
Physics 116C Solutions to Homework Set #1 Fall 2011

1 Boas, problem p.564, 12.1-1

Solve the following differential equations by series and by another elementary method and check that the
results agree:

xy′ = xy + y (1)

• by series: substituting the power series y(x) =
∑

∞

n=0 anx
n in (1) we have

xy′ − xy − y = 0 ⇐⇒ x

(

∞
∑

n=1

nanx
n−1

)

− x

(

∞
∑

n=0

anx
n

)

−
∞
∑

n=0

anx
n = 0 (2)

calling n = m+ 1 and substituting,
∞
∑

m=0

(m+ 1)am+1x
m+1 −

∞
∑

n=0

anx
n+1 −

∞
∑

n=0

anx
n = 0 (3)

∞
∑

m=0

[(m+ 1)am+1 − am] xm+1 − a0 −
∞
∑

m=0

am+1x
m+1 = 0 (4)

The only term with a 0-th power of x is a0, which tells us a0 = 0. Asking for the coefficient of the
(m+ 1)-th power of x in (4) to be zero we get

am+1 =
1

m
am =

1

m

1

m− 1
am−1 = . . . =

1

m!
a1 (5)

So the solution for (1) is

y(x) =
∞
∑

m=0

am+1x
m+1 = a1

∞
∑

m=0

1

m!
xm+1 (6)

Factoring out one power of x, one recognizes the power series of the exponential ex and writes the
solution as

y(x) = a1xe
x (7)

• by separation of variables:

dy

y
= (1 +

1

x
)dx =⇒ ln y = x+ lnx+ ln c =⇒ y(x) = c xex (8)

which is the same as in (7).

2 Boas, problem p.564, 12.1-10

Solve the following differential equations by series and by another elementary method and check that the
results agree:

y′′ − 4xy′ + (4x2 − 2)y = 0 (9)
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• by series: substituting the power series y(x) =
∑

∞

n=0 anx
n in (9) we have

∞
∑

n=2

n(n− 1)anx
n−2 − 4x

∞
∑

n=1

nanx
n−1 + (4x2 − 2)

∞
∑

n=0

anx
n = 0 (10)

2a2 + 6a3x+

∞
∑

n=2

(n+ 2)(n + 1)an+2x
n − 4a1x− 4

∞
∑

n=2

nanx
n + 4

∞
∑

n=0

anx
n+2 − 2a0 − 2a1x− 2

∞
∑

n=2

anx
n = 0

2a2 + 6a3x− 4a1x− 2a0 − 2a1x+
∞
∑

n=2

[

(n+ 2)(n + 1)an+2 − 2(1 + 2n)an + 4an−2

]

xn = 0

the first terms give
a2 = a0 , a3 = a1 (11)

while the recursion formula is

(n+ 2)(n + 1)an+2 − 2(1 + 2n)an + 4an−2 = 0 , for n ≥ 2. (12)

Consider first the case of n = 2p even. Using (11), we can use the recursion formula to obtain a4.
By repeated use of the recursion formula, we can obtain a6 , a8 , . . .. After computing a few values,
it appears that the general form is

a2p =
a0
p!

. (13)

Note that (13) is also valid for p = 0 and p = 1. To test the validity of (13), we insert this equation
into (12):

2(p + 1)(2p + 1)

(p + 1)!
− 2(1 + 4p)

p!
+

4

(p− 1)!

?
= 0 . (14)

Simple algebra verifies the validity of the equation above. Next, consider the case of n = 2p+1 odd.
Using (11), we can use the recursion formula to obtain a5. By repeated use of the recursion formula,
we can obtain a7 , a9 , . . .. After computing a few values, it appears that the general form is

a2p+1 =
a1
p!

. (15)

Note that (13) is also valid for p = 0 and p = 1. To test the validity of (15), we insert this equation
into (12):

2(p + 1)(2p + 3)

(p + 1)!
− 2(3 + 4p)

p!
+

4

(p− 1)!

?
= 0 . (16)

Simple algebra verifies the validity of the equation above. Hence, we conclude that

y(x) =

∞
∑

n=0

anx
n =

∞
∑

p=0

a2px
2p +

∞
∑

p=0

a2p+1x
2p+1

= a0

∞
∑

p=0

x2p

p!
+ a1

∞
∑

p=0

x2p+1

p!

= a0

∞
∑

p=0

[x2]p

p!
+ a1x

∞
∑

p=0

[x2]p

p!

