CHAPTER 1

Prob‘abﬂity and

Distributions

1.1 Introduction

Many kinds of investigations may be characterized in part by
the fact that repeated experimentation, under essentially the same
conditions, is more or less standard procedure. For instance, in medical
research, interest may center on the effect of a drug that is to be
administered; or an economist may be concerned with the prices of
three specified commodities at various time intervals; or the
agronomist may wish to study the effect that a chemical fertilizer has
on the yield of a cereal grain. The only way in which an investigator
can elicit information about any such phepomenon is to perform his
experiment. Each experiment terminates with an outcome. But it
is characteristic of these experiments that the outcome cannot be
predicted with certainty prior to the performance of the experiment.

Suppose that we have such an experiment, the outcome of which
cannot be predicted with certainty, but the experiment is of such a
nature that a collection of every possible outcome can be described
prior to its performance. If this kind of experiment can be repeated

1



2 Probability and Distributions |Ch. 1

under the same conditions, it is called a random experiment, and the
collection of every possible outcome is called the experimental space
or the sample space.

Example 1. 1n the toss of a coin, let the outcome tails be denoted by T and
let the outcome heads be denoted by H. If we assume that the coin may be
repeatedly tossed under the same conditions, then the toss of this coin is an
example of a random experiment in which the outcome is one of the two
symbols T and H; that is, the sample space is the collection of these two
symbols.

Example 2. In the cast of one red die and one white die, let the outcome
be the ordered pair (number of spots up on the red die, number of spots up
on the white die). If we assume that these two dice may be repeatedly cast
under the same conditions, then the cast of this pair of dice is a random
experiment and the sample space consists of the following 36 ordered pairs:
(1,1),...,(1,6),2,1),...,(2,6),....(6,6).

Let € denote a sample space, and let C represent a part of ¥. If,
upon the performance of the experiment, the outcome is in C, we shall
say that the event C has occurred. Now conceive of our having made
N repeated performances of the random experiment. Then we can
count the number f of times (the frequency) that the event C actually
occurred throughout the N performances. The ratio f/N is called the
relative frequency of the event C in these N experiments. A relative
frequency is usually quite erratic for small values of N, as you can
discover by tossing a coin. But as N increases, experience indicates that
we associate with the event C a number, say p, that is equal or
approximately equal to that number about which the relative
frequency seems to stabilize. If we do this, then the number p can be
interpreted as that number which, in future performances of the
experiment, the relative frequency of the event C will either equal or
approximate. Thus, although we cannot predict the outcome of a
random experiment, we can, for a large value of N, predict
approxlmately the relative frequency with which the outcome will be
in C. The number p associated with the event C is given various names.
Sometimes it is called the probability that the outcome of the random
experiment is in C; sometimes it is called the probability of the event
C, and sometimes it is called the probability measure of C. The context
usually suggests an appropriate choice of terminology.

Example 3. Let € denote the sample space of Example 2 and let C be the
collection of every ordered pair of ¢ for which the sum of the pair is
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equal to seven. Thus C is the collection (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and
(6, 1). Suppose that the dice are cast N = 400 times and let f, the frequency
of a sum of seven, be f = 60. Then the relative frequency with which the
outcome was in C is f/N = & = 0.15. Thus we might associate with C a
number p that is close to 0.15, and p would be called the probability of the
event C.

Remark. The preceding interpretation of probability is sometimes
referred to as the relative frequency approach, and it obviously depends upon
the fact that an experiment can be repeated under essentially identical
conditions. However, many persons extend probability to other situations by
treating it as a rational measure of belief. For example, the statement p = 2
would mean to them that their personal or subjective probability of the event
C'is equal to % Hence, if they are not opposed to gambling, this could be
interpreted as a willingness on their part to bet on the outcome of C so that
the two possible payoffs are in the ratio p/(1 — p) = 3/3 = . Moreover, if they
truly believe that p = { is correct, they would be willing to accept either side
of the bet: (a) win 3 units if C occurs and lose 2 if it does not occur, or (b)
win 2 units if C does not occur and lose 3 if it does. However, since the
mathematical properties of probability given in Section 1.3 are consistent with
either of these interpretations, the subsequent mathematical development
does not depend upon which approach is used.

The primary purpose of having a mathematical theory of statistics
is to provide mathematical models for random experiments. Once a
model for such an experiment has been provided and the theory worked
out in detail, the statistician may, within this framework, make
inferences (that is, draw conclusions) about the random experiment.
The construction of such a model requires a theory of probability.
One of the more logically satisfying theories of probability is that
based on the concepts of sets and functions of sets. These concepts
are introduced in Section 1.2.

1.2 Set Theory

The concept of a set or a collection of objects is usually left
undefined. However, a particular set can be described so that there is
no misunderstanding as to what collection of objects is under
consideration. For example, the set of the first 10 positive integers is
sufficiently well described to make clear that the numbers ; and 14 are
not in the set, while the number 3 is in the set. If an object belongs to
a set, it is said to be an element of the set. For example, if 4 denotes
the set of real numbers x for which 0 < x < 1, then % is an element of
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the set 4. The fact that ] is an element of the set 4 is indicated by
writing % € A. More generally, a € 4 means that a is an element of the
set 4.

The sets that concern us will frequently be sets of numbers.
However, the language of sets of points proves somewhat more
convenient than that of sets of numbers. Accordingly, we briefly in-
dicate how we use this terminology. In analytic geometry consider-
able emphasisis placed on the fact that to each point on a line (on which
an origin and a unit point have been selected) there corresponds one
and only one number, say x; and that to each number x there
corresponds one and only one point on the line. This one-to-one
correspondence between the numbers and points on a line enables us
to speak, without misunderstanding, of the ‘““point x”’ instead of the
“number x.” Furthermore, with a plane rectangular coordinate system
and with x and y numbers, to each symbol (x, y) there corresponds one
and only one point in the plane; and to each point in the plane there
corresponds but one such symbol. Here again, we may speak of the
“point (x, y),” meaning the “ordered number pair x and y.” This
convenient language can be used when we have a rectangular-
coordinate system in a space of three or more dimensions. Thus the
“point (x,, X, . . ., X,)” means the numbers x,, x,, . .., X, in the order
stated. Accordingly, in describing our sets, we frequently speak of a set
of points (a set whose elements are points), being careful, of course, to
describe the set so as to avoid any ambiguity. The notation
A={x:0<x <1} isread “A is the one-dimensional set of points x
for which 0<x<1.” Similarly, 4A={(x,»):0<x<1,0<
y < 1} can be read “A4 is the two-dimensional set of points (x, ) that
are interior to, or on the boundary of, a square with opposite vertices
at (0,0) and (1, 1).” We now give some definitions (together with
illustrative examples) that lead to an elementary algebra of sets
adequate for our purposes.

Definition 1. If each element of a set A4, is also an element of set A4,,
the set A, is called a subset of the set 4,. This is indicated by writing
A < A,. If A, = A, and also 4, < A4,, the two sets have the same
elements, and this is indicated by writing 4, = 4,.

Example 1. Let A, ={x:0<x<1}and 4,={x: —1 < x < 2}. Here
the one-dimensional set A, is seen to be a subset of the one-dimensional set
A,; thatis, 4, = A4,. Subsequently, when the dimensionality of the set is clear,
we shall not make specific reference to it.
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Example 2. let A, ={(x,»)):0<sx=y<1} and A4,={(x,y):
0 < x < 1,0 < y < 1}. Since the elements of A, are the points on one diagonal
of the square, then 4, c A4,.

Definition 2. If a set 4 has no elements, A4 is called the null set. This
is indicated by writing 4 = &.

Definition 3. The set of all elements that belong to at least one of
the sets 4, and A, is called the union of 4, and A4,. The union of 4, and
A, is indicated by writing A4, uU 4,. The union of several sets
A,, A,, A, . .. is the set of all elements that belong to at least one of
the several séts. This union is denoted by 4, U 4, U A4;U--- or by
A, v A0 - U A, if a finite number k of sets is involved.

Example3.Let A, ={x:x=0,1,...,10}and 4, = {x:x=8,9,10, 11,
or 11 <x<12}. Then 4,u4d,={x:x=0,1,...,8,9,10,11, or 11 <
x<12}={x:x=0,1,...,8,9,10,0r 11 < x < 12}.

Example 4. Let A, and A, be defined as in Example 1. Then 4, U 4, = A,.

Example 5. Let A, = &. Then A, U A, = A, for every set A,.

Example 6. For every set A, AUA=A.

Example 7. Let

1
A = : 15, k=1,2,3,....
k {x k+15xs }

Then 4, U 4, U A;U -+ = {x:0 < x < 1}. Note that the number zero is not
in this set, since it is not in one of the sets 4,, 45, 4,, . ...

Definition 4. The set of all elements that belong to each of the sets
A, and 4, is called the intersection of A, and A,. The intersection of
A, and A4, is indicated by writing 4, N 4,. The intersection of several
sets A,, 4,, A, . . . is the set of all elements that belong to each of the
sets 4,, A,, A;, . ... Thisintersection is denoted by 4, " 4, " A3+ - -
or by A, A,n- - - N A, if a finite number k of sets is involved.

Example 8. Let A, = {(0, 0), 0, 1), (1, )} and 4, = {(1, 1), (1, 2), (2, )}
Then 4,n 4, = {(1, 1)}.

Example 9. Let A, ={(x,y):0<x+y<1} and 4,={(xy:1<
x + y}. Then A4, and 4, have no points in common and 4,n 4, = .

Example 10. For everyset AAAnA=Aand Ang=0.
Example 11. Let

Ak={x:0<x<%}, k=1,2,3,....
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Then 4, N A, A, - - - i$ the null set, since there is no point that belongs to
each of the sets 4, 4,, 4,5, ...

Example 12. Let A, and A, represent the sets of points enclosed, respect-
ively, by two intersecting circles. Then the sets 4, U A4, and A, N A, are
represented, respectively, by the shaded regions in the Venn diagrams in
Figure 1.1.

Example 13. Let A, A,, and A4, représent the sets of points enclosed,
respectively, by three intersecting circles. Then the sets (4, U 4;) N 4; and
(A, N A;) U A; are depicted in Figure 1.2.

Definition 5. In certain discussions or considerations, the totality
of all elements that pertain to the discussion can be described. This set
of all elements under consideration is given a special name. It is called
the space. We shall often denote spaces by capital script letters such as
o, B, and %. ‘

Example 14. Let the number of heads, in tossing a coin four times, be
denoted by x. Of necessity, the number of heads will be one of the numbers
0, 1, 2,3, 4. Here, then, the space is the set of = {0, 1, 2, 3, 4}.

(A,UA) N A, (A, M Ay U A,

FIGURE 1.2
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Example 15. Consider all nondegenerate rectangles of base x and height
y. To be meaningful, both x and y must be positive. Thus the space is the set
A ={(x,y):x>0,y>0}.

- Definition 6. Let &/ denote a space and let 4 be a subset of the set
/. The set that consists of all elements of &/ that are not elements of
A is called the complement of A (actually, with respect to /). The
complement of A4 is denoted by A*. In particular, o&/* = .

Example 16. Let o/ be defined as in Example 14, and let the set 4 = {0, 1}.
The complement of A (with respect to &) is A* = {2, 3, 4}.

Example 17. Given Ac /. Then AuA*=9, AnA*=(,
Av A =, Ansd = A, and (4¥)* = 4. '

In the calculus, functions such as :

fx) = 2x, —00<.x < 00,
or |
g(x,y)=e*77, 0<x<ow, 0<y<o,
=0 elsewhere, ,\
or possibly

h(xy, X35 o0y Xp) = 3,7 7 * X, 0O<x; <1, i=12,...,n,
=0 elsewhere,

were of common occurrence. The value of f{x) at the “point x = 1" is
f(1) = 2; the value of g(x, y) at the “point (— 1, 3)" isg(—1, 3) = 0; the
value of h(x,, x,, ..., x,)at the “point (1, 1,...,1)" is 3. Functions
such as these are called functions of a point or, more simply, point
functions because they are evaluated (if they have a value) at a point
in a space of indicated dimension.

There is no reason why, if they prove useful, we should not have
functions that can be evaluated, not necessarily at a point, but for an
entire set of points. Such functions are naturally called functions of a
set or, more simply, set functions. We shall give some examples of set
functions and evaluate them for certain simple sets.

Example 18. Let A be a set in one-dimensional space and let Q(A) be equal
to the number of points in A4 which correspond to positive integers. Then Q(A4)
is a function of the set 4. Thus, if 4 = {x:0 < x < 5}, then Q(A4) = 4; if
A={-2,—1}, then Q(4)=0; if A= {x: —0 < x < 6}, then Q(4) = 5.

Example 19. Let A be a set in two-dimensional space and let Q(A4) be the
area of A, if A has a finite area; otherwise, let Q(A4) be undefined. Thus, if
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A ={(x,y):x* + y* < 1}, then' Q(4) = =n; if 4 = {(0,0), (1, 1), (0, 1)}, then
0(4)=0;if 4={(x,9):0<x,0 <y, x+ y <1}, then Q(4) =1.

Example 20. Let A be a set in three-dimensional space and let Q(A4) be
the volume of A4, if 4 has a finite volume; otherwise, let 0(A4) be undefined.
Thus, if A= {(x,y,2):0<x<2,0<y<1,0<z<3}, then Q(4) = 6; if
A={(x,y,2): x* + y* + z2 = 1}, then Q(4) is undefined.

At this point we introduce the following notations. The symbol

J fix)dx

will mean the ordinary (Riemann) integral of f(x) over a prescribed
one-dimensional set 4; the symbol

J Jg(x, y) dx dy

will mean the Riemann integral of g(x,y) over a prescribed
two-dimensional set A4; and so on. To be sure, unless these sets 4 and
these functions f(x) and g(x, y) are chosen with care, the integrals
will frequently fail to exist. Similarly, the symbol

Y fx)
A
will mean the sum extended over all x € 4; the symbol

):A): g(x, y)

will mean the sum extended over all (x, y) € 4; and so on.
Example 21. Let A be a set in one-dimensional space and let
0(4) = ; f(x), where
foy=qdy, x=1,23,...,
=0 elsewhere.
If 4={x:0< x <3}, then
o) =4+ @P + P =}
Example 22, Let Q(A).= ; f(x), where
JR)=p(1-p', x=01,
=0 elsewhere.
If A = {0}, then .
Q)= 3 pl—p' " =1-p,
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if 4 ={x:1<x<2}, then Q(4) =f(1) = p.
Example 23. Let A be a one-dimensional set and let

Q(4) = f e~ dx.

Thus, if 4 = {x:0 < x < 0o}, then

Q(4) = fe“dx =1;

if A={x:1<x<2}, then
2
Q(4) =J. e*dx=e¢'-e?
|

if 4, ={x:0<x<1}and 4, = {x:1 < x <3}, then
) . s
Q(Al |V Az) = e *dx
vo
. rl 3
= e"'dx+J e *dx
1

“0

= Q(4,) + Q(42);
if A=A,UA,, wheré 4, ={x:0<x<2} and 4, ={x:1<x<3}, then

3
Q(4) =0(4vA)=| e"dx

Y0

2 3 2
= e"dx+J‘e“‘dx—'[e“dx
| 1

~0

= Q(4)) + 0(4;) — 0(4, N 4,).
Example 24. Let A be a set in n-dimensional space and let

Q0(4) = J . de, dx, -+ - dx,,.

IfA={(x|,x2s'--axu)30$x|$sz"'$x,sl},then

Q(A)=J Jw“.r ‘J.ndx, dx, - - -dx,_, dx,
0 o 0 <o

=21 wheren!=n(n—l)-"-3-2-l.
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EXERCISES

1.1. Find the union 4, U 4, and the intersection 4, N A4, of the two sets 4,
and A,, where:
(@) 4,={0,1,2}, 4,={2,3,4}.
b) A,={x:0<x<2},4,={x:1<x<3}.
) 4, ={(xy):0<x<2,0<y<?2}
A={xy):1<x<31<y<3}

1.2. Find the complement A* of the set 4 with respect to the space & if:
@) F={x:0<x<l},Ad={x:3<x<1}.
(b) o ={(x,y,2) : x2+ y* + 2 <1} A={(x,y,2): X+ y? + 22 =1}.
© & ={(»:Ix+ <2} 4={(x,y): ¥+ <2}.

1.3. List all possible arrangements of the four letters m, a, r, and y. Let A4,
be the collection of the arrarigements in which y is in the last position. Let
A, be the collection of the arrangements in which m is in the first position.
Find the union and intersection of 4, and 4,.

1.4. By use of Venn diagrams, in which the space .o/ is the set of points
enclosed by a rectangle containing the circles, compare the following sets:
(@) 4N (4;U 4;) and (4, N A4)) U (4, N 4y).

(b) A,u(4;n A4;) and (4, U 4,) N (A, U A4,).
(c) (4, VA,)* and AT N A%.
(d) (4)n A4y)* and AT U A43.

1.5. If a sequence of sets A, A,, 4,,... is such that A, c A4,,,,
k=1,2,3,..., the sequence is said to be a nondecreasing sequence. Give
an example of this kind of sequence of sets.

1.6. If a sequence of sets A, 4,, A;,... is such that 4, o 4,,,,
k=1,2,3,..., the sequence is said to be a nonincreasing sequence. Give
an example of this kind of sequence of sets.

1.7. If A,, A;, A3, . . . are sets such that Ak c A, k=1,2,3,...,1im 4,
is defined as the union 4, U 4, U AU - . Find lim 4, if: koo
k - a0

(@) A, ={x: l/k<rs3—l/k}k_l,2,3,
B Ai=1{(c,)): k<x+y<d—1jkl.k=1273,...

1.8. If A,, A, As, .. . are sets such that 4, > 4, . . k=1,2,3,..., lim 4,
is defined as the intersection 4, 4,"A; - - - . Find lim A4, if: ko
k—o®

@) A ={x:2—lk<x<2} k= ,2,3,
(b) A, ={x:2<x<2+1/k} k=123,
(© Ai={(x,»):0<x*+ y* < 1/k}, k=1,2,3,..~..
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1.9. Forevery one-dimensionalset 4, let Q(4) = ) fix), where fix) =(3)(),

A
x=0,1,2,..., zero elsewhere. If 4, ={x:x=0,1,2,3} and
Ay ={x:x=0,1,2,...}, find Q(4,) and Q(4,).
Hint: Recall that S,=a+ar+---+ar"'=a(l — /(1 —r) and
lim S, = a/(1 — r) provided that |r| < 1.

1.10. For every one-dimensional set A for which the integral exists, let
o4) = Jx)dx, where flx)=6x(1 -x), 0 <x<1, zero elsewhere;
otherwise, let O(4) be undefined. If 4, = {x:1<x <3}, 4,={}}, and
Ay ={x:0 < x < 10}, find Q(4;), Q(4,), and Q(4,)."

L11. Let Q(4) = [, [ (x* + y*) dx dy for every two-dimensional set 4 for
which the integral exists; otherwise, let Q(4) be undefined. If
Ai={xy: —1<x<l,—l<y<l}, 4,={(x.)): -1<x=y<1}
and 4; = {(x, y) : ¥ + y* < 1}, find Q(4,), Q(4,), and Q(4;).

Hint: In evaluating Q(A4,), recall the definition of the double integral (or
consider the volume under the surface z = x* + )? above the line segment
—1 < x = y < | in the xy-plane). Use polar coordinates in the calculation

of Q(4,).

1.12. Let & denote the set of points that are interior to, or on the boundary
of, a square with opposite vertices at the points (0,0) and (1, 1). Let
Q(4) = |, | dy dx.

(a) If 4 c o is the set {(x,y):0 < x < y < 1}, compute Q(A).
(b) If A = & is the set {(x,y):0 < x = y < 1}, compute Q(4).
() If 4 = o is the set {(x, ) :0 < x/2 < y < 3x/2 < 1}, compute O(4).

1.13. Let o be the set of points interior to or on the boundary of a cube with
edge of length 1. Moreover, say that the cube is in the first octant with one
vertex at the point (0, 0, 0) and an opposite vertex at the point (1, 1, 1). Let
0(A) = ji_[ dx dy dz.

(a) If 4 c of is the set {(x,y,2):0 < x <y <z < 1}, compute Q(A).
(b) If A4 is the subset {(x, y,2z):0 < x = y = z < 1}, compute Q(A).

1.14. Let A denote the set {(x,y,z):x’+)y*+z'<1}. Evaluate
o(A) = j;j VX2 + Yy + 2dxdyd:z.

Hint: Use spherical coordinates.

1.15. To joiﬁ a certain club, a person must be either a statistician or a
mathematician or both. Of the 25 members in this club, 19 are statisticians
and 16 are mathematicians. How many persons in the club are both a
statistician and a mathematician?
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1.16. After a hard-fought football game, it was reported that, of the 11
starting players, 8 hurt a hip, 6 hurt an arm, 5 hurt a knee, 3 hurt both a
" hip and an arm, 2 hurt both a hip and a knee, 1 hurt both an arm and a
knee, and no one hurt all three. Comment on the accuracy of the report.

1.3. The Probability Set Function

Let ¢ denote the set of every possible outcome of a random
experiment; that is, € is the sample space. It is our purpose to define
a set function P(C) such that if C is a subset of &, then P(C) is the
probability that the outcome of the random experiment is an element
of C. Henceforth it will be tacitly assumed that the structure of each
set C is sufficiently simple to allow the computation. We have already
seen that advantages accrue if we take P(C) to be that number about
which the relative frequency f/N of the event C tends to stabilize after
a long series of experiments. This important fact suggests some of the
properties that we would surely want the set function P(C) to possess.
For example, no relative frequency is ever negative; accordingly, we .
would want P(C) to be a nonnegative set function. Again, the relative
frequency of the whole sample space € is always 1. Thus we would want
P(€) = 1. Finally, if C,, C,, C,, . . . are subsets of € such that no two
of these subsets have a point in common, the relative frequency of the
union of these sets is the sum of the relative frequencies of the sets, and
we would want the set function P(C) to reflect this additive property.
We now formally define a probability set function.

Definition 7. If P(C) is defined for a type of subset of the space €,
and if ‘

(a) P(C)=0,

(b) P(C,uC,uCiu- )= P(C) + P(C,)+ P(C;) + - - -, where
thesets C;,, i=1,2,3,..., are such that no two have a point
in common (that is, where C;n C, = &, i #)),

(© P(®)=1,

then P is called the probability set function of the outcome of the
random experiment. For each subset C of €, the number P(C) is called
the probability that the outcome of the random experiment is an
element of the set C, or the probability of the event C, or the probability
measure of the set C.
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A probability set function tells us how the probability is dis-
tributed over various subsets C of a sample space €. In this sense we
speak of a distribution of probability.

Remark. In the definition, the phrase “a type of subset of the space €~
refers to the fact that P is a probability measure on a sigma field of subsets
of ¢ and would be explained more fully in a more advanced course.
Nevertheless, a few observations can be made about the collection of subsets
that are of the type. From condition (c) of the definition, we see that the space
% must be in the collection. Condition (b) implies that if the sets C,, C;, G, . . .
are in the collection, their union is also one of that type. Finally, we observe
from the following theorems and their proofs that if the set C is in the
collection, its complement must be one of those subsets. In particular, the null
set, which is the complement of €, must be in the collection.

The following theorems give us some other properties of a
probability set function. In the statement of each of these theorems,
P(C) is taken, tacitly, to be a probability set function defined for a
certain type of subset of the sample space €.

Theorem 1. For each C = €, P(C) = 1 — P(C*).

Proof. We have ¢ = Cu C* and Cn C* = . Thus, from (c) and
(b) of Definition 7, it follows that

I = P(C) + P(CY),

which is the desired result.

Theorem 2. The prébability of the null set is zero; tflat is, (&) = 0.

Proof. In Theorem 1, take C = (& so that C* = €. Accordingly, we
have

PP =1—-P%)=1-1=0,

and the theorem is proved.

Theorem 3. If C, and C, are subsets of € such that C, c C,, then
P(C) < P(C3).

Proof.-Now C, = C,u(CY n G;) and C, n (CY n C,) = &. Hence,
from (b) of Definition 7, :

P(C,) = P(C,) + P(C* n G,).
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However;: from (a) of Definition. 7, P(C¥ n C;) > 0; accordingly,
P(Cy) = P(C)).
Theorem 4. For each Cc¥4,0<PO)<].
Proof Since @ = C c €, we have by Theorem 3 that
P <PO<P® or 0<POLI,

the desired result.

Theorem 5. If C, and C, are s{ubﬁse»tﬁs of €, then .
P(CyuGy) = P(C)) + P(C3) — P(Ci N Cz)

Proof. Each of the sets C,uC, and C, can be represented,
respectively, as a union of nonmtersectmg sets as follows:

CGuG=Cu({CTnG) ' C=(CnC)u(CIn().
Thus, from (b) of Definition 7, -

and
P(C) = P(CinC)+ P(CTNG).

If the second of these equations is solved for P(C* n C,) and this result
substituted in the first equation, we obtain

PCUC)=PC)+ PC) =~ PCNG).

This completes. the proof.

Example 1. Let € denote the sample space of Example 2 of Section 1.1.
Let the probability set function assign a probability of 5; to each of the 36
points in €. If C, = {(1 1), (2, 1), (3 1), (4, 1), (5, I)}and G, ={(1,2), (2 2),
(3,2)}, then P(C)) = 3, P(C)) =3, P(C,u () =%, and P(C,n C,) =

Example 2. Two coins are to be tossed and the outcome is the ordered
pair (face on the first coin, face on the second coin). Thus the sample
space may be represented as ¢ = {(H, H), (H, T) (T, H), (T, T)}. Let the
probablllty set function assign a probability of § to each element of ¥. Let

= {(H, H), (H, T)} and C, = {(H, H), (T, H)} Then P(C,) = P(C;) =1,
P(C,mCz) =4, and, in accordance with Theorem 5, P(C, uCz)—

1 __ 3

it —i=%
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Let € denote a sample space and let C,, C,, Cj, . . . denote subsets
of . If these subsets are such that no two have an element in
common, they are called mutually disjoint sets and the corresponding
events C,, C,, Cy, . .. are said to be mutually exclusive events. Then,
for example, P(C,u C,uCyu--+)= P(C))+ P(C,))+ P(C5) + - - -,
in accordance with (b) of Definition 7. Moreover, if € =
C,uC,uCu---, the mutually exclusive events are further
characterized as being exhaustive and the probability of their union is
obviously equal to 1.

Let € be partitioned into k mutually disjoint subsets C,, C;, . . ., C;
in such a way that the union of these k¥ mutually disjoint subsets is
the sample space ¢. Thus the events C,, C,, ..., C, are mutually
exclusive and exhaustive. Suppose that the random experiment is
of such a character that it is reasonable to assume that each of

the mutually exclusive and exhaustive events C;, i=1,2,...,k,
has the same probability. It is necessary, then, that P(C;) = 1/k,
i=1,2,...,k, and we often say that the events C,, C;, ..., C, are

equally likely. Let the event E be the union of r of these mutually
exclusive events, say

E=CuCu---u_C, r<k.
Then
P(E)=P(C.)+P(C2)+---+P(C,)=7:-.

Frequently, the integer & is called the total number of ways (for this
particular partition of ) in which the random experiment can
terminate and the integer r is called the number of ways that are
favorable to the event E. So, in this terminology, P(E) is equal to the
number of ways favorable to the event E divided by the total number
of ways in which the experiment can terminate. It should be
emphasized that in order to assign, in this manner, the probability r/k
to the event E, we must assume that each of the mutually exclusive and
exhaustive events C,, C,, ..., C, has the same probability 1/k. This
assumption of equally likely events then becomes a part of our
probability model. Obviously, if this assumption is not realistic in an
application, the probability of the event £ cannot be computed in this
way.
We next present an example that is illustrative of this model.

Example 3. Let a card be drawn at random from an ordinary deck of
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52 playing cards. The sample space € is the union of k = 52 outcomes, and it is
reasonable to assume that each of these outcomes has the same probability
%. Accordingly, if E, is the set of outcomes that are spades, P(E|) =8 =1
because there are r; = 13 spades in the deck; that is, § is the probability of
drawing a card that is a spade. If E, is the set of outcomes that are kings,
P(E,) = 4 = {; because there are r, = 4 kings in the deck; that is, & is the
probability of drawing a card that is a king. These computations are very easy
because there are no difficulties in the determination of the appropriate values
of r and k. However, instead of drawing only one card, suppose that five cards
are taken, at random and without replacement, from this deck. We can think
of each five-card hand as being an outcome in a sample space. It is reasonable
to assume that each of these outcomes has the same probability. Now
if E, is the set of outcomes in which each card of the hand is a spade,
P(E,)is equal to the number r, of all spade hands divided by the total number,
say k, of five-card hands. It is shown in many books on algebra that

_13_13! d k= 52_52!
A T T ={5) T sran
In general, if nis a positive integer and if x is a nonnegative integer with x < n,
then the binomial coefficient

n _ n! .
(x) T xt(n—x)

is equal to the number of combinations of n things taken x at a time. If x = 0,

0! = 1, so that ("

0) = |. Thus, in the special case involving E,, -

13) ‘
(5 _ 13a2ana0®) _

= ‘ — = 0.0005,
(52) (52)(51)(50)(49)(48)

P(E)) =
5

approximately. Next, let E, be the set of outcomes in which at least one card
is a spade. Then E% is the set of outcomes in which no card is a spade. There

are r§ = (359 ) such outcomes. Hence

39
5
P(E%) =—— and P(E)=1- P(E%).

(%)
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Now suppose that E, is the set of outcomes in which exactly three cards are
kings and exactly two cards are queens. We can select the three kings in

any one of (g) ways and the two queens in any one of (;) ways. By a well-

known counting principle, the number of outcomes in E; is r; = (g)(;) .

Thus P(E;) = (g)(;) / (552 ) . Finally, let E, be the set of outcomes in which

there are exactly two kings, two queens, and one jack. Then

(5)

because the numerator of this fraction is the number of outcomes in E,.

P(E,) =

Example 3 and the previous discussion allow us to see one way in
which we can define a probability set function, that is, a set function
that satisfies the requirements of Definition 7. Suppose that our space
% consists of k distinct points, which, for this discussion, we take to
be in a one-dimensional space. If the random experiment that ends in
one of those k points is such that it is reasonable to assume that these
points are equally likely, we could assign 1/k to each point and let, for
Ccé,
number of points in C

P(C) = &
=Y fx), where j(x)=%, xe¥.

xeC

For illustration, in the cast of a die, we could take
¢=1{1,2,3,4,5,6} and fix) =1, x€¥, if we believe the die to be
unbiased. Clearly, such a set function satisfies Definition 7.

The word unbiased in this illustration suggests the possibility that
all six points might not, in all such cases, be equally likely. As a matter
of fact, loaded dice do exist. In the case of a loaded die, some numbers
occur more frequently than others in a sequence of casts of that die.
For example, suppose that a die has been loaded so that the relative
frequencies of the numbers in € seem to stabilize proportional to the
number of spots that are on the up side. Thus we might assign
Ax) = x/21, x € ¥, and the corresponding

P(CO)= ) fx

xeC
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would satisfy Definition 7. For illustration, this means that if C =
{1, 2, 3}, then

) 1 2 3 6 2
P - — — — _=—=_‘
@)= 2 M) =g1+37+57=31=7

Whether this probability set function is realistic can only be checked
by performing the random experiment a large number of times.

EXERCISES

1.17. A positive integer from one to six is to be chosen by casting a die. Thus
the elements ¢ of the sample space € are 152, 3,4, 5,6. Let C, = {1, 2, 3, 4},
C, = {3.4, 5, 6}. If the probability set function P assigns a probability of
1'to each of the elements of €, compute P(C,). P(C,), P(C,n C,),-and
P(C| U Cz)

1.18." A random experiment ¢onsists of drawing a card from an ordinary deck
of 52 playing cards. Let the probability set function P assign a probability
of 3; to each of the 52 possible outcomes. Let C, denote the collection of
the 13 hearts and let C, denote the collection of the 4 kings. Compute P(C,),
P(C,), P(C,nC,), and P(C,u C,).

1.19. A coinis to be tossed as many times as necessary to turn up one head.
Thus the elements ¢ of the sample space € are H, TH, TTH, TTTH, and
so forth. Let the probability set function P assign to these elements the
respective probabilities 3, §, §, 17, and so forth. Show that P(¥) = 1. Let
Ci={c:cis H, TH, TTH, TTTH, or TTTTH}. Compute P(C,). Let
C;={c:cis TTTTH or TTTTTH}. Compute P(C;), P(C,n (), and
P(C,u ().

1.20. If the sample space is ¢ = C, u C,and if P(C,) = 0.8 and P(C,) = 0.5,
find P(C, n C,).

1.21. Let the sample spacebe € = {¢:0 < ¢ < w}. Let C < € be defined by
C=/{c:4 <c¢ < oo}andtake P(C) = L_e"‘dx. Evaluate P(C), P(C*), and
P(Cu CH).

1.22. If the sample spaceis € = {c: —o0 < ¢ < o} andif C = € is a set for
which the integral f_e~' dx exists, show that this set function is not a
probability set function. What constant do we multiply the integral by to
make it a probability set function? -

1.23. If C, and C, are subsets of the sample space €, show that
P(Ci\nCy) < P(C)) < P(CyuCy) < PC) + P(Cy).
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1.24. Let C,, C;, and C, be three mutually disjoint subsets of the sample space

1.25. If C,, C,, and C; are subsets of &, show that
P(C,u C,u Cy) = P(C)) + P(Cy)) + P(C;) = P(C, N Cy)
—P(C,nC) — P(C,nCy) + P(C,nCy 1 Cy).

What is the generalization of"this result to four or more subsets of ¢?
Hint: Write P(C, u C,u C;) = P[C, u (C,u ()] and use Theorem 5.

Remark. In order to solve a number of exercises, like 1.26-1.31, certain
reasonable assumptioris must be made ‘

1.26. A bowl contams 16 chips, of whlch 6arered, 7 are whlte and 3 are blue.
If four chips are taken at random and without replacement, find the
probability that: (a) each of the 4 chips is red; (b) none of the 4 chips is red;
(c) there is at least 1 chip of each color. .

1.27. A person has purchased 10 of 1000 tickets sold in a certain raffie. To
determine the five prize winners, 5 tickets are to be drawn at random and
without replacement. Compute the probability that this person will win at
least one prize. .

Hint: First compute the probabnhty that the person does not win a prize.

1.28. Compute the probability of being: dealt at random and without
replacement a 13-card bridge hand consisting of: (a) 6 spades, 4 hearts, 2
diamonds, and 1 club; (b) 13 cards of the same suit.

1.29. Three distinct integers are chosen at random from the first 20-positive
integers. Compute the probability that: (a) their sum is even; (b) their
product is even.

1.30. There are 5 red chips and 3 blue chips in a bowl. The red chips are
numbered 1, 2, 3, 4, 5, respectively, and the blue chips are numbered 1, 2,
3, respectively. If 2 chips are to be drawn at random and without
replacement, find the probability that these chips have either the same
number or the same color.

1.31. In alot of 50 light bulbs, there are 2 bad bulbs. An inspector examines
5 bulbs, which are selected at random and without replacement.
(a) Find the probability of at least 1 defective bulb among the 5.
(b) How many bulbs should he examine so that the probability of ﬁndmg
at least 1 bad bulb exceeds 1 ?

1.4 Condit‘onal Probability and Independence

In some random experiments, we are interested only in those
outcomes that are elements of a subset C, of the sample space €. This
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means, for our purposes, that the sample space is effectively the subset
C,. We are now confronted with the problem of defining a probability
set function with C, as the ‘“‘new” sample space.

Let the probability set function P(C) be defined on the sample space
% and let C, be a subset of ¢ such that P(C,) > 0. We agree to consider
only those outcomes of the random experiment that are elements of C,;
in essence, then, we take C, to be a sample space. Let C, be another
subset of €. How, relative to the new sample space C,, do we want to
define the probability of the event C,? Once defined, this probability
is called the conditional probability of the event C,, relative to the
hypothesis of the event C,; or, more briefly, the conditional probability
of C,, given C,. Such a conditional probability is denoted by the symbol
P(G,|C 1). We now return to the question that was raised about the
definition of this symbol. Since C, is now the sample space, the only
elements of C, that concern us are those, if any, that are also elements
of C,, that is, the elements of C; n C,. It seems desirable, then, to define
the symbol P(C,|C,) in such a way that

P(C||C) =1 and P(C,|C)) = P(C) n G| C)).

Moreover, from a relative frequency point of view, it would seem
logically inconsistent if we did not require that the ratio of the
probabilities of the events C, n C, and C,, relative to the space C,, be
the same as the ratio of the probabilities of these events relative to the
space €, that is, we should have

PC,nGIC) _PCiNGy)
PCIC) ~ PC)

These three desirable conditions imply that the relation

P(C,n ()

P(C2|C|) = P(C )
|

is a suitable definition of the conditional probability of the event C,,
given the event C,, provided that P(C,) > 0. Moreover, we have

1. P(G,|C)) > 0.

2. P(C,uGu--|C) = P(C)C\) + P(G5|C}) + - - -, provided that
C,, C,, ... are mutually disjoint sets.

3. P(C\C)=1.
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Properties (1) and (3) are evident; proof of property (2) is left as an
exercise (1.32). But these are precisely the conditions that a probability
set function must satisfy. Accordingly, P(C,|C,) is"a probability set
function, defined for sibsets of C,. It may be called the conditional
probability set function, relative to the hypothesis C;; or the
conditional probability set function, given C,. It should be noted that
this conditional probability set function, given C,, is defined at this time
only when P(C,) > 0.

Example 1. A hand of 5 cards is to be dealt at random without
replacement from an ordinary deck of 52 playing cards. The conditional
probability of an all-spade hand (C,), relative to the hypothesis that there are
at least 4 spades in the hand (C)), is, since C,nC; = C;,

P(Cy) _ (153)/ (552)
)G
Y
(X))

From the definition of the conditional probability set function, we
observe that

P(G,|C)) =

P(C,n G) = P(C\)P(C,|C)).

This relation is frequently called the mulupltcauon rule for proba-
bilities. Sometimes, after considering the nature of the random
experiment, it is possible to make reasonable assumptions so that both
P(C,) and P(C,|C,)can beassigned. Then P(C, n C,)can be computed
under these assumptions. This will be illustrated in Examples'2 and 3.

Example 2. A bowl contains eight chips. Three of “the chips are red and
the remaining five are blue. Two chips are to be drawn successively, at random
and without replacement. We want to compute the probability that the first
draw results in a red chip (C,) and that the second draw results in a blue chip
(C,). It is reasonable to assign the following probabilities:

P(C)=} and PCIC) =2

Thus, under these assignments, we have P(C,n C)) = () =&
Example 3. From an ordinary deck of playing cards, cards are to be
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drawn successively, at random-and without replacement. The probability that
the third spade appears on the sixth draw is computed as follows. Let C, be
the event of two spades in the first five draws and let C, be the event of a spade
on the sixth draw. Thus the probability that we wish to compute is P(C, 1 C;).

PC)=—77——"— and PG)|C)=
52
5
The desired probability P(C, n 'C,) is then the product of these two numbers.
The multiplication rule can be extended to three or more events. In

the case of three events, we have, by using the multiplication rule for
two events,

P(C,nC;n Cy) = P[(C,n Cy)) N G)
= P(C,n G)P(G5|C,n ().
But P(C, n C,) = P(C,)P(G,|C,). Hence
P(C, A Gy Cy) = P(C)P(C,|C)P(C,|C, 1 Cy).

This procedure can be used to extend the multiplication rule to four
or more events. The general formula for &k evcnts can be proved by
mathematical induction. :

Example 4. Four cards are to be dealt successively, at random and with-
out replacement, from an ordinary deck of playing cards. The probability
of recelvmg a spade, a heart, a diamond, and a club, in that order, is
( D& )( & 3). This follows from the extension of the multlpllcatlon rule. In
thls computatlon the assumptlons that are mvolved seem clear.

Let the space € be partltloned into. k mutually exclusive and
exhaustive events C,, C,, ..., C; such that P(C)) > 0,i=1,2,...,k.
Here the events C,, C,, . . Ck do not need to be equally likely. Let C
be another event such that P(C) > 0. Thus C occurs with one and only
one of the events C,, Cz, ..., C,; that is,

C= Cm(C| UCzU R Ck)
=(CnCG)u(CnCG)u---u(Cn(C).
Since CnC, i=1,2,...,k, are mutually exclusive, we have

P(C)=P(CAC)+PCAGC,)+---+ PCC).
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However, P(Cn C) = P(C)P(C|C),i=1,2,...,k; so
P(C) = P(C))P(C|C\) + P(C;)P(C|Cy) + - - - + P(CP(C|C))

k
= ¥ P(C)P(CIC).
This result is sometimes called the law of total probability.
From the definition of conditional probability, we have, using the
law of total probability, that

P(CAC) . PC)P(CIC
i (P(r;)) (©PCIC)
Z P(C)P(C|C))

4 i= |

which is the well-known Bayes’ theorem. This permits us to calculate
the conditional probability of C;, given C, from the probabilities of
Ci,Cy, ..., C; and the conditional probabilities of C, given C;,
i=12,...,k

Example 5. Say it is known that bowl C, contains 3 red and 7 blue chips
and bowl C, contains 8 red and 2 blue chips. All chips are identical in size and
shape. A die is cast and bowl C, is selected if five or six spots show on the side
that is up; otherwise, bowl C, is selected. In a notation that is fairly obvious,
it seems reasonable to assign P(C,) =2 and P(C,) = %. The selected bowl is
handed to another person and one chip is taken at random. Say that this chip
is red, an event which we denote by C. By considering the contents of the
bowls, it is reasonable to assign the conditional probabilities P(C|C,) = % and
P(C|G,) = %. Thus the conditional probability of bowl C,, given that a red
chip is drawn, is

P(C\|C) =

P(CHP(C|CY)
P(C))P(C|C)) + P(C)P(C|C)
@G 3

SO+ 197
In a similar manner, we have P(C,|C) = 5.

In Example 5, the probabilities P(C) = zand P(C,) = 2 are called
prior probabilities of C, and C,, respectlvely, because they are known
to be due to the random mechanism used to select the bowls. After the
chip is taken and observed to be red, the conditional probabilities
P(C\|C) = % and P(C,|C) = & are called posterior probabilities. Since
C, has a larger proportion of red chips than does C;, it appeals to one’s
intuition that P(C,|C) should be larger than P(C,) and, of course,
P(C,|C) should be smaller than P(C,). That is, intuitively the
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chances of having bowl C, are better once that a red chip is observed
than before a chip is taken. Bayes’ theorem provides a method of
determining exactly what those probabilities are.

Example 6. Three plants, C,, C,, and C;, produce respectively, 10, 50, and
40 percent of a company’s output. Although plant C, is a small plant, its
manager believes in high quality and only 1 percent of its products are
defective. The other two, C, and C,, are worse and produce items that are 3
and 4 percent defective, respectively. All products are sent to a central
warehouse. One item is selected at random and observed to be defective, say
event C. The conditional probability that it comes from plant C, is found as
follows. It is natural to assign the respective prior probabilities of getting an
item from the plants as P(C,) = 0.1, P(C,) = 0.5, and P(C,) = 0.4, while the
conditional probabilities of defective are P(C|C,) = 0.01, P(C|C,) = 0.03, and
P(C|C;) = 0.04. Thus the posterior probability of C,, given a defective, is

P(CinC) (0.10)(0.01)
P(C)  (0.10)(0.01) + (0.50)(0.03) + (0.40)(0.04)°
which equals 35; this is much smaller than the prior probablhty P(C) =1

This is as it should be because the fact that the item is defective decreases
the chances that it comes from the high-quality plant C,.

P(C\|C) =

Sometlmes it happens that the occurrence of event C, does not
change the probability of event C,; that is, when P(C,) > 0,

P(C,|C)) = P(Cy).

In this case, we say that the events C, and Cz are independent. Moreover,
the multiplication rule becomes

P(C,n C;) = P(C)P(G|Cy) = P(C))P(C)).
This, in turn, implies, when P(C,) > 0, that

P(CinG;) _ P(C)P(Cy)
P(C;) PGy

P(C||Cz) = = P(CI)'

Remark. Events that are independent are sometimes called stattsucally
mdependent stochastically independent, or mdependent ina probabzhty sense.
In most instances, we use independént without a modifier if there is no
possibility of misunderstanding.

Itis ihteresping to note that C, and C; are independent if P(C,) =0
or P(C,) = 0 because then P(C,n C,) = 0 since (C,n C;) =« C, and
(C,n C;) « C,. Thus the left- and right-hand members of

P(C,n Gy) = P(C)P(C,)
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are both equal to zero and are, of course, equal to each other. Also,
if C, and C, are independent events, so are the tliree pairs: C, and C%,
Ct and C,, and C%t and C?% (see Exercise 1.41).

Example 7. A red die and a white die are cast in such a way that the
number of spots on the two sides that are up are independent events. If C,
represents a four on the red die and C, represents a three on the white die,
with an equally likely assumption for each side, we assign P(C;) =} and
P(C;) = 1. Thus, from independence, the probability of the ordered pair
(red = 4, white = 3) is

, ' P4,3)]=@®G) =%
ﬁe probability that the sum of the up spots of thé two dice equals séven is
PI(1. 6), 2. 5). (3. 4), (4,3), (5. 2).(6, 1)]
=@E+@E+E® + (%)(%),,-" @ +®C) =%

In a similar manner, it is easy to show that the pfobabiliﬁes of the sums of
2,3,4,56,7,8,9,10, 11, 12 are, respectively,

il 2 3 4 5 6 5 4 3 2 1

Suppose now that we have three events, C,, C,, and C,. We say
that they are mutually independent if and only if they are pairwise
independent: A

P(CinCy) =PC)P(Cy), PCinG)=PCHPC),
P(C,n G3) = P(Cy)P(C)

and
P(C,n Cy,n Cy) = P(C,)P(C,)P(Cy).

More generally, the n events C,, C,, . . ., C, are mutually independent
if and only if for every collection of k of these events, 2 < k < n, the
following is true: , ‘

Say thatd,, d,, . . . , d; are k distinct integers from 1, 2, . . . , n; then

In particular, if C,, G, .. ., C, are mutually independent, then
P(C,nCyn -+ 1 C,) = P(C)P(C) -+~ K(C,).
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Also, as with two sets, many combinations of these events and their
complements are independent, such as

Ct and (C,uC3uUC) are independent;

CGuC% C% and C,nC* are mutually independent.
If there is no possibility of misunderstanding, independent is often used
without the modifier mutually when considering more than two events.

We often perform a sequence of random experiments in such a way
that the events associated with one of them are independent of the
events associated with the others. For convenience, we refer to these
events as mdependent experiments, meaning that the respective events
are mdependent Thus we often refer to independent flips of a coin-or

independent casts of a die or—more generally—independent trials of
some given random experiment.

Example 8. A coin is flipped independently several times. Let the event C;
represent a head (H) on the ith toss; thus C* represents a tail (T). Assume that
C;and C* are equally likely; that is, P(C;) = P(C*) = 1. Thus the probability
of an ordered sequence like HHTH is, from independence, '

P(C,nC,n Cn C,) = P(C\)P(C)P(CHP(Cy) = (B = &.
Similarly, the probability of observing the first head on the third flip is
P(Ct A C3 A C;) = PICHP(CHP(Cs)= (3 =
Also, the probability of getting at least one head on four flips is
PCiluGCuCuC)=1—-P[(CiuC,uCuC)*

=1=-PCInC5nCinCY)
—1-@y =%

See Exercise 1.43 to justify this last probability.

EXERCISES

1.32. If P(C)) > 0and if C,, G, C,, . . . are mutually d|s30mt sets, show that
P(Cu Gu- - |GY) = P(G|C) + P(G|Cy) + - - :

1.33. Prove that
P(C,n C;n G0 Cy) = P(C)P(G|CHP(CC 0 G)P(CH|Cr 0 Cron G).

1.34. A bowl contains 8 chips. Three of the chips are red and 5 are blue. Four
chips are to be drawn successively at random and without replacement.
(a) Compute the probability that the colors alternate.
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(b) Compute the probability that the first blue chip appears on the third
draw.

1.35. A hand of 13 cards is to be dealt at random and without replacement
from an ordinary deck of playing cards. F ind the conditional probability
that there are at least three kings in the hand relative to the hypothesis that
the hand contains at least two kings.

1.36. A drawer contains eight pairs of socks. If six socks are taken at random
and without replacement, compute the probability that there is at Ieast one
matching pair among these six socks.

Hint: Compute the probability that there is not a matching pair.

1.37. A bowl contains 10 chips. Four of the chips are red, 5 are white, and
1 is blue. If 3 chips are taken at random and without replacement, compute
the conditional probadbility that there is’1 chip of each color relative to the
hypothesis that there is exactly 1 red chip among the 3.

1.38. BowlIcontains 3 red chips and 7.blue chips. Bowl 11 contains 6 red chips
and 4 blue chips. A bowl is selected at random and then | chip is drawn
from this bowl.

(a) Compute the probability that this chip is red.
(b) Relative to the hypothesis that the chip is red, find the conditional
probability that it is drawn from bowl II.

1.39. Bowl I contains 6 red chips and 4 blue chips. Five of these 10 chips are
selectéd at random and without replacement and put in bowl II, which was
originally empty. One chip is then drawn at random from bowl 11. Relative
to the hypothesis that this chipis blue, find the ¢onditional probability that
2 red chips and 3 blue chips are transferred from bowl I to bowl II.

1.40. A professor of statistics has two boxes of computer disks: box C,
contains seven Verbatim disks and three Control Data disks and box C,
contains two Verbatim disks and eight Control Data disks. She selects a box
at random with probabilities P(C,) =% and P(C,) = ; because of their
respective locations. A disk is then selected at random and the event C
occurs if it is from Control Data. Usmg an equally likely assumption for
each disk in the selected box, compute P(C,|C) and P(C,|O).

1.41. If C, and C, are independent events, show that the following pairs of
events are also independent: (a) C, and C%, (b) C% and C,, and (c) C¥ and
C*

Hint:In (a), write P(C,n C%) = P(C,)P(C |C)) = P(C))[1 — P(C;|C.)]
From independence of C, and C,, P(C,|C)) = P(C,).

