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Chapter 1 
 
 
1. Various geometric formulas are given in Appendix E. 
 
(a) Expressing the radius of the Earth as  
 

( )( )6 3 36.37 10 m 10 km m 6.37 10 km,R −= × = ×  
 
its circumference is 3 42 2 (6.37 10 km) 4.00 10  km.s Rπ π= = × = ×  
 
(b) The surface area of Earth is ( )22 3 8 24 4 6.37 10 km 5.10 10 km .A R= π = π × = ×  
 

(c) The volume of Earth is ( )33 3 12 34 4 6.37 10 km 1.08 10 km .
3 3

V Rπ π
= = × = ×  

 
2. The conversion factors are: 1 gry 1/10 line= , 1 line 1/12 inch= and 1 point = 1/72 
inch. The factors imply that 
  

1 gry = (1/10)(1/12)(72 points) = 0.60 point. 
 
Thus, 1 gry2 = (0.60 point)2 = 0.36 point2, which means that 2 20.50 gry = 0.18 point .  
 
3. The metric prefixes (micro, pico, nano, …) are given for ready reference on the inside 
front cover of the textbook (see also Table 1–2). 
 
(a) Since 1 km = 1 × 103 m and 1 m = 1 × 106 μm, 
 

( ) ( )3 3 6 91km 10 m 10 m 10 m m 10 m.= = =μ μ  
 
The given measurement is 1.0 km (two significant figures), which implies our result 
should be written as 1.0 × 109 μm. 
 
(b) We calculate the number of microns in 1 centimeter. Since 1 cm = 10−2 m, 

 
( ) ( )2 2 6 41cm = 10 m = 10 m 10 m m 10 m.− − =μ μ  

 
We conclude that the fraction of one centimeter equal to 1.0 μm is 1.0 × 10−4. 
 
(c) Since 1 yd = (3 ft)(0.3048 m/ft) = 0.9144 m, 
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( ) ( )6 51.0 yd = 0.91m 10 m m 9.1 10 m.= ×μ μ  

 
4. (a) Using the conversion factors 1 inch = 2.54 cm exactly and 6 picas = 1 inch,  we 
obtain 

( ) 1 inch 6 picas0.80 cm = 0.80 cm 1.9 picas.
2.54 cm 1 inch

⎛ ⎞⎛ ⎞
≈⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) With 12 points = 1 pica, we have 
 

( ) 1 inch 6 picas 12 points0.80 cm = 0.80 cm 23 points.
2.54 cm 1 inch 1 pica

⎛ ⎞⎛ ⎞⎛ ⎞
≈⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

 
5. Given that 1 furlong  201.168 m= , 1 rod 5.0292 m=  and 1chain 20.117 m= , we find 
the relevant conversion factors to be  

1 rod1.0 furlong 201.168 m (201.168 m ) 40 rods,
5.0292 m

= = =  

and 
1 chain1.0 furlong 201.168 m (201.168 m ) 10 chains

20.117 m
= = = . 

Note the cancellation of m (meters), the unwanted unit. Using the given conversion 
factors, we find 
 
(a) the distance d in rods to be 

( ) 40 rods4.0 furlongs 4.0 furlongs 160 rods,
1 furlong

d = = =  

 
(b) and that distance in chains to be 
 

( )10 chains4.0 furlongs 4.0 furlongs 40 chains.
1 furlong

d = = =  

 
6. We make use of Table 1-6. 
 
(a) We look at the first (“cahiz”) column: 1 fanega is equivalent to what amount of cahiz? 
We note from the already completed part of the table that 1 cahiz equals a dozen fanega.  
Thus, 1 fanega = 1

12  cahiz, or 8.33 × 10−2 cahiz.  Similarly, “1 cahiz = 48 cuartilla” (in the 

already completed part) implies that 1 cuartilla = 1
48 cahiz, or 2.08 × 10−2 cahiz.  

Continuing in this way, the remaining entries in the first column are 6.94 × 10−3 and 
33.47 10−× .  
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(b) In the second (“fanega”) column, we find 0.250, 8.33 × 10−2, and 4.17 × 10−2 for the 
last three entries.  
 
(c) In the third (“cuartilla”) column, we obtain 0.333 and 0.167 for the last two entries.  
 
(d) Finally, in the fourth (“almude”) column, we get  12  = 0.500 for the last entry. 
 
(e) Since the conversion table indicates that 1 almude is equivalent to 2 medios, our 
amount of 7.00 almudes must be equal to 14.0 medios. 
 
(f) Using the value (1 almude = 6.94 × 10−3 cahiz) found in part (a), we conclude that 
7.00 almudes is equivalent to 4.86 × 10−2 cahiz. 
 
(g) Since each decimeter is 0.1 meter, then 55.501 cubic decimeters is equal to 0.055501 
m3 or 55501 cm3.  Thus, 7.00 almudes = 7.00

12   fanega = 7.00
12  (55501 cm3) = 3.24 × 104 cm3. 

 
7. We use the conversion factors found in Appendix D. 
 
 2 31 acre ft = (43,560 ft ) ft = 43,560 ft⋅ ⋅  
 
Since 2 in. = (1/6) ft, the volume of water that fell during the storm is 
 
 2 2 2 7 3(26 km )(1/6 ft) (26 km )(3281ft/km) (1/6 ft)  4.66 10  ft .V = = = ×  
 
Thus, 

V =
×

× ⋅
= × ⋅

4 66 10
4 3560 10

11 10
7

4
3.

.
.ft

ft acre ft
acre ft.

3

3  

 
8. From Fig. 1-4, we see that 212 S is equivalent to 258 W and 212 – 32  = 180 S is 
equivalent to 216 – 60 = 156 Z. The information allows us to convert S to W or Z. 
 
(a) In units of W, we have 

( ) 258 W50.0 S 50.0 S 60.8 W
212 S

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

 
(b) In units of Z, we have 

( ) 156 Z50.0 S 50.0 S 43.3 Z
180 S

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

 
9. The volume of ice is given by the product of the semicircular surface area and the 
thickness. The area of the semicircle is A = πr2/2, where r is the radius. Therefore, the 
volume is 
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2

2
V r zπ

=  

 
where z is the ice thickness. Since there are 103 m in 1 km and 102 cm in 1 m, we have 
 

( )
3 2

510 m 10 cm2000 km 2000 10 cm.
1km 1m

r
⎛ ⎞ ⎛ ⎞

= = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
In these units, the thickness becomes 

( )
2

210 cm3000 m 3000 m 3000 10 cm
1m

z
⎛ ⎞

= = = ×⎜ ⎟
⎝ ⎠

 

 

which yields ( ) ( )25 2 22 32000 10 cm 3000 10 cm 1.9 10 cm .
2

V π
= × × = ×  

 
10. Since a change of longitude equal to 360° corresponds to a 24 hour change, then one 
expects to change longitude by360 / 24 15° = °  before resetting one's watch by 1.0 h. 
 
11. (a) Presuming that a French decimal day is equivalent to a regular day, then the ratio 
of weeks is simply 10/7 or (to 3 significant figures) 1.43. 
 
(b) In a regular day, there are 86400 seconds, but in the French system described in the 
problem, there would be 105 seconds.  The ratio is therefore 0.864. 
 
12. A day is equivalent to 86400 seconds and a meter is equivalent to a million 
micrometers, so 

37 10
14 86400

31
6.

. .
m m m

day s day
m s

b gc h
b gb g

μ
μ=  

 
13. The time on any of these clocks is a straight-line function of that on another, with 
slopes ≠  1 and  y-intercepts ≠  0. From the data in the figure we deduce 
 

2 594 33 662, .
7 7 40 5C B B At t t t= + = −  

 
These are used in obtaining the following results. 
 
(a) We find 

( )33 495 s
40B B A At t t t′ ′− = − =  

 
when t'A − tA = 600 s. 



                                                                                                                                               

 

5

 

(b) We obtain ′ − = ′ − = =t t t tC C B B
2
7

2
7

495 141b g b g s.  

 
(c) Clock B reads tB = (33/40)(400) − (662/5) ≈ 198 s when clock A reads tA = 400 s. 
 
(d) From tC = 15 = (2/7)tB + (594/7), we get tB ≈ −245 s. 
 
14. The metric prefixes (micro (μ), pico, nano, …) are given for ready reference on the 
inside front cover of the textbook (also Table 1–2). 
 

(a) ( )6 100 y 365 day 24 h 60 min1 century 10 century 52.6 min.
1 century 1 y 1 day 1 h

μ − ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
(b) The percent difference is therefore 
 

52.6 min 50 min 4.9%.
52.6 min

−
=  

 
15. A week is 7 days, each of which has 24 hours, and an hour is equivalent to 3600 
seconds.   Thus, two weeks (a fortnight) is 1209600 s.  By definition of the micro prefix, 
this is roughly 1.21 × 1012 μs. 
 
16. We denote the pulsar rotation rate f (for frequency). 
 

3

1 rotation
1.55780644887275 10 s

f −=
×

 

 
(a) Multiplying f by the time-interval t = 7.00 days (which is equivalent to 604800 s, if 
we ignore significant figure considerations for a moment), we obtain the number of 
rotations: 

( )3

1 rotation 604800 s 388238218.4
1.55780644887275 10 s

N −

⎛ ⎞
= =⎜ ⎟×⎝ ⎠

 

 
which should now be rounded to 3.88 × 108 rotations since the time-interval was 
specified in the problem to three significant figures. 
 
(b) We note that the problem specifies the exact number of pulsar revolutions (one 
million). In this case, our unknown is t, and an equation similar to the one we set up in 
part (a) takes the form N = ft, or 
 

6
3

1 rotation1 10
1.55780644887275 10 s

t−

⎛ ⎞
× = ⎜ ⎟×⎝ ⎠
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which yields the result t = 1557.80644887275 s (though students who do this calculation 
on their calculator might not obtain those last several digits). 
 
(c) Careful reading of the problem shows that the time-uncertainty per revolution is 

173 10 s−± × . We therefore expect that as a result of one million revolutions, the 
uncertainty should be 17 6 11 ( 3 10 )(1 10 )= 3 10 s− −± × × ± × . 
 
17. None of the clocks advance by exactly 24 h in a 24-h period but this is not the most 
important criterion for judging their quality for measuring time intervals. What is 
important is that the clock advance by the same amount in each 24-h period. The clock 
reading can then easily be adjusted to give the correct interval. If the clock reading jumps 
around from one 24-h period to another, it cannot be corrected since it would impossible 
to tell what the correction should be. The following gives the corrections (in seconds) that 
must be applied to the reading on each clock for each 24-h period. The entries were 
determined by subtracting the clock reading at the end of the interval from the clock 
reading at the beginning. 
 

Sun. Mon. Tues. Wed. Thurs. Fri. CLOCK 
-Mon. -Tues. -Wed. -Thurs. -Fri. -Sat. 

A −16 −16 −15 −17 −15 −15 
B −3 +5 −10 +5 +6 −7 
C −58 −58 −58 −58 −58 −58 
D +67 +67 +67 +67 +67 +67 
E +70 +55 +2 +20 +10 +10 

 
Clocks C and D are both good timekeepers in the sense that each is consistent in its daily 
drift (relative to WWF time); thus, C and D are easily made “perfect” with simple and 
predictable corrections. The correction for clock C is less than the correction for clock D, 
so we judge clock C to be the best and clock D to be the next best. The correction that 
must be applied to clock A is in the range from 15 s to 17s. For clock B it is the range 
from -5 s to +10 s, for clock E it is in the range from -70 s to -2 s. After C and D, A has 
the smallest range of correction, B has the next smallest range, and E has the greatest 
range. From best to worst, the ranking of the clocks is C, D, A, B, E. 
 
18. The last day of the 20 centuries is longer than the first day by  
 

( ) ( )20 century 0.001 s century 0.02 s.=  
 
The average day during the 20 centuries is (0 + 0.02)/2 = 0.01 s longer than the first day. 
Since the increase occurs uniformly, the cumulative effect T is  
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( ) ( )

( )

average increase in length of a day number of days

0.01 s 365.25 day 2000 y
day y

7305 s

T =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
=

 

 
or roughly two hours. 
 
19. When the Sun first disappears while lying down, your line of sight to the top of the 
Sun is tangent to the Earth’s surface at point A shown in the figure. As you stand, 
elevating your eyes by a height h, the line of sight to the Sun is tangent to the Earth’s 
surface at point B. 
 

 
 
Let d be the distance from point B to your eyes. From the Pythagorean theorem, we have 
 
 2 2 2 2 2( ) 2d r r h r rh h+ = + = + +  
 
or 2 22 ,d rh h= + where r is the radius of the Earth. Since r h , the second term can be 
dropped, leading to 2 2d rh≈ . Now the angle between the two radii to the two tangent 
points A and B is θ, which is also the angle through which the Sun moves about Earth 
during the time interval t = 11.1 s.  The value of θ can be obtained by using 
 

 
360 24 h

tθ
=

°
. 

This yields 

 (360 )(11.1 s) 0.04625 .
(24 h)(60 min/h)(60 s/min)

θ °
= = °  

 
Using tand r θ= , we have 2 2 2tan 2d r rhθ= = , or 
 

 2

2
tan

hr
θ

=  

 
Using the above value for θ and h = 1.7 m, we have 65.2 10  m.r = ×  
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20. (a) We find the volume in cubic centimeters 
 

( )
33

5 3231 in 2.54 cm193 gal = 193 gal 7.31 10 cm
1gal 1in

⎛ ⎞ ⎛ ⎞
= ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
and subtract this from 1 × 106 cm3 to obtain 2.69 × 105 cm3. The conversion gal → in3 is 
given in Appendix D (immediately below the table of Volume conversions). 
 
(b) The volume found in part (a) is converted (by dividing by (100 cm/m)3) to 0.731 m3, 
which corresponds to a mass of 
 

1000 kg m  0.731 m =  731 kg3 2c h c h  
 
using the density given in the problem statement. At a rate of 0.0018 kg/min, this can be 
filled in 
 

5731kg 4.06 10 min = 0.77 y
0.0018 kg min

= ×  

 
after dividing by the number of minutes in a year (365 days)(24 h/day) (60 min/h). 
 
21. If ME is the mass of Earth, m is the average mass of an atom in Earth, and N is the 
number of atoms, then ME = Nm or N = ME/m. We convert mass m to kilograms using 
Appendix D (1 u = 1.661 × 10−27 kg). Thus, 
 

N M
m

E= =
×

×
= ×

−

598 10
40 1661 10

9 0 10
24

27
49.

.
. .kg

u kg ub g c h  

 
22. The density of gold is 
 

3
3

19.32 g 19.32 g/cm .
1 cm

m
V

ρ = = =  

 
(a) We take the volume of the leaf to be its area A multiplied by its thickness z. With 
density ρ = 19.32 g/cm3 and mass m = 27.63 g, the volume of the leaf is found to be  
 

V m
= =

ρ
1430. .cm3  

We convert the volume to SI units: 
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( )
3

3 6 31 m1.430 cm 1.430 10 m .
100 cm

V −⎛ ⎞
= = ×⎜ ⎟

⎝ ⎠
 

 
Since V = Az with z = 1 × 10-6 m (metric prefixes can be found in Table 1–2), we obtain  
 

A =
×

×
=

−

−

1430 10
1 10

1430
6

6

. . .m
m

m
3

2  

 
(b) The volume of a cylinder of length  is V A=  where the cross-section area is that of 
a circle: A = πr2. Therefore, with r = 2.500 × 10−6 m and V = 1.430 × 10−6 m3, we obtain 
 

4
2 7.284 10 m 72.84 km.V

rπ
= = × =  

 
23. We introduce the notion of density: 

ρ =
m
V

 

 
and convert to SI units: 1 g = 1 × 10−3 kg. 
 
(a) For volume conversion, we find 1 cm3 = (1 × 10−2m)3 = 1 × 10−6m3. Thus, the density 
in kg/m3 is 
 

3 3
3 3 3

3 6 3

1 g 10 kg cm1 g cm 1 10 kg m .
cm g 10 m

−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞= = ×⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
Thus, the mass of a cubic meter of water is 1000 kg. 
 
(b) We divide the mass of the water by the time taken to drain it. The mass is found from 
M = ρV (the product of the volume of water and its density): 
 

( ) ( )3 3 3 65700 m 1 10 kg m 5.70 10 kg.M = × = ×  
 
The time is t = (10h)(3600 s/h) = 3.6 × 104 s, so the mass flow rate R is  
 

6

4

5.70 10 kg 158 kg s.
3.6 10 s

MR
t

×
= = =

×
 

 
24. The metric prefixes (micro (μ), pico, nano, …) are given for ready reference on the 
inside front cover of the textbook (see also Table 1–2). The surface area A of each grain 
of sand of radius r = 50 μm = 50 × 10−6 m is given by A = 4π(50 × 10−6)2 = 3.14 × 10−8 
m2 (Appendix E contains a variety of geometry formulas). We introduce the notion of 
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density, /m Vρ = , so that the mass can be found from m = ρV, where ρ = 2600 kg/m3. 
Thus, using V = 4πr3/3, the mass of each grain is  
 

( )363
9

3

4 50 10 m4 kg2600 1.36 10 kg.
3 m 3
rm V

ππρ ρ
−

−
×⎛ ⎞ ⎛ ⎞= = = = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
We observe that (because a cube has six equal faces) the indicated surface area is 6 m2. 
The number of spheres (the grains of sand) N that have a total surface area of 6 m2 is 
given by  

2
8

8 2

6 m 1.91 10 .
3.14 10 m

N −= = ×
×

 

 
Therefore, the total mass M is ( ) ( )8 91.91 10 1.36 10 kg 0.260 kg.M Nm −= = × × =  
 
25. The volume of the section is (2500 m)(800 m)(2.0 m) = 4.0 × 106 m3. Letting “d” 
stand for the thickness of the mud after it has (uniformly) distributed in the valley, then 
its volume there would be (400 m)(400 m)d.  Requiring these two volumes to be equal, 
we can solve for d.  Thus, d = 25 m.  The volume of a small part of the mud over a patch 
of area of 4.0 m2 is (4.0)d = 100 m3.  Since each cubic meter corresponds to a mass of 
1900 kg (stated in the problem), then the mass of that small part of the mud is 

51.9 10  kg× . 
 
26. (a) The volume of the cloud is (3000 m)π(1000 m)2 = 9.4 × 109 m3.  Since each cubic 
meter of the cloud contains from 50 × 106 to 500 × 106 water drops, then we conclude 
that the entire cloud contains from 4.7 × 1018 to 4.7 × 1019 drops.  Since the volume of 
each drop is 43 π(10 × 10− 6 m)3 = 4.2 × 10−15 m3, then the total volume of water in a cloud 

is from 32 10×  to 42 10×  m3. 
 
(b) Using the fact that 3 3 3 31 L 1 10 cm 1 10 m−= × = × , the amount of water estimated in 
part (a) would fill from 62 10×  to 72 10× bottles. 
 
(c) At 1000 kg for every cubic meter, the mass of water is from 62 10×  to 72 10× kg.   
The coincidence in numbers between the results of parts (b) and (c) of this problem is due 
to the fact that each liter has a mass of one kilogram when water is at its normal density 
(under standard conditions). 
 
27. We introduce the notion of density, /m Vρ = , and convert to SI units: 1000 g = 1 kg, 
and 100 cm = 1 m. 
 
(a) The density ρ of a sample of iron is  
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( )
3

3 31 kg 100 cm7.87 g cm 7870 kg/m .
1000 g 1 m

ρ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
If we ignore the empty spaces between the close-packed spheres, then the density of an 
individual iron atom will be the same as the density of any iron sample. That is, if M is 
the mass and V is the volume of an atom, then  
 

26
29 3

3 3

9.27 10 kg 1.18 10 m .
7.87 10 kg m

MV
−

−×
= = = ×

×ρ
 

 
(b) We set V = 4πR3/3, where R is the radius of an atom (Appendix E contains several 
geometry formulas). Solving for R, we find  
 

( ) 1 329 31 3
10

3 1.18 10 m3 1.41 10 m.
4 4
VR

−
−

⎛ ⎞×⎛ ⎞ ⎜ ⎟= = = ×⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠
 

 
The center-to-center distance between atoms is twice the radius, or 2.82 × 10−10 m. 
 
28. If we estimate the “typical” large domestic cat mass as 10 kg, and the “typical” atom 
(in the cat) as 10 u ≈ 2 × 10−26 kg, then there are roughly (10 kg)/( 2 × 10−26 kg) ≈ 5 × 
1026 atoms.  This is close to being a factor of a thousand greater than Avogadro’s number.  
Thus this is roughly a kilomole of atoms. 
 
29. The mass in kilograms is 
 

28 9 100 16 10 10 0 3779. .piculs gin
1picul

tahil
1gin

chee
1tahil

hoon
1 chee

g
1hoon

b g FHG
I
KJ
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ  

 
which yields 1.747 × 106 g or roughly 1.75× 103 kg. 
 
30. To solve the problem, we note that the first derivative of the function with respect to 
time gives the rate. Setting the rate to zero gives the time at which an extreme value of 
the variable mass occurs; here that extreme value is a maximum. 
 
(a) Differentiating 0.8( ) 5.00 3.00 20.00m t t t= − + with respect to t gives 
 

0.24.00 3.00.dm t
dt

−= −  

 
The water mass is the greatest when / 0,dm dt =  or at 1/ 0.2(4.00 / 3.00) 4.21s.t = =  
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(b) At 4.21s,t =  the water mass is  
 

0.8( 4.21s) 5.00(4.21) 3.00(4.21) 20.00 23.2 g.m t = = − + =  
 
(c) The rate of mass change at 2.00 st =  is 
 

0.2

2.00 s

2

g 1 kg 60 s4.00(2.00) 3.00 g/s 0.48 g/s 0.48
s 1000 g 1 min

2.89 10 kg/min.
t

dm
dt

−

=

−

⎡ ⎤= − = = ⋅ ⋅⎣ ⎦

= ×

 

 
(d) Similarly, the rate of mass change at 5.00 st =  is 
 

0.2

2.00 s

3

g 1 kg 60 s4.00(5.00) 3.00 g/s 0.101g/s 0.101
s 1000 g 1 min

6.05 10 kg/min.
t

dm
dt

−

=

−

⎡ ⎤= − = − = − ⋅ ⋅⎣ ⎦

= − ×

 

 
31. The mass density of the candy is  
 

 4 3 4 3
3

0.0200 g 4.00 10 g/mm 4.00 10 kg/cm .
50.0 mm

m
V

ρ − −= = = × = ×  

 
If we neglect the volume of the empty spaces between the candies, then the total mass of 
the candies in the container when filled to height h is ,M Ahρ=  where 

2(14.0 cm)(17.0 cm) 238 cmA = =  is the base area of the container that remains 
unchanged. Thus, the rate of mass change is given by 
 

4 3 2( ) (4.00 10 kg/cm )(238 cm )(0.250 cm/s)

0.0238 kg/s 1.43 kg/min.

dM d Ah dhA
dt dt dt

ρ ρ −= = = ×

= =
 

 
32. The total volume V of the real house is that of a triangular prism (of height h = 3.0 m 
and base area A = 20 × 12 = 240 m2) in addition to a rectangular box (height h´ = 6.0 m 
and same base). Therefore, 

31 1800 m .
2 2

hV hA h A h A⎛ ⎞′ ′= + = + =⎜ ⎟
⎝ ⎠

 

 
(a) Each dimension is reduced by a factor of 1/12, and we find 
 

Vdoll
3 3m m= F
HG
I
KJ ≈1800 1

12
10

3

c h . .  
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(b) In this case, each dimension (relative to the real house) is reduced by a factor of 1/144. 
Therefore, 

Vminiature
3m 6.0 10 m= F
HG
I
KJ ≈ × −1800 1

144

3
4 3c h .  

 
33. In this problem we are asked to differentiate between three types of tons: 
displacement ton, freight ton and register ton, all of which are units of volume. The three 
different tons are given in terms of barrel bulk, with 
 

31 barrel bulk 0.1415 m 4.0155 U.S. bushels= =  
 
using 31 m 28.378 U.S. bushels.=  Thus, in terms of U.S. bushels, we have 
 

4.0155 U.S. bushels1 displacement ton (7 barrels bulk) 28.108 U.S. bushels
1 barrel bulk

⎛ ⎞= × =⎜ ⎟
⎝ ⎠

 

4.0155 U.S. bushels1 freight ton (8 barrels bulk) 32.124 U.S. bushels
1 barrel bulk

4.0155 U.S. bushels1 register ton (20 barrels bulk) 80.31 U.S. bushels
1 barrel bulk

⎛ ⎞= × =⎜ ⎟
⎝ ⎠

⎛ ⎞= × =⎜ ⎟
⎝ ⎠

 

 
 (a) The difference between 73 “freight” tons and 73 “displacement” tons is 
 

73(freight tons displacement tons) 73(32.124 U.S. bushels 28.108 U.S. bushels)

293.168 U.S. bushels 293 U.S. bushels

VΔ = − = −

= ≈
 
(b) Similarly, the difference between 73 “register” tons and 73 “displacement” tons is 
 

3

73(register tons displacement tons) 73(80.31 U.S. bushels 28.108 U.S. bushels)

3810.746 U.S. bushels 3.81 10  U.S. bushels

VΔ = − = −

= ≈ ×
 
34. The customer expects a volume V1 = 20 × 7056 in3 and receives V2 = 20 × 5826 in.3, 
the difference being 3

1 2 24600 in.V V VΔ = − = , or 
 

( )
3

3
3

2.54cm 1L24600 in. 403L
1 inch 1000 cm

V
⎛ ⎞ ⎛ ⎞Δ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
where Appendix D has been used. 
 
35. The first two conversions are easy enough that a formal conversion is not especially 
called for, but in the interest of practice makes perfect we go ahead and proceed formally: 
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(a) ( ) 2 peck11 tuffets = 11 tuffets 22 pecks
1 tuffet

⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

 

(b) ( ) 0.50 Imperial bushel11 tuffets = 11 tuffets 5.5 Imperial bushels
1 tuffet

⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

 

(c) ( ) 36.3687 L11 tuffets = 5.5 Imperial bushel 200 L
1 Imperial bushel

⎛ ⎞
≈⎜ ⎟

⎝ ⎠
. 

 
36. Table 7 can be completed as follows: 
 
(a) It should be clear that the first column (under “wey”) is the reciprocal of the first 
row – so that  9

10  = 0.900, 3
40  = 7.50 × 10−2, and so forth.  Thus, 1 pottle = 1.56 × 10−3 wey 

and 1 gill = 8.32 × 10−6 wey are the last two entries in the first column.  
 
(b) In the second column (under “chaldron”), clearly we have 1 chaldron = 1 chaldron 
(that is, the entries along the “diagonal” in the table must be 1’s).  To find out how many 
chaldron are equal to one bag, we note that 1 wey = 10/9 chaldron = 40/3 bag so that  1

12  

chaldron = 1 bag.  Thus, the next entry in that second column is 1
12  = 8.33 × 10−2.  

Similarly, 1 pottle = 1.74 × 10−3 chaldron and 1 gill = 9.24 × 10−6 chaldron.  
 
(c) In the third column (under “bag”), we have 1 chaldron = 12.0 bag, 1 bag = 1 bag, 1 
pottle = 2.08 × 10−2 bag, and 1 gill = 1.11 × 10−4 bag.  
 
(d) In the fourth column (under “pottle”), we find 1 chaldron = 576 pottle, 1 bag = 48 
pottle, 1 pottle = 1 pottle, and 1 gill = 5.32 × 10−3 pottle.   
 
(e) In the last column (under “gill”), we obtain 1 chaldron = 1.08 × 105 gill, 1 bag = 9.02 
× 103 gill, 1 pottle = 188 gill, and, of course, 1 gill = 1 gill. 
 
(f) Using the information from part (c), 1.5 chaldron = (1.5)(12.0) = 18.0 bag.  And since 
each bag is 0.1091 m3 we conclude 1.5 chaldron = (18.0)(0.1091) = 1.96 m3. 
 
37. The volume of one unit is 1 cm3 = 1 × 10−6 m3, so the volume of a mole of them is 
6.02 × 1023 cm3 = 6.02 × 1017 m3.  The cube root of this number gives the edge length: 

5 38.4 10  m× .  This is equivalent to roughly 8 × 102 km. 
 
38. (a) Using the fact that the area A of a rectangle is (width) × (length), we find 
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( ) ( )( )

( ) ( )( )
total

2

2

3.00acre 25.0 perch 4.00 perch

40 perch 4 perch
3.00 acre 100 perch

1acre

580 perch .

A = +

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
=

 

 
We multiply this by the perch2 → rood conversion factor (1 rood/40 perch2) to obtain the 
answer: Atotal = 14.5 roods. 
 
(b) We convert our intermediate result in part (a): 
 

( )
2

2 5 2
total

16.5ft580 perch 1.58 10 ft .
1perch

A
⎛ ⎞

= = ×⎜ ⎟
⎝ ⎠

 

 
Now, we use the feet → meters conversion given in Appendix D to obtain 
 

( )
2

5 2 4 2
total

1m1.58 10 ft 1.47 10 m .
3.281ft

A
⎛ ⎞

= × = ×⎜ ⎟
⎝ ⎠

 

 
39. This problem compares the U.K gallon with U.S. gallon, two non-SI units for volume. 
The interpretation of the type of gallons, whether U.K. or U.S., affects the amount of 
gasoline one calculates for traveling a given distance.   
 
If the fuel consumption rate is R  (in miles/gallon), then the amount of gasoline (in 
gallons) needed for a trip of distance d (in miles) would be 
   

 (miles)(gallon)
(miles/gallon)
dV

R
=  

 
Since the car was manufactured in the U.K., the fuel consumption rate is calibrated based 
on U.K. gallon, and the correct interpretation should be “40 miles per U.K. gallon.” In 
U.K., one would think of gallon as U.K. gallon; however, in the U.S., the word “gallon” 
would naturally be interpreted as U.S. gallon.  Note also that since 
1 U.K. gallon 4.5460900 L=  and 1 U.S. gallon 3.7854118 L= , the relationship between 
the two is 

1 U.S. gallon1 U.K. gallon (4.5460900 L) 1.20095 U.S. gallons
3.7854118 L

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
(a) The amount of gasoline actually required is 
  

750 miles 18.75 U. K. gallons 18.8 U. K. gallons
40 miles/U. K. gallon

V ′ = = ≈  
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This means that the driver mistakenly believes that the car should need 18.8 U.S. gallons. 
 
(b) Using the conversion factor found above, the actual amount required is equivalent to   
 

( ) 1.20095 U.S. gallons18.75 U. K. gallons 22.5 U.S. gallons
1 U.K. gallon

V
⎛ ⎞′ = × ≈⎜ ⎟
⎝ ⎠

. 

40. Equation 1-9 gives (to very high precision!) the conversion from atomic mass units to 
kilograms.  Since this problem deals with the ratio of total mass (1.0 kg) divided by the 
mass of one atom (1.0 u, but converted to kilograms), then the computation reduces to 
simply taking the reciprocal of the number given in Eq. 1-9 and rounding off 
appropriately.   Thus, the answer is 6.0 × 1026. 
 
41. Using the (exact) conversion 1 in = 2.54 cm = 0.0254 m, we find that  
 

 0.0254 m1 ft 12 in. (12 in.) 0.3048 m
1in.

⎛ ⎞
= = × =⎜ ⎟

⎝ ⎠
 

 
and 3 3 31 ft (0.3048 m) 0.0283 m= =  for volume (these results also can be found in 
Appendix D). Thus, the volume of a cord of wood is 3(8 ft) (4 ft) (4 ft) 128 ftV = × × = . 
Using the conversion factor found above, we obtain 

3
3 3 3

3

0.0283 m1 cord 128 ft (128 ft ) 3.625 m
1 ft

V
⎛ ⎞

= = = × =⎜ ⎟
⎝ ⎠

 

which implies that 3 11 m cord 0.276 cord 0.3 cord
3.625

⎛ ⎞= = ≈⎜ ⎟
⎝ ⎠

. 

 
42. (a) In atomic mass units, the mass of one molecule is (16 + 1 + 1)u = 18 u. Using Eq. 
1-9, we find 

( )
27

261.6605402 10 kg18u = 18u 3.0 10 kg.
1u

−
−⎛ ⎞×

= ×⎜ ⎟
⎝ ⎠

 

 
(b) We divide the total mass by the mass of each molecule and obtain the (approximate) 
number of water molecules: 

21
46

26

1.4 10 5 10 .
3.0 10

N −

×
≈ ≈ ×

×
 

 
43. A million milligrams comprise a kilogram, so 2.3 kg/week is 2.3 × 106 mg/week.  
Figuring 7 days a week, 24 hours per day, 3600 second per hour, we find 604800 seconds 
are equivalent to one week.  Thus, (2.3 × 106 mg/week)/(604800 s/week) = 3.8 mg/s. 
 
44. The volume of the water that fell is  
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( ) ( ) ( ) ( )

( ) ( )

2
2 2

6 2

6 3

1000 m 0.0254 m26 km 2.0 in. 26 km 2.0 in.
1 km 1 in.

26 10 m 0.0508 m
1.3 10 m .

V
⎛ ⎞ ⎛ ⎞

= = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ×

= ×

 

 
We write the mass-per-unit-volume (density) of the water as: 
 

3 31 10 kg m .m
V

= = ×ρ  

 
The mass of the water that fell is therefore given by m = ρV: 
 

( ) ( )3 3 6 3 91 10 kg m 1.3 10 m 1.3 10 kg.m = × × = ×  
 
45. The number of seconds in a year is 3.156 × 107. This is listed in Appendix D and 
results from the product 
 

(365.25 day/y) (24 h/day) (60 min/h) (60 s/min). 
 
(a) The number of shakes in a second is 108; therefore, there are indeed more shakes per 
second than there are seconds per year. 
 
(b) Denoting the age of the universe as 1 u-day (or 86400 u-sec), then the time during 
which humans have existed is given by 
 

10
10

10
6

10
4= − u - day,  

 

which may also be expressed as  10 86400
1

8 64− F
HG

I
KJ =u - day u - sec

u - day
u - sec.c h .  

 
46. The volume removed in one year is 
 

V =  (75 10  m ) (26 m) 2  10  m4 2 7 3× ≈ ×  
 

which we convert to cubic kilometers: V = ×
F
HG

I
KJ =2 10 1 0 0207

3

m km
1000 m

km3 3c h . .  

 
47. We convert meters to astronomical units, and seconds to minutes, using  
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8

1000 m 1 km
1 AU 1.50 10 km
60 s 1 min .

=

= ×
=

 

Thus, 3.0 × 108 m/s becomes 
 

8

8

3.0 10 m 1 km AU 60 s 0.12 AU min.
s 1000 m 1.50 10 km min

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞× ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎟⎜⎟ ⎟ ⎟ =⎜ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎟⎜ ⎜ ⎜ ⎜⎟ ⎟⎟ ⎜ ⎜⎜ ⎝ ⎠×⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
48. Since one atomic mass unit is 241 u 1.66 10 g−= × (see Appendix D), the mass of one 
mole of atoms is about 24 23(1.66 10 g)(6.02 10 ) 1g.m −= × × =  On the other hand, the mass 
of one mole of atoms in the common Eastern mole is  
 

 75 g 10 g
7.5

m′ = =  

 
Therefore, in atomic mass units, the average mass of one atom in the common Eastern 
mole is  

23
23

10 g 1.66 10 g 10 u.
6.02 10A

m
N

−′
= = × =

×
 

 
49. (a) Squaring the relation 1 ken = 1.97 m, and setting up the ratio, we obtain 
 

1
1

1 97
1

3 88
2ken

m
m

m

2

2

2

2= =
. . . 

(b) Similarly, we find 
1
1

197
1

7 653

3ken
m

m
m

3 3

3= =
. . .  

 
(c) The volume of a cylinder is the circular area of its base multiplied by its height. Thus, 
 

( ) ( )22 33.00 5.50 156 ken .r hπ π= =  
 
(d) If we multiply this by the result of part (b), we determine the volume in cubic meters: 
(155.5)(7.65) = 1.19 × 103 m3. 
 
50. According to Appendix D, a nautical mile is 1.852 km, so 24.5 nautical miles would 
be 45.374 km.  Also, according to Appendix D, a mile is 1.609 km, so 24.5 miles is 
39.4205 km. The difference is 5.95 km. 
 
51. (a) For the minimum (43 cm) case, 9 cubits converts as follows: 
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( ) 0.43m9cubits 9cubits 3.9m.
1cubit

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

 
And for the maximum (53 cm) case we obtain 
 

( ) 0.53m9cubits 9cubits 4.8m.
1cubit

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

 
(b) Similarly, with 0.43 m → 430 mm and 0.53 m → 530 mm, we find 3.9 × 103 mm and 
4.8 × 103 mm, respectively. 
 
(c) We can convert length and diameter first and then compute the volume, or first 
compute the volume and then convert. We proceed using the latter approach (where d is 
diameter and  is length). 

( )
3

2 3 3 3
cylinder, min

0.43m28 cubit 28 cubit 2.2 m .
4 1 cubit

V dπ ⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
 

 
Similarly, with 0.43 m replaced by 0.53 m, we obtain Vcylinder, max = 4.2 m3. 
 
52. Abbreviating wapentake as “wp” and assuming a hide to be 110 acres, we set up the 
ratio 25 wp/11 barn along with appropriate conversion factors: 
 

( ) ( ) ( ) ( )
( ) ( )

2

28 2
36

100 hide 110 acre 4047 m
1 wp 1acre1 hide

1 10 m
1 barn

25 wp
1 10 .

11 barn
−×

≈ ×  

 
53. The objective of this problem is to convert the Earth-Sun distance to parsecs and 
light-years. To relate parsec (pc) to AU, we note that when θ is measured in radians, it is 
equal to the arc length s divided by the radius R. For a very large radius circle and small 
value of θ, the arc may be approximated as the straight line-segment of length 1 AU. 
Thus,  

( ) 61 arcmin 1 2 radian1 arcsec 1 arcsec 4.85 10  rad
60 arcsec 60 arcmin 360

θ −⎛ ⎞⎛ ⎞° π⎛ ⎞= = = ×⎜ ⎟⎜ ⎟⎜ ⎟°⎝ ⎠⎝ ⎠⎝ ⎠
 

Therefore, one parsec is 

 5
o 6

1 AU1 pc 2.06 10 AU
4.85 10

sR
θ −= = = = ×

×
 

 
Next, we relate AU to light-year (ly). Since a year is about 3.16 × 107 s, we have  

( ) ( )7 121ly 186,000mi s 3.16 10 s 5.9 10 mi= × = × . 
 

(a) Since 51 pc 2.06 10 AU= × , inverting the relationship gives 
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( ) 6
5

1 pc1 AU 1 AU 4.9 10 pc.
2.06 10 AU

R −⎛ ⎞
= = = ×⎜ ⎟×⎝ ⎠

 

 
(b) Given that 61AU 92.9 10  mi= ×  and 121ly 5.9 10 mi= × , the two expressions 
together lead to  

6 6 5 5
12

1 ly1 AU 92.9 10  mi (92.9 10  mi) 1.57 10 ly 1.6 10 ly
5.9 10 mi

− −⎛ ⎞
= × = × = × ≈ ×⎜ ⎟×⎝ ⎠

. 

 
Our results can be further combined to give 1 pc 3.2 ly= .   
 
54. (a) Using Appendix D, we have 1 ft = 0.3048 m, 1 gal = 231 in.3, and 1 in.3 = 1.639 × 
10−2 L. From the latter two items, we find that 1 gal = 3.79 L. Thus, the quantity 460 
ft2/gal becomes 

22
2 2460 ft 1 m 1 gal460 ft /gal 11.3 m L.

gal 3.28 ft 3.79 L
⎛ ⎞⎛ ⎞ ⎛ ⎞

= =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
(b) Also, since 1 m3 is equivalent to 1000 L, our result from part (a) becomes 
 

2
2 4 1

3

11.3 m 1000 L11.3 m /L 1.13 10 m .
L 1 m

−⎛ ⎞⎛ ⎞
= = ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(c) The inverse of the original quantity is (460 ft2/gal)−1 = 2.17 × 10−3 gal/ft2. 
 
(d) The answer in (c) represents the volume of the paint (in gallons) needed to cover a 
square foot of area. From this, we could also figure the paint thickness [it turns out to be 
about a tenth of a millimeter, as one sees by taking the reciprocal of the answer in part 
(b)]. 
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Chapter 2 
 
 
1. The speed (assumed constant) is v = (90 km/h)(1000 m/km) ⁄ (3600 s/h) = 25 m/s. 
Thus, in 0.50 s, the car travels a distance d = vt = (25 m/s)(0.50 s) ≈ 13 m.  
 
2. (a) Using the fact that time = distance/velocity while the velocity is constant, we 
find 

avg 73.2 m 73.2 m
3.05 m1.22 m/s

73.2 m 73.2 m 1.74 m/s.v +
= =

+
 

 
(b) Using the fact that distance = vt while the velocity v is constant, we find 
 

vavg
 m / s)(60 s)  m / s)(60 s)

 s
 m / s.=

+
=

( . ( . .122 3 05
120

2 14  

 
(c) The graphs are shown below (with meters and seconds understood). The first 
consists of two (solid) line segments, the first having a slope of 1.22 and the second 
having a slope of 3.05. The slope of the dashed line represents the average velocity (in 
both graphs). The second graph also consists of two (solid) line segments, having the 
same slopes as before — the main difference (compared to the first graph) being that 
the stage involving higher-speed motion lasts much longer. 
 

 
 
3. Since the trip consists of two parts, let the displacements during first and second 
parts of the motion be Δx1 and Δx2, and the corresponding time intervals be Δt1 and Δt2, 
respectively. Now, because the problem is one-dimensional and both displacements 
are in the same direction, the total displacement is Δx = Δx1 + Δx2, and the total time 
for the trip is Δt = Δt1 + Δt2. Using the definition of average velocity given in Eq. 2-2, 
we have  

1 2
avg

1 2

.x xxv
t t t

Δ + ΔΔ
= =

Δ Δ + Δ
 

To find the average speed, we note that during a time Δt if the velocity remains a 
positive constant, then the speed is equal to the magnitude of velocity, and the 
distance is equal to the magnitude of displacement, with | |d x v t= Δ = Δ . 
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(a) During the first part of the motion, the displacement is Δx1 = 40 km and the time 
interval is 

t1
40 133= =

( . km)
(30 km / h)

 h.  

 
Similarly, during the second part the displacement is Δx2 = 40 km and the time 
interval is 

t2
40 0 67= =

( . km)
(60 km / h)

 h.  

The total displacement is Δx = Δx1 + Δx2 = 40 km + 40 km = 80 km, and the total time 
elapsed is Δt = Δt1 + Δt2 = 2.00 h. Consequently, the average velocity is 
 

avg
(80 km) 40 km/h.
(2.0 h)

xv
t

Δ
= = =

Δ
 

 
(b) In this case, the average speed is the same as the magnitude of the average 
velocity: avg 40 km/h.s =  
 
(c) The graph of the entire trip is shown below; it consists of two contiguous line 
segments, the first having a slope of 30 km/h and connecting the origin to (Δt1, Δx1) = 
(1.33 h, 40 km)  and the second having a slope of 60 km/h and connecting (Δt1, Δx1) 
to (Δt, Δx) = (2.00 h, 80 km).  
 

 
 
4. Average speed, as opposed to average velocity, relates to the total distance, as 
opposed to the net displacement. The distance D up the hill is, of course, the same as 
the distance down the hill, and since the speed is constant (during each stage of the 
motion) we have speed = D/t. Thus, the average speed is 
 

D D
t t

D
D
v

D
v

up down

up down

up down

+

+
=

+

2  

 
which, after canceling D and plugging in vup = 40 km/h and vdown = 60 km/h, yields 48 
km/h for the average speed. 
 
5. Using x = 3t – 4t2 + t3 with SI units understood is efficient (and is the approach we 
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will use), but if we wished to make the units explicit we would write  
 

x = (3 m/s)t – (4 m/s2)t2 + (1 m/s3)t3. 
 
We will quote our answers to one or two significant figures, and not try to follow the 
significant figure rules rigorously. 
 
(a) Plugging in t = 1 s yields x = 3 – 4 + 1 = 0.  
 
(b) With t = 2 s we get x = 3(2) – 4(2)2+(2)3 = –2 m.  
 
(c) With t = 3 s we have x = 0 m. 
 
(d) Plugging in t = 4 s gives x = 12 m.  
 
For later reference, we also note that the position at t = 0 is x = 0. 
 
(e) The position at t = 0 is subtracted from the position at t = 4 s to find the 
displacement Δx = 12 m. 
 
(f) The position at t = 2 s is subtracted from the position at t = 4 s to give the 
displacement Δx = 14 m. Eq. 2-2, then, leads to 
 

avg
14 m 7 m/s.

2 s
xv
t

Δ
= = =

Δ
 

 
(g) The position of the object for the interval 0 ≤ t ≤ 4 is plotted below. The straight 
line drawn from the point at (t, x) = (2 s , –2 m) to (4 s, 12 m) would represent the 
average velocity, answer for part (f). 
 

 
 
 6. Huber’s speed is  
 

v0 = (200 m)/(6.509 s) =30.72 m/s = 110.6 km/h, 
 
where we have used the conversion factor 1 m/s = 3.6 km/h. Since Whittingham beat 
Huber by 19.0 km/h, his speed is v1 = (110.6 km/h + 19.0 km/h) = 129.6 km/h, or 36 
m/s (1 km/h = 0.2778 m/s). Thus, using Eq. 2-2, the time through a distance of 200 m 
for Whittingham is 
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1

200 m 5.554 s.
36 m/s

xt
v
Δ

Δ = = =  

 
 
7. Recognizing that the gap between the trains is closing at a constant rate of 60 km/h, 
the total time that elapses before they crash is t = (60 km)/(60 km/h) = 1.0 h. During 
this time, the bird travels a distance of x = vt = (60 km/h)(1.0 h) = 60 km. 
 
8. The amount of time it takes for each person to move a distance L with speed sv  is 

/ st L vΔ = . With each additional person, the depth increases by one body depth d  
 
(a) The rate of increase of the layer of people is  
 

 (0.25 m)(3.50 m/s) 0.50 m/s
/ 1.75 m

s

s

dvd dR
t L v L

= = = = =
Δ

 

 
(b) The amount of time required to reach a depth of 5.0 mD = is 
 

 5.0 m 10 s
0.50 m/s

Dt
R

= = =  

 
9. Converting to seconds, the running times are t1 = 147.95 s and t2 = 148.15 s, 
respectively. If the runners were equally fast, then 
 

1 2
avg avg1 2

1 2

    .L Ls s
t t

= ⇒ =  

From this we obtain 
 

2
2 1 1 1 1

1

148.151 1  0.00135 1.4 m
147.95

tL L L L L
t

⎛ ⎞ ⎛ ⎞− = − = − = ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
where we set L1 ≈ 1000 m in the last step. Thus, if L1 and L2 are no different than 
about 1.4 m, then runner 1 is indeed faster than runner 2. However, if L1 is shorter 
than L2 by more than 1.4 m, then runner 2 would actually be faster. 
 
10. Let wv be the speed of the wind and cv  be the speed of the car. 
 
(a) Suppose during time interval 1t , the car moves in the same direction as the wind. 
Then the effective speed of the car is given by ,1eff c wv v v= + , and the distance traveled 
is ,1 1 1( )eff c wd v t v v t= = + . On the other hand, for the return trip during time interval t2, 
the car moves in the opposite direction of the wind and the effective speed would be 

,2eff c wv v v= − . The distance traveled is ,2 2 2( )eff c wd v t v v t= = − . The two expressions 
can be rewritten as 
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1 2

andc w c w
d dv v v v
t t

+ = − =  

Adding the two equations and dividing by two, we obtain 
1 2

1
2c

d dv
t t

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. Thus, 

method 1 gives the car’s speed cv a in windless situation. 
 
(b) If method 2 is used, the result would be 
  

22 2

1 2 1 2

2 2 1
( ) / 2

c w w
c c

c c

c w c w

v v vd d dv vd dt t t t v v
v v v v

⎡ ⎤⎛ ⎞−′ ⎢ ⎥= = = = = − ⎜ ⎟+ + ⎢ ⎥⎝ ⎠+ ⎣ ⎦
+ −

. 

The fractional difference is  
2

2 4(0.0240) 5.76 10c c w

c c

v v v
v v

−⎛ ⎞′−
= = = ×⎜ ⎟

⎝ ⎠
. 

11. The values used in the problem statement make it easy to see that the first part of 
the trip (at 100 km/h) takes 1 hour, and the second part (at 40 km/h) also takes 1 hour.  
Expressed in decimal form, the time left is 1.25 hour, and the distance that remains is 
160 km.  Thus, a speed v = (160 km)/(1.25 h) = 128 km/h is needed. 
 
12. (a) Let the fast and the slow cars be separated by a distance d at t = 0. If during the 
time interval / (12.0 m) /(5.0 m/s) 2.40 sst L v= = = in which the slow car has moved 
a distance of 12.0 mL = , the fast car moves a distance of vt d L= +  to join the line 
of slow cars, then the shock wave would remain stationary. The condition implies a 
separation of 
 (25 m/s)(2.4 s) 12.0 m 48.0 m.d vt L= − = − =  
 
(b) Let the initial separation at 0t =  be 96.0 m.d =  At a later time t, the slow and 
the fast cars have traveled sx v t=  and the fast car joins the line by moving a distance 
d x+ . From 

 ,
s

x d xt
v v

+
= =  

we get   
5.00 m/s (96.0 m) 24.0 m,

25.0 m/s 5.00 m/s
s

s

vx d
v v

= = =
− −

 

 
which in turn gives (24.0 m) /(5.00 m/s) 4.80 s.t = =  Since the rear of the slow-car 
pack has moved a distance of 24.0 m 12.0 m 12.0 mx x LΔ = − = − = downstream, the 
speed of the rear of the slow-car pack, or equivalently, the speed of the shock wave, is 
 

 shock
12.0 m 2.50 m/s.
4.80 s

xv
t

Δ
= = =  
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(c) Since x L> , the direction of the shock wave is downstream. 
 
13. (a) Denoting the travel time and distance from San Antonio to Houston as T and D, 
respectively, the average speed is 
 

avg1
(55 km/h)( /2) (90 km/h)( / 2) 72.5 km/hD T Ts

T T
+

= = =  

 
which should be rounded to 73 km/h. 
 
(b) Using the fact that time = distance/speed while the speed is constant, we find 
 

avg2 / 2 / 2
55 km/h 90 km/h

68.3 km/hD D
D Ds
T

= = =
+

 

 
which should be rounded to 68 km/h. 
 
(c) The total distance traveled (2D) must not be confused with the net displacement 
(zero). We obtain for the two-way trip 
 

avg
72.5 km/h 68.3 km/h

2 70 km/h.D D
Ds = =
+

 

 
(d) Since the net displacement vanishes, the average velocity for the trip in its entirety 
is zero. 
 
(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the 
distance D (the intent is not to make the student go to an atlas to look it up); the 
student can just as easily arbitrarily set T instead of D, as will be clear in the following 
discussion. We briefly describe the graph (with kilometers-per-hour understood for 
the slopes): two contiguous line segments, the first having a slope of 55 and 
connecting the origin to (t1, x1) = (T/2, 55T/2) and the second having a slope of 90 and 
connecting (t1, x1) to (T, D) where D = (55 + 90)T/2. The average velocity, from the 
graphical point of view, is the slope of a line drawn from the origin to (T, D). The 
graph (not drawn to scale) is depicted below: 
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14. Using the general property d
dx bx b bxexp( ) exp( )= , we write 

 

v dx
dt

d t
dt

e t de
dt

t
t

= = FHG
I
KJ ⋅ + ⋅

F
HG
I
KJ

−
−( ) ( )19 19 .  

 
If a concern develops about the appearance of an argument of the exponential (–t) 
apparently having units, then an explicit factor of 1/T where T = 1 second can be 
inserted and carried through the computation (which does not change our answer). 
The result of this differentiation is 

v t e t= − −16 1( )  
 
with t and v in SI units (s and m/s, respectively). We see that this function is zero 
when t = 1 s.  Now that we know when it stops, we find out where it stops by 
plugging our result t = 1 into the given function x = 16te–t with x in meters. Therefore, 
we find x = 5.9 m. 
 
15. We use Eq. 2-4 to solve the problem. 
 
(a) The velocity of the particle is 
 

v dx
dt

d
dt

t t t= = − + = − +  ( ) .4 12 3 12 62  

 
Thus, at t = 1 s, the velocity is v = (–12 + (6)(1)) = –6 m/s. 
 
(b) Since v < 0, it is moving in the –x direction at t = 1 s. 
 
(c) At t = 1 s, the speed is |v| = 6 m/s. 
 
(d) For 0 < t < 2 s, |v| decreases until it vanishes. For 2 < t < 3 s, |v| increases from 
zero to the value it had in part (c). Then, |v| is larger than that value for t > 3 s. 
 
(e) Yes, since v smoothly changes from negative values (consider the t = 1 result) to 
positive (note that as t → + ∞, we have v → + ∞). One can check that v = 0 when 

2 s.t =  
 
(f) No. In fact, from v = –12 + 6t, we know that v > 0 for t > 2 s. 
 
16. We use the functional notation x(t), v(t), and a(t) in this solution, where the latter 
two quantities are obtained by differentiation: 
 

v t
dx t

dt
t a t

dv t
dt

b g b g b g b g= = − = = −12 12and  

 
with SI units understood. 
 
(a) From v(t) = 0 we find it is (momentarily) at rest at t = 0. 
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(b) We obtain x(0) = 4.0 m. 
 
(c) and (d) Requiring x(t) = 0 in the expression x(t) = 4.0 – 6.0t2 leads to t = ±0.82 s 
for the times when the particle can be found passing through the origin. 
 
(e) We show both the asked-for graph (on the left) as well as the “shifted” graph that 
is relevant to part (f). In both cases, the time axis is given by –3 ≤ t ≤ 3 (SI units 
understood). 

 
 
(f) We arrived at the graph on the right (shown above) by adding 20t to the x(t) 
expression. 
 
(g) Examining where the slopes of the graphs become zero, it is clear that the shift 
causes the v = 0 point to correspond to a larger value of x (the top of the second curve 
shown in part (e) is higher than that of the first). 
 
17. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and 
work with distances in centimeters and times in seconds. 
 
(a) We plug into the given equation for x for t = 2.00 s and t = 3.00 s and obtain x2 = 
21.75 cm and x3 = 50.25 cm, respectively. The average velocity during the time 
interval 2.00 ≤ t ≤ 3.00 s is 
 

v x
tavg 

 cm  cm
 s  s

= =
−
−

Δ
Δ

50 25 2175
3 00 2 00
. .

. .
 

 
which yields vavg = 28.5 cm/s. 
 
(b) The instantaneous velocity is v tdx

dt= = 4 5 2. , which, at time t = 2.00 s, yields v = 
(4.5)(2.00)2 = 18.0 cm/s. 
 
(c) At t = 3.00 s, the instantaneous velocity is v = (4.5)(3.00)2 = 40.5 cm/s. 
 
(d) At t = 2.50 s, the instantaneous velocity is v = (4.5)(2.50)2 = 28.1 cm/s. 
 
(e) Let tm stand for the moment when the particle is midway between x2 and x3 (that is, 
when the particle is at xm = (x2 + x3)/2 = 36 cm). Therefore, 
 

x t tm m m= + ⇒ =9 75 15 2 5963. . .       
 
in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)2 = 30.3 cm/s. 
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(f) The answer to part (a) is given by the slope of the straight line between t = 2 and t 
= 3 in this x-vs-t plot. The answers to parts (b), (c), (d), and (e) correspond to the 
slopes of tangent lines (not shown but easily imagined) to the curve at the appropriate 
points. 

 
 
18. (a) Taking derivatives of x(t) = 12t2 – 2t3 we obtain the velocity and the 
acceleration functions: 
 

v(t) = 24t – 6t2   and   a(t) = 24 – 12t 
 

with length in meters and time in seconds. Plugging in the value t = 3 yields 
(3) 54 mx = . 

 
(b) Similarly, plugging in the value t = 3 yields v(3) = 18 m/s. 
 
(c) For t = 3, a(3) = –12 m/s2.   
  
(d) At the maximum x, we must have v = 0; eliminating the t = 0 root, the velocity 
equation reveals t = 24/6 = 4 s for the time of maximum x.  Plugging t = 4 into the 
equation for x leads to x = 64 m for the largest x value reached by the particle. 
 
(e) From (d), we see that the x reaches its maximum at t = 4.0 s.   
 
(f) A maximum v requires a = 0, which occurs when t = 24/12 = 2.0 s. This, inserted 
into the velocity equation, gives vmax = 24 m/s. 
 
(g) From (f), we see that the maximum of v occurs at t = 24/12 = 2.0 s. 
 
(h) In part (e), the particle was (momentarily) motionless at t = 4 s. The acceleration at 
that time is readily found to be 24 – 12(4) = –24 m/s2. 
 
(i) The average velocity is defined by Eq. 2-2, so we see that the values of x at t = 0 
and t = 3 s are needed; these are, respectively, x = 0 and x = 54 m (found in part (a)).  
Thus, 

vavg = 54 0
3 0

−
−

 = 18 m/s. 

 
19. We represent the initial direction of motion as the +x direction. The average 
acceleration over a time interval 1 2t t t≤ ≤ is given by Eq. 2-7:   
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2 1
avg

2 1

( ) ( ) .v t v tva
t t t

−Δ
= =

Δ −
 

Let v1 = +18 m/s at 1 0t = and v2 = –30 m/s at t2 = 2.4 s. Using Eq. 2-7 we find 
 

22 1
avg

2 1

( ) ( ) ( 30 m/s) ( 1 m/s) 20 m/s
2.4 s 0

v t v ta
t t

− − − +
= = = −

− −
. 

 
The average acceleration has magnitude 20 m/s2 and is in the opposite direction to the 
particle’s initial velocity. This makes sense because the velocity of the particle is 
decreasing over the time interval. 
 
20. We use the functional notation x(t), v(t) and a(t) and find the latter two quantities 
by differentiating: 
 

v t
dx t

t
t a t

dv t
dt

tb g b g b g b g
= = − + = = −15 20 302 and  

 
with SI units understood. These expressions are used in the parts that follow. 
 
(a) From 0 15 202= − +t , we see that the only positive value of t for which the 
particle is (momentarily) stopped is t = =20 15 12/ . s . 
 
(b) From 0 = – 30t, we find a(0) = 0 (that is, it vanishes at t = 0). 
 
(c) It is clear that a(t) = – 30t is negative for t > 0.  
 
(d) The acceleration a(t) = – 30t is positive for t < 0. 
 
(e) The graphs are shown below. SI units are understood. 
 

 

 
 
21. We use Eq. 2-2 (average velocity) and Eq. 2-7 (average acceleration). Regarding 
our coordinate choices, the initial position of the man is taken as the origin and his 
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direction of motion during 5 min ≤ t ≤ 10 min is taken to be the positive x direction. 
We also use the fact that Δ Δx v t= '  when the velocity is constant during a time 
interval Δt ' . 
 
(a) The entire interval considered is Δt = 8 – 2 = 6 min, which is equivalent to 360 s, 
whereas the sub-interval in which he is moving is only 8 5 3min 180 s.t 'Δ = − = =  
His position at t = 2 min is x = 0 and his position at t = 8 min is x v t′= Δ =  
(2.2)(180) 396 m= . Therefore, 

vavg
 m

s
 m / s=

−
=

396 0
360

110. .  

 
(b) The man is at rest at t = 2 min and has velocity v = +2.2 m/s at t = 8 min. Thus, 
keeping the answer to 3 significant figures, 
 

aavg
2 m / s

 s
 m / s=

−
=

2 2 0
360

0 00611. . .  

 
(c) Now, the entire interval considered is Δt = 9 – 3 = 6 min (360 s again), whereas the 
sub-interval in which he is moving is 9 5 4 min 240 st′Δ = − = = ). His position at 

3 mint = is x = 0 and his position at t = 9 min is (2.2)(240) 528 mx v t′= Δ = = . 
Therefore, 

vavg
 m

s
m / s.=

−
=

528 0
360

147.  

 
(d) The man is at rest at t = 3 min and has velocity v = +2.2 m/s at t = 9 min. 
Consequently, aavg = 2.2/360 = 0.00611 m/s2 just as in part (b). 
 
(e) The horizontal line near the bottom of this x-vs-t graph represents the man 
standing at x = 0 for 0 ≤ t < 300 s and the linearly rising line for 300 ≤ t ≤ 600 s 
represents his constant-velocity motion. The lines represent the answers to part (a) 
and (c) in the sense that their slopes yield those results. 
 

 
 
The graph of v-vs-t is not shown here, but would consist of two horizontal “steps” 
(one at v = 0 for 0 ≤ t < 300 s and the next at v = 2.2 m/s for 300 ≤ t ≤ 600 s). The 
indications of the average accelerations found in parts (b) and (d) would be dotted 
lines connecting the “steps” at the appropriate t values (the slopes of the dotted lines 
representing the values of aavg). 
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22. In this solution, we make use of the notation x(t) for the value of x at a particular t. 
The notations v(t) and a(t) have similar meanings. 
 
(a) Since the unit of ct2 is that of length, the unit of c must be that of length/time2, or 
m/s2 in the SI system.  
 
(b) Since bt3 has a unit of length, b must have a unit of length/time3, or m/s3. 
 
(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is 
zero. Since the velocity is given by v = dx/dt = 2ct – 3bt2, v = 0 occurs for t = 0 and 
for 

t c
b

= = =
2
3

2 30
3 2 0

10( . )
( . )

. m / s
 m / s

 s .
2

3  

 
For t = 0, x = x0 = 0 and for t = 1.0 s, x = 1.0 m > x0. Since we seek the maximum, we 
reject the first root (t = 0) and accept the second (t = 1s). 
 
(d) In the first 4 s the particle moves from the origin to x = 1.0 m, turns around, and 
goes back to 
 

x( ( . )( . ( . )( .4 30 4 0 2 0 4 0 802 s)  m / s  s)  m / s  s)  m .2 3 3= − = −  
 
The total path length it travels is 1.0 m + 1.0 m + 80 m = 82 m. 
 
(e) Its displacement is Δx = x2 – x1, where x1 = 0 and x2 = –80 m. Thus, 80 mxΔ = − . 
 
The velocity is given by v = 2ct – 3bt2 = (6.0 m/s2)t – (6.0 m/s3)t2.  
 
(f) Plugging in t = 1 s, we obtain  
 

2 3 2(1 s) (6.0 m/s )(1.0 s) (6.0 m/s )(1.0 s) 0.v = − =  
 
(g) Similarly, 2 3 2(2 s) (6.0 m/s )(2.0 s) (6.0 m/s )(2.0 s) 12m/s .v = − = −  
 
(h) 2 3 2(3 s) (6.0 m/s )(3.0 s) (6.0 m/s )(3.0 s) 36 m/s .v = − = −  
 
(i) 2 3 2(4 s) (6.0 m/s )(4.0 s) (6.0 m/s )(4.0 s) 72 m/s  .v = − = −  

 
The acceleration is given by a = dv/dt = 2c – 6b = 6.0 m/s2 – (12.0 m/s3)t. 
 
(j) Plugging in t = 1 s, we obtain 
 
 2 3 2(1 s) 6.0 m/s (12.0 m/s )(1.0 s) 6.0 m/s .a = − = −  
 
(k) 2 3 2(2 s) 6.0 m/s (12.0 m/s )(2.0 s) 18 m/s .a = − = −  
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(l) 2 3 2(3 s) 6.0 m/s (12.0 m/s )(3.0 s) 30 m/s .a = − = −  
 
(m) 2 3 2(4 s) 6.0 m/s (12.0 m/s )(4.0 s) 42 m/s .a = − = −  
 
23. Since the problem involves constant acceleration, the motion of the electron can 
be readily analyzed using the equations in Table 2-1: 
 

0

2
0 0

2 2
0 0

(2 11)

1 (2 15)
2

2 ( ) (2 16)

v v at

x x v t at

v v a x x

= + −

− = + −

= + − −

 

 
The acceleration can be found by solving Eq. (2-16). With 5

0 1.50 10 m/sv = × , 
65.70 10 m/sv = × , x0 = 0 and x = 0.010 m, we find the average acceleration to be 

 

 
2 2 6 2 5 2

15 20 (5.7 10 m/s) (1.5 10 m/s) 1.62 10  m/s .
2 2(0.010 m)

v va
x

− × − ×
= = = ×  

 
24. In this problem we are given the initial and final speeds, and the displacement, and 
are asked to find the acceleration. We use the constant-acceleration equation given in 
Eq. 2-16, v2 = v2

0 + 2a(x – x0). 
 
(a) Given that 0 0v = , 1.6 m/s,v =  and 5.0 m,x μΔ =  the acceleration of the spores 
during the launch is  

2 2 2
5 2 40

6

(1.6 m/s) 2.56 10  m/s 2.6 10
2 2(5.0 10  m)

v va g
x −

−
= = = × = ×

×
 

 
(b) During the speed-reduction stage, the acceleration is  
 

2 2 2
3 2 20

3

0 (1.6 m/s) 1.28 10  m/s 1.3 10
2 2(1.0 10  m)

v va g
x −

− −
= = = − × = − ×

×
 

 
The negative sign means that the spores are decelerating. 
 
25. We separate the motion into two parts, and take the direction of motion to be 
positive.  In part 1, the vehicle accelerates from rest to its highest speed; we are 
given v0 = 0; v = 20 m/s and a = 2.0 m/s2. In part 2, the vehicle decelerates from its 
highest speed to a halt; we are given v0 = 20 m/s; v = 0 and a = –1.0 m/s2 (negative 
because the acceleration vector points opposite to the direction of motion). 
 
(a) From Table 2-1, we find t1 (the duration of part 1) from v = v0 + at. In this way, 

120 0 2.0t= + yields t1 = 10 s. We obtain the duration t2 of part 2 from the same      
equation. Thus, 0 = 20 + (–1.0)t2 leads to t2 = 20 s, and the total is t = t1 + t2 = 30 s. 
 
(b) For part 1, taking x0 = 0, we use the equation v2 = v2

0 + 2a(x – x0) from Table 2-1 
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and find 

 
2 2 2 2

0
2

(20 m/s) (0) 100 m
2 2(2.0 m/s )

v vx
a

− −
= = = . 

 
This position is then the initial position for part 2, so that when the same equation is     
used in part 2 we obtain 

2 2 2 2
0

2

(0) (20 m/s)100 m
2 2( 1.0 m/s )

v vx
a

− −
− = =

−
. 

 
Thus, the final position is x = 300 m. That this is also the total distance traveled 
should be evident (the vehicle did not "backtrack" or reverse its direction of motion). 
 
26. The constant-acceleration condition permits the use of Table 2-1. 
 
(a) Setting v = 0 and x0 = 0 in 2 2

0 02 ( )v v a x x= + − , we find 
 

2 6 2
0

14

1 1 (5.00 10 ) 0.100 m .
2 2 1.25 10

vx
a

×
= − = − =

− ×
 

 
Since the muon is slowing, the initial velocity and the acceleration must have opposite 
signs. 
 
(b) Below are the time plots of the position x and velocity v of the muon from the 
moment it enters the field to the time it stops. The computation in part (a) made no 
reference to t, so that other equations from Table 2-1 (such as v v at= +0 and  
x v t at= +0

1
2

2 ) are used in making these plots. 
 

 
 
27. We use v = v0 + at, with t = 0 as the instant when the velocity equals +9.6 m/s. 
 
(a) Since we wish to calculate the velocity for a time before t = 0, we set t = –2.5 s. 
Thus, Eq. 2-11 gives 
 

v = + − =( . . ( . .9 6 32 2 5 16 m / s)  m / s   s)  m / s.2c h  
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(b) Now, t = +2.5 s and we find 
 

v = + =( . . ( .9 6 32 2 5 18 m / s)  m / s   s)  m / s.2c h  
 
28. We take +x in the direction of motion, so v0 = +24.6 m/s and a = – 4.92 m/s2. We 
also take x0 = 0. 
 
(a) The time to come to a halt is found using Eq. 2-11: 
 

0 2

24.6 m/s0 5.00 s
4.92 m/s

.v at t
−

= + ⇒ = =  

 
(b) Although several of the equations in Table 2-1 will yield the result, we choose Eq. 
2-16 (since it does not depend on our answer to part (a)). 
 

( )
2

2
0 2

(24.6 m/s)0 2 61.5 m
2 4.92 m/s

.v ax x
−

= + ⇒ = − =  

 
(c) Using these results, we plot 21

0 2v t at+  (the x graph, shown next, on the left) and 
v0 + at (the v graph, on the right) over 0 ≤ t ≤ 5 s, with SI units understood. 
 

 
 
29. We assume the periods of acceleration (duration t1) and deceleration (duration t2) 
are periods of constant a so that Table 2-1 can be used. Taking the direction of motion 
to be +x then a1 = +1.22 m/s2 and a2 = –1.22 m/s2. We use SI units so the velocity at t 
= t1 is v = 305/60 = 5.08 m/s. 
 
(a) We denote Δx as the distance moved during t1, and use Eq. 2-16: 
 

2
2 2

0 1 2

(5.08 m/s)2     
2(1.22 m/s )

v v a x x= + Δ ⇒ Δ = 10.59 m 10.6 m.= ≈  

 
(b) Using Eq. 2-11, we have 

0
1 2

1

5.08 m/s 4.17 s.
1.22 m/s

v vt
a
−

= = =  

 
The deceleration time t2 turns out to be the same so that t1 + t2 = 8.33 s. The distances 
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traveled during t1 and t2 are the same so that they total to 2(10.59 m) = 21.18 m. This 
implies that for a distance of 190 m – 21.18 m = 168.82 m, the elevator is traveling at 
constant velocity. This time of constant velocity motion is 
 

t3
16882
508

33 21= =
.

.
. m

 m / s
 s.  

 
Therefore, the total time is 8.33 s + 33.21 s ≈ 41.5 s. 
 
30. We choose the positive direction to be that of the initial velocity of the car 
(implying that a < 0 since it is slowing down). We assume the acceleration is constant 
and use Table 2-1. 
 
(a) Substituting v0 = 137 km/h = 38.1 m/s, v = 90 km/h = 25 m/s, and a = –5.2 m/s2 
into v = v0 + at, we obtain 
 

t =
−

−
=

25 38
52

2 52

m / s m / s
m / s

s
.

. .  

 
(b) We take the car to be at x = 0 when the brakes 
are applied (at time t = 0). Thus, the coordinate of 
the car as a function of time is given by 
 

( ) ( )2 2138 m/s 5.2 m/s
2

x t t= + −  

 
in SI units. This function is plotted from t = 0 to t 
= 2.5 s on the graph to the right. We have not 
shown the v-vs-t graph here; it is a descending 
straight line from v0 to v. 
 
31. The constant acceleration stated in the problem permits the use of the equations in 
Table 2-1. 
 
(a) We solve v = v0 + at for the time: 
 

t v v
a

=
−

=
×

= ×0
1

10
8

63 0 10
9 8

31 10( .
.

. m / s)
 m / s

 s2  

 
which is equivalent to 1.2 months. 
 
(b) We evaluate x x v t at= + +0 0

1
2

2 , with x0 = 0. The result is 
 

( )2 6 2 131 9.8 m/s (3.1 10 s) 4.6 10  m .
2

x = × = ×  

 
Note that in solving parts (a) and (b), we did not use the equation 2 2

0 02 ( )v v a x x= + − . 
This equation can be employed for consistency check. The final velocity based on this 
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equation is  
2 2 13 7
0 02 ( ) 0 2(9.8 m/s )(4.6 10  m 0) 3.0 10 m/sv v a x x= + − = + × − = × , 

 
which is what was given in the problem statement. So we know the problems have 
been solved correctly. 
 
32. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7). 
 

a v
t

= =

F
HG

I
KJ

=
Δ
Δ

1020
1000

3600
14

202 4 2

km / h
m / km

s / h
s

m / s
b g

.
. . 

 
In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s2 
as follows: 

2

2

202.4 m/s 21 .
9.8 m/s

a g g
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

 
33. The problem statement (see part (a)) indicates that a = constant, which allows us 
to use Table 2-1. 
 
(a) We take x0 = 0, and solve x = v0t + 1

2 at2 (Eq. 2-15) for the acceleration: a = 2(x – 
v0t)/t2. Substituting x = 24.0 m, v0 = 56.0 km/h = 15.55 m/s and t = 2.00 s, we find 
 

( ) ( )( )
( )

20
22

2 24.0m 15.55m/s 2.00s2( ) 3.56m/s ,
2.00s

x v ta
t

−−
= = = −  

 
or 2| | 3.56 m/sa = . The negative sign indicates that the acceleration is opposite to 
the direction of motion of the car. The car is slowing down. 
 
(b) We evaluate v = v0 + at as follows: 
 

v = − =1555 356 2 00 8 43. . . .m / s m / s s m / s2c h b g  
 

which can also be converted to 30.3 km/h. 
 
34. Let d be the 220 m distance between the cars at t = 0, and v1 be the 20 km/h = 50/9 
m/s speed (corresponding to a passing point of x1 = 44.5 m) and v2 be the 40 km/h 
=100/9 m/s speed (corresponding to a passing point of x2 = 76.6 m) of the red car.  
We have two equations (based on Eq. 2-17): 
 

d – x1 = vo t1  + 1
2 a t1

2    where t1 = x1 ⁄ v1 
 

d – x2 = vo t2  + 1
2 a t2

2    where t2 = x2  ⁄ v2 
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We simultaneously solve these equations and obtain the following results: 
 
(a) The initial velocity of the green car is vo = − 13.9 m/s. or roughly − 50 km/h (the 
negative sign means that it’s along the –x direction). 
 
(b) The corresponding acceleration of the car is a = − 2.0 m/s2 (the negative sign 
means that it’s along the –x direction). 
 
35. The positions of the cars as a function of time are given by 
 

 
2 2

0

0

1 1( ) ( 35.0 m)
2 2

( ) (270 m) (20 m/s)

r r r r

g g g

x t x a t a t

x t x v t t

= + = − +

= + = −
 

 
where we have substituted the velocity and not the speed for the green car. The two 
cars pass each other at 12.0 st =  when the graphed lines cross. This implies that  
 

21(270 m) (20 m/s)(12.0 s) 30 m ( 35.0 m) (12.0 s)
2 ra− = = − +  

 
which can be solved to give 20.90 m/s .ra =  
 
36. (a) Equation 2-15 is used for part 1 of the trip and Eq. 2-18 is used for part 2:  
 
  Δx1 = vo1 t1 + 1

2 a1 t1
2     where a1 = 2.25 m/s2 and Δx1 = 900

4  m 
 
      Δx2 = v2 t2 − 1

2 a2 t2
2      where a2 = −0.75 m/s2 and Δx2 = 3(900)

4  m 
 
In addition, vo1 = v2 = 0. Solving these equations for the times and adding the results 
gives t = t1 + t2 = 56.6 s. 
  
(b) Equation 2-16 is used for part 1 of the trip: 
 

v2 = (vo1)2 + 2a1Δx1 = 0 + 2(2.25) 900
4

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 1013 m2/s2 

 
which leads to v = 31.8 m/s for the maximum speed. 
 
37. (a) From the figure, we see that x0 = –2.0 m. From Table 2-1, we can apply  
 

x – x0 = v0t + 1
2 at2 

 
with t = 1.0 s, and then again with t = 2.0 s. This yields two equations for the two 
unknowns, v0 and a: 
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( ) ( ) ( )

( ) ( ) ( )

2
0

2
0

10.0 2.0 m 1.0 s 1.0 s
2
16.0 m 2.0 m 2.0 s 2.0 s .
2

v a

v a

− − = +

− − = +
 

 
Solving these simultaneous equations yields the results v0 = 0 and a = 4.0 m/s2.  
 
(b) The fact that the answer is positive tells us that the acceleration vector points in 
the +x direction. 
 
38. We assume the train accelerates from rest ( v0 0=  and x0 0= ) at 
a1

2134= + . m / s  until the midway point and then decelerates at a2
2134= − . m / s  

until it comes to a stop v2 0=b g  at the next station. The velocity at the midpoint is v1, 
which occurs at x1 = 806/2 = 403m. 
 
(a) Equation 2-16 leads to 

 

( )( )2 2 2
1 0 1 1 12 2 1.34 m/s 403 mv v a x v= + ⇒ = 32.9 m/s.=  

 
(b) The time t1 for the accelerating stage is (using Eq. 2-15) 
 

( )2
1 0 1 1 1 1 2

2 403 m1 24.53 s
2 1.34 m/s

x v t a t t= + ⇒ = = . 

 
Since the time interval for the decelerating stage turns out to be the same, we double 
this result and obtain t = 49.1 s for the travel time between stations. 
 
(c) With a “dead time” of 20 s, we have T = t + 20 = 69.1 s for the total time between 
start-ups. Thus, Eq. 2-2 gives 

vavg
m
s

m / s .= =
806
691

117
.

.  

 
(d) The graphs for x, v and a as a function of t are shown below. The third graph, a(t), 
consists of three horizontal “steps” — one at 1.34 m/s2  during 0 < t < 24.53 s, and 
the next at –1.34 m/s2 during 24.53 s < t < 49.1 s and the last at zero during the “dead 
time” 49.1 s < t < 69.1 s).  
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39. (a) We note that vA = 12/6 = 2 m/s (with two significant figures understood).  
Therefore, with an initial x value of 20 m, car A will be at x = 28 m when t = 4 s.  
This must be the value of x for car B at that time; we use Eq. 2-15: 
 

28 m = (12 m/s)t + 1
2 aB t2    where t = 4.0 s . 

 
This yields aB = – 2.5 m/s2. 
 
(b) The question is: using the value obtained for aB in part (a), are there other values 
of t (besides t = 4 s) such that xA = xB ? The requirement is 
 

20 + 2t = 12t + 1
2 aB t2 

 
where aB = –5/2. There are two distinct roots unless the discriminant 

102 − 2(−20)(aB)  is zero. In our case, it is zero – which means there is only one root.  
The cars are side by side only once at t = 4 s.  
  
(c) A sketch is shown below. It consists of a straight line (xA) tangent to a parabola (xB) 
at t = 4. 

 
 
(d) We only care about real roots, which means 102 − 2(−20)(aB) ≥ 0.  If  |aB| > 5/2 
then there are no (real) solutions to the equation; the cars are never side by side. 
 
(e) Here we have 102 − 2(−20)(aB) > 0  ⇒  two real roots.  The cars are side by side 
at two different times. 
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40. We take the direction of motion as +x, so a = –5.18 m/s2, and we use SI units, so 
v0 = 55(1000/3600) = 15.28 m/s. 
 
(a) The velocity is constant during the reaction time T, so the distance traveled during 
it is  

dr = v0T – (15.28 m/s) (0.75 s) = 11.46 m. 
 
We use Eq. 2-16 (with v = 0) to find the distance db traveled during braking: 
 

( )
2

2 2
0 2

(15.28 m/s)2
2 5.18 m/sb bv v ad d= + ⇒ = −

−
 

 
which yields db = 22.53 m. Thus, the total distance is dr + db = 34.0 m, which means 
that the driver is able to stop in time. And if the driver were to continue at v0, the car 
would enter the intersection in t = (40 m)/(15.28 m/s) = 2.6 s, which is (barely) 
enough time to enter the intersection before the light turns, which many people would 
consider an acceptable situation. 
 
(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than 
the distance to the intersection, so the driver cannot stop without the front end of the 
car being a couple of meters into the intersection. And the time to reach it at constant 
speed is 32/15.28 = 2.1 s, which is too long (the light turns in 1.8 s). The driver is 
caught between a rock and a hard place. 
 
41. The displacement (Δx) for each train is the “area” in the graph (since the 
displacement is the integral of the velocity).  Each area is triangular, and the area of 
a triangle is 1/2( base) × (height). Thus, the (absolute value of the) displacement for 
one train (1/2)(40 m/s)(5 s) = 100 m, and that of the other train is (1/2)(30 m/s)(4 s) = 
60 m.  The initial “gap” between the trains was 200 m, and according to our 
displacement computations, the gap has narrowed by 160 m. Thus, the answer is 
200 – 160 = 40 m. 
 
42. (a) Note that 110 km/h is equivalent to 30.56 m/s. During a two-second interval, 
you travel 61.11 m. The decelerating police car travels (using Eq. 2-15) 51.11 m.  In 
light of the fact that the initial “gap” between cars was 25 m, this means the gap has 
narrowed by 10.0 m – that is, to a distance of 15.0 m between cars. 
 
(b) First, we add 0.4 s to the considerations of part (a).  During a 2.4 s interval, you 
travel 73.33 m.  The decelerating police car travels (using Eq. 2-15) 58.93 m during 
that time.  The initial distance between cars of 25 m has therefore narrowed by 14.4 
m.  Thus, at the start of your braking (call it t0) the gap between the cars is 10.6 m.  
The speed of the police car at t0 is 30.56 – 5(2.4) = 18.56 m/s. Collision occurs at time 
t when xyou = xpolice (we choose coordinates such that your position is x = 0 and the 
police car’s position is x = 10.6 m at t0).  Eq. 2-15 becomes, for each car: 
 
        xpolice – 10.6 = 18.56(t − t0) – 1

2 (5)(t − t0)2 

               xyou = 30.56(t − t0) – 1
2 (5)(t − t0)2  . 
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Subtracting equations, we find  
 

10.6 = (30.56 – 18.56)(t − t0)  ⇒  0.883 s = t − t0. 
 
At that time your speed is 30.56 + a(t − t0) = 30.56 – 5(0.883) ≈ 26 m/s (or 94 km/h).   
 
43. In this solution we elect to wait until the last step to convert to SI units. Constant 
acceleration is indicated, so use of Table 2-1 is permitted. We start with Eq. 2-17 and 
denote the train’s initial velocity as vt and the locomotive’s velocity as v  (which is 
also the final velocity of the train, if the rear-end collision is barely avoided). We note 
that the distance Δx consists of the original gap between them, D, as well as the 
forward distance traveled during this time by the locomotive v t . Therefore, 
 

v v x
t

D v t
t

D
t

vt +
= =

+
= +

2
Δ .  

 
We now use Eq. 2-11 to eliminate time from the equation. Thus, 
 

v v D
v v a

vt

t

+
=

−
+

2 b g /  

which leads to 

a v v v v v
D D

v vt t
t=

+
−F

HG
I
KJ

−F
HG
I
KJ = − −

2
1

2
2 b g .  

Hence, 

a = − −F
HG

I
KJ = −

1
2 0 676

29 161 12888
2

2

( .  km)
km
h

km
h

 km / h  

 
which we convert as follows: 

a = − F
HG

I
KJ
F
HG

I
KJ = −12888 1000

1
1

3600
0 9942

2
2 km / h  m

 km
 h

 s
 m / sc h .  

 
so that its magnitude is |a| = 0.994 m/s2. A graph is 
shown here for the case where a collision is just 
avoided (x along the vertical axis is in meters and t 
along the horizontal axis is in seconds). The top 
(straight) line shows the motion of the locomotive 
and the bottom curve shows the motion of the 
passenger train. 
 
The other case (where the collision is not quite 
avoided) would be similar except that the slope of 
the bottom curve would be greater than that of the 
top line at the point where they meet. 

 
44. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 
(with Δy replacing Δx) because this is constant acceleration motion. The ground level 
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is taken to correspond to the origin of the y axis. 
 
(a) Using y v t gt= −0

1
2

2 , with y = 0.544 m and t = 0.200 s, we find 
 

2 2 2

0
/ 2 0.544 m (9.8 m/s ) (0.200 s) / 2 3.70 m/s .

0.200 s
y gtv

t
+ +

= = =  

 
(b) The velocity at y = 0.544 m is 
 

2
0 3.70 m/s (9.8 m/s ) (0.200 s) 1.74 m/s .v v gt= − = − =  

 
(c) Using 2 2

0 2v v gy= −  (with different values for y and v than before), we solve for 
the value of y corresponding to maximum height (where v = 0). 
 

2 2
0

2

(3.7 m/s) 0.698 m.
2 2(9.8 m/s )
vy
g

= = =  

 
Thus, the armadillo goes 0.698 – 0.544 = 0.154 m higher. 
 
45. In this problem a ball is being thrown vertically upward. Its subsequent motion is 
under the influence of gravity. We neglect air resistance for the duration of the motion 
(between “launching” and “landing”), so a = –g = –9.8 m/s2 (we take downward to be 
the –y direction). We use the equations in Table 2-1 (with Δy replacing Δx) because 
this is a = constant motion: 

0

2
0 0

2 2
0 0

(2 11)

1 (2 15)
2

2 ( ) (2 16)

v v gt

y y v t gt

v v g y y

= − −

− = − −

= − − −

 

 
We set y0 = 0. Upon reaching the maximum height y, the speed of the ball is 
momentarily zero (v = 0). Therefore, we can relate its initial speed v0 to y via the 
equation 2 2

00  2v v gy= = − .  
 
The time it takes for the ball to reach maximum height is given by 0 0v v gt= − = , or 

0 /t v g= . Therefore, for the entire trip (from the time it leaves the ground until the 
time it returns to the ground), the total flight time is 02 2 /T t v g= = . 
 
(a) At the highest point v = 0 and v gy0 2= .  Since y = 50 m we find 
 

 2
0 2 2(9.8 m/s )(50 m) 31.3 m/s.v gy= = =  

 
(b) Using the result from (a) for v0, we find the total flight time to be 
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0
2

2 2(31.3 m/s) 6.39 s 6.4 s
9.8 m/s

vT
g

= = = ≈ . 

 
(c) SI units are understood in the x and v graphs shown. The acceleration graph is a 
horizontal line at –9.8 m/s2. 

   
 
In calculating the total flight time of the ball, we could have used Eq. 2-15. At 

0t T= > , the ball returns to its original position ( 0y = ). Therefore,  
 

2 0
0

21 0   
2

vy v T gT T
g

= − = ⇒ = . 

 
46. Neglect of air resistance justifies setting a = –g = –9.8 m/s2 (where down is our –y 
direction) for the duration of the fall. This is constant acceleration motion, and we 
may use Table 2-1 (with Δy replacing Δx). 
 
(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward), 
we have 

2 2
0 2 0 2(9.8 m/s )( 1700 m) 183 m/sv v g y= − − Δ = − − − = − . 

 
Its magnitude is therefore 183 m/s. 
 
(b) No, but it is hard to make a convincing case without more analysis. We estimate 
the mass of a raindrop to be about a gram or less, so that its mass and speed (from part 
(a)) would be less than that of a typical bullet, which is good news. But the fact that 
one is dealing with many raindrops leads us to suspect that this scenario poses an 
unhealthy situation. If we factor in air resistance, the final speed is smaller, of course, 
and we return to the relatively healthy situation with which we are familiar. 
 
47. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the fall. This is constant acceleration motion, 
which justifies the use of Table 2-1 (with Δy replacing Δx). 
 
(a) Starting the clock at the moment the wrench is dropped (v0 = 0), then 

2 2
0 2v v g y= − Δ  leads to 

2

2

( 24 m/s) 29.4 m
2(9.8 m/s )

y −
Δ = − = −  

 
so that it fell through a height of 29.4 m. 
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(b) Solving v = v0 – gt for time, we find: 
 

0
2

0 ( 24 m/s) 2.45 s.
9.8 m/s

v vt
g
− − −

= = =  

 
(c) SI units are used in the graphs, and the initial position is taken as the coordinate 
origin. The acceleration graph is a horizontal line at –9.8 m/s2. 
 

       
 
As the wrench falls, with 0a g= − < , its speed increases but its velocity becomes 
more negative. 
 
48. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the fall. This is constant acceleration motion, 
which justifies the use of Table 2-1 (with Δy replacing Δx). 
 
(a) Noting that Δy = y – y0 = –30 m, we apply Eq. 2-15 and the quadratic formula 
(Appendix E) to compute t: 

Δ
Δ

y v t gt t
v v g y

g
= − ⇒ =

± −
0

2 0 0
21

2
2

     

 
which (with v0 = –12 m/s since it is downward) leads, upon choosing the positive root 
(so that t > 0), to the result: 
 

2 2

2

12 m/s ( 12 m/s) 2(9.8 m/s )( 30 m)
1.54 s.

9.8 m/s
t

− + − − −
= =  

 
(b) Enough information is now known that any of the equations in Table 2-1 can be 
used to obtain v; however, the one equation that does not use our result from part (a) 
is Eq. 2-16: 

v v g y= − =0
2 2 271Δ .  m / s  

 
where the positive root has been chosen in order to give speed (which is the 
magnitude of the velocity vector). 
 
49. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 
(with Δy replacing Δx) because this is constant acceleration motion. We are placing 
the coordinate origin on the ground. We note that the initial velocity of the package is 
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the same as the velocity of the balloon, v0 = +12 m/s, and that its initial coordinate is 
y0 = +80 m. 
 
(a) We solve y y v t gt= + −0 0

1
2

2  for time, with y = 0, using the quadratic formula 
(choosing the positive root to yield a positive value for t). 
 

( )( )2 22
0 0 0

2

12 m/s (12 m/s) 2 9.8 m/s 80 m2
9.8 m/s

5.4 s

v v gy
t

g

+ ++ +
= =

=

 

(b) If we wish to avoid using the result from part (a), we could use Eq. 2-16, but if 
that is not a concern, then a variety of formulas from Table 2-1 can be used. For 
instance, Eq. 2-11 leads to  
 

2
0 12 m/s (9.8 m/s )(5.447 s) 41.38 m/sv v gt= − = − = −  

 
Its final speed is about 41 m/s. 
 
50. The y coordinate of Apple 1 obeys y – yo1 = – 1

2 g t2 where y = 0 when t = 2.0 s.  
This allows us to solve for yo1, and we find yo1 = 19.6 m.   
 
The graph for the coordinate of Apple 2 (which is thrown apparently at t = 1.0 s with 
velocity v2) is 

y – yo2 = v2(t – 1.0) – 1
2 g (t – 1.0)2 

 
where yo2 = yo1 = 19.6 m and where y = 0 when t = 2.25 s. Thus, we obtain |v2| = 9.6 
m/s, approximately. 
 
51. (a) With upward chosen as the +y direction, we use Eq. 2-11 to find the initial 
velocity of the package:  
                

v = vo + at  ⇒  0 = vo – (9.8 m/s2)(2.0 s) 
  
which leads to vo = 19.6 m/s. Now we use Eq. 2-15: 
 

Δy = (19.6 m/s)(2.0 s) + 1
2 (–9.8 m/s2)(2.0 s)2 ≈ 20 m . 

 
We note that the “2.0 s” in this second computation refers to the time interval 2 < t < 4 
in the graph (whereas the “2.0 s” in the first computation referred to the 0 < t < 2 time 
interval shown in the graph). 
  
(b) In our computation for part (b), the time interval (“6.0 s”) refers to the 2 < t < 8 
portion of the graph: 
 

Δy = (19.6 m/s)(6.0 s) + 1
2 (–9.8 m/s2)(6.0 s)2 ≈ –59 m , 

or | | 59 myΔ = . 
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52. The full extent of the bolt’s fall is given by  
 

y – y0 = –1
2 g t2 

 
where y – y0 = –90 m (if upward is chosen as the positive y direction). Thus the time 
for the full fall is found to be t = 4.29 s. The first 80% of its free-fall distance is given 
by –72 = –g τ2/2, which requires time τ = 3.83 s. 
 
(a) Thus, the final 20% of its fall takes t – τ = 0.45 s. 
 
(b) We can find that speed using v = −gτ.  Therefore, |v| = 38 m/s, approximately. 
 
(c) Similarly, vfinal = − g t  ⇒  |vfinal| = 42 m/s. 
 
53. The speed of the boat is constant, given by vb = d/t. Here, d is the distance of the 
boat from the bridge when the key is dropped (12 m) and t is the time the key takes in 
falling. To calculate t, we put the origin of the coordinate system at the point where 
the key is dropped and take the y axis to be positive in the downward direction. 
Taking the time to be zero at the instant the key is dropped, we compute the time t 
when y = 45 m. Since the initial velocity of the key is zero, the coordinate of the key 
is given by y gt= 1

2
2 . Thus, 

t y
g

= = =
2 2 45 303( . m)

9.8 m / s
 s .2  

 
Therefore, the speed of the boat is 

vb = =
12 4 0 m
3.03 s

 m / s ..  

 
54. (a) We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking 
down as the –y direction) for the duration of the motion. We are allowed to use Eq. 
2-15 (with Δy replacing Δx) because this is constant acceleration motion. We use 
primed variables (except t) with the first stone, which has zero initial velocity, and 
unprimed variables with the second stone (with initial downward velocity –v0, so that 
v0 is being used for the initial speed). SI units are used throughout. 
 

( )

( )( ) ( )

2

2
0

10
2

11 1
2

y t gt

y v t g t

′Δ = −

Δ = − − − −
 

 
Since the problem indicates Δy’ = Δy = –43.9 m, we solve the first equation for t 
(finding t = 2.99 s) and use this result to solve the second equation for the initial speed 
of the second stone: 
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( ) ( ) ( )( )22
0

143.9 m 1.99 s 9.8 m/s 1.99 s
2

v− = − −  

 
which leads to v0 = 12.3 m/s. 
 
(b) The velocity of the stones are given by  
 

0
( ) ( ),         ( 1)y y

d y d yv gt v v g t
dt dt

′Δ Δ′ = = − = = − − −  

 
The plot is shown below: 
 

 
 
55. During contact with the ground its average acceleration is given by 

a v
tavg =

Δ
Δ

 

where Δv is the change in its velocity during contact with the ground and 
320.0 10  st −Δ = × is the duration of contact. Thus, we must first find the velocity of the 

ball just before it hits the ground (y = 0).  
 
(a) Now, to find the velocity just before contact, we take t = 0 to be when it is dropped. 
Using Eq. (2-16) with 0 15.0 my = , we obtain 
 

2 2
0 02 ( ) 0 2(9.8 m/s )(0 15 m) 17.15 m/sv v g y y= − − − = − − − = −  

 
where the negative sign is chosen since the ball is traveling downward at the moment 
of contact. Consequently, the average acceleration during contact with the ground is 
 

2
avg 3

0 ( 17.1 m/s) 857 m/s .
20.0 10 s

va
t −

Δ − −
= = =

Δ ×
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(b) The fact that the result is positive indicates that this acceleration vector points 
upward. In a later chapter, this will be directly related to the magnitude and direction 
of the force exerted by the ground on the ball during the collision. 
 
56. We use Eq. 2-16,  

vB
2 = vA

2 + 2a(yB – yA), 
 
with a = –9.8 m/s2, yB – yA = 0.40 m, and vB = 1

3 vA. It is then straightforward to solve: 
vA = 3.0 m/s, approximately. 
 
57. The average acceleration during contact with the floor is aavg = (v2 – v1) / Δt, 
where v1 is its velocity just before striking the floor, v2 is its velocity just as it leaves 
the floor, and Δt is the duration of contact with the floor (12 × 10–3 s).  
 
(a) Taking the y axis to be positively upward and placing the origin at the point where 
the ball is dropped, we first find the velocity just before striking the floor, using 

2 2
1 0 2v v gy= − . With v0 = 0 and y = – 4.00 m, the result is 

 
2

1 2 2(9.8 m/s ) ( 4.00 m) 8.85 m/sv gy= − − = − − − = −  
 
where the negative root is chosen because the ball is traveling downward. To find the 
velocity just after hitting the floor (as it ascends without air friction to a height of 2.00 
m), we use 2 2

2 02 ( )v v g y y= − −  with v = 0, y = –2.00 m (it ends up two meters 
below its initial drop height), and y0 = – 4.00 m. Therefore, 
 

2
2 02 ( ) 2(9.8 m/s ) ( 2.00 m 4.00 m) 6.26 m/s .v g y y= − = − + =  

 
Consequently, the average acceleration is 
 

3 22 1
avg 3

6.26 m/s ( 8.85 m/s) 1.26 10 m/s .
12.0 10 s

v va
t −

− − −
= = = ×

Δ ×
 

 
(b) The positive nature of the result indicates that the acceleration vector points 
upward. In a later chapter, this will be directly related to the magnitude and direction 
of the force exerted by the ground on the ball during the collision. 
 
58. We choose down as the +y direction and set the coordinate origin at the point 
where it was dropped (which is when we start the clock). We denote the 1.00 s 
duration mentioned in the problem as t – t' where t is the value of time when it lands 
and t' is one second prior to that. The corresponding distance is y – y' = 0.50h, where y 
denotes the location of the ground. In these terms, y is the same as h, so we have h –y' 
= 0.50h or 0.50h = y' . 
 
(a) We find t' and t from Eq. 2-15 (with v0 = 0): 
 



CHAPTER 2 

 

50 

 

2

2

1 2
2

1 2 .
2

yy gt t
g

yy gt t
g

′
′= ′ ⇒ ′=

= ⇒ =

 

 
Plugging in y = h and y' = 0.50h, and dividing these two equations, we obtain 
 

t
t

h g
h g

′
= =

2 0 50
2

050
. /

/
. .b g  

 
Letting t' = t – 1.00 (SI units understood) and cross-multiplying, we find 
 

t t t− = ⇒ =
−

100 0 50 100
1 0 50

. . .
.

 

which yields t = 3.41 s. 
 
(b) Plugging this result into y gt= 1

2
2  we find h = 57 m. 

 
(c) In our approach, we did not use the quadratic formula, but we did “choose a root” 
when we assumed (in the last calculation in part (a)) that 050.  = +0.707 instead 
of –0.707. If we had instead let 0 50.  = –0.707 then our answer for t would have 
been roughly 0.6 s, which would imply that t' = t – 1 would equal a negative number 
(indicating a time before it was dropped), which certainly does not fit with the 
physical situation described in the problem. 
 
59. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 
(with Δy replacing Δx) because this is constant acceleration motion. The ground level 
is taken to correspond to the origin of the y-axis.  
 
(a) The time drop 1 leaves the nozzle is taken as t = 0 and its time of landing on the 
floor t1 can be computed from Eq. 2-15, with v0 = 0 and y1 = –2.00 m. 
 

2
1 1 1 2

1 2 2( 2.00 m)    0.639 s .
2 9.8 m/s

yy gt t
g

− − −
= − ⇒ = = =  

 
At that moment, the fourth drop begins to fall, and from the regularity of the dripping 
we conclude that drop 2 leaves the nozzle at t = 0.639/3 = 0.213 s and drop 3 leaves 
the nozzle at t = 2(0.213 s) = 0.426 s.  Therefore, the time in free fall (up to the 
moment drop 1 lands) for drop 2 is t2 = t1 – 0.213 s = 0.426 s. Its position at the 
moment drop 1 strikes the floor is 
 

 2 2 2
2 2

1 1 (9.8 m/s )(0.426 s) 0.889 m,
2 2

y gt= − = − = −  

 
or about 89 cm below the nozzle. 



 

 

51

 

 
(b) The time in free fall (up to the moment drop 1 lands) for drop 3 is t3 = t1 –0.426 s 
= 0.213 s. Its position at the moment drop 1 strikes the floor is 
 

2 2 2
3 3

1 1 (9.8 m/s )(0.213 s) 0.222 m,
2 2

y gt= − = − = −  

 
or about 22 cm below the nozzle.  
 
60. To find the “launch” velocity of the rock, we apply Eq. 2-11 to the maximum 
height (where the speed is momentarily zero) 
 

( )( )2
0 00 9.8 m/s 2.5 sv v gt v= − ⇒ = −  

 
so that v0 = 24.5 m/s (with +y up). Now we use Eq. 2-15 to find the height of the 
tower (taking y0 = 0 at the ground level) 
 

( )( ) ( )( )22 2
0 0

1 10 24.5 m/s 1.5 s 9.8 m/s 1.5 s .
2 2

y y v t at y− = + ⇒ − = −  

 
Thus, we obtain y = 26 m. 
 
61. We choose down as the +y direction and place the coordinate origin at the top of 
the building (which has height H). During its fall, the ball passes (with velocity v1) the 
top of the window (which is at y1) at time t1, and passes the bottom (which is at y2) at 
time t2. We are told y2 – y1 = 1.20 m and t2 – t1 = 0.125 s. Using Eq. 2-15 we have 
 

y y v t t g t t2 1 1 2 1 2 1
21

2
− = − + −b g b g  

which immediately yields 
 

( )( )221
2

1

1.20 m 9.8 m/s 0.125 s
8.99 m/s.

0.125 s
v

−
= =  

 
From this, Eq. 2-16 (with v0 = 0) reveals the value of y1: 
 

2
2
1 1 1 2

(8.99 m/s)2 4.12 m.
2(9.8 m/s )

v gy y= ⇒ = =  

 
It reaches the ground (y3 = H) at t3. Because of the symmetry expressed in the 
problem (“upward flight is a reverse of the fall’’) we know that t3 – t2 = 2.00/2 = 1.00 
s. And this means t3 – t1 = 1.00 s + 0.125 s = 1.125 s. Now Eq. 2-15 produces 
 

2
3 1 1 3 1 3 1

2 2
3

1( ) ( )
2

14.12 m (8.99 m/s) (1.125 s) (9.8 m/s ) (1.125 s)
2

y y v t t g t t

y

− = − + −

− = +
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which yields y3 = H = 20.4 m. 
 
62. The height reached by the player is y = 0.76 m (where we have taken the origin of 
the y axis at the floor and +y to be upward). 
 
(a) The initial velocity v0 of the player is 
 

2
0 2 2(9.8 m/s ) (0.76 m) 3.86 m/s .v gy= = =  

 
This is a consequence of Eq. 2-16 where velocity v vanishes. As the player reaches y1 
= 0.76 m – 0.15 m = 0.61 m, his speed v1 satisfies v v gy0

2
1
2

12− = , which yields 
 

2 2 2
1 0 12 (3.86 m/s) 2(9.80 m/s ) (0.61 m) 1.71 m/s .v v gy= − = − =  

 
The time t1 that the player spends ascending in the top Δy1 = 0.15 m of the jump can 
now be found from Eq. 2-17: 
 

( ) ( )
1 1 1 1

2 0.15 m1 0.175 s
2 1.71 m/s 0

y v v t tΔ = + ⇒ = =
+

 

 
which means that the total time spent in that top 15 cm (both ascending and 
descending) is 2(0.175 s) = 0.35 s = 350 ms. 
 
(b) The time t2 when the player reaches a height of 0.15 m is found from Eq. 2-15: 
 

2 2 2
0 2 2 2 2

1 10.15  m (3.86 m/s) (9.8 m/s )  ,
2 2

v t gt t t= − = −  

 
which yields (using the quadratic formula, taking the smaller of the two positive roots) 
t2 = 0.041 s = 41 ms, which implies that the total time spent in that bottom 15 cm 
(both ascending and descending) is 2(41 ms) = 82 ms. 
 
63. The time t the pot spends passing in front of the window of length L = 2.0 m is 
0.25 s each way. We use v for its velocity as it passes the top of the window (going 
up). Then, with a = –g = –9.8 m/s2 (taking down to be the –y direction), Eq. 2-18 
yields 

L vt gt v L
t

gt= − ⇒ = −
1
2

1
2

2 . 

 
The distance H the pot goes above the top of the window is therefore (using Eq. 2-16 
with the final velocity being zero to indicate the highest point) 
 

( ) ( )22 22

2

2.00 m / 0.25 s (9.80 m/s )(0.25 s) / 2/ / 2
2.34 m.

2 2 2(9.80 m/s )
L t gtvH

g g
−−

= = = =  
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64. The graph shows y = 25 m to be the highest point (where the speed momentarily 
vanishes). The neglect of “air friction” (or whatever passes for that on the distant 
planet) is certainly reasonable due to the symmetry of the graph. 
 
(a) To find the acceleration due to gravity gp on that planet, we use Eq. 2-15 (with +y 
up) 

( )( ) ( )22
0

1 125 m 0 0 2.5 s 2.5 s
2 2p py y vt g t g− = + ⇒ − = +  

 
so that gp = 8.0 m/s2. 
 
(b) That same (max) point on the graph can be used to find the initial velocity. 
 

( ) ( ) ( )0 0 0
1 125 m 0 0 2.5 s
2 2

y y v v t v− = + ⇒ − = +  

 
Therefore, v0 = 20 m/s. 
 
65. The key idea here is that the speed of the head (and the torso as well) at any given 
time can be calculated by finding the area on the graph of the head’s acceleration 
versus time, as shown in Eq. 2-26: 
 

1 0
0 1

area between the acceleration curve
  

 and the time axis, from  o 
v v

t t t
⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 

 
(a) From Fig. 2.14a, we see that the head begins to accelerate from rest (v0 = 0) at t0 = 
110 ms and reaches a maximum value of 90 m/s2 at t1 = 160 ms. The area of this 
region is 

 ( )3 21area (160 110) 10 s 90 m/s 2.25 m/s
2

−= − × ⋅ =  

 
which is equal to v1, the speed at t1.  
 
(b) To compute the speed of the torso at t1=160 ms, we divide the area into 4 regions: 
From 0 to 40 ms, region A has zero area. From 40 ms to 100 ms, region B has the 
shape of a triangle with area  

 2
B

1area (0.0600 s)(50.0 m/s ) 1.50 m/s
2

= = . 

From 100 to 120 ms, region C has the shape of a rectangle with area  

2
Carea   (0.0200 s) (50.0 m/s ) = 1.00 m/s.=  

From 110 to 160 ms, region D has the shape of a trapezoid with area 

2
D

1area   (0.0400 s) (50.0  20.0) m/s  1.40 m/s.
2

= + =  

Substituting these values into Eq. 2-26, with v0 = 0 then gives 
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 1 0 0 1 50 m/s + 1.00 m/s + 1.40 m/s = 3.90 m/s,v .− = +  
or 1 3 90 m/s.v .=  
 
66. The key idea here is that the position of an object at any given time can be 
calculated by finding the area on the graph of the object’s velocity versus time, as 
shown in Eq. 2-25: 

1 0
0 1

area between the velocity curve
   

and the time axis, from  o 
x x .

t t t
⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 

 
(a) To compute the position of the fist at t = 50 ms, we divide the area in Fig. 2-34 
into two regions. From 0 to 10 ms, region A has the shape of a triangle with area  
 

A
1area  = (0.010 s) (2 m/s) = 0.01 m.
2

 

      
From 10 to 50 ms, region B has the shape of a trapezoid with area  

B
1area  = (0.040 s) (2 + 4) m/s = 0.12 m.
2

 

 
Substituting these values into Eq. 2-25 with x0 = 0 then gives 
 
 1 0 0 0 01 m + 0.12 m = 0.13 m,x .− = +  
or 1 0 13 m.x .=  
 
(b) The speed of the fist reaches a maximum at t1 = 120 ms. From 50 to 90 ms, region 
C has the shape of a trapezoid with area  
 

C
1area  = (0.040 s) (4 + 5) m/s = 0.18 m.
2

 

      
From 90 to 120 ms, region D has the shape of a trapezoid with area  
 

D
1area  = (0.030 s) (5 + 7.5) m/s = 0.19 m.
2

 

 
Substituting these values into Eq. 2-25, with x0 = 0 then gives 
 
 1 0 0 0 01 m + 0.12 m + 0.18 m + 0.19 m = 0.50 m,x .− = +  
or 1 0 50 m.x .=  
 
67. The problem is solved using Eq. 2-26:  
 

1 0
0 1

area between the acceleration curve
    

 and the time axis, from  o 
v v

t t t
⎛ ⎞

− = ⎜ ⎟
⎝ ⎠
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To compute the speed of the unhelmeted, bare head at t1 = 7.0 ms, we divide the area 
under the a vs. t graph into 4 regions: From 0 to 2 ms, region A has the shape of a 
triangle with area 

 2
A

1area  = (0.0020 s) (120 m/s ) = 0.12 m/s.
2

 

From 2 ms to 4 ms, region B has the shape of a trapezoid with area  
 

2
B

1area  = (0.0020 s) (120 + 140) m/s  = 0.26 m/s.
2

 

      
From 4 to 6 ms, region C has the shape of a trapezoid with area  

2
C

1area  = (0.0020 s) (140 + 200) m/s  = 0.34 m/s.
2

 

 
From 6 to 7 ms, region D has the shape of a triangle with area 
  

2
D

1area (0.0010 s) (200 m/s ) 0.10 m/s.
2

= =  

 
Substituting these values into Eq. 2-26, with v0=0 then gives 
 
 0 12 m/s 0.26 m/s 0.34 m/s 0.10 m/s 0.82 m/s.unhelmetedv .= + + + =  
 
Carrying out similar calculations for the helmeted head, we have the following 
results: From 0 to 3 ms, region A has the shape of a triangle with area 

 2
A

1area  = (0.0030 s) (40 m/s ) = 0.060 m/s.
2

 

From 3 ms to 4 ms, region B has the shape of a rectangle with area  
 

2
Barea (0.0010 s) (40 m/s ) 0.040 m/s.= =  

      
From 4 to 6 ms, region C has the shape of a trapezoid with area  

2
C

1area  = (0.0020 s) (40 + 80) m/s  = 0.12 m/s.
2

 

From 6 to 7 ms, region D has the shape of a triangle with area 
2

D
1area (0.0010 s) (80 m/s ) 0.040 m/s.
2

= =  

 
Substituting these values into Eq. 2-26, with v0 = 0 then gives 
 

helmeted 0 060 m/s 0.040 m/s 0.12 m/s 0.040 m/s 0.26 m/s.v .= + + + =  
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Thus, the difference in the speed is 
 
 unhelmeted helmeted 0 82 m/s 0.26 m/s 0.56 m/s.v v v .Δ = − = − =  
 
68. This problem can be solved by noting that velocity can be determined by the 
graphical integration of acceleration versus time. The speed of the tongue of the 
salamander is simply equal to the area under the acceleration curve: 
 

 
2 2 2 2 2 2 21 1 1area (10 s)(100 m/s ) (10 s)(100 m/s 400 m/s ) (10 s)(400 m/s )

2 2 2
5.0 m/s.

v − − −= = + + +

=
 

 
69. Since /v dx dt=  (Eq. 2-4), then Δx v dt= z  , which corresponds to the area 
under the v vs t graph. Dividing the total area A into rectangular (base × height) and 
triangular 1

2 base height×b g  areas, we have 
 

 

   

A A A A At t t t= + + +

= + + +F
HG

I
KJ +

< < < < < < < <0 2 2 10 10 12 12 16

1
2

2 8 8 8 2 4 1
2

2 4 4 4( )( ) ( )( ) ( )( ) ( )( ) ( )( )
 

 
with SI units understood. In this way, we obtain Δx = 100 m. 
 
70. To solve this problem, we note that velocity is equal to the time derivative of a 
position function, as well as the time integral of an acceleration function, with the 
integration constant being the initial velocity. Thus, the velocity of particle 1 can be 
written as  

 ( )21
1 6.00 3.00 2.00 12.0 3.00dx dv t t t

dt dt
= = + + = + . 

 
Similarly, the velocity of particle 2 is  

 2
2 20 2 20.0 ( 8.00 ) 20.0 4.00 .v v a dt t dt t= + = + − = −∫ ∫  

The condition that 1 2v v=  implies 
 

2 212.0 3.00 20.0 4.00 4.00 12.0 17.0 0t t t t+ = − ⇒ + − =  

which can be solved to give (taking positive root) ( 3 26) / 2 1.05 s.t = − + =  Thus, 

the velocity at this time is 1 2 12.0(1.05) 3.00 15.6 m/s.v v= = + =  
 
71. (a) The derivative (with respect to time) of the given expression for x yields the 
“velocity” of the spot: 

v(t) = 9 – 9
4 t2 
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with 3 significant figures understood. It is easy to see that v = 0 when t = 2.00 s. 
 
(b) At t = 2 s, x = 9(2) – ¾(2)3 = 12. Thus, the location of the spot when v = 0 is 12.0 
cm from left edge of screen. 
 
(c) The derivative of the velocity is a = – 9

2 t, which gives an acceleration of 
29.00 cm/m−  (negative sign indicating leftward) when the spot is 12 cm from the 

left edge of screen. 
 
(d) Since v > 0 for times less than t = 2 s, then the spot had been moving rightward. 
 
(e) As implied by our answer to part (c), it moves leftward for times immediately after 
t = 2 s.  In fact, the expression found in part (a) guarantees that for all t > 2, v < 0 
(that is, until the clock is “reset” by reaching an edge). 
 
(f) As the discussion in part (e) shows, the edge that it reaches at some t > 2 s cannot 
be the right edge; it is the left edge (x = 0). Solving the expression given in the 
problem statement (with x = 0) for positive t yields the answer: the spot reaches the 
left edge at t = 12 s ≈ 3.46 s. 
 
72. We adopt the convention frequently used in the text: that "up" is the positive y 
direction. 
 
(a) At the highest point in the trajectory v = 0. Thus, with t = 1.60 s, the equation 
v = v0 – gt yields v0 = 15.7 m/s. 
 
(b) One equation that is not dependent on our result from part (a) is y – y0 = vt + 1

2gt2; 
this readily gives ymax – y0 = 12.5 m for the highest ("max") point measured relative to 
where it started (the top of the building). 
 
(c) Now we use our result from part (a) and plug into y − y0 = v0t + 1

2gt2 with t = 6.00 
s and y = 0 (the ground level). Thus, we have 

 
0 – y0 = (15.68 m/s)(6.00 s) – 1

2 (9.8 m/s2)(6.00 s)2. 
 

Therefore, y0 (the height of the building) is equal to 82.3 m. 
 
73. We denote the required time as t, assuming the light turns green when the clock 
reads zero. By this time, the distances traveled by the two vehicles must be the same. 
 
(a) Denoting the acceleration of the automobile as a and the (constant) speed of the 
truck as v then 

Δx at vt= FHG
I
KJ =

1
2

2

car
truckb g  

which leads to 
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( )
2

2 9.5 m/s2 8.6 s .
2.2 m/s

vt
a

= = =  

Therefore, 
( )( )9.5 m/s 8.6 s 82 m .x vtΔ = = =  

 
(b) The speed of the car at that moment is 
 

( )( )2
car 2.2 m/s 8.6 s 19 m/s .v at= = =  

 
74. If the plane (with velocity v) maintains its present course, and if the terrain 
continues its upward slope of 4.3°, then the plane will strike the ground after traveling 
 

Δx h
= =

°
= ≈

tan
.

θ
35 4655 m

tan 4.3
 m 0.465  km. 

 
This corresponds to a time of flight found from Eq. 2-2 (with v = vavg since it is 
constant) 

t x
v

= = = ≈
Δ 0 465 0 000358. . km

1300 km / h
 h 1.3 s.  

 
This, then, estimates the time available to the pilot to make his correction. 
 
75. We denote tr as the reaction time and tb as the braking time. The motion during tr 
is of the constant-velocity (call it v0) type. Then the position of the car is given by 
 

x v t v t atr b b= + +0 0
21

2
 

 
where v0 is the initial velocity and a is the acceleration (which we expect to be 
negative-valued since we are taking the velocity in the positive direction and we know 
the car is decelerating). After the brakes are applied the velocity of the car is given by 
v = v0 + atb. Using this equation, with v = 0, we eliminate tb from the first equation 
and obtain 

x v t v
a

v
a

v t v
ar r= − + = −

1
0

0
2

0
2

0
0
21

2 2
. 

 
We write this equation for each of the initial velocities: 
 

x v t v
ar1 01
01
21

2
= −  

and 

x v t v
ar2 02
02
21

2
= − .  

 
Solving these equations simultaneously for tr and a we get 
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t v x v x
v v v vr =

−
−

02
2

1 01
2

2

01 02 02 01b g  
and 

a v v v v
v x v x

= −
−
−

1
2

02 01
2

01 02
2

02 1 01 2

.  

 
(a) Substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m and v02 = 48.3 
km/h = 13.4 m/s, we find 
 

2 2 2 2
02 1 01 2

01 02 02 01

(13.4 m/s) (56.7 m) (22.4 m/s) (24.4 m)
( ) (22.4 m/s)(13.4 m/s)(13.4 m/s 22.4 m/s)

0.74 s.

r
v x v xt

v v v v
− −

= =
− −

=

 

 
(b) Similarly, substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m, and 
v02 = 48.3 km/h = 13.4 m/s gives 
 

2 2 2 2
02 01 01 02

02 1 01 2

2

1 1 (13.4 m/s)(22.4 m/s) (22.4 m/s)(13.4 m/s)
2 2 (13.4 m/s)(56.7 m) (22.4 m/s)(24.4 m)

6.2 m/s .

v v v va
v x v x

− −
= − = −

− −

= −

 

 
The magnitude of the deceleration is therefore 6.2 m/s2. Although rounded-off values 
are displayed in the above substitutions, what we have input into our calculators are 
the “exact” values (such as v02

161
12=  m/s). 

 
76. (a) A constant velocity is equal to the ratio of displacement to elapsed time. Thus, 
for the vehicle to be traveling at a constant speed pv  over a distance 23D , the time 
delay should be 23 / .pt D v=   
 
(b) The time required for the car to accelerate from rest to a cruising speed pv  is 

0 /pt v a= . During this time interval, the distance traveled is 2 2
0 0 / 2 / 2 .px at v aΔ = =  

The car then moves at a constant speed pv  over a distance 12 0D x d− Δ −  to reach 
intersection 2, and the time elapsed is 1 12 0( ) / pt D x d v= − Δ − . Thus, the time delay at 
intersection 2 should be set to 
 

 

2
1212 0

total 0 1

12

( / 2 )

1
2

p p p
r r r

p p

p
r

p

v v D v a dD x dt t t t t t
a v a v

v D dt
a v

− −− Δ −
= + + = + + = + +

−
= + +

 

 
77. Since the problem involves constant acceleration, the motion of the rod can be 
readily analyzed using the equations in Table 2-1. We take +x in the direction of 
motion, so 
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v =
F
HG

I
KJ = +60 1000

3600
16 7km / h m / km

s / h
m / sb g .  

 
and a > 0. The location where it starts from rest (v0 = 0) is taken to be x0 = 0. 
 
(a) Using Eq. 2-7, we find the average acceleration to be 
 

 2 20
avg

0

16.7 m/s 0 3.09 m/s 3.1 m/s
5.4 s 0

v vva
t t t

−Δ −
= = = = ≈

Δ − −
. 

 
(b) Assuming constant acceleration 2

avg 3.09 m/sa a= = , the total distance traveled 
during the 5.4-s time interval is  

2 2 2
0 0

1 10 0 (3.09 m/s )(5.4 s) 45 m
2 2

x x v t at= + + = + + = . 

 
(c) Using Eq. 2-15, the time required to travel a distance of x = 250 m is: 

 
( )2

2

2 250 m1 2 13 s
2 3.1 m/s

xx at t
a

= ⇒ = = = . 

 
Note that the displacement of the rod as a function of time can be written as 

2 21( ) (3.09 m/s )
2

x t t= . Also we could have chosen Eq. 2-17 to solve for (b): 

( ) ( )( )0
1 1 16.7 m/s 5.4 s 45 m.
2 2

x v v t= + = =  

 
78. We take the moment of applying brakes to be t = 0. The deceleration is constant so 
that Table 2-1 can be used. Our primed variables (such as 0 72 km/h = 20 m/sv′ = ) refer 
to one train (moving in the +x direction and located at the origin when t = 0) and 
unprimed variables refer to the other (moving in the –x direction and located at x0 = 
+950 m when t = 0). We note that the acceleration vector of the unprimed train points 
in the positive direction, even though the train is slowing down; its initial velocity is 
v0 = –144 km/h = –40 m/s. Since the primed train has the lower initial speed, it should 
stop sooner than the other train would (were it not for the collision). Using Eq 2-16, it 
should stop (meaning 0v′ = ) at 
 

( ) ( )2 2 2
0

2

0 (20 m/s) 200 m .
2 2 m/s

v v
x

a
′ ′− −′ = = =

′ −
 

 
The speed of the other train, when it reaches that location, is 
 

( ) ( )( )22 2
0 2 40 m/s 2 1.0 m/s 200 m 950 m

10 m/s

v v a x= + Δ = − + −

=
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using Eq 2-16 again. Specifically, its velocity at that moment would be –10 m/s since 
it is still traveling in the –x direction when it crashes. If the computation of v had 
failed (meaning that a negative number would have been inside the square root) then 
we would have looked at the possibility that there was no collision and examined how 
far apart they finally were. A concern that can be brought up is whether the primed 
train collides before it comes to rest; this can be studied by computing the time it 
stops (Eq. 2-11 yields t = 20 s) and seeing where the unprimed train is at that moment 
(Eq. 2-18 yields x = 350 m, still a good distance away from contact). 
 
79. The y coordinate of Piton 1 obeys y – y01 = – 1

2 g t2 where y = 0 when t = 3.0 s. 
This allows us to solve for yo1, and we find y01 = 44.1 m. The graph for the coordinate 
of Piton 2 (which is thrown apparently at t = 1.0 s with velocity v1) is  
 

y – y02 = v1(t–1.0) – 1
2 g (t – 1.0)2 

 
where y02 = y01 + 10 = 54.1 m and where (again) y = 0 when t = 3.0 s.  Thus we 
obtain |v1| = 17 m/s, approximately. 
 
80. We take +x in the direction of motion. We use subscripts 1 and 2 for the data. Thus, 
v1 = +30 m/s, v2 = +50 m/s, and x2 – x1 = +160 m. 
 
(a) Using these subscripts, Eq. 2-16 leads to 
 

( ) ( )
2 2 2 2

22 1

2 1

(50 m/s) (30 m/s) 5.0 m/s .
2 2 160 m

v va
x x

− −
= = =

−
 

 
(b) We find the time interval corresponding to the displacement x2 – x1 using Eq. 2-17: 
 

( ) ( )2 1
2 1

1 2

2 2 160 m
4.0 s .

30 m/s 50 m/s
x x

t t
v v

−
− = = =

+ +
 

 
(c) Since the train is at rest (v0 = 0) when the clock starts, we find the value of t1 from 
Eq. 2-11: 

1 0 1 1 2

30 m/s 6.0 s .
5.0 m/s

v v at t= + ⇒ = =  

 
(d) The coordinate origin is taken to be the location at which the train was initially at 
rest (so x0 = 0).  Thus, we are asked to find the value of x1. Although any of several 
equations could be used, we choose Eq. 2-17: 
 

( ) ( )( )1 0 1 1
1 1 30 m/s 6.0 s 90 m .
2 2

x v v t= + = =  

 
(e) The graphs are shown below, with SI units understood. 
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81. Integrating (from t = 2 s to variable t = 4 s) the acceleration to get the velocity and 
using the values given in the problem leads to  
 

 
0 0

2 2
0 0 0 0

1(5.0 ) (5.0)( )
2

t t

t t
v v adt v t dt v t t= + = + = + −∫ ∫ = 17 + 1

2 (5.0)(42 – 22) = 47 m/s. 

 
82. The velocity v at t = 6 (SI units and two significant figures understood) is 

6

given 2
v adt

−
+ ∫ .  A quick way to implement this is to recall the area of a triangle (1

2  

base × height). The result is v = 7 m/s + 32 m/s = 39 m/s. 
 
83. The object, once it is dropped (v0 = 0) is in free fall (a = –g = –9.8 m/s2 if we take 
down as the –y direction), and we use Eq. 2-15 repeatedly. 
 
(a) The (positive) distance D from the lower dot to the mark corresponding to a 
certain reaction time t is given by Δy D gt= − = − 1

2
2 , or D = gt2/2. Thus, 

for 1 50.0 mst = ,  

D1

3 2
9 8 50 0 10

2
0 0123=

×
=

−. .
.

m / s s
m = 1.23 cm.

2c h c h
 

 

(b) For t2 = 100 ms, 
( ) ( )22 3

2 1

9.8 m/s 100 10 s
0.049 m = 4 .

2
D D

−×
= =  

 

(c) For t3 = 150 ms, 
( ) ( )22 3

3 1

9.8 m/s 150 10 s
0.11m = 9 .

2
D D

−×
= =  

 

(d) For t4 = 200 ms, 
( ) ( )22 3

4 1

9.8 m/s 200 10 s
0.196 m =16 .

2
D D

−×
= =  

 

(e) For t4 = 250 ms, D D5

3 2
9 8 250 10

2
0 306 25=

×
=

−.
.

m / s s
m = .

2

1

c h c h
 

 
84. We take the direction of motion as +x, take x0 = 0 and use SI units, so v = 
1600(1000/3600) = 444 m/s. 
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(a) Equation 2-11 gives 444 = a(1.8) or a = 247 m/s2. We express this as a multiple of 
g by setting up a ratio: 

2

2

247 m/s 25 .
9.8 m/s

a g g
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

(b) Equation 2-17 readily yields 
 

( ) ( )( )0
1 1 444 m/s 1.8 s 400 m.
2 2

x v v t= + = =  

 
85. Let D be the distance up the hill. Then 
 

   average speed = 
total distance traveled

total time of travel   = 
2D

D
20 km/h + 

D
35 km/h

  ≈ 25 km/h . 

 
86. We obtain the velocity by integration of the acceleration: 
 

0 0
(6.1 1.2 )

t
v v t dt′ ′− = −∫ . 

 
Lengths are in meters and times are in seconds. The student is encouraged to look at 
the discussion in the textbook in §2-7 to better understand the manipulations here. 
 
(a) The result of the above calculation is 
 
 2

0 6.1 0.6 ,v v t t= + −  
 

where the problem states that v0 = 2.7 m/s. The maximum of this function is found by 
knowing when its derivative (the acceleration) is zero (a = 0 when t = 6.1/1.2 = 5.1 s) 
and plugging that value of t into the velocity equation above. Thus, we find 

18 m/sv = . 
 
(b) We integrate again to find x as a function of t: 
 

 2 2 3
0 0 00 0

( 6.1 0.6 ) 3.05 0.2
t t

x x v dt v t t dt v t t t′ ′ ′ ′− = = + − = + −∫ ∫ . 

 
With x0 = 7.3 m, we obtain x = 83 m for t = 6.  This is the correct answer, but one has 
the right to worry that it might not be; after all, the problem asks for the total distance 
traveled (and x − x0 is just the displacement). If the cyclist backtracked, then his total 
distance would be greater than his displacement.  Thus, we might ask, "did he 
backtrack?"  To do so would require that his velocity be (momentarily) zero at some 
point (as he reversed his direction of motion).  We could solve the above quadratic 
equation for velocity, for a positive value of t where v = 0; if we did, we would find 
that at t = 10.6 s, a reversal does indeed happen.  However, in the time interval we 
are concerned with in our problem (0 ≤ t ≤ 6 s), there is no reversal and the 
displacement is the same as the total distance traveled. 
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87. The time it takes to travel a distance d with a speed v1 is 1 1/t d v= . Similarly, with 
a speed v2 the time would be 2 2/t d v= . The two speeds in this problem are 
 

 
1

2

1609 m/mi55 mi/h (55 mi/h) 24.58 m/s
3600 s/h

1609 m/mi65 mi/h (65 mi/h) 29.05 m/s
3600 s/h

v

v

= = =

= = =
 

 With 5700 km 7.0 10  md = = × , the time difference between the two is 
 

5
1 2

1 2

1 1 1 1(7.0 10  m) 4383 s 73 min
24.58 m/s 29.05 m/s

t t t d
v v

⎛ ⎞ ⎛ ⎞
Δ = − = − = × − = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
or 1 h and 13 min. 
 
88. The acceleration is constant and we may use the equations in Table 2-1. 
 
(a) Taking the first point as coordinate origin and time to be zero when the car is there, 
we apply Eq. 2-17: 
 

( ) ( ) ( )0 0
1 1 15.0 m/s 6.00 s .
2 2

x v v t v= + = +  

 
With x = 60.0 m (which takes the direction of motion as the +x direction) we solve for 
the initial velocity: v0 = 5.00 m/s. 
 
(b) Substituting v = 15.0 m/s, v0 = 5.00 m/s, and t = 6.00 s into a = (v – v0)/t (Eq. 2-11), 
we find a = 1.67 m/s2. 
 
(c) Substituting v = 0 in 2 2

0 2v v ax= +  and solving for x, we obtain 
 

( )
2 2
0

2

(5.00 m/s) 7.50m
2 2 1.67 m/s
vx
a

= − = − = − , 

or | | 7.50 mx = . 
 
(d) The graphs require computing the time when v = 0, in which case, we use v = v0 + 
at' = 0. Thus, 
 

0
2

5.00 m/s 3.0s
1.67 m/s

vt
a

− −′ = = = −  

 
indicates the moment the car was at rest. SI units are understood. 
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89. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 
(with Δy replacing Δx) because this is constant acceleration motion. When something 
is thrown straight up and is caught at the level it was thrown from, the time of flight t 
is half of its time of ascent ta, which is given by Eq. 2-18 with Δy = H and v = 0 
(indicating the maximum point). 
 

H vt gt t H
ga a a= + ⇒ =

1
2

22  

 
Writing these in terms of the total time in the air t = 2ta we have 
 

H gt t H
g

= ⇒ =
1
8

2 22 .  

 
We consider two throws, one to height H1 for total time t1 and another to height H2 for 
total time t2, and we set up a ratio: 
 

H
H

gt
gt

t
t

2

1

1
8 2

2

1
8 1

2
2

1

2

= =
F
HG
I
KJ  

 
from which we conclude that if t2 = 2t1 (as is required by the problem) then H2 = 22H1 
= 4H1. 
 
90. (a) Using the fact that the area of a triangle is 1

2 (base) (height) (and the fact that 
the integral corresponds to the area under the curve) we find, from t = 0 through t = 5 
s, the integral of v with respect to t is 15 m. Since we are told that x0 = 0 then we 
conclude that x = 15 m when t = 5.0 s. 
 
(b) We see directly from the graph that v = 2.0 m/s when t = 5.0 s. 
 
(c) Since a = dv/dt = slope of the graph, we find that the acceleration during the 
interval 4 < t < 6 is uniformly equal to –2.0 m/s2. 
 
(d) Thinking of x(t) in terms of accumulated area (on the graph), we note that x(1) = 1 
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m; using this and the value found in part (a), Eq. 2-2 produces 
 

avg
(5) (1) 15 m 1 m 3.5 m/s.

5 1 4 s
x xv − −

= = =
−

 

 
(e) From Eq. 2-7 and the values v(t) we read directly from the graph, we find 
 

avg
(5) (1) 2 m/s 2 m/s 0.

5 1 4 s
v va − −

= = =
−

 

 
91. Taking the +y direction downward and y0 = 0, we have y v t gt= +0

1
2

2 , which 

(with v0 = 0) yields t y g= 2 / .  
 
(a) For this part of the motion, y1 = 50 m so that 
 

1 2

2(50 m) 3.2 s .
9.8 m/s

t = =  

 
(b) For this next part of the motion, we note that the total displacement is y2 = 100 m. 
Therefore, the total time is 

2 2

2(100 m) 4.5 s .
9.8 m/s

t = =  

 
The difference between this and the answer to part (a) is the time required to fall 
through that second 50 m distance: 2 1t t tΔ = − = 4.5 s – 3.2 s = 1.3 s. 
 
92. Direction of +x is implicit in the problem statement. The initial position (when the 
clock starts) is x0 = 0 (where v0 = 0), the end of the speeding-up motion occurs at x1 = 
1100/2 = 550 m, and the subway train comes to a halt (v2 = 0) at x2 = 1100 m. 
 
(a) Using Eq. 2-15, the subway train reaches x1 at 
 

( )1
1 2

1

2 550 m2 30.3 s .
1.2 m/s

xt
a

= = =  

 
The time interval t2 – t1 turns out to be the same value (most easily seen using Eq. 
2-18 so the total time is t2 = 2(30.3) = 60.6 s. 
 
(b) Its maximum speed occurs at t1 and equals 
 

v v a t1 0 1 1 36 3= + = . .m / s  
 

(c) The graphs are shown below: 
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93. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the stone’s motion. We are allowed to use Table 
2-1 (with Δx replaced by y) because the ball has constant acceleration motion (and we 
choose y0 = 0). 
 
(a) We apply Eq. 2-16 to both measurements, with SI units understood. 
 

( )
2

2 2 2
0 0

2 2 2 2
0 0

12 2 3
2

2 2

B B A

A A A

v v gy v g y v

v v gy v gy v

⎛ ⎞= − ⇒ + + =⎜ ⎟
⎝ ⎠

= − ⇒ + =

 

 
We equate the two expressions that each equal v0

2  and obtain 
 

1
4

2 2 3 2 2 3 3
4

2 2 2v gy g v gy g vA A+ + = + ⇒ =b g b g  

 
which yields v g= =2 4 885b g . m / s.  
 
(b) An object moving upward at A with speed v = 8.85 m/s will reach a maximum 
height y – yA = v2/2g = 4.00 m above point A (this is again a consequence of Eq. 2-16, 
now with the “final” velocity set to zero to indicate the highest point). Thus, the top of 
its motion is 1.00 m above point B. 
 
94. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 
(with Δy replacing Δx) because this is constant acceleration motion. The ground level 
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is taken to correspond to the origin of the y-axis. The total time of fall can be 
computed from Eq. 2-15 (using the quadratic formula). 
 

Δ
Δ

y v t gt t
v v g y

g
= − ⇒ =

+ −
0

2 0 0
21

2
2

     

 
with the positive root chosen. With y = 0, v0 = 0, and y0 = h = 60 m, we obtain 
 

t
gh

g
h
g

= = =
2 2 35.  s . 

 
Thus, “1.2 s earlier” means we are examining where the rock is at t = 2.3 s: 
 

2
0

1(2.3 s) (2.3 s)     34 m
2

y h v g y− = − ⇒ =  

 
where we again use the fact that h = 60 m and v0 = 0. 
 
95. (a) The wording of the problem makes it clear that the equations of Table 2-1 
apply, the challenge being that v0, v, and a are not explicitly given.  We can, however, 
apply x – x0 = v0t + 1

2at2 to a variety of points on the graph and solve for the 
unknowns from the simultaneous equations.  For instance, 

 

16 m – 0 = v0(2.0 s) + 
1
2 a(2.0 s)2 

27 m – 0 = v0(3.0 s) + 
1
2 a(3.0 s)2 

 
lead to the values v0 = 6.0 m/s and a = 2.0 m/s2. 
 
(b) From Table 2-1, 

x – x0 = vt – 
1
2at2  ⇒  27 m – 0 = v(3.0 s) – 

1
2 (2.0 m/s2)(3.0 s)2 

 
which leads to v = 12 m/s. 
 
(c) Assuming the wind continues during 3.0 ≤ t ≤ 6.0, we apply x – x0 = v0t + 1

2at2 to 
this interval (where v0 = 12.0 m/s from part (b)) to obtain 
 

Δx = (12.0 m/s)(3.0 s) + 
1
2 (2.0 m/s2)(3.0 s)2 = 45 m . 

 
96. (a) Let the height of the diving board be h. We choose down as the +y direction 
and set the coordinate origin at the point where it was dropped (which is when we 
start the clock). Thus, y = h designates the location where the ball strikes the water. 
Let the depth of the lake be D, and the total time for the ball to descend be T. The 
speed of the ball as it reaches the surface of the lake is then v = 2gh  (from Eq. 



 

 

69

 

2-16), and the time for the ball to fall from the board to the lake surface is t1 = 
2h g/  (from Eq. 2-15). Now, the time it spends descending in the lake (at constant 

velocity v) is 

t D
v

D
gh2 2

= = .  

 

Thus, T = t1 + t2 = 2h
g

 + D
gh2

, which gives 

 

( ) ( )( )( ) ( )22 2 4.80 s 2 9.80 m/s 5.20 m 2 5.20 m 38.1 m .D T gh h= − = − =  

 
(b) Using Eq. 2-2, the magnitude of the average velocity is 
 

avg
38.1 m 5.20 m 9.02 m/s

4.80 s
D hv

T
+ +

= = =  

 
(c) In our coordinate choices, a positive sign for vavg means that the ball is going 
downward. If, however, upward had been chosen as the positive direction, then this 
answer in (b) would turn out negative-valued. 
 
(d) We find v0 from 21

0 2y v t gtΔ = +  with t = T and Δy = h + D. Thus, 
 

( )( )2

0

9.8 m/s 4.80 s5.20 m 38.1 m 14.5 m/s
2 4.80 s 2

h D gTv
T
+ +

= − = − =  

 
(e) Here in our coordinate choices the negative sign means that the ball is being 
thrown upward. 
 
97. We choose down as the +y direction and use the equations of Table 2-1 (replacing 
x with y) with a = +g, v0 = 0, and y0 = 0. We use subscript 2 for the elevator reaching 
the ground and 1 for the halfway point. 
 
(a) Equation 2-16, v v a y y2

2
0
2

2 02= + −b g , leads to 
 

( )( )2
2 22 2 9.8 m/s 120 m 48.5 m/s .v gy= = =  

 
(b) The time at which it strikes the ground is (using Eq. 2-15) 
 

( )2
2 2

2 120 m2 4.95 s .
9.8 m/s

yt
g

= = =  

 
(c) Now Eq. 2-16, in the form v v a y y1

2
0
2

1 02= + −b g , leads to 
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2
1 12 2(9.8 m/s )(60 m) 34.3m/s.v gy= = =  

 
(d) The time at which it reaches the halfway point is (using Eq. 2-15) 
 

1
1 2

2 2(60 m) 3.50 s .
9.8 m/s

yt
g

= = =  

 
98. Taking +y to be upward and placing the origin at the point from which the objects 
are dropped, then the location of diamond 1 is given by y gt1

1
2

2= −  and the location 
of diamond 2 is given by y g t2

1
2

21= − −b g . We are starting the clock when the first 
object is dropped. We want the time for which y2 – y1 = 10 m. Therefore, 
 

− − + = ⇒ = + =
1
2

1 1
2

10 10 05 152 2g t gt t gb g b g/ . . s. 

 
99. With +y upward, we have y0 = 36.6 m and y = 12.2 m. Therefore, using Eq. 2-18 
(the last equation in Table 2-1), we find 
 

2
0

1    22.0 m/s 
2

y y vt gt v− = + ⇒ = −  

 
at t = 2.00 s. The term speed refers to the magnitude of the velocity vector, so the 
answer is |v| = 22.0 m/s. 
 
100. During free fall, we ignore the air resistance and set a = –g = –9.8 m/s2 where we 
are choosing down to be the –y direction. The initial velocity is zero so that Eq. 2-15 
becomes Δy gt= − 1

2
2  where Δy represents the negative of the distance d she has 

fallen. Thus, we can write the equation as d gt= 1
2

2  for simplicity. 
 
(a) The time t1 during which the parachutist is in free fall is (using Eq. 2-15) given by 
 

d gt t1 1
2

1
250 1

2
9 80= =m = 1

2
m / s2.c h  

 
which yields t1 = 3.2 s. The speed of the parachutist just before he opens the parachute 
is given by the positive root 2

1 12v gd= , or 
 

v gh1 12 2 9 80 50 31= = =b gc hb g. m / s m m / s.2  

 
If the final speed is v2, then the time interval t2 between the opening of the parachute 
and the arrival of the parachutist at the ground level is 
 

t v v
a2

1 2 31 30 14=
−

=
−

=
m / s m / s

2 m / s
s.2

.  
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This is a result of Eq. 2-11 where speeds are used instead of the (negative-valued) 
velocities (so that final-velocity minus initial-velocity turns out to equal initial-speed 
minus final-speed); we also note that the acceleration vector for this part of the motion 
is positive since it points upward (opposite to the direction of motion — which makes 
it a deceleration). The total time of flight is therefore t1 + t2 = 17 s. 
 
(b) The distance through which the parachutist falls after the parachute is opened is 
given by 

d v v
a

=
−

=
−

≈1
2

2
2 2 2

2
31 3 0

2 2 0
240

m / s m / s
m / s

m.
2

b g b g
b gc h

.
.

 

 
In the computation, we have used Eq. 2-16 with both sides multiplied by –1 (which 
changes the negative-valued Δy into the positive d on the left-hand side, and switches 
the order of v1 and v2 on the right-hand side). Thus the fall begins at a height of h = 50 
+ d ≈ 290 m. 
 
101. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down 
as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 
(with Δy replacing Δx) because this is constant acceleration motion. The ground level 
is taken to correspond to y = 0. 
 
(a) With y0 = h and v0 replaced with –v0, Eq. 2-16 leads to 
 

2 2
0 0 0( ) 2 ( ) 2  .v v g y y v gh= − − − = +  

 
The positive root is taken because the problem asks for the speed (the magnitude of 
the velocity). 
 
(b) We use the quadratic formula to solve Eq. 2-15 for t, with v0 replaced with –v0, 
 

Δ
Δ

y v t gt t
v v g y

g
      = − − ⇒ =

− + − −
0

2 0 0
21

2
2( )

 

 
where the positive root is chosen to yield t > 0. With y = 0 and y0 = h, this becomes 
 

t
v gh v

g
=

+ −0
2

02
.  

 
(c) If it were thrown upward with that speed from height h then (in the absence of air 
friction) it would return to height h with that same downward speed and would 
therefore yield the same final speed (before hitting the ground) as in part (a). An 
important perspective related to this is treated later in the book (in the context of 
energy conservation). 
 
(d) Having to travel up before it starts its descent certainly requires more time than in 
part (b). The calculation is quite similar, however, except for now having +v0 in the 
equation where we had put in –v0 in part (b). The details follow: 
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Δ
Δ

y v t gt t
v v g y

g
= − ⇒ =

+ −
0

2 0 0
21

2
2

       

 
with the positive root again chosen to yield t > 0. With y = 0 and y0 = h, we obtain 
 

t
v gh v

g
=

+ +0
2

02
.  

 
102. We assume constant velocity motion and use Eq. 2-2 (with vavg = v > 0). 
Therefore, 

Δ Δx v t= =
F
HG

I
KJ

F
HG

I
KJ × =−303 1000 100 10 8 43km

h
m / km

3600 s / h
s m.c h .  
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Chapter 3 
 
 
1. The x and the y components of a vector a  lying on the xy plane are given by 
 

cos , sinx ya a a aθ θ= =  
 
where | |a a=  is the magnitude and θ is the angle between a  and the positive x axis. 
 
(a) The x component of a  is given by cos (7.3 m)cos 250 2.50 mxa a θ= = ° = − .  
 
(b) Similarly, the y component is given by 
 

sin (7.3 m)sin 250 6.86 m 6.9 m.ya a θ= = ° = − ≈ −  
 
The results are depicted in the figure below: 

 
 
In considering the variety of ways to compute these, we note that the vector is 70° below 
the – x axis, so the components could also have been found from  
 

(7.3 m)cos 70 2.50 m, (7.3 m)sin 70 6.86 m.x ya a= − ° = − = − ° = −  
 
Similarly, we note that the vector is 20° to the left from the – y axis, so one could also 
achieve the same results by using 
 

(7.3 m)sin 20 2.50 m, (7.3 m)cos 20 6.86 m.x ya a= − ° = − = − ° = −  
 
 As a consistency check, we note that  
 

2 2 2 2( 2.50 m) ( 6.86 m) 7.3 mx ya a+ = − + − =  
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and  
( )1 1tan / tan [( 6.86 m) /( 2.50 m)] 250y xa a− −= − − = ° , 

 
which are indeed the values given in the problem statement. 
 
2. (a) With r = 15 m and θ = 30°, the x component of r  is given by  
 

rx = rcosθ  = (15 m) cos 30° = 13 m. 
 
(b) Similarly, the y component is given by ry = r sinθ  = (15 m) sin 30° = 7.5 m. 
 
3. A vector a  can be represented in the magnitude-angle notation (a, θ), where  
 
 2 2

x ya a a= +  
is the magnitude and  

 1tan y

x

a
a

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

is the angle a  makes with the positive x axis. 
 
(a) Given Ax = −25.0 m and Ay = 40.0 m, 2 2( 25.0 m) (40.0 m) 47.2 m.A = − + =  
 
(b) Recalling that tan θ = tan (θ + 180°),  
 

tan–1 [(40.0 m)/ (– 25.0 m)] = – 58° or 122°. 
 
Noting that the vector is in the third quadrant (by the signs of its x and y components) we 
see that 122° is the correct answer. The graphical calculator “shortcuts” mentioned above 
are designed to correctly choose the right possibility. The results are depicted in the 
figure below: 

 
We can check our answers by noting that the x- and the y- components of A  can be 
written as 

cos , sinx yA A A Aθ θ= =  
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Substituting the results calculated above, we obtain 
 

(47.2 m)cos122 25.0 m, (47.2 m)sin122 40.0 mx yA A= ° = − = ° = +  
 
which indeed are the values given in the problem statement.   
 
4. The angle described by a full circle is 360° = 2π rad, which is the basis of our 
conversion factor.  
 

(a) ( ) 2 rad20.0 20.0 0.349 rad
360
π

° = ° =
°

. 

(b) ( ) 2  rad50.0 50.0 0.873 rad
360
π

° = ° =
°

. 

(c) ( ) 2  rad100 100 1.75 rad
360
π

° = ° =
°

. 

(d) ( ) 3600.330 rad = 0.330 rad 18.9
2  radπ

°
= ° . 

(e) ( ) 3602.10 rad = 2.10 rad 120
2  radπ

°
= ° . 

(f) ( ) 3607.70 rad = 7.70 rad 441
2  radπ

°
= ° . 

 
5. The vector sum of the displacements dstorm  and dnew  must give the same result as its 
originally intended displacement o

ˆ(120 km)jd =  where east is i , north is j . Thus, we 
write 

storm new
ˆ ˆ ˆ(100 km) i , i j.d d A B= = +  

 
(a) The equation storm new od d d+ =  readily yields A = –100 km and B = 120 km. The 

magnitude of dnew  is therefore equal to 2 2
new| | 156 kmd A B= + = . 

 
(b) The direction is  

tan–1 (B/A) = –50.2° or 180° + ( –50.2°) = 129.8°. 
 
We choose the latter value since it indicates a vector pointing in the second quadrant, 
which is what we expect here. The answer can be phrased several equivalent ways: 
129.8° counterclockwise from east, or 39.8° west from north, or 50.2° north from west. 
 
6. (a) The height is h = d sinθ, where d = 12.5 m and θ = 20.0°. Therefore, h = 4.28 m. 
 
(b) The horizontal distance is d cosθ = 11.7 m. 
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7. The displacement of the fly is illustrated in the figure below: 
 

  
 
A coordinate system such as the one shown (above right) allows us to express the 
displacement as a three-dimensional vector.  
 
(a) The magnitude of the displacement from one corner to the diagonally opposite corner 
is  

2 2 2| |d d w l h= = + +  
 
Substituting the values given, we obtain 
  

2 2 2 2 2 2| | (3.70 m) (4.30 m) (3.00 m) 6.42 md d w l h= = + + = + + = . 
 
(b) The displacement vector is along the straight line from the beginning to the end point 
of the trip.  Since a straight line is the shortest distance between two points, the length of 
the path cannot be less than the magnitude of the displacement. 
 
(c) It can be greater, however. The fly might, for example, crawl along the edges of the 
room. Its displacement would be the same but the path length would be 
 

11.0 m.w h+ + =  
 
(d) The path length is the same as the magnitude of the displacement if the fly flies along 
the displacement vector. 
 
(e) We take the x axis to be out of the page, the y axis to be to the right, and the z axis to 
be upward.  Then the x component of the displacement is w = 3.70 m, the y component of 
the displacement is 4.30 m, and the z component is 3.00 m. Thus, 
 

ˆ ˆ ˆ(3.70 m) i ( 4.30 m) j (3.00 m)kd = + + . 
 
An equally correct answer is gotten by interchanging the length, width, and height. 
 



 

 

77

 
 
(f) Suppose the path of the fly is as shown by the dotted lines on the upper diagram. 
Pretend there is a hinge where the front wall of the room joins the floor and lay the wall 
down as shown on the lower diagram. The shortest walking distance between the lower 
left back of the room and the upper right front corner is the dotted straight line shown on 
the diagram. Its length is 
 

( ) ( )2 22 2
min 3.70 m 3.00 m (4.30 m) 7.96 m .L w h= + + = + + =  

 
To show that the shortest path is indeed given by minL , we write the length of the path as 
  
 2 2 2 2( )L y w l y h= + + − + . 
 The condition for minimum is given by 
  

2 2 2 2
0

( )
dL y l y
dy y w l y h

−
= − =

+ − +
. 

A little algebra shows that the condition is satisfied when /( )y lw w h= + , which gives 
 

2 2
2 2 2 2

min 2 21 1 ( )
( ) ( )

l lL w h w h l
w h w h

⎛ ⎞ ⎛ ⎞
= + + + = + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

. 

 
Any other path would be longer than 7.96 m. 
 
8. We label the displacement vectors A , B , and C  (and denote the result of their vector 
sum as r ). We choose east as the î  direction (+x direction) and north as the ĵ  direction 
(+y direction). All distances are understood to be in kilometers.  
 
(a) The vector diagram representing the motion is shown next: 
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ˆ(3.1 km) j
ˆ( 2.4 km) i
ˆ( 5.2 km) j

A

B

C

=

= −

= −

 

 
(b) The final point is represented by 

 
ˆ ˆ( 2.4 km )i ( 2.1 km) jr A B C= + + = − + −  

whose magnitude is 

( ) ( )2 22.4 km 2.1 km 3.2 kmr = − + − ≈ . 
 
(c) There are two possibilities for the angle: 
 

 1 2.1 kmtan 41 ,or 221
2.4 km

θ − ⎛ ⎞−
= = ° °⎜ ⎟−⎝ ⎠

. 

 
We choose the latter possibility since r  is in the third quadrant. It should be noted that 
many graphical calculators have polar ↔ rectangular “shortcuts” that automatically 
produce the correct answer for angle (measured counterclockwise from the +x axis). We 
may phrase the angle, then, as 221° counterclockwise from East (a phrasing that sounds 
peculiar, at best) or as 41° south from west or 49° west from south.  The resultant r  is 
not shown in our sketch; it would be an arrow directed from the “tail” of A  to the “head” 
of C . 
 
9. All distances in this solution are understood to be in meters. 
 
(a) ˆ ˆ ˆ ˆ ˆ ˆ[4.0 ( 1.0)] i [( 3.0) 1.0] j (1.0 4.0)k (3.0i 2.0 j 5.0 k) m.a b+ = + − + − + + + = − +  
 
(b) ˆ ˆ ˆ ˆ ˆ ˆ[4.0 ( 1.0)]i [( 3.0) 1.0]j (1.0 4.0)k (5.0 i 4.0 j 3.0 k) m.a b− = − − + − − + − = − −  
 
(c) The requirement a b c− + = 0  leads to c b a= − ,  which we note is the opposite of 
what we found in part (b). Thus, ˆ ˆ ˆ( 5.0 i  4.0 j  3.0k) m.c = − + +  
 
10. The x, y, and z components of r c d= +  are, respectively, 
 
(a) 7.4  m 4.4  m 12 mx x xr c d= + = + = , 
 
(b) 3.8 m 2.0 m 5.8 my y yr c d= + = − − = − , and 
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(c) 6.1 m 3.3 m 2.8 m.z z zr c d= + = − + = −  
 
11. We write r a b= + . When not explicitly displayed, the units here are assumed to be 
meters.  
 
(a) The x and the y components of r  are rx = ax + bx = (4.0 m) – (13 m) = –9.0 m and ry = 
ay + by = (3.0 m) +  (7.0 m)  = 10 m, respectively. Thus ˆ ˆ( 9.0m) i (10m) jr = − + .  
 
(b) The magnitude of r is 
 
 2 2 2 2| | ( 9.0 m) (10 m) 13 mx yr r r r= = + = − + = . 
 
(c) The angle between the resultant and the +x axis is given by  
 

1 1 10.0 mtan tan 48  or 132
9.0 m

y

x

r
r

θ − −⎛ ⎞ ⎛ ⎞= = = − ° °⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
. 

 
Since the x component of the resultant is negative and the y component is positive, 
characteristic of the second quadrant, we find the angle is 132° (measured 
counterclockwise from +x axis). 
 
The addition of the two vectors is depicted in the figure below (not to scale). Indeed, we 
expect r  to be in the second quadrant. 
 

 
 
12. We label the displacement vectors A , B , and C  (and denote the result of their 
vector sum as r ). We choose east as the î  direction (+x direction) and north as the ĵ  
direction (+y direction). We note that the angle between C  and the x axis is 60°. Thus, 
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( ) ( )

ˆ(50 km) i
ˆ(30 km) j

ˆ ˆ(25 km) cos 60 i + (25 km )sin 60 j

A

B

C

=

=

= ° °

 
(a) The total displacement of the car from its initial position is represented by 
 

ˆ ˆ(62.5  km) i (51.7 km) jr A B C= + + = +  
 
which means that its magnitude is 
 

2 2(62.5km) (51.7 km) 81 km.r = + =  
 
(b) The angle (counterclockwise from +x axis) is tan–1 (51.7 km/62.5 km) = 40°, which is 
to say that it points 40° north of east. Although the resultant r  is shown in our sketch, it 
would be a direct line from the “tail” of A  to the “head” of C . 
 
13. We find the components and then add them (as scalars, not vectors). With d = 3.40 
km and θ = 35.0° we find d cos θ + d sin θ = 4.74 km. 
 
14. (a) Summing the x components, we have  
 

20 m + bx – 20 m – 60 m = −140 m, 
 
which gives 80 m.xb = −  
 
(b) Summing the y components, we have  
 

60 m – 70 m + cy – 70 m = 30 m, 
 
which implies cy =110 m.  
 
(c) Using the Pythagorean theorem, the magnitude of the overall displacement is given by 

2 2 ( 140 m) (30 m)  143 m.− + ≈  
 
(d) The angle is given by 1tan (30 /( 140)) 12− − = − ° , (which would be 12° measured 
clockwise from the –x axis, or 168° measured counterclockwise from the +x axis). 
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15. It should be mentioned that an efficient way to work this vector addition problem is 
with the cosine law for general triangles (and since ,a b , and r  form an isosceles 
triangle, the angles are easy to figure).  However, in the interest of reinforcing the usual 
systematic approach to vector addition, we note that the angle b  makes with the +x axis 
is 30° +105° = 135° and apply Eq. 3-5 and Eq. 3-6 where appropriate. 
 
(a) The x component of r   is rx = (10.0 m) cos 30° + (10.0 m) cos 135° = 1.59 m. 
 
(b) The y component of r   is ry = (10.0 m) sin 30° + (10.0 m) sin 135° = 12.1 m. 
 
(c) The magnitude of r   is 2 2| | (1.59 m) (12.1 m) 12.2 m.r r= = + =  
 
(d) The angle between r  and the +x direction is tan–1[(12.1 m)/(1.59 m)] = 82.5°. 
 
16. (a) ˆ ˆ ˆ ˆ ˆ ˆ(3.0 i 4.0 j) m (5.0 i 2.0 j) m (8.0 m) i (2.0 m) j.a b+ = + + − = +  
 
(b) The magnitude of  a b+  is 
 

2 2| | (8.0 m) (2.0 m) 8.2 m.a b+ = + =  
 
(c) The angle between this vector and the +x axis is  
 

tan–1[(2.0 m)/(8.0 m)] = 14°. 
 
(d) ˆ ˆ ˆ ˆ ˆ ˆ(5.0 i 2.0 j) m (3.0 i 4.0 j) m (2.0 m) i (6.0 m) j .b a− = − − + = −  
 
(e) The magnitude of the difference vector b a−  is 

2 2| | (2.0 m) ( 6.0 m) 6.3 m.b a− = + − =  
 
(f) The angle between this vector and the +x axis is tan-1[( –6.0 m)/(2.0 m)] = –72°. The 
vector is 72° clockwise from the axis defined by î . 
 
17. Many of the operations are done efficiently on most modern graphical calculators 
using their built-in vector manipulation and rectangular ↔ polar “shortcuts.” In this 
solution, we employ the “traditional” methods (such as Eq. 3-6). Where the length unit is 
not displayed, the unit meter should be understood. 
 
(a) Using unit-vector notation, 
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ˆ ˆ(50 m)cos(30 )i (50 m) sin(30 ) j
ˆ ˆ(50 m)cos (195 ) i (50 m)sin (195 ) j
ˆ ˆ(50 m)cos (315 ) i (50 m)sin (315 ) j

ˆ ˆ(30.4 m) i (23.3 m) j.

a

b

c

a b c

= ° + °

= ° + °

= ° + °

+ + = −

 

 
The magnitude of this result is 2 2(30.4 m) ( 23.3 m) 38 m+ − = . 
 
(b) The two possibilities presented by a simple calculation for the angle between the 
vector described in part (a) and the +x direction are tan–1[( –23.2 m)/(30.4 m)] = –37.5°, 
and 180° + ( –37.5°) = 142.5°.  The former possibility is the correct answer since the 
vector is in the fourth quadrant (indicated by the signs of its components). Thus, the 
angle is –37.5°, which is to say that it is 37.5° clockwise from the +x axis. This is 
equivalent to 322.5° counterclockwise from +x. 
 
(c) We find  
 

ˆ ˆ ˆ ˆ[43.3 ( 48.3) 35.4] i [25 ( 12.9) ( 35.4)] j (127 i 2.60 j) ma b c− + = − − + − − − + − = +  
 
in unit-vector notation. The magnitude of this result is 
 

2 2 2| | (127 m) (2.6 m) 1.30 10  m.a b c− + = + ≈ ×  
 
(d) The angle between the vector described in part (c) and the +x axis is 

1tan (2.6 m/127 m) 1.2− ≈ ° . 
 
(e) Using unit-vector notation, d  is given by ˆ ˆ( 40.4 i 47.4 j) md a b c= + − = − + , 

which has a magnitude of 2 2( 40.4 m) (47.4 m) 62 m.− + =  
 
(f) The two possibilities presented by a simple calculation for the angle between the 
vector described in part (e) and the +x axis are 1tan (47.4 /( 40.4)) 50.0− − = − ° , and 
180 ( 50.0 ) 130° + − ° = ° . We choose the latter possibility as the correct one since it 
indicates that d  is in the second quadrant (indicated by the signs of its components). 
 
18. If we wish to use Eq. 3-5 in an unmodified fashion, we should note that the angle 
between C  and the +x axis is 180° + 20.0° = 200°. 
 
(a) The x and y components of B  are given by  
 

    Bx = Cx – Ax = (15.0 m) cos 200° – (12.0 m) cos 40° = –23.3 m, 
                By =Cy – Ay = (15.0 m) sin 200° – (12.0 m) sin 40° = –12.8 m.  
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Consequently, its magnitude is | |B = 2 2( 23.3 m) ( 12.8 m) 26.6 m− + − = . 
 
(b) The two possibilities presented by a simple calculation for the angle between B  and 
the +x axis are tan–1[( –12.8 m)/( –23.3 m)] = 28.9°, and 180° + 28.9° = 209°. We choose 
the latter possibility as the correct one since it indicates that B  is in the third quadrant 
(indicated by the signs of its components). We note, too, that the answer can be 
equivalently stated as 151 .− °  
 
19. (a) With i^ directed forward and j^ directed leftward, the resultant is (5.00 i^ + 2.00 j^) m . 
The magnitude is given by the Pythagorean theorem: 2 2(5.00 m) (2.00 m)+  = 5.385 m 
≈ 5.39 m. 
 
(b) The angle is tan−1(2.00/5.00) ≈ 21.8º (left of forward).  
 
20. The desired result is the displacement vector, in units of km, A  

→
  = (5.6 km), 90º 

(measured counterclockwise from the +x axis), or ˆ(5.6 km)jA = , where ĵ  is the unit 
vector along the positive y axis (north).  This consists of the sum of two displacements: 
during the whiteout, (7.8 km), 50B = ° , or 
 

ˆ ˆ ˆ ˆ(7.8 km)(cos50 i sin50  j) (5.01 km)i (5.98 km) jB = ° + ° = +  
 
and the unknown C .  Thus, A B C= + .  
 
(a) The desired displacement is given by ˆ ˆ( 5.01 km) i (0.38 km) jC A B= − = − − . The 

magnitude is 2 2( 5.01 km) ( 0.38 km) 5.0 km.− + − =  
 
(b) The angle is 1tan [( 0.38 km) /( 5.01 km)] 4.3 ,− − − = °  south of due west. 
 
21. Reading carefully, we see that the (x, y) specifications for each “dart” are to be 
interpreted as ( , )Δ Δx y  descriptions of the corresponding displacement vectors. We 
combine the different parts of this problem into a single exposition.  
 
(a) Along the x axis, we have (with the centimeter unit understood) 
 

30.0 20.0 80.0 140,xb+ − − = −  
 
which gives bx = –70.0 cm. 
 
(b)  Along  the y axis we have 
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40.0 70.0 70.0 20.0yc− + − = −  
 
which yields cy = 80.0 cm.  
 
(c) The magnitude of the final location (–140 , –20.0) is 2 2( 140) ( 20.0) 141 cm.− + − =  
 
(d) Since the displacement is in the third quadrant, the angle of the overall displacement 
is given by π + 1tan [( 20.0) /( 140)]− − − or 188° counterclockwise from the +x axis (or 

172− ° counterclockwise from the +x axis).  
 
22. Angles are given in ‘standard’ fashion, so Eq. 3-5 applies directly. We use this to 
write the vectors in unit-vector notation before adding them. However, a very different-
looking approach using the special capabilities of most graphical calculators can be 
imagined. Wherever the length unit is not displayed in the solution below, the unit meter 
should be understood. 
 
(a) Allowing for the different angle units used in the problem statement, we arrive at 
 

E

F

G

H

E F G H

= +

= −

= +

= − +

+ + + = +

3 73 4 70

1 29 4 83

1 3 73

5 20 3 00

1 28 6 60

. .

. .

.45 .

. .

. .

 i  j

 i  j

 i  j

 i  j

 i  j.

 

 
(b) The magnitude of the vector sum found in part (a) is 2 2(1.28 m) (6.60 m) 6.72 m+ = .  
 
(c) Its angle measured counterclockwise from the +x axis is tan–1(6.60/1.28) = 79.0°. 
 
(d) Using the conversion factor rad = 180π ° , 79.0° = 1.38 rad. 
 
23. The resultant (along the y axis, with the same magnitude as C  

→
 ) forms (along with 

C  
→

 ) a side of an isosceles triangle (with B  
→

 forming the base).  If the angle between C  
→

 
and the y axis is 1tan (3 / 4) 36.87θ −= = ° , then it should be clear that (referring to the 
magnitudes of the vectors) 2 sin( / 2)B C θ= . Thus (since C = 5.0) we find B = 3.2. 
 
24. As a vector addition problem, we express the situation (described in the problem 
statement) as  A  

→
  +  B  

→
 =  (3A) j^ , where A  

→
  = A i^  and B = 7.0 m.  Since i^  ⊥ j^  we may 

use the Pythagorean theorem to express B in terms of the magnitudes of the other two 
vectors: 
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       B = (3A)2 + A2          ⇒           A = 1
10

 B  =  2.2 m .  

 

25. The strategy is to find where the camel is ( C  
→

) by adding the two consecutive 
displacements described in the problem, and then finding the difference between that 

location and the oasis ( B  
→

).  Using the magnitude-angle notation 
 
  = (24  15 ) + (8.0  90 ) = (23.25  4.41 )C ∠ − ° ∠ ° ∠ °  
so 
   (25  0 ) (23.25  4.41 ) (2.5 45 )B C− = ∠ ° − ∠ ° = ∠ − °  
 
which is efficiently implemented using a vector-capable calculator in polar mode.  The 
distance is therefore 2.6 km. 
 
26. The vector equation is R A B C D= + + + . Expressing B  and D  in unit-vector 
notation, we have ˆ ˆ(1.69i 3.63j) m+  and ˆ ˆ( 2.87i 4.10j) m− + , respectively. Where the 
length unit is not displayed in the solution below, the unit meter should be understood. 
 
(a) Adding corresponding components, we obtain ˆ ˆ( 3.18  m)i ( 4.72 m) jR = − + . 
 
(b) Using Eq. 3-6, the magnitude is  
 
 2 2| | ( 3.18 m) (4.72 m) 5.69 m.R = − + =  
(c) The angle is  
 

 1 4.72 mtan 56.0   (with  axis).
3.18 m

xθ − ⎛ ⎞= = − ° −⎜ ⎟−⎝ ⎠
 

 
If measured counterclockwise from +x-axis, the angle is then 180 56.0 124° − ° = ° . Thus, 
converting the result to polar coordinates, we obtain 
 

− → ∠ °318 4 72 569 124. , . .b g b g  
 
27. Solving the simultaneous equations yields the answers: 
 
(a) d1  

→  
 =  4 d3  

→  
 = 8 i^ + 16 j^ , and 

 
(b) d2  

→  
 = d3  

→  
 = 2 i^ + 4 j^. 

 
28. Let A  

→
  represent the first part of Beetle 1’s trip (0.50 m east or ˆ0.5 i ) and C  

→
 

represent the first part of Beetle 2’s trip intended voyage (1.6 m at 50º north of east).  For 
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their respective second parts: B  
→

 is 0.80 m at 30º north of east and D  
→

 is the unknown. 
The final position of Beetle 1 is 
 

ˆ ˆ ˆ ˆ ˆ(0.5 m)i (0.8 m)(cos30  i sin30  j) (1.19 m) i (0.40 m) j.A B+ = + ° + ° = +  
 
The equation relating these is A B C D+ = + , where 
 

ˆ ˆ ˆ ˆ(1.60 m)(cos50.0 i sin50.0 j) (1.03 m)i (1.23 m)jC = ° + ° = +  
 
(a) We find ˆ ˆ(0.16 m )i ( 0.83 m ) jD A B C= + − = + − , and the magnitude is D = 0.84 m. 
 
(b) The angle is 1tan ( 0.83/ 0.16) 79− − = − ° , which is interpreted to mean 79º south of 
east (or 11º east of south). 
 
29. Let 0 2.0 cml =  be the length of each segment. The nest is located at the endpoint of 
segment w. 
 
(a) Using unit-vector notation, the displacement vector for point A is 
 

( ) ( )0 0 0 0

0

ˆ ˆ ˆ ˆ ˆ ˆ(cos 60 i sin60  j)  j (cos120 i sin120  j)  j

ˆ(2 3)  j.

Ad w v i h l l l l

l

= + + + = ° + ° + + ° + ° +

= +
 

 
Therefore, the magnitude of Ad  is | | (2 3)(2.0 cm) 7.5 cmAd = + = . 
 
(b) The angle of Ad  is 1 1

, ,tan ( / ) tan ( ) 90A y A xd dθ − −= = ∞ = ° .  
 
(c) Similarly, the displacement for point B is  
 

( ) ( )0 0 0 0 0

0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(cos60 i sin 60  j)  j (cos60 i sin60  j) (cos30 i sin30  j)  i

ˆ ˆ(2 3 / 2) i (3 / 2 3)  j.

Bd w v j p o

l l l l l

l l

= + + + +

= ° + ° + + ° + ° + ° + ° +

= + + +

 

 
Therefore, the magnitude of Bd  is 
 
 2 2

0| | (2 3 / 2) (3/ 2 3) (2.0 cm)(4.3) 8.6 cmBd l= + + + = = . 
 
(d) The direction of  Bd  is  
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,1 1 1

,

3 / 2 3tan tan tan (1.13) 48
2 3 / 2

B y
B

B x

d
d

θ − − −⎛ ⎞ ⎛ ⎞+
= = = = °⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

. 

 
30. Many of the operations are done efficiently on most modern graphical calculators 
using their built-in vector manipulation and rectangular ↔ polar “shortcuts.” In this 
solution, we employ the “traditional” methods (such as Eq. 3-6). 
 
(a) The magnitude of a  is 2 2(4.0 m) ( 3.0 m) 5.0 m.a = + − =  
 
(b) The angle between a  and the +x axis is tan–1 [(–3.0 m)/(4.0 m)] = –37°. The vector is 
37° clockwise from the axis defined by i . 
 
(c) The magnitude of b  is 2 2(6.0 m) (8.0 m) 10 m.b = + =  
 
(d) The angle between b  and the +x axis is tan–1[(8.0 m)/(6.0 m)] = 53°. 
 
(e) ˆ ˆ ˆ ˆ(4.0 m 6.0 m) i [( 3.0 m) 8.0 m]j (10 m)i (5.0 m) j.a b+ = + + − + = +  The magnitude 

of this vector is 2 2| | (10 m) (5.0 m) 11 m;a b+ = + =  we round to two significant 
figures in our results. 
 
(f) The angle between the vector described in part (e) and the +x axis is tan–1[(5.0 m)/(10 
m)] = 27°. 
 
(g) ˆ ˆ ˆ ˆ(6.0 m 4.0 m) i [8.0 m ( 3.0 m)] j (2.0 m) i (11 m) j.b a− = − + − − = +  The magnitude 

of this vector is 2 2| | (2.0 m) (11 m) 11 m,b a− = + =  which is, interestingly, the same 
result as in part (e) (exactly, not just to 2 significant figures) (this curious coincidence is 
made possible by the fact that a b ⊥ ). 
 
(h) The angle between the vector described in part (g) and the +x axis is tan–1[(11 m)/(2.0 
m)] = 80°. 
 
(i) ˆ ˆ ˆ ˆ(4.0 m 6.0 m) i [( 3.0 m) 8.0 m] j ( 2.0 m) i ( 11 m) j.a b− = − + − − = − + − The magnitude 

of this vector is 2 2| | ( 2.0 m) ( 11 m) 11 ma b− = − + − = . 
 
(j) The two possibilities presented by a simple calculation for the angle between the 
vector described in part (i) and the +x direction are tan–1 [(–11 m)/(–2.0 m)] = 80°, and 
180° + 80° = 260°. The latter possibility is the correct answer (see part (k) for a further 
observation related to this result). 
 



CHAPTER 3 88 

(k) Since a b b a− = − −( )( )1 , they point in opposite (anti-parallel) directions; the angle 
between them is 180°. 
 
31. (a) As can be seen from Figure 3-30, the point diametrically opposite the origin (0,0,0) 
has position vector a a ai j k+ +  and this is the vector along the “body diagonal.” 
 
(b) From the point (a, 0, 0), which corresponds to the position vector a î, the 
diametrically opposite point is (0, a, a) with the position vector a aj k+ . Thus, the 
vector along the line is the difference ˆ ˆ ˆi j ka a a− + + . 
 

 
 

(c) If the starting point is (0, a, 0) with the corresponding position vector  ̂ja , the 
diametrically opposite point is (a, 0, a) with the position vector ˆ ˆi ka a+ . Thus, the 
vector along the line is the difference ˆ ˆ ˆi j ka a a− + . 
 
(d) If the starting point is (a, a, 0) with the corresponding position vector ˆ ˆ i   ja a+ , the 
diametrically opposite point is (0, 0, a) with the position vector k̂a . Thus, the vector 
along the line is the difference ˆ ˆ ˆi j ka a a− − + . 
 
(e) Consider the vector from the back lower left corner to the front upper right corner. It 
is ˆ ˆ ˆ i  j  k.a a a+ +  We may think of it as the sum of the vector a i  parallel to the x axis and 
the vector a a j   k+  perpendicular to the x axis. The tangent of the angle between the 
vector and the x axis is the perpendicular component divided by the parallel component. 
Since the magnitude of the perpendicular component is 2 2 2a a a+ =  and the 
magnitude of the parallel component is a, ( )tan 2 / 2a aθ = = . Thus θ  = °54 7. .  The 

angle between the vector and each of the other two adjacent sides (the y and z axes) is the 
same as is the angle between any of the other diagonal vectors and any of the cube sides 
adjacent to them. 
 
(f) The length of any of the diagonals is given by 2 2 2 3.a a a a+ + =  
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32. (a) With a = 17.0 m and θ = 56.0° we find ax = a cos θ = 9.51 m. 
 
(b) Similarly, ay = a sin θ = 14.1 m. 
 
(c) The angle relative to the new coordinate system is θ ´ = (56.0° – 18.0°) = 38.0°. Thus, 

cos 13.4 m.xa a θ′ ′= =  
 
(d) Similarly, ya′  = a sin θ ´ = 10.5 m. 
 
33. Examining the figure, we see that  a  

→
 +  b  

→
 +  c  

→
 =  0,  where  a  

→
 ⊥  b  

→
 . 

 
(a) |  a  

→
 ×  b  

→
 |  =  (3.0)(4.0)  = 12 since the angle between them is 90º. 

 
(b) Using the Right-Hand Rule, the vector a b× points in the ˆ ˆ ˆi j k× = , or the +z direction.  
 
(c) |  a  

→
 ×  c  

→
 | = |  a  

→
 × (−  a  

→
  −  b  

→
 )| = | − (  a  

→
 ×  b  

→
 )| =  12. 

 
(d) The vector a b− × points in the ˆ ˆ ˆi j k− × = − , or the − z direction. 
 
(e) |  b  

→
 ×  c  

→
 | = |  b  

→
 × (−  a  

→
  −  b  

→
 )| =  | −(  b  

→
 ×  a  

→
 ) | = | (  a  

→
 ×  b  

→
 ) | = 12.  

 
(f) The vector points in the +z direction, as in part (a).  
 
34. We apply Eq. 3-30 and Eq. 3-23. 
 
(a) ˆ = ( ) kx y y xa b a b a b× −  since all other terms vanish, due to the fact that neither a  nor 

b  have any z components. Consequently, we obtain ˆ ˆ[(3.0)(4.0) (5.0)(2.0)]k 2.0k− = . 
 
(b)  x x y ya b a b a b⋅ = +  yields (3.0)(2.0) + (5.0)(4.0) = 26. 
 
(c) ˆ ˆ (3.0  2.0) i  (5.0  4.0) j  a b+ = + + + ⇒  (  + )  = (5.0) (2.0) + (9.0) (4.0) = 46a b b⋅ . 
 
(d) Several approaches are available. In this solution, we will construct a b  unit-vector 
and “dot” it (take the scalar product of it) with a . In this case, we make the desired unit-
vector by 

2 2

ˆ ˆ2.0 i 4.0 jˆ .
| | (2.0) (4.0)
bb
b

+
= =

+
 

 
We therefore obtain 
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2 2

(3.0)(2.0) (5.0)(4.0)ˆ 5.8.
(2.0) (4.0)

ba a b +
= ⋅ = =

+
 

 
35. (a) The scalar (dot) product is (4.50)(7.30)cos(320º – 85.0º) = – 18.8 . 
 
(b) The vector (cross) product is in the k^   direction (by the right-hand rule) with 
magnitude |(4.50)(7.30) sin(320º – 85.0º)| = 26.9 .   
 
36. First, we rewrite the given expression as 4( dplane  

→      
 · dcross  

→      
 )   where dplane  

→      
 =  d1  

→  
 + 

d2  
→  

  and in the plane of d1  
→  

 and d2  
→  

 , and  dcross  
→      

 = d1  
→  

 × d2  
→  

 . Noting that dcross  
→      

 is 
perpendicular to the plane of d1  

→  
 and d2  

→  
 , we see that the answer must be 0 (the scalar 

[dot] product of perpendicular vectors is zero). 
 
37. We apply Eq. 3-30 and Eq.3-23. If a vector-capable calculator is used, this makes a 
good exercise for getting familiar with those features. Here we briefly sketch the method. 
 
(a) We note that ˆ ˆ ˆ8.0 i 5.0 j 6.0kb c× = − + + . Thus, 
 

(   ) = (3.0) ( 8.0)  (3.0)(5.0) ( 2.0) (6.0) = 21.a b c⋅ × − + + − −  
 
(b) We note that ˆ ˆ ˆ +  = 1.0 i  2.0 j + 3.0k.b c −  Thus,  

 
( ) (3.0) (1.0) (3.0) ( 2.0) ( 2.0) (3.0) 9.0.a b c⋅ + = + − + − = −  

(c) Finally,  
 

ˆ ˆ(  + ) [(3.0)(3.0) ( 2.0)( 2.0)] i [( 2.0)(1.0) (3.0)(3.0)] j
ˆ[(3.0)( 2.0) (3.0)(1.0)] k 

ˆ ˆ ˆ 5i  11j  9k

a b c× = − − − + − −

+ − −

= − −

. 

 
38. Using the fact that 
 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi j k,  j k i,  k i j× = × = × =  
we obtain 
 

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2   2 2.00i 3.00j 4.00k 3.00i 4.00j 2.00k 44.0i 16.0j 34.0k.A B× = + − × − + + = + +  

 
Next, making use of  

ˆ ˆ ˆ ˆ ˆ ˆi i = j j = k k = 1
ˆ ˆ ˆ ˆ ˆ ˆi j = j k = k i = 0
⋅ ⋅ ⋅
⋅ ⋅ ⋅

 

we have  
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( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ3 2 3 7.00 i 8.00 j 44.0 i 16.0 j 34.0 k
3[(7.00) (44.0)+( 8.00) (16.0) (0) (34.0)] 540.

C A B⋅ × = − ⋅ + +

= − + =
 

 
39. From the definition of the dot product between A  and B , cosA B AB θ⋅ = , we have  
 

 cos A B
AB

θ ⋅
=  

 
With 6.00A = , 7.00B = and 14.0A B⋅ = , cos 0.333θ = , or 70.5 .θ = °  
 
40. The displacement vectors can be written as (in meters) 
 

 1

2

ˆ ˆ ˆ ˆ(4.50 m)(cos 63 j sin 63 k) (2.04 m) j (4.01 m) k
ˆ ˆ ˆ ˆ(1.40 m)(cos30 i sin 30 k) (1.21 m) i (0.70 m) k .

d

d

= ° + ° = +

= ° + ° = +
 

 
(a) The dot product of 1d and 2d is 
 
 2

1 2
ˆ ˆ ˆ ˆ ˆ ˆ(2.04 j 4.01k) (1.21i 0.70 k) = (4.01k) (0.70 k) = 2.81 m .d d⋅ = + ⋅ + ⋅  

 
(b) The cross product of 1d and 2d is 
 

1 2

2

ˆ ˆ ˆ ˆ(2.04 j 4.01k) (1.21i 0.70 k)
ˆ ˆ ˆ(2.04)(1.21)( k) + (2.04)(0.70)i (4.01)(1.21) j

ˆ ˆ ˆ(1.43 i 4.86 j 2.48k) m .

d d× = + × +

= − +

= + −

 

 
(c) The magnitudes of 1d and 2d are 
 

 
2 2

1

2 2
2

(2.04 m) (4.01 m) 4.50 m

(1.21 m) (0.70 m) 1.40 m.

d

d

= + =

= + =
 

 
Thus, the angle between the two vectors is 
 

 
2

1 11 2

1 2

2.81 mcos cos 63.5 .
(4.50 m)(1.40 m)

d d
d d

θ − −⎛ ⎞ ⎛ ⎞⋅
= = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
41. Since ab cos φ = axbx + ayby + azbz, 
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cos .φ =
+ +a b a b a b

ab
x x y y z z    

 

 
The magnitudes of the vectors given in the problem are 
 

2 2 2

2 2 2

 | | (3.00)   (3.00)   (3.00) 5.20

 | | (2.00)   (1.00)   (3.00) 3.74.

a a

b b

= = + + =

= = + + =

 

 
The angle between them is found from 
 

(3.00) (2.00)  (3.00) (1.00)  (3.00) (3.00)cos   0.926.
(5.20) (3.74)

φ + +
= =  

 
The angle is φ = 22°. 
 
As the name implies, the scalar product (or dot product) between two vectors is a scalar 
quantity. It can be regarded as the product between the magnitude of one of the vectors 
and the scalar component of the second vector along the direction of the first one, as 
illustrated below (see also in Fig. 3-18 of the text): 

 

cos ( )( cos )a b ab a bφ φ⋅ = =  

42. The two vectors are written as, in unit of meters, 
 
 1 1 1 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4.0 i+5.0 j i j,    3.0 i+4.0 j i jx y x yd d d d d d= = + = − = +  
 
(a) The vector (cross) product gives  
 
 1 2 1 2 1 2

ˆ ˆ ˆ( )k [(4.0)(4.0) (5.0)( 3.0)]k=31 kx y y xd d d d d d× = − = − −  
 
(b) The scalar (dot) product gives  
 
 1 2 1 2 1 2 (4.0)( 3.0) (5.0)(4.0) 8.0.x x y yd d d d d d⋅ = + = − + =  
 
(c)  
 2 2 2

1 2 2 1 2 2( ) 8.0 ( 3.0) (4.0) 33.d d d d d d+ ⋅ = ⋅ + = + − + =  
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(d) Note that the magnitude of the d1 vector is 16+25  = 6.4.  Now, the dot product is 
(6.4)(5.0)cosθ = 8.  Dividing both sides by 32 and taking the inverse cosine yields θ = 
75.5°.  Therefore the component of the d1 vector along the direction of the d2 vector is 
6.4cosθ ≈ 1.6. 
 
43. From the figure, we note that c b⊥ , which implies that the angle between c  and the 
+x axis is θ + 90°. In unit-vector notation, the three vectors can be written as 

î
ˆ ˆ ˆ ˆi j ( cos )i ( sin ) j
ˆ ˆ ˆ ˆi j [ cos( 90 )]i [ sin( 90 )]j

x

x y

x y

a a

b b b b b

c c c c c

θ θ

θ θ

=

= + = +

= + = + ° + + °

 

 
The above expressions allow us to evaluate the components of the vectors. 
 
(a) The x-component of a  is ax = a cos 0° = a = 3.00 m. 
 
(b) Similarly, the y-componnet of  a  is ay = a sin 0° = 0. 
 
(c) The x-component of  b  is bx = b cos 30° = (4.00 m) cos 30° = 3.46 m,  
 
(d) and the y-component is by = b sin 30° = (4.00 m) sin 30° = 2.00 m. 
 
(e) The x-component of  c  is cx = c cos 120° = (10.0 m) cos 120° = –5.00 m,  
 
(f) and the y-component is cy = c sin 30° = (10.0 m) sin 120° = 8.66 m. 
 
(g) The fact that c pa qb= + implies 
 

ˆ ˆ ˆ ˆ ˆ ˆ ˆi j ( i) ( i j) ( )i jx y x x y x x yc c c p a q b b pa qb qb= + = + + = + +  
or  

,x x x y yc pa qb c qb= + =  
Substituting the values found above, we have 
 

5.00 m (3.00 m) (3.46 m)
  8.66 m (2.00 m).

p q
q

− = +
=

 

 
Solving these equations, we find p = –6.67. 
 
(h) Similarly, q = 4.33 (note that it’s easiest to solve for q first). The numbers p and q 
have no units. 
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44. Applying Eq. 3-23, F qv B    = ×  (where q is a scalar) becomes 
 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆi j k i j kx y z y z z y z x x z x y y xF F F q v B v B q v B v B q v B v B+ + = − + − + −  
 
which — plugging in values — leads to three equalities: 
 

4.0 2 (4.0   6.0 )

20 2 (6.0   2.0 )
12 2 (2.0   4.0 )

z y

x z

y x

B B

B B
B B

= −

− = −

= −

 

 
Since we are told that Bx = By, the third equation leads to By = –3.0. Inserting this value 
into the first equation, we find Bz = –4.0. Thus, our answer is 
 

ˆ ˆ ˆ3.0 i 3.0 j 4.0 k.B = − − −  
 
45. The two vectors are given by 
 

 
ˆ ˆ ˆ ˆ8.00(cos130 i sin130 j) 5.14 i 6.13 j

ˆ ˆ ˆ ˆi j 7.72 i 9.20 j.x y

A

B B B

= ° + ° = − +

= + = − −
 

 
(a) The dot product of 5A B⋅ is 
 

 
ˆ ˆ ˆ ˆ5 5( 5.14 i 6.13 j) ( 7.72 i 9.20 j) 5[( 5.14)( 7.72) (6.13)( 9.20)]

83.4.
A B⋅ = − + ⋅ − − = − − + −

= −
 

 
(b) In unit vector notation 
 
 3ˆ ˆ ˆ ˆ ˆ ˆ4 3 12 12( 5.14 i 6.13 j) ( 7.72 i 9.20 j) 12(94.6k) 1.14 10 kA B A B× = × = − + × − − = = ×  
 
(c) We note that the azimuthal angle is undefined for a vector along the z axis.  Thus, our 
result is “1.14×103, θ not defined, and φ = 0°.” 
 
(d) Since A  

→
 is in the xy plane, and A B× is perpendicular to that plane, then the answer is 

90°. 
 
(e) Clearly, A  

→
 + 3.00 k^   = –5.14 i^ + 6.13 j^ + 3.00 k^ . 

 
(f) The Pythagorean theorem yields magnitude  2 2 2(5.14) (6.13) (3.00) 8.54A = + + = . 

The azimuthal angle is  θ = 130°, just as it was in the problem statement ( A  
→

 is the 



 

 

95

projection onto the xy plane of the new vector created in part (e)).  The angle measured 
from the +z axis is  

φ = cos−1(3.00/8.54) = 69.4°. 
 
46. The vectors are shown on the diagram. The x axis runs from west to east and the y 
axis runs from south to north. Then ax = 5.0 m, ay = 0,  
 

bx = –(4.0 m) sin 35° = –2.29 m,  by = (4.0 m) cos 35° = 3.28 m. 
 

 
 
(a) Let c a b= + . Then = 5.00 m 2.29 m = 2.71 mx x xc a b= + −  and 
 = 0 + 3.28 m = 3.28 my y yc a b= + .  The magnitude of c is 
 

( ) ( )2 22 2 2.71m 3.28m 4.2 m.x yc c c= + = + =  
 
(b) The angle θ that c a b= +  makes with the +x axis is 
 

1 1 3.28tan tan 50.5 50 .
2.71

y

x

c
c

θ − −⎛ ⎞ ⎛ ⎞
= = = ° ≈ °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
The second possibility (θ = 50.4° + 180° = 230.4°) is rejected because it would point in a 
direction opposite to c . 
 
(c) The vector b a−  is found by adding −a bto . The result is shown on the diagram to 
the right. Let .c b a= −  The components are  
 

2.29 m 5.00 m 7.29 mx x xc b a= − = − − = −  
                                     3.28 m.y y yc b a= − =  
 
The magnitude of c  is 2 2 8.0mx yc c c= + = . 
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(d) The tangent of the angle θ that c  makes with the +x axis (east) is 
 

3.28 mtan 4.50.
7.29 m

y

x

c
c

θ = = = −
−

 

 
There are two solutions: –24.2° and 155.8°. As the diagram shows, the second solution is 
correct.  The vector  c a b= − +   is 24° north of west. 
 
47. Noting that the given 130° is measured counterclockwise from the +x axis, the two 
vectors can be written as  
 

 
ˆ ˆ ˆ ˆ8.00(cos130 i sin130 j) 5.14 i 6.13 j

ˆ ˆ ˆ ˆi j 7.72 i 9.20 j.x y

A

B B B

= ° + ° = − +

= + = − −
 

 
(a) The angle between the negative direction of the y axis ( ĵ− ) and the direction of A  is 
 

 1 1 1

2 2

ˆ( j) 6.13 6.13cos cos cos 140 .
8.00( 5.14) (6.13)

A
A

θ − − −
⎛ ⎞⎛ ⎞⋅ − − −⎛ ⎞⎜ ⎟= = = = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠− +⎝ ⎠ ⎝ ⎠

 

 
Alternatively, one may say that the −y direction corresponds to an angle of 270°, and the 
answer is simply given by 270°−130° = 140°. 
 
(b) Since the y axis is in the xy plane, and A B×  is perpendicular to that plane, then the 
answer is 90.0°. 
 
(c) The vector can be simplified as 
 

 
ˆ ˆ ˆ ˆ ˆ ˆ( 3.00k) ( 5.14 i 6.13 j) ( 7.72 i 9.20 j 3.00k)

ˆ ˆ ˆ18.39 i 15.42 j 94.61k

A B× + = − + × − − +

= + +
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Its magnitude is ˆ| ( 3.00k) | 97.6.A B× + = The angle between the negative direction of the 
y axis ( ĵ− ) and the direction of the above vector is 
 

1 15.42cos 99.1 .
97.6

θ − −⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

 
48. Where the length unit is not displayed, the unit meter is understood. 
 
(a) We first note that the magnitudes of the vectors are 2 2| | (3.2) (1.6) 3.58a a= = + =  

and 2 2| | (0.50) (4.5) 4.53b b= = + = . Now, 
 

cos

(3.2) (0.50) (1.6) (4.5) (3.58) (4.53) cos
x x y ya b a b a b ab φ

φ

⋅ = + =

+ =
 

 
which leads to φ = 57° (the inverse cosine is double-valued as is the inverse tangent, but 
we know this is the right solution since both vectors are in the same quadrant). 
 
(b) Since the angle (measured from +x) for a  is tan–1(1.6/3.2) = 26.6°, we know the 
angle for c  is 26.6° –90° = –63.4° (the other possibility, 26.6° + 90° would lead to a cx < 
0). Therefore,  

cx = c cos (–63.4° )= (5.0)(0.45) = 2.2 m. 
 
(c) Also, cy = c sin (–63.4°) = (5.0)( –0.89) = – 4.5 m. 
 
(d) And we know the angle for d  to be 26.6° + 90° = 116.6°, which leads to  
 

dx =  d cos(116.6°) = (5.0)( –0.45) = –2.2 m. 
 
(e) Finally, dy = d sin 116.6° = (5.0)(0.89) = 4.5 m. 
 
49. The situation is depicted in the figure below.  
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Let a  represent the first part of his actual voyage (50.0 km east) and c  represent the 
intended voyage (90.0 km north).  We are looking for a vector b such that c a b= + . 
 
(a) Using the Pythagorean theorem, the distance traveled by the sailboat is  
 2 2(50.0 km) (90.0 km) 103 km.b = + =  
 
(b) The direction is  

1 50.0 kmtan 29.1
90.0 km

φ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

 
west of north (which is equivalent to 60.9° north of due west).  
 
Note that this problem could also be solved by first expressing the vectors in unit-vector 
notation: ˆ ˆ(50.0 km)i, (90.0 km) ja c= = . This gives  
 

ˆ ˆ(50.0 km)i (90.0 km) jb c a= − = − +  

The angle between b  and the +x-axis is  
 

1 90.0 kmtan 119.1
50.0 km

θ − ⎛ ⎞= = °⎜ ⎟−⎝ ⎠
 

 
The angle θ is related to φ  by 90θ φ= ° + . 
 
50. The two vectors 1d  and 2d are given by 1 1 2 2

ˆ ˆj and i.d d d d= − =  
 
(a) The vector 2 2

ˆ/ 4 ( / 4) id d=  points in the +x direction. The ¼ factor does not affect the 
result. 
 
(b) The vector 1 1

ˆ/( 4) ( / 4) jd d− =  points in the +y direction. The minus sign (with the “−4”) 
does affect the direction: −(–y) = + y. 
 
(c) 1 2 0d d⋅ = since ˆ ˆi j = 0.⋅  The two vectors are perpendicular to each other. 
 
(d) 1 2 1 2( / 4) ( ) / 4 0d d d d⋅ = ⋅ = , as in part (c). 
 
(e) 1 2 1 2 1 2

ˆ ˆ ˆ( j i) = kd d d d d d× = − × , in the +z-direction. 
 
(f) 2 1 2 1 1 2

ˆ ˆ ˆ(i j) = kd d d d d d× = − × − , in the −z-direction. 
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(g) The magnitude of the vector in (e) is 1 2d d . 
 
(h) The magnitude of the vector in (f) is 1 2d d . 
 
(i) Since 1 2 1 2

ˆ( / 4) ( / 4)kd d d d× = , the magnitude is 1 2 / 4.d d  
 
(j) The direction of 1 2 1 2

ˆ( / 4) ( / 4)kd d d d× = is in the +z-direction. 
 
51. Although we think of this as a three-dimensional movement, it is rendered effectively 
two-dimensional by referring measurements to its well-defined plane of the fault. 
 
(a) The magnitude of the net displacement is 
 

2 2 2 2| | | | | | (17.0 m) (22.0 m) 27.8m.AB AD AC
→

= + = + =  
 

(b) The magnitude of the vertical component of AB
→

 is |AD| sin 52.0° = 13.4 m. 
 
52. The three vectors are 

 
1

2

3

ˆ ˆ ˆ4.0 i 5.0 j 6.0k
ˆ ˆ ˆ1.0 i 2.0 j+3.0k

ˆ ˆ ˆ4.0 i 3.0 j+2.0k

d
d
d

= + −
= − +
= +

 

 
(a) 1 2 3

ˆ ˆ ˆ(9.0 m)i (6.0 m) j ( 7.0 m)kr d d d= − + = + + − . 
 
(b) The magnitude of  r  

→
 is 2 2 2| | (9.0 m) (6.0 m) ( 7.0 m)  12.9 mr = + + − = .  The 

angle between r  and the z-axis is given by 
 

 k̂ 7.0 mcos 0.543
| | 12.9 m
r

r
θ ⋅ −

= = = −  

which implies 123 .θ = °  
 
(c) The component of 1d along the direction of 2d is given by 1 1û= cosd d d ϕ= ⋅  where 

ϕ is the angle between 1d and 2d , and û is the unit vector in the direction of 2d . Using 
the properties of the scalar (dot) product, we have 
 

 1 2 1 2
1 2 2 2

1 2 2

(4.0)( 1.0) (5.0)(2.0) ( 6.0)(3.0) 12=   3.2 m.
14( 1.0) (2.0) (3.0)

d d d dd d
d d d

⎛ ⎞⋅ ⋅ − + + − −
= = = = −⎜ ⎟

− + +⎝ ⎠
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(d) Now we are looking for d⊥ such that 2 2 2 2 2 2
1 (4.0) (5.0) ( 6.0) 77d d d⊥= + + − = = + . 

From (c), we have 
 
 2 277 m ( 3.2 m) 8.2 m.d⊥ = − − =  
  
This gives the magnitude of the perpendicular component (and is consistent with what 
one would get using Eq. 3-27), but if more information (such as the direction, or a full 
specification in terms of unit vectors) is sought then more computation is needed. 
 
53. We apply Eq. 3-20 and Eq. 3-27 to calculate the scalar and vector products between 
two vectors: 

cos

| | sin

a b ab

a b ab

φ

φ

⋅ =

× =
 

 
 (a) Given that | | 10a a= = , | | 6.0b b= =  and 60φ = ° , the scalar (dot) product of a  

and b  is  
cos (10) (6.0) cos 60 30.a b ab φ⋅ = = ° =  

 
(b) Similarly, the magnitude of the vector (cross) product of the two vectors is  
 

 | | sin (10) (6.0) sin 60 52.a b ab φ× = = ° =  
 
When two vectors are parallel ( 0φ = ),  cosa b ab abφ⋅ = = , and | | sin 0a b ab φ× = = . 
On the other hand, when the vectors are perpendicular ( 90φ = ° ), cos 0a b ab φ⋅ = =  and 
| | sina b ab abφ× = = . 
 
54. From the figure, it is clear that  a  

→
 +  b  

→
 +  c  

→
 =  0,  where  a  

→
 ⊥  b  

→
 .   

 
(a)  a  

→
 ·  b  

→
 =  0 since the angle between them is 90º. 

 
(b)  a  

→
 ·  c  

→
 =  a  

→
 · (−  a  

→
  −  b  

→
 )  =  −|  a  

→
 |2  =  − 16 .  

 
(c) Similarly,  b  

→
 ·  c  

→
 =  − 9.0 . 

 
55. We choose +x east and +y north and measure all angles in the “standard” way 
(positive ones are counterclockwise from +x). Thus, vector d1  has magnitude d1 = 4.00 m 
(with the unit meter) and direction θ1 = 225°. Also, d2  has magnitude d2 = 5.00 m and 
direction θ2 = 0°, and vector d3  has magnitude d3 = 6.00 m and direction θ3 = 60°. 
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(a) The x-component of d1  is d1x = d1 cos θ1 = –2.83 m. 
 
(b) The y-component of d1  is d1y = d1 sin θ1 = –2.83 m. 
 
(c) The x-component of d2  is d2x = d2 cos θ2 = 5.00 m. 
 
(d) The y-component of d2  is d2y = d2 sin θ2 = 0. 
 
(e) The x-component of d3  is d3x = d3 cos θ3 = 3.00 m. 
 
(f) The y-component of d3  is d3y = d3 sin θ3 = 5.20 m. 
 
(g) The sum of x-components is  
 

dx = d1x + d2x + d3x  = –2.83 m + 5.00 m + 3.00 m = 5.17 m. 
 
(h) The sum of y-components is  
 

dy = d1y + d2y + d3y  = –2.83 m + 0 + 5.20 m = 2.37 m. 
 
(i) The magnitude of the resultant displacement is 
 

2 2 2 2(5.17 m) (2.37 m) 5.69 m.x yd d d= + = + =  
 
(j) And its angle is  

θ = tan–1 (2.37/5.17) = 24.6°, 
 
which (recalling our coordinate choices) means it points at about 25° north of east. 
 
(k) and (l) This new displacement (the direct line home) when vectorially added to the 
previous (net) displacement must give zero. Thus, the new displacement is the negative, 
or opposite, of the previous (net) displacement. That is, it has the same magnitude (5.69 
m) but points in the opposite direction (25° south of west). 
 
56. If we wish to use Eq. 3-5 directly, we should note that the angles for , , andQ R S  are 
100°, 250°, and 310°, respectively, if they are measured counterclockwise from the +x 
axis. 
 
(a) Using unit-vector notation, with the unit meter understood, we have 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

ˆ ˆ10.0 cos 25.0 i 10.0sin 25.0 j
ˆ ˆ12.0cos 100 i 12.0sin 100 j
ˆ ˆ8.00cos 250 i 8.00sin 250 j
ˆ ˆ9.00cos 310 i 9.00sin 310 j

ˆ ˆ(10.0 m )i (1.63 m) j

P

Q

R

S

P Q R S

= ° + °

= ° + °

= ° + °

= ° + °

+ + + = +

 

 
(b) The magnitude of the vector sum is 2 2(10.0 m) (1.63 m) 10.2 m .+ =   
 
(c) The angle is tan–1 (1.63 m/10.0 m) ≈ 9.24° measured counterclockwise from the +x 
axis.  
 
57. From the problem statement, we have 
 

ˆ ˆ(6.0)i (1.0) j
ˆ ˆ(4.0)i (7.0) j

A B
A B

+ = +
− = − +

 

 
Adding the above equations and dividing by 2 leads to ˆ ˆ(1.0)i (4.0) jA = + . Thus, the 

magnitude of A  is  
2 2 2 2| | (1.0) (4.0) 4.1x yA A A A= = + = + =  

 
Similarly, the vector B  is ˆ ˆ(5.0)i ( 3.0) jB = + − , and its magnitude is  
 

2 2 2 2| | (5.0) ( 3.0) 5.8x yB B B B= = + = + − = . 
 

The results are summarized in the figure below: 
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58. The vector can be written as ˆ(2.5 m)jd = , where we have taken ĵ to be the unit 
vector pointing north. 
 
(a) The magnitude of the vector 4.0a d=  is (4.0)(2.5 m) = 10 m. 
 
(b) The direction of the vector a d= 4.0  is the same as the direction of d  (north). 
 
(c) The magnitude of the vector = 3.0c d−  is (3.0)(2.5 m) = 7.5 m. 
 
(d) The direction of the vector = 3.0c d−  is the opposite of the direction of d . Thus, the 
direction of c  is south. 
 
59. Reference to Figure 3-18 (and the accompanying material in that section) is helpful. 
If we convert B  to the magnitude-angle notation (as A  already is) we have 
B    = ∠ °14 4 337. .b g  (appropriate notation especially if we are using a vector capable 
calculator in polar mode). Where the length unit is not displayed in the solution, the unit 
meter should be understood. In the magnitude-angle notation, rotating the axis by +20° 
amounts to subtracting that angle from the angles previously specified. Thus, 

A    = ∠ ° ′12 0 40 0. .b g  and B    = ∠ ° ′( . . )14 4 137 , where the ‘prime’ notation indicates that 
the description is in terms of the new coordinates. Converting these results to (x, y) 
representations, we obtain 
 
(a) ˆ ˆ(9.19 m) i (7.71 m) j .A ′ ′= +  
 
(b) Similarly, ˆ ˆ(14.0 m) i (3.41 m) jB ′ ′= + . 
 
60. The two vectors can be found be solving the simultaneous equations. 
 
(a) If we add the equations, we obtain 2 6a c= , which leads to ˆ ˆ3 9 i 12 ja c= = + . 
 
(b) Plugging this result back in, we find b c= = +3 4i j . 
 
61. The three vectors given are 

 

ˆ ˆ ˆ 5.0 i 4.0 j 6.0 k
ˆ ˆ ˆ2.0 i 2.0 j 3.0 k
ˆ ˆ ˆ 4.0 i 3.0 j 2.0 k

a
b
c

= + −
= − + +
= + +

 

 
(a) The vector equation r a b c= − +  is  
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ˆ ˆ ˆ[5.0 ( 2.0) 4.0]i (4.0 2.0 3.0) j ( 6.0 3.0 2.0)k

ˆ ˆ ˆ=11i+5.0j 7.0k.
r = − − + + − + + − − +

−
 

 
(b) We find the angle from +z by “dotting” (taking the scalar product) r  with k. Noting 
that 2 2 2 = | |  = (11.0)  + (5.0)  + ( 7.0)  = 14,r r −  Eq. 3-20 with Eq. 3-23 leads to 
 

( )( )k 7.0 14 1 cos     120 .r φ φ⋅ = − = ⇒ = °  
 
(c) To find the component of a vector in a certain direction, it is efficient to “dot” it (take 
the scalar product of it) with a unit-vector in that direction. In this case, we make the 
desired unit-vector by 

( )2 2 2

ˆ ˆ ˆ2.0i+2.0 j +3.0kˆ .
| | 2.0 (2.0) (3.0)

bb
b

−
= =

− + +
 

We therefore obtain 
 

( )( ) ( )( ) ( )( )
( )2 2 2

5.0 2.0 4.0 2.0 6.0 3.0ˆ 4.9 .
2.0 (2.0) (3.0)

ba a b
− + + −

= ⋅ = = −
− + +

 

 
(d) One approach (if all we require is the magnitude) is to use the vector cross product, as 
the problem suggests; another (which supplies more information) is to subtract the result 
in part (c) (multiplied by b ) from a . We briefly illustrate both methods. We note that if 
a cos θ (where θ is the angle between a  and b ) gives ab (the component along b ) then 
we expect a sin θ to yield the orthogonal component: 
 

a
a b

b
sin .θ =

×
= 7 3  

 
(alternatively, one might compute θ form part (c) and proceed more directly). The second 
method proceeds as follows: 
 

a a bb− = − + − − − − −

+ −

. . . . . .

. .

50 2 35 4 0 2 35 6 0 353

6 35 2 47

b g b gc h b g b gc hi j + k

= 2.65i j k
 

 
This describes the perpendicular part of a  completely. To find the magnitude of this part, 
we compute 

2 2 2(2.65) (6.35) ( 2.47) 7.3+ + − =  
 
which agrees with the first method. 
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62. We choose +x east and +y north and measure all angles in the “standard” way 
(positive ones counterclockwise from +x, negative ones clockwise). Thus, vector d1  has 
magnitude d1 = 3.66 (with the unit meter and three significant figures assumed) and 
direction θ1 = 90°. Also, d2  has magnitude d2 = 1.83 and direction θ2 = –45°, and vector 
d3  has magnitude d3 = 0.91 and direction θ3 = –135°. We add the x and y components, 
respectively: 

1 1 2 2 3 3

1 1 2 2 3 3

:  cos cos cos 0.65  m

:  sin sin sin 1.7 m.

x d d d

y d d d

θ θ θ

θ θ θ

+ + =

+ + =
 

 
(a) The magnitude of the direct displacement (the vector sum d d d1 2 3 +   +  ) is 

2 2(0.65 m) (1.7 m) 1.8 m.+ =  
 
(b) The angle (understood in the sense described above) is tan–1 (1.7/0.65) = 69°. That is, 
the first putt must aim in the direction 69° north of east. 
 
63. The three vectors are 

 
1

2

3

ˆ ˆ ˆ3.0 i 3.0 j 2.0k
ˆ ˆ ˆ2.0 i 4.0 j 2.0k

ˆ ˆ ˆ2.0 i 3.0 j 1.0k.

d

d

d

= − + +

= − − +

= + +

 

 
(a) Since 2 3

ˆ ˆ ˆ0 i 1.0 j 3.0 kd d+ = − + , we have 
 

 1 2 3

2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( 3.0 i 3.0 j 2.0k) (0 i 1.0 j 3.0k)

0 3.0 + 6.0 3.0 m .

d d d⋅ + = − + + ⋅ − +

= − =
 

 
(b) Using Eq. 3-30, we obtain 2 3

ˆ ˆ ˆ10 i 6.0 j 2.0 k.d d× = − + +  Thus, 
 

1 2 3

3

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( 3.0 i 3.0 j 2.0k) ( 10 i 6.0 j 2.0k)

30 18 4.0 52 m .

d d d⋅ × = − + + ⋅ − + +

= + + =
 

 
(c) We found d2  

→  
 + d3  

→  
  in part (a). Use of Eq. 3-30 then leads to 

 

1 2 3

2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( 3.0 i 3.0 j 2.0k) (0 i 1.0 j 3.0k)
ˆ ˆ ˆ= (11i + 9.0 j+ 3.0k ) m

d d d× + = − + + × − +
 

 
64. (a) The vectors should be parallel to achieve a resultant 7 m long (the unprimed case 
shown below),  
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(b) anti-parallel (in opposite directions) to achieve a resultant 1 m long (primed case 
shown),  
(c) and perpendicular to achieve a resultant 3 4 52 2+ = m long (the double-primed case 
shown).  
 
In each sketch, the vectors are shown in a “head-to-tail” sketch but the resultant is not 
shown. The resultant would be a straight line drawn from beginning to end; the beginning 
is indicated by A (with or without primes, as the case may be) and the end is indicated by 
B. 

 
 
65. (a) This is one example of an answer: (−40 i^ – 20 j^ + 25 k^) m, with i^ directed anti-
parallel to the first path, j^ directed anti-parallel to the second path, and k^ directed upward 
(in order to have a right-handed coordinate system).  Other examples include (40 i^ + 20 j^ 
+ 25 k^  ) m and (40i^ – 20 j^ – 25 k^  ) m (with slightly different interpretations for the unit 
vectors).  Note that the product of the components is positive in each example. 
 
(b) Using the Pythagorean theorem, we have 2 2(40 m) (20 m)+  = 44.7 m ≈ 45 m.  
 
 
 



107 

 
 

Chapter 4 
 
 
1. (a) The magnitude of r  is 
 

2 2 2| | (5.0 m) ( 3.0 m) (2.0 m) 6.2 m.r = + − + =  
 
(b) A sketch is shown. The coordinate values are in 
meters. 
 
2. (a) The position vector, according to Eq. 4-1, is ˆ ˆ= ( 5.0 m) i + (8.0 m)jr − . 
 
(b) The magnitude is 2 2 2 2 2 2| |  +  +  ( 5.0 m) (8.0 m) (0 m)  9.4 m.r x y z= = − + + =  
 
(c) Many calculators have polar ↔  rectangular conversion capabilities that make this 
computation more efficient than what is shown below. Noting that the vector lies in the 
xy plane and using Eq. 3-6, we obtain: 
 

1 8.0 mtan 58   or  122
5.0 m

θ − ⎛ ⎞= = − ° °⎜ ⎟−⎝ ⎠
 

 
where the latter possibility (122° measured counterclockwise from the +x 
direction) is chosen since the signs of the components imply the vector is 
in the second quadrant. 
 
(d) The sketch is shown to the right. The vector is 122° counterclockwise 
from the +x direction.  
 
(e) The displacement is r r r′Δ = − where r  is given in part (a) and 

ˆ (3.0 m)i.r′ = Therefore, ˆ ˆ(8.0 m)i (8.0 m)jrΔ = − . 
 
(f) The magnitude of the displacement is 
 

2 2| | (8.0 m) ( 8.0 m) 11 m.rΔ = + − =  
 
(g) The angle for the displacement, using Eq. 3-6, is  
 

1 8.0 mtan  = 45   or  135
8.0 m

− ⎛ ⎞ − ° °⎜ ⎟−⎝ ⎠
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where we choose the former possibility (−45°, or 45° measured clockwise from +x) since 
the signs of the components imply the vector is in the fourth quadrant. A sketch of rΔ  is 
shown on the right. 
 
3. The initial position vector  ro  satisfies r r r− =o Δ , which results in 
 

o
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(3.0 j 4.0k)m (2.0i 3.0 j 6.0 k)m ( 2.0 m) i (6.0 m) j ( 10 m) kr r r= − Δ = − − − + = − + + − . 

 
4. We choose a coordinate system with origin at the clock center and +x rightward 
(toward the “3:00” position) and +y upward (toward “12:00”). 
 
(a) In unit-vector notation, we have 1 2

ˆ ˆ(10 cm)i  and  ( 10 cm) j.r r= = − Thus, Eq. 4-2 gives 
 

2 1
ˆ ˆ( 10 cm)i ( 10 cm) j.r r rΔ = − = − + −  

 
The magnitude is given by 2 2| | ( 10 cm) ( 10 cm) 14 cm.rΔ = − + − =  
 
(b) Using Eq. 3-6, the angle is  
 

 1 10 cmtan 45  or 135 .
10 cm

θ − −⎛ ⎞= = ° − °⎜ ⎟−⎝ ⎠
 

 
We choose 135− ° since the desired angle is in the third quadrant. In terms of the 
magnitude-angle notation, one may write 
 

2 1
ˆ ˆ( 10 cm)i ( 10 cm) j (14 cm 135 ).r r rΔ = − = − + − → ∠ − °  

 
(c) In this case, we have 1 2

ˆ ˆ ˆ( 10 cm) j and (10 cm) j, and  (20 cm) j.r r r= − = Δ =  Thus, 
| | 20 cm.rΔ =  
 
(d) Using Eq. 3-6, the angle is given by 
 

1 20 cmtan 90 .
0 cm

θ − ⎛ ⎞
= = °⎜ ⎟

⎝ ⎠
 

 
(e) In a full-hour sweep, the hand returns to its starting position, and the displacement is 
zero. 
 
(f) The corresponding angle for a full-hour sweep is also zero.  
 
 
 



 

  

109

5. The average velocity of the entire trip is given by Eq. 4-8: avg / ,v r t= Δ Δ  where the 
total displacement 1 2 3r r r rΔ = Δ + Δ + Δ  is the sum of three displacements (each result of a 
constant velocity during a given time), and 1 2 3t t t tΔ = Δ + Δ + Δ  is the total amount of 
time for the trip. We use a coordinate system with +x for East and +y for North.  
 
 (a) In unit-vector notation, the first displacement is given by 
 

1
km 40.0 min ˆ ˆ = 60.0 i = (40.0 km)i.
h 60 min/h

r ⎛ ⎞ ⎛ ⎞Δ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The second displacement has a magnitude of 20.0 minkm

h 60 min/h(60.0 ) 20.0 km,) ( =⋅  and its 
direction is 40° north of east. Therefore, 
 

2
ˆ ˆ ˆ ˆ(20.0 km) cos(40.0 ) i (20.0 km) sin(40.0 ) j (15.3 km) i (12.9 km) j.rΔ = ° + ° = +  

 
Similarly, the third displacement is 
 

3
km 50.0 min ˆ ˆ60.0  i = ( 50.0 km) i.
h 60 min/h

r ⎛ ⎞ ⎛ ⎞Δ = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Thus, the total displacement is 
 

1 2 3
ˆ ˆ ˆ ˆ(40.0 km)i (15.3 km) i (12.9 km) j (50.0 km) i

ˆ ˆ(5.30 km) i (12.9 km) j.

r r r rΔ = Δ + Δ + Δ = + + −

= +
 

 
The time for the trip is tΔ = (40.0 + 20.0 + 50.0) min = 110 min, which is equivalent to 
1.83 h. Equation 4-8 then yields 
 

avg

ˆ ˆ(5.30 km) i (12.9 km) j ˆ ˆ(2.90 km/h) i (7.01 km/h) j.
1.83 h

v +
= = +  

 
The magnitude of avgv  is 

 2 2
avg| | (2.90 km/h) (7.01 km/h) 7.59 km/h.v = + =  

 
(b) The angle is given by  
 

 avg,1 1

avg,

7.01 km/htan tan 67.5   (north of east),
2.90 km/h

y

x

v
v

θ − −
⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
or 22.5°  east of due north. 
 
The displacement of the train is depicted in the following figure: 
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Note that the net displacement rΔ  is found by adding 1rΔ , 2rΔ  and 3rΔ  vectorially.  
 
6. To emphasize the fact that the velocity is a function of time, we adopt the notation v(t) 
for / .dx dt  
 
(a) Equation 4-10 leads to 
 

2ˆ ˆ ˆ ˆ ˆ( )  (3.00 i 4.00 j + 2.00k) (3.00 m/s)i (8.00  m/s) jdv t t t t
dt

= − = −  

 
(b) Evaluating this result at t = 2.00 s produces ˆ ˆ= (3.00i  16.0j) m/s.v −  
 
(c) The speed at t = 2.00 s is 2 2 | | (3.00 m/s) ( 16.0 m/s) 16.3 m/s.v v= = + − =  
 
(d) The angle of v  at that moment is 
 

1 16.0 m/stan 79.4  or 101
3.00 m/s

− ⎛ ⎞−
= − ° °⎜ ⎟

⎝ ⎠
 

 
where we choose the first possibility (79.4° measured clockwise from the +x direction, or 
281° counterclockwise from +x) since the signs of the components imply the vector is in 
the fourth quadrant. 
 
7. Using Eq. 4-3 and Eq. 4-8, we have 
 

avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0i + 8.0j 2.0k) m (5.0i 6.0j + 2.0k) m ˆ ˆ ˆ( 0.70i +1.40j 0.40k) m/s.
10 s

v − − − −
= = − −  

 
8. Our coordinate system has i  pointed east and j  pointed north. The first displacement 
is ˆ(483 km)iABr =  and the second is ˆ( 966 km) j.BCr = −  
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(a) The net displacement is 
 

ˆ ˆ(483 km)i (966 km)jAC AB BCr r r= + = −  
 
which yields 2 2 3|  | (483 km) ( 966 km) 1.08 10  km.ACr = + − = ×  
 
(b) The angle is given by 

1 966 kmtan 63.4 .
483 km

θ − −⎛ ⎞= = − °⎜ ⎟
⎝ ⎠

 

 
We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° 
east of south. 
 
(c) Dividing the magnitude of rAC  by the total time (2.25 h) gives  
 

 avg

ˆ ˆ(483 km)i (966 km)j ˆ ˆ(215 km/h)i (429 km/h) j
2.25 h

v −
= = −  

 
with a magnitude 2 2

avg| | (215 km/h) ( 429 km/h) 480 km/h.v = + − =  
 
(d) The direction of avgv is 26.6° east of south, same as in part (b). In magnitude-angle 
notation, we would have avg (480 km/h  63.4 ).v = ∠ − °   
 
(e) Assuming the AB trip was a straight one, and similarly for the BC trip, then | |rAB  is the 
distance traveled during the AB trip, and | |rBC  is the distance traveled during the BC trip. 
Since the average speed is the total distance divided by the total time, it equals 
 

483 km  966 km 644 km/h.
2.25 h

+
=  

 
9. The (x,y) coordinates (in meters) of the points are A = (15, −15), B = (30, −45), C = (20, 
−15), and D = (45, 45). The respective times are tA  = 0, tB  = 300 s, tC  = 600 s, and tD  = 
900 s.  Average velocity is defined by Eq. 4-8.  Each displacement Δr   

→
 is understood to 

originate at point A. 
 
(a) The average velocity having the least magnitude (5.0 m/600 s) is for the displacement 
ending at point C: avg| | 0.0083 m/s.v =  
 
(b) The direction of avgv  is 0° (measured counterclockwise from the +x axis). 
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(c) The average velocity having the greatest magnitude ( 2 2(15 m) (30 m) / 300 s+ ) is 
for the displacement ending at point B: | | 0.11 m/s.avgv =   
 
(d) The direction of avgv  is 297° (counterclockwise from +x) or −63°  (which is 
equivalent to measuring 63° clockwise from the +x axis). 
 
10. We differentiate 2ˆ ˆ5.00 i ( ) jr t et ft= + + . 
 
(a) The particle’s motion is indicated by the derivative of r : v  = 5.00 i^  +  (e + 2ft) j^ .  
The angle of its direction of motion is consequently  
 

θ = tan−1(vy /vx ) = tan−1[(e + 2ft)/5.00]. 
 
The graph indicates θo = 35.0°, which determines the parameter e:   
 

e = (5.00 m/s) tan(35.0°) = 3.50 m/s. 
 
(b) We note (from the graph) that θ = 0 when t = 14.0 s.  Thus, e + 2ft = 0 at that time.  
This determines the parameter f :   
 

 23.5 m/s 0.125 m/s
2 2(14.0 s)
ef
t

− −
= = = − . 

 
11. In parts (b) and (c), we use Eq. 4-10 and Eq. 4-16. For part (d), we find the direction 
of the velocity computed in part (b), since that represents the asked-for tangent line. 
 
(a) Plugging into the given expression, we obtain 
 

2.00
ˆ ˆ ˆ ˆ [2.00(8) 5.00(2)]i + [6.00 7.00(16)] j  (6.00 i  106 j) mtr = = − − = −  

 
(b) Taking the derivative of the given expression produces 
 
 2 3ˆ ˆ( ) = (6.00   5.00) i  28.0  jv t t t− −  
 
where we have written v(t) to emphasize its dependence on time. This becomes, at  
t = 2.00 s, ˆ ˆ = (19.0 i  224 j) m/s.v −  
 
(c) Differentiating the v t( )  found above, with respect to t produces 2ˆ ˆ12.0 i 84.0 j,t t−  
which yields 2ˆ ˆ =(24.0 i 336 j) m/sa −  at t = 2.00 s. 
 
(d) The angle of v , measured from +x, is either 
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1 224 m/stan 85.2 or 94.8
19.0 m/s

− ⎛ ⎞−
= − ° °⎜ ⎟

⎝ ⎠
 

 
where we settle on the first choice (–85.2°, which is equivalent to 275° measured 
counterclockwise from the +x axis) since the signs of its components imply that it is in 
the fourth quadrant. 
 
12. We adopt a coordinate system with i  pointed east and j  pointed north; the 
coordinate origin is the flagpole. We “translate” the given information into unit-vector 
notation as follows: 

o o
ˆ ˆ(40.0 m)i     and     = ( 10.0 m/s)j
ˆ ˆ(40.0 m) j     and     (10.0 m/s)i.

r v

r v

= −

= =
 

 
(a) Using Eq. 4-2, the displacement Δr  is 
 
 o

ˆ ˆ( 40.0 m)i (40.0 m) jr r rΔ = − = − +  
 
with a magnitude 2 2| | ( 40.0 m) (40.0 m) 56.6 m.rΔ = − + =  
 
(b) The direction of Δr  is  
 

 1 1 40.0 mtan tan 45.0  or 135 .
40.0 m

y
x

θ − −Δ⎛ ⎞ ⎛ ⎞= = = − ° °⎜ ⎟ ⎜ ⎟Δ −⎝ ⎠ ⎝ ⎠
 

 
Since the desired angle is in the second quadrant, we pick 135° ( 45°  north of due west). 
Note that the displacement can be written as ( )o 56.6 135r r rΔ = − = ∠ ° in terms of the 
magnitude-angle notation. 
 
(c) The magnitude of vavg  is simply the magnitude of the displacement divided by the 
time (Δt = 30.0 s). Thus, the average velocity has magnitude (56.6 m)/(30.0 s) = 1.89 m/s. 
 
(d) Equation 4-8 shows that vavg  points in the same direction as Δr , that is, 135° ( 45°  
north of due west). 
 
(e) Using Eq. 4-15, we have 
 

2 2o
avg

ˆ ˆ(0.333 m/s )i (0.333 m/s )j.v va
t

−
= = +

Δ
 

 
The magnitude of the average acceleration vector is therefore equal to 

2 2 2 2 2
avg| | (0.333 m/s ) (0.333 m/s ) 0.471 m/sa = + = . 



 CHAPTER 4 114 

 
(f) The direction of avga  is 

2
1

2

0.333 m/stan 45  or 135 .
0.333 m/s

θ − ⎛ ⎞
= = ° − °⎜ ⎟

⎝ ⎠
 

  
Since the desired angle is now in the first quadrant, we choose 45° , and avga  points 
north of due east. 
 
13. With position vector ( )r t given, the velocity and acceleration of the particle can be 
found by differentiating ( )r t  with respect to time: 
 

2

2,dr dv d rv a
dt dt dt

= = =  

 
(a) Taking the derivative of the position vector 2ˆ ˆ ˆ( ) i (4 )j kr t t t= + +  with respect to time, 
we have, in SI units (m/s), 

2ˆ ˆ ˆ ˆ ˆ = (i + 4 j + k) = 8 j + k .dv t t t
dt

 

(b) Taking another derivative with respect to time leads to, in SI units (m/s2), 
 

ˆ ˆ ˆ=  (8 j + k) = 8 j .da t
dt

 

 
The particle undergoes constant acceleration in the +y-direction. This can be seen by 
noting that ( )r t  is quadratic in t. 
 
14. We use Eq. 4-15 with v1  designating the initial velocity and v2  designating the later 
one. 
 
(a) The average acceleration during the Δt = 4 s  interval is 
 

2 2
avg

ˆ ˆ ˆ ˆ ˆ ˆ( 2.0 i 2.0 j+5.0k) m/s (4.0 i 22 j+3.0k) m/s ˆ ˆ( 1.5 m/s ) i (0.5m/s ) k.
4 s

a − − − −
= = − +  

 
(b) The magnitude of aavg  is 2 2 2 2 2( 1.5 m/s ) (0.5 m/s ) 1.6m/s .− + =   
 
(c) Its angle in the xz plane (measured from the +x axis) is one of these possibilities: 
 

2
1

2

0.5 m/stan 18 or 162
1.5 m/s

− ⎛ ⎞
= − ° °⎜ ⎟−⎝ ⎠
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where we settle on the second choice since the signs of its components imply that it is in 
the second quadrant. 
 
15. Since the acceleration, 2 2ˆ ˆ ˆ ˆi j ( 1.0 m/s )i ( 0.50 m/s ) jx ya a a= + = − + − , is constant in 
both x and y directions, we may use Table 2-1 for the motion along each direction. This 
can be handled individually (for x and y) or together with the unit-vector notation (for 

rΔ ).  
 
The particle started at the origin, so the coordinates of the particle at any time t are given 
by r v t at= +0

1
2

2 . The velocity of the particle at any time t is given by v v at= +0 , 
where v0  is the initial velocity and a  is the (constant) acceleration. Along the x-direction, 
we have 

 2
0 0

1( ) , ( )
2x x x x xx t v t a t v t v a t= + = +  

Similarly, along the y-direction, we get  
2

0 0
1( ) , ( )
2y y y y yy t v t a t v t v a t= + = +  

 
(a) Given that 2 2

0 03.0 m/s, 0, 1.0 m/s , 0.5 m/sx y x yv v a a= = = − = − , the components 
of the velocity are 

2
0

2
0

( ) (3.0 m/s) (1.0 m/s )
( ) (0.50 m/s )

x x x

y y y

v t v a t t
v t v a t t

= + = −
= + = −

 

 
When the particle reaches its maximum x coordinate at t = tm, we must have vx = 0. 
Therefore, 3.0 – 1.0tm = 0 or tm = 3.0 s. The y component of the velocity at this time is 
  

2( 3.0 s) (0.50 m/s )(3.0) 1.5 m/syv t = = − = −  

Thus, ˆ( 1.5 m/s)jmv = − . 
 
(b) At t = 3.0 s , the components of the position are  
 

2 2 2
0

2 2 2
0

1 1( 3.0 s) (3.0 m/s)(3.0 s) ( 1.0 m/s )(3.0 s) 4.5 m
2 2
1 1( 3.0 s) 0 ( 0.5 m/s )(3.0 s) 2.25 m
2 2

x x

y y

x t v t a t

y t v t a t

= = + = + − =

= = + = + − = −
 

Using unit-vector notation, the results can be written as ˆ ˆ(4.50 m) i (2.25 m) j.mr = −  
 
16. We make use of Eq. 4-16. 
 
(a) The acceleration as a function of time is 
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( )( ) ( )2 ˆ ˆ ˆ6.0 4.0 i + 8.0 j 6.0 8.0 idv da t t t
dt dt

= = − = −  

 
in SI units. Specifically, we find the acceleration vector at 3.0 st =  to be 

( ) 2ˆ ˆ6.0 8.0(3.0) i ( 18 m/s )i.− = −  
 
(b) The equation is a t= −6 0 8 0. .b gi = 0 ; we find t = 0.75 s. 
 
(c) Since the y component of the velocity, vy = 8.0 m/s, is never zero, the velocity cannot 
vanish. 
 
(d) Since speed is the magnitude of the velocity, we have  
 

| |v v= ( ) ( )2 226.0 4.0 8.0 10t t= − + =  

 
in SI units (m/s). To solve for t, we first square both sides of the above equation, followed 
by some rearrangement: 
 
 ( ) ( )2 22 26.0 4.0 64   100 6.0 4.0 36t t t t− + = ⇒ − =  
 
Taking the square root of the new expression and making further simplification lead to  
 
 2 26.0 4.0 6.0 4.0 6.0 6.0 0t t t t− = ± ⇒ − ± =  
 
Finally, using the quadratic formula, we obtain 
 

( )( )
( )

6.0 36 4 4.0 6.0
 

2 8.0
t

± − ±
=  

 
where the requirement of a real positive result leads to the unique answer: t = 2.2 s. 
 
17. We find t by applying Eq. 2-11 to motion along the y axis (with vy = 0 characterizing 
y = ymax ):   

0 = (12 m/s) + (−2.0 m/s2)t   ⇒   t = 6.0 s. 
 
Then, Eq. 2-11 applies to motion along the x axis to determine the answer:   
 

vx = (8.0 m/s) + (4.0 m/s2)(6.0 s) = 32 m/s. 
 
Therefore, the velocity of the cart, when it reaches y = ymax , is (32 m/s)i^. 
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18. We find t by solving 2
0 0

1
2x xx x v t a tΔ = + + : 

 2 2112.0 m 0 (4.00 m/s) (5.00 m/s )
2

t t= + +  

 
where we have used Δx = 12.0 m, vx = 4.00 m/s, and ax = 5.00 m/s2 .  We use the 
quadratic formula and find t = 1.53 s. Then, Eq. 2-11 (actually, its analog in two 
dimensions) applies with this value of t.  Therefore, its velocity (when Δx = 12.00 m) is  
 

 
2 2

0
ˆ ˆ ˆ(4.00 m/s)i (5.00 m/s )(1.53 s)i  (7.00 m/s )(1.53 s)j

ˆ ˆ(11.7 m/s) i (10.7 m/s) j.
v v at= + = + +

= +
 

 
Thus, the magnitude of v is 2 2| | (11.7 m/s) (10.7 m/s) 15.8 m/s.v = + =  
 
(b) The angle of v , measured from +x, is  
 

1 10.7 m/stan 42.6 .
11.7 m/s

− ⎛ ⎞ = °⎜ ⎟
⎝ ⎠

 

 
19. We make use of Eq. 4-16 and Eq. 4-10.  
 
Using ˆ ˆ3 i 4 ja t t= + , we have (in m/s) 
 

 ( ) ( )2 2
0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ( )  (5.00i 2.00j) (3 i 4 j) 5.00 3 / 2 i 2.00 2 j
t t

v t v a dt t t dt t t= + = + + + = + + +∫ ∫  

 
Integrating using Eq. 4-10 then yields (in meters) 
 

 

2 2
0 0 0

3 3

3 3

ˆ ˆ ˆ ˆ( ) (20.0i 40.0 j) [(5.00 3 / 2)i (2.00 2 )j]
ˆ ˆ ˆ ˆ                    (20.0i 40.0 j) (5.00 / 2)i (2.00 2 /3)j

ˆ ˆ                    (20.0 5.00 / 2)i (40.0 2.00 2 /3)j

t t
r t r vdt t t dt

t t t t
t t t t

= + = + + + + +

= + + + + +
= + + + + +

∫ ∫
 

 
(a) At 4.00 st = , we have ˆ ˆ( 4.00 s) (72.0 m)i (90.7 m) j.r t = = +  
 
(b) ˆ ˆ( 4.00 s) (29.0 m/s)i (34.0 m/s) jv t = = + . Thus, the angle between the direction of 
travel and +x, measured counterclockwise, is 1tan [(34.0 m/s) /(29.0 m/s)] 49.5 .θ −= = °   
 
20. The acceleration is constant so that use of Table 2-1 (for both the x and y motions) is 
permitted. Where units are not shown, SI units are to be understood. Collision between 
particles A and B requires two things. First, the y motion of B must satisfy (using Eq. 2-15 
and noting that θ is measured from the y axis) 
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2 2 21 1  30 m (0.40 m/s ) cos .

2 2yy a t tθ⎡ ⎤= ⇒ = ⎣ ⎦  

 
Second, the x motions of A and B must coincide: 
 

2 2 21 1(3.0 m/s) (0.40 m/s ) sin .
2 2xvt a t t tθ⎡ ⎤= ⇒ = ⎣ ⎦  

 
We eliminate a factor of t in the last relationship and formally solve for time: 
 

2

2 2(3.0 m/s) .
(0.40 m/s ) sinx

vt
a θ

= =  

 
This is then plugged into the previous equation to produce 
 

2
2

2

1 2(3.0 m/s)30 m (0.40 m/s ) cos
2 (0.40 m/s ) sin

θ
θ

⎛ ⎞
⎡ ⎤= ⎜ ⎟⎣ ⎦

⎝ ⎠
 

 
which, with the use of sin2 θ = 1 – cos2 θ, simplifies to 
 

( )( )
2

2

9.0 cos 9.030 1 cos cos .
0.20 1 cos 0.20 30

θ θ θ
θ

= ⇒ − =
−

 

 
We use the quadratic formula (choosing the positive root) to solve for cos θ : 
 

( )( )21.5 1.5 4 1.0 1.0 1cos
2 2

θ
− + − −

= =  

 

which yieldsθ = F
HG
I
KJ = °−cos .1 1

2
60  

 
21. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v y0 0=  and 
v vx0 0 10= = m s. 
 
(a) With the origin at the initial point (where the dart leaves the thrower’s hand), the y 
coordinate of the dart is given by y gt= − 1

2
2 , so that with y = –PQ we have 

( )( )221
2 9.8 m/s 0.19 s 0.18 m.PQ = =  

 
(b) From x = v0t we obtain x = (10 m/s)(0.19 s) = 1.9 m. 
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22. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. 
 
(a) With the origin at the initial point (edge of table), the y coordinate of the ball is given 
by y gt= − 1

2
2 .  If t is the time of flight and y = –1.20 m indicates the level at which the 

ball hits the floor, then 
( )

2

2 1.20 m
0.495s.

9.80 m/s
t

−
= =

−
 

 
(b) The initial (horizontal) velocity of the ball is v v= 0 i . Since x = 1.52 m is the 
horizontal position of its impact point with the floor, we have x = v0t. Thus, 
 

0
1.52 m 3.07 m/s.
0.495 s

xv
t

= = =  

 
23. (a) From Eq. 4-22 (with θ0 = 0), the time of flight is 
 

2

2 2(45.0 m) 3.03 s.
9.80 m/s

ht
g

= = =  

 
(b) The horizontal distance traveled is given by Eq. 4-21: 
 

0 (250 m/s)(3.03 s) 758 m.x v tΔ = = =  
 
(c) And from Eq. 4-23, we find 
 

2(9.80 m/s )(3.03 s) 29.7 m/s.yv gt= = =  
 
24. We use Eq. 4-26 
 

( )22 2
0 0

max 0 2
max

9.50m/s
sin 2 9.209 m 9.21m

9.80m/s
v vR
g g

θ
⎛ ⎞

= = = = ≈⎜ ⎟
⎝ ⎠

 

 
to compare with Powell’s long jump; the difference from Rmax is only ΔR =(9.21m – 
8.95m) = 0.259 m. 
 
25. Using Eq. (4-26), the take-off speed of the jumper is  
 

 
2

0
0

(9.80 m/s )(77.0 m) 43.1 m/s
sin 2 sin 2(12.0 )

gRv
θ

= = =
°
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26. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is the throwing point (the stone’s 
initial position). The x component of its initial velocity is given by v vx0 0 0= cosθ  and the 
y component is given by v vy0 0 0= sinθ , where v0 = 20 m/s is the initial speed and θ 0 = 
40.0° is the launch angle. 
 
(a) At t = 1.10 s, its x coordinate is 
 

x v t= = ° =0 0 20 0 110 40 0 16 9cos . . cos . .θ m / s s mb gb g  
 
(b) Its y coordinate at that instant is 
 

( )( ) ( )( )22 2
0 0

1 1sin 20.0m/s 1.10s sin 40.0 9.80m/s 1.10s 8.21m.
2 2

y v t gtθ= − = ° − =  

 
(c) At t' = 1.80 s, its x coordinate is x = ° =20 0 180 40 0 27 6. . cos . .m / s s m.b gb g  
 
(d) Its y coordinate at t' is 
 

( )( ) ( ) ( )2 2120.0m/s 1.80s sin 40.0 9.80m/s 1.80s 7.26m.
2

y = ° − =  

 
(e) The stone hits the ground earlier than t = 5.0 s. To find the time when it hits the 
ground solve y v t gt= − =0 0

1
2

2 0sin θ  for t. We find 
 

t v
g

= = ° =
2 2 20 0

9 8
40 2 620

0sin
.

.
sin .θ

m / s
m / s

s.2

b g  

 
Its x coordinate on landing is 
 

( )( )0 0cos 20.0 m/s 2.62 s cos 40 40.2 m.x v t θ= = ° =  
 
(f) Assuming it stays where it lands, its vertical component at t = 5.00 s is y = 0. 
 
27. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
the release point. We write θ0 = –30.0° since the angle shown in the figure is measured 
clockwise from horizontal. We note that the initial speed of the decoy is the plane’s speed 
at the moment of release: v0 = 290 km/h, which we convert to SI units: (290)(1000/3600) 
= 80.6 m/s. 
 
(a) We use Eq. 4-12 to solve for the time: 
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0 0
700 m( cos ) 10.0 s.

(80.6 m/s) cos ( 30.0 )
x v t tθΔ = ⇒ = =

− °
 

 
(b) And we use Eq. 4-22 to solve for the initial height y0: 
 

2 2 2
0 0 0 0

1 1( sin ) 0 ( 40.3 m/s)(10.0 s) (9.80 m/s )(10.0 s)
2 2

y y v t gt yθ− = − ⇒ − = − −  

 
which yields y0 = 897 m. 
 
28. (a) Using the same coordinate system assumed in Eq. 4-22, we solve for y = h: 
 

2
0 0 0

1sin
2

h y v t gtθ= + −  

 
which yields h = 51.8 m for y0 = 0, v0 = 42.0 m/s, θ0 = 60.0°, and t = 5.50 s. 
 
(b) The horizontal motion is steady, so vx = v0x = v0 cos θ0, but the vertical component of 
velocity varies according to Eq. 4-23. Thus, the speed at impact is 
 

( ) ( )2 2
0 0 0 0cos sin 27.4 m/s.v v v gtθ θ= + − =  

 
(c) We use Eq. 4-24 with vy = 0 and y = H: 
 

H
v

g
= =0 0

2

2
67 5

sin
.

θb g  m. 

 
29. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at its initial position (where it is 
launched). At maximum height, we observe vy = 0 and denote vx = v (which is also equal 
to v0x). In this notation, we have v v0 5= .  Next, we observe v0 cos θ0 = v0x = v, so that we 
arrive at an equation (where v ≠ 0  cancels) which can be solved for θ0: 
 

1
0 0

1(5 )cos cos 78.5 .
5

v vθ θ − ⎛ ⎞= ⇒ = = °⎜ ⎟
⎝ ⎠

 

 
30. Although we could use Eq. 4-26 to find where it lands, we choose instead to work 
with Eq. 4-21 and Eq. 4-22 (for the soccer ball) since these will give information about 
where and when and these are also considered more fundamental than Eq. 4-26. With Δy 
= 0, we have 

2
0 0 2

1 (19.5 m/s)sin 45.0( sin )    2.81 s.
2 (9.80 m/s ) / 2

y v t gt tθ °
Δ = − ⇒ = =  
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Then Eq. 4-21 yields Δx = (v0 cos θ0)t = 38.7 m. Thus, using Eq. 4-8, the player must 
have an average velocity of 
 

avg 

ˆ ˆ(38.7 m) i (55 m) i ˆ( 5.8 m/s) i
2.81s

rv
t

Δ −
= = = −

Δ
 

 
which means his average speed (assuming he ran in only one direction) is 5.8 m/s.  
  
31. We first find the time it takes for the volleyball to hit the ground. Using Eq. 4-22, we 
have 

 2 2 2
0 0 0

1 1  ( sin ) 0 2.30 m ( 20.0 m/s)sin(18.0 ) (9.80 m/s )
2 2

y y v t gt t tθ− = − ⇒ − = − ° −  

 
which gives 0.30 st = . Thus, the range of the volleyball is  
 
 ( )0 0cos (20.0 m/s) cos18.0 (0.30 s) 5.71 mR v tθ= = ° =  
 
On the other hand, when the angle is changed to 0 8.00θ ′ = ° , using the same procedure as 
shown above, we find   
 

2 2 2
0 0 0

1 1  ( sin ) 0 2.30 m ( 20.0 m/s)sin(8.00 ) (9.80 m/s )
2 2

y y v t gt t tθ ′ ′ ′ ′ ′− = − ⇒ − = − ° −   

 
which yields 0.46 st′ = , and the range is 
 

( )0 0cos (20.0 m/s) cos18.0 (0.46 s) 9.06 mR v tθ′ ′= = ° =  
 
Thus, the ball travels an extra distance of 
 
 9.06 m 5.71 m 3.35 mR R R′Δ = − = − =  
 
32. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at the release point (the initial 
position for the ball as it begins projectile motion in the sense of §4-5), and we let θ0 be 
the angle of throw (shown in the figure).  Since the horizontal component of the velocity 
of the ball is vx = v0 cos 40.0°, the time it takes for the ball to hit the wall is 
 

22.0 m 1.15 s.
(25.0 m/s)cos 40.0x

xt
v
Δ

= = =
°

 

 
(a) The vertical distance is 
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2 2 2
0 0

1 1( sin ) (25.0 m/s)sin 40.0 (1.15 s) (9.80 m/s )(1.15 s) 12.0 m.
2 2

y v t gtθΔ = − = ° − =  

 
(b) The horizontal component of the velocity when it strikes the wall does not change 
from its initial value: vx = v0 cos 40.0° = 19.2 m/s. 
 
(c) The vertical component becomes (using Eq. 4-23) 
 

2
0 0sin (25.0 m/s) sin 40.0 (9.80 m/s )(1.15 s) 4.80 m/s.yv v gtθ= − = ° − =  

 
(d) Since vy > 0 when the ball hits the wall, it has not reached the highest point yet. 
 
33. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
the release point. We write θ0 = –37.0° for the angle measured from +x, since the angle 

0 53.0φ = ° given in the problem is measured from the –y direction. The initial setup of 
the problem is shown in the figure below. 

 
(a) The initial speed of the projectile is the plane’s speed at the moment of release.  Given 
that 0 730 my =  and 0y =  at 5.00 st = , we use Eq. 4-22 to find v0: 
 

2 2 2
0 0 0 0

1 1  ( sin ) 0 730 m sin( 37.0 )(5.00 s) (9.80 m/s )(5.00 s)
2 2

y y v t gt vθ− = − ⇒ − = − ° −

 
which yields v0 = 202 m/s. 
 
(b) The horizontal distance traveled is  
 
 0 0( cos ) [(202 m/s)cos( 37.0 )](5.00 s) 806 mxR v t v tθ= = = − ° =  
 
(c) The x component of the velocity (just before impact) is  
 

0 0cos (202 m/s)cos( 37.0 ) 161 m/sxv v θ= = − ° = . 
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(d) The y component of the velocity (just before impact) is  
 

2
0 0sin (202 m/s)sin( 37.0 ) (9.80 m/s )(5.00 s) 171 m/syv v gtθ= − = − ° − = − . 

 
Note that in this projectile problem we analyzed the kinematics in the vertical and 
horizontal directions separately since they do not affect each other. The x-component of 
the velocity, 0 0cosxv v θ= , remains unchanged throughout since there’s no horizontal 
acceleration.     
 
34. (a) Since the y-component of the velocity of the stone at the top of its path is zero, its 
speed is 
 2 2

0 0cos (28.0 m/s)cos 40.0 21.4 m/sx y xv v v v v θ= + = = = ° = . 
 
(b) Using the fact that 0yv =  at the maximum height maxy , the amount of time it takes for 
the stone to reach maxy  is given by Eq. 4-23:  
 

 0 0
0 0

sin0 siny
vv v gt t

g
θθ= = − ⇒ = . 

 
Substituting the above expression into Eq. 4-22, we find the maximum height to be   
 

2 2 2
2 0 0 0 0 0 0

max 0 0 0 0
sin sin sin1 1  ( sin ) sin .

2 2 2
v v vy v t gt v g

g g g
θ θ θθ θ

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
To find the time the stone descends to max / 2y y= , we solve the quadratic equation given 
in Eq. 4-22: 

2 2
20 0 0 0

max 0 0
sin (2 2) sin1 1( sin ) .

2 4 2 2
v vy y v t gt t

g g
θ θθ ±

±
= = = − ⇒ =  

 
Choosing t t+=  (for descending), we have  
 

0 0

0 0
0 0 0 0

cos (28.0 m/s)cos 40.0 21.4 m/s

(2 2) sin 2 2sin sin (28.0 m/s)sin 40.0 12.7 m/s
2 2 2

x

y

v v

vv v g v
g

θ

θθ θ

= = ° =

+
= − = − = − ° = −

 

 
Thus, the speed of the stone when max / 2y y=  is  
 

2 2 2 2(21.4 m/s) ( 12.7 m/s) 24.9 m/sx yv v v= + = + − = . 
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(c) The percentage difference is  
 

 24.9 m/s 21.4 m/s 0.163 16.3%
21.4 m/s

−
= = . 

 
35. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at the end of the rifle (the initial 
point for the bullet as it begins projectile motion in the sense of § 4-5), and we let θ0 be 
the firing angle. If the target is a distance d away, then its coordinates are x = d, y = 0. 
The projectile motion equations lead to  
 

0 0
21

0 0 2

( cos )
0 sin
d v t

v t gt
θ
θ

=
= −

 

 
The setup of the problem is shown in the figure. 

 
The time at which the bullet strikes the target is  0 0/( cos )t d v θ= . Eliminating t leads to 
  

2 00
2

0 0v gdsin cosθ θ − = . 
 
Using sin cos sinθ θ θ0 0

1
2 02= b g , we obtain 

2
2
0 0 0 2 2

0

(9.80 m/s )(45.7 m)sin  (2 ) sin(2 )
(460 m/s)

gdv gd
v

θ θ= ⇒ = =  

 
which yields 3

0sin(2 ) 2.11 10θ −= × , or  θ0 = 0.0606°. If the gun is aimed at a point a 
distance  above the target, then tan θ 0 = d  so that   
 

0tan (45.7 m) tan(0.0606 ) 0.0484 m 4.84 cm.d θ= = ° = =  
 
Note that due to the downward gravitational acceleration, in order for the bullet to strike 
the target, the gun must be aimed at a point slightly above the target. 
 
36. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
the point where the ball was hit by the racquet. 
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(a) We want to know how high the ball is above the court when it is at x = 12.0 m. First, 
Eq. 4-21 tells us the time it is over the fence: 
 

( )0 0

12.0 m 0.508 s.
cos 23.6 m/s cos 0
xt

v θ
= = =

°
 

 
At this moment, the ball is at a height (above the court) of 
 

( ) 2
0 0 0

1sin 1.10m
2

y y v t gtθ= + − =  

 
which implies it does indeed clear the 0.90-m-high fence. 
 
(b) At t = 0.508 s, the center of the ball is (1.10 m – 0.90 m) = 0.20 m above the net. 
 
(c) Repeating the computation in part (a) with θ0 = –5.0° results in t = 0.510 s and 

0.040 my = , which clearly indicates that it cannot clear the net. 
 
(d) In the situation discussed in part (c), the distance between the top of the net and the 
center of the ball at t = 0.510 s is 0.90 m – 0.040 m = 0.86 m. 
 
37. The initial velocity has no vertical component ( 0 0θ = ) — only an x component. Eqs. 
(4-21) and (4-22) can be simplified to  

0 0

2 2
0 0

1 1
2 2

x

y

x x v t

y y v t gt gt

− =

− = − = −
 

 
where 0 0x = , 0 0 2.0 m/sxv v= = + , and y0 = +10.0 m (taking the water surface to be at 

0y = ). The setup of the problem is shown in the figure below. 

 
(a) At 0.80 st = , the horizontal distance of the diver from the edge is 

 
0 0 0 (2.0 m/s)(0.80 s) 1.60 mxx x v t= + = + =  
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(b) Similarly, using the second equation for the vertical motion, we obtain  
 

2 2 2
0

1 110.0 m (9.80 m/s )(0.80 s) 6.86 m
2 2

y y gt= − = − = . 

 
(c) At the instant the diver strikes the water surface, y = 0. Solving for t using the 
equation 21

0 2 0y y gt= − =  leads to 
 

0
2

2 2(10.0 m) 1.43 s
9.80 m/s

yt
g

= = = . 

 
During this time, the x-displacement of the diver is R = x = (2.00 m/s)(1.43 s) = 2.86 m. 
 
Note: Using Eq. (4-25) with 0 0θ = , the trajectory of the diver can also be written as  

 
2

0 2
02

gxy y
v

= −  

Part (c) can also be solved by using this equation:  
 

22 2
0 0

0 2 2
0

2 2(2.0 m/s) (10.0 m)0 2.86 m
2 9.8 m/s

v ygxy y x R
v g

= − = ⇒ = = = =  

 
38. In this projectile motion problem, we have v0 = vx = constant, and what is plotted is 

2 2.x yv v v= +  We infer from the plot that at t = 2.5 s, the ball reaches its maximum height, 
where vy = 0. Therefore, we infer from the graph that vx = 19 m/s. 
 
(a) During t = 5 s, the horizontal motion is x – x0 = vxt = 95 m. 
 
(b) Since 2 2

0(19 m/s) 31 m/syv+ =  (the first point on the graph), we find 0 24.5 m/s.yv =  

Thus, with t = 2.5 s, we can use 21
max 0 0 2yy y v t gt− = − or v v g y yy y

2
0

2
00 2= = − −max ,b g  or 

( )1
max 0 02 yyy y v v t− = +  to solve. Here we will use the latter: 

 

max 0 0 max
1 1( ) (0 24.5m/s)(2.5 s) 31 m
2 2y yy y v v t y− = + ⇒ = + =  

 
where we have taken y0 = 0 as the ground level. 
 
39. Following the hint, we have the time-reversed problem with the ball thrown from the 
ground, toward the right, at 60° measured counterclockwise from a rightward axis. We 
see in this time-reversed situation that it is convenient to use the familiar coordinate 
system with +x as rightward and with positive angles measured counterclockwise.  
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(a) The x-equation (with x0 = 0 and x = 25.0 m) leads to  
 

25.0 m = (v0 cos 60.0°)(1.50 s), 
 
so that v0 = 33.3 m/s.  And with y0 = 0, and y = h > 0 at t = 1.50 s, we have 
y y v t gty− = −0 0

1
2

2  where v0y = v0 sin 60.0°.  This leads to h = 32.3 m. 
 
(b) We have  
                           vx = v0x = (33.3 m/s)cos 60.0° = 16.7 m/s 

                 vy = v0y – gt = (33.3 m/s)sin 60.0° – (9.80 m/s2)(1.50 s) = 14.2 m/s. 
 
The magnitude of v is given by 
 
 2 2 2 2| | (16.7 m/s) (14.2 m/s) 21.9 m/s.x yv v v= + = + =  
 
(c) The angle is  

 1 1 14.2 m/stan tan 40.4 .
16.7 m/s

y

x

v
v

θ − −⎛ ⎞ ⎛ ⎞
= = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

  
(d) We interpret this result (“undoing” the time reversal) as an initial velocity (from the 
edge of the building) of magnitude 21.9 m/s with angle (down from leftward) of 40.4°. 
 
40. (a) Solving the quadratic equation Eq. 4-22:  
 

2 2 2
0 0 0

1 1  ( sin ) 0 2.160 m (15.00 m/s)sin(45.00 ) (9.800 m/s )
2 2

y y v t gt t tθ− = − ⇒ − = ° −

 
the total travel time of the shot in the air is found to be 2.352 st = . Therefore, the 
horizontal distance traveled is  
 

( )0 0cos (15.00 m/s)cos 45.00 (2.352 s) 24.95 mR v tθ= = ° = . 
 
(b) Using the procedure outlined in (a) but for 0 42.00θ = ° , we have 
 

2 2 2
0 0 0

1 1  ( sin ) 0 2.160 m (15.00 m/s)sin(42.00 ) (9.800 m/s )
2 2

y y v t gt t tθ− = − ⇒ − = ° −

 
and the total travel time is  2.245 st = . This gives 
 

( )0 0cos (15.00 m/s)cos 42.00 (2.245 s) 25.02 mR v tθ= = ° = . 
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41. With the Archer fish set to be at the origin, the position of the insect is given by (x, y) 
where 2

0 0/ 2 sin 2 / 2x R v gθ= = , and y corresponds to the maximum height of the 
parabolic trajectory: 2 2

max 0 0sin / 2y y v gθ= = . From the figure, we have 

 
2 2
0 0

02
0 0

sin / 2 1tan tan
sin 2 / 2 2

v gy
x v g

θφ θ
θ

= = =  

  
Given that 36.0φ = ° , we find the launch angle to be  
 

( ) ( ) ( )1 1 1
0 tan 2 tan tan 2 tan 36.0 tan 1.453 55.46 55.5θ φ− − −= = ° = = ° ≈ ° . 

 
Note that 0θ  depends only on φ  and is independent of d.  
 
42. (a) Using the fact that the person (as the projectile) reaches the maximum height over 
the middle wheel located at 23 m (23/ 2) m 34.5 mx = + = , we can deduce the initial 
launch speed from Eq. 4-26: 
 

 
2 2
0 0

0
0

sin 2 2 2(9.8 m/s )(34.5 m) 26.5 m/s
2 2 sin 2 sin(2 53 )

vR gxx v
g

θ
θ

= = ⇒ = = =
⋅ °

. 

 
Upon substituting the value to Eq. 4-25, we obtain 
 

2 2 2

0 0 2 2 2 2
0 0

(9.8 m/s )(23 m)tan 3.0 m (23 m) tan 53 23.3 m.
2 cos 2(26.5 m/s) (cos53 )

gxy y x
v

θ
θ

= + − = + ° − =
°

 
Since the height of the wheel is 18 m,wh = the clearance over the first wheel is 

23.3 m 18 m 5.3 mwy y hΔ = − = − = . 
 
(b) The height of the person when he is directly above the second wheel can be found by 
solving Eq. 4-24. With the second wheel located at 23 m (23/ 2) m 34.5 m,x = + =  we 
have  

2 2 2

0 0 2 2 2 2
0 0

(9.8 m/s )(34.5 m)tan 3.0 m (34.5 m) tan 53
2 cos 2(26.52 m/s) (cos53 )

25.9 m.

gxy y x
v

θ
θ

= + − = + ° −
°

=

 

 
Therefore, the clearance over the second wheel is 25.9 m 18 m 7.9 mwy y hΔ = − = − = . 
 
(c) The location of the center of the net is given by 
 

22 2
0 0

0 0 2 2 2
0 0

sin 2 (26.52 m/s) sin(2 53 )0 tan 69 m.
2 cos 9.8 m/s

vgxy y x x
v g

θθ
θ

⋅ °
= − = − ⇒ = = =  
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43. We designate the given velocity ˆ ˆ(7.6 m/s)i (6.1 m/s) jv = +  as 1v , as opposed to the 
velocity when it reaches the max height v2  or the velocity when it returns to the ground 

3,v  and take v0  as the launch velocity, as usual. The origin is at its launch point on the 
ground. 
 
(a) Different approaches are available, but since it will be useful (for the rest of the 
problem) to first find the initial y velocity, that is how we will proceed. Using Eq. 2-16, 
we have 

2 2 2 2 2
1 0 02 (6.1 m/s) 2(9.8 m/s )(9.1 m)y y yv v g y v= − Δ ⇒ = −  

 
which yields v0 y = 14.7 m/s. Knowing that v2 y must equal 0, we use Eq. 2-16 again but 
now with Δy = h for the maximum height: 
 

2 2 2 2
2 0 2 0 (14.7 m/s) 2(9.8 m/s )y yv v gh h= − ⇒ = −  

 
which yields h = 11 m. 
 
(b) Recalling the derivation of Eq. 4-26, but using v0 y for v0 sin θ0 and v0x for v0 cos θ0, 
we have 

2
0 0

10 ,
2y xv t gt R v t= − =  

 
which leads to 0 02 / .x yR v v g=  Noting that v0x = v1x = 7.6 m/s, we plug in values and 
obtain  

R = 2(7.6 m/s)(14.7 m/s)/(9.8 m/s2) = 23 m. 
 
(c) Since v3x = v1x = 7.6 m/s and v3y = – v0 y = –14.7 m/s, we have 
 

2 2 2 2
3 3 3 (7.6 m/s) ( 14.7 m/s) 17 m/s.x yv v v= + = + − =  

 
(d) The angle (measured from horizontal) for  v3  is one of these possibilities: 
 

1 14.7 mtan 63   or   117
7.6 m

− −⎛ ⎞ = − ° °⎜ ⎟
⎝ ⎠

 

 
where we settle on the first choice (–63°, which is equivalent to 297°) since the signs of 
its components imply that it is in the fourth quadrant. 
 
44. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The initial velocity is horizontal so that 0   0yv =  and 

0 0 161 km hxv v= = .  Converting to SI units, this is v0 = 44.7 m/s. 
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(a) With the origin at the initial point (where the ball leaves the pitcher’s hand), the y 
coordinate of the ball is given by y gt= − 1

2
2 , and the x coordinate is given by x = v0t. 

From the latter equation, we have a simple proportionality between horizontal distance 
and time, which means the time to travel half the total distance is half the total time. 
Specifically, if x = 18.3/2 m, then t = (18.3/2 m)/(44.7 m/s) = 0.205 s. 
 
(b) And the time to travel the next 18.3/2 m must also be 0.205 s. It can be useful to write 
the horizontal equation as Δx = v0Δt in order that this result can be seen more clearly. 
 
(c) Using the equation 21

2 ,y gt= −  we see that the ball has reached the height of 

( )( )221
2| 9.80 m/s 0.205 s | 0.205 m− = at the moment the ball is halfway to the batter. 

 
(d) The ball’s height when it reaches the batter is ( )( )221

2 9.80 m/s 0.409 s 0.820m− = − , 
which, when subtracted from the previous result, implies it has fallen another 0.615 m. 
Since the value of y is not simply proportional to t, we do not expect equal time-intervals 
to correspond to equal height-changes; in a physical sense, this is due to the fact that the 
initial y-velocity for the first half of the motion is not the same as the “initial” y-velocity 
for the second half of the motion. 
 
45. (a)  Let m = d2

 d1
 = 0.600 be the slope of the ramp, so y = mx there.  We choose our 

coordinate origin at the point of launch and use Eq. 4-25.  Thus, 
 

2 2

2 2

(9.80 m/s )tan(50.0 ) 0.600
2(10.0 m/s) (cos50.0 )

xy x x= ° − =
°  

 
which yields x = 4.99 m.  This is less than d1 so the ball does land on the ramp.  
 
(b) Using the value of  x found in part (a), we obtain y = mx = 2.99 m.  Thus, the 
Pythagorean theorem yields a displacement magnitude of x2 + y2   = 5.82 m. 
 
(c) The angle is, of course, the angle of the ramp: tan−1(m) = 31.0º.   
 
46. Using the fact that 0yv =  when the player is at the maximum height maxy , the amount 
of time it takes to reach maxy  can be solved by using Eq. 4-23:  
 

 0 0
0 0 max

sin0 siny
vv v gt t

g
θθ= = − ⇒ = . 

 
Substituting the above expression into Eq. 4-22, we find the maximum height to be   
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2 2 2
2 0 0 0 0 0 0

max 0 0 max max 0 0
sin sin sin1 1( sin ) sin .

2 2 2
v v vy v t gt v g

g g g
θ θ θθ θ

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
To find the time when the player is at max / 2y y= , we solve the quadratic equation given 
in Eq. 4-22: 

2 2
20 0 0 0

max 0 0
sin (2 2) sin1 1( sin ) .

2 4 2 2
v vy y v t gt t

g g
θ θθ ±

±
= = = − ⇒ =  

 
With t t−=  (for ascending), the amount of time the player spends at a height max / 2y y≥  
is  

 0 0 0 0 0 0 max
max

max

sin (2 2) sin sin 1 0.707
2 2 2 2

v v v t tt t t
g g tg

θ θ θ
−

− Δ
Δ = − = − = = ⇒ = = . 

 
Therefore, the player spends about 70.7% of the time in the upper half of the jump. Note 
that the ratio max/t tΔ  is independent of 0v  and 0θ , even though tΔ  and maxt  depend on 
these quantities.  
 
47. We adopt the positive direction choices used in the textbook so that equations such as 
Eq. 4-22 are directly applicable. The coordinate origin is at ground level directly below 
impact point between bat and ball. In the absence of a fence, with 0 45 ,θ = °  the 
horizontal range (same launch level) is 107 mR = . We want to know how high the ball 
is from the ground when it is at 97.5 mx′ = , which requires knowing the initial velocity. 
The trajectory of the baseball can be described by Eq. (4-25): 
 

2

0 0 2
0 0

(tan )
2( cos )

gxy y x
v

θ
θ

− = −  

 
The setup of the problem is shown in the figure below (not to scale). 
 

 
 
(a) We first solve for the initial speed v0. Using the range information ( 0y y=  when 
x R= ) and θ0 = 45°, Eq. (4-25) gives 
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( )( )2

0
0

9.8 m/s 107 m
32.4 m/s.

sin 2 sin(2 45 )
gRv

θ
= = =

⋅ °
 

 
Thus, the time at which the ball flies over the fence is: 
 

( )0 0
0 0

97.5 m( cos ) 4.26 s.
cos 32.4 m/s cos 45
xx v t t

v
θ

θ
′

′ ′ ′= ⇒ = = =
°

 

 
At this moment, the ball is at a height (above the ground) of 
 

( ) 2
0 0 0

2 2

1sin
2

11.22 m [(32.4 m/s)sin 45 ](4.26 s) (9.8 m/s )(4.26 s)
2

9.88 m

y y v t gtθ′ ′ ′= + −

= + ° −

=

 

 
which implies it does indeed clear the 7.32-m-high fence. 
 
(b) At 4.26 st′ = , the center of the ball is 9.88 m – 7.32 m = 2.56 m above the fence. 
 
48. Following the hint, we have the time-reversed problem with the ball thrown from the 
roof, toward the left, at 60° measured clockwise from a leftward axis. We see in this 
time-reversed situation that it is convenient to take +x as leftward with positive angles 
measured clockwise. Lengths are in meters and time is in seconds. 
 
(a) With y0 = 20.0 m, and y = 0 at t = 4.00 s, we have y y v t gty− = −0 0

1
2

2   where 

v vy0 0 60= °sin .   This leads to v0 = 16.9 m/s. This plugs into the x-equation 0 0xx x v t− =  
(with x0 = 0 and x = d) to produce  
 

d = (16.9 m/s)cos 60°(4.00 s) = 33.7 m. 
(b) We have  
 

0
2

0

(16.9 m/s)cos60.0 8.43 m/s
(16.9 m/s)sin 60.0 (9.80m/s )(4.00 s) 24.6 m/s.

x x

y y

v v
v v gt

= = ° =
= − = ° − = −  

 
The magnitude of v is 2 2 2 2| | (8.43 m/s) ( 24.6 m/s) 26.0 m/s.x yv v v= + = + − =  
 
(c) The angle relative to horizontal is  
 

 1 1 24.6 m/stan tan 71.1 .
8.43 m/s

y

x

v
v

θ − −⎛ ⎞ ⎛ ⎞−
= = = − °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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We may convert the result from rectangular components to magnitude-angle 
representation: 

(8.43, 24.6) (26.0 71.1 )v = − → ∠ − °  
 
and we now interpret our result (“undoing” the time reversal) as an initial velocity of 
magnitude 26.0 m/s with angle (up from rightward) of 71.1°. 
 
49. In this problem a football is given an initial speed and it undergoes projectile motion. 
We’d like to know the smallest and greatest angles at which a field goal can be scored.  
 
We adopt the positive direction choices used in the textbook so that equations such as Eq. 
4-22 are directly applicable. The coordinate origin is at the point where the ball is kicked. 
We use x and y to denote the coordinates of ball at the goalpost, and try to find the 
kicking angle(s) θ0 so that y = 3.44 m when x = 50 m. Writing the kinematic equations for 
projectile motion:  

21
0 0 0 0 2cos , sin ,x v y v t gtθ θ= = −  

 
we see the first equation gives t = x/v0 cos θ0, and when this is substituted into the second 
the result is 

y x gx
v

= −tan
cos

.θ
θ0

2

0
2 2

02  
 
One may solve the above equation by trial and error: systematically trying values of θ0 
until you find the two that satisfy the equation. A little manipulation, however, will give 
an algebraic solution: Using the trigonometric identity 1 / cos2 θ0 = 1 + tan2 θ0, we obtain 
 

1
2

1
2

0
2

0
2

2
0 0

2

0
2

gx
v

x y gx
v

tan tanθ θ− + + =  

 
which is a second-order equation for tan θ0. To simplify writing the solution, we denote 
 

( )( ) ( )2 22 2 21 1
02 2/ 9.80 m/s 50 m / 25 m/s 19.6m.c gx v= = =  

 
Then the second-order equation becomes c tan2 θ0 – x tan θ0 + y + c = 0.  Using the 
quadratic formula, we obtain its solution(s). 
 

( ) ( )( )
( )

2 2

0

4 50 m (50 m) 4 3.44 m 19.6 m 19.6 m
tan .

2 2 19.6 m
x x y c c

c
θ

± − + ± − +
= =  

 
The two solutions are given by tanθ0 = 1.95 and tanθ0 = 0.605. The corresponding (first-
quadrant) angles are θ0 = 63° and θ0 = 31°. Thus, 
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(a) The smallest elevation angle is θ0 = 31°, and  
 
(b) the greatest elevation angle is θ0 = 63°. 
 
50. We apply Eq. 4-21, Eq. 4-22, and Eq. 4-23. 
 
(a) From Δx v tx= 0 , we find 0 40 m / 2 s 20 m/s.xv = =  
 
(b) From Δy v t gty= −0

1
2

2 , we find ( )2 21
0 253 m (9.8 m/s )(2 s) / 2 36yv = + = m/s. 

 
(c) From v v gty y= − ′0  with vy = 0 as the condition for maximum height, we obtain 

2(36 m/s) /(9.8 m/s ) 3.7 s.t′ = =  During that time the x-motion is constant, so 

0 (20 m/s)(3.7 s) 74 m.x x′ − = =  
 
51. (a) The skier jumps up at an angle of 0 9.0θ = °  up from the horizontal and thus 
returns to the launch level with his velocity vector 9.0°  below the horizontal. With the 
snow surface making an angle of 11.3α = °  (downward) with the horizontal, the angle 
between the slope and the velocity vector is 0 11.3 9.0 2.3φ α θ= − = ° − ° = ° . 
 
(b) Suppose the skier lands at a distance d down the slope. Using Eq. 4-25 with 

cosx d α=  and siny d α= −  (the edge of the track being the origin), we have 
 

2

0 2 2
0 0

( cos )sin cos tan .
2 cos
g dd d

v
αα α θ
θ

− = −  

Solving for d, we obtain 
 

( ) ( )
2 2 2
0 0 0 0

0 0 02 2

2
0 0

02

2 cos 2 coscos tan sin cos sin cos sin
cos cos

2 cos sin( ).
cos

v vd
g g
v
g

θ θα θ α α θ θ α
α α
θ θ α
α

= + = +

= +
 

 
Substituting the values given, we find 
 

2

2 2

2(10 m/s) cos(9.0 ) sin(9.0 11.3 ) 7.27 m.
(9.8 m/s )cos (11.3 )

d °
= ° + ° =

°
 

 
which gives 

sin (7.27 m)sin(11.3 ) 1.42 m.y d α= − = − ° = −  
 
Therefore, at landing the skier is approximately 1.4 m below the launch level.  
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(c) The time it takes for the skier to land is  
 

 
0 0

cos (7.27 m)cos(11.3 ) 0.72 s
cos (10 m/s)cos(9.0 )x

x dt
v v

α
θ

°
= = = =

°
. 

 
Using Eq. 4-23, the x-and y-components of the velocity at landing are 
 

0 0
2

0 0

cos (10 m/s)cos(9.0 ) 9.9 m/s
sin (10 m/s)sin(9.0 ) (9.8 m/s )(0.72 s) 5.5 m/s

x

y

v v
v v gt

θ
θ

= = ° =
= − = ° − = −  

 
Thus, the direction of travel at landing is  
 

1 1 5.5 m/stan tan 29.1 .
9.9 m/s

y

x

v
v

θ − −⎛ ⎞ ⎛ ⎞−
= = = − °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
or 29.1°  below the horizontal. The result implies that the angle between the skier’s path 
and the slope is 29.1 11.3 17.8φ = ° − ° = ° , or approximately 18°  to two significant figures.  
 
52. From Eq. 4-21, we find 0/ xt x v= . Then Eq. 4-23 leads to 
 

 0 0
0

.y y y
x

gxv v gt v
v

= − = −  

 
Since the slope of the graph is −0.500, we conclude  
 

0

1
2x

g
v

=   ⇒ vox = 19.6 m/s. 

 
And from the “y intercept” of the graph, we find voy = 5.00 m/s. Consequently,  
 

θo = tan−1(voy  ⁄ vox) = 14.3° 14≈ ° . 
 
53. Let y0 = h0 = 1.00 m at x0 = 0 when the ball is hit. Let y1 = h (the height of the wall) 
and x1 describe the point where it first rises above the wall one second after being hit; 
similarly, y2 = h and x2 describe the point where it passes back down behind the wall four 
seconds later. And yf = 1.00 m at xf = R is where it is caught. Lengths are in meters and 
time is in seconds. 
 
(a) Keeping in mind that vx is constant, we have x2 – x1 = 50.0 m = v1x (4.00 s), which 
leads to v1x = 12.5 m/s. Thus, applied to the full six seconds of motion:  
 

xf – x0 = R = vx(6.00 s) = 75.0 m. 
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(b) We apply 21
0 0 2yy y v t gt− = −  to the motion above the wall, 

 

( ) ( )2
2 1 1

10 4.00 s 4.00 s
2yy y v g− = = −  

 
and obtain v1y = 19.6 m/s. One second earlier, using v1y = v0y – g(1.00 s), we find 

0 29.4 m/syv = . Therefore, the velocity of the ball just after being hit is 
 
 0 0

ˆ ˆ ˆ ˆi j (12.5 m/s) i  (29.4 m/s) jx yv v v= + = +  
 
Its magnitude is 2 2| | (12.5 m/s) +(29.4 m/s) 31.9 m/s.v = =  
 
(c) The angle is  

 1 1 29.4 m/stan tan 67.0 .
12.5 m/s

y

x

v
v

θ − −⎛ ⎞ ⎛ ⎞
= = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

  
We interpret this result as a velocity of magnitude 31.9 m/s, with angle (up from 
rightward) of 67.0°. 
 
(d) During the first 1.00 s of motion, y y v t gty= + −0 0

1
2

2  yields  
 

( )( ) ( )( )221
21.0 m 29.4 m/s 1.00 s 9.8 m/s 1.00 s 25.5 m.h = + − =  

 
54. For Δy = 0, Eq. 4-22 leads to t = 2vosinθo/g, which immediately implies tmax = 2vo/g 
(which occurs for the “straight up” case: θo = 90°). Thus, 
 

1
2 tmax = vo/g   ⇒  12  = sinθo. 

 
Therefore, the half-maximum-time flight is at angle θo = 30.0°. Since the least speed 
occurs at the top of the trajectory, which is where the velocity is simply the x-component 
of the initial velocity (vocosθo = vocos30° for the half-maximum-time flight), then we 
need to refer to the graph in order to find vo – in order that we may complete the solution.  
In the graph, we note that the range is 240 m when θo = 45.0°.  Equation 4-26 then leads 
to vo = 48.5 m/s. The answer is thus (48.5 m/s)cos30.0° = 42.0 m/s. 
 
55. We denote h as the height of a step and w as the width. To hit step n, the ball must fall 
a distance nh and travel horizontally a distance between (n – 1)w and nw. We take the 
origin of a coordinate system to be at the point where the ball leaves the top of the 
stairway, and we choose the y axis to be positive in the upward direction, as shown in the 
figure. 
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The coordinates of the ball at time t are given by x = v0xt and y gt= − 1

2
2 (since v0y = 0).  

 
We equate y to  –nh and solve for the time to reach the level of step n: 
 

t nh
g

=
2 .  

The x coordinate then is 
 

0 2

2 2 (0.203 m)(1.52 m/s) (0.309 m) .
9.8 m/sx

nh nx v n
g

= = =  

 
The method is to try values of n until we find one for which x/w is less than n but greater 
than n – 1. For n = 1, x = 0.309 m and x/w = 1.52, which is greater than n. For n = 2, x = 
0.437 m and x/w = 2.15, which is also greater than n. For n = 3, x = 0.535 m and x/w = 
2.64. Now, this is less than n and greater than n – 1, so the ball hits the third step. 
 
Note: To check the consistency of our calculation, we can substitute n = 3 into the above 
equations. The results are t = 0.353 s, y = 0.609 m, and x = 0.535 m. This indeed 
corresponds to the third step.  
 
56. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find acceleration a. 
 
(a) Since the radius of Earth is 6.37 × 106 m, the radius of the satellite orbit is  
 

r = (6.37 × 106  + 640 × 103 ) m = 7.01 × 106 m. 
 
Therefore, the speed of the satellite is 
 

v r
T

= =
×

= ×
2 2 7 01 10

98 0 60
7 49 10

6
3π π .

. / min
.

m
min s

m / s.
c h

b gb g  

 
(b) The magnitude of the acceleration is 
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a v
r

= =
×

×
=

2 3 2

6

7 49 10
7 01 10

8 00
.

.
. .

m / s
m

m / s2c h
 

 
57. The magnitude of centripetal acceleration (a = v2/r) and its direction (toward the 
center of the circle) form the basis of this problem. 
 
(a) If a passenger at this location experiences a = 183. m / s2  east, then the center of the 
circle is east of this location. The distance is r = v2/a = (3.66 m/s)2/(1.83 m/s2) = 7.32 m.  
 
(b) Thus, relative to the center, the passenger at that moment is located 7.32 m toward the 
west. 
 
(c) If the direction of a  experienced by the passenger is now south—indicating that the 
center of the merry-go-round is south of him, then relative to the center, the passenger at 
that moment is located 7.32 m toward the north. 
 
58. (a) The circumference is c = 2πr = 2π(0.15 m) = 0.94 m. 
 
(b) With T = (60 s)/1200 = 0.050 s, the speed is v = c/T = (0.94 m)/(0.050 s) = 19 m/s. 
This is equivalent to using Eq. 4-35. 
 
(c) The magnitude of the acceleration is a = v2/r = (19 m/s)2/(0.15 m) = 2.4 × 103 m/s2. 
 
(d) The period of revolution is (1200 rev/min)–1 = 8.3 × 10–4 min, which becomes, in SI 
units, T = 0.050 s = 50 ms. 
 
59. (a) Since the wheel completes 5 turns each minute, its period is one-fifth of a minute, 
or 12 s. 
 
(b) The magnitude of the centripetal acceleration is given by a = v2/R, where R is the 
radius of the wheel, and v is the speed of the passenger. Since the passenger goes a 
distance 2πR for each revolution, his speed is 
 

v = =
2 15

12
7 85

π m
s

m / sb g .  

 

and his centripetal acceleration is a = =
7 85

15
41

2.
. .

m / s
m

m / s2b g  

 
(c) When the passenger is at the highest point, his centripetal acceleration is downward, 
toward the center of the orbit. 
 
(d) At the lowest point, the centripetal acceleration is 24.1 m/sa = , same as part (b). 
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(e) The direction is up, toward the center of the orbit.   
 
60. (a) During constant-speed circular motion, the velocity vector is perpendicular to the 
acceleration vector at every instant.  Thus,  v  

→
 ·  a  

→
  = 0. 

 
(b) The acceleration in this vector, at every instant, points toward the center of the circle, 
whereas the position vector points from the center of the circle to the object in motion.  
Thus, the angle between  r  

→
 and  a  

→
 is 180º  at every instant, so  r  

→
 ×  a  

→
 = 0. 

 
61. We apply Eq. 4-35 to solve for speed v and Eq. 4-34 to find centripetal acceleration a. 
 
(a) v = 2πr/T = 2π(20 km)/1.0 s = 126 km/s = 1.3 × 105 m/s. 
 
(b) The magnitude of the acceleration is 
 

 a v
r

= = = ×
2 2

5126
20

7 9 10
km / s

km
m / s2b g . .  

 
(c) Clearly, both v and a will increase if T is reduced. 
 
62. The magnitude of the acceleration is 
 

a v
r

= = =
2 210

25
4 0

m / s
m

m / s2b g . .  

 
63. We first note that a1  

→   
 (the acceleration at t1 = 2.00 s) is perpendicular to a2  

→   
 (the 

acceleration at t2=5.00 s), by taking their scalar (dot) product:   
 
 2 2 2 2

1 2
ˆ ˆ ˆ ˆ[(6.00 m/s )i+(4.00 m/s )j] [(4.00 m/s )i+( 6.00 m/s )j]=0.a a⋅ = ⋅ −  

 
Since the acceleration vectors are in the (negative) radial directions, then the two 
positions (at t1 and t2) are a quarter-circle apart (or three-quarters of a circle, depending 
on whether one measures clockwise or counterclockwise).  A quick sketch leads to the 
conclusion that if the particle is moving counterclockwise (as the problem states) then it 
travels three-quarters of a circumference in moving from the position at time t1 to the 
position at time t2 .  Letting T stand for the period, then t2 –  t1  = 3.00 s = 3T/4. This gives 
T = 4.00 s.  The magnitude of the acceleration is 
 
 2 2 2 2 2 2(6.00 m/s ) (4.00 m/s) 7.21 m/s .x ya a a= + = + =  
 
Using Eqs. 4-34 and 4-35, we have 2 24 /a r Tπ= , which yields 
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2 2 2

2 2

(7.21 m/s )(4.00 s) 2.92 m.
4 4
aTr
π π

= = =  

 
64. When traveling in circular motion with constant speed, the instantaneous acceleration 
vector necessarily points toward the center.  Thus, the center is “straight up” from the 
cited point.   
 
(a) Since the center is “straight up” from (4.00 m, 4.00 m), the x coordinate of the center 
is 4.00 m.  
 
(b) To find out “how far up” we need to know the radius. Using Eq. 4-34 we find 
 

( )22

2

5.00 m/s
2.00 m.

12.5 m/s
vr
a

= = =  

 
Thus, the y coordinate of the center is 2.00 m + 4.00 m = 6.00 m.  Thus, the center may 
be written as (x, y) = (4.00 m, 6.00 m). 
 
65. Since the period of a uniform circular motion is 2 /T r vπ= , where r is the radius and 
v is the speed, the centripetal acceleration can be written as 
 

 
22 2

2

1 2 4 .v r ra
r r T T

π π⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
Based on this expression, we compare the (magnitudes) of the wallet and purse 
accelerations, and find their ratio is the ratio of r values.  Therefore, awallet = 1.50 apurse .   
Thus, the wallet acceleration vector is  
 
 2 2 2 2ˆ ˆ ˆ ˆ1.50[(2.00 m/s )i +(4.00 m/s )j]=(3.00 m/s )i +(6.00 m/s )ja = . 
 
66. The fact that the velocity is in the +y direction and the acceleration is in the +x 
direction at t1 = 4.00 s implies that the motion is clockwise. The position corresponds to 
the “9:00 position.” On the other hand, the position at t2 = 10.0 s is in the “6:00 position” 
since the velocity points in the −x direction and the acceleration is in the +y direction. 
The time interval 10.0 s 4.00 s 6.00 stΔ = − =  is equal to 3/4 of a period: 
 

 36.00 s     8.00 s.
4

T T= ⇒ =  

Equation 4-35 then yields  
 

 (3.00 m/s)(8.00 s) 3.82 m.
2 2
vTr
π π

= = =  
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(a) The x coordinate of the center of the circular path is 5.00 m 3.82 m 8.82 m.x = + =  
 
(b) The y coordinate of the center of the circular path is 6.00 m.y =  
 
In other words, the center of the circle is at (x,y) = (8.82 m, 6.00 m). 
 
67. The stone moves in a circular path (top view shown below left) initially, but 
undergoes projectile motion after the string breaks (side view shown below right).  
 

(top view)  
 

(side view) 
Since 2 /a v R= , to calculate the centripetal acceleration of the stone, we need to know its 
speed during its circular motion (this is also its initial speed when it flies off). We use the 
kinematic equations of projectile motion (discussed in §4-6) to find that speed. Taking 
the +y direction to be upward and placing the origin at the point where the stone leaves its 
circular orbit, then the coordinates of the stone during its motion as a projectile are given 
by x = v0t and y gt= − 1

2
2 (since v0y = 0). It hits the ground at x = 10 m and y = –2.0 m.  

 
Formally solving the y-component equation for the time, we obtain t y g= −2 / , which 
we substitute into the first equation: 
 

v x g
y0 2

10 9 8
2 2 0

15 7= − = −
−

=m m / s
m

m / s.
2

b g b g
.

.
.  

 
Therefore, the magnitude of the centripetal acceleration is 
 

( )22
20 15.7 m/s

160 m/s .
1.5 m

va
R

= = =  

Note: The above equations can be combined to give 
2

2
gxa

yR
=

−
. The equation implies 

that the greater the centripetal acceleration, the greater the initial speed of the projectile, 
and the greater the distance traveled by the stone. This is precisely what we expect. 
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68. We note that after three seconds have elapsed (t2 – t1 = 3.00 s) the velocity (for this 
object in circular motion of period T ) is reversed; we infer that it takes three seconds to 
reach the opposite side of the circle.  Thus, T = 2(3.00 s) = 6.00 s.   
 
(a) Using Eq. 4-35, r = vT/2π, where 2 2(3.00 m/s) (4.00 m/s) 5.00 m/sv = + = , we obtain 

4.77 mr = . The magnitude of the object’s centripetal acceleration is therefore a = v2/r = 
5.24 m/s2.  
 
(b) The average acceleration is given by Eq. 4-15: 
 

2 22 1
avg

2 1

ˆ ˆ ˆ ˆ( 3.00i 4.00j) m/s (3.00i 4.00j) m/s ˆ ˆ( 2.00 m/s )i+( 2.67 m/s ) j
5.00 s 2.00 s

v va
t t

− − − − +
= = = − −

− −
 
which implies 2 2 2 2 2

avg| | ( 2.00 m/s ) ( 2.67 m/s ) 3.33 m/s .a = − + − =  
 
69. We use Eq. 4-15 first using velocities relative to the truck (subscript t) and then using 
velocities relative to the ground (subscript g). We work with SI units, so 
20 km / h 5.6 m / s→ , 30 km / h 8.3 m / s→ , and 45 km / h 12.5  m / s→ . We choose 
east as the + i  direction. 
 
(a) The velocity of the cheetah (subscript c) at the end of the 2.0 s interval is (from Eq.  
4-44) 

c t c g t g
ˆ ˆ ˆ(12.5 m/s) i ( 5.6 m/s) i (18.1 m/s) iv v v= − = − − =  

 
relative to the truck. Since the velocity of the cheetah relative to the truck at the 
beginning of the 2.0 s interval is ˆ( 8.3 m/s)i− , the (average) acceleration vector relative to 
the cameraman (in the truck) is 

2
avg

ˆ ˆ(18.1 m/s)i ( 8.3 m/s)i ˆ(13 m/s )i,
2.0 s

a − −
= =  

or 2
avg| | 13 m/s .a =  

 
(b) The direction of avga is ˆ+i , or eastward. 
 
(c) The velocity of the cheetah at the start of the 2.0 s interval is (from Eq. 4-44) 
 

0 cg 0 ct 0 tg
ˆ ˆ ˆ( 8.3 m/s)i ( 5.6 m/s)i ( 13.9 m/s)iv v v= + = − + − = −  

 
relative to the ground. The (average) acceleration vector relative to the crew member (on 
the ground) is 

2 2
avg avg

ˆ ˆ(12.5 m/s)i ( 13.9 m/s)i ˆ(13 m/s )i,   | | 13 m/s
2.0 s

a a− −
= = =  
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identical to the result of part (a). 
 
(d) The direction of avga  is ˆ+i , or eastward. 
 
70. We use Eq. 4-44, noting that the upstream corresponds to the ˆ+i direction. 
 
(a) The subscript b is for the boat, w is for the water, and g is for the ground. 
 

bg bw wg
ˆ ˆ ˆ(14 km/h) i ( 9 km/h) i (5 km/h) i.v v v= + = + − =  

 
Thus, the magnitude is bg| | 5 km/h.v =  
 
(b) The direction of bgv is +x, or upstream. 
 
(c) We use the subscript c for the child, and obtain 
 

v v vc g c b b g  km / h) i  km / h) i (  km / h) i= + = − + = −( (6 5 1 . 
 
The magnitude is cg| | 1 km/h.v =  
 
(d) The direction of cgv is −x, or downstream. 
 
71. While moving in the same direction as the sidewalk’s motion (covering a distance d 
relative to the ground in time t1 = 2.50 s), Eq. 4-44 leads to 

vsidewalk + vman running = 
d
 t1

  . 

 
While he runs back (taking time t2 = 10.0 s) we have 
 

vsidewalk − vman running = − 
d
 t2

  . 

 
Dividing these equations and solving for the desired ratio, we get  12.5

7.5   =  53  = 1.67. 
 
72. We denote the velocity of the player with PFv  and 
the relative velocity between the player and the ball be 

BPv . Then the velocity BFv  of the ball relative to the 
field is given by BF PF BPv v v= + . The smallest angle 
θmin corresponds to the case when BF PFv v⊥ . Hence, 
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1 1
min

| | 4.0 m/s180 cos  180 cos  130 .
| | 6.0 m/s

PF

BP

v
v

θ − −⎛ ⎞ ⎛ ⎞= ° − = ° − = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

  
73. We denote the police and the motorist with subscripts p and m, respectively. The 
coordinate system is indicated in Fig. 4-46. 
 
