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MATH 342B ASSIGNMENT &

PROBLEMS, SECTION 12.1

Solve the following differential equations by series and also by an ele-
mentary method and verify that your solutions agree. Check your results
by computer.

8
zy =zy+y.

Separation of variables:
From the given equation we get

1d 1 1 1
(1) oy =oy+y = o =yle+1) = ~ 2 ="" :>/*dy=/w+ de.
ydz z Yy T

So, the left hand side evaluates to

(2) In Y+ Cl
for some constant C; € R and the right hand side is simplified as follows:
1
(3) /:c—l— dm=f(l+a:"l)dx=$+ln:c+cg
"

for some Cy € R. Let C' = C; — C;. Then we have from (1), (2), and (3) that
(4) Ihy=z+Inz+C,
SO
(5) y=exp(z+1nz+C)

= exp (z) exp (Inz) exp (C)

::yowem’

where 3o = exp (C). So, y = yoeze®. Wolfram Alpha confirms this.

Series method:
Assume a solution

(6) Y= Z Q™

n=0
for a, € R. Then
(7) g = Z o™, g'= E ann(n — 1)z 2
n=0 n=0

Plugging (6) and (7) into the differential equation, we get
(8) Yy =zy+y = T Zann:c”‘l = (z+1) Zan:c”.

n=0 n=0
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So,

oC o0 o0
(9) Z Gnnz” = Z apz" + Z R i
n=0 n=0 n=0
(o] oo
= Z angr(n + 1)z = ap + (Qny1 + an)z™
n=>0 n=0
So, ay = 0 and
1
(10) npi(R+ 1) =a41+ 06, = Qpp1 = — .
So, ag = a1, as = 2a» = a1, a4 = 3a3 = }aq. In general, for n > 1, we have
1
11 = .
( ) a’ﬂ (n . 1)!a1

Therefore, our solution becomes

(12) y:alz(n_ll)!zn.

This is equivalent to y = ygze® if yp = ay:

= 1 n __ S 1 n—1 - 1 n __ i
(13) al;mm Aalm;(n——lﬁm —almgam = aqyre .
Thus, the solution to the differential equation is
= 1
(14) y=a Z mx” = ayze”
n=1
for a; € R.
2.
y = 3z%y.

Separation of variables:
From the given equation we get

(15) y’:3$2y=:>ij—z=3m2—_—>f;udy:3f$2dg:=:>1ny=x3+c

where C € R is a constant. Let yo = exp (C'). Then we get
(16) Y = exp (m3 +C) =exp (z°) exp (C) = yoe® .
B0, Y = yoezs. Wolfram Alpha agrees.

Series method:
Assume a solution as in (6), so that (7) follows. Then we plug (6) and (7) into the
differential equation to get

o o0 oC
(17) E a,nz" ! = 3z2 E a,z" = 3 E ]
n=0 n=0 n=0
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So, we have

(18) a1 +202+ ) tnia(n+3)a" 2 =3 g,z
n=>0 n=0
So, a; = ay = 0, ag is arbitrary, and
3
(19) tnt3(n+3) = 3a, = iz = - 50n-
SO, g = %CLO =lg; Qg = g‘ag = %G@ = %G[}, Qg = gaﬁ = %QG = é(lo. In general,
1
(20) a’3n = _IO‘O'
n!
Thus, our solution is
(21) y=a 1+x3+lx6+1x9+--- =a iixgn
g 2 9 v e

This is exactly the Taylor expansion of ape® . So, if Yo = ag, we have the general solution
of the differential equation:

(ee]
1
(22) Yy =agp Z ﬁfsn = age™
n=0

for ag € R.

4,
yu e '“4’9'4

Linear homogeneous second order DE:
Since the differential equation is linear, assume a solution y = €™, Then 3’ = ne™ and
y" = n2e™. So, we get

(23) y' =4y = n?e™ = —4e™ = n’= 4 = n=+2.
Thus,

(24) y = Aei® 4 Bei

for some A, B € R. So, using Euler’s formula, (24) becomes

(25) y = Alcos (2z) + isin (2z)] + Blcos (—2z) + isin (—2z)]

= Alcos (2z) + isin (2z)] + Blcos (2z) — isin (2z)]

= (A + B) cos (2z) + i(A — B) sin (2z).
Let Cp = A+ B and let C; = (A — B)i. Then y = Cycos(2z) 4+ C; sin (2z). Wolfram
Alpha confirms this. -

Series method: :
Assume a solution as in (6), so that (7) follows. Then we plug (6) and (7) into the
differential equation to get

(26) Z apn(n —1)z" 2 = —4 Zan:c”.
n=0 n=>0
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So, we have

