27.3,2018
1. If you want to construct a barometer using water instead of mercury to measure atmospheric
pressure now long does the tube need to be?
A) 5m B) Im Pwgh= Patmos.
B) Im 1000 *9.8 * h = 101 × 103 Pa
D) 9m $b = 12(x_1)^3$
E) 8m h = 13(x10) = 10.3 m = average height of column of water
D) 9m E) 8m $h = \frac{101 \times 10^{3}}{1500 \times 9.8} = 10.3 \text{ km} = average height of column of water}$ We must use a longer tube to allow for vacuum at top = L=11n What is the systolic procesure is measured in the normal way and is found to be 120 mmHg.
What is the systome pressure in a leg artery 82 cm below the heart? (βblood = 1060 kg m ⁻³)
A) 126 mmHg B) 185 mmHg C) 55 mmHg C) 55 mmHg
C) 55 mmHg D) 120 mmHg $S_{blood}gh = (1060)(4.8)(0.82) = 8500 Pa * 760 mHg = 65 mm Hg$ E) 150 mmHg
: Preglevel = 120 +65 mmHg = 185 mmHg
3. What is the atmospheric pressure at a height of 3100 m above sea level? Assume an average
A) 30 kPa B) 130 kPa P(at y = 3100 m) = P(sea level) - 99h
$ \begin{array}{c} \text{(C)} 70 \text{ kPa} \\ \text{(D)} 100 \text{ kPa} \\ \end{array} = 100,000 - 1(9.8)(3100) $
D) 100 Ki a
4. A lead cube of side 20 cm is plant and a side 20 cm is plant as a si
4. A lead cube of side 20 cm is placed on a horizontal surface. What is the pressure exerted by the cube on the surface? ($\rho_{lead} = 11\ 300\ kg\ m^{-3}$)
B) 44 kPa P = Mg = Slead (L-) g = Slead Lg
C) 78 kPa Aria IX
A) 60 kPa B) 44 kPa C) 78 kPa D) 11 kPa E) 22 kPa $P = \frac{Mg}{Arua} = \frac{s_{lead}(L^3)g}{Arua} = $
= (1300)(0.1m)(4.8m)(5.4) - 22 = (1300)
5. A string has a length of 45 cm and a mass of 2 grams. It is under a tension of 40N. What is its fundamental frequency? A) 53 Hz A) 53 Hz B) 106 Hz C) 26 Hz D) 33 Hz A $1 = 9 \text{ L} = 0.9 \text{ m}$ C) 78 Hz F $1 = \frac{C}{A} = \frac{95 \text{ m/s}}{29 \text{ m}} = 106 \text{ Hz}$
A) 53 Hz
A) 53 Hz $M = \frac{M}{L} = \frac{0.002}{100} \text{ kg/m}$ $C = \sqrt{\frac{40 \times 0.45}{100}} = 95 \text{ My}$
5) 26 Hz
$\lambda_1 = 2L = 0.9 m$
$f_1 = \frac{c}{A_1} = \frac{95 \text{ m/s}}{0.9 \text{ m}} = 106 \text{ Hz}$
. What is the intensity of a 70 dB sound wave?
$\frac{10^{-7} \text{ W/m}^2}{10^7 \text{ W/m}^2} L = 10 \log_{10} \frac{I}{(0^{-12} \text{ W/m}^2)} = 70$
10^{7} W/m^{2} 10^{5} W/m^{2} $1 - 10^{7} \text{ W/m}^{2}$
0.00 W/m^2 $0.9 = 7 \Rightarrow \frac{1}{12 \text{ W/m}^2} = 7$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T-17 10-12 W/2 = 10 m

East	

12. Which of the following statements is true?

E) 10 km

- A) The middle ear compensates for the loss in sound intensity during the transmission from the ear canal to the cochlea. True
- B) The loss in sound intensity during the transmission from the ear canal to the cochlea is due to the difference between the acoustic impedences of the ear canal and the cochlea. True
- C) The cochlea is filled with a sea-water-like fluid. True
- (D) All of the above statements are true. True
- E) Only statements B and C are true. False

13. Which of the following statements is true:
A) The pressure of any volume of gas is constant everywhere.
/ R) /I he pressure of a small volume of gas is constant everywhere.
C) Atmospheric pressure does not vary with elevation الارتفاع because air is a gas. المراقاع
D) Atmospheric pressure does not change with time. Follow
E) All of the above are true. False
14. A wooden sphere of radius 2 cm is floating in oil. If $\rho_{\text{oil}} = 1500 \text{ kg m}^{-3}$, and the density of
14. A wooden sphere of radius 2 cm is floating in oit. If
wood is 600 kg/m³, what percentage of its volume lies above the oil surface?
A) 30% $M_q = F_B$
0) 60% 8 wood Vephere of = Soil Validate of
D) 70%
E) 50% . vanp = twood = 600 = 40 10
Viphere 8 19 1500 p
D) 70% E) 50% Notice Prood = 600 = 40% Notice 15. If we hold the wooden sphere mentioned in Problem 14 so that it is completely under the oil
15. If we hold the wooden sphere mentioned in Problem 14 so that it is completely under the on
curtogo than the hugyant torce on it is:
A) 0.2 N downwards B) 0.2 N upwards $F_{B} = P_{01} + \frac{4\pi}{3} R^{3} g = 1500 + \frac{4\pi}{3} (0.02)^{3} 9.8$ C) 0.5 N downwards
B) 0.2 N upwards $B = For 1 = \sqrt{3}$
5 0.3 N downwards
1) U.S IN upwards
E) We cannot give an answer unless we know the force with which we hold the sphere. The Bryont force is always directed upwards
The Buyout force is always diversed
16. The apparent weight of a 0.010 kg coin when immersed completely in water is 0.080 N. Its
volume is: Actual Weight = 0,01×9-8 = 0,098 N A) 8.1 cm ³
A) 8.1 cm^3
B) 1.0 cm ³ C) 2.7 cm ³ FBuoyant = Actual Weight - Apparent Weight D) 1.2 cm ³ - 0.088-0.080=0.080=0.018=0.018
C) 2.7 cm3 FBuoyant = Actual Weight - 8
(E))1.8 cm ³ = 0.048 = 0.088 = 0.018 = $\frac{1}{2}$ W. 0.
E) 1.8 cm ³ $V = \frac{0.018}{1000 + 9.8} = 1.8 \times 10^{-6} \text{ m}^3 = 1.8 \text{ cm}^3$ 17. Which of the following statements is false?
1000 * 9.8
17. Which of the following statements is false?
A) () or blood pressure when doing physical work differs from its value when we are at rest. If you
B) Our blood pressure varies with time throughout each cardiac cycle. True
C) Our blood pressure should be measured at the heart's level. True
D) Our blood pressure is the same anywhere in our body. False
E) High blood pressure can cause many health problems. True