1.42. Let C, and C, be independent events with P(C|) = 0.6 and"P(Cz) =0.3.
Compute (a) P(C, n G,); (b) P(C,u G,); (c) P(C,u (C%). '
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1.43. Generalize Exercise 1.4 to obtain
CuGu - uC)IF=Crn0n - -NnCE

- Say that C,,C,,...,C, aré independent events that have respective
" probabilities p,, p,. . . -+ Px. Argue that the probability of at least one of
C,Cy ., C, is equal to

= =p)(L=p)- (1 =p)

1.44, Each of four persons fires one shot at a target. Let C, denote the event
that the target is hit by person &, k=1,2,3,4. If C,,C;, G, C, are
independent and if P(C,) = P(C,;) = 0.7, P(C,;) =09, and P(C,) = 0.4,
compute the _pfobability that (a) all of them hit the target; (b) exactly one
hits the target; (c) no one hits the target; (d) at least one hits the target.

1.45. A bowl contains three red (R) balls and seven white (W) balls of exactly
the same size and shape. Select balls successively at random and with
replacement so that the events of white on the first trial, white on the second,
and so on, can be assumed to be independent. In four trials, make certain
assumptions and compute: the ‘probabilities of the following ordered
sequences: (a) WWRW; (b) RWWW: (¢c) WWWR; and (d) WRWW.
(e) Compute the probability of exactly.one red ball in the four trials.

1.46. A coin is tossed two independent times, each resulting in a tail (T) or
a head (H). The sample space consists of four ordered pairs: TT. TH, HT,
HH. Making certain assumptions, compute the probability of each of these’
ordered pairs. What is the probability of at least one head?

1.5 Random Variables of the Discrete Type

The reader will perceive that a sample space ¥ may be tedious to
describe if the elements of % are not numbers. We shall now discuss
how we may formulate a rule, or a set of rules, by which the elements
c of € may be represented by numbers. We begin the discussion with
a very simple example. Let the random experlment be the toss of a coin
and let the sample space associated  with the experiment be
% = {c:where cis Tor cis H} and T and H represent, respectlvely,
tails and heads. Let X be a function such that X(c) =0if c is T and
let X(¢) = 1if cis H. Thus X is a real-valued function defined on' the
sample space ¢ which takes us from the sample space % to a space of
real numbers & = {0, |}. We call X a random variable and, in this
example, the space associated with X' is & = {0, 1}. We now formulate
the definition of a random variable and its space.

Definition 8. Consider a random experiment with a sample
space €. A function X, which assigns to each element ¢ € € one and
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only one real number X(c¢) = x, is called a random variable. The space
of X is the set of real numbers & = {x: x = X(c), ce ¢}.

It may be that the set € has elements which are themselves
real numbers. In such an instance we could write X(c) = ¢ so that
A =F.

Let X be a random variable that is defined on a sample space €,
and let of be the space of X. Further, let 4 be a subset of &/. Just as
we used the terminology “the event C,” with C < ¢, we shall now
speak of “the event A.”” The probability P(C) of the event.C has been
defined. We wish now to define the probability of the event 4. This
probability will be denoted by Pr (X € A), where Pr is an abbreviation
for “the probability that.” With A4 a subset of .7, let C be that subset
of € such that C = {c : c € ¥ and X(c) € A}. Thus C has as its elements
all outcomes in € for which the random variable X has a value that
isin A. This prompts us to define, as we now do, Pr (X € A4) to be equal
to P(C), where C = {c:ce¥ and X(c) e A}. Thus Pr (X e A4) is an
assignment of probability to a set 4, which is a subset of the space &/
associated with the random variable X. This assignment is determined
by the probability set function-P and the random variable X and is
sometimes denoted by Py(A). That is,

Pr (X € 4) = Py(d4) = P(C),

where C = {c:ce ¥ and X(c) € A}. Thus a random variable X is a
function that carries the probability from a sample space € to a space
& of real numbers. In this sense, with A c &, the probability Py(A)
is often called an induced probability.

Remark. In a more advanced course, it would be noted that the random
variable X is a Borel measurable function. This is needed to assure that we
can find the induced probabilities on the sigma field of the subsets of /. We
need this requirement throughout this book for every function that 1s a
random variable, but no further mention of it is made.

The function Py(A) satisfies the conditions (a), (b), and (c) of the
definition of a probability set function (Section 1.3). That is, Py(A4) is
also a probability set function. Conditions (a) and (c) are easily verified
by observing, for an appropriate C, that 4

Py(4) = P(C) > 0,
and that € = {c: c € ¥ and X(c) € &} requires
P(f) = P(€) = 1.
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In discussing the condition (b), let us restrict our attention to the two
mutually exclusive events 4, and 4,. Here P,(A4, v 4,) = P(C), where
C={c:ce¥ and X(c) € 4, L 4,}. However,

C={c:ce%and X(c)e 4,} u{c:ce¥ and X(c) € 4,)},

or, for brevity, C = C, u C,. But C, and C, are disjoint sets. This must
be so, for if some ¢ were common, say c;, then X(c;) € 4, and X(c)) € A4,.
That is, the same number X(c;) belongs to both 4, and 4,. This is a
contradiction because 4, and A4, are disjoint sets. Accordingly,

P(C) = P(C)) + P(C),).
However, by definition, P(C)) is Py(A,) and P(C,) is Pyx(A4,) and thus
Py(A, v A,) = Py(A,) + Py(4,).

This is condition (b) for two disjoint sets.

Thus each of P,(4) and P(C) is a probability set function. But the
reader should fully recognize that the probability set function P is
defined for subsets C of ¥, whereas Py is defined for subsets 4 of </,
and, in general, they are not the same'set function. Nevertheless, they
are closely related and some authors even drop the index X and write
P(A) for Py(A). They think it is quite clear that P(4) means the
probability of 4, a subset of .o/, and P(C) means the probability of C,
a subset of ¢. From this point on, we shall adopt this convention and
simply write P(A4).

Perhaps an additional example will be helpful. Let a coin be
tossed two independent times and let our interest be in the number
of heads to be observed. Thus the sample space is € = {c: where ¢ is
TT or TH or HT or HH}. Let X(c) = 0 if c is TT; let X(c) = 1 if ¢
is either TH or HT; and let X(c) = 2 if ¢ is HH. Thus the space of
the random variable X is o = {0, 1, 2}. Consider the subset 4 of the
space o/, where 4 = {1}. How is the probability of the event 4
defined? We take the subset C of € to have as its elements all
outcomes in % for which the random variable X has a value that is an
element of A. Because X(c) =1 if ¢ is either TH or HT, then
C = {c: where cis TH or HT}. Thus P(4) = Pr (X € 4) = P(C). Since

= {1}, then P(4) = Pr(X e A) can be written more simply as
Pr(X— 1). Let CI ={c:cisTT},C, = {c:cisTH},C; = {c: cisHT},
and C, = {c: c is HH} denote subsets of . From independence and
equally likely assumptions (see Exercise 1.46), our probability set
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function P(C) assigns a probability of ; to each of the sets C,,
i=1,2,3,4. Then P(C\) =3, P(C,uC;) =3+ ;=3 and P(C,) =3.
Let us now point out how much simpler it is to couch these statements
in a language that involves the random variable X. Because X is the

number of heads to be observed in tossing a coin two times, we have
Pr(X=0)=y4, since P(C) = 3;
1 since P(C, U C3) = 3;
and
Pr(X=2) =,  since P(C,) =1.
This may be further condensed in the following table:
x ‘ 0 1 2
Pr(X=x)| L 4 1}

This table depicts the distribution of probability over the elements
of &/, the space of the random variable X. This can be written more

simply as
2
PrX=x)= (i)(%) , xed.

Example 1. Consider a sequence of independent flips of a coin, each
resulting in a head (H) or a tail (T). Moreover, on each flip, we assume that
H and T are equally likely, that is, P(H) = P(T) = J. The sample space 4
consists of sequences like TTHTHHT - - - . Let the random variable X equal
the number of flips needed to obtain the first head. For this given sequence,
X = 3.Clearly, thespaceof Xis of = {1,2,3,4,...}. Weseethat X = | when
the sequence begins with an H and thus Pr (X = 1) = ;. Likewise, X = 2 when
the sequence begins with TH, which has probability Pr (X = 2) = })(3) =}
from the independence. More generally, if X = x, where x=1,2,3,4, ...,
there must be a string of x — 1 tails followed by a head, that is, TT - - - TH,
where there are x — 1 tails in TT - - - T. Thus, from independence, we have

x-1 x
reor=n= (3 (3)-(2). s-raae

Let us make some observations about these three illustrations of
a random variable. In each case the number of points in the space .o/
was finite, as with {0,1} and {0, 1,2}, or countable, as with
{1,2,3,...}. There was a function, say fix)=Pr(X =x), that
described how the probability is distributed over the space /. In each
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of these illustrations, there is a simple formula (although: that is not
necessary in general) for that function, namely:

f(X) = ‘is X € {Os 1}9

w=()E).  rewr

f(x)=(%)x, xe{l,2,3,...}

and

Moreover, the sum of f(x) over all x € of equals 1:

5044
HEORRE
z (5) =i+(%) *

Finally, if A = &/, we can compute the probability of X' e 4 by the

summation
Pr(Xed) = Z A%).

For illustrations, using the random vanable of Example 1,

3 X
e 41

x=1

. 3 5

1 _2

-1 3

We have special names for this type of random variable X and for a
function f{x) like that in each of these three illustrations, which we
now give.

Let X denote a random variable with a one-dxmensxonal space /.
Suppose that ¢ consists of a countable number of points; that is, o/
contains a finite number of points or the points of .o/ can be put into
a one-to-one correspondence with the positive integers. Such a space

and
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& is called a discrete set of points. Let a function f{x) be such that
fix) >0, xe o, and
Z fix)=1.

Whenever a probability set functlon P(A), A < o, can be expressed
in terms of such an f{x) by

P(A) =Pr(Xe 4) = Z fx),

then X is called a randam variable of the discrete type and f(x) is called
the probablluy density function of X. Hereafter the probability density
funcuon is abbreviated p.d.f.

Our notation can be simplified somewhat so that we do not need
to spell out the space in each instance. For illustration, let the random
variable be the number of flips necessary to obtain the first head. We
now extend the definition of the p.d.f. from on & = {1, 2, 3 ..} to
all the real numbers by writing

f(x) =(E)x, x= 1,2,3,.

=0  elsewhere.

From such a function, we see that the space & is clearly the set of
positive integers which is a discrete set of points. Thus the
corresponding random variable is one of the discrete type.

Example 2. A lot, consisting of 100 fuses, is inspected by the following
procedure. Five of these fuses are chosen at random and tested; if all 5 “blow”
at the correct amperage, the lot is accepted. If, in fact, there are 20 defective
fuses in the lot, the probability of accepting the lot is, under appropriate

assumptions,
IS5 %0
5
— =0.32,

(¥)

approximately. More generally, let the random variable X be the number of
defective fuses among the 5 that are inspected. The p.d.f. of X is given by

20 80
x \S5—x
fxX)=PrX=x)=——"7"—7", x=0,1,2734,5,
(%)
5

=0 elsewhere.
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Clearly, the space of X is o = {0, 1, 2, 3, 4, 5}. Thus this is an example of
a random variable of the discrete type whose distribution is an illustration of
a hypergeometric distribution.

Let the random variable X have the probability set function P(A4),
where A4 is a one-dimensional set. Take x to be a real number
and consider the set 4 which is an unbounded set from — oo to x,
including the point x itself. For all such sets 4 we have
P(A) =Pr(Xe A) =Pr(X < x). This probability depends on the
point x; that is, this probability is a function of the point x. This point
function is denoted by the symbol F(x) = Pr (X < x). The function
F(x) is called the distribution function (sometimes, cumulative
distribution  function) of the random variable X. Since
F(x) = Pr (X < x), then, with f(x) the p.d.f., we have

Fx)= Y fw), .

wsx

for the discrete type.

Example 3. Let the random variable X of the discrete type have the p.d.f.
Sflx) = x/6, x =1, 2, 3, zero elsewhere. The distribution function of X is

Ax)=0, x<l,

=1, 1 <x<?2,
=3, 2<x<3
=1, 3<x

Here, as depicted in Figure 1.3, F(x) is a step function that is constant in every
interval not containing 1, 2, or 3, but has steps of heights 1, 2, and 3, which
are the probabilities at those respective points. It is also seen that F(x) is
everywhere continuous from the right. The p.d.f. of X is displayed as a bar

F(x)
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FIGURE 1.3
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o
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1 2 3
FIGURE 1.4

graph in Figure 1.4. We see that f(x) represents the probability at each x
while F(x) cumulates all the probability of points that are less than or equal
to x. Thus we can compute a probability like

CPr(l5<X<45=F45-F15=1-}1=3
or as ‘
Pr(l.5<X<45=f2Q) +fB)=2+i=35 -

While the properties of a distribution function F(x) = Pr (X < x)are
discussed in more detail in Section 1.7, we can make a few observatlons
now since F(x) is a probability. ‘ ~

1.0<Fx)< 1. :

2. F(x) is a nondecreasing function as it cumulates probablllty as x
increases.

3. F(y) = 0 for every pomt y that is less than the smallest value in the
space of X.

4. F(z) =1 for every point z that is greater than the largest value in
the space of X.

5. If X is a randomvariable of the discrete type, then F{(x).is a step
function and the height of the step at x in the space of X'is equal
to the probability f(x) =Pr(X = x).

EXERCISES

1.47. Let a card be selected from an ordinary deck of playing cards. The
outcome c is one of these 52 cards. Let X(¢) = 4 if ¢ is an ace, let X(¢) =3
if ¢ is a king, let X(c) =2 if ¢ is a queen, let X(c¢) = 1 if c is a jack, and
let X(c) =0 otherwise. Suppose that P assigns a probability of 3; to
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each outcome c¢. Describe the induced probability Py(A) on the space
o ={0,1, 2, 3, 4} of the random variable X.

1.48. For each of the following, find the constant ¢ so that f{x) satisfies the
condition of being a p.d.f. of one random variable X.
@) fxX)=c}),x=1,2,3,..., zero elsewhere.
(b) fix)=cx, x=1,2,3,4,5, 6, zero elsewhere.

1.49. Let fix) = x/15, x=1,2,3,4,5, zero elsewhere, be the p.d.f. of X.
FindPr(X=10r2),Pr(<X<3),and Pr(l < X <2).

1.50. Let fix) be the p.d.f. of a random variable X. Find the distribution
function F(x) of X and sketch its graph along with that of f{(x) if:
(a) fix)=1, x =0, zero elsewhere.
(b) fix) =1, x=—1,0, 1, zero elsewhere.
(©) fix)=x/15,x=1,2,3,4,5, zero elsewhere.

1.51. Let us select five cards at random and without replacement from an
ordinary deck of playing cards.
(a) Find the p.d.f. of X, the number of hearts in the five cards.
(b) Determine Pr (X < 1).

1.52. Let X equal the number of heads in four independent flips of a coin.
Using certain assumptions, determine the p.d.f. of X and compute the
probability that X is equal to an odd number.

1.53. Let X have the p.d.f. fix)=x/5050, x=1,2,3,...,100, zero
elsewhere.
(a) Compute Pr (X < 50).
(b) Show that the distribution function of X is F(x) = [x]([x] + 1)/10100,
for 1 < x < 100, where [x] is the greatest integer in x.

1.54. Let a bowl contain 10 chips of the same size and shape. One and only
one of these chips is red. Continue to draw chips from the bowl, one at a
time and at random and without replacement, until the red chip is drawn.
(a) Find the p.d.f: of X, the number of trials needed to draw the red chip.
(b) Compute Pr (X < 4).

1.55. Cast a die a number of independent times until a six appears on the up
side of the die.
(a) Find the p.d.f. fix) of X, the number of casts needed to obtain that
first six.

(b) Show that 3 fix) = 1.
x=1

(c) Determine Pr(X =1,3,5,7,...).
(d) Find the distribution function F(x) = Pr (X < x).
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1.56. Cast a die two independent times and let X equal the absolute value of
the difference of the two resulting values (the numbers on the up sides). Find
the p.d.f. of X.

Hint: It is not necessary to find a formula for the p.d.f.

1.6 Random Variables of the Continuous Type

A random variable was defined in Section 1.5, and only those of the
discrete type were considered there. Let us begin the discussion of
random variables of the continuous type with an example.

Let a random experiment be a selection of a point that is interior
to a circle of radius 1 that has center at the origin of a two-dimensional
space. We call this space € and the area of this circle is . The random
selection is in such a way that the probability of being in a certain set
Cinterior to € is proportional to the area of C; in particular, if C < €,

P(C) =,areénof'C.

First we observe that P(¥) = 1. In addition, if C, is that subset of
% that is in the first quadrant P(C)) = (n/4)/n = ;. If C, is the interior
of a circle of radius ; such that C, < &, then P(Cz) = n@x)Yn = 5. Itis
mterestmg to note that the probablllty of a point, a line segment or
any curve in ¢ is equal to zero because those ar¢as would be zero. In
particular, if C; is the boundary of the set C, (that is, C; is the actual
circle of radiys 3), then P(C;) =

We define a random vanable X, associated with this random
experiment, as the distance of the selected point from the origin. The
space of X is o ={x:0<x<1}. Of course, for any xe€ .,
Pr (X = x) = 0, because X = x is the event that the random point falls
on a circle, symmetric with respect to the origin, of radius x and the
associated area equals zero. However, it does make sense to consider
the induced probability of the event X < x, namely the distribution
function of X. If x € .7, then

area of a certain circle of radius x
n

Fx)=Pr(X<x)=

2
nX
=T=x2, 0<x<l.
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Clearly, if x < 0, then F(x) 0 and if x > 1, then F(x) = 1. Thus we
can write

F(x)=0, x <0,
= x?, 0<x<l,
=1, 1 <x

Recall, in the discrete case, we had a function f that was associated
with F through the equation :

F)= Y fw.

wgXx

Either F or f could be used to compute probabilities like
Pra<X<b)=Fb)—Fa)= T fw),

wed

where 4 = {Ww: a < w < b}. We have observed, in this continuous case,
that Pr (X = x) = 0, so a summation of such probabilities is no longer
appropriate. However, it is easy to find an integral that relates Fto f
through

Hx) = J S(w) dw.

wSx.

Since o = {x:0<x < 1}, this can-be written as
Fx)=x*= '[ fwydw, xed.
[

By one form of the fundamental theorem of calculus, we know that the
derivative of the right-hand member of this equation is f{x). Thus
taking derivatives of veaéh member of the equation, we obtain

2x = fix), 0<x<l1

Of course, at x = 0, this is only a rlght-hand derivative. We observe
that flx) > 0, xe </, and
|
J‘ 2x dx = 1.
0 o

Probabilitieé can now be computed. through

Pr (X € A) =J fw) dw.
A
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For illustration,
12

PrG3<X<?)) =J 2wdw = [wz]:;:
14

R - F) =i - =%
With the background of this example, we give the definition of a
random variable of the continuous type.

Let X denote a random variable with a one-dimensional space </,
which consists of an interval or a union of intervals. Let a function f{x)

be nonnegative such that

j S(x)dx=1.
o

Whenever a probabnllty set function P(4), A < «, can be expressed
in terms of such an f(x) by

P(A) =Pr (Xe A) = J f(x) dx

then X is said to be a random variable of the continuous type and f(x)
is called the probability density function (p.d.f.) of X.

Example 1. Let the random variable of the continuous type X equal the
distance in feet between bad records of a used computer tape. Say that the
space of X is & = {x:0 < x < c0}. Suppose that a reasonable probability
model for X is given by the p.d.f. ‘

: fx)=%e ™,  xes.
Here f(x) > 0 for x € &, and

J'mée"m dx = [_e-x/w]:’ =1
0

If we are interested in the probability that the distance between bad records
is greater than 40 feet, then 4 = {x:40 < x < o0} and

Pr(XeA)—J e~ dx = o~

40
The p.d.f. and the probability of interest are depicted in Figure 1.5.

If we restrict ourselves to random variables of either the discrete
type or the continuous type, we may work exclusively with the p.d.f.
f(x). This affords an enormous simplification, but it should be
recognized that this simplification is obtained at considerable cost from
a mathematical point of view. Not only shall we exclude from
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0.01

FIGURE 1.5

consideration many random variables that do not have these types of
distributions, but we shall also exclude many interesting subsets of the
space. In this book, however, we shall in general restrict ourselves to
these simple types of random variables.

Remarks. Let X denote the number of spots that show when a die is cast.
We can assume that X is a random variable with o/ ={1, 2, ..., 6} and with
a p.d.f. f{x)=%, x € o. Other assumptions can be made to provide different
mathematical models for this experiment. Experimental evidence can be used
to help one decide which model is the more realistic. Next, let X" denote the
point at which a balanced pointer comes to rest. If the circumference is
graduated 0 < x < 1, a reasonable mathematical model for this experiment is
to take X to be a random variable with o/ ={x: 0<x <1} and with a p.d.f.
J(x)=1,xe .

Both types of probability density functions can be used as distri-
butional models for many random variables found in real situations. For
illustrations consider the following. If X is the number of automobile acci-
dents during a given day, then f{0), f{1), f(2), . . . represent the probabilities
of 0, 1, 2, ... accidents. On the other hand, if X is length of life of a female
born in a certain community, the integral [area under the graph of f{x) that
lies above the x-axis and between the vertical lines x=40 and x=50]

50
J‘ fix) dx
40

represents the probability that she dies between 40 and 50 (or the percentage
of those females dying between 40 and 50). A particular f{x) will be suggested
later for each of these situations, but again experimental evidence must be used
to decide whether we have realistic models. R
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Our notation can be considerably simplified when we restrict
ourselves to random variables of the continuous or discrete types.
Suppose that the space of a continuous type of random variable X is
& = {x:0 < x < o0} and that the p.d.f. of X is e*, x € o/. We shall
in no manner alter the distribution of X [that is, alter any P(4), 4 = /]
if we extend the definition of the p.d.f. of X by writing

f(x)=‘e;’, O<x<oo,.
=0 elsewhere,
and then refer to f{x) as the p.d.f. of X. We have

@® ) 0 @
J f(x)dx=J~ de+J’ e *dx =1
— - 0

Thus we may treat the entire axis of reals as though it were the space
of X. Accordingly, we now replace

J fx)dx by J fix) dx.
o -

If fx) is the p:d.f. of a continuous type of random variable X and
if A is the set {x :a < x < b}, then P(4) = Pr (X € A) can be written
as

| | )
H@<X<M=jﬂﬂﬂ.

Moreover, if A = {a}, then

P(A)=Pr(XeA)=Pr(X=a)=rf(x)d}c=o,

since the integral {7 f{x) dx is defined in calculus to be zero. That is, if
X is a random variable of the continuous type, the probability of every
set consisting of a single point is zero. This fact enables us to write, say,

Pra<X<b)=Pra< X<b).

More important, this fact allows us to change the value of the p.d.f.
of a continuous type of random variable X at a single point without
altering the distribution of X. For instance, the p.d.f.

fix)=e€""%, 0<x<oo,

=0 elsewhere,
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can be written as
Six) =:ev“",i | 0<x< 00,
=0, elsewhere,

without changing any P(4). We observe that these two functions differ
only at x = 0 and Pr (X = 0) = 0. More generally, if two probability
density functions of random variables of the continuous type differ
only on a set having probability zero, the two corresponding
probability set functions are exactly the same. Unlike the continuous
type, the p.d.f. of a discrete type of random variable may not be
changed at any point, since a change in such a p.d.f. alters the
distribution of probability.

Example 2. Let the random variable X of the continuous type have
the p.d.f. fix) = 2/x’, 1 < x < o0, zero elsewhere. The distribution function
of X is

X

Ax) = 0dw=0, x<l,
—"zdw 1 - - 1<x
| W xz’ ’

The graph of this distribution function is depicted in Figure 1.6. Here F(x) is a
continuous function for all real numbers x;.in particular, F(x) is everywhere
continuous from the right. Moreover, the derivative of F(x) with respect to
x exists at all points except at x = 1. Thus the p.d.f. of X is defined by this
derivative except at x = 1. Since the set A = {1} is a set of probability measure
zero [that is, P(A) = 0], we are free to define the p.d.f. at x = | in any manner
we please. One way to do this is to write flx) =2/x%, 1 < x < o0, zero
elsewhere.

-FIGURE 1.6
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EXERCISES

1.57. Let a point be selected from the sample space ¥ = {c: 0 < ¢ < 10}. Let
C = & and let the probability set function be P(C) = | dz. Define the
random variable X to be X{(c) = 2. Find the distribution function and the
p.d.f. of X.

1.58. Let the probability set function P(A) of the random variable X be
P(A) =, f(x)dx, where f(x)=2x/9, xeo ={x:0<x<3}. Let
Ay ={x:0<x <1}, 4,={x:2 < x <3} Compute P(4,) = Pr[Xe A4,],
P(A;) =Pr(Xe A4,),and P(A,uAd,) =Pr(XeAd,uAd,).

1.59. Let the space of the random variable X be & = {x:0<x < 1}. If
A ={x:0<x<i)and 4, = {x:§ < x < 1}, find P(4,) if P(4)) =3.
1.60. Let the space of the random variable X be & = {x:0 < x < 10} and
let P(A,)) =3, where A4, = {x:1 <x <5}. Show that P(4,) <3}, where

Ay ={x:5<x<10}. ;

1.61. Let the subsets 4, ={x:;<x<3} and A,={x:J<x< 1} of the
space of = {x 0 < x < 1} of the random variable X be such that P(A )=14
and P(A,)=§: Find P(A, U 4,), P(A?), and P(A* A A?).

1.62. Given L [1/n(1 + x?)] dx, where A < of = {x:—om<x< oo} Show
that the integral could serve as a probability set function of a random
variable X whose space is o

1.63. Let the probability set function of the random variable X be
‘P(‘A)‘:“Jﬁ e~ *dx, where o7 = {x:0 < x < 0}.
A b . R

Let A,={x:2—-lk<x<3}, k=12.3..... Find lim 4, and

k— o0
Pl lim A, -
k-0

Find P(A,) and lim P(A,). Note that lim P(A4,) = P (lim A,,) :
o ¢ -kvan k —a0 k—an
1.64. For each of the following probability density functions of X, compute
Pr(|X| < 1) and Pr (X? <9).
(@) flx) = x*/18. —3 < x < 3,:zero elsewhere,
(b) fix) =(x+ 2)/18, —2 < x < 4, zero elsewhere.

1.65. Let f(x)=1/x), 1 <x < o0, zero elsewhere, be the p.d.f. of X.
If A;={x:1<x<2} and 4, ={x:4<x <5}, find P(4, U A4,) and
P(A,n A,). » .

1.66. A mode of a distribution of one random variable -X is a value of x that
maximizes the p.d.f. f(x). For X of the continuous type. f(x) must be
continuous. If there is-only one such x, it is called the mode of the
distribution. Find the mode of each of the following distributions:

@) fixy=(R),x=1,2,3,..., zero elsewhere.
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(b) fix) =12x(1 — x), 0 < x < 1, zero elsewhere.
(c) fix) =(@)x%* 0 < x < oo, zero elsewhere.

1.67. A median of a distribution of one random variable X of the
discrete or continuous type is a value of x such that Pr(X < x) <}
and Pr(X <x)>31 If there is only one such x, it is called the
median of the distribution. Find the median of each of the following
distributions:

4' 1 x 3 4-—x
(a) fix) = @ — ) (Z) (Z) , x=0,1,2, 3, 4, zero elsewhere.
(b) fix) =3x%0<x< 1, zero elsewhere.

(c) f(x)=;t'il—_lr?j, —0 <X <.

Hint: In parts (b) and (c), Pr(X < x) =Pr (X < x) and thus that
common value must equal 5 if x is to be the median of the distribution.

1.68. Let 0 <p< 1. A (100p)th percentile (quantile of order p) of the
distribution of a random variable X is a value £, such that Pr (X < ¢{,) <p
and Pr (X < §,) > p. Find the twentieth percentile of the distribution that
has p.d.f. fix) =4x% 0 < x < 1, zero elsewhere.

Hint: With a continuous-type random variable X, PriX< &)=
Pr (X < £,) and hence that common value must equal p.

1.69. Find the distribution function F(x) associated with each of the follow-
ing probability density functions. Sketch the graphs of f(x) and F(x).
(@) f(x) = 3(1 — x)’, 0 < x < 1, zero elsewhere.

(b) f(x) = 1/x%, 1 < x < o0, zero elsewhere.
(©) fix)=1,0<x <1o0r2 < x <4, zero elsewhere.
- Also find the median and 25th percentile of each of these distributions.

1.70. Consider the distribution function F(x) =1 — e ™ — x¢™*,0 < x < o0,
zero elsewhere. Find the p.d.f., the mode, and the median (by numerical
methods) of this distribution.

1.7 Properties of the Distribution Function

In Section 1.5 we defined the distribution function of a
random variable X as F(x) = Pr(X < x). This concept was used
in Section 1.6 to find the probability distribution of a random
variable of the continuous type. So, in terms of the p.d.f. f(x), we know
that

Fx)= ) fiw),

wEx
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for the discrete type of random variable, and
P = J fw) dw,

for the continuous type of random variable. We speak of a distribution
function F(x) as being of the continuous or discrete type, depending
on whether the random variable is of the continuous or discrete type.

Remark. If X is a random variable of the continuous type, the p.d.f. f(x)
has at most a finite number of discontinuities in every finite interval. This
means (1) that the distribution function F(x) is everywhere continuous and (2)
that the derivative of F(x) with respect to x exists and is equal to f(x) at each
point of continuity of f(x). That is, F'(x) = f{x) at each point of continuity
of f(x). If the random variable X is of the discrete type, most surely the p.d.f.
f(x) is not the derivative of F(x) with.respect to x (that is, with respect to
Lebesgue measure); but f(x) is the (Radon—-Nikodym) derivative of F{x) with
respect to a counting measure. A derivative is often called a density.
Accordingly, we call these derivatives probability density functions.

There are several properties of a distribution function F(x) that can
be listed as a consequence of the properties of the probability set
function. Some of these are the following. In listing these properties,
we shall not restrict X to be a random variable of the discrete or
continuous type. We shall use the symbols F(c0) and F{— 00) to mean
lim F(x) and lim F(x), respectively. In like manner, the symbols

{x:x < o0} and {x : x < — 0} represent, respectively, the limits of the
sets {x:x < b} and {x:x < —b} as b— 0.
1. 0<F(x) <1because 0 <Pr(X <x)< 1.
2. F(x) is a nondecreasing function of x. For, if x’ < x”, then
{x:x<x}={x:x<x}u{x:x <x<x"}
and
Pr(X<x")=Pr(X<x)+Pr(x <X<x").
That is,
Fx)— FAx)=Pr(x < X<x")20.

3. o) =1 and F(— o) = 0 because the set {x: x < o0} is the
entire one-dimensional space and the set {x : x < — oo} is'the null set.
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From the proof of property 2, it is observed that, if a < b, then
Pr(a < X < b) = F(b) — K a).

Suppose that we want .to use F(x) to compute the probability
Pr (X = b). To do this, consider, with A > 0,

lim Pr (b h < X < b) = lim [F() - Fib — B

h-0

Intuitively, it ‘Seems"“that'lhm(} Pr(b—h<X< b) should exist and be

equal to Pr (X = b) because, as h tends to zero, the limit of the set
{x:b — h < x < b} is the set that contains the single point x = b. The
fact that this limit is Pr (X = b) is a theorem that we accept without
proof. Aocordmgly, we have - :

Pr (X =b) = Fb) — Fb—),

where F(b—) is the left-hand limit of F(x) at x = b. That is, the
probability that X = b is the height of the step that F(x) has at x = b,
Hence, if the dlstnbutnon function F(x) is continuous at x = b, then
Pr(X=0)=

There is a fdurth'property of F(x) that is now listed.

4. F(x) is continuous from the right, that is, right-continuous.

To prove this property, consider, with-h > 0,

llmPr(a<X$a+h) —hm[F(a+h)—F(a)]

h-0
We accept without proqf a theorem which states, w;;h h > 0, that
%in‘}Pr(a<X$a+h)=P(g)=

Here also, the theorem is intuitively appealing because, as h tends to
zero, the limit of the set {x a < x < a + h}isthe null set. Accordingly,
we write :

0 = Fla+) — F(a),

where F(a+) is the right-hand limit of F(x) at x = a. Hence F(x) is
conttnuous from the right at every point x = a.

Remark. In the arguments concerning several of these properties, we
appeal to the reader’s intuition. However, most of these properties can be

proved in formal ways using the definition of lim A,, given in Exercises 1.7
k— o0
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and 1.8, and the fact that the probability set function P is countably additive;
that is, P enjoys (b) of Definition 7.

The preceding discussion may be summarized in the following
manner: A distribution function F(x) is a nondecreasing function of x,
which is everywhere continuous from the right and has F(— o) =0,
F(0) = 1. The probability Pr (a < X < b) is equal to the difference
F(b) — F(a). If x is a discontinuity point of F(x), then the probability
Pr (X = x) is equal to the jump which the distribution function has at
the point x. If x is a continuity point of F(x), then Pr(X =x) =0.

Remark. The definition of the distribution function makes it clear that the
probability set function P determines the distribution function F. It is true,
although not so obvious, that a probability set function P can be found from
a distribution function F. That is, P and F give the same information about
the distribution of probability, and which function is used is a matter of
convenience. a ‘

Often, probability models can be constructed that make reason-
able assumptions about the probability set function and thus the
distribution function. For a simpleillustration, consider an experiment
in which one chooses at random a point from the closed interval [a, 5],
a < b, that is on the real line. Thus the sample space € is [a, b]. Let the
random variable X be the identity function defined on €. Thus the
space & of X is & = €. Suppose that it is reasonable to assume, from
the nature of the experiment, that if an interval A is a subset of .=, the
probability of the event A4 is proportional to the length of 4. Hence,
if 4 is the interval [a, x], x < b, then

P(A)=Pr(Xed)=Pr(a< X< x)=c(x—a),

where c is the constant of proportionality.
In the expression above, if we take x = b, we have

Il=Pr(@a< X<b)=cb—a),

so ¢ = 1/(b — a). Thus we will havé’an appropriate probability model
if we take the distribution function of X, F(x) = Pr (X < x), to be
F(x) =0, x <a,

x—a
b—a’

=1, b<x

a<x<hb,
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[

FIGURE 17

Accordingly, the p.d.f. of X, f(x) = F(x), may be written

) =5,

=0

a<x<hb,

elsewhere.

The derivative of F(x) does not exist at x = g nor at x = b; but the set
{x : x = a, b}is a set of probability measure zero, and we elect to define
J(x) to be equal to 1/(b — a) at those two points, just as a matter of
convenience. We observe that this p.d.f.is a constant on /. If the p.d.f.
of one or more variables of the continuous type or of the discrete type
is a constant on the space o, we say that the probability is distributed
uniformly over /. Thus, in the example above, we say that X has a
uniform distribution over the interval [a, b].

We now give an illustrative example of a distribution that is neither

of the discrete nor continuous type.

Example 1. Let a distribution function be given by

x <0,

Ax) =0,
_x+1
=" 0<x<l,
=1, 1 <x.

Then, for instance,

and

Pr(X=0)=FO0)— F0-)=}-0=

Pr(-3<X<l)=Al)—R-3)=1-0=1

!
3

The graph of F(x) is shown in Figure 1.7. We see that F(x) is not always
continuous, nor is it a step function. Accordingly, the corresponding
distribution is neither of the continuous type nor of the discrete type. It may

be described as a mixture of those types.
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Distributions that are mixtures of the continuous and discrete
types do, in fact, occur frequently in practice. For illustration, in life
testing, suppose we know that the length of life, say X, exceeds the
number b, but the exact value is unknown. This is called censoring. For
instance, this can happen when a subject in a cancer study simply
disappears; the investigator knows that the subject has lived a certain
number of months, but the exact length of life is unknown. Or it might
happen when an investigator does not have enough time in an
investigation to observe the moments of deaths of all the animals, say
rats, in some study. Censoring can also occur in the insurance industry;
in particular, consider a loss with a limited-pay policy in which the top
amount is exceeded but it is not known by how much.

Example 2. Reinsurance companies are concerned with large losses
because they might agree, for illustration, to cover losses due to wind damages
that are between $2,000,000 and $10,000,000. Say that X equals the size of a
wind loss in millions of dollars, and suppose that it has the distribution
function

F(x) =0, -0 <x<0,

k]
10
_1—(10+x), 0<x< 0.

If losses beyond $10,000,000 are reported only as 10, then the distribution
function of this censored distribution is

Fx) =0, —00 <x<0,
3
10
_1—(10+x), 0<x< 10,
=1, 10<x<oo,

which has a jump of [10/(10 + 10)P = ; at x = 10.

We shall now point out an important fact about a function of a
random variable. Let X denote a rdfidom variable with space <.
Consider the function Y = u(X) of the random variable X. Since X is
a function defined on a sample space €, then ¥ = #(X) is a composite
function defined on %. That is, ¥ = u(X) is itself a random variable
which has its own space & = {y:y =u(x),xe &} and its own
probability set function. If y € &, the event Y = u(X) < y occurs when,
and only when, theevent X € 4 = o occurs, where 4 = {x : u(x) < y}.
That is, the distribution function of Y is

G(y) =Pr (Y <y) = Pr{u(X) < y] = P(A).
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The following example illustrates a method of finding the distribution
function and the p.d.f. of a function of a random variable. This method
is called the distribution-function technique.

Example 3. Let f(x) = %, —1 < x < 1, zero elsewhere, be the p.d.f.r of
the random variable X. Define the random variable Y by Y =X 2, We
wish to find the p.d.f. of Y. If y > 0, the probability Pr (Y < y) is equivalent
to

Pr (X? sy)=Pr(»7\/;sXs\/;).

Accordingly, the distribution function of Y, G(y) = Pr (Y <y), is given
by :

G(y) =0, y <0,

'nﬁj yax=y, 0s<y<l,
-Jr

=1, 1<y

Since Y is a random variable of the continuous type, the p.d.f. of Y is
g(y) = G’(y) at all points of continuity of g(y). Thus we may write

1
g(y)=——, O<y<l,
2J;

=0 elsewhere.

Remarks. Many authors use fyand fy to denote the respective probability
density functions of the random variables X and Y. Here we use f and g
because we can avoid the use of subscripts. However, at other times, we will
use subscripts as in fy and f; or even f, and f,, depending upon the
circumstances. In a given example, we do not use the same symbol, without
‘subscripts, to represent different functions. That is, in Example 2, we do not
use f(x) and f(y) to represent different probability density functions.

In addition, while we ordinarily use the letter x in the description of
the p.d.f. of X, this is not necessary at all because it is unimportant which
letter we use in describing a function. For illustration, in Example 3, we
could say that the random variable Y has the p.d.f. g(w) = | ﬂﬁ,o <w<l,
zero elsewhere, and it would have exactly the same meaning as Y has the
p.d.f. g(y) = l/2\/}", 0 < y <1, zero elsewhere.

These remarks apply to other functions too, such as distribution functions.
In Example 3, we could have written the distribution function of Y, where
0<w<l,as :

Fy(w) =Pr(Y < w) = /w.
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EXERCISES

1.71. Given the distribution function
F(x)=0, x<—1,

x+2
4 +

—l<x<l,

=1, 1 <x.

Sketch the graph of F(x) and then compute: (a) Pr(—i<X<3); (b)
Pr(X=0); c) Pr(X=1); (d) Pr(2<X<)).

1.72. Let fix)=1, 0<x<1, zero elsewhere, b'e the p.d.f. of X. Find the
distribution function and the p.d.f. of Y=
Hint: Pr(Y<y)=Pr (/X <y)= Pr(x<y2) O<y<l

1.73. Let fix)=x/6, x=1, 2, 3, zero elsewhere, be the p.d.f. of X. Find the
distribution function and the p.d.f. of Y= X2
Hint: Note that X is a random variable of the discrete type.

1.74. Let fix)=(4—x)/16, —2 <x <2, zero elsewhere, be the p.d.f. of X.
(a) Sketch the distribution function and the p.d.f. of X on the same set of
axes.
(b) If Y=|X], compute Pr (¥ <1).
(¢} If Z=X?, compute Pr (Z<i).

1.75. Let X have the p.d.f. fix)=2x, 0<x<l zero elsewhere. Fmd the
distribution function and p.d.f. of Y= X2

1.76. Let X have the p.d.f. fix)=4x*, 0<x<1, zero elsewhere. Find the
distribution function and p.d.f. of ¥=—21n X*.

1.77. Explain why, with h>0, the two limits, lim Pr (b—h<X<b) and
lim F(b— h), exist. A0
h—=0

Hint:Note that Pr (b— h < X < b) is bounded below by zero and F(b— h)
is bounded above by both F{b) and 1.

1.78. Let F(x) be the distribution function of the random variable X. If m is
a number such that F(m)=}, show that m is a median of the distribution.

1.79. Let fix)=1, 51_,‘,<x<.2, zero elsewhere, be the p.d.f. of X. Find the
distribution function and the p.d.f. of Y =X2
Hint: Consider Pr (X2<y) for two cases: 0<y<1 and 1 <y<4.
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1.8 Expectation of a Random Variable

Let X be a random variable having a p.d.f. f(x) such that we have
certain absolute convergence; namely, in the discrete case,

Y x| f(x)  converges to a finite limit,

X

or, in the continuous case,

| r |x| f(x) dx converges to a finite limit.

The expectation of a random variable is
E(X) =) xf(x), in the discrete case,
X

or

E(X) = f x f(x) dx, in the continuous case.

Sometimes the expectaﬁon E(X)is called the mathematical expectation
of X or the expected value of X,

Remark., The terminology of expectation or expected value has its
origin in games of chance. This can be illustrated as follows: Four small similar
chips, numbered 1, 1, 1, and 2, respectively, are placed in a bowl and are mixed.
A player is blindfolded and is to draw a chip from the bowl. If she draws one
of the three chips numbered 1, she will receive one dollar. If she draws the chip
numbered 2, she will receive two dollars. It seems reasonable to assume that
the player has a *} claim” on the $1 and a *} claim™ on the $2. Her “total
claim”is (1)(3) + 2(}) = 3, thatis, $1.25. Thus the expectation of X is precisely
the player’s claim in this game.

Exam;;k 1. Let the random variable X of the discrete type have the p.d.f.
given by the table

x|l234

45 & 5 3

Here f(x) = 0 if x is not equal to one of the first four positive integers. This
illustrates the fact that there is no need to have a formula to describe a p.d.f.
We have

EXN = +2@H +3GE) +4H =8=23.
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Example 2. Let X have the p.d.f.
fix)y=4x, 0<x<],
=0 elsewhere.
Then
5 l
EX) = _[ x(4x3)dx—L 4t dx = [4§ =g.

Let us consider a function of a random variable X with space
of. Call ‘this function Y = u(X). For convenience, let X be of
the continuous type and y = u(x) be a continuous increasing function
of X with an inverse function x = w(y), which, of course, is
also increasing. So Y is a random variable and its distribution function
1s ‘

G(y)=Pr(Y <y)=PruX) <y]=Pr[X <w(y)l
w{y)
= Ax) dx,

—

where f{x) is the p.d.f. bf X. By one form of the fundamental theorem
of calculus,

gy) =G0 =lwNWw'(), e,
=0 elsewhere,
where S
B - {yiy= u(x), xe s}
By definition, given absolute convergence, the expected value of Y is

E(Y) r yg(y) dy.

Smce y= u(x) we mlght ask how E(Y) compares to the integral

I= r u(x)ﬂx) dx.

To answer this, change the vanable of mtegratlbn through y = u(x) or,
equivalently, x = w(y). Since
dx

e w(y) >0,
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we have
a0

I= J. yf[w(ji)]w’(y) dy = .[ ye(y) dy.

-

That is, in this special case,

E(Y) = r ye(y) dy = J u(x)f(x) dx.
However, this is true more generally and it also makes no difference
whether X is of the discrete or continuous type and Y = #(X) need not
be an increasing function of X" (Exercise 1.87 illustrates this).
So if Y = u(X)-has an expectation, we can find it from

E[u(X)] = r u(x)f(x) dx, | 1)
in the continuous case, and o ‘
Efu(0)] = ¥, u(x)f(x), @

in the discrete case. Accordingly, we say that EJu(X)] is the expectation .
(mathematical expectation or expected value) of u(X).

Remark. If the mathematical expectation of Y exists, recall that the
integral (or sum)

J‘ lylg(y)-dy [or )) Iylg(y)]

exists. Hence the existence of E{u(X)] implies that the correspondmg integral
(or sum) converges absolutely.

Next, we shall point out some fairly obvious but useful facts about
expectations when they exist.

1. If k is a constant, then E(k) = k. This follows from expression (1)
[or (2)] upon setting u = k and recalling that an integral (or sum)
of a constant times a function is the constant times the integral (or
sum) of the function. Of course, the mtegral (or sum) of the function
fis 1.

2. Ifkisaconstant andvlsafunctlon then E(kv) = kE(v). This follows
from expresswn (1). [or (2)] upon setting u = kv and rewriting
expression (1) [or (2)] as k times the integral (or sum) of the product
vf.

3. If k, and k, are constants and v, and v, are functions, then
E(k,v, + k,v,) = k, E(v|) + k;E(v,). This, too, follows from ex-
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pression (1) [or (2)] upon setting u = k,v, + k,v, because the integral
(or sum) of (k,v, + k,v,)f is equal to the integral (or sum) of kv, f
plus the integral (or sum) of k,v,f. Repeated application
of this property shows that if k,,k,, ..., k, are constants and
v, Vs, ..., U, are functions, then

E(kiv, + kavy + - - - + ko) = ki E)) + by E () + - - - + kn E(0n).

This property of expectation leads us to characterize the symbol E
as a linear operator. :

Examplé 3 ’Let X have the p.d.f.
f)=21-%, 0<x<l
. 0‘ elsewhere.
Then

*00

. '
- EX) = xf(x) dx = J; (x)2(1 = x)dx =1,

V-

oS ‘ 1
Ex) = | sfix)ax = f D21 — %) dx =1,
0

V-

and, of course,
E6X +3X*)=6(3)+3(}) =3.
Example 4. Let X have the p.d.f.
=% x=1,2,3,

=0 elsewhere.
Then

3 x
2 Xz

x=1

EX°) =) Xf(x) =

—lil6 8 _%
—6+6+6—6'

Example 5. Let us divide, at random, a horizonta] line segment of length
5 into two parts. If X is the length of the left-hand part, it is reasonable to
assume that X has the p.d.f.

fx =4, 0<x<5,
=0 elsewhere.

The expected value of the length X is E(X) = § and the expected value of the
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length 5 — X is E(5 — X) = ;. But the expected value of the product of the
two lengths is equal to

L 3 N N . K -
E[X(5 - X)]= L X(5 — x)(3) dx =3 # (3).

That is, in general, the expected value of a product is not equal to the product
of the expected values.

Example 6. A bowl contains five chips, which cannot be distinguished by
a sense of touch alone. Three of the chips are marked $1 each and the
remaining two are marked $4 each. A player is blindfolded and draws, at
random and without replacement, two chips from the bowl. The player is paid
an amount equal to the sum of the values of the two chips that he draws and
the game is over. If it costs $4.75 to play this game, would we care to participate
for any protracted period of time? Because we are unable to distinguish the
chips by sense of touch, we assume that each of the 10 pairs that can be drawn
has the same probability of being drawn. Let the random variable X be the
number of chips, of the two to be chosen, that are marked $1. Then, under
our assumption, X has the hypergeometric p.d.f.

=0 elsewhere

J(x) =

If X = x, the player receives u(x) = x + 4(2 — x) =8 — 3x doIIars Hence his
mathematical expectation is equal to

E8—3X= ¥ (8 —3x)fix) =%,

x=0

or $4.40.

EXERCISES

1.80. Let X have the p.d.f. f(x) = (x + 2)/18, —2 < x < 4, zero elsewhere.
Find E(X), E[(X + 2)’], and E[6X — 2(X + 2)’]. S

1.81. Suppose that f{x) =}, x = 1, 2, 3,4, 5, zero elsewhere, is the p.d.f. of
the discrete type of random variable X. Compute E(X) and E(X?). Use
these two results to find E[(X + 2)’] by writing (X + 2)* = X? + 4X + 4.

1.82. Let X be a number selected at random from a set of numbers
{51,52,53,...,100}. Approximate E(1/X).
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Hint: Find reasonable upper and lower bounds by finding integrals
bounding E(1/X).

1.83. Let the p. d f. f{x) be positive at x = —1, 0, 1 and zero elsewhere.
(@) If f(0) = 4 , find E(X?).
(b) If £(0) = and if E(X)=1, determme A~ I) and ﬂl)

1.84. Let X have the p.d.f. f{x) =3x?,0 < x < |, zero elsewhere. Consider a
random rectangle whose sides are X and (1 — X). Determine the expected
value of the area of the rectangle

1.85. A bowl contains 10 chlps of whlch 8 are marked $2 each and 2 are
marked $5 each. Let a person choose, at random and without replacement,
3 chips from this bowl. If the person 1s to recelve the sum of the resulting
amounts, find his expectation.

1.86. Let X be a random variable of the continuous type that has p.d.f. f(x).
If m is the unique median of the dlstrlbutlon of X and b is a real constant,
show that :

b
E(X — b)) = E(1X — m|) + 2 J (b — x)f(x) dx,

provided that’the expectatlons exist. For what value of b'is E(|X — b|) a
minimum? . D

1.87. Let f(x) = 2x, 0 < x < 1, zero elsewhere, be the p.d.f. of X.
() Compute E(1/X).
(b) Find the distribution function and the pdf.of Y=1 /X
(c) Compute E(Y) and compare this result with the answer obtamed in
part (a).
H‘mt Here o = {x 0<x< 1} find .

1 88 Two distinct integérs' are chosen at random and without replacement
from the first six positive integers. Compute the expected value of the
absolute value of the difference of these two numbers.

