ¥ dx converges uniformly on [1,00) by
definition.

¢) By definition,

/-oo S { —e %Y |;°: 1 y>0
0 0 y=0.
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If this integral converges uniformly on [0, 1] then

N
1—/ ye Y dx
0

uniformly for y € (0,1] for N large. This contradicts the fact that e=™¥ — 1 as y — 0. Therefore, fooo e~ Wdx
does not converge uniformly on [0, 1].
On the other hand, if [a,b] C (0, 00) then

N
1—/ ye "Ydx
0

independently of y. Hence fooo e~ %Y dz converges uniformly on [a, b].

1
— e Ny < =
c =3

=e N <eNae

11.1.9. a) [ e stdt = —e=*!/s | =1/s for s > 0.
b) By parts and part a),

Tnestgp = [Tt gy 2 [T e gy
0 s Jo sn 0 Sn+1
for s > 0.

) [J eve st dt = [T e "D dt =1/(s — a) for s > a.
d) Integrating by parts twice,

o0 1 b (™ 1 v [
/ e Stcosbtdt = — — 7/ e *tsinbtdt = = — — e St cos bt dt
0 S S 0 S S 0

for s > 0. Solving for the integral, we obtain [~ e~ cosbtdt = s/(s* + b?).
e) Integrating by parts twice,

'] b o0 b b2 [oe]
/ e Stsinbtdt = — / e St cosbt dt = - = e St sin bt dt
0 S Jo s 57 Jo

for s > 0. Solving for the integral, we obtain [;°e™*!sinbtdt = b/(s* + b?).

11.1.10. a) By the Weierstrass M-Test, ¢(t) converges uniformly on (0, ¢] for each ¢ € (0,00). Since ¢(0) = 0,
integration by parts yields

N N
/ e f(t)dt = e CTING(N) + (s — a) / e T g(t) dt.
0 0

b) Since f is bounded, |¢(t)| < M < oo for all t € (0,00). For s > b > a, |[e"~9tp(t)| < Me™ (=9t hence by
the Weierstrass M-Test, [~ e~ (5=@)tp(t) dt converges uniformly on [b, 00). Hence by part a), it remains to see that
e~ (5"ING(N) — 0 as N — oo. But this follows immediately from the Squeeze Theorem since ¢(N) is bounded
asN—>ooande*(‘S*“)NHOasN—>ooforanyszb>a.

c¢) By part b) and Theorem 11.8, £{f} exists and is continuous on (a,cc0). To show it vanishes at infinity, let
€ > 0. Choose § > 0 such that |¢(t)| < € for 0 < ¢ < §. Then

5 oo
L{f}(s) <e(s— a)A e gt 4 (5 — a)e*‘;(H*l)/(s e tp(t)| dt =: I + L.

Now (s — a) f05 e=(=atgt =1 —e (=99 1 as s — oo. Therefore, limsup, .. I; < e. On the other hand, by
part b), Iy < M(s—a)/e’*==1 — 0 as s — oco. Therefore, limsup,_, .. L{f}(s) < ¢, i.e., L{f}(s) — 0 as s — oc.
d) By part b) L{f}(s) = (s — a) [~ e~ *=9)*¢(t) dt so by Theorem 11.9,

LUV (5) = /0 T e gty dt — (s - a) /0 e motag(e) e

= /OOO e () (1 — (s — a)t) dt.
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On the other hand, since d/dt(te~(5=®*) = ¢=(s=0)t(1 — (s — a)t), integration by parts yields

L{LF(D)}(s) = /0 et pp)e-at gt — — /0 T et (1 = (5 — a)t) dt.

Therefore, L{f} (s) = —=L{tf(t)}(s).
e) Integrating by parts, we have

EU%@:Amﬁwf“ﬁ

= f(t)e ™ |g° +s /000 ft)e st dt
= —f(0) +sL(f)(s)-

11.1.11. a) By Exercises 11.1.8 and 11.1.9, L{te'} = —L{e'}'(s) = —(1/(s — 1)) =1/(s — 1)2.

b) By Exercises 11.1.8 and 11.1.9, L{tsin 7t} = —L{sin 7t} (s) = —(7/(s? + 72

¢) By Exercises 11.1.8 and 11.1.9, £{t? cost} = L{cost}"(s) = (s/(s> +1))" = ((1 — s?)/(s2 + 1)?)' = 2(s® —
3s)/(s* +1)3.

11.2 The Definition of Differentiability.
11.2.1. Let V denote the open cube (—1,1) x --- x (=1,1). Clearly,

dg _ af;
T%(X) _fl(ml) 833]‘ (1‘]) fn(zn)
Therefore, by Exercise 9.3.6 and hypothesis, g and g,, are all continuous on V. Hence by Theorem 11.15, g is
differentiable on V.
11.2.2. Since f has a scalar domain and is differentiable at a, we have
0 i [@) = S@) = Df@) @ —a) _ @)~ f@) | (o)

r—a |I*a‘ T—a |937a\ |Jf*a|

Df(a).

Thus (f(z) — f(a))/lx — a| — Df(a) as  — a+ and (f(z) — f(a))/lx — a| — =Df(a) as  — a—, ie., ||f(z) -
f@)|l/lx —a|l = ||Df(a)|| as © — a. Thus it follows from the hypothesis f(a) = g(a) = 0 that

If@I _ (@) = f@)l/lx—al _ [Df(a)]

lg@)II — llg(a) = g(@)ll/lz —al  [Dgla)]
as x — a.
11.2.3. By definition,
1:(0,0) = liny h = fim =0

Similarly, f,,(0,0) = 0. Thus Df(0,0) = (0,0). Consequently,

f(h,k)—f(0,0)—Df(0,0)~(h,k) \/‘hk|

(s Bl VR + k2

Along the path H = 0, this expression is 0 and along the path h = k, this expression is 1/v/2. Therefore, the limit
of this expression does not exist, i.e., f is not differentiable at (0, 0).

11.2.4. By definition,

f(h,0) — £(0,0) . h {1 as h — 0+

2 (U, = 1' _ = 1 - =
12(0,0) Py h Hm0 sin || -1 as h — 0—.

Thus the first partials of f do not exist at (0,0) and f cannot be differentiable at (0,0) by Theorem 11.14.
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11.2.5. At any (z,y) # (0,0), f has continuous first partials , hence is differentiable by Theorem 11.15. To
examine the case when (z,y) = (0, 0), notice first that f,.(0,0) = lim;_o(f(h,0) — £(0,0))/h = limj,_o K372 =0
because 3 — 2 > 0. Similarly, f,(0,0) = 0. Since

f(h,k) — £(0,0) — V£(0,0) - (h, k I -
0B = OB =SSO0 08) _  BAR o s aprn o

as (h,k) — (0,0), f is also differentiable at (0,0). We conclude that f is differentiable on R?2.

11.2.6. The function has continuous first partials at any (z,y) # (0, 0), hence is differentiable there by Theorem
11.15. To examine the case when (z,y) = (0,0), notice first that f,(0,0) = lim,_o(f(h,0) — f(0,0))/h =
limj,_,o 0 = 0. Similarly, f,(0,0) = 0. Consequently,

f(h k) = f(0,0) = V£(0,0) - (h, k)| _ | (hk)*log(h* + k?)
(A )| (B2 k2)2

1 1
- h2 k'2 a—1/21 )
ga (" H) B\ 1w

IN

Now by I'Hépital’s Rule, uflog(l/u) — 0 as u — 0 for any € > 0. Therefore, (f(h,k) — f(0,0) — Vf(0,0) -
(h,k))/II(h,k)|| — 0as (h,k) — (0,0). In particular, f is differentiable at (0,0). We conclude that f is differentiable
on R2.

11.2.7. Clearly, f is continuous and has first-order partial derivatives at every point (x,y) # (0,0). What
happens at (0,0)? Since
|z]l2? — |
S |
)l = I < al,
it follows from the Squeeze Theorem that f is continuous at (0,0) with f(0,0) = 0. Moreover, the function f has
first-order partial derivatives at (0,0), since

oz (0-0) = Jimy h = jim s = b
and of £(0,h) = £(0,0) 0
9y (00) = Jim h = fim 75 =0

Finally, if f were differentiable at (0,0), then

= (h,k)—(0,0) \/m o (h,k)—(0,0) (h2 + k2)3/2'

But the path h = k gives a limit of —1/v/2 # 0 as h — 0+4. Thus f is not differentiable at (0,0).
11.2.8. Since T is linear,

IT(a+h) ~T(a) -T(h)| _ |T(a) +T(h) - T(a) -Th)| _ 0 _
[l [l LU

Thus by definition, T is differentiable at a and DT'(a) =T.
11.2.9. By the Squeeze Theorem, |f(x)| < ||x|| — 0 as x — 0 so f(0) = 0. Hence

h

0
L=

£(0,0,...,h,...
695]-

70) —f(O)‘ S lim |h|cx—1 =0
h—0

as h — 0 since a > 1. Tt follows that f, (0) =0 for j =1,...,m, i.e., Vf(0) = 0. Since

< |hf*=t =0

‘f(0+ h) — £(0) = V£(0) - h‘ _ ()]
[l [l
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as h — 0, we conclude that f is differentiable at 0.
Let f(x) = ||x||. Then f satisfies the condition for o = 1 but f,(0,0) = limp_ |h|/h does not exist. Therefore,
f is not differentiable at (0, 0).

11.2.10. a) By definition,
fla+tey) — f(a)  Of
= ——(a).
t 6l’k
b) By part a), if f has directional derivative in all directions, then all first partials of f exist. To show the
converse is not true, let f be given by Example 11.11. Clearly, f;(0,0) = f,(0,0) = 1 both exist. However, if

u = (1/v2,1/v/2) then

De,f(a) = lm

Dyuf(0,0) = lim

t—0

t t—0
does not exist.
c¢) Let (u,v) be a unit vector. By definition,

f(tu, tv) — £(0,0) . wv { wfv v#0

D(u,v)f(Oa O) = tlg% t = tlg% u4t2 ¥ V2 - 0 v=0.

Thus the directional derivatives of f exist. On the other hand, f is not continuous because along the path x =0
the limit is zero, but along the path y = 22 the limit is 1/2.

11.2.11. a) By the one-dimensional Mean Value Theorem, A(h) = hf,(a + h,b+th) — hf,(a,b+ th) for some
te(0,1), and

(*) A(h) = hfi(a+uh,b+h) — hf(a+uh,b)
for some u € (0,1). Since V fy(a,b) - (h,th) — V fy(a,b) - (0,th) = hfy.(a,b) we can write

Ah)

5 = Jyla+h,b+th) — fy(a,b+th)

= fyla+ h,b+th) — fy(a,b) — Vfy(a,b) - (h,th)
— (fyla, b+ th) — fy(a,b) — Vfy(a,b) - (0,th)) + hfyz(a,b).

b) Since f, is differentiable at (a,b), we have

fyla+u,b+v) = fy(a,b) — Vfy(a,b)- (u,v) _

lim 0.
(u,v)—(0,0) H(U, ’U)H
Therefore, it follows from part a) that
. A(h) . fyla+h,b+th) - fy(a,b+th)
1112% h2 flLlino h = Jua(a,0).

c¢) If we start with (*) and reverse the roles of z and y, we have

_ A(h)
Jim =2

= fay(a,b).

Combining this with part b), we conclude that fy,;(a,b) = fzy(a,b).
11.3 Derivatives, Differentials, and Tangent Planes.

11.3.1. Since they are all C! on their domains, they are all differentiable on their domains.
a) Df(xz,y) =[1 —1]and Dg(x,y) =[2z 2y]. Hence

D(f+g)(w,y)=[2x+1 2y—1] and D(f-g)(z,y) = (32" - 2uy+y® 2y —2* - 3y°].
b) Df(z,y) =y «]and Dg(x,y) =[xcosz +sinx siny]. Hence
D(f+g)(z,y) =[zcosz+sinx+y z+siny]
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and
D(f-g)(z,y) = [zYcosz + 2xysinxz — ycosy xysiny + ax?sinz — zcosy].

¢) Since
Dfay) = | V) =r | Dyt = |9 ]
we have in(zy) 1 in(zy)
| —ysin(zy — xsin(zy
DU+ a)(a) = | s o)
and
D(f-g)(z,y) = [2xlogy — y*sin(zy) cos(zy) — zysin(zy) +22/y].
d) Since
Dfwy =Y o 4] wa aewa =% 5 ).
we have
D(f+g><x,y,z>:[yf ! fyl] and  D(f - g)(@,y,2) = [1*(: +1) 20yz+2ay — 2z y*(x—1)].

11.3.2. a) Since Vf = (2z,2y) = (2,—2) at (1,—1), and the equation of the tangent plane is z = f(1,—1) +
Vil,-1) - (x =1,y +1), we have z = 2z — 2y — 2.

b) Since Vf = (3z%y — y®,2% — 32y?) = (2,-2) at (1,1), and the equation of the tangent plane is z =
f, ) +V(1,1) (2 -1,y — 1), we have z = 2z — 2y.

¢) Since Vf = (y,z,cosz) = (0,1,0) at (1,0,7/2), and the equation of the tangent plane is w = f(1,0,7/2) +
Vi1,0,7/2) - (x —1,y,z —7/2), we have w = y + 1.

11.3.3. By Theorem 11.22, the normal direction is given by (—2x, —2y, 1). This vector is parallel to (1,1, 1), the
normal of the plane z+y+2z = 1, if and only if # = y = —1/2. Thus the point on the paraboloid where the tangent
plane is parallel to z +y + 2z = 1 is (=1/2,—1/2,1/2) and an equation of this tangent plane is 2z + 2y 4+ 2z = —1.
A portion of the plane x 4+ y + z = 1 lies above the first quadrant of the zy plane and slants back toward the z
axis, so the point (xo, Yo, 29) where the tangent plane is parallel should be on the “back” side of the paraboloid,
i.e., (xg,yo) should lie in the fourth quadrant.

11.3.4. a) If (z,y) # (0,0), then by the Chain Rule, a normal to K at (z,y, z) is given by (z/z,y/z,—1). But

(a/e,b/c,—1) - (1,0,1) = 0 implies that a = c. If (a,b,c) belongs to the cone, then ¢ = a? + b = ¢? + b2, i.e.,
b = 0. Thus an equation of the plane tangent to K perpendicular to  + z = 5 at a point (a,b, c) is

(1,0,1)-(;16—a,y,z—a):0,

ie,x—2z=0.

b) If (a,b,c) € K and (a/c,b/c,—1) = t(1,—1,1), then t = —1, so a = —c and b = ¢. Since (a, b, c) lies on the
cone, it follows that ¢ = a? 4+ b? = 2¢?, i.e., ¢ = 0. Since ¢ = 0 implies @ = b = 0 and K has no tangent plane at
the origin, there are no tangent planes to this cone which are parallel to z —y + z = 5.

11.3.5. a) Let T = Df(a) and S = Dg(a). By the Triangle Inequality,

If(ath)+glath) = fla) —gla) = T(h) = S| _ Iflath) - fla) =T _ llglath)—gla) - S(h)]
2] - 2] 121

Since these last two terms converge to zero as ||h|| — 0, it follows that f+g is differentiable, and D(f+g)(a) = T+S.
On the other hand, by homogeneity,

[(af)(a+h) = (af)(a) = (@T)(B)]
2]

oI @) — fla@) 7))
I

Since this last term converge to o -0 = 0 as ||h|| — 0, it follows that af is differentiable, and D(af)(a) = oT.
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11.3.6. a) By modifying the proof of Lemma 3.28, we can prove that if f(a) # 0, then |f(a+h)| > |f(a)|/2 >0
for h small.
b) By the definition of the operator norm,

DI@®) || _ IDL@® _ IDS@IIRIL _ e
|5 H WS Pl

for all h # 0.
¢) Choose h # 0 small enough so that f(a + h) # 0. Using f(a)f(a + h) as a common denominator and the
definition of T', we have

L1y f@) = St h) — f@) et T(R)
fla+h) 1@ f(@)f(a+ h)
)

_ fla) = fla+h)+ Df(a)(h)f(a+h)/f(a)
fla)fla+h)
_ fla) = flat+h)+ Df(a)(h) | (fla+h)—f(a))Df(a)(h)
fla)fla+h) f*a)f(a+hn)

= 11 + IQ.

d) Since f is differentiable at a, f is continuous at a and I /||h|| — 0/f?(a) = 0 as h — 0. Similarly, by part
b) and the Squeeze Theorem, I5/||h| — 0/f3(a) = 0 as h — 0. It follows that 1/f is differentiable at a and its
derivative is T'. This is sometimes called the Reciprocal Rule.

e) By the Product and Reciprocal Rules, D(f/g)(a) = D(f-(1/9))(a) = (1/g(a))Df(a)+ f(a)(—Dg(a)/g*(a) =
(9(a)Df(a) — f(a)Dg(a))/g*(a).

11.3.7. Define T € L(R™;R™) by = T(y) := f(a)x(Dg(a)(y))—g(a) x (D f(a)(y)). Notice that Df(a)(y) € R3
so this cross- product makes sense under the identification of 3 x 1 matrices with vectors in R3. Fix h with norm
so small that f(a+ h) is defined, and observe by the distributive law that

f(a+h) xg(a+h)— f(a) xg(a) —T(h) = f(a+h) x (g(a+h) —g(a)
+ (f(a+h) = f(a)) x g(a)
— f(a) x Dg(a)(h) — D f(a)(h) x g(a)
fa+h)x (g(a+h)—g(a) — Dg(a)(h))
+ (f(a+h) = f(a)) x Dg(a)(h)
(fa+h) = f(a) = Df(a)(h)) x g(a)
= 5L+ L+

Since g is differentiable at a, I;/||h|| — 0 as h — 0. Since f is differentiable at a, I3/||h|| — 0 as h — 0. Finally,
since f is continuous and (by the definition of the operator norm) ||Dg(a)(h)| < |[Dg(a)|| |||,

[12[l/ 1]l < |Dg(a)[[ | f(a+h) = f(a)[| — 0

as h — 0. It follows from the Squeeze Theorem that f x g is differentiable and its total derivative is T'.

11.3.8. a) dz = 2z dzx + 2y dy.
b) dz = ycos(xy) dx + x cos(xy) dy.

(1—a®+y%)y (1+a% -y

d =
C) < (1+x2+y2>2 z (1+m2+y2)2

dy.

11.3.9. dw = 2xydr + 22dy + dz so Aw ~ 4(.01) 4+ 12(—.02) + .03 = .05. The actual value is Aw =
£(1.01,1.98,1.03) — £(1,2,1) ~ 3.049798 — 3 = 0.049798.

11.3.10. By definition,
1 /g (gdL— Ldg T (dL dg
dT =27=, /2 [ — | = | = - = ).
2\ L g2 2\L g
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Thus dL/L = 2dT/T + dg/g. The worst possible scenario is dT/T = £0.02 and dg/g = F0.01 so dL/L = +0.03

Hence, allow no more than an error of 3%.
Note: dL/L = £0.05 does not work because then dT/T = (dL/L — dg/g)/2 might equal (0.05+ 0.01)/2 = 0.03,

outside the 2% error allowed for T

11.3.11. Since . ) . .

we have dw/w = p(w/x + w/y + w/z) = £p.
11.4 The Chain Rule.

11.4.1. By the Chain Rule,
OF0: w00z OF Oy  OF0:

du_OFgr oFoy 0F9:  ow
Op Oxdp Oyodp 0z0p dq¢ 0xdq 0Oydg 0z0q
Hence by the Product Rule and Theorem 11.2,
w0 (OF\Or  OF 0w 0 (OF\dy OFQ% 0 (OF\0:  OF %
Op2  Op\ox)Op Oxop2 Op\dy)op Oyodp> Op\9dz)0Op Oz 0p?
_ OF 9% +8F82 +6F82
= Oz 0p? oy 8p 0z Op?
OF? (0 O°F (9y\*  O°F (9z\°
toes ) +55 + 5 [ =
ox2 \ dp oy? \ dp 0z%2 \ Op
2 2
+28F Oz [0y Jr28F ox 0z +23 Oy (9= .
Oxdy \ Op Jdp 0xdz \ dp p dydz \ Op p
11.4.2. a) By the Chain Rule
0g1/0x1(a) ... 0Og1/0x,(a)
[0h/0x1(a) ... Oh/Oxn(a)]=Vf(g(a)) : :
8gm/axl(a) te agm/axn(a)

= V/(g(a)) - 0g/0x;(a).
Df(g(a))Dg(a) and the determinant of a product is the product of the determinants

Therefore, 0h/0z;(a)
b) Since D(f o g)(a) =
we have Agoq(a) = Af(g(a))Ag(a).
11.4.3. If f is homogeneous of order k, then f(0) = f(0-x) = 0¥ f(x) = 0. Thus the formula holds when x = 0.
If x # 0, then for any p # 0 we have

J(px + phe;) — f(px) ﬁ lim flx+ he;) — /) = pk71f$_7’ (x).

o, (px) = }llli% oh 0 heo

Thus by the Chain Rule, homogeneity, and the Power Rule
o 12%@ ngf% px) (f(pX)) p(p"’f(x)) = kp" ™ f ().

11.4.4. By the Chain Rule, u, = yf'(zy) and u, = xf'(zy). Hence zu, — yuy = zyf'(zy) — zyf'(zy) = 0.
Similarly, v, = f'(x —y) + ¢ (x +y), vy = —f'(z —y) + ¢'(z + ), and vea —vyy = [z —y) + 9" (x +y) - (f"(z -

y)+9"(x+y))=0.
11.4.5. By the Chain Rule, u, = f;cos0 + f,sinf, v, = g, cosf + g,sinf, ug = —fprsind + f,rcosf, and
Vg = —grsind + g, rcosf. Therefore, u, = gy cosf — gy sind = vg/r and v, = —f, cos O + fysind = —uy/r
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11.4.6. U, = fopcos20 + foysinfcost + fy,sinfcosb + fyy sin? 0, and ugg = —frrcos + four? sin?0 —
feyr?sinfcosd — f,rsind — f,,r?sin6cos 6 + f,, r? cos? §. Therefore,

10%u 10u 0%u
2o Tror o = et w=0

11.4.7. a) By the Product Rule,

Uaa (11, £) = % (_Timu(x,t)) - (Z; - %) (@, ) = s, 1).

b) If x > a then u(z,t) < e‘a2/4t/\/47rt — 0 as t — 0+ independently of z.

11.4.8. Let w = y/2? 4+ y? + 2z2. By the Chain Rule, F, = v/ (w)z/w, F, = v/(w)y/w, and F, = v/ (w)z/w.
Therefore,

VE A+ B+ P2 = W IV 0? + 2+ 2 [0 = W )V1 = o (Va7 7+ )]

11.4.9. Let y = f(x) and take the derivative of F(x, f(x)) = 0 with respect to z. By the Chain Rule,
0 = Fy(a,b) + Fy(a,b)(dy/dz), hence dy/dx = —F,(a,b)/F,(a,b).

11.4.10. By hypothesis, (f - f)(t) = 72 is constant on I, hence by the Dot Product Rule, 0 = (f - f)'(t) =
Fr@) - f@)+ @) - f/(¢) =2f(t) - f'(t) for all t € I. In particular, f(¢) is orthogonal to f’(t).

11.4.11. a) Let ¢g(t) = a+tu and h(t) = f o g(t). By Exercise 11.2.8, Dg(t) = u for all ¢ and by definition,

h’(O) = }12% M = Dy f(a).
Hence by the Chain Rule, Dy f(a) = (f o g)'(0) = Df(¢(0)) - ¢’(0) = Vf(a) - u.
b) By (2) in 5.1 and part a), cost = Vf(a) - u/([Vf(@)|[ull) = Duf(a)/[[Vf(a)ll. Therefore, Duf(a) =
19 @) cos .
c) If Vf(a) = 0 then Dy f(a) = 0 and there is nothing to prove. Otherwise, Dy f(a) = |V f(a)| cos @ ranges
from —||V f(a)| (when 6 = 7) to ||V f(a)| (when § = 0), with maximum value of |V f(a)| when 6 = 0, i.e., when
u is parallel to V f(a).

