Physics 116C Solutions to Homework Set #1 Fall 2011

1 Boas, problem p.564, 12.1-1

Solve the following differential equations by series and by another elementary method and check that the
results agree:

vy =zy+y (1)

e by series: substituting the power series y(z) = Y 2 a,z™ in (II) we have

o0 (o] o0
2y —zy—y=0 < x (Z nanmn_1> - <Z anm"> - Z apz” =0 (2)
n=0 n=0

n=1
[ee] [ee] [ee]
calling n = m + 1 and substituting, Z (m + Dapz™ — Z apz™t — Z apz” =0 (3)
m=0 n=0 n=0

Z (M + Damy1 — am] 2™ — ag — Z a1z =0 (4)

The only term with a 0-th power of x is ag, which tells us ap = 0. Asking for the coefficient of the
(m + 1)-th power of z in (@) to be zero we get

1 1 1 1
Umtl = —lm = ————0p—1 = ... = —a] (5)
m mm — 1 m!
So the solution for () is
(0. ] o 1
y(x) = Z a1 2™ = ay Z %xmﬂ (6)
m=0 m=0

Factoring out one power of x, one recognizes the power series of the exponential e* and writes the
solution as
y(z) = ajxe” (7)

e by separation of variables:

d 1
il :(1+;)dx —= Iny=z+Inhz+Inc = y(z)=cze’ (8)

which is the same as in ().

2 Boas, problem p.564, 12.1-10

Solve the following differential equations by series and by another elementary method and check that the
results agree:
y' — 4y + (42® = 2)y =0 9)



e by series: substituting the power series y(z) = > 7 ja,z™ in (@) we have

[e.9] o0 [e.9]
Z n(n — 1ayz""2 — 4z Z nanz" !+ (4z% — 2) Z apz” =0 (10)
n=2 n=1 n=0

o0 o0 o0 o0
2a9 + 6asx + Z(n +2)(n+ 1)ayi02" — dagx — 42 nan,x” + 4 Z anz™t? — 2a9 — 2012 — 2 Z anx” =0

n=2 n=2 n=0 n=2

[ee]
2a9 + 6asr — 4a1x — 2a0 — 2017 + Z {(n +2)(n+ 1)aps+2 — 2(1 + 2n)a, + 4an_2} 2" =0

n=2

the first terms give
az = aop, az = a (11)

while the recursion formula is
(n+2)(n+ 1)apye — 2(1 + 2n)ay, +4ap—2 =0, for n > 2. (12)

Consider first the case of n = 2p even. Using (III), we can use the recursion formula to obtain ay4.
By repeated use of the recursion formula, we can obtain ag, ag, .... After computing a few values,
it appears that the general form is

Q2p = R (13)

Note that ([I3)) is also valid for p = 0 and p = 1. To test the validity of (I3]), we insert this equation

into (I2):
20+ 1)(2p+1)  2(1+4p) 4 2
(p+1)! P! (p—-1!
Simple algebra verifies the validity of the equation above. Next, consider the case of n = 2p+ 1 odd.
Using ([I]), we can use the recursion formula to obtain a5. By repeated use of the recursion formula,

0. (14)

we can obtain a7, ag, .... After computing a few values, it appears that the general form is
ai
A2p+1 = o (15)

Note that ([I3)) is also valid for p = 0 and p = 1. To test the validity of (IZ]), we insert this equation

into (I2):

(p+1)! p! (p—1)!