1.9 Some Special Expectations

Certain expectations, if they exist, have special names and symbols
to represent them. First, let X be a random variable of the discrete type
having a p.d.f. f{x). Then

EX)=Y% x ftx).
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If the discrete points of the space of positive probablhty density are
a, a, a, ..., then

- E(X) = a fla) + a, flay) + a3 flay) + - -

This sum of products is seen to be a ‘‘weighted average’ of the values
a,, a,, as, . . ., the “weight” associated with each a; being f{a;). This
suggests that we call E(X) the arithmetic mean of the values of X,
or, more simply, the mean value of X (or the mean value of the
distribution).

The mean value u of a random variable X is defined, when it exists,
to be u = E(X), where X is a random variable of the discrete or of the
continuous type.

Another special expectation is obtained by taking u(X) = (X — p)*.
If, initially, X is a random variable of the discrete type having a p.d.f.
f(x), then .

EIX — ] = T (x — pffix)

= (@ — WH(@) + (@ - Wifa) + -,

if a;, a,, . . . are the discrete points of the space of positive probability
density. This sum of products may be interpreted as a ‘“‘weighted
average” of the squares of the deviations of the numbers a,, a,, . . .
from the mean value u of those numbers where the ““weight” associated
with each (a; — p)? is f(a;). This mean value of the square of the
deviation of X from its mean value u is called the rariance of X (or the
variance of the distribution). '

The variance of X will be denoted by ¢?, and we define o'2 if it exists,
by ¢’ = E[(X — u)?], whether X is a dlscrete or a continuous type of
random vartable. Sometimes the variance of X is written var (X)

It is worthwhile to observe: that var (X) equals

o = E[(X — p] = E(X* — 2uX + 112);
and since E is a linear operator, T
0? = E(X*) — 2uE(X) + J
= E(X?) - 2;12 + i
= E( X’) -

This frequency affords an easier way of computmg the vanance of X.



Sec. 1.9] Some Special Expectations 59

It is customary to call ¢ (the positive square root of the variance)
the standard deviation of X (or the standard deviation of the
distribution). The number ¢ is sometimes interpreted as a measure of
the dispersion of the points of the space relative to the mean value
u. We note that if the space contains only one point x for which
f(x) >0, then o = 0.

Remark. Let the random variable X of the continuous type have the
p.d.f. f(x)=1/2a, —a < x < a, zero elsewhere, so that ¢ = a/ﬁ is the
standard deviation of the distribution of X. Next, let the random variable Y
of the continuous type have the p.d.f. g(y) = l/4a, —2a < y < 2a, zero
elsewhere, so that ¢ = 2a/,/3 is the standard deviation of the distribution of
Y. Here the standard deviation of Y is greater than that of X this reflects the
fact that the probability for Y is more widely distributed (relative to the mean
zero) than is the probability for X.

We next define a third special mathematical expectation, called the
moment-generating function (abbreviated m.g.f.) of a random variable
X. Suppose that there is a positive number hsuch thatfor —h <t < h
the mathematical expectation E(e'*) exists. Thus

E(e'*) = j e*f(x) dx,

if X is a continuous type of random variable, or

E(e*) = ). e"f(x),

if X is a discrete type of random variable. This expectation is called the
moment-generating function (m.g.f.) of X (or of the distribution) and,
is denoted by M(¢). That is,

M(t) = E(e™).

It is evident that if we set 1 =0, we have M(0) = 1. As will be seen by
example, not every distribution has an m.g.f., but it is difficult to
overemphasize the importance of an m.g.f., when it does exist. This
importance stems from the fact that the m.g.f. is unique and completely
determines the distribution of the random variable; thus, if two random
variables have the same m.g.f., they have the same distribution. This
property of an m.g.f. will be very useful in subsequent chapters. Proof
of the uniqueness of the m.g.f. is based on the theory of transforms in
analysis, and therefore we merely assert this uniqueness. -
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Although the fact that an.m.g.f. (when it exists) completely
determines the distribution of one random variable will not be proved,
it does seem desirable to try to make the assertion plausible: This can
be done if the random variable is of the discrete type For example, let
it be given that

MO = ke +5e+ e+ et
is, for all real values of ¢, the m.g.f. of a random variable X of the

discrete type. If we let f(x) be the p.d.f. of X and let a,bc,d ... be
the discrete points in the space of X at which f(x) > 0, then

M(1) = ¥ e* f(x),
or
ﬁe + 15 L+ 2e¥ + %' = fla)e” + f(b)e” +

Because this is an 1dent1ty for all real values of ¢, it seems that the
right-hand member should consist of but four terms and that each of
the four should equal, respectively, one of those in the left—hand
member hence we may take a=1, f(a) = E ;6=2, f(b)= m’ c=3,

flo) = m ;d=4, f(d)= 5. Or, more simply, the p.d.f. of X is

X
f(x)<y‘= o0 *= 1,2,3,4,

=0 elsewhere

On the other hand, let X be a random variable of the continuous
type and let it be given that

‘o ‘M(t)=+;,

t <1,
is the m.g.f. of X. That is, we are given
—-!_-—t = r e f(x) d.ic, t< 1.

It is not at all obvious how f(x) is found. However, it is easy to see that
a dlstnbutnon with p.d.f.

f(x)=¢€"", n0<x<oo,
=0 elsewhere
has the m.g.f. M(t)=(1 — )", ¢t < 1. Thus the random variable X
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has a distribution with this p.d.f. in accordance with the assertion of
the uniqueness of the m.g.f.

' Since a distribution that has an: m.g.f. M(¥) is completcly deter-
mined by M(r), it would not be surprising if we could obtain some
properties of the distribution directly from M(¢). For example, the
existence of M(t) for —h < t < h implies that derivatives of all order
exist at t = 0. Thus, using a theorem in analysis that allows us to
change the order of differentiation and integration, we have

-‘!%t(—t) =M@= r xe"’f(x) dx,

if X is of the continuous type, or

A0 _ )y = 3, xef(x),

if X is of the discrete type. Upon setting ¢ = 0, we have in either case

M'(0) = E(X) = u.
The second derivative of M(¢)is

M'(1) =r Re*f(x)dx  or Zx’e"f(i)’

so that M”(0) = E(X?). Accordingly, the var (X) equals
ot = EX’) — 1 = M"(0) - [MOF.

For example, if M(t) = (1 — )~', t < 1, as-in the illustration above,
then

M@=0-82 and M@t =21-1">
Hence ‘
p=M(©0) =1
and
=M —pr=2—1=1.
Of course, we could have computed u and ¢? from the p.d.f. by

§= r xf(x)dx and &= r 2f(x) dx — 12,
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respectively. Sometimes one way is easier than the other.

In general, if m is a positive integer and if M*"(r) means the mth
derivative of M(7), we have, by repeated differentiation with respect to
t’ . . B .

M™(0) = E(X™).

Now |
EQX™ = r fixydx or Y amfx),

and integrals (or sums) of this sort are, in mechanics, called moments.
Since M(r) generates the values of E(X™),m=1,2,3, ..., 1t is called
the moment-generating function (m.g.f.). In fact, we shall sometimes
call E(X™) the mth moment of the distribution, or the mth moment
of X.

Example 1. Let X have the p.d.f.
fix)=ix+1), —-1<x<l,
=0 elsewhere.

Then the mean value of X is

o0 1
_ _ x+1 _1
,u—J._ xf(x)dx—‘[lx > dx—3,
while the variance of X is

o0 1
02=j xzf(x)dx-p2=J. xzx-;ldx—(%)2=§.

—a -1

Example 2. 1f X has the p.d.f.
Ax) = —;2—, l <x< oo,

=0 elsewhere,

then the mean value of X does not exist, since

J x| = dx=‘!1mrldx

=lm({(nb—1Inl)

h—o

does not exist.
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Example 3. 1t is known that the series
1 1 1

Tt +32+
converges to n2/6. Then
f(x)=ﬁ, x=1,2,3,...,

=0 'elsewﬁere,
is the p.d.f. of a discrete type of random variable X. The m.g.f. of this
distribution, if it exists, is given by

M(1) = E(e") = ): e’f(x)

6elx
Z. aid

The ratio test may be used to show that this series divergesif ¢ > 0. Thus there

does not exist a positive number h such that M(r) exists for —h<t<h

Accordingly, the dlstnbutlon having the p- d f. f(x) of this example does not
have an m.g.f.

Example 4. Let X have the m.g.f. M(f) = ¢™?, —oo <t < 0. We can
differentiate M(t) any number of times to find the moments of X. However,
it is instructive to consider thls altematxve method. The functlon M) is
represented by the following MacLaurm S series.

e\ 1/2V 7\
R _14—[— —| = e —|—
€ *1'(2)*2'()““ +k!(2)+

Zl T £+ k) r* +

In general, the MacLaurin’s series for M(!) is
MO M0 M™(0
®,, 0O, MO

—l4a

Pl N

M(f) = M(0) + ==
1 B EXY, L B,
1! 2! m!

Thus the coefficient of (#"/m!) in the MacLaurin’s series representation of M(r)
is E(X™). So, for our particular M(t), we have
(2R

E(X™) = (2k - )2k —3) - ) =57,

k=1,23,...,and EX*N=0,k=1,2,3,....
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Remarks. In a more advanced course, we would not work with the m.g.f.
because so many distributions do not have moment-generating functions.
Instead, we would let i denote the imaginary unit, ¢ an arbitrary real, and we
would define ¢(r) = E(e"*). This expectation exists for every distribution and
it is called the characteristic function of the distribution. To see why ¢(t) exists
for all real ¢, we note, in the continuous case, that its absolute value

J " f(x) dx| < JwIE”’f(x)ldx

However, |f(x)| - f(x) since f(x) is nbnnegative and

lp(7)| =

le™| = |cos tx + isin tx| = \/cosz tx + sin? rx = 1.
Thus
lp()| < Jm S(x)dx = 1.

* Accordingly, the integral for oty exnsts for all real values of t.Tn the discrete
case, a summation would replace the integral.

Every distribution has a unique characteristic function; and to each
characteristic function there corresponds a unique distribution of prob- .
ability. If X has a distribution with characteristic function (1), then, for
instance, if E(X) and E(X“) exist, thcy are glven, respectlvely, by iE(X) =
¢’(0) and 12E(X2) = ¢"(0). Readers who are familiar with complex-valued
functions may ‘write ¢(r) = M(if) and, throughout this book may prove
certain theorems in complete generality.

Those who have studied Laplace and Fourier transforms will note a
similarity between these transforms and M(r) and ¢(); it is the uniqueness of
these transforms that allows us to assert the uniqueness of each of the
moment-generating and characteristic functions.

EXERCISES

1.89. Find the mean and variance, if they exist, of each qf the following
distributions. ' :

3! Y
(a) f(x) = m( ) .— 0, 1, 2, 3, zero elsewhere.
(b) f(x) = 6x(1 — x), 0 < x < 1, zero elsewhere.
(¢) f(x) =2/x’, 1 < x < o0, zero elsewhere.

1.90. Let f(x)=(3), x=1,2,3,..., zero elsewhere, be the p.d.f. of the
random variable X. Find the m.g.f., the mean, and the variance of X.

1.91. For each of the followmg probabnhty density functions, compute
Pr(u— 20<X<u+2cr)
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@) f(x) = 6x(1 — x), 0 < x:< 1, zero.elsewhere.
) f(x)=(¢)y, x=1,2,3, ..., zero elsewhere.
1.92. If the variance of the random variable X exists, show that
EX*) = [E(X). i
1.93. Let a- random variable X of the continuous type havé a p.d.f. f(x)
whose graph is symmetric with respect to x = c. If the mean value of X
- exists, show that E(X) = c.

Hint: Show that E(X — c) equals zero by writing E(X — c) as the sum
of two integrals: one from' — oo to c and the other fiom c to co. In the first,
let y = ¢ — x; and, in the second, z = x — ¢. Finally, use the symmetry
condition f(c — y) = f(c + ) in the first. '

1.94. Let the random variable X have mean g, standard deviation o, and
m.g.f. M(t) —h <t < h. Show that i

) o
ey SR

1.95. Show that the m.g.f. of the random variable X having the p.d.f. f(x) = 3,
—1 < x < 2, zero elsewhere, is )

and

ez; _ e—r
3t ’

=1, =0,

1.96. Let X be a random variable such that E[(X — b)*] exists for all real b.
Show that E[(X — b)?] is a minimum when b = E(X).

1.97. Let X denote a random variable for which E[(X — a)?] exists. Give an
example of a distribution of a discrete type such that this expectation is
zero. Such a distribution is called a degenerate distribution.

1.98. Let X be a random variable such that K(r) = E(r*) exists for
all real values of ¢ in a certain open interval that includes the point
t=1. Show that K“X(1) is equal to the mth factortal moment
EX(X-1---(X—m+ 1)) ‘

1.99. Let X be a random variable. If m is a positive integer, the expectation
E[(X — b)™, if it exists, is called the mth moment of the distribution about
the point b. Let the first, second, and third moments of the distribution
about the point 7 be 3, 11, and 15, respectively. Determine the mean u of
X, and then find the first, second, and third moments of the distribution
about the point p.

M) =

t#0,
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1.100. Let X be a random variable such that R(f) = E(e"* ~?) exists for
—h <t < h. If mis a positive integer, show that R"™(0) is equal to the mth
moment of the distribution about the point b. ~

1.101. Let X be a random variable with mean u and variance 2 such that the
third moment E[(X — u)’] about the vertical line through p exists. The value
of the ratio E[(X — u)°]/6’ is often used as a measure of skewness. Graph
each of the following probability density functions and show that this
measure is negative, zero, and positive for these respective distributions
(which are said to be skewed to the left, not skewed, and skewed to the
right, respectively).

(@) fix)= (x + 1)/2; —1 < x < 1, zero elsewhere.
(b) fx) = 1, —l<x <1, zero elsewhere.
" (©) fix) =(1'=x)/2, =1 < x < 1, zero elsewhere.

1.102. Let X be a random variable with mean p and variance 67 such that the
fourth moment E[(X — u)*] about the vertical line through u exists. The
value of the ratio E[(X — p)*]/o* is often used as a measure of kurtosis.
Graph each of the following probability density functions and show that
this measure is smaller for the first distribution.

(@) fix) =3 —1 < x <1, zero elsewhere.
(b) Ax)= 3(] —x%)/4, —1 < x < 1, zero elsewhere.

1.103. Let:-the random variable X have p.d.f.
fx)=p, x=-11,
=1-2p, x =0,
=0 elsewhere,

where0 < p < ;. Find the measure of kurtosis as a function of p. Determine
its value when p =1{, p =4, p=1;, and p = ;. Note that the kurtosis
mcreases as p decreases.

1. 104 Let (1) = In M(r), where M(t)is the m.g.f. of a dlstnbutlon Prove that
¥’(0) = p and ¢*(0) = o’. ‘

1.105. Find the mean and the variance of the dlstnbutmn that has the
distribution function

Fx)=0, x<0,

=%, 0<x<2,
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1.106. Find the moments of the distribution that has m.g.f. M(¢) = (1 — )73,
t<1.

Hint: Find the MacLaurin’s series for M(z).

1.107. Let X be a random variable of the continuous type with p.d.f. f(x),
which is positive prowded 0<x< b < oo and is equal to zero elsewhere.
Show that

E(X) = J [1 — F(x)] dx,

where F(x) |s the distribution functlon of X.

1.108. Let X be a random variable of the discrete type with p.d.f. f(x) that
is positive on the nonnegative integers and is equal to zero elsewhere. Show
that

EN=% [1- - Ax))

=0

where F(x) is the distribution function of X.

1.109. Let X havethep.d.f.fix) = 1/k,x = 1,2, ..., k,zeroelsewhere. Show
that the m.g.f. is

e’(] )
= ], = 0 :

1.110. Let X have the distribution function F(x) that is a mixture of the
continuous and discrete types, namely

Fix)=0, x<0,

= . 0<x<l,

Find u = E(X) and o> = var (X).

Hint: Determine that part of the p.d.f. associated with each of the
discrete and continuous types, and then sum for the discrete part and
integrate for the continuous part.

1.111. Consider k continuous-type distributions with the following charac-
teristics: p.d.f. fi(x), mean y;, and variance 62, i=1,2,...,.k If ;2 0,
i=1,2,...,k,and ¢, + ¢; + - - - + ¢, = 1, show that the mean and the
variance of the distribution having p.d.f. ¢ fi(x)+ -+ ¢ fi(x) are

k
=Y cuand ¢® = Z clo? + (u; — p)?], respectively.

i= 1
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1.10 Chebyshev’s Inequality

In this section we prove a theorem that enables us to find upper (or
lower) bounds for certain probabilities. These bounds, however, are
not necessarily close to the exact probabilities and, accordingly, we
ordinarily do not use the theorem to approximate a probability. The
principal uses of the theorem and a special case of it are in theoretical
discussions in other chapters.

Theorem 6. Let u(X) be a nonnegative function of the random
variable X. If E[u(X)] exists, then, for every positive constant c,

E[uX)]

c

Pru(X) > c] <

Proof. The proof is given when the random variable X is of the
continuous type; but the proof can be adapted to the discrete case
if we replace integrals by sums. Let 4 = {x: u(x) > ¢} and let f(x)
denote the p.d.f. of X. Then

Efu(X)] = r u(x)f(x) dx = J u(x)f(x) dx + J u(x)f(x) dx.

Since each of the integrals in the extreme right-hand member of the
preceding equation is nonnegative, the left-hand member is greater
than or equal to either of them. In particular,

Elu(X)] 2 J u(x)f(x) dx.

A

However, if x € A, then u(x) = c; accordingly, the right-hand member
of the preceding inequality is not increased if we replace u(x) by ¢. Thus

E[u(X)] > ¢ J‘ f(x) dx.
Since R o
If(x) dx =Pr(Xe A) = Pl)"[u(X) > cl,

it follows that
Efu(X)] 2 ¢ Pr[u(X) = ],

which is the desired result.
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The preceding theorem is a generalization of an inequality that is
often called Chebyshev’s mequahty This inequality will now be
established.

Theorem 7. Chebyshev’s Inequality. Let the random variable X have
a distribution of probability about which we assume only that there is a
finite variance o*. This, of course, implies that there is a mean u. Then
Jor every k > 0,

Pr(X —pul =2ko) < k’ ,

or, equivalently,

Pr (X — 4| < ko) > | ~%.

Proof In Theorem 6 take u(X) = (X — p)? and ¢ = k’¢*. Then we
have

E[(X — 1)
kKa? ’

Since the numerator of the right-hand member of the preceding
inequality is o2, the inequality may be written

Pr[(X — 1)? > k%% <

Pr(X —pl > ko) < kl

which is the desired result. Naturally, we would take the positive
number k to be greater than | to have an inequality of interest.

It is seen that the number 1/k? is an upper bound for the probability
Pr (| X — y| = ko). In the following example this upper bound and the
exact value of the probability are compared in special instances:

Example 1. Let X have the p.d.f.

- 3<x<ﬁ,
f

=0 " elsewhere.

Sfxy =

Here u = 0 and ¢? = 1. If k = 3, we have the exact probability
: 3/2 3
Pr(|X—.p|2ka)=Pr(|X]2%)=l J ———dx—-l—%.

2 2y/3
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By Chebyshev’s inequality, the preceding probability has the upper bound
I/k?* = 4. Since 1 — ,/3/2 = 0.134, approximately, the exact probability in
this case is considerably less than the upper bound 3. If we take k = 2, we have
the exact probability Pr(|X — y| = 2¢) = Pr(|X] = 2) = 0. This again is
considerably less than the upper bound 1/k* = § provided by Chebyshev’s
inequality.

In each of the instances in the preceding example, the probability
Pr (| X — u| > ko) and its upper bound 1/k? differ considerably. This
suggests that this inequality might be made sharper. However, if we
want an inequality that holds for every k£ > 0 and holds for all random
variables having finite variance, such an improvement is impossible, as
is shown by the following example.

Example 2. Let the random variable X of the discrete type have
probabilities 3, 2, 3 at the points x = —1, 0, 1, respectively. Here u = 0 and
o’ =1 If k=2, then 1/k* = }and Pr (| X — p| = ko) = Pr (|X] = 1) = §. That
is, the probability Pr (|X — y| > ko) here attains the upper bound 1/k? = §.
Hence the inequality cannot be improved without further assumptions about
the distribution of X.

EXERCISES

1.112. Let X be a random variable with mean u and let E[(X — u)*] exist.
Show, with d >0, that Pr (X — y| > d) < E[(X — w)*]/d*. This is
essentially Chebyshev’s inequality when k = 1. The fact that this holds for
all k=1,2,3,..., when those (2k)th moments exist, usually provides a
much smaller upper bound for Pr (|X — u| > d) than does Chebyshev’s
result.

1.113. Let X be a random variable such that Pr (X < 0) = 0 and let p = E(X)
exist. Show that Pr (X > 2u) < 1.

1.114. If X is a random variable such that E(X) = 3 and E(X?) = 13, use

Chebyshev’s inequality to determine a lower bound for the probability
Pr(-2< X <38).

1.115. Let X be a random variable with m.g.f. M(r), —h < t < h. Prove that
Pr(X >a) <e "M(1), O0<t<h,
and that _
Pr(X <a) <e "M(s), —-h<t<0.

Hint: Let u(x) = e and ¢ = ¢" in Theorem 6. Note. These results imply
that Pr (X > a) and Pr (X < a) are less than the respective greatest lower
bounds for e~ *M(t) when 0 < ¢t < h and when —h < 1 <0.
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1.116. The m.g.f. of X exists for all real values of ¢ and is given by

e —e!
2t

M) = t#0, M©O)=1.
Use the results of the preceding exercise to show that Pr (X > 1) =0 and
Pr (X < —1) = 0. Note that here 4 is infinite.

ADDITIONAL EXERCISES

1.117. Players 4 and B play a sequence of independent games. Player 4
throws a die first and wins on a “‘six.”” If he fails, B throws and wins on a
“five” or “six.” If he fails, 4 throws again and wins on a “four,” “five,”
or “six.” And so on. Find the probability of each player winning the
sequence.

1.118. Let X be the number of gallons of ice cream that is requested at a
certain store on a hot summer day. Let us assume that the p.d.f. of X is
SfIx) = 12x(1000 — x)?/10", 0 < x < 1000, zero elsewhere. How many
gallons of ice cream should the store have on hand each of these days, so
that the probability of exhausting its supply on a particular day is 0.05?

1.119. Find the 25th percentile of the distribution having p.d.f. fix) = |x|/4,
—2 < x < 2, zero elsewhere.

1.120. Let A4,, A,, A; be independent . events with probabilities i, 1, 4,
respectively. Compute Pr (4, u 4, U 4;).

1.121. From a bowl containing 5 red, 3 white, and 7 blue chips, select 4 at
random and without replacement. Compute the conditional probability of
1 red, 0 white, and 3 blue chips, given that there are at least 3 blue chips
in this-sample of 4 chips.

1.122. Let the three independent events A4, B, and C be such that
P(4) = P(B) = P(C) = L. Find P[(4* n B*)u C].

1.123. Person A tosses a coin and then person B rolls a die. This is repeated
independently until a head or one of the numbers 1, 2, 3, 4 appears, at which
time the game is stopped. Person -4 wins with the head and B wins with one
of the numbers 1, 2, 3, 4. Compute the probability that 4 wins the game.

1.124. Find the mean and variance of the random variable X having
distribution function

Ax)=0, " x<,

, 0<x<l,

R
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4,

. 1 <x<?2,

=1, 2 <x.
1.125. Let X be a random variable having distribution function:
Ax) =0, x <0,
=2x), 0<x<j,
=1-21-x)? i<x<}i
=1, i=<x

Find Pr(; < X <$) and the variance of the distribution.
Hint: Note that there is a step in F(x).

1.126. Bowl I contains 7 red and 3 white chips and bowl II has 4 red and 6
white chips. Two chips are selected at random and without replacement
from I and transferred to I1. Three chips are then selected at random and
without replacement from II.

(a) What is the probability that all three are white?
(b) Given that three white chips are selected from 1I, what is the
conditional probability that two white chips were transferred from I?

1.127. A bowl contains ten chips numbered 1, 2, . . ., 10, respectively. Five
chips are drawn at random, one at a time, and without replacement. What
is the probability that exactly two even-numbered chips are drawn and they
occur on even-numbered draws?

1
1.128. Let E(X") = P
the m.g.f. of X. Sum this series.

r=1,2,3,....Find the series representation for

1.129. Let X have the p.d.f. flx) = 2x, 0 < x < 1, zero elsewhere. Compute
the probability that X is at least 7 given that X is at least §.

1.130. Divide a line segment into two parts by selecting a point at random.
Find the probability that the larger segment is at least three times the
shorter. Assume a uniform distribution.

1.131. Three chips are selected at random and without replacement from a
bowl containing 5 white, 4 black, and 7 red chips. Find the probability that
these three chips are alike in color.

1.132. Factories A4, B, and C produce, respectively, 20, 30, and 50% of a
certain company'’s output. The items produced in A4, B, and C are 1, 2, and
3 percent defective, respectively. We observe one item from the company’s
output at random and find it defective. What is the conditional probability
that the item was from A4?
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1.133. The probabilities that the independent events A, B, and C will occur
are 3, 3, and J. What is the probability that at least one of the three events
will happen?

1.134. A person bets 1 dollar to b dollars that he can draw two cards from

an ordinary deck without replacement and that they will be of the same suit.
Find b so that the bet will be fair.

1.135. A bowl contains 6 chips: 4 are red and 2 are white. Three chips are
selected at random and without replacement; then a coin is tossed a number
of independent times that is equal to the number of red chips in this sample
of 3. For example, if we have 2 red and 1 white, the coin is tossed twice.
Given that one head results, compute the condltlonal probability that the
sample contains 1 red and 2 whxte ‘ ‘



CHAPTER 2

Multivariate
Distributions

2.1 Distributions of Two Random Variables

We begin the discussion of two random variables with the following
example. A coin is to be tossed three times and our interest is in
the ordered number pair (number of H’s on first two tosses, number
of H’s on all three tosses), where H and T represent, respectively, heads
and tails. Thus the sample space is ¢ = {cic=c¢c,i=1,2,...,8},
where ¢, is TTT, ¢, is TTH, ¢; is THT, ¢, is HTT, ¢s is THH, ¢, is
HTH, ¢, is HHT, and ¢; is HHH. Let X, and X, be two functions
such that X,(¢)) = X,(c2) = 0, X,(c;) = Xi(cy) = Xi(c5) = Xi(cs) = 1,
Xi(cr)=X\(s) =2; and X;(c)) =0, Xy(c) = Xy(cx) = Xi(co) =1,
Xi(cs) = Xy(cs) = Xa(c7) =2, Xiy(eg)=3. Thus X, and X, are
real-valued functions defined on the sample space ¢, which take us
from that sample space to the space of ordered number pairs

A ={(0,0),(0,1),(1,1),(1,2),(2,2),(2,3)}

Thus X, and X, are two random variables defined on the space ¥,
and, in this example, the space of these random variables is the two-

14
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dimensional set .&/ given immediately above. We now formulate the
definition of the space of two random variables.

Definition 1. Given a random experiment with a sample space €.
Consider two random variables X, and X,, which assign to each
element c of € one and only one ordered pair of numbers X, (c) = X,
X,(c) = x,. The space of X, and X, is the set of ordered pairs-
o = {(xl,xz):.X| X|(C) Xy = Xz(C) CE%}

Let o7 be the space associated with the two random variables X, and
X, and let 4 be a subset of /. As in the case of one random variable,
we shall speak of the event 4. We wish to define the probability of the
event 4, which we denote by Pr [(X,, X;) € A]. Take C = {c: c€ ¥ and
[X1(c), Xy(c)] e A}, where € is the sample space. We then define
Pr[(X,, X;) € A] = P(C), where P is the probability set function
defined for subsets C of ¥. Here again we could denote Pr [( X, X,) € 4]
by the probability set function Py, y,(A4); but, with our previous
convention, we simply write

P(4) = Pr[(X,, X,) € A].

Again it is important to observe that this function is a probability set
function defined for subsets A of the space «/.

Let us return to the example in our discussion of two random
variables. Consider the subset 4 of &, where 4 = {(1, 1), (1, 2)}.
To compute Pr [(X,, X;) € A] = P(A), we must include as elements of C
all outcomes in ¢ for which the random variables X, and X, take values
(x;, x,) whi¢h are elements of 4. Now X,(c)) =1, X,(c;)=1,
X(cy) = 1, and X5(cy) = 1. Also, X (cs) = 1, Xu(cs) =2, Xi(ce) =1,
and X,(c,) =2. Thus P(A)=Pr[(X,, X,)e A] = P(C), where
C = {¢3, ¢4, cs, OT ¢s}. Suppose that our probability set function P(C)
assigns a probability of ; to each of the eight elements of €. This
assignment seems reasonable if P(T) = P(H) =; and the tosses are
independent. For illustration,

P{c,}) = Pr(TTD = H)(H() = 1.

Then P(A), which can be written as Pr (X, = 1, X, = | or 2), is equal
to §= % It is left for the reader to show that we can tabulate the
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probability, which is then assigned to each of the elements of &, with
the following result: : :

(xlaxl) ‘ (0, O) (O’ 1) (lv 1) (15 2) (272) (2) 3)
Pri, X)=Ceox)l | 5 & 3 % 44

8 8 8

This table depicts the distribution of probability over the elements of
&, the space of the random variables X, and X,.

Again in statistics we are more interested in the space ¢ of two
random variables, say X and Y, than that of ¥. Moreover, the notion
of the p.d.f. of one random variable X can be extended to the notion
of the p.d.f. of two or more random variables. Under certain
restrictions on the space & and the function /> 0 on & (restrictions
that will not be enumerated here), we say that the two random variables
X and Y are of the discrete type or of the continuous type, and have
a distribution of that type, according as the probability set functlon
P(A), A = 4, can be expressed as

P(A)=Pr[(X, V) e A] = ZAZ./(x, »)
or as

P(4) = Pr[(X, V) e 4] = ”f(x y) dx dy.

In either case fis called the p.d.f. of the two random varlables b'% and
Y. Of necessity, P(=/) = 1 in each case.

We may extend the definition of a p.d.f. f(x, y) over the entire
xy-plane by using zero elsewhere. We shall do this consistently so that
tedious, repetitious references to the space 2 can be avoided. Once this
is done, we replace

ij(x,y)dxdy by frf(xy)dxdy

—aQQ T —ao

Similarly, after extending the definition of a p.d.f. of the dlscrete type,
we replace

Z,Z fx,y) by Y Y f(x ).

In accordance with this convention (of extending the definition of
a p.d.f), it is seen that a point function f, whether in one or two
variables, essentially satisfies the conditions of being a p.d.f. if (a) f
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is defined and is nonnegative for all real values of its argument(s) and
if (b) its integral [for the continuous type of random: variable(s)], or
its sum [for the discrete type of random variable(s)] over all real values
of its arguments(s) is 1.

Finally, if a p.d.f. in one or more variables is explicitly defined, we
can see by inspection whether the random variables are of the con-
tinuous or discrete type. For example, it seems obvious that the p.d.f.

f(xy) 4x+ya x;—-lv2!3""‘w"y=1’2>3a--"

=0 elsewhere,

is a p.d.f. of two discrete-type random variables X and Y, whereas the
p.d.f.
f(x,y)=4xye“z“’2, O<x<«ow, 0<y<om;
=0 - elsewhere,
is clearly a p.d.f. of two continuous-type random variables X and Y.

In such cases it seems nnnecessary to specify which of the two simpler
types of random variables is under consideration.

Example 1. Let v
S y)=6x, O<x<l, 0<y<l,
=0 elsewhere,

be the p.d.f. of two random variables X and Y which must be of the
continuous type. We have, for instance,

2 p34

Pr(0<X<4,3< Y<2)= f(x, y)dx dy

Y13 Yo

3/4 2 p3/4
= 6x2ydxdy+f J 0dxdy
1 0

Note that this probability is the volume un'de.r the surface f(x, y) = 6x’y and
above the rectangular set {(x, y): 0 < x < 3,1 < y < 1} in the xy-plane.

Let the random variables X and Y have the probability set function
P(A), where A4 is a two-dimensional set. If 4 1s the unbounded set
{(4,v): u < x,v < y}, where x and y are real numbers, we have

P(A)=Pr[(X,NeAl=Pr(X<x,Y<y).
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This function of the point (x, y) is called the distribution function of X
and Y and is denoted by

Fx,y) =Pr(X<x, Y<y).

If X and 'Y are random variables of the continuous type that have p.d.f.
f(x, y), then -

F(x y)—f J S(u, v) du dv.

—®© —®©

Accordingly, at points of continuity of f(x, y), we have

FF(x,y)
“oxdy f(x, y).

It is left as an exercise to show,. in every case, that

Pr@a<X<bc<Y<d=HRb, d)—F(b,c)—F(a,d)+F(a,c),

for all real constants a < b, c <d. .

Consider next an experiment in which a person chooses
at random a point (X,¥) from the unit square €= =
{(x,5):0 <x< 1,0 <y < 1}. Suppose that our interest is not in X or
in Y but in Z = X + Y. Once a suitable probability model has been
adopted, we shall see how to find the p.d.f. of Z. To be specific, let the
nature of the random experiment be such that it is reasonable to assume
that the distribution of probability over the unit square is uniform.
Then the p.d.f. of X and Y may be written

fx,») =1, 0<x<l, O0<y<l,
=0 elsewhere,

and this describes the probability model. Now let the distribution
function of Z be denoted by G(z) = Pr (X + Y < 2). Then

Giz)=0, z<0,

z pzr—x zz
=jJ dydx=5, 0<z<l,
0 %0

t 1 - .

. 7 — )2
-,=1—I J dydx=1-" 22), l<z<2,
K z-1vYr—x

=1, 2< 2.
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Since G'(z) exists for all values of z, the p.d.f. of Z may then be written
g(2) = z, O0<z<l,
=2 —z, 1 €£2<2,
=0 elsewhere.

It is clear that a different choice of the p.d.f. f(x, y) that describes
the probability model will, in general, lead to a different p.d.f. of
Z.

Let f(x,, x,) be the p.d.f. of two random variables X, and X,. From
this point on, for emphasis and clarity, we shall call a p.d.f. or a
distribution function a joint p.d.f. or a joint distribution function when
more than one random variable is involved. Thus f(x,, x,) is the joint
p.d.f. of the random variables X, and X,. Consider the event
a < X, < b, a < b. This event can occur when and only when the event
a<X <b, —0<X,<oo occurs; that is, the two events are
equivalent, so that they have the same probability. But the probability
of the latter event has been defined and is given by

b pwo
Pr(a<X1<b,—oo‘<X2<oo)=J"[ f(x,, x;) dx, dx,

for the continuous case, and by

Pr@a<X <b,—0<X,<mo)= Y Y fix,x)

a<xy<b x3

for the discrete case. Now each of
f fx, x)dx;  and ) fixi, x;)
—® x2

is a function of x, alone, say f,(x,). Thus, for every a < b, we have

b
Pra< X, <b)= j fi(x)) dx;, (continuous case),

= X fvl(xij) (discrete case),

a<xy<bh

so that fi(x,) is the p.d.f. of X, alone. Since f,(x,) is found by
summing (or integrating) the joint p.d.f. f(x,, x;) over all x, for a
fixed x,, we can think of recording this sum in the “margin” of the



80 y Multivariate Distributions [Ch. 2

x,x;-plane. Accordingly, f;(x,) is called the marginal p.d.f. of X,. In
like manner

Sa(xy) = J- J(x1, x3) dx, (continuouscase),

=Y f(x1, %) (discrete case),

is called the marginal p.d.f. of X;.

Example 2. Consider a random experiment that consists of drawing at
random one chip from a bowl containing 10 chips of the same shape and size.
Each chip has an ordered pair of numbers on it: one with (1, 1), one with (2, 1),
two with (3, 1), one with (1, 2), two with (2, 2), and three with (3, 2). Let the
random variables X, and X, be defined as the respective first and second values
of the ordered pair. Thus the joint p.d.f. f(x,, x;) of X, and X, can be given
by the following table, with f(x,, xz) equal to zero elsewhere.

X .
X2 1. 2 3| falx2)
L % ® @ w
2 |% % ®w| W
) | % © w®

The joint probabilities have been summed in each row and each column and
these sums recorded in the margins to give the marginal probability density
functions of X, and X,, respectively. Note that it is not necessary to have a
formula for f(x,, x;) to do this.

Example 3. Let X, and X, have the joint p.d.f.
,f(x|’x2).:xl+x2,~ O<X|<l, 0<x:<l,
=0 elsewhere.

The marginal p.d.f. of X, is

I
ﬁ(x1)=J (x1 + x) dx; = x; + 3, 0<x <1,

zero elsewhere, and the marginal p.d.f. of X, is

| I .
fz(xz.)=-[ (x,+x2)dx,=%+x2, D<x, <1,
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»

zero elsewhere. A probability like Pr (X, < 1) can be computed from either
fi(x)) or f(x,, x,) because

172 pl 1”2
J J fx), x;) dxy dx,) = J. fix) dx, =3.
0 0 0

However to find a probability like Pr (X, + X; < 1), we must use the joint
p.d.f. f(x,, x,) as follows:

I pl—x) I 1_ IZ
'[J‘ (x|+x2)dxzdt.=J [x,(l—xl)-{-(—zxz—]dx,
0 0
71 1 1
=£(§‘5f‘)dx'=§-

This latter probability is the volume under the surface f(x,, x;) = x, + x,
above the set {(x,, x;): 0 < x|,0 <x;,x, + x, < 1}.

EXERCISES

2.1. Let f(x,, x;) =4x,x;, 0 <x, <1, 0 < x; <1, zero elsewhere, be the
p.df. of X, and X,. Find Pr(0< X, <l,1<X,<1), Pr(X, = X)),
Pr(X, < X;), and Pr (X, < X,). ot

Hint: Recall that Pr (X, = X;) would be the volume under the surface
Sf(x, x;) = 4x,x; and above the line segment 0 < x,=x; <1 in the
X, x3-plane.

22. Let A, ={(x,y):x<2,y<4}, A;={(xy):x<2,y<1}, A=
{(x,»):x<0,y<4}, and 4,={(x,y): x <0,y <1} be subsets of the
space o/ of two random variables X and Y, which is the entire
two-dimensional plane. If P(4,) =1, P(4,) = §, P(4;) = }, and P(4,) =1,
find P(A4;), where A5 = {(x,y):0<x<2,1<y<4}.

2.3. Let F(x,y) be the distribution function of X and Y. Show that
Pra<X<bc<Y<d)y=Rb,d — FAb,c)— Fa,d) + Ka,c), for all
real constants a < b, ¢ < d.

2.4. Show that the function F(x, y) thatisequalto 1 provided thatx + 2y > 1,
and that is equal to zero provided that x + 2y < 1, cannot be a distribution
function of two raindom vatiables. = -

Hint: Find four numbers a < b, ¢ < d, so that

" Fb, d) — R, d— Flb, ) + Fa, ¢)
is less than zero. -

2.5. Given that the nélinégative function g(x) has the property that

ro g(x)dx = 1.
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Show that

Sx, x3) = [2g(y xi + xi)]/("\/ xi+x7),0<x, <, 0<x, <o,

zero elsewhere, satisfies the conditions of being a p.d.f. of two
continuous-type random variables X, and X,.
Hint: Use polar coordinates.

2.6. Let fix,y)=e "7, 0 <x <o, 0 <y< oo, zero elsewhere, be the
p.d.f. of X and Y. Then if Z= X + Y, compute Pr(Z <0), Pr(Z < 6),
and, more generally, Pr(Z < z), for 0 < z < o0. What is the p.d.f. of
zZ?

2,7. Let X and Y have the pdf. fix.y)=1.0<x< 1, 0<y< ] zero
elsewhere. Find the p.d.f. of the product Z = XY.

2.8. Let 13 cards be taken, at random and without replacement, from an
ordinary deck of playing cards. If X is the number of spades in these 13
cards, find the p.d.f. of X. If, in addition, Y is the number of hearts in these
13 cards, find the probability Pr (X = 2, Y = 5). What is the joint p.d.f. of
X and Y?

2.9. Let the random variables X, and X, have the joint p.d.f. described as
follows:

(%) | 0.0) O ©2 (1.O) (LD (1.2

f(xI!XZ) [ Tzf Ill

and f(x,, x;) is equal to zero elsewhere.

(a) Write these probabilities in a rectangular array as in Example 2,
recording each marginal p.d.f. in the “‘margins.”. -

(b) What is Pr (X, + X, =1)?

2.10. Let X, and X, have the joint p.d.f. f(x,, x;) = 15x3x;, 0 < x; < x; < I,
zero elsewhere. Find each marginal p.d.f. and compute Pr (X, + X; < 1).
Hint: Graph the space of X, and X, and carefully choose the limits

of integration in determining each marginal p.d.f.

[~
|
(¥}

12

)

N2

1

~

2.2 Conditional Distributions and Expectations

We shall now discuss the notion of a conditional p.d.f. Let
X, and X, denote random variables of the discrete type which
have the joint p.d.f. f(x,, x;) which is positive on & and is
zero elsewhere. Let fi(x,) and f3(x,) denote, respectively, the
marginal probability density functions of X, and X,. Take A, to be
the set A4, = {(x,, x;): %, = x], —0 < x, < 0}, where x; is such
that P(A4,) = Pr (X, = x{) = fi(x}) > 0, and take A4, to be the set
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A, ={(x,,x;): —o0 < x; < 00, X; = x3}. Then, by definition, the
conditional probability of the event A,, given the event A4, is
P4, 4;) _Pr(X,=xi, X, =x;) _fixi, )

P(4,) Pr (X, = xj) Alx)

P(A;|4,) =

That is, if (x,, x,) is any point at which fi(x, ) > 0, the conditional
probability that X, = x,, given that X, = x,, is f{x,, x,)/f;(x,). With x,
held fast, and with £, (x,) > 0, this function of x, satisfies the conditions
of being a p.d.f. of a discrete type of random variable X, because
Sfx1, x,)//1(x,) is nonnegative and

f(xl,xz) 1 Silxy)
Py = iy & o) =

e

We now define the symbbl f2,.(x2|x,) by the relation

f(xla xz)
fike)

and we call f;,(x,|x,) the conditional p.d.f. of the discrete type of
random variable X,, given that the discrete type of random variable
X\ = x,. In a similar manner we define the symbol f,,z(x. |x,) by the
relation

San(xalx)) = fi(x)) >0,

f( Iax2)
filx)

and we call fj,(x,|x,) the conditional p.d.f. of the discrete type of
random variable X,, given that the discrete type of random variable
X 2 = Xj.

Now let X, and X, denote random variables of the continuous type
that have the joint p.d.f. f{x,, x,) and the marginal probability density
functions f,(x,) and f;(x,), respectively. We shall use the results of the
preceding paragraph to motivate a definition of a conditional p.d.f. of
a continuous type of random vanable ‘When f,(x,) > 0, we define the
symbol f,;(x;|x,) by the relation

Sip(xilx;) = | Sf2(x3) > 0,

./(xlv x2)
fita)

In this relaﬁon, x, is to be thought of as having a fixed (but any fixed)

fzu(x2|x1) =
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value for which f,(x,) > 0. It is ev1dent that f3,(x;|x,) is nonnegative
and that :

f(xl’ xz) dx,
f-( 1)

= —”"j S(x1, x;) dx,

J fzu(x2|x’|) dx;

_m SHi(x) =

That is, fy,(x2|x,) has the properties of a p-d.f. of one continuous type
of random variable. It is called the conditional p.d.f. of the continuous
type of random variable X, given that the continuous type of random
variable X, has the value x,. When f;(x;) > 0, the conditional p.d.f. of
the continuous type of random variable X, given that the continuous
type of random variable X, has the value x,, is defined by

Jia(xi]x2) —f(f:‘z’ 32) f2(x3) > 0.

Since each of f3,(x;|x,) and fi,(x|x,) is a p.d.f. of one random
variable (whether of the discrete or the continuous type), each has all
the properties of such a p.d.f. Thus we can compute probabilities and
mathematical expectations. If the random variables are of the
continuous type, the probability

b
Pr(a < X; < blX, =x) = J\ San(x2lxy) dx;

is called “the conditional probability that a < X, < b, given that
X, =x,.” If there is no ambiguity, this may be written in the
form Pr(a < X, < b|x,). Similarly, the conditional probability that
c< X, <d, given X, = x,, is :

Pric <X, ’<’d|X27= X;) = j fl|2(xllx2) dx,.

If u(X;) is a function of X,, the expectation

Elu(X)lx,] = J' u(xz)f2||(x2|x|) dx,

— @

is called the conditional expectation of u(X,), given that X, = x,.
In particular, if they do exist, then E(X;|x,) is the mean and
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E{[X, — E(Xy)x,)P’|x,} is the variance of the conditional distribution of
X,, given X, = x;, which can be written more simply as var (X;|x,). It
is convenient to refer to these as the ‘“‘conditional mean” and the
“conditional variance” of X,, given X, = x,. Of course, we have

var (X;|x,) = E(X3|x) — [E(Xz|x))]

from an earlier result. In like manner, the conditional expectation of
u(X,), given X, = x,, is given by

Efu(X))Ix,] = J “(xl)fm(xdxz) dx,.

With random variables of the discrete type, these conditional
probabilities and conditional expectations are computed by using
summation instead of integration. An illustrative example follows.

Example 1. Let X| and X, have the joint p.d.f.
S(x, x3) =2, O<x<x,<1,
=0 elsewhere.
Then the marginal probability density functions are, respectively,

1
ﬁ(x|)=J 2dx:=2(l—x|), 0<x|<1,
x1
=0 elsewhere,
and

X2
ﬁ(x2)=L 2dx|=2x2, 0<Iz<1,

=0 elsewhere.
The conditional p.d.f. of X, given X, =x,, 0 <x, <1, is

2
flp(x||x2)=2—x2=x—2, 0<x; <x,
=0 elsewhere.

Here the conditional mean and conditional variance of X, givén X, = x,, are,
respectively,

o0

E(X,|x,;) = X fip(xi]x;) dx,
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N I AYA B
var (X,|x;) = L (x. 2) (xz) dx,

Finally, we shall compare the values of

Pr0< X, <iXo=2) and Pr0< X, <.
We have

112 112
Pr (0 < X, <%|X2=%)=.[ fi|2(X||%)dx| =J (%)dxl =§,
0 (]

and

but
12

12
Pr(O<X.<%)=J f,(x,)dx.=J' 2(1 = x,) dx, =1.
' 0 0

Since E(X,|x,) is a function of x,, then E(X,|X,) is a random
variable with its own distribution, mean, and variance. Let us consider
the following illustration of this.

Example 2. Let X, and X, have the joint p.d.f.

Slx,, x;3) = 6x,, O<x,<x <1,
=0 elsewhere.
Then the marginal p.d.f. of X, is

x]

_fl(X|)=.[ 6deX2G= 3x%, 0<x|< l,
4

zero elsewhere. The conditional p.d.f. of X,, given X, = x|, is
6x, 2x
ﬁ||(lex|)=3_x;=?l2, 0<x;<x,
zero elsewhere, whére 0 < x, < 1. The conditional mean of X, given X, = x,,
is
o 2x p)
X2(?12):dx;’=§xl, O<X|< 1.

Now E(X,|X,) = 2X,/3 is a random variable, say Y. The distribution function
of Y=2X,/3is
3y

G(y)=Pr(Y$y)=Pr(X._<_—2—), 05y<%.

E(X2|xl) = J

0

From the p.d.f. fi(x,), we have

Wiz 27
G(y)=J 3xidxn=Ty;, 05y<-23--
(1}
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Of course, G(y) =0, if y <0, and G(y) = 1, if 2 < y. The p.d.f., mean, and
variance of Y = 2X,/3 are v

81y2
g(y) = —é’i 0<y<%,
zero elsewhere,
2/3
81y 1
EY) = }'(T) dy=5,
0

and

Since the marginal p.d.f. of X, is

1
So(xy) = J 6x, dx, = 6x5(1 — x3), 0<x, <1,
x2

zero elsewhere, it is easy to show that E(X,) = }and var (X;) = %. That s, here
E(Y) = E[E(X,|X})] = E(X))
and
var (Y) = var [E(X,|X;)] < var (X5).

Example 2 is excellent, as it provides us with the opportunity to
apply many of these new definitions as well as review the distribution
function technique for finding the distribution of a function of a ran-
dom variable, namely Y = 2X,/3. Moreover, the two observations at
the end of Example 2 are no accident because it is true, in general, that

E[E(X,|X))] = E(X,) and  var [E(X,|X))] < var (X,).

To prove these two facts, we must first comment on the expectation
of a function of two random variables, say u(X,, X;). We do this for
the continuous case, but the argument holds in the discrete case with
summations replacing integrals. Of course, ¥ = u(X, X,) is a random
variable and has a p.d.f,, say g(»), and

EY) = J yg(y) dy.
However, as before, it can be proved (Section 4.7) that E(Y) equals

E[u(Xn,Xz)]=Jw Jw u(x,, x2)f(xy, x3) dx, dx;.
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We call E[u(X,, X;)] the expectation (mathematical expectation or
expected value) of u(X,, X,), and it can be shown to be a linear
operator as in the one-variable case. We also note that the expected
value of X, can be found in two ways:

E(X)) = J J x f{x,, x5) dx, dx, = J x3./2(x,) dx,,
the latter single integral being obtained from the double integral by
integrating on x, first.