11.5 The Mean Value Theorem and Taylor’s Formula.
11.5.1. a) Clearly, fo =2z 4y, fy = + 2y, foz =2, foy =1, and fy, = 2. Hence

fley)=1—(@+)+@y-D+@+1)°+@+)y—-1)+@y-1)°

by Taylor’s Formula.
b) Clear1y7 f”ﬁ = 1/(2\/5)7 fy = 1/(2\/37)1 fTT = 71/(41‘3/2)7 fry = 07 fyy = 71/(4?-/3/2)’ f’I‘:I‘T = 3/(8$5/2),
fuyy = 3/(8y°/?), and all mixed third order partials are zero. Thus by Taylor’s Formula,

r—1 y—4 (z-12 (y—-4?> (@@-1> (y-4)°
T+ .y =3+ + - - + +
Ve VY 2 4 8 64 16v/cd 16V d>

for some (c,d) € L((z,y);(1,4)).
C) CleaﬂY7 fz = yezy, fy = xemyv fzz = 2126“’, fzy = (zy + 1)ezy7 fyy = xzezyv sy fzzzz = y461y7 fzzzy =
(BY2+2y)e™, froyy = 2+4zy+2%Y?)e™, fryyy = B2 +23y)e™, and f,y,, = x*e™. Thus by Taylor’s Formula,

cd
e =1+axy+ Z—'((dm +ey)t + 12(dx + cy)?ay + 122%9%)

for some (¢, d) € L((x,y);(0,0)).
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11.5.2. We must show

D(@f((a b); (h, k)) = i (Z) ﬂ(a bR kL
R = OxI Oyt—7

for £ € N.
This formula holds for £ = 1. Suppose it holds for ¢ — 1. Then by definition,

(e-1)
(a,b)h + 8Daiyf(a,b)k
-1
¢ —1 alf P
:ZO< 1) g (a e

=
-1 o'f b
+§ < ; )rﬂayh(a bk

l
——
Z( >ax38ye J( a, b)h'k".

j=0

DO f((a,b)s (k) = 222

Thus by induction, the formula holds for all £ € N.
11.5.3. By the Mean Value Theorem and the assumption about Dg,

fl9(x)) = f(g(a)) = Df(g(c))Dg(c)(x —a) = Df(g(c))(x —a)

for some ¢ on the line segment from a to x. It follows from the definition of the operator norm that

1f(9(x)) = flg(a)| < [[Df(g(c))ll[Ix — all.

Thus set h(x) =

11.5.4. Let B = [b;;] be the n x n matrix that represents Df(a) and set S(x) = B(x). By Remark 8.14,
S € L(R™;R™). Moreover, by Exercise 11.2.8 and hypothesis, DS(x) = B = D f(x) for all x € V. It follows from
the proof of Corollary 11.34, applied to f — S, that

1£(x)=S(x) = f(a)+8(a)[|* < [|f(x)=S(x)~f(a)+S (@) [ D(f = S)(e)(x—a)| = | f(x)~S(x)~ f(a)+S(a)l|-0 =0

for all x € V. Thus f(x) = S(x) + f(a) — S(a) on V, so set ¢ = f(a) — S(a).

11.5.5. Let F be defined as in the proof of Theorem 11.35. Using Lagrange’s integral form of the remainder
term for the one-dimensional Taylor’s Formula, we obtain

p—1 1
F60) ~ f@) = F(1) = F(0) = 3 %FU)(O) + /0 (1= P~ F®)(¢) dt.

(p—1)!

Since F®)(t) = D®) f(a + t(x — a); (x — a)), the result follows at once.

11.5.6. a) By the Chain Rule, ¢'(t) = fo(tz + (1 — t)a, y)(z — a) + fy(a, ty + (1 —t)b)(y — b).
b) By the Mean Value Theorem,

f(@,y) = f(a,b) = g(1) — 9(0) = ¢'(t) = fule,y)(z — a) + fy(a,d)(y — D)
for some t € (0,1), where ¢ =tz + (1 —t)a and d =ty + (1 — t)b.
11.5.7. Set E = B,(0). If x5, € E satisfies x;, — 0 as k — oo, then by the continuity of f,

FO)] = lim [Fxi)] < Jim [xi* =0

Moreover, E is convex, closed, and bounded, hence compact. Hence by Corollary 11.34, there is a constant M > 0
such that |f(x)| = |f(x) — f(0)] < M||x — 0|| = M||x|| for all x € E.
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11.5.8. Let x € H. Since H is convex, use Taylor’s Formula to write f(x) = f(a) + D® f(c;x — a)/2!. By
definition,

D@ f(c;x — a) ZZ 833 81 —a;)(zj — aj).

=1 j=1
Since H is compact and all these partial derivatives are continuous on H, it follows that there is a C' > 0 such
that

n n
IDP f(eix—a) < CY Y |vi— ail |zj — a5] < n*Clix - al.

i=1 j=1
Therefore, |f(x) — f(a)| = |[D® f(c;x — a)|/2! < M||x — a||? for M = n>C/2.
11.5.9. Let F(t) = f(a+ tu) and observe by definition that

F’(t):}]l%w :}ll%f(a+tu+hlfll)ff(a+tu)

= Dy f(a+ tu).

Thus F is a differentiable real function on [0, 1], and it follows from the one-dimensional Mean Value Theorem
that
fla+u) = fa) = F(1) = F(0) = F'(t) = f(a+ tu)

for some ¢ € (0,1).
11.5.10. By Taylor’s Formula,
y?
flata,b+y) = f(a,b) + fa(a, b)erfJ(a by + fm(a b) +ny(a b)$y+ny(a b)
+ faa(c, d) + Fray(c; d) +f1yq(c d) - Fuuy(c:d)y?

for some (¢, d) € L((a,b); (a + x,b+1y)). Thus

2w 2

fla+7rcosb, b+ rsinf)cos(20)dl = fr.(a, b) — fyy(a, b) +R
0

where

2T (1 cos ) (rsin 0)
——c

27
R = fopu(c,d) /0 @ws@a) 0 + fray(c,d) /0 5

27 . o 2
+ fzyy(cv d) / w COS(QQ) do
0

0s(20) df

27 . 3
+ fyyy (e, d) / @ cos(26) df.
0

Hence it suffices to prove that R/r? — 0 as r — 0. Since f is C?, its third partial derivatives are all bounded on
B, (a,b). Therefore,

|R| <

M 3 27 M 3
g' / (cos @ + sin 0)3 cos(26) df| < (|3T| 167,
0

ie, |R|/r? = 0asr — 0.

11.5.11. a) Let ¢ > 0. Given (zo,t9) € OH, choose § > 0 such that u(z,y) > —e for (z,y) € Bs(xo,to). Since
OH is compact, it can be covered by finitely many such balls, say By, ..., By, where u(z,t) > —eon U := Uévlej.
Since the complement K = H \ U is a finite intersection of closed sets disjoint from the boundary of H, K is a
compact subset of H® and u(x,t) > —e for (z,t) € H\ K.

b) Suppose u(x1,t;) = —¢ < 0 for some (w1,t;) € H°. Let r > 0 be so small that rt; < ¢/2 and set
w(w,t) = u(x,t)+7r(t—t1). Apply part a) to € := £/2—rt; to choose a compact set K C H such that u(z,t) > —
on H\ K. Then w(x,t) > —e —rt; = —£/2 for every (x,t) € H\ K, i.e., is greater than the value of w at (z1,t1).
Thus the minimum of w on H must be less than or equal to —¢ and must occur on the compact set K.
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c) Suppose u is not nonnegative on H. Since it is nonnegative on OH, there is a point (z1,t;) € H° such that
u(z1,t1) < 0. Hence by part b), there is a point (z2,t2) € K where the absolute minimum of w occurs.

If u satisfies the heat equation, then w,, —w; = —r < 0 on V. We shall obtain a contradiction by showing that
Wee (T2, t2) — wy(x2,t2) > 0. First observe by a one- dimensional result that wy(z2,t2) = 0. Hence by Taylor’s
Formula,

h? h?
w(ze + h,t2) = w(we, t2) + wmm($27t2)? + (waz (e, t2) — wmm($27t2))?
for some ¢ between x5 and xa + h. Since Wy (¢, ta) — Wer(T2,t2) — 0 as h — 0, and w(xa,t2) < w(xe + h,ta) (this
point is a local minimum), it follows that w,, (z2,t2) > 0. Therefore, wyy (22, t2) — wi(wa, ta) = Wee(x2,t2) > 0, a
contradiction.

11.5.12. a) Suppose E is convex but not connected. Then there is a pair of open sets U, V' which separates E.
Letxe ENU andy € ENV. Let to = sup{t € (0,1) : (1 —t)x +ty € U} and set xo = (1 — to)x + toy. Since
E is convex, xg € L(x;y) C E. Thus either xg € U or xg € V. If x¢ € U then B.(x¢) C U for some € > 0, which
contradicts the choice of ty. Similarly, xo € V also leads to a contradiction. Therefore, F is connected.

b) The converse is false. Indeed, the set E := B;(0,0) U Bi(1,0) is connected but not convex. Indeed,
L((0,1);(1,1)) intersects E at only two points.

c¢) Suppose f is convex. Let F := {(z,y) : y > f(x)} and suppose (x1,y1), (z2,y2) € E. Let (x,y) be a point on
the line segment between (x1,y1) and (z2,y2), and (z,y*) be a point on the chord from (z1, f(z1)) to (x2, f(z2)).
Since f is convex, f(xz) < y*. Since y1 > f(x1) and y2 > f(z2), we also have y > y*. Thus f(z) < y* <y, i.e.,
(z,y) € E.

Conversely, if E is convex and (x1,y1), (z2,y2) € F, then L((x1, f(x1)); (z2, f(x2))) € E. In particular, the
chord from (z1, f(z1)) to (z2, f(22)) lies on or above the graph of y = f(z), i.e., f is convex.

11.6 The Inverse Function Theorem.

11.6.1. a) Since
3 -1
prwo =[5 3,

we have

e3[4

b) Since f(u,v) = (0,1) implies u = (2k + 1)7/2 or uw = 2kw, k € Z and

DI = | b |

cosu —sinwv
we have )
1 |11 B |0 1
or

o=y 1] =[5 7

¢) Since f(u,v) = (2,5) implies u = £2, v = £1 or u = +1, v = +2 and

Dit) =5, 5.

we have .
. [+ x2] [F1/3 £1/3
p f(2’5)*[i4 +2 | *{12/3 F1/6°
or L
1 C[£2 £1]1 [£2/3 F1/6
p f(2’5)_[j:2 +4 | _{¢1/3 +1/3|°
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d) Since f(0,1) = (—1,0) and
Df(u,v) = [

we have Af(0,1) =2 # 0, and it follows from the Inverse Function Theorem that

3u?  —2v
cosu —1/v|’

AmrUme:wﬂ&m*=[jﬁ H-

11.6.2. a) Set F(z,y,2) = xyz + sin(x + y + z). Since F(0,0,0) = 0 and

O oyt cos(e +y+2)
- =X COs(T z
92 Y Yy

equals 1 # 0 at (0,0, 0), the expression has a differentiable solution near (0,0, 0) by the Implicit Function Theorem.
b) Set F(z,y,2) = 2? + y* + 2% + /sin(22 + y2) + 32 + 4 — 2. Since F(0,0,0) = 0 and

OF 3

- z+
0z 2/sin(22 + y2) + 3z + 4

equals 3/4 # 0 at (0,0,0), the expression has a differentiable solution near (0,0,0) by the Implicit Function
Theorem.
c) Set F(x,y,z) = zyz(2cosy — cosz) + zcosx — x cosy. Since F(0,0,0) = 0 and

OF .
e xy(2cosy — cosz) + xyzsin z + cosx
2z
equals 1 # 0 at (0,0, 0), the expression has a differentiable solution near (0,0, 0) by the Implicit Function Theorem.
d) Set F(x,y,z) =z +y+ z+ g(z,y). Since F(0,0,0) =0 and

F
Z—Z(O,O,O) =1+g.(0,0,0) > 1

is nonzero, the expression has a differentiable solution near (0,0,0) by the Implicit Function Theorem.

11.6.3. Let F(z,y,u,v,w) = (v’ + 2v? —y + w,v® + yu?® — z + w,w* + y® — 2* — 1) and observe that
F(1,1,1,1,—-1) = (0,0,0). We want to solve for u, v, w, so we must compute

S5ut 220 1
=det | 2uy 5* 1 = 4w (25u*v? — duvzy).
0 0 4w’

8(FlaF27F3)
A(u, v, w)

Since this determinant is nonzero at (1,1,1,—1), we can apply the Implicit Function Theorem to verify such
functions u, v, w exist.

11.6.4. Let F(z,y,u,v) = (zu? + yv? + 2y — 9, 20% + yu? — zy — 7) and observe that

O(Fy, Fy) — det <2um 2uy

— 2 2 _ 2 2
O(u, v) MyQM)—%W duvy® = duv(2® — yP).

Thus by the Implicit Function Theorem, if F(zg,yo,u0,v0) = (0,0), 22 # 32, and ug # 0 # vg, then such
solutions u, v exist. Moreover, adding the two given identities, we have x(u? 4+ v?) + y(u? +v?) = 9 + 7, i.e.,
(z +y)(u® 4+ v?) = 16.

11.6.5. Let F(x,y,u,v, s,t) = (u? + sz + ty,v? + tz + sy, 252z + 2%y — 1, s2x — t?y) and observe that

20 0 T Y

8(F1,F27F3,F4)_ 0 2v Y x _
W = det 0 0 d4sz 4ty = —64uvsaty.
0 0 2sx -2ty
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Since each of the numbers g, yo, uo, Vo, So,to iS nonzero, this determinant is nonzero. Hence by the Implicit
Function Theorem such functions u, v, s, t exist.

11.6.6. a) Notice that s = 2 +y, t = 2y, and (z,y) € Eimply s >0,t >0, 2 =s —y, and t = sy —y%. In
particular, y = (s £ vs? —4t)/2 and z = (s F v/s? — 4t)/2. The condition 0 < y < x cannot be satisfied by the
pair which eventuates when x takes the minus sign and y the plus sign. However, 0 < y < z is satisfied by the
other pair because s > 2v/t > 0. Thus

f_l(s,t) _ <s+\/82—4t s — /82 —4t> .

2 ' 2

b) Since
1 1
is invertible when 0 # Af(x,y) = « — y, the inverse exists for 0 < y < = and by the Inverse Function Theorem,
- - 1 z -1 z/(x—y) 1/(y—=)
s =1 (4, )~ ‘
(f)(f(z,y) = (Df(z,y)) r—y\—-y 1 y/(y—=) 1/(z—y)

c) By part a), z —y = Vs — 4t so z/(x — y) = s/Vs? — 4t + 1/2 which is the partial of the first component of
f~1 with respect to s, i.e., the first entries in the matrices D(f~1)(s,t) and D(f~1)(f(x,y)) coincide. Similarly,
the other three entries also coincide.

11.6.7. By the Implicit Function Theorem, solutions gj(u(j)) exist for each j. Moreover, by the Chain Rule
(see Exercise 11.4.9), 0g;/0xy = —Fy, [ Fy,. Therefore,
991 9g2 dgn, -F, —-F,, -F

= Inl — (1)
al’n Bxl an_l Fxl Fl Fxn ( )

2
11.6.8. By Theorem C.5,

Of2/0x 0f2/0y If —0f2/0x  Of1/0x |~

Hence by the Inverse Function Theorem, df; ' /dx = 0fa/dy/As, etc.

11.6.9. Suppose F;(a,b, c) # 0. Then by the Implicit Function Theorem there is an open set V' C R? containing
(a,b) and a continuously differentiable f : V' — R such that z = f(z,y) satisfies F(z,y,z) = 0 for (z,y) € V.
Thus G has a tangent plane at (a,b,c) by Theorem 11.22.

Let w = F(z,y, f(z,y)). By the Chain Rule, 0 = w, = F, + F.z, and 0 = wy, = F, + F,z, on V x f(V),
hence z, = —F,/F, and z, = —F,/F,. Hence by Theorem 11.22, a normal to the tangent plane at (a,b,c) is
given by n = (Fy(a,b,¢)/F.(a,b,c), Fy(a,b,c)/F.(a,b,c),1). In particular, n = (Fy(a,b,c), Fy(a,b,c), F.(a,b,c))
is a normal to the tangent plane at (a, b, c).

If F,(a,b,c) = 0 then one of the other partials of F' is nonzero, say Fy(a, b, c) = 0. Repeating the argument above,
we find a normal of the form (1, F,/F,, F./F,) which again is parallel to n = (F;(a,b,c), Fy(a,b,c), F.(a,b,c)).

11.6.10. If Vf(to) # 0, then either u/(ty) # 0 or v'(tg) # 0. Without loss of generality, we suppose the former.
Consider F(z,t) := u(t) — x. Since F is C! and Fi(zo,t0) = v'(to) # 0, it follows from the Implicit Function
Theorem that there is an open interval I containing xy and a C! function ¢ : Iy — R such that g(xo) = to and
0= F(z,9(z)) = u(g(z)) — x for all z € I.

11.6.11. a) By Exercise 11.6.9, the normal of H at (a, b, ¢) is parallel to VF = (2z, 2y, —2z). Hence we can use
(—a, —b,c) for a normal at the point (a, b, c).

b) If (a,b,c) € H and (0,0,1) - (—a, —b,c) = 0 then ¢ = 0 and a? + b?> = 1. Thus n = (a,b,0) and an equation
of the tangent plane is ax + by = a® + b = 1.

¢) If (a,b,¢) € H and t(1,1,—1) = (—a, —b,c) then a = b = ¢ = t hence a®> = a? + b2 — ? = 1, i.e.,, a = £1.
Hence (1,1,1) and (—1,—1,—1) are the only points where the tangent plane of H is parallel to z +y — z = 1.
Corresponding equations these tangent planes are x +y — 2 = 1 and x +y — 2 = —1. A portion of the plane
x+1y— 2z = 1 lies above the first quadrant of the zy plane and slants away from the z axis, so there are two points
where the tangent plane to H is parallel to z +y — 2z = 1, one on the “front” side of H lying above the zy plane,
and one on the “back” side of H lying below the xy plane.
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11.7 Optimization.

11.7.1. a) 0= f, =2z —yand 0 = f, = —z + 3y? — 1 imply y = 2z and 122 —x — 1 =0, i.e., x = 1/3,-1/4.
Since D = 12y — 1, we see that f(1/3,2/3) = —13/27 is a local minimum and (—1/4, —1/2) is a saddle point.

b) 0 = f; = cosz and 0 = f, = —siny imply « = (2k + 1)7/2 and y = jr, k,j € Z. Since D = sinz cosy,
f((2k + 1)7/2,j7) = 2 is a local maximum if k and j are even, f((2k + 1)7/2, jm) = —2 is a local minimum if &
and j are odd, and ((2k + 1)7/2, jm) is a saddle point if k£ + j is odd.

¢) 0= f, =e"Vcosz, 0= f, =e*¥cosz, and 0 = —e* ¥ sin z imply cosz = sinz = 0. Since these functions
have no common zero, this function has no local extrema.

d) 0 = f, = 2az + by and 0 = f, = bz + 2cy imply (b*> — 4ac)y = 0, i.e., z = y = 0. Since D = 4ac — b?,
£(0,0) = 0 is a local minimum if @ > 0 and b — 4ac < 0, a local maximum if @ < 0 and b% — 4ac < 0, and (0, 0) is
a saddle point if b — 4ac > 0.

11.7.2. a) 0 = f; =2r+2and 0 = f, = —2y implies z = —1 and y = 0. Note f(—1,0) = —1. For the
boundary, let x = 2cos and y = sin . Then f(x,y) = 2% +2z—y? = 5cos? 0 +4cos —1 =: h(0). Since W' () = 0
implies # = 0 or 7, or cos§ = —2/5. Since sin? § 4 cos®§ = 1, it follows that the critical points are (2,0), (=2,0),
and (—4/5,4++/21/5. Thus the absolute maximum of f on H is f(2,0) = 8 and the absolute minimum of f on H
is f(—4/5,£v21/5) = —9/5.

b) 0 = f; =2z + 2y and 0 = f, = 2z + 6y imply z = y = 0. This point is outside H so can be disregarded.
We check the boundary in three pieces. If z = 1, 0 < y < 2, then f(z,y) = 1 + 2y + 3y which takes its minimum
at y = —1/3 which is out of range. If y = 0, 1 < 2 < 3, then f(x,y) = 22 takes its minimum at z = 0. Since
(0,0) lies outside of H, we can disregard it. Finally, if y = 3 — 2, 1 < x < 3, then f(z,y) = 222 — 12z + 27
takes its minimum at & = 3, an extreme point of H. Checking the extreme points of H, f(1,0) =1, f(3,0) =9,
and f(1,2) = 17. Thus the absolute minimum of f on H is f(1,0) = 1 and the absolute maximum of f on H is
£(1,2) =17.

¢) 0= f, =32%+3y and 0 = f, = 3z — 3y imply y = 0 or y = —1, which correspond to the points (0,0) and
(1,—1). We check the boundary in four pieces. If z = 1 then f(y) = 1 + 3y — y> has critical points y = 41, which
correspond to extreme points of H. If y = 1 then f(x,y) = 2%+ 32 — 1 which has no critical points. If z = —1 then
f(x,y) = —1 — 3y — 3> which has no critical points. And, if y = —1 then f(x,y) = 2> — 3z + 1 has critical points
x = %1 which correspond to extreme points of H. Checking the critical point f(0,0) = 0, and extreme points of
H, f(1,1) =3, f(1,-1) = -1, f(-1,1) = =5, and f(—1,—1) = 3, we conclude that the absolute maximum of f
on H of fon His f(1,1) = f(—1,—1) = 3, and the absolute minimum of f on H of f on H is f(—1,1) = —5.

11.7.3. a) The Lagrange equations are 1 = 22\ and 2y = 2y\. If y = 0 then the constraint implies x = +2. If
y # 0then A = 1 s0 2 = 1/2. The constraint implies y? = 15/4, i.e., y = +v/15/2. We conclude that f(—2,0) = —2
is the minimum, f(1/2,4++/15/2) = 17/4 is the maximum (and f(2,0) = 2 is a saddle point).

b) The Lagrange equations are 2z — 4y = 22\ and —4z 4+ 8y = 2y, i.e., 2z + y)A = 0. If A = 0 then z = 2y
and the constraint implies y = +1/v/5. If A # 0, then y = —2z and constraint implies = £1/v/5. We conclude
that f(£2/v/5,+1/v/5) = 0 is the minimum and f(+1/v/5,F2/v/5) = 5 is the maximum.

¢) The Lagrange equations are y = 2z + pu, £ = 2yA + p, and 0 = 22\ + p. Multiplying the first by z, the
second by y, the third by z, adding and using both constraints, we see that xy = A. By adding the Lagrange
equations and using the second constraint, we see that u = (z + y)/3. Substituting these values for A and p into
the first two Lagrange equations, we obtain 2y = 622y + = and 2z = 6y’z + v, i.e., y = £z.

If y = 2 then 2z = 623+, ie., v = 0or v = £1/V/6. If y = —2 then —2x = —623 +x, i.e., v = 0 or v = £1/1/2.
We conclude that f(+1/v/2,F1/v/2,0) = —1/2 is the minimum and f(+1/v6,41/v6,F2/v/6) = 1/6 is the
maximum.

d) The Lagrange equations are 3 = 6Ax — 3ux?, 1 = X, 0 = 122X + 1223y, 1 = p. Plugging A = = 1 into the
first and third of these equations, we have 322 — 62 +3 = 0 and 1222 + 1222 = 0, i.e., z = 1 and z = 0, 1. If
r=1land z=0,then3+y=1and —1+w=0,ie,y=—-2,w=1. Ifx=1and z=—1,then3+y—4=1and
—1434+w=0,ie,y=2, w=—2. We conclude that f(1,—2,0,1) = 2 is the minimum and f(1,2,-1,-2) =3
is the maximum.

11.7.4. By Remark 11.51, Vg(b) = 0, hence by the Chain Rule,
V(go f)(a) = Vg(b)Df(a) = 0.

11.7.5. If f,,(a,b) # 0 then f,.(a,b) = f,,(a,b) = 0 and it follows that D® f(a,b) = f.,(a,b)hk takes both
positive and negative values as h,k range over R. Thus by Theorem 11.58, (a,b) is a saddle point. On the
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other hand, if f;,(a,b) = 0 then either fy;(a,b) # 0 or fy,(a,b) # 0. We may suppose fzz(a,b) # 0. Then
D@ f(a,b) = fee(a,b)h? always has the same sign, and it follows from Theorem 11.58 that f(a,b) is either a local
maximum or a local minimum, depending on the sign of f,.(a,b). In particular, (a,b) is not a saddle point.