(a) The velocity of the motorist with respect to the police car is 
 

 
ˆ ˆ ˆ ˆ( 60 km/h) j ( 80 km/h)i (80 km/h)i (60 km/h) j.m p m pv v v= − = − − − = −  

 
(b) vm p  does happen to be along the line of sight. Referring to Fig. 4-46, we find the 

vector pointing from one car to another is ˆ ˆ(800 m)i (600 m) jr = −  (from M to P). Since 
the ratio of components in r  is the same as in vm p , they must point the same direction. 
 
(c) No, they remain unchanged. 
 
74. Velocities are taken to be constant; thus, the velocity of the plane relative to the 
ground is ˆ ˆ(55 km)/(1/4 hour) j= (220 km/h)jPGv = . In addition, 
 
 ˆ ˆ ˆ ˆ(42 km/h)(cos 20 i sin 20 j) (39 km/h)i (14 km/h)j.AGv = ° − ° = −  
 
Using PG PA AGv v v= + , we have  
 
 ˆ ˆ(39 km/h)i (234 km/h)j.PA PG AGv v v= − = − +  
 
which implies | | 237 km/hPAv = , or 240 km/h (to two significant figures.) 
 
75. Since the raindrops fall vertically relative to the train, the horizontal component of the 
velocity of a raindrop, vh = 30 m/s, must be the same as the speed of the train, that is, 

trainhv v=  (see the figure below).  
 
On the other hand, if vv is the vertical 
component of the velocity and θ is the 
angle between the direction of motion 
and the vertical, then tan θ = vh/vv.  
Knowing vv and vh allows us to 
determine the speed of the raindrops. 
  
With 70θ = ° , we find the vertical component of the velocity to be  
 

vv = vh/tan θ = (30 m/s)/tan 70° = 10.9 m/s. 
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Therefore, the speed of a raindrop is  
 

v v vh v= + = + =2 2 30 10 9 32( ( . m / s)  m / s)  m / s2 2 . 
 
Note: As long as the horizontal component of the velocity of the raindrops coincides with 
the speed of the train, the passenger on board will see the rain falling perfectly vertically.    
 
76. The destination is D  

→
 = 800 km j^  where we orient axes so that +y points north and +x 

points east.  This takes two hours, so the (constant) velocity of the plane (relative to the 
ground) is pgv  = (400 km/h) j^ .  This must be the vector sum of the plane’s velocity with 
respect to the air which has (x,y) components (500cos70º, 500sin70º), and the velocity of 
the air (wind) relative to the ground agv .  Thus, 
 

(400 km/h) j^  = (500 km/h) cos70º i^ + (500 km/h) sin70º j^  + agv  
 
which yields 

agv  =( –171 km/h)i^  –( 70.0 km/h)j^ . 
 
(a) The magnitude of agv  is 2 2

ag| | ( 171 km/h) ( 70.0 km/h) 185 km/h.v = − + − =  
 
(b) The direction of agv  is 
 

 1 70.0 km/htan 22.3   (south of west).
171 km/h

θ − −⎛ ⎞= = °⎜ ⎟−⎝ ⎠
 

 
77. This problem deals with relative motion in two dimensions. Snowflakes falling 
vertically downward are seen to fall at an angle by a moving observer. Relative to the car 
the velocity of the snowflakes has a vertical component of 8.0 m/svv =  and a horizontal 
component of 50 km/h 13.9 m/shv = = . The angle θ  from the vertical is found from 
 

13.9 m/stan 1.74
8.0 m/s

h

v

v
v

θ = = =  

which yields θ = 60°. 
 
Note: The problem can also be solved 
by expressing the velocity relation in 
vector notation: rel car snowv v v= + , as 
shown in the figure. 
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78. We make use of Eq. 4-44 and Eq. 4-45. 
 
The velocity of Jeep P relative to A at the instant is  
 
 ˆ ˆ ˆ ˆ(40.0 m/s)(cos 60 i sin 60 j) (20.0 m/s)i (34.6 m/s) j.PAv = ° + ° = +  
 
Similarly, the velocity of Jeep B relative to A at the instant is  
 

ˆ ˆ ˆ ˆ(20.0 m/s)(cos30 i sin 30 j) (17.3 m/s)i (10.0 m/s) j.BAv = ° + ° = +  
 
Thus, the velocity of P relative to B is  
 

ˆ ˆ ˆ ˆ ˆ ˆ(20.0i 34.6 j) m/s (17.3i 10.0 j) m/s (2.68 m/s)i (24.6 m/s)j.PB PA BAv v v= − = + − + = +  
 
(a) The magnitude of PBv  is 2 2| | (2.68 m/s) (24.6 m/s) 24.8 m/s.PBv = + =  
 
(b) The direction of PBv  is 1tan [(24.6 m/s) /(2.68 m/s)] 83.8θ −= = °  north of east (or 6.2º 
east of north). 
 
(c) The acceleration of P is 
 

2 2 2ˆ ˆ ˆ ˆ(0.400 m/s )(cos 60.0 i sin 60.0 j) (0.200 m/s )i (0.346 m/s ) j,PAa = ° + ° = +  
 
and PA PBa a= . Thus, we have 2| | 0.400 m/s .PBa =  
 
(d) The direction is 60.0° north of east (or 30.0° east of north). 
 
79. Given that 45Aθ = ° , and 40Bθ = ° , as defined in the figure, the velocity vectors 
(relative to the shore) for ships A and B are given by 
 
 

ˆ ˆ ( cos 45 ) i ( sin 45 ) j
ˆ ˆ ( sin 40 ) i ( cos 40 ) j,

A A A

B B B

v v v

v v v

= − ° + °

= − ° − °  

 
with vA = 24 knots and vB = 28 knots. We take 
east as + i  and north as j . 

 
 
The velocity of ship A relative to ship B is simply given by  AB A Bv v v= − .   



 CHAPTER 4 148 

 
(a) The relative velocity is 
 

 
ˆ ˆ ( sin 40 cos 45 )i ( cos 40 sin 45 ) j

ˆ ˆ(1.03 knots)i (38.4 knots) j
A B A B B A B Av v v v v v v= − = ° − ° + ° + °

= +
 

 
the magnitude of which is 2 2

 | | (1.03 knots) (38.4 knots) 38.4 knotsA Bv = + ≈ , or 38 
knots in 2 significant figures. 
 
(b) The angle ABθ  that vA B  makes with north is given by 
 

,1 1

,

1.03 knotstan tan 1.5
38.4 knots

AB x
AB

AB y

v
v

θ − −
⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠  

 
which is to say that vA B  points 1.5° east of north.  
 
(c) Since the two ships started at the same time, their relative velocity describes at what 
rate the distance between them is increasing. Because the rate is steady, we have 
 

| | 160 nautical miles 4.2 h.
| | 38.4 knots

AB

AB

rt
v
Δ

= = =  

 
(d) The velocity vA B  does not change with time in this problem, and rA B  is in the same 
direction as vA B  since they started at the same time. Reversing the points of view, we 
have v vA B B A  = −  so that r rA B B A  = −  (i.e., they are 180° opposite to each other). Hence, 
we conclude that B stays at a bearing of 1.5° west of south relative to A during the 
journey (neglecting the curvature of Earth). 
 
Note: The relative velocity is depicted in the figure below. When analyzing relative 
motion in two dimensions, a vector diagram such as the one shown can be very helpful. 
 

 



 

  

149

 
 
 
80. This is a classic problem involving two-dimensional relative motion. We align our 
coordinates so that east corresponds to +x and north corresponds to +y. We write the 
vector addition equation as v v vBG BW WG= + .  We have vWG = ∠ °( . )2 0 0  in the magnitude-
angle notation (with the unit m/s understood), or vWG = 2 0. i  in unit-vector notation. We 
also have vBW = ∠ °( . )8 0 120  where we have been careful to phrase the angle in the 
‘standard’ way (measured counterclockwise from the +x axis), or ˆ ˆ( 4.0i+6.9j) m/s.BWv = −  
 
(a) We can solve the vector addition equation for vBG:  
 

ˆ ˆ ˆ ˆ ˆ(2.0 m/s) i ( 4.0i+6.9j) m/s ( 2.0 m/s)i (6.9 m/s) j.BG BW WGv v v= + = + − = − +  
 
Thus, we find | | .vBG = 7 2  m/s.  
 
(b) The direction of BGv  is 1tan [(6.9 m/s) /( 2.0 m/s)] 106θ −= − = ° (measured 
counterclockwise from the +x axis), or 16° west of north. 
 
(c) The velocity is constant, and we apply y – y0 = vyt in a reference frame. Thus, in the 
ground reference frame, we have (200 m) (7.2 m/s)sin(106 ) 29t t= ° → =  s. Note: If a 
student obtains “28 s,” then the student has probably neglected to take the y component 
properly (a common mistake). 
 
81. Here, the subscript W refers to the water. Our coordinates are chosen with +x being 
east and +y being north. In these terms, the angle specifying east would be 0° and the 
angle specifying south would be –90° or 270°. Where the length unit is not displayed, km 
is to be understood. 
 
(a) We have v v vA W A B B W   = + , so that  
 

vA B  = (22 ∠  – 90°) – (40 ∠  37°) = (56 ∠  – 125°) 
 
in the magnitude-angle notation (conveniently done with a vector-capable calculator in 
polar mode).  Converting to rectangular components, we obtain 
 

 
ˆ ˆ( 32km/h) i (46 km/h) j .A Bv = − −  

 
Of course, this could have been done in unit-vector notation from the outset. 
 
(b) Since the velocity-components are constant, integrating them to obtain the position is 
straightforward ( )r r v dt− = z0    
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ˆ ˆ(2.5 32 ) i (4.0 46 ) jr t t= − + −  
 
with lengths in kilometers and time in hours. 
 
(c) The magnitude of this r  is r t t= − + −( . ) ( . )2 5 32 4 0 462 2 . We minimize this by 
taking a derivative and requiring it to equal zero — which leaves us with an equation for t 
 

dr
dt

t
t t

=
−

− + −
=

1
2

6286 528
2 5 32 4 0 46

0
2 2( . ) ( . )

 

 
which yields t = 0.084 h. 
 
(d) Plugging this value of t back into the expression for the distance between the ships (r), 
we obtain r = 0.2 km. Of course, the calculator offers more digits (r = 0.225…), but they 
are not significant; in fact, the uncertainties implicit in the given data, here, should make 
the ship captains worry. 
 
82. We construct a right triangle starting from the clearing on the 
south bank, drawing a line (200 m long) due north (upward in our 
sketch) across the river, and then a line due west (upstream, leftward 
in our sketch) along the north bank for a distance (82 m) (1.1 m/s)t+ , 
where the t-dependent contribution is the distance that the river will 
carry the boat downstream during time t. 
 
The hypotenuse of this right triangle (the arrow in our sketch) also 
depends on t and on the boat’s speed (relative to the water), and we 
set it equal to the Pythagorean “sum” of the triangle’s sides: 
 

4 0 200 82 112 2. .b g b gt t= + +  
 
which leads to a quadratic equation for t 
 

46724 180 4 14 8 02+ − =. . .t t  
 
(b) We solve for t first and find a positive value: t = 62.6 s.  
 
(a) The angle between the northward (200 m) leg of the triangle and the hypotenuse 
(which is measured “west of north”) is then given by 
 

θ =
+F

HG
I
KJ = F

HG
I
KJ = °− −tan

.
tan .1 182 11

200
151
200

37
t  
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83. We establish coordinates with i  pointing to the far side of the river (perpendicular to 
the current) and j  pointing in the direction of the current. We are told that the magnitude 
(presumed constant) of the velocity of the boat relative to the water is | |  = 6.4 km/h.bwv  
Its angle, relative to the x axis is θ.  With km and h as the understood units, the velocity 
of the water (relative to the ground) is ˆ(3.2 km/h)j.wgv =  
 
(a) To reach a point “directly opposite” means that the velocity of her boat relative to 
ground must be ˆ= ibg bgv v  where vbg > 0 is unknown. Thus, all j  components must cancel 

in the vector sum v v vbw wg bg +   =  , which means the 
bwv  sin θ = (–3.2 km/h) j , so  

 
θ = sin–1 [(–3.2 km/h)/(6.4 km/h)] = –30°. 

 
(b) Using the result from part (a), we find vbg = vbw cosθ = 5.5 km/h. Thus, traveling a 
distance of  = 6.4 km requires a time of (6.4 km)/(5.5 km/h) = 1.15 h or 69 min. 
 
(c) If her motion is completely along the y axis (as the problem implies) then with vwg = 
3.2 km/h (the water speed) we have 
 

total  =  +  = 1.33 h
 +   bw wg bw wg

D Dt
v v v v−

 

 
where D = 3.2 km. This is equivalent to 80 min. 
 
(d) Since 

 
+  bw wg bw wg bw wg bw wg

D D D D
v v v v v v v v

+ = +
− − +

 

 
the answer is the same as in the previous part, that is, total = 80 mint . 
 
(e) The shortest-time path should have 0 .θ = °  This can also be shown by noting that the 
case of general θ leads to 
 

ˆ ˆcos  i  ( sin  + ) jbg bw wg bw bw wgv v v v v vθ θ= + = +  
 
where the x component of vbg  must equal l/t. Thus, 
 

 = 
cosbw

lt
v θ

 

 
which can be minimized using dt/dθ = 0.  
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(f) The above expression leads to t = (6.4 km)/(6.4 km/h) = 1.0 h, or 60 min. 
 
84. Relative to the sled, the launch velocity is 0relv  = vox i

^  + voy j
^ .  Since the sled’s 

motion is in the negative direction with speed vs (note that we are treating vs as a positive 
number, so the sled’s velocity is actually –vs i

^ ), then the launch velocity relative to the 
ground is 0v  = (vox – vs) i

^  + voy j
^ .  The horizontal and vertical displacement (relative to 

the ground) are therefore 
 
          xland – xlaunch = Δxbg = (vox – vs) tflight 
 
          yland – ylaunch =  0  = voy tflight  +  12 (−g)(tflight)2 . 
 
Combining these equations leads to  

Δxbg = 0 0 02 2x y y
s

v v v
v

g g
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

. 

 
The first term corresponds to the “y intercept” on the graph, and the second term (in 
parentheses) corresponds to the magnitude of the “slope.” From the figure, we have 
 
 40 4 .bg sx vΔ = −  
 
This implies voy = (4.0 s)(9.8 m/s2)/2 = 19.6 m/s, and that furnishes enough information to 
determine vox. 
 
(a) vox = 40g/2voy = (40 m)(9.8 m/s2)/(39.2 m/s) = 10 m/s. 
 
(b) As noted above, voy = 19.6 m/s. 
 
(c) Relative to the sled, the displacement Δxbs does not depend on the sled’s speed, so 
Δxbs = vox tflight = 40 m. 
 
(d) As in (c), relative to the sled, the displacement Δxbs does not depend on the sled’s 
speed, and Δxbs = vox tflight = 40 m. 
 
85. Using displacement = velocity × time (for each constant-velocity part of the trip), 
along with the fact that 1 hour = 60 minutes, we have the following vector addition 
exercise (using notation appropriate to many vector-capable calculators): 
 
(1667 m ∠ 0º)  + (1333 m ∠ −90º) + (333 m ∠ 180º) + (833 m ∠ −90º) + (667 m ∠ 180º) 
+ (417 m ∠ −90º) = (2668 m ∠ −76º). 
 
(a) Thus, the magnitude of the net displacement is 2.7 km. 
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(b) Its direction is 76° clockwise (relative to the initial direction of motion). 
 
86. We use a coordinate system with +x eastward and +y upward.  
 
(a) We note that 123° is the angle between the initial position and later position vectors, 
so that the angle from +x to the later position vector is 40° + 123° = 163°. In unit-vector 
notation, the position vectors are 
 

1

2

ˆ ˆ ˆ ˆ = (360 m)cos(40 ) i + (360 m)sin(40 ) j = (276 m)i +(231 m) j
ˆ ˆ ˆ ˆ = (790 m) cos(163 ) i + (790 m) sin(163 ) j = ( 755 m)i + (231 m) j

r

r

° °

° ° −
 

 
respectively. Consequently, we plug into Eq. 4-3 
 

ˆ ˆ ˆ = [( 755 m) (276 m)]i + (231 m 231 m) j (1031 m) i.rΔ − − − = −  
 
The magnitude of the displacement rΔ  is | | 1031 m.rΔ =  
 
(b) The direction of rΔ is î− , or westward. 
 
87. This problem deals with the projectile motion of a baseball. Given the information on 
the position of the ball at two instants, we are asked to analyze its trajectory.  
 
The trajectory of the baseball is shown in the figure below. According to the problem 
statement, at 1 3.0 s,t =  the ball reaches it maximum height max ,y  and at 

2 1 2.5 s 5.5 st t= + = , it barely clears a fence at 2 97.5 mx = . 
 

 
Eq. 2-15 can be applied to the vertical (y axis) motion related to reaching the maximum 
height (when t1 = 3.0 s and vy = 0): 

ymax – y0  =  vyt – 
1
2gt2  . 

 
(a) With ground level chosen so y0 = 0, this equation gives the result  
 

 2 2 2
max 1

1 1 (9.8 m/s )(3.0 s) 44.1 m
2 2

y gt= = =  
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(b) After the moment it reached maximum height, it is falling; at 2 1 2.5 s 5.5 st t= + = , it 

will have fallen an amount given by Eq. 2-18: 2
fence max 2 1

10 ( )
2

y y g t t− = − − . 

Thus, the height of the fence is 
2 2 2

fence max 2 1
1 1( ) 44.1 m (9.8 m/s )(2.5 s) 13.48 m 13 m
2 2

y y g t t= − − = − = ≈ . 

 
(c) Since the horizontal component of velocity in a projectile-motion problem is constant 
(neglecting air friction), we find from 97.5 m = v0x(5.5 s) that v0x = 17.7 m/s. The total 
flight time of the ball is 12 2(3.0 s) 6.0 sT t= = = . Thus, the range of the baseball is  
 
 0 (17.7 m/s)(6.0 s) 106.4 mxR v T= = =  
 
which means that the ball travels an additional distance 
 

2 106.4 m 97.5 m 8.86 m 8.9 mx R xΔ = − = − = ≈  
 
beyond the fence before striking the ground.  
 
Note: Part (c) can also be solved by noting that after passing the fence, the ball will strike 
the ground in 0.5 s (so that the total "fall-time" equals the "rise-time"). With v0x = 17.7 
m/s, we have  Δx = (17.7 m/s)(0.5 s) = 8.86 m. 
 
88. When moving in the same direction as the jet stream (of speed vs), the time is 
 

 1
ja s

dt
v v

=
+

, 

 
where d = 4000 km is the distance and vja is the speed of the jet relative to the air (1000 
km/h). When moving against the jet stream, the time is 
 

2
ja s

dt
v v

=
−

, 

where  t2 – t1 = 
70
60 h . Combining these equations and using the quadratic formula to solve 

gives vs = 143 km/h. 
 
89. We have a particle moving in a two-dimensional plane with a constant acceleration. 
Since the x and y components of the acceleration are constants, we can use Table 2-1 for 
the motion along both axes.  
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Using vector notation with r0 0= , the position and velocity of the particle as a function 

of time are given by 2
0

1( )
2

r t v t at= +  and 0( ) ,v t v at= +  respectively. Where units are 

not shown, SI units are to be understood. 
 
 (a) Given the initial velocity 0

ˆ(8.0 m/s) jv =  and the acceleration 
2 2ˆ ˆ(4.0 m/s )i (2.0 m/s ) ja = + , the position vector of the particle is  

 

( ) ( ) ( ) ( )2 2 2 2
0

1 1ˆ ˆ ˆ ˆ ˆ8.0 j 4.0 i 2.0 j 2.0 i + 8.0 +1.0 j.
2 2

r v t at t t t t t= + = + + =  

 
Therefore, we find when x = 29 m, by solving 2.0t2 = 29, which leads to t = 3.8 s. The y 
coordinate at that time is 
  

y = (8.0 m/s)(3.8 s) + (1.0 m/s2)(3.8 s)2 = 45 m. 
 
(b) The velocity of the particle is given by v v at= +0 .  Thus, at t = 3.8 s, the velocity is 
 

( )( )2 2ˆ ˆ ˆ ˆ ˆ(8.0 m/s) j (4.0 m/s ) i (2.0 m/s ) j 3.8 s (15.2 m/s) i (15.6 m/s) jv = + + = +  

 
which has a magnitude of  
 

2 2 2 2(15.2 m/s) (15.6 m/s) 22 m/s.x yv v v= + = + =  
 
90. Using the same coordinate system assumed in Eq. 4-25, we rearrange that equation to 
solve for the initial speed: 

v x g
x y0 2

 =  
cos 

 
 (  tan   0 0θ θ − )

 

 
which yields v0 = 23 ft/s for g = 32 ft/s2, x = 13 ft, y = 3 ft and θ0 = 55°. 
 
91. We make use of Eq. 4-25. 
 
(a) By rearranging Eq. 4-25, we obtain the initial speed: 
 

v x g
x y0

0 02
=

−cos ( tan )θ θ
 

 
which yields v0 = 255.5 ≈ 2.6 × 102 m/s for x = 9400 m, y = –3300 m, and θ0 = 35°. 
 
(b) From Eq. 4-21, we obtain the time of flight: 
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0 0

9400 m 45 s.
cos (255.5 m/s) cos35
xt

v θ
= = =

°
 

 
(c) We expect the air to provide resistance but no appreciable lift to the rock, so we 
would need a greater launching speed to reach the same target. 
 
92. We apply Eq. 4-34 to solve for speed v and Eq. 4-35 to find the period T. 
 
(a) We obtain 

v ra= = =5 0 7 0 9 8 19. . .m m / s m / s.2b gb gc h  

 
(b) The time to go around once (the period) is T = 2πr/v = 1.7 s. Therefore, in one minute 
(t = 60 s), the astronaut executes 
 

60 s 35
1.7 s

t
T

= =  

 
revolutions. Thus, 35 rev/min is needed to produce a centripetal acceleration of 7g when 
the radius is 5.0 m. 
 
(c) As noted above, T = 1.7 s. 
 
93. This problem deals with the two-dimensional kinematics of a desert camel moving 
from oasis A to oasis B.  
 
The journey of the camel is illustrated in the 
figure on the right. We use a ‘standard’ 
coordinate system with +x East and +y North. 
Lengths are in kilometers and times are in 
hours. Using vector notation, we write the 
displacements for the first two segments of the 
trip as:  
 

1

2

ˆ ˆ(75 km)cos(37 ) i (75 km) sin(37 ) j
ˆ( 65 km) j

r

r

Δ = ° + °

Δ = −
  

The net displacement is 12 1 2 .r r rΔ = Δ + Δ  As can be seen from the figure, to reach oasis B 
requires an additional displacement 3rΔ . 
 
(a) We perform the vector addition of individual displacements to find the net 
displacement of the camel: 
 

12 1 2
ˆ ˆ(60 km) i (20 km ) j .r r rΔ = Δ + Δ = −  
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Its corresponding magnitude is 2 2
12| | (60 km) ( 20 km)  63 kmrΔ = + − = . 

 
(b) The direction of 12rΔ  is 1

12 tan [( 20 km) /(60 km)] 18θ −= − = − ° , or 18° south of east. 
 
(c) To calculate the average velocity for the first two segments of the journey (including 
rest), we use the result from part (a) in Eq. 4-8 along with the fact that  
 

12 1 2 rest 50 h 35 h 5.0 h 90 h.t t t tΔ = Δ + Δ + Δ = + + =  
 
In unit vector notation, we obtain 

12,avg

ˆ ˆ(60 i 20 j) km ˆ ˆ= (0.67 i 0.22 j) km/h.
90 h

v −
= −  

 
This leads to 12,avg|  | 0.70 km/h.v =  
 
(d) The direction of 12,avgv is given by 1

12 tan [( 0.22 km/h) /(0.67 km/h)] 18θ −= − = − ° , 
or 18° south of east. 
 
(e) The average speed is distinguished from the magnitude of average velocity in that it 
depends on the total distance as opposed to the net displacement. Since the camel travels 
140 km, we obtain (140 km)/(90 h) = 1.56 km/h 1.6 km/h≈ . 
 
(f) The net displacement is required to be the 90 km East from A to B. The displacement 
from the resting place to B is denoted 3.rΔ  Thus, we must have  
 

1 2 3
ˆ+  +  = (90 km) ir r rΔ Δ Δ  

 
which produces 3

ˆ ˆ(30 km)i (20 km)jrΔ = +  in unit-vector notation, or (36  33 )∠ °  in 
magnitude-angle notation.  Therefore, using Eq. 4-8 we obtain 
 

3,avg
36 km|  | 1.2 km/h.

(120 90) h
v = =

−
 

 
(g) The direction of 3,avgv is the same as 3rΔ  (that is, 33° north of east). 
 
Note: With a vector-capable calculator in polar mode, we could perform the vector 
addition of the displacements as (75  37 ) (65   90 ) (63   18 )∠ ° + ∠ − ° = ∠ − ° .  
 
94. We compute the coordinate pairs (x, y) from x = (v0 cosθ )t and 21

0 2siny v t gtθ= −  
for t = 20 s and the speeds and angles given in the problem.  
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(a) We obtain  
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 10.1 km, 0.556 km , 12.1 km,1.51 km
, 14.3 km, 2.68 km , 16.4 km, 3.99 km

A A B B

C C D D

x y x y
x y x y

= =
= =

 

 
and (xE, yE) = (18.5 km, 5.53 km) which we plot in the next part. 
 
(b) The vertical (y) and horizontal (x) axes are in kilometers. The graph does not start at 
the origin.  The curve to “fit” the data is not shown, but is easily imagined (forming the 
“curtain of death”). 
 

 
 
95. (a) With Δx = 8.0 m, t = Δt1, a = ax , and vox = 0,  Eq. 2-15 gives 
 

8.0 m = 12 ax(Δt1)2 , 
 
and the corresponding expression for motion along the y axis leads to 
 

Δy = 12 m = 12 ay(Δt1)2 . 
 
Dividing the second expression by the first leads to / 3 / 2y xa a = = 1.5.  
 
(b) Letting t = 2Δt1, then Eq. 2-15 leads to Δx = (8.0 m)(2)2 = 32 m, which implies that its 
x coordinate is now (4.0 + 32) m = 36 m.  Similarly, Δy = (12 m)(2)2 = 48 m, which 
means its y coordinate has become (6.0 + 48) m = 54 m. 
 
96. We assume the ball’s initial velocity is perpendicular to the plane of the net. We 
choose coordinates so that (x0, y0) = (0, 3.0) m, and vx > 0 (note that v0y = 0). 
 
(a) To (barely) clear the net, we have 
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( )2 2 2
0 0

1 12.24 m 3.0 m 0 9.8 m/s
2 2yy y v t gt t− = − ⇒ − = −  

 
which gives t = 0.39 s for the time it is passing over the net. This is plugged into the x-
equation to yield the (minimum) initial velocity vx = (8.0 m)/(0.39 s) = 20.3 m/s. 
 
(b) We require y = 0 and find time t from the equation 21

0 0 2yy y v t gt− = − . This value 

( ) 22 3.0 m /(9.8 m/s )(t = 0.78 s)=  is plugged into the x-equation to yield the 
(maximum) initial velocity  

vx = (17.0 m)/(0.78 s) = 21.7 m/s. 
 
97. The trajectory of the bullet is shown in the figure below (not to scale). Note that the 
origin is chosen to be at the firing point. With this convention, the y coordinate of the 
bullet is given by y gt= − 1

2
2 . Knowing the coordinates (x, y) at the target allows us to 

calculate the total flight time and speed of the bullet. 
 

 
 
(a) If t is the time of flight and y = – 0.019 m indicates where the bullet hits the target, 
then 

( ) 2
2

2 0.019 m2 6.2 10 s.
9.8 m/s

yt
g

−− −−
= = = ×  

 
(b) The muzzle velocity is the initial (horizontal) velocity of the bullet. Since x = 30 m is 
the horizontal position of the target, we have x = v0t. Thus, 
 

2
0 2

30 m 4.8 10 m/s.
6.3 10 s

xv
t −= = = ×

×
 

 
Alternatively, we may use Eq. (4-25) to solve for the initial velocity. With 0 0θ =  and 

0 0y = , the equation simplifies to
2

2
02

gxy
v

= − , leading to  

2 2 2
2

0
(9.8 m/s )(30 m) 4.8 10 m/s

2 2( 0.019 m)
gxv

y
= − = − = ×

−
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which is precisely what we calculated in part (b). 
 
98. For circular motion, we must have v  with direction perpendicular to  r  

→
  and (since 

the speed is constant) magnitude 2 /v r Tπ=  where 2 2(2.00 m) ( 3.00 m)r = + −  and 

7.00 sT = . The  r  
→

 (given in the problem statement) specifies a point in the fourth 
quadrant, and since the motion is clockwise then the velocity must have both components 
negative.  Our result, satisfying these three conditions, (using unit-vector notation which 
makes it easy to double-check that 0r v⋅ = ) for v = (–2.69 m/s)i^ + (–1.80 m/s)j^. 
 
99. Let vo = 2π(0.200 m)/(0.00500 s) ≈ 251 m/s (using Eq. 4-35) be the speed it had in 
circular motion and θo = (1 hr)(360º/12 hr [for full rotation]) = 30.0º.  Then Eq. 4-25 leads 
to

 2 2

2 2

(9.8 m/s )(2.50 m)(2.50 m) tan 30.0 1.44 m
2(251 m/s) (cos30.0 )

y = ° − ≈
°

 

 
which means its height above the floor is 1.44 m + 1.20 m = 2.64 m. 
 
100. Noting that v2 0= , then, using Eq. 4-15, the average acceleration is 
 

( ) ( ) 2
avg

ˆ ˆ0 6.30 i 8.42 j m/s
ˆ ˆ2.1i 2.8 j m/s

3 s
va
t

− −Δ
= = = − +

Δ
 

 
101. Using Eq. 2-16, we obtain 2 2

0 2v v gh= − , or 2 2
0( ) / 2 .h v v g= −  

 
(a) Since 0v = at the maximum height of an upward motion, with 0 7.00 m/sv = , we 
have 

2 2(7.00 m/s) / 2(9.80 m/s ) 2.50 m.h = =  
 
(b) The relative speed is 0 7.00 m/s 3.00 m/s 4.00 m/sr cv v v= − = − =  with respect to the 
floor. Using the above equation we obtain 2 2(4.00 m/s) / 2(9.80 m/s ) 0.82 m.h = =  
 
(c) The acceleration, or the rate of change of speed of the ball with respect to the ground 
is 9.80 m/s2 (downward). 
 
(d) Since the elevator cab moves at constant velocity, the rate of change of speed of the 
ball with respect to the cab floor is also 9.80 m/s2 (downward). 
 
102. (a) With r = 0.15 m and a = 3.0 × 1014 m/s2, Eq. 4-34 gives 
 

v ra= = ×6 7 106.  m / s. 
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(b) The period is given by Eq. 4-35: 
 

T r
v

= = × −2 14 10 7π . s.  

 
103. (a) The magnitude of the displacement vector Δr  is given by 
 

2 2 2| | (21.5 km) (9.7 km) (2.88 km) 23.8 km.rΔ = + + =  
Thus, 

avg
| | 23.8 km| | 6.79 km/h.

3.50 h
rv
t

Δ
= = =

Δ
 

 
(b) The angle θ in question is given by 
 

1

2 2

2.88 kmtan 6.96 .
(21.5 km) (9.7 km)

θ −
⎛ ⎞
⎜ ⎟= = °
⎜ ⎟+⎝ ⎠

 

 
104. The initial velocity has magnitude v0 and because it is horizontal, it is equal to vx the 
horizontal component of velocity at impact. Thus, the speed at impact is 
 
 2 2

0 03yv v v+ =  
 
where 2yv gh=  and we have used Eq. 2-16 with Δx replaced with h = 20 m. Squaring 
both sides of the first equality and substituting from the second, we find 
 

v gh v0
2

0
22 3+ = b g  

 
which leads to 2

04gh v=  and therefore to 2
0 (9.8 m/s )(20 m) / 2 7.0 m/s.v = =  

 
105. We choose horizontal x and vertical y axes such that both components of v0  are 
positive. Positive angles are counterclockwise from +x and negative angles are clockwise 
from it. In unit-vector notation, the velocity at each instant during the projectile motion is 
 

( )0 0 0 0
ˆ ˆcos i sin j.v v v gtθ θ= + −  

 
(a) With v0 = 30 m/s and θ0 = 60°, we obtain ˆ ˆ(15i +6.4 j) m/sv = , for t = 2.0 s. The 

magnitude of v is 2 2| | (15 m/s) (6.4 m/s) 16 m/s.v = + =  
 
(b) The direction of v is  

1tan [(6.4 m/s) /(15 m/s)] 23 ,θ −= = °  
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measured counterclockwise from +x. 
 
(c) Since the angle is positive, it is above the horizontal. 
 
(d) With t = 5.0 s, we find ˆ ˆ(15i 23 j) m/sv = − , which yields 
 

2 2| | (15 m/s) ( 23 m/s) 27 m/s.v = + − =  
 
(e) The direction of v is 1tan [( 23 m/s) /(15 m/s)] 57θ −= − = − ° , or 57° measured 
clockwise from +x. 
 
(f) Since the angle is negative, it is below the horizontal. 
 
106. We use Eq. 4-2 and Eq. 4-3. 
 
(a) With the initial position vector as r1  and the later vector as r2 ,  Eq. 4-3 yields 
 

ˆ ˆ ˆ ˆ ˆ[( 2.0 m) 5.0 m]i [(6.0m) ( 6.0 m)]j (2.0 m 2.0 m) k ( 7.0 m) i (12 m) jrΔ = − − + − − + − = − +
 

for the displacement vector in unit-vector notation.  
 
(b) Since there is no z component (that is, the coefficient of k̂  is zero), the displacement 
vector is in the xy plane. 
 
107. We write our magnitude-angle results in the form R ∠ θb g  with SI units for the 
magnitude understood (m for distances, m/s for speeds, m/s2 for accelerations). All angles 
θ are measured counterclockwise from +x, but we will occasionally refer to angles φ , 
which are measured counterclockwise from the vertical line between the circle-center and 
the coordinate origin and the line drawn from the circle-center to the particle location (see 
r in the figure). We note that the speed of the particle is v = 2πr/T where r = 3.00 m and T 
= 20.0 s; thus, v = 0.942 m/s. The particle is moving counterclockwise in Fig. 4-56. 
 
(a) At t = 5.0 s, the particle has traveled a fraction of 
 

5.00 s 1
20.0 s 4

t
T

= =  

 
of a full revolution around the circle (starting at the origin). Thus, relative to the circle-
center, the particle is at 

φ = ° = °
1
4

360 90( )       
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measured from vertical (as explained above). Referring to Fig. 4-56, we see that this 
position (which is the “3 o’clock” position on the circle) corresponds to x = 3.0 m and y = 
3.0 m relative to the coordinate origin. In our magnitude-angle notation, this is expressed 
as ( ) ( )4.2 45R θ∠ = ∠ ° . Although this position is easy to analyze without resorting to 
trigonometric relations, it is useful (for the computations below) to note that these values 
of x and y relative to coordinate origin can be gotten from the angle φ from the relations  
 

sin , cosx r y r rφ φ= = − . 
 
Of course, R x y= +2 2  and θ comes from choosing the appropriate possibility from 
tan–1 (y/x) (or by using particular functions of vector-capable calculators). 
 
(b) At t = 7.5 s, the particle has traveled a fraction of 7.5/20 = 3/8 of a revolution around 
the circle (starting at the origin). Relative to the circle-center, the particle is therefore at φ 
= 3/8 (360°) = 135° measured from vertical in the manner discussed above. Referring to 
Fig. 4-56, we compute that this position corresponds to  
 

x = (3.00 m)sin 135° = 2.1 m  
y = (3.0 m) – (3.0 m)cos 135° = 5.1 m  

 
relative to the coordinate origin. In our magnitude-angle notation, this is expressed as (R 
∠  θ ) = (5.5 ∠  68°). 
 
(c) At t = 10.0 s, the particle has traveled a fraction of 10/20 = 1/2 of a revolution around 
the circle. Relative to the circle-center, the particle is at φ = 180° measured from vertical 
(see explanation above). Referring to Fig. 4-56, we see that this position corresponds to x 
= 0 and y = 6.0 m relative to the coordinate origin. In our magnitude-angle notation, this 
is expressed as ( ) ( )6.0 90R θ∠ = ∠ ° . 
 
(d) We subtract the position vector in part (a) from the position vector in part (c):  
 

( ) ( ) ( )6.0 90 4.2 45 4.2 135∠ ° − ∠ ° = ∠ °  
 
using magnitude-angle notation (convenient when using vector-capable calculators). If 
we wish instead to use unit-vector notation, we write 
 

ˆ ˆ ˆ ˆ(0 3.0 m) i (6.0 m 3.0 m) j ( 3.0 m)i (3.0 m) jRΔ = − + − = − +  
 
which leads to | | 4.2 mRΔ =  and θ = 135°. 
 
(e) From Eq. 4-8, we have avg /v R t= Δ Δ . With 5.0 stΔ = , we have 
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avg
ˆ ˆ( 0.60 m/s) i (0.60 m/s) jv = − +  

 
in unit-vector notation or (0.85 ∠  135°) in magnitude-angle notation. 
 
(f) The speed has already been noted (v = 0.94 m/s), but its direction is best seen by 
referring again to Fig. 4-56. The velocity vector is tangent to the circle at its “3 o’clock 
position” (see part (a)), which means v  is vertical. Thus, our result is ( )0.94 90∠ ° . 
 
(g) Again, the speed has been noted above (v = 0.94 m/s), but its direction is best seen by 
referring to Fig. 4-56. The velocity vector is tangent to the circle at its “12 o’clock 
position” (see part (c)), which means v  is horizontal. Thus, our result is ( )0.94 180∠ ° . 
 
(h) The acceleration has magnitude a = v2/r = 0.30 m/s2, and at this instant (see part (a)) it 
is horizontal (toward the center of the circle). Thus, our result is ( )0.30 180∠ ° . 
 
(i) Again, a = v2/r = 0.30 m/s2, but at this instant (see part (c)) it is vertical (toward the 
center of the circle). Thus, our result is ( )0.30 270∠ ° . 
 
108. Equation 4-34 describes an inverse proportionality between r and a, so that a large 
acceleration results from a small radius. Thus, an upper limit for a corresponds to a lower 
limit for r. 
 
(a) The minimum turning radius of the train is given by 
 

r v
amin

max . .
.= = = ×

2 2
3216

0 050 9 8
7 3 10

km / h
m / s

m.
2

b g
b gc h  

 
(b) The speed of the train must be reduced to no more than 
 

( )( )2 3
max 0.050 9.8 m/s 1.00 10  m 22 m/sv a r= = × =  

 
which is roughly 80 km/h. 
 
109. (a) Using the same coordinate system assumed in Eq. 4-25, we find 
 

y x gx
v

gx
v

= − = − =tan
cos

.θ
θ

θ0

2

0 0
2

2

0
22 2

0b g     if 0  

 
Thus, with v0 = 3.0 × 106 m/s and x = 1.0 m, we obtain y = –5.4 × 10–13 m, which is not 
practical to measure (and suggests why gravitational processes play such a small role in 
the fields of atomic and subatomic physics). 
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(b) It is clear from the above expression that |y| decreases as v0 is increased. 
 
110. When the escalator is stalled the speed of the person is pv t= , where  is the 
length of the escalator and t is the time the person takes to walk up it. This is vp = (15 
m)/(90 s) = 0.167 m/s. The escalator moves at ve = (15 m)/(60 s) = 0.250 m/s. The speed 
of the person walking up the moving escalator is  
 

v = vp + ve = 0.167 m/s + 0.250 m/s = 0.417 m/s 
 
and the time taken to move the length of the escalator is 
 

t v= = =/ ( )15 36 m) / (0.417 m / s  s.  
 
If the various times given are independent of the escalator length, then the answer does 
not depend on that length either. In terms of  (in meters) the speed (in meters per 
second) of the person walking on the stalled escalator is 90 , the speed of the moving 
escalator is 60 , and the speed of the person walking on the moving escalator is 

( ) ( )90 60 0.0278v = + = . The time taken is t v= = =0 0278 36. s  and is 
independent of . 
 
111. The radius of Earth may be found in Appendix C. 
 
(a) The speed of an object at Earth’s equator is v = 2πR/T, where R is the radius of Earth 
(6.37 × 106 m) and T is the length of a day (8.64 × 104 s):  
 

v = 2π(6.37 × 106 m)/(8.64 × 104 s) = 463 m/s. 
 
The magnitude of the acceleration is given by 
 

a v
R

= =
×

=
2 2

6

463
6 37 10

0 034
m / s

m
m / s2b g

.
. .  

 
(b) If T is the period, then v = 2πR/T is the speed and the magnitude of the acceleration is 
 

 
2 2 2

2

(2 / ) 4v R T Ra
R R T

π π
= = = . 

Thus, 

T R
a

= =
×

= ×2 2 6 37 10
9 8

51 10
6

3π π .
.

.m
m / s

s = 84  min.2  

 
112. With gB = 9.8128 m/s2 and gM = 9.7999 m/s2, we apply Eq. 4-26: 
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R R v
g

v
g

v
g

g
gM B

M B B

B

M

− = − = −
F
HG

I
KJ

0
2

0 0
2

0 0
2

02 2 2 1sin sin sinθ θ θ  

which becomes 
2

2

9.8128 m/s 1
9.7999 m/sM B BR R R

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 

 
and yields (upon substituting RB = 8.09 m) RM – RB = 0.01 m = 1 cm. 
 
113. From the figure, the three displacements can be written as  
 

1 1 1 1

2 2 1 2 1 2

3 3 3 2 1

ˆ ˆ ˆ ˆ ˆ ˆ(cos i sin j) (5.00 m)(cos30 i sin 30 j) (4.33 m)i (2.50 m) j

ˆ ˆ ˆ ˆ[cos(180 )i sin(180 )j] (8.00 m)(cos160 i sin160 j)
ˆ ˆ( 7.52 m)i (2.74 m) j

ˆ[cos(360 )i sin

d d

d d

d d

θ θ

θ θ θ θ

θ θ θ

= + = ° + ° = +

= ° + − + ° + − = ° + °
= − +

= ° − − + + 3 2 1
ˆ ˆ ˆ(360 )j] (12.0 m)(cos 260 i sin 260 j)

ˆ ˆ( 2.08 m)i (11.8 m) j
θ θ θ° − − + = ° + °

= − −
 

where the angles are measured from the +x axis. The net displacement is  
 
 1 2 3

ˆ ˆ( 5.27 m)i (6.58 m) j.d d d d= + + = − −  
 
(a) The magnitude of the net displacement is 
 

2 2| | ( 5.27 m) ( 6.58 m) 8.43 m.d = − + − =  
 

(b) The direction of d is 1 1 6.58 mtan tan 51.3  or 231 .
5.27 m

y

x

d
d

θ − −⎛ ⎞ −⎛ ⎞= = = ° °⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
 

 
We choose 231° (measured counterclockwise from +x) since the desired angle is in the 
third quadrant. An equivalent answer is 129− ° (measured clockwise from +x).   
 
114. Taking derivatives of ˆ ˆ2 i 2sin( / 4) jr t tπ= +  (with lengths in meters, time in seconds, 
and angles in radians) provides expressions for velocity and acceleration: 
 

 2

ˆ ˆ2i cos j
2 4

ˆsin j.
8 4

dr tv
dt
dv ta
dt

π π

π π

⎛ ⎞= = + ⎜ ⎟
⎝ ⎠

⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

 

Thus, we obtain: 
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time t (s)  0.0 1.0 2.0 3.0 4.0 

x (m) 0.0 2.0 4.0 6.0 8.0  
(a) 

r  
→

  
position y (m) 0.0 1.4 2.0 1.4 0.0 

vx(m/s)  2.0 2.0 2.0   
(b) 

v  
velocity vy (m/s)  1.1 0.0 −1.1  

ax (m/s2)  0.0 0.0 0.0   
(c) 

a  
→

  
acceleration ay (m/s2)  −0.87 −1.2 −0.87  

 
115. Since this problem involves constant downward acceleration of magnitude a, similar 
to the projectile motion situation, we use the equations of  §4-6 as long as we substitute a 
for g. We adopt the positive direction choices used in the textbook so that equations such 
as Eq. 4-22 are directly applicable. The initial velocity is horizontal so that v y0 0=  and 
 

 9
0 0 1.00 10xv v= = × cm/s. 

 
(a) If is the length of a plate and t is the time an electron is between the plates, then 

= v t0 , where v0 is the initial speed. Thus 
 

9
9

0

2.00 cm 2.00 10 s.
1.00 10 cm/s

t
v

−= = = ×
×

 

 
(b) The vertical displacement of the electron is 
 

( )( )22 17 2 91 1 1.00 10 cm/s 2.00 10 s 0.20 cm 2.00 mm,
2 2

y at −= − = − × × = − = −  

 
or | | 2.00 mm.y =  
 
(c) The x component of velocity does not change:  
 

vx = v0 = 1.00 × 109 cm/s = 1.00 × 107 m/s. 
 
(d) The y component of the velocity is 
 

( )( )17 2 9 8

6

1.00 10 cm/s 2.00 10 s 2.00 10 cm/s
2.00 10 m/s.

y yv a t −= = × × = ×

= ×
 

 
116. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as 
the –y direction) for the duration of the motion of the shot ball. We are allowed to use 
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Table 2-1 (with Δy replacing Δx) because the ball has constant acceleration motion. We 
use primed variables (except t) with the constant-velocity elevator (so ' 10 m/sv = ), and 
unprimed variables with the ball (with initial velocity 0 20 30 m/sv v′= + = , relative to the 
ground). SI units are used throughout. 
 
(a) Taking the time to be zero at the instant the ball is shot, we compute its maximum 
height y (relative to the ground) with 2 2

0 02 ( )v v g y y= − − , where the highest point is 
characterized by v = 0. Thus, 

y y v
g

= + =o m0
2

2
76  

 
where o o 2 30 my y′= + =  (where o 28 my′ =  is given in the problem) and v0 = 30 m/s 
relative to the ground as noted above. 
 
(b) There are a variety of approaches to this question. One is to continue working in the 
frame of reference adopted in part (a) (which treats the ground as motionless and “fixes” 
the coordinate origin to it); in this case, one describes the elevator motion with 

oy y v t′ ′ ′= +  and the ball motion with Eq. 2-15, and solves them for the case where they 
reach the same point at the same time.  Another is to work in the frame of reference of the 
elevator (the boy in the elevator might be oblivious to the fact the elevator is moving 
since it isn’t accelerating), which is what we show here in detail: 
 

Δ
Δ

y v t gt t
v v g y

ge
e e

e

e= − ⇒ =
+ −

0
2 0 0

21
2

2
 

 
where v0e = 20 m/s is the initial velocity of the ball relative to the elevator and Δye =  
–2.0 m is the ball’s displacement relative to the floor of the elevator. The positive root is 
chosen to yield a positive value for t; the result is t = 4.2 s. 
 
117. We adopt the positive direction choices used in the textbook so that equations such 
as Eq. 4-22 are directly applicable. The coordinate origin is at the initial position for the 
football as it begins projectile motion in the sense of §4-5), and we let θ0 be the angle of 
its initial velocity measured from the +x axis. 
 
(a) x = 46 m and y = –1.5 m are the coordinates for the landing point; it lands at time t = 
4.5 s. Since x = v0xt, 

0
46 m 10.2 m/s.
4.5 sx

xv
t

= = =  

Since y v t gty= −0
1
2

2 , 

v
y gt

ty0

21
2

15 1
2

9 8 4 5

4 5
217=

+
=

− +
=

( . ( . )( .

.
.

 m)  m / s  s)

 s
 m / s.

2 2
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The magnitude of the initial velocity is 
 

v v vx y0 0
2

0
2 10 2 217 24= + = + =( . ( . m / s)  m / s)  m / s.2 2  

 
(b) The initial angle satisfies tan θ0 = v0y/v0x. Thus,  
 

θ0 = tan–1 [(21.7 m/s)/(10.2 m/s) ] = 65°. 
 
118. The velocity of Larry is v1 and that of Curly is v2. Also, we denote the length of the 
corridor by L. Now, Larry’s time of passage is t1 = 150 s (which must equal L/v1), and 
Curly’s time of passage is t2 = 70 s (which must equal L/v2). The time Moe takes is 
therefore 

1 1
1 2 1 2 150 s 70 s

1 1 48s.
/ /

Lt
v v v L v L

= = = =
+ + +

 

 
119. The (box)car has velocity v vc g  i= 1  relative to the ground, and the bullet has 
velocity 

v v vb g0 2 2  i  j= +cos sinθ θ  
 
relative to the ground before entering the car (we are neglecting the effects of gravity on 
the bullet). While in the car, its velocity relative to the outside ground is 
 

v v vbg = +08 2. cos sinθ θ i 0.8  j2  
 
(due to the 20% reduction mentioned in the problem). The problem indicates that the 
velocity of the bullet in the car relative to the car is (with v3 unspecified) v vb c  j= 3 . Now, 
Eq. 4-44 provides the condition 
 

  

2 2 3 1

                                    
ˆ ˆ ˆ ˆ0.8 cos  i 0.8 sin j  j  i

b g b c c gv v v
v v v vθ θ

= +

+ = +
 

 
so that equating x components allows us to find θ. If one wished to find v3 one could also 
equate the y components, and from this, if the car width were given, one could find the 
time spent by the bullet in the car, but this information is not asked for (which is why the 
width is irrelevant). Therefore, examining the x components in SI units leads to 
 

( )1000 m/km
3600 s/h1 11

2

85 km/h
cos cos  

0.8 0.8 (650 m/s)
v

v
θ − − ⎛ ⎞⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
which yields 87° for the direction of vb g  (measured from i , which is the direction of 
motion of the car). The problem asks, “from what direction was it fired?” — which 



 CHAPTER 4 170 

means the answer is not 87° but rather its supplement 93° (measured from the direction of 
motion). Stating this more carefully, in the coordinate system we have adopted in our 
solution, the bullet velocity vector is in the first quadrant, at 87° measured 
counterclockwise from the +x direction (the direction of train motion), which means that 
the direction from which the bullet came (where the sniper is) is in the third quadrant, at  
–93° (that is, 93° measured clockwise from +x). 
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Chapter 5 
 
 
1. We are only concerned with horizontal forces in this problem (gravity plays no direct 
role). We take East as the +x direction and North as +y. This calculation is efficiently 
implemented on a vector-capable calculator, using magnitude-angle notation (with SI 
units understood). 
 

a F
m

= =
∠ ° + ∠ °

= ∠ °
9 0 0 8 0 118

30
2 9 53

. .
.

.b g b g b g  
 
Therefore, the acceleration has a magnitude of 2.9 m/s2. 
 
2. We apply Newton’s second law (Eq. 5-1 or, equivalently, Eq. 5-2). The net force 
applied on the chopping block is F F Fnet = +1 2 , where the vector addition is done using 
unit-vector notation. The acceleration of the block is given by a F F m= +1 2d i / .  
 
(a) In the first case 
 

( ) ( ) ( ) ( )1 2
ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j 0F F ⎡ ⎤ ⎡ ⎤+ = + + − + − =⎣ ⎦ ⎣ ⎦  

 
so a = 0. 
 
(b) In the second case, the acceleration  a  equals 
 

( ) ( )( ) ( ) ( )( ) 21 2
ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j

ˆ(4.0m/s ) j.
2.0kg

F F
m

+ + − ++
= =  

 
(c) In this final situation, a  is 
 

( ) ( )( ) ( ) ( )( ) 21 2
ˆ ˆ ˆ ˆ3.0N i 4.0N j 3.0N i 4.0N j

ˆ(3.0m/s )i.
2.0 kg

F F
m

+ + + −+
= =  

 
3. We apply Newton’s second law (specifically, Eq. 5-2). 
 
(a) We find the x component of the force is 
 

( ) ( )2cos 20.0 1.00kg 2.00m/s cos 20.0 1.88N.x xF ma ma= = ° = ° =  
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(b) The y component of the force is 
 

( ) ( )2sin 20.0 1.0kg 2.00m/s sin 20.0 0.684N.y yF ma ma= = ° = ° =  
 
(c) In unit-vector notation, the force vector is 
 

ˆ ˆ ˆ ˆi j (1.88 N)i (0.684 N) j .x yF F F= + = +  
 
4. Since v  = constant, we have a = 0, which implies 
 

F F F manet = + = =1 2 0 .  
 
Thus, the other force must be 
 

2 1
ˆ ˆ( 2 N) i ( 6 N) j .F F= − = − +  

 
5. The net force applied on the chopping block is F F F Fnet = + +1 2 3 , where the vector 
addition is done using unit-vector notation. The acceleration of the block is given by 
a F F F m= + +1 2 3d i / .  
 
(a) The forces exerted by the three astronauts can be expressed in unit-vector notation as 
follows: 
 

( )
( )

( ) ( )( )

1

2

3

ˆ ˆ ˆˆ(32 N) cos 30 i sin 30 (27.7 N) i (16 N ) jj
ˆ ˆˆ(55 N) cos 0 i sin 0 (55 N) ij

ˆ ˆ ˆˆ(41 N) cos 60 i sin 60 (20.5 N) i (35.5 N ) j.j

F

F

F

= ° + ° = +

= ° + ° =

= − ° + − ° = −

 

 
The resultant acceleration of the asteroid of mass m = 120 kg is therefore 
 

( ) ( ) ( ) 2 2
ˆ ˆ ˆ ˆ ˆ27.7 i 16 j N 55i N 20.5i 35.5j N

ˆ ˆ(0.86m/s )i (0.16m/s )j .
120 kg

a
+ + + −

= = −  

 
(b) The magnitude of the acceleration vector is 
 

( )22 2 2 2 2 2(0.86 m/s ) 0.16 m/s 0.88 m/s .x ya a a= + = + − =  

 
(c) The vector a  makes an angle θ with the +x axis, where 
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2
1 1

2

0.16 m/stan tan 11 .
0.86 m/s

y

x

a
a

θ − −⎛ ⎞ ⎛ ⎞−
= = = − °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
6. Since the tire remains stationary, by Newton’s second law, the net force must be zero: 
 

net 0.A B CF F F F ma= + + = =  
 
From the free-body diagram shown on the right, we have  
 

 net ,

net ,

0 cos cos

0 sin sin
x C A

y A C B

F F F

F F F F

φ θ

θ φ

= = −

= = + −
∑
∑

 

 
To solve for BF , we first compute .φ  With 220 NAF = , 

170 NCF = , and 47 ,θ = ° we get  
 

 cos (220 N)cos 47.0cos 0.883 28.0
170 N

A

C

F
F

θφ φ°
= = = ⇒ = °  

 
Substituting the value into the second force equation, we find  
 

sin sin (220 N)sin 47.0 (170 N)sin 28.0 241 N.B A CF F Fθ φ= + = ° + =  
 
7. In this problem we have two forces acting on a box to produce a given acceleration. 
We apply Newton’s second law to solve for the unknown second force. We denote the 
two forces as F F1 2and . According to Newton’s second law, 1 2 ,F F ma+ = so the 

second force is 2 1.F ma F= −  Note that since the acceleration is in the third quadrant, we 

expect 2F  to be in the third quadrant as well. 
 
(a) In unit vector notation F1 20 0= . N ib g  and 
 

( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆˆ12.0 sin 30.0 m/s i 12.0 cos 30.0 m/s 6.00 m/s i 10.4m/s j.ja = − ° − ° = − −  
 
Therefore, we find the second force to be 
 

( )( ) ( )( ) ( )
( ) ( )

2 1
2 2ˆ ˆ ˆ2.00kg 6.00 m/s i 2.00 kg 10.4 m/s j 20.0 N i

ˆ ˆ32.0 N i 20.8 N j.

F ma F= −
= − + − −

= − −

 

 
(b) The magnitude of F2  is 2 2 2 2

2 2 2| | ( 32.0 N) ( 20.8 N) 38.2 N.x yF F F= + = − + − =  
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(c) The angle that F2  makes with the positive x-axis is found from 
  

 2

2

20.8 Ntan 0.656
32.0 N

y

x

F
F

φ
⎛ ⎞ −

= = =⎜ ⎟ −⎝ ⎠
 

 
Consequently, the angle is either 33.0° or 33.0° + 180° = 213°. Since both the x and y 
components are negative, the correct result is φ = 213° from the +x-axis. An alternative 
answer is 213 360 147° − ° = − ° . 
 
The result is depicted to the right. The calculation 
confirms our expectation that F2  lies in the third 
quadrant (same as a ). The net force is  
 

 
( ) ( ) ( )

( ) ( )
net 1 2

ˆ ˆ ˆ20.0 N i 32.0 N i 20.8 N j
ˆ ˆ12.0 N i 20.8 N j

F F F ⎡ ⎤= + = + − −⎣ ⎦
= − −

 

 
which points in the same direction as a . 

 
8. We note that m a    

→
  = (–16 N) i^  + (12 N) j^ .  With the other forces as specified in the 

problem, then Newton’s second law gives the third force as  
 

F3  
→  

 = m a    
→

 – F1  
→  

 – F2  
→  

 =(–34 N) i^ − (12 N) j^. 
 
9. To solve the problem, we note that acceleration is the second time derivative of the 
position function; it is a vector and can be determined from its components. The net force 
is related to the acceleration via Newton’s second law. Thus, differentiating 

3( ) 15.0 2.00 4.00x t t t= − + +  twice with respect to t, we get  
  

2
2

22.00 12.0 , 24.0dx d xt t
dt dt

= − = −  

 
Similarly, differentiating 2( ) 25.0 7.00 9.00y t t t= + −  twice with respect to t yields 
 

2

27.00 18.0 , 18.0dy d yt
dt dt

= − = −  

(a) The acceleration is  

 
2 2

2 2
ˆ ˆ ˆ ˆ ˆ ˆi j i j ( 24.0 )i ( 18.0) j.x y

d x d ya a a t
dt dt

= + = + = − + −  
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At 0.700 st = , we have ˆ ˆ( 16.8)i ( 18.0) ja = − + −  with a magnitude of  
 

2 2 2| | ( 16.8) ( 18.0) 24.6 m/s .a a= = − + − =  
 
Thus, the magnitude of the force is 2(0.34 kg)(24.6 m/s ) 8.37 N.F ma= = =  
 
(b) The angle F  or /a F m=  makes with x+  is 
 

 
2

1 1
2

18.0 m/stan tan 47.0 or 133 .
16.8 m/s

y

x

a
a

θ − −⎛ ⎞ ⎛ ⎞−
= = = ° − °⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠

 

 
We choose the latter ( 133− ° ) since F is in the third quadrant. 
 
 
(c) The direction of travel is the direction of a tangent to the path, which is the direction 
of the velocity vector: 
 

2ˆ ˆ ˆ ˆ ˆ ˆ( ) i j i j (2.00 12.0 )i (7.00 18.0 ) j.x y
dx dyv t v v t t
dt dt

= + = + = − + −  

 
At 0.700 st = , we have ˆ ˆ( 0.700 s) ( 3.88 m/s)i ( 5.60 m/s) j.v t = = − + −  Therefore, the angle 
v  makes with x+  is 
 

1 1 5.60 m/stan tan 55.3 or 125 .
3.88 m/s

y
v

x

v
v

θ − −⎛ ⎞ ⎛ ⎞−
= = = ° − °⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠

 

 
We choose the latter ( 125− ° ) since v is in the third quadrant. 
 
10. To solve the problem, we note that acceleration is the second time derivative of the 
position function, and the net force is related to the acceleration via Newton’s second 
law. Thus, differentiating  
 

2 3( ) 13.00 2.00 4.00 3.00x t t t t= − + + −  
 
twice with respect to t, we get  

2
2

22.00 8.00 9.00 , 8.00 18.0dx d xt t t
dt dt

= + − = −  

  
The net force acting on the particle at  3.40 st =  is  
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 [ ]
2

2
ˆ ˆ ˆi (0.150) 8.00 18.0(3.40) i ( 7.98 N)id xF m

dt
= = − = −  

11. The velocity is the derivative (with respect to time) of given function x, and the 
acceleration is the derivative of the velocity.  Thus, a = 2c – 3(2.0)(2.0)t, which we use in 
Newton’s second law:  F = (2.0 kg)a = 4.0c – 24t (with SI units understood).  At t = 3.0 s, 
we are told that F =  –36 N.  Thus, –36 = 4.0c – 24(3.0) can be used to solve for c.  The 
result is c = +9.0 m/s2. 
 
12. From the slope of the graph we find ax = 3.0 m/s2.  Applying Newton’s second law to 
the x axis (and taking θ to be the angle between F1 and F2), we have 
 

F1 + F2 cosθ  =  m ax     ⇒     θ = 56°. 
 
13. (a) From the fact that T3 = 9.8 N, we conclude the mass of disk D is 1.0 kg.  Both this 
and that of disk C cause the tension T2 = 49 N, which allows us to conclude that disk C 
has a mass of 4.0 kg.  The weights of these two disks plus that of disk B determine the 
tension T1 = 58.8 N, which leads to the conclusion that mB = 1.0 kg.  The weights of all 
the disks must add to the 98 N force described in the problem; therefore, disk A has mass 
4.0 kg. 
 
(b) mB = 1.0 kg, as found in part (a). 
 
(c) mC = 4.0 kg, as found in part (a). 
 
(d) mD = 1.0 kg, as found in part (a). 
 
14. Three vertical forces are acting on the block: the earth pulls down on the block with 
gravitational force 3.0 N; a spring pulls up on the block with elastic force 1.0 N; and, the 
surface pushes up on the block with normal force FN. There is no acceleration, so 
 

( ) ( )0 1.0 N 3.0 Ny NF F= = + + −∑  
yields FN = 2.0 N.  
 
(a) By Newton’s third law, the force exerted by the block on the surface has that same 
magnitude but opposite direction: 2.0 N. 
 
(b) The direction is down. 
 
15. (a) – (c) In all three cases the scale is not accelerating, which means that the two 
cords exert forces of equal magnitude on it. The scale reads the magnitude of either of 
these forces. In each case the tension force of the cord attached to the salami must be the 
same in magnitude as the weight of the salami because the salami is not accelerating. 
Thus the scale reading is mg, where m is the mass of the salami. Its value is (11.0 kg) (9.8 
m/s2) = 108 N. 
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16. (a) There are six legs, and the vertical component of the tension force in each leg is 
sinT θ  where 40θ = ° . For vertical equilibrium (zero acceleration in the y direction) then 

Newton’s second law leads to 

6
6

T mg T mgsin
sin

θ
θ

= ⇒ =  

 
which (expressed as a multiple of the bug’s weight mg) gives roughly / 0.26T mg ≈ 0. 
 
(b) The angle θ is measured from horizontal, so as the insect “straightens out the legs”  θ 
will increase (getting closer to 90° ), which causes sinθ to increase (getting closer to 1) 
and consequently (since sinθ is in the denominator) causes T to decrease. 
 
17. The free-body diagram of the problem is 
shown to the right. Since the acceleration of the 
block is zero, the components of the Newton’s 
second law equation yield 
 

T – mg sin θ  = 0 
FN – mg cos θ  = 0, 

 
where T is the tension in the cord, and FN is the 
normal force on the block.  

 
 

  
(a) Solving the first equation for the tension in the string, we find 
 

T mg= = ° =sin . . sinθ 85 9 8 30 422kg m / s N .b gc h  
 
(b) We solve the second equation in part (a) for the normal force FN: 
 

( )( )2cos 8.5 kg 9.8 m/s cos 30 72 N .NF mg θ= = ° =  
 

(c) When the cord is cut, it no longer exerts a force on the block and the block 
accelerates. The x-component equation of Newton’s second law becomes –mgsinθ = ma, 
so the acceleration becomes 
 

2 2sin (9.8 m/s )sin 30 4.9 m/s .a g θ= − = − ° = −  
 
The negative sign indicates the acceleration is down the plane. The magnitude of the 
acceleration is 4.9 m/s2. 
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Note: The normal force NF  on the block must be equal to cosmg θ  so that the block is in 
contact with the surface of the incline at all time.  When the cord is cut, the block has an 
acceleration sina g θ= − , which in the limit 90θ → °  becomes g− .  
 
18. The free-body diagram of the cars is shown on the right. The force exerted by John 
Massis is  
 

22.5 2.5(80 kg)(9.8 m/s ) 1960 NF mg= = = . 
 
Since the motion is along the horizontal x-axis, using Newton’s 
second law, we have cos ,xFx F Maθ= =  where M  is the total 
mass of the railroad cars. Thus, the acceleration of the cars is 
 

 2
5 2

cos (1960 N)cos30 0.024 m/s .
(7.0 10 N / 9.8 m/s )x

Fa
M

θ °
= = =

×
 

 
Using Eq. 2-16, the speed of the car at the end of the pull is  
 
 22 2(0.024 m/s )(1.0 m) 0.22 m/s.x xv a x= Δ = =  
 
19. In terms of magnitudes, Newton’s second law is F = ma, where F = Fnet , | |a a= , 
and m is the (always positive) mass. The magnitude of the acceleration can be found 
using constant acceleration kinematics (Table 2-1). Solving v = v0 + at for the case where 
it starts from rest, we have a = v/t (which we interpret in terms of magnitudes, making 
specification of coordinate directions unnecessary). The velocity is  
 

v = (1600 km/h) (1000 m/km)/(3600 s/h) = 444 m/s, 
so 

( ) 5444m s500kg 1.2 10 N.
1.8s

vF ma m
t

= = = = ×  

 
20. The stopping force F  and the path of the passenger are horizontal. Our +x axis is in 
the direction of the passenger’s motion, so that the passenger’s acceleration 
(‘‘deceleration” ) is negative-valued and the stopping force is in the –x direction: 

îF F= − . Using Eq. 2-16 with  
 

v0 = (53 km/h)(1000 m/km)/(3600 s/h) = 14.7 m/s 
 
and v = 0, the acceleration is found to be  
 

( )
2 2

2 2 20
0

(14.7 m/s)2 167 m/s
2 2 0.65 m
vv v a x a

x
= + Δ ⇒ = − = − = −

Δ
. 
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Assuming there are no significant horizontal forces other than the stopping force, Eq. 5-1 
leads to 

F ma F= ⇒ − = −41 167kg m s2b g c h  
 
which results in F = 6.8 × 103 N. 
 
21. (a) The slope of each graph gives the corresponding component of acceleration.  
Thus, we find ax = 3.00 m/s2 and ay = –5.00 m/s2.  The magnitude of the acceleration 
vector is therefore  

2 2 2 2 2(3.00 m/s ) ( 5.00 m/s ) 5.83 m/sa = + − = , 
 
and the force is obtained from this by multiplying with the mass (m = 2.00 kg). The result 
is F = ma =11.7 N. 
 
(b) The direction of the force is the same as that of the acceleration:  
 

θ = tan–1 [(–5.00 m/s2)/(3.00 m/s2)] = –59.0°. 
 
22. (a) The coin undergoes free fall. Therefore, with respect to ground, its acceleration is  
 
 2

coin
ˆ( 9.8 m/s ) j.a g= = −  

 
(b) Since the customer is being pulled down with an acceleration of 

2
customer

ˆ1.24 ( 12.15 m/s ) j,a g′ = = −  the acceleration of the coin with respect to the 
customer is  

2 2 2
rel coin customer

ˆ ˆ ˆ( 9.8 m/s ) j ( 12.15 m/s ) j ( 2.35 m/s ) j.a a a′= − = − − − = +  
 
(c) The time it takes for the coin to reach the ceiling is  
 

 2
rel

2 2(2.20 m) 1.37 s.
2.35 m/s

ht
a

= = =  

 
(d) Since gravity is the only force acting on the coin, the actual force on the coin is  
 

3 2 3
coin coin

ˆ ˆ(0.567 10 kg)( 9.8 m/s ) j ( 5.56 10 N)j.F ma mg − −= = = × − = − ×  
 
(e) In the customer’s frame, the coin travels upward at a constant acceleration. Therefore, 
the apparent force on the coin is  
 

3 2 3
app rel

ˆ ˆ(0.567 10 kg)( 2.35 m/s ) j ( 1.33 10 N)j.F ma − −= = × + = + ×  
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23. We note that the rope is 22.0° from vertical, and therefore 68.0° from horizontal. 
 
(a) With T = 760 N, then its components are 
 

ˆ ˆ ˆ ˆcos 68.0 i + sin 68.0 j =(285N) i +(705N) jT T T= ° ° . 
 
(b) No longer in contact with the cliff, the only other force on Tarzan is due to earth’s 
gravity (his weight). Thus, 
 

net
ˆ ˆ ˆ ˆ ˆ(285 N) i +(705 N) j (820 N) j (285N) i (115 N) j.F T W= + = − = −  

 
 (c) In a manner that is efficiently implemented on a vector-capable calculator, we 
convert from rectangular (x, y) components to magnitude-angle notation: 
 

( ) ( )net 285, 115 307 22.0F = − → ∠ − °  
 
so that the net force has a magnitude of 307 N. 
 
(d) The angle (see part (c)) has been found to be −22.0°, or 22.0° below horizontal (away 
from the cliff). 
 
(e) Since a F m= net  where m = W/g = 83.7 kg, we obtain a = 367. m s2 . 
 
(f) Eq. 5-1 requires that neta F  so that the angle is also −22.0°, or 22.0° below horizontal 
(away from the cliff). 
 
24. We take rightward as the +x direction. Thus, 1

ˆ(20 N )iF = . In each case, we use 
Newton’s second law F F ma1 2+ =  where m = 2.0 kg. 
 
(a) If  2 ˆ( 10 m/s ) ia = + , then the equation above gives F2 0= .  
 
(b) If , 2 ˆ( 20m/s ) i,a = +   then that equation gives  2

ˆ(20 N)i.F =  
 
(c) If  a = 0,   then the equation gives 2

ˆ( 20N) i.F = −  
 
(d) If 2 ˆ( 10 m/s ) i,a = −  the equation gives 2

ˆ( 40N) i.F = −  
 
(e) If  2 ˆ( 20 m/s ) i,a = −   the equation gives  2

ˆ( 60N) i.F = −  
 
25. (a) The acceleration is 
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a F
m

= = =
20 0 022 N

900kg
m s2. . 

 
(b) The distance traveled in 1 day (= 86400 s) is 
 

s at= = = ×
1
2

1
2

0 0222 86400 8 3 102 2 7. .m s s m  .2c h b g  

 
(c) The speed it will be traveling is given by 
 

( )( )2 30.0222 m s 86400 s 1.9 10 m s .v at= = = ×  
 
26. Some assumptions (not so much for realism but rather in the interest of using the 
given information efficiently) are needed in this calculation: we assume the fishing line 
and the path of the salmon are horizontal. Thus, the weight of the fish contributes only 
(via Eq. 5-12) to information about its mass (m = W/g = 8.7 kg). Our +x axis is in the 
direction of the salmon’s velocity (away from the fisherman), so that its acceleration 
(‘‘deceleration”) is negative-valued and the force of tension is in the –x direction: 
T T= − . We use Eq. 2-16 and SI units (noting that v = 0). 
 

( )
2 2

2 2 20
0

(2.8 m/s)2 36 m/s
2 2 0.11 m
vv v a x a

x
= + Δ ⇒ = − = − = −

Δ
. 

 
Assuming there are no significant horizontal forces other than the tension, Eq. 5-1 leads 
to 

T ma T= ⇒ − = −8 7 36. kg m s2b gc h  
 
which results in T = 3.1 × 102 N. 
 
27. The setup is shown in the figure below. The acceleration of the electron is vertical 
and for all practical purposes the only force acting on it is the electric force. The force of 
gravity is negligible. We take the +x axis to be in the direction of the initial velocity v0 
and the +y axis to be in the direction of the electrical force, and place the origin at the 
initial position of the electron. 
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Since the force and acceleration are constant, we use the equations from Table 2-1: 
0x v t=  and 

y at F
m

t= = FHG
I
KJ

1
2

1
2

2 2 .  

 
The time taken by the electron to travel a distance x (= 30 mm) horizontally is t = x/v0 and 
its deflection in the direction of the force is 
 

2 216 3
3

31 7
0

1 1 4.5 10 N 30 10  m 1.5 10 m .
2 2 9.11 10 kg 1.2 10 m/s

F xy
m v

− −
−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞× ×
= = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟× ×⎝ ⎠⎝ ⎠⎝ ⎠

 

 
Note: Since the applied force is constant, the acceleration in the y-direction is also 
constant and the path is parabolic with 2y x∝ .  
 
28. The stopping force F  and the path of the car are horizontal. Thus, the weight of the 
car contributes only (via Eq. 5-12) to information about its mass (m = W/g = 1327 kg). 
Our +x axis is in the direction of the car’s velocity, so that its acceleration 
(‘‘deceleration”) is negative-valued and the stopping force is in the –x direction: 

îF F= − . 
 
(a) We use Eq. 2-16 and SI units (noting that v = 0 and v0 = 40(1000/3600) = 11.1 m/s). 
 

( )
2 2

2 2 0
0

(11.1 m/s)2
2 2 15 m
vv v a x a

x
= + Δ ⇒ = − = −

Δ
 

 
which yields a = – 4.12 m/s2. Assuming there are no significant horizontal forces other 
than the stopping force, Eq. 5-1 leads to 
 

F ma F= ⇒ − = −1327 412kg m s2b g c h.  
 
which results in F = 5.5 × 103 N. 
 
(b) Equation 2-11 readily yields t = –v0/a = 2.7 s. 
 
(c) Keeping F the same means keeping a the same, in which case (since v = 0) Eq. 2-16 
expresses a direct proportionality between Δx  and v0

2 . Therefore, doubling v0 means 
quadrupling Δx . That is, the new over the old stopping distances is a factor of 4.0. 
 
(d) Equation 2-11 illustrates a direct proportionality between t and v0 so that doubling one 
means doubling the other. That is, the new time of stopping is a factor of 2.0 greater than 
the one found in part (b). 
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29. We choose up as the +y direction, so 2 ˆ( 3.00 m/s ) ja = −  (which, without the unit-
vector, we denote as a since this is a 1-dimensional problem in which Table 2-1 applies). 
From Eq. 5-12, we obtain the firefighter’s mass: m = W/g = 72.7 kg. 
 
(a) We denote the force exerted by the pole on the firefighter f p fp  ̂jF F=  and apply Eq.  

5-1. Since netF ma= , we have 
 
 2

fp fp 712 N (72.7 kg)( 3.00 m/s )gF F ma F− = ⇒ − = −  
 
which yields Ffp = 494 N.  
 
(b) The fact that the result is positive means fpF  points up. 
 
(c) Newton’s third law indicates f p pfF F= − , which leads to the conclusion that 

pf| | 494 NF = . 
 
(d) The direction of pfF is down. 
 
30. The stopping force F  and the path of the toothpick are horizontal. Our +x axis is in 
the direction of the toothpick’s motion, so that the toothpick’s acceleration 
(‘‘deceleration”) is negative-valued and the stopping force is in the –x direction: 

îF F= − . Using Eq. 2-16 with v0 = 220 m/s and v = 0, the acceleration is found to be  
 

( )
2 2

2 2 6 20
0

(220 m/s)2 1.61 10  m/s .
2 2 0.015 m
vv v a x a

x
= + Δ ⇒ = − = − = − ×

Δ
 

 
Thus, the magnitude of the force exerted by the branch on the toothpick is 
 
 4 6 2 2| | (1.3 10 kg)(1.61 10  m/s ) 2.1 10 N.F m a −= = × × = ×  
 
31. The free-body diagram is shown below. NF  is the normal force of the plane on the 
block and mg  is the force of gravity on the block. We take the +x direction to be up the 
incline, and the +y direction to be in the direction of the normal force exerted by the 
incline on the block. The x component of Newton’s second law is then mg sin θ = −ma; 
thus, the acceleration is a = − g sin θ. Placing the origin at the bottom of the plane, the 
kinematic equations (Table 2-1) for motion along the x axis that we will use are 
v v ax2

0
2 2= +  and v v at= +0 . The block momentarily stops at its highest point, where v 

= 0; according to the second equation, this occurs at time t v a= − 0 .  
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 (a) The position at which the block stops is 
 

( )
2 2
0

2

1 1 (3.50 m/s) 1.18 m
2 2 9.8 m/s sin 32.0

vx
a

⎛ ⎞
⎜ ⎟= − = − =
⎜ ⎟− °⎝ ⎠

. 

 
(b) The time it takes for the block to get there is 

0 0
2

3.50m/s 0.674s.
sin (9.8m/s )sin 32.0

v vt
a g θ

= = − = − =
− − °

 

 
(c) That the return-speed is identical to the initial speed is to be expected since there are 
no dissipative forces in this problem. In order to prove this, one approach is to set x = 0 
and solve x v t at= +0

1
2

2  for the total time (up and back down) t. The result is 
 

( )0 0
2

2 3.50 m/s2 2 1.35 s.
sin (9.8 m/s )sin 32.0

v vt
a g θ

= − = − = − =
− − °

 

 
The velocity when it returns is therefore 
 

( )2
0 0 sin 3.50 m/s (9.8 m/s ) 1.35 s sin 32 3.50 m/s.v v at v gt θ= + = − = − °= −  

 
The negative sign indicates the direction is down the plane. 
 
32. (a) Using notation suitable to a vector-capable calculator, the Fnet  

→   
 = 0 condition 

becomes  
F1  
→  

 + F2  
→  

 + F3  
→  

  =   (6.00 ∠ 150º)  +  (7.00 ∠ −60.0º)  +  F3  
→  

  = 0 . 
 

Thus, F3  
→  

  =  (1.70 N) i^ + (3.06 N)j^. 
 
(b) A constant velocity condition requires zero acceleration, so the answer is the same. 
 
(c) Now, the acceleration is 2 2ˆ ˆ(13.0 m/s ) i (14.0 m/s ) ja = − .  Using Fnet  

→   
 = m a  

→
  (with m 

= 0.025 kg) we now obtain 
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F3  
→  

  = (2.02 N) i^ + (2.71 N) j^. 
 
33. The free-body diagram is shown below. Let T  be the tension of the cable and mg  be 
the force of gravity. If the upward direction is positive, then Newton’s second law is T – 
mg = ma, where a is the acceleration. 
 
Thus, the tension is T = m(g + a). We use constant acceleration kinematics (Table 2-1) to 
find the acceleration (where v = 0 is the final velocity, v0 = – 12 m/s is the initial velocity, 
and 42 my = − is the coordinate at the stopping point). Consequently, 
v v ay2

0
2 2= + leads to 

( )
( )

22
20 12 m/s

1.71 m/s
2 2 42 m
va

y
−

= − = − =
−

. 

 
We now return to calculate the tension: 

T m g a= +

= +

= ×

b g
b g c h1600 9 8 171

18 10

2 2

4

kg m / s m / s

N

. .

. .

 

 
 
34. We resolve this horizontal force into appropriate components. 
 
(a) Newton’s second law applied to the x-axis 
produces 
 

F mg macos sin .θ θ− =  
 
For a = 0, this yields F = 566 N. 
 
(b) Applying Newton’s second law to the y axis (where there is no acceleration), we have 
 

sin cos 0NF F mgθ θ− − =  
 
which yields the normal force FN = 1.13 × 103 N. 
 
35. The acceleration vector as a function of time is  
 

 ( )2 2ˆ ˆ ˆ ˆ8.00 i 3.00 j m/s (8.00 i 6.00 j) m/s .dv da t t t
dt dt

= = + = +  
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(a) The magnitude of the force acting on the particle is  
 

2 2 2| | (3.00) (8.00) (6.00 ) (3.00) 64.0 36.0 N.F ma m a t t= = = + = +  
 
Thus, 35.0 NF =  corresponds to 1.415 s,t =  and the acceleration vector at this instant is  

2 2 2ˆ ˆ ˆ ˆ[8.00 i 6.00(1.415) j] m/s (8.00 m/s ) i (8.49 m/s ) j.a = + = +  
 
The angle a  makes with +x is  
 

2
1 1

2

8.49 m/stan tan 46.7 .
8.00 m/s

y
a

x

a
a

θ − −⎛ ⎞ ⎛ ⎞
= = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(b) The velocity vector at 1.415 st =  is 
 

2ˆ ˆ ˆ ˆ8.00(1.415) i 3.00(1.415) j m/s (11.3 m/s) i (6.01 m/s) j.v ⎡ ⎤= + = +⎣ ⎦  

 
Therefore, the angle v  makes with +x is  
 

1 1 6.01 m/stan tan 28.0 .
11.3 m/s

y
v

x

v
v

θ − −⎛ ⎞ ⎛ ⎞
= = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
36. (a) Constant velocity implies zero acceleration, so the “uphill” force must equal (in 
magnitude) the “downhill”  force: T = mg sin θ. Thus, with m = 50 kg and 8.0θ = ° , the 
tension in the rope equals 68 N. 
 
(b) With an uphill acceleration of 0.10 m/s2, Newton’s second law (applied to the x axis) 
yields 
 

( )( ) ( )( )2 2sin 50 kg 9.8 m/s sin8.0 50 kg 0.10 m/sT mg ma Tθ− = ⇒ − ° =  
 
which leads to T = 73 N. 
 
37. (a) Since friction is negligible the force of the girl is the only horizontal force on the 
sled. The vertical forces (the force of gravity and the normal force of the ice) sum to zero. 
The acceleration of the sled is 
 

a F
ms

s

= = =
52 0 62. . .N
8.4 kg

m s2  

 
(b) According to Newton’s third law, the force of the sled on the girl is also 5.2 N. Her 
acceleration is 
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a F
mg

g

= = =
5 2 013. . .N
40 kg

m s2  

 
(c) The accelerations of the sled and girl are in opposite directions. Assuming the girl 
starts at the origin and moves in the +x direction, her coordinate is given by 21

2g gx a t= . 
The sled starts at x0 = 15 m and moves in the –x direction. Its coordinate is given by 

21
0 2s sx x a t= − . They meet when g sx x= , or  

 
2 2

0
1 1 .
2 2g sa t x a t= −  

This occurs at time 

t x
a ag s

=
+

2 0 .  

By then, the girl has gone the distance 
 

( )( )2
02

2 2

15 m 0.13 m/s1 2.6 m.
2 0.13 m/s 0.62 m/s

g
g g

g s

x a
x a t

a a
= = = =

+ +
 

 
38. We label the 40 kg skier “m,” which is represented as a block in the figure shown. 
The force of the wind is denoted Fw  and might be either “uphill” or “downhill”  (it is 
shown uphill in our sketch). The incline angle θ is 10°. The −x direction is downhill. 
 
 

 
 
(a) Constant velocity implies zero acceleration; thus, application of Newton’s second law 
along the x axis leads to 
 

mg Fwsin .θ − = 0  
 
This yields Fw = 68 N (uphill). 
 
(b) Given our coordinate choice, we have a =| a |= 1.0 m/s2. Newton’s second law 
 

mg F mawsin θ − =  
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now leads to Fw = 28 N (uphill). 
  
(c) Continuing with the forces as shown in our figure, the equation 
 

mg F mawsin θ − =  
 
will lead to Fw = – 12 N when | a | = 2.0 m/s2. This simply tells us that the wind is 
opposite to the direction shown in our sketch; in other words, 12 NwF =  downhill. 
 
39. The solutions to parts (a) and (b) have been combined here. 
The free-body diagram is shown to the right, with the tension of 
the string T , the force of gravity mg , and the force of the air 
F . Our coordinate system is shown. Since the sphere is 
motionless the net force on it is zero, and the x and the y 
components of the equations are: 
 

  T sin θ – F = 0 
T cos θ – mg = 0, 

 
where θ = 37°. We answer the questions in the reverse order. 
Solving T cos θ – mg = 0 for the tension, we obtain  
 

T = mg/ cos θ = (3.0 × 10–4 kg) (9.8 m/s2) / cos 37° = 3.7 × 10–3 N. 
 
Solving T sin θ – F = 0 for the force of the air:  
 

F = T sin θ = (3.7 × 10–3 N) sin 37° = 2.2 × 10–3 N. 
 
40. The acceleration of an object (neither pushed nor pulled by any force other than 
gravity) on a smooth inclined plane of angle θ is a = –g sinθ.  The slope of the graph 
shown with the problem statement indicates a = –2.50 m/s2.  Therefore, we find 

14.8θ = ° . Examining the forces perpendicular to the incline (which must sum to zero 
since there is no component of acceleration in this direction) we find FN = mgcosθ, where 
m = 5.00 kg.   Thus, the normal (perpendicular) force exerted at the box/ramp interface is 
47.4 N. 
 
41. The mass of the bundle is m = (449 N)/(9.80 m/s2) = 45.8 kg and we choose +y 
upward. 
 
(a) Newton’s second law, applied to the bundle, leads to 
 

387 N 449 N
45.8 kg

T mg ma a −
− = ⇒ =  
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which yields a = –1.4 m/s2 (or |a| = 1.4 m/s2) for the acceleration. The minus sign in the 
result indicates the acceleration vector points down. Any downward acceleration of 
magnitude greater than this is also acceptable (since that would lead to even smaller 
values of tension). 
 
(b) We use Eq. 2-16 (with Δx replaced by Δy = –6.1 m). We assume ν0 = 0. 
 

( )( )22 2 1.35 m/s 6.1 m 4.1 m/s.v a y= Δ = − − =  

 
For downward accelerations greater than 1.4 m/s2, the speeds at impact will be larger than 
4.1 m/s. 
 
42. The direction of motion (the direction of the barge’s acceleration) is î+ , and j+  is 
chosen so that the pull hF  from the horse is in the first quadrant. The components of the 
unknown force of the water are denoted simply Fx and Fy. 
 
(a) Newton’s second law applied to the barge, in the x and y directions, leads to 
 

( )
( )
7900N cos 18

7900N sin 18 0
x

y

F ma

F

° + =

° + =
 

 
respectively. Plugging in a = 0.12 m/s2 and m = 9500 kg, we obtain Fx =  − 6.4 × 103 N 
and Fy = − 2.4 × 103 N. The magnitude of the force of the water is therefore 
 

F F Fx ywater N .= + = ×2 2 368 10.  
 

(b) Its angle measured from î+  is either 
 

1tan 21 or201 .y

x

F
F

− ⎛ ⎞
= + ° °⎜ ⎟

⎝ ⎠
 

 
The signs of the components indicate the latter is correct, so Fwater  is at 201°  measured 
counterclockwise from the line of motion (+x axis). 
 
43. The links are numbered from bottom to top. The forces on the first link are the force 
of gravity mg , downward, and the force F2 1on  of link 2, upward, as shown in the free-
body diagram below (not drawn to scale). Take the positive direction to be upward. Then 
Newton’s second law for the first link is 2on1 1 1F m g m a− = . The equations for the other 
links can be written in a similar manner (see below). 
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(a) Given that 22.50 m/sa = , from 2on1 1 1F m g m a− = , the force exerted by link 2 on link 
1 is 

2 2
2on1 1( ) (0.100 kg)(2.5 m/s 9.80 m/s ) 1.23 NF m a g= + = + = . 

 
(b) From the free-body diagram above, we see that the forces on the second link are the 
force of gravity 2m g , downward, the force F1 2on  of link 1, downward, and the force F3 2on  

of link 3, upward. According to Newton’s third law 1on2F  has the same magnitude as 
F2 1on . Newton’s second law for the second link is  
 

3on2 1on2 2 2F F m g m a− − =  
so 

F3on2 = m2(a + g) + F1on2 = (0.100 kg) (2.50 m/s2 + 9.80 m/s2) + 1.23 N = 2.46 N. 
 
(c) Newton’s second for link 3 is F4on3 – F2on3 – m3g = m3a, so  
 

F4on3 = m3(a + g) + F2on3 = (0.100 N) (2.50 m/s2 + 9.80 m/s2) + 2.46 N = 3.69 N, 
 
where Newton’s third law implies F2on3 = F3on2 (since these are magnitudes of the force 
vectors). 
 
(d) Newton’s second law for link 4 is  
 

F5on4 – F3on4 – m4g = m4a, 
so  

F5on4 = m4(a + g) + F3on4 = (0.100 kg) (2.50 m/s2 + 9.80 m/s2) + 3.69 N = 4.92 N, 
 
where Newton’s third law implies F3on4 = F4on3. 
 
(e) Newton’s second law for the top link is F – F4on5 – m5g = m5a, so  
 

F = m5(a + g) + F4on5 = (0.100 kg) (2.50 m/s2 + 9.80 m/s2) + 4.92 N = 6.15 N, 
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where F4on5 = F5on4 by Newton’s third law. 
 
(f) Each link has the same mass ( 1 2 3 4 5m m m m m m= = = = = ) and the same acceleration, 
so the same net force acts on each of them:  
 

Fnet = ma = (0.100 kg) (2.50 m/s2) = 0.250 N. 
 
44. (a) The term “deceleration”  means the acceleration vector is in the direction opposite 
to the velocity vector (which the problem tells us is downward). Thus (with +y upward) 
the acceleration is a = +2.4 m/s2. Newton’s second law leads to 
 

T mg ma m T
g a

− = ⇒ =
+

 

which yields m = 7.3 kg for the mass. 
 
(b) Repeating the above computation (now to solve for the tension) with a = +2.4 m/s2 
will, of course, lead us right back to T = 89 N. Since the direction of the velocity did not 
enter our computation, this is to be expected. 
 
45. (a) The mass of the elevator is m = (27800/9.80) = 2837 kg and (with +y upward) the 
acceleration is a = +1.22 m/s2. Newton’s second law leads to 
 

T mg ma T m g a− = ⇒ = +b g  
 
which yields T = 3.13 × 104 N for the tension. 
 
(b) The term “deceleration” means the acceleration vector is in the direction opposite to 
the velocity vector (which the problem tells us is upward). Thus (with +y upward) the 
acceleration is now a = –1.22 m/s2, so that the tension  is 
 

T = m (g + a) = 2.43 × 104 N . 
 
46. With ace meaning “the acceleration of the coin relative to the elevator” and aeg 
meaning “the acceleration of the elevator relative to the ground,” we have 
 

ace + aeg = acg    ⇒    –8.00 m/s2 + aeg = –9.80 m/s2 
 
which leads to aeg = –1.80 m/s2.  We have chosen upward as the positive y direction.  
Then Newton’s second law (in the “ground” reference frame) yields T – m g = m aeg, or 

 
T  = m g + m aeg = m(g  + aeg) = (2000 kg)(8.00 m/s2) = 16.0 kN. 

 
47. Using Eq. 4-26, the launch speed of the projectile is  
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2

0
(9.8 m/s )(69 m) 26.52 m/s

sin 2 sin 2(53 )
gRv

θ
= = =

°
. 

 
The horizontal and vertical components of the speed are  
 

 0

0

cos (26.52 m/s) cos53 15.96 m/s
sin (26.52 m/s)sin 53 21.18 m/s.

x

y

v v
v v

θ
θ

= = ° =
= = ° =

 

 
Since the acceleration is constant, we can use Eq. 2-16 to analyze the motion. The 
component of the acceleration in the horizontal direction is 
 

 
2 2

2(15.96 m/s) 40.7 m/s ,
2 2(5.2 m)cos53

x
x

va
x

= = =
°

 

 
and the force component is 

2(85 kg)(40.7 m/s ) 3460 N.x xF ma= = =  
 
Similarly, in the vertical direction, we have 

2 2
2(21.18 m/s) 54.0 m/s .

2 2(5.2 m)sin 53
y

y

v
a

y
= = =

°
 

and the force component is  
 

2 2(85 kg)(54.0 m/s 9.80 m/s ) 5424 N.y yF ma mg= + = + =  
 
Thus, the magnitude of the force is 
 
 2 2 2 2 3(3460 N) (5424 N) 6434 N 6.4 10 N,x yF F F= + = + = ≈ ×  
 
to two significant figures.  
 
48. Applying Newton’s second law to cab B (of mass m) we have  
 

a = T
m  − g = 4.89 m/s2. 

 
Next, we apply it to the box (of mass mb) to find the normal force: 
 

FN = mb(g + a) = 176 N. 
 
49. The free-body diagram (not to scale) for the block is shown below. NF  is the normal 
force exerted by the floor and mg  is the force of gravity. 
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(a) The x component of Newton’s second law is F cosθ = ma, where m is the mass of  the 
block and a is the x component of its acceleration. We obtain 
 

a F
m

= =
°

=
cos . cos .

.
. .θ 12 0 250

500
218

N
kg

m / s2b g  

 
This is its acceleration provided it remains in contact with the floor. Assuming it does, we 
find the value of FN (and if FN is positive, then the assumption is true but if FN is negative 
then the block leaves the floor). The y component of Newton’s second law becomes  
 

FN + F sinθ – mg = 0, 
so  

FN = mg – F sinθ = (5.00 kg)(9.80 m/s2) – (12.0 N)sin 25.0° = 43.9 N. 
 
Hence the block remains on the floor and its acceleration is a = 2.18 m/s2. 
 
(b) If F is the minimum force for which the block leaves the floor, then FN = 0 and the y 
component of the acceleration vanishes. The y component of the second law becomes   
 

F sinθ – mg = 0    ⇒   
( )( )25.00 kg 9.80 m/s

116 N.
sin sin 25.0
mgF

θ
= = =

°
 

 
(c) The acceleration is still in the x direction and is still given by the equation developed 
in part (a): 

2cos (116 N) cos 25.0 21.0m/s .
5.00 kg

Fa
m

θ °
= = =  

50. (a) The net force on the system (of total mass M = 80.0 kg) is the force of gravity 
acting on the total overhanging mass (mBC = 50.0 kg).  The magnitude of the acceleration 
is therefore a = (mBC g)/M = 6.125 m/s2.  Next we apply Newton’s second law to block C 
itself (choosing down as the +y direction) and obtain   
 

mC g – TBC   = mC a. 
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This leads to TBC  = 36.8 N. 
 
(b) We use Eq. 2-15 (choosing rightward as the +x direction): Δx = 0 + 12 at2 = 0.191 m. 
 
51. The free-body diagrams for 1m and 2m are shown in the figures below. The only 

forces on the blocks are the upward tension T and the downward gravitational forces 

1 1F m g= and 2 2F m g= . Applying Newton’s second law, we obtain: 
 

 
1 1

2 2

T m g m a

m g T m a

− =

− =
 

 
which can be solved to yield 
 

 2 1

2 1

m ma g
m m

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 

 
Substituting the result back, we have 

 1 2

1 2

2m mT g
m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

 
(a) With 1 1.3 kgm = and 2 2.8 kgm = , the acceleration becomes  
 

 2 2 22.80 kg 1.30 kg (9.80 m/s ) 3.59 m/s 3.6 m/s .
2.80 kg 1.30 kg

a
⎛ ⎞−

= = ≈⎜ ⎟+⎝ ⎠
 

 
(b) Similarly, the tension in the cord is  
 

22(1.30 kg)(2.80 kg) (9.80 m/s ) 17.4 N 17 N.
1.30 kg 2.80 kg

T = = ≈
+

 

 
52. Viewing the man-rope-sandbag as a system means that we should be careful to 
choose a consistent positive direction of motion (though there are other ways to proceed, 
say, starting with individual application of Newton’s law to each mass). We take down as 
positive for the man’s motion and up as positive for the sandbag’s motion and, without 
ambiguity, denote their acceleration as a. The net force on the system is the different 
between the weight of the man and that of the sandbag. The system mass is msys = 85 kg 
+ 65 kg = 150 kg. Thus, Eq. 5-1 leads to 
 

2 2
sys(85 kg) (9.8 m/s ) (65 kg) (9.8 m/s ) m a− =  
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which yields a = 1.3 m/s2. Since the system starts from rest, Eq. 2-16 determines the 
speed (after traveling Δ y = 10 m) as follows: 
 

22 2(1.3 m/s )(10 m) 5.1 m/s.v a y= Δ = =  
 
53. We apply Newton’s second law first to the three blocks as a single system and then to 
the individual blocks. The +x direction is to the right in Fig. 5-48. 
 
(a) With msys = m1 + m2 + m3 = 67.0 kg, we apply Eq. 5-2 to the x motion of the system, 
in which case, there is only one force T T3 3= + i . Therefore,  
 
 3 sys 65.0 N (67.0kg)T m a a= ⇒ =  
 
which yields a = 0.970 m/s2 for the system (and for each of the blocks individually). 
 
(b) Applying Eq. 5-2 to block 1, we find 
 

( )( )2
1 1 12.0kg 0.970m/s 11.6N.T m a= = =  

 
(c) In order to find T2, we can either analyze the forces on block 3 or we can treat blocks 
1 and 2 as a system and examine its forces. We choose the latter. 
 

( ) ( )( )2
2 1 2 12.0 kg 24.0 kg 0.970 m/s 34.9 N .T m m a= + = + =  

 
54. First, we consider all the penguins (1 through 4, counting left to right) as one system, 
to which we apply Newton’s second law: 
 

( ) ( )4 1 2 3 4 2222N 12kg 15kg 20kg .T m m m m a m a= + + + ⇒ = + + +  
 
Second, we consider penguins 3 and 4 as one system, for which we have 
 

( )
( )

4 2 3 4
2111N 15 kg 20kg    3.2 m/s .

T T m m a
a a

− = +
= + ⇒ =

 

 
Substituting the value, we obtain m2 = 23 kg.  
 
55. The free-body diagrams for the two blocks in (a) are shown below. F  is the applied 
force and 1on2F  is the force exerted by block 1 on block 2. We note that F  is applied 

directly to block 1 and that block 2 exerts a force 2on1 1on2F F= −  on block 1 (taking 
Newton’s third law into account). 
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Newton’s second law for block 1 is 2on1 1F F m a− = , where a is the acceleration. The 
second law for block 2 is 1on2 2F m a= . Since the blocks move together they have the same 
acceleration and the same symbol is used in both equations.  
 
(a) From the second equation we obtain the expression 1on2 2/a F m= , which we substitute 
into the first equation to get 2on1 1 1on2 2/F F m F m− = . Since 2on1 1on2F F=  (same magnitude 
for the third-law force pair), we obtain 
 

( )2
2on1 1on2

1 2

1.2 kg 3.2 N 1.1 N .
2.3 kg 1.2 kg

mF F F
m m

= = = =
+ +

 

 
(b) If F  is applied to block 2 instead of block 1 (and in the opposite direction), the free-
body diagrams would look like the following: 
 

 
The corresponding force of contact between the blocks would be  
 

( )1
2on1 1on2

1 2

2.3 kg 3.2 N 2.1 N .
2.3 kg 1.2 kg

mF F F
m m

′ ′= = = =
+ +

 

 
(c) We note that the acceleration of the blocks is the same in the two cases. In part (a), the 
force 1on2F  is the only horizontal force on the block of mass m2 and in part (b) 2on1F ′  is the 
only horizontal force on the block with m1 > m2. Since 1on2 2F m a=  in part (a) and 
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2on1 1F m a′ =  in part (b), then for the accelerations to be the same, 2on1 1on2F F′ > , that is, the 
force between the blocks must be larger in part (b). 
 
Note: This problem demonstrates that while being accelerated together under an external 
force, the force between the two blocks is greater if the smaller mass is pushing against 
the bigger one. In the special case where 1 2m m m= = , 2on1 2on1 / 2F F F′ = = .  
 
56. Both situations involve the same applied force and the same total mass, so the 
accelerations must be the same in both figures.   
 
(a) The (direct) force causing B to have this acceleration in the first figure is twice as big 
as the (direct) force causing A to have that acceleration.  Therefore, B has the twice the 
mass of A.  Since their total is given as 12.0 kg then B has a mass of mB = 8.00 kg and A 
has mass mA = 4.00 kg.  Considering the first figure, (20.0 N)/(8.00 kg) = 2.50 m/s2.  Of 
course, the same result comes from considering the second figure ((10.0 N)/(4.00 kg) = 
2.50 m/s2). 
 
(b) Fa = (12.0 kg)(2.50 m/s2) = 30.0 N 
 
57. The free-body diagram for each block is shown below. T is the tension in the cord and 
θ = 30° is the angle of the incline. For block 1, we take the +x direction to be up the 
incline and the +y direction to be in the direction of the normal force NF  that the plane 
exerts on the block. For block 2, we take the +y direction to be down. In this way, the 
accelerations of the two blocks can be represented by the same symbol a, without 
ambiguity. Applying Newton’s second law to the x and y axes for block 1 and to the y 
axis of block 2, we obtain 

 
1 1

1

2 2

sin
cos 0N

T m g m a
F m g

m g T m a

θ
θ

− =
− =

− =
 

 
respectively. The first and third of these equations provide a simultaneous set for 
obtaining values of a and T. The second equation is not needed in this problem, since the 
normal force is neither asked for nor is it needed as part of some further computation 
(such as can occur in formulas for friction). 
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(a) We add the first and third equations above:  
 

m2g – m1g sin θ = m1a + m2a. 
 
Consequently, we find 
 

( ) ( )2
2 1 2

1 2

[2.30 kg (3.70 kg)sin 30.0 ] 9.80 m/ssin
0.735m/s .

3.70 kg 2.30 kg
m m g

a
m m

θ − °−
= = =

+ +
 

 
(b) The result for a is positive, indicating that the acceleration of block 1 is indeed up the 
incline and that the acceleration of block 2 is vertically down. 
 
(c) The tension in the cord is 
 

( )( ) ( )( )2 2
1 1 sin 3.70 kg 0.735 m/s 3.70 kg 9.80 m/s sin 30.0 20.8N.T m a m g θ= + = + ° =  

 
58. The motion of the man-and-chair is positive if upward. 
 
(a) When the man is grasping the rope, pulling with a force equal to the tension T in the 
rope, the total upward force on the man-and-chair due its two contact points with the rope 
is 2T. Thus, Newton’s second law leads to 
 

2T mg ma− =  
 
so that when a = 0, the tension is T = 466 N. 
 
(b) When a = +1.30 m/s2 the equation in part (a) predicts that the tension will be 

527 NT = . 
 
(c) When the man is not holding the rope (instead, the co-worker attached to the ground 
is pulling on the rope with a force equal to the tension T in it), there is only one contact 
point between the rope and the man-and-chair, and Newton’s second law now leads to 
 

T mg ma− =  
 
so that when a = 0, the tension is T = 931 N. 
 
(d) When a = +1.30 m/s2, the equation in (c) yields T = 1.05 × 103 N. 
 
(e) The rope comes into contact (pulling down in each case) at the left edge and the right 
edge of the pulley, producing a total downward force of magnitude 2T on the ceiling. 
Thus, in part (a) this gives 2T = 931 N. 
 
(f) In part (b) the downward force on the ceiling has magnitude 2T = 1.05 × 103 N. 
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(g) In part (c) the downward force on the ceiling has magnitude 2T = 1.86 × 103 N. 
 
(h) In part (d) the downward force on the ceiling has magnitude 2T = 2.11 × 103 N. 
 
59. We take +y to be up for both the monkey and the package. The force the monkey 
pulls downward on the rope has magnitude F. According to Newton’s third law, the rope 
pulls upward on the monkey with a force of the same magnitude, so Newton’s second law 
for forces acting on the monkey leads to  
 

F – mmg = mmam, 
 
where mm is the mass of the monkey and am is its acceleration. Since the rope is massless 
F = T is the tension in the rope.  
The rope pulls upward on the package with a 
force of magnitude F, so Newton’s second law 
for the package is  
 

F + FN – mpg = mpap, 
 
where mp is the mass of the package, ap is its 
acceleration, and FN is the normal force exerted 
by the ground on it. The free-body diagrams 
for the monkey and the package are shown to 
the right (not to scale). 

 

Now, if F is the minimum force required to lift the package, then FN = 0 and ap = 0. 
According to the second law equation for the package, this means F = mpg.  
 
(a) Substituting mpg for F in the equation for the monkey, we solve for am: 
 

( ) ( )( )2
2

15 kg 10 kg 9.8 m/s
4.9 m/s .

10 kg
p mm

m
m m

m m gF m ga
m m

−−−
= = = =  

 
(b) As discussed, Newton’s second law leads to p p pF m g m a′− =  for the package and 

m m mF m g m a′− =  for the monkey. If the acceleration of the package is downward, then 
the acceleration of the monkey is upward, so m pa a′ ′= − . Solving the first equation for F 
 

( ) ( )p p p mF m g a m g a′ ′= + = −  
and substituting this result into the second equation: 
 

( )p m m m mm g a m g m a′ ′− − = , 
we solve for ma′ : 
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( ) ( )( )2
2

15 kg 10 kg 9.8 m/s
2.0 m/s .

15 kg 10 kg
p m

m
p m

m m g
a

m m
−−

′ = = =
+ +

 

 
(c) The result is positive, indicating that the acceleration of the monkey is upward. 
 
(d) Solving the second law equation for the package, the tension in the rope is 
 

( ) ( )( )2 215 kg 9.8 m/s 2.0 m/s 120N.p mF m g a′= − = − =  
 
60. The horizontal component of the acceleration is determined by the net horizontal 
force.  
 
(a) If the rate of change of the angle is  
 

 2 2 4 rad(2.00 10 ) / s (2.00 10 ) / s 3.49 10 rad/s
180

d
dt
θ π− − −⎛ ⎞= × ° = × ° ⋅ = ×⎜ ⎟°⎝ ⎠

, 

 
then, using cosxF F θ= , we find the rate of change of acceleration to be  
 

 
( )4

4 3

cos sin (20.0 N)sin 25.0 3.49 10 rad/s
5.00 kg

5.90 10 m/s .

xda d F F d
dt dt m m dt

θ θ θ −

−

°⎛ ⎞= = − = − ×⎜ ⎟
⎝ ⎠

= − ×

 

 
(b) If the rate of change of the angle is  
 

 2 2 4 rad(2.00 10 ) / s (2.00 10 ) / s 3.49 10 rad/s
180

d
dt
θ π− − −⎛ ⎞= − × ° = − × ° ⋅ = − ×⎜ ⎟°⎝ ⎠

, 

 
then the rate of change of acceleration would be  
 

 
( )4

4 3

cos sin (20.0 N)sin 25.0 3.49 10 rad/s
5.00 kg

5.90 10 m/s .

xda d F F d
dt dt m m dt

θ θ θ −

−

°⎛ ⎞= = − = − − ×⎜ ⎟
⎝ ⎠

= + ×

 

 
61. The forces on the balloon are the force of gravity mg  (down) and the force of the air 
Fa  (up). We take the +y direction to be up, and use a to mean the magnitude of the 
acceleration (which is not its usual use in this chapter). When the mass is M (before the 
ballast is thrown out) the acceleration is downward and Newton’s second law is  
 

Fa – Mg = –Ma. 
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After the ballast is thrown out, the mass is M – m (where m is the mass of the ballast) and 
the acceleration is upward. Newton’s second law leads to  
 

Fa – (M – m)g = (M – m)a. 
 
The previous equation gives Fa = M(g – a), and this plugs into the new equation to give 
 

M g a M m g M m a m Ma
g a

− − − = − ⇒ =
+

b g b g b g 2 . 

 
62. To solve the problem, we note that the acceleration along the slanted path depends on 
only the force components along the path, not the components perpendicular to the path.  

 
(a) From the free-body diagram shown, we see that the net force on the putting shot along 
the +x-axis is  
 
 2

net , sin 380.0 N (7.260 kg)(9.80 m/s )sin 30 344.4 N,xF F mg θ= − = − ° =  
 
which in turn gives  

2
net, / (344.4 N) /(7.260 kg) 47.44 m/s .x xa F m= = =  

 
Using Eq. 2-16 for constant-acceleration motion, the speed of the shot at the end of the 
acceleration phase is  
 
 2 2 2

0 2 (2.500 m/s) 2(47.44 m/s )(1.650 m) 12.76 m/s.xv v a x= + Δ = + =  
 
(b) If 42 ,θ = °  then  
 

2
net , 2sin 380.0 N (7.260 kg)(9.80 m/s )sin 42.00 45.78 m/s ,

7.260 kg
x

x

F F mga
m m

θ− − °
= = = =  

 
and the final (launch) speed is  
 

2 2 2
0 2 (2.500 m/s) 2(45.78 m/s )(1.650 m) 12.54 m/s.xv v a x= + Δ = + =  
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(c) The decrease in launch speed when changing the angle from 30.00°  to 42.00°  is  
 

 12.76 m/s 12.54 m/s 0.0169 1.69%.
12.76 m/s

−
= =  

 
63. (a) The acceleration (which equals F/m in this problem) is the derivative of the 
velocity.  Thus, the velocity is the integral of F/m, so we find the “area” in the graph (15 
units) and divide by the mass (3) to obtain v – vo = 15/3 = 5.  Since vo = 3.0 m/s, then 

8.0m/s.v =  
 
(b) Our positive answer in part (a) implies v  points in the +x direction. 
 
64. The +x direction for m2 = 1.0 kg is “downhill” and the +x direction for m1 = 3.0 kg is 
rightward; thus, they accelerate with the same sign. 

 
 
(a) We apply Newton’s second law to the x axis of each box: 
 

2 2

1

sinm g T m a
F T m a
θ − =

+ =
 

 
Adding the two equations allows us to solve for the acceleration: 
 

 2

1 2

sinm g Fa
m m

θ +
=

+
 

 
With F = 2.3 N and 30θ = ° , we have a = 1.8 m/s2. We plug back in and find T = 3.1 N. 
 
(b) We consider the “critical” case where the F has reached the max value, causing the 
tension to vanish. The first of the equations in part (a) shows that sin 30a g= °  in this 
case; thus, a = 4.9 m/s2. This implies (along with T = 0 in the second equation in part (a)) 
that  

F = (3.0 kg)(4.9 m/s2) = 14.7 N 15 N≈  
in the critical case. 
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65. The free-body diagrams for 1m and 2m are shown in the figures below. The only 

forces on the blocks are the upward tension T and the downward gravitational forces 

1 1F m g= and 2 2F m g= . Applying Newton’s second law, we obtain: 
 
 

1 1

2 2

T m g m a
m g T m a

− =
− =

 

 
which can be solved to give 
 

2 1

2 1

m ma g
m m

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 

 
 
(a) At 0t = , 10 1.30 kgm = . With 1 / 0.200 kg/sdm dt = − , we find the rate of change of 
acceleration to be 
 

( )
2

31 2 1
2 2

1 2 10

2 2(2.80 kg)(9.80 m/s ) 0.200 kg/s 0.653 m/s .
( ) (2.80 kg 1.30 kg)

dm m g dmda da
dt dm dt m m dt

= = − = − − =
+ +

 

 
(b) At 3.00 s,t = 1 10 1( / ) 1.30 kg ( 0.200 kg/s)(3.00 s) 0.700 kg,m m dm dt t= + = + − = and 
the rate of change of acceleration is 
 

( )
2

31 2 1
2 2

1 2 1

2 2(2.80 kg)(9.80 m/s ) 0.200 kg/s 0.896 m/s .
( ) (2.80 kg 0.700 kg)

dm m g dmda da
dt dm dt m m dt

= = − = − − =
+ +

 

 
(c) The acceleration reaches its maximum value when  
 

1 10 10 ( / ) 1.30 kg ( 0.200 kg/s) ,m m dm dt t t= = + = + −  
or 6.50 s.t =  
 
66. The free-body diagram is shown below.  

 
 
Newton’s second law for the mass m for the x direction leads to  
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T T mg ma1 2− − =sinθ , 

 
which gives the difference in the tension in the pull cable: 
 

( ) ( ) 2 2 4
1 2 sin 2800 kg (9.8 m/s )sin 35 0.81 m/s 1.8 10 N.T T m g aθ ⎡ ⎤− = + = ° + = ×⎣ ⎦  

 
67. First we analyze the entire system with “clockwise” motion considered positive (that 
is, downward is positive for block C, rightward is positive for block B, and upward is 
positive for block A):  mC g – mA g = Ma  (where M = mass of the system = 24.0 kg).  This 
yields an acceleration of    

a = g(mC − mA)/M = 1.63 m/s2. 
 
Next we analyze the forces just on block C: mC g  –  T  = mC a.  Thus the tension is   
 

T = mC g(2mA + mB)/M = 81.7 N. 
 
68. We first use Eq. 4-26 to solve for the launch speed of the shot: 
 

 
2

0 2(tan ) .
2( cos )

gxy y x
v

θ
θ

− = −
′

 

 
With 34.10 ,θ = °  0 2.11 m,y =  and ( , ) (15.90 m,0)x y = , we find the launch speed to be 

11.85 m/s.v′ =  During this phase, the acceleration is  
 

 
2 2 2 2

20 (11.85 m/s) (2.50 m/s) 40.63 m/s .
2 2(1.65 m)

v va
L

′ − −
= = =  

 
Since the acceleration along the slanted path depends on only the force components along 
the path, not the components perpendicular to the path, the average force on the shot 
during the acceleration phase is  
 
 2 2( sin ) (7.260 kg) 40.63 m/s (9.80 m/s )sin 34.10 334.8 N.F m a g θ ⎡ ⎤= + = + ° =⎣ ⎦  
 
69. We begin by examining a slightly different problem: similar to this figure but without 
the string.  The motivation is that if (without the string) block A is found to accelerate 
faster (or exactly as fast) as block B then (returning to the original problem) the tension in 
the string is trivially zero.  In the absence of the string,  
 

aA = FA /mA = 3.0 m/s2 
 

aB = FB /mB = 4.0 m/s2 
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so the trivial case does not occur.  We now (with the string) consider the net force on the 
system: Ma = FA + FB = 36 N.  Since M = 10 kg (the total mass of the system) we obtain a 
= 3.6 m/s2.  The two forces on block A are FA and T (in the same direction), so we have 
 

mA a = FA + T    ⇒     T = 2.4 N. 
 
70. (a) For the 0.50 meter drop in “free fall,” Eq. 2-16 yields a speed of 3.13 m/s.  Using 
this as the “initial speed” for the final motion (over 0.02 meter) during which his motion 
slows at rate “a,” we find the magnitude of his average acceleration from when his feet 
first touch the patio until the moment his body stops moving is a = 245 m/s2. 
 
(b) We apply Newton’s second law:  Fstop –  mg = ma  ⇒   Fstop = 20.4 kN. 
 
71. The +x axis is “uphill” for m1 = 3.0 kg and “downhill” for m2 = 2.0 kg (so they both 
accelerate with the same sign). The x components of the two masses along the x axis are 
given by 1 1sinm g θ and 2 2sinm g θ , respectively. The free-body diagram is shown below. 
Applying Newton’s second law, we obtain 
 

1 1 1

2 2 2

sin
sin .

T m g m a
m g T m a

θ
θ

− =
− =

 

 

 
 
Adding the two equations allows us to solve for the acceleration: 
 

 2 2 1 1

2 1

sin sinm ma g
m m
θ θ⎛ ⎞−

= ⎜ ⎟+⎝ ⎠
 

  
With 1 30θ = ° and 2 60θ = ° , we have a = 0.45 m/s2. This value is plugged back into 
either of the two equations to yield the tension  
 

1 2
2 1

2 1

(sin sin ) 16 N.m m gT
m m

θ θ= + =
+
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Note: In this problem we find 2 2 1 1sin sinm mθ θ> , so that 0a > , indicating that 2m  
slides down and 1m  slides up. The situation would reverse if 2 2 1 1sin sinm mθ θ< . When 

2 2 1 1sin sinm mθ θ= , 0a = , and the two masses hang in balance. Notice also the 
symmetry between the two masses in the expression for T.   
 
72. Since the velocity of the particle does not change, it undergoes no acceleration and 
must therefore be subject to zero net force. Therefore, 
 

F F F Fnet = + + =1 2 3 0 .  
 
Thus, the third force F3   is given by 
 

( ) ( ) ( )3 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2i 3j 2k N 5i 8j 2k N 3i 11j 4k N.F F F= − − = − + − − − + − = − +  

 
The specific value of the velocity is not used in the computation. 
 
73. We have two masses connected together by a cord. A force is applied to the second 
mass and the system accelerates together. We apply Newton’s second law to solve the 
problem.  
 
The free-body diagrams for the two masses are shown below (not to scale). We first 
analyze the forces on m1=1.0 kg. The +x direction is “downhill”  (parallel to T ). With the 
acceleration a = 5.5 m/s2 in the positive x direction for m1, then Newton’s second law, 
applied to the x-axis, becomes 

1 1sinT m g m aβ+ = . 
 
On the other hand, for m2 = 2.0 kg, we have  
 

2 2m g F T m a− − = , 
 
where the tension comes in as an upward force (the cord can pull, not push). The two 
equations can be combined to solve for T and β. 

 
 

 
(b) We solve this part first. By combining the two equations above, we obtain 



 

  

207

 

 
2 2

1 2 2
2

1

( ) (1.0 kg 2.0 kg)(5.5 m/s ) 6.0 N (2.0 kg)(9.8 m/s )sin
(1.0 kg)(9.8 m/s )

0.296

m m a F m g
m g

β + + − + + −
= =

=
 

 
which gives β =17° . 
 
(a) Substituting the value for β found in (a) into the first equation, we have  
 

2 2
1( sin ) (1.0 kg) 5.5 m/s (9.8 m/s )sin17.2 2.60 NT m a g β ⎡ ⎤= − = − ° =⎣ ⎦ . 

 
74. We are only concerned with horizontal forces in this problem (gravity plays no direct 
role).  Without loss of generality, we take one of the forces along the +x direction and the 
other at 80° (measured counterclockwise from the x axis).  This calculation is efficiently 
implemented on a vector-capable calculator in polar mode, as follows (using magnitude-
angle notation, with angles understood to be in degrees): 
 

Fnet
→

  =  (20 ∠ 0) + (35 ∠ 80) = (43 ∠ 53)  ⇒  | Fnet
→

 |  =  43 N  .   
 
Therefore, the mass is m = (43 N)/(20 m/s2) = 2.2 kg. 
 
75. The goal is to arrive at the least magnitude of Fnet ,  and as long as the magnitudes of  
F2  and F3  are (in total) less than or equal to F1  then we should orient them opposite to 

the direction of F1  (which is the +x direction). 
 
(a) We orient both F F2 3and  in the –x direction. Then, the magnitude of the net force is 
50 – 30 – 20 = 0, resulting in zero acceleration for the tire. 
 
(b) We again orient F F2 3and  in the negative x direction. We obtain an acceleration 
along the +x axis with magnitude 
 

a F F F
m

=
− −

=
− −

=1 2 3 250 083N 30N 10N
12 kg

m / s. .  

 
(c) In this case, the forces F F2 3and  are collectively strong enough to have y components 
(one positive and one negative) that cancel each other and still have enough x 
contributions (in the –x direction) to cancel F1 . Since F F2 3= , we see that the angle 
above the –x axis to one of them should equal the angle below the –x axis to the other one 
(we denote this angle θ). We require 
 

( ) ( )2 350 N 30N cos 30N cosx xF F θ θ− = + = − −  
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which leads to 

θ =
F
HG
I
KJ = °−cos .1 50 34N

60 N
 

 
76. (a) A small segment of the rope has mass and is pulled down by the gravitational 
force of the Earth. Equilibrium is reached because neighboring portions of the rope pull 
up sufficiently on it. Since tension is a force along the rope, at least one of the 
neighboring portions must slope up away from the segment we are considering. Then, the 
tension has an upward component, which means the rope sags. 
 
(b) The only force acting with a horizontal component is the applied force F.  Treating 
the block and rope as a single object, we write Newton’s second law for it: F = (M + m)a, 
where a is the acceleration and the positive direction is taken to be to the right. The 
acceleration is given by a = F/(M + m). 
 
(c) The force of the rope Fr is the only force with a horizontal component acting on the 
block. Then Newton’s second law for the block gives 
 

F Ma MF
M mr = =

+
 

 
where the expression found above for a has been used. 
 
(d) Treating the block and half the rope as a single object, with mass 1

2M m+ , where the 
horizontal force on it is the tension Tm at the midpoint of the rope, we use Newton’s 
second law: 

( )
( )

( )
( )

/ 2 21 .
2 2m

M m F M m F
T M m a

M m M m
+ +⎛ ⎞= + = =⎜ ⎟ + +⎝ ⎠

 

 
77. Although the full specification of F manet =  in this situation involves both x and y 
axes, only the x-application is needed to find what this particular problem asks for. We 
note that ay = 0 so that there is no ambiguity denoting ax simply as a. We choose +x to the 
right and +y up. The free-body diagram (not to scale) is show below.  

 
The x component of the rope’s tension (acting on the crate) is  
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Fx = Fcosθ = (450 N) cos 38° = 355 N, 

 
and the resistive force (pointing in the –x direction) has magnitude f = 125 N. 
 
(a) Newton’s second law leads to 
 

2cos 355 N 125 N 0.74m/s .
310 kgx

F fF f ma a
m
θ − −

− = ⇒ = = =  

 
(b) In this case, we use Eq. 5-12 to find the mass: / 31.6 kgm W g′ = = . Now, Newton’s 
second law leads to 

2355 N 125 N 7.3 m/s .
31.6 kg

x
x

F fF f m a a
m
− −′ ′ ′− = ⇒ = = =
′

 

 
78. We take +x uphill for the m2 = 1.0 kg box and +x rightward for the m1 = 3.0 kg box 
(so the accelerations of the two boxes have the same magnitude and the same sign). The 
uphill force on m2 is F and the downhill forces on it are T and m2g sin θ, where θ = 37°. 
The only horizontal force on m1 is the rightward-pointed tension. Applying Newton’s 
second law to each box, we find 
 

2 2

1

sin  
                            
F T m g m a

T m a
θ− − =

=
 

which can be added to obtain  
 

F – m2g sin θ = (m1 + m2)a. 
This yields the acceleration 
 

2
212 N (1.0 kg)(9.8 m/s )sin 37 1.53 m/s .

1.0 kg 3.0 kg
a − °

= =
+

 

 
Thus, the tension is T = m1a = (3.0 kg)(1.53 m/s2) = 4.6 N. 
 
79. We apply Eq. 5-12. 
 
(a) The mass is  

m = W/g = (22 N)/(9.8 m/s2) = 2.2 kg. 
 
At a place where g = 4.9 m/s2, the mass is still 2.2 kg but the gravitational force is Fg = 
mg = (2.2 kg) (4.0 m/s2) = 11 N. 
 
(b) As noted, m = 2.2 kg. 
 
(c) At a place where g = 0 the gravitational force is zero. 
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(d) The mass is still 2.2 kg. 
 
80. We take down to be the +y direction. 
 
(a) The first diagram (shown below left) is the free-body diagram for the person and 
parachute, considered as a single object with a mass of 80 kg + 5.0 kg = 85 kg.  
 

 
 
Fa is the force of the air on the parachute and mg  is the force of gravity. Application of 
Newton’s second law produces mg – Fa = ma, where a is the acceleration. Solving for Fa 
we find 

( ) ( )( )2 285 kg 9.8 m/s 2.5 m/s 620 N.aF m g a= − = − =  
 
(b) The second diagram (above right) is the free-body diagram for the parachute alone. 
Fa is the force of the air, m gp  is the force of gravity, and Fp  is the force of the person. 
Now, Newton’s second law leads to  
 

mpg + Fp – Fa = mpa. 
 
Solving for Fp, we obtain 
 

( ) ( )( )2 25.0 kg 2.5 m/s 9.8 m/s 620 N 580 N.p p aF m a g F= − + = − + =  
 
81. The mass of the pilot is m = 735/9.8 = 75 kg. Denoting the upward force exerted by 
the spaceship (his seat, presumably) on the pilot as F  and choosing upward as the +y 
direction, then Newton’s second law leads to 
 

( )( )2 2
moon 75 kg 1.6 m/s 1.0 m/s 195 N.F mg ma F− = ⇒ = + =  

 
82. With SI units understood, the net force on the box is 
 

( ) ( )net
ˆ ˆ3.0 14 cos 30 11 i 14 sin30 5.0 17 jF = + ° − + ° + −  

 
which yields net

ˆ ˆ(4.1 N) i (5.0 N) jF = − . 
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(a) Newton’s second law applied to the m = 4.0 kg box leads to 
 

2 2net ˆ ˆ(1.0 m/s )i (1.3m/s ) j .Fa
m

= = −  

 

(b) The magnitude of  a  is ( )22 2 2 2(1.0 m/s ) 1.3 m/s 1.6 m sa = + − = .  

 
(c) Its angle is tan–1 [(–1.3 m/s2)/(1.0 m/s2)] = –50° (that is, 50° measured clockwise from 
the rightward axis). 
 
83. The “certain force” denoted F is assumed to be the net force on the object when it 
gives m1 an acceleration a1 = 12 m/s2 and when it gives m2 an acceleration a2 = 3.3 m/s2. 
Thus, we substitute m1 = F/a1 and m2 = F/a2 in appropriate places during the following 
manipulations. 
 
(a) Now we seek the acceleration a of an object of mass m2 – m1 when F is the net force 
on it. Thus, 

1 2

2 1 2 1 1 2

 
( / ) ( / )

a aF Fa
m m F a F a a a

= = =
− − −

 

 
which yields a = 4.6 m/s2. 
 
(b) Similarly for an object of mass m2 + m1: 
 

1 2

2 1 2 1 1 2( / ) ( / )
a aF Fa

m m F a F a a a
= = =

+ + +
 

 
which yields a = 2.6 m/s2. 
 
84. We assume the direction of motion is +x and assume the refrigerator starts from rest 
(so that the speed being discussed is the velocity v  that results from the process). The 
only force along the x axis is the x component of the applied force F . 
 
(a) Since v0 = 0, the combination of Eq. 2-11 and Eq. 5-2 leads simply to 
 

F m v
t

v F
m

tx i
i= FHG

I
KJ ⇒ = FHG

I
KJ

cosθ  

 
for i = 1 or 2 (where we denote θ1 = 0 and θ2 = θ for the two cases). Hence, we see that 
the ratio v2 over v1 is equal to cos θ. 
 
(b) Since v0 = 0, the combination of Eq. 2-16 and Eq. 5-2 leads to 
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F m v
x

v F
m

xx i
i=

F
HG
I
KJ ⇒ = F

HG
I
KJ

2

2
2

Δ
Δ

cosθ  

 
for i = 1 or 2 (again, θ1 = 0 and θ2 = θ is used for the two cases). In this scenario, we see 
that the ratio v2 over v1 is equal to cosθ . 
 
85. (a) Since the performer’s weight is (52 kg)(9.8 m/s2) = 510 N, the rope breaks. 
 
(b) Setting T = 425 N in Newton’s second law (with +y upward) leads to 
 

T mg ma a T
m

g− = ⇒ = −  

which yields |a| = 1.6 m/s2. 
 
86. We use Wp = mgp, where Wp is the weight of an object of mass m on the surface of a 
certain planet p, and gp is the acceleration of gravity on that planet. 
 
(a) The weight of the space ranger on Earth is  
 

We = mge = (75 kg) (9.8 m/s2) = 7.4 × 102 N. 
 
(b) The weight of the space ranger on Mars is  
 

Wm = mgm = (75 kg) (3.7 m/s2) = 2.8 × 102 N. 
 
(c) The weight of the space ranger in interplanetary space is zero, where the effects of 
gravity are negligible. 
 
(d) The mass of the space ranger remains the same, m = 75 kg, at all the locations. 
 
87. From the reading when the elevator was at rest, we know the mass of the object is m 
= (65 N)/(9.8 m/s2) = 6.6 kg. We choose +y upward and note there are two forces on the 
object: mg downward and T upward (in the cord that connects it to the balance; T is the 
reading on the scale by Newton’s third law). 
 
(a) “Upward at constant speed” means constant velocity, which means no acceleration. 
Thus, the situation is just as it was at rest: T = 65 N. 
 
(b) The term “deceleration” is used when the acceleration vector points in the direction 
opposite to the velocity vector. We’re told the velocity is upward, so the acceleration 
vector points downward (a = –2.4 m/s2). Newton’s second law gives 
 

2 2  (6.6 kg)(9.8 m/s 2.4 m/s ) 49 N.T mg ma T− = ⇒ = − =  
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88. We use the notation g as the acceleration due to gravity near the surface of Callisto, m 
as the mass of the landing craft, a as the acceleration of the landing craft, and F as the 
rocket thrust. We take down to be the positive direction. Thus, Newton’s second law 
takes the form mg – F = ma. If the thrust is F1 (= 3260 N), then the acceleration is zero, 
so mg – F1 = 0. If the thrust is F2 (= 2200 N), then the acceleration is a2 (= 0.39 m/s2), so 
mg – F2 = ma2. 
 
(a) The first equation gives the weight of the landing craft: mg = F1 = 3260 N. 
 
(b) The second equation gives the mass: 
 

m mg F
a

=
−

=
−

= ×2

2
2

33260 2200
0 39

2 7 10N N
m / s

kg
.

. .  

 
(c) The weight divided by the mass gives the acceleration due to gravity:  
 

g = (3260 N)/(2.7 × 103 kg) = 1.2 m/s2. 
 
89. (a) When F F mgnet = − =3 0, we have 
 

F mg= = = ×
1
3

1
3

1400 9 8 4 6 102 3kg m / s Nb g c h. .  

 
for the force exerted by each bolt on the engine. 
 
(b) The force on each bolt now satisfies 3F – mg = ma, which yields 
 

( ) ( )( )2 2 31 1 1400 kg 9.8 m/s 2.6 m/s 5.8 10 N.
3 3

F m g a= + = + = ×  

 
90. We write the length unit light-month, the distance traveled by light in one month, as 
c·month in this solution. 
 
(a) The magnitude of the required acceleration is given by 
 

a v
t

= =
×

= ×
Δ
Δ

010 30 10
30 86400

12 10
8

2
. .

.
. .

b gc h
b gb g

m / s
days s / day

m / s2  

 
(b) The acceleration in terms of g is 
 

a a
g

g g g=
F
HG
I
KJ =

×F
HG

I
KJ =

12 10 12
2. .m / s

9.8 m / s

2

2  

(c) The force needed is 
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( )( )6 2 2 81.20 10 kg 1.2 10 m/s 1.4 10 N.F ma= = × × = ×  
 
(d) The spaceship will travel a distance d = 0.1 c·month during one month. The time it 
takes for the spaceship to travel at constant speed for 5.0 light-months is 
 

t d
v c

= =
⋅

=
50

01
50.

.
c months months  ≈  4.2 years. 

 
91. The free-body diagram is shown below. Note that , ym rF and , xm rF , respectively, are 

thought of as the y and x components of the force ,m rF  exerted by the motorcycle on the 
rider.  

 
 
(a) Since the net force equals ma, then the magnitude of the net force on the rider is  
(60.0 kg) (3.0 m/s2) = 1.8 × 102 N. 
 
(b) We apply Newton’s second law to the x axis: , sin

xm rF mg maθ− = , where m = 60.0 
kg, a = 3.0 m/s2, and θ = 10°. Thus, , 282 N

xm rF =  Applying it to the y axis (where there 
is no acceleration), we have 

, cos 0
ym rF mg θ− =  

 
which produces , 579 N

ym rF = . Using the Pythagorean theorem, we find 
 

2 2
, , 644 N.

x ym r m rF F+ =  

 
Now, the magnitude of the force exerted on the rider by the motorcycle is the same 
magnitude of force exerted by the rider on the motorcycle, so the answer is 6.4 × 102 N, 
to two significant figures. 
 
92. We denote the thrust as T and choose +y upward. Newton’s second law leads to 
 

5
2 2

4

2.6 10 N  9.8 m/s 10m/s .
1.3 10 kg

T Mg Ma a ×
− = ⇒ = − =

×
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93. The free-body diagrams for m1 and m2 for 
part (a) are shown to the right. The bottom cord 
is only supporting m2 = 4.5 kg against gravity, 
so its tension is 2 2T m g= . On the other hand, 
the top cord is supporting a total mass of m1 + 
m2 = (3.5 kg + 4.5 kg) = 8.0 kg against gravity. 
Applying Newton’s second law gives 
 1 2 1 0T T m g− − =  
so the tension there is  
 

1 1 2 1 2( )T m g T m m g= + = + . 
 

 
(a) From the equations above, we find the tension in the bottom cord to be   
 

T2 = m2g = (4.5 kg)(9.8 m/s2) = 44 N. 
 
(b) Similarly, the tension in the top cord is  T1 = (m1 + m2)g = (8.0 kg)(9.8 m/s2) = 78 N. 
 
 
(c) The free-body diagrams for m3, m4 and 
m5 for part (b) are shown to the right (not 
to scale). From the diagram, we see that 
the lowest cord supports a mass of m5 = 5.5 
kg against gravity and consequently has a 
tension of  
 
T5 = m5g  = (5.5 kg)(9.8 m/s2) = 54 N. 
 
(d) The top cord, we are told, has tension T3 =199 N, which supports a total of (199 
N)/(9.80 m/s2) = 20.3 kg, 10.3 kg of which is already accounted for in the figure. Thus, 
the unknown mass in the middle must be m4 = 20.3 kg – 10.3 kg = 10.0 kg, and the 
tension in the cord above it must be enough to support  
 

m4 + m5 = (10.0 kg  + 5.50 kg) = 15.5 kg, 
 
so T4 = (15.5 kg)(9.80 m/s2) = 152 N.  
 
94. The coordinate choices are made in the problem statement. 
 
(a) We write the velocity of the armadillo as ˆ ˆi jx yv v v= + . Since there is no net force 
exerted on it in the x direction, the x component of the velocity of the armadillo is a 
constant: vx = 5.0 m/s. In the y direction at t = 3.0 s, we have (using Eq. 2-11 with 

0 0yv = ) 
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( )0 0
17 N 3.0 s 4.3 m/s.
12 kg

y
y y y y

F
v v a t v t

m
⎛ ⎞ ⎛ ⎞

= + = + = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Thus, ˆ ˆ(5.0m/s) i (4.3m/s) j .v = +  
 
(b) We write the position vector of the armadillo as r r rx y= +i j . At t = 3.0 s we have 
rx = (5.0 m/s) (3.0 s) = 15 m and (using Eq. 2-15 with v0 y = 0) 
 

( )22 2
0

1 1 1 17 N 3.0 s 6.4 m.
2 2 2 12 kg

y
y y y

F
r v t a t t

m
⎛ ⎞ ⎛ ⎞

= + = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
The position vector at t = 3.0 s is therefore ˆ ˆ(15 m)i (6.4 m)j .r = +  
 
95. (a) Intuition readily leads to the conclusion that the heavier block should be the 
hanging one, for largest acceleration. The force that “drives” the system into motion is 
the weight of the hanging block (gravity acting on the block on the table has no effect on 
the dynamics, so long as we ignore friction). Thus, m = 4.0 kg.  
 
The acceleration of the system and the tension in the cord can be readily obtained by 
solving  
 , .mg T ma T Ma− = =  
 
(b) The acceleration is given by 

26.5 m/s .ma g
m M

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

 

(c) The tension is  

13 N.MmT Ma g
m M

⎛ ⎞
= = =⎜ ⎟+⎝ ⎠

 

 
96. According to Newton’s second law, the magnitude of the force is given by F = ma, 
where a is the magnitude of the acceleration of the neutron. We use kinematics (Table 2-
1) to find the acceleration that brings the neutron to rest in a distance d. Assuming the 
acceleration is constant, then v v ad2

0
2 2= +  produces the value of a: 

 

a
v v

d
=

−
=

− ×

×
= − ×

−

2
0
2 7 2

14
27 2

2
14 10

2 10 10
9 8 10

c h c h
c h

.

.
. .

m / s

m
m / s  

 
The magnitude of the force is consequently 
 

( ) ( )27 27 21.67 10 kg 9.8 10 m/s 16 N.F ma −= = × × =  
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Chapter 6 
 
 
1. The greatest deceleration (of magnitude a) is provided by the maximum friction force 
(Eq. 6-1, with FN = mg in this case).  Using Newton’s second law, we find  
 

a = fs,max /m = μsg. 
 
Equation 2-16 then gives the shortest distance to stop: |Δx| = v2/2a = 36 m.  In this 
calculation, it is important to first convert v to 13 m/s. 
 
2. Applying Newton’s second law to the horizontal motion, we have F − μk m g = ma, 
where we have used Eq. 6-2, assuming that FN = mg (which is equivalent to assuming 
that the vertical force from the broom is negligible). Equation 2-16 relates the distance 
traveled and the final speed to the acceleration: v2 = 2aΔx.  This gives a = 1.4 m/s2. 
Returning to the force equation, we find (with F = 25 N and m = 3.5 kg) that μk = 0.58. 
 
3. The free-body diagram for the bureau is 
shown to the right. We do not consider the 
possibility that the bureau might tip, and treat 
this as a purely horizontal motion problem (with 
the person’s push F  in the +x direction). 
Applying Newton’s second law to the x and y 
axes, we obtain 

, max

0
s

N

F f ma
F mg

− =
− =

 

 
respectively. The second equation yields the 
normal force FN = mg, whereupon the maximum 
static friction is found to be (from Eq. 6-1) 
f mgs s,max = μ . 

 

Thus, the first equation becomes 
F mg mas− = =μ 0  

 
where we have set a = 0 to be consistent with the fact that the static friction is still (just 
barely) able to prevent the bureau from moving. 
 
(a) With μ s = 0 45.  and m = 45 kg, the equation above leads to F = 198 N.  
To bring the bureau into a state of motion, the person should push with any force greater 
than this value. Rounding to two significant figures, we can therefore say the minimum 
required push is F = 2.0 × 102 N. 
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(b) Replacing m = 45 kg with m = 28 kg, the reasoning above leads to roughly 
21.2 10  NF = × . 

 
Note: The values found above represent the minimum force required to overcome the 
friction. Applying a force greater than s mgμ  results in a net force in the +x-direction, 
and hence, nonzero acceleration.  
 
4. We first analyze the forces on the pig of mass m. The incline angle is θ. 
 

 
 

The +x direction is “downhill.’’ Application of Newton’s second law to the x- and y-axes 
leads to 

sin
cos 0.

k

N

mg f ma
F mg

θ
θ

− =
− =

 

 
Solving these along with Eq. 6-2 (fk = μkFN) produces the following result for the pig’s 
downhill acceleration: 

( )sin cos .ka g θ μ θ= −  
 

To compute the time to slide from rest through a downhill distance , we use Eq. 2-15: 
 

= + ⇒ =v t at t
a0

21
2

2 . 

 
We denote the frictionless (μk = 0) case with a prime and set up a ratio: 
 

t
t

a
a

a
a′

=
′

=
′2

2
/
/

 

 
which leads us to conclude that if t/t' = 2 then a' = 4a. Putting in what we found out 
above about the accelerations, we have 
 

( )sin 4 sin cos .kg gθ θ μ θ= −  
 

Using θ = 35°, we obtain μk = 0.53. 
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5. In addition to the forces already shown in Fig. 6-17, a free-body diagram would 
include an upward normal force NF  exerted by the floor on the block, a downward mg  

representing the gravitational pull exerted by Earth, and an assumed-leftward f  for the 
kinetic or static friction. We choose +x rightward and +y upward. We apply Newton’s 
second law to these axes: 

0N

F f ma
P F mg

− =
+ − =  

 
where F = 6.0 N and m = 2.5 kg is the mass of the block. 
 
(a) In this case, P = 8.0 N leads to  
 

FN = (2.5 kg)(9.8 m/s2) – 8.0 N = 16.5 N. 
 
Using Eq. 6-1, this implies ,max 6.6 Ns s Nf Fμ= = , which is larger than the 6.0 N 
rightward force. Thus, the block (which was initially at rest) does not move. Putting a = 0 
into the first of our equations above yields a static friction force of  f = P = 6.0 N.  
 
(b) In this case, P = 10 N, the normal force is  
 

FN = (2.5 kg)(9.8 m/s2) – 10 N = 14.5 N. 
 
Using Eq. 6-1, this implies ,max 5.8 Ns s Nf Fμ= = , which is less than the 6.0 N rightward 
force – so the block does move. Hence, we are dealing not with static but with kinetic 
friction, which Eq. 6-2 reveals to be 3.6 Nk k Nf Fμ= = .  
 
(c) In this last case, P = 12 N leads to FN = 12.5 N and thus to ,max 5.0 Ns s Nf Fμ= = , 
which (as expected) is less than the 6.0 N rightward force. Thus, the block moves. The 
kinetic friction force, then, is 3.1 Nk k Nf Fμ= = .  
 
 
6. The free-body diagram for the player is shown to the 
right. NF  is the normal force of the ground on the player, 

mg  is the force of gravity, and f  is the force of friction. 
The force of friction is related to the normal force by f = 
μkFN. We use Newton’s second law applied to the vertical 
axis to find the normal force. The vertical component of 
the acceleration is zero, so we obtain FN – mg = 0; thus, 
FN = mg. Consequently, 

 

( ) ( )2

470 N 0.61.
79 kg 9.8 m/sk

N

f
F

μ = = =  
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7. The free-body diagram for the crate is shown 
to the right. We denote F  as the horizontal force 
of the person exerted on the crate (in the +x 
direction), f k  is the force of kinetic friction (in 
the –x direction), NF  is the vertical normal force 
exerted by the floor (in the +y direction), and 
mg  is the force of gravity. The magnitude of the 
force of friction is given by (Eq. 6-2):  
 

fk = μkFN .  
 
Applying Newton’s second law to the x and y axes, we obtain 
 

0
k

N

F f ma
F mg

− =
− =

 

respectively.  
 
(a) The second equation above yields the normal force FN = mg, so that the friction is 
 

( )( ) 2 20.35 55 kg (9.8 m/s ) 1.9 10 N .k k N kf F mgμ μ= = = = ×  
 
(b) The first equation becomes 

F mg mak− =μ  
 
which (with F = 220 N) we solve to find 
 

a F
m

gk= − =μ 056 2. .m / s  

 
Note: For the crate to accelerate, the condition k kF f mgμ> =  must be met. As can be 
seen from the equation above, the greater the value of kμ , the smaller the acceleration 
with the same applied force.  
 
8. To maintain the stone’s motion, a horizontal force (in the +x direction) is needed that 
cancels the retarding effect due to kinetic friction. Applying Newton’s second to the x 
and y axes, we obtain 

0
k

N

F f ma
F mg

− =
− =

 

 
respectively. The second equation yields the normal force FN = mg, so that (using Eq. 6-2) 
the kinetic friction becomes fk = μk mg. Thus, the first equation becomes 
 

F mg mak− = =μ 0  
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where we have set a = 0 to be consistent with the idea that the horizontal velocity of the 
stone should remain constant. With m = 20 kg and μk = 0.80, we find F = 1.6 × 102 N. 
 
9. We choose +x horizontally rightward and +y upward and observe that the 15 N force 
has components Fx = F cos θ and Fy = – F sin θ. 
 
(a) We apply Newton’s second law to the y axis: 
 

2sin 0 (15 N) sin 40 (3.5 kg) (9.8 m/s ) 44 N.N NF F mg Fθ− − = ⇒ = ° + =  
 
With μk = 0.25, Eq. 6-2 leads to fk = 11 N. 
 
(b) We apply Newton’s second law to the x axis: 
 

( ) 215 N cos 40 11 N
cos 0.14 m/s

3.5 kgkF f ma aθ
° −

− = ⇒ = = . 

 
Since the result is positive-valued, then the block is accelerating in the +x (rightward) 
direction. 
 
10. The free-body diagram for the block is shown below, with F  being the force applied 
to the block, NF  the normal force of the floor on the block, mg  the force of gravity, and 

f  the force of friction. We take the +x direction to be horizontal to the right and the +y 
direction to be up. The equations for the x and the y components of the force according to 
Newton’s second law are: 

cos
sin 0.

x

y N

F F f ma
F F F mg

θ
θ

= − =
= + − =  

 
Now f =μkFN, and the second equation above gives FN = mg – Fsinθ, which yields 

( sin )kf mg Fμ θ= − . This expression is substituted for f in the first equation to obtain  
 

F cos θ – μk (mg – F sin θ) = ma, 
so the acceleration is 

( )cos sink k
Fa g
m

θ μ θ μ= + − . 
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(a) If 0.600sμ =  and 0.500,kμ =  then the magnitude of f  has a maximum value of  
 
 ,max (0.600)( 0.500 sin 20 ) 0.497 .s s Nf F mg mg mgμ= = − ° =  
 
On the other hand, cos 0.500 cos 20 0.470 .F mg mgθ = ° =  Therefore, ,maxcos sF fθ <  and 
the block remains stationary with 0a = . 
 
(b) If 0.400sμ =  and 0.300,kμ =  then the magnitude of f  has a maximum value of  
 
 ,max (0.400)( 0.500 sin 20 ) 0.332 .s s Nf F mg mg mgμ= = − ° =  
 
In this case, ,maxcos 0.500 cos 20 0.470 .sF mg mg fθ = ° = >  Therefore, the acceleration of 
the block is 

          

( )
[ ]2 2

2

cos sin

(0.500)(9.80 m/s ) cos 20 (0.300)sin 20 (0.300)(9.80 m/s )
2.17 m/s .

k k
Fa g
m

θ μ θ μ= + −

= ° + ° −
=

 

 
11. (a) The free-body diagram for the crate is shown below.  
 

 
T  is the tension force of the rope on the crate, NF  is the normal force of the floor on the 

crate, mg  is the force of gravity, and f  is the force of friction. We take the +x direction 
to be horizontal to the right and the +y direction to be up. We assume the crate is 
motionless. The equations for the x and the y components of the force according to 
Newton’s second law are: 

 T cos θ – f = 0 
                                      sin 0NT F mgθ + − =  
 
where θ = 15° is the angle between the rope and the horizontal. The first equation gives f 
= T cos θ and the second gives FN = mg – T sin θ. If the crate is to remain at rest, f must 
be less than μs FN, or T cos θ < μs (mg – T sinθ). When the tension force is sufficient to 
just start the crate moving, we must have  



 

  

223

 
T cos θ = μs (mg – T sin θ). 

We solve for the tension: 
 

( ) ( ) ( )2
2

0.50 68 kg 9.8 m/s
304 N 3.0 10 N.

cos sin cos 15 0.50 sin 15
s

s

mgT μ
θ μ θ

= = = ≈ ×
+ ° + °

 

 
(b) The second law equations for the moving crate are  
 

             T cos θ – f = ma 
FN + T sin θ – mg = 0. 

 
Now f =μkFN, and the second equation gives FN = mg – Tsinθ, which yields 

( sin )kf mg Tμ θ= − . This expression is substituted for f in the first equation to obtain  
 

T cos θ – μk (mg – T sin θ) = ma, 
 
so the acceleration is 

( )cos sink
k

T
a g

m
θ μ θ

μ
+

= − . 

Numerically, it is given by 
 

a =
° + °

− =
304 15 0 35 15

68
0 35 9 8 13

N
kg

m / s m / s2 2b gb g b gc hcos . sin
. . . .  

 
12. There is no acceleration, so the (upward) static friction forces (there are four of them, 
one for each thumb and one for each set of opposing fingers) equals the magnitude of the 
(downward) pull of gravity. Using Eq. 6-1, we have 
 

24 (79 kg)(9.8 m/s )s NF mgμ = =  
 
which, with μs = 0.70, yields FN = 2.8 × 102 N. 
 
13. We denote the magnitude of 110 N force exerted by the worker on the crate as F. The 
magnitude of the static frictional force can vary between zero and ,maxs s Nf Fμ= . 
 
(a) In this case, application of Newton’s second law in the vertical direction yields 

NF mg= . Thus, 
 

( )( ) 2 2
, max 0.37 35kg (9.8m / s ) 1.3 10 Ns s N sf F mgμ μ= = = = ×  

 
which is greater than F.  
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(b) The block, which is initially at rest, stays at rest since F < fs, max. Thus, it does not 
move. 
 
(c) By applying Newton’s second law to the horizontal direction, the magnitude of the 
frictional force exerted on the crate is 21.1 10  Nsf = × .  
 
(d) Denoting the upward force exerted by the second worker as F2, then application of 
Newton’s second law in the vertical direction yields FN = mg – F2, which leads to  
 

,max 2( )s s N sf F mg Fμ μ= = − . 
 
In order to move the crate, F must satisfy the condition F > fs,max  = μs  (mg − F2) , 
or 

( ) 2
2110N 0.37 (35kg)(9.8m/s ) .F⎡ ⎤> −⎣ ⎦  

 
The minimum value of F2 that satisfies this inequality is a value slightly bigger than 
45.7 N , so we express our answer as F2, min = 46 N. 
 
(e) In this final case, moving the crate requires a greater horizontal push from the worker 
than static friction (as computed in part (a)) can resist. Thus, Newton’s law in the 
horizontal direction leads to 
 

2 , max 2110 N 126.9 NsF F f F+ > ⇒ + >  
 
which leads (after appropriate rounding) to F2, min = 17 N. 
 
14. (a) Using the result obtained in Sample Problem – “Friction, applied force at an 
angle,” the maximum angle for which static friction applies is 
 

1 1
max tan tan 0.63 32 .sθ μ− −= = ≈ °  

 
This is greater than the dip angle in the problem, so the block does not slide. 
 
(b) Applying Newton’s second law, we have  
 

, maxsin 0
cos 0.

s

N

F mg f ma
F mg

θ
θ

+ − = =
− =

 

 
Along with Eq. 6-1 (fs, max = μsFN) we have enough information to solve for F. With 

24θ = ° and m = 1.8 × 107 kg, we find 
 

( ) 7cos sin 3.0 10 N.sF mg μ θ θ= − = ×  
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15. An excellent discussion and equation development related to this problem is given in 
Sample Problem – “Friction, applied force at an angle.” We merely quote (and apply) 
their main result: 

1 1tan tan 0.04 2 .sθ μ− −= = ≈ °  
 
16. (a) In this situation, we take f s  to point uphill and to be equal to its maximum value, 
in which case fs, max = s NFμ applies, where μs = 0.25. Applying Newton’s second law to 
the block of mass m = W/g = 8.2 kg, in the x and y directions, produces 
 

min 1 , maxsin 0
cos 0

s

N

F mg f ma
F mg

θ
θ

− + = =
− =

 

which (with θ = 20°) leads to 
 

( )min 1 sin cos 8.6 N.sF mg θ μ θ− + =  
 
(b) Now we take f s  to point downhill and to be equal to its maximum value, in which 
case fs, max = μsFN applies, where μs = 0.25. Applying Newton’s second law to the block 
of mass m = W/g = 8.2 kg, in the x and y directions, produces 
 

min 2 , maxsin 0
      cos 0

s

N

F mg f ma
F mg

θ
θ

= − = =
− =

 

which (with θ = 20°) leads to 
 

( )min 2 sin cos 46 N.sF mg θ μ θ= + =  
 
A value slightly larger than the “exact” result of this calculation is required to make it 
accelerate uphill, but since we quote our results here to two significant figures, 46 N is a 
“good enough” answer. 
 
(c) Finally, we are dealing with kinetic friction (pointing downhill), so that 
 

0 sin
0 cos

k

N

F mg f ma
F mg

θ
θ

= − − =
= −

 

 
along with fk = μkFN (where μk = 0.15) brings us to 
 

F mg k= + =sin cosθ μ θb g 39 N . 
 

17. If the block is sliding then we compute the kinetic friction from Eq. 6-2; if it is not 
sliding, then we determine the extent of static friction from applying Newton’s law, with 
zero acceleration, to the x axis (which is parallel to the incline surface). The question of 
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whether or not it is sliding is therefore crucial, and depends on the maximum static 
friction force, as calculated from Eq. 6-1. The forces are resolved in the incline plane 
coordinate system in Figure 6-5 in the textbook. The acceleration, if there is any, is along 
the x axis, and we are taking uphill as +x. The net force along the y axis, then, is certainly 
zero, which provides the following relationship: 
 

0 cosy NF F W θ= ⇒ =∑  
 
where W = mg = 45 N is the weight of the block, and θ = 15° is the incline angle. Thus, 
FN = 43.5 N, which implies that the maximum static friction force should be  
 

fs,max = (0.50) (43.5 N) = 21.7 N. 
 
(a) For ˆ( 5.0 N)iP = − , Newton’s second law, applied to the x axis becomes 
 

| | sin .f P mg maθ− − =  
 
Here we are assuming f  is pointing uphill, as shown in Figure 6-5, and if it turns out that 
it points downhill (which is a possibility), then the result for fs will be negative. If f = fs 
then a = 0, we obtain  
 

fs = | P | + mg sinθ = 5.0 N + (43.5 N)sin15° =17 N, 
 
or ˆ(17 N)isf = . This is clearly allowed since sf  is less than fs, max. 
 
(b) For ˆ( 8.0 N)iP = − , we obtain (from the same equation) ˆ(20 N)isf = , which is still 
allowed since it is less than fs, max. 
 
(c) But for ˆ( 15 N)iP = − , we obtain (from the same equation) fs = 27 N, which is not 
allowed since it is larger than fs, max. Thus, we conclude that it is the kinetic friction 
instead of the static friction that is relevant in this case. The result is  
 

ˆ ˆ ˆi (0.34)(43.5 N) i (15 N) ik k Nf Fμ= = = . 
 
18. (a) We apply Newton’s second law to the “downhill” direction:   
 

mg sinθ – f = ma, 
 
where, using Eq. 6-11,  

f = fk = μkFN = μk mg cosθ . 
 
Thus, with μk = 0.600, we have  
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a = gsinθ – μk cosθ = –3.72 m/s2 
 
which means, since we have chosen the positive direction in the direction of motion 
(down the slope) then the acceleration vector points “uphill”; it is decelerating.  With 

0 18.0 m/sv = and Δx = d = 24.0 m, Eq. 2-16 leads to  
 

2
0 2 12.1 m/s.v v ad= + =  

 
(b) In this case, we find a = +1.1 m/s2, and the speed (when impact occurs) is 19.4 m/s. 
 
19. (a) The free-body diagram for the block is shown below.  
 

 
F is the applied force, NF  is the normal force of the wall on the block, f  is the force of 
friction, and mg  is the force of gravity. To determine whether the block falls, we find the 
magnitude f of the force of friction required to hold it without accelerating and also find 
the normal force of the wall on the block. We compare f and μsFN. If f < μsFN, the block 
does not slide on the wall but if f > μsFN, the block does slide. The horizontal component 
of Newton’s second law is F –FN = 0, so FN = F = 12 N and  
 

μsFN = (0.60)(12 N) = 7.2 N. 
 
The vertical component is f – mg = 0, so f = mg = 5.0 N. Since f < μsFN the block does not 
slide. 
 
(b) Since the block does not move, f = 5.0 N and FN = 12 N. The force of the wall on the 
block is 

( ) ( )ˆ ˆ ˆ ˆi j 12N i 5.0N jw NF F f= − + = − +  
 
where the axes are as shown on Fig. 6-26 of the text. 
 
20. Treating the two boxes as a single system of total mass mC + mW =1.0 + 3.0 = 4.0 kg, 
subject to a total (leftward) friction of magnitude 2.0 N + 4.0 N = 6.0 N, we apply 
Newton’s second law (with +x rightward): 
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total total  12.0 N 6.0 N (4.0 kg)F f m a a− = ⇒ − =  
 
which yields the acceleration a = 1.5 m/s2. We have treated F as if it were known to the 
nearest tenth of a Newton so that our acceleration is “good” to two significant figures. 
Turning our attention to the larger box (the Wheaties box of mass mW = 3.0 kg) we apply 
Newton’s second law to find the contact force F' exerted by the Cheerios box on it. 
 

2
W W 4.0 N (3.0 kg)(1.5 m/s )F f m a F′ ′− = ⇒ − = . 

 
From the above equation, we find the contact force to be F' = 8.5 N. 
 
21. Fig.ure 6-4 in the textbook shows a similar situation (using φ  for the unknown angle) 
along with a free-body diagram. We use the same coordinate system as in that figure. 
 
(a) Thus, Newton’s second law leads to 
 

:     cos    
: sin 0   N

x T f ma
y T F mg

φ
φ

− =
+ − =  

 
Setting a = 0 and f = fs,max = μsFN, we solve for the mass of the box-and-sand (as a 
function of angle): 

m T
g s

= +
F
HG

I
KJsin cosφ φ

μ
 

 
which we will solve with calculus techniques (to find the angle φ m  corresponding to the 
maximum mass that can be pulled). 
 

dm
dt

T
g m

m

s

= −
F
HG

I
KJ =cos sinφ φ

μ
0 

 
This leads to tan φ μm s=  which (for μ s = 0 35. ) yields φ m = °19 . 
 
(b) Plugging our value for φ m  into the equation we found for the mass of the box-and-
sand yields m = 340 kg. This corresponds to a weight of mg = 3.3 × 103 N. 
 
22. The free-body diagram for the sled is shown below, with F  being the force applied to 
the sled, NF  the normal force of the inclined plane on the sled, mg  the force of gravity, 

and f  the force of friction. We take the +x direction to be along the inclined plane and 
the +y direction to be in its normal direction. The equations for the x and the y 
components of the force according to Newton’s second law are: 
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sin 0
cos 0.

x

y N

F F f mg ma
F F mg

θ
θ

= − − = =
= − =  

 
Now f =μFN, and the second equation gives FN = mgcosθ, which yields cosf mgμ θ= . 
This expression is substituted for f in the first equation to obtain  
 

(sin cos )F mg θ μ θ= +  
 
From the figure, we see that 2.0 NF =  when 0μ = . This implies sin 2.0 N.mg θ =  
Similarly, we also find 5.0 NF =  when 0.5μ = :  
 

5.0 N (sin 0.50cos ) 2.0 N 0.50 cosmg mgθ θ θ= + = +  
 
which yields cos 6.0 N.mg θ =  Combining the two results, we get  
 

 2 1tan 18 .
6 3

θ θ= = ⇒ = °  

 
23. Let the tensions on the strings connecting m2 and m3 be T23, and that connecting m2 
and m1 be T12, respectively. Applying Newton’s second law (and Eq. 6-2, with FN = m2g 
in this case) to the system we have 

 
3 23 3

23 2 12 2

12 1 1

k

m g T m a
T m g T m a

T m g m a
μ

− =
− − =

− =
 

 
Adding up the three equations and using 1 2 3, 2 ,m M m m M= = =  we obtain  
 

2Mg – 2μk Mg – Mg = 5Ma . 
 
With a = 0.500 m/s2 this yields μk = 0.372.  Thus, the coefficient of kinetic friction is 
roughly μk = 0.37. 
 
24. We find the acceleration from the slope of the graph (recall Eq. 2-11): a = 4.5 m/s2.  
Thus, Newton’s second law leads to  

F – μk mg = ma, 
 
where F = 40.0 N is the constant horizontal force applied. With m = 4.1 kg, we arrive at 
μk = 0.54. 
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25. The free-body diagrams for block B and for the knot just above block A are shown 
below.  

 
T1  is the tension force of the rope pulling on block B or pulling on the knot (as the case 
may be), T2  is the tension force exerted by the second rope (at angle θ = 30°) on the knot, 
f  is the force of static friction exerted by the horizontal surface on block B, NF  is 

normal force exerted by the surface on block B, WA is the weight of block A (WA is the 
magnitude of m gA ), and WB is the weight of block B (WB = 711 N is the magnitude of 
m gB ). 

 
For each object we take +x horizontally rightward and +y upward. Applying Newton’s 
second law in the x and y directions for block B and then doing the same for the knot 
results in four equations: 

1 ,max

2 1

2

0
0

cos 0
sin 0

s

N B

A

T f
F W

T T
T W

θ
θ

− =
− =

− =
− =

 

 
where we assume the static friction to be at its maximum value (permitting us to use Eq. 
6-1). Solving these equations with μs = 0.25, we obtain 2103 N 1.0 10  NAW = ≈ × . 
 
26. (a) Applying Newton’s second law to the system (of total mass M = 60.0 kg) and 
using Eq. 6-2 (with FN = Mg in this case) we obtain   
 

F – μkMg = Ma  ⇒  a= 0.473 m/s2. 
 
Next, we examine the forces just on m3 and find F32 = m3(a + μkg) =  147 N.  If the 
algebra steps are done more systematically, one ends up with the interesting relationship: 

32 3( / )F m M F= (which is independent of the friction!). 
 
(b) As remarked at the end of our solution to part (a), the result does not depend on the 
frictional parameters.  The answer here is the same as in part (a). 
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27. First, we check to see whether the bodies start to move. We assume they remain at 
rest and compute the force of (static) friction that holds them there, and compare its 
magnitude with the maximum value μsFN. The free-body diagrams are shown below.  
 

 
 
T is the magnitude of the tension force of the string, f is the magnitude of the force of 
friction on body A, FN is the magnitude of the normal force of the plane on body A, m gA  
is the force of gravity on body A (with magnitude WA = 102 N), and m gB  is the force of 
gravity on body B (with magnitude WB = 32 N). θ = 40° is the angle of incline. We are 
not told the direction of f  but we assume it is downhill. If we obtain a negative result for 
f, then we know the force is actually up the plane. 
 
(a) For A we take the +x to be uphill and +y to be in the direction of the normal force. The 
x and y components of Newton’s second law become 
 

sin 0
cos 0.

A

N A

T f W
F W

θ
θ

− − =
− =

 

 
Taking the positive direction to be downward for body B, Newton’s second law leads to 
W TB − = 0 .  Solving these three equations leads to 
 

sin 32 N (102 N)sin 40 34 NB Af W W θ= − = − °= −  
 
(indicating that the force of friction is uphill) and to 
 

cos (102 N) cos 40 78NN AF W θ= = ° =  
which means that  

fs,max = μsFN = (0.56) (78 N) = 44 N. 
 
Since the magnitude f of the force of friction that holds the bodies motionless is less than 
fs,max the bodies remain at rest. The acceleration is zero. 
 
(b) Since A is moving up the incline, the force of friction is downhill with 
magnitude k k Nf Fμ= . Newton’s second law, using the same coordinates as in part (a), 
leads to 
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sin
cos 0

k A A

N A

B B

T f W m a
F W

W T m a

θ
θ

− − =
− =

− =
 

 
for the two bodies. We solve for the acceleration: 
 

( ) ( )( )
( ) ( )2

2

32N 102N sin 40 0.25 102N cos 40sin cos
32N+102N 9.8 m s

3.9 m s .

B A k A

B A

W W Wa
m m

θ μ θ − ° − °− −
= =

+

= −

 

The acceleration is down the plane, that is, 2 ˆ( 3.9 m/s )ia = − , which is to say (since the 
initial velocity was uphill) that the objects are slowing down. We note that m = W/g has 
been used to calculate the masses in the calculation above. 
 
(c) Now body A is initially moving down the plane, so the force of friction is uphill with 
magnitude k k Nf Fμ= . The force equations become 
 

sin
cos 0

k A A

N A

B B

T f W m a
F W

W T m a

θ
θ

+ − =
− =

− =
 

which we solve to obtain 
 

( ) ( )( )
( ) ( )2

2

32N 102N sin 40 0.25 102N cos 40sin cos
32N+102N 9.8 m s

1.0 m s .

B A k A

B A

W W Wa
m m

θ μ θ − ° + °− +
= =

+

= −

 

 
The acceleration is again downhill the plane, that is, 2 ˆ( 1.0 m/s ) ia = − . In this case, the 
objects are speeding up. 
 
28. The free-body diagrams are shown below.  
 

 
 
T is the magnitude of the tension force of the string, f is the magnitude of the force of 
friction on block A, FN is the magnitude of the normal force of the plane on block A, m gA  
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is the force of gravity on body A (where mA = 10 kg), and m gB  is the force of gravity on 
block B. θ = 30° is the angle of incline. For A we take the +x to be uphill and +y to be in 
the direction of the normal force; the positive direction is chosen downward for block B. 
 
Since A is moving down the incline, the force of friction is uphill with magnitude fk = 
μkFN (where μk = 0.20). Newton’s second law leads to 
 

sin 0
cos 0

0

k A A

N A

B B

T f m g m a
F m g

m g T m a

θ
θ

− + = =
− =

− = =
 

 
for the two bodies (where a = 0 is a consequence of the velocity being constant). We 
solve these for the mass of block B. 
 

( )sin cos 3.3 kg.B A km m θ μ θ= − =  
 
29. (a) Free-body diagrams for the blocks A and C, considered as a single object, and for 
the block B are shown below.  
 

 
 
T is the magnitude of the tension force of the rope, FN is the magnitude of the normal 
force of the table on block A, f is the magnitude of the force of friction, WAC is the 
combined weight of blocks A and C (the magnitude of force Fg AC  shown in the figure), 

and WB is the weight of block B (the magnitude of force  Fg B  shown). Assume the blocks 
are not moving. For the blocks on the table we take the x axis to be to the right and the y 
axis to be upward. From Newton’s second law, we have 
 

       x component:            T – f = 0 
 

        y component:     FN – WAC = 0. 
 
For block B take the downward direction to be positive. Then Newton’s second law for 
that block is WB – T = 0. The third equation gives T = WB and the first gives f = T = WB. 
The second equation gives FN = WAC. If sliding is not to occur, f must be less than μs FN, 
or WB < μs WAC. The smallest that WAC can be with the blocks still at rest is  
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WAC = WB/μs = (22 N)/(0.20) = 110 N. 
 
Since the weight of block A is 44 N, the least weight for C is (110 – 44) N = 66 N. 
 
(b) The second law equations become  
 

                     T – f  = (WA/g)a  
 FN – WA  = 0 

              WB – T = (WB/g)a. 
 
In addition, f = μkFN. The second equation gives FN = WA, so f = μkWA. The third gives T 
= WB – (WB/g)a. Substituting these two expressions into the first equation, we obtain 
 

WB – (WB/g)a – μkWA = (WA/g)a. 
Therefore, 

( ) ( )( )( )2
2(9.8 m/s ) 22 N 0.15 44 N

2.3 m/s .
44 N + 22 N

B k A

A B

g W W
a

W W
μ −−

= = =
+

 

 
30. We use the familiar horizontal and vertical axes for x and y directions, with rightward 
and upward positive, respectively. The rope is assumed massless so that the force exerted 
by the child F  is identical to the tension uniformly through the rope. The x and y 
components of F  are Fcosθ and Fsinθ, respectively. The static friction force points 
leftward. 
 
(a) Newton’s Law applied to the y-axis, where there is presumed to be no acceleration, 
leads to 

sin 0NF F mgθ+ − =  
 

which implies that the maximum static friction is μs(mg – F sin θ). If fs = fs, max is 
assumed, then Newton’s second law applied to the x axis (which also has a = 0 even 
though it is “verging” on moving) yields 
 

cos        cos ( sin )  0s sF f ma F mg Fθ θ μ θ− = ⇒ − − =  
 
which we solve, for θ = 42° and μs = 0.42, to obtain F = 74 N. 
 
(b) Solving the above equation algebraically for F, with W denoting the weight, we obtain 
 

(0.42)(180 N) 76 N  .
cos sin cos (0.42) sin cos (0.42) sin

s

s

WF μ
θ μ θ θ θ θ θ

= = =
+ + +

 

 
(c) We minimize the above expression for F by working through the condition: 
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2

(sin cos ) 0
(cos  sin )
s s

s

WdF
d

μ θ μ θ
θ θ μ θ

−
= =

+
 

 
which leads to the result θ = tan–1 μs = 23°. 
 
(d) Plugging θ = 23° into the above result for F, with μs = 0.42 and W = 180 N, yields 

70 NF = .  
 
31. The free-body diagrams for the two blocks are shown below. T is the magnitude of 
the tension force of the string, NAF is the normal force on block A (the leading block), 

NBF  is the normal force on block B, f A  is kinetic friction force on block A, f B  is kinetic 
friction force on block B. Also, mA is the mass of block A (where mA = WA/g and WA = 3.6 
N), and mB is the mass of block B (where mB = WB/g and WB = 7.2 N). The angle of the 
incline is θ = 30°. 

 
 
For each block we take +x downhill (which is toward the lower-left in these diagrams) 
and +y in the direction of the normal force. Applying Newton’s second law to the x and y 
directions of both blocks A and B, we arrive at four equations: 
 

 sin
     cos 0

 sin
     cos 0 

A A A

NA A

B B B

NB B

W f T m a
F W

W f T m a
F W

θ
θ

θ
θ

− − =
− =

− + =
− =

 

 
which, when combined with Eq. 6-2 ( A kA NAf Fμ= where μk A = 0.10 and B kB NBf Fμ= fB 
where μk B = 0.20), fully describe the dynamics of the system so long as the blocks have 
the same acceleration and T > 0. 
 
(a) From these equations, we find the acceleration to be 
 

2sin cos 3.5 m/s .k A A k B B

A B

W Wa g
W W

μ μθ θ
⎛ ⎞⎛ ⎞+

= − =⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
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(b) We solve the above equations for the tension and obtain 
 

( )cos 0.21 N.A B
k B k A

A B

W WT
W W

μ μ θ
⎛ ⎞

= − =⎜ ⎟+⎝ ⎠
 

 
Note: The tension in the string is proportional to k B k Aμ μ− , the difference in coefficients 
of kinetic friction for the two blocks. When the coefficients are equal ( k B k Aμ μ= ), the 
two blocks can be viewed as moving independent of one another and the tension is zero. 
Similarly, when k B k Aμ μ< (the leading block A has larger coefficient than the B), the 
string is slack, so the tension is also zero.  
 
32. The free-body diagram for the block is shown below, with F  being the force applied 
to the block, NF  the normal force of the floor on the block, mg  the force of gravity, and 

f  the force of friction.  

 
We take the +x direction to be horizontal to the right and the +y direction to be up. The 
equations for the x and the y components of the force according to Newton’s second law 
are: 

cos
sin 0

x

y N

F F f ma
F F F mg

θ
θ

= − =
= − − =  

 
Now f =μkFN, and the second equation gives FN = mg + Fsinθ, which yields  
 

( sin )kf mg Fμ θ= + . 
 
This expression is substituted for f in the first equation to obtain  
 

F cos θ – μk (mg + F sin θ) = ma, 
so the acceleration is 

( )cos sink k
Fa g
m

θ μ θ μ= − − . 

 
From the figure, we see that 23.0 m/sa =  when 0kμ = . This implies 



 

  

237

 
23.0 m/s cos .F

m
θ=  

We also find 0a =  when 0.20kμ = : 
 

( ) 2 2 2

2

0 cos (0.20) sin (0.20)(9.8 m/s ) 3.00 m/s 0.20 sin 1.96 m/s

1.04 m/s 0.20 sin

F F
m m

F
m

θ θ θ

θ

= − − = − −

= −
 

which yields 25.2 m/s sin .F
m

θ=  Combining the two results, we get  

2

2

5.2 m/stan 1.73 60 .
3.0 m/s

θ θ
⎛ ⎞

= = ⇒ = °⎜ ⎟
⎝ ⎠

 

 
33. We denote the magnitude of the frictional force αv , where α = ⋅70 N s m . We take 

the direction of the boat’s motion to be positive. Newton’s second law gives − =αv m dv
dt

.  

Thus, 

 
0 0

v t

v

dv dt
v m

α
= −∫ ∫  

 
where v0 is the velocity at time zero and v is the velocity at time t. The integrals are 
evaluated with the result 

 
0

ln v t
v m

α⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

 
We take v = v0/2 and solve for time: 
 

0

1 1000 kg 1ln ln ln 9.9 s .
2 70 N s/m 2

m v mt
vα α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
34. The free-body diagrams for the slab and block are shown below.  
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F  is the 100 N force applied to the block, NsF  is the normal force of the floor on the slab, 

NbF  is the magnitude of the normal force between the slab and the block, f  is the force 
of friction between the slab and the block, ms is the mass of the slab, and mb is the mass 
of the block. For both objects, we take the +x direction to be to the right and the +y 
direction to be up. 
 
Applying Newton’s second law for the x and y axes for (first) the slab and (second) the 
block results in four equations: 

                     
 0

              
         0

s s

Ns Ns s

b b

Nb b

f m a
F F m g

f F m a
F m g

− =
− − =

− =
− =

 

 
from which we note that the maximum possible static friction magnitude would be 
 

2(0.60)(10 kg)(9.8 m/s ) 59 N .s Nb s bF m gμ μ= = =  
 
We check to see whether the block slides on the slab. Assuming it does not, then as = ab 
(which we denote simply as a) and we solve for f: 
 

f m F
m m

s

s b

=
+

=
+

=
(40
40

80 kg)(100 N)
 kg 10 kg

 N  

 
which is greater than fs,max so that we conclude the block is sliding across the slab (their 
accelerations are different). 
 
(a) Using f = μk NbF the above equations yield 
 

2
2(0.40)(10 kg)(9.8 m/s ) 100 N 6.1 m/s .

10 kg
k b

b
b

m g Fa
m

μ − −
= = = −  

 
The negative sign means that the acceleration is leftward. That is, 2 ˆ( 6.1 m/s )iba = − . 
 
(b) We also obtain 

2
2(0.40)(10 kg)(9.8 m/s ) 0.98 m/s .

40 kg
k b

s
s

m ga
m

μ
= − = − = −  

 
As mentioned above, this means it accelerates to the left. That is, 2 ˆ( 0.98 m/s )isa = − . 
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35. The free-body diagrams for the two blocks, treated individually, are shown below 
(first m and then M). F' is the contact force between the two blocks, and the static friction 
force f s  is at its maximum value (so Eq. 6-1 leads to fs = fs,max = μsF' where μs = 0.38). 
 
Treating the two blocks together as a single system (sliding across a frictionless floor), 
we apply Newton’s second law (with +x rightward) to find an expression for the 
acceleration: 

F m a a F
m M

= ⇒ =
+total      

 

 
 
This is equivalent to having analyzed the two blocks individually and then combined 
their equations. Now, when we analyze the small block individually, we apply Newton’s 
second law to the x and y axes, substitute in the above expression for a, and use Eq. 6-1. 
 

     

0     0.s s

FF F ma F F m
m M

f mg F mgμ

⎛ ⎞′ ′− = ⇒ = − ⎜ ⎟+⎝ ⎠
′− = ⇒ − =

 

 
These expressions are combined (to eliminate F') and we arrive at 
 

F mg
m

m Ms

=
−

+
F
HG

I
KJμ 1

 = 24.9 10 N× . 

 

36. Using Eq. 6-16, we solve for the area 2

2 ,
t

m gA
C vρ

 which illustrates the inverse 

proportionality between the area and the speed-squared. Thus, when we set up a ratio of 
areas, of the slower case to the faster case,  we obtain 
 

A
A

slow

fast

 km / h
160 km / h

= FHG
I
KJ =

310 375
2

. .  

 
37. In the solution to exercise 4, we found that the force provided by the wind needed to 
equal F = 157 N (where that last figure is not “significant’’). 
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(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the 
ground (which actually is relative to the moving stone, but we assume the stone is 
moving slowly enough that this does not invalidate the result): 
 

2
3 2

2 2(157 N) 90 m/s 3.2 10  km/h.
(0.80)(1.21 kg/m )(0.040 m )

Fv
C Aρ

= = = = ×  

 
(b) Doubling our previous result, we find the reported speed to be 6.5 × 102 km/h. 
 
(c) The result is not reasonable for a terrestrial storm. A category 5 hurricane has speeds 
on the order of 2.6 × 102 m/s. 
 
38. (a) From Table 6-1 and Eq. 6-16, we have 
 

v
F

C A
C A mg

vt
g

t

= ⇒ =
2

2 2ρ
ρ  

 
where vt = 60 m/s. We estimate the pilot’s mass at about m = 70 kg. Now, we convert v = 
1300(1000/3600) ≈ 360 m/s and plug into Eq. 6-14: 
 

D C Av mg
v

v mg v
vt t

= =
F
HG
I
KJ =

F
HG
I
KJ

1
2

1
2

22
2

2
2

ρ  

 
which yields D = (70 kg)(9.8 m/s2)(360/60)2 ≈ 2 × 104 N. 
 
(b) We assume the mass of the ejection seat is roughly equal to the mass of the pilot. 
Thus, Newton’s second law (in the horizontal direction) applied to this system of mass 
2m gives the magnitude of acceleration: 
 

a D
m

g v
v

g
t

= =
F
HG
I
KJ =

2 2
18

2

. 

 
39. For the passenger jet D C Avj j= 1

2 1
2ρ , and for the prop-driven transport 21

22t tD C Avρ= , 
where ρ1  and ρ2  represent the air density at 10 km and 5.0 km, respectively. Thus the 
ratio in question is 

( )( )
( )( )

232
1

22 3
2

0.38  kg/m 1000  km/h
2.3.

0.67  kg/m 500  km/h
j j

t t

D v
D v

ρ
ρ

= = =  

 
40. This problem involves Newton’s second law for motion along the slope. 
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(a) The force along the slope is given by  
 

 [ ]2

sin sin cos (sin cos )

(85.0 kg)(9.80 m/s ) sin 40.0 (0.04000)cos 40.0
510 N.

g NF mg F mg mg mgθ μ θ μ θ θ μ θ= − = − = −

= ° − °

=

 

 
Thus, the terminal speed of the skier is  
 

3 2

2 2(510 N) 66.0 m/s.
(0.150)(1.20 kg/m )(1.30 m )

g
t

F
v

C Aρ
= = =  

 
(b) Differentiating tv  with respect to C, we obtain 
 

3/ 2 3/ 2
3 2

2

21 1 2(510 N) (0.150)
2 2 (1.20 kg/m )(1.30 m )

(2.20 10  m/s) .

g
t

F
dv C dC dC

A

dC

ρ
− −= − = −

= − ×

 

 
41. Perhaps surprisingly, the equations pertaining to this situation are exactly those in 
Sample Problem – “Car in flat circular turn,” although the logic is a little different.  In the 
Sample Problem, the car moves along a (stationary) road, whereas in this problem the cat 
is stationary relative to the merry-go-round platform.  But the static friction plays the 
same role in both cases since the bottom-most point of the car tire is instantaneously at 
rest with respect to the race track, just as static friction applies to the contact surface 
between cat and platform.  Using Eq. 6-23 with Eq. 4-35, we find  
 

μs = (2πR/T )2/gR = 4π2R/gT 2. 
 
With T = 6.0 s and R = 5.4 m, we obtain μs = 0.60. 
 
42. The magnitude of the acceleration of the car as he rounds the curve is given by v2/R, 
where v is the speed of the car and R is the radius of the curve. Since the road is 
horizontal, only the frictional force of the road on the tires makes this acceleration 
possible. The horizontal component of Newton’s second law is f = mv2/R. If FN is the 
normal force of the road on the car and m is the mass of the car, the vertical component of 
Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the maximum value of static 
friction is  

fs,max = μs FN = μsmg. 
 
If the car does not slip, f ≤ μsmg. This means 
 

2

   .s s
v g v Rg
R

μ μ≤ ⇒ ≤  
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Consequently, the maximum speed with which the car can round the curve without 
slipping is 
 

2
max (0.60)(30.5 m)(9.8 m/s ) 13 m/s 48 km/h.sv Rgμ= = = ≈  

 
43. The magnitude of the acceleration of the cyclist as it rounds the curve is given by v2/R, 
where v is the speed of the cyclist and R is the radius of the curve. Since the road is 
horizontal, only the frictional force of the road on the tires makes this acceleration 
possible. The horizontal component of Newton’s second law is f = mv2/R. If FN is the 
normal force of the road on the bicycle and m is the mass of the bicycle and rider, the 
vertical component of Newton’s second law leads to FN = mg. Thus, using Eq. 6-1, the 
maximum value of static friction is fs,max = μs FN = μsmg. If the bicycle does not slip, f ≤ 
μsmg. This means 

v
R

g R v
gs

s

2 2

≤ ⇒ ≥μ
μ

    .  

 
Consequently, the minimum radius with which a cyclist moving at 29 km/h = 8.1 m/s can 
round the curve without slipping is 
 

2 2

min 2

(8.1 m/s) 21 m.
(0.32)(9.8 m/s )s

vR
gμ

= = =  

 
44. With v = 96.6 km/h = 26.8 m/s, Eq. 6-17 readily yields 
 

2 2
2(26.8 m/s) 94.7 m/s

7.6 m
va
R

= = =  

 
which we express as a multiple of g: 
 

2

2

94.7 m/s  9.7 .
9.80 m/s

aa g g g
g

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
45. The free-body diagrams of the student at the top and bottom of the Ferris wheel are 
shown below. At the top (the highest point in the circular motion) the seat pushes up on 
the student with a force of magnitude FN,top, while the Earth pulls down with a force of 
magnitude mg. Newton’s second law for the radial direction gives 
 

 
2

,topN
mvmg F

R
− = . 

At the bottom of the ride, ,bottomNF  is the magnitude of the upward force exerted by the 
seat. The net force toward the center of the circle is (choosing upward as the positive 
direction): 
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2

,bottomN
mvF mg

R
− = . 

 
The Ferris wheel is “steadily rotating” so the value 2 /cF mv R=  is the same everywhere.  
The apparent weight of the student is given by NF .   
 

  
 
(a) At the top, we are told that FN,top = 556 N and  mg = 667 N. This means that the seat is 
pushing up with a force that is smaller than the student’s weight, and we say the student 
experiences a decrease in his “apparent weight” at the highest point. Thus, he feels 
“light.” 
 
(b) From (a), we find the centripetal force to be 

 
2

,top 667 N 556 N 111 Nc N
mvF mg F

R
= = − = − = . 

Thus, the normal force at the bottom is  
2

,bottom 111 N 667 N 778 N.N c
mvF mg F mg
R

= + = + = + =  

 

(c) If the speed is doubled, 
2(2 ) 4(111 N) 444 Nc

m vF
R

′ = = = . Therefore, at the highest 

point we have  
,top 667 N 444 N 223 NN cF mg F′ ′= − = − = . 

 
(d) Similarly, the normal force at the lowest point is now found to be 
 

3
,bottom 444 N 667 N 1111 N 1.11 10 N.N cF F mg′ ′= + = + = ≈ ×  

 
Note: The apparent weight of the student is the greatest at the bottom and smallest at the 
top of the ride. The speed v gR=  would result in ,top 0NF = , giving the student a 
sudden sensation of  “weightlessness” at the top of the ride.  



 CHAPTER 6 244 

 
46. (a) We note that the speed 80.0 km/h in SI units is roughly 22.2 m/s.  The horizontal 
force that keeps her from sliding must equal the centripetal force (Eq. 6-18), and the 
upward force on her must equal mg. Thus,  
 

Fnet = (mg)2 + (mv2/R)2   = 547 N. 
 
(b) The angle is tan−1[(mv2/R)/(mg)] = tan−1(v2/gR) = 9.53º (as measured from a vertical 
axis). 
 
47. (a) Equation 4-35 gives T = 2πR/v = 2π(10 m)/(6.1 m/s) = 10 s. 
 
(b) The situation is similar to that of Sample Problem – “Vertical circular loop, Diavolo,” 
but with the normal force direction reversed.  Adapting Eq. 6-19, we find  
 

FN = m(g – v2/R) = 486 N ≈ 4.9 × 102 N. 
 

(c) Now we reverse both the normal force direction and the acceleration direction (from 
what is shown in Sample Problem – “Vertical circular loop, Diavolo”) and adapt Eq. 6-19 
accordingly.  Thus we obtain  
 

FN = m(g + v2/R) = 1081 N ≈ 1.1 kN. 
 
48. We will start by assuming that the normal force (on the car from the rail) points up. 
Note that gravity points down, and the y axis is chosen positive upward. Also, the 
direction to the center of the circle (the direction of centripetal acceleration) is down. 
Thus, Newton’s second law leads to 

2

.N
vF mg m
r

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 

 
(a) When v = 11 m/s, we obtain FN = 3.7 × 103 N.  
 
(b) NF  points upward. 
 
(c) When v = 14 m/s, we obtain FN = –1.3 × 103 N, or  | FN | = 1.3 × 103 N. 
 
(d) The fact that this answer is negative means that NF  points opposite to what we had 

assumed. Thus, the magnitude of NF  is | |NF = 1.3 kN and its direction is down. 
 
49. At the top of the hill, the situation is similar to that of Sample Problem – “Vertical 
circular loop, Diavolo,” but with the normal force direction reversed.  Adapting Eq. 6-19, 
we find  
 

FN = m(g – v2/R). 
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Since FN = 0 there (as stated in the problem) then v2 = gR.  Later, at the bottom of the 
valley, we reverse both the normal force direction and the acceleration direction (from 
what is shown in the Sample Problem) and adapt Eq. 6-19 accordingly.  Thus we obtain  
 

FN = m(g + v2/R) = 2mg = 1372 N ≈ 1.37 × 103 N. 
 
50. The centripetal force on the passenger is 2 /F mv r= . 
 
(a) The slope of the plot at 8.30 m/sv =  is 
 

8.30 m/s 8.30 m/s

2 2(85.0 kg)(8.30 m/s) 403 N s/m.
3.50 mv v

dF mv
dv r= =

= = = ⋅  

 
(b) The period of the circular ride is 2 /T r vπ= . Thus,  
 

22 2

2

2 4 ,mv m r mrF
r r T T

π π⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
and the variation of F with respect to T while holding r constant is 
 

2

3

8 .mrdF dT
T

π
= −  

The slope of the plot at 2.50 sT =  is 
 

2 2
3

3 3
2.50 s 2.50 s

8 8 (85.0 kg)(3.50 m) 1.50 10 N/s.
(2.50 s)T T

dF mr
dT T

π π
= =

= − = = − ×  

  
51. The free-body diagram for the airplane of mass 
m is shown to the right. We note that lF  is the force 
of aerodynamic lift and a  points rightwards in the 
figure. We also note that | | /a v R= 2 . Applying 
Newton’s law to the axes of the problem (+x 
rightward and +y upward) we obtain 
 

2

sin

cos .
l

l

vF m
R

F mg

θ

θ

=

=
 

 

 

Eliminating mass from these equations leads to tanθ =
v
gR

2

. The equation allows us to 

solve for the radius R. 
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With v = 480 km/h = 133 m/s and θ = 40°, we find  
 

2 2
3

2

(133 m/s) 2151 m 2.2 10  m
tan (9.8 m/s ) tan 40
vR

g θ
= = = ≈ ×

°
. 

 
52. The situation is somewhat similar to that shown in the “loop-the-loop” example done 
in the textbook (see Figure 6-10) except that, instead of a downward normal force, we are 
dealing with the force of the boom FB  on the car, which is capable of pointing any 
direction. We will assume it to be upward as we apply Newton’s second law to the car (of 
total weight 5000 N): BF W ma− =  where /m W g=  and 2 /a v r= − . Note that the 
centripetal acceleration is downward (our choice for negative direction) for a body at the 
top of its circular trajectory. 
 
(a) If r = 10 m and v = 5.0 m/s, we obtain FB = 3.7 × 103 N = 3.7 kN.  
 
(b) The direction of FB is up. 
 
(c) If r = 10 m and v = 12 m/s, we obtain FB = – 2.3 × 103 N = – 2.3 kN, or |FB | = 2.3 kN. 
 
(d) The minus sign indicates that FB  points downward. 
 
53. The free-body diagram (for the hand straps of mass m) is the view that a passenger 
might see if she was looking forward and the streetcar was curving toward the right (so 
a  points rightward in the figure). We note that | | /a v R= 2  where v = 16 km/h = 4.4 m/s. 
 
Applying Newton’s law to the axes of the problem (+x is rightward and +y is upward) we 
obtain 

 
2

sin

cos  .

vT m
R

T mg

θ

θ

=

=
 

 
We solve these equations for the angle: 

θ =
F
HG
I
KJ

−tan 1
2v

Rg
 

which yields θ = 12°. 
  
                                     
54. The centripetal force on the passenger is 2 /F mv r= . 
 

(a) The variation of F with respect to r while holding v constant is 
2

2

mvdF dr
r

= − . 
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(b) The variation of F with respect to v while holding r constant is 2mvdF dv
r

= . 

 
(c) The period of the circular ride is 2 /T r vπ= . Thus,  
 

22 2

2

2 4 ,mv m r mrF
r r T T

π π⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
and the variation of F with respect to T while holding r constant is 
 

32 3
2

3 2

8 8 .
2

mr v mvdF dT mr dT dT
T r r

π π
π π

⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
55. We note that the period T is eight times the time between flashes ( 1

2000  s), so T = 
0.0040 s. Combining Eq. 6-18 with Eq. 4-35 leads to 
 

F = 
4mπ2R

 T
2   = 

4(0.030 kg)π2(0.035 m)
 (0.0040 s)2   = 2.6 × 103 N . 

 
56. We refer the reader to Sample Problem – “Car in banked circular turn,” and use the 
result Eq. 6-26: 

θ =
F
HG
I
KJ

−tan 1
2v

gR
 

 
with v = 60(1000/3600) = 17 m/s and R = 200 m. The banking angle is therefore θ = 8.1°. 
Now we consider a vehicle taking this banked curve at v' = 40(1000/3600) = 11 m/s. Its 
(horizontal) acceleration is 2  /a v R′ ′= , which has components parallel to the incline and 
perpendicular to it: 

2

| |

2

coscos  

sinsin .

va a
R

va a
R

θθ

θθ⊥

′
′= =

′
′= =

 

 
These enter Newton’s second law as follows (choosing downhill as the +x direction and 
away-from-incline as +y): 

| |sin    
   cos

s

N

mg f ma
F mg ma

θ
θ ⊥

− =

− =
 

and we are led to 
2

2

sin cos / .
cos sin /

s

N

f mg mv R
F mg mv R

θ θ
θ θ

′−
=

′+
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We cancel the mass and plug in, obtaining fs/FN = 0.078. The problem implies we should 
set fs = fs,max so that, by Eq. 6-1, we have μs = 0.078. 
 
57. For the puck to remain at rest the magnitude of the tension force T of the cord must 
equal the gravitational force Mg on the cylinder. The tension force supplies the 
centripetal force that keeps the puck in its circular orbit, so T = mv2/r. Thus Mg = mv2/r. 
We solve for the speed: 
 

2(2.50 kg)(9.80 m/s )(0.200 m) 1.81 m/s.
1.50 kg

Mgrv
m

= = =  

 
58. (a) Using the kinematic equation given in Table 2-1, the deceleration of the car is 
 
 2 2 2

0 2 0 (35 m/s) 2 (107 m)v v ad a= + ⇒ = +  
 
which gives 25.72 m/s .a = −  Thus, the force of friction required to stop the car is 
 
 2 3| | (1400 kg)(5.72 m/s ) 8.0 10 N.f m a= = ≈ ×  
 
(b) The maximum possible static friction is  
 

2 3
,max (0.50)(1400 kg)(9.80 m/s ) 6.9 10 N.s sf mgμ= = ≈ ×  

 
(c) If 0.40kμ = , then k kf mgμ= and the deceleration is ka gμ= − . Therefore, the speed 
of the car when it hits the wall is  
 
 2 2 2

0 2 (35 m/s) 2(0.40)(9.8 m/s )(107 m) 20 m/s.v v ad= + = − ≈  
 
(d) The force required to keep the motion circular is 
 

 
2 2

40 (1400 kg)(35.0 m/s) 1.6 10 N.
107 mr

mvF
r

= = = ×  

 
(e) Since ,maxr sF f> , no circular path is possible.  
 
59. The free-body diagram for the ball is shown below. Tu  is the tension exerted by the 
upper string on the ball, T  is the tension force of the lower string, and m is the mass of 
the ball. Note that the tension in the upper string is greater than the tension in the lower 
string. It must balance the downward pull of gravity and the force of the lower string. 
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(a) We take the +x direction to be leftward (toward the center of the circular orbit) and +y 
upward. Since the magnitude of the acceleration is a = v2/R, the x component of 
Newton’s second law is 

T T mv
Ru cos cos ,θ θ+ =

2

 

 
where v is the speed of the ball and R is the radius of its orbit. The y component is 
 

T T mgu sin sin .θ θ− − = 0  
 
The second equation gives the tension in the lower string: T T mgu= − / sinθ . Since the 
triangle is equilateral θ = 30.0°. Thus, 
 

 
2(1.34 kg)(9.80 m/s )35.0 N 8.74 N.

sin 30.0
T = − =

°
 

(b) The net force has magnitude 
 

( )net,str cos (35.0 N 8.74 N)cos30.0 37.9 N.uF T T θ= + = + ° =  
 
(c) The radius of the path is  

R = ((1.70 m)/2)tan 30.0° = 1.47 m. 
 
Using Fnet,str = mv2/R, we find that the speed of the ball is 
 

net,str (1.47 m)(37.9 N) 6.45 m/s.
1.34 kg

RF
v

m
= = =  

 
(d) The direction of net,strF is leftward (“radially inward’’). 
 
60. The free-body diagrams for the two boxes are shown below. T is the magnitude of the 
force in the rod (when T > 0 the rod is said to be in tension and when T < 0 the rod is 
under compression), 2NF  is the normal force on box 2 (the uncle box), 1NF  is the the 

normal force on the aunt box (box 1), f1  is kinetic friction force on the aunt box, and f2  
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is kinetic friction force on the uncle box. Also, m1 = 1.65 kg is the mass of the aunt box 
and m2 = 3.30 kg is the mass of the uncle box (which is a lot of ants!). 
 
 

 
 
For each block we take +x downhill (which is toward the lower-right in these diagrams) 
and +y in the direction of the normal force. Applying Newton’s second law to the x and y 
directions of first box 2 and next box 1, we arrive at four equations: 
 

 

2 2 2

2 2

1 1 1

1 1

sin
cos 0

sin
cos 0

N

N

m g f T m a
F m g

m g f T m a
F m g

θ
θ

θ
θ

− − =
− =

− + =
− =

 

 
which, when combined with Eq. 6-2 (f1 = μ1FN1 where μ1 = 0.226 and f2 = μ2FN2 where 
μ2 = 0.113), fully describe the dynamics of the system. 
 
(a) We solve the above equations for the tension and obtain 
 

T m m g
m m

=
+

F
HG

I
KJ − =2 1

2 1
1 2 105 (  N.μ μ θ) cos .  

 
(b) These equations lead to an acceleration equal to 
 

a g m m
m m

= −
+
+

F
HG

I
KJ

F
HG

I
KJ =sin cos . .θ μ μ θ2 2 1 1

2 1

362 m / s2  

 
(c) Reversing the blocks is equivalent to switching the labels. We see from our algebraic 
result in part (a) that this gives a negative value for T (equal in magnitude to the result we 
got before). Thus, the situation is as it was before except that the rod is now in a state of 
compression. 
 
61. Our system consists of two blocks, one on top of the other. If we pull the bottom 
block too hard, the top block will slip on the bottom one. We’re interested in the 
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maximum force that can be applied such that the two will move together. The free-body 
diagrams for the two blocks are shown below.  

  
We first calculate the coefficient of static friction for the surface between the two blocks. 
When the force applied is at a maximum, the frictional force between the two blocks 
must also be a maximum. Since tF = 12 N of force has to be applied to the top block for 
slipping to take place, using ,max ,t s s N t s tF f F m gμ μ= = = , we have 
 

2

12 N 0.31
(4.0 kg)(9.8 m/s )

t
s

t

F
m g

μ = = = . 

 
Using the same reasoning, for the two masses to move together, the maximum applied 
force would be 

( )s t bF m m gμ= + . 
 
(a) Substituting the value of sμ  found above, the maximum horizontal force has a 
magnitude  

2( ) (0.31)(4.0 kg 5.0 kg)(9.8 m/s ) 27 Ns t bF m m gμ= + = + =  
 
(b) The maximum acceleration is  
 

2 2
max (0.31)(9.8 m/s ) 3.0 m/ss

t b

Fa g
m m

μ= = = =
+

. 

 
62. The free-body diagram for the stone is shown below, with F  being the force applied 
to the stone, NF  the downward normal force of the ceiling on the stone, mg  the force of 

gravity, and f  the force of friction. We take the +x direction to be horizontal to the right 
and the +y direction to be up. The equations for the x and the y components of the force 
according to Newton’s second law are: 
 

cos
sin 0.

x

y N

F F f ma
F F F mg

θ
θ

= − =
= − − =  
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Now ,k Nf Fμ=  and the second equation from above gives sin ,NF F mgθ= −  which 
yields ( sin )kf F mgμ θ= − . 

 
 
This expression is substituted for f in the first equation to obtain  
 

F cos θ – μk (F sin θ − mg ) = ma. 
 
For 0a = , the force is 

.
cos sin

k

k

mgF μ
θ μ θ
−

=
−

 

 
With μk = 0.65, m =5.0 kg, and θ = 70º, we obtain F = 118 N. 
 
63. (a) The free-body diagram for the person (shown as an L-shaped block) is shown 
below. The force that she exerts on the rock slabs is not directly shown (since the 
diagram should only show forces exerted on her), but it is related by Newton’s third law) 
to the normal forces 1NF  and 2NF  exerted horizontally by the slabs onto her shoes and 
back, respectively. We will show in part (b) that FN1 = FN2 so that there is no ambiguity 
in saying that the magnitude of her push is FN2. The total upward force due to (maximum) 
static friction is f f f= +1 2  where 1 1 1s Nf Fμ=  and 2 2 2s Nf Fμ= . The problem gives the 
values μs1 = 1.2 and μs2 = 0.8. 

 
 
(b) We apply Newton’s second law to the x and y axes (with +x rightward and +y upward 
and there is no acceleration in either direction). 
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1 2

1 2

0
0

N NF F
f f mg

− =

+ − =
 

 
The first equation tells us that the normal forces are equal: FN1 = FN2 = FN. Consequently, 
from Eq. 6-1, 

1 s 1

2 s 2

N

N

f F

f F

μ

μ

=

=
 

we conclude that 
s 1

1 2
s 2

.f f
μ
μ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

Therefore, f1 + f2 – mg = 0 leads to 
 

s 1
2

s 2

1 f mg
μ
μ

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
which (with m = 49 kg) yields f2 = 192 N. From this we find 2 2/ 240 N.N sF f μ= =  This 
is equal to the magnitude of the push exerted by the rock climber. 
 
(c) From the above calculation, we find 1 s1 288 N,Nf Fμ= =  which amounts to a fraction 
 

f
W

1 288
49 9 8

0 60= =b g b g. .  

or 60% of her weight. 
 
64. (a) The upward force exerted by the car on the passenger is equal to the downward 
force of gravity (W = 500 N) on the passenger. So the net force does not have a vertical 
contribution; it only has the contribution from the horizontal force (which is necessary for 
maintaining the circular motion). Thus F Fnet  N.= = 210  
 

(b) Using Eq. 6-18, we have (210 N)(470 m) 44.0 m/s.
51.0 kg

FRv
m

= = =  

 
65. The layer of ice has a mass of 
 

( )3 5
ice 917 kg/m  (400 m 500 m 0.0040 m) 7.34 10  kg.m = × × = ×  

 
This added to the mass of the hundred stones (at 20 kg each) comes to m = 7.36 × 105 kg. 
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(a) Setting F = D (for Drag force) we use Eq. 6-14 to find the wind speed v along the 
ground (which actually is relative to the moving stone, but we assume the stone is 
moving slowly enough that this does not invalidate the result): 
 

( )( )( )
( )( )( )

5 2

3 2
ice ice

0.10 7.36 10 kg 9.8 m/s
19 m/s 69 km/h.

4 4 0.002 1.21 kg/m 400 500 m
k mgv

C A
μ

ρ

×
= = = ≈

×
 

 
(b) Doubling our previous result, we find the reported speed to be 139 km/h. 
 
(c) The result is reasonable for storm winds. (A category-5 hurricane has speeds on the 
order of 2.6 × 102 m/s.) 
 
66. Note that since no static friction coefficient is mentioned, we assume fs is not relevant 
to this computation. We apply Newton's second law to each block's x axis, which for m1 
is positive rightward and for m2 is positive downhill: 
 

 T – fk  =  m1a 
                m2g sinθ – T  =  m2a . 

 
Adding the equations, we obtain the acceleration: 
 

2

1 2

sin km g fa
m m

θ −
=

+
. 

For fk = μkFN = μk m1g, we obtain  
 

 
2 2

2(3.0 kg)(9.8 m/s )sin 30 (0.25)(2.0 kg)(9.8 m/s ) 1.96 m/s
3.0 kg 2.0 kg

a ° −
= =

+
. 

 
Returning this value to either of the above two equations, we find T = 8.8 N. 
 
67. Each side of the trough exerts a normal force on the crate. The first diagram shows 
the view looking in toward a cross section.  
 

 
The net force is along the dashed line. Since each of the normal forces makes an angle of 
45° with the dashed line, the magnitude of the resultant normal force is given by  
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2 cos 45 2Nr N NF F F= ° = . 

 
The second diagram is the free-body diagram for the crate (from a “side” view, similar to 
that shown in the first picture in Fig. 6-51). The force of gravity has magnitude mg, 
where m is the mass of the crate, and the magnitude of the force of friction is denoted by f. 
We take the +x direction to be down the incline and +y to be in the direction of NrF . Then 
the x and the y components of Newton’s second law are 
 

   x:        mg sin θ – f = ma 
 y:    FNr – mg cos θ = 0. 

 
Since the crate is moving, each side of the trough exerts a force of kinetic friction, so the 
total frictional force has magnitude  
 
 2 2 / 2 2k N k Nr k Nrf F F Fμ μ μ= = = . 
 
Combining this expression with FNr = mg cos θ and substituting into the x component 
equation, we obtain  

mg mg masin cosθ θ− =2 . 
 
Therefore a g k= −(sin cos )θ μ θ2 . 
 
68. (a) To be on the verge of sliding out means that the force of static friction is acting 
“down the bank” (in the sense explained in the problem statement) with maximum 
possible magnitude.  We first consider the vector sum F  

→
 of the (maximum) static 

friction force and the normal force.  Due to the facts that they are perpendicular and their 
magnitudes are simply proportional (Eq. 6-1), we find F  

→
 is at angle (measured from the 

vertical axis) φ = θ + θs, where tanθs = μs (compare with Eq. 6-13), and θ is the bank 
angle (as stated in the problem).  Now, the vector sum of F  and the vertically downward 
pull (mg) of gravity must be equal to the (horizontal) centripetal force (mv2/R), which 
leads to a surprisingly simple relationship: 

tanφ = 
2 2/mv R v

mg Rg
= . 

 
Writing this as an expression for the maximum speed, we have  
 

1
max

(tan )tan( tan )
1 tan

s
s

s

Rgv Rg θ μθ μ
μ θ

− +
= + =

−
. 

 
(b) The graph is shown below (with θ in radians):  
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(c) Either estimating from the graph (μs = 0.60, upper curve) or calculating it more 
carefully leads to v = 41.3 m/s = 149 km/h when θ = 10º = 0.175 radian.  
 
(d) Similarly (for μs = 0.050, the lower curve) we find v = 21.2 m/s = 76.2 km/h when θ = 
10º = 0.175 radian. 
 
69. For simplicity, we denote the 70° angle as θ and the magnitude of the push (80 N) as 
P. The vertical forces on the block are the downward normal force exerted on it by the 
ceiling, the downward pull of gravity (of magnitude mg) and the vertical component of 
P (which is upward with magnitude P sin θ). Since there is no acceleration in the vertical 
direction, we must have 

sinNF P mgθ= −  
 
in which case the leftward-pointed kinetic friction has magnitude 
 

f P mgk k= −μ θ( sin ).  
 
Choosing +x rightward, Newton’s second law leads to 
 

P f ma a P u P mg
mk

kcos cos ( sin )   θ θ θ
− = ⇒ =

− −  

 
which yields a = 3.4 m/s2 when μk = 0.40 and m = 5.0 kg. 
 
70. (a) We note that R (the horizontal distance from the bob to the axis of rotation) is the 
circumference of the circular path divided by 2π; therefore, R =  0.94/2π = 0.15 m.  The 
angle that the cord makes with the horizontal is now easily found:  
 

θ = cos−1(R/L) = cos−1(0.15 m/0.90 m) = 80º. 
 
The vertical component of the force of tension in the string is Tsinθ and must equal the 
downward pull of gravity (mg).  Thus,  
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0.40 N
sin
mgT

θ
= = . 

 
Note that we are using T for tension (not for the period). 
 
(b) The horizontal component of that tension must supply the centripetal force (Eq. 6-18), 
so we have Tcosθ = mv2/R.  This gives speed v = 0.49 m/s. This divided into the 
circumference gives the time for one revolution: 0.94/0.49 = 1.9 s. 
 
71. (a) To be “on the verge of sliding” means the applied force is equal to the maximum 
possible force of static friction (Eq. 6-1, with FN = mg in this case):  

 
fs,max = μsmg = 35.3 N. 

 
(b) In this case, the applied force F  

→
 indirectly decreases the maximum possible value of 

friction (since its y component causes a reduction in the normal force) as well as directly 
opposing the friction force itself (because of its x component).  The normal force turns 
out to be  

FN = mg – Fsinθ 
 
where θ = 60º, so that the horizontal equation (the x application of Newton’s second law) 
becomes  

Fcosθ – fs,max = Fcosθ – μs(mg – Fsinθ ) = 0     39.7 N.F⇒ =  
 
(c) Now, the applied force F  

→
 indirectly increases the maximum possible value of friction 

(since its y component causes a reduction in the normal force) as well as directly 
opposing the friction force itself (because of its x component).  The normal force in this 
case turns out to be  

FN = mg + Fsinθ, 
 
where θ = 60º, so that the horizontal equation becomes  
 

Fcosθ – fs,max = Fcosθ – μs(mg + Fsinθ ) = 0    320 N.F⇒ =  
 
72. With θ = 40º, we apply Newton’s second law to the “downhill” direction:   
 

mg sinθ – f  =  ma, 
 

      f = fk = μk FN  = μk mg cosθ 
 
using Eq. 6-12.  Thus,  

a = 0.75 m/s2 = g(sinθ – μk cosθ ) 
 
determines the coefficient of kinetic friction: μk = 0.74. 
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73. (a) With θ = 60º, we apply Newton’s second law to the “downhill” direction:   
 

 mg sinθ – f  =  ma 
           f = fk = μk FN = μk mg cosθ. 

Thus,  
a = g(sinθ – μk cosθ ) = 7.5 m/s2. 

 
(b) The direction of the acceleration a  is down the slope. 
 
(c) Now the friction force is in the “downhill” direction (which is our positive direction) 
so that we obtain  

a = g(sinθ + μk cosθ ) = 9.5 m/s2. 
 
(d) The direction is down the slope.  
 
74. The free-body diagram for the puck is shown on 
the right. NF  is the normal force of the ice on the 

puck, f is the force of friction (in the –x direction), 
and mg  is the force of gravity. 
 
(a) The horizontal component of Newton’s second 
law gives –f = ma, and constant acceleration 
kinematics (Table 2-1) can be used to find the 
acceleration. 
  
Since the final velocity is zero, v v ax2

0
2 2= +  leads to a v x= − 0

2 2/ . This is substituted 
into the Newton’s law equation to obtain 
 

( )( )
( )

22
0 0.110 kg 6.0 m/s

0.13 N.
2 2 15 m

mvf
x

= = =  

 
(b) The vertical component of Newton’s second law gives FN – mg = 0, so FN = mg which 
implies (using Eq. 6-2) f = μk mg. We solve for the coefficient: 
 

( ) 2

0.13 N 0.12 .
0.110 kg (9.8 m/s )k

f
mg

μ = = =  

 
75. We may treat all 25 cars as a single object of mass m = 25 × 5.0 × 104 kg and (when 
the speed is 30 km/h = 8.3 m/s) subject to a friction force equal to  
 

f = 25 × 250 × 8.3 = 5.2 × 104 N. 
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(a) Along the level track, this object experiences a “forward” force T exerted by the 
locomotive, so that Newton’s second law leads to 
 

4 6 5    5.2 10 (1.25 10 )(0.20) 3.0 10  NT f ma T− = ⇒ = × + × = × . 
 
 (b) The free-body diagram is shown below, with θ as the angle of the incline.  
 

 
The +x direction (which is the only direction to which we will be applying Newton’s 
second law) is uphill (to the upper right in our sketch). 
 
Thus, we obtain 
 sin  = T f mg maθ− −  
 
where we set a = 0 (implied by the problem statement) and solve for the angle. We obtain 
θ = 1.2°.  
 
76. An excellent discussion and equation development related to this problem is given in 
Sample Problem – “Friction, applied force at an angle.” Using the result, we obtain  
 

1 1tan tan 0.50 27sθ μ− −= = = °  
 
which implies that the angle through which the slope should be reduced is  
 

φ = 45° – 27° ≈ 20°. 
 
77. We make use of Eq. 6-16, which yields 
 

2mg
CρπR2  =  

2(6)(9.8)
(1.6)(1.2)π(0.03)2  = 147 m/s. 

 
78. (a) The coefficient of static friction is μs = tan(θslip) = 0.577 0.58≈ . 
 
(b) Using  

mg sinθ – f = ma 
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         f = fk = μk FN = μk mg cosθ 
 
and a = 2d/t2 (with d = 2.5 m and t = 4.0 s), we obtain μk = 0.54. 
 
79. The free-body diagrams for blocks A and B are shown below.  
 

  
 
Newton’s law gives  
 sinA Am g T m aθ − =  
 
for block A (where θ = 30º).  For block B, we have 
 

k BT f m a− = . 
 
Now the frictional force is given by ,k k N B k Bf F m gμ μ= = . The equations allow us to 
solve for the tension T and the acceleration a.  
 
(a) Combining the above equations to solve for T, we obtain 
 

 ( ) ( ) 2(4.0 kg)(2.0 kg)sin sin 30 0.50 (9.80 m/s ) 13 N
4.0 kg 2.0 kg

A B
k

A B

m mT g
m m

θ μ= + = ° + =
+ +

. 

 
(b) Similarly, the acceleration of the two-block system is  
 

2 2sin (4.0 kg)sin 30 (0.50)(2.0 kg) (9.80 m/s ) 1.6 m/s
4.0 kg 2.0 kg

A k B

A B

m ma g
m m

θ μ⎛ ⎞− ° −
= = =⎜ ⎟+ +⎝ ⎠

. 

 
80. We use Eq. 6-14, D C Av= 1

2
2ρ , where ρ is the air density, A is the cross-sectional 

area of the missile, v is the speed of the missile, and C is the drag coefficient. The area is 
given by A = πR2, where R = 0.265 m is the radius of the missile. Thus 
 

D = = ×
1
2

0 75 12 0 265 250 6 2 102 2 3( . ) . . . . kg / m  m  m / s  N3c h b g b gπ  
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81. The magnitude of the acceleration of the cyclist as he moves along the horizontal 
circular path is given by v2/R, where v is the speed of the cyclist and R is the radius of the 
curve.  

 
 
The horizontal component of Newton’s second law is fs = mv2/R, where fs is the static 
friction exerted horizontally by the ground on the tires. Similarly, if FN is the vertical 
force of the ground on the bicycle and m is the mass of the bicycle and rider, the vertical 
component of Newton’s second law leads to 833 NNF mg= = . 
 
(a) The frictional force is  

( )( )22 85.0 kg 9.00 m/s
275  N.

25.0 ms
mvf

R
= = =  

 
(b) Since the frictional force sf and NF , the normal force exerted by the road, are 
perpendicular to each other, the magnitude of the force exerted by the ground on the 
bicycle is therefore 
 

2 2 2 2(275 N) (833 N) 877 N.s NF f F= + = + =  
 
82. At the top of the hill the vertical forces on the car are the upward normal force 
exerted by the ground and the downward pull of gravity. Designating +y downward, we 
have 

2

N
mvmg F

R
− =  

 
from Newton’s second law. To find the greatest speed without leaving the hill, we set FN 
= 0 and solve for v: 
 

2(9.8 m/s )(250 m) 49.5 m/sv gR= = =  = 49.5(3600/1000) km/h = 178 km/h. 
 
83. (a) The push (to get it moving) must be at least as big as fs,max = μs FN  (Eq. 6-1, with 
FN = mg in this case), which equals (0.51)(165 N) = 84.2 N. 
 
(b) While in motion, constant velocity (zero acceleration) is maintained if the push is 
equal to the kinetic friction force fk = μk FN = μk mg = 52.8 N. 
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(c) We note that the mass of the crate is 165/9.8 = 16.8 kg.  The acceleration, using the 
push from part (a), is  

a = (84.2 N – 52.8 N)/(16.8 kg)  ≈ 1.87 m/s2. 
 

84. (a) The x component of F  
→

 tries to move the crate while its y component indirectly 
contributes to the inhibiting effects of friction (by increasing the normal force).  
Newton’s second law implies 

x direction:  Fcosθ – fs = 0 
 

           y direction:  FN – Fsinθ – mg = 0. 
 
To be “on the verge of sliding” means fs = fs,max = μsFN  (Eq. 6-1).  Solving these 
equations for F (actually, for the ratio of F to mg) yields 
 

 
cos sin

s

s

F
mg

μ
θ μ θ

=
−

 . 

 
This is plotted below (θ in degrees). 

 
 
(b) The denominator of our expression (for F/mg) vanishes when  
 

1
inf

1cos sin 0     tans
s

θ μ θ θ
μ

− ⎛ ⎞
− = ⇒ = ⎜ ⎟

⎝ ⎠
 

For 0.70sμ = , we obtain
1

inf
1tan 55

s

θ
μ

− ⎛ ⎞
= = °⎜ ⎟

⎝ ⎠ . 

(c) Reducing the coefficient means increasing the angle by the condition in part (b). 
 

(d) For 0.60sμ = we have 
1

inf
1tan 59

s

θ
μ

− ⎛ ⎞
= = °⎜ ⎟

⎝ ⎠ . 

 
85. The car is in “danger of sliding” down when  
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 tan tan 35.0 0.700.sμ θ= = ° =  
 
This value represents a 3.4% decrease from the given 0.725 value. 
 
86. (a) The tension will be the greatest at the lowest point of the swing.  Note that there is 
no substantive difference between the tension T in this problem and the normal force FN 
in Sample Problem – “Vertical circular loop, Diavolo.”  Equation 6-19 of that Sample 
Problem examines the situation at the top of the circular path (where FN is the least), and 
rewriting that for the bottom of the path leads to  

T = mg + mv2/r 
 
where FN is at its greatest value. 
 
(b) At the breaking point T = 33 N = m(g + v2/r) where m = 0.26 kg and r = 0.65 m.  
Solving for the speed, we find that the cord should break when the speed (at the lowest 
point) reaches 8.73 m/s. 
 
87. The free-body diagram is shown below (not to scale). The mass of the car is m = 
(10700/9.80) kg = 1.09 × 103 kg. We choose “inward” (horizontally towards the center of 
the circular path) as the positive direction. The normal force is FN = mg in this situation, 
and the required frictional force is 2 / .sf mv R=  

 
 
(a) With a speed of v = 13.4 m/s and a radius R = 61 m, Newton’s second law (using Eq. 
6-18) leads to 

f mv
Rs = = ×

2
3321 10. N .  

 
(b) The maximum possible static friction is found to be 
 

( )( ) 3
,max 0.35 10700 N 3.75 10 Ns sf mgμ= = = ×  

 
using Eq. 6-1. We see that the static friction found in part (a) is less than this, so the car 
rolls (no skidding) and successfully negotiates the curve. 
 
 88. For the m2 = 1.0 kg block, application of Newton's laws result in 
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 2

2

cos       axis
sin 0       axis.  

k

N

F T f m a x
F F m g y

θ
θ
− − =

− − =
 

 
Since fk = μk FN, these equations can be combined into an equation to solve for a: 
 
 2 2(cos sin )k kF T m g m aθ μ θ μ− − − = . 

Similarly (but without the applied push) we analyze the m1 = 2.0 kg block: 

1

1

     axis
0       axis.  

k

N

T f m a x
F m g y

′− =
′ − =

 

Using fk = μk NF ′ , the equations can be combined: 
 
 1 1kT m g m aμ− = . 

Subtracting the two equations for a and solving for the tension, we obtain 
 

 1

1 2

(cos sin ) (2.0 kg)[cos35 (0.20)sin 35 ] (20 N) 9.4 N.
2.0 kg 1.0 kg

kmT F
m m
θ μ θ− ° − °

= = =
+ +

 

 
89. We apply Newton’s second law (as Fpush – f = ma).  If we find Fpush < fmax, we 
conclude “no, the cabinet does not move” (which means a is actually 0 and f = Fpush), and 
if we obtain a > 0 then it is moves (so f = fk).  For fmax and fk  we use Eq. 6-1 and Eq. 6-2 
(respectively), and in those formulas we set the magnitude of the normal force equal to 
556 N.  Thus, fmax = 378 N and  fk = 311 N. 
 
(a) Here we find Fpush < fmax, which leads to f = Fpush = 222 N. 
 
(b) Again we find Fpush < fmax, which leads to f = Fpush = 334 N. 
 
(c) Now we have Fpush > fmax, which means it moves and  f = fk = 311 N. 
 
(d) Again we have Fpush > fmax, which means it moves and  f = fk = 311 N. 
 
(e) The cabinet moves in (c) and (d). 
 
90. Analysis of forces in the horizontal direction (where there can be no acceleration) 
leads to the conclusion that F = FN; the magnitude of the normal force is 60 N.  The 
maximum possible static friction force is therefore μsFN = 33 N, and the kinetic friction 
force (when applicable) is μkFN = 23 N. 
 
(a) In this case, P  

→
 = 34 N upward.  Assuming f  

→
 points down, then Newton's second 

law for the y leads to 
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P – mg – f  =  ma. 
 

If we assume f = fs and a = 0, we obtain f = (34 – 22) N = 12 N.  This is less than fs, max, 
which shows the consistency of our assumption.  The answer is: fs 

→
 = 12 N down. 

 
(b) In this case, P  

→
 = 12 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (12 – 22) N = –10 N.  Thus, | fs | < fs, max, justifying our assumption 
that the block is stationary, but its negative value tells us that our initial assumption about 
the direction of f  

→
 is incorrect in this case.  Thus, the answer is: fs 

→
 = 10 N up. 

 
(c) In this case, P  

→
 = 48 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (48 – 22) N = 26 N.  Thus, we again have fs < fs, max, and our answer 
is:  fs 

→
 = 26 N down. 

 
(d) In this case, P  

→
 = 62 N upward.  The above equation, with the same assumptions as in 

part (a), leads to f = (62 – 22) N = 40 N, which is larger than fs, max, invalidating our 
assumptions.  Therefore, we take f = fk and a ≠ 0 in the above equation; if we wished to 
find the value of a we would find it to be positive, as we should expect.  The answer is:  
fk 
→

 = 23 N down. 
 
(e) In this case, P  

→
 = 10 N downward.  The above equation (but with P replaced with −P) 

with the same assumptions as in part (a), leads to f = (–10 – 22) N = –32 N.  Thus, we 
have | fs | < fs, max, justifying our assumption that the block is stationary, but its negative 
value tells us that our initial assumption about the direction of f  

→
 is incorrect in this case.  

Thus, the answer is: fs 
→

 = 32 N up. 
 
(f) In this case, P  

→
 = 18 N downward.  The above equation (but with P replaced with –P) 

with the same assumptions as in part (a), leads to f = (–18 – 22) N = –40 N, which is 
larger (in absolute value) than fs, max, invalidating our assumptions.  Therefore, we take f = 
fk and a ≠ 0 in the above equation; if we wished to find the value of a we would find it to 
be negative, as we should expect.  The answer is:  fk 

→
 = 23 N up. 

 
(g) The block moves up the wall in case (d) where a > 0. 
 
(h) The block moves down the wall in case (f) where a < 0. 
 
(i) The frictional force fs 

→
 is directed down in cases (a), (c), and (d). 

 
91. The free-body diagram for the first part of this problem (when the block is sliding 
downhill with zero acceleration) is shown below (left).  
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Newton’s second law gives 
 

sin sin 0
cos 0.

k k N x

N y

mg f mg F ma
mg F ma

θ θ μ
θ

− = − = =
− = =  

 
The two equations can be combined to give tankμ θ= . 
 
Now (for the second part of the problem, with the block projected uphill) the friction 
direction is reversed (see figure above right). Newton’s second law for the uphill motion 
(and Eq. 6-12) leads to  

sin sin
cos 0.

k k N x

N y

mg f mg F ma
mg F ma

θ θ μ
θ

+ = + =
− = =  

 
Note that by our convention, 0xa >  means that the acceleration is downhill, and 
therefore, the speed of the block will decrease as it moves up the incline. 
 
(a) Using tankμ θ=  and cosNF mg θ= , we find the x-component of the acceleration to 
be   

(tan )( cos )sin sin 2 sink N
x

F mga g g g
m m

μ θ θθ θ θ= + = + = . 

 
The distance the block travels before coming to a stop can be found by using Eq. 2-16: 

2 2
0 2f xv v a x= − Δ , which yields 

2 2 2
0 0 0

2 2(2 sin ) 4 sinx

v v vx
a g gθ θ

Δ = = = . 

 
(b) We usually expect μs > μk  (see the discussion in Section 6-1). The “angle of repose” 
(the minimum angle necessary for a stationary block to start sliding downhill) is μs = 
tan(θrepose).  Therefore, we expect θrepose > θ   found in part (a).  Consequently, when the 
block comes to rest, the incline is not steep enough to cause it to start slipping down the 
incline again. 
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92. Consider that the car is “on the verge of sliding out,” meaning that the force of static 
friction is acting “down the bank” (or “downhill” from the point of view of an ant on the 
banked curve) with maximum possible magnitude.  We first consider the vector sum F  

→
 

of the (maximum) static friction force and the normal force.  Due to the facts that they are 
perpendicular and their magnitudes are simply proportional (Eq. 6-1), we find F  

→
 is at 

angle (measured from the vertical axis) φ = θ + θs  where tan θs = μs (compare with Eq. 6-
13), and θ is the bank angle.  Now, the vector sum of F  

→
 and the vertically downward pull 

(mg) of gravity must be equal to the (horizontal) centripetal force (mv2/R), which leads to 
a surprisingly simple relationship: 

2 2/tan mv R v
mg Rg

φ = = . 

 
Writing this as an expression for the maximum speed, we have 
 

1
max

(tan )tan( tan )
1 tan

s
s

s

Rgv Rg θ μθ μ
μ θ

− +
= + =

−
. 

 
(a) We note that the given speed is (in SI units) roughly 17 m/s.  If we do not want the 
cars to “depend” on the static friction to keep from sliding out (that is, if we want the 
component “down the back” of gravity to be sufficient), then we can set μs = 0 in the 
above expression and obtain tanv Rg θ= .  With R = 150 m, this leads to θ = 11°. 
 
(b) If, however, the curve is not banked (so θ  = 0) then the above expression becomes  
 
 1tan(tan )s sv Rg Rgμ μ−= = . 
 
Solving this for the coefficient of static friction, we have μs = 0.19. 
 
93. (a) The box doesn’t move until t = 2.8 s, which is when the applied force F  reaches a 
magnitude of F = (1.8)(2.8) = 5.0 N, implying therefore that fs, max = 5.0 N. Analysis of 
the vertical forces on the block leads to the observation that the normal force magnitude 
equals the weight FN = mg = 15 N. Thus, μs = fs, max/FN = 0.34. 
 
(b) We apply Newton’s second law to the horizontal x axis (positive in the direction of 
motion): 

F f ma t f tk k− = ⇒ − = −18 15 12 2 4. . . .b gb g . 
 
Thus, we find fk = 3.6 N. Therefore, μk = fk / FN = 0.24. 
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94. In the figure below, m = 140/9.8 = 14.3 kg is the mass of the child. We use wx  and 
wy  as the components of the gravitational pull of Earth on the block; their magnitudes 
are wx = mg sin θ and wy = mg cos θ.  

 
 
(a) With the x axis directed up along the incline (so that a = –0.86 m/s2), Newton’s 
second law leads to 
 

f mk − °= −140 25 086sin ( . )  
 
which yields fk = 47 N. We also apply Newton’s second law to the y axis (perpendicular 
to the incline surface), where the acceleration-component is zero: 
 

140cos 25 0     127 N.N NF F− ° = ⇒ =  
 
Therefore, μk = fk/FN = 0.37. 
 
(b) Returning to our first equation in part (a), we see that if the downhill component of 
the weight force were insufficient to overcome static friction, the child would not slide at 
all. Therefore, we require 140 sin 25° > fs,max = μs FN, which leads to tan 25° = 0.47 > μs. 
The minimum value of μs equals μk and is more subtle; reference to §6-1 is recommended. 
If μk exceeded μs then when static friction were overcome (as the incline is raised) then it 
should start to move, which is impossible if fk is large enough to cause deceleration! The 
bounds on μs are therefore given by 0.47 > μs > 0.37. 
 
95. (a) The x component of F  

→
 contributes to the motion of the crate while its y 

component indirectly contributes to the inhibiting effects of friction (by increasing the 
normal force).  Along the y direction, we have FN – Fcosθ – mg = 0 and along the x 
direction we have Fsinθ – fk = 0 (since it is not accelerating, according to the problem).  
Also, Eq. 6-2 gives fk = μk FN.  Solving these equations for F yields 
 

        
sin cos

k

k

mgF μ
θ μ θ

=
−

 . 

 
(b) When 1

0 tan sθ θ μ−< = , F will not be able to move the mop head. 
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96. (a) The distance traveled in one revolution is 2πR = 2π(4.6 m) = 29 m. The (constant) 
speed is consequently v = (29 m)/(30 s) = 0.96 m/s. 
 
(b) Newton’s second law (using Eq. 6-17 for the magnitude of the acceleration) leads to 
 

f m v
R

ms =
F
HG
I
KJ =

2

0 20( . )  

 
in SI units. Noting that FN = mg in this situation, the maximum possible static friction is 
fs,max = μs mg using Eq. 6-1. Equating this with fs = m(0.20) we find the mass m cancels 
and we obtain μs = 0.20/9.8 = 0.021. 
 
97. The free-body diagram is shown below.  
 

 
 
We adopt the familiar axes with +x rightward and +y upward, and refer to the 85 N 
horizontal push of the worker as F (and assume it to be rightward). Applying Newton’s 
second law to the x axis and y axis, respectively, gives 
 

0.
k x

N

F f ma
F mg

− =
− =

 

 
On the other hand, using Eq. 2-16 ( 2 2

0 2 xv v a x= + Δ ), we find the acceleration to be 
 

2 2 2
20 (1.0 m/s) 0 0.357 m/s

2 2(1.4 m)x
v va

x
− −

= = =
Δ

. 

 
Using k k Nf Fμ= , we find the coefficient of kinetic friction between the box and the floor 
to be    

2

2

85 N (40 kg)(0.357 m/s ) 0.18
(40 kg)(9.8 m/s )

k x
k

N

f F ma
F mg

μ − −
= = = = . 

 
98. We resolve this horizontal force into appropriate components. 
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(a) Applying Newton’s second law to the x 
(directed uphill) and y (directed away from 
the incline surface) axes, we obtain 
 

cos sin
sin cos 0.

k

N

F f mg ma
F F mg

θ θ
θ θ

− − =
− − =

 

 
Using fk = μk FN, these equations lead to 
 

(cos sin ) (sin cos )k k
Fa g
m

θ μ θ θ μ θ= − − +  

 
which yields a = –2.1 m/s2, or  |a | = 2.1 m/s2 , for μk = 0.30, F = 50 N and m = 5.0 kg. 
 
(b) The direction of a is down the plane. 
 

(c) With v0 = +4.0 m/s and v = 0, Eq. 2-16 gives 
2

2

(4.0 m/s) 3.9 m.
2( 2.1 m/s )

xΔ = − =
−

 

 
(d) We expect μs ≥ μk; otherwise, an object started into motion would immediately start 
decelerating (before it gained any speed)! In the minimal expectation case, where μs = 
0.30, the maximum possible (downhill) static friction is, using Eq. 6-1, 
 

,max ( sin cos )s s N sf F F mgμ μ θ θ= = +  
 
which turns out to be 21 N. But in order to have no acceleration along the x axis, we must 
have 

cos sin 10 Nsf F mgθ θ= − =  
 
(the fact that this is positive reinforces our suspicion that f s  points downhill). Since the fs 
needed to remain at rest is less than fs,max, it stays at that location. 
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Chapter 7 
 
 
 
1. (a) From Table 2-1, we have v v a x2

0
2 2= + Δ . Thus, 

 

( ) ( )( )
22 7 15 2 7

0 2 2.4 10 m/s 2 3.6 10 m/s 0.035 m 2.9 10 m/s.v v a x= + Δ = × + × = ×  

 
(b) The initial kinetic energy is 
 

( ) ( )22 27 7 13
0

1 1  1.67 10 kg 2.4 10 m/s 4.8 10 J.
2 2iK mv − −= = × × = ×  

 
The final kinetic energy is 
 

( ) ( )22 27 7 131 1  1.67 10 kg 2.9 10 m/s 6.9 10 J.
2 2fK mv − −= = × × = ×  

 
The change in kinetic energy is ΔK = 6.9 × 10–13 J – 4.8 × 10–13 J = 2.1 × 10–13 J. 
 
2. With speed v = 11200 m/s, we find 
 

2 5 2 131 1 (2.9 10 kg) (11200 m/s) 1.8 10  J.
2 2

K mv= = × = ×  

 
3. (a) The change in kinetic energy for the meteorite would be 
 

( )( )22 6 3 141 1 4 10 kg 15 10 m/s 5 10 J
2 2f i i i iK K K K m vΔ = − = − = − = − × × = − × , 

 
or 14| | 5 10  JKΔ = × . The negative sign indicates that kinetic energy is lost. 
 
(b) The energy loss in units of megatons of TNT would be 
 

( )14
15

1 megaton TNT5 10 J    0.1megaton TNT.
4.2 10 J

K
⎛ ⎞

−Δ = × =⎜ ⎟×⎝ ⎠
 

 
(c) The number of bombs N that the meteorite impact would correspond to is found by 
noting that megaton = 1000 kilotons and setting up the ratio: 
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0.1 1000kiloton TNT 8.
13kiloton TNT

N ×
= =  

 
4. We apply the equation 21

0 0 2( )x t x v t at= + + , found in Table 2-1. Since at t = 0 s, x0 = 0, 
and 0 12 m/sv = , the equation becomes (in unit of meters) 
 
 21

2( ) 12x t t at= + . 
 
With 10 mx = when 1.0 st = , the acceleration is found to be 24.0 m/sa = − . The fact 
that 0a < implies that the bead is decelerating. Thus, the position is described by 

2( ) 12 2.0x t t t= − . Differentiating x with respect to t then yields  
 

 ( ) 12 4.0dxv t t
dt

= = − . 

 
Indeed at t =3.0 s, ( 3.0) 0v t = = and the bead stops momentarily. The speed at 10 st = is 

( 10) 28 m/sv t = = − , and the corresponding kinetic energy is  
 

2 2 21 1 (1.8 10 kg)( 28 m/s) 7.1 J.
2 2

K mv −= = × − =  

 
5. We denote the mass of the father as m and his initial speed vi. The initial kinetic energy 
of the father is 

K Ki =
1
2 son  

 
and his final kinetic energy (when his speed is vf = vi + 1.0 m/s) is K Kf = son .  We use 
these relations along with Eq. 7-1 in our solution. 
 
(a) We see from the above that K Ki f= 1

2 , which (with SI units understood) leads to 
 

( )221 1 1  1.0 m/s
2 2 2i imv m v⎡ ⎤= +⎢ ⎥⎣ ⎦

. 

 
The mass cancels and we find a second-degree equation for vi : 
 

1
2

1
2

02v vi i− − = . 

 
The positive root (from the quadratic formula) yields vi = 2.4 m/s. 
 
(b) From the first relation above K Ki = 1

2 sonb g , we have 
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2 2

son
1 1 1  ( /2) 
2 2 2imv m v⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 
and (after canceling m and one factor of 1/2) are led to v vison = 2 = 4.8 m s.  
 
6. The work done by the applied force aF  is given by cosa aW F d F d φ= ⋅ = . From the 
figure, we see that 25 JW = when 0φ = and 5.0 cmd = . This yields the magnitude of 

aF : 

 225 J 5.0 10  N
0.050 ma

WF
d

= = = × . 

 
(a) For 64φ = ° , we have 2cos (5.0 10 N)(0.050 m)cos 64 11 J.aW F d φ= = × ° =  
 
(b) For 147φ = ° , we have 2cos (5.0 10 N)(0.050 m)cos147 21 J.aW F d φ= = × ° = −  
 
7. Since this involves constant-acceleration motion, we can apply the equations of Table 
2-1, such as x v t at= +0

1
2

2  (where x0 0= ). We choose to analyze the third and fifth 
points, obtaining 

2
0

2
0

10.2m (1.0 s)  (1.0 s)
2
10.8m (2.0 s)  (2.0 s) .
2

v a

v a

= +

= +
 

 
Simultaneous solution of the equations leads to 0 0v =  and a = 0 40. m s2 . We now have 
two ways to finish the problem. One is to compute force from F = ma and then obtain the 
work from Eq. 7-7. The other is to find ΔK  as a way of computing W (in accordance 
with Eq. 7-10). In this latter approach, we find the velocity at 2.0 st = from 

0 (so 0.80m s)v v at v= + = . Thus, 
21 (3.0kg) (0.80m/s) 0.96 J.

2
W K= Δ = =  

 
8. Using Eq. 7-8 (and Eq. 3-23), we find the work done by the water on the ice block: 
 

3

ˆ ˆ ˆ ˆ(210 N) i (150 N) j (15 m) i (12 m) j (210 N)(15 m) ( 150 N)( 12 m)

5.0 10 J.

W F d ⎡ ⎤ ⎡ ⎤= ⋅ = − ⋅ − = + − −⎣ ⎦ ⎣ ⎦
= ×

 
9. By the work-kinetic energy theorem, 
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( )2 2 2 21 1 1 (2.0 kg) (6.0 m/s) (4.0 m/s) 20 J.
2 2 2f iW K mv mv= Δ = − = − =  

 
We note that the directions of v f  and vi  play no role in the calculation. 
 
10. Equation 7-8 readily yields  
 

W =  Fx Δx + Fy Δy  =(2.0 N)cos(100º)(3.0 m) + (2.0 N)sin(100º)(4.0 m) = 6.8 J. 
 
11. Using the work-kinetic energy theorem, we have  
 
 cosK W F d Fd φΔ = = ⋅ = . 
 
In addition, 12 NF = and 2 2 2(2.00 m) ( 4.00 m) (3.00 m) 5.39 md = + − + = . 
 
(a) If 30.0 JKΔ = + , then 
 

 1 1 30.0 Jcos cos 62.3
(12.0 N)(5.39 m)

K
Fd

φ − − ⎛ ⎞Δ⎛ ⎞= = = °⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
(b) 30.0 JKΔ = − , then 

1 1 30.0 Jcos cos 118
(12.0 N)(5.39 m)

K
Fd

φ − − ⎛ ⎞Δ −⎛ ⎞= = = °⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
12. (a) From Eq. 7-6, F = W/x = 3.00 N (this is the slope of the graph). 
 
(b) Equation 7-10 yields K = Ki + W = 3.00 J + 6.00 J = 9.00 J. 
 
13. We choose +x as the direction of motion (so a  and F  are negative-valued). 
 
(a) Newton’s second law readily yields 2(85kg) ( 2.0m/s )F = −  so that  
 

2| | 1.7 10 NF F= = × . 
 
(b) From Eq. 2-16 (with v = 0) we have 
 

( )
( )

2
2 2
0 2

37 m/s
0 2     3.4 10 m

2 2.0m/s
v a x x= + Δ ⇒ Δ = − = ×

−
. 

 
Alternatively, this can be worked using the work-energy theorem. 
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(c) Since F  is opposite to the direction of motion (so the angle φ  between F  and 
d x= Δ  is 180°) then Eq. 7-7 gives the work done as 45.8 10 JW F x= − Δ = − × . 
 
(d) In this case, Newton’s second law yields ( ) ( )285kg 4.0m/sF = −  so that 

2| | 3.4 10 NF F= = × . 
 
(e) From Eq. 2-16, we now have 

( )
( )

2
2

2

37 m/s
1.7 10 m.

2 4.0m/s
xΔ = − = ×

−
 

 
(f) The force F  is again opposite to the direction of motion (so the angle φ is again 180°) 
so that Eq. 7-7 leads to 45.8 10 J.W F x= − Δ = − ×  The fact that this agrees with the result 
of part (c) provides insight into the concept of work. 
 
14. The forces are all constant, so the total work done by them is given by W F x= netΔ , 
where Fnet is the magnitude of the net force and Δx  is the magnitude of the displacement. 
We add the three vectors, finding the x and y components of the net force: 
 

net 1 2 3

net 2 3

sin 50.0 cos35.0 3.00 N (4.00 N)sin 35.0 (10.0 N)cos35.0
2.13 N

cos50.0 sin 35.0 (4.00 N) cos50.0 (10.0 N)sin 35.0
3.17 N.

x

y

F F F F

F F F

= − − °+ ° = − − °+ °
=

= − °+ ° = − °+ °
=

 

 
The magnitude of the net force is 
 

2 2 2 2
net net net (2.13 N) (3.17 N) 3.82 N.x yF F F= + = + =  

 
The work done by the net force is 
 

net (3.82 N) (4.00m) 15.3 JW F d= = =  
 
where we have used the fact that d F net||  (which follows from the fact that the canister 
started from rest and moved horizontally under the action of horizontal forces — the 
resultant effect of which is expressed by Fnet ). 
 
15. (a) The forces are constant, so the work done by any one of them is given by 
W F d= ⋅ , where d  is the displacement. Force F1  is in the direction of the displacement, 
so 

1 1 1cos (5.00 N)(3.00 m)cos 0 15.0 J.W F d φ= = ° =  
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Force F2  makes an angle of 120° with the displacement, so 
 

2 2 2cos (9.00 N) (3.00 m)cos120 13.5 J.W F d φ= = ° = −  
 
Force F3  is perpendicular to the displacement, so  
 

W3 = F3d cos φ3 = 0 since cos 90° = 0. 
 
The net work done by the three forces is 
 

1 2 3 15.0 J 13.5 J 0 1.50 J.W W W W= + + = − + = +  
 
(b) If no other forces do work on the box, its kinetic energy increases by 1.50 J during the 
displacement. 
 
16. The change in kinetic energy can be written as 
 

 2 21 1( ) (2 )
2 2f iK m v v m a x ma xΔ = − = Δ = Δ  

 
where we have used  2 2 2f iv v a x= + Δ  from Table 2-1. From the figure, we see that 

(0 30) J 30 JKΔ = − = − when 5 mxΔ = + . The acceleration can then be obtained as 
 

 2( 30 J) 0.75 m/s .
(8.0 kg)(5.0 m)

Ka
m x
Δ −

= = = −
Δ

 

 
The negative sign indicates that the mass is decelerating. From the figure, we also see 
that when 5 mx = the kinetic energy becomes zero, implying that the mass comes to rest 
momentarily. Thus, 
 

2 2 2 2 2
0 2 0 2( 0.75 m/s )(5.0 m) 7.5 m /sv v a x= − Δ = − − = , 

 
or 0 2.7 m/sv = . The speed of the object when x = −3.0 m is  
 
 2 2 2 2

0 2 7.5 m /s 2( 0.75 m/s )( 3.0 m) 12 m/s 3.5 m/sv v a x= + Δ = + − − = = . 
 
17. We use F  to denote the upward force exerted by the cable on the astronaut. The 
force of the cable is upward and the force of gravity is mg downward. Furthermore, the 
acceleration of the astronaut is a = g/10 upward. According to Newton’s second law, the 
force is given by 
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11( )
10

F mg ma F m g a mg− = ⇒ = + = , 

 
in the same direction as the displacement. On the other hand, the force of gravity has 
magnitude gF mg=  and is opposite in direction to the displacement. 
 
(a) Since the force of the cable F  and the displacement d  are in the same direction, the 
work done by F  is 
 

2
4 411 11 (72 kg)(9.8 m/s )(15 m) 1.164 10  J 1.2 10  J

10 10F
mgdW Fd= = = = × ≈ × . 

 
(b) Using Eq. 7-7, the work done by gravity is 
 

2 4 4 (72 kg)(9.8 m/s )(15 m) 1.058 10  J 1.1 10  Jg gW F d mgd= − = − = − = − × ≈ − ×  
 
(c) The total work done is the sum of the two works: 
 

4 4 3 3
net 1.164 10 J 1.058 10 J 1.06 10 J 1.1 10 JF gW W W= + = × − × = × ≈ × . 

 
Since the astronaut started from rest, the work-kinetic energy theorem tells us that this is 
her final kinetic energy. 

(d) Since K mv= 1
2

2 ,  her final speed is 
32 2(1.06 10 J) 5.4 m/s

72 kg
Kv

m
×

= = = . 

 
Note: For a general upward acceleration a, the net work done is  
 

net ( )F g gW W W Fd F d m g a d mgd mad= + = − = + − = . 
 
Since 2

net / 2,W K mv= Δ =  by the work-kinetic energy theorem, the speed of the 

astronaut would be 2v ad= , which is independent of the mass of the astronaut. 
 
18. In both cases, there is no acceleration, so the lifting force is equal to the weight of the 
object. 
 
(a) Equation 7-8 leads to (360kN)(0.10m) 36 kJ.W F d= ⋅ = =  
 
(b) In this case, we find W = (4000 N)(0.050 m) 22.0 10  J= × . 
 
19. Equation 7-15 applies, but the wording of the problem suggests that it is only 
necessary to examine the contribution from the rope (which would be the “Wa” term in 
Eq. 7-15):  



  CHAPTER 7 278 

 
Wa = −(50 N)(0.50 m) = −25 J 

 
(the minus sign arises from the fact that the pull from the rope is anti-parallel to the 
direction of motion of the block).  Thus, the kinetic energy would have been 25 J greater 
if the rope had not been attached (given the same displacement). 
 
20. From the figure, one may write the kinetic energy (in units of J) as a function of x as 
 
 20 40 20sK K x x= − = − . 
 
Since xW K F x= Δ = ⋅Δ , the component of the force along the force along +x is 

/ 20 N.xF dK dx= = −  The normal force on the block is N yF F= , which is related to the 
gravitational force by  
 2 2( )x ymg F F= + − . 
 
(Note that NF  points in the opposite direction of the component of the gravitational force.) 
With an initial kinetic energy 40.0 JsK =  and 0 4.00 m/sv = , the mass of the block is 
 

 2 2
0

2 2(40.0 J) 5.00 kg.
(4.00 m/s)

sKm
v

= = =  

Thus, the normal force is  
 
 2 2 2 2 2 2( ) (5.0 kg) (9.8 m/s ) (20 N) 44.7 N 45 N.y xF mg F= − = − = ≈  
 
21. We use F to denote the magnitude of the force of the cord on the block. This force is 
upward, opposite to the force of gravity (which has magnitude gF Mg= ), to prevent the 
block from undergoing free fall. The acceleration is a g= / 4 downward. Taking the 
downward direction to be positive, then Newton’s second law yields 
 

F ma Mg F M g
net    = ⇒ − = FHG

I
KJ4 , 

 
so F = 3Mg/4, in the opposite direction of the displacement. On the other hand, the force 
of gravity gF mg=  is in the same direction to the displacement. 
 
(a) Since the displacement is downward, the work done by the cord’s force is, using Eq. 
7-7,  

3
4FW Fd Mgd= − = − . 
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(b) Similarly, the work done by the force of gravity is g gW F d Mgd= = . 
 
(c) The total work done on the block is simply the sum of the two works: 
 

net
3 1
4 4F gW W W Mgd Mgd Mgd= + = − + = . 

 
Since the block starts from rest, we use Eq. 7-15 to conclude that this M gd 4b g  is the 
block’s kinetic energy K at the moment it has descended the distance d. 
 
(d) Since 21

2 ,K Mv=  the speed is 
 

v K
M

Mgd
M

gd
= = =

2 2 4
2

( / )  

 
at the moment the block has descended the distance d. 
 
22. We use d to denote the magnitude of the spelunker’s displacement during each stage. 
The mass of the spelunker is m = 80.0 kg. The work done by the lifting force is denoted 
Wi where i = 1, 2, 3 for the three stages. We apply the work-energy theorem, Eq. 17-15. 
 
(a) For stage 1, W mgd K mv v1 1

1
2 1

2
1 500− = = =Δ , . where  m / s . This gives 

 
2 2 2 3

1 1
1 1(80.0 kg)(9.80 m/s )(10.0 m) (80.0 kg)(5.00 m/s) 8.84 10  J.
2 2

W mgd mv= + = + = ×  

 
(b) For stage 2, W2 – mgd = ΔK2 = 0, which leads to 
 

2 3
2 (80.0 kg)(9.80 m/s )(10.0 m) 7.84 10  J.W mgd= = = ×  

 
(c) For stage 3, W mgd K mv3 3

1
2 1

2− = = −Δ . We obtain 
 

2 2 2 3
3 1

1 1(80.0 kg)(9.80 m/s )(10.0 m) (80.0 kg)(5.00 m/s) 6.84 10  J.
2 2

W mgd mv= − = − = ×  

 
23. The fact that the applied force aF causes the box to move up a frictionless ramp at a 
constant speed implies that there is no net change in the kinetic energy: 0KΔ = . Thus, 
the work done by aF  must be equal to the negative work done by gravity: a gW W= − . 
Since the box is displaced vertically upward by 0.150 mh = , we have  
 
 2(3.00 kg)(9.80 m/s )(0.150 m) 4.41 JaW mgh= + = =  
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24. (a) Using notation common to many vector-capable calculators, we have (from Eq. 7-
8) W = dot([20.0,0] + [0, −(3.00)(9.8)], [0.500 ∠ 30.0º]) =  +1.31 J , where “dot” stands 
for dot product. 
 
(b) Eq. 7-10 (along with Eq. 7-1) then leads to  
 

v = 2(1.31 J)/(3.00 kg)  =  0.935 m/s. 
 
25. (a) The net upward force is given by 
 
 ( ) ( )NF F m M g m M a+ − + = +  
 
where m = 0.250 kg is the mass of the cheese, M = 900 kg is the mass of the elevator cab, 
F is the force from the cable, and 3.00 NNF =  is the normal force on the cheese.  On the 
cheese alone, we have  
 

 
2

23.00 N (0.250 kg)(9.80 m/s ) 2.20 m/s
0.250 kgNF mg ma a −

− = ⇒ = = . 

 
Thus the force from the cable is 4( )( ) 1.08 10 NNF m M a g F= + + − = × , and the work 
done by the cable on the cab is 
 
 4 4

1 (1.80 10 N)(2.40 m) 2.59 10  J.W Fd= = × = ×  
 
(b) If 92.61 kJW = and 2 10.5 md = , the magnitude of the normal force is  
 

 
4

2

2

9.261 10  J( ) (0.250 kg 900 kg)(9.80 m/s ) 2.45 N.
10.5 mN

WF m M g
d

×
= + − = + − =  

 
26. We make use of Eq. 7-25 and Eq. 7-28 since the block is stationary before and after 
the displacement. The work done by the applied force can be written as 
 

 2 21 ( )
2a s f iW W k x x= − = − . 

 
The spring constant is 3(80 N) /(2.0 cm)=4.0 10 N/m.k = × With 4.0 JaW = , and 

2.0 cmix = − , we have 
 

 2 2
3

2 2(4.0 J) ( 0.020 m) 0.049 m 4.9 cm.
(4.0 10  N/m)

a
f i

Wx x
k

= ± + = ± + − = ± = ±
×
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27. From Eq. 7-25, we see that the work done by the spring force is given by 
 

 2 21 ( )
2s i fW k x x= − . 

 
The fact that 360 N of force must be applied to pull the block to x = + 4.0 cm implies that 
the spring constant is  

 3360 N 90 N/cm 9.0 10  N/m
4.0 cm

k = = = × . 

 
(a) When the block moves from 5.0 cmix = + to 3.0 cmx = + , we have  
 

 3 2 21 (9.0 10  N/m)[(0.050 m) (0.030 m) ] 7.2 J.
2sW = × − =  

 
(b) Moving from 5.0 cmix = + to 3.0 cmx = − , we have 
 

3 2 21 (9.0 10  N/m)[(0.050 m) ( 0.030 m) ] 7.2 J.
2sW = × − − =  

 
(c) Moving from 5.0 cmix = + to 5.0 cmx = − , we have 
 

3 2 21 (9.0 10  N/m)[(0.050 m) ( 0.050 m) ] 0 J.
2sW = × − − =  

 
(d) Moving from 5.0 cmix = + to 9.0 cmx = − , we have 
 

3 2 21 (9.0 10  N/m)[(0.050 m) ( 0.090 m) ] 25 J.
2sW = × − − = −  

 
28. The spring constant is k = 100 N/m and the maximum elongation is xi = 5.00 m. 
Using Eq. 7-25 with xf = 0, the work is found to be 
 

2 2 31 1 (100 N/m)(5.00 m) 1.25 10  J.
2 2iW kx= = = ×  

 

29. The work done by the spring force is given by Eq. 7-25: 2 21 ( )
2s i fW k x x= − . The 

spring constant k can be deduced from the figure which shows the amount of work done 
to pull the block from 0 to x = 3.0 cm. The parabola 2 / 2aW kx= contains (0,0), (2.0 cm, 
0.40 J) and (3.0 cm, 0.90 J). Thus, we may infer from the data that 32.0 10  N/mk = × . 
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(a) When the block moves from 5.0 cmix = + to 4.0 cmx = + , we have  
 

 3 2 21 (2.0 10  N/m)[(0.050 m) (0.040 m) ] 0.90 J.
2sW = × − =  

 
(b) Moving from 5.0 cmix = + to 2.0 cmx = − , we have 
 

3 2 21 (2.0 10  N/m)[(0.050 m) ( 0.020 m) ] 2.1 J.
2sW = × − − =  

 
(c) Moving from 5.0 cmix = + to 5.0 cmx = − , we have 
 

3 2 21 (2.0 10  N/m)[(0.050 m) ( 0.050 m) ] 0 J.
2sW = × − − =  

 
30. Hooke’s law and the work done by a spring is discussed in the chapter. We apply the 
work-kinetic energy theorem, in the form of ΔK W Wa s= + , to the points in Figure 7-35 at 
x = 1.0 m and x = 2.0 m, respectively. The “applied” work Wa is that due to the constant 
force P . 

2

2

14 J (1.0 m) (1.0 m)
2

10 (2.0 m) (2.0 m) .
2

P k

P k

= −

= −
 

 
(a) Simultaneous solution leads to P = 8.0 N. 
 
(b) Similarly, we find k = 8.0 N/m. 
 
31. (a) As the body moves along the x axis from xi = 3.0 m to xf = 4.0 m the work done by 
the force is 
 

2 2 2 2 6  3( ) 3 (4.0 3.0 ) 21 J.f f

i i

x x

x f ix x
W F dx x dx x x= = − = − − = − − = −∫ ∫  

 
According to the work-kinetic energy theorem, this gives the change in the kinetic energy: 
 

W K m v vf i= = −Δ
1
2

2 2d i  
 
where vi is the initial velocity (at xi) and vf is the final velocity (at xf). The theorem yields 
 

2 22 2( 21 J) (8.0 m/s) 6.6 m/s.
2.0 kgf i

Wv v
m

−
= + = + =  
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(b) The velocity of the particle is vf = 5.0 m/s when it is at x = xf. The work-kinetic energy 
theorem is used to solve for xf. The net work done on the particle is ( )2 23 f iW x x= − − , so 
the theorem leads to 

− − = −3 1
2

2 2 2 2x x m v vf i f id i d i .  

Thus, 

( ) ( )2 2 2 2 2 22.0 kg (5.0 m/s) (8.0 m/s) (3.0 m) 4.7 m.
6 6 N/mf f i i
mx v v x= − − + = − − + =  

 

32. The work done by the spring force is given by Eq. 7-25: 2 21 ( )
2s i fW k x x= − . Since 

xF kx= − , the slope in Fig. 7-36 corresponds to the spring constant k. Its value is given 
by 380 N/cm=8.0 10  N/mk = × .  
 
(a) When the block moves from 8.0 cmix = + to 5.0 cmx = + , we have 
 

 3 2 21 (8.0 10  N/m)[(0.080 m) (0.050 m) ] 15.6 J 16 J.
2sW = × − = ≈  

 
(b) Moving from 8.0 cmix = + to 5.0 cmx = − , we have 
 

3 2 21 (8.0 10  N/m)[(0.080 m) ( 0.050 m) ] 15.6 J 16 J.
2sW = × − − = ≈  

 
(c) Moving from 8.0 cmix = + to 8.0 cmx = − , we have 
 

3 2 21 (8.0 10  N/m)[(0.080 m) ( 0.080 m) ] 0 J.
2sW = × − − =  

 
(d) Moving from 8.0 cmix = + to 10.0 cmx = − , we have 
 

3 2 21 (8.0 10  N/m)[(0.080 m) ( 0.10 m) ] 14.4 J 14 J.
2sW = × − − = − ≈ −  

 
33. (a) This is a situation where Eq. 7-28 applies, so we have  
 
              Fx =  12 kx2  ⇒  (3.0 N) x = 12 (50 N/m)x2 

 
which (other than the trivial root) gives x =  (3.0/25) m = 0.12 m.  
 
(b) The work done by the applied force is Wa = Fx = (3.0 N)(0.12 m)  = 0.36 J. 
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(c) Eq. 7-28 immediately gives Ws = –Wa = –0.36 J. 
 
(d) With Kf = K considered variable and Ki = 0, Eq. 7-27 gives K = Fx –  12 kx2.  We take 
the derivative of K with respect to x and set the resulting expression equal to zero, in 
order to find the position xc taht corresponds to a maximum value of K:   
 

xc =  Fk   =  (3.0/50) m  = 0.060 m. 

 
We note that xc is also the point where the applied and spring forces “balance.” 
 
(e) At xc we find K = Kmax = 0.090 J. 
 
34. According to the graph the acceleration a varies linearly with the coordinate x. We 
may write a = αx, where α is the slope of the graph. Numerically, 
 

α = = −20
8 0

2 5 2 m / s
 m

 s
2

.
. .  

 
The force on the brick is in the positive x direction and, according to Newton’s second 
law, its magnitude is given by .F ma m xα= =  If xf is the final coordinate, the work done 
by the force is 
 

2
2 2 2

0 0

(10 kg)(2.5 s )  (8.0 m) 8.0 10  J.
2 2

f fx x

f
mW F dx m x dx xαα

−

= = = = = ×∫ ∫  

 
35. Given a one-dimensional force ( )F x , the work done is simply equal to the area under 

the curve: ( ) f

i

x

x
W F x dx= ∫ . 

 
 
(a) The plot of F(x) is shown above. Here we take x0 to be positive. The work is negative 
as the object moves from x x x= =0 0 to  and positive as it moves from x x x x= =0 02 to .  
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Since the area of a triangle is (base)(altitude)/2, the work done from x x x= =0 0 to  is 
 

1 0 0( )( ) / 2W x F= −  
 
and the work done from x x x x= =0 02 to  is 
 

2 0 0 0 0 0(2 )( ) / 2 ( )( ) / 2W x x F x F= − = . 
 

The total work is the sum of the two: 1 2 0 0 0 0
1 1 0
2 2

W W W F x F x= + = − + = . 

(b) The integral for the work is 
 

0

0

2
22

0 00
0 0 0

1  0.
2

x
x x xW F dx F x

x x
⎛ ⎞ ⎛ ⎞

= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  

 
36. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. 
Finding that area (in terms of rectangular [length × width] and triangular 
[ 1

2  base height]× areas) we obtain 
 

0 2 2 4 4 6 6 8 (20 10 0 5) J 25 J.x x x xW W W W W< < < < < < < <= + + + = + + − =  
 
37. (a) We first multiply the vertical axis by the mass, so that it becomes a graph of the 
applied force.  Now, adding the triangular and rectangular “areas” in the graph (for 0 ≤ x 
≤ 4) gives 42 J for the work done. 
 
(b) Counting the “areas” under the axis as negative contributions, we find (for 0 ≤ x ≤ 7) 
the work to be 30 J at x = 7.0 m. 
 
(c) And at x = 9.0 m, the work is 12 J. 
 
(d) Equation 7-10 (along with Eq. 7-1) leads to speed v = 6.5 m/s at x = 4.0 m.  Returning 
to the original graph (where a was plotted) we note that (since it started from rest) it has 
received acceleration(s) (up to this point) only in the +x direction and consequently must 
have a velocity vector pointing in the +x direction at x = 4.0 m.  
 
(e) Now, using the result of part (b) and Eq. 7-10 (along with Eq. 7-1) we find the speed 
is 5.5 m/s at x = 7.0 m.  Although it has experienced some deceleration during the 0 ≤ x ≤ 
7 interval, its velocity vector still points in the +x direction. 
 
(f) Finally, using the result of part (c) and Eq. 7-10 (along with Eq. 7-1) we find its speed 
v = 3.5 m/s at x = 9.0 m.  It certainly has experienced a significant amount of deceleration 
during the 0 ≤ x ≤ 9 interval; nonetheless, its velocity vector still points in the +x 
direction. 
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38. (a) Using the work-kinetic energy theorem 
 

2.0 2 3

0

1(2.5 ) 0 (2.5)(2.0) (2.0) 2.3 J.
3f iK K x dx= + − = + − =∫  

 
(b) For a variable end-point, we have Kf as a function of x, which could be differentiated 
to find the extremum value, but we recognize that this is equivalent to solving F = 0 for x: 
 

20  2.5  0F x= ⇒ − = . 
 
Thus, K is extremized at   2.5 1.6 mx = ≈  and we obtain 
 

2.5 2 3

0

1(2.5 ) 0 (2.5)( 2.5)  ( 2.5) 2.6 J.
3f iK K x dx= + − = + − =∫  

 
Recalling our answer for part (a), it is clear that this extreme value is a maximum. 
 
39. As the body moves along the x axis from xi = 0 m to xf = 3.00 m the work done by the 
force is 

3
2 2 3 2 3

0

( 3.00 ) (3.00) (3.00)
2 2

4.50 27.0.

f f

i i

x x

xx x

c cW F dx cx x dx x x

c

⎛ ⎞= = − = − = −⎜ ⎟
⎝ ⎠

= −

∫ ∫  

 
However, (11.0 20.0) 9.00 JW K= Δ = − = − from the work-kinetic energy theorem. 
Thus,  
 4.50 27.0 9.00c − = −  
 
or 4.00 N/mc = . 
 
40. Using Eq. 7-32, we find 

W e dxx     0.21 J
0.25

1.25
= =−z 4 2

 

 
where the result has been obtained numerically. Many modern calculators have that 
capability, as well as most math software packages that a great many students have 
access to. 
 
41. We choose to work this using Eq. 7-10 (the work-kinetic energy theorem). To find the 
initial and final kinetic energies, we need the speeds, so 
 

v dx
dt

t t= = − +30 8 0 30 2. . .  
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in SI units. Thus, the initial speed is vi = 3.0 m/s and the speed at t = 4 s is vf = 19 m/s. 
The change in kinetic energy for the object of mass m = 3.0 kg is therefore 
 

( )2 21 528 J
2 f iK m v vΔ = − =  

 
which we round off to two figures and (using the work-kinetic energy theorem) conclude 
that the work done is 25.3 10 J.W = ×  
 
42. We solve the problem using the work-kinetic energy theorem, which states that the 
change in kinetic energy is equal to the work done by the applied force, K WΔ = . In our 
problem, the work done is W Fd= , where F is the tension in the cord and d is the length 
of the cord pulled as the cart slides from x1 to x2. From the figure, we have 
 

 
2 2 2 2 2 2 2 2
1 2 (3.00 m) (1.20 m) (1.00 m) (1.20 m)

3.23 m 1.56 m 1.67 m
d x h x h= + − + = + − +
= − =

 

 
which yields (25.0 N)(1.67 m) 41.7 J.K FdΔ = = =  
 
43. (a) The power is given by P = Fv and the work done by F  from time t1  to time t2  is 
given by 

 2 2

1 1

t t

t t
W Pdt Fvdt= =∫ ∫ . 

 
Since F  is the net force, the magnitude of the acceleration is a = F/m, and, since the 
initial velocity is v0 0= , the velocity as a function of time is given by 
v v at F m t= + =0 ( ) .  Thus, 

2

1

2 2 2 2
2 1

1( / )  ( / )( ).
2

t

t
W F m t dt F m t t= = −∫  

 

For t1 0=  and 2 1.0s,t =  
2

21 (5.0 N) (1.0 s) = 0.83 J.
2 15 kg

W
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 

(b) For 1 1.0s,t =  and 2 2.0s,t =  
2

2 21 (5.0 N) [(2.0 s) (1.0 s) ] 2.5 J.
2 15 kg

W
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 

 

(c) For 1 2.0st =  and 2 3.0s,t =  
2

2 21 (5.0 N) [(3.0 s) (2.0 s) ] 4.2 J.
2 15 kg

W
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 

 
(d) Substituting v = (F/m)t into P = Fv we obtain P F t m= 2  for the power at any time t. 
At the end of the third second 



  CHAPTER 7 288 

P  (5.0 N)  (3.0 s)
15 kg

  5.0 W.
2

=
F
HG

I
KJ =  

 
44. (a) Since constant speed implies ΔK  0,=  we require W Wa g= − , by Eq. 7-15. Since 

Wg  is the same in both cases (same weight and same path), then 29.0 10aW = ×  J just as it 
was in the first case. 
 
(b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. 
Using Eq. 7-42, and noting that average power is the power when the work is being done 
at a steady rate, we have 

2900 J 1.1 10  W.
8.0 s

WP
t

= = = ×
Δ

 

 
(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 
7-42, with average power replaced by power, we have 
 

900 J
4.0 s

WP
t

= =
Δ

= 225 W 22.3 10  W≈ × . 

 
45. The power associated with force F  is given by P F v    = ⋅ ,  where v  is the velocity 
of the object on which the force acts. Thus, 
 

2cos (122 N)(5.0 m/s)cos37 4.9 10  W. P F v Fv φ= ⋅ = = ° = ×  
 
46. Recognizing that the force in the cable must equal the total weight (since there is no 
acceleration), we employ Eq. 7-47: 

P Fv mg x
t

   cos    = = F
HG
I
KJθ Δ

Δ
 

 
where we have used the fact that θ = °0  (both the force of the cable and the elevator’s 
motion are upward). Thus, 

3 2 5210 m(3.0 10 kg)(9.8 m/s ) 2.7 10  W.
23 s

P ⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠

 

 
47. (a) Equation 7-8 yields  
 
W =  Fx Δx + Fy Δy + Fz Δz  
    = (2.00 N)(7.5 m – 0.50 m) + (4.00 N)(12.0 m – 0.75 m) + (6.00 N)(7.2m – 0.20 m)  
    =101 J ≈  1.0×  102 J. 
 
(b) Dividing this result by 12 s (see Eq. 7-42) yields P = 8.4 W. 
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48. (a) Since the force exerted by the spring on the mass is zero when the mass passes 
through the equilibrium position of the spring, the rate at which the spring is doing work 
on the mass at this instant is also zero. 
 
(b) The rate is given by P F v Fv      = ⋅ = − ,  where the minus sign corresponds to the 
fact that F  and v  are anti-parallel to each other. The magnitude of the force is given by 
 

F = kx = (500 N/m)(0.10 m) = 50 N, 
 
while v is obtained from conservation of energy for the spring-mass system: 
 

2 2 2 21 1 1 110 J (0.30 kg) (500 N/m)(0.10 m)
2 2 2 2

E K U mv kx v= + = = + = +  

 
which gives v = 7.1 m/s. Thus, 
 

2(50 N)(7.1 m/s) 3.5  10  W.P Fv= − = − = − ×  
 
49. We have a loaded elevator moving upward at a constant speed. The forces involved 
are: gravitational force on the elevator, gravitational force on the counterweight, and the 
force by the motor via cable. The total work is the sum of the work done by gravity on 
the elevator, the work done by gravity on the counterweight, and the work done by the 
motor on the system:  
 e c mW W W W= + + . 
 
Since the elevator moves at constant velocity, its kinetic energy does not change and 
according to the work-kinetic energy theorem the total work done is zero, that is, 

0W K= Δ = .  
 
The elevator moves upward through 54 m, so the work done by gravity on it is 
 

2 5(1200 kg)(9.80 m/s )(54 m) 6.35  10  J.e eW m gd= − = − = − ×  
 
The counterweight moves downward the same distance, so the work done by gravity on it 
is 

2 5(950 kg)(9.80 m/s )(54 m) 5.03 10  J.c cW m gd= = = ×  
 
Since W = 0, the work done by the motor on the system is 
 

5 5 56.35 10  J  5.03 10  J  1.32 10  J.m e cW W W= − − = × − × = ×  
 
This work is done in a time interval of 3.0 min 180 s,tΔ = =  so the power supplied by 
the motor to lift the elevator is 
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5
21.32  10  J 7.4  10  W.

180 s
mWP
t

×
= = = ×
Δ

 

 
50. (a) Using Eq. 7-48 and Eq. 3-23, we obtain 
 

(4.0 N)( 2.0 m/s) (9.0 N)(4.0 m/s) 28 W.P F v= ⋅ = − + =  
 
(b) We again use Eq. 7-48 and Eq. 3-23, but with a one-component velocity: v v  j.=  
 

12 W ( 2.0 N) .P F v v= ⋅ ⇒ − = −  
which yields v = 6 m/s. 
 
51. (a) The object’s displacement is 
 

ˆ ˆ ˆ( 8.00 m) i (6.00 m) j (2.00 m) k .f id d d= − = − + +  
Thus, Eq. 7-8 gives 
 

(3.00 N)( 8.00 m) (7.00 N)(6.00 m) (7.00 N)(2.00 m) 32.0 J.W F d= ⋅ = − + + =  
 
(b) The average power is given by Eq. 7-42: 
 

avg
32.0 8.00 W.
4.00

WP
t

= = =  

 
(c) The distance from the coordinate origin to the initial position is 
 

2 2 2(3.00 m) ( 2.00 m) (5.00 m) 6.16 m,id = + − + =  
 
and the magnitude of the distance from the coordinate origin to the final position is 
 

2 2 2( 5.00 m) (4.00 m) (7.00 m) 9.49 mfd = − + + = . 
 
Their scalar (dot) product is 
 

2(3.00 m)( 5.00 m) ( 2.00 m)(4.00 m) (5.00 m)(7.00 m) 12.0 m .i fd d⋅ = − + − + =  
 
Thus, the angle between the two vectors is 
 

1 1 12.0cos cos 78.2 .
(6.16)(9.49)

i f

i f

d d
d d

φ − −
⎛ ⎞⋅ ⎛ ⎞

= = = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
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52. According to the problem statement, the power of the car is 
 

 21 constant.
2

dW d dvP mv mv
dt dt dt

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

 
The condition implies /dt mvdv P= , which can be integrated to give 
 

 
2

0 0 2
TT v

Tmvmvdvdt T
P P

= ⇒ =∫ ∫  

 
where Tv  is the speed of the car at .t T=  On the other hand, the total distance traveled 
can be written as 

 
3

2

0 0 0
.

3
T TT v v

Tmvmvdv mL vdt v v dv
P P P

= = = =∫ ∫ ∫  

 
By squaring the expression for L and substituting the expression for T, we obtain 
 

2 33 2 3
2 8 8

3 9 2 9
T Tmv mvP PTL

P m P m
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

which implies that  
3 29 constant.

8
PT mL= =  

Differentiating the above equation gives 3 23 0,dPT PT dT+ =  or .
3
TdT dP
P

= −  

 
53. (a) Noting that the x component of the third force is F3x = (4.00 N)cos(60º), we apply 
Eq. 7-8 to the problem:  
 

W = [5.00 N – 1.00 N + (4.00 N)cos 60º](0.20 m) = 1.20 J. 
 
(b) Equation 7-10 (along with Eq. 7-1) then yields v = 2W/m  = 1.10 m/s. 
 
54. From Eq. 7-32, we see that the “area” in the graph is equivalent to the work done. We 
find the area in terms of rectangular [length × width] and triangular [ 1

2 base × height] 
areas and use the work-kinetic energy theorem appropriately. The initial point is taken to 
be x = 0, where v0 = 4.0 m/s. 
 
(a) With K mvi = =1

2 0
2 16 J,  we have 

 
3 0 0 1 1 2 2 3 4.0 Jx x xK K W W W< < < < < <− = + + = −  

 
so that K3 (the kinetic energy when x = 3.0 m) is found to equal 12 J. 
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(b) With SI units understood, we write 3 as ( 4.0 N)( 3.0 m)

fx x x fW F x x< < Δ = − − and apply 
the work-kinetic energy theorem: 
 

K K W

K x
x x x

x f f

f f
− =

− = − −
< <3 3

12 4 3 0( )( . )
 

 
so that the requirement 8.0 JxfK =  leads to x f = 4 0.  m.  
 
(c) As long as the work is positive, the kinetic energy grows. The graph shows this 
situation to hold until x = 1.0 m. At that location, the kinetic energy is 
 

1 0 0 1 16 J 2.0 J 18 J.xK K W < <= + = + =  
 
55. The horse pulls with a force F . As the cart moves through a displacement d , the 
work done by F  is cos ,W F d Fd φ= ⋅ =  where φ is the angle between F  and d .   
 
(a) In 10 min the cart moves 
 

mi 5280 ft/mi6.0 (10 min) 5280 ft
h 60 min/h

d v t ⎛ ⎞⎛ ⎞= Δ = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

so that Eq. 7-7 yields 
 

5cos (40 lb)(5280 ft) cos 30 1.8 10  ft lb.W Fd φ= = ° = × ⋅  
 
(b) The average power is given by Eq. 7-42. With 10 min 600 stΔ = = , we obtain 
 

5

avg
1.8 10  ft lb 305 ft lb/s

600 s
WP

t
× ⋅

= = = ⋅
Δ

, 

 
which (using the conversion factor 1 hp 550 ft lb/s= ⋅  found on the inside back cover of 
the text) converts to Pavg = 0.55 hp. 
 
56. The acceleration is constant, so we may use the equations in Table 2-1. We choose 
the direction of motion as +x and note that the displacement is the same as the distance 
traveled, in this problem. We designate the force (assumed singular) along the x direction 
acting on the m = 2.0 kg object as F. 
 
(a) With v0 = 0, Eq. 2-11 leads to a = v/t. And Eq. 2-17 gives Δx vt  1

2= . Newton’s 
second law yields the force F = ma. Equation 7-8, then, gives the work: 
 



 

  

293

21 1
2 2

vW F x m vt mv
t

⎛ ⎞⎛ ⎞= Δ = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
as we expect from the work-kinetic energy theorem. With v = 10 m/s, this yields 

21.0 10  JW = × . 
 
(b) Instantaneous power is defined in Eq. 7-48. With t = 3.0 s, we find 
 

67 W.vP Fv m v
t

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
(c) The velocity at 1.5st′ =  is 5.0 m sv at′ ′= = . Thus, ′ = ′ =P Fv 33 W.  
 
57. (a) To hold the crate at equilibrium in the final situation, F  must have the same 
magnitude as the horizontal component of the rope’s tension T sin θ , where θ  is the 
angle between the rope (in the final position) and vertical: 
 

θ = F
HG
I
KJ = °−sin .

.
. .1 4 00

12 0
19 5  

 
But the vertical component of the tension supports against the weight: T cos θ = mg . 
Thus, the tension is  

T = (230 kg)(9.80 m/s2)/cos 19.5° = 2391 N 
 
and  F = (2391 N) sin 19.5° = 797 N. 
 
An alternative approach based on drawing a vector triangle (of forces) in the final 
situation provides a quick solution. 
 
(b) Since there is no change in kinetic energy, the net work on it is zero. 
 
(c) The work done by gravity is W F d mghg g= ⋅ = − , where h = L(1 – cos θ ) is the 
vertical component of the displacement. With L = 12.0 m, we obtain Wg = –1547 J, which 
should be rounded to three significant figures: –1.55 kJ. 
 
(d) The tension vector is everywhere perpendicular to the direction of motion, so its work 
is zero (since cos 90° = 0). 
 
(e) The implication of the previous three parts is that the work due to F  is –Wg (so the 
net work turns out to be zero). Thus, WF = –Wg = 1.55 kJ. 
 
(f) Since F does not have constant magnitude, we cannot expect Eq. 7-8 to apply. 
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58. (a) The force of the worker on the crate is constant, so the work it does is given by 
W F d FdF = ⋅ = cosφ , where F  is the force, d  is the displacement of the crate, and φ is 
the angle between the force and the displacement. Here F = 210 N, d = 3.0 m, and φ = 
20°. Thus,  

WF = (210 N) (3.0 m) cos 20° = 590 J. 
 
(b) The force of gravity is downward, perpendicular to the displacement of the crate. The 
angle between this force and the displacement is 90° and cos 90° = 0, so the work done 
by the force of gravity is zero. 
 
(c) The normal force of the floor on the crate is also perpendicular to the displacement, so 
the work done by this force is also zero. 
 
(d) These are the only forces acting on the crate, so the total work done on it is 590 J. 
 
59. (a) We set up the ratio 

50
1

1 3
 km

1 km  megaton
=
F
HG

I
KJ

E
/

 

 
and find E = 503 ≈ 1 × 105 megatons of TNT. 
 
(b) We note that 15 kilotons is equivalent to 0.015 megatons. Dividing the result from 
part (a) by 0.013 yields about ten million bombs. 
 
60. (a) In the work-kinetic energy theorem, we include both the work due to an applied 
force Wa and work done by gravity Wg in order to find the latter quantity. 
 

     30 J (100 N)(1.8 m)cos 180a g gK W W WΔ = + ⇒ = °+  
 
leading to 22.1 10  JgW = × . 
  
(b) The value of Wg obtained in part (a) still applies since the weight and the path of the 
child remain the same, so 22.1 10  JgWΚΔ = = × . 
 
61. One approach is to assume a “path” from ri  to rf  and do the line-integral accordingly. 
Another approach is to simply use Eq. 7-36, which we demonstrate: 
 

4 3

2 3
(2 ) (3) f f

i i

x y

x yx y
W F dx F dy x dx dy

− −
= + = +∫ ∫ ∫ ∫  

 
with SI units understood. Thus, we obtain W = 12 J – 18 J = – 6 J. 
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62. (a) The compression of the spring is d = 0.12 m. The work done by the force of 
gravity (acting on the block) is, by Eq. 7-12, 
 

W mgd1 0 25 0 29= = =( . . kg) 9.8 m / s  (0.12 m)  J.2c h  
 
(b) The work done by the spring is, by Eq. 7-26, 
 

W kd2
21

2
1
2

250 18= − = − = −  N / m) (0.12 m)  J.2( .  

  
(c) The speed vi of the block just before it hits the spring is found from the work-kinetic 
energy theorem (Eq. 7-15): 

ΔK mv W Wi= − = +0 1
2

2
1 2  

which yields 

1 2( 2)( ) ( 2)(0.29 J 1.8 J) 3.5 m/s.
0.25 kgi

W Wv
m

− + − −
= = =  

 
(d) If we instead had 7 m/siv′ = , we reverse the above steps and solve for d ′ . Recalling 
the theorem used in part (c), we have 
 

 2 2
1 2

1 10
2 2imv W W mgd kd′ ′ ′ ′ ′− = + = −  

 
which (choosing the positive root) leads to 
 

′ =
+ + ′

d
mg m g mkv

k
i

2 2 2

 

 
which yields d´ = 0.23 m. In order to obtain this result, we have used more digits in our 
intermediate results than are shown above (so 12.048 m/s 3.471 m/siv = =  and iv′  = 
6.942 m/s). 
 
63. A crate is being pushed up a frictionless inclined plane. The forces involved are: 
gravitational force on the crate, normal force on the crate, and the force applied by the 
worker. The work done by a force F  on an object as it moves through a displacement 
d is cos ,W F d Fd φ= ⋅ =  where φ is the angle between F  and d . 
 
(a) The applied force is parallel to the incline. Thus, using Eq. 7-6, the work done on the 
crate by the worker’s applied force is   
 
 cos 0 (209 N)(1.50 m) 314 J.aW Fd= ° = ≈  
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(b) Using Eq. 7-12, we find the work done by the gravitational force to be  
 

2

cos(90 25 ) cos115
(25.0 kg)(9.8 m/s )(1.50 m)cos115

155 J.

g gW F d mgd= °+ ° = °
= °
≈ −

 

 
(c) The angle between the normal force and the direction of motion remains 90º at all 
times, so the work it does is zero: 

cos90 0N NW F d= ° = . 
 
(d) The total work done on the crate is the sum of all three works: 
 
 314 J ( 155 J) 0 J 158 Ja g NW W W W= + + = + − + = . 
 
Note: By the work-kinetic energy theorem, if the crate is initially at rest, then its kinetic 
energy after having moved 1.50 m up the incline would be 158 JK W= = , and the speed 
of the crate at that instant is  
 

2 / 2(158 J) / 25.0 kg 3.56 m/sv K m= = = . 
 
64. (a) The force F  of the incline is a combination of normal and friction force, which is 
serving to “cancel” the tendency of the box to fall downward (due to its 19.6 N weight). 
Thus, F mg  =  upward. In this part of the problem, the angle φ  between the belt and F  
is 80°. From Eq. 7-47, we have 
 

 cos (19.6 N)(0.50 m/s) cos 80P Fv φ= = °  = 1.7 W. 
 
(b) Now the angle between the belt and F  is 90°, so that P = 0. 
 
(c) In this part, the angle between the belt and F  is 100°, so that  
 

P = (19.6 N)(0.50 m/s) cos 100° = –1.7 W. 
 
65. There is no acceleration, so the lifting force is equal to the weight of the object. We 
note that the person’s pull F  is equal (in magnitude) to the tension in the cord. 
 
(a) As indicated in the hint, tension contributes twice to the lifting of the canister: 2T = 
mg. Since F T= , we find 98 N.F =  
 
(b) To rise 0.020 m, two segments of the cord (see Fig. 7-45) must shorten by that 
amount. Thus, the amount of string pulled down at the left end (this is the magnitude of 
d , the downward displacement of the hand) is d = 0.040 m. 
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(c) Since (at the left end) both F  and d  are downward, then Eq. 7-7 leads to  

 
(98 N)(0.040 m) 3.9 J.W F d= ⋅ = =  

 
(d) Since the force of gravity Fg  (with magnitude mg) is opposite to the displacement 

dc = 0 020.  m (up) of the canister, Eq. 7-7 leads to  
 

(196 N) (0.020 m) 3.9 J.g cW F d= ⋅ = − = −  
 
This is consistent with Eq. 7-15 since there is no change in kinetic energy. 
 
66. After converting the speed: 120 km/h 33.33 m/sv = = , we find  
 

( )( )22 51 1 1200kg 33.33m/s 6.67 10 J.
2 2

K mv= = = ×  

 
67. According to Hooke’s law, the spring force is given by 
 

0( )xF k x x k x= − − = − Δ , 
where xΔ  is the displacement from the equilibrium position. Thus, the first two situations 
in Fig. 7-46 can be written as  

0

0

110 N (40 mm )
240 N (60 mm )

k x
k x

− = − −
− = − −

 

 
The two equations allow us to solve for k, the spring constant, as well as 0x , the relaxed 
position when no mass is hung.   
 
(a) The two equations can be added to give 
 

240 N 110 N  (60 mm 40 mm)k− = −  
 
which yields k = 6.5 N/mm. Substituting the result into the first equation, we find  
 

0
110 N 110 N40 mm 40 mm 23 mm

6.5 N/mm
x

k
= − = − = . 

 
(b) Using the results from part (a) to analyze that last picture, we find the weight to be   
 

o(30mm ) (6.5 N/mm)(30 mm 23 mm) 45 N .W k x= − = − =  
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Note: An alternative method to calculate W in the third picture is to note that since the 

amount of stretching is proportional to the weight hung, we have W x
W x

Δ
=
′ ′Δ

. Applying 

this relation to the second and the third pictures, the weight W is 
  

3
2

2

30 mm 23 mm (240 N) 45 N
60 mm 23 mm

xW W
x

⎛ ⎞Δ −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟Δ −⎝ ⎠⎝ ⎠
, 

 
in agreement with the result shown in (b).  
 
68. Using Eq. 7-7, we have W = Fd cos φ =1504 J . Then, by the work-kinetic energy 
theorem, we find the kinetic energy Kf = Ki + W = 0 + 1504 J. The answer is therefore 
1.5 kJ . 
 
69. The total weight is (100)(660 N) = 6.60 × 104 N, and the words “raises … at constant 
speed” imply zero acceleration, so the lift-force is equal to the total weight. Thus  
 

P = Fv = (6.60 × 104)(150 m/60.0 s) = 1.65 × 105 W. 
 
70. With SI units understood, Eq. 7-8 leads to W = (4.0)(3.0) – c(2.0) = 12 – 2c. 
 
(a) If W = 0, then c = 6.0 N. 
 
(b) If W = 17 J, then c = –2.5 N. 
 
(c) If W =  –18 J, then c = 15 N. 
 
71. Using Eq. 7-8, we find 
 

ˆ ˆ ˆ ˆ( cos  i+F sin  j) ( i j) cos sinW F d F x y Fx Fyθ θ θ θ= ⋅ = ⋅ + = +  
 
where x = 2.0 m, y = –4.0 m, F = 10 N, and θ = °150 . Thus, we obtain W = –37 J. Note 
that the given mass value (2.0 kg) is not used in the computation. 
 
72. (a) Eq. 7-10 (along with Eq. 7-1 and Eq. 7-7) leads to  
 

vf = (2 dm F cosθ )1/2= (cosθ )1/2, 

 
where we have substituted F = 2.0 N, m = 4.0 kg, and d = 1.0 m. 
 
(b) With vi = 1, those same steps lead to vf = (1 + cosθ )1/2. 
 
(c) Replacing θ with 180º – θ, and still using vi = 1, we find  
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vf = [1 + cos(180º – θ )]1/2 = (1 – cosθ )1/2. 
 
(d) The graphs are shown on the right.  Note 
that as θ is increased in parts (a) and (b) the 
force provides less and less of a positive 
acceleration, whereas in part (c) the force 
provides less and less of a deceleration (as its θ 
value increases).  The highest curve (which 
slowly decreases from 1.4 to 1) is the curve for 
part (b); the other decreasing curve (starting at 
1 and ending at 0) is for part (a).  The rising 
curve is for part (c); it is equal to 1 where  θ = 
90º. 

 

 
73. (a) The plot of the function (with SI units understood) is shown below. 
 

 
 
Estimating the area under the curve allows for a range of answers.  Estimates from 11 J to 
14 J are typical.   
 
(b) Evaluating the work analytically (using Eq. 7-32), we have 
 

 
22 / 2 / 2

0 0
10 20 12.6 J 13 J.x xW e dx e− −= = − = ≈∫  

 
74. (a) Using Eq. 7-8 and SI units, we find 
 

ˆ ˆ ˆ ˆ(2 i 4 j) (8 i j) 16 4W F d c c= ⋅ = − ⋅ + = −  
 
which, if equal zero, implies c = 16/4 = 4 m. 
 
(b) If W > 0 then 16 > 4c, which implies c < 4 m. 
 
(c) If W < 0 then 16 < 4c, which implies c > 4 m. 
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75. A convenient approach is provided by Eq. 7-48. 
 

P = F v = (1800 kg + 4500 kg)(9.8 m/s2)(3.80 m/s) = 235 kW. 
 
Note that we have set the applied force equal to the weight in order to maintain constant 
velocity (zero acceleration). 
 