Example 3. Let X, and X, have the p.d.f.
Sfx,, x3) = 8x,x,, OD<x<x,<1,
=0 elsewhere.
Then

E(X.X§) = J. xlxzzf(xls x,) dx, dx,
o

= I 8xx3 dx, dx,

Jo Vo

ml

xgdx2 =3

|
o

In addition,
b pmxa
E(X,) = J J\ x(8x,x;) dx; dx, = %-
0 «0

Since X, has the p.d.f. fi(x;) = 4x§; 0 < x;, < 1, zero elsewhere, the latter
expectation can be found by
1

E(X;) = j x1(4x;) dx, = %-
0

Finally,
E(7X, X + 5X;) = TE(X, X2) + SE(X,)

=(NEH + Q) =3

We begin the proof of E[E(X,]|X,)] = E(X;) and var [E(X;3|X})] <
var (X,) by noting that

E(X,) = J .[ X f(xy, x3) dx; dx,
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_ (* T S, xy)
—‘-w [J_wxz 5100 de]fl(xl)dxl

= | EX3lx))fi(x) dx,

= E[E(X,]X))],
which is the first result. Consider next, with u, = E(X),),
var (X;) = E[(X; — u,)’]
= E{[Xz - E(X2|X|)_ + E(X;|X;) — #2]2}
= E{[X, — E(X,|X\)I'} + E{[E(X,|X,) — )}
+ 2E{[X; — E(X,|X)I[E(X,] X)) — pal}-

We shall show that the last term of the right-hand member of the
immediately preceding equation is zero. It is equal to

ZJ‘ J [x; — E(Xa|x)I[E(Xalx)) — pal f(x1, x,) dx; dx,

= 2J, [E(X2)x,) — pa]

Sf(xy, x3)
Sikx)

But E(X;|x,) is the conditional mean of X,, given X, = x,. Since the
expression in the inner braces is equal to
E(X,|x)) — E(Xalx,) =0,
the double integral is equal to zero. Accordingly, we have
var (X;) = E{[X, — E(X,|X))F'} + E{[E(X,)X,) — I}

The first term in the right-hand member of this equation is nonnegative
because it is the expected value of a nonnegative function, namely
[X, — E(X;|X,)F. Since E[E(X,]X,)] = u,, the second term will be the
var [E(X,|X,)]. Hence we have ‘

var (X,) > var [E(X,|X})],

which completes the proof.
Intuitively, this result could have this useful interpretation. Both
the random variables X, and E(X,|X;) have the same mean y,. If we

y {r by — EC )] dx, }f. (x,) dx..
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did not know pu,, we could use either of the two random variables to
guess at the unknown y,. Since, however, var (X,) > var [E(X;|X|)] we
would put more reliance in E(X,|X,) as a guess. That is, if we
observe the pair (X, X;) to be (x,, x,), we would prefer to use E(X;|x,)
to x, as a guess at the unknown u,. When studying the use of sufficient
statistics in estimation in Chapter 7, we make use of this famous result,
attributed to C. R. Rao and David Blackwell.

EXERCISES

2.11. Let X, and X, have the joint p.d.f. fix, x;)=x,+x,0<x, <1,
0 < x; < 1, zero elsewhere. Find the conditional mean and variance of X,
given X, =x,,0<x, <1.

2.12. Let fip(x]x;) = ¢, x/x3, 0 < x; < x3, 0 < x, < 1, zero elsewhere, and
foilx)) =¢,x3, 0<x,<1, zero elsewhere, denote, respectively, the
conditional p.d.f. of X, given X, = x,, and the marginal p.d.f. of X,.
Determine:

(a) The constants ¢, and c,.

(b) The joint p.d.f. of X, and X,.
© PrG< X <ilX,=3).

@) PrG< X <)

2.13. Let f{x,, x;) = 21x3x;, 0 < x, < x, < 1, zero elsewhere, be the joint
p.d.f. of X, and X,.
(a) Find the conditional mean and variance of X,, given X, = x,,
0<x, <.
(b) Find the distribution of Y = E(X,|X;).
(c) Determine E(Y) and var (Y) and compare these to E(X,) and var (X)),
respectively.

2.14. If X, and X, are random variables of the discrete type having
p.d.f flxi, x;) = (3 + 2x))/18, (x,, x2) = (1, 1), (1,2), (2, 1), (2,2), zero
elsewhere, determine the conditional mean and variance of X;, given
X, = x,, for x; = 1 or 2. Also compute E(3X, — 2X,).

2.15. Fivecards are drawn at random and without replacement from a bridge
deck. Let the random variables X,, X, and X, denote, respectively, the
number of spades, the number of hearts, and the number of diamonds that
appear among the five cards.

(a) Determine the joint p.d.f. of X, X;, and X,.
(b) Find the marginal probability density functions of X, X,, and X,.
(c) What is the joint conditional p.d.f. of X, and X;, given that X, = 3?
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2.16. Let X, and X, have the joint p.d.f. f{x,, x,) described as follows:

(xl9x2) ’ (O’ O) (O’ 1) (1’ O) (11 l) (2s O) (2’ l)

| 3 4 3 6 1
Sxi, x3) | ' it T i T T8

and f{x,, x;) is equal to zero elsewhere. Find the two marginal probability
density functions and the two conditional means.
Hint: Write the probabilities in a rectangular array.

2.17. Let us choose at random a point from the interval (0, 1) and let the
random variable X, be equal to the number which corresponds to that point.
Then choose a point at random from the interval (0, x,), where x, is the
experimental value of X|; and let the random variable X, be equal to the
number which corresponds to this point.

(a) Make assumptions about the marginal p.d.f. f;(x,), and the conditional
p-d.f. fo (x,xy). ,

(b)_Compute Pr (X, + X; = 1).

(c) Find the conditional mean E(X,[x,).

2.18. Let f{x) and F(x) denote, respectively, the p.d.f. and the distribution
function of the random variable X. The conditional p.d.f. of X, given
X > x;, x; a fixed number, is defined by Aix|X > xp) = Ax)/[1 — Rxp)],
X, < x, zero elsewhere. This kind of conditional p.d.f. finds application in
a problem of time until death, given survival until time x,.

(a) Show that f{x]|X > x;) is a p.d.f.
(b) Let Aix)=e¢*, O0O<x<o, and zero elsewhere. Compute
Pr(X>2X>1).

2.19. Let X and Y have the joint p.d.f. fix,y)=6(1 —x—y),0<x,0< y,
x+y<]1, and zero elsewhere. Compute Pr(2X +3Y < 1) and
E(XY + 2X7).

2.3 The Correlation Coefficient

Because the result that we obtain in this section is more familiar in
terms of X and Y, we use X and Y rather than X, and X, as symbols
for our two random variables. Let X and Y have joint p.d.f. f{x, y). If
u(x, y) is a function of x and y, then EJu(X, Y)] was defined, subject to
its existence, in Section 2.2. The existence of all mathematical
expectations will be assumed in this discussion. The means of X and
Y, say u, and u,, are obtained by taking u(x, y) to be x and y,
respectively; and the variances of X and Y, say ¢’ and o2, are
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obtained by setting the function u(x, y) equal to (x — u,)?and (y — u,)%,
respectively. Consider the mathematical expectation

E[(X — )Y — )] = E(XY — o X — i Y + )
= E(XY) — p E(X) — i, E(Y) + 4y
= E(XY) — wp,.

This number is called the covariance of X and Y and is often denoted
by cov (X, Y). If each of 4, and o, is positive, the number

_E[(X = p )Y — )] _cov(X,Y)
p= 0,01 B g0,

is called the correlation coefficient of X and Y. If the standard deviations
are positive, the correlation coefficient of any two random variables is
defined to be the covariance of the two random variables divided by
the product of the standard deviations of the two random variables.
It should be noted that the expected value of the product of two random
variables is equal to the product of their expectations plus their
covariance; that is, E(XY) = u,u, + pa,6: = u,p; + cov (X, Y).

Example 1. Let the random variables X and Y have the joint p.d.f.
fx,y)=x+y, O<x<l, O<yx<l|,
=0 elsewhere.

We shall compute the correlation coefficient of X and Y. When only two
variables are under consideration, we shall denote the correlation coefficient
by p. Now
] | 7
m = E(X) =J J x(x + y)dxdy = 15
0 0

and
P B 7Y _ 1
oy = EXY) —u = x{x + y)dx dy — ) =14
0 ~0
Similarly,

T
12

The covariance of X and Y is

I e 2
E(Xy)_ﬂlﬂ2=’[ J X)’(X+)’)dXd.V—(|—72)= 144
0 Y0

= E(Y)= and o= E(Y?) - pi=——.
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Accordingly, the correlation coefficient of X and Y is

Remark. For certain kinds of distributions of two random variables, say
X and Y, the correlation coefficient p proves to be a very useful characteristic
of the distribution. Unfortunately, the formal definition of p does not reveal
this fact. At this time we make some observations about p, some of which will
be explored more fully at a later stage. It will soon be seen that if a joint
distribution of two variables has a correlation coefficient (that is, if both of
the variances are positive), then p satisfies — 1 < p < 1.If p = 1, thereis a line
with equation y = a + bx, b > 0, the graph of which contains all of the
probability of the distribution of X and Y. In this extreme case, we have
Pr(Y =a+ bX) = 1.If p = — 1, we have the same state of affairs except that
b < 0. This suggests the following interesting question: When p does not have
one of its extreme values, is there a line in the xy-plane such that the
probability for X and Y tends to be concentrated in a band about this line?
Under certain restrictive conditions this is in fact the case, and under those
conditions we can look upon p as a measure of the intensity of the
concentration of the probability for X and Y about that line.

— T 1
1

Next, let f(x, y) denote the joint p.d.f. of two random variables X
and Y and let f,(x) denote the marginal p.d.f. of X. The conditional
p.d.f. of Y, given X = x, is

f(x, y)
Su(yx) =—/"—==
" fix)
at points where f,(x) > 0. Then the conditional mean of Y, given
X = x, is given by

yf(x,y)dy

E

when dealing with random variables of the continuous type. This
conditional mean of Y, given X = x, is, of course, a function of x alone,
say u(x). In like vein, the conditional mean of X, given Y =y, is a
function of y alone, say v(y).

In case u(x) is a linear function of x, say u(x) = a + bx, we say the
conditional mean of Y is linear in x; or that Y has a linear conditional
mean. When u(x) = a + bx, the constants a and b have simple values
which will now be determined.

E(Y|x) = J Y (x) dy = —
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It will be assumed that neither &7 nor o3, the variances of X and Y,
is zero. From

'[ fx, y) dy
E(Y|x) =—= = a + bx,
SHi(x)
we have
Jm yAix, y) dy = (a + bx)fi(x). (1
If both members of Equation (1) are integrated on x, it is seen that
E(Y) = a + bE(X),

or

e =a+ by, | (2

where y, = E(X) and p, = E(Y). If both members of Equation (1) are
first multiplied by x and then integrated on x, we have

E(XY) = aE(X) + bE(X?),
or
P60 + iy, = ap, + b(o? + 1), (3)

where po, 0, is the covariance of X and Y. The simultaneous solution
of Equations (2) and (3) yields

[ [
a=uz—po—fu1 and b=p—.

That is,
0,
u(x) = E(Y|x) = p, + Py (x — m)
is the conditional mean of Y, given X = x, when the conditional mean

of Y is linear in x. If the conditional mean of X, given Y = y, is linear
in y, then that conditional mean is given by

o(y) = BXly) =+ p 2 0 = o).

We shall next investigate the variance of a conditional distribution
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under the assumption that the conditional mean is linear. The
conditional variance of Y is given by

var (¥|x) = Ty —H—p Z—f (x — u.)] S (ylx) dy

[ upey

ro T

‘ 2
(y— 1) —pz—f(x —u.)] Sflx, y)dy
= 7 *

when the random variables are of the continuous type. This variance
is nonnegative and is at most a function of x alone. If then, it is

multiplied by f,(x) and integrated on x, the result obtained will be
nonnegative. This result is

f J [(y—uz)—p;?(x—u.)] fx, y) dy dx

=I f l:(y—ﬂz)z—ZP%:(}’—#z)(x_l‘l)

; ,
+ p’ gﬁ (x — u:)’]f(x, y) dy dx
= E[(Y = joF] = 2p 2 E(X — m)(¥ = o)

o
+ 0 El(X — )]

0

0‘2

o
— g2 2 272 2
—0'2—2pgl'p0'|0'2+p PO'I
1

= 63 — 2p’03 + p’o; = a3(1 — p?) 2 0.

That is, if the variance, Equation (4), is denoted by k(x), then
E[k(X)] = 63(1 — p*) 2 0. Accordingly, p’ <l,or —1<p <1l 1Itis
left as an exercise to prove that —1 < p < 1 whether the conditional
mean is or is not linear.

Suppose that the variance, Equation (4), is positive but not a
function of x; that is, the variance is a constant & > 0. Now if & is
multiplied by fi(x) and integrated on x, the result is k, so that
k = 6%(1 — p?). Thus, in this case, the variance of each conditional
distribution of Y, given X = x, is 63(1 — p?). If p = 0, the variance of
each conditional distribution of Y, given X = x, is 7, the variance of
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the marginal distribution of Y. On the other hand, if p? is near one,
the variance of each conditional distribution of Y, given X = x, is
relatively small, and there is a high concentration of the probability
for this conditional distribution near the mean E(Y|x)= p,+
p(62/a)(x — ).

It should be pointed out that if the random variables X and Y in
the preceding discussion are taken to be of the discrete type, the results
just obtained are valid.

Example 2. Let the random variables X and Y have the linear con-
ditional means E(Y|x) = 4x + 3 and E(X|y) = &y — 3. Inaccordance with the
general formulas for the linear conditional means, we see that E(Y]x) = p, if
x =, and E(X|y) = y, if y = u,. Accordingly, in this special case, we have
Py = 4py + 3 and p, = Ly, — 3 so that u; = —¥ and u, = —12. The general
formulas for the linear conditional means also show that the product of the
coefficients of x and y, respectively, is equal to p? and that the quotient of these
coefficients is equal to 03/67. Here p? = 4(3%) = { with p = 3 (not —3}), and
63/63 = 64. Thus, from the two linear conditional means, we are able to find
the values of yu,, u4,, p, and a,/a,, but not the values of 4, and a,.

Example 3. To illustrate how the correlation coefficient measures the
intensity of the concentration of the probability for X and Y about a line, let
these random variables have a distribution that is uniform over the area
depicted in Figure 2.1. That is, the joint p.d.f. of X and Y is

f(x,y)=$, —a+bx<y<a+bx, —h<x<h,

=0 elsewhere.

FIGURE 2.1
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We assume here that b > 0, but the argument can be modified for 4 < 0. It
is easy to show that the p.d.f. of X is uniform, namely

a + bx 1 1
f](x)=,[ mdy=§-h-, —h<x<h,

—a+bx
=0 elsewhere.
Thus the conditional p.d.f. of Y, given X = x, is uniform:

1/4ah 1
fzu()’|x)="1//ﬁ=2—a, —a+bx<y<a+bx,

=0 elsewhere.

The conditional mean and variance are

E(Y|x) = bx and var (Y|x) = 932- .

From the general expressions for those characteristics we know that

b=p2 and a;=o-§(l—p2).

In addition, we know that o7 = #%/3. If we solve these three equations, we
obtain an expression for the correlation coefficient, namely

bh

N

1. As a gets small (large), the straight line effect is more (less) intense and p
is closer to 1 (zero).

2. As h gets large (small), the straight line effect is more (less) intense and p
is closer to 1 (zero).

3. As b gets large (small), the straight line effect is more (less) intense and p
is closer to 1 (zero).

Referring to Figure 2.1, we note:

This séction will conclude with a definition and an illustrative
example. Let f(x, y) denote the joint p.d.f. of the two random vari-
ables X and Y. If E(e"¥*2¥) exists for —h, <, < h, —h <t <h,
where h, and h, are positive, it is denoted by M(1,, t,) and is called the
moment-generating function (m.g.f.) of the joint distribution of X and
Y. Asin the case of one random variable, them.g.f. M(¢,, t,) completely
determines the joint distribution of X and Y, and hence the marginal
distributions of X and Y. In fact, the m.g.f. M (1)) of X is

M, (1) = E("*) = M(1,,0)
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and the m.g.f. M,(t;) of Y is
M, (1) = E(e"") = M(0, t,).

In addition, in the case of random variables of the continuous type,

M1, t S
o ;t:,. 2)=J j xkymeh X+ fix, y) dx dy,
1 Ul .

— a0

so that
;M1 1)
ot ey

= J Jm x*y™fix, y) dx dy = E(X*Y™).

ti=13=0 —o Y—w

For instance, in a simplified notation which appears to be clear,

dM(@0,0 M(0,0
l‘|=E(X)=—(§('t“"l, #2=E(Y)=g—5(?——),
t 2
M0, 0
ot = B0y - i =200 i,
ot (5)
o*M(0,0
03 = E(Y?) — ;= ——'-—-a(z )_ 13,
. t2
2*M(0, 0)
E[(X — u)(Y — )] = “anon By,

and from these we can compute the correlation coefficient p.

It is fairly obvious that the results of Equations (5) hold if X and
Y are random variables of the discrete type. Thus the correlation
coefficients may be computed by using the m.g.f. of the joint
distribution if that function is readily available. An illustrative example
follows. In this, we let € = exp (w).

Example 4. Let the continuous-type random variables X and Y have the
joint p.d.f.

fx,y)=¢e7’, 0<x<y<oo,
=0 elsewhere.

The m.g.f. of this joint distribution is
M, 1) = J J exp (tx + Ly — y) dy dx
0 X

1
(- -)(-1)
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provided that f, + 1, < 1 and ¢, < 1. For this dlStl‘lbuthl‘l, Equations (5)
become

= l’ M2 = 29

0'? = ls 0% = 2’ (6)

E[(X — p)(Y — )] = 1.

Verification of results of Equations (6) is left as an exercise. If, momen-
tarily, we accept these results, the correlation coefficient of X and Y is
p = 1/,/2. Furthermore, the moment-generating functions of the marginal
distributions of X and Y are, respectively,

ME 0 ==, a<l,

M(O, t;) = <l

I
(-7

These moment-generating functions are, of course, respectively, those of
the marginal probability density functions,

fl(x)=J edy=e", 0O0O<x<o0,

zero elsewhere, and
y

fz(y)=e"j dx = ye™?, 0<y< oo,
0

zero elsewhere.

EXERCISES

2.20. Let the random variables X and Y have the joint p.d.f.
@) fix,y) = 3, (x,y) =(0,0), (1, 1), (2, 2), zero elsewhere.
®) fx,») =3, (x, ) =(0,2), (1, 1), (2,0), zero elsewhere.
©) fix,y) =3 (x,»)=(0,0), (1, 1), (2,0), zero elsewhere.
In each case compute the correlation coefficient of X and Y.

2.21. Let X and Y have the joint p.d.f. described as follows:
(x,y) [ a,n 1,2 13) 2D 22 @3
T
and f{x, y) is equal to zero elsewhere. (a) Find the means y, and u,, the
variances ¢ and o3, and the correlation coefficient p. (b) Compute

E(Y|X = 1), E(Y|X = 2), and the line y, + p(a,/6,)(x — p,). Do the points
[k, E(Y|X = k)], k = 1, 2, lie on this line?
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2.22. Let fix,y) =2,0 < x<y,0 <y < 1, zero elsewhere, be the joint p.d.f.
of X and Y. Show that the conditional means are, respectively, (1 + x)/2,
0 <x <1, and y/2, 0 < y < 1. Show that the correlation coefficient of X
and Yis p =3.

2.23. Show that the variance of the conditional distribution of Y, given X = x,
in Exercise 2.22, is (1 — x)¥/12, 0 < x < 1, and that the variance of the
conditional distribution of X, given Y =y, is ?/12,0 <y < 1.

2.24. Verify the results of Equations (6) of this section.

2.25. Let X and Y have the joint p.d.f. fix,y)=1, - x<y<x,0<x<1,
zero elsewhere. Show that, on the set of positive probability density, the
graph of E(Y|x) is a straight line, whereas that of E(X]y) is not a straight
line.

2.26. If the correlation coefficient p of X and Y exists, showthat —1 < p < 1.

Hint: Consider the discriminant of the nonnegative quadratic func-

tion A(v) = E{[(X — u,;) + «(Y — u,)'}, where v is real and is not a function
of X nor of Y.

2.27. Let lll(tls tz) =1In M(tl, tz), where M(tl, tz) is the m.g.f. of X and Y.
Show that

ay(0, 0) oY(0, 0)
o, ’ o’

=1,2,

and
(0, 0)
ot, ot,
yield the means, the variances, and the covariance of the two random

variables. Use this result to find the means, the variances, and the covartance
of X and Y of Example 4.

2.4 Independent Random Variables

Let X, and X, denote random variables of either the continuous or
the discrete type which have the joint p.d.f. f{x,, x,) and marginal
probability density functions f;(x,) and f;(x;), respectively. In
accordance with the definition of the conditional p.d.f. f5(x2lx)), we
may write the joint p.d.f. f{x,, x,) as

Sf(xy, x;) ='f2||(x2|x|)f| (1)

Suppose that we have an instance where f;(x,|x,) does not depend
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upon x,. Then the marginal p.d.f. of X, is, for random variables of the
continuous type,

fa(x) = J‘ fzu(x2|x|)f1(x1) dx,

=f2.f(xg|xl)f fi(x) dx,

= f2|l(x2|xl ).
Accordingly,
fa(x2) =f‘2jl(x2|x‘l) ‘ and fx1, x3) = [i(x)f2(x2),

when f;,(x;|x,) does not depend upon x;. That is, if the conditional
distribution of X, given X, = x,, is independent of any assumption
about x|, then flx,, x,) = fi(x;)f2(x;). These considerations motivate
the following definition.

" Definition 2. Let the random variables X, and X, have the joint
p.d.f. flx,, x;) and the marginal probability density functions fitx)
and f;(x,), respectively. The random variables X, and X, are said to be
independent if, and only if, Ax,, x;) = f,(x;)f>(x,). Random variables
that are not independent are said to be dependent.

Remarks. Two comments should be made about the preceding definition.
First, the product of two positive functions f;(x,)f;(x;) means a function
that is positive on a product space. That is, if f,(x,) and f,(x,) are positive
on, and only on, the respective spaces &/, and «f,, then the product of
fi(x)) and fy(x;) is positive on,. and only on, the product space
.szl = {(x1, X2) : X, € o, x, € A,}. For instance, if o, = {x,: 0 < x, < 1}and

={x,:0<x,<3}, then o ={(x,x,):0<x,<1,0< x,<3}. The
second remark pertains to the identity. The identity in Definition 2 should be
interpreted as follows. There may be certain points (x,, x,) € &/ at which
Axi, x3) # f1(x))f2(x;). However, if A is the set of points (x,, x,) at which the
equality does not hold, then P(4) = 0. In the subsequent theorems and the
subsequent generalizations, a product of nonnegative functions and an
identity should be interpreted in an analogous manner.

Example 1. Let the joint p.d.f. of X, and X, be
S(x15 %3) = %) + x,, O<x,<1, O0<x,<1,

=0  elsewhere. '
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It will be shown that X, and X, are dependent. Here the margmal probability
density functions are

ﬁ(xl)=rﬂx|,xﬂdx2=J(x|+xz)dxz=x|+%, O0<x <1,
—o0 0 R

=0 elsewhere,

and
’ 0 1
_fz(Xz) = J‘ f(x., x:) dxl = J (x] + x2) dxl 3 + X5, 0< Xy < l,
— o0 0

=0 elsewhere.

Since f(x;, x,) # f,(x1)f2(x,), the random variables X, and X, are dependent

The following theorem makes it possible to assert, without
computing the marginal probability density functions, that the random
variables X, and X, of Example 1 are dependent.

Theorem 1. Let the random variables X, and X, have the joint p.d.f.
f(x\, x;). Then X, and X, are independent if and only if f(x,, x,) can be
written as a product of a nonnegative function of x, alone and a
nonnegatzve Sfunction of x, alone. That is,

Sf(x1, x3) = g(x)h(x,),

where g(x,) > 0, x, € &,, zero elsewhere, and h(x,) > 0, x, € «,, zero
elsewhere.

Proof. If X, and X, are independent, then f(x,, x;) = fi(x,)f2(x2),
where f,(x,) and f,(x,) are the marginal probability density functions
of X, and X,, respectively. Thus the condition f(x,, x;) = g(x;)h(x;)
is fulfilled.

Conversely, if S(x, x) = g(x.)h(xz) then, for random variables of
the continuous type, we have

f.(x.)=J g(x)h(x,) dxz=g(x.)J h(xz) dx, = c,g(x,)

and

fa(xy) = J g(xl)h(xZ) dx, = h(xz) g(xl) dx, = c;h(x;),
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where ¢, and c, are constants, not functions of x, or x,. Moreover,
¢, c; = 1 because '

1= on J‘QQ 8(x1)h(x;) dx, dx, = l:on g(x) dxl-“:.ro h(x,) dx{l

= (€2(.
These results imply that i

S(xy, x2) = g(x,)h(xy) = c18(x1)ezh(x;) = fi(x1)/2(x2).
'Accordingly, X, and X, are independent.

If we now refer to Example 1, we see that the joint p.d.f.

Sx, x3) = x; + x,, 0<x <1, 0<x,<1,

=0 elsewhere,

cannot be written as the product of a nonnegative function of x, alone
and a nonnegative function of x, alone. Accordingly, X, and X, are
dependent.

Example 2. Let the p.d.f. of the random variables X; and X, be
J(x), x;) = 8x,x;, 0 < x; < x; < 1, zero elsewhere. The formula 8x,x, might
suggest to some that X, and X, are independent. However, if we consider the
space & = {(x,, x;) : 0 < x, < X, < 1}, we see that it is not a product space.
This should make it clear that, in general, X, and X, must be dependent if the
space of positive probability density of X, and X, is bounded by a curve that
is neither a horizontal nor a vertical line.

We now give a theorem that frequently simplifies the calculations
of probabilities of events which involve independent variables.

Theorem 2. If X, and X, are independent random variables with
marginal probability density functions f,(x,) and f,(x,), respectively, then

Pr(a<X,<b,c<X,<d)=Pr(a<X, <b)Pr(c<X,<d)

for every a < b and ¢ < d, where a, b, c, and d are constants.

Proof. From the independence of X, and X,, the joint p.d.f. of X|
and X; is fi(x,)f2(x;). Accordingly, in the continuous case,
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) V b pd .
Prla<X, <bc<X,<d)= JJ S[1(x)f2(xy) dix; dx,

;[fﬁuom{[fﬁ“””%

=Pr(a< X, <b)Pr(c < X, <d)
or, in the discrete case,

Pr@a<X,<bc<X,<d)y= Y Y. [ix)falx)

a<xy<b e<xy<d

=[ ) bfl(xl):'[ ) dfz(xz)]

=Pr(a<X,<b)Pr(c< X, <d,
as was to be shown.

Example 3. In Example 1, X and X, were found to be dependent. There,
in general,

Pr(a<X, <bc<X,<d)#Pr(a< X, <b)Pr(c< X, <d).
For instance,

/2 mlf2
Pr(0<X.<§,0<X2<%)=J‘ J. (x) + x;) dx, dx, = §,
0 0

whereas

1/2
mm<M<9=J(n+9m=g
O - 0

and

o
Pr»(0<X2<§)=J G+ xy) dx, =4
0

Not merely are calculations of some probabilities usually simpler
when we have independent random variables, but many expectations,
including certain moment-generating functions, have comparably
simpler computations. The following result will prove so useful that we
state.it in the form of a theorem.

Theorem 3. Let the independent random variables X, and X, have the
marginal probability density functions f,(x;) and fy(x,), respectively.
The expected value of the product of a function (X)) of X, alone and
a function v(X;) of X, alone is, subject to their existence, equal to
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the product of the expected value of u(X,) and the expected value of v(X,);
that is,
E[u(X,)v(X;)] = E[u(X))]E[v(X;)]-

Proof. The independence of X, and X, implies that the joint p.d.f.
of X, and X, is f,(x,)f2(x;). Thus we have, by definition of expectation,
in the contmuous case,

E[M(Xu)v(Xz)] = r r u(X-)D(Xz)f (x|)fz(x2) dx, dx,

= I:r u(-;xl)ﬁ (xl) dxl:":r v(x,)f5(x,) dxz:l

= Eu(X))]E[(X,));

or, in the discrete case,

Elu(X,\ (X))} = Z Z u(x, )U(xz)fl(xl)fz(xz)

x2 X

= [Z u(x)fi(x |)][Z U(xz)fz(xz)]

= E[u(X\)]E[u(X)],
as stated in the theorem.

Example 4. Let X and Y be two independent random variables with
means yu, and p, and positive variances o7 and a3, respectively. We shall show
that the independence of X and Y implies that the correlation coefficient of
X and Y is zero. This is true because the covariance of X and Y is equal to

E[(X — m )Y — m)] = E(X — m)E(Y — pp) = 0.

We shall now ptove a very useful theorem about independent:
random variables. The proof of the theorem relies heavily upon our
assertion that an m.g.f., when it exists, is unique and that it uniquely
determines the dlstrlbutlon of probability. )

Theorem4. Let X, and X, denote random vanables thar haue thejoint
D- d. f. f(x\, x,) and the marginal probability density functions f;(x,) and

f2(x,), respectively. Furthermore, let M(t,, t,) denote the m.g.f. of the
distribution. Then X, and X, are independent,if and only if -

M(tla 12)'= M(tla O)M(Oa tZ)'
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Proof. If X, and X, are independent, then
M(t,, ) = E(e"*1+20)
= E(ehxlelz«\’z)
= E(e"*1)E(e"2"?)
= M(t,, OY)M(O0, t,).

Thus the independence of X, and X, implies that the m.g.f. of the joint
distribution factors .into the product of the moment-generating
functions of the two marginal distributions.

Suppose next that the m.g.f. of the joint distribution of X, and X,
is given by M(¢,, t,) = M(#, 0)M(0, t,). Now X, has the unique m.g.f.
which, in the continuous case, is given by

M(,,0) = J e'"1f (x) dx,.
Similarly, the unique m.g.f. of X,, in the continuous case, is given by

M@, t,) = J | e')f,(x,) dx,.

— @

Thus we have

M(t, 6)M(0, )= I:J‘m e’lxlfl (x7) dxl][jm e’mfz(xz) dx;J

— a0

= Jm JW hatbmf (x)) f1(x,) dx, dx,.
We are glven that M(¢,, t:; —_;(t., O)M(O t,); so
; M(t,, 1) = Jm Jw el g (x,)f4(x;) dx, dx,.
But M(¢,, 1) is thé m. g_: oft TY, and X,. Thus also
M(t.. 1) = J J elixit ’mf(x. x;) dx, dx,.

The uniqueness of the r;l g. f_ implies that the two distributions of
probability that are described by f,(x,)f;(x;) and fix,, x;) are the

same. Thus - -
o Sflx,, x;) = fl(xl)fZ(xZ)

That is, if M(t,, ;) = M(t,, 0)M(0, t,), then X, and X, are indepen-
dent. This completes the proof when the random variables are of the
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continuous type. With random variables of the discrete type, the
proof is made by using summation instead of integration.

EXERCISES

2.28. Show that the random variables X, and X; with joint p.d.f. f(x,, x,) =
12x,%;(1 — x3), 0 < x, < 1, 0 < x, < 1, zero elsewhere, are independent.

2.29. If the random variables X, and X, have the joint p.d.f. f(x,, x;) =
2e "7 0 < x, <X, 0 <x, <00, zero elsewhere, show that X; and X,
are dependent.

2.30. Let f(x,x;)) =1, x,=1,2,3,4, and x, = 1, 2, 3,4, zero elsewhere,
be the joint p.d.f. of X, and X,. Show that X, and X, are independent.

2.31. FindPr (0 < X, <1, 0.< X; < j)if therandom variables X, and X, have
the joint p.d.f. flx,x)=4x,(1 —x;), 0<x, <1, O0<x,<1, zero
elsewhere.

2.32. Find the probability of the union of the events a< X, <b,

—w<X,<wand —w0 <X, <00, c< X, <dif X, and X, are two

independent variables with Pr(a < X, <b)=2%and Pr(c< X, <d) =3.
2.33. If f(x), x;) =772, 0 < x, < 0, 0 < x, < 00, zero elsewhere, is the

joint p.d.f. of the random variables X, and X,, show that X, and X, are

independent and that M(1,,t,) = (1 —¢,)"'(1 — )", < 1, ¢, < 1. Also

show that : . »

EE@ M+ =(1-0)"% 1<
Accordingly, find the mean and the variance of Y = X, + X,.

2.34. Let the random variables X, and X, have the joint p.d.f. f(x,, x;) = 1/n,
(x; — D? + (x; + 2)* < 1, zero elsewhere. Find f;(x,) and f;(x,). Are X, and
X, independent?

2.35. Let X and Y have the jbint pd.f. f(x,y)=3x,0<y<x<1, zero
elsewhere. Are X and Y independent? If not, find E(X]y).

2.36. Suppose that a man leaves for work between 8:00 A.M. and 8:30 A.M.
and takes between 40 and 50 minutes to get to the office. Let X denote the
time of departure and let Y denote the time of travel. If we assume that these
random variables are independent and uniformly distributed, find the
probability that he arrives at the office before 9:00 a.M.

2.5 Extension to Several Random Variables

The notions about two random variables can be extended
immediately to n random variables. We make the following definition
of the space of n random variables.
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Definition 3. Consider a random' experiment with the sample
space €. Let the random variable X, assign to each. element
ce¥% one and only one real number X(c)=x;, i=1,2,...,n
The space of these random variables is the set of ordered n- tuples

={(x, X2, ..., %):x=X,(),...,x,=X,(c),ce ¥}. Further-
more, let A be a subset of /. Then Pr [(X 3. ., X,) € A] = P(C), where
C={c:ce¥ and [X,(c), Xa(c), . . . , X,(c)] € A}

Again we should make the comment that Pr[(X,, ..., X,) e 4]
could be denoted by the probability set function Py, ..x,(A). But, if
there is no chance of misunderstanding, it will be written simply as
P(A). We say that the n random variables X, Xj, . . ., X, are of the
discrete type or of the continuous type, and have a dlstrtbutlon of that
type, according as the probability set functlon P(A),A = «/,canbe
expressed as

PA) =Pr{(X,,...,X)eAl=Y Y flxi,..., x),
or as

P(A)=Pr[(X.,...,Xn)eA1=f---ff(xk,,...,xn)dxl---dx,.

In accordance with the convention of extending the definition of a
p.d.f.,itisseen that a point function fessentially satisfies the conditions
of being a p.d.f. if (a) f'is defined and is nonnegative for all real values
of its argument(s) and if (b) its integral [for the continuous type of
random variable(s)], or its sum [for the discrete type of random
variable(s)] over all real values of its argument(s) is 1.

The distribution function of the » random variables X I X5, ..., X,
is the point function

Fxiy X ) =P (X <%, X € %y .o, X, < X,).
An illustrative example follows.

Example L Let f(x, y. z)= e“”"”’ 0 < x, y, z < o0, zero elsewhere, be
the p.d.f. of the random variables X, Y, and Z. Then the distribution function
of X, Y, and Z is given by

Hx,y,z2)=Pr(X<x,Y<y,Z<2)

z py px
=J JJ‘ e """ Ydudvdw
0 ¥ 0

=(1—e )1 —e (1 =e), 0<x,y,z< 00,
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and is-equal to zero elsewhere. Incndentally, except for a set of probability
measure zero, we' have -

O’Flx, y, Z)

2x 3y 02 = f(x, , 2).
~Let X, X,,...,X, be random variables having joint p.d.f.
S, X5, .00y X,) and let u(X), X5, .. ,X,) be a function of these

variables such that the n-fold mtegral |
v[ '..J‘ u(x|,X2,...,xn)f(x|,x2,.. "xn) dxl de-'.dxn (1)

exists, if the random variables are of the continuous type, or such that
the n-fold sum ‘ ~

3

YT, Xas e X O XX )

exists if the random variables are of the discrete type. The n-fold
integral (or the n-fold sum, as the case may be) is called the expectation,
denoted by Efu(X,, X,, . .., X,)], of the function u(X,, X5, . . ., X,,).In
Section 4.7 we show this expectation to be equal to E(Y), where
Y=u(X,, X, ..., X,). Of course, E is a linear operator.

We shall now discuss the notions of marginal and conditional
probability density functions from the point of view of n random
variables. All of the preceding definitions can be directly generalized
to the case of n variables in the following manner. Let the random
variables X, X,, . . ., X, have the joint p.d.f. f(x;, x,, . . . , X,). If the
random variables are of the continuous type, then by an argument
similar to the two-variable case, we have for every a < b,

Pr@a< X, <b)= J Si(xy) dx,,
where fi(x)) is deﬁned by the (n — 1)-fold integral
j‘l(xl):J ...‘f f(xI’xZ’ .A..A,,x,,)de"'dx,,.

Therefore, f,(x,) is the p.d.f. of the one random variable X, and f(x,)
is called the marginal p.d.f. of X;. The marginal probability density
functions f,(x,), ..., f,(x;) of XZ, ..., X,, respectively, are similar
(n — 1)-fold mtegrals

Up to this point, each marginal p.d.f. has been a p.d.f. of one
random variable. It is convenient to extend this terminology to joint
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probability - density functions, which we shall do now. Here let
Sf(xy, x5,...,x,) be the joint p.d.f. of the n random variables
X\, X,, ..., X,, just as before. Now, however, let us take any group of
k < n of these random variables and let us find the joint p.d.f. of
them. This joint p.d.f. is called the marginal p.d.f. of this particular
group of k variables. To fix the ideas, taken = 6, k = 3, and let us select
the group X,, X,, X;. Then the marginal p.d.f. of X,, X,, X; is the joint
p.d.f. of this particular group of three variables, namely,

J J‘ J f(xh X34 X34 Xy X5, X(,) dX| dX3 dx6,

~—o¥-w Y-

if the random variables are of the contmuous type.

Next we extend the definition of a conditional p.d.f. If £ (xl) > 0,

the symbol f; (X3, ..., x,|x,) is defined by the relation

S(x1 X9 o0 oy X,)
) f ..... nll(x21 . n|xl) f|(x|) .

and f;  ai(x2 ..., x,x)) is called the joint conditional p.d. f of
X5 ., X, given X = x,. The joint conditional p.d.f. of any n — |
random variables, say X,,..., X;_|, Xi,1,-.., X,, given X; = Xx;, is
defined as the joint p.d.f. of X;, X, ..., X, divided by the marginal
p.d.f. fi(x), provided that fi(x,)> 0. More generally, the joint
conditional p.d.f. of n — k of the random variables, for given values of
the remaining k variables, is defined as the joint p.d.f. of the n variables
divided by the marginal p.d.f. of the particular group of k variables,
provided that the latter p.d.f. is positive."We remark that there are
many other conditional probability density functions; for instance, see
Exercise 2.18.

Because a conditional p.d.f. is a p.d.f. of a certain number of
random variables, the expectation of a function of these random
variables has been defined. To emphasize the fact that a conditional
p.d.f. is under consideration, such expectations are called con-
ditional expectations. For instance, the conditional expectation of
u(X,, ..., X,)given X, = x,,is, for random variables of the continuous

type, given by
. [ e = ] S
EIu(Xz, MR Xn)lxl] = J' U '[ u(xb et xn)

X fi nu(xz, cen vxnlxl)dx2 -+ dx,,
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provided f,(x,) > 0 and the integral converges (absolutely). If the
random variables are of the discrete type, conditional expectations are,
of course, computed by using sums instead of integrals.

- Let the random variables X, X}, ..., X, have the joint p.d.f.
Sf(x1, x5, ...,x,) and the marginal probability density functions
Si(x), fo(x2), . . ., fi(x,), Tespectively. The definition of the indepen-
dence of X, and X, is generalized to the mutual independence
of X,, X,..., X, as follows: The random variables X, X,, ..., X,
are said to be mutually independent if and only if

f(xla X2y oo vy xn) E.fl(xl)fZ(xZ) v ../;r(xn)'
It follows immediately from this definition of the mutual independence
of Xy, X,,...,.X, that,

Pr (a| < X| <'~b|, a4 < X; < bj,“. RIS K S X,,'( b,,) "
=Pr (dl < X|< b)) Pr(a; < sz(.biz,') ‘- Pra, < X, < )-bn)l

— T Pr(a < X, < b)),
i=1

where the symbol f[ @(?) is defined to be
i=1 ’

T o) = 000 - o(0).

The theorem that
ETu(X))v(X,)] = E[u(X)]E[v(X>)]
for independent random variables X, and X, becomes, for mutually
independent random variables X}, X>, ..., X,,
Elu, (X )uy(X;) - » - u,(X,)] = Elu, (X)) E[uy(X3)] - - - Eu,(X,)],
or

El:ﬁ u,(X,)] = f[l Elu,(X))].

i=1

The moment-generating function of the joint distribution of n

random variables X, X, . . ., X, is defined as follows. Let.
Elexp (1, X) + X3+ - + 1,X))]

exist for —h, < t;< h,i=1,2,....,n, where each h; is positive. This
expectation is denoted by M(z), 1,, ..., t,) and it is called the m.g.f.
of the joint distribution of X,,..., X, (or simply the m.g.f. of
X,,...,X,). As in the cases of one and two variables, this m.g.f.
is unique and uniquely determines the joint distribution of the n
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variables (and hence all marginal distributions). For example, the
m.g.f. of the marginal distribution of X, is M(0,...,0,1,0,...,0),
i=1,2,...,n; that of the marginal distribution of X; and X, is
MQO,...,0,2,0,...,0,2,0,...,0); and so on. Theorem 4 of this

b _]’
chapter can be generahzed and the factorization

M.t ..., 1) = [[ MO, ...,0,1,0,...,0)

im
is a necessary and sufficient condltlon for the mutual mdependence of
X, X,.. ., X,

Remark. If X,, X,, and X; are mutually independent, they are pairwise
independent (that is, X; and X, i # j, where i, j = 1, 2, 3, are independent).
However, the following example, due to S. Bernstein, shows that pairwise
independence does not necessarily imply mutual independence. Let X, X;,
and X; have the joint p.d.f.

Axy, X3, x3) =14, (x1, x2, x3) €{(1, 0,0), (0, 1,0), (0,0, 1), (1, 1, 1)},
=0 elsewhere.
The joint p.d.f. of X;and X;, i #j,is
filxnx) =3 (% x)€{(0,0),(1,0), (0, 1),(1, D},
=0 elsewhere,
whereas the marginal p.d.f. of X;is
filx) =14, x;=0,1,

=0 elsewhere.
Obviously, if i # j, we have

Ji(xi x;) Eﬁ(xi)ﬁ(xj),
and thus X, and X; are independent. However,

Sixy, x5, x3) # £(x1)f2(x2)f3(x3)-

Thus X, X, and X; are not mutually independent.

Example 2. Let X,, X;, and X, be three mutually independent random
variables and let each have the p.d.f. f{x) = 2x,0 < x < 1, zero elsewhere. The
joint p.d.f. of X\, X;, X is flx))flx))flx;) = 8xyx,x3, 0 < x; < 1,i=1,2,3,
zero elsewhere. Then, for illustration, the expected value of 5X, X3+ 3X2X“
is

} 1 | o
I | J J (5313 + 3x,x5)8, x5 dx, dxy dx; = 2.
Jo Yo
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Let. Y be the maximum of X,, X;, and X,. Then, for instance, we have
Pr(Y<j)=Pr(X, <} X,;<i X;<3)

112 pw1/2 )2
= L J; J' 8.X|x2x:; dxl dxz 4x3
0 . .

- Gr=i

In a similar manner, we find that the distribution function of Y is
G(y)=Pr(Y<y)=0, y<0

=), 0<y<l]|,

=1, 1 <y.

Accordingly, the p.d.f. of Yis A

gy) =6y, O<y<l, -
=0  elsewhere.

Remark. Unless there is a possible mlsunderstandmg between mutual and
pairwise independence, we usually drop the modifier mutual. Accordingly,
using this practice in Example 2, we say that X;, X,, X; are independent
random variables, meaning that they are mutually independent. Occasionally,
for emphasis, we use mutually independent so that the reader is reminded that
this is different from pairwise independence.

EXERCISES

2.37. Let X, Y, Z have joint p.d.f. fix,y,2)=2x+y+2)/3, 0<x<1,

0<y<1,0<z< 1, zero elsewhere. o

(a) Find the marginal probability density functions.

(b) Compute Pr(0 < X <3,0<Y<},0<Z<l)and Pr(0< X <j)=
Pr0<Y<3)=Pr(0<Z<}).

(¢) Are X, Y, and Z independent?

(d) Calculate E(X?YZ + 3XY*Z?).

(e) Determine the distribution function of X, Y, and Z.

(f) Find the conditional dlstnbuuon of Xand Y, given Z = z,and evaluate
E(X + Y|2).

(g) Determine the conditional distribution of X, given Y = y and Z =z,
and compute E(X]y, z).

2.38. Let fix,, x;, x3) =exp[—(x; + x;+ x3)], 0<x; <0, 0<Xx;, <0,
0 < x; < o0, zero elsewhere, be the joint p.d.f. of X,, X;, X;. :
(a) Compute Pr (X, < X; < X;) and Pr (X, = X, < X;).

(b) Determine the m.g.f. of X,, X,, and X;. Are these random variables
independent? ;
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2.39. Let X, X;, X;, and X, be four independent random variables, each with
p.d.f. f(x) = 3(1 — x), 0 < x < 1, zero elsewhere. If Y is the minimum of
these four variables, find the distribution function and the p.d.f. of Y.

2.40. A fair die is cast at random three independent times. Let the random
variable X; be equal to the number of spots that appear on the ith trial,
i=1,2,3. Let the random variable Y be equal to max (X;). Find the
distribution function and the p.d.f. of Y.

Hint: Pr(Y<y)=Pr(X;<y,i=1,2,3).

2.41. Let M(t,, t,, t;) be the m.g.f. of the random variables X,, X;, and
X, of Bernstein’s example, described in the remark preceding Example
2 of this section. Show that M(s,,t,, 0) = M(¢,,0, 0)M(0, t,, 0),
M(1,, 0, 1) = M(2,,0,0)M(0, 0, 1), M(O, 1,, t;) = M(0, 1, 0)M(0, 0, 1,),
but M(1,, t,, t;) # M(t,,0,0)M(0, t,,0) M(0,0, #,). Thus X,, X,, X, are
pairwise independent but not mutually independent.

2.42. Let X,, X, and X; be three random variables with means, variances, and
correlation coefficients, denoted by u,, u,, i3; o1, 02, o3; and P2 Pi3s P23
respectively. If E(X, — u|x3, xX3) = b,(x; — i) + b3(x3 — w3), where b, and
b, are constants, determine b, and b; in terms of the variances and the
correlation coeflicients. -

ADDITIONAL EXERCISES

2.43. Find Pr[X, X, < 2], where X, and X, are independent and each has the
distribution with p.d.f. f(x) = 1, | <x <2, zero elsewhere.

. . TN 2

2.44. Let the joint p.d.f. of X and Y be given by f_(x, ») —m.

0 <x<o0,0<y< oo, zero elsewhere: :

(a) Compute the marginal p.d.f. of X and the conditional pdf. of Y,
given X = x.

(b) For a fixed X = x, compute E(l + x + Ylv) and use the result to
compute E(Y|x).

2. 45 Let X\, X,, X; be mdependent and each have a dlstnbutlon with p. d f.
f(x) = exp(—x), 0 < x-< o0, zero elsewhere. Evaluate:
(a) Pr (X, < X,|X, < 2X,).
(b) Pr (X, <X, < X5|X; < I)

2.46. Let X and Y be random vanables with space consisting of the four
points: (0, 0), (1, 1), (1, 0), (1, —1). Assign positive probabilities to these
four points so that the correlation coefficient is equal to zero. Are X and
Y independent? «
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2.47. Two line segments, each of length 2 units, are placed along the x =
axis. The midpoint of the first is between x = 0 and x = 14 and that of the
second is between x = 6 and x = 20. Assuming independence and uniform
distributions for these midpoints, find the probability that the line segments
overlap.

2.48. Let X and Y have the joint p.d.f. f(x, y) = 1, (x, ¥) = (0, 0),(1, 0), (0, 1),
an, 210, (1,2), (2,2), and zero elsewhere. Find the correlation
coefficient p. :

2.49. Let X, and X, have the joint p.d.f. described by the following table:
(_xl ’ x2) ‘ (O’ 0) (Os 1) (0’ 2) (1’ 1) (17 2) (27 2)
& 4 T L

feox) | & E kR F &b
Find.fl(xl )! fZ(xl)s Hs B2, 0'%, 0'%, and p"
2.50. If the discrete random variables X, and X, have. joint p.d.f.

f(x1, x3) = CBx, + x)/28, (x, x)=(1, 1), (1,2), (2,1), (2,2), zero else-
where, find the conditional mean E(X,|x,), when x; = 1.

2.51. Let X and Y have the joint p.d.f. fix, y) = 21x%*,0 < x < y < |, zero
elsewhere. Find the conditional mean E(Y|x) of Y, given X = x.

2.52. Let X,and X,havethep.d.f. f{x,, x;) =x + x,,0 < x;, < 1,0 < x; < 1,
zero elsewhere. Evaluate Pr (X,/X; < 2).

2.53. Cast a fair die and let X = 0 if 1, 2, or 3 spots appear, let X = 1 if 4 or
5 spots appear, and let X = 2 if 6 spots appear. Do this two independent
times, obtaining X, and X,. Calculate Pr (| X, — X;| = 1).

2.54. Lct ol =03 =0 be the cqmmon variance of X, and X, and let P be the
correlation coefficient of X, and X, . Show that

2(1 + p)

Prl(X: — &) + (X> — p)] > ko] < e




CHAPTER 3 |

Some Special
Distributions

3.1 The Binomial and Related Distributions

In Chapter 1 we introduced the uniform distribution and the
hypergeometric distribution. In this chaptér we discuss some other
important distributions of random variables frequently used in
statistics. We begin with the binomial and related distributions.

A Bernoulli experiment is a random experiment, the outcome of
which can be classified in but one of two mutually exclusive and
exhaustive ways, say, success or failure (e.g., female or male, life or
death, nondefective or defective). A sequence of Bernoulli trials occurs
when a Bernoulli experiment is performed several independent times
so that the probability of success, say p, remains the same from trial
to trial. That is, in such a sequence, we let p denote the probability of
success on each trial.

Let X be a random variable associated with a Bernoulli trial by
defining it as follows:

X(success) = 1 and X(failure) = 0.
116
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That is, the two outcomes, success and failure, are denoted by one and
zero, respectively. The p.d.f. of X can be written as

f)=p(1-p)~* x=0,1,
and we say that X has a Bernoulli distribution. The expected value of
Xis

n = EX) = go xp(1 — p)' = = (0)(1 — p) + ()(p) = p,

and the variance of X is

|
o =var(X)= ¥ (x~pVpl—p)' "

=p(1 —p)+ (1 —pYp=p(1 - p).
It follows that the standard deviation of X is ¢ = \/p(1 — p).