11.7.6. Suppose D f(a)(hy) < 0 for some hy € R2. Since f is C2 on V and

2

D@ f(c)(h) = D f(a)(h > o1 h;h
Fom =D e + 3 (G (@)= @) s

choose § > 0 such that

) D f(e)(ng) < D f(a)(ng) — 5 D f(a)(ho) = 5 D f(a)(ho) < 0

for ¢ € Bs(a). On the other hand, since f(a) is a local minimum we see by Taylor’s Formula that

0 0< fla+h) - f(a)=D®f(c)(h)
for ¢ € L(a;a+ h) and |/h|| sufficiently small. Let h = ahg, a # 0, where ||h|| < ¢ and let ¢ € L(a;a + h). Then
by (*) and (),
2
0< DPf(e)(h) = a?D® f(e)(ho) < T-D f(a)(ho) <0,

a contradiction.

11.7.7. a) The Lagrange equations are a = —2Dz\, b = —2Ey)\, and ¢ = A. Thus

a b d 1 a? n b2
. = —— n = — | — — .
YT T9p YT T M T a2\ DT E

To determine whether this is a maximum or a minimum, notice that the discriminant of F'(z,y) := ax + by +
cDx? + cEy? is 4c?DE. Since DE > 0 and ¢ # 0, it follows from Theorem 11.61 that the point (z,, ) identified
above is a maximum when Fy,/2 = ¢D < 0 and a minimum when ¢D > 0.

b) If DE < 0 then by part a), the discriminant is negative. Thus the point (z,y,2) is a saddle point and
ax + by + cz has no extrema subject to the constraint z = Dx? + Ey2.

11.7.8. a) If gz(a,b,c) = gy(a,b,c) = g.(a,b,c) = 0, then the equations obviously hold. If one of these partial
derivatives is nonzero, then by Lagrange’s Theorem there is a scalar A such that V f(a,b,c) = AVg(a,b,c). Thus
Vf(a,b,c) and Vg(a,b,c) are parallel, i.e.,

i j K
(07070) = Vf(a,b, C) X Vg(aabv C) = det fz(a7 b7 C) fy(aabv C) fz(avbac

)
gz(a,b,c) Gy (a,b,¢) g=(a,b,c)

In particular,
fz(av ba C)gz (aa b, C) - fz (av b7 C)gz(av ba C) =0= fy(a7 b7 C)gZ(a7 b7 C) - fz (aa b7 C)gy(av b7 C)'
b) By part a), if f(z,y,2) is an extremum then 4y?z — 2y?z = 0 and 42y — 2222 = 0, i.e., y?(4or — 22) =

0 = 22(4y — 22). Since xyz = 16, neither = nor y is zero. Hence z = 2z/2 and y = z/2. Plugging this into the
constraint, we obtain z3/4 = 16, i.e., z =4, x = y = 2. Thus f(2,2,4) = 48 is the minimum.

11.7.9. a) By symmetry, we may suppose that each x; > 0. Since ([¢|?)’ = p[t|P~! exists for all t € R and
p > 1, it follows from Lagrange’s Theorem that if f(x) is an extremum subject to the constraint y ;_, |zx[P =1
then 2z; = p|z;|P~*\. Since we assumed x; > 0, this equation can be rewritten as 22:? = p|z;|PA. Summing over

all j, we obtain
n n
2> _ai =pAY_lal" =pX,
j=1 j=1
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ie, A= (2/p) Z?Zl a3, If z; # 0, notice that |z;[P~% = 2/(p)) so 27 = (2/(pA))*/®=2)_ If m is the number of
nonzero components of the vector x, then

n 2/ (p—2 2/(p—2)
Zw?_m(z)/(p ):m % .
; pA 2i-1%;

Jj=1

Hence Z;;l m? = m®=2/P_ In particular, if p > 2 then the maximum of f is n®~2/? and the minimum is 1.
And, if 1 < p < 2, then the maximum is 1 and the minimum is n®=2)/?,

NP o N . .
b) Let a = (ijl |z, ) . If @ = 0 then the inequalities are trivial. If a # 0, then 7, |z;/alP =
> i1 |zjP/a? = 1. Hence by part a),

n(2 p)/p = ’

for 1 < p < 2. Taking the limit of these inequalities as p — 14 we see that this inequality holds for p = 1 too.
Thus
1/2
2 2 e 2
(2 7 S Z zj|* <a® hence pCEyIeT) < 2;|36J\ <a
: ]:

forall 1 <p<2.
¢) Suppose >, |z;| < co. Then by part b) (with p = 1) and the Comparison Theorem,

(%) <Xl
k=1 k=1

11.7.10. a) Since
F(a,b) = Zyk _QCLZﬂ%yk _Zbek +Z (azy, +b)?
it is clear that . . .
F, = 7221’;@1};@ + Qain + Qbek,
k=1 k=1 k=1
and

n n
Fy=-2Y yx+2ay i+ 2nb.
k=1 k=1

This yields two equations in the two unknowns a, b:

Zxk)a Z )b = Zﬂﬁk%
(Z:pk)a +nb= Zyk
k=1

k=1

so the matrix of coefficients has determinant dy. Thus this system can be solved by Cramer’s Rule as indicated.
b) To minimize the function F(a,b), as a and b vary, we first find the critical points by setting VF = 0. From
part a), we see that this function has only one critical point: (ag, bg)-
Since F,q = 2 ZZ=1 mi > 0, this critical point is either a minimum or a saddle point. To decide which, look at
the discriminant. By algebra,

2
n n
FoaFyp = F3y = 4n ) af — 4 (Z‘”’“> =4 (w; —w)? >0,
k=1 k=1 j<k

Thus by Theorem 11.59, (ag,bg) is a local minimum. Since there are no other critical points, it is an absolute
minimum.
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CHAPTER 12
12.1 Jordan regions.

12.1.1. a) m = 1: Each rectangle has area 1/4 and there are 3 rectangles which intersect E. Hence V(FE;G;) =
3/4 and v(F;G;) = 0. m = 2: Each rectangle has area 1/16 and there are 7 rectangles which intersect E. Hence
V(E;Gs) = 7/16 and v(E;G2) = 0. m = 3: Each rectangle has area 1/64 and there are 15 rectangles which
intersect E. Hence V(E;Gs) = 15/64 and v(F;Gy) = 0.

b) m = 1: Each rectangle has area 1/4 and there are 4 rectangles which intersect £ but none in the interior
of E. Hence V(E;G;) =1 and v(E;G1) = 0. m = 2: Each rectangle has area 1/16 and there are 13 rectangles
which intersect E but none lie in the interior of E. Hence V(E;Gy) = 13/16 and v(E;G3) = 0. m = 3: Each
rectangle has area 1/64 and there are 43 rectangles which intersect F but only 10 in the interior of E. Hence
V(E;Gs) = 43/64 and v(F;Gy) = 5/32.

¢) m = 1: Each rectangle has area 1/4 and there are 4 rectangles which intersect E but none in the interior of
E. Hence V(E;G1) =1 and v(E;G1) = 0. m = 2: Each rectangle has area 1/16 and there are 16 rectangles which
intersect E but only 4 lie in the interior of E. Hence V(F;G2) =1 and v(F;G2) = 1/4. m = 3: Each rectangle has
area 1/64 and there are 60 rectangles which intersect E but only 32 in the interior of E. Hence V(E;Gs) = 15/16
and v(F;Gy) = 1/2.

12.1.2. a) Let E = {x3,...,xn} and € > 0. Choose s so small that Ns" < e. If Qj, is a cube of side s which
contains x;, then

N
D 1Qkl = Ns" <e.
k=1

Hence by Theorem 12.4, F is a Jordan region of volume zero.

b) The set A in Example 12.2 is countable but not a Jordan region.

¢) We may suppose that £ = {(x,c) : a <z < b}. Let € > 0 and let G, be the dyadic grid of Exercise 12.1.1
with m so large that 27 < . Since the only rectangles which intersect E lie on the z-axis, there are only 2™ of
these. Thus V(E;G,,) = 2™ - 22™ = 27™ < ¢. Tt follows from Theorem 12.4 that E is a Jordan region and it has
area zero.

12.1.3. By Remark 12.6, every rectangle is a Jordan region. Thus it suffices to show that if R = [a, b] X [az, ba] X

- X [an, by] and Q = [b,c] X [ag,ba] X -+ X [an, by], then Vol (RN Q) = 0.

Let H=1[b—¢,b+ ¢ X [az,ba] X -+ X [an, by] and observe that H covers RN Q = {b} X [az,ba] X - -+ X [an, by].
Since |H| = 2¢e(ba — a3) ... (b, — ay) it follows from Theorem 12.4 that Vol (RN Q) = 0.

12.1.4. a) Since B, = B, \ BY, it suffices to show

Bl(a) = B.(a) and B,(a)=FE:={x:|x—al <r}.

Since B, is open, the first identity is trivial. Since E is closed, it is clear that B, C E. On the other hand, given
x € F, there is a sequence x; € B, such that x; — x as j — oo. Thus FF C B,.
b) See the proof of Theorem 12.39.

12.1.5. a) Notice by definition that E’ = E° and B0 = E. Hence by Theorem 10.39, 0E = E\ E° = 9(E°) =
O(E). Therefore, E is a Jordan region if and only if E and E° are Jordan regions by Definition 12.5.
b) By Theorems 12.7 and 12.4,

Vol (E) = Vol (E° UJE) < Vol (E°) + Vol (OF) = Vol (E°).

On the other hand, Vol (E°) < Vol (E) < Vol (E) by Exercise 12.1.6a. Hence Vol (E°) = Vol (E) = Vol (E).

c) If Vol (E) > 0 then Vol (E°) > 0 by part b), hence E° cannot be empty. Conversely, if £ # () then since E°
is open it must contain a ball, hence a rectangle R. Thus Vol (E) = infg V(E;G) > |R| > 0.

d) Let G(f) represent the graph of y = f(x) as x varies over [a, b]. Given € > 0 choose § > 0 such that z,y € [a, b]
and |z —y| < § imply |f(z) — f(y)| < ¢/(2(b—a)). Let {zg,z1,...,zn} be a partition of [a,b] whose norm is < §
and set

Rj = [xj_1,x;] x | flz;) — m’f(xj) * 2(b—a)|’
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If (z,y) € G(f) then z € [z;_1,z;] for some j and |z — z;| < d. Therefore, |f(z) — f(z;)| < ¢/(2(b — a)), ie.,
(z,y) € R;. It follows that G(f) is covered by the R;’s. Since

N

N €
SR = 5 Sl — el =
Jj=1 J

—

we conclude by Theorem 12.4 that Vol (G(f)) = 0.

e) Given any partition P of [a,b], S(f;P) — s(f;P) is the area of a collection of rectangles which covers G(f).
Hence if f is integrable, we can choose P so that V(G(f),G) < S(f;P) — s(f;P) < e. It follows that G(f) is of
volume zero.

The result does not hold for bounded functions. Let f(x) =1 for all dyadic rationals z € (0,1), f(x) = 1/2 for
all triadic rationals z € (0,1), i.e., rationals of the form = = p/39, p,q € N, f(z) = 3/4 for all rationals = € (0,1)
of the form x = p/5%, p,q € N, f(x) = 1/4 for all rationals = € (0,1) of the form = = p/79, p,q € N, etc. Let
f(z) =0 for all other points z € [0,1]. Then f is bounded, but the graph of y = f(x) intersects any rectangle R
in the unit square [0, 1] x [0,1]. Thus V(G(f),G) > 1 # 0 for all grids G.

12.1.6. a) If R; N Eq # 0 then R; N Ey # 0. Hence V(E1;G) < V(E», G) for every grid G. Taking the infimum
of this inequality, we obtain Vol (E7) < Vol (E3).

b) By Theorem 8.37 or 10.40, 9(E; N E3) C 0F; U OE,. Thus Ey N Ey is a Jordan region by Theorem 12.4.
Since E \ E; = E1 N ES and O(ES) = 0E, imply O(Eq \ Ez) = 0(E1 N E$) C 0E; UOE,, the set Ey \ Es is also a
Jordan region.

¢) By Theorem 12.7 we must show that Vol (Ey U E2) > Vol (E1) + Vol (Es). Let € > 0 and choose a grid G such
that Vol (Ey U E) + € > V(E; U Ey; G) and V(E; N E2; G) < e. Then by Theorem 8.37

Vol (E1 U Eg) > V(El U EQ; Q) — €
> > IR+ Y. IRi— ). Rl —e
R;NE1#0 R;NE2#£0 R;NE1NE2#0
> Vol (El) + Vol (EQ) — V(El n Eg;g) —€
> Vol (E7) 4+ Vol (E3) — 2e.

It follows that Vol (Eq U Eg) > Vol (E;) + Vol (E2) — 2e. Taking the limit of this inequality as € — 0, we conclude
that Vol (Ey U E) > Vol (E1) + Vol (E).

d) By part ¢), Vol (E1) = Vol ((E1 \ E2) U Es) = Vol (E; \ E3) + Vol (Es).

e) By parts ¢) and d),

Vol (Ex U Es) = Vol (Ex \ (By N E»)) U (Es \ (Ex N E3)) U (Ey N By))
= Vol (El) + Vol (EQ) — 2Vol (E1 N EQ) + Vol (El N Eg)

12.1.7. a) Fix x € R". Since (x+ E)¢ = x + E¢, it is easy to see that d(x + E) = x + 0E. Since |R| = |x + R|
for any rectangle R, it follows from Theorem 12.4 that A is of volume zero if and only if x + A is of volume
zero. Therefore, x + F is a Jordan region if and only if E is. It is also easy to check that a rectangle R; satisfies
R;NE # 0 if and only if x + R; Nx + E # (). Therefore,

Vol (x + B) = inf > x+R|= inf > |R;| = Vol (E)
R;NE#0 R;NE#(

b) Since ¢(x) := ax is C' and Ay = o™ # 0, it is clear by Theorem 12.10 that «E is a Jordan region if and only
if E is. Since a > 0, we also have R; N (wE) # 0 if and only if (1/a)R; N E # 0. Since |(1/a)R;| = (1/a)™|R;], it
follows that

Vol (aE) = inf > laR;|=a” sup > |Rj| =a"Vol(E).
R;NE#) R;NE#0

12.1.8. a) If E is of volume zero, then by definition there is a finite collection of rectangles {R; : j=1,...,N}
which covers E such that z;\/ﬂ |R;| < €. Hence E is of measure zero.
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b) If E = {x1,...} then let R; be a rectangle which contains x; such that |R;| < €/27. Since > p-; |Ry| <, it
follows that E is of measure zero.
c¢) The set A given in Example 12.2 is countable, hence of Lebesgue measure zero, but not a Jordan region.

12.1.9. By Exercise 12.1.5, we may suppose E is closed. Let § > 0 and let {x1,...,xx} be the cluster points
of E. Then

N
A:=E\ | Bs(x))
j=1
is closed and bounded, hence compact. Since any cluster point of A is a cluster point of E, A has no cluster points.
Hence by the Bolzano—Weierstrass Theorem, A is finite.
Let € > 0. For each j choose a rectangle R; such that x; € RY and |R;| < ¢/(2N). Let § > 0 be so small
that Bs(x;) C Rg and define A as above. Then A is finite, so we can choose a finite collection of rectangles
{R;j:j=N+1,..., M} which covers A such that Z?LN_H |R;| < €/2. It follows that {R; : j = 1,..., M} covers

E and Z;‘il |R;| < e. In particular, E is a Jordan region of volume zero.
12.2 Riemann Integration on Jordan Regions.
12.2.1. Clearly, Mj;, = jk/2?™ and mj, = (j — 1)(k — 1)/2?™. Hence

2m 2™

22m om + 1) 24m +23m+1 + 22m
S(f; gm 24m Z Z k= 24m - 94m )
Jj=1k=1

Similarly, s(f; Gp) = (24™ — 2™+ 4 22™) /24™ Consequently, S(f; Gm) — s(f; Gm) = 25™+2/24™ = 4/2™ — 0 as
m — OQ.

12.2.2. If x € [0,1] x - -~ x[0,1], then 0 < 2% < 1. Thus by Theorem 12.26 and the Intermediate Value Theorem,
there is an ¢; € [0,1] such that

//E:L“Z(f(av7 g(z,y)) dA—c // (z,9) JY)) dA =t;(1 — (-1)) = 2t; =: ¢;.

12.2.3. Let € > 0 and choose r > 0 so small that x € B,.(x¢) implies |f(x) — f(%0)| < €. Then

1
S o 00 1000

1
= VOI(BT(XO))/B,,(xO) (%) = f(xo)[ dx

dx = e.

f(x)dx — f(x0)| =

1
m /;r(xo)

€
-
Vol (B,.(xg)) Lr(xo)

12.2.4. a) Since U(f,G) = L(f,G) < U(f = fn,G) = L(f = f5,G) + U(f~.G) — L(fn,G) = 1 + I> and fy
is integrable, we can show that f is integrable if we show I; is small. We may suppose that Vol (E) # 0. By

hypothesis, given € > 0 choose N € N such that |fx(x) — f(x)| < ¢/(2Vol (E) + 2) for k > N and x € E. Hence,
M;(f — fn) and m;(f — fn) are both less than €, and it follows that

€ €
her Y RS VRS
2Vol (E) + 2 ey Vol (E) +1

Since we can choose G so that V(E,G) < Vol (E) + 1, it follows that [; is small, hence f is integrable. Finally, by
the Comparison Theorem, if £ > N, then

/ |fr = fldV < WVOI(E)<€.
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b) Since E is bounded, choose M so large that |z| < M and |y| < M for all (x,y) € E. Since 1 — cosd has a
minimum at § = 0 and is even, we have

|1 — cos(z/k)| <1—cos(M/k)
for (x,y) € E and k sufficiently large. Since 0 < e¥/F < eM/¥ it follows that
le¥/* — e¥/F cos(x/k)| = |e¥/F| |1 — cos(z/k)| < eM/*(1 — cos(M/k)) — 0
uniformly on E as k — oco. On the other hand, if ET = {(z,y) : y > 0} and E~ = {(z,y) : y < 0}, then on E*,
[1—ev/k|=ev/k —1<eMb_1 50
uniformly as ¥ — oo, and on E—,
1—ev/kF|=1—e¥/F <1—eM*_

uniformly as k — co. Hence e¥/* cos(y/k) — 1 uniformly on E as k — oo. We conclude that

lim // e¥/® cos(x/k) dA = // 1dA = Area (E).
k—oo E E

12.2.5. Let € > 0 and choose M > 0 such that |f(x)| < M for all x € E. Since f is integrable on E and Ej is

a Jordan region, we can choose a grid G = {R1,..., Ry} such that
€ €
Z (M —mj;)|R;| < 5 and Z |R;| < 1M
R;NE#( R;NOE#)

Now the upper and lower sums on F; can be estimated as follows:

U(f,6) - L(£,6) = > (M;—m;)|R;|

R;NE1#0

= > (Mj—mp)|Rj[+ Y (M;—m;)|R,|
R;CEY R;NOE1#0

< Y (Mj—my)|Rj[+2M > |Ry|
R;NE#0 R;NOE1#0
€ €
-4+ M-— =ce.

< 5 + 1M €

It follows from Definition 12.17 that f is integrable on Ej.
12.2.6. Let m = infxcpy f(x) and M = sup,cy f(x). By Theorem 12.26, there is a ¢ € [m, M] such that

[ abxax =[xt x.

By Theorems 9.29 and 9.30, or 10.58 and 10.61, f(H) is compact and connected in R, hence a closed bounded
interval. In particular, f(H) = [m, M], i.e., ¢ = f(xo) for some x¢ € H.

12.2.7. By the one-dimensional Mean Value Theorem, for each u,v € R, there is a ¢ between u and v such that

fu,y) = f(0,9) = fale,y) (u = v).

Since |f.(¢c,y)| <1 it follows that

1 1 27 T
|F(z,y)] §—3// \u—v|d(u,v):—3/ |r cos @ — rsinQ|r dr db.
z B4(0,0) x> Jo Jo
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In particular, F(z,y) is bounded by

1 2m
g/ | cos @ — sin | df.
0

12.2.8. By repeating the proof of Corollary 5.23, we can prove that the square of any integrable function
is integrable, in particular, (f + g)? is integrable on E. It follows that fg = ((f + ¢)> — f2 — ¢%)/2, fVg =
(f+g+1f —g)/2 and fAg=(f+g—|f - gl)/2 arc integrable on E.

12.2.9. Let xg € V. Then B,(xg) is a subset of V for r sufficiently small. Hence by Exercise 12.2.3 and

hypothesis,
1

f(XO) = Tl_i%1+ m /];r(xo) f(X) dx = 0.

12.2.10. a) Let ¢ > 0. By the Extreme Value Theorem, choose M > 0 such that |¢(x)] < M for all x € H.
Since ¢ is uniformly continuous on H, choose 0 < § < £/(4M) such that

s,t € H and |s — t| < § implies |¢(s) — ¢(t)| < ¢/(2Vol (E)).

Since f is integrable on FE, choose a grid G on E° such that U(f,G) — L(f,G) < 6% (see Theorem 12.20).
Let A={j: M;(f)—m;(f) <d}and B ={j: M;(f) —m;(f) > d}. Clearly,

U(¢o f,G) = L(do f,G) =Y (Mj(¢o f) —my(do /)R] + > _(Mj(do f)—my(¢o f))|Ry|
jEA jEB
=1+ I5.

To estimate I1, notice that if j € A, then M;(¢o f) —m;(¢po f) <e/(2Vol(E)). Thus

3
L < —+— i <e/2.
1_2V01(E)J;4|R]|_6/

On the other hand, if j € B, then 1 < (M;(f) —m;(f))/0, so

L <2M ) |R,|
JEB
< 25 040 - my ()R
JEB
0.9 - L(£,9)

2M

IN

IN

by the choice of G. Since 6 < ¢/(4M), it follows that Iy < /2. Thus I1 + I < ¢, i.e., ¢ o f is integrable on E.

b) The function f in Example 3.34 is integrable (since the set of points of discontinuity of f form a countable,
hence is of Lebesgue measure zero). The function ¢ := ¢ in Example 3.34 is discontinuous only at one point. But
the functions ¢ o g is nowhere continuous, hence cannot be integrable by Lebesgue’s Theorem.

12.2.11. Let € > 0. Since OF and Ey are both of volume zero, choose cubes Q1, ..., Qn such that

N 0
JEUE, CU := (U Qk)

k=1

and S0, |Qr| < €/(4C), where |f(x) < C for x € E. Since E \ U C E° is compact and f is continuous on E,
use uniform continuity to choose a § > 0 such that ||x — y|| < d and x,y € E® imply |f(x) — f(y| < ¢/(2Vol (E)).
Finally, let G = {R1,..., R} be a grid such that x,y € R; implies ||x —y|| < 6 and each Q) is a union of R;’s.
By construction, V(0EUEy) < e. Moreover, if R; is not a rectangle that intersects 9F or Ey, then M; —m; < e.
It follows that .
Z (Mj*m]')‘Rﬂ SQMV(&EUEQ)+W Z |R]‘ < €.
R;NEA£D R;CE\Eo

Therefore, f is integrable on E.

121



12.3 Iterated Integrals.

1 1 1
12.3.1. a) / /(x+y)dxdy:/ (1/2+y)dy =1.
0 0 0
3t 2 [? 28
b) //\/xy—#xdxdy:g/ Vy+1ldy = g
0 0 0

c) //ycos(:py)dydm:/ / ycos(zy) dz dy
o Jo o Jo

1

= /07r sin(my) dy = — (1 — cos(n?)).