Simple algebra verifies the validity of the equation above. Hence, we conclude that

o o o0
_ noo__ 2 2p+1
y(x) = E apz” = E agpr + E agpr12P
n=0 p=0 p=0

0 o0

$2p x2p+1
= Qo E —'+CL1 E
=0

p=0

2p+ D@ +3) 26+4p) 4 2 (16)

p!

oo 21p oo 21p
) R gt
p=0 p=0
= (ap+ alx)e“ﬁ"’2 . (17)



e reduction of the order: one checks that the equation is solved by yo(z) = exz; then we look for
another solution of the form y(x) = u(x)yo(x):

y =u'yo+uyy, Yy =u"yo+2u'yh +uyp (18)
y' —day' + (42° - 2)y = ulyy — dayy + (42 — 2)yo] + 2u'yy + u'yo — dwu'yo =0 (19)
emz[u//—élatu/—l—él:nu/ =0 = u"=0 = u=A+Bx (20)

y=(A+ B:v)em2 (21)

3 Boas, problem p.586, 12.11-5
Solve the following differential equations by the method of Frobenius:
2y +y 4+ 2y =0 (22)

Substituting the generalized power series y(z) = > " ja,z""* in ([22) we have

[ee] [ee] [e.e]
2z Z(n +8)(n+s—1a,z" 7% + Z(n + 8)apz" T 42 Z apz" " =0 (23)
n=0 n=0 n=0
the n = 0 term gives [2s(s — 1)ag + saglz"™* ' =0 = 25> —s=0 = s=0,3 (24)
[ee]
while the other terms are Z [2(71 +3s)(n+s—1)a, + (n+ s)a, + Zan_l] "l = (25)
n=1
(26)
For s = 0 we have
o0
[n(2n — Dap 4 2ap_1 2" 1 =0 (27)
n=1
-2 (—=2)"
= - =, = 2
i n(2n — 1)an ! n!(2n — 1)!!a0 (28)
Where the double factorial is m!! = m(m — 2)(m —4).... Also, we note that (2n)! = 2n(2n — 1)(2n —
2)(2n —3)...=2"(2n — 1)!Inl. Inserting these coefficients back in the series gives
[ee] [ee] [ee]
(—2x)" (—4x)" (=D"(2vz)*" 1/2
_ n __ — — —
y(x) = Zanx = Z i3 = 1)!!ao = Z @n)! ap = aop Z @n)! =agcos(2z/7).  (29)
n=0 n=0 n=0 n=0
For s = % we have instead
3 n(2n + )a, + 2a,-1 =0 — ay, = _72%_1 =...= iao (30)
— n(2n+1) n!(2n + N
—1)*(2 2n+1
= y(x) = aOZ " 2ve) — agsin(22'/?)  (31)

(2n+1)!
The general solution is then given by the linear combination of (29]), (BI)):

y=A cos(2;171/2) + B Sin(2331/2) (32)



4 Boas, problem p.587, 12.11-14

Solve 4y’ = —y by the Frobenius method.
We take the generalized power series y(z) =Y ", a,z"** so that

o
Y +y= Z {(n +5)(n4s5—Daz" ™72 + anaj"JrS] =0 (33)

n=0

Taking the n = 0 term gives s(s — 1)ag = 0, that is, s = 0,1. For s = 0 we have

_ (="
— o = S5 a
n(n - 1)an +ap—o = 0 = ap = dn=2 = o (—1()2£L+1)! ' (34)
n(n — 1) agn = Wa()

These two series are those defining the sine and the cosine, so that we have found the well known result
Y = apcosx + ap sinx.

If we now take s = 1 we have

bn—2

1)nby, + by—o = b,y =——""-—
(n+1)nb, + by =0 = nln+1) (35)
The solution for by # 0 is then
_ n+l . (_1)n 2n
y(x) = ,?:0 bz = by sinx + by 321 @n)] x (36)

In this expression we are missing the z° term that would give the expansion of the cosine, and one easily
check that this is not a solution of the differential equation. That happens because in ([B3)) for s = 1 the
first term coefficient reads (n 4 1)(n 4 0)b,,; then, by coefficient has a 0 in front, which cancels it out from
the rest of the problem, so we are calculating the solution modulo the constant by.