In a sequence of n Bernoulli trials, we shall let X; denote the
Bernoulli random variable associated with the ith trial. An observed
sequence of n Bernoulli trials will then be an n-tuple of zeros and ones.
In such a sequence of Bernoulli trials, we are often interested in the total
number of successes and not in the order of their occurrence. If we let
the random variable X equal the number of observed successes in n
Bernoulli trials, the possible values of X are0, 1, 2, . . ., n. If x successes
occur,wherex =0, 1, 2, . . ., n, thenn — x failures occur. The number
of ways of selecting x positions for the x successes in the n trials is

n\ n!
x] x'(n—x)"

Since the trials are independent and since the probabilities of success
and failure on each trial are, respectively, p and 1 — p, the probability
of each of these ways is p*(1 — p)"~*. Thus the p.d.f. of X, say f(x), is

the sum of the probabilities of these (; mutually exclusive events; that
is,

f(x)=(;)p"(l—p)""‘, x=0,1,2,...,n,

=0 elsewhere.
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Recall, if n is a positive integer, that

@+by=Y% (Z) ba" ",

x=0

Thus it is clear that f(x) > 0 and that

WOEDY (Z) P —py--
=[Q-p)+pI'=1

That is, f(x) satisfies the conditions of being a p.d.f. of a random

variable X of the discrete type. A random variable X that has a p.d.f.

of the form of f(x) is said to have a binomial distribution, and any such

f(x) is called a binomial p.d.f. A binomial distribution will be denoted

by the symbol b(n, p). The constants n and p are called the parameters

of the binomial distribution. Thus, if we say that X is b(5, }), we mean
that X has the binomial p.d.f.

fx) = (i)(%) (%) , x=0,1,...,5,

=0 elsewhere.
The m.g.f. of a binomial distribution is easily found. It is
M) =L e*fix) = 3, & (;) P —py*
= Z (;) (pel)x(l _p)n—x
x=0
=[1—p)+pe]

for all real values of 7. The mean u and the variance ¢° of X may be
computed from M(¢). Since

M'(t) = n[(1 — p) + pe'l ~'(pe')
and
M'(2) = n[(1 — p) + pe'Y ~'(pe') + n(n — D[(1 — p) + pe'l'~ *(pe')?,
it follows that
p=M(0)=np
and
o’ = M"(0) — 1> = np + n(n — 1)p* — (np)* = np(1 — p).
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Example 1. Let X be the number of heads (successes) inn = 7 independent
tosses of an unbiased coin. The p.d.f. of X is

x T=x ‘
f(%) =(1)(%) (1 -%)  x=0,1,2,....7,

=0 elsewhere.

Then X has the m.g.f.
M) = (3 43¢,
has mean u = np = , and has variance ¢? = np(1 — p) = 1. Furthermore, we
have
h 7 8

PrO<X<1)= Z fx) = 128 = 178

128 +

and
Pr (X = 5) = f(5)

_ T (IV(Y 2
TSt 2)\2) T 128

Example 2. If the m.g.f. of a random variable X is
M@ =G +1e'),
then X has a binomial distribution with n = 5 and p = 4; that is, the p.d.f. of

Xis X S5—x ‘
f(x)=,(i)(%) (%) L x=0,1,2,...,5,

=0 elsewhere

Here y =np = and o= np(l p) =
~ Example 3. If Y is b(n, ), then Pr(Y> D=1—-Pr(Y=0)=1 —(2)"
Suppose that we wish to find the smallest value of n that yields
Pr(Y>=1)>0.80. We have 1 —(3)">0.80 and 0.20 > ()" Either by
inspection or by use of logarithms, we see that n = 4 is the solution. That is,
the probability of at least one success throughout n =4 independent

repetitions of a random experiment with probability of success p = } is greater
than 0.80.

Example 4. Let the random variable Y be equal to the number of
successes throughout n independent repetitions of a random experiment
with probability p of success. That is, Y is b(n, p). The ratio Y/n is called the
relative frequency of success. For every ¢ > 0, we have

Pr(Y
n

——p‘26)=Pr(|Y—-np|2€n)

n \
=Pr||Y—pul=c€ G,
(' M2 e pT—p) )
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where u = np and ¢ = np(1 — p). In accordance with Chebyshev’s inequality
with k = ¢./n/p(1 — p), we have

[ n p(1 —p)
Pr(ly_mze 1)(1—1))0)S ne’
Pr(

Now, for every fixed ¢ > 0, the right-hand member of the preceding inequality
is close to zero for sufficiently large n. That is,

lim Pr(z—p‘ze)=0
n—co n

lim Pr(%—p}<e)=l.

Since this is true for every fixed ¢ > 0, we see, in a certain sense, that the relative
frequency of success is for large values of n, close to the probability p of
success. This result is one form of the law of large numbers. 1t was alluded to
in the initial discussion of probability in Chapter 1 and will be considered
again, along with related concepts, in Chapter 5.

and hence

Y . p(1 —p)
;-—:p} > E) < el

and

Example 5. Let the independent random variables X, X5, X; have the
same distribution function F(x). Let Y be the middle value of X, X,, X3. To
determine the distribution function of Y, say G(y) = Pr (¥ < y), we note that
Y < y if and only if at least two of the random variables X, X,, X; are less
than or equal to y. Let us say that the ith “‘trial” is a success if X, <y,
i=1,2,3; here each “trial” has the probability of success F(y). In this
terminology, G(y) =Pr (Y <y) is then the probability of at least two
successes in three independent trials. Thus

3
G(y) = (2) [FO)F(L — Fy)l + [FO)F
If F(x) is a continuous type of distribution function so that the p.d.f. of X' is

F(x) = f(x), then the p.d.f. of Y is
g(y) = G'(y) = 6[Fy)I[1 — Ay)]f(»).

Example 6. Consider a sequence of independent repetitions of a random
experiment with constant probability p of success. Let the random variable
Y denote the total number of failures in this sequence before the rth success;
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that is, Y + r is equal to the number of trials necessary to produce exactly r
successes. Here r is a fixed positive integer. To determine the p.d.f. of Y, let
ybeanelementof {y:y=40,1,2,...}. Then, by the multiplication rule of
probabilities, Pr (Y = y) = g(») is equal to the product of the probability

(y J l)p’" ‘(1= py

of obtaining’ exactly r — 1 successes in the first y + r — 1 trials and the
probability p of a success on the (y + r)th trial. Thus the p.d.f. g(y) of Y is
given by
: r—1
gy = (y T 1 )p'(l -pY, y=012...,

r

=0 , elsewhere.

A distribution with a p.d.f. of the form g(y) is called a negative binomial

distribution, and any such g(y) is called a negative binomial p.d.f. The

distribution derives its name from the fact that g(y) is a general term in

the expansion of pTl — (1 — p)]~". It is left as an exercise to show that the

m.g.f. of this distribution is M(f) = p[l — (1 — p)e']~", fort < —In (1 — p). "
I r =1, then Y has the p.d.f. o

g(y) = p(1 —pY, y= :0,1,2,.

zero elsewhere, and the m. gf. M(1) = pll — (1 — )e']‘I In this special case,
r=1, we say that Y has a geometnc distribution.

The binomial distribution is generahzed to the multinomial
distribution as follows. Let a random experiment be repeated n
independent times. On each repetition, the experiment terminates in
but one of k£ mutually exclusive and exhaustive ways, say
C,, Cy, ..., C;. Letp;be the probability that the outcome is an element
of C; and let p; remain constant throughout the » independent
repetitions, i = 1,2, . . ., k. Define the random variable X; to be equal
to the number of outcomes that are elements of C;, i=1,2,...,
k — 1. Furthermore, let x,, x,, . .., X, _, be nonnegative integers so
that x, + x,+-- -+ x,_, <n. Then the probability that exactly
x; terminations of the experiment are in C,,..., exactly Xg_ )
terminations are in C,_,, and hence exactly n — (x, + A+ X_y)
terminations are in C; is

n!
1 k-1 k
xl!"'x'k_l!xk!pf px

where x, is merely an abbreviation for n — (x, + - - - + x,_,). This is
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the multinomial p.d.f. of k — | random variables X, X;, ..., X, _, of
the discrete type. To see that this is correct, note that the number of
distinguishable arrangements of x,C,’s, x,C,’s, . . ., x;C;'s is

n\(n—x\  (n—xi—-—X_2\_ n!
X Xy Xk —1 x|!x2!"'xk!

and that the probability of each of these distinguishable arrangements
is :

pipRe - pik o
Hence the product of these two latter expressions gives the correct
probability, which is in agreement with the formula for the multinomial
p.d.f.
When k=3, we often let X=X, and Y=1JX,, then

n— X — Y =X, We say that X and Y have a trmomzal distribution.
The joint p.d.f. ofX and Yis

where x and y are nonnegative integers with x + y < n, and p,, p,,
and p, are positive proper fractions with p;+ p,+ p; =1; and let
J(x, y) = 0 elsewhere. Accordingly, f(x, y) satisfies the conditions of
being a joint p.d.f. of two random variables X and Y of the discrete
type; that is, f(x, y) is nonnegatlve and its sum over all points (x, y)
at which f(x, y) is positive is equal to (p. + pt+p) =1

- If mis a positive integer and q,, a,, g, are fixed constants, we have

. r
n n—-x

n! Tt -E-Y
x!y!(n—x—y)!p'png o

Z n!
x=0;v=0x|' y‘ (n‘_ X _y)'

4 na;, "&  (n—x)! PR
L - T —x - a8

aad

n

n' n—X
= Zoma (a, +l13)

=(a +a, + a;)". . | | (1)

Consequently, the m.g.f. of a trinomial distribution, in accordance
with Equation (1), is given by

M(tls tz) - ZO 2 x| y| (n n! _ y)g (plen)x(ple;z)ypg—x—y

= (€' + P + ps)',
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for all real values of ¢, and #,. The moment-generating functions of the
marginal distributions of X and Y are, respectively,

M(1,,0) = (pie" + p, + p3y =[(1 —p)) + pie"T
and

M@, ;) = (p1 + p2e™ + p;)" = [(1 — p2) + pe™T".

We see immediately, from Theorem 4, Section 2.4, that X and
Y are dependent random variables. In addition, X is b(n, p;) and
Y is b(n, p,). Accordingly, the means and the variances of X
and Y are, respectively, u, = np,, u, =np,, o =np,(1 — p;), and
o3 = np,(1 — p,).

Consider next the conditional p.d.f. of Y, given X = x. We have

(n — x)! p: Y P Y _
S (lx) = A (i—x—p) (1—p|) (l—p|) , y=0,1,...,n—x,

=0 elsewhere.

Thus the conditional distribution of Y, given X = x, is b[n — x,
p2/(1 — p))]. Hence the conditional mean of Y, given X = x, is the
linear function

E(Y%) = (n - x)(l - p)

We also find that the conditional distribution of X, given Y = y, is
bln — y, p,/(1 — p,)] and thus

E(Xly) = (n—y)( pz)

Now recall (Example 2, Section 2.3) that the square of the correlation
coefficient, say p?, is equal to the product of —p,/(1 —p,) and
—pi /(1 = p,), the coefficients of x and y in the respective conditional
means. Since both of these coefficients are negative (and thus p is

negative), we have
. \/ DP\P2
(I =p)d—p)

In general, the m.g.f. of a multinomial distribution is given by

M(tla cety tk—l) = (ple“ + - _'_pk*len(—l +pk)n
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for all real values of ¢,, 4,, . . ., £, _,. Thus each one-variable marginal
p.d.f. is binomial, each two-variable marginal p.d.f. is trinomial, and
SO on.

EXERCISES

3.1. If the m.g.f. of a random variable X is (§ + 3¢')’, find Pr (X = 2 or 3).
3.2. The m.g.f. of a random variable X is (3 + i¢')°. Show that

5 x 9—x
Pru—20<X<pu+20)=Y (2)(%)@) .

3.3. If X is b(n, p), show that

R I

3.4. Let the independent random variables X, X,, X, have the same p.d.f.
J(x) = 3x%,0 < x < 1, zero elsewhere. Find the probability that exactly two
of these three variables exceed ;.

3.5. Let Y be the number of successes in n independent repetitions of a
random experiment having the probability of success p =% If n =3,
compute Pr(2 < Y); if n =5, compute Pr(3 < Y).

3.6. Let Y be the number of successes throughout » independent repetitions
of a random experiment having probability of success p = ;. Determine the
smallest value of n so that Pr (1 < Y) > 0.70.

3.7. Let the independent random variables X, and X, have binomial
distributions with parameters n, = 3, p, = }and n, = 4, p, = }, respectively.
Compute Pr (X; = X,).

Hint: List the four mutually exclusive ways that X, = X, and compute
the probability of each.

3.8. Toss two nickels and three dimes at random. Make appropriate
assumptions and compute the probability that there are more heads
showing on the nickels than on the dimes.

39. Let X,, X,, ..., X;_, have a multinomial distribution.
(a) Find the m.gf. of X3, X5,..., X, _,.
(b) What is the p.d.f. of X;, X5, ..., X _\?
(c) Determine the conditional p.d.f. of X, given that

Xo=x3 ..., X1 =X_,.
(d) What is the conditional expectation E(X;|x;, ..., xx_)?
3.10. Let X be b(2, p) and let Y be b(4, p). If Pr (X 2 1) =3 find Pr(Y =1).
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3.11. If x = r is the unique mode of a distribution that is b(n, p), show that
m+Dp—-1l<r<@m+ ).
Hint: Determine the values of x for which the ratio f(x + 1)/f(x) > 1.

3.12. Let X have a binomial distribution with parameters #n and p =
Determine the smallest integer n can be such that Pr (X > 1) > 0.85.

3.13. Let X have the p.d.f. Ax) = A" x=0,1,2,3,..., zero elsewhere.
Find the conditional p.d.f. of X, given that X > 3.

3.14, One of the numbers 1, 2, . . ., 6 is to be chosen by casting an unbiased
die. Let this random experiment be repeated five independent times. Let the
random variable X, be the number of terminationsintheset {x : x =1, 2, 3}
and let the random variable X, be the number of terminations in the set
{x:x=4,5}. Compute Pr(X,=2,X,=1).

3.15. Show that the m.g.f. of the negative binomial distribution is
M) =pTl — (1 — p)e']~". Find the mean and the variance of this
distribution.

Hint:In the summation representing M(¢), make use of the MacLaurin’s
series for (1 — w)™".

3.16. Let X, and X, have.a trinomial distribution. Differentiate the
moment-generating function to show that their covariance is —np,p,.

3.17. If a fair coin is tossed at random five independent times, find the
conditional probability of five heads relative to the hypothesis that there
are at least four heads.

3.18. Let an‘unbiased die be cast at random seven independent times.
Compute the conditional probability that each side appears at least once
relative to the hypothesis that side 1 appears exactly twice.

3.19. Compute the measures of skewness and kurtosis of the binomial
distribution b(n, p).

3.20. Let , '

_ X lx‘ ﬂ x:=0,‘1...
f(xls x2) = (xz)(z) (15)’ X = 1’ 2, 3’ 4’ 5’
zero elsewhere, be the joint p.d.f. of X, and X,. Determine:
(@) E(X,).
(b) u(x,) = E(Xyfx,).
(©) Elu(X))]. '

Compare the answers of parts (a) and (c).
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5 Xy .
Hint: Note that E(X;)= Y Y x,f(x,,x,;) and use the fact that

xymlx=0

55 (1o =2 ww

y=0

3.21. Three fair dice are cast. In 10 independent casts, let X be the number
of times all three faces are alike and let Y be the number of times only two
faces are alike. Find the joint p.d.f. of X and Y and compute E(6XY).

3.2 The Poisson Distribution

Recall that the series
2 3 o X
m m m
l+m+2_!+7+'”= x!

= x!

converges, for all values of m, to ¢”. Consider the function f(x) defined
by

—M

f()— . x=0,1,2,...,

=0 elsewhere,

where m > 0. Since m > 0, then f(x) > 0 and

Ef(x)—Z"{e i%= e"=1;
X = 0 x=0.

that is, f(x) satisfies the conditions of being a p.d.f. of a discrete type
of random variable. A random variable that has a p.d.f. of the form
f(x) is said to have a- Poisson distribution, and any such f{(x) is called
a Poisson p.d.f.

Remarks. Experience indicates that the Poisson p.d.f. may be used in a
number. of applications with quite satisfactory results. For example, let the
random variable X denote the number of alpha particles emitted by a
radioactive substance that enter a prescribed region during a prescribed
interval of time. With a suitable value of m, it is found that X may be
assumed to have a Poisson distribution. Again let the random variable X
denote the number of defects on a manufactured article, such as a
refrigerator door. Upon examining many of these doors, it is found, with an
appropriate value of m, that X may be said to have a Poisson distribution. The
number of automobile accidents in some unit of time (or the number of
insurance claims in some unit of time) is often assumed to be a random
variable which has a Poisson distribution. Each of these instances can be
thought of as a process that generates a number of changes (accidents,
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claims, etc.) in a fixed interval (of time or space, etc.). If a process leads to
a Poisson distribution, that process is called a Poisson process. Some
assumptions that ensure a Poisson process will now be enumerated.

Let g(x, w) denote the probability of x changes in each interval of length
w. Furthermore, let the symbol o(h) represent any function such that
}’i_l:l; [o(h)/h] = O; for example, h* = o(h) and o(h) + o(h) = o(h). The Poisson
postulates are the following:

1. g(i, h) = Ah + o(h), where A is a positive constant and 4 > 0.

2. 122 2(x, k) = o(h).

3. The numbers of changes in nonoverlapping intervals are independent.

Postulates 1 and 3 state, in effect, that the probability of one change in a
short interval 4 is independent of changes in other nonoverlapping intervals
and is approximately proportional to the length of the interval. The substance
of postulate 2 is that the probability of two or more changes in the same short
interval h is essentially equal to zero. If x =0, we take g(0,0)= 1. In
accordance with postulates 1 and 2, the probability of at least one change in
an interval of length A is A4 + o(h) + o(h) = Ah + o(h). Hence the probability
of zero changes in this interval of length 4 is 1 — Ah — o(h). Thus the
probability g(0, w + h) of zero changes in an interval of length w + A is, in
accordance with postulate 3, equal to the product of the probability g(0, w)
of zero changes in an interval of length w and the probability [1 — Ah — o(h)]
of zero changes in a nonoverlapping interval of length A. That is,

20, w+ h) = g(0, w)[1 — Ah — o(h)].
Then

g0.w+h) —g0w 2(0, w) — o(h)g(0, w)

h h

If we take the limit as A—0, we have

D, [g(0, w)] = — Ag(0, w).

The solution of this differential equation is

g(0, w) = ce ™,

The condition g(0, 0) = I implies that ¢ = 1; so
g0, w) = e,
If x is a positive integer, we take g(x, 0) = 0. The postulates imply that
gx, w + h) = [g(x, W)l — Ah — o()] + [g(x — 1, w)][2h + o(h)] + o(h).
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Accordingly, we have

x,w+ h) —g(x,w o
il ; g - Ag(x, w) + Ag(x — 1, w)+(T)

and

D,[g(x, w)] = — Ag(x, w) + Ag(x — 1, w),
for x=1,2,3,... . It can be shown, by mathematical induction, that the
solutions to these differential equations, with boundary conditions g(x, 0) =
forx=1,2,3,..., are, respectively,

'1 e —Aw
glx, w) = —~————( ul ., x=1,2,3....

Hence the number of changes X in an interval of length w has a Poisson
distribution with parameter m = Aw.

The m.g.f. of a Poisson distribution is given by

[= o] -_m
pxme’” m"e

M) =3 e"f(x) = Z

(me')"
— ,—m
xgﬂ
— e—meme’ = em(e’— 1)

for all real values of r. Since
M (1) = e™' ~ Y(me")

and
M'(t) = ™'~ "Y(me') + ™~ (me')?,
then
u=M(©0) =
and

l=MQ0)—P=m+m—-m=m.

That is, a Poisson distribution has g = 6> = m > 0. On this account
a Poisson p.d.f. is frequently written

fx) = “x_", x=0,1,2...,

=0 elsewhere.
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Thus the parameter m in a Poisson p.d.f. is the mean u. Table I in
Appendix B gives approximately the distribution for various values of
the parameter m = pu.

Example 1. Suppose that X has a Poisson distribution with g = 2. Then
the p.d.f. of X is

2%
X!

Jx) = ) x=0,12,...,

=0 elsewhere.

The variance of this distribution is ¢ = p = 2. If we wish to compute
Pr (1 < X), we have

Prl<X)=1-Pr(X=0)
=1-f0)=1—e?=0.865,
approximately, by Table I of Appendix B.

Example 2. If the m.g.f. of a random variable X is

M) =¢e*" =",
then X has a Poisson distribution with = 4. Accordingly, by way of example,
et 32 _,
Pr(X=3)= I =3¢

or, by Table I,
Pr(X=3)=Pr(X<3)—-Pr(X<2)=0.433 - 0.238 = 0.195.

Example 3. Let the probability of exactly one blemish in 1 foot of wire be
about 135 and let the probability of two or more blemishes in that length be,
for all practical purposes, zero. Let the random variable X be the number of
blemishes in 3000 feet of wire. If we assume the independence of the numbers
of blemishes in nonoverlapping intervals, then the postulates of the Poisson
process are approximated, with 4 =% and w = 3000. Thus X has an
approximate Poisson distribution with mean 3000(;55) = 3. For example, the
probability that there are exactly five blemishes in 3000 feet of wire is

5,-3
Pr(X=5)=§-§,—

and by Table I,
Pr(X=5)=Pr(X<5 —-Pr(X<4)=0.101,

approximately.
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EXERCISES

3.22. If the random variable X has a Poisson distﬁbution such that
Pr(X=1)=Pr(X =2), find Pr (X = 4).

3.23. The m.gf. of a random variable X is &% ~". Show that
Pr(u—20 < X < pu+ 20) =0.931. '

3.24. In a lengthy manuscript, it is discovered that only 13.5 percent of the
pages contain no typing errors. If we assume that the number of errors per
page is a random variable with a Poisson distribution, find the percentage
of pages that have exactly one error.

3.25. Let the p.d.f. f(x) be positive on and only on the nonnegative integers.
Given that f(x) = 4/x)f(x — 1), x=1,2,3,... . Find f(x).
Hint: Note that f{1) = 4/(0), f(2) = (42/2|)j(0) and so on. That is, find
each f(x) in terms of f(0) and then determine f{0) from

| =f10) + /(1) + f2) + -

3.26. Let X have a Poisson distribution with u = 100. Use Chebyshev’s
inequality to determine a lower bound for Pr (75 < X < 125).

3.27. Given that g(x, 0) = 0 and that
D, [g(x,w)] = — Ag(x,w) + ig(x — 1, w)

forx=1,2,3,... .1f g0, w) = e *, show, by mathematical induction,
that
(Aw)x —Aiw
g(xw) ———;——'-, X‘—"-l,2,3,....

3.28. Let the number of chocolate drops in a certain type of cookie have a
Poisson distribution. We want the probability that a cookie of this type
contains at least two chocolate drops to be greater than 0.99. Find the
smallest value that the mean of the distribution can take.

3.29. Compute the measures of skewness and kurtosns of the Poisson
distribution with mean u.

3.30. On the average a grocer sells 3 of a certain article per week. How many
of these should he have in stock so that the chance of his running out within
a week will be less than 0.01? Assume a Poisson distribution.

3.31. Let X have a Poisson distribution. If Pr (X = 1) = Pr (X 3) find the
mode of the distribution.

3.32. Let X have a Poisson distribution with mean 1. Compute, if it exists,
the expected value E(X?).
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3.33. Let X and Y have the joint p.d.f f(x,))=e Y[xI(y —x)], y=
0,1,2,...;x=0,1,...,y, zero elsewhere.
(a) Find the m.g.f. M(¢,, t;) of this joint distribution.
(b) Compute the means, the variances, and the correlation coefficient of X’
and Y.
(c) Determine the conditional mean E(X|y).
Hint: Note that

S fexp (W0)YIx! (v — X)) = [1 + exp (1))

x=0

Why?

3.3 The Gamma and Chi-Square Distributions

In this section we introduce the gamma and chi-square distri-
butions, It is proved in books on advanced calculus that the integral

J y*~le7rdy
0

exists for & > 0 and that the value of the integral is a positive number.
The integral is called the gamma function of «, and we write
fea0
F'@)=| y*~leady.
vo
If a = 1, clearly

poo
I'D=| e?dy=1.

vo

If & > 1, an integration by parts shows that
') = (a0 — I)J. Yy ‘e?dy=(a— DI'(a — 1).
0

Accordingly, if a is a positive integer greater than 1,

F@=(@—1D@=2) - G)Dr{) = (- .

Since I'(1) = 1, this suggests that we take 0! = 1, as we have done.
In the integral that defines I'(2), let us introduce a new variable x
by writing y = x/f, where # > 0. Then

o[~
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or, equivalently,

l=| =—=x""'ed
,[l“()ﬁ" ¢

Since a > 0, f > 0, and I'() > 0, we see that

f) = xtle B, 0 < x< oo,

L(a)p*

=0 elsewhere,

is a p.d.f. of a random variable of the continuous type. A random
variable X that has a p.d.f. of this form is said to have a gamma
distribution with parameters « and §; and any such f(x) is called a
gamma-type p.d.f.

Remark. The gamma distribution is frequently the probability model for
waiting times; for instance, in life testing, the waiting time until “death” is the
random variable which frequently has a gamma distribution. To see this, let
us assume the postulates of a Poisson process and let the interval of length
w be a time interval. Specifically, let the random variable W be the time that
is needed to obtain exactly k changes (possibly deaths), where k is a fixed
positive integer. Then the distribution function of W is

Gw)=Pr(W<w)=1-Pr(W>w).

However, the event W > w, for w > 0, is equivalent to the event in which there
are less than k changes in a time interval of length w. That is, if the random
variable X is the number of changes in an interval of length w, then

- — X ,— AW
Pr(W>w=3 Pr(X=x)=3 Q’%,i——
x=0 :

x=0
It is left as an exercise to verify that
© gk—1p-1 _ k=1 (Aw)xe—lw

e -

If, momentarily, we accept this‘) resﬁlt, we havé, for w > 0,
© gh=lg=2 k=g
Gw)=1— dz =
G) L Tk J. (k)

and for w <0, G(w) = 0. If we change the variable of integration in the
integral that defines G(w) by writing z = iy, then

Ak —-1,-y
G(w) = J’v-zk—-—g——dy, w>0,
0

dz,

I'(k)
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and G(w) = 0, w < 0. Accordingly, the p.d.f. of W is
k —t,—Aw
gw)=G(w)= Aw e ";(k; , O<w< o,
=0 elsewhere.

That is, W has a gamma distribution with « = k and g = 1/A. If W is the
waiting time until the first change, that is, if £k = 1, the p.d.f. of W is

gw) = de=*, 0<w< oo,
=0 elsewhere,

and W is said to have an exponential distribution with mean § = 1/A.

We now find the m.g.f. of a gamma distribution. Since

A l
MOH=| e~ x*~le=B dx
b T@F
~ a0 1
= X%~ o=~ BOIB gx.
J, T@)p

we may set y = x(1 — 1)/, t < 1/B, or x = By/(1 — Bf), to obtain
M() = T B =By (l By )a_ e~ dy.

, T@F — Bt

That is,
M) = (l —lﬂt) J G )ya le-ydy
I R |

(1 - B9 ]

Now
M) = (=)L — )=~ Y(= )

and

M'(1) = (—a)(—a — 1)1 = )=~ H(—pB)".
Hence, for a gamma distribution, we have
p=M(©0)=ap
and
o? = M"(0) — 1 = aax + 1) — o?f* = af.
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Example 1. Let the waiting time W have a gamma p.d.f. with @ = k and
B = 1/A. Accordingly, E(W) =k/A. If k = 1, then E(W) = 1/4; that is, the
expected waiting time for k = 1 changes is equal to the reciprocal of A.

Example 2. Let X be a random variable such that

(m + 3)!

Exm) =5,

3m, m=123,....

Then the m.g.f. of X is given by the series

Iy 14!3 5132 613
) = I T

e

This, however, is the Maclaurin’s series for (1 — 31)~%, provided that
—1 < 3t < 1. Accordingly, X has a gamma distribution withae = 4and § = 3.

Remark. The gamma distribution is not only a good model for waiting
times, but one for many nonnegative random variables of the continudus type.
For illustration, the distribution of certain incomes could be modeled
satisfactorily by the gamma distribution, since the two parameters a and
provide a great deal of flexibility. Several gamma probability density functions
are depicted in Figure 3.1.

Let us now consider the special case of the gamma distribution in
which a = r/2, where r is a positive integer, and f = 2. A random
variable X of the continuous type that has the p.d.f.

1
T(r/2)2"

=0 elsewhere,

x12-1g—x2 0<x< oo,

flx) =

and the m.g.f.
' MO=(0=20" t<!

2’

is said to have a chi-square distribution, and any f(x) of this form is
called a chi-square p.d.f. The mean and the variance of a chi-square
distribution are pu=af=(r/2)2=r and o = af’ = (r/2)2° = 2r,
respectively. For no obvious reason, we call the parameter r the num-
ber of degrees of freedom of the chi-square distribution (or of
the chi-square p.d.f.). Because the chi-square distribution has an
important role in statistics and occurs so frequently, we write, for.
brevity, that X is y*(r) to mean that the random variable X has a
chi-square distribution with r degrees of freedom.
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Example 3. If X has the p.d.f.
J(x) = 3xe™ 7, 0<x<oo,
= () elsewhere,
then X is y*(4). Hence uy=4,0* =8, and M) = (1 — 20)~%, r < &.
Example 4. If X has the m.g.f. M(t) = (1 — 21)~%, 1 < 3, then X is x*(16).
If the random variable X is y*(r), then, with ¢; < c,, we have
Prc;€£X<¢)=Pr(X<¢)—-Pr(X<¢),

since Pr (X = ¢;) = 0. To compute such a probability, we need the
value of an integral like

X

1

Pr(X<x)= J‘ ———— W2 le7"2 gy,

0

I“(r/2)2’/2
f(x)

0.10 —

0.08

0.06

0.04

0.02

fx)
0.12

0.10
0.0‘8
0.06
0.04

0.02

a=4

FIGURE 3.1
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Tables of this integral for selected values of r and x have been prepared
and are partially reproduced in Table II in Appendix B.

Example 5. Let X be y*(10). Then, by Table II of Appendix B, with r = 10,
Pr(3.25 < X <20.5)=Pr(X <20.5) — Pr(X <3.25)
= 0.975 - 0.025 = 0.95.

Again, by way of example, if Pr (a < X) = 0.05, then Pr (X < a) = 0.95, and
thus a = 18.3 from Table II with r = 10.

Example 6. Let X have a gamma distribution with « = r/2, where ris a
positive integer, and g > 0. Define the random variable ¥ = 2X/8. We seek
the p.d.f. of Y. Now the distribution function of Y is

GO)=Pr(Y<y)=Pr (Xsﬂz—y).

If y <0, then G(y) = 0; but if y > 0, then

By2 |
G = S —— SR PR
) J; r(r/2)p" e X

Accordingly, the p.d.f. of Y is

2
g =G()= ————-r(r%) g (By/2y" e
! B J G |

“Teppn? ¢
if y > 0. That is, Y is y*(r).

EXERCISES

334, If (1 ~2n%¢<1, is the m.gf. of the random variable X, find
Pr (X < 5.23).

335. If X is y%5), determine the constants ¢ and 4 so that
Pr(c < X <d)=10.95 and Pr (X < ¢) = 0.025.

336. If X has a gamma distribution with «=3 and B =4, find
Pr(3.28 < X < 25.2).
Hint: Consider the probability of the equivalent event 1.64 < Y < 12.6,
where Y = 2X/4 = X/2.

3.37. Let X be a random variable such that E(X™) = (m+ 1)! 2",
m=1,2,3,... . Determine the m.g.f. and the distribution of X.
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3.38. Show that

, k=1,2,3,....

This demonstrates the relationship between the distribution functions of
the gamma and Poisson distributions.

Hint: Either integrate by parts & — 1 times or simply note that the
“antiderivative” of zk~le~* is

—zklemr — (k — l)z*'zé" —e —(k=Dte:
by diflerentiating the latter expression.

3.39. Let X, X,, and X, be independent random variables, each with p.d.f.
f(x)=e", 0<x< oo, zero elsewhere. Find the distribution of
Y = minimum (X, X,, X3).
Hint: Pr(Y<y)=1-Pr(Y>y)=1-Pr(X;>p,i=1,213).

3.40. Let X have a gamma distribution with p.d.f.
f(x) = %xe"’", 0<x< o0,

zero elsewhere. If x = 2 is the unique mode of the dlstrlbutlon, find the
parameter f and Pr (X < 9.49).

3.41. Compute the measures of skewness and kurtosis of a gamma distri-
bution with parameters a and f.

3.42. Let X have a gamma distribution with parameters a and . Show that
Pr (X > 2ap) < (2/e)~
Hint: Use the result of Exercise 1.115.

3.43. Give a reasonable definition of a chi-square distribution with zero
degrees of freedom.
Hint: Work with the m.g.f, of a distribution that is y*(r) and let r = 0.

3.44. In the Poisson postulates on page 127, let 4 be a nonnegative function
of w, say A(w), such that D, [g(0, w)] = — A(w)g(0, w). Suppose that
AwW)y=krw =1 r>1.

(a) Find g(0, w) noting that g(0, 0) = 1.

(b) Let W be the time that is needed to obtain exactly one change. Then
find the distribution function of W, namely G(w) =Pr(W <w)=
1—Pr(W>w)=1-—g(0,w), 0<w, and then find the p.d.f. of W.
This p.d.f. is that of the Weibull distribution, which is used in the study
of breaking strengths of materials.

3.45. Let X have a Poisson distribution with parameter m. If m is an
experimental value of a random variable having a gamma distribution with
a=2and § =1, compute Pr (X =0, 1, 2).
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3.46. Let X have the uniform distribution with p.d.f. f(x) = 1,0 < x < 1, zero
elsewhere. Find the distribution functionof Y = —2 In X, What is the p.d.f.
of Y?

3.47. Find the uniform distribution of the continuous type that has the same
mean and the same variance as those of a chi-square distribution with 8
degrees of freedom.

3.4 The Normal Distribution

Consider the integral

@ 42
I=J exp( 2y)dy.

This integral exists because the integrand is a positive continuous
function which is bounded by an integrable function; that is,

2

0<em(—%)<em04ﬂ+ll —00 <y < 0,

and

J exp (—|yl + 1) dy = 2e.

- a0

To evaluate the integral 7, we note that 7 > 0 and that I? may be written

® Eo 2 2
12=J J exp(—y ;z)dydz.

This iterated integral can be evaluated by changing to polar co-
ordinates. If we set y = r cos 8 and z = r sin 8, we have

r2n poo

r= JeJWww
v 0

AR

dé = 2.

Accordingly, I = /2% and

r l e dy=1.
cw V2T
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If we introduce a new variable of integration, say x, by writing

y=x;{ b>0,

the preceding integral becomes

A | (x — a)’
— = 1.
Jim b./2n P I: 2b? ] o

Since b > 0, this implies that
o\
fgx):= 1 expli—(%zbza)], —0<X<®

by/2n
satisfies the conditions of being a p.d.f. of a continuous type of ran-
dom variable. A random variable of the continuous type that has a
p.d.f. of the form of f(x) is said to have a normal distribution, and any
f(x) of this form is called a normal p.d.f.
We can find the m.g.f. of a normal distribution as follows. In

M) = ~ e 1 exp [f\(x — a)Z:I dx

J_ o b2m 26
a | ox —2b*x + x* — 2ax + @ dx
- J_ o b/2n P 2

we complete the square in the exponent. Thus M(r) becomes

_ 20277
M(t)“xp[_al (;bjbt)” b12
—o Tt

because the integrand of the last integral can be thought of as a normal
p.d.f. with a replaced by a + b, and hence it is equal to 1.
The mean u and variance ¢ of a normal distribution will be
calculated from M(7). Now
M'(H) = M(t)(a + b*)
and
M"(t) = M(H)(bD) + M(r)(a + b~
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u=M@0)=a
and
c=M00)—pP=b+ad—-a=>»n
This permits us to write a normal p.d.f. in the form of
(x —py

1
.f(x) = a\/z—n- exp [ - 242

a form that shows explicitly the values of u and ¢2. The m.g.f. M(r) can
be written

| —w<s<w

M(t) = exp (ut + %&)

Example 1. If X has the m.g.f.
M@ =+ 32r2,
then X has a normal distribution with u = 2, ¢? = 64.

The normal p.d.f. occurs so frequently in certain parts of statistics
that we denote it, for brevity, by N(u, ¢2). Thus, if we say that the
random variable X'is N(0, 1), we mean that X has a normal distribution
with mean u = 0 and variance 62 = 1, so that the p.d.f. of X is

j(x)=—i—e"‘2’2, —00 < X < 00.
J2n
If we say that X is N(5, 4), we mean that X has a normal distribution
with mean u = 5 and variance a2 = 4, so that the p.d.f. of X is

f(x)=2\}2_1;exp|:— (x2?4)5)’:|’ —00 < X < 0.
Moreover, if
M(r) = e,
then X is N(0, 1).
The graph of
fx) = 1 exp[—(x_ﬂ)z], —00 < X < 00,
e 2
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is seen (1) to be symmetric about a vertical axis through x = g, (2)
to have its maximum of 1/(0\/5;) at x = yu, and (3) to have the x-axis
as a horizontal asymptote. It should also be verified that (4) there
are points of inflection at x = u + 7.

Remark. Each of the special distributions considered thus far has been
“justified” by some derivation that is based upon certain concepts found
in elementary probability theory. Such a motivation for the normal
distribution is not given at this time; a motivation is presented in Chapter 5.
However, the normal distribution is one of the more widely used distributions
in applications of statistical methods. Variables that are often assumed to be
random variables having normal distributions (with appropriate values of u
and o) are the diameter of a hole made by a drill press, the score on a test,
the yield of a grain on a plot of ground, and the length of a newborn child.

We now prove a very useful theorem.

Theorem 1. If the random variable X is N(u, 6?), 6> > 0, then the
random variable W = (X — p)/o is N(O, 1).

Proof. The distribution function G(w) of W is, since o > 0,

G(w)=Pr(Xa_”sw)=Pr(Xs wo + ).

wa + i — )
G(w) = J‘ ] exp [ - (i"'zu_):l dx.
e  O/2m 26° .

If we change the variable of integration by writing y = (x — u)/o, then
"
2T

Accordingly, the p.d.f. g(w) = G’(w) of the continuous-type random
variable W is

That is,

G(w) =

e dy.

e~V —0<w< 0.

gw) = ——
N

Thus Wis N(0, 1), which is the desired result (see also Exercise 3.100).

This fact considerably simplifies the calculations of probabilities
concerning normally distributed variables, as will be seen presently.
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A

-3 -2 -1 0 1 z, 2 3

FIGURE 3.2

Suppose that X is N(u, 6?). Then, with ¢, < ¢, we have, since
Pr(X=1¢)=0,
Prc<X<q)=Pr(X<qg)—Pr(X<cq)

X — — X — —
=Pr( ko ”)—pr( p_G u)
o o o o
(€2 — wie 1 , (€) — W)fa 1
—e " dw —
e 2n » 2
because W = (X — u)/o is N(0, 1). That is, probabilities concerning X,
which is N(u, 6?), can be expressed in terms of probabilities concerning
W, which is N(0, 1).
An integral such as

— w2
e "1 dw

k
1
A/ 2m
cannot be evaluated by the fundamental theorem of calculus because
an “antiderivative” of e=*'? is not expressible as an elementary
function. Instead, tables of the approximate value of this integral for

various values of k have been prepared and are partially reproduced
in Table III in Appendix B. We use the notation

f

—_w2
e "1 dw

D(z) = e "2 dw.
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Moreover, we say that ®(z) and its derivative @'(z) = @(z) are,
respectively, the distribution function and p.d.f. of a standard normal
distribution N(O, 1). These are depicted in Figure 3.2.

To summarize, we have shown that if X is N(u, ¢?), then

X — _ X — _
Pr(c,<X<c2)=Pr( “<°’a")-Pr( a“<c' “)

g g

—o(224) o2 2E)

It is left as an exercise to show that ®(—x) = 1 — ®(x).
Example 2. Let X be N(2, 25). Then, by Table III,

Pr(0<X<10)= <b(195‘—2-) _ q)(o_%_g)

= ®(1.6) — B(—0.4)
= 0.945 — (1 — 0.655) = 0.600

Pr(—8< X< 1)=¢(l-'513)-¢(”85‘2)

=®(-0.2) - B(-2)
=(1=0.579) — (1 — 0.977) = 0.398.
Example 3. Let X be N(u, ¢%). Then, by Table III,

Pr(u—2a<X<p+20)=Q(Ej%'L__E)_¢(L2“TJ_‘_)

and

a
=02) - (-2)
=0.977 — (1 — 0.977) = 0.954.

Example 4. Suppose that 10 percent of the probability for a certain
distribution that is N(u, a?) is below 60 and that 5 percent is above 90. What
are the values of u and ¢? We are given that the random variable X
is N(u, 0%) and that Pr(X <60)=0.10 and Pr(X <90) =0.95. Thus
®[(60 — u)/e] = 0.10 and ®[(90 — u)/o] = 0.95. From Table III we have

60 — u 90 — u
o

= — 1.282,

= 1.645.

These conditions require that u = 73.1 and ¢ = 10.2 approximately.

Remark. In this chapter we have illustrated three types of parameters
associated with distributions. The mean u of N(u, ¢?) is called a location
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parameter because changing its value simply changes the location of the
middle of the normal p.d.f.; that is, the graph of the p.d.f. looks exactly the
same except for a shift in location. The standard deviation o of N(u, 6*) is called
a scale parameter because changing its value changes the spread of the
distribution. That is, a small value of & requires the graph of the normal
p.d.f. to be tall and narrow, while a large value of o requires it to spread out
and not be so tall. No matter what the values of u and o, however, the graph
of the normal p.d.f. will be that familiar “bell shape.” Incidentally, the 8 of
the gamma distribution is also a scale parameter. On the other hand, the «
of the gamma distribution is called a shape parameter, as changing its value
modifies the shape of the graph of the p.d.f. as can be seen by referring to
Figure 3.1. The parameters p and yu of the binomial and Poisson distributions,
respectively, are also shape parameters.

We close this section with an important theorem.

Theorem 2. If the random variable X is N(u, ¢*), a* > 0, then the
random variable V = (X — p)*/a? is x*(1).

Proof. Because V = W?, where W = (X — u)/a is N(0, 1), the
distribution function G(v) of V'is, for v > 0,

G(v) = Pr (W? < v) = Pr(—/v < W < /).
That is,

e~ "1 dw, 0<v,

G) =

2ﬁ1
I 7=

G(v) =0, v<O.
If we change the variable of integration by writing w = \/;, then

and

r l .
G(@v) = J —_—
, 0 vV 2“\/;
Hence the p.d.f. g(v) = G’(v) of the continuous-type random variable
Vis

e dy, 0<uv.

1

g(v)=\/; >

=0 elsewhere.

pl2=le—o2 0<v< o0,

Since g(v) is a p.d.f. and hence
'[ g) dv =1,
0

it must be that I'(}) = \/; and thus V is y(1).
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EXERCISES

3.48. If
£

— w2
e~ dw,
2n

P(z) =

show that ®(—z) = 1 — @(2).
3.49. If X is N(75, 100), find Pr (X < 60) and Pr (70 < X < 100).
3.50. If X is N(y, ¢?), find b so that Pr[—b < (X — p)/o < b] = 0.90.

3.51. Let X be N(u, o?) so that Pr (X < 89) = 0.90 and Pr (X < 94) = 0.95.
Find yx and o°.

3.52. Show that the constant ¢ can be selected so that flx) = c2-*,
— o0 < x < o0, satisfies the conditions of a normal p.d.f.
Hint: Write 2 = ',

3.53, If X is N(u. %), show that E(X — u|) = o./2/m.

3.54, Show that the graph of a p.d.f. N(y, 6%) has points of inflection at
x=p—ocand x=u+o.

3.55. Evaluate [} exp [—2(x — 3)"] dx.

3.56. Determine the ninetieth percentile of the distribution, which is
N(65, 25).

3.57. If ¢** % js the m.g.f. of the random variable X, find Pr(—1 < X < 9).
3.58. Let the random variable X have the p.d.f. |

2
fx) = e ™ 0<x<o, zero elsewhere.
2n

Find the mean and variance of X.
Hint: Compute E(X) directly and E(X?) by comparing that integral with
the integral representing the variance of a variable that is N(0, 1).

3.59. Let X be N(5, 10). Find Pr[0.04 < (X — 5)* < 38.4].
3.60. If X is N(1, 4), compute the probability Pr (I < X? < 9).

3.61. If Xis N(75, 25), find the conditional probability that X is greater than
80 relative to the hypothesis that X is greater than 77. See Exercise 2.18.

3.62. Let X be a random variable such that E(X?*") = (2m)!/(2"m!),
m=1,2,3,...and EX*" ") =0,m=1,2,3,... . Find the m.gf. and
the p.d.f. of X.

3.63. Let the mutually independent random variables X,, X;, and X; be
N(0, 1), N2, 4), and N(—1, 1), respectively. Compute the probability that
exactly two of these three variables are less than zero.
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3.64. Compute the measures of skewness and kurtosis of a distribution which
is N(u, a?).

3.65. Let the random variable X have a distribution that is N(u, a?).
(a) Does the random variable Y = X? also have a normal distribution?
(b) Would the random variable Y = aX + b, a and b nonzero constants,
have a normal distribution?
Hint: In each case, first determine Pr (Y < y).

3.66. Let the random variable X be N(u, ¢?). What would this distribution be
if g = 0?
Hint: Look at the m.g.f. of X for ¢ > 0 and investigate its limit as
a’ - 0.

3.67. Let ¢(x) and ®(x) be the p.d.f. and distribution function of a standard
normal distribution. Let Y have a truncared distribution with p.d.f.
g(y) = o(»)/[®(b) — B(a)], a < y < b, zero elsewhere. Show that E(Y) is
equal to [p(a) — @(b)}/[D(b) — D(a)].

3.68. Let f{x) and F(x) be the p.d.f. and the distribution function of a
distribution of the continuous type such that f(x) exists for all x. Let the
mean of the truncated distribution that has p.d.f. g(y) = f{y)/Fb),
— o0 < y < b, zero elsewhere, be equal to —f{b)/F(b) for all real b. Prove
that f{x) is a p.d.f. of a standard normal distribution.

3.69. Let X and Y be independent random variables, each with a distribution
that is N(0,1). Let Z= X+ Y. Find the integral that represents the
distribution function G(z) = Pr(X + Y < z) of Z. Determine the p.d.f.
of Z.

Hint: We have that G(z) = [*_ H(x, z) dx, where

H(x,z) = J il;exp [—(x? + y*)/2] dy.

Find G'(z) by evaluating [*_[dH(x, 2)/0z] dx.

3.5 The Bivariate Normal Distribution

Remark. If the reader with an adequate background in matrix algebra so
chooses, this section can be omitted at this point and Section 4.10 can be
considered later. If this decision is made, only an example in Section 4.7 and
a few exercises need be skipped because the bivariate normal distribution
would not be known. Many statisticians, however, find it easier to remember
the multivariate (including the bivariate) normal p.d.f. and m.g.f. using
matrix notation that is used in Section 4.10. Moreover, that section provides
an excellent example of a transformation (in particular, an orthogonal one)
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and a good illustration of the moment-generating function technique; these
are two of the major concepts introduced in Chapter 4.

Let us investigate the function

fix, y) = !
’ 2no,0,. /1 — p?

where, with ¢, > 0,0,>0,and —1 <p <1,

() ) ()]

At this point we do not know that the constants yu,, u,, 63, 62, and p
are those respective parameters of a distribution. As a matter of fact,
we do not know that f{x, y) has the properties of a joint p.d.f. It will
be shown that:

e~ 9, —W<XxX<ow, —o<y<o,

1. fix,y)is a joint p.d.f.
2. Xis Ny, 03) and Y is NGy, 02).
3. p is the correlation coefficient of X and Y.

A joint p.d.f. of this form is called a bivariate normal p.d.f., and the
random variables X and Y are said to have a bivariate normal
distribution.

That the nonnegative function j(x, y) is actually a joint p.d.f. can
be seen as follows. Define f,(x) by

Silx) = J fx, y) dy.

Now

_ _ 2 _ 2

(1-p"g= [(y azuz)_ p(x a.ul)] +(1- p’)(x a.ul)
—b 2v H ?
(5 vo-nft)

where b= u, + p(6:/6,)(x — yu,). Thus
PR Je e 1)} 26%] exp{ (y —by/203(1 — P} .

.J— /1=

For the purpose of integration, the integrand of the integral in this
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expression for f,(x) may be considered a normal p.d.f. with mean 4 and
variance a5(1 — p?). Thus this integral is equal to 1 and

filx) = ! exp[—(x_“')z], —00 <X < 0.

o/ 203

Since

Jm Jm Sx, y) dy dx = Jm filx) dx =1,

— @ — @

the nonnegative function f{x, y) is a joint p.d.f. of two continuous-
type random variables X and Y. Accordingly, the function f,(x) is
the marginal p.d.f. of X, and X is seen to be N(u, 6}). In like
manner, we see that Y is N(u,, 63).

Moreover, from the development above, we note that

| _ 1 -y
j(x’ y) _ﬁ(x)(az /-—'-—'l _ pz\/i;;expl: 20_%(1 _ pz):l),

where b = u, + p(0,/0,)(x — u,). Accordingly, the second factor in the
right-hand member of the equation above is the conditional p.d.f. of
Y, given that X = x. That is, the conditional p.d.f. of Y, given X = x,
is itself normal with mean u, + p(s,/6,)(x — ;) and variance
a>(1 — p?). Thus, with a bivariate normal distribution, the conditional
mean of Y, given that X = x, is linear in x and is given by

g
mnﬂ=m+pfu—uJ

Since the coefficient of x in this linear conditional mean E(Y|x)
is po,/6,, and since o, and o, represent the respective standard
deviations, the number p is, in fact, the correlation coefficient of X and
Y. This follows from the result, established in Section 2.3, that the
coefficient of x in a general linear conditional mean E(Y|x) is the
product of the correlation coefficient and the ratio a,/a,.