= (a0 + a1x)e
x2

. (17)
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• reduction of the order: one checks that the equation is solved by y0(x) = ex
2

; then we look for
another solution of the form y(x) = u(x)y0(x):

y′ = u′y0 + uy′0, y′′ = u′′y0 + 2u′y′0 + uy′′0 (18)

y′′ − 4xy′ + (4x2 − 2)y = u[y′′0 − 4xy′0 + (4x2 − 2)y0] + 2u′y′0 + u′′y0 − 4xu′y0 = 0 (19)

ex
2

[u′′ − 4xu′ + 4xu′] = 0 =⇒ u′′ = 0 =⇒ u = A+Bx (20)

y = (A+Bx)ex
2

(21)

3 Boas, problem p.586, 12.11-5

Solve the following differential equations by the method of Frobenius:

2xy′′ + y′ + 2y = 0 (22)

Substituting the generalized power series y(x) =
∑

∞

n=0 anx
n+s in (22) we have

2x
∞
∑

n=0

(n+ s)(n+ s− 1)anx
n+s−2 +

∞
∑

n=0

(n+ s)anx
n+s−1 + 2

∞
∑

n=0

anx
n+s = 0 (23)

the n = 0 term gives [2s(s− 1)a0 + sa0]x
n+s−1 = 0 =⇒ 2s2 − s = 0 =⇒ s = 0, 12 (24)

while the other terms are

∞
∑

n=1

[

2(n + s)(n + s− 1)an + (n+ s)an + 2an−1

]

xn+s−1 = 0 (25)

(26)

For s = 0 we have

∞
∑

n=1

[

n(2n − 1)an + 2an−1

]

xn−1 = 0 (27)

an =
−2

n(2n− 1)
an−1 = . . . =

(−2)n

n!(2n− 1)!!
a0 (28)

Where the double factorial is m!! = m(m − 2)(m − 4) . . .. Also, we note that (2n)! = 2n(2n − 1)(2n −
2)(2n − 3) . . . = 2n(2n − 1)!!n!. Inserting these coefficients back in the series gives

y(x) =
∞
∑

n=0

anx
n =

∞
∑

n=0

(−2x)n

n!(2n− 1)!!
a0 =

∞
∑

n=0

(−4x)n

(2n)!
a0 = a0

∑

n=0

(−1)n(2
√
x)2n

(2n)!
= a0 cos(2x

1/2). (29)

For s = 1
2 we have instead

∞
∑

n=1

[

n(2n+ 1)an + 2an−1

]

xn−
1

2 = 0 =⇒ an =
−2

n(2n+ 1)
an−1 = . . . =

(−2)n

n!(2n+ 1)!!
a0 (30)

=⇒ y(x) = a0
∑ (−1)n(2

√
x)2n+1

(2n+ 1)!
= a0 sin(2x

1/2) (31)

The general solution is then given by the linear combination of (29), (31):

y = A cos(2x1/2) +B sin(2x1/2) (32)
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4 Boas, problem p.587, 12.11-14

Solve y′′ = −y by the Frobenius method.
We take the generalized power series y(x) =

∑

∞

n=0 anx
n+s so that

y′′ + y =
∞
∑

n=0

[

(n+ s)(n+ s− 1)anx
n+s−2 + anx

n+s

]

= 0 (33)

Taking the n = 0 term gives s(s− 1)a0 = 0, that is, s = 0, 1. For s = 0 we have

n(n− 1)an + an−2 = 0 =⇒ an =
−an−2

n(n− 1)
=⇒

{

a2n+1 =
(−1)n

(2n+1)!a1

a2n = (−1)n

(2n)! a0
(34)

These two series are those defining the sine and the cosine, so that we have found the well known result
y = a0 cos x+ a1 sinx.

If we now take s = 1 we have

(n + 1)nbn + bn−2 = 0 =⇒ bn = − bn−2

n(n+ 1)
(35)

The solution for b0 6= 0 is then

y(x) =
∑

n=0

bnx
n+1 = b1 sinx+ b0

∑

n=1

(−1)n

(2n)!
x2n (36)

In this expression we are missing the x0 term that would give the expansion of the cosine, and one easily
check that this is not a solution of the differential equation. That happens because in (33) for s = 1 the
first term coefficient reads (n+1)(n+0)bn; then, b0 coefficient has a 0 in front, which cancels it out from
the rest of the problem, so we are calculating the solution modulo the constant b0.

5 Boas, problem p.567, 12.2-2

Show that Pl(−1) = (−1)l.
Using eq. (2.6) on p. 565 of Boas, the general solution to the Legendre differential equation is:

y(x) = a0

[

1− l(l + 1)

2!
x2 +

l(l + 1)(l − 2)(l + 3)

4!
x4 − . . .

]

+a1

[

x− (l − 1)(l + 2)

3!
x3 +

(l − 1)(l + 2)(l − 3)(l + 4)

5!
x5 − . . .