5 Boas, problem p.567, 12.2-2

Show that P(—1) = (—1)%.
Using eq. (2.6) on p. 565 of Boas, the general solution to the Legendre differential equation is:

o) = g [1—l(l;1)$2+l(Hl)(lLZ)(H?’)f—“}
a {x - 1?))(!z+2)x3+ (1 1)(z+2;(!z “3(+4) ; _} | 3

If 7 is even, then the Legendre polynomial is defined to be the polynomial proportional to ag (up to an
overall normalization determined by convention). If ¢ is odd, then the Legendre polynomial is defined
to be the polynomial proportional to a; (up to an overall normalization determined by convention). It
immediately follows that if ¢ is even, then Py(z) is an even function of x, whereas if ¢ is odd, then Pj(x)
is an odd function of x. This means that

Py(—z) = (1) Py(a). (38)

The normalization convention for the Legendre polynomials defines F;(1) = 1. Hence, inserting = = 1 into

B8) yields
P(=1) = (1) (39)



Note that eq. (B8] is also an immediate consequence of the Rodrigues’ formula,

1 d

Pi(r) = 21—“@(33 — 1),

and provides another way of deriving (B9]).

6 Boas, problem p.567, 12.2-4

We will solve Legendre equation

(1 -2y —2zy +1(1+ 1)y =0

(41)

using the method of reduction of order: given the known solution Pj(z), we look for an independent

solution of the form y(x) = P;(z)v(z) and then solve for v(z) in (4)):

(1 -2 (W"P +20'P +vP/) = 22(v'P,+vP) +1(l+1)P, =0

(42)

(1 —2?)(v"Pi(z) + 20'P/(z)) — 2zP(z)v' =0 = (1 — 2} Py(x)v” + 2((1 — 2?)P/(z) — zPy(z))v' =0

o aP(z) - (1—2?)P  _ = B _25[

v (1—a22)P(x)  ~1—a2 P 1-2 14z °P

which is solved by

1
(1—z)1+z)P?

Inv' = —In(l-2z)—In(l1+2)—2InP =In that is,

dx
U(ﬂf) - /(1_$)(1_|_$)P12

The second solution of the Legendre equation is then

Qi(z) = Pi(z)o(z)

We evaluate this expression for the two cases [ = 0, 1:

e | =0: Py(z) =1, so the other solution is

B 1 1 1 R
Qo(x)_/dx(l—x)(l—i-a:) _2/dx<1—x+1+a:> _2ln1—a:

_ : _ IR W S
Qilz) = m/dm(l—x)(l—i-a:)x?_x/d$<21—a:+21+a:+x2>

(43)

(46)

(47)



7 Boas, problem p.568, 12.3-1

We will use the hint in problem 12.3-6: if we write
d
= D(uv) = (Dy + Dy)uv (50)
x
where D,,, D, are operators that act only separately on u, v, we have
n n

d n o n k o - n k n—k . __ - n dk dn_k
W = (Dy + Dy) uv-Z(k)DuDvn—kuv—Z<k>DuuDv v = k) gk U=k
k=0 k=0 k=0
(51)
where we have used the expansion of the n-th power of a binomial formed by the two operators D,,, D,

_ n(n—1)...(n—k+1)
- k!

(which commute with each other). ( Z is the binomial coefficient.

8 Boas, problem p.569, 12.4-2

By Rodrigues’ formula
-1 (52)

! k I—k
A =g 3 ( 4 ) gt + V' e - 1 (53)

Now, every time we differentiate (x — 1)l we lower the exponent by one; in particular, when we differentiate
[ times, we are left with a constant; when we calculate P;(1) any factor of (z — 1) will become zero, so
that the only non zero contribution comes from the 0-th term in the sum: this gives
2l
Pl(l):ﬂ-?-l!:l (54)

where the term 2! comes from (z+1)! for z = 1 and (3: Nl = lddll - (x—1)1 = l(l—l)fg;—ié(:n—l)l_2 =
L=