76. (a) The component of the force of gravity exerted on the ice block (of mass m) along 
the incline is mg sin θ , where θ = sin−1 0 91 15. .b g  gives the angle of inclination for the 
inclined plane. Since the ice block slides down with uniform velocity, the worker must 
exert a force F  “uphill” with a magnitude equal to mg sin θ. Consequently, 
 

2 20.91msin (45 kg)(9.8 m/s ) 2.7 10  N.
1.5m

F mg θ
⎛ ⎞

= = = ×⎜ ⎟
⎝ ⎠

 

 
(b) Since the “downhill” displacement is opposite to F , the work done by the worker is 
 

W1
2 22 7 10 4 0 10= − × = − ×. .N  (1.5 m) J.c h  

 
(c) Since the displacement has a vertically downward component of magnitude 0.91 m (in 
the same direction as the force of gravity), we find the work done by gravity to be 
 

W2
2 245 9 8 4 0 10= = ×( . . kg)  m / s  (0.91 m) J.c h  

 
(d) Since NF  is perpendicular to the direction of motion of the block, and cos90°  = 0, 
work done by the normal force is W3 = 0 by Eq. 7-7. 
 
(e) The resultant force Fnet  is zero since there is no acceleration. Thus, its work is zero, as 
can be checked by adding the above results W W W1 2 3 0+ + = . 
 
77. (a) To estimate the area under the curve between x = 1 m and x = 3 m (which should 
yield the value for the work done), one can try “counting squares” (or half-squares or 
thirds of squares) between the curve and the axis.  Estimates between 5 J and 8 J are 
typical for this (crude) procedure. 
 
(b) Equation 7-32 gives 

 ⌠
3

 ⌡1 
a
x2  dx = 

a
3  –  

a
1 =  6 J 

 
where a = –9 N·m2 is given in the problem statement.  
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78. (a) Using Eq. 7-32, the work becomes W = 92 x2  –  x3   (SI units understood).  The plot 
is shown below: 

 
 
(b) We see from the graph that its peak value occurs at x = 3.00 m.  This can be verified 
by taking the derivative of W and setting equal to zero, or simply by noting that this is 
where the force vanishes. 
 
(c) The maximum value is W = 92 (3.00)2  –  (3.00)3  = 13.50 J. 
 
(d) We see from the graph (or from our analytic expression) that W = 0 at x = 4.50 m. 
 
(e) The case is at rest when 0v = . Since 2 / 2W K mv= Δ = , the condition implies 0W = .  
This happens at x = 4.50 m. 
 
79. Figure 7-49 represents ( ),x t  the position of the lunchbox as a function of time. It is 
convenient to fit the curve to a concave-downward parabola:  
 

21 1( ) (10 )
10 10

x t t t t t= − = − . 

 
By taking one and two derivatives, we find the velocity and acceleration to be 
 

( ) 1
5

dx tv t
dt

= = −   (in m/s) ,  
2

2

1 0.2
5

d xa
dt

= = − = −  (in m/s2). 

 
The equations imply that the initial speed of the box is (0) 1.0 m/siv v= = , and the 
constant force by the wind is  
 

2(2.0 kg)( 0.2 m/s ) 0.40 NF ma= = − = − . 
 
The corresponding work is given by (SI units understood) 
 

( ) ( ) 0.04 (10 )W t F x t t t= ⋅ = − − . 
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The initial kinetic energy of the lunch box is  
 

2 21 1 (2.0 kg)(1.0 m/s) 1.0 J
2 2i iK mv= = = . 

 
With f iK K K WΔ = − = , the kinetic energy at a later time is given by (in SI units)  
 

( ) 1 0.04 (10 )iK t K W t t= + = − −  
 
(a) When t = 1.0 s, the above expression gives  
 

(1s) 1 0.04(1)(10 1) 1 0.36 0.64 0.6 JK = − − = − = ≈  
 
where the second significant figure is not to be taken too seriously. 
 
(b) At t = 5.0 s, the above method gives (5.0 s) 1 0.04(5)(10 5) 1 1 0K = − − = − = . 
 
(c) The work done by the force from the wind from t = 1.0 s to t = 5.0 s is 
 

(5.0) (1.0 s) 0 0.6 0.6 JW K K= − = − ≈ − . 
 
80. The problem indicates that SI units are understood, so the result (of Eq. 7-23) is in 
joules.  Done numerically, using features available on many modern calculators, the 
result is roughly 0.47 J.  For the interested student it might be worthwhile to quote the 
“exact” answer (in terms of the “error function”): 
 

         ⌠
1.2

 ⌡.15 e-2x² dx =  ¼ 2π [erf(6 2 /5) – erf(3 2 /20)] . 
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Chapter 8 
 
 
1. The potential energy stored by the spring is given by U kx= 1

2
2 , where k is the spring 

constant and x is the displacement of the end of the spring from its position when the 
spring is in equilibrium. Thus 
 

k U
x

= = = ×
2 2 25

0 075
8 9 102 2

3J
m

N mb g
b g.

. .  

 
2. We use Eq. 7-12 for Wg and Eq. 8-9 for U. 
 
(a) The displacement between the initial point and A is horizontal, so φ = 90.0° and 

0gW = (since cos 90.0° = 0). 
 
(b) The displacement between the initial point and B has a vertical component of h/2 
downward (same direction as Fg ), so we obtain  
 

 2 51 1 (825 kg)(9.80 m/s )(42.0 m) 1.70 10  J
2 2g gW F d mgh= ⋅ = = = × . 

 
(c) The displacement between the initial point and C has a vertical component of h 
downward (same direction as Fg ), so we obtain  
 

2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  Jg gW F d mgh= ⋅ = = = × . 
 
(d) With the reference position at C, we obtain  
 

2 51 1 (825 kg)(9.80 m/s )(42.0 m) 1.70 10  J
2 2BU mgh= = = × . 

 
(e) Similarly, we find  
 

2 5(825 kg)(9.80 m/s )(42.0 m) 3.40 10  JAU mgh= = = × . 
 
(f) All the answers are proportional to the mass of the object. If the mass is doubled, all 
answers are doubled. 
 
3. (a) Noting that the vertical displacement is 10.0 m – 1.50 m = 8.50 m downward (same 
direction as Fg ), Eq. 7-12 yields  
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 2cos (2.00 kg)(9.80 m/s )(8.50 m)cos 0 167 J.gW mgd φ= = ° =  
 
(b) One approach (which is fairly trivial) is to use Eq. 8-1, but we feel it is instructive to 
instead calculate this as ΔU where U = mgy (with upward understood to be the +y 
direction). The result is  
 

2( ) (2.00 kg)(9.80 m/s )(1.50 m 10.0 m) 167 J.f iU mg y yΔ = − = − = −  
 
(c) In part (b) we used the fact that Ui = mgyi =196 J. 
 
(d) In part (b), we also used the fact Uf = mgyf = 29 J. 
 
(e) The computation of Wg does not use the new information (that U = 100 J at the 
ground), so we again obtain Wg = 167 J. 
 
(f) As a result of Eq. 8-1, we must again find ΔU = –Wg = –167 J. 
 
(g) With this new information (that U0 = 100 J where y = 0) we have  
 

Ui = mgyi + U0 = 296 J. 
 
(h) With this new information (that U0 = 100 J where y = 0) we have  
 

Uf = mgyf + U0 = 129 J. 
 
We can check part (f) by subtracting the new Ui from this result. 
 
4. (a) The only force that does work on the ball is the force of gravity; the force of the rod 
is perpendicular to the path of the ball and so does no work. In going from its initial 
position to the lowest point on its path, the ball moves vertically through a distance equal 
to the length L of the rod, so the work done by the force of gravity is  
 
 2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JW mgL= = = . 
 
(b) In going from its initial position to the highest point on its path, the ball moves 
vertically through a distance equal to L, but this time the displacement is upward, 
opposite the direction of the force of gravity. The work done by the force of gravity is  
 

2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 J.W mgL= − = − = −  
 
(c) The final position of the ball is at the same height as its initial position. The 
displacement is horizontal, perpendicular to the force of gravity. The force of gravity 
does no work during this displacement. 
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(d) The force of gravity is conservative. The change in the gravitational potential energy 
of the ball-Earth system is the negative of the work done by gravity:  
 

2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JU mgLΔ = − = − = −  
 

as the ball goes to the lowest point. 
 
(e) Continuing this line of reasoning, we find  
 

2(0.341 kg)(9.80 m/s )(0.452 m) 1.51 JU mgLΔ = + = =  
 
as it goes to the highest point. 
 
(f) Continuing this line of reasoning, we have ΔU = 0 as it goes to the point at the same 
height. 
 
(g) The change in the gravitational potential energy depends only on the initial and final 
positions of the ball, not on its speed anywhere. The change in the potential energy is the 
same since the initial and final positions are the same. 
 
5. (a) The force of gravity is constant, so the work it does is given by W F d= ⋅ , where 
F is the force and d  is the displacement. The force is vertically downward and has 
magnitude mg, where m is the mass of the flake, so this reduces to W = mgh, where h is 
the height from which the flake falls. This is equal to the radius r of the bowl. Thus 
 

W mgr= = × × = ×− − −( . ) ( .2 00 10 22 0 103 2 kg) (9.8 m s m) 4.31 10 J.2 3  
 
(b) The force of gravity is conservative, so the change in gravitational potential energy of 
the flake-Earth system is the negative of the work done: ΔU = –W = –4.31 × 10–3 J. 
 
(c) The potential energy when the flake is at the top is greater than when it is at the 
bottom by |ΔU|. If U = 0 at the bottom, then U = +4.31 × 10–3 J at the top. 
 
(d) If U = 0 at the top, then U = – 4.31 × 10–3 J at the bottom. 
 
(e) All the answers are proportional to the mass of the flake. If the mass is doubled, all 
answers are doubled. 
 
6. We use Eq. 7-12 for Wg and Eq. 8-9 for U. 
 
(a) The displacement between the initial point and Q has a vertical component of h – R 
downward (same direction as Fg ), so (with h = 5R) we obtain  
 

2 24 4(3.20 10  kg)(9.80 m/s )(0.12 m) 0.15 Jg gW F d mgR −= ⋅ = = × = . 
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(b) The displacement between the initial point and the top of the loop has a vertical 
component of h – 2R downward (same direction as Fg ), so (with h = 5R) we obtain  
 

2 23 3(3.20 10  kg)(9.80 m/s )(0.12 m) 0.11 Jg gW F d mgR −= ⋅ = = × = . 
 
(c) With y = h = 5R, at P we find  
 

2 25 5(3.20 10  kg)(9.80 m/s )(0.12 m) 0.19 JU mgR −= = × = . 
 
(d) With y = R, at Q we have 
 

2 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.038 JU mgR −= = × = . 
 
(e) With y = 2R, at the top of the loop, we find 
 

2 22 2(3.20 10  kg)(9.80 m/s )(0.12 m) 0.075 JU mgR −= = × = . 
 
(f) The new information ( )vi ≠ 0  is not involved in any of the preceding computations; 
the above results are unchanged. 
 
7. The main challenge for students in this type of problem seems to be working out the 
trigonometry in order to obtain the height of the ball (relative to the low point of the 
swing) h = L – L cos θ (for angle θ measured from vertical as shown in Fig. 8-32). Once 
this relation (which we will not derive here since we have found this to be most easily 
illustrated at the blackboard) is established, then the principal results of this problem 
follow from Eq. 7-12 (for Wg ) and Eq. 8-9 (for U ). 
 
(a) The vertical component of the displacement vector is downward with magnitude h, so 
we obtain 

2

(1 cos )

(5.00 kg)(9.80 m/s )(2.00 m)(1 cos30 ) 13.1 J.
g gW F d mgh mgL θ= ⋅ = = −

= − ° =
 

 
 
(b) From Eq. 8-1, we have ΔU = –Wg = –mgL(1 – cos θ ) = –13.1 J. 
 
(c) With y = h, Eq. 8-9 yields U = mgL(1 – cos θ ) = 13.1 J. 
 
(d) As the angle increases, we intuitively see that the height h increases (and, less 
obviously, from the mathematics, we see that cos θ decreases so that 1 – cos θ increases), 
so the answers to parts (a) and (c) increase, and the absolute value of the answer to part (b) 
also increases. 
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8. (a) The force of gravity is constant, so the work it does is given by W F d= ⋅ , where 
F  is the force and d  is the displacement. The force is vertically downward and has 
magnitude mg, where m is the mass of the snowball. The expression for the work reduces 
to W = mgh, where h is the height through which the snowball drops. Thus 
 
 2(1.50 kg)(9.80 m/s )(12.5 m) 184 JW mgh= = = . 
 
(b) The force of gravity is conservative, so the change in the potential energy of the 
snowball-Earth system is the negative of the work it does: ΔU = –W = –184 J. 
 
(c) The potential energy when it reaches the ground is less than the potential energy when 
it is fired by |ΔU|, so U = –184 J when the snowball hits the ground. 
 
9. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 
friction and other dissipative effects). 
 
(a) In Problem 9-2, we found UA = mgh (with the reference position at C). Referring 
again to Fig. 8-27, we see that this is the same as U0, which implies that KA = K0 and thus 
that  

vA = v0 = 17.0 m/s. 
 
(b) In the solution to Problem 9-2, we also found U mghB = 2.  In this case, we have 
 

        K U K U

mv mgh mv mg h
B B

B

0 0

0
2 21

2
1
2 2

+ = +

+ = + FHG
I
KJ

 

which leads to  
 
 2 2 2

0 (17.0 m/s) (9.80 m/s )(42.0 m) 26.5 m/s.Bv v gh= + = + =  
 
(c) Similarly, 2 2 2

0 2 (17.0 m/s) 2(9.80 m/s )(42.0 m) 33.4 m/s.Cv v gh= + = + =  
 

(d) To find the “final” height, we set Kf = 0. In this case, we have 
 

         K U K U

mv mgh mgh

f f

f

0 0

0
21

2
0

+ = +

+ = +
 

 

which yields 
2 2
0

2

(17.0 m/s)42.0 m 56.7 m.
2 2(9.80 m/s )f
vh h
g

= + = + =  
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(e) It is evident that the above results do not depend on mass. Thus, a different mass for 
the coaster must lead to the same results. 
 
10. We use Eq. 8-17, representing the conservation of mechanical energy (which neglects 
friction and other dissipative effects). 
 
(a) In the solution to Problem 9-3 (to which this problem refers), we found Ui = mgyi = 
196 J and Uf  = mgyf  = 29.0 J (assuming the reference position is at the ground). Since 
Ki = 0 in this case, we have 
 0 196 J 29.0 JfK+ = +  
 

which gives Kf  = 167 J and thus leads to 
2 2(167 J) 12.9 m/s.

2.00 kg
fK

v
m

= = =  

 
(b) If we proceed algebraically through the calculation in part (a), we find Kf = – ΔU = 
mgh where h = yi – yf and is positive-valued. Thus, 
 

2
2fK

v gh
m

= =  

 
as we might also have derived from the equations of Table 2-1 (particularly Eq. 2-16). 
The fact that the answer is independent of mass means that the answer to part (b) is 
identical to that of part (a), that is, 12.9 m/sv = . 
 
(c) If Ki ≠ 0 , then we find Kf = mgh + Ki (where Ki is necessarily positive-valued). This 
represents a larger value for Kf than in the previous parts, and thus leads to a larger value 
for v. 
 
11. (a) If Ki is the kinetic energy of the flake at the edge of the bowl, Kf is its kinetic 
energy at the bottom, Ui is the gravitational potential energy of the flake-Earth system 
with the flake at the top, and Uf is the gravitational potential energy with it at the bottom, 
then Kf + Uf = Ki + Ui. 
 
Taking the potential energy to be zero at the bottom of the bowl, then the potential energy 
at the top is Ui = mgr where r = 0.220 m is the radius of the bowl and m is the mass of the 
flake. Ki = 0 since the flake starts from rest. Since the problem asks for the speed at the 

bottom, we write 1
2

2mv  for Kf. Energy conservation leads to 

 
W F d mgh mgLg g= ⋅ = = −( cos )1 θ  .  

 
The speed is 22 2(9.8 m/s )(0.220 m) 2.08 m/sv gr= = = .  
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(b) Since the expression for speed does not contain the mass of the flake, the speed would 
be the same, 2.08 m/s, regardless of the mass of the flake. 
 
(c) The final kinetic energy is given by Kf = Ki + Ui – Uf. Since Ki is greater than before, 
Kf is greater. This means the final speed of the flake is greater. 
 
12. We use Eq. 8-18, representing the conservation of mechanical energy. We choose the 
reference position for computing U to be at the ground below the cliff; it is also regarded 
as the “final” position in our calculations. 
 
(a) Using Eq. 8-9, the initial potential energy is given by Ui = mgh where h = 12.5 m and 

1.50 kgm = . Thus, we have 
          

1
2

K U K U

mv mgh mv

i i f f

i

+ = +

+ = +
1
2

02 2
 

 
which leads to the speed of the snowball at the instant before striking the ground: 
 

v
m

mv mgh v ghi i= +F
HG

I
KJ = +

2 1
2

22 2    

 
where vi = 14.0 m/s is the magnitude of its initial velocity (not just one component of it). 
Thus we find v = 21.0 m/s. 
 
(b) As noted above, vi is the magnitude of its initial velocity and not just one component 
of it; therefore, there is no dependence on launch angle. The answer is again 21.0 m/s. 
 
(c) It is evident that the result for v in part (a) does not depend on mass. Thus, changing 
the mass of the snowball does not change the result for v. 
 
13. We take the reference point for gravitational potential energy at the position of the 
marble when the spring is compressed. 
 
(a) The gravitational potential energy when the marble is at the top of its motion is 

gU mgh= , where h = 20 m is the height of the highest point. Thus, 
 

U g = × =−50 10 9 8 0 983 2. . . . kg m s 20 m  Jc hd ib g  

 
(b) Since the kinetic energy is zero at the release point and at the highest point, then 
conservation of mechanical energy implies ΔUg + ΔUs = 0, where ΔUs is the change in 
the spring's elastic potential energy. Therefore, ΔUs = –ΔUg = –0.98 J. 
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(c) We take the spring potential energy to be zero when the spring is relaxed. Then, our 
result in the previous part implies that its initial potential energy is Us = 0.98 J. This must 
be 1

2
2kx , where k is the spring constant and x is the initial compression. Consequently, 

 

k U
x

s= = = × =
2 2 0 98

0 080
31 10 312 2

2( . )
( . )

. . J
 m

 N m   N cm.  

 
14. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects 
friction and other dissipative effects). 
 
(a) The change in potential energy is ΔU = mgL as it goes to the highest point. Thus, we 
have 

          

top

Δ ΔK U
K K mgL

+ =
− + =

0
00

 

 
which, upon requiring Ktop = 0, gives K0 = mgL and thus leads to 
 

 20
0

2 2 2(9.80 m/s )(0.452 m) 2.98 m/sKv gL
m

= = = = . 

 
(b) We also found in Problem 9-4 that the potential energy change is ΔU = –mgL in going 
from the initial point to the lowest point (the bottom). Thus, 
 

            

bottom

Δ ΔK U
K K mgL

+ =
− − =

0
00

 

 
which, with K0 = mgL, leads to Kbottom = 2mgL. Therefore, 
 

 2bottom
bottom

2 4 4(9.80 m/s )(0.452 m) 4.21 m/sKv gL
m

= = = = . 

 
(c) Since there is no change in height (going from initial point to the rightmost point), 
then ΔU = 0, which implies ΔK = 0. Consequently, the speed is the same as what it was 
initially, 

right 0 2.98 m/sv v= = . 
 
(d) It is evident from the above manipulations that the results do not depend on mass. 
Thus, a different mass for the ball must lead to the same results. 
 
15. We neglect any work done by friction. We work with SI units, so the speed is 
converted: v = 130(1000/3600) = 36.1 m/s. 
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(a) We use Eq. 8-17: Kf + Uf = Ki + Ui with Ui = 0, Uf = mgh and Kf = 0. Since 
K mvi = 1

2
2 , where v is the initial speed of the truck, we obtain 

 
2 2

2
2

1 (36.1 m/s) 66.5 m
2 2 2(9.8 m/s )

vmv mgh h
g

= ⇒ = = = . 

 
If L is the length of the ramp, then L sin 15° = 66.5 m so that L = (66.5 m)/sin 15° = 257 
m. Therefore, the ramp must be about 2.6×102 m long if friction is negligible. 
 
(b) The answers do not depend on the mass of the truck. They remain the same if the 
mass is reduced. 
 
(c) If the speed is decreased, h and L both decrease (note that h is proportional to the 
square of the speed and that L is proportional to h). 
 
16. We place the reference position for evaluating gravitational potential energy at the 
relaxed position of the spring. We use x for the spring's compression, measured positively 
downward (so x > 0 means it is compressed). 
 
(a) With x = 0.190 m, Eq. 7-26 gives  
 

21 7.22 J 7.2 J
2sW kx= − = − ≈ −  

 
for the work done by the spring force. Using Newton's third law, we see that the work 
done on the spring is 7.2 J. 
 
(b) As noted above, Ws = –7.2 J. 
 
(c) Energy conservation leads to 

K U K U

mgh mgx kx

i i f f+ = +

= − +0
21

2

 

 
which (with m = 0.70 kg) yields h0 = 0.86 m. 
 
(d) With a new value for the height ′ = =h h0 02 172. m , we solve for a new value of x 
using the quadratic formula (taking its positive root so that x > 0). 
 

mgh mgx kx x
mg mg mgkh

k
′ = − + ⇒ =

+ + ′
0

2
2

01
2

2b g
 

 
which yields x = 0.26 m. 
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17. (a) At Q the block (which is in circular motion at that point) experiences a centripetal 
acceleration v2/R leftward. We find v2 from energy conservation: 
 

K U K U

mgh mv mgR

P P Q Q+ = +

+ = +0 1
2

2
 

 
Using the fact that h = 5R, we find mv2 = 8mgR. Thus, the horizontal component of the 
net force on the block at Q is  
 

F = mv2/R = 8mg=8(0.032 kg)(9.8 m/s2)= 2.5 N. 
 
The direction is to the left (in the same direction as a ). 
 
(b) The downward component of the net force on the block at Q is the downward force of 
gravity  

F = mg =(0.032 kg)(9.8 m/s2)= 0.31 N. 
 
(c) To barely make the top of the loop, the centripetal force there must equal the force of 
gravity: 

2
2t
t

mv mg mv mgR
R

= ⇒ = . 

 
This requires a different value of h than was used above. 
 

210
2
1 ( ) (2 )
2

P P t t

t t

K U K U

mgh mv mgh

mgh mgR mg R

+ = +

+ = +

= +

 

 
Consequently, h = 2.5R = (2.5)(0.12 m) = 0.30 m. 
 
(d) The normal force FN, for speeds vt greater than gR  (which are the only 
possibilities for nonzero FN — see the solution in the previous part), obeys 
 

 
2
t

N
mvF mg

R
= −  

 
from Newton's second law. Since 2

tv  is related to h by energy conservation 
 

K U K U gh v gRP P t t t+ = + ⇒ = + 1
2

22
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then the normal force, as a function for h (so long as h ≥ 2.5R — see the solution in the 
previous part), becomes 

2 5N
mghF mg
R

= − . 

 
Thus, the graph for h ≥ 2.5R = 0.30 m consists of a straight line of positive slope 2mg/R 
(which can be set to some convenient values for graphing purposes). Note that for h ≤ 
2.5R, the normal force is zero.  
 

 
 
18. We use Eq. 8-18, representing the conservation of mechanical energy. The reference 
position for computing U is the lowest point of the swing; it is also regarded as the 
“final” position in our calculations. 
 
(a) The potential energy is U = mgL(1 – cos θ ) at the position shown in Fig. 8-32 (which 
we consider to be the initial position). Thus, we have 
 

                  K U K U

mgL mv

i i f f+ = +

+ − = +0 1 1
2

02( cos )θ
 

which leads to 

v mgL
m

gL=
−

= −
2 1 2 1( cos ) ( cos ).θ θ  

 
Plugging in L = 2.00 m and θ = 30.0° we find v = 2.29 m/s. 
 
(b) It is evident that the result for v does not depend on mass. Thus, a different mass for 
the ball must not change the result. 
 
19. We convert to SI units and choose upward as the +y direction. Also, the relaxed 
position of the top end of the spring is the origin, so the initial compression of the spring 
(defining an equilibrium situation between the spring force and the force of gravity) is y0 
= –0.100 m and the additional compression brings it to the position y1 = –0.400 m. 
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(a) When the stone is in the equilibrium (a = 0) position, Newton's second law becomes 
 

                                 
                      

net

spring

F ma
F mg

k

=
− =

− − − =

0
0100 8 00 9 8 0( . ) ( . ) ( . )

 

 
where Hooke's law (Eq. 7-21) has been used. This leads to a spring constant equal to 

784 N/mk = .  
 
(b) With the additional compression (and release) the acceleration is no longer zero, and 
the stone will start moving upward, turning some of its elastic potential energy (stored in 
the spring) into kinetic energy. The amount of elastic potential energy at the moment of 
release is, using Eq. 8-11, 

 2 2
1

1 1 (784 N/m)( 0.400) 62.7 J
2 2

U ky= = − = . 

 
(c) Its maximum height y2 is beyond the point that the stone separates from the spring 
(entering free-fall motion). As usual, it is characterized by having (momentarily) zero 
speed. If we choose the y1 position as the reference position in computing the 
gravitational potential energy, then 

  K U K U

ky mgh

1 1 2 2

1
20 1

2
0

+ = +

+ = +
 

 
where h = y2 – y1 is the height above the release point. Thus, mgh (the gravitational 
potential energy) is seen to be equal to the previous answer, 62.7 J, and we proceed with 
the solution in the next part. 
 
(d) We find 2

1 2 0.800 mh ky mg= = , or 80.0 cm. 
 
20. (a) We take the reference point for gravitational energy to be at the lowest point of the 
swing. Let θ be the angle measured from vertical. Then the height y of the pendulum 
“bob” (the object at the end of the pendulum, which in this problem is the stone) is given 
by L(1 – cosθ ) = y . Hence, the gravitational potential energy is  
 

mg y = mgL(1 – cosθ ). 
 
When θ = 0º (the string at its lowest point) we are told that its speed is 8.0 m/s; its kinetic 
energy there is therefore 64 J (using Eq. 7-1). At θ = 60º its mechanical energy is 
 

Emech = 
1
2 mv2 + mgL(1 – cosθ ) . 
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Energy conservation (since there is no friction) requires that this be equal to 64 J.  
Solving for the speed, we find v = 5.0 m/s. 
 
(b) We now set the above expression again equal to 64 J (with θ being the unknown) but 
with zero speed (which gives the condition for the maximum point, or “turning point” 
that it reaches). This leads to θmax = 79°. 
 
(c) As observed in our solution to part (a), the total mechanical energy is 64 J. 
 
21. We use Eq. 8-18, representing the conservation of mechanical energy (which neglects 
friction and other dissipative effects). The reference position for computing U (and height 
h) is the lowest point of the swing; it is also regarded as the “final” position in our 
calculations. 
 
(a) Careful examination of the figure leads to the trigonometric relation h = L – L cos θ 
when the angle is measured from vertical as shown. Thus, the gravitational potential 
energy is U = mgL(1 – cos θ0) at the position shown in Fig. 8-32 (the initial position). 
Thus, we have 

                         

 

K U K U

mv mgL mv

f f0 0

0
2

0
21

2
1 1

2
0

+ = +

+ − = +cosθb g  

which leads to 
 

 
2 2
0 0 0 0

2 2

2 1 (1 cos ) 2 (1 cos )
2

(8.00 m/s) 2(9.80 m/s )(1.25 m)(1 cos 40 ) 8.35 m/s.

v mv mgL v gL
m

θ θ⎡ ⎤= + − = + −⎢ ⎥⎣ ⎦

= + − ° =

 

 
(b) We look for the initial speed required to barely reach the horizontal position — 
described by vh = 0 and θ = 90° (or θ = –90°, if one prefers, but since cos(–φ) = cos φ, the 
sign of the angle is not a concern). 
 

                         

 

K U K U

mv mgL mgL

h h0 0

0
2

0
1
2

1 0

+ = +

+ − = +cosθb g  

which yields  
2

0 02 cos 2(9.80 m/s )(1.25 m)cos 40 4.33 m/s.v gL θ= = ° =  
 
(c) For the cord to remain straight, then the centripetal force (at the top) must be (at least) 
equal to gravitational force: 

mv
r

mg mv mgLt
t

2
2= ⇒ =  
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where we recognize that r = L. We plug this into the expression for the kinetic energy (at 
the top, where θ = 180°). 

                         

 1
2

 1
2

K U K U

mv mgL mv mg

mv mgL mgL mg L

t t

t

0 0

0
2

0
2

0
2

0

1
2

1 1 180

1
2

1 2

+ = +

+ − = + − °

+ − = +

cos cos

cos ( ) ( )

θ

θ

b g b g

b g

 

which leads to  
 

2
0 0(3 2cos ) (9.80 m/s )(1.25 m)(3 2cos 40 ) 7.45 m/s.v gL θ= + = + ° =  

 
(d) The more initial potential energy there is, the less initial kinetic energy there needs to 
be, in order to reach the positions described in parts (b) and (c). Increasing θ0 amounts to 
increasing U0, so we see that a greater value of θ0 leads to smaller results for v0 in parts (b) 
and (c). 
 
22. From Chapter 4, we know the height h of the skier's jump can be found from 
v v ghy y

2
0
20 2= = −  where v0 y = v0 sin 28° is the upward component of the skier's “launch 

velocity.” To find v0 we use energy conservation. 
 
(a) The skier starts at rest y = 20 m above the point of “launch” so energy conservation 
leads to 

mgy mv v gy= ⇒ = =
1
2

m s2 2 20  

 
which becomes the initial speed v0 for the launch. Hence, the above equation relating h to 
v0 yields 

h
v

g
=

°
=0

2
sin 28

4.4 m
2b g .  

 
(b) We see that all reference to mass cancels from the above computations, so a new 
value for the mass will yield the same result as before. 
 
23. (a) As the string reaches its lowest point, its original potential energy U = mgL 
(measured relative to the lowest point) is converted into kinetic energy. Thus, 
 

mgL mv v gL= ⇒ =
1
2

22 .  

 
With L = 1.20 m we obtain 22 2(9.80 m/s )(1.20 m) 4.85 m/sv gL= = = . 
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(b) In this case, the total mechanical energy is shared between kinetic 1
2

2mvb  and 
potential mgyb. We note that yb = 2r where r = L – d = 0.450 m. Energy conservation 
leads to 

mgL mv mgyb b= +
1
2

2  

 
which yields v gL g rb = − =2 2 2.42 m s2b g .  
 
24. We denote m as the mass of the block, h = 0.40 m as the height from which it dropped 
(measured from the relaxed position of the spring), and x as the compression of the spring 
(measured downward so that it yields a positive value). Our reference point for the 
gravitational potential energy is the initial position of the block. The block drops a total 
distance h + x, and the final gravitational potential energy is –mg(h + x). The spring 
potential energy is 1

2
2kx  in the final situation, and the kinetic energy is zero both at the 

beginning and end. Since energy is conserved 
 

K U K U

mg h x kx

i i f f+ = +

= − + +           1
2

0 2( )
 

which is a second degree equation in x. Using the quadratic formula, its solution is 
 

x
mg mg mghk

k
=

± +b g2 2
.  

 
Now mg = 19.6 N, h = 0.40 m, and k = 1960 N m , and we choose the positive root so 
that x > 0. 

x =
+ +

=
19.6 19.6 2 19.6 0.40 1960

0.10 m .
2 b gb gb g

1960
 

 
25. Since time does not directly enter into the energy formulations, we return to Chapter 
4 (or Table 2-1 in Chapter 2) to find the change of height during this t = 6.0 s flight. 
 

Δy v t gty= −0
21

2
 

 
This leads to Δy = −32 m . Therefore 2318 J 3.2 10  JU mg y −Δ = Δ = − ≈ − × . 
 
26. (a) With energy in joules and length in meters, we have 
 

ΔU U x U x dx
x

= − = − ′ − ′zb g b g b g0 6 12
0

. 
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Therefore, with U (0) = 27 J, we obtain U(x) (written simply as U) by integrating and 
rearranging: 

U x x= + −27 12 3 2 .  
 
(b) We can maximize the above function by working through the / 0dU dx = condition, 
or we can treat this as a force equilibrium situation — which is the approach we show. 
 

F xeq= ⇒ − =0 6 12 0  
 
Thus, xeq = 2.0 m, and the above expression for the potential energy becomes U = 39 J. 
 
(c) Using the quadratic formula or using the polynomial solver on an appropriate 
calculator, we find the negative value of x for which U = 0 to be x = –1.6 m. 
 
(d) Similarly, we find the positive value of x for which U = 0 to be x = 5.6 m. 
 
27. (a) To find out whether or not the vine breaks, it is sufficient to examine it at the 
moment Tarzan swings through the lowest point, which is when the vine — if it didn't 
break — would have the greatest tension. Choosing upward positive, Newton's second 
law leads to 

T mg m v
r

− =
2

 

 
where r = 18.0 m and m W g= = =688 9 8 70 2. . kg . We find the v2 from energy 
conservation (where the reference position for the potential energy is at the lowest point). 
 

mgh mv v gh  1
2

    2= ⇒ =2 2  

 
where h = 3.20 m. Combining these results, we have 
 

T mg m gh
r

mg h
r

= + = +FHG
I
KJ

2 1 2  

 
which yields 933 N. Thus, the vine does not break.  
 
(b) Rounding to an appropriate number of significant figures, we see the maximum 
tension is roughly 9.3×102 N. 
 
28. From the slope of the graph, we find the spring constant 
 

k F
x

= = =
Δ
Δ

010 10. .N cm N m  
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(a) Equating the potential energy of the compressed spring to the kinetic energy of the 
cork at the moment of release, we have 
 

1
2

1
2

2 2kx mv v x k
m

= ⇒ =  

 
which yields v = 2.8 m/s for m = 0.0038 kg and x = 0.055 m. 
 
(b) The new scenario involves some potential energy at the moment of release. With d = 
0.015 m, energy conservation becomes 
 

1
2

1
2

1
2

2 2 2 2 2kx mv kd v k
m

x d= + ⇒ = −c h  
 
which yields v = 2.7 m/s. 
 
29. We refer to its starting point as A, the point where it first comes into contact with the 
spring as B, and the point where the spring is compressed 0 0.055 mx =  as C, as shown 
in the figure below. Point C is our reference point for computing gravitational potential 
energy. Elastic potential energy (of the spring) is zero when the spring is relaxed. 

 
 
Information given in the second sentence allows us to compute the spring constant. From 
Hooke's law, we find 

k F
x

= = = ×
270 N
0.02 m

1.35 10 N m4 .  

 
The distance between points A and B is 0l  and we note that the total sliding distance 

0 0l x+  is related to the initial height hA of the block (measured relative to C) by 
 

0 0

sin Ah
l x

θ =
+

 

where the incline angle θ is 30°.  
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(a) Mechanical energy conservation leads to 
 

2
0

10
2A A C C AK U K U mgh kx+ = + ⇒ + =  

which yields 
2 4 2
0

2

(1.35 10 N/m)(0.055 m) 0.174 m
2 2(12 kg)(9.8 m/s )A
kxh
mg

×
= = = . 

 
Therefore, the total distance traveled by the block before coming to a stop is 
 

0 0
0.174 m 0.347 m 0.35 m

sin 30 sin 30
Ahl x+ = = = ≈

° °
. 

  
(b) From this result, we find 0 0 0.347 m 0.055 m 0.292 ml x= = − = , which means that 
the block has descended a vertical distance 
 

0| | sin (0.292 m)sin 30 0.146 mA By h h l θΔ = − = = ° =  
 
in sliding from point A to point B. Thus, using Eq. 8-18, we have 
 

 2 21 10 | |
2 2A B B Bmgh mv mgh mv mg y+ = + ⇒ = Δ  

 
which yields 22 | | 2(9.8 m/s )(0.146 m) 1.69 m/s 1.7 m/sBv g y= Δ = = ≈ . 
 
Note: Energy is conserved in the process. The total energy of the block at position B is  
 

2 2 21 1 (12 kg)(1.69 m/s) (12 kg)(9.8 m/s )(0.028 m) 20.4 J
2 2B B BE mv mgh= + = + = , 

 
which is equal to the elastic potential energy in the spring: 
 

2 4 2
0

1 1 (1.35 10 N/m)(0.055 m) 20.4 J
2 2

kx = × = . 

 
30. We take the original height of the box to be the y = 0 reference level and observe that, 
in general, the height of the box (when the box has moved a distance d downhill) is 

sin 40y d= − ° . 
 
(a) Using the conservation of energy, we have 
 

K U K U mv mgy kdi i+ = + ⇒ + = + +0 0 1
2

1
2

2 2. 
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Therefore, with d = 0.10 m, we obtain v = 0.81 m/s. 
 
(b) We look for a value of d ≠  0 such that K = 0. 
 

K U K U mgy kdi i+ = + ⇒ + = + +0 0 0 1
2

2 . 

 
Thus, we obtain mgd kdsin40 1

2
2° =  and find d = 0.21 m. 

 
(c) The uphill force is caused by the spring (Hooke's law) and has magnitude kd = 25.2 N. 
The downhill force is the component of gravity sin 40mg ° = 12.6 N. Thus, the net force 
on the box is (25.2 – 12.6) N = 12.6 N uphill, with  
 

a = F/m =(12.6 N)/(2.0 kg) = 6.3 m/s2. 
 
(d) The acceleration is up the incline. 
 
31. The reference point for the gravitational potential energy Ug (and height h) is at the 
block when the spring is maximally compressed. When the block is moving to its highest 
point, it is first accelerated by the spring; later, it separates from the spring and finally 
reaches a point where its speed vf is (momentarily) zero. The x axis is along the incline, 
pointing uphill (so x0 for the initial compression is negative-valued); its origin is at the 
relaxed position of the spring. We use SI units, so k = 1960 N/m and x0 = –0.200 m. 
 
(a) The elastic potential energy is 1

2 0
2 39 2kx = .  J . 

 
(b) Since initially Ug = 0, the change in Ug is the same as its final value mgh where m = 
2.00 kg. That this must equal the result in part (a) is made clear in the steps shown in the 
next part. Thus, ΔUg = Ug = 39.2 J. 
 
(c) The principle of mechanical energy conservation leads to 
 

 K U K U

kx mgh

f f0 0

0
20 1

2
0

+ = +

+ = +
 

 
which yields h = 2.00 m. The problem asks for the distance along the incline, so we have 
d = h/sin 30° = 4.00 m. 
 
32. The work required is the change in the gravitational potential energy as a result of the 
chain being pulled onto the table. Dividing the hanging chain into a large number of 
infinitesimal segments, each of length dy, we note that the mass of a segment is (m/L) dy 
and the change in potential energy of a segment when it is a distance |y| below the table 
top is  
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dU = (m/L)g|y| dy = –(m/L)gy dy 

 
since y is negative-valued (we have +y upward and the origin is at the tabletop). The total 
potential energy change is 
 

DU mg
L

y dy mg
L

L mgL
L

= − = =
−z  1

2
4 322

4

0
( ) .

/
 

 
The work required to pull the chain onto the table is therefore  
 

W = ΔU = mgL/32 = (0.012 kg)(9.8 m/s2)(0.28 m)/32 = 0.0010 J. 
 
33. All heights h are measured from the lower end of the incline (which is our reference 
position for computing gravitational potential energy mgh). Our x axis is along the incline, 
with +x being uphill (so spring compression corresponds to x > 0) and its origin being at 
the relaxed end of the spring. The height that corresponds to the canister's initial position 
(with spring compressed amount x = 0.200 m) is given by 1 ( )sinh D x θ= + , where 

37θ = ° . 
 
(a) Energy conservation leads to 
 

 2 2
1 1 2 2 2

1 10 ( )sin sin
2 2

K U K U mg D x kx mv mgDθ θ+ = + ⇒ + + + = +  

 
which yields, using the data m = 2.00 kg and k = 170 N/m, 
 

v gx kx m2
22 2 40= + =sin .θ m s .  

 
(b) In this case, energy conservation leads to 
 

1 1 3 3

2 2
3

1 10 ( )sin 0
2 2

K U K U

mg D x kx mvθ

+ = +

+ + + = +
 

 
which yields 2

3 2 ( )sin / 4.19 m/s.v g D x kx mθ= + + =  
 
34. Let NF  be the normal force of the ice on him and m is his mass. The net inward force 
is mg cos θ – FN and, according to Newton's second law, this must be equal to mv2/R, 
where v is the speed of the boy. At the point where the boy leaves the ice FN = 0, so g cos 
θ = v2/R. We wish to find his speed. If the gravitational potential energy is taken to be 
zero when he is at the top of the ice mound, then his potential energy at the time shown is  
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U = –mgR(1 – cos θ ). 
 
He starts from rest and his kinetic energy at the time shown is 1

2
2mv . Thus conservation 

of energy gives 
0 11

2
2= − −mv mgR( cos )θ , 

 
or v2 = 2gR(1 – cos θ ). We substitute this expression into the equation developed from 
the second law to obtain g cos θ = 2g(1 – cos θ ). This gives cos θ = 2/3. The height of 
the boy above the bottom of the mound is  
 

 2 2cos (13.8 m) 9.20 m
3 3

h R Rθ= = = = . 

 
35. (a) The (final) elastic potential energy is  
 

U = 
1
2 kx2 = 

1
2 (431 N/m)(0.210 m)2 = 9.50 J. 

 
Ultimately this must come from the original (gravitational) energy in the system mgy 
(where we are measuring y from the lowest “elevation” reached by the block, so  
 

y = (d + x)sin(30º). 
Thus,  

   mg(d + x)sin(30º) = 9.50 J    ⇒   d = 0.396 m. 
 
(b) The block is still accelerating (due to the component of gravity along the incline, 
mgsin(30º)) for a few moments after coming into contact with the spring (which exerts 
the Hooke’s law force kx), until the Hooke’s law force is strong enough to cause the 
block to begin decelerating. This point is reached when  
 

kx = mg sin30º 
 
which leads to x = 0.0364 m = 3.64 cm; this is long before the block finally stops (36.0 
cm before it stops). 
 
36. The distance the marble travels is determined by its initial speed (and the methods of 
Chapter 4), and the initial speed is determined (using energy conservation) by the original 
compression of the spring. We denote h as the height of the table, and x as the horizontal 
distance to the point where the marble lands. Then x = v0 t and h gt= 1

2
2  (since the 

vertical component of the marble's “launch velocity” is zero). From these we find 
x v h g= 0 2 . We note from this that the distance to the landing point is directly 
proportional to the initial speed. We denote v01 be the initial speed of the first shot and D1 
= (2.20 – 0.27) m = 1.93 m be the horizontal distance to its landing point; similarly, v02 is 
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the initial speed of the second shot and D = 2.20 m is the horizontal distance to its 
landing spot. Then 

 02
02 01

01 1 1

    v D Dv v
v D D

= ⇒ =  

 
When the spring is compressed an amount , the elastic potential energy is 1

2
2k . When 

the marble leaves the spring its kinetic energy is 1
2 0

2mv . Mechanical energy is conserved: 
1
2 0

2 1
2

2mv k= , and we see that the initial speed of the marble is directly proportional to 
the original compression of the spring. If 1 is the compression for the first shot and 2 
is the compression for the second, then v v02 2 1 01= b g . Relating this to the previous 
result, we obtain 

2 1
1

2.20 m (1.10 cm) 1.25 cm
1.93 m

D
D

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. 

 
37. Consider a differential element of length dx at a distance x from one end (the end that 
remains stuck) of the cord. As the cord turns vertical, its change in potential energy is 
given by 

( )dU dx gxλ= −  
 
where /m hλ =  is the mass/unit length and the negative sign indicates that the potential 
energy decreases. Integrating over the entire length, we obtain the total change in the 
potential energy: 

 2

0

1 1
2 2

h
U dU gxdx gh mghλ λΔ = = − = − = −∫ ∫ . 

  
With m = 15 g and h = 25 cm, we have 0.018 JUΔ = − . 
 
38. In this problem, the mechanical energy (the sum of K and U) remains constant as the 
particle moves. 
 
(a) Since mechanical energy is conserved, B B A AU K U K+ = + , the kinetic energy of the 
particle in region A (3.00 m 4.00 mx≤ ≤ ) is  
 

12.0 J 9.00 J 4.00 J 7.00 JA B A BK U U K= − + = − + = . 
 
With 2 / 2,A AK mv=  the speed of the particle at 3.5 mx = (within region A) is  
 

 2 2(7.00 J) 8.37 m/s.
0.200 kg

A
A

Kv
m

= = =  
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(b) At 6.5 m,x = 0U =  and 12.0 J 4.00 J 16.0 JB BK U K= + = + = by mechanical 
energy conservation. Therefore, the speed at this point is  
 

2 2(16.0 J) 12.6 m/s.
0.200 kg

Kv
m

= = =  

 
(c) At the turning point, the speed of the particle is zero. Let 
the position of the right turning point be .Rx  From the figure 
shown on the right, we find Rx  to be 
  

16.00 J 0 24.00 J 16.00 J 7.67 m.
7.00 m 8.00 m R

R R

x
x x

− −
= ⇒ =

− −
 

 
 

 
(d) Let the position of the left turning point be .Lx  From the 
figure shown, we find Lx  to be  
 

 16.00 J 20.00 J 9.00 J 16.00 J 1.73 m.
1.00 m 3.00 m L

L L

x
x x

− −
= ⇒ =

− −
 

 
 
39. From the figure, we see that at x = 4.5 m, the potential energy is U1 = 15 J. If the 
speed is v = 7.0 m/s, then the kinetic energy is  
 

K1 = mv2/2 = (0.90 kg)(7.0 m/s)2/2 = 22 J. 
 
The total energy is E1 = U 1+ K1 = (15 + 22) J = 37 J. 
 
(a) At x = 1.0 m, the potential energy is U2 = 35 J. By energy conservation, we have K2 = 
2.0 J > 0. This means that the particle can reach there with a corresponding speed  
 

 2
2

2 2(2.0 J) 2.1 m/s.
0.90 kg

Kv
m

= = =  

 
(b) The force acting on the particle is related to the potential energy by the negative of the 
slope:  

 x
UF
x

Δ
= −

Δ
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From the figure we have 35 J 15 J 10 N
2 m 4 mxF −

= − = +
−

. 

 
(c) Since the magnitude 0xF > , the force points in the +x direction. 
 
(d) At x = 7.0 m, the potential energy is U3 = 45 J, which exceeds the initial total energy 
E1. Thus, the particle can never reach there. At the turning point, the kinetic energy is 
zero. Between x = 5 and 6 m, the potential energy is given by 
 
 ( ) 15 30( 5),     5 6.U x x x= + − ≤ ≤  
 
Thus, the turning point is found by solving 37 15 30( 5)x= + − , which yields x = 5.7 m.  
 
(e) At x = 5.0 m, the force acting on the particle is  
 

(45 15) J 30 N
(6 5) mx

UF
x

Δ −
= − = − = −

Δ −
. 

The magnitude is | | 30 NxF = . 
 
(f) The fact that 0xF < indicated that the force points in the –x direction. 
 
40. (a) The force at the equilibrium position r = req is 
 

 13 7
eq eq eq

12 60 0dU A BF r rdr r r
= − = ⇒ − + =

=
 

 
which leads to the result 

r A
B

A
Beq  = FHG

I
KJ = F

HG
I
KJ

2 112
1
6

1
6

. .  

 
(b) This defines a minimum in the potential energy curve (as can be verified either by a 
graph or by taking another derivative and verifying that it is concave upward at this 
point), which means that for values of r slightly smaller than req the slope of the curve is 
negative (so the force is positive, repulsive). 
 
(c) And for values of r slightly larger than req the slope of the curve must be positive (so 
the force is negative, attractive). 
 
41. (a) The energy at x = 5.0 m is E = K + U = 2.0 J – 5.7 J = –3.7 J. 
 
(b) A plot of the potential energy curve (SI units understood) and the energy E (the 
horizontal line) is shown for 0 ≤ x ≤ 10 m. 
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(c) The problem asks for a graphical determination of the turning points, which are the 
points on the curve corresponding to the total energy computed in part (a). The result for 
the smallest turning point (determined, to be honest, by more careful means) is x = 1.3 m. 
 
(d) And the result for the largest turning point is x = 9.1 m. 
 
(e) Since K = E – U, then maximizing K involves finding the minimum of U. A graphical 
determination suggests that this occurs at x = 4.0 m, which plugs into the expression  
E – U = –3.7 – (–4xe–x/4) to give 2.16 J  2.2 JK = ≈ . Alternatively, one can measure 
from the graph from the minimum of the U curve up to the level representing the total 
energy E and thereby obtain an estimate of K at that point. 
 
(f) As mentioned in the previous part, the minimum of the U curve occurs at x = 4.0 m. 
 
(g) The force (understood to be in newtons) follows from the potential energy, using Eq. 
8-20 (and Appendix E if students are unfamiliar with such derivatives). 
 

F dU
dx

x e x= = − −4 4b g /  

 
(h) This revisits the considerations of parts (d) and (e) (since we are returning to the 
minimum of U(x)) — but now with the advantage of having the analytic result of part (g). 
We see that the location that produces F = 0 is exactly x = 4.0 m. 
 
42. Since the velocity is constant, a = 0 and the horizontal component of the worker's 
push F cos θ (where θ = 32°) must equal the friction force magnitude fk = μk FN. Also, the 
vertical forces must cancel, implying 
 
 applied (8.0N)(0.70m) 5.6 JW = =  
 
which is solved to find F = 71 N. 
 
(a) The work done on the block by the worker is, using Eq. 7-7, 
 

W Fd= = °= ×cos .θ 71 56 102 N 9.2 m cos32 J .b gb g  
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(b) Since fk = μk (mg + F sin θ ), we find 2

th (60 N)(9.2m) 5.6 10 J.kE f dΔ = = = ×  
 
43. (a) Using Eq. 7-8, we have 
 

applied (8.0 N)(0.70m) 5.6 J.W = =  
 
(b) Using Eq. 8-31, the thermal energy generated is 
 

th (5.0 N)(0.70m) 3.5 J.kE f dΔ = = =  
 
44. (a) The work is W = Fd = (35.0 N)(3.00 m) = 105 J. 
 
(b) The total amount of energy that has gone to thermal forms is (see Eq. 8-31 and Eq. 
6-2)  
 

ΔEth = μk mgd = (0.600)(4.00 kg)(9.80 m/s2)(3.00 m) = 70.6 J. 
 
If 40.0 J has gone to the block then (70.6 – 40.0) J = 30.6 J has gone to the floor. 
 
(c) Much of the work (105 J) has been “wasted” due to the 70.6 J of thermal energy 
generated, but there still remains (105 – 70.6 ) J = 34.4 J that has gone into increasing the 
kinetic energy of the block.  (It has not gone into increasing the potential energy of the 
block because the floor is presumed to be horizontal.) 
 
45. (a) The work done on the block by the force in the rope is, using Eq. 7-7, 
 

cos (7.68 N)(4.06m)cos15.0 30.1 J.W Fd θ= = ° =  
 
(b) Using f for the magnitude of the kinetic friction force, Eq. 8-29 reveals that the 
increase in thermal energy is 
 

th (7.42 N)(4.06m) 30.1 J.E fdΔ = = =  
 
(c) We can use Newton's second law of motion to obtain the frictional and normal forces, 
then use μk = f/FN to obtain the coefficient of friction. Place the x axis along the path of 
the block and the y axis normal to the floor. The free-body diagram is shown below. The 
x and the y component of Newton's second law are 
  

  x:      F cos θ – f  = 0 
 y:  FN + F sin θ – mg = 0, 

 
where m is the mass of the block, F is the force exerted by the rope, and θ is the angle 
between that force and the horizontal. 
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The first equation gives  
 

f = F cos θ = (7.68 N) cos15.0° = 7.42 N 
 
and the second gives  
 

FN = mg – F sin θ = (3.57 kg)(9.8 m/s2) – (7.68 N)sin15.0° = 33.0 N. 
 
Thus, the coefficient of kinetic friction is 
 

 7.42 N 0.225
33.0 Nk

N

f
F

μ = = = . 

 
46. We work this using English units (with g = 32 ft/s), but for consistency we convert 
the weight to pounds 

1 1b(9.0)oz 0.56lb
16oz

mg
⎛ ⎞

= =⎜ ⎟
⎝ ⎠  

 
which implies 20.018 lb s /ftm = ⋅ (which can be phrased as 0.018 slug as explained in 
Appendix D). And we convert the initial speed to feet-per-second 
 

vi =
F
HG

I
KJ =( .818

3600
120mi h) 5280 ft mi

 s h
ft s  

 
or a more “direct” conversion from Appendix D can be used. Equation 8-30 provides 
ΔEth = –ΔEmec for the energy “lost” in the sense of this problem. Thus, 
 

2 2 2 2
th

1 1( ) ( ) (0.018)(120 110 ) 0 20 ft lb.
2 2i f i fE m v v mg y yΔ = − + − = − + = ⋅  

 
47. We use SI units so m = 0.075 kg. Equation 8-33 provides ΔEth = –ΔEmec for the 
energy “lost” in the sense of this problem. Thus, 
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2 2

th

2 2 2

1 ( ) ( )
2
1 (0.075 kg)[(12 m/s) (10.5 m/s) ] (0.075 kg)(9.8 m/s )(1.1 m 2.1 m)
2
0.53 J.

i f i fE m v v mg y yΔ = − + −

= − + −

=

 

 
48. We use Eq. 8-31 to obtain 
 

th (10 N)(5.0m) 50 JkE f dΔ = = =  
and Eq. 7-8 to get 
 

(2.0 N)(5.0m) 10 J.W Fd= = =  
 
Similarly, Eq. 8-31 gives 

W K U E
U

= + +
= + +

Δ Δ Δ
Δ

th

10 35 50
 

 
which yields ΔU = –75 J. By Eq. 8-1, then, the work done by gravity is W = –ΔU = 75 J. 
 
49. (a) We take the initial gravitational potential energy to be Ui = 0. Then the final 
gravitational potential energy is Uf = –mgL, where L is the length of the tree. The change 
is 

U U mgLf i− = − = − = − ×( ( .25 12 2 9 103 kg) 9.8 m s  m)  J .2d i  

 

(b) The kinetic energy is 2 2 21 1 (25 kg)(5.6 m/s) 3.9 10  J
2 2

K mv= = = × . 

 
(c) The changes in the mechanical and thermal energies must sum to zero. The change in 
thermal energy is ΔEth = fL, where f is the magnitude of the average frictional force; 
therefore, 

 
2 3

23.9 10  J 2.9 10  J 2.1 10  N
12 m

K Uf
L

Δ + Δ × − ×
= − = − = × . 

 
50. Equation 8-33 provides ΔEth = –ΔEmec for the energy “lost” in the sense of this 
problem. Thus, 

 

2 2
th

2 2 2

4

1 ( ) ( )
2
1 (60 kg)[(24 m/s) (22 m/s) ] (60 kg)(9.8 m/s )(14 m)
2
1.1 10  J.

i f i fE m v v mg y yΔ = − + −

= − +

= ×

 

 
That the angle of 25° is nowhere used in this calculation is indicative of the fact that 
energy is a scalar quantity. 
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51. (a) The initial potential energy is 
 

U mgyi i= = = ×(520 1 kg) 9.8m s  (300 m) .53 10  J2 6d i  

 
where +y is upward and y = 0 at the bottom (so that Uf = 0). 
 
(b) Since fk = μk FN = μk mg cosθ we have th cosk kE f d mgdμ θΔ = =  from Eq. 8-31. 
Now, the hillside surface (of length d = 500 m) is treated as an hypotenuse of a 3-4-5 
triangle, so cos θ = x/d where x = 400 m. Therefore, 

ΔE mgd x
d

mgxk kth  J .= = = = ×μ μ ( . ) ( ) ( . ) ( ) .0 25 520 9 8 400 51 105  

 
(c) Using Eq. 8-31 (with W = 0) we find 
 
 6 6 6

th 0 (1.53 10  J) 0 (5.1 10  J) 1.02 10  Jf i i fK K U U E= + − − Δ = + × − − × = × . 
 
(d) From 2 / 2,fK mv=  we obtain v = 63 m/s. 
 
52. (a) An appropriate picture (once friction is included) for this problem is Figure 8-3 in 
the textbook. We apply Eq. 8-31, ΔEth = fk d, and relate initial kinetic energy Ki to the 
"resting" potential energy Ur: 

Ki + Ui  = fkd + Kr + Ur  ⇒  20.0 J + 0 = fkd + 0 + 
1
2kd2 

 
where fk = 10.0 N and k = 400 N/m. We solve the equation for d using the quadratic 
formula or by using the polynomial solver on an appropriate calculator, with d = 0.292 m 
being the only positive root. 
 
(b) We apply Eq. 8-31 again and relate Ur to the "second" kinetic energy Ks it has at the 
unstretched position. 

Kr + Ur = fkd + Ks + Us  ⇒   
1
2kd2 = fkd + Ks + 0 

 
Using the result from part (a), this yields Ks = 14.2 J. 
 
53. (a) The vertical forces acting on the block are the normal force, upward, and the force 
of gravity, downward. Since the vertical component of the block's acceleration is zero, 
Newton's second law requires FN = mg, where m is the mass of the block. Thus f = μk FN 
= μk mg. The increase in thermal energy is given by ΔEth = fd = μk mgD, where D is the 
distance the block moves before coming to rest. Using Eq. 8-29, we have 
 

ΔEth kg m s m J= =0 25 35 9 8 7 8 672. . . . .b gb gd ib g  
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(b) The block has its maximum kinetic energy Kmax just as it leaves the spring and enters 
the region where friction acts. Therefore, the maximum kinetic energy equals the thermal 
energy generated in bringing the block back to rest, 67 J. 
 
(c) The energy that appears as kinetic energy is originally in the form of potential energy 

in the compressed spring. Thus, K U kximax = =
1
2

2 , where k is the spring constant and x is 

the compression. Thus, 

x K
k

= = =
2 2 67

640
0 46max . .

J
N m

mb g  

 
54. (a) Using the force analysis shown in Chapter 6, we find the normal force 

cosNF mg θ=  (where mg = 267 N) which means  
 

fk = k NFμ =μk mg cos θ. 
Thus, Eq. 8-31 yields 
 

ΔE f d mgdk kth J= = = ° = ×μ θcos . . cos . .010 267 61 20 15 102b gb gb g  
 
(b) The potential energy change is  
 

ΔU = mg(–d sin θ) = (267 N)(– 6.1 m) sin 20° = –5.6 × 102 J. 
 
The initial kinetic energy is 

2 2
2

1 1 267 N (0.457 m/s ) 2.8 J.
2 2 9.8m/si iK mv

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

 
Therefore, using Eq. 8-33 (with W = 0), the final kinetic energy is 
 

K K U Ef i= − − = − − × − × = ×Δ Δ th J2 8 56 10 15 10 41 102 2 2. . . . .c h  
 
Consequently, the final speed is v K mf f= =2 55.  m s . 
 
55. (a) With x = 0.075 m and k = 320N m,  Eq. 7-26 yields W kxs = − = −1

2
2 0 90.  J.  For 

later reference, this is equal to the negative of ΔU. 
 
(b) Analyzing forces, we find FN = mg, which means k k N kf F mgμ μ= = . With d = x, Eq. 
8-31 yields 

ΔE f d mgxk kth  J= = = =μ ( . ) ( . ) ( . ) ( . ) . .0 25 2 5 9 8 0 075 0 46  
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(c) Equation 8-33 (with W = 0) indicates that the initial kinetic energy is 
 

K U Ei = + = + =Δ Δ th  J0 90 0 46 136. . .  
 
which leads to v K mi i= =2 10.  m s.  
 
56. Energy conservation, as expressed by Eq. 8-33 (with W = 0) leads to 
 

2
th

2 2

10 0 0
2

1 (200 N/m)(0.15m) (2.0kg)(9.8m/s )(0.75m) 2.25 J
2

i f i f k

k k

E K K U U f d kx

mgdμ μ

Δ = − + − ⇒ = − + −

⇒ = ⇒ =
 

 
which yields μk = 0.15 as the coefficient of kinetic friction. 
 
57. Since the valley is frictionless, the only reason for the speed being less when it 
reaches the higher level is the gain in potential energy ΔU = mgh where h = 1.1 m. 
Sliding along the rough surface of the higher level, the block finally stops since its 
remaining kinetic energy has turned to thermal energy ΔE f d mgdkth = = μ , where 

0.60μ = . Thus, Eq. 8-33 (with W = 0) provides us with an equation to solve for the 
distance d: 

K U E mg h di = + = +Δ Δ th μb g  
 
where 2 / 2i iK mv=  and vi = 6.0 m/s. Dividing by mass and rearranging, we obtain 
 

d v
g

hi= − =
2

2
12

μ μ
. m.  

 
58. This can be worked entirely by the methods of Chapters 2–6, but we will use energy 
methods in as many steps as possible. 
 
(a) By a force analysis of the style done in Chapter 6, we find the normal force has 
magnitude FN = mg cos θ (where θ = 40°), which means fk = k NFμ  = μk mg cos θ where 
μk = 0.15. Thus, Eq. 8-31 yields  

ΔEth = fk d = μk mgd cos θ. 
 
Also, elementary trigonometry leads us to conclude that ΔU = mgd sin θ. Eq. 8-33 (with 
W = 0 and Kf = 0) provides an equation for determining d: 
 

K U E

mv mgd

i

i k

= +

= +

Δ Δ th

1
2

2 sin cosθ μ θb g  
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where vi = 14. .m s  Dividing by mass and rearranging, we obtain 
 

2

0.13m.
2 (sin cos )

i

k

vd
g θ μ θ

= =
+

 

 
(b) Now that we know where on the incline it stops (d' = 0.13 + 0.55 = 0.68 m from the 
bottom), we can use Eq. 8-33 again (with W = 0 and now with Ki = 0) to describe the 
final kinetic energy (at the bottom): 
 

K U E

mv mgd

f

k

= − −

= ′ −

Δ Δ th

1
2

2 sin cosθ μ θb g  

 
which — after dividing by the mass and rearranging — yields 
 

v gd k= ′ − =2 2 7sin cos . .θ μ θb g m s  
 
(c) In part (a) it is clear that d increases if μk decreases — both mathematically (since it is 
a positive term in the denominator) and intuitively (less friction — less energy “lost”). In 
part (b), there are two terms in the expression for v that imply that it should increase if μk 
were smaller: the increased value of d' = d0 + d and that last factor sin θ – μk cos θ, which 
indicates that less is being subtracted from sin θ when μk is less (so the factor itself 
increases in value). 
 
59. (a) The maximum height reached is h. The thermal energy generated by air resistance 
as the stone rises to this height is ΔEth = fh by Eq. 8-31. We use energy conservation in 
the form of Eq. 8-33 (with W = 0): 
 

K U E K Uf f i i+ + = +Δ th  
 
and we take the potential energy to be zero at the throwing point (ground level). The 

initial kinetic energy is K mvi =
1
2 0

2 , the initial potential energy is Ui = 0, the final kinetic 

energy is Kf = 0, and the final potential energy is Uf = wh, where w = mg is the weight of 

the stone. Thus, wh fh mv+ =
1
2 0

2 , and we solve for the height: 

2 2
0 0

2( ) 2 (1 / )
mv vh
w f g f w

= =
+ +

. 

 
Numerically, we have, with m = (5.29 N)/(9.80 m/s2) = 0.54 kg,  
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2

2

(20.0 m/s) 19.4 m
2(9.80 m/s )(1 0.265/5.29)

h = =
+

. 

 
(b) We notice that the force of the air is downward on the trip up and upward on the trip 
down, since it is opposite to the direction of motion. Over the entire trip the increase in 

thermal energy is ΔEth = 2fh. The final kinetic energy is K mvf =
1
2

2 , where v is the 

speed of the stone just before it hits the ground. The final potential energy is Uf = 0. Thus, 
using Eq. 8-31 (with W = 0), we find 
 

1
2

2 1
2

2
0
2mv fh mv+ = .  

 
We substitute the expression found for h to obtain 
 

2
2 20

0
2 1 1

2 (1 / ) 2 2
fv mv mv

g f w
= −

+
 

which leads to 
 

2 2
2 2 2 2 20 0

0 0 0 0
2 2 21

(1 / ) (1 / )
fv fv f w fv v v v v

mg f w w f w w f w f
⎛ ⎞ −

= − = − = − =⎜ ⎟+ + + +⎝ ⎠
 

 
where w was substituted for mg and some algebraic manipulations were carried out. 
Therefore, 

0
5.29 N 0.265 N(20.0 m/s) 19.0 m/s
5.29 N 0.265 N

w fv v
w f

− −
= = =

+ +
. 

 
60. We look for the distance along the incline d, which is related to the height ascended 
by Δh = d sin θ. By a force analysis of the style done in Chapter 6, we find the normal 
force has magnitude FN = mg cosθ, which means fk = μk mg cosθ. Thus, Eq. 8-33 (with W 
= 0) leads to 

0
0

= − + +

= − + +

K K U E
K mgd mgd

f i

i k

Δ Δ th

sin cosθ μ θ
 

which leads to 
 

d K
mg

i

k

=
+

=
°+ °

=
sin cos . . sin . cos

. .
θ μ θb g b gb gb g

128
4 0 9 8 30 0 30 30

4 3m  

 
61. Before the launch, the mechanical energy is mech,0 0EΔ = . At the maximum height h 
where the speed of the beetle vanishes, the mechanical energy is mech,1E mghΔ = . The 
change of the mechanical energy is related to the external force by 
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mech mech,1 mech,0 cosavgE E E mgh F d φΔ = Δ − Δ = = , 

 
where Favg is the average magnitude of the external force on the beetle.  
 
(a) From the above equation, we have  
 

 
6 2

2
4 

(4.0 10  kg)(9.80 m/s )(0.30 m) 1.5 10  N.
cos (7.7 10 m)(cos 0 ) avg
mghF

d φ

−
−

−

×
= = = ×

× °
 

 
(b) Dividing the above result by the mass of the beetle, we obtain 
 

2
4 

(0.30 m)  3.8 10 .
cos (7.7 10 m)(cos 0 ) 

avgF ha g g g
m d φ −= = = = ×

× °
 

 
62. We will refer to the point where it first encounters the “rough region” as point C (this 
is the point at a height h above the reference level). From Eq. 8-17, we find the speed it 
has at point C to be 
 

vC = vA
2 − 2gh = (8.0)2 − 2(9.8)(2.0) = 4.980 ≈ 5.0 m/s. 

 
Thus, we see that its kinetic energy right at the beginning of its “rough slide” (heading 
uphill towards B) is  

KC = 
1
2 m(4.980 m/s)2 = 12.4m 

 
(with SI units understood). Note that we “carry along” the mass (as if it were a known 
quantity); as we will see, it will cancel out, shortly. Using Eq. 8-37 (and Eq. 6-2 with FN 

= mg cosθ) and siny d θ= , we note that if d < L (the block does not reach point B), this 
kinetic energy will turn entirely into thermal (and potential) energy 
 
       KC = mgy + fk d  ⇒   12.4m = mgd sinθ  + μk mgd cosθ. 
 
With μk = 0.40 and θ = 30º, we find d = 1.49 m, which is greater than L (given in the 
problem as 0.75 m), so our assumption that d < L is incorrect.  What is its kinetic energy 
as it reaches point B?  The calculation is similar to the above, but with d replaced by L 
and the final v2 term being the unknown (instead of assumed zero): 
 

1
2 m v2 = KC − (mgL sinθ + μk mgL cosθ) . 

 
This determines the speed with which it arrives at point B:   
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2

2 2

2 (sin cos )

(4.98 m/s) 2(9.80 m/s )(0.75 m)(sin 30 0.4cos30 ) 3.5 m/s.
B C kv v gL θ μ θ= − +

= − ° + ° =
 

 
63. We observe that the last line of the problem indicates that static friction is not to be 
considered a factor in this problem. The friction force of magnitude f = 4400 N 
mentioned in the problem is kinetic friction and (as mentioned) is constant (and directed 
upward), and the thermal energy change associated with it is ΔEth = fd (Eq. 8-31) where d 
= 3.7 m in part (a) (but will be replaced by x, the spring compression, in part (b)). 
 
(a) With W = 0 and the reference level for computing U = mgy set at the top of the 
(relaxed) spring, Eq. 8-33 leads to 

U K E v d g f
mi = + ⇒ = −FHG
I
KJΔ th 2  

 
which yields v = 7 4. m s for m = 1800 kg. 
 
(b) We again utilize Eq. 8-33 (with W = 0), now relating its kinetic energy at the moment 
it makes contact with the spring to the system energy at the bottom-most point. Using the 
same reference level for computing U = mgy as we did in part (a), we end up with 
gravitational potential energy equal to mg(–x) at that bottom-most point, where the spring 
(with spring constant k = ×15 105. N m ) is fully compressed. 
 

K mg x kx fx= − + +b g 1
2

2  

where K mv= = ×
1
2

4 9 102 4.  J using the speed found in part (a). Using the abbreviation 

ξ = mg – f = 1.3 × 104 N, the quadratic formula yields 
 

x
kK

k
=

± +
=

ξ ξ 2 2
0 90. m  

 
where we have taken the positive root. 
 
(c) We relate the energy at the bottom-most point to that of the highest point of rebound 
(a distance d' above the relaxed position of the spring). We assume d' > x. We now use 
the bottom-most point as the reference level for computing gravitational potential energy. 
 

1
2 2

2 82
2

kx mgd fd d kx
mg d

= ′ + ′ ⇒ ′ =
+

=b g . m. 

 
(d) The non-conservative force (§8-1) is friction, and the energy term associated with it is 
the one that keeps track of the total distance traveled (whereas the potential energy terms, 
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coming as they do from conservative forces, depend on positions — but not on the paths 
that led to them). We assume the elevator comes to final rest at the equilibrium position 
of the spring, with the spring compressed an amount deq given by 
 

eq eq 0.12m.mgmg kd d
k

= ⇒ = =  

 
In this part, we use that final-rest point as the reference level for computing gravitational 
potential energy, so the original U = mgy becomes mg(deq + d). In that final position, then, 
the gravitational energy is zero and the spring energy is 2

eq / 2kd . Thus, Eq. 8-33 becomes 

mg d d kd fd

d

eq eq
2

total

total

+ = +

+ = × +

d i
b gb gb g c hb g b g

1
2

1800 9 8 012 37 1
2

15 10 012 44005 2. . . . .
 

 
which yields dtotal = 15 m. 
 
64. In the absence of friction, we have a simple conversion (as it moves along the 
inclined ramps) of energy between the kinetic form (Eq. 7-1) and the potential form (Eq. 
8-9).  Along the horizontal plateaus, however, there is friction that causes some of the 
kinetic energy to dissipate in accordance with Eq. 8-31 (along with Eq. 6-2 where μk = 
0.50 and FN = mg in this situation).  Thus, after it slides down a (vertical) distance d it 

has gained K = 
1
2 mv2 = mgd, some of which (ΔEth = μk mgd) is dissipated, so that the 

value of kinetic energy at the end of the first plateau (just before it starts descending 
towards the lowest plateau) is  

 1
2kK mgd mgd mgdμ= − = . 

 
In its descent to the lowest plateau, it gains mgd/2 more kinetic energy, but as it slides 
across it “loses” μk mgd/2 of it.  Therefore, as it starts its climb up the right ramp, it has 
kinetic energy equal to  

1 1 1 3
2 2 2 4kK mgd mgd mgd mgdμ= + − = . 

 
Setting this equal to Eq. 8-9 (to find the height to which it climbs) we get H = ¾d.  Thus, 
the block (momentarily) stops on the inclined ramp at the right, at a height of  
 

H = 0.75d = 0.75 ( 40 cm) = 30 cm 
 
measured from the lowest plateau. 
 
65. The initial and final kinetic energies are zero, and we set up energy conservation in 
the form of Eq. 8-33 (with W = 0) according to our assumptions. Certainly, it can only 
come to a permanent stop somewhere in the flat part, but the question is whether this 
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occurs during its first pass through (going rightward) or its second pass through (going 
leftward) or its third pass through (going rightward again), and so on. If it occurs during 
its first pass through, then the thermal energy generated is ΔEth = fkd where d ≤ L 
and k kf mgμ= . If it occurs during its second pass through, then the total thermal energy 
is ΔEth = μk mg(L + d) where we again use the symbol d for how far through the level area 
it goes during that last pass (so 0 ≤ d ≤ L). Generalizing to the nth pass through, we see 
that  

ΔEth = μk mg[(n – 1)L + d]. 
 
In this way, we have  

mgh mg n L dk= − +μ 1b gc h  
 
which simplifies (when h = L/2 is inserted) to 
 

d
L

n
k

= + −1 1
2μ

. 

 
The first two terms give 1 1 2 35+ =μ k . ,  so that the requirement 0 1≤ ≤d L  demands 

that n = 3. We arrive at the conclusion that d L =
1
2

, or 

 

 1 1 (40 cm) 20 cm
2 2

d L= = =  

 
and that this occurs on its third pass through the flat region. 
 
66. (a) Equation 8-9 gives U = mgh = (3.2 kg)(9.8 m/s2)(3.0 m) = 94 J. 
 
(b) The mechanical energy is conserved, so K = 94 J. 
 
(c) The speed (from solving Eq. 7-1) is  
 

v = 2 / 2(94 J) /(32 kg)K m = = 7.7 m/s. 
 
67. As the block is projected up the incline, its kinetic energy is converted into 
gravitational potential energy and elastic potential energy of the spring. The block 
compresses the spring, stopping momentarily before sliding back down again.  
 
Let A be the starting point and the reference point for computing gravitational potential 
energy ( 0AU = ). The block first comes into contact with the spring at B. The spring is 
compressed by an additional amount x  at C, as shown in the figure below.  
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By energy conservation, A A B B C CK U K U K U+ = + = + . Note that  

21
2g sU U U mgy kx= + = + , 

 
that is, the total potential energy is the sum of gravitational potential energy and elastic 
potential energy of the spring.  
 
(a) At the instant when 0.20 mCx = , the vertical height is 
  

( ) sin (0.60 m 0.20 m)sin 40 0.514 mC Cy d x θ= + = + ° = . 
 
Applying the energy conservation principle gives  

2116 J 0
2A A C C C C CK U K U K mgy kx+ = + ⇒ + = + +  

from which we obtain  
2

2 2

1
2

116 J (1.0 kg)(9.8 m/s )(0.514 m) (200 N/m)(0.20 m)
2

7.0 J.

C A C CK K mgy kx= − −

= − −

≈

 

 
(b) At the instant when 0.40 mCx′ = , the vertical height is 
 

( )sin (0.60 m 0.40 m)sin 40 0.64 mC Cy d x θ′ ′= + = + ° = . 
 
Applying the energy conservation principle, we have A A C CK U K U′ ′ ′ ′+ = + . Since 0AU ′ = , 
the initial kinetic energy that gives 0CK ′ =  is  
 

2

2 2

1
2

1(1.0 kg)(9.8 m/s )(0.64 m) (200 N/m)(0.40 m)
2

22 J.

A C C CK U mgy kx′ ′ ′ ′= = +

= +

=
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68. (a) At the point of maximum height, where y = 140 m, the vertical component of 
velocity vanishes but the horizontal component remains what it was when it was 
launched (if we neglect air friction). Its kinetic energy at that moment is 
 

K vx=
1
2

055 2. .kgb g  

 
Also, its potential energy (with the reference level chosen at the level of the cliff edge) at 
that moment is U = mgy = 755 J. Thus, by mechanical energy conservation, 
 

K K U vi x= − = − ⇒ =
−

1550 755
2 1550 755

055
b g

.
= 54 m/s. 

 
(b) As mentioned, vx = vix so that the initial kinetic energy 
 

( )2 21
2i i x i yK m v v= +  

 
can be used to find vi y. We obtain vi y = 52 m s . 
 
(c) Applying Eq. 2-16 to the vertical direction (with +y upward), we have 
 

2 2 2 2 22 (65 m/s) (52 m/s) 2(9.8 m/s )y i yv v g y y= − Δ ⇒ = − Δ  
 

which yields Δy = −76 m. The minus sign tells us it is below its launch point. 
 
69. If the larger mass (block B, mB = 2.0 kg) falls a vertical distance 0.25 md = , then 
the smaller mass (block A, mA = 1.0 kg) must increase its height by sin 30h d= ° . The 
change in gravitational potential energy is 
 

B AU m gd m ghΔ = − + . 
 
By mechanical energy conservation, mech 0E K UΔ = Δ + Δ = , the change in kinetic 
energy of the system is K UΔ = −Δ . 
 
Since the initial kinetic energy is zero, the final kinetic energy is   
 

 2

sin

( sin ) [2.0 kg (1.0 kg)sin 30 ](9.8 m/s )(0.25 m)
3.7 J.

f B A B A

B A

K K m gd m gh m gd m gd

m m gd

θ

θ

= Δ = − = −

= − = − °
=
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Note: From the above expression, we see that in the special case where sinB Am m θ= , 
the two-block system would remain stationary. On the other hand, if sinA Bm mθ > , 
block A will slide down the incline, with block B moving vertically upward.    
 
70. We use conservation of mechanical energy: the mechanical energy must be the same 
at the top of the swing as it is initially. Newton's second law is used to find the speed, and 
hence the kinetic energy, at the top. There the tension force T of the string and the force 
of gravity are both downward, toward the center of the circle. We notice that the radius of 
the circle is r = L – d, so the law can be written  
 

T mg mv L d+ = −2 b g , 
 
where v is the speed and m is the mass of the ball. When the ball passes the highest point 
with the least possible speed, the tension is zero. Then 
 

mg m v
L d

v g L d=
−

⇒ = −
2

b g .  
 
We take the gravitational potential energy of the ball-Earth system to be zero when the 
ball is at the bottom of its swing. Then the initial potential energy is mgL. The initial 
kinetic energy is zero since the ball starts from rest. The final potential energy, at the top 
of the swing, is 2mg(L – d) and the final kinetic energy is 1

2
2 1

2mv mg L d= −b g  using the 
above result for v. Conservation of energy yields 
 

mgL mg L d mg L d d L= − + − ⇒ =2 1
2

3 5b g b g .  

 
With L = 1.20 m, we have d = 0.60(1.20 m) = 0.72 m. 
 
Notice that if d is greater than this value, so the highest point is lower, then the speed of 
the ball is greater as it reaches that point and the ball passes the point. If d is less, the ball 
cannot go around. Thus the value we found for d is a lower limit. 
 
71. As the block slides down the frictionless incline, its gravitational potential energy is 
converted to kinetic energy, so the speed of the block increases. By energy conservation, 

A A B BK U K U+ = + . Thus, the change in kinetic energy as the block moves from point A 
to point B is 

( )B A B AK K K U U UΔ = − = −Δ = − − . 
 
In both circumstances, we have the same potential energy change. Thus, 1 2K KΔ = Δ .  
The speed of the block at B the second time is given by 
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 2 2 2 2
,1 ,1 ,2 ,2

1 1 1 1
2 2 2 2B A B Amv mv mv mv− =  

or 
2 2 2 2 2 2

,2 ,1 ,1 ,2 (2.60 m/s) (2.00 m/s) (4.00 m/s) 4.33 m/sB B A Av v v v= − + = − + = . 
     
72. (a) We take the gravitational potential energy of the skier-Earth system to be zero 
when the skier is at the bottom of the peaks. The initial potential energy is Ui = mgH, 
where m is the mass of the skier, and H is the height of the higher peak. The final 
potential energy is Uf = mgh, where h is the height of the lower peak. The skier initially 

has a kinetic energy of Ki = 0, and the final kinetic energy is K mvf =
1
2

2 , where v is the 

speed of the skier at the top of the lower peak. The normal force of the slope on the skier 
does no work and friction is negligible, so mechanical energy is conserved: 
 

 21
2i i f fU K U K mgH mgh mv+ = + ⇒ = + . 

Thus, 
 22 ( ) 2(9.8 m/s )(850 m 750 m) 44 m/sv g H h= − = − = . 
 
(b) We recall from analyzing objects sliding down inclined planes that the normal force 
of the slope on the skier is given by FN = mg cos θ, where θ is the angle of the slope from 
the horizontal, 30° for each of the slopes shown. The magnitude of the force of friction is 
given by f = μk FN = μk mg cos θ. The thermal energy generated by the force of friction is 
fd = μk mgd cos θ, where d is the total distance along the path. Since the skier gets to the 
top of the lower peak with no kinetic energy, the increase in thermal energy is equal to 
the decrease in potential energy. That is, μk mgd cos θ = mg(H – h). Consequently, 
 

 3

(850 m 750 m) 0.036
cos (3.2 10  m)cos30k

H h
d

μ
θ

− −
= = =

× °
. 

 
73. As the cube is pushed across the floor, both the thermal energies of floor and the cube 
increase because of the friction between them. By law of conservation of energy, we have 

mech thW E E= Δ + Δ  for the floor-cube system. Since the speed is constant, ΔK = 0, Eq. 
8-33 (an application of the energy conservation concept) implies 
 

mech th th th (cube) th (floor)W E E E E E= Δ + Δ = Δ = Δ + Δ . 
 
With W = (15 N)(3.0 m) = 45 J, and we are told that ΔEth (cube) = 20 J, then we conclude 
that ΔEth (floor) = 25 J. 
 
Note: The applied work here has all been converted to thermal energies of the floor and 
the cube. The amount of thermal energy transferred to a material depends on its thermal 
properties, as we shall discuss in Chapter 18.     
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74. We take her original elevation to be the y = 0 reference level and observe that the top 
of the hill must consequently have yA = R(1 – cos 20°) = 1.2 m, where R is the radius of 
the hill. The mass of the skier is 2(600 N) /(9.8 m/s ) 61 kgm = = .  
 
(a) Applying energy conservation, Eq. 8-17, we have 
 

0 .B B A A B A AK U K U K K mgy+ = + ⇒ + = +  
 
Using KB = 1

2
261 8 0kg m sb gb g. , we obtain KA = 1.2 × 103 J. Thus, we find the speed at 

the hilltop is  

 
32 2(1.2 10  J) 6.4 m/s

61 kg
A

A
Kv
m

×
= = = . 

 
Note: One might wish to check that the skier stays in contact with the hill — which is 
indeed the case here. For instance, at A we find v2/r ≈ 2 m/s2, which is considerably less 
than g. 
 
(b) With KA = 0, we have 
 

K U K U K mgyB B A A B A+ = + ⇒ + = +0 0  
 
which yields KB = 724 J, and the corresponding speed is 
 

2 2(724 J) 4.9 m/s
61 kg

B
B

Kv
m

= = = . 

 
(c) Expressed in terms of mass, we have 
 

K U K U

mv mgy mv mgy

B B A A

B B A A

+ = + ⇒

+ = +
1
2

1
2

2 2 .
 

 
Thus, the mass m cancels, and we observe that solving for speed does not depend on the 
value of mass (or weight). 
 
75. This problem deals with pendulum motion. The kinetic and potential energies of the 
ball attached to the rod change with position, but the mechanical energy remains 
conserved throughout the process.  
 
Let L be the length of the pendulum. The connection between angle θ (measured from 
vertical) and height h (measured from the lowest point, which is our choice of reference 
position in computing the gravitational potential energy mgh) is given by h = L(1 – cos 
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θ ). The free-body diagram is shown below. The initial height is at h1 = 2L, and at the 
lowest point, we have h2 = 0. The total mechanical energy is conserved throughout. 
 

 
(a) Initially the ball is at a height h1 = 2L with 1 0K =  and 1 1 (2 )U mgh mg L= = . At the 

lowest point h2 = 0, we have 2
2 2

1
2

K mv=  and 2 0U = . Using energy conservation in the 

form of Eq. 8-17 leads to 
2

1 1 2 2 2
10 2 0
2

K U K U mgL mv+ = + ⇒ + = + . 

  
This leads to 2 2v gL= . With L = 0.62 m, we have  
 

2
2 2 (9.8 m/s )(0.62 m) 4.9 m/sv = = . 

 
(b) At the lowest point, the ball is in circular motion with the center of the circle above it, 
so a v r= 2 /  upward, where r = L. Newton's second law leads to 
 

T mg m v
r

T m g gL
L

mg− = ⇒ = +FHG
I
KJ =

2 4 5 .  

 
With m = 0.092 kg, the tension is T = 4.5 N. 
 
(c) The pendulum is now started (with zero speed) at 90iθ = ° (that is, hi = L), and we 
look for an angle θ such that T = mg. When the ball is moving through a point at angle θ, 
as can be seen from the free-body diagram shown above, Newton's second law applied to 
the axis along the rod yields 
 

 
2

cos (1 cos )mv T mg mg
r

θ θ= − = −  

 
which (since r = L) implies v2 = gL(1 – cos θ ) at the position we are looking for. Energy 
conservation leads to 
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         (1

K U K U

mgL mv mgL

gL gL gL

i i+ = +

+ = + −

= − + −

0 1
2

1

1
2

1

2 ( cos )

( ( cos )) cos )

θ

θ θ

 

 
where we have divided by mass in the last step. Simplifying, we obtain 
 
 ( )1cos 1/ 3 71θ −= = ° . 
 
(d) Since the angle found in (c) is independent of the mass, the result remains the same if 
the mass of the ball is changed. 
 
Note: At a given angle θ with respect to the vertical, the tension in the rod is 
 

2

cosvT m g
r

θ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

. 

 
The tangential acceleration, sinta g θ= , is what causes the speed, and therefore, the 
kinetic energy, to change with time. Nonetheless, mechanical energy is conserved. 
 
76. (a) The table shows that the force is +(3.0 N)i^ while the displacement is in the +x 
direction ( d 

→
 = +(3.0 m)i^ ), and it is –(3.0 N)i^ while the displacement is in the –x 

direction.  Using Eq. 7-8 for each part of the trip, and adding the results, we find the 
work done is 18 J. This is not a conservative force field; if it had been, then the net work 
done would have been zero (since it returned to where it started). 
 
(b) This, however, is a conservative force field, as can be easily verified by calculating 
that the net work done here is zero. 
 
(c) The two integrations that need to be performed are each of the form  ⌠ ⌡ 2x dx so that 
we are adding two equivalent terms, where each equals x2 (evaluated at x = 4, minus its 
value at x = 1). Thus, the work done is 2(42 – 12) = 30 J. 
 
(d) This is another conservative force field, as can be easily verified by calculating that 
the net work done here is zero. 
 
(e) The forces in (b) and (d) are conservative. 
 
77. The connection between the potential energy function ( )U x  and the conservative 
force ( )F x  is given by Eq. 8-22: ( ) /F x dU dx= − . A positive slope of ( )U x  at a 
point means that ( )F x  is negative, and vice versa.  
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(a) The force at x = 2.0 m is 
 

( 4 m) ( 1 m) (17.5 J) ( 2.8 J) 4.9 N.
4.0 m 1.0 m 4.0 m 1.0 m

dU U U x U xF
dx x

Δ = − = − − −
= − ≈ − = − = − =

Δ − −
 

 
(b) Since the slope of ( )U x  at x = 2.0 m is negative, the force points in the +x direction 
(but there is some uncertainty in reading the graph, which makes the last digit not very 
significant). 
 
(c) At x = 2.0 m, we estimate the potential energy to be 
  

( 2.0 m) ( 1.0 m) ( 4.9 J/m)(1.0 m) 7.7 JU x U x= ≈ = + − = − . 
 
Thus, the total mechanical energy is 
 

 2 21 1 (2.0 kg)( 1.5 m/s) ( 7.7 J) 5.5 J
2 2

E K U mv U= + = + = − + − = − . 

 
Again, there is some uncertainty in reading the graph, which makes the last digit not very 
significant. At that level (–5.5 J) on the graph, we find two points where the potential 
energy curve has that value — at x ≈ 1.5 m and x ≈ 13.5 m. Therefore, the particle 
remains in the region 1.5 < x < 13.5 m. The left boundary is at x = 1.5 m.  
 
(d) From the above results, the right boundary is at x = 13.5 m.   
 
(e) At x = 7.0 m, we read U ≈ –17.5 J. Thus, if its total energy (calculated in the previous 
part) is E ≈ –5.5 J, then we find 

1
2

12 2 352mv E U v
m

E U= − ≈ ⇒ = − ≈ J  m s( ) .  

 
where there is certainly room for disagreement on that last digit for the reasons cited 
above. 
 
78. (a) Since the speed of the crate of mass m increases from 0 to 1.20 m/s relative to the 
factory ground, the kinetic energy supplied to it is 
 

2 21 1 (300kg)(120m/s) 216 J.
2 2

K mv= = =  

 
(b) The magnitude of the kinetic frictional force is 
 

2 3(0.400)(300kg)(9.8m/s ) 1.18 10 N.Nf F mgμ μ= = = = ×
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(c) Let the distance the crate moved relative to the conveyor belt before it stops slipping 
be d. Then from Eq. 2-16 (v2 = 2ad = 2(f / m)d) we find 
 

ΔE fd mv Kth = = =
1
2

2 .  

 
Thus, the total energy that must be supplied by the motor is 
 

th 2 (2)(216J) J.W K E K= + Δ = = = 432  
 
(d) The energy supplied by the motor is the work W it does on the system, and must be 
greater than the kinetic energy gained by the crate computed in part (b). This is due to the 
fact that part of the energy supplied by the motor is being used to compensate for the 
energy dissipated ΔEth while it was slipping.  
 
79. As the car slides down the incline, due to the presence of frictional force, some of its 
mechanical energy is converted into thermal energy. The incline angle is 5.0θ = ° . Thus, 
the change in height between the car's highest and lowest points is Δy = −(50 m) sin θ = − 
4.4 m. We take the lowest point (the car's final reported location) to correspond to the y = 
0 reference level. The change in potential energy is given by U mg yΔ = Δ . 
 
As for the kinetic energy, we first convert the speeds to SI units, v0 8 3= . m s  and 

v = 111. m s . The change in kinetic energy is 2 21 ( )
2 f iK m v vΔ = − .  The total change in 

mechanical energy is mechE K UΔ = Δ + Δ . 
 
(a) Substituting the values given, we find mechEΔ  to be 
 

2 2
mech

2 2 2

4

1 ( )
2

1 (1500 kg) (11.1 m/s) (8.3 m/s) (1500 kg)(9.8 m/s )( 4.4 m)
2

23940 J 2.4 10  J.

f iE K U m v v mg yΔ = Δ + Δ = − + Δ

⎡ ⎤= − + −⎣ ⎦
= − ≈ − ×

 

 
That is, the mechanical energy reduction (due to friction) is 2.4 × 104 J. 
 
(b) Using Eq. 8-31 and Eq. 8-33, we find th mechkE f d EΔ = = −Δ . With d = 50 m, we 
solve for fk and obtain  

4
2mech ( 2.4 10  J) 4.8 10 N

50 mk
Ef
d

−Δ − − ×
= = = × . 

 
80. We note that in one second, the block slides d = 1.34 m up the incline, which means 
its height increase is h = d sin θ where 
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θ = F
HG
I
KJ = °−tan .1 30

40
37  

 
We also note that the force of kinetic friction in this inclined plane problem is 

cosk kf mgμ θ= , where μk = 0.40 and m = 1400 kg. Thus, using Eq. 8-31 and Eq. 8-33, 
we find 

W mgh f d mgdk k= + = +sin cosθ μ θb g  
 
or W = 1.69 × 104 J for this one-second interval. Thus, the power associated with this is 
 

 
4

4 41.69 10  J 1.69 10  W 1.7 10  W
1 s

P ×
= = × ≈ × . 

 
81. (a) The remark in the problem statement that the forces can be associated with 
potential energies is illustrated as follows: the work from x = 3.00 m to x = 2.00 m is  
 

W = F2 Δx =(5.00 N)(–1.00 m) = –5.00 J, 
 
so the potential energy at x = 2.00 m is U2 = +5.00 J.   
 
(b) Now, it is evident from the problem statement that Emax = 14.0 J, so the kinetic energy 
at x = 2.00 m is  

K2 = Emax – U2 = 14.0 – 5.00 = 9.00 J. 
 
(c) The work from x = 2.00 m to x = 0 is W = F1 Δx =(3.00 N)(–2.00 m) = – 6.00 J, so the 
potential energy at x = 0 is  
 

U0 = 6.00 J + U2 = (6.00 + 5.00) J = 11.0 J. 
 
(d) Similar reasoning to that presented in part (a) then gives  
 

K0 = Emax – U0 = (14.0 – 11.0) J = 3.00 J. 
 
(e) The work from x = 8.00 m to x = 11.0 m is W = F3 Δx =(– 4.00 N)(3.00 m) = –12.0 J, 
so the potential energy at x = 11.0 m is U11 = 12.0 J.   
 
(f) The kinetic energy at x = 11.0 m is therefore  
 

K11 = Emax – U11 = (14.0 – 12.0) J = 2.00 J. 
 

(g) Now we have W = F4 Δx =(–1.00 N)(1.00 m) = –1.00 J, so the potential energy at 
12.0 mx = is  

U12 = 1.00 J + U11 = (1.00 + 12.0) J = 13.0 J. 
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(h) Thus, the kinetic energy at x = 12.0 m is  
 

K12 = Emax – U12 = (14.0 – 13.0) = 1.00 J. 
 
(i) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers 
are the same as in part (g): U12 = 13.0 J. 
 
(j) There is no work done in this interval (from x = 12.0 m to x = 13.0 m) so the answers 
are the same as in part (h): K12 = 1.00 J. 
 
(k) Although the plot is not shown here, it would look like a “potential well” with 
piecewise-sloping sides: from x = 0 to x = 2 (SI units understood) the graph of U is a 
decreasing line segment from 11 to 5, and from x = 2 to x = 3, it then heads down to zero, 
where it stays until x = 8, where it starts increasing to a value of 12 (at x = 11), and then 
in another positive-slope line segment it increases to a value of 13 (at x = 12).  For 

12x >  its value does not change (this is the “top of the well”). 
 
(l) The particle can be thought of as “falling” down the 0 < x < 3 slopes of the well, 
gaining kinetic energy as it does so, and certainly is able to reach x = 5. Since U = 0 at x 
= 5, then it’s initial potential energy (11 J) has completely converted to kinetic: now 

11.0 JK = . 
 
(m) This is not sufficient to climb up and out of the well on the large x side (x > 8), but 
does allow it to reach a “height” of 11 at x = 10.8 m.  As discussed in section 8-5, this is 
a “turning point” of the motion. 
 
(n) Next it “falls” back down and rises back up the small x slope until it comes back to its 
original position. Stating this more carefully, when it is (momentarily) stopped at x = 10.8 
m it is accelerated to the left by the force 3F ; it gains enough speed as a result that it 
eventually is able to return to x = 0, where it stops again. 
 
82. (a) At x = 5.00 m the potential energy is zero, and the kinetic energy is  
 

K = 
1
2 mv2 = 

1
2 (2.00 kg)(3.45 m/s)2 = 11.9 J. 

 
The total energy, therefore, is great enough to reach the point x = 0 where U = 11.0 J, 
with a little “left over” (11.9 J – 11.0 J  = 0.9025 J).  This is the kinetic energy at x = 0, 
which means the speed there is  
 

v = 2(0.9025 J)/(2 kg) = 0.950 m/s. 
 
It has now come to a stop, therefore, so it has not encountered a turning point. 
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(b) The total energy (11.9 J) is equal to the potential energy (in the scenario where it is 
initially moving rightward) at x = 10.9756 ≈ 11.0 m.  This point may be found by 
interpolation or simply by using the work-kinetic energy theorem:  
 

Kf = Ki + W = 0  ⇒  11.9025 + (–4)d = 0   ⇒   d = 2.9756 ≈ 2.98 
 
(which when added to x = 8.00 [the point where F3 begins to act] gives the correct result).  
This provides a turning point for the particle’s motion. 
 
83. (a) When there is no change in potential energy, Eq. 8-24 leads to 
 

W K m v vapp = = −Δ
1
2

2
0
2c h .  

Therefore, ΔE = ×6 0 103. J . 
 
(b) From the above manipulation, we see Wapp = 6.0 × 103 J. Also, from Chapter 2, we 
know that Δ Δt v a= = 10 s. Thus, using Eq. 7-42, 
 

P W
tavg W .= =

×
=

Δ
6 0 10

10
600

3.  

 
(c) and (d) The constant applied force is ma = 30 N and clearly in the direction of motion, 
so Eq. 7-48 provides the results for instantaneous power 
 

P F v
v
v

= ⋅ =
=
=

RST
300 10
900 30

W for m s
W for m s

  

 
We note that the average of these two values agrees with the result in part (b). 
 
84. (a) To stretch the spring an external force, equal in magnitude to the force of the 
spring but opposite to its direction, is applied. Since a spring stretched in the positive x 
direction exerts a force in the negative x direction, the applied force must be 

252.8 38.4F x x= + , in the +x direction. The work it does is 
 

1.00 1.00
2 2 3

0.500.50

52.8 38.4(52.8 38.4 ) 31.0 J.
2 3

W x x dx x x⎛ ⎞= + = + =⎜ ⎟
⎝ ⎠∫  

 
(b) The spring does 31.0 J of work and this must be the increase in the kinetic energy of 
the particle. Its speed is then 
 

v K
m

= = =
2 2 310

217
535

.
.

. .
J

kg
m sb g  
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(c) The force is conservative since the work it does as the particle goes from any point x1 
to any other point x2 depends only on x1 and x2, not on details of the motion between x1 
and x2. 
 
85. By energy conservation, the change in kinetic energy of water in one second is 
  

 3 3 3 2

9
(10 kg / m )(1200m )(9.8m / s )(100m)
1.176 10  J.

K U mgh VghρΔ = −Δ = =
=
= ×

 

 
Only 3/4 of this amount is transferred to electrical energy. The power generation 
(assumed constant, so average power is the same as instantaneous power) is 
 

9
8(3 / 4) (3 / 4)(1.176 10  J) 8.8 10  W.

1.0savg
KP

t
Δ ×

= = = ×  

 
86. (a) At B the speed is (from Eq. 8-17)  
 

2 2 2
0 12 (7.0 m/s) 2(9.8 m/s )(6.0 m) 13 m/s.v v gh= + = + =  

 
(a) Here what matters is the difference in heights (between A and C): 
 

2 2 2
0 1 22 ( ) (7.0 m/s) 2(9.8 m/s )(4.0 m) 11.29 m/s 11 m/s.v v g h h= + − = + = ≈   

 
(c) Using the result from part (b), we see that its kinetic energy right at the beginning of 

its “rough slide” (heading horizontally toward D) is 
1
2 m(11.29 m/s)2 = 63.7m (with SI 

units understood).  Note that we “carry along” the mass (as if it were a known quantity); 
as we will see, it will cancel out, shortly. Using Eq. 8-31 (and Eq. 6-2 with FN = mg) we 
note that this kinetic energy will turn entirely into thermal energy 
 

63.7m = μk mgd 
 
if d < L.  With μk = 0.70, we find d = 9.3 m, which is indeed less than L (given in the 
problem as 12 m).  We conclude that the block stops before passing out of the “rough” 
region (and thus does not arrive at point D). 
 
87. Let position A be the reference point for potential energy, 0AU = . The total 
mechanical energies at A, B, and C are: 
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2 2
0

2 2

2

1 1
2 2
1 1
2 2
1
2

A A A

B B B B

D D D

E mv U mv

E mv U mv mgL

E mv U mgL

= + =

= + = −

= + =

 

where 0Dv = . The problem can be analyzed by applying energy conservation: 

A B DE E E= = . 
 
(a) The condition A DE E=  gives 

2
0 0

1 2
2

mv mgL v gL= ⇒ = . 

 
(b) To find the tension in the rod when the ball passes through B, we first calculate the 
speed at B. Using B DE E= , we find  
 

21 4
2 B Bmv mgL mgL v gL− = ⇒ = . 

 
The direction of the centripetal acceleration is upward (at that moment), as is the tension 
force.  Thus, Newton’s second law gives 
 

 
2 (4 ) 4Bmv m gLT mg mg

r L
− = = =  

or T = 5mg. 
 
(c) The difference in height between C and D is L, so the “loss” of mechanical energy 
(which goes into thermal energy) is –mgL. 
 
(d) The difference in height between B and D is 2L, so the total “loss” of mechanical 
energy (which all goes into thermal energy) is –2mgL.  
 
Note: An alternative way to calculate the energy loss in (d) is to note that 

21 0
2B B BE mv U mgL mgL′ ′= + = − = −  

which gives  
2B AE E E mgL mgL mgL′Δ = − = − − = − . 

 
88. (a) The initial kinetic energy is Ki = =1

2
215 3 6 75. .b gb g J . 

 
(b) The work of gravity is the negative of its change in potential energy. At the highest 
point, all of Ki has converted into U (if we neglect air friction) so we conclude the work 
of gravity is –6.75 J. 
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(c) And we conclude that ΔU = 6 75. J . 
 
(d) The potential energy there is U U Uf i= + =Δ 6 75. J . 
 
(e) If Uf = 0, then U U Ui f= − = −Δ 6 75. J . 
 
(f) Since mg y UΔ = Δ , we obtain 0.459 myΔ = . 
 
89. (a) By mechanical energy conversation, the kinetic energy as it reaches the floor 
(which we choose to be the U = 0 level) is the sum of the initial kinetic and potential 
energies:   

K = Ki + Ui = 
1
2 (2.50 kg)(3.00 m/s)2 + (2.50 kg)(9.80 m/s2)(4.00 m) = 109 J. 

 
For later use, we note that the speed with which it reaches the ground is  
 

v = 2K/m  = 9.35 m/s. 
 
(b) When the drop in height is 2.00 m instead of 4.00 m, the kinetic energy is  
 

K = 
1
2 (2.50 kg)(3.00 m/s)2 + (2.50 kg)(9.80 m/s2)(2.00 m) = 60.3 J. 

 
(c) A simple way to approach this is to imagine the can being launched from the ground 
at 0t =  with a speed 9.35 m/s (see above) and calculate the height and speed at t = 
0.200 s, using Eq. 2-15 and Eq. 2-11:   

 y = (9.35 m/s)(0.200 s) – 
1
2 (9.80 m/s2)(0.200 s)2 = 1.67 m, 

 

             v = 9.35 m/s – (9.80 m/s2)(0.200 s) = 7.39 m/s. 
 
The kinetic energy is  

K = 
1
2 (2.50 kg) (7.39 m/s)2 = 68.2 J. 

 
(d) The gravitational potential energy is 
 

U = mgy = (2.5 kg)(9.8 m/s2)(1.67 m) = 41.0 J . 
 
90. The free-body diagram for the trunk is shown below. The x and y applications of 
Newton's second law provide two equations:  
 

  F1 cos θ – fk – mg sin θ  = ma 
 

FN – F1 sin θ – mg cos θ  = 0. 
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(a) The trunk is moving up the incline at constant velocity, so a = 0. Using fk = μk FN, we 
solve for the push-force F1 and obtain 
 

F
mg k

k
1 =

+
−

sin cos
cos sin

.
θ μ θ

θ μ θ
b g  

 
The work done by the push-force F1  as the trunk is pushed through a distance  up the 
inclined plane is therefore 
 

( )( )

( )( )( )( ) ( )( )
( )

1 1
k

2

3

cos sin cos
cos

cos sin

50 kg 9.8 m s 6.0 m cos30 sin 30 0.20 cos30
cos30 0.20 sin 30

2.2 10 J.

kmg
W F

θ θ μ θ
θ

θ μ θ
+

= =
−

° ° + °
=

° − °

= ×

 

 
(b) The increase in the gravitational potential energy of the trunk is 
 

2 3sin (50kg)(9.8m/s )(6.0m)sin 30 1.5 10 J.U mg θΔ = = ° = ×  
 
Since the speed (and, therefore, the kinetic energy) of the trunk is unchanged, Eq. 8-33 
leads to 
 

W U E1 = +Δ Δ th .  
 
Thus, using more precise numbers than are shown above, the increase in thermal energy 
(generated by the kinetic friction) is 2.24 × 103 J – 1.47 × 103 J = 7.7 × 102 J. An alternate 
way to this result is to use ΔE fkth =  (Eq. 8-31). 
 
91. The initial height of the 2M block, shown in Fig. 8-67, is the y = 0 level in our 
computations of its value of Ug.  As that block drops, the spring stretches accordingly.  
Also, the kinetic energy Ksys is evaluated for the system, that is, for a total moving mass 
of 3M. 
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(a) The conservation of energy, Eq. 8-17, leads to 
 

Ki + Ui = Ksys + Usys   ⇒   0 + 0 = Ksys + (2M)g(–0.090) + 
1
2 k(0.090)2 . 

 
Thus, with M = 2.0 kg, we obtain Ksys = 2.7 J. 
 
(b) The kinetic energy of the 2M block represents a fraction of the total kinetic energy: 
 

 
2

2
2

(2 ) / 2 2
(3 ) / 2 3

M

sys

K M v
K M v

= = . 

Therefore, K2M = 
2
3(2.7 J) = 1.8 J. 

 
(c) Here we let y = –d and solve for d. 
 

Ki + Ui = Ksys + Usys  ⇒   0 + 0  =  0 + (2M)g(–d) + 
1
2 kd2 . 

 
Thus, with M = 2.0 kg, we obtain d = 0.39 m. 
 
92. By energy conservation, 2 / 2mgh mv= , the speed of the volcanic ash is given by 

2 .v gh=  In our present problem, the height is related to the distance (on the θ = 10º 
slope) d = 920 m by the trigonometric relation h = d sinθ. Thus,  
 
 22(9.8 m/s )(920 m)sin10 56 m/s.v = ° =  
 
93. (a) The assumption is that the slope of the bottom of the slide is horizontal, like the 
ground. A useful analogy is that of the pendulum of length R = 12 m that is pulled 
leftward to an angle θ (corresponding to being at the top of the slide at height h = 4.0 m) 
and released so that the pendulum swings to the lowest point (zero height) gaining speed 
v = 6 2. .m s  Exactly as we would analyze the trigonometric relations in the pendulum 
problem, we find 

h R h
R

= − ⇒ = −FHG
I
KJ = °−1 1 481cos cosθ θb g  

 
or 0.84 radians. The slide, representing a circular arc of length s = Rθ, is therefore (12 
m)(0.84) = 10 m long. 
 
(b) To find the magnitude f of the frictional force, we use Eq. 8-31 (with W = 0): 
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0
1
2

2

= + +

= − +

Δ Δ ΔK U E

mv mgh fs

th

 

 
so that (with m = 25 kg) we obtain f = 49 N. 
 
(c) The assumption is no longer that the slope of the bottom of the slide is horizontal, but 
rather that the slope of the top of the slide is vertical (and 12 m to the left of the center of 
curvature). Returning to the pendulum analogy, this corresponds to releasing the 
pendulum from horizontal (at θ1 = 90° measured from vertical) and taking a snapshot of 
its motion a few moments later when it is at angle θ2 with speed v = 6.2 m/s. The 
difference in height between these two positions is (just as we would figure for the 
pendulum of length R) 
 

Δh R R R= − − − = −1 12 1 2cos cos cosθ θ θb g b g  
 
where we have used the fact that cos θ1 = 0. Thus, with Δh = –4.0 m, we obtain θ2 = 
70.5° which means the arc subtends an angle of |Δθ| = 19.5° or 0.34 radians. Multiplying 
this by the radius gives a slide length of s' = 4.1 m. 
 
(d) We again find the magnitude f ' of the frictional force by using Eq. 8-31 (with W = 0): 
 

0
1
2

2

= + +

= − + ′ ′

Δ Δ ΔK U E

mv mgh f s

th

 

 
so that we obtain f ' = 1.2 × 102 N. 
 
94. We use P = Fv to compute the force: 
 

F P
v

= =
×

F
HG

I
KJ
F
HG

I
KJ

= ×
92 10

32 5 1852 1000
3600

55 10
6

6W

knot km h
knot

m km
s h

N.
. .

.
b g

 

 
95. This can be worked entirely by the methods of Chapters 2–6, but we will use energy 
methods in as many steps as possible. 
 
(a) By a force analysis in the style of Chapter 6, we find the normal force has magnitude 
FN = mg cos θ (where θ = 39°), which means fk = μk mg cos θ where μk = 0.28. Thus, Eq. 
8-31 yields  

ΔEth = fk d = μk mgd cos θ. 
 
Also, elementary trigonometry leads us to conclude that ΔU = –mgd sin θ where 

3.7 md = . Since Ki = 0, Eq. 8-33 (with W = 0) indicates that the final kinetic energy is 
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K U E mgdf k= − − = −D D th  (sin cos )θ μ θ  

 
which leads to the speed at the bottom of the ramp 
 

v
K
m

gdf
k= = − =

2
2 55  m s.sin cos .θ μ θb g  

 
(b) This speed begins its horizontal motion, where fk = μk mg and ΔU = 0. It slides a 
distance d' before it stops. According to Eq. 8-31 (with W = 0), 
 

0

0 1
2

0

1
2

2

2

= + +

= − + + ′

= − − + ′

Δ ΔK U E

mv mgd

gd gd

k

k k

Δ th

  

   

μ

θ μ θ μsin cosb gc h

 

 
where we have divided by mass and substituted from part (a) in the last step. Therefore, 
 

′ =
−

=d
d k

k

sin cos
. .

θ μ θ
μ

b g 54 m  

 
(c) We see from the algebraic form of the results, above, that the answers do not depend 
on mass. A 90 kg crate should have the same speed at the bottom and sliding distance 
across the floor, to the extent that the friction relations in Chapter 6 are accurate. 
Interestingly, since g does not appear in the relation for d', the sliding distance would 
seem to be the same if the experiment were performed on Mars! 
 

96. (a) The loss of the initial K = 
1
2 mv2 = 

1
2 (70 kg)(10 m/s)2 is 3500 J, or 3.5 kJ. 

 
(b) This is dissipated as thermal energy; ΔEth = 3500 J = 3.5 kJ.  
 
97. Eq. 8-33 gives thf i imgy K mgy E= + − Δ , or 
 

 (0.50 kg)(9.8 m/s2)(0.80 m) = 
1
2 (0.50 kg)(4.00 /s)2 + (0.50 kg)(9.8 m/s2)(0) – ΔEth 

 

which yields ΔEth = 4.00 J – 3.92 J = 0.080 J. 
 
98. Since the period T is (2.5 rev/s)−1 = 0.40 s, then Eq. 4-33 leads to v = 3.14 m/s.  The 
frictional force has magnitude (using Eq. 6-2)   
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f = μk FN = (0.320)(180 N) = 57.6 N. 
 
The power dissipated by the friction must equal that supplied by the motor, so Eq. 7-48 
gives P = (57.6 N)(3.14 m/s) = 181 W. 
 
99. To swim at constant velocity the swimmer must push back against the water with a 
force of 110 N. Relative to him the water is going at 0.22 m/s toward his rear, in the same 
direction as his force. Using Eq. 7-48, his power output is obtained: 
 

P F v Fv= ⋅ = = =110 0 22 24N m s W.b gb g.  
 
100. The initial kinetic energy of the automobile of mass m moving at speed vi is 

K mvi i=
1
2

2 , where m = 16400/9.8 = 1673 kg. Using Eq. 8-31 and Eq. 8-33, this relates to 

the effect of friction force f in stopping the auto over a distance d by K fdi = , where the 
road is assumed level (so ΔU = 0). With 
 

( ) ( )113  km/h 113  km/h (1000  m/km)(1 h/3600 s) 31.4 m/s,iv = = =  
 
we obtain 

( )
( )

22 1673kg (31.4 m/s)
100 m.

2 2 8230 N
i iK mvd

f f
= = = =  

 
101. With the potential energy reference level set at the point of throwing, we have (with 
SI units understood) 

ΔE mgh mv m= − = −F
HG

I
KJ

1
2

9 8 81 1
2

140
2 2. .b gb g b g  

 
which yields ΔE = –12 J for m = 0.63 kg. This “loss” of mechanical energy is presumably 
due to air friction. 
 
102. (a) The (internal) energy the climber must convert to gravitational potential energy 
is 

( )( )( )2 690 kg 9.80 m/s 8850 m 7.8 10 J.U mghΔ = = = ×  
 
(b) The number of candy bars this corresponds to is 
 

6

6

7.8 10 J 6.2 bars .
1.25 10 J bar

N ×
= ≈

×
 

 
103. (a) The acceleration of the sprinter is (using Eq. 2-15) 
 



  CHAPTER 8 

 

360 

a x
t

= = =
2 2 7 0

16
5 472 2

2Δ b gb g
b g

.
.

. .
m

s
m s  

 
Consequently, the speed at t = 1.6s is v at= = =547 16 88. . . .m s s m s2c hb g  Alternatively, 
Eq. 2-17 could be used. 
 
(b) The kinetic energy of the sprinter (of weight w and mass m = w/g) is 
 

( )( )22 2 2 31 1 1 670 N/(9.8 m/s ) 8.8 m/s 2.6 10 J.
2 2 2

wK mv v
g

⎛ ⎞
= = = = ×⎜ ⎟

⎝ ⎠
 

 
(c) The average power is 

3
3

avg
2.6 10 J 1.6 10 W.

1.6 s
KP
t

Δ ×
= = = ×

Δ
 

 
104. From Eq. 8-6, we find (with SI units understood) 
 

U x x dxξ ξ ξ
ξb g c h= − − − = +z 3 5 3

2
5
3

2

0

2 3 .  

 
(a) Using the above formula, we obtain U(2) ≈ 19 J. 
 
(b) When its speed is v = 4 m/s, its mechanical energy is 1

2
2 5mv U+ b g . This must equal 

the energy at the origin: 
1
2

5 1
2

02 2mv U mv U+ = +b g b go  

 
so that the speed at the origin is 
 

v v
m

U Uo = + −2 2 5 0b g b gc h.  

 
Thus, with U(5) = 246 J, U(0) = 0 and m = 20 kg, we obtain vo = 6.4 m/s. 
 
(c) Our original formula for U is changed to  
 

 2 33 5( ) 8
2 3

U x x x= − + +  

 
in this case. Therefore, U(2) = 11 J. But we still have vo = 6.4 m/s since that calculation 
only depended on the difference of potential energy values (specifically, U(5) – U(0)). 
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105. (a) Resolving the gravitational force into components and applying Newton’s second 
law (as well as Eq. 6-2), we find  
  

Fmachine – mg sinθ – μk mg cosθ = ma. 
 
In the situation described in the problem, we have a = 0, so 
 

Fmachine = mg sinθ + μk mg cosθ = 372 N. 
 
Thus, the work done by the machine is Fmachined = 744 J = 7.4 × 102 J. 
 
(b) The thermal energy generated is μk mg cosθ d = 240 J = 2.4 × 102 J.  
 
106. (a) At the highest point, the velocity v = vx is purely horizontal and is equal to the 
horizontal component of the launch velocity (see section 4-6): vox = vo cosθ, where 

30θ = ° in this problem. Equation 8-17 relates the kinetic energy at the highest point to 
the launch kinetic energy: 

     Ko  = mg y + 
1
2 mv2 = 

1
2 mvox

2 + 
1
2 mvoy

2, 

 
with y = 1.83 m. Since the mvox

2/2 term on the left-hand side cancels the mv2/2 term on 
the right-hand side, this yields voy = 2gy ≈ 6 m/s. With voy = vo sinθ, we obtain  
 

vo = 11.98 m/s ≈ 12 m/s. 
 
(b) Energy conservation (including now the energy stored elastically in the spring, Eq. 
8-11) also applies to the motion along the muzzle (through a distance d that corresponds 
to a vertical height increase of d sinθ ): 
 

1
2 kd2 = Ko + mg d sinθ   ⇒  d = 0.11 m. 

 
107. The work done by F  is the negative of its potential energy change (see Eq. 8-6), 
so UB = UA – 25 = 15 J. 
 
108. (a) We assume his mass is between m1 = 50 kg and m2 = 70 kg (corresponding to a 
weight between 110 lb and 154 lb). His increase in gravitational potential energy is 
therefore in the range 
 

5 5
1 2 2 10 3 10m gh U m gh U≤ Δ ≤ ⇒ × ≤ Δ ≤ ×  

 
in SI units (J), where h = 443 m. 
 
(b) The problem only asks for the amount of internal energy that converts into 
gravitational potential energy, so this result is the same as in part (a). But if we were to 
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consider his total internal energy “output” (much of which converts to heat) we can 
expect that external climb is quite different from taking the stairs. 
 
109. (a) We implement Eq. 8-37 as 
 

Kf  = Ki + mgyi – fk d = 0 + (60 kg)(9.8 m/s2)(4.0 m) – 0 = 2.35 × 103 J. 
 
(b) Now it applies with a nonzero thermal term: 
 

Kf = Ki + mgyi – fk d = 0 + (60 kg)(9.8 m/s2)(4.0 m) – (500 N)(4.0 m) = 352 J. 
 
110. We take the bottom of the incline to be the y = 0 reference level. The incline angle is 

30θ = ° . The distance along the incline d (measured from the bottom) is related to height 
y by the relation y = d sin θ. 
 
(a) Using the conservation of energy, we have 
 

K U K U mv mgy0 0 0
21

2
0 0+ = + ⇒ + = +top top  

 
with v0 50= . m s. This yields y = 1.3 m, from which we obtain d = 2.6 m. 
 
(b) An analysis of forces in the manner of Chapter 6 reveals that the magnitude of the 
friction force is fk = μkmg cos θ. Now, we write Eq. 8-33 as 
 

K U K U f d

mv mgy f d

mv mgd mgd

k

k

k

0 0

0
2

0
2

1
2

0 0

1
2

+ = + +

+ = + +

= +

top top

sin cosθ μ θ

 

 
which — upon canceling the mass and rearranging — provides the result for d: 
 

d v
g k

=
+

=0
2

2
15

μ θ θcos sin
.b g m .  

 
(c) The thermal energy generated by friction is fkd = μk mgd cos θ = 26 J. 
 
(d) The slide back down, from the height y = 1.5 sin 30º, is also described by Eq. 8-33. 
With ΔEth  again equal to 26 J, we have 
 

K U K U f d mgy mvktop top bot bot bot+ = + + ⇒ + = + +0 1
2

0 262  
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from which we find vbot m s= 21. . 
 

111. Equation 8-8 leads directly to Δy = 
68000 J

(9.4 kg)(9.8 m/s2)  = 738 m. 

 
112. We assume his initial kinetic energy (when he jumps) is negligible. Then, his initial 
gravitational potential energy measured relative to where he momentarily stops is what 
becomes the elastic potential energy of the stretched net (neglecting air friction). Thus, 
 

U U mghnet grav= =  
 
where h = 11.0 m + 1.5 m = 12.5 m. With m = 70 kg, we obtain Unet = 8580 J. 
 
113. We use SI units so m = 0.030 kg and d = 0.12 m. 
 
(a) Since there is no change in height (and we assume no changes in elastic potential 
energy), then ΔU = 0 and we have 

 2 3
mech 0

1 3.8 10  J
2

E K mvΔ = Δ = − = − ×  

 
where v0 = 500 m/s and the final speed is zero. 
 
(b) By Eq. 8-33 (with W = 0) we have ΔEth = 3.8 × 103 J, which implies 
 

f E
d

= = ×
Δ th  N31 104.  

 
using Eq. 8-31 with fk replaced by f (effectively generalizing that equation to include a 
greater variety of dissipative forces than just those obeying Eq. 6-2). 
 
114. (a) The kinetic energy K of the automobile of mass m at t = 30 s is 
 

K mv= =
F
HG

I
KJ

F
HG

I
KJ = ×

1
2

1
2

1500 72 1000
3600

30 102

2

5kg km h m km
s h

J .b g b g .  

 
(b) The average power required is 
 

P K
tavg

J
s

W.= =
×

= ×
Δ
Δ

30 10
30

10 10
5

4. .  

 
(c) Since the acceleration a is constant, the power is P = Fv = mav = ma(at) = ma2t using 

Eq. 2-11. By contrast, from part (b), the average power is P mv
tavg =

2

2
, which becomes 
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1
2

2ma t  when v = at is again utilized. Thus, the instantaneous power at the end of the 

interval is twice the average power during it:  
 

P P= = × = ×2 2 10 10 2 0 104 4
avg W W.b gc h. .  

 
115. (a) The initial kinetic energy is 2(1.5 kg)(20 m/s) / 2 300 J.iK = =  
 
(b) At the point of maximum height, the vertical component of velocity vanishes but the 
horizontal component remains what it was when it was “shot” (if we neglect air friction). 
Its kinetic energy at that moment is 
 

[ ]21 (1.5 kg) (20 m/s)cos34 206 J.
2

K = ° =  

 
Thus, Δ U = Ki – K = 300 J – 206 J = 93.8 J. 
 

(c) Since Δ U = mg Δ y, we obtain 2

94 J 6.38 m
(1.5 kg)(9.8 m/s )

yΔ = = . 

 
116. (a) The rate of change of the gravitational potential energy is 
 

dU
dt

mg dy
dt

mg v= = − = − = − ×68 9 8 59 39 104b gb gb g. . J s.  

 
Thus, the gravitational energy is being reduced at the rate of 3.9 × 104 W. 
 
(b) Since the velocity is constant, the rate of change of the kinetic energy is zero. Thus 
the rate at which the mechanical energy is being dissipated is the same as that of the 
gravitational potential energy (3.9 × 104 W). 
 
117. (a) The effect of (sliding) friction is described in terms of energy dissipated as 
shown in Eq. 8-31. We have 
 

ΔE K k k fk= + − = −
1
2

0 08 1
2

010 0 022 2. . .b g b g b g  
 
where distances are in meters and energies are in joules. With k = 4000 N/m and 

80 N,kf = we obtain K = 5.6 J. 
 
(b) In this case, we have d = 0.10 m. Thus, 
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ΔE K k fk= + − = −0 1
2

010 0102. .b g b g  
which leads to K = 12 J. 
 
(c) We can approach this two ways. One way is to examine the dependence of energy on 
the variable d: 

ΔE K k d d kd f dk= + − − = −
1
2

1
20

2
0
2b g  

 
where d0 = 0.10 m, and solving for K as a function of d: 
 

K kd kd d f dk= − + −
1
2

2
0b g . 

In this first approach, we could work through the dK
dd

= 0  condition (or with the special 

capabilities of a graphing calculator) to obtain the answer K
k

kd fkmax = −
1

2 0
2b g .  In the 

second (and perhaps easier) approach, we note that K is maximum where v is 
maximum — which is where a = ⇒0  equilibrium of forces. Thus, the second approach 
simply solves for the equilibrium position 
 

F f kxkspring = ⇒ = 80. 
 
Thus, with k = 4000 N/m we obtain x = 0.02 m. But x = d0 – d so this corresponds to d = 
0.08 m. Then the methods of part (a) lead to the answer Kmax = 12.8 J ≈ 13 J. 
 
118. We work this in SI units and convert to horsepower in the last step. Thus, 
 

v =
F
HG

I
KJ =80 1000

3600
22 2km h m km

s h
m sb g . .  

 
The force FP needed to propel the car (of weight w and mass m = w/g) is found from 
Newton’s second law: 

F F F ma wa
gPnet = − = =  

 
where F = 300 + 1.8v2 in SI units. Therefore, the power required is  
 

( ) ( )( ) ( )

( )

2 4

4

12000 0.92
300 1.8 22.2 22.2 5.14 10  W

9.8
1 hp5.14 10  W 69 hp.

746 W

P
waP F v F v
g

⎛ ⎞⎛ ⎞
= ⋅ = + = + + = ×⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞= × =⎜ ⎟
⎝ ⎠
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119. We choose the initial position at the window to be our reference point for calculating 

the potential energy. The initial energy of the ball is 2
0 0

1
2

E mv= . At the top of its flight, 

the vertical component of the velocity is zero, and the horizontal component (neglecting 
air friction) is the same as it was when it was thrown: 0 cosxv v θ= .  At a position h 
below the window, the energy of the ball is  
 

21
2

E K U mv mgh= + = −  

 where v is the speed of the ball. 
 
(a) The kinetic energy of the ball at the top of the flight is 
 

2 2 2
top 0

1 1 1( cos ) (0.050 kg)[(8.0 m/s)cos30 ] 1.2 J
2 2 2xK mv m v θ= = = ° = . 

 
(b) When the ball is h = 3.0 m below the window, by energy conservation, we have  
 

2 2
0

1 1
2 2

mv mv mgh= −  

or  
2 2 2
0 2 (8.0 m/s) 2(9.8 m/s )(3.0 m) 11.1 m/sv v gh= + = + = . 

 
(c) As can be seen from our expression above, 2

0 2v v gh= + , which is independent of 
the mass m.  
 
(d) Similarly, the speed v is independent of the initial angle θ.  
 
120. (a) In the initial situation, the elongation was (using Eq. 8-11)   
 

xi = 2(1.44)/3200 = 0.030 m (or 3.0 cm). 
 
In the next situation, the elongation is only 2.0 cm (or 0.020 m), so we now have less 
stored energy (relative to what we had initially). Specifically,  
 

ΔU = 
1
2 (3200 N/m)(0.020 m)2 – 1.44 J = –0.80 J. 

 
(b) The elastic stored energy for |x| = 0.020 m does not depend on whether this represents 
a stretch or a compression. The answer is the same as in part (a), ΔU = –0.80 J. 
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(c) Now we have |x| = 0.040 m, which is greater than xi, so this represents an increase in 
the potential energy (relative to what we had initially). Specifically, 

 

ΔU = 
1
2 (3200 N/m)(0.040 m)2 – 1.44 J = +1.12 J 1.1 J≈ . 

 
121. (a) With P = 1.5 MW = 1.5 × 106 W (assumed constant) and t = 6.0 min = 360 s, the 
work-kinetic energy theorem becomes 
 

W Pt K m v vf i= = = −Δ
1
2

2 2d i. 
The mass of the locomotive is then 
 

m Pt
v vf i

=
−

=
×

−
= ×

2 2 15 10 360

25 10
2 1 102 2

6

2 2
6b gc hb g

b g b g
.

.
W s

m s m s
kg.  

 

(b) With t arbitrary, we use Pt m v vi= −
1
2

2 2c h  to solve for the speed v = v(t) as a 

function of time and obtain 
 

v t v Pt
m

t
tib g b g b gc h

= + = +
×

×
= +2 2

6

6

2 10
2 15 10

21 10
100 15

.
.

.  

 
in SI units (v in m/s and t in s). 
 
(c) The force F(t) as a function of time is 

F t P
v t t

b g b g= =
×

+
15 10
100 15

6.
.

 

in SI units (F in N and t in s). 
 
(d) The distance d the train moved is given by 
 

 

360
1/ 2 3/ 2

360 3

0 0
0

3 4 3( ) 100 100 6.7 10  m.
2 9 2

t
d v t dt t dt t⎛ ⎞ ⎛ ⎞′ ′= = + = + = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ ∫  

 
122. In the presence of frictional force, the work done on a system is mech thW E E= Δ + Δ , 
where mechE K UΔ = Δ + Δ  and th kE f dΔ = . In our situation, work has been done by the 
cue only to the first 2.0 m, and not to the subsequent 12 m of distance traveled.   
 
(a) During the final d = 12 m of motion, 0W =  and we use 
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1 1 2 2

21 0 0 0
2

k

k

K U K U f d

mv f d

+ = + +

+ = + +
 

 
where 0.42 kgm = and v = 4.2 m/s. This gives fk = 0.31 N. Therefore, the thermal 
energy change is th 3.7 J.kE f dΔ = =  
 
(b) Using fk = 0.31 N for the entire distance dtotal = 14 m, we obtain  
 

th,total total (0.31 N)(14 m) 4.3 JkE f dΔ = = =  
 
for the thermal energy generated by friction. 
 
(c) During the initial d' = 2 m of motion, we have 
 

2
mech th

1 0
2k kW E E K U f d mv f d′ ′ ′= Δ + Δ = Δ + Δ + = + +  

 
which essentially combines Eq. 8-31 and Eq. 8-33. Thus, the work done on the disk by 
the cue is 

2 21 1 (0.42 kg)(4.2 m/s) (0.31 N)(2.0 m) 4.3 J
2 2kW mv f d ′= + = + = . 
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Chapter 9 
 
 
 
1. We use Eq. 9-5 to solve for 3 3( , ).x y   
 
(a) The x coordinate of the system’s center of mass is: 
 

( )( ) ( ) 31 1 2 2 3 3
com

1 2 3

(2.00 kg)( 1.20 m) 4.00 kg 0.600 m 3.00 kg
2.00 kg 4.00 kg 3.00 kg

0.500 m.

xm x m x m xx
m m m

− + ++ +
= =

+ + + +
= −

 

 
Solving the equation yields x3 = –1.50 m. 
 
(b) The y coordinate of the system’s center of mass is: 
 

( )( ) ( ) 31 1 2 2 3 3
com

1 2 3

(2.00 kg)(0.500 m) 4.00 kg 0.750 m 3.00 kg
2.00 kg 4.00 kg 3.00 kg

0.700 m.

ym y m y m yy
m m m

+ − ++ +
= =

+ + + +

= −

 

 
Solving the equation yields y3 = –1.43 m. 
 
2. Our notation is as follows: x1 = 0 and y1 = 0 are the coordinates of the m1 = 3.0 kg 
particle; x2 = 2.0 m and y2 = 1.0 m are the coordinates of the m2 = 4.0 kg particle; and x3 = 
1.0 m and y3 = 2.0 m are the coordinates of the m3 = 8.0 kg particle. 
 
(a) The x coordinate of the center of mass is 
 

( )( ) ( )( )1 1 2 2 3 3
com

1 2 3

0 4.0 kg 2.0 m 8.0 kg 1.0 m
1.1 m.

3.0 kg 4.0 kg 8.0 kg
m x m x m xx

m m m
+ ++ +

= = =
+ + + +

 

 
(b) The y coordinate of the center of mass is 
 

( )( ) ( )( )1 1 2 2 3 3
com

1 2 3

0 4.0 kg 1.0 m 8.0 kg 2.0 m
1.3 m.

3.0 kg 4.0 kg 8.0 kg
m y m y m yy

m m m
+ ++ +

= = =
+ + + +

 

 
(c) As the mass of m3, the topmost  particle,  is increased, the center of mass shifts toward 
that particle. As we approach the limit where m3 is infinitely more massive than the 
others, the center of mass becomes infinitesimally close to the position of m3. 
 
3. We use Eq. 9-5 to locate the coordinates. 
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(a) By symmetry xcom = –d1/2 = –(13 cm)/2 = – 6.5 cm. The negative value is due to our 
choice of the origin. 
 
(b) We find ycom as 
 

( )( ) ( )( )

com, com, com, cm,
com

3 3

3 3

11 cm / 2 7.85 g/cm 3 11 cm / 2 2.7 g/cm
8.3 cm.

7.85 g/cm 2.7 g/cm

i i a a i i i a a a

i a i i a a

m y m y V y V y
y

m m V V
ρ ρ

ρ ρ
+ +

= =
+ +

+
= =

+

 

 
(c) Again by symmetry, we have zcom = (2.8 cm)/2 = 1.4 cm.  
 
4. We will refer to the arrangement as a “table.” We locate the coordinate origin at the 
left end of the tabletop (as shown in Fig. 9-37). With +x rightward and +y upward, then 
the center of mass of the right leg is at (x,y) = (+L, –L/2), the center of mass of the left leg 
is at (x,y) = (0, –L/2), and the center of mass of the tabletop is at (x,y) = (L/2, 0).  
 
(a) The x coordinate of the (whole table) center of mass is 
 

( ) ( ) ( )
com

0 3 / 2
3 2

M L M M L Lx
M M M

+ + + +
= =

+ +
. 

 
With L = 22 cm, we have xcom = (22 cm)/2 = 11 cm. 
 
(b) The y coordinate of the (whole table) center of mass is 
 

( ) ( ) ( )
com

/ 2 / 2 3 0
3 5

M L M L M Ly
M M M

− + − +
= = −

+ +
, 

or ycom = – (22 cm)/5 = – 4.4 cm.  
 
From the coordinates, we see that the whole table center of mass is a small distance 4.4 
cm directly below the middle of the tabletop. 
 
5. Since the plate is uniform, we can split it up into three rectangular pieces, with the 
mass of each piece being proportional to its area and its center of mass being at its 
geometric center.  We’ll refer to the large 35 cm ×  10 cm piece (shown to the left of the y 
axis in Fig. 9-38) as section 1; it has 63.6% of the total area and its center of mass is at 
(x1 ,y1) = (−5.0 cm, −2.5 cm).  The top 20 cm ×  5 cm piece (section 2, in the first quadrant) 
has 18.2% of the total area; its center of mass is at (x2,y2) = (10 cm, 12.5 cm). The bottom 
10 cm x 10 cm piece (section 3) also has 18.2% of the total area; its center of mass is at 
(x3,y3) = (5 cm, −15 cm).   
 
(a) The x coordinate of the center of mass for the plate is  
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xcom = (0.636)x1 + (0.182)x2 + (0.182)x3  = – 0.45 cm . 

 
(b) The y coordinate of the center of mass for the plate is  
 

ycom = (0.636)y1 + (0.182)y2 + (0.182)y3  = – 2.0 cm . 
 
6. The centers of mass (with centimeters understood) for each of the five sides are as 
follows: 

1 1 1

2 2 2

3 3 3

4 4 4

   ( , , ) (0, 20, 20) for the side in the  plane
  ( , , ) (20,0, 20) for the side in the  plane
  ( , , ) (20, 20,0) for the side in the  plane
( , , ) (40, 20, 20) for the remaining side paral

x y z yz
x y z xz
x y z xy

x y z

=
=
=

=

5 5 5

lel to side 1
( , , ) (20,40,20) for the remaining side parallel to side 2x y z =

 

 
Recognizing that all sides have the same mass m, we plug these into Eq. 9-5 to obtain the 
results (the first two being expected based on the symmetry of the problem). 
 
(a) The x coordinate of the center of mass is 
 

x mx mx mx mx mx
mcom cm=

+ + + +
=

+ + + +
=1 2 3 4 5

5
0 20 20 40 20

5
20  

 
(b) The y coordinate of the center of mass is 
 

y my my my my my
mcom cm=

+ + + +
=

+ + + +
=1 2 3 4 5

5
20 0 20 20 40

5
20  

 
(c) The z coordinate of the center of mass is 
 

z mz mz mz mz mz
mcom cm=

+ + + +
=

+ + + +
=1 2 3 4 5

5
20 20 0 20 20

5
16  

 
7. (a) By symmetry the center of mass is located on the axis of symmetry of the 
molecule – the y axis. Therefore xcom = 0. 
 
(b) To find ycom, we note that 3mHycom = mN(yN – ycom), where yN is the distance from the 
nitrogen atom to the plane containing the three hydrogen atoms: 
 

( ) ( )2 211 11 11
N 10.14 10 m 9.4 10 m 3.803 10 m.y − − −= × − × = ×  

 
Thus, 
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( )( )
( )

11
11N N

com
N H

14.0067 3.803 10 m
3.13 10 m

3 14.0067 3 1.00797
m yy

m m

−
−

×
= = = ×

+ +
 

 
where Appendix F has been used to find the masses. 
 
8. (a) Since the can is uniform, its center of mass is at its geometrical center, a distance 
H/2 above its base. The center of mass of the soda alone is at its geometrical center, a 
distance x/2 above the base of the can. When the can is full this is H/2. Thus the center of 
mass of the can and the soda it contains is a distance 
 

h
M H m H

M m
H

=
+
+

=
/ /2 2

2
b g b g  

 
above the base, on the cylinder axis. With H = 12 cm, we obtain h = 6.0 cm. 
 
(b) We now consider the can alone. The center of mass is H/2 = 6.0 cm above the base, 
on the cylinder axis. 
 
(c) As x decreases the center of mass of the soda in the can at first drops, then rises to H/2 
= 6.0 cm again. 
 
(d) When the top surface of the soda is a distance x above the base of the can, the mass of 
the soda in the can is mp = m(x/H), where m is the mass when the can is full (x = H). The 
center of mass of the soda alone is a distance x/2 above the base of the can. Hence 
 

h
M H m x

M m
M H m x H x

M mx H
MH mx

MH mx
p

p

=
+
+

=
+
+

=
+
+

/ / / / /
/

.
2 2 2 2

2

2 2b g b g b g b gb g
b g b g  

 
We find the lowest position of the center of mass of the can and soda by setting the 
derivative of h with respect to x equal to 0 and solving for x. The derivative is 
 

dh
dx

mx
MH mx

MH mx m

MH mx
m x MmHx MmH

MH mx
=

+
−

+

+
=

+ −
+

2
2 2

2
2

2 2

2

2 2 2

2b g
c h
b g b g .  

 
The solution to m2x2 + 2MmHx – MmH2 = 0 is 
 

x MH
m

m
M

= − + +
F
HG

I
KJ1 1 .  

 
The positive root is used since x must be positive. Next, we substitute the expression 
found for x into h = (MH2 + mx2)/2(MH + mx). After some algebraic manipulation we 
obtain 
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(12 cm)(0.14 kg) 0.354 kg1 1 1 1 4.2 cm.
0.354 kg 0.14 kg

HM mh
m M

⎛ ⎞ ⎛ ⎞
= + − = + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
9. We use the constant-acceleration equations of Table 2-1 (with +y downward and the 
origin at the release point), Eq. 9-5 for ycom and Eq. 9-17 for vcom . 
 
(a) The location of the first stone (of mass m1) at t = 300 × 10–3 s is  
 

y1 = (1/2)gt2 = (1/2)(9.8 m/s2) (300 × 10–3 s)2 = 0.44 m, 
 
and the location of the second stone (of mass m2 = 2m1) at t = 300 × 10–3 s is  
 

y2 = (1/2)gt2 = (1/2)(9.8 m/s2)(300 × 10–3 s – 100 × 10–3 s)2 = 0.20 m. 
 

Thus, the center of mass is at 
 

y m y m y
m m

m m
m mcom

m m
m=

+
+

=
+
+

=1 1 2 2

1 2

1 1

1 2

0 44 2 0 20
2

0 28
. .

. .b g b g  

 
(b) The speed of the first stone at time t is v1 = gt, while that of the second stone is  
 

v2 = g(t – 100 × 10–3 s). 
 
Thus, the center-of-mass speed at t = 300 × 10–3 s is 
 

( )( ) ( )( )2 3 2 3 3
1 11 1 2 2

com
1 2 1 1

9.8 m/s 300 10 s 2 9.8 m/s 300 10 s 100 10 s
2

2.3 m/s.

m mm v m vv
m m m m

− − −× + × − ×+
= =

+ +
=

 
10. We use the constant-acceleration equations of Table 2-1 (with the origin at the traffic 
light), Eq. 9-5 for xcom and Eq. 9-17 for vcom . At t = 3.0 s, the location of the automobile 
(of mass m1) is 

x at1
1
2

2 1
2

24 0 3 0 18= = =. .m / s s m,2c hb g  
 
while that of the truck (of mass m2) is x2 = vt = (8.0 m/s)(3.0s) = 24 m. The speed of the 
automobile then is ( ) ( )2

1 4.0 m/s 3.0 s 12 m/s,v at= = =  while the speed of the truck 
remains v2 = 8.0 m/s. 
 
(a) The location of their center of mass is 
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x m x m x
m mcom

kg m kg m
kg kg

m=
+
+

=
+
+

=1 1 2 2

1 2

1000 18 2000 24
1000 2000

22b gb g b gb g .  

 
(b) The speed of the center of mass is 
 

v m v m v
m mcom

 kg  m / s  kg  m / s
 kg 2000 kg

 m / s.=
+
+

=
+
+

=1 1 2 2

1 2

1000 12 2000 8 0
1000

9 3b gb g b gb g.
.  

 
11. The implication in the problem regarding v0  is that the olive and the nut start at rest. 
Although we could proceed by analyzing the forces on each object, we prefer to approach 
this using Eq. 9-14. The total force on the nut-olive system is o n

ˆ ˆ( i j) NF F+ = − + . Thus, 
Eq. 9-14 becomes 

com
ˆ ˆ( i j) N Ma− + =  

 
where M = 2.0 kg. Thus, 21 1

com 2 2
ˆ ˆ( i j) m/sa = − + . Each component is constant, so we 

apply the equations discussed in Chapters 2 and 4 and obtain 
 

2
com com

1 ˆ ˆ( 4.0 m)i (4.0 m)j
2

r a tΔ = = − +  

 
when t = 4.0 s. It is perhaps instructive to work through this problem the long way 
(separate analysis for the olive and the nut and then application of Eq. 9-5) since it helps 
to point out the computational advantage of Eq. 9-14.  
 
12. Since the center of mass of the two-skater system does not move, both skaters will 
end up at the center of mass of the system. Let the center of mass be a distance x from the 
40-kg skater, then 

65 10 40 6 2kg m kg mb gb g b g− = ⇒ =x x x . .  
 
Thus the 40-kg skater will move by 6.2 m. 
 
13. We need to find the coordinates of the point where the shell explodes and the velocity 
of the fragment that does not fall straight down. The coordinate origin is at the firing 
point, the +x axis is rightward, and the +y direction is upward. The y component of the 
velocity is given by v = v0 y – gt and this is zero at time t = v0 y/g = (v0/g) sin θ0, where v0 
is the initial speed and θ0 is the firing angle. The coordinates of the highest point on the 
trajectory are  

 ( )22
0

0 0 0 0 0 2

20 m/s
cos sin cos sin 60 cos 60 17.7 m

9.8 m/sx
vx v t v t
g

θ θ θ= = = = ° ° =  

and 

y v t gt v
gy= − = = =°

0
2 0

2
2

0

2
21

2
1
2

1
2

20
9 8

60 153sin
.

sin .θ
  m / s
 m / s

 m.2

b g  
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Since no horizontal forces act, the horizontal component of the momentum is conserved. 
Since one fragment has a velocity of zero after the explosion, the momentum of the other 
equals the momentum of the shell before the explosion. At the highest point the velocity 
of the shell is v0 cosθ0, in the positive x direction. Let M be the mass of the shell and let 
V0 be the velocity of the fragment. Then Mv0cosθ0 = MV0/2, since the mass of the 
fragment is M/2. This means 
 

V v0 0 02 2 20 60 20= = =°cos cosθ  m / s  m / s.b g  
 
This information is used in the form of initial conditions for a projectile motion problem 
to determine where the fragment lands. Resetting our clock, we now analyze a projectile 
launched horizontally at time t = 0 with a speed of 20 m/s from a location having 
coordinates x0 = 17.7 m, y0 = 15.3 m. Its y coordinate is given by y y gt= −0

1
2

2 ,  and 

when it lands this is zero. The time of landing is t y g= 2 0 /  and the x coordinate of the 
landing point is  

x x V t x V y
g

= + = + = + =0 0 0 0
02 17 7

2 15 3
9 8

53.
.

.
 m 20 m / s

 m
 m / s

 m.2b g b g  

 
14. (a) The phrase (in the problem statement) “such that it [particle 2] always stays 
directly above particle 1 during the flight” means that the shadow (as if a light were 
directly above the particles shining down on them) of particle 2 coincides with the 
position of particle 1, at each moment.  We say, in this case, that they are vertically 
aligned.  Because of that alignment, v2x = v1 = 10.0 m/s.  Because the initial value of v2 is 
given as 20.0 m/s, then (using the Pythagorean theorem) we must have  
 

2 2
2 2 2y xv v v= − =  300   m/s 

 
for the initial value of the y component of particle 2’s velocity. Equation 2-16 (or 
conservation of energy) readily yields ymax = 300/19.6 = 15.3 m.  Thus, we obtain 
 

Hmax = m2 ymax /mtotal = (3.00 g)(15.3 m)/(8.00 g) = 5.74 m. 
 
(b) Since both particles have the same horizontal velocity, and particle 2’s vertical 
component of velocity vanishes at that highest point, then the center of mass velocity 
then is simply ˆ(10.0 m/s)i (as one can verify using Eq. 9-17). 
 
(c) Only particle 2 experiences any acceleration (the free fall acceleration downward), so 
Eq. 9-18 (or Eq. 9-19) leads to  
 

acom = m2 g /mtotal = (3.00 g)(9.8 m/s2)/(8.00 g) = 3.68 m/s2 
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for the magnitude of the downward acceleration of the center of mass of this system. 
Thus, 2

com
ˆ( 3.68 m/s ) ja = − . 

 
15. (a) The net force on the system (of total mass m1 + m2) is m2g.  Thus, Newton’s 
second law leads to a = g(m2/( m1 + m2)) = 0.4g. For block 1, this acceleration is to the 
right (the i^ direction), and for block 2 this is an acceleration downward (the –j^ direction).  
Therefore, Eq. 9-18 gives 
 

acom
→     

 =  
 m1 a1 

→  
 + m2 a2 

→  
 

 m1 + m2  =  
(0.6)(0.4gi^ ) + (0.4)(–0.4gj^ )

 0.6 + 0.4   =  (2.35 i^ – 1.57 j^ ) m/s2 . 

 
(b) Integrating Eq. 4-16, we obtain 
 

comv = (2.35 i^ – 1.57j^ ) t 
 
(with SI units understood), since it started at rest.  We note that the ratio of the y-
component to the x-component (for the velocity vector) does not change with time, and it 
is that ratio which determines the angle of the velocity vector (by Eq. 3-6), and thus the 
direction of motion for the center of mass of the system. 
 
(c) The last sentence of our answer for part (b) implies that the path of the center-of-mass 
is a straight line.   
 
(d) Equation 3-6 leads to θ = −34º.  The path of the center of mass is therefore straight, at 
downward angle 34°.  
 
16. We denote the mass of Ricardo as MR and that of Carmelita as MC. Let the center of 
mass of the two-person system (assumed to be closer to Ricardo) be a distance x from the 
middle of the canoe of length L and mass m. Then  
 

MR(L/2 – x) = mx + MC(L/2 + x). 
 
Now, after they switch positions, the center of the canoe has moved a distance 2x from its 
initial position. Therefore, x = 40 cm/2 = 0.20 m, which we substitute into the above 
equation to solve for MC: 
 

M
M L x mx

L xC
R=

− −
+

=
− −

+
=

/
/

. .
. / .

.2
2

80 0 20 30 0 20
30 2 0 20

58
3 0
2b g b gb g b gb g
b g  kg.  

 
17. There is no net horizontal force on the dog-boat system, so their center of mass does 
not move. Therefore by Eq. 9-16, M x m x m xb b d dΔ Δ Δcom = = +0 , which implies 
 

.d
b d

b

mx x
m

Δ = Δ  
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Now we express the geometrical condition that relative to the boat the dog has moved a 
distance d = 2.4 m: 

Δ Δx x db d+ =  
 
which accounts for the fact that the dog moves one way and the boat moves the other. We 
substitute for |Δxb| from above: 

m
m

x x dd

b
d dΔ Δb g + =  

 

which leads to 2.4 m 1.92 m.
1 / 1 (4.5 /18)d

d b

dx
m m

Δ = = =
+ +

  

 
The dog is therefore 1.9 m closer to the shore than initially (where it was D = 6.1 m from 
it). Thus, it is now D −|Δxd| = 4.2 m from the shore. 
 
18. The magnitude of the ball’s momentum change is  
 

(0.70 kg) (5.0 m/s) ( 2.0 m/s) 4.9 kg m/s.i fp m v vΔ = − = − − = ⋅  
 
19. (a) The change in kinetic energy is  
 

 

( ) ( ) ( )( )
( ) ( )( )( )

2 22 2

224 3

4

1 1 1 2100 kg 51 km/h 41 km/h
2 2 2

9.66 10  kg km/h 10  m/km 1 h/3600 s

7.5 10  J.

f iK mv mvΔ = − = −

= × ⋅

= ×

 

 
(b) The magnitude of the change in velocity is  
 

( ) ( ) ( ) ( )22 2 241 km/h 51 km/h 65.4 km/hi fv v vΔ = − + = − + =  

 
so the magnitude of the change in momentum is  
 

Δ Δp m v= = F
HG

I
KJ = × ⋅2100 654 1000

3600
38 104 kg  km / h  m / km

 s / h
 kg m / s.b gb g. .  

 
(c) The vector pΔ  points at an angle θ south of east, where  
 

θ =
F
HG
I
KJ = F

HG
I
KJ = °− −tan tan .1 1 41

51
39v

v
i

f

 km / h
 km / h
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20. We infer from the graph that the horizontal component of momentum px is 4.0 
kg m/s⋅ . Also, its initial magnitude of momentum po is 6.0 kg m/s⋅ .  Thus, 

cosθo = 
px
 po

     ⇒     θo =  48° . 

 
21. We use coordinates with +x horizontally toward the pitcher and +y upward. Angles 
are measured counterclockwise from the +x axis. Mass, velocity, and momentum units 
are SI. Thus, the initial momentum can be written p0 4 5 215= ∠ °.b g  in magnitude-angle 
notation.  
 
(a) In magnitude-angle notation, the momentum change is  
 

(6.0 ∠  – 90°) – (4.5 ∠  215°) = (5.0 ∠ – 43°) 
 
(efficiently done with a vector-capable calculator in polar mode). The magnitude of the 
momentum change is therefore 5.0 kg ⋅ m/s.  
 
(b) The momentum change is (6.0 ∠  0°) – (4.5 ∠  215°) = (10 ∠  15°). Thus, the 
magnitude of the momentum change is 10 kg ⋅ m/s.  
 
22. (a) Since the force of impact on the ball is in the y direction, px is conserved:  
 
 1 2sin sinxi xf i ip p mv mvθ θ= ⇒ = . 
 
With θ1 = 30.0°, we find θ2 = 30.0°. 
 
(b) The momentum change is  
 

( ) ( ) ( ) ( ) ( )2 2
ˆ ˆ ˆcos j cos j 2 0.165 kg 2.00 m/s cos30 j

ˆ( 0.572 kg m/s)j.

i ip mv mvθ θΔ = − − + = − °

= − ⋅
 

 
23. We estimate his mass in the neighborhood of 70 kg and compute the upward force F 
of the water from Newton’s second law: F mg ma− = , where we have chosen +y upward, 
so that a > 0 (the acceleration is upward since it represents a deceleration of his 
downward motion through the water). His speed when he arrives at the surface of the 
water is found either from Eq. 2-16 or from energy conservation: v gh= 2 , where 

12 mh = , and since the deceleration a reduces the speed to zero over a distance d = 0.30 
m we also obtain v ad= 2 .  We use these observations in the following. 
 
Equating our two expressions for v leads to a = gh/d. Our force equation, then, leads to 
 

F mg m g h
d

mg h
d

= + FHG
I
KJ = +FHG

I
KJ1  
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which yields F ≈ 2.8 × 104 kg. Since we are not at all certain of his mass, we express this 
as a guessed-at range (in kN) 25 < F < 30. 
 
Since F mg>> ,  the impulse J  due to the net force (while he is in contact with the water) 

is overwhelmingly caused by the upward force of the water: F dt J=z  to a good 

approximation. Thus, by Eq. 9-29, 
 

Fdt p p m ghf i= − = − −z 0 2d i  
 
(the minus sign with the initial velocity is due to the fact that downward is the negative 

direction), which yields ( )( )2 3(70 kg) 2 9.8 m/s 12 m 1.1 10 kg m s.= × ⋅  Expressing this 

as a range we estimate  
3 31.0 10 kg m s 1.2 10 kg m s.F dt× ⋅ < < × ⋅∫  

 
24. We choose +y upward, which implies a > 0 (the acceleration is upward since it 
represents a deceleration of his downward motion through the snow). 
 
(a) The maximum deceleration amax of the paratrooper (of mass m and initial speed v = 56 
m/s) is found from Newton’s second law 
 

F mg masnow max− =  
 
where we require Fsnow = 1.2 × 105 N. Using Eq. 2-15 v2 = 2amaxd, we find the minimum 
depth of snow for the man to survive: 
 

( )
( )( )

( )
22 2

5
max snow

85kg 56 m s
1.1 m.

2 2 2 1.2 10 N
v mvd
a F mg

= = ≈ =
− ×

 

 
(b) His short trip through the snow involves a change in momentum 
 

( )( ) 30 85kg 56 m s 4.8 10 kg m s,f ip p pΔ = − = − − = − × ⋅  
 
or 3| | 4.8 10 kg m spΔ = × ⋅ . The negative value of the initial velocity is due to the fact that 
downward is the negative direction. By the impulse-momentum theorem, this equals the 
impulse due to the net force Fsnow – mg, but since F mgsnow >>  we can approximate this 
as the impulse on him just from the snow. 
 
25. We choose +y upward, which means vi = −25m s  and v f = +10m s.  During the 
collision, we make the reasonable approximation that the net force on the ball is equal to 
Favg, the average force exerted by the floor up on the ball. 
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(a) Using the impulse momentum theorem (Eq. 9-31) we find 
 

J mv mvf i= − = − − = ⋅12 10 12 25 42. .b gb g b gb g kg m s.  
 
(b) From Eq. 9-35, we obtain 

F J
tavg N.= = = ×

Δ
42

0 020
21 103

.
.  

 
26. (a) By energy conservation, the speed of the victim when he falls to the floor is  
 

 2 21 2 2(9.8 m/s )(0.50 m) 3.1 m/s.
2

mv mgh v gh= ⇒ = = =  

 
Thus, the magnitude of the impulse is  
 
 2| | | | (70 kg)(3.1 m/s) 2.2 10 N s.J p m v mv= Δ = Δ = = ≈ × ⋅  
 
(b) With duration of 0.082 stΔ =  for the collision, the average force is  
 

2
3

avg
2.2 10 N s 2.7 10 N.

0.082 s
JF
t

× ⋅
= = ≈ ×

Δ
 

 
27. The initial direction of motion is in the +x direction. The magnitude of the average 
force Favg is given by 

 3
avg 2

32.4 N s 1.20 10  N
2.70 10  s

JF
t −

⋅
= = = ×

Δ ×
 

 
The force is in the negative direction. Using the linear momentum-impulse theorem 
stated in Eq. 9-31, we have  
 avg ( )f iF t J p m v v− Δ = = Δ = − . 
 
where m is the mass, vi the initial velocity, and vf  the final velocity of the ball. The 
equation can be used to solve for vf . 
 
(a) Using the above expression, we find  
 

( )( ) ( )( )3
avg 0.40kg 14m s 1200 N 27 10 s

67 m s.
0.40kg

i
f

mv F t
v

m

−− ×− Δ
= = = −  

 
The final speed of the ball is | |fv = 67 m/s.  
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(b) The negative sign in vf indicates that the velocity is in the –x direction, which is 
opposite to the initial direction of travel. 
 
(c) From the above, the average magnitude of the force is 3 

avg 1.20 10 NF = × . 
 
(d) The direction of the impulse on the ball is –x, same as the applied force. 
 
Note: In vector notation, avg ( )f iF t J p m v vΔ = = Δ = − , which gives 
  

avg
f i i

F tJv v v
m m

Δ
= + = + . 

 
Since J  or avgF  is in the opposite direction of iv , the velocity of the ball decreases. The 
ball first moves in the +x-direction, but then slows down and comes to a stop under the 
influence of the applied force, and reverses its direction of travel.    
 
28. (a) The magnitude of the impulse is  
 
 | | | | (0.70 kg)(13 m/s) 9.1 kg m/s 9.1 N s.J p m v mv= Δ = Δ = = ≈ ⋅ = ⋅  
 
(b) With duration of 35.0 10 st −Δ = ×  for the collision, the average force is  
 

3
avg 3

9.1 N s 1.8 10 N.
5.0 10 s

JF
t −

⋅
= = ≈ ×

Δ ×
 

 
29. We choose the positive direction in the direction of rebound so that v f > 0  and 
vi < 0.  Since they have the same speed v, we write this as v vf =  and v vi = − .  Therefore, 
the change in momentum for each bullet of mass m is Δ Δp m v mv= = 2 . Consequently, 
the total change in momentum for the 100 bullets (each minute) Δ ΔP p mv= =100 200 .  
The average force is then 
 

( )( )( )
( )( )

3

avg

200 3 10 kg 500 m s
5 N.

1min 60s min
PF
t

−×Δ
= = ≈

Δ
 

 
30. (a) By Eq. 9-30, impulse can be determined from the “area” under the F(t) curve.  
Keeping in mind that the area of a triangle is 12 (base)(height), we find the impulse in this 
case is 1.00 N s⋅ . 
 
(b) By definition (of the average of function, in the calculus sense) the average force must 
be the result of part (a) divided by the time (0.010 s).  Thus, the average force is found to 
be 100 N. 
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(c) Consider ten hits.  Thinking of ten hits as 10 F(t) triangles, our total time interval is 
10(0.050 s) = 0.50 s, and the total area is 10(1.0 N s⋅ ).  We thus obtain an average force 
of 10/0.50 = 20.0 N.  One could consider 15 hits, 17 hits, and so on, and still arrive at this 
same answer.  
 
31. (a) By energy conservation, the speed of the passenger when the elevator hits the 
floor is  

 2 21 2 2(9.8 m/s )(36 m) 26.6 m/s.
2

mv mgh v gh= ⇒ = = =  

 
Thus, the magnitude of the impulse is  
 
 3| | | | (90 kg)(26.6 m/s) 2.39 10 N s.J p m v mv= Δ = Δ = = ≈ × ⋅  
 
(b) With duration of 35.0 10 st −Δ = ×  for the collision, the average force is  
 

3
5

avg 3

2.39 10 N s 4.78 10 N.
5.0 10 s

JF
t −

× ⋅
= = ≈ ×

Δ ×
 

 
(c) If the passenger were to jump upward with a speed of 7.0 m/sv′ = , then the resulting 
downward velocity would be   
 

26.6 m/s 7.0 m/s 19.6 m/s,v v v′′ ′= − = − =  
 
and the magnitude of the impulse becomes  
 
 3| | | | (90 kg)(19.6 m/s) 1.76 10 N s.J p m v mv′′ ′′ ′′ ′′= Δ = Δ = = ≈ × ⋅  
 
(d) The corresponding average force would be 
 

3
5

avg 3

1.76 10 N s 3.52 10 N.
5.0 10 s

JF
t −

′′ × ⋅′′ = = ≈ ×
Δ ×

 

 
32. (a) By the impulse-momentum theorem (Eq. 9-31) the change in momentum must 
equal the “area” under the F(t) curve. Using the facts that the area of a triangle is  12 

(base)(height), and that of a rectangle is (height)(width), we find the momentum at t = 4 s 
to be (30 kg.m/s)i^. 
 
(b) Similarly (but keeping in mind that areas beneath the axis are counted negatively) we 
find the momentum at t = 7 s is (38 kg.m/s)i^. 
 
(c) At t = 9 s, we obtain v = (6.0 m/s)i^. 



 

  

383

 
33. We use coordinates with +x rightward and +y upward, with the usual conventions for 
measuring the angles (so that the initial angle becomes 180 + 35 = 215°). Using SI units 
and magnitude-angle notation (efficient to work with when using a vector-capable 
calculator), the change in momentum is 
 

( ) ( ) ( )3.00 90 3.60 215 5.86 59.8 .f iJ p p p= Δ = − = ∠ ° − ∠ ° = ∠ °  
 
(a) The magnitude of the impulse is 5.86 kg m/s 5.86 N sJ p= Δ = ⋅ = ⋅ . 
 
(b) The direction of J is 59.8° measured counterclockwise from the +x axis. 
 
(c) Equation 9-35 leads to 

3
avg avg 3

5.86 N s5.86 N s    2.93 10 N.
2.00 10 s

J F t F −

⋅
= Δ = ⋅ ⇒ = ≈ ×

×
 

 
We note that this force is very much larger than the weight of the ball, which justifies our 
(implicit) assumption that gravity played no significant role in the collision. 
 
(d) The direction of avgF is the same as J , 59.8° measured counterclockwise from the +x 
axis. 
 
34. (a) Choosing upward as the positive direction, the momentum change of the foot is  
 

3
foot0 (0.003 kg) ( 1.50 m s )=4.50 10  N sip m v −Δ = − = − − × ⋅ . 

 
(b) Using Eq. 9-35 and now treating downward as the positive direction, we have 
 

2
avg lizard  (0.090 kg) (9.80 m/s ) (0.60 s) 0.529 N s.J F t m g t= Δ = Δ = = ⋅  

 
(c) Push is what provides the primary support. 
 
35. We choose our positive direction in the direction of the rebound (so the ball’s initial 
velocity is negative-valued). We evaluate the integral J F dt= z  by adding the 

appropriate areas (of a triangle, a rectangle, and another triangle) shown in the graph (but 
with the t converted to seconds). With m = 0.058 kg and v = 34 m/s, we apply the 
impulse-momentum theorem: 
 

 
( ) ( )

( ) ( ) ( )

0.002 0.004 0.006

wall 0 0.002 0.004

max max max
1 10.002s 0.002s 0.002s 2
2 2

f iF dt mv mv F dt F dt F dt m v m v

F F F mv

= − ⇒ + + = + − −

⇒ + + =

∫ ∫ ∫ ∫
 

 



 CHAPTER 9 384 

which yields ( ) ( )( )max 0.004s 2 0.058kg 34 m sF = = 9.9 × 102 N. 
 
36. (a) Performing the integral (from time a to time b) indicated in Eq. 9-30, we obtain 
 

2 3 3(12 3 ) 12( ) ( )
b

a
t dt b a b a− = − − −∫  

 
in SI units. If b = 1.25 s and a = 0.50 s, this gives 7.17 N s⋅ .  
 
(b) This integral (the impulse) relates to the change of momentum in Eq. 9-31.  We note 
that the force is zero at t = 2.00 s.  Evaluating the above expression for a = 0 and b = 2.00 
gives an answer of 16.0 kg m/s⋅ . 
 
37. (a) We take the force to be in the positive direction, at least for earlier times. Then the 
impulse is 

3 3

3

3.0  10 3.0  10 6 9 2

0 0

3.0 10
6 2 9 3

0

(6.0 10 ) (2.0 10 )

1 1(6.0 10 ) (2.0 10 )
2 3

9.0 N s.

J Fdt t t dt

t t

− −

−

× ×

×

⎡ ⎤= = × − ×⎣ ⎦

⎡ ⎤= × − ×⎢ ⎥⎣ ⎦

= ⋅

∫ ∫

 

 
(b) Since J = Favg Δt, we find  

3
avg 3

9.0 N s 3.0  10  N.
3.0  10  s

JF
t −

⋅
= = ×

Δ ×
 

 
(c) To find the time at which the maximum force occurs, we set the derivative of F with 
respect to time equal to zero, and solve for t. The result is t = 1.5 × 10–3 s. At that time the 
force is 

Fmax
6 9 36.0 10 10 2.0 10 10 4.5 10 N.= × × − × × = ×− −c hc h c hc h15 153 3 2

. .  
 
(d) Since it starts from rest, the ball acquires momentum equal to the impulse from the 
kick. Let m be the mass of the ball and v its speed as it leaves the foot. Then, 
 

 9.0 N s  20 m/s.
0.45 kg

p Jv
m m

⋅
= = = =  

 
The force as function of time is shown below. The area under the curve is the impulse J. 
From the plot, we readily see that ( )F t  is a maximum at 0.0015 st = , with 

max 4500 NF = . 
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38. From Fig. 9-54, +y corresponds to the direction of the rebound (directly away from 
the wall) and +x toward the right. Using unit-vector notation, the ball’s initial and final 
velocities are 

 
ˆ ˆ ˆ ˆcos i sin j 5.2 i 3.0 j
ˆ ˆ ˆ ˆcos i sin j 5.2 i 3.0 j

i

f

v v v

v v v

θ θ

θ θ

= − = −

= + = +
 

 
respectively (with SI units understood). 
 
(a) With m = 0.30 kg, the impulse-momentum theorem (Eq. 9-31) yields 
 

( ) ˆ ˆ2 0.30 kg (3.0 m/s j) (1.8 N s)jf iJ mv mv= − = = ⋅ . 
 
(b) Using Eq. 9-35, the force on the ball by the wall is ˆ ˆ(1.8 0.010)j (180 N) j.J tΔ = =  
By Newton’s third law, the force on the wall by the ball is ˆ( 180 N)j−  (that is, its 
magnitude is 180 N and its direction is directly into the wall, or “down” in the view 
provided by Fig. 9-54). 
 
39. No external forces with horizontal components act on the man-stone system and the 
vertical forces sum to zero, so the total momentum of the system is conserved. Since the 
man and the stone are initially at rest, the total momentum is zero both before and after 
the stone is kicked. Let ms be the mass of the stone and vs be its velocity after it is kicked; 
let mm be the mass of the man and vm be his velocity after he kicks the stone. Then 
  

msvs + mmvm = 0 →  vm = –msvs/mm. 
 
We take the axis to be positive in the direction of motion of the stone. Then  
 

 ( )( ) 30.068 kg 4.0 m/s
3.0 10  m/s

91 kgmv −= − = − × , 

 
or 3| | 3.0 10  m/smv −= × . The negative sign indicates that the man moves in the direction 
opposite to the direction of motion of the stone.  
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40. Our notation is as follows: the mass of the motor is M; the mass of the module is m; 
the initial speed of the system is v0; the relative speed between the motor and the module 
is vr; and, the speed of the module relative to the Earth is v after the separation. 
Conservation of linear momentum requires  
 

(M + m)v0 = mv + M(v – vr). 
Therefore, 

v v Mv
M m

m
m m

r= +
+

= +
+

= ×0
34300

82
4

4 4 10km / h
4 km / h

km / h.b gb g .  

 
41. (a) With SI units understood, the velocity of block L (in the frame of reference 
indicated in the figure that goes with the problem) is  (v1 – 3)i^ .  Thus, momentum 
conservation (for the explosion at t = 0) gives 
 

mL (v1 – 3) + (mC + mR)v1 = 0 
 

which leads to      

v1  =  3 mL
 mL + mC + mR

  = 3(2 kg)
10 kg   =  0.60 m/s. 

 
Next, at t = 0.80 s, momentum conservation (for the second explosion) gives 
 

mC v2   + mR (v2 + 3) = (mC + mR)v1 = (8 kg)(0.60 m/s) = 4.8 kg m/s⋅ . 
 
This yields v2 =  – 0.15.  Thus, the velocity of block C after the second explosion is  
 

v2  = –(0.15 m/s)i^. 
 
(b) Between t = 0 and t = 0.80 s, the block moves v1Δt = (0.60 m/s)(0.80 s) = 0.48 m.  
Between t = 0.80 s and t = 2.80 s, it moves an additional  
 

v2Δt = (– 0.15 m/s)(2.00 s) = – 0.30 m. 
 
Its net displacement since t = 0 is therefore 0.48 m – 0.30 m = 0.18 m.  
 
42. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass 
of the original body is m; its initial velocity is v v0 = i ; the mass of the less massive piece 
is m1; its velocity is v1 0= ; and, the mass of the more massive piece is m2. We note that 
the conditions m2 = 3m1 (specified in the problem) and m1 + m2 = m generally assumed in 
classical physics (before Einstein) lead us to conclude  
 

m m m m1 2
1
4

3
4

= =  and  .  

Conservation of linear momentum requires 
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 0 1 1 2 2 2
3î 0
4

mv m v m v mv mv= + ⇒ = +  

 

which leads to v v2
4
3

= i.  The increase in the system’s kinetic energy is therefore 

 

 
2

2 2 2 2 2
1 1 2 2 0

1 1 1 1 3 4 1 10 .
2 2 2 2 4 3 2 6

K m v m v mv m v mv mv⎛ ⎞⎛ ⎞Δ = + − = + − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
43. With 0

ˆ ˆ(9.5 i 4.0 j) m/s,v = +  the initial speed is 
 

2 2 2 2
0 0 0 (9.5 m/s) (4.0 m/s) 10.31 m/sx yv v v= + = + =  

 
and the takeoff angle of the athlete is  

 01 1
0

0

4.0tan tan 22.8 .
9.5

y

x

v
v

θ − −⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
Using Equation 4-26, the range of the athlete without using halteres is 
 

 
2 2
0 0

0 2

sin 2 (10.31 m/s) sin 2(22.8 ) 7.75 m.
9.8 m/s

vR
g

θ °
= = =  

  
On the other hand, if two halteres of mass m = 5.50 kg were thrown at the maximum 
height, then, by momentum conservation, the subsequent speed of the athlete would be 
 

 0 0
2( 2 ) x x x x

M mM m v Mv v v
M
+′ ′+ = ⇒ =  

 
Thus, the change in the x-component of the velocity is  
 

0 0 0 0
2 2 2(5.5 kg) (9.5 m/s) 1.34 m/s.

78 kgx x x x x x
M m mv v v v v v

M M
+′Δ = − = − = = =  

 
The maximum height is attained when 0 0y yv v gt= − = , or  

0
2

4.0 m/s 0.41s.
9.8 m/s

yv
t

g
= = =  

 
Therefore, the increase in range with use of halteres is  
 
 ( ) (1.34 m/s)(0.41s) 0.55 m.xR v t′Δ = Δ = =  
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44. We can think of the sliding-until-stopping as an example of kinetic energy converting 
into thermal energy (see Eq. 8-29 and Eq. 6-2, with FN = mg).  This leads to v2 = 2μgd 
being true separately for each piece.  Thus we can set up a ratio: 
 

⎝⎜
⎛

⎠⎟
⎞vL

vR

2

 =  
2μL gdL

2μR gdR
  =  

12
25  . 

 
But (by the conservation of momentum) the ratio of speeds must be inversely 
proportional to the ratio of masses (since the initial momentum before the explosion was 
zero).  Consequently, 
 

⎝⎜
⎛

⎠⎟
⎞mR

mL

2

 =  
12
25   ⇒    mR = 25 3 mL = 1.39 kg. 

 
Therefore, the total mass is   mR + mL  ≈ 3.4 kg. 
 
45. Our notation is as follows: the mass of the original body is M = 20.0 kg; its initial 
velocity is 0

ˆ(200 m/s)iv = ; the mass of one fragment is m1 = 10.0 kg; its velocity is 

1
ˆ(100 m/s) jv = ; the mass of the second fragment is m2 = 4.0 kg; its velocity is 

2
ˆ( 500 m/s)iv = − ; and, the mass of the third fragment is m3 = 6.00 kg. Conservation of 

linear momentum requires 
Mv m v m v m v0 1 1 2 2 3 3= + + . 

 
The energy released in the explosion is equal to KΔ , the change in kinetic energy. 
 
(a) Using the above momentum-conservation equation leads to 
 

0 1 1 2 2
3

3

3 3

ˆ ˆ ˆ(20.0 kg)(200 m/s)i (10.0 kg)(100 m/s) j (4.0 kg)( 500 m/s)i
6.00 kg

ˆ ˆ(1.00 10 m/s) i (0.167 10 m/s) j.

Mv m v m vv
m

− −
=

− − −
=

= × − ×

. 

 
The magnitude of v3  is  

2 2 3
3 (1000 m/s) ( 167 m/s) 1.01 10 m/sv = + − = × . 

 
It points at θ = tan–1 (–167/1000) = –9.48° (that is, at 9.5° measured clockwise from the 
+x axis). 
 
(b) The energy released is ΔK : 
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2 2 2 2 6
1 1 2 2 3 3 0

1 1 1 1 3.23 10 J.
2 2 2 2f iK K K m v m v m v Mv⎛ ⎞Δ = − = + + − = ×⎜ ⎟

⎝ ⎠
 

 
46. Our +x direction is east and +y direction is north. The linear momenta for the two m = 
2.0 kg parts are then 

p mv mv1 1 1= = j  
where v1 = 3.0 m/s, and 
 

p mv m v v mvx y2 2 2 2= = + = +cosi j i sin j2e j e jθ θ  

 
where v2 = 5.0 m/s and θ = 30°. The combined linear momentum of both parts is then 
 

 

( ) ( ) ( )

( )( )( ) ( ) ( )( )( )
( )

1 2 1 2 2 1 2
ˆ ˆ ˆ ˆ ˆj cos i sin j cos i sin j

ˆ ˆ2.0 kg 5.0 m/s cos30 i 2.0 kg 3.0 m/s 5.0 m/s sin 30 j

ˆ ˆ8.66 i 11 j kg m/s.

P p p mv mv mv mv mvθ θ θ θ= + = + + = + +

= ° + + °

= + ⋅

 

 
From conservation of linear momentum we know that this is also the linear momentum of 
the whole kit before it splits. Thus the speed of the 4.0-kg kit is 
 

( ) ( )2 22 2 8.66 kg m/s 11 kg m/s
3.5 m/s.

4.0 kg
x yP PPv

M M
+ ⋅ + ⋅

= = = =  

 
47. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass 
of one piece is m1 = m; its velocity is 1

ˆ( 30 m/s )iv = − ; the mass of the second piece is m2 

= m; its velocity is 2
ˆ( 30 m/s) jv = − ; and, the mass of the third piece is m3 = 3m.  

 
(a) Conservation of linear momentum requires 
 
 ( ) ( )0 1 1 2 2 3 3 3

ˆ ˆ0 30i 30j 3mv m v m v m v m m mv= + + ⇒ = − + − +  

 
which leads to 3

ˆ ˆ(10i 10j) m/sv = + . Its magnitude is v3 10 2= ≈ 14 m / s . 
 
(b) The direction is 45° counterclockwise from +x (in this system where we have m1 
flying off in the –x direction and m2 flying off in the –y direction). 
 
48. This problem involves both mechanical energy conservation U K Ki = +1 2 , where Ui 
= 60 J, and momentum conservation 

0 1 1 2 2= +m v m v  
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where m2 = 2m1. From the second equation, we find | | | |v v1 22= , which in turn implies 
(since v v1 1= | | and likewise for v2) 
 

K m v m v m v K1 1 1
2

2 2
2

2 2
2

2
1
2

1
2

1
2

2 2 1
2

2= = FHG
I
KJ = FHG

I
KJ =b g .  

 
(a) We substitute K1 = 2K2 into the energy conservation relation and find 
 

U K K K Ui i= + ⇒ = =2 1
3

202 2 2 J.  

 
(b) And we obtain K1 = 2(20) = 40 J. 
 
49. We refer to the discussion in the textbook (see Sample Problem – “Conservation of 
momentum, ballistic pendulum,” which uses the same notation that we use here) for 
many of the important details in the reasoning. Here we only present the primary 
computational step (using SI units): 
 

v m M
m

gh=
+

= = ×2 2.010
0.010

2(9.8) (0.12) 3.1 10  m / s.2  

 
50. (a) We choose +x along the initial direction of motion and apply momentum 
conservation: 

                  
 g) (672 m / s) (5.2 g) (428 m / s)  (700 g)

bullet bullet blockm v m v m v
v

i = +
= +

1 2

25 2( .
 

 
which yields v2 = 1.81 m/s. 
 
(b) It is a consequence of momentum conservation that the velocity of the center of mass 
is unchanged by the collision. We choose to evaluate it before the collision: 
 

 bullet
com

bullet block

(5.2 g) (672 m/s)  4.96 m/s.
5.2 g 700 g

im vv
m m

= = =
+ +

 

 
51. In solving this problem, our +x direction is to the right (so all velocities are positive-
valued). 
 
(a) We apply momentum conservation to relate the situation just before the bullet strikes 
the second block to the situation where the bullet is embedded within the block. 
 
 (0.0035 kg) (1.8035 kg)(1.4 m/s) 721 m/s.v v= ⇒ =  
 
(b) We apply momentum conservation to relate the situation just before the bullet strikes 
the first block to the instant it has passed through it (having speed v found in part (a)). 
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0(0.0035 kg) (1.20 kg)(0.630 m/s) (0.00350 kg)(721 m/s)v = +  

 
which yields v0 = 937 m/s. 
 
52. We think of this as having two parts: the first is the collision itself – where the bullet 
passes through the block so quickly that the block has not had time to move through any 
distance yet – and then the subsequent “leap” of the block into the air (up to height h 
measured from its initial position). The first part involves momentum conservation (with 
+y upward): 

0 01 1000 50 0 01 400. . .kg m s kg kg m sb gb g b g b gb g= +v  
 
which yields v = 12. m s. The second part involves either the free-fall equations from Ch. 
2 (since we are ignoring air friction) or simple energy conservation from Ch. 8. Choosing 
the latter approach, we have 
 

1
2

50 12 50 9 82 2. . . .kg m s kg m sb gb g b gd i= h  

 
which gives the result h = 0.073 m. 
 
53. With an initial speed of iv , the initial kinetic energy of the car is 2 / 2i c iK m v= . After 
a totally inelastic collision with a moose of mass mm , by momentum conservation, the 
speed of the combined system is 

 ( ) ,c i
c i c m f f

c m

m vm v m m v v
m m

= + ⇒ =
+

 

with final kinetic energy 
2 2

2 21 1 1( ) ( ) .
2 2 2

c i c
f c m f c m i

c m c m

m v mK m m v m m v
m m m m

⎛ ⎞
= + = + =⎜ ⎟+ +⎝ ⎠

 

 
(a) The percentage loss of kinetic energy due to collision is  
 

 500 kg 11 1 33.3%.
1000 kg 500 kg 3

i f f c m

i i i c m c m

K K K m mK
K K K m m m m

−Δ
= = − = − = = = =

+ + +
 

 
(b) If the collision were with a camel of mass camel 300 kg,m =  then the percentage loss of 
kinetic energy would be  
 

camel

camel

300 kg 3 23%.
1000 kg 300 kg 13i c

mK
K m m
Δ

= = = =
+ +

 

 
(c) As the animal mass decreases, the percentage loss of kinetic energy also decreases.   



 CHAPTER 9 392 

 
54. The total momentum immediately before the collision (with +x upward) is  
 

pi = (3.0 kg)(20 m/s) + (2.0 kg)( –12 m/s) = 36 kg m/s⋅ . 
 
Their momentum immediately after, when they constitute a combined mass of M = 5.0 
kg, is pf = (5.0 kg) v .  By conservation of momentum, then, we obtain v = 7.2 m/s, which 
becomes their "initial" velocity for their subsequent free-fall motion.  We can use Ch. 2 
methods or energy methods to analyze this subsequent motion; we choose the latter.  The 
level of their collision provides the reference (y = 0) position for the gravitational 
potential energy, and we obtain 

K0 + U0   =  K + U    ⇒      
1
2 Mv2

0 + 0   =  0 + Mgymax . 

 
Thus, with v0 = 7.2 m/s, we find ymax = 2.6 m. 
 
55. We choose +x in the direction of (initial) motion of the blocks, which have masses m1 
= 5 kg and m2 = 10 kg. Where units are not shown in the following, SI units are to be 
understood. 
 
(a) Momentum conservation leads to 
 

 
( )( ) ( )( ) ( )( )

1 1 2 2 1 1 2 2

15 kg 3.0 m/s 10 kg 2.0 m/s (5 kg) 10 kg 2.5 m/s
i i f f

f

m v m v m v m v
v

+ = +

+ = +
 

 
which yields 1 2.0 m/sfv = . Thus, the speed of the 5.0 kg block immediately after the 
collision is 2 0. m s .  
 
(b) We find the reduction in total kinetic energy: 
 

( )( ) ( )( ) ( )( ) ( )( )2 2 2 21 1 1 15 kg 3 m/s 10 kg 2 m/s 5 kg 2 m/s 10 kg 2.5 m/s
2 2 2 2
1.25 J 1.3 J.

i fK K− = + − −

= − ≈ −
 

 
 (c) In this new scenario where v f2 4 0= . m s , momentum conservation leads to 
v f1 10= − . m s  and we obtain 40 JKΔ = + . 
 
(d) The creation of additional kinetic energy is possible if, say, some gunpowder were on 
the surface where the impact occurred (initially stored chemical energy would then be 
contributing to the result). 
 
56. (a) The magnitude of the deceleration of each of the cars is a = f /m = μk mg/m = μkg. 
If a car stops in distance d, then its speed v just after impact is obtained from Eq. 2-16: 
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v v ad v ad gdk
2

0
2= + ⇒ = =2 2 2μ  

 
since v0 = 0 (this could alternatively have been derived using Eq. 8-31). Thus, 
 

22 2(0.13)(9.8 m/s )(8.2 m)  4.6 m/s.A k Av gdμ= = =  
 
(b) Similarly, 22 2(0.13)(9.8 m/s )(6.1 m) 3.9 m/s.B k Bv gdμ= = =  
 
(c) Let the speed of car B be v just before the impact. Conservation of linear momentum 
gives mBv = mAvA + mBvB, or 
 

v m v m v
m

A A B B

B

=
+

=
+

=
( (1100)(4.6) (1400)(3.9) 7.5 m / s.)

1400
 

 
(d) The conservation of linear momentum during the impact depends on the fact that the 
only significant force (during impact of duration Δt) is the force of contact between the 
bodies. In this case, that implies that the force of friction exerted by the road on the cars 
is neglected during the brief Δt. This neglect would introduce some error in the analysis. 
Related to this is the assumption we are making that the transfer of momentum occurs at 
one location, that the cars do not slide appreciably during Δt, which is certainly an 
approximation (though probably a good one). Another source of error is the application 
of the friction relation Eq. 6-2 for the sliding portion of the problem (after the impact); 
friction is a complex force that Eq. 6-2 only partially describes. 
 
57. (a) Let v be the final velocity of the ball-gun system. Since the total momentum of the 
system is conserved mvi = (m + M)v. Therefore,   
 

(60 g)(22 m/s) 4.4 m/s
60 g + 240 g

imvv
m M

= = =
+

. 

 
(b) The initial kinetic energy is K mvi i= 1

2
2  and the final kinetic energy is 

 
K m M v m v m Mf i= + = +1

2
2 1

2
2 2b g b g . 

 
The problem indicates ΔEth = 0 , so the difference Ki – Kf must equal the energy Us stored 
in the spring: 
 

U mv m v
m M

mv m
m M

mv M
m Ms i

i
i i= −

+
= −

+
F
HG

I
KJ =

+
1
2

1
2

1
2

1 1
2

2
2 2

2 2

b g .  

 
Consequently, the fraction of the initial kinetic energy that becomes stored in the spring 
is 
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240 0.80
60+240

s

i

U M
K m M

= = =
+

. 

 
58. We think of this as having two parts: the first is the collision itself, where the blocks 
“join” so quickly that the 1.0-kg block has not had time to move through any distance yet, 
and then the subsequent motion of the 3.0 kg system as it compresses the spring to the 
maximum amount xm. The first part involves momentum conservation (with +x 
rightward): 

m1v1 = (m1+m2)v   ⇒    ( . ( .2 0 30 kg)(4.0 m s)  kg)= v  
 
which yields v = 2 7. .m s  The second part involves mechanical energy conservation: 
 

1
2

30 1
2

( .  kg) (2.7 m s)  (200 N m)2
m
2= x  

 
which gives the result xm = 0.33 m. 
 
59. As hinted in the problem statement, the velocity v of the system as a whole, when the 
spring reaches the maximum compression xm, satisfies  
 

m1v1i + m2v2i = (m1 + m2)v. 
 

The change in kinetic energy of the system is therefore 
 

 
2

2 2 2 2 21 1 2 2
1 2 1 1 2 2 1 1 2 2

1 2

( )1 1 1 1 1( )
2 2 2 2( ) 2 2

i i
i i i i

m v m vK m m v m v m v m v m v
m m

+
Δ = + − − = − −

+
 

 
which yields ΔK = –35 J. (Although it is not necessary to do so, still it is worth noting 
that algebraic manipulation of the above expression leads to ΔK vm m

m m= +
1
2

1 2

1 2
d i  rel

2  where 

vrel = v1 – v2). Conservation of energy then requires 
 

2
m m

1 2 2( 35 J)
2 1120 N/m

Kkx K x
k

− Δ − −
= −Δ ⇒ = =  = 0.25 m. 

 
60. (a) Let mA be the mass of the block on the left, vAi be its initial velocity, and vAf be its 
final velocity. Let mB be the mass of the block on the right, vBi be its initial velocity, and 
vBf be its final velocity. The momentum of the two-block system is conserved, so  
 

mAvAi +  mBvBi  = mAvAf  + mBvBf 
and  
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(1.6 kg)(5.5 m/s) (2.4 kg)(2.5 m/s) (2.4 kg)(4.9 m/s)

1.6 kg
1.9 m/s.

A Ai B Bi B Bf
Af

A

m v m v m v
v

m
+ − + −

= =

=
 
(b) The block continues going to the right after the collision. 
 
(c) To see whether the collision is elastic, we compare the total kinetic energy before the 
collision with the total kinetic energy after the collision. The total kinetic energy before is 
 

2 2 2 21 1 1 1(1.6 kg) (5.5 m/s) (2.4 kg) (2.5 m/s) 31.7 J.
2 2 2 2i A Ai B BiK m v m v= + = + =  

 
The total kinetic energy after is 
 

2 2 2 21 1 1 1(1.6 kg) (1.9 m/s) (2.4 kg) (4.9 m/s) 31.7 J.
2 2 2 2f A Af B BfK m v m v= + = + =  

 
Since Ki = Kf the collision is found to be elastic. 
 
61. Let m1 be the mass of the cart that is originally moving, v1i be its velocity before the 
collision, and v1f be its velocity after the collision. Let m2 be the mass of the cart that is 
originally at rest and v2f be its velocity after the collision. Conservation of linear 
momentum gives 1 1 1 1 2 2i f fm v m v m v= + . Similarly, the total kinetic energy is conserved 
and we have 

2 2 2
1 1 1 1 2 2

1 1 1
2 2 2i f fm v m v m v= + . 

 
Solving for 1 fv and 2 fv , we obtain: 

1 2 1
1 1 2 1

1 2 1 2

2,f i f i
m m mv v v v
m m m m

−
= =

+ +
 

 

The speed of the center of mass is 1 1 2 2
com 

1 2

i im v m vv
m m

+
=

+
. 

 
(a) With m1 = 0.34 kg, 1 1.2 m/siv = and 1 0.66 m/sfv = , we obtain 
 

1 1
2 1

1 1

1.2 m/s 0.66 m/s (0.34 kg) 0.0987 kg 0.099 kg.
1.2 m/s 0.66 m/s

i f

i f

v v
m m

v v
− ⎛ ⎞−

= = = ≈⎜ ⎟+ +⎝ ⎠
 

 
(b) The velocity of the second cart is: 
 



 CHAPTER 9 396 

1
2 1

1 2

2 2(0.34 kg) (1.2 m/s) 1.9 m/s.
0.34 kg 0.099 kgf i

mv v
m m

⎛ ⎞
= = =⎜ ⎟+ +⎝ ⎠

 

 
(c) From the above, we find the speed of the center of mass to be  
 

1 1 2 2
com 

1 2

(0.34 kg) (1.2 m/s) 0 0.93 m/s.
0.34 kg 0.099 kg

i im v m vv
m m

+ +
= = =

+ +
 

 
Note: In solving for comv , values for the initial velocities were used. Since the system is 
isolated with no external force acting on it, comv  remains the same after the collision, so 
the same result is obtained if values for the final velocities are used. That is,  
 

1 1 2 2
com 

1 2

(0.34 kg) (0.66 m/s) (0.099 kg)(1.9 m/s) 0.93 m/s.
0.34 kg 0.099 kg

f fm v m v
v

m m
+ +

= = =
+ +

 

 
62. (a) Let m1 be the mass of one sphere, v1i be its velocity before the collision, and v1f be 
its velocity after the collision. Let m2 be the mass of the other sphere, v2i be its velocity 
before the collision, and v2f be its velocity after the collision. Then, according to Eq.  
9-75, 

v m m
m m

v m
m m

vf i i1
1 2

1 2
1

2

1 2
2

2
=

−
+

+
+  .  

 
Suppose sphere 1 is originally traveling in the positive direction and is at rest after the 
collision. Sphere 2 is originally traveling in the negative direction. Replace v1i with v, v2i 
with –v, and v1f with zero to obtain 0 = m1 – 3m2. Thus,  
 

2 1 / 3 (300 g) / 3 100 gm m= = = . 
 
(b) We use the velocities before the collision to compute the velocity of the center of 
mass: 

( ) ( ) ( ) ( )1 1 2 2
com

1 2

300 g 2.00 m s 100 g 2.00 m s
1.00 m/s.

300 g 100 g
i im v m vv

m m
+ −+

= = =
+ +

 

 
63. (a) The center of mass velocity does not change in the absence of external forces.  In 
this collision, only forces of one block on the other (both being part of the same system) 
are exerted, so the center of mass velocity is 3.00 m/s before and after the collision. 
 
(b) We can find the velocity v1i of block 1 before the collision (when the velocity of block 
2 is known to be zero) using Eq. 9-17: 
 

(m1 + m2)vcom = m1 v1i + 0       ⇒      v1i = 12.0 m/s . 
 
Now we use Eq. 9-68 to find v2 f : 
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v2 f  =  2m1

m1+ m2
 v1i  = 6.00 m/s . 

 
64. First, we find the speed v of the ball of mass m1 right before the collision (just as it 
reaches its lowest point of swing). Mechanical energy conservation (with h = 0.700 m) 
leads to 

2
1 1

1 2 3.7 m s.
2

m gh m v v gh= ⇒ = =  

 
(a) We now treat the elastic collision using Eq. 9-67: 
 

1 2
1

1 2

0.5 kg 2.5 kg (3.7 m/s) 2.47 m/s
0.5 kg 2.5 kgf

m mv v
m m

− −
= = = −

+ +
 

 
which means the final speed of the ball is 2 47. .m s  
 
(b) Finally, we use Eq. 9-68 to find the final speed of the block: 
 

1
2

1 2

2 2(0.5 kg) (3.7 m/s) 1.23 m/s.
0.5 kg 2.5 kgf

mv v
m m

= = =
+ +

 

 
65. Let m1 be the mass of the body that is originally moving, v1i be its velocity before the 
collision, and v1f be its velocity after the collision. Let m2 be the mass of the body that is 
originally at rest and v2f be its velocity after the collision. Conservation of linear 
momentum gives 
 1 1 1 1 2 2i f fm v m v m v= + . 
 
Similarly, the total kinetic energy is conserved and we have 
 

2 2 2
1 1 1 1 2 2

1 1 1
2 2 2i f fm v m v m v= + . 

 

The solution to 1 fv  is given by Eq. 9-67: v m m
m m

vf i1
1 2

1 2
1=

−
+

.  We solve for m2 to obtain 

1 1
2 1

1 1

.i f

i f

v v
m m

v v
−

=
+

 

The speed of the center of mass is 
1 1 2 2

com 
1 2

i im v m vv
m m

+
=

+
. 

 
(a) given that v vf i1 1 4= / , we find the second mass to be 
 



 CHAPTER 9 398 

1 1 1 1
2 1 1 1

1 1 1 1

/ 4 3 3 (2.0 kg) 1.2 kg
/ 4 5 5

i f i i

i f i i

v v v vm m m m
v v v v

− ⎛ ⎞−
= = = = =⎜ ⎟+ +⎝ ⎠

. 

 
(b) The speed of the center of mass is  
 

( )( )1 1 2 2
com

1 2

2.0 kg 4.0 m/s
2.5 m s

2.0 kg 1.2 kg
i im v m vv

m m
+

= = =
+ +

. 

 
66. Using Eq. 9-67 and Eq. 9-68, we have after the collision 
 

1 2 1 1
1 1

1 2 1 1

1 1
2 1

1 2 1 1

0.40 (4.0 m/s) 1.71 m/s
0.40

2 2 (4.0 m/s) 5.71 m/s.
0.40

f i

f i

m m m mv v
m m m m

m mv v
m m m m

− −
= = =

+ +

= = =
+ +

 

 

(a) During the (subsequent) sliding, the kinetic energy of block 1 2
1 1 1

1
2f fK m v=  is 

converted into thermal form (ΔEth = μ k m1 g d1).  Solving for the sliding distance d1 we 
obtain d1 = 0.2999 m ≈ 30 cm. 
 
(b) A very similar computation (but with subscript 2 replacing subscript 1) leads to block 
2’s sliding distance d2 = 3.332 m ≈ 3.3 m. 
 
67. We use Eq 9-67 and 9-68 to find the velocities of the particles after their first 
collision (at x = 0 and t = 0): 
 

1 2
1 1

1 2

1
2 1

1 2

0.30 kg 0.40 kg (2.0 m/s) 0.29 m/s
0.30 kg 0.40 kg

2 2(0.30 kg) (2.0 m/s) 1.7 m/s.
0.30 kg 0.40 kg

f i

f i

m mv v
m m

mv v
m m

− −
= = = −

+ +

= = =
+ +

 

 
At a rate of motion of 1.7 m/s, 2xw = 140 cm (the distance to the wall and back to x = 0) 
will be traversed by particle 2 in 0.82 s.  At t = 0.82 s, particle 1 is located at  
 

x = (–2/7)(0.82) = –23 cm, 
 
and particle 2 is “gaining” at a rate of (10/7) m/s leftward; this is their relative velocity at 
that time.  Thus, this “gap” of 23 cm between them will be closed after an additional time 
of (0.23 m)/(10/7 m/s) = 0.16 s has passed.  At this time (t = 0.82 + 0.16 = 0.98 s) the two 
particles are at  x = (–2/7)(0.98) = –28 cm. 
 
68. (a) If the collision is perfectly elastic, then Eq. 9-68 applies 
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v2 =  2m1

m1+ m2
 v1i =  2m1

m1+  (2.00)m1
 2gh  = 

2
3 2gh  

 
where we have used the fact (found most easily from energy conservation) that the speed 
of block 1 at the bottom of the frictionless ramp is 2gh  (where h = 2.50 m).  Next, for 
block 2’s “rough slide” we use Eq. 8-37: 
 

1
2 m2 v2

2 =  ΔEth =  fk d  =  μk m2 g d  
 
where μk = 0.500.  Solving for the sliding distance d, we find that m2 cancels out and we 
obtain d = 2.22 m. 

(b) In a completely inelastic collision, we apply Eq. 9-53: v2 = m1

m1+ m2
 v1i   (where, as 

above, v1i = 2gh ).   Thus, in this case we have v2 = 2gh /3. Now, Eq. 8-37 (using the 
total mass since the blocks are now joined together) leads to a sliding distance of 

0.556 md =  (one-fourth of the part (a) answer). 
 
69. (a) We use conservation of mechanical energy to find the speed of either ball after it 
has fallen a distance h. The initial kinetic energy is zero, the initial gravitational potential 
energy is M gh, the final kinetic energy is 1

2
2Mv , and the final potential energy is zero. 

Thus Mgh Mv= 1
2

2  and v gh= 2 .  The collision of the ball of M with the floor is an 
elastic collision of a light object with a stationary massive object. The velocity of the 
light object reverses direction without change in magnitude. After the collision, the ball is 
traveling upward with a speed of 2gh . The ball of mass m is traveling downward with 
the same speed. We use Eq. 9-75 to find an expression for the velocity of the ball of mass 
M after the collision: 
 

 2 2 32 2 2  .Mf Mi mi
M m m M m m M mv v v gh gh gh
M m M m M m M m M m

− − −
= + = − =

+ + + + +
 

 
For this to be zero, m = M/3. With M = 0.63 kg, we have m = 0.21 kg.  
 
(b) We use the same equation to find the velocity of the ball of mass m after the collision: 
 

v m M
M m

gh M
M m

gh M m
M m

ghmf = −
−
+

+
+

=
−
+

2 2 2 3 2  

 
which becomes (upon substituting M = 3m) v ghmf = 2 2  .  We next use conservation of 
mechanical energy to find the height h' to which the ball rises. The initial kinetic energy 
is 1

2
2mvm f , the initial potential energy is zero, the final kinetic energy is zero, and the final 

potential energy is mgh'. Thus, 
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1
2 2

42
2

mv mgh h
v

g
hm f

m f= ⇒ = =' ' . 

 
With h = 1.8 m, we have 7.2 mh′ = .  
 
70. We use Eqs. 9-67, 9-68, and 4-21 for the elastic collision and the subsequent 
projectile motion. We note that both pucks have the same time-of-fall t (during their 
projectile motions).  Thus, we have 

Δx2 = v2 t     where Δx2 = d  and  v2  =  2m1

m1+ m2
 v1i 

 

     Δx1 = v1 t     where Δx1 = −2d  and  v1  =  m1 − m2

m1+ m2
 v1i  . 

Dividing the first equation by the second, we arrive at  
 

d
 −2d  =   

2m1
m1 + m2

 v1i t

m1 − m2
 m1 + m2

 v1i t
  . 

 
After canceling v1i , t, and d, and solving, we obtain m2 = 1.0 kg. 
 
71. We apply the conservation of linear momentum to the x and y axes respectively. 
 

1 1 1 1 1 2 2 2

1 1 1 2 2 2

cos cos
      0 sin sin .

i f f

f f

m v m v m v
m v m v

θ θ
θ θ

= +

= −
 

 
We are given 5

2 1.20 10 m/sfv = × , 1 64.0θ = ° and 2 51.0 .θ = ° Thus, we are left with two 
unknowns and two equations, which can be readily solved. 
 
(a) We solve for the final alpha particle speed using the y-momentum equation: 
 

( ) ( ) ( )
( ) ( )

5
2 2 2 5

1
1 1

16.0 1.20 10 sin 51.0sin
4.15 10  m/s

sin 4.00 sin 64.0
f

f

m v
v

m
θ

θ

× °
= = = ×

°
. 

 
(b) Plugging our result from part (a) into the x-momentum equation produces the initial 
alpha particle speed: 

( ) ( ) ( ) ( ) ( ) ( )

1 1 1 2 2 2
1

1
5 5

5

cos cos

4.00 4.15 10 cos 64.0 16.0 1.2 10 cos 51.0
4.00

        4.84 10  m/s .

f f
i

i

m v m v
v

m
θ θ+

=

× ° + × °
=

= ×
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72. We orient our +x axis along the initial direction of motion, and specify angles in the 
“standard” way — so θ = –90° for the particle B, which is assumed to scatter 
“downward” and φ > 0 for particle A, which presumably goes into the first quadrant. We 
apply the conservation of linear momentum to the x and y axes, respectively. 
 

cos cos
     0 sin sin

B B B B A A

B B A A

m v m v m v
m v m v

θ φ
θ φ

′ ′= +
′ ′= +

 

 
(a) Setting vB  = v and 2Bv v′ = , the y-momentum equation yields 

m v m v
A A B′ =sinφ

2
 

 
and the x-momentum equation yields m v m vA A B′ =cos .φ  Dividing these two equations, we 
find tanφ = 1

2 , which yields φ = 27°.  
 
(b) We can formally solve for Av′  (using the y-momentum equation and the fact that 
φ = 1 5 )  

′ =v m
m

vA
B

A

5
2

 

 
but lacking numerical values for v and the mass ratio, we cannot fully determine the final 
speed of A. Note: substituting cos 2 5 ,φ =  into the x-momentum equation leads to 
exactly this same relation (that is, no new information is obtained that might help us 
determine an answer).  
 
73. Suppose the objects enter the collision along lines 
that make the angles θ > 0 and φ > 0 with the x axis, as 
shown in the diagram that follows. Both have the same 
mass m and the same initial speed v. We suppose that 
after the collision the combined object moves in the 
positive x direction with speed V. 
 
Since the y component of the total momentum of the two-
object system is conserved,  

mv sin θ – mv sin φ = 0. 

 
This means φ = θ. Since the x component is conserved,  
 

2mv cos θ = 2mV. 
 
We now use V v= 2  to find that cos .θ = 1 2  This means θ = 60°. The angle between the 
initial velocities is 120°.  
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74. (a) Conservation of linear momentum implies  
 

A A B B A A B Bm v m v m v m v′ ′+ = + . 
 
Since mA = mB = m = 2.0 kg, the masses divide out and we obtain  
 

 
ˆ ˆ ˆ ˆ ˆ ˆ (15i 30j) m/s ( 10 i 5j) m/s ( 5 i 20 j) m/s

ˆ ˆ(10 i 15 j) m/s .
B A B Av v v v′ ′= + − = + + − + − − +

= +
 

 
(b) The final and initial kinetic energies are 
 

K mv mv

K mv mv

f A B

i A B

= + = − + + + = ×

= + = + + − + = ×

1
2

1
2

1
2

2 0 5 20 10 15 8 0 10

1
2

1
2

1
2

2 0 15 30 10 5 13 10

2 2 2 2 2 2 2

2 2 2 2 2 2 3

' ' ( . ) ( ) .

( . ) ( ) .

c h

c h

 J

  J .
 

 
The change kinetic energy is then ΔK = –5.0 × 102 J (that is, 500 J of the initial kinetic 
energy is lost). 
 
75. We orient our +x axis along the initial direction of motion, and specify angles in the 
“standard” way — so θ = +60° for the proton (1), which is assumed to scatter into the 
first quadrant and φ = –30° for the target proton (2), which scatters into the fourth 
quadrant (recall that the problem has told us that this is perpendicular to θ). We apply the 
conservation of linear momentum to the x and y axes, respectively. 
 

1 1 1 1 2 2

1 1 2 2

 cos cos
    0  sin sin .
m v m v m v

m v m v
θ φ
θ φ

′ ′= +
′ ′= +

 

 
We are given v1 = 500 m/s, which provides us with two unknowns and two equations, 
which is sufficient for solving. Since m1 = m2 we can cancel the mass out of the equations 
entirely. 
 
(a) Combining the above equations and solving for 2v′  we obtain 
 

1
2

sin (500 m/s)sin(60 ) 433 m/s.
sin ( ) sin (90 )

vv θ
θ φ

°′ = = =
− °

 

 
We used the identity sin θ cosφ – cosθ sinφ = sin (θ – φ) in simplifying our final 
expression. 
 
(b) In a similar manner, we find 
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1
1

sin (500 m/s)sin( 30 ) 250 m/s .
sin ( ) sin ( 90 )

vv θ
φ θ

− °′ = = =
− − °

 

 
76. We use Eq. 9-88. Then 
 

 rel
6090 kgln 105 m/s (253 m/s) ln 108 m/s.
6010 kg

i
f i

f

Mv v v
M

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
77. We consider what must happen to the coal that lands on the faster barge during a time 
interval Δt. In that time, a total of Δm of coal must experience a change of velocity (from 
slow to fast) fast slowv v vΔ = − , where rightward is considered the positive direction. The 
rate of change in momentum for the coal is therefore 
 

fast slow
( ) ( )p m mv v v

t t t
Δ Δ Δ⎛ ⎞= Δ = −⎜ ⎟Δ Δ Δ⎝ ⎠

 

 
which, by Eq. 9-23, must equal the force exerted by the (faster) barge on the coal. The 
processes (the shoveling, the barge motions) are constant, so there is no ambiguity in 

equating Δ
Δ

p
t

 with dp
dt

.  Note that we ignore the transverse speed of the coal as it is 

shoveled from the slower barge to the faster one.  
 
(a) Given that ( / ) 1000 kg/min (16.67 kg/s)m tΔ Δ = = , fast 20 km/h 5.56 m/sv = =  and 

slow 10 km/h 2.78 m/sv = = , the force that must be applied to the faster barge is 
 

fast fast slow( ) (16.67 kg/s)(5.56 m/s 2.78 m/s) 46 NmF v v
t

Δ⎛ ⎞= − = − =⎜ ⎟Δ⎝ ⎠
 

 
(b) The problem states that the frictional forces acting on the barges does not depend on 
mass, so the loss of mass from the slower barge does not affect its motion (so no extra 
force is required as a result of the shoveling). 
 
78. We use Eq. 9-88 and simplify with vi = 0, vf = v, and vrel = u. 
 

v v v M
M

M
M

ef i
i

f

i

f

v u− = ⇒ =rel ln /  

(a) If v = u we obtain M
M

ei

f

= ≈1 2 7. .  

(b) If v = 2u we obtain M
M

ei

f

= ≈2 7 4. .  
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79. (a) The thrust of the rocket is given by T = Rvrel where R is the rate of fuel 
consumption and vrel is the speed of the exhaust gas relative to the rocket. For this 
problem R = 480 kg/s and vrel = 3.27 × 103 m/s, so 
 

T = × = ×480 327 10 157 103 6kg s m s N.b gc h. .  
 
(b) The mass of fuel ejected is given by Mfuel = R tΔ ,  where Δt  is the time interval of the 
burn. Thus,  

Mfuel = (480 kg/s)(250 s) = 1.20 × 105 kg. 
 
The mass of the rocket after the burn is  
 

Mf = Mi – Mfuel = (2.55 × 105 kg ) – (1.20 × 105 kg) = 1.35 ×105 kg. 
 
(c) Since the initial speed is zero, the final speed is given by 
 

v v M
Mf

i

f

= = ×
×
×

F
HG

I
KJ = ×rel

5

ln ln 2.55 10 m s3 27 10
135 10

2 08 103
5

3.
.

. .c h  

 
80. The velocity of the object is  
 

( )ˆ ˆ ˆ ˆ(3500 160 ) i 2700 j 300k (160 m/s)i.dr dv t
dt dt

= = − + + = −  

 
(a) The linear momentum is ( )( ) 4ˆ ˆ250 kg 160 m/s i ( 4.0 10 kg m/s) i.p mv= = − = − × ⋅  

 
(b) The object is moving west (our – î  direction).  
 
(c) Since the value of p  does not change with time, the net force exerted on the object is 
zero, by Eq. 9-23.  
 
81. We assume no external forces act on the system composed of the two parts of the last 
stage. Hence, the total momentum of the system is conserved. Let mc be the mass of the 
rocket case and mp the mass of the payload. At first they are traveling together with 
velocity v. After the clamp is released mc has velocity vc and mp has velocity vp. 
Conservation of momentum yields  
 

(mc + mp)v = mcvc + mpvp. 
 
(a) After the clamp is released the payload, having the lesser mass, will be traveling at the 
greater speed. We write vp = vc + vrel, where vrel is the relative velocity. When this 
expression is substituted into the conservation of momentum condition, the result is 
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m m v m v m v m vc p c c p c p+ = + +d i rel .  
Therefore, 
 

 
( ) ( )( ) ( )( )rel 290.0 kg 150.0 kg 7600 m/s 150.0 kg 910.0 m/s

290.0 kg 150.0 kg
7290 m/s.

c p p
c

c p

m m v m v
v

m m
+ − + −

= =
+ +

=

 

 
(b) The final speed of the payload is vp = vc + vrel = 7290 m/s + 910.0 m/s = 8200 m/s. 
 
(c) The total kinetic energy before the clamp is released is 
 

K m m vi c p= + = + = ×
1
2

1
2

290 0 7600 1271 102 2 10d i b gb g. .kg 150.0 kg m / s J. 

 
(d) The total kinetic energy after the clamp is released is 
 

 ( )( ) ( )( )2 22 2

10

1 1 1 1290.0 kg 7290 m/s 150.0 kg 8200 m/s
2 2 2 2
1.275 10 J.

f c c p pK m v m v= + = +

= ×
 

 
The total kinetic energy increased slightly. Energy originally stored in the spring is 
converted to kinetic energy of the rocket parts. 
 
82. Let m be the mass of the higher floors. By energy conservation, the speed of the 
higher floors just before impact is  

 21 2 .
2

mgd mv v gd= ⇒ =  

 
The magnitude of the impulse during the impact is 
 

2 2| | | | 2 d dJ p m v mv m gd mg W
g g

= Δ = Δ = = = =  

 
where W mg=  represents the weight of the higher floors. Thus, the average force exerted 
on the lower floor is  

avg
2J W dF

t t g
= =

Δ Δ
 

  
With avgF sW= , where s is the safety factor, we have 
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2
3 2

1 2 1 2(4.0 m) 6.0 10 .
1.5 10 s 9.8 m/s

ds
t g −= = = ×

Δ ×
 

 
83. (a) Momentum conservation gives 
 

mR vR + mL vL  = 0  ⇒     (0.500 kg) vR + (1.00 kg)(−1.20 m/s)  =  0 
 
which yields vR = 2.40 m/s. Thus, Δx = vR t = (2.40 m/s)(0.800 s) = 1.92 m. 
 
(b) Now we have  mR vR + mL (vR  − 1.20 m/s)  =  0, which yields 
 

(1.2 m/s) (1.20 m/s)(1.00 kg) 0.800 m/s.
1.00 kg 0.500 kg

L
R

L R

mv
m m

= = =
+ +

 

 
Consequently, Δx = vR t = 0.640 m. 
 
84. (a) This is a highly symmetric collision, and when we analyze the y-components of 
momentum we find their net value is zero.  Thus, the stuck-together particles travel along 
the x axis. 
 
(b) Since it is an elastic collision with identical particles, the final speeds are the same as 
the initial values.  Conservation of momentum along each axis then assures that the 
angles of approach are the same as the angles of scattering.  Therefore, one particle 
travels along line 2, the other along line 3. 
 
(c) Here the final speeds are less than they were initially.  The total x-component cannot 
be less, however, by momentum conservation, so the loss of speed shows up as a 
decrease in their y-velocity-components.  This leads to smaller angles of scattering.  
Consequently, one particle travels through region B, the other through region C; the paths 
are symmetric about the x-axis.  We note that this is intermediate between the final states 
described in parts (b) and (a). 
 
(d) Conservation of momentum along the x-axis leads (because these are identical 
particles) to the simple observation that the x-component of each particle remains 
constant:   

vf x = v cosθ = 3.06 m/s. 
 
(e) As noted above, in this case the speeds are unchanged; both particles are moving at 
4.00 m/s in the final state. 
 
85. Using Eq. 9-67 and Eq. 9-68, we have after the first collision 
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1 2 1 1
1 1 1 1

1 2 1 1

1 1
2 1 1 1

1 2 1 1

2 1
2 3

2 2 2 .
2 3

f i i i

f i i i

m m m mv v v v
m m m m

m mv v v v
m m m m

− −
= = = −

+ +

= = =
+ +

 

 
After the second collision, the velocities are 
 

v2 ff  = m2 − m3

m2+ m3
 v2 f  =  −m2

3m2
 23 v1i  =  − 

2
9 v1i 

 

v3 ff  = 2m2

m2+ m3
 v2 f   =  2m2

3m2
 23 v1i  =  49 v1i  . 

 
(a) Setting v1i  = 4 m/s, we find v3 ff  ≈ 1.78 m/s. 
 
(b) We see that v3 ff  is less than v1i . 
 
(c) The final kinetic energy of block 3 (expressed in terms of the initial kinetic energy of 
block 1) is 

K3 ff  =  12 m3 v3
2 = 12 (4m1) ⎝⎛ ⎠⎞

16
9

2
v1i

2 = 64
81 K1i  . 

 
We see that this is less than K1i . 
 
(d) The final momentum of block 3 is  p3ff = m3 v3 ff   = (4m1)⎝⎛ ⎠⎞

16
9 v1 > m1v1. 

 
86. (a) We use Eq. 9-68 twice: 
 

                                v2 =  2m1

m1 + m2
 v1i  =  2m1

1.5m1 
 (4.00 m/s) =  16

3  m/s 
 

            v3 =  2m2

m2 + m3
 v2  =  2m2

1.5m2
 (16/3 m/s) =  64

9  m/s  = 7.11 m/s . 

 
(b) Clearly, the speed of block 3 is greater than the (initial) speed of block 1. 
 
(c) The kinetic energy of block 3 is  
 

K3f = 12 m3 v3
2 = ⎝⎛ ⎠⎞

1
2

3
m1 ⎝⎛ ⎠⎞

16
9

2
v1i

2 = 64
81 K1i . 

 
We see the kinetic energy of block 3 is less than the (initial) K of block 1.  In the final 
situation, the initial K is being shared among the three blocks (which are all in motion), 
so this is not a surprising conclusion. 
 
(d) The momentum of block 3 is   
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p3f = m3 v3  = ⎝⎛ ⎠⎞
1
2

2
m1⎝⎛ ⎠⎞

16
9 v1i = 49 p1i 

 
and is therefore less than the initial momentum (both of these being considered in 
magnitude, so questions about ± sign do not enter the discussion).  
 
87. We choose our positive direction in the direction of the rebound (so the ball’s initial 
velocity is negative-valued vi = − 52. m s ). 
 
(a) The speed of the ball right after the collision is 
 

22 2( / 2) / 2 3.7 m/s.
2

f i i i
f

K K mv vv
m m m

= = = = ≈  

 
(b) With m = 0.15 kg, the impulse-momentum theorem (Eq. 9-31) yields 
 

( )( ) ( )( )0.15 kg 3.7 m/s 0.15 kg 5.2 m/s 1.3 N s.f iJ mv mv= − = − − = ⋅   
 
(c) Equation 9-35 leads to Favg = J/Δt = 1.3/0.0076 = 1.8 × 102 N. 
 
88. We first consider the 1200 kg part. The impulse has magnitude J and is (by our 
choice of coordinates) in the positive direction. Let m1 be the mass of the part and v1 be 
its velocity after the bolts are exploded. We assume both parts are at rest before the 
explosion. Then J = m1v1, so 

v J
m1

1

300
1200

0 25= =
⋅

=
N s
kg

m s. .  

 
The impulse on the 1800 kg part has the same magnitude but is in the opposite direction, 
so – J = m2v2, where m2 is the mass and v2 is the velocity of the part. Therefore, 
 

v J
m2

2

300
1800

0167= − = −
⋅

= −
N s

kg
m s. .  

 
Consequently, the relative speed of the parts after the explosion is  
 

u = 0.25 m/s – (–0.167 m/s) = 0.417 m/s. 
 
89. Let the initial and final momenta of the car be i ip mv=  and f fp mv= , respectively. 
The impulse on it equals the change in its momentum:  
 

( )f i f iJ p p p m v v= Δ = − = − . 
 
The average force over the duration tΔ is given by avg /F J t= Δ . 
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(a) The initial momentum of the car is 
 

p mvi i= = = ⋅1400 5 3kg m s j 7400 kg m s jb gb g b g.  
 
and the final momentum after making the turn is ( ) ˆ7400kg m s ifp = ⋅  (note that the 
magnitude remains the same, only the direction is changed). Thus, the impulse is 
 

( )( )3 ˆ ˆ7.4 10 N s i j .f iJ p p= − = × ⋅ −  

 
(b) The initial momentum of the car after the turn is ( ) ˆ7400kg m s iip′ = ⋅  and the final 
momentum after colliding with a tree is 0.fp′ =  The impulse acting on it is 
 

3 ˆ( 7.4 10 N s)i.f iJ p p′ ′ ′= − = − × ⋅  
 
(c) The average force on the car during the turn is 

F p
t

J
tavg

kg m s i j

4.6s
N i j= = =

⋅ −
= −

Δ
Δ Δ

7400
1600

b ge j b ge j  
 
and its magnitude is ( ) 3

avg 1600 N 2 2.3 10 N.F = = ×  
 
(d) The average force during the collision with the tree is 
 

( ) ( )4
avg 3

ˆ7400kg m s i ˆ2.1 10 N i
350 10 s

JF
t −

− ⋅′
′ = = = − ×

Δ ×
 

 
and its magnitude is 4

avg 2.1 10 NF ′ = × .  
 
(e) As shown in (c), the average force during the turn, in unit vector notation, is  

( )( )avg
ˆ ˆ1600 N i jF = − . 

 
Note: During the turn, the average force 

avgF  is in the same direction as J , or pΔ . 
Its x and y components have equal 
magnitudes. The x component is positive 
and the y component is negative, so the 
force is 45° below the positive x axis. 
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90. (a) We find the momentum pn r  of the residual nucleus from momentum conservation. 
 
 22 23ˆ ˆ0 ( 1.2 10 kg m/s ) i ( 6.4 10 kg m/s) jn i e v n r n rp p p p p− −= + + ⇒ = − × ⋅ + − × ⋅ +  
 
Thus, 22 23ˆ ˆ(1.2 10 kg m/s) i (6.4 10 kg m/s) jn rp − −= × ⋅ + × ⋅ .  Its magnitude is 
 

( ) ( )2 222 23 22| | 1.2 10 kg m/s 6.4 10 kg m/s 1.4 10 kg m/s.n rp − − −= × ⋅ + × ⋅ = × ⋅  

 
(b) The angle measured from the +x axis to pn r  is 
 

23
1

22

6.4 10 kg m/stan 28 .
1.2 10 kg m/s

θ
−

−
−

⎛ ⎞× ⋅
= = °⎜ ⎟× ⋅⎝ ⎠

 

 
 (c) Combining the two equations p = mv and K mv= 1

2
2 , we obtain (with p = pn r and  

m = mn r) 

( )
( )

2222
19

26

1.4 10 kg m/s
1.6 10 J.

2 2 5.8 10 kg
pK
m

−
−

−

× ⋅
= = = ×

×
 

 
91. No external forces with horizontal components act on the cart-man system and the 
vertical forces sum to zero, so the total momentum of the system is conserved. Let mc be 
the mass of the cart, v be its initial velocity, and vc be its final velocity (after the man 
jumps off). Let mm be the mass of the man. His initial velocity is the same as that of the 
cart and his final velocity is zero. Conservation of momentum yields (mm + mc)v = mcvc. 
Consequently, the final speed of the cart is  
 

v
v m m

mc
m c

c

=
+

=
+

=
b g b gb g2 3 75 39

39
6 7

.
.

 m / s kg kg
kg

m / s.  

 
The cart speeds up by 6.7 m/s – 2.3 m/s = + 4.4 m/s. In order to slow himself, the man 
gets the cart to push backward on him by pushing forward on it, so the cart speeds up.  
 
92. The fact that they are connected by a spring is not used in the solution. We use Eq.  
9-17 for vcom:  
 ( )( ) ( )com 1 1 2 2 21.0 kg 1.7 m/s 3.0 kgMv m v m v v= + = +  
 
which yields v2 0 57= . m / s. The direction of v2  is opposite that of v1  (that is, they are 
both headed toward the center of mass, but from opposite directions). 
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93. Let mF be the mass of the freight car and vF be its initial velocity. Let mC be the mass 
of the caboose and v be the common final velocity of the two when they are coupled. 
Conservation of the total momentum of the two-car system leads to  
 

mFvF = (mF + mC)v  ⇒   F F

F C

m vv
m m

=
+

. 

The initial kinetic energy of the system is K m vi F F=
1
2

2  and the final kinetic energy is 

 

K m m v m m m v
m m

m v
m mf F C F C

F F

F C

F F

F C

= + = +
+

=
+

1
2

1
2

1
2

2
2 2

2

2 2

b g b g b g b g .  
 
Since 27% of the original kinetic energy is lost, we have Kf = 0.73Ki, or 
 

( ) ( )
2 2

21 10.73
2 2

F F
F F

F C

m v m v
m m

⎛ ⎞= ⎜ ⎟+ ⎝ ⎠
. 

 
We obtain m m mF F C+ =b g 0 73. ,  which we use in solving for the mass of the caboose: 
 

m m mC F F= = = × = ×
0 27
0 73

0 37 0 37 318 10 118 104 4.
.

. . . . .b gc hkg kg  

 
94. Let mc be the mass of the Chrysler and vc be its velocity. Let mf be the mass of the 
Ford and vf be its velocity. Then the velocity of the center of mass is 
 

v
m v m v

m m
c c f f

c f
com

kg km / h kg km / h
kg kg

km / h=
+
+

=
+
+

=
2400 80 1600 60

2400 1600
72b gb g b gb g .  

 
We note that the two velocities are in the same direction, so the two terms in the 
numerator have the same sign. 
 
95. The mass of each ball is m, and the initial speed of one of the balls is 1 2.2m s.iv =  
We apply the conservation of linear momentum to the x and y axes, respectively: 
 

1 1 1 2 2

1 1 2 2

cos cos
   0 sin sin .

i f f

f f

mv mv mv
mv mv

θ θ
θ θ

= +

= −
 

 
The mass m cancels out of these equations, and we are left with two unknowns and two 
equations, which is sufficient to solve.  
 
(a) Solving the simultaneous equations leads to  
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 2 1
1 1 2 1

1 2 1 2

sin sin,
sin( ) sin( )f i f iv v v vθ θ

θ θ θ θ
= =

+ +
. 

 
Since 2 1 / 2 1.1 m/sf iv v= =  and 2 60θ = ° , we have  
 

1
1

1

sin 1 1tan
sin( 60 ) 2 3

θ θ
θ

= ⇒ =
+ °

 

 
or 1 30θ = ° . Thus, the speed of ball 1 after collision is 
 

 2
1 1 1 1

1 2

sin sin 60 3 3 (2.2 m/s) 1.9 m/s
sin( ) sin(30 60 ) 2 2f i i iv v v vθ

θ θ
°

= = = = =
+ ° + °

. 

 
(b) From the above, we have θ1 = 30°, measured clockwise from the +x-axis, or 
equivalently, −30°, measured counterclockwise from the +x-axis. 
 

(c) The kinetic energy before collision is 2
1

1
2i iK mv= . After the collision, we have 

( )2 2
1 2

1
2f f fK m v v= + . 

Substituting the expressions for 1 fv  and 2 fv  found above gives 
 

2 2
22 1
12 2

1 2 1 2

sin sin1
2 sin ( ) sin ( )f iK m vθ θ

θ θ θ θ
⎡ ⎤

= +⎢ ⎥+ +⎣ ⎦
. 

 
Since 1 30θ = °  and 2 60θ = ° , 1 2sin( ) 1θ θ+ =  and 2 2 2 2

1 2 1 1sin sin sin cos 1θ θ θ θ+ = + = , 

and indeed, we have 2
1

1
2f i iK mv K= = , which means that energy is conserved.  

 
Note: One may verify that two identical masses colliding elastically will move off 
perpendicularly to each other with 1 2 90θ θ+ = ° . 
 
96. (a) We use Eq. 9-87. The thrust is 
 
 ( )( )24 4

rel 4.0 10 kg 2.0m s 8.0 10 N.Rv Ma= = × = ×  

 
(b) Since vrel = 3000 m/s, we see from part (a) that R ≈ 27 kg/s. 
 
97. The diagram below shows the situation as the incident ball (the left-most ball) makes 
contact with the other two.  
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It exerts an impulse of the same magnitude on each ball, along the line that joins the 
centers of the incident ball and the target ball. The target balls leave the collision along 
those lines, while the incident ball leaves the collision along the x axis. The three dashed 
lines that join the centers of the balls in contact form an equilateral triangle, so both of the 
angles marked θ are 30°. Let v0 be the velocity of the incident ball before the collision 
and V be its velocity afterward. The two target balls leave the collision with the same 
speed. Let v represent that speed. Each ball has mass m. Since the x component of the 
total momentum of the three-ball system is conserved, 
 

mv mV mv0 2= + cosθ  
 

and since the total kinetic energy is conserved,  
 

1
2

1
2

2 1
20

2 2 2mv mV mv= + FHG
I
KJ .  

 
We know the directions in which the target balls leave the collision so we first eliminate 
V and solve for v. The momentum equation gives V = v0 – 2v cos θ, so  
 

2V = 2 2 2
0 04 cos 4 cosv v v vθ θ− +  

 
and the energy equation becomes 2

0v = 2 2 2 2
0 04 cos 4 cos 2 .v v v v vθ θ− + +  Therefore,  

 

v v
=

+
=

°
+ °

=
2

1 2
2 10 30

1 2 30
6 930

2 2

cos
cos

( cos
cos

. .θ
θ

 m s)  m s  

 
(a) The discussion and computation above determines the final speed of ball 2 (as labeled 
in Fig. 9-76) to be 6.9 m/s. 
 
(b) The direction of ball 2 is at 30° counterclockwise from the +x axis.  
 
(c) Similarly, the final speed of ball 3 is 6.9 m/s. 
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(d) The direction of ball 3 is at −30° counterclockwise from the +x axis.  
 
(e) Now we use the momentum equation to find the final velocity of ball 1:  
 

V v v= − = − °= −0 2 10 2 6 93 30 2 0cos ( . cos .θ  m s  m s) m s.  
 
So the speed of ball 1 is | |V = 2.0 m/s. 
 
(f) The minus sign indicates that it bounces back in the – x direction. The angle is −180°. 
 
98. (a) The momentum change for the 0.15 kg object is  
 
Δ p 

→
  = (0.15)[2 i^ + 3.5 j^ –3.2 k^  – (5 i^ +6.5 j^ +4 k^  )] = (–0.450i^ – 0.450j^ – 1.08k^) kg m/s⋅ . 

 
(b) By the impulse-momentum theorem (Eq. 9-31), J  

→
 = Δ p 

→
 , we have 

 
J  
→

 = (–0.450i^ – 0.450j^ – 1.08k^) N s⋅ . 
 
(c) Newton’s third law implies Jwall  

→    
 = – Jball  

→    
 (where Jball  

→    
 is the result of part (b)), so 

 
Jwall  

→    
 = (0.450i^ + 0.450j^ + 1.08k^) N s⋅ . 

 
99. (a) We place the origin of a coordinate system at the center of the pulley, with the x 
axis horizontal and to the right and with the y axis downward. The center of mass is 
halfway between the containers, at x = 0 and y = ,  where  is the vertical distance from 
the pulley center to either of the containers. Since the diameter of the pulley is 50 mm, 
the center of mass is at a horizontal distance of 25 mm from each container.  
 
(b) Suppose 20 g is transferred from the container on the left to the container on the right. 
The container on the left has mass m1 = 480 g and is at x1 = –25 mm. The container on 
the right has mass m2 = 520 g and is at x2 = +25 mm. The x coordinate of the center of 
mass is then  

x m x m x
m mcom

 g  mm  g  mm
 g 520 g

 mm.=
+
+

=
− +

+
=1 1 2 2

1 2

480 25 520 25
480

10b gb g b gb g .  

 
The y coordinate is still . The center of mass is 26 mm from the lighter container, along 
the line that joins the bodies. 
 
(c) When they are released the heavier container moves downward and the lighter 
container moves upward, so the center of mass, which must remain closer to the heavier 
container, moves downward.  
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(d) Because the containers are connected by the string, which runs over the pulley, their 
accelerations have the same magnitude but are in opposite directions. If a is the 
acceleration of m2, then –a is the acceleration of m1. The acceleration of the center of 
mass is  

a
m a m a

m m
a m m

m mcom =
− +

+
=

−
+

1 2

1 2

2 1

1 2

b g .  

 
We must resort to Newton’s second law to find the acceleration of each container. The 
force of gravity m1g, down, and the tension force of the string T, up, act on the lighter 
container. The second law for it is m1g – T = –m1a. The negative sign appears because a 
is the acceleration of the heavier container. The same forces act on the heavier container 
and for it the second law is m2g – T = m2a. The first equation gives T = m1g + m1a. This is 
substituted into the second equation to obtain m2g – m1g – m1a = m2a, so  
 

a = (m2 – m1)g/(m1 + m2). 
Thus,  

a
g m m

m mcom

2
2

 m / s  g  g

 g
 m / s=

−

+
=

−

+
= × −2 1

2

1 2
2

2

2
2

9 8 520 480

480 520 g
16 10b g

b g
c hb g
b g

.
. .  

 
The acceleration is downward. 
 
100. (a) We use Fig. 9-21 of the text (which treats both angles as positive-valued, even 
though one of them is in the fourth quadrant; this is why there is an explicit minus sign in 
Eq. 9-80 as opposed to it being implicitly in the angle). We take the cue ball to be body 1 
and the other ball to be body 2. Conservation of the x and the components of the total 
momentum of the two-ball system leads to:  
 

mv1i = mv1f cos θ1 + mv2f cos θ2 
 

       0 = –mv1f sin θ1 + mv2f sin θ2. 
 
The masses are the same and cancel from the equations. We solve the second equation for 
sin θ2: 

sin sin .
.

sin . .θ θ2
1

2
1

350
2 00

22 0 0 656= = FHG
I
KJ °=

v
v

f

f

 m / s
 m / s

 .  

 
Consequently, the angle between the second ball and the initial direction of the first is θ2 
= 41.0°. 
 
(b) We solve the first momentum conservation equation for the initial speed of the cue 
ball. 

1  1 1 2 2cos cos (3.50 m/s)cos 22.0 (2.00 m/s)cos 41.0 4.75 m/s .i f fv v vθ θ= + = °+ ° =  
 

(c) With SI units understood, the initial kinetic energy is  
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K mv m mi i= = =
1
2

1
2

4 75 1132 2( . ) .  

and the final kinetic energy is 
 

K mv mv m mf f f= + = + =
1
2

1
2

1
2

350 2 00 811
2

2
2 2 2( . ) ( . ) . .c h  

 
Kinetic energy is not conserved. 
 
101. This is a completely inelastic collision, followed by projectile motion. In the 
collision, we use momentum conservation. 
 
 shoes together (3.2 kg) (3.0 m/s) (5.2 kg)p p v= ⇒ =  
 
Therefore, v = 1.8 m / s  toward the right as the combined system is projected from the 
edge of the table. Next, we can use the projectile motion material from Ch. 4 or the 
energy techniques of Ch. 8; we choose the latter. 
 

                                                              

 kg) (1.8 m / s) (5.2 kg) (9.8 m / s  m) 0

edge edge floor floor

2 2
floor

K U K U

K

+ = +

+ = +
1
2

5 2 0 40( . ) ( .
 

 
Therefore, the kinetic energy of the system right before hitting the floor is Kfloor = 29 J. 
 
102. (a) Since the center of mass of the man-balloon system does not move, the balloon 
will move downward with a certain speed u relative to the ground as the man climbs up 
the ladder.  
 
(b) The speed of the man relative to the ground is vg = v – u. Thus, the speed of the center 
of mass of the system is 
 

v
mv Mu

M m
m v u Mu

M m
g

com =
−
+

=
− −

+
=

b g 0.  

This yields  

 (80 kg)(2.5 m/s) 0.50 m/s.
320 kg + 80 kg

mvu
M m

= = =
+

 

 
 (c) Now that there is no relative motion within the system, the speed of both the balloon 
and the man is equal to vcom, which is zero. So the balloon will again be stationary. 
 
103. The velocities of m1 and m2 just after the collision with each other are given by Eq. 
9-75 and Eq. 9-76 (setting v1i = 0): 
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2 2 1
1 2 2 2

1 2 1 2

2 ,f i f i
m m mv v v v

m m m m
−

= =
+ +

 

 
After bouncing off the wall, the velocity of m2 becomes –v2f. In these terms, the problem 
requires 1 2f fv v= − , or  

2 2 1
2 2

1 2 1 2

2
i i

m m mv v
m m m m

−
= −

+ +
 

which simplifies to 

2
32 2 1 2

1m m m m m
= − − ⇒ =b g  . 

 
With m1 = 6.6 kg, we have m2 = 2.2 kg. 
 
104. We treat the car (of mass m1) as a “point-mass” (which is initially 1.5 m from the 
right end of the boat).  The left end of the boat (of mass m2) is initially at x = 0 (where the 
dock is), and its left end is at x = 14 m.  The boat’s center of mass (in the absence of the 
car) is initially at x = 7.0 m. We use Eq. 9-5 to calculate the center of mass of the system: 
 

xcom = 
m1x1 + m2x2

 m1 + m2   =  
(1500 kg)(14 m – 1.5 m) + (4000 kg)(7 m)

 1500 kg + 4000 kg   =  8.5 m. 

 
In the absence of external forces, the center of mass of the system does not change.  Later, 
when the car (about to make the jump) is near the left end of the boat (which has moved 
from the shore an amount δx), the value of the system center of mass is still 8.5 m.  The 
car (at this moment) is thought of as a “point-mass” 1.5 m from the left end, so we must 
have  
 

       xcom = 
m1x1 + m2x2

 m1 + m2   =  
(1500 kg)( δx + 1.5 m) + (4000 kg)(7 m + δx)

 1500 kg + 4000 kg   =  8.5 m. 

 
Solving this for δx, we find δx = 3.0 m. 
 
105. Let m1 be the mass of the object that is originally moving, v1i be its velocity before 
the collision, and v1f be its velocity after the collision. Let 2m M=  be the mass of the 
object that is originally at rest and v2f  be its velocity after the collision. Conservation of 
linear momentum gives 1 1 1 1 2 2i f fm v m v m v= + . Similarly, the total kinetic energy is 
conserved and we have 

2 2 2
1 1 1 1 2 2

1 1 1
2 2 2i f fm v m v m v= + . 

Solving for 1 fv and 2 fv , we obtain: 

1 2 1
1 1 2 1

1 2 1 2

2,f i f i
m m mv v v v
m m m m

−
= =

+ +
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The second equation can be inverted to give 1
2 1

2

2 1i

f

vm m
v

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
. With m1 = 3.0 kg, v1i = 

8.0 m/s and v2f = 6.0 m/s, the above expression leads to  
 

1
2 1

2

2 2(8.0 m/s)1 (3.0 kg) 1 5.0 kg
6.0 m/s

i

f

vm M m
v

⎛ ⎞ ⎛ ⎞
= = − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
Note: Our analytic expression for 2m  shows that if the two masses are equal, then 

2 1f iv v= , and the pool player’s result is recovered.  
 
106. We denote the mass of the car as M and that of the sumo wrestler as m. Let the 
initial velocity of the sumo wrestler be v0 > 0 and the final velocity of the car be v. We 
apply the momentum conservation law.  
 
(a) From mv0 =  (M + m)v we get  
 

v mv
M m

=
+

=
+

=0 242
2140 242

054( . . kg)(5.3 m / s)
 kg  kg

 m / s  

 
(b) Since vrel = v0, we have  
 

mv Mv m v v mv M m v0 0= + + = + +relb g b g , 
 
and obtain v = 0 for the final speed of the flatcar.  
 
(c) Now mv0 = Mv + m (v – vrel), which leads to  
 

v
m v v

m M
=

+
+

=
+

+
=0 242 53 53

242
11rel kg m / s m / s

kg 2140 kg
m / sb g b gb g. .

. .  

 
107. (a) The thrust is Rvrel where vrel = 1200 m/s. For this to equal the weight Mg where 
M = 6100 kg, we must have R = (6100) (9.8)/1200 ≈ 50 kg/s. 
 
(b) Using Eq. 9-42 with the additional effect due to gravity, we have 
 

Rv Mg Marel − =  
 
so that requiring a = 21 m/s2 leads to R = (6100)(9.8 + 21)/1200 = 1.6 × 102 kg/s. 
 
108. Conservation of momentum leads to  
 

(900 kg)(1000 m/s) = (500 kg)(vshuttle – 100 m/s) + (400 kg)(vshuttle) 
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which yields vshuttle = 1055.6 m/s for the shuttle speed and vshuttle – 100 m/s =  955.6 m/s 
for the module speed (all measured in the frame of reference of the stationary main 
spaceship).  The fractional increase in the kinetic energy is 
 

2 2
3

2

(500 kg)(955.6 m/s) / 2 (400 kg)(1055.6 m/s) / 21 2.5 10 .
(900 kg)(1000 m/s) / 2

f

i i

KK
K K

−Δ +
= − = = ×  

 
109. (a) We locate the coordinate origin at the center of Earth.  Then the distance rcom of 
the center of mass of the Earth-Moon system is given by 
 

com
M ME

M E

m rr
m m

=
+

 

 
where mM is the mass of the Moon, mE is the mass of Earth, and rME is their separation. 
These values are given in Appendix C. The numerical result is 
 

 
( )( )22 8

6 3
com 22 24

7.36 10 kg 3.82 10 m
4.64 10 m 4.6 10  km.

7.36 10 kg 5.98 10 kg
r

× ×
= = × ≈ ×

× + ×
 

 
(b) The radius of Earth is RE = 6.37 × 106 m, so com / 0.73 73%Er R = = . 
 
110. (a) The magnitude of the impulse is equal to the change in momentum: 
 

J = mv – m(–v) = 2mv = 2(0.140 kg)(7.80 m/s) = 2.18 kg ⋅ m/s 
 
(b) Since in the calculus sense the average of a function is the integral of it divided by the 
corresponding interval, then the average force is the impulse divided by the time Δt.  
Thus, our result for the magnitude of the average force is 2mv/Δt. With the given values, 
we obtain 

Favg = 
2(0.140 kg)(7.80 m/s)

0.00380 s    = 575 N . 

 
111. By conservation of momentum, the final speed v of the sled satisfies  
 

2900 250 2900 920kg m / s kg kgb gb g b g= + v  
 
which gives v = 190 m/s.  
 
112. Let m be the mass of a pellet and v be its velocity as it hits the wall, then its 
momentum is p = mv, toward the wall. The kinetic energy of a pellet is 2 / 2K mv= . The 
force on the wall is given by the rate at which momentum is transferred from the pellets 



 CHAPTER 9 420 

to the wall. Since the pellets do not rebound, each pellet that hits transfers p. If ΔN pellets 
hit in time Δt, then the average rate at which momentum is transferred would be 
 

avg
NF p
t

Δ⎛ ⎞= ⎜ ⎟Δ⎝ ⎠
 

 
(a) With m = 2.0 × 10–3 kg, v = 500 m/s, the momentum of a pellet is  
 

p = mv = (2.0 × 10–3 kg)(500 m/s) = 1.0 kg · m/s. 
 
(b) The kinetic energy of a pellet is 
 

K mv= = × = ×−1
2

1
2

2 0 10 500 2 5 102 3 2 2. .kg m s J .c hb g  

 
(c) With ( / ) 10 / sN tΔ Δ = , the average force on the wall from the stream of pellets is 
 

( )( )1
avg 1.0kg m s 10s 10 N.NF p

t
−Δ⎛ ⎞= = ⋅ =⎜ ⎟Δ⎝ ⎠

 

The force on the wall is in the direction of the initial velocity of the pellets. 
 
(d) If t′Δ is the time interval for a pellet to be brought to rest by the wall, then the 
average force exerted on the wall by a pellet is 
 

3
avg 3

1.0kg m s 1.7 10 N.
0.6 10 s

pF
t −

⋅′ = = = ×
′Δ ×

 

 
The force is in the direction of the initial velocity of the pellet. 
 
(e) In part (d) the force is averaged over the time a pellet is in contact with the wall, while 
in part (c) it is averaged over the time for many pellets to hit the wall. Hence, avg avgF F′ ≠ . 
Note that during the majority of this time, no pellet is in contact with the wall, so the 
average force in part (c) is much less than the average force in part (d). 
 
113. We convert mass rate to SI units: R = (540 kg/min)/(60 s/min) = 9.00 kg/s. In the 
absence of the asked-for additional force, the car would decelerate with a magnitude 
given by Eq. 9-87: relR v M a= , so that if a = 0 is desired then the additional force must 
have a magnitude equal to R vrel (so as to cancel that effect): 
 

( )( )rel 9.00 kg / s 3.20 m/s 28.8 N.F Rv= = =  
 
114. First, we imagine that the small square piece (of mass m) that was cut from the large 
plate is returned to it so that the large plate is again a complete 6 m × 6 m (d =1.0 m) 
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square plate (which has its center of mass at the origin). Then we “add” a square piece of 
“negative mass” (–m) at the appropriate location to obtain what is shown in the figure. If 
the mass of the whole plate is M, then the mass of the small square piece cut from it is 
obtained from a simple ratio of areas: 

m M M m=
F
HG
I
KJ ⇒ =

2 0
6 0

9
2

.

.
.m

m
 

 
(a) The x coordinate of the small square piece is x = 2.0 m (the middle of that square 
“gap” in the figure). Thus the x coordinate of the center of mass of the remaining piece is 
 

x
m x

M m
m

m mcom

m
m=

−
+ −

=
−

−
= −

b g
b g

b g2 0
9

0 25
.

. .  

 
(b) Since the y coordinate of the small square piece is zero, we have ycom = 0. 
 
115. Let 1F  be the force acting on m1, and 2F  the force acting on m2. According to 
Newton’s second law, their displacements are 
 

 2 2 2 21 2
1 1 2 2

1 2

1 1 1 1,
2 2 2 2

F Fd a t t d a t t
m m

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The corresponding displacement of the center of mass is 
 

2 2 21 1 2 2 1 1 2 2 1 2
cm

1 2 1 2 1 1 2 2 1 2

1 1 1
2 2 2

m d m d m F m F F Fd t t t
m m m m m m m m m m

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +
= = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 
(a) With 1

ˆ ˆ( 4.00 N)i (5.00 N) jF = − + , 2
ˆ ˆ(2.00 N)i (4.00 N) jF = − , 3

1 2.00 10 kgm −= × , 
3

2 4.00 10 kgm −= ×  and 32.00 10 st −= × , we obtain 
 

 
2 3 21 2

cm 3 3
1 2

4 4

ˆ ˆ1 1 ( 4.00 N 2.00 N)i (5.00 N 4.00 N) j (2.00 10 s)
2 2 2.00 10 kg 4.00 10 kg

ˆ ˆ( 6.67 10  m)i (3.33 10  m) j.

F Fd t
m m

−
− −

− −

⎛ ⎞+ − + + −
= = ×⎜ ⎟⎜ ⎟+ × + ×⎝ ⎠
= − × + ×

 

 
The magnitude of cmd  is 4 2 4 2 4

cm ( 6.67 10  m) (3.33 10  m) 7.45 10  md − − −= − × + × = × , 
or 0.745 mm. 
 
(b) The angle of cmd  is  

4
1 1

4

3.33 10  m 1tan tan 153
6.67 10  m 2

θ
−

− −
−

⎛ ⎞× ⎛ ⎞= = − = °⎜ ⎟ ⎜ ⎟− × ⎝ ⎠⎝ ⎠
, 
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counterclockwise from +x-axis.  
 
(c) The velocities of the two masses are 

1 2
1 1 2 2

1 2

,Ft F tv a t v a t
m m

= = = = , 

and the velocity of the center of mass is 
 

1 1 2 2 1 1 2 2 1 2
cm

1 2 1 2 1 1 2 2 1 2

m v m v m Ft m F t F Fv t
m m m m m m m m m m

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +
= = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 
The corresponding kinetic energy of the center of mass is 
 

 
2

2 21 2
cm 1 2 cm

1 2

| |1 1( )
2 2

F FK m m v t
m m

+
= + =

+
 

  
With 1 2

ˆ ˆ| | | ( 2.00 N)i (1.00 N) j| 5 NF F+ = − + = , we get   
 

2 2
2 3 2 31 2

cm 3 3
1 2

| |1 1 ( 5 N) (2.00 10 s) 1.67 10  J
2 2 2.00 10 kg 4.00 10 kg

F FK t
m m

− −
− −

+
= = × = ×

+ × + ×
. 

 
116. (a) The center of mass does not move in the absence of external forces (since it was 
initially at rest). 
 
(b) They collide at their center of mass.  If the initial coordinate of P is x = 0 and the 
initial coordinate of Q is x = 1.0 m, then Eq. 9-5 gives 
 

xcom  =  
m1x1 + m2x2

 m1 + m2  =  
0 + (0.30 kg)(1.0 m)

0.1 kg  +  0.3 kg  = 0.75 m. 

 
Thus, they collide at a point 0.75 m from P’s original position. 
 

117. This is a completely inelastic collision, but Eq. 9-53 (V = m1

m1+ m2
 v1i) is not easily 

applied since that equation is designed for use when the struck particle is initially 
stationary.  To deal with this case (where particle 2 is already in motion), we return to the 
principle of momentum conservation: 

 1 1 2 2 1 2

ˆ ˆ ˆ ˆ2(4i 5j) 4(6i 2 j)( )
2 4

m v m v m m V V − + −
+ = + ⇒ =

+
. 

 
(a) In unit-vector notation, then, V 

→
= (2.67 m/s)i^ + (−3.00 m/s)j^ . 

 
(b) The magnitude of V 

→
 is | |V = 4.01 m/s. 
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(c) The direction of V 

→
 is 48.4° (measured clockwise from the +x axis). 

 
118. We refer to the discussion in the textbook (Sample Problem – “Elastic collision, two 
pendulums,” which uses the same notation that we use here) for some important details in 
the reasoning. We choose rightward in Fig. 9-20 as our +x direction. We use the notation 
v  when we refer to velocities and v when we refer to speeds (which are necessarily 
positive). Since the algebra is fairly involved, we find it convenient to introduce the 
notation Δm = m2 – m1 (which, we note for later reference, is a positive-valued quantity). 
 
(a) Since v ghi1 12= +  where h1 = 9.0 cm, we have 
 

v m m
m m

v m
m m

ghf i1
1 2

1 2
1

1 2
12=

−
+

= −
+

Δ  

 
which is to say that the speed of sphere 1 immediately after the collision is 
v m m m ghf1 1 2 12= +Δ b gc h  and that v f1  points in the –x direction. This leads (by energy 

conservation m gh m vf f1 1
1
2 1 1

2= ) to 

h
v

g
m

m m
hf

f
1

1
2

1 2

2

12
= =

+
F
HG

I
KJ

Δ .  

 
With m1 = 50 g and m2 = 85 g, this becomes 1 0.60 cmfh ≈ . 
 
(b) Equation 9-68 gives 

v m
m m

v m
m m

ghf i2
1

1 2
1

1

1 2
1

2 2 2=
+

=
+

 

 
which leads (by energy conservation m gh m vf f2 2

1
2 2 2

2= ) to 
 

h
v

g
m

m m
hf

f
2

2
2

1

1 2

2

12
2

= =
+

F
HG

I
KJ .  

 
With m1 = 50 g and m2 = 85 g, this becomes  h f2 4 9≈ . cm . 
 
(c) Fortunately, they hit again at the lowest point (as long as their amplitude of swing was 
“small,” this is further discussed in Chapter 16). At the risk of using cumbersome 
notation, we refer to the next set of heights as h1ff and h2ff. At the lowest point (before this 
second collision) sphere 1 has velocity + 2 1gh f  (rightward in Fig. 9-20) and sphere 2 

has velocity − 2 1gh f  (that is, it points in the –x direction). Thus, the velocity of sphere 
1 immediately after the second collision is, using Eq. 9-75, 
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( )

( )
( )

1 2 2
1 1 2

1 2 1 2

2 1
1 1

1 2 1 2 1 2 1 2
2

1 2
12

1 2

22 2

2 22 2

4
     2  .

ff f f
m m mv gh gh
m m m m

m mm m gh gh
m m m m m m m m

m m m
gh

m m

−
= + −

+ +

⎛ ⎞ ⎛ ⎞−Δ Δ
= −⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

Δ +
= −

+

 

 
This can be greatly simplified (by expanding (Δm)2 and (m1 + m2)2) to arrive at the 
conclusion that the speed of sphere 1 immediately after the second collision is simply 
v ghff1 12=  and that v ff1  points in the –x direction. Energy conservation 

m gh m vff ff1 1
1
2 1 1

2=d i  leads to 

h
v

g
hff

ff
1

1
2

12
9 0= = = .  cm . 

 
(d) One can reason (energy-wise) that h1 ff = 0 simply based on what we found in part (c). 
Still, it might be useful to see how this shakes out of the algebra. Equation 9-76 gives the 
velocity of sphere 2 immediately after the second collision: 
 

v m
m m

gh m m
m m

gh

m
m m

m
m m

gh m
m m

m
m m

gh

ff f f2
1

1 2
1

2 1

1 2
2

1

1 2 1 2
1

1 2

1

1 2
1

2 2 2

2 2 2 2

=
+

+
−
+

−

=
+ +
F
HG

I
KJ + +

−
+

F
HG

I
KJ

e j

     Δ Δ
 

 
which vanishes since ( )( ) ( )( )2 2 01 1m m m mΔ Δ− = . Thus, the second sphere (after the 
second collision) stays at the lowest point, which basically recreates the conditions at the 
start of the problem (so all subsequent swings-and-impacts, neglecting friction, can be 
easily predicted, as they are just replays of the first two collisions). 
 
119. (a) Each block is assumed to have uniform density, so that the center of mass of 
each block is at its geometric center (the positions of which are given in the table [see 
problem statement] at t = 0).  Plugging these positions (and the block masses) into Eq. 9-
29 readily gives xcom = –0.50 m (at t = 0). 
 
(b) Note that the left edge of block 2 (the middle of which is still at x = 0) is at x = –2.5 
cm, so that at the moment they touch the right edge of block 1 is at x = –2.5 cm and thus 
the middle of block 1 is at x = –5.5 cm.  Putting these positions (for the middles) and the 
block masses into Eq. 9-29 leads to xcom = –1.83 cm or  –0.018 m (at t = (1.445 m)/(0.75 
m/s) = 1.93 s). 
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(c) We could figure where the blocks are at t = 4.0 s and use Eq. 9-29 again, but it is 
easier (and provides more insight) to note that in the absence of external forces on the 
system the center of mass should move at constant velocity: 
 

1 1 2 2
com

1 2

m v m vv
m m

+
=

+
= 0.25 m/s i^  

 
as can be easily verified by putting in the values at t = 0.  Thus,  
 

xcom = xcom initial  +  comv t  =  (–0.50 m) +  (0.25 m/s)(4.0 s)  =  +0.50 m . 
 
120. One approach is to choose a moving coordinate system that travels the center of 
mass of the body, and another is to do a little extra algebra analyzing it in the original 
coordinate system (in which the speed of the m = 8.0 kg mass is v0 = 2 m/s, as given). 
Our solution is in terms of the latter approach since we are assuming that this is the 
approach most students would take. Conservation of linear momentum (along the 
direction of motion) requires 
 
 0 1 1 2 2 1 2(8.0)(2.0) (4.0) (4.0)mv m v m v v v= + ⇒ = +  
 
which leads to v v2 14= −  in SI units (m/s). We require 
 

 2 2 2 2 2 2
1 1 2 2 0 1 2

1 1 1 1 1 116 (4.0) (4.0) (8.0) (2.0)
2 2 2 2 2 2

K m v m v mv v v⎛ ⎞ ⎛ ⎞Δ = + − ⇒ = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
which simplifies to v v2

2
1
216= −  in SI units. If we substitute for v2 from above, we find 

 
( )4 161

2
1
2− = −v v  

 
which simplifies to 2 8 01

2
1v v− = , and yields either v1 = 0 or v1 = 4 m/s. If v1 = 0 then v2 = 

4 – v1 = 4 m/s, and if v1 = 4 m/s then v2 = 0.  
 
(a) Since the forward part continues to move in the original direction of motion, the speed 
of the rear part must be zero.  
 
(b) The forward part has a velocity of 4.0 m/s along the original direction of motion. 
 
121. We use m1 for the mass of the electron and m2 = 1840m1 for the mass of the 
hydrogen atom. Using Eq. 9-68, 

v m
m m

v vf i i2
1

1 1
1 1

2
1840

2
1841

=
+

=  

 
we compute the final kinetic energy of the hydrogen atom: 
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K m v m vf
i

i2 1
1

2

2 1 1
21

2
1840 2

1841
1840 4
1841

1
2

1840= F
HG
I
KJ = F

HG
I
KJb g b g( ) ( )  

 
so we find the fraction to be 1840 4 1841 2 2 102 3b gb g ≈ × −. ,  or 0.22%. 
 
122. Denoting the new speed of the car as v, then the new speed of the man relative to the 
ground is v – vrel. Conservation of momentum requires 
 

W
g

w
g

v W
g

v w
g

v v+
F
HG

I
KJ =
F
HG
I
KJ +
F
HG
I
KJ −0 relb g.  

 
Consequently, the change of velocity is 
 

rel
0

(915 N)(4.00 m/s) 1.10 m/s.
(2415 N) (915 N)

w vv v v
W w

Δ = − = = =
+ +
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Chapter 10 
 
 
1. The problem asks us to assume vcom and ω are constant. For consistency of units, we 
write 

vcom mi h ft mi
60min h

ft min=
F
HG

I
KJ =85 5280 7480b g .  

 
Thus, with Δx = 60 ft , the time of flight is 
 

com (60 ft) /(7480 ft/min) 0.00802 mint x v= Δ = = . 
 
During that time, the angular displacement of a point on the ball’s surface is 
 

θ ω= = ≈t 1800 0 00802 14rev min rev .b gb g. min  
 

2. (a) The second hand of the smoothly running watch turns through 2π radians during 
60 s . Thus, 

 2 0.105 rad/s.
60
πω = =  

 
(b) The minute hand of the smoothly running watch turns through 2π radians during 
3600 s . Thus, 

ω = = × −2
3600

175 10 3π .  rad / s.  

 
(c) The hour hand of the smoothly running 12-hour watch turns through 2π radians 
during 43200 s. Thus, 

ω = = × −2
43200

145 10 4π .  rad / s.  

 
3. The falling is the type of constant-acceleration motion you had in Chapter 2. The time 
it takes for the buttered toast to hit the floor is 
 

 2

2 2(0.76 m) 0.394 s.
9.8 m/s

ht
g

Δ = = =  

 
(a) The smallest angle turned for the toast to land butter-side down is 

min 0.25 rev / 2 rad.θ πΔ = =  This corresponds to an angular speed of  
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min
min

/ 2 rad 4.0 rad/s.
0.394 st

θ πω Δ
= = =

Δ
 

 
(b) The largest angle (less than 1 revolution) turned for the toast to land butter-side down 
is max 0.75 rev 3 / 2 rad.θ πΔ = =  This corresponds to an angular speed of  
 

max
max

3 / 2 rad 12.0 rad/s.
0.394 st

θ πω Δ
= = =

Δ
 

 
4. If we make the units explicit, the function is 
 
 ( ) ( )2 2 3 32.0 rad 4.0 rad/s 2.0 rad/st tθ = + +  
 
but in some places we will proceed as indicated in the problem—by letting these units be 
understood. 
 
(a) We evaluate the function θ at t = 0 to obtain θ0 = 2.0 rad. 
 
(b) The angular velocity as a function of time is given by Eq. 10-6: 
 

 ( ) ( )2 3 28.0 rad/s 6.0 rad/sd t t
dt
θω = = +  

 
which we evaluate at t = 0 to obtain ω0 = 0. 
 
(c) For t = 4.0 s, the function found in the previous part is  
 

ω4 = (8.0)(4.0) + (6.0)(4.0)2 = 128 rad/s. 
 
If we round this to two figures, we obtain ω4 ≈ 1.3×102 rad/s. 
 
(d) The angular acceleration as a function of time is given by Eq. 10-8: 
 

 ( )2 38.0 rad/s 12 rad/sd t
dt
ωα = = +  

 
which yields α2 = 8.0 + (12)(2.0) = 32 rad/s2 at t = 2.0 s. 
 
(e) The angular acceleration, given by the function obtained in the previous part, depends 
on time; it is not constant. 
 
5. Applying Eq. 2-15 to the vertical axis (with +y downward) we obtain the free-fall time: 
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2
0 2

1 2(10 m) 1.4 s.
2 9.8 m/syy v t gt tΔ = + ⇒ = =  

 
Thus, by Eq. 10-5, the magnitude of the average angular velocity is 
 

avg
(2.5 rev) (2  rad/rev) 11 rad/s.

1.4 s
πω = =  

 
6. If we make the units explicit, the function is 
 

θ = − +4 0 3 0 10 3. . . rad / s  rad / s  rad / s2 2 3b g c h c ht t t  
 
but generally we will proceed as shown in the problem—letting these units be understood. 
Also, in our manipulations we will generally not display the coefficients with their proper 
number of significant figures. 
 
(a) Equation 10-6 leads to 

ω = − + = − +
d
dt

t t t t t4 3 4 6 32 3 2c h .  

 
Evaluating this at t = 2 s yields ω2 = 4.0 rad/s. 
 
(b) Evaluating the expression in part (a) at t = 4 s gives ω4 = 28 rad/s. 
 
(c) Consequently, Eq. 10-7 gives 
 

α ω ω
avg

2 rad / s=
−
−

=4 2

4 2
12 .  

(d) And Eq. 10-8 gives 
 

α ω
= = − + = − +

d
dt

d
dt

t t t4 6 3 6 62 .c h  

 
Evaluating this at t = 2 s produces α2 = 6.0 rad/s2. 
 
(e) Evaluating the expression in part (d) at t = 4 s yields α4 = 18 rad/s2. We note that our 
answer for αavg does turn out to be the arithmetic average of α2 and α4 but point out that 
this will not always be the case. 
 
7. (a) To avoid touching the spokes, the arrow must go through the wheel in not more 
than 

Δt = =
1 8 0 050/ . rev

2.5 rev / s
 s.  
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The minimum speed of the arrow is then vmin .= = =
20 400 4 0 cm
0.050 s

 cm / s  m / s.  

 
(b) No—there is no dependence on radial position in the above computation. 
 
8. (a) We integrate (with respect to time) the α = 6.0t4 – 4.0t2 expression, taking into 
account that the initial angular velocity is 2.0 rad/s.  The result is  
 

ω = 1.2 t5 – 1.33 t3 + 2.0. 
 

(b) Integrating again (and keeping in mind that θo = 1) we get   
 

θ = 0.20t6 – 0.33 t4 + 2.0 t + 1.0 . 
 
9. (a) With ω = 0 and α = – 4.2 rad/s2, Eq. 10-12 yields t = –ωo/α = 3.00 s. 
 
(b) Eq. 10-4 gives θ − θo = − ωo

2 / 2α = 18.9 rad. 
 
10. We assume the sense of rotation is positive, which (since it starts from rest) means all 
quantities (angular displacements, accelerations, etc.) are positive-valued. 
 
(a) The angular acceleration satisfies Eq. 10-13: 
 

 2 2125 rad (5.0 s) 2.0 rad/s .
2

α α= ⇒ =  

 
(b) The average angular velocity is given by Eq. 10-5: 
 

ω θ
avg

 rad
5.0 s

 rad / s.= = =
Δ
Δt

25 5 0.  

 
(c) Using Eq. 10-12, the instantaneous angular velocity at t = 5.0 s is 
 

( )22.0 rad/s (5.0 s) 10 rad/s .ω = =  
 
(d) According to Eq. 10-13, the angular displacement at t = 10 s is 
 

2 2 2
0

1 10 (2.0 rad/s ) (10 s) 100 rad.
2 2

tθ ω α= + = + =  

 
Thus, the displacement between t = 5 s and t = 10 s is Δθ = 100 rad – 25 rad = 75 rad. 
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11. We assume the sense of initial rotation is positive. Then, with ω0 = +120 rad/s and ω 
= 0 (since it stops at time t), our angular acceleration (‘‘deceleration’’) will be negative-
valued: α = – 4.0 rad/s2. 
 
(a) We apply Eq. 10-12 to obtain t. 
 

 0 2

0 120 rad/s 30 s.
4.0 rad/s

t tω ω α −
= + ⇒ = =

−
 

(b) And Eq. 10-15 gives 
 

3
0

1 1( ) (120 rad/s 0) (30 s) 1.8 10  rad.
2 2

tθ ω ω= + = + = ×  

 
Alternatively, Eq. 10-14 could be used if it is desired to only use the given information 
(as opposed to using the result from part (a)) in obtaining θ. If using the result of part (a) 
is acceptable, then any angular equation in Table 10-1 (except Eq. 10-12) can be used to 
find θ. 
 
12. (a) We assume the sense of rotation is positive. Applying Eq. 10-12, we obtain 
 

 3 2
0

(3000 1200) rev/min 9.0 10  rev/min .
(12 / 60) min

tω ω α α −
= + ⇒ = = ×  

(b) And Eq. 10-15 gives 
 

0
1 1 12( ) (1200 rev/min 3000 rev/min)  min
2 2 60

tθ ω ω ⎛ ⎞= + = + ⎜ ⎟
⎝ ⎠

= 24.2 10×  rev. 

 
13. The wheel has angular velocity ω0 = +1.5 rad/s = +0.239 rev/s at t = 0, and has 
constant value of angular acceleration α < 0, which indicates our choice for positive 
sense of rotation. At t1 its angular displacement (relative to its orientation at t = 0) is θ1 = 
+20 rev, and at t2 its angular displacement is θ2 = +40 rev and its angular velocity is 

2 0ω = . 
 
(a) We obtain t2 using Eq. 10-15: 
 

( )2 0 2 2 2
1 2(40 rev) 335 s
2 0.239 rev/s

t tθ ω ω= + ⇒ = =  

 
which we round off to 2

2 3.4 10  st ≈ × . 
  
(b) Any equation in Table 10-1 involving α can be used to find the angular acceleration; 
we select Eq. 10-16. 
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2 4 2
2 2 2 2 2

1 2(40 rev) 7.12 10  rev/s
2 (335 s)

t tθ ω α α −= − ⇒ = − = − ×  

 
which we convert to α = – 4.5 × 10–3 rad/s2. 
 
(c) Using θ ω α1 0 1

1
2 1

2= +t t  (Eq. 10-13) and the quadratic formula, we have 
 

2 2 4 2
0 0 1

1 4 2

2 (0.239 rev/s) (0.239 rev/s) 2(20 rev)( 7.12 10  rev/s )
7.12 10  rev/s

t
ω ω θ α

α

−

−

− ± + − ± + − ×
= =

− ×
 

 
which yields two positive roots: 98 s and 572 s. Since the question makes sense only if t1 
< t2 we conclude the correct result is t1 = 98 s. 
 
14. The wheel starts turning from rest (ω0 = 0) at t = 0, and accelerates uniformly at α > 0, 
which makes our choice for positive sense of rotation. At t1 its angular velocity is ω1 = 
+10 rev/s, and at t2 its angular velocity is ω2 = +15 rev/s. Between t1 and t2 it turns 
through Δθ = 60 rev, where t2 – t1 = Δt. 
  
(a) We find α using Eq. 10-14: 
 

 
2 2

2 2 2
2 1

(15 rev/s) (10 rev/s)2 1.04 rev/s
2(60 rev)

ω ω α θ α −
= + Δ ⇒ = =  

 
which we round off to 1.0 rev/s2. 
 

(b) We find Δt using Eq. 10-15: ( )1 2
1 2(60 rev) 4.8 s.
2 10 rev/s 15 rev/s

t tθ ω ωΔ = + Δ ⇒ Δ = =
+

 

 

(c) We obtain t1 using Eq. 10-12: 1 0 1 1 2

10 rev/s 9.6 s.
1.04 rev/s

t tω ω α= + ⇒ = =  

 
(d) Any equation in Table 10-1 involving θ can be used to find θ1 (the angular 
displacement during 0 ≤ t ≤ t1); we select Eq. 10-14. 
 

2
2 2
1 0 1 1 2

(10 rev/s)2 48 rev.
2(1.04 rev/s )

ω ω αθ θ= + ⇒ = =  

 
15. We have a wheel rotating with constant angular acceleration. We can apply the 
equations given in Table 10-1 to analyze the motion.  
 
Since the wheel starts from rest, its angular displacement as a function of time is given by 

21
2 tθ α= . We take 1t  to be the start time of the interval so that 2 1 4.0 st t= + . The 

corresponding angular displacements at these times are 



 

  

433

2 2
1 1 2 2

1 1,
2 2

t tθ α θ α= =  

 
Given 2 1θ θ θΔ = − , we can solve for 1t , which tells us how long the wheel has been in 
motion up to the beginning of the 4.0 s-interval. The above expressions can be combined 
to give 

( )2 2
2 1 2 1 2 1 2 1

1 1 ( )( )
2 2

t t t t t tθ θ θ α αΔ = − = − = + −  

 
With 120 radθΔ = , 23.0 rad/sα = , and 2 1 4.0 st t− = , we obtain  
 

2 1 2
2 1

2( ) 2(120 rad) 20 s
( ) (3.0 rad/s )(4.0 s)

t t
t t

θ
α

Δ
+ = = =

−
, 

 
which can be further solved to give 2 12.0 st =  and 1 8.0 st = . So, the wheel started from 
rest 8.0 s before the start of the described 4.0 s interval. 
 
Note: We can readily verify the results by calculating 1θ  and 2θ  explicitly: 
 

2 2 2
1 1

2 2 2
2 2

1 1 (3.0 rad/s )(8.0 s) 96 rad
2 2
1 1 (3.0 rad/s )(12.0 s) 216 rad.
2 2

t

t

θ α

θ α

= = =

= = =
 

 
Indeed the difference is 2 1 120 radθ θ θΔ = − = . 
 
16. (a) Eq. 10-13 gives 

θ − θo = ωo t  +  12 αt2  =  0  + 12 (1.5 rad/s²) t1
2 

 
where θ − θo = (2 rev)(2π  rad/rev).  Therefore, t1 = 4.09 s.  
 
(b) We can find the time to go through a full 4 rev (using the same equation to solve for a 
new time t2) and then subtract the result of part (a) for t1 in order to find this answer. 
 

(4 rev)(2π  rad/rev)  =  0  + 12 (1.5 rad/s²) t2
2     ⇒      t2  = 5.789 s. 

 
Thus, the answer is 5.789 s – 4.093 s ≈ 1.70 s.  
 
17. The problem has (implicitly) specified the positive sense of rotation. The angular 
acceleration of magnitude 0.25 rad/s2 in the negative direction is assumed to be constant 
over a large time interval, including negative values (for t). 
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(a) We specify θmax with the condition ω = 0 (this is when the wheel reverses from  
positive rotation to rotation in the negative direction). We obtain θmax using Eq. 10-14: 
 

2 2
o

max 2

(4.7 rad/s) 44 rad.
2 2( 0.25 rad/s )
ωθ
α

= − = − =
−

 

 
(b) We find values for t1 when the angular displacement (relative to its orientation at t = 0) 
is θ1 = 22 rad (or 22.09 rad if we wish to keep track of accurate values in all intermediate 
steps and only round off on the final answers). Using Eq. 10-13 and the quadratic formula, 
we have 

2
o o 12

1 o 1 1 1

21
2

t t t
ω ω θ α

θ ω α
α

− ± +
= + ⇒ =  

 
which yields the two roots 5.5 s and 32 s. Thus, the first time the reference line will be at 
θ1 = 22 rad is t = 5.5 s.  
 
(c) The second time the reference line will be at θ1 = 22 rad is t = 32 s.  
 
(d) We find values for t2 when the angular displacement (relative to its orientation at t = 0) 
is θ2 = –10.5 rad. Using Eq. 10-13 and the quadratic formula, we have 
 

2
o o 22

2 o 2 2 2

21
2

t t t
ω ω θ α

θ ω α
α

− ± +
= + ⇒ =  

 
which yields the two roots –2.1 s and 40 s. Thus, at t = –2.1 s the reference line will be at 
θ2 = –10.5 rad.  
 
(e) At t = 40 s the reference line will be at θ2 = –10.5 rad.  
 
(f) With radians and seconds understood, the graph of θ versus t is shown below (with the 
points found in the previous parts indicated as small dots). 
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18. First, we convert the angular velocity: ω = (2000 rev/min)(2π /60) = 209 rad/s. Also, 
we convert the plane’s speed to SI units: (480)(1000/3600) = 133 m/s. We use Eq. 10-18 
in part (a) and (implicitly) Eq. 4-39 in part (b). 
 
(a) The speed of the tip as seen by the pilot is v rt = = =ω 209 15 314rad s m m sb gb g. , 
which (since the radius is given to only two significant figures) we write as 

23.1 10 m stv = × .  
 
(b) The plane’s velocity vp  and the velocity of the tip vt  (found in the plane’s frame of 
reference), in any of the tip’s positions, must be perpendicular to each other. Thus, the 
speed as seen by an observer on the ground is 
 

v v vp t= + = + = ×2 2 2 2 2133 314 3 4 10m s m s m sb g b g . .  
 
19. (a) Converting from hours to seconds, we find the angular velocity (assuming it is 
positive) from Eq. 10-18: 
 

( )( )4
3

3

2.90 10 km/h 1.000 h / 3600 s
2.50 10 rad/s.

3.22 10 km
v
r

ω −
×

= = = ×
×

 

 
(b) The radial (or centripetal) acceleration is computed according to Eq. 10-23: 
 

a rr = = × × =−ω 2 3 2 62 50 10 322 10 20 2. . . .rad / s m m / s2c h c h  
 
(c) Assuming the angular velocity is constant, then the angular acceleration and the 
tangential acceleration vanish, since 
 

α ω α= = = =
d
dt

a rt0 0and .  

 
20. The function θ ξ β= e t  where ξ = 0.40 rad and β = 2 s–1 is describing the angular 
coordinate of a line (which is marked in such a way that all points on it have the same 
value of angle at a given time) on the object. Taking derivatives with respect to time 
leads to d

dt
teθ βξβ=  and d

dt
te2

2
2θ βξβ= .  

 

(a) Using Eq. 10-22, we have a r d
dt

rt = = =α θ2

2 6 4. .cm / s2  

 

(b) Using Eq. 10-23, we get a r d
dt

rr = = FHG
I
KJ =ω θ2

2

2 6. .cm / s2  
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21. We assume the given rate of 1.2 × 10–3 m/y is the linear speed of the top; it is also 
possible to interpret it as just the horizontal component of the linear speed but the 
difference between these interpretations is arguably negligible. Thus, Eq. 10-18 leads to 
 

ω =
×

= ×
−

−12 10
55

218 10
3

5. .m / y
m

rad / y  

 
which we convert (since there are about 3.16 × 107 s in a year) to ω = 6.9 × 10–13 rad/s. 
 
22. (a) Using Eq. 10-6, the angular velocity at t = 5.0s is 
 

ω θ
= = = =

= =

d
dt

d
dt

t
t t5 0

2

5 0

0 30 2 0 30 50 30
. .

. ( . )( . ) .c h rad / s.  

 
(b) Equation 10-18 gives the linear speed at t = 5.0s: (3.0 rad/s)(10 m) 30 m/s.v rω= = =  
  
(c) The angular acceleration is, from Eq. 10-8, 
 

α ω
= = =

d
dt

d
dt

t( . ) . .0 60 0 60 rad / s2

 
 
Then, the tangential acceleration at t = 5.0s is, using Eq. 10-22, 
 

a rt = = =α ( . .10 6 0m) 0.60 rad / s m / s2 2c h  
 
(d) The radial (centripetal) acceleration is given by Eq. 10-23: 
 

a rr = = =ω 2 230 10 90. .rad / s m m / s2b g b g  
 

23. The linear speed of the flywheel is related to its angular speed by v rω= , where r is 
the radius of the wheel. As the wheel is accelerated, its angular speed at a later time is 

0 tω ω α= + . 
 
(a) The angular speed of the wheel, expressed in rad/s, is 
 

0
(200 rev/min)(2 rad/rev) 20.9 rad/s.

60 s / min
ω π

= =  

 
(b) With r = (1.20 m)/2 = 0.60 m, using Eq. 10-18, we find the linear speed to be 
 

0 (0.60 m)(20.9 rad/s) 12.5 m/s.v rω= = =  
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(c) With t = 1 min, ω = 1000 rev/min and ω0 = 200 rev/min, Eq. 10-12 gives the required 
acceleration: 

α ω ω
=

−
=o rev

t
800 2/ min .  

 
(d) With the same values used in part (c), Eq. 10-15 becomes 
 

( )o
1 1 (200 rev/min 1000 rev/min)(1.0 min) 600 rev.
2 2

tθ ω ω= + = + =  

 
Note: An alternative way to solve for (d) is to use Eq. 10-13: 
 

2 2 2
0 0

1 10 (200 rev/min)(1.0 min) (800 rev/min )(1.0 min) 600 rev.
2 2

t tθ θ ω α= + + = + + =  

 
24. Converting 331

3  rev/min to radians-per-second, we get ω = 3.49 rad/s. Combining 
v rω= (Eq. 10-18) with Δt = d/v where Δt is the time between bumps (a distance d apart), 
we arrive at the rate of striking bumps: 

 1 199 / sr
t d

ω
= ≈

Δ
. 

 
25. The linear speed of a point on Earth’s surface depends on its distance from the axis of 
rotation. To solve for the linear speed, we use v = ω r, where r is the radius of its orbit. A 
point on Earth at a latitude of 40° moves along a circular path of radius r = R cos 40°, 
where R is the radius of Earth (6.4 × 106 m). On the other hand, r = R at the equator. 
 
(a) Earth makes one rotation per day and 1 d is (24 h) (3600 s/h) = 8.64 × 104 s, so the 
angular speed of Earth is 

5
4

2 rad 7.3 10 rad/s.
8.64 10 s

ω −π
= = ×

×
 

 
(b) At latitude of 40°, the linear speed is   
 

5 6 2( cos 40 ) (7.3 10 rad/s)(6.4 10 m)cos40 3.5 10 m/s.v Rω −= ° = × × ° = ×  
 
(c) At the equator (and all other points on Earth) the value of ω is the same (7.3 × 10–5 
rad/s). 
 
(d) The latitude at the equator is 0° and the speed is 
 

5 6 2(7.3 10 rad/s)(6.4 10 m) 4.6 10 m/s.v Rω −= = × × = ×  
 
Note: The linear speed at the poles is zero since cos90 0r R= ° = . 
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26. (a) The angular acceleration is 
 

α ω
= =

−
= −

Δ
Δt

0 150
2 2

114 rev / min
 h)(60 min / 1h)

 rev / min2

( .
. .  

 
(b) Using Eq. 10-13 with t = (2.2) (60) = 132 min, the number of revolutions is 
 

( )( )22 2 3
0

1 1(150 rev/min)(132 min) 1.14 rev/min 132 min 9.9 10 rev.
2 2

t tθ ω α= + = + − = ×  

 
(c) With r = 500 mm, the tangential acceleration is 
 

a rt = = −
F
HG

I
KJ
F
HG
I
KJα 114

2

. rev / min 2 rad
1 rev

1 min
60 s

(500 mm)2c h π  

 
which yields at = –0.99 mm/s2. 
 
(d) The angular speed of the flywheel is  
 

(75 rev/min)(2 rad/rev)(1 min/ 60 s) 7.85 rad/s.ω = π =  
 
With r = 0.50 m, the radial (or centripetal) acceleration is given by Eq. 10-23: 
 

2 2 2(7.85 rad/s) (0.50 m) 31 m/sra rω= = ≈  
 
which is much bigger than at. Consequently, the magnitude of the acceleration is 
 

| | .a a a ar t r= + ≈ =2 2 31 m / s2  
 
27. (a) The angular speed in rad/s is 
 

ω = FHG
I
KJ
F
HG

I
KJ =33 1

3
2
60

349rev / min rad / rev
s / min

rad / s.π .  

 
Consequently, the radial (centripetal) acceleration is (using Eq. 10-23) 
 

a r= = × =−ω 2 2 2349 6 0 10. ( . .rad / s m) 0.73 m / s2b g  
 
(b) Using Ch. 6 methods, we have ma = fs ≤  fs,max = μs mg, which is used to obtain the 
(minimum allowable) coefficient of friction: 
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μ s
a
g,min

.
.

. .= = =
0 73
9 8

0 075  

 
(c) The radial acceleration of the object is ar = ω2r, while the tangential acceleration is at 
= αr. Thus, 

| | ( ) ( ) .a a a r r rr t= + = + = +2 2 2 2 2 4 2ω α ω α  
 
If the object is not to slip at any time, we require 
 

f mg ma mrs s,max max max .= = = +μ ω α4 2  
 
Thus, since α = ω/t (from Eq. 10-12), we find 
 

4 2 4 2 4 2
max max max

,min

( / ) (0.060) 3.49 (3.4 / 0.25)
0.11.

9.8s

r r t
g g

ω α ω ω
μ

+ + +
= = = =

 

 
28. Since the belt does not slip, a point on the rim of wheel C has the same tangential 
acceleration as a point on the rim of wheel A. This means that αArA = αCrC, where αA is 
the angular acceleration of wheel A and αC is the angular acceleration of wheel C. Thus, 
 

α αC
A

C
C

r
r

=
F
HG
I
KJ =
F
HG
I
KJ =

10
25

16 0 64cm
cm

rad / s rad / s2 2( . ) . .  

 
With the angular speed of wheel C given by C Ctω α= , the time for it to reach an angular 
speed of ω = 100 rev/min = 10.5 rad/s starting from rest is 
 

t C

C

= = =
ω
α

10 5
0 64

16.
.

rad / s
rad / s

s.2  

 
29. (a) In the time light takes to go from the wheel to the mirror and back again, the 
wheel turns through an angle of θ = 2π/500 = 1.26 × 10–2 rad. That time is 
 

t
c

= =
×

= × −2 2 500
2 998 10

3 34 108
6(

.
.m)

m / s
s  

 
so the angular velocity of the wheel is 
 

ω θ
= =

×
×

= ×
−

−t
126 10

334 10
38 10

2

6
3.

.
.rad

s
rad / s.  

 
(b) If r is the radius of the wheel, the linear speed of a point on its rim is 
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( ) ( )3 23.8 10 rad/s 0.050 m 1.9 10 m/s.v rω= = × = ×  

 
30. (a) The tangential acceleration, using Eq. 10-22, is 
 

a rt = = =α 14 2 2 83. ( . .rad / s cm) 40.2 cm / s2 2c h  
 
(b) In rad/s, the angular velocity is ω = (2760)(2π/60) = 289 rad/s, so 
 

a rr = = = ×ω 2 289 0 0283( ( . .rad / s) m) 2.36 10 m / s2 3 2  
 
(c) The angular displacement is, using Eq. 10-14, 
 

2 2
3

2

(289 rad/s) 2.94 10 rad.
2 2(14.2 rad/s )
ωθ
α

= = = ×  

 
Then, using Eq. 10-1, the distance traveled is 
 

s r= = × =θ ( .0 0283 m) (2.94 10 rad) 83.2 m.3  
 
31. (a) The upper limit for centripetal acceleration (same as the radial acceleration – see 
Eq. 10-23) places an upper limit of the rate of spin (the angular velocity ω) by 
considering a point at the rim (r = 0.25 m).  Thus, ωmax = a/r  = 40 rad/s. Now we apply 
Eq. 10-15 to first half of the motion (where ωo = 0): 
 

θ − θo =  12 (ωo + ω)t  ⇒    400 rad  =  12 (0 + 40 rad/s)t 
 
which leads to t = 20 s.  The second half of the motion takes the same amount of time 
(the process is essentially the reverse of the first); the total time is therefore 40 s. 
 
(b) Considering the first half of the motion again, Eq. 10-11 leads to 
 

ω = ωo + α t    ⇒    α  =   
40 rad/s

20 s     =  2.0 rad/s2 . 

 
32. (a) A complete revolution is an angular displacement of Δθ = 2π rad, so the angular 
velocity in rad/s is given by ω = Δθ/T = 2π/T. The angular acceleration is given by 
 

α ω
= = −

d
dt T

dT
dt

2
2

π .  

 
For the pulsar described in the problem, we have 
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dT
dt

=
×
×

= ×
−

−126 10
316 10

4 00 10
5

7
13.

.
. .s / y

s / y
 

Therefore, 

α = −
F
HG

I
KJ × = − ×− −2

0 033
4 00 10 2 3 1013 9π

( .
( . ) . .

s)
rad / s2

2  

 
The negative sign indicates that the angular acceleration is opposite the angular velocity 
and the pulsar is slowing down. 
 
(b) We solve ω = ω0 + αt for the time t when ω = 0: 
 

 10 30
9 2

2 2 8.3 10 s 2.6 10   years
( 2.3 10 rad/s )(0.033 s)

t
T

ω π π
α α −= − = − = − = × ≈ ×

− ×
 

 
(c) The pulsar was born 1992–1054 = 938 years ago. This is equivalent to (938 y)(3.16 × 
107 s/y) = 2.96 × 1010 s. Its angular velocity at that time was 
 

9 2 10
0

2 2 ( 2.3 10 rad/s )( 2.96 10 s) 258 rad/s.
0.033 s

t t
T

ω ω α α −π π
= + + + = + − × − × =  

 
Its period was 

T = = = × −2 2
258

2 4 10 2π π
ω rad / s

s..  

 
33. The kinetic energy (in J) is given by K I= 1

2
2ω ,  where I is the rotational inertia (in 

kg m2⋅ ) and ω is the angular velocity (in rad/s). We have 
 

ω = =
( .602

60
63 0rev / min)(2 rad / rev)

s / min
rad / s.π  

 
Consequently, the rotational inertia is 
 

I K
= = = ⋅

2 2 24400
63 0

12 32ω
(

( .
. .J)

rad / s)
kg m2

2  

 
34. (a) Equation 10-12 implies that the angular acceleration α should be the slope of the 
ω vs t graph.  Thus, α = 9/6 = 1.5 rad/s2. 
 
(b) By Eq. 10-34, K is proportional to ω2.  Since the angular velocity at t = 0 is –2 rad/s 
(and this value squared is 4) and the angular velocity at t = 4 s is 4 rad/s (and this value 
squared is 16), then the ratio of the corresponding kinetic energies must be 
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Ko
 K4

  =  
4
16    ⇒   Ko  = K4/4  =  0.40 J . 

 
35. Since the rotational inertia of a cylinder is I MR= 1

2
2  (Table 10-2(c)), its rotational 

kinetic energy is 
2 2 21 1 .

2 4
K I MRω ω= =  

(a) For the smaller cylinder, we have 
 

2 2 3 3
1

1 (1.25 kg)(0.25 m) (235 rad/s) 1.08 10 J 1.1 10 J.
4

K = = × ≈ ×  

 
(b) For the larger cylinder, we obtain  
 

2 2 3 3
2

1 (1.25 kg)(0.75 m) (235 rad/s) 9.71 10 J 9.7 10 J.
4

K = = × ≈ ×  

 
36. The parallel axis theorem (Eq. 10-36) shows that I increases with h.  The phrase “out 
to the edge of the disk” (in the problem statement) implies that the maximum h in the 
graph is, in fact, the radius R of the disk.  Thus, R = 0.20 m.  Now we can examine, say, 
the h = 0 datum and use the formula for Icom (see Table 10-2(c)) for a solid disk, or 
(which might be a little better, since this is independent of whether it is really a solid disk) 
we can the difference between the h = 0 datum and the h = hmax =R datum and relate that 
difference to the parallel axis theorem (thus the difference is M(hmax)2  = 0.10 2kg m⋅ ).  In 
either case, we arrive at M = 2.5 kg. 
 
37. We use the parallel axis theorem: I = Icom + Mh2, where Icom is the rotational inertia 
about the center of mass (see Table 10-2(d)), M is the mass, and h is the distance between 
the center of mass and the chosen rotation axis. The center of mass is at the center of the 
meter stick, which implies h = 0.50 m – 0.20 m = 0.30 m. We find 
 

I MLcom
2kg m kg m= = = × ⋅−1

12
1

12
0 56 10 4 67 102 2 2. . . .b gb g  

 
Consequently, the parallel axis theorem yields 
 

I = × ⋅ + = × ⋅− −4 67 10 056 0 30 9 7 102 2 2. . . . .kg m kg m kg m2 2b gb g  
 
38. (a) Equation 10-33 gives  

Itotal = md2 + m(2d)2 + m(3d)2 = 14 md2. 
 
If the innermost one is removed then we would only obtain m(2d)2 + m(3d)2 = 13 md2.  
The percentage difference between these is (13 – 14)/14 = 0.0714 ≈ 7.1%. 
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(b) If, instead, the outermost particle is removed, we would have md2 + m(2d)2 = 5 md2.  
The percentage difference in this case is 0.643 ≈ 64%. 
 
39. (a) Using Table 10-2(c) and Eq. 10-34, the rotational kinetic energy is 
 

2 2 2 2 2 71 1 1 1 (500 kg)(200  rad/s) (1.0 m) 4.9 10 J.
2 2 2 4

K I MRω ω π⎛ ⎞= = = = ×⎜ ⎟
⎝ ⎠

 

 
(b) We solve P = K/t (where P is the average power) for the operating time t. 
 

t K
P

= =
×

×
= ×

4 9 10 6 2 10
7

3. .J
8.0 10 W

s3  

 
which we rewrite as t ≈ 1.0 ×102 min. 
 
40. (a) Consider three of the disks (starting with the one at point O): ⊕OO .  The first one 
(the one at point O, shown here with the plus sign inside) has rotational inertial (see item 
(c)  in Table 10-2) I = 12 mR2.  The next one (using the parallel-axis theorem) has  
 

I = 12 mR2 + mh2 
 
where h = 2R. The third one has I = 12 mR2 + m(4R)2. If we had considered five of the 
disks  OO⊕OO  with the one at O in the middle, then the total rotational inertia is  
 

I = 5(1
2 mR2) + 2(m(2R)2 + m(4R)2). 