[s.0}

(27) Zan+2 (n+2)(n+ 1)z :w42an

n=0

Thus, ag and a; are arbitrary and

4
28 pio(n+2)(n+1) = —4da, = Qpy2 = — Qn
S0, ag 1= "—f%ag, az = 32a1 fi = —'Z%Clg = 4;621%, as = —%ag — 5_;_63,2c11. Thus, in
general we have
—-1)"4"
(29) Qon = %ﬂo, n = 07
and
—1)"4"
30 ntl = —————ayq, > 0.
( ) Aon+1 (271 n l)fal i)

So, the solution becomes
‘l’l

4n 2 = 2n+l
2n 12 2n+1

n

(31) =

=0
(‘Dn 2n a1 < n 2n+1
EnyT 22+ g Z 2n+1

Il

MEB HME%

Qg

Il
o

s n=

= ag cos (2z) + a_21 sin (2z).

If we let aqp = Cp and % = Cj then (31) is identical to the original answer of y =
Cp cos (2z) + Cy sin (2z). Thus, the general solution of the differential equation is

(32) y=Co)_ (_W; (22" +C1 Y %(mzﬂﬂ = Cycos (2z) + Cy sin (2z).

(m + 1)y" — 2zy’ + 2y = 0.

Reduction of order:
Given the differential equation (z* + 1)y” — 2zy’ + 2y = 0, assume a solution y; = 2™ for
some m € R. Then y, = ma™ ! and y} = m(m — 1)2™ 2, so we get

(33)  (2®+ D)y} =2z + 29 =0 = m(m—1)(z™ +2™%) - 2ma™ +22™ =0
— (mz—-3m+2)$m+ (m2—m)mm’2:0 — m?—-3m+2=mP—m=0
= m=1.

So y; = x is a solution of the differential equation. Suppose ¥ = 11 (z)v(z) = zv(x)

is another solution to the differential equation for some function v : R — R. Then
4



Yo = v+ v’ and yi = 2v' 4+ zv”. Plugging these into the differential equation, we get
(34) (2% +1)vh — 2zyh + 2y, = 0
= (z?+1)(2v' + ") - 2:5('0 +zv')+22v =0
= 22°0" + 20" + 0" + 20" — 2zv — 2220 + 220 =0
= 2" + 2% + 20" =0
= (2®+ )" +20' =0
do’ 2

E:cm_+$3+:cv

1
:>/—dv’:—2/ ! dx:—zf 22 Ve
v z3 +x r x?+1

=> Inv'=-2In(z) +In(z*+ 1)+ C [C € R]

241
———>v'=ec<¥> =ec(1+i2>
T T

=>vec($—l>.
T
So,

(35) ygzxvﬁeGaz(m——l—) =e%(z® - 1).

T

/

Let B = e® and let A € R be an arbitrary constant. Since y; = B(z? — 1) is a solution
and 3, = z is a solution (hence y; = Bz is a solution), y = y; + y» is the general solution.
So, y = A(z® — 1) + Bz is the solution to the differential equation. Wolfram Alpha
confirms this.

Series method:
Assume a solution as in (6), so that (7) follows. Then we plug (6) and (7) into the
differential equation to get

(36) (z*+1) Zan nin— 1)z —QxZann:r” 1+22anx = 0.

Thus,

(37) Y aun(n—1)a" 2+ 3 (n(n— 1) — 2n.+ 2)a,z" = 0.
n=0 n=0
So,
(38) Y (n(n—1) = 2n+2)anz"” = = > an2(n+2)(n+ )"
n=0 n=0

and ap and a; are arbitrary constants. Therefore,

(39) (n(n—1) — 2n+ 2)ap, = —ap42(n +2)(n + 1),
S0

e TY = 2 _
(40) an+2:_n(n 1) 2n+2an: né —3n+ 2

(n+2)(n+1) Tmitant2
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Then a; = —ay, a3 = —mal =0, a4 = —mag = 0. Thus, for n > 2 we
have a, = 0. So, the solution is
2
(41) §j = anT" = ag+ a1z + —apz? = ag(l — :1:2) + a;z.
n=0

If we set A = —agy and B = a; then we get the same solution we found earlier, namely
(42) y = A(z* — 1) + Bz.

PROBLEMS, SECTION 12.2

2.