9 Boas, problem p.569, 12.4-4

We want to prove that

1
/ 2" P(x)dx =0, form <l (55)
-1
Substituting Rodrigues’ formula (52)) we have
1 dl
/ll'mpl(:]j)dﬂj‘ = / N1 dal (2% — 1) da (56)
dl—l
o xmd$l_1 22— 1)t / ma"™ d:nl 1(x —ldx (57)
= 00— ma™! " (z* — 1)l +/ m(m —1)z™ 2 - (2% = Dldz = (58)
dxl=2 A dal—2




in the first passage we have neglected the constant ﬁ and integrated by parts; in the second passage, we
see that the first term is null because after we have differentiated (I — 1) times we will still have at least
one factor of (x — 1) and one of (x 4+ 1) (as you can quickly check by using Leibniz’ rule), which are zero
when evaluated at £=1. The same happens for all the other terms evaluated at £1, so that, after we have
integrated by parts m times (assuming m < [), we are left with

1 dl—m dl—m—l
s (22 — 1) dz = m!
—1

2D =0 (59)
-1

m! W(fﬂ

for the same argument we used above. Note that this does not hold for m > [, because in that case
between (58) and (59) we reach a step in which [ — k = 0 and we have [ 2™ %(z% — 1)l #0

10 Boas, problem p.574, 12.5-10

Express the following polynomial as a linear combination of the Legendre polynomials:

flx)=a" (60)

The first five Legendre polynomials are:
Lo o L. 3 1 4 2
Py=1, P ==z, P2:§(3:17 -1, P3:§(5:17 —3x), P4:§(35x —30z° +3) (61)

We are going to expand z* as a linear combination of the Legendre polynomials, with unknown coefficients;
4

these will be found imposing that the factors for the different powers of x coincide. Because we have z*,
flx) = Zé cp Py, must contain Py; in particular, ¢4 = %, so that the coefficient of 2% is 1. Then we must
put to zero the coefficient of z3: 3 only appears in P3 so we can put ¢3 = 0. Right now, our function is
written as

2
f#) = 3 enPo+ - Pi(a) (62)
0

Now we fix to zero the coefficient of 2?: it appears in P; and P5 and it is

3,0 4
22T 35 T 2=y

A term linear in z appears only in Py, so we can set ¢; = 0. Finally, the constant term is given by

1 3 1
co — 562 + §C4 =0 = ¢y = g (63)
Then we have found ) A 3
4
= _P, —P. —P 4
it = SPo(e) + 2 Pa(e) + 5 Pal) (64)



11 Boas, problem p.577, 12.6-6

We want to show that P, and P/ are orthogonal on [-1,1] in two ways:

e we can use the fact that the Legendre polynomials are either even or odd functions of  (depending

on whether /¢ is even or odd, respectively), as shown in problem [l Then, if P, is odd, its derivative
P/ is even, and vice versa. In general, if f(z) is an even function of z and g(z) is an odd function
of x, then

f(x)g(x) =0. (65)
This is easily proven by changing the integration variable to y = —x, in which case
f@)g(x)=— [ f(=y)g(=y)dy = | f(=y)g(=y)dy=— [ Fly)gly)dy,  (66)
—a +a —a —a

As the integral is equal to minus itself, it must be equal to zero. Hence, we conclude that

1
| m@ri@ =o. (67)

—1

we can also use the result of problem [0 remember that P, is a polynomial of order | and P/ is a
polynomial of order (I —1). Then

1
/_ P(2) Pl (x) (68)

1

is given by a sum of terms which have the form ¢, f_ll 2™ Py(x)dx, where m = 0,1,...,1—1, that is,
m < I, so they are all zero and the two functions are orthogonal.

12 Boas, problem p.615, 12.23-2

The generating functional of the Legendre polynomials is

d(x,h) = ————
(z,h) V1 2:Eh+h IZ;

for x = 0 this gives

Z 1) m => ak, (70)

But the function ®(0,h) looks exactly like the power of a binomial:

B0, h) = (1 + h2)~V/? = i (‘1/2> p2n (71)

n
n=0

Here we can read the Legendre polynomials in zero as

Prny1(0) = 0; (72)

1.1 _1_ 4 —1™)(2n — D!
N
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