12.3.2. a) E={(7,9): 0 <o <L,z <y <a?+1}

™

and

1 pz?4l I 5
/ / (m—}—l)dyda:z/ (2 + 1) de = =.
0 T 0 4

b) E={(z,y):0<y<ly<z<1}={(z,y):0<2<1,0 <y <z}, hence by Fubini’s Theorem,

1,1 1 o 1 1_ 1
/ / sin(z?) dz dy = / / sin(z?) dy dz = / zsin(x?) de = ﬂ.
0 Jy o Jo 0 2

) E={(z,y,2): 0<y<1,/y<2<1,0<z<a2?+y*} and

1,1 1
/ / (w2+y2)dxdy:f/
o Jyw 3 Jo

d) E={(zy2):0<y<lyy<a<la’ <z

u=a%+ 1, we have

1,1 gl 9
/ / / Vo +zdzdrdy = =
0 \/ﬂ w:ﬂ 3

1
(1+3y% —y¥2 = 3y°/?) dy =

26
105"

< 1}, hence by Fubini’s Theorem and the substitution

J | | @ 02 - a2 ayas
0 0

2 1
/ (:v2(x3 + 1)3/2 _ (E2(2£L'3)3/2) dr
0

3
2 2 7/2 _
9/, 45 45
1 pa? 1 3 2
1 x 1 1 1 —log?2
12.3.3. ——dydxr = ——drx == 1——-)du=——"".
2) /0/01+x2y:” /01+932w 2/1( e 2
2 pl-z/2 1 2
b) // (x+y)dyde = /(4+4x—3x2)dx:1.
o Jo 8 Jo

1 v 1 2 e—2
c) / / x2e™ dx dy = / x(e® —1)dx = .
o Jo 0 2

1 pl-z® pa’+2? 1 p1-2? 1 /L 1
d) / / / xdydzdm:/ / x(x2+z2)dzdx=f/ (x— ") de = =.
0o Jo 0 o Jo 3Jo 8
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12.3.4. a) Since = + y = 3 and 22 + y? = 1 do not intersect,

1
Vol (E / / f:rfy)dyd:v:Q/ (3\/1*582*513\/1*552)‘”:3”-
Vi—z2? -1

b) The curves * = /y/2 and y = x2/4 intersect at (0,0), y = 3 —x and y = z%/4 at (2,1), v = \/y/2 and
y =3 —x at (1,2). Therefore,

1 -3 4
1
Vol (E) = // (x+y) dydx—l—// m+y)dydx:/(7i+63x)dx:9—.
x2/4 x2/4 0 4 32 30

c¢) This region is the set of points “under” the paraboloid x = 32 + 22 which lies “over” the region in the yz
plane bounded by z = 32 and z = 4. Therefore,

vi+st 88
Vol (E / / / dxdzdy—f/ (1+3y% =3y — ) dy = —.
)2 105

d) This region is the set of points “under” the cubical cylinder y = x> which lies “over” the region in the zz
plane bounded by z = 22 and z = v/z. Therefore,

Vol (E // /dydzdx—/ (\/Efﬂcz)dq::%.

12.3.5. a) If f is continuous on R then f is integrable on R by Theorem 12.21, f(-,y) is integrable on [a, b] by
Theorem 5.10, and f(x, ) is integrable on [c,d] (also by Theorem 5.10).

b) The proof of Remark 12.33 depends only on three properties satisfied by the function f: 1) f(z,y0) is zero
off [27n—1 277+l i) fol f(z,yo) dz = 0, and iii) fol fol f(z,y) dy dx = 1. Therefore, we need only show that there
is a continuous function f which satisfies these three properties.

Let ¢ be defined to be zero off the interval I, := [27% 2~ ’”1) and be defined on [} so its graph forms a triangle

with base I;, and height 2¥*1. Then ¢y, is zero off I;, and fo or(t)dt = 1.
Set f(z,y) = > pey (dr(z) — drt1(z)) Pr(y), and note that f is contmuoub in each variable. Its iterated integrals,

however, are not equal. Indeed,
1
( [ s dx) dy
0

</ (o () — ¢>k+1(m))da:) dy = 0,

o—Fk+1

//fxydxdy—ZLk

2k+1
Zék

but

o—k+1

//fxydydx—Z/ (/Olf(:my)dy)dw
//¢1 )1 (y dydq:JrZ/

=1+0=1.

g—k+1

Pk() (/01(¢k(y) — ¢r+1(y)) dy) dx

12.3.6. a) We may suppose that n = 2. Suppose [ is integrable on [a,b], g is integrable on [c,d], h(x,y) =
f(x)g(y), and R := [a,b] X [¢,d]. Let € > 0 and choose a grid G = P x Q on R, where P = {aq,...,an} is a
partition of [a,b] and Q = {¢o,...,car} is a partition of [, d], such that

b d
S(f;P)</ flz)dr +¢ and S(g;Q)</ g(y) dy + .
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Choose (zj,yx) € Rjk := [a;j—1,a;] X [ck—1,cx) such that M;x(h) < f(z;)g(yx) + €. Then

N M
Uh;G) =YY Mj(h)|Rjx|

j=1k=1
N M

<Y flag)a; —a;1) Y g(yr)(ek — 1) + €[R| = S(f; P)S(g; Q) + €| R|
i=1 k=1

b d
< (/ f(:z:)d:r+e> (/ g(y)dy+e>+eR|.

U(h;g)—/abf(x)dx/cdg(y)dy<e(/abf(w)dx+/cdg(y)dy+e+|R|>

< ECO)

Hence

where Cy is a bounded constant when e < 1, say. It follows that (U) [[, hdA < ff f(x)dz fcdg(y) dy. A similar

argument proves (L) ffR hdA > fab f(z)dx fjg(y) dy. Therefore, h is integrable on R and the integral of h is the
product of the integrals of f and g.

1 n _ n
b) / e *Vdx = / e~ eTtndV = (/ et dt) = (e 1) .
Q Q 0 e

12.3.7. a) Let n and m be integers which satisfy n < a <n+1 and m < b < m+ 1. Since

k+1
/ (x—k—1/2)dx=2k+1—(k+1)=o
. 2 2

for all integers k, we have
b n+1 b
/ o(z) dx :/ o(x) d:c+/ ¢(z)dx = 0.

By elementary integration, then,
b
2/ dx)dr=1—(a—n)> -1 —a+n)+O-—m)?—(b-m)=(b—m)—(a—n))((b—m)+(a—n)—1).

Since R is Z-asymmetric, v :=a+b—n—m —1 # 0. Thus
9 b

%) 7/ b(@)dr —b—a— (m—n).
Y Ja

Let R = [a,b] x [c,d]. By Exercise 12.3.6, [, ¢ dA = 0 if and only if f; ¢(z)dx =0 or fcd ¢(y) dy = 0. Without
loss of generality, we suppose the first one. Hence, by (*), [[,#dA =0 if and only if b —a — (m — n) = 0. But
m—-n—1<b—a<m-—n+1 Thus b—a=m —n if and only if b — a is an integer.

b) If R = U;VZIR]- is nonoverlapping and each R; has at least one integer side, then by the proof of part a),

/AwdA_jil/ijdA_o.

Hence, by the converse of part a), R has at least one integer side.

12.3.8. By Exercise 12.1.5b and Theorem 12.24ii, we may suppose that E is closed.
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The easiest way to prove this result is to modify the proof of Theorem 12.39. First notice that except for
continuity of the bounding functions, 2 is a type I region with ¢ = 0 and ¢ = f.

The first issue to look at: Is Q a Jordan region? As in the proof of Theorem 12.39, 92 has a top T', a bottom
B, and sides S, and both B and S are of volume zero. We cannot yet conclude that T is of volume zero because
1 = f is not continuous this time. However, since f is integrable, choose a grid G = {R1,..., Ry} on F such that
U(f,G) — L(f,G) < e. Set M; = sup f(R;) and m; = inf f(R;) and observe that if H; := R; x [mj, M,], then
|H;| = (M; —m,;)|R;| and Ujvzl Hj contains T'. Let H represent the grid generated by the H;’s, i.e., the partitions
Pr(H), k = 1,2, are the same as those of G, and the partition P3(H) := {M;,m; : j = 1,2,..., N} arranged in
increasing order. Then H is a grid on 7', and

V(TiH) = > |Hl= Y (M;—my)Ry| =U(f,9) - L(f,G) < e

H;NT#0 R;NE#D

We conclude by Theorem 12.4ii that 0f2 is of volume zero, hence 2 is a Jordan region.
Now repeat the proof of the second half of Theorem 12.39. Since continuity of ¢ and ¥ were not used there, we

conclude that Faw)
Ty
Vol(Q):/// dV:/// dzd(x,y)z/ fdv.
Q EJo E

12.3.9. a) These inequalities can be verified by repeating the proof of Lemma 12.30 with (X) fcd f(z,y)dy in

place of fcd flz,y) dy.

b) If f is integrable on R then the inequalities of part a) become equalities for both X = L and X = U. This
proves part b)

c) Since

1 1
MAf@M@:dkm:xam(WAfWM@:m—mzL

/01 ((L)/Olf(x,y)dy) d:c:;#lz/ol ((U)/Olf(x’y)dy) de

Hence by part b), f cannot be integrable on [0, 1] x [0, 1].

we have

12.3.10. Let ¢ > 0 and choose a < A < B < b such that |F(y fﬁ flz,y)dx| < e for all a < @ < A and

B < 3 <b. Then
d 6]
<ﬂw—/fmwm>@

ie., [ fﬂ f(z,y) dz dy converges to f F(y)dy as a — a+ and 3 — b—. Hence it follows from Fubini’s Theorem

that
d b d 8
dx dy = li dx d
/C /a [z, y) dx dy i / / f(z,y)dz dy

lim //fxydydx—//fxydydx
aﬂaqtﬂ*»b

< e(d—c),

12.4 Change of Variables.

/2 2
12.4.1. a) / / sin(r?)r dr df = Z(l —cos4).
0
b) By Fubini’s Theorem, and the substitution u = 2y — y2, du = (2 — 2y) dy, we have
1 1,1 1t 3
/ / v 2y —y?)2dyds = / / v 2y —y?)2dedy = f/ u?Bdu = —.
o Jo 0 Jy 2 Jo 10
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¢) Since x = b implies r = bsec 6, the integral can be written as

/4 bsec O b3 _ a3 ™/4 .
/ / r2drdf = / sec 0 d6.
0 asect 3 0

Integrating by parts, and using the fact that [ secddf = log|sect + tan6|, we have

w/4 - 1
/ sec®0df = ~ (sec@tan& |0 +log|sect + tan 6| ! /4) = 5(\f2—|—log(1—i—\/§)).
0

Therefore, the value of the original integral is (b — a®)(v/2 + log(1 + v/2))/6.
12.4.2. a) If z = rcosf and y = V/3rsinf, then

A(z,y) cos @ —rsinf
a(r,0) [\/§81n9 frcos@] Var.

Therefore, by Theorem 12.66,

2 1
// cos(3z% + y*) dA = / / cos(3r2)V/3r dr df = 7T\3/§ sin 3.
E o Jo

b) If u = z — 2y and v = y then

e =l 7] =

Since y = /2 implies u = x — 2y = 0, x = 4 implies u = 4 — 2v, and y = 0 implies v = 0, F can be described in
the uv plane by 0 < u <4 —2v, 0 < v < 2. Hence by Theorem 12.46 and the one- dimensional change of variables
w =4 —2v, dw = —2dv, we have

2 4—2v 1 4 162
// y\/foydA:/ / Uﬁdud@za/ (47w)w3/2dw:
E 0o Jo 0

3:5-7

12.4.3. a) These surfaces intersect when 6 — 22 = z, i.e., z = 2,—3. Thus the projection E3 is the circle
{(z,y) : 2% + y? < 2}. Using cylindrical coordinates, we have

27 V2 V6—r2
/// zde:/ / / 22rdzdrdf
E 7‘2
27
/ / 3/2r—r)drd0— (G\f— 7).

b) Using cylindrical coordinates, the one-dimensional change of variables u = 9 — r2, du = —2rdr, and then
integrating by parts, we have

o[ [ [ i
:277/0(‘/977“71)&—7?(/ fdufl)

= 7(2VueV™ — 2¢V¥ | 1) = m(4e® — 1 — 2(V8 — 1)e¥®).

¢) Since E is bounded by a sphere and a cone, we use spherical coordinates:

w/2 /4 2
/// x—y)zdV = / / /(pcosﬁsirup—psinﬁsincp)pcosgp-pQSingpdpdgodH
w/2 0

/2
/ / (cos @ — sin ) sin? @ cos @ dy df

7r/2

32 sin® <p |7T/4

- 1
= 51n9+cost9| /2 ——6\/5

15
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12.4.4. a) The Jacobian of the change of variables © = apsingpcosf, y = bpcospcosl, z = cpcosyp is
abep? sin . Thus the volume of the ellipsoid E = {(x,y, 2) : 22/a? + y?/b% + 22/c? < 1} is

27 ™ 1
4
Vol (E) = /// 1dV = abc/ / / p2sinpdpde dd = T abe.
E o Jo Jo 3
2

b) The projections of these surfaces in the yz plane are the curves by + cz = d and y? + 22 = r2. Suppose
these curves intersect. Solving for y we have (d — cz/b)? = r? — 22, ie., (b + c?)2? — 2cdz + (d% — b*r?) = 0.
This quadratic has discriminant 4b%(r?(b? + ¢?) — d?) which is negative since 72 < d?/(b? + ¢?). Thus these two
curves do not intersect. It follows that the region E bounded by 42 + 22 = 72 and az + by + cz = d is the cylinder
y? + 22 = r? with back z = 0 and front z = (d — by — cz)/a. Using the change of variables y = pcosf, z = psin6,
we have

27 pr p(d—bpcosO@—cpsinb)/a
Vol (E) :/ / / pdxdpdf
0 0 0

1 27 T
I*/ / (d—bpcosh —cpsinb)pdpdd =
aJo Jo

wdr?

¢) Using only the portion of this region which lies in the first octant, we have

a pVaZ—2Z pvaZ—z2 a 16
Vol (E) = 8/ / / dl‘dydz = 8/ (a2 _ 2’2) dz = 7013‘
0 0 0 0 3

12.4.5. a) If u = z — y and v = = + 2y, then

T

Since y = x impliesu = x—y =0, y = —2/2 implies v = x+2y = 0, z—y = 1 implies u = 1, and 2+ 2y = 1 implies
v = 1, this change of variables takes the parallelogram E to the square [0,1] x [0, 1] in the uv plane. Therefore,

1 4

1,1
// \/mfy\/achZydA:g/ / \/ﬂ\/ﬂdudvzﬁ.
E o Jo
b) Notice that 222 — 5xy — 3y? = (z — 3y)(2z + y). If u = 2 — 3y and v = 22 + y, then

sen ey 37

Since y = x/3 implies u = x — 3y =0, y = (xr — 1)/3 implies u = x — 3y = 1, y = —2z implies v = 22 +y = 0, and
y =1 — 2z implies v = 2z 4+ y = 1, this change of variables takes the parallelogram E to the square [0,1] x [0, 1]
in the uv plane. Therefore,

1ot
// \3/2902—5xy—3y2dA:7/ / \S/E%dudv:i.
. 7)) 112

¢) fu=2x+yand v =y — x, then

S~ 1] =2

Since x +y = 2 implies v = 2, y = 0 implies v = —u,  + y = 4 implies u = 4, and y = z implies v = 0, the
trapezoid E can be described in the uv plane by —u < v <0, 2 < u < 4. Therefore,

(y—=)/(+y) Lt v/u 1 1 e—1
e YdA = = e "dvdu== [ u(l—e ")du=3 .
E 2J)s Jou 2z €
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d) Let u =2 —y and v = 2. Then
A(u,v) 1 -1
= =1.
o e

Since y = z implies u = 0, y = 0 implies u = v, and = = 1 implies v = 1, the region 0 <y <z, 0 <y < 1 can be
described in the uv plane by u < v < 1, 0 < u < 1. Therefore, by Theorem 12.46, we have

/ol/owf(xy)dydﬂc_/o1 /ulf(“)d”d“—/ol(lu)f(U)du_E).

12.4.6. Fix x¢ € V. By the Inverse Function Theorem, there is an ry > 0 such that f is 1-1 on B, (xp). By

Theorem 12.46,
Vol = [[[  vav=[[[jagav
f(Br(x0)) By (x0)

for 0 < r < rg. Therefore, by Exercise 12.2.3,

CVOl(fBuxo)) 1 As(x
P Vol (Br(x0) 7o Vol (B, (x0)) ///B<> AV =18sbalk

12.4.7. If
o(z,y) = [f:isnee ELI;Z] {ﬂ = (zcos + ysinf, —xsinf + y cos 9)
then
Bo=dee| 2y )
Hence

Vol(qS(E))—A(E)ldV—L|A¢|dV_Vol(E).

12.4.8. a) Let = psinpcosf, y = psinpsinf, and z = pcos p. Then

oz, y,2) sinpcosf pcospcosf —psinpsind
ﬁ =det | sinpsind pcospsinf psingcosd
(p, 0, 0) cos —psinp 0

= cos @(p? cos psin ) + psin (psin? ) = p? sin .

b) Since Vol is translation and rotation invariant, we can compute the volume of a typical sphere and a typical
cone in any position. We choose these positions so that the calculations are simplest. Namely, let B represent the
sphere centered at the origin of radius r and C represent the cone centered around the z axis with vertex at the
origin of radius r and altitude h. Then

27 T r 47_[_7,3
Vol(B):/// dV:/ / / p*sinpdpdpdd = .
B o Jo Jo 3

Moreover, since the top of C' is given by z = h, i.e., p = hsec p, we have

27 parctan(r/h) phsecyp
Vol (C) = / / / p*sin dp dy d
o Jo 0

2h3 arctan(r/h) ) r2h
=3 tan g sec” pdp = 3
0

12.4.9. Let ¢(t1,...,t,) = t1v1i+---+t,v,. Then ¢ takes [0, 1] onto P(vy,...,v,) and Ay = det(vy, ..., vy).
Hence

ldV:/ Ayl dV = |det(ve,...,vp)|
Vi) [0,1]™
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Suppose n = 2. Then det((a,b), (¢,d)) = ad — bc, hence by Exercise 8.2.7,

Area (P((a,b), (c,d))) = ||(a,b,0) x (c,d,0)]]
=1|(0,0, ad — be)|| = |ad — be| = | det((a, b), (¢, d))].

Similarly, by Exercise 8.2.7 and Theorem 8.9,

Vol (P(v1,va,vs)) = |v1 - (v2 X v3)| = | det(vy, va, vs)|.

12.4.10. a) It is clear that fol e~ dz is finite. Since x > 1 implies 22 > z, we also have

o0 5 o0
/ e " dx < / e Tdr < oo.
1 1

Therefore, fooo e da converges to a finite real number I.
b) By definition,

I? = </ e dﬂc) (/ eV’ dy)
0 0
N N N N
:N]im / e % dx / e ¥ dy :I\}im / / e T 7Y drdy.

Let Qn = [0,N] x [0, N] and By represent the quarter circle formed by intersecting By (0,0) with the first
quadrant in the xy plane. Notice that

0< // eV dzdy < e NVol (Qn \ By) < N2V =0
QN\BnNx

as N — oo. Therefore,

I? = lim // eV dA = lim (// ey dA+// ey dA)
N—oo N N—oo Qn\Bn Bn

s /2 N )
= lim // e " 7Y dA= lim / re”" drdf.
N—oo By N—oo 0 0

c¢) By part b),
2 . /2 N .2 T . _ .2 N ™
I = lim re " drdf =—— lim e " = —.
0 0 4 N->oo 0 4

Therefore, I = /7/2.
d) By part ¢) and Exercise 12.3.6,

0o n
lim eIl gy — </ et dt> = 7"/2,
k=00 JQu —o0

12.4.11. a) Let € > 0. Since F is a compact subset of H°, choose o > 0 such that x € E and ||h|| < Jy
imply x +h € H°. Since D¢ is uniformly continuous on H, there is a 0 < § < min{1,d¢} such that ||h|| < ¢ and
x,x+h € H imply ||[D¢(x +h) — Dé(x)|| < e. Since H is convex, it follows that if x € E and |h|| < 4, then any
c on the line segment between x + h and x satisfies || D¢(c) — Do (x)|| < e.

Let x € E and |h|| < é. By Theorem 11.30, there is a ¢ between x and x + h such that

en(x) := ¢(x +h) — ¢(x) = Df(x)(h) = (Do(c) — Do(x))(h).
By the choice of ¢, it follows that |en(x)| < €|/h]].
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b) Fix x € H° and choose a rectangle R such that x € R° C H. By part a), there is a 6 > 0 such that
lex—y(x)| < €-||x —y]| for all x,y € R which satisfy ||x —y|| < J. Apply S := Sx := (D¢(x))~! to the identity
$(x) = d(y) = Do(x)(x — y) + ex—y(x) to get

Sog(x)—Sog(y)=x-y+T(x,y)

where T'(x,y) := S(ex—y(x)). Since D¢ is continuous on the compact set R, there is an M > 0 (which depends
only on ¢ and R) such that ||Sx|| < M for all x € R. Hence, if x,y € R and ||x — y|| < §, then

) TG, y)|| < Me- [Jx =yl

¢) Let @ be a cube contained in R with sides less than 6/n™/2, and notice that ||x —y|| < 6 for all x,y € Q.
Let yo € @ and observe by the definition 7" that

Sop(x)=50¢(ys) —yo+x+T(x,50) = z+x+T(x,y0)

for x € Q. This means that S o ¢(Q) is very nearly a translation, z+ @, of . How big can the volume of S o ¢(Q)
be? To answer this question, we must see how the term T'(x,yq) affects S o ¢(Q).

Let @ be the product of intervals [a;,b;], where b; —a; = s for all j. If x,y € @, then (*) implies ||T(x,y0)] <
Me - ||x —y|| < Mey/n|z; — y;|. It follows that each component of S o ¢ satisfies

(S 0¢);(x) = (S0 ¢);(y)] < |z — y;l(1+ vnMe).

In particular, So¢(Q) is a subset of a cube with sides s(14+/nMe¢). Consequently, Vol (S0¢)(Q)) < s™(1+Me)" =:
C.s™ = C|Q|.

d) Let > 0 and let C, be the constants in part c). Choose € so small that C. < 14 1/|As(x)|. Let Q; be
cubes such that x € Q¢ and Vol (Q;) — 0 as j — co. Then by part c) and Exercise 12.4.9,

| det(S)] - Vol ((Q)) = Vol (S 0 ¢(Q;)) < Cc|Qj]
for j large. Since S = (Dg¢(x))~!, we have det(S) = |Ay(x)|~. Hence,

Vol (¢(Q;))

T S CA(X)| < [As(x)[ +7
Q5

for j large.

Let € be so small that s — e/nM > 0. By repeating the argument in part c), but looking for lower estimates
this time, we can show that S o ¢(Q) contains a cube with sides s(1 — ey/nM), so Vol (S o ¢(Q;)) > C.|Q;| for
some constants C. — 1 as ¢ — 0. Hence, for € sufficiently small and j large,

Vol (¢(Q; ~
S > 68601 > 18500] 1.
J
Combining this estimate with the estimate in the previous paragraph, we conclude that
Vol (¢(Q;
VOUAQ) a0 <
Q]

for j large, i.e., Vol (¢(Q;))/|Q;] — |Ap(x)— as j — oo.
12.5 Partitions of Unity.
12.5.1. If (fg)(x) # 0 then f(x) # 0 and g(x) # 0. It follows that

{x:(fg)(x) #0} C{x: f(x) # 0} N{x: g(x) # 0}.
In particular, spt (fg) C spt fN spt g.

12.5.2. Products of C*° functions are C*° functions. Moreover, by Exercise 12.5.1, products of functions with
compact support have compact support. Therefore, fg and af belong to C°(R™) when f and g do.
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12.5.3. If f € C°(R) then f = 0 on some interval (a,b). If f is also analytic, then by analytic continuation
(Theorem 7.56), f(x) =0 for all z € (—o0, 00). In particular, f(zg) = 0, a contradiction.

12.5.4. Fix j € N. By the Inverse Function Theorem, ¢~ (hence also ¢; o ¢~ ') is C* on ¢(V). In particular,
both ¢ and ¢~! are continuous and must take open sets (respectively, compact sets) to open sets (respectively,
compact sets). Since K := ¢(spt ¢;) is a compact subset of ¢(W;), and ¢; o ¢! vanishes off K, it is clear that
pjodt € C(R"), ¢pjop~t > 0, and spt(¢; o p~1) C ¢(W;). Since Y.¢; = 1 on V, it is also clear that
Y pjo¢p~t =1on ¢(V). Finally, if H is a compact subset of ¢(V) then ¢~!(H) is a compact subset of V. Since
{¢;} is a partition of unity, there is an open set W of V' containing H and an N € N such that ¢; =0 on W for
all j > N. Hence ¢(W) is an open set containing H and ¢j o ¢~ =0 on ¢(W) for all j > N. Thus {¢; o ¢~ '} is
a partition of unity on ¢(V') subordinate to the covering {¢(W;)}.