Show that P(—1) = (=1)".
The Legendre differential equation is

d*y dy
o, 2 _ — ey
(43) (1-=z )d:.:? 20—+ I(I+1)y=0.
A general solution of (43) is
(l+1 {4+ 1)l —2)(!
(44) y($)=ag[1— (; )3:2+ i 1 )(+3)$4—---
-1 - - 5
o D (0009040, ]
3! 4
Put —z in place of z in the above equation. Then we get
I(l+1 l (1 —2)({
(45)  w(-=) =ao{1—h——( ; Jp2 4 WU ) 5 ) +3)m4—---}
[—1)({+2 - D{I+2)( -
_al[x_ ( ;(1 +2) s, (-DU+ zlgl 3)(i+4)$5_._,]_

The Legendre polynomials P(z) are just special cases of (44) where [ is a positive integer
and we have the restriction P(1) = 1. For odd ! we choose ay = 0 and for even [ we
choose a; = 0. Thus, for odd [ we have

(46) Pi(m):al{x_(zf1)35z+2)$3+(z—1)(z+231(!z_3)(z+4)$5__'_},
SO
(47) P(=2)=a [_x B %@(_@3 G +2i(!z —3)(t +4)(_m)5 o ]
I—1)(1+2) 5 (=D +2)(I-3)(1+4) ,
__allx_( )3(| )3 4 =1 zl(l J+4) _]
= —A(z) = (-1)'Ai(=).
Similarly, for even [ we have
(45) B(m):aobu%xu“”1)(5;2)(”3)334__,_],
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WAL DO+ }

21 4!
= Pi(z) = (-1)'P(z).

Thus, for any [ € N, we have P(—z) = (~1)'P(z). Since we construct P, such that
P(1) = 1, it follows that P(—1) = (—1)', which was to be shown. O

=a0{1_ l(z+1)xg+ l(l+1)(l—2)(!+3)$4_ }



| Graphs of Legendre Polynomials

P

7

1 08 06 04 02 9]

L i -1
- > plot(LegendreP(2,x) ,x=-1..1);

[ > plot(LegendreP(0,x) ,x=-1..1) ;
2.‘
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| > plot(LegendreP(1l,x) ,x=-1..1);
1_
0.5- ’
02 04 06 08



| 0.8-

\ 0.6

04+
\

b
\ /0.2

L 0.4




MATH 342B ASSIGNMENT £

PROBLEMS, SECTION 12.5

4,
Show from (5.1) that

B(D 8<I>

Artemm Mavrin

Substitute the series (5.2) for @, and so prove the recursion relation

(5.8D).

In the textbook, equation (5.1) reads,

(1) Bz, h) = (1 —2ch+ 13" |hl <1,
and @ is the generating function for Legendre polynomials. We take partial derivatives
of @:
o 1
2) 5 = (1= 2eh+h?) 32 (_ap)
=n(1-2zh+ k)" and
0P 1
(3) 5 = —5(1 = 2ah+h%) 2(—2z + 2n)
= (z = h)(1 - 2zh+ k%) 2
Multiplying (2) by z — h and (3) by h, we get
0 _
(4) (z—h) ai = h(z — h)(1 — 2zh + h*) 3/2, and
o -
(5) hg—h = h(z — h)(1 - 2zh + B%) 2,
so that
oo 0P

as desired. Furthermore, equation (5.2) in the textbook reads

(7) O(z,h) =Y h'P(z)

Substituting (7) into (6), we get

®) (=D S W R() = h—mzh*a
=0



The left hand side of (8) becomes

) (@ =D)L S RB(@) = (2~ h) | 2 Pyfz) + 5= S KA()
[=0 L =1
0 8 &
ik £;hlﬂ($)

=1 =1
=Y haP(z) - WP_i(z)
=1 =1

(10) Z hH_l.P;(I) _ Z hl+1}3{($) 470
1=1 1=1
= h*'P/(z) + h' Py()
I=1
= h"'P(z)
=0
= Z hlptfq(m)
=1
Next, the right hand side of (8) becomes
0 <y =
(11) h%Zth(m) =Y W' P(x).
1=0 1=0
Since (9) and (11) are equal, we have
(12) > H{zP/(z) - B_y(z)] = ) Ih'P(z).
I=1 1=0

Thus, for each | € N, the summands must be equal. Therefore, we have
(13) W [2Fi(e) —~ Fly(2)] = IK'A(z),
Dividing both sides of (13) by k!, we get

(14) zP/(z) — P_,(z) = IA(z),

the desired recursion relation.




B.

Differentiate the recursion relation (5.8a) and use the recursion relation
(5.8b) with [ replaced by [ — 1 to prove the recursion relation (5.8¢).

In the textbook, equation (5.8a) is the recursion relation
(15) P(z) = (2L~ 1)2P1 () — (1 — 1) Pra(a).
Differentiating (15) with respect to z gives
(16) i) = (2 = )Pa(e) + (2 - DePl,(z) - (I - L)P_y()
= 21P_1(z) — Po1(z) + 2z Py (x) — xP_4 (z) — 1P _5(z) + P, (x).

Recursion relation (5.8b) in the textbook is (once again)

(17) zP(z) — P (z) = 1A (z).