Although the mean of the conditional distribution of Y, given
X = x, depends upon x (unless p = 0), the variance a3(1 — p?) is the
same for all real values of x. Thus, by way of example, given that X = x,
the conditional probability that Y is within (2.576)a,./1 — p? units of
the conditional mean is 0.99, whatever the value of x may be. In this
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sense, most of the probability for the distribution of X and Y lies in
the band

i+ p % (x — m) + (2.576)a,./1 — p?

about the graph of the linear conditional mean: For every fixed
positive g,, the width of this band depends upon p. Because the band
is narrow when p’ is nearly 1, we see that p does measure the intensity
of the concentration of the probability for X and ¥ about the linear
conditional mean. This is the fact to which we alluded in the remark
of Section 2.3.

In a similar manner we can show that the conditional distribution
of X, given Y = y, is the normal distribution

N[u. + pz—; (y — ), o1(1 — p’)]-

Example 1. Let us assume that in a certain population of married
couples the height X, of the husband and the height X, of the wife have a
bivariate normal distribution with parameters u, = 5.8 feet, u, = 5.3 feet,
g, = 0, = 0.2 foot, and p = 0.6. The conditional p.d.f. of X,, given X, = 6.3,
is normal with mean 5.3 + (0.6)(6.3 — 5.8) = 5.6 and standard deviation
(0.2),/(1 — 0.36) = 0.16. Accordingly, given that the height of the husband
is 6.3 feet, the probability that his wife has a height between 5.28 and 5.92
feet is ’

Pr(5.28 < X, < 5.92|1X, = 6.3) = ®(2) — ®(—2) = 0.954.
The interval (5.28, 5.92) could be thought of as a 95.4 percent prediction
interval for the wife’s height, given X, = 6.3.

The m.g.f. of a bivariate normal distribution cén be determined as
follows. We have

% 00

M, 1) = J e+ f(x, y) dx dy

v-m

{800

= e"*f, (x)l;[ e (vlx) d)’] dx

v—o0

for all real values of ¢, and ¢,. The integral within the brackets is the
m.g.f. of the conditional p.d.f. £, (y|x). Since f5,(y|x) is a normal p.d.f.
with mean u, + p(a,/0,)(x — ;) and variance a3(1 — p?), then
e o 2ai(l — p?)
J e fn(yx) dy = exp {tz[uz +p(x— ul)] + "
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Accordingly, M(t,, t,) can be written in the form

tat(l —p)
exp {tzﬂz - tzp%#l + "2'2_(2—3‘)‘}'[ exp |:(t| + 5Lp %?‘)x:'fl(x) dx.

But E(e*) = exp [u,t + (6%1*)/2] for all real values of t. Accordingly,
if we set t = t, + t,p(0,/a,), we see that M(t,, t,) is given by

. o £2oi(1 — p? c
eXp < L, — Lp o._?lll + bo1 = 0) + (tl + 5p ?‘.—T)

2
5 \2
02
(tl + 6Lp 0'1)

2

+ 0]

or, equivalently,

O'%ﬁ + 2p0'|0'2t|t2 + O%tg)
) .

M(t, 1) = exp (ﬂl h+ upt +

Itisinteresting to note that if, in thism.g.f. M(¢,, t,), the correlation
coefficient p is set equal to zero, then

M(t|, t2) = M(t|, O)M(O, tz)
Thus X and Y are independent when p = 0. If, conversely,
M(t,, ) = M(1,, 0)M(O, 1,),

we have 7919212 = 1, Since each of o, and g, is positive, then p = 0.
Accordingly, we have the following theorem.

Theorem 3. Let X and Y have a bivariate normal distribution with
means u, and u,, positive variances o* and a3, and correlation coefficient
p. Then X and Y are independent if and only if p = 0.

As a matter of fact, if any two random variables are independent
and have positive standard deviations, we have noted in Example 4 of
Section 2.4 that p ='0. However, p = 0 does not in general imply that
two variables are independent; this can be seen in Exercises 2.20 (¢) and
2.25. The importance of Theorem 3 lies in the fact that we now know
when and only when two random variables that have a bivariate
normal distribution are independent.
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EXERCISES

3.70. Let X and Y have a bivariate normal distribution with respective
parameters uy=2.8, u,=110, 0% =0.16, 3> =100, and p=0.6.
Compute:

(a) Pr (106 < Y < 124).
(b) Pr (106 < ¥ < 124|X = 3.2).

3.71. Let X and Y have a bivariate normal distribution with parameters
=3 m=1 a?=16, o2 =25, and p =3 Determine the following
probabilities:

@ Pr3< Y<38).

) PrB<Y<8lX=17).

() Pr(-3<X<)3).

d) Pr(-3<X<3Y=-—4).

3.72. If M(1,, t,) is the m.g.f. of a bivariate normal distribution, compute the
covariance by using the formula
’M(0,0) dM(0,0) dM(0, 0)
at, ot, at, o,

Now let y(t,, ) =In M(z,,1,). Show that 3*y(0, 0)/0¢, Btz gives this
covariance directly.

3.73. Let X and Y have a bivariate normal distribution with parameters
m=5m=10,0=10=25and p>0.If Prd< Y<16|X=5)=
~ 0.954, determine p. . S

3.74. Let X and Y have a bivariate normal distribution with parameters
=20, =40,07 =9, g = 4, and p = 0.6. Find the shortest interval for
which 0.90 is the conditional probability that Y is in this interval, given that
X =22,

3.75. Say the correlation coefficient between the heights of husbands and
wives is 0.70 and the mean male height is 5 feet 10 inches with standard
deviation 2 inches, and the mean female height is 5 feet 4 inches with
standard deviation 15 inches. Assuming a bivariate normal distribution,
what is the best guess of the height of a woman whose husband’s height is
6 feet? Find a 95 percent prediction interval.for her height.

3.76. Let
fx, p) = (12n) exp [—3(2 + Y1 + xy exp [— (x> + y* — 2)]},

where —o0 < x < 0, —© <y < . If fix, y) is a joint p.d.f, it is not a
normal bivariate p.d.f. Show that f{x, y) actually is a joint p.d.f. and that
each marginal p.d.f. is normal. Thus the fact that each marginal p.d.f. is
normal does not imply that the joint p.d.f. is bivariate normal.
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3.71. Let X, Y, and Z have the joint p.d.f.

L_l_y2 xt 4y + 2 | X+ + 22
;21: exp ————-———2 +xyzcxp(———-2 A B

where —0 < x < 0, —0 <y < o0, and —o0 < z < oo. While X, Y, and
Z are obviously dependent, show that X, Y, and Z are pairwise independent
and that each pair has a bivariate normal distribution.

3.78. Let X and Y have a bivariate. normal distribution with parameters
w1 = iy = 0, a2 = a3 = 1, and correlation coefficient p. Find the distribution
of the random variable Z =aX + bY in which a and b are nonzero
constants. '

Hint: Write G(z) = Pr(Z < z) as an iterated integral and compute
G’'(z) = g(z) by differentiating under the first integral sign and then
evaluating the resulting integral by completing the square in the exponent,

ADDITIONAL EXERCISES '

3.79. Let X have a binomial distribution with parameters n = 288 and
p =3 Use Chebyshev’s inequality to determine a lower bound for
Pr (76 < X <.116).

i . .
3.80. Let f{x) ___e_;#_’ x=0,1,2,..., zero elsewhere. Find the values
of u so that x=1 is the unique mode; that is, fl0) <f{l1) and

f>A2)>3)>--. _
3.81. Let X and Y be two independent binomial variables with parameters
n=4,p=14and n =3, p =1 respectively. Determine Pr (X — Y = 3).
3.82. Let X and Y be two independent binomial variables, both with
parameters n and p = ;. Show that
(2n)!
n! n! (2¥)

3.83. Two people toss & coin five independent times each. Find the proba-
bility that they will obtain the same number of heads.

Pr(X—Y=0)=

3.84, Color blindness appears in 1 percent of the people in a certain
population. How large must a sample with replacement be if the proba-
bility of its containing at least one color-blind person is to be at least 0.95?
Assume a binomial distribution &(n, p = 0.01) and find n.

3.85. Assume that the number X of hours of sunshine per day in a certain
place has a chi-square distribution with 10 degrees of freedom. The profit
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of a certain outdoor activity depends upon the number of hours of sun-
shine through the formula

profit = 1000(1 — e=*'%).
Find the expected level of the profit.

3.86. Place five similar balls (each either red or blue) in a bowl at random as
follows: A coin is flipped 5 independent times and a red ball is placed in the
bowl for each head and a blue ball for each tail. The bowl is then taken and
two balls are selected at random without replacement. Given that each of
those two balls is red, compute the conditional probability that 5 red balls
were placed in the bowl at random. ‘

3.87. If a die is rolled four independent times, what is the probability of one
four, two fives, and one six, given that at least one six is produced?

3.88. Let the p.d.f. f(x) be.positive on, and only on, the integers
0,1,2,3,4,5,6,7,8,9, 10, so that f(x) = [(11 — x)/x] fix — 1), x =1, 2,
3,...,10. Find f(x).

3.89. Let X and Y have a bivariate normal distribution with g, = 5, u, = 10,
oy =1, 03=25,and p =% Compute Pr(7 < Y < 19|x = 5).

3.90. Say that Jim has three cents and that Bill has seven cents. A coin is
tossed ten independent times. For each head that appears, Bill pays Jim
two cents, and for each tail that appears, Jim pays Bill one cent. What
is the probability that neither person is in debt after the ten trials?

391 If EX)=[(r+ D2), r=1,2,3,..., find the m.gf. and pd.f
of X.

3.92. For a biased coin, say that the probability of exactly two heads in three
independent tosses is 3. What is the probability of exactly six heads in nine
independent tosses of this coin?

3.93. It is discovered that 75 percent of the pages of a certain book contain
no errors. If we assume that the number of errors per page follows a Poisson
distribution, find the percentage of pages that have exactly one error.

3.94. Let X have a Poisson distribution with double mode at x = | and x = 2.
Find Pr[X = 0].

3.95. Let X and Y be jointly normally distributed with g, = 20, u, = 40,
gy =13,0,=2, p=0.6. Find a symmetric interval about the conditional
mean, so that the probability is 0.90 that Y lies in that interval given that
X equals 25.
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3.96. Let flx) = ( )p‘(l —-p)-* x=0, 1,...,10, zero elsewhere. Find

the values of p, so that fl0) = f{1) = - - - = f10).

3.97. Let flx, y) be a bivariate normal p.d.f. and let ¢ be a positive constant
so that ¢ < (210,06, /T — p?)~'. Show that ¢ = f{x, y) defines an ellipse in
the xy-plane. -

3.98. Let f(x, y’)‘ and f,(x, y) be two bivariate normal probability density
functions, each having means equal to zero and variances equal to 1.
The respective correlation coefficients are p and — p. Consider the joint
distribution of X and Y defined by the joint p.d.f. [f,(x, y) + £2(x, »)]/2.
Show that the two marginal distributions are both N(0, 1), X and Y are
dependent, and E(XY) = 0 and hence the correlation coefficient of X and
Y is zero.

3.99. Let X be N(u, 6?). Define the random variable ¥ = ¢* and find its p.d.f.
by differentiating G(y) = Pr (¢* < y) = Pr (X < In y). This is the p.d.f. of a
lognormal distribution. -

3.100. In the proof of Theorem 1 of Section 3.4, we could let
Gw)=Pr(X < wa + p) = Rwo + ),

where F and F' = f are the distribution function and p.d.f. of X,
respectively. Then, by the chain rule,

g(w) = G'(w) = [F'(wo + p)lo.

Show that the right-hand member is the p.d.f. of a standard normal
distribution; thus this provides another proof of Theorem I.



CHAPTER 4

Distributions
of Functions
of Random

Variables

4.1 Sampling Theory

Let X;, X;, ..., X, denote n random variables that have the joint
p.d.f. flx,, x;,...,x,). These variables may or may not be
independent. Problems such as the following are very interesting in
themselves; but more important, their solutions often provide the basis
for making statistical inferences. Let Y be a random variable that is
defined by a function of X, X5, ..., X,, say Y =u(X;, X5, ..., X,).
Once the p.d.f. Ax,, x3, ..., Xx,) is given, can we find the p.d.f. of Y?
In some of the preceding chapters, we have solved a few of these
problems. Among them are the following two. If n = 1 and if X is
N(u, 6*), then Y = (X; — p)/a is N(0, 1). Let n be a positive integer and

155
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let the random variables X;, i=1,2,...,n, be independent, each
having the same p.d.f. f{ix)=p*(1 —p)'~* x=0,1, and zero else-

where. If Y =) X, then Y is b(n, p). It should be observed that
|

Y = u(X,) = (X, — p)/o is a function of X, that depends upon
the two parameters of the normal distribution; whereas Y=

u(X,, X, ..., X,) =) X, does not depend upon p, the parameter of
1

the common p.d.f. of the X;, i=1,2,...,n. The distinction that
we make between these functions is brought out in the following
definition.

Definition 1. A function of one or more random variables that does
not depend upon any unknown parameter is called a statistic.

In accordance with this definition, the random variable ¥ =) X;

i
discussed above is a statistic. But the random variable Y = (X, — uy)/o
is not a statistic unless u and ¢ are known numbers. It should be noted
that, although a statistic does not depend upon any unknown
parameter, the distribution of the statistic may very well depend upon
unknown parameters.

Remark. We remark, for the benefit of the more advanced reader, that a
statistic is usually defined to be a measurable function of the random variables.
In this book, however, we wish to minimize the use of measure theoretic
terminology, so we have suppressed the modifier “measurable.” It is quite
clear that a statistic is a random variable. In fact, some probabilists avoid the
use of the word “statistic” altogether, and they refer to a measurable function
of random variables as a random variable. We decided to use the word
“statistic”’ because the reader will encounter it so frequently in books and
journals.

We can motivate the study of the distribution of a statistic in the
following way. Let a random variable X be defined on a sample space
% and let the space of X be denoted by . In many situations
confronting us, the distribution of X is not completely known. For in-
stance, we may know the distribution except for the value of an
unknown parameter. To obtain more information about this distri-
bution (or the unknown parameter), we shall repeat under identical
conditions the random experiment n independent times. Let the
random variable X, be a function of the ith outcome, i=1,2,...,n.
Then we call X}, X,, ..., X, the observations of a random sample
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from the distribution under consideration. Suppose that we can define
a statistic Y=u(X,, X3, ..., X,) whose p.d.f. is found to be g(y).
Perhaps this p.d.f. shows that there is a great probability that Y has
a value close to the unknown parameter. Once the experiment has been
repeated in the manner ,indicated and we have X,=x,, ..., X,=Xx,,
then y=u(x,, x,, ..., x,,) is a known number. It is to be hoped that
this known number can in some manner be used to elicit information
about the unknown parameter. Thus a statistic may prove to be useful.

Remarks. Let the random variable X be defined as the diameter of a hole
to be drilled by a certain drill press and let it be assumed that X has a normal
distribution. Past experience with many drill presses makes this assumption
plausible; but the assumption does not specify the mean g nor the variance
o’ of this normal distribution. The only way to obtain information about u
and ¢’ is to have recourse to experimentation. Thus we shall drill a number,
say n=20, of these holes whose diameters will be X;, X,,..., X5. Then
X\, Xy, ..., Xy is a random sample from the normal distribution under
consideration. Once the holes have been drilled and the diameters measured,
the 20 numbers may be used, as will be seen later, to elicit information about
g and o2,

The term ‘“‘random sample” is now defined in a more formal
manner.

Definition 2. Let X, X, ..., X, denote n independent random
variables, each of which has the same but possibly unknown
p.d.f. f{x); that is, the probability density functions of X, X, ..., X,
are, respectively, f,(x;)=/(x,), f:(x))=Ax), . s Jalxn)=f(x,), so
that the joint p.d.f. is f{x)A(x,) - flx,). The random variables
X, X, ..., X, are then said to constitute a random sample from
a distribution that has p.d.f. f{x). That is, the observations of a
random sample are independent and identically distributed (often
abbreviated i.i.d.).

Later we shall define what we mean by a random sample from a
distribution of more than one random variable.

Sometimes it is convenient to refer to a random sample of size
n from a given distribution and, as has been remarked, to refer
to X, X,,..., X, as the observations of the random sample. A
reexamination of Example 2 of Section 2.5 reveals that we found the
p.d.f. of the statistic, which is the maximum of the observations
of a random sample of size n=3, from a distribution with p.d.f.
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fix) =2x, 0 < x <1, zero elsewhere. In Section 3.1 we found the
p.d.f. of the statistic, which is the sum of the observations of a random
sample of size n from a distribution that has p.d.f. f(x) = p*(1 — p)' %,
x = 0, 1, zero elsewhere. This fact was also referred to at the beginning
of this section.

In this book, most of the statistics that we shall encounter will
be functions of the observations of a random sample from a given
distribution. Next, we define two important statistics of this type.

Definition 3. Let X, X,, ..., X, denote a random sample of size n
from a given distribution. The statistic

X|+X2+"
n

X;

%= X,
 n

= Z
is called the mean of the random sample, and the statistic

z=iw=iﬁ_}z

i=1 n i=1 N

S

is called the variance of the random sample.

Remarks. Many writers do not define the variance of a random sample
as we have done but, instead, they take $? = Y (X, — X)/(n — 1). There are
I

good reasons for doing this. But a certain price has to be paid, as we shall
indicate. Let x, x,, . . ., x,denote experimental values of the random variable
X that has the p.d.f. f{x) and the distribution function F(x). Thus we may look
upon Xx,, x,, . . . , X, as the experimental values of a random sample of size n
from the given distribution. The distribution of the sample is then defined to
be the distribution obtained by assigning a probability of 1/n to each of
the points x|, x,, ..., x,. This is a distribution of the discrete type. The
corresponding distribution function will be denoted by F,(x) and it is a step
function. If we let f, denote the number of sample values that are less than
or equal to x, then F,(x) = f,/n, so that F,(x) gives the relative frequency of
the event X < x in the set of n observations. The function F,(x) is often called
the “empirical distribution function’ and it has a number of uses.

Because the distribution of the sample is a discrete distribution, the mean

and the variance have been defined and are, respectively, Zx, n =X and
z (x; — X)*/n = s%. Thus, if one finds the distribution of the sample and the

assocnated empirical distribution function to be useful concepts, it would
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seem logically inconsistent to define the variance of a random sample in any
way other than we have.

We have also defined X and S? only for observations that are i.i.d., that
is, when X}, X,, .. ., X, denote a random sample. However, statisticians often
use these symbols, X and S?, even if the assumption of independence is
dropped. For example, suppose that X;, X;, ..., X, were the observations
taken at random from a finite collection of numbers without replacement.
These observations could be thought of as a sample and its mean X and
variance S? computed; yet X|, X, ..., X, are dependent. Moreover, the n
observations could simply be some values, not necessarily taken from a
distribution, and we could compute the mean X and the variance S? associated
with these n values. If we do these things, however, we must recognize the
conditions under which the observations were obtained, and we cannot make
the same statements that are associated with the mean and the variance of
what we call a random sample.

Random sampling distribution theory means the general problem
of finding distributions of functions of the observations of a random
sample. Up to this point, the only method, other than direct prob-
abilistic arguments, of finding the distribution of a function of one
or more random variables is the distribution function technique.
That is, if X, X;, ..., X, are random variables, the distribution of
Y=uX, X,,...,X,) is determined by computing the distribution
function of Y,

G(y)= Pr [u(XI’ XZ’ .. ’Xn) Sy]

Even in what superficially appears to be a very simple problem, this
can be quite tedious. This fact is illustrated in the next paragraph.

Let X,, X,, X; denote a random sample of size 3 from a standard
normal distribution. Let Y denote the statistic that is the sum of
the squares of the sample observations. The distribution function
of Yis

GOy)=Pr(X}+ X2+ X3 <y).

If y <0, then G(y) = 0. However, if y > 0, then

G(y) = J.J‘Jz—z;r%rp Cxp [—% (x% + x% + x%)] dxl de dx39
A

where A is the set of points (x;, x,, x;) interior to, or on the surface of,
a sphere with center at (0,0, 0) and radius equal to \/} This is
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not a simple integral. We might hope to make progress by changing
to spherical coordinates:

x,=pcosf@sing, . x,=psin@sine, X3 = p COS @,

where p > 0,0< 8 < 2n,0< ¢ < n. Then, for y >0,

y pn pr
1 .
G(y) = J J " e~""p*sin ¢ do df dp
0 *0 0

Py
= [Z]| ple"dp.

0

If we change the variable of integration by setting p = \/; we have

y
G(y) = ﬁj \/T;e‘”n dw,
0

for y > 0. Since Y is a random variable of the continuous type, the
p.d.f. of Yis g(y) = G'(»). Thus

= 1 3/2—Ie—y/2 O<y<
g(y) \/EE y , y

=0 elsewhere.
Because ['() = (UT()) = (})/7, and thus /27 = T ()22, we see that
Y is ¥}(3).

The problem that we have just solved highlights the desirability of
having, if possible, various methods of determining the distribution of
a function of random variables. We shall find that other techniques are
available and that often a particular technique is vastly superior to the
others in a given situation. These techniques will be discussed in
subsequent sections.

Example 1. Let the random variable Y be distributed uniformly over the
unit interval 0 < y < 1, that is, the distribution function of Y is

G(y)=0, y<0,
=y, O<y<l,
=1, 1 <y.

Suppose that F(x) is a distribution function of the continuous type which is
strictly increasing when 0 < F(x) < 1. If we define the random variable X
by the relationship ¥ = F(X), we now show that X has a distribution
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which corresponds to F(x). If 0 < F(x) < 1, the inequalities X < x and
F(X) < F(x) are equivalent. Thus, with 0 < F(x) < 1, the distribution of X is

Pr (X < x) =Pr[FX) < F(x)] =Pr{Y < Ax)]
because Y = F(X). However, Pr (Y < y) = G(y), so we have

Pr(X <x)=G[Fx)] = Ax), 0<FAx)<]l.
That is, the distribution function of X is F(x).

This result permits us to simulate random variables of different
types. This is done by simply determining values of the uniform
variable Y, usually with a computer. Then, after determining the
observed value Y = y, solve the equation y = F(x), either explicitly or
by numerical methods. This yields the inverse function x = F~'(y). By
the preceding result, this number x will be an observed value of X that
has distribution function F(x).

It is also interesting to note that the converse of this result is true.
If X has distribution function F(x) of the continuous type, then
Y = F(X) is uniformly distributed over 0 < y < 1. The reason for this
is, for 0 < y < 1, that

Pr(Y <y) = Pr[AX) <y] = Pr[X < F'()].
However, it is given that Pr (X < x) = F(x), so

Pr(Y<y)=FF'(pl=y, O<y<l.

This is the distribution function of a random variable that is distri-
buted uniformly on the interval (0, 1).

EXERCISES

4.1. Show that

S=13y (X~ Xy =13y X1 X%,
1 |

where X = Y Xi/n.
: \

4.2. Find the probability that exactly four observations of a random
sample of size 5 from the distribution having p.d.f. flx) = (x + 1)/2,
—1 < x < 1, zero elsewhere, exceed zero.

4.3. Let X,, X;, X; be a random sample of size 3 from a distribution that
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is N(6, 4). Determine the probability that the largest sample observation
exceeds 8.

4.4. What is the probability that at least one observation of a random
sample of size n =35 from a continuous-type distribution exceeds the
90th percentile?

4.5. Let X have the p.d.f. f(x) = 4x3, 0 < x < 1, zero elsewhere. Show that
Y= —21nX*is ¥(2).

4.6. Let X\, X, be a random sample of size n = 2 from a distribution with
p.d.f.f(x) = 4x°,0 < x < 1,zero elsewhere. Find the mean and the variance
of the ratio Y = X,/X,.

Hint: First find the distribution function Pr(Y < y)when0 <y < 1 and
then when 1 < y.

47. Let X, X; be a random sample from the distribution having
pdf. fix)=2x, 0<x <1, zero elsewhere. Find Pr(X,/X,<!) and
Pr (X, X,=>1)).

4.8. If the sample size is n = 2, find the constant ¢ so that §? = (X, — X,).

49. If x;=i, i=1,2,...,n, compute the values of ¥x=2X x;/n and
st =X (x; — X)}/n.

4.10. Let y;=a+ bx;,, i=1,2,...,n, where a and b are constants. Find
y=ZXy/n and s}=Z(y,—p)?*n in terms of a, b, X=Zx/n, and
Si, = Z (x,‘ — f)z/n.

4.11. Let X, and X, denote two i.i.d. random variables, each from a
distribution that is N(0, 1). Find the p.d.f. of Y = X? + X2.
Hint: In the double integral representing Pr(Y <y), use polar
coordinates.

4.12, Thefour values y, = 0.42, y, = 0.31, y, = 0.87, and y, = 0.65 represent
the observed values of a random sample of size n = 4 from the uniform
distribution over 0 < y < 1. Using these four values, find a corresponding
observed random sample from a distribution that has p.d.f. f{lx) =e¢™*,
0 < x < o, zero elsewhere.

4.13. Let X, X, denote a random sample of size 2 from a distribution with
p.d.f. fix) = 1,0 < x < 2, zero elsewhere. Find the joint p.d.f. of X, and X,.
Let Y = X, + X,. Find the distribution function and the p.d.f. of Y.

4,14, Let X|, X, denote a random sample of size 2 from a distribution with
p.d.f. f(x) =1, 0 < x < 1, zero elsewhere. Find the distribution function
and the p.d.f. of Y = X, /X..

4.15. Let X|, X3, X, be three i.i.d. random variables, each from a distri-
bution having p.d.f. f{x) = 5x% 0 < x < 1, zero elsewhere. Let Y be the
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largest observation in the sample. Find the distribution function and p.d.f.
of Y.

4.16. Let X, and X, be observations of a random sample from a distribution
with p.d.f. fix) = 2x, 0 < x < 1, zero elsewhere. Evaluate the conditional
probability Pr (X, < X,|X, < 2X;).

4.2 Transformations of Variables of the Discrete Type

An alternative method of finding the distribution of a function -
of one or more random variables is called the change-of-variable
technique. There are some delicate questions (with particular reference
to random variables of the continuous type) involved in this technique,
and these make it desirable for us first to consider special cases.

Let X have the Poisson p.d.f.

X5~ i
f(x):ﬁ‘-}",—, x=01,2,...,

=0 elsewhere.

As we have done before, let o/ denote the space of = {x:x=
0,1,2,...}, so that o/ is the set where f{x) > 0. Define a new
random variable Y by Y =4X. We wish to find the p.d.f. of Y by
the change-of-variable technique. Let y =4x. We call y =4x a
transformation from x to y, and we say that the transformation maps
the space o onto thespace # = {y: y = 0,4, 8, 12, . .. }. The space #
is obtained by transforming each point in .«¢ in accordance with y = 4x.
We note two things about this transformation. It is such that to each
point in &/ there corresponds one, and only one, point in #; and
conversely, to each point in # there corresponds one, and only one,
point in /. That is, the transformation y = 4x sets up a one-to-one
correspondence between the points of o/ and those of #. Any function
y = u(x) (not merely y = 4x) that maps a space ./ (not merely our &)
onto a space # (not merely our #) such that there is a one-to-one
correspondence between the points of &/ and those of 4 is called a
one-to-one transformation. It is important to note that a one-to-one
transformation, y = u(x), implies that x is a single-valued function of
y. In our case this is obviously true, since y = 4x requires that x = ().

Our problem is that of finding the p.d.f. g(y) of the discrete type
of random variable Y = 4X. Now g(y) = Pr (Y = y). Because there is
a one-to-one correspondence between the points of & and those of
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%,theevent Y = y or4X = ycan occur when, and only when, the event
X = (3)y occurs. That is, the two events are equivalent and have the
same probability. Hence '

) /L J—
g(y)=PrA(Y=y)=Pr(X=§)=”Ty—/i—)!—, y=0,4,8,...,

=0 elsewhere.

The foregoing detailed discussion should make the subsequent text
easier to read. Let X be a random variable of the discrete type, having
p.d.f. f(x). Let o denote the set of discrete points, at each of which
f(x) > 0,and let y = u(x) define a one-to-one transformation that maps
of onto 4. If we solve y = u(x) for x in terms of y, say, x = w(y), then
for each y € 4, we have x = w(y) € of. Consider the random variable
Y=uX). If ye ®, then x = w(y)e o/, and the events Y=y [or
u(X) = y] and X = w(y) are equivalent. Accordingly, the p.d.f. of Yis

g) =Pr(Y=y) =Pr[X = w(y)l = fIW(y)l, ye,
=0 elsewhere.

Example 1. Let X have the binomial p.d.f.

3 2\1)7"
f(x) = x|(3—_x)| (-3_) (_3‘) s X = O, la 2’ 3’

=0 elsewhere.

We seek the p.d.f. g(») of the random variable ¥ = X2. The transformation
y=u(x)=x"maps & ={x:x=0,1,2,3} onto B ={y:y=0,1,4,9}. In
general, y = x? does not define a one-to-one transformation; here, however, it
does, for there are no negative values of x in o = {x:x =0, 1, 2, 3}. That s,
we have the single-valued inverse function x = w(y) = \/; (not ——\/;), and

SO
2 \/; I 3'—\/;
_) (_3') s y= O: l’ 4, 9’

3!
g(y) =f(\/;) = (
W3- Sy \3

=0 elsewhere.

There are no essential difficulties involved in a problem like
the following. Let f(x,, x,) be the joint p.d.f. of two discrete-type
random variables X, and X, with & the (two-dimensional) set of
points at which f(x,, x;) > 0. Let y, = u,(x;, X;) and y; = uy(x,, x;)
define a one-to-one transformation that maps & onto #. The joint
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p.d.f. of the two new random variables Y, = u,(X|, X;) and Y,=
u,(X,, X;) is given by

g, »2) = fTwi 0y, 1), w2, 720l (1, o) € B,

=0 elsewhere,

where x, = w, (31, ¥,), X2 = wa(1, y2) is the single-valued inverse of
¥ = u)(x, X3), ¥2 = u,(x,, x,). From this joint p.d.f. g(y,, y,) we may
obtain the marginal p.d.f. of Y, by summing on y, or the marginal
p.d.f. of Y, by summing on y,.

Perhaps it should be emphasized that the technique of change
of variables involves the introduction of as many ‘“new” variables
as there were “‘old” variables. That is, suppose that f{x,, x,, x,) is the
joint p.d.f. of X, X,, and X;, with .o the set where f(x,, x5, x;) > 0.
Let us say we seek the p.d.f. of Y, = u,(X,, X, X3). We would then
define (if possible) Y, = u,(X,, X,, X;) and Y, = u;(X), X), X3), so
that y, = u)(x,, X3, X3), y2 = th(Xy, X3, X3), y3 = t3(x), X3, X3) define a
one-to-one transformation of .« onto 4. This would enable us to find
the joint p.d.f. of Y}, Y,, and Y, from which we would get the marginal
p.d.f. of ¥, by summing on y, and y,.

Example 2. Let X, and X, be two indcpénden,t random variables that have
Poisson distributions with means yu, and y,, respectively. The joint p.d.f. of
X,and X; is

X1y X2 5= 11— 2
A . 5 =01,23,..., x=0123...,
x) ! xy!
and is zero elsewhere. Thus the space & is the set of points (x,, x;), where
each of x, and x, is a nonnegative integer. We wish to find the p.d.f. of
Y, = X, + X;. If we use the change of variable technique, we need to define
a second random variable Y,. Because Y; is of no interest to us, let us
choose it in such a way that we have a simple one-to-one transformation.
For example, take Y, =X,. Then y, = x, + x, and y, = x, represent a
one-to-one transformation that maps & onto

g={(yl:y2):y2=0,l7---,yl and y|=0,1,2,'...}.

Note that, if (y,, y;) € &, then 0 < y, < y,. The inverse functions are given by

X, =y, — y; and x; = y,. Thus the joint p.d.f. of ¥, and Y; is

ﬂ}l’l “nﬂgle—ﬁ‘l —u2
(7 =yt ya!

g(}’h}’2)= , (J’I,J’z)eg,
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and is zero elsewhere. Consequently, the marginal p.d.f. of Y, is given by
N
g = Y &)
y2=0

— et < LA DT Y S P )

»nt y;z=0(yl yz)'y Ll

_ - pPlem—m

!
and is zero elsewhere. That is, Y, = X, + X,, has a Poisson distribution with
parameter yu, + us.

Remark. It should be noted that Example 2 essentially illustrates the

distribution function technique too. That is, without defining Y, = X, we
have that the distribution function of ¥, = X, + X, is

Gi(y) =Pr{X,+ X, < y).
In this discrete case, with y;, =0, 1,2, ..., the p.d.f. of Y, is equal to
gn)=G(y)— G —1)=Pr (X, + X,=y).

’ y|=0,l,2,...,

That is,
uf'pfze_"' il 5]

g = Z}:(Z; Tl

This summation is over all poiiits”of & such that x, + x, = y, and thus can
be written as
X1 #,[VI - qui\’ze—lll -2

g = Z

x=0 (1 —x)lx!

which is exactly the summation given in Example 2.

Example 3. In Section 4.1, we found that we could simulate a
continuous-type random variable X with distribution function F(x) through
X = F~'(Y), where Y has a uniform distribution on 0 < y < 1. In a sense, we
can simulate a discrete-type random variable X in much the same way, but
we must understand what X = F~'(Y) means in this case. Here F(x) is a step
function with the height of the step at x = x; equal to Pr (X = x;). For
illustration, in Example 3 of Section 1.5, Pr (X = 3) =} is the height of the
step at x = 3 in Figure 1.3. that depicts the distribution function. If we now
think of selecting a random point Y, having the uniform distribution on
0 <ys l on the vertical axis of Figure 1.3, the probability of falling between
2 and { is 3. However, if it falls between those two values, the horizontal line
drawn from it would “hit” the step at x = 3. That is, for ; <y <§, then
F~'(y) = 3. Of course, if } < y < 2, then F~'(y) = 2;and if 0 < y < }, we have
F~'(y) = 1. Thus, with this procedure, we can generate the numbers x = 1,
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x =2, and. x = 3 with respective probabilities 3, 2, and £, as we des1red
Clearly, this procedure can be generalized to simulate any random variable
« X of the discrete type.

EXERCISES

4.17. Let X have a p.d.f. f{x) =4, x = 1, 2, 3, zero elsewhere. Find the p.d.f.
of Y=2X+1.

4.18. If f(x,, x;) = )1+~ ¥1-*, (x,, x;) = (0,0), (0, 1), (1, 0), (1, 1),
zero elsewhere, is the joint p.d.f. of X, and X,, find the joint p.d.f. of
Y]=X| Xzand Yz X1+X2

4.19. Let X have the p.d.f. fix) = 3), x =1, 2,3,..., zero elsewhere. Find
the p.d.f. of Y = X°.

4.20. Let X) and X, have the joint p.d.f. f{x,, x;) = x,x;/36, x, = 1, 2, 3 and
x, =1, 2,3, zero elsewhere. Find first the joint p.d.f. of Y, = X, X, and
Y, = X,, and then find the marginal p.d.f. of Y,.

4.21. Let the independent random variables X, and X, be &(n,, p) and &(n,, p),
respectively. Find the joint p.d.f. of ¥, = X, + X, and ¥, = X;, and then
find the marginal p.d.f. of Y,.

Hint: Use the fact that

Em) -1

This can be proved by comparing the coefficients of x* in each member of
the identity (1 + x)"(1 + x)2 = (1 + x)"+ ™,

4.22. Let X, and X, be independent random variables of the discrete type wnh
joint p.d.f. f,(x,)fa(x2), (x1, x2) € &. Let y, = 4,(x,) and y, = u;(x,) denote
a one-to-one transformation that maps .« onto #. Show that ¥, = u,(X))
and Y, = u¥,(X;) are independent.

4.23. Consider the random variable X with p.d.f. f{x) = x/15,x=1,2,3, 4,
5, and zero elsewhere.
(a) Graph the distribution function F(x) of X.
(b) Using a computer or a table of random numbers, determine 30 values
of Y, which has the (approximate) uniform distributionon0 < y < 1.
(c) From these 30 values of Y, find the corresponding 30 values of X and
determine the relative frequencies of x =1, x =2, x =3, x =4, and

x = 5. How do these compare to the respective probabilities of %, %,

3 4 St)
15215 15°

4.24. Using the technique given in Example 3 and Exercise 4.23, generate 50
values having a Poisson distribution with u = 1.
Hint: Use Table I in Appendix B.
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4.3 Transformations of Variables of the Continuous. Type

In the preceding section we introduced the notion of a one-to-one
transformation and the mapping of a set &/ onto a set & under that
transformation. Those ideas were sufficient to enable us to find the
distribution of a function of several random variables of the discrete
type. In this section we examine the same problem when the random
variables are of the continuous type. It is again helpful to begin with
a special problem.

Example. 1. Let X be a random variable of the continuous type, having
p.d.f.

Sfix) = 2x, O<x<l,

=0 elsewhere.

Here o is the space {x:0 < x < 1}, where f{x) > 0. Define the random
variable Y by Y = 8X* and consider the transformation y = 8x*. Under
the transformation y = 8x%, the set & is mapped onto the set #=
{y 10 < y < 8}, and, moreover, the transformation is one-to-one. For every
0<a<b<8, the event a < Y < b will occur when, and only when, the
event %\%; <X< %\yl; occurs because there is a one-to-one correspondence
between the points of &/ and #. Thus

Pr(a< Y <b)=Pr(}Ya<X<iYb)

Jo/2
= J‘ 2x dx.
Yap2

Let us rewrite this integral by changing the variable of integration from x to
y by writing y = 8x® or x = %\y; Now

dx _ 1

dy 6y’
and, accordingly, we have

p NATARW
r@a<Y<b)= a27 @ dy

E ~ 1
= 6y”3dy'

Since this is true for every 0 < a < b < 8, the p.d.f. g(») of Yis the integrand;
that is, .

ﬂw=®

=0  elsewhere.

0<y<S8,

1/3°
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It is worth noting that we found the p.d.f. of the random variable
Y = 8X° by using a theorem on the change of variable in a definite
integral. However, to obtain g(y) we actually need only. two things:
(1) the set & of points y where g(y) > 0 and (2) the integrand of the
integral on y to which Pr(a <'Y < b) is equal. These can be found
by two simple rules:

1. Verify that the transformation y = 8x* maps o = {x:0 < x < 1}
onto £ ={y:0<y<8} and that the transformation is one-
to-one.

2. Determine g(y) on this set # by substituting %y; for x_in f(x)
and then multiplying this result by the derivative of %\3/; That

is,
g(y) = f(‘[)d[()‘/;]

5 O0<y<S8,

6y
=0 elsewhere.

We shall accept a theorem in analysis on the change of variable in
a definite integral to enable us to state a more general result. Let X be
a random variable of the ¢ontinuous type having p.d.f. f(x). Let o
be the one-dimensional space where f(x) > 0. Consider the random
variable Y = u(X), where y = u(x) defines a one-to-one transformation
that maps the set o/ onto the set #. Let the inverse of y = u(x)
be denoted by x = w(y), and let the derivative dx/dy = w'(y) be
continuous and not equal zero for all points y in . Then the p.d.f.
of the random variable Y = u(X) is given by

gy) =TwOIw' (), ye#,

=0 elsewhere,

where |w’(y)| represents the absolute value of w’(y). This is precisely
what we did in Example 1 of this section, except there we deliberately
chose y = 8x’ to be an increasing function so that

d“ 1
y (y) 6y2/3! 0<y<87
is positive, and hence
1 1
6y2/3 = 6y2/_3" 0< y< 8.
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Henceforth, we shall refer to dx/dy = w’(y) as the Jacobian (denoted
by J) of the transformation. In most mathematical areas, J = w'(y) is
referred to as the Jacobian of the inverse transformation x = w(y), but
in this book it will be called the Jacobian of the transformation, simply
for convenience.

Example 2. Let X have the p.d.f.
fix)=1, 0<x<l,
=0 elsewhere.

We are to show that the random variable Y= —2InX has a chi-
square distribution with 2 degrees of freedom. Here the transformation
is y=u(x)= —2Inx, so that x = w(y) =e *2 The space & is & =
{x :0 < x < 1}, which the one-to-one transformation y = —2 In x maps onto
4 = {y:0 < y < o0}. The Jacobian of the transformation is

_ax _ I
J—dy—w(y)— 5¢€ e,

Accordingly, the p.df. g(y)of ¥ = —-2In Xis
) =fle?)J =4, 0<y<oo,
=0 elsewhere,

a p.d.f. that is chi-square with 2 degrees of freedom. Note that this problem
was first proposed in Exercise 3.46. '

This method of finding the p.d.f. of a function of one random
variable of the continuous type will now be extended to functions of
two random variables of this type. Again, only functions that define
a one-to-one transformation will be considered at this time. Let
1 = u(x, x;) and y, = u,(x,, x,) define a one-to-one transformation
that maps a (two-dimensional) set = in the x,x,-plane onto a
(two-dimensional) set 4 in the y, y,-plane. If we express each of x, and
x, in terms of y, and y,, we can write x; = w;(y,, ¥2), Xa = wa(y1, ¥2)
The determinant of order 2,

ox, 0x,
dy, 0y,
ox, 0x;|°
oy, 0y,

is called the Jacobian of the transformation and will be denoted
by the symbol J. It will be assumed that these first-order partial
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derivatives are continuous and that the Jacobian J is not ident-
ically equal to zero in 4. An illustrative example may be
desirable before we proceed with the extension of the change of
variable technique to two random variables of the continuous

type.

Example 3. Let o be the set of = {(x,x,):0<x, <1,0<x,<1}
depicted in Figure 4.1. We wish to determine the set & in the y, y,-plane that
is the mapping of &/ under the one-to-one transformation

B
i = u(xy, x3) = x; + X,
Vi = Uy(X), X3) = X — X,
and we wish to compute the Jacobian of the transformation. Now
xy=wi(y1,y) =31 + y2)s
X2 =wi(y1, y2) =30 — »2).

To determine the set # in the y,y,-plane onto which .« is mapped under the
transformation, note that the boundaries of o are transformed as follows into
the boundaries of %, :

xl = 0 intO 0 = %(yl + y2j9
X, = into  0=3(y — )

x; =1 into =3y — )

(0.0) x,=0

FIGURE 4.1
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(0,0) >y,

FIGURE 4.2

Accordingly, # is shown in Figure 4.2. Finally,

ox 0x 11
J= oy, dy, | _ | 2 21 __l_
- axz 6x2 - 1 1 - 2°
oy, 0y, 2

Remark. Although, in Example 3, we suggest transforming the bound-
aries of &, others might want to use the inequalities

0<x <l and 0<x,<1
directly. These four inequalities become
0<i(+y)<l and O0<i(r—y)<l.

It is easy to see that these are equivalent to

- <Yy N<2—y, <y, n—2<yy’

and they define the set #. In this example, these methods were rather simple
and essentially the same. Other examples could present more complicated
transformations, and only experience can help one decide which is the best
method in each case. :

We now proceed with the problem of finding the joint p.d.f. of
two functions of two continuous-type random variables. Let X, and X,
be random variables of the continuous type, having joint p.d.f.
h(x,, x,). Let of be the two-dimensional set in the x,x,-plane where
h(x,, x;) > 0. Let Y, = u4,(X,, X;) be a random variable whose p.d.f.
is to be found. If y, = u,(x,, x;) and y, = u,(x,, x,) define a one-to-
one transformation of &/ onto a set # in the y y,-plane (with
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nonidentically zero Jacobian), we can find, by use of a theorem in
analysis, the joint p.d.f. of Y, = 4, (X, X,) and Y, = u;(X), X;). Let
A be a subset of o/, and let B denote the mapping of 4 under the
one-to-one transformation (see Figure 4.3). The events (X, X;)e 4
and (Y,, Y,) € B are equivalent. Hence

Pr[(Y,, Y,) e B] = Pr[(X,, X)) € A]

. o= Jl[h(x,, x,;) dx, dx,.

We wish now to change variables of integration by writing y, =
t (Xy, X2), Y2 = (X, X2), 0T Xy = Wi (1, ¥2), X2 = W()1, y;)- It has been
proved in analysis that this change of variables requires '

jjh(xl, x7) dx, dx, = J‘Jhlwn 1> y2) w31, Y)W dy, dy,.
A . B
Thus, for every set B in &,

- Pr[(Y,, Y,)e B] = 'H‘h[w. (15 ¥2), wa(y1, )M dy, dy,,

which implies that the joint p.d.f. g(3,, y,) of Y, and Y, is

g, y2) = Hw (31, ¥2), wa(yy, Y)W, (i, y2) € B,
=0 el_sewhere.
Accordingly, the marginal p.d.f. g,(y,) of Y; can be obtained from the

joint p.d.f. g(y,, y,) in the usual manner by integrating on y,. Several
examples of this result will be given.

Example 4. Let the random variable X have the p.d.f.
fix)=1, 0<x<l,

=0 elsewhere,

@.ﬁ
-x,

(0.0) (0,0) -

FIGURE 4.3
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and let X,,.X, denote a random sample from this distribution. The joint p.d.f.
of X, and X;'is then ' :

h(x;, x3) = flx f(x;) = 1, D<x <1, O0<x,<1,

=0 elsewhere.

Consider the two random variables ¥, = X, + X,and ¥, = X, — X,. We wish
to find the joint p.d.f. of Y, and Y,. Here the two-dimensional space & in the
x,x,-plane is that of Example 3 of this section. The one-to-one transfor-
mation y; = x; + x,, y, = x; — X, maps & onto the space # of that example.
Moreover, the Jacobian of that transformation has been shown tobe J = —1.
Thus

g, y) = bz + 32, 3O — sl
=f[% 87 +}’2)]f[';'(}’| — y)WI =%, 1, ) € B,
=0 elsewhere.

Because # is not a product space, the random variables Y, and Y, are
dependent. The marginal p.d.f. of Y, is given by

o0
g = J gy, y2) dy,. i
If we refer to Figure 4.2, it is seen that
2
g)=1| zdn=y, 0O<y<]|,

Y=N

r2- )

.= %d}’z=2—}’1, 1<y <2,

vy -2

=0 elsewhere.

In a similar manner, the marginal p.d.f. g,(y,) is given by

Y2+ 2
£:(r2) = 1dy =y, + 1, —l<y;<0,
“=y2
r2-y2
= %d}’|=l—}’z’ 0<y, <1,

ﬂyz
={ elsewhere.

Example 5. Let X,, X, be a random sample of size n = 2 from a stan-
dard normal distribution. Say that we are interested in the distribution
of Y, = X,/X,. Often in selecting the second random variable, we use
the denominator of the ratio or a function of that denominator. So let
Y, = X,. With the set {(x;, x;): —00 < x; < 0, — 0 < x, < @}, we note
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that the ratio is not defined at x, = 0. However, Pr (X, = 0) = 0; so we take
the p.d.f. of X, to be zero at x, = 0. This results in the set

A ={x,x): —0<x <00, —0<x,<0 or 0<x,< o}

With y, = x,/x,, y, = x, or, equivalently, x, = y,y,, X, = y,, & maps onto

B={n,y): —0<y <m0, —w<y,<0 or 0<y, <o}
Also,
Y2 N
J= = 0.
0 l‘ y, #
Since

h(xh x2) = exp [—%(Xf + x%)] > (xlv x2) Ed,

we have that the joint p.d.f. of Y, and Y, is

1 .
gy, y2) = ECXP[ 2}’2(1 + .V|) [y, O, y)eB.

Thus *

f* a0

g.(y.)=r gy y)dy:+ | gbn, y2) dys.

v0

Since g(y,, y;) is an even function of y,, we can write

gi(n) = 2J; %‘?XP ["%}’i(l +yf)] (»2) dy,

—00-<y| < Q0.

=_1_{—CXP[_E}’2(I +.V|)]} 1
n 1+ 2 o T+

This marginal p.d.f. of ¥, = X, /X, is that of a Cauchy distribution. Although
the Cauchy p.d.f. is symmetric about y, = 0, the mean does not exist because

the integral
r [yilgi1(»1) dy,

does not exist. The median and the mode, however, are both equal to zero.

Example 6. Let Y, =1 (X, — X;), where X, and X, are i.i.d. random
variables, each being x%(2). The joint p.d.f. of X, and X; is

Sx)x;) = exp(

x| +Xx;

2

), 0<x <o, 0<Xx< 0,

=0 elsewhere.
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Let Y, = X, so that y, =1 (x|, — X;), y» = X, OF x; = 2y, + ,, X, = y, define
a one-to-one transformation from & = {(x;, x;) : 0 < x, < 00, 0 < x; < o0}
onto £ = {(y),y2): =2y, <y,and 0 < y,, —o0 < y, < o0}. The Jacobian of
the transformation is

hence the joint p.d.f. of Y, and Y, is

2 _, -
gLy =7, (y,y)eR,

=0 elsewhere.

Thus the p.d.f. of Y, is given by

L)
g(n) = e i Ndy, =1,  —w<y <0

L Y=2)

AO0
— %e—}'l_}? dy2=%e—}’l’ 0 <y < o,
00 ‘
or
g(y)=5eVl, —oo<y <.

This p.d.f. is now frequently called the double exponential p.d.f.

Example 7. In this example a rather important result is established. Let
X, and X, be independent random variables of the continuous type with joint
p-d.f. fi(x,)2(x;) that is positive on the two-dimensional space /. Let
Y, = u,(X,), a function of X, alone, and Y, = u,(X;), a function of X, alone.
We assume for the present that y, = u,(x,), y; = u»(x;) define a one-to-one
transformation from . onto a two-dimensional set # in the y,y,-plane.
Solving for x, and x, in terms of y, and y,, we have x, = w,(y,)and x; = w,()s),
SO

wi()
0 wi(y2)

Hence the joint p.d.f. of Y, and Y, is

gy, »2) '=f.[w|(y.)]fz[w2(yz)]_lwi Wiy, () e B,
=0 elsewhere.