 
The pattern is now clear and we can write down the total I for the collection of fifteen 
disks: 

I = 15(1
2 mR2) + 2(m(2R)2 + m(4R)2 + m(6R)2+ … + m(14R)2) = 2255

2  mR2. 
 
The generalization to N disks (where N is assumed to be an odd number) is 
  

I =  16(2N2 + 1)NmR2. 
 
In terms of the total mass (m = M/15) and the total length (R = L/30), we obtain  
 

I = 0.083519ML2 ≈  (0.08352)(0.1000 kg)(1.0000 m)2 = 8.352 ×10−3 kg‧ m2. 
 
(b) Comparing to the formula (e) in Table 10-2 (which gives roughly I =0.08333 ML2), 
we find our answer to part (a) is 0.22% lower. 
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41. The particles are treated “point-like” in the sense that Eq. 10-33 yields their rotational 
inertia, and the rotational inertia for the rods is figured using Table 10-2(e) and the 
parallel-axis theorem (Eq. 10-36). 
 
(a) With subscript 1 standing for the rod nearest the axis and 4 for the particle farthest 
from it, we have 
 

2 2
2 2 2 2

1 2 3 4

2 2 2 2

2

1 1 1 3 (2 )
12 2 12 2

8 85 (1.2 kg)(0.056 m) +5(0.85 kg)(0.056 m)
3 3

=0.023 kg m .

I I I I I Md M d md Md M d m d

Md md

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + = + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= + =

⋅

 

 
(b) Using Eq. 10-34, we have 
 

2 2 2 2 2

3

1 4 5 4 5(1.2 kg) (0.85 kg) (0.056 m) (0.30 rad/s)
2 3 2 3 2

1.1 10  J.

K I M m dω ω

−

⎛ ⎞ ⎡ ⎤= = + = +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
= ×

 

 
42. (a) We apply Eq. 10-33: 
 

( ) ( )( ) ( ) ( )
4

2 2 2 22 2 3 2

1
50 2.0 25 4.0 25 3.0 30 4.0 g cm 1.3 10  g cm .x i i

i
I m y

=

⎡ ⎤= = + + − + ⋅ = × ⋅⎣ ⎦∑  

 
(b) For rotation about the y axis we obtain 
 

I m xy i i
i

= = + + + = × ⋅
=
∑ 2

1

4
2 2 2 2 250 2 0 25 0 25 3 0 30 2 0 55 10. . . . .b g b g b g b g b g   g cm2  

 
(c) And about the z axis, we find (using the fact that the distance from the z axis is 

x y2 2+ ) 

I m x y I Iz i i i x y
i

= + = + = × + × = × ⋅
=
∑ 2 2

1

4

c h 1.3 10 5.5 10 1.9 10  g cm3 2 2 2 .  

 
(d) Clearly, the answer to part (c) is A + B. 
 
43. Since the rotation axis does not pass through the center of the block, we use the 
parallel-axis theorem to calculate the rotational inertia. According to Table 10-2(i), the 
rotational inertia of a uniform slab about an axis through the center and perpendicular to 
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the large faces is given by I M a bcom = +
12

2 2c h.  A parallel axis through the corner is a 

distance h a b= +/ /2 22 2b g b g  from the center. Therefore,  
 

( ) ( ) ( )2 2 2 2 2 2 2
com .

12 4 3
M M MI I Mh a b a b a b= + = + + + = +  

 
With 0.172 kgM = , 3.5 cm,a =  and 8.4 cmb = , we have 
  

( )2 2 2 2 4 20.172 kg [(0.035 m) (0.084 m) ] 4.7 10  kg m .
3 3
MI a b −= + = + = × ⋅  

 
44. (a) We show the figure with its axis of rotation (the thin horizontal line). 
 

 
 
We note that each mass is  r = 1.0 m from the axis. Therefore, using Eq. 10-26, we obtain  
 

2 2 24 (0.50 kg) (1.0 m) 2.0 kg m .i iI m r= = = ⋅∑  
 
(b) In this case, the two masses nearest the axis are r = 1.0 m away from it, but the two 
furthest from the axis are 2 2(1.0 m) (2.0 m)r = +  from it. Here, then, Eq. 10-33 leads to 
 

I m ri i= = + = ⋅∑ 2 2 22 0 50 10 2 0 50 5 0 6 0. . . . . . kg   m  kg   m  kg m2b g c h b g c h  
 
(c) Now, two masses are on the axis (with r = 0) and the other two are a distance 

2 2(1.0 m) (1.0 m)r = +  away. Now we obtain 22.0 kg m .I = ⋅  
 
45. We take a torque that tends to cause a counterclockwise rotation from rest to be 
positive and a torque tending to cause a clockwise rotation to be negative. Thus, a 
positive torque of magnitude r1 F1 sin θ1 is associated with F1  and a negative torque of 
magnitude r2F2 sin θ2 is associated with F2 . The net torque is consequently 
 

τ θ θ= −r F r F1 1 1 2 2 2sin sin .  
 
Substituting the given values, we obtain 
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 (1.30 m)(4.20 N)sin 75 (2.15 m)(4.90 N)sin 60 3.85 N m.τ = ° − ° = − ⋅  
 
46. The net torque is 
 

 
sin sin sin

(10)(8.0)sin135 (16)(4.0)sin 90 (19)(3.0)sin160
12 N m.

A B C A A A B B B C C CF r F r F rτ τ τ τ φ φ φ= + + = − +
= ° − ° + °
= ⋅

 

 
47. Two forces act on the ball, the force of the rod and the force of gravity. No torque 
about the pivot point is associated with the force of the rod since that force is along the 
line from the pivot point to the ball.  
 

 
 
As can be seen from the diagram, the component of the force of gravity that is 
perpendicular to the rod is mg sin θ. If  is the length of the rod, then the torque 
associated with this force has magnitude  
 

sinmgτ θ= = (0.75)(9.8)(1.25)sin 30° = 4.6 N m⋅ . 
 
For the position shown, the torque is counterclockwise. 
 
48. We compute the torques using τ = rF sin φ. 
 
(a) For 30φ = ° , (0.152 m)(111 N)sin 30 8.4 N maτ = ° = ⋅ . 
 
(b) For 90φ = ° , (0.152 m)(111 N)sin 90 17 N mbτ = ° = ⋅ . 
 
(c) For 180φ = ° , (0.152 m)(111N)sin180 0cτ = ° = . 
 
49. (a) We use the kinematic equation ω ω α= +0 t , where ω0 is the initial angular 
velocity, ω is the final angular velocity, α is the angular acceleration, and t is the time. 
This gives 
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α ω ω
=

−
=

×
=−

0
3

26 20
220 10

28 2
t

. . .rad / s
s

rad / s  

 
(b) If I is the rotational inertia of the diver, then the magnitude of the torque acting on her 
is  

τ α= = ⋅ = × ⋅I 12 0 28 2 3 38 102 2. . .kg m rad / s N m.2c hc h  
 

50. The rotational inertia is found from Eq. 10-45. 
 

I = = = ⋅
τ
α

32 0
25 0

128.
.

. kg m2  

 
51. (a) We use constant acceleration kinematics. If down is taken to be positive and a is 
the acceleration of the heavier block m2, then its coordinate is given by y at= 1

2
2 , so 

 

a y
t

= = = × −2 2 0 750
5 00

6 00 102 2
2 2( . )

( . )
. .m

s
m / s  

 
Block 1 has an acceleration of  6.00 × 10–2 m/s2 upward. 
 
(b) Newton’s second law for block 2 is 2 2 2m g T m a− = , where m2 is its mass and T2 is the 
tension force on the block. Thus, 
 

( )2 2 2
2 2 ( ) (0.500 kg) 9.8 m/s 6.00 10 m/s 4.87 N.T m g a −= − = − × =  

 
(c) Newton’s second law for block 1 is 1 1 1 ,m g T m a− = −  where T1 is the tension force on 
the block. Thus, 
 

( )2 2 2
1 1( ) (0.460 kg) 9.8 m/s 6.00 10 m/s 4.54 N.T m g a −= + = + × =  

 
(d) Since the cord does not slip on the pulley, the tangential acceleration of a point on the 
rim of the pulley must be the same as the acceleration of the blocks, so  
 

α = =
×

×
=

−

−

a
R

6 00 10
500 10

120
2 2

2
2.

.
. .m / s

m
rad / s  

 
(e) The net torque acting on the pulley is 2 1( )T T Rτ = − . Equating this to Iα we solve for 
the rotational inertia: 
 

 ( ) ( )( )2
2 1 2 2

2

4.87 N 4.54 N 5.00 10 m
1.38 10 kg m .

1.20 rad/s
T T R

I
α

−
−

− ×−
= = = × ⋅  
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52. According to the sign conventions used in the book, the magnitude of the net torque 
exerted on the cylinder of mass m and radius R is 
 

net 1 2 3 (6.0 N)(0.12 m) (4.0 N)(0.12 m) (2.0 N)(0.050 m) 71N m.F R F R F rτ = − − = − − = ⋅  
 
(a) The resulting angular acceleration of the cylinder (with I MR= 1

2
2  according to Table 

10-2(c)) is 

 2net
21

2

71N m 9.7 rad/s
(2.0 kg)(0.12 m)I

τα ⋅
= = = . 

 
(b) The direction is counterclockwise (which is the positive sense of rotation). 
 
53. Combining Eq. 10-45 (τnet  = I α) with Eq. 10-38 gives RF2 – RF1 = Iα ,  where 

/ tα ω=  by Eq. 10-12 (with ωο = 0). Using item (c) in Table 10-2 and solving for F2  we 
find 

F2 = 
2

MR
t
ω

  + F1  =   (0.02)(0.02)(250)
2(1.25)    +  0.1 =  0.140 N. 

 
54. (a) In this case, the force is mg = (70 kg)(9.8 m/s2), and the “lever arm” (the 
perpendicular distance from point O to the line of action of the force) is 0.28 m.  Thus, 
the torque (in absolute value) is (70 kg)(9.8 m/s2)(0.28 m).  Since the moment-of-inertia 
is I = 65 2kg m⋅ , then Eq. 10-45 gives |α| = 2.955 ≈ 3.0 rad/s2.  
 
(b) Now we have another contribution (1.4 m × 300 N) to the net torque, so 
 

|τnet| = (70 kg)(9.8 m/s2)(0.28 m) + (1.4 m)(300 N) = (65 2kg m⋅ ) |α| 
 
which leads to |α| = 9.4 rad/s2. 
 
55. Combining Eq. 10-34 and Eq. 10-45, we have RF = Iα, where α is given by ω/t 
(according to Eq. 10-12, since ωo = 0 in this case). We also use the fact that 
 

I =  Iplate + Idisk 
 
where Idisk = 12 MR2  (item (c) in Table 10-2). Therefore,  

Iplate =  RFt
 ω   –  12 MR2  =  2.51 × 10−4 2kg m⋅ . 

 
56. With counterclockwise positive, the angular acceleration α for both masses satisfies 
 

( )2 2
1 2 1 2 ,mgL mgL I mL mLτ α α= − = = +  
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by combining Eq. 10-45 with Eq. 10-39 and Eq. 10-33. Therefore, using SI units, 
 

( ) ( )( )2
1 2 2

2 2 2 2
1 2

9.8 m/s 0.20 m 0.80 m
8.65 rad/s

(0.20 m) (0.80 m)
g L L

L L
α

−−
= = = −

+ +
 

 
where the negative sign indicates the system starts turning in the clockwise sense. The 
magnitude of the acceleration vector involves no radial component (yet) since it is 
evaluated at t = 0 when the instantaneous velocity is zero. Thus, for the two masses, we 
apply Eq. 10-22: 
 
(a) ( )( )2

1 1| | 8.65 rad/s 0.20 m 1.7 m/s.a Lα= = =  
 
(b) ( )( )2 2

2 2| | 8.65 rad/s 0.80 m 6.9 m/s .a Lα= = =  
 
57. Since the force acts tangentially at r = 0.10 m, the angular acceleration (presumed 
positive) is 

α τ
= = =

+

×
= +−I

Fr
I

t t
t t

05 0 3 010
10 10

50 30
2

3
2

. . .
.

c hb g
 

in SI units (rad/s2). 
 
(a) At t = 3 s, the above expression becomes α = 4.2 × 102 rad/s2. 
 
(b) We integrate the above expression, noting that ωo = 0, to obtain the angular speed at t 
= 3 s: 

( )3 2 3 3 2

0 0
25 10 5.0 10 rad/s.dt t tω α= = + = ×∫  

 
58. (a) The speed of v of the mass m after it has descended d = 50 cm is given by v2 = 2ad 
(Eq. 2-16). Thus, using g = 980 cm/s2, we have 
 

v ad mg d
M m

= =
+

=
+

= ×2 2(2
2

4(50)(980)(50)
2(50)

1.4 10  cm / s.2)
400

 

 
(b) The answer is still 1.4 × 102 cm/s = 1.4 m/s, since it is independent of R. 
 
59. With ω = (1800)(2π/60) = 188.5 rad/s, we apply Eq. 10-55: 
 

 74600 W 396 N m
188.5 rad/s

P τω τ= ⇒ = = ⋅ . 

 
60. (a) We apply Eq. 10-34: 
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2 2 2 2 2

2 2

1 1 1 1
2 2 3 6
1 (0.42 kg)(0.75 m) (4.0 rad/s) 0.63 J.
6

K I mL mLω ω ω⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= =
 

 
(b) Simple conservation of mechanical energy leads to K = mgh. Consequently, the 
center of mass rises by 
 

2 2 2 2 2 2

2

(0.75 m) (4.0 rad/s) 0.153 m 0.15 m.
6 6 6(9.8 m/s )

K mL Lh
mg mg g

ω ω
= = = = = ≈  

 
61. The initial angular speed is ω  = (280 rev/min)(2π/60) = 29.3 rad/s.  
 
(a) Since the rotational inertia is (Table 10-2(a)) 2 2(32 kg) (1.2 m) 46.1 kg mI = = ⋅ , the 
work done is 

2 2 2 41 10 (46.1 kg m ) (29.3 rad/s) 1.98 10  J
2 2

W K Iω= Δ = − = − ⋅ = − ×  . 

 
(b) The average power (in absolute value) is therefore 
 

| | |P W
t

= =
×

= ×
| 19.8 10 1.32 10  W.

3
3

Δ 15
 

62. (a) Eq. 10-33 gives  
 

Itotal = md2 + m(2d)2 + m(3d)2 = 14 md2, 
 
where d = 0.020 m and m = 0.010 kg.  The work done is  
 

W = ΔK = 12 Iωf
 2  –  12 Iωi

2, 
 
where ωf  = 20 rad/s and ωi = 0.  This gives W = 11.2 mJ. 
 
(b) Now, ωf  = 40 rad/s and ωi = 20 rad/s, and we get W = 33.6 mJ. 
 
(c) In this case, ωf  = 60 rad/s and ωi = 40 rad/s.  This gives W = 56.0 mJ. 
 
(d) Equation 10-34 indicates that the slope should be 12 I.  Therefore, it should be  
 

7md2 = 2.80 × 10−5 J.s2/ rad2. 
 
63. We use  to denote the length of the stick. Since its center of mass is / 2  from 
either end, its initial potential energy is 1

2 mg ,  where m is its mass. Its initial kinetic 
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energy is zero. Its final potential energy is zero, and its final kinetic energy is 1
2

2Iω ,  
where I is its rotational inertia about an axis passing through one end of the stick and ω is 
the angular velocity just before it hits the floor. Conservation of energy yields 
 

1
2

2mg I mg
I

= ⇒ =
1
2

ω ω .  

 
The free end of the stick is a distance  from the rotation axis, so its speed as it hits the 
floor is (from Eq. 10-18) 

v mg
I

= =ω
3

.  

 
Using Table 10-2 and the parallel-axis theorem, the rotational inertial is I m= 1

3
2 , so 

 

v g= = =3 3 9.8 m / s 1.00 m  5.42 m / s.2c hb g  

 
64. (a) We use the parallel-axis theorem to find the rotational inertia: 
 

 ( )( ) ( )( )2 22 2 2 2
com

1 1 20 kg 0.10 m 20 kg 0.50 m 0.15 kg m .
2 2

I I Mh MR Mh= + = + = + = ⋅  

 
(b) Conservation of energy requires that Mgh I= 1

2 ω 2 , where ω is the angular speed of 
the cylinder as it passes through the lowest position. Therefore, 
 

2

2

2 2(20 kg) (9.8 m/s ) (0.050 m) 11 rad/s.
0.15 kg m

Mgh
I

ω = = =
⋅

 

 
65. (a) We use conservation of mechanical energy to find an expression for ω2 as a 
function of the angle θ that the chimney makes with the vertical. The potential energy of 
the chimney is given by U = Mgh, where M is its mass and h is the altitude of its center 
of mass above the ground. When the chimney makes the angle θ with the vertical, h = 
(H/2) cos θ. Initially the potential energy is Ui = Mg(H/2) and the kinetic energy is zero. 
The kinetic energy is 1

2
2Iω  when the chimney makes the angle θ with the vertical, where 

I is its rotational inertia about its bottom edge. Conservation of energy then leads to 
 

MgH Mg H I MgH I/ ( / ) / ) (2 2 12= + ⇒ = −cos 1
2

( cos ).2θ ω ω θ  

 
The rotational inertia of the chimney about its base is I = MH2/3 (found using Table  
10-2(e) with the parallel axis theorem). Thus 
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23 3(9.80 m/s )(1 cos ) (1 cos35.0 ) 0.311 rad/s.
55.0 m

g
H

ω θ= − = − ° =  

 
(b) The radial component of the acceleration of the chimney top is given by ar = Hω2, so  
 

ar = 3g (1 – cos θ) = 3 (9.80 m/s2)(1– cos 35.0 ° ) = 5.32 m/s2 . 
 
(c) The tangential component of the acceleration of the chimney top is given by at = Hα, 
where α is the angular acceleration. We are unable to use Table 10-1 since the 
acceleration is not uniform. Hence, we differentiate  
 

ω2 = (3g/H)(1 – cos θ) 
 
with respect to time, replacing dω / dt with α, and dθ / dt with ω, and obtain 
 

d
dt

g H g Hω ωα ω θ α θ
2

2= = ⇒ =2 (3  sin (3 sin ./ ) / )  

Consequently,  
2

23(9.80 m/s )3 sin sin 35.0 8.43 m/s .2 2
ga Ht α θ= = = ° =  

 
(d) The angle θ at which at = g is the solution to 3

2
g g sin   θ = .  Thus, sin θ = 2/3 and we 

obtain θ = 41.8°. 
 
66. From Table 10-2, the rotational inertia of the spherical shell is 2MR2/3, so the kinetic 
energy (after the object has descended distance h) is 
 

K MR I mv= FHG
I
KJ + +

1
2

2
3

1
2

1
2sphere pulley

2 2 2 2ω ω .  

 
Since it started from rest, then this energy must be equal (in the absence of friction) to the 
potential energy mgh with which the system started. We substitute v/r for the pulley’s 
angular speed and v/R for that of the sphere and solve for v. 
 

2
21 1

2 2 3

3 2

2 
1 ( / ) (2 / 3 )

2(9.8)(0.82) 1.4 m/s.
1 3.0 10 /((0.60)(0.050) ) 2(4.5) / 3(0.60)

I M
r

mgh ghv
m I mr M m

−

= =
+ + + +

= =
+ × +

 

 
67. Using the parallel axis theorem and items (e) and (h) in Table 10-2, the rotational 
inertia is 
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I  =  1
12 mL2 + m(L/2)2  +  12 mR2  + m(R + L)2  = 10.83mR2 , 

 
where L = 2R  has been used.  If we take the base of the rod to be at the coordinate origin 
(x = 0, y = 0) then the center of mass is at  
 

y = 
mL/2 + m(L + R)

m + m   =  2R . 

 
Comparing the position shown in the textbook figure to its upside down (inverted) 
position shows that the change in center of mass position (in absolute value) is |Δy| = 4R.  
The corresponding loss in gravitational potential energy is converted into kinetic energy.  
Thus, 
                  K = (2m)g(4R)       ⇒      ω = 9.82 rad/s  
 
where Eq. 10-34 has been used. 
 
68. We choose ± directions such that the initial angular velocity is ω0 = – 317 rad/s and 
the values for α, τ, and F are positive. 
 
(a) Combining Eq. 10-12 with Eq. 10-45 and Table 10-2(f) (and using the fact that ω = 0) 
we arrive at the expression 

τ ω ω
= FHG

I
KJ −FHG

I
KJ = −

2
5

2
5

2 0
2

0MR
t

MR
t

.  

 
With t = 15.5 s, R = 0.226 m, and M = 1.65 kg, we obtain τ = 0.689 N · m. 
 
(b) From Eq. 10-40, we find F = τ /R = 3.05 N. 
 
(c) Using again the expression found in part (a), but this time with R = 0.854 m, we get 

9.84 N mτ = ⋅ .  
 
(d) Now, F = τ / R = 11.5 N. 
 
69. The volume of each disk is πr2h where we are using h to denote the thickness (which 
equals 0.00500 m).  If we use R (which equals 0.0400 m) for the radius of the larger disk 
and r (which equals 0.0200 m) for the radius of the smaller one, then the mass of each is 
m = ρπr2h and M = ρπR2h where ρ = 1400 kg/m3 is the given density.  We now use the 
parallel axis theorem as well as item (c) in Table 10-2 to obtain the rotation inertia of the 
two-disk assembly: 
 

   I = 12 MR2 +  12 mr2 + m(r + R)2 = ρπh[ 12 R4 + 
1
2 r4 + r2(r + R)2 ] = 6.16 × 10−5 2kg m⋅ . 
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70. The wheel starts turning from rest (ω0 = 0) at t = 0, and accelerates uniformly at 
22.00 rad/sα = . Between t1 and t2 the wheel turns through Δθ = 90.0 rad, where t2 – t1 = 

Δt = 3.00 s. We solve (b) first. 
 
(b) We use Eq. 10-13 (with a slight change in notation) to describe the motion for t1 ≤ t ≤ 
t2: 

Δ Δ Δ
Δ
Δ

Δθ ω α ω θ α
= + ⇒ = −1

2
1

1
2 2

t t
t

t( )  

 
which we plug into Eq. 10-12, set up to describe the motion during 0 ≤ t ≤ t1: 
 

 1 0 1 1 1
90.0 (2.00) (3.00) (2.00)

2 3.00 2
tt t t

t
θ αω ω α αΔ Δ

= + ⇒ − = ⇒ − =
Δ

 

 
yielding t1 = 13.5 s. 
 
(a) Plugging into our expression for ω1 (in previous part) we obtain 
 

ω θ α
1 2

90 0
3 00

2 00 3 00
2

27 0= − = − =
Δ
Δ

Δ
t

t .
.

( . )( . ) .  rad / s.  

 
71. We choose positive coordinate directions (different choices for each item) so that 
each is accelerating positively, which will allow us to set a2 = a1 = Rα (for simplicity, we 
denote this as a). Thus, we choose rightward positive for m2 = M (the block on the table), 
downward positive for m1 = M (the block at the end of the string) and (somewhat 
unconventionally) clockwise for positive sense of disk rotation. This means that we 
interpret θ given in the problem as a positive-valued quantity. Applying Newton’s second 
law to m1, m2 and (in the form of Eq. 10-45) to M, respectively, we arrive at the following 
three equations (where we allow for the possibility of friction f2 acting on m2). 
 

m g T m a
T f m a

T R T R I

1 1 1 1

2 2 2 2

1 2

− =
− =

− = α
 

 
(a) From Eq. 10-13 (with ω0 = 0) we find 
 

2 2
0 2 2

1 2 2(0.130 rad) 31.4 rad/s .
2 (0.0910 s)

t t
t
θθ ω α α= + ⇒ = = =  

 
(b) From the fact that a = Rα (noted above), we obtain  
 

 2
2 2

2 2(0.024 m)(0.130 rad) 0.754 m/s .
(0.0910 s)

Ra
t

θ
= = =  
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(c) From the first of the above equations, we find 
 

( ) 2
1 1 1 2 2

2 2(0.024 m)(0.130 rad)(6.20 kg) 9.80 m/s
(0.0910 s)

56.1 N.

RT m g a M g
t

θ ⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

 

 
(d) From the last of the above equations, we obtain the second tension: 
 

4 2 2

2 1
(7.40 10 kg m )(31.4 rad/s )56.1 N 55.1 N.

0.024 m
IT T
R
α −× ⋅

= − = − =  

 
72. (a) Constant angular acceleration kinematics can be used to compute the angular 
acceleration α. If ω0 is the initial angular velocity and t is the time to come to rest, then 

00 tω α= + , which gives 
2 20 39.0 rev/s 1.22 rev/s 7.66 rad/s

32.0 st
ωα = − = − = − = −  . 

 
(b) We use τ = Iα, where τ is the torque and I is the rotational inertia. The contribution of 
the rod to I is M 2 12/  (Table 10-2(e)), where M is its mass and  is its length. The 
contribution of each ball is m / ,2 2b g  where m is the mass of a ball. The total rotational 
inertia is 

I M m
= + = +

2 2 2 2

12
2

4
6 40 120

12
106 120

2
. . . .kg m kg mb gb g b gb g  

 
which yields I = 1.53 kg ⋅ m2. The torque, therefore, is 
 

τ = ⋅ − = − ⋅153 7 66 117. . .kg m rad / s N m.2 2c hc h  
 
(c) Since the system comes to rest the mechanical energy that is converted to thermal 
energy is simply the initial kinetic energy 
 

K Ii = = ⋅ = ×
1
2

1
2

153 2 39 4 59 100
2 2 4ω . .kg m rad / s J.2c h b gb gc hπ  

 
(d) We apply Eq. 10-13: 
 

θ ω α= + = + −0
2 21

2
2 39 32 0 1

2
7 66 32 0t t πb gb gc hb g c hb grad / s s rad / s s2. . .  

 
which yields 3920 rad or (dividing by 2π) 624 rev for the value of angular displacement θ. 
 



   CHAPTER 10 456 

(e) Only the mechanical energy that is converted to thermal energy can still be computed 
without additional information. It is 4.59 × 104 J no matter how τ varies with time, as 
long as the system comes to rest. 
 
73. The Hint given in the problem would make the computation in part (a) very 
straightforward (without doing the integration as we show here), but we present this 
further level of detail in case that hint is not obvious or — simply — in case one wishes 
to see how the calculus supports our intuition. 
 
(a) The (centripetal) force exerted on an infinitesimal portion of the blade with mass dm 
located a distance r from the rotational axis is (Newton’s second law) dF = (dm)ω2r, 
where dm can be written as (M/L)dr and the angular speed is  
 

( )( )320 2 60ω = π = 33.5 rad s . 
 
Thus for the entire blade of mass M and length L the total force is given by 
 

( ) ( ) ( )22
2 2

0

5

110kg 33.5 rad s 7.80m
2 2

4.81 10 N.

LM M LF dF rdm rdr
L

ωω ω= = = = =

= ×

∫ ∫ ∫  

 
(b) About its center of mass, the blade has I ML= 2 12/  according to Table 10-2(e), and 
using the parallel-axis theorem to “move” the axis of rotation to its end-point, we find the 
rotational inertia becomes I ML= 2 / 3. Using Eq. 10-45, the torque (assumed constant) is 
 

( )( )22 41 1 33.5rad/s110kg 7.8 m 1.12 10 N m.
3 3 6.7s

I ML
t
ωτ α

⎛ ⎞Δ⎛ ⎞⎛ ⎞= = = = × ⋅⎜ ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
(c) Using Eq. 10-52, the work done is 
 

( )( ) ( )2 22 2 2 61 1 1 10 110kg 7.80m 33.5rad/s 1.25 10 J.
2 2 3 6

W K I MLω ω⎛ ⎞= Δ = − = = = ×⎜ ⎟
⎝ ⎠

 

 
74. The angular displacements of disks A and B can be written as: 
 

 21, .
2A A B Bt tθ ω θ α= =  

(a) The time when A Bθ θ=  is given by 
  

 2
2

21 2(9.5 rad/s)   8.6 s.
2 (2.2 rad/s )

A
A B

B

t t t ωω α
α

= ⇒ = = =  
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(b) The difference in the angular displacement is  
 

 2 21 9.5 1.1 .
2A B A Bt t t tθ θ θ ω αΔ = − = − = −  

 
For their reference lines to align momentarily, we only require 2 Nθ πΔ = , where N is an 
integer. The quadratic equation can be readily solve to yield 
 

 
29.5 (9.5) 4(1.1)(2 ) 9.5 90.25 27.6 .

2(1.1) 2.2N
N Nt

π± − ± −
= =  

 
The solution 0 8.63 st = (taking the positive root) coincides with the result obtained in (a), 
while 0 0t = (taking the negative root) is the moment when both disks begin to rotate. In 
fact, two solutions exist for N = 0, 1, 2, and 3. 
 
75. The magnitude of torque is the product of the force magnitude and the distance from 
the pivot to the line of action of the force. In our case, it is the gravitational force that 
passes through the walker’s center of mass. Thus, 
 
 .I rF rmgτ α= = =  
 
(a) Without the pole, with 215 kg mI = ⋅ , the angular acceleration is  
 

2
2

2

(0.050 m)(70 kg)(9.8 m/s ) 2.3 rad/s .
15 kg m

rF rmg
I I

α = = = =
⋅

 

 
(b) When the walker carries a pole, the torque due to the gravitational force through the 
pole’s center of mass opposes the torque due to the gravitational force that passes through 
the walker’s center of mass. Therefore,  
 
 2 2

net (0.050 m)(70 kg)(9.8 m/s ) (0.10 m)(14 kg)(9.8 m/s ) 20.58 N mi i
i

r Fτ = = − = ⋅∑ , 

 
and the resulting angular acceleration is 
 

2net
2

20.58 N m 1.4 rad/s .
15 kg mI

τα ⋅
= = ≈

⋅
 

 
76. The motion consists of two stages. The first, the interval 0 ≤ t ≤ 20 s, consists of 
constant angular acceleration given by 
 

α = =
5 0

2 0
2 5 2.

.
. .rad s

s
rad s  
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The second stage, 20 < t ≤ 40 s, consists of constant angular velocity ω θ= Δ Δ/ .t  
Analyzing the first stage, we find 
 

 2
1 20

20

1 500 rad, 50 rad s.
2 t

t

t tθ α ω α
=

=

= = = =  

 
Analyzing the second stage, we obtain  
 

( )( ) 3
2 1 500 rad 50 rad/s 20 s 1.5 10 rad.tθ θ ω= + Δ = + = ×  

 
77. We assume the sense of initial rotation is positive. Then, with ω0 > 0 and ω = 0 (since 
it stops at time t), our angular acceleration is negative-valued. 
 
(a) The angular acceleration is constant, so we can apply Eq. 10-12 (ω = ω0 + αt). To 
obtain the requested units, we have t = 30/60 = 0.50 min. Thus, 
 

2 233.33 rev/min 66.7 rev/min 67 rev/min .
0.50 min

α = − = − ≈ −  

 
(b) We use Eq. 10-13:  

2 2 2
0

1 1(33.33 rev/min) (0.50 min) ( 66.7rev/min ) (0.50 min) 8.3 rev.
2 2

t tθ ω α= + = + − =  

 
78. We use conservation of mechanical energy. The center of mass is at the midpoint of 
the cross bar of the H and it drops by L/2, where L is the length of any one of the rods. 
The gravitational potential energy decreases by MgL/2, where M is the mass of the body. 
The initial kinetic energy is zero and the final kinetic energy may be written 1

2
2Iω , 

where I is the rotational inertia of the body and ω is its angular velocity when it is vertical. 
Thus, 

0 2 2= − + ⇒ =MgL I MgL I/ / .1
2

ω ω  

 
Since the rods are thin the one along the axis of rotation does not contribute to the 
rotational inertia. All points on the other leg are the same distance from the axis of 
rotation, so that leg contributes (M/3)L2, where M/3 is its mass. The cross bar is a rod that 
rotates around one end, so its contribution is (M/3)L2/3 = ML2/9. The total rotational 
inertia is  

I = (ML2/3) + (ML2/9) = 4ML2/9. 
 
Consequently, the angular velocity is 
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2

2

9 9(9.800 m/s ) 6.06 rad/s.
4 / 9 4 4(0.600 m)

MgL MgL g
I ML L

ω = = = = =  

 
79. (a) According to Table 10-2, the rotational inertia formulas for the cylinder (radius R) 
and the hoop (radius r) are given by 

I MR I MrC H= =
1
2

2 2and .  

 
Since the two bodies have the same mass, then they will have the same rotational inertia 
if  

R RH
2 22/ =   →   R RH = / 2 . 

 
(b) We require the rotational inertia to be written as I Mk= 2 , where M is the mass of the 
given body and k is the radius of the “equivalent hoop.” It follows directly that 
k I M= / . 
 
80. (a) Using Eq. 10-15, we have 60.0 rad = 12 (ω1 + ω2)(6.00 s) . With ω2 = 15.0 rad/s, 
then ω1 = 5.00 rad/s. 
 
(b) Eq. 10-12 gives α = (15.0 rad/s – 5.0 rad/s)/(6.00 s) = 1.67 rad/s2. 
 
(c) Interpreting ω now as ω1  and  θ as θ1  = 10.0 rad  (and ωo = 0)  Eq. 10-14 leads to 
 

θo =  – 
2

1

2
ω
α

 + θ1 = 2.50 rad . 

 
81. The center of mass is initially at height h L= °2 40sin  when the system is released 
(where L = 2.0 m). The corresponding potential energy Mgh (where M = 1.5 kg) becomes 
rotational kinetic energy 1

2
2Iω  as it passes the horizontal position (where I is the 

rotational inertia about the pin). Using Table 10-2 (e) and the parallel axis theorem, we 
find  

I ML M L ML= + =1
12

2 2 1
3

22( / ) .  
Therefore, 

 2 21 1 3 sin 40sin 40 3.1 rad/s.
2 2 3
L gMg ML

L
ω ω °⎛ ⎞° = ⇒ = =⎜ ⎟

⎝ ⎠
 

 
82. The rotational inertia of the passengers is (to a good approximation) given by Eq. 10-
53: I mR NmR= =∑ 2 2  where N is the number of people and m is the (estimated) mass 
per person. We apply Eq. 10-52: 
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2 2 21 1
2 2

W I NmRω ω= =  

 
where R = 38 m and N = 36 × 60 = 2160 persons. The rotation rate is constant so that ω = 
θ/t which leads to ω = 2π/120 = 0.052 rad/s. The mass (in kg) of the average person is 
probably in the range 50 ≤ m ≤ 100, so the work should be in the range 
 

1
2

2160 50 38 0 052 1
2

2160 100 38 0 052

2 10 4 10

2 2 2 2

5 5

b gb gb g b g b gb gb g b g. .≤ ≤

× ≤ ≤ ×

W

WJ J.
 

 
83. We choose positive coordinate directions (different choices for each item) so that 
each is accelerating positively, which will allow us to set a a R1 2= = α  (for simplicity, 
we denote this as a). Thus, we choose upward positive for m1, downward positive for m2, 
and (somewhat unconventionally) clockwise for positive sense of disk rotation. Applying 
Newton’s second law to m1m2 and (in the form of Eq. 10-45) to M, respectively, we 
arrive at the following three equations. 
 

T m g m a
m g T m a

T R T R I

1 1 1 1

2 2 2 2

2 1

− =
− =

− = α
 

 
(a) The rotational inertia of the disk is I MR= 1

2
2  (Table 10-2(c)), so we divide the third 

equation (above) by R, add them all, and use the earlier equality among accelerations — 
to obtain: 

m g m g m m M a2 1 1 2
1
2

− = + +F
HG

I
KJ  

which yields 24 1.57 m/s .25a g= =  

 
(b) Plugging back in to the first equation, we find  
 

1 1
29 4.55 N25T m g= =  

 
where it is important in this step to have the mass in SI units: m1 = 0.40 kg. 
 
(c) Similarly, with m2 = 0.60 kg, we find 2 2

5 4.94 N.6T m g= =  

 
84. (a) The longitudinal separation between Helsinki and the explosion site is 

 102 25 77 .θΔ = ° − ° = °  The spin of the Earth is constant at 
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ω = =
°1 rev

1 day
360
24 h

 

 
so that an angular displacement of Δθ  corresponds to a time interval of 
 

Δt = °
°

F
HG
I
KJ =77 24 h

360
5.1 h.b g  

 
(b) Now Δθ = °− − ° = °102 20 122b g  so the required time shift would be 
 

Δt = °
°

F
HG
I
KJ =122 24

360
81b g h h. .  

 
85. To get the time to reach the maximum height, we use Eq. 4-23, setting the left-hand 
side to zero.  Thus, we find  

t = 
(60 m/s)sin(20o)

9.8 m/s2   = 2.094 s. 

 
Then (assuming α = 0) Eq. 10-13 gives  
 

θ − θo = ωo t  = (90 rad/s)(2.094 s) = 188 rad, 
 
which is equivalent to roughly 30 rev. 
 
86. In the calculation below, M1 and M2 are the ring masses, R1i and R2i are their inner 
radii, and R1o and R2o are their outer radii.  Referring to item (b) in Table 10-2, we 
compute 

I = 12 M1 (R1i
2 + R1o

2) + 12 M2 (R2i
2 + R2o

2)   = 0.00346 2kg m⋅  . 
 
Thus, with Eq. 10-38 (τ = rF where r = R2o) and  τ  = Iα  (Eq. 10-45), we find  
 

α  = 
(0.140)(12.0)

0.00346   = 485 rad/s2 . 

 
Then Eq. 10-12 gives ω = αt = 146 rad/s. 
 
87. We choose positive coordinate directions so that each is accelerating positively, 
which will allow us to set abox = Rα (for simplicity, we denote this as a). Thus, we choose 
downhill positive for the m = 2.0 kg box and (as is conventional) counterclockwise for 
positive  sense of wheel rotation. Applying Newton’s second law to the box and (in the 
form of Eq. 10-45) to the wheel, respectively, we arrive at the following two equations 
(using θ as the incline angle 20°, not as the angular displacement of the wheel). 
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mg T ma
TR I

sinθ
α

− =
=

 

 
Since the problem gives a = 2.0 m/s2, the first equation gives the tension T = m (g sin θ – 
a) = 2.7 N. Plugging this and R = 0.20 m into the second equation (along with the fact 
that α = a/R) we find the rotational inertia  
 

I = TR2/a = 0.054 kg ⋅ m2. 
 
88. (a) We use τ = Iα, where τ is the net torque acting on the shell, I is the rotational 
inertia of the shell, and α is its angular acceleration. Therefore, 
 

I = =
⋅

= ⋅
τ
α

960
6 20

155N m
rad / s

kg m2
2

.
.  

 
(b) The rotational inertia of the shell is given by I = (2/3) MR2 (see Table 10-2 of the text). 
This implies 

M I
R

= =
⋅

=
3

2
3 155

2 190
64 42

2

2

kg m

m
kg

c h
b g.

. .  

 
89. Equation 10-40 leads to  τ = mgr = (70 kg) (9.8 m/s2) (0.20 m) = 1.4 × 102 N m⋅ . 
 
90. (a) Equation 10-12 leads to 2

o / (25.0 rad/s) /(20.0 s) 1.25 rad/s .tα ω= − = − = −  
 

(b) Equation 10-15 leads to o
1 1 (25.0 rad/s)(20.0 s) 250 rad.
2 2

tθ ω= = =  

 
(c) Dividing the previous result by 2π we obtain θ = 39.8 rev. 
 
91. We employ energy methods in this solution; thus, considerations of positive versus 
negative sense (regarding the rotation of the wheel) are not relevant. 
 
(a) The speed of the box is related to the angular speed of the wheel by v = Rω, so that 
 

K m v v K
mbox box

box

box

m / s= ⇒ = =
1
2

2 1412 .  

 
implies that the angular speed is ω = 1.41/0.20 = 0.71 rad/s. Thus, the kinetic energy of 
rotation is 1

2
2 10 0Iω = . J.  

 
(b) Since it was released from rest at what we will consider to be the reference position 
for gravitational potential, then (with SI units understood) energy conservation requires 
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 ( ) ( )0 0 box0 0 6.0 10.0 .K U K U m g h+ = + ⇒ + = + + −  
 
Therefore, h = 16.0/58.8 = 0.27 m. 
 
92. (a) The time for one revolution is the circumference of the orbit divided by the speed 
v of the Sun: T = 2πR/v, where R is the radius of the orbit. We convert the radius: 
 

R = × × = ×2 3 104.  ly 9.46 10  km / ly 2.18 10  km12 17c hc h  
 
where the ly ↔  km conversion can be found in Appendix D or figured “from basics” 
(knowing the speed of light). Therefore, we obtain 
 

T =
×

= ×
2 218 10

55 10
17

15
π .

.
 km

250 km / s
 s.

c h
 

 
(b) The number of revolutions N is the total time t divided by the time T for one 
revolution; that is, N = t/T. We convert the total time from years to seconds and obtain 
 

N =
× ×

×
=

4 5 10
55 10

26
9

15

.
.

 y 3.16 10  s / y
 s

.
7c hc h

 

 
93. The applied force P will cause the block to accelerate. In addition, it gives rise to a 
torque that causes the wheel to undergo angular acceleration.   
 
We take rightward to be positive for the block and clockwise negative for the wheel (as is 
conventional). With this convention, we note that the tangential acceleration of the wheel 
is of opposite sign from the block’s acceleration (which we simply denote as a); that is, 

ta a= − . Applying Newton’s second law to the block leads to P T ma− = , where T is the 
tension in the cord. Similarly, applying Newton’s second law (for rotation) to the wheel 
leads to TR Iα− = . Noting that Rα = at = – a, we multiply this equation by R and obtain 
 

2
2 .ITR Ia T a

R
− = − ⇒ =

 
Adding this to the above equation (for the block) leads to 2( / ) .P m I R a= +  Thus, the 
angular acceleration is  

2 .
( / )

a P
R m I R R

α = − = −
+

 

 
With 2.0 kgm = , 20.050 kg m ,I = ⋅ 3.0 N,P =  and 0.20 mR = , we find  
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2
2 2 2

3.0 N 4.6 rad/s
( / ) [2.0 kg (0.050 kg m ) /(0.20 m) ](0.20 m)

P
m I R R

α = − = − = −
+ + ⋅

 

 
or |α| = 4.6 rad/s2 , where the negative sign in α should not be mistaken for a deceleration 
(it simply indicates the clockwise sense to the motion). 
 
94. (a) The linear speed at  t = 15.0 s is 
 

v a tt= = =0.500 m s s m s2 150 7 50d i b g. . .  

 
 The radial (centripetal) acceleration at that moment is 
 

a v
rr = = =
2 27 50

30 0
.

.
.

m s
m

1.875m s2b g  

Thus, the net acceleration has magnitude: 
 

a a at r= + = + =2 2 2 2
0 500 1875 194. . . .m s m s m s2 2 2c h c h  

 
 (b) We note that a vt || . Therefore, the angle between v  and a  is 
 

tan tan .
.

.− −F
HG
I
KJ =

F
HG
I
KJ = °1 1 1875

05
751a

a
r

t

 

 
so that the vector is pointing more toward the center of the track than in the direction of 
motion. 
 
95. The distances from P to the particles are as follows: 
 

r a m M

r b a m M

r a m M

1

2
2 2

3

2

2

= =

= − =

= =

for lower left

for top

for lower right

1

2

1

b g
b g

b g
 

 
The rotational inertia of the system about P is 
 

( )
3

2 2 2

1

3 ,i i
i

I m r a b M
=

= = +∑  

 
which yields 20.208 kg mI = ⋅  for M = 0.40 kg, a = 0.30 m, and b = 0.50 m. Applying Eq. 
10-52, we find 
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( )( )22 21 1 0.208 kg m 5.0 rad/s 2.6 J.
2 2

W Iω= = ⋅ =  

 
96. In the figure below, we show a pull tab of a beverage can. Since the tab is pivoted, 
when pulling on one end upward with a force 1F , a force 2F  will be exerted on the other 

end. The torque produced by 1F  must be balanced by the torque produced by 2F  so that 
the tab does not rotate. 

 
The two forces are related by 
 1 1 2 2r F r F=  
 
where 1 1.8 cmr ≈ and 2 0.73 cmr ≈ . Thus, if F1 = 10 N,  
 

 1
2 1

2

1.8 cm (10 N) 25 N.
0.73 cm

rF F
r

⎛ ⎞ ⎛ ⎞= ≈ ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
97. The centripetal acceleration at a point P that is r away from the axis of rotation is 
given by Eq. 10-23: 2 2/a v r rω= = , where v rω= , with 2000 rev/min  209.4 rad/s.ω = ≈  
 
(a) If points A and P are at a radial distance rA = 1.50 m and r = 0.150 m from the axis, 
the difference in their acceleration is 
 
 2 2 4 2( ) (209.4 rad/s) (1.50 m 0.150 m) 5.92 10 m/sA Aa a a r rωΔ = − = − = − ≈ × . 
 
(b) The slope is given by 2 4 2/ 4.39 10 / sa r ω= = × . 
 
98. Let T be the tension on the rope. From Newton’s second law, we have  
 
    ( )T mg ma T m g a− = ⇒ = + . 
 
 Since the box has an upward acceleration a = 0.80 m/s2, the tension is given by  
 

2 2(30 kg)(9.8 m/s 0.8 m/s ) 318 N.T = + =  
 
The rotation of the device is described by app /F R Tr I Ia rα− = = . The moment of inertia 
can then be obtained as 
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 app 2
2

( ) (0.20 m)[(140 N)(0.50 m) (318 N)(0.20 m)] 1.6 kg m
0.80 m/s

r F R Tr
I

a
− −

= = = ⋅  

 
99. (a) With r = 0.780 m, the rotational inertia is 
 

I Mr= = = ⋅2 2130 0 780 0 791. . . .kg m kg m2b gb g  
 
(b) The torque that must be applied to counteract the effect of the drag is 
 

τ = = × = × ⋅− −rf 0 780 2 30 10 179 102 2. . .m N N m.b gc h  
 
100. We make use of Table 10-2(e) as well as the parallel-axis theorem, Eq. 10-34, where 
needed. We use  (as a subscript) to refer to the long rod and s to refer to the short rod. 
 
(a) The rotational inertia is 

I I I m L m Ls s s= + = + = ⋅
1

12
1
3

0 0192 2 . .kg m2  

 
(b) We note that the center of the short rod is a distance of h = 0.25 m from the axis. The 
rotational inertia is 

I I I m L m h m Ls s s s= + = + +
1

12
1

12
2 2 2  

 
which again yields I = 0.019 kg ⋅ m2. 
 
101. (a) The linear speed of a point on belt 1 is  
 
 2

1 (15 cm)(10 rad/s) 1.5 10  cm/sA Av r ω= = = × . 
 
(b) The angular speed of pulley B is 
 

 15 cm    (10 rad/s) 15 rad/s
10 cm

A A
B B A A B

B

rr r
r
ωω ω ω ⎛ ⎞= ⇒ = = =⎜ ⎟

⎝ ⎠
. 

 
(c) Since the two pulleys are rigidly attached to each other, the angular speed of pulley 
B′  is the same as that of pulley B, that is, 15 rad/sBω′ = . 
 
(d) The linear speed of a point on belt 2 is  
 
 2 (5 cm)(15 rad/s) 75 cm/sB Bv r ω′ ′= = = . 
 
(e) The angular speed of pulley C is 
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5 cm    (15 rad/s) 3.0 rad/s
25 cm

B B
C C B B C

C

rr r
r
ωω ω ω ′

′

′ ⎛ ⎞′= ⇒ = = =⎜ ⎟
⎝ ⎠

 

 
102. (a) The rotational inertia relative to the specified axis is 
 

I m r M L M L M Li i= = + +∑ 2 2 2 22 2 2b g b g b g  
 
which is found to be I = 4.6 kg ⋅ m2. Then, with ω = 1.2 rad/s, we obtain the kinetic 
energy from Eq. 10-34: 

K I= =
1
2

3 32ω . J.  

 
(b) In this case the axis of rotation would appear as a standard y axis with origin at P. 
Each of the 2M balls are a distance of r = L cos 30° from that axis. Thus, the rotational 
inertia in this case is 

I m r M r M r M Li i= = + +∑ 2 2 2 22 2 2b g b g b g  
 
which is found to be I = 4.0 kg ⋅ m2.  Again, from Eq. 10-34 we obtain the kinetic energy 
 

K I= =
1
2

2 92ω . J.  

 
103. We make use of Table 10-2(e) and the parallel-axis theorem in Eq. 10-36. 
 
(a) The moment of inertia is 
 

 2 2 2 2 21 1 (3.0 kg)(4.0 m) (3.0 kg)(1.0 m) 7.0 kg m .
12 12

I ML Mh= + = + = ⋅  

 
(b) The rotational kinetic energy is 
 

 2 rot
rot 2

21 2(20 J)   = 2.4 rad/s
2 7 kg m

KK I
I

ω ω= ⇒ = =
⋅

. 

 
The linear speed of the end B is given by (2.4 rad/s)(3.00 m) 7.2 m/sB ABv rω= = = , where 
rAB is the distance between A and B. 
 
(c) The maximum angle θ is attained when all the rotational kinetic energy is transformed 
into potential energy. Moving from the vertical position (θ = 0) to the maximum angle θ , 
the center of mass is elevated by (1 cos )ACy d θΔ = − , where dAC = 1.00 m is the distance 
between A and the center of mass of the rod. Thus, the change in potential energy is 
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 2(1 cos ) 20 J (3.0 kg)(9.8 m/s )(1.0 m)(1 cos )ACU mg y mgd θ θΔ = Δ = − ⇒ = −  
 
which yields cos 0.32θ = , or 71θ ≈ ° . 
 
104. (a) The particle at A has r = 0 with respect to the axis of rotation. The particle at B is 
r = L = 0.50 m from the axis; similarly for the particle directly above A in the figure. The 
particle diagonally opposite A is a distance r L= =2 0 71. m  from the axis. Therefore, 
 

I m r mL m Li i= = + = ⋅∑ 2 2 2
2 2d i 0.20 kg m2.  

 
(b) One imagines rotating the figure (about point A) clockwise by 90° and noting that the 
center of mass has fallen a distance equal to L as a result. If we let our reference position 
for gravitational potential be the height of the center of mass at the instant AB swings 
through vertical orientation, then 
 
 ( )0 0 00 4 0.K U K U m gh K+ = + ⇒ + = +  
 
Since h0 = L = 0.50 m, we find K = 3.9 J. Then, using Eq. 10-34, we obtain 
 

21 6.3 rad/s.
2 AK I ω ω= ⇒ =  
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Chapter 11 
 
 
1. The velocity of the car is a constant  
 

( ) ˆ ˆ80 km/h (1000 m/km)(1 h/3600 s) i ( 22m s)i,v = + = +
G  

 
and the radius of the wheel is r = 0.66/2 = 0.33 m. 
 
(a) In the car’s reference frame (where the lady perceives herself to be at rest) the road is 
moving toward the rear at Gv vroad m s= − = −22 ,  and the motion of the tire is purely 
rotational. In this frame, the center of the tire is “fixed” so vcenter = 0. 
 
(b) Since the tire’s motion is only rotational (not translational) in this frame, Eq. 10-18 
gives top

ˆ( 22m/s)i.v = +
G  

 
(c) The bottom-most point of the tire is (momentarily) in firm contact with the road (not 
skidding) and has the same velocity as the road: bottom

ˆ( 22 m s)i .v = −
G  This also follows 

from Eq. 10-18. 
 
(d) This frame of reference is not accelerating, so “fixed” points within it have zero 
acceleration; thus, acenter = 0. 
 
(e) Not only is the motion purely rotational in this frame, but we also have ω = constant, 
which means the only acceleration for points on the rim is radial (centripetal). Therefore, 
the magnitude of the acceleration is 
 

2 2
23

top
(22 m/s) 1.5 10 m s .
0.33 m

va
r

= = = ×  

 
(f) The magnitude of the acceleration is the same as in part (d): abottom = 1.5 × 103 m/s2. 
 
(g) Now we examine the situation in the road’s frame of reference (where the road is 
“fixed” and it is the car that appears to be moving). The center of the tire undergoes 
purely translational motion while points at the rim undergo a combination of translational 
and rotational motions. The velocity of the center of the tire is ˆ( 22m s)i.v = +

G   
 
(h) In part (b), we found Gv vtop,car = +  and we use Eq. 4-39: 
 

top, ground top, car car, ground
ˆ ˆ ˆi i 2 iv v v v v v= + = + =

G G G  
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which yields 2v = +44 m/s.  
 
(i) We can proceed as in part (h) or simply recall that the bottom-most point is in firm 
contact with the (zero-velocity) road. Either way, the answer is zero. 
 
(j) The translational motion of the center is constant; it does not accelerate. 
 
(k) Since we are transforming between constant-velocity frames of reference, the 
accelerations are unaffected. The answer is as it was in part (e): 1.5 × 103 m/s2. 
 
(1) As explained in part (k), a = 1.5 × 103 m/s2. 
 
2. The initial speed of the car is 
 

( )80 km/h (1000 m/km)(1 h/3600 s) 22.2 m/sv = = . 
 
The tire radius is R = 0.750/2 = 0.375 m. 
 
(a) The initial speed of the car is the initial speed of the center of mass of the tire, so Eq. 
11-2 leads to  

com0
0

22.2 m/s 59.3 rad/s.
0.375 m

v
R

ω = = =  

 
(b) With θ = (30.0)(2π) = 188 rad and ω = 0, Eq. 10-14 leads to 
 

( )
2

2 2 2
0

(59.3 rad/s)2 9.31 rad/s .
2 188 rad

ω ω αθ α= + ⇒ = =  

 
(c) Equation 11-1 gives Rθ = 70.7 m for the distance traveled. 
 
3. By Eq. 10-52, the work required to stop the hoop is the negative of the initial kinetic 
energy of the hoop. The initial kinetic energy is K I mv= +1

2
2 1

2
2ω  (Eq. 11-5), where I = 

mR2 is its rotational inertia about the center of mass, m = 140 kg, and v = 0.150 m/s is the 
speed of its center of mass. Equation 11-2 relates the angular speed to the speed of the 
center of mass: ω = v/R. Thus, 
 

( )( )
2

22 2 2
2

1 1 140 kg 0.150 m/s 3.15 J
2 2

vK mR mv mv
R

⎛ ⎞
= + = = =⎜ ⎟

⎝ ⎠
 

 
which implies that the work required is 0 3.15 J 3.15 JW K= Δ = − = − . 
 
4. We use the results from section 11.3. 
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(a) We substitute I M R= 2

5
2  (Table 10-2(f)) and a = – 0.10g into Eq. 11-10: 

 

− = −
+

= −010
1 7 52

5
2 2

. sin sin
/

g g
MR MR

gθ θ
c h  

 
which yields θ = sin–1 (0.14) = 8.0°. 
 
(b) The acceleration would be more. We can look at this in terms of forces or in terms of 
energy. In terms of forces, the uphill static friction would then be absent so the downhill 
acceleration would be due only to the downhill gravitational pull. In terms of energy, the 
rotational term in Eq. 11-5 would be absent so that the potential energy it started with 
would simply become 1

2
2mv  (without it being “shared” with another term) resulting in a 

greater speed (and, because of Eq. 2-16, greater acceleration). 
 
5. Let M be the mass of the car (presumably including the mass of the wheels) and v be 
its speed. Let I be the rotational inertia of one wheel and ω be the angular speed of each 
wheel. The kinetic energy of rotation is 

K Irot = FHG
I
KJ4 1

2
2ω , 

 
where the factor 4 appears because there are four wheels. The total kinetic energy is 
given by  

K Mv I= +1
2

2 1
2

24( )ω . 
 
The fraction of the total energy that is due to rotation is 
 

fraction rot= =
+

K
K

I
Mv I

4
4

2

2 2

ω
ω

.  

 
For a uniform disk (relative to its center of mass) I mR= 1

2
2  (Table 10-2(c)). Since the 

wheels roll without sliding ω = v/R (Eq. 11-2). Thus the numerator of our fraction is 
 

4 4 1
2

22 2
2

2I mR v
R

mvω = FHG
I
KJ
F
HG
I
KJ =  

and the fraction itself becomes 
 

( )2

2 2

2 102 2 1fraction 0.020.
2 2 1000 50

mv m
Mv mv M m

= = = = =
+ +

 

 
The wheel radius cancels from the equations and is not needed in the computation. 
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6. We plug a =   – 3.5 m/s2 (where the magnitude of this number was estimated from the 
“rise over run” in the graph), θ = 30º, M = 0.50 kg, and R = 0.060 m into Eq. 11-10 and 
solve for the rotational inertia.  We find I = 7.2 × 10−4 kg.m2

. 
 
7. (a) We find its angular speed as it leaves the roof using conservation of energy. Its 
initial kinetic energy is Ki = 0 and its initial potential energy is Ui = Mgh where 

6.0sin 30 3.0 mh = ° = (we are using the edge of the roof as our reference level for 
computing U). Its final kinetic energy (as it leaves the roof) is (Eq. 11-5) 
 

K Mv If = +1
2

2 1
2

2ω . 
 
Here we use v to denote the speed of its center of mass and ω is its angular speed — at 
the moment it leaves the roof. Since (up to that moment) the ball rolls without sliding we 
can set v = Rω = v where R = 0.10 m. Using I MR= 1

2
2  (Table 10-2(c)), conservation of 

energy leads to 
2 2 2 2 2 2 2 21 1 1 1 3 .

2 2 2 4 4
Mgh Mv I MR MR MRω ω ω ω= + = + =  

 
The mass M cancels from the equation, and we obtain 
 

ω = = =
1 4

3
1

010
4
3

9 8 30 63
R

gh
.

. . .
m

m s m rad s2c hb g  

 
(b) Now this becomes a projectile motion of the type examined in Chapter 4. We put the 
origin at the position of the center of mass when the ball leaves the track (the “initial” 
position for this part of the problem) and take +x leftward and +y downward. The result 
of part (a) implies v0 = Rω = 6.3 m/s, and we see from the figure that (with these positive 
direction choices) its components are 
 

0 0

0 0

cos30 5.4 m s
sin 30 3.1 m s.

x

y

v v
v v

= ° =

= ° =
 

 
The projectile motion equations become 

x v t y v t gtx y= = +0 0
21

2
and .  

 
We first find the time when y = H = 5.0 m from the second equation (using the quadratic 
formula, choosing the positive root): 

2
0 0 2

0.74s.y yv v gH
t

g
− + +

= =  

 
Then we substitute this into the x equation and obtain x = =54 0 74 4 0. . .m s s m.b gb g  
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8. (a) Let the turning point be designated P. By energy conservation, the mechanical 
energy at x = 7.0 m is equal to the mechanical energy at P. Thus, with Eq. 11-5, we have 
 

  75 J  =  12 mvp
2 +  12 Icom ωp

2  + Up . 
 
Using item (f) of Table 10-2 and Eq. 11-2 (which means, if this is to be a turning point, 
that ωp = vp = 0), we find Up = 75 J.  On the graph, this seems to correspond to x = 2.0 m, 
and we conclude that there is a turning point (and this is it).  The ball, therefore, does not 
reach the origin. 
 
(b) We note that there is no point (on the graph, to the right of x = 7.0 m) taht is shown      
“higher” than 75 J, so we suspect that there is no turning point in this direction, and we 
seek the velocity vp at x = 13 m.  If we obtain a real, nonzero answer, then our      
suspicion is correct (that it does reach this point P at x = 13 m). By energy conservation, 
the mechanical energy at x = 7.0 m is equal to the mechanical energy at P. Therefore, 
 

     75 J  =  12 mvp
2 +  12 Icom ωp

2  + Up . 
 
Again, using item (f) of Table 11-2, Eq. 11-2 (less trivially this time) and Up = 60 J (from 
the graph), as well as the numerical data given in the problem, we find vp = 7.3 m/s. 
 
9. To find where the ball lands, we need to know its speed as it leaves the track (using 
conservation of energy). Its initial kinetic energy is Ki = 0 and its initial potential energy 
is Ui = M gH. Its final kinetic energy (as it leaves the track) is K Mv If = +1

2
2 1

2
2ω  (Eq. 

11-5) and its final potential energy is M gh. Here we use v to denote the speed of its 
center of mass and ω is its angular speed — at the moment it leaves the track. Since (up 
to that moment) the ball rolls without sliding we can set ω = v/R. Using I MR= 2

5
2  

(Table 10-2(f)), conservation of energy leads to 
 

 

2 2 2 2

2

1 1 1 2
2 2 2 10
7 .

10

MgH Mv I Mgh Mv Mv Mgh

Mv Mgh

ω= + + = + +

= +
 

 
The mass M cancels from the equation, and we obtain 
 

v g H h= − = − =
10
7

10
7

9 8 6 0 2 0 7 482b g d ib g. . . . .m s m m m s  

 
Now this becomes a projectile motion of the type examined in Chapter 4. We put the 
origin at the position of the center of mass when the ball leaves the track (the “initial” 
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position for this part of the problem) and take +x rightward and +y downward. Then 
(since the initial velocity is purely horizontal) the projectile motion equations become 
 

x vt y gt= = −and 1
2

2.  

 
Solving for x at the time when y = h, the second equation gives t h g= 2 .  Then, 
substituting this into the first equation, we find 
 

( ) ( )
2

2 2.0 m2 7.48 m/s 4.8 m.
9.8 m/s

hx v
g

= = =  

 
10. From I MR= 2

3
2  (Table 10-2(g)) we find 

( )
( )

2

22

3 0.040 kg m3 2.7 kg.
2 2 0.15 m

IM
R

⋅
= = =  

 
It also follows from the rotational inertia expression that 1

2
2 1

3
2 2I MRω ω= . Furthermore, 

it rolls without slipping, vcom = Rω, and we find 
 

K
K K

MR
mR MR

rot

com rot+
=

+

1
3

2 2

1
2

2 2 1
3

2 2

ω
ω ω

.  

 
(a) Simplifying the above ratio, we find Krot/K = 0.4. Thus, 40% of the kinetic energy is 
rotational, or  

Krot = (0.4)(20 J) = 8.0  J. 
 
(b) From 2 21

rot 3 8.0 JK M R ω= =  (and using the above result for M) we find 
 

ω = =
1

015
3 8 0
2 7

20
.

.
.m

J
kg

rad sb g  

 
which leads to vcom = (0.15 m)(20 rad/s) = 3.0 m/s. 
 
(c) We note that the inclined distance of 1.0 m corresponds to a height h = 1.0 sin 30° = 
0.50 m. Mechanical energy conservation leads to 
 
 20 Ji f f fK K U K Mgh= + ⇒ = +  
 
which yields (using the values of M and h found above) Kf = 6.9 J. 
 
(d) We found in part (a) that 40% of this must be rotational, so 
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( ) ( )( )2 2 3 0.40 6.9 J1 10.40
3 0.15 m 2.7 kgf f fMR Kω ω= ⇒ =  

 
which yields ωf = 12 rad/s and leads to 
 

( )( )com 0.15 m 12 rad/s 1.8 m/s.f fv Rω= = =  
 
11. With app

ˆ(10  N)iF =
G

, we solve the problem by applying Eq. 9-14 and Eq. 11-37. 
 
(a) Newton’s second law in the x direction leads to 
 

( )( )2
app     10N 10kg 0.60 m s 4.0 N.s sF f ma f− = ⇒ = − =  

 
In unit vector notation, we have ˆ( 4.0 N)isf = −

G
, which points leftward. 

 
(b) With R = 0.30 m, we find the magnitude of the angular acceleration to be  
 

|α| = |acom| / R = 2.0 rad/s2, 
 
from Eq. 11-6. The only force not directed toward (or away from) the center of mass is G
f s ,  and the torque it produces is clockwise: 

 
( )( ) ( )20.30m 4.0 N 2.0 rad sI Iτ α= ⇒ =  

 
which yields the wheel’s rotational inertia about its center of mass: I = ⋅0 60. .kg m2  
 
12. Using the floor as the reference position for computing potential energy, mechanical 
energy conservation leads to 
 

( )2 2
release top top com

1 1 2 .
2 2

U K U mgh mv I mg Rω= + ⇒ = + +  

 
Substituting  I mr= 2

5
2  (Table 10-2(f)) and ω = v rcom  (Eq. 11-2), we obtain 

 

 
2

2 2 2com
com com

1 1 2 72 2
2 2 5 10

vmgh mv mr mgR gh v gR
r

⎛ ⎞⎛ ⎞= + + ⇒ = +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
where we have canceled out mass m in that last step. 
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(a) To be on the verge of losing contact with the loop (at the top) means the normal force 
is vanishingly small. In this case, Newton’s second law along the vertical direction (+y 
downward) leads to 

mg ma g v
R rr= ⇒ =

−
com
2

 

 
where we have used Eq. 10-23 for the radial (centripetal) acceleration (of the center of 
mass, which at this moment is a distance R – r from the center of the loop). Plugging the 
result  v g R rcom

2 = −b g  into the previous expression stemming from energy considerations 
gives 

gh g R r gR= − +
7

10
2b gb g  

 
which leads to 2.7 0.7 2.7 .h R r R= − ≈  With R = 14.0 cm , we have  
 

h = (2.7)(14.0 cm) = 37.8 cm. 
 
(b) The energy considerations shown above (now with h = 6R) can be applied to point Q 
(which, however, is only at a height of R) yielding the condition 
 

g R v gR6 7
10

b g = +com
2  

 
which gives us v g Rcom

2 = 50 7 . Recalling previous remarks about the radial acceleration, 
Newton’s second law applied to the horizontal axis at Q leads to 
 

 
( )

2
com 50

7
v gRN m m
R r R r

= =
− −

 

which (for R r>> ) gives  
4 2

250 50(2.80 10  kg)(9.80 m/s ) 1.96 10  N.
7 7
mgN

−
−×

≈ = = ×  

 
(b) The direction is toward the center of the loop. 
 
13. The physics of a rolling object usually requires a separate and very careful discussion 
(above and beyond the basics of rotation discussed in Chapter 10); this is done in the first 
three sections of Chapter 11. Also, the normal force on something (which is here the 
center of mass of the ball) following a circular trajectory is discussed in Section 6-6.  
Adapting Eq. 6-19 to the consideration of forces at the bottom of an arc, we have 
  

FN – Mg = Mv2/r 
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which tells us (since we are given FN = 2Mg) that the center of mass speed (squared) is v2 
= gr, where r is the arc radius (0.48 m)  Thus, the ball’s angular speed (squared) is  
 

ω2 = v2/R2 = gr/R2, 
 
where R is the ball’s radius. Plugging this into Eq. 10-5 and solving for the rotational 
inertia (about the center of mass), we find 
 
      Icom = 2MhR2/r – MR2 = MR2[2(0.36/0.48) – 1] . 
 
Thus, using the β notation suggested in the problem, we find   
 

β = 2(0.36/0.48) – 1 = 0.50. 
 
14. To find the center of mass speed v on the plateau, we use the projectile motion 
equations of Chapter 4.  With voy = 0 (and using “h” for h2) Eq. 4-22 gives the time-of-
flight as t = 2h/g .  Then Eq. 4-21 (squared, and using d for the horizontal displacement) 
gives v2 = gd2/2h.  Now, to find the speed vp at point P, we apply energy conservation, 
that is, mechanical energy on the plateau is equal to the mechanical energy at P. With Eq. 
11-5, we obtain  

1
2 mv2 +  12 Icom ω2 + mgh1 =  12 mvp

2 +  12 Icom ωp
2 . 

 
Using item (f) of Table 10-2, Eq. 11-2, and our expression (above) v2 = gd2/2h, we obtain 
 

gd2/2h + 10gh1/7 = vp
2

 
 
which yields (using the values stated in the problem) vp = 1.34 m/s. 
 
15. (a) We choose clockwise as the negative rotational sense and rightward as the 
positive translational direction. Thus, since this is the moment when it begins to roll 
smoothly, Eq. 11-2 becomes  

v Rcom m= − = −ω ω011. .b g  
 
This velocity is positive-valued (rightward) since ω is negative-valued (clockwise) as 
shown in the figure. 
 
(b) The force of friction exerted on the ball of mass m is −μ kmg  (negative since it points 
left), and setting this equal to macom leads to 
 

a gcom
2 2m s m s= − = − = −μ 0 21 9 8 21. . .b g c h  

 
where the minus sign indicates that the center of mass acceleration points left, opposite to 
its velocity, so that the ball is decelerating. 
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(c) Measured about the center of mass, the torque exerted on the ball due to the frictional 
force is given by τ μ= − mgR . Using Table 10-2(f) for the rotational inertia, the angular 
acceleration becomes (using Eq. 10-45) 
 

( )( )
( )

2
2

2

5 0.21 9.8 m/s5 47 rad s
2 5 2 2 0.11 m

mgR g
I m R R
τ μ μα

−− −
= = = = = −  

 
where the minus sign indicates that the angular acceleration is clockwise, the same 
direction as ω (so its angular motion is “speeding up’’). 
 
(d) The center of mass of the sliding ball decelerates from vcom,0 to vcom during time t 
according to Eq. 2-11: v v gtcom com,0= − μ .  During this time, the angular speed of the ball 
increases (in magnitude) from zero to ω  according to Eq. 10-12: 
 

ω α μ
= = =t gt

R
v
R

5
2

com  

 
where we have made use of our part (a) result in the last equality. We have two equations 
involving vcom, so we eliminate that variable and find 
 

( )
( )( )

com,0
2

2 2 8.5 m/s
1.2 s.

7 7 0.21 9.8 m/s
v

t
gμ

= = =  

 
(e) The skid length of the ball is (using Eq. 2-15) 
 

( ) ( )( ) ( )( )( )22 2
com,0

1 18.5 m/s 1.2 s 0.21 9.8 m/s 1.2 s 8.6 m.
2 2

x v t g tμΔ = − = − =  

 
(f) The center of mass velocity at the time found in part (d) is 
 

( )( )( )2
com com,0 8.5 m/s 0.21 9.8 m/s 1.2 s 6.1 m/s.v v gtμ= − = − =  

 
16. Using energy conservation with Eq. 11-5 and solving for the rotational inertia (about 
the center of mass), we find 
 
      Icom = 2MhR2/r – MR2 = MR2[2g(H – h)/v2 – 1] . 
 
Thus, using the β notation suggested in the problem, we find   
 

β = 2g(H – h)/v2  –  1. 
 
To proceed further, we need to find the center of mass speed v, which we do using the 
projectile motion equations of Chapter 4.  With voy = 0, Eq. 4-22 gives the time-of-flight 
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as t = 2h/g .  Then Eq. 4-21 (squared, and using d for the horizontal displacement) gives 
v2 = gd2/2h.  Plugging this into our expression for β gives  
 

2g(H – h)/v2 – 1 = 4h(H – h)/d2  –  1. 
 
Therefore, with the values given in the problem, we find β = 0.25. 
 
17. (a) The derivation of the acceleration is found in §11-4; Eq. 11-13 gives 
 

a g
I MRcom

com

= −
+1 0

2  

 
where the positive direction is upward. We use Icom g cm= ⋅950 2 , M =120g, R0 = 0.320 
cm, and g = 980 cm/s2 and obtain 
 

( ) ( )( )

2
2 2

com 22

980 cm/s| | 12.5 cm/s 13 cm/s .
1 950 g cm 120 g 0.32 cm

a = = ≈
+ ⋅

 

 
(b) Taking the coordinate origin at the initial position, Eq. 2-15 leads to y a tcom com= 1

2
2 . 

Thus, we set ycom = – 120 cm, and find 
 

( )com
2

com

2 120cm2 4.38  s 4.4  s.
12.5 cm s

yt
a

−
= = = ≈

−
 

 
(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11:  
 

( ) ( )2
com com 12.5 cm s 4.38s 54.8 cm sv a t= = − = − , 

 
so its linear speed then is approximately com| |v = 55 cm/s. 
 
(d) The translational kinetic energy is  
 

( )( )22 2
trans com

1 1 0.120 kg 0.548 m s 1.8 10 J
2 2

K mv −= = = × . 

 
(e) The angular velocity is given by ω = – vcom/R0 and the rotational kinetic energy is 
 

2 2
2 5 2com

rot com com 3
0

1 1 1 0.548 m s(9.50 10 kg m ) 1.4 J
2 2 2 3.2 10 m

vK I I
R

ω −
−

⎛ ⎞ ⎛ ⎞
= = = × ⋅ ≈⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

. 
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(f) The angular speed is  
 

com 2
3

0

0.548 m/s 1.7 10 rad/s
3.2 10 m

v
R

ω −= = = ×
×

 27 rev s= . 

 
Note: As the yo-yo rolls down, its gravitational potential energy gets converted into both 
translational kinetic energy as well as rotational kinetic energy of the wheel. To show that 
the total energy remains conserved, we note that the initial energy is 
 
 2(0.120 kg)(9.80 m/s )(1.20 m) 1.411 Ji iU Mgy= = =  
 
which is equal to the sum of transK  (= 0.018 J) and rotK  (= 1.393 J).   
 
18. (a) The derivation of the acceleration is found in § 11-4; Eq. 11-13 gives 
 

a g
I MRcom

com

= −
+1 0

2  

 
where the positive direction is upward. We use 2

com / 2I MR=  where the radius is R = 
0.32 m and M = 116 kg is the total mass (thus including the fact that there are two disks) 
and obtain 

( )22 2
0 0

1 ( / 2) 1 / / 2
g ga

MR MR R R
= − =

+ +
 

 
which yields a = –g/51 upon plugging in R0 = R/10 = 0.032 m. Thus, the magnitude of the 
center of mass acceleration is 0.19 m/s2.  
 
(b) As observed in §11-4, our result in part (a) applies to both the descending and the 
rising yo-yo motions. 
 
(c) The external forces on the center of mass consist of the cord tension (upward) and the 
pull of gravity (downward). Newton’s second law leads to 
 

T Mg ma T M g g
− = ⇒ = −FHG

I
KJ51

 = 1.1 × 103 N. 

 
(d) Our result in part (c) indicates that the tension is well below the ultimate limit for the 
cord. 
 
(e) As we saw in our acceleration computation, all that mattered was the ratio R/R0 (and, 
of course, g). So if it’s a scaled-up version, then such ratios are unchanged and we obtain 
the same result. 
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(f) Since the tension also depends on mass, then the larger yo-yo will involve a larger 
cord tension. 
 
19. If we write Gr x y z= � � �i + j + k,  then (using Eq. 3-30) we find G

G
r F×  is equal to 

 
yF zF zF xF xF yFz y x z y x− − −d i b g d i� � �i + j + k.  

 
With (using SI units) x = 0, y = – 4.0, z = 5.0, Fx = 0, Fy = –2.0, and  Fz = 3.0 (these latter 
terms being the individual forces that contribute to the net force), the expression above 
yields 

ˆ( 2.0N m)i.r Fτ = × = − ⋅
GG G  

 
20. If we write Gr x y z= + +� � �i j k,  then (using Eq. 3-30) we find G

G
r F×  is equal to 

 
yF zF zF xF xF yFz y x z y x− + − + −d i b g d i� � � .i j k  

 
(a) In the above expression, we set (with SI units understood) x = –2.0, y = 0, z = 4.0, Fx 
= 6.0, Fy = 0, and Fz = 0. Then we obtain ˆ(24N m)j.r Fτ = × = ⋅

GG G  
 
(b) The values are just as in part (a) with the exception that now Fx = –6.0. We find 

ˆ( 24N m)j.r Fτ = × = − ⋅
GG G  

 
(c) In the above expression, we set x = –2.0, y = 0, z = 4.0, Fx = 0, Fy = 0, and Fz = 6.0. 
We get  ˆ(12N m)j.r Fτ = × = ⋅

GG G  
 
(d) The values are just as in part (c) with the exception that now Fz = –6.0. We find 

ˆ( 12N m)j.r Fτ = × = − ⋅
GG G  

 
21. If we write Gr x y z= + +� � �i j k,  then (using Eq. 3-30) we find G

G
r F×  is equal to 

 
yF zF zF xF xF yFz y x z y x− + − + −d i b g d i� � � .i j k  

 
(a) In the above expression, we set (with SI units understood) x = 0, y = – 4.0, z = 3.0, Fx 
= 2.0, Fy = 0, and  Fz = 0. Then we obtain  
 

( )ˆ ˆ6.0j 8.0k N m.r Fτ = × = + ⋅
GG G  

 
This has magnitude 2 2(6.0 N m) (8.0 N m) 10 N m⋅ + ⋅ = ⋅ and is seen to be parallel to 
the yz plane. Its angle (measured counterclockwise from the +y direction) is 
tan .− = °1 8 6 53b g  
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(b) In the above expression, we set x = 0, y = – 4.0, z = 3.0, Fx = 0, Fy = 2.0, and Fz = 4.0. 
Then we obtain ˆ( 22N m)i.r Fτ = × = − ⋅

GG G  This has magnitude 22 N m⋅  and points in the –x 
direction. 
 
22. Equation 11-14 (along with Eq. 3-30) gives 
 

r Fτ = ×
GG G  = 4.00i^  +(12.0 + 2.00Fx)j

^ + (14.0 + 3.00Fx)k
^   

 
with SI units understood. Comparing this with the known expression for the torque (given 
in the problem statement), we see that Fx must satisfy two conditions:  
 

12.0 + 2.00Fx = 2.00   and  14.0 + 3.00Fx = –1.00. 
 
The answer (Fx = –5.00 N) satisfies both conditions. 
 
23. We use the notation G′r  to indicate the vector pointing from the axis of rotation 
directly to the position of the particle. If we write G′ = ′ + ′ + ′r x y z� � �i j k,  then (using Eq.  
3-30) we find G

G
′ ×r F  is equal to 

 
′ − ′ + ′ − ′ + ′ − ′y F z F z F x F x F y Fz y x z y xd i b g d i� � �i j k.  

 
(a) Here, G G

′ =r r .  Dropping the primes in the above expression, we set (with SI units 
understood) x = 0, y = 0.5, z = –2.0, Fx = 2.0, Fy = 0, and Fz = –3.0. Then we obtain  
 

( )ˆ ˆ ˆ1.5i 4.0j 1.0k N m.r Fτ = × = − − − ⋅
GG G  

 
(b) Now G G G

′ = −r r ro where o
ˆ ˆ2.0i 3.0k.r = −

G  Therefore, in the above expression, we set 
2.0, 0.5, 1.0, 2.0, 0x yx y z F F′ ′ ′= − = = = = , and 3.0.zF = −   Thus, we obtain  

 

( )ˆ ˆ ˆ1.5 i 4.0 j 1.0k N m.r Fτ ′= × = − − − ⋅
GG G   

 
24. If we write G′ = ′ + ′ + ′r x y z� � �i j k,  then (using Eq. 3-30) we find G

G
′ ×r F  is equal to 

 
′ − ′ + ′ − ′ + ′ − ′y F z F z F x F x F y Fz y x z y xd i b g d i� � � .i j k  

 
(a) Here, G G

′ =r r  where  ˆ ˆ ˆ3.0i 2.0j 4.0k,r = − +
G  and 

G G
F F= 1.  Thus, dropping the prime in 

the above expression, we set (with SI units understood) x = 3.0, y = –2.0, z = 4.0, Fx = 3.0, 
Fy = –4.0, and Fz = 5.0. Then we obtain   
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G G G
τ = × = − − ⋅r F1 6 0 30 6 0. � . � . �i j k N m.e j  

 
(b) This is like part (a) but with 

G G
F F= 2 .  We plug in Fx = –3.0, Fy = –4.0, and Fz =  –5.0 

and obtain   
G G G
τ = × = + − ⋅r F2 26 3 0 18� . � �i j k N m.e j  

 
(c) We can proceed in either of two ways. We can add (vectorially) the answers from 
parts (a) and (b), or we can first add the two force vectors and then compute 
G G G G
τ = × +r F F1 2d i  (these total force components are computed in the next part). The result 
is 

( ) ( )1 2
ˆ ˆ32 i 24k N m.r F Fτ = × + = − ⋅

G GG G  

 
(d) Now G G G

′ = −r r ro  where o
ˆ ˆ ˆ3.0i 2.0j 4.0k.r = + +

G  Therefore, in the above expression, we 
set 0, 4.0, 0,x y z′ ′ ′= = − =  and 

3.0 3.0 0
4.0 4.0 8.0

5.0 5.0 0.

x

y

z

F
F

F

= − =
= − − = −

= − =

 

We get 
G G G G
τ = ′ × + =r F F1 2 0d i .  

 
25. If we write Gr x y z= + +� � �i j k,  then (using Eq. 3-30) we find G

G
r F×  is equal to 

 
yF zF zF xF xF yFz y x z y x− + − + −d i b g d i� � �i j k.  

 
(a) Plugging in, we find  
 

( )( ) ( )( ) ˆ ˆ3.0m 6.0N 4.0m 8.0N k (50N m) k.τ = − − = ⋅⎡ ⎤⎣ ⎦
G  

 
(b) We use Eq. 3-27, | | sin ,G G

r F rF× = φ  where φ is the angle between Gr  and 
G
F . Now 

r x y= + =2 2 50. m  and F F Fx y= + =2 2 10 N.  Thus,  
 

rF = = ⋅50 10 50. m N N m,b gb g  
 
the same as the magnitude of the vector product calculated in part (a). This implies sin φ 
= 1 and φ = 90°.  
 
26. We note that the component of Gv  perpendicular to Gr  has magnitude v sin θ2 where 
θ2= 30°. A similar observation applies to 

G
F . 
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(a) Eq. 11-20 leads to  
( )( )( ) 23.0 m 2.0 kg 4.0 m/s sin 30 12 kg m s.rmv⊥= = ° = ⋅A  

 
(b) Using the right-hand rule for vector products, we find G Gr p×  points out of the page, or 
along the +z axis, perpendicular to the plane of the figure. 
 
(c) Similarly, Eq. 10-38 leads to 
  

( )( )2sin 3.0 m 2.0 N sin 30 3.0N m.rFτ θ= = ° = ⋅  
 
(d) Using the right-hand rule for vector products, we find G

G
r F×  is also out of the page, or 

along the +z axis, perpendicular to the plane of the figure. 
 
27. Let ˆ ˆ ˆi j kr x y z= + +  be the position vector of the object, ˆ ˆ ˆi j kx y zv v v v= + +  its velocity 
vector, and m its mass. The cross product of r  and v  is (using Eq. 3-30) 
 

( ) ( ) ( )ˆ ˆ ˆi j k.z y x z y xr v yv zv zv xv xv yv× = − + − + −  
 
Since only the x and z components of the position and velocity vectors are nonzero (i.e., 

0 and 0yy v= = ), the above expression becomes G Gr v xv zvz z× = − +b g �j.  As for the torque, 

writing ˆ ˆ ˆi j k,x y zF F F F= + +  then we find G
G

r F×  to be 
 

( ) ( ) ( )ˆ ˆ ˆi j k.z y x z y xr F yF zF zF xF xF yFτ = × = − + − + −  
 
(a) With ˆ ˆ(2.0 m)i (2.0 m)kr = − and ˆ ˆ( 5.0 m/s)i (5.0 m/s)kv = − + , in unit-vector 
notation, the angular momentum of the object is 
 
 ( ) ( ) ( )( ) ( )( )( )ˆ ˆj 0.25 kg 2.0 m 5.0 m s 2.0 m 5.0 m s j 0.z xm xv zv= − + = − + − − =  

 
(b) With x = 2.0 m, z = –2.0 m, Fy = 4.0 N, and all other components zero, the expression 
above yields  

ˆ ˆ(8.0 N m)i (8.0 N m)k .r Fτ = × = ⋅ + ⋅  
 
Note: The fact that 0=  implies that r  and v  are parallel to each other ( 0r v× = ). 
Using | | sinr F rFτ φ= × = , we find the angle between Gr  and 

G
F  to be 

 
8 2 N msin 1 90

(2 2 m)(4.0 N)rF
τφ φ⋅

= = = ⇒ = °  
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That is, Gr  and 
G
F  are perpendicular to each other.  

 
28. If we write G′ = ′ + ′ + ′r x y z� � �i j k,  then (using Eq. 3-30) we find G G

′ =r v  is equal to 
 

′ − ′ + ′ − ′ + ′ − ′y v z v z v x v x v y vz y x z y xd i b g d i� � � .i j k  
 

(a) Here, r r′ =
G G  where ˆ ˆ3.0 i 4.0 j.r = −

G  Thus, dropping the primes in the above expression, 
we set (with SI units understood) 3.0, 4.0, 0, 30, 60x yx y z v v= = − = = = , and vz = 0. Then 
(with m = 2.0 kg) we obtain  
 

( ) 2 2 ˆ(6.0 10 kg m s)k .m r v= × = × ⋅
G G GA  

 
(b) Now G G G

′ = −r r ro  where o
ˆ ˆ2.0i 2.0j.r = − −

G  Therefore, in the above expression, we set 
5.0, 2.0, 0, 30, 60x yx y z v v′ ′ ′= = − = = = , and vz = 0 . We get   

 
( ) 2 2 ˆ(7.2 10 kg m s)k.m r v′= × = × ⋅

G G GA   
 
29. For the 3.1 kg particle, Eq. 11-21 yields  
 

( )( )( ) 2
1 1 1 2.8 m 3.1 kg 3.6 m/s 31.2 kg m s.r mv⊥= = = ⋅A  

 
Using the right-hand rule for vector products, we find this G Gr p1 1×b g  is out of the page, or 
along the +z axis, perpendicular to the plane of Fig. 11-41. And for the 6.5 kg particle, we 
find 

( )( )( ) 2
2 2 2 1.5 m 6.5 kg 2.2 m/s 21.4 kg m s.r mv⊥= = = ⋅A  

 
And we use the right-hand rule again, finding that this G Gr p2 2×b g  is into the page, or in 
the –z direction.  
 
(a) The two angular momentum vectors are in opposite directions, so their vector sum is 
the difference of their magnitudes: L = − = ⋅A A1 2 9 8. .kg m s2  
 
(b) The direction of the net angular momentum is along the +z axis. 
 
30. (a) The acceleration vector is obtained by dividing the force vector by the (scalar) 
mass:  

 a  
→

  = F 
→

/m = (3.00 m/s2)i^ – (4.00 m/s2)j^ + (2.00 m/s2)k^ . 
 
(b) Use of Eq. 11-18 leads directly to  
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L 
→

 =  (42.0 kg.m2/s)i^ + (24.0 kg.m2/s)j^ + (60.0 kg.m2/s)k^ . 
 

(c) Similarly, the torque is  
 

r Fτ = ×
GG G  = (–8.00 N m⋅ )i^ – (26.0 N m⋅ )j^ – (40.0 N m⋅ )k^ . 

 
(d) We note (using the Pythagorean theorem) that the magnitude of the velocity vector is 
7.35 m/s and that of the force is 10.8 N.  The dot product of these two vectors is  
 v  

→ . F 
→

 = – 48 (in SI units).  Thus, Eq. 3-20 yields  
 

θ = cos−1[−48.0/(7.35 ×10.8)] = 127°. 
 

31. (a) Since the speed is (momentarily) zero when it reaches maximum height, the 
angular momentum is zero then. 
 
(b) With the convention (used in several places in the book) that clockwise sense is to be 
associated with the negative sign, we have L = – r⊥ m v  where r⊥ = 2.00 m, m = 0.400 kg, 
and v is given by free-fall considerations (as in Chapter 2). Specifically, ymax is 
determined by Eq. 2-16 with the speed at max height set to zero; we find ymax = vo

2/2g 
where vo = 40.0 m/s. Then with y = 12 ymax,  Eq. 2-16 can be used to give v = vo / 2 .  In 

this way we arrive at L = –22.6 2kg m /s⋅ . 
 
(c) As mentioned in the previous part, we use the minus sign in writing τ = – r⊥F with the 
force F being equal (in magnitude) to mg.  Thus, τ = –7.84 N m⋅ . 
 
(d) Due to the way r⊥  is defined it does not matter how far up the ball is.  The answer is 
the same as in part (c), τ = –7.84 N m⋅ . 
 
32. The rate of change of the angular momentum is 
 

1 2
ˆ ˆ(2.0 N m)i (4.0 N m) j.d

dt
τ τ= + = ⋅ − ⋅

G
A G G  

 

Consequently, the vector d dt
G
A  has a magnitude ( )22(2.0 N m) 4.0 N m 4.5 N m⋅ + − ⋅ = ⋅  

and is at an angle θ (in the xy plane, or a plane parallel to it) measured from the positive x 
axis, where     

1 4.0 N mtan 63
2.0 N m

θ − ⎛ ⎞− ⋅
= = − °⎜ ⎟⋅⎝ ⎠

, 

 
the negative sign indicating that the angle is measured clockwise as viewed “from above” 
(by a person on the +z  axis). 
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33. Let ˆ ˆ ˆi j kr x y z= + +  be the position vector of the object, ˆ ˆ ˆi j kx y zv v v v= + +  its velocity 
vector, and m its mass. The cross product of r  and v  is 
 

( ) ( ) ( )ˆ ˆ ˆi j k.z y x z y xr v yv zv zv xv xv yv× = − + − + −  
 
The angular momentum is given by the vector product mr v= × . As for the torque, 
writing ˆ ˆ ˆi j k,x y zF F F F= + +  then we find G

G
r F×  to be 

 
( ) ( ) ( )ˆ ˆ ˆi j k.z y x z y xr F yF zF zF xF xF yFτ = × = − + − + −  

 
(a) Substituting m = 3.0 kg, x = 3.0 m, y = 8.0 m, z = 0, vx = 5.0 m/s, 6.0 m/syv = − , and 
vz = 0 into the above expression, we obtain 
 

( )
2

ˆ3.0 kg [(3.0 m)( 6.0 m/s) (8.0 m)(5.0 m/s)]k
ˆ( 174 kg m s)k.

= − −

= − ⋅

G
A

 

 
(b) Given that Gr x y= +� �i j  and 

G
F Fx= �i , the corresponding torque is 

 
G
τ = + × = −x y F yFx x

� � � �i j i ke j e j  . 

 
Substituting the values given, we find  
 

( )( ) ˆ ˆ8.0m 7.0N k (56N m)k.τ = − − = ⋅
G  

 
(c) According to Newton’s second law 

G G
Aτ = d dt ,  so the rate of change of the angular 

momentum is 56 kg ⋅ m2/s2, in the positive z direction. 
 
34. We use a right-handed coordinate system with �k  directed out of the xy plane so as to 
be consistent with counterclockwise rotation (and the right-hand rule). Thus, all the 
angular momenta being considered are along the – �k  direction; for example, in part (b) G
A = −4 0 2. �t k  in SI units. We use Eq. 11-23. 
 
(a) The angular momentum is constant so its derivative is zero. There is no torque in this 
instance. 
 
(b) Taking the derivative with respect to time, we obtain the torque: 
 

( )
2

ˆ ˆ4.0k ( 8.0  N m)kd dt t
dt dt

τ = = − = − ⋅
G
AG . 
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This vector points in the – �k  direction (causing the clockwise motion to speed up) for all t 
> 0. 
 
(c) With ˆ( 4.0 )kt= −

G
A  in SI units, the torque is 

 

( ) ( ) 1 2.0ˆ ˆ ˆ4.0k 4.0k k N m
2

d t
dt t t

τ ⎛ ⎞ ⎛ ⎞= − = − = − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G . 

 
This vector points in the – �k  direction (causing the clockwise motion to speed up) for all t 
> 0 (and it is undefined for t < 0). 
 
(d) Finally, we have 

( ) ( )
2

3 3

2 8.0ˆ ˆ ˆ4.0k 4.0k k N m.dt
dt t t

τ
− −⎛ ⎞ ⎛ ⎞= − = − = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
G  

 
This vector points in the + �k  direction (causing the initially clockwise motion to slow 
down) for all t > 0. 
 
35. (a) We note that  

d rv
dt

= = 8.0t i^  – (2.0 + 12t)j^  

 
with SI units understood.  From Eq. 11-18 (for the angular momentum) and Eq. 3-30, we 
find the particle’s angular momentum is 8t2 k^  . Using Eq. 11-23 (relating its time-
derivative to the (single) torque) then yields τ

→
 = (48t k^) N m⋅ . 

 
(b) From our (intermediate) result in part (a), we see the angular momentum increases in 
proportion to t2. 
 
36. We relate the motions of the various disks by examining their linear speeds (using Eq. 
10-18).  The fact that the linear speed at the rim of disk A must equal the linear speed at 
the rim of disk C leads to ωA = 2ωC . The fact that the linear speed at the hub of disk A 
must equal the linear speed at the rim of disk B leads to ωA = 12 ωB .  Thus, ωB = 4ωC .  The 
ratio of their angular momenta depend on these angular velocities as well as their 
rotational inertias (see item (c) in Table 11-2), which themselves depend on their masses.  
If h is the thickness and ρ is the density of each disk, then each mass is ρπR2h.  Therefore, 
 

LC

LB
  = 

(½)ρπRC 
2

 h RC 
2

 ωC

(½)ρπRB 
2

 h RB 
2
ωB

  = 1024 . 
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37. (a) A particle contributes mr2 to the rotational inertia. Here r is the distance from the 
origin O to the particle. The total rotational inertia is 
 

( ) ( ) ( )2 2 2 2 2 2

3 2

3 2 14 14(2.3 10 kg)(0.12 m)

4.6 10  kg m .

I m d m d m d md −

−

= + + = = ×

= × ⋅
 

 
(b) The angular momentum of the middle particle is given by Lm = Imω, where Im = 4md 2 
is its rotational inertia. Thus  
 
 2 2 2 3 24 4(2.3 10 kg)(0.12 m) (0.85 rad/s) 1.1 10  kg m /s.mL md ω − −= = × = × ⋅  
 
(c) The total angular momentum is  
 
 2 2 2 3 214 14(2.3 10 kg)(0.12 m) (0.85 rad/s) 3.9 10  kg m /s.I mdω ω − −= = × = × ⋅  
 
38. (a) Equation 10-34 gives α = τ/I and Eq. 10-12 leads to ω = αt = τt/I. Therefore, the 
angular momentum at t = 0.033 s is 
 

( )( ) 216 N m 0.033s 0.53kg m sI tω τ= = ⋅ = ⋅  
 
where this is essentially a derivation of the angular version of the impulse-momentum 
theorem. 
 
(b) We find 

( )( )
3 2

16 N m 0.033 s
440 rad/s

1.2 10 kg m
t

I
τω −

⋅
= = =

× ⋅
 

which we convert as follows:  
 

ω = (440 rad/s)(60 s/min)(1 rev/2π rad) ≈ 4.2 ×103 rev/min. 
 
39. (a) Since τ = dL/dt, the average torque acting during any interval Δ t is given by 
τ avg = −L L tf id i Δ ,  where Li is the initial angular momentum and Lf is the final angular 
momentum. Thus, 

2 2

avg
0.800 kg m s 3.00 kg m s 1.47 N m

1.50s
τ ⋅ − ⋅

= = − ⋅ , 

 
or avg| | 1.47 N mτ = ⋅ . In this case the negative sign indicates that the direction of the 
torque is opposite the direction of the initial angular momentum, implicitly taken to be 
positive. 
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(b) The angle turned is 2
0 / 2.t tθ ω α= +  If the angular acceleration α is uniform, then so 

is the torque and α = τ/I. Furthermore, ω0 = Li/I, and we obtain 
 

( )( ) ( )( )222

2

3.00kg m s 1.50s 1.467 N m 1.50s / 2/ 2
0.140kg m

20.4 rad.

iL t t
I
τθ

⋅ + − ⋅+
= =

⋅
=

 

 
(c) The work done on the wheel is 
 

( )( )1.47 N m 20.4 rad 29.9 JW τθ= = − ⋅ = −  
 
where more precise values are used in the calculation than what is shown here. An 
equally good method for finding W is Eq. 10-52, which, if desired, can be rewritten as 

( )2 2 2f iW L L I= − . 
 
(d) The average power is the work done by the flywheel (the negative of the work done 
on the flywheel) divided by the time interval: 
 

avg
29.8 J 19.9 W.
1.50s

WP
t

−
= − = − =

Δ
 

 
40. Torque is the time derivative of the angular momentum. Thus, the change in the 
angular momentum is equal to the time integral of the torque. With 

(5.00 2.00 ) N mtτ = + ⋅ , the angular momentum (in units 2kg m /s⋅ ) as a function of time 
is  
 2

0( ) (5.00 2.00 ) 5.00 1.00L t dt t dt L t tτ= = + = + +∫ ∫ . 
 
Since 25.00 kg m /sL = ⋅  when 1.00 st = , the integration constant is 0 1L = − . Thus, the 
complete expression of the angular momentum is  
 

2( ) 1 5.00 1.00L t t t= − + + . 
 
At 3.00 st = , we have 2 2( 3.00) 1 5.00(3.00) 1.00(3.00) 23.0 kg m /s.L t = = − + + = ⋅  
 
41. (a) For the hoop, we use Table 10-2(h) and the parallel-axis theorem to obtain 
 

I I mh mR mR mR1
2 2 2 21

2
3
2

= + = + =com .  

 
Of the thin bars (in the form of a square), the member along the rotation axis has 
(approximately) no rotational inertia about that axis (since it is thin), and the member 
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farthest from it is very much like it (by being parallel to it) except that it is displaced by a 
distance h; it has rotational inertia given by the parallel axis theorem: 
 

I I mh mR mR2
2 2 20= + = + =com .  

 
Now the two members of the square perpendicular to the axis have the same rotational 
inertia (that is I3 = I4). We find I3 using Table 10-2(e) and the parallel-axis theorem: 
 

I I mh mR m R mR3
2 2

2
21

12 2
1
3

= + = + FHG
I
KJ =com .  

Therefore, the total rotational inertia is 
 

I I I I mR1 2 3 4
219

6
16+ + + = = ⋅. .kg m2  

(b) The angular speed is constant: 

ω θ
= = =

Δ
Δt

2
2 5

2 5p
.

. rad s. 

Thus, L I= = ⋅total
2kg m s.ω 4 0.  

 
42. The results may be found by integrating Eq. 11-29 with respect to time, keeping in 
mind that Li 

→  
 = 0 and that the integration may be thought of as “adding the areas” under 

the line-segments (in the plot of the torque versus time, with “areas” under the time axis 
contributing negatively). It is helpful to keep in mind, also, that the area of a triangle is 12 

(base)(height). 
 
(a) We find that L 

→
 =  24 2kg m / s⋅  at t = 7.0 s. 

 
(b) Similarly, L 

→
 = 1.5 2kg m / s⋅  at t = 20 s.   

 
43. We assume that from the moment of grabbing the stick onward, they maintain rigid 
postures so that the system can be analyzed as a symmetrical rigid body with center of 
mass midway between the skaters. 
 
(a) The total linear momentum is zero (the skaters have the same mass and equal and 
opposite velocities). Thus, their center of mass (the middle of the 3.0 m long stick) 
remains fixed and they execute circular motion (of radius r = 1.5 m) about it.  
 
(b) Using Eq. 10-18, their angular velocity (counterclockwise as seen in Fig. 11-47) is 
 

1.4 m/s 0.93 rad/s.
1.5 m

v
r

ω = = =  
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(c) Their rotational inertia is that of two particles in circular motion at r = 1.5 m, so Eq. 
10-33 yields 

( )( )22 22 50 kg 1.5 m 225 kg m .I mr= = = ⋅∑  
 
Therefore, Eq. 10-34 leads to 
 

( )( )22 21 1 225 kg m 0.93rad/s 98 J.
2 2

K Iω= = ⋅ =  

 
(d) Angular momentum is conserved in this process. If we label the angular velocity 
found in part (a) ω i  and the rotational inertia of part (b) as Ii, we have 
 

( )( )2225 kg m 0.93rad/s .i i f fI Iω ω= ⋅ =  
 
The final rotational inertia is mrf

2∑  where rf = 0.5 m so 225 kg m .fI = ⋅  Using this 
value, the above expression gives ω f = 8 4. rad s.  
 
(e) We find 

( )( )22 2 21 1 25 kg m 8.4 rad/s 8.8 10 J.
2 2f f fK I ω= = ⋅ = ×  

 
(f) We account for the large increase in kinetic energy (part (e) minus part (c)) by noting 
that the skaters do a great deal of work (converting their internal energy into mechanical 
energy) as they pull themselves closer — “fighting” what appears to them to be large 
“centrifugal forces” trying to keep them apart. 
 
44. So that we don’t get confused about ± signs, we write the angular speed to the lazy 
Susan as ω  and reserve the ω symbol for the angular velocity (which, using a common 
convention, is negative-valued when the rotation is clockwise). When the roach “stops” 
we recognize that it comes to rest relative to the lazy Susan (not relative to the ground). 
 
(a) Angular momentum conservation leads to 
 

mvR I mR I f+ = +ω ω0
2c h  

 
which we can write (recalling our discussion about angular speed versus angular velocity) 
as 

mvR I mR I f− = − +ω ω0
2c h .  

 
We solve for the final angular speed of the system: 
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3 2
0

2 3 2 2

| | (0.17 kg)(2.0 m/s)(0.15 m) (5.0 10  kg m )(2.8 rad/s)| |
(5.0 10  kg m ) (0.17 kg)(0.15 m)

      4.2 rad/s.

f
mvR I

mR I
ωω

−

−

− − × ⋅
= =

+ × ⋅ +
=

 

 
(b) No, K Kf i≠  and — if desired — we can solve for the difference: 
 

K K mI v R Rv
mR Ii f− =

+ +
+2

22
0
2 2

0
2

ω ω
 

 
which  is clearly positive. Thus, some of the initial kinetic energy is “lost” — that is, 
transferred to another form. And the culprit is the roach, who must find it difficult to stop 
(and “internalize” that energy). 
 
45. (a) No external torques act on the system consisting of the man, bricks, and platform, 
so the total angular momentum of the system is conserved. Let Ii be the initial rotational 
inertia of the system and let If be the final rotational inertia. Then Iiωi = Ifωf and 
 

 ( )
2

2

6.0kg m 1.2 rev s 3.6 rev s.
2.0kg m

i
f i

f

I
I

ω ω
⎛ ⎞ ⎛ ⎞⋅

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠
 

 

(b) The initial kinetic energy is K Ii i i=
1
2

2ω ,  the final kinetic energy is K If f f=
1
2

2ω ,  

and their ratio is 
( )( )
( )( )

222

22 2

2.0 kg m 3.6 rev s / 2/ 2
3.0.

/ 2 6.0 kg m 1.2 rev s / 2
f f f

i i i

K I
K I

ω
ω

⋅
= = =

⋅
 

 
(c) The man did work in decreasing the rotational inertia by pulling the bricks closer to 
his body. This energy came from the man’s store of internal energy. 
 
46. Angular momentum conservation I Ii i f fω ω=  leads to 

ω
ω

ωf

i

i

f
i

I
I

= = 3  

which implies 
22

2

/ 2
3.

/ 2
f f f f f

i i i i i

K I I
K I I

ω ω
ω ω

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

 
47. No external torques act on the system consisting of the train and wheel, so the total 
angular momentum of the system (which is initially zero) remains zero. Let I = MR2 be 
the rotational inertia of the wheel. Its final angular momentum is  
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Lf 
→  

= = −I M Rω ω� �k k,2  
 
where �k  is up in Fig. 11-48 and that last step (with the minus sign) is done in recognition 
that the wheel’s clockwise rotation implies a negative value for ω. The linear speed of a 
point on the track is ωR and the speed of the train (going counterclockwise in Fig. 11-48 
with speed ′v  relative to an outside observer) is therefore ′ = −v v Rω  where v is its 
speed relative to the tracks. Consequently, the angular momentum of the train is 
m v R R− ωc h �k .  Conservation of angular momentum yields 
 

0 2= − + −MR m v R Rω ω� �k k.c h  
 
When this equation is solved for the angular speed, the result is 
 

( ) ( )2

(0.15 m/s)| | 0.17 rad/s.
/ 1 (1.1+1)(0.43 m)

mvR v
M m R M m R

ω = = = =
+ +

 

 
48. Using Eq. 11-31 with angular momentum conservation, Li 

→  
 = Lf 

→  
 (Eq. 11-33) leads to 

the ratio of rotational inertias being inversely proportional to the ratio of angular 
velocities.  Thus, If /Ii = 6/5 = 1.0 + 0.2.  We interpret the “1.0” as the ratio of disk 
rotational inertias (which does not change in this problem) and the “0.2” as the ratio of 
the roach rotational inertial to that of the disk.  Thus, the answer is 0.20. 
 
49. (a) We apply conservation of angular momentum:   
 

I1ω1 + I2ω2 = (I1 + I2)ω. 
 
The angular speed after coupling is therefore 
 

( )( ) ( )( )2 2
1 1 2 2

2 2
1 2

3.3kg m 450 rev min 6.6kg m 900 rev min
3.3kg m 6.6kg m

750 rev min.

I I
I I

ω ωω
⋅ + ⋅+

= =
+ ⋅ + ⋅

=

 

 
(b) In this case, we obtain 
 

( )( ) ( )( )2 2
1 1 2 2

2 2
1 2

3.3 kg m 450 rev/min 6.6 kg m 900 rev/min
3.3 kg m 6.6 kg m

450 rev min

I I
I I

ω ωω
⋅ + ⋅ −+

= =
+ ⋅ + ⋅

= −

 

 
or | | 450 rev minω = . 
 



 

  

495

(c) The minus sign indicates that 
G
ω  is clockwise, that is, in the direction of the second 

disk’s initial angular velocity. 
 
50. We use conservation of angular momentum:  
 

Imωm = Ipωp. 
 
The respective angles θm and θp by which the motor and probe rotate are therefore related 
by 

I dt I I dt Im m m m p p p pω θ ω θ= = =z z  

 
which gives 

θ
θ

m
p p

m

I
I

= =
⋅ °

× ⋅
= °−

12 30
2 0 10

1800003

kg m
kg m

2

2

c hb g
.

.  

 
The number of  revolutions for the rotor is then  
 

N = (1.8 × 105)º/(360º/rev) = 5.0 × 102 rev. 
 
51. No external torques act on the system consisting of the two wheels, so its total 
angular momentum is conserved.  
 
Let I1 be the rotational inertia of the wheel that is originally spinning at ω ib g  and I2 be 
the rotational inertia of the wheel that is initially at rest. Then by angular momentum 
conservation, i fL L= , or I I Ii f1 1 2ω ω= +b g  and 

ω ωf i
I

I I
=

+
1

1 2

 

 
where ω f  is the common final angular velocity of the wheels.  
 
(a) Substituting I2 = 2I1 and ω i = 800 rev min,  we obtain 
 

1 1

1 2 1 1

1(800 rev/min) (800 rev/min) 267 rev/min
2( ) 3f i

I I
I I I I

ω ω= = = =
+ +

. 

 
(b) The initial kinetic energy is K Ii i= 1

2 1
2ω  and the final kinetic energy is 

K I If f= +1
2 1 2

2b gω . We rewrite this as 

K I I I
I I

If
i

i= +
+
F
HG

I
KJ =

1
2

2
2

1
61 1

1

1 1

2
2b g ω ω .  

Therefore, the fraction lost is 
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2

2

/ 6 21 1 0.667.
/ 2 3

i f f i

i i i i

K K K IK
K K K I

ω
ω

−Δ
= = − = − = =  

 
52. We denote the cockroach with subscript 1 and the disk with subscript 2. The 
cockroach has a mass m1 = m, while the mass of the disk is m2 = 4.00 m. 
 
(a) Initially the angular momentum of the system consisting of the cockroach and the disk 
is 

L m v r I m R m Ri i i i= + = +1 1 1 2 2 1 0
2

2 0
21

2
ω ω ω .  

 
After the cockroach has completed its walk, its position (relative to the axis) is r Rf1 2=  
so the final angular momentum of the system is 
 

L m R m Rf f f= F
HG
I
KJ +1

2

2
2

2
1
2

ω ω .  

Then from Lf = Li we obtain 
 

ω ωf m R m R m R m R1
4

1
2

1
21

2
2 0 1

2
2

2+F
HG

I
KJ = +F
HG

I
KJ .  

Thus, 
2 2

1 2 2 1
0 0 0 02 2

1 2 2 1

2 1 ( / ) 2 1 2 1.33 .
4 2 1/ 4 ( / ) 2 1/ 4  2f

m R m R m m
m R m R m m

ω ω ω ω ω
⎛ ⎞ ⎛ ⎞+ + +⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
With ω0 = 0.260 rad/s, we have ωf =0.347 rad/s.  
 

(b) We substitute I = L/ω into K I=
1
2

2ω  and obtain K L=
1
2

ω . Since we have Li = Lf, 

the kinetic energy ratio becomes 

0 0

/ 2
1.33.

/ 2
f f f

i i

LK
K L

ω ω
ω ω

= = =  

 
(c) The cockroach does positive work while walking toward the center of the disk, 
increasing the total kinetic energy of the system. 
 
53. The axis of rotation is in the middle of the rod, with r = 0.25 m from either end. By 
Eq. 11-19, the initial angular momentum of the system (which is just that of the bullet, 
before impact) is rmv sinθ  where m = 0.003 kg and θ = 60°. Relative to the axis, this is 
counterclockwise and thus (by the common convention) positive. After the collision, the 
moment of inertia of the system is  
 

I = Irod + mr2 
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where Irod = ML2/12 by Table 10-2(e), with M = 4.0 kg and L = 0.5 m. Angular 
momentum conservation leads to 
 

2 21sin .
12

rmv ML mrθ ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

Thus, with ω = 10 rad/s, we obtain 
 

( )( ) ( )( )( )( )
( )( )

2 21
12 3

4.0 kg 0.5 m 0.003 kg 0.25 m 10 rad/s
1.3 10 m/s.

0.25 m 0.003 kg sin 60
v

+
= = ×

°
 

 
54. We denote the cat with subscript 1 and the ring with subscript 2. The cat has a mass 
m1 = M/4, while the mass of the ring is m2 = M = 8.00 kg. The moment of inertia of the 
ring is 2 2

2 2 1 2( ) / 2I m R R= +  (Table 10-2), and I1 = m1r2 for the cat, where r is the 
perpendicular distance from the axis of rotation.  
 
Initially the angular momentum of the system consisting of the cat (at r = R2) and the ring 
is 

2
2 2 2 2 2 1

1 1 1 2 2 1 0 2 2 1 2 0 1 2 0 2
1 2

1 1( ) 1 1 .
2 2i i i i

m RL m v r I m R m R R m R
m R

ω ω ω ω
⎡ ⎤⎛ ⎞

= + = + + = + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

 
After the cat has crawled to the inner edge at 1r R=  the final angular momentum of the 
system is 

2
2 2 2 2 2 2

1 1 2 1 2 1 1 2
1 1

1 1( ) 1 1 .
2 2f f f f

m RL m R m R R m R
m R

ω ω ω
⎡ ⎤⎛ ⎞

= + + = + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

Then from Lf = Li we obtain 
 

 

2
2 1

2 2
1 2 22

2
0 1 2 2

2
1 1

11 1
2 1 2(0.25 1)(2.0) 1.273

1 2(1 4)11 1
2

f

m R
m RR

R m R
m R

ω
ω

⎛ ⎞
+ +⎜ ⎟⎛ ⎞ + +⎝ ⎠= = =⎜ ⎟ + +⎛ ⎞⎝ ⎠ + +⎜ ⎟

⎝ ⎠

. 

 
Thus, 01.273fω ω= . Using ω0 =8.00 rad/s, we have ωf =10.2 rad/s. By substituting I = 

L/ω into 2 / 2K Iω= , we obtain / 2K Lω= . Since Li = Lf, the kinetic energy ratio 
becomes 

0

/ 2
1.273.

/ 2
f f f f

i i i

K L
K L

ω ω
ω ω

= = =  

 
which implies 0.273f i iK K K KΔ = − = . The cat does positive work while walking toward 
the center of the ring, increasing the total kinetic energy of the system. 
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Since the initial kinetic energy is given by 
 

 

2
2 2 2 2 2 2 2 1

1 2 2 1 2 0 1 2 0 2
1 2

2 2 2

1 1 1 1( ) 1 1
2 2 2 2

1 (2.00 kg)(0.800 m) (8.00 rad/s) [1+(1/2)(4)(0.5 +1)]
2

=143.36 J,

i
m RK m R m R R m R
m R

ω ω
⎡ ⎤⎛ ⎞⎡ ⎤= + + = + +⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

=  

 
the increase in kinetic energy is  
 

(0.273)(143.36 J) 39.1 J.KΔ = =  
 
55. For simplicity, we assume the record is turning freely, without any work being done 
by its motor (and without any friction at the bearings or at the stylus trying to slow it 
down). Before the collision, the angular momentum of the system (presumed positive) is 
Ii iω  where Ii = × ⋅−50 10 4. kg m2  and ω i = 4 7. .rad s  The rotational inertia afterward is  
 

I I mRf i= + 2  
 
where m = 0.020 kg and R = 0.10 m. The mass of the record (0.10 kg), although given in 
the problem, is not used in the solution. Angular momentum conservation leads to 
 

I I I
I mRi i f f f

i i

i

ω ω ω ω
= ⇒ =

+
=2 34. rad / s.  

 
56. Table 10-2 gives the rotational inertia of a thin rod rotating about a perpendicular axis 
through its center. The angular speeds of the two arms are, respectively, 
 

1

2

(0.500 rev)(2  rad/rev) 4.49 rad/s
0.700 s

(1.00 rev)(2  rad/rev) 8.98 rad/s.
0.700 s

πω

πω

= =

= =
 

 
Treating each arm as a thin rod of mass 4.0 kg and length 0.60 m, the angular momenta 
of the two arms are 
 

 
2 2 2

1 1 1
2 2 2

2 2 2

(4.0 kg)(0.60 m) (4.49 rad/s) 6.46 kg m /s

(4.0 kg)(0.60 m) (8.98rad/s) 12.92 kg m /s.

L I mr

L I mr

ω ω

ω ω

= = = = ⋅

= = = = ⋅
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From the athlete’s reference frame, one arm rotates clockwise, while the other rotates 
counterclockwise. Thus, the total angular momentum about the common rotation axis 
though the shoulders is 
 

2 2 2
2 1 12.92 kg m /s 6.46 kg m /s 6.46 kg m /s.L L L= − = ⋅ − ⋅ = ⋅  

 
57. Their angular velocities, when they are stuck to each other, are equal, regardless of 
whether they share the same central axis. The initial rotational inertia of the system is, 
using Table 10-2(c), 

0 bigdisk smalldiskI I I= +  
 
where 2

bigdisk / 2I MR= . Similarly, since the small disk is initially concentric with the big 

one, I mrsmalldisk = 1
2

2 . After it slides, the rotational inertia of the small disk is found from 
the parallel axis theorem (using h = R – r). Thus, the new rotational inertia of the system 
is 

( )22 21 1 .
2 2

I MR mr m R r= + + −  

 
(a) Angular momentum conservation, I0ω0 = Iω, leads to the new angular velocity: 
 

( )

2 2

0 22 2

( / 2) ( / 2) .
( / 2) ( / 2)

MR mr
MR mr m R r

ω ω +
=

+ + −
 

 
Substituting M = 10m and R = 3r, this becomes ω = ω0(91/99). Thus, with ω0 = 20 rad/s, 
we find ω = 18 rad/s. 
 
(b) From the previous part, we know that 
 

I
I
0

0

91
99

91
99

= =and ω
ω

.  

 
Plugging these into the ratio of kinetic energies, we have 
 

2 22

2
0 0 0 0 0

/ 2 99 91 0.92.
/ 2 91 99

K I I
K I I

ω ω
ω ω

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
58. The initial rotational inertia of the system is  Ii = Idisk + Istudent,  where Idisk = 300 
kg ⋅ m2 (which, incidentally, does agree with Table 10-2(c)) and Istudent = mR2 where 

60 kgm =  and R = 2.0 m.  
 
The rotational inertia when the student reaches r = 0.5 m is If = Idisk + mr2. Angular 
momentum conservation leads to 
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I I I mR
I mri i f f f iω ω ω ω= ⇒ =

+
+

disk

disk

2

2  

 
which yields, for ωi = 1.5 rad/s, a final angular velocity of ωf = 2.6 rad/s. 
 
59. By angular momentum conservation (Eq. 11-33), the total angular momentum after 
the explosion must be equal to that before the explosion: 
 
 p r p rL L L L′ ′+ = +  
 

⎝⎛ ⎠⎞
L
2 mvp +  1

12 ML2 ω′ = Ip ω  +  1
12 ML2 ω 

 
where one must be careful to avoid confusing the length of the rod (L = 0.800 m) with the 
angular momentum symbol.  Note that Ip = m(L/2)2 by Eq.10-33, and  
 

ω′ = vend/r = (vp − 6)/(L/2), 
 
where the latter relation follows from the penultimate sentence in the problem (and “6” 
stands for “6.00 m/s” here). Since M = 3m and ω = 20 rad/s, we end up with enough 
information to solve for the particle speed: vp = 11.0 m/s. 
 
60. (a) With r = 0.60 m, we obtain I = 0.060 + (0.501)r2 = 0.24 kg · m2. 
 
(b) Invoking angular momentum conservation, with SI units understood, 
 
 ( ) ( ) ( )( )0 0 00.001 0.60 0.24 4.5fL mv r I vω= ⇒ = ⇒ =  
 
which leads to v0 = 1.8 × 103 m/s. 
 
61. We make the unconventional choice of clockwise sense as positive, so that the 
angular velocities in this problem are positive. With r = 0.60 m and I0 = 0.12 kg · m2, the 
rotational inertia of the putty-rod system (after the collision) is  
 

I = I0 + (0.20)r2 = 0.19 kg · m2. 
 
Invoking angular momentum conservation 0 fL L=  or 0 0I Iω ω= , we have 
 

 ( )
2

0
0 2

0.12 kg m 2.4 rad/s 1.5rad/s.
0.19 kg m

I
I

ω ω ⋅
= = =

⋅
 

 
62. The aerialist is in extended position with 2

1 19.9 kg mI = ⋅ during the first and last 
quarter of the turn, so the total angle rotated in 1t  is 1 0.500 rev.θ =  In 2t  he is in a tuck 



 

  

501

position with 2
2 3.93 kg mI = ⋅ , and the total angle rotated is 2 3.500 rev.θ =  Since there 

is no external torque about his center of mass, angular momentum is conserved, 
1 1 2 2I Iω ω= . Therefore, the total flight time can be written as 

 

 1 2 1 2 1
1 2 1 2

1 2 2 2 1 2 2 2

1 .
/

It t t
I I I

θ θ θ θ θ θ
ω ω ω ω ω

⎛ ⎞
= + = + = + = +⎜ ⎟

⎝ ⎠
 

 
Substituting the values given, we find 2ω  to be 
 

2
1

2 1 2 2
2

1 1 19.9 kg m (0.500 rev) 3.50 rev 3.23 rev/s.
1.87 s 3.93 kg m

I
t I

ω θ θ
⎛ ⎞ ⎛ ⎞⋅

= + = + =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠⎝ ⎠
 

 
63. This is a completely inelastic collision, which we analyze using angular momentum 
conservation. Let m and v0 be the mass and initial speed of the ball and R the radius of the 
merry-go-round. The initial angular momentum is 
 

( )
0 0 0 0 0 cos37r p R mv= × ⇒ = °
G G GA A  

 
where φ = 37° is the angle between Gv0 and the line tangent to the outer edge of the merry-
go-around. Thus, A0 19= ⋅kg m s2 . Now, with SI units understood, 
 
 ( ) ( )( )2 2 2

0 19 kg m 150 30 1.0fL I R Rω ω= ⇒ ⋅ = = + +  
 
so that ω = 0.070 rad/s. 
 
64. We treat the ballerina as a rigid object rotating around a fixed axis, initially and then 
again near maximum height. Her initial rotational inertia (trunk and one leg extending 
outward at a 90°  angle) is  
 
 2 2 2

trunk leg 0.660 kg m 1.44 kg m 2.10 kg m .iI I I= + = ⋅ + ⋅ = ⋅  
 
Similarly, her final rotational inertia (trunk and both legs extending outward at a 30θ = °  
angle) is  

 
2 2 2 2

trunk leg

2

2 sin 0.660 kg m 2(1.44 kg m )sin 30

1.38 kg m ,
fI I I θ= + = ⋅ + ⋅ °

= ⋅
 

 
where we have used the fact that the effective length of the extended leg at an angle θ is 

sinL L θ⊥ =  and 2 .I L⊥∼ Once airborne, there is no external torque about the ballerina’s  
center of mass  and her angular momentum cannot change. Therefore, i fL L=  or 

i i f fI Iω ω= , and the ratio of the angular speeds is 
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2

2

2.10 kg m 1.52.
1.38 kg m

f i

i f

I
I

ω
ω

⋅
= = =

⋅
 

 
65. If we consider a short time interval from just before the wad hits to just after it hits 
and sticks, we may use the principle of conservation of angular momentum. The initial 
angular momentum is the angular momentum of the falling putty wad.  
 
The wad initially moves along a line that is d/2 distant from the axis of rotation, where d 
is the length of the rod. The angular momentum of the wad is mvd/2 where m and v are 
the mass and initial speed of the wad. After the wad sticks, the rod has angular velocity ω 
and angular momentum Iω, where I is the rotational inertia of the system consisting of 
the rod with the two balls (each having a mass M) and the wad at its end. Conservation of 
angular momentum yields mvd/2 = Iω where  
 

I = (2M + m)(d/2)2 . 
 
The equation allows us to solve for ω.  
 
(a) With M = 2.00 kg, d = 0.500 m, m = 0.0500 kg, and v = 3.00 m/s, we find the angular 
speed to be 

( )
( )( )

( )( )( )
2 0.0500 kg 3.00 m/s2

2 2 2 2.00 kg 0.0500 kg 0.500 m

0.148 rad s.

mvd mv
I M m d

ω = = =
+ +

=

 

 
(b) The initial kinetic energy is K mvi = 1

2
2 ,  the final kinetic energy is K If = 1

2
2ω ,  and 

their ratio is  
K K I mvf i = ω 2 2 .  

 
When I M m d= +2 42b g  and ω = +2 2mv M m db g  are substituted, the ratio becomes 
 

( )
0.0500 kg 0.0123.

2 2 2.00 kg 0.0500 kg
f

i

K m
K M m

= = =
+ +

 

 
(c) As the rod rotates, the sum of its kinetic and potential energies is conserved. If one of 
the balls is lowered a distance h, the other is raised the same distance and the sum of the 
potential energies of the balls does not change. We need consider only the potential 
energy of the putty wad. It moves through a 90° arc to reach the lowest point on its path, 
gaining kinetic energy and losing gravitational potential energy as it goes. It then swings 
up through an angle θ, losing kinetic energy and gaining potential energy, until it 
momentarily comes to rest. Take the lowest point on the path to be the zero of potential 
energy. It starts a distance d/2 above this point, so its initial potential energy is 
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( / 2)iU mg d= . If it swings up to the angular position θ, as measured from its lowest 
point, then its final height is (d/2)(1 – cos θ) above the lowest point and its final potential 
energy is  

U mg df = −2 1b gb gcos .θ  
 
The initial kinetic energy is the sum of that of the balls and wad:  
 

( )( )22 21 1 2 2 .
2 2iK I M m dω ω= = +  

 
At its final position, we have Kf = 0. Conservation of energy provides the relation: 
 

( ) ( )
2

21 2 1 cos .
2 2 2 2i i f f
d d dU K U K mg M m mgω θ⎛ ⎞+ = + ⇒ + + = −⎜ ⎟

⎝ ⎠
 

 
When this equation is solved for cos θ, the result is 
 

 ( )
( )( ) ( )

2

2

2

1 2cos
2 2

2 2.00 kg 0.0500 kg1 0.500 m 0.148 rad s
2 20.0500 kg 9.8 m s

0.0226.

M m d
mg

θ ω
⎛ ⎞+ ⎛ ⎞= − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞+ ⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= −

 

 
Consequently, the result for θ is 91.3°. The total angle through which it has swung is 90° 
+ 91.3° = 181°. 
 
66. We make the unconventional choice of clockwise sense as positive, so that the 
angular velocities (and angles) in this problem are positive. Mechanical energy 
conservation applied to the particle (before impact) leads to 
 

mgh mv v gh= ⇒ =
1
2

22  

 
for its speed right before undergoing the completely inelastic collision with the rod. The 
collision is described by angular momentum conservation: 
 

mvd I md= +rod
2c hω  

 
where Irod is found using Table 10-2(e) and the parallel axis theorem: 

I Md M d Mdrod = + FHG
I
KJ =

1
12 2

1
3

2
2

2 .  



  CHAPTER 11 504 

 
Thus, we obtain the angular velocity of the system immediately after the collision: 
 

2 2

2
( / 3)

md gh
Md md

ω =
+

 

 
which means the system has kinetic energy ( )2 2

rod / 2,I md ω+  which will turn into 
potential energy in the final position, where the block has reached a height H (relative to 
the lowest point) and the center of mass of the stick has increased its height by H/2. From 
trigonometric considerations, we note that H = d(1 – cosθ), so we have 
 

 ( ) ( ) ( )
2 2

2 2
rod 2 2

21 1 1 cos
2 2 2 ( / 3) 2

m d ghH MI md mgH Mg m gd
Md md

ω θ⎛ ⎞+ = + ⇒ = + −⎜ ⎟+ ⎝ ⎠
 

 
from which we obtain 
 

 

( ) ( ) ( ) ( )
2

1 1

1 1

/cos 1 cos 1
/ 2 / 3 1 / 2 1 / 3

(20 cm/ 40 cm)cos 1 cos (0.85)
(1 1)(1 2/3)

32 .

m h h d
m M m M M m M m

θ − −

− −

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

⎛ ⎞
= − =⎜ ⎟+ +⎝ ⎠
= °

 

 
67. (a) We consider conservation of angular momentum (Eq. 11-33) about the center of 
the rod: 

21 0
12i fL L dmv ML ω= ⇒ − + =  

 
where negative is used for “clockwise.” Item (e) in Table 11-2 and Eq. 11-21 (with r⊥ = d) 
have also been used.  This leads to 
 

d = 
ML2 ω
12 m v  =  

M(0.60 m)2 (80 rad/s)
12(M/3)(40 m/s)   =  0.180 m . 

 
(b) Increasing d causes the magnitude of the negative (clockwise) term in the above 
equation to increase.  This would make the total angular momentum negative before the 
collision, and (by Eq. 11-33) also negative afterward. Thus, the system would rotate 
clockwise if d were greater. 
 
68. (a) The angular speed of the top is 30 rev/s 30(2 ) rad/sω π= = . The precession rate of 
the top can be obtained by using Eq. 11-46: 
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2

4 2

(0.50 kg)(9.8 m/s )(0.040 m) 2.08 rad/s 0.33 rev/s.
(5.0 10  kg m )(60  rad/s)

Mgr
Iω π−Ω = = = ≈

× ⋅
 

 
(b) The direction of the precession is clockwise as viewed from overhead. 
 
69. The precession rate can be obtained by using Eq. 11-46 with r = (11/2) cm = 0.055 m. 
Noting that Idisk = MR2/2 and its angular speed is 
 

22 (1000)1000 rev/min  rad/s 1.0 10  rad/s,
60

πω = = ≈ ×  

we have  
2

2 2 2 2

2 2(9.8 m/s )(0.055 m) 0.041 rad/s.
( / 2) (0.50 m) (1.0 10  rad/s)

Mgr gr
MR Rω ω

Ω = = = ≈
×

 

 
70. Conservation of energy implies that mechanical energy at maximum height up the 
ramp is equal to the mechanical energy on the floor. Thus, using Eq. 11-5, we have 
 

2 2 2 2
com com

1 1 1 1
2 2 2 2f fmv I mgh mv Iω ω+ + = +  

 
where vf  = ωf = 0 at the point on the ramp where it (momentarily) stops.  We note that the 
height h relates to the distance traveled along the ramp d by h = d sin(15º).  Using item (f) 
in Table 10-2 and Eq. 11-2, we obtain 
 

 
2

2 2 2 2 21 1 2 1 1 7sin15 .
2 2 5 2 5 10

vmgd mv mR mv mv mv
R

⎛ ⎞⎛ ⎞° = + = + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
After canceling m and plugging in d = 1.5 m, we find v = 2.33 m/s. 
 
71. We make the unconventional choice of clockwise sense as positive, so that the 
angular acceleration is positive (as is the linear acceleration of the center of mass, since 
we take rightward as positive). 
 
(a) We approach this in the manner of Eq. 11-3 (pure rotation about point P) but use 
torques instead of energy. The torque (relative to point P) is PIτ α= , where 
 

2 2 21 3
2 2PI MR MR MR= + =  

 
with the use of the parallel-axis theorem and Table 10-2(c). The torque is due to the 

app 12 NF =  force and can be written as  app (2 )F Rτ = . In this way, we find 
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2
app

3 2
2PI MR RFτ α α⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

which leads to 
( )app app 2

2

2 4 4 12 N
16rad/s .

3 /2 3 3(10 kg)(0.10 m)
RF F

MR MR
α = = = =  

 
Hence, acom = Rα = 1.6 m/s2. 
 
(b) As shown above, α = 16 rad/s2. 
 
(c) Applying Newton’s second law in its linear form yields 12 N comb g− =f Ma .  
Therefore, f = –4.0 N. Contradicting what we assumed in setting up our force equation, 
the friction force is found to point rightward with magnitude 4.0 N, i.e., ˆ(4.0 N)if =

G
. 

 
72. The rotational kinetic energy is K I= 1

2
2ω ,  where I = mR2 is its rotational inertia 

about the center of mass (Table 10-2(a)), m = 140 kg, and ω  = vcom/R (Eq. 11-2). The 
ratio is 

( )( )

21
comtransl 2

221
rot com2

1.00.mvK
K mR v R

= =  

 
73. This problem involves the vector cross product of vectors lying in the xy plane. For 
such vectors, if we write G′ = ′ ′r x y� �i + j , then (using Eq. 3-30) we find 
 

G G
′ × = ′ − ′r v x v y vy xd i �k.  

 
(a) Here, G′r  points in either the +�i  or the −�i  direction (since the particle moves along 
the x axis). It has no y′  or z′  components, and neither does Gv , so it is clear from the 
above expression (or, more simply, from the fact that � �i i = 0× ) that 

G
A G G

= ′ × =m r vb g 0  in 
this case. 
 
(b) The net force is in the −�i  direction (as one finds from differentiating the velocity 
expression, yielding the acceleration), so, similar to what we found in part (a), we obtain 
τ = ′ × =

G G
r F 0 . 

 
(c) Now, G G G

′ = −r r ro  where Gro i j= +2 0 50. � . �  (with SI units understood) and points from (2.0, 
5.0, 0) to the instantaneous position of the car (indicated by Gr , which points in either the 
+x or –x directions, or nowhere (if the car is passing through the origin)). Since G Gr v× = 0  
we have (plugging into our general expression above) 
 G

A G G G G
= ′ × = − × = − − −m r v m r v tb g b g b g b gb g b gc he jo k30 2 0 0 50 2 0 3. . . . �  
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which yields 3 2ˆ( 30 k) kg m/st= − ⋅

G
A .  

 
(d) The acceleration vector is given by G

G
a tdv

dt= = −6 0 2. �i  in SI units, and the net force on 
the car is maG.  In a similar argument to that given in the previous part, we have 
 

G G G G Gτ = ′ × = − × = − − −m r a m r a tb g b g b g b gb g b gc he jo k30 2 0 0 50 6 0 2. . . . �  

 
which yields 2 ˆ( 90 k) N m.tτ = − ⋅

G  
 
(e) In this situation, G G G

′ = −r r ro  where Gro i j= −2 0 50. � . �  (with SI units understood) and 
points from (2.0, –5.0, 0) to the instantaneous position of the car (indicated by Gr , which 
points in either the +x or –x directions, or nowhere (if the car is passing through the 
origin)). Since G Gr v× = 0  we have (plugging into our general expression above) 
 G

A G G G G
= ′ × = − × = − − − −m r v m r v tb g b g b g b gb g b gc he jo k30 2 0 0 50 2 0 3. . . . �  

 
which yields 3 2ˆ(30 k) kg m /s.t= ⋅

G
A   

 
(f) Again, the acceleration vector is given by Ga t= −6 0 2. �i  in SI units, and the net force on 
the car is maG.  In a similar argument to that given in the previous part, we have 
 

G G G G Gτ = ′ × = − × = − − − −m r a m r a tb g b g b g b gb g b gc he jo k30 2 0 0 50 6 0 2. . . . �  

 
which yields 2 ˆ(90 k) N m.tτ = ⋅

G   
 
74. For a constant (single) torque, Eq. 11-29 becomes 
 

τ
→

 =  d L 
→

d t
  = Δ L 

→

 Δ t  . 

Thus, we obtain  

 
2600 kg m /s 12 s

50 N m
Lt

τ
Δ ⋅

Δ = = =
⋅

. 

 
75. No external torques act on the system consisting of the child and the merry-go-round, 
so the total angular momentum of the system is conserved.  
 
An object moving along a straight line has angular momentum about any point that is not 
on the line. The magnitude of the angular momentum of the child about the center of the 
merry-go-round is given by Eq. 11-21, mvR, where R is the radius of the merry-go-round. 
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(a) In terms of the radius of gyration k, the rotational inertia of the merry-go-round is I = 
Mk2. With M = 180 kg and k = 0.91 m, we obtain  
 

I = (180 kg) (0.910 m)2 = 149 kg ⋅ m2. 
 
(b) The magnitude of angular momentum of the running child about the axis of rotation 
of the merry-go-round is 
 

( )( )( ) 2
child 44.0 kg 3.00 m s 1.20 m 158 kg m /s.L mvR= = = ⋅  

 
(c) The initial angular momentum is given by childiL L mvR= = ; the final angular 
momentum is given by Lf = (I + mR2) ω, where ω is the final common angular velocity of 
the merry-go-round and child. Thus mvR I mR= + 2c hω  and 
 

ω =
+

=
⋅

⋅ +
=

mvR
I mR2 2

158
149 44 0 120

0 744kg m s
kg m kg m

rad s
2

2 . .
. .b gb g  

 
Note: The child initially had an angular velocity of  
 

0
3.00 m/s 2.5 rad/s
1.20 m

v
R

ω = = = . 

 
After he jumped onto the merry-go-round, the rotational inertia of the system (merry-go-
round + child) increases, so the angular velocity decreases.    
 
76. Item (i) in Table 10-2 gives the moment of inertia about the center of mass in terms of 
width a (0.15 m) and length b (0.20 m).  In using the parallel axis theorem, the distance 
from the center to the point about which it spins (as described in the problem) is 

(a/4)2 + (b/4)2 .  If we denote the thickness as h (0.012 m) then the volume is abh, which 
means the mass is ρabh (where ρ = 2640 kg/m3 is the density).  We can write the kinetic 
energy in terms of the angular momentum by substituting ω = L/I  into Eq. 10-34: 
 

K = 12  
L2

I   =  12  
(0.104)2

 ρabh((a2 + b2)/12 + (a/4)2 + (b/4)2 )  =   0.62 J . 

 
77. (a) The diagram below shows the particles and their lines of motion. The origin is 
marked O and may be anywhere. The angular momentum of particle 1 has magnitude 
 

( )1 1 1sin  mvr mv d hθ= = +A  
and it is into the page. 
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The angular momentum of particle 2 has magnitude  
 

A2 2 2= =mvr mvhsinθ  
 
and it is out of the page. The net angular momentum has magnitude  
 

4

5 2

( )
(2.90 10  kg)(5.46 m/s)(0.042 m)
6.65 10  kg m /s

L mv d h mvh mvd
−

−

= + − =

= ×

= × ⋅

 

 
and is into the page. This result is independent of the location of the origin. 
 
(b) As indicated above, the expression does not change. 
 
(c) Suppose particle 2 is traveling to the right. Then  
 

L = mv(d + h) + mvh = mv(d + 2h). 
 
This result depends on h, the distance from the origin to one of the lines of motion. If the 
origin is midway between the lines of motion, then h d= − 2  and L = 0. 
 
(d) As we have seen in part (c), the result depends on the choice of origin.  
 
78. (a) Using Eq. 2-16 for the translational (center-of-mass) motion, we find 
 

v v a x a v
x

2
0
2 0

2

2
2

= + ⇒ = −Δ
Δ

 

 
which yields a = –4.11 for v0 = 43 and Δx = 225  (SI units understood). The magnitude of 
the linear acceleration of the center of mass is therefore 4.11 m/s2. 
 
(b) With R = 0.250 m, Eq. 11-6 gives  
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2| | / 16.4 rad/s .a Rα = =  
 
If the wheel is going rightward, it is rotating in a clockwise sense. Since it is slowing 
down, this angular acceleration is counterclockwise (opposite to ω) so (with the usual 
convention that counterclockwise is positive) there is no need for the absolute value signs 
for α. 
 
(c) Equation 11-8 applies with Rfs representing the magnitude of the frictional torque. 
Thus,  

Rfs = Iα = (0.155 kg·m2) (16.4 rad/s2) = 2.55 N m⋅ . 
 
79. We use L = Iω and K I= 1

2
2ω  and observe that the speed of points on the rim 

(corresponding to the speed of points on the belt) of wheels A and B must be the same (so 
ωARA = ωBrB).  
 
(a) If LA = LB (call it L) then the ratio of rotational inertias is 
 

1 0.333.
3

A A A A

B B B B

I L R
I L R

ω ω
ω ω

= = = = =  

 
(b) If we have KA = KB (call it K) then the ratio of rotational inertias becomes 
 

2 22

2

2 1 0.111.
2 9

A A B A

B B A B

I K R
I K R

ω ω
ω ω

⎛ ⎞ ⎛ ⎞
= = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
80. The total angular momentum (about the origin) before the collision (using Eq. 11-18 
and Eq. 3-30 for each particle and then adding the terms) is  
 

Li 
→  

 = [(0.5 m)(2.5 kg)(3.0 m/s) + (0.1 m)(4.0 kg)(4.5 m/s)]k^ . 
 
The final angular momentum of the stuck-together particles (after the collision) measured 
relative to the origin is (using Eq. 11-33) 
 

Lf 
→  

 = Li 
→  

 = (5.55 2kg m /s⋅ )k^ . 
 
81. As the wheel-axle system rolls down the inclined plane by a distance d, the change in 
potential energy is sinU mgd θΔ = − . By energy conservation, the total kinetic energy 
gained is  

 2 2
trans rot

1 1sin
2 2

U K K K mgd mv Iθ ω−Δ = Δ = Δ + Δ ⇒ = + . 

 
Since the axle rolls without slipping, the angular speed is given by /v rω = , where r is 
the radius of the axle. The above equation then becomes 
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2 2

2
rot

1sin 1 1
2

mr mrmgd I K
I I

θ ω
⎛ ⎞ ⎛ ⎞

= + = Δ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
(a) With m = 10.0 kg, d = 2.00 m, r = 0.200 m, and 20.600 kg m ,I = ⋅  the rotational 
kinetic energy may be obtained as 
 

2

rot 2 2

2

sin (10.0 kg)(9.80 m/s )(2.00 m)sin 30.0 58.8 J
(10.0 kg)(0.200 m)1 1

0.600 kg m

mgdK
mr

I

θ °
Δ = = =

+ +
⋅

. 

 
(b) The translational kinetic energy is  
 

trans rot 98 J 58.8 J 39.2 J.K K KΔ = Δ − Δ = − =  
 
Note: One may show that 2 / 2 / 3mr I = , which implies that trans rot/ 2 / 3K KΔ Δ = . 
Equivalently, we may write trans / 2 / 5K KΔ Δ =  and rot / 3 / 5K KΔ Δ = . So as the wheel 
rolls down, 40% of the kinetic energy is translational while the other 60% is rotational.  
 
82. (a) We use Table 10-2(e) and the parallel-axis theorem to obtain the rod’s rotational 
inertia about an axis through one end: 
 

I I Mh ML M L ML= + = + FHG
I
KJ =com

2 2
2

21
12 2

1
3

 

 
where L = 6.00 m and M = 10.0/9.8 = 1.02 kg. Thus, the inertia is 212.2 kg mI = ⋅ . 
 
(b) Using ω = (240)(2π/60) = 25.1 rad/s, Eq. 11-31 gives the magnitude of the angular 
momentum as  

( )( )2 212.2 kg m 25.1rad/s 308 kg m /sIω = ⋅ = ⋅ . 
 
Since it is rotating clockwise as viewed from above, then the right-hand rule indicates 
that its direction is down. 
 
83. We note that its mass is M = 36/9.8 = 3.67 kg and its rotational inertia is 

I MRcom =
2
5

2  (Table 10-2(f)). 

 
(a) Using Eq. 11-2, Eq. 11-5 becomes 
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2
2 2 2 2 2com

com com com com
1 1 1 2 1 7
2 2 2 5 2 10

vK I Mv MR Mv Mv
R

ω ⎛ ⎞⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
which yields K = 61.7 J for vcom = 4.9 m/s. 
 
(b) This kinetic energy turns into potential energy Mgh at some height h = d sin θ where 
the sphere comes to rest. Therefore, we find the distance traveled up the θ = 30° incline 
from energy conservation: 
 

2
2 com
com

77 sin   3.43m.
10 10 sin

vMv Mgd d
g

θ
θ

= ⇒ = =  

 
(c) As shown in the previous part, M cancels in the calculation for d. Since the answer is 
independent of mass, then it is also independent of the sphere’s weight. 
 
84. (a) The acceleration is given by Eq. 11-13: 
 

a g
I MRcom

com

=
+1 0

2  

 
where upward is the positive translational direction. Taking the coordinate origin at the 
initial position, Eq. 2-15 leads to 
 

y v t a t v t gt
I MRcom com,0 com com,0

com

= + = −
+

1
2 1

2
1
2

2

0
2  

 
where ycom = – 1.2 m and  vcom,0 = – 1.3 m/s. Substituting Icom kg m= ⋅0 000095 2. , M = 
0.12 kg, R0 = 0.0032 m, and g = 9.8 m/s2, we use the quadratic formula and find 
 

( )( )

( )( )
( )( )

( )( )( )

com
2
0

2

com
2

com 0

2

2
com,0 com,0

2 9.8 1.22
1 0.000095 0.12 0.0032

2
1

0.000095
0.12 0.0032

1

1 1.3 (1.3)

9.8
21.7 or 0.885

I
MR

gy
I MRv v

t
g

−

+

+
+ −

=

⎛ ⎞+ − −⎜ ⎟
⎝ ⎠=

= −

∓

∓
 

 
where we choose t = 0.89 s as the answer. 
 
(b) We note that the initial potential energy is Ui = Mgh and h = 1.2 m (using the bottom 
as the reference level for computing U). The initial kinetic energy is as shown in Eq. 11-5, 
where the initial angular and linear speeds are related by Eq. 11-2. Energy conservation 
leads to 
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( )( ) ( ) ( )( )( )

2
com,02

com,0
0

2
2 5 2 2

1 1
2 2

1 1 1.3 m/s0.12 kg 1.3 m/s 9.5 10 kg m 0.12 kg 9.8 m/s 1.2 m
2 2 0.0032 m
9.4 J.

f i i

v
K K U mv I Mgh

R

−

⎛ ⎞
= + = + +⎜ ⎟

⎝ ⎠
⎛ ⎞= + × ⋅ +⎜ ⎟
⎝ ⎠

=
 
(c) As it reaches the end of the string, its center of mass velocity is given by Eq. 2-11: 
 

v v a t v gt
I MRcom com com com

com

= + = −
+, , .0 0

0
21

 

Thus, we obtain 
( )( )

( )( )

2

com 2

2

9.8 m/s 0.885 s
1.3 m/s 1.41 m/s

0.000095 kg m1
0.12 kg 0.0032 m

v = − − = −
⋅

+
  

 
so its linear speed at that moment is approximately 14. m s . 
 
(d) The translational kinetic energy is  
 

( )( )221 1
com2 2 0.12 kg 1.41 m/s 0.12 J.mv = − =  

 
(e) The angular velocity at that moment is given by 
 

2com

0

1.41 m/s 441rad/s 4.4 10 rad/s
0.0032 m

v
R

ω −
= − = − = ≈ × . 

 
(f) And the rotational kinetic energy is 
 

1
2

1
2

9 50 10 441 9 22 5 2 2Icom kg m rad s Jω = × ⋅ =−. . .c hb g  

 
85. The initial angular momentum of the system is zero. The final angular momentum of 
the girl-plus-merry-go-round is (I + MR2) ω, which we will take to be positive. The final 
angular momentum we associate with the thrown rock is negative: –mRv, where v is the 
speed (positive, by definition) of the rock relative to the ground. 
 
(a) Angular momentum conservation leads to 
 

( )2
20 .mRvI MR mRv

I MR
ω ω= + − ⇒ =

+
 

 
(b) The girl’s linear speed is given by Eq. 10-18: 
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R mvR
I MR

ω =
+

2

2 .  

 
86. Both Gr  and Gv  lie in the xy plane. The position vector Gr  has an x component that is a 
function of time (being the integral of the x component of velocity, which is itself time-
dependent) and a y component that is constant (y = –2.0 m). In the cross product G Gr v× ,  
all that matters is the y component of Gr  since vx ≠ 0  but vy = 0: 
 

G Gr v yvx× = − �k .  
 
(a) The angular momentum is 

G
A G G

= ×m r vb g  where the mass is m = 2.0 kg in this case. 
With SI units understood and using the above cross-product expression, we have 
 

( ) ( )( )( )2 2ˆ ˆ2.0 2.0 6.0 k= 24 kt t= − − − −
G
A  

 
in kg ⋅ m2/s. This implies the particle is moving clockwise (as observed by someone on 
the +z axis) for t > 0. 
 
(b) The torque is caused by the (net) force 

G GF ma=  where 
 

2ˆ( 12 i)m/s .dva t
dt

= = −
GG  

 
The remark above that only the y component of Gr  still applies, since ay = 0. We use G G G G Gτ = × = ×r F m r ab g  and obtain 
 

( ) ( )( )( ) ( )ˆ ˆ2.0 2.0 12 k 48 k N m.t tτ = − − − = − ⋅
G  

 
The torque on the particle (as observed by someone on the +z axis) is clockwise, causing 
the particle motion (which was clockwise to begin with) to increase. 
 
(c) We replace Gr  with G′r  (measured relative to the new reference point) and note (again) 
that only its y component matters in these calculations. Thus, with y′  = –2.0 – (–3.0) = 
1.0 m, we find 

( ) ( ) ( )( )2 2 2ˆ ˆ2.0 1.0 6.0 k (12 k) kg m /s.t t′ = − − = ⋅
G
A  

 
The fact that this is positive implies that the particle is moving counterclockwise relative 
to the new reference point. 
 
(d) Using 

G G G G G
′ = ′ × = ′ ×τ r F m r ab g,  we obtain 
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( ) ( )( )( ) ˆ ˆ2.0 1.0 12 k (24 k) N m.t tτ = − − = ⋅

G  
 
The torque on the particle (as observed by someone on the +z axis) is counterclockwise, 
relative to the new reference point. 
 
87. If the polar ice cap melts, the resulting body of water will effectively increase the 
equatorial radius of the Earth from Re to e eR R R′ = + Δ , thereby increasing the moment of 
inertia of the Earth and slowing its rotation (by conservation of angular momentum), 
causing the duration T of a day to increase by ΔT. We note that (in rad/s) ω = 2π/T so 
 

′
=

′
=

′
ω
ω

2
2
π
π

T
T

T
T

 

from which it follows that 
 

Δ Δω
ω

ω
ω

=
′

− =
′
− = −

′
1 1T

T
T

T
.  

 
We can approximate that last denominator as T so that we end up with the simple 
relationship Δ Δω ω = T T . Now, conservation of angular momentum gives us 
 

Δ Δ Δ ΔL I I I= = ≈ +0 ω ω ωb g b g b g  
 
so that Δ Δω ω = I I . Thus, using our expectation that rotational inertia is proportional 
to the equatorial radius squared (supported by Table 10-2(f) for a perfect uniform sphere, 
but then this isn’t a perfect uniform sphere) we have 
 

 
( ) ( )2

2 6

2 30m2
6.37 10 m

e e

e e

R RT I
T I R R

Δ ΔΔ Δ
= = ≈ =

×
 

 
so with T = 86400s we find (approximately) that ΔT = 0.8 s. The radius of the Earth can 
be found in Appendix C or on the inside front cover of the textbook. 
 
88. With r⊥ = 1300m,  Eq. 11-21 gives 
 

( )( )( ) 8 21300 m 1200kg 80m/s 1.2 10 kg m s.r mv⊥= = = × ⋅A  
 
89. We denote the wheel with subscript 1 and the whole system with subscript 2. We take 
clockwise as the negative sense for rotation (as is the usual convention).  
 
(a) Conservation of angular momentum gives L = I1ω1 = I2ω2, where 2

1 1 1I m R= . Thus 
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ω ω2 1
1

2

2

57 7
37 0 35

21
= = −

⋅
I
I

.
.

.
rad s

N 9.8m s m
kg m

2

2b g c hb g
= –12.7 rad/s, 

 
or 2| | 12.7 rad/sω = . 
 
(b) The system rotates clockwise (as seen from above) at the rate of 12.7 rad/s. 
 
90. Information relevant to this calculation can be found in Appendix C or on the inside 
front cover of the textbook. The angular speed is constant so 
 

ω = = = × −2 2
86400

7 3 10 5π π
T

. .rad s  

 
Thus, with m = 84 kg and R = 6.37 × 106 m, we find  
 

A = = × ⋅mR2 112 5 10ω . .kg m s2  
 
91. (a) When the small sphere is released at the edge of the large “bowl” (the hemisphere 
of radius R), its center of mass is at the same height at that edge, but when it is at the 
bottom of the “bowl” its center of mass is a distance r above the bottom surface of the 
hemisphere. Since the small sphere descends by R – r, its loss in gravitational potential 
energy is mg(R– r), which, by conservation of mechanical energy, is equal to its kinetic 
energy at the bottom of the track. Thus, 
 

 
4 2

4

( ) (5.6 10 kg)(9.8 m/s )(0.15 m  0.0025 m)
8.1 10  J.

K mg R r −

−

= − = × −

= ×
 

 
(b) Using Eq. 11-5 for K, the asked-for fraction becomes 
 

K
K

I
I Mv M

I
v

rot

com com

=
+

=
+

1
2

2

1
2

2 1
2

2 2
1

1

ω
ω

ωb gd i
.  

 
Substituting vcom = Rω (Eq. 11-2) and I MR= 2

5
2  (Table 10-2(f)), we obtain 

 

( )2

rot
25

2

1 2 0.29.
71

R

K
K R

= = ≈
+

 

 
(c) The small sphere is executing circular motion so that when it reaches the bottom, it 
experiences a radial acceleration upward (in the direction of the normal force that the 
“bowl” exerts on it). From Newton’s second law along the vertical axis, the normal force 
FN satisfies FN – mg = macom where  
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a v R rcom com= −2 / ( ) . 
Therefore, 

( ) 22
comcom .N

mg R r mvmvF mg
R r R r

− +
= + =

− −
 

 
But from part (a), mg(R – r) = K, and from Eq. 11-5, 1

2
2mv K Kcom rot= − . Thus, 

 
( )rot rot2

3 2 .N

K K K KKF
R r R r R r

+ − ⎛ ⎞⎛ ⎞= = −⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠
 

 
We now plug in R – r = K/mg and use the result of part (b): 
 

 
4 2

2

2 17 173 2 (5.6 10  kg)(9.8 m/s )
7 7 7

1.3 10  N.

NF mg mg mg −

−

⎛ ⎞= − = = ×⎜ ⎟
⎝ ⎠

= ×

 

 
92. The speed of the center of mass of the car is v = (40)(1000/3600) = 11 m/s. The 
angular speed of the wheels is given by Eq. 11-2: ω = v/R where the wheel radius R is not 
given (but will be seen to cancel in these calculations). 
 
(a) For one wheel of mass M = 32 kg, Eq. 10-34 gives (using Table 10-2(c)) 
 

K I MR v
R

Mvrot = = FHG
I
KJ
F
HG
I
KJ =

1
2

1
2

1
2

1
4

2 2
2

2ω  

 
which yields Krot = 9.9 × 102 J. The time given in the problem (10 s) is not used in the 
solution.  
 
(b) Adding the above to the wheel’s translational kinetic energy, 1

2
2Mv , leads to 

 

( )( )22 2 3
wheel

1 1 3 32 kg 11 m/s 3.0 10 J.
2 4 4

K Mv Mv= + = = ×  

 
(c) With Mcar = 1700 kg and the fact that there are four wheels, we have 
 

1
2

4 3
4

12 102 2 5M v Mvcar J.+ FHG
I
KJ = ×.  

 
93. (a) Interpreting h as the height increase for the center of mass of the body, then (using 
Eq. 11-5) mechanical energy conservation, i fK U= ,  leads to 
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2 2
2 2 2
com

1 1 1 1 3
2 2 2 2 4

v vmv I mgh mv I mg
R g

ω
⎛ ⎞⎛ ⎞+ = ⇒ + = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
from which v cancels and we obtain I mR= 1

2
2 . 

 
(b) From Table 10-2(c), we see that the body could be a solid cylinder. 
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Chapter 12 
 
 
1. (a) The center of mass is given by  
 

com
0 0 0 ( )(2.00 m) ( )(2.00 m) ( )(2.00 m) 1.00 m.

6
m m mx

m
+ + + + +

= =  

 
(b) Similarly, we have  
 

com
0 ( )(2.00 m) ( )(4.00 m) ( )(4.00 m) ( )(2.00 m) 0 2.00 m.

6
m m m my

m
+ + + + +

= =  

 
(c) Using Eq. 12-14 and noting that the gravitational effects are different at the different 
locations in this problem, we have 
 

6

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
cog 6

1 1 2 2 3 3 4 4 5 5 6 6

1

0.987 m.
i i i

i

i i
i

x m g
x m g x m g x m g x m g x m g x m gx

m g m g m g m g m g m gm g

=

=

+ + + + +
= = =

+ + + + +

∑

∑
 

 
(d) Similarly, we have  

6

1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
cog 6

1 1 2 2 3 3 4 4 5 5 6 6

1

0 (2.00)(7.80 ) (4.00)(7.60 ) (4.00)(7.40 ) (2.00)(7.60 ) 0
8.0 7.80 7.60 7.40 7.60 7.80

1.97 m.

i i i
i

i i
i

y m g
y m g y m g y m g y m g y m g y m gy

m g m g m g m g m g m gm g

m m m m
m m m m m m

=

=

+ + + + +
= =

+ + + + +

+ + + + +
=

+ + + + +
=

∑

∑

 

 
2. Our notation is as follows: M = 1360 kg is the mass of the automobile; L = 3.05 m is 
the horizontal distance between the axles; (3.05 1.78) m 1.27 m= − = is the horizontal 
distance from the rear axle to the center of mass; F1 is the force exerted on each front 
wheel; and F2 is the force exerted on each back wheel. 
 
(a) Taking torques about the rear axle, we find 
 

2
3

1
(1360kg) (9.80m/s ) (1.27 m) 2.77 10 N.

2 2(3.05m)
MgF

L
= = = ×  
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(b) Equilibrium of forces leads to 1 22 2 ,F F Mg+ = from which we obtain F2
3389 10= ×. N . 

 
3. Three forces act on the sphere: the tension force T  of the rope (acting along the rope), 
the force of the wall NF  (acting horizontally away from the wall), and the force of gravity 
mg  (acting downward). Since the sphere is in equilibrium they sum to zero. Let θ be the 
angle between the rope and the vertical. Then Newton’s second law gives  
 
               vertical component :     T cos θ – mg = 0  
         horizontal component:      FN – T sin θ = 0.   

 
 
(a) We solve the first equation for the tension and obtain T = mg/ cos θ. We then 
substitute cosθ = +L L r/ 2 2 : 
 

2 2 22 2 (0.85 kg)(9.8 m/s ) (0.080 m) (0.042 m)
9.4 N

0.080 m
mg L rT

L
++

= = = . 

 
(b) We solve the second equation for the normal force and obtain sinNF T θ= . 

Using sinθ = +r L r/ 2 2 , we have 
 

2 2

2 2 2 2

2(0.85 kg)(9.8 m/s )(0.042 m) 4.4 N.
(0.080 m)

N
Tr mg L r r mgrF

L LL r L r
+

= = =
+ +

= =

 

 
4. The situation is somewhat similar to that depicted for problem 10 (see the figure that 
accompanies that problem in the text). By analyzing the forces at the “kink” where F  is 
exerted, we find (since the acceleration is zero) 2T sin θ = F, where θ is the angle (taken 
positive) between each segment of the string and its “relaxed” position (when the two 
segments are collinear). Setting T = F therefore yields θ = 30º. Since α = 180º – 2θ is the 
angle between the two segments, then we find α = 120º. 
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5. The object exerts a downward force of magnitude F = 3160 N at the midpoint of the 
rope, causing a “kink” similar to that shown for problem 10 (see the figure that 
accompanies that problem in the text). By analyzing the forces at the “kink” where F  is 
exerted, we find (since the acceleration is zero) 2T sinθ = F, where θ is the angle (taken 
positive) between each segment of the string and its “relaxed” position (when the two 
segments are collinear). In this problem, we have 

1 0.35mtan 11.5 .
1.72 m

θ − ⎛ ⎞
= = °⎜ ⎟

⎝ ⎠
 

 
Therefore, T = F/(2sinθ ) = 7.92 × 103 N. 
 
6. Let 1 15= . m and 2 (5.0 1.5) m 3.5  m= − = . We denote tension in the cable closer to 
the window as F1 and that in the other cable as F2. The force of gravity on the scaffold 
itself (of magnitude msg) is at its midpoint, 3 2 5= . m from either end. 
 
(a) Taking torques about the end of the plank farthest from the window washer, we find 

 
2 2

2 3
1

1 2
2

(80kg) (9.8m/s ) (3.5m)+(60kg) (9.8m/s ) (2.5m)
5.0 m

8.4 10 N.

w sm g m gF +
= =

+

= ×

 

 
(b) Equilibrium of forces leads to 

 
2 3

1 2 (60kg+80kg) (9.8m/s ) 1.4 10 Ns wF F m g m g+ = + = = ×  
 
which (using our result from part (a)) yields F2

253 10= ×. N . 
 
7. The forces on the ladder are shown in the diagram below.  

 
F1 is the force of the window, horizontal because the window is frictionless. F2 and F3 are 
components of the force of the ground on the ladder. M is the mass of the window cleaner 
and m is the mass of the ladder. 
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The force of gravity on the man acts at a point 3.0 m up the ladder and the force of 
gravity on the ladder acts at the center of the ladder. Let θ be the angle between the 
ladder and the ground. We use 2 2cos /  or sin /  d L L d Lθ θ= = − to find θ = 60º. Here L 
is the length of the ladder (5.0 m) and d is the distance from the wall to the foot of the 
ladder (2.5 m). 
 
(a) Since the ladder is in equilibrium the sum of the torques about its foot (or any other 
point) vanishes. Let be the distance from the foot of the ladder to the position of the 
window cleaner. Then,  

( ) 1cos / 2 cos sin 0Mg mg L F Lθ θ θ+ − = , 
and 

2

1

2

( / 2) cos [(75kg) (3.0m)+(10kg) (2.5m)](9.8m/s )cos 60
sin (5.0m)sin 60

2.8 10 N.

M mL gF
L

θ
θ

+ °
= =

°

= ×

 

 
This force is outward, away from the wall. The force of the ladder on the window has the 
same magnitude but is in the opposite direction: it is approximately 280 N, inward. 
 
(b) The sum of the horizontal forces and the sum of the vertical forces also vanish: 

 
F F

F Mg mg
1 3

2

0
0

− =
− − =

 

 
The first of these equations gives F F3 1

22 8 10= = ×. N and the second gives 
 

2 2
2 ( ) (75kg 10kg) (9.8m/s ) 8.3 10 NF M m g= + = + = × . 

 
The magnitude of the force of the ground on the ladder is given by the square root of the 
sum of the squares of its components: 

 
F F F= + = × + × = ×2

2
3

2 2 2 22 8 10 8 3 10 8 8 10( . ( . .N) N) N.2 2  
 
(c) The angle φ between the force and the horizontal is given by  
 

tan φ  = F3/F2 = (830 N)/(280 N) = 2.94, 
 
so φ = 71º. The force points to the left and upward, 71º above the horizontal. We note that 
this force is not directed along the ladder. 
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8. From τ = ×r F , we note that persons 1 through 4 exert torques pointing out of the 
page (relative to the fulcrum), and persons 5 through 8 exert torques pointing into the 
page. 
 
(a) Among persons 1 through 4, the largest magnitude of torque is (330 N)(3 m) = 990 
N·m, due to the weight of person 2. 
 
(b) Among persons 5 through 8, the largest magnitude of torque is (330 N)(3 m) = 990 
N·m, due to the weight of person 7. 
 
9. The x axis is along the meter stick, with the origin at the zero position on the scale. The 
forces acting on it are shown on the diagram below. The nickels are at x = x1 = 0.120 m, 
and m is their total mass.  

 
The knife edge is at x = x2 = 0.455 m and exerts force F . The mass of the meter stick is 
M, and the force of gravity acts at the center of the stick, x = x3 = 0.500 m. Since the 
meter stick is in equilibrium, the sum of the torques about x2 must vanish:  
 

Mg(x3 – x2) – mg(x2 – x1) = 0. 
Thus, 

2 1

3 2

0.455m 0.120 m (10.0g) 74.4 g.
0.500 m 0.455m

x xM m
x x

⎛ ⎞− −
= = =⎜ ⎟− −⎝ ⎠

 

 
10. (a) Analyzing vertical forces where string 1 and string 2 meet, we find 

 

1
40N 49N.

cos cos 35
AwT
φ

= = =
°

 

 
(b) Looking at the horizontal forces at that point leads to 

 
2 1 sin 35 (49N)sin 35 28 N.T T= ° = ° =  

 
(c) We denote the components of T3 as Tx (rightward) and Ty (upward). Analyzing 
horizontal forces where string 2 and string 3 meet, we find Tx = T2 = 28 N. From the 
vertical forces there, we conclude Ty = wB  = 50 N. Therefore, 
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2 2
3 57 N.x yT T T= + =  

 
(d) The angle of string 3 (measured from vertical) is 

 

1 1 28tan tan 29 .
50

x

y

T
T

θ − −
⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
11. We take the force of the left pedestal to be F1 at x = 0, where the x axis is along the 
diving board. We take the force of the right pedestal to be F2 and denote its position as x 
= d. W is the weight of the diver, located at x = L. The following two equations result 
from setting the sum of forces equal to zero (with upward positive), and the sum of 
torques (about x2) equal to zero: 

1 2

1

0
( ) 0

F F W
F d W L d

+ − =
+ − =

 

(a) The second equation gives 
 

1
3.0 m (580 N) 1160 N
1.5m

L dF W
d

⎛ ⎞−
= − = − = −⎜ ⎟

⎝ ⎠
 

 
which should be rounded off to 3

1 1.2 10  NF = − × . Thus, 3
1| | 1.2 10  N.F = ×  

 
(b) F1 is negative, indicating that this force is downward. 
 
(c) The first equation gives 2 1 580 N 1160 N 1740 NF W F= − = + =  
 
which should be rounded off to 3

2 1.7 10  NF = × . Thus, 3
2| | 1.7 10  N.F = ×  

 
(d) The result is positive, indicating that this force is upward. 
 
(e) The force of the diving board on the left pedestal is upward (opposite to the force of 
the pedestal on the diving board), so this pedestal is being stretched.  
 
(f) The force of the diving board on the right pedestal is downward, so this pedestal is 
being compressed. 
 
12. The angle of each half of the rope, measured from the dashed line, is 

 
1 0.30 mtan 1.9 .

9.0 m
θ − ⎛ ⎞

= = °⎜ ⎟
⎝ ⎠

 

 
Analyzing forces at the “kink” (where F  is exerted) we find 
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3550 N 8.3 10 N.
2sin 2sin1.9

FT
θ

= = = ×
°

 

 
13. The (vertical) forces at points A, B, and P are FA, FB, and FP, respectively. We note 
that FP = W and is upward. Equilibrium of forces and torques (about point B) lead to 

 
0
0.

A B

A

F F W
bW aF
+ + =

− =
 

(a) From the second equation, we find  
 

FA = bW/a = (15/5)W = 3W = 33(900 N) 2.7 10  N= × . 
 
(b) The direction is upward since FA > 0. 
 
(c) Using this result in the first equation above, we obtain  
 
 34 4(900 N) 3.6 10 NB AF W F W= − = − = − = − × , 
or 3| | 3.6 10 NBF = × . 
 
(d) FB points downward, as indicated by the negative sign. 
 
14. With pivot at the left end, Eq. 12-9 leads to 
 

– ms g 
L
2  –  Mgx +  TR L  = 0 

 
where ms is the scaffold’s mass (50 kg) and M is the total mass of the paint cans (75 kg). 
The variable x indicates the center of mass of the paint can collection (as measured from 
the left end), and TR is the tension in the right cable (722 N).  Thus we obtain x = 0.702 m. 
 
15. (a) Analyzing the horizontal forces (which add to zero) we find Fh = F3 = 5.0 N. 
 
(b) Equilibrium of vertical forces leads to Fv = F1 + F2 = 30 N. 
 
(c) Computing torques about point O, we obtain 

 
( )( ) ( )( )

2 3

10 N 3.0m + 5.0 N 2.0m
1.3m.

30 NvF d F b F a d= + ⇒ = =  

 
16. The forces exerted horizontally by the obstruction and vertically (upward) by the 
floor are applied at the bottom front corner C of the crate, as it verges on tipping. The 
center of the crate, which is where we locate the gravity force of magnitude mg = 500 N, 
is a horizontal distance = 0 375. mfrom C. The applied force of magnitude F = 350 N is 
a vertical distance h from C. Taking torques about C, we obtain 
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(500 N) (0.375m) 0.536m.
350 N

mgh
F

= = =  

 
17. (a) With the pivot at the hinge, Eq. 12-9 gives  
 

TLcosθ – mg L2  = 0 . 
 
This leads to 78 .θ = °  Then the geometric relation tanθ = L/D gives D = 0.64 m. 
 
(b) A higher (steeper) slope for the cable results in a smaller tension.  Thus, making D 
greater than the value of part (a) should prevent rupture. 
 
18. With pivot at the left end of the lower scaffold, Eq. 12-9 leads to 
 

– m2 g 
L2
2   –  mgd +  TR L2  = 0 

 
where m2 is the lower scaffold’s mass (30 kg) and L2 is the lower scaffold’s length (2.00 
m).  The mass of the package (m = 20 kg) is a distance d = 0.50 m from the pivot, and TR 
is the tension in the rope connecting the right end of the lower scaffold to the larger 
scaffold above it.  This equation yields TR = 196 N.  Then Eq. 12-8 determines TL (the 
tension in the cable connecting the right end of the lower scaffold to the larger scaffold 
above it):  TL = 294 N.  Next, we analyze the larger scaffold (of length L1 = L2 + 2d and 
mass m1, given in the problem statement) placing our pivot at its left end and using Eq. 
12-9: 

– m1 g 
L1
2   – TL d – TR (L1 – d) + T L1   =  0. 

This yields T = 457 N. 
 
19. Setting up equilibrium of torques leads to a simple “level principle” ratio: 
 

2.6cm(40 N) (40 N) 8.7 N.
12cm

dF
L⊥ = = =  

 
20. Our system consists of the lower arm holding a bowling ball. As shown in the free-
body diagram, the forces on the lower arm consist of T  from the biceps muscle, F  from 
the bone of the upper arm, and the gravitational forces, mg  and Mg . Since the system is 
in static equilibrium, the net force acting on the system is zero: 
 

net ,0 ( )yF T F m M g= = − − +∑ . 
 
In addition, the net torque about O must also vanish: 
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net0 ( )( ) (0) ( )( ) ( )
O

d T F D mg L Mgτ= = + − −∑ . 

 
(a) From the torque equation, we find the force on the lower arms by the biceps muscle to 
be   

 

2

2

( ) [(1.8 kg)(0.15 m) (7.2 kg)(0.33 m)](9.8 m/s )
0.040 m

648 N 6.5 10 N.

mD ML gT
d

+ +
= =

= ≈ ×
 

 
(b) Substituting the above result into the force equation, we find F  to be 
 
 2 2( ) 648 N (7.2 kg 1.8 kg)(9.8 m/s ) 560 N 5.6 10 N.F T M m g= − + = − + = = ×  
 
21. (a) We note that the angle between the cable and the strut is  
 

α =θ – φ = 45º – 30º = 15º. 
 
The angle between the strut and any vertical force (like the weights in the problem) is β = 
90º – 45º = 45º. Denoting M = 225 kg and m = 45.0 kg, and  as the length of the boom, 
we compute torques about the hinge and find 
 

( )2sin sin sin sin / 2 .
sin sin

Mg mg Mg mgT
β β β β

α α
+ +

= =  

 
The unknown length  cancels out and we obtain T = 6.63 × 103 N. 
 
(b) Since the cable is at 30º from horizontal, then horizontal equilibrium of forces 
requires that the horizontal hinge force be 

 
3= cos30 = 5.74 10 N.xF T ° ×  

 
(c) And vertical equilibrium of forces gives the vertical hinge force component: 
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3sin 30 5.96 10 N.yF Mg mg T= + + ° = ×  
 
22. (a) The problem asks for the person’s pull (his force exerted on the rock) but since we 
are examining forces and torques on the person, we solve for the reaction force 

1NF (exerted leftward on the hands by the rock). At that point, there is also an upward 
force of static friction on his hands, f1, which we will take to be at its maximum value 

1 1NFμ . We note that equilibrium of horizontal forces requires 1 2N NF F= (the force exerted 
leftward on his feet); on his feet there is also an upward static friction force of magnitude 
μ2FN2. Equilibrium of vertical forces gives 

2
1 2 1

1 2

+ = 0 = = 3.4 10 N.
+N

mgf f mg F
μ μ

− ⇒ ×  

 
(b) Computing torques about the point where his feet come in contact with the rock, we 
find 

( ) ( ) 1 1
1 1

1

+
+ = 0  = = 0.88 m.N

N
N

mg d w F w
mg d w f w F h h

F
μ−

− − ⇒  

 
(c) Both intuitively and mathematically (since both coefficients are in the denominator) 
we see from part (a) that 1NF  would increase in such a case.  
 
(d) As for part (b), it helps to plug part (a) into part (b) and simplify: 

 
h d w d= + +2 1a fμ μ  

 
from which it becomes apparent that h should decrease if the coefficients decrease. 
 
23. The beam is in equilibrium: the sum of the forces and the sum of the torques acting 
on it each vanish. As shown in the figure, the beam makes an angle of 60º with the 
vertical and the wire makes an angle of 30º with the vertical. 
 
(a) We calculate the torques around the hinge. Their sum is  
 

TL sin 30º – W(L/2) sin 60º = 0. 
 
Here W is the force of gravity acting at the center of the beam, and T is the tension force 
of the wire. We solve for the tension: 

 
( )222N sin 60sin60= = = 192 N.

2 sin30 2 sin 30
WT

°°
° °

 

 
(b) Let Fh be the horizontal component of the force exerted by the hinge and take it to be 
positive if the force is outward from the wall. Then, the vanishing of the horizontal 
component of the net force on the beam yields Fh – T sin 30º = 0 or 



 

  

529

 
( )= sin30 = 192.3 N sin 30 = 96.1N.hF T ° °  

 
(c) Let Fv be the vertical component of the force exerted by the hinge and take it to be 
positive if it is upward. Then, the vanishing of the vertical component of the net force on 
the beam yields Fv + T cos 30º – W = 0 or 
 

( )= cos30 = 222 N 192.3 N cos30 = 55.5 N.vF W T− ° − °  
 
24. As shown in the free-body diagram, the forces on the climber consist of T  from the 
rope, normal force NF  on her feet, upward static frictional force ,sf  and downward 
gravitational force mg .  

 
Since the climber is in static equilibrium, the net force acting on her is zero. Applying 
Newton’s second law to the vertical and horizontal directions, we have 
 

net,

net ,

0 sin

0 cos .
x N

y s

F F T

F T f mg

φ

φ

= = −

= = + −
∑
∑

 

 
In addition, the net torque about O (contact point between her feet and the wall) must also 
vanish: 

net0 sin sin(180 )
O

mgL TLτ θ θ φ= = − ° − −∑  

From the torque equation, we obtain  
 

sin / sin(180 ).T mg θ θ φ= ° − −  
Substituting the expression into the force equations, and noting that s s Nf Fμ= , we find 
the coefficient of static friction to be 
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cos sin cos / sin(180 )
sin sin sin / sin(180 )

1 sin cos / sin(180 ) .
sin sin / sin(180 )

s
s

N

f mg T mg mg
F T mg

φ θ φ θ φμ
φ θ φ θ φ

θ φ θ φ
θ φ θ φ

− − ° − −
= = =

° − −
− ° − −

=
° − −

 

  
With 40θ = °  and 30φ = ° , the result is  
 

1 sin cos / sin(180 ) 1 sin 40 cos30 / sin(180 40 30 )
sin sin / sin(180 ) sin 40 sin 30 / sin(180 40 30 )

1.19.

s
θ φ θ φμ

θ φ θ φ
− ° − − − ° ° ° − ° − °

= =
° − − ° ° ° − ° − °

=

 

 
25. We consider the wheel as it leaves the lower floor. The floor no longer exerts a force 
on the wheel, and the only forces acting are the force F applied horizontally at the axle, 
the force of gravity mg acting vertically at the center of the wheel, and the force of the 
step corner, shown as the two components fh and fv. If the minimum force is applied the 
wheel does not accelerate, so both the total force and the total torque acting on it are zero. 
 

  
 
We calculate the torque around the step corner. The second diagram indicates that the 
distance from the line of F to the corner is r – h, where r is the radius of the wheel and h 
is the height of the step.  

The distance from the line of mg to the corner is r r h rh h2 2 22+ − = −b g . Thus, 
 

F r h mg rh h− − − =b g 2 02 . 
The solution for F is 
 

2 2 2 22
2

2 2

2(6.00 10 m)(3.00 10 m) (3.00 10 m)2= (0.800 kg)(9.80 m/s )
(6.00 10 m) (3.00 10 m)

13.6 N.

rh hF mg
r h

− − −

− −

× × − ×−
=

− × − ×
=

 
Note: The applied force here is about 1.73 times the weight of the wheel. If the height is 
increased, the force that must be applied also goes up. Next we plot F/mg as a function of 
the ratio /h r .  The required force increases rapidly as / 1h r → .  
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26. As shown in the free-body diagram, the forces on the climber consist of the normal 
forces 1NF  on his hands from the ground and 2NF  on his feet from the wall, static 
frictional force ,sf  and downward gravitational force mg . Since the climber is in static 
equilibrium, the net force acting on him is zero.  
Applying Newton’s second law to the 
vertical and horizontal directions, we have 
 

net, 2

net, 1

0

0 .
x N s

y N

F F f

F F mg

= = −

= = −
∑
∑

 

 
In addition, the net torque about O (contact 
point between his feet and the wall) must 
also vanish: 

net 20 cos sinN
O

mgd F Lτ θ θ= = −∑ . 
 

 
The torque equation gives  

2 cos / sin cot /NF mgd L mgd Lθ θ θ= = . 
 
On the other hand, from the force equation we have 2N sF f=  and 1 .NF mg=  These 
expressions can be combined to yield 

2 1 cots N N
df F F
L

θ= = . 

 
On the other hand, the frictional force can also be written as 1s s Nf Fμ= , where sμ  is the 
coefficient of static friction between his feet and the ground. From the above equation 
and the values given in the problem statement, we find sμ  to be  
 

2 2 2 2

0.914 m 0.940 mcot 0.216
2.10 m(2.10 m) (0.914 m)

s
d a d
L LL a

μ θ= = = =
− −

. 
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27. (a) All forces are vertical and all distances are measured along an axis inclined at θ = 
30º. Thus, any trigonometric factor cancels out and the application of torques about the 
contact point (referred to in the problem) leads to 

 
( )( )( ) ( )( )( )2 2

3
tricep

15kg 9.8m/s 35cm 2.0 kg 9.8m/s 15cm
1.9 10 N.

2.5cm
F

−
= = ×  

 
(b) The direction is upward since tricep 0F > . 
 
(c) Equilibrium of forces (with upward positive) leads to 

 
( )( ) ( )( )2 2

tricep humer 15kg 9.8m/s 2.0kg 9.8m/s 0F F+ + − =  
 
and thus to 3

humer 2.1 10 NF = − × , or 3
humer| | 2.1 10 NF = × . 

 
(d) The negative sign implies that humerF points downward. 
 
28. (a) Computing torques about point A, we find 
 

T L Wx W L
bmax maxsinθ = +

2
F
HG
I
KJ.  

We solve for the maximum distance: 
 

( )max
max

sin / 2 (500 N)sin 30.0 (200 N) / 2 3.00 m 1.50 m.
300 N

bT Wx L
W
θ ⎛ ⎞− ° −⎛ ⎞= = =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
(b) Equilibrium of horizontal forces gives max= cos = 433N.xF T θ  
 
(c) And equilibrium of vertical forces gives max= + sin = 250 N.y bF W W T θ−  
 
29. The problem states that each hinge supports half the door’s weight, so each vertical 
hinge force component is Fy = mg/2 = 1.3 × 102 N. Computing torques about the top 
hinge, we find the horizontal hinge force component (at the bottom hinge) is 
 

( )2(27 kg) (9.8m/s ) 0.91 m/2
80 N.

2.1m 2(0.30m)hF = =
−

 

 
Equilibrium of horizontal forces demands that the horizontal component of the top hinge 
force has the same magnitude (though opposite direction).  
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(a) In unit-vector notation, the force on the door at the top hinge is 
 
 2

top
ˆ ˆ( 80 N)i (1.3 10 N) jF = − + × . 

 
(b) Similarly, the force on the door at the bottom hinge is 
 

2
bottom

ˆ ˆ( 80 N)i (1.3 10 N) jF = + + × . 
 
30. (a) The sign is attached in two places: at x1 = 1.00 m (measured rightward from the 
hinge) and at x2 = 3.00 m. We assume the downward force due to the sign’s weight is 
equal at these two attachment points, each being half the sign’s weight of mg. The angle 
where the cable comes into contact (also at x2) is  
 

θ = tan–1(dv/dh) = tan–1(4.00 m/3.00 m) 
 
and the force exerted there is the tension T. Computing torques about the hinge, we find 

 
( ) ( ) ( )

( )( )

2 21 11 1
2 21 22 2

2

50.0 kg 9.8 m/s 1.00 m (50.0 kg) (9.8m/s ) (3.00 m)
=

sin 3.00 m 0.800
408 N.

mgx mgxT
x θ

++
=

=

 

 
(b) Equilibrium of horizontal forces requires that the horizontal hinge force be  
 

Fx = T cos θ = 245 N. 
 
(c) The direction of the horizontal force is rightward. 
 
(d) Equilibrium of vertical forces requires that the vertical hinge force be  
 

Fy = mg – T sin θ = 163 N. 
 
(e) The direction of the vertical force is upward. 
 
31. The bar is in equilibrium, so the forces and the torques acting on it each sum to zero. 
Let Tl be the tension force of the left-hand cord, Tr be the tension force of the right-hand 
cord, and m be the mass of the bar. The equations for equilibrium are: 
 

vertical force components:
horizontal force components:

torques:
 

cos cos 0
sin sin 0

cos 0.

l r

l r

r

T T mg
T T
mgx T L

θ φ
θ φ

φ

+ − =
− + =

− =
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The origin was chosen to be at the left end of the bar for purposes of calculating the 
torque. The unknown quantities are Tl, Tr, and x. We want to eliminate Tl and Tr, then 
solve for x. The second equation yields Tl = Tr sin φ /sin θ and when this is substituted 
into the first and solved for Tr the result is  
 

sin
sin cos cos sinr

mgT θ
φ θ φ θ

=
+

. 

 
This expression is substituted into the third equation and the result is solved for x: 
 

x L L=
+

=
+

.sin cos
sin cos cos sin

sin cos
sin

θ φ
φ θ φ θ

θ φ
θ φb g  

 
The last form was obtained using the trigonometric identity  
 

sin(A + B) = sin A cos B + cos A sin B. 
 
For the special case of this problem θ + φ = 90º and sin(θ + φ) = 1. Thus, 
 

( )= sin cos = 6.10 m  sin 36.9 cos53.1 = 2.20  m.x L θ φ ° °  
 
32. (a) With kF ma mgμ= = − the magnitude of the deceleration is  
 

|a| = μkg = (0.40)(9.8 m/s2) = 3.92 m/s2. 
 
(b) As hinted in the problem statement, we can use Eq. 12-9, evaluating the torques about 
the car’s center of mass, and bearing in mind that the friction forces are acting 
horizontally at the bottom of the wheels; the total friction force there is fk = μkgm = 3.92m 
(with SI units understood, and m is the car’s mass), a vertical distance of 0.75 meter 
below the center of mass.  Thus, torque equilibrium leads to 

 
             (3.92m)(0.75) + FNr (2.4)  –  FNf (1.8)  = 0 . 

 
Equation 12-8 also holds (the acceleration is horizontal, not vertical), so we have FNr + 
FNf = mg, which we can solve simultaneously with the above torque equation.  The mass 
is obtained from the car’s weight: m = 11000/9.8, and we obtain FNr = 3929 ≈ 4000 N. 
Since each involves two wheels then we have (roughly) 2.0×103 N on each rear wheel. 
 
(c) From the above equation, we also have FNf = 7071 ≈ 7000 N, or 3.5×103 N on each 
front wheel, as the values of the individual normal forces. 
 
(d) For friction on each rear wheel, Eq. 6-2 directly yields  
 

2
1 ( / 2) (0.40)(3929 N / 2) 7.9 10 Nr k Nrf Fμ= = = ×  . 
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(e) Similarly, for friction on the front rear wheel, Eq. 6-2 gives 
 

3
1 ( / 2) (0.40)(7071 N / 2) 1.4 10 Nf k Nff Fμ= = = ×  . 

 
33. (a) With the pivot at the hinge, Eq. 12-9 yields 
 
 cos 0aTL F yθ − = . 
 
This leads to T = (Fa/cosθ)(y/L) so that we can interpret Fa/cosθ as the slope on the 
tension graph (which we estimate to be 600 in SI units).  Regarding the Fh graph, we use 
Eq. 12-7 to get  

Fh = Tcosθ  −  Fa = (−Fa)(y/L)  −  Fa 
 
after substituting our previous expression. The result implies that the slope on the Fh 
graph (which we estimate to be  –300) is equal to −Fa , or Fa = 300 N and (plugging back 
in) θ = 60.0°.    
 
(b) As mentioned in the previous part, Fa = 300 N. 
 
34. (a) Computing torques about the hinge, we find the tension in the wire: 
 

TL Wx T Wx
L

sin
sin

θ
θ

− ⇒= 0 = .  

 
(b) The horizontal component of the tension is T cos θ, so equilibrium of horizontal 
forces requires that the horizontal component of the hinge force is 
 

F Wx
L

Wx
Lx = = .

sin
cos

tanθ
θ

θ
F
HG
I
KJ  

 
(c) The vertical component of the tension is T sin θ, so equilibrium of vertical forces 
requires that the vertical component of the hinge force is 
 

F W Wx
L

W x
Ly = = 1 .−

F
HG
I
KJ −FHG

I
KJsin

sin
θ

θ  

 
35. We examine the box when it is about to tip. Since it will rotate about the lower right 
edge, that is where the normal force of the floor is exerted. This force is labeled NF  on 
the diagram that follows. The force of friction is denoted by f, the applied force by F, and 
the force of gravity by W. Note that the force of gravity is applied at the center of the box. 
When the minimum force is applied the box does not accelerate, so the sum of the 
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horizontal force components vanishes: F – f = 0, the sum of the vertical force components 
vanishes: 0NF W− = , and the sum of the torques vanishes:  
 

FL – WL/2 = 0. 
 
Here L is the length of a side of the box and the origin was chosen to be at the lower right 
edge. 

 
(a) From the torque equation, we find 
 

890 N 445 N.
2 2

WF = = =  

 
(b) The coefficient of static friction must be large enough that the box does not slip. The 
box is on the verge of slipping if μs = f/FN. According to the equations of equilibrium  
 

FN = W = 890 N,  f = F = 445 N, 
so 

445 N 0.50.
890 Ns

N

f
F

μ = = =  

 
(c) The box can be rolled with a smaller applied force if the force points upward as well 
as to the right. Let θ be the angle the force makes with the horizontal. The torque 
equation then becomes  

FL cos θ + FL sin θ – WL/2 = 0, 
with the solution 

F W
=

+2(cos sin )
.

θ θ
 

 
We want cosθ + sinθ to have the largest possible value. This occurs if θ = 45º, a result we 
can prove by setting the derivative of cosθ + sinθ equal to zero and solving for θ. The 
minimum force needed is  
 

890 N 315 N.
2(cos 45 sin 45 ) 2(cos 45 sin 45 )

WF = = =
° + ° ° + °
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Note: The applied force as a function of θ is plotted below. From the figure, we readily 
see that 0θ = °  corresponds to a maximum and 45θ = °  to a minimum.  

 
 
36. As shown in the free-body diagram, the forces on the climber consist of the normal 
force from the wall, the vertical component vF  and the horizontal component hF  of the 
force acting on her four fingertips, and the downward gravitational force mg .  

 
Since the climber is in static equilibrium, the net force acting on her is zero. Applying 
Newton’s second law to the vertical and horizontal directions, we have 
 

net,

net ,

0 4

0 4 .
x h N

y v

F F F

F F mg

= = −

= = −
∑
∑

 



CHAPTER 12 538 

 
In addition, the net torque about O (contact point between her feet and the wall) must also 
vanish: 

net0 ( ) (4 )h
O

mg a F Hτ= = −∑ . 

 
(a) From the torque equation, we find the horizontal component of the force on her 
fingertip to be 

2(70 kg)(9.8 m/s )(0.20 m) 17 N.
4 4(2.0 m)h
mgaF

H
= = ≈  

(b) From the y-component of the force equation, we obtain 
 

2
2(70 kg)(9.8 m/s ) 1.7 10 N.

4 4v
mgF = = ≈ ×  

 
37. The free-body diagram below shows the forces acting on the plank. Since the roller is 
frictionless, the force it exerts is normal to the plank and makes the angle θ with the 
vertical.  

 
Its magnitude is designated F. W is the force of gravity; this force acts at the center of the 
plank, a distance L/2 from the point where the plank touches the floor. NF  is the normal 
force of the floor and f is the force of friction. The distance from the foot of the plank to 
the wall is denoted by d. This quantity is not given directly but it can be computed using 
d = h/tanθ.  
 
The equations of equilibrium are: 
 

horizontal force components:
vertical force components:

torques:
 

( )2

sin 0
cos 0

cos 0.
N

L
N

F f
F W F

F d fh W d

θ
θ

θ

− =
− + =

− − − =

 

 
The point of contact between the plank and the roller was used as the origin for writing 
the torque equation. 
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When θ = 70º the plank just begins to slip and f = μsFN, where μs is the coefficient of 
static friction. We want to use the equations of equilibrium to compute FN and f for θ = 
70º, then use μs = f /FN to compute the coefficient of friction. 
 
The second equation gives F = (W – FN)/cosθ and this is substituted into the first to 
obtain  

f = (W – FN) sinθ/cosθ = (W – FN) tanθ. 
 
This is substituted into the third equation and the result is solved for FN: 
 

( ) 2

2

/2 cos + tan (1 tan ) ( / 2)sin= ,
+ tan (1 tan )N

d L h h LF W W
d h h

θ θ θ θ
θ θ

− + −
=

+
 

 
where we have used d = h/tanθ and multiplied both numerator and denominator by tan θ. 
We use the trigonometric identity 1+ tan2θ = 1/cos2θ and multiply both numerator and 
denominator by cos2θ  to obtain 

2= 1 cos sin .
2N
LF W
h

θ θ⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 
Now we use this expression for FN in f = (W – FN) tan θ to find the friction: 

 

f WL
h

=
2

.2sin cosθ θ  

 
Substituting these expressions for f and FN into μs = f/FN leads to 
 

μ θ θ
θ θs

L
h L

=
2

.
2

2
sin cos

sin cos−
 

 
Evaluating this expression for θ = 70º, L = 6.10 m and h = 3.05 m gives 
 

( )
( ) ( )

2

2

6.1m sin 70 cos70
= = 0.34.

2 3.05m 6.1m sin70 cos 70sμ
° °

− ° °
 

 
38. The phrase “loosely bolted” means that there is no torque exerted by the bolt at that 
point (where A connects with B). The force exerted on A at the hinge has x and y 
components Fx and Fy. The force exerted on A at the bolt has components Gx and Gy, and 
those exerted on B are simply –Gx and – Gy by Newton’s third law. The force exerted on 
B at its hinge has components Hx and Hy. If a horizontal force is positive, it points 
rightward, and if a vertical force is positive it points upward. 
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(a) We consider the combined A∪Β system, which has a total weight of Mg where M = 
122 kg and the line of action of that downward force of gravity is x = 1.20 m from the 
wall. The vertical distance between the hinges is y = 1.80 m. We compute torques about 
the bottom hinge and find 

797 N.x
MgxF

y
= − = −  

If we examine the forces on A alone and compute torques about the bolt, we instead find 
 

265 NA
y

m gxF = =  

 
where mA = 54.0 kg and  = 2.40 m (the length of beam A). Thus, in unit-vector notation, 
we have 
 ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yF F F= + = − + . 
 
(b) Equilibrium of horizontal and vertical forces on beam A readily yields  
 

Gx = – Fx = 797 N,     Gy = mAg – Fy = 265 N. 
 
In unit-vector notation, we have 

ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yG G G= + = + + . 
 
(c) Considering again the combined A∪Β system, equilibrium of horizontal and vertical 
forces readily yields Hx = – Fx = 797 N and Hy = Mg – Fy = 931 N. In unit-vector notation, 
we have 

ˆ ˆ ˆ ˆi j ( 797 N)i (931 N)jx yH H H= + = + + . 
 
(d) As mentioned above, Newton’s third law (and the results from part (b)) immediately 
provide – Gx = – 797 N and – Gy = – 265 N for the force components acting on B at the 
bolt. In unit-vector notation, we have 
 

ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yG G G− = − − = − − . 
 
39. The diagrams show the forces on the two sides of the ladder, separated. FA and FE are 
the forces of the floor on the two feet, T is the tension force of the tie rod, W is the force 
of the man (equal to his weight), Fh is the horizontal component of the force exerted by 
one side of the ladder on the other, and Fv is the vertical component of that force. Note 
that the forces exerted by the floor are normal to the floor since the floor is frictionless. 
Also note that the force of the left side on the right and the force of the right side on the 
left are equal in magnitude and opposite in direction. Since the ladder is in equilibrium, 
the vertical components of the forces on the left side of the ladder must sum to zero: Fv + 
FA – W = 0. The horizontal components must sum to zero: T – Fh = 0.  
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The torques must also sum to zero. We take the origin to be at the hinge and let L be the 
length of a ladder side. Then  
 

FAL cos θ – W(L – d) cos θ – T(L/2) sin θ = 0. 
 
Here we recognize that the man is a distance d from the bottom of the ladder (or L – d 
from the top), and the tie rod is at the midpoint of the side. 
 
The analogous equations for the right side are FE – Fv = 0, Fh – T = 0, and FEL cos θ – 
T(L/2) sin θ = 0. There are 5 different equations: 

0,
0

cos ( )cos ( / 2)sin 0
0

cos ( / 2)sin 0.

v A

h

A

E v

E

F F W
T F

F L W L d T L
F F

F L T L

θ θ θ

θ θ

+ − =
− =

− − − =
− =

− =

 

 
The unknown quantities are FA, FE, Fv, Fh, and T. 
 
(a) First we solve for T by systematically eliminating the other unknowns. The first 
equation gives FA = W – Fv and the fourth gives Fv = FE. We use these to substitute into 
the remaining three equations to obtain 

0
cos cos ( ) cos ( / 2)sin 0

cos ( / 2)sin 0.

h

E

E

T F
WL F L W L d T L

F L T L
θ θ θ θ

θ θ

− =
− − − − =

− =
 

 
The last of these gives FE = Tsinθ /2cosθ = (T/2) tanθ. We substitute this expression into 
the second equation and solve for T. The result is 

 

.
tan
WdT

L θ
=  

 
To find tanθ, we consider the right triangle formed by the upper half of one side of the 
ladder, half the tie rod, and the vertical line from the hinge to the tie rod. The lower side 
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of the triangle has a length of 0.381 m, the hypotenuse has a length of 1.22 m, and the 

vertical side has a length of 122 0 381 1162 2. . .m m mb g b g− = . This means  
 

tan θ = (1.16m)/(0.381m) = 3.04. 
Thus, 

(854 N)(1.80 m) 207 N.
(2.44 m)(3.04)

T = =  

 
(b) We now solve for FA. We substitute ( / 2) tan / 2v EF F T Wd Lθ= = =  into the equation 
Fv + FA – W = 0 and solve for FA. The solution is 
 

 1.80 m1 (854 N) 1 539 N
2 2(2.44 m)A v
dF W F W
L

⎛ ⎞⎛ ⎞= − = − = − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 

(c) Similarly, 1.80 m(854 N) 315 N
2 2(2.44 m)E
dF W
L

= = = . 

 
40. (a) Equation 12-9 leads to 

TL sin θ –  mpgx – mbg⎝⎛ ⎠⎞
L
2   =  0  . 

 
This can be written in the form of a straight line (in the graph) with 

 
T = (“slope”) xL   +  “y-intercept” 

 
where “slope” = mpg/sinθ  and “y-intercept” = mbg/2sinθ.  The graph suggests that the 
slope (in SI units) is 200 and the y-intercept is 500.  These facts, combined with the given 
mp + mb = 61.2 kg datum, lead to the conclusion:  
 

sinθ = 61.22g/1200 ⇒ θ = 30.0º. 
 
(b) It also follows that mp = 51.0 kg. 
 
(c) Similarly, mb = 10.2 kg. 
 
41. The force diagram shown depicts the situation just before the crate tips, when the 
normal force acts at the front edge. However, it may also be used to calculate the angle 
for which the crate begins to slide. W is the force of gravity on the crate, NF  is the normal 
force of the plane on the crate, and f is the force of friction. We take the x axis to be down 
the plane and the y axis to be in the direction of the normal force. We assume the 
acceleration is zero but the crate is on the verge of sliding. 
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(a) The x and y components of Newton’s second law are 
 

sin 0 and cos 0NW f F Wθ θ− = − =  
 
respectively. The y equation gives FN = W cos θ. Since the crate is about to slide  
 

f = μsFN = μsW cos θ, 
 
where μs is the coefficient of static friction. We substitute into the x equation and find 

 
W Ws ssin cos tan .θ μ θ θ μ− = ⇒ =0  

 
This leads to θ = tan–1 μs = tan–1 0.60 = 31.0º. 
 
In developing an expression for the total torque about the center of mass when the crate is 
about to tip, we find that the normal force and the force of friction act at the front edge. 
The torque associated with the force of friction tends to turn the crate clockwise and has 
magnitude fh, where h is the perpendicular distance from the bottom of the crate to the 
center of gravity. The torque associated with the normal force tends to turn the crate 
counterclockwise and has magnitude / 2NF , where  is the length of an edge. Since the 
total torque vanishes, / 2Nfh F= . When the crate is about to tip, the acceleration of the 
center of gravity vanishes, so sinf W θ=  and cosNF W θ= . Substituting these 
expressions into the torque equation, we obtain 
 

1 1 1.2mtan tan 33.7 .
2 2(0.90m)h

θ − −= = = °  

 
As θ is increased from zero the crate slides before it tips.  
 
(b) It starts to slide when θ = 31º. 
 
(c) The crate begins to slide when θ = tan–1 μs = tan–1 0.70 = 35.0º and begins to tip when 
θ = 33.7º. Thus, it tips first as the angle is increased. 
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(d) Tipping begins at θ = 33.7° ≈ 34°. 
 
42. Let x be the horizontal distance between the firefighter and the origin O (see the 
figure) that makes the ladder on the verge of sliding. The forces on the firefighter + 
ladder system consist of the horizontal force wF  from the wall, the vertical component 

pyF  and the horizontal component pxF  of the force pF  on the ladder from the pavement, 
and the downward gravitational forces Mg  and mg , where M and m are the masses of 
the firefighter and the ladder, respectively.  

 
Since the system is in static equilibrium, the net force acting on the system is zero. 
Applying Newton’s second law to the vertical and horizontal directions, we have 
 

net,

net,

0

0 ( ) .
x w px

y py

F F F

F F M m g

= = −

= = − +
∑
∑

 

 
Since the ladder is on the verge of sliding, px s pyF Fμ= . Therefore, we have  
 

( )w px s py sF F F M m gμ μ= = = + . 
 
In addition, the net torque about O (contact point between the ladder and the wall) must 
also vanish: 

net0 ( ) ( ) ( ) 0
3w

O

ah F x Mg mgτ= = − + + =∑ . 

Solving for x, we obtain  
 

( / 3) ( ) ( / 3) ( ) ( / 3)w s shF a mg h M m g a mg h M m a mx
Mg Mg M

μ μ− + − + −
= = =  
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Substituting the values given in the problem statement (with 2 2 7.58 ma L h= − = ), the 
fraction of ladder climbed is 
 

( ) ( / 3) (9.3 m)(0.53)(72 kg 45 kg) (7.58 m / 3)(45 kg)
(72 kg)(7.58 m)

0.848 85%.

sh M m a mx
a Ma

μ + − + −
= =

= ≈

 

 
43. (a) The shear stress is given by F/A, where F is the magnitude of the force applied 
parallel to one face of the aluminum rod and A is the cross-sectional area of the rod. In 
this case F is the weight of the object hung on the end: F = mg, where m is the mass of 
the object. If r is the radius of the rod then A = πr2. Thus, the shear stress is 
 

2
6 2

2 2

(1200kg) (9.8m/s ) 6.5 10 N/m .
(0.024m)

F mg
A rπ π

= = = ×  

 
(b) The shear modulus G is given by 

G F A
x L

=
/
/Δ

 

 
where L is the protrusion of the rod and Δx is its vertical deflection at its end. Thus, 

 
6 2

5
10 2

( / ) (6.5 10 N/m )(0.053m) 1.1 10 m.
3.0 10 N/m

F A Lx
G

−×
Δ = = = ×

×
 

 
44. (a) The Young’s modulus is given by 
 

6 2
10 2stress 150 10 N/mslope of the stress-strain curve 7.5 10 N/m .

strain 0.002
E ×

= = = = ×  

 
(b) Since the linear range of the curve extends to about 2.9 × 108 N/m2, this is 
approximately the yield strength for the material. 
 
45. (a) Since the brick is now horizontal and the cylinders were initially the same length 

, then both have been compressed an equal amount Δ . Thus, 
 

Δ Δ
= =

FA
A E

F
A EA A

B

B B

and  

which leads to 
F
F

A E
A E

A E
A E

A

B

A A

B B

B B

B B

= = =
( )( ) .2 2 4  

 
When we combine this ratio with the equation FA + FB = W, we find FA/W = 4/5 = 0.80. 
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(b) This also leads to the result FB/W = 1/5 = 0.20. 
 
(c) Computing torques about the center of mass, we find FAdA = FBdB, which leads to 
 

1 0.25.
4

A B

B A

d F
d F

= = =  

 
46. Since the force is (stress × area) and the displacement is (strain × length), we can 
write the work integral (eq. 7-32) as 
 

  W = Fdx∫   = (stress)∫ A (differential strain)L  = AL (stress)∫ (differential strain) 
 

which means the work is  (thread cross-sectional area) × (thread length) × (graph area 
under curve). The area under the curve is   
 

[ ]1 2 1 3 2 2 3 1 3 2

9 2 9 2 9 2

8 2

1 1 1 1graph area ( )( ) ( )( ) ( ) ( )
2 2 2 2
1 (0.12 10 N/m )(1.4) (0.30 10 N/m )(1.0) (0.80 10 N/m )(0.60)
2
4.74 10 N/m .

as a b s s b c s s as b s s c s s= + + − + + − = + − + −

⎡ ⎤= × + × + ×⎣ ⎦

= ×

 

 
(a) The kinetic energy that would put the thread on the verge of breaking is simply equal 
to W: 

12 2 3 8 2

5

(graph area) (8.0 10  m )(8.0 10  m)(4.74 10 N/m )
3.03 10  J.

K W AL − −

−

= = = × × ×

= ×
 

 
(b) The kinetic energy of the fruit fly of mass 6.00 mg and speed 1.70 m/s is 
 

 2 6 2 61 1 (6.00 10 kg)(1.70 m/s) 8.67 10  J.
2 2f f fK m v − −= = × = ×  

 
(c) Since fK W< , the fruit fly will not be able to break the thread. 
 
(d) The kinetic energy of a bumble bee of mass 0.388 g and speed 0.420 m/s is  
 

2 4 2 51 1 (3.99 10 kg)0.420 m/s) 3.42 10  J.
2 2b b bK m v − −= = × = ×  

 
(e) On the other hand, since bK W> , the bumble bee will be able to break the thread. 
 
47. The flat roof (as seen from the air) has area A = 150 m × 5.8 m = 870 m2. The volume 
of material directly above the tunnel (which is at depth d = 60 m) is therefore  
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V = A × d = (870 m2) × (60 m) = 52200 m3. 

 
Since the density is ρ = 2.8 g/cm3 = 2800 kg/m3, we find the mass of material supported 
by the steel columns to be m = ρV = 1.46 × 108 kg. 
 
(a) The weight of the material supported by the columns is mg = 1.4 × 109 N. 
 
(b) The number of columns needed is 
 

n =
×

× ×
=−

143 10
400 10 960 10

75
9

1
2

6 4 2
.

( )( )
.N

N / m m2  

 
48. Since the force is (stress × area) and the displacement is (strain × length), we can 
write the work integral (Eq. 7-32) as 
 

  W = Fdx∫   = (stress)∫ A (differential strain)L  = AL (stress)∫ (differential strain) 
 

which means the work is  (wire area) × (wire length) × (graph area under curve).  Since 
the area of a triangle (see the graph in the problem statement) is  12 (base)(height)  then we 
determine the work done to be 
 

     W = (2.00 × 10−6 m2)(0.800 m)⎝⎛ ⎠⎞
1
2 (1.0 × 10−3)(7.0 × 107 N/m2) = 0.0560 J. 

 
49. (a) Let FA and FB be the forces exerted by the wires on the log and let m be the mass 
of the log. Since the log is in equilibrium, FA + FB – mg = 0. Information given about the 
stretching of the wires allows us to find a relationship between FA and FB. If wire A 
originally had a length LA and stretches by ΔLA , then ΔL F L AEA A A= / , where A is the 
cross-sectional area of the wire and E is Young’s modulus for steel (200 × 109 N/m2). 
Similarly, ΔL F L AEB B B= / . If   is the amount by which B was originally longer than A 
then, since they have the same length after the log is attached, A BL LΔ = Δ + . This means 
 

F L
AE

F L
AE

A A B B= + .  

We solve for FB: 

F F L
L

AE
LB

A A

B B

= − .  

We substitute into FA + FB – mg = 0 and obtain 
 

F mgL AE
L LA

B

A B

=
+
+

.  

The cross-sectional area of a wire is  
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A r= = × = ×− −π π2 3 2 6120 10 4 52 10. .m m2c h . 

 
Both LA and LB may be taken to be 2.50 m without loss of significance. Thus 
 

2 6 2 9 2 3(103kg) (9.8m/s ) (2.50m) (4.52 10 m )(200 10 N/m )(2.0 10 m)
2.50m 2.50m

866 N.

AF
− −+ × × ×

=
+

=

 

 
(b) From the condition FA + FB – mg = 0, we obtain 
 

2(103kg) (9.8m/s ) 866 N 143N.B AF mg F= − = − =  
 
(c) The net torque must also vanish. We place the origin on the surface of the log at a 
point directly above the center of mass. The force of gravity does not exert a torque about 
this point. Then, the torque equation becomes FAdA – FBdB = 0, which leads to 
 

143N 0.165.
866 N

A B

B A

d F
d F

= = =  

 
50. On the verge of breaking, the length of the thread is 
 

0 0 0 0 0(1 / ) (1 2) 3L L L L L L L L= + Δ = + Δ = + = , 
 
where  0 0.020 mL = is the original length, and 0strain / 2L L= Δ = , as given in the 
problem. The free-body diagram of the system is shown below.  
 

 
 
The condition for equilibrium is 2 sinmg T θ= , where m is the mass of the insect and  

(stress)T A= . Since the volume of the thread remains constant as it is being stretched, 
we have 0 0V A L AL= = , or 0 0 0( / ) / 3A A L L A= = . The vertical distance yΔ  is 
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2 2
2 2 0 0

0 0
9( / 2) ( / 2) 2
4 4
L Ly L L LΔ = − = − = . 

Thus, the mass of the insect is  
 

0 0 0

0

12 2 8 2

2

4

2( / 3)(stress)sin 2 (stress) 4 2 (stress)2 sin
3 3 / 2 9

4 2(8.00 10  m )(8.20 10 N/m )
9(9.8 m/s )

4.21 10 kg

A A AT ym
g g g L g

θθ

−

−

Δ
= = = =

× ×
=

= ×

 

or 0.421 g.  
 
51. Let the forces that compress stoppers A and B be FA and FB, respectively. Then 
equilibrium of torques about the axle requires  
 

FR = rAFA + rBFB. 
 
If the stoppers are compressed by amounts |ΔyA| and |ΔyB|, respectively, when the rod 
rotates a (presumably small) angle θ (in radians), then | | | .Δ Δy r y rA A B B= =θ θand |  
 
Furthermore, if their “spring constants” k are identical, then k = |F/Δy| leads to the 
condition FA/rA = FB/rB, which provides us with enough information to solve. 
 
(a) Simultaneous solution of the two conditions leads to 
 

2
2 2 2 2

(5.0 cm)(7.0 cm) (220 N) 118 N 1.2 10  N.
(7.0 cm) +(4.0 cm)

A
A

A B

RrF F
r r

= = = ≈ ×
+

 

 
(b) It also yields 

2 2 2 2

(5.0 cm)(4.0 cm) (220 N) 68 N.
(7.0 cm) +(4.0 cm)

B
B

A B

RrF F
r r

= = =
+

 

 
52. (a) If L (= 1500 cm) is the unstretched length of the rope and ΔL = 2 8. cm is the 
amount it stretches, then the strain is 
 

ΔL L/ . / .= = × −2 8 1500 19 10 3cm cmb g b g . 
 
(b) The stress is given by F/A where F is the stretching force applied to one end of the 
rope and A is the cross-sectional area of the rope. Here F is the force of gravity on the 
rock climber. If m is the mass of the rock climber then F = mg. If r is the radius of the 
rope then A r= π 2 . Thus the stress is 
 



CHAPTER 12 550 

2
7 2

2 3 2

(95kg) (9.8m/s ) 1.3 10 N/m .
(4.8 10 m)

F mg
A rπ π −= = = ×

×
 

 
(c) Young’s modulus is the stress divided by the strain:  
 

E = (1.3 × 107 N/m2) / (1.9 × 10–3) = 6.9 × 109 N/m2. 
 
53. We denote the mass of the slab as m, its density as ρ , and volume as V LTW= . The 
angle of inclination is 26θ = ° . 
 
(a) The component of the weight of the slab along the incline is 
  

1
3 2 7

sin sin

kg/m )(43m)(2.5m)(12 m)(9.8m/s )sin 26 1.8 10 N.

F mg Vgθ ρ θ
3

= =

= (3.2×10 ° ≈ ×
 

 
(b) The static force of friction is 
  

3 2 7

cos cos

kg/m )(43m)(2.5m)(12 m)(9.8m/s )cos 26 1.4 10 N.
s s N s sf F mg Vgμ μ θ μ ρ θ

3

= = =

= (0.39)(3.2×10 ° ≈ ×
 

 
(c) The minimum force needed from the bolts to stabilize the slab is 
  

7 7 6
2 1 1.77 10 N 1.42 10 N 3.5 10 N.sF F f= − = × − × = ×  

 
If the minimum number of bolts needed is n, then 8 2

2 / 3.6 10 N/mF nA ≤ × , or 
  

6

8 2 4 2

3.5 10 N 15.2
(3.6 10 N/m )(6.4 10 m )

n −

×
≥ =

× ×
. 

Thus 16 bolts are needed. 
 
54. The notation and coordinates are as shown in Fig. 12-6 in the textbook.  Here, the 
ladder's center of mass is halfway up the ladder (unlike in the textbook figure).  Also, we 
label the x and y forces at the ground fs and FN, respectively.  Now, balancing forces, we 
have 

Σ Fx = 0    ⇒    fs  =  Fw 
  Σ Fy = 0    ⇒    FN  = mg . 

 
Since fs = fs, max, we divide the equations to obtain 
 

   ,maxs

N

f
F

= μs = 
Fw
mg   . 
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Now, from Σ τz = 0 (with axis at the ground) we have mg(a/2) − Fwh = 0.  But from the 
Pythagorean theorem, h = 2 2 ,L a−  where L is the length of the ladder.  Therefore, 

2 2

/ 2 .
2

wF a a
mg h L a

= =
−

   

In this way, we find 

2 2 2

2 3.4 m.
2 1 4

s
s

s

La a
L a

μμ
μ

= ⇒ = =
− +

 

 
55. Block A can be in equilibrium if friction is present between the block and the surface 
in contact. The free-body diagrams for blocks A, B and the knot (denoted as C) are shown 
below.  

 
The tensions in the three strings are denoted as AT , BT  and CT . Analyzing forces at C, the 
conditions for static equilibrium are  

cos
sin

C B

C A

T T
T T

θ
θ

=
=

 

 
which can be combined to give tan /A BT Tθ = . On the other hand, the equilibrium 
condition for block B implies B BT m g= . Similarly, for block A, the conditions are 
 

, ,N A A AF m g f T= =  
 
For the static force to be at its maximum value, we have ,s N A s Af F m gμ μ= = . 
Combining all the equations leads to  
 

tan s A s AA

B B B

m g mT
T m g m

μ μθ = = = . 

Solving for sμ , we get  
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5.0 kgtan tan 30 0.29
10 kg

B
s

A

m
m

μ θ
⎛ ⎞ ⎛ ⎞

= = ° =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

 
56. (a) With pivot at the hinge (at the left end), Eq. 12-9 gives 

 
                    – mgx – Mg 

L
2   +  Fh h = 0 

 
where m is the man’s mass and M is that of the ramp; Fh is the leftward push of the right 
wall onto the right edge of the ramp.  This equation can be written in the form (for a 
straight line in a graph)   

Fh = (“slope”)x  +  (“y-intercept”), 
 
where the “slope” is mg/h and the “y-intercept” is MgD/2h. Since h = 0.480 m 
and 4.00 mD = , and the graph seems to intercept the vertical axis at 20 kN, then we find 
M = 500 kg. 
 
(b) Since the “slope” (estimated from the graph) is  (5000 N)/(4 m), then the man’s mass 
must be m = 62.5 kg. 
 
57. With the x axis parallel to the incline (positive uphill), then 
 

Σ Fx = 0    ⇒   T cos 25° − mg sin 45°  =  0. 
Therefore,  

2sin 45 sin 45(10 kg)(9.8 m/s ) 76 N
cos 25 cos 25

T mg ° °
= = ≈

° °
. 

 
58. The beam has a mass M = 40.0 kg and a length L = 0.800 m. The mass of the package 
of tamale is m = 10.0 kg. 
 
(a) Since the system is in static equilibrium, the normal force on the beam from roller A is 
equal to half of the weight of the beam:  
 

FA = Mg/2 = (40.0 kg)(9.80 m/s2)/2 = 196 N. 
 
(b) The normal force on the beam from roller B is equal to half of the weight of the beam 
plus the weight of the tamale:  
 

FB = Mg/2 + mg = (40.0 kg)(9.80 m/s2)/2 + (10.0 kg)(9.80 m/s2) = 294 N. 
 
(c) When the right-hand end of the beam is centered over roller B, the normal force on the 
beam from roller A is equal to the weight of the beam plus half of the weight of the 
tamale:  

FA = Mg + mg/2 = (40.0 kg)(9.8 m/s2) + (10.0 kg)(9.80 m/s2)/2 = 441 N. 
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(d) Similarly, the normal force on the beam from roller B is equal to half of the weight of 
the tamale:  

FB = mg/2 = (10.0 kg)(9.80 m/s2)/2 = 49.0 N. 
 
(e) We choose the rotational axis to pass through roller B. When the beam is on the verge 
of losing contact with roller A, the net torque is zero. The balancing equation may be 
written as  

( / 4 )     
4
L Mmgx Mg L x x

M m
= − ⇒ =

+
. 

 
Substituting the values given, we obtain x = 0.160 m. 
 
59. (a) The forces acting on the bucket are the force of gravity, down, and the tension 
force of cable A, up. Since the bucket is in equilibrium and its weight is 
 

( )( )2 3817k 9.80m/s 8.01 10 NB BW m g g= = = × , 
 
the tension force of cable A is TA = ×8 01 103. N . 
 
(b) We use the coordinates axes defined in the diagram. Cable A makes an angle of θ2 = 
66.0º with the negative y axis, cable B makes an angle of 27.0º with the positive y axis, 
and cable C is along the x axis. The y components of the forces must sum to zero since 
the knot is in equilibrium. This means TB cos 27.0º – TA cos 66.0º = 0 and 
 

3 3cos66.0 cos66.0 (8.01 10 N) 3.65 10 N.
cos 27.0 cos 27.0B AT T° °⎛ ⎞= = × = ×⎜ ⎟° °⎝ ⎠

 

 
(c) The x components must also sum to zero. This means  
 

TC + TB sin 27.0º – TA sin 66.0º = 0 
which yields 
 

3 3

3

sin 66.0 sin 27.0 (8.01 10 N)sin 66.0 (3.65 10 N)sin 27.0

5.66 10 N.
C A BT T T= ° − ° = × ° − × °

= ×
 

 
Note: One may verify that the tensions obey the law of sine: 
 

 
1 2 2 1sin(180 ) sin(90 ) sin(90 )

CA B TT T
θ θ θ θ

= =
° − − ° + ° +

 . 

 
60. (a) Equation 12-8 leads to T1 sin40º  + T2 sinθ = mg . Also, Eq. 12-7 leads to 
 

T1 cos40º − T2 cosθ = 0. 
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Combining these gives the expression  
 

2 cos tan 40 sin
mgT

θ θ
=

° +
. 

 
To minimize this, we can plot it or set its derivative equal to zero.  In either case, we find 
that it is at its minimum at θ = 50°.  
 
(b) At θ = 50°, we find T2 = 0.77mg.  
 
61. The cable that goes around the lowest pulley is cable 1 and has tension T1 = F. That 
pulley is supported by the cable 2 (so T2 = 2T1 = 2F) and goes around the middle pulley. 
The middle pulley is supported by cable 3 (so T3 = 2T2 = 4F) and goes around the top 
pulley. The top pulley is supported by the upper cable with tension T, so T = 2T3 = 8F. 
Three cables are supporting the block (which has mass m = 6.40 kg): 
 

1 2 3 8.96 N.
7

mgT T T mg F+ + = ⇒ = =  

 
Therefore, T = 8(8.96 N) = 71.7 N. 
 
62. To support a load of W = mg = (670 kg)(9.8 m/s2) = 6566 N, the steel cable must 
stretch an amount proportional to its “free” length: 
 

ΔL W
AY

L A r= FHG
I
KJ =where π 2  

and r = 0.0125 m. 
 

(a) If L = 12 m, then 4
2 11 2

6566 N (12 m) 8.0 10 m.
(0.0125 m) (2.0 10 N/m )

L
π

−⎛ ⎞
Δ = = ×⎜ ⎟×⎝ ⎠

 

 
(b) Similarly, when L = 350 m, we find ΔL = 0 023. m. 
 
63. (a) The center of mass of the top brick cannot be further (to the right) with respect to 
the brick below it (brick 2) than L/2; otherwise, its center of gravity is past any point of 
support and it will fall. So a1 = L/2 in the maximum case. 
 
(b) With brick 1 (the top brick) in the maximum situation, then the combined center of 
mass of brick 1 and brick 2 is halfway between the middle of brick 2 and its right edge. 
That point (the combined com) must be supported, so in the maximum case, it is just 
above the right edge of brick 3. Thus, a2 = L/4. 
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(c) Now the total center of mass of bricks 1, 2, and 3 is one-third of the way between the 
middle of brick 3 and its right edge, as shown by this calculation: 
 

x m m L
m

L
com = 2 0 + / 2

3
=

6
a f a f−

−  

 
where the origin is at the right edge of brick 3. This point is above the right edge of brick 
4 in the maximum case, so a3 = L/6. 
 
(d) A similar calculation, 

′
−

−x
m m L

m
L

com =
3 0 + / 2

4
=

8
b g b g  

shows that a4 = L/8. 
 
(e) We find 4

1
25 / 24ii

h a L
=

= =∑ . 
 
64. Since all surfaces are frictionless, the contact force F  exerted by the lower sphere on 
the upper one is along that 45° line, and the forces exerted by walls and floors are 
“normal” (perpendicular to the wall and floor surfaces, respectively). Equilibrium of 
forces on the top sphere leads to the two conditions 
 

wall cos 45 and sin 45 .F F F mg= ° ° =  
 
And (using Newton’s third law) equilibrium of forces on the bottom sphere leads to the 
two conditions 

wall floorcos 45 and sin 45 .F F F F mg′ ′= ° = ° +  
 
(a) Solving the above equations, we find floorF ′  = 2mg. 
 
(b) We obtain for the left side of the container, F´wall = mg. 
 
(c) We obtain for the right side of the container, Fwall = mg. 
 
(d) We get / sin 45 2F mg mg= ° = . 
 
65. (a) Choosing an axis through the hinge, perpendicular to the plane of the figure and 
taking torques that would cause counterclockwise rotation as positive, we require the net 
torque to vanish: 
 sin 90 sin 65 0FL Th° − ° =  
 
where the length of the beam is L = 3.2 m and the height at which the cable attaches is h 
= 2.0 m. Note that the weight of the beam does not enter this equation since its line of 
action is directed towards the hinge. With F = 50 N, the above equation yields  
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(50 N)(3.2 m) 88 N
sin 65 (2.0 m)sin 65
FLT

h
= = =

° °
. 

 
(b) To find the components of Fp we balance the forces: 
 

0 cos 25
0 sin 25

x px

y py

F F T F
F F T W

∑ = ⇒ = ° −
∑ = ⇒ = ° +

 

 
where W is the weight of the beam (60 N). Thus, we find that the hinge force components 
are Fpx = 30 N pointing rightward, and Fpy = 97 N pointing upward. In unit-vector 
notation, ˆ ˆ(30 N)i (97 N)j.pF = +  
 
66. Adopting the usual convention that torques that would produce counterclockwise 
rotation are positive, we have (with axis at the hinge) 
 

∑ = ⇒ − F
HG
I
KJ =τ z TL Mg L0 60

2
0sin  

 
where L = 5.0 m and M = 53 kg. Thus, T = 300 N. Now (with Fp for the force of the hinge) 
 

∑ = ⇒ = − = −

∑ = ⇒ = − =

F F T
F F Mg T

x px

y py

0 150
0 260

cos
sin

θ

θ

N
N

 

 
where θ = 60°. Therefore, 2 2ˆ ˆ( 1.5 10  N)i (2.6 10  N)j.pF = − × + ×  
 
67. The cube has side length l and volume V = l 3. We use p B V V= Δ / for the pressure p. 
We note that 

Δ Δ Δ Δ ΔV
V

l
l

l l l
l

l l
l

l
l

= =
+ −

≈ =
3

3

3 3

3

2

3
3 3( ) .  

 
Thus, the pressure required is 
 

11 2
9 23 3(1.4 10 N/m )(85.5cm 85.0cm) 2.4 10 N/m .

85.5cm
B lp
l
Δ × −

= = = ×  

 
68. (a) The angle between the beam and the floor is  
 

sin−1 (d /L) = sin−1 (1.5/2.5) = 37°, 
 

so that the angle between the beam and the weight vector W  
→

of the beam is 53°.  With L = 
2.5 m being the length of the beam, and choosing the axis of rotation to be at the base, 
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Σ τz  =  0   ⇒    PL – W ⎝⎜
⎛

⎠⎟
⎞L

2  sin 53°  =  0 

Thus, P = ½ W sin 53° = 200 N. 
 
(b) Note that 

P  
→

 + W  
→

 = (200 ∠ 90°) + (500 ∠ –127°) = (360 ∠ –146°) 
 
using magnitude-angle notation (with angles measured relative to the beam, where 
"uphill" along the beam would correspond to 0°) with the unit newton understood.  The 
"net force of the floor" Ff 

→
 is equal and opposite to this (so that the total net force on the 

beam is zero), so that |Ff 
→

 | = 360 N and is directed 34° counterclockwise from the beam. 
 
(c) Converting that angle to one measured from true horizontal, we have θ = 34° + 37° = 
71°.  Thus, fs = Ff cosθ and FN = Ff sin θ.  Since fs = fs, max, we divide the equations to 
obtain 

,max

N

s

F
f

 =  
1
μs

  =  tanθ . 

Therefore, μs = 0.35. 
 
69. Since the rod is in static equilibrium, the net torque about the hinge must be zero. The 
free-body diagram is shown below (not to scale). The tension in the rope is denoted as T.  
Since the rod is in rotational equilibrium, the net torque about the hinge, denoted as O, 
must be zero. This implies 

– mg sinθ1 
L
2  +  T L cos φ  =  0 , 

where 1 2 90φ θ θ= + − ° . 

 
Solving for T gives 
 

1 1

1 2 1 2

sin sin
2 cos( 90 ) 2 sin( )

mg mgT θ θ
θ θ θ θ

= =
+ − ° +

. 

 
With θ1 = 60° and T = mg/2, we have 2sin 60 sin(60 )θ° = ° + , which yields θ2 = 60°. A 
plot of /T mg as a function of 2θ  is shown. The other solution, θ2 = 0°, is rejected since it 
corresponds to the limit where the rope becomes infinitely long.  
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70. (a) Setting up equilibrium of torques leads to 
 

2
far end (73kg) (9.8m/s ) (2700 N)

4 2
L LF L = +  

 
which yields Ffar end = 1.5 × 103 N. 
 
(b) Then, equilibrium of vertical forces provides 
 

F Fnear end far end)(9.8 N.= + − = ×( ) .73 2700 19 103  
 
71. When it is about to move, we are still able to apply the equilibrium conditions, but (to 
obtain the critical condition) we set static friction equal to its maximum value and picture 
the normal force NF  as a concentrated force (upward) at the bottom corner of the cube, 

directly below the point O where P is being applied. Thus, the line of action of NF  passes 
through point O and exerts no torque about O (of course, a similar observation applied to 
the pull P). Since FN = mg in this problem, we have fsmax = μmg applied a distance h 
away from O. And the line of action of force of gravity (of magnitude mg), which is best 
pictured as a concentrated force at the center of the cube, is a distance L/2 away from O. 
Therefore, equilibrium of torques about O produces 
 

(8.0 cm) 0.57
2 2 2(7.0 cm)
L Lmgh mg

h
μ μ⎛ ⎞= ⇒ = = =⎜ ⎟

⎝ ⎠
 

 
for the critical condition we have been considering. We now interpret this in terms of a 
range of values for μ. 
 
(a) For it to slide but not tip, a value of μ less than that derived above is needed, since 
then static friction will be exceeded for a smaller value of P, before the pull is strong 
enough to cause it to tip. Thus, μ < L/2h = 0.57 is required. 
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(b) And for it to tip but not slide, we need μ greater than that derived above, since now  

static friction will not be exceeded even for the value of P that makes the cube rotate 
about its front lower corner. That is, we need to have μ > L/2h = 0.57 in this case. 
 
72. We denote the tension in the upper left string (bc) as T´ and the tension in the lower 
right string (ab) as T. The supported weight is W = Mg = (2.0 kg)(9.8 m/s2) = 19.6 N. The 
force equilibrium conditions lead to 
 

cos 60 cos 20
sin 60 sin 20

T T
T W T

′ ° = °
′ ° = + °

 horizontal forces
vertical forces.
 

 (a) We solve the above simultaneous equations and find 
 

19.6 N 15N.
tan 60 cos 20 sin 20 tan 60 cos 20 sin 20

WT = = =
° ° − ° ° ° − °

 

 
(b) Also, we obtain T´ = T cos 20º / cos 60º = 29 N. 
 
73. The free-body diagram for the ladder is shown below. We choose an axis through O, 
the top (where the ladder comes into contact with the wall), perpendicular to the plane of 
the figure, and take torques that would cause counterclockwise rotation as positive. The 
length of the ladder is 10 mL = . Given that 8.0 mh = , the horizontal distance to the 
wall is  

2 2 2 2(10 m) (8 m) 6.0mx L h= − = − = . 
 

Note that the line of action of the applied force F intersects the wall at a height of 
(8.0 m) / 5 1.6m= . 

 
In other words, the moment arm for the applied force (in terms of where we have chosen 
the axis) is  

( ) sin ( )( / ) (8.0 m)(8.0 m /10.0 m) 6.4mr L d L d h Lθ⊥ = − = − = = . 
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The moment arm for the weight is / 2 3.0mx = , half the horizontal distance from the wall 
to the base of the ladder. Similarly, the moment arms for the x and y components of the 
force at the ground Fgd i  are  h = 8.0 m and x = 6.0 m, respectively. Thus, we have 
 

, ,

, ,

( / 2)

(6.4 m) (3.0 m) (8.0 m) (6.0 m) 0.
z g x g y

g x g y

Fr W x F h F x

F W F F

τ ⊥∑ = + + −

= + + − =
 

 
In addition, from balancing the vertical forces we find that W = Fg,y (keeping in mind that 
the wall has no friction). Therefore, the above equation can be written as 
 

,(6.4 m) (3.0 m) (8.0 m) (6.0 m) 0.z g xF W F Wτ∑ = + + − =  
 
(a) With F = 50 N and W = 200 N, the above equation yields , 35 Ng xF = . Thus, in unit-
vector notation we obtain 

ˆ ˆ(35 N)i+(200 N)j.gF =  
 
(b) With F = 150 N and W = 200 N, the above equation yields , 45 Ng xF = − . Therefore, 
in unit-vector notation we obtain 

ˆ ˆ( 45 N)i+(200 N)j.gF = −  
 
(c) Note that the phrase “start to move toward the wall” implies that the friction force is 
pointed away from the wall (in the −i  direction). Now, if ,g xf F= −  and 

, 200 NN g yF F= = are related by the (maximum) static friction relation (f = fs,max = μs FN) 
with μs = 0.38, then we find , 76 Ng xF = − . Returning this to the above equation, we 
obtain 

2( / 2) (200 N) (3.0m) (0.38)(200N) (8.0m) 1.9 10 N.
6.4m

sW x WhF
r

μ

⊥

+ +
= = = ×  

 
74. One arm of the balance has length 1  and the other has length 2 . The two cases 
described in the problem are expressed (in terms of torque equilibrium) as 
 

m m m m1 1 2 1 2 2= =and .  
 
We divide equations and solve for the unknown mass: m m m= 1 2 . 
 
75. Since GA exerts a leftward force T at the corner A, then (by equilibrium of horizontal 
forces at that point) the force Fdiag in CA must be pulling with magnitude 
 

diag 2.
sin 45

TF T= =
°

 



 

  

561

 
This analysis applies equally well to the force in DB. And these diagonal bars are pulling 
on the bottom horizontal bar exactly as they do to the top bar, so the bottom bar CD is the 
“mirror image” of the top one (it is also under tension T). Since the figure is symmetrical 
(except for the presence of the turnbuckle) under 90° rotations, we conclude that the side 
bars (DA and BC) also are under tension T (a conclusion that also follows from 
considering the vertical components of the pull exerted at the corners by the diagonal 
bars). 
 
(a) Bars that are in tension are BC, CD, and DA. 
 
(b) The magnitude of the forces causing tension is 535 NT = . 
 
(c) The magnitude of the forces causing compression on CA and DB is 
 

diag 2 (1.41)535 N 757 NF T= = = . 
 
76. (a) For computing torques, we choose the axis to be at support 2 and consider torques 
that encourage counterclockwise rotation to be positive. Let m = mass of gymnast and M 
= mass of beam. Thus, equilibrium of torques leads to 
 

1(1.96m) (0.54m) (3.92m) 0.Mg mg F− − =  
 
Therefore, the upward force at support 1 is F1 = 1163 N (quoting more figures than are 
significant — but with an eye toward using this result in the remaining calculation). In 
unit-vector notation, we have 3

1
ˆ(1.16 10  N)jF ≈ × . 

 
(b) Balancing forces in the vertical direction, we have F F Mg mg1 2 0+ − − = , so that the 
upward force at support 2 is F2 =1.74 × 103 N. In unit-vector notation, we have 

3
2

ˆ(1.74 10  N)jF ≈ × . 
 
77. (a) Let d = 0.00600 m.  In order to achieve the same final lengths, wires 1 and 3 must 
stretch an amount d more than wire 2 stretches: 
 

ΔL1 = ΔL3 = ΔL2 + d . 
 
Combining this with Eq. 12-23 we obtain 

F1 = F3 =  F2  +  
dAE

L   . 

 
Now, Eq. 12-8 produces F1 + F3 + F2 – mg = 0.  Combining this with the previous 
relation (and using Table 12-1) leads to 3

1= 1380 N 1.38 10 NF ≈ × .  
 
(b) Similarly, F2 = 180 N. 
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78. (a) Computing the torques about the hinge, we have sin 40 sin 50 ,
2
LTL W° = ° where 

the length of the beam is L = 12 m and the tension is T = 400 N. Therefore, the weight is 
671 NW = , which means that the gravitational force on the beam is ˆ( 671 N)jwF = − . 

 
(b) Equilibrium of horizontal and vertical forces yields, respectively, 
 

hinge 

hinge 

400 N

671 N
x

y

F T

F W

= =

= =
 

 
where the hinge force components are rightward (for x) and upward (for y). In unit-vector 
notation, we have hinge

ˆ ˆ(400 N)i (671 N)jF = + . 
 
79. We locate the origin of the x axis at the edge of the table and choose rightward 
positive. The criterion (in part (a)) is that the center of mass of the block above another 
must be no further than the edge of the one below; the criterion in part (b) is more subtle 
and is discussed below. Since the edge of the table corresponds to x = 0 then the total 
center of mass of the blocks must be zero. 
 
(a) We treat this as three items: one on the upper left (composed of two bricks, one 
directly on top of the other) of mass 2m whose center is above the left edge of the bottom 
brick; a single brick at the upper right of mass m, which necessarily has its center over the 
right edge of the bottom brick (so a1 = L/2 trivially); and, the bottom brick of mass m. 
The total center of mass is 
 

( )( ) ( / )2 2
4

02 2 2m a L ma m a L
m

− + + −
=  

 
which leads to a2 = 5L/8. Consequently, h = a2 + a1 = 9L/8. 
 
(b) We have four bricks (each of mass m) where the center 
of mass of the top one and the center of mass of the bottom 
one have the same value, xcm = b2 – L/2. The middle layer 
consists of two bricks, and we note that it is possible for 
each of their centers of mass to be beyond the respective 
edges of the bottom one! This is due to the fact that the top brick is exerting downward 
forces (each equal to half its weight) on the middle blocks — and in the extreme case, 
this may be thought of as a pair of concentrated forces exerted at the innermost edges of 
the middle bricks. Also, in the extreme case, the support force (upward) exerted on a 
middle block (by the bottom one) may be thought of as a concentrated force located at the 
edge of the bottom block (which is the point about which we compute torques, in the 
following).  
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If (as indicated in our sketch, where Ftop  has magnitude mg/2) we consider equilibrium of 
torques on the rightmost brick, we obtain 
 

mg b L mg L b1 1
1
2 2

−FHG
I
KJ = −( )  

 
which leads to b1 = 2L/3. Once we conclude from symmetry that b2 = L/2, then we also 
arrive at h = b2 + b1 = 7L/6. 
 
80. The assumption stated in the problem (that the density does not change) is not meant 
to be realistic; those who are familiar with Poisson’s ratio (and other topics related to the 
strengths of materials) might wish to think of this problem as treating a fictitious material 
(which happens to have the same value of E as aluminum, given in Table 12-1) whose 
density does not significantly change during stretching.  Since the mass does not change 
either, then the constant-density assumption implies the volume (which is the circular 
area times its length) stays the same: 
 
       (πr2L)new = (πr2L)old      ⇒    ΔL = L[(1000/999.9)2 – 1] . 
 
 Now, Eq. 12-23 gives 

 
     F = πr2 E ΔL/L  =  πr2(7.0 x 109 N/m2)[(1000/999.9)2 – 1] . 

 
Using either the new or old value for r gives the answer F = 44 N. 
 
81. Where the crosspiece comes into contact with the beam, there is an upward force of 
2F (where F is the upward force exerted by each man). By equilibrium of vertical forces, 
W = 3F where W is the weight of the beam. If the beam is uniform, its center of gravity is 
a distance L/2 from the man in front, so that computing torques about the front end leads 
to 

W L Fx W x
2

2 2
3

= = FHG
I
KJ  

 
which yields x = 3L/4 for the distance from the crosspiece to the front end. It is therefore 
a distance L/4 from the rear end (the “free” end). 
 
82. The force F exerted on the beam is F = 7900 N, as computed in the Sample Problem. 
Let F/A = Su/6, where 6 250 10 N/muS = ×  is the ultimate strength (see Table 12-1). Then 
 

4 2
6 2

6 6(7900 N) 9.5 10 m .
50 10 N/mu

FA
S

−= = = ×
×

 

 
Thus the thickness is 4 29.5 10  m 0.031mA −= × = . 
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83. (a)   Because of Eq. 12-3, we can write 

 
          T  

→
  +  (mB g  ∠ –90º) + (mA g  ∠ –150º)  = 0 . 

 
Solving the equation, we obtain T  

→
 = (106.34  ∠ 63.963º).   Thus, the magnitude of the 

tension in the upper cord is 106 N,   
 
(b) and its angle (measured counterclockwise from the +x axis) is 64.0°. 
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Chapter 13 
 
1. The gravitational force between the two parts is 
 

( ) ( )2
2 2= =

Gm M m GF mM m
r r

−
−  

 
which we differentiate with respect to m and set equal to zero: 
 

( )2= 0 = 2 = 2dF G M m M m
dm r

− ⇒ . 

 
This leads to the result m/M = 1/2. 
 
2. The gravitational force between you and the moon at its initial position (directly 
opposite of Earth from you) is 

0 2( )
m

ME E

GM mF
R R

=
+

 

 
where mM  is the mass of the moon, MER  is the distance between the moon and the Earth, 
and ER  is the radius of the Earth. At its final position (directly above you), the 
gravitational force between you and the moon is 
 

1 2( )
m

ME E

GM mF
R R

=
−

. 

 
(a) The ratio of the moon’s gravitational pulls at the two different positions is 
 

2 22 8 6
1

2 8 6
0

/( ) 3.82 10  m 6.37 10  m 1.06898.
/( ) 3.82 10  m 6.37 10  m

m ME E ME E

m ME E ME E

GM m R RF R R
F GM m R R R R

⎛ ⎞ ⎛ ⎞− + × + ×
= = = =⎜ ⎟ ⎜ ⎟+ − × − ×⎝ ⎠⎝ ⎠

 

 
Therefore, the increase is 0.06898, or approximately 6.9%. 
 
(b) The change of the gravitational pull may be approximated as 
 

1 0 2 2 2 2

3

1 2 1 2
( ) ( )
4 .

m m m mE E

ME E ME E ME ME ME ME

m E

ME

GM m GM m GM m GM mR RF F
R R R R R R R R
GM mR

R

⎛ ⎞ ⎛ ⎞
− = − ≈ + − −⎜ ⎟ ⎜ ⎟− + ⎝ ⎠ ⎝ ⎠

=
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On the other hand, your weight, as measured on a scale on Earth, is  
 

2
E

g E
E

GM mF mg
R

= = . 

 
Since the moon pulls you “up,” the percentage decrease of weight is  
 

3 322 6
7 51 0

24 8

7.36 10 kg 6.37 10  m4 4 2.27 10 (2.3 10 )%.
5.98 10 kg 3.82 10  m

m E

g E ME

F F M R
F M R

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞− × ×
= = = × ≈ ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟× ×⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

 
3. The magnitude of the force of one particle on the other is given by F = Gm1m2/r2, 
where m1 and m2 are the masses, r is their separation, and G is the universal gravitational 
constant. We solve for r: 
 

( )( )( )11 2 2
1 2

12

6.67 10 N m / kg 5.2kg 2.4kg
19m

2.3 10 N
Gm mr

F

−

−

× ⋅
= = =

×
. 

 
4. We use subscripts s, e, and m for the Sun, Earth and Moon, respectively. Plugging in 
the numerical values (say, from Appendix C) we find 
 

2 22 30 8

2 24 11

/ 1.99 10 kg 3.82 10  m 2.16.
/ 5.98 10 kg 1.50 10  m

sm s m sm s em

em e m em e sm

F Gm m r m r
F Gm m r m r

⎛ ⎞ ⎛ ⎞× ×
= = = =⎜ ⎟ ⎜ ⎟× ×⎝ ⎠⎝ ⎠

 

 
5. The gravitational force from Earth on you (with mass m) is  
 

 2
E

g
E

GM mF mg
R

= =  

 
where 2 2/ 9.8 m/s .E Eg GM R= =  If r is the distance between you and a tiny black hole of 
mass 111 10 kgbM = ×  that has the same gravitational pull on you as the Earth, then 
 

2 .b
g

GM mF mg
r

= =  

 
Combining the two equations, we obtain  
 

11 3 2 11

2 2 2

(6.67 10  m /kg s )(1 10 kg) 0.8 m.
9.8 m/s

b bE

E

GM m GMGM mmg r
R r g

−× ⋅ ×
= = ⇒ = = ≈  

 
6. The gravitational forces on m5 from the two 5.00 g masses m1 and m4 cancel each 
other. Contributions to the net force on m5 come from the remaining two masses: 
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( )( )( )

( )
11 2 2 3 3 3

net 2
1

14

6.67 10  N m /kg 2.50 10  kg 3.00 10  kg 1.00 10  kg

2 10  m

1.67 10  N.

F
− − − −

−

−

× ⋅ × × − ×
=

×

= ×

 

 
The force is directed along the diagonal between m2 and m3, toward m2. In unit-vector 
notation, we have 
 
 14 14

net net
ˆ ˆ ˆ ˆ(cos 45 i sin 45 j) (1.18 10 N) i  (1.18 10 N) jF F − −= ° + ° = × + × . 

 
7. We require the magnitude of force (given by Eq. 13-1) exerted by particle C on A be 
equal to that exerted by B on A.  Thus, 
 

GmA mC
r2   = 

GmA mB
d2   . 

 
We substitute in mB = 3mA   and mB = 3mA, and (after canceling “mA”) solve for r. We 
find r = 5d.  Thus, particle C is placed on the x axis, to the left of particle A (so it is at a 
negative value of x), at x = –5.00d.  
 
8. Using F = GmM/r2, we find that the topmost mass pulls upward on the one at the 
origin with 1.9 × 10−8 N, and the rightmost mass pulls rightward on the one at the origin 
with 1.0 × 10−8 N. Thus, the (x, y) components of the net force, which can be converted to 
polar components (here we use magnitude-angle notation), are 
 

( ) ( )8 8 8
net 1.04 10 ,1.85 10 2.13 10 60.6 .F − − −= × × ⇒ × ∠ °  

 
(a) The magnitude of the force is 2.13 × 10−8 N. 
 
(b) The direction of the force relative to the +x axis is 60.6° . 
 
9. Both the Sun and the Earth exert a gravitational pull on the space probe. The net force 
can be calculated by using superposition principle. At the point where the two forces 
balance, we have 2 2

1 2/ /e sGM m r GM m r= , where Me is the mass of Earth, Ms is the mass 
of the Sun, m is the mass of the space probe, r1 is the distance from the center of Earth to 
the probe, and r2 is the distance from the center of the Sun to the probe. We substitute r2 
= d − r1, where d is the distance from the center of Earth to the center of the Sun, to find 
 

( )2 2
1 1

= .e sM M
r d r−

 

 



   CHAPTER 13 568 

Using the values for Me, Ms, and d given in Appendix C, we take the positive square root 
of both sides to solve for r1. A little algebra yields 
 

11
8

1 30 24

1.50 10  m 2.60 10  m.
1 / 1 (1.99 10  kg)/(5.98 10  kg)s e

dr
M M

×
= = = ×

+ + × ×
 

 
Note: The fact that 1r d indicates that the probe is much closer to the Earth than the 
Sun.  
 
10. Using Eq. 13-1, we find 
 

      FAB 
→    

 = 
2GmA

2

d2   j^       and    FAC 
→    

=  – 
4GmA

2

3d2   i^  . 

 
Since the vector sum of all three forces must be zero, we find the third force (using 
magnitude-angle notation) is  

       FAD 
→    

 = 
GmA

2

d2  (2.404   ∠   –56.3º) . 

 
This tells us immediately the direction of the vector  r  

→
  (pointing from the origin to 

particle D), but to find its magnitude we must solve (with mD = 4mA) the following 
equation:  

2.404⎝⎜
⎛

⎠⎟
⎞GmA

2

d2   = 
GmAmD

r2    . 

 
This yields r = 1.29d.  In magnitude-angle notation, then,  r  

→
  = (1.29  ∠   –56.3º) , with 

SI units understood. The “exact” answer without regard to significant figure 
considerations is 

 6 62 , 3 .
13 13 13 13

r
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
(a) In (x, y) notation, the x coordinate is x = 0.716d. 
 
(b) Similarly, the y coordinate is y = −1.07d.   
 
11. (a) The distance between any of the spheres at the corners and the sphere at the center 
is  

/ 2cos30 / 3r = ° =  
 
where  is the length of one side of the equilateral triangle. The net (downward) 
contribution caused by the two bottom-most spheres (each of mass m) to the total force 
on m4 has magnitude 
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4 4
2 22 = 2 sin 30 = 3 .y

Gm m Gm mF
r

⎛ ⎞ °⎜ ⎟
⎝ ⎠

 

 
This must equal the magnitude of the pull from M, so 
 

( )
4 4

223
/ 3

Gm m Gm m
=  

which readily yields m = M. 
 
(b) Since m4 cancels in that last step, then the amount of mass in the center sphere is not 
relevant to the problem. The net force is still zero. 
 
12. (a) We are told the value of the force when particle C is removed (that is, as its 
position x goes to infinity), which is a situation in which any force caused by C vanishes 
(because Eq. 13-1 has r2 in the denominator).  Thus, this situation only involves the force 
exerted by A on B: 

 net, 2
A B

x AB
AB

Gm mF F
r

= = = 4.17 × 10−10  N . 

 
Since mB = 1.0 kg and 0.20 mABr = , then this yields  
 

2 2 10

11 3 2

(0.20 m) (4.17 10 N) 0.25 kg
(6.67 10  m /kg s )(1.0 kg)

AB AB
A

B

r Fm
Gm

−

−

×
= = =

× ⋅
. 

 
(b) We note (from the graph) that the net force on B is zero when x = 0.40 m.  Thus, at 
that point, the force exerted by C must have the same magnitude (but opposite direction) 
as the force exerted by A (which is the one discussed in part (a)).  Therefore 
        

 2(0.40 m)
C BGm m  = 4.17 × 10−10  N     ⇒ mC = 1.00 kg. 

 
13. If the lead sphere were not hollowed the magnitude of the force it exerts on m would 
be F1 = GMm/d2. Part of this force is due to material that is removed. We calculate the 
force exerted on m by a sphere that just fills the cavity, at the position of the cavity, and 
subtract it from the force of the solid sphere. 
 
The cavity has a radius r = R/2. The material that fills it has the same density (mass to 
volume ratio) as the solid sphere, that is, Mc/r3= M/R3, where Mc is the mass that fills the 
cavity. The common factor 4π/3 has been canceled. Thus, 
 

3 3

3 3= = = .
8 8c

r R MM M M
R R

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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The center of the cavity is d − r = d − R/2 from m, so the force it exerts on m is 
 

( )
( )2 2

/8
= .

/2
G M m

F
d R−

 

The force of the hollowed sphere on m is 
 

( ) ( )1 2 2 22 2

11 3 2

2 2 2 2 2

9

1 1 1= = = 1
8 /2 8 1 /2

(6.67 10  m /s kg)(2.95 kg)(0.431 kg) 11
(9.00 10 m) 8[1 (4 10 m) /(2 9 10 m)]

8.31 10 N.

GMmF F F GMm
d dd R R d

−

− − −

−

⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
⎛ ⎞× ⋅

= −⎜ ⎟× − × ⋅ ×⎝ ⎠
= ×

 

 
14. All the forces are being evaluated at the origin (since particle A is there), and all 
forces (except the net force) are along the location vectors ,r  which  point to particles B 
and C.  We note that the angle for the location-vector pointing to particle B is 180º – 
30.0º = 150º (measured counterclockwise from the +x axis).  The component along, say, 
the x axis of one of the force vectors F  

→
  is simply Fx/r in this situation (where F is the 

magnitude of F  
→

 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r2, 
then the aforementioned x component would have the form GmMx/r3; similarly for the 
other components. With mA = 0.0060 kg, mB = 0.0120 kg, and mC = 0.0080 kg, we 
therefore have 

Fnet x = 3 3
A C CA B B

B C

Gm m xGm m x
r r

+   = (2.77 × 10−14 N)cos(−163.8º) 

and  

Fnet y = 3 3
A C CA B B

B C

Gm m yGm m y
r r

+  = (2.77 × 10−14 N)sin(−163.8º) 

 
where rB = dAB = 0.50 m, and (xB, yB) = (rBcos(150º), rBsin(150º)) (with SI units 
understood).  A fairly quick way to solve for rC is to consider the vector difference 
between the net force and the force exerted by A, and then employ the Pythagorean 
theorem.  This yields rC = 0.40 m. 
 
(a) By solving the above equations, the x coordinate of particle C is  xC = −0.20 m. 
 
(b) Similarly, the y coordinate of particle C is  yC = −0.35 m. 
 
15. All the forces are being evaluated at the origin (since particle A is there), and all 
forces are along the location vectors ,r  which point to particles B, C, and D. In three 
dimensions, the Pythagorean theorem becomes r = x2 + y2 + z2  .   The component along, 
say, the x axis of one of the force-vectors F  

→
  is simply Fx/r in this situation (where F is 
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the magnitude of F  
→

 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r2 
then the aforementioned x component would have the form GmMx/r3; similarly for the 
other components.  For example, the z component of the force exerted on particle A by 
particle B is 

GmA mB zB
rB

3  = 
GmA(2mA)(2d)

((2d)2 + d2 + (2d)2)3  = 
2

2

4
27

AGm
d

. 

 
In this way, each component can be written as some multiple of GmA

2/d2.  For the z 
component of the force exerted on particle A by particle C, that multiple is –9 14 /196. 
For the x components of the forces exerted on particle A by particles B and C, those 
multiples are 4/27 and  –3 14 /196, respectively.  And for the y components of the forces 
exerted on particle A by particles B and C, those multiples are 2/27 and 3 14 /98, 
respectively.  To find the distance r to particle D one method is to solve (using the fact 
that the vector add to zero) 
 

2 2 2 2 22 2 2

2 2 2

4 3 14 2 3 14 4 9 14 0.4439
27 196 27 98 27 196

A D A AGm m Gm Gm
r d d

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎢ ⎥= − + + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 
With mD = 4mA, we obtain 

 
2 1/ 4

2 2 2

4 0.4439 16 4.357
( ) 0.4439

r d d
r d

⎛ ⎞ ⎛ ⎞= ⇒ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
The individual values of x, y, and z (locating the particle D) can then be found by 
considering each component of the GmAmD/r2 force separately.  
 
(a) The x component of r would be  

2 2 2

3 2 2

4 3 14 0.0909
27 196

A D A AGm m x Gm Gm
r d d

⎛ ⎞
= − − = −⎜ ⎟⎜ ⎟

⎝ ⎠
, 

 

which yields 
3 3

2 2

(4.357 )0.0909 0.0909 1.88
(4 )

A A

D A

m r m dx d
m d m d

= − = − = − .  

(b) Similarly, y = −3.90d, 
 
(c) and z = 0.489d. 
 
In this way we are able to deduce that (x, y, z) = 
(1.88d, 3.90d, 0.49d). 
 
16. Since the rod is an extended object, we cannot 
apply Equation 13-1 directly to find the force. 
Instead, we consider a small differential element of 
the rod, of mass dm  of thickness dr  at a distance 
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r from 1m . The gravitational force between dm  and 1m is 
 

1 1
2 2

( / )Gm dm Gm M L drdF
r r

= = , 

 
where we have substituted ( / )dm M L dr=  since mass is uniformly distributed. The 
direction of dF  is to the right (see figure). The total force can be found by integrating 
over the entire length of the rod: 
 

1 1 1
2

1 1
( )

L d

d

Gm M Gm M Gm MdrF dF
L r L L d d d L d

+ ⎛ ⎞= = = − − =⎜ ⎟+ +⎝ ⎠∫ ∫ . 

 
Substituting the values given in the problem statement, we obtain 
 

11 3 2
101 (6.67 10  m /kg s )(0.67 kg)(5.0 kg) 3.0 10 N.

( ) (0.23 m)(3.0 m 0.23 m)
Gm MF

d L d

−
−× ⋅

= = = ×
+ +

 

 
17. (a) The gravitational acceleration at the surface of the Moon is gmoon = 1.67 m/s2 (see 
Appendix C). The ratio of weights (for a given mass) is the ratio of g-values, so  
 

Wmoon = (100 N)(1.67/9.8) = 17 N. 
 
(b) For the force on that object caused by Earth’s gravity to equal 17 N, then the free-fall 
acceleration at its location must be ag = 1.67 m/s2. Thus, 
 

7
2 1.5 10 mE E

g
g

Gm Gma r
r a

= ⇒ = = ×  

 
so the object would need to be a distance of r/RE = 2.4 “radii” from Earth’s center. 
 
 
18. The free-body diagram of the force acting on the plumb 
line is shown to the right. The mass of the sphere is 
  

3 3 3 3 3

13

4 4 (2.6 10 kg/m )(2.00 10  m)
3 3

8.71 10 kg.

M V Rπ πρ ρ ⎛ ⎞= = = × ×⎜ ⎟
⎝ ⎠

= ×
 
 
The force between the “spherical” mountain and the plumb line is 2/F GMm r= . 
Suppose at equilibrium the line makes an angle θ  with the vertical and the net force 
acting on the line is zero. Therefore, 
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net, 2

net,

0 sin sin

0 cos

x

y

GMmF T F T
r

F T mg

θ θ= = − = −

= = −

∑
∑

 

 

The two equations can be combined to give 2tan F GM
mg gr

θ = = . The distance the lower 

end moves toward the sphere is  
 

11 3 2 13

2 3 2

6

(6.67 10  m /kg s )(8.71 10 kg)tan (0.50 m)
(9.8)(3 2.00 10  m)

8.2 10  m.

GMx l l
gr

θ
−

−

× ⋅ ×
= = =

× ×

= ×

 

 
19. The acceleration due to gravity is given by ag = GM/r2, where M is the mass of Earth 
and r is the distance from Earth’s center. We substitute r = R + h, where R is the radius 
of Earth and h is the altitude, to obtain  

 2 2( )g
E

GM GMa
r R h

= =
+

. 

 
We solve for h and obtain / g Eh GM a R= − . From Appendix C, RE = 6.37 × 106 m and 

M = 5.98 × 1024 kg, so 
 

( )( )
( )

11 3 2 24
6 6

2

6.67 10 m / s kg 5.98 10 kg
6.37 10 m 2.6 10 m.

4.9 m / s
h

−× ⋅ ×
= − × = ×  

 
Note: We may rewrite ag as 

2

2 2 2

/
(1 / ) (1 / )

E
g

E E

GM RGM ga
r h R h R

= = =
+ +

 

where 29.83 m/sg =  is the gravitational acceleration on the surface of the Earth. The 
plot below depicts how ag decreases with increasing altitude. 
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20. We follow the method shown in Sample Problem – “Difference in acceleration at 
head and feet.” Thus, 

2 3= = 2E E
g g

GM GMa da dr
r r

⇒ −  

 
which implies that the change in weight is 
 

( )top bottom .gW W m da− ≈  
 
However, since Wbottom = GmME/R2 (where R is Earth’s mean radius), we have 
 

( )
3

bottom3 6

1.61 10  m= 2 = 2 = 2 600 N 0.303 N
6.37 10  m

E
g

GmM drmda dr W
R R

×
− − − = −

×
 

 
for the weight change (the minus sign indicating that it is a decrease in W). We are not 
including any effects due to the Earth’s rotation (as treated in Eq. 13-13). 
 
21. From Eq. 13-14, we see the extreme case is when “g” becomes zero, and plugging in 
Eq. 13-15 leads to 

3 2
2

20 = = .GM RR M
R G

ωω− ⇒  

 
Thus, with R = 20000 m and ω = 2π rad/s, we find M = 4.7 × 1024 kg ≈ 5 × 1024 kg. 
 
22. (a) Plugging Rh = 2GMh /c2 into the indicated expression, we find 
 

( ) ( ) ( ) ( )

4

2 2 22 2

1= = =
1.001 2.0021.001 2 /

h h
g

hh h

GM GM ca
MR GGM c

 

 
which yields ag = (3.02 × 1043 kg·m/s2) /Mh. 
 
(b) Since Mh is in the denominator of the above result, ag decreases as Mh increases. 
 
(c) With Mh = (1.55 × 1012) (1.99 × 1030 kg), we obtain ag = 9.82 m/s2. 
 
(d) This part refers specifically to the very large black hole treated in the previous part. 
With that mass for M in Eq. 13-16, and r = 2.002GM/c2, we obtain 
 

( ) ( ) ( )

6

3 3 22

2= 2 =
2.0022.002 /

g
GM cda dr dr

GMGM c
− −  
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where dr → 1.70 m as in Sample Problem – “Difference in acceleration at head and feet.” 
This yields (in absolute value) an acceleration difference of 7.30 × 10−15 m/s2. 
 
(e) The miniscule result of the previous part implies that, in this case, any effects due to 
the differences of gravitational forces on the body are negligible. 
 

23. (a) The gravitational acceleration is 2
2= = 7.6 m/s .g

GMa
R

 

 

(b) Note that the total mass is 5M. Thus, ( )
( )

2
2

5
= = 4.2 m/s .

3
g

G M
a

R
 

 
24. (a) What contributes to the GmM/r2 force on m is the (spherically distributed) mass M 
contained within r (where r is measured from the center of M). At point A we see that M1 
+ M2 is at a smaller radius than r = a and thus contributes to the force: 
 

( )1 2
on 2 .m

G M M m
F

a
+

=  

 
(b) In the case r = b, only M1 is contained within that radius, so the force on m becomes 
GM1m/b2. 
 
(c) If the particle is at C, then no other mass is at smaller radius and the gravitational 
force on it is zero. 
 
25. Using the fact that the volume of a sphere is 4πR3/3, we find the density of the sphere: 
 

( )

4
3 3total

334 4
3 3

1.0 10 kg 2.4 10 kg/m .
1.0 m

M
R

ρ
π π

×
= = = ×  

 
When the particle of mass m (upon which the sphere, or parts of it, are exerting a 
gravitational force) is at radius r (measured from the center of the sphere), then whatever 
mass M is at a radius less than r must contribute to the magnitude of that force (GMm/r2). 
 
(a) At r = 1.5 m, all of Mtotal is at a smaller radius and thus all contributes to the force: 
 

( )7total
on 2 3.0 10 N/kg .m

GmMF m
r

−= = ×  

 
(b) At r = 0.50 m, the portion of the sphere at radius smaller than that is 
 

3 34= = 1.3 10  kg.
3

M rρ π⎛ ⎞ ×⎜ ⎟
⎝ ⎠
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Thus, the force on m has magnitude GMm/r2 = m (3.3 × 10−7 N/kg). 
 
(c) Pursuing the calculation of part (b) algebraically, we find 
 

( )34
3 7

on 2

N6.7 10 .
kg mm

Gm r
F mr

r
ρ π

−⎛ ⎞
= = ×⎜ ⎟⋅⎝ ⎠

 

 
26. The difference between free-fall acceleration g and the gravitational acceleration ga  
at the equator of the star is (see Equation 13.14): 
 

2
ga g Rω− =  

where  
2 2 153rad/s

0.041sT
π πω = = =  

 
is the angular speed of the star. The gravitational acceleration at the equator is 
 

 
11 3 2 30

11 2
2 4 2

(6.67 10  m /kg s )(1.98 10 kg) 9.17 10 m/s .
(1.2 10  m)g

GMa
R

−× ⋅ ×
= = = ×

×
 

 
Therefore, the percentage difference is  
 

2 2 4
4

11 2

(153rad/s) (1.2 10  m) 3.06 10 0.031%.
9.17 10 m/s

g

g g

a g R
a a

ω −− ×
= = = × ≈

×
 

 
27. (a) The magnitude of the force on a particle with mass m at the surface of Earth is 
given by F = GMm/R2, where M is the total mass of Earth and R is Earth’s radius. The 
acceleration due to gravity is 
 

( )( )
( )

11 3 2 24
2

22 6

6.67 10  m /s kg 5.98 10  kg
= = = = 9.83 m/s .

6.37 10  m
g

F GMa
m R

−× ⋅ ×

×
 

 
(b) Now ag = GM/R2, where M is the total mass contained in the core and mantle together 
and R is the outer radius of the mantle (6.345 × 106 m, according to the figure). The total 
mass is  

M = (1.93 × 1024 kg + 4.01 × 1024 kg ) = 5.94 × 1024 kg. 
 
The first term is the mass of the core and the second is the mass of the mantle. Thus, 
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( )( )
( )

11 3 2 24
2

26

6.67 10  m /s kg 5.94 10  kg
= = 9.84 m/s .

6.345 10  m
ga

−× ⋅ ×

×
 

 
(c) A point 25 km below the surface is at the mantle–crust interface and is on the surface 
of a sphere with a radius of R = 6.345 × 106 m. Since the mass is now assumed to be 
uniformly distributed, the mass within this sphere can be found by multiplying the mass 
per unit volume by the volume of the sphere: 3 3( / ) ,e eM R R M=  where Me is the total 
mass of Earth and Re is the radius of Earth. Thus, 
 

( )
36

24 24
6

6.345 10  m= 5.98 10  kg = 5.91 10  kg.
6.37 10  m

M
⎛ ⎞×

× ×⎜ ⎟×⎝ ⎠
 

 
The acceleration due to gravity is 
 

( )( )
( )

11 3 2 24
2

22 6

6.67 10  m /s kg 5.91 10  kg
= = = 9.79 m/s .

6.345 10  m
g

GMa
R

−× ⋅ ×

×
 

 

28. (a) Using Eq. 13-1, we set GmM/r2  equal to  
1
2 GmM/R2, and we find r = R 2 .  Thus, 

the distance from the surface is  ( 2  – 1)R = 0.414R.  
 

(b) Setting the density ρ equal to M/V where V = 
4
3 πR3, we use Eq. 13-19: 

 

 3 3 2

4 4 1 / 2.
3 3 4 / 3 2

Gmr Gmr M GMmr GMmF r R
R R R

π ρ π
π

⎛ ⎞= = = = ⇒ =⎜ ⎟
⎝ ⎠

 

  
29. The equation immediately preceding Eq. 13-28 shows that  K = –U (with U evaluated 
at the planet’s surface: –5.0 × 109 J) is required to “escape.”  Thus, K = 5.0 × 109 J. 
 
30. The gravitational potential energy is 

( ) ( )2= =
Gm M m GU Mm m

r r
−

− − −  

 
which we differentiate with respect to m and set equal to zero (in order to minimize). 
Thus, we find M − 2m = 0, which leads to the ratio m/M = 1/2 to obtain the least potential 
energy.  
 
Note that a second derivative of U with respect to m would lead to a positive result 
regardless of the value of m, which means its graph is everywhere concave upward and 
thus its extremum is indeed a minimum. 
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31. The density of a uniform sphere is given by ρ = 3M/4πR3, where M is its mass and R 
is its radius. On the other hand, the value of gravitational acceleration ag at the surface of 
a planet is given by ag = GM/R2. For a particle of mass m, its escape speed is given by 
 

21 2 .
2

mM GMmv G v
R R

= ⇒ =  

 
(a) From the definition of density above, we find the ratio of the density of Mars to the 
density of Earth to be 

33 4

3 3

0.65 10  km= = 0.11 = 0.74.
3.45 10  km

M M E

E E M

M R
M R

ρ
ρ

⎛ ⎞×
⎜ ⎟×⎝ ⎠

 

 
(b) The value of gravitational acceleration for Mars is 
 

( )

2 2

2 2 2 2

24
2 2

3

0.65 10  km0.11 9.8 m/s 3.8 m/s .
3.45 10  km

M M E E M E
g M g E

M M E E E M

GM M R GM M Ra a
R R M R M R

= = ⋅ ⋅ =

⎛ ⎞×
= =⎜ ⎟×⎝ ⎠

 

(c) For Mars, the escape speed is 
 

( )( )11 3 2 24
3

6

2(6.67 10  m /s kg) 0.11 5.98 10  kg2 5.0 10  m/s.
3.45 10  m

M
M

M

GMv
R

−× ⋅ ×
= = = ×

×
 

 
Note: The ratio of the escape speeds on Mars and on Earth is 
 

 
3

3

2 / 6.5 10  km(0.11) 0.455
3.45 10  km2 /

M MM M E

E E ME E

GM Rv M R
v M RGM R

×
= = ⋅ = ⋅ =

×
. 

 
32. (a) The gravitational potential energy is 
 

( )( )( )11 3 2
11

6.67 10  m /s kg 5.2 kg 2.4 kg
= = =  4.4 10  J.

19 m
GMmU

r

−
−

× ⋅
− − − ×  

 
(b) Since the change in potential energy is 
 

( )11 112= = 4.4 10  J = 2.9 10  J,
3 3

GMm GMmU
r r

− −⎛ ⎞Δ − − − − − × ×⎜ ⎟
⎝ ⎠

 

 
the work done by the gravitational force is W = − ΔU = −2.9 × 10−11 J. 
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(c) The work done by you is W´ = ΔU = 2.9 × 10−11 J. 
 
33. The amount of (kinetic) energy needed to escape is the same as the (absolute value of 
the) gravitational potential energy at its original position. Thus, an object of mass m on a 
planet of mass M and radius R needs K = GmM/R in order to (barely) escape. 
(a) Setting up the ratio, we find 

= = 0.0451m m E

E E m

K M R
K M R

 

 
using the values found in Appendix C. 
 
(b) Similarly, for the Jupiter escape energy (divided by that for Earth) we obtain 
 

= = 28.5.J J E

E E J

K M R
K M R

 

 
34. (a) The potential energy U at the surface is Us = –5.0 × 109 J according to the graph, 
since U is inversely proportional to r (see Eq. 13-21), at an r-value a factor of 5/4 times 
what it was at the surface then U must be 4 Us/5.  Thus, at r = 1.25Rs, U = – 4.0 × 109 J.  
Since mechanical energy is assumed to be conserved in this problem, we have 
  

K + U = –2.0 × 109 J 
 
at this point.  Since U = – 4.0 × 109 J here, then 92.0 10 JK = ×  at this point. 
 
(b) To reach the point where the mechanical energy equals the potential energy (that is, 
where U = – 2.0 × 109 J) means that U must reduce (from its value at r = 1.25Rs) by a 
factor of 2, which means the r value must increase (relative to r = 1.25Rs) by a 
corresponding factor of 2.  Thus, the turning point must be at r = 2.5Rs. 
 
35. Let m = 0.020 kg and d = 0.600 m (the original edge-length, in terms of which the 
final edge-length is d/3). The total initial gravitational potential energy (using Eq. 13-21 
and some elementary trigonometry) is 
 

Ui = – 
4Gm2

d  – 
2Gm2

2 d
 . 

 
Since U is inversely proportional to r then reducing the size by 1/3 means increasing the 
magnitude of the potential energy by a factor of 3, so 
 

         Uf  = 3Ui   ⇒   ΔU = 2Ui = 2(4 + 2 )⎝⎜
⎛

⎠⎟
⎞– 

Gm2

d   = – 4.82 × 10–13 J . 

 
36. Energy conservation for this situation may be expressed as follows: 
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1 1 2 2 1 2
1 2

GmM GmMK U K U K K
r r

+ = + ⇒ − = −  

 
where M = 5.0 × 1023 kg, r1 = R = 3.0 × 106 m and m = 10 kg. 
 
(a) If K1 = 5.0 × 107 J and r2 = 4.0 × 106 m, then the above equation leads to 
 

7
2 1

2 1

1 1 2.2 10 J.K K GmM
r r

⎛ ⎞
= + − = ×⎜ ⎟

⎝ ⎠
 

 
(b) In this case, we require K2 = 0 and r2 = 8.0 × 106 m, and solve for K1: 
 

7
1 2

1 2

1 1 6.9 10 J.K K GmM
r r

⎛ ⎞
= + − = ×⎜ ⎟

⎝ ⎠
 

 
37. (a) The work done by you in moving the sphere of mass mB equals the change in the 
potential energy of the three-sphere system. The initial potential energy is 
 

A C B CA B
i

Gm m Gm mGm mU
d L L d

= − − −
−

 

and the final potential energy is 
 

.A C B CA B
f

Gm m Gm mGm mU
L d L d

= − − −
−

 

The work done is 
 

11 3 2

1 1 1 1

2 2 2( )
( ) ( ) ( )

0.12 m 2(0.040 m)(6.67 10 m / s kg) (0.010 kg)(0.080 kg 0.020 kg)
(0.040 m)(0.12 0.040 m)

5.0 10

f i B A C

B A C B A C

W U U Gm m m
d L d L d d

L d d L L dGm m m Gm m m
d L d d L d d L d

−

⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − + −⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤− − −

= + = −⎢ ⎥− − −⎣ ⎦
−

= × ⋅ −
−

= + × 13 J.−

 

 
(b) The work done by the force of gravity is −(Uf − Ui) = −5.0 × 10−13 J. 
 
38. (a) The initial gravitational potential energy is 
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11 3 2

8 8

(6.67 10  m /s kg) (20 kg) (10 kg)
0.80 m

1.67 10 J 1.7 10 J.

A B
i

i

GM MU
r

−

− −

× ⋅
= − = −

= − × ≈ − ×

 

 
(b) We use conservation of energy (with Ki = 0): 
 

11 3 2
8 (6.67 10  m /s kg) (20 kg) (10 kg)    1.7 10

0.60 miU K U K
−

− × ⋅
= + ⇒ − × = −  

 
which yields K = 5.6 × 10−9 J. Note that the value of r is the difference between 0.80 m 
and 0.20 m. 
 
39. (a) We use the principle of conservation of energy. Initially the particle is at the 
surface of the asteroid and has potential energy Ui = −GMm/R, where M is the mass of 
the asteroid, R is its radius, and m is the mass of the particle being fired upward. The 
initial kinetic energy is 21

2 mv . The particle just escapes if its kinetic energy is zero when 
it is infinitely far from the asteroid. The final potential and kinetic energies are both zero. 
Conservation of energy yields  

−GMm/R + ½mv2 = 0. 
 
We replace GM/R with agR, where ag is the acceleration due to gravity at the surface. 
Then, the energy equation becomes −agR + ½v2 = 0. We solve for v: 
 

2 3 32 2(3.0 m/s ) (500 10 m) 1.7 10 m/s.gv a R= = × = ×  
 
(b) Initially the particle is at the surface; the potential energy is Ui = −GMm/R and the 
kinetic energy is Ki = ½mv2. Suppose the particle is a distance h above the surface when it 
momentarily comes to rest. The final potential energy is Uf = −GMm/(R + h) and the final 
kinetic energy is Kf = 0. Conservation of energy yields 
 

21 .
2

GMm GMmmv
R R h

− + = −
+

 

We replace GM with agR2 and cancel m in the energy equation to obtain 
2

21 .
2 ( )

g
g

a R
a R v

R h
− + = −

+
 

The solution for h is 
 

2 2 3 2
3

2 2 3 2

5

2 2(3.0 m/s ) (500 10 m) (500 10 m)
2 2(3.0 m/s ) (500 10 m) (1000 m/s)

2.5 10 m.

g

g

a R
h R

a R v
×

= − = − ×
− × −

= ×
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(c) Initially the particle is a distance h above the surface and is at rest. Its potential energy 
is Ui = −GMm/(R + h) and its initial kinetic energy is Ki = 0. Just before it hits the 
asteroid its potential energy is Uf = −GMm/R. Write 21

2 fmv  for the final kinetic energy. 
Conservation of energy yields 

21 .
2

GMm GMm mv
R h R

− = − +
+

 

 
We substitute agR2 for GM and cancel m, obtaining 

2
21 .

2
g

g

a R
a R v

R h
− = − +

+
 

The solution for v is 
 

2 2 3 2
2 3

3 3

3

2 2(3.0 m/s )(500 10 m)2 2(3.0 m/s ) (500 10 m)
(500 10 m) +(1000 10 m)

1.4 10 m/s.

g
g

a R
v a R

R h
×

= − = × −
+ × ×

= ×

 

 
40. (a) From Eq. 13-28, we see that 0 / 2 Ev GM R=  in this problem.  Using energy 
conservation, we have 

1
2 mv0

2 – GMm/RE = – GMm/r 

 
which yields r = 4RE/3. So the multiple of RE is 4/3 or 1.33. 
 
(b) Using the equation in the textbook immediately preceding Eq. 13-28, we see that in 
this problem we have Ki = GMm/2RE, and the above manipulation (using energy 
conservation) in this case leads to r = 2RE. So the multiple of RE is 2.00. 
 
(c) Again referring to the equation in the textbook immediately preceding Eq. 13-28, we 
see that the mechanical energy = 0 for the “escape condition.”  
 
41. (a) The momentum of the two-star system is conserved, and since the stars have the 
same mass, their speeds and kinetic energies are the same. We use the principle of 
conservation of energy. The initial potential energy is Ui = −GM2/ri, where M is the mass 
of either star and ri is their initial center-to-center separation. The initial kinetic energy is 
zero since the stars are at rest. The final potential energy is Uf = −2GM2/ri since the final 
separation is ri/2. We write Mv2 for the final kinetic energy of the system. This is the sum 
of two terms, each of which is ½Mv2. Conservation of energy yields 
 

2 2
22 .

i i

GM GM Mv
r r

− = − +  

The solution for v is 
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11 3 2 30
4

10

(6.67 10 m / s kg) (10 kg) 8.2 10 m/s.
10 mi

GMv
r

−× ⋅
= = = ×  

 
(b) Now the final separation of the centers is rf = 2R = 2 × 105 m, where R is the radius of 
either of the stars. The final potential energy is given by Uf = −GM2/rf and the energy 
equation becomes −GM2/ri = −GM2/rf + Mv2. The solution for v is 
 

11 3 2 30
5 10

7

1 1 1 1(6.67 10 m / s kg) (10 kg)
2 10 m 10 m

1.8 10 m/s.

f i

v GM
r r

−
⎛ ⎞ ⎛ ⎞

= − = × ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠

= ×

 

 
Note: The speed of the stars as a function of their final separation is plotted below. The 
decrease in gravitational potential energy is accompanied by an increase in kinetic energy, 
so that the total energy of the two-star system remains conserved.  

 
 
42. (a) Applying Eq. 13-21 and the Pythagorean theorem leads to 

 

       U =  – 
⎝
⎜
⎛

⎠
⎟
⎞GM2

2D  + 
2GmM
y2 + D2   

 
where M is the mass of particle B (also that of particle C) and m is the mass of particle A.  
The value given in the problem statement (for infinitely large y, for which the second 
term above vanishes) determines M, since D is given.  Thus M = 0.50 kg. 
 
(b) We estimate (from the graph) the y = 0 value to be Uo = – 3.5 × 10−10 J.  Using this, 
our expression above determines m.  We obtain m = 1.5 kg. 
 
43. (a) If r is the radius of the orbit then the magnitude of the gravitational force acting on 
the satellite is given by GMm/r2, where M is the mass of Earth and m is the mass of the 
satellite. The magnitude of the acceleration of the satellite is given by v2/r, where v is its 
speed. Newton’s second law yields GMm/r2 = mv2/r. Since the radius of Earth is 6.37 × 
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106 m, the orbit radius is r = (6.37 × 106 m + 160 × 103 m) = 6.53 × 106 m. The solution 
for v is 
 

11 3 2 24
3

6

(6.67 10 m / s kg) (5.98 10 kg) 7.82 10 m/s.
6.53 10 m

GMv
r

−× ⋅ ×
= = = ×

×
 

 
(b) Since the circumference of the circular orbit is 2πr, the period is 
 

6
3

3

2 2 (6.53 10 m) 5.25 10 s.
7.82 10 m/s

rT
v
π π ×

= = = ×
×

 

 
This is equivalent to 87.5 min. 
 
44. Kepler’s law of periods, expressed as a ratio, is 
 

3 2 231
2 1 lunar month

s s s

m m

r T T
r T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= ⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
which yields Ts = 0.35 lunar month for the period of the satellite. 
 
45. The period T and orbit radius r are related by the law of periods: T2 = (4π2/GM)r3, 
where M is the mass of Mars. The period is 7 h 39 min, which is 2.754 × 104 s. We solve 
for M: 

( )
2 3 2 6 3

23
22 11 3 2 4

4 4 (9.4 10 m) 6.5 10 kg.
(6.67 10 m / s kg) 2.754 10 s

rM
GT
π π

−

×
= = = ×

× ⋅ ×
 

 
46. From Eq. 13-37, we obtain v = /GM r  for the speed of an object in circular orbit 
(of radius r) around a planet of mass M. In this case, M = 5.98 × 1024 kg and  
 

r = (700 + 6370)m = 7070 km = 7.07 × 106 m. 
 
The speed is found to be v = 7.51 × 103 m/s. After multiplying by 3600 s/h and dividing 
by 1000 m/km this becomes v = 2.7 × 104 km/h. 
 
(a) For a head-on collision, the relative speed of the two objects must be 2v = 5.4 × 104 
km/h. 
 
(b) A perpendicular collision is possible if one satellite is, say, orbiting above the equator 
and the other is following a longitudinal line. In this case, the relative speed is given by 
the Pythagorean theorem: 2 2ν ν+  = 3.8 × 104 km/h. 
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47. Let N be the number of stars in the galaxy, M be the mass of the Sun, and r be the 
radius of the galaxy. The total mass in the galaxy is N M and the magnitude of the 
gravitational force acting on the Sun is  
 

 
2

2 2

( )
g

GM NM GNMF
R R

= = . 

 
The force, pointing toward the galactic center, is the centripetal force on the Sun. Thus,  
 

2 2

2c g
Mv GNMF F

R R
= ⇒ = . 

 
The magnitude of the Sun’s acceleration is a = v2/R, where v is its speed. If T is the 
period of the Sun’s motion around the galactic center then v = 2πR/T and a = 4π2R/T2. 
Newton’s second law yields  

GNM2/R2 = 4π2MR/T2. 
The solution for N is 

2 3

2

4 .RN
GT M

π
=  

 
The period is 2.5 × 108 y, which is 7.88 × 1015 s, so 
 

2 20 3
10

11 3 2 15 2 30

4 (2.2 10 m) 5.1 10 .
(6.67 10 m / s kg) (7.88 10 s) (2.0 10 kg)

N π
−

×
= = ×

× ⋅ × ×
 

 
48. Kepler’s law of periods, expressed as a ratio, is 
 

3 2 2
3(1.52)

1y
M M M

E E

a T T
a T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
where we have substituted the mean-distance (from Sun) ratio for the semi-major axis 
ratio. This yields TM = 1.87 y. The value in Appendix C (1.88 y) is quite close, and the 
small apparent discrepancy is not significant, since a more precise value for the semi-
major axis ratio is aM/aE = 1.523, which does lead to TM = 1.88 y using Kepler’s law. A 
question can be raised regarding the use of a ratio of mean distances for the ratio of semi-
major axes, but this requires a more lengthy discussion of what is meant by a ”mean 
distance” than is appropriate here. 
 
49. (a) The period of the comet is 1420 years (and one month), which we convert to T = 
4.48 × 1010 s. Since the mass of the Sun is 1.99 × 1030 kg, then Kepler’s law of periods 
gives 

2
10 2 3 13

11 3 2 30

4(4.48 10 s) 1.89 10 m.
(6.67 10  m /kg s )(1.99 10 kg)

a aπ
−

⎛ ⎞
× = ⇒ = ×⎜ ⎟× ⋅ ×⎝ ⎠
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(b) Since the distance from the focus (of an ellipse) to its center is ea and the distance 
from center to the aphelion is a, then the comet is at a distance of 
 

13 13(0.11 1) (1.89 10  m) 2.1 10 mea a+ = + × = ×  
 
when it is farthest from the Sun. To express this in terms of Pluto’s orbital radius (found 
in Appendix C), we set up a ratio: 

13

12

2.1 10 3.6 .
5.9 10 P PR R

⎛ ⎞×
=⎜ ⎟×⎝ ⎠

 

 
50. To “hover” above Earth (ME = 5.98 × 1024 kg) means that it has a period of 24 hours 
(86400 s). By Kepler’s law of periods, 
 

2
2 3 74(86400) 4.225 10 m.

E

r r
GM

π⎛ ⎞
= ⇒ = ×⎜ ⎟

⎝ ⎠
 

 
Its altitude is therefore r − RE (where RE = 6.37 × 106 m), which yields 3.58 × 107 m. 
 
51. (a) The greatest distance between the satellite and Earth’s center (the apogee distance) 
and the least distance (perigee distance) are, respectively,  
 

Ra = (6.37 × 106 m + 360 × 103 m) = 6.73 × 106 m 
 Rp = (6.37 × 106 m + 180 × 103 m) = 6.55 × 106 m. 

 
Here 6.37 × 106 m is the radius of Earth. From Fig. 13-13, we see that the semi-major 
axis is 

6 6
66.73 10 m + 6.55 10 m 6.64 10 m.

2 2
a pR R

a
+ × ×

= = = ×  

 
(b) The apogee and perigee distances are related to the eccentricity e by Ra = a(1 + e) and 
Rp = a(1 − e). Add to obtain Ra + Rp = 2a and a = (Ra + Rp)/2. Subtract to obtain Ra − Rp 
= 2ae. Thus, 
 

6 6

6 6

6.73 10 m 6.55 10 m 0.0136.
2 6.73 10 m 6.55 10 m

a p a p

a p

R R R R
e

a R R
− − × − ×

= = = =
+ × + ×

 

 
52. (a) The distance from the center of an ellipse to a focus is ae where a is the semi-
major axis and e is the eccentricity. Thus, the separation of the foci (in the case of Earth’s 
orbit) is 

( ) ( )11 92 2 1.50 10 m 0.0167 5.01 10 m.ae = × = ×  
 
(b) To express this in terms of solar radii (see Appendix C), we set up a ratio: 
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9

8

5.01 10 m 7.20.
6.96 10 m

×
=

×
 

 
53. From Kepler’s law of periods (where T = (2.4 h)(3600 s/h) = 8640 s), we find the 
planet’s mass M: 

2
2 6 3 244(8640s) (8.0 10 m) 4.06 10 kg.M

GM
π⎛ ⎞

= × ⇒ = ×⎜ ⎟
⎝ ⎠

 

 
However, we also know ag = GM/R2 = 8.0 m/s2 so that we are able to solve for the 
planet’s radius: 

11 3 2 24
6

2

(6.67 10  m /kg s )(4.06 10 kg) 5.8 10 m.
8.0 m/sg

GMR
a

−× ⋅ ×
= = = ×  

 
54. The two stars are in circular orbits, not about each other, but about the two-star 
system’s center of mass (denoted as O), which lies along the line connecting the centers 
of the two stars. The gravitational force between the stars provides the centripetal force 
necessary to keep their orbits circular. Thus, for the visible, Newton’s second law gives 
 

 
2

1 2 1
2

1

Gm m m vF
r r

= =  

 
where r is the distance between the centers of the stars. To find the relation between r  
and 1r , we locate the center of mass relative to 1m . Using Equation 9-1, we obtain 
 

 1 2 2 1 2
1 1

1 2 1 2 2

(0)m m r m r m mr r r
m m m m m

+ +
= = ⇒ =

+ +
. 

 
On the other hand, since the orbital speed of 1m  is 12 /v r Tπ= , then 1 / 2r vT π=  and the 
expression for r can be rewritten as   

1 2

2 2
m m vTr

m π
+

= . 

Substituting r  and 1r  into the force equation, we obtain  
 

2 3
1 2 1
2 2 2

1 2

4 2
( )

Gm m m vF
m m v T T

π π
= =

+
 

or  
3 3 5 3

302
2 11 3 2

1 2

(2.7 10 m/s) (1.70 days)(86400 s/day) 6.90 10 kg
( ) 2 2 (6.67 10  m /kg s )

3.467 ,s

m v T
m m G

M
π π −

×
= = = ×

+ × ⋅
=
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where 301.99 10 kgsM = ×  is the mass of the sun. With 1 6 sm M= , we write 2 sm Mα=  
and solve the following cubic equation for α : 

 
3

2 3.467 0
(6 )

α
α

− =
+

. 

 
The equation has one real solution: 9.3α = , which implies 2 / 9sm M ≈ . 
 
55. (a) If we take the logarithm of Kepler’s law of periods, we obtain 
 

2 22 12 log ( ) = log (4 / ) + 3 log ( )  log ( )  log ( )  log (4 / )
3 3

T GM a a T GMπ π⇒ = −  

 
where we are ignoring an important subtlety about units (the arguments of logarithms 
cannot have units, since they are transcendental functions). Although the problem can be 
continued in this way, we prefer to set it up without units, which requires taking a ratio. If 
we divide Kepler’s law (applied to the Jupiter−moon system, where M is mass of Jupiter) 
by the law applied to Earth orbiting the Sun (of mass Mo), we obtain 
 

3
2 o( / )  =  E

E

M aT T
M r

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

where TE = 365.25 days is Earth’s orbital period and rE = 1.50 × 1011 m is its mean 
distance from the Sun. In this case, it is perfectly legitimate to take logarithms and obtain 
 

o2 1log log log
3 3

E E Mr T
a T M

⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
(written to make each term positive), which is the way we plot the data (log (rE/a) on the 
vertical axis and log (TE/T) on the horizontal axis). 
 

 
 
(b) When we perform a least-squares fit to the data, we obtain  
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log (rE/a) = 0.666 log (TE/T) + 1.01, 
 
which confirms the expectation of slope = 2/3 based on the above equation. 
 
(c) And the 1.01 intercept corresponds to the term 1/3 log (Mo/M), which implies 
 

3.03o o
310 .

1.07 10
M MM
M

= ⇒ =
×

 

 
Plugging in Mo = 1.99 × 1030 kg (see Appendix C), we obtain M = 1.86 × 1027 kg for 
Jupiter’s mass. This is reasonably consistent with the value 1.90 × 1027 kg found in 
Appendix C. 
 