12.5.5. Clearly, ¢;1; belongs to CZ(R™), ¢;1, > 0, and spt (¢;9r) C V; N Wy, Also,

DY b= D¢ (ZW) =1-1=1
=1 k=1

Jj=1k=1

Given a compact subset H of V, choose open sets Wy, W containing H and integers N, Na, such that ¢; = 0 on
Wy for j > Ni and ¢, = 0 on Wh for k > Ny. Then W := W; N W5 is open, contains H, and ¢;1, = 0 on W for
J,k > N := max{Ny, Na}. Thus {¢;9;} is a C? partition of unity on V' subordinate to the covering {V; N W}}.

12.5.6. Since H is a Jordan region, choose a grid {Q,}, of a rectangle R D H such that
1
Z ‘QZ| < -.
QeNOH#D J

Fix j € N and let {R,} be a collection of rectangles which satisfies

N N
1
QeC Ry and 3 |Rel <) 1Qel+ >

(=1 (=1

Then
vi= U &

ReNH#D

is open, contains H, and Vol (V; \ H) < 2/j.
By Theorem 12.59, choose a ¢; € C3°(R™) such that ¢; =1 on H, spt¢; CV;, and 0 < ¢; < 1. Then
ngdV— VOI(H) :/ QS]dV—/ qS]dV
Vj H
= / ¢;dV
Vi\H

2
Vol (V;\ H) < = =0
j

R"

IN

as j — 00.
12.6 The Gamma Function and Volume.
12.6.1. Using the substitution v = 2, du = 2t dt, we obtain

® g 1 [ 1 /3\ 1_./1\ «
et dt = = “Udu=-T(2)=-T(=])=Y"

12.6.2. Using the substitution u = —logx, du = —dx/x (hence dz = —e~" du), we obtain

1 00
d.f _1/2 _ 1
= Ydu=T|=) = .
/0 —logx /0 oo 2 v

131



12.6.3. Using the substitution u = e, du = e’ dt (hence dt = du/u), we obtain

/ e dt = / u" e du = T'(n).
0

—0o0

12.6.4. If n = 4 then Vol (B,(a)) = 2rin?/(4I'(2)) = r72/2. If n = 5 then since I'(5/2) = (3/2)(1/2)['(1/2) =
3y/7/4, we have Vol (B,.(a)) = 2r°75/2/(51'(5/2)) = 872 /15.

12.6.5. Let v, represent the spherical change of variables in R™. By definition, the first row of D, looks like
cospy; —psing; 00 ... 0; the second row looks like sin ¢; cos @2, pcos gy cos e, —psing; sings, 0, ..., 0; the
second to last row looks like

sin 1 sin @y . . . sin @, s cosf, pcospy sings ...sinw,_ocosf, psiny; cosps...sinp, o cosb,

psin 1 sin g cos 3 .. .sinp,_gcosf, ..., —psine; sines...sin @, _9sinb;

and the last row looks like
sin 1 sin s . ..sin @, _9sinf, pcosp sinps...sinp, osinf, psinp; cos ;. ..sinp,_ssinb,

psin py sin g cos @3 .. .sin@,_9sind, ..., psiney;sings...sing,_o cosb.
Suppose Ay, , = p" 2 sin" "3 ¢y ...sinp,_3. Notice that the cofactor |A;| of —psin; sins...sin g, _ssind is
identical to Ay, , if in Dy,_1, 6 is replaced by ¢,_2 and each entry in the last row of D, _; is multiplied by
sin 6. Similarly, the cofactor |As| of psin i singps ... sing,_scos@ is identical to Ay, _, if in Dip,_1, 6 is replaced
by ¢n—2 and each entry in the last row of Di,_1 is multiplied by cosf. Hence it follows from the inductive
hypothesis that |A4;] = p"~2 sin" 3 ©1...5inp,_3sinf and |Ay| = pn~2 sin" 3 1 ...8inp,_scosf. Expanding
Ay, along the last column, we conclude that

|Ay,| = psing; sings . ..sing,_sinf|A;| + psin ¢ sinps . .. sin @, 3 cos 6| A,

= p" tsin" "2 ) .. .sin ¢, _o(sin® O + cos? ) = p"Lsin™ % 1 ... sin @, 9.

12.6.6. Use the change of variables ©1 = aijpcospi, ..., T, = appsineg;...siny,_1sind and repeat the
argument in Exercise 12.6.5 to verify that this change has Jacobian

n—1_:. n—2 :
ai...app sSin ©1...81 Pp_2.

Therefore,
2ay ... a,7"?
Vol(E)=a;...a,Vol (B1(0) = ——————
o ( ) ai Qn VO ( 1( )) ’I’LF(TL/Q)
12.6.7. One way is to use cylindrical coordinates: x1 = x1, 2 = pcospi, 3 = psine; cOSPy, ..., Tn_1 =
psinpy .. .sinp,_scosf, x, = psing; ...sing,_3sinf. By Exercise 12.6.5, the Jacobian of this change of variables

is p"2sin™® py...sin @, 3. Since x3 + --- + 2 = p?, the cone can be described in these new coordinates as

hp/r < x1 < h. Since p < (r/h)z1 < (r/h)h = r, it follows that if A;(0) represents the n — 1- dimensional unit
ball, then

Vol () :/CldV

27 T T T h
= / / e / / / PV 2sin" By L singn_sdridpder ... dpn_sdo
0 0 0 Jo J(h/r)p

~ - val () [ (n=20) o2 ap
27T(n71)/2 h?’n71 hr?
T T((n—1)/2) (nf 1 ?E)
_ 2hynlign=D/2 1\ 2hrnig=D/2
- T((n-1)/2) ( ) - n(n—-1C((n—1)/2)

n—1 n
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An even easier way would be to integrate dzy last. Fix z1. Since

x17r\ 2
fooas ()

has volume
2(zy7/h)*Lr(n=1)/2

(n=1I((n—-1)/2)"

we have

Vol () :/Cmv

h
= / / an,1 dxl
0 JA . /n(0)

T (n- f;TF(T(l(rZ)/Ql)/z) (;::—D /Oh oy day

B 2h,rn717r(n71)/2
o —DT((n—1)/2)

12.6.8. By symmetry, we may suppose k = n. If ¢ represents the change of variables from rectangular
coordinates to spherical coordinates, then
n—1_ n—2

22 |Ay| = p?sin® gy ...sin% p,_osin? Op" " sin™ 2 @y ... sin @, _o.

Therefore,

27 T T r
/ xi dx = / / e / / p"Hsin™ o1 .. sin® pn_osin? 0dpde ... dpn_o db
B:(0) 0 0 0o Jo

,r.n+2 ™ ™
= ~7r/ sin”<pd<p---/ sin® o dyp

n+2 0 0

_ rnt2 o (F((n+ 1)/2)F(1/2)) <F(4/2)F(1/2)>
w2 rn+2/2 )\ e/
Fnt2 (n=2)/2

Tht2 T T((n+2)/2)
rnt2 9 gn/2 2

= F(n/3) = n—l—QVOl (B-(0)).

12.6.9. By the Mean Value Theorem,
[f )| = 1£(x) = FO) < V(I I < [l

for all x € B1(0). Hence by spherical coordinates,

[ iseolaxs [t ax
B1(0) B1(0)

_ 277/ /1pn+k—1dp
I'(n/2) Jo

_ /2
 (n+k)(n/2)

— 0

as k — oo.
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12.6.10. a) Let

1 o0
F(@:A e 't* logtdt and G(gc)z/1 e~'t" Hogt dt.

By Exercise 4.4.6, |logt| < Ct for t > 1, so the integrand of G is dominated by Ce~t* < Ce~/2. Tt follows from
the Weierstrass—M-test that G converges uniformly on R.
If z > 1, then |e~%*~!logt| < |logt|. Since

1
/|logt|dt=(t—tlogt};:1,
0
it follows that F converges uniformly on [1,00). But integrating by parts, we have

1
F(x) = l/ (e " logt — e "t 1) dt = Fatl) D)
X Jo T T

Thus F' converges uniformly on (0,1).
We have proved that

/ e 't* logtdt
0

converges uniformly on (0, 00). Differentiating I under the integral sign, we conclude that

IM(z) = /0 e " Mogtdt

exists for all > 0.
b) By repeated differentiation under the integral sign, we obtain

I‘(”)(x):/ e " (logt)" dt
0

for all z > 0. Hence I'” > 0, and we conclude by Theorem 5.61 that I' is convex on (0, c0).
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CHAPTER 13
13.1 Curves.

13.1.1. (¢, I) runs clockwise. Its speed is ||¢'(¢)|| = ||(acost, —asint)| = a. (o,J) runs counterclockwise. Its
speed is ||(—2asin 2t, 2a cos 2t)|| = 2a.

13.1.2. Since ¢/(t) = a # 0, C is smooth. Since ta 4+ x¢o = ua + x¢ implies t = u, C is simple. Since ¢(0) = xq
and ¢(1) = xo +a, C contains xg and x¢ + a. Finally, if § is the angle between ¢(t1) — ¢(0) and ¢(t2) — ¢(0), then
by (3) in 8.1 we have

tia - (tza) tltz

cosf = = = +1.
[ta] [t2| [lall®  [ta] [t2]

Hence 8 =0 or 7.

13.1.3. The trace of ¢(0) := (f(0) cosb, f(0)sinh) on I := [0, 27| coincides with the graph r = f(6). Since
¢'(0) = (f'(0) cos @ — f(0)sind, f'(0)sind + f(0) cos )

we have ||¢'(0)]|2 = | f'(0)]2 + | £(0)]? # 0. Therefore, (¢, I) is a smooth curve.

13.1.4. Let C = (¢, (0,1]) where ¢(t) = (¢,sin(1/t)) and set tx, = 2/((2k + 1)x) for k € N. Since sin(1/t;) =
(—1)k, it is clear that ||¢(tr) — d(txr1)|| > 2 for each k € N. Hence by definition,

k
ICl =D l6(t;) — ¢(tis)ll > 2k
j=1

for each k € N, i.e., |C|| = 0.

13.1.5. a) This curve evidently lies on the cone 2% + y? = 22. It spirals around this cone from ¢(0) = (0,1, 1)
to ¢(27) = (0, €™, e2™). Since ¢'(t) = (e!(sint + cost),et(cost — sint), e?), the arc length is given by

2m 21
HE) = [l =3 [t =B )

b) This curve forms a “script vee” from (—1,1) through (0,0) to (1,1). Since z = y3/2 implies 2’ = 3/Y/2, we
have by the explicit form (see the formula which follows (3)) that

1 1 _
L(C):Q/O \/1+9y/4dy:/0 \/4+9ydy:@§1).

c) Since ¢(t) = t2(1,1,1), this curve is the straight line from (0,0,0) to (4,4,4). Hence its arc length is

VA2 + 42 4 42 = 4./3.

d) By definition, ¢'(t) = (=3 cos? tsint, 3sin? t cos t), hence

l¢' () = 3V cost tsin®t + sin* t cos? t = 3| sint cost|.

Therefore,

/2
L(C) = 4/ 3|sint cost| dt = 6sin’ ¢ ‘3/2: 6.
0
13.1.6. a) If ¢(t) = (3cost,3sint) and I = [0,7/2], then ||¢'(t)|| = ||(—=3sint, 3cost)|| = 3, hence
/2
/mdes:/ 3cost-9sin?t - 3dt = 27.
c 0

b) If ¢(t) = (acost,bsint) and I = [0,7/2], then

¢/ ()| = ||(—asint,beost)|| = /a2 + (b2 — a2) cos? t,
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hence

/2
/ zyds = / abcostsinty/a2 + (b2 — a2) cos? t dt.
c 0

Making the substitution u = a? + (b% — a?) cos? t, du = —2(b* — a?) costsint, we have

—ab o ab(a? + ab + b?)
ds= —— dy="22 T80T
‘Axys 2002 — a2) Jyp Vidu 3(a+b)

c) If ¢(t) = (2sint,4sin®t,2cost) and I = [0, 27], then

ll¢’(@®)]] = ||(2cost,8sintcost, —2sint)|| = 2v/1 + 16sin’ ¢ cos? t,

hence

27
/\/1+y22ds:2/ (1 + 16sin® t cos® t) dt = 12,
c 0

using the double angle formulas sin® ¢t = (1 — cos 2t)/2 and cos?t = (1 + cos 2t) /2.
d) Let ¢1(¢t) = (¢,0,0), I = [0,1]; ¢2(t) = (¢,2 — 2¢t,0), I, = [0,1]; and ¢3(¢) = (0,¢,0), I3 = [0,2]. Then

Cs

1 1 2

1 3v5 54 3vV5

:/ tdt+\/5/ (th)dtJr/ tdt:—+7f+2:i_
0 0 0 2 2 2

/(:c+y+23)d5:/ (x+y+z3)ds+/ (:1:+y+23)d5+/ (x+y+2°)ds
C Cy Ca

13.1.7. a) If g — g uniformly on ¢(I), then gi(o(t))l|¢'(t)|| — g(¢(t))||¢'(¢)|| uniformly on I. Thus use
Theorem 7.10.

b) If g — g monotonically on ¢(I), then gx(¢(2))|¢' ()| — g(@(¢))||¢’(t)]| monotonically on I. The limit is
continuous because ¢’ is continuous. Thus use Dini’s Theorem.

13.1.8. By hypothesis, there exist closed, nonoverlapping intervals J, ..., Jy such that 7/ # 0 on each J,g and
J= U]kvzl,]k. Hence by the Chain Rule and a one-dimensional change of variables, we have

N
/J SNV ) = /J 929070 W16 27w du

N
= o / dt =
> / AL CLCIT /

9o o) [I¢' (D) dt.

N
U k

o1 7 (]

Since 7 is 1-1, 7(Jx) \ 7(J?) consists of two points, so this last integral is unchanged if J{ is replaced by J. Since
UN_ 7(Jx) = 7(UN_, Ji) = 7(J) = I, we conclude that

/g(w(U))l\w’(U)Hdu:/g(¢>(t))|\¢'(t)lldt~
J 1

13.1.9. Tt is clear that (z,y) = ¢(t) implies 23 4+ y3 = 3xy. We examine the trace of ¢(t) as t — —o0, t — —1—,
t — —1+, and t — oo. Notice once and for all that

o943 44
¢’(t):<3(1 2t3) 3(2t t))'

1+132° (1+13)2

Ast — —oo, (x,y) — (0,0) and dy/dr = (2t — t*)/(1 — 2t3) — —oco. Thus the trace of ¢(t) approaches (0,0)
and is asymptotic to the negative y axis as t — —o0.
Ast — —1—, 2 — o0, y — —00, y/z =t — —1, and dy/dr — —1. Thus the trace of ¢(¢) lies in the fourth

quadrant and is asymptotic to the line y = —xz as t —» —1—.
Ast — =14, 2 — —o0, y — o0, y/x =t — —1, and dy/dz — —1. Thus the trace of ¢(¢) lies in the second
quadrant and is asymptotic to the line y = —x as t —» —1+.
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Ast — oo, (z,9) — (0,0) and dy/dx = (2t — t*)/(1 — 2t3) — oco. Thus the trace of ¢(t) approaches (0,0) and
is asymptotic to the positive y axis as t — oco.
Finally, ¢(0) = (0,0) and dy/dxz — 0 as t — 0. Thus the trace of ¢(t) is asymptotic to the z axis as t — 0.

13.1.10. a) If (t) = ta+ b, then ¢'(¢t) = a and £(t) = ||a||(t — to) for all ¢. It follows that 6(¢)/4(t) = 0 for all
t, i.e., k(xg) = 0 for all x¢ on the given line.

b) If ¥(t) = (a + rcost, b+ rsint), then ¢'(t) = (—rsint,rcost). Suppose t > tg is near ¢t and x¢ = ¥(to).
Then ¢(t) = r(t — to), and 6(t) = t — to. Thus 0(¢)/(t) = 1/r for all t. A similar argument works for the case
t < tg. Therefore, k(xg) = 1/r for all x¢ on the circle C'.

13.1.11. a) Let s = 4(¢). By Definition 13.6 and the Fundamental Theorem of Calculus, ds/dt = ||¢’ (¢ )H, hen
by the Inverse Function Theorem, dt/ds = (£71)(s) = 1/||¢(t)||, where t = £71(s). Since v(s) = ¢p({~1(s ))
follows from the Chain Rule that

, . dv d¢ 1 ot _ ¢/(t)
V9= g0 = 5 0% = gm0 = ar

In particular, ||¢/(s)|| = 1 for all s € [0, L].
b) By part a) and the Dot Product Rule,

= (/(s)-V(5)) = 2/(s) - V" (s).

Therefore, v”(s) is orthogonal to /(s) for all s € [0, L].
c¢) Let 0, represent the angle between 1/(s) and v/(sp) and suppose for simplicity that s > so. By part a) and
the law of cosines,

0
[V (s) — V' (s0)||* = 2 — 2cos fy = 4sin® 55
Hence

QSIH bs /2) i HZ/(S) — V/(SO)H "
= lim —2 2 — '
s —So ’ ‘2s1n (05/2) ‘ sinslo s — sol llv" (s0)]l

d) Since ¢(t) = v(£(t)), we have by the Chain Rule that ¢'(¢t) = v/(£(t)) - £'(¢t) = V' (L(t)) - ||¢'(t)]| and ¢"(t) =
V(@) O + /()¢ ()|l Therefore,
¢'(to) x ¢"(to) = (v (L(to)) - ¢/ (to)lI) > (" (£(to))l|¢' (t0) I* + v/ (£(t0)) |6 (to)I")
= [/ (to) I (' (s0) x 1" (50))-

In particular, (¢ (to)x¢" (t0))/|l¢' (to)||®> = v/(s0)x 1" (s0). But the angle between v’ and v" is 7/2 and sin(7/2) = 1.

k(Xp) = lim

$— S0

Therefore, [ (s0) x v/ (s0)]] = [/ (50)]] = (xo).
e) Use the trivial parameterization ¢(t) = (¢, f(¢),0) and apply part d). We obtain
_ AL f7(8),0) x (0, £7(1), 0)l 11" ()]
S (W ZORVIE T (PO

13.2 Oriented Curves.

13.2.1. a) Let (x,y,2) = #(t). Then y? + 922 = 9sin®t + 9cos?t = 9. The trace spirals around the elliptical
cylinder y2 4+ 922 = 9.

b) Let (z,v, z) = ¢(t). Then z = x and y? = 23. The trace looks like a gull in flight (called a cubical parabola)
traced in the z = x plane.

c) Let (z,y,2) = ¢(¢). Then y = 2% and z = sinz. Thus the trace looks like a sine wave traced on the parabolic
cylinder y = 2.

d) Let (2,5, 2) = ¢(t). Then y? 4 22 = sin®t 4 cos?t = 1 and = = 2. Thus the trace looks like the ellipse sliced
by the plane x = z out of the cylinder 32 + 22 = 1.

e) Let (z,y,2) = ¢(t). Then y = x and x = sin z. The trace looks like a sine wave traced vertically on the plane
y =z

13.2.2. a) Let ¢(t) = (t,t2) and I = [1,3]. Then F - ¢’ = (3,4 —t) - (1,2t) = 3t> — 2¢2. Hence

3 12
/F-Tds:/ (3t3—2t2)dt:—8.
c 1 3
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b) Let ¢(t) = (—1,cost,sint/v/2) and I = [0,27]. Then

F-¢' =(v/—1+cos3t+5,sint/v2,1)-(0,—sint,cost/V/2) = (cost — sin?t)/v/2.

Hence

I —my/2
/F~Tds:— (cost —sin® t) dt = ﬂ-\[.
c V2 Jo 2

¢) This curve has two pieces: C; where z > 0, and Cy where < 0. To parameterize Ci, set ¢(t) =

(cost,cost,sint/y/3) and I = [—7/2,7/2]. (Notice when viewed from far out the positive y axis that this pa-
rameterization is oriented clockwise because the x axis lies on the left side of the yz plane.) Then

F.¢ = (sint/V/3,—sint/V/3,2cost) - (—sint, —sint, cost/V3) = 2cos® t/V/3.

Therefore,
/2

2 0
F-Tds=— costdt = —.
/C1 \/§ —m/2 \/§
To parameterize Csy, set ¢(t) = (cost, — cost,sint/v/3) and J = [r/2,37/2]. Then

F ¢/ = (sint/V/3, —sint/V/3,0) - (—sint,sint, cost/v3) = —2sin®t//3.

Therefore,

/ p ) 37/2 ) p -
F-Tds=— sin“tdt = —.
Ca \/g /2 \/g

In particular, [, F-Tds= /3 —1m/V3=0.
13.2.3. a) Let Cy represent the horizontal piece and Cy represent the vertical piece. On Cy, y = 1 hence dy = 0,

and .
/ ydx—l—:rdy:/ ldzr=1.
C, 0

3
/ ydac—l—xdy:/ 2dy = 4.
Cs 1

Therefore, the integral over both pieces is 4 + 1 = 5.

b) If these surfaces intersect, then z = 1 — 22, i.e., 2 = (=1 ++/5)/2. Since z > 0, the solution with both
minus signs is extraneous. Hence these surfaces intersect to form a circle in the plane z = zy := (=1 4+ v/5)/2
of radius /zop. We can parameterize this intersection by ¢(t) = (y/zo cost,/zosint, zp) and I = [0,2n]. Since
@' (t) = (—\/zosint, \/zo cost,0), we have

w=dzx+ (x+y)dy + (2° + 2y +y*) dz = (—/zosint + (y/zo cost + \/zg sint)/zo cos t) dt.

On Cy, x = 2 hence dx = 0, and

Therefore,
27
-1 5
/ w= / (—/Zosint 4 zg cos® t + zgsint cost) dt = w2y = ﬂ(fm
c 0
c¢) Let Cy represent the piece in y = ¢, C5 represent the piece in x = b, C3 represent the piece in y = d, and Cy
represent the piece in x = a. Then

b 2 _ 2
/ :cydx—i—(x—i—y)dy:/ cmdm:M,
Cy a 2
d d2—02
/xydx+(x+y)dy:/(b+y)dy:b(dfc)+ 5
Cz C
—d(b? — a?)

/xydx—i—(x—i—y)dy:/ d-rvdr = ———2,
Cs b 2
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and

/ xydx-i—(x—l—y)dy:/C(a—t—y)dy:—a(d—c)—;
Ca d

In particular,

[o=0-aa-o- =900 (2amy

d) Let z =2, y =12, z =, and let ¢ run from 1 to 0. Then dx = dy = 2t dt, dz = dt, and

0
1
/ Vadr + cosydy — dz = / (2t* 4 2t cos(t?) — 1) dt = 3 sin(1).
c 1

13.2.4. a) Since 7/(u) =6 > 0, (¢, J) and (¢, I) are orientation equivalent by Definition 13.18.

b) Let I = [a,b] and set 7(u) = (u—a)/(b —a). Then 7’(u) = 1/(b—a) > 0 and 7(I) = [0,1]. Observe that
t = 7(u) implies u = a + (b — a)t and set ¥ (t) = ¢(a+ (b — a)t) for t € [0,1]. Then ¢ =1 o7, hence (¢, [0,1]) and
(¢, I) are orientation equivalent.

c) If C = {(¢;,1;) : j = 1,...,N}, then by repeating the proof of part b), we can choose smooth curves
{(;,[(j —1)/N,j/N]) : j = 1,...,N} such that (¢;,[(j — 1)/N,j/N]) and (¢;,1;) are orientation equivalent
with transition 7;. Define ¢ (respectively 7) on [0,1] by ¢(t) = ;(t) (respectively 7(t) = 7;(t)) when ¢ €
((j = 1)/N,j/N), and ¢(t) = 0 (respectively 7(¢) = 0) otherwise. Then on (0,1)\ {j/N:j=1,...,N}, ¢ and 7
are C' and 7/ > 0. Moreover, 1) = ¢; o7 on ((j — 1)/N,j/N).

13.2.5. The easy way is to apply Theorem 12.65 directly.

If you want a proof which avoids this “enrichment” result, notice by hypothesis, there exist closed, nonoverlap-

ping intervals Ji,...,Jy such that 7/ > 0 on each J and J = UY_, J,. This means that 7 is increasing on each
Jk, so by the one-dimensional change of variables formula (Theorem 5.34), we have

N
/JFW(u))-w(u>du—;[]kFo¢oT<u>-¢ o 7(w) |'(w)] du

N

) R CRICE:

k=1

- / F(6(t)) - /() dt = / F(6(1)) - ¢'(t) d.
UN_ 7(Jk)

I

13.2.6. Since f is continuously differentiable and nonzero on [a, b], we have by the Intermediate Value Theorem
that either f’ > 0 on [a,b] or f' < 0 on [a,b)].