= wi(y)w2(»2) # 0.

However, from the procedure for changing variables in the case of
one random variable, we see that the marginal probability density
functions of Y, and Y, are, respectively, g,(»,) =filwi(»)Iwi(»)] and
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£:(02) = fi{w(3:)1lwa(32)| for y, and y, in some appropriate sets. Con-
sequently,

gy, y2) = &1(01)g2(r2)-

Thus, summarizing, we note that if X, and X, are independent random
variables, then Y, = 4,(X,) and Y, = u,(X,) are also independent random
variables. It has been seen that the result holds if X; and X; are of the discrete
type; see Exercise 4.22.

In the simulation of random variables using uniform random
variables, it is frequently difficult to solve y = F(x) for x. Thus other
methods are necessary. For instance, consider the important normal
case in which we desire to determine X so that it is N(0, 1). Of course,
once X is determined, other normal variables can then be obtained
through X by the transformation Z = o X + pu.

To simulate normal variables, Box and Muller suggested the
following procedure. Let Y|, Y, be a random sample from the uniform
distribution over 0 < y < 1. Define X, and X, by

X,=(—2In Y)"?cos (2nY,),
X, =(—2InY,)"?sin 2xY,).

The corresponding transformation is one-to-one and maps
{,y)0<y <1, 0<y,<1} onto {(x,x;):—00 < x, < 00,
—00 < x, < 00} except for sets involving x, = 0 and x, = 0, which
have probability zero. The inverse transformation is given by

x} + x3
Vi =€xp{ — D) s

=L arctan %
Y2 =24 Xy

This has the Jacobian
. 2 2 2 2
(=) exp (—"' “2”‘2) (—x) exp(—"'ﬁx?)

— X,/x} 1/x,
(2m)(1 + x3/x%) (2m)(1 + x3/x})

2 2 2+ 2
— (1 + x3/x*)exp (_x, -;—xz) — exp(—xl 5 aZ

2n)(1 + x2/x2) = o
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Since the joint p.d.f.of Y, and Y,islon0 <y, <1,0<y, < 1, and
zero elsewhere, the joint p.d.f. of X, and X; is

( xf+x§)
exp| ——

3 —00<x|<00, —OO<x2<OO.
2n

Thatis, X, and X, are independent standard normal random variables.

We close this section by observing a way of finding the p.d.f.
of a sum of two independent random variables. Let X, and X;
be independent with respective probability density functions f,(x,)
and fi(x,). Let Y, =X, + X, and Y,=X,. Thus we have the
one-to-one transformation x, =y, — y, and x, = y, with Jacobian
J = 1. Here we say that & = {(x,, X,): — 0 < X; < 00, —00 < X; < 00}
maps onto # = {(y,y,):—© <y, < 0, —0 <y, < 0}, but we
recognize that in a particular problem the joint p.d.f. might equal zero
on some part of these sets. Thus the joint p.d.f. of ¥, and ¥, is -

gy ) =Hin — L), ) e,
and the marginal p.d.f. of Y, = X, + X, is given by

&UO=J.MM-%MUQWL

which is the well-known convolution formula.

EXERCISES

4.25. Let X have the p.d.f. f(x) = x}/9, 0 < x < 3, zero elsev»;here. Find the
pd.f. of Y=X.

4.26. If the p.d.f. of X is f{x) = 2xe~*,0 < x < o0, zero elsewhere, determine
the p.d.f. of Y = X%

4.27. Let X have the logistic p.d.f. f{x) = e~ */(1 + ¢™*)}, —00 < x < ©.
(a) Show that the graph of f{x) is symmetric about the vertical axis through
x=0.
(b) Find the distribution function of X.
(¢) Find the pd.f. of Y=¢""%.
(d) Show that the m.g.f. M(¢) of X is I'(1 — I)F(l +0, —-1l<r<l
Hint: In the integral representing M(1), let y = (1 + e %)™,
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4.28. Let X have the uniform distribution over the interval (—n/2, n/2).
Show that Y = tan X has a Cauchy distribution.

4.29. Let X, and X; be two independent normal random variables, each
with mean zero and variance one (possibly resulting from a Box—Muller
transformation). Show that

Z =y + 04X,

Z, = + par X, + 03/ 1 — p’X;,

where 0 < a,, 0 < 7,, and 0 < p < 1, have a bivariate normal distribution
with respective parameters y,, u;, %, a2, and p.

4.30. Let X, and X; denote a random sample of size 2 from a distribution that
iS N(ﬂ, 02). Let YI = XI + Xz and Yz = XI - Xz. Find the j01nt ‘p.d.ﬂ Of Y|
and Y, and show that these random variables are independent.

4.31. Let X, and X, denote a random sample of size 2 from a distribution that
is NUI, 0'2). Let Y| = Xl + X2 and Y, = X| + 2X2. Show that thejOint p.d.f.
of Y, and Y, is bivariate normal with correlation coefficient 3/,/10.

4.32. Use the convolution formula to determine the p.d.f. of Y, = X, + X,,
where X, and X, are i.i.d. random variables, each with p.d.f. fix) =e~",
0 < x < o0, zero elsewhere.

Hint: Note that the integral on y, has limits of 0 and y,, where
0 <y, < 0o. Why?

433. Let X, and X, have the joint p.df. h(x, x;) = 2e7% %,
0 < x; < x; < o0, zero elsewhere. Find the joint p.d,f. of Y, =2X, and
Y, = X, — X, and argue that Y, and Y, are independent.

4.34. Let X, and X, have the joint p.d.f. A(x,, x;) = 8x;x%;, 0 < x, < X; < |,
zero elsewhere. Find the joint p.d.f. of Y, = X,/X; and Y, = X, and argue
that Y, and Y, are independent.

Hint: Use the inequalities 0 < y,y, < y, < 1 in considering the mapping
from & onto &. '

4.4 The Beta, t, and F Distributions

It is the purpose of this section to define three additional
distributions quite useful in certain problems of statistical inference.
These are called, respectively, the beta distribution, the (Student’s)
t-distribution, and the F-distribution.
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The beta distribution. Let X, and X, be two independent random
variables that have gamma distributions and joint p.d.f.

| —laBel . —X1—
h(xnxz)=mx‘,‘ IxB-le=%1-%2  Q<x;<0, 0<x,<oo0,

zero elsewhere, where «a >0, §>0. Let Y, =X, + X; and Y,=
X, /(X; + X;). We shall show that Y; and Y, are independent.

The space & is, exclusive of the points on the coordinate axes, the
first quadrant of the x,x,-plane. Now

= u(xy, x) = x; + X3,
X
X +x2

y2 = (X, X3) =

may be written x; = y,y,, x; = y,(1 — »), so

V2 nl_ *
11—y, —}’1‘ =n#o.

The transformation is one-to-one, and it maps & onto #=
{1, y2):0<y <00, 0<y, <1} in the y,y,-plane. The joint p.d.f.
of Y, and Y, is then

J =

1
gy, ) = (}’l)m ) ' — y)PP e N

A=)
@)

=0 elsewhere.

yr+b-lg=n, O<y, <0, O0<y,<l,

In accordance with Theorem 1, Section 2.4, the random variables are
independent. The marginal p.d.f. of Y, is

l(l —yZ)ﬂ +B- | -y
g:(y:) = T(@)T(p) rf M dy,,

T+ ﬁ) 3
F( )l"(ﬂ) (S 0<y, <1,
=0 elsewhere.

This p.d.f. is that of the beta distribution with parameters « and §. Since
g(yl, yz) = gl (yl)gZ(yZ)’ it must bC that the p.d.f- Of Yl iS

1
gi(y) = Ta+ 5 +ﬂ)y"” le=¥,  0<y <o,

=0 elsewhere,
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which is that of a gamma distribution with parameter values of
o+ fand 1.

It is an easy exercise to show that the mean and the variance of
Y,, which has a beta distribution with parameters «.and B, are,
respectively,

x ol = af '
a+p’ @+ f+ D@+ B>

The t-distribution. Let W denote a random variable that is N(O, 1);
let ¥ denote a random variable that is x%(r); and let W and V be
independent. Then the joint p.d.f. of W and V, say A(w, v), is the
product of the p.d.f. of W and that of ¥ or

u:

h(w,v) = 1 e "N L vt e~

S T ’

—o<w<o, 0<v<oo,
=0 V» elsewhere.
Define a new random variable T by writing

w

The change-of-variable technique will be used to obtain the p.d.f. g, (t)
of T. The equations

T =

w

t= and u=v

vfr
define a one-to-one transformation that maps & = {(w,v): —o0 <
w<oo, 0 <p<oo} onto B={(t,u): —00 <t< o0, 0<u< 0}
Since w = t\/;/ r, v = u, the absolute value of the Jacobian of the
transformation is |J] = \/;/\/r_- Accordingly, the joint p.d.f. of T
and U = V is given by

g, u)=h(£ )lJI |

1 | 2\ /u
= — P! 1 ¥,
J2RT2? exp[ 2( +’ )]\ﬁ )

—wo<t<w, O<u<om,

=0 elsewhere.
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The marginal p.d.f. of T is then

f® 0O

g()=" g, u)du

V-

f® 0

1 r+2-1 |: u( tz):l
- u exp| —5|1+—=]|du
Jy /2 T(r/2)2 2 r

In this integral let z = «[1 + (%/r)]/2, and it is seen that

. . (r+1j2-1
gl(t)=J. 1 ; ( ; 222 ) e_z( 22 )dz
o /2rr T(r/2)22\1 + t*/r 1+ t)r
_T(r+ 1)/2) 1 .
Jar D(rf2) (0 + e+ D2

Thus, if Wis N(0, 1), if V is y*(r), and if W and V are independent,
then ' ' :

— 00 <t <00,

w
Vi

T:

~

has the immediately preceding p.d.f. g,(¢). The distribution of the
random variable T is usually called a t-distribution. It should
be observed that a z-distribution is completely determined by the
parameter r, the number of degrees of freedom of the random variable
that has the chi-square distribution. Some approximate values of

P (T< t)=f £i(w) dw

for selected values of r and ¢ can be found in Table IV in Appendix B.

Remark. This distribution was first discovered by W. S. Gosset when he
was working for an Irish brewery. Because that brewery did not want other
breweries to know that statistical methods were being used, Gosset published -
under the pseudonym Student. Thus this distribution is often known as
Student’s t-distribution.

The F-distribution. Next consider two independent chi-square
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random variables U and ¥ having r, and r, degrees of freedom,
respectively. The joint p.d.f. A(u, v) of U and V is then

o |
h = 1/2-1,r/2 -1 —(u+v)/2,
. 0) = R DTy ¥ v e

O<u<o, 0<v<oo,
=0 elsewhere.

We define the new random variable

_U/n
W= Vir,
and we propose finding the p.d.f. g,(w) of W. The equations
_un _
Ty TP

define a one-to-one transformation that maps the set &=
{(4,0) :0<u<00,0<v<o0}ontotheset # ={(w,z):0 <w< o0,
0 <z < o0}, Since u = (r,/r,)zw, v = z, the absolute value' of the
Jacobian of the transformation is |J| = (r,/r,)z. The joint p.d.f. g(w, 2)
of the random variables W and Z = ¥V is then

B I rzw e 2/2 -1
&(w, 2) = T(ri/2)T (ry/2)2(1 + "2)I2 ( r2 ) i

z(nw rz
><exp[—2(r2 +1)] >

provided that (w, z) € #, and zero elsewhere. The marginal p.d.f. g,(w)
of W is then

/0

gw)y=| gw,z)dz
(" _(Jra)" oy 2

( 2—1
T(r,/2)T(ry/2)2 + 012 % e

—

Y0

X exP[_%(%+ 1)]212.

If we change the variable of integration by writing
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it can be seen that

o (;.I/’.-’z)n/z(w)rlﬁ -1 ' 2}’ N +r)2-1
- -y
s J; [(ri/2)T(ry/2)20 + 72 (r.W/rz + 1) e

2 | |
" (‘T&/‘TT) &
T+ )20y w2l

T/AT(RD) (L4 rwr)fs e’
=0 elsewhere.

0<w< oo,

Accordingly, if U and V are independent chi-square variables with
r, and r, degrees of freedom, respectively, then

U/rl
V/ r
has the lmmedlately preceding p.d.f. g,(w). The distribution of this

random variable is usually called an F-distribution; and we often call
the ratio, which we have denoted by W, F. That is,

U/ r
V/ r;
It should be observed that an F-distribution is completely determined

by the two parameters r, and r,. Table V in Appendix B gives some
approximate values of

W=

b
Pr(F<b)= J. gi(w) dw
0
for selected values of r,, r,, and b.

EXERCISES

4.35. Find the mean and variance of the beta distribution.
Hint: From that p.d.f., we know that

' 1, T@re
Jy“(]_yf Y= Faxth)

foralla >0, >0.

4.36. Determine the constant ¢ in each of the followmg so that each f{x) is
a beta p.d.f.

(@) fIx) = cx(1 — x)%, 0 < x < 1, zero elsewhere.
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(b) fx) = ex}(1 = x)%, 0.< x < 1, zero elsewhere.
(©) fix) =cx*(1 — x)B 0 <x <1, zero elsewhere

4.37. Determine the constant ¢ so that _f(x) =ex(3—x% 0<x< 3 zero
elsewhere is a p. d.f.

4. 38. Show that the graph of the beta p.d.f.is symmetrlc about the vertical
line throughx—ilfa—ﬁ ~

4.39. Show, fork=1,2,...,n, that

l n! k=1 ok k=1 n .,
I dz-Eo(x)p‘(l—p)" .
P

x =

This demonstrates the relationship between the distribution functions of the
beta and binomial distributions.

4.40. Let T have a t-distribution with 10 degrees of freedom. Find Pr (7| >
2.228) from Table IV.

4.41. Let T have a r-distribution with 14 degrees of freedom. Determine b
so that Pr(—b< T < b) =

4.42, Let F have an F-distribution with parameters r, and r,. Prove that 1/F
has an F-distribution with parameters r, and r,.

4.43. If F has an F-distribution with parameters r, = 5 and r, = 10, find a
and b so that Pr (F < a) = 0.05 and Pr (F < b) = 0.95, and, accordmgly,
‘Pr(a < F< b)=090.

Hint: Write Pr (F < a)=Pr(1/F > l/a) =1-Pr(l/F< l/a) and use
the result of Exercise 4.42 and Table V.

4.44. Let T= W/./V/r, where the independent variables W and V are,
respectively, normal with mean zero and variance 1 and chi-square with r
degrees of freedom. Show that T2 has an F-distribution with parameters
n=landrn=r.

Hint: What is the distribution of the numerator of 77

4.45. Show that the r-distribution with r = 1 degree of freedom and the
Cauchy distribution are the same.

4.46. Show that -
N S
L+ (n/r)W’

where W has an F-distribution with parameters r, and Fas has a beta
dlstrlbutlon -

Y=

4.47. Let X, X, be a random sample from a distribution having the pdf
SIx)=e"*, 0 < x < o0, zero elsewhere. Show that Z = X;/X; has an
F-distribution.
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4.5 Extensions of the Change-of-Variable Technique

In Section 4.3 it was seen that the determination of the joint p.d.f.
of two functions of two random variables of the continuous type was
essentially a corollary to a theorem in analysis having to do with the
change of variables in a twofold integral. This theorem has a natural
extension to n-fold integrals. This extension is as follows. Consider an
integral of the form

J. ..Jh(x,,xz, cev s Xp) dx, dxy - - - dx,
A

taken over a subset A of an n-dimensional space /. Let
yi=u(xy, X2, ..y Xn), - on= Us(Xyy Xay o ooy X)y o v - s
Vo = UnXis -0 ),
together with the inverse functions
Xy = Wl(}’l,}’z’ NS *2 = ﬁi()’n)’u NS 5 I
| Xp = W.(yl:hs s V)

define a one-to-one transformation that maps & onto # in the
Y1, Y25 -« - » Y Space (and hence maps the subset 4 of o onto a subset
B of #). Let the first partial derivatives of the inverse functions be
continuous and let the n by n determinant (called the Jacobian)

noon . on
oy, oy, ‘ 0yn
J=| oy Oy OYn
dx, ox,  0x,
oy, 0y: " 0,

not be identically zero in #. Then

J\' v J‘h(x', X3yt 0 oy x,,) dx, dx: tre dx,,
A .

=J" s Jh[wl(yls s sy(l)! Wz()’l’ ’yn)’ et w"(y" e ’y")]

X |J|dy, dy, - - dy,.
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Whenever the conditions of this theorem are satisfied, we ¢an deter-
mine the joint p.d.f. of n functions of n random variables. Approp-
riate changes of notation in Section 4.3 (to indicate n-space as opposed
to 2-space) are all that is needed to show that the joint p.d.f. of the
random variables Y, = u,(X|, X,, ..., X)), Yo =w(X,, X,, ..., X}),
oo Y, =u(X,, X5, ..., X, —where thejoint p.d.f.of X}, X, ..., X,
is h(x,, ..., x,)—is given by

g(ylayl’ & . A ayn) = 'th[wl(yl’ - s ayn)! . ’wn(yl, A ’yn)]s

when (), 2, - - . , ¥,) €&, and is zero elsewhere.

Example 1. Let X\, X;,..., X, be independcnt random variables, each
having a gamma distribution with g = 1. The joint p.d.f. of these variables
may be written as

o k41

h(xl’ X325+ 009 Xy I) I_[ r(ai) x‘il‘ : _xis 0 < X; < O,

=0 elsewhere.
Let

X,
Xi+ X+ -+ Xyt

Y,= i=l,2,...,k,

and ¥, ,, =X, + X;+ - - - + X, denote k + 1 new random variables. The
associated transformation maps & = {(x;,...,X41):0<x;, <00, i=1,
., k + 1} onto the space

g'_“{(yl""’yk’yk+|):0<y,',i= 1,...,k,
et o+ <0<y, <ol

The single-valued inverse functions are x, =y, ¥k, 15---5 Xk = ViVeks1»
Xe o1 = Yes (1 = ¥y — -+ - — »), so that the Jacobian is
y!(-{-l 0 e 0 y|
0 Yesr 7 0 Y2
= - z | =Her
0 0 v Yi+1 ' . Y
Y+ —Yks1 T Vs (l—)’I—"'—)’k) A
Hence the joint p.d.f. of Y,,..., Y, Y;,, is given by
ﬂﬁ---m*u—lyfn—l R duky | IS R L R P (2

Fley) - Tl (otk 4 1) ’
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provided that (y,, . . ., ¥, ¥c + 1) € & and is equal to zero elsewhere. The joint

p.d.f. of ¥,,..., Y, is.seen by inspection to be given by
BN r(al"+"'+Aak+l) a;l‘ ’I o~ | '
e )= , R T R
407 )’k)f T(a) - T, ) N Ve T =y Vi)
whenO<y,i=1,...,k ¥ + -+ y. <1, while the function g is equal to
zero elsewhere. Random variables Y|, .. ., Y, that have a joint p.d.f. of this
form are said to have a Dirichlet distribution with parametersa,, . . . , %, % ; |,

and any such g(y,, . . ., y.) is called a Dirichlet p.d.f. It is seen, in the special
case of k = 1, that the Dirichlet p.d.f. becomes a beta p.d.f. Moreover, it is
also clear from the joint p.d.f. of Y|,..., Y., Y, that Y, ., has a gamma
distribution with parameters a; + -- - + o, + «; ., and f = 1 and that Y,
is independent of Y, Y,,..., ¥,.

We now consider some other problems that are encountered when
transforming variables. Let X have the Cauchy p.d.f.

1

f(x)=;ta+—xz),

—0 < x< o0,

and let Y= X2 We seek the p.d.f. g(y) of Y. Consider the
transformation y = x?. This transformation maps the space of
X, o ={x: -0 <x< o}, onto B={y:0<y<o}. However,
the transformation is not one-to-one. To each ye %, with the
exception of y = 0, there correspond two points x € /. For example,
if y = 4, we may have either x = 2 or x = —2. In such an instance,
we represent &/ as the union of two disjoint sets 4, and A, such that
y = x? defines a one-to-one transformation that maps each of 4,
and A4, onto #. If we take 4, to be {x: —o0 < x <0} and 4, to be
{x:0 < x < oo}, we see that 4, is mapped onto {y:0 <y < 0},
whereas A4, is mapped onto {y : 0 < y < o0}, and these sets are not the
same. Our difficulty is caused by the fact that x = 0 is an element
of /. Why, then, do we not return to the Cauchy p.d.f. and take
f(0) = 07 Then our new & is & = {— 00 < x <-00 but x # 0}. We
then take 4, = {x: —00 <x <0} and 4, = {x:0 < x < oo}. Thus
y = x’, with theinverse x = —./y,maps 4,onto# = {y: 0 < y < o0}
and the transformation is one-to-one. Moreover, the transformation
y = x%, with inverse x = \/}, maps A, onto Z={y:0<y< o}
and the transformation is one-to-one. Consider the probability
Pr(Y e B), where Bc £. Let A, ={x:x= —\/;,yeB} < A4, and
let A,={x:x= \/;, y € B} < A4,. Then Y € B when and only when
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XeA;or Xe A., Thus we have
"Pr(YeB)=Pr(Xe4,)+Pri{Xe A4)

= J f(x)dx + J fx) dx.

In the first of these integrals, let x = — \/; . Thus the Jacobian, say J,,
s —1 /2\/;; moreover, the set 4, is mapped onto B. In the second
integral let x = \/)—z Thus the Jacobian, say J,, is 1 /2\/;; moreover,
the set A, is also mapped onto B. Fmally,

f( |- f dy+Jﬂf)7dy

\ = ; f ) +ﬂﬁ)}7dy

Hence the p. d f. of Y is given by

g0) = —=[A-N+A/M,  yeB.
25
With f{x) the Cauchy p.d.f. we have

1
o) =—L
TN

=0 elsewhere.

Pr(YeB) =

t;

0<y< oo,

In the preceding discussion of a random variable of the continuous
type, we had two inverse functions, x = —\/; and x = \/; That is
why we soughl; to partition .o/ (ora modification of &) into two disjoint
subsets such that the transformation y = x* maps each onto the same
4. Had there been three inverse functions, we would have sought to
partition &/ (ora modified form of &) into three disjoint subsets, and
so on. It is hoped that this detailed discussion will make the following
paragraph easier to read.

Let h(x,, x,, . .., X,) be the _]omt p. d.f. of X,, X, . .., X,, which
are random vanables of the contmuous type. Let & be the
n-dimensional space where' h(x,, x,, . .. »X,) >0, and consider the
transformation y, = u;(x;, X2, . . ., X)), Y2 = (X}, Xz, . . ., X,), -

Vo = U,(x,, X3, . .., X,), Which maps &/ onto & in the y,,yz, cen ,y,,
space. To each point of & there will correspond, of course, but one
point in #; but to a point in # there may correspond more than one
point in /. That is, the transformation may not be one-to-one.



190 ’ --Distributions of Functions of Random Variables [Ch. 4

Suppose, however, that we can represent & as the union of a finite
number, say k, of mutually disjoint sets A4,, 4, ..., A; so that

V= u,(x,, X3y e n - ,x,,), « vy y,.,= u,,(x., X9y . nn ,x,')

define a one-to-one transformation of each A4; onto #. Thus, to each
point in & there will correspond exactly one point in each of
A, Ay, ..., A, Let

Xi = Wiy, Y2, - . < Ya)s
X2 =Wau(V1, Y25 - -+ 5 Va)s

i=1,2,...,k,
Xp = wm'(ylvyb LR ayn)!

denote the k groups of n inverse functions, one group for each of these
k transformations. Let the first partial derivatives be continuous and
let each

owy Ow, - Owy
dy, oy, ayn
J = a.y. ‘3?’2 ‘3{’" L i=1,2,... .k,
av‘vm’ awm' S a“’m‘
ayl ayl ayn ’

be not identically equal to zero in #. From a consideration of the
probability of the union of k mutually exclusive events and by applying
the change of variable technique to the probability of each of these
events, it can be seen that the joint p.d.f. of Y, = 4, (X}, X;, ..., X,),
Yo=u,(X), Xay .-, Xo), ..., Y, = u,(X;, Xa, ..., X,), i8S given by

k ,
g(yl’st e syn) = ‘ZI IJ,Ih[w.,(y., s ayn)s cee w,,,-(y., T syn)]’

provided that (»,,y,,...,y,) €%, and equals zero elsewhere. The
p.d.f. of any Y,, say Y, is then

g.(y.)=f J gV, Y-, ya)dyr - dy,.

An illustrative example follows.
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Example 2. To illustrate the result just obtained, take n = 2 and let X, X,
denote a random sample of size 2 from a standard normal distribution. The
joint p.d.f. of X. and X, is

_xi+x
f(x,,xz)— — €XP 2 , —<Xx <00, —00 <X <00.

Let Y, denote the mean and let Y, denote twice the variance of the random
sample. The associated transformation is

. X + X,
N=T o
e = x,)*
="
This transformation maps & = {(x,,x;): —00 <X, < 00, —00 <X, < 0} onto
B={(y,y): —0 <y <o, 0<y, <o} But the transformation is not

one-to-one because, to each point in &, exclusive of points where y, = 0, there
correspond two points in & . In fact, the two groups of inverse functions are

=yl_\/£9 x2=yl+\/y%
Y. Y
x|=yl+\/;2's x2=y,—\/;.

Moreover, the set o/ cannot be represented as the union of two disjoint sets,
each of which under our transformation maps onto &. Our difficulty is caused
by those points of o that lie on the line whose equation is x;, = x,. At each
of these points, we have y, = 0. However, we can define f{x,, x;) to be zero
at each point where x, = x,. We can do this without altering the distribution
of probability, because the probability measure of this set is zero. Thus
we have'a new o = {(x,, x;): —00 < x; < 00, —00 < x, < 00, but x; # x,}.
This space is the union of the two disjoint sets A, = {(x, x;) : x; > x;}
and A4, = {(x,, x;): x, < x;}. Moreover, our transformation now defines
a one-to-one transformation of each A4;, i= 1,2, onto the new #=
{(31,y:): —0 < y, < 0,0 < y, < 0}. We can now find the joint p.d.f., say
g(», y2), of the mean Y, and twice the variance Y, of our random sample
An easy computation shows that || = |/l = 1/, /2y,. Thus

,/ 2)? )
8(}’1,}’2)=21—nexp|: =2l ) (}’1+ yz )}\/127

+ie |:_(}’|+\/}’2/2)2_(.V|—\/}’2 )z] 1
2n “*P 2 2 N

/2 1/2—1 —y/2
= [— ¥y 2 —wo<y < o, 0<y2<w
21[ fr() !

and
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We can make three interesting observations. The mean Y, of our random
sample is N(0, 3); Y, which is twice the variance of our sample, is x*(1); and
the two are independent. Thus the mean and the variance of our sample are
independent.

EXERCISES

448. Let X,, X,, X; denote a random sample from a standard normal
distribution. Let the random variables Y,, Y;, Y5 be defined by

X, =Y,cos Y,sin Y3, X,=Y,sin Y;sin Y;, X;=Y cosY,,

where 0 < Y, <00, 0< Y,<2r, 0< Y, <n Show that Y|, Y,, Y; are
mutually independent.

4.49. Let X,, X;, X; be ii.d. each with.the distribution having p.d.f.
fix)=e* 0 < x < o0, zero elsewhere. Show that

X X+ X, _
Y'_X1+X2’ YZ_X|+X2+X,’ =X+ X, + X,

are mutually independent.

450. Let X,,;X,,...,X, be r independent gamma variables with pa-
rameters x =a;and f=1,i=1,2,...,r, respectively. Show that Y, =
Xi\+X;+---+ X, has a gamma distribution with parameters a=
®+---+aand f=1.

Hint:Let Y, =X, +---+ X, Vh)h=X;+---+X,..., Y, =X,

451. Let Y,,...,Y, have a Dirichlet distribution with parameters,

Opy v o vy Ogy O 4o

(a) Show that Y, has a beta distribution with parameters « = «; and
B=a+ - -+ oy y

(b) Showthat Y, + - - - + Y,,r < k,has a beta distribution with parameters
a=0;+---+aand f=a,, ,+- -+ &%, .

(c) Show that Y, +Y,, Y;+ Y, Y;,...,Y,, k=35, have .a Dirichlet
distribution with parameters o, + a5, 03 + g, &5, . . ., Ay, O 4 .
Hint: Recall the definition of Y, in Example 1 and use the fact that

the-sum of several independent gamma variables with § = | is a gamma

variable (Exercise 4.50).

4.52. Let X, X,, and X; be three independent chi-square variables with r,, r;,
and r, degrees of freedom, respectively.
(a) Show that Y, = X,/X; and Y, = X, + X, are independent and that Y,

is x’(r + r2).
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(b) Deduce that

X /r Xs/’s‘
Xn ™M @ e )

are independent F-variables.

4.53. If f(x) = % , —1 < x <1, zero elsewhere, is the p.d.f. of the random
variable X, find the p.d.f. of Y = X2

4.54. If X,, X, is a random sample from a standard normal distribution,
find the joint p.d.f. of Y, = X? + X2 and Y, = X, and the marginal p.d.f.
of ¥,. gl

Hint: Note that the space of Y, and Y, is given by —\/)T, <y, <",
0< Y < 00.

4.5S. If X has the p.d.f. fix) =}, —1 < x < 3, zero elsewhere, find the p.d.f.
of Y =X~ B o
Hint: Here £ = {y : 0 < y < 9} and the event Y € B is the union of two
mutually exclusive events if B= {y: 0 <y <1}.

4.6 Distributions of Order Statistics

In this section the notion of an order statistic will be defined and
we shall investigate some of the simpler properties of such a statistic.
‘These statistics have.in recent times come to play an important role
in statistical inference partly because some of their properties do
not depend upon the distribution from which the random sample is
obtained.

Let X}, X,, ..., X, denote a random sample from a distribution of
the continuous type having a p.d.f. f{x) that is positive, provided that
a < x < b. Let Y, be the smallest of these X, Y, the next X; in order
of magnitude, . . ., and Y, the largest X;. Thatis, Y, < Y, <--- < Y,
represent X, X, ..., X, whqn the latter are arranged in ascending
order of magnitude. Then Y,, i=1,2,...,n, is called the ith order
statistic of the random sample X, X,, . . ., X,. It will be shown that the
joint p.d.f. of Y}, Y,,...,Y,is given by

gV, Y- s Yn) = ("!)f(}’l.)f(}’z) SR (679 X
a<y, <y, < <y, <b,
=0 elsewhere. (D

We shall prove this only for the case n = 3, but the argument is seen
to be entirely general. With n = 3, the joint p.d.f. of X, X5, X; is



194 Distributions of Functions of Random Variables |Ch, 4

S{x)f(x2)f(x;). Consider a probability such as Pr(a < X, = X; <b,
a < X, < b). This probability is given by

b sb sx;
J J SO)fx2)fx,) dx, dx, dxy = 0,
a va vxy R
since
X)
J ﬂxl)dxl
X2

is defined in calculus to be zero. As has been pointed out, we may,
without altering the distribution of -X|, X,, X;, define the joint
p.d.f. fix)fix))f(x;) to be zero at all points (x,, X,, X;) that have
at least two of their coordinates equal. Then the set o, where
Sx)f(x,)f(x;) > 0, is the union of the six mutually disjoint sets:

Al = {(xl,X2, x;) A< X <Xy <Xy <b},

Ay ={(x1, X2, X3) 1 @ < X, < x; < X3 < b},

Ay ={(x1, X2, X3) 1@ <X, < X3 <X <b}, .

Ay={(x, X3, X3):a < x, < x3 < x, < b},

As = {(x1, %2, X3) 1@ < X3 < X\ < x, < b},

A6 = ’{(‘.x', X3, x;) a<x;<Xx,<x < b}
There are six of these sets because we can arrange x, x;, X3 in
precisely 3! =6 ways. Consider the functions y, = minimum of
X\, X2, X3; y2 = middle in magnitude of X1, X2, X35 and y; = maximum
of X, x;, x3. These functions define one-to-one transformations
that map each of 4,, 4,, . .., 4 onto the same set & = {(y, y2, y3) :
a <y, <y, <y;<b}. The inverse functions are, for points in 4,,
X| = Y1, X; = y3, X3 = y,; for points in 4,, they are x, = y, x,.= y,

Xy = y,; and so on, for each of the remaining four sets. Then we have
that ‘ )

1 0 O
J| - 0 1 O
0 0 1

ot

and
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It is easily verified that the absolute value of each of the 3! =6
Jacobians is + 1. Thus the joint p.d.f. of the three order statistics
Y, = minimum of X, X;, X,; Y, = middle in magnitude of X\, X>, X3;
Y; = maximum of X, X;, X; is

g1, ¥, ¥3) = || L)L) (s) + |l ) ) ys) + - -
+ |l S n), a<yi<y<y; <b,
= @A), a<y <y <y<b,
=0 elsewhere.
This is Equation (1) withn=3.
In accordance with the natural extension of Theorem 1, Section 2.4,

to distributions of more than two random variables, it is seen that the
order statistics, unlike the items of the random sample, are dependent.

Example 1. Let X denote a random variable of the continuous type with
a p.d.f. f{x) that is positive and continuous, provided that a < x < b and
is zero elsewhere. The distribution function F(x) of X may be written

Hx) = J‘xf(w) dw, a<x<b.

If x < a, F(x)=0; and if b < x, F(x) = 1. Thus there is a unique median m
of the distribution with F{(m) = }. Let X,, X,, X,denote a random sample from
this distribution and let Y, < Y, < Y;denote the order statistics of the sample.
We shall compute the probability that Y, < m. The joint p.d.f. of the three
order statistics is

g8y, Y i) = 6ﬂ)’|)f()’2)f(}’3), a<y <y;<y;<b,
=0 elsewhere.

The p.df. of Y, is then

b py;
h(y,) = 6f(J’2)J JOIAys) dy, dy.
Y2 va .

= 6f(y)F(y)Il — F(y,)l a<y<b,

=0 elsewhere.

Accordingly,
Pr(Y,<m=6 f {Fy)f(y2) — [F) ()} dys

_ 6{[F(y2)]2 _[Ay,) 3}"' _1
N 2 3 2
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The procedure used in Example 1 can be used to obtain general
formulas for the marginal probability density functions of the order
statistics. We shall do this now. Let X denote a random variable of the
continuous type having a p.d.f. f{x) that is positive and continuous,
provided that a < x < b, and is zero elsewhere. Then the distribution
function F(x) may be written

Ax) =0, x <a,
= J Sfw) dw, a<x<b,

a

=1, b<x
Accordingly, F'(x) = f(x), a < x < b. Moreover, if a <x < b,
1 — F(x) = Ab) — F(x)
b ' x
o= fiw) dwi—J f(w) dw

~b

= | flw)dw.

Let X,, X5, ..., X, denote a random sample of size n from this

distribution, and let Y,, Y,, ..., Y, denote the order statistics of this
random sample. Then the joint p.d.f. of Y,, Y,,..., Y, is

£ Yo Y =) fh), @<y <py <<+ < y.<b,

=0 elsewhere.

It will first be shown how the marginal p.d.f. of Y, may be expressed
in terms of the distribution function F(x) and the p.d.f. f{x) of the
random variable X. If a < y, < b, the marginal p.d.f. of y, is given by

gn(Vn)

*Vn Ve Y3 )2 '

=| - J nt fy)f) - - f(y,) dyy dyz dys - - dy, -
va vYa va a

*¥n PV (Y3 ¥2 o
= T n! (J ﬂ)’l)d}’I)f(}_’z)' - flya) dyy - dya_
va vYa va a

(*Vn rVa )3

=\ - nl F(y))f(na) - - - Aya) dyy - - dy, s




Sec. 4.6] Distributions of Order Statistics 197

since F(x) = [ Aw) dw. Now
V3 2 s
FUf(ys) dy, = 2L ’y

a a

_Fpa)P
2 ?

since F(a) = 0. Thus

n V4 2
80 = f - f m B fo) - ) vy

But

Y4 2 3P 3
J [F(ya)] FOIY g0y dy, = [F2(y3;] _ [gqg] ,

a
SO

Vn 3
g,(y,)=f f WL ) fon dye- - dy, .

a a

If the successive integrations on y,, . . ., y,_, are carried out, it is seen
that

5,00 =n T2 11y,

=nFy)I" ), a<y,<b,

=0 elsewhere.

It will next be shown how to express the marginal p.d.f. of Y, in
terms of F(x) and f{x). We have, for a < y, < b,

b rb b
gy)=1| - r nt fy)f(y2) -+ S (V) Ayp Qyn-1 - - dy,
N In-3%Yn-2%Yn—1
b nb b
= n fy)f(2) - -~
i Y¥n-3%Yn-2

ﬂyn—l)[l _F(yn—l)] dyn—-l Tt dy2
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But
,1b
r [t~ FO OO ) iy = — 1)
Yn—2 Yn—2
_ 1= Ay, o)
) )
so that

810 = f - f M A fon) 2 Gy,
y Yn—3

1
Upon completing the integrations, it is found that

g)=nl—-Fy)'f»), a<y<b,
=0 elsewhere.

Once it is observed that

[ o=t ae =FEL a5 0
and that
f[l — FW)F~'fiw) dw=%, 8 >0,

it is easy to express the marginal p.d.f. of any order statistic, say ¥,
in terms of F(x) and f{x). This is done by evaluating the integral

Vk V2
gk(yk)=J J ff nt fyofys) - fa) dy, -+
a a “Yi Yn—1

dy, 1 dy, - dyc.
The result is

800 = G5 =y PO ' = O 10

a<yk<b,

=0 elsewhere. 2)

Example 2. LetY, < Y, < Y; < Y,denote the order statistics of arandom
sample of size 4 from a distribution having p.d.f.

Ax) = 2x, 0<x<l,

=0 elsewhere.
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We shall express the p.d.f. of Y; in terms of f{x) and F{x) and then compute
Pr (3 < Y;). Here F(x) = x2, provided that 0 < x < 1, so that

4 2
g:(yy) = ﬂ(y;) (1 — y3)(2yy), 0<y, <1,

=0 elsewhere.
Thus

)

PrG<Y))=| g(y)dy
; w12

rl
= | 2405y dy =3¢
| “In
Finally, the joint p.d.f. of any two order statistics, say Y; < Y}, is
as easily expressed in terms of F(x) and f{x). We have

Vi Y2 (Vi Vi
gy(yi,yj)=J J JJ nfy) -
a a *yi Yi-2%Yj Yu—~1

S dy, - dy, o dy,_y - dyidy - dyi .

Since, for y > 0,

f [F(y) — FW)I' ~ f(w) dw =

Y

_[F) = Fw)
Y

_ [Fy) — Fx)Y
” ,

it 1s found that

n!
gi(yi, ) = G—D(G—i—D(m—))

X [F)) ~'[F(y) — FY ="~ It = FI'fafy) 3

for a < y; <y, < b, and zero elsewhere.

Remark. There is an easy method of remembering a p.d.f. like that given
in Formula (3). The probability Pr(y;< Y, <y, +A,y; < Y; <y +A),
where A, and A, are small, can be approximated by the following multinomial
probability. In n independent trials, i — 1 outcomes must be less than y,
(an event that has probability p, = F(y;) on each trial); j — i — 1 outcomes
must be between y, + A; and y; [an event with approximate probability
p; = F(y;) — F(y;) on each trial]; n — j outcomes must be greater than y, + A;
(an event with approximate probability p, =1 — F(y;) on each trial); one
outcome must be between y; and y,+ A; (an event with approximate
probability p; = f(y,) A, on each trial); and finally one outcome must be
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between y; and y; + A, [an event with approximate probability ps = f{(y)) A,
on each trial]. This multinomial probability is

ﬂ! i— f—i— 1 n—j
GG —i= D@ nP P P paps,

which is g; (y;, ) AiA;.

Certain functions of the order statistics Y,, Y,,..., Y, are
important statistics themselves. A few of these are: (a) ¥, — Y,, which
is called the range of the random sample; (b) (Y, + Y,)/2, which is
called the midrange of the random sample; and (c) if » odd, Y|, , )2,
which is called the median of the random sample.

Example 3. Let Y,, Y,, Y, be the order statistics of a random sample of
size 3 from a distribution having p.d.f.

f(x)=1, 0<x<l,
=10 elsewhere.

We seek the p.d.f. of the sample range Z, = Y, — Y,. Since Ax) = x,
0 < x < 1, the joint p.d.f. of Y, and Y, is

g ) =60n—y), O<y<my;<l,
=0 elsewhere.

In addition to Z,=Y,— Y|, let Z,=Y,. Consider the functions z,=y;—y,,
2, = y;, and their inverses y, = z, — z,, y; = 2,, so that the corresponding
Jacobian of the one-to-one transformation is

W
_ | 8z 0z _‘—1 1‘_
J= , % =l 0 1l 1.
0z, 0z,
Thus the joint p.d.f. of Z, and Z, is
h(2|,22)=|—1|6zl=62|, 0<Z|<22<1.

=0 elsewhere.
Accordingly, the p.d.f. of the range Z, = Y, — Y, of the random sample of
size 3 is

I .
hl(zl)=J 62| d22=62|(] —Zl); 0<Zl< 1,

=0 elsewhere.
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EXERCISES

4.56. Let Y, < Y, < Y, < Y, be the order statistics of a random sample of size
4 from the distribution having p.d.f. Ax) = ¢7*,0 < x < 0, zero elsewhere.
FindPr(3<Y,).

4.57. Let X, X, X, be arandom sample from a distribution of the continuous
type having p.d.f. Ax) = 2x, 0 < x < 1, zero elsewhere.
(a) Compute the probability that the smallest of these X; exceeds the
median of the distribution.
(b) If Y, < Y, < Y, are the order statistics, find the correlation between Y,
and Y;.

4.58. Let fix)=4, x=1,2,3,4,5,6, zero elsewhere, be the p.d.f. of a
distribution of the discrete type. Show that the p.d.f. of the smallest
observation of a random sample of size 5 from this distribution is

gl(}"l)=(l':.6'!—|)_(§"'—g&)s n=12,...,6,

zero elsewhere. Note that in this exercise the random sample is from a
distribution of the discrete type. All formulas in the text were derived under
the ‘assumption that the random sample is#rom a distribution of the
continuous type and are not applicable. Why?

4.59. Let Y, < Y, < Y; < Y < Y denote the order statistics of a random
sample of size 5 from a distribution having p.d.f. Ax) =e*, 0 < x < 0,
zero elsewhere. Show that Z, = Y, and Z,=Y,— Y, are mdependent

Hint: First find the joint p.d.f. of Y, and Y,.

4.60. Let Y, < Y, < --- < Y, be the order statistics of a random sample of
size n from a distribution with p.d.f. fix) = 1, 0 < x < 1, zero elsewhere.
Show that the kth order statistic Y, has a beta p.d.f. with parameters a = k
and f=n—k+ 1.

461. Let Y, <Y,<---<Y, be the order statistics from a Weibull
distribution, Exercnse 3.44, Section 3.3. Find the distribution functlon and
p.d.f of Y,.

4.62. Find the probability that the range of a random sample of size 4
from the uniform distribution having the p.d.f. f{ix) =1, 0 <x <1, zero
elsewhere, is less than 3.

4.63. Let Y, < Y, < Y; be the order statistics of a random sample of size 3
from a distribution having the p.d.f. f{x) = 2x, 0 < x < |, zero elsewhere.
Show that Z, = Y,/Y,, Z, = Y,/Y,,and Z, = Y, are mutually independent.
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4.64. If a random sample of size 2 is taken from a distribution having p.d.f.
Lix)=2(1 — x), 0 < x < 1, zero elsewhere, compute the probability that
one sample observation is at least twice as large as the other.

4.65. Let Y, < Y, < Y; denote the order statistics of a random sample of size
3 from a distribution with p.d.f. fx) =1, 0 < x < 1, zero elsewhere. Let
Z = (Y, + Y;)/2 be the midrange of the sample. Find the p.d.f. of Z.

4.66. Let Y, < Y, denote the order statistics of a random sample of size 2
from N(O, a?).
(a) Show that E(Y,) = —a/. /.
 Hint: Evaluate E(Y,) by using the joint p.d.f. of ¥, and Y,, and
first integrating on y,.
(b) Find the covariance of Y, and Y,,

4.67. Let Y, < Y, be the order statistics of a random sample of size 2
from a distribution of the continuous type which has p.d.f. fx) such that
Sfx) > 0, provided that x >0, and f{x) = 0 elsewhere. Show that the
independence of Z, = Y, and Z, = Y, — Y, characterizes the gamma p.d.f.
f(x), which has parameters « = 1 and § > 0.

Hint: Use the change-of-variable technique to find the joint p.d.f. of
Z, and Z, from that of Y, and Y,. Accept the fact that the functional
equation A(0)h(x + y) = h(x)h(y) has the solution A(x) = c,e*, where c,
and ¢, are constants.

4.68. Let Y, < Y, < Y, < Y, be the order statistics of a random sample of size
n = 4 from a distribution with p.d.f. Ax) =2x, 0 <x < 1.
(a) Find the joint p.d.f. of Y, and Y,.
(b) Find the conditional p.d.f. of Y,, given Y, = y,.
(c) Evaluate E(Y;|y,).

4.69. Two numbers are selected at random from the interval (0, 1). If these
values are uniformly and independently distributed, compute the prob-
ability that the three resulting line segments, by cutting the interval at the
numbers, can form a triangle.

4.70. Let X and Y denote independent random variables with respec-
tive probability density functions f{x) = 2x, 0 < x < 1, zero elsewhere,
and g(y) = 3y?, 0 < y < 1, zero elsewhere. Let U = min (X, Y) and V=
max (X, Y). Find the joint p.d.f. of U and V.

Hint: Here the two inverse transformations are given by x =w, y =v
and x=v, y=u.

4.71. Let the joint p.d.f. of X and Y be fix,y) =Yx(x+y), 0<x <1,
0 <y < 1, zero elsewhere. Let U = min (X, Y) and ¥ = max (X, Y). Find
the joint p.d.f. of U and V.
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4.72. Let X\, X,, ..., X, be a random sample from a distribution of either
type. A measure of spread is Gini’s mean difference

G=3%'% Iz\’.-—f\’jl/(;)-

10
(@ If n=10, find a,,a,...,a, so that G=) aY, where
=y

Y\, Y, ..., Y, are the order statistics of the sample. .
(b) Show that E(G) = 26//n if the sample arises from the normal
distribution N(y, ¢?).

4.73. Let Y, < Y, < --- < Y, be the order statistics of a random sample of
size n from the exponential distribution with p.d.f. ix)=¢"",0 < x < o0,
zero elsewhere.

(@) Show that Z, =nY,, Z,=(n— 1) (Y, = Y\), Z,=(n—2) (Y, — Y,),
.., 2Z,=Y,—Y,_, are independent and that each Z; has the
exponential distribution. :

(b) Demonstrate that all linear functionsof Y|, Y5, ..., Y,,such asz ayY,
|

can be expressed as linear functions of independent random variables.

4.74. In the Program Evaluation and Review Technique (PERT), we are
interested in the total time to complete a project that is comprised of
a large number of subprojects. For illustration, let X,, X;, X, be three
independent random times for three subprojects. If these subprojects are
in series (the first one must be completed before the second starts, etc.),
then we are interested in the sum Y =X, + X; + X;. If these are in
parallel (can be worked on simultaneously), then we are interested in
Z = max (X}, X;, Xj). In the case each of these random variables has the
uniform distribution with p.d.f. Ax) =1, 0 < x < 1, zero elsewhere, find
(a) the p.d.f. of Y and (b) the p.d.f. of Z.

4.7 The Moment-Generating-Function Technique

The change-of-variable procedure has been seen, in certain cases,
to be an effective method of finding the distribution of a function of
several random variables. An alternative procedure, built around the
concept of the m.g.f. of a distribution, will be presented in this section.
This procedure is particularly effective in certain instances. We should
recall that an m.g.f., when it exists, is unique and that it uniquely
determines the distribution of probability.

Let A(x,,x,,...,x,) denote the joint p.d.f. of the n random
variables X, X3, . . ., X,. These random variables may or may not be
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the observations of a random sample from some distribution that has
a given p.d.f. fix). Let Y, =u,(X,, X,, ..., X,). We seek g(y,), the
p.d.f. of the random variable Y,. Consider the m.g.f. of Y,. If it exists,
it is given by

M(1) = E(e'") = r e”ig(y)) dy,

in the continuous case. It would seem that we need to know g(y,) before
we can compute M(r). That this is not the case is a fundamental fact.
To see this consider

J o '[ exp [tu,(x,, ..., x)lh(x,, ..., x,) dx, - dx,, (1)

which we assume to exist for —h <t < h. We shall introduce »

new variables of integration. They are y, = u,(x,, X;,...,X,), ...,
VYo = Us(X{, X, ..., X,). Momentarily, we assume that these func-
tions define a one-to-one transformation. Let x; = w,(yy, Y2, . - - » Vo),
i=1,2,...,n, denote the inverse functions and let J denote the
Jacobian. Under this transformation, display (1) becomes '
J J eNJh(wy, ..., w,)dy, - dy,dy. (2)

In accordance with Section 4.5,

IJIh[wl(yhyZ’ v 9yn)9 ey wn(ylsy2s LRI ’yn)]

is the joint p.d.f. of Y|, Y;,..., ¥,. The marginal p.d.f. g(y,) of Y,
is obtained by integrating this joint p.d.f. on y,, ..., y, Since the
factor ¢! does not involve the variables y,, . . ., y,, display (2) may
be written as

J eV'g(y)) dy,. 3

But this is by definition the m.g.f. M(7) of the distribution of Y,.
That is, we can compute E{exp [tu,(X, . . ., X,)]} and have the value
of E(e'™), where Y, = u,(X,, ..., X,). This fact provides another
technique to help us find the p.d.f. of a function of several random
variables. For if the m.g.f. of Y, is seen to be that of a certain kind of
distribution, the uniqueness property makes it certain that Y, has that
kind of distribution. When the p.d.f. of Y, is obtained in this manner,
we say that we use the moment-generating-function technique.
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The reader will observe that we have assumed the transformation
to be one-to-one. We did this for simplicity of presentation. If the
transformation is not one-to-one, let

Xi=wi(yi,....¥) J=1,2,...,n i=12,...,k,

denote the k groups of n inverse functions each. LetJ;, i = 1,2, ...k,
denote the k Jacobians. Then

k .
.Z' |Ji|h[wll(yh LI ayn)’ LR | wm‘(yla (AL ayn)] (4)
is the joint p.d.f. of Y|, ..., Y,. Then display (1) becomes display (2)
with |J|A(w,, . .., w,) replaced by display (4). Hence our result is valid
if the transformation is not one-to-one. It seems evident that we can
treat the discrete case in an analogous manner with the same result.
It should be noted that the expectation of Y, can be computed in
like manner. That is,

EY) = » &) dy,

= -[ u(x,...,x)h(x),...,x,)dx, - dx,

vV

and this fact has been mentioned earlier in the book. Moreover, this
holds for the expectation of any function of Y,, say w(Y)); that is,

Ew(Y))] = w(y,)8(y)) dy,

(™0

= J wl (xy, . .., x)h(x,, ..., x,) dx, - - - dx,.

o

—

We shall now give some examples and prove some theorems where
we use the moment-generating-function technique. In the first example,
to emphasize the nature of the problem, we find the distribution of a
rather simple statistic both by a direct probabilistic argument and by
the moment-generating-function technique. :

Example 1. Let the independent random variables X, and X; have the
same p.d.f.