56. (a) The period is T = 27(3600) = 97200 s, and we are asked to assume that the orbit is 
circular (of radius r = 100000 m). Kepler’s law of periods provides us with an 
approximation to the asteroid’s mass: 
 

( )
2

32 164(97200) 100000 6.3 10 kg.M
GM

π⎛ ⎞
= ⇒ = ×⎜ ⎟

⎝ ⎠
 

 
(b) Dividing the mass M by the given volume yields an average density equal to  
 

ρ = (6.3 × 1016 kg)/(1.41 × 1013 m3) = 4.4 × 103 kg/m3, 
 
which is about 20% less dense than Earth. 
 
57. In our system, we have m1 = m2 = M (the mass of our Sun, 1.99 × 1030 kg). With r = 
2r1 in this system (so r1 is one-half the Earth-to-Sun distance r), and v = πr/T for the 
speed, we have 

( )2 2 3
1 2

12

2 .
2

r TGm m rm T
r r GM

π π
= ⇒ =  

 
With r = 1.5 × 1011 m, we obtain T = 2.2 × 107 s. We can express this in terms of Earth-
years, by setting up a ratio: 

( )
7

7

2.2 10 s(1y) = 1 y 0.71 y.
1y 3.156 10 s
TT

⎛ ⎞⎛ ⎞ ×
= =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠

 

 
58. (a) We make use of 

3 3
2

2
1 2( ) 2

m v T
m m Gπ

=
+

 

 
where m1 = 0.9MSun is the estimated mass of the star. With v = 70 m/s and T = 1500 days 
(or 1500 × 86400 = 1.3 × 108 s), we find 
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3

232
2

Sun 2

1.06 10 kg .
(0.9 )

m
M m

= ×
+

 

 
Since MSun ≈ 2.0 × 1030 kg, we find m2 ≈ 7.0 × 1027 kg. Dividing by the mass of Jupiter 
(see Appendix C), we obtain m ≈ 3.7mJ. 
 
(b) Since v = 2πr1/T is the speed of the star, we find 
 

8
9

1
(70m/s) (1.3 10 s) 1.4 10 m

2 2
vTr
π π

×
= = = ×  

 
for the star’s orbital radius. If r is the distance between the star and the planet, then r2 = r 
− r1 is the orbital radius of the planet, and is given by 
 

111 2 1
2 1 1

2 2

1 3.7 10 m .m m mr r r
m m

⎛ ⎞+
= − = = ×⎜ ⎟

⎝ ⎠
 

 
Dividing this by 1.5 × 1011 m (Earth’s orbital radius, rE) gives r2 = 2.5rE. 
 
59. Each star is attracted toward each of the other two by a force of magnitude GM2/L2, 
along the line that joins the stars. The net force on each star has magnitude 2(GM2/L2) cos 
30° and is directed toward the center of the triangle. This is a centripetal force and keeps 
the stars on the same circular orbit if their speeds are appropriate. If R is the radius of the 
orbit, Newton’s second law yields (GM2/L2) cos 30° = Mv2/R. 

 
 
The stars rotate about their center of mass (marked by a circled dot on the diagram above) 
at the intersection of the perpendicular bisectors of the triangle sides, and the radius of the 
orbit is the distance from a star to the center of mass of the three-star system. We take the 
coordinate system to be as shown in the diagram, with its origin at the left-most star. The 
altitude of an equilateral triangle is ( )3 / 2 L , so the stars are located at x = 0, y = 0; x = 

L, y = 0; and x = L/2, 3 / 2y L= . The x coordinate of the center of mass is xc = (L + 
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L/2)/3 = L/2 and the y coordinate is ( )3 / 2 / 3 / 2 3cy L L= = . The distance from a star 

to the center of mass is  

( ) ( )2 2 2 2/ 4 /12 / 3c cR x y L L L= + = + = . 

 
Once the substitution for R is made, Newton’s second law then becomes 
( )2 2 22 / cos30 3 /GM L Mv L° = . This can be simplified further by recognizing that 

cos 30 3 / 2.° =  Divide the equation by M then gives GM/L2 = v2/L, or /v GM L= . 
 
60. (a) From Eq. 13-40, we see that the energy of each satellite is −GMEm/2r. The total 
energy of the two satellites is twice that result: 
 

 

11 3 2 24

6

9

(6.67 10  m /kg s )(5.98 10 kg)(125 kg)
7.87 10  m

6.33 10 J.

E
A B

GM mE E E
r

−× ⋅ ×
= + = − = −

×
= − ×

 

 
(b) We note that the speed of the wreckage will be zero (immediately after the collision), 
so it has no kinetic energy at that moment. Replacing m with 2m in the potential energy 
expression, we therefore find the total energy of the wreckage at that instant is  
 

11 3 2 24
9

6

(2 ) (6.67 10  m /kg s )(5.98 10 kg)2(125 kg) 6.33 10 J.
2 2(7.87 10  m)
EGM mE
r

−× ⋅ ×
= − = − = − ×

×
 

 
(c) An object with zero speed at that distance from Earth will simply fall toward the 
Earth, its trajectory being toward the center of the planet. 
 
61. The energy required to raise a satellite of mass m to an altitude h (at rest) is given by 

 

1
1 1 ,E

E E

E U GM m
R R h

⎛ ⎞
= Δ = −⎜ ⎟+⎝ ⎠

 

 
and the energy required to put it in circular orbit once it is there is 
 

( )
2

2 orb
1 .
2 2

E

E

GM mE mv
R h

= =
+

 

Consequently, the energy difference is 
 

1 2
1 3 .

2( )E
E E

E E E GM m
R R h

⎡ ⎤
Δ = − = −⎢ ⎥+⎣ ⎦

 

 
(a) Solving the above equation, the height h0 at which 0EΔ =  is given by 
 



   CHAPTER 13 592 

 6
0

0

1 3 0    3.19 10  m. 
2( ) 2

E

E E

Rh
R R h

− = ⇒ = = ×
+

 

 
(b) For greater height 0h h> , 0,EΔ >  implying 1 2E E> . Thus, the energy of lifting is 
greater.  
 
62. Although altitudes are given, it is the orbital radii that enter the equations. Thus, rA = 
(6370 + 6370) km = 12740 km, and rB = (19110 + 6370) km = 25480 km. 
 
(a) The ratio of potential energies is 
 

/ 1 .
/ 2

B B A

A A B

U GmM r r
U GmM r r

−
= = =

−
 

 
(b) Using Eq. 13-38, the ratio of kinetic energies is 
 

/ 2 1 .
/ 2 2

B B A

A A B

K GmM r r
K GmM r r

= = =  

 
(c) From Eq. 13-40, it is clear that the satellite with the largest value of r has the smallest 
value of |E| (since r is in the denominator). And since the values of E are negative, then 
the smallest value of |E| corresponds to the largest energy E. Thus, satellite B has the 
largest energy. 
 
(d) The difference is  

1 1 .
2B A

B A

GmME E E
r r

⎛ ⎞
Δ = − = − −⎜ ⎟

⎝ ⎠
 

 
Being careful to convert the r values to meters, we obtain ΔE = 1.1 × 108 J. The mass M 
of Earth is found in Appendix C. 
 
63. We use the law of periods: T2 = (4π2/GM)r3, where M is the mass of the Sun (1.99 × 
1030 kg) and r is the radius of the orbit. On the other hand, the kinetic energy of any 
asteroid or planet in a circular orbit of radius r is given by K = GMm/2r, where m is the 
mass of the asteroid or planet. We note that it is proportional to m and inversely 
proportional to r. 
 
(a) The radius of the orbit is twice the radius of Earth’s orbit: r = 2rSE = 2(150 × 109 m) = 
300 × 109 m. Thus, the period of the asteroid is 

 
2 3 2 9 3

7
11 3 2 30

4 4 (300 10 m) 8.96 10 s.
(6.67 10 m / s kg) (1.99 10 kg)

rT
GM
π π

−

×
= = = ×

× ⋅ ×
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Dividing by (365 d/y) (24 h/d) (60 min/h) (60 s/min), we obtain T = 2.8 y. 
 
(b) The ratio of the kinetic energy of the asteroid to the kinetic energy of Earth is  
 

 4 4/(2 ) 1(2.0 10 ) 1.0 10
/(2 ) 2

SE

E E SE E

rK GMm r m
K GMM r M r

− −⎛ ⎞= = ⋅ = × = ×⎜ ⎟
⎝ ⎠

. 

 
Note: An alternative way to calculate the ratio of kinetic energies is to use 2 / 2K mv=  
and note that 2 /v r Tπ= . This gives 
 

2 222

2

2
4 4

/ 2 /
/ 2 /

1.0 y(2.0 10 ) 2 1.0 10
2.8 y

E

E E E E E E SE E E SE

TK mv m v m r T m r
K M v M v M r T M r T

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = = = ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

= × ⋅ = ×⎜ ⎟
⎝ ⎠

 

 
in agreement with what we found in (b).  
 
64. (a) Circular motion requires that the force in Newton’s second law provide the 
necessary centripetal acceleration: 

2

2

GmM vm
r r

= . 

 
Since the left-hand side of this equation is the force given as 80 N, then we can solve for 
the combination mv2 by multiplying both sides by r = 2.0 × 107 m. Thus, mv2 = (2.0 × 107 
m) (80 N) = 1.6 × 109 J. Therefore, 
 

( )2 9 81 1 1.6 10 J 8.0 10 J .
2 2

K mv= = × = ×  

 
(b) Since the gravitational force is inversely proportional to the square of the radius, then 
 

2

.F r
F r

′ ⎛ ⎞= ⎜ ⎟′⎝ ⎠
 

Thus, F´ = (80 N) (2/3)2 = 36 N. 
 
65. (a) From Kepler’s law of periods, we see that T is proportional to r3/2. 
 
(b) Equation 13-38 shows that K is inversely proportional to r. 
 
(c) and (d) From the previous part, knowing that K is proportional to v2, we find that v is 
proportional to 1/ r . Thus, by Eq. 13-31, the angular momentum (which depends on the 
product rv) is proportional to r/ r  = r . 
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66. (a) The pellets will have the same speed v but opposite direction of motion, so the 
relative speed between the pellets and satellite is 2v. Replacing v with 2v in Eq. 13-38 is 
equivalent to multiplying it by a factor of 4. Thus, 
 

( )( )11 3 2 24

rel 3

5

2(6.67 10 m / kg s ) 5.98 10 kg 0.0040 kg
4

2 (6370 500) 10 m
4.6 10 J.

EGM mK
r

−× ⋅ ×⎛ ⎞= =⎜ ⎟ + ×⎝ ⎠
= ×

 

 
(b) We set up the ratio of kinetic energies: 
 

( )( )

5
2rel

21
bullet 2

4.6 10 J 2.6 10 .
0.0040kg 950m/s

K
K

×
= = ×  

 
67. (a) The force acting on the satellite has magnitude GMm/r2, where M is the mass of 
Earth, m is the mass of the satellite, and r is the radius of the orbit. The force points 
toward the center of the orbit. Since the acceleration of the satellite is v2/r, where v is its 
speed, Newton’s second law yields GMm/r2 = mv2/r and the speed is given by v = 

/GM r . The radius of the orbit is the sum of Earth’s radius and the altitude of the 
satellite:  

r = (6.37 × 106 + 640 × 103) m = 7.01 × 106 m. 
Thus, 

( )11 3 2 24
3

6

(6.67 10 m / s kg) 5.98 10 kg
7.54 10 m/s.

7.01 10 m
GMv

r

−× ⋅ ×
= = = ×

×
 

 
(b) The period is  
 

T = 2πr/v = 2π(7.01 × 106 m)/(7.54 × 103 m/s) = 5.84 × 103 s ≈  97 min. 
 
(c) If E0 is the initial energy then the energy after n orbits is E = E0 − nC, where C = 1.4 × 
105 J/orbit. For a circular orbit the energy and orbit radius are related by E = −GMm/2r, 
so the radius after n orbits is given by r = −GMm/2E. 
The initial energy is 
 

( )( )11 3 2 24
9

0 6

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.26 10 J,

2(7.01 10 m)
E

−× ⋅ ×
= − = − ×

×
 

 
the energy after 1500 orbits is 

 
( )( )9 5 9

0 6.26 10 J 1500 orbit 1.4 10 J orbit 6.47 10 J,E E nC= − = − × − × = − ×  
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and the orbit radius after 1500 orbits is 
 

( )( )11 3 2 24
6

9

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.78 10 m.

2( 6.47 10 J)
r

−× ⋅ ×
= − = ×

− ×
 

 
The altitude is  

h = r − R = (6.78 × 106 m − 6.37 × 106 m) = 4.1 × 105 m. 
 
Here R is the radius of Earth. This torque is internal to the satellite−Earth system, so the 
angular momentum of that system is conserved. 
 
(d) The speed is 
 

( )11 3 2 24
3

6

(6.67 10 m / s kg) 5.98 10 kg
7.67 10 m / s 7.7 km/s.

6.78 10 m
GMv

r

−× ⋅ ×
= = = × ≈

×
 

 
(e) The period is 

6
3

3

2 2 (6.78 10 m) 5.6 10 s
7.67 10 m/s

rT
v
π π ×

= = = × ≈
×

93 min. 

 
(f) Let F be the magnitude of the average force and s be the distance traveled by the 
satellite. Then, the work done by the force is W = −Fs. This is the change in energy: −Fs 
= ΔE. Thus, F = −ΔE/s. We evaluate this expression for the first orbit. For a complete 
orbit s = 2πr = 2π(7.01 × 106 m) = 4.40 × 107 m, and ΔE = −1.4 × 105 J. Thus, 
 

5
3

7

1.4 10 J 3.2 10 N.
4.40 10 m

EF
s

−Δ ×
= − = = ×

×
 

 
(g) The resistive force exerts a torque on the satellite, so its angular momentum is not 
conserved. 
 
(h) The satellite−Earth system is essentially isolated, so its momentum is very nearly 
conserved. 
 
68. The orbital radius is 66370 km 400 km 6770 km 6.77 10  m.Er R h= + = + = = ×  
 
(a) Using Kepler’s law given in Eq. 13-34, we find the period of the ships to be  
 

2 3 2 6 3
3

0 11 3 2 24

4 4 (6.77 10 m) 5.54 10 s 92.3 min.
(6.67 10 m / s kg) (5.98 10 kg)

rT
GM
π π

−

×
= = = × ≈

× ⋅ ×
 

 
(b) The speed of the ships is 
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6

3 2
0 3

0

2 2 (6.77 10  m) 7.68 10 m/s
5.54 10 s

rv
T
π π ×

= = = ×
×

. 

 
(c) The new kinetic energy is  
 

 2 2 2 3 2 10
0

1 1 1(0.99 ) (2000 kg)(0.99) (7.68 10 m/s) 5.78 10  J.
2 2 2

K mv m v= = = × = ×  

 
(d) Immediately after the burst, the potential energy is the same as it was before the burst. 
Therefore, 

11 3 2 24
11

6

(6.67 10 m / s kg) (5.98 10 kg)(2000 kg) 1.18 10  J.
6.77 10 m

GMmU
r

−× ⋅ ×
= − = − = − ×

×
 

 
(e) In the new elliptical orbit, the total energy is  
 

10 11 105.78 10  J ( 1.18 10  J) 6.02 10  J.E K U= + = × + − × = − ×  
 
(f) For elliptical orbit, the total energy can be written as (see Eq. 13-42) / 2E GMm a= − , 
where a is the semi-major axis. Thus,  
 

11 3 2 24
6

10

(6.67 10 m / s kg) (5.98 10 kg)(2000 kg) 6.63 10 m.
2 2( 6.02 10  J)

GMma
E

−× ⋅ ×
= − = − = ×

− ×
 

 
(g) To find the period, we use Eq. 13-34 but replace r with a. The result is 
 

2 3 2 6 3
3

11 3 2 24

4 4 (6.63 10 m) 5.37 10 s 89.5 min.
(6.67 10 m / s kg) (5.98 10 kg)

aT
GM
π π

−

×
= = = × ≈

× ⋅ ×
 

 
(h) The orbital period T for Picard’s elliptical orbit is shorter than Igor’s by 
 

0 5540 s 5370 s 170 sT T TΔ = − = − = . 
 
Thus, Picard will arrive back at point P ahead of Igor by 170 s – 90 s = 80 s. 
 
69. We define the “effective gravity” in his environment as geff = 220/60 = 3.67 m/s2. 
Thus, using equations from Chapter 2 (and selecting downward as the positive direction), 
we find the “fall-time” to be 
 

2
0 2

1 2(2.1 m) 1.1 s.
2 3.67 m/seffy v t g t tΔ = + ⇒ = =  
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70. (a) The gravitational acceleration ag is defined in Eq. 13-11.  The problem is 
concerned with the difference between ag evaluated at r = 50Rh and ag evaluated at r = 
50Rh + h (where h is the estimate of your height).  Assuming h is much smaller than 50Rh 
then we can approximate h as the dr that is present when we consider the differential of 
Eq. 13-11: 

       |dag| = 
2GM

 r3  dr  ≈  
2GM

503Rh
3 h  = 

2GM
503(2GM/c2)3 h . 

 
If we approximate |dag| = 10 m/s2 and h ≈ 1.5 m, we can solve this for M.  Giving our 
results in terms of the Sun’s mass means dividing our result for M by 2 ×  1030 kg.  Thus, 
admitting some tolerance into our estimate of h we find the “critical” black hole mass 
should in the range of 105 to 125 solar masses. 
 
(b) Interestingly, this turns out to be lower limit (which will surprise many students) since 
the above expression shows |dag| is inversely proportional to M.  It should perhaps be 
emphasized that a distance of 50Rh from a small black hole is much smaller than a 
distance of 50Rh from a large black hole. 
 
71. (a) All points on the ring are the same distance (r = x2 + R2  ) from the particle, so 
the gravitational potential energy is simply U =  –GMm/ x2 + R2  , from Eq. 13-21.  The 
corresponding force (by symmetry) is expected to be along the x axis, so we take a 
(negative) derivative of U (with respect to x) to obtain it (see Eq. 8-20).  The result for the 
magnitude of the force is GMmx(x2 + R2)−3/2. 
 
(b) Using our expression for U, the change in potential energy as the particle falls to the 
center is  

 
2 2

1 1U GMm
R x R

⎛ ⎞
Δ = − −⎜ ⎟

+⎝ ⎠
 

 
By conservation of mechanical energy, this must “turn into” kinetic energy, 

2 / 2K U mvΔ = −Δ = . We solve for the speed and obtain 
 

2

2 2 2 2

1 1 1 1 12
2

mv GMm v GM
R Rx R x R

⎛ ⎞ ⎛ ⎞
= − ⇒ = −⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠
. 

 
72. (a) With 302.0 10 kgM = ×  and r = 10000 m, we find 
 

12 2
2 1.3 10 m/s .g

GMa
r

= = ×  

 
(b) Although a close answer may be gotten by using the constant acceleration equations 
of Chapter 2, we show the more general approach (using energy conservation): 
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o oK U K U+ = +  
 
where Ko = 0, K = ½mv2, and U is given by Eq. 13-21. Thus, with ro = 10001 m, we find 
 

6

o

1 12 1.6 10 m/s .v GM
r r

⎛ ⎞
= − = ×⎜ ⎟

⎝ ⎠
 

 
73. Using energy conservation (and Eq. 13-21) we have 
 

         K1  – 
GMm

 r1
  = K2 – 

GMm
 r2

  . 

 
Plugging in two pairs of values (for (K1 ,r1) and (K2 ,r2)) from the graph and using the 
value of G and M (for Earth) given in the book, we find 
 
(a) m ≈ 1.0 × 103 kg. 
 
(b) Similarly, v = (2K/m)1/2 ≈ 1.5 × 103 m/s  (at  r = 1.945 ×  107 m). 
 
74. We estimate the planet to have radius r = 10 m. To estimate the mass m of the planet, 
we require its density equal that of Earth (and use the fact that the volume of a sphere is 
4πr3/3): 

3

3 34 / 3 4 / 3
E

E
E E

m M rm M
r R R

⎛ ⎞
= ⇒ = ⎜ ⎟π π ⎝ ⎠

 

 
which yields (with ME ≈ 6 × 1024 kg and RE ≈ 6.4 × 106 m) m = 2.3 × 107 kg. 
 
(a) With the above assumptions, the acceleration due to gravity is 
 

( )( )11 3 2 7
5 2 5 2

2 2

6.7 10  m /s kg 2.3 10  kg
1.5 10 m s 2 10 m s .

(10 m)g
Gma
r

−
− −

× ⋅ ×
= = = × ≈ ×  

 

(b) Equation 13-28 gives the escape speed: 2 0.02 m/s .Gmv
r

= ≈  

 
75. We use m1 for the 20 kg of the sphere at (x1, y1) = (0.5, 1.0) (SI units understood), m2 
for the 40 kg of the sphere at (x2, y2) = (−1.0, −1.0), and m3 for the 60 kg of the sphere at 
(x3, y3) = (0, −0.5). The mass of the 20 kg object at the origin is simply denoted m. We 
note that 1 21.25, 2r r= = , and r3 = 0.5 (again, with SI units understood). The force nF  
that the nth sphere exerts on m has magnitude 2/n nGm m r  and is directed from the origin 
toward mn, so that it is conveniently written as 
 



 599

( )2 3
ˆ ˆ ˆ ˆ= i + j = i + j .n n n n

n n n
n n n n

Gm m x y Gm mF x y
r r r r

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Consequently, the vector addition to obtain the net force on m becomes 
 

3 3 3
9 7

net 3 3
=1 1 1

ˆ ˆ ˆ ˆ= i j ( 9.3 10 N)i (3.2 10 N)jn n n n
n

n n nn n

m x m yF F Gm
r r

− −

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + = − × − ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑  . 

 
Therefore, we find the net force magnitude is 7

net 3.2 10 NF −= × . 
 
76. We use F = Gmsmm/r2, where ms is the mass of the satellite, mm is the mass of the 
meteor, and r is the distance between their centers. The distance between centers is  
 

r = R + d = 15 m + 3 m = 18 m. 
 
Here R is the radius of the satellite and d is the distance from its surface to the center of 
the meteor. Thus, 
 

( )( )( )
( )

11 2 2
11

2

6.67 10 N m / kg 20kg 7.0kg
2.9 10 N.

18m
F

−
−

× ⋅
= = ×  

 
77. We note that rA (the distance from the origin to sphere A, which is the same as the 
separation between A and B) is 0.5, rC = 0.8, and rD = 0.4 (with SI units understood). The 
force kF  that the kth sphere exerts on mB has magnitude 2/k B kGm m r  and is directed from 
the origin toward mk so that it is conveniently written as 
 

( )2 3
ˆ ˆ ˆ ˆ= i + j = i + j .k B k k k B

k k k
k k k k

Gm m x y Gm mF x y
r r r r

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Consequently, the vector addition (where k equals A, B, and D) to obtain the net force on 
mB becomes 

5
net 3 3

ˆ ˆ ˆ= i j (3.7 10 N)j.k k k k
k B

k k kk k

m x m yF F Gm
r r

−⎛ ⎞⎛ ⎞ ⎛ ⎞
= + = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑  

 
78. (a) We note that rC (the distance from the origin to sphere C, which is the same as the 
separation between C and B) is 0.8, rD = 0.4, and the separation between spheres C and D 
is rCD = 1.2 (with SI units understood). The total potential energy is therefore 
 

4
2 2 2 = 1.3 10  JB C C DB D

C D CD

GM M GM MGM M
r r r

−− − − − ×  
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using the mass-values given in the previous problem. 
 
(b) Since any gravitational potential energy term (of the sort considered in this chapter) is 
necessarily negative (−GmM/r2 where all variables are positive) then having another mass 
to include in the computation can only lower the result (that is, make the result more 
negative). 
 
(c) The observation in the previous part implies that the work I do in removing sphere A 
(to obtain the case considered in part (a)) must lead to an increase in the system energy; 
thus, I do positive work. 
 
(d) To put sphere A back in, I do negative work, since I am causing the system energy to 
become more negative. 
 
79. The magnitude of the net gravitational force on one of the smaller stars (of mass m) is 

 

( )22 2 .
42

GMm Gmm Gm mM
r rr

⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

 

 
This supplies the centripetal force needed for the motion of the star: 
 

2

2 4
Gm m vM m
r r

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 , 

 
where 2 / .v r Tπ= Plugging in for speed v, we arrive at an equation for period T: 

3 22 .
( / 4)

rT
G M m

π
=

+
 

 
80. If the angular velocity were any greater, loose objects on the surface would not go 
around with the planet but would travel out into space. 
 
(a) The magnitude of the gravitational force exerted by the planet on an object of mass m 
at its surface is given by F = GmM / R2, where M is the mass of the planet and R is its 
radius. According to Newton’s second law this must equal mv2 / R, where v is the speed 
of the object. Thus, 

2

2 = .GM v
R R

 

 
With 34 / 3M Rπρ=  where ρ is the density of the planet, and 2 /v R Tπ= , where T is the 
period of revolution, we find 

2

2

4 4= .
3

RG R
T

π πρ  

We solve for T and obtain 



 601

3T
G

π
ρ

= . 

 
(b) The density is 3.0 × 103 kg/m3. We evaluate the equation for T: 

 

( )( )
3

11 3 2 3 3

3 6.86 10 s 1.9 h.
6.67 10 m / s kg 3.0 10 kg/m

T π
−

= = × =
× ⋅ ×

 

 
81. In a two-star system, the stars rotate about their common center of mass.  
The situation is depicted on the right. The gravitational 
force between the two stars (each having a mass M) is 

 
2 2

2 2(2 ) 4g
GM GMF

r r
= = . 

  
The gravitational force between the stars provides the 
centripetal force necessary to keep their orbits circular. 

 
Thus, writing the centripetal acceleration as rω2 where ω is the angular speed, we have 

2
2

24g c
GMF F Mr

r
ω= ⇒ = . 

 
(a) Substituting the values given, we find the common angular speed to be 
 

11 2 2 30
7

3 11 3

1 1 (6.67 10 N m /kg )(3.0 10 kg) 2.2 10 rad/s.
2 2 (1.0 10  m)

GM
r

ω
−

−× ⋅ ×
= = = ×

×
 

 
(b) To barely escape means to have total energy equal to zero (see discussion prior to Eq. 
13-28). If m is the mass of the meteoroid, then 
 

2 41 40 8.9 10 m/s .
2

GmM GmM GMmv v
r r r

− − = ⇒ = = ×  

 
82. The key point here is that angular momentum is conserved: 
 

Ipωp = Iaωa 
 

which leads to 2( / )p a p ar rω ω= , but rp = 2a – ra where a is determined by Eq. 13-34 
(particularly, see the paragraph after that equation in the textbook).  Therefore, 

 

              ωp = 
ra

2 ωa

(2(GMT 2/4π2)1/3 – ra)2  = 9.24 × 10−5 rad/s . 
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83. We first use the law of periods: T2 = (4π2/GM)r3, where M is the mass of the planet 
and r is the radius of the orbit. After the orbit of the shuttle turns elliptical by firing the 
thrusters to reduce its speed, the semi-major axis is / 2a GMm E= − , where E K U= +  

is the mechanical energy of the shuttle, and its new period becomes 2 34 /T a GMπ′ = .   
 
(a) Using Kepler’s law of periods, we find the period to be  
  

2 2 7 3
3 4

11 2 2 25

4 4 (4.20 10  m) 2.15 10 s .
(6.67 10 N m /kg )(9.50 10 kg)

T r
GM

π π
−

⎛ ⎞ ×
= = = ×⎜ ⎟ × ⋅ ×⎝ ⎠

 

 
(b) The speed is constant (before she fires the thrusters), so  
 

 
7

4
0 4

2 2 (4.20 10 m) 1.23 10 m/s
2.15 10 s

rv
T
π π ×

= = = ×
×

. 

 
(c) A two percent reduction in the previous value gives  
 

4 4
00.98 0.98(1.23 10 m/s) 1.20 10 m/sv v= = × = × . 

 

(d) The kinetic energy is 2 4 2 111 1 (3000 kg)(1.20 10 m/s) 2.17 10  J
2 2

K mv= = × = × . 

 
(e) Immediately after the firing, the potential energy is the same as it was before firing 
the thruster:  
 

11 2 2 25
11

7

(6.67 10 N m /kg )(9.50 10 kg)(3000 kg) 4.53 10  J
4.20 10  m

GMmU
r

−× ⋅ ×
= − = − = − ×

×
. 

 
(f) Adding these two results gives the total mechanical energy:  
 
 11 11 112.17 10  J ( 4.53 10  J) 2.35 10  JE K U= + = × + − × = − × . 
 
(g) Using Eq. 13-42, we find the semi-major axis to be 
 

11 2 2 25
7

11

(6.67 10 N m /kg )(9.50 10 kg)(3000 kg) 4.04 10  m
2 2( 2.35 10  J)

GMma
E

−× ⋅ ×
= − = − = ×

− ×
. 

 
(h) Using Kepler’s law of periods for elliptical orbits (using a instead of r) we find the 
new period to be 
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2 2 7 3
3 4

11 2 2 25

4 4 (4.04 10  m) 2.03 10 s .
(6.67 10 N m /kg )(9.50 10 kg)

T a
GM

π π
−

⎛ ⎞ ×′ = = = ×⎜ ⎟ × ⋅ ×⎝ ⎠
 

 
This is smaller than our result for part (a) by T − T´ = 1.22 × 103 s. 
 
(i) Comparing the results in (a) and (h), we see that elliptical orbit has a smaller period. 
 
Note: The orbits of the shuttle before and after firing the thruster are shown below. Point 
P corresponds to the location where the thruster was fired.   
 

 
 
84. (a) Since the volume of a sphere is 4πR3/3, the density is 
 

total total
3 34

3

3 .
4

M M
R R

ρ
π π

= =  

 
When we test for gravitational acceleration (caused by the sphere, or by parts of it) at 
radius r (measured from the center of the sphere), the mass M, which is at radius less than 
r, is what contributes to the reading (GM/r2). Since M = ρ(4πr3/3) for r ≤ R, then we can 
write this result as 

3
total

3
total

2 3

3 4
4 3
M rG

R GM r
r R

π
π

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ =  

 
when we are considering points on or inside the sphere. Thus, the value ag referred to in 
the problem is the case where r = R: 

total
2=g

GMa ,
R

 

 
and we solve for the case where the acceleration equals ag/3: 
 

total total
2 3 .

3 3
GM GM r Rr

R R
= ⇒ =  
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(b) Now we treat the case of an external test point. For points with r > R the acceleration 
is GMtotal/r2, so the requirement that it equal ag/3 leads to 
 

total total
2 2 3 .

3
GM GM r R

R r
= ⇒ =  

 
85. Energy conservation for this situation may be expressed as follows: 
 

2 2
1 1 2 2 1 2

1 2

1 1
2 2

GmM GmMK U K U mv mv
r r

+ = + ⇒ − = −  

 
where M = 5.98 × 1024 kg, r1 = R = 6.37 × 106, m and v1 = 10000 m/s. Setting v2 = 0 to 
find the maximum of its trajectory, we solve the above equation (noting that m cancels in 
the process) and obtain r2 = 3.2 × 107 m. This implies that its altitude is 
 

h = r2 − R = 2.5 × 107 m. 
 
86. We note that, since v = 2πr/T, the centripetal acceleration may be written as a = 
4π2r/T2. To express the result in terms of g, we divide by 9.8 m/s2. 
 
(a) The acceleration associated with Earth’s spin (T = 24 h = 86400 s) is 
 

6
3

2 2

4 (6.37 10 m) 3.4 10 .
(86400s) (9.8m/s )

a g gπ −×
= = ×

2

 

 
(b) The acceleration associated with Earth’s motion around the Sun (T = 1 y = 3.156 × 
107 s) is 

11
4

7 2 2

4 (1.5 10 m) 6.1 10 .
(3.156 10 s) (9.8m/s )

a g gπ −×
= = ×

×

2

 

 
(c) The acceleration associated with the Solar System’s motion around the galactic center 
(T = 2.5 × 108 y = 7.9 × 1015 s) is 
 

20
11

15 2 2

4 (2.2 10 m) 1.4 10 .
(7.9 10 s) (9.8m/s )

a g gπ −×
= = ×

×

2

 

 
87. (a) It is possible to use 2 2

0 2v v a y= + Δ as we did for free-fall problems in Chapter 2 
because the acceleration can be considered approximately constant over this interval. 
However, our approach will not assume constant acceleration; we use energy 
conservation: 

02 2
0

0 0

2 ( )1 1
2 2

GM r rGMm GMmmv mv v
r r r r

−
− = − ⇒ =  
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which yields v = 1.4 × 106 m/s. 
 
(b) We estimate the height of the apple to be h = 7 cm = 0.07 m. We may find the answer 
by evaluating Eq. 13-11 at the surface (radius r in part (a)) and at radius r + h, being 
careful not to round off, and then taking the difference of the two values, or we may take 
the differential of that equation — setting dr equal to h. We illustrate the latter procedure: 
 

6 2
3 3| | 2 2 3 10 m/s .g

GM GMda dr h
r r

= − ≈ = ×  

 
88. We apply the work-energy theorem to the object in question. It starts from a point at 
the surface of the Earth with zero initial speed and arrives at the center of the Earth with 
final speed vf. The corresponding increase in its kinetic energy, ½mvf

2, is equal to the 
work done on it by Earth’s gravity: ( )F dr Kr dr= −∫ ∫ . Thus, 

 
0 02 21 1( )

2 2f R R
mv F dr Kr dr KR= = − =∫ ∫  

 
where R is the radius of Earth. Solving for the final speed, we obtain vf = R /K m . We 
note that the acceleration of gravity ag = g = 9.8 m/s2 on the surface of Earth is given by  
 

ag = GM/R2 = G(4πR3/3)ρ/R2, 
 
where ρ is Earth’s average density. This permits us to write K/m = 4πGρ/3 = g/R. 
Consequently, 
 

2 6 3(9.8 m/s ) (6.37 10 m) 7.9 10 m/s .f
K gv R R gR
m R

= = = = × = ×  

 
89. To compare the kinetic energy, potential energy, and the speed of the Earth at 
aphelion (farthest distance) and perihelion (closest distance), we apply both conservation 
of energy and conservation of angular momentum. 
 
As Earth orbits about the Sun, its total energy is conserved: 
  

 2 21 1
2 2

S E S E
a p

a p

GM M GM Mmv mv
R R

− = − . 

 
In addition, angular momentum conservation implies a a p pv R v R= . 
 
(a) The total energy is conserved, so there is no difference between its values at aphelion 
and perihelion. 
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(b) The difference in potential energy is  
 

11 2 2 30 24
11 11

32

1 1

1 1(6.67 10 N m /kg )(1.99 10 kg)(5.98 10 kg)
1.52 10  m 1.47 10  m

1.8 10  J.

a p S E
a p

U U U GM M
R R

−

⎛ ⎞
Δ = − = − −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞= − × ⋅ × × −⎜ ⎟× ×⎝ ⎠

≈ ×
 

(c) Since 0K UΔ + Δ = , 321.8 10  Ja pK K K UΔ = − = −Δ ≈ − × . 
 
(d) With a a p pv R v R= , the change in kinetic energy may be written as 
 

( )
2

2 2 2
2

1 1 1
2 2

a
a p E a p E a

p

RK K K M v v M v
R

⎛ ⎞
Δ = − = − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
from which we find the speed at the aphelion to be 
 

4
2 2

2( ) 2.95 10 m/s
(1 / )a

E a p

Kv
M R R

Δ
= = ×

−
. 

 
Thus, the variation in speed is  

11
4

11

3

1.52 10  m1 1 (2.95 10 m/s)
1.47 10  m

0.99 10 m/s 0.99 km/s.

a
a p a

p

Rv v v v
R

⎛ ⎞ ⎛ ⎞×
Δ = − = − = − ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠

= − × = −

 

 
The speed at the aphelion is smaller than that at the perihelion. 
 
Note: Since the changes are small, the problem could also be solved by using differentials: 
 

( )( )( )
( )

( )
11 2 2 30 24

9
22 11

6.67 10 N m /kg 1.99 10 kg 5.98 10 kg
5 10  m .

1.5 10  m
E SGM MdU dr

r

−× ⋅ × ×⎛ ⎞= ≈ ×⎜ ⎟
⎝ ⎠ ×

 
This yields ΔU ≈ 1.8 × 1032 J. Similarly, with ΔK ≈ dK = MEv dv, where v ≈ 2πR/T, we 
have 

( ) ( )11
32 24

7

2π 1.5 10  m
1.8 10  J 5.98 10 kg

3.156 10 s
v

⎛ ⎞×
⎜ ⎟× ≈ × Δ
⎜ ⎟×⎝ ⎠
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which yields a difference of Δv ≈ 0.99 km/s in Earth’s speed (relative to the Sun) between 
aphelion and perihelion. 
 
90. (a) Because it is moving in a circular orbit, F/m must equal the centripetal 
acceleration: 

280 N .
50 kg

v
r

=  

However, v = 2πr/T, where T = 21600 s, so we are led to 
 

2
2

41.6m/s r
T
π

=
2

 

which yields r = 1.9 × 107 m. 
 
(b) From the above calculation, we infer v2 = (1.6 m/s2)r, which leads to v2 = 3.0 × 107 
m2/s2. Thus, K = ½mv2 = 7.6 × 108 J. 
 
(c) As discussed in Section 13-4, F/m also tells us the gravitational acceleration: 
 

2
21.6 m/s .g

GMa
r

= =  

We therefore find M = 8.6 × 1024 kg. 
 
91. (a) Their initial potential energy is −Gm2/Ri and they started from rest, so energy 
conservation leads to 

2 2 2

total total .
0.5i i i

Gm Gm GmK K
R R R

− = − ⇒ =  

 
(b) They have equal mass, and this is being viewed in the center-of-mass frame, so their 
speeds are identical and their kinetic energies are the same. Thus, 
 

2

total
1 .
2 2 i

GmK K
R

= =  

 
(c) With K = ½ mv2, we solve the above equation and find v = / iGm R . 
 
(d) Their relative speed is 2v = 2 / iGm R . This is the (instantaneous) rate at which the 
gap between them is closing. 
 
(e) The premise of this part is that we assume we are not moving (that is, that body A 
acquires no kinetic energy in the process). Thus, Ktotal = KB, and the logic of part (a) leads 
to KB = Gm2/Ri. 
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(f) And 21
2 B Bmv K=  yields vB = 2 / iGm R . 

 
(g) The answer to part (f) is incorrect, due to having ignored the accelerated motion of 
“our” frame (that of body A). Our computations were therefore carried out in a 
noninertial frame of reference, for which the energy equations of Chapter 8 are not 
directly applicable. 
 
92. (a) We note that the altitude of the rocket is Eh R R= −  where 66.37 10 mER = × . 
With 245.98 10 kgM = × , R0 = 0ER h+ = 6.57 × 106 m and R = 7.37 × 106 m, we have 

 
3 2

0

1 (3.70 10 m/s)
2i i

GmM GmMK U K U m K
R R

+ = + ⇒ × − = − , 

 
which yields K = 3.83 × 107 J. 
 
(b) Again, we use energy conservation. 

 
3 2

0

1 (3.70 10 ) 0
2i i f f

f

GmM GmMK U K U m
R R

+ = + ⇒ × − = −  

 
Therefore, we find Rf = 7.40 × 106 m. This corresponds to a distance of 1034.9 km ≈ 1.03 
× 103 km above the Earth’s surface. 
 
93. Energy conservation for this situation may be expressed as follows: 
 

2 2
1 1 2 2 1 2

1 2

1 1
2 2

GmM GmMK U K U mv mv
r r

+ = + ⇒ − = −  

 
where M = 7.0 × 1024 kg, r2 = R = 1.6 × 106 m, and r1 = ∞ (which means that U1 = 0). We 
are told to assume the meteor starts at rest, so v1 = 0. Thus, K1 + U1 = 0, and the above 
equation is rewritten as 

2 4
2 2

2

1 2 2.4 10 m s.
2

GmM GMmv v
r R

− ⇒ = = ×  

 
94. The initial distance from each fixed sphere to the ball is r0 = ∞, which implies the 
initial gravitational potential energy is zero. The distance from each fixed sphere to the 
ball when it is at x = 0.30 m is r = 0.50 m, by the Pythagorean theorem. 
 
(a) With M = 20 kg and m = 10 kg, energy conservation leads to 

 

0 0 2i i
GmMK U K U K

r
+ = + ⇒ + = −  
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which yields K = 2GmM/r = 5.3 × 10−8 J. 
 
(b) Since the y-component of each force will cancel, the net force points in the –x 
direction, with a magnitude 2Fx = 2 (GmM/r2) cos θ , where θ  = tan−1 (4/3) = 53°. Thus, 
the result is 8

net
ˆ( 6.4 10  N)i.F −= − ×  

 
95. The magnitudes of the individual forces (acting on mC, exerted by mA and mB, 
respectively) are 
 

8 8
2 22.7 10 N and 3.6 10 NA C B C

AC BC
AC BC

Gm m Gm mF F
r r

− −= = × = = ×  

 
where rAC = 0.20 m and rBC = 0.15 m. With rAB = 0.25 m, the angle AF makes with the x 
axis can be obtained as 

2 2 2
1 1cos cos (0.80) 217 .

2
AC AB BC

A
AC AB

r r r
r r

θ π π− −⎛ ⎞+ −
= + = + = °⎜ ⎟

⎝ ⎠
 

 
Similarly, the angle BF makes with the x axis can be obtained as 
 

2 2 2
1 1cos cos (0.60) 53 .

2
AB BC AC

B
AB BC

r r r
r r

θ − −⎛ ⎞+ −
= − = − = − °⎜ ⎟

⎝ ⎠
 

 
The net force acting on mC then becomes 
 

 
8

ˆ ˆ ˆ ˆ(cos i sin j) (cos i sin j)
ˆ ˆ( cos cos )i ( sin sin )j

ˆ( 4.4 10  N) j.

C AC A A BC B B

AC A BC B AC A BC B

F F F

F F F F

θ θ θ θ

θ θ θ θ
−

= + + +

= + + +

= − ×

 

 
96. (a) From Chapter 2, we have 2 2

0 2v v a x= + Δ , where a may be interpreted as an 
average acceleration in cases where the acceleration is not uniform. With v0 = 0, v = 
11000 m/s, and Δx = 220 m, we find a = 2.75 × 105 m/s2. Therefore, 
 

5 2
4

2

2.75 10 m/s 2.8 10
9.8 m/s

a g g
⎛ ⎞×

= = ×⎜ ⎟
⎝ ⎠

. 

 
(b) The acceleration is certainly deadly enough to kill the passengers. 
 
(c) Again using 2 2

0 2v v a x= + Δ , we find 
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2
2(7000 m/s) 7000 m/s 714 .

2(3500 m)
a g= = =  

 
(d) Energy conservation gives the craft’s speed v (in the absence of friction and other 
dissipative effects) at altitude h = 700 km after being launched from R = 6.37 × 106 m 
(the surface of Earth) with speed v0 = 7000 m/s. That altitude corresponds to a distance 
from Earth’s center of r = R + h = 7.07 × 106 m. 

 
2 2
0

1 1 .
2 2

GMm GMmmv mv
R r

− = −  

 
With M = 5.98 × 1024 kg (the mass of Earth) we find v = 6.05 × 103 m/s. However, to 
orbit at that radius requires (by Eq. 13-37)  
 

v´ = /GM r  = 7.51 × 103 m/s. 
 
The difference between these two speeds is v´ − v = 1.46 × 103 m/s 31.5 10  m/s,≈ ×  which 
presumably is accounted for by the action of the rocket engine. 
 
97. We integrate Eq. 13-1 with respect to r from 3RE to 4RE and obtain the work equal to  
 

1 1 .
4 3 12

E
E

E E E

GM mW U GM m
R R R

⎛ ⎞
= −Δ = − − =⎜ ⎟

⎝ ⎠
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Chapter 14 
 
 
1. Let the volume of the expanded air sacs be Va and that of the fish with its air sacs 
collapsed be V. Then 

3 3fish fish
fish 1.08 g/cm     and     1.00 g/cmw

a

m m
V V V

ρ ρ= = = =
+

 

 
where ρw is the density of the water. This implies  
 

ρfishV = ρw(V + Va) or (V + Va)/V = 1.08/1.00, 
 
which gives Va/(V + Va) = 0.074 = 7.4%. 
 
2. The magnitude F of the force required to pull the lid off is F = (po – pi)A, where po is 
the pressure outside the box, pi is the pressure inside, and A is the area of the lid. 
Recalling that 1N/m2 = 1 Pa, we obtain 
 

5 4
4 2

480 N1.0 10  Pa 3.8 10  Pa.
77 10  mi o

Fp p
A −= − = × − = ×

×
 

 
3. The pressure increase is the applied force divided by the area: Δp = F/A = F/πr2, where 
r is the radius of the piston. Thus  
 

Δp = (42 N)/π(0.011 m)2 = 1.1 × 105 Pa. 
 
This is about 1.1 atm. 
 
4. We note that the container is cylindrical, the important aspect of this being that it has a 
uniform cross-section (as viewed from above); this allows us to relate the pressure at the 
bottom simply to the total weight of the liquids. Using the fact that 1L = 1000 cm3, we 
find the weight of the first liquid to be 
 

3 3 2 6 2
1 1 1 1 (2.6 g / cm )(0.50 L)(1000 cm / L)(980 cm/s ) 1.27 10 g cm/s

12.7 N.
W m g V gρ= = = = × ⋅

=
 

 
In the last step, we have converted grams to kilograms and centimeters to meters. 
Similarly, for the second and the third liquids, we have 
 

3 3 2
2 2 2 2 (1.0 g/cm )(0.25 L)(1000 cm L)(980 cm s ) 2.5 NW m g V gρ= = = =  

 
and 
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3 3 2
3 3 3 3 (0.80 g/cm )(0.40 L)(1000 cm / L)(980 cm/s ) 3.1 N.W m g V gρ= = = =  

 
The total force on the bottom of the container is therefore F = W1 + W2 + W3 = 18 N. 
 
5. The pressure difference between two sides of the window results in a net force acting 
on the window. 
 
The air inside pushes outward with a force given by piA, where pi is the pressure inside 
the room and A is the area of the window. Similarly, the air on the outside pushes inward 
with a force given by poA, where po is the pressure outside. The magnitude of the net 
force is F = (pi – po)A. With 1 atm = 1.013 × 105 Pa, the net force is 
 

5

4

( ) (1.0 atm 0.96 atm)(1.013 10  Pa/atm)(3.4 m)(2.1 m)

2.9 10  N.
i oF p p A= − = − ×

= ×
 

 
6. Knowing the standard air pressure value in several units allows us to set up a variety of 
conversion factors: 
 

(a) ( )
5

2
2

1.01 10  Pa28 lb/in. 190 kPa
14.7 lb/in

P
⎛ ⎞×

= =⎜ ⎟
⎝ ⎠

. 

 

(b) 
5 51.01 10 Pa 1.01 10  Pa (120 mmHg) 15.9 kPa,     (80 mmHg) 10.6 kPa.

760 mmHg 760 mmHg
⎛ ⎞ ⎛ ⎞× ×

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
7. (a) The pressure difference results in forces applied as shown in the figure. We 
consider a team of horses pulling to the right. To pull the sphere apart, the team must 
exert a force at least as great as the horizontal component of the total force determined by 
“summing” (actually, integrating) these force vectors. 
 
We consider a force vector at angle θ. Its leftward component is Δp cos θdA, where dA is 
the area element for where the force is applied. We make use of the symmetry of the 
problem and let dA be that of a ring of constant θ on the surface. The radius of the ring is 
r = R sin θ, where R is the radius of the sphere. If the angular width of the ring is dθ, in 
radians, then its width is R dθ and its area is dA = 2πR2 sin θ dθ. Thus the net horizontal 
component of the force of the air is given by 
 

/ 2

0

22 2 2 2

0
2  sin  cos  sin .hF R p d R p R p

π
π θ θ θ π θ π

π
= Δ = Δ = Δ∫  

 
(b) We use 1 atm = 1.01 × 105 Pa to show that Δp = 0.90 atm = 9.09 × 104 Pa. The sphere 
radius is R = 0.30 m, so  
 

Fh = π(0.30 m)2(9.09 × 104 Pa) = 2.6 × 104 N. 
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(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. 
The force of the wall on the sphere would balance the force of the horses. 
 
8. Using Eq. 14-7, we find the gauge pressure to be gaugep ghρ= , where ρ  is the density 
of the fluid medium, and h is the vertical distance to the point where the pressure is equal 
to the atmospheric pressure.  
 
The gauge pressure at a depth of 20 m in seawater is  
 
 3 2 5

1 sw (1024 kg/m )(9.8 m/s )(20 m) 2.00 10  Pap gdρ= = = × . 
 
On the other hand, the gauge pressure at an altitude of 7.6 km is  
 
 3 2 4

2 air (0.87 kg/m )(9.8 m/s )(7600 m) 6.48 10  Pap ghρ= = = × . 
 
Therefore, the change in pressure is  
 

5 4 5
1 2 2.00 10  Pa 6.48 10  Pa 1.4 10  Pap p pΔ = − = × − × ≈ × . 

 
9. The hydrostatic blood pressure is the gauge pressure in the column of blood between 
feet and brain. We calculate the gauge pressure using Eq. 14-7. 
 
(a) The gauge pressure at the heart of the Argentinosaurus is  
 

 
3 3 2

heart brain

3

1 torr80 torr (1.06 10 kg/m )(9.8 m/s )(21 m 9.0 m)
133.33 Pa

1.0 10 torr.

p p ghρ= + = + × −

= ×
 

 
(b) The gauge pressure at the feet of the Argentinosaurus is  
 

 
3 3 2

feet brain

3

1 torr80 torr (1.06 10 kg/m )(9.8 m/s )(21 m)
133.33 Pa

80 torr 1642 torr 1722 torr 1.7 10 torr.

p p ghρ ′= + = + ×

= + = ≈ ×
 

 
10. With A = 0.000500 m2 and F = pA (with p given by Eq. 14-9), then we have ρghA = 
9.80 N. This gives h ≈ 2.0 m, which means d + h = 2.80 m. 
 
11. The hydrostatic blood pressure is the gauge pressure in the column of blood between 
feet and brain. We calculate the gauge pressure using Eq. 14-7. 
 
(a) The gauge pressure at the brain of the giraffe is  
 



  CHAPTER 14 614 

 
3 3 2

brain heart
1 torr250 torr (1.06 10 kg/m )(9.8 m/s )(2.0 m)

133.33 Pa
94 torr .

p p ghρ= − = − ×

=
. 

 
(b) The gauge pressure at the feet of the giraffe is  
 

3 3 2
feet heart

2

1 torr250 torr (1.06 10 kg/m )(9.8 m/s )(2.0 m) 406 torr
133.33 Pa

4.1 10 torr.

p p ghρ= + = + × =

≈ ×
 

 
(c) The increase in the blood pressure at the brain as the giraffe lowers its head to the 
level of its feet is 

2
feet brain 406 torr 94 torr 312 torr 3.1 10 torr.p p pΔ = − = − = ≈ ×  

 
12. Note that 0.05 atm equals 5065 Pa.  Application of Eq. 14-7 with the notation in this 
problem leads to 

 max
liquid liquid liquid

0.05 atm 5065 Papd
g g gρ ρ ρ

= = = . 

 
Thus the difference of this quantity between fresh water (998 kg/m3) and Dead Sea water 
(1500 kg/m3) is 
 

max 2 3 3
fw sw

5065 Pa 1 1 5065 Pa 1 1 0.17 m.
9.8 m/s 998 kg/m 1500 kg/m

d
g ρ ρ

⎛ ⎞ ⎛ ⎞
Δ = − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
13. Recalling that 1 atm = 1.01 × 105 Pa, Eq. 14-8 leads to 
 

3 2 3 3
5

1 atm(1024 kg/m ) (9.80 m/s ) (10.9 10 m) 1.08 10 atm.
1.01 10 Pa

ghρ ⎛ ⎞= × ≈ ×⎜ ⎟×⎝ ⎠
 

 
14. We estimate the pressure difference (specifically due to hydrostatic effects) as 
follows: 

3 3 2 4(1.06 10  kg/m )(9.8 m/s )(1.83 m) = 1.90 10 Pa.p ghρΔ = = × ×  
 
15. In this case, Bernoulli’s equation reduces to Eq. 14-10. Thus, 
 

3 2 4( ) (1800 kg/m )(9.8 m/s ) (1.5 m) 2.6 10 Pa .gp g hρ= − = − = − ×  
 
16. At a depth h without the snorkel tube, the external pressure on the diver is 
 
 0p p ghρ= +  
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where 0p  is the atmospheric pressure. Thus, with a snorkel tube of length h, the pressure 
difference between the internal air pressure and the water pressure against the body is  
 

0p p p ghρΔ = = = . 
(a) If 0.20 m,h =  then 

3 2
5

1atm(998 kg/m )(9.8 m/s )(0.20 m) 0.019 atm
1.01 10  Pa

p ghρΔ = = =
×

. 

 
(b) Similarly, if 4.0 m,h =  then 

3 2
5

1atm(998 kg/m )(9.8 m/s )(4.0 m) 0.39 atm
1.01 10  Pa

p ghρΔ = = ≈
×

. 

 
17. The pressure p at the depth d of the hatch cover is p0 + ρgd, where ρ is the density of 
ocean water and p0 is atmospheric pressure. Thus, the gauge pressure is gaugep gdρ= , 
and the minimum force that must be applied by the crew to open the hatch has magnitude 

gauge ( )F p A gd Aρ= = , where A is the area of the hatch. 
 
Substituting the values given, we find the force to be 
 

 
3 2

gauge
5

( ) (1024 kg/m )(9.8 m/s )(100 m)(1.2 m)(0.60 m)
7.2 10 N.

F p A gd Aρ= = =
= ×

 

 
18. Since the pressure (caused by liquid) at the bottom of the barrel is doubled due to the 
presence of the narrow tube, so is the hydrostatic force. The ratio is therefore equal to 2.0. 
The difference between the hydrostatic force and the weight is accounted for by the 
additional upward force exerted by water on the top of the barrel due to the increased 
pressure introduced by the water in the tube. 
 
19. We can integrate the pressure (which varies linearly with depth according to Eq. 14-7) 
over the area of the wall to find out the net force on it, and the result turns out fairly 
intuitive (because of that linear dependence): the force is the “average” water pressure 
multiplied by the area of the wall (or at least the part of the wall that is exposed to the 
water), where “average” pressure is taken to mean 12 (pressure at surface + pressure at 
bottom).  Assuming the pressure at the surface can be taken to be zero (in the gauge 
pressure sense explained in section 14-4), then this means the force on the wall is 12 ρgh  
multiplied by the appropriate area.  In this problem the area is hw (where w is the 8.00 m 
width), so the force is 12 ρgh2w, and the change in force (as h is changed) is 
 
1
2 ρgw ( hf 

2 – hi 
2 )  =  12 (998 kg/m3)(9.80 m/s2)(8.00 m)(4.002 – 2.002)m2  = 4.69 × 105 N. 

 
20. (a) The force on face A of area AA due to the water pressure alone is 
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( )( )( )32 3 3 2

6

(2 ) 2 1.0 10 kg m 9.8m s 5.0 m

2.5 10 N.
A A A w A A wF p A gh A g d dρ ρ= = = = ×

= ×
 

 
Adding the contribution from the atmospheric pressure,  
 

F0 = (1.0 × 105 Pa)(5.0 m)2 = 2.5 × 106 N, 
we have 

6 6 6
0 2.5 10 N  2.5 10 N 5.0 10 N.A AF F F′ = + = × + × = ×  

 
(b) The force on face B due to water pressure alone is 
 

( )( )( )32 3 3 3 2
avg

6

5 5 5 1.0 10 kg m 9.8m s 5.0m
2 2 2

3.1 10 N.

B B B w
dF p A g d gdωρ ρ⎛ ⎞= = = = ×⎜ ⎟

⎝ ⎠
= ×

 

 
Adding the contribution from the atmospheric pressure,  
 

F0 = (1.0 × 105 Pa)(5.0 m)2 = 2.5 × 106 N, 
we obtain 

6 6 6
0 2.5 10 N  3.1 10 N 5.6 10 N.B BF F F′ = + = × + × = ×  

 
21. When the levels are the same, the height of the liquid is h = (h1 + h2)/2, where h1 and 
h2 are the original heights. Suppose h1 is greater than h2. The final situation can then be 
achieved by taking liquid with volume A(h1 – h) and mass ρA(h1 – h), in the first vessel, 
and lowering it a distance h – h2. The work done by the force of gravity is  
 

W = ρA(h1 – h)g(h – h2). 
 
We substitute h = (h1 + h2)/2 to obtain  
 

( )2 3 3 2 4 2 2
1 2

1 1 (1.30 10 kg/m )(9.80 m/s )(4.00 10 m )(1.56 m 0.854 m)
4 4
0.635 J

W gA h hρ −= − = × × −

=
. 

 
22. To find the pressure at the brain of the pilot, we note that the inward acceleration can 
be treated from the pilot’s reference frame as though it is an outward gravitational 
acceleration against which the heart must push the blood. Thus, with 4a g= , we have 

3 3 2
brain heart

1 torr120 torr (1.06 10 kg/m )(4 9.8 m/s )(0.30 m)
133 Pa

120 torr 94 torr 26 torr.

p p arρ= − = − × ×

= − =
 

 



 

  

617

23. Letting pa = pb, we find  
 

ρcg(6.0 km + 32 km + D) + ρm(y – D) = ρcg(32 km) + ρmy 
 
and obtain 

( ) ( ) ( )3

3 3

6.0km 2.9g cm6.0km
44km.

3.3g cm 2.9g cm
c

m c

D
ρ

ρ ρ
= = =

− −
 

 
24. (a) At depth y the gauge pressure of the water is p = ρgy, where ρ is the density of the 
water. We consider a horizontal strip of width W at depth y, with (vertical) thickness dy, 
across the dam. Its area is dA = W dy and the force it exerts on the dam is dF = p dA = 
ρgyW dy. The total force of the water on the dam is 
 

( )( )( )( )22 3 3 2

0

9

1 1 1.00 10 kg m 9.80m s 314m 35.0m
2 2

1.88 10 N.

D
F gyW dy gWDρ ρ= = = ×

= ×

∫  

 
(b) Again we consider the strip of water at depth y. Its moment arm for the torque it 
exerts about O is D – y so the torque it exerts is  
 

dτ = dF(D – y) = ρgyW (D – y)dy 
 
and the total torque of the water is 
 

( )

( )( )( )( )

3 3 3

0

33 3 2 10

1 1 1
2 3 6

1 1.00 10 kg m 9.80m s 314m 35.0m 2.20 10 N m.
6

D
gyW D y dy gW D D gWDτ ρ ρ ρ⎛ ⎞= − = − =⎜ ⎟

⎝ ⎠

= × = × ⋅

∫
 

 
(c) We write τ = rF, where r is the effective moment arm. Then, 
 

31
6

21
2

35.0 m 11.7 m.
3 3

gWD Dr
F gWD

ρτ
ρ

= = = = =  

 
25. As shown in Eq. 14-9, the atmospheric pressure 0p  bearing down on the barometer’s 
mercury pool is equal to the pressure ghρ  at the base of the mercury column: 0p ghρ= . 
Substituting the values given in the problem statement, we find the atmospheric pressure 
to be  

4 3 2
0

1 torr(1.3608 10 kg/m )(9.7835 m/s )(0.74035 m)
133.33 Pa

739.26 torr.

p ghρ ⎛ ⎞= = × ⎜ ⎟
⎝ ⎠

=
 

 



  CHAPTER 14 618 

26. The gauge pressure you can produce is 
 

( ) ( ) ( )3 2 2
3

5

1000kg m 9.8m s 4.0 10 m
3.9 10 atm

1.01 10 Pa atm
p ghρ

−
−

×
= − = − = − ×

×
 

 
where the minus sign indicates that the pressure inside your lung is less than the outside 
pressure. 
 
27. (a) We use the expression for the variation of pressure with height in an 
incompressible fluid:  

p2 = p1 – ρg(y2 – y1). 
 
We take y1 to be at the surface of Earth, where the pressure is p1 = 1.01 × 105 Pa, and y2 
to be at the top of the atmosphere, where the pressure is p2 = 0. For this calculation, we 
take the density to be uniformly 1.3 kg/m3. Then, 

5
31

2 1 3 2
1.01 10 Pa 7.9 10 m = 7.9 km.

(1.3 kg/m ) (9.8 m/s )
py y
gρ

×
− = = = ×  

 
(b) Let h be the height of the atmosphere. Now, since the density varies with altitude, we 
integrate 

2 1 0
.

h
p p g dyρ= − ∫  

 
Assuming ρ = ρ0 (1 − y/h), where ρ0 is the density at Earth’s surface and g = 9.8 m/s2 for 
0 ≤ y ≤ h, the integral becomes 

2 1 0 1 00

11 .
2

h yp p g dy p gh
h

ρ ρ⎛ ⎞= − − = −⎜ ⎟
⎝ ⎠∫  

Since p2 = 0, this implies 
 

5
31

3 2
0

2 2(1.01 10 Pa) 16 10 m = 16 km.
(1.3 kg/m ) (9.8 m/s )

ph
gρ

×
= = = ×  

 
28. (a) According to Pascal’s principle, F/A = f/a → F = (A/a)f. 
 
(b) We obtain 

2
3

2

(3.80 cm) (20.0 10 N) = 103 N.
(53.0 cm)

af F
A

= = ×  

 
The ratio of the squares of diameters is equivalent to the ratio of the areas. We also note 
that the area units cancel. 
 
29. Equation 14-13 combined with Eq. 5-8 and Eq. 7-21 (in absolute value) gives 
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mg = kx A1

 A2
  . 

 
With A2 = 18A1 (and the other values given in the problem) we find m = 8.50 kg. 
 
30. Taking “down” as the positive direction, then using Eq. 14-16 in Newton’s second 
law, we have  (5.00 kg)g – (3.00 kg)g = 5a. This gives a = 25 g = 3.92 m/s2, where g = 9.8 

m/s2. Then (see Eq. 2-15)  12 at2 = 0.0784 m (in the downward direction). 
 
31. Let V be the volume of the block. Then, the submerged volume in water is 2 / 3sV V= . 
Since the block is floating, by Archimedes’ principle the weight of the displaced water is 
equal to the weight of the block, that is, ρw Vs = ρb V, where ρw is the density of water, 
and ρb is the density of the block.  
 
(a) We substitute Vs = 2V/3 to obtain the density of the block:  
 

ρb = 2ρw/3 = 2(1000 kg/m3)/3 ≈ 6.7 ×102 kg/m3. 
 
(b) Now, if ρo is the density of the oil, then Archimedes’ principle yields o s bV Vρ ρ′ = . 
Since the volume submerged in oil is 0.90sV V′ = , the density of the oil is  
 

2 3 2 3(6.7 10 kg/m ) 7.4 10 kg/m
0.90o b

V V
V V

ρ ρ ⎛ ⎞= = × = ×⎜ ⎟′⎝ ⎠
. 

 
32. (a) The pressure (including the contribution from the atmosphere) at a depth of htop = 
L/2 (corresponding to the top of the block) is 
 

5 3 2 5
top atm top 1.01 10  Pa (1030 kg/m )(9.8 m/s ) (0.300 m) 1.04 10 Pap p ghρ= + = × + = ×  

 
where the unit Pa (pascal) is equivalent to N/m2. The force on the top surface (of area A = 
L2 = 0.36 m2) is  

Ftop = ptop A = 3.75 × 104 N. 
 
(b) The pressure at a depth of hbot = 3L/2 (that of the bottom of the block) is 
 

5 3 2
bot atm bot

5

1.01 10  Pa (1030 kg/m )(9.8 m/s ) (0.900 m)

1.10 10 Pa

p p ghρ= + = × +

= ×
 

 
where we recall that the unit Pa (pascal) is equivalent to N/m2. The force on the bottom 
surface is  

Fbot = pbot A = 3.96 × 104 N. 
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(c) Taking the difference Fbot – Ftop cancels the contribution from the atmosphere 
(including any numerical uncertainties associated with that value) and leads to 
 

3 3
bot top bot top( ) 2.18 10 NF F g h h A gLρ ρ− = − = = ×  

 
which is to be expected on the basis of Archimedes’ principle. Two other forces act on 
the block: an upward tension T and a downward pull of gravity mg. To remain stationary, 
the tension must be 
 

2 3 3
bot top( ) (450 kg) (9.80 m/s ) 2.18 10  N 2.23 10 N.T mg F F= − − = − × = ×  

 
(d) This has already been noted in the previous part: 32.18 10 NbF = × , and T + Fb = mg. 
 
33. The anchor is completely submerged in water of density ρw. Its apparent weight is 
Wapp = W – Fb, where W= mg is its actual weight and Fb =ρw gV is the buoyant force. 
 
(a) Substituting the values given, we find the volume of the anchor to be 
 

( ) ( )
app 2 3

3 2

200 N 2.04 10 m .
1000 kg/m 9.8 m/s

b

w w

W W FV
g gρ ρ

−−
= = = = ×  

 
(b) The mass of the anchor is Fem gρ= , where Feρ is the density of iron (found in Table  
14-1). Therefore, its weight in air is 
 

3 2 3 2 3
Fe (7870 kg/m )(2.04 10 m )(9.80 m/s ) 1.57 10 N .W mg Vgρ −= = = × = ×  

 
Note: In general, the apparent weight of an object of density ρ that is completely 
submerged in a fluid of density fρ  can be written as 

app ( )fW Vgρ ρ= − . 
 
34. (a) Archimedes’ principle makes it clear that a body, in order to float, displaces an 
amount of the liquid that corresponds to the weight of the body. The problem (indirectly) 
tells us that the weight of the boat is W = 35.6 kN. In salt water of density  
ρ' = 1100 kg/m3, it must displace an amount of liquid having weight equal to 35.6 kN. 
 
(b) The displaced volume of salt water is equal to 
 

3
3

3 3 2

3.56 10 N 3.30 m .
(1.10 10  kg/m ) (9.80 m/s )

WV
gρ

×′ = = =
′ ×

 

 
In freshwater, it displaces a volume of V = W/ρg = 3.63 m3, where ρ = 1000 kg/m3. The 
difference is V – V ' = 0.330 m3. 
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35. The problem intends for the children to be completely above water. The total 
downward pull of gravity on the system is 
 

( ) wood3 356 N N gVρ+  
 
where N is the (minimum) number of logs needed to keep them afloat and V is the 
volume of each log:  

V = π(0.15 m)2 (1.80 m) = 0.13 m3. 
 
The buoyant force is Fb = ρwatergVsubmerged, where we require Vsubmerged ≤ NV. The density 
of water is 1000 kg/m3. To obtain the minimum value of N, we set Vsubmerged = NV and 
then round our “answer” for N up to the nearest integer: 

( ) ( )
( )wood water

water wood

3 356 N
3 356 N N gV gNV N

gV
ρ ρ

ρ ρ
+ = ⇒ =

−
 

which yields N = 4.28 → 5 logs. 
 
36. From the “kink” in the graph it is clear that d = 1.5 cm. Also, the h = 0 point makes it 
clear that the (true) weight is 0.25 N.  We now use Eq. 14-19 at h = d = 1.5 cm to obtain  
 

Fb = (0.25 N – 0.10 N ) = 0.15 N. 
 
Thus, ρliquid g V = 0.15, where  

V = (1.5 cm)(5.67 cm2) = 8.5 × 10−6 m3. 
 
Thus, ρliquid = 1800 kg/m3 = 1.8 g/cm3. 
 
37. For our estimate of Vsubmerged we interpret “almost completely submerged” to mean 

3
submerged

4 where 60 cm .
3 o oV r rπ≈ =  

 
Thus, equilibrium of forces (on the iron sphere) leads to 

3 3
iron water submerged iron

4 4
3 3b o iF m g gV g r rρ ρ π π⎛ ⎞= ⇒ = −⎜ ⎟

⎝ ⎠
 

 
where ri is the inner radius (half the inner diameter). Plugging in our estimate for 
Vsubmerged as well as the densities of water (1.0 g/cm3) and iron (7.87 g/cm3), we obtain the 
inner diameter: 

1/33

o 3

1.0 g/cm2 2 1 57.3 cm.
7.87 g/cmir r

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 

 
38. (a) An object of the same density as the surrounding liquid (in which case the 
“object” could just be a packet of the liquid itself) is not going to accelerate up or down 
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(and thus won’t gain any kinetic energy).  Thus, the point corresponding to zero K in the 
graph must correspond to the case where the density of the object equals ρliquid.  
Therefore, ρball = 1.5 g/cm3 (or 1500 kg/m3). 
 
(b) Consider the ρliquid = 0 point (where Kgained = 1.6 J).  In this case, the ball is falling 
through perfect vacuum, so that v2 = 2gh (see Eq. 2-16) which means that K = 12 mv2 = 1.6 
J can be used to solve for the mass.  We obtain mball = 4.082 kg.  The volume of the ball 
is then given by  

mball/ρball = 2.72 × 10−3 m3. 
 
39. (a) The downward force of gravity mg is balanced by the upward buoyant force of the 
liquid: mg = ρg Vs. Here m is the mass of the sphere, ρ is the density of the liquid, and Vs 
is the submerged volume. Thus m = ρVs. The submerged volume is half the total volume 
of the sphere, so ( ) 31

2 4 3s oV r= π , where ro is the outer radius. Therefore, 
 

( )3 3 32 2 800 kg/m (0.090 m) 1.22 kg.
3 3om rπ πρ ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

 
(b) The density ρm of the material, assumed to be uniform, is given by ρm = m/V, where m 
is the mass of the sphere and V is its volume. If ri is the inner radius, the volume is 
 

( ) ( )( )3 33 3 4 34 4( ) 0.090 m 0.080 m 9.09 10 m .
3 3o iV r rπ π −= − = − = ×  

The density is 
3 3

4 3
1.22 kg 1.3 10 kg/m .

9.09 10 mmρ −= = ×
×

 

 
40. If the alligator floats, by Archimedes’ principle the buoyancy force is equal to the 
alligator’s weight (see Eq. 14-17). Therefore,  
 
 

2 2H O H O( )b gF F m g Ah gρ= = = . 
 
If the mass is to increase by a small amount m m m m′→ = + Δ , then 
 

2H O ( )b bF F A h h gρ′→ = + Δ . 
 
With 0.010b b bF F F mg′Δ = − = , the alligator sinks by  
 

2 2

3
3 2

H O H O

0.01 0.010(130 kg) 6.5 10  m 6.5 mm
(998 kg/m )(0.20 m )

bF mgh
Ag Agρ ρ

−Δ
Δ = = = = × = . 
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41. Let iV  be the total volume of the iceberg. The non-visible portion is below water, and 
thus the volume of this portion is equal to the volume fV  of the fluid displaced by the 
iceberg. The fraction of the iceberg that is visible is  
 

 frac 1i f f

i i

V V V
V V
−

= = − . 

Since iceberg is floating, Eq. 14-18 applies:  
 

.g i f i fF m g m g m m= = ⇒ =  
 
Since m Vρ= , the above equation implies  

 f i
i i f f

i f

V
V V

V
ρρ ρ
ρ

= ⇒ = . 

Thus, the visible fraction is  

frac 1 1f i

i f

V
V

ρ
ρ

= − = −  . 

 
(a) If the iceberg ( 3917 kg/miρ = ) floats in salt water with 31024 kg/mfρ = , then the 
fraction would be  

3

3

917 kg/mfrac 1 1 0.10 10%
1024 kg/m

i

f

ρ
ρ

= − = − = = . 

 
(b) On the other hand, if the iceberg floats in fresh water ( 31000 kg/mfρ = ), then the 
fraction would be  

3

3

917 kg/mfrac 1 1 0.083 8.3%
1000 kg/m

i

f

ρ
ρ

= − = − = = . 

 
42. Work is the integral of the force over distance (see Eq. 7-32). Referring to the 
equation immediately preceding Eq. 14-7, we see the work can be written as 
 

W = waterρ∫ gA(–y) dy 
 
where we are using y = 0 to refer to the water surface (and the +y direction is upward).  
Let h = 0.500 m.  Then, the integral has a lower limit of –h and an upper limit of yf , with 
 

yf /h = − ρcylinder /ρwater = – 0.400. 
The integral leads to 

W = 12  ρwatergAh2(1 – 0.42)  =  4.11 kJ . 
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43. (a) When the model is suspended (in air) the reading is Fg (its true weight, neglecting 
any buoyant effects caused by the air). When the model is submerged in water, the 
reading is lessened because of the buoyant force: Fg – Fb. We denote the difference in 
readings as Δm. Thus, 

( )g g bF F F mg− − = Δ  
 
which leads to Fb = Δmg. Since Fb = ρwgVm (the weight of water displaced by the model) 
we obtain 

4 30.63776kg 6.378 10 m .
1000 kg/mm

w

mV
ρ

−Δ
= = ≈ ×  

 
(b) The 1

20  scaling factor is discussed in the problem (and for purposes of significant 
figures is treated as exact). The actual volume of the dinosaur is 
 

3 3
dino 20 5.102 m .mV V= =  

 

(c) Using 3dino

dino

1000 kg/mw
m
V

ρ ρ= ≈ = , we find the mass of the T. rex to be 

 
3 3 3

dino dino (1000kg/m ) (5.102 m ) 5.102 10 kgwm Vρ≈ = = × . 
 
44. (a) Since the lead is not displacing any water (of density ρw), the lead’s volume is not 
contributing to the buoyant force Fb. If the immersed volume of wood is Vi, then 
 

wood
wood

wood

0.900 0.900 ,b w i w w
mF V g V g gρ ρ ρ
ρ

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

 

 
which, when floating, equals the weights of the wood and lead: 
 

wood
wood lead

wood

0.900 ( ) .b w
mF g m m gρ
ρ

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

 

Thus, 
wood

lead wood
wood

3

3

0.900

(0.900) (1000kg/m )(3.67 kg) 3.67 kg
600 kg/m

1.84 kg .

w
mm mρ
ρ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= −

=

 

 
(b) In this case, the volume Vlead = mlead/ρlead also contributes to Fb. Consequently, 
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wood
lead wood lead

wood lead

0.900 ( ) ,w
b w

mF g m g m m gρρ
ρ ρ

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

which leads to 
 

wood wood wood
lead 3 3 4 3

lead

0.900( / ) 1.84 kg
1 / 1 (1.00 10 kg/m /1.13 10 kg/m )

2.01 kg.

w

w

m m
m

ρ ρ
ρ ρ

−
= =

− − × ×
=

 

 
45. The volume Vcav of the cavities is the difference between the volume Vcast of the 
casting as a whole and the volume Viron contained: Vcav = Vcast – Viron. The volume of the 
iron is given by Viron = W/gρiron, where W is the weight of the casting and ρiron is the 
density of iron. The effective weight in water (of density ρw) is Weff = W – gρw Vcast. Thus, 
Vcast = (W – Weff)/gρw and 
 

eff
cav 2 3 2 3 3

iron
3

6000 N 4000 N 6000 N
(9.8 m/s ) (1000 kg/m ) (9.8 m/s ) (7.87 10 kg/m )

0.126 m .
w

W W WV
g gρ ρ
− −

= − = −
×

=

 

 
46. Due to the buoyant force, the ball accelerates upward (while in the water) at rate a 
given by Newton’s second law: ρwaterVg – ρballVg = ρballVa, which yields 
 
 water ball (1 / )a gρ ρ= + . 
With ρball = 0.300 ρwater, we find that  
 

2 2water

ball

11 (9.80 m/s ) 1 22.9 m/s
0.300

a g ρ
ρ

⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

 
Using Eq. 2-16 with Δy = 0.600 m, the speed of the ball as it emerges from the water is 
 
 22 2(22.9 m/s )(0.600 m) 5.24 m/sv a y= Δ = = . 
 
This causes the ball to reach a maximum height hmax (measured above the water surface) 
given by hmax = v2/2g (see Eq. 2-16 again).  Thus,  
 

 
2 2

max 2

(5.24 m/s) 1.40 m
2 2(9.80 m/s )
vh
g

= = = . 

 
47. (a) If the volume of the car below water is V1 then Fb = ρwV1g = Wcar, which leads to 
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( ) ( )
( ) ( )

2
3car

1 3 2

1800 kg 9.8m s
1.80 m .

1000 kg m 9.8m sw

WV
gρ

= = =  

 
(b) We denote the total volume of the car as V and that of the water in it as V2. Then 
 

car 2b w wF Vg W V gρ ρ= = +  
which gives 
 

( )3 3 3 3car
2 3

1800kg0.750m 5.00m 0.800m 4.75 m .
1000kg mw

WV V
gρ

= − = + + − =  

 
48. Let ρ be the density of the cylinder (0.30 g/cm3 or 300 kg/m3) and ρFe be the density 
of the iron (7.9 g/cm3 or 7900 kg/m3).  The volume of the cylinder is  
 

Vc = (6×12) cm3 = 72 cm3 = 0.000072 m3, 
 
and that of the ball is denoted Vb . The part of the cylinder that is submerged has volume 
 

Vs = (4 × 12) cm3 = 48 cm3 = 0.000048 m3. 
 
Using the ideas of section 14-7, we write the equilibrium of forces as 
 

ρgVc  +  ρFe gVb  =  ρw gVs   +  ρw gVb     ⇒    Vb = 3.8 cm3 
 
where we have used ρw = 998 kg/m3  (for water, see Table 14-1). Using Vb = 43 πr3 we 
find r = 9.7 mm. 
 
49. This problem involves use of continuity equation (Eq. 14-23): 1 1 2 2A v A v= . 
 
(a) Initially the flow speed is 1.5 m/siv =  and the cross-sectional area is iA HD= . At 
point a, as can be seen from the figure, the cross-sectional area is 
 
 ( ) ( )aA H h D b h d= − − − . 
 
Thus, by continuity equation, the speed at point a is  
 

(14 m)(55 m)(1.5 m/s) 2.96 m/s
( ) ( ) (14 m 0.80 m)(55 m) (12 m 0.80 m)(30 m)

3.0 m/s.

i i i
a

a

Av HDvv
A H h D b h d

= = = =
− − − − − −

≈
 
(b) Similarly, at point b, the cross-sectional area is bA HD bd= − , and therefore, by 
continuity equation, the speed at point b is  
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(14 m)(55 m)(1.5 m/s) 2.8 m/s.

(14 m)(55 m) (12 m)(30 m)
i i i

b
b

Av HDvv
A HD bd

= = = =
− −

 

 
50. The left and right sections have a total length of 60.0 m, so (with a speed of 2.50 m/s) 
it takes 60.0/2.50  = 24.0 seconds to travel through those sections.  Thus it takes (88.8 – 
24.0) s = 64.8 s to travel through the middle section.  This implies that the speed in the 
middle section is  

vmid = (50 m)/(64.8 s) = 0.772 m/s. 
 
Now Eq. 14-23 (plus that fact that A = πr2) implies rmid = rA (2.5 m/s)/(0.772 m/s)  where 
rA = 2.00 cm.  Therefore, mid 3.60 cmr = . 
 
51. We use the equation of continuity. Let v1 be the speed of the water in the hose and v2 
be its speed as it leaves one of the holes. A1 = πR2 is the cross-sectional area of the hose. 
If there are N holes and A2 is the area of a single hole, then the equation of continuity 
becomes 

( )
2

1
1 1 2 2 2 1 12

2

A Rv A v NA v v v
NA Nr

= ⇒ = =  

 
where R is the radius of the hose and r is the radius of a hole. Noting that R/r = D/d (the 
ratio of diameters) we find 

( )
( )

( )
22

2 1 22

1.9cm
0.91m s 8.1m s.

24 0.13cm
Dv v

Nd
= = =  

 
52. We use the equation of continuity and denote the depth of the river as h. Then, 
 

( )( )( ) ( )( )( ) ( )( )8.2 m 3.4 m 2.3m s 6.8m 3.2 m 2.6 m s 10.5m 2.9 m sh+ =  
 
which leads to h = 4.0 m. 
 
53. Suppose that a mass Δm of water is pumped in time Δt. The pump increases the 
potential energy of the water by ΔU =(Δm)gh, where h is the vertical distance through 
which it is lifted, and increases its kinetic energy by ΔK = 21

2 ( )m vΔ , where v is its final 
speed. The work it does is  

21( ) ( )
2

W U K m gh m vΔ = Δ + Δ = Δ + Δ  

and its power is 
21 .

2
W mP gh v
t t

Δ Δ ⎛ ⎞= = +⎜ ⎟Δ Δ ⎝ ⎠
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The rate of mass flow is Δm/ Δt = ρwAv, where ρw is the density of water and A is the area 
of the hose. With A = πr2 = π(0.010 m)2 = 3.14 × 10–4 m2 and  
 

ρwAv = (1000 kg/m3) (3.14 × 10–4 m2) (5.00 m/s) = 1.57 kg/s 
 
the power of the pump is 
 

( ) ( )( ) ( )2
2 2 5.0 m s1 1.57 kg s 9.8m s 3.0 m 66 W.

2 2
P Av gh vρ

⎛ ⎞⎛ ⎞ ⎜ ⎟= + = + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
54. (a) The equation of continuity provides (26 + 19 + 11) L/min = 56 L/min for the flow 
rate in the main (1.9 cm diameter) pipe. 
 
(b) Using v = R/A and A = πd 2/4, we set up ratios: 
 

2
56

2
26

56 / (1.9) / 4 1.0.
26 / (1.3) / 4

v
v

π
π

= ≈  

 
55. We rewrite the formula for work W (when the force is constant in a direction parallel 
to the displacement d) in terms of pressure: 

( )FW Fd Ad pV
A

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
where V is the volume of the water being forced through, and p is to be interpreted as the 
pressure difference between the two ends of the pipe. Thus, 
 

5 3 5(1.0 10 Pa) (1.4 m ) 1.4 10 J.W = × = ×  
 
56. (a) The speed v of the fluid flowing out of the hole satisfies 21

2  or 2v gh v ghρ ρ= = . 
Thus, ρ1v1A1 = ρ2v2A2, which leads to 
 

1 2
1 1 2 2

2 1

2 2 2.AghA ghA
A

ρρ ρ
ρ

= ⇒ = =  

(b) The ratio of volume flow is 
1 1 1 1

2 2 2 2

1
2

R v A A
R v A A

= = = . 

 
(c) Letting R1/R2 = 1, we obtain 1 2 2 1 1 22v v A A h h= = = . Thus, 
 

2 1 4 (12.0 cm)/4 3.00 cmh h= = = . 
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57. (a) We use the Bernoulli equation:  
 

2 21 1
1 1 1 2 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + + , 

 
where h1 is the height of the water in the tank, p1 is the pressure there, and v1 is the speed 
of the water there; h2 is the altitude of the hole, p2 is the pressure there, and v2 is the speed 
of the water there. ρ is the density of water. The pressure at the top of the tank and at the 
hole is atmospheric, so p1 = p2. Since the tank is large we may neglect the water speed at 
the top; it is much smaller than the speed at the hole. The Bernoulli equation then 
becomes 21

1 2 22gh v ghρ ρ ρ= +  and 

( ) ( ) ( )2
2 1 22 2 9.8m s 0.30m 2.42m s.v g h h= − = =  

 
The flow rate is A2v2 = (6.5 × 10–4 m2)(2.42 m/s) = 1.6 × 10–3 m3/s. 
 
(b) We use the equation of continuity: A2v2 = A3v3, where 1

3 22A A=  and v3 is the water 
speed where the area of the stream is half its area at the hole. Thus  
 

v3 = (A2/A3)v2 = 2v2 = 4.84 m/s. 
 
The water is in free fall and we wish to know how far it has fallen when its speed is 
doubled to 4.84 m/s. Since the pressure is the same throughout the fall, 

2 21 1
2 2 3 32 2v gh v ghρ ρ ρ ρ+ = + . Thus, 

( ) ( )
( )

2 22 2
3 2

2 3 2

4.84 m s 2.42 m s
0.90 m.

2 2 9.8m s
v vh h

g
−−

− = = =  

 
Note: By combining the two expressions obtained from Bernoulli’s equation, and 
equation of continuity, the cross-sectional area of the stream may be related to the 
vertical height fallen as  

2 22 2 22
3 2 3 32 2

2 3
3 2

1 1 .
2 2 2

v v v Av Ah h
g g A g A

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− ⎢ ⎥ ⎢ ⎥− = = − = −⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

 

 
58. We use Bernoulli’s equation: 

( )2 2
2 1 2

1
2ip p gD v vρ ρ− = + −  

 
where ρ = 1000 kg/m3, D = 180 m, v1 = 0.40 m/s, and v2 = 9.5 m/s. Therefore, we find Δp 
= 1.7 × 106 Pa, or 1.7 MPa. The SI unit for pressure is the pascal (Pa) and is equivalent to 
N/m2. 
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59. (a) We use the equation of continuity: A1v1 = A2v2. Here A1 is the area of the pipe at 
the top and v1 is the speed of the water there; A2 is the area of the pipe at the bottom and 
v2 is the speed of the water there. Thus  
 

v2 = (A1/A2)v1 = [(4.0 cm2)/(8.0 cm2)] (5.0 m/s) = 2.5m/s. 
 
(b) We use the Bernoulli equation:  
 

2 21 1
1 1 1 2 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + + , 

 
where ρ is the density of water, h1 is its initial altitude, and h2 is its final altitude. Thus 
 

( ) ( )2 2
2 1 1 2 1 2

5 3 2 2 3 2

5

1
2

11.5 10 Pa (1000kg m ) (5.0m s) (2.5m s) (1000kg m )(9.8m/s )(10 m)
2

2.6 10 Pa.

p p v v g h hρ ρ= + − + −

⎡ ⎤= × + − +⎣ ⎦

= ×
 
60. (a) We use Av = const. The speed of water is 
 

( ) ( )
( )

( )
2 2

2

25.0cm 5.00cm
2.50m s 2.40m s.

25.0cm
v

−
= =  

 
(b) Since 21

2 const.,p vρ+ =  the pressure difference is 
 

( ) ( ) ( )2 22 31 1 1000kg m 2.50m s 2.40m s 245Pa.
2 2

p vρ ⎡ ⎤Δ = Δ = − =⎣ ⎦  

 
61. (a) The equation of continuity leads to 

2
1

2 2 1 1 2 1 2
2

rv A v A v v
r

⎛ ⎞
= ⇒ = ⎜ ⎟

⎝ ⎠
 

which gives v2 = 3.9 m/s. 
 
(b) With h = 7.6 m and p1 = 1.7 × 105 Pa, Bernoulli’s equation reduces to 
 

( )2 2 4
2 1 1 2

1 8.8 10 Pa.
2

p p gh v vρ ρ= − + − = ×  

 
62. (a) Bernoulli’s equation gives 21

air2A Bp p vρ= + ⋅  However, A Bp p p ghρΔ = − = in 
order to balance the pressure in the two arms of the U-tube. Thus 21

air2gh vρ ρ= , or  
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air

2 .ghv ρ
ρ

=  

 
(b) The plane’s speed relative to the air is  
 

( )3 2

3
air

2 810 kg/m (9.8m/s ) (0.260 m)2 63.3m/s.
1.03kg/m

ghv ρ
ρ

= = =  

 
63. We use the formula for v obtained in the previous problem: 
 

2
3

air

2 2(180 Pa) 1.1 10 m/s.
0.031kg/m

pv
ρ
Δ

= = = ×  

 
64. (a) The volume of water (during 10 minutes) is 
 

( ) ( ) ( ) ( ) ( )2 3
1 1 15m s 10min 60s min 0.03m 6.4m .

4
V v t A π⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

 
(b) The speed in the left section of pipe is 
 

( )
2 2

1 1
2 1 1

2 2

3.0cm15m s 5.4m s.
5.0cm

A dv v v
A d

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

(c) Since  
2 21 1

1 1 1 2 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + +  
 
and 1 2 1 0,h h p p= = , which is the atmospheric pressure, 
 

( ) ( ) ( ) ( )2 22 2 5 3 3
2 0 1 2

5

1 11.01 10 Pa 1.0 10 kg m 15m s 5.4 m s
2 2

1.99 10 Pa 1.97 atm.

p p v vρ ⎡ ⎤= + − = × + × −⎣ ⎦

= × =
 

 
Thus, the gauge pressure is (1.97 atm – 1.00 atm) = 0.97 atm = 9.8 × 104 Pa. 
 
65. The continuity equation yields AV = av, and Bernoulli’s equation yields 

2 21 1
2 2V p vρ ρ= Δ + , where Δp = p2 – p1 with p2 equal to the pressure in the throat and p1 
the pressure in the pipe.  The first equation gives v = (A/a)V. We use this to substitute for 
v in the second equation and obtain  
 

( )22 21 1
2 2 /V p A a Vρ ρ= Δ + . 
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The equation can be used to solve for V.  
 
(a) The above equation gives the following expression for V:  
 

( ) ( )
2

2 2 2

2 2 .
1 ( / )

p a pV
A a a Aρ ρ

Δ Δ
= =

− −
 

 
(b) We substitute the values given to obtain  
 

( ) ( )
2 4 2 2 3 3

2 2 3 4 2 2 4 2 2

2 2(32 10 m ) (41 10 Pa 55 10 Pa) 3.06 m/s.
(1000 kg / m ) (32 10 m ) (64 10 m )

a pV
a Aρ

−

− −

Δ × × − ×
= = =

− × − ×
 

 
Consequently, the flow rate is  
 

4 2 2 3(64 10 m )(3.06 m/s) 2.0 10 m / s.R AV − −= = × = ×  
 
Note: The pressure difference Δp between points 1 and 2 is what causes the height 
difference of the fluid in the two arms of the manometer. Note that Δp = p2 – p1 < 0 
(pressure in throat less than that in the pipe), but a A< , so the expression inside the 
square root is positive.  
 
66. We use the result of part (a) in the previous problem. 
 
(a) In this case, we have Δp = p1 = 2.0 atm. Consequently,  
 

5

2 3 2

2 4(1.01 10 Pa) 4.1m/s.
(( / ) 1) (1000 kg/m ) [(5 / ) 1]

pv
A a a aρ

Δ ×
= = =

− −
 

 
(b) And the equation of continuity yields V = (A/a)v = (5a/a)v = 5v = 21 m/s. 
 
(c) The flow rate is given by  

4 2 3 3(5.0 10 m ) (4.1 m/s) 8.0 10 m / s.
4

Av − −π
= × = ×  

 
67. (a) The friction force is  

3 3 2 2(1.0 10  kg/m ) (9.8 m/s ) (6.0m) (0.040 m) 74 N.
4

f A p gdAωρ π⎛ ⎞= Δ = = × =⎜ ⎟
⎝ ⎠

 

 
(b) The speed of water flowing out of the hole is v = 2 .gd  Thus, the volume of water 
flowing out of the pipe in t = 3.0 h is 
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2
2 2 2 3(0.040 m) 2(9.8 m/s ) (6.0 m)  (3.0 h) (3600 s/h) 1.5 10 m .

4
V Avt π

= = = ×  

 
68. (a) We note (from the graph) that the pressures are equal when the value of inverse-
area-squared is 16 (in SI units).  This is the point at which the areas of the two pipe 
sections are equal.  Thus, if A1 = 1/ 16  when the pressure difference is zero, then A2 is 
0.25 m2. 
 
(b) Using Bernoulli’s equation (in the form Eq. 14-30) we find the pressure difference 
may be written in the form of a straight line: mx + b where x is inverse-area-squared (the 
horizontal axis in the graph), m is the slope, and b is the intercept (seen to be –300 
kN/m2).  Specifically, Eq. 14-30 predicts that b should be  – 12 ρ v2

2.  Thus, with ρ = 1000 

kg/m3 we obtain v2 = 600  m/s.  Then the volume flow rate (see Eq. 14-24) is  
 

R =  A2 v2  = (0.25 m2)( 600  m/s) =  6.12 m3/s. 
 
If the more accurate value (see Table 14-1) ρ = 998 kg/m3 is used, then the answer is 6.13 
m3/s. 
 
69. (a) Combining Eq. 14-35 and Eq. 14-36 in a manner very similar to that shown in the 
textbook, we find 
 

( )1 2 2 2
1 2

2 pR A A
A Aρ

Δ
=

−
 

 
for the flow rate expressed in terms of the pressure difference and the cross-sectional 
areas. Note that Δp = p1 – p2 = –7.2 × 103 Pa and 2 2 3 4

1 2 8.66 10 mA A −− = − × , so that the 
square root is well defined. Therefore, we obtain R = 0.0776 m3/s. 
 
(b) The mass rate of flow is 3 3(900 kg/m )(0.0776 m /s) 69.8 kg/sRρ = = . 
 
70. By Eq. 14-23, the speeds in the left and right sections are 1

4 vmid and  1
9 vmid, 

respectively, where vmid = 0.500 m/s.  We also note that 0.400 m3 of water has a mass of 
399 kg (see Table 14-1). Then Eq. 14-31 (and the equation below it) gives 
 

W = 12 m vmid
2 ⎝⎛ ⎠⎞

1
92 − 

1
42   =  –2.50 J . 

 
71. (a) The stream of water emerges horizontally (θ0 = 0° in the notation of Chapter 4) 
with 0 2v gh= . Setting y – y0 = –(H – h) in Eq. 4-22, we obtain the “time-of-flight”  
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2( ) 2 ( ).H ht H h
g g

− −
= = −

−
 

 
Using this in Eq. 4-21, where x0 = 0 by choice of coordinate origin, we find  
 

 0
2( )2 2 ( ) 2 (10 cm)(40 cm 10 cm) 35 cm.H hx v t gh h H h

g
−

= = = − = − =  

 
(b) The result of part (a) (which, when squared, reads x2 = 4h(H – h)) is a quadratic 
equation for h once x and H are specified. Two solutions for h are therefore 
mathematically possible, but are they both physically possible? For instance, are both 
solutions positive and less than H? We employ the quadratic formula: 
 

2 2 2
2 0

4 2
x H H xh Hh h ± −

− + = ⇒ =  

 
which permits us to see that both roots are physically possible, so long as x < H. Labeling 
the larger root h1 (where the plus sign is chosen) and the smaller root as h2 (where the 
minus sign is chosen), then we note that their sum is simply  

 
2 2 2 2

1 2 .
2 2

H H x H H xh h H+ − − −
+ = + =  

 
Thus, one root is related to the other (generically labeled h' and h) by h' = H – h. Its 
numerical value is 40cm  10 cm 30 cm.h′ = − =  
 
(c) We wish to maximize the function f = x2 = 4h(H – h). We differentiate with respect to 
h and set equal to zero to obtain  
 

4 8 0
2

df HH h h
dh

= − = ⇒ =  

 
or h = (40 cm)/2 = 20 cm, as the depth from which an emerging stream of water will 
travel the maximum horizontal distance. 
 
72. We use Bernoulli’s equation: 
 

2 21 1
1 1 1 2 2 22 2p v gh p v ghρ ρ ρ ρ+ + = + + . 

 
When the water level rises to height h2, just on the verge of flooding, 2v , the speed of 
water in pipe M is given by 
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 2
1 2 2 2 1 2

1( )    2 ( ) 13.86 m/s.
2

g h h v v g h hρ ρ− = ⇒ = − =  

 
By the continuity equation, the corresponding rainfall rate is  
 

2
52

1 2
1

(0.030 m) (13.86 m/s) 2.177 10  m/s 7.8 cm/h.
(30 m)(60 m)

Av v
A

π −⎛ ⎞
= = = × ≈⎜ ⎟

⎝ ⎠
 

 
73. Equilibrium of forces (on the floating body) is expressed as 
 

body liqui d submerged body totalbF m g gV gVρ ρ= ⇒ =  
which leads to 

submerged body

total liquid

.
V

V
ρ
ρ

=  

 
We are told (indirectly) that two-thirds of the body is below the surface, so the fraction 
above is 2/3. Thus, with ρbody = 0.98 g/cm3, we find ρliquid ≈ 1.5 g/cm3 — certainly much 
more dense than normal seawater (the Dead Sea is about seven times saltier than the 
ocean due to the high evaporation rate and low rainfall in that region). 
 
74. If the mercury level in one arm of the tube is lowered by an amount x, it will rise by x 
in the other arm. Thus, the net difference in mercury level between the two arms is 2x, 
causing a pressure difference of Δp = 2ρHggx, which should be compensated for by the 
water pressure pw = ρwgh, where h = 11.2 cm. In these units, ρw = 1.00 g/cm3 and ρHg =  
13.6 g/cm3 (see Table 14-1). We obtain 
 

3

3
Hg

(1.00 g/cm ) (11.2 cm) 0.412 cm.
2 2(13.6 g/cm )

w ghx
g

ρ
ρ

= = =  

 
75. Using m = ρV, Newton’s second law becomes  
 

ρwaterVg – ρbubbleVg = ρbubbleVa, 
or 
 water bubble (1 / )a gρ ρ= +  
       
With ρwater = 998 kg/m3 (see Table 14-1), we find  
 

3
3water

bubble 2 2

998 kg/m 975.6 kg/m
1 / 1 (0.225 m/s ) /(9.80 m/s )a g

ρρ = = =
+ +

. 

 
Using volume V = 43 πr3 with 45.00 10 mr −= ×  for the bubble, we then find its mass: 
mbubble = 5.11 × 10−7 kg. 
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76. To be as general as possible, we denote the ratio of body density to water density as f 
(so that f = ρ/ρw = 0.95 in this problem). Floating involves equilibrium of vertical forces 
acting on the body (Earth’s gravity pulls down and the buoyant force pushes up). Thus, 
 

b g w wF F gV gVρ ρ= ⇒ =  
 
where V is the total volume of the body and Vw is the portion of it that is submerged.  
 
(a) We rearrange the above equation to yield  

w

w

V f
V

ρ
ρ

= =  

 
which means that 95% of the body is submerged and therefore 5.0% is above the water 
surface.  
 
(b) We replace ρw with 1.6ρw in the above equilibrium of forces relationship, and find  
 

1.6 1.6
w

w

V f
V

ρ
ρ

= =  

 
which means that 59% of the body is submerged and thus 41% is above the quicksand 
surface. 
 
(c) The answer to part (b) suggests that a person in that situation is able to breathe. 
 
77. The normal force NF  exerted (upward) on the glass ball of mass m has magnitude 
0.0948 N.  The buoyant force exerted by the milk (upward) on the ball has magnitude  
 

Fb = ρmilk g V 
 
where V = 43  π r3  is the volume of the ball.  Its radius is r = 0.0200 m. The milk density is 
ρmilk = 1030 kg/m3.  The (actual) weight of the ball is, of course, downward, and has 
magnitude  Fg = mglass g.  Application of Newton's second law (in the case of zero 
acceleration) yields 
                                                  FN + ρmilk g V − mglass g = 0 
 
which leads to mglass = 0.0442 kg.  We note the above equation is equivalent to Eq.14-19 
in the textbook. 
 
78. Since (using Eq. 5-8)  Fg  = mg =  ρskier g V and (Eq. 14-16) the buoyant force is Fb = 
ρsnow g V, then their ratio is 
 



 

  

637

Fb
Fg

 =  
ρsnow g V
ρskier g V  =  

ρsnow

ρskier
  = 

96
1020 = 0.094  (or 9.4%). 

 
79. Neglecting the buoyant force caused by air, then the 30 N value is interpreted as the 
true weight W of the object. The buoyant force of the water on the object is therefore  
(30 – 20) N = 10 N, which means 
 

3 3
3 2

10 N 1.02 10 m
(1000 kg/m ) (9.8m/s )b wF Vg Vρ −= ⇒ = = ×  

 
is the volume of the object. When the object is in the second liquid, the buoyant force is 
(30 – 24) N = 6.0 N, which implies 
 

2 3
2 2 3 3

6.0 N 6.0 10 kg/m .
(9.8 m/s ) (1.02 10 m )

ρ −= = ×
×

 

 
80. An object of mass m = ρV floating in a liquid of density ρliquid is able to float if the 
downward pull of gravity mg is equal to the upward buoyant force Fb = ρliquidgVsub where 
Vsub is the portion of the object that is submerged. This readily leads to the relation: 
 

sub

iquidl

V
V

ρ
ρ

=  

 
for the fraction of volume submerged of a floating object. When the liquid is water, as 
described in this problem, this relation leads to 

1
w

ρ
ρ

=  

 
since the object “floats fully submerged” in water (thus, the object has the same density 
as water). We assume the block maintains an “upright” orientation in each case (which is 
not necessarily realistic). 
 

(a) For liquid A, 1
2A

ρ
ρ

= , so that, in view of the fact that ρ = ρw, we obtain ρA/ρw = 2. 

 

(b) For liquid B, noting that two-thirds above means one-third below, 1
3B

ρ
ρ

= , so that 

ρB/ρw = 3. 
 

(c) For liquid C, noting that one-fourth above means three-fourths below, 3
4C

ρ
ρ

= , so 

that ρC/ρw = 4/3. 
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81. If we examine both sides of the U-tube at the level where the low-density liquid (with 
ρ = 0.800 g/cm3 = 800 kg/m3) meets the water (with ρw = 0.998 g/cm3 = 998 kg/m3), then 
the pressures there on either side of the tube must agree: 
 

ρgh = ρwghw 
 

where h = 8.00 cm = 0.0800 m, and Eq. 14-9 has been used.  Thus, the height of the 
water column (as measured from that level) is  
 

hw = (800/998)(8.00 cm) = 6.41 cm. 
 
The volume of water in that column is therefore  
 

V = πr2hw = π(1.50 cm)2(6.41 cm) = 45.3 cm3. 
 
This is the amount of water that flows out of the right arm.  
 
Note: As discussed in the Sample Problem – “Balancing of pressure in a U-tube,” the 
relationship between the densities of the two liquids can be written as 
  

X w
l

l d
ρ ρ=

+
. 

The liquid in the left arm is higher than the water in the right because the liquid is less 
dense than water, X wρ ρ< . 
 

 
 
82. The downward force on the balloon is mg and the upward force is Fb = ρoutVg. 
Newton’s second law (with m = ρinV) leads to 
 

out
out in in

in

1 .Vg Vg Va g aρρ ρ ρ
ρ

⎛ ⎞− = ⇒ − =⎜ ⎟
⎝ ⎠

 

 
The problem specifies ρout / ρin = 1.39 (the outside air is cooler and thus more dense than 
the hot air inside the balloon). Thus, the upward acceleration is  
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a = (1.39 – 1.00)(9.80 m/s2) = 3.82 m/s2. 

 
83. (a) We consider a point D on the surface of the liquid in the container, in the same 
tube of flow with points A, B, and C. Applying Bernoulli’s equation to points D and C, 
we obtain 

2 21 1
2 2D D D C C Cp v gh p v ghρ ρ ρ ρ+ + = + +  

which leads to 
  

2
2

2( ) 2 ( ) 2 ( )D C
C D C D

p pv g h h v g d h
ρ
−

= + − + ≈ +  

 
where in the last step we set pD = pC =  pair and vD/vC ≈ 0. Plugging in the values, we 
obtain 

22(9.8 m/s )(0.40 m  0.12 m) 3.2 m/s.Cv = + =  
 
(b) We now consider points B and C: 
 

2 21 1 .
2 2B B B C C Cp v gh p v ghρ ρ ρ ρ+ + = + +  

 
Since vB = vC by equation of continuity, and pC = pair, Bernoulli’s equation becomes 
 

air 1 2

5 3 3 2

4

( ) ( )

1.0 10  Pa (1.0 10 kg/m )(9.8 m/s )(0.25 m  0.40 m  0.12 m)
9.2 10  Pa.

B C C Bp p g h h p g h h dρ ρ= + − = − + +

= × − × + +

= ×

 

 
(c) Since pB ≥ 0, we must let  

pair – ρg(h1 + d + h2) ≥ 0, 
which yields 

air air
1 1,max 2 10.3 m.p ph h d h

ρ ρ
≤ = − − ≤ =  

 
84. The volume rate of flow is R = vA where A = πr2 and r = d/2. Solving for speed, we 
obtain  

2 2

4 .
( / 2)

R R Rv
A d dπ π

= = =  

 
(a) With R = 7.0 × 10–3 m3/s and d = 14 × 10–3 m, our formula yields v = 45 m/s, which is 
about 13% of the speed of sound (which we establish by setting up a ratio: v/vs where vs = 
343 m/s).  
 



  CHAPTER 14 640 

(b) With the contracted trachea (d = 5.2 × 10–3 m) we obtain v = 330 m/s, or 96% of the 
speed of sound.  
 
85. We consider the can with nearly its total volume submerged, and just the rim above 
water. For calculation purposes, we take its submerged volume to be V = 1200 cm3. To 
float, the total downward force of gravity (acting on the tin mass mt and the lead mass 
m ) must be equal to the buoyant force upward: 
 

3 3( ) (1g/cm ) (1200 cm ) 130 gt wm m g Vg mρ+ = ⇒ = −  
 
which yields 1.07×103 g for the (maximum) mass of the lead (for which the can still 
floats). The given density of lead is not used in the solution. 
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Chapter 15 
 
 
 
1. (a) During simple harmonic motion, the speed is (momentarily) zero when the object is 
at a “turning point” (that is, when x = +xm or x = –xm). Consider that it starts at x = +xm 
and we are told that t = 0.25 second elapses until the object reaches x = –xm. To execute a 
full cycle of the motion (which takes a period T to complete), the object which started at x 
= +xm, must return to x = +xm (which, by symmetry, will occur 0.25 second after it was at 
x = –xm). Thus, T = 2t = 0.50 s. 
 
(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. 
 
(c) The 36 cm distance between x = +xm and x = –xm is 2xm. Thus, xm = 36/2 = 18 cm. 
 
2. (a) The acceleration amplitude is related to the maximum force by Newton’s second 
law: Fmax = mam. The textbook notes (in the discussion immediately after Eq. 15-7) that 
the acceleration amplitude is am = ω2xm, where ω is the angular frequency (ω = 2πf since 
there are 2π radians in one cycle). The frequency is the reciprocal of the period: f = 1/T = 
1/0.20 = 5.0 Hz, so the angular frequency is ω = 10π (understood to be valid to two 
significant figures). Therefore, 
 

 = = 0.12 10 0.085 = 10 . 2 2F m xmmax  kg  rad / s  m  Nω b gb g b gπ  
 
(b) Using Eq. 15-12, we obtain 
 

( )( )22 2    0.12kg 10  rad/s 1.2 10 N/m.k k m
m

ω ω π= ⇒ = = = ×  

 
3. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration 
amplitude is am = ω2xm, where ω is the angular frequency (ω = 2πf since there are 2π 
radians in one cycle). Therefore, in this circumstance, we obtain 

 
( )( ) ( )22 2 2(2 ) 2 6.60 Hz 0.0220 m 37.8 m/s .m m ma x f xω π π= = = =  

 
4. (a) Since the problem gives the frequency f = 3.00 Hz, we have ω = 2πf = 6π rad/s 
(understood to be valid to three significant figures). Each spring is considered to support 
one fourth of the mass mcar so that Eq. 15-12 leads to 
 

( )( )2 5

car

1      1450kg 6  rad/s 1.29 10 N/m.
/ 4 4

k k
m

ω π= ⇒ = = ×  
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(b) If the new mass being supported by the four springs is mtotal = [1450 + 5(73)] kg = 
1815 kg, then Eq. 15-12 leads to 
 

5

new new
total

1 1.29 10  N/m     2.68Hz.
/ 4 2 (1815 / 4) kg

k f
m

ω
π

×
= ⇒ = =  

 
5. (a) The amplitude is half the range of the displacement, or xm = 1.0 mm. 
 
(b) The maximum speed vm is related to the amplitude xm by vm = ωxm, where ω is the 
angular frequency. Since ω = 2πf, where f is the frequency, 
 

( )( )3= 2 = 2 120 Hz 1.0 10  m = 0.75 m/s.m mv fxπ π −×  
 
(c) The maximum acceleration is 
 

( ) ( )( ) ( )222 3 2 2= = 2 = 2 120 Hz 1.0 10  m = 5.7 10  m/s .m m ma x f xω π π −× ×  
 
6. (a) The angular frequency ω is given by ω = 2πf = 2π/T, where f is the frequency and T 
is the period. The relationship f = 1/T was used to obtain the last form. Thus  
 

ω = 2π/(1.00 × 10–5 s) = 6.28 × 105 rad/s. 
 
(b) The maximum speed vm and maximum displacement xm are related by vm = ωxm, so 
 

 = = 1.00 10
6.28 10

= 1.59 10 . 
3

5
3x v

m
m

ω
×
×

× − m / s
 rad / s

 m  

 
7. The magnitude of the maximum acceleration is given by am = ω2xm, where ω is the 
angular frequency and xm is the amplitude.  
 
(a) The angular frequency for which the maximum acceleration is g is given by 
ω = g xm/ , and the corresponding frequency is given by 
 

2

6

1 1 9.8 m/s 498  Hz.
2 2 2 1.0 10 mm

gf
x

ω
π π π −= = = =

×
 

 
(b) For frequencies greater than 498 Hz, the acceleration exceeds g for some part of the 
motion. 
 
8. We note (from the graph in the text) that xm = 6.00 cm.  Also the value at t = 0 is xo = − 
2.00 cm.   Then Eq. 15-3 leads to  
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φ = cos−1(−2.00/6.00) = +1.91 rad or – 4.37 rad. 

 
The other “root” (+4.37 rad) can be rejected on the grounds that it would lead to a 
positive slope at t = 0. 
 
9. (a) Making sure our calculator is in radians mode, we find 
 

 = 6.0 3 2.0 +
3

= 3.0 . x cos  mπ
πb gF

HG
I
KJ  

  
(b) Differentiating with respect to time and evaluating at t = 2.0 s, we find 
 

 = = 3 6.0 3 2.0 +
3

= 49 . v dx
dt

− F
HG

I
KJ −π

πb g b gsin  m / sπ  

 
(c) Differentiating again, we obtain 
 

 = = 3 6.0 3 2.0 +
3

= 2.7 10 . 2 2 2a dv
dt

− F
HG

I
KJ − ×π π

πb g b g b gcos  m / s  

 
(d) In the second paragraph after Eq. 15-3, the textbook defines the phase of the motion. 
In this case (with t = 2.0 s) the phase is 3π(2.0) + π/3 ≈ 20 rad. 
 
(e) Comparing with Eq. 15-3, we see that ω = 3π rad/s. Therefore, f = ω/2π = 1.5 Hz. 
 
(f) The period is the reciprocal of the frequency: T = 1/f ≈ 0.67 s. 
 
10. (a) The problem describes the time taken to execute one cycle of the motion. The 
period is T = 0.75 s. 
 
(b) Frequency is simply the reciprocal of the period: f = 1/T ≈ 1.3 Hz, where the SI unit 
abbreviation Hz stands for Hertz, which means a cycle-per-second. 
 
(c) Since 2π radians are equivalent to a cycle, the angular frequency ω (in radians-per-
second) is related to frequency f by ω = 2πf so that ω ≈ 8.4 rad/s. 
 
11. When displaced from equilibrium, the net force exerted by the springs is –2kx acting 
in a direction so as to return the block to its equilibrium position (x = 0). Since the 
acceleration 2 2/a d x dt= , Newton’s second law yields 
 

 = 2 . 
2

2m d x
dt

kx−  
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Substituting x = xm cos(ωt + φ) and simplifying, we find 
 

 = 22ω k
m

 

 
where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f 
measures cycles per second, we obtain 
 

1 2 1 2(7580 N/m)= = 39.6 Hz.
2 2 2 0.245 kg

kf
m

ω
π π π

= =  

 
12. We note (from the graph) that vm = ωxm = 5.00 cm/s.  Also the value at t = 0 is vo = 
4.00 cm/s. Then Eq. 15-6 leads to  
 

φ = sin−1(− 4.00/5.00) = – 0.927 rad or +5.36 rad. 
 
The other “root” (+4.07 rad) can be rejected on the grounds that it would lead to a 
positive slope at t = 0. 
 
13. (a) The motion repeats every 0.500 s so the period must be T = 0.500 s. 
 
(b) The frequency is the reciprocal of the period: f = 1/T = 1/(0.500 s) = 2.00 Hz. 
 
(c) The angular frequency ω is ω = 2πf = 2π(2.00 Hz) = 12.6 rad/s. 
 
(d) The angular frequency is related to the spring constant k and the mass m by 
 ω = k m . We solve for k and obtain  
 

k = mω2 = (0.500 kg)(12.6 rad/s)2 = 79.0 N/m. 
 
(e) Let xm be the amplitude. The maximum speed is  
 

vm = ωxm = (12.6 rad/s)(0.350 m) = 4.40 m/s. 
 
(f) The maximum force is exerted when the displacement is a maximum and its 
magnitude is given by Fm = kxm = (79.0 N/m)(0.350 m) = 27.6 N. 
 
14. Equation 15-12 gives the angular velocity: 
 

100 N/m 7.07rad/s.
2.00 kg

k
m

ω = = =  

 
Energy methods (discussed in  Section 15-4) provide one method of solution. Here, we 
use trigonometric techniques based on Eq. 15-3 and Eq. 15-6. 
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(a) Dividing Eq. 15-6 by Eq. 15-3, we obtain 
 

 = +v
x

t−ω ω φtanb g  
 
so that the phase (ωt + φ) is found from 
 

( )( )
1 1 3.415 m/stan tan .

7.07 rad/s 0.129 m
vt
x

ω φ
ω

− − ⎛ ⎞− −⎛ ⎞+ = = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
With the calculator in radians mode, this gives the phase equal to –1.31 rad. Plugging this 
back into Eq. 15-3 leads to 0.129 m cos( 1.31)    0.500 m.m mx x= − ⇒ =  
 
(b) Since ωt + φ = –1.31 rad at t = 1.00 s, we can use the above value of ω to solve for the 
phase constant φ. We obtain φ = –8.38 rad (though this, as well as the previous result, can 
have 2π or 4π (and so on) added to it without changing the physics of the situation). With 
this value of φ, we find xo = xm cos φ = – 0.251 m. 
 
(c) And we obtain vo = –xmω sinφ = 3.06 m/s. 
 
15. (a) Let 

 =
2

2
1x A t

T
cos πF
HG
I
KJ  

 
be the coordinate as a function of time for particle 1 and 
 

 =
2

2 +
62x A t

T
cos π πF
HG

I
KJ  

 
be the coordinate as a function of time for particle 2. Here T is the period. Note that since 
the range of the motion is A, the amplitudes are both A/2. The arguments of the cosine 
functions are in radians. Particle 1 is at one end of its path (x1 = A/2) when t = 0. Particle 
2 is at A/2 when 2πt/T + π/6 = 0 or t = –T/12. That is, particle 1 lags particle 2 by one-
twelfth a period. We want the coordinates of the particles 0.50 s later; that is, at t = 0.50 s, 
 

1
2 0.50 s= cos = 0.25

2 1.5 s
Ax Aπ ×⎛ ⎞ −⎜ ⎟

⎝ ⎠  
and

 
2

2 0.50 s= cos + = 0.43 .
2 1.5 s 6
Ax Aπ π×⎛ ⎞ −⎜ ⎟

⎝ ⎠
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Their separation at that time is x1 – x2 = –0.25A + 0.43A = 0.18A. 
 
(b) The velocities of the particles are given by 
 

 = = 2
1

1v dx
dt

A
T

t
T

π πsinFH
I
K  

and
 

 = = 2 +
6

. 2
2v dx

dt
A

T
t

T
π π πsinFH

I
K  

 
We evaluate these expressions for t = 0.50 s and find they are both negative-valued, 
indicating that the particles are moving in the same direction. The plots of x and v as a 
function of time for particle 1 (so1id) and particle 2 (dashed line) are given below. 
 

  
 
16. They pass each other at time t, at x x xm1 2

1
2= =  where 

 
x x t x x tm m1 1 2 2= + = +cos( ) cos( ).ω φ ω φand  

 
From this, we conclude that cos( ) cos( )ω φ ω φt t+ = + =1 2

1
2 , and therefore that the phases 

(the arguments of the cosines) are either both equal to π/3 or one is π/3 while the other 
is –π/3. Also at this instant, we have v1 = –v2 0≠  where 
 

v x t v x tm m1 1 2 2= − + = − +ω ω φ ω ω φsin( ) sin( ).and  
 

This leads to sin(ωt + φ1) = – sin(ωt + φ 2). This leads us to conclude that the phases have 
opposite sign. Thus, one phase is π/3 and the other phase is –π /3; the wt term cancels if 
we take the phase difference, which is seen to be π /3 – (–π /3) = 2π /3. 
 
17. (a) Equation 15-8 leads to 

2
2 123 m/s 35.07 rad/s .

0.100 m
aa x
x

ω ω −
= − ⇒ = = =  

 
Therefore, f = ω/2π = 5.58 Hz. 
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(b) Equation 15-12 provides a relation between ω (found in the previous part) and the 
mass: 
 

2

400 N/m=     0.325kg.
(35.07 rad/s)

k m
m

ω ⇒ = =  

  
(c) By energy conservation, 1

2
2kxm  (the energy of the system at a turning point) is equal to 

the sum of kinetic and potential energies at the time t described in the problem. 
 

 1
2

= 1
2

+ 1
2

= + . 2 2 2 2 2kx mv kx x m
k

v xm m⇒  

 
Consequently, 2 2(0.325 kg / 400 N/m)(13.6 m/s) (0.100 m) 0.400 m.mx = + =  
 
18. From highest level to lowest level is twice the amplitude xm of the motion. The period 
is related to the angular frequency by Eq. 15-5. Thus,  x dm = 1

2  and ω = 0.503 rad/h. The 
phase constant φ in Eq. 15-3 is zero since we start our clock when xo = xm (at the highest 
point). We solve for t when x is one-fourth of the total distance from highest to lowest 
level, or (which is the same) half the distance from highest level to middle level (where 
we locate the origin of coordinates). Thus, we seek t when the ocean surface is at 
x x dm= =1

2
1
4 . With cos( )mx x tω φ= + , we obtain 

 

( )1 1 1cos 0.503 0 cos(0.503 )
4 2 2

d d t t⎛ ⎞= + ⇒ =⎜ ⎟
⎝ ⎠

 

 
which has t = 2.08 h as the smallest positive root. The calculator is in radians mode 
during this calculation. 
 
19. Both parts of this problem deal with the critical case when the maximum acceleration 
becomes equal to that of free fall. The textbook notes (in the discussion immediately after 
Eq. 15-7) that the acceleration amplitude is am = ω2xm, where ω is the angular frequency; 
this is the expression we set equal to g = 9.8 m/s2. 
 
(a) Using Eq. 15-5 and T = 1.0 s, we have 
 

 2 = =
4

= 0.25 . 
2 2

2

π
πT

x g x gT
m m

F
HG
I
KJ ⇒  m  

  
(b) Since ω = 2πf, and xm = 0.050 m is given, we find 
 

( )2 12 =        = 2.2 Hz.
2m

m

gf x g f
x

π
π

⇒ =  
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20. We note that the ratio of Eq. 15-6 and Eq. 15-3 is v/x = –ωtan(ωt + φ) where ω = 1.20 
rad/s in this problem.  Evaluating this at t = 0 and using the values from the graphs shown 
in the problem, we find  
 

φ = tan−1(–vo/xoω) = tan−1(+4.00/(2 ×  1.20)) =1.03 rad (or –5.25 rad). 
 
One can check that the other “root” (4.17 rad) is unacceptable since it would give the 
wrong signs for the individual values of vo and xo.  
 
21. Let the spring constants be k1 and k2. When displaced from equilibrium, the 
magnitude of the net force exerted by the springs is |k1x + k2 x| acting in a direction so as 
to return the block to its equilibrium position (x = 0). Since the acceleration a = d2x/d2, 
Newton’s second law yields

 
 = . 

2

2 1 2m d x
dt

k x k x− −  

 
Substituting x = xm cos(ωt + φ) and simplifying, we find 
 

 = +2 1 2ω k k
m

 

 
where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f 
measures cycles per second, we obtain 
 

 =
2

= 1
2

1 2f k k
m

ω
π π

+ .  

 
The single springs each acting alone would produce simple harmonic motions of 
frequency

 
1 2

1 2
1 1= 30 Hz,        = 45 Hz,

2 2
k kf f
m mπ π

= =  

 
respectively. Comparing these expressions, it is clear that 
 

2 2 2 2
1 2 (30 Hz) +(45 Hz) 54 Hz.f f f= + = =  

 
22. The statement that “the spring does not affect the collision” justifies the use of elastic 
collision formulas in section 10-5.  We are told the period of SHM so that we can find the 
mass of block 2: 

2
2

2 22      0.600 kg.
4

m kTT m
k

π
π

= ⇒ = =   
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At this point, the rebound speed of block 1 can be found from Eq. 10-30: 
 

 ( )1
0.200 kg 0.600 kg| | 8.00 m/s 4.00 m/s
0.200 kg 0.600 kgfv −

= =
+

. 

 
This becomes the initial speed v0 of the projectile motion of block 1.  A variety of choices 
for the positive axis directions are possible, and we choose left as the +x direction and 
down as the +y direction, in this instance.  With the “launch” angle being zero, Eq. 4-21 
and Eq. 4-22 (with  –g replaced with  +g) lead to 
  

0 0 0 2

2 2(4.90 m)(4.00 m/s)
9.8 m/s

hx x v t v
g

− = = = . 

 
Since x – x0 = d, we arrive at  d = 4.00 m. 
 
23. The maximum force that can be exerted by the surface must be less than μsFN or else 
the block will not follow the surface in its motion. Here, µs is the coefficient of static 
friction and FN is the normal force exerted by the surface on the block. Since the block 
does not accelerate vertically, we know that FN = mg, where m is the mass of the block. If 
the block follows the table and moves in simple harmonic motion, the magnitude of the 
maximum force exerted on it is given by  
 

F = mam = mω2xm = m(2πf)2xm, 
 
where am is the magnitude of the maximum acceleration, ω is the angular frequency, and 
f is the frequency. The relationship ω = 2πf was used to obtain the last form. We 
substitute F = m(2πf)2xm and FN = mg into F < µsFN to obtain m(2πf)2xm < µsmg. The 
largest amplitude for which the block does not slip is 
 

 =
2

=
0.50 9.8

2 2.0
0 0312

2

2x g
fm
sμ

π πb g
b gc h
b g

 m / s

 Hz×
= . .m  

 
A larger amplitude requires a larger force at the end points of the motion. The surface 
cannot supply the larger force and the block slips. 
 
24. We wish to find the effective spring constant for the combination of springs shown in 
the figure. We do this by finding the magnitude F of the force exerted on the mass when 
the total elongation of the springs is Δx. Then keff = F/Δx. Suppose the left-hand spring is 
elongated by Δx  and the right-hand spring is elongated by Δxr. The left-hand spring 
exerts a force of magnitude k xΔ  on the right-hand spring and the right-hand spring exerts 
a force of magnitude  kΔxr on the left-hand spring. By Newton’s third law these must be 
equal, so Δ Δx xr= . The two elongations must be the same, and the total elongation is 
twice the elongation of either spring: Δ Δx x= 2 . The left-hand spring exerts a force on 
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the block and its magnitude is F k x= Δ . Thus k k x x kreff = =Δ Δ/ /2 2 . The block 
behaves as if it were subject to the force of a single spring, with spring constant k/2. To 
find the frequency of its motion, replace keff in f k m= 1 2/ /πa f eff  with k/2 to obtain 
 

 = 1
2 2

f k
mπ

. 

 
With m = 0.245 kg and k = 6430 N/m, the frequency is f = 18.2 Hz. 
 
25. (a) We interpret the problem as asking for the equilibrium position; that is, the block 
is gently lowered until forces balance (as opposed to being suddenly released and allowed 
to oscillate). If the amount the spring is stretched is x, then we examine force-components 
along the incline surface and find 
 

sin (14.0 N)sin 40.0sin     0.0750 m
120 N/m

mgkx mg x
k

θθ °
= ⇒ = = =  

 
at equilibrium. The calculator is in degrees mode in the above calculation. The distance 
from the top of the incline is therefore (0.450 + 0.75) m = 0.525 m. 
 
(b) Just as with a vertical spring, the effect of gravity (or one of its components) is simply 
to shift the equilibrium position; it does not change the characteristics (such as the period) 
of simple harmonic motion. Thus, Eq. 15-13 applies, and we obtain 
 

214.0 N 9.80 m/s2 0.686 s.
120 N/m

T π= =  

 
26. To be on the verge of slipping means that the force exerted on the smaller block (at 
the point of maximum acceleration) is fmax = µs mg. The textbook notes (in the discussion 
immediately after Eq. 15-7) that the acceleration amplitude is am =ω2xm, where 
ω = +k m M/ ( )  is the angular frequency (from Eq. 15-12). Therefore, using Newton’s 
second law, we have 

 =
+

=ma mg k
m M

x gm s m sμ μ⇒  

which leads to  
 

2( ) (0.40)(9.8 m/s )(1.8 kg 10 kg) 0.23 m 23 cm.
200 N/m

s
m

g m Mx
k

μ + +
= = = =  

 
27. The total energy is given by E kxm= 1

2
2 , where k is the spring constant and xm is the 

amplitude. We use the answer from part (b) to do part (a), so it is best to look at the 
solution for part (b) first. 
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(a) The fraction of the energy that is kinetic is 
 

1 3= =1 =1 = 0.75
4 4

K E U U
E E E

−
− − =  

 
where the result from part (b) has been used. 
 
(b) When x xm= 1

2  the potential energy is U kx kxm= =1
2

2 1
8

2 . The ratio is 
 

2

2

/ 8 1 0.25.
/ 2 4

m

m

kxU
E kx

= = =  

 
(c) Since E kxm= 1

2
2  and U kx= 1

2
2 , U/E = x xm

2 2 . We solve x xm
2 2  = 1/2 for x. We should 

get x xm= / 2 . 
 
The figure to the right depicts the 
potential energy (solid line) and kinetic 
energy (dashed line) as a function of 
time, assuming (0) mx x= . The two 
curves intersect when / 2,K U E= =  or 
equivalently,  
 

2 2cos sin 1/ 2t tω ω= = .  
 
28. The total mechanical energy is equal to the (maximum) kinetic energy as it passes 
through the equilibrium position (x = 0):  
 

1
2 mv2 = 12 (2.0 kg)(0.85 m/s)2 = 0.72 J. 

 
Looking at the graph in the problem, we see that U(x = 10) = 0.5 J. Since the potential 
function has the form 2( )U x bx= , the constant is 3 25.0 10 J/cmb −= × . Thus, U(x) = 0.72 J 
when x = 12 cm. 
 
(a) Thus, the mass does turn back before reaching x = 15 cm. 
 
(b) It turns back at x = 12 cm. 
 
29. When the block is at the end of its path and is momentarily stopped, its displacement 
is equal to the amplitude and all the energy is potential in nature. If the spring potential 
energy is taken to be zero when the block is at its equilibrium position, then 
 

 = 1
2

= 1
2

1.3 10 0.024 = 3.7 10 . 2 2 2 2E kxm × × − N / m  m  Jc ha f  
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30. (a) The energy at the turning point is all potential energy: E kxm= 1

2
2  where E = 1.00 J 

and xm = 0.100 m. Thus,
  = 2 = 200 . 2k E

xm

 N / m  

 
(b) The energy as the block passes through the equilibrium position (with speed vm = 1.20 
m/s) is purely kinetic:

  = 1
2

= 2 = 1.39 . 2
2E mv m E

vm
m

⇒  kg  

 
(c) Equation 15-12 (divided by 2π) yields 
 

 = 1
2

1 91f k
mπ

= . .Hz  

 
31. (a) Equation 15-12 (divided by 2π) yields 
 

 = 1
2

1
2

1000
5 00

2 25f k
mπ π

= =
N / m

kg
Hz

.
. . 

 
(b) With x0 = 0.500 m, we have U kx0

1
2 0

2 125= = J . 
 
(c) With v0 = 10.0 m/s, the initial kinetic energy is K mv0

1
2 0

2 250= = J . 
 
(d) Since the total energy E = K0 + U0 = 375 J is conserved, then consideration of the 
energy at the turning point leads to 
 

 = 1
2

2 = 0.866 . 2E kx x E
km m⇒ =  m  

 
32. We infer from the graph (since mechanical energy is conserved) that the total energy 
in the system is 6.0 J; we also note that the amplitude is apparently xm = 12 cm = 0.12 m.  
Therefore we can set the maximum potential energy equal to 6.0 J and solve for the 
spring constant k: 
     

1
2 k xm

2 = 6.0 J     ⇒     k = 8.3 ×102 N/m . 
 
33. The problem consists of two distinct parts: the completely inelastic collision (which is 
assumed to occur instantaneously, the bullet embedding itself in the block before the 
block moves through significant distance) followed by simple harmonic motion (of mass 
m + M attached to a spring of spring constant k). 
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(a) Momentum conservation readily yields v′ = mv/(m + M). With m = 9.5 g, M = 5.4 kg, 
and v = 630 m/s, we obtain 1.1 m/s.v′ =   
 
(b) Since v´ occurs at the equilibrium position, then v′  = vm for the simple harmonic 
motion. The relation vm = ωxm can be used to solve for xm, or we can pursue the alternate 
(though related) approach of energy conservation. Here we choose the latter: 
 

 ( ) ( )
( )

2 2
2 2 2

2
1 1 1 1
2 2 2 2m m

m vm M v kx m M kx
m M

′+ = ⇒ + =
+

 

which simplifies to 
 

( )

3
2

3

(9.5 10 kg)(630 m/s) 3.3 10  m.
(6000 N/m)(9.5 10 kg  5.4kg)

m
mvx

k m M

−
−

−

×
= = = ×

+ × +
 

 
34. We note that the spring constant is  
 

k = 4π2m1/T 2 = 1.97 × 105 N/m. 
 
It is important to determine where in its simple harmonic motion (which “phase” of its 
motion) block 2 is when the impact occurs.  Since ω = 2π/T  and the given value of t 
(when the collision takes place) is one-fourth of T, then  ωt = π/2 and the location then of 
block 2 is x = xmcos(ωt + φ) where φ = π/2 which gives x = xmcos(π/2 + π/2) =  –xm.  This 
means block 2 is at a turning point in its motion (and thus has zero speed right before the 
impact occurs); this means, too, that the spring is stretched an amount of 1 cm = 0.01 m 
at this moment.  To calculate its after-collision speed (which will be the same as that of 
block 1 right after the impact, since they stick together in the process) we use momentum 
conservation and obtain v = (4.0 kg)(6.0 m/s)/(6.0 kg) = 4.0 m/s. Thus, at the end of the 
impact itself (while block 1 is still at the same position as before the impact) the system 
(consisting now of a total mass M = 6.0 kg) has kinetic energy  
 

K = 12 (6.0 kg)(4.0 m/s)2 = 48 J 
and potential energy  
 

U =  12 kx2 =   12 (1.97 × 105 N/m)(0.010 m)2 ≈ 10 J, 
 
meaning the total mechanical energy in the system at this stage is approximately E = K + 
U = 58 J.  When the system reaches its new turning point (at the new amplitude X ) then 
this amount must equal its (maximum) potential energy there: E =  12 (1.97 ×105 N/m) X 2.  
Therefore, we find   

5

2 2(58 J) 0.024 m
1.97 10 N/m

EX
k

= = =
×

. 
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35. The textbook notes (in the discussion immediately after Eq. 15-7) that the 
acceleration amplitude is am = ω2xm, where ω is the angular frequency and xm = 0.0020 m 
is the amplitude. Thus, am = 8000 m/s2 leads to ω = 2000 rad/s. Using Newton’s second 
law with m = 0.010 kg, we have 
 

 = = + = 80 2000
3

 F ma m a t tm− − −F
H

I
Kcos  N cosω φa fc h a f π  

 
where t is understood to be in seconds. 
 
(a) Equation 15-5 gives T = 2π/ω = 3.1 × 10–3 s. 
 
(b) The relation vm = ωxm can be used to solve for vm, or we can pursue the alternate 
(though related) approach of energy conservation. Here we choose the latter. By Eq. 15-
12, the spring constant is k = ω2m = 40000 N/m. Then, energy conservation leads to 
 

2 21 1=        = 4.0 m/s.
2 2m m m m

kkx mv v x
m

⇒ =  

  
(c) The total energy is 1

2
2 1

2
2 0 080kx mvm m= = . J . 

 
(d) At the maximum displacement, the force acting on the particle is  
 
 4 3(4.0 10 N/m)(2.0 10 m) 80 N.F kx −= = × × =  
 
(e) At half of the maximum displacement, 1.0 mmx = , and the force is  
 

4 3(4.0 10 N/m)(1.0 10 m) 40 N.F kx −= = × × =  
 
36. We note that the ratio of Eq. 15-6 and Eq. 15-3 is v/x = −ω tan(ωt + φ) where ω is 
given by Eq. 15-12. Since the kinetic energy is 12 mv2 and the potential energy is 12 kx2 

(which may be conveniently written as 12 mω2x2) then the ratio of kinetic to potential 
energy is simply  

(v/x)2/ω2 = tan2(ωt + φ), 
 
which at t = 0 is tan2φ.  Since φ = π/6 in this problem, then the ratio of kinetic to potential 
energy at t = 0 is tan2(π/6) = 1/3. 
 
37. (a) The object oscillates about its equilibrium point, where the downward force of 
gravity is balanced by the upward force of the spring. If  is the elongation of the spring 
at equilibrium, then k mg= , where k is the spring constant and m is the mass of the 
object. Thus k m g=  and  
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f k m g= = =ω 2 1 2 1 2π π πa f a f . 
 
Now the equilibrium point is halfway between the points where the object is momentarily 
at rest. One of these points is where the spring is unstretched and the other is the lowest 
point, 10 cm below. Thus = =5 0 0 050. .cm m and 

 
21 9.8  m/s 2.2 Hz.

2 0.050 m
f

π
= =  

 
(b) Use conservation of energy. We take the zero of gravitational potential energy to be at 
the initial position of the object, where the spring is unstretched. Then both the initial 
potential and kinetic energies are zero. We take the y axis to be positive in the downward 
direction and let y = 0.080 m. The potential energy when the object is at this point is 
U ky mgy= −1

2
2 . The energy equation becomes  

 
0 1

2
2 1

2
2= − +ky mgy mv . 

We solve for the speed: 
 

( )( ) ( )
2

22 2 2 9.8m/s2 2 2 9.8m/s 0.080 m 0.080 m
0.050 m

0.56 m/s

k gv gy y gy y
m

⎛ ⎞
= − = − = − ⎜ ⎟

⎝ ⎠
=

 

 
(c) Let m be the original mass and Δm be the additional mass. The new angular frequency 
is ′ = +ω k m m/ ( )Δ . This should be half the original angular frequency, or  12 k m . We 
solve k m m k m/ ( ) /+ =Δ 1

2  for m. Square both sides of the equation, then take the 
reciprocal to obtain m + Δm = 4m. This gives  
 

m = Δm/3 = (300 g)/3 = 100 g = 0.100 kg. 
 
(d) The equilibrium position is determined by the balancing of the gravitational and 
spring forces: ky = (m + Δm)g. Thus y = (m + Δm)g/k. We will need to find the value of 
the spring constant k. Use k = mω2 = m(2π f )2. Then 
 

( )
( )

( )( )
( )( )

2

2 2

0.100 kg 0.300 kg 9.80 m/s+
= 0.200 m.

2 0.100 kg 2 2.24 Hz
m m g

y
m fπ π

+Δ
=

×
 

 
This is measured from the initial position. 
 
38. From Eq. 15-23 (in absolute value) we find the torsion constant: 
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0.20 N m 0.235 N m/rad .
0.85 rad

τκ
θ

⋅
= = = ⋅  

 
With I = 2mR2/5 (the rotational inertia for a solid sphere — from Chapter 11), Eq. 15–23 
leads to

 ( )( )22 22
55 95 kg 0.15 m

2 2 12 s.
0.235 N m/rad

mRT π π
κ

= = =
⋅

 

 
39. (a) We take the angular displacement of the wheel to be θ = θm cos(2πt/T), where θm 
is the amplitude and T is the period. We differentiate with respect to time to find the 
angular velocity: Ω  = –(2π/T)θmsin(2πt/T). The symbol Ω  is used for the angular 
velocity of the wheel so it is not confused with the angular frequency. The maximum 
angular velocity is

 ( )( )2  rad2 39.5 rad/s.
0.500 s

m
m T

π ππθ
Ω = = =  

 
(b) When θ = π/2, then θ/θm = 1/2, cos(2πt/T) = 1/2, and 
 

( ) ( ) ( )22sin 2 1 cos 2 1 1 2 3 2t T t Tπ π= − = − =  
 
where the trigonometric identity cos2θ + sin2θ = 1 is used. Thus, 
 

 = 2 2 = 2
0.500

3
2

= 34.2 . Ω − F
H
I
K −FH

I
K

F
HG
I
KJ −

π π π
π

T
t

Tmθ sin
 s

 rad  rad / sa f  

 
During another portion of the cycle its angular speed is +34.2 rad/s when its angular 
displacement is π/2 rad. 
 
(c) The angular acceleration is  
 

( )
2 22

2

2 2cos 2 / .m
d t T
dt T T

θ π πα θ π θ⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
When θ = π/4, 

2
22 = 124 rad/s ,

0.500 s 4
π πα ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

or 2| | 124 rad/s .α =  
 
The angular displacement, angular velocity, and angular acceleration as a function of 
time are plotted next. 
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40. We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh2 where h = d, the 
unknown. For a meter stick of mass m, the rotational inertia about its center of mass is Icm 
= mL2/12 where L = 1.0 m. Thus, for T = 2.5 s, we obtain 
 

T mL md
mgd

L
gd

d
g

=
+

= +2 12 2
12

2 2 2

π π
/ . 

 
Squaring both sides and solving for d leads to the quadratic formula: 
 

 =
/ 2 / 2 / 3

2
. 

2 2 4 2

d
g T d T Lπ πa f a f± −

 

 
Choosing the plus sign leads to an impossible value for d (d = 1.5 > L). If we choose the 
minus sign, we obtain a physically meaningful result: d = 0.056 m. 
 
41. (a) A uniform disk pivoted at its center has a rotational inertia of 21

2 Mr , where M is 
its mass and r is its radius. The disk of this problem rotates about a point that is displaced 
from its center by r + L, where L is the length of the rod, so, according to the parallel-axis 
theorem, its rotational inertia is 2 21 1

2 2 ( )Mr M L r+ + . The rod is pivoted at one end and 
has a rotational inertia of mL2/3, where m is its mass. The total rotational inertia of the 
disk and rod is 

 
2 2 2

2 2 2

2

1 1( )
2 3
1 1(0.500 kg)(0.100 m) (0.500 kg)(0.500 m 0.100 m) (0.270 kg)(0.500 m)
2 3
0.205 kg m .

I Mr M L r mL= + + +

= + + +

= ⋅

 

 
(b) We put the origin at the pivot. The center of mass of the disk is 
 

= + = 0.500 m + 0.100 m = 0.600 md L r  
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away and the center of mass of the rod is r L= = =/ ( . ) / .2 0 500 2 0 250m m away, on 
the same line. The distance from the pivot point to the center of mass of the disk−rod 
system is 
 

 = +
+

=
0.500 0.600 + 0.270 0.250

0.500 + 0.270
= 0.477 . d M m

M m
d r  kg  m  kg  m

 kg  kg
 m

a fa f a fa f
 

 
(c) The period of oscillation is 
 

( )
2

2

0.205 kg m2 2 1.50 s .
(0.500 kg 0.270 kg)(9.80 m/s )(0.447 m)

IT
M m gd

π π ⋅
= = =

+ +
 

 
42. (a) Comparing the given expression to Eq. 15-3 (after changing notation x → θ ), we 
see that ω = 4.43 rad/s.  Since ω = g/L  then we can solve for the length: L = 0.499 m. 
 
(b) Since vm = ωxm = ωLθm = (4.43 rad/s)(0.499 m)(0.0800 rad) and m = 0.0600 kg, then 
we can find the maximum kinetic energy: 12 mvm

2 = 9.40 ×  10− 4 J.  
 
43. (a) Referring to Sample Problem – “Physical pendulum, period and length,” we see 
that the distance between P and C is h L L L= − =2

3
1
2

1
6 . The parallel axis theorem (see Eq. 

15–30) leads to 
 

 = 1
12

+ = 1
12

+ 1
36

= 1
9

. 2 2 2 2I mL mh mL mLF
H

I
K  

 
Equation 15-29 then gives

 
T I

mgh
L
gL

L
g

= = =2 2 9
6

2 2
3

2

π π π
/
/

 

 
which yields T = 1.64 s for L = 1.00 m. 
 
(b) We note that this T is identical to that computed in Sample Problem – “Physical 
pendulum, period and length.” As far as the characteristics of the periodic motion are 
concerned, the center of oscillation provides a pivot that is equivalent to that chosen in 
the Sample Problem (pivot at the edge of the stick). 
 
44. To use Eq. 15-29 we need to locate the center of mass and we need to compute the 
rotational inertia about A. The center of mass of the stick shown horizontal in the figure is 
at A, and the center of mass of the other stick is 0.50 m below A. The two sticks are of 
equal mass, so the center of mass of the system is 1

2 (0.50 m) 0.25mh = =  below A, as 
shown in the figure. Now, the rotational inertia of the system is the sum of the rotational 
inertia I1 of the stick shown horizontal in the figure and the rotational inertia I2 of the 
stick shown vertical. Thus, we have 
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 = + = 1
12

+ 1
3

= 5
12

 1 2
2 2 2I I I ML ML ML  

 
where L = 1.00 m and M is the mass of a meter stick (which cancels in the next step). 
Now, with m = 2M (the total mass), Eq. 15-29 yields 
 

T ML
Mgh

L
g

= =2
2

2 5
6

5
12

2

π π  

 
where h = L/4 was used. Thus, T = 1.83 s. 
 
45. From Eq. 15-28, we find the length of the pendulum when the period is T = 8.85 s: 
 

 =
4

. 
2

2L gT
π

 

 
The new length is L´ = L – d where d = 0.350 m. The new period is 
 

2

22 2 2
4

L L d T dT
g g g g

π π π
π

′
′= = − = −  

 
which yields T´ = 8.77 s. 
 
46. We require 

o2 2L IT
g mgh

π π= =  

 
similar to the approach taken in part (b) of Sample Problem – “Physical pendulum, period 
and length,” but treating in our case a more general possibility for I. Canceling 2π, 
squaring both sides, and canceling g leads directly to the result; Lo = I/mh. 
 
47. We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh2 where h = d. For a solid 
disk of mass m, the rotational inertia about its center of mass is Icm = mR2/2. Therefore, 
 

2 2 2 2 2 2

2

/ 2 2 (2.35 cm) +2(1.75 cm)2 2 2 0.366 s.
2 2(980 cm/s )(1.75 cm)

mR md R dT
mgd gd

π π π+ +
= = = =  

 
48. (a) For the “physical pendulum” we have 
 

T = 2 π I
mgh  = 

2
com2 I mh

mgh
π + . 
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If we substitute r for h and use item (i) in Table 10-2, we have 
 

2 22
12

a bT r
rg

π +
= + . 

 
In the figure below, we plot T as a function of r, for a = 0.35 m and b = 0.45 m. 
 

 
 
(b) The minimum of T can be located by setting its derivative to zero, / 0dT dr = . This 
yields 
 

 
2 2 2 2(0.35 m) (0.45 m) 0.16 m.
12 12

a br + +
= = =  

 
(c) The direction from the center does not matter, so the locus of points is a circle around 
the center, of radius [(a2 + b2)/12]1/2. 
 
49. Replacing x and v in Eq. 15-3 and Eq. 15-6 with θ and dθ/dt, respectively, we identify 
4.44 rad/s as the angular frequency ω. Then we evaluate the expressions at t = 0 and 
divide the second by the first: 

        
at 0

/

t

d dtθ
θ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

=  − ω tanφ .  

 
(a) The value of θ at t = 0 is 0.0400 rad, and the value of dθ/dt then is –0.200 rad/s, so we 
are able to solve for the phase constant:  
 

φ = tan−1[0.200/(0.0400 x 4.44)] = 0.845 rad. 
 
(b) Once φ is determined we can plug back in to θo = θmcosφ to solve for the angular 
amplitude.  We find θm = 0.0602 rad. 
 
50. (a) The rotational inertia of a uniform rod with pivot point at its end is I = mL2/12 + 
mL2 = 1/3ML2. Therefore, Eq. 15-29 leads to 
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( )
2 21

3
2

32     
2 8

ML gTT
Mg L

π
π

= ⇒  

so that L = 0.84 m. 
 
(b) By energy conservation 
 

bottom of swing end of swing m mE E K U= ⇒ =  
 
where U Mg= −( cos )1 θ  with  being the distance from the axis of rotation to the center 
of mass. If we use the small-angle approximation ( cosθ θ≈ −1 1

2
2  with θ in radians 

(Appendix E)), we obtain 

( )( )2 210.5 kg 9.8 m/s
2 2m m
LU θ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
where θm = 0.17 rad. Thus, Km = Um = 0.031 J. If we calculate (1 – cosθ) 
straightforwardly (without using the small angle approximation) then we obtain within 
0.3% of the same answer. 
 
51. This is similar to the situation treated in Sample Problem — “Physical pendulum, 
period and length,” except that O is no longer at the end of the stick. Referring to the 
center of mass as C (assumed to be the geometric center of the stick), we see that the 
distance between O and C is h = x. The parallel axis theorem (see Eq. 15-30) leads to 
 

2
2 2 21 .

12 12
LI mL mh m x

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
 

Equation 15-29 gives 

T I
mgh

x
gx

L x
gx

L

= =
+

=
+

2 2 2
12

12

2

12
2 2 2

π π π
c h c h

.  

 
(a) Minimizing T by graphing (or special calculator functions) is straightforward, but the 
standard calculus method (setting the derivative equal to zero and solving) is somewhat 
awkward. We pursue the calculus method but choose to work with 12gT2/2π instead of T 
(it should be clear that 12gT2/2π is a minimum whenever T is a minimum). The result is 
 

d

dx
d x

dx
L
x

gT L
x

12
2 2

2

2 2

0
12

12
πe j d i

= =
+

= − +  

 
which yields / 12 (1.85 m)/ 12 0.53 mx L= = =  as the value of x that should produce 
the smallest possible value of T.  
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(b) With L = 1.85 m and x = 0.53 m, we obtain T = 2.1 s from the expression derived in 
part (a). 
 
52. Consider that the length of the spring as shown in the figure (with one of the block’s 
corners lying directly above the block’s center) is some value L (its rest length).  If the 
(constant) distance between the block’s center and the point on the wall where the spring 
attaches is a distance r, then rcosθ = d/ 2 , and rcosθ = L defines the angle θ measured 
from a line on the block drawn from the center to the top corner to the line of r (a straight 
line from the center of the block to the point of attachment of the spring on the wall).  In 
terms of this angle, then, the problem asks us to consider the dynamics that results from 
increasing θ  from its original value θo to θo + 3º and then releasing the system and letting 
it oscillate.  If the new (stretched) length of spring is L′ (when θ  = θo + 3º), then it is a 
straightforward trigonometric exercise to show that  
 

(L′)2 = r2 + (d/ 2 )2 – 2r(d/ 2 )cos(θo + 3º) = L2 + d2 – d2cos(3º)+ 2 Ldsin(3º)  
 
since θo = 45º.  The difference between L′ (as determined by this expression) and the 
original spring length L is the amount the spring has been stretched (denoted here as xm).  
If one plots xm versus L over a range that seems reasonable considering the figure shown 
in the problem (say, from L = 0.03 m to L = 0.10 m) one quickly sees that xm ≈ 0.00222 m 
is an excellent approximation (and is very close to what one would get by approximating 
xm as the arc length of the path made by that upper block corner as the block is turned 
through 3º, even though this latter procedure should in principle overestimate xm).  Using 
this value of xm with the given spring constant leads to a potential energy of U = 12 k xm

2 =  
0.00296 J.  Setting this equal to the kinetic energy the block has as it passes back through 
the initial position, we have 

K = 0.00296 J =  12  I ωm
2 

 
where ωm is the maximum angular speed of the block (and is not to be confused with the 
angular frequency ω of the oscillation, though they are related by ωm = θoω  if  θo is 
expressed in radians).  The rotational inertia of the block is I = 16 Md2 = 0.0018 kg·m2.  
Thus, we can solve the above relation for the maximum angular speed of the block:  
 

2

2 2(0.00296 J) 1.81 rad/s
0.0018 kg mm

K
I

ω = = =
⋅

. 

 
Therefore the angular frequency of the oscillation is ω = ωm/θo = 34.6 rad/s.  Using Eq. 
15-5, then, the period is T = 0.18 s. 
 
53. If the torque exerted by the spring on the rod is proportional to the angle of rotation of 
the rod and if the torque tends to pull the rod toward its equilibrium orientation, then the 
rod will oscillate in simple harmonic motion. If τ = –Cθ, where τ is the torque, θ is the 
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angle of rotation, and C is a constant of proportionality, then the angular frequency of 
oscillation is ω = C I/  and the period is  
 

T I C= =2 2π π/ /ω , 
 
where I is the rotational inertia of the rod. The plan is to find the torque as a function of θ 
and identify the constant C in terms of given quantities. This immediately gives the 
period in terms of given quantities. Let 0  be the distance from the pivot point to the wall. 
This is also the equilibrium length of the spring. Suppose the rod turns through the angle 
θ, with the left end moving away from the wall. This end is now (L/2) sin θ further from 
the wall and has moved a distance (L/2)(1 – cos θ) to the right. The length of the spring is 
now  

2 2 2
0( / 2) (1 cos ) [ ( / 2)sin ]L Lθ θ= − + + . 

 
If the angle θ is small we may approximate cos θ with 1 and sin θ with θ in radians. Then 
the length of the spring is given by 0 / 2Lθ≈ +  and its elongation is Δx = Lθ/2. The 
force it exerts on the rod has magnitude F = kΔx = kLθ/2. Since θ is small we may 
approximate the torque exerted by the spring on the rod by τ = –FL/2, where the pivot 
point was taken as the origin. Thus τ = –(kL2/4)θ. The constant of proportionality C that 
relates the torque and angle of rotation is C = kL2/4. The rotational inertia for a rod 
pivoted at its center is I = mL2/12, where m is its mass. See Table 10-2. Thus the period 
of oscillation is 

T I
C

mL
kL

m
k

= = =2 2 12
4

2
3

2

2π π π
/
/

. 

 
With m = 0.600 kg and k = 1850 N/m, we obtain T = 0.0653 s. 
 
54. We note that the initial angle is θo = 7º = 0.122 rad (though it turns out this value will 
cancel in later calculations).  If we approximate the initial stretch of the spring as the arc-
length that the corresponding point on the plate has moved through (x = r θo  where r = 
0.025 m) then the initial potential energy is approximately  12 kx2 =  0.0093 J.  This should 

equal to the kinetic energy of the plate ( 12 I ωm
2 where this ωm  is the maximum angular 

speed of the plate, not the angular frequency ω).  Noting that the maximum angular speed 
of the plate is ωm = ωθo where ω = 2π/T with T = 20 ms = 0.02 s as determined from the 
graph, then we can find the rotational inertial from 1

2 Iωm
2 = 0.0093 J. Thus, 

5 21.3 10  kg mI −= × ⋅ .  
 
55. (a) The period of the pendulum is given by T I mgd= 2π / , where I is its rotational 
inertia, m = 22.1 g is its mass, and d is the distance from the center of mass to the pivot 
point. The rotational inertia of a rod pivoted at its center is mL2/12 with L = 2.20 m. 
According to the parallel-axis theorem, its rotational inertia when it is pivoted a distance 
d from the center is I = mL2/12 + md2. Thus, 
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T m L d
mgd

L d
gd

=
+

=
+2 12 2 12

12

2 2 2 2

π π
( / ) . 

 
Minimizing T with respect to d, dT/d(d) = 0, we obtain d L= / 12 . Therefore, the 
minimum period T is 
 

2 2

min 2

12( / 12) 2 2(2.20 m)2 2 2 2.26 s.
12 ( / 12) 12 12(9.80 m/s )

L L LT
g L g

π π π+
= = = =  

 
(b) If d is chosen to minimize the period, then as L is increased the period will increase as 
well. 
 
(c) The period does not depend on the mass of the pendulum, so T does not change when 
m increases. 
 
56. The table of moments of inertia in Chapter 11, plus the parallel axis theorem found in 
that chapter, leads to 
        

IP =  12 MR2 + Mh2  =  12 (2.5 kg)(0.21 m)2  +  (2.5 kg)(0.97 m)2  =  2.41 kg·m² 
 
where P is the hinge pin shown in the figure (the point of support for the physical 
pendulum), which is a distance h = 0.21 m + 0.76 m away from the center of the disk.  
 
(a) Without the torsion spring connected, the period is 
 

T = 2π 
IP

Mgh = 2.00 s . 

 
(b) Now we have two “restoring torques” acting in tandem to pull the pendulum back to 
the vertical position when it is displaced.  The magnitude of the torque-sum is (Mgh + 
κ)θ = IP α, where the small-angle approximation (sinθ ≈ θ in radians) and Newton’s 
second law (for rotational dynamics) have been used.  Making the appropriate adjustment 
to the period formula, we have                                       

T′ = 2π 
IP

Mgh + κ  . 

 
The problem statement requires T = T′ + 0.50 s. Thus, T′  = (2.00 – 0.50)s = 1.50 s.  
Consequently, 

κ  =   
4π2

T′ 2 IP – Mgh = 18.5  N·m/rad  . 
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57. Since the energy is proportional to the amplitude squared (see Eq. 15-21), we find the 
fractional change (assumed small) is 
 

 = = 2 = 2 . 
2

2 2
′ −

≈
E E

E
dE
E

dx
x

x dx
x

dx
x

m

m

m m

m

m

m

 

 
Thus, if we approximate the fractional change in xm as dxm/xm, then the above calculation 
shows that multiplying this by 2 should give the fractional energy change. Therefore, if 
xm decreases by 3%, then E must decrease by 6.0%. 
 
58. Referring to the numbers in Sample Problem – “Damped harmonic oscillator, time to 
decay, energy,” we have m = 0.25 kg, b = 0.070 kg/s, and T = 0.34 s. Thus, when t = 20T, 
the damping factor becomes 
 

e ebt m− −= =2 0 070 20 0 34 2 0 25 0 39. . / . . .b gb gb g b g  
 
59. (a) We want to solve e–bt/2m = 1/3 for t. We take the natural logarithm of both sides to 
obtain –bt/2m = ln(1/3). Therefore, t = –(2m/b) ln(1/3) = (2m/b) ln 3. Thus, 
 

 =
2 1.50
0.230

3 = 14.3 . t
 kg

 kg / s
ln  sa f  

(b) The angular frequency is 
 

′ = − = − =ω k
m

b
m

2

2

2

24
8 00

1 50
0 230
4 1 50

2 31.
.

.
.

. .N / m
kg

kg / s
kg

rad / s
a f
a f  

 
The period is T = 2π/ω´ = (2π)/(2.31 rad/s) = 2.72 s and the number of oscillations is  
 

t/T = (14.3 s)/(2.72 s) = 5.27. 
 
The displacement x(t) as a function of time is shown below. The amplitude, / 2bt m

mx e− , 
decreases exponentially with time. 
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60. (a) From Hooke’s law, we have 
 

( )( )2
2

500 kg 9.8 m/s
= 4.9 10 N/cm.

10cm
k = ×  

 
(b) The amplitude decreasing by 50% during one period of the motion implies 

 

e TbT m− = =
′

2 1
2

2where π
ω

. 

 
Since the problem asks us to estimate, we let ′ ≈ =ω ω k m/ . That is, we let 
 

ω′≈ ≈ 49000
500

, N / m
kg

9.9 rad / s  

 
so that T ≈ 0.63 s. Taking the (natural) log of both sides of the above equation, and 
rearranging, we find 

( ) ( ) 32 500 kg2 ln2 0.69 1.1 10  kg/s.
0.63 s

mb
T

= ≈ = ×  

 
Note: if one worries about the ω´ ≈ ω approximation, it is quite possible (though messy) 
to use Eq. 15-43 in its full form and solve for b. The result would be (quoting more 
figures than are significant) 

 = 2 2
( 2) + 4

= 1086
2 2

b mkln
ln

 kg / s
π

 

 
which is in good agreement with the value gotten “the easy way” above. 
 
61. (a) We set ω = ωd and find that the given expression reduces to xm = Fm/bω at 
resonance. 
 
(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity 
amplitude vm = ωxm. Thus, at resonance, we have vm = ωFm/bω = Fm/b. 
 
62. With ω = 2π/T then Eq. 15-28 can be used to calculate the angular frequencies for the 
given pendulums.  For the given range of 2.00 < ω < 4.00 (in rad/s), we find only two of 
the given pendulums have appropriate values of ω: pendulum (d) with length of 0.80 m 
(for which ω = 3.5 rad/s) and pendulum (e) with length of 1.2 m (for which ω = 2.86 
rad/s).  
 
63. With M = 1000 kg and m = 82 kg, we adapt Eq. 15-12 to this situation by writing 
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2
4

k
T M m
πω = =

+
. 

 
If d = 4.0 m is the distance traveled (at constant car speed v) between impulses, then we 
may write T = v/d, in which case the above equation may be solved for the spring 
constant: 

( )
22 2=     4 .

4
v k vk M m

d M m d
π π⎛ ⎞⇒ = + ⎜ ⎟+ ⎝ ⎠

 

 
Before the people got out, the equilibrium compression is xi = (M + 4m)g/k, and 
afterward it is xf = Mg/k. Therefore, with v = 16000/3600 = 4.44 m/s, we find the rise of 
the car body on its suspension is 

 = 4 = 4
+ 4 2

= 0.050 . 
2

x x mg
k

mg
M m

d
vi f− F

H
I
Kπ

 m  

 
64. Since ω = 2πf where f = 2.2 Hz, we find that the angular frequency is ω = 13.8 rad/s. 
Thus, with x = 0.010 m, the acceleration amplitude is am = xm ω 2  = 1.91 m/s2. We set up 
a ratio: 
 

 = = 1.91
9.8

= 0.19 . a a
g

g g gm
mF
HG
I
KJ
F
H
I
K  

 
65. (a) The problem gives the frequency f = 440 Hz, where the SI unit abbreviation Hz 
stands for Hertz, which means a cycle-per-second. The angular frequency ω is similar to 
frequency except that ω is in radians-per-second. Recalling that 2π radians are equivalent 
to a cycle, we have ω = 2πf ≈ 2.8×103 rad/s. 
 
(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity 
amplitude vm = ωxm. With xm = 0.00075 m and the above value for ω, this expression 
yields vm = 2.1 m/s. 
 
(c) In the discussion immediately after Eq. 15-7, the book introduces the acceleration 
amplitude am = ω2xm, which (if the more precise value ω = 2765 rad/s is used) yields am = 
5.7 km/s. 
 
66. (a) First consider a single spring with spring constant k and unstretched length L. One 
end is attached to a wall and the other is attached to an object. If it is elongated by Δx the 
magnitude of the force it exerts on the object is F = k Δx. Now consider it to be two 
springs, with spring constants k1 and k2, arranged so spring 1 is attached to the object. If 
spring 1 is elongated by Δx1 then the magnitude of the force exerted on the object is F = 
k1 Δx1. This must be the same as the force of the single spring, so k Δx = k1 Δx1. We must 
determine the relationship between Δx and Δx1. The springs are uniform so equal 
unstretched lengths are elongated by the same amount and the elongation of any portion 
of the spring is proportional to its unstretched length. This means spring 1 is elongated by 
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Δx1 = CL1 and spring 2 is elongated by Δx2 = CL2, where C is a constant of 
proportionality. The total elongation is  
 

Δx = Δx1 + Δx2 = C(L1 + L2) = CL2(n + 1), 
 
where L1 = nL2 was used to obtain the last form. Since L2 = L1/n, this can also be written 
Δx = CL1(n + 1)/n. We substitute Δx1 = CL1 and Δx = CL1(n + 1)/n into k Δx = k1 Δx1 and 
solve for k1. With k = 8600 N/m and n = L1/L2 = 0.70, we obtain  
 

4
1

1 0.70 1.0 (8600 N/m) 20886 N/m 2.1 10 N/m
0.70

nk k
n
+ +⎛ ⎞ ⎛ ⎞= = = ≈ ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

 
(b) Now suppose the object is placed at the other end of the composite spring, so spring 2 
exerts a force on it. Now k Δx = k2 Δx2. We use Δx2 = CL2 and Δx = CL2(n + 1), then 
solve for k2. The result is k2 = k(n + 1). 
 

4
2 ( 1) (0.70 1.0)(8600 N/m) 14620 N/m 1.5 10 N/mk n k= + = + = ≈ ×  

 
(c) To find the frequency when spring 1 is attached to mass m, we replace k in 
1 2/ /πa f k m  with k(n + 1)/n. With f k m= 1 2/ /πa f , we obtain, for 200 Hzf = and n = 

0.70, 
2

1
1 ( 1) 1 0.70 1.0= (200 Hz) 3.1 10  Hz.

2 0.70
n k nf f
nm nπ
+ + +

= = = ×  

 
(d) To find the frequency when spring 2 is attached to the mass, we replace k with k(n + 1) 
to obtain 

2
2

1 ( 1)= 1 0.70 1.0(200 Hz) 2.6 10 Hz.
2

n kf n f
mπ
+

= + = + = ×  

 
67. The magnitude of the downhill component of the gravitational force acting on each 
ore car is 

 = 10000 9.8  2wx  kg  m / s sinb gc h θ  
 
where θ = 30° (and it is important to have the calculator in degrees mode during this 
problem). We are told that a downhill pull of 3ωx causes the cable to stretch x = 0.15 m. 
Since the cable is expected to obey Hooke’s law, its spring constant is 
 

 = 3 = 9.8 10 . 5k w
x

x ×  N / m  

 
(a) Noting that the oscillating mass is that of two of the cars, we apply Eq. 15-12 (divided 
by 2π). 
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51 1 9.8 10 N / m 1.1 Hz.
2 2 2 20000 kg

kf
m

ω
π π π

×
= = = =  

 
(b) The difference between the equilibrium positions of the end of the cable when 
supporting two as opposed to three cars is 
 

 = 3 2 = 0.050 . Δ
−x w w
k

x x  m  

 
68. (a) Hooke’s law readily yields (0.300 kg)(9.8 m/s2)/(0.0200 m) = 147 N/m. 
 
(b) With m = 2.00 kg, the period is 
 

 = 2 0 733T m
k

π = . s . 

 
69. We use vm = ωxm = 2πfxm, where the frequency is 180/(60 s) = 3.0 Hz and the 
amplitude is half the stroke, or xm = 0.38 m. Thus,  
 

vm = 2π(3.0 Hz)(0.38 m) = 7.2 m/s. 
 
70. (a) The rotational inertia of a hoop is I = mR2, and the energy of the system becomes 
 

E I kx= +
1
2

1
2

2 2ω  

 
and θ is in radians. We note that rω = v (where v = dx/dt). Thus, the energy becomes 
 

E mR
r

v kx=
F
HG
I
KJ +

1
2

1
2

2

2
2 2  

 
which looks like the energy of the simple harmonic oscillator discussed in Section15-4 if 
we identify the mass m in that section with the term mR2/r2 appearing in this problem. 
Making this identification, Eq. 15-12 yields 
 

ω = =
k

mR r
r
R

k
m2 2/

. 

 
(b) If r = R the result of part (a) reduces to ω = k m/ . 
 
(c) And if r = 0 then ω = 0 (the spring exerts no restoring torque on the wheel so that it is 
not brought back toward its equilibrium position). 
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71. Since T = 0.500 s, we note that ω = 2π/T = 4π rad/s. We work with SI units, so m = 
0.0500 kg and vm = 0.150 m/s. 
 
(a) Since ω = k m/ , the spring constant is 
 

( ) ( )22 4  rad/s 0.0500 kg 7.90 N/m.k mω π= = =  
 
(b) We use the relation vm = xmω and obtain 
 

 = = 0.150
4

= 0.0119 . x v
m

m

ω π
 m  

 
(c) The frequency is f = ω/2π = 2.00 Hz (which is equivalent to f = 1/T). 
 
72. (a) We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh2 where h = R = 0.126 
m. For a solid disk of mass m, the rotational inertia about its center of mass is Icm = mR2/2. 
Therefore, 
 

2 2/ 2 32 2 0.873s.
2

mR mR RT
mgR g

π π+
= = =  

 
(b) We seek a value of r ≠ R such that 

 

2 2
2

2 3
2

2 2

π π
R r

gr
R
g

+
=  

 
and are led to the quadratic formula: 
 

r
R R R

R R
=

± −
=

3 3 8
4 2

2 2a f
or . 

 
Thus, our result is r = 0.126/2 = 0.0630 m. 
 
73. (a) The spring stretches until the magnitude of its upward force on the block equals 
the magnitude of the downward force of gravity: ky = mg, where y = 0.096 m is the 
elongation of the spring at equilibrium, k is the spring constant, and m = 1.3 kg is the 
mass of the block. Thus  
 

k = mg/y = (1.3 kg)(9.8 m/s2)/(0.096 m) = 1.33 ×102 N/m. 
 
(b) The period is given by  
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1 2 1.3 kg2 2 0.62 s.
133 N / m

mT
f k

π π π
ω

= = = = =  

 
(c) The frequency is f = 1/T = 1/0.62 s = 1.6 Hz. 
 
(d) The block oscillates in simple harmonic motion about the equilibrium point 
determined by the forces of the spring and gravity. It is started from rest 5.0 cm below the 
equilibrium point so the amplitude is 5.0 cm. 
 
(e) The block has maximum speed as it passes the equilibrium point. At the initial 
position, the block is not moving but it has potential energy, 
 

( )( )( ) ( )( )22 21 11.3 kg 9.8 m/s 0.146 m 133 N / m 0.146 m 0.44 J.
2 2i i iU mgy ky= − + = − + = −  

 
When the block is at the equilibrium point, the elongation of the spring is y = 9.6 cm and 
the potential energy is 
 

( )( )( ) ( )( )22 21 11.3 kg 9.8 m/s 0.096 m 133 N / m 0.096 m 0.61 J.
2 2fU mgy ky= − + = − + = −  

 
We write the equation for conservation of energy as U U mvi f= + 1

2
2  and solve for v: 

 

( ) ( )2 2 0.44J 0.61J
0.51 m/s.

1.3kg
i fU U

v
m
− − +

= = =  

 
74. The distance from the relaxed position of the bottom end of the spring to its 
equilibrium position when the body is attached is given by Hooke’s law:  
 

Δx = F/k = (0.20 kg)(9.8 m/s2)/(19 N/m) = 0.103 m. 
 
(a) The body, once released, will not only fall through the Δx distance but continue 
through the equilibrium position to a “turning point” equally far on the other side. Thus, 
the total descent of the body is 2Δx = 0.21 m. 
 
(b) Since f = ω/2π, Eq. 15-12 leads to 
 

 = 1
2

1 6f k
mπ

Η= . .z  

 
(c) The maximum distance from the equilibrium position gives the amplitude: xm = Δx = 
0.10 m. 
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75. (a) Assume the bullet becomes embedded and moves with the block before the block 
moves a significant distance. Then the momentum of the bullet−block system is 
conserved during the collision. Let m be the mass of the bullet, M be the mass of the 
block, v0 be the initial speed of the bullet, and v be the final speed of the block and bullet. 
Conservation of momentum yields mv0 =   (m + M)v, so 
 

 =
+

=
0.050 150
0.050 + 4.0

= 1.85 . 0v mv
m M

 kg  m / s
 kg  kg

 m / s
a fa f  

 
When the block is in its initial position the spring and gravitational forces balance, so the 
spring is elongated by Mg/k. After the collision, however, the block oscillates with simple 
harmonic motion about the point where the spring and gravitational forces balance with 
the bullet embedded. At this point the spring is elongated a distance = +M m g ka f / , 
somewhat different from the initial elongation. Mechanical energy is conserved during 
the oscillation. At the initial position, just after the bullet is embedded, the kinetic energy 
is 1

2
2( )M m v+  and the elastic potential energy is 1

2
2k Mg k( / ) . We take the gravitational 

potential energy to be zero at this point. When the block and bullet reach the highest 
point in their motion the kinetic energy is zero. The block is then a distance ym above the 
position where the spring and gravitational forces balance. Note that ym is the amplitude 
of the motion. The spring is compressed by ym − , so the elastic potential energy is 
1
2

2k ym( )− . The gravitational potential energy is (M + m)gym. Conservation of 
mechanical energy yields 
 

 1
2

+ + 1
2

= 1
2

+ + . 2
2

2M m v k Mg
k

k y M m gym ma f b g a fF
H
I
K −  

 
We substitute = +M m g ka f / . Algebraic manipulation leads to 

 

y m M v
k

mg
k

M mm =
+

− +

=
+

− +

=

a f a f

a fa f a fc h a f

2 2

2

2 2

2

2

0 050 4 0 185
500

0 050 9 8
500

2 4 0 0 050

0 166

. . . . .
( )

. .

. .

kg kg m / s
N / m

kg m / s
N / m

kg kg

m

2

 

 
(b) The original energy of the bullet is E mv0

1
2 0

2 1
2

20 050 150 563= = =( . )( )kg m / s J . The 
kinetic energy of the bullet−block system just after the collision is 
 

 = 1
2

+ = 1
2

0.050 + 4.0 1.85 = 6.94 . 2 2E m M va f a fa f kg  kg  m / s  J  

 
Since the block does not move significantly during the collision, the elastic and 
gravitational potential energies do not change. Thus, E is the energy that is transferred. 
The ratio is  
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E/E0 = (6.94 J)/(563 J) = 0.0123 or 1.23%. 
 
76. (a)  We note that  
 

ω = k/m  = 1500/0.055  = 165.1 rad/s. 
 
We consider the most direct path in each part of this problem.  That is, we consider in 
part (a) the motion directly from   x1 = +0.800xm  at time t1    to   x2 = +0.600xm  at time t2    
(as opposed to, say, the block moving from x1 = +0.800xm through x = +0.600xm, through 
x = 0, reaching x = –xm and after returning back through x = 0 then getting to x2 = 
+0.600xm).   Equation 15-3 leads to  
 

ωt1 + φ = cos−1(0.800) = 0.6435 rad 
 

ωt2 + φ = cos−1(0.600) = 0.9272 rad . 
 
Subtracting the first of these equations from the second leads to  
     

ω(t2 – t1) = 0.9272 – 0.6435 = 0.2838 rad . 
 
Using the value for ω computed earlier, we find t2 – t1 = 1.72 × 10−3 s.  
 
(b) Let t3  be when the block reaches x = –0.800xm in the direct sense discussed above.  
Then the reasoning used in part (a) leads here to 
 

ω(t3 – t1) = ( 2.4981 – 0.6435) rad = 1.8546 rad 
 
and thus to t3 – t1 = 11.2 × 10−3 s.  
 
77. (a) From the graph, we find xm = 7.0 cm = 0.070 m, and T = 40 ms = 0.040 s.  Thus, 
the angular frequency is ω = 2π/T = 157 rad/s.  Using m = 0.020 kg, the maximum kinetic 
energy is then 12 mv2 = 12 m ω2 xm

2  = 1.2 J. 
 
(b) Using Eq. 15-5, we have f = ω/2π = 50 oscillations per second. Of course, Eq. 15-2 
can also be used for this. 
 
78. (a) From the graph we see that xm = 7.0 cm = 0.070 m and T = 40 ms = 0.040 s. The 
maximum speed is xmω = xm2π/T = 11 m/s. 
 
(b) The maximum acceleration is xmω2 = xm(2π/T)2 = 1.7 × 103 m/s2. 
 
79. Setting 15 mJ (0.015 J) equal to the maximum kinetic energy leads to vmax = 0.387 
m/s.  Then one can use either an “exact” approach using vmax = max2 (1 cos )gL θ−  or the 
“SHM” approach where  
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vmax = Lωmax = Lωθmax  = L g/L θmax 
 
to find L.  Both approaches lead to L = 1.53 m. 
 
80. Its total mechanical energy is equal to its maximum potential energy  12 kxm

2, and its 

potential energy at t = 0 is  12 kxo
2  where xo = xmcos(π/5) in this problem.  The ratio is 

therefore cos2(π/5) = 0.655 = 65.5%. 
 
81. (a) From the graph, it is clear that xm = 0.30 m. 
 
(b) With F = –kx, we see k is the (negative) slope of the graph — which is 75/0.30 = 250 
N/m. Plugging this into Eq. 15-13 yields 
 

 = 2 0 28T m
k

π = . .s  

 
(c) As discussed in Section 15-2, the maximum acceleration is 
 

2 2 21.5 10  m/s .m m m
ka x x
m

ω= = = ×  

 
Alternatively, we could arrive at this result using am = (2π/T)2 xm. 
 
(d) Also in Section 15-2 is vm = ωxm so that the maximum kinetic energy is 
 

 = 1
2

= 1
2

= 1
2

 2 2 2 2K mv m x kxm m m mω  

 
which yields 11.3 ≈ 11 J. We note that the above manipulation reproduces the notion of 
energy conservation for this system (maximum kinetic energy being equal to the 
maximum potential energy). 
 
82. Since the centripetal acceleration is horizontal and Earth’s gravitational g  is 
downward, we can define the magnitude of an “effective” gravitational acceleration using 
the Pythagorean theorem: 
 

2 2 2( / ) .
eff

g g v R= +  
 
Then, since frequency is the reciprocal of the period, Eq. 15-28 leads to 
 

f
g
L

g v R
L

eff= =
+1

2
1

2

2 4 2

π π
.  
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With v = 70 m/s, R = 50 m, and L = 0.20 m, we have 13.5 s 3.5 Hz.f −≈ =  
 
83. (a) Hooke’s law readily yields  
 

k = (15 kg)(9.8 m/s2)/(0.12 m) = 1225 N/m. 
 
Rounding to three significant figures, the spring constant is therefore 1.23 kN/m. 
 
(b) We are told f = 2.00 Hz = 2.00 cycles/sec. Since a cycle is equivalent to 2π radians, 
we have ω = 2π(2.00) = 4π rad/s (understood to be valid to three significant figures). 
Using Eq. 15-12, we find 
 

( )2
1225  N/m   7.76 kg.
4  rad/s

k m
m

ω
π

= ⇒ = =  

 
Consequently, the weight of the package is mg = 76.0 N. 
 
84. (a) Comparing with Eq. 15-3, we see ω = 10 rad/s in this problem. Thus, f = ω/2π = 
1.6 Hz. 
 
(b) Since vm = ωxm and xm = 10 cm (see Eq. 15-3), then vm = (10 rad/s)(10 cm) = 100 cm/s 
or 1.0 m/s. 
 
(c) The maximum occurs at t = 0. 
 
(d) Since am = ω2xm, then vm = (10 rad/s)2(10 cm) = 1000 cm/s2 or 10 m/s2. 
 
(e) The acceleration extremes occur at the displacement extremes: x = ±xm or x = ±10 cm. 
 
(f) Using Eq. 15-12, we find 
 

 = 0 10 10 102ω k
m

k⇒ = =. .kg rad / s N / ma fa f  

 
Thus, Hooke’s law gives F = –kx = –10x in SI units. 
 
85. Using Δm = 2.0 kg, T1 = 2.0 s and T2 = 3.0 s, we write 
 

T m
k

T m m
k1 22 2= =

+
π πand Δ . 

 
Dividing one relation by the other, we obtain 
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 =2

1

T
T

m m
m
+ Δ  

which (after squaring both sides) simplifies to 2
2 1

1.6kg.
( / ) 1

mm
T T

Δ
= =

−
 

 
86. (a) The textbook notes (in the discussion immediately after Eq. 15-7) that the 
acceleration amplitude is am = ω2xm, where ω is the angular frequency (ω = 2π f since 
there are 2π radians in one cycle). Therefore, in this circumstance, we obtain 
 

 = 2 1000 0.00040 = 1.6 10 . 2 4 2am π  Hz  m  m / sa fb g a f ×  
 
(b) Similarly, in the discussion after Eq. 15-6, we find vm = ωxm so that 
 

 = 2 1000 0.00040 = 2.5 . vm π  Hz  m  m / sb gc hb g  
 
(c) From Eq. 15-8, we have (in absolute value) 
 

a  = 2 1000 0.00020 = 7.9 10 . 
2 3 2π  Hz  m  m / sb gc h b g ×  

 
(d) This can be approached with the energy methods of Section 15-4, but here we will use 
trigonometric relations along with Eq. 15-3 and Eq. 15-6. Thus, allowing for both roots 
stemming from the square root, 
 

( ) ( )
2

2
2sin 1 cos 1 .

m m

v xt t
x x

ω φ ω φ
ω

+ = ± − + ⇒ − = ± −  

 
Taking absolute values and simplifying, we obtain 
 

( )2 2 2 2| | 2 2 1000 0.00040 0.00020 2.2 m/s.mv f x xπ π= − = − =  
 
87. (a) The rotational inertia is I MR= = = ⋅1

2
2 1

2
2 23 00 0 700 0 735( . )( . ) .kg m kg m . 

 
(b) Using Eq. 15-22 (in absolute value), we find 
 

0.0600 N m= = = 0.0240 N m/rad.
2.5 rad

τκ
θ

⋅
⋅  

 
(c) Using Eq. 15-5, Eq. 15-23 leads to 
 

2

0.024N m/rad 0.181 rad/s.
0.735kg mI

κω ⋅
= = =

⋅
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88. (a) The Hooke’s law force (of magnitude (100)(0.30) = 30 N) is directed upward and 
the weight (20 N) is downward. Thus, the net force is 10 N upward. 
 
(b) The equilibrium position is where the upward Hooke’s law force balances the weight, 
which corresponds to the spring being stretched (from unstretched length) by 20 N/100 
N/m = 0.20 m. Thus, relative to the equilibrium position, the block (at the instant 
described in part (a)) is at what one might call the bottom turning point (since v = 0) at x 
= –xm where the amplitude is xm = 0.30 – 0.20 = 0.10 m. 
 
(c) Using Eq. 15-13 with m = W/g ≈ 2.0 kg, we have 
 

 = 2 0 90T m
k

π = . .s  

 
(d) The maximum kinetic energy is equal to the maximum potential energy 1

2
2kxm . Thus, 

 

 = = 1
2

100 0.10 = 0.50 . 2K Um m  N / m  m  Ja fa f  

 
89. (a) We require U E= 1

2  at some value of x. Using Eq. 15-21, this becomes 
 

 1
2

= 1
2

1
2

=
2

. 2 2kx kx x x
m

mF
HG
I
KJ ⇒  

 
We compare the given expression x as a function of t with Eq. 15-3 and find xm = 5.0 m. 
Thus, the value of x we seek is x = ≈5 0 2 3 5. / . m. 
 
(b) We solve the given expression (with x = 5 0 2. / ), making sure our calculator is in 
radians mode: 

 =
4

+ 3 1
2

= 1.54 . 1t π
π

cos  s− F
HG
I
KJ  

 
Since we are asked for the interval teq – t where teq specifies the instant the particle passes 
through the equilibrium position, then we set x = 0 and find 

 

 =
4

+ 3 0 = 2.29 . 1teq cos  sπ
π

− b g  

 
Consequently, the time interval is teq – t = 0.75 s. 
 
90. Since the particle has zero speed (momentarily) at x ≠ 0, then it must be at its turning 
point; thus, xo = xm = 0.37 cm. It is straightforward to infer from this that the phase 
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constant φ in Eq. 15-2 is zero. Also, f = 0.25 Hz is given, so we have ω = 2πf = π/2 rad/s. 
The variable t is understood to take values in seconds. 
 
(a) The period is T = 1/f = 4.0 s. 
 
(b) As noted above, ω = π/2 rad/s. 
 
(c) The amplitude, as observed above, is 0.37 cm. 
 
(d) Equation 15-3 becomes x = (0.37 cm) cos(πt/2). 
 
(e) The derivative of x is v = –(0.37 cm/s)(π/2) sin(πt/2) ≈ (–0.58 cm/s) sin(πt/2). 
 
(f) From the previous part, we conclude vm = 0.58 cm/s. 
 
(g) The acceleration-amplitude is am = ω2xm = 0.91 cm/s2. 
 
(h) Making sure our calculator is in radians mode, we find x = (0.37) cos(π(3.0)/2) = 0. It 
is important to avoid rounding off the value of π in order to get precisely zero, here. 
 
(i) With our calculator still in radians mode, we obtain v = –(0.58 cm/s)sin(π(3.0)/2) = 
0.58 cm/s. 
 
91. (a) The frequency for small-amplitude oscillations is f g L= 1 2/ /πa f , where L is 
the length of the pendulum. This gives  
 

f = =1 2 9 80 2 0 0 352/ ( . / ) / ( . ) . .πa f m s m Hz  
 
(b) The forces acting on the pendulum are the tension force T  of the rod and the force of 
gravity mg . Newton’s second law yields T mg ma+ = , where m is the mass and a  is the 
acceleration of the pendulum. Let a a ae= + ′ , where ae  is the acceleration of the elevator 
and ′a  is the acceleration of the pendulum relative to the elevator. Newton’s second law 
can then be written ( )em g a T− + =  ma′ . Relative to the elevator the motion is exactly 
the same as it would be in an inertial frame where the acceleration due to gravity is g ae− . 
Since g  and ae  are along the same line and in opposite directions, we can find the 
frequency for small-amplitude oscillations by replacing g with g + ae in the expression 
f g L= ( / ) /1 2π . Thus 
 

f g a
L

e=
+

=
+

=
1

2
1

2
9 8 2 0

2 0
0 39

π π
. .

.
. .m / s m / s

m
Hz

2 2

 

 
(c) Now the acceleration due to gravity and the acceleration of the elevator are in the 
same direction and have the same magnitude. That is, g ae− = 0. To find the frequency 
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for small-amplitude oscillations, replace g with zero in f g L= ( / ) /1 2π . The result is 
zero. The pendulum does not oscillate. 
 
92. The period formula, Eq. 15-29, requires knowing the distance h from the axis of 
rotation and the center of mass of the system. We also need the rotational inertia I about 
the axis of rotation. From the figure, we see h = L + R where R = 0.15 m. Using the 
parallel-axis theorem, we find 
 

( )221 ,
2

I MR M L R= + +  

 
where 1.0 kgM = . Thus, Eq. 15-29, with T = 2.0 s, leads to 

 

2 0 2
1
2

2 2

. =
+ +

+
π

MR M L R
Mg L R
b g
b g  

 
which leads to L = 0.8315 m. 
 
93. (a) Hooke’s law provides the spring constant:  
 

k = (4.00 kg)(9.8 m/s2)/(0.160 m) = 245 N/m. 
 
(b) The attached mass is m = 0.500 kg. Consequently, Eq. 15-13 leads to 
 

T m
k

= = =2 2 0 500
245

0 284π π
. . .s  

 
94. We note (from the graph) that am = ω2xm = 4.00 cm/s2.  Also, the value at t = 0 is ao = 
1.00 cm/s2.   Then Eq. 15-7 leads to  
 

φ = cos−1(–1.00/4.00) = +1.82 rad or – 4.46 rad. 
 
The other “root” (+4.46 rad) can be rejected on the grounds that it would lead to a 
negative slope at t = 0. 
 
95. The time for one cycle is T = (50 s)/20 = 2.5 s. Thus, from Eq. 15-23, we find 
 

 =
2

= 0.50 2.5
2

= 0.079 . 
2 2

2I Tκ
π π
F
H
I
K

F
H
I
K ⋅a f  kg m  

 
96. The angular frequency of the simple harmonic oscillation is given by Eq. 15-13: 
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k
m

ω = . 

 
Thus, for two different masses 1m  and 2m , with the same spring constant k, the ratio of 
the frequencies would be  

11 2

2 12

/
/

k m m
mk m

ω
ω

= = . 

In our case, with 1m m=  and 2 2.5m m= , the ratio is 1 2

2 1

2.5 1.58m
m

ω
ω

= = = . 

 
97. (a) The graphs suggest that T = 0.40 s and κ = 4/0.2 = 0.02 N·m/rad. With these 
values, Eq. 15-23 can be used to determine the rotational inertia:   
 

I = κT2/4π2 = 8.11 × 10−5 2kg m⋅ . 
 
(b) We note (from the graph) that θmax = 0.20 rad. Setting the maximum kinetic energy 
( 12 Iωmax

2 ) equal to the maximum potential energy (see the hint in the problem) leads to 

ωmax = θmax κ/I  = 3.14 rad/s. 
 
98. (a) Hooke’s law provides the spring constant: k = (20 N)/(0.20 m) = 1.0×102 N/m. 
 
(b) The attached mass is m = (5.0 N)/(9.8 m/s2) = 0.51 kg. Consequently, Eq. 15-13 leads 
to 

0.51 kg2 2 0.45 s.
100 N / m

mT
k

π π= = =  

 
99. For simple harmonic motion, Eq. 15-24 must reduce to 
 

τ θ θ= − → −L F L Fg gsinc h c h  
 
where θ is in radians. We take the percent difference (in absolute value) 
 

− − −

−
= −

LF LF
LF

g g

g

sin
sin sin

θ θ
θ

θ
θ

d i d i
1  

 
and set this equal to 0.010 (corresponding to 1.0%). In order to solve for θ (since this is 
not possible “in closed form”), several approaches are available. Some calculators have 
built-in numerical routines to facilitate this, and most math software packages have this 
capability. Alternatively, we could expand sinθ ≈ θ – θ 3/6 (valid for small θ) and thereby 
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find an approximate solution (which, in turn, might provide a seed value for a numerical 
search). Here we show the latter approach: 
 

1
6

0 010 1
1 6

10103 2−
−

≈ ⇒
−

≈
θ

θ θ θ/
. .  

 
which leads to 6(0.01/1.01) 0.24  rad 14.0θ ≈ = = ° . A more accurate value (found 
numerically) for θ  that results in a 1.0% deviation is 13.986°. 
 
100. (a) The potential energy at the turning point is equal (in the absence of friction) to 
the total kinetic energy (translational plus rotational) as it passes through the equilibrium 
position: 

2
2 2 2 2 2 2 cm

cm cm cm

2 2 2
cm cm cm

1 1 1 1 1 1
2 2 2 2 2 2

1 1 3
2 4 4

m
vkx Mv I Mv MR
R

Mv Mv Mv

ω ⎛ ⎞⎛ ⎞= + = + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= + =

 

 
which leads to Mv kxmcm

2 22 3= /  = 0.125 J. The translational kinetic energy is therefore 
1
2

2 2 3 0 0625Mv kxmcm J= =/ . . 
 
(b) And the rotational kinetic energy is 2 2 21

cm4 / 6 0.03125J 3.13 10  JmMv kx −= = ≈ × . 
 
(c) In this part, we use vcm to denote the speed at any instant (and not just the maximum 
speed as we had done in the previous parts). Since the energy is constant, then 
 

 2 2
cm cm cm cm

3 1 3 0
4 2 2

dE d dMv kx Mv a kxv
dt dt dt

⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
which leads to 

 = 2
3

. a k
M

xcm −FHG
I
KJ  

 
Comparing with Eq. 15-8, we see that ω = 2 3k M/  for this system. Since ω = 2π/T, we 
obtain the desired result: T M k= 2 3 2π / . 
 
101. We note that for a horizontal spring, the relaxed position is the equilibrium position 
(in a regular simple harmonic motion setting); thus, we infer that the given v = 5.2 m/s at 
x = 0 is the maximum value vm (which equals ωxm where ω = =k m/ 20 rad / s ). 
 
(a) Since ω = 2π f, we find f = 3.2 Hz. 
 
(b) We have vm = 5.2 m/s = (20 rad/s)xm, which leads to xm = 0.26 m. 
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(c) With meters, seconds, and radians understood, 
 

(0.26 m)cos(20 )
(5.2 m/s)sin(20 ).

x t
v t

φ
φ

= +
= − +

 

 
The requirement that x = 0 at t = 0 implies (from the first equation above) that either φ = 
+π/2 or φ = –π/2. Only one of these choices meets the further requirement that v > 0 when 
t = 0; that choice is φ = –π/2. Therefore, 
 

( )(0.26 m)cos 20 (0.26 m)sin 20 .
2

x t tπ⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

 
The plots of x and v as a function of time are given below: 

  
 
102. (a) Equation 15-21 leads to 
 

1 2 2(4.0 J)2 0.20 m.
2 200 N / mm m

EE kx x
k

= ⇒ = = =  

  
(b) Since 2 / 2 0.80 kg / 200 N / m 0.4 s ,T m kπ π= = ≈  then the block completes 
10/0.4 = 25 cycles during the specified interval. 
 
(c) The maximum kinetic energy is the total energy, 4.0 J. 
 
(d) This can be approached more than one way; we choose to use energy conservation: 
 

 = + 4.0 = 1
2

+ 1
2

. 2 2E K U mv kx⇒  

 
Therefore, when x = 0.15 m, we find v = 2.1 m/s. 
 
103. (a) By Eq. 15-13, the mass of the block is 
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 =
4

= 2.43 . 0
2

2m kT
b π

 kg  

 
Therefore, with mp = 0.50 kg, the new period is 
 

T
m m

k
p b=

+
=2 0π .44 .s  

 
(b) The speed before the collision (since it is at its maximum, passing through 
equilibrium) is v0 = xmω0 where ω0 = 2π/T0; thus, v0 = 3.14 m/s. Using momentum 
conservation (along the horizontal direction) we find the speed after the collision: 
 

 =
+

= 2.61 .0V v m
m m

b

p b

 m / s  

 
The equilibrium position has not changed, so (for the new system of greater mass) this 
represents the maximum speed value for the subsequent harmonic motion: V = x´mω 
where ω = 2π/T = 14.3 rad/s. Therefore, x´m = 0.18 m. 
 
104. (a) We are told that when 4t T= , with T m k= ′ ≈2 2π π/ /ω  (neglecting the 
second term in Eq. 15-43),  

2 3
4

bt me− = . 

Thus, 
T ≈ =2 2 00 10 0 2 81π ( . ) / ( . ) .kg N / m s 

 
and we find 
 

( ) ( )( )
( )

4 2 2.00 kg 0.2884ln 0.288 0.102 kg/s.
2 3 4 2.81s

b T
b

m
⎛ ⎞= = ⇒ = =⎜ ⎟
⎝ ⎠

 

 
(b) Initially, the energy is 2 21 1

o o2 2 (10.0)(0.250) 0.313 JmE kx= = = . At t = 4T,  
 

231
2 4( ) 0.176 Jm oE k x= = . 

 
Therefore, Eo – E = 0.137 J. 
 
105. (a) From Eq. 16-12, T m k= =2 0π / .45 s. 
 
(b) For a vertical spring, the distance between the unstretched length and the equilibrium 
length (with a mass m attached) is mg/k, where in this problem mg = 10 N and k = 200 
N/m (so that the distance is 0.05 m). During simple harmonic motion, the convention is to 
establish x = 0 at the equilibrium length (the middle level for the oscillation) and to write 
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the total energy without any gravity term; that is, E K U= + , where 2 / 2.U kx=  Thus, as 
the block passes through the unstretched position, the energy is 
E k= + =2 0 0 05 2 251

2
2. ( . ) . J . At its topmost and bottommost points of oscillation, the 

energy (using this convention) is all elastic potential: 1
2

2kxm . Therefore, by energy 
conservation, 

 2.25 = 1
2

= 0.15 . 2kx xm m⇒ ±  m  

 
This gives the amplitude of oscillation as 0.15 m, but how far are these points from the 
unstretched position? We add (or subtract) the 0.05 m value found above and obtain 0.10 
m for the top-most position and 0.20 m for the bottom-most position. 
 
(c) As noted in part (b), xm = ±0.15 m. 
 
(d) The maximum kinetic energy equals the maximum potential energy (found in part (b)) 
and is equal to 2.25 J. 
 
106. (a) The graph makes it clear that the period is T = 0.20 s. 
 

(b) The period of the simple harmonic oscillator is given by Eq. 15-13:  = 2T m
k

π . 

 
Thus, using the result from part (a) with k = 200 N/m, we obtain m = 0.203 ≈ 0.20 kg. 
 
(c) The graph indicates that the speed is (momentarily) zero at t = 0, which implies that 
the block is at x0 = ±xm. From the graph we also note that the slope of the velocity curve 
(hence, the acceleration) is positive at t = 0, which implies (from ma = –kx) that the value 
of x is negative. Therefore, with xm = 0.20 m, we obtain x0 = –0.20 m. 
 
(d) We note from the graph that v = 0 at t = 0.10 s, which implied a = ±am = ±ω2xm. Since 
acceleration is the instantaneous slope of the velocity graph, then (looking again at the 
graph) we choose the negative sign. Recalling ω2 = k/m we obtain a = –197 ≈ –2.0 ×102 
m/s2. 
 

(e) The graph shows vm = 6.28 m/s, so  = 1
2

= 4.0 . 2K mvm m  J  

 

107. The mass is  = 0.108
6.02 10

= 1.8 10 . 23
25m  kg  kg

×
× − Using Eq. 15-12 and the fact that f = 

ω/2π, we have 

( ) ( )213 13 25 211 10  Hz = 2 10 1.8 10 7 10 N/m.
2

k k
m

π
π

−× ⇒ = × × ≈ ×  
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Chapter 16 
 
 
1. Let  y1 = 2.0 mm (corresponding to time t1) and y2 = –2.0 mm (corresponding to time 
t2).  Then we find  
 

kx + 600t1  + φ = sin−1(2.0/6.0) 
and  
 

kx + 600t2  + φ = sin−1(–2.0/6.0) . 
 

Subtracting equations gives   
 

600(t1 – t2)  =  sin−1(2.0/6.0) – sin−1(–2.0/6.0). 
 
Thus we find t1 – t2  = 0.011 s  (or  1.1 ms). 
 
2. (a) The speed of the wave is the distance divided by the required time. Thus,  
 

 853 seats 21.87 seats/s 22 seats/s
39 s

v = = ≈ . 

 
(b) The width w is equal to the distance the wave has moved during the average time 
required by a spectator to stand and then sit. Thus, 
 

(21.87 seats/s)(1.8 s) 39 seatsw vt= = ≈ . 
 

3. (a) The angular wave number is 12 2 3.49m .
1.80m

k −π π
= = =

λ
 

 

(b) The speed of the wave is ( )( )1.80m 110rad s
31.5m s.

2 2
v f ωλ

= λ = = =
π π

 

 
4. The distance d between the beetle and the scorpion is related to the transverse speed tv  
and longitudinal speed vA  as 
 t td v t v t= = A A  
 
where  tt  and tA  are the  arrival times of the wave in the transverse and longitudinal 
directions, respectively. With 50 m/stv =  and 150 m/sv =A , we have 
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150 m/s 3.0
50 m/s

t

t

t v
t v

= = =A

A

. 

Thus, if  
3 33.0 2.0 4.0 10 s 2.0 10 s ,tt t t t t t t− −Δ = − = − = = × ⇒ = ×A A A A A  

 
then 3(150 m/s)(2.0 10 s) 0.30 m 30 cm.d v t −= = × = =A A  
 
5. (a) The motion from maximum displacement to zero is one-fourth of a cycle. One-
fourth of a period is 0.170 s, so the period is T = 4(0.170 s) = 0.680 s. 
 
(b) The frequency is the reciprocal of the period: 
 

1 1 1.47 Hz.
0.680s

f
T

= = =  

 
(c) A sinusoidal wave travels one wavelength in one period: 
 

1.40m 2.06m s.
0.680s

v
T

= = =
λ  

 
6. The slope that they are plotting is the physical slope of the sinusoidal waveshape (not 
to be confused with the more abstract “slope” of its time development; the physical slope 
is an x-derivative, whereas the more abstract “slope” would be the t-derivative).  Thus, 
where the figure shows a maximum slope equal to 0.2 (with no unit), it refers to the 
maximum of the following function: 
 

[ ]sin( ) cos( )m m
dy d y kx t y k kx t
dx dx

ω ω= − = − . 

 
The problem additionally gives t = 0, which we can substitute into the above expression 
if desired.  In any case, the maximum of the above expression is ym k,  where 
 

 2 2 15.7 rad/m
0.40 m

k π π
λ

= = = . 

 
Therefore, setting ym k equal to 0.20 allows us to solve for the amplitude ym.  We find 
 

 0.20 0.0127 m 1.3 cm
15.7 rad/mmy = = ≈ . 

 
7. (a) Recalling from Chapter 12 the simple harmonic motion relation um = ymω, we have 
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16 400rad/s.
0.040

ω = =  

 
Since ω = 2πf, we obtain f = 64 Hz. 
 
(b) Using v = fλ, we find λ = 80/64 = 1.26 m 1.3 m≈ . 
 
(c) The amplitude of the transverse displacement is 24.0 cm 4.0 10 m.my −= = ×   
 
(d) The wave number is k = 2π/λ = 5.0 rad/m. 
 
(e) The angular frequency, as obtained in part (a), is 216 / 0.040 4.0 10 rad/s.ω = = ×  
  
(f) The function describing the wave can be written as 
 

( )0.040sin 5 400y x t φ= − +  
 
where distances are in meters and time is in seconds. We adjust the phase constant φ to 
satisfy the condition y = 0.040 at x = t = 0. Therefore, sin φ = 1, for which the “simplest” 
root is φ = π/2. Consequently, the answer is 
 

0.040sin 5 400 .
2

y x t π⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 
(g) The sign in front of ω is minus. 
 
8. Setting x = 0  in  u = −ω ym cos(k x − ω t + φ)  (see Eq. 16-21 or Eq. 16-28) gives 
  

u = −ω ym cos(−ω t+φ) 
 
as the function being plotted in the graph.  We note that it has a positive “slope” 
(referring to its t-derivative) at t = 0, or  
 

 [ ] 2cos sin( 0m m
du d y t y t
dt dt

ω ω φ ω ω φ= − (− + ) = − − + ) >  

 
at t = 0. This implies that – sinφ > 0 and consequently that φ is in either the third or fourth 
quadrant. The graph shows (at t = 0)  u = −4 m/s, and (at some later t)  umax = 5 m/s.  We 
note that umax  = ym ω. Therefore, 
 

                u = − umax cos(− ω t + φ)|t = 0  ⇒   φ  =  cos−1( 45 ) =  ± 0.6435 rad  
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(bear in mind that cosθ = cos(−θ )), and we must choose  φ =  −0.64 rad  (since this is 
about  −37° and is in fourth quadrant).  Of course, this answer added to 2nπ is still a valid 
answer (where n is any integer), so that, for example, φ = −0.64 + 2π = 5.64 rad  is also 
an acceptable result. 
 
9. (a) The amplitude ym is half of the 6.00 mm vertical range shown in the figure, that is, 

3.0 mm.my =  
 
(b) The speed of the wave is v = d/t = 15 m/s, where d = 0.060 m and t = 0.0040 s.  The 
angular wave number is k = 2π/λ where λ  = 0.40 m.  Thus,  
 

k = 
2π
 λ   =  16 rad/m . 

 
(c) The angular frequency is found from  
 

ω = k v = (16 rad/m)(15 m/s) = 2.4×102 rad/s. 
 
(d) We choose the minus sign (between kx and ωt) in the argument of the sine function 
because the wave is shown traveling to the right (in the +x direction, see Section 16-5).  
Therefore, with SI units understood, we obtain 
 

y = ym sin(kx −kvt) ≈ 0.0030 sin(16 x  −  2.4 ×102 
 t) . 

 
10. (a) The amplitude is ym = 6.0 cm. 
 
(b) We find λ from 2π/λ = 0.020π: λ = 1.0×102 cm. 
 
(c) Solving 2πf = ω = 4.0π, we obtain f = 2.0 Hz. 
 
(d) The wave speed is v = λf = (100 cm) (2.0 Hz) = 2.0×102 cm/s. 
 
(e) The wave propagates in the –x direction, since the argument of the trig function is kx 
+ ωt instead of kx – ωt (as in Eq. 16-2). 
 
(f) The maximum transverse speed (found from the time derivative of y) is 
 

( ) ( )1
max 2 4.0 s 6.0cm 75cm s.mu fy −= π = π =  

 
(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020π(3.5) + 4.0π(0.26)] = –2.0 cm. 
 
11. From Eq. 16-10, a general expression for a sinusoidal wave traveling along the +x 
direction is  
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 ( , ) sin( )my x t y kx tω φ= − + . 
 
(a) The figure shows that at x = 0, 

(0, ) sin( )my t y tω φ= − + is a positive sine function, that is, 
(0, ) sin .my t y tω= +  Therefore, the phase constant must 

be φ π= . At t = 0, we then have 
 

( ,0) sin( ) sinm my x y kx y kxπ= + = −  
 
which is a negative sine function. A plot of y(x, 0) is 
depicted on the right. 
 
(b) From the figure we see that the amplitude is ym = 4.0 cm.  
 
(c) The angular wave number is given by k = 2π/λ = π/10 = 0.31 rad/cm. 
 
(d) The angular frequency is ω = 2π/T = π/5 = 0.63 rad/s.  
 
(e) As found in part (a), the phase is φ π= . 
 
(f) The sign is minus since the wave is traveling in the +x direction. 
 
(g) Since the frequency is f = 1/T = 0.10 s, the speed of the wave is v = fλ = 2.0 cm/s. 
 
(h) From the results above, the wave may be expressed as 
 

 ( , ) 4.0sin 4.0sin
10 5 10 5

x t x ty x t π π π ππ⎛ ⎞ ⎛ ⎞= − + = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
Taking the derivative of y with respect to t, we find 
 

 ( , ) 4.0 cos
10 5

y x tu x t
t t

π π∂ π⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
 

 
which yields u(0, 5.0) = –2.5 cm/s. 
 
12. With length in centimeters and time in seconds, we have 
 

u =  
du
dt   = 225π sin (πx − 15πt) . 

 
Squaring this and adding it to the square of 15πy, we have 
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u2 + (15πy)2  =  (225π )2 [sin2 (πx − 15π t) + cos2 (πx − 15π t)] 
 
so that 
 2 2 2 2(225 ) (15 ) 15 15 .u y yπ π π= − = −  
 
Therefore, where y = 12, u must be ± 135π.  Consequently, the speed there is 424 cm/s = 
4.24 m/s. 
 
13. Using v = fλ, we find the length of one cycle of the wave is  
 

λ = 350/500 = 0.700 m = 700 mm. 
 
From f = 1/T, we find the time for one cycle of oscillation is T = 1/500 = 2.00 × 10–3 s = 
2.00 ms. 
 
(a) A cycle is equivalent to 2π radians, so that π/3 rad corresponds to one-sixth of a cycle. 
The corresponding length, therefore, is λ/6 = 700/6 = 117 mm. 
 
(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of 
2π rad. Thus, the phase difference is (1/2)2π = π rad. 
 
14. (a) Comparing with Eq. 16-2, we see that k = 20/m and ω = 600/s. Therefore, the 
speed of the wave is (see Eq. 16-13) v = ω/k = 30 m/s. 
 
(b) From Eq. 16–26, we find 
 

2 2

15 0.017 kg m 17g m.
30v

= = = =
τμ  

 
15. (a) The amplitude of the wave is ym= 0.120 mm. 
 
(b) The wave speed is given by v = τ μ , where τ is the tension in the string and μ is the 

linear mass density of the string, so the wavelength is λ = v/f = τ μ /f and the angular 
wave number is 
 

( ) 12 0.50kg m2 2 100 Hz 141m .
10 N

k f −π
= = π = π =

λ
μ
τ

 

 
(c) The frequency is f = 100 Hz, so the angular frequency is  
 

ω = 2πf = 2π(100 Hz) = 628 rad/s. 
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(d) We may write the string displacement in the form y = ym sin(kx + ωt). The plus sign is 
used since the wave is traveling in the negative x direction. In summary, the wave can be 
expressed as 
 

( ) ( ) ( )1 10.120mm sin 141m  + 628s .y x t− −⎡ ⎤= ⎣ ⎦  

 
16. We use /v = ∝τ μ τ  to obtain 
 

( )
2 2

2
2 1

1

180m/s120 N 135N.
170m/s

v
v

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

τ τ  

 
17. (a) The wave speed is given by v = λ/T = ω/k, where λ is the wavelength, T is the 
period, ω is the angular frequency (2π/T), and k is the angular wave number (2π/λ). The 
displacement has the form y = ym sin(kx + ωt), so k = 2.0 m–1 and ω = 30 rad/s. Thus  
 

v = (30 rad/s)/(2.0 m–1) = 15 m/s. 
 
(b) Since the wave speed is given by v = τ μ , where τ is the tension in the string and μ 
is the linear mass density of the string, the tension is 
 
 ( )( )22 41.6 10 kg m 15m s 0.036 N.vτ μ −= = × =  
 
18. The volume of a cylinder of height A  is V = πr2 A = πd2 A /4. The strings are long, 
narrow cylinders, one of diameter d1 and the other of diameter d2 (and corresponding 
linear densities μ1 and μ2). The mass is the (regular) density multiplied by the volume: m 
= ρV, so that the mass-per-unit length is  
 

 
2 24

4
m d dρ ρμ A
A A

π π
= = =  

and their ratio is 

 
22

1 1 1
2

2 2 2

4 .
4

d d
d d

μ πρ
μ πρ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

 
Therefore, the ratio of diameters is 
 

 1 1

2 2

3.0 3.2.
0.29

d
d

μ
μ

= = =  
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19. The wave speed v is given by v = τ μ , where τ is the tension in the rope and μ is 
the linear mass density of the rope. The linear mass density is the mass per unit length of 
rope:  
 

μ = m/L = (0.0600 kg)/(2.00 m) = 0.0300 kg/m. 
Thus, 

 500 N 129 m s.
0.0300 kg m

v = =  

 
20. From v = τ μ , we have 

 new newnew

old old old

2.v
v

τ μ
τ μ

= =  

 
21. The pulses have the same speed v. Suppose one pulse starts from the left end of the 
wire at time t = 0. Its coordinate at time t is x1 = vt. The other pulse starts from the right 
end, at x = L, where L is the length of the wire, at time t = 30 ms. If this time is denoted 
by t0, then the coordinate of this wave at time t is x2 = L – v(t – t0). They meet when x1 = 
x2, or, what is the same, when vt = L – v(t – t0). We solve for the time they meet: t = (L + 
vt0)/2v and the coordinate of the meeting point is x = vt = (L + vt0)/2. Now, we calculate 
the wave speed: 

(250 N)(10.0m) 158m/s.
0.100kg

= = =
Lv

m
τ  

 
Here τ is the tension in the wire and L/m is the linear mass density of the wire. The 
coordinate of the meeting point is 
 

310.0m (158m/s) (30.0 10 s) 7.37 m.
2

x
−+ ×

= =  

 
This is the distance from the left end of the wire. The distance from the right end is L – x 
= (10.0 m – 7.37 m ) = 2.63 m. 
 
22. (a) The general expression for y (x, t) for the wave is y (x, t) = ym sin(kx – ωt), which, 
at x = 10 cm, becomes y (x = 10 cm, t) = ym sin[k(10 cm – ωt)]. Comparing this with the 
expression given, we find ω = 4.0 rad/s, or f = ω/2π = 0.64 Hz. 
 
(b) Since k(10 cm) = 1.0, the wave number is k = 0.10/cm. Consequently, the wavelength 
is λ = 2π/k = 63 cm. 
 
(c) The amplitude is 5.0 cm.my =  
 
(d) In part (b), we have shown that the angular wave number is k = 0.10/cm. 
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(e) The angular frequency is ω = 4.0 rad/s. 
 
(f) The sign is minus since the wave is traveling in the +x direction. 
 
Summarizing the results obtained above by substituting the values of k and ω into the 
general expression for y (x, t), with centimeters and seconds understood, we obtain 
 

( , ) 5.0sin (0.10 4.0 ).y x t x t= −  
 
(g) Since / / ,v k= =ω τ μ  the tension is 
 

2 1 2
2

2 1 2
(4.0g / cm)(4.0s ) 6400g cm/s 0.064 N.

(0.10cm )

−

−= = = ⋅ =
k

ω μτ  

 
23. (a) We read the amplitude from the graph. It is about 5.0 cm. 
 
(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm 
and again with the same slope at about x = 55 cm, so  
 

λ = (55 cm – 15 cm) = 40 cm = 0.40 m. 
 
(c) The wave speed is / ,v = τ μ  where τ is the tension in the string and μ is the linear 
mass density of the string. Thus, 
 

3

3.6 N 12 m/s.
25 10 kg/m

v −= =
×

 

 
(d) The frequency is f = v/λ = (12 m/s)/(0.40 m) = 30 Hz and the period is  
 

T = 1/f = 1/(30 Hz) = 0.033 s. 
 
(e) The maximum string speed is  
 

um = ωym = 2πfym = 2π(30 Hz) (5.0 cm) = 940 cm/s = 9.4 m/s. 
 
(f) The angular wave number is k = 2π/λ = 2π/(0.40 m) = 16 m–1. 
 
(g) The angular frequency is ω = 2πf = 2π(30 Hz) = 1.9×102 rad/s. 
 
(h) According to the graph, the displacement at x = 0 and t = 0 is 4.0 × 10–2 m. The 
formula for the displacement gives y(0, 0) = ym sin φ. We wish to select φ so that  
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5.0 × 10–2 sin φ = 4.0 × 10–2. 
 
The solution is either 0.93 rad or 2.21 rad. In the first case the function has a positive 
slope at x = 0 and matches the graph. In the second case it has negative slope and does 
not match the graph. We select φ = 0.93 rad.  
 
(i) The string displacement has the form y (x, t) = ym sin(kx + ωt + φ). A plus sign appears 
in the argument of the trigonometric function because the wave is moving in the negative 
x direction. Using the results obtained above, the expression for the displacement is 
 

( )2 1 1( , ) 5.0 10 m sin (16m ) (190s ) 0.93 .− − −⎡ ⎤= × + +⎣ ⎦y x t x t  
 
24. (a) The tension in each string is given by τ = Mg/2. Thus, the wave speed in string 1 
is 
 

2

1
1 1

(500g) (9.80m/s ) 28.6m/s.
2 2(3.00g/m)
Mgv τ

μ μ
= = = =  

 
(b) And the wave speed in string 2 is 
 

2

2
2

(500g) (9.80m/s ) 22.1m/s.
2 2(5.00g/m)
Mgv
μ

= = =  

 
(c) Let 1 1 1 2 2 2/(2 ) /(2 )v M g v M g= = =μ μ and M1 + M2 = M. We solve for M1 and 
obtain 

1
2 1

500g 187.5g 188g.
1 / 1 5.00 / 3.00

MM
μ μ

= = = ≈
+ +

 

 
(d) And we solve for the second mass: M2 = M – M1 = (500 g – 187.5 g) ≈ 313 g. 
 
25. (a) The wave speed at any point on the rope is given by v = τ μ , where τ is the 
tension at that point and μ is the linear mass density. Because the rope is hanging the 
tension varies from point to point. Consider a point on the rope a distance y from the 
bottom end. The forces acting on it are the weight of the rope below it, pulling down, and 
the tension, pulling up. Since the rope is in equilibrium, these forces balance. The weight 
of the rope below is given by μgy, so the tension is τ = μgy. The wave speed is 

/ .= =v gy gyμ μ  
 
(b) The time dt for the wave to move past a length dy, a distance y from the bottom end, 
is dt dy v dy gy= =  and the total time for the wave to move the entire length of the 
rope is 
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0
0

2 2 .
L

L dy y Lt
g ggy

= = =∫  

 
26. Using Eq. 16–33 for the average power and Eq. 16–26 for the speed of the wave, we 
solve for f = ω/2π: 
 

avg
3

21 1 2(85.0 W) 198 Hz.
2 2 (7.70 10 m)/ (36.0 N)(0.260 kg / 2.70 m )m

P
f

y μ τ μ −= = =
π π ×

 

 
27. We note from the graph (and from the fact that we are dealing with a cosine-squared, 
see Eq. 16-30) that the wave frequency is f = 1

2 ms = 500 Hz, and that the wavelength λ = 
0.20 m.  We also note from the graph that the maximum value of dK/dt is 10 W.  Setting 
this equal to the maximum value of Eq. 16-29 (where we just set that cosine term equal to 
1) we find 
 

1
2 μ v ω2 ym

2 = 10 
 
with SI units understood.  Substituting in μ = 0.002 kg/m, ω = 2πf  and  v = f λ , we solve 
for the wave amplitude:  

 2 3

10 0.0032 m
2my

fπ μλ
= = . 

 
28. Comparing 1 1( , ) (3.00 mm)sin[(4.00 m ) (7.00 s ) ]y x t x t− −= −  to the general expression 

( , ) sin( )my x t y kx tω= − , we see that 14.00 mk −= and 7.00 rad/sω = . The speed of the 
wave is  

1/ (7.00 rad/s)/(4.00 m ) 1.75 m/s.v kω −= = =  
 
29. The wave 1 1 1/ 2( , ) (2.00 mm)[(20 m ) (4.0 s ) ]y x t x t− −= −  is of the form ( )h kx tω− with 
angular wave number 120 mk −=  and angular frequency 4.0 rad/sω = . Thus, the speed of 
the wave is  

1/ (4.0 rad/s)/(20 m ) 0.20 m/s.v kω −= = =  
  
30. The wave 1 1( , ) (4.00 mm) [(30 m ) (6.0 s ) ]y x t h x t− −= +  is of the form ( )h kx tω− with 
angular wave number 130 mk −=  and angular frequency 6.0 rad/sω = . Thus, the speed 
of the wave is  
 

1/ (6.0 rad/s)/(30 m ) 0.20 m/s.v kω −= = =  
 
31. The displacement of the string is given by  
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sin( ) sin( )m my y kx t y kx tω ω φ= − + − +  ( ) ( )1 1
2 22 cos sinmy kx tφ ω φ= − + , 

 
where φ = π/2. The amplitude is  
 

( )1
22 cosmA y φ= 2 cos( / 4) 1.41m my y= π = . 

 
32. (a) Let the phase difference be φ. Then from Eq. 16-52, 2ym cos(φ/2) = 1.50ym, which 
gives 

1 1.502cos 82.8 .
2

m

m

y
y

φ − ⎛ ⎞
= = °⎜ ⎟

⎝ ⎠
 

 
(b) Converting to radians, we have φ = 1.45 rad. 
 
(c) In terms of wavelength (the length of each cycle, where each cycle corresponds to 2π 
rad), this is equivalent to 1.45 rad/2π = 0.230 wavelength. 
 
33. (a) The amplitude of the second wave is 9.00 mmmy = , as stated in the problem. 
 
(b) The figure indicates that λ = 40 cm = 0.40 m, which implies that the angular wave 
number is k = 2π/0.40 = 16  rad/m.    
 
(c) The figure (along with information in the problem) indicates that the speed of each 
wave is v = dx/t = (56.0 cm)/(8.0 ms) = 70 m/s.  This, in turn, implies that the angular 
frequency is  

ω = k v =1100 rad/s = 1.1×103 rad/s. 
 
(d) The figure depicts two traveling waves (both going in the –x direction) of equal 
amplitude ym.  The amplitude of their resultant wave, as shown in the figure, is y′m = 4.00 
mm.  Equation 16-52 applies: 
 
                  y′m = 2ym  cos( 12 φ2)    ⇒   φ2 = 2 cos−1(2.00/9.00) = 2.69 rad. 
 
(e) In making the plus-or-minus sign choice in y = ym sin(k x ± ω t + φ), we recall the 
discussion in section 16-5, where it was shown that sinusoidal waves traveling in the –x 
direction are of the form y = ym sin(k x + ω t + φ).  Here, φ should be thought of as the 
phase difference between the two waves (that is, φ1 = 0 for wave 1 and φ2 = 2.69 rad for 
wave 2).   
 
In summary, the waves have the forms (with SI units understood): 
 

y1 = (0.00900)sin(16 x +1100 t)   and   y2 = (0.00900)sin(16 x + 1100 t + 2.7 ) . 
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34. (a) We use Eq. 16-26 and Eq. 16-33 with μ = 0.00200 kg/m and  ym = 0.00300 m.  
These give 775 m/sv τ μ= / =  and   
 

Pavg = 12  μv ω2ym
2 = 10 W. 

 
(b) In this situation, the waves are two separate string (no superposition occurs).  The 
answer is clearly twice that of part (a); P = 20 W. 
 
(c) Now they are on the same string.  If they are interfering constructively (as in Fig. 16-
13(a)) then the amplitude ym is doubled, which means its square ym

2 increases by a factor 
of 4.  Thus, the answer now is four times that of part (a);  P = 40 W. 
 
(d) Equation 16-52 indicates in this case that the amplitude (for their superposition) is  
2 ymcos(0.2π) = 1.618 times the original amplitude ym.  Squared, this results in an increase 
in the power by a factor of 2.618.  Thus, P = 26 W in this case. 
 
(e) Now the situation depicted in Fig. 16-13(b) applies, so P = 0. 
 
35. The phasor diagram is shown below: y1m and y2m represent the original waves and ym 
represents the resultant wave.  

 
The phasors corresponding to the two constituent waves make an angle of 90° with each 
other, so the triangle is a right triangle. The Pythagorean theorem gives  
 

2 2 2 2 2 2
1 2 (3.0cm) (4.0cm) (25cm)m m my y y= + = + = . 

 
Thus ym = 5.0 cm. 
 
Note: When adding two waves, it is convenient to represent each wave with a phasor, 
which is a vector whose magnitude is equal to the amplitude of the wave. The same result, 
however, could also be obtained as follows: Writing the two waves as 1 3sin( )y kx tω= −  
and 2 4sin( / 2) 4cos( )y kx t kx tω π ω= − + = − , we have, after a little algebra,  
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1 2
3 43sin( ) 4cos( ) 5 sin( ) cos( )
5 5

5sin( )

y y y kx t kx t kx t kx t

kx t

ω ω ω ω

ω φ

⎡ ⎤= + = − + − = − + −⎢ ⎥⎣ ⎦
= − +

 

 
where 1tan (4 / 3)φ −= . In deducing the phase φ, we set cos 3/ 5φ =  and sin 4 / 5φ = , and 
use the relation cos sin sin cos sin( )φ θ φ θ θ φ+ = + . 
 
36. We see that  y1 and  y3  cancel (they are 180º) out of phase, and y2 cancels with y4 
because their phase difference is also equal to π rad (180º).  There is no resultant wave in 
this case. 
 
37. (a) Using the phasor technique, we think of these as two “vectors” (the first of 
“length” 4.6 mm and the second of “length” 5.60 mm) separated by an angle of φ = 0.8π 
radians (or 144º).  Standard techniques for adding vectors then lead to a resultant vector 
of length 3.29 mm. 
 
(b) The angle (relative to the first vector) is equal to 88.8º (or 1.55 rad).  
 
(c) Clearly, it should in “in phase” with the result we just calculated, so its phase angle 
relative to the first phasor should be also 88.8º (or 1.55 rad). 
 
38. (a) As shown in Figure 16-13(b) in the textbook, the least-amplitude resultant wave is 
obtained when the phase difference is π rad.  
 
(b) In this case, the amplitude is (8.0 mm – 5.0 mm) = 3.0 mm. 
 
(c) As shown in Figure 16-13(a) in the textbook, the greatest-amplitude resultant wave is 
obtained when the phase difference is 0 rad. 
 
(d) In the part (c) situation, the amplitude is (8.0 mm + 5.0 mm) = 13 mm. 
 
(e) Using phasor terminology, the angle “between them” in this case is π/2 rad (90º), so 
the Pythagorean theorem applies: 
 

2 2(8.0 mm) (5.0 mm)+  = 9.4 mm . 
 
39. The phasor diagram is shown to the right. We use the 
cosine theorem: 

 
2 2 2 2 2

1 2 1 2 1 2 1 22 cos 2 cos .m m m m m m m m my y y y y y y y yθ φ= + − = + +
 

                                                          
We solve for cos φ : 
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2 2 2 2 2 2

1 2

1 2

(9.0mm) (5.0mm) (7.0mm)cos 0.10.
2 2(5.0mm)(7.0mm)

m m m

m m

y y y
y y

φ − − − −
= = =  

 
The phase constant is therefore φ = 84°. 
 
40. The string is flat each time the particle passes through its equilibrium position. A 
particle may travel up to its positive amplitude point and back to equilibrium during this 
time. This describes half of one complete cycle, so we conclude T = 2(0.50 s) = 1.0 s. 
Thus, f = 1/T = 1.0 Hz, and the wavelength is 
 

10cm/s 10 cm.
1.0 Hz

v
f

λ = = =  

 
41. (a) The wave speed is given by ,v τ μ=  where τ is the tension in the string and μ is 
the linear mass density of the string. Since the mass density is the mass per unit length, μ 
= M/L, where M is the mass of the string and L is its length. Thus 
 

(96.0 N) (8.40 m) 82.0 m/s.
0.120 kg

Lv
M

= = =
τ  

 
(b) The longest possible wavelength λ for a standing wave is related to the length of the 
string by L = λ/2, so λ = 2L = 2(8.40 m) = 16.8 m. 
 
(c) The frequency is f = v/λ = (82.0 m/s)/(16.8 m) = 4.88 Hz. 
 
42. Use Eq. 16-66 (for the resonant frequencies) and Eq. 16-26 ( / )v τ μ=  to find fn: 
 

2 2n
nv nf
L L

τ
μ

= =  

which gives f3 = (3/2L) iτ μ . 
 
(a) When τf = 4τi, we get the new frequency 
 

3 3
3 2 .

2
ff f

L
τ
μ

′ = =  

 

(b) And we get the new wavelength 3 3
3

2 .
3

v L
f
′

′λ = = = λ
′
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43. Possible wavelengths are given by λ = 2L/n, where L is the length of the wire and n is 
an integer. The corresponding frequencies are given by f = v/λ = nv/2L, where v is the 
wave speed. The wave speed is given by / ,v L Mτ μ τ= =  where τ is the tension in 
the wire, μ is the linear mass density of the wire, and M is the mass of the wire. μ = M/L 
was used to obtain the last form. Thus 
 

250 N (7.91 Hz).
2 2 2 (10.0 m) (0.100 kg)n
n L n nf n
L M LM

τ τ
= = = =  

 
(a) The lowest frequency is 1 7.91 Hz.f =  
 
(b) The second lowest frequency is 2 2(7.91 Hz) 15.8 Hz.f = =  
 
(c) The third lowest frequency is 3 3(7.91 Hz) 23.7 Hz.f = =  
 
44. (a) The wave speed is given by 
 

3
7.00 N 66.1m/s.

2.00  10 kg/1.25m
v −= = =

×
τ
μ

 

 
(b) The wavelength of the wave with the lowest resonant frequency f1 is λ1 = 2L, where L 
= 125 cm. Thus, 

1
1

66.1 m/s 26.4 Hz.
2(1.25 m)

vf = = =
λ

 

 
45. (a) The resonant wavelengths are given by λ = 2L/n, where L is the length of the 
string and n is an integer, and the resonant frequencies are given by f = v/λ = nv/2L, 
where v is the wave speed. Suppose the lower frequency is associated with the integer n. 
Then, since there are no resonant frequencies between, the higher frequency is associated 
with n + 1. That is, f1 = nv/2L is the lower frequency and f2 = (n + 1)v/2L is the higher. 
The ratio of the frequencies is 

2

1

1.f n
f n

+
=  

The solution for n is 
1

2 1

315 Hz 3.
420 Hz 315 Hz

fn
f f

= = =
− −

 

 
The lowest possible resonant frequency is f = v/2L = f1/n = (315 Hz)/3 = 105 Hz. 
 
(b) The longest possible wavelength is λ = 2L. If f is the lowest possible frequency then  
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v = λf = 2Lf = 2(0.75 m)(105 Hz) = 158 m/s. 
 
46. The nth resonant frequency of string A is 
 

, ,
2 2

A
n A

A

v nf n
l L

τ
μ

= =  

while for string B it is 

, ,
1 .

2 8 4
B

n B n A
B

v nf n f
l L

τ
μ

= = =  

 
(a) Thus, we see f1,A = f4,B. That is, the fourth harmonic of B matches the frequency of A’s 
first harmonic. 
 
(b) Similarly, we find f2,A = f8,B. 
 

(c) No harmonic of B would match 3,
3 3 .
2 2

A
A

A

vf
l L

τ
μ

= =  

 
47. The harmonics are integer multiples of the fundamental, which implies that the 
difference between any successive pair of the harmonic frequencies is equal to the 
fundamental frequency.   Thus,  

f1 = (390 Hz – 325 Hz) = 65 Hz. 
 
This further implies that the next higher resonance above 195 Hz should be (195 Hz + 65 
Hz) = 260 Hz. 
 
48. Using Eq. 16-26, we find the wave speed to be  
 

665.2 10 N 4412m/s.
3.35kg/ m

v τ
μ

×
= = =  

 
The corresponding resonant frequencies are 
 

, 1, 2,3,
2 2n
nv nf n
L L

τ
μ

= = = … 

 
(a) The wavelength of the wave with the lowest (fundamental) resonant frequency f1 is λ1 
= 2L, where L = 347 m. Thus, 
 

1
1

4412 m/s 6.36 Hz.
2(347 m)

vf = = =
λ
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(b) The frequency difference between successive modes is  
 

1
4412 m/s 6.36 Hz.

2 2(347 m)n n
vf f f
L−Δ = − = = =  

 
49. (a) Equation 16-26 gives the speed of the wave: 
 

2
3

150 N 144.34 m/s 1.44 10 m/s.
7.20 10 kg/m

v τ
μ −= = = ≈ ×

×
 

 
(b) From the figure, we find the wavelength of the standing wave to be  
 

λ = (2/3)(90.0 cm) = 60.0 cm. 
 
(c) The frequency is 

21.44 10 m/s 241Hz.
0.600m

vf ×
= = =

λ
 

 
50. From the x = 0 plot (and the requirement of an anti-node at x = 0), we infer a standing 
wave function of the form 

( , ) (0.04)cos( )sin( ),y x t kx tω= −  
 
where 2 /  rad/sTω π π= = , with length in meters and time in seconds. The parameter k is 
determined by the existence of the node at x = 0.10 (presumably the first node that one 
encounters as one moves from the origin in the positive x direction). This implies k(0.10) 
= π/2 so that k = 5π rad/m. 
 
(a) With the parameters determined as discussed above and t = 0.50 s, we find 
 

(0.20 m, 0.50 s) 0.04cos( )sin( ) 0.040m .y kx tω= − =  
 
(b) The above equation yields (0.30 m, 0.50 s) 0.04cos( )sin( ) 0 .y kx tω= − =  
 
(c) We take the derivative with respect to time and obtain, at t = 0.50 s and x = 0.20 m, 
 

( ) ( )0.04 cos cos 0dyu kx t
dt

ω ω= = − = . 

 
 d) The above equation yields u = –0.13 m/s at t = 1.0 s. 
 
(e) The sketch of this function at t = 0.50 s for 0 ≤ x ≤ 0.40 m is shown next: 
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51. (a) The waves have the same amplitude, the same angular frequency, and the same 
angular wave number, but they travel in opposite directions. We take them to be  
 

y1 = ym sin(kx – ωt),   y2 = ym sin(kx + ωt). 
 
The amplitude ym is half the maximum displacement of the standing wave, or 5.0 × 10–3 
m. 
 
(b) Since the standing wave has three loops, the string is three half-wavelengths long: L = 
3λ/2, or λ = 2L/3. With L = 3.0 m, λ = 2.0 m. The angular wave number is  
 

k = 2π/λ = 2π/(2.0 m) = 3.1 m–1. 
 
(c) If v is the wave speed, then the frequency is 
 

( )
( )

3 100m s3 50 Hz.
2 2 3.0m

v vf
L

= = = =
λ

 

 
The angular frequency is the same as that of the standing wave, or  
 

ω = 2π f = 2π(50 Hz) = 314 rad/s. 
 
(d) The two waves are 
 

( ) ( ) ( )3 1 1
1 5.0 10 m sin 3.14 m 314sy x t− − −⎡ ⎤= × −⎣ ⎦  

and 
( ) ( ) ( )3 1 1

2 5.0 10 m sin 3.14 m 314s .y x t− − −⎡ ⎤= × +⎣ ⎦  

 
Thus, if one of the waves has the form ( , ) sin( )my x t y kx tω= + , then the other wave must 
have the form ( , ) sin( )my x t y kx tω′ = − . The sign in front of ω for '( , )y x t is minus. 
 



  CHAPTER 16 704 

52. Since the rope is fixed at both ends, then the phrase “second-harmonic standing wave 
pattern” describes the oscillation shown in Figure 16-20(b), where (see Eq. 16-65) 
 

and = vL f
L

λ = . 

 
(a) Comparing the given function with Eq. 16-60, we obtain k = π/2 and ω = 12π rad/s. 
Since k = 2π/λ, then 

2 4.0m 4.0m.
2

Lπ π
= ⇒ λ = ⇒ =

λ
 

 
(b) Since ω = 2πf, then 2 12  rad/s,fπ = π  which yields 
 

 6.0Hz       24m/s.f v f= ⇒ = λ =  
 
(c) Using Eq. 16-26, we have 

200 N    24 m/s
/(4.0 m)

v
m

τ
μ

= ⇒ =  

 
which leads to m = 1.4 kg. 
 
(d) With 

3 3(24 m/s) 9.0Hz
2 2(4.0 m)

vf
L

= = =  

the period is T = 1/f = 0.11 s. 
 
53. (a) The amplitude of each of the traveling waves is half the maximum displacement 
of the string when the standing wave is present, or 0.25 cm. 
 
(b) Each traveling wave has an angular frequency of ω = 40π rad/s and an angular wave 
number of k = π/3 cm–1. The wave speed is  
 

v = ω/k = (40π rad/s)/(π/3 cm–1) = 1.2×102 cm/s. 
 
(c) The distance between nodes is half a wavelength: d = λ/2 = π/k = π/(π/3 cm–1) = 3.0 
cm. Here 2π/k was substituted for λ. 
 
(d) The string speed is given by u(x, t) = ∂y/∂t = –ωymsin(kx)sin(ωt). For the given 
coordinate and time, 
 

( )1 1 9(40  rad/s) (0.50cm) sin cm (1.5cm) sin  40 s s 0.
3 8

u − −⎡ ⎤ ⎡ ⎤π⎛ ⎞ ⎛ ⎞= − π π =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 

 



 

  

705

54. Reference to point A as an anti-node suggests that this is a standing wave pattern and 
thus that the waves are traveling in opposite directions.  Thus, we expect one of them to 
be of the form y = ym sin(kx + ωt) and the other to be of the form y = ym sin(kx – ωt).   
 
(a) Using Eq. 16-60, we conclude that ym = 12 (9.0 mm) = 4.5 mm, due to the fact that the 

amplitude of the standing wave is  12 (1.80 cm) = 0.90 cm = 9.0 mm.   
 
(b) Since one full cycle of the wave (one wavelength) is 40 cm,  k = 2π/λ ≈ 16 m−1.   
 
(c) The problem tells us that the time of half a full period of motion is 6.0 ms, so T = 12 
ms and Eq. 16-5 gives ω = 5.2 ×102 rad/s.   
 
(d) The two waves are therefore  
 
                                y1(x, t) = (4.5 mm) sin[(16 m−1)x +  (520 s−1)t]     
and 

y2(x, t) = (4.5 mm) sin[(16 m−1)x –  (520 s−1)t] . 
 
If one wave has the form ( , ) sin( )my x t y kx tω= + as in y1, then the other wave must be of 
the form ( , ) sin( )my x t y kx tω′ = − as in y2. Therefore, the sign in front of ω is minus. 
 
55. Recalling the discussion in section 16-12, we observe that this problem presents us 
with a standing wave condition with amplitude 12 cm.  The angular wave number and 
frequency are noted by comparing the given waves with the form y = ym sin(k x ± ω t).  
The anti-node moves through 12 cm in simple harmonic motion, just as a mass on a 
vertical spring would move from its upper turning point to its lower turning point, which 
occurs during a half-period.  Since the period T is related to the angular frequency by Eq. 
15-5, we have 

2 2 0.500 s.
4.00

T π π
ω π

= = =   

 
Thus, in a time of  t = 12 T = 0.250 s, the wave moves a distance Δx = vt  where the speed 
of the wave is / 1.00 m/s.v kω= =  Therefore, Δx = (1.00 m/s)(0.250 s) = 0.250 m. 
 
56. The nodes are located from vanishing of the spatial factor sin 5πx = 0 for which the 
solutions are 

1 2 35 0, ,2 ,3 , 0, , , ,
5 5 5

x xπ = π π π ⇒ =… "  

 
(a) The smallest value of x that corresponds to a node is x = 0. 
 
 
(b) The second smallest value of x that corresponds to a node is x = 0.20 m. 
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(c) The third smallest value of x that corresponds to a node is x = 0.40 m. 
 
(d) Every point (except at a node) is in simple harmonic motion of frequency f = ω/2π = 
40π/2π = 20 Hz. Therefore, the period of oscillation is T = 1/f = 0.050 s. 
 
(e) Comparing the given function with Eq. 16-58 through Eq. 16-60, we obtain 
 

1 20.020sin(5 40 ) and 0.020sin(5 40 )y x t y x t= π − π = π + π  
 
for the two traveling waves. Thus, we infer from these that the speed is v = ω/k = 40π/5π 
= 8.0 m/s. 
 
(f) And we see the amplitude is ym = 0.020 m. 
 
(g) The derivative of the given function with respect to time is 
 

(0.040) (40 )sin(5 )sin(40 )yu x t
t

∂
= = − π π π

∂
 

 
which vanishes (for all x) at times such as sin(40πt) = 0. Thus, 
 

1 2 340 0, ,2 ,3 , 0, , , ,
40 40 40

t tπ = π π π ⇒ =… " 

 
Thus, the first time in which all points on the string have zero transverse velocity is when  
t = 0 s. 
 
(h) The second time in which all points on the string have zero transverse velocity is 
when t = 1/40 s = 0.025 s. 
 
(i) The third time in which all points on the string have zero transverse velocity is when  
t = 2/40 s = 0.050 s. 
 
57. (a) The angular frequency is ω = 8.00π/2 = 4.00π rad/s, so the frequency is  
 

f = ω/2π = (4.00π rad/s)/2π = 2.00 Hz. 
 
(b) The angular wave number is k = 2.00π/2 = 1.00π m–1, so the wavelength is  
 

λ = 2π/k = 2π/(1.00π m–1) = 2.00 m. 
 
(c) The wave speed is 
 

(2.00m) (2.00Hz) = 4.00 m/s.v f= λ =  
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(d) We need to add two cosine functions. First convert them to sine functions using cos α 
= sin (α + π/2), then apply  
 

cos cos sin sin 2sin cos
2 2 2 2

2cos cos .
2 2

α β α βα β α β

α β α β

π π + + π +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Letting α = kx and β = ωt, we find 
 

cos( ) cos( ) 2 cos( )cos( ).m m my kx t y kx t y kx tω ω ω+ + − =  
 
Nodes occur where cos(kx) = 0 or kx = nπ + π/2, where n is an integer (including zero). 
Since k = 1.0π m–1, this means ( )1

2 (1.00 m)x n= + . Thus, the smallest value of x that 
corresponds to a node is x = 0.500 m (n = 0).  
 
(e) The second smallest value of x that corresponds to a node is x = 1.50 m (n = 1).  
 
(f) The third smallest value of x that corresponds to a node is x = 2.50 m (n = 2). 
 
(g) The displacement is a maximum where cos(kx) = ±1. This means kx = nπ, where n is 
an integer. Thus, x = n(1.00 m). The smallest value of x that corresponds to an anti-node 
(maximum) is x = 0 (n = 0).  
 
(h) The second smallest value of x that corresponds to an anti-node (maximum) is 

1.00 mx = (n = 1).  
 
(i) The third smallest value of x that corresponds to an anti-node (maximum) is 

2.00 mx = (n = 2). 
 
58. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 
frequencies can be written as 
 

 , 1, 2,3,
2 2 2
nv n n mgf n
L L L

τ
μ μ

= = = = …  

 
(a) The mass that allows the oscillator to set up the 4th harmonic ( 4n = ) on the string is  
 

 
2 2 2 2

2 2 2
4

4 4(1.20 m) (120 Hz) (0.00160 kg/m) 0.846 kg
(4) (9.80 m/s )n

L fm
n g

μ

=

= = =  
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(b) If the mass of the block is 1.00 kgm = , the corresponding n is  
 

 
2 2 2 2

2

4 4(1.20 m) (120 Hz) (0.00160 kg/m) 3.68
9.80 m/s

L fn
g

μ
= = =  

 
which is not an integer. Therefore, the mass cannot set up a standing wave on the string. 
 
59. (a) The frequency of the wave is the same for both sections of the wire. The wave 
speed and wavelength, however, are both different in different sections. Suppose there 
are n1 loops in the aluminum section of the wire. Then,  
 

L1 = n1λ1/2 = n1v1/2f, 
 
where λ1 is the wavelength and v1 is the wave speed in that section. In this consideration, 
we have substituted λ1 = v1/f, where f is the frequency. Thus f = n1v1/2L1. A similar 
expression holds for the steel section: f = n2v2/2L2. Since the frequency is the same for the 
two sections, n1v1/L1 = n2v2/L2. Now the wave speed in the aluminum section is given 
by 1 1/ ,v τ μ=  where μ1 is the linear mass density of the aluminum wire. The mass of 
aluminum in the wire is given by m1 = ρ1AL1, where ρ1 is the mass density (mass per unit 
volume) for aluminum and A is the cross-sectional area of the wire. Thus  
 

μ1 = ρ1AL1/L1 = ρ1A 
 
and 1 1/ .v Aτ ρ=  A similar expression holds for the wave speed in the steel section: 

2 2/ .v Aτ ρ=  We note that the cross-sectional area and the tension are the same for the 
two sections. The equality of the frequencies for the two sections now leads to 

1 1 1 2 2 2/ / ,n L n Lρ ρ=  where A has been canceled from both sides. The ratio of the 
integers is 

( )
( )

3 3
2 22

3 3
1 1 1

0.866 m 7.80 10 kg/m
2.50.

0.600m 2.60 10 kg/m

Ln
n L

ρ
ρ

×
= = =

×
 

 
The smallest integers that have this ratio are n1 = 2 and n2 = 5. The frequency is 
 

( )1 1 1 1 1 1/ 2 / 2 / .f n v L n L Aτ ρ= =  
 
The tension is provided by the hanging block and is τ  = mg, where m is the mass of the 
block. Thus, 
 

( )
( )( )

( )( )
2

1
3 3 6 2

1 1

10.0 kg 9.80 m/s2 324 Hz.
2 2 0.600 m 2.60 10 kg/m 1.00 10 m
n mgf
L Aρ −

= = =
× ×
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(b) The standing wave pattern has two loops in the aluminum section and five loops in 
the steel section, or seven loops in all. There are eight nodes, counting the end points. 
 
60. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 
frequencies can be written as 
 

 , 1, 2,3,
2 2 2
nv n n mgf n
L L L

τ
μ μ

= = = = …  

 
The mass that allows the oscillator to set up the nth harmonic on the string is  
 

 
2 2

2

4L fm
n g

μ
= . 

 
Thus, we see that the block mass is inversely proportional to the harmonic number 
squared.  Thus, if the 447 gram block corresponds to harmonic number n, then 
 

447
286.1  = 

(n + 1)2

 n2   =  
n2 + 2n + 1

 n2    =   1 + 
2n + 1

 n2   . 

 
Therefore,  447

286.1  – 1 = 0.5624  must equal an odd integer (2n + 1) divided by a squared 
integer (n2).  That is, multiplying 0.5624 by a square (such as 1, 4, 9, 16, etc.) should give 
us a number very close (within experimental uncertainty) to an odd number (1, 3, 5, …).  
Trying this out in succession (starting with multiplication by 1, then by 4, …), we find 
that multiplication by 16 gives a value very close to 9; we conclude n = 4 (so n2 = 16 and 
2n + 1 = 9).  Plugging in m = 0.447 kg, n = 4, and the other values given in the problem, 
we find  

μ = 0.000845 kg/m = 0.845 g/m. 
 
61. To oscillate in four loops means n = 4 in Eq. 16-65 (treating both ends of the string as 
effectively “fixed”). Thus, λ = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is 
v = fλ = 27 m/s. The mass-per-unit-length is  
 

μ = m/L = (0.044 kg)/(0.90 m) = 0.049 kg/m. 
 
Thus, using Eq. 16-26, we obtain the tension:  
 

τ = v2 μ = (27 m/s)2(0.049 kg/m) = 36 N. 
 
62. We write the expression for the displacement in the form y (x, t) = ym sin(kx – ωt).  
 
(a) The amplitude is ym = 2.0 cm = 0.020 m, as given in the problem. 
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(b) The angular wave number k is k = 2π/λ = 2π/(0.10 m) = 63 m–1. 
 
(c) The angular frequency is ω = 2πf = 2π(400 Hz) = 2510 rad/s = 2.5×103 rad/s. 
 
(d) A minus sign is used before the ωt term in the argument of the sine function because 
the wave is traveling in the positive x direction.  
 
Using the results above, the wave may be written as 
 

( ) ( ) ( ) ( )( )1 1, 2.00cm sin 62.8m 2510s .y x t x t− −= −  

 
(e) The (transverse) speed of a point on the cord is given by taking the derivative of y: 
 

( ) ( ), cosm
yu x t y kx t
t

∂
= = − −

∂
ω ω  

 
which leads to a maximum speed of um = ωym = (2510 rad/s)(0.020 m) = 50 m/s. 
 
(f) The speed of the wave is 
 

2510 rad s 40m s.
62.8rad/m

v
T k

ωλ
= = = =  

 
63. (a) Using v = fλ, we obtain 

240m/s 75 Hz.
3.2 m

f = =  

 
(b) Since frequency is the reciprocal of the period, we find 
 

1 1 0.0133s 13ms.
75Hz

T
f

= = = ≈  

 
64. (a) At x = 2.3 m and t = 0.16 s the displacement is 
 

( ) ( ) ( )[ ]( , ) 0.15sin 0.79 2.3 13 0.16 m = 0.039 m.y x t = − −  
 
(b) We choose ym = 0.15 m, so that there would be nodes (where the wave amplitude is 
zero) in the string as a result. 
 
(c) The second wave must be traveling with the same speed and frequency. This implies 

10.79 mk −= ,  
 
(d) and 13 rad/sω = . 
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(e) The wave must be traveling in the –x direction, implying a plus sign in front of ω.  
 
Thus, its general form is y´ (x,t) = (0.15 m)sin(0.79x + 13t).  
 
(f) The displacement of the standing wave at x = 2.3 m and t = 0.16 s is 
 

( , ) 0.039 m (0.15m)sin[(0.79)(2.3) 13(0.16)] 0.14 m.y x t = − + + = −  
 
65. We use Eq. 16-2, Eq. 16-5, Eq. 16-9, Eq. 16-13, and take the derivative to obtain the 
transverse speed u. 
 
(a) The amplitude is ym = 2.0 mm. 
 
(b) Since ω = 600 rad/s, the frequency is found to be f = 600/2π ≈ 95 Hz. 
 
(c) Since k = 20 rad/m, the velocity of the wave is v = ω/k = 600/20 = 30 m/s in the +x 
direction. 
 
(d) The wavelength is λ = 2π/k ≈ 0.31 m, or 31 cm. 
 
(e) We obtain 

cos( )m m m
dyu y kx t u y
dt

ω ω ω= = − − ⇒ =  

 
so that the maximum transverse speed is um = (600)(2.0) = 1200 mm/s, or 1.2 m/s. 
 
66. Setting x = 0  in  y = ym sin(k x − ω t + φ) gives y = ym sin(−ω t + φ) as the function 
being plotted in the graph.  We note that it has a positive “slope” (referring to its t-
derivative) at t = 0, or 
                  

 [ ]sin cos 0m m
dy d y t y t
dt dt

ω φ ω ω φ= (− + ) = − (− + ) >  

 
at t = 0. This implies that  – cos φ  > 0 and consequently that φ is in either the second or 
third quadrant. The graph shows (at t = 0) y = 2.00 mm, and (at some later t) ym = 6.00 
mm.  Therefore, 
          

y = ym sin(−ω t + φ)|t = 0    ⇒   φ = sin−1( 13 ) =  0.34 rad   or   2.8 rad 
 
(bear in mind that sinθ = sin(π − θ)), and we must choose φ = 2.8 rad  because this is 
about 161° and is in second quadrant. Of course, this answer added to 2nπ is still a valid 
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answer (where n is any integer), so that, for example, φ = 2.8 – 2π = −3.48 rad is also an 
acceptable result. 
 
67. We compare the resultant wave given with the standard expression (Eq. 16–52) to 
obtain ( )1 1

220m 2 / ,2 cos 3.0mmmk y−= = π λ =φ , and 1
2 0.820rad=φ . 

 
(a) Therefore, λ = 2π/k = 0.31 m. 
 
(b) The phase difference is φ = 1.64 rad. 
 
(c) And the amplitude is ym = 2.2 mm. 
 
68. (a) Recalling the discussion in Section 16-5, we see that the speed of the wave given 
by a function with argument x – 5.0t (where x is in centimeters and t is in seconds) must 
be 5.0 cm/s . 
 
(b) In part (c), we show several “snapshots” of the wave: the one on the left is as shown 
in Figure 16-44 (at t = 0), the middle one is at t = 1.0 s, and the rightmost one is at 

2.0 st = . It is clear that the wave is traveling to the right (the +x direction). 
 
(c) The third picture in the sequence below shows the pulse at 2.0 s. The horizontal scale 
(and, presumably, the vertical one also) is in centimeters. 
 

 
 
(d) The leading edge of the pulse reaches x = 10 cm at t = (10 – 4.0)/5 = 1.2 s. The 
particle (say, of the string that carries the pulse) at that location reaches a maximum 
displacement h = 2 cm at t = (10 – 3.0)/5 = 1.4 s. Finally, the trailing edge of the pulse 
departs from x = 10 cm at t = (10 – 1.0)/5 = 1.8 s. Thus, we find for h(t) at x = 10 cm 
(with the horizontal axis, t, in seconds): 
 



 

  

713

 
 
69. (a) The phasor diagram is shown here: y1, y2, and y3 represent the original waves and 
ym represents the resultant wave.  
 

 
 
The horizontal component of the resultant is  
 

ymh = y1 – y3 = y1 – y1/3 = 2y1/3. 
 
The vertical component is ymv = y2 = y1/2. The amplitude of the resultant is 
 

2 2
2 2 1 1

1 1
2 5 0.83 .
3 2 6m mh mv
y yy y y y y⎛ ⎞ ⎛ ⎞= + = + = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
(b) The phase constant for the resultant is 
 

1 1 11

1

2 3tan tan tan 0.644 rad 37 .
2 3 4

mv

mh

y y
y y

φ − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = = °⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

 
(c) The resultant wave is 
 

1
5 sin ( 0.644 rad).
6

y y kx tω= − +  

 
The graph shows the wave at time t = 0. As time goes on it moves to the right with speed 
v = ω/k. 
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Note: In adding the three sinusoidal waves, it is convenient to represent each wave with a 
phasor, which is a vector whose magnitude is equal to the amplitude of the wave. 
However, adding the three terms explicitly gives, after a little algebra, 
 

1 2 3 1 1 1

1 1 1

1 1

1

1

1 1sin( ) sin( / 2) sin( )
2 3
1 1sin( ) cos( ) sin( )
2 3

2 1sin( ) cos( )
3 2
5 4 3sin( ) cos( )
6 5 5
5 sin( )
6

y y y y kx t y kx t y kx t

y kx t y kx t y kx t

y kx t y kx t

y kx t kx t

y kx t

ω ω π ω π

ω ω ω

ω ω

ω ω

ω φ

+ + = − + − + + − +

= − + − − −

= − + −

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

= − +

 

where ( )1tan 3/ 4 0.644 radφ −= = . In deducing the phase φ, we set cos 4 / 5φ =  and 
sin 3/ 5φ = , and use the relation cos sin sin cos sin( )φ θ φ θ θ φ+ = + . The result indeed 
agrees with that obtained in (c). 
 
70. Setting x = 0  in  ay = –ω² y, where y = ym sin(k x − ω t + φ) gives  
 

ay = –ω² ym sin(−ω t + φ) 
 
as the function being plotted in the graph.  We note that it has a negative “slope” 
(referring to its t-derivative) at t = 0, or 
                  

 [ ] 3² sin cos 0y
m m

da d y t y t
dt dt

ω ω φ ω ω φ= − (− + ) = (− + ) <  

 
at  t = 0. This implies that cosφ < 0 and consequently that φ is in either the second or 
third quadrant. The graph shows (at t = 0) ay = −100 m/s², and (at another t) amax = 400 
m/s².  Therefore, 
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ay = −amax sin(−ω t + φ)|t = 0    ⇒   φ  =  sin−1( 14 ) =  0.25 rad   or   2.9 rad 
 
(bear in mind that sinθ = sin(π − θ)), and we must choose φ = 2.9 rad  because this is 
about 166° and is in the second quadrant.  Of course, this answer added to 2nπ is still a 
valid answer (where n is any integer), so that, for example, φ = 2.9 – 2π = −3.4 rad is also 
an acceptable result. 
 
71. (a) Let the displacement of the string be of the form y(x, t) = ym sin (kx – ωt). The 
velocity of a point on the string is  
 

u(x, t) = ∂y/∂t = –ω ym cos(kx – ωt) 
 
and its maximum value is um = ωym. For this wave the frequency is f = 120 Hz and the 
angular frequency is ω = 2πf = 2π (120 Hz) = 754 rad/s. Since the bar moves through a 
distance of 1.00 cm, the amplitude is half of that, or ym = 5.00 × 10–3 m. The maximum 
speed is  

um = (754 rad/s) (5.00 × 10–3 m) = 3.77 m/s. 
 
(b) Consider the string at coordinate x and at time t and suppose it makes the angle θ with 
the x axis. The tension is along the string and makes the same angle with the x axis. Its 
transverse component is τtrans = τ sin θ. Now θ is given by tan θ = ∂y/∂x = kym cos(kx – ωt) 
and its maximum value is given by tan θm = kym. We must calculate the angular wave 
number k. It is given by k = ω/v, where v is the wave speed. The wave speed is given by 

/ ,v τ μ=  where τ is the tension in the rope and μ is the linear mass density of the rope. 
Using the data given, 

90.0 N 27.4 m/s
0.120kg/m

= =v  

and 
1754 rad/s 27.5m .

27.4 m/s
k −= =  

Thus, 
1 3tan (27.5m )(5.00 10 m) 0.138− −= × =mθ  

 
and θ = 7.83°. The maximum value of the transverse component of the tension in the 
string is  

τtrans = (90.0 N) sin 7.83° = 12.3 N. 
 
We note that sin θ is nearly the same as tan θ because θ is small. We can approximate the 
maximum value of the transverse component of the tension by τkym. 
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(c) We consider the string at x. The transverse component of the tension pulling on it due 
to the string to the left is –τ(∂y/∂x) = –τkym cos(kx – ωt) and it reaches its maximum value 
when cos(kx – ωt) = –1. The wave speed is  
 

u = ∂y/∂t = –ωym cos (kx – ωt) 
 
and it also reaches its maximum value when cos(kx – ωt) = –1. The two quantities reach 
their maximum values at the same value of the phase. When cos(kx – ωt) = –1 the value 
of sin(kx – ωt) is zero and the displacement of the string is y = 0. 
 
(d) When the string at any point moves through a small displacement Δy, the tension does 
work ΔW = τtrans Δy. The rate at which it does work is 
 

trans trans .W yP u
t t

τ τΔ Δ
= = =

Δ Δ
 

 
P has its maximum value when the transverse component τtrans of the tension and the 
string speed u have their maximum values. Hence the maximum power is (12.3 N)(3.77 
m/s) = 46.4 W. 
 
(e) As shown above, y = 0 when the transverse component of the tension and the string 
speed have their maximum values. 
 
(f) The power transferred is zero when the transverse component of the tension and the 
string speed are zero. 
 
(g) P = 0 when cos(kx – ωt) = 0 and sin(kx – ωt) = ±1 at that time. The string 
displacement is y = ±ym = ±0.50 cm. 
 
72. We use Eq. 16-52 in interpreting the figure.   
 
(a) Since y’= 6.0 mm when φ = 0, then Eq. 16-52 can be used to determine ym = 3.0 mm.   
 
(b) We note that y’= 0 when the shift distance is 10 cm; this occurs because cos(φ/2) = 0 
there ⇒  φ = π rad  or ½ cycle.  Since a full cycle corresponds to a distance of one full 
wavelength, this ½ cycle shift corresponds to a distance of λ/2.  Therefore, λ = 20 cm  ⇒ 
k = 2π/λ = 31 m−1.   
 
(c) Since f = 120 Hz, ω = 2πf  = 754 rad/s 27.5 10  rad/s.≈ ×  
 
(d) The sign in front of ω is minus since the waves are traveling in the +x direction. 
 
The results may be summarized as y = (3.0 mm) sin[(31.4 m−1)x – (754 s−1)t]] (this 
applies to each wave when they are in phase). 
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73. We note that  

dy/dt = −ωcos(kx – ωt + φ), 
 
which we will refer to as u(x,t). so that the ratio of the function y(x,t) divided by u(x,t)  
is – tan(kx − ωt + φ)/ω.  With the given information (for x = 0 and t = 0) then we can take 
the inverse tangent of this ratio to solve for the phase constant: 
 

 1 1(0,0) (440)(0.0045)tan tan 1.2 rad.
(0,0) 0.75
y

u
ωφ − −⎛ ⎞− −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠

 

 
74. We use 2 2 2 21

2 .mP y vf f= ∝ ∝μνω τ  
 

(a) If the tension is quadrupled, then 2 1
2 1 1 1

1 1

4 2 .P P P P= = =
τ τ
τ τ

 

 

(b) If the frequency is halved, then 
2 2

2 1
2 1 1 1

1 1

/ 2 1 .
4

f fP P P P
f f

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
75. (a) Let the cross-sectional area of the wire be A and the density of steel be ρ. The 
tensile stress is given by τ/A where τ is the tension in the wire. Also, μ = ρA. Thus, 
 

8 2
2max max

max 3

7.00 10 N m     3.00 10 m s
7800kg m

Av τ τ
μ ρ

×
= = = = × . 

 
(b) The result does not depend on  the diameter of the wire. 
 
76. Repeating the steps of Eq. 16-47 → Eq. 16-53, but applying 
 

cos cos 2cos cos
2 2

α β α βα β + −⎛ ⎞ ⎛ ⎞+ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
(see Appendix E) instead of Eq. 16-50, we obtain [0.10cos ]cos4y x t′ = π π , with SI units 
understood. 
 
(a) For non-negative x, the smallest value to produce cos πx = 0 is x = 1/2, so the answer 
is x = 0.50 m. 
 
(b) Taking the derivative, 

[ ]( )0.10cos 4 sin 4dyu x t
dt

′
′ = = π − π π . 
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We observe that the last factor is zero when 31 1

4 2 40, , , ,t = …  Thus, the value of the first 
time the particle at x = 0 has zero velocity is t = 0. 
 
(c) Using the result obtained in (b), the second time where the velocity at x = 0 vanishes 
would be t = 0.25 s, 
 
(d) and the third time is t = 0.50 s. 
 
77. (a) The wave speed is 
 

( ) .
/( )

Δ Δ + Δ
= = =

+ Δ
F k kv

m m
A A A A

A Aμ
 

 
(b) The time required is 
 

2 ( ) 2 ( ) 2 1 .
( ) /

mt
v kk m

π + Δ π + Δ
= = = π +

ΔΔ + Δ
A A A A A

AA A A
 

 
Thus if / 1ΔA A � , then / 1/ ;t ∝ Δ ∝ ΔA A A  and if / 1ΔA A � , then 

2 / constant.t m kπ =�  
 
78. (a) For visible light 
 

8
14

min 9
max

3.0 10 m s 4.3 10 Hz
700 10 m

cf −

×
= = = ×

λ ×
 

and 
8

14
max 9

min

3.0 10 m s 7.5 10 Hz.
400 10 m

cf −

×
= = = ×

λ ×
 

(b) For radio waves 
8

min 6
max

3.0 10 m s 1.0m
300 10 Hz

c ×
λ = = =

λ ×
 

and 
8

2
max 6

min

3.0 10 m s 2.0 10 m.
1.5 10 Hz

c ×
λ = = = ×

λ ×
 

 
(c) For X rays 

8
16

min 9
max

3.0 10 m s 6.0 10 Hz
5.0 10 m

cf −

×
= = = ×

λ ×
 

and 
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8
19

max 11
min

3.0 10 m s 3.0 10 Hz.
1.0 10 m

cf −

×
= = = ×

λ ×
 

 
79. (a) The wave speed is 
 

3
120 N 144 m/s.

8.70 10 kg /1.50m−= = =
×

v τ
μ

 

 
(b) For the one-loop standing wave we have λ1 = 2L = 2(1.50 m) = 3.00 m.  
 
(c) For the two-loop standing wave, λ2 = L = 1.50 m. 
 
(d) The frequency for the one-loop wave is f1 = v/λ1 = (144 m/s)/(3.00 m) = 48.0 Hz. 
 
(e) The frequency for the two-loop wave is f2 = v/λ2 = (144 m/s)/(1.50 m) = 96.0 Hz. 
 
The one-loop and two-loop standing wave patterns are plotted below: 

  
 
80. By Eq. 16–66, the higher frequencies are integer multiples of the lowest (the 
fundamental).  
 
(a) The frequency of the second harmonic is f2 = 2(440) = 880 Hz. 
 
(b) The frequency of the third harmonic is f3 = 3(440) = 1320 Hz.  
 
81. (a) The amplitude is ym = 1.00 cm = 0.0100 m, as given in the problem. 
 
(b) Since the frequency is f = 550 Hz, the angular frequency is ω = 2πf = 3.46×103 rad/s. 
 
(c) The angular wave number is 3/ (3.46 10  rad/s) /(330 m/s) 10.5 rad/mk vω= = × = . 
 
(d) Since the wave is traveling in the –x direction, the sign in front of ω is plus and the 
argument of the trig function is kx + ωt.  
 
The results may be summarized as 
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( ) ( )

( ) ( )

m m

3

, sin sin 2

0.010m sin 2 550Hz
330m s

            (0.010m) sin[(10.5 rad/s) (3.46 10  rad/s) ].

xy x t y kx t y f t
v

x t

x t

ω π

π

⎡ ⎤⎛ ⎞= + = +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

= + ×

 

 
82. We orient one phasor along the x axis with length 3.0 mm and angle 0 and the other at 
70° (in the first quadrant) with length 5.0 mm. Adding the components, we obtain 
 

( )(3.0  mm) (5.0  mm)cos 70 4.71mm along axis
(5.0 mm)sin (70 ) 4.70 mm  along axis.

x
y

+ ° =
° =

 

 
(a) Thus, amplitude of the resultant wave is 2 2(4.71 mm) (4.70 mm) 6.7 mm.+ =   
 
(b) And the angle (phase constant) is tan–1 (4.70/4.71) = 45°. 
 
83. (a) We take the form of the displacement to be y (x, t) = ym sin(kx – ωt). The speed of 
a point on the cord is  

u(x, t) = ∂y/∂t = –ωym cos(kx – ωt), 
 
and its maximum value is um = ωym. The wave speed, on the other hand, is given by v = 
λ/T = ω/k. The ratio is 

2 .
/

m m m
m

u y yky
v k

π
= = =

λ
ω
ω

 

 
(b) The ratio of the speeds depends only on the ratio of the amplitude to the wavelength. 
Different waves on different cords have the same ratio of speeds if they have the same 
amplitude and wavelength, regardless of the wave speeds, linear densities of the cords, 
and the tensions in the cords. 
 
84. (a) Since the string has four loops its length must be two wavelengths. That is, λ = 
L/2, where λ is the wavelength and L is the length of the string. The wavelength is related 
to the frequency f and wave speed v by λ = v/f, so L/2 = v/f and  
 

L = 2v/f = 2(400 m/s)/(600 Hz) = 1.3 m. 
 
(b) We write the expression for the string displacement in the form y = ym sin(kx) cos(ωt), 
where ym is the maximum displacement, k is the angular wave number, and ω is the 
angular frequency. The angular wave number is  
 

k = 2π/λ = 2πf/v = 2π(600 Hz)/(400 m/s) = 9.4m–1 
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and the angular frequency is  
 

ω = 2πf = 2π(600 Hz) = 3800 rad/s. 
 
With ym = 2.0 mm, the displacement is given by 
 

1 1( , ) (2.0 mm)sin[(9.4 m ) ]cos[(3800s ) ].y x t x t− −=  
 
85. We make use of Eq. 16-65 with L = 120 cm.  
 
(a) The longest wavelength for waves traveling on the string  if standing waves are to be 
set up is 1 2 /1 240 cm.Lλ = =  
 
(b) The second longest wavelength for waves traveling on the string  if standing waves 
are to be set up is 2 2 / 2 120 cm.Lλ = =  
 
(c) The third longest wavelength for waves traveling on the string  if standing waves are 
to be set up is 3 2 / 3 80.0 cm.Lλ = =  
 
The three standing waves are shown below: 
 

 
 
86. (a) Let the displacements of the wave at (y,t) be z(y,t). Then  
 

z(y,t) = zm sin(ky – ωt), 
 
where zm = 3.0 mm, k = 60 cm–1, and ω = 2π/T = 2π/0.20 s = 10π s–1. Thus 
 

( ) ( )1 1( , ) (3.0mm)sin 60cm 10 s .z y t y t− −⎡ ⎤= − π⎣ ⎦  
 
(b) The maximum transverse speed is (2 / 0.20s)(3.0mm)=94 mm/s.m mu z= = πω  
 
87. (a) With length in centimeters and time in seconds, we have 
 

60 cos 4 .
8

dy xu t
dt

π⎛ ⎞= = − π − π⎜ ⎟
⎝ ⎠
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Thus, when x = 6 and 1
4t = , we obtain 

 
6060 cos 133

4 2
u −π − π

= − π = = −  

 
so that the speed there is 1.33 m/s. 
 
(b) The numerical coefficient of the cosine in the expression for u is –60π. Thus, the 
maximum speed is 1.88 m/s. 
 
(c) Taking another derivative, 

2240 sin 4
8

du xa t
dt

π⎛ ⎞= = − π − π⎜ ⎟
⎝ ⎠

 

 
so that when x = 6 and t = 1

4  we obtain a = –240π2 sin(−π/4), which yields a = 16.7 m/s2. 
 
(d) The numerical coefficient of the sine in the expression for a is –240π2. Thus, the 
maximum acceleration is 23.7 m/s2. 
 
88. (a) This distance is determined by the longitudinal speed: 
 

( )( )6 22000m/s 40 10 s 8.0 10 m.d v t − −= = × = ×A A  
 

(b) Assuming the acceleration is constant (justified by the near-straightness of the curve a 
= 300/40 × 10–6) we find the stopping distance d: 

 
( ) ( )

( )

2 6
2 2

300 40 10
2

2 300ov v ad d
−×

= + ⇒ =  

 
which gives d = 6.0×10–3 m. This and the radius r form the legs of a right triangle (where 
r is opposite from θ = 60°). Therefore, 
 

2tan 60 tan 60 1.0 10 m.r r d
d

−° = ⇒ = ° = ×  

 
89. Using Eq. 16-50, we have 
 

0.60cos sin 5 200
6 6

y x tπ ππ π⎛ ⎞ ⎛ ⎞′ = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
with length in meters and time in seconds (see Eq. 16-55 for comparison). 
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(a) The amplitude is seen to be 0.60cos 0.3 3 0.52 m.
6
π

= =  

(b) Since k = 5π and ω  = 200π, then (using Eq. 16-12), 40m/s.v
k

= =
ω  

 
(c) k = 2π/λ leads to λ = 0.40 m. 
 
90. (a) The frequency is f = 1/T = 1/4 Hz, so v = fλ = 5.0 cm/s. 
 
(b) We refer to the graph to see that the maximum transverse speed (which we will refer 
to as um) is 5.0 cm/s. Recalling from Ch. 11 the simple harmonic motion relation um = 
ymω = ym2πf, we have 
 

15.0 2      3.2 cm.
4m my y⎛ ⎞= π ⇒ =⎜ ⎟

⎝ ⎠
 

  
(c) As already noted, f = 0.25 Hz. 
 
(d) Since k = 2π/λ, we have k = 10π rad/m. There must be a sign difference between the t 
and x terms in the argument in order for the wave to travel to the right. The figure shows 
that at x = 0, the transverse velocity function is 0.050 sin / 2tπ . Therefore, the function 
u(x,t) is 

( , ) 0.050sin 10
2

u x t t xπ⎛ ⎞= − π⎜ ⎟
⎝ ⎠

 

 
with lengths in meters and time in seconds. Integrating this with respect to time yields 
 

( )2 0.050
( , ) cos 10

2
y x t t x Cπ⎛ ⎞= − − π +⎜ ⎟π ⎝ ⎠

 

 
where C is an integration constant (which we will assume to be zero). The sketch of this 
function at t = 2.0 s for 0 ≤ x ≤ 0.20 m is shown below. 
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91. (a)  From the frequency information, we find ω = 2πf = 10π rad/s.  A point on the 
rope undergoing simple harmonic motion (discussed in Chapter 15) has maximum speed 
as it passes through its "middle" point, which is equal to ymω.  Thus, 
 

5.0 m/s = ymω    ⇒    ym = 0.16 m. 
 
(b) Because of the oscillation being in the fundamental mode (as illustrated in Fig. 16-
20(a) in the textbook), we have λ = 2L = 4.0 m.  Therefore, the speed of waves along the 
rope is v = fλ = 20 m/s.  Then, with μ = m/L = 0.60 kg/m, Eq. 16-26 leads to 
 

v τ
μ

=    ⇒    τ = μ v2 = 240 N 22.4 10 N≈ × . 

 
(c) We note that for the fundamental, k = 2π/λ = π/L, and we observe that the anti-node 
having zero displacement at t = 0 suggests the use of sine instead of cosine for the simple 
harmonic motion factor.  Now, if the fundamental mode is the only one present (so the 
amplitude calculated in part (a) is indeed the amplitude of the fundamental wave pattern) 
then we have 
 

 y =  (0.16 m) sin ⎝⎜
⎛

⎠⎟
⎞πx

2  sin (10πt) 1(0.16 m)sin[(1.57 m ) ]sin[(31.4 rad/s) ]x t−= . 

 
The period of oscillation is 1/ 0.20 sT f= = . The snapshots of the patterns at 

/ 4 0.05 st T= =  and 3 / 4 0.15 st T= =  are given below. At t = T/2 and T, the 
displacement is zero everywhere. 

 
 

/ 4 0.05 st T= =  

 
 

3 / 4 0.15 st T= =  

 
92. (a) The wave number for each wave is k = 25.1/m, which means λ = 2π/k = 250.3 mm. 
The angular frequency is ω = 440/s; therefore, the period is T = 2π/ω = 14.3 ms. We plot 
the superposition of the two waves y = y1 + y2 over the time interval 0 ≤ t ≤ 15 ms. The 
first two graphs below show the oscillatory behavior at x = 0 (the graph on the left) and at 
x = λ/8 ≈ 31 mm. The time unit is understood to be the millisecond and vertical axis (y) is 
in millimeters. 
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The following three graphs show the oscillation at x = λ/4 =62.6 mm ≈ 63 mm (graph on 
the left), at x = 3λ/8 ≈ 94 mm (middle graph), and at x = λ/2 ≈ 125 mm. 
 

 
 
(b) We can think of wave y1 as being made of two smaller waves going in the same 
direction, a wave y1a of amplitude 1.50 mm (the same as y2) and a wave y1b of amplitude 
1.00 mm. It is made clear in Section 16-12 that two equal-magnitude oppositely-moving 
waves form a standing wave pattern. Thus, waves y1a and y2 form a standing wave, which 
leaves y1b as the remaining traveling wave. Since the argument of y1b involves the 
subtraction kx – ωt, then y1b travels in the +x direction. 
 
(c) If y2 (which travels in the –x direction, which for simplicity will be called “leftward”) 
had the larger amplitude, then the system would consist of a standing wave plus a 
leftward moving wave. A simple way to obtain such a situation would be to interchange 
the amplitudes of the given waves. 
 
(d) Examining carefully the vertical axes, the graphs above certainly suggest that the 
largest amplitude of oscillation is ymax = 4.0 mm and occurs at x = λ/4 = 62.6 mm.  
 
(e) The smallest amplitude of oscillation is ymin = 1.0 mm and occurs at x = 0 and at x = 
λ/2 = 125 mm. 
 
(f) The largest amplitude can be related to the amplitudes of y1 and y2 in a simple way: 
ymax = y1m + y2m, where y1m = 2.5 mm and y2m = 1.5 mm are the amplitudes of the original 
traveling waves. 
 
(g) The smallest amplitudes is ymin = y1m – y2m, where y1m = 2.5 mm and y2m = 1.5 mm are 
the amplitudes of the original traveling waves. 
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93. (a) Centimeters are to be understood as the length unit and seconds as the time unit. 
Making sure our (graphing) calculator is in radians mode, we find 

   
 

(b) The previous graph is at t = 0, and this next one is at t = 0.050 s. 

 
 
And the final one, shown below, is at t = 0.010 s. 

 
 
(c) The wave can be written as ( , ) sin( )my x t y kx tω= + , where /v kω=  is the speed of 
propagation. From the problem statement, we see that 2 / 0.40 5  rad/sω π π= = and 

2 / 80 / 40 rad/cmk π π= = . This yields 22.0 10  cm/s 2.0 m/sv = × = . 
 
(d) These graphs (as well as the discussion in the textbook) make it clear that the wave is 
traveling in the –x direction.  
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Chapter 17 
 
 
1. (a) The time for the sound to travel from the kicker to a spectator is given by d/v, 
where d is the distance and v is the speed of sound. The time for light to travel the same 
distance is given by d/c, where c is the speed of light. The delay between seeing and 
hearing the kick is Δt = (d/v) – (d/c). The speed of light is so much greater than the speed 
of sound that the delay can be approximated by Δt = d/v. This means d = v Δt. The 
distance from the kicker to spectator A is  
 

dA = v ΔtA = (343 m/s)(0.23 s) = 79 m. 
 
(b) The distance from the kicker to spectator B is dB = v ΔtB = (343 m/s)(0.12 s) = 41 m. 
 
(c) Lines from the kicker to each spectator and from one spectator to the other form a 
right triangle with the line joining the spectators as the hypotenuse, so the distance 
between the spectators is 
 

( ) ( )2 22 2 79 m 41m 89 mA BD d d= + = + = . 
 
2. The density of oxygen gas is 
 

3
3

0.0320kg 1.43kg/m .
0.0224 m

= =ρ  

From /v B ρ=  we find  
 

( ) ( )22 3 5317 m/s 1.43kg/m 1.44 10 Pa.B v= = = ×ρ  
 
3. (a) When the speed is constant, we have v = d/t where v = 343 m/s is assumed. 
Therefore, with t = 15/2 s being the time for sound to travel to the far wall we obtain d = 
(343 m/s) × (15/2 s), which yields a distance of 2.6 km. 
 
(b) Just as the 1

2 factor in part (a) was 1/(n + 1) for n = 1 reflection, so also can we write 
 

( ) ( )( )343 1515s343m/s 1
1

d n
n d

⎛ ⎞= ⇒ = −⎜ ⎟+⎝ ⎠
 

 
for multiple reflections (with d in meters). For d = 25.7 m, we find n = 199 22.0 10≈ × . 
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4. The time it takes for a soldier in the rear end of the column to switch from the left to 
the right foot to stride forward is t = 1 min/120 = 1/120 min = 0.50 s. This is also the time 
for the sound of the music to reach from the musicians (who are in the front) to the rear 
end of the column. Thus the length of the column is 
 

2(343m/s)(0.50s) =1.7  10 m.l vt= = ×  
 
5. If d is the distance from the location of the earthquake to the seismograph and vs is the 
speed of the S waves, then the time for these waves to reach the seismograph is ts. = d/vs. 
Similarly, the time for P waves to reach the seismograph is tp = d/vp. The time delay is  
 

Δt = (d/vs) – (d/vp) = d(vp – vs)/vsvp, 
so 

3(4.5  km/s)(8.0km/s)(3.0min)(60s /min) 1.9 10 km.
( ) 8.0km/s 4.5km/s

s p

p s

v v t
d

v v
Δ

= = = ×
− −

 

 
We note that values for the speeds were substituted as given, in km/s, but that the value 
for the time delay was converted from minutes to seconds. 
 
6. Let A  be the length of the rod. Then the time of travel for sound in air (speed vs) will 
be /s st v= A . And the time of travel for compressional waves in the rod (speed vr) will be 

/r rt v= A . In these terms, the problem tells us that 
 

1 10.12s .s r
s r

t t
v v

⎛ ⎞
− = = −⎜ ⎟

⎝ ⎠
A  

 
Thus, with vs = 343 m/s and vr = 15vs = 5145 m/s, we find 44 mA= . 
 
7. Let tf be the time for the stone to fall to the water and ts be the time for the sound of the 
splash to travel from the water to the top of the well. Then, the total time elapsed from 
dropping the stone to hearing the splash is t = tf + ts. If d is the depth of the well, then the 
kinematics of free fall gives  

21
2 fd gt= ⇒   2 / .ft d g=  

 
The sound travels at a constant speed vs, so d = vsts, or ts = d/vs. Thus the total time is 

2 / / st d g d v= + . This equation is to be solved for d. Rewrite it as 2 / / sd g t d v= −  
and square both sides to obtain  
 

2d/g = t2 – 2(t/vs)d + (1 + 2
sv )d2. 

 
Now multiply by g 2

sv  and rearrange to get  
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gd2 – 2vs(gt + vs)d + g 2

sv t2 = 0. 
 
This is a quadratic equation for d. Its solutions are 
 

( )22 2 2 22 ( ) 4 4
.

2
s s s s sv gt v v gt v g v t

d
g

+ ± + −
=  

 
The physical solution must yield d = 0 for t = 0, so we take the solution with the negative 
sign in front of the square root. Once values are substituted the result d = 40.7 m is 
obtained. The relation between the depth of the well and time is plotted below: 
 

 
 
8. Using Eqs. 16-13 and 17-3, the speed of sound can be expressed as 
 

 Bv fλ
ρ

= = , 

 
where ( / ) / .B dp dV V= −   Since , , andV λ ρ  are not changed appreciably, the 
frequency ratio becomes 
 

 ( / )
( / )

s s s s

i i i i

f v B dp dV
f v B dp dV

= = = . 

 
Thus, we have  

2 2( / ) 1 9.00
( / ) 0.333

s i i

i s s

dV dp B f
dV dp B f

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

 
9. Without loss of generality we take x = 0, and let t = 0 be when s = 0. This means the 
phase is φ = −π/2 and the function is s = (6.0 nm)sin(ωt) at x = 0.  Noting that ω = 3000 
rad/s, we note that at t = sin−1(1/3)/ω = 0.1133 ms the displacement is s = +2.0 nm.  
Doubling that time (so that we consider the excursion from –2.0 nm to +2.0 nm) we 
conclude that the time required is 2(0.1133 ms) = 0.23 ms.  
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10. The key idea here is that the time delay tΔ  is due to the distance d that each 
wavefront must travel to reach your left ear (L) after it reaches your right ear (R). 
 

(a) From the figure, we find sind Dt
v v

θ
Δ = = . 

 
(b) Since the speed of sound in water is now wv , with 90θ = ° , we have 
 

sin 90
w

w w

D Dt
v v

°
Δ = = . 

 
(c) The apparent angle can be found by substituting / wD v  for tΔ : 
 

sin

w

D Dt
v v

θ
Δ = = . 

 
Solving for θ  with 1482 m/swv =  (see Table 17-1), we obtain 
 

 1 1 1343 m/ssin sin sin (0.231) 13
1482 m/sw

v
v

θ − − −⎛ ⎞ ⎛ ⎞
= = = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

 
11. (a) Using λ = v/f, where v is the speed of sound in air and f is the frequency, we find 

 
5

6

343m/s 7.62 10 m.
4.50 10 Hz

−λ = = ×
×

 

 
(b) Now, λ = v/f, where v is the speed of sound in tissue. The frequency is the same for 
air and tissue. Thus  
 

λ = (1500 m/s)/(4.50 × 106 Hz) = 3.33 × 10–4 m. 
 
12. (a) The amplitude of a sinusoidal wave is the numerical coefficient of the sine (or 
cosine) function: pm = 1.50 Pa. 
 
(b) We identify k = 0.9π and ω = 315π (in SI units), which leads to f = ω/2π = 158 Hz. 
 
(c) We also obtain λ = 2π/k = 2.22 m. 
 
(d) The speed of the wave is v = ω/k = 350 m/s. 
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13. The problem says “At one instant...” and we choose that instant (without loss of 
generality) to be t = 0.  Thus, the displacement of “air molecule A” at that instant is  
 

sA = +sm = smcos(kxA − ωt + φ)|t=0 = smcos(kxA + φ), 
 
where xA = 2.00 m. Regarding “air molecule B” we have  
 

sB = + 13 sm = sm cos( kxB − ωt + φ )|t=0 = sm cos( kxB + φ ). 
 
These statements lead to the following conditions: 
 
    kxA + φ = 0 

kxB + φ = cos−1(1/3) = 1.231 
 
where xB = 2.07 m. Subtracting these equations leads to  
 

k(xB − xA) = 1.231   ⇒    k = 17.6 rad/m. 
 
Using the fact that k = 2π/λ we find λ = 0.357 m, which means   
 

f = v/λ = 343/0.357 = 960 Hz. 
 
Another way to complete this problem (once k is found) is to use  kv = ω  and then the 
fact that ω = 2πf. 
 
14. (a) The period is T  = 2.0 ms (or 0.0020 s) and the amplitude is Δpm = 8.0 mPa (which 
is equivalent to 0.0080 N/m2).  From Eq. 17-15 we get 
 

 96.1 10  mm m
m

p ps
v v Tρω ρ π

−Δ Δ
= = = ×

(2 / )
 

 
where ρ = 1.21 kg/m3 and v = 343 m/s. 
 
(b) The angular wave number is k = ω/v = 2π/vT = 9.2 rad/m.   
 
(c) The angular frequency is ω = 2π/T = 3142 rad/s 33.1 10  rad/s≈ × .  
 
The results may be summarized as s(x, t) = (6.1 nm) cos[(9.2 m−1)x – (3.1 × 103 s−1)t].  
 
(d) Using similar reasoning, but with the new values for density ( ρ′  = 1.35 kg/m3) and 
speed ( v′ = 320 m/s), we obtain 
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 95.9 10  m.
(2 / )

m m
m

p ps
v v Tρ ω ρ π

−Δ Δ
= = = ×

′ ′ ′ ′
 

 
(e) The angular wave number is k = / 2 /v v Tω π′ ′=  = 9.8 rad/m.   
 
(f) The angular frequency is ω = 2π/T = 3142 rad/s 33.1 10  rad/s≈ × . 
 
The new displacement function is s(x, t) = (5.9 nm) cos[(9.8 m−1)x – (3.1 × 103 s−1)t]. 
 
15. (a) Consider a string of pulses returning to the stage. A pulse that came back just 
before the previous one has traveled an extra distance of 2w, taking an extra amount of 
time Δt = 2w/v. The frequency of the pulse is therefore 
 

( )
21 343m/s 2.3 10 Hz.

2 2 0.75m
vf

t w
= = = = ×

Δ
 

 
(b) Since f ∝ 1/w, the frequency would be higher if w were smaller. 
 
16. Let the separation between the point and the two sources (labeled 1 and 2) be x1 and 
x2, respectively. Then the phase difference is 
 

1 2 1 2
1 2

2 ( ) 2 (4.40m 4.00m)2 2
(330m/s) / 540Hz

4.12 rad.

x x x xft ft π πφ φ φ π π
λ λ λ

− −⎛ ⎞ ⎛ ⎞Δ = − = + − + = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
 

 
17. Building on the theory developed in Section 17-5, we set / 1/ 2,  1,2,...L n nλΔ = − =  
in order to have destructive interference. Since v = fλ, we can write this in terms of 
frequency: 

min,
(2 1) ( 1/ 2)(286 Hz)

2n
n vf n

L
−

= = −
Δ

 

 
where we have used v = 343 m/s (note the remarks made in the textbook at the beginning 
of the exercises and problems section) and ΔL = (19.5 – 18.3 ) m = 1.2 m. 
 
(a) The lowest frequency that gives destructive interference is (n = 1) 
 

min,1 (1 1/ 2)(286 Hz) 143 Hz.f = − =  
 
(b) The second lowest frequency that gives destructive interference is (n = 2) 
 

min,2 min,1(2 1/ 2)(286 Hz) 429 Hz 3(143 Hz) 3 .f f= − = = =  
 
So the factor is 3. 
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(c) The third lowest frequency that gives destructive interference is (n = 3) 
 

min,3 min,1(3 1/ 2)(286 Hz) 715 Hz 5(143 Hz) 5 .f f= − = = =  
 
So the factor is 5. 
 
Now we set 1

2/LΔ =λ  (even numbers) — which can be written more simply as “(all 
integers n = 1, 2,…)” — in order to establish constructive interference. Thus, 
 

max, (286 Hz).n
nvf n

L
= =

Δ
 

 
(d) The lowest frequency that gives constructive interference is (n =1) max,1 (286 Hz).f =  
 
(e) The second lowest frequency that gives constructive interference is (n = 2) 
 

max,2 max,12(286 Hz) 572 Hz 2 .f f= = =  
Thus, the factor is 2. 
 
(f) The third lowest frequency that gives constructive interference is (n = 3) 
 

max,3 max,13(286 Hz) 858 Hz 3 .f f= = =  
Thus, the factor is 3. 
 
18. (a) To be out of phase (and thus result in destructive interference if they superpose) 
means their path difference must be λ/2 (or 3λ/2 or 5λ/2 or …).  Here we see their path 
difference is L, so we must have (in the least possibility) L = λ/2, or q =L/λ = 0.5. 
 
(b) As noted above, the next possibility is L = 3λ/2, or q =L/λ = 1.5. 
 
19. (a) The problem is asking at how many angles will there be “loud” resultant waves, 
and at how many will there be “quiet” ones?  We note that at all points (at large distance 
from the origin) along the x axis there will be quiet ones; one way to see this is to note 
that the path-length difference (for the waves traveling from their respective sources) 
divided by wavelength gives the (dimensionless) value 3.5, implying a half-wavelength 
(180º) phase difference (destructive interference) between the waves.  To distinguish the 
destructive interference along the +x axis from the destructive interference along the –x 
axis, we label one with +3.5 and the other –3.5.  This labeling is useful in that it suggests 
that the complete enumeration of the quiet directions in the upper-half plane (including 
the x axis) is: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5.  Similarly, the complete 
enumeration of the loud directions in the upper-half plane is: –3, –2, –1, 0, +1, +2, +3.  
Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half plane, then 
we conclude there are a total of  7 + 7 = 14  “loud”  directions. 
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(b) The discussion about the “quiet” directions was started in part (a).  The number of 
values in the list: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5 along with  –2.5, –1.5, –0.5, 
+0.5, +1.5, +2.5 (for the lower-half plane) is 14.  There are 14 “quiet” directions. 
 