If we make the substitution { — [ — 1, (17) becomes

(18) zP_1(z) = BLy(z) = (I = 1) P (2),
so that

(19) =Py (z) = (I - 1)A1(z) + P5(z)

= IP_1(z) — Fi-1(z) + PLy(2).
Using (19) in (16) gives
(20) IP/(z) = 21P_1(z) — Pa(z) + 202 Py (z) — 21Py (z) + 21 _,(x)
—P-1(z) + Pioa(z) — PLy(2) — 1P _,(x) + FL5(2)

=(2A-1+22 -2 -1+ 1)Py(z)+ (2 -1 -1+ 1)P ,(z)
= (20* = 1) B—1(z) + 1P_y(x).

Dividing by [ on both sides of (20) gives

(21) Pl(z) = (2 — )P (2) + PLy(2)

From (19) and (21) we get

(22)  Pl(z) — 2Py(3) = (2l = 1)Pia(z) + Ply(e) = IPros(2) + Py (2) — PlLy(a)

= (@2l -1-14+1)Fa(z)+ (1 -1)P_4(z)

= EP;_l(:c)
Thus, we get the desired recursion relation:
(23) P/(z) — zP_y(z) = IP1(z).




12.

Express the polynomial 7z* — 3z + 1 as as a linear combination of
Legendre polynomials. Hint: Start with the highest power of z and
work down in finding the correct combination.

The first five Legendre polynomials are

(24) Bylz) =1,

(25) P(z) =z,

(26) Py(z) = %(33: —1),

(27) Pi(z) = %(51 —3z), and
(28) Py(z) = 52(3533 —302° + 3).

Consider the field R[z] of polynomials in z with real coefficients and the ideal (z°) C R[z].
Then the quotient field R[z]/(z°) consists of all cosets p(z) + (z°) with p(z) € R[z]. This
can be thought of as a vector space over R/(z®) since R/(z%) is a subfield of R[z]/(z")
(and since any field is a vector space over one of its subfields). Specifically, if we abandon
the formalism of cosets, R[z]/(z") becomes a vector space (call it V) over R whose vectors
are polynomials in = with degree n < 4. The usual standard basis of V" is

(29) 8= {1,:8,1?2,:]33,334},

So that any polynomial p(z) = ag + ayz + @az? + a3z + auz® € V can be written as a
coordinate vector relative to B:

(30) b(z)lg =[x o1 0 o3 a4]T

Following from (24), (25), (26), (27), and (28), the coordinate vector representations of
the Legendre polynomials of degree 4 or less are:

(31) [Po(@)p=[1 0 0 0 0",

(32) [Pi(z)]z=[0 1 0 0 0}

(33) [Py(z)]y=[-1/2 0 3/2 0 0]

(34) [Py(z)];=1[0 —3/2 0 5/2 0]", and
(35) [Py(z)]z=[3/8 0 —15/4 0 35/8]

Let p(z) = 7z* — 3z + 1, the polynomial we are trying to express as a linear combination
of Legendre polynomials. The coordinate vector of p(z) is

T
(36) [p(z)]y=[1 =3 0 0 7]
Our problem now becomes finding coefficients ag, a1, as, as, as € R such that

(37) p(z) = apPo(z) + a1 Py (z) + aa Pa(z) + asPs(x) + asPy(z).
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Thus, we get the following matrix equation that is equivalent to (37):

(38)

o O O

0

0 —1/2
1 0
0 3/2
0 0
0 0

0  3/8]

32 0
0 —15/4
5/2 0
0 35/8

Qg
(25}
5
a3
a4

1
-3
0
0
7

L -

For the 5 x 5 sparse upper triangular matrix in (38), it is easy to find its inverse using
elementary row reduction:

1 0 —-1/2 0 3/8 1.0 000
01 0 -3/2 001000
(39) 00 32 0 -154 00100
0 0 0 5/2 000O0T1O0
00 0 0 35/8 00001
1 0 —1/2 0 3/810 0 0 0
01 0 —=3/2 001 0 0 0
~lo o | 0 —=5/2 0023 0 0
00 0 1 000 025 0
00 0 0 1 00 0 0 8/35
(1 0 -1/2 0010 0 0 —3/3
01 00001 0 3/5 0
~10 0 10000 23 0 47
0 0 01000 0 2/5 0
00 00100 0 0 835
1000010 1/3 0 7/35
0100001 035 0
— 10 010000 2/3 0 4/7
0001000 025 0
0000100 0 0 835
Thus, the solution to the system in (38) is
ag 0 1/3 0 7/35 1 12/5
a 1 035 of|-3 i3
(40) a|l=10 023 0o 47| o]=]| 4
as 0 025 0|0 0
ay 0 0 0 8/35 T 8/5_
Therefore, the Legendre polynomial expansion of p(z) = 72* — 3z + 1 is
12 8
(41) Tzt -3+ 1= EPO(Q:) — 3P (z) + 4Ps(z) + 5P4(3:).