=%, x=12.3

=0 elsewhere;



206 ' Distributions of Functions of Random Variables [Ch. 4

so the joint p.d.f. of X, and X, is

ﬂxlmx2)=x3l_zzs x|=1,2,3, x2= 1,2, 3-;

=0 elsewhere.

A probability, such as Pr (X, = 2, X, = 3), can be seen immediately to be
(2)(3)/36 = ;. However, consider a probability such as Pr (X, + X, = 3). The
computation can be made by first observing that the event X, + X, = 3 is the
union, exclusive of the events with probability zero, of the two mutually
exclusive events (X, = 1, X; = 2) and (X, = 2, X; = 1). Thus

Pr(X, + X,=3)=Pr(X,=1,X,=2)+Pr(X, =2, X,=1)
=(1)(2) 1 4

36 T 36 36
More generally, let y represent any of the numbers 2, 3,4, 5, 6. The probability
of each of theevents X, + X, =y, y =2, 3, 4, 5, 6, can be computed as in the

case y = 3. Let g(y) = Pr (X, + X, = y). Then the table
y ‘ 2 3 4 5 6

£ | & 4

9
3%

Bls
&S

gives the values of g(y) for y = 2, 3, 4, 5, 6. For all other values of y, g(y) = 0.
What we have actually done is to define a new random variable Y by
Y = X, + X,, and we have found the p.d.f. g(y) of this random variable Y.
We shall now solve the same problem, and by the moment-generating-func-
tion technique.

Now the m.g.f. of Y is

M(1) = E('™1+ X))
- E(etX|etX2)
= E(e'M)E(e™),

since X, and X, are independent. In this example X, and X, have the same
distribution, so they have the same m.g.f.; that is,

S IXpy 1t 4 2,20 4 3.3t
E(eX) = E(e'2) = Lo + 22! + 26,
Thus
I 2 3,32
M(1) = (3" + 2e* + 2e*)
=T|6£’2'+%e3'+-;%84'+%%£’5'+%96'.

This form of M(r) tells us immediately that the p.d.f. g(y) of Y is zero except

at y=2,3,4,56, and that g(y) assumes the values +, = I, £, =
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respectively, at these points where g(y) > 0. This is, of course, the same
result that was obtained in the first solution. There appears here to be little,
if any, preference for one solution over the other. But in more complicated
situations, and particularly with random variables of the continuous type, the
moment-generating-function technique can prove very powerful.

Example 2. Let X, and X, be independent with normal distributions
N(u,, 03) and N(u,, 03), respectively. Define the random variable Y by
Y = X, — X,. The problem is to find g(y), the p.d.f. of Y. This will be done
by first finding the m.g.f. of Y. It is

M(1) = E(e'®1-X2))
— E(elxle—IXQ)
= E(e'*1)E(e~'%3),

since X, and X, are independent. [t is known that
2,2
E(e'¥1) = exp (#.t + U‘T)

and that

o3

E(eh\’z) = exp (#2[ + T)

for all real r. Then E(e~'X2) can be obtained from E(e'X2) by replacing t by —1.
That is,

212

E(e~'*) = exp (—/ht + 027)
Finally, then,
2,2 2.2
M(1) =exp (y,r + %) exp (—pzt + %)

2 2\ 42
= exp ((u, — M)t + QL;’E-)

The distribution of Y is completely determined by its m.g.f. M(z), and it is seen
that Y has the p.d.f. g(y), which is N(u, — p,, a7 + ¢3). That is, the difference
between two independent, normally distributed, random variables is itself a
random variable which is normally distributed with mean equal to the
“difference of the means (in the order indicated) and the variance equal to the
sum of the variances.

The following theorem, which is a generalization of Example 2, is
very important in distribution theory.
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Theorem 1. Let X, X,, ..., X, be independent random variables
having, respectively, the normal distributions N(u,, 0?), N(u,, 3), .. .,
and N(u,, 02). The random variable Y = k\ X, + kX, + - - - + k,X,,
where k\, k,, . .., k, are real constants, is normally distributed with
mean k,pu, + ¥ k,u, and variance kio’ + - - - + kZa>. That is, Y is

N(z kiu;, Z k’za,'z)
1 1
Proof. Because X, X,, ..., X, are independent, the m.g.f. of Y is
given by
M) = E{exp [tk X, + ko Xy + < - - + K, X,)])
- E(elk|X|)E(etkzX2) e E(etk,,X,,).

Now
E(e'X)) = exp (p,-t + i'zti),
forallrealr,i=1,2,...,n Hence we have
E(e™*iXiy = exp [u,(k 1+ oik, ,)2]
That is, the m.g.f. of Y is

M) = l'[ exp [(k,#,)t +( ! ),2]

= exp (Zku,)t +-(E-k—z-a—-2—)—

2

I

But this is the m.g.f. of a distribution that is N(

ki, i kfaf)
1

1
This is the desired result.
The next theorem is a generalization of Theorem 1.

Theorem 2. If X,, X, ..., X, are independent random variables
with respective moment-generating functions M(1),i=1,2,3,...,n,
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then the moment-generating function of
Y= 2”: a;X;,
i=1
where a,, a,, . . . , a, are real constants, is
M) = TT Mia).
im

Proof. The m.g.f. of Y is given by
My () = E[etY] - E[et(a|X|+a2X2+»-.+a,,X,,)]

= E[eﬂlfxleazfxz .. .eﬂann]

= E[e“"x | E[e“Z’XI] e E[e""’x"]
because X, X;, ..., X, are independent. However, since

E( %) = M),
then
EE"'™) = M(ay).
Thus we have that
M, (1) = M\(a,0)M;(ay1) - - - M, (a,1)

= ﬁ M(a;r).
i=1

A corollary follows immediately, and it will be used in some
important examples.

Corollary. If X, X;, ..., X, are observations of a random sample
from a distribution with moment-generating function M(t), then

(@) The moment-generating function of Y = Y X, is
=1

i=

Myto) = [T M) = (MY

(b) The moment-generating function of X = Y (1/n)X; is

i=1

wsco = f w(2) = [ ()]

Proof. For (a), leta,=1,i=1,2,....n, in Theorem 2. For (b),
takea,=1/n,i=1,2,...,n
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The following examples and the exercises give some important appli-
cations of Theorem 2 and its corollary.

Example 3. Let X |, X,, .. ., X, denote the outcomes on n Bernoulli trials.
Themgf of X, i=1,2,...,n,is

M) =1-—p+ pe.
I

i=

M) = H. (1 —p +pe) =(1 — p + pe'y.

Thus we again see that Y is b(n, p).

Example 4. Let X, X,, X, be the observations of a random sample of size
n = 3 from the exponential distribution having mean § and, of course, m.g.f.
MO =1/(1-=p80),t<1/p. Themgf of Y =X, + X, + X, is

M@ =[1-p)"P=0-p)" 1<1/B,

which is that of a gamma distribution with parameters a = 3 and 8. Thus Y
has this distribution. On the other hand, the m.g.f. of X is

mo=[(1-5) T-(-5) . <

and hence the distribution of X is gamma with parameters « = 3 and §/3,
respectively.

‘The next example is so important that we state it as a theorem.

Theorem 3. Let X\, X,, . . ., X, be independent variables that have,
respectively, the chi-square distributions yX(r\), ¥X(r), - . . ,-and xX(r,).
Then the random variable Y = X, + X, + - - - + X, has a chi-square
distribution with r\ + - - - + r, degrees of freedom; that is, Y is

Xz("l'*‘""""n)-
Proof. Since
M) = E(e*) = (1 — 207", t < %, i=1,2,...,n,
we have, using Theorem 2 withg, =---=a,=1,
M(t)=(] _2[)—(r|+r2+~~-+r,‘)/2’ I<%

But this is the m.g.f. of a distribution that is y*(r, + r, + - - - +r,).
Accordingly, Y has this chi-square distribution.

Next, let X, X,,...,X, be a random sample of size n from
a distribution that is N(u, ¢%). In accordance with Theorem 2 of
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Section 3.4, each of the random variables (X; — u)’/¢’,i=1,2,...,n,
is y*(1). Moreover, these n random variables are independent.

Accordingly, by Theorem 3, the random variable Y = E [(X; — p)/a]
is x*(n). This proves the following theorem.

Theorem 4. Let X, X,, ..., X, denote a random sample of size n
from a distribution that is N(u, a*). The random variable

-3(5)

has a chi-square distribution with n degrees of freedom.

Not always do we sample from a distribution of one random
variable. Let the random variables X and Y have the joint p.d.f.
f(x, y) and let the 2n random variables (X,, Y)), (X,, Y3), ..., (X,, Y,)
have the joint p.d.f.

ﬂxhyl ﬂva .y2 ﬂxm yn

The n random pairs (X,, Y,), (X5, Y»), ..., (X,, Y,) are then inde-
pendent and are said to constitute a random sample of size n from the
distribution of X and Y. In the next paragraph we shall take f{x, y) to
be the normal bivariate p.d.f., and we shall solve a problem in sampling
theory when we are sampling from this two-variable distribution.

Let (X, Y)), (X3, Y3),...,(X,, Y,) denote a random sample of
size n from a bivariate normal distribution with p.d.f. f{x, y) and
parameters u,, u,, a,, a2, and p. We wish to find the joint p.d.f. of the

two statistics X = Z X,/n and ¥ = Z Y,/n. We call X the mean of

X,....X,and Y the mean of Yy, ..., Y,. Since the joint p.d.f. of
the 2n random variables (X;, Y)), i = l, 2, ..., n, is given by

h =ﬂxl’ J’|)ﬂxz- y2) "o 'ﬂxm yn)-
the m.g.f. of the two means X and Y is given by

© w tlzxi tzZ}’i
M(t,,tz)zf J exp ;1 +———hdx, - -dy,

n

i Y hx; bLY;
= ;l:ll I:J J €Xp (IT + Ln')f(xn yi) dx; d}’i]-
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The justification of the form of the right-hand member of the second equal-
ity is that each pair (X;, Y.) has the same p.d.f. and that these n pairs are
independent. The twofold integral in the brackets in the last equality is the
joint m.g.f. of Xj and Y; (see Section 3.5) with t; replaced by #/n and ¢,
replaced by t,/n. Accordingly,

Ly + Ly
n n

M(t,, 1) = [] exp
i=1
4 T/n)? + 2p0,0,(0/n)e/m) + 03 (1/n)’
2

: 2

But this is the m.g.f. of a bivariate normal distribution with means
i and pu,, variances oi/n and o3/n, and correlation coefficient p;
therefore, X and Y have this joint distribution.

EXERCISES

4.75. Let the i.i.d. random variables X; and X, have the same p.d.f. f{x) =,
x=1,23,4,5,6, zero elsewhere. Find the p.d.f. of ¥ = X, + X,. Note,
under appropriate assumptions, that ¥ may be interpreted as the sum of
the spots that appear when two dice are cast.

4.76. Let X, and X, be independent with normal distributions N(6, 1) and
N(7, 1), respectively. Find Pr (X, > X;).
Hint: Write Pr(X,> X;)=Pr(X,— X,>0) and determine the
distribution of X, — X,.

4.77. Let X, and X, be independent random variables. Let X, and
Y = X, + X, havechi-square distributions with r, and r degrees of freedom,
respectively. Here r; < r. Show that X, has a chi-square distribution with
r — ry degrees of freedom.

Hint: Write M(f) = E(e"*' * *2) and make use of the independence of X,
and X,.

4.78. Let the independent random variables X, and X, have binomial
distributions with parameters n,, p, = 1 and n,, p, = 1, respectively. Show
that Y =X, — X, + n, has a binomial distribution with parameters
n=m+n,p=1i :

*4.79. Let X, X,, X, be a random sample of size n = 3 from N(I, 4). Compute
P(X, + 2X, — 2X, > 7).
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4.80. Let X, and X, be two independent random variables. Let X, and
Y =X, + X, have Poisson distributions with means y, and u >y,
respectively. Find the distribution of X,. N

481. Let X,, X, be two independent gamma random variables with
parameters a, = 3, B, = 3 and a, = 5, B, = |, respectively.
(a) Find the m.g.f. of Y = 2X, + 6JX,.
(b) What is the distribution of Y?

4.82. A certain job is completed in three steps in series. The means and
standard deviations for the steps are (in minutes):

Step Mean Standard Deviation

1 17 2
2 13 1
3 13 2

Assuming independent steps and normal distributions, compute the
probability that the job will take less than 40 minutes to complete.

4.83. Let X be N(0, 1). Use the moment-generating-function technique to
show that Y = X? is x*(1).
Hint: Evaluate the integral that represents E(¢’’) by writing

w=x/1—-2t1<3.

484. Let X, X,, ..., X, denote » mutually independent random variables
- with the moment-generating functions M,(¢), M,(1), . .., M,(f), respect-
ively.

(a) Showthat Y = k X, + k, X, + - - - + k,X,,wherek,, k,, . .., k,arereal
constants, has the m.g.f. M(f) = [] M. (k.1).
1
(b) If each k; = 1 and if X is Poisson with mean y;, i = 1,2, ..., n, prove
that Y is Poisson with mean u, + - - - + u,.
485. If X, X,, ..., X, is a random sample from a distribution with m.g.f.
L M), show that the moment-generating functions of Z X;and Z'X,-/n are,
1 1
respectively, [M(¢)]" and [M(¢/n)]".

4.86. In Exercise 4.74 concerning PERT, assume that each of the three
independent variables has the p.d.f. f{x) = e™*,0 < x < o0, zero elsewhere.
Find: o
(a) The p.d.f. of Y.

(b) The p.d.f. of Z.

487. If X and Y have a bivariate normal distribution with parameters
Wi, B, 65, 03, and p, show that Z = aX + bY +c is

N(ap, + by + ¢, @6* + 2abpa,a; + ba?),

where a, b, and c¢ are constants.
Hint: Use the m.g.f. M(¢, t;) of X and Y to find the m.g.f. of Z.
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4.88. Let X and Y have a bivariate normal distribution with parameters
m =25 =35 6i=4, 62=16, and p=4. If Z=3X-2Y, find
Pr(-2<Z<19).

4.89. Let U and V be independent random variables, each having a standard
normal distribution. Show that the m.g.f. E(e""") of the product UV is
(1-H"" -1<t<l.

Hint: Compare E(e'"") with the integral of a bivariate normal p.d.f. that
has means equal to zero.

4.90. Let X and Y have a bivariate normal distribution with the parameters
t, K, 6, a3, and p. Show that

W=X-u, and Z = (Y — p) — p(0;3/0)(X — )
are independent normal variables.
491. Let X, X,, X; be a random sample of size n = 3 from the standard
normal distribution. ‘
(a) Show that Y, =X, +6X;, Y,=X,+ 6X, has a bivariate normal
distribution. ‘ ‘

(b) Find the value of & so that the correlation coefficient p = 3.

(c) What additional transformation involving Y, and Y, would produce a
bivariate normal distribution with means y, and y,, variances o2 and
o2, and the same correlation coefficient p?

4.92. Let X, X,,..., X, be a random sample of size n from t"he normal
distribution N(u, ¢®). Find the joint distribution of Y =) a.X; and
1

Z =Y b,X;, where the a; and b, are real constants. When, and only when,
1
are Y and Z independent?
Hint: Note that the joint m.g.f. E [exp (t, YaX +1) bX ,)] is that
| |

of a bivariate normal distribution.

4.93. Let X, X, be arandom sample of size 2 from a distribution with positive
varianceand m.g.f. M(1).If Y = X, + X,and Z = X, — X,areindependent,
prove that the distribution from which the sample is taken is a normal
distribution.

Hint: Show that
m(t,, 1) = E{exp [1,(X, + X;) + (X, — Xo)I} = M(1, + L) M(t, — 1y).
Express each member of m(t,, t,) = m(t,, 0)m(0, 1,) in terms: of M; differ-
entiate twice with respect to 1,; set 7, = 0; and solve the resulting differential
equation in M. :

4.8 The Distributions of X and nS?/¢?

Let X, X5, ..., X, denote a random sample of size n > 2 from a
distribution that is N(u, ¢?). In this section we shall investigate the
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distributions of the mean and the variance of this random sample,
that is, the distributions of the two statistics X =Y X,/n and

LI - 1
§2=3 (X, — Dn.

| —_

The problem of the distribution of X, the mean of the sample, is

solved by the use of Theorem 1 of Section 4.7. We have here, in the
notation of the statement of that theorem, y, =y, =--- =y, =y,

d:g;:--.:az:o‘z’ and k|=k2="‘=k"= l/n. Accol'dingly,
Y = X has a normal distribution with mean and variance given by

te)-r S04

respectively. That is, X is N(u, a¥/n).

Example 1. Let X be the mean of a random sample of size 25 from a
distribution that is N(75, 100). Thus X is N(75, 4). Then, for instance,

Pr(71 < X <79) = <1>(79 = 75) - d>(71 = 75)

= @(2) — ®(—2) = 0.954.

We now take up the problem of the distribution of S2, the variance
of a random sample X, ..., X, from a distribution that is N(g, ¢?).
To do this, let us first consider the joint distribution of Y, =X,
 ,=X,—-X, ,=X;—X,...,Y,=X,—X. The corresponding
inverse transformation

Xy =YV —Y2a—=YVs— """ = n
X=y+y
X3=Y1+ ¥;
xn=yl+yn

has Jacobian n. Since

n n

Z.(xr' ""I‘)z = Z (xi—X+x— l‘)z

=¥ (x— ¥7 + n(x — py
|
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because 2(% — ) 3" (x; — %) = 0, the joint p.d.f. of X, X;,..., X,
|

can be written

L% nax—
) °"p[ 207 22 |

(7

where X represents (x, + x,+---+ x,)/n and —o0 < x;< o, =
1,2,...,n Accordingly, with y, =X and x, —X= —y, — 3 —

— ¥, We find that the joint p.d.f. of ¥\, Y,,..., Y, is
< 2
) — "exp (=y= —y..)’_gy" _nn = py’
/2 & 20? 2¢* 2¢¢ [

— <y <, i=12,...,n Note that this is the product of the
p.d.f. of Y,, namely,

1 = #)2]
——ex — 00 <y < 0,
< 2nai/n p|: 2d%/n n
and a function of y,,...,y,. Thus Y, must be independent of
the n — 1 random variables Y,, Y5,..., Y, and that function of
Y2, - - - » Ya IS the joint p.d.f. of Y, Y;, ..., Y,. Moreover, this means
that Y, = X and thus
nt —p)? _nX—p?_
a’ o’ '
are independent of
(-, = =Y)P+Y Y Y(X-X
2 1 —
a’ - a’ =W

Since W, is the square of a standard normal variable, it is distributed
as x*(1). Also, we know that

n X_” 2
(55

is x*(n). From the independence of W, and W,, we have
E(e™) = E(e™)E(e™?)
or, equivalently,
(1 =207 = (1 = 20)"'2E(e™),  1<L.
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Thus
E@Ee") =1 —2¢)~n-h2 t <\

2’

and hence W, = nS%/¢? is y’(n — 1). The determination of the p.d.f. of
S? is an easy exercise from this result (see Exercise 4.99). L

To summarize, we have established, in this section, three important
properties of X and S? when the sample arises from a distribution which
is N(u, 6?):

1. Xis Ny, a*/n).
2. nSo? is x’(n —1).
3. X and S? are independent.

For illustration, as the result of properties<(1), (2), and (3), we have
that /n(X — u)/a is N(O, 1). Thus, from the definition of Studént’s ¢,

X - Wi/ X

JnS¥a(n — 1) S n—1

has a r-distribution with n— 1 degrees of freedom. It was a
random variable like this one that motivated Gosset’s search for
the distribution of 7. This z-statistic will play an important role in
statistical applications. |

T=

EXERCISES

4.94. Let X be the mean of a random sample of size 5 from a_normal
distribution with u =0 and ¢* = 125. Determine ¢ so that Pr (X < ¢)=
0.90.

4.95. If X is the mean of a random sample of size n from a normal distri-
bution with mean u and variance 100, find n so that Pr(u—35 <
X<u+5)=0954. :

4.96. Let X,, Xy, ..., Xsand Y|, Y5, ..., Y,5 be two independent random
samples from two normal dlstnbutlons N(O 16) and N(1, 9), respectively.
Let X and ¥ denote the corresponding sample means. Compute Pr (X > ¥).

4.97. Find the mean and variance of $? = i (X, — X)*/n, where X, X, . . .,
[

X, is a random sample from N(u, ¢%).
Hint: Find the mean and variance of nS?/¢>
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4.98. Let S? be the variance of a random sample of size 6 from the normal
distribution N(y, 12). Find Pr (2.30 < §? < 22.2).

499, Find the p.d.f. of the sample variance V = S?, provided that the
distribution from which the sample arises is N(u, ¢°).

4.100. Let X and Y be the respective means of two independent random
samplcs, each of size 4, from the two respective normal distributions
N(10, 9) and N(3, 4). Compute Pr (X > 27).

4.101. Let X, X, . .., X; bearandom sample of size n = 5 from N(0, ¢?). (a)
Find the constant ¢ so that (X, — X;)//X% + X? + X? has a r-distribution.
(b) How many degrees of freedom are associated with this 77

4.102. If a random sample of size 2 is taken from a no:rmaltdistrjbqtion with
mean 7 and variance 8, find the probability that the absolute value of the
difference of these two observations exceeds 2.

4.103. 'Let X and S? be the mean and the variance of a random sample
of size 25 from a distribution that is N(3, 100). Then evaluate Pr (0 < X < 6,
55.2 < §% < 145.6). '

4.9 Expectations of Functions of Random Variables

Let X\, X,,..., X, denote random variables that have the joint
p.d.f. fix,, x;,...,x,). Let the random variable Y be defined by
Y=u(X,, X;,...,X,). In Section 4.7, we found that we could
compute expectations of functions of Y without first finding the p.d.f.
of Y. Indeed, this fact was the basis of the moment-generating-function
procedure for finding the p.d.f. of Y. We can take advantage of this
fact in a number of other instances. Some illustrative examples will be
given.

Example 1. Say that W is N(0, 1), that V is y*(r) with r > 2, and that W
and V are independent. The mean of the random variable T = W, /r/V exists
and is zero because the graph of the p.d.f. of T (see Section 4.4) is symmetric
about the vertical axis through r = 0. The variance of T, when it exists,
could be computed by integrating the product of # and the p.d.f. of T.
But it seems much simpler to compute

ot = E(T?) = E(W?T’,) = E(W?)E({,) .

Now W?is yX1), so E(W?) = 1. Furthermore,

r “r 1
E[L)= LA S P PR
(V) £ v ) ¢ "
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exists if » > 2 and is given by

mi(r—2)2] rT(r — 2)/2] r
e2)  Ar—22ATr—2)2] r=2

Thus 62 =r/(r —2), r > 2.

Example 2. Let X; denote a random variable with mean y; and variance
o, i=1,2,...,nLet X, X,,..., X, be independent and let k. &, .. ., k,
denoté real constants. We shall compute the mean and variance of a linear
function ¥ = k, X, + k,X, + - - - + k,X,. Because E is a linear operator, the
mean of Y is given by

Ry = ﬂk|X| + k2X2 +--+ anﬂ)
=k E(X)) + k,E(XG) + - - - + K, E(X,)

=k + Koty + - - + bty = X K.

The variance of Y is given by
oy = E{[(k, X, + - - - + k, X)) — (kypty + - - - + ko1,)F}
= E{[kI(XI - ”I) +---+ kn(Xn - Mn)]z}
= E{z RO — 1) + 2% Y kk( — m)(X; — u,-)}
i= i<j

Z k:EI(X; — )] + 2 X3 kik, ET(X; — w)(X; — w)l.

i<j

Consider E[(X, — u,)(X; — &)}, i <j. Because X; and X; are independent, we
have \

EI(X, — p)X; — )] = BX, — p)EX; — ) = 0.
Finally, then,
7= 3 BHX - u] = 3, ko,

We can obtain a more general result if, in Example 2, we remove
the hypothesis of independence of X, X, . . ., X,. We shall do this and
we shall let p; denote the correlation coefﬁcnent of X, and X;. Thus for
easy reference to Example 2, we wnte

El(X; — u)(X; — w)] = py0,0y, i<j -
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If we refer to Example 2, we see that again uy = k;u;. But now
1

6= Z kol +23 Y kk;p;0.0;

i<j

Thus we have the following theorem.

Theorem 5. Let X, ..., X, ‘denote random variables that have
means p,, . .., |, and variances @, . . ., c>. Let pi» i # J, denote the
correlation coeﬁ‘ic:ent of X; and X, and let k,, ..., k, denote real
constants. The mean and the variance of the linear functton

Y=th
are, respectively,
Py = ; ki
. and
Z klia} +23 3 kikp,00;.

i<j

The following corollary of this theorem is quite useful.

Corollary. Let X, ..., X, denote the observations of a random
sample of size n from a distribution that has mean y and variance o*. The

mean and the variance of Y = ) k,X;are, respectively, pty = (Z k,-)u and
1 1

_ (); kf)az

Example 3. Let X = Y X;/n denote the mean of a random sample of size

1 .
n from a distribution that has mean u and variance o2, In accordance with
the corollary, we have uz=u Z (1/n) = p and ok = a’Z(l [ny* = o*/n. We

have seen, in Section 4.8, that 1f our sample is from a dlStl‘lbuthI'l that is
N(u, 6), then X is N(u, a%/n). It is interesting that uz = u and o% = a*/n
whether the sample is or is not from a normal distribution.

EXERCISES

4.104. Let X Is X,, X;, X befouri.i.d. random variables having the same p.d.f.
Ax)=2x,0 < x <1, zero elsewhere. Find the mean and variance of the
sum Y of these four random variables.
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4.105. Let X, and X, be two independent random variables so that the
. variances of X, and X, are o] = k and o2 = 2, respectively. Given that the
variance of Y = 3X, — X, is 25, find k.

4.106. Ifthe independent variables X, and X, have means y,, u, and variances
o3, o3, respectively, show that the mean and variance of the product
Y = X, X, are yu,u, and ai03 + pios + pia], respectively.

4.107. Find the mean and variance of the sum Y of the observations of
a random sample of size 5 from the distribution having p.d.f. f{x)=
6x(1 — x), 0 < x < 1, zero elsewhere.

4.108. Determine the mean and variance of the mean X of a random sarple
of size 9 from a distribution having p.d.f. f{x) =4x’, 0 <x < 1, zero
elsewhere. N

4.109. L'et X and Y be random variables with u, = 1, y, = 4,02 =4, 62 = 6,
p = 5. Find the mean and variance of Z = 3X — 2Y

4 110. Let X and Y be independent random vanables with means y,, 4, and
variances g7, 03. Determine the correlation coefficient of Xand Z = X — Y
in terms of y,, u,, @2, a3.

4.111. Let x and ¢? denote the mean and variance of the random variable X.
Let Y = ¢ + bX, where b and c are real constants. Show that the mean and
the variance of Y are, respectively, ¢ + bu and #o”.

4.112. Find the mean and thé variance of Y = X, — 2X, + 3X,, where
X\, X2, X; are observations of a random sample from a chi-square
“distribution with 6 degrees of freedom.

4.113. Let X and Y be random variables such that var (X) = 4, var (¥) = 2,
~and var (X + 2Y) = 15. Determine the correlation coefficient of X and Y.

4.114. Let X and Y be random variables with means y,, u,; variances a7, 03;
and correlation coefficient p. Show that the correlation coefficient of
W=aX+b,a>0,andZ=cY+d c>0,is p.

4.115. A person rolls a die, tosses‘a coin, and draws a card from an ordinary
deck. He receives $3 for each point up on the die, $10 for a head, $0 for
a tail, and $1 for each spot on the card (jack = 11, queen = 12, king = 13).
If we assume that the three random variables involved are independent and
uniformly distributed, compute the mean and variance of the amount to be
received. -

4.116. Let U and ¥V be two independent chi-square variables with r,
and r, degrees of freedom, respectively. Find the mean and variance of
F = (r,U)/(r, V). What restriction is needed on the parameters r, and r, in
order to ensure the existence of both the mean and the variance of F?
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4.117. Let X, X,, ..., X, be a random sample of size n from a distribution
with mean u and variance ¢2. Show that E(S?) = (n — 1)o%/n, where §%is
the variance of the random sample.

Hint: Write $? = (1/n) i X, — p) — (X — p)
i

4.118. Let X, and X, be independent random variables with nonzero
variances. Find the correlation coefficient of ¥ = X, X, and X, in terms of
the means and variances of X, and X,. -

4.119. Let X, and X, have a joint distribution with parameters y,, u,, 03, 03,
and p. Find the correlation coefficient of the linear functions
Y=aX, +a,X,and Z = b, X, + b, X, in terms of the real constants a,, a,,
b,, b,, and the parameters of the distribution.

4.120. Let X}, X;, ..., X, be a random sample of size n from a distribution
which has mean u and variance ¢°. Use Chebyshev’s inequality to show, for
every ¢ > 0, that lim Pr (|X H| < €) = 1, this is another form of the law
of large numbers’”™*

4.121. Let X,, X;, and X, be random variables with equal variances but with
correlation coefficients p, =0.3, p;=0.5, and p,; =02. Find the
correlation coefficient of the linear functions Y =X, + X, and
Z=X,+ X,

4.122. Find the variance of the sum of 10 random variables if each has
variance 5 and if each pair has correlation coefficient 0.5.

4.123. Let X and Y have the parameters u,, u,, 67, a2, and p. Show that the
correlation coefficient of X and [Y — p(&,/6,)X] is zero.

4.124. Let X, and X, have a bivariate normal distribution with parameters y,,
My, 63, 03, and p. Compute the means, the variances, and the correlation
coefficient of 'Y, = exp (X,) and Y, = exp (X)).

Hint:Various moments of Y, and Y, can be found by assigning
appropriate values to ¢, and ¢, in Elexp (¢, X, + 1,X))].

4.125. Let X be N(u,0?) and consider the transformation X =In Y or,
equivalently, Y = ¢*.
(a) Find the mean and the variance of Y by first determmmg E(¢*) and
E[(e")].
Hint: Use the m.g.f. of X.
(b) Find the p.d.f. of Y. This is the p.d.f. of the lognormal distribution.

4.126. Let X, and X, have a trinomial distribution with parameters»n, P Pa-
(a) What is the dxstrlbutnon of ¥Y=X, + X,?
(b) From the equality ¢% = o} + o2 + 2p0o,0,, once again determme the
correlation coefficient p of X, and X,.
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4.127. Let Y, = X, + X, and Y, = X, + X,, where X,, X,, and X; are three
independent random variables. Find the joint m.g.f. and the correlation
coefficient of Y, and Y, provided that:

(a) X, has a Poisson distribution with mean y;, i = 1, 2, 3.
(b) X;is N(y;, 07),i=1,2,3.

4.128. Let X, ..., X, be random variables that have means y,, ..., g, and
variances o7, . . ., a2. Let p;, i # j, denote the correlation coefficient of X;
and X;. Let a;,...,a, and b, ..., b, be real constants. Show that the

n n n n
covariance of Y= Y g X, and Z=Y bX;is Y Y abo.0;p,, where
i=1 j=1 j=1i=1 :

pi=1Li=1,2,...,n

*4.10 The Multivariate Normal Distribution

We have studied in some detail normal distributions of one
random variable. In this section we investigate a joint distribution
of n random variables that will -be called a multivariate normal
distribution. This investigation assumes that the student is familiar
with elementary matrix algebra, with real symmetric quadratic forms,
and with orthogonal transformations. Henceforth, the expression
quadratic form means a quadratic form in a prescribed number of
variables whose matrix is real and symmetric. All symbols that
represent matrices will be set in boldface type.

Let A denote an n x n real symmetric matrix which is positive
definite. Let p denote the n x 1 matrix such that p’, the transpose of
m,is 0 = [y, 4, . . ., 4,), where each y; is a real constant. Finally, let
x denote the n x 1 matrix such that x’ =[x, x,, ..., x,]. We shall
show that if C is an appropriately chosen positive constant, the
nonnegative function

S, Xa ooy X)) = Ce:’q))[—(x — u)’;(x — ")},

—wo<x;<ow, i=1,2...,n,

is a joint p.d.f. of n random variables X,, X,, ..., X, that are of the
continuous type. Thus we need to show that

J~ "'J‘ ﬂxh;x:,...,x,,)dxldeH'dx"=l. (1)
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Let t denote the n x |1 matrix such that t' =[f,,1,,...,1,), where
!, t, ..., t,arearbitrary real numbers. We shall evaluate the integral

ch r expl:t’x—(x_"),zA(x—")]dx.---dx,,, Q)

and then we shall subsequently set t, =¢,=---=1,=0, and thus
establish Equation (1). First, we change the variables of integration in
integral (2) from x,, x5, ..., X, t0 ¥y, ¥2, .. ., Y, by writingx —p =y,
where y’ = [y, y2, .. ., »,]. The Jacobian of the transformation is one
and the n-dimensional x-space is mapped onto an n-dimensional
y-space, so that integral (2) may be written as

[+ ¢] x ,A
Cexp (t'n) J E f exp (t'y - %) &y, dy. ()

Because the real symmetric matrix A is positive definite, the n
characteristic numbers (proper values, latent roots, or eigenvalues)
a,, a,, ...,a,of A are positive. There exists an appropriately chosen
n x n real orthogonal matrix L (L’ = L~!, where L' is the inverse
of L) such that

ra. 0 e O i
0 a --- 0
L'AL= | . . o
| 0 0 LY a”-.I
for a suitable ordering of a4y, a,, . .., a,. We shall sometimes write
L’AL = diag[a,, a,, . . . ; a,). In integral (3), we shall change the
variables of integration from y,, y,, ..., y.to z,, z,, ..., z, by writing

y = Lz, wherez’ = |[z,, z,, . . ., z,]. The Jacobian of the transformation
is the determinant of the orthogonal matrix L. Since L'L = 1,, where
L, is the unit matrix of order n, we have the determinant |L’'L| = 1 and
|L]> = 1. Thus the absolute value of the Jacobian is one. Moreover, the
n-dimensional y-space is mapped onto an n-dimensional z-space. The
integral (3) becomes

Cexp (tp) J . J-m exp |:t’Lz — Z(L—;L)-z-] dzy---dz,. (4)

It is computationally convenient to write, momentarily, t'L = w’,
where w' = [w,, w,, ..., w,]. Then

exp [t'Lz] = exp [w'z] = exp (i w,-z,-).
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Moreover,
n
Y az
|
2

Then integral (4) may be written as the product of » integrals in the
. following manner:

Cexp (wL'p) f[ [Jm exp (w,-z, - a,Tz,z) dz,-:l
exp ( )
= Cexp (WL'p) H /znr dz; [. (5)
21t/a

The integral that involves z; can be treated as the m.g.f., with the more
familiar symbol ¢ replaced by w;, of a distribution which is N(0, 1/a;).
Thus the right-hand member of Equation (5) is equal to

Cexp (WwL'p) ﬁl [ \/Z exp (;a’z )]

‘ 2n)"
= Cexp (WL'p) E;:%T)-'; exp (

Now, because L-! = L’, we have

—p1=

N|&,

S’
—_—
o))

(UAL)-' = L'A-'L = diag [l iy i]
aI a,
Thus
LW e "
Yt =w(L'A"L)w = (Lwy'A~'(Lw) = tA~'t
| i
Moreover, the determinant [A~'| of A~! is
A~ = LA-'L| = ——
aa,: -"a,

Accordingly, the right-hand member of Equation (6), which is equal
to integral (2), may be written as

Ce'™. /ny|A-"| exp ("Az_") . )
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If, in this function, we set 1, = t, = - - - = t, = 0, we have the value of
the left-hand member of Equation (1). Thus we have

Qay|A~"| = 1.

Accordingly, the function

X x (x — YA(X — P)]

— 1 —
D G A [ 2

- <Xx;<,i=1,2,...,n,is a joint p.d.f. of n random variables
X,, X,, ..., X, that are of the continuous type. Such a p.d.f. is called
a nonsingular multivariate normal p.d.f.

We have now proved that f{x,, x,, ..., x,) is a p.d.f. However,
we have proved more than that. Because f(x,, x,, ..., x,) is a p.d.f,,
integral (2) is the m.g.f. M(¢,, 1,, ..., t,) of this joint distribution of
probability. Since integral (2) is equal to function (7), the m. gf of the
multivariate normal distribution is given by

s A1
M, t,, ..., )—exp(tu+£-'52—!).

Let the elements of the real, symmetric, and positive definite matrix
A~ be denoted by ¢;;, ;,j=1,2,...,n Then

12
M(O’---,O»tno,---,0)=exp(,u,+%)

isthem.gf.of X;,,i=1,2,...,n Thus X;is N(u,. a,,) i=1,2,...,n
Moreover, with i # j, we see that M(0,...,0,1,0, . !, 0, .., 0),
the m.g.f. of X; and X}, is equal to

ol + 20,1 + 01,
exp | tipi + Ly + — ) .

which is the m.g.f. of a bivariate normal distribution. In Exercise 4.131
the reader is asked to show that g, is the eovariance of the random
variables X; and X;. Thus the matrix p, where p" = [y, 15, . . . , ],
is the matrix of the means of the random variables X,,..., X,.
Moreover, the elements on the principal diagonal of A~' are,
respectively, the variances ¢; =62, i=1,2,...,n, and the elements
not on the principal diagonal of A~' are, respectively, the covariances



Sec. 4.10] The Multivariate Normal Distribution 227

g; = p,0,0;,i # j, of the random variables X,, X,, . .., X,. We call the
matrix A~!, which is given by

Cnu G2 ... Oy,
Oy Oy ... Oy
- b
Oy, O3 ... O,

the covariance matrix of the multivariate normal distribution and
henceforth we shall denote this matrix by the symbol V. In terms
of the positive definite covariance matrix V, the multivariate normal
p.d.f. is written

_x—pyV'(x—p)

1
@ry™ V] Xp [ 2

i=1,2,...,n, and the m.g.f. of this distribution is given by

exp (t’p, + ¢ ;’t)
for all real values of t.

Note that this m.g.f. equals the product of n functions, where
the first is a function of ¢, alone, the second is a function of ¢, alone,
and so on, if and only if V is a diagonal matrix. This condition,
g, = p,;0:0; =0, means p; = 0, i # j. That is, the multivariate normal
random variables are independent if and only if p; = 0 for all i # .

], —o0 < X; < 00,

Example 1. Let X, X,, ..., X, have a multivariate normal distribution
with matrix p of means and positive definite covariance matrix V. If we let
X =[X,, X;,...,4X,], then the m.gf. M(¢,,1,,...,1,) of this joint distri-
bution of probability is

E(e™™) = exp (t’p + £§—t) . (8)

Consider a linear function Y of 'X., X, ..., X, which is defined by Y=

X = z": ¢, X;, where ¢’ = [¢,, ¢3, . - ., ¢,] and the several ¢, are real and not
I

all zero. We wish to find the p.d.f. of Y. The m.g.f. m(¢) of the distribution

of Yisgivenby )

m(t) = E(e') = E(e*X).
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Now the expectation (8) exists for all real values of t. Thus we can replace t’
in expectation (8) by #¢’ and obtain

’ 2
m(t) = exp (tc’p +& ‘;ﬂ ) .

Thus the random variable Y is N(¢'p, ¢'Ve).

EXERCISES

4.129. Let X, X;,...,X, have a 'multivariate normal distribution with
positive definite covariance matrix V. Prove that these random variables are
mutually independent if and only if V is a diagonal matrix.

4.130. Let n =2 and take

V= o poo;
poa; oy |
Determine |V|, V~', and (x — p)’'V~!(x — p). Compare the bivariate normal

p.d.f. of Section 3.5 with this multivariate normal p.d.f. when n = 2.

4.131. Let m(t, t;) represent the m.g.f. of X; and X; as given in the text.
Show that

oy

#m(0, 0) [ @m(0, 0) |[ @m(0, 0)
oy, | o at,

that is, prove that the covariance of X; and X is a;, which appears in

that formula for m(t;, t)).

4.132. Let X, X,, ..., X, have a multivariate normal distribution, where p
is the matrix of the means and V is the positive definite covariance matrix.

Let Y=c¢Xand Z=d'X, where X' =[X;,..., X,],¢'=[¢;, ..., ¢}, and

d' =[d,-..,d,) arc real matrices. .

(a) Find m(t,, t,) = E(e''Y * 2%) to see that Y and Z have a bivariate normal
distribution.

(b) Prove that Y and Z are independent if and only if ¢'Vd = 0.

(©) If X, X,, ..., X, are independent random variables which have the
same variance o7, show that the necessary and sufficient condition of
part (b) becomes ¢’'d = 0.

4.133. LetX’' = [X}, X,, . .., X,] have the multivariate normal distribution of
Exercise 4.132. Consider the p linear functions of X, .. ., X, defined by
W = BX, where W' = [W,,..., W,],p <n,and Bisa p x nreal matrix of
rank p. Find m(v,, . . ., v,) = E(e"V), where v’ is a real matrix [v;, . .., 1],
to see that W, ..., W, have a p-variate normal distribution which has Bp
for the matrix of the means and BVB’ for the covariance matrix.
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4.134. Let X’ =[X}, X,, ..., X,] have the n-variate normal distribution
of Exercise 4.132. Show that X,, X;,...,X,, p<n, have a p-variate
normal distribution. What submatrix of V is the covariance matrix of
X, X . X2 ;

Hint: In the m.g.f. M(t), 15, ..., t,) of X}, Xp, ..., X, lett, . ==
t,=0.

ADDITIONAL EXERCISES

4.135. If X has the p.d.f. fix) =1, — 1 < x < 2, zero elsewhere, find the p.d.f.
of Y=X*

4.136. The continuous random variable X has a p.d.f. given by f(x) =1,
0 <x <1, zero elsewhere. The random variable Y is such that
Y = —21In X. What is the distribution of ¥Y? What are the mean and the
variance of Y?

4.137. Let X,, X, be a random sample of size n = 2 from a Poisson distri-
bution with mean u. If Pr (X, + X, = 3) = (3)e~*, compute Pr (X, =2,
Xz = 4). .

4.}38. Let X, X,,..., X,s be a random sample of size n =25 from a
distribution with p.d.f. A{x) = 3/x*, 1 < x < o0, zero elsewhere. Let Y equal
the number of these X values less than or equal to 2. What is the distribution
of Y? :

4.139. Find the probability that the range of a random sample of size 3 from
the uniform distribution over the interval (—35, 5) is less than 7.

4.140. Let Y, < Y, < Y, be the order statistics of a sample of size 3 from a
distribution having p.d.f. f{x) =3, —1 < x < 2, zero elsewhere. Determine
Pr[-i1<Y,<3]

4.141. Let X and Y be random variables so that Z = X — 2Y has variance
equal to 28. If 6% = 4 and pyy = 3, find the variance o3 of Y.

4.142. Let Y, < Y, < Y, < Y, be the order statistics of a random sample
of size n =4 from a distribution with p.d.f. ix)=2(1 —-x),0<x<1,
zero elsewhere. Compute Pr (Y, < 0.1).

4,143, A certain job is completed in three steps in series. The means and
standard deviations for the steps are (in hours):

Step Mean Standard Deviation

1 3 0.2
2 1 0.1
3 4 0.2




230 Distributions of Functions of Random Variables [Ch. 4

Assuming normal distributions and independent steps, compute the prob-
ability that the job will take less than 7.6 hours to complete,

4.144. Let X}, X,, ..., X, be a random sample of size n from a distribution
having mean g and variance 25. Use Chebyshev’s inequality to determine
the smallest value of n so that 0.75 is a lower bound for Pr [|X — y < 1].

4.145. Let X, and X, be independent random variables with joint p.d.f.

4 —
ﬂxl’x2)='{l—(36—x22’ xl=l,2s3’ x2=112, 3,

and zero elsewhere. Find the p.d.f. of ¥ = X, — X).

4.146. An unbiased die is cast eight independent times. Let Y be the smallest
of the eight numbers obtained. Find the p.d.f. of Y.

4.147. Let X, X,, X, be i.i.d. N(y, ¢*) and define
Y, = X, + 6X,
and
Y,=X,+4X..

(a) Find the means and variances of Y, and Y, and their correlation
coefficient.
(b) Find the joint m.g.f. of Y, and Y,.

4.148. The following were obtained from two sets of data:
m=2, ¥=25, £=5
m=30, §=2, s=4

Find the mean and variance of the combined sample.

4.149. Let Y, < Y, <--- < Y; be the order statistics of a random sample
of size 5 from a distribution that has the p.d.f. fix)=1,0< x < 1, zero
elsewhere. Compute Pr (Y, <%, Y5 > 3).

4.150. Let M() =(1 — )73, t < 1, be the m.g.f. of X. Find the m.g.f. of
y_X=10
25

4.151. Let X be the mean of a random sample of size n from a normal
distribution with mean g and variance ¢? = 64. Find n so that

Pr(u—6< X < p+ 6)=0.9973.

4.152. Find the probability of obtaining a total of 14 in one toss of four dice.
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4.153. Two independent random samples, each of size 6, are taken from two
normal distributions having common variance ¢°. If W, and W, are the
variances of these respective samples, find the constant k such that

W, w, _
Pr [mm( Wl) < k] =0.10.

4.154. The mean and variance of 9 observations are 4 and 14, respectively.
We find that a tenth observation equals 6. Find the mean and the variance
~-of the 10 observations.

4.155. Draw 15 cards at random and without replacement from a pack of 25
cards numbered 1, 2, 3, . .., 25. Find the probability that 10 is the median
of the cards selected.

4.156. LetY, <Y, < Y, < Y, be the 6rder statistics of a random sample of
size n = 4 from a uniform distribution over the interval (0, 1).
(a) Find the joint p.d.f. of Y, and Y,.
(b) Determme the conditional p.d.f. of Y, and Y, given Y. y: and
Y, =
(c) Find the joint p.df.of Z,=Y,/Y,and Z,=Y,.

4.157. Let X, X;,..., X, be a random sample from a distribution with
mean u and variance ¢2. Consider the second differences

Zj=Xj+2_2Xj+l+st j=l,2,...,n—2.

n—2
Compute the variance of the average, Y Z/(n —2), of the second
. ~
differences. !
4.158. Let X and Y have a bivariate normal distribution. Show that X 4+ Y
and X — Y are independent if and only if ¢? = ¢2.

4.159. Let X be a Poisson random variable with mean u. If the conditional
distribution of Y, given X = x, is b(x, p). Show that Y has a Poisson
distribution and is independent of X — Y.

4.160. Let X,, X,, ..., X, be a random sample from N(y, ¢°). Show that the
sample mean X and each X—-Xi=12,..., n, are independent. Actually
X and the vector (X, — X, X, — X, ..., X, — X) are independent and this

implies that X and Z (X; — X)? are independent. Thus we could find the
i=1

joint distribution of X and nS8%/6? using this resuit.

4.161. Let X, Xz, ..., X, be a random sample from a distribution with
pdf Ax)=1, x—l 2,...,6, zero elsewhere. Let Y = min (X;) and
Z = max (X;). Say that the joint distribution function of Y and Z is
G(y,2) =Pr (Y <y, Z < z), where y and z are nonnegative integers such
that 1 <y <z <6.
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(@) Show that
G(y,2)=F@)—[F2)— ), 1<y<z<6,

where F(x) is the distribution function associated with f{x).
Hint: Note that theevent (Z<2)=(Y<y,Z<2)U(y< Y, Z<2) ~
(b) Find the joint p.d.f. of Y and Z by evaluating

gr.2)=G(y,z) -Gy —1,2) - G(y,z—= D+ G(y—1,z—1).

4.162. Let X = (X, X5, X,) have a multivariate normal distribution with
mean vector g = (6, —2, 1)’ and covariance matrix

Find the joint p.d.f. of
Y|=3X|+X2—2X3 and Y2=Xl—5X2+X3.
4.163. If

V=

TR -
v =
—_T v

is a covariance matrix, what can be said about the value of p?



CHAPTER 5

Limiting
Distributions

5.1 Convergence in Distribution

In some of the preceding chapters it has been demonstrated by
example that the distribution of a random variable (perhaps a statistic)
often depends upon a positive integer n. For example, if the random
variable X is b(n, p), the distribution of X depends upon n. If X is the
mean of a random sample of size n from a distribution that is N(y, ¢%),
then X is itself N(u, o*/n) and the distribution of X depends upon n. If
S? is the variance of this random sample from the normal distribution
to which we have just referred, the random variable nS%/a” is y(n — 1),
and so the distribution of this random variable depends upon n.

We know from experience that the determination of the probability
_ density function of a random variable can, upon occasion, present
rather formidable computational difficulties. For example, if X is the
mean of a random sample X, X, .. ., X, from a distribution that has
the following p.d.f.
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