20. (a) The problem indicates that we should ignore the decrease in sound amplitude, 
which means that all waves passing through point P have equal amplitude.  Their 
superposition at P if d = λ/4 results in a net effect of zero there since there are four 
sources (so the first and third are λ/2 apart and thus interfere destructively; similarly for 
the second and fourth sources). 
 
(b) Their superposition at P if d = λ/2 also results in a net effect of zero there since there 
are an even number of sources (so the first and second being λ/2 apart will interfere 
destructively; similarly for the waves from the third and fourth sources). 
 
(c) If d = λ then the waves from the first and second sources will arrive at P in phase; 
similar observations apply to the second and third, and to the third and fourth sources.  
Thus, four waves interfere constructively there with net amplitude equal to 4sm. 
 
21. Let L1 be the distance from the closer speaker to the listener. The distance from the 
other speaker to the listener is 2 2

2 1L L d= + , where d is the distance between the 
speakers. The phase difference at the listener is φ = 2π(L2 – L1)/λ, where λ is the 
wavelength. 
 
For a minimum in intensity at the listener, φ = (2n + 1)π, where n is an integer. Thus,  
 

λ = 2(L2 – L1)/(2n + 1). 
The frequency is 
 

( ) ( )2 2 2 2
1 1

(2 1) (2 1)(343m/s) (2 1)(343Hz).
2 2 (3.75m) (2.00m) 3.75m

v n v nf n
L d L

+ +
= = = = +

λ + − + −
 

 
Now 20,000/343 = 58.3, so 2n + 1 must range from 0 to 57 for the frequency to be in the 
audible range. This means n ranges from 0 to 28. 
 
(a) The lowest frequency that gives minimum signal is (n = 0) min,1 343 Hz.f =   
 
(b) The second lowest frequency is (n = 1) min,2 min,1[2(1) 1]343 Hz 1029 Hz 3 .f f= + = =  
Thus, the factor is 3.  
 
(c) The third lowest frequency is (n = 2) min,3 min,1[2(2) 1]343 Hz 1715 Hz 5 .f f= + = =  Thus, 
the factor is 5.  
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For a maximum in intensity at the listener, φ = 2nπ, where n is any positive integer. Thus 

( )2 2
1 1(1/ )n L d Lλ = + −  and 

 

2 2 2 2
1 1

(343m/s) (686 Hz).
(3.75m) (2.00m) 3.75m

v nv nf n
L d L

= = = =
λ + − + −

 

 
Since 20,000/686 = 29.2, n must be in the range from 1 to 29 for the frequency to be 
audible. 
 
(d) The lowest frequency that gives maximum signal is (n = 1) max,1 686 Hz.f =  
 
(e) The second lowest frequency is (n = 2) max,2 max,12(686 Hz) 1372 Hz 2 .f f= = =  Thus, 
the factor is 2. 
 
(f) The third lowest frequency is (n = 3) max,3 max,13(686 Hz) 2058 Hz 3 .f f= = =  Thus, the 
factor is 3. 
 
22. At the location of the detector, the phase difference between the wave that traveled 
straight down the tube and the other one, which took the semi-circular detour, is 
 

2 ( 2 ).k d r rπ
Δ = Δ = π −

λ
φ  

 
For r = rmin we have Δφ = π, which is the smallest phase difference for a destructive 
interference to occur. Thus, 

min
40.0cm 17.5cm.

2( 2) 2( 2)
r λ

= = =
π − π −

 

 
23. (a) If point P is infinitely far away, then the small distance d between the two sources 
is of no consequence (they seem effectively to be the same distance away from P). Thus, 
there is no perceived phase difference. 
 
(b) Since the sources oscillate in phase, then the situation described in part (a) produces 
fully constructive interference. 
 
(c) For finite values of x, the difference in source positions becomes significant. The path 
lengths for waves to travel from S1 and S2 become now different. We interpret the 
question as asking for the behavior of the absolute value of the phase difference |Δφ|, in 
which case any change from zero (the answer for part (a)) is certainly an increase. 
 
The path length difference for waves traveling from S1 and S2 is 
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2 2 for 0.d x x xΔ = + − >A  
 
The phase difference in “cycles” (in absolute value) is therefore 
 

2 2

.d x xΔ + −
Δ = =

λ λ
Aφ  

 
Thus, in terms of λ, the phase difference is identical to the path length difference: 
| | 0AφΔ =Δ > . Consider / 2AΔ = λ . Then 2 2 / 2d x x+ = + λ . Squaring both sides, 
rearranging, and solving, we find 

2

.
4

dx λ
= −

λ
 

 
In general, if A ξΔ = λ  for some multiplier ξ > 0, we find 
 

2 1 64.0
2 2
dx ξ ξ
ξ ξ

= − λ = −
λ

 

 
where we have used d = 16.0 m and λ = 2.00 m. 
 
(d) For 0.50AΔ = λ , or 0.50ξ = , we have 0.50) m 127.5 m 128 mx = (64.0/0.50 − = ≈ . 
 
(e) For 1.00AΔ = λ , or 1.00ξ = , we have 1.00) m 63.0 mx = (64.0/1.00 − = . 
 
(f) For 1.50AΔ = λ , or 1.50ξ = , we have 1.50) m 41.2 mx = (64.0/1.50 − = . 
 
Note that since whole cycle phase differences are equivalent (as far as the wave 
superposition goes) to zero phase difference, then the ξ = 1, 2 cases give constructive 
interference. A shift of a half-cycle brings “troughs” of one wave in superposition with 
“crests” of the other, thereby canceling the waves; therefore, the 3 51

2 2 2, ,ξ =  cases 
produce destructive interference. 
 
24. (a) Equation 17-29 gives the relation between sound level β and intensity I, namely 
 
 ( /10dB) 12 2 ( /10dB) 12 ( /10dB) 2

010 (10 W/m )10 10 W/mI I β β β− − += = =  
 
Thus we find that for a β = 70 dB level we have a high intensity value of Ihigh = 10 μW/m2.  
 
(b) Similarly, for a β = 50 dB level we have a low intensity value of Ilow = 0.10 μW/m2. 
 
(c) Equation 17-27 gives the relation between the displacement amplitude and I.  Using 
the values for density and wave speed, we find sm = 70 nm for the high intensity case. 
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(d) Similarly, for the low intensity case we have sm = 7.0 nm.   
 
We note that although the intensities differed by a factor of 100, the amplitudes differed 
by only a factor of 10. 
 
25. The intensity is given by 2 21

2 ,mI v s= ρ ω  where ρ is the density of air, v is the speed of 
sound in air, ω is the angular frequency, and sm is the displacement amplitude for the 
sound wave. Replace ω with 2πf and solve for sm: 
 

6 2
8

2 2 2 3 2

1.00 10 W/m 3.68 10 m.
2 2 (1.21kg/m )(343m/s)(300Hz)m

Is
v fρ

−
−×

= = = ×
π π

 

 
26. (a) Since intensity is power divided by area, and for an isotropic source the area may 
be written A = 4πr2 (the area of a sphere), then we have 
 

2
2

1.0W 0.080W/m .
4 (1.0m)

PI
A

= = =
π

 

 
(b) This calculation may be done exactly as shown in part (a) (but with r = 2.5 m instead 
of r = 1.0 m), or it may be done by setting up a ratio. We illustrate the latter approach. 
Thus, 

22

2
/ 4 ( )
/ 4

I P r r
I P r r
′ ′π ⎛ ⎞= = ⎜ ⎟′π ⎝ ⎠

 

 
leads to I′ = (0.080 W/m2)(1.0/2.5)2 = 0.013 W/m2. 
 
27. (a) Let I1 be the original intensity and I2 be the final intensity. The original sound 
level is β1 = (10 dB) log(I1/I0) and the final sound level is β2 = (10 dB) log(I2/I0), where I0 
is the reference intensity. Since β2 = β1 + 30 dB, which yields 
 

 (10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 30 dB, 
or  

(10 dB) log(I2/I0) – (10 dB) log(I1/I0) = 30 dB. 
 
Divide by 10 dB and use log(I2/I0) – log(I1/I0) = log(I2/I1) to obtain log(I2/I1) = 3. Now 
use each side as an exponent of 10 and recognize that ( )2 1log

2 110 /I I I I= . The result is I2/I1 
= 103. The intensity is increased by a factor of 1.0×103. 
 
(b) The pressure amplitude is proportional to the square root of the intensity, so it is 
increased by a factor of 1000 32.≈  
 
28. The sound level β is defined as (see Eq. 17-29): 
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0

(10 dB) log I
I

β =  

where 12 2
0 10 W/mI −=  is the standard reference intensity. In this problem, let the two 

intensities be I1 and I2 such that 2 1I I> . The sound levels are 1 1 0(10 dB) log( / )I Iβ =  
and β2 = (10 dB) log(I2/I0). With 2 1 1.0 dBβ β= + , we have 
 

 (10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 1.0 dB, 
or  

(10 dB) log(I2/I0) – (10 dB) log(I1/I0) = 1.0 dB. 
 
Divide by 10 dB and use log(I2/I0) – log(I1/I0) = log(I2/I1) to obtain log(I2/I1) = 0.1. Now 
use each side as an exponent of 10 and recognize that ( )2 1log

2 110 /I I I I= . The result is  
 

 0.12

1

10 1.26I
I

= = . 

 
29. The intensity is the rate of energy flow per unit area perpendicular to the flow. The 
rate at which energy flow across every sphere centered at the source is the same, 
regardless of the sphere radius, and is the same as the power output of the source. If P is 
the power output and I is the intensity a distance r from the source, then P = IA = 4πr2I, 
where A (= 4πr2) is the surface area of a sphere of radius r. Thus  
 

P = 4π(2.50 m)2 (1.91 × 10–4 W/m2) = 1.50 × 10–2 W. 
 
30. (a) The intensity is given by I = P/4πr2 when the source is “point-like.” Therefore, at 
r = 3.00 m, 

6
9 2

2
1.00 10 W 8.84 10 W/m .
4 (3.00m)

I
−

−×
= = ×

π
 

 
(b) The sound level there is 
 

9 2

12 2
8.84 10 W/m10 log 39.5dB.
1.00 10 W/m

−

−

⎛ ⎞×
= =⎜ ⎟×⎝ ⎠

β  

 
31. We use β = 10 log (I/Io) with Io = 1 × 10–12 W/m2 and I = P/4πr2 (an assumption we 
are asked to make in the problem). We estimate r ≈ 0.3 m (distance from knuckle to ear) 
and find 

( ) ( )2 12 2 6.2 64 0.3m 1 10 W/m 10 2 10 W 2 W.P μ− −≈ π × = × =  
 
32. (a) Since ω = 2πf, Eq. 17-15 leads to 
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( )
( ) ( ) ( )

3

3

1.13 10 Pa2
2 1665Hz 343m/s 1.21 kg/mm m mp v f s sρ π

−×
Δ = ⇒ =

π
 

 
which yields sm = 0.26 nm. The nano prefix represents 10–9. We use the speed of sound 
and air density values given at the beginning of the exercises and problems section in the 
textbook. 
 
(b) We can plug into Eq. 17–27 or into its equivalent form, rewritten in terms of the 
pressure amplitude: 

( ) ( )
( )( )

22 3
2

3

1.13 10 Pa1 1 1.5 nW/m .
2 2 1.21kg/m 343m/s

mp
I

vρ

−×Δ
= = =  

 
33. We use β = 10 log(I/Io) with Io = 1 × 10–12 W/m2 and Eq. 17–27 with ω = 2πf = 
2π(260 Hz), v = 343 m/s and ρ = 1.21 kg/m3. 
 

( ) ( )28.5 2 7
o

110 2       7.6 10 m 0.76 m.
2 m mI I v f s sρ μ−= = π ⇒ = × =  

 

34. Combining Eqs.17-28 and 17-29 we have β = 10 log⎝
⎛

⎠
⎞P

Io4πr2  .  Taking differences (for 

sounds A and B) we find 
 

Δβ =  10 log⎝
⎛

⎠
⎞PA

Io4πr2   –  10 log⎝
⎛

⎠
⎞PB

Io4πr2   =  10 log⎝
⎛

⎠
⎞PA

PB
  

 
using well-known properties of logarithms.  Thus, we see that Δβ is independent of r and 
can be evaluated anywhere.   
 
(a) We can solve the above relation (once we know Δβ = 5.0) for the ratio of powers; we 
find PA /PB ≈ 3.2.  
 
(b) At r = 1000 m it is easily seen (in the graph) that Δβ = 5.0 dB.  This is the same Δβ we 
expect to find, then, at r = 10 m.   
 
35. (a) The intensity is 
 

5 2
2 2

30.0W 5.97 10 W/m .
4 (4 )(200m)

PI
r

−= = = ×
π π

 

 
(b) Let A (= 0.750 cm2) be the cross-sectional area of the microphone. Then the power 
intercepted by the microphone is 
 



  CHAPTER 17 740 

5 2 2 4 2 2 90 (6.0 10 W/m )(0.750cm )(10 m / cm ) 4.48 10 W.P IA − − −′ = = = × = ×  
 
36. The difference in sound level is given by Eq. 17-37: 
 

(10 db) log f
f i

i

I
I

β β β
⎛ ⎞

Δ = − = ⎜ ⎟
⎝ ⎠

. 

 
Thus, if 5.0 dbβΔ = , then log( / ) 1/ 2f iI I = , which implies that 10f iI I= . On the other 

hand, the intensity at a distance r from the source is 24
PI
rπ

= , where P  is the power of 

the source. A fixed P implies that 2 2
i i f fI r I r= . Thus, with 1.2 m,ir =  we obtain 

 
1/ 2 1/ 41 (1.2 m) 0.67 m

10
i

f i
f

Ir r
I

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
. 

 
37. (a) The average potential energy transport rate is the same as that of the kinetic 
energy.  This implies that the (average) rate for the total energy is 
 

⎝⎜
⎛

⎠⎟
⎞dE

dt avg
  = 2⎝⎜

⎛
⎠⎟
⎞dK

dt avg
  =  2 ( ¼ ρ A v ω2 sm

2 ) 

 
using Eq. 17-44.  In this equation, we substitute ρ = 1.21 kg/m3, A = πr2 = π(0.020 m)2, v 
= 343 m/s, ω = 3000 rad/s, sm = 12 ×10−9 m, and obtain  the answer 3.4 × 10−10 W.   
 
(b) The second string is in a separate tube, so there is no question about the waves 
superposing.  The total rate of energy, then, is just the addition of the two: 2(3.4 × 10−10 
W) = 6.8 × 10−10 W. 
 
(c) Now we do have superposition, with φ = 0, so the resultant amplitude is twice that of 
the individual wave, which leads to the energy transport rate being four times that of part 
(a).  We obtain 4(3.4 × 10−10 W) = 1.4 × 10−9 W. 
 
(d) In this case φ = 0.4π, which means (using Eq. 17-39)   
 

sm′  =  2 sm cos(φ/2) = 1.618sm. 
 
This means the energy transport rate is (1.618)2 = 2.618  times that of part (a).  We obtain 
2.618(3.4 × 10−10 W) = 8.8 × 10−10 W. 
 
(e) The situation is as shown in Fig. 17-14(b).  The answer is zero. 
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38. The frequency is f = 686 Hz and the speed of sound is vsound = 343 m/s. If L is the 
length of the air-column, then using Eq. 17–41, the water height is (in unit of meters) 
 

(343)1.00 1.00 1.00 (1.00 0.125 ) m
4 4(686)
nv nh L n

f
= − = − = − = −  

 
where n = 1, 3, 5,… with only one end closed. 
 
(a) There are 4 values of n (n = 1, 3, 5, 7) which satisfies h > 0. 
 
(b) The smallest water height for resonance to occur corresponds to n = 7 with 

0.125 mh = . 
 
(c) The second smallest water height corresponds to n = 5 with h  = 0.375 m. 
 
39. (a) When the string (fixed at both ends) is vibrating at its lowest resonant frequency, 
exactly one-half of a wavelength fits between the ends. Thus, λ = 2L. We obtain  
 

v = fλ = 2Lf = 2(0.220 m)(920 Hz) = 405 m/s. 
 
(b) The wave speed is given by / ,v τ μ=  where τ is the tension in the string and μ is 
the linear mass density of the string. If M is the mass of the (uniform) string, then μ = 
M/L. Thus,  
 

τ = μv2 = (M/L)v2 = [(800 × 10–6 kg)/(0.220 m)] (405 m/s)2 = 596 N. 
 
(c) The wavelength is λ = 2L = 2(0.220 m) = 0.440 m. 
 
(d) The frequency of the sound wave in air is the same as the frequency of oscillation of 
the string. The wavelength is different because the wave speed is different. If va is the 
speed of sound in air, the wavelength in air is  
 

λa = va/f = (343 m/s)/(920 Hz) = 0.373 m. 
 
40. At the beginning of the exercises and problems section in the textbook, we are told to 
assume vsound = 343 m/s unless told otherwise. The second harmonic of pipe A is found 
from Eq. 17-39 with n = 2 and L = LA, and the third harmonic of pipe B is found from Eq. 
17-41 with n = 3 and L = LB. Since these frequencies are equal, we have 
 

sound sound2 3 3 .
2 4 4B A

A B

v v L L
L L

= ⇒ =  

 
(a) Since the fundamental frequency for pipe A is 300 Hz, we immediately know that the 
second harmonic has f = 2(300 Hz) = 600 Hz. Using this, Eq. 17-39 gives  
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LA = (2)(343 m/s)/2(600 s−1) = 0.572 m. 

 
(b) The length of pipe B is 3

4 0.429 m.B AL L= =  
 
41. (a) From Eq. 17–53, we have 
 

(1)(250m/s) 833Hz.
2 2(0.150m)
nvf
L

= = =  

 
(b) The frequency of the wave on the string is the same as the frequency of the sound 
wave it produces during its vibration. Consequently, the wavelength in air is 
 

sound 348m/s 0.418m.
833Hz

v
f

λ = = =  

 
42. The distance between nodes referred to in the problem means that  λ/2 = 3.8 cm, or  
λ = 0.076 m.  Therefore, the frequency is  
 

f = v/λ = (1500 m/s)/(0.076 m) ≈ 20 × 103 Hz. 
 
43. (a) Since the pipe is open at both ends there are displacement anti-nodes at both ends 
and an integer number of half-wavelengths fit into the length of the pipe. If L is the pipe 
length and λ is the wavelength then λ = 2L/n, where n is an integer. If v is the speed of 
sound, then the resonant frequencies are given by f = v/λ = nv/2L. Now L = 0.457 m, so  
 

f = n(344 m/s)/2(0.457 m) = 376.4n Hz. 
 
To find the resonant frequencies that lie between 1000 Hz and 2000 Hz, first set f = 1000 
Hz and solve for n, then set f = 2000 Hz and again solve for n. The results are 2.66 and 
5.32, which imply that n = 3, 4, and 5 are the appropriate values of n. Thus, there are 3 
frequencies.   
 
(b) The lowest frequency at which resonance occurs is (n = 3) f = 3(376.4 Hz) = 1129 Hz.  
 
(c) The second lowest frequency at which resonance occurs is (n = 4)  
 

f = 4(376.4 Hz) = 1506 Hz. 
 
44. (a) Using Eq. 17-39 with v = 343 m/s and n = 1, we find f = nv/2L = 86 Hz for the 
fundamental frequency in a nasal passage of length L = 2.0 m (subject to various 
assumptions about the nature of the passage as a “bent tube open at both ends”). 
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(b) The sound would be perceptible as sound (as opposed to just a general vibration) of 
very low frequency. 
 
(c) Smaller L implies larger f by the formula cited above. Thus, the female's sound is of 
higher pitch (frequency). 
 
45. (a) We note that 1.2 = 6/5.  This suggests that both even and odd harmonics are 
present, which means the pipe is open at both ends (see Eq. 17-39). 
 
(b) Here we observe 1.4 = 7/5. This suggests that only odd harmonics are present, which 
means the pipe is open at only one end (see Eq. 17-41). 
 
46. We observe that “third lowest … frequency” corresponds to harmonic number nA = 3 
for pipe A, which is open at both ends. Also,  “second lowest … frequency” corresponds 
to harmonic number nB = 3 for pipe B, which is closed at one end. 
 
(a) Since the frequency of B matches the frequency of A, using Eqs. 17-39 and 17-41, we 
have  

3 3
2 4A B

A B

v vf f
L L

= ⇒ =  

 
which implies / 2 (1.20 m) / 2 0.60 m.B AL L= = =  Using Eq. 17-40, the corresponding 
wavelength is 

 4 4(0.60 m) 0.80 m
3 3

BLλ = = = . 

  
The change from node to anti-node requires a distance of λ/4 so that every increment of 
0.20 m along the x axis involves a switch between node and anti-node. Since the closed 
end is a node, the next node appears at x = 0.40 m, so there are 2 nodes. The situation 
corresponds to that illustrated in Fig. 17-14(b) with 3n = . 
 
(b) The smallest value of x where a node is present is x = 0. 
 
(c) The second smallest value of x where a node is present is x = 0.40 m. 
 
(d) Using v = 343 m/s, we find f3 = v/λ = 429 Hz. Now, we find the fundamental resonant 
frequency by dividing by the harmonic number, f1 = f3/3 = 143 Hz. 
 
47. The top of the water is a displacement node and the top of the well is a displacement 
anti-node. At the lowest resonant frequency exactly one-fourth of a wavelength fits into 
the depth of the well. If d is the depth and λ is the wavelength, then λ = 4d. The 
frequency is f = v/λ = v/4d, where v is the speed of sound. The speed of sound is given by 

/ ,v B ρ=  where B is the bulk modulus and ρ is the density of air in the well. Thus 

(1/ 4 ) /f d B ρ= and 
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5

3

1 1 1.33 10 Pa 12.4m.
4 4(7.00Hz) 1.10kg/m

Bd
f ρ

×
= = =  

 
48. (a) Since the difference between consecutive harmonics is equal to the fundamental 
frequency (see section 17-6) then  f1 = (390 – 325) Hz = 65 Hz.  The next harmonic after 
195 Hz is therefore (195 + 65) Hz = 260 Hz. 
 
(b) Since fn = nf1,  then n = 260/65 = 4. 
 
(c) Only odd harmonics are present in tube B, so the difference between consecutive 
harmonics is equal to twice the fundamental frequency in this case (consider taking 
differences of Eq. 17-41 for various values of n). Therefore,  
 

f1 = 12 (1320 – 1080) Hz = 120 Hz. 
 
The next harmonic after 600 Hz is consequently [600 + 2(120)] Hz = 840 Hz. 
 
(d) Since  fn = nf1  (for n odd), then n = 840/120 = 7. 
 
49. The string is fixed at both ends so the resonant wavelengths are given by λ = 2L/n, 
where L is the length of the string and n is an integer. The resonant frequencies are given 
by f = v/λ = nv/2L, where v is the wave speed on the string. Now /v = τ μ , where τ is 
the tension in the string and μ is the linear mass density of the string. Thus 

( / 2 ) /f n L= τ μ . Suppose the lower frequency is associated with n = n1 and the higher 
frequency is associated with n = n1 + 1. There are no resonant frequencies between, so 
you know that the integers associated with the given frequencies differ by 1. Thus 

1 1( / 2 ) /f n L= τ μ  and 
 

1 1
2 1

1 1 1 .
2 2 2 2

n nf f
L L L L
+

= = + = +
τ τ τ τ
μ μ μ μ

 

 
This means 2 1 (1/ 2 ) /f f L− = τ μ  and 
 

2 2 2 3 2
2 14 ( ) 4(0.300m) (0.650 10 kg/m)(1320Hz 880Hz) 45.3N.L f fτ μ −= − = × − =  

 
50. (a) Using Eq. 17-39 with n = 1 (for the fundamental mode of vibration) and 343 m/s 
for the speed of sound, we obtain 
 

sound

tube

(1) 343m/s 71.5Hz.
4 4(1.20m)

vf
L

= = =  
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(b) For the wire (using Eq. 17-53) we have 
 

wire

wire wire

1
2 2
nvf
L L

τ
μ

′ = =  

 
where μ = mwire/Lwire. Recognizing that f = f ′ (both the wire and the air in the tube vibrate 
at the same frequency), we solve this for the tension τ: 
 

2 2 2 3wire
wire wire wire

wire

(2 ) 4 4(71.5Hz) (9.60 10 kg)(0.330 m) 64.8 N.mL f f m L
L

τ −⎛ ⎞
= = = × =⎜ ⎟

⎝ ⎠
 

 
51. Let the period be T. Then the beat frequency is 1/ 440Hz 4.00beats/s.T − =  
Therefore, T = 2.25 × 10–3 s. The string that is “too tightly stretched” has the higher 
tension and thus the higher (fundamental) frequency. 
 
52. Since the beat frequency equals the difference between the frequencies of the two 
tuning forks, the frequency of the first fork is either 381 Hz or 387 Hz. When mass is 
added to this fork its frequency decreases (recall, for example, that the frequency of a 
mass−spring oscillator is proportional to 1/ m ). Since the beat frequency also decreases, 
the frequency of the first fork must be greater than the frequency of the second. It must 
be 387 Hz. 
 
53. Each wire is vibrating in its fundamental mode, so the wavelength is twice the length 
of the wire (λ = 2L) and the frequency is  
 

/ (1/ 2 ) /f v L= λ = τ μ , 
 
where /v τ μ=  is the wave speed for the wire, τ is the tension in the wire, and μ is the 
linear mass density of the wire. Suppose the tension in one wire is τ and the oscillation 
frequency of that wire is f1. The tension in the other wire is τ + Δτ and its frequency is f2. 
You want to calculate Δτ/τ for f1 = 600 Hz and f2 = 606 Hz. Now, 1 (1/ 2 ) /f L= τ μ  and 

2 (1/ 2 ) ( /f L= + Δτ τ μ , so 
 

2 1/ ( ) / 1 ( / ).f f = + Δ = + Δτ τ τ τ τ  
 
This leads to 2 2

2 1/ ( / ) 1 [(606 Hz) /(600 Hz)] 1 0.020.f fΔ = − = − =τ τ  
 
54. (a) The number of different ways of picking up a pair of tuning forks out of a set of 
five is 5!/(2!3!) = 10. For each of the pairs selected, there will be one beat frequency. If 
these frequencies are all different from each other, we get the maximum possible number 
of 10. 
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(b) First, we note that the minimum number occurs when the frequencies of these forks, 
labeled 1 through 5, increase in equal increments: fn = f1 + nΔf, where n = 2, 3, 4, 5. Now, 
there are only 4 different beat frequencies: fbeat = nΔf, where n = 1, 2, 3, 4. 
 
55. We use vS = rω (with r = 0.600 m and ω = 15.0 rad/s) for the linear speed during 
circular motion, and Eq. 17-47 for the Doppler effect (where f = 540 Hz, and v = 343 m/s 
for the speed of sound). 
 
(a) The lowest frequency is  

0 526 Hz
S

vf f
v v

⎛ ⎞+′ = =⎜ ⎟+⎝ ⎠
. 

 
(b) The highest frequency is 

0 555 Hz
S

vf f
v v

⎛ ⎞+′ = =⎜ ⎟−⎝ ⎠
. 

 
56. The Doppler effect formula, Eq. 17-47, and its accompanying rule for choosing ± 
signs, are discussed in Section 17-10. Using that notation, we have v = 343 m/s, vD = 2.44 
m/s, f ′ = 1590 Hz, and f = 1600 Hz. Thus, 
 

  ( ) 4.61m/s.D
S D

S

v v ff f v v v v
v v f

⎛ ⎞+′ = ⇒ = + − =⎜ ⎟ ′+⎝ ⎠
 

 
57. In the general Doppler shift equation, the trooper’s speed is the source speed and the 
speeder’s speed is the detector’s speed. The Doppler effect formula, Eq. 17-47, and its 
accompanying rule for choosing ± signs, are discussed in Section 17-10. Using that 
notation, we have v = 343 m/s,  
 

vD = vS =  160 km/h = (160000 m)/(3600 s) = 44.4 m/s, 
 
and f = 500 Hz. Thus, 

343 m/s 44.4 m/s(500 Hz) 500 Hz  0.
343 m/s 44.4 m/s

f f
⎛ ⎞−′ = = ⇒ Δ =⎜ ⎟−⎝ ⎠

 

 
58. We use Eq. 17-47 with f = 1200 Hz and v = 329 m/s. 
 
(a) In this case, vD = 65.8 m/s and vS = 29.9 m/s, and we choose signs so that f ′ is larger 
than f: 

3329 m/s 65.8 m/s 1.58 10 Hz.
329 m/s 29.9 m/s

f f
⎛ ⎞+′ = = ×⎜ ⎟−⎝ ⎠
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(b) The wavelength is λ = v/f ′ = 0.208 m. 
 
(c) The wave (of frequency f ′) “emitted” by the moving reflector (now treated as a 
“source,” so vS = 65.8 m/s) is returned to the detector (now treated as a detector, so vD = 
29.9 m/s) and registered as a new frequency f ′′: 
 

3329 m/s 29.9 m/s 2.16 10 Hz.
329 m/s 65.8 m/s

f f
⎛ ⎞+′′ ′= = ×⎜ ⎟−⎝ ⎠

 

 
(d) This has wavelength /v f ′′  = 0.152 m. 
 
59. We denote the speed of the French submarine by u1 and that of the U.S. sub by u2. 
 
(a) The frequency as detected by the U.S. sub is 
 

3 32
1 1

1

5470 km/h 70.00 km/h(1.000 10 Hz) 1.022  10 Hz.
5470 km/h  50.00 km/h

v uf f
v u

⎛ ⎞+ +⎛ ⎞′= = × = ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
 

 
(b) If the French sub were stationary, the frequency of the reflected wave would be fr = 
f1(v+u2)/(v – u2). Since the French sub is moving toward the reflected signal with speed 
u1, then 

3
1 1 2

1
2

3

( )( ) (1.000 10 Hz)(5470 50.00)(5470 70.00)
( ) (5470)(5470 70.00)

   1.045 10 Hz.

r r
v u v u v uf f f

v v v u
+ + + × + +⎛ ⎞′ = = =⎜ ⎟ − −⎝ ⎠

= ×

 

 
60. We are combining two effects: the reception of a moving object (the truck of speed u 
= 45.0 m/s) of waves emitted by a stationary object (the motion detector), and the 
subsequent emission of those waves by the moving object (the truck), which are picked 
up by the stationary detector. This could be figured in two steps, but is more compactly 
computed in one step as shown here: 
 

final initial
343m/s  45m/s(0.150 MHz) 0.195MHz.
343m/s  45m/s

v uf f
v u

⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

 
61. As a result of the Doppler effect, the frequency of the reflected sound as heard by the 
bat is 

4 4bat

bat

/ 40(3.9 10 Hz) 4.1 10 Hz.
/ 40r

v u v vf f
v u v v

⎛ ⎞+ +⎛ ⎞′= = × = ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
 

 
62. The “third harmonic” refers to a resonant frequency f3 = 3 f1, where f1 is the 
fundamental lowest resonant frequency. When the source is stationary, with respect to the 
air, then Eq. 17-47 gives  
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 1 dvf f
v

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

 
where dv  is the speed of the detector (assumed to be moving away from the source, in the 
way we’ve written it, above).  The problem, then, wants us to find dv  such that f′ = f1 
when the emitted frequency is  f = f3.  That is, we require 1 – dv /v = 1/3.  Clearly, the 
solution to this is dv /v = 2/3 (independent of length and whether one or both ends are 
open [the latter point being due to the fact that the odd harmonics occur in both systems]). 
Thus, 
 
(a) For tube 1, dv =2v/3.  
 
(b) For tube 2, dv =2v /3. 
 
(c) For tube 3, dv =2v /3. 
 
(d) For tube 4, dv =2v /3. 
 
63. In this case, the intruder is moving away from the source with a speed u satisfying u/v 
�  1. The Doppler shift (with u = –0.950 m/s) leads to 
 

beat
2 | | 2(0.95m/s)(28.0 kHz)) 155Hz

343m/sr s s
uf f f f

v
= − ≈ = = . 

 
64. When the detector is stationary (with respect to the air) then Eq. 17-47 gives  
 

1 /s

ff
v v

′ =
−

 

 
where vs is the speed of the source (assumed to be approaching the detector in the way 
we’ve written it, above).  The difference between the approach and the recession is 
 

 2

2 /1 1  
1 / 1 / 1 ( / )

s

s s s

v vf f f f
v v v v v v

⎛ ⎞ ⎛ ⎞
′ ′′− = − =⎜ ⎟ ⎜ ⎟− + −⎝ ⎠ ⎝ ⎠

 

 
which, after setting  ( f f′ ′′− )/f = 1/2, leads to an equation that can be solved for the ratio 
vs/v.  The result is 5  – 2   = 0.236.  Thus, vs/v = 0.236. 
 
65. The Doppler shift formula, Eq. 17-47, is valid only when both uS and uD are measured 
with respect to a stationary medium (i.e., no wind). To modify this formula in the 
presence of a wind, we switch to a new reference frame in which there is no wind. 
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(a) When the wind is blowing from the source to the observer with a speed w, we have u′S 
= u′D = w in the new reference frame that moves together with the wind. Since the 
observer is now approaching the source while the source is backing off from the observer, 
we have, in the new reference frame, 
 

32.0 10 Hz.D

S

v u v wf f f
v u v w

⎛ ⎞′+ +⎛ ⎞′ = = = ×⎜ ⎟ ⎜ ⎟′+ +⎝ ⎠⎝ ⎠
 

 
In other words, there is no Doppler shift. 
 
(b) In this case, all we need to do is to reverse the signs in front of both u′D and u′S. The 
result is that there is still no Doppler shift: 
 

32.0 10 Hz.D

S

v u v wf f f
v u v w

⎛ ⎞′− −⎛ ⎞′ = = = ×⎜ ⎟ ⎜ ⎟′− −⎝ ⎠⎝ ⎠
 

 
In general, there will always be no Doppler shift as long as there is no relative motion 
between the observer and the source, regardless of whether a wind is present or not. 
 
66. We use Eq. 17-47 with f = 500 Hz and v = 343 m/s. We choose signs to produce f′ > f. 
 
(a) The frequency heard in still air is 
 

343 m/s 30.5 m/s(500 Hz) 598Hz.
343 m/s 30.5 m/s

f
⎛ ⎞+′ = =⎜ ⎟−⎝ ⎠

 

 
(b) In a frame of reference where the air seems still, the velocity of the detector is 30.5 – 
30.5 = 0, and that of the source is 2(30.5). Therefore, 
 

343 m/s 0(500 Hz) 608Hz.
343 m/s 2(30.5 m/s)

f
⎛ ⎞+′ = =⎜ ⎟−⎝ ⎠

 

 
(c) We again pick a frame of reference where the air seems still. Now, the velocity of the 
source is 30.5 – 30.5 = 0, and that of the detector is 2(30.5). Consequently, 
 

343 m/s 2(30.5 m/s)(500 Hz) 589 Hz.
343 m/s 0

f
⎛ ⎞+′ = =⎜ ⎟−⎝ ⎠

 

 
67. (a) The expression for the Doppler shifted frequency is 
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,D

S

v vf f
v v

±′ =
∓

 

 
where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector 
(the uncle), and vS is the speed of the source (the locomotive). All speeds are relative to 
the air. The uncle is at rest with respect to the air, so vD = 0. The speed of the source is vS 
= 10 m/s. Since the locomotive is moving away from the uncle the frequency decreases 
and we use the plus sign in the denominator. Thus 
 

343m/s(500.0 Hz) 485.8Hz.
343m/s + 10.00m/sS

vf f
v v

⎛ ⎞
′ = = =⎜ ⎟+ ⎝ ⎠

 

 
(b) The girl is now the detector. Relative to the air she is moving with speed vD = 10.00 
m/s toward the source. This tends to increase the frequency, and we use the plus sign in 
the numerator. The source is moving at vS = 10.00 m/s away from the girl. This tends to 
decrease the frequency, and we use the plus sign in the denominator. Thus (v + vD) =  
(v + vS) and f′ = f = 500.0 Hz. 
 
(c) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the uncle. 
Use the plus sign in the denominator. Relative to the air the uncle is moving at vD =  
10.00 m/s toward the locomotive. Use the plus sign in the numerator. Thus 
 

343m/s + 10.00m/s(500.0 Hz) 486.2 Hz.
343m/s + 20.00m/s

D

S

v vf f
v v

⎛ ⎞+′ = = =⎜ ⎟+ ⎝ ⎠
 

 
(d) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the girl and 
the girl is moving at vD = 20.00 m/s toward the locomotive. Use the plus signs in both the 
numerator and the denominator. Thus (v + vD) = (v + vS) and f′ = f = 500.0 Hz. 
 
68. We note that 1350 km/h is vS  = 375 m/s.  Then, with θ = 60º, Eq. 17-57 gives v = 
3.3×102 m/s. 
 
69. (a) The half angle θ of the Mach cone is given by 
sin θ = v/vS, where v is the speed of sound and vS is the 
speed of the plane. Since vS = 1.5v, sin θ = v/1.5v = 
1/1.5. This means θ = 42°. 
 
(b) Let h be the altitude of the plane and suppose the 
Mach cone intersects Earth's surface a distance d 
behind the plane. The situation is shown on the 
diagram, with P indicating the plane and O indicating 
the observer. The cone angle is related to h and d by 
tan θ = h/d, so d = h/tan θ. The shock wave reaches O 
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in the time the plane takes to fly the distance d: 
5000 m 11s

tan 1.5(331 m/s)tan42
d ht
v v θ

= = = =
°

. 

 
70. The altitude H and the horizontal distance x for the legs of a right triangle, so we have  
 

tan tan 1.25 sinpH x v t vt= = =θ θ θ  
 
where v is the speed of sound, vp is the speed of the plane, and  
 

1 1sin sin 53.1 .
1.25p

v v
v v

θ − −
⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

Thus the altitude is  
 

( ) ( ) ( ) ( ) 4tan 1.25 330m/s 60s tan53.1 3.30 10 m.H x= = ° = ×θ  
 
71. The source being a “point source” means Asphere = 4πr2 is used in the intensity 
definition I = P/A, which further implies 
 

22
2 2 1

2
1 1 2

/ 4 .
/ 4

I P r r
I P r r

⎛ ⎞π
= = ⎜ ⎟π ⎝ ⎠

 

 
From the discussion in Section 17-5, we know that the intensity ratio between “barely 
audible” and the “painful threshold” is 10–12 = I2/I1. Thus, with r2 = 10000 m, we find  
 

12
1 2 10 0.01m 1 cm.r r −= = =  

 
72. The angle is sin–1(v/vs) = sin–1 (343/685) = 30°. 
 
73. The round-trip time is t = 2L/v, where we estimate from the chart that the time 
between clicks is 3 ms. Thus, with v = 1372 m/s, we find 1

2 2.1 mL vt= = . 
 
74. We use /v B ρ=  to find the bulk modulus B: 
 

( ) ( )22 3 3 3 105.4 10 m/s 2.7 10 kg/m 7.9 10 Pa.B v= = × × = ×ρ  
 
75. The source being isotropic means Asphere = 4πr2 is used in the intensity definition I = 
P/A, which further implies 

22
2 2 1

2
1 1 2

/ 4 .
/ 4

I P r r
I P r r

⎛ ⎞π
= = ⎜ ⎟π ⎝ ⎠
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(a) With I1 = 9.60 × 10–4 W/m2, r1 = 6.10 m, and r2 = 30.0 m, we find  
 

I2 = (9.60 × 10–4 W/m2)(6.10/30.0)2 = 3.97 × 10–5 W/m2. 
 
(b) Using Eq. 17-27 with I1 = 9.60 × 10–4 W/m2, ω = 2π(2000 Hz), v = 343 m/s, and ρ = 
1.21 kg/m3, we obtain 

7
2

2 1.71 10 m.m
Is

v
−= = ×

ρ ω
 

 
(c) Equation 17-15 gives the pressure amplitude: 
 

0.893 Pa.m mp v sρ ωΔ = =  
 
76. We use Δβ12 = β1 – β2 = (10 dB) log(I1/I2). 
 
(a) Since Δβ12 = (10 dB) log(I1/I2) = 37 dB, we get  
 

I1/I2 = 1037 dB/10 dB = 103.7 = 5.0 × 103. 
 
(b) Since m mp s IΔ ∝ ∝ , we have  
 

3
1 2 1 2/ / 5.0 10 71.m mp p I IΔ Δ = = × =  

 
(c) The displacement amplitude ratio is 1 2 1 2/ / 71.m ms s I I= =  
 
77. Any phase changes associated with the reflections themselves are rendered 
inconsequential by the fact that there are an even number of reflections. The additional 
path length traveled by wave A consists of the vertical legs in the zig-zag path: 2L. To be 
(minimally) out of phase means, therefore, that 2L = λ/2 (corresponding to a half-cycle, 
or 180°, phase difference). Thus, L = λ/4, or L/λ = 1/4 = 0.25. 
 
78. Since they are approaching each other, the sound produced (of emitted frequency f) 
by the flatcar-trumpet received by an observer on the ground will be of higher pitch f ′. In 
these terms, we are told f ′ – f = 4.0 Hz, and consequently that /f f′ =  444/440 = 1.0091. 
With vS designating the speed of the flatcar and v = 343 m/s being the speed of sound, the 
Doppler equation leads to 
 

( )0 1.0091 1343 m/s 3.1m/s.
1.0091S

S

f v v
f v v
′ + −

= ⇒ = =
−
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79. (a) Incorporating a term (λ/2) to account for the phase shift upon reflection, then the 
path difference for the waves (when they come back together) is 
 

L2 + (2d)2  − L + λ/2 = Δ(path) . 
 
Setting this equal to the condition needed to destructive interference (λ/2, 3λ/2, 5λ/2 …) 
leads to d = 0, 2.10 m, …    Since the problem explicitly excludes the d = 0 possibility, 
then our answer is d = 2.10 m. 
 
(b) Setting this equal to the condition needed to constructive interference (λ, 2λ, 3λ …) 
leads to d = 1.47 m, …   Our answer is d = 1.47 m. 
 
80. When the source is stationary (with respect to the air) then Eq. 17-47 gives  
 

1 dvf f
v

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

, 

 
 where vd is the speed of the detector (assumed to be moving away from the source, in the 
way we’ve written it, above).  The difference between the approach and the recession is 
 

 1 1 2d d dv v vf f f f
v v v

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ ′− = + − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
which, after setting  ( f f′′ ′− )/f =1/2, leads to an equation that can be solved for the ratio 
vd /v.  The result is 1/4. Thus, vd /v = 0.250. 
 
81. (a) The intensity is given by 2 21

2 ,mI v sρ ω=  where ρ is the density of the medium, v is 
the speed of sound, ω is the angular frequency, and sm is the displacement amplitude. The 
displacement and pressure amplitudes are related by Δpm = ρvωsm, so sm = Δpm/ρvω and I 
= (Δpm)2/2ρv. For waves of the same frequency, the ratio of the intensity for propagation 
in water to the intensity for propagation in air is 
 

2

,w mw a a

a ma w w

I p v
I p v

ρ
ρ

⎛ ⎞Δ
= ⎜ ⎟Δ⎝ ⎠

 

 
where the subscript a denotes air and the subscript w denotes water. Since Ia = Iw, 
 

3 3

3
(0.998 10 kg/m )(1482 m/s) 59.7.

(1.21kg/m )(343m/s)
mw w w

ma a a

p v
p v

Δ ×
= = =

Δ
ρ
ρ

 

 
The speeds of sound are given in Table 17-1 and the densities are given in Table 15-1. 
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(b) Now, Δpmw = Δpma, so 
 

3
4

3 3
(1.21kg/m )(343m/s) 2.81 10 .

(0.998 10 kg/m )(1482 m/s)
w a a

a w w

I v
I v

−= = = ×
×

ρ
ρ

 

 
82. The wave is written as ( , ) cos( )ms x t s kx tω= ± . 
 
(a) The amplitude ms  is equal to the maximum displacement: 0.30 cmms = . 
 
(b) Since λ = 24 cm, the angular wave number is 12 / 0.26 cmk π λ −= = . 
 
(c) The angular frequency is 22 2 (25 Hz) 1.6 10  rad/sfω π π= = = × . 
 
(d) The speed of the wave is v = λf = (24 cm)(25 Hz) = 6.0 × 102 cm/s. 
 
(e) Since the direction of propagation is x− , the sign is plus, so ( , ) cos( )ms x t s kx tω= + . 
 
83. (a) The blood is moving toward the right (toward the detector), because the Doppler 
shift in frequency is an increase: Δf > 0. 
 
(b) The reception of the ultrasound by the blood and the subsequent remitting of the 
signal by the blood back toward the detector is a two-step process that may be compactly 
written as  

x

x

v vf f f
v v

⎛ ⎞+
+ Δ = ⎜ ⎟−⎝ ⎠

 

 
where blood cos .xv v θ=  If we write the ratio of frequencies as R = (f + Δf)/f, then the 
solution of the above equation for the speed of the blood is 
 

( )
( )blood

1
0.90m/s

1 cos
R v

v
R

−
= =

+ θ
 

 
where v = 1540 m/s, θ = 20°, and R = 1 + 5495/5 × 106. 
 
(c) We interpret the question as asking how Δf (still taken to be positive, since the 
detector is in the “forward” direction) changes as the detection angle θ changes. Since 
larger θ means smaller horizontal component of velocity vx, then we expect Δf to 
decrease toward zero as θ is increased toward 90°. 
 
Note: The expression for bloodv  can be inverted to give 
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blood

blood

2 cos
cos

vf f
v v

θ
θ

⎛ ⎞
Δ = ⎜ ⎟−⎝ ⎠

. 

The plot of the frequency shift fΔ as a function of θ is given below. Indeed we find Δf to 
decrease with increasing θ. 

 
 
84. (a) The time it takes for sound to travel in air is ta = L/v, while it takes tm = L/vm for 
the sound to travel in the metal. Thus, 
 

( ) .m
a m

m m

L v vL Lt t t
v v v v

−
Δ = − = − =  

 
(b) Using the values indicated (see Table 17-1), we obtain 
 

1.00s 364m. 
1/ 1/ 1/(343m/s)  1/(5941m/s)m

tL
v v

Δ
= = =

− −
 

 
85. (a) The period is the reciprocal of the frequency: T = 1/f = 1/(90 Hz) = 1.1 × 10–2 s. 
 
(b) Using v = 343 m/s, we find λ = v/f = 3.8 m. 
 
86. Let r stand for the ratio of the source speed to the speed of sound.  Then, Eq. 17-55 
(plus the fact that frequency is inversely proportional to wavelength) leads to 
 

2⎝⎜
⎛

⎠⎟
⎞1

1 + r    =   
1

1 – r  . 

 
Solving, we find r = 1/3.  Thus, vs/v = 0.33. 
 
87. The siren is between you and the cliff, moving away from you and toward the cliff. 
Both “detectors” (you and the cliff) are stationary, so vD = 0 in Eq. 17-47 (and see the 
discussion in the textbook immediately after that equation regarding the selection of ± 
signs). The source is the siren with vS = 10 m/s. The problem asks us to use v = 330 m/s 
for the speed of sound. 
 

92. With f = 1000 Hz, the frequency fy you hear becomes 
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20 970.6 Hz 9.7 10 Hz.y

S

vf f
v v

⎛ ⎞+
= = ≈ ×⎜ ⎟+⎝ ⎠

 

 
(b) The frequency heard by an observer at the cliff (and thus the frequency of the sound 
reflected by the cliff, ultimately reaching your ears at some distance from the cliff) is 
 

30 1031.3Hz 1.0 10 Hz.c
S

vf f
v v

⎛ ⎞+
= = ≈ ×⎜ ⎟−⎝ ⎠

 

 
© The beat frequency is fc – fy = 60 beats/s (which, due to specific features of the human 
ear, is too large to be perceptible). 
 
88. When φ = 0 it is clear that the superposition wave has amplitude 2Δpm. For the other 
cases, it is useful to write 

( ) ( )( )1 2 sin sin 2 cos sin .
2 2m mp p p t t p t⎛ ⎞ ⎛ ⎞Δ + Δ = Δ + − = Δ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
φ φω ω φ ω  

 
The factor in front of the sine function gives the amplitude Δpr. Thus, 

/ 2cos( / 2).r mp p φΔ Δ =  
 

92. When 0φ = , / 2cos(0) 2.00.r mp pΔ Δ = =  
 
(b) When / 2φ π= , / 2cos( / 4) 2 1.41.r mp p πΔ Δ = = =  
  
© When / 3φ π= , / 2cos( / 6) 3 1.73.r mp p πΔ Δ = = =  
 
(d) When / 4φ π= , / 2cos( / 8) 1.85.r mp p πΔ Δ = =  
 
89. (a) Adapting Eq. 17-39 to the notation of this chapter, we have 
 

sm′  =  2 sm cos(φ/2) = 2(12 nm) cos(π/6) = 20.78 nm. 
 
Thus, the amplitude of the resultant wave is roughly 21 nm. 
 
(b) The wavelength (λ = 35 cm) does not change as a result of the superposition. 
 
© Recalling Eq. 17-47 (and the accompanying discussion) from the previous chapter, we 
conclude that the standing wave amplitude is 2(12 nm) = 24 nm when they are traveling 
in opposite directions. 
 
(d) Again, the wavelength (λ = 35 cm) does not change as a result of the superposition. 
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90. (a) The separation distance between points A and B is one-quarter of a wavelength; 
therefore, λ = 4(0.15 m) = 0.60 m.  The frequency, then, is   
 

f = v/λ =  (343 m/s)/(0.60 m) = 572 Hz. 
 
(b) The separation distance between points C and D is one-half of a wavelength; 
therefore, λ = 2(0.15 m) = 0.30 m.  The frequency, then, is   
 

f = v/λ =  (343 m/s)/(0.30 m) = 1144 Hz (or approximately 1.14 kHz). 
 
91. Let the frequencies of sound heard by the person from the left and right forks be fl 
and fr, respectively. 
 

92. If the speeds of both forks are u, then fl,r = fv/(v ± u) and 
 

( )( )( )
( ) ( )beat 2 22 2

2 440Hz 3.00m/s 343m/s1 1 2 7.70Hz.
343m/s 3.00m/s

r l
fuvf f f fv

v u v u v u
⎛ ⎞= − = − = = =⎜ ⎟− + −⎝ ⎠ −

 

 
(b) If the speed of the listener is u, then fl,r = f(v ± u)/v and 
 

( )beat
3.00 m/s2 2 440 Hz 7.70 Hz.
343m/sl r

uf f f f
v

⎛ ⎞⎛ ⎞= − = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
92. The rule: if you divide the time (in seconds) by 3, then you get (approximately) the 
straight-line distance d. We note that the speed of sound we are to use is given at the 
beginning of the problem section in the textbook, and that the speed of light is very much 
larger than the speed of sound. The proof of our rule is as follows: 
 

sound light sound
sound

.
343m/s 0.343km/s

d d dt t t t
v

= − ≈ = = =  

 
Cross-multiplying yields (approximately) (0.3 km/s)t = d, which (since 1/3 ≈ 0.3) 
demonstrates why the rule works fairly well. 
 
93. (a) When the right side of the instrument is pulled out a distance d, the path length for 
sound waves increases by 2d. Since the interference pattern changes from a minimum to 
the next maximum, this distance must be half a wavelength of the sound. So 2d = λ/2, 
where λ is the wavelength. Thus λ = 4d and, if v is the speed of sound, the frequency is  
 

f = v/λ = v/4d = (343 m/s)/4(0.0165 m) = 5.2 × 103 Hz. 
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(b) The displacement amplitude is proportional to the square root of the intensity (see Eq. 
17-27). Write mI Cs= , where I is the intensity, sm is the displacement amplitude, and C 
is a constant of proportionality. At the minimum, interference is destructive and the 
displacement amplitude is the difference in the amplitudes of the individual waves: sm = 
sSAD – sSBD, where the subscripts indicate the paths of the waves. At the maximum, the 
waves interfere constructively and the displacement amplitude is the sum of the 
amplitudes of the individual waves: sm = sSAD + sSBD. Solve  
 

100 ( )SAD SBDC s s= −  and 900 ( )SAD SBDC s s= −  
 
for sSAD and sSBD. Adding the equations gives 
 

SADs =  ( 100 900 / 2 20 / ,C C+ =  
 
while subtracting them yields  

SBDs =  ( 900 100) / 2 10 / .C C− =  
 
Thus, the ratio of the amplitudes is sSAD/sSBD = 2. 
 
(c) Any energy losses, such as might be caused by frictional forces of the walls on the air 
in the tubes, result in a decrease in the displacement amplitude. Those losses are greater 
on path B since it is longer than path A. 
 
94. (a) Using m = 7.3 × 107 kg, the initial gravitational potential energy is 

113.9 10  JU mgy= = × , where h = 550 m. Assuming this converts primarily into kinetic 
energy during the fall, then K = 3.9 × 1011 J just before impact with the ground. Using 
instead the mass estimate m = 1.7 × 108 kg, we arrive at K = 9.2 × 1011 J. 
 
(b) The process of converting this kinetic energy into other forms of energy (during the 
impact with the ground) is assumed to take Δt = 0.50 s (and in the average sense, we take 
the “power” P to be wave-energy/Δt). With 20% of the energy going into creating a 
seismic wave, the intensity of the body wave is estimated to be 
 

( )
( )

2
21

hemisphere 2

0.20 /
0.63W/m

4
K tPI

A r
Δ

= = =
π

 

 
using r = 200 × 103 m and the smaller value for K from part (a). Using instead the larger 
estimate for K, we obtain I = 1.5 W/m2. 
 
(c) The surface area of a cylinder of “height” d is 2πrd, so the intensity of the surface 
wave is  
 



 

  

759

( )
( )

3 2

cylinder

0.20 /
25 10 W/m

2
K tPI

A rd
Δ

= = = ×
π

 

 
using d = 5.0 m, r = 200 × 103 m, and the smaller value for K from part (a). Using instead 
the larger estimate for K, we obtain I = 58 kW/m2. 
 
(d) Although several factors are involved in determining which seismic waves are most 
likely to be detected, we observe that on the basis of the above findings we should expect 
the more intense waves (the surface waves) to be more readily detected. 
 
95. (a) With r = 10 m in Eq. 17-28, we have 
 

2 10W.
4

PI P
r

= ⇒ =
π

 

 
(b) Using that value of P in Eq. 17-28 with a new value for r, we obtain 
 

( )2 2
W0.032 .
m4 5.0

PI = =
π

 

 
Alternatively, a ratio I′ /I = (r/r′ )2 could have been used. 
 
(c) Using Eq. 17-29 with I = 0.0080 W/m2, we have 
 

0

10log 99dBI
I

= =β  

where I0 = 1.0 × 10–12 W/m2. 
 
96. We note that waves 1 and 3 differ in phase by π radians (so they cancel upon 
superposition).  Waves 2 and 4 also differ in phase by π radians (and also cancel upon 
superposition).   Consequently, there is no resultant wave. 
 
97. Since they oscillate out of phase, then their waves will cancel (producing a node) at a 
point exactly midway between them (the midpoint of the system, where we choose x = 0). 
We note that Figure 17-13, and the n = 3 case of Figure 17-14(a) have this property (of a 
node at the midpoint). The distance Δx between nodes is λ/2, where λ = v/f and f = 300 
Hz and v = 343 m/s. Thus, Δx = v/2f = 0.572 m.  
 
Therefore, nodes are found at the following positions: 
 

(0.572m),  0, 1, 2,...x n x n n= Δ = = ± ±  
 

(a)  The shortest distance from the midpoint where nodes are found is Δx = 0.  
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(b) The second shortest distance from the midpoint where nodes are found is Δx =0.572 
m.  
 
(c) The third shortest distance from the midpoint where nodes are found is 2Δx = 1.14 m. 
 
98. (a) With f = 686 Hz and v = 343 m/s, then the “separation between adjacent 
wavefronts” is λ = v/f = 0.50 m. 
 
(b) This is one of the effects that are part of the Doppler phenomena. Here, the 
wavelength shift (relative to its “true” value in part (a)) equals the source speed sv  (with 
appropriate ± sign) relative to the speed of sound v : 
 

 sv
v

λ
λ

Δ
= ± . 

 
In front of the source, the shift in wavelength is  –(0.50 m)(110 m/s)/(343 m/s) = –0.16 m, 
and the wavefront separation is 0.50 m  – 0.16 m = 0.34 m.  
 
(c) Behind the source, the shift in wavelength is  +(0.50 m)(110 m/s)/(343 m/s) = +0.16 m, 
and the wavefront separation is 0.50 m + 0.16 m = 0.66 m. 
 
99. We use I ∝ r–2 appropriate for an isotropic source. We have 
 

( )2

2
1 ,
2

r d

r D d

D dI
I D

=

= −

−
= =  

where d = 50.0 m. We solve for  
 

( ) ( ) ( ): 2 / 2 1 2 50.0m / 2 1 171m.D D d= − = − =  

 
100. Pipe A (which can only support odd harmonics – see Eq. 17-41) has length LA.  Pipe 
B (which supports both odd and even harmonics [any value of n] – see Eq. 17-39) has 
length LB = 4LA . Taking ratios of these equations leads to the condition: 
 

⎝⎜
⎛

⎠⎟
⎞n

2 B
  =  ( )nodd A

  . 

 
Solving for nB we have nB = 2nodd. 
 
(a) Thus, the smallest value of nB  at which a harmonic frequency of B matches that of A 
is nB = 2(1) = 2.  
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(b) The second smallest value of nB  at which a harmonic frequency of B matches that of 
A is nB = 2(3) = 6. 
 
(c) The third smallest value of nB  at which a harmonic frequency of B matches that of A 
is nB = 2(5) = 10. 
 
101. (a) We observe that “third lowest … frequency” corresponds to harmonic number n 
= 5 for such a system. Using Eq. 17-41, we have 
 

( )
5750 Hz

4 4 0.60 m
nv vf
L

= ⇒ =  

so that v = 3.6×102 m/s. 
 
(b) As noted, n = 5; therefore, f1 = 750/5 = 150 Hz. 
 
102. (a) Let P be the power output of the source. This is the rate at which energy crosses 
the surface of any sphere centered at the source and is therefore equal to the product of 
the intensity I at the sphere surface and the area of the sphere. For a sphere of radius r, P 
= 4πr2 I and I = P/4πr2. The intensity is proportional to the square of the displacement 
amplitude sm. If we write 2

mI Cs= , where C is a constant of proportionality, then 
2 2/ 4mCs P r= π . Thus,  

( )2/ 4 / 4 (1/ ).ms P r C P C r= π = π  

 
The displacement amplitude is proportional to the reciprocal of the distance from the 
source. We take the wave to be sinusoidal. It travels radially outward from the source, 
with points on a sphere of radius r in phase. If ω is the angular frequency and k is the 
angular wave number, then the time dependence is sin(kr – ωt). Letting / 4 ,b P C= π  
the displacement wave is then given by 
 

1( , ) sin( ) sin( ).
4

P bs r t kr t kr t
C r r

= − = −
π

ω ω  

 
(b) Since s and r both have dimensions of length and the trigonometric function is 
dimensionless, the dimensions of b must be length squared. 
 
103. Using Eq. 17-47 with great care (regarding its ± sign conventions), we have 
 

 340 m/s 80.0 m/s(440 Hz) 400 Hz
340 m/s 54.0 m/s

f −⎛ ⎞′ = =⎜ ⎟−⎝ ⎠
. 
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104. The source being isotropic means Asphere = 4πr2 is used in the intensity definition I = 
P/A. Since intensity is proportional to the square of the amplitude (see Eq. 17-27), this 
further implies 

2 22
22 2 1

2
1 1 1 2

/ 4
/ 4

m

m

sI P r r
I s P r r

⎛ ⎞ ⎛ ⎞π
= = = ⎜ ⎟⎜ ⎟ π ⎝ ⎠⎝ ⎠

 

or sm2/sm1 = r1/r2. 
 
(a) I = P/4πr2 = (10 W)/4π(3.0 m)2 = 0.088 W/m2. 
 
(b) Using the notation A instead of sm for the amplitude, we find 
 

4

3

3.0m 0.75
4.0 m

A
A

= = . 

 
105. (a) The problem is asking at how many angles will there be “loud” resultant waves, 
and at how many will there be “quiet” ones?  We consider the resultant wave (at large 
distance from the origin) along the +x axis; we note that the path-length difference (for 
the waves traveling from their respective sources) divided by wavelength gives the 
(dimensionless) value n = 3.2, implying a sort of intermediate condition between 
constructive interference (which would follow if, say, n = 3) and destructive interference 
(such as the n = 3.5 situation found in the solution to the previous problem) between the 
waves.  To distinguish this resultant along the +x axis from the similar one along the –x 
axis, we label one with n = +3.2 and the other n = –3.2.  This labeling facilitates the 
complete enumeration of the loud directions in the upper-half plane: n = –3, –2, –1,  0, +1, 
+2, +3.  Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half 
plane, then we conclude there are a total of  7 + 7 = 14  “loud”  directions. 
 
(b) The labeling also helps us enumerate the quiet directions.  In the upper-half plane we 
find: n =  –2.5, –1.5, –0.5, +0.5, +1.5, +2.5.  This is duplicated in the lower half plane, so 
the total number of quiet directions is 6 + 6 = 12. 
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Chapter 18 
 
 
1. From Eq. 18-6, we see that the limiting value of the pressure ratio is the same as the 
absolute temperature ratio: (373.15 K)/(273.16 K) = 1.366. 
 
2. We take p3 to be 80 kPa for both thermometers. According to Fig. 18-6, the nitrogen 
thermometer gives 373.35 K for the boiling point of water. Use Eq. 18-5 to compute the 
pressure: 

N 3
373.35K (80kPa) = 109.343kPa.

273.16 K 273.16 K
Tp p

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

 
The hydrogen thermometer gives 373.16 K for the boiling point of water and 
 

H
373.16 K (80kPa) 109.287 kPa.
273.16 K

p
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

 
(a) The difference is pN − pH = 0.056 kPa 0.06 kPa≈ . 
 
(b) The pressure in the nitrogen thermometer is higher than the pressure in the hydrogen 
thermometer.  
 
3. Let TL be the temperature and pL be the pressure in the left-hand thermometer. 
Similarly, let TR be the temperature and pR be the pressure in the right-hand thermometer. 
According to the problem statement, the pressure is the same in the two thermometers 
when they are both at the triple point of water. We take this pressure to be p3. Writing Eq. 
18-5 for each thermometer, 
 

3 3

(273.16 K) and (273.16 K) ,L R
L R

p pT T
p p

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
we subtract the second equation from the first to obtain 
 

3

(273.16 K) .L R
L R

p pT T
p

⎛ ⎞−
− = ⎜ ⎟

⎝ ⎠
 

 
First, we take TL = 373.125 K (the boiling point of water) and TR = 273.16 K (the triple 
point of water). Then, pL – pR = 120 torr. We solve 
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3

120 torr373.125K 273.16 K (273.16 K) 
p

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 

 
for p3. The result is p3 = 328 torr. Now, we let TL = 273.16 K (the triple point of water) 
and TR be the unknown temperature. The pressure difference is pL – pR = 90.0 torr. 
Solving the equation 

90.0 torr273.16 K (273.16 K) 
328 torrRT

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 

 
for the unknown temperature, we obtain TR = 348 K. 
 
4. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be 
y. Then 9

5 32y x= + . For x = –71°C, this gives y = –96°F. 
 
(b) The relationship between y and x may be inverted to yield 5

9 ( 32)x y= − . Thus, for y 
= 134 we find x ≈ 56.7 on the Celsius scale. 
 
5. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be 
y. Then 9

5 32y x= + . If we require y = 2x, then we have 
 

92 32        (5) (32) 160 C
5

x x x= + ⇒ = = °  

 
which yields y = 2x = 320°F. 
 
(b) In this case, we require 1

2y x=  and find 
 

1 9 (10)(32)32        24.6 C
2 5 13

x x x= + ⇒ = − ≈ − °  

 
which yields y = x/2 = –12.3°F. 
 
6. We assume scales X and Y are linearly related in the sense that reading x is related to 
reading y by a linear relationship y = mx + b. We determine the constants m and b by 
solving the simultaneous equations: 
 

( )
( )

70.00 125.0

30.00 375.0

m b

m b

− = − +

− = +
 

 
which yield the solutions m = 40.00/500.0 = 8.000 × 10–2 and b = –60.00. With these 
values, we find x for y = 50.00: 
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50.00 60.00 1375 .
0.08000

y bx X
m
− +

= = = °  

 
7. We assume scale X is a linear scale in the sense that if its reading is x then it is related 
to a reading y on the Kelvin scale by a linear relationship y = mx + b. We determine the 
constants m and b by solving the simultaneous equations: 
 

373.15 ( 53.5)
273.15 ( 170)

m b
m b

= − +
= − +

 

 
which yield the solutions m = 100/(170 – 53.5) = 0.858 and b = 419. With these values, 
we find x for y = 340: 

340 419 92.1 .
0.858

y bx X
m
− −

= = = − °  

 
8. The increase in the surface area of the brass cube (which has six faces), which had side 
length L at 20°, is 
 

2 2 2 6 2
b

2

6( ) 6 12 12 12 (19 10 / C ) (30cm) (75 C 20 C)

11cm .

A L L L L L L Tα −Δ = + Δ − ≈ Δ = Δ = × ° ° − °

=
 

 
9. The new diameter is 
 

6
0 1(1 ) (2.725cm)[1+(23 10 / C )(100.0 C 0.000 C)] 2.731cm.AD D Tα −= + Δ = × ° ° − ° =  

 
10. The change in length for the aluminum pole is 
 

6
0 1 (33m)(23 10 / C )(15 C) = 0.011m.A Tα −Δ = Δ = × ° °  

 
11. The volume at 30°C is given by 
 

3 6

3

(1 ) (1 3 ) (50.00cm )[1 3(29.00 10 / C ) (30.00 C 60.00 C)]
49.87 cm

V V T V Tβ α −′ = + Δ = + Δ = + × ° ° − °

=
 

 
where we have used β = 3α. 
 
12. (a) The coefficient of linear expansion α for the alloy is 
 

510.015cm 10.000cm 1.88 10 / C .
(10.01cm)(100 C 20.000 C)

L
L T

α −Δ −
= = = × °

Δ ° − °
 

 
Thus, from 100°C to 0°C we have 
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5 2(10.015cm)(1.88 10 / C )(0 C 100 C) = 1.88  10 cm.L L T − −Δ = Δ = × ° ° − ° − ×α  
 
The length at 0°C is therefore L′ = L + ΔL = (10.015 cm – 0.0188 cm) = 9.996 cm. 
 
(b) Let the temperature be Tx. Then from 20°C to Tx we have 
 

510.009cm 10.000cm = (1.88 10 / C )(10.000cm) ,L L T T−Δ = − Δ = × ° Δα  
 
giving ΔT = 48 °C. Thus, Tx = (20°C + 48 °C )= 68°C. 
 
13. Since a volume is the product of three lengths, the change in volume due to a 
temperature change ΔT is given by ΔV = 3αV ΔT, where V is the original volume and α is 
the coefficient of linear expansion. See Eq. 18-11. Since V = (4π/3)R3, where R is the 
original radius of the sphere, then 
 

( )( )( ) ( )33 6 343   = 23 10 / C 4 10cm 100 C 29cm .
3

V R Tα −π⎛ ⎞Δ = Δ × ° π ° =⎜ ⎟
⎝ ⎠

 

 
The value for the coefficient of linear expansion is found in Table 18-2. The change in 
volume can be expressed as /V V T= βΔ Δ , where = 3β α  is the coefficient of volume 
expansion. For aluminum, we have 63 69 10 / Cβ α −= = × ° . 
 
14. (a) Since A = πD2/4, we have the differential dA = 2(πD/4)dD. Dividing the latter 
relation by the former, we obtain dA/A = 2 dD/D. In terms of Δ's, this reads 
 

2       for   1.A D D
A D D

Δ Δ Δ
=  

 
We can think of the factor of 2 as being due to the fact that area is a two-dimensional 
quantity. Therefore, the area increases by 2(0.18%) = 0.36%. 
 
(b) Assuming that all dimensions are allowed to freely expand, then the thickness 
increases by 0.18%. 
 
(c) The volume (a three-dimensional quantity) increases by 3(0.18%) = 0.54%. 
 
(d) The mass does not change. 
 
(e) The coefficient of linear expansion is 
 

2
50.18 10 1.8 10 C .

100 C
D /

D T
α

−
−Δ ×

= = = × °
Δ °
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15. After the change in temperature the diameter of the steel rod is Ds = Ds0 + αsDs0 ΔT 
and the diameter of the brass ring is Db = Db0 + αbDb0 ΔT, where Ds0 and Db0 are the 
original diameters, αs and αb are the coefficients of linear expansion, and ΔT is the 
change in temperature. The rod just fits through the ring if Ds = Db. This means  
 

Ds0 + αsDs0 ΔT = Db0 + αbDb0 ΔT. 
Therefore, 
 

( )( ) ( )( )
0 0

6 6
0 0

3.000cm 2.992cm
19.00  10 / C 2.992cm 11.00 10 / C 3.000cm

335.0 C.

s b

b b s s

D DT
D Dα α − −

− −
Δ = =

− × ° − × °

= °

 

  
The temperature is T = (25.00°C + 335.0 °C) = 360.0°C. 
 
16. (a) We use ρ = m/V and  
 

2( / ) ( / ) / ( / ) 3 ( / )m V m 1 V m V V V V L L .ρ ρ ρΔ = Δ = Δ − Δ = − Δ = − Δ  
 
The percent change in density is 
 

3 3(0.23%) 0.69%.L
L

ρ
ρ

Δ Δ
= − = − = −  

 
(b) Since α = ΔL/(LΔT ) = (0.23 × 10–2) / (100°C – 0.0°C) = 23 × 10–6 /C°, the metal is 
aluminum (using Table 18-2). 
 
17. If Vc is the original volume of the cup, αa is the coefficient of linear expansion of 
aluminum, and ΔT is the temperature increase, then the change in the volume of the cup 
is ΔVc = 3αa Vc ΔT. See Eq. 18-11. If β is the coefficient of volume expansion for 
glycerin, then the change in the volume of glycerin is ΔVg = βVc ΔT. Note that the 
original volume of glycerin is the same as the original volume of the cup. The volume of 
glycerin that spills is 
 

( ) ( ) ( ) ( )( )4 6 3

3

3 5.1 10 / C 3 23 10 / C 100cm 6.0 C

                0.26cm .

g c a cV V V Tβ α − −⎡ ⎤Δ − Δ = − Δ = × ° − × ° °⎣ ⎦
=

 

 
Note: Glycerin spills over because 3β α> , which gives 0g cV VΔ − Δ > . Note that since 
liquids in general have greater coefficients of thermal expansion than solids, heating a 
cup filled with liquid generally will cause the liquid to spill out.    
 
18. The change in length for the section of the steel ruler between its 20.05 cm mark and 
20.11 cm mark is 
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6(20.11cm)(11 10 / C )(270 C 20 C) = 0.055cm.s s sL L T −Δ = Δ = × ° ° − °α  
 

Thus, the actual change in length for the rod is  
 

ΔL = (20.11 cm – 20.05 cm) + 0.055 cm = 0.115 cm. 
 
The coefficient of thermal expansion for the material of which the rod is made is then 

60.115 cm 23 10 / C .
270 C  20 C

L
T

α −Δ
= = = × °

Δ ° − °
 

 
19. The initial volume V0 of the liquid is h0A0 where A0 is the initial cross-section area 
and h0 = 0.64 m. Its final volume is V = hA where h – h0 is what we wish to compute. 
Now, the area expands according to how the glass expands, which we analyze as follows. 
Using 2A rπ= , we obtain 
 

( ) 22 2 2 ( ) 2dA r dr r r dT r dT AdTπ π α α π α= = = = . 
 
Therefore, the height is 

( )
( )

0 liquid

0 glass

1
.

1 2

V TVh
A A T

β

α

+ Δ
= =

+ Δ
 

 
Thus, with V0/A0 = h0 we obtain 
 

( ) ( )( )
( )( )

5
liquid 4

0 0 5
glass

1 4 10 101
1 0.64 1.3 10 m.

1 2 1 2 1 10 10
T

h h h
T

β
α

−
−

−

⎛ ⎞+ × °⎛ ⎞+ Δ
⎜ ⎟− = − = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟+ Δ + × °⎝ ⎠ ⎝ ⎠

 

 
20. We divide Eq. 18-9 by the time increment Δt and equate it to the (constant) speed v = 
100 × 10–9 m/s. 

0
Tv L
t

α Δ
=

Δ
 

 
where L0 = 0.0200 m and α = 23 × 10–6/C°. Thus, we obtain 
 

C K0.217 0.217 .
s s

T
t

Δ °
= =

Δ
 

 
21. Consider half the bar. Its original length is 0 0 / 2L=  and its length after the 
temperature increase is 0 0 T= + Δα . The old position of the half-bar, its new position, 
and the distance x that one end is displaced form a right triangle, with a hypotenuse of 
length , one side of length 0 , and the other side of length x. The Pythagorean theorem 
yields  
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2 2 2 2 2 2
0 0 0(1 ) .x Tα= − = + Δ −  

 
Since the change in length is small, we may approximate (1 + α ΔT )2 by 1 + 2α ΔT, 
where the small term (α ΔT )2 was neglected. Then, 
 

2 2 2 2 2
0 0 0 02 2x T T= + Δ − = Δα α  

and 

( )( )6 2
0

3.77 m2 2 25 10 /C 32 C 7.5 10 m.
2

x Tα − −= Δ = × ° ° = ×  

 
22. (a) The water (of mass m) releases energy in two steps, first by lowering its 
temperature from 20°C to 0°C, and then by freezing into ice. Thus the total energy 
transferred from the water to the surroundings is 
 

( ) ( ) ( ) ( ) ( ) 74190J/kg K 125kg 20 C 333kJ/kg 125kg 5.2 10 J.w FQ c m T L m= Δ + = ⋅ ° + = ×  
 
(b) Before all the water freezes, the lowest temperature possible is 0°C, below which the 
water must have already turned into ice. 
 
23. The mass m = 0.100 kg of water, with specific heat c = 4190 J/kg·K, is raised from an 
initial temperature Ti = 23°C to its boiling point Tf = 100°C. The heat input is given by Q 
= cm(Tf – Ti). This must be the power output of the heater P multiplied by the time t; Q = 
Pt. Thus, 

( ) ( ) ( )( ) 4190J/kg K 0.100kg 100 C 23 C
160s.

200J/s
f icm T TQt

P P
− ⋅ ° − °

= = = =  

 
24. (a) The specific heat is given by c = Q/m(Tf – Ti), where Q is the heat added, m is the 
mass of the sample, Ti is the initial temperature, and Tf is the final temperature. Thus, 
recalling that a change in Celsius degrees is equal to the corresponding change on the 
Kelvin scale, 

( ) ( )3

314J 523J/kg K.
30.0 10 kg 45.0 C 25.0 C

c
−

= = ⋅
× ° − °

 

 
(b) The molar specific heat is given by 
 

( ) ( ) ( )
314J 26.2J/mol K.

0.600mol 45.0 C 25.0 Cm
f i

Qc
N T T

= = = ⋅
° − °−

 

 
(c) If N is the number of moles of the substance and M is the mass per mole, then m = 
NM, so 

3

3
30.0 10 kg 0.600mol.

50 10 kg/mol
mN
M

−

−

×
= = =

×
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25. We use Q = cmΔT. The textbook notes that a nutritionist's “Calorie” is equivalent to 
1000 cal. The mass m of the water that must be consumed is 
 

( ) ( )

3
43500 10 cal 94.6 10 g,

1g/cal C 37.0 C 0.0 C 
Qm

c T
×

= = = ×
Δ ⋅ ° ° − °

 

 
which is equivalent to 9.46 × 104 g/(1000 g/liter) = 94.6 liters of water. This is certainly 
too much to drink in a single day! 
 
26. The work the man has to do to climb to the top of Mt. Everest is given by  
 

W = mgy = (73.0 kg)(9.80 m/s2)(8840 m) = 6.32 × 106 J. 
 
Thus, the amount of butter needed is 
 

( )6 1.00cal
4.186J(6.32 10 J) 

250g.
6000cal/g

m
×

= ≈  

 
27. The melting point of silver is 1235 K, so the temperature of the silver must first be 
raised from 15.0° C (= 288 K) to 1235 K. This requires heat 
 

4( ) (236J/kg K)(0.130kg)(1235 C 288 C) 2.91 10 J.f iQ cm T T= − = ⋅ ° − ° = ×  
 
Now the silver at its melting point must be melted. If LF is the heat of fusion for silver, 
this requires 

( ) ( )3 40.130kg 105 10 J/kg 1.36 10 J.FQ mL= = × = ×  
 
The total heat required is ( 2.91 × 104 J + 1.36 × 104 J ) = 4.27 × 104 J. 
 
28. The amount of water m that is frozen is 
 

50.2 kJ 0.151kg 151g.
333kJ/kgF

Qm
L

= = = =  

 
Therefore the amount of water that remains unfrozen is 260 g – 151 g = 109 g. 
 
29. The power consumed by the system is 
 

3 3 3

4

1 1 (4.18J / g C)(200 10 cm )(1g / cm )(40 C 20 C)
20% 20% (1.0h)(3600s / h)

  2.3 10 W.

cm TP
t
Δ ⋅° × ° − °⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= ×
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The area needed is then 
4

2
2

2.3 10 W 33m .
700W / m

A ×
= =  

 
30. While the sample is in its liquid phase, its temperature change (in absolute values) is  
| ΔT | = 30 °C.  Thus, with m = 0.40 kg, the absolute value of Eq. 18-14 leads to 
 

|Q| =  c m |ΔT | = (3000 J/ kg C⋅° )(0.40 kg)(30 C° ) = 36000 J . 
 
The rate (which is constant) is  
 

P = |Q| / t = (36000 J)/(40 min) = 900 J/min, 
 
which is equivalent to 15 W.   
 
(a) During the next 30 minutes, a phase change occurs that is described by Eq. 18-16: 
 

|Q| = P t = (900 J/min)(30 min) = 27000 J =  L m . 
 
Thus, with m = 0.40 kg, we find L = 67500 J/kg  ≈  68 kJ/kg. 
 
(b) During the final 20 minutes, the sample is solid and undergoes a temperature change 
(in absolute values) of | ΔT | = 20 C°.  Now, the absolute value of Eq. 18-14 leads to 
 

c = 
|Q|

m |ΔT|  = 
P t

m |ΔT|  = 
(900)(20)
(0.40)(20) = 2250  J 

kg·C°  ≈  2.3  kJ 
kg·C°  . 

 
31. Let the mass of the steam be ms and that of the ice be mi. Then  
 

( 0.0 C) (100 C )F c w c f s s s w fL m c m T m L m c T+ − ° = + ° − , 
 
where Tf = 50°C is the final temperature. We solve for ms: 
 

( 0.0 C) (79.7 cal / g)(150g) (1cal / g· C)(150g)(50 C 0.0°C)
(100 C ) 539cal / g (1cal / g C )(100 C 50 C)

    33g.

F c w c f
s

s w f

L m c m T
m

L c T
+ − ° + ° ° −

= =
+ ° − + ⋅ ° ° − °

=

 

 
32. The heat needed is found by integrating the heat capacity: 
 

15.0 C 2

5.0 C

15.02 3

5.0

 (2.09) (0.20 0.14 0.023 )

  (2.0) (0.20 0.070 0.00767 ) (cal)

  82cal.

f f

i i

T T

T T
Q cm dT m cdT T T dT

T T T

°

°
= = = + +

= + +

=

∫ ∫ ∫
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33. We note from Eq. 18-12 that 1 Btu = 252 cal. The heat relates to the power, and to the 
temperature change, through Q = Pt = cmΔT. Therefore, the time t required is 
 

5

(1000cal / kg C )(40gal)(1000kg / 264gal)(100 F 70 F)(5 C / 9 F)
(2.0 10 Btu / h)(252.0 cal / Btu)(1 h / 60min)

3.0min .

cm Tt
P
Δ ⋅ ° ° − ° ° °

= =
×

=
 

 
The metric version proceeds similarly: 
 

3 3(4190 J/kg·C )(1000 kg/m )(150 L)(1 m /1000 L)(38 C 21 C)
(59000 J/s)(60 s /1min)

 3.0min.

c V Tt
P

Δ ° ° − °
= =

=

ρ
 

 
34. We note that the heat capacity of sample B is given by the reciprocal of the slope of 
the line in Figure 18-33(b) (compare with Eq. 18-14).  Since the reciprocal of that slope is 
16/4 = 4 kJ/kg·C°, then cB = 4000 J/kg·C° = 4000 J/kg·K (since a change in Celsius is 
equivalent to a change in Kelvins).  Now, following the same procedure as shown in 
Sample Problem —“Hot slug in water, coming to equilibrium,” we find  
 

                                                 cA mA (Tf  − TA) + cB mB (Tf  − TB) = 0 
 

  cA (5.0 kg)(40°C – 100°C) + (4000 J/kg·C°)(1.5 kg)(40°C – 20°C) = 0 
 
which leads to cA = 4.0×102 J/kg·K. 
 
35. We denote the ice with subscript I and the coffee with c, respectively. Let the final 
temperature be Tf. The heat absorbed by the ice is  
 

QI = λFmI + mIcw (Tf – 0°C), 
 
and the heat given away by the coffee is |Qc| = mwcw (TI – Tf). Setting QI = |Qc|, we solve 
for Tf : 

3(130g) (4190J/kg C ) (80.0 C) (333 10 J/g) (12.0g)
( ) (12.0g +130g ) (4190J/kg C°)

66.5 C.

w w I F I
f

I c w

m c T mT
m m c

−λ ⋅ ° ° − ×
= =

+ ⋅

= °

 

 
Note that we work in Celsius temperature, which poses no difficulty for the J/kg·K values 
of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 
numerically equal to the corresponding change on the Celsius scale. Therefore, the 
temperature of the coffee will cool by |ΔT | = 80.0°C – 66.5°C = 13.5C°. 
 
36. (a) Using Eq. 18-17, the heat transferred to the water is 
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( )( )( ) ( )( )1cal/g C 220g 100 C 20.0 C 539cal/g 5.00g
20.3kcal.

w w w V sQ c m T L m= Δ + = ⋅ ° ° − ° +

=
 

 
(b) The heat transferred to the bowl is 
 

( ) ( ) ( )0.0923cal/g C 150g 100 C 20.0 C 1.11kcal.b b bQ c m T= Δ = ⋅ ° ° − ° =  
 
(c) If the original temperature of the cylinder be Ti, then Qw + Qb = ccmc(Ti – Tf), which 
leads to  

( ) ( )
20.3kcal + 1.11kcal 100 C = 873 C.

0.0923cal/g C 300g
w b

i f
c c

Q QT T
c m

+
= + = + ° °

⋅ °
 

 
37. We compute with Celsius temperature, which poses no difficulty for the J/kg·K 
values of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 
numerically equal to the corresponding change on the Celsius scale. If the equilibrium 
temperature is Tf, then the energy absorbed as heat by the ice is  
 

QI = LFmI + cwmI(Tf – 0°C), 
 
while the energy transferred as heat from the water is Qw = cwmw(Tf – Ti). The system is 
insulated, so Qw + QI = 0, and we solve for Tf : 

 

.
( )
w w i F I

f
I C w

c m T L mT
m m c

−
=

+
 

(a) Now Ti = 90°C so 
 

3(4190J / kg C )(0.500kg)(90 C) (333 10 J / kg)(0.500kg) 5.3 C.
(0.500kg 0.500kg)(4190J / kg C )fT ⋅ ° ° − ×

= = °
+ ⋅ °

 

 
(b) Since no ice has remained at 5.3fT C= ° , we have 0fm = . 
 
(c) If we were to use the formula above with Ti = 70°C, we would get Tf < 0, which is 
impossible. In fact, not all the ice has melted in this case, and the equilibrium temperature 
is Tf  = 0°C.  
 
(d) The amount of ice that melts is given by 
 

3
( 0 C) (4190J / kg C )(0.500kg)(70C°) 0.440kg.

333 10 J / kg
w w i

I
F

c m Tm
L

− ° ⋅ °′ = = =
×

 

 
Therefore, the amount of (solid) ice remaining is mf = mI – m'I = 500 g – 440 g = 60.0 g, 
and (as mentioned) we have Tf = 0°C (because the system is an ice-water mixture in 
thermal equilibrium). 
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38. (a)  Equation 18-14 (in absolute value) gives  
 

|Q| = (4190 J/ kg C⋅° )(0.530 kg)(40 °C) = 88828 J. 
 
Since /dQ dt is assumed constant (we will call it P) then we have 
 

P =  88828 J
40 min  = 

88828 J
2400 s  = 37 W . 

 
(b) During that same time (used in part (a)) the ice warms by 20 C°.  Using Table 18-3 
and Eq. 18-14 again we have 
 

mice  = Q
cice ΔT   =   

88828
(2220)(20°)  =  2.0 kg . 

 
(c) To find the ice produced (by freezing the water that has already reached 0°C, so we 
concerned with the 40 min < t < 60 min  time span), we use Table 18-4 and Eq. 18-16: 
 

mwater becoming ice  =  Q 20 min
LF

   =  
44414

333000  =  0.13 kg. 

 
39. To accomplish the phase change at 78°C,  
 

Q = LVm = (879 kJ/kg) (0.510 kg) = 448.29 kJ 
 
must be removed. To cool the liquid to –114°C,  
 

Q = cm|ΔT| = (2.43 kJ/ kg K⋅ ) (0.510 kg) (192 K) = 237.95 kJ 
 
must be removed. Finally, to accomplish the phase change at –114°C,  
 

Q = LFm = (109 kJ/kg) (0.510 kg) = 55.59 kJ 
 
must be removed. The grand total of heat removed is therefore (448.29 + 237.95 + 55.59) 
kJ = 742 kJ. 
 
40. Let mw = 14 kg, mc = 3.6 kg, mm = 1.8 kg, Ti1 = 180°C, Ti2 = 16.0°C, and Tf = 18.0°C. 
The specific heat cm of the metal then satisfies 
 

( ) ( ) ( )2 1 0w w c m f i m m f im c m c T T m c T T+ − + − =  
 
which we solve for cm: 
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( )
( ) ( )

( )( )( )
( ) ( )

2

2 1

14kg 4.18kJ/kg K 16.0 C 18.0 C
(3.6kg) 18.0 C 16.0 C (1.8kg) 18.0 C 180 C

0.41kJ/kg C 0.41kJ/kg K.

w w i f
m

c f i m f i

m c T T
c

m T T m T T

− ⋅ ° − °
= =

° − ° + ° − °− + −

= ⋅ ° = ⋅

 

 
41. (a) We work in Celsius temperature, which poses no difficulty for the J/kg·K values 
of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 
numerically equal to the corresponding change on the Celsius scale. There are three 
possibilities: 
 
• None of the ice melts, and the water-ice system reaches thermal equilibrium at a 
temperature that is at or below the melting point of ice. 
 
• The system reaches thermal equilibrium at the melting point of ice, with some of the ice 
melted. 
 
• All of the ice melts, and the system reaches thermal equilibrium at a temperature at or 
above the melting point of ice. 
 
First, suppose that no ice melts. The temperature of the water decreases from TWi = 25°C 
to some final temperature Tf, and the temperature of the ice increases from TIi = –15°C to 
Tf. If mW is the mass of the water and cW is its specific heat, then the water rejects heat 
 

| | ( ).W W Wi fQ c m T T= −  
 
If mI is the mass of the ice and cI is its specific heat, then the ice absorbs heat 
 

( ).I I f IiQ c m T T= −  
 
Since no energy is lost to the environment, these two heats (in absolute value) must be 
the same. Consequently, 
 

( ) ( ).W W Wi f I I f Iic m T T c m T T− = −  
 
The solution for the equilibrium temperature is 
 

(4190J / kg K)(0.200kg)(25 C) (2220J/kg K)(0.100kg)( 15 C)   
(4190J/kg K)(0.200kg) (2220J/kg K)(0.100kg)

   16.6 C.

W W Wi I I Ii
f

W W I I

c m T c m TT
c m c m

+
=

+
⋅ ° + ⋅ − °

=
⋅ + ⋅

= °

 

 
This is above the melting point of ice, which invalidates our assumption that no ice has 
melted. That is, the calculation just completed does not take into account the melting of 
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the ice and is in error. Consequently, we start with a new assumption: that the water and 
ice reach thermal equilibrium at Tf = 0°C, with mass m (< mI) of the ice melted. The 
magnitude of the heat rejected by the water is 
 

| | = ,W W WiQ c m T  
 
and the heat absorbed by the ice is 
 

(0 ) ,I I Ii FQ c m T mL= − +  
 
where LF is the heat of fusion for water. The first term is the energy required to warm all 
the ice from its initial temperature to 0°C and the second term is the energy required to 
melt mass m of the ice. The two heats are equal, so 
 

.W W Wi I I Ii Fc m T c m T mL= − +  
 
This equation can be solved for the mass m of ice melted: 
 

3

2

(4190J / kg K)(0.200kg)(25 C) (2220J / kg K)(0.100kg)( 15 C )
333 10 J / kg

5.3 10 kg 53g.

W W Wi I I Ii

F

c m T c m Tm
L

−

+
=

⋅ ° + ⋅ − °
=

×

= × =

 

 
Since the total mass of ice present initially was 100 g, there is enough ice to bring the 
water temperature down to 0°C. This is then the solution: the ice and water reach thermal 
equilibrium at a temperature of 0°C with 53 g of ice melted. 
 
(b) Now there is less than 53 g of ice present initially. All the ice melts, and the final 
temperature is above the melting point of ice. The heat rejected by the water is 
 

( )W W W i fQ c m T T= −  
 
and the heat absorbed by the ice and the water it becomes when it melts is 
 

(0 ) ( 0) .I I Ii W I f I FQ c m T c m T m L= − + − +  
 
The first term is the energy required to raise the temperature of the ice to 0°C, the second 
term is the energy required to raise the temperature of the melted ice from 0°C to Tf, and 
the third term is the energy required to melt all the ice. Since the two heats are equal, 
 

( ) ( ) .W W W i f I I I i W I f I Fc m T T c m T c m T m L− = − + +  
 



 

  

777

The solution for Tf is 

.
( )

W W W i I I Ii I F
f

W W I

c m T c m T m L
T

c m m
+ −

=
+

 

 
Inserting the given values, we obtain Tf = 2.5°C. 
 
42. If the ring diameter at 0.000°C is Dr0, then its diameter when the ring and sphere are 
in thermal equilibrium is 

0 (1 ),r r c fD D Tα= +  
 
where Tf is the final temperature and αc is the coefficient of linear expansion for copper. 
Similarly, if the sphere diameter at Ti (= 100.0°C) is Ds0, then its diameter at the final 
temperature is 

0 [1 ( )],s s a f iD D T Tα= + −  
 
where αa is the coefficient of linear expansion for aluminum. At equilibrium the two 
diameters are equal, so 

0 0(1 ) [1 ( )].r c f s a f iD T D T Tα α+ = + −  
 
The solution for the final temperature is 
 

0 0 0

0 0
6

6 6

2.54000cm 2.54508cm (2.54508cm)(23 10 /C )(100.0 C)
(2.54508cm)(23 10 / C ) (2.54000cm) (17 10 /C°)

50.38 C.

r s s a i
f

s a r c

D D D TT
D D

α
α α

−

− −

− +
=

−

− + × ° °
=

× ° − ×
= °

 

 
The expansion coefficients are from Table 18-2 of the text. Since the initial temperature 
of the ring is 0°C, the heat it absorbs is ,c r fQ c m T=  where cc is the specific heat of 
copper and mr is the mass of the ring. The heat released by the sphere is 
 

( )a s i fQ c m T T= −  
 
where ca is the specific heat of aluminum and ms is the mass of the sphere. Since these 
two heats are equal, 

( ) ,c r f a s i fc m T c m T T= −  
 
we use specific heat capacities from the textbook to obtain 
 

3(386J/kg K)(0.0200kg)(50.38 C) 8.71 10 kg.
( ) (900J/kg K)(100 C 50.38 C)

c r f
s

a i f

c m T
m

c T T
−⋅ °

= = = ×
− ⋅ ° − °

 



 CHAPTER 18 778 

 
43. (a) One part of path A represents a constant pressure process. The volume changes 
from 1.0 m3 to 4.0 m3 while the pressure remains at 40 Pa. The work done is 
 

3 3 2(40Pa)(4.0m 1.0m ) 1.2 10 J.AW p V= Δ = − = ×  
 
(b) The other part of the path represents a constant volume process. No work is done 
during this process. The total work done over the entire path is 120 J. To find the work 
done over path B we need to know the pressure as a function of volume. Then, we can 
evaluate the integral W = ∫ p dV. According to the graph, the pressure is a linear function 
of the volume, so we may write p = a + bV, where a and b are constants. In order for the 
pressure to be 40 Pa when the volume is 1.0 m3 and 10 Pa when the volume is 4.00 m3 
the values of the constants must be a = 50 Pa and b = –10 Pa/m3. Thus,  
 

p = 50 Pa – (10 Pa/m3)V 
and 
 

( ) ( )4 4 2 4
11 1

 50 10 50 5 200 J 50 J 80 J  +  5.0 J = 75J.BW p dV V dV V V= = − = − = − −∫ ∫  

 
(c) One part of path C represents a constant pressure process in which the volume 
changes from 1.0 m3 to 4.0 m3 while p remains at 10 Pa. The work done is 
 

3 3(10 Pa)(4.0m 1.0m ) 30J.CW p V= Δ = − =  
 
The other part of the process is at constant volume and no work is done. The total work is 
30 J. We note that the work is different for different paths. 
 
44. During process A → B, the system is expanding, doing work on its environment, so W 
> 0, and since ΔEint > 0 is given then Q = W + ΔEint must also be positive. 
 
(a) Q > 0. 
 
(b) W > 0. 
 
During process B → C, the system is neither expanding nor contracting. Thus, 
 
(c) W = 0. 
 
(d) The sign of ΔEint must be the same (by the first law of thermodynamics) as that of Q, 
which is given as positive. Thus, ΔEint > 0. 
 
During process C → A, the system is contracting. The environment is doing work on the 
system, which implies W < 0. Also, ΔEint < 0 because ∑ ΔEint = 0 (for the whole cycle) 
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and the other values of ΔEint (for the other processes) were positive. Therefore, Q = W + 
ΔEint must also be negative. 
 
(e) Q < 0. 
 
(f) W < 0. 
 
(g) ΔEint < 0. 
 
(h) The area of a triangle is 1

2  (base)(height). Applying this to the figure, we find 
31

net 2| | (2.0m )(20 Pa) 20JW = = . Since process C → A involves larger negative work (it 
occurs at higher average pressure) than the positive work done during process A → B, 
then the net work done during the cycle must be negative. The answer is therefore Wnet 
= –20 J. 
 
45. Over a cycle, the internal energy is the same at the beginning and end, so the heat Q 
absorbed equals the work done: Q = W. Over the portion of the cycle from A to B the 
pressure p is a linear function of the volume V, and we may write p a bV= + . The work 
done over this portion of the cycle is 

( ) ( )2 21  =   = ( )
2

B B

A A

V V

AB B A B AV V
W pdV a bV dV a V V b V V+ = − + −∫ ∫ . 

 
The BC portion of the cycle is at constant pressure, and the work done by the gas is  
 

( )BC B BC B C BW p V p V V= Δ = − . 
 
The CA portion of the cycle is at constant volume, so no work is done. The total work 
done by the gas is  

W = WAB + WBC + WCA . 
 
The pressure function can be written as 
 

310 20Pa  Pa/m ,
3 3

p V⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

 
where the coefficients a and b were chosen so that p = 10 Pa when V = 1.0 m3 and p = 30 
Pa when V = 4.0 m3. Therefore, the work done going from A to B is 
 

( )

( )

2 2

3 3 3 3 2 3 2

1( )
2

10 1 20Pa 4.0 m 1.0 m  Pa/m (4.0 m ) (1.0 m )
3 2 3

10 J 50 J 60 J.

AB B A B AW a V V b V V= − + −

⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − + −⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠
= + =
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Similarly, with 30 PaB Cp p= = , 31.0 mCV = , and 34.0 mBV = , we have 
 

( )BC B C BW p V V= −  = (30 Pa)(1.0 m3 – 4.0 m3) = –90 J. 
 
Adding up all contributions, we find the total work done by the gas to be  
 

W = WAB + WBC + WCA = 60 J – 90 J + 0 = –30 J . 
 
Thus, the total heat absorbed is Q = W = –30 J. This means the gas loses 30 J of energy in 
the form of heat. Notice that in calculating the work done by the gas, we always start with 
Eq. 18-25: W pdV= ∫ . For an isobaric process where p = constant, W p V= Δ , and for 

an isochoric process where V = constant, W = 0.  
 
46. (a) Since work is done on the system (perhaps to compress it) we write W = –200 J. 
 
(b) Since heat leaves the system, we have Q = –70.0 cal = –293 J. 
 
(c) The change in internal energy is ΔEint = Q – W = –293 J – (–200 J) = –93 J. 
 
47. (a) The change in internal energy ΔEint is the same for path iaf and path ibf. 
According to the first law of thermodynamics, ΔEint = Q – W, where Q is the heat 
absorbed and W is the work done by the system. Along iaf , 
 

ΔEint = Q – W = 50 cal – 20 cal = 30 cal. 
Along ibf , 

W = Q – ΔEint = 36 cal – 30 cal = 6.0 cal. 
 
(b) Since the curved path is traversed from f to i the change in internal energy is –30 cal 
and Q = ΔEint + W = –30 cal – 13 cal = – 43 cal. 
 
(c) Let ΔEint = Eint, f – Eint, i. Then, Eint, f = ΔEint + Eint, i = 30 cal + 10 cal = 40 cal. 
 
(d) The work Wbf for the path bf is zero, so Qbf = Eint, f – Eint, b = 40 cal – 22 cal = 18 cal.  
 
(e) For the path ibf, Q = 36 cal so Qib = Q – Qbf = 36 cal – 18 cal = 18 cal. 
 
48. Since the process is a complete cycle (beginning and ending in the same 
thermodynamic state) the change in the internal energy is zero, and the heat absorbed by 
the gas is equal to the work done by the gas: Q = W. In terms of the contributions of the 
individual parts of the cycle QAB + QBC + QCA = W and  
 

QCA = W – QAB – QBC = +15.0 J – 20.0 J – 0 = –5.0 J. 
 
This means 5.0 J of energy leaves the gas in the form of heat. 
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49. We note that there is no work done in the process going from d to a, so Qda = ΔEint da 
= 80 J.  Also, since the total change in internal energy around the cycle is zero, then  
 

ΔEint ac + ΔEint cd   + ΔEint da = 0 
 

−200 J   + ΔEint cd  + 80 J    = 0 
 
which yields  ΔEint cd = 120 J.  Thus, applying the first law of thermodynamics to the c to 
d process gives the work done as  
 

Wcd = Qcd − ΔEint cd  = 180 J  – 120 J  = 60 J. 
 
50. (a) We note that process a to b is an expansion, so W > 0 for it.  Thus, Wab = +5.0 J.   
We are told that the change in internal energy during that process is +3.0 J, so application 
of the first law of thermodynamics for that process immediately yields Qab = +8.0 J. 
 
(b) The net work (+1.2 J) is the same as the net heat (Qab + Qbc + Qca), and we are told 
that Qca = +2.5 J.  Thus we readily find Qbc = (1.2 – 8.0 – 2.5) J = −9.3 J. 
 
51. We use Eqs. 18-38 through 18-40. Note that the surface area of the sphere is given by 
A = 4πr2, where r = 0.500 m is the radius. 
 
(a) The temperature of the sphere is T = (273.15 + 27.00) K = 300.15 K. Thus  
 

( )( )( )( ) ( )2 44 8 2 4

3

5.67 10 W m K 0.850 4 0.500 m 300.15K

1.23 10 W.
rP ATσε π−= = × ⋅

= ×
 

 
(b) Now, Tenv = 273.15 + 77.00 = 350.15 K so 
 

( ) ( )2 44 8 2 4 3
env (5.67 10 W m K )(0.850)(4 ) 0.500m 350.15K 2.28 10 W.aP ATσε π−= = × ⋅ = ×  

 
(c) From Eq. 18-40, we have 
 

3 3 32.28 10 W 1.23 10 W 1.05 10 W.n a rP P P= − = × − × = ×  
 
52. We refer to the polyurethane foam with subscript p and silver with subscript s. We 
use Eq. 18-32 to find L = kR. 
 
(a) From Table 18-6 we find kp = 0.024 W/m·K, so 
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( )( )( ) ( )( )( )22= 0.024 W/m K 30ft F h/Btu 1m/3.281ft 5C / 9F 3600s/h 1Btu/1055J

= 0.13m.

p p pL k R=

⋅ ⋅ ° ⋅ ° °  

 
(b) For silver ks = 428 W/m·K, so 
 

( )
( ) ( ) 3428 30

0.13m 2.3 10 m.
0.024 30

s s
s s s p

p p

k RL k R L
k R

⎛ ⎞ ⎡ ⎤
= = = = ×⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠

 

 
53. The rate of heat flow is given by 
 

cond ,H CT TP kA
L
−

=  

 
where k is the thermal conductivity of copper (401 W/m·K), A is the cross-sectional area 
(in a plane perpendicular to the flow), L is the distance along the direction of flow 
between the points where the temperature is TH and TC. Thus, 
 

( ) ( ) ( )4 2
3

cond

401W/m K 90.0 10 m 125 C 10.0 C
1.66 10 J/s.

0.250m
P

−⋅ × ° − °
= = ×  

 
The thermal conductivity is found in Table 18-6 of the text. Recall that a change in 
Kelvin temperature is numerically equivalent to a change on the Celsius scale. 
 
54. (a) We estimate the surface area of the average human body to be about 2 m2 and the 
skin temperature to be about 300 K (somewhat less than the internal temperature of  
310 K). Then from Eq. 18-37 
 

( ) ( ) ( ) ( )44 8 2 4 2 25.67 10 W/m K 0.9 2.0m 300 K 8 10 W.rP AT −= ≈ × ⋅ = ×σε  
 
(b) The energy lost is given by 
 

( ) ( )2 48 10 W 30s 2 10 J.rE P tΔ = Δ = × = ×  
 
55. (a) Recalling that a change in Kelvin temperature is numerically equivalent to a 
change on the Celsius scale, we find that the rate of heat conduction is 
 

( ) ( )( )( )4 2

cond

401W/m K 4.8 10 m 100 C
16 J/s.

1.2m
H CkA T T

P
L

−⋅ × °−
= = =  

 
(b) Using Table 18-4, the rate at which ice melts is 
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cond 16J/s 0.048g/s.

333J/gF

dm P
dt L

= = =  

 
56. The surface area of the ball is 2 2 3 24 4 (0.020 m) 5.03 10  m .A Rπ π −= = = ×  Using Eq. 
18-37 with 35 273 308 KiT = + =  and 47 273 320 KfT = + = , the power required to 
maintain the temperature is 
 

4 4 8 2 4 3 2 4 4( ) (5.67 10 W/m K )(0.80)(5.03 10  m ) (320 K) (308 K)

0.34 W.
r f iP A T Tσε − − ⎡ ⎤= − ≈ × ⋅ × −⎣ ⎦

=
 

 
Thus, the heat each bee must produce during the 20-minute interval is  
 

 (0.34 W)(20 min)(60 s/min) 0.81 J
500

rP tQ
N N

= = = . 

 
57. (a) We use 

cond
H CT TP kA

L
−

=  

 
with the conductivity of glass given in Table 18-6 as 1.0 W/m·K. We choose to use the 
Celsius scale for the temperature: a temperature difference of 
 

( )72 F 20 F 92 FH CT T− = ° − − ° = °  
 
is equivalent to 5

9 (92) 51.1C= ° . This, in turn, is equal to 51.1 K since a change in Kelvin 
temperature is entirely equivalent to a Celsius change. Thus,  
 

( ) 4 2cond
3

51.1 C1.0 W m K 1.7 10 W m .
3.0 10 m

H CP T Tk
A L −

− °⎛ ⎞= = ⋅ = ×⎜ ⎟×⎝ ⎠
 

 
(b) The energy now passes in succession through 3 layers, one of air and two of glass. 
The heat transfer rate P is the same in each layer and is given by 
 

( )
cond

H CA T T
P

L k
−

=
∑

 

 
where the sum in the denominator is over the layers. If Lg is the thickness of a glass layer, 
La is the thickness of the air layer, kg is the thermal conductivity of glass, and ka is the 
thermal conductivity of air, then the denominator is 
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2 2
.g g a a ga

g a a g

L L k L kLL
k k k k k

+
= + =∑  

 
Therefore, the heat conducted per unit area occurs at the following rate: 
 

( ) ( )( )( )
( )( ) ( )( )

cond
3

2

51.1 C 0.026 W m K 1.0 W m K
2 2 3.0 10 m 0.026 W m K 0.075m 1.0 W m K

18W m .

H C a g

g a a g

T T k kP
A L k L k −

− ° ⋅ ⋅
= =

+ × ⋅ + ⋅

=

 

 
58. (a) The surface area of the cylinder is given by 
 

2 2 2 2 2 2 2
1 1 1 12 2 2 (2.5 10 m) 2 (2.5 10 m)(5.0 10 m) 1.18 10 mA r rhπ π π π− − − −= + = × + × × = × , 

 
its temperature is T1 = 273 + 30 = 303 K, and the temperature of the environment is Tenv = 
273 + 50 = 323 K. From Eq. 18-39 we have 
  

( ) ( )( )( )4 4 2 2 4 4
1 1 env 0.85 1.18 10 m (323K) (303K) 1.4 W.P A T Tσε −= − = × − =  

 
(b) Let the new height of the cylinder be h2. Since the volume V of the cylinder is fixed, 
we must have 2 2

1 1 2 2V r h r hπ π= = . We solve for h2: 
 

( )
2 2

1
2 1

2

2.5cm 5.0cm  125cm 1.25m.
0.50cm

rh h
r

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
The corresponding new surface area A2 of the cylinder is 
 

2 2 2 2
2 2 22 2 2 m) 2 m)(1.25 m) 3.94 10 m .A r r hπ π π π−2 −2 −

2= + = (0.50×10 + (0.50×10 = ×  
 
Consequently, 

2 2
2 2

2 2
1 1

3.94 10 m 3.3.
1.18 10 m

P A
P A

−

−

×
= = =

×
 

 
59. We use Pcond = kAΔT/L ∝ A/L. Comparing cases (a) and (b) in Fig. 18-44, we have  
 

cond cond cond 4 .b a
b a a

a b

A LP P P
A L

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

 
Consequently, it would take 2.0 min/4 = 0.50 min for the same amount of heat to be 
conducted through the rods welded as shown in Fig. 18-44(b). 
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60. (a) As in Sample Problem — “Thermal conduction through a layered wall,” we take 
the rate of conductive heat transfer through each layer to be the same.  Thus, the rate of 
heat transfer across the entire wall Pw is equal to the rate across layer 2 (P2 ).  Using Eq. 
18-37 and canceling out the common factor of area A, we obtain 
 

TH - Tc
(L1/k1+ L2/k2 + L3/k3) =  

ΔT2
(L2/k2)   ⇒     

45 C°
(1 + 7/9 + 35/80) =  

ΔT2
(7/9)  

 
which leads to ΔT2 = 15.8 °C.  
 
(b) We expect (and this is supported by the result in the next part) that greater 
conductivity should mean a larger rate of conductive heat transfer. 
 
(c) Repeating the calculation above with the new value for k2 , we have 
 

45 C°
(1 + 7/11 + 35/80) =  

ΔT2
(7/11)  

 
which leads to ΔT2 = 13.8 °C.  This is less than our part (a) result, which implies that the 
temperature gradients across layers 1 and 3 (the ones where the parameters did not 
change) are greater than in part (a); those larger temperature gradients lead to larger 
conductive heat currents (which is basically a statement of “Ohm’s law as applied to heat 
conduction”). 
 
61. Let h be the thickness of the slab and A be its area. Then, the rate of heat flow through 
the slab is  

( )
cond

H CkA T T
P

h
−

=  

 
where k is the thermal conductivity of ice, TH is the temperature of the water (0°C), and 
TC is the temperature of the air above the ice (–10°C). The heat leaving the water freezes 
it, the heat required to freeze mass m of water being Q = LFm, where LF is the heat of 
fusion for water. We differentiate with respect to time and recognize that dQ/dt = Pcond to 
obtain 

cond .F
dmP L
dt

=  

 
Now, the mass of the ice is given by m = ρAh, where ρ is the density of ice and h is the 
thickness of the ice slab, so dm/dt = ρA(dh/dt) and 
 

cond .F
dhP L A
dt

ρ=  

 
We equate the two expressions for Pcond and solve for dh/dt: 
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( ) .H C

F

k T Tdh
dt L h

−
=

ρ
 

 
Since 1 cal = 4.186 J and 1 cm = 1 × 10–2 m, the thermal conductivity of ice has the SI 
value  

k = (0.0040 cal/s·cm·K) (4.186 J/cal)/(1 × 10–2 m/cm) = 1.674 W/m·K. 
 
The density of ice is ρ = 0.92 g/cm3 = 0.92 × 103 kg/m3. Thus, 
 

( )( )
( )( )( )

6
3 3 3

1.674 W m K 0 C  10 C
1.1 10 m s 0.40cm h.

333 10 J kg 0.92 10 kg m 0.050m
dh
dt

−⋅ ° + °
= = × =

× ×
 

 
62. (a) Using Eq. 18-32, the rate of energy flow through the surface is  
 

( ) 6 2
cond 4

300 C 100 C(0.026 W/m K)(4.00 10  m ) 0.208W 0.21 W.
1.0 10  m

s wkA T T
P

L
−

−

− ° − °
= = ⋅ × = ≈

×
 

 
(Recall that a change in Celsius temperature is numerically equivalent to a change on the 
Kelvin scale.) 
 
(b) With cond ( ) ( ),V V VP t L m L V L Ahρ ρ= = =  the drop will last a duration of  
 

6 3 6 2 3

cond

(2.256 10  J/kg)(1000 kg/m )(4.00 10  m )(1.50 10  m) 65 s
0.208W

VL Aht
P
ρ − −× × ×

= = = . 

 
63. We divide both sides of Eq. 18-32 by area A, which gives us the (uniform) rate of 
heat conduction per unit area: 
 

cond 1
1 4

1 4

CHP T TT Tk k
A L L

−−
= =  

 
where TH = 30°C, T1 = 25°C and TC = –10°C. We solve for the unknown T. 
 

( )1 4
1

4 1

4.2 C.C H
k LT T T T
k L

= + − = − °  

 
64. (a) For each individual penguin, the surface area that radiates is the sum of the top 
surface area and the sides: 

2 2 2r
aA a rh a h a h aπ π π
π

= + = + = + , 
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where we have used /r a π=   (from 2a rπ= ) for the radius of the cylinder. For the 
huddled cylinder, the radius is /r Na π′ =  (since 2Na rπ ′= ), and the total surface area 
is  

2 2 2h
NaA Na r h Na h Na h N aπ π π
π

′= + = + = + . 

 
Since the power radiated is proportional to the surface area, we have  
 

 2 1 2 /
( 2 ) 1 2 /

h h

r r

P A Na h N a h Na
NP NA N a h a h a

π π
π π

+ +
= = =

+ +
. 

 
With 1000N = , 20.34 ma = , and 1.1 m,h =  the ratio is 
 

2

2

1 2(1.1 m) /(1000 0.34 m )1 2 / 0.16
1 2 / 1 2(1.1 m) /(0.34 m )

h

r

P h Na
NP h a

ππ
π π

+ ⋅+
= = =

+ +
. 

 
(b) The total radiation loss is reduced by 1.00 0.16 0.84− = , or 84%. 
 
65. We assume (although this should be viewed as a “controversial” assumption) that the 
top surface of the ice is at TC = –5.0°C. Less controversial are the assumptions that the 
bottom of the body of water is at TH = 4.0°C and the interface between the ice and the 
water is at TX = 0.0°C. The primary mechanism for the heat transfer through the total 
distance L = 1.4 m is assumed to be conduction, and we use Eq. 18-34: 
 

( ) ( )water ice

ice ice ice ice

(0.12) 4.0 0.0 (0.40) 0.0 5.0( ) ( )     .
1.4

H X X C A Ak A T T k A T T
L L L L L

° − ° ° + °− −
= ⇒ =

− −
 

 
We cancel the area A and solve for thickness of the ice layer: Lice = 1.1 m. 
 
66. The condition that the energy lost by the beverage can be due to evaporation equals 
the energy gained via radiation exchange implies 
 

4 4
rad env( )V

dmL P A T T
dt

σε= = − . 

 
The total area of the top and side surfaces of the can is 
 
 2 2 2 22 (0.022 m) 2 (0.022 m)(0.10 m) 1.53 10  mA r rhπ π π π −= + = + = × . 
 
With env 32 C 305 KT = ° = , 15 C 288 KT = ° = , and 1ε = , the rate of water mass loss is 
 



 CHAPTER 18 788 

8 2 4 2 2
4 4 4 4

env 6

7

(5.67 10 W/m K )(1.0)(1.53 10  m )( ) (305 K) (288 K)
2.256 10  J/kg

6.82 10 kg/s 0.68 mg/s.
V

dm A T T
dt L

σε − −

−

× ⋅ × ⎡ ⎤= − = −⎣ ⎦×

= × ≈
 

67. We denote the total mass M and the melted mass m. The problem tells us that work/M 
= p/ρ, and that all the work is assumed to contribute to the phase change Q = Lm where L 
= 150 × 103 J/kg. Thus,  
 

6

3
5.5 10    

1200 150 10
p MM Lm m ×

= ⇒ =
×ρ

 

 
which yields m = 0.0306M. Dividing this by 0.30 M (the mass of the fats, which we are 
told is equal to 30% of the total mass), leads to a percentage 0.0306/0.30 = 10%. 
 
68. The heat needed is 

121(10%) (200,000metric tons) (1000kg / metric ton) (333kJ/kg) 6.7 10 J.
10FQ mL ⎛ ⎞= = = ×⎜ ⎟

⎝ ⎠
 

69. (a) Regarding part (a), it is important to recognize that the problem is asking for the 
total work done during the two-step “path”: a → b followed by b → c. During the latter 
part of this “path” there is no volume change and consequently no work done. Thus, the 
answer to part (b) is also the answer to part (a). Since ΔU for process c → a is –160 J, 
then Uc – Ua = 160 J. Therefore, using the First Law of Thermodynamics, we have 
 

160

40 0 200 .

c b b a

b c b c a b a b

a b

U U U U
Q W Q W

W
→ → → →

→

= − + −
= − + −

= − + −

 

 
Therefore, Wa → b→ c = Wa → b = 80 J. 
  
(b) Wa → b = 80 J. 
 
70. We use Q = cmΔT and m = ρV. The volume of water needed is 
 

( ) ( )
( ) ( ) ( )

6
3

3 3

1.00 10 kcal/day 5days
35.7 m .

1.00 10 kg/m 1.00kcal/kg 50.0 C 22.0 C
m QV

C T
×

= = = =
Δ × ° − °ρ ρ

 

 
71. The graph shows that the absolute value of the temperature change is  | ΔT | = 25 °C.  
Since a watt is a joule per second, we reason that the energy removed is 
 

|Q| = (2.81 J/s)(20 min)(60 s/min) = 3372 J . 
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Thus, with m = 0.30 kg, the absolute value of Eq. 18-14 leads to 

 

c  =  
|Q|

m |ΔT|  = 4.5×102 J/kg K⋅  . 

 
72. We use Pcond = kA(TH – TC)/L. The temperature TH at a depth of 35.0 km is 
 

( ) ( )3 2 3
cond

54.0 10 W/m 35.0 10 m
10.0 C 766 C.

2.50W/m KH C
P LT T

kA

−× ×
= + = + ° = °

⋅
 

 
73. Its initial volume is 53 = 125 cm3, and using Table 18-2, Eq. 18-10, and Eq. 18-11, we 
find 

3 6 3(125m ) (3 23 10 / C ) (50.0 C ) 0.432cm .V −Δ = × × ° ° =  
 
74. As is shown Sample Problem — “Hot slug in water, coming to equilibrium,” we can 
express the final temperature in the following way: 
 

Tf   =   
mAcATA + mBcBTB

mAcA + mBcB
  =  

cATA + cBTB
cA + cB

  

 
where the last equality is made possible by the fact that mA = mB .  Thus, in a graph of Tf  
versus TA , the “slope” must be cA /(cA + cB), and the “y intercept” is cB /(cA + cB)TB.  From 
the observation that the “slope” is equal to 2/5 we can determine, then, not only the ratio 
of the heat capacities but also the coefficient of TB in the “y intercept”; that is, 
 

cB /(cA + cB)TB  = (1 – “slope”)TB . 
 

(a) We observe that the “y intercept” is 150 K, so  
 

TB = 150/(1 – “slope”) = 150/(3/5) 
 
which yields TB = 2.5×102 K. 
 
(b) As noted already, cA /(cA + cB) = 25 , so 5 cA  = 2cA + 2cB , which leads to cB /cA = 32 =1.5. 
 
75. We note that there is no work done in process c → b, since there is no change of 
volume. We also note that the magnitude of work done in process b → c is given, but not 
its sign (which we identify as negative as a result of the discussion in Section 18-8). The 
total (or net) heat transfer is Qnet = [(–40) + (–130) + (+400)] J = 230 J. By the First Law 
of Thermodynamics (or, equivalently, conservation of energy), we have 
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( )

net net

230J

0 80 J .
a c c b b a

a c

Q W
W W W

W
→ → →

→

=
= + +

= + + −

 

Therefore, Wa → c = 3.1×102 J. 
 
76. From the law of cosines, with φ = 59.95º, we have 
 

L 2
Invar  = L 2

alum  + L 2
steel   –  2LalumLsteel cos φ 

 
Plugging in L = L0 (1 + αΔT), dividing by L0 (which is the same for all sides) and 
ignoring terms of order (ΔT)2 or higher, we obtain 
 

1 + 2αInvarΔT  =  2 + 2 (αalum + αsteel) ΔT  –  2 (1 + (αalum + αsteel) ΔT) cos φ  . 
 

This is rearranged to yield 

ΔT  =  
cos φ - ½

(αalum + αsteel) (1 - cos φ) - αInvar
  = 46 C≈ ° , 

 
so that the final temperature is T = 20.0º + ΔT = 66º C.  Essentially the same argument, 
but arguably more elegant, can be made in terms of the differential of the above cosine 
law expression. 
 
77. This is similar to Sample Problem — “Heat to change temperature and state.”  An 
important difference with part (b) of that sample problem is that, in this case, the final 
state of the H2O is all liquid at Tf > 0.  As discussed in part (a) of that sample problem, 
there are three steps to the total process: 
 
    Q  = m [cice(0 C° – (–150 C°)) + LF  + cliquid( Tf  – 0 C°)] 
Thus, 

Tf  =  Q/m − (cice(150°) + LF )
cliquid

  = 79.5°C . 

 
78. (a) Using Eq. 18-32, we find the rate of energy conducted upward to be 
 

 cond
5.0 C(0.400 W/m C) (16.7 ) W.
0.12 m

H CT TQP kA A A
t L

− °
= = = ⋅° =  

 
Recall that a change in Celsius temperature is numerically equivalent to a change on the 
Kelvin scale. 
 
(b) The heat of fusion in this process is ,FQ L m=  where 53.33 10  J/kg.FL = ×  
Differentiating the expression with respect to t and equating the result with condP , we have 
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cond F
dQ dmP L
dt dt

= = . 

Thus, the rate of mass converted from liquid to ice is 
 

5cond
5

16.7  W (5.02 10 ) kg/s
3.33 10  J/kgF

Pdm A A
dt L

−= = = ×
×

. 

 
(c) Since m V Ahρ ρ= = , differentiating both sides of the expression gives 
 

 ( )dm d dhAh A
dt dt dt

ρ ρ= = . 

 
Thus, the rate of change of the icicle length is  
 

5 2
8

3

1 5.02 10 kg/m s 5.02 10 m/s
1000 kg/m

dh dm
dt A dtρ

−
−× ⋅

= = = ×  

 
79. Let iV  and fV be the initial and final volumes, respectively. With 2p aV= , the work 
done by the gas is 

( )2 3 31
3

f f

i i

V V

f iV V
W pdV aV dV a V V= = = −∫ ∫ . 

 
With 810 N/ma = , 31.0 miV =  and 32.0 mfV = , we obtain 
 

( ) ( )3 3 8 3 3 3 31 1 10 N/m (2.0 m ) (1.0 m ) 23 J
3 3f iW a V V ⎡ ⎤= − = − =⎣ ⎦ . 

 
Note: In this problem, the initial and final pressures are 
 

2 8 3 2 2

2 8 3 2 2

(10 N/m )(1.0 m ) 10 N/m 10 Pa

(10 N/m )(2.0 m ) 40 N/m 40 Pa.
i i

f f

p aV

p aV

= = = =

= = = =
 

 
In this case, since 2p V∼ , the work done would be proportional to 3V  after volume 
integration.  
 
80. We use Q = –λFmice = W + ΔEint. In this case ΔEint = 0. Since ΔT = 0 for the ideal gas, 
then the work done on the gas is 
 

(333J/g)(100g) 33.3kJ.F iW W m′ = − = λ = =  
 
81. The work (the “area under the curve”) for process 1 is 4piVi, so that  
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Ub – Ua = Q1 – W1 = 6piVi 
 
by the First Law of Thermodynamics. 
 
(a) Path 2 involves more work than path 1 (note the triangle in the figure of area 
1
2 (4Vi)(pi/2) = piVi). With W2 = 4piVi + piVi = 5piVi, we obtain 
 

2 2 5 6 11 .b a i i i i i iQ W U U pV pV pV= + − = + =  
 
(b) Path 3 starts at a and ends at b so that ΔU = Ub – Ua = 6piVi. 
 
82. (a) We denote TH = 100°C, TC = 0°C, the temperature of the copper–aluminum 
junction by T1. and that of the aluminum-brass junction by T2. Then, 
 

cond 1 1 2 2( ) ( ) ( ).c a b
H c

k A k A k AP T T T T T T
L L L

= − = − = −  

 
We solve for T1 and T2 to obtain 
 

1
0.00 C 100 C100 C 84.3 C

1 ( ) / 1 401(235 109) /[(235)(109)]
C H

H
c a b a b

T TT T
k k k k k

− ° − °
= + = ° + = °

+ + + +
 

 
(b) and 

2
100 C 0.00 C0.00 C

1 ( ) / 1 109(235 401) /[(235)(401)]
57.6 C.

H C
c

b c a c a

T TT T
k k k k k

− ° − °
= + = ° +

+ + + +
= °

 

 
83. The initial volume of the disk (thought of as a short cylinder) is 2

0V r Lπ=  where L = 
0.50 cm is its thickness and r = 8.0 cm is its radius. After heating, the volume becomes  

2 2 2( ) ( ) 2 ...V r r L L r L r L rL rπ π π π= + Δ + Δ = + Δ + Δ +  
 
where we ignore higher-order terms. Thus, the change in volume of the disk is  
 

2
0 2V V V r L rL rπ πΔ = − ≈ Δ + Δ  

  
With L L TαΔ = Δ  and r r TαΔ = Δ , the above expression becomes 
 

2 2 22 3V r L T r L T r L Tπ α π α π αΔ = Δ + Δ = Δ . 
 
Substituting the values given (α = 3.2 ×10−6/C° from Table 18-2), we obtain 
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2 2 6

8 3

3 3 (0.080 m) (0.0050 m)(3.2 10 / C)(60 C 10 C)
4.83 10 m

V r L Tπ α π −

−

Δ = Δ = × ° ° − °

= ×
 

 
84. (a) The rate of heat flow is 
 

( ) ( ) ( ) ( )2
2

cond 2

0.040W/m K 1.8m 33 C 1.0 C
2.3 10 J/s.

1.0 10 m
H CkA T T

P
L −

⋅ ° − °−
= = = ×

×
 

 
(b) The new rate of heat flow is 
 

( ) 3cond
cond

0.60W/m K (230J/s)
3.5 10 J/s,

0.040W/m K
k PP

k
⋅′

′ = = = ×
⋅

 

 
which is about 15 times as fast as the original heat flow. 
 
85. Since the system remains thermally insulated, the total energy remains unchanged. 
The energy released by the aluminum lump raises the water temperature.  
 
Let Tf be the final temperature of the aluminum lump–water system. The energy 
transferred from the aluminum is ,( )Al Al Al i Al fQ m c T T= − . Similarly, the energy 
transferred as heat into water is water water water , water( )f iQ m c T T= − . Equating AlQ  with waterQ  
allows us to solve for Tf.  So, with  
 

, water water , water( ) ( )Al Al i Al f f im c T T m c T T− = − , 
 
we find the final equilibrium temperature to be  
 

, water water ,water

water water

(2.50 kg)(900J / kg K)(92 C) (8.00 kg)(4186.8J/kg K)(5.0 C)   
(2.50 kg)(900 J / kg K) (8.00 kg)(4186.8J/kg K)

   10.5 C.

Al Al i Al i
f

Al Al

m c T m c T
T

m c m c
+

=
+

⋅ ° + ⋅ °
=

⋅ + ⋅
= °

 

 
Note: No phase change is involved in this problem, so the thermal energy transferred 
from the aluminum can only change the water temperature. 
 
86. If the window is L1 high and L2 wide at the lower temperature and L1 + ΔL1 high and 
L2 + ΔL2 wide at the higher temperature, then its area changes from A1 = L1L2 to 
 

( ) ( )2 1 1 2 2 1 2 1 2 2 1 A L L L L L L L L L L= + Δ + Δ ≈ + Δ + Δ  
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where the term ΔL1 ΔL2 has been omitted because it is much smaller than the other terms, 
if the changes in the lengths are small. Consequently, the change in area is 
 

2 1 1 2 2 1 .A A A L L L LΔ = − = Δ + Δ  
  
If ΔT is the change in temperature then ΔL1 = αL1 ΔT and ΔL2 = αL2 ΔT, where α is the 
coefficient of linear expansion. Thus 
 

( )
1 2 1 2 1 2

6

2

( ) 2

2 9 10 / C (30cm) (20cm) (30 C)

0.32cm .

A L L L L T L L T
−

Δ = + Δ = Δ

= × ° °

=

α α

 

 
87. For a cylinder of height h, the surface area is Ac = 2πrh, and the area of a sphere is Ao 
= 4πR2. The net radiative heat transfer is given by Eq. 18-40. 
 
(a) We estimate the surface area A of the body as that of a cylinder of height 1.8 m and 
radius r = 0.15 m plus that of a sphere of radius R = 0.10 m. Thus, we have A ≈ Ac + Ao = 
1.8 m2. The emissivity ε = 0.80 is given in the problem, and the Stefan-Boltzmann 
constant is found in Section 18-11: σ = 5.67 × 10–8 W/m2·K4. The “environment” 
temperature is Tenv = 303 K, and the skin temperature is T = 5

9 (102 – 32) + 273 = 312 K. 
Therefore, 
 

( )4 4
net env 86 W.P A T Tσε= − = −  

 
The corresponding sign convention is discussed in the textbook immediately after Eq. 18-
40. We conclude that heat is being lost by the body at a rate of roughly 90 W. 
 
(b) Half the body surface area is roughly A = 1.8/2 = 0.9 m2. Now, with Tenv = 248 K, we 
find  

( )4 4 2
net env| | | | 2.3 10 W.P A T Tσε= − ≈ ×  

 
(c) Finally, with Tenv = 193 K (and still with A = 0.9 m2) we obtain |Pnet| = 3.3×102 W. 
 
88. We take absolute values of Eq. 18-9 and Eq. 12-25: 
 

| | | |  and .F LL L T E
A L

Δ
Δ = Δ =α  

 
The ultimate strength for steel is (F/A)rupture = Su = 400 × 106 N/m2 from Table 12-1. 
Combining the above equations (eliminating the ratio ΔL/L), we find the rod will rupture 
if the temperature change exceeds 
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( ) ( )
6 2

9 2 6

400 10 N/m| | 182 C.
200 10 N/m 11 10 / C

uST
Eα −

×
Δ = = = °

× × °
 

 
Since we are dealing with a temperature decrease, then, the temperature at which the rod 
will rupture is T = 25.0°C – 182°C = –157°C.  
 
89. (a) Let the number of weight lift repetitions be N. Then Nmgh = Q, or (using Eq. 18-
12 and the discussion preceding it) 
 

( )( )
( ) ( ) ( )

4
2

3500Cal 4186J/Cal
1.87 10 .

80.0kg 9.80m/s 1.00m
QN

mgh
= = ≈ ×  

(b) The time required is 

( ) ( ) 1.00h18700 2.00s 10.4 h.
3600s

t
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

 
90. For isotropic materials, the coefficient of linear expansion α is related to that for 
volume expansion by 1

3=α β  (Eq. 18-11). The radius of Earth may be found in the 
Appendix. With these assumptions, the radius of the Earth should have increased by 
approximately 

( ) ( )3 5 216.4 10 km 3.0 10 / K  (3000K 300K) 1.7 10 km.
3E ER R Tα −⎛ ⎞Δ = Δ = × × − = ×⎜ ⎟

⎝ ⎠
 

 
91. We assume the ice is at 0°C to begin with, so that the only heat needed for melting is 
that described by Eq. 18-16 (which requires information from Table 18-4).  Thus,  
 

Q = Lm = (333 J/g)(1.00 g) = 333 J . 
 
92. One method is to simply compute the change in length in each edge (x0 = 0.200 m 
and y0 = 0.300 m) from Eq. 18-9 (Δx = 3.6 × 10 –5 m and Δy = 5.4 × 10 –5 m) and then 
compute the area change: 
 

( ) ( ) 5 2
0 0 0 0 0 2.16 10 m .A A x x y y x y −− = + Δ + Δ − = ×  

 
Another (though related) method uses ΔA = 2αA0ΔT (valid for 1A AΔ ) which can be 
derived by taking the differential of A = xy and replacing d 's with Δ's. 
 
93. The problem asks for 0.5% of E, where E = Pt with t = 120 s and P given by Eq. 18-
38. Therefore, with A = 4πr2 = 5.0 × 10 –3 m2, we obtain 
 

( ) ( ) 40.005 0.005 8.6 J.Pt AT tσε= =  
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94. Let the initial water temperature be Twi and the initial thermometer temperature be Tti. 
Then, the heat absorbed by the thermometer is equal (in magnitude) to the heat lost by the 
water: 

( ) ( ).t t f ti w w wi fc m T T c m T T− = −  
 
We solve for the initial temperature of the water: 
 

( ) ( )( )( )
( )( )

0.0550kg 0.837 kJ/kg K 44.4 15.0 K
44.4 C 45.5 C.

4.18kJ / kg C 0.300kg
t t f ti

wi f
w w

c m T T
T T

c m
− ⋅ −

= + = + ° = °
⋅ °

 

 
95. The net work may be computed as a sum of works (for the individual processes 
involved) or as the “area” (with appropriate ± sign) inside the figure (representing the 
cycle). In this solution, we take the former approach (sum over the processes) and will 
need the following fact related to processes represented in pV diagrams: 
 

for a straight line: Work
2

i fp p
V

+
= Δ  

 
which is easily verified using the definition Eq. 18-25. The cycle represented by the 
“triangle” BC consists of three processes: 
 
• “tilted” straight line from (1.0 m3, 40 Pa) to (4.0 m3, 10 Pa), with 
 

( )3 340 Pa  10 PaWork 4.0m 1.0m 75J
2
+

= − =  

 
• horizontal line from (4.0 m3, 10 Pa) to (1.0 m3, 10 Pa), with 
 

( ) ( )3 3Work 10 Pa 1.0m 4.0m 30J= − = −  
 
• vertical line from (1.0 m3, 10 Pa) to (1.0 m3, 40 Pa), with 
 

( )3 310 Pa 40 PaWork 1.0m 1.0m 0
2
+

= − =  

 
(a) and (b) Thus, the total work during the BC cycle is (75 – 30) J = 45 J. During the BA 
cycle, the “tilted” part is the same as before, and the main difference is that the horizontal 
portion is at higher pressure, with Work = (40 Pa)(–3.0 m3) = –120 J. Therefore, the total 
work during the BA cycle is (75 – 120) J = – 45 J. 
 



797 

 
 

Chapter 19 
 
 
1. Each atom has a mass of m = M/NA, where M is the molar mass and NA is the 
Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.9 × 10–3 kg/mol. 
Therefore, 7.50 × 1024 arsenic atoms have a total mass of  
 

(7.50 × 1024) (74.9 × 10–3 kg/mol)/(6.02 × 1023 mol–1) = 0.933 kg. 
 
2. (a) Equation 19-3 yields n = Msam/M = 2.5/197 = 0.0127 mol. 
 
(b) The number of atoms is found from Eq. 19-2:  
 

N = nNA = (0.0127)(6.02 × 1023) = 7.64 × 1021. 
 
3. In solving the ideal-gas law equation pV = nRT for n, we first convert the temperature 
to the Kelvin scale: (40.0 273.15) K 313.15 KiT = + = , and the volume to SI units: 

3 3 31000 cm 10 miV −= = .  
 
(a) The number of moles of oxygen present is 
 

( )( )
( )( )

5 3 3
2

1.01 10 Pa 1.000 10 m
3.88 10 mol.

8.31J/mol K 313.15K
i

i

pVn
RT

−
−

× ×
= = = ×

⋅
 

 
(b) Similarly, the ideal gas law pV = nRT leads to 
 

( )( )
( )( )

5 3 3

2

1.06 10 Pa 1.500 10 m
493K

3.88 10 mol 8.31J/mol K
f

f

pV
T

nR

−

−

× ×
= = =

× ⋅
, 

 
which may be expressed in degrees Celsius as 220°C. Note that the final temperature can 

also be calculated by noting that f fi i

i f

p VpV
T T

= , or  

 
5 3

5 3

1.06 10 Pa 1500 cm (313.15 K) 493 K
1.01 10 Pa 1000 cm

f f
f i

i i

p V
T T

p V
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞×

= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
. 

 
4. (a) With T = 283 K, we obtain 
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( )( )
( )( )

3 3100 10 Pa 2.50m
106mol.

8.31J/mol K 283K
pVn
RT

×
= = =

⋅
 

 
(b) We can use the answer to part (a) with the new values of pressure and temperature, 
and solve the ideal gas law for the new volume, or we could set up the gas law in ratio 
form as: 

f f f

i i i

p V T
pV T

=  

 
(where ni = nf and thus cancels out), which yields a final volume of  
 

( )3 3100kPa 303K2.50m 0.892 m
300kPa 283K

fi
f i

f i

TpV V
p T

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

. 

 
5. With V = 1.0 × 10–6 m3, p = 1.01 × 10–13 Pa, and T = 293 K, the ideal gas law gives 
 

( ) ( )
( )( )

13 6 3
23

1.01 10  Pa 1.0 10  m
4.1 10 mole.

8.31 J/mol K 293 K
pVn
RT

− −
−

× ×
= = = ×

⋅
 

 
Consequently, Eq. 19-2 yields N = nNA = 25 molecules. We can express this as a ratio 
(with V now written as 1 cm3) N/V = 25 molecules/cm3. 
 
6. The initial and final temperatures are 5.00 C 278 KiT = ° =  and 75.0 C 348 KfT = ° = , 
respectively. Using the ideal gas law with i fV V= , we find the final pressure to be  
 

( )348K 1.00 atm 1.25 atm
278K

f f f f
f i

i i i i

p V T T
p p

pV T T
⎛ ⎞

= ⇒ = = =⎜ ⎟
⎝ ⎠

. 

 
7. (a)  Equation 19-45 (which gives 0) implies Q = W.  Then Eq. 19-14, with T = (273 + 
30.0)K leads to gives Q = –3.14 × 103 J, or | Q | = 3.14 × 103 J. 
 
(b) That negative sign in the result of part (a) implies the transfer of heat is from the gas. 
 
8. (a) We solve the ideal gas law pV = nRT for n: 
 

( )( )
( )( )

6 3
8

100 Pa 1.0 10 m
5.47 10 mol.

8.31J/mol K 220 K
pVn
RT

−
−

×
= = = ×

⋅
 

 
(b) Using Eq. 19-2, the number of molecules N is 
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( ) ( )6 23 1 16
A 5.47 10 mol 6.02 10 mol 3.29 10 molecules.N nN − −= = × × = ×  

 
9. Since (standard) air pressure is 101 kPa, then the initial (absolute) pressure of the air is 
pi = 266 kPa. Setting up the gas law in ratio form (where ni = nf and thus cancels out), we 
have 

f f f

i i i

p V T
pV T

=  

which yields  

( )
2 3

2 3

1.64 10 m 300K266kPa 287 kPa
1.67 10 m 273K

fi
f i

f i

TVp p
V T

−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞×
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ × ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

. 

 
Expressed as a gauge pressure, we subtract 101 kPa and obtain 186 kPa. 
 
10. The pressure p1 due to the first gas is p1 = n1RT/V, and the pressure p2 due to the 
second gas is p2 = n2RT/V. So the total pressure on the container wall is 
 

( )1 2
1 2 1 2 .n RT n RT RTp p p n n

V V V
= + = + = +  

 
The fraction of P due to the second gas is then 
 

( )( )
2 2 2

1 2 1 2

/ 0.5 0.2.
/ 2 0.5

p n RT V n
p n n RT V n n

= = = =
+ + +

 

 
11. Suppose the gas expands from volume Vi to volume Vf during the isothermal portion 
of the process. The work it does is 
 

ln ,
f f

i i

V V f

V V
i

VdVW p dV nRT nRT
V V

= = =∫ ∫  

 
where the ideal gas law pV = nRT was used to replace p with nRT/V. Now Vi = nRT/pi 
and Vf = nRT/pf, so Vf/Vi = pi/pf. Also replace nRT with piVi to obtain 
 

ln .i
i i

f

pW pV
p

=  

 
Since the initial gauge pressure is 1.03 × 105 Pa,  
 

pi = 1.03 × 105 Pa + 1.013 × 105 Pa = 2.04 × 105 Pa. 
 
The final pressure is atmospheric pressure:  pf = 1.013 × 105 Pa. Thus 
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( )( )
5

5 3 4
5

2.04 10 Pa2.04 10 Pa 0.14 m ln 2.00 10 J.
1.013 10 Pa

W
⎛ ⎞×

= × = ×⎜ ⎟×⎝ ⎠
 

 
During the constant pressure portion of the process the work done by the gas is W = 
pf(Vi – Vf). The gas starts in a state with pressure pf, so this is the pressure throughout this 
portion of the process. We also note that the volume decreases from Vf to Vi. Now Vf = 
piVi/pf, so 
 

( ) ( )( )5 5 3

4

1.013 10 Pa 2.04 10 Pa 0.14m

1.44 10 J.

i i
f i f i i

f

pVW p V p p V
p

⎛ ⎞⎟⎜ ⎟⎜= − = − = × − ×⎟⎜ ⎟⎟⎜⎝ ⎠

= − ×

 

 
The total work done by the gas over the entire process is  
 

W = 2.00 × 104 J – 1.44 × 104 J = 5.60 × 103 J. 
 
12. (a) At the surface, the air volume is 
  

2 3 3
1 (1.00 m) (4.00 m) 12.57 m 12.6 mV Ah π= = = ≈ . 

 
(b) The temperature and pressure of the air inside the submarine at the surface are 

1 20 C 293 KT = ° =  and 1 0 1.00 atmp p= = . On the other hand, at depth 80 m,h =  we 
have 2 30 C 243 KT = − ° =  and 

3 2
2 0 5

1.00 atm1.00 atm (1024 kg/m )(9.80 m/s )(80.0 m)
1.01 10  Pa

1.00 atm 7.95 atm 8.95 atm .

p p ghρ= + = +
×

= + =
 

 
Therefore, using the ideal gas law, pV NkT= , the air volume at this depth would be 
 

( )3 31 1 1 1 2
2 1

2 2 2 2 1

1.00 atm 243K 12.57 m 1.16 m
8.95 atm 293K

p V T p TV V
p V T p T

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= ⇒ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

. 

 
(c) The decrease in volume is 3

1 2 11.44 mV V VΔ = − = . Using Eq. 19-5, the amount of air 
this volume corresponds to is  
 

( )( )
( ) ( )

5 3
3

(8.95 atm) 1.01 10 Pa/atm 11.44 m
5.10 10 mol

8.31 J/mol K 243K
p Vn
RT

×Δ
= = = ×

⋅
. 

 
Thus, in order for the submarine to maintain the original air volume in the chamber, 

35.10 10 mol×  of air must be released. 
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13. (a) At point a, we know enough information to compute n: 
 

( )( )
( ) ( )

32500 Pa 1.0 m
1.5mol.

8.31 J/mol K 200 K
pVn
RT

= = =
⋅

 

 
(b) We can use the answer to part (a) with the new values of pressure and volume, and 
solve the ideal gas law for the new temperature, or we could set up the gas law in terms 
of ratios (note: na = nb and cancels out): 
 

( )
3

3

7.5kPa 3.0 m200 K
2.5kPa 1.0 m

b b b
b

a a a

p V T T
p V T

⎛ ⎞⎛ ⎞
= ⇒ = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
which yields an absolute temperature at b of Tb = 1.8×103 K. 
 
(c) As in the previous part, we choose to approach this using the gas law in ratio form: 
 

( )
3

3

2.5kPa 3.0m200 K
2.5kPa 1.0 m

c c c
c

a a a

p V T T
p V T

⎛ ⎞⎛ ⎞
= ⇒ = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
which yields an absolute temperature at c of Tc = 6.0×102 K. 
 
(d) The net energy added to the gas (as heat) is equal to the net work that is done as it 
progresses through the cycle (represented as a right triangle in the pV diagram shown in 
Fig. 19-20). This, in turn, is related to ± “area” inside that triangle (with 

1
2area = (base)(height) ), where we choose the plus sign because the volume change at 

the largest pressure is an increase. Thus, 
 

( ) ( )3 3 3
net net

1 2.0m 5.0 10 Pa 5.0 10 J.
2

Q W= = × = ×  

 
14. Since the pressure is constant the work is given by W = p(V2 – V1). The initial volume 
is 2

1 1 1( )V AT BT p= − , where T1 = 315 K is the initial temperature, A =24.9 J/K and B = 
0.00662 J/K2. The final volume is 2

2 2 2( )V AT BT p= − , where T2 = 315 K. Thus  
 

2 2
2 1 2 1

2 2 2

( ) ( )

(24.9 J/K)(325 K 315 K) (0.00662 J/K )[(325 K) (315 K) ] 207 J.

W A T T B T T= − − −

= − − − =
 

 
15. Using Eq. 19-14, we note that since it is an isothermal process (involving an ideal gas) 
then Q = W = nRT ln(Vf /Vi) applies at any point on the graph.  An easy one to read is Q 
= 1000 J and Vf  = 0.30 m3, and we can also infer from the graph that Vi = 0.20 m3.  We 
are told that n = 0.825 mol, so the above relation immediately yields T = 360 K. 
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16. We assume that the pressure of the air in the bubble is essentially the same as the 
pressure in the surrounding water. If d is the depth of the lake and ρ is the density of 
water, then the pressure at the bottom of the lake is p1 = p0 + ρgd, where p0 is 
atmospheric pressure. Since p1V1 = nRT1, the number of moles of gas in the bubble is  
 

n = p1V1/RT1 = (p0 + ρgd)V1/RT1, 
 
where V1 is the volume of the bubble at the bottom of the lake and T1 is the temperature 
there. At the surface of the lake the pressure is p0 and the volume of the bubble is V2 = 
nRT2/p0. We substitute for n to obtain 
 

( )( )( ) ( )

02
2 1

1 0

5 3 3 2
3

5

2 3

1.013 10 Pa + 0.998 10 kg/m 9.8m/s 40m293K 20cm
277 K 1.013 10 Pa

1.0 10 cm .

p gdTV V
T p

ρ+
=

⎛ ⎞× ×⎛ ⎞ ⎜ ⎟= ⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
= ×

 

 
17. When the valve is closed the number of moles of the gas in container A is nA = 
pAVA/RTA and that in container B is nB = 4pBVA/RTB. The total number of moles in both 
containers is then 

4 const.A A B
A B

A B

V p pn n n
R T T

⎛ ⎞
= + = + =⎜ ⎟

⎝ ⎠
 

 
After the valve is opened, the pressure in container A is p′A = Rn′ATA/VA and that in 
container B is p′B = Rn′BTB/4VA. Equating p′A and p′B, we obtain Rn′ATA/VA = Rn′BTB/4VA, 
or n′B = (4TA/TB)n′A. Thus, 
 

4 41 .A A A B
A B A A B

B A B

T V p pn n n n n n
T R T T

⎛ ⎞ ⎛ ⎞
′ ′ ′= + = + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
We solve the above equation for n′A: 
 

( )
( )

4
.

1 4
A A B B

A
A B

p T p TVn
R T T

+
′ =

+
 

 
Substituting this expression for n′A into p′VA = n′ARTA, we obtain the final pressure: 
 

54 / 2.0 10 Pa.
1 4 /

A A A B A B

A A B

n RT p p T Tp
V T T
′ +′ = = = ×

+
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18. First we rewrite Eq. 19-22 using Eq. 19-4 and Eq. 19-7: 
 

( )
( )

A
rms

A

33 3 .
kN TRT kTv

M mN M
= = =  

 
The mass of the electron is given in the problem, and k = 1.38 × 10–23 J/K is given in the 
textbook. With T = 2.00 × 106 K, the above expression gives vrms = 9.53 × 106 m/s. The 
pressure value given in the problem is not used in the solution. 
 
19. Table 19-1 gives M = 28.0 g/mol for nitrogen. This value can be used in Eq. 19-22 
with T in Kelvins to obtain the results. A variation on this approach is to set up ratios, 
using the fact that Table 19-1 also gives the rms speed for nitrogen gas at 300 K (the 
value is 517 m/s). Here we illustrate the latter approach, using v for vrms: 
 

22 2

1 11

3 /
.

3 /
RT Mv T

v TRT M
= =  

 
(a) With T2 = (20.0 + 273.15) K ≈ 293 K, we obtain 
 

( )2
293K517 m/s 511m/s.
300 K

v = =  

 
(b) In this case, we set 1

3 22v v=  and solve 3 2 3 2/ /v v T T=  for T3: 
 

( )
2 2

3
3 2

2

1293K 73.0K
2

vT T
v

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
which we write as 73.0 – 273 = – 200°C. 
 
(c) Now we have v4 = 2v2 and obtain 
 

( )( )
2

34
4 2

2

293K 4 1.17 10 KvT T
v

⎛ ⎞
= = = ×⎜ ⎟

⎝ ⎠
 

 
which is equivalent to 899°C. 
 
20. Appendix F gives M = 4.00 × 10–3 kg/mol (Table 19-1 gives this to fewer significant 
figures). Using Eq. 19-22, we obtain 
 



  CHAPTER 19 804 

( ) ( ) 3
rms 3

3 8.31 J/mol K 1000K3 2.50 10 m/s.
4.00 10 kg/mol

RTv
M −

⋅
= = = ×

×
 

 
21. According to kinetic theory, the rms speed is 
 

rms
3RTv
M

=  

 
where T is the temperature and M is the molar mass. See Eq. 19-34. According to Table 
19-1, the molar mass of molecular hydrogen is 2.02 g/mol = 2.02 × 10–3 kg/mol, so 
 

( )( ) 2
rms 3

3 8.31J/mol K 2.7 K
1.8 10 m/s.

2.02 10 kg/mol
v −

⋅
= = ×

×
 

 
Note: The corresponding average speed and most probable speed are 
 

( )( ) 2
avg 3

8 8.31J/mol K 2.7 K8 1.7 10 m/s
(2.02 10 kg/mol)

RTv
M −

⋅
= = = ×

π π ×
 

and 
( )( ) 2

3

2 8.31J/mol K 2.7 K2 1.5 10 m/s
2.02 10 kg/molp

RTv
M −

⋅
= = = ×

×
, 

respectively. 
 
22. The molar mass of argon is 39.95 g/mol. Eq. 19-22 gives 
 

( )( )
rms 3

3 8.31J/mol K 313K3 442m/s.
39.95 10 kg/mol

RTv
M −

⋅
= = =

×
 

 
23. In the reflection process, only the normal component of the momentum changes, so 
for one molecule the change in momentum is 2mv cosθ, where m is the mass of the 
molecule, v is its speed, and θ is the angle between its velocity and the normal to the wall. 
If N molecules collide with the wall, then the change in their total momentum is 2Nmv 
cos θ, and if the total time taken for the collisions is Δt, then the average rate of change of 
the total momentum is 2(N/Δt)mv cosθ. This is the average force exerted by the N 
molecules on the wall, and the pressure is the average force per unit area: 
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( )( )( )23 1 27 3
4 2

3

2  cos

2 1.0 10 s 3.3 10 kg 1.0 10 m/s cos55
2.0 10 m

1.9 10 Pa.

Np mv
A t

θ

− −
−

⎛ ⎞= ⎜ ⎟Δ⎝ ⎠
⎛ ⎞

= × × × °⎜ ⎟×⎝ ⎠
= ×

 

 
We note that the value given for the mass was converted to kg and the value given for the 
area was converted to m2. 
 
24. We can express the ideal gas law in terms of density using n = Msam/M: 
 

sam .M RT pMpV
M RT

ρ= ⇒ =  

 
We can also use this to write the rms speed formula in terms of density: 
 

rms
3 3( / ) 3 .RT pM pv
M M

ρ
ρ

= = =  

 
(a) We convert to SI units: ρ = 1.24 × 10–2 kg/m3 and p = 1.01 × 103 Pa. The rms speed is 

3(1010) / 0.0124 494 m/s.=  
 
(b) We find M from ρ = pM/RT with T = 273 K. 
 

( )3

3

(0.0124kg/m ) 8.31J/mol K (273K)
0.0279 kg/mol 27.9 g/mol.

1.01 10 Pa
RTM
p

ρ ⋅
= = = =

×
 

 
(c) From Table 19.1, we identify the gas to be N2.  
 

25. (a) Equation 19-24 gives ( )23 21
avg

3 1.38 10 J/K (273K) 5.65 10 J .
2

K − −= × = ×  

 
(b) For 373 K,T =  the average translational kinetic energy is 21

avg 7.72 10 J .K −= ×  
  
(c) The unit mole may be thought of as a (large) collection: 6.02 × 1023 molecules of 
ideal gas, in this case. Each molecule has energy specified in part (a), so the large 
collection has a total kinetic energy equal to 
 

23 21 3
mole A avg (6.02 10 )(5.65 10 J) 3.40 10 J.K N K −= = × × = ×  

 
(d) Similarly, the result from part (b) leads to 
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23 21 3 

mole (6.02 10 )(7.72 10 J) 4.65 10 J.K −= × × = ×  
 
26. The average translational kinetic energy is given by 3

avg 2K kT= , where k is the 
Boltzmann constant (1.38 × 10–23 J/K) and T is the temperature on the Kelvin scale. Thus 
 

23 20
avg

3 (1.38 10 J/K) (1600K) = 3.31 10 J .
2

K − −= × ×  

 
27. (a) We use ε = LV/N, where LV is the heat of vaporization and N is the number of 
molecules per gram. The molar mass of atomic hydrogen is 1 g/mol and the molar mass 
of atomic oxygen is 16 g/mol, so the molar mass of H2O is (1.0 + 1.0 + 16) = 18 g/mol. 
There are NA = 6.02 × 1023 molecules in a mole, so the number of molecules in a gram of 
water is (6.02 × 1023 mol–1)/(18 g/mol) = 3.34 × 1022 molecules/g. Thus  
 

ε = (539 cal/g)/(3.34 × 1022/g) = 1.61 × 10–20 cal = 6.76 × 10–20 J. 
 
(b) The average translational kinetic energy is 
 

23 21
avg

3 3 (1.38 10 J/K)[(32.0+ 273.15) K] = 6.32 10 J.
2 2

K kT − −= = × ×  

 
The ratio ε/Kavg is (6.76 × 10–20 J)/(6.32 × 10–21 J) = 10.7. 
 
28. Using v = f λ with v = 331 m/s (see Table 17-1) with Eq. 19-2 and Eq. 19-25 leads to 
 

( ) ( )

10 2 A

2

3 3 5
7 7

9

(331m/s) 2 (3.0 10 m)
1

2 ( / )

m m 1.01 10 Pa8.0 10 8.0 10
s mol s mol 8.31 J/mol K 273.15K

3.5 10 Hz

nNvf
V

d N V

n
V

− ⎛ ⎞= = π × ⎜ ⎟
⎛ ⎞ ⎝ ⎠
⎜ ⎟π⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞×⎛ ⎞= × = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= ×

 

 
where we have used the ideal gas law and substituted n/V = p/RT. If we instead use v = 
343 m/s (the “default value” for speed of sound in air, used repeatedly in Ch. 17), then 
the answer is 3.7 × 109 Hz. 
 
29. (a) According to Eq. 19-25, the mean free path for molecules in a gas is given by 
 

2

1 ,
2 /d N V

λ =
π
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where d is the diameter of a molecule and N is the number of molecules in volume V. 
Substitute d = 2.0 × 10–10 m and N/V = 1 × 106 molecules/m3 to obtain 
 

12
10 2 6 3

1 6 10 m.
2 (2.0 10 m) (1 10 m )− −

λ = = ×
π × ×

 

 
(b) At this altitude most of the gas particles are in orbit around Earth and do not suffer 
randomizing collisions. The mean free path has little physical significance. 
 
30. We solve Eq. 19-25 for d: 
 

5 19 3

1 1
2 ( / ) (0.80 10 cm) 2 (2.7 10 / cm )

d
N V

= =
λπ × π ×

 

 
which yields d = 3.2 × 10–8 cm, or 0.32 nm. 
 
31. (a) We use the ideal gas law pV = nRT = NkT, where p is the pressure, V is the 
volume, T is the temperature, n is the number of moles, and N is the number of molecules. 
The substitutions N = nNA and k = R/NA were made. Since 1 cm of mercury = 1333 Pa, 
the pressure is p = (10–7)(1333 Pa) = 1.333 × 10–4 Pa. Thus, 
 

4
16 3 10 3

23

1.333 10 Pa 3.27 10 molecules/m 3.27 10 molecules/cm .
(1.38 10 J/K) (295K)

N p
V kT

−

−

×
= = = × = ×

×
 

(b) The molecular diameter is d = 2.00 × 10–10 m, so, according to Eq. 19-25, the mean 
free path is 

2 10 2 16 3

1 1 172 m.
2 / 2 (2.00 10 m) (3.27 10 m )d N V − −

λ = = =
π π × ×

 

 
32. (a) We set up a ratio using Eq. 19-25: 
 

( )( )
( )( )

2

2 2

22
NArAr

2
N ArN

1/ 2 /
.

1/ 2 /

dd N V
dd N V

π ⎛ ⎞λ
= = ⎜ ⎟λ π ⎝ ⎠

 

 
Therefore, we obtain 

2

2

6
NAr

6
N Ar

27.5 10  cm 1.7.
9.9 10  cm

d
d

−

−

λ ×
= = =

λ ×
 

 
(b) Using Eq. 19-2 and the ideal gas law, we substitute N/V = NAn/V = NAp/RT into Eq. 
19-25 and find 
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2
A

.
2
RT
d pN

λ =
π

 

 
Comparing (for the same species of molecule) at two different pressures and 
temperatures, this leads to  

2 2 1

1 1 2

.T p
T p

λ
λ

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
With λ1 = 9.9 × 10–6 cm, T1 = 293 K (the same as T2 in this part), p1 = 750 torr, and p2 = 
150 torr, we find λ2 = 5.0 × 10–5 cm. 
 
(c) The ratio set up in part (b), using the same values for quantities with subscript 1, leads 
to λ2 = 7.9 × 10–6 cm for T2 = 233 K and p2 = 750 torr. 
 

33. (a) The average speed is ,vv
N

∑
=  where the sum is over the speeds of the particles 

and N is the number of particles. Thus 
 

(2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0) km/s 6.5km/s.
10

v + + + + + + + + +
= =  

 

(b) The rms speed is given by 
2

rms  .
v

v
N

= ∑  Now 

 
2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

 [(2.0) (3.0) (4.0) (5.0) (6.0)

(7.0) (8.0) (9.0) (10.0) (11.0) ] km / s 505 km / s

v = + + + +

+ + + + + =

∑  

 
so 

2 2

rms
505 km / s 7.1 km/s.

10
v = =  

 
34. (a) The average speed is 
 

avg
[2(1.0) 4(2.0) 6(3.0) 8(4.0) 2(5.0)] cm/s 3.2cm/s.

2 4 6 8 2
i i

i

n vv
n

∑ + + + +
= = =

∑ + + + +
 

 

(b) From 2
rms /i i iv n v n= ∑ ∑  we get 

 
2 2 2 2 2

rms
2(1.0) 4(2.0) 6(3.0) 8(4.0) 2(5.0) cm/s 3.4cm/s.

2 4 6 8 2
v + + + +

= =
+ + + +

 



 

 

809

 
(c) There are eight particles at v = 4.0 cm/s, more than the number of particles at any 
other single speed. So 4.0 cm/s is the most probable speed. 
 
35. (a) The average speed is 
 

avg
1

1 1 [4(200 m/s) 2(500 m/s) 4(600 m/s)] 420 m/s.
10

N

i
i

v v
N =

= = + + =∑  

 
(b) The rms speed is 
 

2 2 2 2
rms

1

1 1 [4(200 m/s) 2(500 m/s) 4(600 m/s) ] 458 m/s
10

N

i
i

v v
N =

= = + + =∑  

 
(c) Yes, vrms > vavg. 
 
36. We divide Eq. 19-35 by Eq. 19-22: 
 

2 2

rms 11

2 2
33

P RT Mv T
v TRT M

= =  

 
which, for rms ,Pv v=   leads to 

2

2

1 rms

3 3
2 2

PT v
T v

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. 

 
37. (a) The distribution function gives the fraction of particles with speeds between v and 
v + dv, so its integral over all speeds is unity: ∫ P(v) dv = 1. Evaluate the integral by 
calculating the area under the curve in Fig. 19-23. The area of the triangular portion is 
half the product of the base and altitude, or 1

02 av . The area of the rectangular portion is 
the product of the sides, or av0. Thus,  
 

0 0 0
1 3( )
2 2

P v dv av av av= + =∫ , 

 
so 3

02 1av =  and av0 = 2/3 = 0.67. 
 
(b) The average speed is given by ( )avg .v vP v dv= ∫  For the triangular portion of the 
distribution P(v) = av/v0, and the contribution of this portion is 
 

0
2

2 3 0
0 00

0 0

2 ,
3 3 9

v ava av dv v v
v v

= = =∫  
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where 2/3v0 was substituted for a. P(v) = a in the rectangular portion, and the 
contribution of this portion is 
 

( )0

0

2 2 2 2
0 0 0 0

34 .
2 2

v

v

a aa v dv v v v v= − = =∫  

Therefore, 
avg

avg 0 0 0
0

2 1.22    1.22
9

v
v v v v

v
= + = ⇒ = . 

 
(c) The mean-square speed is given by ( )2 2

rms .v v P v dv= ∫  The contribution of the 

triangular section is 
0 3 4 2

0 00
0 0

1 .
4 6

va av dv v v
v v

= =∫  

 
The contribution of the rectangular portion is 
 

( )0

0

2 2 3 3 3 2
0 0 0 0

7 148 .
3 3 9

v

v

a aa v dv v v v v= − = =∫  

Thus, 
2 2 rms

rms 0 0 0
0

1 14 1.31   1.31 .
6 9

vv v v v
v

= + = ⇒ =  

 
(d) The number of particles with speeds between 1.5v0 and 2v0 is given by 0

0

2

1.5
( )

v

v
N P v dv∫ . 

The integral is easy to evaluate since P(v) = a throughout the range of integration. Thus 
the number of particles with speeds in the given range is  
 

Na(2.0v0 – 1.5v0) = 0.5N av0 = N/3, 
 
where 2/3v0 was substituted for a. In other words, the fraction of particles in this range is 
1/3 or 0.33. 
 
38. (a) From the graph we see that vp = 400 m/s.  Using the fact that M = 28 g/mol = 
0.028 kg/mol for nitrogen (N2 )  gas, Eq. 19-35 can then be used to determine the absolute 
temperature.  We obtain T = 12 Mvp

2/R = 2.7×102 K. 
 
(b) Comparing with Eq. 19-34, we conclude vrms = 3/2 vp = 4.9×102 m/s. 
 
39. The rms speed of molecules in a gas is given by 3rmsv RT M= , where T is the 
temperature and M is the molar mass of the gas. See Eq. 19-34. The speed required for 
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escape from Earth's gravitational pull is 2 ev gr= , where g is the acceleration due to 
gravity at Earth's surface and re (= 6.37 × 106 m) is the radius of Earth. To derive this 
expression, take the zero of gravitational potential energy to be at infinity. Then, the 
gravitational potential energy of a particle with mass m at Earth's surface is 
 

2
eeU GMm r mgr= − = − , 

 
where 2

eg GM r=  was used. If v is the speed of the particle, then its total energy is 
21

2eE mgr mv= − + . If the particle is just able to travel far away, its kinetic energy must 
tend toward zero as its distance from Earth becomes large without bound. This means E = 
0 and 2 ev gr= . We equate the expressions for the speeds to obtain 3 2 eRT M gr= . 
The solution for T is T = 2greM /3R.  
 
(a) The molar mass of hydrogen is 2.02 × 10–3 kg/mol, so for that gas 
 

( ) ( ) ( )
( )

2 6 3
4

2 9.8m s 6.37 10 m 2.02 10 kg mol
1.0 10 K.

3 8.31J mol K
T

−× ×
= = ×

⋅
 

 
(b) The molar mass of oxygen is 32.0 × 10–3 kg/mol, so for that gas 
 

( ) ( ) ( )
( )

2 6 3
52 9.8m s 6.37 10 m 32.0 10 kg mol

1.6 10 K.
3 8.31J mol K

T
−× ×

= = ×
⋅

 

 
(c) Now, T = 2gmrmM / 3R, where rm = 1.74 × 106 m is the radius of the Moon and gm = 
0.16g is the acceleration due to gravity at the Moon's surface. For hydrogen, the 
temperature is  
 

( ) ( ) ( ) ( )
( )

2 6 3
2

2 0.16 9.8m s 1.74 10 m 2.02 10 kg mol
4.4 10 K.

3 8.31J mol K
T

−× ×
= = ×

⋅
 

 
(d) For oxygen, the temperature is  
 

( ) ( ) ( ) ( )
( )

2 6 3
3

2 0.16 9.8m s 1.74 10 m 32.0 10 kg mol
7.0 10 K.

3 8.31J mol K
T

−× ×
= = ×

⋅
 

 
(e) The temperature high in Earth's atmosphere is great enough for a significant number 
of hydrogen atoms in the tail of the Maxwellian distribution to escape. As a result, the 
atmosphere is depleted of hydrogen.  
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(f) On the other hand, very few oxygen atoms escape. So there should be much oxygen 
high in Earth’s upper atmosphere. 
 
40. We divide Eq. 19-31 by Eq. 19-22: 
 

avg2 2 1

rms1 21

8 8
33

v RT M M
v MRT M

π
= =

π
 

 
which, for avg2 rms12 ,v v=  leads to 
 

2
avg21 1

2 2 rms1

3 3 4.7 .
8 2

vm M
m M v

⎛ ⎞π π
= = = =⎜ ⎟

⎝ ⎠
 

 
41. (a) The root-mean-square speed is given by rms 3v RT M= . See Eq. 19-34. The 
molar mass of hydrogen is 2.02 × 10–3 kg/mol, so 
 

( ) ( ) 3
rms 3

3 8.31J mol K 4000K
7.0 10 m s.

2.02 10 kg mol
v −

⋅
= = ×

×
 

 
(b) When the surfaces of the spheres that represent an H2 molecule and an Ar atom are 
touching, the distance between their centers is the sum of their radii:  
 

d =  r1 + r2 = 0.5 × 10–8 cm + 1.5 × 10–8cm = 2.0 × 10–8 cm. 
 
(c) The argon atoms are essentially at rest so in time t the hydrogen atom collides with all 
the argon atoms in a cylinder of radius d, and length vt, where v is its speed. That is, the 
number of collisions is πd2vtN/V, where N/V is the concentration of argon atoms. The 
number of collisions per unit time is 
 

( ) ( ) ( )
2 210 3 25 3 102.0 10 m 7.0 10 m s 4.0 10 m 3.5 10 collisions s.d vN
V

− −π
= π × × × = ×  

 
42. The internal energy is 
 

( )( )( ) 3
int

3 3 1.0mol 8.31 J/mol K 273K 3.4 10 J.
2 2

E nRT= = ⋅ = ×  

 
43. (a) From Table 19-3, 5

2VC R=  and 7
2pC R= . Thus, Eq. 19-46 yields 

 

( ) ( ) ( ) 373.00 8.31 40.0 3.49 10 J.
2pQ nC T ⎛ ⎞= Δ = = ×⎜ ⎟

⎝ ⎠
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(b) Equation 19-45 leads to 
 

( ) ( ) ( ) 3
int

53.00 8.31 40.0 2.49 10 J.
2VE nC T ⎛ ⎞Δ = Δ = = ×⎜ ⎟

⎝ ⎠
 

 
(c) From either W = Q – ΔEint or W = pΔT = nRΔT, we find W = 997 J. 
 
(d) Equation 19-24 is written in more convenient form (for this problem) in Eq. 19-38. 
Thus, the increase in kinetic energy is 
 

( ) 3
trans avg

3 1.49 10 J.
2

K NK n R T⎛ ⎞Δ = Δ = Δ ≈ ×⎜ ⎟
⎝ ⎠

 

 
Since int trans rotE K KΔ = Δ + Δ , the increase in rotational kinetic energy is 
 

3 3 3
rot int trans 2.49 10  J 1.49 10  J 1.00 10  JK E KΔ = Δ − Δ = × − × = × . 

 
Note that had there been no rotation, all the energy would have gone into the translational 
kinetic energy. 
 
44. Two formulas (other than the first law of thermodynamics) will be of use to us. It is 
straightforward to show, from Eq. 19-11, that for any process that is depicted as a 
straight line on the pV diagram, the work is 
 

straight 2
i fp p

W V
+⎛ ⎞

= Δ⎜ ⎟
⎝ ⎠

 

 
which includes, as special cases, W = pΔV for constant-pressure processes and W = 0 for 
constant-volume processes. Further, Eq. 19-44 with Eq. 19-51 gives 
 

int 2 2
f fE n RT pV⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
where we have used the ideal gas law in the last step. We emphasize that, in order to 
obtain work and energy in joules, pressure should be in pascals (N / m2) and volume 
should be in cubic meters. The degrees of freedom for a diatomic gas is f = 5. 
 
(a) The internal energy change is 
 

( ) ( )( ) ( )( )( )3 3 3 3
int int 

3

5 5 2.0 10 Pa 4.0 m 5.0 10 Pa 2.0 m
2 2
5.0 10 J.

c a c c a aE E p V p V− = − = × − ×

= − ×
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(b) The work done during the process represented by the diagonal path is 
 

( ) ( )( )3 3
diag =  3.5 10 Pa 2.0m

2
a c

c a
p pW V V+⎛ ⎞= − ×⎜ ⎟

⎝ ⎠
 

 
which yields Wdiag = 7.0×103 J. Consequently, the first law of thermodynamics gives 
 

3 3 3
diag int diag ( 5.0 10 7.0 10 ) J 2.0 10 J.Q E W= Δ + = − × + × = ×  

 
(c) The fact that ΔEint only depends on the initial and final states, and not on the details of 
the “path” between them, means we can write 3

int int int 5.0 10 Jc aE E EΔ = − = − ×  for the 
indirect path, too. In this case, the work done consists of that done during the constant 
pressure part (the horizontal line in the graph) plus that done during the constant volume 
part (the vertical line): 
 

( )( )3 3 4
indirect 5.0 10 Pa 2.0 m 0 1.0 10 J.W = × + = ×  

 
Now, the first law of thermodynamics leads to 
 

3 4 3
indirect int indirect ( 5.0 10 1.0 10 ) J 5.0 10 J.Q E W= Δ + = − × + × = ×  

 
45. Argon is a monatomic gas, so f = 3 in Eq. 19-51, which provides 
 

( )3 3 1 cal cal8.31 J/mol K 2.98
2 2 4.186 J mol CVC R ⎛ ⎞= = ⋅ =⎜ ⎟ ⋅ °⎝ ⎠

 

 
where we have converted joules to calories, and taken advantage of the fact that a Celsius 
degree is equivalent to a unit change on the Kelvin scale. Since (for a given substance) M 
is effectively a conversion factor between grams and moles, we see that cV (see units 
specified in the problem statement) is related to CV by  V VC c M= where AM mN= , and 
m is the mass of a single atom (see Eq. 19-4). 
 
(a) From the above discussion, we obtain 
 

23
23

/ 2.98 / 0.075 6.6 10 g.
6.02 10

V VC cMm
N N

−

Α Α

= = = = ×
×

 

 
(b) The molar mass is found to be  
 

M = CV/cV = 2.98/0.075 = 39.7 g/mol 
 
which should be rounded to 40 g/mol since the given value of cV is specified to only two 
significant figures. 
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46. (a) Since the process is a constant-pressure expansion,  
 

( )( )( )2.02mol 8.31 J/mol K 15K 249J.W p V nR T= Δ = Δ = ⋅ =  
 
(b) Now, Cp = 52 R in this case, so Q = nCpΔT =  +623 J by Eq. 19-46.  
 
(c) The change in the internal energy is ΔEint = Q – W = +374 J.  
 
(d) The change in the average kinetic energy per atom is  
 

ΔKavg = ΔEint/N = +3.11 × 10−22 J. 
 
47. (a) The work is zero in this process since volume is kept fixed. 
 
(b) Since CV = 32 R for an ideal monatomic gas, then Eq. 19-39 gives Q = +374 J. 
 
(c)  ΔEint = Q – W = +374 J. 
 
(d) Two moles are equivalent to N = 12 x 1023 particles.  Dividing the result of part (c) by 
N gives the average translational kinetic energy change per atom: 3.11 × 10−22 J. 
 
48. (a) According to the first law of thermodynamics Q = ΔEint + W. When the pressure is 
a constant W = p ΔV. So 
 

( )( )
6 3

5 3 3
int 3

1 10 m20.9 J 1.01 10 Pa 100 cm 50 cm 15.9 J.
1 cm

E Q p V
−⎛ ⎞×

Δ = − Δ = − × − =⎜ ⎟
⎝ ⎠

 

 
(b) The molar specific heat at constant pressure is 
 

( )
( )( )

( )( )5 6 3

8.31 J/mol K 20.9J
34.4J mol K.

/ 1.01 10 Pa 50 10 mp
Q Q R QC

n T n p V nR p V −

⋅
= = = = = ⋅

Δ Δ Δ × ×
 

 
(c) Using Eq. 19-49, CV = Cp – R = 26.1 J/mol·K. 
 
49. When the temperature changes by ΔT the internal energy of the first gas changes by 
n1C1 ΔT, the internal energy of the second gas changes by n2C2 ΔT, and the internal 
energy of the third gas changes by n3C3 ΔT. The change in the internal energy of the 
composite gas is  

ΔEint = (n1 C1 + n2 C2 + n3 C3) ΔT. 
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This must be (n1 + n2 + n3) CV ΔT, where CV is the molar specific heat of the mixture. 
Thus, 

1 1 2 2 3 3

1 2 3

.V
n C n C n CC

n n n
+ +

=
+ +

 

 
With n1 = 2.40 mol, CV1 = 12.0 J/mol·K for gas 1, n2=1.50 mol, CV2 = 12.8 J/mol·K for gas 
2, and n3 = 3.20 mol, CV3 = 20.0 J/mol·K for gas 3, we obtain CV  = 15.8 J/mol·K for the 
mixture. 
 
50. Referring to Table 19-3, Eq. 19-45 and Eq. 19-46, we have 
 

int
5       
2
7 .
2

V

p

E nC T nR T

Q nC T nR T

Δ = Δ = Δ

= Δ = Δ
 

Dividing the equations, we obtain 
int 5 .

7
E
Q

Δ
=  

 
Thus, the given value Q = 70 J leads to int 50 J.EΔ =  
 
51. The fact that they rotate but do not oscillate means that the value of f given in Table 
19-3 is relevant. Thus, Eq. 19-46 leads to 
 

( )7 7 1
2 2

f
p f i i

i

T
Q nC T n R T T nRT

T
⎛ ⎞⎛ ⎞ ⎛ ⎞= Δ = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
where Ti = 273 K and n = 1.0 mol. The ratio of absolute temperatures is found from the 
gas law in ratio form. With pf = pi we have 
 

2.f f

i i

T V
T V

= =  

 
Therefore, the energy added as heat is 
 

( )( )( ) ( ) 371.0mol 8.31 J/mol K 273K 2 1 8.0 10 J.
2

Q ⎛ ⎞= ⋅ − ≈ ×⎜ ⎟
⎝ ⎠

 

 
52. (a) Using M = 32.0 g/mol from Table 19-1 and Eq. 19-3, we obtain 
 

sam 12.0 g 0.375 mol.
32.0 g/mol

Mn
M

= = =  
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(b) This is a constant pressure process with a diatomic gas, so we use Eq. 19-46 and 
Table 19-3. We note that a change of Kelvin temperature is numerically the same as a 
change of Celsius degrees. 
 

( ) ( )( ) 37 70.375 mol 8.31 J/mol K 100K 1.09 10 J.
2 2pQ nC T n R T⎛ ⎞ ⎛ ⎞= Δ = Δ = ⋅ = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
(c) We could compute a value of ΔEint from Eq. 19-45 and divide by the result from part 
(b), or perform this manipulation algebraically to show the generality of this answer (that 
is, many factors will be seen to cancel). We illustrate the latter approach: 
 

( )
( )

5
2int
7
2

 5 0.714.
 7

n R TE
Q n R T

ΔΔ
= = ≈

Δ
 

 
53. (a) Since the process is at constant pressure, energy transferred as heat to the gas is 
given by Q = nCp ΔT, where n is the number of moles in the gas, Cp is the molar specific 
heat at constant pressure, and ΔT is the increase in temperature. For a diatomic ideal gas 

7
2 .pC R=  Thus, 

 

( ) ( ) ( ) 37 7 4.00mol 8.31J/mol K 60.0 K 6.98 10 J.
2 2

Q nR T= Δ = ⋅ = ×  

 
(b) The change in the internal energy is given by ΔEint = nCV ΔT, where CV is the specific 
heat at constant volume. For a diatomic ideal gas 5

2VC R= , so 
 

( ) ( ) ( ) 3
int

5 5 4.00mol 8.31J/mol.K 60.0 K 4.99 10 J.
2 2

E nR TΔ = Δ = = ×  

 
(c) According to the first law of thermodynamics, ΔEint = Q – W, so 
 

3 3 3
int 6.98 10 J 4.99 10 J = 1.99 10 J.W Q E= − Δ = × − × ×  

 
(d) The change in the total translational kinetic energy is 
 

( ) ( ) ( ) 33 3 4.00mol 8.31J/mol K 60.0 K 2.99 10 J.
2 2

K nR TΔ = Δ = ⋅ = ×  

 
54. The fact that they rotate but do not oscillate means that the value of f given in Table 
19-3 is relevant. In Section 19-11, it is noted that γ = Cp/CV so that we find γ = 7/5 in this 
case. In the state described in the problem, the volume is 
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( )( )( ) 3
5 2

2.0mol 8.31 J/mol K 300K
0.049 m

1.01 10 N/m
nRTV

p
⋅

= = =
×

. 

Consequently, 

( ) ( )1.45 2 3 3 2.21.01 10 N/m 0.049 m 1.5 10 N m .pV = × = × ⋅γ  

 
55. (a) Let pi, Vi, and Ti represent the pressure, volume, and temperature of the initial 
state of the gas. Let pf, Vf, and Tf represent the pressure, volume, and temperature of the 
final state. Since the process is adiabatic i i f fpV p Vγ γ= , so 
 

( )
1.44.3 L 1.2atm 13.6atm 14 atm.

0.76 L
i

f i
f

Vp p
V

γ
⎛ ⎞ ⎛ ⎞= = = ≈⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
We note that since Vi and Vf have the same units, their units cancel and pf has the same 
units as pi. 
 
(b) The gas obeys the ideal gas law pV = nRT, so piVi/pfVf = Ti/Tf and 
 

( )( )
( )( ) ( ) 213.6atm 0.76L

310K 6.2 10 K.
1.2atm 4.3L

f f
f i

i i

p V
T T

pV
⎡ ⎤

= = = ×⎢ ⎥
⎣ ⎦

 

 
56. (a) We use Eq. 19-54 with 1

2/f iV V =  for the gas (assumed to obey the ideal gas law). 
 

1.3(2.00)f i
i i f f

i f

p VpV p V
p V

γ
γ γ ⎛ ⎞= ⇒ = =⎜ ⎟

⎝ ⎠
 

 
which yields pf = (2.46)(1.0 atm) = 2.46 atm.  
 
(b) Similarly, Eq. 19-56 leads to 
 

( ) ( )
1

273K 1.23 336 K.i
f i

f

VT T
V

−
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

γ

 

 
(c) We use the gas law in ratio form and note that when p1 = p2 then the ratio of volumes 
is equal to the ratio of (absolute) temperatures. Consequently, with the subscript 1 
referring to the situation (of small volume, high pressure, and high temperature) the 
system is in at the end of part (a), we obtain 
 

2 2

1 1

273K 0.813.
336K

V T
V T

= = =  
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The volume V1 is half the original volume of one liter, so 
 

( )2 0.813 0.500L 0.406L.V = =  
 
57. (a) Equation 19-54, i i f fpV p Vγ γ= , leads to  
 

 ( ) 200L4.00 atm 1.00atm
74.3L

i
f i

f

Vp p
V

γ γ⎛ ⎞ ⎛ ⎞
= ⇒ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
which can be solved to yield 
 

( )
( )

( )
( )

ln ln 4.00atm 1.00atm 71.4 .
ln 200L 74.3L 5ln

f i

i f

p p

V V
γ = = = =  

 
This implies that the gas is diatomic (see Table 19-3). 
 
(b) One can now use either Eq. 19-56 or use the ideal gas law itself.  Here we illustrate 
the latter approach: 

Pf Vf
 Pi Vi

  =  
nRTf 
 nRTi 

     ⇒       Tf  =  446 K . 

 
(c) Again using the ideal gas law: n = Pi Vi /RTi = 8.10 moles.  The same result would, of 
course, follow from n = Pf Vf /RTf .   
 
58. Let pi, Vi, and Ti represent the pressure, volume, and temperature of the initial state of 
the gas, and let pf, Vf, and Tf be the pressure, volume, and temperature of the final state. 
Since the process is adiabatic i i f fpV p Vγ γ= . Combining with the ideal gas law, 
pV NkT= , we obtain 

1 1 1( / ) constanti i i i i i i i i f fpV p T p p T p T p Tγ γ γ γ γ γ γ γ− − −= = = ⇒ =  
 
With 4 / 3,γ =  which gives (1 ) / 1/ 4γ γ− = − , the temperature at the end of the adiabatic 
expansion is  
 

1
1/ 45.00 atm (278 K) 186 K 87 C

1.00 atm
i

f i
f

pT T
p

γ
γ
−

−⎛ ⎞ ⎛ ⎞= = = = − °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
. 

 
59. Since ΔEint does not depend on the type of process, 
 

( ) ( )int intpath 2 path 1
.E EΔ = Δ  
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Also, since (for an ideal gas) it only depends on the temperature variable (so ΔEint = 0 for 
isotherms), then 
 

( ) ( )int intpath1 adiabat
.E EΔ = Δ∑  

 
Finally, since Q = 0 for adiabatic processes, then (for path 1) 
 

( )
( ) ( )

int adiabatic expansion

int adiabatic compression

40 J

25 J 25 J.

E W

E W

Δ = − = −

Δ = − = − − =
 

 
Therefore, ( )int path 2 40 J + 25 J = 15 J .EΔ = − −  

 
60. Let 1 1, ,p V  and 1T  represent the pressure, volume, and temperature of the air at 

1 4267 m.y =  Similarly, let ,p V , and T be the pressure, volume, and temperature of the 
air at 1567 m.y =  Since the process is adiabatic, 1 1p V pVγ γ= . Combining with the ideal 
gas law, pV NkT= , we obtain 
 

1 1 1
1 1( / ) constantpV p T p p T p T p Tγ γ γ γ γ γ γ γ− − −= = = ⇒ = . 

 
With 0

ayp p e−=  and 4 / 3γ =  (which gives (1 ) / 1/ 4γ γ− = − ), the temperature at the end 
of the descent is  
 

 
1 4

1

11

( ) / 4 (1.16 10 /m)(1567 m 4267 m) / 401
1 1 1

0

(268 K)

(1.08)(268 K) 290 K 17 C.

ay
a y y

ay

p epT T T e T e
p p e

γγ
γγ −

−−
−

− − − × −
−

⎛ ⎞⎛ ⎞
= = = =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
= = = °

 

 
61. The aim of this problem is to emphasize what it means for the internal energy to be a 
state function.  Since path 1 and path 2 start and stop at the same places, then the internal 
energy change along path 1 is equal to that along path 2.  Now, during isothermal 
processes (involving an ideal gas) the internal energy change is zero, so the only step in 
path 1 that we need to examine is step 2.  Equation 19-28 then immediately yields  –20 J 
as the answer for the internal energy change. 
 
62. Using Eq. 19-53 in Eq. 18-25 gives 
 

 
1 1

1
f

i

V f i
i i i iV

V V
W pV V dV pV

γ γ
γ γ γ

γ

− −
− −

= =
−∫ . 

 
Using Eq. 19-54 we can write this as 



 

 

821

 

 
1 1/1 ( / )

1
f i

i i

p p
W pV

γ

γ

−−
=

−
 

 
In this problem, γ = 7/5 (see Table 19-3) and  Pf /Pi = 2.  Converting the initial pressure 
to pascals we find Pi Vi = 24240 J.  Plugging in, then, we obtain W = −1.33 × 104 J. 
 
63. In the following, 3

2VC R=  is the molar specific heat at constant volume, 5
2pC R=  is 

the molar specific heat at constant pressure, ΔT is the temperature change, and n is the 
number of moles. 
 
The process 1 → 2 takes place at constant volume.  
 
(a) The heat added is 
 

( )( )( ) 33 3 1.00 mol 8.31J/mol K 600 K 300 K 3.74 10 J.
2 2VQ nC T nR T= Δ = Δ = ⋅ − = ×  

 
(b) Since the process takes place at constant volume, the work W done by the gas is zero, 
and the first law of thermodynamics tells us that the change in the internal energy is 
 

3
int 3.74 10 J.E QΔ = = ×  

 
(c) The work W done by the gas is zero. 
 
The process 2 → 3 is adiabatic.  
 
(d) The heat added is zero.  
 
(e) The change in the internal energy is 
 

( )( )( ) 3
int

3 3 1.00 mol 8.31J/mol K 455K 600 K 1.81 10 J.
2 2VE nC T nR TΔ = Δ = Δ = ⋅ − = − ×  

 
(f) According to the first law of thermodynamics the work done by the gas is 
 

3
int 1.81 10 J.W Q E= − Δ = + ×  

 
The process 3 → 1 takes place at constant pressure.  
 
(g) The heat added is 
 



  CHAPTER 19 822 

35 5 (1.00 mol) (8.31J/mol K) (300K 455K) 3.22 10 J. 
2 2pQ nC T nR T= Δ = Δ = ⋅ − = − ×  

 
(h) The change in the internal energy is 
 

3
int

3 3 (1.00mol) (8.31J/mol K) (300K 455K) 1.93 10 J.
2 2VE nC T nR TΔ = Δ = Δ = ⋅ − = − ×  

 
(i) According to the first law of thermodynamics the work done by the gas is 
 

3 3 3
int 3.22 10 J 1.93 10 J 1.29 10 J.W Q E= − Δ = − × + × = − ×  

 
(j) For the entire process the heat added is 
 

3 33.74 10 J 0 3.22 10 J 520 J.Q = × + − × =  
 
(k) The change in the internal energy is 
 

3 3 3
int 3.74 10 J 1.81 10 J 1.93 10 J 0.EΔ = × − × − × =  

 
(l) The work done by the gas is 
 

3 30 1.81 10 J 1.29 10 J 520 J.W = + × − × =  
 
(m) We first find the initial volume. Use the ideal gas law p1V1 = nRT1 to obtain 
 

2 31
1 5

1

(1.00mol) (8.31J / mol K)(300 K) 2.46 10 m .
(1.013 10 Pa)

nRTV
p

−⋅
= = = ×

×
 

 
(n) Since 1 → 2 is a constant volume process, V2 = V1 = 2.46 × 10–2 m3. The pressure for 
state 2 is 
 

52
2 2 3

2

(1.00 mol) (8.31 J / mol K)(600K) 2.02 10 Pa .
2.46 10 m

nRTp
V −

⋅
= = = ×

×
 

 
This is approximately equal to 2.00 atm.  
 
(o) 3 → 1 is a constant pressure process. The volume for state 3 is 
 

2 33
3 5

3

(1.00mol) (8.31J / mol K)(455K) 3.73 10 m .
1.013 10 Pa

nRTV
p

−⋅
= = = ×

×
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(p) The pressure for state 3 is the same as the pressure for state 1: p3 = p1 = 1.013 × 105 
Pa (1.00 atm) 
 
64. We write T = 273 K and use Eq. 19-14: 
 

( ) ( ) ( ) 16.81.00 mol 8.31  J/mol K 273K ln
22.4

W ⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

 

 
which yields W = –653 J. Recalling the sign conventions for work stated in Chapter 18, 
this means an external agent does 653 J of work on the ideal gas during this process. 
 
65. (a) We use i i f fpV p Vγ γ=  to compute γ: 
 

( )
( )

( )
( )

5

3 6

ln 1.0atm 1.0 10 atmln 5 .
3ln ln 1.0 10 L 1.0 10 L

i f

f i

p p

V V
γ

×
= = =

× ×
 

 
Therefore the gas is monatomic. 
 
(b) Using the gas law in ratio form, the final temperature is 
 

( ) ( ) ( )
( ) ( )

5 3
4

6

1.0 10 atm 1.0 10 L
273K 2.7 10 K.

1.0atm 1.0 10 L
f f

f i
i i

p V
T T

pV

× ×
= = = ×

×
 

 
(c) The number of moles of gas present is 
 

( )( )
( )( )

5 3 3
4

1.01 10 Pa 1.0 10 cm
4.5 10 mol.

8.31 J/mol K 273K
i i

i

pVn
RT

× ×
= = = ×

⋅
 

 
(d) The total translational energy per mole before the compression is 
 

( )( ) 33 3 8.31 J/mol K 273K 3.4 10 J.
2 2i iK RT= = ⋅ = ×  

 
(e) After the compression, 
 

( )( )4 53 3 8.31 J/mol K 2.7 10 K 3.4 10 J.
2 2f fK RT= = ⋅ × = ×  

 
(f) Since 2

rmsv T∝ , we have 
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2
rms,
2 4
rms,

273K 0.010.
2.7 10 K

i i

f f

v T
v T

= = =
×

 

 
66. Equation 19-25 gives the mean free path: 
 

λ = 
1

2 d2 π εo (N/V)
  =   

n R T
2 d2 π εo  P N

  

 
where we have used the ideal gas law in that last step.  Thus, the change in the mean free 
path is  

Δλ =   
n R ΔT

2 d2 π εo  P N
  =   

R Q
2 d2 π εo  P N  Cp

  

 
where we have used Eq. 19-46.  The constant pressure molar heat capacity is (7/2)R in 
this situation, so (with N = 9 × 1023  and  d = 250 ×10−12 m) we find 
 

Δλ = 1.52 × 10− 9 m  = 1.52 nm . 
 
67. (a) The volume has increased by a factor of 3, so the pressure must decrease 
accordingly (since the temperature does not change in this process).  Thus, the final 
pressure is one-third of the original 6.00 atm.  The answer is 2.00 atm. 
 
(b) We note that Eq. 19-14 can be written as PiVi ln(Vf /Vi).  Converting “atm” to “Pa” (a 
pascal is equivalent to a N/m2) we obtain W = 333 J. 
 
(c) The gas is monatomic so γ = 5/3.  Equation 19-54 then yields Pf  = 0.961 atm. 
 
(d) Using Eq. 19-53 in Eq. 18-25 gives 
 

1 1

1 1
f

i

V f i f f i i
i i i iV

V V p V pV
W pV V dV pV

γ γ
γ γ γ

γ γ

− −
− − −

= = =
− −∫  

 
where in the last step Eq. 19-54 has been used. Converting “atm” to “Pa,” we obtain 

236 J.W =  
 
68. Using the ideal gas law, one mole occupies a volume equal to 
 

( )( )( ) 10 3
8

1 8.31 50.0
4.16 10 m .

1.00 10
nRTV

p −= = = ×
×

 

 
Therefore, the number of molecules per unit volume is 
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( ) ( )23
13A

10 3

1 6.02 10 molecules1.45 10 .
4.16 10 m

nNN
V V

×
= = = ×

×
 

 
Using d = 20.0 × 10–9 m, Eq. 19-25 yields 
 

( )2

1 38.8 m.
2 N

Vd
λ = =

π
 

 
69. Let ρc be the density of the cool air surrounding the balloon and ρh be the density of 
the hot air inside the balloon. The magnitude of the buoyant force on the balloon is 

b cF gVρ= , where V is the volume of the envelope. The force of gravity is 

hFg W gVρ= + , where W is the combined weight of the basket and the envelope. Thus, 
the net upward force is  
 net b g c hF F F gV W gVρ ρ= − = − − . 
 
With Fnet = 2.67 × 103 N, W = 2.45 × 103 N, V = 2.18 × 103 m3, 311.9 N/mc gρ = , we 
obtain  
 

3 3 3 3 3
net

3 3

3

(11.9 N/m )(2.18 10 m ) 2.45 10 N 2.67 10 N
2.18 10 m

9.55 N/m .

c
h

gV W Fg
V

ρρ − − × − × − ×
= =

×

=

 

 
The ideal gas law gives / /p RT n V= . Multiplying both sides by the “molar weight” Mg 
then leads to 

h
pMg nMg g
RT V

ρ= = . 

 
With 51.01 10 Pap = ×  and M = 0.028 kg/m3, we find the temperature to be 
 

5 2

3

(1.01 10 Pa)(0.028 kg/mol)(9.8 m/s ) 349 K
(8.31 J/mol K)(9.55 N/m )h

pMgT
R gρ

×
= = =

⋅
. 

 
As can be seen from the results above, increasing the temperature of the gas inside the 
balloon increases the value of netF , that is, the lifting capacity. 
 
70. We label the various states of the ideal gas as follows: it starts expanding 
adiabatically from state 1 until it reaches state 2, with V2 = 4 m3; then continues on to 
state 3 isothermally, with V3 = 10 m3; and eventually getting compressed adiabatically to 
reach state 4, the final state. For the adiabatic process 1 1 2 21 2 p V p Vγ γ→ = , for the 
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isothermal process 2 → 3 p2V2 = p3V3, and finally for the adiabatic process 
3 3 4 43 4 p V p Vγ γ→ = . These equations yield 

 

3 3 32 1 2
4 3 2 1

4 3 4 2 3 4

.V V VV V Vp p p p
V V V V V V

γ γ γ γ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
We substitute this expression for p4 into the equation p1V1 = p4V4 (since T1 = T4) to obtain 
V1V3 = V2V4. Solving for V4 we obtain 
 

( )( )3 3
31 3

4 3
2

2.0m 10m
5.0m .

4.0m
VVV
V

= = =  

 
71. (a) By Eq. 19-28, W = –374 J (since the process is an adiabatic compression).   
 
(b) Q = 0, since the process is adiabatic.  
 
(c) By the first law of thermodynamics, the change in internal energy is ΔEint= Q – W = 
+374 J.   
 
(d) The change in the average kinetic energy per atom is  
 

ΔKavg = ΔEint/N = +3.11 × 10−22 J. 
 
72. We solve 

helium hydrogen

3 3 (293K)RT R
M M

=  

 
for T. With the molar masses found in Table 19-1, we obtain 
 

4.0(293K) 580 K
2.02

T ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
which is equivalent to 307°C. 
 
73. The collision frequency is related to the mean free path and average speed of the 
molecules. According to Eq. 19-25, the mean free path for molecules in a gas is given by 

2

1 ,
2 /d N V

λ =
π

 

 
where d is the diameter of a molecule and N is the number of molecules in volume V. 
Using the ideal gas law, the number density can be written as / /N V p kT= , where p is 
the pressure, T is the temperature on the Kelvin scale, and k is the Boltzmann constant. 
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The average time between collisions is avg/ vτ λ= , where avg 8 /v RT Mπ= , where R is 
the universal gas constant and M is the molar mass. The collision frequency is simply 
given by 1/f τ= .   
 
With p = 2.02 × 103 Pa and d = 290 × 10−12 m, we find the mean free path to be 
 

23
8

2 2 12 2 5

1 (1.38 10 J/K)(400 K) 7.31 10 m
2 ( / ) 2 2 (290 10 m) (1.01 10 Pa)

kT
d p kT d pπ π π

−
−

−

×
λ = = = = ×

× ×
. 

 
Similarly, with M = 0.032 kg/mol, we find the average speed to be  
 

( )( )
avg 3

8 8.31J/mol K 400K8 514m/s
(32 10 kg/mol)

RTv
M −

⋅
= = =

π π ×
. 

Thus, the collision frequency is  

 avg 9
8

514 m/s 7.04 10 collisions/s
7.31 10 m

v
f

λ −= = = ×
×

 

 
Note: This problem is very similar to the Sample Problem — “Mean free path, average 
speed and collision frequency.”  A general expression for f is  
 

 
2

avgspeed 16
distance

v pd Rf
k MT

π
λ

= = = . 

 
74. (a) Since n/V = p/RT, the number of molecules per unit volume is 
 

( ) ( )
5

23 25A
A 3J

mol K

1.01 10 Pa molecules(6.02 10 ) 2.5 10 .
8.31 293K m

N nN pN
V V RT ⋅

×⎛ ⎞= = × = ×⎜ ⎟
⎝ ⎠

 

 
(b) Three-fourths of the 2.5 × 1025 value found in part (a) are nitrogen molecules with M 
= 28.0 g/mol (using Table 19-1), and one-fourth of that value are oxygen molecules with 
M = 32.0 g/mol. Consequently, we generalize the Msam = NM/NA expression for these two 
species of molecules and write 
 

25 25 3
23 23

3 28.0 1 32.0(2.5 10 ) (2.5 10 ) 1.2 10 g.
4 6.02 10 4 6.02 10

× + × = ×
× ×

 

 
75. We note that ( )3

2K n R TΔ = Δ  according to the discussion in Sections 19-5 and 19-9. 
Also, ΔEint = nCVΔT can be used for each of these processes (since we are told this is an 
ideal gas). Finally, we note that Eq. 19-49 leads to Cp = CV + R ≈ 8.0 cal/mol·K after we 
convert joules to calories in the ideal gas constant value (Eq. 19-6): R ≈ 2.0 cal/mol·K. 
The first law of thermodynamics Q = ΔEint + W applies to each process. 
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• Constant volume process with ΔT = 50 K and n = 3.0 mol. 
 
(a) Since the change in the internal energy is ΔEint = (3.0)(6.00)(50) = 900 cal, and the 
work done by the gas is W = 0 for constant volume processes, the first law gives Q = 900 
+ 0 = 900 cal. 
 
(b) As shown in part (a), W = 0. 
 
(c) The change in the internal energy is, from part (a), ΔEint = (3.0)(6.00)(50) = 900 cal. 
 
(d) The change in the total translational kinetic energy is 
 

( )3
2(3.0) (2.0) (50) 450cal.KΔ = =  

 
• Constant pressure process with ΔT = 50 K and n = 3.0 mol. 
 
(e) W = pΔV for constant pressure processes, so (using the ideal gas law)  
 

W = nRΔT = (3.0)(2.0)(50) = 300 cal. 
 
The first law gives Q = (900 + 300) cal = 1200 cal. 
 
(f) From (e), we have W = 300 cal. 
 
(g) The change in the internal energy is ΔEint = (3.0)(6.00)(50) = 900 cal. 
 
(h) The change in the translational kinetic energy is ( )3

2(3.0) (2.0) (50) 450cal.KΔ = =  
 
• Adiabiatic process with ΔT = 50 K and n = 3.0 mol. 
 
(i) Q = 0 by definition of “adiabatic.” 
 
(j) The first law leads to W = Q – Eint = 0 – 900 cal = –900 cal. 
 
(k) The change in the internal energy is ΔEint = (3.0)(6.00)(50) = 900 cal. 
 
(l) As in part (d) and (h), ( )3

2(3.0) (2.0) (50) 450cal.KΔ = =  
 
76. (a) With work being given by  
 

W = pΔV = (250)(−0.60) J = −150 J, 
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and the heat transfer given as –210 J, then the change in internal energy is found from the 
first law of thermodynamics to be  [–210 – (–150)] J = –60 J. 
 
(b) Since the pressures (and also the number of moles) don’t change in this process, then 
the volume is simply proportional to the (absolute) temperature.  Thus, the final 
temperature is ¼ of the initial temperature.  The answer is 90 K.  
 
77. The distribution function gives the fraction of particles with speeds between v and v + 
dv, so its integral over all speeds is unity: ∫ P(v) dv = 1. The average speed is defined as 

avg 0
( )v vP v dv

∞
= ∫ . Similarly, the rms speed is given by 2

rms avg( ) ,v v=  where 

2 2
avg 0

( ) ( )v v P v dv
∞

= ∫ . 

 
(a) We normalize the distribution function as follows: 
 

( )o

30
o

31 .
v

P v dv C
v

= ⇒ =∫  

(b) The average speed is 
 

( )o o
2

o30 0
o

3 3 .
4

v v vvP v dv v dv v
v

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∫ ∫  

 
(c) The rms speed is the square root of 
 

( )o o
2

2 2 2
o30 0

o

3 3 .
5

v v vv P v dv v dv v
v

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∫ ∫  

 
Therefore, rms 3 5 0.775 .v v v= ≈o o  
 
Note: The maximum speed of the gas is max o ,v v=  as indicated by the distribution 
function. Using Eq. 19-29, we find the fraction of molecules with speed between 1v  and 

2v  to be  

( )2 2 2

1 1 1

3 32
2 2 1

3 3 3
o o o

3 3frac .
v v v

v v v

v vvP v dv dv v dv
v v v

⎛ ⎞ −
= = = =⎜ ⎟

⎝ ⎠
∫ ∫ ∫  

 
78. (a) In the free expansion from state 0 to state 1 we have Q = W = 0, so ΔEint = 0, 
which means that the temperature of the ideal gas has to remain unchanged. Thus the 
final pressure is 

0 0 0 0 1
1 0

1 0 0

1 1 0.333.
3.00 3.00 3.00

p V p V pp p
V V p

= = = ⇒ = =  
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(b) For the adiabatic process from state 1 to 2 we have p1V1
γ =p2V2

γ, that is, 
 

( ) ( )
1
3

0 0 0 0
1 3.00 3.00

3.00
p V p Vγ γ=  

 
which gives γ = 4/3. The gas is therefore polyatomic. 
 
(c) From T = pV/nR we get 
 

( )1/ 32 2 2

1 1 1

3.00 1.44.K T p
K T p

= = = =  

 
79. (a) The temperature is 10.0°C → T = 283 K. Then, with n = 3.50 mol and Vf/V0 = 3/4, 
we use Eq. 19-14: 

0

ln 2.37 kJ.fV
W nRT

V
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

 

 
(b) The internal energy change ΔEint vanishes (for an ideal gas) when ΔT = 0 so that the 
First Law of Thermodynamics leads to Q = W = –2.37 kJ. The negative value implies 
that the heat transfer is from the sample to its environment. 
 
80. The ratio is  

 2 2
rms rms

2 2
/ 2 3

mgh gh Mgh
mv v RT

= =  

 
where we have used Eq. 19-22 in that last step.  With T = 273 K, h = 0.10 m and M = 32 
g/mol = 0.032 kg/mol, we find the ratio equals 9.2 × 10−6. 
 
81. (a) The p-V diagram is shown next. Note that to obtain the graph, we have chosen n = 
0.37 moles for concreteness, in which case the horizontal axis (which we note starts not 
at zero but at 1) is to be interpreted in units of cubic centimeters, and the vertical axis (the 
absolute pressure) is in kilopascals.  However, the constant volume temperature-increase 
process described in the third step (see the problem statement) is difficult to see in this 
graph since it coincides with the pressure axis. 
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(b) We note that the change in internal energy is zero for an ideal gas isothermal process, 
so (since the net change in the internal energy must be zero for the entire cycle) the 
increase in internal energy in step 3 must equal (in magnitude) its decease in step 1.  By 
Eq. 19-28, we see this number must be 125 J. 
 
(c) As implied by Eq. 19-29, this is equivalent to heat being added to the gas. 
 
82. (a) The ideal gas law leads to 
 

( )( ) ( )
5

1.00 mol 8.31J/mol K 273K
1.01 10 Pa

nRTV
p

⋅
= =

×
 

 
which yields V = 0.0225 m3 = 22.5 L. If we use the standard pressure value given in 
Appendix D, 1 atm = 1.013 × 105 Pa, then our answer rounds more properly to 22.4 L. 
 
(b) From Eq. 19-2, we have N = 6.02 × 1023 molecules in the volume found in part (a) 
(which may be expressed as V = 2.24 × 104 cm3), so that 
 

23
19 3

4 3

6.02 10 2.69 10 molecules/cm .
2.24 10 cm

N
V

×
= = ×

×
 

 
83. (a) The final pressure is 

( )( )32atm 1.0L
8.0atm.

4.0L
i i

f
f

pVp
V

= = =  

 
(b) For the isothermal process, the final temperature of the gas is Tf = Ti = 300 K. 
 
(c) The work done is 
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( )( )( )5 3 3

3

4.0Lln ln 32atm 1.01 10 Pa atm 1.0 10 m ln
1.0L

4.4 10 J.

f f
i i i

i i

V V
W nRT pV

V V
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = = × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

= ×

 

 
For the adiabatic process, i i f fpV p Vγ γ= . Thus, 
 
(d) The final pressure is  

( )
5 3

1.0 L32atm 3.2atm.
4.0 L

i
f i

f

Vp p
V

γ
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
(e) The final temperature is 
 

( )( )( )
( )( )

3.2atm 4.0L 300K
120K 

32atm 1.0L
f f i

f
i i

p V T
T

pV
= = = . 

 
(f) The work done is 
 

( )

( )( ) ( )( ) ( )( )

int int

5 3 3

3

3 3
2 2

3 3.2atm 4.0L 32atm 1.0L 1.01 10 Pa atm 10 m L
2

2.9 10 J .

f f i iW Q E E nR T p V pV

−

= − Δ = −Δ = − Δ = − −

⎡ ⎤= − − ×⎣ ⎦

= ×

 

 
(g) If the gas is diatomic, then γ = 1.4, and the final pressure is 
 

( )
1.4

1.0 L32atm 4.6atm
4.0 L

i
f i

f

Vp p
V

γ
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
. 

 
(h) The final temperature is  
 

 ( )( )( )
( )( )

4.6atm 4.0L 300K
170K

32atm 1.0L
f f i

f
i i

p V T
T

pV
= = = . 

(i) The work done is  
 

( )

( )( ) ( )( ) ( )( )

int

5 3 3

3

5 5
2 2

5 4.6atm 4.0L 32atm 1.0L 1.01 10 Pa atm 10 m L
2

3.4 10 J.

f f i iW Q E nR T p V pV

−

= − Δ = − Δ = − −

⎡ ⎤= − − ×⎣ ⎦

= ×
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84. (a) With P1 = (20.0)(1.01 × 105 Pa) and V1 = 0.0015 m3, the ideal gas law gives 
 

P1V1 = nRT1     ⇒  T1 = 121.54 K  ≈  122 K. 
 
(b) From the information in the problem, we deduce that T2 = 3T1 = 365 K. 
 
(c) We also deduce that T3 = T1, which means ΔT = 0 for this process.  Since this involves 
an ideal gas, this implies the change in internal energy is zero here. 
 
85. (a) We use pV = nRT. The volume of the tank is 
 

( )( )( )300g
17 g mol 2 3

6

8.31 J/mol K 350K
3.8 10 m 38L.

1.35 10 Pa
nRTV

p
−

⋅
= = = × =

×
 

 
(b) The number of moles of the remaining gas is 
 

( )( )
( )( )

5 2 38.7 10 Pa 3.8 10 m
13.5mol.

8.31 J/mol K 293K
p Vn
RT

−× ×′
′ = = =

′ ⋅
 

 
The mass of the gas that leaked out is then  
 

Δm = 300 g – (13.5 mol)(17 g/mol) = 71 g. 
 
86. To model the “uniform rates” described in the problem statement, we have expressed 
the volume and the temperature functions as follows: 
 

V = Vi  + 
⎝⎜
⎛

⎠⎟
⎞Vf   – Vi

τ f
 t           and   T  =  Ti  + 

⎝⎜
⎛

⎠⎟
⎞Tf  – Ti

τ f
 t 

  
where Vi = 0.616 m3,  Vf  = 0.308 m3,  τ f  = 7200 s, Ti = 300 K, and Tf  = 723 K.   
 
(a) We can take the derivative of V with respect to t and use that to evaluate the 
cumulative work done (from t = 0 until t = τ): 
 

W = nRT dVpdV dt
V dt

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠∫ ∫   = 12.2 τ +  238113 ln(14400 − τ) − 2.28 × 106 

 
with SI units understood.  With τ = τ f  our result is W = −77169 J ≈ −77.2 kJ, or |W | ≈ 
77.2 kJ. 
 
The graph of cumulative work is shown below. The graph for work done is purely 
negative because the gas is being compressed (work is being done on the gas). 
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(b) With CV  = 32 R (since it’s a monatomic ideal gas) then the (infinitesimal) change in 

internal energy is  nCV dT = 32 nR ⎝⎜
⎛

⎠⎟
⎞dT 

dt  dt,  which involves taking the derivative of the 

temperature expression listed above.  Integrating this and adding this to the work done 
gives the cumulative heat absorbed (from t = 0 until t = τ): 
 

Q =  ⌠ ⌡  ⎝⎜
⎛

⎠⎟
⎞nRT 

V  ⎝⎜
⎛

⎠⎟
⎞dV

dt   +  32 nR ⎝⎜
⎛

⎠⎟
⎞dT 

dt  dt = 30.5τ + 238113 ln(14400 − τ) − 2.28 × 106 

 
with SI units understood. With τ = τf  our result is Qtotal = 54649 J ≈ 5.46×104 J. 
 
The graph cumulative heat is shown below.  We see that Q > 0, since the gas is absorbing 
heat.   

 
(c) Defining C = 

Qtotal
n(Tf - Ti) , we obtain C = 5.17 J/mol·K.  We note that this is 

considerably smaller than the constant-volume molar heat CV. 
 
We are now asked to consider this to be a two-step process (time dependence is no longer 
an issue) where the first step is isothermal and the second step occurs at constant volume 
(the ending values of pressure, volume, and temperature being the same as before).   



 

 

835

 
(d) Equation 19-14 readily yields W = −43222 J ≈ −4.32 ×104 J (or | W | ≈ 4.32 ×104 J ), 
where it is important to keep in mind that no work is done in a process where the volume 
is held constant.   
 
(e) In step 1 the heat is equal to the work (since the internal energy does not change 
during an isothermal ideal gas process), and in step 2 the heat is given by Eq. 19-39.  The 
total heat is therefore 88595 ≈ 8.86 ×104 J.   
 
(f) Defining a molar heat capacity in the same manner as we did in part (c), we now 
arrive at C = 8.38 J/ mol·K. 
 
87. For convenience, the “int” subscript for the internal energy will be omitted in this 
solution. Recalling Eq. 19-28, we note that 

cycle
0E =∑ , which gives 

 
0.A B B C C D D E E AE E E E E→ → → → →Δ + Δ + Δ + Δ + Δ =  

 
Since a gas is involved (assumed to be ideal), then the internal energy does not change 
when the temperature does not change, so 
 

0.A B D EE E→ →Δ = Δ =  
 
Now, with ΔEE→A = 8.0 J given in the problem statement, we have 
 

8.0 J 0.B C C DE E→ →Δ + Δ + =  
 
In an adiabatic process, ΔE = –W, which leads to  
 

5.0  J 8.0 J 0,C DE →− + Δ + =  
and we obtain ΔEC→D = –3.0 J. 
 
88. (a) The work done in a constant-pressure process is W = pΔV. Therefore, 
 

( )2 3 325 N/m (1.8m 3.0m ) 30J.W = − = −  

 
The sign conventions discussed in the textbook for Q indicate that we should write –75 J 
for the energy that leaves the system in the form of heat. Therefore, the first law of 
thermodynamics leads to 
 

int ( 75 J) ( 30 J) 45 J.E Q WΔ = − = − − − = −  
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(b) Since the pressure is constant (and the number of moles is presumed constant), the 
ideal gas law in ratio form leads to 
 

3
22

2 1 3
1

1.8m(300 K) 1.8 10 K.
3.0 m

VT T
V

⎛ ⎞ ⎛ ⎞
= = = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
It should be noted that this is consistent with the gas being monatomic (that is, if one 
assumes 3

2VC R=  and uses Eq. 19-45, one arrives at this same value for the final 
temperature). 
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Chapter 20              
 
 
1. (a) Since the gas is ideal, its pressure p is given in terms of the number of moles n, the 
volume V, and the temperature T by p = nRT/V. The work done by the gas during the 
isothermal expansion is 
 

2 2

1 1

2

1

ln .= = =∫ ∫
V V

V V

dV VW p dV n RT n RT
V V

 

 
We substitute V2 = 2.00V1 to obtain 
 

( )( )( ) 3= ln2.00 = 4.00 mol 8.31 J/mol K 400 K ln2.00 = 9.22 10  J.W n RT ⋅ ×  
 
(b) Since the expansion is isothermal, the change in entropy is given by 
 

( )1S T dQ Q TΔ = =∫ , 
 
where Q is the heat absorbed. According to the first law of thermodynamics, ΔEint = Q − 
W. Now the internal energy of an ideal gas depends only on the temperature and not on 
the pressure and volume. Since the expansion is isothermal, ΔEint = 0 and Q = W. Thus, 
 

39.22 10 J= = = 23.1 J/K.
400 K

×
Δ

WS
T

 

 
(c) ΔS = 0 for all reversible adiabatic processes. 
 
2. An isothermal process is one in which Ti = Tf, which implies ln (Tf /Ti) = 0. Therefore, 
Eq. 20-4 leads to 

( ) ( )
22.0= ln = = 2.75 mol.

8.31 ln 3.4/1.3
⎛ ⎞

Δ ⇒⎜ ⎟
⎝ ⎠

f

i

V
S nR n

V
 

 
3. An isothermal process is one in which Ti = Tf, which implies ln(Tf/Ti) = 0. Therefore, 
with Vf/Vi = 2.00, Eq. 20-4 leads to 
 

( )( ) ( )= ln = 2.50 mol 8.31 J/mol K ln 2.00 = 14.4 J/K.f

i

V
S nR

V
⎛ ⎞

Δ ⋅⎜ ⎟
⎝ ⎠

 

 
4. From Eq. 20-2, we obtain 
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( ) ( ) 4= = 405 K 46.0 J/K = 1.86 10  J.Δ ×Q T S  
 
5. We use the following relation derived in Sample Problem — “Entropy change of two 
blocks coming to equilibrium:” 

= ln .
⎛ ⎞

Δ ⎜ ⎟
⎝ ⎠

f

i

T
S mc

T
 

 
(a) The energy absorbed as heat is given by Eq. 19-14. Using Table 19-3, we find 
 

( ) ( ) 4J= = 386 2.00 kg 75 K = 5.79 10  J
kg K

⎛ ⎞
Δ ×⎜ ⎟⋅⎝ ⎠

Q cm T  

 
where we have used the fact that a change in Kelvin temperature is equivalent to a change 
in Celsius degrees. 
 
(b) With Tf = 373.15 K and Ti = 298.15 K, we obtain 
 

( ) J 373.15= 2.00 kg 386 ln = 173 J/K.
kg K 298.15

⎛ ⎞ ⎛ ⎞Δ ⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠⎝ ⎠
S  

 
6. (a) This may be considered a reversible process (as well as isothermal), so we use ΔS = 
Q/T where Q = Lm with L = 333 J/g from Table 19-4. Consequently, 
 

ΔS =
333 12.0

273
= 14.6

 J / g  g
K

 J / K.
a fa f

 

 
(b) The situation is similar to that described in part (a), except with L = 2256 J/g, m = 
5.00 g, and T = 373 K. We therefore find ΔS = 30.2 J/K. 
 
7. (a) We refer to the copper block as block 1 and the lead block as block 2. The 
equilibrium temperature Tf satisfies  
 

m1c1(Tf − Ti,1) + m2c2(Tf − Ti2) = 0, 
 
which we solve for Tf : 
 

( )( )( ) ( )( )( )
( )( ) ( )( )

1 1 ,1 2 2 ,2

1 1 2 2

+ 50.0 g 386 J/kg K 400 K + 100 g 128 J/kg K 200 K
+ 50.0 g 386 J/kg K + 100 g 128 J/kg K

320 K.

i i
f

m c T m c T
T

m c m c
⋅ ⋅

= =
⋅ ⋅

=

 

 
(b) Since the two-block system in thermally insulated from the environment, the change 
in internal energy of the system is zero. 
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(c) The change in entropy is 
 

( )( ) ( )( )

1 2 1 1 2 2
,1 ,2

= + = ln + ln

320 K 320 K= 50.0 g 386 J/kg K ln + 100 g 128 J/kg K ln
400 K 200 K

1.72 J K.

f f

i i

T T
S S S m c m c

T T
⎛ ⎞ ⎛ ⎞

Δ Δ Δ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +

 

 
8. We use Eq. 20-1: 
 

      
10.0 2 3 3

5.00
(10.0) (5.00) 0.0368 J/K.

3
VnC dT nAS nA T dT
T

⎡ ⎤Δ = = = − =⎣ ⎦∫ ∫  

 
9. The ice warms to 0°C, then melts, and the resulting water warms to the temperature of 
the lake water, which is 15°C. As the ice warms, the energy it receives as heat when the 
temperature changes by dT is dQ = mcI dT, where m is the mass of the ice and cI is the 
specific heat of ice. If Ti (= 263 K) is the initial temperature and Tf (= 273 K) is the final 
temperature, then the change in its entropy is 
 

( )( ) 273 Kln 0.010 kg 2220 J/kg K ln = 0.828 J/K.
263 K

f

i

T f
I IT

i

TdQ dTS mc mc
T T T

⎛ ⎞Δ = = = = ⋅ ⎜ ⎟
⎝ ⎠∫ ∫  

 
Melting is an isothermal process. The energy leaving the ice as heat is mLF, where LF is 
the heat of fusion for ice. Thus,  
 

ΔS = Q/T = mLF/T = (0.010 kg)(333 × 103 J/kg)/(273 K) = 12.20 J/K. 
 
For the warming of the water from the melted ice, the change in entropy is 
 

= ln ,f
w

i

T
S mc

T
Δ  

 
where cw is the specific heat of water (4190 J/kg ⋅ K). Thus, 
 

( ) ( ) 288 K= 0.010 kg 4190 J/kg K ln = 2.24 J/K.
273 K

S ⎛ ⎞Δ ⋅ ⎜ ⎟
⎝ ⎠

 

 
The total change in entropy for the ice and the water it becomes is 
 

= 0.828 J/K +12.20 J/K + 2.24 J/K = 15.27 J/K.SΔ  
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Since the temperature of the lake does not change significantly when the ice melts, the 
change in its entropy is ΔS = Q/T, where Q is the energy it receives as heat (the negative 
of the energy it supplies the ice) and T is its temperature. When the ice warms to 0°C, 
 

( ) ( ) ( ) ( )= = 0.010 kg 2220 J/kg  K 10 K = 222 J.I f iQ mc T T− − − ⋅ −  
 
When the ice melts, 
 

Q mLF= = 0.010 333 10 = 3.33 10 .3 3− − × − × kg  J / kg  Ja fc h  
 
When the water from the ice warms, 
 

Q mc T Tw f i= = 0.010 4190 15 = 629 .− − − ⋅ −c h a fa fa f kg  J / kg  K  K  J  
 
The total energy leaving the lake water is  
 

Q = −222 J − 3.33 × 103 J − 6.29 × 102 J = −4.18 × 103 J. 
 
The change in entropy is 

34.18 10  J= = 14.51 J/K.
288 K

S ×
Δ − −  

 
The change in the entropy of the ice–lake system is ΔS = (15.27 − 14.51) J/K = 0.76 J/K. 
 
10. We follow the method shown in Sample Problem — “Entropy change of two blocks 
coming to equilibrium.” Since 

ΔS = f

i

T

T

dTmc
T∫  = mc ln(Tf /Ti) , 

 
then with ΔS = 50 J/K, Tf = 380 K, Ti = 280 K, and m = 0.364 kg,  we obtain c = 4.5×102 
J/kg.K. 
 
11. (a) The energy that leaves the aluminum as heat has magnitude Q = maca(Tai − Tf), 
where ma is the mass of the aluminum, ca is the specific heat of aluminum, Tai is the 
initial temperature of the aluminum, and Tf is the final temperature of the aluminum–
water system. The energy that enters the water as heat has magnitude Q = mwcw(Tf − Twi), 
where mw is the mass of the water, cw is the specific heat of water, and Twi is the initial 
temperature of the water. The two energies are the same in magnitude, since no energy is 
lost. Thus, 

( ) ( ) += = .
+

− − ⇒ a a ai w w wi
a a ai f w w f wi f

a a w w

m c T m c Tm c T T m c T T T
m c m c
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The specific heat of aluminum is 900 J/kg⋅K and the specific heat of water is 4190 J/kg⋅K. 
Thus, 
 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

0.200 kg 900 J/kg K 100 C 0.0500 kg 4190 J/kg K 20 C
0.200 kg 900 J/kg K 0.0500 kg 4190 J/kg K

57.0 C 330 K.

fT
⋅ ° + ⋅ °

=
⋅ + ⋅

= ° =

 

 
(b) Now temperatures must be given in Kelvins: Tai = 393 K, Twi = 293 K, and Tf = 330 K. 
For the aluminum, dQ = macadT, and the change in entropy is 
 

( )( ) 330 Kln 0.200 kg 900 J/kg K ln
373 K

22.1 J/K.

f

ai

T f
a a a a aT

ai

TdQ dTS m c m c
T T T

⎛ ⎞Δ = = = = ⋅ ⎜ ⎟
⎝ ⎠

= −

∫ ∫  

 
(c) The entropy change for the water is 
 

330 Kln (0.0500 kg) (4190 J kg.K) ln
293K

24.9 J K.

f

wi

T f
w w w w wT

wi

TdQ dTS m c m c
T T T

⎛ ⎞
Δ = = = = ⎜ ⎟

⎝ ⎠
= +

∫ ∫  

 
(d) The change in the total entropy of the aluminum-water system is  
 

ΔS = ΔSa + ΔSw = −22.1 J/K + 24.9 J/K = +2.8 J/K. 
 
12. We concentrate on the first term of Eq. 20-4 (the second term is zero because the final 
and initial temperatures are the same, and because ln(1) = 0). Thus, the entropy change is 
 

ΔS =  nR ln(Vf /Vi)  . 
 
Noting that ΔS = 0 at  Vf  = 0.40 m3, we are able to deduce that Vi = 0.40 m3.  We now 
examine the point in the graph where ΔS = 32 J/K and  Vf  = 1.2 m3; the above expression 
can now be used to solve for the number of moles.  We obtain n = 3.5 mol. 
 
13. This problem is similar to Sample Problem — “Entropy change of two blocks coming 
to equilibrium.” The only difference is that we need to find the mass m of each of the 
blocks. Since the two blocks are identical, the final temperature Tf is the average of the 
initial temperatures: 
 

T T Tf i f= 1
2

+ = 1
2

305.5 + 294.5 = 300.0c h a f K  K  K. 

 
Thus from Q = mcΔT we find the mass m: 
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m Q
c T

= = 215
386 300.0 294.5

= 0.101 .
Δ ⋅ −

J
 J / kg K  K  K

 kga fa f  

 
(a) The change in entropy for block L is  
 

( ) ( ) 300.0 K= ln = 0.101 kg 386 J/kg K ln = 0.710 J/K.
305.5 K

f
L

iL

T
S mc

T
⎛ ⎞ ⎛ ⎞Δ ⋅ −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(b) Since the temperature of the reservoir is virtually the same as that of the block, which 
gives up the same amount of heat as the reservoir absorbs, the change in entropy LS ′Δ of 
the reservoir connected to the left block is the opposite of that of the left block: LS ′Δ  = 
−ΔSL = +0.710 J/K. 
 
(c) The entropy change for block R is 
 

( ) ( ) 300.0 K= ln = 0.101 kg 386 J/kg K ln = +0.723 J/K.
294.5 K

f
R

iR

T
S mc

T
⎛ ⎞ ⎛ ⎞Δ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(d) Similar to the case in part (b) above, the change in entropy RS ′Δ  of the reservoir 
connected to the right block is given by RS ′Δ  = −ΔSR = −0.723 J/K. 
 
(e) The change in entropy for the two-block system is  
 

ΔSL + ΔSR = −0.710 J/K + 0.723 J/K = +0.013 J/K. 
 
(f) The entropy change for the entire system is given by  
 

ΔS = ΔSL + LS ′Δ  + ΔSR + RS ′Δ  = ΔSL − ΔSL + ΔSR − ΔSR = 0, 
 
which is expected of a reversible process. 
 
14. (a) Work is done only for the ab portion of the process. This portion is at constant 
pressure, so the work done by the gas is 
 

0

0

4

0 0 0 0 0 0
0

(4.00 1.00 ) 3.00   3.00.
V

V

WW p dV p V V p V
p V

= = − = ⇒ =∫  

 
(b) We use the first law: ΔEint = Q − W. Since the process is at constant volume, the work 
done by the gas is zero and Eint = Q. The energy Q absorbed by the gas as heat is Q = nCV 
ΔT, where CV is the molar specific heat at constant volume and ΔT is the change in 
temperature. Since the gas is a monatomic ideal gas, 3 / 2VC R= . Use the ideal gas law to 
find that the initial temperature is  
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0 04b b

b
p V p VT
nR nR

= =  

 
and that the final temperature is  
 

0 0 0 0(2 )(4 ) 8c c
c

p V p V p VT
nR nR nR

= = = . 

Thus, 
0 0 0 0

0 0
8 43= = 6.00 .

2
p V p VQ nR p V
nR nR

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 
The change in the internal energy is ΔEint = 6p0V0 or ΔEint/p0V0 = 6.00. Since n = 1 mol, 
this can also be written Q = 6.00RT0. 
 
(c) For a complete cycle, ΔEint = 0. 
 
(d) Since the process is at constant volume, use dQ = nCV dT to obtain 
 

ln .c

b

T c
V VT

b

TdQ dTS nC nC
T T T

Δ = = =∫ ∫  

 
Substituting 3

2VC R=  and using the ideal gas law, we write 
 

0 0

0 0

(2 )(4 ) 2.
(4 )

c c c

b b b

T p V p V
T p V p V

= = =  

 
Thus, 3

2 ln 2S nRΔ = . Since n = 1, this is 3
2 ln 2 8.64 J/K.S RΔ = =  

 
(e) For a complete cycle, ΔEint = 0 and ΔS = 0. 
 
15. (a) The final mass of ice is (1773 g + 227 g)/2 = 1000 g. This means 773 g of water 
froze. Energy in the form of heat left the system in the amount mLF, where m is the mass 
of the water that froze and LF is the heat of fusion of water. The process is isothermal, so 
the change in entropy is  
 

ΔS = Q/T = –mLF/T = –(0.773 kg)(333 × 103 J/kg)/(273 K) = −943 J/K. 
 
(b) Now, 773 g of ice is melted. The change in entropy is 
 

= = = +943 J/K.FQ mLS
T T

Δ  
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(c) Yes, they are consistent with the second law of thermodynamics. Over the entire cycle, 
the change in entropy of the water–ice system is zero even though part of the cycle is 
irreversible. However, the system is not closed. To consider a closed system, we must 
include whatever exchanges energy with the ice and water. Suppose it is a constant-
temperature heat reservoir during the freezing portion of the cycle and a Bunsen burner 
during the melting portion. During freezing the entropy of the reservoir increases by 943 
J/K. As far as the reservoir–water–ice system is concerned, the process is adiabatic and 
reversible, so its total entropy does not change. The melting process is irreversible, so the 
total entropy of the burner–water–ice system increases. The entropy of the burner either 
increases or else decreases by less than 943 J/K. 
 
16. In coming to equilibrium, the heat lost by the 100 cm3 of liquid water (of mass mw = 
100 g and specific heat capacity cw = 4190 J/kg⋅K) is absorbed by the ice (of mass mi, 
which melts and reaches Tf > 0 °C). We begin by finding the equilibrium temperature: 
 

( ) ( )( ) ( )
warm water cools ice melts melted ice warmsice warms to 0

0
+ + + = 0

20 + 0 10 + + 0 = 0w w f i i F i w i f

Q
Q Q Q Q

c m T c m L m c m T

=

− ° ° − − ° − °

∑
 

 
which yields, after using LF = 333000 J/kg and values cited in the problem, Tf = 12.24 ° 
which is equivalent to Tf = 285.39 K. Sample Problem — “Entropy change of two blocks 
coming to equilibrium” shows that 

2
temp change

1

= ln TS mc
T

⎛ ⎞
Δ ⎜ ⎟

⎝ ⎠
 

 
for processes where ΔT = T2 – T1, and Eq. 20-2 gives 
 

melt
o

= FL mS
T

Δ  

 
for the phase change experienced by the ice (with To = 273.15 K). The total entropy 
change is (with T in Kelvins) 
 

system
285.39 273.15 285.39ln ln ln
293.15 263.15 273.15 273.15

( 11.24 0.66 1.47 9.75)J/K 0.64 J/K.

F i
w w i i i w

L mS m c m c m c⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − + + + =
 

 
17. The connection between molar heat capacity and the degrees of freedom of a 
diatomic gas is given by setting f = 5 in Eq. 19-51. Thus, 5 / 2, 7 / 2V pC R C R= = , and 

7 / 5γ = . In addition to various equations from Chapter 19, we also make use of Eq. 20-4 
of this chapter. We note that we are asked to use the ideal gas constant as R and not plug 
in its numerical value. We also recall that isothermal means constant temperature, so T2 = 
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T1 for the 1 → 2 process. The statement (at the end of the problem) regarding “per mole” 
may be taken to mean that n may be set identically equal to 1 wherever it appears. 
 
(a) The gas law in ratio form is used to obtain 
 

1 1 2
2 1

2 1

1= =     0.333
3 3

V p pp p
V p

⎛ ⎞
⇒ = =⎜ ⎟

⎝ ⎠
. 

 
(b) The adiabatic relations Eq. 19-54 and Eq. 19-56 lead to 
 

31 1
3 1 1.4 1.4

3 1

1= =   0.215
3 3

pV pp p
V p

γ
⎛ ⎞

⇒ = =⎜ ⎟
⎝ ⎠

. 

(c) Similarly, we find  
1

31 1
3 1 0.4 0.4

3 1

1 0.644.
3 3

TV TT T
V T

γ −
⎛ ⎞

= = ⇒ = =⎜ ⎟
⎝ ⎠

 

• process 1 → 2 
 
(d) The work is given by Eq. 19-14:  
 

W = nRT1 ln (V2/V1) = RT1 ln3 =1.10RT1. 
 
Thus, W/ nRT1= ln3 = 1.10. 
 
(e) The internal energy change is ΔEint = 0, since this is an ideal gas process without a 
temperature change (see Eq. 19-45). Thus, the energy absorbed as heat is given by the 
first law of thermodynamics: Q = ΔEint + W ≈ 1.10RT1, or Q/ nRT1= ln3 = 1.10. 
 
(f) ΔEint = 0 or ΔEint / nRT1=0 
 
(g) The entropy change is ΔS = Q/T1 = 1.10R, or ΔS/R = 1.10. 
 
• process 2 → 3 
 
(h) The work is zero, since there is no volume change. Therefore, W/nRT1 = 0. 
 
(i) The internal energy change is 
 

( ) ( ) int1
int 3 2 1 10.4

1

5= = 1 0.889   0.889.
2 3V

ETE nC T T R T RT
nRT
Δ⎛ ⎞⎛ ⎞Δ − − ≈ − ⇒ ≈ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
This ratio (−0.889) is also the value for Q/nRT1 (by either the first law of 
thermodynamics or by the definition of CV). 
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(j) ΔEint /nRT1= −0.889. 
 
(k) For the entropy change, we obtain 
 

0.4
0.43 3 1

1 1 1

35 5ln ln (1) ln (1) (1) ln 0 ln (3 ) 1.10 .
2 2

VV C T TS n n
R V R T T

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ ⎛ ⎞= + = + = + ≈ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
• process 3 → 1 
 
(l) By definition, Q = 0 in an adiabatic process, which also implies an absence of entropy 
change (taking this to be a reversible process). The internal change must be the negative 
of the value obtained for it in the previous process (since all the internal energy changes 
must add up to zero, for an entire cycle, and its change is zero for process 1 → 2), so 
ΔEint = +0.889RT1. By the first law of thermodynamics, then,  
 

W = Q − ΔEint = −0.889RT1, 
or W /nRT1= −0.889. 
 
(m) Q = 0 in an adiabatic process. 
 
(n) ΔEint /nRT1= +0.889. 
 
(o) ΔS/nR = 0. 
 
18. (a) It is possible to motivate, starting from Eq. 20-3, the notion that heat may be 
found from the integral (or “area under the curve”) of a curve in a TS diagram, such as 
this one. Either from calculus, or from geometry (area of a trapezoid), it is 
straightforward to find the result for a “straight-line” path in the TS diagram: 
 

straight

+
=

2
⎛ ⎞

Δ⎜ ⎟
⎝ ⎠

i fT T
Q S  

 
which could, in fact, be directly motivated from Eq. 20-3 (but it is important to bear in 
mind that this is rigorously true only for a process that forms a straight line in a graph that 
plots T versus S). This leads to  
 

Q = (300 K) (15 J/K) = 4.5×103 J 
 
for the energy absorbed as heat by the gas. 
 
(b) Using Table 19-3 and Eq. 19-45, we find 
 

( )( )( ) 3
int

3= = 2.0 mol 8.31 J/mol K 200 K 400 K = 5.0 10  J.
2

E n R T⎛ ⎞Δ Δ ⋅ − − ×⎜ ⎟
⎝ ⎠
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(c) By the first law of thermodynamics, 
 

W Q E= = 4.5 5.0 = 9.5 .− Δ − −int  kJ  kJ  kJa f  
 
19. We note that the connection between molar heat capacity and the degrees of freedom 
of a monatomic gas is given by setting f = 3 in Eq. 19-51. Thus, 3 / 2, 5 / 2V pC R C R= = , 
and 5 / 3γ = . 
 
(a) Since this is an ideal gas, Eq. 19-45 holds, which implies ΔEint = 0 for this process. 
Equation 19-14 also applies, so that by the first law of thermodynamics,  
 

Q = 0 + W = nRT1 ln V2/V1 = p1V1 ln 2 →   Q/p1V1= ln2 = 0.693. 
 
(b) The gas law in ratio form implies that the pressure decreased by a factor of 2 during 
the isothermal expansion process to V2 = 2.00V1, so that it needs to increase by a factor of 
4 in this step in order to reach a final pressure of p2 = 2.00p1. That same ratio form now 
applied to this constant-volume process, yielding 4.00 = T2T1, which is used in the 
following: 
 

( ) ( )2
2 1 1 1 1 1 1

1

3 3 3 91 4 1
2 2 2 2V

TQ nC T n R T T nRT p V p V
T

⎛ ⎞⎛ ⎞= Δ = − = − = − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
or 1 1/ 9 / 2 4.50Q p V = = . 
 
(c) The work done during the isothermal expansion process may be obtained by using Eq. 
19-14:  

W = nRT1 ln V2/V1= p1V1 ln 2.00  →   W/p1V1= ln2 = 0.693. 
 
(d) In step 2 where the volume is kept constant, W = 0. 
 
(e) The change in internal energy can be calculated by combining the above results and 
applying the first law of thermodynamics: 
 

( )int total total 1 1 1 1 1 1 1 1
9 9= = ln 2 + ln 2 + 0 =
2 2

E Q W p V p V p V p V⎛ ⎞Δ − −⎜ ⎟
⎝ ⎠

 

 
or ΔEint/p1V1 = 9/2 = 4.50. 
 
(f) The change in entropy may be computed by using Eq. 20-4: 
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21 1

1 1

2.00 4.00 3= ln + ln = ln 2.00 + ln (2.00)
2

= ln 2.00 + 3 ln 2.00 = 4 ln 2.00 = 23.0 J/K.

V
V TS R C R R

V T
R R R

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠  

 
The second approach consists of an isothermal (constant T) process in which the volume 
halves, followed by an isobaric (constant p) process.  
 
(g) Here the gas law applied to the first (isothermal) step leads to a volume half as big as 
the original. Since ln(1/ 2.00) ln 2.00= − , the reasoning used above leads to  
 

Q = – p1V1 ln 2.00 ⇒   1 1/ ln 2.00 0.693.Q p V = − = −  
 
(h) To obtain a final volume twice as big as the original, in this step we need to increase 
the volume by a factor of 4.00. Now, the gas law applied to this isobaric portion leads to 
a temperature ratio T2/T1 = 4.00. Thus, 
 

( ) ( )2
2 1 1 1 1 1 1

1

5 5 5 15= = = 1 = 4 1 =
2 2 2 2p

TQ C T R T T RT p V p V
T

⎛ ⎞
Δ − − −⎜ ⎟

⎝ ⎠
 

 
or Q/p1V1 = 15/2 = 7.50. 
 
(i) During the isothermal compression process, Eq. 19-14 gives  
 

W = nRT1 ln V2/V1= p1V1 ln (−1/2.00) = −p1V1 ln 2.00  ⇒   W/p1V1= −ln2 = −0.693. 
 
(j) The initial value of the volume, for this part of the process, is 1 / 2iV V= , and the final 
volume is Vf = 2V1. The pressure maintained during this process is p′ = 2.00p1. The work 
is given by Eq. 19-16: 
 

( ) ( )1 1 1 1 1 1 1
1= = = 2.00 2.00 = 3.00   / = 3.00.
2f iW p V p V V p V V p V W p V⎛ ⎞′ ′Δ − − ⇒⎜ ⎟

⎝ ⎠
 

 
(k) Using the first law of thermodynamics, the change in internal energy is 
 

( )int total total 1 1 1 1 1 1 1 1 1 1
15 9= = ln 2.00 3 ln 2.00 =
2 2

E Q W p V p V p V p V p V⎛ ⎞Δ − − − −⎜ ⎟
⎝ ⎠

 

 
or ΔEint/p1V1 = 9/2 = 4.50. The result is the same as that obtained in part (e). 
 
(l) Similarly, = 4 ln 2.00 = 23.0 J/K.S RΔ  the same as that obtained in part (f). 
 
20. (a) The final pressure is 
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( ) ( ) ( ) ( )3 3 31.00 m 2.00 m 1.00 m
= 5.00 kPa = 5.00 kPa 1.84 kPa .i f

f
V V a

p e e
−−

=  
 
(b) We use the ratio form of the gas law to find the final temperature of the gas: 
 

( )
3

3

(1.84 kPa)(2.00 m )600 K 441 K .
(5.00 kPa)(1.00 m )

f f
f i

i i

p V
T T

pV
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

 
For later purposes, we note that this result can be written “exactly” as Tf = Ti (2e–1). In 
our solution, we are avoiding using the “one mole” datum since it is not clear how precise 
it is. 
 
(c) The work done by the gas is 

 
( ) ( )

( ) ( )( )

/ /

1.00 3 1.00 2.00

(5.00 kPa) 5.00 kPa

5.00 kPa 1.00 m

3.16 kJ .

f fi i

ii

f V VV V a V a V a

Vi V
W pdV e dV e ae

e e e

− −

− −

⎡ ⎤= = = ⋅ −⎣ ⎦

= −

=

∫ ∫
 

 
(d) Consideration of a two-stage process, as suggested in the hint, brings us simply to Eq. 
20-4. Consequently, with 3

2VC R=  (see Eq. 19-43), we find 
 

( )1 1

3

3 3 3 3ln + ln = ln2 + ln 2 ln2 + ln2 + ln
2 2 2 2

(5000 Pa) (1.00 m ) 5 3ln 2
600 K 2 2

1.94 J K.

f f i i

i i i

V T pVS nR n R nR e e
V T T

− −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

 

 
21. We consider a three-step reversible process as follows: the supercooled water drop (of 
mass m) starts at state 1 (T1 = 268 K), moves on to state 2 (still in liquid form but at T2 = 
273 K), freezes to state 3 (T3 = T2), and then cools down to state 4 (in solid form, with T4 
= T1). The change in entropy for each of the stages is given as follows:  
 

ΔS12 = mcw ln (T2/T1), 

ΔS23 = −mLF/T2, 

               ΔS34 = mcI ln (T4/T3) = mcI ln (T1/T2) = −mcI ln (T2/T1). 

 
Thus the net entropy change for the water drop is 
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( )

( )( ) ( )( )

2
12 23 34

1 2

= + + = ln

1.00 g 333 J/g273 K= 1.00 g 4.19 J/g K 2.22 J/g K ln
268 K 273 K

= 1.18 J/K.

F
w I

T mLS S S S m c c
T T

⎛ ⎞
Δ Δ Δ Δ − −⎜ ⎟

⎝ ⎠

⎛ ⎞⋅ − ⋅ −⎜ ⎟
⎝ ⎠

−

 

 
22. (a) We denote the mass of the ice (which turns to water and warms to Tf) as m and the 
mass of original water (which cools from 80º down to Tf) as m′.  From ΣQ = 0 we have 
 

LF m + cm (Tf – 0º) + cm′ (Tf  – 80º) = 0 . 
 
Since LF = 333 × 103 J/kg, c = 4190 J/(kg·Cº), m′ = 0.13 kg, and m = 0.012 kg, we find Tf 
= 66.5ºC, which is equivalent to 339.67 K. 
 
(b) Using Eq. 20-2, the process of ice at 0º C turning to water at 0º C involves an entropy 
change of 

Q
T    =  

LF m
273.15 K   =  14.6 J/K . 

 
(c) Using Eq. 20-1, the process of m = 0.012 kg of water warming from 0º C to 66.5º C 
involves an entropy change of 
 

 
339.67

273.15

339.67ln 11.0 J/K
273.15

cmdT cm
T

⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ . 

 
(d) Similarly, the cooling of the original water involves an entropy change of 
 

339.67

353.15

339.67ln 21.2 J/K
353.15

cm dT cm
T
′ ⎛ ⎞′= = −⎜ ⎟

⎝ ⎠∫ . 

 
(e) The net entropy change in this calorimetry experiment is found by summing the 
previous results; we find (by using more precise values than those shown above) ΔSnet = 
4.39 J/K. 
 
23. With TL = 290 k, we find 
 

L L
H

H

290 K= 1 = =
1 1 0.40

T TT
T

ε
ε

− ⇒
− −

 

 
which yields the (initial) temperature of the high-temperature reservoir: TH = 483 K. If 
we replace ε = 0.40 in the above calculation with ε = 0.50, we obtain a (final) high 
temperature equal to H 580 KT ′ = . The difference is 
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H H = 580 K 483 K = 97 K.T T′ − −  
 
24. The answers to this exercise do not depend on the engine being of the Carnot design. 
Any heat engine that intakes energy as heat (from, say, consuming fuel) equal to |QH| = 
52 kJ and exhausts (or discards) energy as heat equal to |QL| = 36 kJ will have these 
values of efficiency ε and net work W. 
 

(a) Equation 20-12 gives L

H

1 0.31 31% .Q
Q

ε = − = =  

 
(b) Equation 20-8 gives H L 16 kJ .W Q Q= − =  
 
25. We solve (b) first. 
 
(b) For a Carnot engine, the efficiency is related to the reservoir temperatures by Eq. 20-
13. Therefore, 

H L
H

75 K= = = 341 K
0.22

T TT
ε
−  

 
which is equivalent to 68°C.  
 
(a) The temperature of the cold reservoir is TL = TH – 75 = 341 K – 75 K = 266 K. 
 
26. Equation 20-13 leads to 

L
8

H

373 K= 1 = 1 = 0.9999995
7 10  K

T
T

ε − −
×

 

 
quoting more figures than are significant. As a percentage, this is ε = 99.99995%. 
 
27. (a) The efficiency is 
 

H L

H

(235 115) K 0.236 23.6% .
(235+273) K

T T
T

ε − −
= = = =  

 
We note that a temperature difference has the same value on the Kelvin and Celsius 
scales. Since the temperatures in the equation must be in Kelvins, the temperature in the 
denominator is converted to the Kelvin scale. 
 
(b) Since the efficiency is given by ε = |W|/|QH|, the work done is given by 
 

4 4
H 0.236(6.30 10 J) = 1.49 10 J .W Qε= = × ×  
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28. All terms are assumed to be positive. The total work done by the two-stage system is 
W1 + W2. The heat-intake (from, say, consuming fuel) of the system is Q1, so we have (by 
Eq. 20-11 and Eq. 20-8) 
 

( ) ( )1 2 2 3 31 2

1 1 1

1 .
Q Q Q Q QW W

Q Q Q
ε

− + −+
= = = −  

 
Now, Eq. 20-10 leads to 

31 2

1 2 3

= = QQ Q
T T T

 

 
where we assume Q2 is absorbed by the second stage at temperature T2. This implies the 
efficiency can be written 

3 1 3

1 1

= 1 = .T T T
T T

ε −
−  

 
29. (a) The net work done is the rectangular “area” enclosed in the pV diagram: 
 

( )( ) ( )( )0 0 0 0 0 0 0 02 2 .W V V p p V V p p V p= − − = − − =  
 
Inserting the values stated in the problem, we obtain W = 2.27 kJ. 
 
(b) We compute the energy added as heat during the “heat-intake” portions of the cycle 
using Eq. 19-39, Eq. 19-43, and Eq. 19-46: 

 

( ) ( )

( ) ( )0 0

0 0

3 5+ 1 +
2 2

3 5 3 51 + 2 1 + 4 2
2 2 2 2

13
2

b c b
abc V b a p c b a a

a a a

b c b
a

a a a

T T TQ nC T T nC T T n R T n R T
T T T

T T TnRT p V
T T T

p V

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

=

 

 
where, to obtain the last line, the gas law in ratio form has been used. Therefore, since W 
= p0V0, we have Qabc = 13W/2 = 14.8 kJ. 
 
(c) The efficiency is given by Eq. 20-11: 
 

H

2 0.154 15.4%.
13

W
Q

ε = = = =  

 
(d) A Carnot engine operating between Tc and Ta has efficiency equal to 
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11 1 0.750 75.0%
4

a

c

T
T

ε = − = − = =  

 
where the gas law in ratio form has been used.  
 
(e) This is greater than our result in part (c), as expected from the second law of 
thermodynamics. 
 
30. (a) Equation 20-13 leads to 

L

H

333 K= 1 = 1 = 0.107.
373 K

T
T

ε − −  

 
We recall that a watt is joule-per-second. Thus, the (net) work done by the cycle per unit 
time is the given value 500 J/s. Therefore, by Eq. 20-11, we obtain the heat input per unit 
time: 

H

0.500 kJ s 4.67 kJ s .
0.107

W
Q

ε = ⇒ =  

 
(b) Considering Eq. 20-8 on a per unit time basis, we find (4.67 – 0.500) kJ/s = 4.17 kJ/s 
for the rate of heat exhaust. 
 

31. (a) We use HW Qε = . The heat absorbed is H
8.2kJ 33kJ.
0.25

W
Q

ε
= = =  

  
(b) The heat exhausted is then L H 33kJ 8.2 kJ 25kJ.Q Q W= − = − =  
 

(c) Now we have H
8.2kJ 26 kJ.
0.31

W
Q

ε
= = =  

 
(d) Similarly, C H 26 kJ 8.2 kJ = 18kJQ Q W= − = − . 
 
32. From Fig. 20-28, we see QH = 4000 J at TH = 325 K.  Combining Eq. 20-11 with Eq. 
20-13, we have  

W
 QH  = 1 – 

TC
 TH     ⇒   W  = 923 J . 

 
Now, for HT ′  = 550 K, we have   
 

 1         1692 J 1.7 kJC
H

H H

TW Q
Q T

′= − ⇒ = ≈
′ ′

. 
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33. (a) Energy is added as heat during the portion of the process from a to b. This portion 
occurs at constant volume (Vb), so Qin = nCV ΔT. The gas is a monatomic ideal gas, so 

3 / 2VC R=  and the ideal gas law gives  
 

ΔT = (1/nR)(pb Vb – pa Va) = (1/nR)(pb – pa) Vb. 
 
Thus, ( )3

in 2 b a bQ p p V= − . Vb and pb are given. We need to find pa. Now pa is the same as 

pc, and points c and b are connected by an adiabatic process. Thus, c c b bp V p Vγ γ=  and 
 

( )
5 3

6 41= = = 1.013 10  Pa = 3.167 10  Pa.
8.00

b
a c b

c

Vp p p
V

γ
⎛ ⎞ ⎛ ⎞ × ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
The energy added as heat is 
 

( ) ( )6 4 3 3 3
in

3= 1.013 10  Pa 3.167 10  Pa 1.00 10  m = 1.47 10  J.
2

Q −× − × × ×  

 
(b) Energy leaves the gas as heat during the portion of the process from c to a. This is a 
constant pressure process, so 
 

( ) ( )

( )( )( )

out

4 3 3 2

5 5= = =
2 2

5= 3.167 10  Pa 7.00 1.00 10  m = 5.54 10  J,
2

p a a c c a a cQ nC T p V p V p V V

−

Δ − −

× − × − ×
 

 
or 2

out| | 5.54 10  JQ = × . The substitutions Va – Vc = Va – 8.00 Va = – 7.00 Va and 5
2pC R=  

were made. 
 
(c) For a complete cycle, the change in the internal energy is zero and  
 

W = Q = 1.47 × 103 J – 5.54 × 102 J = 9.18 × 102 J. 
 
(d) The efficiency is  
 

ε = W/Qin = (9.18 × 102 J)/(1.47 × 103 J) = 0.624 = 62.4%. 
 
34. (a) Using Eq. 19-54 for process D → A gives 

 

( )0
0 0 0=         8 =

32D D A A
pp V p V V p Vγγ γ γ⇒  
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which leads to 8 = 32  5 / 3γ γ⇒ = . The result (see Sections 19-9 and 19-11) implies the 
gas is monatomic. 
 
(b) The input heat is that absorbed during process A → B: 
 

( )H 0 0
5 5 5= = 1 = 2 1 =
2 2 2

B
p A A

A

TQ nC T n R T nRT p V
T

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
and the exhaust heat is that liberated during process C → D: 
 

( )L
L 0 0

5 5 1 5= = 1 = 1 2 =
2 2 4 2p D D

D

TQ nC T n R T nRT p V
T

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ − − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
where in the last step we have used the fact that 1

4D AT T=  (from the gas law in ratio form). 
Therefore, Eq. 20-12 leads to 
 

L

H

11 1 0.75 75%.
4

Q
Q

ε = − = − = =  

 
35. (a) The pressure at 2 is p2 = 3.00p1, as given in the problem statement. The volume is 
V2 = V1 = nRT1/p1. The temperature is 
 

2 2 1 1 2
2 1

1

3.00 3.00   3.00.p V p V TT T
nR nR T

= = = ⇒ =  

 
(b) The process 2 → 3 is adiabatic, so 1 1

2 2 3 3T V T Vγ γ− −= . Using the result from part (a), V3 = 
4.00V1, V2 = V1, and γ =1.30, we obtain 
 

1 0.30
3 3 2

1 2 3

13.00 3.00 1.98
/ 3.00 4.00

T T V
T T V

γ −
⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

 
(c) The process 4 → 1 is adiabatic, so 1 1

4 4 1 1T V TVγ γ− −= . Since V4 = 4.00V1, we have  
 

1 0.30
4 1

1 4

1 0.660.
4.00

T V
T V

γ −
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(d) The process 2 → 3 is adiabatic, so 2 2 3 3p V p Vγ γ=  or ( )3 2 3 2p V V pγ= . Substituting V3 
= 4.00V1, V2 = V1, p2 = 3.00p1, and γ  = 1.30, we obtain 
 



  CHAPTER 20 856 

3
1.30

1

3.00= 0.495.
(4.00)

p
p

=  

 
(e) The process 4 → 1 is adiabatic, so 4 4 1 1p V p Vγ γ=  and 
 

4 1
1.30

1 4

1 0.165,
(4.00)

p V
p V

γ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

 
where we have used V4 = 4.00V1.  
 
(f) The efficiency of the cycle is ε = W/Q12, where W is the total work done by the gas 
during the cycle and Q12 is the energy added as heat during the 1 → 2 portion of the cycle, 
the only portion in which energy is added as heat. The work done during the portion of 
the cycle from 2 to 3 is W23 =  ∫ p dV. Substitute 2 2p p V Vγ γ=  to obtain 
 

( )3

2

1 12 2
23 2 2 2 3 .

1
V

V

p VW p V V dV V V
γ

γ γ γ γ

γ
− − −⎛ ⎞

= = −⎜ ⎟−⎝ ⎠
∫  

 
Substitute V2 = V1, V3 = 4.00V1, and p3 = 3.00p1 to obtain 
 

1 1 1
23 1 1

3 1 3 1= 1 = 1 .
1 4 1 4

p V nRTW γ γγ γ− −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
Similarly, the work done during the portion of the cycle from 4 to 1 is 
 

( )1 11 1 1 1 1
41 4 1 1 1

1 1= = 1 = 1 .
1 1 4 1 4

p V p V nRTW V V
γ

γ γ
γ γγ γ γ

− −
− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
No work is done during the 1 → 2 and 3 → 4 portions, so the total work done by the gas 
during the cycle is 

1
23 41 1

2 1= + = 1 .
1 4

nRTW W W γγ −

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠
 

The energy added as heat is  
 

Q12 = nCV (T2 – T1) = nCV (3T1 – T1) = 2nCVT1, 
 
where CV is the molar specific heat at constant volume. Now  
 

γ = Cp/CV = (CV + R)/CV = 1 + (R/CV), 
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so CV = R/(γ – 1). Here Cp is the molar specific heat at constant pressure, which for an 
ideal gas is Cp = CV + R. Thus, Q12 = 2nRT1/(γ – 1). The efficiency is 
 

1
1 1

1

2 1 1 11 1 .
1 4 2 4

nRT
nRTγ γ

γε
γ − −

−⎛ ⎞= − = −⎜ ⎟− ⎝ ⎠
 

 
With γ = 1.30, the efficiency is ε = 0.340 or 34.0%. 
 
36. (a) Using Eq. 20-14 and Eq. 20-16, we obtain 
 

( )L 300 K 280 K1.0 J 0.071J.
280 KC

Q
W

K
⎛ ⎞−

= = =⎜ ⎟
⎝ ⎠

 

 
(b) A similar calculation (being sure to use absolute temperature) leads to 0.50 J in this 
case. 
 
(c) With TL = 100 K, we obtain |W| = 2.0 J. 
 
(d) Finally, with the low temperature reservoir at 50 K, an amount of work equal to |W| = 
5.0 J is required. 
 
37. The coefficient of performance for a refrigerator is given by K = |QL|/|W|, where QL is 
the energy absorbed from the cold reservoir as heat and W is the work done during the 
refrigeration cycle, a negative value. The first law of thermodynamics yields QH + QL – 
W = 0 for an integer number of cycles. Here QH is the energy ejected to the hot reservoir 
as heat. Thus, QL = W – QH. QH is negative and greater in magnitude than W, so |QL| = 
|QH| – |W|. Thus, 

H .
Q W

K
W
−

=  

 
The solution for |W| is |W| = |QH|/(K + 1). In one hour, 

 
7.54MJ 1.57 MJ.
3.8 1

W = =
+

 

 
The rate at which work is done is (1.57 × 106 J)/(3600 s) = 440 W. 
 
38. Equation 20-10 still holds (particularly due to its use of absolute values), and energy 
conservation implies |W| + QL = QH. Therefore, with TL = 268.15 K and TH = 290.15 K, 
we find 

( )H
H L H

L

290.15
268.15

TQ Q Q W
T

⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 



  CHAPTER 20 858 

which (with |W| = 1.0 J) leads to H
1 13J.

1 268.15 / 290.15
Q W ⎛ ⎞= =⎜ ⎟−⎝ ⎠

 

 
39. A Carnot refrigerator working between a hot reservoir at temperature TH and a cold 
reservoir at temperature TL has a coefficient of performance K that is given by  
 

L

H L

TK
T T

=
−

. 

 
For the refrigerator of this problem, TH = 96° F = 309 K and TL = 70° F = 294 K, so  
 

K = (294 K)/(309 K – 294 K) = 19.6. 
 
The coefficient of performance is the energy QL drawn from the cold reservoir as heat 
divided by the work done: K = |QL|/|W|. Thus,  
 

|QL| = K|W| = (19.6)(1.0 J) = 20 J. 
 
40. (a) Equation 20-15 provides 
 

L
H L

H L

1 C
C

C

Q KK Q Q
Q Q K

⎛ ⎞+
= ⇒ = ⎜ ⎟− ⎝ ⎠

 

 
which yields |QH| = 49 kJ when KC = 5.7 and |QL| = 42 kJ. 
 
(b) From Section 20-5 we obtain 
 

H L 49.4 kJ 42.0 kJ 7.4 kJW Q Q= − = − =  
 
if we take the initial 42 kJ datum to be accurate to three figures. The given temperatures 
are not used in the calculation; in fact, it is possible that the given room temperature 
value is not meant to be the high temperature for the (reversed) Carnot cycle — since it 
does not lead to the given KC using Eq. 20-16. 
 
41. We are told K = 0.27KC, where 
 

L

H L

294 K= = = 23
307 K 294 KC

TK
T T− −

 

 
where the Fahrenheit temperatures have been converted to Kelvins. Expressed on a per 
unit time basis, Eq. 20-14 leads to 
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( )( )
L| | / 4000 Btu h 643 Btu h.

0.27 23
W Q t
t K

= = =  

 
Appendix D indicates 1 But/h = 0.0003929 hp, so our result may be expressed as |W|/t = 
0.25 hp. 
 
42. The work done by the motor in t = 10.0 min is |W| = Pt = (200 W)(10.0 min)(60 s/min) 
= 1.20 × 105 J. The heat extracted is then 
 

( ) ( )5
L 6

L
H L

270K 1.20 10 J
1.08 10 J.

300K 270K
T W

Q K W
T T

×
= = = = ×

− −
 

 
43. The efficiency of the engine is defined by ε = W/Q1 and is shown in the text to be  
 

1 2 1 2

1 1 1

T T T TW
T Q T

ε − −
= ⇒ = . 

 
The coefficient of performance of the refrigerator is defined by K = Q4/W and is shown in 
the text to be  

4 4 4

3 4 3 4

T Q TK
T T W T T

= ⇒ =
− −

. 

 
Now Q4 = Q3 – W, so  

(Q3 – W)/W = T4/(T3 – T4). 
 
The work done by the engine is used to drive the refrigerator, so W is the same for the 
two. Solve the engine equation for W and substitute the resulting expression into the 
refrigerator equation. The engine equation yields W = (T1 – T2)Q1/T1 and the substitution 
yields 

 

( )
3 3 14

3 4 1 1 2

= 1 = 1.Q Q TT
T T W Q T T

− −
− −

 

 
Solving for Q3/Q1, we obtain 
 

( )
( )

2 13 34 1 2 1 2

1 3 4 1 3 4 1 4 3

1
1 .

1
T TQ TT T T T T

Q T T T T T T T T
−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− −

= + = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
With T1 = 400 K, T2 = 150 K, T3 = 325 K, and T4 = 225 K, the ratio becomes Q3/Q1 = 
2.03. 
 
44. (a) Equation 20-13 gives the Carnot efficiency as 1 – TL /TH .  This gives 0.222 in this 
case.  Using this value with Eq. 20-11 leads to  
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W = (0.222)(750 J) = 167 J. 

 
(b) Now, Eq. 20-16 gives KC = 3.5.  Then, Eq. 20-14 yields |W| = 1200/3.5 = 343 J.   
 
45. We need nine labels: 
 

Label Number of molecules on side 1 Number of molecules on side 2 
I 8 0 
II 7 1 
III 6 2 
IV 5 3 
V 4 4 
VI 3 5 
VII 2 6 
VIII 1 7 
IX 0 8 

 
The multiplicity W is computing using Eq. 20-20. For example, the multiplicity for label 
IV is 

( ) ( ) ( ) ( )
8! 40320= = = 56

5! 3! 120 6
W  

 
and the corresponding entropy is (using Eq. 20-21) 
 

( ) ( )23 23= ln = 1.38 10 J/K ln 56 = 5.6 10 J/K.S k W − −× ×  
 
In this way, we generate the following table: 
 

Label W S 
I 1 0 
II 8 2.9 × 10–23 J/K 
III 28 4.6 × 10–23 J/K 
IV 56 5.6 × 10–23 J/K 
V 70 5.9 × 10–23 J/K 
VI 56 5.6 × 10–23 J/K 
VII 28 4.6 × 10–23 J/K 
VIII 8 2.9 × 10–23 J/K 
IX 1 0 

 
46. (a) We denote the configuration with n heads out of N trials as (n; N). We use Eq. 20-
20: 

( ) ( ) ( )
1450!25;50 = = 1.26 10 .

25! 50 25 !
W ×

−
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(b) There are 2 possible choices for each molecule: it can either be in side 1 or in side 2 
of the box. If there are a total of N independent molecules, the total number of available 
states of the N-particle system is 
 

total = 2 2 2 2 = 2 .NN × × × ×  
 
With N  = 50, we obtain Ntotal = 250 =1.13 × 1015. 
 
(c) The percentage of time in question is equal to the probability for the system to be in 
the central configuration: 
 

( ) ( ) 14

50 15

25;50 1.26 1025;50 11.1%.
2 1.13 10

W
p ×

= = =
×

 

 
With N = 100, we obtain  
 
(d) W(N/2, N) = N!/[(N/2)!]2 = 1.01 × 1029, 
 
(e) Ntotal = 2N =1.27 × 1030, 
 
(f) and p(N/2; N) = W(N/2, N)/ Ntotal = 8.0%. 
 
Similarly, for N = 200, we obtain  
 
(g) W(N/2, N) = 9.25 × 1058,  
 
(h) Ntotal =1.61 × 10 60,  
 
(i) and p(N/2; N) = 5.7%. 
 
(j) As N increases, the number of available microscopic states increase as 2N, so there are 
more states to be occupied, leaving the probability less for the system to remain in its 
central configuration. Thus, the time spent in there decreases with an increase in N. 
 
47. (a) Suppose there are nL molecules in the left third of the box, nC molecules in the 
center third, and nR molecules in the right third. There are N! arrangements of the N 
molecules, but nL! are simply rearrangements of the nL molecules in the right third, nC! 
are rearrangements of the nC molecules in the center third, and nR! are rearrangements of 
the nR molecules in the right third. These rearrangements do not produce a new 
configuration. Thus, the multiplicity is 
 

!= .
! ! !L C R

NW
n n n
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(b) If half the molecules are in the right half of the box and the other half are in the left 
half of the box, then the multiplicity is 
 

( ) ( )
!= .

2 ! 2 !B
NW

N N
 

 
If one-third of the molecules are in each third of the box, then the multiplicity is 
 

( ) ( ) ( )
!= .

3 ! 3 ! 3 !A
NW

N N N
 

The ratio is 
( ) ( )

( ) ( ) ( )
2 ! 2 !

= .
3 ! 3 ! 3 !

A

B

N NW
W N N N

 

 
(c) For N = 100, 

1650!50!= = 4.2 10 .
33!33!34!

A

B

W
W

×  

 
Note: The more parts the box is divided into, the greater the number of configurations. 
This exercise illustrates the statistical view of entropy, which is related to W as 

lnS k W= .  
 
48. (a) A good way to (mathematically) think of this is to consider the terms when you 
expand:  

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4. 
 
The coefficients correspond to the multiplicities.  Thus, the smallest coefficient is 1. 
 
(b) The largest coefficient is 6. 
 
(c) Since the logarithm of 1 is zero, then Eq. 20-21 gives S = 0 for the least case. 
 
(d) S = k ln(6) = 2.47 × 10−23 J/K. 
 
49. From the formula for heat conduction, Eq. 19-32, using Table 19-6, we have 
 

H  =  kA 
TH - TC

L   = (401) ( )π(0.02)2  270/1.50  

 
which yields H = 90.7 J/s.  Using Eq. 20-2, this is associated with an entropy rate-of-
decrease of the high temperature reservoir (at 573 K) equal to  
 

ΔS/t = –90.7/573 = –0.158 (J/K)/s. 
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And it is associated with an entropy rate-of-increase of the low temperature reservoir (at 
303 K) equal to  
 

ΔS/t = +90.7/303 = 0.299 (J/K)/s. 
 
The net result is (0.299 – 0.158) (J/K)/s = 0.141 (J/K)/s. 
 
50. For an isothermal ideal gas process, we have Q = W = nRT ln(Vf /Vi ).  Thus,  
 

ΔS = Q/T = W/T = nR ln(Vf /Vi )  
 

(a) Vf /Vi = (0.800)/(0.200) = 4.00, ΔS = (0.55)(8.31)ln(4.00) = 6.34 J/K. 
 
(b) Vf /Vi = (0.800)/(0.200) = 4.00, ΔS = (0.55)(8.31)ln(4.00) = 6.34 J/K. 
 
(c) Vf /Vi = (1.20)/(0.300) = 4.00, ΔS = (0.55)(8.31)ln(4.00) = 6.34 J/K. 
 
(d) Vf /Vi = (1.20)/(0.300) = 4.00, ΔS = (0.55)(8.31)ln(4.00) = 6.34 J/K. 
 
51. Increasing temperature causes a shift of the probability distribution function P(v) 
toward higher speed. According to kinetic theory, the rms speed and the most probable 
speed are (see Eqs. 19-34 and 19-35) rms 3 /v RT M= , 2 / ,Pv RT M= where T is the 

temperature and M is the molar mass. The rms speed is defined as 2
rms avg( )v v= , where 

2 2
avg 0

( ) ( )v v P v dv
∞

= ∫ , with the Maxwell’s speed distribution function given by  

 
2

3/ 2
2 / 2( ) 4

2
Mv RTMP v v e

RT
π

π
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

Thus, the difference between the two speeds is 
 

( )rms
3 2 3 2P

RT RT RTv v v
M M M

Δ = − = − = − . 

 
(a) With M = 28 g/mol = 0.028 kg/mol (see Table 19-1) and Ti = 250 K, we have 
 

( ) ( ) (8.31 J/mol K)(250 K)3 2 3 2 87 m/s
0.028 kg/mol

i
i

RTv
M

⋅
Δ = − = − = . 

(b) Similarly, at Tf = 500 K,  
 

( ) ( ) 2(8.31 J/mol K)(500 K)3 2 3 2 122 m/s 1.2 10 m/s
0.028 kg/mol

f
f

RT
v

M
⋅

Δ = − = − = ≈ × . 
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(c) From Table 19-3 we have CV = 5R/2 (see also Table 19-2). For n = 1.5 mol, using Eq. 
20-4, we find the change in entropy to be  
 

500 Kln ln 0 (1.5 mol)(5 / 2)(8.31 J/mol K)ln
250 K

22 J/K.

f f
V

i i

V T
S n R nC

V T
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

Δ = + = + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

=

 

Notice that the expression for Δv implies 2
2

( )
( 3 2)

MT v
R

= Δ
−

. Thus, one may also 

express ΔS as  
2

2

( )
ln ln 2 ln

( )
f f f

V V V
i i i

T v v
S nC nC nC

T v v
⎛ ⎞Δ Δ⎛ ⎞ ⎛ ⎞

Δ = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

 
The entropy of the gas increases as the result of temperature increase.  
 
52. (a) The most obvious input-heat step is the constant-volume process. Since the gas is 

monatomic, we know from Chapter 19 that 3
2VC R= . Therefore, 

 

( ) ( )3 J1.0 mol 8.31 600 K 300 K 3740 J.
2  mol KV VQ nC T ⎛ ⎞⎛ ⎞= Δ = − =⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

 

 
Since the heat transfer during the isothermal step is positive, we may consider it also to 
be an input-heat step. The isothermal Q is equal to the isothermal work (calculated in the 
next part) because ΔEint = 0 for an ideal gas isothermal process (see Eq. 19-45). 
Borrowing from the part (b) computation, we have 
 

( ) ( )isotherm H
J= ln2 = 1 mol 8.31 600 K ln2 = 3456 J.

 mol K
Q nRT ⎛ ⎞

⎜ ⎟⋅⎝ ⎠
 

 
Therefore, QH = QV + Qisotherm = 7.2 × 103 J. 
 
(b) We consider the sum of works done during the processes (noting that no work is done 
during the constant-volume step). Using Eq. 19-14 and Eq. 19-16, we have 
 

W nRT V
V

p V V= +H
max

min
min min maxln

F
HG
I
KJ −b g 

 
where, by the gas law in ratio form, the volume ratio is 
 

V
V

T
T

max

min

H

L

K
 K

= = 600
300

= 2. 

Thus, the net work is 



 

  

865

 

( ) ( )

( ) ( ) ( )( )

max
H min min H L H L

min

2

= ln2 + 1 = ln2 + 1 2 = ln2

J= 1 mol 8.31 600 K ln2 300 K
 mol  K

= 9.6 10  J.

VW nRT p V nRT nRT nR T T
V

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠
⎛ ⎞ −⎜ ⎟⋅⎝ ⎠

×

 

 
(c) Equation 20-11 gives 

H

0.134 13%.W
Q

ε = = ≈  

 
53. (a) If TH is the temperature of the high-temperature reservoir and TL is the 
temperature of the low-temperature reservoir, then the maximum efficiency of the engine 
is 

( )
( )

H L

H

800 + 40  K
= = = 0.78  or  78%.

800 + 273  K
T T

T
ε −  

 
(b) The efficiency is defined by ε = |W|/|QH|, where W is the work done by the engine and 
QH is the heat input. W is positive. Over a complete cycle, QH = W + |QL|, where QL is the 
heat output, so ε = W/(W + |QL|) and |QL| = W[(1/ε) – 1]. Now ε = (TH – TL)/TH, where TH 
is the temperature of the high-temperature heat reservoir and TL is the temperature of the 
low-temperature reservoir. Thus, 
 

L L
L

H L H L

1 1 and .T WTQ
T T T Tε

− = =
− −

 

 
The heat output is used to melt ice at temperature Ti = – 40°C. The ice must be brought to 
0°C, then melted, so  

|QL| = mc(Tf – Ti) + mLF, 
 
where m is the mass of ice melted, Tf is the melting temperature (0°C), c is the specific 
heat of ice, and LF is the heat of fusion of ice. Thus,  
 

WTL/(TH – TL) = mc(Tf – Ti) + mLF. 
 
We differentiate with respect to time and replace dW/dt with P, the power output of the 
engine, and obtain  
 

PTL/(TH – TL) = (dm/dt)[c(Tf – Ti) + LF]. 
 
Therefore, 
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( )
L

H L

1= .
f i F

dm PT
dt T T c T T L

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠

 

 
Now, P = 100 × 106 W, TL = 0 + 273 = 273 K, TH = 800 + 273 = 1073 K, Ti = –40 + 273 
= 233 K, Tf = 0 + 273 = 273 K, c = 2220 J/kg·K, and LF = 333 × 103 J/kg, so 
 

( )( )
( )( )

6

3

100 10  J/s 273 K 1=
1073 K 273 K 2220 J/kg K 273 K 233 K + 333 10  J/kg

82kg/s.

dm
dt

⎡ ⎤× ⎡ ⎤
⎢ ⎥ ⎢ ⎥

− ⋅ − ×⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
=

 

 
We note that the engine is now operated between 0°C and 800°C. 
 
54. Equation 20-4 yields  
 

ΔS =  nR ln(Vf /Vi)  +   nCV ln(Tf /Ti)  =  0 + nCV ln(425/380) 
 
where n = 3.20 and CV  =  32 R  (Eq. 19-43). This gives 4.46 J/K. 
 
55. (a) Starting from 0Q =∑  (for calorimetry problems) we can derive (when no phase 
changes are involved) 

1 1 1 2 2 2

1 1 2 2

+= = 40.9 C,
+f

c m T c m TT
c m c m

°  

which is equivalent to 314 K. 
 
(b) From Eq. 20-1, we have 
 

( )( )
314

copper 353

314= = 386 0.600 ln = 27.1 J/K.
353

cm dTS
T

⎛ ⎞Δ −⎜ ⎟
⎝ ⎠∫  

 
(c) For water, the change in entropy is 
 

( )( )
314

water 283

314= = 4190 0.0700 ln = 30.5 J/K.
283

cm dTS
T

⎛ ⎞Δ ⎜ ⎟
⎝ ⎠∫  

 
(d) The net result for the system is (30.5 – 27.1) J/K = 3.4 J/K. (Note: These calculations 
are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 
was used to convert to Kelvins, and all intermediate steps were retained to full calculator 
accuracy.) 
 
56. Using Hooke’s law, we find the spring constant to be 
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1.50 N 42.86 N/m
0.0350 m

s

s

Fk
x

= = = . 

 
To find the rate of change of entropy with a small additional stretch, we use Eq. 20-7 and 
obtain 
 

3| | (42.86 N/m)(0.0170 m) 2.65 10  J/K m
275 K

dS k x
dx T

−= = = × ⋅ . 

 
57. Since the volume of the monatomic ideal gas is kept constant, it does not do any work 
in the heating process. Therefore the heat Q it absorbs is equal to the change in its inertial 

energy: int
3
2

dQ dE n R dT= = . Thus, 

 
( ) ( )3 2 3 3 J 400 Kln 1.00 mol 8.31 ln

2 2  mol K 300 K
3.59 J/K.

f

i

T f

T
i

TnR dTdQS nR
T T T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠⎝ ⎠
=

∫ ∫  

 
58. With the pressure kept constant, 
 

( ) 3 5= = + = + = ,
2 2p VdQ nC dT n C R dT nR nR dT nRdT⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
so we need to replace the factor 3/2 in the last problem by 5/2. The rest is the same. Thus 
the answer now is 
 

( )5 5 J 400 K= ln = 1.00 mol 8.31 ln = 5.98 J/K.
2 2  mol  K 300 K

f

i

T
S nR

T
⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
59. As the ice warms, the energy it receives as heat when the temperature changes by dT 
is dQ = mcI dT, where m is the mass of the ice and cI is the specific heat of ice. If Ti 
(= 20 C− ° = 253 K) is the initial temperature and Tf (= 273 K) is the final temperature, 
then the change in its entropy is 
 

( )( )1
273 Kln 0.60 kg 2220 J/kg K ln 101 J/K.
253 K

f

i

T f
I IT

i

TdQ dTS mc mc
T T T

⎛ ⎞ ⎛ ⎞Δ = = = = ⋅ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫  

 
Melting is an isothermal process. The energy leaving the ice as heat is mLF, where LF is 
the heat of fusion for ice. Thus,  

( )( )3

2

0.60 kg 333 10  J/kg
732 J/K.

273 K
FmLQS

T T

×
Δ = = = =  
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For the warming of the water from the melted ice, the change in entropy is 
 

( )( )3
313 Kln 0.600 kg 4190 J/kg K ln 344 J/K
273 K

f
w

i

T
S mc

T
⎛ ⎞ ⎛ ⎞Δ = = ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
, 

 
where cw = 4190 J/kg ⋅ K is the specific heat of water. The total change in entropy for the 
ice and the water it becomes is 
 

3
1 2 3 101 J/K 732 J/K 344 J/K 1.18 10  J/KS S S SΔ = Δ + Δ + Δ = + + = × . 

 
From the above, we readily see that the biggest increase in entropy comes from 2SΔ , 
which accounts for the melting process. 
 
60. The net work is figured from the (positive) isothermal expansion (Eq. 19-14) and the 
(negative) constant-pressure compression (Eq. 19-48).  Thus, 
 

Wnet = nRTH ln(Vmax/Vmin) +  nR(TL – TH) 
 
where n = 3.4, TH = 500 K, TL = 200 K, and Vmax/Vmin = 5/2  (same as the ratio TH /TL ).  
Therefore, Wnet = 4468 J.  Now, we identify the “input heat” as that transferred in steps 1 
and 2:  

Qin = Q1 + Q2 = nCV (TH – TL)  + nRTH ln(Vmax/Vmin) 
 
where CV  = 5R/2 (see Table 19-3).  Consequently, Qin = 34135 J.  Dividing these results 
gives the efficiency:  Wnet /Qin = 0.131 (or about 13.1%). 
 
61. Since the inventor’s claim implies that less heat (typically from burning fuel) is 
needed to operate his engine than, say, a Carnot engine (for the same magnitude of net 
work), then QH′ < QH (see Fig. 20-34(a)) which implies that the Carnot (ideal refrigerator) 
unit is delivering more heat to the high temperature reservoir than engine X draws from it.  
This (using also energy conservation) immediately implies Fig. 20-34(b), which violates 
the second law. 
 
62. (a) From Eq. 20-1, we infer Q = ∫ T dS, which corresponds to the “area under the 
curve” in a T-S diagram.  Thus, since the area of a rectangle is (height)×(width), we have 
Q1→2 = (350)(2.00) = 700 J. 
 
(b) With no “area under the curve” for process 2 → 3, we conclude Q2→3 = 0. 
 
(c) For the cycle, the (net) heat should be the “area inside the figure,” so using the fact 
that the area of a triangle is ½ (base) × (height), we find 
 

Qnet =  
1
2 (2.00)(50) = 50 J. 
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(d) Since we are dealing with an ideal gas (so that ΔEint = 0 in an isothermal process), 
then 

W1→2  = Q1→2  = 700 J. 
 
(e) Using Eq. 19-14 for the isothermal work, we have 
 

W1→2 = nRT ln 
V2
V1

 . 

 
where T = 350 K.  Thus, if V1 = 0.200 m3, then we obtain 
 

V2 = V1 exp (W/nRT)  = (0.200) e0.12  = 0.226 m3. 
 

(f) Process 2 → 3 is adiabatic; Eq. 19-56 applies with γ = 5/3 (since only translational 
degrees of freedom are relevant here): 
 

T2V2
γ-1 = T3V3

γ-1 . 
This yields V3 = 0.284 m3. 
 
(g) As remarked in part (d), ΔEint = 0 for process 1 → 2. 
 
(h) We find the change in internal energy from Eq. 19-45 (with CV = 32 R): 
 

ΔEint  =  nCV (T3 – T2) = –1.25 × 103 J. 
 

(i) Clearly, the net change of internal energy for the entire cycle is zero.  This feature of a 
closed cycle is as true for a T-S diagram as for a p-V diagram. 
 
(j) For the adiabatic (2 → 3) process, we have W = −ΔEint.  Therefore, W = 1.25 × 103 J.  
Its positive value indicates an expansion.  
 
63. (a) It is a reversible set of processes returning the system to its initial state; clearly, 
ΔSnet = 0. 
 
(b) Process 1 is adiabatic and reversible (as opposed to, say, a free expansion) so that Eq. 
20-1 applies with dQ = 0 and yields ΔS1 = 0. 
 
(c) Since the working substance is an ideal gas, then an isothermal process implies Q = W, 
which further implies (regarding Eq. 20-1) dQ = p dV. Therefore, 
 

( )pV
nR

dQ p dV dVnR
T V

= =∫ ∫ ∫  

 
which leads to 3 ln(1/ 2) 23.0 J K.S nRΔ = = −  
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(d) By part (a), ΔS1 + ΔS2 + ΔS3 = 0. Then, part (b) implies ΔS2 = −ΔS3. Therefore, ΔS2 = 
23.0 J/K. 
 
64. (a) Combining Eq. 20-11 with Eq. 20-13, we obtain 
 

( )L
H

H

260 K1 500 J 1 93.8J.
320 K

TW Q
T

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(b) Combining Eq. 20-14 with Eq. 20-16, we find 
 

( ) ( )L
H L

L
260K

320K 260K

1000 J 231 J.T
T T

Q
W

−−

= = =  

 
65. (a) Processes 1 and 2 both require the input of heat, which is denoted QH. Noting that 
rotational degrees of freedom are not involved, then, from the discussion in Chapter 19, 

3 / 2, 5 / 2V pC R C R= = , and 5 / 3γ = . We further note that since the working substance 
is an ideal gas, process 2 (being isothermal) implies Q2 = W2. Finally, we note that the 
volume ratio in process 2 is simply 8/3. Therefore, 
 

( )H 1 2
8' ln
3VQ Q Q nC T T nRT ′= + = − +  

 
which yields (for T = 300 K and T' = 800 K) the result QH = 25.5 × 103 J. 
 
(b) The net work is the net heat (Q1 + Q2 + Q3). We find Q3 from  
 

nCp (T − T') = −20.8 × 103 J. 
Thus, W = 4.73 × 103 J. 
 
(c) Using Eq. 20-11, we find that the efficiency is 
 

3

3
H

4.73 10 0.185 or 18.5%.
25.5 10

W
Q

ε ×
= = =

×
 

 
66. (a) Equation 20-14 gives K = 560/150 = 3.73. 
 
(b) Energy conservation requires the exhaust heat to be 560 + 150 = 710 J. 
 
67. The change in entropy in transferring a certain amount of heat Q from a heat reservoir 
at T1 to another one at T2 is ΔS = ΔS1 + ΔS2 = Q(1/T2 − 1/T1). 
 
(a) ΔS = (260 J)(1/100 K – 1/400 K) = 1.95 J/K. 
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(b) ΔS = (260 J)(1/200 K – 1/400 K) = 0.650 J/K. 
 
(c) ΔS = (260 J)(1/300 K – 1/400 K) = 0.217 J/K. 
 
(d) ΔS = (260 J)(1/360 K – 1/400 K) = 0.072 J/K. 
 
(e) We see that as the temperature difference between the two reservoirs decreases, so 
does the change in entropy. 
 
68. Equation 20-10 gives 

to to

from from

300 K 75.
4.0 K

Q T
Q T

= = =  

 
69. (a) Equation 20-2 gives the entropy change for each reservoir (each of which, by 
definition, is able to maintain constant temperature conditions within itself).  The net 
entropy change is therefore 

ΔS   =   
+|Q|

273 + 24  + 
−|Q|  

273 + 130  = 4.45 J/K 

 
where we set |Q| = 5030 J.   
 
(b) We have assumed that the conductive heat flow in the rod is “steady-state”; that is, 
the situation described by the problem has existed and will exist for “long times.”  Thus 
there are no entropy change terms included in the calculation for elements of the rod 
itself. 
 
70. (a) Starting from 0Q =∑   (for calorimetry problems) we can derive (when no phase 
changes are involved) 

1 1 1 2 2 2

1 1 2 2

+= = 44.2 C,
+f

c m T c m TT
c m c m

− °  

which is equivalent to 229 K. 
 
(b) From Eq. 20-1, we have 
 

( ) ( )
229

tungsten 303

229= = 134 0.045 ln = 1.69 J/K.
303

cm dTS
T

⎛ ⎞Δ −⎜ ⎟
⎝ ⎠∫  

(c) Also, 

( )( )
229

silver 153

229= = 236 0.0250 ln = 2.38 J/K.
153

cm dTS
T

⎛ ⎞Δ ⎜ ⎟
⎝ ⎠∫  

 
(d) The net result for the system is (2.38 – 1.69) J/K = 0.69 J/K. (Note: These calculations 
are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 
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was used to convert to Kelvins, and all intermediate steps were retained to full calculator 
accuracy.) 
 
71. (a) We use Eq. 20-16. For configuration A 
 

( ) ( ) ( ) ( )
14! 50!= = = 1.26 10 .

2 ! 2 ! 25! 25!A
NW

N N
×  

 
(b) For configuration B 

( ) ( )
13! 50!= = = 4.71 10 .

0.6 ! 0.4 ! [0.6(50)]![0.4(50)]!B
NW

N N
×  

 
(c) Since all microstates are equally probable, 
 

1265= = 0.37.
3393

B

A

Wf
W

≈  

 
We use these formulas for N = 100. The results are 
 

(d) 
( ) ( ) ( )( )

29! 100!= = = 1.01 10 ,
2 ! 2 ! 50! 50!A

NW
N N

×  

 

(e) 
( ) ( )

28! 100! = 1.37 10 ,
0.6 ! 0.4 ! [0.6(100)]![0.4(100)]!B

NW
N N

= = ×  

 
(f) and f  WB/WA ≈ 0.14. 
 
Similarly, using the same formulas for N = 200, we obtain 
 
(g) WA = 9.05 × 1058,  
 
(h) WB = 1.64 × 1057,  
 
(i) and f = 0.018. 
 
(j) We see from the calculation above that f decreases as N increases, as expected. 
 
72. A metric ton is 1000 kg, so that the heat generated by burning 380 metric tons during 
one hour is ( ) ( ) 6380000 kg 28 MJ kg = 10.6 10  MJ.×  The work done in one hour is 
 

( ) ( ) 6= 750 MJ s 3600 s = 2.7 10  MJW ×  
 
where we use the fact that a watt is a joule-per-second. By Eq. 20-11, the efficiency is 
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6

6

2.7 10 MJ 0.253 25%.
10.6 10 MJ

ε ×
= = =

×
 

 
73. (a) Equation 20-15 can be written as |QH| = |QL|(1 + 1/KC ) = (35)(1 + 1

4.6 ) = 42.6 kJ. 
 
(b) Similarly, Eq. 20-14 leads to |W| = |QL|/K = 35/4.6 = 7.61 kJ. 
 
74. The Carnot efficiency (Eq. 20-13) depends linearly on TL so that we can take a 
derivative 

L

H L H

1= 1 =T d
T dT T

εε − ⇒ −  

 
and quickly get to the result. With 0.100dε ε→ Δ =  and TH = 400 K, we find dTL → ΔTL 
= −40 K. 
 