]

. (37)

If ℓ is even, then the Legendre polynomial is defined to be the polynomial proportional to a0 (up to an
overall normalization determined by convention). If ℓ is odd, then the Legendre polynomial is defined
to be the polynomial proportional to a1 (up to an overall normalization determined by convention). It
immediately follows that if ℓ is even, then Pℓ(x) is an even function of x, whereas if ℓ is odd, then Pl(x)
is an odd function of x. This means that

Pℓ(−x) = (−1)lPℓ(x) . (38)

The normalization convention for the Legendre polynomials defines Pl(1) = 1. Hence, inserting x = 1 into
(38) yields

Pl(−1) = (−1)l (39)
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Note that eq. (38) is also an immediate consequence of the Rodrigues’ formula,

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l , (40)

and provides another way of deriving (39).

6 Boas, problem p.567, 12.2-4

We will solve Legendre equation

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0 (41)

using the method of reduction of order: given the known solution Pl(x), we look for an independent
solution of the form y(x) = Pl(x)v(x) and then solve for v(x) in (41):

(1− x2)(v′′Pl + 2v′P ′

l + vP ′′

l )− 2x(v′Pl + vP ′

l ) + l(l + 1)Pl = 0 (42)

(1− x2)(v′′Pl(x) + 2v′P ′

l (x))− 2xPl(x)v
′ = 0 =⇒ (1− x2)Pl(x)v

′′ + 2((1 − x2)P ′

l (x)− xPl(x))v
′ = 0

=⇒ v′′

v′
= 2

xPl(x)− (1− x2)P ′

l

(1− x2)Pl(x)
= 2

x

1− x2
− 2

P ′

l

Pl
=

1

1− x
− 1

1 + x
− 2

P ′

l

Pl
(43)

which is solved by

ln v′ = − ln (1− x)− ln (1 + x)− 2 lnPl = ln
1

(1− x)(1 + x)P 2
l

, that is, (44)

v(x) =

∫

dx

(1− x)(1 + x)P 2
l

(45)

The second solution of the Legendre equation is then

Ql(x) = Pl(x)v(x) (46)

We evaluate this expression for the two cases l = 0, 1:

• l = 0: P0(x) = 1, so the other solution is

Q0(x) =

∫

dx
1

(1− x)(1 + x)
= 1

2

∫

dx

(

1

1− x
+

1

1 + x

)

= 1
2 ln

1 + x

1− x
(47)

• l = 1: P1(x) = x, so the other solution is

Q1(x) = x

∫

dx
1

(1− x)(1 + x)x2
= x

∫

dx

(

1
2

1

1− x
+ 1

2

1

1 + x
+

1

x2

)

= (48)

=
x

2
ln

1 + x

1− x
− 1 (49)
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7 Boas, problem p.568, 12.3-1

We will use the hint in problem 12.3-6: if we write

d

dx
uv = D(uv) = (Du +Dv)uv (50)

where Du, Dv are operators that act only separately on u, v, we have

dn

dxn
uv = (Du +Dv)

nuv =

n
∑

k=0

(

n
k

)

Dk
uDvn− kuv =

n
∑

k=0

(

n
k

)

Dk
uuD

n−k
v v =

n
∑

k=0

(

n
k

)

dk

dxk
u
dn−k

dxn−k
v

(51)
where we have used the expansion of the n-th power of a binomial formed by the two operators Du,Dv

(which commute with each other).

(

n
k

)

= n(n−1)...(n−k+1)
k! is the binomial coefficient.

8 Boas, problem p.569, 12.4-2

By Rodrigues’ formula

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l (52)

we have, after applying Leibniz’ rule (51)

Pl(x) =
1

2ll!

l
∑

k=0

(

l
k

)

dk

dxk
(x+ 1)l

dl−k

dxl−k
(x− 1)l (53)

Now, every time we differentiate (x−1)l we lower the exponent by one; in particular, when we differentiate
l times, we are left with a constant; when we calculate Pl(1) any factor of (x − 1) will become zero, so
that the only non zero contribution comes from the 0-th term in the sum: this gives

Pl(1) =
2l

l!
· 2l · l! = 1 (54)

where the term 2l comes from (x+1)l for x = 1 and dl

dxl (x−1)l = l dl−1

dxl−1
(x−1)l−1 = l(l−1) dl−2

dxl−2
(x−1)l−2 =

. . . = l!.