Suppose first that f/ > 0 on [a,b]. Then (f~1)(u) = 1/f'(t) > 0 for t = f~(u), i.e., 7(u) := f~1(u) is an
orientation equivalent change of variables. Let ¢(t) = (¢, f(t)) and ¥(u) = (f~!(u),u). Then ¢ is the trivial
parameterization of y = f(x), 9 is the trivial parameterization of x = f~1(y), and

por(u) =o(fH(w) = (fH(w), F(fTH(w)) = (f(w),u) = ¢(u).

Hence (¢, [a,b]) and (¢, [f(a), f(b)])) are orientation equivalent.
If f/ <0 on [a,b], then set ¥(u) = (f~1(—u), —u) for u € [—f(a), —f(b)] and 7(u) = f~1(—u). Then 7/(u) >0
and

pot(u) =¢(fH(u) = (f~'(~u), —u) = ¥(u).

Hence, (¢, [a,b]) and (¢, [—f(a),—f(b)])) are orientation equivalent. In particular, the explicit curve y = f(x), as
x runs from a to b, is orientation equivalent to the explicit curve z = f~1(y), as y Tuns from f(a) to f(b).

13.2.7. a) Suppose C(z) := L((x1,y); (z,y)) C V. Then

/ F-Tds:/ Pdﬂc+Qdy:/ P(u,y) du+ 0.
C(z) C(x) xq
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Therefore, (9/0x) fc(m) F-Tds= P(x,y). Similarly, (0/9y) fC(y) F-Tds = Q(x,y) for any vertical line segment

C(y) C V terminating at (z,y).

b) If C(x,y) and D(z,y) are piecewise smooth curves from (g, yo) to (z,y) and let C represent the curve C(zx,y)
followed by —D(x,y), i.e., D(z,y) in reverse orientation. Then C is piecewise smooth and closed and it follows
from hypothesis that

O:/F-TdSZ/ F-Tds—/ F-Tds, i.e.,/ F~Tds:/ F-Tds.
c C(z,y) D(z,y) C(z,y) D(z,y)

The converse is proved similarly.
c) Suppose F is conservative, i.e., F' = (fy, f,) for some C! function f on V. Let C' = (¢,[a,b]) be a closed
smooth curve and ¢ = (¢, 5). Then by definition and the Chain Rule,

b
/F~Td=9:/(fm(¢(t))1/)()+fy( (1))’ (1)) dt = /(f 6)(t)dt = f 0 3(b) — f o B(a).
C a

Since C' is closed, this last difference is zero. Thus the integral over C' is zero. If C' = {¢;, [a;,b;]} is piecewise
smooth, then the integral over C breaks into a finite sum of smooth pieces. Telescoping, we obtain

N
/CF-Tds:Zfogbj(bj)—fogbj(aj) = foon(by) — fodi(a) =0
j=1

since C'is closed.
Conversely, by part b) the function f(z,vy) fc(w ) F - Tds is well-defined. If C(z,y) ends in a horizontal

line segment, then by part a), f, = P. If C(x, y) ends in a vertical line segment, then by part a), f, = Q. Thus
F = (P,Q) = (f, fy) is conservative by definition.

d) By part ¢), F = (f,, f,) for some f defined on V. Since F is C', it follows that f is C* on V. In particular,
P, = fzy = [y = Qz by Theorem 11.2.

13.2.8. Clearly, a = 1, b = f(1) — f(0), and ¢ = \/1+ (f(1) — f(0))2. Since ¢(z) := V1 + 22 is convex on
[0,1], it follows from the Fundamental Theorem of Calculus, Jensen’s Inequality, Definition 13.6, and the trivial

inequality v/1 4+ A% <1+ |A| that

ceo( [ 1)< Lo

_Lg/ (14 |f(2)| de) —1+/ Fl(a)dz = a+b.
0

13.3 Surfaces.
13.3.1. a) If (¢, E) is the parameterization given in Example 13.33, then
lpu X dull = || (v cosu, vsinu, —v)|| = v2v.
Thus
b 2w
A(S) = / V2vdudv = V2r(b? — a?).
a JO

b) If (¢, F) is the parameterization given in Example 13.31, then

lpu x dull = ||(a® cosucos® v, a? sin u cos? v, a® sinv cos v) || = a?| cosv|.

27 pmw/2
S):/ / a®| cosv| dv du = 4ma®.
0 —m/2

c) If (¢, E) is the parameterization given in Example 13.31, then

Thus

|pw % Pu]l = ||(b(a + bcosv) cosu cos v, b(a + bcosv) sinucos v, b(a + bcosv) sinv)||
= bla + bcosv.
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Since a > b, it follows that
A(S) = / / b(a + bcosv) dudv = 4 ab.

13.3.2. a) The trivial parameterization is (¢, E), where ¢(u,v) = (u,v,u? —v?) and E = {(u,v) : =1 < u <
1, —|u| < v < |u|}. The boundary is y = +z, 2 =0, and z = 1 — y%, & = &1. Since

Nyl = [[(—2u, 2v,1)|| = V1 + 4u2 + 402,
[

1 u 29
//gdgzél/ / (14 4u® 4+ 40?) dvdu = =
s 0 Jo 3

b) Let ¢(u,v) = (u,u3,v) and E = [0,2] x [0,4]. The boundary is y = 2, z = 0,4, and (0,0, 2), (2,8, 2), for
0 < z < 4. Since || Ng|| = ||(3u?,—1,0)| = V1 + 9u?, we have

4 g2 2
4
//gdgz/ / u3v\/1+9u4dvdu:8/ u3\/1+9u4duzﬁ(1453/2—1).
5 0o Jo 0

we have

¢) Because these surfaces intersect at z = 3/v/2, a parameterization of this “spanish olive half’ is given by
(¢, B) where
¥(u,v) = (3 cosucosv,3sinucosv,3sinv)

and B = [0,27] x [r/4,7/2]. The boundary is 22 + y> = 9, z = 0, and 222 + 2y = 9, z = 3//2. As in Exercise
13.3.1b, || Ny|| = 9| cosv|, so

w/2 27
//gda:Q/ / (3cosucosv + 3sinucosv + 3sinv) cosv dv du
S /4 JO

/2 9
:547r/ sinvcosvdv:ﬁ.
/4 2

13.3.3. Parameterize this ellipsoid using ¢(u, v) = (acosucosv, bsinucosv, csinv) and E = [0, 2n]x[—7/2,7/2].
Since

INg|| = | cos v|\/azb2 sin? v 4 a2¢2 sin® u cos2 v + b2¢2 cos? u cos? v

is nonzero when v # 0 and v # 2, this gives a smooth C* parameterization of the ellipse except at the north and
south poles, i.e., the points (0,0, ¢) and (0,0, —¢). A smooth C* parameterization at these poles can be given using
the trivial parameterization, i.e., ¥(u,v) = (u,v, c\/1 — u2/a2 — v2/b2?) and B = {(u,v) : u?/a® + v2/b% < 1/2}.
Thus the ellipse is a piecewise smooth C* surface.

13.3.4. a) Parameterize S by (¢, E), where ¢(u,v) = (u,v,0). Since ||Ny| = 1/(0,0,1)|| = 1, we have

//Sgd" = /Elg<u,v,0) d(u,v).

Thus [ do = Area (S) by Theorem 12.22.
b) Parameterize the surface S using ¢(u,v) = (u, v, f(u)), E = [a,b] X [c,d]. Since

[INsll = [I(f"(w), 0, )] = /1 + (f'(u))?,
we have

d b
A(S):/ / I+ () dudo = (d— ) L(C)

by Definition 13.6.
c¢) Parameterize the surface by ¢(u,v) = (u, f(u) cosv, f(u)sinv), E = [a,b] x [0,27]. Since

[INsll = [[(f(u)f'(u), = f(u) cosv, — f(u) sinv, ) || = | (w)|\V/1+ (f'(u))?,

141



we have

27 b b
$)= [ [T+ PP dudo = 2 [ 1@V T+ (PP da.

13.3.5. By Theorem 13.36, N, = AN, o 7. Hence by Theorem 12.65,

// stuwstn—// 7(5,0))1 8+ (5, ) [ N (75, 1)
=// (1, )| No(u, ).

13.3.6. Parameterize S by ¢(z,y) = (z,y, (z*+y?)/2) and E = B 4(0,0). Notice that [|[Ng| = [|(—z, —y,1)|| =
1+ 22 4+ y2. By the Mean Value Theorem and hypothesis, given (z,y) € B3(0,0),

|f(z,y) = f(0,0)| <[V (e, d) - (z,9)] < [|(z,9)]

for some (¢, d) € L((x,y); (0,0)) C Bs(0,0). Since ||(z,y)|| < /14 x?+ y? = || Ny, it follows that
27
/ |f(z,y) — 00)|d0</(1+1 +y?) d(z,y) = / / (1+r%)rdrdf = 407.
E

13.3.7. Suppose that (¢, E) is a CP parameterization of S which satisfies (x¢, yo, z0) = ¢(uo, vo) and Ny (ug, vo) #
0. Then one the components of Ny is nonzero, say 0(¢1,¢2)/0(u,v) # 0. Consider the function F(u,v,z,y) =
(¢1(u,v) — 2, d2(u,v) —y). Since F(ug,vg) = (0,0) and

O(Fy, Fp) — 0(¢1, ¢2)

ou,v)  O(u,v) 70,

it follows from the Implicit Function Theorem that there is an open set V' containing (xg,yo) and a continuously
differentiable function g : V' — R? such that

#1(9(z,y)) =2 and ¢2(9(z,y)) = y.

Set f(x,y) = ¢3(g(x,y)). Then f is C? and ¢ o g(V) coincides with the graph of z = f(z,y), (x,y) € V. Since
z = f(z,y) has a tangent plane at (xo, Yo, 20) by Theorem 11.22, it follows that S has a tangent plane at (xo, yo, 20)-

13.3.8. Let (z,y,2) = ¢¥(u,v). Then
ox oy 2 92\ 2 Jdx dy 2 0z\°
2 2
ull” = <6u) + (Bu) + (E)u) oIl = <8U> + (61} o)

bron _oyoy 0z 0:
udv  Oudv  duov

s o (02\P(0y\®  (0xdy\ (0xdy ar\? (9y?
Ber - F 7( U v 2 Audv ) \ dv ou + ov du
(00N (02 (9202 (w02 | (00)* (02
Ju Ov Ou Ov v Ou Ov ou
+@2g225yaz 6y82+@2%2
ou Ov Ou dv Ov Ou Ov ou

(e’ (e ey

and

¢u : ¢v -

Therefore,

Oudv  Ovdu Judv  Ovou
Oy 0z Oy dz\’ )
= — == | =[Nyl
(au(% avau) Il
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13.3.9. Let (z,y,2) = ¢(u,v) and (u,v) = ¢(t). Notice for any a,b,c € R that

d(z,x) O(z,y) a b ¢

A(u,v) A(u,v) B(U,v):det z: ZZ z:

and by the Chain Rule that

(po @D)/ = (Tyut + TyUr, Yyl + YoV, 2y U + 2y 01).

It follows that

Ay, z o(z,x
(pot) - (du X ¢0) = (Tyuy + J:vvt)a((i U; + (Yuus + yvvt)8£u7 U;
J(x,
+ (Zuut + Zvvt)agq/L’z;
Ty Yu Zy Ty Yov Zy
=wudet | Xy Yy 2zu | +vedet |z Yo 24| =0.
x’U y’U Z’U xv y’U Z’U

13.4 Oriented Surfaces.

13.4.1. a) The boundary is 9 = 22 + 22, y = 0, with counterclockwise orientation when viewed from far
out the positive y axis. Since the x axis lies to the left of the yz plane, we can parameterize this curve by
¢(t) = (3sint,0,3cost), I = [0,2x]. Thus

27
/ F-Tds:/ (3sint + 3cost)(—3sint) dt = —9.
as 0

b) This boundary is a triangle (oriented in the clockwise direction when viewed from the origin) consisting of
three line segments, C; (which lies in the yz plane), Co (which lies in the 2z plane), C3 (which lies in the zy
plane). Parameterize Cy by ¢1(t) = (0,—¢t,1+ 2t), I; = [-1/2,0]; Ca by ¢=2(t) = (¢,0,1 —t), Is = [0,1]; and Cs
by ¢3(t) = (_tv (]— + t)/270)7 I3 = [_170] Thenv

/F-Tds:/ F~Tds+/ F‘Tder/ F-Tds
as 1 Ca Cs

0 1
:/ (t,—t,0)~(0,—1,2)dt+/ (t,—t,t —2t> +3) - (1,0, —1) dt
—1/2 0

1

+/_°1((—3t— 1)/2,(3t+1)/2,0) - (~1,1/2,0)dt = — .

c) This boundary has two pieces, the circle C; described by z? + y? = 4, z = 4, oriented in the clockwise
direction when viewed from high up the positive z axis, and the circle Cy described by 22 4+y? = 1, z = 1, oriented
in the counterclockwise direction when viewed from high up the positive z axis. Using the parameterizations
¢1(t) = (2sint,2cost,4), Iy = [0,27], and ¢2(t) = (cost,sint, 1), s = [0, 27], we have

/ F~Tds:/ F-Tds+/ F-Tds
as Cy Ca
27
:/ (10cost 4 cos4,8sint — sind, 6 cos4sint + 8sind cost) - (2cost, —2sint,0) d¢
’ 2
+/ (5sint + cos1,4cost —sin1,3cos1cost + 2sin1sint) - (—sint, cost,0) dt
0

2m
= / (24 cos®t — 21sin®t + (2cos4 — sin1) cost + (2sin4 — cos 1) sint) dt
0
= 3.
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13.4.2. a) Use the trivial parameterization ¢(u,v) = (u,v,u? + v?), E = B1(0,0). Then Ny = (—2u, —2v,1)
points upward, i.e., the wrong way. Thus

27 1
//F-nda:—/ (u,v,u2+02)-(—2u,—2v,1)d(u,1}):/ / rSdrdd =T
s B1(0,0) o Jo 2

b) Let ¢(u,v) = (u,2cosv,2sinv), E = [0,1] x [0, 7]. Then Ny = (0, —2cosv, —2sinv) points inward, the wrong
way. Hence,

T 1
//F-ndcr:—/ / (u? + 4 cos® v, 4sinv cos v, 4sin® v) - (0, =2 cos v, —2sin v) du dv
s
:/ 8sinv dv = 16.
0

c) If (¢, E) is the parameterization given in Example 13.32, then

Ny = (b(a + bcosv) cosucosv,b(a+ bcosv)sinucosv, b(a + bcosv) sinv),

so
F-Ny=((a+bcosv)sinu, —(a+ bcosv) cosu, bsinv)-
- (b(a+ bcosv) cosucos v, b(a + bcosv) sinu cos v, b(a + bcosv) sinv)
= b(a + bcosv)?sinucosucosv — b(a + bcosv)? sinu cos u cos v
+ b%(a + beosv) sin? v
= ab®sin® v + b3 sin? v cos v.
Hence

// F-ndo = / / (ab?sin® v + b sin? v cos v) dv du = 2r%ab?.
S —mJ -7

d) Use the trivial parameterization ¢(u,v) = (u,v,u?), E = B;(0,0). Then Ny = (—2u,0, 1) points upward and

// F-ndo = / (u* — 2uv?)d(u,v)
S B1(0,0)

27 1
= / / (r* cos? § — 2° cos® O sin? O)r dr df

27 27
:1/ cos46d072/ cos?’@sin20d6:E.
6 Jo 7)o 8

13.4.3. a) Using the trivial parameterization z = z* + y2, we see that Ny = (423, —2y,1) points upward. Thus

1 1 14
//w:/ / (x7y,x4+y2)-(4x3,f2y, )dxdy_fi
s o Jo 15

b) By the calculation which follows Definition 13.28,

Ny = (a® cosucos? v, a? sin u cos? v, a® sin v cos v)

27
//w—/ / acosucosv a sin u cos v O)

a Cosu CObz v, a2 sinu COb v, a2 sin v cos U) dvdu

27
= / / a® cos® v dv du
0 0

w/2
= 27ra3/ cosv(1 — sin?v) dv =
0

points outward. Thus

4ra®

3
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c) Using the trivial parameterization z = \/a? — 22 — y2, we see that Ny = (z/z,y/z,1) points upward. Thus

//s “ /131,(0,0)(“’ L,2) - (z/2,y/2 1) d(z,y)

2 b .
. 5 o rsin SRR
—‘/O /O(’r‘ COS 9+\/ﬁ+m)’f‘d7‘d9
b b
:77/ 7‘3dr+27r/ \/mrdr: (3b4+8a3—8(a2—b2)3/2)%‘
0 0

d) If ¢(u,v) = ((v/2) cosu, (v/2) sinu,v) then Ny = ((v/2) cosu, (v/2) sinu, —v/4) points away from the z axis.
Thus

//Sw = /0% /02((1;/2) cos u, (v/2) sinu, v?) - ((v/2) cosu, (v/2) sinu, —v/4) dv du

2
: 2
:g/o (Uz—vd)dvz—?ﬂ.

13.4.4. By Theorem 13.36, Ny = A Ny o 7. Since |A;| = A, it follows from Theorem 12.65 that

/ F((s,) - Ny (s, 1) d(s, 1) = / 1A (5, )| F($(r(s,1))) - No(r(s.1)) d(s.1)
B B
- /E F((u,v)) - No(u,v) d(u, v).

13.4.5. By definition,

1 1—z l-y—=z
/// PZdV:/ / / P.dxdydz
E o Jo 0

1 1—=z
:/0 /0 (P(1—y—2z,9,2) — P(0,y,2)) dy d=.

Jfpesar=[ [ @wi-z o o iea:

///E R.dV = Al Al_y(R(%yzl —z —y)— R(z,y,0)) dz dy.

Let w= Pdydz+ Qdzdx + Rdxdy. The tetrahedron OF has four faces, Sy in 2z =0, So in z =0, S3 in y = 0,
and the slanted face S4. By definition,

1 1—y
51 0o Jo
1 pl—z Lopl=z
// w:—/ / P(0,y,2)dydz, and // w:—/ / Q(z,0,2)dx dz.
S5 o Jo Ss o Jo

On the other hand, using trivial parameterizations, we have

1 pl—u 1 rl-u
// w:/ / P(lfufv,u,v)dvdqu/ / Q(u,1 —u—wv,v)dvdu
Sy o Jo o Jo

1 1—v
+/ / R(u,v,1 —u—v)dudv.
0o Jo
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and



Therefore,

//aE”:///E(PHQerRZ)dV

13.4.6. The tetrahedron T has three faces, T} in x = 0, Ty in y = 0, and T3 in z = 0. To evaluate the integral
over Ty, let ¢(y, z) = (0,vy, z) and E be the triangle with vertices (0, 0, 0), (0, 1,0), and (0,0, 1). Since N, = (1,0,0)
points toward the positive x axis, we have

fls=ffm-eas
:_/Ol/ol_zRydyder/Ol/ol_szdzdy
1 1

- —/O (R(0,1— 2,2) — R(0,0,2)) dz +/ (Q(0,5.1 — 1) — Q(0,y,0)) dy.

0
Similarly, ) )
// w= —/ (P(2,0,1 ) —P<x7o,o>>dx+/ (R(1—2,0,2) = R(0,0,)) dz
T 0 0
and L 1
J[ o= [ @-y0.0-@O5.00dy+ [ (Pla.1 2,0~ P(2.0,0)) d,
T3 0 0
Therefore,

//TOJ:—/OlR(O,l—Z,Z)dz—i-/OlQ(O,y,l—y)dy—/olP(w,O,l—x)dx

1 1 1
+/ R(lfz,O,z)dzf/ Q(lfy,y70)dy+/ P(z,1—2,0)dz.
0 0 0

On the other hand, 9T has three pieces: C which runs from (1,0,0) to (0,0, 1), Cy which runs from (0,0,1) to
(0,1,0), and C3 which runs from (0,1,0) to (1,0,0). To parameterize C1, let ¢(¢t) = (1 —¢,0,t) and I = [0, 1].
Then

1
/ de+Qdy+Rdz:/ (P,Q,R) - (~1,0,1) dt
C 0
' 1 1
:—/ P(1—t,0,t)dt+/ R(1—t,0,t)dt
0 0

1 1
:7/ P(w,O,lfx)der/ R(1 —2,0,2)dz.
0 0

Similarly,
1 1
/ de—i—Qdy—i—Rdz:—/ R(O,l—z,z)dz—l—/ Q0,y,1—y)dy
Cs 0 0
and . .
/ de+Qdy+Rdz:—/ Q(l—y,y,())dy—i—/ P(z,1—x,0)dz.
Cy 0 0
Therefore,

/ Pda:—i—Qdy—i—Rdz://(Ry—Qz)dydz+(PZ—Rz)dzdac—l-(Qz—Py)dxdy.
aT T

13.4.7. a) By definition, given x € S there is a parametrization (¢,, F,) which is smooth at x, i.e., such that
Ny, (ug,vp) # 0 for x = ¢(up, vg). Since Ny, is continuous, it follows from the sign preserving property that there

is an r(x) > 0 such that Ny, is nonzero on a relative closed ball £, := E N B,(x)(x). Hence (¢, E) is a smooth
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parametrization of the surface ¢, (F,). Moreover, by the Borel Covering Lemma, there exist relative closed balls
E,, such that E = UE,,. In particular, the smooth parametrizations (¢,,, E,;) satisfy S = Ué-vzlgi)zj (Ex,)-
b) All we need do is make the relative closed balls E; in part a) nonoverlapping. Let E; be ordered from largest

radius to the smallest. Set S; = ¢(Eq) and Sy = ¢(E2 \ E1). In general, set S; = ¢(E; \ (Ui;llEk). Then each S;
is nonoverlapping and has a smooth parametrization.

If S is oriented, we can repeat the entire process making sure that not only are the (¢, ;) smooth, but also
“orientable.”

13.5 Theorems of Green and Gauss.

13.5.1. a) Let E be the portion of the disc B2(0,0) which lies in the first quadrant. By Green’s Theorem,

/2 2 8
/F~Tds://(y—0)dA:/ / r?sinfdrdf = -.
c E 0 0 3

b) By Green’s Theorem,

AP >3 :
F-Tds= —eY = [ (—=+1-¢€*)dx =3l 2(1—€%).
/C ds /0/0(93"‘1 e¥) dy dx /0(36+1+ e’)dr =3log3+2(1 —¢€°)

c¢) Let E = B5(0,0) \ B1(0,0). By Green’s Theorem,
[rras=— [[ 62— 2ur2+) s
c E
2 2m
= / / (2r2f'(r?) sin @ — r®sin” 0) d6 dr
1 Jo

2
—15
:0—7r/ Pdr =",
1

4

13.5.2. a) By Green’s Theorem,

/Cw:/cd/ab(y—l)dxdy:(b—a)(c—d)(c+d—2)/2.

b) By Green’s Theorem,

/Cw:—/Ol/z:(Qx—f(x))dyd:v:/01(2x3—2x2)dx—él(x2—:r)f(x)dx:—1/6.

¢) Since

7 (¢ siny) — 5 (~€" cosy) = e cosy — ¢ cosy =0,

it follows from Green’s Theorem that f cw=0 for all such curves C.