75. The gas molecules inside a box can be distributed in many different ways. The 
number of microstates associated with each distinct configuration is called the 
multiplicity. In general, if there are N molecules and if the box is divided into two halves, 
with nL molecules in the left half and nR in the right half, such that L Rn n N+ = , there are 
N! arrangements of the N molecules, but nL! are simply rearrangements of the nL 
molecules in the left half, and nR! are rearrangements of the nR molecules in the right half. 
These rearrangements do not produce a new configuration. Therefore, the multiplicity 
factor associated with this is 

L R

! .
! !
NW

n n
=  

The entropy is given by lnS k W= . 
 
(a) The least multiplicity configuration is when all the particles are in the same half of the 
box. In this case, for system A with with 3N = , we have 
 

3!= = 1.
3!0!

W  

 
(b) Similarly for box B, with N = 5, W = 5!/(5!0!) = 1 in the “least” case. 
 
(c) The most likely configuration in the 3 particle case is to have 2 on one side and 1 on 
the other. Thus, 

3!= = 3.
2!1!

W  

 
(d) The most likely configuration in the 5 particle case is to have 3 on one side and 2 on 
the other. Thus, 
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5!= = 10.
3!2!

W  

 
(e) We use Eq. 20-21 with our result in part (c) to obtain 
 

( )23 23= ln = 1.38 10 ln3 = 1.5 10  J/K.S k W − −× ×  
 
(f) Similarly for the 5 particle case (using the result from part (d)), we find  
 

S = k ln 10 = 3.2 × 10−23 J/K. 
 
In summary, the least multiplicity is W = 1; this happens when Ln N=  or L 0n = . On the 
other hand, the greatest multiplicity occurs when L ( 1) / 2n N= −  or L ( 1) / 2n N= + . 
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Chapter 21 
 
 
1. The magnitude of the force of either of the charges on the other is given by 
 

F
q Q q

r
=

−1
4 0

2pε
b g  

 
where r is the distance between the charges. We want the value of q that maximizes the 
function f(q) = q(Q – q). Setting the derivative /dF dq equal to zero leads to Q – 2q = 0, 
or q = Q/2. Thus, q/Q = 0.500. 
 
2. The fact that the spheres are identical allows us to conclude that when two spheres are 
in contact, they share equal charge. Therefore, when a charged sphere (q) touches an 
uncharged one, they will (fairly quickly) each attain half that charge (q/2). We start with 
spheres 1 and 2, each having charge q and experiencing a mutual repulsive force 

2 2/F kq r= . When the neutral sphere 3 touches sphere 1, sphere 1’s charge decreases to 
q/2. Then sphere 3 (now carrying charge q/2) is brought into contact with sphere 2; a total 
amount of q/2 + q becomes shared equally between them. Therefore, the charge of sphere 
3 is 3q/4 in the final situation. The repulsive force between spheres 1 and 2 is finally 
 

2

2 2

( / 2)(3 / 4) 3 3 3   0.375.
8 8 8

q q q FF k k F
r r F

′
′ = = = ⇒ = =  

 
3. Equation 21-1 gives Coulomb’s law, F k q q

r
= 1 2

2 , which we solve for the distance: 
 

( ) ( ) ( )9 2 2 6 6
1 2

8.99 10 N m C 26.0 10 C 47.0 10 C| || | 1.39 m.
5.70N

k q qr
F

− −× ⋅ × ×
= = =  

 
4. The unit ampere is discussed in Section 21-4. Using i for current, the charge 
transferred is 

( )( )4 62.5 10 A 20 10 s 0.50 C.q it −= = × × =  
 
5. The magnitude of the mutual force of attraction at r = 0.120 m is 
 

( ) ( )( )6 6
1 2 9 2 2

2 2

3.00 10 C 1.50 10 C
8.99 10 N m C 2.81N.

(0.120 m)
q q

F k
r

− −× ×
= = × ⋅ =  
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6. (a) With a understood to mean the magnitude of acceleration, Newton’s second and 
third laws lead to 

m a m a m2 2 1 1 2

7
7

6 3 10 7 0
9 0

4 9 10= ⇒ =
×

= ×
−

−
. .

.
.

kg m s
m s

kg.
2

2

c hc h
 

 
(b) The magnitude of the (only) force on particle 1 is 
 

( )
2

1 2 9 2 2
1 1 2 28.99 10 N m C .

(0.0032 m)
q q q

F m a k
r

= = = × ⋅  

 
Inserting the values for m1 and a1 (see part (a)) we obtain |q| = 7.1 × 10–11 C. 
 
7. With rightward positive, the net force on q3 is 
 

( )
1 3 2 3

3 13 23 2 2
2312 23

.q q q qF F F k k
LL L

= + = +
+

 

 
We note that each term exhibits the proper sign (positive for rightward, negative for 
leftward) for all possible signs of the charges. For example, the first term (the force 
exerted on q3 by q1) is negative if they are unlike charges, indicating that q3 is being 
pulled toward q1, and it is positive if they are like charges (so q3 would be repelled from 
q1). Setting the net force equal to zero L23= L12 and canceling k, q3, and L12 leads to 
 

1 1
2

2

0     4.00.
4.00
q qq

q
+ = ⇒ = −  

 
8. In experiment 1, sphere C first touches sphere A, and they divided  up their total charge 
(Q/2 plus Q) equally between them. Thus, sphere A and sphere C each acquired charge 
3Q/4. Then, sphere C touches B and those spheres split up their total charge (3Q/4 plus –
Q/4) so that B ends up with charge equal to Q/4. The force of repulsion between A and B 
is therefore 

1 2

(3 / 4)( / 4)Q QF k
d

=  

 
at the end of experiment 1. Now, in experiment 2, sphere C first touches B, which leaves 
each of them with charge Q/8. When C next touches A, sphere A is left with charge 9Q/16. 
Consequently, the force of repulsion between A and B is 
 

2 2

(9 /16)( / 8)Q QF k
d

=  

 
at the end of experiment 2. The ratio is 
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2

1

(9 /16)(1/ 8) 0.375.
(3 / 4)(1/ 4)

F
F

= =  

 
9. We assume the spheres are far apart. Then the charge distribution on each of them is 
spherically symmetric and Coulomb’s law can be used. Let q1 and q2 be the original 
charges. We choose the coordinate system so the force on q2 is positive if it is repelled by 
q1. Then, the force on q2 is 

F q q
r

k q q
ra = − = −

1
4 0

1 2
2

1 2
2pε

 

 
where r = 0.500 m. The negative sign indicates that the spheres attract each other. After 
the wire is connected, the spheres, being identical, acquire the same charge. Since charge 
is conserved, the total charge is the same as it was originally. This means the charge on 
each sphere is (q1 + q2)/2. The force is now one of repulsion and is given by 
 

F
r

k
q q

rb

q q q q

= =
+

+ +
1

4 40

2 2
2

1 2
2

2

1 2 1 2

pε
d id i b g .  

 
We solve the two force equations simultaneously for q1 and q2. The first gives the product 
 

q q r F
k

a
1 2

2 2

9
120500 0108

8 99 10
300 10= − = −

× ⋅
= − × −. .

.
. ,

m N
N m C

C2 2
2b g b g  

 
and the second gives the sum 
 

q q r F
k

b
1 2

62 2 0 500 0 0360 2 00 10+ = =
× ⋅

= × −. . .m N
8.99 10 N m C

C9 2 2b g  

 
where we have taken the positive root (which amounts to assuming q1 + q2 ≥ 0). Thus, the 
product result provides the relation 
 

( )12 2

2
1

3.00 10 C
q

q

−− ×
=  

 
which we substitute into the sum result, producing 
 

q
q1

12

1

6300 10 2 00 10−
×

= ×
−

−. .C C.
2

 

 
Multiplying by q1 and rearranging, we obtain a quadratic equation 
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q q1
2 6

1
122 00 10 300 10 0− × − × =− −. . .C C2c h  

 
The solutions are 

q1

6 6 2 122 00 10 2 00 10 4 300 10

2
=

× ± − × − − ×− − −. . .
.

C C C2c h c h
 

 
If the positive sign is used, q1 = 3.00 × 10–6 C, and if the negative sign is used, 

6
1 1.00 10  Cq −= − × .  

 
(a) Using q2 = (–3.00 × 10–12)/q1 with q1 = 3.00 × 10–6 C, we get 6

2 1.00 10  Cq −= − × .  
 
(b) If we instead work with the q1 = –1.00 × 10–6 C root, then we find 6

2 3.00 10  Cq −= × .  
 
Note that since the spheres are identical, the solutions are essentially the same: one sphere 
originally had charge –1.00 × 10–6 C and the other had charge +3.00 × 10–6 C.  
 
What if we had not made the assumption, above, that q1 + q2 ≥ 0? If the signs of the 
charges were reversed (so q1 + q2 < 0), then the forces remain the same, so a charge of 
+1.00 × 10–6 C on one sphere and a charge of –3.00 × 10–6 C on the other also satisfies 
the conditions of the problem. 
 
10. For ease of presentation (of the computations below) we assume Q > 0 and q < 0 
(although the final result does not depend on this particular choice).  
 
(a) The x-component of the force experienced by q1 = Q is 
  

( )( )
( )

( ) ( )
1 2 2 2

0 0

| |1 | | / | |cos 45 1
4 4 2 22

x

Q Q q Q Q q Q qF
a aaπε πε

⎛ ⎞
⎛ ⎞⎜ ⎟= − °+ = − +⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

 
which (upon requiring F1x = 0) leads to / | | 2 2Q q = , or / 2 2 2.83.Q q = − = −  
 
(b) The y-component of the net force on q2 = q is 
 

( )
( ) ( )2 2

2 2 2 2
0 0

| |1 | | | | 1sin 45
4 4 | |2 22

y

q Qq q QF
a a qaπε πε

⎛ ⎞
⎛ ⎞⎜ ⎟= °− = −⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

 
which (if we demand F2y = 0) leads to / 1/ 2 2Q q = −  . The result is inconsistent with 
that obtained in part (a). Thus, we are unable to construct an equilibrium configuration 
with this geometry, where the only forces present are given by Eq. 21-1. 
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11. The force experienced by q3 is 
 

 3 1 3 2 3 4
3 31 32 34 2 22

0

| || | | || | | || |1 ˆ ˆ ˆ ˆj (cos45 i sin 45 j) i
4 ( 2 )

q q q q q qF F F F
a aaπε

⎛ ⎞
= + + = − + ° + ° +⎜ ⎟

⎝ ⎠
 

 
(a) Therefore, the x-component of the resultant force on q3 is 
 

( ) ( )27
9 2 23 2

3 42 2
0

2 1.0 10 C| | | | 1| | 8.99 10 N m C 2 0.17 N.
4 (0.050 m)2 2 2 2x

q qF q
aπε

−×⎛ ⎞ ⎛ ⎞= + = × ⋅ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
(b) Similarly, the y-component of the net force on q3 is 
 

( ) ( )27
9 2 23 2

3 12 2
0

2 1.0 10 C| | | | 1| | 8.99 10 N m C 1 0.046 N.
4 (0.050 m)2 2 2 2y

q qF q
aπε

−×⎛ ⎞ ⎛ ⎞= − + = × ⋅ − + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
12. (a) For the net force to be in the +x direction, the y components of the individual 
forces must cancel. The angle of the force exerted by the q1 = 40 μC charge on 

3 20q Cμ=  is 45°, and the angle of force exerted on q3 by Q is at –θ where 
 

1 2.0 cmtan 33.7 .
3.0 cm

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

 
Therefore, cancellation of y components requires 
 

( ) ( )
1 3 3

2 2
2 2

| |sin 45 sin
0.02 2 m (0.030 m) (0.020 m)

q q Q qk k θ° =
+

 

 
from which we obtain |Q| = 83 μC. Charge Q is “pulling” on q3, so (since q3 > 0) we 
conclude Q = –83 μC. 
 
(b) Now, we require that the x components cancel, and we note that in this case, the angle 
of force on q3 exerted by Q is +θ (it is repulsive, and Q is positive-valued). Therefore, 
 

( ) ( )
1 3 3

2 2
2 2

cos 45 cos
0.02 2 m (0.030 m) (0.020 m)

q q Qqk k θ° =
+

 

 
from which we obtain Q = 55.2 μC 55 Cμ≈ . 
 



        CHAPTER 21 880 

13. (a) There is no equilibrium position for q3 between the two fixed charges, because it is 
being pulled by one and pushed by the other (since q1 and q2 have different signs); in this 
region this means the two force arrows on q3 are in the same direction and cannot cancel.  
It should also be clear that off-axis (with the axis defined as that which passes through the 
two fixed charges) there are no equilibrium positions. On the semi-infinite region of the 
axis that is nearest q2 and furthest from q1 an equilibrium position for q3 cannot be found 
because |q1| < |q2| and the magnitude of force exerted by q2 is everywhere (in that region) 
stronger than that exerted by q1 on q3. Thus, we must look in the semi-infinite region of 
the axis which is nearest q1 and furthest from q2, where the net force on q3 has magnitude 

( )
1 3 2 3

22
0 0

q q q q
k k

L L L
−

+
 

 
with L = 10 cm and 0L  is assumed to be positive. We set this equal to zero, as required by 
the problem, and cancel k and q3. Thus, we obtain 
 

( )

2
1 2 0 2

22
0 0 10

3.0 C0 3.0
1.0 C

q q L L q
L L qL L

μ
μ

⎛ ⎞+ −
− = ⇒ = = =⎜ ⎟ ++ ⎝ ⎠

 

 
which yields (after taking the square root) 
 

0
0

0

10 cm3 14cm
3 1 3 1

L L LL
L
+

= ⇒ = = ≈
− −

 

 
for the distance between q3 and q1. That is, 3q  should be placed at 14 cmx = −  along the 
x-axis. 
 
(b) As stated above, y = 0.  
 
14. (a) The individual force magnitudes (acting on Q) are, by Eq. 21-1, 
 

( ) ( )
1 2

2 2
0 0

1 1
4 4/ 2 / 2

q Q q Q
a a a aπε πε

=
− − −

 

 
which leads to |q1| = 9.0 |q2|. Since Q is located between q1 and q2, we conclude q1 and q2 
are like-sign. Consequently, q1/q2 = 9.0. 
 
(b) Now we have 

( ) ( )
1 2

2 2
0 0

1 1
4 43 / 2 3 / 2

q Q q Q
a a a aπε πε

=
− − −

 

 
which yields |q1| = 25 |q2|. Now, Q is not located between q1 and q2; one of them must 
push and the other must pull. Thus, they are unlike-sign, so q1/q2 = –25. 
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15. (a) The distance between q1 and q2 is 
 

( ) ( ) ( ) ( )2 2 2 2
12 2 1 2 1 0.020 m 0.035 m 0.015 m 0.005 m 0.056 m.r x x y y= − + − = − − + − =  

 
The magnitude of the force exerted by q1 on q2 is 
 

( ) ( ) ( )9 2 2 6 6
1 2

21 2 2
12

8.99 10 N m C 3.0 10 C 4.0 10 C| | 35  N.
(0.056 m)

q qF k
r

− −× ⋅ × ×
= = =  

 
(b) The vector F21   is directed toward q1 and makes an angle θ with the +x axis, where 
 

1 12 1

2 1

1.5 cm 0.5 cmtan tan 10.3 10 .
2.0 cm 3.5 cm

y y
x x

θ − −⎛ ⎞− −⎛ ⎞= = = − ° ≈ − °⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎝ ⎠
 

 
(c) Let the third charge be located at (x3, y3), a distance r from q2. We note that q1, q2, and 
q3 must be collinear; otherwise, an equilibrium position for any one of them would be 
impossible to find. Furthermore, we cannot place q3 on the same side of q2 where we also 
find q1, since in that region both forces (exerted on q2 by q3 and q1) would be in the same 
direction (since q2 is attracted to both of them). Thus, in terms of the angle found in part 
(a), we have x3 = x2 – r cosθ and y3 = y2 – r sinθ (which means y3 > y2 since θ is negative). 
The magnitude of force exerted on q2 by q3 is 2

23 2 3| |F k q q r= , which must equal that of 
the force exerted on it by q1 (found in part (a)). Therefore, 
 

2 3 1 2 3
122 2

12 1

0.0645m 6.45 cm .
q q q q qk k r r
r r q

= ⇒ = = =  

 
Consequently, x3 = x2 – r cosθ = –2.0 cm – (6.45 cm) cos(–10°) = –8.4 cm, 
 
(d) and y3 =  y2 – r sinθ = 1.5 cm – (6.45 cm) sin(–10°) = 2.7 cm. 
 
16. (a) According to the graph, when q3 is very close to q1 (at which point we can 
consider the force exerted by particle 1 on 3 to dominate) there is a (large) force in the 
positive x direction.  This is a repulsive force, then, so we conclude q1 has the same sign 
as q3.  Thus, q3 is a positive-valued charge. 
 
(b) Since the graph crosses zero and particle 3 is between the others, q1 must have the 
same sign as q2, which means it is also positive-valued.  We note that it crosses zero at r  
= 0.020 m (which is a distance d = 0.060 m from q2).  Using Coulomb’s law at that point, 
we have 

2 2
1 3 3 2

2 1 1 12 2
0 0

1 1 0.060 m 9.0
4 4 0.020 m

q q q q dq q q q
r d rπε πε

⎛ ⎞ ⎛ ⎞= ⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 
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or q2/q1 = 9.0. 
 
17. (a) Equation 21-1 gives 
 

( ) ( )
( )

26
9 2 21 2

12 22

20.0 10 C
8.99 10 N m C 1.60 N.

1.50m
q qF k
d

−×
= = × ⋅ =  

 
(b) On the right, a force diagram is shown as well as our choice of y 
axis (the dashed line). 
 
The y axis is meant to bisect the line between q2 and q3 in order to 
make use of the symmetry in the problem (equilateral triangle of 
side length d, equal-magnitude charges q1 = q2 = q3 = q). We see 
that the resultant force is along this symmetry axis, and we obtain 
 

( ) ( )
( )

262
9 2 2

22

20.0 10 C
2 cos30 2 8.99 10 N m C cos30 2.77 N

1.50my
qF k
d

−×⎛ ⎞
= ° = × ⋅ ° =⎜ ⎟

⎝ ⎠
. 

 
18. Since the forces involved are proportional to q, we see that the essential difference 
between the two situations is Fa ∝ qB + qC  (when those two charges are on the same side) 
versus Fb ∝ −qB + qC  (when they are on opposite sides).  Setting up ratios, we have 
 

a B C

b B C

F q q
F q q

+
=

− +
    ⇒    

23

24

1 /2.014 10 N
2.877 10 N 1 /

C B

C B

q q
q q

−

−

+×
=

− × − +
 . 

 
After noting that the ratio on the left hand side is very close to – 7, then, after a couple of 
algebra steps, we are led to 

7 1 8 1.333.
7 1 6

C

B

q
q

+
= = =

−
 

 
19. (a) If the system of three charges is to be in equilibrium, the force on each charge 
must be zero. The third charge q3 must lie between the other two or else the forces acting 
on it due to the other charges would be in the same direction and q3 could not be in 
equilibrium. Suppose q3 is at a distance x from q, and L – x from 4.00q. The force acting 
on it is then given by 

( )
3 3

3 22
0

41
4

qq qqF
x L xπε

⎛ ⎞
= −⎜ ⎟

⎜ ⎟−⎝ ⎠
 

 
where the positive direction is rightward. We require F3 = 0 and solve for x. Canceling 
common factors yields 1/x2 = 4/(L – x)2 and taking the square root yields 1/x = 2/(L – x). 
The solution is x = L/3. With L = 9.00 cm, we have x = 3.00 cm. 
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(b) Similarly, the y coordinate of q3 is y = 0.  
  
(c) The force on q is 

2
3

2 2
0

1 4.00 .
4q

qq qF
x Lε

⎛ ⎞−
= +⎜ ⎟

⎝ ⎠p
 

 
The signs are chosen so that a negative force value would cause q to move leftward. We 
require Fq = 0 and solve for q3: 
 

2
3

3 2

4 4 4   0.444
9 9

qqxq q
L q

= − = − ⇒ = − = −  

 
where x = L/3 is used. Note that we may easily verify that the force on 4.00q also 
vanishes: 
 

( )
( )
( )

22 2 2 2
0

4 22 2 2 2 2
0 0 0

4 4 941 4 1 4 1 4 4 0
4 4 4 9 4q

qqqq q q qF
L L L L LL xπε πε πε

⎛ ⎞ ⎛ ⎞− ⎛ ⎞
= + = + = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠

. 

 
20. We note that the problem is examining the force on charge A, so that the respective 
distances (involved in the Coulomb force expressions) between B and A, and between C 
and A, do not change as particle B is moved along its circular path.  We focus on the 
endpoints (θ = 0º and 180º) of each graph, since they represent cases where the forces (on 
A) due to B and C are either parallel or antiparallel (yielding maximum or minimum force 
magnitudes, respectively).  We note, too, that since Coulomb’s law is inversely 
proportional to r² then (if, say, the charges were all the same) the force due to C would be 
one-fourth as big as that due to B (since C is twice as far away from A).  The charges, it 
turns out, are not the same, so there is also a factor of the charge ratio ξ (the charge of C 
divided by the charge of B), as well as the aforementioned ¼ factor.   That is, the force 
exerted by C is, by Coulomb’s law, equal to ±¼ξ multiplied by the force exerted by B. 
 
(a) The maximum force is 2F0 and occurs when θ  = 180º  (B is to the left of A, while C is 
the right of A).  We choose the minus sign and write  
 

2 F0 = (1 − ¼ξ) F0    ⇒        ξ = – 4 . 
 
One way to think of the minus sign choice is cos(180º) = –1.  This is certainly consistent 
with the minimum force ratio (zero) at θ = 0º since that would also imply 
 

0 = 1 + ¼ξ    ⇒      ξ = – 4 . 
 
(b) The ratio of maximum to minimum forces is 1.25/0.75 = 5/3 in this case, which 
implies 
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5
3   = 

1 + ¼ξ
1 − ¼ξ     ⇒     ξ = 16 . 

 
Of course, this could also be figured as illustrated in part (a), looking at the maximum 
force ratio by itself and solving, or looking at the minimum force ratio (¾) at θ = 180º 
and solving for ξ. 
 
21. The charge dq within a thin shell of thickness dr is dq dV Adrρ ρ= =  where A = 4πr2. 
Thus, with ρ = b/r, we have 

q dq b r dr b r r
r

r
= = = −zz 4 2

1

2

2
2

1
2p π c h.  

 
With b = 3.0 μC/m2, r2 = 0.06 m, and r1 = 0.04 m, we obtain q = 0.038 μC = 3.8 × 10−8 C. 
 
22. (a) We note that cos(30º) = 12 3 , so that the dashed line distance in the figure is 

2 / 3r d= .  The net force on q1 due to the two charges q3 and q4 (with |q3| = |q4| = 1.60 × 
10−19 C) on the y axis has magnitude 

 1 3 1 3
2 2

0 0

| | 3 3 | |2 cos(30 )
4 16

q q q q
r dπε πε

° = . 

 
This must be set equal to the magnitude of the force exerted on q1 by q2 = 8.00 × 10−19 C 
= 5.00 |q3| in order that its net force be zero: 
 

 1 3 1 2
2 2

0 0

3 3 | | | |
16 4 ( )

q q q q
d D dπε πε

=
+

   ⇒          D = d 
⎝
⎜
⎛

⎠
⎟
⎞2 5

3 3
 − 1   = 0.9245 d. 

 
Given d = 2.00 cm, this then leads to D = 1.92 cm. 
 
(b) As the angle decreases, its cosine increases, resulting in a larger contribution from the 
charges on the y axis.  To offset this, the force exerted by q2 must be made stronger, so 
that it must be brought closer to q1 (keep in mind that Coulomb’s law is inversely 
proportional to distance-squared).  Thus, D must be decreased. 
 
23. If θ is the angle between the force and the x-axis, then  
 

cosθ  =  
x

x2 + d2  . 

 
We note that, due to the symmetry in the problem, there is no y component to the net 
force on the third particle.  Thus, F represents the magnitude of force exerted by q1 or q2 
on q3. Let e = +1.60 × 10−19 C, then q1 = q2 = +2e and q3 = 4.0e and we have 
 



 

  

885

  Fnet  =  2F cosθ   =  
2(2e)(4e)

4πεo (x2 + d2)  
x

x2 + d2  =  
4e2 x

πεo (x2 + d2 )3/2  . 

 
(a) To find where the force is at an extremum, we can set the derivative of this expression 
equal to zero and solve for x, but it is good in any case to graph the function for a fuller 
understanding of its behavior, and as a quick way to see whether an extremum point is a 
maximum or a miminum.  In this way, we find that the value coming from the derivative 
procedure is a maximum (and will be presented in part (b)) and that the minimum is 
found at the lower limit of the interval.  Thus, the net force is found to be zero at x = 0, 
which is the smallest value of the net force in the interval 5.0 m ≥ x ≥  0. 
 
(b) The maximum is found to be at x = d/ 2  or roughly 12 cm. 
 
(c) The value of the net force at x = 0 is Fnet  = 0. 
 
(d) The value of the net force at x = d/ 2  is Fnet  = 4.9 × 10−26 N. 
 
24. (a) Equation 21-1 gives 

F =
× ⋅ ×

×
= ×

−

−

−
8 99 10 100 10

100 10
8 99 10

9 16 2

2 2
19

. .

.
.

N m C C

m
N.

2 2c hc h
c h

 

 
(b) If n is the number of excess electrons (of charge –e each) on each drop then 
 

n q
e

= − = −
− ×

×
=

−

−

100 10
160 10

625
16

19

.
.

.C
C

 

 
25. Equation 21-11 (in absolute value) gives 
 

n
q
e

= =
×
×

= ×
−

−

10 10
16 10

6 3 10
7

19
11.

.
. .C

C
 

 
26. The magnitude of the force is 
 

F k e
r

= = ×
⋅F

HG
I
KJ

×

×
= ×

−

−

−
2

2
9

19 2

10 2
98 99 10

160 10

2 82 10
2 89 10.

.

.
.N m

C
C

m
N.

2

2

c h
c h

 

 
27. (a) The magnitude of the force between the (positive) ions is given by 
 

( )( ) 2

2 2
04

q q qF k
r rπε

= =  
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where q is the charge on either of them and r is the distance between them. We solve for 
the charge: 

q r F
k

= = ×
×

× ⋅
= ×−

−
−50 10 37 10

8 99 10
32 1010

9

9
19. .

.
.m N

N m C
C.2 2c h  

 
(b) Let n be the number of electrons missing from each ion. Then, ne = q, or 
 

9

19

3.2 10 C 2.
1.6 10 C

qn
e

−

−

×
= = =

×
 

 
28. Keeping in mind that an ampere is a coulomb per second (1 A = 1 C/s), and that a 
minute is 60 seconds, the charge (in absolute value) that passes through the chest is 
 

| q |  = ( 0.300 C/s ) ( 120 s ) = 36.0 C . 
 
This charge consists of n electrons (each of which has an absolute value of charge equal 
to e).  Thus, 

      n = 
| q |

e   =  
36.0 C

1.60 x 10-19 C  =  2.25 × 1020 . 

 
29. (a) We note that tan(30°) = 1/ 3 .  In the initial (highly symmetrical) configuration, 
the net force on the central bead is in the –y direction and has magnitude 3F where F is 
the Coulomb’s law force of one bead on another at distance d = 10 cm.  This is due to the 
fact that the forces exerted on the central bead (in the initial situation) by the beads on the 
x axis cancel each other; also, the force exerted “downward” by bead 4 on the central 
bead is four times larger than the “upward” force exerted by bead 2.  This net force along 
the y axis does not change as bead 1 is now moved, though there is now a nonzero x-
component Fx .  The components are now related by 
 

                                 tan(30°)  =  
Fx
 Fy

   ⇒     
1
3
    =   

Fx
3F  

 
which implies Fx = 3 F.  Now, bead 3 exerts a “leftward” force of magnitude F on the 
central bead, while bead 1 exerts a “rightward” force of magnitude F′.  Therefore, 
 

F′ − F = 3 F.      ⇒      F′  =  ( 3  + 1) F . 
 
The fact that Coulomb’s law depends inversely on distance-squared then implies 
 

r2 =   
d2

3 + 1
   ⇒     r =   

d
3 + 1

  = 10 cm 10 cm
1.653 1

= =
+

6.05 cm 

 
where r is the distance between bead 1 and the central bead.  This corresponds to 

6.05 cm .x = −  
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(b) To regain the condition of high symmetry (in particular, the cancellation of x-
components) bead 3 must be moved closer to the central bead so that it, too, is the 
distance r (as calculated in part (a)) away from it. 
 
30. (a) Let x be the distance between particle 1 and particle 3.  Thus, the distance between 
particle 3 and particle 2 is L – x. Both particles exert leftward forces on q3 (so long as it is 
on the line between them), so the magnitude of the net force on q3 is 
 

Fnet =  |F  1 3 
→   

 |  +  |F  2 3 
→   

 |  =  
|q1 q3|

4πεo x2  + 
|q2 q3|

4πεo (L− x)2   =  
e2

 πεo 
 
⎝⎜
⎛

⎠⎟
⎞1

 x2 + 
27

(L −  x)2  

 
with the values of the charges (stated in the problem) plugged in.  Finding the value of x 
that minimizes this expression leads to x = ¼ L.  Thus, x = 2.00 cm. 
 
(b) Substituting x = ¼ L back into the expression for the net force magnitude and using 
the standard value for e leads to Fnet = 9.21 × 10−24 N. 
 
31. The unit ampere is discussed in Section 21-4. The proton flux is given as 1500 
protons per square meter per second, where each proton provides a charge of q = +e. The 
current through the spherical area 4πR2 = 4π (6.37 × 106 m)2 = 5.1 × 1014 m2 would be 
 

i = ×
⋅

F
HG

I
KJ × =−51 10 1500 16 10 012214 2

2
19. . . .m protons

s m
C proton Ac h c h  

 
32. Since the graph crosses zero, q1 must be positive-valued: q1 = +8.00e.  We note that it 
crosses zero at r  = 0.40 m.  Now the asymptotic value of the force yields the magnitude 
and sign of q2: 
 

    
q1 q2

4πεo r2  = F    ⇒     
25

2
2

1

1.5 10q r
kq

−⎛ ⎞×
= ⎜ ⎟

⎝ ⎠
  =  2.086 × 10−18 C  =  13e .  

 
33. The volume of 250 cm3 corresponds to a mass of 250 g since the density of water is 
1.0 g/cm3. This mass corresponds to 250/18 = 14 moles since the molar mass of water is 
18. There are ten protons (each with charge q = +e) in each molecule of H2O, so 
 

( ) ( ) ( )23 19 714 14 6.02 10 10 1.60 10 C 1.3 10 C.AQ N q −= = × × = ×  
 
34. Let d be the vertical distance from the coordinate origin to q3 = −q and q4 = −q on the 
+y axis, where the symbol q is assumed to be a positive value.  Similarly, d is the 
(positive) distance from the origin q4 = − on the −y axis.  If we take each angle θ in the 
figure to be positive, then we have tanθ = d/R and cosθ = R/r (where r is the dashed line 
distance shown in the figure).  The problem asks us to consider θ to be a variable in the 
sense that, once the charges on the x axis are fixed in place (which determines R), d can 
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then be arranged to some multiple of R, since d = R tanθ.   The aim of this exploration is 
to show that if q is bounded then θ (and thus d) is also bounded. 
  
From symmetry, we see that there is no net force in the vertical direction on q2 = –e 
sitting at a distance R to the left of the coordinate origin.  We note that the net x force 
caused by q3 and q4 on the y axis will have a magnitude equal to 
 

 
3

2 2 2
0 0 0

2 cos 2 cos2 cos
4 4 ( / cos ) 4

qe qe qe
r R R

θ θθ
πε πε θ πε

= =  . 

 
Consequently, to achieve a zero net force along the x axis, the above expression must 
equal the magnitude of the repulsive force exerted on q2 by q1 = –e. Thus, 
 

3 2

2 2 3
0 0

2 cos
4 4 2cos
qe e eq

R R
θ

πε πε θ
= ⇒ = . 

 
Below we plot q/e as a function of the angle (in degrees):  
 

 
 
The graph suggests that q/e < 5 for θ < 60º, roughly.  We can be more precise by solving 
the above equation.  The requirement  that q ≤ 5e  leads to  
 

3 1/3

15 cos
2cos (10)

e e θ
θ

≤ ⇒ ≤  

 
which yields θ  ≤ 62.34º.  The problem asks for “physically possible values,” and it is 
reasonable to suppose that only positive-integer-multiple values of e are allowed for q.  If 
we let q = ne, for n = 1 … 5, then θN will be found by taking the inverse cosine of the 
cube root of (1/2n).   
 
(a) The smallest value of angle is θ1 = 37.5º (or 0.654 rad). 
 
(b) The second smallest value of angle is θ2 = 50.95º (or 0.889 rad). 
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(c) The third smallest value of angle is θ3 = 56.6º (or 0.988 rad). 
 
35. (a) Every cesium ion at a corner of the cube exerts a force of the same magnitude on 
the chlorine ion at the cube center. Each force is a force of attraction and is directed 
toward the cesium ion that exerts it, along the body diagonal of the cube. We can pair 
every cesium ion with another, diametrically positioned at the opposite corner of the cube. 
Since the two ions in such a pair exert forces that have the same magnitude but are 
oppositely directed, the two forces sum to zero and, since every cesium ion can be paired 
in this way, the total force on the chlorine ion is zero. 
 
(b) Rather than remove a cesium ion, we superpose charge –e at the position of one 
cesium ion. This neutralizes the ion, and as far as the electrical force on the chlorine ion 
is concerned, it is equivalent to removing the ion. The forces of the eight cesium ions at 
the cube corners sum to zero, so the only force on the chlorine ion is the force of the 
added charge. 
 
The length of a body diagonal of a cube is 3a , where a is the length of a cube edge. 
Thus, the distance from the center of the cube to a corner is d a= 3 2d i . The force has 

magnitude 

F k e
d

ke
a

= = =
× ⋅ ×

×
= ×

−

−

−
2

2

2

2

9 2 2 19 2

9 2
9

3 4
8 99 10 160 10

3 4 0 40 10
19 10b g

c hc h
b gc h

. .

.
. .

N m C C

m
N  

 
Since both the added charge and the chlorine ion are negative, the force is one of 
repulsion. The chlorine ion is pushed away from the site of the missing cesium ion. 
 
36. (a) Since the proton is positively charged, the emitted particle must be a positron       
(as opposed to the negatively charged electron) in accordance with the law of charge 
conservation. 
 
(b) In this case, the initial state had zero charge (the neutron is neutral), so the sum of 
charges in the final state must be zero.  Since there is a proton in the final state, there 
should also be an electron (as opposed to a positron) so that Σq = 0. 
 
37. None of the reactions given include a beta decay, so the number of protons, the 
number of neutrons, and the number of electrons are each conserved. Atomic numbers 
(numbers of protons and numbers of electrons) and molar masses (combined numbers of 
protons and neutrons) can be found in Appendix F of the text. 
 
(a) 1H has 1 proton, 1 electron, and 0 neutrons and 9Be has 4 protons, 4 electrons, and 9 – 
4 = 5 neutrons, so X has 1 + 4 = 5 protons, 1 + 4 = 5 electrons, and 0 + 5 – 1 = 4 neutrons. 
One of the neutrons is freed in the reaction. X must be boron with a molar mass of 5 + 4 
= 9 g/mol: 9B. 
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(b) 12C has 6 protons, 6 electrons, and 12 – 6 = 6 neutrons and 1H has 1 proton, 1 electron, 
and 0 neutrons, so X has 6 + 1 = 7 protons, 6 + 1 = 7 electrons, and 6 + 0 = 6 neutrons. It 
must be nitrogen with a molar mass of 7 + 6 = 13 g/mol: 13N. 
 
(c) 15N has 7 protons, 7 electrons, and 15 – 7 = 8 neutrons; 1H has 1 proton, 1 electron, 
and 0 neutrons; and 4He has 2 protons, 2 electrons, and 4 – 2 = 2 neutrons; so X has 7 + 
1 – 2 = 6 protons, 6 electrons, and 8 + 0 – 2 = 6 neutrons. It must be carbon with a molar 
mass of 6 + 6 = 12: 12C. 
 
38. As a result of the first action, both sphere W and sphere A possess charge 12 qA , where 
qA is the initial charge of sphere A.  As a result of the second action, sphere W has charge 
 

 1 32
2 2

Aq e⎛ ⎞−⎜ ⎟
⎝ ⎠

 . 

 
As a result of the final action, sphere W now has charge equal to 
 

1 1 32 48
2 2 2

Aq e e⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 . 

 
Setting this final expression equal to +18e as required by the problem leads (after a 
couple of algebra steps) to the answer: qA = +16e. 
 
39. Using Coulomb’s law, the magnitude of the force of particle 1 on particle 2 is 

1 2
21 2

q qF k
r

= , where 2 2
1 2r d d= +  and 9 2 2

01/ 4 8.99 10 N m Ck πε= = × ⋅ . Since both 1q  

and 2q  are positively charged, particle 2 is repelled by particle 1, so the direction of 21F  

is away from particle 1 and toward 2. In unit-vector notation, 21 21r̂F F= , where 
 

 2 1
2 2

1 2

ˆ ˆ( i j)r̂ d dr
r d d

−
= =

+
. 

 
The x component of 21F  is 2 2

21, 21 2 1 2/xF F d d d= + . Combining the expressions above, we 
obtain 
 

1 2 2 1 2 2
21, 3 2 2 3/ 2

1 2
9 2 2 19 19 3

3/ 23 2 3 2

22

( )

(8.99 10 N m C )(4 1.60 10 C)(6 1.60 10 C)(6.00 10 m)

(2.00 10 m) (6.00 10 m)

1.31 10 N

x
q q d q q dF k k

r d d
− − −

− −

−

= =
+

× ⋅ ⋅ × ⋅ × ×
=

⎡ ⎤× + ×⎣ ⎦
= ×
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Note: In a similar manner, we find the y component of 21F  to be 

1 2 1 1 2 1
21, 3 2 2 3/ 2

1 2
9 2 2 19 19 3

3/ 23 2 3 2

22

( )

(8.99 10 N m C )(4 1.60 10 C)(6 1.60 10 C)(2.00 10 m)

(2.00 10 m) (6.00 10 m)

0.437 10 N

y
q q d q q dF k k

r d d
− − −

− −

−

= − = −
+

× ⋅ ⋅ × ⋅ × ×
= −

⎡ ⎤× + ×⎣ ⎦
= − ×

 

 
Thus, 22 22

21
ˆ ˆ(1.31 10 N)i (0.437 10 N)jF − −= × − × . 

 
40. Regarding the forces on q3 exerted by q1 and q2, one must “push” and the other must 
“pull” in order that the net force is zero; hence, q1 and q2 have opposite signs. For 
individual forces to cancel, their magnitudes must be equal: 
 

( ) ( )
1 3 2 3

2 2
12 23 23

| || | | || |q q q qk k
L L L

=
+

. 

 

With 23 122.00 ,L L=  the above expression simplifies to | | | | .q q1 2

9 4
=  Therefore,  

1 29 / 4q q= − , or 1 2/ 2.25.q q = −  
 
41. (a) The magnitudes of the gravitational and electrical forces must be the same: 
 

1
4 0

2

2 2pε
q
r

G mM
r

=  

 
where q is the charge on either body, r is the center-to-center separation of Earth and 
Moon, G is the universal gravitational constant, M is the mass of Earth, and m is the mass 
of the Moon. We solve for q: 

q GmM= 4 0pε .  
 

According to Appendix C of the text, M = 5.98 × 1024 kg, and m = 7.36 × 1022 kg, so 
(using 4πε0 = 1/k) the charge is 
 

q =
× ⋅ × ×

× ⋅
= ×

−6 67 10 7 36 10 5 98 10
8 99 10

5 7 10
11 22 24

9
13

. . .
.

.
N m kg kg kg

N m C
C.

2 2

2 2

c hc hc h
 

 
 
(b) The distance r cancels because both the electric and gravitational forces are 
proportional to 1/r2. 
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(c) The charge on a hydrogen ion is e = 1.60 × 10–19 C, so there must be 
 

13
32

19

5.7 10 C 3.6 10 ions.
1.6 10 C

qn
e −

×
= = = ×

×
 

 
Each ion has a mass of im = 1.67 × 10–27 kg, so the total mass needed is 
 

( )( )32 27 53.6 10 1.67 10 kg 6.0 10 kg.im nm −= = × × = ×  
 
42. (a) A force diagram for one of the balls is shown below. The force of gravity mg  acts 
downward, the electrical force Fe  of the other ball acts to the left, and the tension in the 
thread acts along the thread, at the angle θ to the vertical. The ball is in equilibrium, so its 
acceleration is zero. The y component of Newton’s second law yields T cosθ – mg = 0 
and the x component yields T sinθ – Fe = 0. We solve the first equation for T and obtain T 
= mg/cosθ. We substitute the result into the second to obtain mg tanθ – Fe = 0. 

 
 

Examination of the geometry of Figure 21-38 leads to tan .θ =
−

x

L x

2

22 2b g
 

If L is much larger than x (which is the case if θ is very small), we may neglect x/2 in the 
denominator and write tanθ ≈ x/2L. This is equivalent to approximating tanθ by sinθ. The 
magnitude of the electrical force of one ball on the other is 
 

F q
xe =

2

0
24πε

 

 
by Eq. 21-4. When these two expressions are used in the equation mg tanθ = Fe, we 
obtain 

1/32 2

2
0 0

1 .
2 4 2

mgx q q Lx
L x mgε ε

⎛ ⎞
≈ ⇒ ≈ ⎜ ⎟π π⎝ ⎠
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(b) We solve x3 = 2kq2L/mg for the charge (using Eq. 21-5): 
 

( )( )( )
( )( )

323
8

9 2 2

0.010kg 9.8m s 0.050m
2.4 10 C.

2 2 8.99 10 N m C 1.20 m
mgxq

kL
−= = = ± ×

× ⋅
 

 
Thus, the magnitude is 8| | 2.4 10 C.q −= ×  
 
43. (a) If one of them is discharged, there would no electrostatic repulsion between the 
two balls and they would both come to the position θ = 0, making contact with each other.  
 
(b) A redistribution of the remaining charge would then occur, with each of the balls 
getting q/2. Then they would again be separated due to electrostatic repulsion, which 
results in the new equilibrium separation 
 

( ) ( )
1/32 1/3 1/3

0

2 1 1 5.0 cm 3.1 cm.
2 4 4
q L

x x
mgπε

⎡ ⎤ ⎛ ⎞ ⎛ ⎞′ = = = =⎢ ⎥ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 
44. Letting kq2/r2 = mg, we get 
 

( ) ( ) ( )
9 2 2

19
27 2

8.99 10 N m C1.60 10 C 0.119 m.
1.67 10 kg 9.8 m s

kr q
mg

−
−

× ⋅
= = × =

×
 

 
45. There are two protons (each with charge q = +e) in each molecule, so 
 

Q N qA= = × × = × =−6 02 10 2 160 10 19 1023 19 5. . .c hb gc hC C 0.19 MC. 
 
46. Let 12F  denotes the force on q1 exerted by q2 and 12F be its magnitude. 
 
(a) We consider the net force on q1. 12F  points in the +x direction since q1 is attracted to 

q2. 13F and 14F  both point in the –x direction since q1 is repelled by q3 and q4. Thus, using 
d = 0.0200 m, the net force is 
 

( )( )
( )

2

1 12 13 14 2 2 2 2
0 0 0 0

29 2 2 19
25

22

2 | | (2 )( ) (2 )(4 ) 11
4 4 (2 ) 4 (3 ) 18 4

8.99 10 N m C 1.60 10 C11 3.52 10  N
18 2.00 10 m

e e e e e e eF F F F
d d d dπε πε πε πε

−
−

−

−
= − − = − − =

× ⋅ ×
= = ×

×

 

 
or 25

1
ˆ(3.52 10  N)i.F −= ×  



        CHAPTER 21 894 

 
(b) We now consider the net force on q2.  We note that 21 12F F= −  points in the –x 

direction, and 23F and 24F  both point in the +x direction. The net force is 
 

 23 24 21 2 2 2
0 0 0

4 | | | | 2 | | 0
4 (2 ) 4 4

e e e e e eF F F
d d dπε πε πε

− − −
+ − = + − = . 

 
47. We are looking for a charge q that, when placed at the origin, experiences Fnet = 0,  
where 

F F F Fnet = + +1 2 3 .  
 
The magnitude of these individual forces are given by Coulomb’s law, Eq. 21-1, and 
without loss of generality we assume q > 0. The charges q1 (+6 μC), q2 (–4 μC), and q3 
(unknown), are located on the +x axis, so that we know F1  points toward –x, F2  points 
toward +x, and F3  points toward –x if q3 > 0 and points toward +x if q3 < 0. Therefore, 
with r1 = 8 m, r2 = 16 m and r3 = 24 m, we have 
 

0 1

1
2

2

2
2

3

3
2= − + −k q q

r
k q q

r
k q q

r
| | .  

Simplifying, this becomes 

0 6
8

4
16 242 2

3
2= − + −

q  

 
where q3 is now understood to be in μC. Thus, we obtain q3 = –45 μC. 
 
48. (a) Since qA = –2.00 nC and qC = +8.00 nC, Eq. 21-4 leads to 
  

9 2 2 9 9
6

2 2
0

| | | (8.99 10 N m C )( 2.00 10 C)(8.00 10 C) || | 3.60 10 N.
4 (0.200 m)

A C
AC

q qF
dπε

− −
−× ⋅ − × ×

= = = ×  

 
(b) After making contact with each other, both A and B have a charge of 
 

( )2.00 4.00
nC 3.00 nC.

2 2
A Bq q ⎛ ⎞− + −+

= = −⎜ ⎟
⎝ ⎠

 

 
When B is grounded its charge is zero. After making contact with C, which has a charge 
of +8.00 nC, B acquires a charge of [0 + (–8.00 nC)]/2 = –4.00 nC, which charge C has as 
well. Finally, we have QA = –3.00 nC and QB = QC = –4.00 nC. Therefore, 
 

9 2 2 9 9
6

2 2
0

| | | (8.99 10 N m C )( 3.00 10 C)( 4.00 10 C) || | 2.70 10 N.
4 (0.200 m)

A C
AC

q qF
dπε

− −
−× ⋅ − × − ×

= = = ×  
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(c) We also obtain 
 

9 2 2 9 9
6

2 2
0

| | | (8.99 10 N m C )( 4.00 10 C)( 4.00 10 C) || | 3.60 10 N.
4 (0.200 m)

B C
BC

q qF
dπε

− −
−× ⋅ − × − ×

= = = ×  

 
49. Coulomb’s law gives 
 

( )9 2 2 19 22 2

2 2 15 2
0

8.99 10 N m C (1.60 10 C)| | ( 3) 3.8 N.
4 9(2.6 10 m)

q k eF
r rε

−

−

× ⋅ ×
= = = =

π ×
 

 
50. (a) Since the rod is in equilibrium, the net force acting on it is zero, and the net torque 
about any point is also zero. We write an expression for the net torque about the bearing, 
equate it to zero, and solve for x. The charge Q on the left exerts an upward force of 
magnitude (1/4πε0) (qQ/h2), at a distance L/2 from the bearing. We take the torque to be 
negative. The attached weight exerts a downward force of magnitude W, at a distance 

/ 2x L−  from the bearing. This torque is also negative. The charge Q on the right exerts 
an upward force of magnitude (1/4πε0) (2qQ/h2), at a distance L/2 from the bearing. This 
torque is positive. The equation for rotational equilibrium is 
 

2 2
0 0

1 1 2 0.
4 2 2 4 2

qQ L L qQ LW x
h hπε πε

− ⎛ ⎞− − + =⎜ ⎟
⎝ ⎠

 

The solution for x is 

2
0

11 .
2 4
L qQx

h Wπε
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

 
(b) If FN is the magnitude of the upward force exerted by the bearing, then Newton’s 
second law (with zero acceleration) gives 
 

2 2
0 0

1 1 2 0.
4 4 N

qQ qQW F
h hπε πε

− − − =  

 
We solve for h so that FN = 0. The result is 
 

h qQ
W

=
1

4
3

0πε
.  

 
51. The charge dq within a thin section of the rod (of thickness dx) is ρ A dx where 

4 24.00 10 mA −= ×  and ρ is the charge per unit volume. The number of (excess) electrons 
in the rod (of length L = 2.00 m) is n = q/(–e) where e is given in Eq. 21-12. 
 
(a) In the case where ρ = – 4.00 × 10–6 C/m3, we have 
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10

0

| | 2.00 10
Lq A ALn dx

e e e
ρ ρ

= = = = ×
− − ∫ . 

 
(b) With ρ = bx2 (b = –2.00 × 10–6 C/m5) we obtain 
 

3
2 10

0

| | 1.33 10 .
3

Lb A b A Ln x dx
e e

= = = ×
− ∫  

 
52. For the Coulomb force to be sufficient for circular motion at that distance (where r = 
0.200 m and the acceleration needed for circular motion is a = v2/r) the following 
equality is required: 

 
2

2
04

Qq mv
r rπε

= − . 

 
With q = 4.00 × 10−6 C, m = 0.000800 kg, v = 50.0 m/s, this leads to  
 

2 4 2
50

9 2 2 6

4 (0.200 m)(8.00 10 kg)(50.0 m/s) 1.11 10 C
(8.99 10 N m C )(4.00 10 C)

rmvQ
q

πε −
−

−

×
= − = − = − ×

× ⋅ ×
 . 

 
53. (a) Using Coulomb’s law, we obtain 
 

( ) ( )
( )

29 2 22
91 2

22 2
0

8.99 10 N m C 1.00C
8.99 10 N.

4 1.00m
q q kqF

r rπε

× ⋅
= = = = ×  

 
(b) If r = 1000 m, then 
 

( ) ( )
( )

29 2 22
31 2

22 2 3
0

8.99 10 N m C 1.00C
8.99 10 N.

4 1.00 10 m

q q kqF
r rπε

× ⋅
= = = = ×

×
 

 
54. Let q1 be the charge of one part and q2 that of the other part; thus, q1 + q2 = Q = 6.0 μC. 
The repulsive force between them is given by Coulomb’s law: 
 

1 2 1 1
2 2

0 0

( )
4 4

q q q Q qF
r rπε πε

−
= =  . 

 
If we maximize this expression by taking the derivative with respect to q1 and setting 
equal to zero, we find q1 = Q/2 , which might have been anticipated (based on symmetry 
arguments).  This implies q2 =  Q/2 also. With r = 0.0030 m and Q = 6.0 × 10−6 C, we find 
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( )( )
( )

29 2 2 62
3

22 2 3
0 0

8.99 10 N m C 6.0 10 C( / 2)( / 2) 1 1 9.0 10 N
4 4 4 4 3.00 10 m

Q Q QF
r rπε πε

−

−

× ⋅ ×
= = = ≈ ×

×
. 

 
55. The two charges are q = αQ (where α is a pure number presumably less than 1 and 
greater than zero) and Q – q = (1 – α)Q. Thus, Eq. 21-4 gives 
 

F
Q Q

d
Q

d
=

−
=

−1
4

1 1
40

2

2

0
2π πε

α α α α
ε

b g b gc h b g .  

 
The graph below, of F versus α, has been scaled so that the maximum is 1. In actuality, 
the maximum value of the force is Fmax = Q2/16πε0 d 2. 
 

 
 
(a) It is clear that 1/ 2α =  = 0.5 gives the maximum value of F. 
 
(b) Seeking the half-height points on the graph is difficult without grid lines or some of 
the special tracing features found in a variety of modern calculators. It is not difficult to 
algebraically solve for the half-height points (this involves the use of the quadratic 
formula). The results are 
 

1 2
1 1 1 11 0.15   and   1 0.85.
2 22 2

α α⎛ ⎞ ⎛ ⎞= − ≈ = + ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Thus, the smaller value of α is 1 0.15α = , 
 
(c) and the larger value of α is 2 0.85α = . 
 
56. (a) Equation 21-11 (in absolute value) gives 
 

n
q
e

= =
×
×

= ×
−

−

2 00 10
160 10

125 10
6

19
13.

.
. .C

C
electrons  
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(b) Since you have the excess electrons (and electrons are lighter and more mobile than 
protons) then the electrons “leap” from you to the faucet instead of protons moving from 
the faucet to you (in the process of neutralizing your body). 
 
(c) Unlike charges attract, and the faucet (which is grounded and is able to gain or lose 
any number of electrons due to its contact with Earth’s large reservoir of mobile charges) 
becomes positively charged, especially in the region closest to your (negatively charged) 
hand, just before the spark. 
 
(d) The cat is positively charged (before the spark), and by the reasoning given in part (b) 
the flow of charge (electrons) is from the faucet to the cat. 
 
(e) If we think of the nose as a conducting sphere, then the side of the sphere closest to 
the fur is of one sign (of charge) and the side furthest from the fur is of the opposite sign 
(which, additionally, is oppositely charged from your bare hand, which had stroked the 
cat’s fur). The charges in your hand and those of the furthest side of the “sphere” 
therefore attract each other, and when close enough, manage to neutralize (due to the 
“jump” made by the electrons) in a painful spark. 
 
57. If the relative difference between the proton and electron charges (in absolute value) 
were 

q q
e

p e−
= 0 0000010.  

 
then the actual difference would be q qp e− = × −16 10 25. .C  Amplified by a factor of 29 × 
3 × 1022 as indicated in the problem, this amounts to a deviation from perfect neutrality of 
 

Δq = × × × =−29 3 10 16 10 01422 25c hc h. .C C  
 
in a copper penny. Two such pennies, at r = 1.0 m, would therefore experience a very 
large force. Equation 21-1 gives 

F k
q

r
= = ×

Δb g2
2

817 10. .N  

 
58. Charge q1 = –80 × 10–6 C is at the origin, and charge q2 = +40 × 10–6 C is at x = 0.20 
m. The force on q3 = +20 × 10–6 C is due to the attractive and repulsive forces from q1 
and q2, respectively. In symbols, F F F3 3 1 3 2 net = + , where 

 
3 1 3 2

31 322 2
31 3 2

| | , | | .q q q qF k F k
r r

= =  

 
(a) In this case r31 = 0.40 m and r32 = 0.20 m, with 31F  directed toward –x and 32F  
directed in the +x direction. Using the value of k in Eq. 21-5, we obtain  
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3 1 3 2 1 2
3 net 31 32 32 2 2 2

31 3 2 31 3 2

6 6
9 2 2 6

2 2

| | | |ˆ ˆ ˆ ˆi | | i i i

80 10 C 40 10 C ˆ(8.99 10 N m C )(20 10 C) i
(0.40m) (0.20m)

ˆ(89.9 N)i .

q q q q q qF F F k k kq
r r r r

− −
−

⎛ ⎞ ⎛ ⎞
= − + = − + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞− × + ×

= × ⋅ × +⎜ ⎟
⎝ ⎠

=

 

 
(b) In this case r31 = 0.80 m and r32 = 0.60 m, with 31F  directed toward –x and F3 2  
toward +x. Now we obtain  
 

3 1 3 2 1 2
3 net 31 32 32 2 2 2

31 3 2 31 3 2

6 6
9 2 2 6

2 2

| | | |ˆ ˆ ˆ ˆi | | i i i

80 10 C 40 10 C ˆ(8.99 10 N m C )(20 10 C) i
(0.80m) (0.60m)

ˆ(2.50 N)i .

q q q q q qF F F k k kq
r r r r

− −
−

⎛ ⎞ ⎛ ⎞
= − + = − + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞− × + ×

= × ⋅ × +⎜ ⎟
⎝ ⎠

= −

 

 
(c) Between the locations treated in parts (a) and (b), there must be one where F3 0net = . 

Writing r31 = x and r32 = x – 0.20 m, we equate F3 1  and F3 2 , and after canceling 
common factors, arrive at 

( )
1 2

22

| | .
0.20 m

q q
x x

=
−

 

This can be further simplified to 
2

2
2

1

( 0.20 m) 1 .
| | 2
qx

x q
−

= =  

 
Taking the (positive) square root and solving, we obtain x = 0.683 m. If one takes the 
negative root and ‘solves’, one finds the location where the net force would be zero if q1 
and q2 were of like sign (which is not the case here). 
 
(d) From the above, we see that y = 0. 
 
59. The mass of an electron is m = 9.11 × 10–31 kg, so the number of electrons in a 
collection with total mass M = 75.0 kg is 
 

31
31

75.0kg 8.23 10 electrons.
9.11 10 kg

Mn
m −= = = ×

×
 

 
The total charge of the collection is 
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( )( )31 19 138.23 10 1.60 10 C 1.32 10 C.q ne −= − = − × × = − ×  
 
60. We note that, as result of the fact that the Coulomb force is inversely proportional to 
r2, a particle of charge Q that is distance d from the origin will exert a force on some 
charge qo at the origin of equal strength as a particle of charge 4Q at distance 2d would 
exert on qo.  Therefore, q6 = +8e on the –y axis could be replaced with a +2e closer to the 
origin (at half the distance); this would add to the q5 = +2e already there and produce +4e 
below the origin, which exactly cancels the force due to q2 = +4e above the origin.   
 
Similarly, q4 = +4e to the far right could be replaced by a +e at half the distance, which 
would add to q3 = +e already there to produce a +2e at distance d to the right of the 
central charge q7. The horizontal force due to this +2e is cancelled exactly by that of q1 = 
+2e on the –x axis, so that the net force on q7 is zero. 
 
61. (a) Charge Q1 = +80 × 10–9 C is on the y axis at y = 0.003 m, and charge 

9
2 80 10 CQ −= + ×  is on the y axis at y = –0.003 m. The force on particle 3 (which has a 

charge of q = +18 × 10–9 C) is due to the vector sum of the repulsive forces from Q1 and 
Q2. In symbols, 3 1 3 2 3 ,F F F+ = where 
 

3 1 3 2
31 3 22 2

3 1 3 2

| || | , | | .q q q qF k F k
r r

= =  

 
Using the Pythagorean theorem, we have r31 = r32 = 0.005 m. In magnitude-angle 
notation (particularly convenient if one uses a vector-capable calculator in polar mode), 
the indicated vector addition becomes 
 

( ) ( ) ( )3 0.518 37 0.518 37 0.829 0 .F = ∠ − ° + ∠ ° = ∠ °  
 
Therefore, the net force is 3

ˆ(0.829 N)iF = . 
 
(b) Switching the sign of Q2 amounts to reversing the direction of its force on q. 
Consequently, we have 
 

( ) ( ) ( )3 0.518 37 0.518 143 0.621 90 .F = ∠ − ° + ∠− ° = ∠− °  
 
Therefore, the net force is 3

ˆ(0.621 N)jF = − . 
 
62. The individual force magnitudes are found using Eq. 21-1, with SI units (so 

0.02 ma = ) and k as in Eq. 21-5. We use magnitude-angle notation (convenient if one 
uses a vector-capable calculator in polar mode), listing the forces due to +4.00q, +2.00q, 
and  –2.00q charges: 
 



 

  

901

( ) ( ) ( ) ( )24 24 24 244.60 10 180 2.30 10 90 1.02 10 145 6.16 10 152 .− − − −× ∠ ° + × ∠ − ° + × ∠− ° = × ∠− °

 
(a) Therefore, the net force has magnitude 6.16 × 10–24 N. 
 
(b) The direction of the net force is at an angle of –152° (or 208° measured 
counterclockwise from the +x axis). 
 
63. The magnitude of the net force on the q = 42 × 10–6 C charge is 
 

k q q k q q1
2

2
20 28 0 44.

| |
.

+  

 
where q1 = 30 × 10–9 C and |q2| = 40 × 10–9 C. This yields 0.22 N. Using Newton’s 
second law, we obtain 

m F
a

= =
×

= × −0 22
10

2 2 103
6. .N

100 m s
kg.2  

 
64. Let the two charges be q1 and q2. Then q1 + q2 = Q = 5.0 × 10–5 C. We use Eq. 21-1: 
 

( )
( )

9 2 2
1 2

2

8.99 10 N m C
1.0 N .

2.0 m

q q× ⋅
=  

 
We substitute q2 = Q – q1 and solve for q1 using the quadratic formula. The two roots 
obtained are the values of q1 and q2, since it does not matter which is which. We get 

51.2 10  C−×  and 3.8 × 10–5 C. Thus, the charge on the sphere with the smaller charge is 
51.2 10  C−× . 

 
65. When sphere C touches sphere A, they divide up their total charge (Q/2 plus Q) 
equally between them. Thus, sphere A now has charge 3Q/4, and the magnitude of the 
force of attraction between A and B becomes 
 

19
2

(3 / 4)( / 4) 4.68 10 N.Q QF k
d

−= = ×  

 
66. With F = meg, Eq. 21-1 leads to 
 

( ) ( )
( ) ( )

29 2 2 192
2

231

8.99 10 N m C 1.60 10 C

9.11 10 kg 9.8m se

key
m g

−

−

× ⋅ ×
= =

×
 

 
which leads to y =  ± 5.1 m. We choose 5.1 my = − since the second electron must be 
below the first one, so that the repulsive force (acting on the first) is in the direction 
opposite to the pull of Earth’s gravity. 
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67. The net force on particle 3 is the vector sum of the forces due to particles 1 and 2: 

3,net 31 32F F F= + . In order that 3,net 0F = , particle 3 must be on the x axis and be attracted 
by one and repelled by another. As the result, it cannot be between particles 1 and 2, but 
instead either to the left of particle 1 or to the right of particle 2. Let 3q  be placed a 
distance x to the right of 1q = −5.00q. Then its attraction to 1q  will be exactly balanced by 
its repulsion from 2q =  +2.00q :  
 

 1 3 2 3
3 ,net 32 2 2 2

5 2 0
( ) ( )x

q q q qF k kq q
x x L x x L

⎡ ⎤ ⎡ ⎤−
= + = + =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

. 

 
(a) Cross-multiplying and taking the square root, we obtain 

 5
2

x
x L

=
−

 

which can be rearranged to produce 

 2.72 
1 2 / 5

Lx L= ≈
−

. 

 
(b) The y coordinate of particle 3 is y = 0. 
 
Note: We can use the result obtained above for a consistency check. We find the force on 
particle 3 due to particle 1 to be 
 

1 3 3 3
31 2 2 2

( 5.00 )( ) 0.675
(2.72 )

q q q q kqqF k k
x L L

−
= = = − . 

 
Similarly, the force on particle 3 due to particle 2 is 
 

2 3 3 3
32 2 2 2

( 2.00 )( ) 0.675
(2.72 )

q q q q kqqF k k
x L L L

+
= = = +

−
. 

 
Indeed, the sum of the two forces is zero.   
 
68. The net charge carried by John whose mass is m is roughly 
 

( )

( )
23 19

5

0.0001

(90kg)(6.02 10 molecules mol)(18 electron proton pairs molecule) (1.6 10 C)0.0001
0.018 kg mol

8.7 10 C,

AmN Zeq
M

−

=

× ×
=

= ×
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and the net charge carried by Mary is half of that. So the electrostatic force between them 
is estimated to be 
 

( ) ( )
( )

5 2
9 2 2 18

22

2 (8.7 10 C)8.99 10 N m C 4 10 N.
2 30m

q q
F k

d
×

≈ = × ⋅ ≈ ×  

 
Thus, the order of magnitude of the electrostatic force is 1810  N . 
 
69. We are concerned with the charges in the nucleus (not the “orbiting” electrons, if 
there are any). The nucleus of Helium has 2 protons and that of thorium has 90. 
 
(a) Equation 21-1 gives 
 

( )9 2 2 19 192
2

2 15 2

8.99 10 N m C (2(1.60 10 C))(90(1.60 10 C))
5.1 10 N.

(9.0 10 m)
qF k
r

− −

−

× ⋅ × ×
= = = ×

×
 

 
(b) Estimating the helium nucleus mass as that of 4 protons (actually, that of 2 protons 
and 2 neutrons, but the neutrons have approximately the same mass), Newton’s second 
law leads to 

a F
m

= =
×
×

= ×
−

51 10
4 167 10

7 7 10
2

27
28.

.
. .N

kg
m s2

c h  

 
70. For the net force on q1 = +Q to vanish, the x force component due to q2 = q must 
exactly cancel the force of attraction caused by q4 =  –2Q.  Consequently, 
 

 
2

2 2 2
0 0 0

| 2 | cos 45
4 4 ( 2 ) 4 2

Qq Q Q Q
a a aπε πε πε

= ° =  

 
or q = Q/ 2 . This implies that / 1/ 2 0.707.q Q = =  
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Chapter 22 
 
 
1. We note that the symbol q2 is used in the problem statement to mean the absolute value 
of the negative charge that resides on the larger shell. The following sketch is for 1 2q q= . 

 
 
The following two sketches are for the cases q1 > q2 (left figure) and q1 < q2 (right figure). 
 

 
 
2. (a) We note that the electric field points leftward at both points. Using F q E= 0 , and 
orienting our x axis rightward (so î  points right in the figure), we find 
 

( )19 18N ˆ ˆ1.6 10 C 40 i ( 6.4 10 N) i
C

F − −⎛ ⎞= + × − = − ×⎜ ⎟
⎝ ⎠

 

 
which means the magnitude of the force on the proton is 6.4 × 10–18 N and its direction 

ˆ( i)−  is leftward. 
 
(b) As the discussion in Section 22-2 makes clear, the field strength is proportional to the 
“crowdedness” of the field lines. It is seen that the lines are twice as crowded at A than at 
B, so we conclude that EA = 2EB. Thus, EB = 20 N/C. 
 
3. Since the charge is uniformly distributed throughout a sphere, the electric field at the 
surface is exactly the same as it would be if the charge were all at the center. That is, the 
magnitude of the field is 

2
04

qE
Rπε

=  
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where q is the magnitude of the total charge and R is the sphere radius.  
 
(a) The magnitude of the total charge is Ze, so 
 

( )( )( )
( )

9 2 2 19
21

22 15
0

8.99 10 N m C 94 1.60 10 C
3.07 10 N C.

4 6.64 10 m

ZeE
Rπε

−

−

× ⋅ ×
= = = ×

×
 

 
(b) The field is normal to the surface and since the charge is positive, it points outward 
from the surface. 
 
4. With x1 = 6.00 cm and x2 = 21.00 cm, the point midway between the two charges is 
located at x = 13.5 cm. The values of the charge are  
 

q1 = –q2 = – 2.00 × 10–7 C, 
 
and the magnitudes and directions of the individual fields are given by: 
 

( )

( )

9 2 2 7
51

1 22
0 1

9 2 2 7
52

2 22
0 2

| | (8.99 10 N m C )| 2.00 10 C|ˆ ˆ ˆi i (3.196 10 N C)i
4 ( ) 0.135 m 0.060 m

(8.99 10 N m C )(2.00 10 C)ˆ ˆ ˆi i (3.196 10 N C)i
4 ( ) 0.135 m 0.210 m

qE
x x

qE
x x

πε

πε

−

−

× ⋅ − ×
= − = − = − ×

− −

× ⋅ ×
= − = − = − ×

− −

 

 
Thus, the net electric field is  
 
 5

net 1 2
ˆ(6.39 10 N C)iE E E= + = − ×  

 
5. Since the magnitude of the electric field produced by a point charge q is given by 

2
0| | / 4E q rπε= , where r is the distance from the charge to the point where the field has 

magnitude E, the magnitude of the charge is 
 

( ) ( )2
2 11

0 9 2 2

0.50m 2.0 N C
4 5.6 10 C.

8.99 10 N m C
q r Eπε −= = = ×

× ⋅
 

 
6. We find the charge magnitude |q| from E = |q|/4πε0r2: 
 

( )( )2
2 10

0 9 2 2

1.00 N C 1.00m
4 1.11 10 C.

8.99 10 N m C
q Erπε −= = = ×

× ⋅
 

 
7. The x component of the electric field at the center of the square is given by  
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( )

31 2 4
2 2 2 2

0

1 2 3 42
0

| || | | | | |1 cos 45
4 ( / 2) ( / 2) ( / 2) ( / 2)

1 1 1| | | | | | | |
4 / 2 2
0.

x
qq q qE

a a a a

q q q q
a

ε

ε

⎡ ⎤
= + − − °⎢ ⎥

⎣ ⎦

= + − −

=

p

p
 

 
Similarly, the y component of the electric field is  
 

( )

( )

31 2 4
2 2 2 2

0

1 2 3 42
0

9 2 2 8
5

2

| || | | | | |1 cos 45
4 ( / 2) ( / 2) ( / 2) ( / 2)

1 1 1| | | | | | | |
4 / 2 2

8.99 10  N m / C (2.0 10  C) 1 1.02 10  N/C.
(0.050 m) / 2 2

y
qq q qE

a a a a

q q q q
a

πε

πε
−

⎡ ⎤
= − + + − °⎢ ⎥

⎣ ⎦

= − + + −

× ⋅ ×
= = ×

 

 
Thus, the electric field at the center of the square is 5ˆ ˆj (1.02 10  N/C)j.yE E= = ×  The net 
electric field is depicted in the figure below (not to scale). The field, pointing to the +y 
direction, is the vector sum of the electric fields of individual charges. 

 
 
8. We place the origin of our coordinate system at point P and orient our y axis in the 
direction of the q4 = –12q charge (passing through the q3 = +3q charge). The x axis is 
perpendicular to the y axis, and thus passes through the identical q1 = q2 = +5q charges. 
The individual magnitudes | |, | |, | |,E E E1 2 3  and | |E4  are figured from Eq. 22-3, where the 
absolute value signs for q1, q2, and q3 are unnecessary since those charges are positive 
(assuming q > 0). We note that the contribution from q1 cancels that of q2 (that is, 
| | | |E E1 2= ), and the net field (if there is any) should be along the y axis, with magnitude 
equal to 

E
q
d

q
d

q
d

q
dnet j j= −

F
HG

I
KJ = −F

HG
I
KJ

1
4 2

1
4

12
4

3

0

4
2

3
2

0
2 2p pε εb g  
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which is seen to be zero. A rough sketch of the field lines is shown below: 
 

 
 
9. (a) The vertical components of the individual fields (due to the two charges) cancel, by 
symmetry. Using d = 3.00 m and y = 4.00 m, the horizontal components (both pointing to 
the –x direction) add to give a magnitude of  
 

9 2 2 19

,net 2 2 3/ 2 2 2 3/ 2
0

10

2 | | 2(8.99 10 N m C )(3.20 10  C)(3.00 m)
4 ( ) [(3.00 m) (4.00 m) ]

1.38 10 N/C .

x
q dE

d yπε

−

−

× ⋅ ×
= =

+ +

= ×

 . 

 
(b) The net electric field points in the –x direction, or 180° counterclockwise from the +x 
axis. 
 
10. For it to be possible for the net field to vanish at some x > 0, the two individual fields 
(caused by q1 and q2) must point in opposite directions for x > 0.  Given their locations in 
the figure, we conclude they are therefore oppositely charged.  Further, since the net field 
points more strongly leftward for the small positive x (where it is very close to q2) then 
we conclude that q2 is the negative-valued charge.  Thus, q1 is a positive-valued charge.  
We write each charge as a multiple of some positive number ξ (not determined at this 
point).  Since the problem states the absolute value of their ratio, and we have already 
inferred their signs, we have q1 = 4 ξ and q2 = −ξ.  Using Eq. 22-3 for the individual fields, 
we find 

Enet  = E1 + E2  =  
4 ξ

4πεo (L + x)2  –  
ξ

4πεo x2  

 
for points along the positive x axis.  Setting Enet = 0 at x = 20 cm (see graph) immediately 
leads to L = 20 cm.    
 
(a) If we differentiate Enet with respect to x and set equal to zero (in order to find where it 
is maximum), we obtain (after some simplification) that location:      
 

x = ⎝
⎜
⎛

⎠
⎟
⎞2

3 
3

2  +  
1
3 

3
4  +  

1
3 L  = 1.70(20 cm) = 34 cm. 
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We note that the result for part (a) does not depend on the particular value of ξ. 
 
(b) Now we are asked to set  ξ = 3e, where e = 1.60 ×10−19 C, and evaluate Enet at the 
value of x (converted to meters) found in part (a).  The result is 2.2 ×  10−8 N/C . 
 
11. At points between the charges, the individual electric fields are in the same direction 
and do not cancel. Since charge q2= − 4.00 q1 located at x2 = 70 cm has a greater 
magnitude than q1 = 2.1 ×10−8 C located at x1 = 20 cm, a point of zero field must be closer 
to q1 than to q2. It must be to the left of q1.  
 
Let x be the coordinate of P, the point where the field vanishes. Then, the total electric 
field at P is given by 

( )
2 1

22
0 2 1

| | | |1
4 ( )

q qE
x x x xπε

⎛ ⎞
= −⎜ ⎟

⎜ ⎟− −⎝ ⎠
. 

 
If the field is to vanish, then 
 

( ) ( )

2
2 1 2 2

2 22
2 11 1

| | | | | | ( )  .
( ) | |

q q q x x
x x qx x x x

−
= ⇒ =

− − −
 

 
Taking the square root of both sides, noting that |q2|/|q1| = 4, we obtain 
 

 70 cm 2.0
20 cm

x
x

−
= ±

−
. 

 
Choosing –2.0 for consistency, the value of x is found to be x = −30 cm.   
 
12. The field of each charge has magnitude 
 

( )

19
9 2 2 6

22 2

1.60 10 C(8.99 10 N m C ) 3.6 10 N C.
(0.020 m)0.020m

kq eE k
r

−
−×

= = = × ⋅ = ×  

 
The directions are indicated in standard format below. We use the magnitude-angle 
notation (convenient if one is using a vector-capable calculator in polar mode) and write 
(starting with the proton on the left and moving around clockwise) the contributions to 
Enet  as follows: 
 

E E E E E∠ − ° + ∠ ° + ∠ − ° + ∠ − ° + ∠ °20 130 100 150 0b g b g b g b g b g.  
 
This yields 393 10 76 46. .× ∠ − °−c h , with the N/C unit understood. 
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(a) The result above shows that the magnitude of the net electric field is 
6

net| | 3.93 10  N/C.E −= ×  
 
(b) Similarly, the direction of Enet  is –76.4° from the x axis.  
 
13. (a) The electron ec is a distance r = z = 0.020 m away. Thus, 
 

9 2 2 19
6

2 2
0

(8.99 10 N m C )(1.60 10 C) 3.60 10 N/C
4 (0.020 m)C

eE
rπε

−
−× ⋅ ×

= = = × . 

 
(b) The horizontal components of the individual fields (due to the two es charges) cancel, 
and the vertical components add to give 
 

9 2 2 19

s,net 2 2 3/ 2 2 2 3/ 2
0

6

2 2(8.99 10 N m C )(1.6 10  C)(0.020 m)
4 ( ) [(0.020 m) (0.020 m) ]

2.55 10 N/C .

ezE
R zπε

−

−

× ⋅ ×
= =

+ +

= ×

 

 
(c) Calculation similar to that shown in part (a) now leads to a stronger field 

43.60 10  N/CcE −= ×  from the central charge. 
 
(d) The field due to the side charges may be obtained from calculation similar to that 
shown in part (b). The result is Es, net = 7.09 × 10−7 N/C. 
 
(e) Since Ec is inversely proportional to z2, this is a simple result of the fact that z is now 
much smaller than in part (a).  For the net effect due to the side charges, it is the 
“trigonometric factor” for the y component (here expressed as z/ r  ) that shrinks almost 
linearly (as z decreases) for very small z, plus the fact that the x components cancel, 
which leads to the decreasing value of Es, net . 
 
14. (a) The individual magnitudes E1  and E2  are figured from Eq. 22-3, where the 
absolute value signs for q2 are unnecessary since this charge is positive. Whether we add 
the magnitudes or subtract them depends on whether E1  is in the same, or opposite, 
direction as E2 . At points left of q1 (on the –x axis) the fields point in opposite directions, 
but there is no possibility of cancellation (zero net field) since E1  is everywhere bigger 

than E2  in this region. In the region between the charges (0 < x < L) both fields point 
leftward and there is no possibility of cancellation. At points to the right of q2 (where x > 
L), E1  points leftward and E2  points rightward so the net field in this range is 
 

( )net 2 1
ˆ| | | | iE E E= − . 
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Although |q1| > q2 there is the possibility of Enet = 0  since these points are closer to q2 
than to q1. Thus, we look for the zero net field point in the x > L region: 
 

( )
1 2

1 2 22
0 0

| |1 1| | | |       
4 4

q qE E
x x Lπε πε

= ⇒ =
−

 

which leads to 

2

1

2 .
| | 5
qx L

x q
−

= =  

Thus, we obtain 2.72
1 2 5

Lx L= ≈
−

.  

 
(b) A sketch of the field lines is shown in the figure below: 
 

 
 
15. By symmetry we see that the contributions from the two charges q1 = q2 = +e cancel 
each other, and we simply use Eq. 22-3 to compute magnitude of the field due to q3 = +2e.  
 
(a) The magnitude of the net electric field is 
 

net 2 22
0 0 0

19
9 2 2

6 2

1 2 1 2 1 4| |
4 4 4( / 2)

4(1.60 10 C)(8.99 10 N m C ) 160 N/C.
(6.00 10  m)

e e eE
r aaπε πε πε

−

−

= = =

×
= × ⋅ =

×

 

 
(b) This field points at 45.0°, counterclockwise from the x axis.  
 
16. The net field components along the x and y axes are 
 

1 2 2
net, net, 2 2 2

0 0 0

cos sin, .
4 4 4x y

q q qE E
R R R

θ θ
πε πε πε

= − = −  

 
 The magnitude is the square root of the sum of the components squared.  Setting the 
magnitude equal to E = 2.00 ×  105 N/C, squaring and simplifying, we obtain 
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2 2

2 1 1 1 2
2 2

0

2 cos
(4 )

q q q qE
R

θ
πε

+ −
= . 

 
With R = 0.500 m, q1 = 2.00 ×  10− 6 C, and  q2 = 6.00 ×  10− 6 C, we can solve this 
expression for cos θ  and then take the inverse cosine to find the angle: 
 

2 2 2 2 2
1 1 1 0

1 2

(4 )cos
2

q q R E
q q

πεθ − ⎛ ⎞+ −
= ⎜ ⎟

⎝ ⎠
 . 

 There are two answers. 
 
(a) The positive value of angle is θ = 67.8°. 
 
(b) The positive value of angle is θ = − 67.8°. 
 
17. We make the assumption that bead 2 is in the lower half of the circle, partly because 
it would be awkward for bead 1 to “slide through” bead 2 if it were in the path of bead 1 
(which is the upper half of the circle) and partly to eliminate a second solution to the 
problem (which would have opposite angle and charge for bead 2).  We note that the net 
y component of the electric field evaluated at the origin is negative (points down) for all 
positions of bead 1, which implies (with our assumption in the previous sentence) that 
bead 2 is a negative charge.  
 
(a) When bead 1 is on the +y axis, there is no x component of the net electric field, which 
implies bead 2 is on the –y axis, so its angle is –90°. 
 
(b) Since the downward component of the net field, when bead 1 is on the +y axis, is of 
largest magnitude, then bead 1 must be a positive charge (so that its field is in the same 
direction as that of bead 2, in that situation).  Comparing the values of Ey at 0° and at 90° 
we see that the absolute values of the charges on beads 1 and 2 must be in the ratio of 5 to 
4.  This checks with the 180° value from the Ex graph, which further confirms our belief 
that bead 1 is positively charged.  In fact, the 180° value from the Ex graph allows us to 
solve for its charge (using Eq. 22-3): 
 
      q1 = 4πεor²E = 4π( 8.854 × 10−12 C2

N m2 )(0.60 m)2 (5.0 × 104  N
C ) = 2.0 × 10− 6 C . 

 
(c) Similarly, the 0° value from the Ey graph allows us to solve for the charge of bead 2: 
 
 q2 = 4πεor²E = 4π( 8.854 × 10−12 C2

N m2 )(0.60 m)2 (– 4.0 × 104 N
C ) = –1.6 × 10− 6 C . 

 
18. Referring to Eq. 22-6, we use the binomial expansion (see Appendix E) but keeping 
higher order terms than are shown in Eq. 22-7: 
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  E  =   
q

4πεo z2 ⎝⎜
⎛

⎠⎟
⎞

⎝⎜
⎛

⎠⎟
⎞1 + 

d
z + 34 

d2

z2 + 12 
d3

z3 + …  − ⎝⎜
⎛

⎠⎟
⎞1 − 

d
z + 34 

d2

z2 − 12 
d3

z3 + …   

 

      =   
q d

2πεo z3  +  
q d3

4πεo z5  + … 

 
Therefore, in the terminology of the problem, Enext = q d3/ 4πε0z5.   
 
19. (a) Consider the figure below. The magnitude of the net electric field at point P is 
 

( ) ( ) ( )
net 1 2 3/ 22 2 22 20 0

1 / 2 12 sin 2
4 4/ 2 / 2 / 2

q d qdE E
d r d r d r

θ
πε πε

⎡ ⎤
= = =⎢ ⎥

+ ⎡ ⎤⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

 

 
For r d>> , we write [(d/2)2 + r2]3/2 ≈ r3 so the expression above reduces to 
 

net 3
0

1| | .
4

qdE
rπε

≈  

 
(b) From the figure, it is clear that the net electric 
field at point P points in the − j  direction, or 
−90° from the +x axis. 

 
20. According to the problem statement, Eact  is 
Eq. 22-5 (with z = 5d)  
 

 act 2 2 2
0 0 0

160
4 (4.5 ) 4 (5.5 ) 9801 4

q q qE
d d dπε πε πε

= − = ⋅  

 
 and Eapprox is 

approx 3 2
0 0

2 2
4 (5 ) 125 4

qd qE
d dπε πε

= = ⋅ . 

    
The ratio is   

Eapprox
 Eact

  = 0.9801  ≈  0.98. 

 
21. Think of the quadrupole as composed of two dipoles, each with dipole moment of 
magnitude p = qd. The moments point in opposite directions and produce fields in 
opposite directions at points on the quadrupole axis. Consider the point P on the axis, a 
distance z to the right of the quadrupole center and take a rightward pointing field to be 
positive. Then, the field produced by the right dipole of the pair is qd/2πε0(z – d/2)3 and 
the field produced by the left dipole is –qd/2πε0(z + d/2)3. Use the binomial expansions 
  



 

  

913

 (z – d/2)–3 ≈ z–3 – 3z–4(–d/2)  
 

(z + d/2)–3 ≈ z–3 – 3z–4(d/2) 
 
to obtain 

E qd
z

d
z z

d
z

qd
z

= + − +L
NM

O
QP =2

1 3
2

1 3
2

6
40

3 4 3 4

2

0
4p pε ε

.  

 

Let Q = 2qd 2. We have E Q
z

=
3

4 0
4pε

.  

 
22. (a) We use the usual notation for the linear charge density: λ = q/L.  The arc length is 
L = rθ  with θ is expressed in radians.  Thus,  
 

L = (0.0400 m)(0.698 rad) = 0.0279 m. 
 
With q = −300(1.602 ×  10−19 C), we obtain λ =  −1.72 ×  10−15 C/m. 
 
(b) We consider the same charge distributed over an area A = πr2 = π(0.0200 m)2 and 
obtain σ = q/A = −3.82 ×  10−14 C/m². 
 
(c) Now the area is four times larger than in the previous part (Asphere = 4πr2) and thus 
obtain an answer that is one-fourth as big:  
 

σ = q/Asphere = −9.56 ×  10−15 C/m². 
 

(d) Finally, we consider that same charge spread throughout a volume of V = 4π r3/3 and 
obtain the charge density ρ = /q V  = −1.43 ×  10−12 C/m3. 
 
23. We use Eq. 22-3, assuming both charges are positive. At P, we have 
 

( )
1 2

left ring right ring 3/ 2 2 2 3/ 22 2
00

(2 )  
4 [(2 ) ]4

q R q RE E
R RR R

= ⇒ =
++ πεπε

 

 
Simplifying, we obtain 

3/ 2
1

2

22 0.506.
5

q
q

⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

 

 
24. (a) It is clear from symmetry (also from Eq. 22-16) that the field vanishes at the 
center. 
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(b) The result (E = 0) for points infinitely far away can be reasoned directly from Eq. 22-
16 (it goes as 1/z² as z → ∞) or by recalling the starting point of its derivation (Eq. 22-11, 
which makes it clearer that the field strength decreases as 1/r² at distant points). 
 
(c) Differentiating Eq. 22-16 and setting equal to zero (to obtain the location where it is 
maximum) leads to 
 

( ) ( )
2 2

3/ 2 5/ 22 2 2 2
00

2 0 0.707
4 24

d qz q R z Rz R
dz z R z Rπεπε

⎛ ⎞ −⎜ ⎟ = = ⇒ = + =
⎜ ⎟+ +⎝ ⎠

. 

 
(d) Plugging this value back into Eq. 22-16 with the values stated in the problem, we find 
Emax = 3.46 × 107 N/C.  
 
25. The smallest arc is of length L1 = πr1 /2 = πR/2; the middle-sized arc has length 

2 2 / 2 (2 ) / 2L r R Rπ π π= = = ; and, the largest arc has L3 = π(3R)/2.  The charge per unit 
length for each arc is λ = q/L where each charge q is specified in the figure.  Thus, we 
find the net electric field to be  
 

 31 2
net 2 2

0 1 0 2 0 3 0

(2sin 45 )(2sin 45 ) (2sin 45 )
4 4 4 2

QE
r r r R

λλ λ
πε πε πε π ε

°° °
= + + =  

 
which yields Enet = 1.62 × 106  N/C . 
 
(b) The direction is – 45º, measured counterclockwise from the +x axis. 
 
26. Studying Sample Problem — “Electric field of a charged circular rod,” we see that 
the field evaluated at the center of curvature due to a charged distribution on a circular 
arc is given by 

0

sin
4

E
r

θ

θ

λ θ
πε −

=  

 
along the symmetry axis, with λ = q/rθ with θ in radians. In this problem, each charged 
quarter-circle produces a field of magnitude 
 

/ 4

2
/ 40 0

| | 1 1 2 2 | || | sin .
/ 2 4 4

q qE
r r r

π

π
θ

π ε πε π−
= =

π
 

 
That produced by the positive quarter-circle points at –45°, and that of the negative 
quarter-circle points at +45°.  
 
(a) The magnitude of the net field is 
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net, 2 2
0 0

9 2 2 12

2 2

1 2 2 | | 1 4| |2 cos 45
4 4

(8.99 10 N m C )4(4.50 10 C) 20.6 N/C.
(5.00 10  m)

x
q qE

r rπε π πε π

π

−

−

⎛ ⎞
= ° =⎜ ⎟⎜ ⎟

⎝ ⎠
× ⋅ ×

= =
×

 

 
(b) By symmetry, the net field points vertically downward in the ĵ− direction, or 90− °  
counterclockwise from the +x axis.   
 
27. From symmetry, we see that the net field at P is twice the field caused by the upper 
semicircular charge )q Rλ π+ = ( (and that it points downward). Adapting the steps leading 
to Eq. 22-21, we find 
 

( )
90

net 2 2
900 0

ˆ ˆ2 j sin j.
4

qE
R R

θ
ε ε

°

− °

⎛ ⎞
= − = −⎜ ⎟π⎝ ⎠

λ
π

 

 
(a) With R = 8.50 ×  10− 2 m and q = 1.50 ×  10−8 C, net| | 23.8 N/C.E =  
 
(b) The net electric field netE  points in the ĵ− direction, or 90− ° counterclockwise from 
the +x axis. 
 
28. We find the maximum by differentiating Eq. 22-16 and setting the result equal to zero. 
 

d
dz

qz

z R

q R z

z R4 4
2 0

0
2 2 3 2

0

2 2

2 2 5 2
p pε ε+

F
H
GG

I
K
JJ =

−

+
=

c h c h/ /  

 
which leads to z R= / 2 . With R = 2.40 cm, we have z = 1.70 cm. 
 
29. First, we need a formula for the field due to the arc.  We use the notation λ for the 
charge density, λ = Q/L.  Sample Problem — “Electric field of a charged circular rod” 
illustrates the simplest approach to circular arc field problems.  Following the steps 
leading to Eq. 22-21, we see that the general result (for arcs that subtend angle θ) is 
 

[ ]arc
0 0

2 sin( / 2)sin( / 2) sin( / 2)
4 4

E
r r

λ λ θθ θ
πε πε

= − − = . 

 
Now, the arc length is L = rθ if θ  is expressed in radians. Thus, using R instead of r, we 
obtain 

arc 2
0 0 0

2( / )sin( / 2) 2( / )sin( / 2) 2 sin( / 2)
4 4 4

Q L Q R QE
r r R

θ θ θ θ
πε πε πε θ

= = = . 
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The problem asks for the ratio  Eparticle / Earc,  where Eparticle is given by Eq. 22-3: 
 

2
particle 0

2
arc 0

/ 4
2 sin( / 2) / 4 2sin( / 2)

E Q R
E Q R

πε θ
θ πε θ θ

= = . 

 
With θ = π, we have 

 particle

arc

1.57.
2

E
E

π
= ≈  

 
30. We use Eq. 22-16, with “q” denoting the charge on the larger ring: 
 

 
3/ 2

2 2 3/ 2 2 2 3/ 2
0 0

130 4.19
4 ( ) 4 [ (3 ) ] 5

qz qz q Q Q
z R z Rπε πε

⎛ ⎞+ = ⇒ = − = −⎜ ⎟+ + ⎝ ⎠
. 

 
Note: We set z = 2R in the above calculation. 
 
31. (a) The linear charge density is the charge per unit length of rod. Since the charge is 
uniformly distributed on the rod,   
 

15
144.23 10  C 5.19 10  C/m.

0.0815 m
q

L
λ

−
−− − ×

= = = − ×  

 
(b) We position the x axis along the rod with the origin at the left end of the rod, as shown 
in the diagram.  

 
 
Let dx be an infinitesimal length of rod at x. The charge in this segment is dq dx= λ . The 
charge dq may be considered to be a point charge. The electric field it produces at point P 
has only an x component, and this component is given by 
 

dE dx
L a xx =

+ −
1

4 0
2pε

λ

b g .  

 
The total electric field produced at P by the whole rod is the integral 
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( )

( ) ( )

20 00 0 0

0 0

1 1 1
4 4 4

,
4 4

LL

x
dxE

L a x a L aL a x
L q

a L a a L a

λ λ λ
πε πε πε

λ
πε πε

⎛ ⎞= = = −⎜ ⎟+ − +⎝ ⎠+ −

1
= = −

+ +

∫
 

 
upon substituting q Lλ− = . With q = 4.23 × 10−15 C, L =0.0815 m and a = 0.120 m, we 
obtain 31.57 10  N/CxE −= − × , or  3| | 1.57 10  N/CxE −= × . 

 
(c) The negative sign in xE indicates that the field points in the –x direction, or −180° 
counterclockwise from the +x axis. 
 
(d) If a is much larger than L, the quantity L + a in the denominator can be approximated 
by a, and the expression for the electric field becomes 
 

E q
ax = −

4 0
2πε

.  

 
Since 50 m  0.0815 m,a L= =  the above approximation applies, and we have 

81.52 10  N/CxE −= − × , or 8| | 1.52 10  N/CxE −= × . 
 
(e) For a particle of charge 154.23 10  C,q −− = − × the electric field at a distance a = 50 m 
away has a magnitude 8| | 1.52 10  N/CxE −= × . 
 
32. We assume q > 0. Using the notation λ = q/L we note that the (infinitesimal) charge 
on an element dx of the rod contains charge dq = λ dx. By symmetry, we conclude that all 
horizontal field components (due to the dq’s) cancel and we need only “sum” (integrate) 
the vertical components. Symmetry also allows us to integrate these contributions over 
only half the rod (0 ≤ x ≤ L/2) and then simply double the result. In that regard we note 
that sin θ = R/r where 2 2r x R= + .  
 
(a) Using Eq. 22-3 (with the 2 and sin θ factors just discussed) the magnitude is 
 

( )
( )

( )

2 2

2 2 2 2 20 0
0 0

/ 2
2

3 2 2 2 20 2 2
0 0 0

2 2 220 0

22 sin
4 4

2 2

2 1
2 2 42

L L

L
L

dq dx yE
r x R x R

q L RR dx x
R x Rx R

q L q
LR R L RL R

θ
πε πε

πε πε

πε πε

⎛ ⎞⎛ ⎞ λ⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ +⎝ ⎠ ⎝ ⎠

λ
= = ⋅

++

= =
++

∫ ∫

∫  
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where the integral may be evaluated by elementary means or looked up in Appendix E 
(item #19 in the list of integrals). With 127.81 10  Cq −= × , 0.145 m,L = and R = 0.0600 m, 
we have | | 12.4 N/CE = .  
 
(b) As noted above, the electric field E  points in the +y direction, or 

90+ ° counterclockwise from the +x axis. 
 
33. Consider an infinitesimal section of the rod of length dx, a distance x from the left end, 
as shown in the following diagram. It contains charge dq = λ dx and is a distance r from 
P. The magnitude of the field it produces at P is given by 
 

 2
0

1 .
4

dxdE
rπε

=
λ  

 
 
The x and the y components are 
 

2

1 sin
4x

dxdE
r

λ θ
ε0

= −
π

 

and  

2

1 cos
4y

dxdE
r

λ θ
ε0

= −
π

, 

 
respectively. We use θ as the variable of integration and substitute r = R/cos θ, 

tanx R θ= and dx =  (R/cos2 θ) dθ. The limits of integration are 0 and π/2 rad. Thus, 
 

0 00 0 0

sin cos
4 4 4xE d

R R R
λ λ λθ θ θ

πε πε πε

π 2π 2
= − = = −∫  

and 
/ 2

0 00 0 0

cos sin .
4 4 4yE d

R R R

πλ λ λθ θ θ
πε πε πε

π 2
= − = − = −∫  
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We notice that Ex = Ey no matter what the value of R. Thus, E  makes an angle of 45° 
with the rod for all values of R. 
 
34. From Eq. 22-26, we obtain 
 

( ) ( ) ( )

26
3

12 2 22 2 2 2
0

5.3 10 C m 12cm1 1 6.3 10 N C.
2 2 8.85 10 C /N m 12cm 2.5cm

zE
z R

σ
ε

−

−

⎡ ⎤⎛ ⎞ × ⎢ ⎥= − = − = ×⎜ ⎟ ⎢ ⎥× ⋅+⎝ ⎠ +⎣ ⎦
 

35. At a point on the axis of a uniformly charged disk a distance z above the center of the 
disk, the magnitude of the electric field is 
 

E z
z R

= −
+

L
NM

O
QP

σ
ε2

1
0

2 2
 

         
where R is the radius of the disk and σ is the surface charge density on the disk. See Eq. 
22-26. The magnitude of the field at the center of the disk (z = 0) is Ec = σ/2ε0. We want 
to solve for the value of z such that E/Ec = 1/2. This means 
 

2 2 2 2

1 11 .
2 2

z z
z R z R

− = ⇒ =
+ +

 

 
Squaring both sides, then multiplying them by z2 + R2, we obtain z2 = (z2/4) + (R2/4). 
Thus, z2 = R2/3, or z R= 3 . With R = 0.600 m, we have z = 0.346 m. 
 
The ratio of the electric field strengths, 2/ 1 ( / ) / ( / ) 1,cE E z R z R= − +  as a function of 

/ ,z R  is plotted below. From the plot, we readily see that the ratio indeed is 1/2 at 
/ (0.346 m) /(0.600 m) 0.577.z R = =  

 
 
36. From dA = 2πr dr (which can be thought of as the differential of A = πr²) and dq = σ 
dA (from the definition of the surface charge density σ), we have 
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dq = 
⎝⎜
⎛

⎠⎟
⎞Q

πR2  2πr dr 

 
where we have used the fact that the disk is uniformly charged to set the surface charge 
density equal to the total charge (Q) divided by the total area (πR2).  We next set r = 
0.0050 m and make the approximation dr ≈ 30 × 10− 6 m. Thus we get dq ≈ 2.4 × 10−16 C. 
 
37. We use Eq. 22-26, noting that the disk in figure (b) is effectively equivalent to the 
disk in figure (a) plus a concentric smaller disk (of radius R/2) with the opposite value of 
σ. That is,  

E(b) = E(a) – 
σ

2εo
 
⎝
⎜
⎛

⎠
⎟
⎞1 − 

2R
(2R)2 + (R/2)2   

where  

E(a) =  
σ

2εo
 
⎝
⎜
⎛

⎠
⎟
⎞1 − 

2R
(2R)2 + R2   . 

 
We find the relative difference and simplify: 
 

E(a) – E(b)
 E(a)

   = 1 2 / 4 1/ 4 1 2 / 17 / 4 0.0299 0.283
0.10561 2 / 4 1 1 2 / 5

− + −
= = =

− + −
   

 
or approximately 28%. 
 
38. We write Eq. 22-26 as  

 2 2 1/ 2
max

1
( )

E z
E z R

= −
+

 

 
and note that this ratio is 12  (according to the graph shown in the figure) when z = 4.0 cm.  

Solving this for R we obtain R = z 3  = 6.9 cm. 
 
39. When the drop is in equilibrium, the force of gravity is balanced by the force of the 
electric field: mg = −qE, where m is the mass of the drop, q is the charge on the drop, and 
E is the magnitude of the electric field. The mass of the drop is given by m = (4π/3)r3ρ, 
where r is its radius and ρ is its mass density. Thus, 
 

( ) ( )( )
( )

3 3 263
19

5

4 1.64 10 m 851kg m 9.8m s4 8.0 10 C
3 3 1.92 10 N C

mg r gq
E E

ρ
−

−
π ×π

= − = − = − = − ×
×

 

 
and q/e = (−8.0 × 10–19 C)/(1.60 × 10–19 C) = −5, or 5q e= − . 
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40. (a) The initial direction of motion is taken to be the +x direction (this is also the 
direction of E ). We use v v a xf i

2 2 2− = Δ  with vf = 0 and a F m eE me= = −  to solve for 
distance Δx: 
 

Δx
v
a

m v
eE

i e i=
−

=
−
−

=
− × ×

− × ×
= ×

−

−
−

2 2 31

19
2

2 2

911 10

2 160 10
712 10

.

.
.

kg 5.00 10 m s

C 1.00 10 N C
m.

6 2

3

c hc h
c hc h  

 
(b) Equation 2-17 leads to 

t x
v

x
vi

= = =
×

×
= ×

−
−Δ Δ

avg

m

m s
s.2 2 7 12 10

5 00 10
2 85 10

2

6
8

.

.
.

c h
 

 
(c) Using Δv2 = 2aΔx with the new value of Δx, we find 
 

( )

( )( )( )
( )( )

21 2
2

2 2 2 21
2

19 3 3

231 6

2 2

2 1.60 10 C 1.00 10 N C 8.00 10 m
      0.112.

9.11 10 kg 5.00 10 m s

e

i e i i i e i

m vK v a x eE x
K m v v v m v

− −

−

ΔΔ Δ Δ − Δ
= = = =

− × × ×
= = −

× ×

 

 
Thus, the fraction of the initial kinetic energy lost in the region is 0.112 or 11.2%. 
 
41. (a) The magnitude of the force on the particle is given by F = qE, where q is the 
magnitude of the charge carried by the particle and E is the magnitude of the electric field 
at the location of the particle. Thus, 
 

E F
q

= =
×
×

= ×
−

−

30 10
2 0 10

15 10
6

9
3.

.
.N

C
N C.  

 
The force points downward and the charge is negative, so the field points upward. 
 
(b) The magnitude of the electrostatic force on a proton is 
 

( ) ( )19 3 161.60 10 C 1.5 10 N C 2.4 10 N.elF eE − −= = × × = ×  
 
(c) A proton is positively charged, so the force is in the same direction as the field, 
upward. 
 
(d) The magnitude of the gravitational force on the proton is 
 

( ) ( )227 261.67 10 kg 9.8 m s 1.6 10 N.gF mg − −= = × = ×  
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The force is downward. 
 
(e) The ratio of the forces is 
 

16
10

26

2.4 10 N 1.5 10 .
1.64 10 N

el

g

F
F

−

−

×
= = ×

×
 

 
42. (a) Fe = Ee = (3.0 × 106 N/C)(1.6 × 10–19 C) = 4.8 × 10 – 13 N. 
 
(b) Fi = Eqion = Ee = (3.0 × 106 N/C)(1.6 × 10–19 C) = 4.8 × 10 – 13 N. 
 
43. The magnitude of the force acting on the electron is F = eE, where E is the magnitude 
of the electric field at its location. The acceleration of the electron is given by Newton’s 
second law: 

a F
m

eE
m

= = =
× ×

×
= ×

−

−

160 10

911 10
351 10

19

31
15

.

.
. .

C 2.00 10 N C

kg
m s

4
2c hc h

 

 
44. (a) Vertical equilibrium of forces leads to the equality 
 

.
2
mgq E mg E

e
= ⇒ =  

 
Substituting the values given in the problem, we obtain  
 

27 2
7

19

(6.64 10 kg)(9.8 m/s ) 2.03 10 N C
2 2(1.6 10 C)
mgE

e

−
−

−

×
= = = ×

×
. 

 
(b) Since the force of gravity is downward, then qE  must point upward. Since q > 0 in 
this situation, this implies E  must itself point upward. 
 
45. We combine Eq. 22-9 and Eq. 22-28 (in absolute values). 
 

3 3
0

2
2

p kepF q E q
z zπε

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

 
where we have used Eq. 21-5 for the constant k in the last step. Thus, we obtain 
 

( )( )( )
( )

9 2 2 19 29
15

39

2 8.99 10 N m C 1.60 10 C 3.6 10 C m
6.6 10 N

25 10 m
F

− −
−

−

× ⋅ × × ⋅
= = ×

×
. 
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If the dipole is oriented such that p  is in the +z direction, then F  points in the –z 
direction. 
 
46. Equation 22-28 gives 

E F
q

ma
e

m
e

a= =
−

= −FHG
I
KJb g  

 
using Newton’s second law.  
 
(a) With east being the i  direction, we have 
 

( )
31

29
19

9.11 10 kg ˆ ˆ1.80 10 m s i ( 0.0102 N C) i
1.60 10 C

E
−

−

⎛ ⎞×
= − × = −⎜ ⎟×⎝ ⎠

 

 
which means the field has a magnitude of 0.0102 N/C . 
 
(b) The result shows that the field E  is directed in the –x direction, or westward. 
 
47. (a) The magnitude of the force acting on the proton is F = eE, where E is the 
magnitude of the electric field. According to Newton’s second law, the acceleration of the 
proton is a = F/m = eE/m, where m is the mass of the proton. Thus, 
 

a =
× ×

×
= ×

−

−

160 10

167 10
192 10

19

27
12

.

.
. .

C 2.00 10 N C

kg
m s

4
2c hc h

 

 
(b) We assume the proton starts from rest and use the kinematic equation v v ax2

0
2 2= +  

(or else x at=
1
2

2  and v = at) to show that 

 

v ax= = × = ×2 2 192 10 0 0100 196 1012 5. . .m s m m s.2d ib g  

 
48. We are given σ = 4.00 × 10−6 C/m2 and various values of z (in the notation of Eq. 22-
26, which specifies the field E of the charged disk). Using this with F = eE (the 
magnitude of Eq. 22-28 applied to the electron) and F = ma, we obtain / /a F m eE m= = . 
 
(a) The magnitude of the acceleration at a distance R is  
 

a = 
e σ (2 − 2 )

4 m εo
 = 1.16 × 1016 m/s2  . 
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(b) At a distance R/100, a =  
e σ (10001 − 10001 )

20002 m εo
 = 3.94 × 1016 m/s2  . 

  

(c) At a distance R/1000, a  =  
e σ (1000001 − 1000001 )

2000002 m εo
 = 3.97 × 1016 m/s2  . 

 
(d) The field due to the disk becomes more uniform as the electron nears the center point.  
One way to view this is to consider the forces exerted on the electron by the charges near 
the edge of the disk; the net force on the electron caused by those charges will decrease 
due to the fact that their contributions come closer to canceling out as the electron 
approaches the middle of the disk. 
 
49. (a) Using Eq. 22-28, we find 
 

( )( ) ( )( )
( ) ( )

5 3 5ˆ ˆ8.00 10 C 3.00 10 N C i 8.00 10 C 600 N C j

ˆ ˆ0.240 N i 0.0480 N j.

F − −= × × + × −

= −

G

 

 
Therefore, the force has magnitude equal to 
 

( ) ( )2 22 2 0.240 N 0.0480 N 0.245 N.x yF F F= + = + − =  
 
(b) The angle the force F makes with the +x axis is  
 

1 1 0.0480 Ntan tan 11.3
0.240 N

y

x

F
F

θ − −⎛ ⎞ ⎛ ⎞−
= = = − °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
measured counterclockwise from the +x axis. 
 
(c) With m = 0.0100 kg, the (x, y) coordinates at t = 3.00 s can be found by combining 
Newton’s second law with the kinematics equations of Chapters 2–4. The x coordinate is 
 

( )( )
( )

22
2 0.240 N 3.00 s1 108 m.

2 2 2 0.0100 kg
x

x
F tx a t

m
= = = =  

 
(d) Similarly, the y coordinate is 
 

 ( )( )
( )

22
2 0.0480 N 3.00 s1 21.6 m.

2 2 2 0.0100 kg
y

y

F t
y a t

m
−

= = = = −  

 
50. We assume there are no forces or force-components along the x direction. We 
combine Eq. 22-28 with Newton’s second law, then use Eq. 4-21 to determine time t 
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followed by Eq. 4-23 to determine the final velocity (with –g replaced by the ay of this 
problem); for these purposes, the velocity components given in the problem statement are 
re-labeled as v0x and v0y, respectively. 
 
(a) We have / ( / ) ,a qE m e m E= = −  which leads to 
 

19
213

31

1.60 10 C N ˆ ˆ120 j (2.1 10 m s ) j.
9.11 10 kg C

a
−

−

⎛ ⎞× ⎛ ⎞= − = − ×⎜ ⎟ ⎜ ⎟× ⎝ ⎠⎝ ⎠
 

 
(b) Since vx = v0x in this problem (that is, ax = 0), we obtain 
 

  m
1.5 10 m s

s

m s m s 1.3 10 s

5

2

t x
v

v v a t
x

y y y

= =
×

= ×

= + = × + − × ×

−

−

Δ

0

7

0
3 13 7

0 020 13 10

30 10 21 10

. .

. .d ic h
 

 
which leads to vy = –2.8 × 106 m/s. Therefore, the final velocity is 
 

5 6ˆ ˆ(1.5 10  m/s) i (2.8 10  m/s) j.v = × − ×  
 
51. We take the charge 45.0 pCQ =  of the bee to be concentrated as a particle at the 
center of the sphere. The magnitude of the induced charges on the sides of the grain is 
| | 1.000 pC.q =  
 
(a) The electrostatic force on the grain by the bee is  
 

2 2 2 2

( ) 1 1| |
( / 2) ( / 2) ( / 2) ( / 2)

kQq kQ qF kQ q
d D D D d D

⎡ ⎤−
= + = − −⎢ ⎥+ +⎣ ⎦

 

 
where 1.000 cmD = is the diameter of the sphere representing the honeybee, and 

40.0 md μ=  is the diameter of the grain. Substituting the values, we obtain 
 

( )9 2 2 12 12
3 2 3 2

10

1 18.99 10 N m C (45.0 10 C)(1.000 10 C)
(5.00 10  m) (5.04 10  m)

2.56 10 N .

F − −
− −

−

⎡ ⎤
= − × ⋅ × × −⎢ ⎥× ×⎣ ⎦
= − ×

 
The negative sign implies that the force between the bee and the grain is attractive. The 
magnitude of the force is 10| | 2.56 10 NF −= × . 
 
(b) Let | | 45.0 pCQ′ =  be the magnitude of the charge on the tip of the stigma. The force 
on the grain due to the stigma is  
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2 2 2 2

| | | | ( ) 1 1| || |
( ) ( ) ( ) ( )
k Q q k Q qF k Q q
d D D D d D

′ ′ ⎡ ⎤−′ ′= + = − −⎢ ⎥′ ′ ′ ′+ +⎣ ⎦
 

 
where 1.000 mmD′ = is the distance between the grain and the tip of the stigma. 
Substituting the values given, we have 
 

( )9 2 2 12 12
3 2 3 2

8

1 18.99 10 N m C (45.0 10 C)(1.000 10 C)
(1.000 10  m) (1.040 10  m)

3.06 10 N .

F − −
− −

−

⎡ ⎤′ = − × ⋅ × × −⎢ ⎥× ×⎣ ⎦
= − ×

 
The negative sign implies that the force between the grain and the stigma is attractive. 
The magnitude of the force is 8| | 3.06 10 NF −′ = × . 
 
(c) Since | | | | ,F F′ >  the grain will move to the stigma. 
 
52. (a) Due to the fact that the electron is negatively charged, then (as a consequence of 
Eq. 22-28 and Newton’s second law) the field E  

→
  pointing in the same direction as the 

velocity leads to deceleration.  Thus, with t = 1.5 × 10− 9 s, we find  
 

19
4 9

0 0 31

4

(1.6 10 C)(50 N/C)| | 4.0 10 m/s (1.5 10 s)
9.11 10 kg

2.7 10 m/s .

eEv v a t v t
m

−
−

−

×
= − = − = × − ×

×

= ×

 

 
(b) The displacement is equal to the distance since the electron does not change its 
direction of motion.  The field is uniform, which implies the acceleration is constant.  
Thus, 

50 5.0 10 m.
2

v vd t −+
= = ×  

 
53. We take the positive direction to be to the right in the figure. The acceleration of the 
proton is ap = eE/mp and the acceleration of the electron is ae = –eE/me, where E is the 
magnitude of the electric field, mp is the mass of the proton, and me is the mass of the 
electron. We take the origin to be at the initial position of the proton. Then, the coordinate 
of the proton at time t is x a tp= 1

2
2  and the coordinate of the electron is x L a te= + 1

2
2 .  

They pass each other when their coordinates are the same, or  
 

2 21 1 .
2 2p ea t L a t= +  

 
This means t2 = 2L/(ap – ae) and 
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( ) ( )

( )
31

31 27

5

9.11 10 kg 0.050 m
9.11 10 kg 1.67 10 kg

2.7 10 m.

p p e

p e e pp e

a eE m mx L L L
a a m meE m eE m

−

− −

−

⎛ ⎞
= = = ⎜ ⎟⎜ ⎟− ++ ⎝ ⎠

⎛ ⎞×
= ⎜ ⎟× + ×⎝ ⎠
= ×

 

 
54. Due to the fact that the electron is negatively charged, then (as a consequence of Eq. 
22-28 and Newton’s second law) the field E  

→
  pointing in the +y direction (which we will 

call “upward”) leads to a downward acceleration.  This is exactly like a projectile motion 
problem as treated in Chapter 4 (but with g replaced with a = eE/m = 8.78 × 1011 m/s2).  
Thus, Eq. 4-21 gives 

 6
6

0 0

3.00 m 1.96 10 s
cos (2.00 10 m/s)cos40.0
xt

v θ
−= = = ×

× °
. 

    
This leads (using Eq. 4-23) to  
 

6 11 2 6
0 0

5

sin (2.00 10 m/s)sin40.0 (8.78 10 m/s )(1.96 10 s)

4.34 10 m/s .
yv v atθ −= − = × ° − × ×

= − ×
  

 
Since the x component of velocity does not change, then the final velocity is  
 

 v  
→

  = (1.53 × 106 m/s) i^ − (4.34 × 105 m/s) j^  . 
 
55. (a) We use Δx = vavgt = vt/2: 
 

v x
t

= =
×

×
= ×

−

−

2 2 2 0 10
15 10

2 7 10
2

8
6Δ .

.
.

m
s

m s.
c h

 

 
(b) We use Δx at= 1

2
2  and E = F/e = ma/e: 

 

E ma
e

xm
et

= = =
× ×

× ×
= ×

− −

− −

2 2 2 0 10

160 10
10 102

2 31

19 8

3Δ .

.
.

m 9.11 10 kg

C 1.5 10 s
N C.2

c hc h
c hc h

 

 
56. (a) Equation 22-33 leads to τ = ° =pE sin 0 0. 
 
(b) With θ = °90 ,  the equation gives 
 

τ = = × × × = × ⋅− − −pE 2 16 10 85 1019 9 22. .C 0.78 10 m 3.4 10 N C N m.6c hc he jc h  
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(c) Now the equation gives τ = °=pE sin180 0.  
 
57. (a) The magnitude of the dipole moment is 
 

p qd= = × × = × ⋅− − −150 10 9 30 109 6 15. .C 6.20 10 m C m.c hc h  
 
(b) Following the solution to part (c) of Sample Problem — “Torque and energy of an 
electric dipole in an electric field,” we find 
 

( ) ( ) ( )( )15 11180 0 2 2 9.30 10 C m 1100 N/C 2.05 10 J.U U pE − −° − = = × ⋅ = ×  
 
58. Examining the lowest value on the graph, we have (using Eq. 22-38)  
 

U = −  p  
→

 · E  
→

 = − 1.00 × 10−28 J. 
 
If E = 20 N/C, we find p = 5.0 × 10−28 C·m.  
 
59. Following the solution to part (c) of Sample Problem — “Torque and energy of an 
electric dipole in an electric field,” we find 
 

( ) ( ) ( ) ( )( )0 0 0 0 0

25

23

cos cos 2 cos

2(3.02 10 C m)(46.0 N/C)cos64.0
1.22 10  J.

W U U pE pEθ θ θ θ θ
−

−

= + π − = − + π − =

= × ⋅ °

= ×

 

 
60. Using Eq. 22-35, considering θ as a variable, we note that it reaches its maximum 
value when θ  = −90°: τmax = pE.  Thus, with E = 40 N/C and τmax = 100 × 10−28 N·m 
(determined from the graph), we obtain the dipole moment: p = 2.5 × 10−28 C·m.   
 
61. Equation 22-35 τ θ= − pE sinb g  captures the sense as well as the magnitude of the 
effect. That is, this is a restoring torque, trying to bring the tilted dipole back to its 
aligned equilibrium position. If the amplitude of the motion is small, we may replace sin 
θ with θ in radians. Thus, τ θ≈ − pE .  Since this exhibits a simple negative 
proportionality to the angle of rotation, the dipole oscillates in simple harmonic motion, 
like a torsional pendulum with torsion constant κ = pE.  The angular frequency ω is 
given by 
 

ω κ2 = =
I

pE
I

 

 
where I is the rotational inertia of the dipole. The frequency of oscillation is 
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1 .
2 2

pEf
I

ω
π π

= =  

 
62. (a) We combine Eq. 22-28 (in absolute value) with Newton’s second law: 
 

a q E
m

= =
×
×

F
HG

I
KJ ×F
HG

I
KJ = ×

−

−

| | .
.

. . .160 10
9 11 10

140 10 2 46 10
19

31
6 17 2C

kg
N
C

m s  

 

(b) With v c
= = ×

10
300 107. m s, we use Eq. 2-11 to find 

 
7

10o
17 2

3.00 10 m/s 1.22 10 s.
2.46 10 m/s

v vt
a

−− ×
= = = ×

×
 

(c) Equation 2-16 gives 

( )
( )

272 2
3o

17 2

3.00 10 m/s
1.83 10 m.

2 2 2.46 10 m/s
v vx

a
−

×−
Δ = = = ×

×
 

 
63. (a) Using the density of water (ρ = 1000 kg/m3), the weight mg of the spherical drop 
(of radius r = 6.0 × 10–7 m) is 
 

W Vg= = ×F
HG

I
KJ = ×− −ρ 1000 4

3
6 0 10 9 8 887 103 7 3 2 15kg m m m s Nc h c h c hp . . . .  

 
(b) Vertical equilibrium of forces leads to mg = qE = neE, which we solve for n, the 
number of excess electrons: 

n mg
eE

= =
×

×
=

−

−

887 10
462

120
15

19

. .N
1.60 10 C N Cc hb g  

 
64. The two closest charges produce fields at the midpoint that cancel each other out.  
Thus, the only significant contribution is from the furthest charge, which is a distance 

3 / 2r d=  away from that midpoint.  Plugging this into Eq. 22-3 immediately gives the 
result: 

2 22
0 00

4
4 3 44 ( 3 / 2)

Q Q QE
r ddπε πεπε

= = = . 

 
65. First, we need a formula for the field due to the arc.  We use the notation λ for the 
charge density, λ = Q/L. Sample Problem — “Electric field of a charged circular 
rod,“ illustrates the simplest approach to circular arc field problems.  Following the steps 
leading to Eq. 22-21, we see that the general result (for arcs that subtend angle θ) is 
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[ ]arc
0 0

2 sin( / 2)sin( / 2) sin( / 2)
4 4

E
r r

λ λ θθ θ
πε πε

= − − = . 

 
Now, the arc length is L = rθ with θ expressed in radians.  Thus, using R instead of r, we 
obtain 
 

arc 2
0 0 0

2( / )sin( / 2) 2( / )sin( / 2) 2 sin( / 2)
4 4 4

Q L Q R QE
R R R

θ θ θ θ
πε πε πε θ

= = =  . 

 
Thus, the problem requires Earc = 12  Eparticle, where Eparticle is given by Eq. 22-3.  Hence, 
 

2 2
0 0

2 sin( / 2) 1 sin
4 2 4 2 4
Q Q

R R
θ θ θ

πε θ πε
= ⇒ =  

       
where we note, again, that the angle is in radians.  The approximate solution to this 
equation is θ = 3.791 rad ≈ 217°. 
 
66. We denote the electron with subscript e and the proton with p. From the figure below 
we see that 

E E e
de p= =

4 0
2pε

 

 
where d = 2.0 × 10–6 m. We note that the components along the y axis cancel during the 
vector summation. With k = 1/4πε0 and 60θ = ° , the magnitude of the net electric field is 
obtained as follows: 

 
 

 
( )
( )

192
9

net 22 2 6
0

2

1.6 10  CN m2 cos 2 cos 2 8.99 10 cos 60
4 C 2.0 10  m

3.6 10  N C.

x e
eE E E

d
θ θ

ε

−

−

×⎛ ⎞ ⎛ ⎞⋅
= = = = × °⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ×⎝ ⎠

= ×
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67. A small section of the distribution that has charge dq is λ dx, where λ = 9.0 × 10–9 
C/m. Its contribution to the field at xP = 4.0 m is 
 

dE dq
x xP

=
−4 0

2pε b g  

 
pointing in the +x direction. Thus, we have 
 

( )
3.0m

20
0

î
4 P

dxE
x xε

=
−∫

G l
p

 

 
which becomes, using the substitution u = x – xP, 
 

E du
u

= =
−

−
−

−
−

F
HG

I
KJ−

−zl
p

l
p4 4

1
10

1
4 00

24 0

1 0

0ε ε
 i

m m
i

m

m

.

.

. .
 

 
which yields 61 N/C in the +x direction. 
 
68. Most of the individual fields, caused by diametrically opposite charges, will cancel, 
except for the pair that lie on the x axis passing through the center.  This pair of charges 
produces a field pointing to the right  
 

( )( )
( )

9 2 2 19
5

22 2
0 0

3 8.99 10 N m C 1.60 10 C3 3ˆ ˆ ˆ ˆi i i (1.08 10 N/C)i
4 4 0.020m

q eE
d dπε πε

−
−

× ⋅ ×
= = = = × . 

 
69. (a) From symmetry, we see the net field component along the x axis is zero; the net 
field component along the y axis points upward. With θ = 60°,   
 

 net, 2
0

sin2
4y
QE

a
θ

πε
=  . 

 
Since sin(60°) = 3 /2 , we can write this as Enet  = kQ 3 /a2 (using the notation of the 
constant k defined in Eq. 21-5).  Numerically, this gives roughly 47 N/C. 
 
(b) From symmetry, we see in this case that the net field component along the y axis is 
zero; the net field component along the x axis points rightward. With θ = 60°,   
 

net , 2
0

cos2
4x
QE

a
θ

πε
= . 

 
Since cos(60°) = 1/2, we can write this as Enet  = kQ/a2 (using the notation of Eq. 21-5).  
Thus, Enet ≈ 27 N/C. 
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70. Our approach (based on Eq. 22-29) consists of several steps. The first is to find an 
approximate value of e by taking differences between all the given data. The smallest 
difference is between the fifth and sixth values:  
 

18.08 × 10 –19 C – 16.48 × 10 – 19 C = 1.60 × 10–19 C 
 
which we denote eapprox. The goal at this point is to assign integers n using this 
approximate value of e: 
 

19

1
approx

19

2
approx

19

3
approx

19

4
approx

19

5
approx

6.563 10 Cdatum1 4.10 4

8.204 10 Cdatum2 5.13 5

11.50 10 Cdatum3 7.19 7

13.13 10 Cdatum4 8.21 8

16.48 10 Cdatum5 10.30 10

n
e

n
e

n
e

n
e

n
e

−

−

−

−

−

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

 

19

6
appeox

19

7
approx

19

8
approx

19

9
approx

18.08 10 Cdatum6 11.30 11

19.71 10 Cdatum7 12.32 12

22.89 10 Cdatum8 14.31 14

26.13 10 Cdatum9 16.33 16

n
e

n
e

n
e

n
e

−

−

−

−

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

 
Next, we construct a new data set (e1, e2, e3, …) by dividing the given data by the 
respective exact integers ni (for i = 1, 2, 3, …): 
 

( )
19 19 19

1 2 3
1 2 3

6.563 10 C 8.204 10 C 11.50 10 C, , , , , ,e e e
n n n

− − −⎛ ⎞× × ×
= ⎜ ⎟

⎝ ⎠
… …  

 
which gives (carrying a few more figures than are significant) 
 

( )19 19 191.64075 10 C, 1.6408 10 C, 1.64286 10 C,− − −× × × …  
 
as the new data set (our experimental values for e). We compute the average and standard 
deviation of this set, obtaining 
 

e e eexptal avg C= ± = ± × −Δ 1641 0 004 10 19. .b g  
 
which does not agree (to within one standard deviation) with the modern accepted value 
for e. The lower bound on this spread is eavg – Δe = 1.637 × 10–19 C, which is still about 
2% too high. 
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71. Studying Sample Problem — “Electric field of a charged circular rod,” we see that 
the field evaluated at the center of curvature due to a charged distribution on a circular 
arc is given by 

0

sin
4

E
r

θ

θ

λ θ
ε −

=
π

 

 
along the symmetry axis, where l = =q q rθ  with θ in radians. Here  is the length of 
the arc, given as = 4 0. m . Therefore, the angle is θ = = =r 4 0 2 0 2 0. . . rad . Thus, with 
q = 20 × 10–9 C, we obtain 

1.0 rad

1.0 rad0

( / ) sin 38 N/C
4
qE

r
θ

ε −
= =

π
. 

 
72. The electric field at a point on the axis of a uniformly charged ring, a distance z from 
the ring center, is given by 

E qz

z R
=

+4 0
2 2 3 2

pε c h /  

 
where q is the charge on the ring and R is the radius of the ring (see Eq. 22-16). For q 
positive, the field points upward at points above the ring and downward at points below 
the ring. We take the positive direction to be upward. Then, the force acting on an 
electron on the axis is 

F eqz

z R
= −

+4 0
2 2 3 2

pε c h / .  

 
For small amplitude oscillations z R<<  and z can be neglected in the denominator. Thus, 
 

F eqz
R

= −
4 0

3pε
.  

 
The force is a restoring force: it pulls the electron toward the equilibrium point z = 0. 
Furthermore, the magnitude of the force is proportional to z, just as if the electron were 
attached to a spring with spring constant k = eq/4πε0R3. The electron moves in simple 
harmonic motion with an angular frequency given by 
 

ω
ε

= =
k
m

eq
mR4 0

3p
 

 
where m is the mass of the electron. 
 
73. Let the charge be placed at 0 0( , ).x y  In Cartesian coordinates, the electric field at a 
point ( , )x y  can be written as 
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 0 0
3/ 22 2

0 0 0

ˆ ˆ( )i ( ) jˆ ˆi j
4 ( ) ( )

x y
x x y yqE E E

x x y yπε
− + −

= + =
⎡ ⎤− + −⎣ ⎦

G
. 

The ratio of the field components is  

 0

0

y

x

E y y
E x x

−
=

−
. 

 
(a) The fact that the second measurement at the location (2.0 cm, 0) gives ˆ(100 N/C)iE =

G
 

indicates that 0 0,y =  that is, the charge must be somewhere on the x axis. Thus, the 
above expression can be simplified to 
 

0
3/ 22 2

0 0

ˆ ˆ( )i j
4 ( )

x x yqE
x x yπε

− +
=

⎡ ⎤− +⎣ ⎦

G
, 

 
On the other hand, the field at (3.0 cm, 3.0 cm) is ˆ ˆ(7.2 N/C)(4.0i 3.0 j),E = +

G
 which gives 

/ 3 / 4.y xE E =  Thus, we have 

0

3 3.0 cm
4 3.0 cm x

=
−

 

which implies 0 1.0 cm.x = −  
 
(b) As shown above, the y coordinate is y0 = 0. 
 
(c) To calculate the magnitude of the charge, we note that the field magnitude measured 
at (2.0 cm, 0) (which is r = 0.030 m from the charge) is 
 

2
0

1 100 N C.
4

qE
rπε

= =
G

 

Therefore,  
2

2 11
0 9 2 2

(100 N C)(0.030 m)4 1.0 10 C.
8.99 10 N m C

q E rπε −= = = ×
× ⋅

 

 
Note: Alternatively, we may calculate q by noting that at (3.0 cm, 3.00 cm) 
 

( )2
3/ 22 2

0 0

(0.040 m)28.8 N/C 320 / m
4 4(0.040 m) (0.030 m)

x
q qE
πε πε

= = =
⎡ ⎤+⎣ ⎦

 

This gives  
11

9 2 2 2

28.8 N/C 1.0 10 C,
(8.99 10 N m C )(320 / m )

q −= = ×
× ⋅
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in agreement with that calculated above.  
 
74. (a) Let E = σ/2ε0 = 3 × 106 N/C. With σ = |q|/A, this leads to 
 

( ) ( )
( )

22 62
2 2 7

0 9 2 2

2.5 10 m 3.0 10 N C
2 1.0 10 C ,

2 2 8.99 10 N m C
R Eq R R E

k
π σ πε

−
−

× ×
= = = = = ×

× ⋅
 

 
where  9 2 2

01/ 4 8.99 10 N m C .k πε= = × ⋅  
 
(b) Setting up a simple proportionality (with the areas), the number of atoms is estimated 
to be 

( )22
17

18 2

2.5 10 m
1.3 10 .

0.015 10 m
n

π −

−

×
= = ×

×
 

 
(c) The fraction is 

( ) ( )
7

6
17 19

1.0 10 C 5.0 10 .
1.3 10 1.6 10 C

q
Ne

−
−

−

×
= ≈ ×

× ×
 

 
75. On the one hand, the conclusion (that Q = +1.00 μC) is clear from symmetry. If a 
more in-depth justification is desired, one should use Eq. 22-3 for the electric field 
magnitudes of the three charges (each at the same distance r a= 3 from C) and then 
find field components along suitably chosen axes, requiring each component-sum to be 
zero. If the y axis is vertical, then (assuming Q > 0) the component-sum along that axis 
leads to 2 22 sin 30 / /kq r kQ r° =  where q refers to either of the charges at the bottom 
corners. This yields Q = 2q sin 30° = q and thus to the conclusion mentioned above. 
 
76. Equation 22-38 gives U p E pE= − ⋅ = − cosθ . We note that θi = 110° and θf = 70.0°. 
Therefore, 

( ) 21cos 70.0 cos110 3.28 10 J.U pE −Δ = − ° − ° = − ×  
 

77. (a) Since the two charges in question are of the same sign, the point x = 2.0 mm 
should be located in between them (so that the field vectors point in the opposite 
direction). Let the coordinate of the second particle be x' (x' > 0). Then, the magnitude of 
the field due to the charge –q1 evaluated at x is given by E = q1/4πε0x2, while that due to 
the second charge –4q1 is E' = 4q1 /4πε0(x' – x)2. We set the net field equal to zero: 
 

E E Enet   = ⇒ = ′0  
so that 

q
x

q
x x

1

0
2

1

0
24

4
4p pε ε

=
′ −b g .  
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Thus, we obtain x' = 3x = 3(2.0 mm) = 6.0 mm. 
 
(b) In this case, with the second charge now positive, the electric field vectors produced 
by both charges are in the negative x direction, when evaluated at x = 2.0 mm. Therefore, 
the net field points in the negative x direction, or 180°, measured counterclockwise from 
the +x axis. 
 
78. Let q1 denote the charge at y = d and q2 denote the charge at y = –d. The individual 
magnitudes E1  and E2  are figured from Eq. 22-3, where the absolute value signs for q 
are unnecessary since these charges are both positive. The distance from q1 to a point on 
the x axis is the same as the distance from q2 to a point on the x axis: r x d= +2 2 . By 
symmetry, the y component of the net field along the x axis is zero. The x component of 
the net field, evaluated at points on the positive x axis, is 
 

2 2 2 2
0

12
4x

q xE
x d x dπε

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠ +⎝ ⎠ ⎝ ⎠
 

 
where the last factor is cosθ = x/r with θ being the angle for each individual field as 
measured from the x axis. 
 
(a) If we simplify the above expression, and plug in x = αd, we obtain 
 

( )3 22 2
0

.
2 1

x
qE

d
α

πε α

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

 

 
(b) The graph of E = Ex versus α is shown below. For the purposes of graphing, we set d 
= 1 m and q = 5.56 × 10–11 C. 
 

 
 
(c) From the graph, we estimate Emax occurs at about α = 0.71. More accurate 
computation shows that the maximum occurs at α = 1 2 .  
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(d) The graph suggests that “half-height” points occur at α ≈ 0.2 and α ≈ 2.0. Further 
numerical exploration leads to the values: α = 0.2047 and α = 1.9864. 
 
79. We consider pairs of diametrically opposed charges. The net field due to just the 
charges in the one o’clock (–q) and seven o’clock (–7q) positions is clearly equivalent to 
that of a single –6q charge sitting at the seven o’clock position. Similarly, the net field 
due to just the charges in the six o’clock (–6q) and twelve o’clock (–12q) positions is the 
same as that due to a single –6q charge sitting at the twelve o’clock position. Continuing 
with this line of reasoning, we see that there are six equal-magnitude electric field vectors 
pointing at the seven o’clock, eight o’clock, … twelve o’clock positions. Thus, the 
resultant field of all of these points, by symmetry, is directed toward the position midway 
between seven and twelve o’clock. Therefore, Eresultant  points toward the nine-thirty 
position. 
 
80. The magnitude of the dipole moment is given by p = qd, where q is the positive 
charge in the dipole and d is the separation of the charges. For the dipole described in the 
problem, 

p = × × = × ⋅− − −160 10 4 30 10 688 1019 9 28. . . C  m  C mc hc h . 
 
The dipole moment is a vector that points from the negative toward the positive charge. 
 
81. (a) Since E  points down and we need an upward electric force (to cancel the 
downward pull of gravity), then we require the charge of the sphere to be negative. The 
magnitude of the charge is found by working with the absolute value of Eq. 22-28: 
 

4.4N| | 0.029C
150 N C

F mgq
E E

= = = = , 

or 0.029 C.q = −  
 
(b) The feasibility of this experiment may be studied by using Eq. 22-3 (using k for 
1/4πε0). We have 2| | /E k q r=  with 

3
sulfur sphere

4
3

r mρ ⎛ ⎞π =⎜ ⎟
⎝ ⎠

 

 
Since the mass of the sphere is 4.4/9.8 ≈ 0.45 kg and the density of sulfur is about  
2.1 × 103 kg/m3 (see Appendix F), then we obtain 
 

1 3
sphere 11

2
sulfur

3
0.037 m 2 10 N C

4
m q

r E k
rρ

⎛ ⎞
= = ⇒ = ≈ ×⎜ ⎟π⎝ ⎠

 

 
which is much too large a field to maintain in air. 
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82. We interpret the linear charge density, | | /Q Lλ = , to indicate a positive quantity (so 
we can relate it to the magnitude of the field).  Sample Problem — “Electric field of a 
charged circular rod” illustrates the simplest approach to circular arc field problems.  
Following the steps leading to Eq. 22-21, we see that the general result (for arcs that 
subtend angle θ) is 

[ ]arc
0 0

2 sin( / 2)sin( / 2) sin( / 2)
4 4

E
r r

λ λ θθ θ
πε πε

= − − = . 

 
Now, the arc length is L = rθ with θ is expressed in radians.  Thus, using R instead of r, 
we obtain 

arc 2
0 0 0

2(| | / )sin( / 2) 2(| | / ) sin( / 2) 2 | | sin( / 2)
4 4 4

Q L Q R QE
R R R

θ θ θ θ
πε πε πε θ

= = =  . 

 
With 12| | 6.25 10  CQ −= × , 2.40 rad 137.5 ,θ = = ° and 29.00 10  mR −= × , the magnitude of 
the electric field is 5.39 N/CE = . 
 
83. (a) From Eq. 22-38 (and the facts that i i = 1⋅  and j i = 0⋅ ), the potential energy is 
 

( )( ) ( )30

26

ˆ ˆ ˆ3.00i 4.00j 1.24 10 C m 4000 N C i

1.49 10 J.

U p E −

−

⎡ ⎤ ⎡ ⎤= − ⋅ = − + × ⋅ ⋅ ⎣ ⎦⎣ ⎦
= − ×

 

 
(b) From Eq. 22-34 (and the facts that i i 0× =  and j i = k× − ), the torque is 
 

τ = × = + × ⋅ ×

= − × ⋅

−

−

p E 3 00 124 10 4000

198 10

30

26

. .

.

i 4.00j C m N C i

N m k.

e jc h b g
c h

 

 
(c) The work done is 
 

W U p E p p Ei f= = − ⋅ = − ⋅

= + − − + × ⋅ ⋅

= ×

−

−

Δ Δd i d i
e j e j c h b g300 4 00 124 10 4000

347 10

30

26

. . .

.

i 4.00j i 3.00j C m N C i

J.

 

 
84. (a) The electric field is upward in the diagram and the charge is negative, so the force 
of the field on it is downward. The magnitude of the acceleration is a = eE/m, where E is 
the magnitude of the field and m is the mass of the electron. Its numerical value is 
 

a =
× ×

×
= ×

−

−

160 10
9 11 10

351 10
19

31
14

.
.

. .
C 2.00 10 N C

kg
m s

3
2c hc h
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We put the origin of a coordinate system at the initial position of the electron. We take 
the x axis to be horizontal and positive to the right; take the y axis to be vertical and 
positive toward the top of the page. The kinematic equations are 
 

2
0 0 0

1cos , sin , and sin .
2 yx v t y v t at v v atθ θ θ= = − = −  

 
First, we find the greatest y coordinate attained by the electron. If it is less than d, the 
electron does not hit the upper plate. If it is greater than d, it will hit the upper plate if the 
corresponding x coordinate is less than L. The greatest y coordinate occurs when vy = 0. 
This means v0 sin θ – at = 0 or t = (v0/a) sin θ and 
 

( )
( )

26 22 2 2 2 2 2
20 0 0

max 2 214

6.00 10 m s sin 45sin sin sin1 1 2.56 10 m.
2 2 2 3.51 10 m s

v v vy a
a a a

θ θ θ −
× °

= − = = = ×
×

 

 
Since this is greater than d = 2.00 cm, the electron might hit the upper plate. 
 
(b) Now, we find the x coordinate of the position of the electron when y = d. Since 
 

v0
6 66 00 10 4 24 10sin m s sin45 m sθ = × °= ×. .c h  

and 
2 2 351 10 0 0200 140 1014 13 2ad = × = ×. . .m s m m s2 2d ib g  

 
the solution to d v t at= −0

1
2

2sinθ  is 
 

( )2 26 6 13 22 2
0 0

214

9

(4.24 10 m s) 4.24 10 m s 1.40 10 m ssin sin 2
3.51 10 m s

6.43 10 s.

v v ad
t

a
θ θ

−

× − × − ×− −
= =

×

= ×

 

 
The negative root was used because we want the earliest time for which y = d. The x 
coordinate is  
 

( )( )6 9 2
0 cos 6.00 10 m s 6.43 10 s cos45 2.72 10 m.x v t − −= = × × ° = ×θ  

 
This is less than L so the electron hits the upper plate at x = 2.72 cm. 
 
85. (a) If we subtract each value from the next larger value in the table, we find a set of 
numbers that are suggestive of a basic unit of charge: 1.64 × 10−19, 3.3 × 10−19, 
1.63 × 10−19, 3.35 × 10−19, 1.6 × 10−19, 1.63 × 10−19, 3.18 × 10−19, 3.24 ×10−19, where the 
SI unit Coulomb is understood.  These values are either close to a common 
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191.6 10 Ce −≈ ×  value or are double that.  Taking this, then, as a crude approximation to 
our experimental e we divide it into all the values in the original data set and round to the 
nearest integer, obtaining n = 4, 5, 7, 8,10, 11, 12, 14, and 16. 
 
(b) When we perform a least squares fit of the original data set versus these values for n 
we obtain the linear equation: 
 
                                                    q = 7.18 × 10−21 + 1.633 × 10−19n . 
 
If we dismiss the constant term as unphysical (representing, say, systematic errors in our 
measurements) then we obtain e = 1.63 × 10−19 when we set n = 1 in this equation. 
 
86. (a) From symmetry, we see the net force component along the y axis is zero. 
 
(b) The net force component along the x axis points rightward. With θ = 60°,   
 

F3  =  3 1
2

0

cos2
4

q q
a

θ
πε

. 

 
Since  cos(60°) =1/2, we can write this as  
 

 
9 2 2 12 12

123 1
3 2 2

(8.99 10 N m C )(5.00 10 C)(2.00 10 C) 9.96 10 N.
(0.0950 m)

kq qF
a

− −
−× ⋅ × ×

= = = ×  

 
87. (a) For point A, we have (in SI units) 
 

( )
( ) ( )

( )
( ) ( )

( )
( )

1 2
2 2

0 1 0 2

9 12 9 12

2 22 2

î
4 4

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|ˆ ˆi i
5.00 10 2 5.00 10

ˆ( 1.80 N C)i .

A
q qE

r rπε πε
− −

− −

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦

× × × − ×
= − +

× × ×

= −

  

 
(b) Similar considerations leads to  
 

( ) ( )
( )

( )
( )

9 12 9 12
1 2

2 22 2 2 2
0 1 0 2

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|| | ˆ ˆ ˆi i i
4 4 0.500 5.00 10 0.500 5.00 10

ˆ(43.2 N C)i .

B
q qE

r rπε πε

− −

− −

× × × − ×⎡ ⎤
= + = +⎢ ⎥

× × × ×⎣ ⎦

=

 

 
(c) For point C, we have 
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( ) ( )
( )

( )
( )

9 12 9 12
1 2

2 22 2 2 2
0 1 0 2

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|| | ˆ ˆ ˆi i i
4 4 2.00 5.00 10 5.00 10

ˆ(6.29 N C)i .

C
q qE

r rπε πε

− −

− −

× × × − ×⎡ ⎤
= − = −⎢ ⎥

× × ×⎣ ⎦

= −

 

 
(d) Although a sketch is not shown here, it would be somewhat similar to Fig. 22-5 in the 
textbook except that there would be twice as many field lines “coming into” the negative 
charge (which would destroy the simple up/down symmetry seen in Fig. 22-5).  
 
88. Since both charges are positive (and aligned along the z axis) we have 
 

( ) ( )net 2 2
0

1 .
4 / 2 / 2

q qE
z d z dπε

⎡ ⎤
= +⎢ ⎥

− +⎢ ⎥⎣ ⎦

G
 

 
For z d>>  we have (z ± d/2)–2 ≈ z–2, so 
 

net 2 2 2
0 0

1 2 .
4 4

q q qE
z z zπε πε

⎛ ⎞≈ + =⎜ ⎟
⎝ ⎠

G
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Chapter 23 
 
 
1. The vector area A  and the electric field E  are shown on the diagram below. The angle 
θ  between them is 180° – 35° = 145°, so the electric flux through the area is 
 

( ) ( )23 2 2cos 1800 N C 3.2 10  m cos145 1.5 10  N m C.E A EA θ − −Φ = ⋅ = = × ° = − × ⋅  
 

 
 
2. We use Φ = z ⋅E dA  and note that the side length of the cube is (3.0 m–1.0 m) = 2.0 m. 
 
(a) On the top face of the cube y = 2.0 m and ( ) ĵdA dA= . Therefore, we have 

( )( )2ˆ ˆ ˆ ˆ4i 3 2.0 2 j 4i 18jE = − + = − . Thus the flux is 

 

( ) ( ) ( )( )2 2 2

top top top
ˆ ˆ ˆ4i 18j j 18 18 2.0 N m C 72 N m C.E dA dA dAΦ = ⋅ = − ⋅ = − = − ⋅ = − ⋅∫ ∫ ∫  

 
(b) On the bottom face of the cube y = 0 and  dA dA= −b ge jj . Therefore, we have 

 E = − + = −4 3 0 2 4 62i j i jc h . Thus, the flux is 
 

( ) ( )( ) ( )2 2 2

bottom bottom bottom
ˆ ˆ ˆ4i 6 j j 6 6 2.0 N m C 24  N m C.E dA dA dAΦ = ⋅ = − ⋅ − = = ⋅ = + ⋅∫ ∫ ∫

 
 
(c) On the left face of the cube ( )( )îdA dA= − . So 

 

( ) ( )( ) ( )2 2 2

left left bottom 
ˆ ˆ ˆˆ 4i j i 4 4 2.0 N m C 16 N m C.yE dA E dA dAΦ = ⋅ = + ⋅ − = − = − ⋅ = − ⋅∫ ∫ ∫

 
(d) On the back face of the cube ( )( )k̂dA dA= − . But since E  has no z component 

0E dA⋅ = . Thus, Φ = 0. 
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(e) We now have to add the flux through all six faces. One can easily verify that the flux 
through the front face is zero, while that through the right face is the opposite of that 
through the left one, or +16 N·m2/C. Thus the net flux through the cube is  
 

Φ = (–72 + 24 – 16 + 0 + 0 + 16) N·m2/C = – 48 N·m2/C. 
 
3. We use Φ = ⋅E A , where A A= = .j m j2140b g . 
 
(a) ( ) ( )2ˆ ˆ6.00 N C i 1.40 m j 0.Φ = ⋅ =  
 
(b) ( ) ( )2 2ˆ ˆ2.00 N C j 1.40 m j 3.92 N m C.Φ = − ⋅ = − ⋅  
 
(c) ( ) ( ) ( )2ˆ ˆ ˆ3.00 N C i 400 N C k 1.40 m j 0⎡ ⎤Φ = − + ⋅ =⎣ ⎦ . 

 
(d) The total flux of a uniform field through a closed surface is always zero. 
 
4. The flux through the flat surface encircled by the rim is given by 2 .a EπΦ =  Thus, the 
flux through the netting is 
 

2 3 4 2(0.11 m) (3.0 10  N/C) 1.1 10  N m /Ca Eπ π2 − −′Φ = −Φ = − = − × = − × ⋅ . 
 
5. To exploit the symmetry of the situation, we imagine a closed Gaussian surface in the 
shape of a cube, of edge length d, with a proton of charge 191.6 10  Cq −= + ×  situated at 
the inside center of the cube. The cube has six faces, and we expect an equal amount of 
flux through each face. The total amount of flux is Φnet = q/ε0, and we conclude that the 
flux through the square is one-sixth of that. Thus,  
 

19
9 2

12 2 2
0

1.6 10  C 3.01 10  N m C.
6 6(8.85 10  C N m )
q
ε

−
−

−

×
Φ = = = × ⋅

× ⋅
 

 
6. There is no flux through the sides, so we have two “inward” contributions to the flux, 
one from the top (of magnitude (34)(3.0)2) and one from the bottom (of magnitude 
(20)(3.0)2). With “inward” flux being negative, the result is Φ = – 486 N⋅m2/C. Gauss’ 
law then leads to  
 

12 2 2 2 9
enc 0 (8.85 10 C /N m )( 486 N m C) 4.3 10 C.q ε − −= Φ = × ⋅ − ⋅ = − ×  

 
7. We use Gauss’ law: 0 qε Φ = , where Φ  is the total flux through the cube surface and q 
is the net charge inside the cube. Thus, 
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6
5 2

12 2 2
0

1.8 10  C 2.0 10  N m C.
8.85 10  C N m

q
ε

−

−

×
Φ = = = × ⋅

× ⋅
 

 
8. (a) The total surface area bounding the bathroom is 
 

( ) ( ) ( ) 22 2.5 3.0 2 3.0 2.0 2 2.0 2.5 37 m .A = × + × + × =  
 
The absolute value of the total electric flux, with the assumptions stated in the problem, is  
 

2 3 2| | | | | | (600 N/C)(37 m ) 22 10  N m / C.E A E AΦ = ⋅ = = = × ⋅∑  
 
By Gauss’ law, we conclude that the enclosed charge (in absolute value) is 

7
enc 0| | | | 2.0 10  C.q ε −= Φ = ×  Therefore, with volume V = 15 m3, and recognizing that we 

are dealing with negative charges, the charge density is  
 

7
8 3enc

3

2.0 10  C 1.3 10  C/m .
15 m

q
V

ρ
−

−− ×
= = = − ×  

 
(b) We find (|qenc|/e)/V = (2.0 × 10–7 C/1.6 × 10–19 C)/15 m3 = 8.2 × 1010 excess electrons 
per cubic meter. 
 
9. (a) Let A = (1.40 m)2. Then 
 

( ) ( ) ( ) ( ) ( )( )( )2 2

=0 1.40

ˆ ˆ ˆ ˆ3.00 j j 3.00 j A j 3.00 1.40 1.40 8.23 N m C.
y y

y A y
=

Φ = ⋅ − + ⋅ = = ⋅  

 
(b) The charge is given by 
 

( )( )12 2 2 2 11
enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq ε − −= Φ = × ⋅ ⋅ = × . 

 
(c) The electric field can be re-written as 0

ˆ3.00 jE y E= + , where 0
ˆ ˆ4.00i 6.00 jE = − +  is a 

constant field which does not contribute to the net flux through the cube. Thus Φ  is still 
8.23 N⋅m2/C. 
 
(d) The charge is again given by 
 

( )( )12 2 2 2 11
enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq ε − −= Φ = × ⋅ ⋅ = × . 

 
10. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 
23-4 and Eq. 23-7), so we focus on the x dependent term only. In Si units, we have 

      
Enonconstant =  3x i^  . 
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The face of the cube located at x = 0 (in the yz plane) has area A = 4 m2 (and it “faces” the 
+i^ direction) and has a “contribution” to the flux equal to   Enonconstant A = (3)(0)(4) = 0. 
The face of the cube located at x = −2 m has the same area A (and this one “faces” the –i^  
direction) and a contribution to the flux:   
 

−Enonconstant A = −(3)( −2)(4) = 24 N·m/C2. 
 
Thus, the net flux is Φ = 0 + 24 = 24 N·m/C2.  According to Gauss’ law, we therefore 
have qenc = εο Φ = 2.13 × 10−10 C.  
 
11. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 
23-4 and Eq. 23-7), so we focus on the x dependent term only: 

      
Enonconstant =  (−4.00y2 )  i^  (in SI units) . 

 
The face of the cube located at y = 4.00 has area A = 4.00 m2 (and it “faces” the +j^  
direction) and has a “contribution” to the flux equal to   
 

Enonconstant A = (−4)(42)(4) = –256 N·m/C2. 
 
The face of the cube located at y = 2.00 m has the same area A (however, this one “faces” 
the –j^ direction) and a contribution to the flux:   
 

−Enonconstant A = − (−4)(22)(4) = 64 N·m/C2. 
 
Thus, the net flux is Φ = (−256 + 64) N·m/C2 = −192 N·m/C2.  According to Gauss’s law, 
we therefore have   
 

12 2 2 2 9
enc 0 (8.85 10 C /N m )( 192 N m C) 1.70 10 C.q ε − −= Φ = × ⋅ − ⋅ = − ×  

 
12. We note that only the smaller shell contributes a (nonzero) field at the designated 
point, since the point is inside the radius of the large sphere (and E = 0 inside of a 
spherical charge), and the field points toward the x− direction. Thus, with R = 0.020 m 
(the radius of the smaller shell), L = 0.10 m and x = 0.020 m, we obtain 
 

 

( )

2 2
2 2

2 2 2
0 0 0

2 6 2
4

12 2 2 2

4ˆ ˆ ˆ ˆ( j) j j j
4 4 ( ) ( )

(0.020 m) (4.0 10 C/m ) ˆ ˆj 2.8 10 N/C j .
(8.85 10 C /N m )(0.10 m 0.020 m)

R RqE E
r L x L x

π σ σ
πε πε ε

−

−

= − = − = − = −
− −

×
= − = − ×

× ⋅ −

 

 
13. Let A be the area of one face of the cube, Eu be the magnitude of the electric field at 
the upper face, and El  be the magnitude of the field at the lower face. Since the field is 
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downward, the flux through the upper face is negative and the flux through the lower face 
is positive. The flux through the other faces is zero, so the total flux through the cube 
surface is ( ).uA E EΦ = −  The net charge inside the cube is given by Gauss’ law: 
 

12 2 2 2
0 0

6

( ) (8.85 10  C / N m )(100 m) (100 N/C 60.0 N/C)

  3.54 10  C 3.54 C.
uq A E Eε ε

μ

−

−

= Φ = − = × ⋅ −

= × =
 

 
14. Equation 23-6 (Gauss’ law) gives εοΦ = qenc .   
 
(a) Thus, the value 5 22.0 10 N m /CΦ = × ⋅  for small r leads to  
 

12 2 2 5 2 6 6
central 0 (8.85 10 C /N m )(2.0 10 N m /C) 1.77 10 C 1.8 10 Cq ε − − −= Φ = × ⋅ × ⋅ = × ≈ × . 

 
(b) The next value that Φ takes is 5 24.0 10 N m /CΦ = − × ⋅ , which implies that 

6
enc 3.54 10 C.q −= − ×  But we have already accounted for some of that charge in part (a), so 

the result for part (b) is  
qA = qenc – qcentral = – 5.3 × 10−6 C. 

 
(c) Finally, the large r value for Φ is 5 26.0 10 N m /CΦ = × ⋅ , which implies that 

6
total enc 5.31 10 C.q −= ×  Considering what we have already found, then the result is 

total enc central 8.9 .Aq q q Cμ− − = +  
 
15. The total flux through any surface that completely surrounds the point charge is q/ε0.  
 
(a) If we stack identical cubes side by side and directly on top of each other, we will find 
that eight cubes meet at any corner. Thus, one-eighth of the field lines emanating from 
the point charge pass through a cube with a corner at the charge, and the total flux 
through the surface of such a cube is q/8ε0. Now the field lines are radial, so at each of 
the three cube faces that meet at the charge, the lines are parallel to the face and the flux 
through the face is zero.  
 
(b) The fluxes through each of the other three faces are the same, so the flux through each 
of them is one-third of the total. That is, the flux through each of these faces is (1/3)(q/8ε0) 
= q/24ε0. Thus, the multiple is 1/24 = 0.0417. 
 
16. The total electric flux through the cube is E dAΦ = ⋅∫ . The net flux through the two 
faces parallel to the yz plane is  
 

 
[ ] [ ]2 2

1 1

2 2

1 1

1 3

2 1 0 1

1 3

0 1

( ) ( ) 10 2(4) 10 2(1)

6 6(1)(2) 12.

y z

yz x x y z

y z

y z

E x x E x x dydz dy dz

dy dz

= =

= =

= =

= =

Φ = = − = = + − −

= = =

∫∫ ∫ ∫

∫ ∫
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Similarly, the net flux through the two faces parallel to the xz plane is 
 

2 2

1 1

4 3

2 1 1 1
( ) ( ) [ 3 ( 3)] 0

x z

xz y y x z
E y y E y y dxdz dy dz

= =

= =
⎡ ⎤Φ = = − = = − − − =⎣ ⎦∫∫ ∫ ∫ , 

 
and the net flux through the two faces parallel to the xy plane is 
 

 [ ] ( )2 2

1 1

4 1

2 1 1 0
( ) ( ) 3 2 (3)(1) 6 .

x y

xy z z x y
E z z E z z dxdy dx dy b b b b

= =

= =
Φ = = − = = − = =∫∫ ∫ ∫  

 
Applying Gauss’ law, we obtain 
 
 enc 0 0 0 0( ) (6.00 0 12.0) 24.0xy xz yzq bε ε ε ε= Φ = Φ + Φ + Φ = + + =  
 
which implies that b = 2.00 N/C m⋅ . 
 
17. (a) The charge on the surface of the sphere is the product of the surface charge 
density σ and the surface area of the sphere (which is 24 ,rπ  where r is the radius). Thus, 
 

( )
2

2 6 2 5 m4 4 8.1 10  C/m 3.7 10  C.
2

q r σ − −1.2⎛ ⎞= π = π × = ×⎜ ⎟
⎝ ⎠

 

 
(b) We choose a Gaussian surface in the form of a sphere, concentric with the conducting 
sphere and with a slightly larger radius. The flux is given by Gauss’s law: 
 

5
6 2

12 2 2
0

3.66 10  C 4.1 10 N m / C .
8.85 10  C / N m

q
ε

−

−

×
Φ = = = × ⋅

× ⋅
 

 
18. Using Eq. 23-11, the surface charge density is 
 

( )( )5 12 2 2 6 2
0 2.3 10  N C 8.85 10 C / N m 2.0 10  C/m .Eσ ε − −= = × × ⋅ = ×  

 
19. (a) The area of a sphere may be written 4πR2= πD2. Thus, 
 

( )

6
7 2

22

2.4 10  C 4.5 10  C/m .
1.3 m

q
D

σ
−

−×
= = = ×

π π
 

(b) Equation 23-11 gives 
7 2

4
12 2 2

0

4.5 10  C/m 5.1 10  N/C.
8.85 10  C / N m

E σ
ε

−

−

×
= = = ×

× ⋅
 

 
20. Equation 23-6 (Gauss’ law) gives εοΦ = qenc.   
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(a) The value 5 29.0 10 N m /CΦ = − × ⋅   for small r leads to qcentral = – 7.97 × 10−6 C  or 
roughly – 8.0 μC.   
 
(b) The next (nonzero) value that Φ takes is 5 24.0 10 N m /CΦ = + × ⋅ , which implies 

6
enc 3.54 10 C.q −= ×   But we have already accounted for some of that charge in part (a), so 

the result is  
qA = qenc – qcentral = 11.5 × 10−6 C 12 Cμ≈ . 

 
(c) Finally, the large r value for Φ is 5 22.0 10 N m /C,Φ = − × ⋅  which implies 

6
total enc 1.77 10 C.q −= − ×  Considering what we have already found, then the result is   

 
qtotal enc  – qA  −  qcentral  =  –5.3 μC. 

 
21. (a) Consider a Gaussian surface that is completely within the conductor and surrounds 
the cavity. Since the electric field is zero everywhere on the surface, the net charge it 
encloses is zero. The net charge is the sum of the charge q in the cavity and the charge qw 
on the cavity wall, so q + qw = 0 and qw = –q = –3.0 × 10–6C. 
  
(b) The net charge Q of the conductor is the sum of the charge on the cavity wall and the 
charge qs on the outer surface of the conductor, so Q = qw + qs and 
 

( ) ( )6 6 510 10  C 3.0 10  C 1.3 10 C.sq Q qω
− − −= − = × − − × = + ×  

 
22. We combine Newton’s second law (F = ma) with the definition of electric field 
( F qE= ) and with Eq. 23-12 (for the field due to a line of charge).  In terms of 
magnitudes, we have (if r = 0.080 m and 66.0 10 C/mλ −= × )  
 

    ma = eE =  
e λ

2πεo r
      ⇒      a = 

e λ
2πεo r m  = 2.1 × 1017  m/s2  . 

 
23. (a) The side surface area A for the drum of diameter D and length h is given by 
A Dhπ= . Thus,  
 

( )( )( )( )12 2 2 5
0

7

8.85 10 C /N m 2.3 10  N/C 0.12 m 0.42 m

3.2 10 C.

q A Dh EDhσ σπ πε π −

−

= = = = × ⋅ ×

= ×
 

 
(b) The new charge is 
 

( ) ( )( )
( )( )

7 78.0 cm 28 cm
3.2 10 C 1.4 10 C.

12 cm 42 cm
A D hq q q
A Dh

π
π

− −⎡ ⎤′ ′ ′⎛ ⎞ ⎛ ⎞′ = = = × = ×⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦
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24. We imagine a cylindrical Gaussian surface A of radius r and unit length concentric 

with the metal tube. Then by symmetry enc

0

2 .
A

qE dA rE
ε

⋅ = π =∫  

(a) For r < R, qenc = 0, so E = 0.  
 
(b) For r > R, qenc = λ, so 0( ) / 2 .E r rλ π ε= With 82.00 10  C/mλ −= × and r = 2.00R = 
0.0600 m, we obtain  
 

( )
( )( )

8
3

12 2 2

2.0 10 C/m
5.99 10 N/C.

2 0.0600 m 8.85 10 C / N m
E

−

−

×
= = ×

π × ⋅
 

 
(c) The plot of E vs. r is shown below.  
 

 
Here, the maximum value is  
 

( )
( )( )

8
4

max 12 2 2
0

2.0 10 C/m
1.2 10 N/C.

2 2 0.030 m 8.85 10 C / N m
E

rπ ε π

−

−

×λ
= = = ×

× ⋅
 

 
25. The magnitude of the electric field produced by a uniformly charged infinite line is E 
= λ/2πε0r, where λ is the linear charge density and r is the distance from the line to the 
point where the field is measured. See Eq. 23-12. Thus, 
 

( )( )( )12 2 2 4 6
02 2 8.85 10 C / N m 4.5 10 N/C 2.0 m 5.0 10 C/m.Erπε π − −λ = = × ⋅ × = ×  

 
26. As we approach r = 3.5 cm from the inside, we have 
 

internal
0

2 1000 N/C
4

E
r

λ
πε

= = . 

    
And as we approach r = 3.5 cm from the outside, we have 
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external
0 0

2 2 3000 N/C
4 4

E
r r

λ λ
πε πε

′
= + = −  . 

 
Considering the difference (Eexternal  –  Einternal ) allows us to find λ′ (the charge per unit 
length on the larger cylinder).  Using r = 0.035 m, we obtain λ′ = –5.8 × 10−9 C/m.   
 
27. We denote the radius of the thin cylinder as R = 0.015 m. Using Eq. 23-12, the net 
electric field for r > R is given by 
 

net wire cylinder
0 02 2

E E E
r r

λ λ
ε ε

′−
= + = +

π π
 

 
where –λ = –3.6 nC/m is the linear charge density of the wire and λ' is the linear charge 
density of the thin cylinder. We note that the surface and linear charge densities of the 
thin cylinder are related by 
 

cylinder (2 ) (2 ).q L RL Rσ π σ π′ ′= λ = ⇒ λ =  
 
Now, Enet outside the cylinder will equal zero, provided that 2πRσ = λ, or 
 

6
8 23.6 10  C/m 3.8 10  C/m .

2 (2 )(0.015 m)R
λσ
π

−
−×

= = = ×
π

 

 
28. (a) In Eq. 23-12, λ = q/L where q is the net charge enclosed by a cylindrical Gaussian 
surface of radius r. The field is being measured outside the system (the charged rod 
coaxial with the neutral cylinder) so that the net enclosed charge is only that which is on 
the rod. Consequently, 
 

9
2

0 0

2(2.0 10 C/m) 2.4 10  N/C.
4 4 (0.15 m)

E
r

λ
πε πε

−2 ×
= = = ×  

 
(b) Since the field is zero inside the conductor (in an electrostatic configuration), then 
there resides on the inner surface charge –q, and on the outer surface, charge +q (where q 
is the charge on the rod at the center). Therefore, with ri = 0.05 m, the surface density of 
charge is 

9
9 2

inner
2.0 10 C/m 6.4 10  C/m

2 2 2 (0.050 m)i i

q
r L r

λσ
π π π

−
−− ×

= = − = − = − ×  

 
for the inner surface.  
 
(c) With ro = 0.10 m, the surface charge density of the outer surface is 
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9 2
outer 3.2 10  C/m .

2 2o o

q
r L r

λσ
π π

−+
= = = + ×  

 
29. We assume the charge density of both the conducting cylinder and the shell are 
uniform, and we neglect fringing effect. Symmetry can be used to show that the electric 
field is radial, both between the cylinder and the shell and outside the shell. It is zero, of 
course, inside the cylinder and inside the shell. 
 
(a) We take the Gaussian surface to be a cylinder of length L, coaxial with the given 
cylinders and of larger radius r than either of them. The flux through this surface is 

2 ,rLEπΦ =  where E is the magnitude of the field at the Gaussian surface. We may 
ignore any flux through the ends. Now, the charge enclosed by the Gaussian surface is 
qenc = Q1 + Q2 = –Q1= –3.40×10−12 C. Consequently, Gauss’ law yields 0 enc2 ,r LE qπ ε =  
or 

12
enc

12 2 2 3
0

3.40 10  C 0.214 N/C,
2 2 (8.85 10  C / N m )(11.0 m)(20.0 1.30 10 m)

qE
Lrπε π

−

− −

− ×
= = = −

× ⋅ × ×
 

 
or | | 0.214 N/C.E =  
 
(b) The negative sign in E indicates that the field points inward.  
 
(c) Next, for r = 5.00 R1, the charge enclosed by the Gaussian surface is qenc = Q1 = 
3.40×10−12 C. Consequently, Gauss’ law yields 0 enc2 ,r LE qπ ε =  or 
 

12
enc

12 2 2 3
0

3.40 10  C 0.855 N/C.
2 2 (8.85 10  C / N m )(11.0 m)(5.00 1.30 10 m)

qE
Lrπε π

−

− −

×
= = =

× ⋅ × ×
 

 
(d) The positive sign indicates that the field points outward.  
 
(e) We consider a cylindrical Gaussian surface whose radius places it within the shell 
itself. The electric field is zero at all points on the surface since any field within a 
conducting material would lead to current flow (and thus to a situation other than the 
electrostatic ones being considered here), so the total electric flux through the Gaussian 
surface is zero and the net charge within it is zero (by Gauss’ law). Since the central rod 
has charge Q1, the inner surface of the shell must have charge Qin = –Q1= –3.40×10−12 C.  
 
(f) Since the shell is known to have total charge Q2 = –2.00Q1, it must have charge Qout = 
Q2 – Qin = –Q1= –3.40×10−12 C on its outer surface. 
 
30. We reason that point P (the point on the x axis where the net electric field is zero) 
cannot be between the lines of charge (since their charges have opposite sign).  We 
reason further that P is not to the left of “line 1” since its magnitude of charge (per unit 
length) exceeds that of “line 2”; thus, we look in the region to the right of “line 2” for P.  
Using Eq. 23-12, we have 
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 1 2
net 1 2

0 0

2 2
4 ( / 2) 4 ( / 2)

E E E
x L x L
λ λ

πε πε
= + = +

+ −
 . 

                   
Setting this equal to zero and solving for x we find  
 

 1 2

1 2

6.0 C/m ( 2.0 C/m) 8.0 cm 8.0 cm
2 6.0 C/m ( 2.0 C/m) 2
Lx λ λ μ μ

λ λ μ μ
⎛ ⎞ ⎛ ⎞− − −

= = =⎜ ⎟ ⎜ ⎟+ + −⎝ ⎠⎝ ⎠
. 

 
31. We denote the inner and outer cylinders with subscripts i and o, respectively. 
 
(a) Since ri < r = 4.0 cm < ro, 
 

6
6

12 2 2 2
0

5.0 10  C/m( ) 2.3 10  N/C.
2 2 (8.85 10  C / N m )(4.0 10  m)

iE r
r

λ
πε π

−

− −

×
= = = ×

× ⋅ ×
 

 
(b) The electric field E r( )  points radially outward. 
 
(c) Since r > ro, 
 

6 6
5

12 2 2 2
0

5.0 10  C/m 7.0 10  C/m( 8.0 cm) 4.5 10  N/C,
2 2 (8.85 10  C / N m )(8.0 10  m)

i oE r
rε

− −

− −

λ + λ × − ×
= = = = − ×

π π × ⋅ ×
 

 
or 5| ( 8.0 cm) | 4.5 10  N/C.E r = = ×  
 
(d) The minus sign indicates that ( )E r  points radially inward. 
 
32. To evaluate the field using Gauss’ law, we employ a cylindrical surface of area 2π r L 
where L is very large (large enough that contributions from the ends of the cylinder 
become irrelevant to the calculation). The volume within this surface is V = π r2 L, or 
expressed more appropriate to our needs: 2 .dV rLdrπ=  The charge enclosed is, with 

6 52.5 10 C/mA −= × , 
2 4

enc 0
2 .

2
r

q Ar r L dr ALrπ
= π =∫  

By Gauss’ law, we find enc 0| | (2 ) / ;E rL q εΦ = π =  we thus obtain 
3

0

.
4
ArE

ε
=  

 
(a) With r = 0.030 m, we find | | 1.9 N/C.E =  
 
(b) Once outside the cylinder, Eq. 23-12 is obeyed. To find λ = q/L we must find the total 
charge q. Therefore, 
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0.04 2 11

0

1  2 1.0 10  C/m.q Ar r L dr
L L

π −= = ×∫  

 
And the result, for r = 0.050 m, is 0| | /2 3.6 N/C.E rλ πε= =  
 
33. We use Eq. 23-13. 
 
(a) To the left of the plates:  
 

( )0
ˆ/ 2 ( i)E σ ε= −  (from the right plate) 0

ˆ( / 2 )iσ ε+  (from the left one) = 0. 
 
(b) To the right of the plates:  
 

( )0
ˆ/ 2 iE σ ε=  (from the right plate) ( )0

ˆ/ 2 ( i)σ ε+ − (from the left one) = 0. 
 
(c) Between the plates: 
 

( ) ( )
22 2

11
12 2 2

0 0 0

7.00 10 C/mˆ ˆ ˆ ˆ ˆ( i) i ( i) i 7.91 10 N/C i.
2 2 8.85 10 C /N m

E σ σ σ
ε ε ε

−
−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞×
= − + − = − = − = − ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 
34. The charge distribution in this problem is equivalent to that of an infinite sheet of 
charge with surface charge density σ = 4.50 ×10−12 C/m2 plus a small circular pad of 
radius R = 1.80 cm located at the middle of the sheet with charge density –σ. We denote 
the electric fields produced by the sheet and the pad with subscripts 1 and 2, respectively. 
Using Eq. 22-26 for 2E , the net electric field E  at a distance z = 2.56 cm along the 
central axis is then 
 

( )
1 2 2 2 2 2

0 0 0
12 2 2

12 2 2 2 2 2 2

ˆ ˆ ˆk 1 k k
2 2 2

(4.50 10 C/m )(2.56 10  m) ˆ ˆk (0.208 N/C) k.
2(8.85 10 C /N m ) (2.56 10  m) (1.80 10  m)

z zE E E
z R z R

σσ σ
ε ε ε

− −

− − −

⎛ ⎞−⎛ ⎞
= + = + − =⎜ ⎟⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠

× ×
= =

× ⋅ × + ×

 

 
35. In the region between sheets 1 and 2, the net field is E1 – E2 + E3  =  2.0 × 105  N/C . 
 
In the region between sheets 2 and 3, the net field is at its greatest value: 
 

E1 + E2 + E3  = 6.0 × 105  N/C . 
 
The net field vanishes in the region to the right of sheet 3, where E1 + E2 = E3 .  We note 
the implication that σ3 is negative (and is the largest surface-density, in magnitude).  
These three conditions are sufficient for finding the fields: 
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E1 =  1.0 × 105  N/C ,  E2 =  2.0 × 105  N/C ,   E3 =  3.0 × 105  N/C . 

  
From Eq. 23-13, we infer (from these values of E) 
 

|σ3|
|σ2|

  = 
3.0 x 105  N/C
2.0 x 105  N/C  = 1.5. 

 

Recalling our observation, above, about σ3, we conclude  
σ3

σ2
 = –1.5. 

 
36. According to Eq. 23-13 the electric field due to either sheet of charge with surface 
charge density σ = 1.77× 10−22 C/m2 is perpendicular to the plane of the sheet (pointing 
away from the sheet if the charge is positive) and has magnitude E = σ/2ε0. Using the 
superposition principle, we conclude: 
 
(a) E = σ/ε0 = (1.77 × 10−22 C/m2)/(8.85 × 10−12 2 2C /N m⋅ ) = 2.00×10−11 N/C, pointing in 
the upward direction, or 11 ˆ(2.00 10  N/C)jE −= × ; 
 
(b) E = 0; 
 
(c) and, E = σ/ε0, pointing down, or 11 ˆ(2.00 10  N/C)jE −= − × . 
 
37. (a) To calculate the electric field at a point very close to the center of a large, 
uniformly charged conducting plate, we may replace the finite plate with an infinite plate 
with the same area charge density and take the magnitude of the field to be E = σ/ε0, 
where σ is the area charge density for the surface just under the point. The charge is 
distributed uniformly over both sides of the original plate, with half being on the side 
near the field point. Thus, 

6
4 2

2

6.0 10  C 4.69 10  C/m .
2 2(0.080 m)
q
A

σ
−

−×
= = = ×  

 
The magnitude of the field is 
 

4 2
7

12 2 2
0

4.69 10  C/m 5.3 10  N/C.
8.85 10  C / N m

E σ
ε

−

−

×
= = = ×

× ⋅
 

 
The field is normal to the plate and since the charge on the plate is positive, it points 
away from the plate. 
 
(b) At a point far away from the plate, the electric field is nearly that of a point particle 
with charge equal to the total charge on the plate. The magnitude of the field is 

2 2
0/ 4 /E q r kq rπε= = , where r is the distance from the plate. Thus, 
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( ) ( )

( )

9 2 2 6

2

8.99 10 N m / C 6.0 10 C
60 N/C.

30 m
E

−× ⋅ ×
= =  

 
38. The field due to the sheet is E = σ

2εο
 .  The force (in magnitude) on the electron (due to 

that field) is F = eE, and assuming it’s the only force then the acceleration is 
 

        a = 
eσ

2εo m
  = slope of the graph  ( = 2.0 × 105 m/s divided by 7.0 × 10−12 s)  . 

 
Thus we obtain σ = 2.9 ×10−6 C/m2. 
 
39. The forces acting on the ball are shown in the diagram below. The gravitational force 
has magnitude mg, where m is the mass of the ball; the electrical force has magnitude qE, 
where q is the charge on the ball and E is the magnitude of the electric field at the 
position of the ball; and the tension in the thread is denoted by T.  
 

 
 
The electric field produced by the plate is normal to the plate and points to the right. 
Since the ball is positively charged, the electric force on it also points to the right. The 
tension in the thread makes the angle θ (= 30°) with the vertical. 
 
Since the ball is in equilibrium the net force on it vanishes. The sum of the horizontal 
components yields  

qE – T sin θ = 0 
 
and the sum of the vertical components yields  
 

cos 0T mgθ − = . 
 
The expression T = qE/sin θ, from the first equation, is substituted into the second to 
obtain qE = mg tan θ. The electric field produced by a large uniform plane of charge is 
given by E = σ/2ε0, where σ is the surface charge density. Thus, 
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0

tan
2
q mgσ θ
ε

=  

and 
( )( )( )12 2 2 6 2

0
8

9 2

2 8.85 10 C / N.m 1.0 10 kg 9.8 m/s tan 302 tan
2.0 10 C

5.0 10 C/m .

mg
q

ε θσ
− −

−

−

× × °
= =

×

= ×

 

 
40. The point where the individual fields cancel cannot be in the region between the sheet 
and the particle (−d < x < 0) since the sheet and the particle have opposite-signed charges.  
The point(s) could be in the region to the right of the particle (x > 0) and in the region to 
the left of the sheet (x < d); this is where the condition 
 

 2
0 0

| |
2 4

Q
r

σ
ε πε

=  

 
must hold.  Solving this with the given values, we find r = x = ± 3/2π  ≈ ± 0.691 m.  
 
If d = 0.20 m (which is less than the magnitude of r found above), then neither of the 
points (x ≈ ± 0.691 m) is in the “forbidden region” between the particle and the sheet.  
Thus, both values are allowed. Thus, we have 
 
(a) x = 0.691 m on the positive axis, and  
 
(b) x = − 0.691 m on the negative axis. 
 
(c) If, however, d = 0.80 m (greater than the magnitude of r found above), then one of the 
points (x ≈ −0.691 m) is in the “forbidden region” between the particle and the sheet and 
is disallowed.  In this part, the fields cancel only at the point x ≈ +0.691 m. 
 
41. The charge on the metal plate, which is negative, exerts a force of repulsion on the 
electron and stops it. First find an expression for the acceleration of the electron, then use 
kinematics to find the stopping distance. We take the initial direction of motion of the 
electron to be positive. Then, the electric field is given by E = σ/ε0, where σ is the surface 
charge density on the plate. The force on the electron is F = –eE = –eσ/ε0 and the 
acceleration is 

0

F ea
m m

σ
ε

= = −  

 
where m is the mass of the electron. The force is constant, so we use constant acceleration 
kinematics. If v0 is the initial velocity of the electron, v is the final velocity, and x is the 
distance traveled between the initial and final positions, then 2 2

0 2 .v v ax− =  Set v = 0 and 
replace a with –eσ/ε0m, then solve for x. We find 
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2 2
0 0 0 .

2 2
v mvx
a e

ε
σ

= − =  

 
Now 21

02 mv  is the initial kinetic energy K0, so 
 

( )( )
( )( )

12 2 2 17
40 0

19 6 2

8.85 10 C / N m 1.60 10 J
4.4 10 m.

1.60 10 C 2.0 10 C/m
Kx

e
ε

σ

− −
−

− −

× ⋅ ×
= = = ×

× ×
 

 
42. The surface charge density is given by 
 

( )12 2 2 10 2
0 0/ 8.85 10 C /N m (55 N/C) 4.9 10  C/m .E Eσ ε σ ε − −= ⇒ = = × ⋅ = ×  

 
Since the area of the plates is 21.0 mA = , the magnitude of the charge on the plate is 

104.9 10  C.Q Aσ −= = ×  
 
43. We use a Gaussian surface in the form of a box with rectangular sides. The cross 
section is shown with dashed lines in the diagram below. It is centered at the central plane 
of the slab, so the left and right faces are each a distance x from the central plane. We 
take the thickness of the rectangular solid to be a, the same as its length, so the left and 
right faces are squares.  
 
The electric field is normal to the left and right faces and is uniform 
over them. Since ρ = 5.80 fC/m3 is positive, it points outward at 
both faces: toward the left at the left face and toward the right at the 
right face. Furthermore, the magnitude is the same at both faces. 
The electric flux through each of these faces is Ea2. The field is 
parallel to the other faces of the Gaussian surface and the flux 
through them is zero. The total flux through the Gaussian surface is 

22 .EaΦ =  The volume enclosed by the Gaussian surface is 2a2x 
and the charge contained within it is 22q a xρ= . Gauss’ law yields 
 

2ε0Ea2 = 2a2xρ. 
 
We solve for the magnitude of the electric field: 0/ .E xρ ε=  
 
(a) For x = 0, E = 0. 
 
(b) For x = 2.00 mm = 2.00 × 10−3 m, 
 

15 3 3
6

12 2 2
0

(5.80 10 C/m )(2.00 10  m) 1.31 10  N/C.
8.85 10 C /N m

xE ρ
ε

− −
−

−

× ×
= = = ×

× ⋅
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(c) For x = d/2 = 4.70 mm = 4.70 × 10−3 m, 
 

15 3 3
6

12 2 2
0

(5.80 10 C/m )(4.70 10  m) 3.08 10  N/C.
8.85 10 C /N m

xE ρ
ε

− −
−

−

× ×
= = = ×

× ⋅
 

 
(d) For x = 26.0 mm = 2.60 × 10−2 m, we take a Gaussian surface of the same shape and 
orientation, but with x > d/2, so the left and right faces are outside the slab. The total flux 
through the surface is again 22EaΦ =  but the charge enclosed is now q = a2dρ. Gauss’ 
law yields 2ε0Ea2 = a2dρ, so 
 

15 3 3
6

12 2 2
0

(5.80 10 C/m )(9.40 10  m) 3.08 10  N/C.
2 2(8.85 10 C /N m )

dE ρ
ε

− −
−

−

× ×
= = = ×

× ⋅
 

 
44. We determine the (total) charge on the ball by examining the maximum value (E = 
5.0 × 107 N/C) shown in the graph (which occurs at r = 0.020 m).  Thus, from 

2
0/ 4 ,E q rπε=  we obtain 

 
2 7

2 6
0 9 2 2

(0.020 m) (5.0 10 N/C)4 2.2 10 C
8.99 10 N m C

q r Eπε −×
= = = ×

× ⋅
 . 

 
45. (a) Since r1 = 10.0 cm <  r = 12.0 cm < r2 = 15.0 cm, 
 

( )( )
( )

9 2 2 8
41

22
0

8.99 10  N m /C 4.00 10  C1( ) 2.50 10  N/C.
4 0.120 m

qE r
rπε

−× ⋅ ×
= = = ×  

 
(b) Since r1 < r2 < r = 20.0 cm, 
 

( )( )( )
( )

9 2 2 8
41 2

2 2
0

8.99 10  N m / C 4.00 2.00 1 10  C1( ) 1.35 10  N/C.
4 0.200 m

q qE r
rπε

−× ⋅ + ×+
= = = ×  

 
46. (a) The flux is still 2750 N m /C− ⋅ , since it depends only on the amount of charge 
enclosed. 
 
(b) We use 0/q εΦ =  to obtain the charge q: 
 

( )( )12 2 2 2 9
0 8.85 10 C /N m 750 N m / C 6.64 10  C.q ε − −= Φ = × ⋅ − ⋅ = − ×  

 
47. Charge is distributed uniformly over the surface of the sphere, and the electric field it 
produces at points outside the sphere is like the field of a point particle with charge equal 
to the net charge on the sphere. That is, the magnitude of the field is given by E = 
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|q|/4πε0r2, where |q| is the magnitude of the charge on the sphere and r is the distance 
from the center of the sphere to the point where the field is measured. Thus, 
 

( ) ( )2 3
2 9

0 9 2 2

0.15 m 3.0 10  N/C
| | 4 7.5 10  C.

8.99 10  N m / C
q r Eπε −

×
= = = ×

× ⋅
 

 
The field points inward, toward the sphere center, so the charge is negative, i.e., 

97.5 10 C.q −= − ×  
 
The electric field strength as a function of r 
is shown to the right. Inside the metal 
sphere, E = 0; outside the sphere, 

2| | / ,E k q r=  where 01/ 4 .k πε=  
 

 
 
48. Let EA designate the magnitude of the field at r = 2.4 cm.  Thus EA = 2.0 × 107 N/C, 
and is totally due to the particle. Since 2

particle 0/ 4 ,E q rπε=  then the field due to the 
particle at any other point will relate to EA  by a ratio of distances squared.  Now, we note 
that at r = 3.0 cm the total contribution (from particle and shell) is 8.0 × 107 N/C.  
Therefore, 

Eshell + Eparticle =  Eshell  +  (2.4/3)2 EA = 8.0 × 107 N/C . 
 
Using the value for EA noted above, we find Eshell = 6.6 × 107 N/C.  Thus, with r = 0.030 
m, we find the charge Q using 2

shell 0/ 4E Q rπε= : 
 

2 2 7
2 6shell

0 shell 9 2 2

(0.030 m) (6.6 10 N/C)4 6.6 10 C
8.99 10 N m C

r EQ r E
k

πε −×
= = = = ×

× ⋅
 

 
49. At all points where there is an electric field, it is radially outward. For each part of the 
problem, use a Gaussian surface in the form of a sphere that is concentric with the sphere 
of charge and passes through the point where the electric field is to be found. The field is 
uniform on the surface, so 24E dA r E⋅ = π∫ , where r is the radius of the Gaussian surface. 
 
For r < a, the charge enclosed by the Gaussian surface is q1(r/a)3. Gauss’ law yields 

 
3

2 1 1
3

0 0

4 .
4

q q rrr E E
a a

π
ε πε

⎛ ⎞⎛ ⎞= ⇒ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
(a) For r = 0, the above equation implies E = 0. 
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(b) For r = a/2, we have  
 

 
9 2 2 15

21
3 2 2

0

( / 2) (8.99 10 N m /C )(5.00 10 C) 5.62 10  N/C.
4 2(2.00 10 m)
q aE

aπε

−
−

−

× ⋅ ×
= = = ×

×
 

 
(c) For r = a, we have  
 

9 2 2 15
1

2 2 2
0

(8.99 10 N m /C )(5.00 10 C) 0.112 N/C.
4 (2.00 10 m)

qE
aπε

−

−

× ⋅ ×
= = =

×
 

 
In the case where a < r < b, the charge enclosed by the Gaussian surface is q1, so Gauss’ 
law leads to 

2 1 1
2

0 0

4 .
4

q qr E E
r

π
ε πε

= ⇒ =  

(d) For r = 1.50a, we have  
 

9 2 2 15
1

2 2 2
0

(8.99 10 N m /C )(5.00 10 C) 0.0499 N/C.
4 (1.50 2.00 10 m)

qE
rπε

−

−

× ⋅ ×
= = =

× ×
 

 
(e) In the region b < r < c, since the shell is conducting, the electric field is zero. Thus, for 
r = 2.30a, we have E = 0.  
 
(f) For r > c, the charge enclosed by the Gaussian surface is zero. Gauss’ law yields 

24 0 0.r E Eπ = ⇒ =  Thus, E = 0 at r = 3.50a. 
 
(g) Consider a Gaussian surface that lies completely within the conducting shell. Since 
the electric field is everywhere zero on the surface, E dA⋅ =z 0  and, according to Gauss’ 

law, the net charge enclosed by the surface is zero. If Qi is the charge on the inner surface 
of the shell, then q1 + Qi = 0 and Qi = –q1 = –5.00 fC.  
 
(h) Let Qo be the charge on the outer surface of the shell. Since the net charge on the shell 
is –q, Qi + Qo = –q1. This means  
 

Qo = –q1 – Qi = –q1 –(–q1) = 0. 
 
50. The point where the individual fields cancel cannot be in the region between the 
shells since the shells have opposite-signed charges.  It cannot be inside the radius R of 
one of the shells since there is only one field contribution there (which would not be 
canceled by another field contribution and thus would not lead to zero net field).  We note 
shell 2 has greater magnitude of charge (|σ2|A2) than shell 1, which implies the point is 
not to the right of shell 2 (any such point would always be closer to the larger charge and 
thus no possibility for cancellation of equal-magnitude fields could occur).  Consequently, 
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the point should be in the region to the left of shell 1 (at a distance r > R1 from its center); 
this is where the condition 

     1 2
1 2 2 2

0 0

| | | |
4 4 ( )

q qE E
r r Lπε πε

= ⇒ =
+

 

or  
1 1 2 2

2 2
0 0

| |
4 4 ( )

A A
r r L

σ σ
πε πε

=
+

 . 

 
Using the fact that the area of a sphere is A = 4πR2,  this condition simplifies to 
 

r = 
L

(R2 /R1) |σ2|/σ1  −  1
   =  3.3 cm . 

 
We note that this value satisfies the requirement r > R1.  The answer, then, is that the net 
field vanishes at x = −r  = −3.3 cm. 
 
51. To find an expression for the electric field inside the shell in terms of A and the 
distance from the center of the shell, select A so the field does not depend on the distance. 
We use a Gaussian surface in the form of a sphere with radius rg, concentric with the 
spherical shell and within it (a < rg < b). Gauss’ law will be used to find the magnitude of 
the electric field a distance rg from the shell center. The charge that is both in the shell 
and within the Gaussian sphere is given by the integral sq dVρ= ∫  over the portion of 
the shell within the Gaussian surface. Since the charge distribution has spherical 
symmetry, we may take dV to be the volume of a spherical shell with radius r and 
infinitesimal thickness dr: dV r dr= 4 2π . Thus, 
 

( )2 2 2 24 4   4    2  .g g gr r r

s ga a a

Aq r dr r dr A r dr A r a
r

π ρ π π π= = = = −∫ ∫ ∫  

 
The total charge inside the Gaussian surface is 
 

q q q A r as g+ = + −2 2 2π  d i . 
 
The electric field is radial, so the flux through the Gaussian surface is 24 gr EπΦ = , where 
E is the magnitude of the field. Gauss’ law yields  
 

4 20
2 2 2p pε Er q A r ag g= + − d i.  

We solve for E: 
2

2 2
0

1 22  .
4 g g

q AaE A
r r

ππ
πε

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
 

 



    CHAPTER 23 962 

For the field to be uniform, the first and last terms in the brackets must cancel. They do if 
q – 2πAa2 = 0 or A = q/2πa2. With a = 2.00 × 10−2 m and q = 45.0 × 10−15 C, we have 

11 21.79 10 C/m .A −= ×  
 
52. The field is zero for 0 ≤ r ≤ a as a result of Eq. 23-16. Thus, 
 
(a) E = 0 at r = 0, 
 
(b) E = 0 at r = a/2.00, and  
 
(c) E = 0 at r = a.  

 
For a ≤ r ≤ b the enclosed charge qenc (for a ≤ r ≤ b) is related to the volume by 
 

q r a
enc = −
F
HG

I
KJρ

π π4
3

4
3

3 3

. 

Therefore, the electric field is 
 

E q
r r

r a r a
r

= = −
F
HG

I
KJ =

−1
4 4

4
3

4
3 30

2
0

2

3 3

0

3 3

2πε
ρ

πε
π π ρ

ε
enc  

for a ≤ r ≤ b.  
 
(d) For r = 1.50a, we have  
 

3 3 9 3

2 12 2 2
0 0

(1.50 ) 2.375 (1.84 10 C/m )(0.100 m) 2.375 7.32 N/C.
3 (1.50 ) 3 2.25 3(8.85 10 C /N m ) 2.25

a a aE
a

ρ ρ
ε ε

−

−

− ×⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
 

 
(e) For r = b = 2.00a, the electric field is  
 

3 3 9 3

2 12 2 2
0 0

(2.00 ) 7 (1.84 10 C/m )(0.100 m) 7 12.1 N/C.
3 (2.00 ) 3 4 3(8.85 10 C /N m ) 4

a a aE
a

ρ ρ
ε ε

−

−

− ×⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
 

 
(f) For r ≥ b we have 2

total / 4E q rπε0=  or 
 

3

2
0

.
3

b aE
r

ρ
ε

3−
=  

 
Thus, for r = 3.00b = 6.00a, the electric field is  
 

3 3 9 3

2 12 2 2
0 0

(2.00 ) 7 (1.84 10 C/m )(0.100 m) 7 1.35 N/C.
3 (6.00 ) 3 36 3(8.85 10 C /N m ) 36

a a aE
a

ρ ρ
ε ε

−

−

− ×⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
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53. (a) We integrate the volume charge density over the volume and require the result be 
equal to the total charge: 
 

2

0
4  .

R
dx dy dz dr r Qρ ρ= π =∫ ∫ ∫ ∫  

 
Substituting the expression ρ =ρsr/R, with ρs= 14.1 pC/m3, and performing the integration 
leads to 

4

4
4

s R Q
R
ρπ

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

or 
 3 12 3 3 15(14.1 10  C/m )(0.0560 m) 7.78 10  C.sQ Rπρ π − −= = × = ×  
 
(b) At r = 0, the electric field is zero (E = 0) since the enclosed charge is zero. 
 
At a certain point within the sphere, at some distance r from the center, the field (see Eq. 
23-8 through Eq. 23-10) is given by Gauss’ law: 
 

enc
2

0

1
4

qE
rπε

=  

 
where qenc is given by an integral similar to that worked in part (a): 
 

4
2

enc 0
4 4 .

4
r s rq dr r

R
ρπ ρ π

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫  

Therefore, 
4 2

2
0 0

1 1
4 4

s sr rE
Rr R

πρ πρ
πε πε

= = . 

 
(c) For r = R/2.00, where R = 5.60 cm, the electric field is 
 

2 9 2 2 12 3

0 0
3

( / 2.00)1 1 (8.99 10 N m C ) (14.1 10 C/m )(0.0560 m)
4 4 4.00 4.00

5.58 10 N/C.

s sR RE
R

πρ πρ π
πε πε

−

−

× ⋅ ×
= = =

= ×
 

 
(d) For r = R, the electric field is 
 

2
9 2 2 12 3

0 0
2

1 (8.99 10 N m C ) (14.1 10 C/m )(0.0560 m)
4 4

2.23 10 N/C.

s sR RE
R

πρ πρ π
πε πε

−

−

= = = × ⋅ ×

= ×
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(e) The electric field strength as a function of r is depicted below: 
 

 
 
54. Applying Eq. 23-20, we have 
 

1 1 1
1 13 3 2

0 0 0

| | | | | |1
4 4 2 2 4

q q qRE r
R R Rπε πε πε

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 . 

 
Also, outside sphere 2 we have  
 

2 2
2 2 2

0 0

| | | |
4 4 (1.50 )

q qE
r Rπε πε

= =  . 

Equating these and solving for the ratio of charges, we arrive at  
q2
q1

  =  
9
8  = 1.125.  

 
55. We use 

2enc
2 2 0

0 0

1( )  ( )4
4 4

rqE r r r dr
r r

ρ
πε πε

= = π∫  

 
to solve for ρ(r) and obtain 
 

ρ ε ε ε( ) ( ) .r
r

d
dr

r E r
r

d
dr

Kr K r= = =0
2

2 0
2

6
0

36c h  

 
56. (a) There is no flux through the sides, so we have two contributions to the flux, one 
from the x = 2 end (with Φ2 = +(2 + 2)(π (0.20)2) = 0.50 N·m2/C) and one from the x = 0 
end (with Φ0 = –(2)(π (0.20)2)).  
 
(b) By Gauss’ law we have qenc = ε0 (Φ2 + Φ0) = 2.2 × 10–12 C. 
 
57. (a) For r < R, E = 0 (see Eq. 23-16). 
 
(b) For r slightly greater than R, 
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( )( )
( )

29 2 7

4
22 2

0 0

8.99 10 N m C 2.00 10 C1 2.88 10 N C.
4 4 0.250mR

q qE
r Rπε πε

−× ⋅ ×
= ≈ = = ×  

 
(c) For r > R, 

( )
22

4
2

0

1 0.250  m2.88 10 N C 200 N C.
4 3.00  mR

q RE E
r rπε

⎛ ⎞⎛ ⎞= = = × =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
58. From Gauss’s law, we have  
 

2 9 2 2
2enc

12 2 2
0 0

(8.0 10 C/m ) (0.050 m) 7.1 N m /C
8.85 10 C /N m

q rσπ π
ε ε

−

−

×
Φ = = = = ⋅

× ⋅
 . 

 
59. (a) At x = 0.040 m, the net field has a rightward (+x) contribution (computed using Eq. 
23-13) from the charge lying between x = –0.050 m and x = 0.040 m, and a leftward (–x) 
contribution (again computed using Eq. 23-13) from the charge in the region from 

0.040 mx =  to x = 0.050 m. Thus, since σ = q/A = ρV/A = ρΔx in this situation, we have 
 

9 3

12 2 2
0 0

(0.090 m) (0.010 m) (1.2 10 C/m )(0.090 m 0.010 m) 5.4 N C.
2 2 2(8.85 10 C /N m )

E ρ ρ
ε ε

−

−

× −
= − = =

× ⋅
 

 
(b) In this case, the field contributions from all layers of charge point rightward, and we 
obtain 

9 3

12 2 2
0

(0.100 m) (1.2 10 C/m )(0.100 m) 6.8 N C.
2 2(8.85 10 C /N m )

E ρ
ε

−

−

×
= = =

× ⋅
 

 
60. (a) We consider the radial field produced at points within a uniform cylindrical 
distribution of charge. The volume enclosed by a Gaussian surface in this case is L rp 2 . 
Thus, Gauss’ law leads to 
 

( )2
enc

0 cylinder 0 0

| || | | | .
(2 ) 2

L rq rE
A rL

ρ π ρ
ε ε π ε

= = =  

 
(b) We note from the above expression that the magnitude of the radial field grows with r. 
 
(c) Since the charged powder is negative, the field points radially inward. 
 
(d) The largest value of r that encloses charged material is rmax = R. Therefore, with 
| | .ρ = 0 0011 C m3  and R = 0.050 m, we obtain 
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3
6

max 12 2 2
0

| | (0.0011 C m )(0.050 m) 3.1 10 N C.
2 2(8.85 10 C /N m )

RE ρ
ε −= = = ×

× ⋅
 

 
(e) According to condition 1 mentioned in the problem, the field is high enough to 
produce an electrical discharge (at r = R). 
 
61. We use Eqs. 23-15, 23-16, and the superposition principle. 
 
(a) E = 0 in the region inside the shell. 
 
(b) 24 .aE q rπε= 0  
 
(c) 2

0( ) / 4 .a bE q q rπε= +  
 
(d) Since E = 0 for r < a the charge on the inner surface of the inner shell is always zero. 
The charge on the outer surface of the inner shell is therefore qa. Since E = 0 inside the 
metallic outer shell, the net charge enclosed in a Gaussian surface that lies in between the 
inner and outer surfaces of the outer shell is zero. Thus the inner surface of the outer shell 
must carry a charge –qa, leaving the charge on the outer surface of the outer shell to be 

b aq q+ . 
 
62. (a) The direction of the electric field at P1 is away from q1 and its magnitude is 
 

9 2 2 7
6

2 2
0 1

(8.99 10 N m C )(1.0 10 C) 4.0 10 N C.
4 (0.015m)

qE
rπε

−× ⋅ ×
= = = ×  

 
(b) 0E = , since P2 is inside the metal. 
 
63. The proton is in uniform circular motion, with the electrical force of the sphere on the 
proton providing the centripetal force. According to Newton’s second law, F = mv2/r, 
where F is the magnitude of the force, v is the speed of the proton, and r is the radius of 
its orbit, essentially the same as the radius of the sphere. The magnitude of the force on 
the proton is F = e|q|/4πε0r2, where |q| is the magnitude of the charge on the sphere. Thus, 
 

2

2
0

1 | |
4

e q mv
r rπε

=  

so 

( )( ) ( )
( )( )

227 52
90

9 2 2 9

1.67 10  kg 3.00 10  m/s 0.0100 m4| | 1.04 10  C.
8.99 10  N m / C 1.60 10  C

mv rq
e

πε
−

−
−

× ×
= = = ×

× ⋅ ×
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The force must be inward, toward the center of the sphere, and since the proton is 
positively charged, the electric field must also be inward. The charge on the sphere is 
negative: q = –1.04 × 10–9 C. 
 
64. We interpret the question as referring to the field just outside the sphere (that is, at 
locations roughly equal to the radius r of the sphere). Since the area of a sphere is A = 
4πr2 and the surface charge density is σ = q/A (where we assume q is positive for brevity), 
then 

2 2
0 0 0

1 1
4 4

q qE
r r

σ
ε ε π πε

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
which we recognize as the field of a point charge (see Eq. 22-3). 
 
65. (a) Since the volume contained within a radius of  1

2 R is one-eighth the volume 
contained within a radius of R, the charge at 0 < r < R/2  is Q/8. The fraction is 1/8 = 
0.125.  
 
(b) At r = R/2, the magnitude of the field is 
 

 2 2
0 0

/ 8 1
4 ( / 2) 2 4

Q QE
R Rπε πε

= =  

 
and is equivalent to half the field at the surface. Thus, the ratio is 0.500. 
 
66. The field at the proton’s location (but not caused by the proton) has magnitude E.  
The proton’s charge is  e.  The ball’s charge has magnitude q.  Thus, as long as the proton 
is at r ≥ R then the force on the proton (caused by the ball) has magnitude 
 

F = eE = e 
⎝⎜
⎛

⎠⎟
⎞q

 4πεo r2   =  
e q

4πεo r2  

 
where r is measured from the center of the ball (to the proton). This agrees with 
Coulomb’s law from Chapter 22.   We note that if r = R then this expression becomes 
 

FR  =  
e q

4πεo R2 . 

 
(a) If we require F = 12 FR , and solve for r, we obtain r = 2 R.  Since the problem asks 

for the measurement from the surface then the answer is  2 R  – R = 0.41R.  
 
(b) Now we require Finside = 12 FR where Finside = eEinside and Einside is given by Eq. 23-20.  
Thus, 
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 e 
⎝⎜
⎛

⎠⎟
⎞q

 4πεo R2  r  = 12  
e q

4πεo R2       ⇒        r = 12 R = 0.50 R . 

 
67. The initial field (evaluated “just outside the outer surface,” which means it is 
evaluated at R2 = 0.20 m, the outer radius of the conductor) is related to the charge q on 
the hollow conductor by Eq. 23-15: 2

initial 0 2/ 4 .E q Rπε=  After the point charge Q is placed 
at the geometric center of the hollow conductor, the final field at that point is a 
combination of the initial field and that due to Q (determined by Eq. 22-3): 
 

final initial 2
0 2

.
4

QE E
Rπε

= +   

 
(a) The charge on the spherical shell is  
 

 
2

2 9
0 2 initial 9 2 2

(0.20 m) (450 N/C)4 2.0 10 C.
8.99 10 N m C

q R Eπε −= = = ×
× ⋅

 

 
(b) Similarly, using the equation above, we find the point charge to be 
 

( )
2

2 9
0 2 final initial 9 2 2

(0.20 m) (180 N/C 450 N/C)4 1.2 10 C.
8.99 10 N m C

Q R E Eπε −−
= − = = − ×

× ⋅
 

 
(c) In order to cancel the field (due to Q) within the conducting material, there must be an 
amount of charge equal to –Q distributed uniformly on the inner surface (of radius R1). 
Thus, the answer is +1.2 × 10−9 C. 
 
(d) Since the total excess charge on the conductor is q and is located on the surfaces, then 
the outer surface charge must equal the total minus the inner surface charge. Thus, the 
answer is  2.0 × 10−9 C – 1.2 × 10−9 C = +0.80 × 10−9 C. 
 
68. Let Φ0

310= ⋅N m C2 . The net flux through the entire surface of the dice is given by 
 

Φ Φ Φ Φ Φ= = − = − + − + − + =
= =

∑ ∑n
n

n

n

n
1

6

0 0 0
1

6

1 1 2 3 4 5 6 3b g b g .  

 
Thus, the net charge enclosed is 
 

( )( )12 2 2 3 2 8
0 0 03 3 8.85 10 C /N m 10 N m /C 2.66 10 C.q ε ε − −= Φ = Φ = × ⋅ ⋅ = ×  

 
69. Since the fields involved are uniform, the precise location of P is not relevant; what is 
important is it is above the three sheets, with the positively charged sheets contributing 
upward fields and the negatively charged sheet contributing a downward field, which 
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conveniently conforms to usual conventions (of upward as positive and downward as 
negative). The net field is directed upward ˆ( j)+ , and (from Eq. 23-13) its magnitude is 
 

6 2
431 2

12 2 2
0 0 0

1.0 10 C/m| | 5.65 10 N C.
2 2 2 2(8.85 10 C /N m )

E σσ σ
ε ε ε

−

−

×
= + + = = ×

× ⋅
 

 
In unit-vector notation, we have 4 ˆ(5.65 10  N/C) jE = × . 
 
70. Since the charge distribution is uniform, we can find the total charge q by multiplying 
ρ by the spherical volume ( 43 πr3 ) with r = R =  0.050 m.  This gives q = 1.68 nC. 
 

(a) Applying Eq. 23-20 with r = 0.035 m, we have 3
internal 3

0

| | 4.2 10 N/C
4

q rE
Rπε

= = ×  . 

      
(b) Outside the sphere we have (with r = 0.080 m)  
 

9 2 2 9
3

external 2 2
0

| | (8.99 10 N m C )(1.68 10 C) 2.4 10 N/C
4 (0.080 m)

qE
rπε

−× ⋅ ×
= = = ×  . 

 
71. We choose a coordinate system whose origin is at the center of the flat base, such that 
the base is in the xy plane and the rest of the hemisphere is in the z > 0 half space. 
 
(a) ( )2 2 2 2ˆ ˆk k (0.0568 m) (2.50 N/C) 0.0253 N m /C.R E R Eπ π πΦ = − ⋅ = − = − = − ⋅   

 
(b) Since the flux through the entire hemisphere is zero, the flux through the curved 
surface is 2 2

base 0.0253 N m /C.c R EΦ = −Φ = = ⋅p  
 
72. The net enclosed charge q is given by 
 

( ) ( )12 2 2 2 10
0 8.85 10 C /N m 48 N m C 4.2 10 C.q ε − −= Φ = × ⋅ − ⋅ = − ×  

 
73. (a) From Gauss’ law, we get  
 

( ) ( )3
enc
3 3

0 0 0

4 31 1 .
4 4 3

r rq rE r r
r r

πρ ρ
πε πε ε

= = =  

 
(b) The charge distribution in this case is equivalent to that of a whole sphere of charge 
density ρ plus a smaller sphere of charge density –ρ that fills the void. By superposition 
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E r r r a ab g b g
= +

− −
=

ρ
ε

ρ
ε

ρ
ε3 3 30 0 0

( )
.  

 
74. (a) The cube is totally within the spherical volume, so the charge enclosed is  
 

qenc = ρ Vcube = (500 × 10–9 C/m3)(0.0400 m)3 = 3.20 × 10–11 C. 
 
By Gauss’ law, we find Φ = qenc/ε0 = 3.62 N·m2/C. 
 
(b) Now the sphere is totally contained within the cube (note that the radius of the sphere 
is less than half the side-length of the cube). Thus, the total charge is  
 

qenc = ρ Vsphere = 4.5 × 10–10 C. 
 
By Gauss’ law, we find Φ = qenc/ε0 = 51.1 N·m2/C. 
 
75. The electric field is radially outward from the central wire. We want to find its 
magnitude in the region between the wire and the cylinder as a function of the distance r 
from the wire. Since the magnitude of the field at the cylinder wall is known, we take the 
Gaussian surface to coincide with the wall. Thus, the Gaussian surface is a cylinder with 
radius R and length L, coaxial with the wire. Only the charge on the wire is actually 
enclosed by the Gaussian surface; we denote it by q. The area of the Gaussian surface is 
2πRL, and the flux through it is 2 .RLEπΦ =  We assume there is no flux through the 
ends of the cylinder, so this Φ  is the total flux. Gauss’ law yields q = 2πε0RLE. Thus, 
 

( )12 2 2 4 92 8.85 10 C /N m (0.014 m)(0.16 m) (2.9 10  N/C) 3.6 10  C.q π − −= × ⋅ × = ×  
 
76. (a) The diagram shows a cross section (or, perhaps more 
appropriately, “end view”) of the charged cylinder (solid circle).  
 
Consider a Gaussian surface in the form of a cylinder with radius 
r and length ,  coaxial with the charged cylinder. An “end view” 
of the Gaussian surface is shown as a dashed circle. The charge 
enclosed by it is 2 ,q V rρ π ρ= =  where 2V r= π  is the volume 
of the cylinder. 
 
If ρ  is positive, the electric field lines are radially outward, normal to the Gaussian 
surface and distributed uniformly along it. Thus, the total flux through the Gaussian 
cylinder is cylinder (2 ).EA E rπΦ = =  Now, Gauss’ law leads to 
 

2
0

0

2 .
2

rr E r E ρπε π ρ
ε

= ⇒ =  
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(b) Next, we consider a cylindrical Gaussian surface of radius r > R. If the external field 
Eext then the flux is ext2 .r EπΦ =  The charge enclosed is the total charge in a section of 
the charged cylinder with length . That is, 2q Rπ ρ= . In this case, Gauss’ law yields 
 

2
2

0 ext ext
0

2 .
2
Rr E R E

r
ρπε π ρ

ε
= ⇒ =  

 
77. (a) In order to have net charge –10 μC when –14 μC is known to be on the outer 
surface, then there must be +4.0 μC on the inner surface (since charges reside on the 
surfaces of a conductor in electrostatic situations). 
 
(b) In order to cancel the electric field inside the conducting material, the contribution 
from the +4 μC on the inner surface must be canceled by that of the charged particle in 
the hollow. Thus, the particle’s charge is –4.0 μC. 
 
78. (a) Outside the sphere, we use Eq. 23-15 and obtain  
 

9 2 2 12

2 2
0

1 (8.99 10 N m C )(6.00 10 C) 15.0 N C.
4 (0.0600 m)

qE
rπε

−× ⋅ ×
= = =  

 
(b) With q = +6.00 × 10–12 C, Eq. 23-20 leads to 25.3 N CE = . 
 
79. (a) The mass flux is wdρv = (3.22 m) (1.04 m) (1000 kg/m3) (0.207 m/s) = 693 kg/s. 
 
(b) Since water flows only through area wd, the flux through the larger area is still 
693 kg/s.  
 
(c) Now the mass flux is (wd/2)ρv = (693 kg/s)/2 = 347 kg/s. 
 
(d) Since the water flows through an area (wd/2), the flux is 347 kg/s. 
 
(e) Now the flux is ( ) ( ) ( )cos 693kg s cos34 575 kg swd vθ ρ = ° = . 
 
80. The field due to a sheet of charge is given by Eq. 23-13. Both sheets are horizontal 
(parallel to the xy plane), producing vertical fields (parallel to the z axis). At points above 
the z = 0 sheet (sheet A), its field points upward (toward +z); at points above the z = 2.0 
sheet (sheet B), its field does likewise. However, below the z = 2.0 sheet, its field is 
oriented downward. 
 
(a) The magnitude of the net field in the region between the sheets is 
 

9 2 9 2
2

12 2 2
0 0

8.00 10 C/m 3.00 10 C/m| | 2.82 10 N C.
2 2 2(8.85 10 C /N m )

A BE σ σ
ε ε

− −

−

× − ×
= − = = ×

× ⋅
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(b) The magnitude of the net field at points above both sheets is 
 

9 2 9 2
2

12 2 2
0 0

8.00 10 C/m 3.00 10 C/m| | 6.21 10 N C.
2 2 2(8.85 10 C /N m )

A BE σ σ
ε ε

− −

−

× + ×
= + = = ×

× ⋅
 

 
81. (a) The field maximum occurs at the outer surface:  
 

Emax = 
⎝⎜
⎛

⎠⎟
⎞|q|

4πεo r 2
at r = R

  = 
|q|

4πεo R 2  

Applying Eq. 23-20, we have 
        

Einternal  =  
|q|

4πεo R 3 r = 
1
4 Emax    ⇒     r  = 

R
4 = 0.25 R. 

 
(b) Outside sphere 2 we have  
 

Eexternal = 
|q|

4πεo r 2  =  
1
4 Emax      ⇒     r  = 2.0R. 

 
82. (a) We use meg = eE = eσ/ε0 to obtain the surface charge density. 
 

( )( )( )31 12 2 2
22 20

19

9.11 10 kg 9.8m s 8.85 10 C /N m
4.9 10 C m .

1.60 10 C
em g
e

εσ
− −

−
−

× × ⋅
= = = ×

×
 

 
(b) To cancel the gravitational force that points downward, the electric force must point 
upward. Since ,eF qE=  and 0q e= − <  for electron, we see that the field E  must point 
downward. 
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Chapter 24 
 
 
1. (a) An ampere is a coulomb per second, so 
 

84 84 3600 30 105 A h C h
s

s
h

 C⋅ =
⋅F

HG
I
KJ
F
HG

I
KJ = ×. .  

 
(b) The change in potential energy is ΔU = qΔV = (3.0 × 105 C)(12 V) = 3.6 × 106 J. 
 
2. The magnitude is ΔU = eΔV = 1.2 × 109 eV = 1.2 GeV. 
 
3. If the electric potential is zero at infinity then at the surface of a uniformly charged 
sphere it is V = q/4πε0R, where q is the charge on the sphere and R is the sphere radius. 
Thus q = 4πε0RV and the number of electrons is 
 

( )( )
( )( )

6
5

9 2 2 19

1.0 10 m 400V4
2.8 10 .

8.99 10 N m C 1.60 10 C
q R V

n
e e

ε −
0

−

×π
= = = = ×

× ⋅ ×
 

 
4. (a)  ( ) ( )15 19 4 43.9 10 N 1.60 10 C 2.4 10 N C 2.4 10 V/m.E F e − −= = × × = × = ×  
 
(b) Δ ΔV E s= = × = ×2 4 10 012 2 9 104 3. . . .N C m Vc hb g  
 
5. The electric field produced by an infinite sheet of charge has magnitude E = σ/2ε0, 
where σ is the surface charge density. The field is normal to the sheet and is uniform. 
Place the origin of a coordinate system at the sheet and take the x axis to be parallel to the 
field and positive in the direction of the field. Then the electric potential is 
 

V V E dx V Exs

x

s= − = −z0 ,  

 
where Vs is the potential at the sheet. The equipotential surfaces are surfaces of constant x; 
that is, they are planes that are parallel to the plane of charge. If two surfaces are 
separated by Δx then their potentials differ in magnitude by  
 

ΔV = EΔx = (σ/2ε0)Δx. 
Thus, 

Δ
Δx V

= =
× ⋅

×
= ×

−

−
−2 2 885 10 50

010 10
88 100

12 2

6
3ε

σ
.

.
. .

C N m V
C m

m
2

2

c hb g
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6. (a) VB – VA = ΔU/q = –W/(–e) = – (3.94 × 10–19 J)/(–1.60 × 10–19 C) = 2.46 V. 
 
(b) VC – VA = VB – VA = 2.46 V. 
 
(c) VC – VB = 0 (since C and B are on the same equipotential line). 
 
7. We connect A to the origin with a line along the y axis, along which there is no change 
of potential (Eq. 24-18: E ds⋅ =z 0). Then, we connect the origin to B with a line along 

the x axis, along which the change in potential is 
 

ΔV E ds x dx
x

= − ⋅ = − = −
F
HG
I
KJzz =

4 00 4 00 4
2

2

0

4

0

4
. .  

 
which yields VB – VA = –32.0 V. 
 
8. (a) By Eq. 24-18, the change in potential is the negative of the “area” under the curve. 
Thus, using the area-of-a-triangle formula, we have 
 

V E ds
x

− = − ⋅ =
=z10 1

2
2 20

0

2 b gb g  
 
which yields V = 30 V. 
 
(b) For any region within 0 3m,x E ds< < − ⋅∫  is positive, but for any region for which  
x > 3 m it is negative. Therefore, V = Vmax occurs at x = 3 m. 
 

V E ds
x

− = − ⋅ =
=z10 1

2
3 20

0

3 b gb g  
which yields Vmax = 40 V. 
 
(c) In view of our result in part (b), we see that now (to find V = 0) we are looking for 
some X > 3 m such that the “area” from x = 3 m to x = X is 40 V. Using the formula for a 
triangle (3 < x < 4) and a rectangle (4 < x < X), we require 
 

1
2

1 20 4 20 40b gb g b gb g+ − =X .  

Therefore, X = 5.5 m. 
 
9. (a) The work done by the electric field is  
 

19 12 2
0 0

0 12 2 20
0 0

21

(1.60 10 C)(5.80 10 C/m )(0.0356 m)
2 2 2(8.85 10 C /N m )

1.87 10 J.

f d

i

q q dW q E ds dzσ σ
ε ε

− −

−

−

× ×
= ⋅ = = =

× ⋅

= ×

∫ ∫  
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(b) Since V – V0 = –W/q0 = –σz/2ε0, with V0 set to be zero on the sheet, the electric 
potential at P is  
 

    
12 2

2
12 2 2

0

(5.80 10 C/m )(0.0356 m) 1.17 10  V.
2 2(8.85 10 C /N m )

zV σ
ε

−
−

−

×
= − = − = − ×

× ⋅
 

 
10. In the “inside” region between the plates, the individual fields (given by Eq. 24-13) 
are in the same direction ( −i ): 
 

9 2 9 2
3

in 12 2 2 12 2 2

50 10 C/m 25 10 C/m ˆ ˆi (4.2 10 N/C)i
2(8.85 10 C /N m ) 2(8.85 10 C /N m )

E
− −

− −

⎛ ⎞× ×
= − + = − ×⎜ ⎟× ⋅ × ⋅⎝ ⎠

. 

 
In the “outside” region where x > 0.5 m, the individual fields point in opposite directions: 
 

9 2 9 2
3

out 12 2 2 12 2 2

50 10 C/m 25 10 C/mˆ ˆ ˆi i (1.4 10 N/C)i .
2(8.85 10 C /N m ) 2(8.85 10 C /N m )

E
− −

− −

× ×
= − + = − ×

× ⋅ × ⋅
 

 
Therefore, by Eq. 24-18, we have 
 

( )( ) ( )( )
0.8 0.5 0.8 3 3

in out0 0 0.5

3

4.2 10 0.5 1.4 10 0.3

2.5 10 V.

V E ds E dx E dxΔ = − ⋅ = − − = − × − ×

= ×

∫ ∫ ∫  

 
11. (a) The potential as a function of r is  
 

( ) ( ) ( )
2

3 30 0
0 0

9 2 2 15 2
4

3

0 0
4 8

(8.99 10 N m C )(3.50 10 C)(0.0145 m) 2.68 10  V.
2(0.0231 m)

r r qr qrV r V E r dr dr
R Rπε πε

−
−

= − = − = −

× ⋅ ×
= − = − ×

∫ ∫
 

 
(b) Since ΔV = V(0) – V(R) = q/8πε0R, we have  
 

( )
9 2 2 15

4

0

(8.99 10 N m C )(3.50 10 C) 6.81 10  V.
8 2(0.0231 m)

qV R
Rπε

−
−× ⋅ ×

= − = − = − ×  

 
12. The charge is 

9
0 9 2 2m /C

(10m)( 1.0V)4 1.1 10 C.
8.99 10 N

q RVπε −

⋅

−
= = = − ×

×
 

 
13. (a) The charge on the sphere is 



    CHAPTER 24 976 

 
9

0 9 2 2

(200 V)(0.15 m)4 3.3 10  C.
8.99 10 N m C

q VRπε −= = = ×
× ⋅

 

 
(b) The (uniform) surface charge density (charge divided by the area of the sphere) is 
 

( )

9
8 2

22

3.3 10  C 1.2 10  C/m .
4 4 0.15 m

q
R

σ
π π

−
−×

= = = ×  

 
14. (a) The potential difference is 
 

( )( )6 9 2 2

0 0

3

1 11.0 10  C 8.99 10 N m C
4 4 2.0 m 1.0 m

4.5 10  V.

A B
A B

q qV V
r rπε πε

− ⎛ ⎞− = − = × × ⋅ −⎜ ⎟
⎝ ⎠

= − ×

 

 
(b) Since V(r) depends only on the magnitude of r , the result is unchanged. 
 
15. (a) The electric potential V at the surface of the drop, the charge q on the drop, and 
the radius R of the drop are related by V = q/4πε0R. Thus 
 

( )( )9 2 2 12
4

0

8.99 10  N m / C 30 10  C
5.4 10  m.

4 500 V
qR

Vπε

−
−

× ⋅ ×
= = = ×  

 
(b) After the drops combine the total volume is twice the volume of an original drop, so 
the radius R' of the combined drop is given by (R')3 = 2R3 and R' = 21/3R. The charge is 
twice the charge of original drop: q' = 2q. Thus, 
 

2/3 2 /3
1/3

0 0

1 1 2 2 2 (500 V) 790 V.
4 4 2

q qV V
R Rπε πε

′
′ = = = = ≈

′
 

 
16. In applying Eq. 24-27, we are assuming V → 0 as r → ∞.  All corner particles are 
equidistant from the center, and since their total charge is  
 

2q1– 3q1+ 2 q1– q1 = 0, 
 
then their contribution to Eq. 24-27 vanishes.  The net potential is due, then, to the two 
+4q2 particles, each of which is a distance of a/2 from the center: 
 

 
9 2 2 12

2 2 2

0 0 0

4 4 161 1 16(8.99 10 N m C )(6.00 10 C) 2.21 V.
4 / 2 4 / 2 4 0.39 m

q q qV
a a aπε πε πε

−× ⋅ ×
= + = = =  
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17. A charge –5q is a distance 2d from P, a charge –5q is a distance d from P, and two 
charges +5q are each a distance d from P, so the electric potential at P is  
 

9 2 2 15

2
0 0

4

1 1 1 1 (8.99 10 N m C )(5.00 10 C)
4 2 8 2(4.00 10  m)

5.62 10 V.

q qV
d d d d dπε πε

−

−

−

× ⋅ ×⎡ ⎤= − − + + = =⎢ ⎥ ×⎣ ⎦

= ×

 

 
The zero of the electric potential was taken to be at infinity. 
 
18. When the charge q2 is infinitely far away, the potential at the origin is due only to the 
charge q1 : 

V1 = 1

04
q

dπε
 =  5.76 × 10−7 V. 

 
Thus, q1/d = 6.41 × 10−17 C/m.  Next, we note that when q2 is located at x = 0.080 m, the 
net potential vanishes (V1 + V2 = 0).  Therefore,  
 

 2 10
0.08 m

kq kq
d

= +  

 
Thus, we find q2 = 1( / )(0.08 m)q d− = –5.13 × 10−18 C =  –32 e. 
 
19. First, we observe that V (x) cannot be equal to zero for x > d. In fact V (x) is always 
negative for x > d. Now we consider the two remaining regions on the x axis: x < 0 and  
0 < x < d.  
 
(a) For 0 < x < d we have d1 = x and d2 = d – x. Let 
 

V x k
q
d

q
d

q
x d x

( ) = +
F
HG

I
KJ = +

−
−

F
HG

I
KJ =  1

1

2

2 04
1 3 0

pε
 

 
and solve: x = d/4. With d = 24.0 cm, we have x = 6.00 cm. 
 
(b) Similarly, for x < 0 the separation between q1 and a point on the x axis whose 
coordinate is x is given by d1 = –x; while the corresponding separation for q2 is d2 = d – x. 
We set 

V x k
q
d

q
d

q
x d x

( ) = +
F
HG

I
KJ =

−
+

−
−

F
HG

I
KJ =  1

1

2

2 04
1 3 0

pε
 

 
to obtain x = –d/2. With d = 24.0 cm, we have x = –12.0 cm. 
 
20. Since according to the problem statement there is a point in between the two charges 
on the x axis where the net electric field is zero, the fields at that point due to q1 and q2 
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must be directed opposite to each other. This means that q1 and q2 must have the same 
sign (i.e., either both are positive or both negative). Thus, the potentials due to either of 
them must be of the same sign. Therefore, the net electric potential cannot possibly be 
zero anywhere except at infinity. 
 
21. We use Eq. 24-20: 
 

( ) ( )
( )

9 2 2 30
5

22 9
0

8.99 10 N m C 1.47 3.34 10 C m1 1.63 10 V.
4 52.0 10 m

pV
rπε

−
−

−

× ⋅ × × ⋅
= = = ×

×
 

 
22. From Eq. 24-30 and Eq. 24-14, we have (for θi = 0º)  
 

 ( )2 2 2
0 0 0

coscos cos cos 1
4 4 4

i
a

pp epW q V e
r r r

θθ θ θ
πε πε πε

⎛ ⎞
= Δ = − = −⎜ ⎟

⎝ ⎠
 

 
with r = 20 × 10−9 m.  For θ = 180º the graph indicates Wa = −4.0 × 10−30 J, from which 
we can determine p.  The magnitude of the dipole moment is therefore 5.6 × 10−37 C m⋅ . 
 
23. (a) From Eq. 24-35, we find the potential to be 
 

2 2

0

2 2
9 2 2 12

2 

/ 2 ( / 4)
2 ln

4

(0.06 m / 2) (0.06 m) / 4 (0.08 m)
2(8.99 10 N m C )(3.68 10 C/m) ln

0.08 m

2.43 10 V.

L L d
V

dπε

−

−

⎡ ⎤+ +λ
= ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤+ +

= × ⋅ × ⎢ ⎥
⎢ ⎥⎣ ⎦

= ×

 

 
(b) The potential at P is V = 0 due to superposition. 
 
24. The potential is  
 

9 2 2 12

2 rod  rod
0 0 0

1 1 (8.99 10 N m C )(25.6 10 C)
4 4 4 3.71 10  m
6.20 V.

P
dq QV dq
R R Rπε ε ε

−

−

− × ⋅ ×
= = = = −

π π ×
= −

∫ ∫  

 
We note that the result is exactly what one would expect for a point-charge –Q at a 
distance R. This “coincidence” is due, in part, to the fact that V is a scalar quantity. 
 
25. (a) All the charge is the same distance R from C, so the electric potential at C is 
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9 2 2 12
1 1 1

2
0 0

6 51 5(8.99 10 N m C )(4.20 10 C) 2.30 V,
4 4 8.20 10  m

Q Q QV
R R Rε ε

−

−

× ⋅ ×⎛ ⎞= − = − = − = −⎜ ⎟π π ×⎝ ⎠
 

 
where the zero was taken to be at infinity. 
 
(b) All the charge is the same distance from P. That distance is 2 2 ,R D+  so the electric 
potential at P is  

2

1 1 1
2 2 2 2 20 0

9 2 2 12

2 2 2 2

6 51
4 4

5(8.99 10 N m C )(4.20 10 C)
(8.20 10  m) (6.71 10  m)

1.78 V.

Q Q QV
R D R D R Dπε πε

−

− −

⎡ ⎤
= − = −⎢ ⎥

+ +⎣ ⎦ +

× ⋅ ×
= −

× + ×

= −

 

 
26. The derivation is shown in the book (Eq. 24-33 through Eq. 24-35) except for the 
change in the lower limit of integration (which is now x = D instead of x = 0).  The result 
is therefore (cf. Eq. 24-35)  
                  

V =   
λ

4πεo
 ln

⎝
⎜
⎛

⎠
⎟
⎞L + L2 + d2

 D + D2 + d2    = 
6

0

2.0 10 4 17ln
4 1 2πε

− ⎛ ⎞× +
⎜ ⎟⎜ ⎟+⎝ ⎠

 = 2.18 × 104 V. 

 
27. Letting d denote 0.010 m, we have 
 

 
9 2 2 9

41 1 1 1

0 0 0 0

3 3 (8.99 10 N m C )(30 10 C) 1.3 10  V.
4 2(0.01 m)

Q Q Q QV
d d d dε ε ε ε

−× ⋅ ×
= + − = = = ×

π 8π 16π 8π
 

 
28. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 
length dx and contains charge dq = λ dx, where λ = Q/L is the linear charge density of the 
rod. Its distance from P1 is d + x and the potential it creates at P1 is 
 

0 0

1 1 .
4 4

dq dxdV
d x d x

λ
πε πε

= =
+ +

 

 
To find the total potential at P1, we integrate over the length of the rod and obtain: 
 

0 00 0 0

9 2 2 15
3

ln( ) ln 1
4 4 4

(8.99 10 N m C )(56.1 10 C) 0.12 mln 1 7.39 10  V.
0.12 m 0.025 m

LL dx Q LV d x
d x L d

λ λ
ε ε ε

−
−

⎛ ⎞= = + = +⎜ ⎟+ ⎝ ⎠

× ⋅ × ⎛ ⎞= + = ×⎜ ⎟
⎝ ⎠

∫π π π
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29. Since the charge distribution on the arc is equidistant from the point where V is 
evaluated, its contribution is identical to that of a point charge at that distance. We 
assume V → 0 as r → ∞ and apply Eq. 24-27: 
 

1 1 1 1

0 0
9 2 2 12

2

4 21 1 1 1
4 4 2 4 4

(8.99 10 N m C )(7.21 10 C) 3.24 10  V.
2.00 m

Q Q Q QV
R R R Rπε πε πε πεο 0

−
−

+ + −
= + + =

× ⋅ ×
= = ×

 

 
30. The dipole potential is given by Eq. 24-30 (with θ = 90º in this case)  
 

 2 2
0 0

cos cos90 0
4 4
p pV

r r
θ

πε πε
°

= = =  

 
since cos(90º) = 0 . The potential due to the short arc is 1 0 1/ 4q rπε   and that caused by the 
long arc is 2 0 2/ 4q rπε .  Since q1 = +2 μC, r1 = 4.0 cm, q2 = −3 μC, and r2 = 6.0 cm, the 
potentials of the arcs cancel.  The result is zero. 
 
31. The disk is uniformly charged. This means that when the full disk is present each 
quadrant contributes equally to the electric potential at P, so the potential at P due to a 
single quadrant is one-fourth the potential due to the entire disk. First find an expression 
for the potential at P due to the entire disk. We consider a ring of charge with radius r and 
(infinitesimal) width dr. Its area is 2πr dr and it contains charge dq = 2πσr dr. All the 
charge in it is a distance 2 2r D+ from P, so the potential it produces at P is 
 

2 2 2 2
0 0

1 2 .
4 2

rdr rdrdV
r D r D

σ σ
ε ε

= =
+ +

p
p

 

 
The total potential at P is 
 

2 2 2 2

2 20 00 0 0

.
2 2 2

RR rdrV r D R D D
r D

σ σ σ
ε ε ε

⎡ ⎤= = + = + −⎣ ⎦+
∫  

 
The potential Vsq at P due to a single quadrant is  
 

15 2
2 2 2 2

12 2 2
0

5

(7.73 10 C/m ) (0.640 m) (0.259 m) 0.259 m
4 8 8(8.85 10 C /N m )

4.71 10  V.

sq
VV R D Dσ

ε

−

−

−

×⎡ ⎤ ⎡ ⎤= = + − = + −⎣ ⎦ ⎣ ⎦× ⋅

= ×
 
Note: Consider the limit .D R  The potential becomes 
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2 2 2
2 2

2
0 0 0 0 0

1 / 41
8 8 2 8 2 4 4

sq
sq

qR R RV R D D D D
D D D D

σ σ σ π σ
ε ε ε πε πε

⎡ ⎤⎛ ⎞⎡ ⎤= + − ≈ + + − = = =⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦
 

 
where 2 / 4sqq Rπ σ=  is the charge on the quadrant. In this limit, we see that the potential 
resembles that due to a point charge .sqq  
 
32. Equation 24-32 applies with dq = λ dx = bx dx (along 0 ≤ x ≤ 0.20 m). 
 
(a) Here r = x > 0, so that 

V bx dx
x

b
= =z1

4
0 20

40

0 20

p p0 0ε ε
.. b g  = 36 V. 

 
(b) Now r x d= +2 2  where d = 0.15 m, so that 
 

( )
0.200.20 2 2

2 20
0

1
4 4

bxdx bV x d
x dπε πε

= = +
+

∫
0 0

 = 18 V. 

 
33. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 
length dx and contains charge dq = λ dx = cx dx. Its distance from P1 is d + x and the 
potential it creates at P1 is 
 

dV dq
d x

cx dx
d x

=
+

=
+

1
4

1
40 0p pε ε

.  

 
To find the total potential at P1, we integrate over the length of the rod and obtain 
 

0 00 0 0

9 2 2 12 2

2

[ ln( )] ln 1
4 4 4

0.120 m(8.99 10 N m C )(28.9 10 C/m ) 0.120 m (0.030 m) ln 1
0.030 m

1.86 10  V.

LLc xdx c c LV x d x d L d
d x dε ε ε

−

−

⎡ ⎤⎛ ⎞= = − + = − +⎜ ⎟⎢ ⎥+ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= × ⋅ × − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= ×

∫π π π

 

 
34. The magnitude of the electric field is given by 
 

22(5.0V)| | 6.7 10 V m.
0.015m

VE
x

Δ
= − = = ×

Δ
 

 
At any point in the region between the plates, E  points away from the positively charged 
plate, directly toward the negatively charged one. 
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35. We use Eq. 24-41: 
 

E x y V
x x

x y x

E x y V
y y

x y y

x

y

( , ) ( . ) . ) ( . ) ;

( , ) ( . ) . ) ( . ) .

= −
∂
∂

= −
∂
∂

− = −

= −
∂
∂

= −
∂
∂

− =

2 0 30 2 2 0

2 0 30 2 30

2 2

2 2

V / m V / m V / m

V / m V / m V / m

2 2 2

2 2 2

c h

c h
 

 
We evaluate at x = 3.0 m and y = 2.0 m to obtain  
 

ˆ ˆ( 12 V/m)i (12 V/m)jE = − + . 
 
36. We use Eq. 24-41. This is an ordinary derivative since the potential is a function of 
only one variable. 
 

2 2ˆ ˆ ˆ ˆ ˆi (1500 )i ( 3000 )i ( 3000V/m )(0.0130m)i ( 39V/m)i.dV dE x x
dx dx

⎛ ⎞= − = − = − = − = −⎜ ⎟
⎝ ⎠

 

 
(a) Thus, the magnitude of the electric field is E = 39 V/m. 
 
(b) The direction of E is î− , or toward plate 1. 
 
37. We apply Eq. 24-41: 

2

2

2.00

2.00

4.00

x

y

z

VE yz
x
VE xz
y
VE xyz
z

∂
= − = −

∂
∂

= − = −
∂
∂

= − = −
∂

 

 
which, at (x, y, z) = (3.00 m, –2.00 m, 4.00 m), gives  
 

(Ex, Ey, Ez) = (64.0 V/m, –96.0 V/m, 96.0 V/m). 
 
The magnitude of the field is therefore 
 

2 2 2 150V m 150 N C.x y zE E E E= + + = =  
 
38. (a) From the result of Problem 24-28, the electric potential at a point with coordinate 
x is given by 

0

ln .
4

Q x LV
L xπε

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

At x = d we obtain   
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9 2 2 15

0

3

(8.99 10 N m C )(43.6 10 C) 0.135 mln ln 1
4 0.135 m

0.135 m(2.90 10  V) ln 1 .

Q d LV
L d d

d

ε

−

−

+ × ⋅ ×⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= × +⎜ ⎟
⎝ ⎠

π
 

 
(b) We differentiate the potential with respect to x to find the x component of the electric 
field: 
 

2
0 0 0

9 2 2 15 4 2

1ln
4 4 4 ( )

(8.99 10 N m C )(43.6 10 C) (3.92 10 N m C) ,
( 0.135 m) ( 0.135 m)

x
V Q x L Q x x L QE
x L x x L x L x x x x L

x x x x

ε ε ε
− −

∂ ∂ − −⎛ ⎞ ⎛ ⎞= − = − = − − = −⎜ ⎟ ⎜ ⎟∂ ∂ − −⎝ ⎠ ⎝ ⎠

× ⋅ × × ⋅
= − = −

+ +

π π π
 

or 
4 2(3.92 10 N m C)| | .

( 0.135 m)xE
x x

−× ⋅
=

+
 

 
(c) Since 0xE < , its direction relative to the positive x axis is 180 .°  
 
(d) At x = d = 6.20 cm, we obtain 
 

4 2(3.92 10 N m C)| | 0.0321 N/C.
(0.0620 m)(0.0620 m 0.135 m)xE

−× ⋅
= =

+
 

 
(e) Consider two points an equal infinitesimal distance on either side of P1, along a line 
that is perpendicular to the x axis. The difference in the electric potential divided by their 
separation gives the transverse component of the electric field. Since the two points are 
situated symmetrically with respect to the rod, their potentials are the same and the 
potential difference is zero. Thus, the transverse component of the electric field Ey is zero. 
 
39. The electric field (along some axis) is the (negative of the) derivative of the potential 
V with respect to the corresponding coordinate.  In this case, the derivatives can be read 
off of the graphs as slopes (since the graphs are of straight lines).  Thus, 
 

500 V 2500 V/m 2500 N/C
0.20 m

300 V 1000 V/m 1000 N/C.
0.30 m

x

y

VE
x

VE
y

∂ −⎛ ⎞= − = − = =⎜ ⎟∂ ⎝ ⎠

∂ ⎛ ⎞= − = − = − = −⎜ ⎟∂ ⎝ ⎠

 

 
These components imply the electric field has a magnitude of 2693 N/C and a direction 
of –21.8º (with respect to the positive x axis).  The force on the electron is given by 
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F qE=  where q = –e.  The minus sign associated with the value of q has the implication 

that F  
→

 points in the opposite direction from E  
→

 (which is to say that its angle is found by 
adding 180º to that of E  

→
 ).  With e = 1.60 × 10–19 C, we obtain 

 
 19 16 16ˆ ˆ ˆ ˆ( 1.60 10 C)[(2500 N/C)i (1000 N/C)j] ( 4.0 10 N)i (1.60 10  N)jF − − −= − × − = − × + × . 
 
40. (a) Consider an infinitesimal segment of the rod from x to x + dx. Its contribution to 
the potential at point P2 is 
 

dV x dx
x y

cx
x y

dx=
+

=
+

1
4

1
40

2 2
0

2 2p pε
λ

ε
( ) .  

Thus,  
 

( )
( )

2 2

2 2rod 0
0 0

9 2 2 12 2 2 2

2

4 4

(8.99 10 N m C )(49.9 10 C/m ) (0.100 m) (0.0356 m) 0.0356 m

3.16 10  V.

L

P
c x cV dV dx L y y

x yε ε

−

−

= = = + −
+

= × ⋅ × + −

= ×

∫ ∫π π

 

 
(b) The y component of the field there is 
 

( )2 2

2 2
0 0

9 2 2 12 2

2 2

1
4 4

0.0356 m(8.99 10 N m C )(49.9 10 C/m ) 1
(0.100 m) (0.0356 m)

0.298 N/C.

P
y

V c d c yE L y y
y dy L yε ε

−

⎛ ⎞∂
⎜ ⎟= − = − + − = −
⎜ ⎟∂ π π +⎝ ⎠

⎛ ⎞
⎜ ⎟= × ⋅ × −
⎜ ⎟+⎝ ⎠

=

 

 
(c) We obtained above the value of the potential at any point P strictly on the y-axis. In 
order to obtain Ex(x, y) we need to first calculate V(x, y). That is, we must find the 
potential for an arbitrary point located at (x, y). Then Ex(x, y) can be obtained from 

( , ) ( , ) /xE x y V x y x= −∂ ∂ . 
 
41. We apply conservation of energy for the particle with q = 7.5 × 10−6 C (which has 
zero initial kinetic energy): 

U0  = Kf  + Uf , 

where U  =  
q Q

4πεor
 . 

 
(a) The initial value of r is 0.60 m and the final value is (0.6 + 0.4) m = 1.0 m (since the 
particles repel each other).  Conservation of energy, then, leads to Kf  = 0.90 J. 
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(b) Now the particles attract each other so that the final value of r is 0.60 − 0.40 = 0.20 m.  
Use of energy conservation yields Kf  = 4.5 J in this case. 
 
42. (a) We use Eq. 24-43 with q1 = q2 = –e and r = 2.00 nm: 
 

( )9 2 2 19 22
191 2

9

8.99 10 N m C (1.60 10 C)
1.15 10 J.

2.00 10 m
q q eU k k

r r

−
−

−

× ⋅ ×
= = = = ×

×
 

 
(b) Since U > 0 and U ∝ r–1 the potential energy U decreases as r increases. 
 
43. We choose the zero of electric potential to be at infinity. The initial electric potential 
energy Ui of the system before the particles are brought together is therefore zero. After 
the system is set up the final potential energy is 
 

2 2

0 0

1 1 1 1 1 1 2 1 2 .
4 42 2 2f

q qU
a a a a aa aε ε

⎛ ⎞ ⎛ ⎞= − − + − − + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠p p

 

 
Thus the amount of work required to set up the system is given by  
 

 

2

0
9 2 2 12 2

13

2 1 2
4 2

2(8.99 10 N m C )(2.30 10 C) 1 2
0.640 m 2

1.92 10 J.

f i f
qW U U U U

aε
−

−

⎛ ⎞= Δ = − = = −⎜ ⎟π ⎝ ⎠
× ⋅ × ⎛ ⎞= −⎜ ⎟

⎝ ⎠
= − ×

 

 
44. The work done must equal the change in the electric potential energy.  From Eq. 24-
14 and Eq. 24-26, we find (with r = 0.020 m) 
 

 
( )9 2 2 19 2

25

0

8.99 10 N m C (18)(1.60 10 C)(3 2 2 )(6 ) 2.1 10  J
4 0.020 m

e e e eW
rπε

−
−

× ⋅ ×− +
= = = × . 

 
45. We use the conservation of energy principle. The initial potential energy is Ui = 
q2/4πε0r1, the initial kinetic energy is Ki = 0, the final potential energy is Uf = q2/4πε0r2, 
and the final kinetic energy is K mvf = 1

2
2 , where v is the final speed of the particle. 

Conservation of energy yields 

     q
r

q
r

mv
2

0 1

2

0 2

2

4 4
1
2p pε ε

= + .  

The solution for v is 
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2 9 2 2 6 2

6 3 3
0 1 2

3

2 1 1 (8.99 10 N m C )(2)(3.1 10 C) 1 1
4 20 10 kg 0.90 10 m 2.5 10 m

2.5 10 m s.

qv
m r rε

−

− − −

⎛ ⎞ × ⋅ × ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟× × ×⎝ ⎠⎝ ⎠

= ×

p

 
46. Let r = 1.5 m, x = 3.0 m, q1 = –9.0 nC, and q2 = –6.0 pC. The work done by an 
external agent is given by 
 

W U q q
r r x

= = −
+

F
HG

I
KJ

= − × − × ×
⋅F

HG
I
KJ ⋅ −

+

L

N
MM

O

Q
PP

= ×

− −

−

Δ 1 2
2 2

9 12

10

4
1

9 0 10 6 0 10 1
15

1

15 30

18 10

p 0ε
1

    C C  8.99 10 N m
C  m  m  m

   J.

9
2

2 2 2
. .

. . .

.

c hc h
b g b g

 

 
47. The escape speed may be calculated from the requirement that the initial kinetic 
energy (of launch) be equal to the absolute value of the initial potential energy (compare 
with the gravitational case in Chapter 14).  Thus, 
 

 2

0

1
2 4

eqmv
rπε

=  

 
where  m = 9.11 × 10−31 kg, e = 1.60 × 10−19 C, q = 10000e, and r = 0.010 m.  This yields 
v = 22490 m/s 42.2 10  m/s≈ × .   
 
48. The change in electric potential energy of the electron-shell system as the electron 
starts from its initial position and just reaches the shell is ΔU = (–e)(–V) = eV. Thus from 
ΔU K m ve i= = 1

2
2  we find the initial electron speed to be 

 
19

6
31

2 2 2(1.6 10 C)(125 V) 6.63 10  m/s.
9.11 10 kgi

e e

U eVv
m m

−

−

Δ ×
= = = = ×

×
 

 
49. We use conservation of energy, taking the potential energy to be zero when the 
moving electron is far away from the fixed electrons. The final potential energy is then 

2
02 / 4fU e dπε= , where d is half the distance between the fixed electrons. The initial 

kinetic energy is K mvi = 1
2

2 ,  where m is the mass of an electron and v is the initial speed 
of the moving electron. The final kinetic energy is zero. Thus, 
 

Ki = Uf     2 2
0

1 2 / 4 .
2

mv e dπε⇒ =  

Hence, 
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v e
dm

= =
× ⋅ ×

×
= ×

−

−

4
4

8 99 10 4 160 10

0 010
32 10

2 9 19

31
2

p 0ε
. .

.
.

 N m C  C

 m 9.11 10  kg
m s.

2 2 2c hb gc h
b gc h  

 
50. The work required is 
 

1 2 1 1

0 0

( / 2)1 1 0.
4 2 4 2

q Q q Q q Q q QW U
d d d dπε πε

−⎛ ⎞ ⎛ ⎞= Δ = + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
51. (a) Let = 015. m  be the length of the rectangle and w = 0.050 m be its width. Charge 
q1 is a distance  from point A and charge q2 is a distance w, so the electric potential at A 
is 

6 6
9 2 21 2

0

4

1 5.0 10 C 2.0 10 C(8.99 10 N m / C )
4 0.15m 0.050 m

6.0 10 V.

A
q qV

wε

− −⎛ ⎞− × ×⎛ ⎞= + = × ⋅ +⎜ ⎟⎜ ⎟π ⎝ ⎠ ⎝ ⎠
= ×

 

 
(b) Charge q1 is a distance w from point b and charge q2 is a distance ,  so the electric 
potential at B is 
 

6 6
9 2 21 2

0

5

1 5.0 10 C 2.0 10 C(8.99 10 N m / C )
4 0.050 m 0.15m

7.8 10 V.

B
q qV
wε

− −⎛ ⎞− × ×⎛ ⎞= + = × ⋅ +⎜ ⎟⎜ ⎟π ⎝ ⎠ ⎝ ⎠
= − ×

 

 
(c) Since the kinetic energy is zero at the beginning and end of the trip, the work done by 
an external agent equals the change in the potential energy of the system. The potential 
energy is the product of the charge q3 and the electric potential. If UA is the potential 
energy when q3 is at A and UB is the potential energy when q3 is at B, then the work done 
in moving the charge from B to A is  
 

W = UA – UB = q3(VA – VB) = (3.0 × 10–6 C)(6.0 × 104 V + 7.8 × 105 V) = 2.5 J. 
 
(d) The work done by the external agent is positive, so the energy of the three-charge 
system increases. 
 
(e) and (f) The electrostatic force is conservative, so the work is the same no matter 
which path is used. 
 
52. From Eq. 24-30 and Eq. 24-7, we have (for θ = 180º)  
 

 2 2
0 0

cos
4 4
p epU qV e

r r
θ

πε πε
⎛ ⎞

= = − =⎜ ⎟
⎝ ⎠
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where r = 0.020 m. Using energy conservation, we set this expression equal to 100 eV 
and solve for p.  The magnitude of the dipole moment is therefore  p = 4.5 × 10−12 C m .⋅  
 
53. (a) The potential energy is 
 

U q
d

= =
× ⋅ ×

=
−2 9 6

4
8 99 10 5 0 10

100
0 225

p 0ε
. .

.
.

 N m C  C
 m

 J
2 2 2c hc h

 

 
relative to the potential energy at infinite separation. 
 
(b) Each sphere repels the other with a force that has magnitude 
 

F q
d

= =
× ⋅ ×

=
−2

2

9 6

4
8 99 10 5 0 10

0 225
p 0ε

. .
.

 N m C  C

1.00 m
 N.

2 2 2

2

c hc h
b g  

 
According to Newton’s second law the acceleration of each sphere is the force divided by 
the mass of the sphere. Let mA and mB be the masses of the spheres. The acceleration of 
sphere A is 

a F
mA

A

= =
×

=−

0 225 4503

. . N
5.0 10  kg

 m s2  

 
and the acceleration of sphere B is 
 

a F
mB

B

= =
×

=−

0 225 22 53

. . . N
10 10  kg

 m s2  

 
(c) Energy is conserved. The initial potential energy is U = 0.225 J, as calculated in part 
(a). The initial kinetic energy is zero since the spheres start from rest. The final potential 
energy is zero since the spheres are then far apart. The final kinetic energy is 
1
2

2 1
2

2m v m vA A B B+ ,  where vA and vB are the final velocities. Thus, 
 

U m v m vA A B B= +
1
2

1
2

2 2 .  

Momentum is also conserved, so 
 

0 = +m v m vA A B B .  
 
These equations may be solved simultaneously for vA and vB. Substituting 

( / )B A B Av m m v= − , from the momentum equation into the energy equation, and collecting 
terms, we obtain  

U m m m m vA B A B A= +1
2

2( / )( ) .  
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Thus, 
 

3

3 3 3

2 2(0.225 J)(10 10  kg) 7.75 m/s.
( ) (5.0 10  kg)(5.0 10  kg 10 10  kg)

B
A

A A B

Umv
m m m

−

− − −

×
= = =

+ × × + ×
 

 
We thus obtain 

3

3

5.0 10  kg  (7.75 m/s) 3.87 m/s,
10 10  kg

A
B A

B

mv v
m

−

−

⎛ ⎞×
= − = − = −⎜ ⎟×⎝ ⎠

 

 
or | | 3.87 m/s.Bv =  
 
54. (a) Using U = qV we can “translate” the graph of voltage into a potential energy 
graph (in eV units).  From the information in the problem, we can calculate its kinetic 
energy (which is its total energy at x = 0) in those units: Ki = 284 eV.  This is less than 
the “height” of the potential energy “barrier” (500 eV high once we’ve translated the 
graph as indicated above).  Thus, it must reach a turning point and then reverse its motion. 
 
(b) Its final velocity, then, is in the negative x direction with a magnitude equal to that of 
its initial velocity.  That is, its speed (upon leaving this region) is 1.0 × 107 m/s. 
      
55. Let the distance in question be r. The initial kinetic energy of the electron is 
K m vi e i= 1

2
2 ,  where vi = 3.2 × 105 m/s. As the speed doubles, K becomes 4Ki. Thus 

 

Δ ΔU e
r

K K K K m vi i i e i=
−

= − = − − = − = −
2

2

4
4 3 3

2p 0ε
( ) ,  

or 

( )
( ) ( )

( )( )

219 9 2 22
9

22 19 5
0

2 1.6 10  C 8.99 10 N m C2 1.6 10 m.
3 4 3 9.11 10  kg 3.2 10  m se i

er
m vπε

−
−

−

× × ⋅
= = = ×

× ×
 

 
56. When particle 3 is at x = 0.10 m, the total potential energy vanishes.  Using Eq. 24-43, 
we have (with meters understood at the length unit) 
 

 1 3 3 21 2

0 0 0

0
4 4 ( 0.10 m) 4 (0.10 m)

q q q qq q
d dπε πε πε

= + +
+

 

This leads to  
1 2 1 2

3 0.10 m 0.10 m
q q q qq

d d
⎛ ⎞+ = −⎜ ⎟+⎝ ⎠

 

 
which yields q3 = −5.7 μC.  
 
57. We apply conservation of energy for particle 3 (with q' = −15 × 10− 6 C): 
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K0 + U0  =  Kf  + Uf 

 
where (letting x = ±3 m and q1 = q2 = 50 × 10−6 C = q) 
 

 1 2
2 2 2 2 2 2

0 0 0

2
4 4 4

q q q q qqU
x y x y x yπε πε πε

′ ′ ′
= + =

+ + +
 . 

 
(a) We solve for Kf (with y0 = 4 m): 
 

 0 0 2 2
0 0

2 1 11.2 J 3.0 J
4 | |f f

qqK K U U
xx yπε

⎛ ⎞′
⎜ ⎟= + − = + − =
⎜ ⎟+⎝ ⎠

 . 

 
(b) We set Kf  = 0 and solve for y (choosing the negative root, as indicated in the problem 
statement): 

0 0 2 2 2 2
0 0 0

2 21.2 J
4 4

f
qq qqK U U
x y x yπε πε

′ ′
+ = ⇒ + =

+ +
 . 

 
This yields y = −8.5 m. The dependence of the final kinetic energy of the particle on y is 
plotted below.  

 
 
From the plot, we see that 3.0 JfK =  at y = 0, and 0fK = at y = −8.5 m. The particle 
oscillates between the two end-points 8.5 m.fy = ±  
 
58. (a) When the proton is released, its energy is K + U = 4.0 eV + 3.0 eV (the latter 
value is inferred from the graph).  This implies that if we draw a horizontal line at the 7.0 
volt “height” in the graph and find where it intersects the voltage plot, then we can 
determine the turning point.  Interpolating in the region between 1.0 cm and 3.0 cm, we 
find the turning point is at roughly x = 1.7 cm. 
 
(b) There is no turning point toward the right, so the speed there is nonzero, and is given 
by energy conservation:  
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v = 
2(7.0 eV)

m   = 
2(7.0 eV)(1.6 x 10-19 J/eV)

1.67 x 10-27 kg  = 20 km/s. 

 
(c) The electric field at any point P is the (negative of the) slope of the voltage graph 
evaluated at P. Once we know the electric field, the force on the proton follows 
immediately from F 

→
 = q E 

→
 , where q = +e for the proton. In the region just to the left of x 

= 3.0 cm, the field is E 
→

 = (+300 V/m) î  and the force is F = +4.8 × 10−17 N. 
 
(d) The force F  points in the +x direction, as the electric field E . 
 
(e) In the region just to the right of x = 5.0 cm, the field is E 

→
 =(–200 V/m) î  and the 

magnitude of the force is F = 3.2 × 10−17 N. 
 
(f) The force F  points in the −x direction, as the electric field E . 
 
59. (a)  The electric field between the plates is leftward in Fig, 24-55 since it points 
toward lower values of potential. The force (associated with the field, by Eq. 23-28) is 
evidently leftward, from the problem description (indicating deceleration of the rightward 
moving particle), so that q > 0 (ensuring that F  

→
is parallel to E  

→
); it is a proton. 

 
(b) We use conservation of energy: 
 

K0 + U0 = K + U   ⇒    
1
2 mpv

2
0  + qV1= 

1
2 mpv2 + qV 2  . 

 
Using q = +1.6 × 10−19 C, mp = 1.67 × 10−27 kg, v0 = 90 × 103 m/s, V1 = −70 V, and 

2 50 VV = − , we obtain the final speed v = 6.53 × 104 m/s.  We note that the value of d is 
not used in the solution. 
 
60. (a) The work done results in a potential energy gain: 
 

W = q ΔV  = (− e) 
⎝⎜
⎛

⎠⎟
⎞Q

4πεo R
  =  + 2.16 × 10−13 J . 

 
With R = 0.0800 m, we find Q =  –1.20 × 10−5 C. 
 
(b) The work is the same, so the increase in the potential energy is ΔU =  + 2.16 × 10−13 J.   
 
61. We note that for two points on a circle, separated by angle θ (in radians), the direct-
line distance between them is r = 2R sin(θ/2). Using this fact, distinguishing between the 
cases where N = odd and N = even, and counting the pair-wise interactions very carefully, 
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we arrive at the following results for the total potential energies. We use k = 1 4p 0ε .  For 
configuration 1 (where all N electrons are on the circle), we have 
 

( ) ( )

112 22 2

1, even 1, odd
1 1

1 1 1,    
2 sin 2 2 2 sin 2

N N

N N
j j

Nke NkeU U
R j R jθ θ

−
−

= =
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  

 

where 2 .
N
πθ =  For configuration 2, we find 

 

( )
( )

( )
( )

312 22 2

2, even 2, odd
1 1

1 11 1 52 ,
2 sin 2 2 sin 2 2

N N

N N
j j

N ke N ke
U U

R j R jθ θ

−
−

= =
= =

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟= + = +⎜ ⎟ ⎜ ⎟′ ′⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

 

where 2 .
1N

πθ ′ =
−

 The results are all of the form 

 

U ke
R1

2

2or 2 a pure number.×  

 
In our table below we have the results for those “pure numbers” as they depend on N and 
on which configuration we are considering. The values listed in the U rows are the 
potential energies divided by ke2/2R. 
 
N 4 5 6 7 8 9 10 11 12 13 14 15 
U1 3.83 6.88 10.96 16.13 22.44 29.92 38.62 48.58 59.81 72.35 86.22 101.5 
U2 4.73 7.83 11.88 16.96 23.13 30.44 39.92 48.62 59.58 71.81 85.35 100.2 
 
We see that the potential energy for configuration 2 is greater than that for configuration 
1 for N < 12, but for N ≥ 12 it is configuration 1 that has the greatest potential energy. 
 
(a) N = 12 is the smallest value such that U2 < U1. 
 
(b) For N = 12, configuration 2 consists of 11 electrons distributed at equal distances 
around the circle, and one electron at the center. A specific electron e0 on the circle is R 
distance from the one in the center, and is 
 

2 sin 0.56
11

r R Rπ⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

 

 
distance away from its nearest neighbors on the circle (of which there are two — one on 
each side). Beyond the nearest neighbors, the next nearest electron on the circle is 
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22 sin 1.1
11

r R Rπ⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

 

 
distance away from e0. Thus, we see that there are only two electrons closer to e0 than the 
one in the center. 
 
62. (a) Since the two conductors are connected V1 and V2 must be equal to each other. 
 
Let V1 = q1/4πε0R1 = V2 = q2/4πε0R2 and note that q1 + q2 = q and R2 = 2R1. We solve for 
q1 and q2:  q1 = q/3, q2 = 2q/3, or 
 
(b) q1/q = 1/3 = 0.333. 
 
(c) Similarly, q2/q = 2/3 = 0.667. 
 
(d) The ratio of surface charge densities is 
 

22
1 1 1 1 2

2
2 2 2 2 1

4 2.00.
4

q R q R
q R q R

σ
σ

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

p
p

 

 
63. (a) The electric potential is the sum of the contributions of the individual spheres. Let 
q1 be the charge on one, q2 be the charge on the other, and d be their separation. The point 
halfway between them is the same distance d/2 (= 1.0 m) from the center of each sphere, 
so the potential at the halfway point is 
 

( )( )9 2 2 8 8
21 2

8.99 10  N m C 1.0 10 C 3.0 10 C
1.8 10 V.

4 2 1.0 m
q qV

dε

− −× ⋅ × − ×+
= = = − ×

0p
 

 
(b) The distance from the center of one sphere to the surface of the other is d – R, where 
R is the radius of either sphere. The potential of either one of the spheres is due to the 
charge on that sphere and the charge on the other sphere. The potential at the surface of 
sphere 1 is 
 

( )
8 8

9 2 2 31 2
1

0

1 1.0 10 C 3.0 10 C8.99 10 N m C 2.9 10 V.
4 0.030 m 2.0 m 0.030 m

q qV
R d Rπε

− −⎡ ⎤× ×⎡ ⎤= + = × ⋅ − = ×⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 

 
(c) The potential at the surface of sphere 2 is 
 

( )
8 8

9 2 2 31 2
2

0

1 1.0 10 C 3.0 10 C8.99 10 N m C 8.9 10 V.
4 2.0 m 0.030 m 0.030 m

q qV
d R Rπε

− −⎡ ⎤× ×⎡ ⎤= + = × ⋅ − = − ×⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦
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64. Since the electric potential throughout the entire conductor is a constant, the electric 
potential at its center is also +400 V. 
 
65. If the electric potential is zero at infinity, then the potential at the surface of the 
sphere is given by V = q/4πε0r, where q is the charge on the sphere and r is its radius. 
Thus, 

( )( ) 8
0 9 2 2

0.15 m 1500 V
4 2.5 10 C.

8.99 10  N m C
q rVπε −= = = ×

× ⋅
 

 
66. Since the charge distribution is spherically symmetric we may write 
 

enc

0

1( ) ,
4

qE r
rπε

=  

 
where qenc is the charge enclosed in a sphere of radius r centered at the origin.  
 
(a) For r = 4.00 m, R2 = 1.00 m, and R1 = 0.500 m, with r > R2 > R1 we have 
 

( )
9 2 2 6 6

31 2
2 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C) 1.69 10  V/m.
4 (4.00 m)
q qE r

rπε

− −+ × ⋅ × + ×
= = = ×  

 
(b) For R2 > r = 0.700 m > R2, 
 

( )
9 2 2 6

41
2 2

0

(8.99 10 N m C )(2.00 10 C) 3.67 10  V/m.
4 (0.700 m)

qE r
rπε

−× ⋅ ×
= = = ×  

 
(c) For R2 > R1 > r, the enclosed charge is zero. Thus, E = 0. 
 
The electric potential may be obtained using Eq. 24-18:  
 

V r V r E r dr
r

rb g b g b g− ′ =
′z .  

 
(d) For r = 4.00 m > R2 > R1, we have 
 

( )
9 2 2 6 6

31 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C) 6.74 10  V.
4 (4.00 m)
q qV r

rπε

− −+ × ⋅ × + ×
= = = ×  

 
(e) For r = 1.00 m = R2 > R1, we have 
 

( )
9 2 2 6 6

41 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C) 2.70 10  V.
4 (1.00 m)
q qV r

rπε

− −+ × ⋅ × + ×
= = = ×  
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(f) For R2 > r = 0.700 m > R2,  
 

( )
6 6

9 2 21 2

0 2

4

1 2.00 10 C 1.00 10 C(8.99 10 N m C )
4 0.700 m 1.00 m

3.47 10  V.

q qV r
r Rπε

− −⎛ ⎞ ⎛ ⎞× ×
= + = × ⋅ +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
= ×

 

 
(g) For R2 > r = 0.500 m = R2,  
 

( )
6 6

9 2 21 2

0 2

4

1 2.00 10 C 1.00 10 C(8.99 10 N m C )
4 0.500 m 1.00 m

4.50 10  V.

q qV r
r Rπε

− −⎛ ⎞ ⎛ ⎞× ×
= + = × ⋅ +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
= ×

 

 
(h) For R2 > R1 > r,  
 

6 6
9 2 21 2

0 1 2

4

1 2.00 10 C 1.00 10 C(8.99 10 N m C )
4 0.500 m 1.00 m

4.50 10  V.

q qV
R Rπε

− −⎛ ⎞ ⎛ ⎞× ×
= + = × ⋅ +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
= ×

 

 
(i) At r = 0, the potential remains constant, 44.50 10  V.V = ×  
 
(j) The electric field and the potential as a function of r are depicted below: 
 

 
 

67. (a) The magnitude of the electric field is 
 

( )( )
( )

8 9 2 2
4

22
0 0

3.0 10 C 8.99 10 N m C
1.2 10 N C.

4 0.15m
qE

R
σ
ε πε

−× × ⋅
= = = = ×  

 
(b) V = RE = (0.15 m)(1.2 × 104 N/C) = 1.8 × 103 V. 
 
(c) Let the distance be x. Then 
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ΔV V x V q
R x R

= − =
+

−F
HG

I
KJ = −b g

4
1 1 500

p 0ε
V,  

which gives 

x R V
V V

=
− −

=
−

− +
= × −Δ

Δ
015 500
1800 500

58 10 2.
.

m V
V V

m.b gb g  

 
68. The potential energy of the two-charge system is 
 

( ) ( )
( )( )( )

( ) ( )

9 2 2 6
1 2

2 2 2 2
1 2 1 2

8.99 10 N m C 3.00 C 4.00 10 C1
4 3.50 2.00 0.500 1.50 cm

1.93 J.

q qU
x x y yε

−6 −

0

⎡ ⎤ × ⋅ ×10 − ×⎢ ⎥= =
⎢ ⎥π − + − + + −⎣ ⎦

= −
 

 
Thus, –1.93 J of work is needed. 
 
69. To calculate the potential, we first apply Gauss’ law to calculate the electric field of 
the charged cylinder of radius R. We imagine a cylindrical Gaussian surface A of radius r 
and length h concentric with the cylinder. Then, by Gauss’ law, 
 

enc

0

2 ,
A

qE dA rhEπ
ε

⋅ = =∫  

  
where encq is the amount of charge enclosed by the Gaussian cylinder. Inside the charged 
cylinder ( ),r R< enc 0,q =  so the electric field is zero. On the other hand, outside the 
cylinder (r > R), encq hλ= so the magnitude of the electric field is 
 

0 0

/
2 2
q hE

r r
λ

πε πε
= =  

 
where λ is the linear charge density and r is the distance from the line to the point where 
the field is measured. The potential difference between two points 1 and 2 is  
 

( ) ( ) ( )2

1
2 1 .

r

r
V r V r E r dr− = −∫  

 
(a) The radius of the cylinder (0.020 m, the same as RB) is denoted R, and the field 
magnitude there (160 N/C) is denoted EB. From the equation above, we see that the 
electric field beyond the surface of the cylinder is inversely proportional with r: 
 

, .B
B B

RE E r R
r

= ≥  
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Thus, if r = RC = 0.050 m, we obtain  
 

( ) 0.020 m160 N/C 64 N C.
0.050 m

B
C B

C

RE E
R

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
(b) The potential difference between VB and VC is 
 

0.050 mln (160 N/C)(0.020 m) ln 2.9 V.
0.020 m

B

C

R CB B
B C B BR

B

RE RV V dr E R
r R

⎛ ⎞ ⎛ ⎞− = − = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∫  

 
(c) The electric field throughout the conducting volume is zero, which implies that the 
potential there is constant and equal to the value it has on the surface of the charged 
cylinder: VA – VB = 0. 
 
70. (a) We use Eq. 24-18 to find the potential: wall

R

r
V V Edr− = −∫ , or 

 

( )2 2

0 0

0        .
2 4

R

r

rV V R rρ ρ
ε ε

⎛ ⎞
− = − ⇒ − = − −⎜ ⎟

⎝ ⎠
∫  

 
Consequently, V = ρ(R2 – r2)/4ε0. 
 
(b) The value at r = 0 is 
 

Vcenter

3C m
C V m

m V.=
− ×

× ⋅
− = − ×

−

−

11 10
4 885 10

0 05 0 7 8 10
3

12

2 4.
.

. .c h b ge j  

 
Thus, the difference is 4

center| | 7.8 10 V.V = ×  
 
71. According to Eq. 24-30, the electric potential of a dipole at a point a distance r away 
is  

 2
0

1 cos
4

pV
r

θ
πε

=  

 
where p is the magnitude of the dipole moment p  and θ  is the angle between p  and the 
position vector of the point. The potential at infinity is taken to be zero.  
 
On the dipole axis θ = 0 or π, so |cos θ | = 1. Therefore, magnitude of the electric field is 
 

E r V
r

p d
dr r

p
r

b g = −
∂
∂

= F
HG
I
KJ =

4
1

22 3π π0 0ε ε
.  
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Note: If we take the z axis to be the dipole axis, then for 0r z= > ( 0θ = ), 

3
0/ 2 ,E p zπε=  and for 0r z= − <  (θ π= ), 3

0/ 2 .E p zπε= −  
 
72. Using Eq. 24-18, we have 
 

ΔV  =  
3

42

A dr
r

−∫  =  3 3

1 1
3 2 3
A ⎛ ⎞−⎜ ⎟

⎝ ⎠
= A(0.029/m3). 

 
73. (a) The potential on the surface is 
 

( )( )6 9 2 2
5

0

4.0 10 C 8.99 10 N m C
3.6 10 V .

4 0.10m
qV

Rε

−× × ⋅
= = = ×

π
 

 
(b) The field just outside the sphere would be 
 

E q
R

V
R

= = =
×

= ×
4

36 10
010

36 102

5
6

π 0ε
.

.
. ,V

m
V m  

 
which would have exceeded 3.0 MV/m. So this situation cannot occur. 
 
74. The work done is equal to the change in the (total) electric potential energy U of the 
system, where 

 3 2 1 31 2

0 12 0 23 0 134 4 4
q q q qq qU

r r rπε πε πε
= + +  

 
and the notation r13 indicates the distance between q1 and q3 (similar definitions apply to 
r12 and r23).   
 
(a) We consider the difference in U where initially r12 = b and r23 = a, and finally r12 = a 
and r23 = b  (r13 doesn’t change).  Converting the values given in the problem to SI units 
(μC to C, cm to m), we obtain ΔU =  – 24 J. 
 
(b) Now we consider the difference in U where initially r23 = a and r13 = a, and finally r23 
is again equal to a and r13 is also again equal to a  (and of course, r12 doesn’t change in 
this case).  Thus, we obtain ΔU = 0. 
 
75. Assume the charge on Earth is distributed with spherical symmetry. If the electric 
potential is zero at infinity then at the surface of Earth it is V = q/4πε0R, where q is the 
charge on Earth and R = 6.37 × 106 m is the radius of Earth. The magnitude of the electric 
field at the surface is E = q/4πε0R2, so  
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V = ER = (100 V/m) (6.37 × 106 m) = 6.4 × 108 V. 
 
76. Using Gauss’ law, q = εοΦ = +495.8 nC.  Consequently,  
 

9 2 2 7
4

0

(8.99 10 N m C )(4.958 10 C) 3.71 10  V.
4 0.120 m

qV
rε

−× ⋅ ×
= = = ×

π
 

 
77. The potential difference is  
 

ΔV = EΔs = (1.92 × 105 N/C)(0.0150 m) = 2.90 × 103 V. 
 
78. The charges are equidistant from the point where we are evaluating the potential — 
which is computed using Eq. 24-27 (or its integral equivalent). Equation 24-27 implicitly 
assumes V → 0 as r → ∞. Thus, we have 
 

1 1 1 1

9 2 2 12

2 3 21 1 1 1
4 4 4 4

2(8.99 10 N m C )(4.52 10 C) 0.956 V.
0.0850 m

Q Q Q QV
R R R Rε ε ε ε0 0 0 0

−

+ − +
= + + =

π π π π

× ⋅ ×
= =

 

 
79. The electric potential energy in the presence of the dipole is 
 

 dipole 2 2
0 0

cos ( )( ) cos
4 4
qp e edU qV

r r
θ θ

πε πε
−

= = =  . 

 
Noting that θi = θf = 0º, conservation of energy leads to 
 

Kf + Uf  =  Ki + Ui     ⇒   v = 
2 e2

4πεo m d
 ⎝⎜
⎛

⎠⎟
⎞1

25 − 
1

49    =  7.0 510×  m/s . 

 
80. We treat the system as a superposition of a disk of surface charge density σ and 
radius R and a smaller, oppositely charged, disk of surface charge density –σ and radius r. 
For each of these, Eq 24-37 applies (for z > 0) 
 

V z R z z r z= + − +
−

+ −
σ
ε

σ
ε2 20

2 2

0

2 2e j e j.  
 
This expression does vanish as r → ∞, as the problem requires. Substituting r = 0.200R 
and z = 2.00R and simplifying, we obtain 
 

12 2
2

12 2 2

5 5 101 (6.20 10 C/m )(0.130 m) 5 5 101 1.03 10  V.
10 8.85 10 C /N m 10

RV σ
ε

−
−

−

⎛ ⎞ ⎛ ⎞− × −
= = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠0
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81. (a) When the electron is released, its energy is  K + U = 3.0 eV − 6.0 eV (the latter 
value is inferred from the graph along with the fact that U = qV and q = − e).  Because of 
the minus sign (of the charge) it is convenient to imagine the graph multiplied by a minus 
sign so that it represents potential energy in eV.  Thus, the 2 V value shown at x = 0 
would become –2 eV, and the 6 V value at x = 4.5 cm becomes –6 eV, and so on.  The 
total energy (− 3.0 eV) is constant and can then be represented on our (imagined) graph as 
a horizontal line at − 3.0 V.  This intersects the potential energy plot at a point we 
recognize as the turning point.  Interpolating in the region between 1.0 cm and 4.0 cm, we 
find the turning point is at x = 1.75 cm 1.8 cm.≈  
 
(b) There is no turning point toward the right, so the speed there is nonzero.  Noting that 
the kinetic energy at x = 7.0 cm is K = − 3.0 eV − (− 5.0 eV) = 2.0 eV, we find the speed 
using energy conservation:  
 

( )( )19
5

31

2 2.0 eV 1.60 10  J/eV2 8.4 10 m/s.
9.11 10  kge

Kv
m

−

−

×
= = = ×

×
 

 
(c) The electric field at any point P is the (negative of the) slope of the voltage graph 
evaluated at P.  Once we know the electric field, the force on the electron follows 
immediately from F qE= , where q = −e for the electron. In the region just to the left of 

4.0 cmx = , the electric field is ˆ( 133 V/m)iE = −  and the magnitude of the force is 
172.1 10  NF −= × . 

 
(d) The force points in the +x direction. 
 
(e) In the region just to the right of x = 5.0 cm, the field is E 

→
 = +100 V/m î  and the force 

is F 
→

 = ( –1.6 x 10−17 N) î . Thus, the magnitude of the force is 171.6 10  NF −= × . 
 
(f) The minus sign indicates that F 

→
 points in the –x direction. 

 
82. (a) The potential would be 
 

( )( )( )( )

2

0 0

6 2 9 9 2 2

4 4
4 4

4 6.37 10 m 1.0electron m 1.6 10 C electron 8.99 10 N m C

0.12V.

e e e
e e e

e e

Q RV R k
R R

π σ π σ
πε πε

π −

= = =

= × − × × ⋅

= −

 

 
(b) The electric field is 

                E V
R

e e

e

= = = −
×

= − × −σ
ε 0

8012 18 10. . ,V
6.37 10 m

N C6  
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or  8| | 1.8 10 N C.E −= ×  
 
(c) The minus sign in E indicates that E  is radially inward. 
 
83. (a)  Using d = 2 m, we find the potential at P: 
 

9 2 2 19
10

0 0 0

2 2 (8.99 10 N m C )(1.6 10 C) 7.192 10 V
4 4 (2 ) 4 2.00 mP

e e eV
d d dπε πε πε

−
−− × ⋅ ×

= + = = = ×  . 

 
Note that we are implicitly assuming that V → 0 as r → ∞. 
 
(b) Since U = qV , then the movable particle's contribution of the potential energy when it 
is at r = ∞ is zero, and its contribution to Usystem when it is at P is  
 

19 10 282(1.6 10 C)(7.192 10 V) 2.3014 10  JPU qV − − −= = × × = × . 
 
Thus, the work done is approximately equal to Wapp = 2.30 × 10−28 J. 
 
(c) Now, combining the contribution to Usystem from part (b) and from the original pair of 
fixed charges 
 

 

9 2 2 19 2

fixed 2 2
0

28

1 (2 )( 2 ) (8.99 10 N m C )(4)(1.60 10 C)
4 20.0  m(4.00 m) (2.00 m)

2.058 10  J

e eU
πε

−

−

− × ⋅ ×
= =

+

= − ×

 

 
we obtain 

Usystem =  Wapp + Ufixed = 2.43 × 10–29 J. 
 
84. The electric field throughout the conducting volume is zero, which implies that the 
potential there is constant and equal to the value it has on the surface of the charged 
sphere: 

 
04A S

qV V
Rπε

= =  

 
where q = 30 × 10−9 C and R = 0.030 m.  For points beyond the surface of the sphere, the 
potential follows Eq. 24-26: 

04B
qV

rπε
=  

where r = 0.050 m. 
 
(a) We see that 
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VS – VB  =
0

1 1
4

q
R rπε

⎛ ⎞−⎜ ⎟
⎝ ⎠

= 3.6 × 103 V. 

 
(b) Similarly,  

 VA – VB = 
0

1 1
4

q
R rπε

⎛ ⎞−⎜ ⎟
⎝ ⎠

= 3.6 × 103 V. 

 
85. We note that the net potential (due to the "fixed" charges) is zero at the first location 
("at ∞") being considered for the movable charge q (where q = +2e).  Thus, with D = 4.00 
m and e = 1.60 × 10−19 C, we obtain 
 

 

9 2 2 19

0 0 0

10

2 2 (8.99 10 N m C )(2)(1.60 10 C)
4 (2 ) 4 4 4.00 m

7.192 10 V .

e e eV
D D Dπε πε πε

−

−

+ + × ⋅ ×
= + = =

= ×

  

 
The work required is equal to the potential energy in the final configuration:   
 

Wapp = qV = (2e)(7.192 × 10−10 V) = 2.30 × 10−28 J. 
 
86. Since the electric potential is a scalar quantity, this calculation is far simpler than it 
would be for the electric field.  We are able to simply take half the contribution that 
would be obtained from a complete (whole) sphere.  If it were a whole sphere (of the 
same density) then its charge would be qwhole = 8.00 μC.  Then  
 

V  =  
1
2 Vwhole  =  

1
2  

qwhole

4πεo r
  =   

1
2  

8.00 x 10-6 C
4πεo(0.15 m)  =  2.40 × 105 V . 

 
87. The work done results in a change of potential energy: 
 

 

2 2 2

0 0 0

9 2 2 2 8

2 2 2 1 1
4 4 4

1 12(8.99 10 N m C )(0.12 C) 1.5 10  J.
1.7 m/2 1.7 m

q q qW U
d d d dπε πε πε

⎛ ⎞= Δ = − = −⎜ ⎟′ ′⎝ ⎠

⎛ ⎞= × ⋅ − = ×⎜ ⎟
⎝ ⎠

  

 
At a rate of P = 0.83 × 103 joules per second, it would take W/P = 1.8 × 105 seconds or 
about 2.1 days to do this amount of work. 
 
88. (a) The charges are equal and are the same distance from C. We use the Pythagorean 
theorem to find the distance r d d d= + =2 2 22 2b g b g .  The electric potential at C is 
the sum of the potential due to the individual charges but since they produce the same 
potential, it is twice that of either one: 
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( )( ) ( )9 2 2 6
6

8.99 10 N m C 2 2 2.0 10 C2 22 2 2.5 10 V.
4 4 0.020 m

qqV
d dε ε

−× ⋅ ×
= = = = ×

0 0p p
 

 
(b) As you move the charge into position from far away the potential energy changes 
from zero to qV, where V is the electric potential at the final location of the charge. The 
change in the potential energy equals the work you must do to bring the charge in: 
 

( )( )6 62.0 10 C 2.54 10 V 5.1 J.W qV −= = × × =  
 
(c) The work calculated in part (b) represents the potential energy of the interactions 
between the charge brought in from infinity and the other two charges. To find the total 
potential energy of the three-charge system you must add the potential energy of the 
interaction between the fixed charges. Their separation is d so this potential energy is 
q d2 4p 0ε .  The total potential energy is 
 

( )( )29 2 2 62 8.99 10 N m C 2.0 10 C
5.1 J 6.9 J.

4 0.020m
qU W

dε

−× ⋅ ×
= + = + =

0π
 

 
89. The net potential at point P (the place where we are to place the third electron) due to 
the fixed charges is computed using Eq. 24-27 (which assumes V → 0 as r → ∞): 
 

0 0 0

2
4 4 4P

e e eV
d d dπε πε πε

− −
= + = −  . 

 
Thus, with d = 2.00 × 10−6 m and e = 1.60 × 10−19 C, we find  
 

9 2 2 19
3

6
0

2 (8.99 10 N m C )(2)(1.60 10 C) 1.438 10 V .
4 2.00 10  mP

eV
dπε

−
−

−

× ⋅ ×
= − = − = − ×

×
 

 
Then the required “applied” work is, by Eq. 24-14, 
 

Wapp = (−e) VP  = 2.30 × 10−22 J  . 
 
90. The particle with charge –q has both potential and kinetic energy, and both of these 
change when the radius of the orbit is changed. We first find an expression for the total 
energy in terms of the orbit radius r. Q provides the centripetal force required for –q to 
move in uniform circular motion. The magnitude of the force is F = Qq/4πε0r2. The 
acceleration of –q is v2/r, where v is its speed. Newton’s second law yields 
 

2
2

2
0 0

,
4 4

qQ mv Qqmv
r r rπε πε

= ⇒ =  

and the kinetic energy is 
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2

0

1
2 8

QqK mv
rπε

= = . 

 
The potential energy is U = –Qq/4πε0r, and the total energy is 
 

E K U Qq
r

Qq
r

Qq
r

= + = − = −
8 4 80 0 0p p pε ε ε

.  

 
When the orbit radius is r1 the energy is E1 = –Qq/8πε0r1 and when it is r2 the energy is 
E2 = –Qq/8πε0r2. The difference E2 – E1 is the work W done by an external agent to 
change the radius: 

W E E Qq
r r

Qq
r r

= − = − −
F
HG
I
KJ = −

F
HG
I
KJ2 1

2 1 1 28
1 1

8
1 1

p p0 0ε ε
.  

 
91. The initial speed vi of the electron satisfies  
 

K m v e Vi e i= =1
2

2 Δ ,  
which gives 
 

v e V
mi

e

= =
×

×
= ×

−

−

2 2 160 10
9 11 10

148 10
19

31
7Δ .

.
.

 J 625 V
 kg

m s.
c hb g

 

 
92. The net electric potential at point P is the sum of those due to the six charges: 
 

( ) ( )

( ) ( )

156 6

2 22 21 1 0 0

16

22 22 2 0

4

10 5.00 2.00 3.00
4 4 / 2/ 2 / 2

3.00 2.00 5.00 9.4 10        
/ 2 4 (2.54 10 )/ 2 / 2

3.34 10  V.

i
P Pi

i i i

qV V
r dd d d d

dd d d d

πε πε

πε

−

= =

−

−

−

⎡ − −⎢= = = + +
⎢ + +⎣

⎤− + ×⎥+ + + =
⎥ ×+ + ⎦

= ×

∑ ∑

 

 
93. For a point on the axis of the ring, the potential (assuming V → 0 as r → ∞) is 
 

V q
z R

=
+4 2 2p 0ε

. 

 
With q = 16 × 10–6 C, z = 0.040 m, and R = 0.0300 m, we find the potential difference 
between points A (located at the origin) and B to be 
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2 2
0

9 2 2 6

2 2

6

1 1
4

1 1(8.99 10 N m C )(16.0 10 C)
0.030 m(0.030 m) (0.040 m)

1.92 10 V.

B A
qV V

Rz Rπε

−

⎛ ⎞
− = −⎜ ⎟

+⎝ ⎠
⎛ ⎞
⎜ ⎟= × ⋅ × −
⎜ ⎟+⎝ ⎠

= − ×

 

 
94. (a) Using Eq. 24-26, we calculate the radius r of the sphere representing the 30 V 
equipotential surface: 
 

9 2 2 8

0

(8.99 10 N m C )(1.50 10 C) 4.5m.
4 30 V

qr
Vπε

−× ⋅ ×
= = =  

 
(b) If the potential were a linear function of r then it would have equally spaced 
equipotentials, but since V r∝1  they are spaced more and more widely apart as r 
increases. 
 
95. (a) For r > r2 the field is like that of a point charge and 
 

V Q
r

=
1

4 0πε
,  

 
where the zero of potential was taken to be at infinity. 
 
(b) To find the potential in the region r1 < r < r2, first use Gauss’s law to find an 
expression for the electric field, then integrate along a radial path from r2 to r. The 
Gaussian surface is a sphere of radius r, concentric with the shell. The field is radial and 
therefore normal to the surface. Its magnitude is uniform over the surface, so the flux 
through the surface is Φ = 4πr2E. The volume of the shell is 4 3 2

3
1
3πb gc hr r− , so the 

charge density is 

ρ =
−

3
4 2

3
1
3

Q
r rπc h ,  

 
and the charge enclosed by the Gaussian surface is 
 

q r r Q r r
r r

= FHG
I
KJ − =

−
−
F
HG

I
KJ

4
3

3
1
3

3
1
3

2
3

1
3

π c hρ .  

Gauss’ law yields 
3 3

2 1
0 3 3

2 1

4 r rr E Q
r r

ε
⎛ ⎞−

π = ⎜ ⎟−⎝ ⎠
 

or 
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( )
3 3

1
2 3 3

0 2 1

.
4

r rQE
r r rε

−
=

π −
 

 
If Vs is the electric potential at the outer surface of the shell (r = r2) then the potential a 
distance r from the center is given by 
 

V V E dr V Q
r r

r r
r

dr

V Q
r r

r r r
r

r
r

s sr

r

r

r

s

= − = −
−

−
F
HG
I
KJ

= −
−

− + −
F
HG

I
KJ

z z4
1

4
1

2 2

0 2
3

1
3

1
3

2

0 2
3

1
3

2
2
2

1
3

1
3

2

2 2π

π

ε

ε
.

 

 
The potential at the outer surface is found by placing r = r2 in the expression found in 
part (a). It is Vs = Q/4πε0r2. We make this substitution and collect terms to find 
 

V Q
r r

r r r
r

=
−

− −
F
HG

I
KJ4

1 3
2 20 2

3
1
3

2
2 2

1
3

πε
.  

 
Since ρ = −3 4 2

3
1
3Q r rπ c h  this can also be written 

 

V r r r
r

= − −
F
HG

I
KJ

ρ
ε3

3
2 20

2
2 2

1
3

.  

 
(c) The electric field vanishes in the cavity, so the potential is everywhere the same inside 
and has the same value as at a point on the inside surface of the shell. We put r = r1 in the 
result of part (b). After collecting terms the result is 
 

V Q r r

r r
=

−

−4
3

20

2
2

1
2

2
3

1
3πε

c h
c h ,  

 

or in terms of the charge density, V r r= −
ρ
ε2 0

2
2

1
2c h. 

 
(d) The solutions agree at r = r1 and at r = r2. 
 
96. (a) We use Gauss’ law to find expressions for the electric field inside and outside the 
spherical charge distribution. Since the field is radial the electric potential can be written 
as an integral of the field along a sphere radius, extended to infinity. Since different 
expressions for the field apply in different regions the integral must be split into two parts, 
one from infinity to the surface of the distribution and one from the surface to a point 
inside. Outside the charge distribution the magnitude of the field is E = q/4πε0r2 and the 



 

  

1007

potential is V = q/4πε0r, where r is the distance from the center of the distribution. This is 
the same as the field and potential of a point charge at the center of the spherical 
distribution. To find an expression for the magnitude of the field inside the charge 
distribution, we use a Gaussian surface in the form of a sphere with radius r, concentric 
with the distribution. The field is normal to the Gaussian surface and its magnitude is 
uniform over it, so the electric flux through the surface is 4πr2E. The charge enclosed is 
qr3/R3. Gauss’ law becomes 

3
2

0 3 3
0

4 .
4

qr qrr E E
R R

πε
ε

= ⇒ =
π

 

 
If Vs is the potential at the surface of the distribution (r = R) then the potential at a point 
inside, a distance r from the center, is 
 

V V E dr V q
R

r dr V qr
R

q
Rs R

r

s R

r

s= − = − = − +z z4 8 80
3

2

0
3

0π π πε ε ε
.  

 
The potential at the surface can be found by replacing r with R in the expression for the 
potential at points outside the distribution. It is Vs = q/4πε0R. Thus, 
 

V q
R

r
R R

q
R

R r= − +
L
NM

O
QP = −

4
1

2
1

2 8
3

0

2

3
0

3
2 2

π πε ε
c h.  

 
(b) The potential difference is 
 

0 0 0

2 3 ,
8 8 8s c

q q qV V V
R R Rε ε ε

Δ = − = − = −
π π π

 

or 0| | / 8V q RπεΔ = . 
 
97. In the sketches shown next, the lines with the arrows are field lines and those without 
are the equipotentials (which become more circular the closer one gets to the individual 
charges). In all pictures, q2 is on the left and q1 is on the right (which is reversed from the 
way it is shown in the textbook). 
 
(a) 
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(b) 

  
 
98. The electric potential energy is 
 

( )

2 31 4
1 2 1 3 2 4 3 4

0

9
19 2

6

1
4 2 2

8.99 10 (12)(17) ( 24)(31)(12)( 24) (12)(31) ( 24)(17) (31)(17) (10 )
1.3 2 2

1.2 10  J .

i j

i j ij

q q q qq qU k q q q q q q q q
r dε≠

−

−

⎛ ⎞= = + + + + +⎜ ⎟
⎝ ⎠

× ⎡ − ⎤= − + + − + + +⎢ ⎥⎦⎣
= − ×

∑ p

 
99. (a) The charge on every part of the ring is the same distance from any point P on the 
axis. This distance is r z R= +2 2 , where R is the radius of the ring and z is the distance 
from the center of the ring to P. The electric potential at P is 
 

2 2 2 2 2 2
0 0 0 0

1 1 1 1 1 .
4 4 4 4

dq dq qV dq
r z R z R z Rπε πε πε πε

= = = =
+ + +

∫ ∫ ∫  

 
(b) The electric field is along the axis and its component is given by 
 

2 2 1/ 2 2 2 3/ 2
2 2 3/ 2

0 0 0

1( ) ( ) (2 ) .
4 4 2 4 ( )

V q q q zE z R z R z
z z z Rπε πε πε

− −∂ ∂ ⎛ ⎞= − = − + = + =⎜ ⎟∂ ∂ +⎝ ⎠
 

 
This agrees with Eq. 23-16. 
 