9 Boas, problem p.569, 12.4-4

We want to prove that
∫ 1

−1
xmPl(x)dx = 0, for m < l (55)

Substituting Rodrigues’ formula (52) we have

∫ 1

−1
xmPl(x)dx =

∫ 1

−1

xm

2ll!

dl

dxl
(x2 − 1)ldx ∝ (56)

∝ xm
dl−1

dxl−1
(x2 − 1)l

∣

∣

∣

∣

1

−1

−
∫ 1

−1
mxm−1 dl−1

dxl−1
(x2 − 1)ldx = (57)

= 0− mxm−1 dl−2

dxl−2
(x2 − 1)l

∣

∣

∣

∣

1

−1

+

∫ 1

−1
m(m− 1)xm−2 dl−2

dxl−2
(x2 − 1)ldx = . . . (58)
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in the first passage we have neglected the constant 1
2ll!

and integrated by parts; in the second passage, we
see that the first term is null because after we have differentiated (l − 1) times we will still have at least
one factor of (x− 1) and one of (x+ 1) (as you can quickly check by using Leibniz’ rule), which are zero
when evaluated at ±1. The same happens for all the other terms evaluated at ±1, so that, after we have
integrated by parts m times (assuming m < l), we are left with

m!

∫ 1

−1

dl−m

dxl−m
(x2 − 1)ldx = m!

dl−m−1

dxl−m−1
(x2 − 1)l

∣

∣

∣

∣

1

−1

= 0 (59)

for the same argument we used above. Note that this does not hold for m > l, because in that case
between (58) and (59) we reach a step in which l − k = 0 and we have

∫

xm−k(x2 − 1)l 6= 0

10 Boas, problem p.574, 12.5-10

Express the following polynomial as a linear combination of the Legendre polynomials:

f(x) = x4 (60)

The first five Legendre polynomials are:

P0 = 1 , P1 = x , P2 =
1

2
(3x2 − 1) , P3 =

1

2
(5x3 − 3x) , P4 =

1

8
(35x4 − 30x2 + 3) (61)

We are going to expand x4 as a linear combination of the Legendre polynomials, with unknown coefficients;
these will be found imposing that the factors for the different powers of x coincide. Because we have x4,
f(x) =

∑4
0 cnPn must contain P4; in particular, c4 = 8

35 , so that the coefficient of x4 is 1. Then we must
put to zero the coefficient of x3: x3 only appears in P3 so we can put c3 = 0. Right now, our function is
written as

f(x) =

2
∑

0

cnPn +
8

35
P4(x) (62)

Now we fix to zero the coefficient of x2: it appears in P4 and P2 and it is

3

2
c2 +

−30

35
= 0 =⇒ c2 =

4

7

A term linear in x appears only in P1, so we can set c1 = 0. Finally, the constant term is given by

c0 −
1

2
c2 +

3

8
c4 = 0 =⇒ c0 =

1

5
(63)

Then we have found

x4 =
1

5
P0(x) +

4

7
P2(x) +

8

35
P4(x) (64)
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11 Boas, problem p.577, 12.6-6

We want to show that Pl and P ′

l are orthogonal on [-1,1] in two ways:

• we can use the fact that the Legendre polynomials are either even or odd functions of x (depending
on whether ℓ is even or odd, respectively), as shown in problem 5. Then, if Pl is odd, its derivative
P ′

l is even, and vice versa. In general, if f(x) is an even function of x and g(x) is an odd function
of x, then

∫ a

−a
f(x)g(x) = 0 . (65)

This is easily proven by changing the integration variable to y = −x, in which case

∫ a

−a
f(x)g(x) = −

∫

−a

+a
f(−y)g(−y)dy =

∫ a

−a
f(−y)g(−y)dy = −

∫ a

−a
f(y)g(y)dy , (66)

As the integral is equal to minus itself, it must be equal to zero. Hence, we conclude that

∫ 1

−1
Pl(x)P

′

l (x) = 0 . (67)

• we can also use the result of problem 9: remember that Pl is a polynomial of order l and P ′

l is a
polynomial of order (l − 1). Then

∫ 1

−1
Pl(x)P

′

l (x) (68)

is given by a sum of terms which have the form cn
∫ 1
−1 x

mPl(x)dx, where m = 0, 1, . . . , l− 1, that is,
m < l, so they are all zero and the two functions are orthogonal.

12 Boas, problem p.615, 12.23-2

The generating functional of the Legendre polynomials is

Φ(x, h) =
1√

1− 2xh+ h2
=

∞
∑

l=0

hlPl(x) ; (69)

for x = 0 this gives

Φ(0, h) =

∞
∑

l=0

hlPl(0) =
1√

1 + h2
=
∑

clh
l , (70)

But the function Φ(0, h) looks exactly like the power of a binomial:

Φ(0, h) = (1 + h2)−1/2 =
∞
∑

n=0

(

−1/2
n

)

h2n (71)

Here we can read the Legendre polynomials in zero as

P2n+1(0) = 0 ; (72)

P2n(0) =

(

−1/2
n

)

=
−1

2(−
1
2 − 1) . . . (−1

2 − n+ 1)

(n)!
=

(−1n)(2n − 1)!!

2nn!
. (73)
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