PHYS 143 TEST 3

1. A main water pipe with a 2.5 cm inner diameter carries water into a house at a speed of 0.9 m/s and a pressure of 190 kPa. Inside the house the pipes have a 1.2 cm inner diameter. What is the speed of water inside the house?

A)
$$1.9 \text{ m/s}$$

B)
$$0.9 \, \text{m/s}$$

$$(0.9) \times (2.5)^2 = v_2 \times (0.2)^2$$

$$N_2 = (0.9) \left(\frac{2.5}{1-2}\right)^2 = 3.9 \text{ m/s}$$

2. In Problem 1 above what is the water pressure in the third floor of the house 7.6 m above the

B) 183 kPa

D) 175 kPa

E) 115 kPa =
$$190 \times 10^3 + 0 - 1000 (1.8)(2.6) + \frac{1}{2}(1000)(0.9)^2 - \frac{1}{2}(1000)(3.9)^2$$

= $190,000 + 0 - 74,480 + 405 - 7605 = 108,320$ Pa

3. A man has his artery severed in an accident. If the artery has a diameter of 7 mm and blood

flows out of it with a velocity of 1.2 m/s, how much blood does the man lose in 10 seconds?

A) $1800 \, \text{cm}^3$ B) 920 cm³

C) 92 cm³

A)
$$1800 \text{ cm}^3$$
 Volume of blood $10\text{ st} = \sqrt{A} \text{ A} \text{ B}$
B) 920 cm^3 $= (1-2 \text{ m/s}), \pi (\frac{7}{2} \times 10^{-3} \text{ m})^2$. 10 s $= 10^6 \text{ cm}^3$ $= 46 \text{ cm}^3$ $= 46 \text{ m}^3$ $= 460 \text{ cm}^3$

$$= 10^{6} \text{ cm}$$

4. If the artery in Problem 3 is not severed but instead 100 capillaries are severed. How much blood does the man lose in 10 seconds? The diameter of a capillary is about 7 µm and blood flows out of it with a velocity of 1.2 m/s,

A) 0.18 cm^3

C)0.046 cm³

$$D) 0.0046 \text{ cm}^3$$

E)
$$0.0092 \text{ cm}^3$$

$$= (100)(1.2 \text{ m/s}) \left(\frac{7 \times 10^{-6}}{2}\right)^{2} \pi \cdot (05)$$

5. A liter (1000 cm³) of water at 20□ C fills a glass bottle up to the beginning of its neck (عنق). If the liter of water is heated to 50 \(\text{C} \) and then poured into the same bottle how much does the water rise in the neck. The volume expansion coefficient of water is 2.1x10-4 K-1 and the inner diameter of the neck is 2.0 cm. Assume that the expansion of the glass bottle is negligible.

A) 2.0 cm B) 0.50 cm

$$\Delta V = V_0 \beta \Delta T = (1000)(9.1 \times 10^{-4})(30) = 6.3 \text{ Cm}^3$$

C) 1.0 cm

$$\Delta h = \frac{\Delta V}{\Delta} = \frac{6.3 \, \text{cm}^3}{4.0 \, \text{cm}} \approx 2.0 \, \text{cm}$$

6. Which of the following statements is true:
A) Liquid-filled thermometers contain a liquid whose volume is fixed. False. Liquid expenses A bi-metallic strip consists of 2 freely moving strips. False, Strips are soldwide. The density of water at 1 C is slightly lower than its density at 3 C. True. Smooth at 4 D) We can use a gas of any density inside a constant-volume gas thermometer. False; low dues E) In a lake whose surface is frozen the coldest water is found at the lake's bottom. False; at bottom.
cm ² . Water is then poured in the cylinder so that the top of the water is at a height of 5 cm above the cylinder's base. If the water and steel temperature increases by 30 K, by how much does the water surface rise? Assume that the expansion of the glass cylinder is negligible. Take the volume expansion coefficient of water is 2.1×10^{-4} K ⁻¹ and $\alpha = 12 \times 10^{-6}$ K ⁻¹ for steel.
A) 0.32 mm $V \cot a = (90 \text{ cm}^2)(5 \text{ cm}) = 100 \text{ cm}^3$ B) 0.24 mm $V \text{ cwhe} = (3 \text{ cm})^3 - 97 \text{ cm}^3 \Rightarrow V \text{ water} = 100 - 27 = 73$
C) 0.36 mm D) 0.16 mm D V cwhe = $(27)(3x)\Delta 7 = 0.029/6 \text{ cm}^3$ E) 0.40 mm D V wett = $(73)(2.1 \times 10^{-4}) \times 30 = 0.4599 \text{ cm}^3$ 8. You drink 400 cm^3 of cold water (at 10×10^{-4}). Calculate the increase in the
it reaches the core body temperature in your stomach? Take $\beta = 2.0 \times 10^{-4} \text{ K}^{-1}$.
A) 0.22 cm^3 $\Delta V = V_0 \beta \Delta T$ B) 2.2 cm^3 C) 3.0 cm^3 D) 0.30 cm^3 E) 1.0 cm^3
9. Ten ants are placed at the center of a room. After 1 minute their displacements are as follows: Number of ants 1 1 2 2 3 1 Displacement (cm) 6 10 14 16 20 30 Calculate their rms displacement.
A) 10 cm B) 8.0 cm C) 24 cm E) 13 cm A) 10 cm C) 24 cm E) 13 cm
10. The diffusion constant of the ants in Problem 9 is: A) $2.6 \times 10^{-4} \text{ m/s}$ B) $2.6 \text{ m}^2/\text{s}$ C) 2.6 m/s D) 2.6 cm/s

Use $g = 9.8 \text{ m/s}^2$.