13.5.3. a) By Gauss’ Theorem,

//SF.ndg_/03/02/01(2+ez)da:dydz—2(5+63).

b) Let E be the cylinder whose boundary is S. By Gauss’ Theorem,

2r 1 gl
//F~nda:2///(x+y+z)dV:2/ / /(Tcost9+rsin0+z)rdzdrd9
s E o Jo Jo

1,1
:0+0+47T/ / rzdzdr = .
o Jo
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¢) By Gauss’ Theorem,

1 p2-2® gz 1
//F-nda:/ / / dedydz:é/ (2 —2?)? = (2%)%) dx = 8.
5 —1Jg2 0 2/

d) Let E be the ellipsoid {(z,y,2) : 22/a® + y?/b* + 22 /c® < 1}. By Gauss’ Theorem,

//SF.nda:///E(|SC|+|y|+|z|)dV

/2 pm/2 pl
= 8/ / / (apcosfsin ¢ + bpsin 0 sin ¢ + cp cos p)abep® sin p dp dip df
0 0 0
/2 /2
= 2abc/ / (@ cos@sin @ + bsin fsin g + ccos ) sin @ dp df
0 0

w/2
= 2abc/ ((a +b)sin? ¢ + %T cos psin <p) dp = wabe(a + b+ ¢)/2.
0

13.5.4. a) By Gauss’ Theorem,

2 41 2
//w:/ / / (yz+2y+1)dzdydx:2/ (24 — 2% — 5zt /4) do = 224/3.
s —2J22 Jo 0

b) Let H be the solid hyperboloid whose boundary is S, let A be the upper semidisk {(z,2) : z > 0,22 +22 < 1},
and B be the upper semiannulus {(x,2) : z > 0,1 < 22 4+ 22 < 2}. By Gauss’ Theorem,

//S“’—///H?/|Z|dV—Q/A/Olyzdyd(x,z)+2/B/;Wyzdyd(x,z)

:Azd(m7z)+/15(2—m2—ZQ)Zd(m,Z)

:/ / TZSiH@drdGJF/ / (2r® —r")sin dr df = 2(8v/2 — 2)/15.
0 0 0 1

c) Let E represent the three dimensional region whose boundary is S. Since y = 4 — 22— 22 and y = 5 — 4z — 22
imply (z —2)2 + (2 — 1)2 = 4, the projection of E onto the zz plane is the disc D centered at (2,0, 1) of radius 2.
By Gauss’ Theorem,

Jlo=[ffsav=s] [ apae.=s [ w2t -2 v

Using the change of variables x =2 + rcosf, z =1 + rsinf, dx dy = r dr df, we conclude

2m 2
//w:3/ /(4*T2)Td7‘d9:2471'.
5 o Jo

13.5.5. a) Let P = —y and Q = z. Then @, — P, = 2 and we have by Green’s Theorem that

1/ xdyfydx:// dA = Area (E).
2 JoE E

b) If z = 3t/(1 + %) and y = 3t2/(1 + 3), then

3t 3(1—2t3)dt  3t2 3(2t —t*)dt o2 dt

1+68 (1+6)2 1+ (14682 (1+62)2

xdy — ydx =
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Thus by part a), )
1 [ 9t*dt 3 [*du 3
Area(E) = = | 4 _ 2 [ a2
rea (E) 2/0 (1+ %) 2/1 w2

¢) Since div (x,y, z) = 3, we have by Gauss’ Theorem that

1
Vol (E) = g/aExdydz—}—ydzd:v—l—zdxdy‘

d) If x = (a+ bcosv) cosu, y = (a+ bcosv) sinu, and z = bsinwv, then

xdydz +ydzdr + zdxdy
= (b(a + beosv)? cos® ucosv + b(a + beosv)? sin® u cos v + b*(a + beosv) sin® v) dudv

= (b(a + beosv)? cosv + b*(a + beosv) sin® v) dudv.

Thus by part ¢),

1
Vol (E) = g/aEa:dydz—l-ydzdm—l-zdxdy

_271'

3 (b(a + beosv)? cosv + b*(a + beosv) sin® v) dv

—T

2
— g (0+ 2ab*m + 0 + ab>m + 0) = 2r%ab’.
13.5.6. a) Parameterize OF by ¢(t) = (cost,sint), I = [0,27]. Then

27
/ Pdac—l—Qdy:/ (—sin®t — cos? t) dt = —27.
OF 0

On the other hand, Q, = P, = (z? y)/(x +y*)?, so [[L(Py — Qz)dA = 0.
b) Let F = (z(z? 4> + 22) 732, y(z? + 9% + 22)~ 3/2 2(z? 4+ 9%+ 22)73/?) and E = B,(0,0,0). Then div F = 0.
On the other hand, since F = (z,y, z) on F, we have

2m
// F~nd0:/ / (cos® ucos® v + sin® u cos® v + sin u cos v) dv du = 4r # 0.
OE /2

13.5.7. By Exercise 12.2.3 and Gauss’ Theorem,

i Fondo =i divFd
rli% VOI XO //BB (x0) nee rli% VOl XO ///B (x0) a Y

= div F(xo).

13.5.8. The sum rules are obvious. By the product rule for partial derivatives,
i j k
V x (fF)=det |0/0x 0/0y 0/0z
R fly fFs
= (fyF3+f(F3)y7sz2*f(F2)z7szlWLf(Fl)z*fmFS*f(F?&)x:
fmF2+f(F2)w_fyFl _f(Fl)y)
=(VfxF)+ f(VxF).

Similarly,
i j ok
V(FXG):Vdet F1 F2 F3 :(VXF)G—(VXG)F
Gy G2 Gs
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13.5.9. a) By hypothesis, F' = (f3, fy). Thus by Green’s Theorem and Theorem 11.2,

/(9EF.TdS://E(fyw—fl.y)dA:0.

b) By definition and Theorem 11.2,

i ik
curl grad f =det | 9/0x 9/0y 0/0=
fo fy [

= (fzy - fyz:facz - fzmvfym - facy) = (070, O)-

Similarly,
div curl F = (F3)y_7; — (FZ)Zx + (Fl)zy — (F3)33y + (Fg)xz — (Fl)yz =0.

c) Since F = Vf, we have V(fF)=Vf-F+ f-VF=F-F+ f-V-Vf by Exercise 13.5.8. But V-V f =
faox + fyy + f22 = 0 by hypothesis. Hence it follows from Gauss’ Theorem that

/AE(fF)-nda:///EF-FdV.

13.5.10. a) By definition, V- Vu =V - (ug, Uy, Uz) = Ugy + Uyy + Uz
b) By Gauss’ Theorem and Exercise 13.5.8,

/AEuvv.ndU:///EV'(UVU)dV:///E(Vu-Vv—l—uAv)dV,

c¢) This follows immediately from Gauss’ Theorem since by Exercise 13.5.8 and part a),
V- (uVv —vVu) = Vu - Vo + ulAv — Vo - Vu — vAu = uAv — vAu.

d) Apply part b) to u = v. Since wu is harmonic, we have

///E V|2 dv = 0.

Thus Vu = 0, i.e., u is constant on E. Since u is continuous on E, it follows that u is constant on E. Since v is
zero on OF, we conclude that u is zero on F.
e) By Green’s Theorem,

/8E(uz dy =y d) = //E(“m = (muyy))dA = //E AudA.

If u is harmonic on E, then the integral on the left is zero. Conversely, if the integral on the left is zero, then
ffE AudA = 0 for all such regions E C V. Fix xg € V and set E = B,.(xo). By Exercise 12.2.3, we have

Au(xg) = lin% % // AudA = 0.
r—0 7Tr B (x0)

Thus w is harmonic at xg.
13.6 Stokes’s Theorem.

13.6.1. a) The trivial parameterization of z = —z, 22 + y? < 1, has normal (1,0, 1), whose induced orientation
on C is counterclockwise. Since curl F' = (zz, —yz, —2xy), it follows from Stokes’s Theorem that

/ F-Tds:// (—a% xy, —2xy) - (1,0,1)dA
c B1(0,0)

21 1
:f/ /(r3c0826+2r2 sin 6 cos 0) dr df
o Jo
1
I—ﬂ'/ r3dr4+0=—7/4.
0
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b) The trivial parameterization of z = 3, 22 +y? < 3, has normal (0, —3y?2, 1), whose induced orientation on C
is counterclockwise (the wrong way). Since curl F' = (ze¥, 1,y), it follows from Stokes’s Theorem that

[rras—-[[ ey 031
c B 5(0,0)
27 \/5
= / / (37"3 sin? 0 — r? sin 6) dr db
o Jo
V3
:3«/ r3dr 4+ 0= 27r/4.
0
13.6.2. a) The boundary of S has two smooth pieces. It might be better to change the surface. Let

E={(z,9,0):2?<y<land —1<z<1}.

Then F is a surface whose boundary equals 95, hence by Stokes’s Theorem,

// curlF~nda:// curl F' - ndo.
s E

But on E, n = (0,0,1), and the third component of V x F is

——(ycos z®) — —(zsin 2%) = 0.

or oy

// curlF-nda:// curl F'-ndo = 0.
s E

b) The boundary of S is given by 22 + 2 = 3, z = 0, oriented in the counterclockwise direction. Using the
parameterization ¢(t) = (v/3cost,v/3sint,0), t € [0,27], we have by Stokes’s Theorem that

Thus

27
// curlF-ndU:/ (V3sint,0,v3sint) - (—V3sint, V3 cost,0) dt
s 0

27
= —3/ sin®tdt = —3m.
0

¢) The boundary of S is given by z2 + y? = 10, z = 0, oriented in the clockwise direction. Using the parame-
terization ¢(t) = (v/10sint,+/10cost,0), t € [0,27], we have by Stokes’s Theorem that

271
// curl F -ndo = / (V10sint, v10sint, mess) - (V10 cost, —v10sint, 0) dt
s 0
27
= / (10sintcost — 10sin® ¢) dt = —107.
0

d) The boundary of S has three smooth pieces, C; (given by y =0, z =0, 0 < z < 1, oriented left to right), C
(given by y = (1 —x)/2, 2 =0, 0 < 2 < 1, oriented right to left), and C5 (given by z =0, 2 =0, 0 < y < 1/2,
oriented top to bottom). Thus

. 1 1/2
/ F~Tds:/ Fy(z,0,0)dz =0, / F-Td5:/ F5(0,y,0)dy = 0,
Cy 0 Cs 0

and

-Tds=— 1 z,(1—2 (1, — :c:1 1x2—x r = —
/CzF Td /OF( (1= 2)/2,0)- (1,~1/2,0)d 2/0( )dz = —1/12.
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Thus by Stokes’s Theorem
// curlF~nda:/ F-Tds=-1/12.
5 as

13.6.3. a) Since div F' = 22 + 32 + 22, we have by Gauss’ Theorem that

27 ™ 1
//F-ndcr:/// (x2+y2—|—z2)dV:/ / / ptsinpdpdpdd = 41 /5.
S B1(0,0,0) 0 o Jo

b) If Ry =0 and Q. = —zy then R = g(z,2) and Q = —zyz + f(z,y). Thus Q, = —yz + f, and we may set
f=0,ie, Q = —zyz. Since P, = 0 implies P = h(x,z), we have P, = h, and R, = g,. Hence we may set
h, =zzand g =0, i.e., P = 222/2 and R = 0. Since z = y, the projection of 95 onto the xy plane is given by
22 +2y? = 1. Thus we can parameterize 9S by ¢(t) = (cost,sint/v/2,sint/+/2), t € [0,27]. Hence,

(P,Q,R) - ¢'(t) = (costsin®t/4, — costsin®t/2,0) - (—sint, cost /2, cost/V/2)
= —sin®tcost/4 — sin? t cos® /(2V/2).

We conclude by Stokes’s Theorem that
2
// F-ndo = —/ (sin® t cost/4 4 sin® t cos? t/(2v/2)) dt = —7/(8V2).
s 0

c)If Ry =z and Q. = 0 then R = 2y + f(z,2) and Q = g(z,y). Thus R, = y + f, and we may set f = 0,
ie., R=zy. Since P, = —y implies P = —yz + h(z,y) and P, = —z + h,, we may set Q =0 = h, i.e., P = —yz.
Now 95 has two pieces: C given by ¢(t) = (sint,2,cost), ¢t € [0,2x], and Cs given by (t) = (2cost,4,2sint),
t € [0,2x]. Thus

(P,Q,R)-¢'(t) = (—2cost,0,2sint) - (cost,0, —sint) = —2cos?t — 2sint = —2,

and
(P,Q,R) -1/ (t) = (—8sint,0,8cost) - (—2sint,0,2cost) = 16 cos® t + 16sin® t = 16.

We conclude by Stokes’s Theorem that

27
//F-ndo:/ (16 — 2) dt = 28
S 0

d) Since div F' = 2y + 2, we have by Gauss’ Theorem that

2r 2 pd—r?
//F'ndzr:/ / / (2rsinf + 2)r dz dr df
s o Jo Jr2—a

2T 2
:/ / (8 — 2r%)(2rsin @ + 2)r dz dr df
o Jo
2
=0+ 471'/ (8r — 2r3) dr = 32m.
0

e) The boundary of S is given by 2% 4+ y? = 1, z = 6, and must be oriented in the clockwise direction when
viewed from high up the z axis. Thus it can be parameterized by ¢(t) = (sint,cost,6), ¢ € [0, 27].

If P, =2z and R, =0, then P = 2% + f(z,y) and R = ¢(y,z). Thus P, = f, and we may set f =0, Q, = 1.
Thus Q =z + h(y,z) and Q, = h, =0, R, = g, = 2y. Therefore, set R = y?, Q@ =z, and R = y2. In particular,
(P,Q,R) o ¢=(36,sint,cost). Since ¢'(t) = (cost, —sint,0), it follows from Stokes’s Theorem that

27
//F-ndo:/ (36 cost — sin?t) dt = —.
5 0
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13.6.4. a) Let E be the solid cylinder whose boundary is S and F = (xy,z? — 2%, 22). Since divF =z + v, it
follows from Gauss’ Theorem that

o 3 2 3 2
//w:///(m—l—y)d‘/:/ / /(x—l—rcos@)rdmdrd@:%r/ / xrdzrdr = 187.
s E o Jo Jo o Jo

b) The boundary of S consists of two pieces. C;: x? + 22 = 8, y = 1, oriented in the clockwise direction when
viewed from far out the y axis, and Cy: 2% +22 = 8, y = 0, oriented in the counterclockwise direction when viewed
from far out the y axis.

Let curl (P,Q,R) = (x — 22,—-,0). If R, = z and Q. = 2z, then R = zy + f(z,2) and Q = 2? + g(z,v).
Thus R, = y + f» and we can set f =0, P =0, and g = 0. Hence (P,Q, R) = (0,22, vy). Parameterize C; by
o(t) = (v/8cost,1,v/8sint), t € [0,27]. Then

27
/ (P,Q,R)-Tds = / (0,8sin? ¢, v/8cost) - (—V8sint, 0,8 cost) dt = 8.
C1 0
Similarly,
. 27
/ (P,Q,R)-Tds= / (0,8cos?t,0) - (V8cost,0,—V/8sint) dt = 0.
Cs 0

Therefore, [[qw =87 +0 = 8.
c) Since F = (eY cosx, 2%z, x +y + z) implies div F' = —¢¥sinz + 1, it follows from Gauss’ Theorem that

3 1 /2 1
//w:/ / / (1—eysinx)dxdydz:3/ (z—ey)dy:3(1—6)+37r/2.
s o Jo Jo 0o 2

d) The boundary of S is given by 222 + 22 = 1, y = =, oriented in the counterclockwise direction when viewed
from far out the x axis. It can be parameterized by ¢(t) = (cost/\/2,cost/\/2,sint), t € [0, 27].

Let curl (P,Q,R) = (z,—y,siny). If Ry =  and @, = 0, then R = zy + f(z,2) and Q = g(=,
R, =y+ f, and we can set f =0, P =0, and ¢ = 0. Hence P = cosy, @ = 0, R = 2y, and (P, Q,
(cos(cost/v/2),0,cos?t/2). Therefore, it follows from Stokes’s Theorem that

2T/ sint cost cos?t 1/v2
w= ———cos | — ) + cost | dt = cosudu+0=0.
s 0 V2 V2 2 1/v/2

13.6.5. Let F' = (P,Q, R) and ¢(u,v) = (u,v,0). Then Ny = (0,0,1) and (V x F) - Ny = Q, — P,. Therefore,
applying Stokes’s Theorem, we obtain

/;;Epdx+Qdy:/aE(P’Q’R)'TdS://E(VXF)'nd”://E(Qw_Py)dA-

13.6.6. Let ¢ > 0. Since F is C! on By(xg), we can choose r so small that

y). Thus
Ryog =

(VX F)(x) = (V x F)(x0)) -m| <e
for all x € B,.(x0). Hence by Stokes’s Theorem,

1
J(Sr)

/ F-Tds—(V x F)(xo) -0
a8

— %//S (V x F)(x) - ndo(x) — (V x F)(xo) - n

1
< sy L 1T % P60 = (7 x o) -l o < e

In particular, [,o F-Tds/o(S,) — (V x F)(x0)) -nasr — 0.
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13.6.7. a) Let 6 be the angle between F' and T Since 6 € [0,7/2], cos@ > 0, i.e., F'- T > 0. Hence by Stokes’s

Theorem and Exercise 5.1.4,
F-Tds://curlF-ndazo
as s

implies F'- T = 0 everywhere on 0S. We conclude that F' and T are orthogonal.
b) Let (¢, I) be a piecewise smooth parameterization of 9S. By the Cauchy—Schwarz Inequality and hypothesis,
Fr(p(t)) - o(t) — F(¢(t)) - #(¢) uniformly on I, as k — oco. Hence by Stokes’s Theorem and Theorem 7.10,

lim // curl F;, - ndo = lim F,-Tds
S

k—oo k—oo Jgg

:/ F‘Tds://curlF-nda.
oS S

13.6.8. Suppose i) holds. Since F' = Vf, f must be C? on E, hence Q, = fys = fuy = P, on E.
Suppose ii) holds and let C' be any piecewise smooth curve of the type described in condition iii). Then by

Green’s Theorem,
/ F~Td5://(Qz—Py)dA:0.
c Q

Suppose iii) holds and let xo € E°. By Green’s Theorem, faB,.(xo)(Qw — Py)dA = 0 for all r > 0 sufficiently
small, hence by Exercise 12.2.3,

. 1 -
(%—%W@ﬁ%MBmmLMJ%—%MAW~

Since @, — P, is continuous on F, it follows that @, — P, = 0 everywhere on FE.
To find an f such that Vf = F, we must solve f, = P and f, = Q. Since f = foy Q(z,v) dv + h(zx), we have by
differentiating under the integral sign that

Yy Y
fo= / Qz(z,v)dv+ 1 (x) = / Py (z,v)dv+ W (z).
0 0
Hence by the Fundamental Theorem of Calculus,

fz = Ay PU(SC,U) dv + h/(l') = P(:Z:vy) - P(‘T7O) + h/(l’)

Thus set h'(z) = P(z,0), i.e., h(z) = foz P(u,0) du. In particular,

Y T
fen) = [ Qvydo+ [ Pl,0)du
0 0
13.6.9. The proof that i) implies ii) and ii) implies iii) is similar to the proof of Theorem 13.61. Thus it remains
to prove that iii) implies i).
Suppose div F' = 0 everywhere on Q. Let G = (P,Q,0), F = (p,q,r), and suppose V x G = F. Then Q, = —p,
P, = ¢, and Q. — P, = r. Integrating, we obtain

Qz—/"Mn%va+mnw and P=/'aa%va+Maw.
0 0

Differentiating under the integral sign, we have

z

Q= [ g o)dv s gy wd P [ alem0dot i),
0 0
Thus by hypothesis iii),
r=Q;—P,= / ro(z,y,v)dv+ g — hy = r(z,y,2) — r(z,y,0) + gz — hy.
0
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Hence set hy = r(z,y,0) and g = 0. In particular,

z Y z
P= / q(z,y,v)dv +/ r(z,u,0)du and @ = —/ pz(2,y,v) dv.
0 0

0

13.6.10. a) Let Cy be the “outside” curve. By Green’s Theorem and hypothesis,

/CIF'TdS‘/CzF'T%://E(Qz—Py)dA:o.

b) Since Q, = (y* —z?)/(2* +y?)? = P,, we can replace OE with any simple closed curve which surrounds (0, 0)
and is disjoint from OF. 22 + y? = r? is such a curve for r sufficiently small. Let ¢(¢) = (rcost,rsint). Then,

F(o(t))-#'(t) = (75111757 COSt) - (—=rsint,rcost) = sin®t + cos? t = 1.

T T

27
/ F~Tds:/ dt = 2.
OFE 0

c) If S; and S, are disjoint “concentric” surfaces which do not contain the origin, and the normals of S; and

So both point away from the origin, then
// F-nda:// F-ndo
Sl SQ

for all C! functions F which satisfy F = curl G for some C? function G on R?\ {(0,0,0)}.

Therefore,
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CHAPTER 14
14.1 Introduction.

14.1.1. a) Since 22 sin kx is odd, by(2?) = 0 for k = 1,2,... Since 2% coskx is even, we can integrate by parts
twice to verify

2 ™ 4 T A(—1 k
ak(x2) = —/ 22 coskx dr = _F/ rsinkr dr = %
T Jo T Jo

for k # 0. Finally,
2 (7 272
a()(zQ) = 7/ .’E2 dr = L
0 3

™

b) Since cos? z = (1 + cos 2x)/2, we have by orthogonality that ag(cos? z) = 1/2, az(cos? z) = 1/2, and all other
Fourier coefficients of cos? z are zero.

14.1.2. By definition and a sum angle formula,

Sxh@) == [ )t

~ o o

N .
coskxr [T sinkx [T .
+ E ( » f(t) cosktdt + - f(t)sinkt dt)

™
k=0

—T

N
L 1 . .
= 7/ f@®) <2 + Z(COS kx cos kt + sin kx sin kt)) dt

™
- k=0

_ % :; F() Dy (@ — t) dt.

14.1.3. These formulas follow easily from the linear properties of integration. For example,

™

ar(f+g) = %/ (f(t) + g(t)) cos kt dt

_1 i f(t)coslctahﬁ—l—%/7r g(t)cosktdt = ar(f) + ar(g).

Q0 -7

14.1.4. Integrating by parts, we have

ax(f) :% ") cos ki dt

- % <f(t) coskt | +k ! f(t)sin kt dt)
=0+ kbr(f)

since f is periodic. A similar argument establishes by (f’') = —kag(f).

14.1.5. a) Since fy(z) — f(z) — 0 uniformly on [—m, 7], it follows from Theorem 7.10 that

() —as(l < & [ 1wt = f@)eoshtlar < [ (o) - s0)at

converges to zero as N — oo.
b) The proof of part a) also proves this statement.

14.1.6. a) Since f(z)coskx is odd, ax(f) =0 for £k =0,1,... Since f(x)sinkx is even, we have

2 (Mo . 2 —coskr » 2
bk(f)Z;/O msmkxdm: ;(T |0:H((_1)k+1+1)'
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Thus by (f) = 4/(kn) when k is odd and 0 when k is even.
b) By part a) and the Fundamental Theorem of Calculus,

N-1 z N—1

4 sin(2k + 1)x
— 5(2 1 .
(San f)( - Z 1 /0 Z cos(2k + 1)t dt
k=1 k=1
Since by a sum angle formula and telescoping we have
N-1 N-1
2sint Z cos(2k + 1)t = Z (sin 2kt — sin(2k — 2)t) = sin 2Nt,
k=1 k=1

it follows that

4 [*sin2Nt 2 [*sin2Nt
(Son f)(@) = f/ 2Nt i — 7/ dt
0 0

T 2sint T sint

c¢) By part b) and a change of variables,

w/2N ™ :
% o :g/ sin 2Nt :g/ sinu
®) (SZNf)(QN) T Jo sint dt 7 Jo 2N sin(u/2N) du.
Fix u € [0, 7] and set g(z) = xsin(u/x) for z > 0. Since tan(u/x) > u/x for x > 2u/m (see (1) in Appendix B),

and f'(x) = sin(u/z) — (u/x) cos(u/x), we see that f(z) is increasing for x > 2u/mw. Therefore, 2N sin(u/2N) T u
as N — oo for each u € [0, 7). In particular, it follows from Theorem 9.41 and (*) that

T 2 (7 sinu 2 T sinu
li —) == lim ————————du =~ du.
ngio(SQNf)(2N) ™ /0 N—oco 2N sin(u/2N) ™ /0 u

Using either power series or Simpson’s Rule, we can show that this last integral is approximately 1.179.

14.2 Summability of Fourier Series.

14.2.1. Let € > 0 and set Si(x) := Z?:o fj(z) for k > 0 and = € E. Since Sy — [ uniformly on E, choose
N; € N such that k > Ny implies |Sk(z) — f(z)| < ¢/2 for all z € E. Since fi and f are bounded on FE, choose
Ns € N such that Ny > N; and fo;o |Sk(z) — f(z)| < eNg/2 for all z € E. If N > N, then

|mﬂ@ff@”:|wd@_f@»;ﬁﬁfwM@—f@»

LS s - s+ S (M) <k
1~ 2\ N+1 2 92 7

| A

14.2.2. Since any Riemann integrable function is bounded, it follows from (8) and (9) that

s us

oxh@l< s [ i@l -la< T [ Kyw-od=.

—T —T

14.2.3. If S is the Fourier series of a continuous, periodic function f then oy = onf — f uniformly on R by
Corollary 14.15.
Conversely, suppose oy — f uniformly on R. Fix k£ € N and observe by Theorem 7.10 and orthogonality that

k

N Y .
ak(f):A;Enoo;/_waN(m)coskxdm—A}gnm (1_]\774-1) ap = ag.

Similarly, ag(f) = ap and b (f) = by, for k € N. Therefore, S is the Fourier series of f.

14.2.4. a) If (Sf)(xo) converges to M, then by Remark 14.6, (on f)(x0) = M as N — oo, i.e.,, M = L.
b) Any continuous function f can be extended from a compact subset K of (0,2) to be continuous and periodic
n [0,27]. Indeed, choose a,b such that K C [a,b] C (0,27) and define f on (0,27) \ [a,b] to be linear, i.e., its
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graph is a straight line from (b, f(b)) to (a + 2, f(a)) and it is extended by periodicity to all of R. Since
f(z) := /2 cos v/2x is continuous on R, it follows that its Fourier series must be uniformly Cesaro summable
to f on compact subsets of (0,27). Since the given series is uniformly convergent by the Weierstrass M-Test, it
remains to show that this series is the Fourier series of f.

Since f(x) is even, bi(f) =0 for k € N. Clearly,

ao(f) = f cos V2x dx = 2sin /2.
And, by a sum angle formula,
ar(f) = W\f cos V2 cos kx dx
\Qf (Cos(\f + k)x 4 cos(V2 — k)x) da
B sm(\f + k) sin(v2 - k)7
V2 ( ik Va—k )

_ sin\/iwcoskm_i_sin\/iﬂcoskw
V24 k V2 —k

2v2(—1)*sinv2r ) 4(=1)*sinv2r
2 —k? S 2—k2

g

14.2.5. a) If P(z) = Y_;_, axz” then

b n b
/ P(z)f(z)dz = Zak/ 2k f(x) dz = 0.
@ k=0 a

b) By Exercise 10.7.6d, choose polynomials Py which converge to f uniformly on [a,b] as N — oco. Then
Py (z)f(z) — f%(z) uniformly on [a,b] as N — oo and we have by part a) and Theorem 7.10 that

b b
021\;2%0/& PN(x)f(x)dx:/a f2(z) da

c) By part b) and Exercise 5.1.4, f2(x) = 0 for all = € [a,b], thus f(z) = 0 for all x € [a, b].

14.2.6. Let 9

An(z) = f(@ = )N (t) dt — f(x).

0
Since the integral of ¢ is 1, notice that

avtw) = [ (o= - spoxva
Let € > 0. Since f is continuous and periodic, choose 0 € (0, 27) such that
t € Es:=[0,0)U[2mr —6,2n] implies |f(z —t) — f(z)| <€
for all z € R. If C := sup,¢g | f(z)|, then

2w —§
|AN<x>|sE/E |¢N<t>|dt+/ts @ — 1) — F(o)] [on ()] dt

27w—§

geM+2c/ lon(8)] dt,
4
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e, limsupy_ o |An(x)] < eM for all x € R. Therefore, Ax(z) — 0 uniformly in z, as N — oc.

14.2.7. a) Suppose P(r) = a,z™ + -+ + a1z + ag is a polynomial on R and ¢ > 0. Let M := sup{|z|* :
xz € [a,bl,k = 0,1,...,n}, and choose rationals by such that |a; — by| < ¢/(n + 1)M for 0 < k < n. Then
Q(z) :=byx™ + - -+ + bix + by is a polynomial with rational coefficients which satisfies

|P(z) = Q)| < |an = ball2]" +--- +lag — bo| <&

for all z € [a,b].

b) Let € > 0. Clearly, the set of polynomials with rational coefficients is countable. Therefore, it suffices to prove
that given any continuous f on [a, b], there is a polynomial @, with rational coefficients, such that | f(z) —Q(z)| < e
for all z € [a,b].

Choose (by Exercise 10.7.6d) a polynomial P such that |f(z) — P(z)| < /2 for all x € [a,b], and (by part b)
a polynomial @, with rational coefficients, such that |Q(x) — P(x)| < /2 for all « € [a,b]. Then by the triangle
inequality, | f(z) — Q(z)| < ¢ for all z € [a,b].

14.2.8. By Theorem 9.49, f is continuous almost everywhere, hence by Fejér’s Theorem, onf — f almost
everywhere as N — oo.
14.3 Growth of Fourier Coefficients.

14.3.1. Since sin(k + o)z = sin kx cos ax + cos kx sin ax, we have

™

i f(z)sin(k + o)z de = wbi(f(x) cos ax) + mag(f (x) sin cx)

for all kK € N. Since f(z)cosax and f(z)sin oz are integrable on [—7, ], it follows from the Riemann-Lebesgue
Lemma that the integral converges to zero as k — oo.

14.3.2. If f were continuous and |ay(f)| > 1/vk, then

oo

OGS
k=1

k=1

=

| =

which contradicts Bessel’s Inequality.

14.3.3. By Theorem 14.23, k2ai(f) — 0 as k — oo, in particular, |ax(f)| < 1/k? for k large. Similarly,
|bi(f)| < 1/k? for k large. Therefore, Sf converges uniformly on R by the Weierstrass M-Test and absolutely on
R by the Comparison Test.

14.3.4. Fix j € N. Since

S k| sin kx| when j is odd

| /da? (cos kx)| = , .
k?| cos kx| when j is even,

it follows from Theorem 14.23 that |d’//dz (ax(f)coskz)| < 1/k? for k large. A similar estimate holds for the
sine terms. Hence by the Weierstrass M-Test, the j-th term by term derivative of Sf converges uniformly on R.
Since f is continuous and periodic, we have by Exercise 14.2.4 that Sy f — f uniformly on R. We conclude by
Theorem 7.12 that _
&’ = &
—’f(x) = ——(ar(f) coskz + be(f) sin k).

xJ

14.3.5. a) Let k > j > 0. Since the coefficients are nonnegative,

k J
;f) +Zae(f) > ao;f) +2::az(f) = (S;1)(0).

(=1 (=1

(Sef)(0) = 22

b) By part a)

(Snf)(0) +--- + (San £)(0)
N+1

(So.f)(0) + -+ (San f)(0)
N+1

(Snf)(0) <

IN

< 2(02n f)(0).
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¢) By Exercise 14.2.2, oo f is uniformly bounded on R, hence by part b), Y7 | |ax(f)| converges.
d) If f is even, then by (f) = 0 for kK € N. Hence,

f)coskx

which converges uniformly and absolutely on R by the Weierstrass M-Test and part ¢). In particular, f must be
continuous by Theorem 7.9.

14.3.6. a) Using the change of variables t = u + 7 /k, dt = du, and a sum angle formula, we have

1 s
ar(f) = = f(¢t) cos ktdt
1 (7 ™ ) . 1 (7 ™
== flu+ E)(cosk’ucosw—s1nkusm7r)du:—f flu+ E)coskudu.
m m

—T —T

Thus

ak(f):M:%/w(f(u) flu+ ))coskudu

b) By part a),
ax (P <, ) o / [cos kul du < w(f, 7).

A similar argument shows |by(f)| < w(f, 7/k).
c¢) If f is continuous on R then f is uniformly continuous on [—7, 7]. Therefore, w(f,7/k) — 0 as k — oo and
it follows from part b) that ax(f) and b (f) converge to zero as k — oco.

14.3.7. a) Since f(z) = x is odd, it is clear that ax(f) = 0 for £ = 0,1,.... On the other hand, it is easy to see
by parts that

1 /7 2
be(f) = —/ xsinkz dx = ~

™

for k € N.
b) Since

1 (" 9 T, 2m?
- dr = de = =—
W/_rlf(w)l * /_ﬂw * 37

it follows from part a) and Parseval’s Formula that
$a o
= k2 3
as promised.

14.4 Convergence of Fourier Series.

14.4.1. Define g(z) = f(x) for x € [0,27) and g(27) = f(0). Then g is periodic and of bounded variation on
[—7,m] and continuous on any interval [a,b] C (—m, 7). Hence by Theorem 14.29, Sg converges to g uniformly
on [a,b] and pointwise on (—m, 7). Since f = g on (—m,7) implies Sf = Sg, we conclude that Sf converges to f
uniformly on [a,b] C (—7,7) and pointwise on (—, 7).

14.4.2. a) By Example 14.8, this is the Fourier series of z. Hence by Theorem 14.29 and Exercise 14.4.1, this
series must converge to 2 uniformly on [a,b] C (—m,7) and pointwise on (—, 7).

b) By Example 14.9, this is the Fourier series of |z|. Since |z| is periodic and continuous on [—, 7], it follows
from Theorem 14.29 that this series converges to |z| uniformly on [—, 7.

¢) By part b),
T 4
0= @t
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hence Y ;7 1/(2k — 1)? = (7/2)(n/4) = n2/8.

14.4.3. By the proof of Corollary 14.27, if ag(f) = 0 then F(x fo t) dt is continuous, periodic, of bounded
variation, ai(F) = bx(f)/k, and bi(F) = —ar(f)/k =0 for k € N Thus

(SF)(x) + i be() cos k.
k=1

By Theorem 14.29, SF converges to F uniformly on R, in particular, at z = 0. Therefore, "7~ , b (f)/k converges.
14.4.4. a) Fix N € N and r € (0,1). By Abel’s Transform,

N N—-1
E apr® = SyrN (1-r Z Syr®.
k=0 k=0

If 302, Sr* converges, then SyrY — 0 as N — oo, and we have verified the first identity. To show this is also
the case when Y ;- arp® converges for all p € (0,1), fix r < p < 1 and observe since |ap*| < C for all k > 0 that

N

N
S = 1D ar |<cZ i
j=0

for all N € N. Since this last quotient converges to zero as N — oo, it follows that Sy — 0 as N — oco. This
verifies the first identity.
Similarly, since (k + 1)oy, = So + - - - + Sk, we can prove

oo

(1—=7r) ZSIJ' 1—r)22(k+1)akrk.

k=0

b) Let € > 0 and choose N € N such that k¥ > N implies |0, — L| < €. It is easy to see that

177«2i E+1)r
k=0

(Either apply Abel’s Transformation to the Geometric Series, or use the techniques introduced in Section 7.3.)
Thus by part a),

|Zakr ~-L|= 1—r2|2 (k +1)(ox — L)r"|
= =0

zZ

<@=r?> (k+ Dok —Lir* +e(1=r)* > (k+1)r
k=N

ol
gy

<1 =72 (k+1)|or — Lir* +e.

k=0
Since N is fixed, it follows that
oo
lim su apr” — Ll <€
r—>l—p I I;) ‘

Taking the limit of this inequality as € — 0, we conclude that Z;’io agr® — Lasr — 1—.

c¢) By Fejér’s Theorem, oy f — f uniformly. The estimates in part b) can be made uniform if o} converges
uniformly. Thus it follows that Sf is uniformly Abel summable to f.

d) If 37 ; axr does not converge, then Y 77 ay = oo. Thus given M > 0, choose N so large that Sy > M.
Then it follows from part a) that

Zakrk >(1-r) Z Sprk > (1 —r)M Z b = MrN
k=0 k=N k=N

161



Taking the limit of this inequality as » — 1—, we conclude that L > M for all M > 0, i.e., L = 0o, a contradiction.

14.4.5. a) Fix h € R and k € N. By using the change of variables u = x 4+ h, du = dx, and a sum angle
formula, we have

™

ak.(f(erh)):% f(x+ h)coskx dx

—T

1 ™
=— f(w)(cos ku cos kh + sin ku sin kh) du
T

—Tr

= ax(f) coskh + bi(f) sinkh.

Similarly, ax(f(z — h)) = ax(f) coskh — by (f) sinkh. Thus ar(f(z + h) — f(z — h)) = 2b(f) sinkh for k € N.
In the same way, we can prove that ao(f(z+h) — f(x —h)) = 0 and bg(f(xz + h) — f(x — h)) = —2ax(f) sinkh
for k € N. Hence it follows from Parseval’s Identity that

s

4§: £+ )sinzkh:%/ f(z+h) — f(z — h)|? da
k=1

—T

for each h € R.
b) Since sin® ha is increasing on [2"~!,2"],

. .o km Com 1
sin? kh = sin? > gin? = =

g1 2500 7 =5
for k € [2771,27].
c) Let h = 7/2"*1. By part b),
2" —1 2m_q
D@+ <2 > (ai(f) + bE(f)) sin® kh.
k=2n—1 k=on—1
Since f belongs to Lip v, it follows from part a) that
2m—1 2m 1
ST @+ <2 S (@A) +Bf)sin kh
k=2n—1 k=9on—1

oo 2"—1

<23 N (ai(f) + bE(S)) sin® kh

n=1 g=2n—-1
=2 (ap(f) + bi(f)) sin® kh
k=1
= [ Ut h s nPdr

M ™
S 27/ ‘h|2a dr = M2|h‘2a

d) By the given inequality and part c),

o 2"-1

S axDO+10e(HD) =D > (ar(H)]+ 1bx())
k=1

n=1k=2n—1
1/2

<22"/2( T (az<f>+bi<f>>)

k=2n-1

M7 2
E (1/ )
271 « .

n=1
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This last series converges since o > 1/2. Therefore, Sf converges absolutely and uniformly by the Weierstrass
M-Test.

e) If f is periodic and continuously differentiable, then |f/(c)] < M < oo for all ¢ € R. Hence by the Mean
Value Theorem,

[f(z+h) = fle=M] < [f@+h) = f@)]+]f(@) = flz=h)| = [hl[f ()] + [h] [ (c2)| < 2M D]

for some c;’s and all h € R. Thus f belongs to Lip1.

14.4.6. By Theorem 9.49, f is almost everywhere continuous on [—m, 7]. Hence by Theorem 14.29, S f converges
to f almost everywhere on [—m, 7).

14.5 Uniqueness.

14.5.1. If F(x0) is a local minimum, then F(xo + 2h) + F(zo — 2h) — 2F(z9) > 0 for all h € R. Thus
Dy F () > 0. A similar argument establishes the opposite inequality for local maxima.

14.5.2. Since the coefficients of the second formal integral are dominated by M /k2, it follows from the Weier-
strass M-Test that this series converges uniformly on R.

14.5.3. If Sy — fand Ty — f as N — oo, then S —T is a trigonometric series which converges to zero. Hence
by Cantor’s Theorem, the coefficients of S — T must be zero, i.e., S and T are the same series.

14.5.4. Let g(z) = (f(z+)— f(z—))/2 for each = € R. By Theorem 14.29, S — Sg converges everywhere to zero.
Hence by Cantor’s Theorem, S = Sg. But f and g differ at at most finitely many points in [—m,7]. Therefore,
Sf =VS8g,ie., S is the Fourier series of f.

14.5.5. Suppose F' is not convex. Then there exist points a < ¢ < & < d < b such that f(z) lies above the
chord through (¢, F(c)) and (d, F(d)). Since F is continuous on [c,d], choose g € [c,d] such that F(zg) > F(u)
for all u € [c,d]. Since f(x) lies above the chord, the maximum of F' occurs at the endpoints. Hence z¢ € (c,d).
Let € > 0 be so small that [xg — ¢, 29 + €] C (¢,d). Then

e <0

for all |h| < e. Taking the limit of this inequality as h — 0, we conclude that Dy F(z¢) < 0, a contradiction.
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These are solutions to the exercises from Chapter 15 of the 3rd edition.

CHAPTER 15
15.1 Differentiable Forms on R".

15.1.1. a) 3(de +dy)dz+2(dx+ dz)dy = 3dxdz + 3dydz + 2dxdy — 2dy dz
=dydz — 3dzdx + 2dx dy.

b) (xdy —ydx)(xdz — zdy) = 2* dydz — xz dy dy — xy dx dz + yz dx dy
=2 dydz + zydzde + yz dz dy.

(2% dx dy — cos x dy dz) (y* dy + cos x dw)
— (23 dy dz — sinx dy dw) (y> dy + sin x dz)
= 22 cos & dx dy dw — cos? z dy dz dw + sin? z dy dw dz
= —dy dz dw + x? cos z dzx dy dw.

15.1.2. a) By definition
dw = 2z dx +0dy) dy + (0dx — 2y dy) dz = (2x + 2y) dz dy.
b) By definition

dw = (y cos(zy) dz + z cos(zy) dy) dz dw + (—wsin(zw) dz — zsin(zw) dw) dzr dy
= ycos(zy) dz dz dw + x cos(xy) dy dz dw — w sin(zw) dx dy dz — z sin(zw) dz dy dw.

¢) Let p = y/22 + y2. By definition,

dw = Ed:L“alydz— gdydacalz:
p

TrY drdydz.
p 2

Varz+y
d) By the Product Rule,

dw = d(e"™ dz + e¥* dz)(sinz dy + cosy dx) + (™ dz + €Y% dx)d(sin z dy + cosy dx)
= (ye™dxdz + xe™ dy dz + ze¥* dy dx + ye¥* dz dx)(sinx dy + cosy dx)
— (e®™dz + €¥* dx)(cos x dx dy — siny dy dx)
= ysinxe™ dr dz dy + ysin xe¥? dz dx dy + x cos ye®™ dy dz dx — cos xe®™ dz dx dy

= (ysinze¥? — ysinxe®™ + x cosye™ — cosxe™) dx dy dz.

15.1.3. a) If w is decomposable, then
w? = (fdxy, ... dx;,)(fdrg, ... dog) = f2-0=0.

If w is odd, then w = Z;VZI wj, where each w; is odd and decomposable. Thus wjwy = w?

7 = 0 when j =k, and
by anticommutativity, w;wy = —wiw; when j # k. Hence,

N N N
2
w” = E wj E wg | = E wijwg = 0.
j=1 k=1 G k=1
Jj#k

164



b) If w is even then wjz. =0 when j = k, and wjwi, = wpw; when j # k. Therefore,

7,k=1
i<k

15.1.4. a) By definition,
dw = fydr + fydy + f.dz = grad f - (dz, dy, dz).

b) By definition,

dw = (Pydx + Pydy + P, dz)dx + (Qz dz + Q, dy + Q. dz) dy
+ (Rydz+ Rydy+ R.dz)dz
= (Ry — Q.)dyd + (P. — Ry) dzd + (Qu — Py) dudy
=curl F - (dy dz, dz dz, dz dy),

and
dn = Pydrdydz + Qydydzdx + R, dzdx dy = divF - dz dy dz.

15.1.5. a) By the Fundamental Theorem of Differential Transforms,

¢"(w) = (Pod) ¢y +(Qod) ¢y=(Fog) ¢

|peras= [P gwa= [ o

b) By the Fundamental Theorem of Differential Transforms and the proof of Theorem 13.36,

(¢2,¢3) O0(¢3, ¢1) (o1, ¢2)
d(u,v) d(u,v) A(u,v)

//SF-nda:/EF(gb(u,v)) Ny (u, v) d(u, 0) / (1),

15.2 Differentiable Manifolds.
15.2.1. a) Let V,, be open in M and set V = UqecaV,. Let (U, g) be a chart of M. Then

Therefore,

¢"(n) = (Po¢)———=+(Qog) +(Qo9) =(Fo¢) Ny

Therefore,

gvnu)= | gvanv)
acA

is open. Hence V' is open in M by definition.
b) Let V; be open in M and set V = ﬂé-vzlvj. Let (U, g) be a chart of M. Then

N
g(VNU)=(Ng(V;nU)
j=1

is open. Hence V' is open in M by definition.

15.2.2. The reflexive and symmetric properties are obvious by definition. The transitive property is easy to see
since the composition of CP functions is a CP function, and

Apoy = (Ago9) - A

For example, if A, B, and O are CP compatible atlases of M, if (U,g) is a chart of A, (V,h) is a chart of B, and
(,0) is a chart of O, then goo™ ! =goh lohoo™ ! is a CP function and

Agog—l = (Agoh—l O 0'_1) . Ahog—l > 0.
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15.2.3. Given a manifold (M, .A) with boundary, let
(V,h) € B:={(V,h) : VNOM # 0}.

Since h : V — H for some half space H “in variable j”, define h:OHNV — R1 by

h(z1,...,Tm) = (R1(X),..., hi(x),..., hp(X)).
Then h takes OM NV onto an open subset of R*™! and ho g~ is as smooth as h o g~!'. Thus OM is an
n — 1-dimensional manifold.

15.2.4. a) Notice that o is a C* function and A, > 0. Thus

(0oh)ogt=00(hog™) and go(coh) ™' =(goht)oo™!

1

are CP when hog~! and go h™! are, and the Jacobians

A(aoh)og—1 = AO'AhOg_l and Ago(aoh)_l = Agoh—lAa—1

are positive when A is oriented. Thus B is orientation compatible with A.

b) Let (U, g) € A be a chart at x. Since g(U) is an open set containing h(x), we can choose a § > 0 such that
Bs(h(x)) € g(U). Let o(y) = (y — g(x))/6, h = 0 o g, and V = h~}(Bs(h(x))). Then o takes Bs(g(x)) onto
B (0), and by part a), (V, h) belongs to A. Thus (V, h) is a chart in A which satisfies h(V) = B1(0) and h(x) = 0.

15.2.5. a) Suppose (U, g) and (V, h) are charts from different atlases of M. Then
fogot=(foh™)ohog!

is a CP function if and only if f o h~! is CP. Since these two atlases are compatible, the definition of CP functions
on M does not change from one atlas to another.
b) If f: M — R is C? and G : R¥ — R’ is C?, then so is

(Gof)oh™ =Go(foh™)
for every chart (h, V) of M. Thus G o f is C? on M by definition.

¢) Since h o gt is C* for each chart (U, g) of M, it follows from definition that h is a C> function on M for
each chart (V,h) of M.

15.2.6. Let U = {x: 21 > —a}, V = {x:21 < a},

T2 Ty Z2 Tn
Tlyeoo,Xp) = R and h(zi,...,x,) = R .
9o n) (a—i—xl a+m1) (1 n) (a—xl a—ml)

Then (U, g), (V,h) are (n — 1)-dimensional charts which cover the sphere. Notice that

gUNV)=hUNV)={u:u=(z2,...,2,) #0}

is open. Also notice that
Zn:| (X)|2_x§+-~~+mi_ a?—a3  a—m
=1 o (a+x1)? (a+x1)? atx

Hence for each j,

hy(x) = T xj a+mr g5 (x)

a—x1 a+zia—m > et lgr(x)[2

It follows that
u

hog t(u) = ——.
[[uf?
In particular, the transitions are C*? on g(U NV).
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15.3 Stokes’s Theorem on Manifolds.

15.3.1. Since d(z® dy dz dw + y? dx dz dw) = (322 — 2y) dx dy dz dw, we have by Stokes’s Theorem and spherical
coordinates that

/ (23 dy dz dw + y* dx dz dw)
9B4(0,0,0,0)
= / (322 — 2y) d(z,y, 2, w)
B.(0,0,0,0)
2 ™ ™ a
= / / / / (3p% cos? ¢ — 2psin g cos 1) p® sin? @ sin 1 dp dep dip df
o Jo Jo Jo

27 i T a
- / / / / (3p° sin® p cos® psiny — 2p" sin®  cos ¥ sin 1) dp dep dop db
o Jo Jo Jo

aﬁ e Ky 2a5 e ™

=27 (—/ sin2gocosg<pd<p/ sinwdw——/ sin3g0dg0/ coszﬁsinqﬁdzﬂ)
2 Jo 0 5 Jo 0

abm?

4

e
= 27a® / sin? ¢ cos? p dp =
0

15.3.2. Since

n

d(z x? dxy .. d/&:\] codry) = 22(_1)1'—1%_ dzy...dz,
j=1 j=1

we have by Stokes’s Theorem that

n
/ w:22/(—l)jflxjdxl...dxn:Z(—l)jflal...d}...an-az

<

is 1 if n is odd, and 0 if n is even.

15.3.3. Since

dri...dz, if nis odd

0 if n is even

(-1 Vdxy ... dx, = {

A day .. .dz; ... dz,) =
Jj=1 J

n
=1

we have by Stokes’s Theorem that

/aEw = ;/E(I)J_ dzy ...dx, = 2(71)3_ Vol (E).

In particular, the integral is Vol (E) if n is odd and 0 if n is even.

15.3.4. By Stokes’s Theorem, the Product Rule, the Poincaré Lemma, and the substitution dn = w we have

/ nw:/ d(nw):/ dn-w—l—(—l)’“ndw:/ dn-w:/ w?.
oM M M M M
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