100. The distance r being looked for is that where the alpha particle has (momentarily) 
zero kinetic energy.  Thus, energy conservation leads to 
 

K0 + U0 = K + U   ⇒  (0.48 × 10−12 J) + 
(2e)(92e)
4πε0 r0

 =  0  +  
(2e)(92e)

4πε0 r
   . 

 
If we set r0 = ∞ (so U0 = 0) then we obtain r = 8.8 × 10−14 m. 
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101. (a) Let the quark-quark separation be r. To “naturally” obtain the eV unit, we only 
plug in for one of the e values involved in the computation: 
 

( )( ) ( )( )
( )

9 2 2 19

up up 15
0

5

4 8.99 10 N m C 1.60 10 C2 / 3 2 / 31 4
4 9 9 1.32 10 m

4.84 10 eV 0.484 MeV.

e e keU e e
r rπε

−

− −

× ⋅ ×
= = =

×

= × =

 

 
(b) The total consists of all pair-wise terms: 
 

( )( ) ( )( ) ( )( )
0

2 / 3 2 / 3 / 3 2 / 3 / 3 2 / 31 0.
4

e e e e e e
U

r r rπε
− −⎡ ⎤

= + + =⎢ ⎥
⎣ ⎦

 

 
102. (a) At the smallest center-to-center separation pd the initial kinetic energy Ki of the 
proton is entirely converted to the electric potential energy between the proton and the 
nucleus. Thus, 

2
lead1 82 .

4 4i
p p

eq eK
d dε ε

= =
0 0p p

 

 
In solving for pd  using the eV unit, we note that a factor of e cancels in the middle line: 
 

( ) ( )192 2
9 2 2

6 6
0

14

82 1.6 10 C82 82 8.99 10 N m C
4 4.80 10 V 4.80 10 V

2.5 10 m 25fm .

p
i

e ed k
K eπε

−

−

×
= = = × ⋅

× ×

= × =

 

 
It is worth recalling that 1 V 1 N m/C= ⋅ , in making sense of the above manipulations. 
 
(b) An alpha particle has 2 protons (as well as 2 neutrons). Therefore, using ′rmin  for the 
new separation, we find 
 

2 2
lead1 82 822

4 4 4i
p

q q e eK
d d d

α

α αε ε ε
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠0 0 0p p p

 

 
which leads to / 2.00pd dα = . 
 
103. Since the electric potential energy is not changed by the introduction of the third 
particle, we conclude that the net electric potential evaluated at P caused by the original 
two particles must be zero: 

 1 2

0 1 0 2

0
4 4

q q
r rπε πε

+ = . 
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Setting r1 = 5d/2 and r2 = 3d /2 we obtain q1 = – 5q2/3, or 1 2/ 5 / 3 1.7q q = − ≈ − . 
 
104. We imagine moving all the charges on the surface of the sphere to the center of the 
the sphere. Using Gauss’ law, we see that this would not change the electric field outside 
the sphere. The magnitude of the electric field E of the uniformly charged sphere as a 
function of r, the distance from the center of the sphere, is thus given by E(r) = q/(4πε0r2) 
for r > R. Here R is the radius of the sphere. Thus, the potential V at the surface of the 
sphere (where r = R) is given by 
 

( ) ( )
( ) ( )2

2
9 8N m

C
2

2

8.99 10 1.50 10 C

4 4 0.160m

8.43 10 V.

R

r R

q qV R V E r dr dr
r Rπε πε

⋅
∞

=∞ ∞
0 0

× ×
= + = = =

= ×

∫ ∫  

 
105. (a) With V = 1000 V, we solve  0/ 4 ,V q Rπε=  where R = 0.010 m for the net charge 
on the sphere, and find q =  1.1 × 10−9 C.  Dividing this by e yields 6.95 × 109 electrons 
that entered the copper sphere.  Now, half of the 3.7 × 108 decays per second resulted in 
electrons entering the sphere, so the time required is 
 

 
9

8

6.95 10 38 s
(3.7 10 / s) / 2

×
=

×
. 

 
(b) We note that 100 keV is 1.6 × 10−14 J (per electron that entered the sphere).  Using the 
given heat capacity 1.40 J/K, we note that a temperature increase of ΔT = 5.0 K = 5.0 Cº 
required (1.40 J/K)(5.0 K) = 70 J of energy.  Dividing this by 1.6 × 10−14 J, we find the 
number of electrons needed to enter the sphere (in order to achieve that temperature 
change); since this is half the number of decays, we multiply by 2 and find 
 
          N = 8.75 × 1015 decays. 
 
We divide N by 3.7 × 108 to obtain the number of seconds.  Converting to days, this 
becomes roughly 270 days.  
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Chapter 25 
 
 
1. (a) The capacitance of the system is 
 

C q
V

= = =
Δ

70
20

35pC
V

pF..  

 
(b) The capacitance is independent of q; it is still 3.5 pF. 
 
(c) The potential difference becomes 
 

ΔV q
C

= = =
200
35

57pC
pF

V.
.

 

 
2. Charge flows until the potential difference across the capacitor is the same as the 
potential difference across the battery. The charge on the capacitor is then q = CV, and 
this is the same as the total charge that has passed through the battery. Thus,  
 

q = (25 × 10–6 F)(120 V) = 3.0 × 10–3 C. 
 
3. (a) The capacitance of a parallel-plate capacitor is given by C = ε0A/d, where A is the 
area of each plate and d is the plate separation. Since the plates are circular, the plate area 
is A = πR2, where R is the radius of a plate. Thus, 
 

( ) ( )212 22
100

3

8.85 10 F m 8.2 10 m
1.44 10 F 144 pF.

1.3 10 m
RC

d
πε π

− −
−

−

× ×
= = = × =

×
 

 
(b) The charge on the positive plate is given by q = CV, where V is the potential 
difference across the plates. Thus,  
 

q = (1.44 × 10–10 F)(120 V) = 1.73 × 10–8 C = 17.3 nC. 
 
4. (a) We use Eq. 25-17: 

 
( )( )

( )( )2

2

0 9 N m
C

40.0mm 38.0mm
4 84.5 pF.

8.99 10 40.0mm 38.0mm
abC

b a
πε

⋅
= = =

− × −
 

 
(b) Let the area required be A. Then C = ε0A/(b – a), or 
 



     CHAPTER 25 1012 
        

( ) ( )( )
( )

2
12 2 2

0

84.5pF 40.0mm 38.0mm
191cm .

8.85 10 C /N m
C b a

A
ε −

− −
= = =

× ⋅
 

 
5. Assuming conservation of volume, we find the radius of the combined spheres, then 
use C = 4πε0R to find the capacitance. When the drops combine, the volume is doubled. It 
is then V = 2(4π/3)R3. The new radius R' is given by 
 

( )3 34 42     
3 3

R R′ = ⇒
p p    ′ =R R21 3 . 

 
The new capacitance is 

1 3
0 0 04 4 2 5.04 .C R R Rε ε ε′ ′= = =p p p  

 
With R = 2.00 mm, we obtain ( )( )12 3 135.04 8.85 10 F m 2.00 10 m 2.80 10 FC π − − −= × × = × . 
 
6. We use C = Aε0/d.  
 
(a) The distance between the plates is 
 

( )( )2 12 2 2
120

1.00m 8.85 10 C /N m
8.85 10 m.

1.00F
Ad
C
ε

−
−

× ⋅
= = = ×  

 
(b) Since d is much less than the size of an atom (∼ 10–10 m), this capacitor cannot be 
constructed. 
 
7. For a given potential difference V, the charge on the surface of the plate is  
 
 ( )q Ne nAd e= =  
 
where d is the depth from which the electrons come in the plate, and n is the density of 
conduction electrons. The charge collected on the plate is related to the capacitance and 
the potential difference by q CV=  (Eq. 25-1). Combining the two expressions leads to 
 

 C dne
A V

= . 

 
With 14 / / 5.0 10 m/Vs sd V d V −= = ×  and 28 38.49 10 / mn = ×  (see, for example, Sample 
Problem — “Charging the plates in a parallel-plate capacitor”), we obtain 
 

28 3 19 4 2(8.49 10 / m )(1.6 10 C)(5.0 10 14 m/V) 6.79 10 F/mC
A

− −= × × × − = × . 
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8. The equivalent capacitance is given by Ceq = q/V, where q is the total charge on all the 
capacitors and V is the potential difference across any one of them. For N identical 
capacitors in parallel, Ceq = NC, where C is the capacitance of one of them. Thus, 

/NC q V=  and 

( ) ( )
3

6

1 00C 9 09 10
110V 1 00 10 F

q .N . .
VC . −

= = = ×
×

 

 
9. The charge that passes through meter A is 
 

q C V CV= = = =eq F V C.3 3 25 0 4200 0 315. .μb gb g  
 
10. The equivalent capacitance is 
 

C C C C
C Ceq F

F F
F F

F.= +
+

= +
+

=3
1 2

1 2

4 00
10 0 500
10 0 500

7 33.
. .
. .

.μ
μ μ
μ μ

μ
b gb g  

 
11. The equivalent capacitance is 
 

( ) ( )( )1 2 3
eq

1 2 3

10.0 F 5.00 F 4.00 F
3.16 F.

10.0 F 5.00 F 4.00 F
C C C

C
C C C

μ μ μ
μ

μ μ μ
+ +

= = =
+ + + +

 

 
12. The two 6.0 μF capacitors are in parallel and are consequently equivalent to 

eq 12 FC μ= .  Thus, the total charge stored (before the squeezing) is  
 

( )total eq 12 F (10 0V) 120 C.q C V .μ μ= = =  
 
(a) and (b)  As a result of the squeezing, one of the capacitors is now 12 μF (due to the 
inverse proportionality between C and d in Eq. 25-9), which represents an increase of 
6.0 Fμ  and thus a charge increase of  
 

( )total eq 6 0 F (10 0V) 60 C .q C V . .μ μΔ = Δ = =  
 
13. The charge initially on the charged capacitor is given by q = C1V0, where C1 = 100 pF 
is the capacitance and V0 = 50 V is the initial potential difference. After the battery is 
disconnected and the second capacitor wired in parallel to the first, the charge on the first 
capacitor is q1 = C1V, where V = 35 V is the new potential difference. Since charge is 
conserved in the process, the charge on the second capacitor is q2 = q – q1, where C2 is 
the capacitance of the second capacitor. Substituting C1V0 for q and C1V for q1, we obtain 
q2 = C1 (V0 – V). The potential difference across the second capacitor is also V, so the 
capacitance is 

( )02
2 1

50V 35V 100pF 43pF.
35V

V VqC C
V V

− −
= = = =  
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14. (a) The potential difference across C1 is V1 = 10.0 V. Thus,  
 

q1 = C1V1 = (10.0 μF)(10.0 V) = 1.00 × 10–4 C. 
 
(b) Let C = 10.0 μF. We first consider the three-capacitor combination consisting of C2 
and its two closest neighbors, each of capacitance C. The equivalent capacitance of this 
combination is 

2
eq

2

1 50 C CC C . C.
C C

= + =
+

 

 
Also, the voltage drop across this combination is 
 

1 1
1

eq

0 40
1 50 

CV CVV . V .
C C C . C

= = =
+ +

 

 
Since this voltage difference is divided equally between C2 and the one connected in 
series with it, the voltage difference across C2 satisfies V2 = V/2 = V1/5. Thus 
 

( ) 5
2 2 2

10 0V10 0 F 2 00 10 C.
5
.q C V . .μ −⎛ ⎞= = = ×⎜ ⎟

⎝ ⎠
 

 
15. (a) First, the equivalent capacitance of the two 4.00 μF capacitors connected in series 
is given by 4.00 μF/2 = 2.00 μF. This combination is then connected in parallel with two 
other 2.00-μF capacitors (one on each side), resulting in an equivalent capacitance C = 
3(2.00 μF) = 6.00 μF. This is now seen to be in series with another combination, which 
consists of the two 3.0-μF capacitors connected in parallel (which are themselves 
equivalent to C' = 2(3.00 μF) = 6.00 μF). Thus, the equivalent capacitance of the circuit 
is 

( ) ( )
eq

6 00 F 6 00 F
3 00 F.

6 00 F 6 00 F
. .CCC .

C C . .
μ μ

μ
μ μ

′
= = =

′+ +
 

 
(b) Let V = 20.0 V be the potential difference supplied by the battery. Then  
 

q = CeqV = (3.00 μF)(20.0 V) = 6.00 × 10–5 C. 
 
(c) The potential difference across C1 is given by 
 

( ) ( )
1

6 00 F 20 0V
10 0V

6 00 F 6 00 F
. .CVV . .

C C . .
μ
μ μ

= = =
′+ +

 

 
(d) The charge carried by C1 is q1 = C1V1= (3.00 μF)(10.0 V) = 3.00 × 10–5 C. 
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(e) The potential difference across C2 is given by V2 = V – V1 = 20.0 V – 10.0 V = 10.0 V.  
 
(f) The charge carried by C2 is q2 = C2V2 = (2.00 μF)(10.0 V) = 2.00 × 10–5 C. 
 
(g) Since this voltage difference V2 is divided equally between C3 and the other 4.00-μF 
capacitors connected in series with it, the voltage difference across C3 is given by V3 = 
V2/2 = 10.0 V/2 = 5.00 V.  
 
(h) Thus, q3 = C3V3 = (4.00 μF)(5.00 V) = 2.00 × 10–5 C. 
 
16. We determine each capacitance from the slope of the appropriate line in the graph.  
Thus, C1 = (12 μC)/(2.0 V) = 6.0 μF.  Similarly, C2 = 4.0 μF and C3 = 2.0 μF.  The total 
equivalent capacitance is given by 
 

1 2 3

123 1 2 3 1 2 3

1 1 1
( )

C C C
C C C C C C C

+ +
= + =

+ +
, 

or  
1 2 3

123
1 2 3

( ) (6.0 F)(4.0 F 2.0 F) 36 F 3.0 F
6.0 F 4.0 F 2.0 F 12

C C CC
C C C

μ μ μ μ μ
μ μ μ

+ +
= = = =

+ + + +
. 

 
This implies that the charge on capacitor 1 is 1q = (3.0 μF)(6.0 V) = 18 μC.  The voltage 
across capacitor 1 is therefore V1 = (18 μC)/(6.0 μF) = 3.0 V.  From the discussion in 
section 25-4, we conclude that the voltage across capacitor 2 must be 6.0 V – 3.0 V = 3.0 
V.  Consequently, the charge on capacitor 2 is (4.0 μF)(3.0 V) = 12 μC.   
 
17. (a) and (b) The original potential difference V1 across C1 is 
 

( )( )eq
1

1 2

3.16 F 100.0V
21.1V.

10.0 F 5.00 F
C V

V
C C

μ
μ μ

= = =
+ +

 

 
Thus ΔV1 = 100.0 V – 21.1 V = 78.9 V and  
 

Δq1 = C1ΔV1 = (10.0 μF)(78.9 V) = 7.89 × 10–4 C. 
 
18. We note that the voltage across C3 is V3 = (12 V – 2 V – 5 V) = 5 V.  Thus, its charge 
is q3  = C3 V3 = 4 μC.  
 
(a) Therefore, since C1, C2 and C3 are in series (so they have the same charge), then 
 

C1 =  
4 μC
2 V  = 2.0 μF . 

 
(b) Similarly, C2 = 4/5 = 0.80 μF. 
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19. (a) and (b) We note that the charge on C3 is q3 = 12 μC – 8.0 μC = 4.0 μC.  Since the 
charge on C4 is q4 = 8.0 μC, then the voltage across it is q4/C4 = 2.0 V.  Consequently, the 
voltage V3 across C3 is 2.0 V ⇒ C3 = q3/V3 = 2.0 μF.   
 
Now C3 and C4  are in parallel and are thus equivalent to 6 μF capacitor which would then 
be in series with C2 ; thus, Eq 25-20 leads to an equivalence of  2.0 μF which is to be 
thought of as being in series with the unknown C1 .  We know that the total effective 
capacitance of the circuit (in the sense of what the battery “sees” when it is hooked up) is 
(12 μC)/Vbattery = 4 μF/3.  Using Eq 25-20 again, we find 
 

1
2 μF  +  

1
C1

  = 
3

4 μF    ⇒     C1  = 4.0 μF . 

 
20. For maximum capacitance the two groups of plates must face each other with 
maximum area. In this case the whole capacitor consists of (n – 1) identical single 
capacitors connected in parallel. Each capacitor has surface area A and plate separation d 
so its capacitance is given by C0 = ε0A/d. Thus, the total capacitance of the combination is  
 

( ) ( ) 12 2 2 4 2
0 12

0 3

1 (8 1)(8.85 10 C /N m )(1.25 10  m )1 2.28 10 F.
3.40 10  m

n A
C n C

d
ε − −

−
−

− − × ⋅ ×
= − = = = ×

×
 

 
21. (a) After the switches are closed, the potential differences across the capacitors are 
the same and the two capacitors are in parallel. The potential difference from a to b is 
given by Vab = Q/Ceq, where Q is the net charge on the combination and Ceq is the 
equivalent capacitance. The equivalent capacitance is Ceq = C1 + C2 = 4.0 × 10–6 F. The 
total charge on the combination is the net charge on either pair of connected plates. The 
charge on capacitor 1 is 
 

( )( )6 4
1 1 1.0 10 F 100V 1.0 10 Cq C V − −= = × = ×  

 
and the charge on capacitor 2 is 
 

q C V2 2
6 430 10 100 30 10= = × = ×− −. .F V C,c hb g  

 
so the net charge on the combination is 3.0 × 10–4 C – 1.0 × 10–4 C = 2.0 × 10–4 C. The 
potential difference is 

Vab =
×
×

=
−

−

2 0 10
4 0 10

50
4

6

.

.
C
F

V. 

 
(b) The charge on capacitor 1 is now q1 = C1Vab = (1.0 × 10–6 F)(50 V) = 5.0 × 10–5 C. 
 
(c) The charge on capacitor 2 is now q2 = C2Vab = (3.0 × 10–6 F)(50 V) = 1.5 × 10–4 C. 
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22. We do not employ energy conservation since, in reaching equilibrium, some energy is 
dissipated either as heat or radio waves. Charge is conserved; therefore, if Q = C1Vbat = 
100 μC, and q1, q2 and q3 are the charges on C1, C2 and C3 after the switch is thrown to 
the right and equilibrium is reached, then 
 

Q = q1 + q2 + q3. 
 
Since the parallel pair C2 and C3 are identical, it is clear that q2 = q3.  They are in parallel 
with C1 so that V1=V3, or 

 31

1 3

qq
C C

=  

 
which leads to q1 =  q3/2.  Therefore, 
 
 3 3 3 3( / 2) 5 / 2Q q q q q= + + =  
 
which yields q3 = 2 / 5 2(100 C) / 5 40 CQ μ μ= =  and consequently q1 = q3/2 = 20 μC. 
 
23. We note that the total equivalent capacitance is C123 = [(C3)−1 + (C1 + C2)−1]−1 = 6 μF.   
 
(a) Thus, the charge that passed point a is C123 Vbatt = (6 μF)(12 V) = 72 μC.  Dividing this 
by the value e = 1.60 × 10−19 C gives the number of electrons: 4.5 × 1014, which travel to 
the left, toward the positive terminal of the battery.   
 
(b) The equivalent capacitance of the parallel pair is C12 = C1 + C2 = 12 μF.  Thus, the 
voltage across the pair (which is the same as the voltage across C1 and C2 individually) is 
 

72 μC
12 μF  = 6 V. 

 
Thus, the charge on C1 is 1q = (4 μF)(6 V) = 24 μC, and dividing this by e gives 

14
1 1 / 1.5 10N q e= = × , the number of electrons that have passed (upward) through point b.  

 
(c) Similarly, the charge on C2 is 2q =  (8 μF)(6 V) = 48 μC, and dividing this by e gives 

14
2 2 / 3.0 10N q e= = × , the number of electrons which have passed (upward) through 

point c. 
 
(d) Finally, since C3 is in series with the battery, its charge is the same charge that passed 
through the battery (the same as passed through the switch).  Thus, 4.5 × 1014 electrons 
passed rightward though point d.  By leaving the rightmost plate of C3, that plate is then 
the positive plate of the fully charged capacitor, making its leftmost plate (the one closest 
to the negative terminal of the battery) the negative plate, as it should be.  
 
(e) As stated in (b), the electrons travel up through point b. 
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(f) As stated in (c), the electrons travel up through point c. 
 
24. Using Equation 25-14, the capacitances are   
 

12 2 2
0 1

1
1 1

12 2 2
0 2

2
2 2

2 2 (8.85 10 C /N m )(0.050 m) 2.53 pF
ln( / ) ln(15 mm/5.0 mm)

2 2 (8.85 10 C /N m )(0.090 m) 3.61 pF .
ln( / ) ln(10 mm/2.5 mm)

LC
b a

LC
b a

πε π

πε π

−

−

× ⋅
= = =

× ⋅
= = =

 

 
Initially, the total equivalent capacitance is  
 

1 2 1 2
12

12 1 2 1 2 1 2

1 1 1 (2.53 pF)(3.61 pF) 1.49 pF
2.53 pF 3.61 pF

C C C CC
C C C C C C C

+
= + = ⇒ = = =

+ +
, 

 
and the charge on the positive plate of each one is (1.49 pF)(10 V) = 14.9 pC.  Next, 
capacitor 2 is modified as described in the problem, with the effect that  
 

 
12 2 2

0 2
2

2 2

2 2 (8.85 10 C /N m )(0.090 m) 2.17 pF .
ln( / ) ln(25 mm/2.5 mm)

LC
b a
πε π −× ⋅′ = = =

′
 

 
The new total equivalent capacitance is  
 

1 2
12

1 2

(2.53 pF)(2.17 pF) 1.17 pF
2.53 pF 2.17 pF

C CC
C C

′
′ = = =

′+ +
 

 
and the new charge on the positive plate of each one is (1.17 pF)(10 V) = 11.7 pC.  Thus 
we see that the charge transferred from the battery (considered in absolute value) as a 
result of the modification is 14.9 pC – 11.7 pC = 3.2 pC.  
 
(a) This charge, divided by e gives the number of electrons that pass point P.  Thus,  
 

 
12

7
19

3.2 10 C 2.0 10
1.6 10 C

N
−

−

×
= = ×

×
. 

 
(b) These electrons move rightward in the figure (that is, away from the battery) since the 
positive plates (the ones closest to point P) of the capacitors have suffered a decrease in 
their positive charges. The usual reason for a metal plate to be positive is that it has more 
protons than electrons.  Thus, in this problem some electrons have “returned” to the 
positive plates (making them less positive).  
 
25. Equation 23-14 applies to each of these capacitors.  Bearing in mind that σ = q/A, we 
find the total charge to be 
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qtotal  = q1 + q2 = σ 1 A1 + σ 2 A2 = εo E1 A1  + εo E2 A2 = 3.6 pC 

 
where we have been careful to convert cm2 to m2 by dividing by 104. 
 
26. Initially the capacitors C1, C2, and C3 form a combination equivalent to a single 
capacitor which we denote C123. This obeys the equation 
 

 1 2 3

123 1 2 3 1 2 3

1 1 1
( )

C C C
C C C C C C C

+ +
= + =

+ +
 . 

 
Hence, using q = C123V and the fact that q = q1 = C1 V1 , we arrive at 
 

 123 2 31
1

1 1 1 1 2 3

C C Cq qV V V
C C C C C C

+
= = = =

+ +
 . 

 
(a) As C3 → ∞ this expression becomes V1 = V.  Since the problem states that V1 
approaches 10 volts in this limit, so we conclude V = 10 V. 
 
(b) and (c)   At C3 = 0, the graph indicates V1 = 2.0 V. The above expression consequently 
implies C1 = 4C2.  Next we note that the graph shows that, at C3 = 6.0 μF, the voltage 
across C1 is exactly half of the battery voltage.  Thus, 
 

1
2  = 

C2 + 6.0 μF
 C1 + C2 + 6.0 μF =  

C2 + 6.0 μF
 4C2 + C2 + 6.0 μF  

 
which leads to C2 = 2.0 μF.  We conclude, too, that C1  = 8.0 μF.  
 
27. (a) In this situation, capacitors 1 and 3 are in series, which means their charges are 
necessarily the same: 
 

( ) ( ) ( )1 3
1 3

1 3

1.00 F 3.00 F 12.0V
9.00 C.

1.00 F+3.00 F
C C Vq q
C C

μ μ
μ

μ μ
= = = =

+
 

 
(b) Capacitors 2 and 4 are also in series: 
 

( ) ( ) ( )2 4
2 4

2 4

2.00 F 4.00 F 12.0V
16.0 C.

2.00 F 4.00 F
C C Vq q
C C

μ μ
μ

μ μ
= = = =

+ +
 

 
(c) 3 1 9.00 C.q q μ= =  
 
(d) 4 2 16.0 C.q q μ= =  
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(e) With switch 2 also closed, the potential difference V1 across C1 must equal the 
potential difference across C2 and is 
 

( )( )3 4
1

1 2 3 4

3.00 F 4.00 F 12.0V
8.40 V.

1.00 F 2.00 F 3.00 F 4.00 F
C CV V

C C C C
μ μ

μ μ μ μ
++

= = =
+ + + + + +

 

 
Thus, q1 = C1V1 = (1.00 μF)(8.40 V) = 8.40 μC.  
 
(f) Similarly, q2 = C2V1 = (2.00 μF)(8.40 V) = 16.8 μC. 
 
(g) q3 = C3(V – V1) = (3.00 μF)(12.0 V – 8.40 V) = 10.8 μC. 
 
(h) q4 = C4(V – V1) = (4.00 μF)(12.0 V – 8.40 V) = 14.4 μC. 
 
28. The charges on capacitors 2 and 3 are the same, so these capacitors may be replaced 
by an equivalent capacitance determined from 
 

1 1 1

2 3

2 3

2 3C C C
C C
C Ceq

= + =
+ .  

 
Thus, Ceq = C2C3/(C2 + C3). The charge on the equivalent capacitor is the same as the 
charge on either of the two capacitors in the combination, and the potential difference 
across the equivalent capacitor is given by q2/Ceq. The potential difference across 
capacitor 1 is q1/C1, where q1 is the charge on this capacitor. The potential difference 
across the combination of capacitors 2 and 3 must be the same as the potential difference 
across capacitor 1, so q1/C1 = q2/Ceq. Now some of the charge originally on capacitor 1 
flows to the combination of 2 and 3. If q0 is the original charge, conservation of charge 
yields q1 + q2 = q0 = C1 V0, where V0 is the original potential difference across capacitor 1.  
 
(a) Solving the two equations 

1 2

1 eq

1 2 1 0

q q
C C

q q C V

=

+ =
 

for q1 and q2, we obtain 
 

( )22 2
1 2 3 01 0 1 0

1
2 3eq 1 1 2 1 3 2 3

1
2 3

.
C C C VC V C Vq C CC C C C C C C CC

C C

+
= = =

+ + ++
+

 

 
With V0 = 12.0 V, C1= 4.00 μF, C2= 6.00 μF and C3 =3.00 μF, we find Ceq = 2.00 μF and 
q1 = 32.0 μC. 
 
(b) The charge on capacitors 2 is 
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2 1 0 1 (4.00 F)(12.0 V) 32.0 C 16.0 Cq C V q μ μ μ= − = − = . 

 
(c) The charge on capacitor 3 is the same as that on capacitor 2: 
 

3 1 0 1 (4.00 F)(12.0 V) 32.0 C 16.0 Cq C V q μ μ μ= − = − = . 
 
29. The energy stored by a capacitor is given by U CV= 1

2
2 , where V is the potential 

difference across its plates. We convert the given value of the energy to Joules. Since 
1 J 1 W s,= ⋅  we multiply by (103 W/kW)(3600 s/h) to obtain 710 kW h 3.6 10  J⋅ = × . Thus, 
 

C U
V

= =
×

=
2 2 3 6 10

1000
722

7

2

. J

V
F.

c h
b g  

 
30. Let V = 1.00 m3. Using Eq. 25-25, the energy stored is 
 

( ) ( )
2

22 12 3 8
0 2

1 1 C8.85 10 150 V m 1.00m 9.96 10 J.
2 2 N m

U u Eε − −⎛ ⎞
= = = × = ×⎜ ⎟⋅⎝ ⎠
V V  

 
31. The total energy is the sum of the energies stored in the individual capacitors. Since 
they are connected in parallel, the potential difference V across the capacitors is the same 
and the total energy is  
 

( ) ( )( )22 6 6
1 2

1 1 2.0 10 F 4.0 10 F 300V 0.27 J.
2 2

U C C V − −= + = × + × =  

 
32. (a) The capacitance is 
 

( )( )12 2 2 4 2
110

3

8.85 10 C /N m 40 10 m
3.5 10 F 35pF.

1.0 10 m
AC

d
ε

− −
−

−

× ⋅ ×
= = = × =

×
 

 
(b) q = CV = (35 pF)(600 V) = 2.1 × 10–8 C = 21 nC. 
 
(c) U CV= = = × −1

2
2 1

2
2 635 21 6 3 10pF nC J = 6.3 J.b gb g . μ  

 
(d) E = V/d = 600 V/1.0 × 10–3 m = 6.0 × 105 V/m. 
 
(e) The energy density (energy per unit volume) is 
 

( )( )
6

3
4 2 3

6.3 10 J 1.6 J m .
40 10 m 1.0 10 m

Uu
Ad

−

− −

×
= = =

× ×
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33. We use 2

0/ 4 /E q R V Rπε= = . Thus 
 

2 22
2 12 3

0 0 2

1 1 1 C 8000V8.85 10 0.11 J/m .
2 2 2 N m 0.050 m

Vu E
R

ε ε −⎛ ⎞⎛ ⎞ ⎛ ⎞= = = × =⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
34. (a) The charge q3 in the figure is 4

3 3 (4.00 F)(100 V) 4.00 10 Cq C V μ −= = = × . 
 
(b) V3 = V = 100 V. 
 
(c) Using U CVi i i= 1

2
2 , we have 2 21

3 3 32 2.00 10 JU C V −= = × . 
 
(d) From the figure,  
 

41 2
1 2

1 2

(10.0 F)(5.00 F)(100 V) 3.33 10 C.
10.0 F 5.00 F

C C Vq q
C C

μ μ
μ μ

−= = = = ×
+ +

 

 
(e) V1 = q1/C1 = 3.33 × 10–4 C/10.0 μF = 33.3 V. 
 
(f) 2 31

1 1 12 5.55 10 JU C V −= = × .  
 
(g) From part (d), we have 4

2 1 3.33 10 C.q q −= = ×  
 
(h) V2 = V – V1 = 100 V – 33.3 V = 66.7 V. 
 
(i) 2 21

2 2 22 1.11 10 JU C V −= = × . 
 
35. The energy per unit volume is 
 

u E e
r

e
r

= =
F
HG

I
KJ =

1
2

1
2 4 320

2
0 2

2 2

0
4ε ε

ε επ π0
2 .  

 
(a) At 31.00 10 mr −= × , with 191.60 10 Ce −= ×  and 12 2 2

0 8.85 10  C /N mε −= × ⋅ , we have  
18 39.16 10  J/mu −= × . 

 
(b) Similarly, at 61.00 10 mr −= × , 6 39.16 10  J/mu −= × . 
 
(c) At 91.00 10 mr −= × , 6 39.16 10  J/mu = × . 
 
(d) At 121.00 10 mr −= × , 18 39.16 10  J/mu = × . 
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(e) From the expression above, u ∝ r–4. Thus, for r → 0, the energy density u → ∞. 
 
36. (a) We calculate the charged surface area of the cylindrical volume as follows: 
 

2 2 22 2 m)(0.10 m) m) 0.25 mA rh rπ π π π= + = (0.20 + (0.20 =  
 
where we note from the figure that although the bottom is charged, the top is not. 
Therefore, the charge is q = σA = –0.50 μC on the exterior surface, and consequently 
(according to the assumptions in the problem) that same charge q is induced in the 
interior of the fluid. 
 
(b) By Eq. 25-21, the energy stored is 
 

U q
C

= =
×
×

= ×
−

−
−

2 7

12
3

2
50 10

2 35 10
36 10( .

(
.C)

F)
J.

2

 

 
(c) Our result is within a factor of three of that needed to cause a spark. Our conclusion is 
that it will probably not cause a spark; however, there is not enough of a safety factor to 
be sure. 
 
37. (a) Let q be the charge on the positive plate. Since the capacitance of a parallel-plate 
capacitor is given by 0 iA dε , the charge is 0 i iq CV AV dε= = . After the plates are 
pulled apart, their separation is fd and the potential difference is Vf. Then 

0 2f f
q AV dε=  and 

0

0 0

.f f f
f i i

i i

d d dAV q V V
A A d d

ε
ε ε

= = =  

 
With 33.00 10 mid −= × , 6.00 V,iV = and 38.00 10 mfd −= × , we have 16.0 VfV = . 
 
(b) The initial energy stored in the capacitor is  
 

2 12 2 2 4 2 2
2 110

3

1 (8.85 10 C /N m )(8.50 10  m )(6.00 V) 4.51 10  J.
2 2 2(3.00 10  m)

i
i i

i

AVU CV
d

ε − −
−

−

× ⋅ ×
= = = = ×

×
 

 
(c) The final energy stored is 
 

2 2
20 0 01 1 .

2 2
f f fi

f f i i
f f i i i i

d d dA A AVU V V U
d d d d d d
ε ε ε⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
With / 8.00 / 3.00f id d = , we have 101.20 10  J.fU −= ×  
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(d) The work done to pull the plates apart is the difference in the energy:  
 

W = Uf – Ui = 117.52 10  J.−×  
 
38. (a) The potential difference across C1 (the same as across C2) is given by 
 

( )( )3
1 2

1 2 3

15.0 F 100V
50.0V.

10.0 F 5.00 F 15.0 F
C VV V

C C C
μ

μ μ μ
= = = =

+ + + +
 

 
Also, V3 = V – V1 = V – V2 = 100 V – 50.0 V = 50.0 V. Thus, 
 

( )( )
( )( )

4
1 1 1

4
2 2 2

4 4 4
3 1 2

10.0 F 50.0V 5.00 10 C

5.00 F 50.0V 2.50 10 C

5.00 10 C 2.50 10 C 7.50 10 C.

q C V

q C V

q q q

μ

μ

−

−

− − −

= = = ×

= = = ×

= + = × + × = ×

 

 
(b) The potential difference V3 was found in the course of solving for the charges in part 
(a). Its value is V3 = 50.0 V. 
 
(c) The energy stored in C3 is ( )( )22 2

3 3 3 / 2 15.0 F 50.0V / 2 1.88 10 J.U C V μ −= = = ×  
 
(d) From part (a), we have 4

1 5.00 10 Cq −= × , and 
 
(e) V1 = 50.0 V, as shown in (a). 
 
(f) The energy stored in C1 is 
 

 ( )( )22 2
1 1 1

1 1 10.0 F 50.0V 1.25 10 J.
2 2

U C V μ −= = = ×  

 
(g) Again, from part (a), 4

2 2.50 10 Cq −= × . 
 
(h) V2 = 50.0 V, as shown in (a). 
 

(i) The energy stored in C2 is ( )( )22 3
2 2 2

1 1 5.00 F 50.0V 6.25 10 J.
2 2

U C V μ −= = = ×  

 
39. (a) They each store the same charge, so the maximum voltage is across the smallest 
capacitor. With 100 V across 10 μF, then the voltage across the 20 μF capacitor is 50 V 
and the voltage across the 25 μF capacitor is 40 V. Therefore, the voltage across the 
arrangement is 190 V. 
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(b) Using Eq. 25-21 or Eq. 25-22, we sum the energies on the capacitors and obtain Utotal 
= 0.095 J. 
 
40. If the original capacitance is given by C = ε0A/d, then the new capacitance is 

0' / 2C A dε κ= . Thus C'/C = κ/2 or  
 

κ = 2C'/C = 2(2.6 pF/1.3 pF) = 4.0. 
 
41. The capacitance of a cylindrical capacitor is given by 
 

0
0

2 ,
ln( / )

LC C
b a

πκεκ= =  

 
where C0 is the capacitance without the dielectric, κ is the dielectric constant, L is the 
length, a is the inner radius, and b is the outer radius. The capacitance per unit length of 
the cable is 
 

12
1102 2 F/m) 8.1 10 F/m 81 pF/m.

ln( / ) ln[(0.60 mm)/(0.10 mm)]
C
L b a

πκε π −
−(2.6)(8.85×10

= = = × =  

 
42. (a) We use C = ε0A/d to solve for d: 
 

( )12 2 2 2
20

12

8.85 10 C /N m (0.35 m )
6.2 10 m.

50 10 F
Ad

C
ε

−
−

−

× ⋅
= = = ×

×
 

 
(b) We use C ∝ κ. The new capacitance is  
 

C' = C(κ/κair) = (50 pf)(5.6/1.0) = 2.8×102 pF. 
 
43. The capacitance with the dielectric in place is given by C = κC0, where C0 is the 
capacitance before the dielectric is inserted. The energy stored is given by 
U CV C V= =1

2
2 1

2 0
2κ , so 

6

2 12 2
0

2 2(7.4 10 J) 4.7.
(7.4 10 F)(652 V)

U
C V

κ
−

−

×
= = =

×
 

 
According to Table 25-1, you should use Pyrex. 
 
44. (a) We use Eq. 25-14: 
 

( )2

2
9 N m

C

(4.7)(0.15 m)2 0.73 nF.
ln( / ) 2 8.99 10 ln(3.8 cm/3.6 cm)

LC
b a

πε κ0 ⋅
= = =

×
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(b) The breakdown potential is (14 kV/mm) (3.8 cm – 3.6 cm) = 28 kV. 
 
45. Using Eq. 25-29, with σ = q/A, we have 
 

E q
A

= = ×
κε 0

3200 10 N C  

 
which yields q = 3.3 × 10–7 C. Eq. 25-21 and Eq. 25-27 therefore lead to 
 

U q
C

q d
A

= = = × −
2 2

0

5

2 2
6 6 10

κε
. .J  

 
46. Each capacitor has 12.0 V across it, so Eq. 25-1 yields the charge values once we 
know C1 and C2.  From Eq. 25-9, 
 

C2 = 0 A
d

ε   =  2.21 × 10−11 F  , 

and from Eq. 25-27, 

C1 = 0 A
d

κε   =  6.64 × 10−11 F  . 

 
This leads to  

q1 = C1V1 = 8.00 × 10−10 C,  q2 = C2V2 = 2.66 × 10−10 C. 
 
The addition of these gives the desired result: qtot = 1.06 × 10−9 C.  Alternatively, the 
circuit could be reduced to find the qtot. 
 
47. The capacitance is given by C = κC0 = κε0A/d, where C0 is the capacitance without 
the dielectric, κ is the dielectric constant, A is the plate area, and d is the plate separation. 
The electric field between the plates is given by E = V/d, where V is the potential 
difference between the plates. Thus, d = V/E and C = κε0AE/V. Thus, 
 

A CV
E

=
κε 0

.  

 
For the area to be a minimum, the electric field must be the greatest it can be without 
breakdown occurring. That is, 
 

A =
× ×

× ×
=

−

−

( .
. ( .

. .7 0 10
2 8 885 10

0 63
8

12
2F)(4.0 10 V)

F / m)(18 10 V / m)
m

3

6  
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48. The capacitor can be viewed as two capacitors C1 and C2 in parallel, each with 
surface area A/2 and plate separation d, filled with dielectric materials with dielectric 
constants κ1 and κ2, respectively. Thus, (in SI units), 
 

0 1 0 2 0 1 2
1 2

12 2 2 4 2
12

3

( / 2) ( / 2)
2

(8.85 10 C /N m )(5.56 10  m ) 7.00 12.00 8.41 10  F.
5.56 10  m 2

A A AC C C
d d d

ε κ ε κ ε κ κ

− −
−

−

+⎛ ⎞= + = + = ⎜ ⎟
⎝ ⎠

× ⋅ × +⎛ ⎞= = ×⎜ ⎟× ⎝ ⎠

 

 
49. We assume there is charge q on one plate and charge –q on the other. The electric 
field in the lower half of the region between the plates is 
 

E q
A1

1 0

=
κ ε

,  

 
where A is the plate area. The electric field in the upper half is 
 

E q
A2

2 0

=
κ ε

.  

 
Let d/2 be the thickness of each dielectric. Since the field is uniform in each region, the 
potential difference between the plates is 
 

V E d E d qd
A

qd
A

= + = +
L
NM

O
QP =

+1 2

0 1 2 0

1 2

1 22 2 2
1 1

2ε κ κ ε
κ κ
κ κ

,  

so 

C q
V

A
d

= =
+

2 0 1 2

1 2

ε κ κ
κ κ

.  

 
This expression is exactly the same as that for Ceq of two capacitors in series, one with 
dielectric constant κ1 and the other with dielectric constant κ2. Each has plate area A and 
plate separation d/2. Also we note that if κ1 = κ2, the expression reduces to C = κ1ε0A/d, 
the correct result for a parallel-plate capacitor with plate area A, plate separation d, and 
dielectric constant κ1. 
 
With 4 27.89 10 mA −= × , 34.62 10 md −= × , 1 11.0,κ = and 2 12.0,κ =  the capacitance is 
 

12 2 2 4 2
11

3

2(8.85 10 C /N m )(7.89 10  m ) (11.0)(12.0) 1.73 10 F.
4.62 10  m 11.0 12.0

C
− −

−
−

× ⋅ ×
= = ×

× +
 

 
50. Let  

  C1 = ε0(A/2)κ1/2d = ε0Aκ1/4d,  
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C2 = ε0(A/2)κ2/d = ε0Aκ2/2d,  
                                                 C3 = ε0Aκ3/2d. 
 
Note that C2 and C3 are effectively connected in series, while C1 is effectively connected 
in parallel with the C2-C3 combination. Thus, 
 

( ) ( ) ( )0 2 32 3 0 1 0 2 3
1 1

2 3 2 3 2 3

2 2 2 .
4 2 2 4

A dC C A AC C
C C d d

ε κ κε κ ε κ κκ
κ κ κ κ

⎛ ⎞
= + = + = +⎜ ⎟+ + +⎝ ⎠

 

 
With 3 21.05 10 m ,A −= ×  33.56 10 m,d −= ×  1 21.0,κ = 2 42.0κ = and 3 58.0,κ =  we find the 
capacitance to be 
 

12 2 2 3 2
11

3

(8.85 10 C /N m )(1.05 10  m ) 2(42.0)(58.0)21.0 4.55 10 F.
4(3.56 10  m) 42.0 58.0

C
− −

−
−

× ⋅ × ⎛ ⎞= + = ×⎜ ⎟× +⎝ ⎠
 

 
51. (a) The electric field in the region between the plates is given by E = V/d, where V is 
the potential difference between the plates and d is the plate separation. The capacitance 
is given by C = κε0A/d, where A is the plate area and κ is the dielectric constant, so 

0 /d A Cκε=  and 

E VC
A

= =
×

× ×
= ×

−

− −κε 0

12

12 4 2
4

50 100 10

54 885 10 100 10
10 10

V F

F m m
V m

b gc h
c hc h. .

. .  

 
(b) The free charge on the plates is qf = CV = (100 × 10–12 F)(50 V) = 5.0 × 10–9 C. 
 
(c) The electric field is produced by both the free and induced charge. Since the field of a 
large uniform layer of charge is q/2ε0A, the field between the plates is 
 

E
q

A
q

A
q

A
q

A
f f i i= + − −

2 2 2 20 0 0 0ε ε ε ε
,  

 
where the first term is due to the positive free charge on one plate, the second is due to 
the negative free charge on the other plate, the third is due to the positive induced charge 
on one dielectric surface, and the fourth is due to the negative induced charge on the other 
dielectric surface. Note that the field due to the induced charge is opposite the field due to 
the free charge, so they tend to cancel. The induced charge is therefore 
 

( )( )( )9 12 4 2 4
0

9

5.0 10 C 8.85 10 F m 100 10 m 1.0 10 V m

4.1 10 C 4.1nC.
i fq q AEε − − −

−

= − = × − × × ×

= × =
 

 
52. (a) The electric field E1 in the free space between the two plates is E1 = q/ε0A while 
that inside the slab is E2 = E1/κ = q/κε0A. Thus, 
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V E d b E b q
A

d b b
0 1 2= − + =

F
HG
I
KJ − +F
HG

I
KJb g

ε κ0

,  

and the capacitance is 
 

( )
( )( )( )
( )( ) ( )

12 2 2 4 2
0

0

8.85 10 C /N m 115 10 m 2.61
13.4pF.

2.61 0.0124m 0.00780m 0.00780m
AqC

V d b b
ε κ

κ

− −× ⋅ ×
= = = =

− + − +
 

 
(b) q = CV = (13.4 × 10–12 F)(85.5 V) = 1.15 nC. 
 
(c) The magnitude of the electric field in the gap is 
 

( )( )
9

4
1 12 2 2 4 2

0

1.15 10 C 1.13 10 N C.
8.85 10 C /N m 115 10 m

qE
Aε

−

− −

×
= = = ×

× ⋅ ×
 

 
(d) Using Eq. 25-34, we obtain 
 

E E
2

1
4

3113 10
2 61

4 33 10= =
×

= ×
κ

.
.

. .N C N C  

 
53. (a) Initially, the capacitance is 
 

( )12 2 2 2
0

0 2

8.85 10 C /N m (0.12 m )
89 pF.

1.2 10 m
AC

d
ε

−

−

× ⋅
= = =

×
 

 
(b) Working through Sample Problem — “Dielectric partially filling the gap in a 
capacitor” algebraically, we find: 
 

( )12 2 2 2
20

2 3

8.85 10 C /N m (0.12m )(4.8)
1.2 10 pF.

( ) (4.8)(1.2 0.40)(10 m) (4.0 10 m)
AC

d b b
ε κ

κ

−

− −

× ⋅
= = = ×

− + − + ×
 

 
(c) Before the insertion, q = C0V (89 pF)(120 V) = 11 nC.  
 
(d) Since the battery is disconnected, q will remain the same after the insertion of the slab, 
with q = 11 nC. 
 
(e) 9 12 2 2 2

0/ 11 10 C/(8.85 10 C /N m )(0.12 m ) 10 kV/m.E q Aε − −= = × × ⋅ =  
 
(f) E' = E/κ = (10 kV/m)/4.8 = 2.1 kV/m. 
 
(g) The potential difference across the plates is  
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V = E(d – b) + E'b = (10 kV/m)(0.012 m – 0.0040 m)+ (2.1 kV/m)(0.40 × 10–3 m) = 88 V. 
 
(h) The work done is 
 

2 9 2
7

ext 12 12
0

1 1 (11 10 C) 1 1 1.7 10 J.
2 2 89 10 F 120 10 F
qW U

C C

−
−

− −

⎛ ⎞ ⎛ ⎞×
= Δ = − = − = − ×⎜ ⎟ ⎜ ⎟× ×⎝ ⎠⎝ ⎠

 

 
54. (a) We apply Gauss’s law with dielectric: q/ε0 = κEA, and solve for κ: 
 

( )( )( )
7

12 2 2 6 4 2
0

8.9 10 C 7.2.
8.85 10 C /N m 1.4 10 V m 100 10 m

q
EA

κ
ε

−

− − −

×
= = =

× ⋅ × ×
 

 

(b) The charge induced is ′ = −FHG
I
KJ = × −FHG

I
KJ = ×− −q q 1 1 8 9 10 1 1

7 2
7 7 107 7

κ
.

.
.C C.c h  

 
55. (a) According to Eq. 25-17 the capacitance of an air-filled spherical capacitor is given 
by  

0 04 .abC
b a

πε ⎛ ⎞= ⎜ ⎟−⎝ ⎠
 

 
When the dielectric is inserted between the plates the capacitance is greater by a factor of 
the dielectric constant κ. Consequently, the new capacitance is 
 

0 9 2 2

23.5 (0.0120 m)(0.0170 m)4 0.107 nF.
8.99 10 N m C 0.0170 m 0.0120 m

abC
b a

πκε ⎛ ⎞= = ⋅ =⎜ ⎟− × ⋅ −⎝ ⎠
 

 
(b) The charge on the positive plate is (0.107 nF)(73.0 V) 7.79 nC.q CV= = =  
 
(c) Let the charge on the inner conductor be –q. Immediately adjacent to it is the induced 
charge q'. Since the electric field is less by a factor 1/κ than the field when no dielectric is 
present, then – q + q' = – q/κ. Thus, 
 

( ) 0
1 23.5 1.004 1 (7.79 nC) 7.45 nC.

23.5
abq q V

b a
κ π κ ε

κ
− −⎛ ⎞′ = = − = =⎜ ⎟− ⎝ ⎠

 

 
56. (a)  The potential across C1 is 10 V, so the charge on it is 
 

q1 = C1V1 = (10.0 μF)(10.0 V) = 100 μC. 
 

(b) Reducing the right portion of the circuit produces an equivalence equal to 6.00 μF, 
with 10.0 V across it.  Thus, a charge of 60.0 μC is on it, and consequently also on the 
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bottom right capacitor.  The bottom right capacitor has, as a result, a potential across it 
equal to 

V  = 
q
C = 60 C

10 F
μ
μ

 = 6.00 V 

 
which leaves 10.0 V − 6.00 V = 4.00 V across the group of capacitors in the upper right 
portion of the circuit.  Inspection of the arrangement (and capacitance values) of that 
group reveals that this 4.00 V must be equally divided by C2 and the capacitor directly 
below it (in series with it).  Therefore, with 2.00 V across C2 we find 
 

q2 = C2V2 = (10.0 μF)(2.00 V) = 20.0 μC. 
 
57. The pair C3 and C4 are in parallel and consequently equivalent to 30 μF.  Since this 
numerical value is identical to that of the others (with which it is in series, with the 
battery), we observe that each has one-third the battery voltage across it.  Hence, 3.0 V is 
across C4, producing a charge 
 

q4  = C4V4  = (15 μF)(3.0 V) = 45 μC. 
 
58. (a) Here D is not attached to anything, so that the 6C and 4C capacitors are in series 
(equivalent to 2.4C). This is then in parallel with the 2C capacitor, which produces an 
equivalence of 4.4C. Finally the 4.4C is in series with C and we obtain 
 

( )( )
eq

4.4
0.82 0.82(50 F) 41 F

4.4
C C

C C
C C

μ μ= = = =
+

 

 
where we have used the fact that C = 50 μF. 
 
(b) Now, B is the point that is not attached to anything, so that the 6C and 2C capacitors 
are now in series (equivalent to 1.5C), which is then in parallel with the 4C capacitor (and 
thus equivalent to 5.5C). The 5.5C is then in series with the C capacitor; consequently, 
 

C
C C
C C

Ceq F=
+

= =
b gb g55

55
085 42

.
.

. .μ  

 
59. The pair C1 and C2 are in parallel, as are the pair C3 and C4; they reduce to equivalent 
values 6.0 μF and 3.0 μF, respectively.  These are now in series and reduce to 2.0 μF, 
across which we have the battery voltage. Consequently, the charge on the 2.0 μF 
equivalence is (2.0 μF)(12 V) = 24 μC.  This charge on the 3.0 μF equivalence (of C3 and 
C4) has a voltage of 

V = 
q
C = 24 C

3 F
μ
μ

 = 8.0 V. 

 
Finally, this voltage on capacitor C4 produces a charge (2.0 μF)(8.0 V) = 16 μC. 
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60. (a) Equation 25-22 yields 
 

U CV= = × × = ×− −1
2

1
2

200 10 7 0 10 4 9 102 12 3 2 3F V Jc hc h. . .  

 
(b) Our result from part (a) is much less than the required 150 mJ, so such a spark should 
not have set off an explosion. 
 
61. Initially the capacitors C1, C2, and C3 form a series combination equivalent to a single 
capacitor, which we denote C123. Solving the equation 
 

1 2 2 3 1 3

123 1 2 3 1 2 3

1 1 1 1 C C C C C C
C C C C C C C

+ +
= + + = , 

 
we obtain C123 = 2.40 μF.  With V = 12.0 V, we then obtain q = C123V = 28.8 μC.  In the 
final situation, C2 and C4 are in parallel and are thus effectively equivalent to 

24 12.0 FC μ= .  Similar to the previous computation, we use   
 

1 24 24 3 1 3

1234 1 24 3 1 24 3

1 1 1 1 C C C C C C
C C C C C C C

+ +
= + + =  

 
and find C1234 = 3.00 μF.  Therefore, the final charge is q = C1234V = 36.0 μC.   
 
(a) This represents a change (relative to the initial charge) of Δq = 7.20 μC. 
 
(b) The capacitor C24 which we imagined to replace the parallel pair C2 and C4, is in series 
with C1 and C3 and thus also has the final charge q =36.0 μC found above.  The voltage 
across C24 would be  

 24
24

36.0 C 3.00 V
12.0 F

qV
C

μ
μ

= = = . 

 
This is the same voltage across each of the parallel pairs. In particular, V4 = 3.00 V 
implies that q4 = C4 V4 = 18.0 μC.  
 
(c) The battery supplies charges only to the plates where it is connected. The charges on 
the rest of the plates are due to electron transfers between them, in accord with the new 
distribution of voltages across the capacitors. So, the battery does not directly supply the 
charge on capacitor 4. 
 
62. In series, their equivalent capacitance (and thus their total energy stored) is smaller 
than either one individually (by Eq. 25-20).  In parallel, their equivalent capacitance (and 
thus their total energy stored) is larger than either one individually (by Eq. 25-19).  Thus, 
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the middle two values quoted in the problem must correspond to the individual capacitors.  
We use Eq. 25-22 and find 
 
(a) 100 μJ  = 12 C1 (10 V)2   ⇒  C1  = 2.0 μF; 
 
(b) 300 μJ  = 12 C2 (10 V)2   ⇒  C2  = 6.0 μF. 
 
63. Initially, the total equivalent capacitance is C12 = [(C1)−1 + (C2) −1]−1 = 3.0 μF, and the 
charge on the positive plate of each one is (3.0 μF)(10 V) = 30 μC.  Next, the capacitor 
(call is C1) is squeezed as described in the problem, with the effect that the new value of 
C1 is 12 μF (see Eq. 25-9). The new total equivalent capacitance then becomes  
 

C12 = [(C1) −1 + (C2) −1]−1 = 4.0 μF, 
 
and the new charge on the positive plate of each one is (4.0 μF)(10 V) = 40 μC. 
 
(a) Thus we see that the charge transferred from the battery as a result of the squeezing is 
40 μC − 30 μC = 10 μC. 
 
(b) The total increase in positive charge (on the respective positive plates) stored on the 
capacitors is twice the value found in part (a) (since we are dealing with two capacitors in 
series): 20 μC.  
 
64. (a) We reduce the parallel group C2, C3 and C4, and the parallel pair C5 and C6, 
obtaining equivalent values C' = 12 μF and C'' = 12 μF, respectively. We then reduce the 
series group C1, C' and C'' to obtain an equivalent capacitance of Ceq = 3 μF hooked to 
the battery. Thus, the charge stored in the system is qsys = CeqVbat = 36 μC. 

 
(b) Since qsys = q1, then the voltage across C1 is 
 

V1 =  
q1
C1

 = 36 C
6.0 F

μ
μ

 =  6.0 V. 

 
The voltage across the series-pair C' and C'' is consequently Vbat − V1 = 6.0 V.  Since C' = 
C'', we infer V' = V'' = 6.0/2 = 3.0 V, which, in turn, is equal to V4, the potential across 
C4.  Therefore, 

q4 = C4V4 = (4.0 μF)(3.0 V) = 12 μC. 
 
65. We may think of this as two capacitors in series C1 and C2, the former with the 

1 3.00κ =  material and the latter with the κ2 = 4.00 material.  Upon using Eq. 25-9, Eq. 
25-27, and then reducing C1 and C2 to an equivalent capacitance (connected directly to 
the battery) with Eq. 25-20, we obtain 
 



     CHAPTER 25 1034 
        

Ceq  =  01 2

1 2

A
d

εκ κ
κ κ

⎛ ⎞
⎜ ⎟+⎝ ⎠

 =  1.52 × 10−10 F. 

 
Therefore, q = CeqV = 1.06 × 10−9 C. 
 
66. We first need to find an expression for the energy stored in a cylinder of radius R and 
length L, whose surface lies between the inner and outer cylinders of the capacitor (a < R 
< b). The energy density at any point is given by u E= 1

2 0
2ε , where E is the magnitude of 

the electric field at that point. If q is the charge on the surface of the inner cylinder, then 
the magnitude of the electric field at a point a distance r from the cylinder axis is given 
by (see Eq. 25-12) 

02
qE

Lrπε
= , 

 
and the energy density at that point is 

2
2

0 2 2 2
0

1 .
2 8

qu E
L r

ε
π ε

= =  

 
The corresponding energy in the cylinder is the volume integral .RU ud= ∫ V  Now, 

2d rLdr= πV , so 
2 2 2

2 2 2
0 0 0

2 ln .
8 4 4

R R

R a a

q q dr q RU rLdr
L r L r L a

π
π ε πε π

⎛ ⎞= = = ⎜ ⎟ε ⎝ ⎠∫ ∫  

 
To find an expression for the total energy stored in the capacitor, we replace R with b: 
 

2

0

ln .
4b

q bU
L aπε

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
We want the ratio UR/Ub to be 1/2, so 

ln lnR
a

b
a

=
1
2

 

 
or, since 1

2 ln / ln / , ln / ln /b a b a R a b ab g d i b g d i= = . This means / /R a b a= or 

R ab= . 
 

67. (a) The equivalent capacitance is C C C
C Ceq

F F
F F

F=
+

=
+

=1 2

1 2

6 00 4 00
6 00 4 00

2 40
. .
. .

. .
μ μ
μ μ

μ
b gb g  

 
(b) q1 = CeqV = (2.40 μF)(200 V) = 4.80 × 10−4 C. 
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(c) V1 = q1/C1 = 4.80 × 10−4 C/6.00 μF = 80.0 V. 
 
(d) q2 = q1 = 4.80 × 10−4 C. 
 
(e) V2 = V – V1 = 200 V – 80.0 V = 120 V. 
 
68. (a) Now Ceq = C1 + C2 = 6.00 μF + 4.00 μF = 10.0 μF. 
 
(b) q1 = C1V = (6.00 μF)(200 V) = 1.20 × 10–3 C. 
 
(c) V1 = 200 V. 
 
(d) q2 = C2V = (4.00 μF)(200 V) = 8.00 × 10–4 C. 
 
(e) V2 = V1 = 200 V. 
 
69. We use U CV= 1

2
2 . As V is increased by ΔV, the energy stored in the capacitor 

increases correspondingly from U to U + ΔU: U U C V V+ = +Δ Δ1
2

2( ) . Thus,  
(1 + ΔV/V)2 = 1 + ΔU/U, or 
 

Δ ΔV
V

U
U

= + − = + − =1 1 1 10% 1 4 9%. .  

 
70. (a) The length d is effectively shortened by b so C' = ε0A/(d – b) = 0.708 pF. 
  
(b) The energy before, divided by the energy after inserting the slab is 
 

2
0

2
0

/( )/ 2 5.00 1.67.
/ 2 / 5.00 2.00

A d bU q C C d
U q C C A d d b

ε
ε

′ −
= = = = = =

′ ′ − −
 

 
(c) The work done is 
 

2 2 2

0 0

1 1 ( ) 5.44 J.
2 2 2
q q q bW U U U d b d

C C A Aε ε
⎛ ⎞′= Δ = − = − = − − = − = −⎜ ⎟′⎝ ⎠

 

 
(d) Since W < 0, the slab is sucked in. 
 
71. (a) C' = ε0A/(d – b) = 0.708 pF, the same as part (a) in Problem 25-70. 
 
(b) The ratio of the stored energy is now 
 

21
02

21
02

/ 5.00 2.00 0.600.
/( ) 5.00

CV A dU C d b
U C V C A d b d

ε
ε

− −
= = = = = =

′ ′ ′ −
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(c) The work done is 
 

2
2 2 90 01 1 1( ) 1.02 10 J.

2 2 2 ( )
A AbVW U U U C C V V

d b d d d b
ε ε −⎛ ⎞′ ′= Δ = − = − = − = = ×⎜ ⎟− −⎝ ⎠

 

 
(d) In Problem 25-70 where the capacitor is disconnected from the battery and the slab is 
sucked in, F is certainly given by −dU/dx. However, that relation does not hold when the 
battery is left attached because the force on the slab is not conservative. The charge 
distribution in the slab causes the slab to be sucked into the gap by the charge distribution 
on the plates. This action causes an increase in the potential energy stored by the battery 
in the capacitor. 
 
72. (a) The equivalent capacitance is Ceq = C1C2/(C1 + C2). Thus the charge q on each 
capacitor is 
 

41 2
1 2 eq

1 2

(2.00 F)(8.00 F)(300V) 4.80 10 C.
2.00 F 8.00 F

C C Vq q q C V
C C

μ μ
μ μ

−= = = = = = ×
+ +

 

 
(b) The potential difference is V1 = q/C1 = 4.80 × 10–4 C/2.0 μF = 240 V. 
 
(c) As noted in part (a), 4

2 1 4.80 10 C.q q −= = ×  
 
(d) V2 = V – V1 = 300 V – 240 V = 60.0 V. 
 
Now we have q'1/C1 = q'2/C2 = V' (V' being the new potential difference across each 
capacitor) and q'1 + q'2 = 2q. We solve for q'1, q'2 and V: 
 

(e) 
4

41
1

1 2

2 2(2.00 F)(4.80 10 ) 1.92 10 C.
2.00 F 8.00 F

C q Cq
C C

μ
μ μ

−
−×′ = = = ×

+ +
 

 

(f) 
4

1
1

1

1.92 10 96.0V.
2.00 F

q CV
C μ

−′ ×′= = =  

 
(g) 4

2 12 7.68 10 .q q q C−′ = − = ×  
 
(h) 2 1 96.0 V.V V′ ′= =  
 
(i) In this circumstance, the capacitors will simply discharge themselves, leaving q1 =0, 
 
(j) V1 = 0,  
 
(k) q2 = 0, 
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(l) and V2 = V1 = 0. 
 
73. The voltage across capacitor 1 is 
 

V q
C1

1

1

30
10

30= = =
μ
μ

C
F

V. .  

 
Since V1 = V2, the total charge on capacitor 2 is 
 

q C V2 2 2 20 2 60= = =μ μF V Cb gb g ,  
 
which means a total of 90 μC of charge is on the pair of capacitors C1 and C2. This 
implies there is a total of 90 μC of charge also on the C3 and C4 pair. Since C3 = C4, the 
charge divides equally between them, so q3 = q4 = 45 μC. Thus, the voltage across 
capacitor 3 is 

V q
C3

3

3

45
20

2 3= = =
μ
μ
C
F

V. .  

 
Therefore, |VA – VB| = V1 + V3 = 5.3 V. 
 
74. We use C = ε0κA/d ∝ κ/d. To maximize C we need to choose the material with the 
greatest value of κ/d. It follows that the mica sheet should be chosen. 
 
75. We cannot expect simple energy conservation to hold since energy is presumably 
dissipated either as heat in the hookup wires or as radio waves while the charge oscillates 
in the course of the system “settling down” to its final state (of having 40 V across the 
parallel pair of capacitors C and 60 μF). We do expect charge to be conserved. Thus,  if 
Q is the charge originally stored on C and q1, q2 are the charges on the parallel pair after 
“settling down,” then 
 

( ) ( ) ( )( )1 2 100 V 40 V 60 F 40 VQ q q C C μ= + ⇒ = +  
 
which leads to the solution C = 40 μF. 
 
76. One way to approach this is to note that since they are identical, the voltage is evenly 
divided between them.  That is, the voltage across each capacitor is V = (10/n) volt.  With 
C = 2.0 × 10−6 F, the electric energy stored by each capacitor is 12 CV2.  The total energy 
stored by the capacitors is n times that value, and the problem requires the total be equal 
to 25 × 10−6 J.  Thus, 

n
2 (2.0 × 10−6) ⎝⎜

⎛
⎠⎟
⎞10

n

2
 = 25 × 10−6, 

which leads to n = 4. 
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77. (a) Since the field is constant and the capacitors are in parallel (each with 600 V 
across them) with identical distances (d = 0.00300 m) between the plates, then the field in 
A is equal to the field in B: 

E V
d

= = ×2 00 105. .V m  

 
(b) 5| | 2.00 10 V m .E = × See the note in part (a). 
 
(c) For the air-filled capacitor, Eq. 25-4 leads to 
 

σ ε= = = × −q
A

E0
6 2177 10. .C m  

 
(d) For the dielectric-filled capacitor, we use Eq. 25-29: 
 

σ κε= = × −
0

6 24 60 10E . .C m  
 
(e) Although the discussion in the textbook (Section 25-8) is in terms of the charge being 
held fixed (while a dielectric is inserted), it is readily adapted to this situation (where 
comparison is made of two capacitors that have the same voltage and are identical except 
for the fact that one has a dielectric). The fact that capacitor B has a relatively large 
charge but only produces the field that A produces (with its smaller charge) is in line with 
the point being made (in the text) with Eq. 25-34 and in the material that follows. 
Adapting Eq. 25-35 to this problem, we see that the difference in charge densities 
between parts (c) and (d) is due, in part, to the (negative) layer of charge at the top 
surface of the dielectric; consequently, 
 

′ = × − × = − ×− − −σ 177 10 4 60 10 2 83 106 6 6. . . .c h c h C m2  
 
78. (a) Put five such capacitors in series. Then, the equivalent capacitance is 2.0 μF/5 = 
0.40 μF. With each capacitor taking a 200-V potential difference, the equivalent capacitor 
can withstand 1000 V. 
 
(b) As one possibility, you can take three identical arrays of capacitors, each array being a 
five-capacitor combination described in part (a) above, and hook up the arrays in parallel. 
The equivalent capacitance is now Ceq = 3(0.40 μF) = 1.2 μF. With each capacitor taking 
a 200-V potential difference, the equivalent capacitor can withstand 1000 V. 
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Chapter 26 
 
 
1. (a) The charge that passes through any cross section is the product of the current and 
time. Since t = 4.0 min = (4.0 min)(60 s/min) = 240 s,  
 

q = it = (5.0 A)(240 s) = 1.2× 103 C. 
 
(b) The number of electrons N is given by q = Ne, where e is the magnitude of the charge 
on an electron. Thus, 
 

N = q/e = (1200 C)/(1.60 × 10–19 C) = 7.5 × 1021. 
 
2. Suppose the charge on the sphere increases by Δq in time Δt. Then, in that time its 
potential increases by 

0

,
4

qV
rπε

Δ
Δ =  

 
where r is the radius of the sphere. This means 04 .q r VπεΔ = Δ  Now, Δq = (iin – iout) Δt, 
where iin is the current entering the sphere and iout is the current leaving. Thus, 
 

( )( )
( )( )

0
9

in out in out

3

0.10 m 1000 V4
8.99 10 F/m 1.0000020 A 1.0000000 A

5.6 10 s.

r Vqt
i i i i

πε

−

ΔΔ
Δ = = =

− − × −

= ×

 

 
3. We adapt the discussion in the text to a moving two-dimensional collection of charges. 
Using σ for the charge per unit area and w for the belt width, we can see that the transport 
of charge is expressed in the relationship i = σvw, which leads to 
 

σ = =
×

×
= ×

−

−
−i

vw
100 10

30 50 10
6 7 10

6

2
6A

m s m
C m2

b gc h . .  

 
4. We express the magnitude of the current density vector in SI units by converting the 
diameter values in mils to inches (by dividing by 1000) and then converting to meters (by 
multiplying by 0.0254) and finally using 
 

2 2

4 .i i iJ
A R Dπ π

= = =  
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For example, the gauge 14 wire with D = 64 mil = 0.0016 m is found to have a 
(maximum safe) current density of J = 7.2 × 106 A/m2. In fact, this is the wire with the 
largest value of J allowed by the given data. The values of J in SI units are plotted below 
as a function of their diameters in mils. 
 

 
 
5. (a) The magnitude of the current density is given by J = nqvd, where n is the number of 
particles per unit volume, q is the charge on each particle, and vd is the drift speed of the 
particles. The particle concentration is n = 2.0 × 108/cm3 = 2.0 × 1014 m–3, the charge is  
 

q = 2e = 2(1.60 × 10–19 C) = 3.20 × 10–19 C, 
 
and the drift speed is 1.0 × 105 m/s. Thus, 
 

J = × × × =−2 10 32 10 10 10 6 414 19 5/ . . . .m C m / s A / m2c hc hc h  
 
(b) Since the particles are positively charged the current density is in the same direction 
as their motion, to the north. 
 
(c) The current cannot be calculated unless the cross-sectional area of the beam is known. 
Then i = JA can be used. 
 
6. (a) Circular area depends, of course, on r2, so the horizontal axis of the graph in Fig. 
26-23(b) is effectively the same as the area (enclosed at variable radius values), except 
for a factor of π.  The fact that the current increases linearly in the graph means that i/A = 
J = constant.   Thus, the answer is “yes, the current density is uniform.” 
 
(b) We find  i/(πr2) = (0.005 A)/(π × 4 × 10−6 m2) = 398 ≈ 4.0 × 102 A/m2. 
 
7. The cross-sectional area of wire is given by A = πr2, where r is its radius (half its 
thickness). The magnitude of the current density vector is  
 

2/ / ,J i A i rπ= =  
so 
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( )
4

4 2

0.50 A 1.9 10 m.
440 10 A/m

ir
Jπ π

−= = = ×
×

 

 
The diameter of the wire is therefore d = 2r = 2(1.9 × 10–4 m) = 3.8 × 10–4 m. 
 
8. (a) The magnitude of the current density vector is 
 

( )
( )

10
5 2

22 3

4 1.2 10 A
2.4 10 A/m .

/ 4 2.5 10 m

i iJ
A dπ π

−
−

−

×
= = = = ×

×
 

 
(b) The drift speed of the current-carrying electrons is 
 

v J
ned = =

×
× ×

= ×
−

−
−2 4 10

8 47 10 160 10
18 10

5

28 19
15.

. / .
.A / m

m C
m / s.

2

3c hc h  

 
9. We note that the radial width Δr = 10 μm is small enough (compared to r = 1.20 mm) 
that we can make the approximation 
 
 2 2Br rdr Br r rπ π≈ Δ∫  
 
Thus, the enclosed current is 2πBr2Δr = 18.1 μA.  Performing the integral gives the same 
answer. 
 
10. Assuming J  is directed along the wire (with no radial flow) we integrate, starting 
with Eq. 26-4, 

( )2 4 4

9 /10

1| | ( )2 0.656
2

R

R
i J dA kr rdr k R Rπ π= = = −∫ ∫  

 
where k = 3.0 × 108 and SI units are understood. Therefore, if R = 0.00200 m, we 
obtain 32.59 10 Ai −= × . 
 
11. (a) The current resulting from this nonuniform current density is 
 

2 3 2 4 20
0cylinder 0

2 22 (3.40 10 m) (5.50 10 A/m )
3 3

1.33 A.

R

a
Ji J dA r rdr R J
R

π π π −= = ⋅ = = × ×

=

∫ ∫ . 

 
(b) In this case, 
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2 3 2 4 2
0 0cylinder 0

1 11 2 (3.40 10 m) (5.50 10 A/m )
3 3

0.666 A.

R

b
ri J dA J rdr R J
R

π π π −⎛ ⎞= = − = = × ×⎜ ⎟
⎝ ⎠

=

∫ ∫  

 
(c) The result is different from that in part (a) because Jb is higher near the center of the 
cylinder (where the area is smaller for the same radial interval) and lower outward, 
resulting in a lower average current density over the cross section and consequently a 
lower current than that in part (a). So, Ja has its maximum value near the surface of the 
wire. 
 
12. (a) Since 1 cm3 = 10–6 m3, the magnitude of the current density vector is 
 

J nev= =
F
HG

I
KJ × × = ×−

− −8 70
10

160 10 470 10 6 54 106
19 3 7. . . .

m
C m / s A / m3

2c hc h  

 
(b) Although the total surface area of Earth is 24 ERπ  (that of a sphere), the area to be used 
in a computation of how many protons in an approximately unidirectional beam (the solar 
wind) will be captured by Earth is its projected area. In other words, for the beam, the 
encounter is with a “target” of circular area 2

ERπ . The rate of charge transport implied by 
the influx of protons is 
 

( ) ( )22 6 7 2 76.37 10 m 6.54 10 A/m 8.34 10 A.Ei AJ R Jπ π −= = = × × = ×  
 
13. We use vd = J/ne = i/Ane. Thus, 
 

( ) ( ) ( ) ( )14 2 28 3 19

2

0.85m 0.21 10 m 8.47 10 / m 1.60 10 C
/ 300A

8.1 10 s 13min .
d

L L LAnet
v i Ane i

− −× × ×
= = = =

= × =

 

 
14. Since the potential difference V and current i are related by V = iR, where R is the 
resistance of the electrician, the fatal voltage is V = (50 × 10–3 A)(2000 Ω) = 100 V. 
 
15. The resistance of the coil is given by R = ρL/A, where L is the length of the wire, ρ is 
the resistivity of copper, and A is the cross-sectional area of the wire. Since each turn of 
wire has length 2πr, where r is the radius of the coil, then  
 

L = (250)2πr = (250)(2π)(0.12 m) = 188.5 m. 
 
If rw is the radius of the wire itself, then its cross-sectional area is  
 

2
wA rπ=  = π (0.65 × 10–3 m)2 = 1.33 × 10–6 m2. 
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According to Table 26-1, the resistivity of copper is 81.69 10 mρ −= × Ω⋅ . Thus, 
 

R L
A

= =
× ⋅

×
=

−

−

ρ 169 10 1885
133 10

2 4
8

6 2

. .
.

. .
Ω

Ω
m m

m
c hb g

 

 
16. We use R/L = ρ/A = 0.150 Ω/km. 
 
(a) For copper J = i/A = (60.0 A)(0.150 Ω/km)/(1.69 × 10–8 Ω · m) = 5.32 × 105 A/m2. 
 
(b) We denote the mass densities as ρm. For copper,  
 

(m/L)c = (ρmA)c = (8960 kg/m3) (1.69 × 10–8 Ω · m)/(0.150 Ω/km) = 1.01 kg/m. 
 
(c) For aluminum J = (60.0 A)(0.150 Ω/km)/(2.75 × 10–8 Ω · m) = 3.27 × 105 A/m2. 
 
(d) The mass density of aluminum is 
 

(m/L)a = (ρmA)a = (2700 kg/m3)(2.75 × 10–8 Ω · m)/(0.150 Ω/km) = 0.495 kg/m. 
 
17. We find the conductivity of Nichrome (the reciprocal of its resistivity) as follows: 
 

σ
ρ

= = = = =
×

= × ⋅
−

1 10
10 10

2 0 10
6 2

6L
RA

L
V i A

Li
VA/

.
.

. / .b g
b gb g
b gc h

m 4.0 A
2.0 V m

mΩ  

 
18. (a) i = V/R = 23.0 V/15.0 × 10–3 Ω = 1.53 × 103 A. 
 
(b) The cross-sectional area is 2 21

4A r Dπ π= = . Thus, the magnitude of the current 
density vector is 

( )
( )

3
7 2

22 3

4 1.53 10 A4 5.41 10 A/m .
6.00 10 m

i iJ
A Dπ π

−

−

×
= = = = ×

×
 

(c) The resistivity is 
 

3 3 2
8(15.0 10 ) (6.00 10 m) 10.6 10  m.

4(4.00 m)
RA
L

πρ
− −

−× Ω ×
= = = × Ω⋅  

 
(d) The material is platinum. 
 
19. The resistance of the wire is given by R L A= ρ / , where ρ is the resistivity of the 
material, L is the length of the wire, and A is its cross-sectional area. In this case, 
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( )22 3 7 20.50 10 m 7.85 10 m .A rπ π − −= = × = ×  
Thus, 

( ) ( )3 7 2
8

50 10 7.85 10 m
2.0 10 m.

2.0m
RA
L

ρ
− −

−
× Ω ×

= = = × Ω⋅  

 
20. The thickness (diameter) of the wire is denoted by D. We use R ∝ L/A (Eq. 26-16) 
and note that 2 21

4 .A D Dπ= ∝  The resistance of the second wire is given by 
 

R R A
A

L
L

R D
D

L
L

R R2
1

2

2

1

1

2

2

2

1

22 1
2

2=
F
HG
I
KJ
F
HG
I
KJ =
F
HG
I
KJ
F
HG
I
KJ = F

HG
I
KJ =b g .  

 
21. The resistance at operating temperature T is R = V/i = 2.9 V/0.30 A = 9.67 Ω. Thus, 
from R – R0 = R0α (T – T0), we find 
 

3
0 3

0

1 1 9.671 20 C 1 1.8 10  C
4.5 10 K 1.1

RT T
Rα −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ω
= + − = ° + − = × °⎜ ⎟ ⎜ ⎟ ⎜ ⎟× Ω⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the 
value of α used in this calculation is not inconsistent with the other units involved. Table 
26-1 has been used. 
 
22. Let 2.00 mmr = be the radius of the kite string and 0.50 mmt = be the thickness of 
the water layer. The cross-sectional area of the layer of water is 
 
 2 2 3 2 3 2 6 2( ) [(2.50 10  m) (2.00 10  m) ] 7.07 10  mA r t rπ π − − −⎡ ⎤= + − = × − × = ×⎣ ⎦ . 
 
Using Eq. 26-16, the resistance of the wet string is 
 

( )( ) 10
6 2

150 m 800 m
1.698 10 .

7.07 10 m
LR

A
ρ

−

Ω ⋅
= = = × Ω

×
 

 
The current through the water layer is  
 

 
8

3
10

1.60 10 V 9.42 10 A
1.698 10

Vi
R

−×
= = = ×

× Ω
. 

 
23. We use J = E/ρ, where E is the magnitude of the (uniform) electric field in the wire, J 
is the magnitude of the current density, and ρ is the resistivity of the material. The 
electric field is given by E = V/L, where V is the potential difference along the wire and L 
is the length of the wire. Thus J = V/Lρ and 
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ρ = =
×

= × ⋅−V
LJ

115
14 10

8 2 10
4

4V
10 m A m

m.
2b gc h.

. Ω  

 
24. (a)  Since the material is the same, the resistivity ρ is the same, which implies (by Eq. 
26-11) that the electric fields (in the various rods) are directly proportional to their 
current-densities.  Thus, J1: J2: J3 are in the ratio 2.5/4/1.5  (see Fig. 26-24).  Now the 
currents in the rods must be the same (they are “in series”) so  
 

J1 A1  = J3 A3 ,      J2 A2  = J3 A3   . 
 

Since A = πr2, this leads (in view of the aforementioned ratios) to  
 

4r2
2  = 1.5r3

2 ,      2.5r1
2  = 1.5r3

2 . 
 
Thus, with r3 = 2 mm, the latter relation leads to r1 = 1.55 mm. 
 
(b) The 4r2

2  = 1.5r3
2 relation leads to r2 = 1.22 mm. 

 
25. Since the mass density of the material does not change, the volume remains the same. 
If L0 is the original length, L is the new length, A0 is the original cross-sectional area, and 
A is the new cross-sectional area, then L0A0 = LA and A = L0A0/L = L0A0/3L0 = A0/3. The 
new resistance is 

R L
A

L
A

L
A

R= = = =
ρ ρ ρ3

3
9 90

0

0

0
0/
,  

 
where R0 is the original resistance. Thus, R = 9(6.0 Ω) = 54 Ω. 
 
26. The absolute values of the slopes (for the straight-line segments shown in the graph of 
Fig. 26-25(b)) are equal to the respective electric field magnitudes.  Thus, applying Eq. 
26-5 and Eq. 26-13 to the three sections of the resistive strip, we have 
 

   J1  =  
i
A  =  σ1 E1  =  σ1 (0.50 × 103 V/m) 

 

   J2  =  
i
A  =  σ2 E2 =  σ2 (4.0 × 103 V/m) 

 

   J3  =  
i
A  =  σ3 E3  =  σ3 (1.0 × 103 V/m)  . 

 
We note that the current densities are the same since the values of i and A are the same 
(see the problem statement) in the three sections, so J1  = J2  = J3 .   
 
(a) Thus we see that σ1 = 2σ3  = 2 (3.00 × 107(Ω · m)−1 ) = 6.00 × 107  (Ω · m)−1. 
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(b) Similarly, σ2 = σ3/4  =  (3.00 × 107(Ω · m)−1 )/4 = 7.50 × 106 (Ω · m)−1 . 
 
27. The resistance of conductor A is given by 

R L
rA

A

=
ρ
p 2 ,  

 
where rA is the radius of the conductor. If ro is the outside diameter of conductor B and ri 
is its inside diameter, then its cross-sectional area is π(ro

2 – ri
2), and its resistance is 

 

( )2 2
.B

o i

LR
r r
ρ

π
=

−
 

The ratio is 
R
R

r r
r

A

B

o i

A

=
−

=
−

=
2 2

2

2 2

2

1 0 50
0 50

3 0
. .

.
. .

0 mm mm
mm

b g b g
b g  

 
28. The cross-sectional area is A = πr2  = π(0.002 m)2.  The resistivity from Table 26-1 is   
ρ = 1.69 × 10−8 Ω · m.  Thus, with L = 3 m, Ohm’s Law leads to V = iR = iρL/A, or 
 
   12 × 10−6 V  = i (1.69 × 10−8 Ω · m)(3.0 m)/ π(0.002 m)2 
 
which yields i = 0.00297 A or roughly 3.0 mA. 
 
29. First we find the resistance of the copper wire to be 
 

( )( )8
5

3 2

1.69 10 m 0.020 m
2.69 10 .

(2.0 10 m)
LR

A
ρ

π

−
−

−

× Ω⋅
= = = × Ω

×
 

 
With potential difference 3.00 nVV = , the current flowing through the wire is 
 

9
4

5

3.00 10 V 1.115 10 A
2.69 10

Vi
R

−
−

−

×
= = = ×

× Ω
. 

 
Therefore, in 3.00 ms, the amount of charge drifting through a cross section is 
 

4 3 7(1.115 10 A)(3.00 10 s) 3.35 10 CQ i t − − −Δ = Δ = × × = ×  . 
 
30. We use R ∝ L/A. The diameter of a 22-gauge wire is 1/4 that of a 10-gauge wire. 
Thus from R = ρL/A we find the resistance of 25 ft of 22-gauge copper wire to be  
 

R = (1.00 Ω)(25 ft/1000 ft)(4)2 = 0.40 Ω. 
 
31. (a) The current in each strand is i = 0.750 A/125 = 6.00 × 10–3 A. 
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(b) The potential difference is V = iR = (6.00 × 10–3 A) (2.65 × 10–6 Ω) = 1.59 × 10–8 V. 
 
(c) The resistance is Rtotal = 2.65 × 10–6 Ω/125 = 2.12 × 10–8 Ω. 
 
32. We use J = σ E = (n+ + n–)evd, which combines Eq. 26-13 and Eq. 26-7. 
 
(a) The magnitude of the current density is 
 

J = σ E = (2.70 × 10–14 / Ω · m) (120 V/m) = 3.24 × 10–12 A/m2. 
 
(b) The drift velocity is 
 

( )
( )( )

( ) ( )
14

3 19

2.70 10 m 120 V m
1.73 cm s.

620 550 cm 1.60 10 Cd
Ev

n n e
σ

−

−
+ −

× Ω⋅
= = =

+ ⎡ ⎤+ ×⎣ ⎦
 

 
33. (a) The current in the block is i = V/R = 35.8 V/935 Ω = 3.83 × 10–2 A. 
 
(b) The magnitude of current density is  
 

J = i/A = (3.83 × 10–2 A)/(3.50 × 10–4 m2) = 109 A/m2. 
 
(c) vd = J/ne = (109 A/m2)/[(5.33 × 1022/m3) (1.60 × 10–19 C)] = 1.28 × 10–2 m/s. 
 
(d) E = V/L = 35.8 V/0.158 m = 227 V/m. 
 
34. The number density of conduction electrons in copper is n = 8.49 × 1028 /m3.  The 
electric field in section 2 is (10.0 μV)/(2.00 m) = 5.00 μV/m.  Since ρ = 1.69 × 10−8 Ω · m 
for copper (see Table 26-1) then Eq. 26-10 leads to a current density vector of magnitude 
J2 = (5.00 μV/m)/(1.69 × 10−8 Ω · m) = 296 A/m2 in section 2.  Conservation of electric 
current from section 1 into section 2 implies 
 
 2 2

1 1 2 2 1 2(4 ) ( )J A J A J R J Rπ π= ⇒ =  
 
(see Eq. 26-5). This leads to J1  = 74 A/m2.  Now, for the drift speed of conduction-
electrons in section 1, Eq. 26-7 immediately yields  
 

 91 5.44 10 m/sd
Jv
ne

−= = ×  

 
35. (a) The current i is shown in Fig. 26-29 entering the truncated cone at the left end and 
leaving at the right. This is our choice of positive x direction. We make the assumption 
that the current density J at each value of x may be found by taking the ratio i/A where A 
= πr2 is the cone’s cross-section area at that particular value of x. The direction of J  is 



CHAPTER 26 1048 

identical to that shown in the figure for i (our +x direction). Using Eq. 26-11, we then 
find an expression for the electric field at each value of x, and next find the potential 
difference V by integrating the field along the x axis, in accordance with the ideas of 
Chapter 25. Finally, the resistance of the cone is given by R = V/i. Thus, 
 

2

i EJ
rπ ρ

= =  

 
where we must deduce how r depends on x in order to proceed. We note that the radius 
increases linearly with x, so (with c1 and c2 to be determined later) we may write 
 

r c c x= +1 2 .  
 
Choosing the origin at the left end of the truncated cone, the coefficient c1 is chosen so 
that r = a (when x = 0); therefore, c1 = a. Also, the coefficient c2 must be chosen so that 
(at the right end of the truncated cone) we have r = b (when x = L); therefore, 

2 ( ) /c b a L= − . Our expression, then, becomes 
 

r a b a
L

x= +
−F
HG
I
KJ .  

 
Substituting this into our previous statement and solving for the field, we find 
 

2

.i b aE a x
L

ρ
π

−−⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
Consequently, the potential difference between the faces of the cone is 
 

2 1

0 0
0

1 1 .

L
L Li b a i L b aV E dx a x dx a x

L b a L

i L i L b a i L
b a a b b a ab ab

ρ ρ
π π

ρ ρ ρ
π π π

− −− −⎛ ⎞ ⎛ ⎞= − = − + = +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−⎛ ⎞= − = =⎜ ⎟− −⎝ ⎠

∫ ∫
 

 
The resistance is therefore 
 

2
5

3 3

(731 m)(1.94 10  m) 9.81 10  
(2.00 10  m)(2.30 10  m)

V LR
i ab

ρ
π π

−

− −

Ω⋅ ×
= = = = × Ω

× ×
 

 
Note that if b = a, then R = ρL/πa2 = ρL/A, where A = πa2 is the cross-sectional area of 
the cylinder. 
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36. Since the current spreads uniformly over the hemisphere, the current density at any 
given radius r from the striking point is 2/ 2J I rπ= . From Eq. 26-10, the magnitude of 
the electric field at a radial distance r is 

 22
w

w
IE J
r

ρρ
π

= = , 

 
where 30 mwρ = Ω⋅ is the resistivity of water. The potential difference between a point at 
radial distance D and a point at D r+ Δ is 
 

2

1 1
2 2 2 ( )

D r D r w w w
D D

I I I rV Edr dr
r D r D D D r

ρ ρ ρ
π π π

+Δ +Δ Δ⎛ ⎞Δ = − = − = − = −⎜ ⎟+ Δ + Δ⎝ ⎠∫ ∫ , 

 
which implies that the current across the swimmer is 
 

| |
2 ( )

wIV ri
R R D D r

ρ
π

Δ Δ
= =

+ Δ
. 

 
Substituting the values given, we obtain 
 

4
2

3

(30.0 m)(7.80 10 A) 0.70 m 5.22 10 A
2 (4.00 10 ) (35.0 m)(35.0 m 0.70 m)

i
π

−Ω ⋅ ×
= = ×

× Ω +
. 

 
37. From Eq. 26-25, ρ ∝ τ–1 ∝ veff. The connection with veff is indicated in part (b) of 
Sample Problem —“Mean free time and mean free distance,” which contains useful 
insight regarding the problem we are working now. According to Chapter 20, v Teff ∝ .  
Thus, we may conclude that ρ ∝ T .  
 
38. The slope of the graph is P = 5.0 × 10−4 W.  Using this in the P = V2/R relation leads 
to V = 0.10 Vs. 
 
39. Eq. 26-26 gives the rate of thermal energy production: 
 

(10.0A)(120V) 1.20 kW.P iV= = =  
 
Dividing this into the 180 kJ necessary to cook the three hotdogs leads to the result 

150 s.t =  
 
40. The resistance is R = P/i2 = (100 W)/(3.00 A)2 = 11.1 Ω. 
 
41. (a) Electrical energy is converted to heat at a rate given by 2 / ,P V R=  where V is the 
potential difference across the heater and R is the resistance of the heater. Thus, 
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P = = × =
( . .120

14
10 10 103V) W kW.

2

Ω
 

 
(b) The cost is given by (1.0kW)(5.0h)(5.0cents/kW h) US$0.25.⋅ =  
 
42. (a) Referring to Fig. 26-32, the electric field would point down (toward the bottom of 
the page) in the strip, which means the current density vector would point down, too (by 
Eq. 26-11).  This implies (since electrons are negatively charged) that the conduction 
electrons would be “drifting” upward in the strip. 
 
(b) Equation 24-6 immediately gives 12 eV, or (using e = 1.60 × 10−19 C) 1.9 × 10−18 J for 
the work done by the field (which equals, in magnitude, the potential energy change of 
the electron). 
 
(c) Since the electrons don’t (on average) gain kinetic energy as a result of this work done, 
it is generally dissipated as heat.  The answer is as in part (b): 12 eV or 1.9 × 10−18 J. 
 
43. The relation P = V 2/R implies P ∝ V 2. Consequently, the power dissipated in the 
second case is 

P =
F
HG

I
KJ =

150 0540 0135
2

. ( . .V
3.00 V

W) W.  

 
44. Since P = iV, the charge is  
 

q = it = Pt/V = (7.0 W) (5.0 h) (3600 s/h)/9.0 V = 1.4 × 104 C. 
 
45. (a) The power dissipated, the current in the heater, and the potential difference across 
the heater are related by P = iV. Therefore, 
 

i P
V

= = =
1250 10 9W
115 V

A..  

 
(b) Ohm’s law states V = iR, where R is the resistance of the heater. Thus, 
 

R V
i

= = =
115 10 6V
10.9 A

. .Ω  

 
(c) The thermal energy E generated by the heater in time t = 1.0 h = 3600 s is 
 

6(1250W)(3600s) 4.50 10 J.E Pt= = = ×  
 
46. (a) Using Table 26-1 and Eq. 26-10 (or Eq. 26-11), we have 
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( )8 2
6 2

2.00A| | | | 1.69 10 m 1.69 10 V/m.
2.00 10 m

E Jρ − −
−

⎛ ⎞
= = × Ω⋅ = ×⎜ ⎟×⎝ ⎠

 

 
(b) Using L = 4.0 m, the resistance is found from Eq. 26-16:  
 

R = ρL/A = 0.0338 Ω. 
 
The rate of thermal energy generation is found from Eq. 26-27:  
 

P = i2 R = (2.00 A)2(0.0338 Ω) = 0.135 W. 
 
Assuming a steady rate, the amount of thermal energy generated in 30 minutes is found to 
be (0.135 J/s)(30 × 60 s) = 2.43 × 102 J. 
 
47. (a) From P = V 2/R = AV 2 / ρL, we solve for the length: 
 

L AV
P

= =
×
× ⋅

=
−

−

2 6

7

2 60 10 750
500 10

585
ρ

( . )( .
( .

.m V)
m)(500 W)

m.
2 2

Ω
 

 

(b) Since L ∝ V 2 the new length should be ′ =
′F
HG
I
KJ =

F
HG

I
KJ =L L V

V

2 2

585 10 4( . .m) 100 V
75.0 V

m. 

 
48. The mass of the water over the length is  
 
 3 5 2(1000 kg/m )(15 10  m )(0.12 m) 0.018 kgm ALρ −= = × = , 
 
and the energy required to vaporize the water is  
 
 4(2256 kJ / kg)(0.018 kg) 4.06 10  JQ Lm= = = × . 
 
The thermal energy is supplied by joule heating of the resistor: 
 
 2Q P t I R t= Δ = Δ . 
 
Since the resistance over the length of water is  
 

( )( ) 5
5 2

150 m 0.120 m
1.2 10

15 10 m
wLR
A

ρ
−

Ω⋅
= = = × Ω

×
, 

 
the average current required to vaporize water is  
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4

5 3

4.06 10  J 13.0 A
(1.2 10 )(2.0 10 s)

QI
R t −

×
= = =

Δ × Ω ×
. 

 
49. (a) Assuming a 31-day month, the monthly cost is  
 

(100 W)(24 h/day)(31days/month) (6 cents/kW h)⋅ =  446 cents US$4.46= . 
 
(b) R = V 2/P = (120 V)2/100 W = 144 Ω. 
 
(c) i = P/V = 100 W/120 V = 0.833 A. 
 
50. The slopes of the lines yield P1 = 8 mW and P2 = 4 mW.  Their sum (by energy 
conservation) must be equal to that supplied by the battery: Pbatt = ( 8 + 4 ) mW = 12 mW. 
 
51. (a) We use Eq. 26-16 to compute the resistances: 
 

6
2 2

1.0 m(2.0 10 m) 2.55 .
 m

C
C C

C

LR
r

ρ
π π

−= = × Ω⋅ = Ω
(0.00050 )

 

 
The voltage follows from Ohm’s law: 1 2| | (2.0 A)(2.55 ) 5.1V.C CV V V iR− = = = Ω =  
 
(b) Similarly, 

6
2 2

1.0 m(1.0 10 m) 5.09
 m

D
D D

D

LR
r

ρ
π π

−= = × Ω⋅ = Ω
(0.00025 )

 

 
and 2 3| | (2.0 A)(5.09 ) 10.2V 10VD DV V V iR− = = = Ω = ≈ . 
 
(c) The power is calculated from Eq. 26-27: 2 10WC CP i R= = . 
 
(d) Similarly, 2 20W D DP i R= = . 
 
52. Assuming the current is along the wire (not radial) we find the current from Eq. 26-4: 
 

i  =  ⌡⌠| J  
→

| dA = 2

0
2

R
kr rdrπ∫  =  

1
2 kπR4 = 3.50 A 

 
where k = 2.75 × 1010 A/m4 and R = 0.00300 m.  The rate of thermal energy generation is 
found from Eq. 26-26: P = iV = 210 W. Assuming a steady rate, the thermal energy 
generated in 40 s is Q P t= Δ = (210 J/s)(3600 s) = 7.56 × 105 J. 
 
53. (a) From P = V 2/R we find R = V 2/P = (120 V)2/500 W = 28.8 Ω. 
 
(b) Since i = P/V, the rate of electron transport is 
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i
e

P
eV

= =
×

= ×−

500 2 60 1019
19W

(1.60 10 C)(120 V)
s.. /  

 
54. From 2 /P V R= , we have R = (5.0 V)2/(200 W) = 0.125 Ω.  To meet the conditions 
of the problem statement, we must therefore set 
 

0
5.00  

L
x dx∫ = 0.125 Ω   

Thus, 

     
5
2 L2 = 0.125    ⇒      L = 0.224 m. 

 
55. Let RH be the resistance at the higher temperature (800°C) and let RL be the resistance 
at the lower temperature (200°C). Since the potential difference is the same for the two 
temperatures, the power dissipated at the lower temperature is PL = V 2/RL, and the power 
dissipated at the higher temperature is 2 / ,H HP V R=  so ( / )L H L HP R R P= . Now 
 

L H HR R R Tα= + Δ , 
 
where ΔT is the temperature difference TL – TH = –600 C° = –600 K. Thus, 
 

P R
R R T

P P
TL

H

H H
H

H=
+

=
+

=
+ × −

=−α αΔ Δ1
500

4 0 10 600
6604

W
1 K)( K)

W.
( . /

 

 
56. (a) The current is 
 

2 2 2

8

V)[(0.0400in.)(2.54 10 m/in.)] 1.74 A.
/ 4 4(1.69 10 m)(33.0 m)

V V Vdi
R L A L

π
ρ ρ

−

−

π(1.20 ×
= = = = =

× Ω⋅
 

 
(b) The magnitude of the current density vector is 
 

6 2
2 2 2

4 4(1.74 A)| | 2.15 10 A/m .
in.)(2.54 10 m/in.)]

i iJ
A dπ π −= = = = ×

[(0.0400 ×
 

 
(c) E = V/L = 1.20 V/33.0 m = 3.63 × 10–2 V/m. 
 
(d) P = Vi = (1.20 V)(1.74 A) = 2.09 W. 
 
57. We find the current from Eq. 26-26:  i = P/V = 2.00 A.  Then, from Eq. 26-1 (with 
constant current), we obtain 

Δq =  iΔt = 2.88 × 104 C . 
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58. We denote the copper rod with subscript c and the aluminum rod with subscript a. 
 
(a) The resistance of the aluminum rod is 
 

R L
Aa= =

× ⋅

×
= ×

−

−

−ρ
2 75 10 13

5 2 10
13 10

8

3 2
3

. .

.
. .

Ω
Ω

m m

m

c hb g
c h

 

 
(b) Let R = ρcL/(πd 2/4) and solve for the diameter d of the copper rod: 
 

( )( )
( )

8
3

4 1.69 10 m 1.3 m4 4.6 10 m.cLd
R

ρ
π π

−
−

−3

× Ω⋅
= = = ×

1.3×10 Ω
 

59. (a) Since  
 

2 3 3 2
8( / 4) (1.09 10 ) (5.50 10 m) / 4 1.62 10  m

1.60 m
RA R d
L L

π πρ
− −

−× Ω ×
= = = = × Ω⋅ , 

 
the material is silver. 
 
(b) The resistance of the round disk is 
 

8 3
8

2 2

4 4(1.62 10 m)(1.00 10 m) 5.16 10 .
m)

L LR
A d

ρρ
π π

− −
−

−2

× Ω⋅ ×
= = = = × Ω

(2.00×10
 

 
60. (a) Current is the transport of charge; here it is being transported “in bulk” due to the 
volume rate of flow of the powder. From Chapter 14, we recall that the volume rate of 
flow is the product of the cross-sectional area (of the stream) and the (average) stream 
velocity. Thus, i = ρAv where ρ is the charge per unit volume. If the cross section is that 
of a circle, then i = ρπR2v. 
 
(b) Recalling that a coulomb per second is an ampere, we obtain 
 

( ) ( ) ( )23 3 51.1 10 C/m m 2.0 m/s 1.7 10 A.i π− −= × 0.050 = ×  
 
(c) The motion of charge is not in the same direction as the potential difference computed 
in problem 70 of Chapter 24. It might be useful to think of (by analogy) Eq. 7-48; there, 
the scalar (dot) product in P F v= ⋅  makes it clear that P = 0 if F v⊥ . This suggests that 
a radial potential difference and an axial flow of charge will not together produce the 
needed transfer of energy (into the form of a spark). 
 
(d) With the assumption that there is (at least) a voltage equal to that computed in 
problem 70 of Chapter 24, in the proper direction to enable the transference of energy 
(into a spark), then we use our result from that problem in Eq. 26-26: 
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P iV= = × × =−17 10 7 8 10 135 4. . . .A V Wc hc h  

 
(e) Recalling that a joule per second is a watt, we obtain (1.3 W)(0.20 s) = 0.27 J for the 
energy that can be transferred at the exit of the pipe. 
 
(f) This result is greater than the 0.15 J needed for a spark, so we conclude that the spark 
was likely to have occurred at the exit of the pipe, going into the silo. 
 
61. (a) The charge that strikes the surface in time Δt is given by Δq = i Δt, where i is the 
current. Since each particle carries charge 2e, the number of particles that strike the 
surface is 

N q
e

i t
e

= = =
×

×
= ×

−

−

Δ Δ
2 2

0 25 10 30

2 16 10
2 3 10

6

19
12

. .

.
. .

A s

C
c hb g
c h  

 
(b) Now let N ′  be the number of particles in a length L of the beam. They will all pass 
through the beam cross section at one end in time t = L/v, where v is the particle speed. 
The current is the charge that moves through the cross section per unit time. That is,  
 

 2 2 .eN eN vi
t L

′ ′
= =  

 
Thus N ′  = iL/2ev. To find the particle speed, we note the kinetic energy of a particle is 
 

        K = = × × = ×− −20 20 10 160 10 32 106 19 12MeV eV J / eV J .c hc h. .  
 
Since K mv= 1

2
2 , then the speed is v K m= 2 . The mass of an alpha particle is (very 

nearly) 4 times the mass of a proton, or m = 4(1.67 × 10–27 kg) = 6.68 × 10–27 kg, so 
 

v =
×

×
= ×

−

−

2 3 2 10
31 10

12

27
7

.
.

J
6.68 10 kg

m / s
c h

 

and 
( )( )

( )( )
6 2

3
19 7

0.25 10 20 10 m
5.0 10 .

2 2 1.60 10 C 3.1 10 m/s
iLN
ev

− −

−

× ×
′ = = = ×

× ×
 

 
(c) We use conservation of energy, where the initial kinetic energy is zero and the final 
kinetic energy is 20 MeV = 3.2 × 10–12 J. We note, too, that the initial potential energy is 
Ui = qV = 2eV, and the final potential energy is zero. Here V is the electric potential 
through which the particles are accelerated. Consequently, 
 



CHAPTER 26 1056 

( )
12

7
19

3.2 10 J2     1.0 10 V.
2 2 1.60 10 C

f
f i

K
K U eV V

e

−

−

×
= = ⇒ = = = ×

×
 

 

62. We use Eq. 26-28:
2 2(200 V) 13.3

3000 W
VR
P

= = = Ω . 

 
63. Combining Eq. 26-28 with Eq. 26-16 demonstrates that the power is inversely 
proportional to the length (when the voltage is held constant, as in this case).  Thus, a 
new length equal to 7/8 of its original value leads to 
 

P = 
8
7 (2.0 kW) = 2.4 kW. 

 
64. (a) Since P = i2 R = J 2 A2 R, the current density is 
 

( )( )( )25 2 3

5 2

1 1 1.0 W
/ 3.5 10 m 2.0 10 m 5.0 10 m

1.3 10 A/m .

P P PJ
A R A L A LAρ ρ − − −

= = = =
π × Ω⋅ × ×

= ×

 

 
(b) From P = iV = JAV we get 
 

( ) ( )
2

22 3 5 2

1.0 W 9.4 10 V.
5.0 10 m 1.3 10 A/m

P PV
AJ r Jπ π

−

−
= = = = ×

× ×
 

 
65. We use P = i2 R = i2ρL/A, or L/A = P/i2ρ.  
 
(a) The new values of L and A satisfy 
 

L
A

P
i

P
i

L
A

F
HG
I
KJ =
F
HG
I
KJ =

F
HG
I
KJ = F

HG
I
KJnew new old old

2 2 2

30
4

30
16ρ ρ

.  

 
Consequently, (L/A)new = 1.875(L/A)old, and   
 

 new
new old old

old

1.875 1.37       1.37LL L L
L

= = ⇒ = . 

 
(b) Similarly, we note that (LA)new = (LA)old, and   
 

new
new old old

old

1/1.875 0.730     0.730AA A A
A

= = ⇒ = . 
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66. The horsepower required is (10A)(12 V) 0.20 hp.
0.80 (0.80)(746 W/hp)
iVP = = =  

 
67. (a) We use P = V 2/R ∝ V 2, which gives ΔP ∝ ΔV 2 ≈ 2V ΔV. The percentage change 
is roughly  

ΔP/P = 2ΔV/V = 2(110 – 115)/115 = –8.6%. 
 
(b) A drop in V causes a drop in P, which in turn lowers the temperature of the resistor in 
the coil. At a lower temperature R is also decreased. Since P ∝ R–1 a decrease in R will 
result in an increase in P, which partially offsets the decrease in P due to the drop in V. 
Thus, the actual drop in P will be smaller when the temperature dependency of the 
resistance is taken into consideration. 
 
68. We use Eq. 26-17: ρ – ρ0 = ρα(T – T0), and solve for T: 
 

T T= + −
F
HG
I
KJ = ° +

×
−

F
HG

I
KJ = °−0

0
3

1 1 20 1
4 3 10

58
50

1 57
α

ρ
ρ

C
K

C
. /

.Ω
Ω

 

 
We are assuming that ρ/ρ0 = R/R0. 
 
69. We find the rate of energy consumption from Eq. 26-28: 
 

2 2(90 V) 20.3 W
400

VP
R

= = =
Ω

 

 
Assuming a steady rate, the energy consumed is (20.3 J/s)(2.00 × 3600 s) = 1.46 × 105 J. 
 
70. (a) The potential difference between the two ends of the caterpillar is 
 

( )( )( )
( )

8 2
4

23

12 A 1.69 10 m 4.0 10 m
3.8 10 V.

5.2 10 m/2

LV iR i
A

ρ
π

− −
−

−

× Ω⋅ ×
= = = = ×

×
 

 
(b) Since it moves in the direction of the electron drift, which is against the direction of 
the current, its tail is negative compared to its head. 
 
(c) The time of travel relates to the drift speed: 
 

( )( ) ( )( )22 3 28 3 192 1.0 10 m 5.2 10 m 8.47 10 / m 1.60 10 C
4 4(12 A)

238s 3min 58s.
d

L lAne Ld net
v i i

ππ
− − −× × × ×

= = = =

= =
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71. (a) In Eq. 26-17, we let ρ = 2ρ0 where ρ0 is the resistivity at T0 = 20°C: 
 

ρ ρ ρ ρ ρ α− = − = −0 0 0 0 02 T Tb g,  
 

and solve for the temperature T: T T= + = ° +
×

≈ °−0 3

1 20 1
4 3 10

250
α

C
K

C.
. /

 

 
(b) Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, 
the value of α used in this calculation is not inconsistent with the other units involved. It 
is worth noting that this agrees well with Fig. 26-10. 
 
72. Since 100 cm = 1 m, then 104 cm2 = 1 m2. Thus, 
 

R L
A

= =
× ⋅ ×

×
=

−

−

ρ 300 10 10 0 10
56 0 10

0536
7 3

4 2

. .
.

. .
Ω

Ω
m m

m
c hc h

 

 
73. The rate at which heat is being supplied is P = iV = (5.2 A)(12 V) = 62.4 W.  
Considered on a one-second time-frame, this means 62.4 J of heat are absorbed by the 
liquid each second.  Using Eq. 18-16, we find the heat of transformation to be 
 

 6
6

62.4 J 3.0 10 J/kg
21 10 kg

QL
m −= = = ×

×
. 

 
74. We find the drift speed from Eq. 26-7: 
 

6 2
4

28 3 19

| | 2.0 10 A/m 1.47 10 m/s .
(8.49 10 /m )(1.6 10 C)d

Jv
ne

−
−

×
= = = ×

× ×
 

 
At this (average) rate, the time required to travel L = 5.0 m is 
 

4
4

5.0 m 3.4 10 s.
1.47 10 m/sd

Lt
v −= = = ×

×
 

 
75. The power dissipated is given by the product of the current and the potential 
difference: P iV= = × × =−( .7 0 10 5603 A)(80 10 V) W.3  
 
76. (a) The current is 4.2 × 1018 e divided by 1 second.  Using e = 1.60 × 10−19 C we 
obtain 0.67 A for the current. 
 
(b) Since the electric field points away from the positive terminal (high potential) and 
toward the negative terminal (low potential), then the current density vector (by Eq. 26-
11) must also point toward the negative terminal.  



1059 

 
 

Chapter 27 
 
 
1. (a) Let i be the current in the circuit and take it to be positive if it is to the left in R1. 
We use Kirchhoff’s loop rule: ε1 – iR2 – iR1 – ε2 = 0. We solve for i: 
 

i
R R

=
−
+

=
−
+

=
ε ε1 2

1 2

12 6 0
8 0

050V V
4.0

A.
.

. .
Ω Ω

 

 
A positive value is obtained, so the current is counterclockwise around the circuit. 
 
If i is the current in a resistor R, then the power dissipated by that resistor is given by 

2P i R= .  
 
(b) For R1, P1 = 2

1i R = (0.50 A)2(4.0 Ω) = 1.0 W,  
 
(c) and for R2, P2 = 2

2i R =  (0.50 A)2 (8.0 Ω) = 2.0 W. 
 
If i is the current in a battery with emf ε, then the battery supplies energy at the rate P =iε 
provided the current and emf are in the same direction. The battery absorbs energy at the 
rate P = iε if the current and emf are in opposite directions.  
 
(d) For ε1, P1 = 1iε =  (0.50 A)(12 V) = 6.0 W  
 
(e) and for ε2, P2 = 2iε =  (0.50 A)(6.0 V) = 3.0 W.  
 
(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery 
supplies energy to the circuit; the battery is discharging.  
 
(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs 
energy from the circuit. It is charging. 
 
2. The current in the circuit is  
 

i = (150 V – 50 V)/(3.0 Ω + 2.0 Ω) = 20 A. 
 
So from VQ + 150 V – (2.0 Ω)i = VP, we get VQ = 100 V + (2.0 Ω)(20 A) –150 V = –10 V. 
 
3. (a) The potential difference is V = ε + ir = 12 V + (50 A)(0.040 Ω) = 14 V. 
 
(b) P = i2r = (50 A)2(0.040 Ω) = 1.0×102 W. 
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(c) P' = iV = (50 A)(12 V) = 6.0×102 W. 
 
(d) In this case V = ε – ir = 12 V – (50 A)(0.040 Ω) = 10 V. 
 
(e) Pr = i2r =(50 A)2(0.040 Ω) = 1.0×102 W. 
 
4. (a) The loop rule leads to a voltage-drop across resistor 3 equal to 5.0 V (since the total 
drop along the upper branch must be 12 V).  The current there is consequently  
i = (5.0 V)/(200 Ω) = 25 mA.  Then the resistance of resistor 1 must be (2.0 V)/i  = 80 Ω. 
 
(b) Resistor 2 has the same voltage-drop as resistor 3; its resistance is 200 Ω. 
 
5. The chemical energy of the battery is reduced by ΔE = qε, where q is the charge that 
passes through in time Δt = 6.0 min, and ε is the emf of the battery. If i is the current, 
then q = i Δt and  
 

ΔE = iε Δt = (5.0 A)(6.0 V) (6.0 min) (60 s/min) = 1.1 × 104 J. 
 
We note the conversion of time from minutes to seconds. 
 
6. (a) The cost is (100 W · 8.0 h/2.0 W · h) ($0.80) = $3.2 × 102. 
 
(b) The cost is (100 W · 8.0 h/103 W · h) ($0.06) = $0.048 = 4.8 cents. 
 
7. (a) The energy transferred is 
 

U Pt t
r R

= =
+

=
+

=
ε 2 22 0 2 0 60

50
80( . ( . min) (

.
.V) s / min)

1.0
J

Ω Ω
 

 
(b) The amount of thermal energy generated is 
 

′ = =
+
F
HG
I
KJ =

+
F
HG

I
KJ =U i Rt

r R
Rt2

2 2
2 0

50
50 2 0 60 67ε .

.
( . ) ( . min) (V

1.0
s / min) J.

Ω Ω
Ω  

 
(c) The difference between U and U', which is equal to 13 J, is the thermal energy that is 
generated in the battery due to its internal resistance. 
 
8. If P is the rate at which the battery delivers energy and Δt is the time, then ΔE = P Δt is 
the energy delivered in time Δt. If q is the charge that passes through the battery in time 
Δt and ε is the emf of the battery, then ΔE = qε. Equating the two expressions for ΔE and 
solving for Δt, we obtain 
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(120A h)(12.0V) 14.4 h.
100W

qt
P
ε ⋅

Δ = = =  

 
9. (a) The work done by the battery relates to the potential energy change: 
 

( )12.0V 12.0 eV.q V eV eΔ = = =  
 
(b) P = iV = neV = (3.40 × 1018/s)(1.60 × 10–19 C)(12.0 V) = 6.53 W. 
 
10. (a) We solve i = (ε2 – ε1)/(r1 + r2 + R) for R: 
 

R
i

r r=
−

− − =
−

×
− − = ×−

ε ε2 1
1 2 3

230 2 0 30 30 9 9 10. . . . . .V V
1.0 10 A

Ω Ω Ω  

 
(b) P = i2R = (1.0 × 10–3 A)2(9.9 × 102 Ω) = 9.9 × 10–4 W. 
 
11. (a) If i is the current and ΔV is the potential difference, then the power absorbed is 
given by P = i ΔV. Thus, 

ΔV P
i

= = =
50
10

50W
A

V.
.

 

 
Since the energy of the charge decreases, point A is at a higher potential than point B; 
that is, VA – VB = 50 V. 
 
(b) The end-to-end potential difference is given by VA – VB = +iR + ε, where ε is the emf 
of element C and is taken to be positive if it is to the left in the diagram. Thus,  
 

ε = VA – VB – iR = 50 V – (1.0 A)(2.0 Ω) = 48 V. 
 
(c) A positive value was obtained for ε, so it is toward the left. The negative terminal is at 
B. 
 
12. (a) For each wire, Rwire = ρL/A where A = πr2.  Consequently, we have  
 

Rwire =  (1.69 × 10−8 mΩ⋅ )(0.200 m)/π(0.00100 m)2 = 0.0011 Ω. 
 
The total resistive load on the battery is therefore  
 

totR = 2Rwire + R = 2(0.0011 Ω) + 6.00 Ω = 6.0022  Ω. 
 
Dividing this into the battery emf gives the current  
 



CHAPTER 27 1062 

 
tot

12.0 V 1.9993 A
6.0022

i
R
ε

= = =
Ω

. 

 
The voltage across the R = 6.00 Ω resistor is therefore  
 
 V iR= = (1.9993 A)(6.00 Ω) = 11.996 V ≈ 12.0 V. 
 
(b) Similarly, we find the voltage-drop across each wire to be  
 

wire wireV iR= = (1.9993 A)(0.0011 Ω) = 2.15 mV. 
 
(c) P = i2R = (1.9993 A)(6.00 Ω)2 = 23.98 W ≈ 24.0 W. 
 
(d) Similarly, we find the power dissipated in each wire to be 4.30 mW. 
 
13. (a) We denote L = 10 km and α = 13 Ω/km. Measured from the east end we have  
 

R1 = 100 Ω = 2α(L – x) + R, 
 
and measured from the west end R2 = 200 Ω = 2αx + R. Thus,  
 

x R R L
=

−
+ =

−
+ =2 1

4 2
200 100
4 13

10
2

6 9
α

Ω Ω
Ω km

km km.b g .  

(b) Also, we obtain 
 

R R R L=
+

− =
+

− =1 2

2
100 200

2
13 10 20α Ω Ω

Ω Ωkm kmb gb g . 

 
14. (a) Here we denote the battery emf’s as V1 and V2 .  The loop rule gives 
 

V2 – ir2 + V1 – ir1 – iR  = 0   ⇒   2 1

1 2

V Vi
r r R

+
=

+ +
  . 

 
The terminal voltage of battery 1 is V1T and (see Fig. 27-4(a)) is easily seen to be equal to 
V1 − ir1 ; similarly for battery 2.  Thus,  
 

V1T  = V1  – 1 2 1

1 2

( )r V V
r r R

+
+ +

,  V2T  = V2 – 1 2 1

1 2

( )r V V
r r R

+
+ +

  . 

 
The problem tells us that V1 and V2 each equal 1.20 V.  From the graph in Fig. 27-32(b) 
we see that V2T  = 0 and V1T  = 0.40 V for R = 0.10 Ω.  This supplies us (in view of the 
above relations for terminal voltages) with simultaneous equations, which, when solved, 
lead to r1 = 0.20 Ω. 
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(b) The simultaneous solution also gives r2 = 0.30 Ω. 
 
15. Let the emf be V. Then V = iR = i'(R + R'), where i = 5.0 A, i' = 4.0 A, and R' = 2.0 Ω. 
We solve for R: 

(4.0 A) (2.0 ) 8.0 .
5.0 A 4.0 A

i RR
i i
′ ′ Ω

= = = Ω
′− −

 

 
16. (a) Let the emf of the solar cell be ε and the output voltage be V. Thus, 
 

V ir V
R

r= − = − FHG
I
KJε ε  

for both cases. Numerically, we get  
 

0.10 V = ε – (0.10 V/500 Ω)r 
   0.15 V = ε – (0.15 V/1000 Ω)r. 

We solve for ε and r.   
 
(a) r = 1.0×103 Ω. 
 
(b) ε = 0.30 V. 
 
(c) The efficiency is 
 

( ) ( ) ( )
2

3
2 3 2

received

/ 0.15V 2.3 10 0.23%.
1000 5.0cm 2.0 10 W/cm

V R
P

−
−

= = × =
Ω ×

 

 
17. To be as general as possible, we refer to the individual emfs as ε1 and ε2 and wait 
until the latter steps to equate them (ε1 = ε2 = ε). The batteries are placed in series in such 
a way that their voltages add; that is, they do not “oppose” each other. The total 
resistance in the circuit is therefore Rtotal = R + r1 + r2 (where the problem tells us r1 > r2), 
and the “net emf” in the circuit is ε1 + ε2. Since battery 1 has the higher internal resistance, 
it is the one capable of having a zero terminal voltage, as the computation in part (a) 
shows. 
 
(a) The current in the circuit is 

i
r r R

=
+

+ +
ε ε1 2

1 2

,  

 
and the requirement of zero terminal voltage leads to 1 1irε = , or 
 

2 1 1 2

1

(12.0 V)(0.016 ) (12.0 V)(0.012 ) 0.0040 
12.0 V

r rR ε ε
ε
− Ω − Ω

= = = Ω . 
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Note that R = r1 – r2 when we set ε1 = ε2. 
 
(b) As mentioned above, this occurs in battery 1. 
 
18. The currents i1, i2 and i3 are obtained from Eqs. 27-18 through 27-20: 
 

1 2 3 2 3
1

1 2 2 3 1 3

1 3 2 1 2
2

1 2 2 3 1 3

( ) (4.0V)(10 5.0 ) (1.0V)(5.0 ) 0.275 A,
(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

( ) (4.0 V)(5.0 ) (1.0 V)(10 5.0 )
(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

R R Ri
R R R R R R

R R Ri
R R R R R R

ε ε

ε ε

+ − Ω + Ω − Ω
= = =

+ + Ω Ω + Ω Ω + Ω Ω

− + Ω − Ω + Ω
= = =

+ + Ω Ω + Ω Ω + Ω Ω

3 2 1

0.025 A,

0.025A 0.275A 0.250A .i i i= − = − = −

 

 
Vd – Vc can now be calculated by taking various paths. Two examples: from Vd – i2R2 = 
Vc we get  

Vd – Vc = i2R2 = (0.0250 A) (10 Ω) = +0.25 V; 
 
from Vd + i3R3 + ε2 = Vc we get  
 

Vd – Vc = i3R3 – ε2 = – (– 0.250 A) (5.0 Ω) – 1.0 V = +0.25 V. 
 
19. (a) Since Req < R, the two resistors (R = 12.0 Ω and Rx) must be connected in parallel: 
 

R R R
R R

R
R

x

x

x

x
eq = =

+
=

+
300

12 0
12 0

.
.

.
.Ω

Ω
Ω
b g  

 
We solve for Rx: Rx = ReqR/(R – Req) = (3.00 Ω)(12.0 Ω)/(12.0 Ω – 3.00 Ω) = 4.00 Ω. 
 
(b) As stated above, the resistors must be connected in parallel. 
 
20. Let the resistances of the two resistors be R1 and R2, with R1 < R2. From the 
statements of the problem, we have 
 

R1R2/(R1 + R2) = 3.0 Ω and R1 + R2 = 16 Ω. 
 
So R1 and R2 must be 4.0 Ω and 12 Ω, respectively. 
 
(a) The smaller resistance is R1 = 4.0 Ω. 
 
(b) The larger resistance is R2 = 12 Ω. 
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21. The potential difference across each resistor is V = 25.0 V. Since the resistors are 
identical, the current in each one is i = V/R = (25.0 V)/(18.0 Ω) = 1.39 A. The total 
current through the battery is then itotal = 4(1.39 A) = 5.56 A. One might alternatively use 
the idea of equivalent resistance; for four identical resistors in parallel the equivalent 
resistance is given by 

1 1 4
R R Req

= =∑ .  

 
When a potential difference of 25.0 V is applied to the equivalent resistor, the current 
through it is the same as the total current through the four resistors in parallel. Thus  
 

itotal = V/Req = 4V/R = 4(25.0 V)/(18.0 Ω) = 5.56 A. 
 
22. (a) Req (FH) = (10.0 Ω)(10.0 Ω)(5.00 Ω)/[(10.0 Ω)(10.0 Ω) + 2(10.0 Ω)(5.00 Ω)] = 
2.50 Ω. 
 
(b) Req (FG) = (5.00 Ω) R/(R + 5.00 Ω), where  
 

R = 5.00 Ω + (5.00 Ω)(10.0 Ω)/(5.00 Ω + 10.0 Ω) = 8.33 Ω. 
 
So Req (FG) = (5.00 Ω)(8.33 Ω)/(5.00 Ω + 8.33 Ω) = 3.13 Ω. 
 
23. Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 be the 
current in R2 and take it to be positive if it is upward.  
 
(a) When the loop rule is applied to the lower loop, the result is 
 

2 1 1 0i Rε − = . 
The equation yields 

i
R1

2

1

50 0 050= = =
ε . . V

100
 A.

Ω
 

 
(b) When it is applied to the upper loop, the result is 
 

ε ε ε1 2 3 2 2 0− − − =i R .  
The equation gives 
 

1 2 3
2

2

6.0 V 5.0 V 4.0 V 0.060 A
50

i
R

ε ε ε− − − −
= = = −

Ω
, 

 
or 2| | 0.060 A.i = The negative sign indicates that the current in R2 is actually downward.  
 
(c) If Vb is the potential at point b, then the potential at point a is Va = Vb + ε3 + ε2, so  
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Va – Vb = ε3 + ε2 = 4.0 V + 5.0 V = 9.0 V. 
 
24. We note that two resistors in parallel, R1 and R2, are equivalent to 
 

1 2
12

12 1 2 1 2

1 1 1 .R RR
R R R R R

= + ⇒ =
+

 

 
This situation consists of a parallel pair that are then in series with a single R3 = 2.50 Ω 
resistor. Thus, the situation has an equivalent resistance of 
 

eq 3 12
(4.00 ) (4.00 )2.50 4.50 .
4.00 4.00

R R R Ω Ω
= + = Ω + = Ω

Ω + Ω
 

 
25. Let r be the resistance of each of the narrow wires. Since they are in parallel the 
resistance R of the composite is given by 
 

1 9
R r

= ,  

 
or R = r/9. Now 24 /r dρ π=  and 24 /R Dρ π= , where ρ is the resistivity of copper. 
Note that A = πd 2/4 was used for the cross-sectional area of a single wire, and a similar 
expression was used for the cross-sectional area of the thick wire. Since the single thick 
wire is to have the same resistance as the composite, 
 

 2 2

4 4 3 .D d
D d
ρ ρ

π π
= ⇒ =

9
 

 
26. The part of R0 connected in parallel with R is given by R1 = R0x/L, where L = 10 cm. 
The voltage difference across R is then VR = εR'/Req, where R' = RR1/(R + R1) and  
 

Req = R0(1 – x/L) + R'. 
Thus, 
 

( )
( ) ( )

( )
( )

2 22
1 1 0

22
0 1 1 0

1001 ,
1 100 10

R
R

RR R R R x RVP
R R R x L RR R R R R x x

ε ε⎛ ⎞+
= = =⎜ ⎟⎜ ⎟− + + + −⎝ ⎠

 

 
where x is measured in cm. 
 
27. Since the potential differences across the two paths are the same, 1 2V V=  ( 1V  for the 
left path, and 2V  for the right path), we have 1 1 2 2i R i R= , where 1 2 5000 Ai i i= + = . With 

/R L Aρ=  (see Eq. 26-16), the above equation can be rewritten as 
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1 2 2 1( / )i d i h i i d h= ⇒ = . 
 
With / 0.400d h = , we get 1 3571 Ai =  and 2 1429 Ai = . Thus, the current through the 
person is 1 3571 Ai = , or approximately 3.6 kA . 
 
28. Line 1 has slope R1 = 6.0 kΩ.  Line 2 has slope R2 = 4.0 kΩ.  Line 3 has slope R3 = 
2.0 kΩ.  The parallel pair equivalence is R12 = R1R2/(R1+R2) = 2.4 kΩ.  That in series with 
R3 gives an equivalence of  
 

123 12 3 2.4 k 2.0 k 4.4 k .R R R= + = Ω + Ω = Ω  
 
The current through the battery is therefore 123/i Rε= = (6 V)/(4.4 kΩ) and the voltage 
drop across R3 is (6 V)(2 kΩ)/(4.4 kΩ) = 2.73 V.  Subtracting this (because of the loop 
rule) from the battery voltage leaves us with the voltage across R2.  Then Ohm’s law 
gives the current through R2: (6 V – 2.73 V)/(4 kΩ) = 0.82 mA . 
 
29. (a)  The parallel set of three identical R2 = 18 Ω resistors reduce to R= 6.0 Ω, which is 
now in series with the R1 = 6.0 Ω resistor at the top right, so that the total resistive load 
across the battery is R' = R1 + R = 12 Ω.  Thus, the current through R' is (12V)/R' = 1.0 A, 
which is the current through R.  By symmetry, we see one-third of that passes through 
any one of those 18 Ω resistors; therefore, i1 = 0.333 A. 
 
(b) The direction of  i1 is clearly rightward. 
 
(c) We use Eq. 26-27:  P = i2R' = (1.0 A)2(12 Ω) = 12 W.  Thus, in 60 s, the energy 
dissipated is (12 J/s)(60 s) = 720 J. 
 
30. Using the junction rule (i3 = i1 + i2) we write two loop rule equations: 
 

10.0 V – i1R1 – (i1 + i2) R3 = 0 
 

5.00 V – i2R2 – (i1 + i2) R3 = 0. 
 
(a) Solving, we find i2 = 0, and 
 
(b) i3 = i1 + i2 = 1.25 A (downward, as was assumed in writing the equations as we did). 
 
31. (a) We reduce the parallel pair of identical 2.0 Ω resistors (on the right side) to R' = 
1.0 Ω, and we reduce the series pair of identical 2.0 Ω resistors (on the upper left side) to 
R'' = 4.0 Ω. With R denoting the 2.0 Ω resistor at the bottom (between V2 and V1), we 
now have three resistors in series, which are equivalent to  
 

7.0R R R′ ′′+ + = Ω  
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across which the voltage is 7.0 V (by the loop rule, this is 12 V – 5.0 V), implying that 
the current is 1.0 A (clockwise). Thus, the voltage across R' is (1.0 A)(1.0 Ω) = 1.0 V, 
which means that (examining the right side of the circuit) the voltage difference between 
ground and V1 is 12 – 1 = 11 V. Noting the orientation of the battery, we conclude 

1 11 VV = − . 
 
(b) The voltage across R'' is (1.0 A)(4.0 Ω) = 4.0 V, which means that (examining the left 
side of the circuit) the voltage difference between ground and V2 is 5.0 + 4.0 = 9.0 V. 
Noting the orientation of the battery, we conclude V2 = –9.0 V. This can be verified by 
considering the voltage across R and the value we obtained for V1. 
 
32. (a) For typing convenience, we denote the emf of battery 2 as V2 and the emf of 
battery 1 as V1.   The loop rule (examining the left-hand loop) gives V2 + i1 R1  – V1 = 0.  
Since V1 is held constant while V2 and i1 vary, we see that this expression (for large 
enough V2) will result in a negative value for i1, so the downward sloping line (the line 
that is dashed in Fig. 27-43(b)) must represent i1.  It appears to be zero when V2 = 6 V.  
With i1  = 0, our loop rule gives V1 = V2, which implies that V1 = 6.0 V. 
 
(b) At V2 = 2 V (in the graph) it appears that i1 = 0.2 A.  Now our loop rule equation (with 
the conclusion about V1 found in part (a)) gives R1 = 20 Ω. 
 
(c) Looking at the point where the upward-sloping i2 line crosses the axis (at V2 = 4 V), 
we note that i1 = 0.1 A there and that the loop rule around the right-hand loop should give 
 

V1 – i1 R1 = i1 R2 
 
when  i1 = 0.1 A  and i2 = 0. This leads directly to R2 = 40 Ω. 
 
33. First, we note in V4, that the voltage across R4 is equal to the sum of the voltages 
across R5 and R6:  

V4 = i6(R5 +R6)= (1.40 A)(8.00 Ω + 4.00 Ω) = 16.8 V. 
 
The current through R4 is then equal to i4 = V4/R4 = 16.8 V/(16.0 Ω) = 1.05 A. 
 
By the junction rule, the current in R2 is  
 

i2 = i4 + i6 =1.05 A + 1.40 A = 2.45 A, 
 
so its voltage is V2 = (2.00 Ω)(2.45 A) = 4.90 V. 
 
The loop rule tells us the voltage across R3 is V3 = V2 + V4 = 21.7 V (implying that the 
current through it is i3 = V3/(2.00 Ω) = 10.85 A). 
 
The junction rule now gives the current in R1 as i1 = i2 + i3 = 2.45 A + 10.85 A = 13.3 A, 
implying that the voltage across it is V1 = (13.3 A)(2.00 Ω) = 26.6 V. Therefore, by the 
loop rule,  
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ε = V1 + V3 = 26.6 V + 21.7 V = 48.3 V. 
 
34. (a) By the loop rule, it remains the same.  This question is aimed at student 
conceptualization of voltage; many students apparently confuse the concepts of voltage 
and current and speak of “voltage going through” a resistor – which would be difficult to 
rectify with the conclusion of this problem. 
 
(b) The loop rule still applies, of course, but (by the junction rule and Ohm’s law) the 
voltages across R1 and R3 (which were the same when the switch was open) are no longer 
equal.  More current is now being supplied by the battery, which means more current is in 
R3, implying its voltage drop has increased (in magnitude).  Thus, by the loop rule (since 
the battery voltage has not changed) the voltage across R1 has decreased a corresponding 
amount.  When the switch was open, the voltage across R1 was 6.0 V (easily seen from 
symmetry considerations).  With the switch closed, R1 and R2 are equivalent (by Eq. 27-
24) to 3.0 Ω, which means the total load on the battery is 9.0 Ω.  The current therefore is 
1.33 A, which implies that the voltage drop across R3 is 8.0 V.  The loop rule then tells us 
that the voltage drop across R1 is 12 V – 8.0 V = 4.0 V.  This is a decrease of 2.0 volts 
from the value it had when the switch was open. 
 
35. (a) The symmetry of the problem allows us to use i2 as the current in both of the R2 
resistors and i1 for the R1 resistors. We see from the junction rule that i3 = i1 – i2. There 
are only two independent loop rule equations: 
 

( )
2 2 1 1

1 1 1 2 3

0
2 0

i R i R
i R i i R

ε
ε

− − =

− − − =
 

 
where in the latter equation, a zigzag path through the bridge has been taken. Solving, we 
find i1 = 0.002625 A, i2 = 0.00225 A and i3 = i1 – i2 = 0.000375 A. Therefore, VA – VB = 
i1R1 = 5.25 V. 
 
(b) It follows also that VB – VC = i3R3 = 1.50 V. 
 
(c) We find VC – VD = i1R1 = 5.25 V. 
 
(d) Finally, VA – VC = i2R2 = 6.75 V. 
 
36. (a) Using the junction rule (i1 = i2 + i3) we write two loop rule equations: 
 

ε

ε
1 2 2 2 3 1

2 3 3 2 3 1

0

0

− − + =

− − + =

i R i i R

i R i i R
b g
b g .

 

 
Solving, we find i2 = 0.0109 A (rightward, as was assumed in writing the equations as we 
did), i3 = 0.0273 A (leftward), and i1 = i2 + i3 = 0.0382 A (downward). 
 
(b) The direction is downward. See the results in part (a). 
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(c) i2 = 0.0109 A . See the results in part (a). 
 
(d) The direction is rightward. See the results in part (a). 
 
(e) i3 = 0.0273 A. See the results in part (a). 
 
(f) The direction is leftward. See the results in part (a). 
 
(g) The voltage across R1 equals VA: (0.0382 A)(100 Ω) = +3.82 V. 
 
37. The voltage difference across R3 is V3 = εR' /(R' + 2.00 Ω), where  
 

R' = (5.00 ΩR)/(5.00 Ω + R3). 
Thus, 
 

( )( )
( )

( )

22 22 2
3

3
3 3 3 3 3

2

3

2.00 5.001 1 1
2.00 1 2.00 5.00

RV RP
R R R R R R R

f R

ε ε ε

ε

−
⎡ ⎤Ω Ω +′⎛ ⎞ ⎛ ⎞

= = = = +⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′+ Ω + Ω Ω⎝ ⎠ ⎝ ⎠ ⎣ ⎦

≡

 

 
where we use the equivalence symbol ≡ to define the expression f(R3). To maximize P3 
we need to minimize the expression f(R3). We set 
 

( ) 2
3

2
3 3

4.00 49 0
25

df R
dR R

Ω
= − + =  

 

to obtain ( )( )2
3 4.00 25 49= 1.43 .R = Ω Ω  

 
38. (a) The voltage across R3 = 6.0 Ω is V3 = iR3= (6.0 A)(6.0 Ω) = 36 V.  Now, the 
voltage across R1 = 2.0 Ω is  

(VA – VB) – V3 = 78 − 36 = 42 V, 
 
which implies the current is i1 = (42 V)/(2.0 Ω) = 21 A.  By the junction rule, then, the 
current in R2 = 4.0 Ω is  

i2 = i1− i  = 21 A − 6.0 A = 15 A. 
 
The total power dissipated by the resistors is (using Eq. 26-27) 
 

2
1i (2.0 Ω) + 2

2i (4.0 Ω) + 2i (6.0 Ω) = 1998 W  ≈  2.0 kW. 
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By contrast, the power supplied (externally) to this section is PA = iA (VA − VB) where iA = 
i1 = 21 A.  Thus, PA = 1638 W.  Therefore, the "Box" must be providing energy. 
 
(b) The rate of supplying energy is (1998 − 1638 )W = 3.6×102 W. 
 
39. (a) The batteries are identical and, because they are connected in parallel, the 
potential differences across them are the same. This means the currents in them are the 
same. Let i be the current in either battery and take it to be positive to the left. According 
to the junction rule the current in R is 2i and it is positive to the right. The loop rule 
applied to either loop containing a battery and R yields 
 

2 0 .
2

ir iR i
r R

εε − − = ⇒ =
+

 

 
The power dissipated in R is 

P i R R
r R

= =
+

( )
( )

.2 4
2

2
2

2

ε  

 
We find the maximum by setting the derivative with respect to R equal to zero. The 
derivative is 

dP
dR r R

R
r R

r R
r R

=
+

−
+

=
−

+
4

2
16

2
4 2

2

2

3

2

3

2

3

ε ε ε
( ) ( )

( )
( )

.  

 
The derivative vanishes (and P is a maximum) if R = r/2. With r = 0.300 Ω, we have 

0.150 R = Ω .  
 
(b) We substitute R = r/2 into P = 4ε 2R/(r + 2R)2 to obtain 
 

2 2 2

max 2

4 ( / 2) (12.0 V) 240 W.
[ 2( / 2)] 2 2(0.300 )

rP
r r r

ε ε
= = = =

+ Ω
 

 
40. (a) By symmetry, when the two batteries are connected in parallel the current i going 
through either one is the same. So from ε = ir + (2i)R with r = 0.200 Ω and R = 2.00r, we 
get  

 2 2(12.0V)2 24.0 A.
2 0.200 2(0.400 )Ri i

r R
ε

= = = =
+ Ω + Ω

 

 
(b) When connected in series 2ε – iRr – iRr – iRR = 0, or iR = 2ε/(2r + R). The result is 
 

2 2(12.0V)2 30.0 A.
2 2(0.200 ) 0.400Ri i

r R
ε

= = = =
+ Ω + Ω

 

 
(c) They are in series arrangement, since R > r. 
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(d) If R = r/2.00, then for parallel connection, 
 

2 2(12.0V)2 60.0 A.
2 0.200 2(0.100 )Ri i

r R
ε

= = = =
+ Ω + Ω

 

 
(e) For series connection, we have  
 

2 2(12.0V)2 48.0 A.
2 2(0.200 ) 0.100Ri i

r R
ε

= = = =
+ Ω + Ω

 

 
(f) They are in parallel arrangement, since R < r. 
 
41. We first find the currents. Let i1 be the current in R1 and take it to be positive if it is to 
the right. Let i2 be the current in R2 and take it to be positive if it is to the left. Let i3 be 
the current in R3 and take it to be positive if it is upward. The junction rule produces 
 

i i i1 2 3 0+ + = .  
 
The loop rule applied to the left-hand loop produces 
 

1 1 1 3 3 0i R i Rε − + =  
 
and applied to the right-hand loop produces 
 

2 2 2 3 3 0.i R i Rε − + =  
 
We substitute i3 = –i2 – i1, from the first equation, into the other two to obtain 
 

1 1 1 2 3 1 3 0i R i R i Rε − − − =  
 
and 

2 2 2 2 3 1 3 0.i R i R i Rε − − − =  
 
Solving the above equations yield 
 

1 2 3 2 3
1

1 2 1 3 2 3

( ) (3.00 V)(2.00 5.00 ) (1.00 V)(5.00 ) 0.421 A.
(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R Ri
R R R R R R
ε ε+ − Ω + Ω − Ω

= = =
+ + Ω Ω + Ω Ω + Ω Ω

 
 

2 1 3 1 3
2

1 2 1 3 2 3

( ) (1.00 V)(4.00 5.00 ) (3.00 V)(5.00 ) 0.158 A.
(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R Ri
R R R R R R
ε ε+ − Ω + Ω − Ω

= = = −
+ + Ω Ω + Ω Ω + Ω Ω
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2 1 1 2

3
1 2 1 3 2 3

(1.00 V)(4.00 ) (3.00 V)(2.00 ) 0.263 A.
(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R Ri
R R R R R R

ε ε+ Ω + Ω
= − = − = −

+ + Ω Ω + Ω Ω + Ω Ω
 
Note that the current i3 in R3 is actually downward and the current i2 in R2 is to the right. 
The current i1 in R1 is to the right.  
 
(a) The power dissipated in R1 is ( ) ( )22

1 1 1 0.421A 4.00 0.709 W.P i R= = Ω =  
 
(b) The power dissipated in R2 is 2 2

2 2 2 ( 0.158A) (2.00 ) 0.0499 W 0.050 W.P i R= = − Ω = ≈  
 
(c) The power dissipated in R3 is ( ) ( )22

3 3 3 0.263A 5.00 0.346 W.P i R= = − Ω =  
 
(d) The power supplied by ε1 is i3ε1 = (0.421 A)(3.00 V) = 1.26 W. 
 
(e) The power “supplied” by ε2 is i2ε2 = (–0.158 A)(1.00 V) = –0.158 W. The negative 
sign indicates that ε2 is actually absorbing energy from the circuit. 
 
42. The equivalent resistance in Fig. 27-52 (with n parallel resistors) is  
 

 eq
1R nR R R

n n
+⎛ ⎞= + = ⎜ ⎟

⎝ ⎠
 . 

 
The current in the battery in this case should be  
 

battery battery

eq 1n

V Vni
R n R

= =
+

. 

 
If there were n +1 parallel resistors, then  
 

battery battery
1

eq

1
2n

V Vni
R n R+

+
= =

+
 . 

 
For the relative increase to be 0.0125 ( = 1/80 ), we require 
 

in+ 1 – in
 in  =  

 in+ 1 
 in   – 1 =  ( 1) /( 2) 1

/( 1)
n n

n n
+ +

−
+

 =  
1

80  . 

 
This leads to the second-degree equation   
 

n2 + 2n – 80  = (n + 10)(n – 8) = 0. 
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Clearly the only physically interesting solution to this is n = 8. Thus, there are eight 
resistors in parallel (as well as that resistor in series shown toward the bottom) in Fig. 27-
52. 
 
43. Let the resistors be divided into groups of n resistors each, with all the resistors in the 
same group connected in series. Suppose there are m such groups that are connected in 
parallel with each other. Let R be the resistance of any one of the resistors. Then the 
equivalent resistance of any group is nR, and Req, the equivalent resistance of the whole 
array, satisfies 

1 1
1R nR

m
nR

m

eq

= =∑ .  

 
Since the problem requires Req = 10 Ω = R, we must select n = m. Next we make use of 
Eq. 27-16. We note that the current is the same in every resistor and there are n · m = n2 
resistors, so the maximum total power that can be dissipated is Ptotal = n2P, where 

1.0 WP =  is the maximum power that can be dissipated by any one of the resistors. The 
problem demands Ptotal ≥ 5.0P, so n2 must be at least as large as 5.0. Since n must be an 
integer, the smallest it can be is 3. The least number of resistors is n2 = 9. 
 
44. (a) Resistors R2, R3, and R4 are in parallel. By finding a common denominator and 
simplifying, the equation 1/R = 1/R2 + 1/R3 + 1/R4 gives an equivalent resistance of 
 

2 3 4

2 3 2 4 3 4

(50.0 )(50.0 )(75.0 )
(50.0 )(50.0 ) (50.0 )(75.0 ) (50.0 )(75.0 )

18.8 .

R R RR
R R R R R R

Ω Ω Ω
= =

+ + Ω Ω + Ω Ω + Ω Ω
= Ω

 

 
Thus, considering the series contribution of resistor R1, the equivalent resistance for the 
network is Req = R1 + R = 100 Ω + 18.8 Ω = 118.8 Ω ≈ 119 Ω. 
 
(b) i1 = ε/Req = 6.0 V/(118.8 Ω) = 5.05 × 10–2 A.  
 
(c) i2 = (ε – V1)/R2 = (ε – i1R1)/R2 = [6.0V – (5.05 × 10–2 A)(100Ω)]/50 Ω = 1.90 × 10–2 A.  
 
(d) i3 = (ε – V1)/R3 = i2R2/R3 = (1.90 × 10–2 A)(50.0 Ω/50.0 Ω) = 1.90 × 10–2 A.  
 
(e) i4 = i1 – i2 – i3 = 5.05 × 10–2 A – 2(1.90 × 10–2 A) = 1.25 × 10–2 A. 
 
45. (a) We note that the R1 resistors occur in series pairs, contributing net resistance 2R1 
in each branch where they appear. Since ε2 = ε3 and R2 = 2R1, from symmetry we know 
that the currents through ε2 and ε3 are the same: i2 = i3 = i. Therefore, the current through 
ε1 is i1 = 2i. Then from Vb – Va = ε2 – iR2 = ε1 + (2R1)(2i) we get 
 

( )
2 1

1 2

4.0 V 2.0 V 0.33A.
4 4 1.0 2.0

i
R R
ε ε− −

= = =
+ Ω + Ω

 



 

  

1075

 
Therefore, the current through ε1 is i1 = 2i = 0.67 A. 
 
(b) The direction of i1 is downward.  
 
(c) The current through ε2 is i2 = 0.33 A. 
 
(d) The direction of i2 is upward. 
 
(e) From part (a), we have i3 = i2 = 0.33 A. 
 
(f) The direction of i3 is also upward. 
 
(g) Va – Vb = –iR2 + ε2 = –(0.333 A)(2.0 Ω) + 4.0 V = 3.3 V. 
 
46. (a) When R3 = 0 all the current passes through R1 and R3 and avoids R2 altogether.  
Since that value of the current (through the battery) is 0.006 A (see Fig. 27-55(b)) for R3 
= 0 then (using Ohm’s law)  
 

R1 = (12 V)/(0.006 A) =  2.0×103 Ω. 
 
(b) When R3 = ∞  all the current passes through R1 and R2 and avoids R3 altogether.  Since 
that value of the current (through the battery) is 0.002 A (stated in problem) for R3 = ∞ 
then (using Ohm’s law)  
 

R2 = (12 V)/(0.002 A) – R1  =  4.0×103 Ω. 
 
47. (a) The copper wire and the aluminum sheath are connected in parallel, so the 
potential difference is the same for them. Since the potential difference is the product of 
the current and the resistance, iCRC = iARA, where iC is the current in the copper, iA is the 
current in the aluminum, RC is the resistance of the copper, and RA is the resistance of the 
aluminum. The resistance of either component is given by R = ρL/A, where ρ is the 
resistivity, L is the length, and A is the cross-sectional area. The resistance of the copper 
wire is RC = ρCL/πa2, and the resistance of the aluminum sheath is RA = ρAL/π(b2 – a2). 
We substitute these expressions into iCRC = iARA, and cancel the common factors L and π 
to obtain 

2 2 2 .C C A Ai i
a b a
ρ ρ

=
−

 

 
We solve this equation simultaneously with i = iC + iA, where i is the total current. We 
find 

i r i
r r rC

C C

A C C C A

=
− +

2

2 2 2

ρ
ρ ρc h  

and 
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i
r r i

r r rA
A C C

A C C C A

=
−

− +

2 2

2 2 2

c h
c h

ρ

ρ ρ
.  

 
The denominators are the same and each has the value 
 

b a aC A
2 2 2 3 2 3 2 8

3 2 8

15 3

0 380 10 0 250 10 169 10

0 250 10 2 75 10

310 10

− + = × − × × ⋅

+ × × ⋅

= × ⋅

− − −

− −

−

c h c h c h c h
c h c h

ρ ρ . . .

. .

. .

m m m

m m

m

Ω

Ω

Ω

 

 
Thus, 

iC =
× × ⋅

× ⋅
=

− −

−

0 250 10 2 75 10 2 00
310 10

111
3 2 8

15

. . .
.

.
m m A

m
A3

c h c hb gΩ

Ω
. 

 
(b) Similarly, 
 

( ) ( ) ( ) ( )2 23 3 8

15 3

0.380 10 m 0.250 10 m 1.69 10 m 2.00A
0.893A.

3.10 10 mAi
− − −

−

⎡ ⎤× − × × Ω⋅⎢ ⎥⎣ ⎦= =
× Ω⋅

 

 
(c) Consider the copper wire. If V is the potential difference, then the current is given by 
V = iCRC = iCρCL/πa2, so 
 

( )( ) ( )
( )( )

232

8

0.250 10 m 12.0 V
126 m.

1.11 A 1.69 10 mC C

a VL
i
π

ρ

−

−

π ×
= = =

× Ω⋅
 

 
48. (a) We use P = ε 2/Req, where 
 

( )( )
( )( ) ( ) ( )eq

12.0 4.00
7.00 .

12.0 4.0 12.0 4.00
R

R
R R

Ω Ω
= Ω +

Ω Ω + Ω + Ω
 

 
Put P = 60.0 W and ε = 24.0 V and solve for R: R = 19.5 Ω. 
 
(b) Since P ∝ Req, we must minimize Req, which means R = 0. 
 
(c) Now we must maximize Req, or set R = ∞. 
 
 
(d) Since Req, min = 7.00 Ω, Pmax = ε 2/Req, min = (24.0 V)2/7.00 Ω = 82.3 W. 
 
(e) Since Req, max = 7.00 Ω + (12.0 Ω)(4.00 Ω)/(12.0 Ω + 4.00 Ω) = 10.0 Ω, 
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Pmin = ε 2/Req, max = (24.0 V)2/10.0 Ω = 57.6 W. 

 
49. (a) The current in R1 is given by 
 

i
R R R R R1

1 2 3 2 3

5 0
4 0 6 0 4 0 6 0

114=
+ +

=
+ +

=
ε
/

.
( . ) ( . ) / ( . . )

.b g
V

2.0
A.

Ω Ω Ω Ω Ω
 

 
Thus, 

i V
R

i R
R3

1

3

1 1

3

50 114 2 0
6 0

0 45=
−

=
−

=
−

=
ε ε . ( . ( . )

.
.V A) A.Ω

Ω
 

 
(b) We simply interchange subscripts 1 and 3 in the equation above. Now 
 

( )( ) ( )( ) ( )( )3
3 2 1 2 1

5.0V 0.6818A
/ 6.0 2.0 4.0 / 2.0 4.0

i
R R R R R

ε
= = =

+ + Ω + Ω Ω Ω + Ω
 

and 

i1
50 0 6818

2 0
0 45=

−
=

. .
.

.
V A 6.0

A,b gb gΩ
Ω

 

 
the same as before. 
 
50. Note that there is no voltage drop across the ammeter. Thus, the currents in the 
bottom resistors are the same, which we call i (so the current through the battery is 2i and 
the voltage drop across each of the bottom resistors is iR). The resistor network can be 
reduced to an equivalence of 

R
R R
R R

R R
R R

Req =
+

+
+

=
2
2

7
6

b gb g b gb g  

 
which means that we can determine the current through the battery (and also through 
each of the bottom resistors): 

eq eq

32 .
2 2(7 / 6) 7

i i
R R R R
ε ε ε ε

= ⇒ = = =  

 
By the loop rule (going around the left loop, which includes the battery, resistor 2R, and 
one of the bottom resistors), we have 
 

( )2 22 0 .
2R R

iRi R iR i
R

εε −
− − = ⇒ =  

 
Substituting i = 3ε/7R, this gives i2R = 2ε/7R. The difference between i2R and i is the 
current through the ammeter. Thus, 
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ammeter
ammeter 2

3 2 1     0.143.
7 7 7 / 7R

ii i i
R R R R
ε ε ε

ε
= − = − = ⇒ = =  

 
51. Since the current in the ammeter is i, the voltmeter reading is  
 

V’ =V+ i RA= i (R + RA), 
 
or R = /V i′  – RA = R' – RA, where /R V i′ ′=  is the apparent reading of the resistance. 
Now, from the lower loop of the circuit diagram, the current through the voltmeter is 

eq 0/( )Vi R Rε= + , where 
  

( ) ( )( )
eq

eq

300 85.0 3.001 1 1     68.0 .
300 85.0 3.00

V A

V A V A

R R R
R

R R R R R R R
+ Ω Ω + Ω

= + ⇒ = = = Ω
+ + + Ω + Ω + Ω

 

 
The voltmeter reading is then  
 

 eq
eq

eq 0

(12.0 V)(68.0 ) 4.86 V.
68.0 100V

R
V i R

R R
ε Ω′ = = = =

+ Ω + Ω
 

(a) The ammeter reading is  
 

4.86 V 0.0552 A.
85.0 3.00A

Vi
R R

′
= = =

+ Ω + Ω
 

 
(b) As shown above, the voltmeter reading is 4.86 V.V ′ =  
 
(c) /R V i′ ′=  = 4.86 V/(5.52 × 10–2 A) = 88.0 Ω. 
 
(d) Since AR R R′= − , if RA is decreased, the difference between R′  and R decreases. In 
fact, when RA = 0, .R R′ =   
 
52. (a) Since i = ε/(r + Rext) and imax = ε/r, we have Rext = R(imax/i – 1) where r = 1.50 
V/1.00 mA = 1.50 × 103 Ω. Thus,  
 
 3 4

ext (1.5 10 )(1/ 0.100 1) 1.35 10R = × Ω − = × Ω . 
 
(b) 3 3

ext (1.5 10 )(1/ 0.500 1) 1.5 10R = × Ω − = × Ω . 
 
(c) 3

ext (1.5 10 )(1/ 0.900 1) 167R = × Ω − = Ω . 
 
(d) Since r = 20.0 Ω + R, R = 1.50 × 103 Ω – 20.0 Ω = 1.48 × 103 Ω. 
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53. The current in R2 is i. Let i1 be the current in R1 and take it to be downward. 
According to the junction rule the current in the voltmeter is i – i1 and it is downward. We 
apply the loop rule to the left-hand loop to obtain 
 

ε − − − =iR i R ir2 1 1 0.  
 
We apply the loop rule to the right-hand loop to obtain 
 

i R i i RV1 1 1 0− − =b g .  
 
The second equation yields 

i R R
R

iV

V

=
+1

1.  

 
We substitute this into the first equation to obtain 
 

ε −
+ +

+ =
R r R R

R
i R iV

V

2 1
1 1 1 0b gb g .  

This has the solution 

i R
R r R R R R

V

V V
1

2 1 1

=
+ + +

ε
b gb g .  

 
The reading on the voltmeter is 
 

( ) ( )
( ) ( ) ( )

( )( ) ( )( )
3

1
1 1 3 3

2 1 1

3.0V 5.0 10 250

300 100 250 5.0 10 250 5.0 10

1.12 V.

V

V V

R Ri R
R r R R R R

ε × Ω Ω
= =

+ + + Ω + Ω Ω + × Ω + Ω × Ω

=
 

The current in the absence of the voltmeter can be obtained by taking the limit as RV 
becomes infinitely large. Then 
 

( )( )1
1 1

1 2

3.0V 250
1.15V.

250 300 100
Ri R

R R r
ε Ω

= = =
+ + Ω + Ω + Ω

 

 
The fractional error is (1.12 – 1.15)/(1.15) = –0.030, or –3.0%. 
 
54. (a) ε = V + ir = 12 V + (10.0 A) (0.0500 Ω) = 12.5 V. 
 
(b) Now ε = V' + (imotor + 8.00 A)r, where  
 

V' = i'ARlight = (8.00 A) (12.0 V/10 A) = 9.60 V.  
Therefore, 
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motor
12.5V 9.60V8.00A 8.00A 50.0A.

0.0500
Vi

r
ε ′− −

= − = − =
Ω

 

 
55. Let i1 be the current in R1 and R2, and take it to be positive if it is toward point a in R1. 
Let i2 be the current in Rs and Rx, and take it to be positive if it is toward b in Rs. The loop 
rule yields (R1 + R2)i1 – (Rx + Rs)i2 = 0. Since points a and b are at the same potential, 
i1R1 = i2Rs. The second equation gives i2 = i1R1/Rs, which is substituted into the first 
equation to obtain 

( ) ( ) 21
1 2 1 1

1

.s
x s x

s

R RRR R i R R i R
R R

+ = + ⇒ =  

 
56. The currents in R and RV are i and i' – i, respectively. Since V = iR = (i' – i)RV we 
have, by dividing both sides by V, 1 = (i' /V – i/V)RV = (1/R' – 1/R)RV. Thus, 
 

1 1 1    .V

V V

RRR
R R R R R

′= − ⇒ =
′ +

 

 

The equivalent resistance of the circuit is eq 0 0
V

A A
V

RRR R R R R R
R R

′= + + = + +
+

. 

 
(a) The ammeter reading is 
 

( ) ( ) ( ) ( )eq 0

2

12.0V
3.00 100 300 85.0 300 85.0

7.09 10 A.
A V V

i
R R R R R R R
ε ε

−

′ = = =
+ + + Ω + Ω + Ω Ω Ω + Ω

= ×

 

 
(b) The voltmeter reading is  
 

V =ε – i' (RA + R0) = 12.0 V – (0.0709 A) (103.00 Ω) = 4.70 V. 
 
(c) The apparent resistance is R' = V/i' = 4.70 V/(7.09 × 10–2 A) = 66.3 Ω.  
 
(d) If RV is increased, the difference between R and R′  decreases. In fact, R R′ →  as 

VR → ∞ . 
 
57. Here we denote the battery emf as V.  Then the requirement stated in the problem that 
the resistor voltage be equal to the capacitor voltage becomes iR = Vcap, or 
 

Ve−t /RC = V(1 − e−t/RC) 
 
where Eqs. 27-34 and 27-35 have been used.  This leads to t = RC ln2, or  t =  0.208 ms. 
 
58. (a) τ = RC = (1.40 × 106 Ω)(1.80 × 10–6 F) = 2.52 s. 



 

  

1081

 
(b) qo = εC = (12.0 V)(1.80 μ F) = 21.6 μC. 
 
(c) The time t satisfies q = q0(1 – e–t/RC), or 
 

( )0

0

21.6 Cln 2.52s ln 3.40s.
21.6 C 16.0 C

qt RC
q q

μ
μ μ

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

 

 
59. During charging, the charge on the positive plate of the capacitor is given by 
 

q C e t= − −ε τ1c h,  
 
where C is the capacitance, ε is applied emf, and τ = RC is the capacitive time constant. 
The equilibrium charge is qeq = Cε. We require q = 0.99qeq = 0.99Cε, so 
 

0 99 1. .= − −e t τ  
 
Thus, e t− =τ 0 01. .  Taking the natural logarithm of both sides, we obtain t/τ = – ln 0.01 = 
4.61 or t = 4.61τ. 
 
60. (a) We use q = q0e–t/τ, or t = τ ln (q0/q), where τ = RC is the capacitive time constant. 
Thus,  

0 1/3
1/3

0

3ln ln 0.41 0.41.
2 / 3 2

q tt
q

τ τ τ
τ

⎛ ⎞ ⎛ ⎞= = = ⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 

(b) 0 2/3
2 /3

0

ln ln3 1.1 1.1.
/ 3

q tt
q

τ τ τ
τ

⎛ ⎞
= = = ⇒ =⎜ ⎟

⎝ ⎠
 

 
61. (a) The voltage difference V across the capacitor is V(t) = ε(1 – e–t/RC). At t = 1.30 μs 
we have V(t) = 5.00 V, so 5.00 V = (12.0 V)(1 – e–1.30 μs/RC), which gives  
 

τ = (1.30 μ s)/ln(12/7) = 2.41 μs. 
 
(b) The capacitance is C = τ/R = (2.41 μs)/(15.0 kΩ) = 161 pF. 
 
62. The time it takes for the voltage difference across the capacitor to reach VL is given 
by V eL

t RC= − −ε 1c h . We solve for R: 
 

R t
C VL

=
−

=
× −

= ×
−ln

.
. ln . . .

.
ε εb g c h b g

0500
0150 10 950 950 72 0

2 35 10
6

6s
F V V V

Ω  

 
where we used t = 0.500 s given (implicitly) in the problem. 
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63. At t = 0 the capacitor is completely uncharged and the current in the capacitor branch 
is as it would be if the capacitor were replaced by a wire. Let i1 be the current in R1 and 
take it to be positive if it is to the right. Let i2 be the current in R2 and take it to be 
positive if it is downward. Let i3 be the current in R3 and take it to be positive if it is 
downward. The junction rule produces i i i1 2 3= + ,  the loop rule applied to the left-hand 
loop produces 

ε − − =i R i R1 1 2 2 0 ,  
 
and the loop rule applied to the right-hand loop produces 
 

i R i R2 2 3 3 0− = .  
 
Since the resistances are all the same we can simplify the mathematics by replacing R1, 
R2, and R3 with R.  
 
(a) Solving the three simultaneous equations, we find 
 

i
R1

3

6
32

3
2 12 10

3 0 73 10
11 10= =

×

×
= × −ε .

.
.

V
A

c h
c hΩ

, 

 

(b) 
( )

3
4

2 6

1.2 10 V 5.5 10 A,
3 3 0.73 10

i
R
ε −×

= = = ×
× Ω

 and 

 
(c) 4

3 2 5.5 10 A.i i −= = ×  
 

At t = ∞ the capacitor is fully charged and the current in the capacitor branch is 0. Thus, 
i1 = i2, and the loop rule yields 
 

ε − − =i R i R1 1 1 2 0 . 
 
(d) The solution is 

( )
3

4
1 6

1.2 10 V 8.2 10 A.
2 2 0.73 10

i
R

ε −×
= = = ×

× Ω
 

 
(e) 4

2 1 8.2 10 A.i i −= = ×  
 
(f) As stated before, the current in the capacitor branch is i3 = 0. 
 
We take the upper plate of the capacitor to be positive. This is consistent with current 
flowing into that plate. The junction equation is i1 = i2 + i3, and the loop equations are 
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1 2

3 2

0

0 .

i R i R

q i R i R
C

ε − − =

− − + =
 

 
We use the first equation to substitute for i1 in the second and obtain ε – 2i2R – i3R = 0. 
Thus i2 = (ε – i3R)/2R. We substitute this expression into the third equation above to 
obtain  

–(q/C) – (i3R) + (ε/2) – (i3R/2) = 0. 
 
Now we replace i3 with dq/dt to obtain 
 

3
2 2
R dq

dt
q
C

+ =
ε .  

 
This is just like the equation for an RC series circuit, except that the time constant is τ = 
3RC/2 and the impressed potential difference is ε/2. The solution is 
 

q C e t RC= − −ε
2

1 2 3c h .  

 
The current in the capacitor branch is 
 

2 3
3 ( ) .

3
t RCdqi t e

dt R
ε −= =  

 
The current in the center branch is 
 

( )2 3 2 33
2 ( ) 3

2 2 2 6 6
t RC t RCii t e e

R R R R
ε ε ε ε− −= − = − = −  

 
and the potential difference across R2 is 
 

( )2 3
2 2( ) 3 .

6
t RCV t i R eε −= = −  

 
(g) For 2 30, 1t RCt e−= =  and  ( )3 2

2 3 1.2 10 V 3 4.0 10 VV ε= = × = × . 
 
(h) For 2 3, 0t RCt e−= ∞ →  and ( )3 2

2 2 1.2 20 V 2 6.0 10 VV ε= = × = × . 
 
(i) A plot of V2 as a function of time is shown in the following graph. 
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64. (a) The potential difference V across the plates of a capacitor is related to the charge q 
on the positive plate by V = q/C, where C is capacitance. Since the charge on a 
discharging capacitor is given by q = q0 e–t/τ, this means V = V0 e–t/τ where V0 is the initial 
potential difference. We solve for the time constant τ by dividing by V0 and taking the 
natural logarithm: 

τ = − = − =
t

V Vln
s

ln V V
s.

0

10 0
100 100

217b g b g b g
.

.
.    

 
(b) At t = 17.0 s, t/τ = (17.0 s)/(2.17 s) = 7.83, so 
 

V V e et= = = ×− − −
0

7 83 2100 396 10τ V Vb g . . .  
 
65. In the steady state situation, the capacitor voltage will equal the voltage across R2 = 
15 kΩ: 

( )0 2
1 2

20.0V15.0 k 12.0V.
10.0 k 15.0 k

V R
R R

ε ⎛ ⎞
= = Ω =⎜ ⎟+ Ω + Ω⎝ ⎠

 

 
Now, multiplying Eq. 27-39 by the capacitance leads to V = V0e–t/RC describing the 
voltage across the capacitor (and across R2 = 15.0 kΩ) after the switch is opened (at t = 0). 
Thus, with t = 0.00400 s, we obtain 
 

V e= =
− × −

12 6160 004 15000 0 4 10 6b g b ge j. . . V.  
 
Therefore, using Ohm’s law, the current through R2 is 6.16/15000 = 4.11 × 10–4 A. 
 
66. We apply Eq. 27-39 to each capacitor, demand their initial charges are in a ratio of 
3:2 as described in the problem, and solve for the time. With 
 

6 4
1 1 1

6 5
2 2 2

(20.0 )(5.00 10 F) 1.00 10 s

(10.0 )(8.00 10 F) 8.00 10 s ,

R C

R C

τ

τ

− −

− −

= = Ω × = ×

= = Ω × = ×
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we obtain 
 

 4
1 1 4 1 4 1

2 1

ln(3 / 2) ln(3 / 2) 1.62 10 s
1.25 10 s 1.00 10 s

t
τ τ

−
− − − −= = = ×

− × − ×
. 

 
67. The potential difference across the capacitor varies as a function of time t as 

/
0( ) t RCV t V e−= . Using V = V0/4 at t = 2.0 s, we find 

 

R t
C V V

= =
×

= ×
−ln
s

2.0 10 F ln40
6

52 0 7 2 10b g c h
. . .Ω  

 
68. (a) The initial energy stored in a capacitor is given by 2

0 / 2 ,CU q C= where C is the 
capacitance and q0 is the initial charge on one plate. Thus 
 

q CUC0
6 32 2 10 10 0 50 10 10= = × = ×− −. . .F J C .c hb g  

 
(b) The charge as a function of time is given by q q e t= −

0
τ , where τ is the capacitive time 

constant. The current is the derivative of the charge 
 

0 ,tqdqi e
dt

τ

τ
−= − =  

 
and the initial current is i0 = q0/τ. The time constant is  
 

RCτ = = ( )( )6 61.0 10 F 1.0 10 1.0 s−× × Ω = . 
 
Thus i0

3 310 10 10 10 10= × = ×− −. . .C s Ac h b g . 
 
(c) We substitute 0

tq q e τ−=  into VC = q/C to obtain 
 

( )
3

1.0 s 3 1.00
6

1.0 10 C 1.0 10 V ,
1.0 10 F

t t t
C

qV e e e
C

τ
−

− − −
−

⎛ ⎞×
= = = ×⎜ ⎟×⎝ ⎠

 

 
where t is measured in seconds.  
 
(d) We substitute i q e t= −

0 τ τb g  into VR = iR to obtain  
 

( )( ) ( )
3 6

1.0 s 3 1.00
1.0 10 C 1.0 10

1.0 10 V ,
1.0s

t t t
R

q RV e e eτ

τ

−
− − −

× × Ω
= = = ×  
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where t is measured in seconds. 
 
(e) We substitute  i q e t= −

0 τ τb g  into P i R= 2  to obtain 
 

( ) ( )
( )

( )
23 62

2 2 1.0 s 2.00
22

1.0 10 C 1.0 10
1.0 W ,

1.0s
t t tq RP e e eτ

τ

−
− − −

× × Ω
= = =  

 
where t is again measured in seconds. 
 
69. (a) The charge on the positive plate of the capacitor is given by 
 

q C e t= − −ε τ1c h,  
 
where ε is the emf of the battery, C is the capacitance, and τ is the time constant. The 
value of τ is  

τ = RC = (3.00 × 106 Ω)(1.00 × 10–6 F) = 3.00 s. 
 
At t = 1.00 s, t/τ = (1.00 s)/(3.00 s) = 0.333 and the rate at which the charge is increasing 
is 

( )( )6
0.333 7

1.00 10 F 4.00V
9.55 10 C s.

3.00s
tdq C e e

dt
τε

τ

−
− − −

×
= = = ×  

 

(b) The energy stored in the capacitor is given by 
2

,
2C
qU
C

=  and its rate of change is 

 
dU
dt

q
C

dq
dt

C = .  

Now 
q C e et= − = × − = ×− − − −ε τ1 100 10 4 00 1 113 106 0 333 6c h c hb gc h. . ..V C,  

 
so 

( )
6

7 6
6

1.13 10 C 9.55 10 C s 1.08 10 W.
1.00 10 F

CdU q dq
dt C dt

−
− −

−

⎛ ⎞×
= = × = ×⎜ ⎟×⎝ ⎠

 

 
(c) The rate at which energy is being dissipated in the resistor is given by P = i2R. The 
current is 9.55 × 10–7 A, so 
 

P = × × = ×− −9 55 10 300 10 2 74 107 2 6 6. . .A W.c h c hΩ  
 
(d) The rate at which energy is delivered by the battery is 
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iε = × = ×− −9 55 10 4 00 382 107 6. . .A V W.c hb g  

 
The energy delivered by the battery is either stored in the capacitor or dissipated in the 
resistor. Conservation of energy requires that iε = (q/C) (dq/dt) + i2R. Except for some 
round-off error the numerical results support the conservation principle. 
 
70. (a) From symmetry we see that the current through the top set of batteries (i) is the 
same as the current through the second set. This implies that the current through the R = 
4.0 Ω resistor at the bottom is iR = 2i. Thus, with r denoting the internal resistance of each 
battery (equal to 4.0 Ω) and ε denoting the 20 V emf, we consider one loop equation (the 
outer loop), proceeding counterclockwise: 
 

3 2 0ε − − =ir i Rb g b g .  
 
This yields i = 3.0 A. Consequently, iR = 6.0 A. 
 
(b) The terminal voltage of each battery is ε – ir = 8.0 V. 
 
(c) Using Eq. 27-17, we obtain P = iε = (3)(20) = 60 W. 
 
(d) Using Eq. 26-27, we have P = i2r = 36 W. 
 
71. (a) If S1 is closed, and S2 and S3 are open, then  ia = ε/2R1 = 120 V/40.0 Ω = 3.00 A. 
 
(b) If S3 is open while S1 and S2 remain closed, then   
 

Req = R1 + R1 (R1 + R2) /(2R1 + R2) = 20.0 Ω + (20.0 Ω) × (30.0 Ω)/(50.0 Ω) = 32.0 Ω, 
 
so ia = ε/Req = 120 V/32.0 Ω = 3.75 A. 
 
(c) If all three switches S1, S2, and S3 are closed, then Req = R1 + R1 R'/(R1 + R') where  
 

R' = R2 + R1 (R1 + R2)/(2R1 + R2) = 22.0 Ω, 
that is,  

Req = 20.0 Ω + (20.0 Ω) (22.0 Ω)/(20.0 Ω + 22.0 Ω) = 30.5 Ω, 
 
so ia = ε/Req = 120 V/30.5 Ω = 3.94 A. 
 
72. (a)  The four resistors R1, R2, R3, and R4 on the left reduce to  
 

 3 41 2
eq 12 34

1 2 3 4

7.0 3.0 10R RR RR R R
R R R R

= + = + = Ω + Ω = Ω
+ +

. 
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With 30 Vε = across Req the current there is i2 = 3.0 A. 
 
(b) The three resistors on the right reduce to  
 

5 6
eq 56 7 7

5 6

(6.0 )(2.0 ) 1.5 3.0
6.0 2.0

R RR R R R
R R

Ω Ω′ = + = + = + Ω = Ω
+ Ω + Ω

. 

 
With 30 Vε =  across eqR′ the current there is i4 = 10 A. 
 
(c) By the junction rule, i1 = i2 + i4 = 13 A. 
 
(d) By symmetry, i3 = 12 i2 = 1.5 A. 
 
(e) By the loop rule (proceeding clockwise), 
 

30V – i4(1.5 Ω) – i5(2.0 Ω)  =  0 
 
readily yields i5 = 7.5 A. 
 
73. (a) The magnitude of the current density vector is 
 

( ) ( )
( )

( )( )23
1 2 1 2

27

4 60.0V4V

0.127 0.729 2.60 10 m

1.32 10 A m .

A
i VJ
A R R A R R Dπ π

2 −
= = = =

+ + Ω + Ω ×

= ×

 

 
(b) VA = V R1/(R1 + R2) = (60.0 V)(0.127 Ω)/(0.127 Ω + 0.729 Ω) = 8.90 V.  
 
(c) The resistivity of wire A is  
 

2 3 2
8(0.127 )(2.60 10 m) 1.69 10 m .

4 4(40.0m)
A A

A
A A

R A R D
L L

π πρ
−

−Ω ×
= = = = × Ω⋅  

 
So wire A is made of copper. 
 
(d) 271.32 10 A m .B AJ J= = ×  
 
(e) VB = V – VA = 60.0 V – 8.9 V = 51.1 V. 
 
(f) The resistivity of wire B is ρ B = × ⋅−9 68 10 8. Ω m, so wire B is made of iron. 
 
74. The resistor by the letter i is above three other resistors; together, these four resistors 
are equivalent to a resistor R = 10 Ω (with current i). As if we were presented with a 
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maze, we find a path through R that passes through any number of batteries (10, it turns 
out) but no other resistors, which — as in any good maze — winds “all over the place.” 
Some of the ten batteries are opposing each other (particularly the ones along the outside), 
so that their net emf is only ε = 40 V.  
 
(a) The current through R is then i = ε/R = 4.0 A. 
 
(b) The direction is upward in the figure. 
 
75. (a) In the process described in the problem, no charge is gained or lost. Thus, q = 
constant. Hence,  

( ) 31
1 1 2 2 2 1

2

150200 3.0 10 V.
10

Cq C V C V V V
C

⎛ ⎞= = ⇒ = = = ×⎜ ⎟
⎝ ⎠

 

 
(b) Equation 27-39, with τ = RC, describes not only the discharging of q but also of V. 
Thus, 
 

( ) ( )9 120
0

3000ln 300 10 10 10 F ln
100

t VV V e t RC
V

τ− −⎛ ⎞ ⎛ ⎞= ⇒ = = × Ω × ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
which yields t = 10 s. This is a longer time than most people are inclined to wait before 
going on to their next task (such as handling the sensitive electronic equipment). 
 
(c) We solve  V V e t RC= −

0 for R with the new values V0 = 1400 V and t = 0.30 s. Thus, 
 

R t
C V V

= =
×

= ×
−ln

.
ln

. .
0

12
100 30

10 10 1400 100
11 10b g c h b g

s
F

Ω  

 
76. (a)  We reduce the parallel pair of resistors (at the bottom of the figure) to a single R’ 
=1.00 Ω resistor and then reduce it with its series ‘partner’ (at the lower left of the figure) 
to obtain an equivalence of R′′ = 2.00 Ω +1.00Ω =3.00 Ω.  It is clear that the current 
through R′′  is the i1 we are solving for.  Now, we employ the loop rule, choose a path 
that includes R′′  and all the batteries (proceeding clockwise).  Thus, assuming i1 goes 
leftward through R′′ , we have 
 

5.00 V + 20.0 V −10.0 V − i1R”  = 0 
 

which yields i1 = 5.00 A. 
 
(b) Since i1 is positive, our assumption regarding its direction (leftward) was correct. 
 
(c) Since the current through the ε1 = 20.0 V battery is “forward”, battery 1 is supplying 
energy. 
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(d) The rate is P1 = (5.00 A)(20.0 V) = 100 W.  
 
(e) Reducing the parallel pair (which are in parallel to the ε2 = 10.0 V battery) to a single 
R' = 1.00 Ω resistor (and thus with current i' = (10.0 V)/(1.00 Ω) = 10.0 A downward 
through it), we see that the current through the battery (by the junction rule) must be i = i' 
− i1 = 5.00 A upward (which is the "forward" direction for that battery). Thus, battery 2 is 
supplying energy. 
 
(f) Using Eq. 27-17, we obtain P2 = 50.0 W.  
 
(g) The set of resistors that are in parallel with the ε3 = 5 V battery is reduced to R′′′= 
0.800 Ω (accounting for the fact that two of those resistors are actually reduced in series, 
first, before the parallel reduction is made), which has current i''’ = (5.00 V)/(0.800 Ω) = 
6.25 A downward through it.  Thus, the current through the battery (by the junction rule) 
must be i = i''’ + i1 = 11.25 A upward (which is the "forward" direction for that battery). 
Thus, battery 3 is supplying energy. 
 
(h) Equation 27-17 leads to P3 = 56.3 W.  
 
77. We denote silicon with subscript s and iron with i. Let T0 = 20°. The resistances of the 
two resistors can be written as 
 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 01 , 1s s s i i iR T R T T T R T R T T Tα α= + − = + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  
 
The resistors are in series connection, so  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0 0 0

0 0 0 0 0

1 1

.
s i s s i i

s i s s i i

R T R T R T R T T T R T T T

R T R T R T R T T T

α α

α α

= + = + − + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= + + + −⎡ ⎤⎣ ⎦

 

 
Now, if ( )R T is to be temperature-independent, we must require that Rs(T0)αs + Ri(T0)αi 
= 0. Also note that Rs(T0) + Ri(T0) = R = 1000 Ω.  
 
(a) We solve for Rs(T0) and Ri(T0) to obtain 
 

( )
( ) ( )3

0 3 3

1000 6.5 10 / K
85.0 .

(6.5 10 / K) ( 70 10 / K)
i

s
i s

RR T α
α α

−

− −

Ω ×
= = = Ω

− × − − ×
 

 
(b) Similarly, Ri(T0) = 1000 Ω – 85.0 Ω = 915 Ω. 
 
Note: The temperature independence of the combined resistor was possible because αi 
and αs, the temperature coefficients of resistivity of the two materials, have opposite 
signs, so their temperature dependences can cancel.  
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78. The current in the ammeter is given by  
 

iA = ε/(r + R1 + R2 + RA). 
 
The current in R1 and R2 without the ammeter is i = ε/(r + R1 + R2). The percent error is 
then 
 

1 2

1 2 1 2

0.101
2.0 5.0 4.0 0.10

0.90%.

A A

A A

i i r R R Ri
i i r R R R r R R R

− + +Δ Ω
= = − = =

+ + + + + + Ω + Ω + Ω + Ω

=

 

 
79. (a) The charge q on the capacitor as a function of time is q(t) = (εC)(1 – e–t/RC), so the 
charging current is i(t) = dq/dt = (ε/R)e–t/RC. The energy supplied by the emf is then 
 

U i dt
R

e dt C Ut RC
C= = = =−∞∞ zz ε ε ε

2

0

2

0
2  

 

where U CC =
1
2

2ε  is the energy stored in the capacitor. 

 
(b) By directly integrating i2R we obtain 
 

U i Rdt
R

e dt CR
t RC= = =−∞∞ zz 2

2
2

00

21
2

ε ε .  

 
80. In the steady state situation, there is no current going to the capacitors, so the resistors 
all have the same current.  By the loop rule, 
 

20.0 V  =  (5.00 Ω)i + (10.0 Ω)i + (15.0 Ω)i 
 
which yields i = 23 A.  Consequently, the voltage across the R1 = 5.00 Ω resistor is (5.00 
Ω)(2/3 A) = 10/3 V, and is equal to the voltage V1 across the C1 = 5.00 μF capacitor.  
Using Eq. 26-22, we find the stored energy on that capacitor: 
 

 
2

2 6 5
1 1 1

1 1 10(5.00 10  F) V 2.78 10  J
2 2 3

U C V − −⎛ ⎞= = × = ×⎜ ⎟
⎝ ⎠

. 

 
Similarly, the voltage across the R2 = 10.0 Ω resistor is (10.0 Ω)(2/3 A) = 20/3 V and is 
equal to the voltage V2 across the C2 = 10.0 μF capacitor. Hence, 
 

2
2 6 5

2 2 2
1 1 20(10.0 10  F) V 2.22 10  J
2 2 3

U C V − −⎛ ⎞= = × = ×⎜ ⎟
⎝ ⎠

 



CHAPTER 27 1092 

 
Therefore, the total capacitor energy is U1  + U2  = 2.50 × 10−4 J. 
 
81. The potential difference across R2 is 
 

V iR R
R R R2 2

2

1 2 3

12 4 0
30 4 0 50

4 0= =
+ +

=
+ +

=
ε V

V.b gb g.
. . .

.
Ω

Ω Ω Ω
 

 
82. From Va – ε1 = Vc – ir1 – iR and i = (ε1 – ε2)/(R + r1 + r2), we get 
 

( )1 2
1 1 1 1

1 2

( )

4.4V 2.1V4.4V (2.3 5.5 )
5.5 1.8 2.3

2.5V.

a cV V i r R r R
R r r

ε εε ε
⎛ ⎞−

− = − + = − +⎜ ⎟+ +⎝ ⎠
⎛ ⎞−

= − Ω + Ω⎜ ⎟Ω + Ω + Ω⎝ ⎠
=

 

 
83. The potential difference across the capacitor varies as a function of time t as 

/
0( ) t RCV t V e−= . Thus, 

( )0

.
ln

tR
C V V

=  

 

(a) Then, for tmin = 10.0 μs, 
( ) ( )min

10.0 s 24.8 .
0.220 F ln 5.00 0.800

R μ
μ

= = Ω  

 
(b) For tmax = 6.00 ms, 

Rmax
.

.
. . ,=

F
HG

I
KJ = ×

6 00
10 0

24 8 149 104ms
sμ

Ω Ωb g  

 
where in the last equation we used τ = RC. 
 
84. (a) Since ( ) 2

tank 140 , 12 V 10 140 8.0 10 AR i −= Ω = Ω + Ω = × . 
 
(b) Now, Rtank = (140 Ω + 20 Ω)/2 = 80 Ω, so i = 12 V/(10 Ω + 80 Ω) = 0.13 A. 
 
(c) When full, Rtank = 20 Ω so i = 12 V/(10 Ω + 20 Ω) = 0.40 A. 
 
85. The internal resistance of the battery is r = (12 V –11.4 V)/50 A = 0.012 Ω < 0.020 Ω, 
so the battery is OK. The resistance of the cable is  
 

R = 3.0 V/50 A = 0.060 Ω > 0.040 Ω, 
 
so the cable is defective. 
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86. When connected in series, the rate at which electric energy dissipates is Ps = ε2/(R1 + 
R2). When connected in parallel, the corresponding rate is Pp = ε2(R1 + R2)/R1R2. Letting 
Pp/Ps = 5, we get (R1 + R2)2/R1R2 = 5, where R1 = 100 Ω. We solve for R2: R2 = 38 Ω or 
260 Ω. 
 
(a) Thus, the smaller value of R2 is 38 Ω. 
 
(b) The larger value of R2 is 260 Ω. 
 
87. When S is open for a long time, the charge on C is qi = ε2C. When S is closed for a 
long time, the current i in R1 and R2 is  
 

i = (ε2 – ε1)/(R1 + R2) = (3.0 V – 1.0 V)/(0.20 Ω + 0.40 Ω) = 3.33 A. 
 
The voltage difference V across the capacitor is then  
 

V = ε2 –  iR2 = 3.0 V – (3.33 A) (0.40 Ω) = 1.67 V. 
 
Thus the final charge on C is qf = VC. So the change in the charge on the capacitor is  
 

Δq = qf – qi = (V – ε2)C = (1.67 V – 3.0 V) (10 μ F) = – 13 μ C. 
 
88. Using the junction and the loop rules, we have 
 

 
1 1 3 3

1 1 2 2

2 3 1

20.0 0
20.0 50 0

i R i R
i R i R

i i i

− − =
− − − =

+ =
 

 
Requiring no current through the battery 1 means that i1= 0, or i2 = i3. Solving the above 
equations with 1 10.0R = Ω  and 2 20.0R = Ω , we obtain  
 

 3
1 3

3

40 3 400      13.3
20 3 3

Ri R
R

−
= = ⇒ = = Ω

+
. 

 
89. The bottom two resistors are in parallel, equivalent to a 2.0R resistance.  This, then, is 
in series with resistor R on the right, so that their equivalence is R' = 3.0R.  Now, near the 
top left are two resistors (2.0R and 4.0R) that are in series, equivalent to R'' = 6.0R.  
Finally, R' and R'' are in parallel, so the net equivalence is 
 

Req = 
(R') (R'')
R' + R''  = 2.0R = 20 Ω 

 
where in the final step we use the fact that R = 10 Ω. 
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90. (a) Using Eq. 27-4, we take the derivative of the power P = i2R with respect to R and 
set the result equal to zero: 
 

dP
dR

d
dR

R
R r

r R
R r

=
+

F
HG

I
KJ =

−
+

=
ε ε2

2

2

3 0
( )

( )
( )

 

 
which clearly has the solution R = r. 
 
(b) When R = r, the power dissipated in the external resistor equals 
 

P R
R r rR r

max ( )
.=

+
=

=

ε ε2

2

2

4
 

 
91. (a)  We analyze the lower left loop and find i1 = ε1/R = (12.0 V)/(4.00 Ω) = 3.00 A. 
 
(b) The direction of  i1 is downward. 
 
(c) Letting R = 4.00 Ω, we apply the loop rule to the tall rectangular loop in the center of 
the figure (proceeding clockwise): 
 

 ( ) ( ) ( )2
2 1 2 2 0

2
ii R i R R i Rε ⎛ ⎞+ + + − + − + − =⎜ ⎟

⎝ ⎠
. 

 
Using the result from part (a), we find i2 = 1.60 A. 
 
(d) The direction of  i2 is downward (as was assumed in writing the equation as we did). 
 
(e) Battery 1 is supplying this power since the current is in the "forward" direction 
through the battery. 
 
(f) We apply Eq. 27-17: The current through the 1ε = 12.0 V battery is, by the junction 
rule, 3.00 A + 1.60 A = 4.60 A and P = (4.60 A)(12.0 V) = 55.2 W.  
 
(g) Battery 2 is supplying this power since the current is in the "forward" direction 
through the battery. 
 
(h) P = i2(4.00 V) = 6.40 W. 
 
92. The equivalent resistance of the series pair of R3 = R4 = 2.0 Ω is R34= 4.0 Ω, and the 
equivalent resistance of the parallel pair of R1 = R2 = 4.0 Ω is R12= 2.0 Ω. Since the 
voltage across R34 must equal that across R12:  
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34 12 34 34 12 12 34 12
1          
2

V V i R i R i i= ⇒ = ⇒ =  

 
This relation, plus the junction rule condition 12 34 6.00 A,I i i= + =  leads to the solution 

12 4.0 Ai = . It is clear by symmetry that 1 12 / 2 2.00 Ai i= = . 
 
93. (a) From P = V 2/R we find V PR= = =10 010 10W V.b gb g. .Ω  
 
(b) From i = V/R = (ε – V)/r we find 

 

( ) 1.5V 1.0 V0.10 0.050 .
1.0 V

Vr R
V

ε ⎛ ⎞− −⎛ ⎞= = Ω = Ω⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
94. (a) Req(AB) = 20.0 Ω/3 = 6.67 Ω (three 20.0 Ω resistors in parallel). 
 
(b) Req(AC) = 20.0 Ω/3 = 6.67 Ω (three 20.0 Ω resistors in parallel). 
 
(c) Req(BC) = 0 (as B and C are connected by a conducting wire). 
 
95. The maximum power output is (120 V)(15 A) = 1800 W. Since 1800 W/500 W = 3.6, 
the maximum number of 500 W lamps allowed is 3. 
 
96. Here we denote the battery emf as V.  Eq. 27-30 leads to 
 

i = V
R

– 
q

RC = 
12
4  –  

8
(4)(4) = 2.5 A . 

 
97. When all the batteries are connected in parallel, the emf is ε and the equivalent 
resistance is parallel / ,R R r N= + so the current is  
 

 parallel
parallel

.
/

Ni
R R r N NR r

ε ε ε
= = =

+ +
 

 
Similarly, when all the batteries are connected in series, the total emf is Nε and the 
equivalent resistance is series .R R Nr= + Therefore,  
 

series
series

.N Ni
R R Nr

ε ε
= =

+
 

 
Comparing the two expressions, we see that the two currents paralleli  and seriesi  are equal if 

,R r= with  
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parallel series .
( 1)

Ni i
N r

ε
= =

+
 

 
98. With R2 and R3 in parallel, and the combination in series with R1, the equivalent 
resistance for the circuit is 

 2 3 1 2 1 3 2 3
eq 1

2 3 2 3

R R R R R R R RR R
R R R R

+ +
= + =

+ +
 

and the current is  
2 3

eq 1 2 1 3 2 3

( ) .R Ri
R R R R R R R

εε +
= =

+ +
 

 
The rate at which the battery supplies energy is  
 

2
2 3

1 2 1 3 2 3

( ) .R RP i
R R R R R R

εε +
= =

+ +
 

  
To find the value of R3 that maximizes P, we differentiate P with respect to R3. 
 
(a) With a little algebra, we find 
 

2 2
2

2
3 1 2 1 3 2 3

.
( )

RdP
dR R R R R R R

ε
= −

+ +
 

 
The derivative is negative for all positive value of R3. Thus, we see that P is maximized 
when R3 = 0. 
  

(b) With the value of R3 set to zero, we obtain 
2 2

1

(12.0 V) 14.4 W.
10.0

P
R
ε

= = =
Ω

 

 
99. (a) The capacitor is initially uncharged, which implies (by the loop rule) that there is 
zero voltage (at t = 0) across the R2 = 10 kΩ resistor, and that 30 V is across the R1 =20 
kΩ resistor. Therefore, by Ohm’s law, i10 = (30 V)/(20 kΩ) = 1.5 × 10–3 A. 
 
(b) Similarly, i20 = 0. 
 
(c) As t → ∞  the current to the capacitor reduces to zero and the 20 kΩ and 10 kΩ 
resistors behave more like a series pair (having the same current), equivalent to 30 kΩ. 
The current through them, then, at long times, is  
 

i = (30 V)/(30 kΩ) = 1.0 × 10–3 A. 
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Chapter 28 
 
 
1. (a) Equation 28-3 leads to 
 

v F
eB

B= =
×

× × °
= ×

−

− −sin
.

. . sin .
. .

φ
650 10

160 10 2 60 10 230
4 00 10

17

19 3
5N

C T
m sc hc h  

 
(b) The kinetic energy of the proton is 
 

( )( )22 27 5 161 1 1.67 10 kg 4.00 10 m s 1.34 10 J
2 2

K mv − −= = × × = × , 

 
which is equivalent to K = (1.34 × 10– 16 J) / (1.60 × 10– 19 J/eV) = 835 eV. 
 
2. The force associated with the magnetic field must point in the j  direction in order to 
cancel the force of gravity in the − j  direction. By the right-hand rule, B  points in the 

−k  direction (since i k j× − =e j ). Note that the charge is positive; also note that we need 

to assume By = 0. The magnitude |Bz| is given by Eq. 28-3 (with φ = 90°). Therefore, with 
21.0 10 kgm −= × , 42.0 10 m/s,v = ×  and 58.0 10 Cq −= × , we find 

 

ˆ ˆ ˆk k ( 0.061 T)kz
mgB B
qv

⎛ ⎞
= = − = −⎜ ⎟

⎝ ⎠
. 

 
3. (a) The force on the electron is 
 

( ) ( ) ( )
( ) ( )( ) ( )( )

( )

19 6 6

14

ˆ ˆ ˆ ˆi j i k

= 1.6 10 C 2.0 10 m s 0.15 T 3.0 10 m s 0.030 T

ˆ6.2 10 N k.

B x y x y x y y xF qv B q v v B B j q v B v B

−

−

= × = + × + = −

⎡ ⎤− × × − − ×⎣ ⎦

= ×

 

 
Thus, the magnitude of FB  is 6.2 × 1014 N, and FB  points in the positive z direction. 
 
(b) This amounts to repeating the above computation with a change in the sign in the 
charge. Thus, FB  has the same magnitude but points in the negative z direction, namely,  

( )14 ˆ6.2 10 N k.BF −= − ×  
 
4. (a) We use Eq. 28-3:  



CHAPTER 28 1098 

 
FB = |q| vB sin φ = (+ 3.2 × 10–19 C) (550 m/s) (0.045 T) (sin 52°) = 6.2 × 10–18 N. 

 
(b) The acceleration is  
 

a = FB/m = (6.2 × 10– 18 N) / (6.6 × 10– 27 kg) = 9.5 × 108 m/s2. 
 
(c) Since it is perpendicular to v FB,  does not do any work on the particle. Thus from the 
work-energy theorem both the kinetic energy and the speed of the particle remain 
unchanged. 
 
5. Using Eq. 28-2 and Eq. 3-30, we obtain 
 

F q v B v B q v B v Bx y y x x x y x= − = −d i b gd ik k3  
 
where we use the fact that By = 3Bx. Since the force (at the instant considered) is Fz k  
where Fz = 6.4 × 10–19 N, then we are led to the condition 
 

( ) ( )3 .
3

z
x y x z x

x y

Fq v v B F B
q v v

− = ⇒ =
−

 

 
Substituting vx = 2.0 m/s, vy = 4.0 m/s, and q = –1.6 × 10–19 C, we obtain  
 

19

19

6.4 10 N 2.0 T.
(3 ) ( 1.6 10 C)[3(2.0 m/s) 4.0 m]

z
x

x y

FB
q v v

−

−

×
= = = −

− − × −
 

 
6. The magnetic force on the proton is 
 
 F qv B= ×  

 
where  q = +e . Using Eq. 3-30 this becomes 
 
(4 × 10−17 )i^  + (2 × 10−17)j^  = e[(0.03vy + 40)i^  + (20 – 0.03vx)j

^  – (0.02vx + 0.01vy)k
^]   

 
with SI units understood.  Equating corresponding components, we find  
 
(a) vx = −3.5×103 m/s, and 
 
(b) vy = 7.0×103 m/s. 
 
7. We apply F q E v B m ae= + × =d i  to solve for E : 
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E m a
q

B ve= + ×

=
× ×

− ×
+ × +

= − − +

−

−

9 11 10 2 00 10

160 10
400 12 0 15 0

114 6 00 4 80

31 12 2

19

. .

.
. .

. . . .

kg m s i

C
T i km s j km s k

i j k V m

c hd i b g b g b g
e j

μ  

 
8. Letting F q E v B= + × =d i 0 , we get  
 

sinvB Eφ = . 
 
We note that (for given values of the fields) this gives a minimum value for speed 
whenever the sin φ factor is at its maximum value (which is 1, corresponding to φ = 90°). 
So  

 
3

3
min

1.50 10 V/m 3.75 10 m/s
0.400 T

Ev
B

×
= = = × . 

 
9. Straight-line motion will result from zero net force acting on the system; we ignore 
gravity. Thus, F q E v B= + × =d i 0 . Note that v B⊥  so v B vB× = . Thus, obtaining the 
speed from the formula for kinetic energy, we obtain  
 

( ) ( ) ( )
3

4

3 19 31

100 V /(20 10 m) 2.67 10 T.
2 / 2 1.0 10 V 1.60 10 C / 9.11 10 kge

E EB
v K m

−
−

− −

×
= = = = ×

× × ×
 

 
In unit-vector notation, 4 ˆ(2.67 10  T)kB −= − × . 
 
10. (a) The net force on the proton is given by 
 

( ) ( ) ( ) ( )
( )

19 3

18

ˆ ˆ ˆ1.60 10 C 4.00V m k+ 2000m s j 2.50 10 T i

ˆ1.44 10 N k.

E BF F F qE qv B − −

−

⎡ ⎤= + = + × = × × − ×⎣ ⎦

= ×

 
(b) In this case, we have 
 

( ) ( ) ( ) ( )

( )

19

19

ˆ ˆ ˆ1.60 10 C 4.00V m k 2000m s j 2.50 mT i

ˆ1.60 10 N k.

E BF F F qE qv B
−

−

= + = + ×

⎡ ⎤= × − + × −⎣ ⎦

= ×

 

 
(c) In the final case, we have 
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( ) ( ) ( ) ( )

( ) ( )

19

19 19

ˆ ˆ ˆ1.60 10 C 4.00V m i+ 2000m s j 2.50 mT i

ˆ ˆ6.41 10 N i+ 8.01 10 N k.

E BF F F qE qv B
−

− −

= + = + ×

⎡ ⎤= × × −⎣ ⎦

= × ×

 

 
11. Since the total force given by F e E v B= + ×d i  vanishes, the electric field E  must be 

perpendicular to both the particle velocity v  and the magnetic field B . The magnetic 
field is perpendicular to the velocity, so v B×  has magnitude vB and the magnitude of 
the electric field is given by E = vB. Since the particle has charge e and is accelerated 
through a potential difference V, 2 / 2mv eV=  and 2 .v eV m=  Thus, 
 

( ) ( )( )
( )

19 3
5

27

2 1.60 10 C 10 10 V2 1.2 T 6.8 10 V m.
9.99 10 kg

eVE B
m

−

−

× ×
= = = ×

×
 

 
12. (a) The force due to the electric field  ( F qE= )  is distinguished from that associated 
with the magnetic field ( F qv B= × )  in that the latter vanishes when the speed is zero 
and the former is independent of speed. The graph shows that the force (y-component) is 
negative at v = 0 (specifically, its value is –2.0 × 10–19 N there), which (because q = –e) 
implies that the electric field points in the +y direction.  Its magnitude is   
 

 
19

net ,
19

2.0 10 N 1.25 N/C 1.25 V/m
| | 1.6 10 C

yF
E

q

−

−

×
= = = =

×
. 

 
(b) We are told that the x and z components of the force remain zero throughout the 
motion, implying that the electron continues to move along the x axis, even though 
magnetic forces generally cause the paths of charged particles to curve (Fig. 28-11).  The 
exception to this is discussed in Section 28-3, where the forces due to the electric and 
magnetic fields cancel.  This implies (Eq. 28-7) B = E/v = 2.50 × 10−2 T.  
 
For F qv B= × to be in the opposite direction of F qE=  we must have v B×  in the 
opposite direction from ,E  which points in the +y direction, as discussed in part (a).   
Since the velocity is in the +x direction, then (using the right-hand rule) we conclude that 
the magnetic field must point in the +z direction ( i^ × k^   = −j^ ). In unit-vector notation, we 
have 2 ˆ(2.50 10  T)kB −= × . 
 
13. We use Eq. 28-12 to solve for V: 
 

( )( )
( )( )( )

6
28 3 19

23A 0.65 T
7.4 10 V.

8.47 10 m 150 m 1.6 10 C
iBV
nle μ

−
−

= = = ×
× ×
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14. For a free charge q inside the metal strip with velocity v  we have F q E v B= + ×d i . 
We set this force equal to zero and use the relation between (uniform) electric field and 
potential difference. Thus, 
 

v E
B

V V d
B

x y xy= =
−

=
×

× ×
=

−

− −

390 10

120 10 0850 10
0 382

9

3 2

.

. .
. .

V

T m
m s

c h
c hc h  

 
15. (a) We seek the electrostatic field established by the separation of charges (brought on 
by the magnetic force). With Eq. 28-10, we define the magnitude of the electric field as 
 

( )( )| | | | 20.0 m/s 0.030 T 0.600 V/mE v B= = = . 
 
Its direction may be inferred from Figure 28-8; its direction is opposite to that defined by 
v B× . In summary,  

ˆ(0.600V m)kE = −  
 
which insures that F q E v B= + ×d i  vanishes. 
 
(b) Equation 28-9 yields (0.600 V/m)(2.00 m) 1.20 VV Ed= = = . 
 
16. We note that B →  must be along the x axis because when the velocity is along that axis 
there is no induced voltage.  Combining Eq. 28-7 and Eq. 28-9 leads to  
 

V Vd
E vB

= =  

 
where one must interpret the symbols carefully to ensure that , ,d v  and B  are mutually 
perpendicular.  Thus, when the velocity if parallel to the y axis the absolute value of the 
voltage (which is considered in the same “direction” as d ) is 0.012 V, and  
 

0.012 V 0.20 m
(3.0 m/s)(0.020 T)zd d= = = . 

 
On the other hand, when the velocity is parallel to the z axis the absolute value of the 
appropriate voltage is 0.018 V, and  
 

0.018 V 0.30 m
(3.0 m/s)(0.020 T)yd d= = = . 

Thus, our answers are 
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(a) dx = 25 cm (which we arrive at “by elimination,” since we already have figured out dy 
and dz ), 
 
(b) dy = 30 cm, and 
 
(c) dz  = 20 cm. 
 
17. (a) Using Eq. 28-16, we obtain 
 

v rqB
m

eB
= = =

× ×

×
= ×

− −

−
α

2
4 00

2 4 50 10 160 10 120

4 00 166 10
2 60 10

2 19

27
6

.
. . .

. .
. .

u
m C T

u kg u
m s

c hc hb g
b gc h  

 
(b) T = 2πr/v = 2π(4.50 × 10–2 m)/(2.60 × 106 m/s) = 1.09 × 10–7 s. 
 
(c) The kinetic energy of the alpha particle is 
 

K m v= =
× ×

×
= ×

−

−

1
2

4 00 166 10 2 60 10

2 160 10
140 102

27 6 2

19
5

α

. . .

.
. .

u kg u m s

J eV
eV

b gc hc h
c h  

 
(d) ΔV = K/q = 1.40 × 105 eV/2e = 7.00 × 104 V. 
 
18. With the B  pointing “out of the page,” we evaluate the force (using the right-hand 
rule) at, say, the dot shown on the left edge of the particle’s path, where its velocity is 
down. If the particle were positively charged, then the force at the dot would be toward 
the left, which is at odds with the figure (showing it being bent toward the right). 
Therefore, the particle is negatively charged; it is an electron. 
 
(a) Using Eq. 28-3 (with angle φ equal to 90°), we obtain 
 

6| | 4.99 10 m s.
| |
Fv

e B
= = ×  

 
(b) Using either Eq. 28-14 or Eq. 28-16, we find r = 0.00710 m. 
 
(c) Using Eq. 28-17 (in either its first or last form) readily yields T = 8.93 × 10–9 s. 
 
19. Let ξ stand for the ratio ( / | |m q ) we wish to solve for. Then Eq. 28-17 can be written 
as T = 2πξ/B.   Noting that the horizontal axis of the graph (Fig. 28-36) is inverse-field 
(1/B) then we conclude (from our previous expression) that the slope of the line in the 
graph must be equal to 2πξ.  We estimate that slope is 7.5 × 10−9 T.s, which implies   
 
 9/ | | 1.2 10  kg/Cm qξ −= = × . 
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20. Combining Eq. 28-16 with energy conservation (eV = 
1
2 mev2 in this particular 

application) leads to the expression 
 

r = 
me
e B 

2eV
 me

 

 
which suggests that the slope of the r versus V  graph should be 22 /em eB . From Fig. 

28-37, we estimate the slope to be 5 × 10−5 in SI units. Setting this equal to 22 /em eB  
and solving, we find B = 6.7 × 10−2 T. 
 

21. (a) From K m ve=
1
2

2  we get 

 

v K
me

= =
× ×

×
= ×

−

−

2 2 120 10 160 10
911 10

2 05 10
3 19

31
7

. .
.

. .
eV eV J

kg
m s

c hc h
 

 
(b) From /er m v qB=  we get 
 

B m v
qr

e= =
× ×

× ×
= ×

−

− −
−

911 10 2 05 10

160 10 250 10
4 67 10

31 7

19 2
4

. .

. .
.

kg m s

C m
T.

c hc h
c hc h  

 
(c) The “orbital” frequency is 
 

( )
7

7
2

2.07 10 m s 1.31 10 Hz.
2 2 25.0 10 m

vf
rπ π −

×
= = = ×

×
 

 
(d) T = 1/f = (1.31 × 107 Hz)–1 = 7.63 × 10–8 s. 
 
22. Using Eq. 28-16, the radius of the circular path is 
 

2mv mKr
qB qB

= =  

 
where 2 / 2K mv=  is the kinetic energy of the particle. Thus, we see that K = (rqB)2/2m 
∝ q2m–1.  
 
(a) ( ) ( ) ( ) ( )2 22 1 4 1.0MeV;p p p p pK q q m m K K Kα α α= = = =  
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(b) ( ) ( ) ( ) ( )2 21 1 2 1.0 MeV 2 0.50MeV.d d p p d p pK q q m m K K= = = =  
 
23. From Eq. 28-16, we find 
 

( )( )
( )( )

31 6
5

19

9.11 10 kg 1.30 10 m s
2.11 10 T.

1.60 10 C 0.350 m
em vB

er

−
−

−

× ×
= = = ×

×
 

 
24. (a) The accelerating process may be seen as a conversion of potential energy eV into 

kinetic energy. Since it starts from rest, 1
2

2m v eVe =  and 

 

( )( )19
7

31

2 1.60 10 C 350 V2 1.11 10 m s.
9.11 10 kge

eVv
m

−

−

×
= = = ×

×
 

 
(b) Equation 28-16 gives 
 

( )( )
( )( )

31 7
4

19 3

9.11 10 kg 1.11 10 m s
3.16 10 m.

1.60 10 C 200 10 T
em vr

eB

−
−

− −

× ×
= = = ×

× ×
 

 
25. (a) The frequency of revolution is 
 

f Bq
me

= =
× ×

×
= ×

− −

−2
350 10 160 10

2 911 10
9 78 10

6 19

31
5

p p

. .

.
.

T C

kg
Hz.

c hc h
c h  

 
(b) Using Eq. 28-16, we obtain 
 

r m v
qB

m K
qB

e e= = =
× ×

× ×
=

− −

− −

2 2 911 10 100 160 10

160 10 350 10
0 964

31 19

19 6

. .

. .
. .

kg eV J eV

C T
m

c hb gc h
c hc h  

 
26. We consider the point at which it enters the field-filled region, velocity vector 
pointing downward. The field points out of the page so that v B×  points leftward, which 
indeed seems to be the direction it is “pushed’’; therefore, q > 0 (it is a proton). 
 
(a) Equation 28-17 becomes p2 / | |T m e Bπ= , or  
 

( ) ( )
( )

27
9

19

2 1.67 10
2 130 10

1.60 10 | |B

−
−

−

π ×
× =

×
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which yields B = 0 252. T . 
 
(b) Doubling the kinetic energy implies multiplying the speed by 2 . Since the period T 
does not depend on speed, then it remains the same (even though the radius increases by a 
factor of 2 ). Thus, t = T/2 = 130 ns. 
 
27. (a) We solve for B from m = B2qx2/8V (see Sample Problem — “Uniform circular 
motion of a charged particle in a magnetic field”): 
 

B Vm
qx

=
8

2 .  

 
We evaluate this expression using x = 2.00 m: 
 

B =
× ×

×
=

−

−

8 100 10 3 92 10

3 20 10 2 00
0 495

3 25

19 2

V kg

C m
T

c hc h
c hb g

.

. .
. .  

 
(b) Let N be the number of ions that are separated by the machine per unit time. The 
current is i = qN and the mass that is separated per unit time is M = mN, where m is the 
mass of a single ion. M has the value 
 

M =
×

= ×
−

−100 10
3600

2 78 10
6

8kg
s

kg s. .  

Since N = M/m we have 
 

i qM
m

= =
× ×

×
= ×

− −

−
−

320 10 2 78 10
392 10

2 27 10
19 8

25
2

. .
.

. .
C kg s

kg
A

c hc h
 

 
(c) Each ion deposits energy qV in the cup, so the energy deposited in time Δt is given by 
 

E NqV t iqV
q

t iV t= = =Δ Δ Δ .  

For Δt = 1.0 h, 
 

E = × × = ×−2 27 10 100 10 3600 817 102 3 6. . .A V s Jc hc hb g  
 
To obtain the second expression, i/q is substituted for N. 
 
28. Using 2 /F mv r=  (for the centripetal force) and 2 / 2K mv= , we can easily derive 
the relation 
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K = 
1
2 Fr. 

 
With the values given in the problem, we thus obtain K = 2.09 × 10−22 J. 
 
29. Reference to Fig. 28-11 is very useful for interpreting this problem. The distance 
traveled parallel to B →  is  d|| =  v||T  = v||(2πme /|q|B) using Eq. 28-17.  Thus, 
 

v|| = 
2 e

d eB
mπ

 = 50.3 km/s 

 
using the values given in this problem.  Also, since the magnetic force is |q|Bv⊥, then we 
find v⊥ = 41.7 km/s.  The speed is therefore v = 2 2v v⊥ +  = 65.3 km/s.  
 
30. Eq. 28-17 gives T = 2πme /eB.  Thus, the total time is 
 

⎝⎜
⎛

⎠⎟
⎞T 

 2 1
 + tgap + ⎝⎜

⎛
⎠⎟
⎞T 

 2 2
 = 

πme 
e ⎝⎜

⎛
⎠⎟
⎞1

B1
 + 

1
B2

  +  tgap . 

 
The time spent in the gap (which is where the electron is accelerating in accordance with 
Eq. 2-15) requires a few steps to figure out: letting t = tgap then we want to solve 
 

 2 20
0

21 10.25 m
2 2e e

K e Vd v t at t t
m m d

⎛ ⎞Δ
= + ⇒ = + ⎜ ⎟

⎝ ⎠
 

  
for t.  We find in this way that the time spent in the gap is t ≈ 6 ns. Thus, the total time is 
8.7 ns.   
 
31. Each of the two particles will move in the same circular path, initially going in the 
opposite direction. After traveling half of the circular path they will collide. Therefore, 
using Eq. 28-17, the time is given by  
 

 
( )

( )
31

9
3 19

9.11 10 kg
5.07 10 s.

2 (3.53 10 T) 1.60 10 C
T mt

Bq
ππ

−
−

− −

×
= = = = ×

× ×
 

 
32. Let cosv v θ= . The electron will proceed with a uniform speed v||  in the direction of 

B  while undergoing uniform circular motion with frequency f in the direction 
perpendicular to B:  f = eB/2πme. The distance d is then 
 

( ) ( )( )( )
( )( )

7 31
||

|| 19 3

2 1.5 10 m s 9.11 10 kg cos10cos 2
0.53m.

1.60 10 C 1.0 10 T
ev v m

d v T
f eB

θ −

− −

π × × °π
= = = = =

× ×
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33. (a) If v is the speed of the positron then v sin φ is the component of its velocity in the 
plane that is perpendicular to the magnetic field. Here φ is the angle between the velocity 
and the field (89°). Newton’s second law yields eBv sin φ = me(v sin φ)2/r, where r is the 
radius of the orbit. Thus r = (mev/eB) sin φ. The period is given by 
 

( )
( )( )

31
10

19

2 9.11 10 kg22 3.58 10 s.
sin 1.60 10 C 0.100T

emrT
v eBφ

−
−

−

π ×ππ
= = = = ×

×
 

 
The equation for r is substituted to obtain the second expression for T. 
 
(b) The pitch is the distance traveled along the line of the magnetic field in a time interval 
of one period. Thus p = vT cos φ. We use the kinetic energy to find the speed: K m ve= 1

2
2  

means 

( )( )3 19
7

31

2 2.00 10 eV 1.60 10 J eV2 2.65 10 m s .
9.11 10 kge

Kv
m

−

−

× ×
= = = ×

×
 

 
Thus, 

( )( )7 10 42.65 10 m s 3.58 10 s cos 89 1.66 10 m .p − −= × × ° = ×  
 
(c) The orbit radius is 
 

( )( )
( )( )

31 7
3

19

9.11 10 kg 2.65 10 m s sin 89sin 1.51 10 m .
1.60 10 C 0.100 T

em vR
eB

φ
−

−
−

× × °
= = = ×

×
 

 
34. (a)  Equation 3-20 gives φ = cos−1(2/19) = 84°. 
 
(b) No, the magnetic field can only change the direction of motion of a free 
(unconstrained) particle, not its speed or its kinetic energy. 
 
(c) No, as reference to Fig. 28-11 should make clear. 
 
(d) We find v⊥ = v sin φ = 61.3 m/s, so r = mv⊥ /eB =  5.7 nm. 
 
35. (a)  By conservation of energy (using qV for the potential energy, which is converted 
into kinetic form) the kinetic energy gained in each pass is 200 eV. 
 
(b) Multiplying the part (a) result by n = 100 gives ΔK = n(200 eV) = 20.0 keV. 
 
(c) Combining Eq. 28-16 with the kinetic energy relation (n(200 eV) = mpv2/2 in this 
particular application) leads to the expression 
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r = 
mp
e B 

2n(200 eV)
mp

  

 
which shows that r is proportional to n . Thus, the percent increase defined in the 
problem in going from n = 100 to n = 101 is 101/100  – 1  = 0.00499 or 0.499%.  
 
36. (a) The magnitude of the field required to achieve resonance is 
 

( )6 27

19

2  Hz) 1.67 10 kg2
0.787T.

1.60 10 C
pfm

B
q

π −

−

π(12.0×10 ×
= = =

×
 

 
(b) The kinetic energy is given by 
 

( ) ( )22 27 2 2 6 21
2

12 6

1 12 1.67 10 kg 4 (0.530 m) (12.0 10  Hz)
2 2

1.33 10 J 8.34 10 eV.

K mv m Rf π−

−

= = π = × ×

= × = ×
 

 
(c) The required frequency is 
 

( )( )
( )

19
7

27

1.60 10 C 1.57T
2.39 10 Hz.

2 2 1.67 10 kgp

qBf
mπ π

−

−

×
= = = ×

×
 

 
(d) The kinetic energy is given by 
 

( ) ( )22 27 2 2 7 21
2

12 7

1 12 1.67 10 kg 4 (0.530 m) (2.39 10  Hz)
2 2

5.3069 10 J 3.32 10 eV.

K mv m Rf π−

−

= = π = × ×

= × = ×
 

 
37. We approximate the total distance by the number of revolutions times the 
circumference of the orbit corresponding to the average energy. This should be a good 
approximation since the deuteron receives the same energy each revolution and its period 
does not depend on its energy. The deuteron accelerates twice in each cycle, and each 
time it receives an energy of qV = 80 × 103 eV. Since its final energy is 16.6 MeV, the 
number of revolutions it makes is 
 

n =
×
×

=
16 6 10
2 80 10

104
6

3

. .eV
eVc h  

 
Its average energy during the accelerating process is 8.3 MeV. The radius of the orbit is 
given by r = mv/qB, where v is the deuteron’s speed. Since this is given by v K m= 2 , 
the radius is 
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r m
qB

K
m qB

Km= =
2 1 2 .  

 
For the average energy 
 

r =
× × ×

×
=

− −

−

2 8 3 10 160 10 334 10

160 10 157
0 375

6 19 27

19

. . .

. .
.

eV J eV kg

C T
m .

c hc hc h
c hb g  

 
The total distance traveled is about  
 

n2πr = (104)(2π)(0.375) = 2.4 × 102 m. 
 
38. (a) Using Eq. 28-23 and Eq. 28-18, we find 
 

( )( )
( )

19
7

osc 27

1.60 10 C 1.20T
1.83 10 Hz.

2 2 1.67 10 kgp

qBf
mπ π

−

−

×
= = = ×

×
 

 
(b) From r m v qB m k qBp P= = 2  we have  
 

( ) ( )( )( )
( )( )

2192
7

27 19

0.500m 1.60 10 C 1.20T
1.72 10 eV.

2 2 1.67 10 kg 1.60 10 J eVp

rqB
K

m

−

− −

⎡ ⎤×⎣ ⎦= = = ×
× ×

 

 
39. (a) The magnitude of the magnetic force on the wire is given by FB = iLB sin φ, 
where i is the current in the wire, L is the length of the wire, B is the magnitude of the 
magnetic field, and φ is the angle between the current and the field. In this case φ = 70°. 
Thus, 

FB = × ° =−5000 100 60 0 10 70 28 26A m T Nb gb gc h. sin . . 
 
(b) We apply the right-hand rule to the vector product F iL BB = ×  to show that the force 
is to the west. 
 
40. The magnetic force on the (straight) wire is 
 

( ) ( ) ( ) ( )sin 13.0A 1.50T 1.80m sin 35.0 20.1N.BF iBL θ= = ° =  
 
41. (a) The magnetic force on the wire must be upward and have a magnitude equal to the 
gravitational force mg on the wire. Since the field and the current are perpendicular to 
each other the magnitude of the magnetic force is given by FB = iLB, where L is the 
length of the wire. Thus, 
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( )( )
( )( )

20.0130kg 9.8m s
0.467 A.

0.620m 0.440T
mgiLB mg i
LB

= ⇒ = = =  

 
(b) Applying the right-hand rule reveals that the current must be from left to right. 
 
42. (a) From symmetry, we conclude that any x-component of force will vanish 
(evaluated over the entirety of the bent wire as shown). By the right-hand rule, a field in 
the k  direction produces on each part of the bent wire a y-component of force pointing in 
the − j  direction; each of these components has magnitude 
 

| | | | sin 30 (2.0 A)(2.0 m)(4.0 T)sin 30 8 N.yF i B= ° = ° =  
 
Therefore, the force on the wire shown in the figure is ˆ( 16j) N− . 
 
(b) The force exerted on the left half of the bent wire points in the −k  direction, by the 
right-hand rule, and the force exerted on the right half of the wire points in the +k  
direction. It is clear that the magnitude of each force is equal, so that the force (evaluated 
over the entirety of the bent wire as shown) must necessarily vanish. 
 
43. We establish coordinates such that the two sides of the right triangle meet at the 
origin, and the y = 50  cm side runs along the +y axis, while the x = 120  cm side runs 
along the +x axis. The angle made by the hypotenuse (of length 130 cm) is  
 

θ = tan–1 (50/120) = 22.6°, 
 
relative to the 120 cm side. If one measures the angle counterclockwise from the +x 
direction, then the angle for the hypotenuse is 180° – 22.6° = +157°. Since we are only 
asked to find the magnitudes of the forces, we have the freedom to assume the current is 
flowing, say, counterclockwise in the triangular loop (as viewed by an observer on the +z 
axis. We take B  to be in the same direction as that of the current flow in the hypotenuse. 
Then, with B B= = 0 0750. T,  
 

cos 0.0692T , sin 0.0288T.x yB B B Bθ θ= − = − = =  
 
(a) Equation 28-26 produces zero force when L B||  so there is no force exerted on the 
hypotenuse of length 130 cm.  
 
(b) On the 50 cm side, the Bx component produces a force i By xk,  and there is no 
contribution from the By component. Using SI units, the magnitude of the force on the y  
side is therefore 

4 00 0500 0 0692 0138. . . .A m T N.b gb gb g =  
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(c) On the 120 cm side, the By component produces a force i Bx yk,  and there is no 
contribution from the Bx component. The magnitude of the force on the x  side is also  
 

4 00 120 0 0288 0138. . . .A m T N.b gb gb g =  
 
(d) The net force is 

i B i By x x y ,k k+ = 0  
 
keeping in mind that Bx < 0 due to our initial assumptions. If we had instead assumed B  
went the opposite direction of the current flow in the hypotenuse, then Bx > 0 , but By < 0 
and a zero net force would still be the result. 
 
44. Consider an infinitesimal segment of the loop, of length ds. The magnetic field is 
perpendicular to the segment, so the magnetic force on it has magnitude dF = iB ds. The 
horizontal component of the force has magnitude  
 
 ( cos )hdF iB dsθ=  
 
and points inward toward the center of the loop. The vertical component has magnitude 
 

( sin )ydF iB dsθ=  
 
and points upward. Now, we sum the forces on all the segments of the loop. The 
horizontal component of the total force vanishes, since each segment of wire can be 
paired with another, diametrically opposite, segment. The horizontal components of these 
forces are both toward the center of the loop and thus in opposite directions. The vertical 
component of the total force is 
 

3 3

7

sin 2 sin 2 (0.018 m)(4.6 10  A)(3.4 10  T)sin 20

6.0 10  N.
vF iB ds aiBθ θ π − −

−

= = = × × °

= ×
∫ p

 

 
We note that i, B, and θ have the same value for every segment and so can be factored 
from the integral. 
 
45. The magnetic force on the wire is 
 

( ) ( )
( ) ( ) ( ) ( )

( )3 3

ˆ ˆ ˆ ˆ ˆi j k j k

ˆ ˆ0.500A 0.500m 0.0100T j 0.00300T k

ˆ ˆ2.50 10 j 0.750 10 k N.

B y z z yF iL B iL B B iL B B

− −

= × = × + = − +

⎡ ⎤= − +⎣ ⎦

= − × + ×
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46. (a) The magnetic force on the wire is FB = idB, pointing to the left. Thus  
 

 

3 2 2

5

2

(9.13 10 A)(2.56 10 m)(5.63 10 T)(0.0611s)
2.41 10 kg

3.34 10 m/s.

BF t idBtv at
m m

− − −

−

−

× × ×
= = = =

×

= ×

 

 
(b) The direction is to the left (away from the generator). 
 
47. (a) The magnetic force must push horizontally on the rod to overcome the force of 
friction, but it can be oriented so that it also pulls up on the rod and thereby reduces both 
the normal force and the force of friction. The forces acting on the rod are: F ,  the force 
of the magnetic field; mg, the magnitude of the (downward) force of gravity; NF , the 

normal force exerted by the stationary rails upward on the rod; and f ,  the (horizontal) 
force of friction. For definiteness, we assume the rod is on the verge of moving eastward, 
which means that f  points westward (and is equal to its maximum possible value μsFN). 
Thus, F  has an eastward component Fx and an upward component Fy, which can be 
related to the components of the magnetic field once we assume a direction for the 
current in the rod. Thus, again for definiteness, we assume the current flows northward. 
Then, by the right-hand rule, a downward component (Bd) of B  will produce the 
eastward Fx, and a westward component (Bw) will produce the upward Fy. Specifically, 
 

, .x d y wF iLB F iLB= =  
 
Considering forces along a vertical axis, we find 
 

N y wF mg F mg iLB= − = −  
 
so that 

f f mg iLBs s w= = −, .max μ b g  
 
It is on the verge of motion, so we set the horizontal acceleration to zero: 
 

( )0 .x d s wF f iLB mg iLBμ− = ⇒ = −  
 
The angle of the field components is adjustable, and we can minimize with respect to it. 
Defining the angle by Bw = B sinθ and Bd = B cosθ (which means θ is being measured 
from a vertical axis) and writing the above expression in these terms, we obtain 
 

( ) ( )
cos sin

cos sin
s

s
s

mgiLB mg iLB B
iL

μθ μ θ
θ μ θ

= − ⇒ =
+
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which we differentiate (with respect to θ) and set the result equal to zero. This provides a 
determination of the angle: 
 

θ μ= = = °− −tan tan . .1 1 0 60 31sb g b g  
Consequently, 

( )( )
( )( )( )

2

min

0.60 1.0 kg 9.8m s
0.10T.

50 A 1.0 m cos31 0.60sin 31
B = =

° + °
 

 
(b) As shown above, the angle is ( ) ( )1 1tan tan 0.60 31 .sθ μ− −= = = °  
 
48. We use dF idL BB = × , where dL dx= i and B B Bx y= +i j . Thus,  
 

( )
( ) ( ) ( )( )3.0 2

1.0

ˆ ˆ ˆ ˆi i j k

ˆ ˆ5.0A 8.0 m mT k ( 0.35N)k.

f f

i i

x x

B x y yx x
F idL B idx B B i B dx

x dx

= × = × + =

= − ⋅ = −

∫ ∫ ∫

∫
 

 
49. The applied field has two components: Bx > 0  and Bz > 0. Considering each straight 
segment of the rectangular coil, we note that Eq. 28-26 produces a nonzero force only for 
the component of B  that is perpendicular to that segment; we also note that the equation 
is effectively multiplied by N = 20 due to the fact that this is a 20-turn coil. Since we wish 
to compute the torque about the hinge line, we can ignore the force acting on the straight 
segment of the coil that lies along the y axis (forces acting at the axis of rotation produce 
no torque about that axis). The top and bottom straight segments experience forces due to 
Eq. 28-26 (caused by the Bz component), but these forces are (by the right-hand rule) in 
the ±y directions and are thus unable to produce a torque about the y axis. Consequently, 
the torque derives completely from the force exerted on the straight segment located at x 
= 0.050 m, which has length L = 0.10 m and is shown in Figure 28-44 carrying current in 
the –y direction. Now, the Bz component will produce a force on this straight segment 
which points in the –x direction (back towards the hinge) and thus will exert no torque 
about the hinge. However, the Bx component (which is equal to B cosθ where B = 0.50 T 
and θ = 30°) produces a force equal to NiLBx that points (by the right-hand rule) in the +z 
direction. Since the action of this force is perpendicular to the plane of the coil, and is 
located a distance x away from the hinge, then the torque has magnitude 
 

( )( ) ( )( )( )( )( )cos 20 0.10 A 0.10 m 0.050 m 0.50 T cos30
0.0043 N m .

xNiLB x NiLxBτ θ= = = °
= ⋅

 

 
Since ,r Fτ = ×  the direction of the torque is –y. In unit-vector notation, the torque is 

3 ˆ( 4.3 10  N m)jτ −= − × ⋅ . 
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An alternative way to do this problem is through the use of Eq. 28-37. We do not show 
those details here, but note that the magnetic moment vector (a necessary part of Eq. 28-
37) has magnitude 

μ = =NiA 20 010 0 0050b gb gc h. .A m2  
 
and points in the –z direction. At this point, Eq. 3-30 may be used to obtain the result for 
the torque vector. 
 
50. We use 2

max max| | ,B B i r Bτ μ μ= × = = π  and note that i = qf = qv/2πr. So 
 

2 19 6 11 3
max

26

1 1 (1.60 10 C)(2.19 10 m/s)(5.29 10 m)(7.10 10 T)
2 2 2

6.58 10 N m.

qv r B qvrB
r

τ − − −

−

⎛ ⎞= = = × × × ×⎜ ⎟
⎝ ⎠

= × ⋅

p
p  

 
51. We use Eq. 28-37 where μ  is the magnetic dipole moment of the wire loop and B  is 
the magnetic field, as well as Newton’s second law. Since the plane of the loop is parallel 
to the incline the dipole moment is normal to the incline. The forces acting on the 
cylinder are the force of gravity mg, acting downward from the center of mass, the 
normal force of the incline FN, acting perpendicularly to the incline through the center of 
mass, and the force of friction f, acting up the incline at the point of contact. We take the 
x axis to be positive down the incline. Then the x component of Newton’s second law for 
the center of mass yields 

mg f masin .θ − =  
 
For purposes of calculating the torque, we take the axis of the cylinder to be the axis of 
rotation. The magnetic field produces a torque with magnitude μB sinθ, and the force of 
friction produces a torque with magnitude fr, where r is the radius of the cylinder. The 
first tends to produce an angular acceleration in the counterclockwise direction, and the 
second tends to produce an angular acceleration in the clockwise direction. Newton’s 
second law for rotation about the center of the cylinder, τ = Iα, gives 
 

fr B I− =μ θ αsin .  
 
Since we want the current that holds the cylinder in place, we set a = 0 and α = 0, and use 
one equation to eliminate f from the other. The result is .mgr Bμ=  The loop is 
rectangular with two sides of length L and two of length 2r, so its area is A = 2rL and the 
dipole moment is (2 ).NiA Ni rLμ = =  Thus, 2mgr NirLB=  and 
 

i mg
NLB

= = =
2

0 250 9 8
2 10 0 0100 0500

2 45
. .
. . .

.
kg m s

m T
A.

2b gc h
b gb gb g  

 
52. The insight central to this problem is that for a given length of wire (formed into a 
rectangle of various possible aspect ratios), the maximum possible area is enclosed when 
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the ratio of height to width is 1 (that is, when it is a square). The maximum possible value 
for the width, the problem says, is x =  4 cm (this is when the height is very close to zero, 
so the total length of wire is effectively 8 cm).  Thus, when it takes the shape of a square 
the value of x must be ¼ of 8 cm; that is, x = 2 cm when it encloses maximum area 
(which leads to a maximum torque by Eq. 28-35 and Eq. 28-37) of A = (0.020 m)2 = 
0.00040 m2.  Since N = 1 and the torque in this case is given as 4.8 × 10−4 N m⋅ , then the 
aforementioned equations lead immediately to i = 0.0030 A. 
 
53. We replace the current loop of arbitrary shape with an assembly of small adjacent 
rectangular loops filling the same area that was enclosed by the original loop (as nearly as 
possible). Each rectangular loop carries a current i flowing in the same sense as the 
original loop. As the sizes of these rectangles shrink to infinitesimally small values, the 
assembly gives a current distribution equivalent to that of the original loop. The 
magnitude of the torque Δτ  exerted by B  on the nth rectangular loop of area ΔAn is given 
by Δ Δτ θn nNiB A= sin .  Thus, for the whole assembly 
 

sin .n n
n n

NiB A NiABτ τ θ= Δ = Δ =∑ ∑  

 
54. (a) The kinetic energy gained is due to the potential energy decrease as the dipole 
swings from a position specified by angle θ to that of  being aligned (zero angle) with the 
field. Thus, 

K U U B Bi f= − = − − − °μ θ μcos cos .0b g  
 
Therefore, using SI units, the angle is 
 

θ
μ

= −
F
HG
I
KJ = −

F
HG

I
KJ = °− −cos cos .

. .
.1 11 1 0 00080

0 020 0 052
77K

B b gb g  

 
(b) Since we are making the assumption that no energy is dissipated in this process, then 
the dipole will continue its rotation (similar to a pendulum) until it reaches an angle θ = 
77° on the other side of the alignment axis. 
 
55. (a) The magnitude of the magnetic moment vector is 
 

( ) ( ) ( )2 22 2 2
1 1 2 2 7.00A 0.200m 0.300m 2.86A m .n n

n
i A r i r iμ π π π ⎡ ⎤= = + = + = ⋅⎣ ⎦∑  

 
(b) Now, 

( ) ( ) ( )2 22 2 2
2 2 1 1 7.00A 0.300m 0.200m 1.10A m .r i r iμ π π π ⎡ ⎤= − = − = ⋅⎣ ⎦  

 
56. (a) μ = = = = ⋅NAi r ip p 0.1502 2 2 60 0184m A A m2b g b g. . .  
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(b) The torque is 
 

( )( )2sin 0.184 A m 12.0T sin 41.0 1.45 N m.B Bτ μ μ θ= × = = ⋅ ° = ⋅  

 
57. (a) The magnitude of the magnetic dipole moment is given by NiAμ = , where N is 
the number of turns, i is the current in each turn, and A is the area of a loop. In this case 
the loops are circular, so A = πr2, where r is the radius of a turn. Thus 
 

i
N r

= =
⋅

=
μ
p p2 2

2 30
160 0 0190

12 7.
.

.A m
m

A .
2

b gb gb g  

 
(b) The maximum torque occurs when the dipole moment is perpendicular to the field (or 
the plane of the loop is parallel to the field). It is given by 
 

( )( )2 3 2
max 2.30 A m 35.0 10 T 8.05 10 N m.Bτ μ − −= = ⋅ × = × ⋅  

 
58. From μ = NiA = iπr2 we get 
 

i
r

= =
×

×
= ×

μ
p p 3500 1032

22

2
98 00 10 2 08 10. .J T

m
A.

c h
 

 
59. (a) The area of the loop is A = = ×1

2
230 40 6 0 10cm cm cm2b gb g . , so 

 
μ = = × = ⋅−iA 50 6 0 10 0 302. . . .A m A m2 2b gc h  

 
(b) The torque on the loop is 
 

τ μ θ= = ⋅ × °= × ⋅−B sin . sin .0 30 80 10 90 2 4 103 2A m T N m.2c hc h  
 
60. Let a = 30.0 cm, b = 20.0 cm, and c = 10.0 cm. From the given hint, we write 
 

( ) ( ) ( ) ( )( ) ( ) ( )

( )
1 2

2

ˆ ˆ ˆ ˆ ˆ ˆk j j k 5.00A 0.300m 0.100m j 0.200m k

ˆ ˆ0.150j 0.300k A m .

iab iac ia c bμ μ μ ⎡ ⎤= + = − + = − = −⎣ ⎦

= − ⋅
 

 
61. The orientation energy of the magnetic dipole is given by ,U Bμ= − ⋅  where μ  is the 
magnetic dipole moment of the coil and B  is the magnetic field. The magnitude of μ  is 

,NiAμ =  where i is the current in the coil, N is the number of turns, A is the area of the 
coil. On the other hand, the torque on the coil is given by the vector product .Bτ μ= ×  
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(a) By using the right-hand rule, we see that μ  is in the –y direction. Thus, we have 
 
 3 2 2ˆ ˆ ˆ( )( j) (3)(2.00 A)(4.00 10  m ) j (0.0240 A m )jNiAμ −= − = − × = − ⋅ . 
 
The corresponding orientation energy is  
 

2 3 5( 0.0240 A m )( 3.00 10  T) 7.20 10  Jy yU B Bμ μ − −= − ⋅ = − = − − ⋅ − × = − × . 
 
(b) Using the fact that ˆ ˆ ˆ ˆ ˆ ˆ ˆj i 0, j j 0, and j k i,⋅ = × = × =  the torque on the coil is 
 

 2 3 2 3

5 5

ˆ ˆi k
ˆ ˆ( 0.0240 A m )( 4.00 10 T)i ( 0.0240 A m )(2.00 10 T)k

ˆ ˆ(9.60 10 N m)i (4.80 10 N m)k.

y z y xB B Bτ μ μ μ
− −

− −

= × = −

= − ⋅ − × − − ⋅ ×

= × ⋅ + × ⋅

 

 
Note: The orientation energy is highest when μ  is in the opposite direction of ,B  and 
lowest when μ  lines up with B . 
 
62. Looking at the point in the graph (Fig. 28-50(b)) corresponding to i2 = 0 (which 
means that coil 2 has no magnetic moment) we are led to conclude that the magnetic 
moment of coil 1 must be 5 2

1 2.0 10 A m .μ −= × ⋅  Looking at the point where the line 
crosses the axis (at i2 = 5.0 mA) we conclude (since the magnetic moments cancel there) 
that the magnitude of coil 2’s moment must also be 5 2

2 2.0 10 A mμ −= × ⋅  when 

2 0.0050 A,i =  which means (Eq. 28-35)  
 

5 2
3 22

2 2
2

2.0 10 A m 4.0 10 m
0.0050 A

N A
i
μ −

−× ⋅
= = = × . 

 
Now the problem has us consider the direction of coil 2’s current changed so that the net 
moment is the sum of two (positive) contributions, from coil 1 and coil 2, specifically for 
the case that i2 = 0.007 A.  We find that total moment is  
 

μ = (2.0 × 10−5 A·m2) + (N2A2 i2) = 4.8 × 10−5 A·m2. 
 
63. The magnetic dipole moment is μ μ= −0 60 080. .i je j , where  

 
μ = NiA = Niπr2 = 1(0.20 A)π(0.080 m)2 = 4.02 × 10–4 A·m2. 

 
Here i is the current in the loop, N is the number of turns, A is the area of the loop, and r 
is its radius. 
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(a) The torque is 
 

τ μ μ

μ

μ

= × = − × +

= × − × − ×

= − + −

B 0 60 080 0 25 0 30

0 60 0 30 080 0 25 080 0 30

018 0 20 0 24

. . . .

. . . . . .

. . . .

i j i k

i k j i j k

j k i

e j e j
b gb ge j b gb ge j b gb ge j  

 
Here i k j, j i k,× = − × = −  and j k i× =  are used. We also use i i = 0× . Now, we 
substitute the value for μ to obtain 
 

( )4 4 4ˆ ˆ ˆ9.7 10 i 7.2 10 j 8.0 10 k N m.τ − − −= − × − × + × ⋅  

 
(b) The orientation energy of the dipole is given by 
 

U B= − ⋅ = − − ⋅

= − = − = − × −

μ μ

μ μ

0 60 0 80 0 25

0 60 0 25 015 6 0 10 4

. . .

. . . .

i j i + 0.30k

J.

e j e j
b gb g

 

 
Here , ,i i i k j i = 0,⋅ = ⋅ = ⋅1 0  and j k⋅ = 0  are used. 
 
64. Eq. 28-39 gives U = Bμ− ⋅  = −μB cosφ, so at φ = 0 (corresponding to the lowest 
point on the graph in Fig. 28-51) the mechanical energy is  
 

K + U = Ko + (−μB) = 6.7 × 10−4 J + (−5 × 10−4 J) = 1.7 × 10−4 J. 
 
The turning point occurs where K = 0, which implies Uturn = 1.7 × 10−4 J.  So the angle 
where this takes place is given by 

 
4

1 1.7 10  Jcos 110
B

φ
μ

−
− ⎛ ⎞×

= − = °⎜ ⎟
⎝ ⎠

 

 
where we have used the fact (see above) that  μB = 5 × 10−4 J. 
 
65. If N closed loops are formed from the wire of length L, the circumference of each 
loop is L/N, the radius of each loop is R = L/2πN, and the area of each loop is 

( )22 2 22 4 .A R L N L Nπ π π π= = =   
 
(a) For maximum torque, we orient the plane of the loops parallel to the magnetic field, 
so the dipole moment is perpendicular (i.e., at a 90° angle) to the field.  
 
(b) The magnitude of the torque is then 
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τ = =
F
HG
I
KJ =NiAB Ni L

N
B iL B

N
b g

2

2

2

4 4p p
.  

 
To maximize the torque, we take the number of turns N to have the smallest possible 
value, 1. Then τ = iL2B/4π. 
 
(c) The magnitude of the maximum torque is 
 

 
2 3 2 3

7(4.51 10  A)(0.250 m) (5.71 10 T) 1.28 10  N m
4 4

iL Bτ
π π

− −
−× ×

= = = × ⋅ . 

 
66. The equation of motion for the proton is 
 

F qv B q v v v B qB v v

m a m dv
dt

dv
dt

dv
dt

x y z z y

p p
x y z

= × = + + × = −

= = F
HG
I
KJ +
F
HG
I
KJ + FHG

I
KJ

L
NM

O
QP

.

i j k i j k

i j k

e j e j
 

Thus, 

0,   ,   ,yx z
z y

dvdv dvv v
dt dt dt

ω ω= = = −  

 
where ω = eB/m. The solution is vx = v0x, vy = v0y cos ωt, and vz = –v0y sin ωt. In 
summary, we have  

v t v v t v tx y yb g b g b g= + −0 0 0cos sini j kω ω . 
 
67. (a) We use τ μ= × B,  where μ  points into the wall (since the current goes clockwise 
around the clock). Since B  points toward the one-hour (or “5-minute’’) mark, and (by 
the properties of vector cross products) τ  must be perpendicular to it, then (using the 
right-hand rule) we find τ  points at the 20-minute mark. So the time interval is 20 min. 
 
(b) The torque is given by 
 

( )( ) ( )22 3

2

| | sin 90 6 2.0A 0.15m 70 10 T

5.9 10 N m.

B B NiAB Nir Bτ μ μ π π −

−

= × = ° = = = ×

= × ⋅
 

 
68. The unit vector associated with the current element (of magnitude d ) is − j . The 
(infinitesimal) force on this element is 
 

dF i d y y= − × .j i + 0.4 je j e j0 3  
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with SI units (and 3 significant figures) understood. Since j i k× = −  and j j× = 0 , we 
obtain 

( )4 2ˆ ˆ0.3 k 6.00 10 N m k.dF iy d y d−= = ×  
 
We integrate the force element found above, using the symbol ξ to stand for the 
coefficient 6.00 × 10–4 N/m2, and obtain 
 

20.25 5

0

0.25ˆ ˆ ˆk k (1.88 10 N)k .
2

F dF ydyξ ξ −⎛ ⎞
= = = = ×⎜ ⎟

⎝ ⎠
∫ ∫  

 
69. From m = B2qx2/8V we have Δm = (B2q/8V)(2xΔx). Here x Vm B q= 8 2 , which we 
substitute into the expression for Δm to obtain 
 

Δ Δ Δm B q
V

mV
B q

x B mq
V

x=
F
HG
I
KJ =

2

28
2 8

2
.  

 
Thus, the distance between the spots made on the photographic plate is 
 

( )( ) ( )
( )( )( )

27 3

27 19

3

2

37 u 35u 1.66 10 kg u 2 7.3 10 V
0.50T 36u 1.66 10 kg u 1.60 10 C

8.2 10 m.

m Vx
B mq

−

− −

−

Δ
Δ =

− × ×
=

× ×

= ×

 

 
70. (a) Equating the magnitude of the electric force (Fe = eE) with that of the magnetic 
force (Eq. 28-3), we obtain B = E / v sin φ. The field is smallest when the sin φ factor is at 

its largest value; that is, when φ = 90°. Now, we use K mv=
1
2

2  to find the speed: 

 

v K
me

= =
× ×

×
= ×

−

−

2 2 2 5 10 160 10
911 10

2 96 10
3 19

31
7

. .
.

. .
eV J eV

kg
m s

c hc h
 

Thus, 

B E
v

= =
×

×
= × −10 10

2 96 10
3 4 10

3

7
4V m

m s
T.

.
.  

 
The direction of the magnetic field must be perpendicular to both the electric field ( ĵ− ) 
and the velocity of the electron ( î+ ). Since the electric force ( )eF e E= − points in the ĵ+  
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direction, the magnetic force ( )BF e v B= − ×  points in the ĵ− direction. Hence, the 

direction of the magnetic field is k̂− . In unit-vector notation, 4 ˆ( 3.4 10 T)k.B −= − ×   
 
71. The period of revolution for the iodine ion is T = 2πr/v = 2πm/Bq, which gives 
 

m BqT
= =

× × ×

×
=

− − −

−2
450 10 160 10 129 10

7 2 166 10
127

3 19 3

27p p

. . .

.

T C s

kg u
u.

c hc hc h
b gb gc h  

 
72. (a) For the magnetic field to have an effect on the moving electrons, we need a non-
negligible component of B  to be perpendicular to v  (the electron velocity). It is most 
efficient, therefore, to orient the magnetic field so it is perpendicular to the plane of the 
page. The magnetic force on an electron has magnitude FB = evB, and the acceleration of 
the electron has magnitude a = v2/r. Newton’s second law yields evB = mev2/r, so the 
radius of the circle is given by r = mev/eB in agreement with Eq. 28-16. The kinetic 
energy of the electron is K m ve= 1

2
2 , so v K me= 2 . Thus, 

 

r m
eB

K
m

m K
e B

e

e

e= =
2 2

2 2 . 

 

This must be less than d, so 2
2 2

m K
e B

de ≤ , or B m K
e d

e≥
2

2 2 .  

 
(b) If the electrons are to travel as shown in Fig. 28-52, the magnetic field must be out of 
the page. Then the magnetic force is toward the center of the circular path, as it must be 
(in order to make the circular motion possible). 
 
73. Since the electron is moving in a line that is parallel to the horizontal component of 
the Earth’s magnetic field, the magnetic force on the electron is due to the vertical 
component of the field only. The magnitude of the force acting on the electron is given by 
F = evB, where B represents the downward component of Earth’s field. With F = mea, 
the acceleration of the electron is a = evB/me.  
 

(a) The electron speed can be found from its kinetic energy 21 :
2 eK m v=   

 

v K
me

= =
× ×

×
= ×

−

−

2 2 12 0 10 160 10
911 10

6 49 10
3 19

31
7

. .
.

. .
eV J eV

kg
m s

c hc h
 

Therefore,  
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( ) ( ) ( )19 7 6
2 214 14

31

1.60 10 C 6.49 10 m s 55.0 10 T
6.27 10 m s 6.3 10 m s .

9.11 10 kge

evBa
m

− −

−

× × ×
= = = × ≈ ×

×
 

(b) We ignore any vertical deflection of the beam that might arise due to the horizontal 
component of Earth’s field. Then, the path of the electron is a circular arc. The radius of 
the path is given by 2 / ,a v R= or 
 

 
2 7 2

14 2

(6.49 10 m/s) 6.72 m.
6.27 10 m/s

vR
a

×
= = =

×
 

The dashed curve shown represents the path. Let 
the deflection be h after the electron has traveled a 
distance d along the x axis. With sind R θ= , we 
have 

 
( )

( )
2

2

(1 cos ) 1 1 sin

1 1 ( / ) .

h R R

R d R

θ θ= − = − −

= − −
 

 
Substituting R = 6.72 m and d = 0.20 m into the expression, we obtain h = 0.0030 m.  
 
Note: The deflection is so small that many of the technicalities of circular geometry may 
be ignored, and a calculation along the lines of projectile motion analysis (see Chapter 4) 
provides an adequate approximation: 
 

9
7

0.200m 3.08 10 s
6.49 10 m s

dd vt t
v

−= ⇒ = = = ×
×

. 

 
Then, with our y axis oriented eastward, 
 

( ) ( )22 14 91 1 6.27 10 3.08 10 0.00298m 0.0030 m.
2 2

h at −= = × × = ≈  

 
74. Letting Bx = By = B1 and Bz = B2 and using Eq. 28-2 ( F qv B= × ) and Eq. 3-30, we 
obtain (with SI units understood) 
 

( ) ( ) ( )( )2 1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆ4i 20j 12k 2 4 6 i 6 2 j 2 4 k .B B B B B B− + = − + − + −  

 
Equating like components, we find B1 = –3 and B2 = –4. In summary, 
 

( )ˆ ˆ ˆ3.0i 3.0j 4.0k T.B = − − −  

 
75. Using Eq. 28-16, the radius of the circular path is 
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2mv mKr

qB qB
= =  

 
where 2 / 2K mv=  is the kinetic energy of the particle. Thus, we see that r mK qB∞ .  
 

(a) 2.0u 2 1.4 ,
1.0u

pd d d

p p p d

qr m K e
r m K q e

= = = ≈ and  

 

(b) 4.0u 1.0.
1.0u 2

p

p p p

qr m K e
r m K q e
α α α

α

= = =  

 

76. Using Eq. 28-16, the charge-to-mass ratio is q v
m B r

=
′

. With the speed of the ion 

given by /v E B= (using Eq. 28-7), the expression becomes 
 

/q E B E
m B r BB r

= =
′ ′

. 

 
77. The fact that the fields are uniform, with the feature that the charge moves in a 
straight line, implies the speed is constant (if it were not, then the magnetic force would 
vary while the electric force could not — causing it to deviate from straight-line motion). 
This is then the situation leading to Eq. 28-7, and we find 
 

| | | |E v B= = 500V m.  
 
Its direction (so that F q E v B= + ×d i  vanishes) is downward, or ĵ− , in the “page” 

coordinates. In unit-vector notation, ˆ( 500 V/m)jE = − . 
 
78. (a) In Chapter 27, the electric field (called EC in this problem) that “drives” the 
current through the resistive material is given by Eq. 27-11, which (in magnitude) reads 
EC = ρJ. Combining this with Eq. 27-7, we obtain 
 

E nevC d= ρ .  
 
Now, regarding the Hall effect, we use Eq. 28-10 to write E = vdB. Dividing one equation 
by the other, we get E/Ec = B/neρ. 
 
(b) Using the value of copper’s resistivity given in Chapter 26, we obtain 
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( )( )( )
3

28 3 19 8

0.65 T 2.84 10 .
8.47 10 m 1.60 10 C 1.69 10 mc

E B
E neρ

−
− −

= = = ×
× × × Ω⋅

 

 
79. (a) Since K = qV we have ( )1

2 as 2 ,p pK K q Kα α= = or / 0.50.pK Kα =  
 
(b) Similarly, 2 ,  / 0.50.d dq K K Kα α= =  
 
(c) Since r mK qB mK q= ∝2 , we have 
 

( )
( )
2.00u

10 2 cm 14 cm.
1.00u

p p pd d
d p

p p d p

q r Km Kr r
m K q K

= = = =  

 
(d) Similarly, for the alpha particle, we have 
 

 ( )
( ) ( )

4.00u
10 2 cm 14 cm.

1.00u 2 2
p p p

p p

q r erKm Kr
m K q K e

αα α
α

α α

= = = =  

 
80. (a) The largest value of force occurs if the velocity vector is perpendicular to the field. 
Using Eq. 28-3,  
 

FB,max = |q| vB sin (90°) = ev B = (1.60 × 10– 19 C) (7.20 × 106 m/s) (83.0 × 10– 3 T) 
= 9.56 × 10– 14 N. 

 
(b) The smallest value occurs if they are parallel: FB,min = |q| vB sin (0) = 0. 
 
(c) By Newton’s second law, a = FB/me = |q| vB sin θ /me, so the angle θ between v  and  
B  is 
 

θ =
F
HG
I
KJ =

× ×

× × ×

L
N
MM

O
Q
PP = °− −

−

− −
sin sin

. .

. . .
. .1 1

31 14 2

16 6 3

911 10 4 90 10

160 10 7 20 10 830 10
0 267m a

q vB
e

kg m s

C m s T
c hd i

c hc hc h  

 
81. The contribution to the force by the magnetic field ( )ˆ ˆi ( 0.020 T)ixB B= = −  is given 

by Eq. 28-2: 
 

( ) ( ) ( )( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ17000i i 11000j i 7000k i

ˆ ˆ220k 140j

B x x xF qv B q B B B

q

= × = × + − × + ×

= − −
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in SI units. And the contribution to the force by the electric field ( )ˆ ˆj 300j V/myE E= =  is 

given by Eq. 23-1: F qEE y= j . Using q = 5.0 × 10–6 C, the net force on the particle is  
 

ˆ ˆ(0.00080j 0.0011k) N.F = −  
 
82. (a) We use Eq. 28-10: vd = E/B = (10 × 10–6V/1.0 × 10–2 m)/(1.5 T) = 6.7 × 10–4 m/s. 
 
(b) We rewrite Eq. 28-12 in terms of the electric field: 
 

n Bi
V e

Bi
Ed e

Bi
EAe

= = =b g  

 
where we use A d= . In this experiment, A = (0.010 m)(10 × 10–6 m) = 1.0 × 10–7 m2. By 
Eq. 28-10, vd equals the ratio of the fields (as noted in part (a)), so we are led to 
 

( )( )( )
29 3

4 7 2 19

3.0 A 2.8 10 m .
6.7 10 m s 1.0 10 m 1.6 10 Cd

Bi in
E Ae v Ae − − −

= = = = ×
× × ×

 

 
(c) Since a drawing of an inherently 3-D situation can be misleading, we describe it in 
terms of horizontal north, south, east, wes,t and vertical up and down directions. We 
assume B  points up and the conductor’s width of 0.010 m is along an east-west line. We 
take the current going northward. The conduction electrons experience a westward 
magnetic force (by the right-hand rule), which results in the west side of the conductor 
being negative and the east side being positive (with reference to the Hall voltage that 
becomes established). 
 
83. By the right-hand rule, we see that v B×  points along −k . From Eq. 28-2 

F qv B= ×d i , we find that for the force to point along k̂+ , we must have q < 0. Now, 

examining the magnitudes in Eq. 28-3, we find | | | | | | sinF q v B φ= , or 
 

( ) ( )0.48 N | | 4000 m/s 0.0050 T sin 35q= °  
 
which yields |q| = 0.040 C. In summary, then, q = –40 mC. 
 
84. The current is in the + i  direction. Thus, the i  component of B  has no effect, and 
(with x in meters) we evaluate 
 

( ) ( ) ( )
31 2 2

0

1ˆ ˆ ˆ ˆ3.00A 0.600T m i j 1.80 A T m k ( 0.600N)k.
3

F x dx
⎛ ⎞

= − × = − ⋅ ⋅ = −⎜ ⎟
⎝ ⎠

∫  

 
85. (a) We use Eq. 28-2 and Eq. 3-30: 
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( ) ( ) ( ) ( )( )

)( ( )( ) ( ) ( )( )(
( )( ) ( ) ( )( ) ( )( ) ( )( )( ) )

( ) ( )

19

21 22

ˆ ˆ ˆi j k

ˆ1.60 10 4 0.008 6 0.004 i+

ˆ ˆ6 0.002 2 0.008 j 2 0.004 4 0.002 k

ˆ ˆ1.28 10 i 6.41 10 j

y z z y z x x z x y y xF qv B e v B v B v B v B v B v B

−

− −

= × = + − + − + −

= × − − −

− − − + − − −

= × + ×

 

 
with SI units understood. 
 
(b) By definition of the cross product, v F⊥ . This is easily verified by taking the dot 
(scalar) product of v  with the result of part (a), yielding zero, provided care is taken not 
to introduce any round-off error.  
 
(c) There are several ways to proceed. It may be worthwhile to note, first, that if Bz were 
6.00 mT instead of 8.00 mT then the two vectors would be exactly antiparallel. Hence, 
the angle θ between B  and v  is presumably “close” to 180°. Here, we use Eq. 3-20: 
 

 1 1 68θ cos cos 173
| || | 56 84
v B
v B

− −⎛ ⎞⋅ −⎛ ⎞
= = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

 
86. (a) We are given 5ˆ ˆi (6 10 T)ixB B −= = × , so that v B v By x× = − k  where vy = 4×104 m/s. 

We note that the magnetic force on the electron is − −e v By xb ge jk  and therefore points in 

the +k  direction, at the instant the electron enters the field-filled region. In these terms, 
Eq. 28-16 becomes 

r
m v
e B

e y

x

= = 0 0038. m.  

 
(b) One revolution takes T = 2πr/vy = 0.60 μs, and during that time the “drift” of the 
electron in the x direction (which is the pitch of the helix) is Δx = vxT = 0.019 m where vx 
= 32 × 103 m/s. 
 
(c) Returning to our observation of force direction made in part (a), we consider how this 
is perceived by an observer at some point on the –x axis. As the electron moves away 
from him, he sees it enter the region with positive vy (which he might call “upward’’) but 
“pushed” in the +z direction (to his right). Hence, he describes the electron’s spiral as 
clockwise. 
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Chapter 29 
 
 
1. (a) The magnitude of the magnetic field due to the current in the wire, at a point a 
distance r from the wire, is given by 

B i
r

=
μ0

2p
.  

With r = 20 ft = 6.10 m, we have 
 

B =
× ⋅

= × =−
4 100

2
33 10 336

p 10
p 6.10

-7 T m A A
m

T T.
c hb g

b g . . μ  

 
(b) This is about one-sixth the magnitude of the Earth’s field. It will affect the compass 
reading. 
 
2. Equation 29-1 is maximized (with respect to angle) by setting θ = 90º ( = π/2 rad). Its 
value in this case is  

 0
max 24

i dsdB
R

μ
π

= . 

 
From Fig. 29-34(b), we have 12

max 60 10  T.B −= ×  We can relate this Bmax to our dBmax by 
setting “ds” equal to 1 ×  10−6 m and R = 0.025 m.  This allows us to solve for the current: 
i = 0.375 A.  Plugging this into Eq. 29-4 (for the infinite wire) gives B∞ = 3.0 μT. 
 
3. (a) The field due to the wire, at a point 8.0 cm from the wire, must be 39 μT and must 
be directed due south. Since B i r= μ 0 2p ,  
 

i rB
= =

×

× ⋅
=

−2 2 39 10
4

16
0

6p p 0.080
p 10-7μ

m T
T m A

A.
b gc h

 

 
(b) The current must be from west to east to produce a field that is directed southward at 
points below it. 
 
4. The straight segment of the wire produces no magnetic field at C (see the straight 
sections discussion in Sample Problem — “Magnetic field at the center of a circular arc 
of current”). Also, the fields from the two semicircular loops cancel at C (by symmetry). 
Therefore, BC = 0. 
 
5. (a) We find the field by superposing the results of two semi-infinite wires (Eq. 29-7) 
and a semicircular arc (Eq. 29-9 with φ = π rad). The direction of B  is out of the page, as 
can be checked by referring to Fig. 29-6(c). The magnitude of B  at point a is therefore 



CHAPTER 29 1128 

 
7

30 0 0 1 1 (4 10 T m/A)(10 A) 1 12 1.0 10  T
4 2 2 2(0.0050 m) 2a

i i iB
R R R

μ μ π μ π
π π π π

−
−× ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + = + = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ 4 ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
upon substituting i = 10 A and R = 0.0050 m.  
 
(b) The direction of this field is out of the page, as Fig. 29-6(c) makes clear. 
 
(c) The last remark in the problem statement implies that treating b as a point midway 
between two infinite wires is a good approximation. Thus, using Eq. 29-4, 
 

7
40 0 (4 10 T m/A)(10 A)2 8.0 10 T.

2 (0.0050 m)b
i iB
R R

μ μ π
π π

−
−× ⋅⎛ ⎞= = = = ×⎜ ⎟π⎝ ⎠

 

 
(d) This field, too, points out of the page. 
 
6. With the “usual” x and y coordinates used in Fig. 29-37, then the vector  r  

→
  pointing 

from a current element to P is ˆ ˆi j .r s R= − +  Since îds ds= , then | | .ds r Rds× =  

Therefore, with 2 2r s R= + ,  Eq. 29-3 gives 
 

 0
2 2 3/ 24 ( )
iR dsdB

s R
μ
π

=
+

. 

 
 (a) Clearly, considered as a function of s  (but thinking of “ds” as some finite-sized 
constant value), the above expression is maximum for s = 0.  Its value in this case is 

2
max 0 / 4dB i ds Rμ π= .  

 
(b) We want to find the s value such that max /10dB dB= . This is a nontrivial algebra 
exercise, but is nonetheless straightforward. The result is s = 102/3 − 1 R. If we set 

2.00 cm,R =  then we obtain s = 3.82 cm. 
 
7. (a) Recalling the straight sections discussion in Sample Problem — “Magnetic field at 
the center of a circular arc of current,” we see that the current in the straight segments 
collinear with P do not contribute to the field at that point. Using Eq. 29-9 (with φ = θ) 
and the right-hand rule, we find that the current in the semicircular arc of radius b 
contributes μ θ0 4i bp  (out of the page) to the field at P. Also, the current in the large 
radius arc contributes μ θ0 4i ap  (into the page) to the field there. Thus, the net field at P 
is 

0 1 1 (4 T m A)(0.411A)(74 /180 ) 1 1
4 4 0.107m 0.135m

1.02 T.

iB
b a

μ θ π
π

× ⋅ °⋅ °⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ×

-7

-7

p 10

10
 

 



 

  

1129

(b) The direction is out of the page. 
 
8. (a) Recalling the straight sections discussion in Sample Problem — “Magnetic field at 
the center of a circular arc of current,” we see that the current in segments AH and JD do 
not contribute to the field at point C. Using Eq. 29-9 (with φ = π) and the right-hand rule, 
we find that the current in the semicircular arc H J contributes μ0 14i R  (into the page) to 
the field at C. Also, arc D A contributes μ0 24i R  (out of the page) to the field there. Thus, 
the net field at C is  
 

0

1 2

1 1 (4 T m A)(0.281A) 1 1 1.67 T.
4 4 0.0315m 0.0780m

iB
R R

μ ⎛ ⎞ × ⋅ ⎛ ⎞= − = − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

-7
-6p 10 10  

 
(b) The direction of the field is into the page. 
 
9. (a) The currents must be opposite or antiparallel, so that the resulting fields are in the 
same direction in the region between the wires. If the currents are parallel, then the two 
fields are in opposite directions in the region between the wires. Since the currents are the 
same, the total field is zero along the line that runs halfway between the wires. 
 
(b) At a point halfway between they have the same magnitude, μ0i/2πr. Thus the total 
field at the midpoint has magnitude B = μ0i/πr and  
 

( )( )6m 300 10 T
30A.

4 T m A
rBi

μ

−×
= = =

× ⋅-7
0

p 0.040p
p 10

 

 
10. (a) Recalling the straight sections discussion in Sample Problem — “Magnetic field 
at the center of a circular arc of current,” we see that the current in the straight segments 
collinear with C do not contribute to the field at that point. 
 
Equation 29-9 (with φ = π) indicates that the current in the semicircular arc contributes 
μ0 4i R  to the field at C. Thus, the magnitude of the magnetic field is 
 

0 (4 T m A)(0.0348A) 1.18 T.
4 4(0.0926m)

iB
R

μ × ⋅
= = = ×

-7
-7p 10 10  

 
(b) The right-hand rule shows that this field is into the page. 
 
11. (a) 

1 0 1 1/ 2PB i rμ π=  where i1 = 6.5 A and r1 = d1 + d2 = 0.75 cm + 1.5 cm = 2.25 cm, 
and 

2 0 2 2/ 2PB i rμ π=  where r2 = d2 = 1.5 cm. From BP1 = BP2 we get 
 

( )2
2 1

1

1.5 cm6.5A 4.3A.
2.25 cm

ri i
r

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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(b) Using the right-hand rule, we see that the current i2 carried by wire 2 must be out of 
the page. 
 
12. (a) Since they carry current in the same direction, then (by the right-hand rule) the 
only region in which their fields might cancel is between them. Thus, if the point at 
which we are evaluating their field is r away from the wire carrying current i and is d – r 
away from the wire carrying current 3.00i, then the canceling of their fields leads to 
 

0 0 (3 ) 16.0 cm 4.0 cm.
2 2 ( ) 4 4

i i dr
r d r

μ μ
π π

= ⇒ = = =
−

 

 
(b) Doubling the currents does not change the location where the magnetic field is zero. 
 
13. Our x axis is along the wire with the origin at the midpoint. The current flows in the 
positive x direction. All segments of the wire produce magnetic fields at P1 that are out of 
the page. According to the Biot-Savart law, the magnitude of the field any (infinitesimal) 
segment produces at P1 is given by 
 

dB i
r

dx=
μ θ0

24p
sin  

 
where θ (the angle between the segment and a line drawn from the segment to P1) and r 
(the length of that line) are functions of x. Replacing r with x R2 2+  and sin θ with 
R r R x R= +2 2 ,  we integrate from x = –L/2 to x = L/2. The total field is 
 

( ) ( )
( )( )

( )

2 20 0 0
3 2 1 22 2 22 2 2 2 2 2

8

2 2

1
4 4 2 4

4 T m A 0.0582 A 0.180m 5.03 10 T.
m (0.180m) 4(0.131m)

L L

L L

iR iR idx x LB
R R L Rx R x R

μ μ μ
− −

−

= = =
++ +

× ⋅
= = ×

+

∫
-7

p p p

p 10
2p 0.131

 

 
14. We consider Eq. 29-6 but with a finite upper limit (L/2 instead of ∞).  This leads to  
 

 0
2 2

/ 2
2 ( / 2)

i LB
R L R

μ
=

+π
. 

 
In terms of this expression, the problem asks us to see how large L must be (compared 
with R) such that the infinite wire expression B∞ (Eq. 29-4) can be used with no more 
than a 1% error.  Thus we must solve 
 

B∞ – B
B  = 0.01. 
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This is a nontrivial algebra exercise, but is nonetheless straightforward. The result is  
 

200 14.1     14.1
201

R LL R
R

= ≈ ⇒ ≈ . 

 
15. (a) As discussed in Sample Problem — “Magnetic field at the center of a circular arc 
of current,” the radial segments do not contribute to BP  and the arc segments contribute 
according to Eq. 29-9 (with angle in radians). If k  designates the direction “out of the 
page” then 

( )( )
( )

( )( )
( )

0 0 60.40 A rad 0.80 A 2 / 3radˆ ˆ ˆk k (1.7 10  T)k
4 0.050m 4 0.040m

B
μ π μ π

π π
−= − = − ×  

 
or 6| | 1.7 10 TB −= × . 
 
(b) The direction is k̂− , or into the page. 
 
(c) If the direction of i1 is reversed, we then have 
 

( )( )
( )

( )( )
( )

0 0 60.40A rad 0.80A 2 / 3radˆ ˆ ˆk k (6.7 10  T)k
4 0.050m 4 0.040m

B
μ π μ π

π π
−= − − = − ×  

 
or 6| | 6.7 10 T.B −= ×   
 
(d) The direction is k̂− , or into the page. 
 
16. Using the law of cosines and the requirement that B = 100 nT, we have 
 

 
2 2 2

1 1 2

1 2

cos 144
2

B B B
B B

θ − ⎛ ⎞+ −
= = °⎜ ⎟−⎝ ⎠

, 

 
where Eq. 29-10 has been used to determine B1

 (168 nT) and B2 (151 nT). 
 
17. Our x axis is along the wire with the origin at the right endpoint, and the current is in 
the positive x direction. All segments of the wire produce magnetic fields at P2 that are 
out of the page. According to the Biot-Savart law, the magnitude of the field any 
(infinitesimal) segment produces at P2 is given by  
 

dB i
r

dx=
μ θ0

24p
sin  
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where θ (the angle between the segment and a line drawn from the segment to P2) and r 
(the length of that line) are functions of x. Replacing r with x R2 2+  and sin θ with 
R r R x R= +2 2 ,  we integrate from x = –L to x = 0. The total field is 
 

( ) ( )
( )( )

( )

0 00 0
3 2 1 22 2 22 2 2 2

7

2 2

1
4 4 4

4 T m A 0.693 A 0.136m 1.32 10 T.
m (0.136m) (0.251m)

L L

iR iR idx x LB
R R L Rx R x R

μ μ μ
− −

−

= = =
++ +

× ⋅
= = ×

+

∫ 0

-7

p p p

p 10
4p 0.251

 

 
18. In the one case we have Bsmall + Bbig = 47.25 μT, and the other case gives Bsmall – Bbig 
= 15.75 μT (cautionary note about our notation: Bsmall refers to the field at the center of 
the small-radius arc, which is actually a bigger field than Bbig!).  Dividing one of these 
equations by the other and canceling out common factors (see Eq. 29-9) we obtain 
 

 small big small big

small big small big

(1/ ) (1/ ) 1 ( / )
3

(1/ ) (1/ ) 1 ( / )
r r r r
r r r r

+ +
= =

− −
 . 

 
The solution of this is straightforward: rsmall = rbig /2. Using the given fact that the 

big 4.00 cm,r =  then we conclude that the small radius is small 2.00 cm.r =  
 
19. The contribution to netB  from the first wire is (using Eq. 29-4) 
 

 
7

60 1
1

1

(4 10 T m/A)(30 A)ˆ ˆ ˆk k (3.0 10  T)k.
2 2 (2.0 m)

iB
r

μ
π π

−
−π× ⋅

= = = ×  

 
The distance from the second wire to the point where we are evaluating netB  is r2 = 4 m − 
2 m = 2 m.  Thus, 
 

7
60 2

2
2

(4 10 T m/A)(40 A)ˆ ˆ ˆi i (4.0 10  T)i.
2 2 (2.0 m)

iB
r

μ
π π

−
−π× ⋅

= = = ×  

 
and consequently is perpendicular to 1B .  The magnitude of netB  is therefore 
 
 6 2 6 2 6

net| | (3.0 10  T) (4.0 10  T) 5.0 10  TB − − −= × + × = × . 
 
20. (a) The contribution to BC from the (infinite) straight segment of the wire is 
 

B i
RC1

0

2
=

μ
π

.  
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The contribution from the circular loop is B i
RC2
0

2
=

μ .  Thus, 

 
( )( )

( )

3
70

1 2

4 T m A 5.78 10 A1 11 1 2.53 10 T.
2 2 mC C C

iB B B
R

μ
π π

−
−

× ⋅ ×⎛ ⎞ ⎛ ⎞= + = + = + = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−7π 10

0.0189
 

 
BC  points out of the page, or in the +z direction. In unit-vector notation, 

7 ˆ(2.53 10 T)kCB −= ×  
 
(b) Now, B BC C1 2⊥  so 
 

( )( )
( )

3
2 2 70

1 2

4 T m A 5.78 10 A1 11 1 2.02 10 T.
2 2 mC C C

iB B B
R

μ
−

−
2 2

× ⋅ ×
= + = + = + = ×

π π

-7p 10

0.0189
 

 
and BC  points at an angle (relative to the plane of the paper) equal to 
 

1 11

2

1tan tan 17.66 .C

C

B
B π

− −⎛ ⎞ ⎛ ⎞= = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

In unit-vector notation,  
 
 7 7 8ˆ ˆ ˆ ˆ2.02 10 T(cos17.66 i sin17.66 k) (1.92 10 T)i (6.12 10 T)kCB − − −= × ° + ° = × + × . 
 
21. Using the right-hand rule (and symmetry), we see that B → net points along what we will 
refer to as the y axis (passing through P), consisting of two equal magnetic field y-
components.  Using Eq. 29-17, 

0
net| | 2 sin

2
iB
r

μ θ
π

=  

where i = 4.00 A, r = 2 2
2 1 / 4 5.00 m,r d d= + =  and 

 1 1 12

1

4.00 m 4tan tan tan 53.1
/ 2 6.00 m / 2 3

d
d

θ − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = °⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

Therefore, 
0

net
(4 T m A)(4.00 A)| | sin sin 53.1 2.56  T

( m)
iB
r

μ πθ
π π

−7
−7×10 ⋅

= = ° = ×10
5.00

. 

 
22. The fact that By = 0 at x = 10 cm implies the currents are in opposite directions.  Thus, 
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 0 1 0 2 0 2 4 1
2 ( ) 2 2y

i i iB
L x x L x x

μ μ μ
π π π

⎛ ⎞= − = −⎜ ⎟+ +⎝ ⎠
 

 
using Eq. 29-4 and the fact that 1 24i i= . To get the maximum, we take the derivative with 
respect to x and set equal to zero.  This leads to 3x2 – 2Lx – L2 = 0, which factors and 
becomes (3x + L)(x − L) = 0, which has the physically acceptable solution: x = L .  This 
produces the maximum By: μoi2/2πL. To proceed further, we must determine L.   
Examination of the datum at x = 10 cm in Fig. 29-49(b) leads (using our expression 
above for By and setting that to zero) to L = 30 cm. 
 
(a) The maximum value of By occurs at x = L = 30 cm. 
 
(b) With i2 = 0.003 A we find μo i2 /2πL = 2.0 nT. 
 
(c) and  (d) Figure 29-49(b) shows that as we get very close to wire 2 (where its field 
strongly dominates over that of the more distant wire 1) By points along the –y direction. 
The right-hand rule leads us to conclude that wire 2’s current is consequently is into the 
page.  We previously observed that the currents were in opposite directions, so wire 1’s 
current is out of the page. 
 
23. We assume the current flows in the +x direction and the particle is at some distance d 
in the +y direction (away from the wire). Then, the magnetic field at the location of a 
proton with charge q is 0

ˆ( / 2 ) k.B i dμ π=  Thus, 
 

F qv B iq
d

v= × = ×
μ0

2p
.ke j  

 
In this situation, v v= − je j  (where v is the speed and is a positive value), and  q > 0. Thus, 

 

( )( )
19

0 0 (4 T m A)(0.350A)(1.60 10 C)(200m/s)ˆ ˆ ˆ ˆj k i i
2 2 2 (0.0289 m)

ˆ( 7.75 N)i.

iqv iqvF
d d

μ μ
π

−× ⋅ ×
= − × = − = −

= − ×

-7

-23

p 10
p p

10

 

 
24. Initially, we have Bnet,y = 0 and Bnet,x = B2 + B4 = 2(μo i /2πd) using Eq. 29-4, where 

0.15 md = . To obtain the 30º condition described in the problem, we must have  
 

 0
net , net, 1 3tan(30 ) 2 tan(30 )

2y x
iB B B B
d

μ
π

⎛ ⎞′= ° ⇒ − = °⎜ ⎟
⎝ ⎠

 

 
where B3 = μo i /2πd and 1 0 / 2 .B i dμ π′ ′=  Since tan(30º) = 1/ 3 , this leads to 
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 3 0.464
3 2

d d d′ = =
+

. 

 
(a) With d = 15.0 cm, this gives d′  = 7.0 cm.  Being very careful about the geometry of 
the situation, then we conclude that we must move wire 1 to x = −7.0 cm.  
 
(b) To restore the initial symmetry, we would have to move wire 3 to x = +7.0 cm.   
 
25. Each of the semi-infinite straight wires contributes straight 0 4B i Rμ π=  (Eq. 29-7) to 
the field at the center of the circle (both contributions pointing “out of the page”). The 
current in the arc contributes a term given by Eq. 29-9: 
 

0
arc

iB
R

μ φ
π

=
4

 

pointing into the page. The total magnetic field is 
 

( )0 0 0
straight arc2 2 2 .

4 4
i i iB B B
R R R

μ μ φ μ φ
π π π

⎛ ⎞= − = − = −⎜ ⎟ 4⎝ ⎠
 

 
Therefore, φ = 2.00 rad would produce zero total field at the center of the circle.  
 
Note: The total contribution of the two semi-infinite wires is the same as that of an 
infinite wire. Note that the angle φ is in radians rather than degrees. 
 
26. Using the Pythagorean theorem, we have 
 

2 2
2 2 2 0 1 0 2

1 2 2
i iB B B
R R

μ φ μ
π π

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟4⎝ ⎠ ⎝ ⎠
 

 
which, when thought of as the equation for a line in a B2  versus  i2

2 graph, allows us to 
identify the first term as the “y-intercept” (1 ×  10−10)  and the part of the second term that 
multiplies i2

2 as the “slope” (5 ×  10−10).  The latter observation leads to the conclusion 
that R = 8.9 mm, and then our observation about the “y-intercept” determines the angle 
subtended by the arc: φ = 1.8 rad.  
 
27. We use Eq. 29-4 to relate the magnitudes of the magnetic fields B1 and B2 to the 
currents (i1 and i2, respectively) in the two long wires.  The angle of their net field is 
 

θ = tan−1(B2 /B1) = tan−1(i2 /i1) = 53.13º. 
 
The accomplish the net field rotation described in the problem, we must achieve a final 
angle θ′ = 53.13º  – 20º  = 33.13º.  Thus, the final value for the current i1 must be i2 /tanθ′ 
= 61.3 mA.  
 



CHAPTER 29 1136 

28. Letting “out of the page” in Fig. 29-55(a) be the positive direction, the net field is 
 

 0 1 0 2

2 ( / 2)
i iB
R R

μ φ μ
π π

= −
4

 

 
from Eqs. 29-9 and 29-4. Referring to Fig. 29-55, we see that B = 0 when  i2 = 0.5 A, so 
(solving the above expression with B set equal to zero) we must have 
 

φ =  4(i2 /i1)  = 4(0.5/2) = 1.00 rad (or 57.3º). 
 
29. Each wire produces a field with magnitude given by B = μ0i/2πr, where r is the 
distance from the corner of the square to the center. According to the Pythagorean 
theorem, the diagonal of the square has length 2a , so r a= 2  and B i a= μ 0 2p . 
The fields due to the wires at the upper left and lower right corners both point toward the 
upper right corner of the square. The fields due to the wires at the upper right and lower 
left corners both point toward the upper left corner. The horizontal components cancel 
and the vertical components sum to 
 

( )( )
( )

50
net

2 4 T m A 20 A
4 cos 45 8.0 10 T.

m2
i iB

aa

πμ μ
π ππ

−7
−0

×10 ⋅2
= ° = = = ×

0.20
 

 
In the calculation cos 45° was replaced with 1 2 . The total field points upward, or in 
the +y direction. Thus, 5

net
ˆ(8.0 10 T)j.B −= × In the figure below, we show the 

contributions from the individual wires. The directions of the fields are deduced using the 
right-hand rule. 

 
 
30. We note that when there is no y-component of magnetic field from wire 1 (which, by 
the right-hand rule, relates to when wire 1 is at 90º = π/2 rad), the total y-component of 
magnetic field is zero (see Fig. 29-57(c)).  This means wire #2 is either at  +π/2 rad or  
−π/2 rad.  
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(a) We now make the assumption that wire #2 must be at −π/2 rad (−90º, the bottom of 
the cylinder) since it would pose an obstacle for the motion of wire #1 (which is needed 
to make these graphs) if it were anywhere in the top semicircle.   
 
(b) Looking at the θ1 = 90º datum in Fig. 29-57(b)), where there is a maximum in Bnet x 
(equal to +6 μT), we are led to conclude that 1 6.0 T 2.0 T 4.0 TxB μ μ μ= − =  in that 
situation.  Using Eq. 29-4, we obtain  
 

 
6

1
1 7

0

2 2 (0.200 m)(4.0 10  T) 4.0 A
4 10 T m/A

xRBi π π
μ π

−

−

×
= = =

× ⋅
. 

 
(c) The fact that Fig. 29-57(b) increases as θ1 progresses from 0 to 90º implies that wire 
1’s current is out of the page, and this is consistent with the cancellation of Bnet y at 

1 90θ = ° , noted earlier (with regard to Fig. 29-57(c)).   
 
(d) Referring now to Fig. 29-57(b) we note that there is no x-component of magnetic field 
from wire 1 when θ1 = 0, so that plot tells us that B2x = +2.0 μT. Using Eq. 29-4, we find 
the magnitudes of the current to be 
 

6
2

2 7
0

2 2 (0.200 m)(2.0 10  T) 2.0 A
4 10 T m/A

xRBi π π
μ π

−

−

×
= = =

× ⋅
. 

 
(e) We can conclude (by the right-hand rule) that wire 2’s current is into the page.   
 
31. (a) Recalling the straight sections discussion in Sample Problem — “Magnetic field 
at the center of a circular arc of current,” we see that the current in the straight segments 
collinear with P do not contribute to the field at that point. We use the result of Problem 
29-21 to evaluate the contributions to the field at P, noting that the nearest wire segments 
(each of length a) produce magnetism into the page at P and the further wire segments 
(each of length 2a) produce magnetism pointing out of the page at P. Thus, we find (into 
the page) 

( )
( )( )

( )
0 0 0

2 4 T m A 13 A2 2 22 2
8 8 8 8 m

1.96 T 2.0 T.

P
i i iB

a a a
μ μ μ

π

× ⋅⎛ ⎞ ⎛ ⎞
= − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= × ≈ ×

-7

-5 -5

p 10
p p 2 p 0.047

10 10

 

 
(b) The direction of the field is into the page. 
 
32. Initially we have 

 0 0

4i
i iB
R r

μ φ μ φ
π π

= +
4

 

 
using Eq. 29-9.  In the final situation we use Pythagorean theorem and write 
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2 2
2 2 2 0 0

4f z y
i iB B B
R r

μ φ μ φ
π π

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟4⎝ ⎠ ⎝ ⎠
. 

If we square Bi and divide by Bf
2
, we obtain  

 

 
2

2

2 2

[(1/ ) (1/ )]
(1/ ) (1/ )

i

f

B R r
B R r

⎛ ⎞ +
=⎜ ⎟⎜ ⎟ +⎝ ⎠

 . 

 
From the graph (see Fig. 29-59(c), note the maximum and minimum values) we estimate 
Bi /Bf = 12/10 = 1.2, and this allows us to solve for r in terms of R: 
 

r = R 
1 ± 1.2 2 – 1.22 

 1.22 – 1    =  2.3 cm   or   43.1 cm. 

 
Since we require r < R, then the acceptable answer is r = 2.3 cm.  
 
33. Consider a section of the ribbon of thickness dx located a distance x away from point 
P. The current it carries is di = i dx/w, and its contribution to BP is 
 

0 0 .
2 2P

di idxdB
x xw

μ μ
π π

= =  

Thus, 
 

( )
6

0 0

11

(4 T m A)(4.61 10 A) 0.0491ln 1 ln 1
2 2 2 m 0.0216

2.23 10 T.

d w

P P d

i idx wB dB
w x w d

μ μ π
π π π

−7 −+

−

×10 ⋅ ×⎛ ⎞ ⎛ ⎞= = = + = +⎜ ⎟ ⎜ ⎟0.0491⎝ ⎠ ⎝ ⎠

= ×

∫ ∫

 
and BP  points upward. In unit-vector notation, 11 ˆ(2.23 10 T) jPB −= ×  
 
Note: In the limit where ,d w using  
 

2ln(1 ) / 2 ,x x x+ = − +  
the magnetic field becomes 
 

0 0 0ln 1
2 2 2P

i i iw wB
w d w d d

μ μ μ
π π π

⎛ ⎞= + ≈ ⋅ =⎜ ⎟
⎝ ⎠

 

 
which is the same as that due to a thin wire. 
 
34. By the right-hand rule (which is “built-into” Eq. 29-3) the field caused by wire 1’s 
current, evaluated at the coordinate origin, is along the +y axis.  Its magnitude B1 is given 
by Eq. 29-4.  The field caused by wire 2’s current will generally have both an x and a y 
component, which are related to its magnitude B2 (given by Eq. 29-4), and sines and 
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cosines of some angle.  A little trig (and the use of the right-hand rule) leads us to 
conclude that when wire 2 is at angle θ2 (shown in Fig. 29-61) then its components are  
 
 2 2 2 2 2 2sin , cos .x yB B B Bθ θ= = −  
 
The magnitude-squared of their net field is then  (by Pythagoras’ theorem) the sum of the 
square of their net x-component and the square of their net y-component: 
 

2 2 2 2 2
2 2 1 2 2 1 2 1 2 2( sin ) ( cos ) 2 cos .B B B B B B B Bθ θ θ= + − = + −  

 
(since sin2θ + cos2θ =1), which we could also have gotten directly by using the law of 
cosines.  We have  

 0 1 0 2
1 260 nT, 40 nT.

2 2
i iB B
R R

μ μ
= = = =

π π
 

 
With the requirement that the net field have magnitude B = 80 nT, we find 
 

2 2 2
1 11 2

2
1 2

cos cos ( 1/ 4) 104 ,
2

B B B
B B

θ − −⎛ ⎞+ −
= = − = °⎜ ⎟

⎝ ⎠
 

 
where the positive value has been chosen. 
 
35. Equation 29-13 gives the magnitude of the force between the wires, and finding the x-
component of it amounts to multiplying that magnitude by cosφ = 

d2

d1
2 + d2

2 .  Therefore, 

the x-component of the force per unit length is 
 

 

7 3 3
0 1 2 2

2 2 2 2
1 2

11

(4 10 T m/A)(4.00 10 A)(6.80 10 A)(0.050 m)
2 ( ) 2 [(0.0240 m) (0.050 m) ]

8.84 10 N/m.

xF i i d
L d d

μ
π π

− − −

−

π× ⋅ × ×
= =

+ +

= ×

. 

 
36. We label these wires 1 through 5, left to right, and use Eq. 29-13. Then, 
 
(a) The magnetic force on wire 1 is 
 

 
( )( )

( )
22 2

0 0
1 2

4

25 4 T m A 3.00A (10.0m)251 1 1 1 ˆ ˆ ˆj j j
2 2 3 4 24 24 8.00 10 m

ˆ(4.69 10 N) j.

i l i lF
d d d d d

πμ μ
π π π

−7

−

−

×10 ⋅⎛ ⎞= + + + = =⎜ ⎟ ×⎝ ⎠

= ×

 

 
(b) Similarly, for wire 2, we have 
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2 2
40 0

2
51 1 ˆ ˆ ˆj j (1.88 10 N) j.

2 2 3 12
i l i lF

d d d
μ μ

π π
−⎛ ⎞= + = = ×⎜ ⎟

⎝ ⎠
 

 
(c) F3 = 0 (because of symmetry). 
 
(d) 4

4 2
ˆ( 1.88 10 N)jF F −= − = − × , and 

 
(e) 4

5 1
ˆ(4.69 10 N)jF F −= − = − × . 

 
37. We use Eq. 29-13 and the superposition of forces: F F F F4 14 24 34= + + . With θ = 45°, 
the situation is as shown on the right. 
 
The components of F4  are given by 
 

2 2 2
0 0 0

4 43 42
cos 45 3cos

2 42 2x
i i iF F F
a aa

μ μ μθ °
= − − = − − = −

p pp
 

and 
2 2 2

0 0 0
4 41 42

sin 45sin .
2 42 2y

i i iF F F
a aa

μ μ μθ °
= − = − =

p pp
 

Thus, 
 

( ) ( )( )
( )

1 2 22 22 2 21 22 2 0 0 0
4 4 4

4

10 4 T m A 7.50A3 10
4 4 4 4 0.135m

1.32 10 N/m

x y
i i iF F F
a a a

μ μ μ
π

−

⎡ ⎤ × ⋅⎛ ⎞ ⎛ ⎞
⎢ ⎥= + = − + = =⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= ×

−7π 10

π π π

 
and F4  makes an angle φ with the positive x axis, where 
 

φ =
F
HG
I
KJ = −FHG

I
KJ = °− −tan tan .1 4

4

1 1
3

162
F
F

y

x

 

 
In unit-vector notation, we have 
 

1
ˆ ˆ ˆ ˆ(1.32 N/m)[cos162 i sin162 j] ( 1.25 N/m)i (4.17 N/m)jF = × ° + ° = − × + ×-4 -4 -510 10 10  

 
38. (a) The fact that the curve in Fig. 29-64(b) passes through zero implies that the 
currents in wires 1 and 3 exert forces in opposite directions on wire 2.  Thus, current i1 
points out of the page.  When wire 3 is a great distance from wire 2, the only field that 
affects wire 2 is that caused by the current in wire 1; in this case the force is negative 
according to Fig. 29-64(b).  This means wire 2 is attracted to wire 1, which implies (by 
the discussion in Section 29-2) that wire 2’s current is in the same direction as wire 1’s 
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current: out of the page.  With wire 3 infinitely far away, the force per unit length is given 
(in magnitude) as 6.27 ×  10−7 N/m.  We set this equal to 12 0 1 2 / 2F i i dμ π= . When wire 3 
is at x = 0.04 m the curve passes through the zero point previously mentioned, so the 
force between 2 and 3 must equal F12 there.  This allows us to solve for the distance 
between wire 1 and wire 2:  
 

d = (0.04 m)(0.750 A)/(0.250 A) = 0.12 m. 
 
Then we solve 6.27 ×  10−7 N/m= μo i1 i2 /2πd and obtain i2 = 0.50 A.  
 
(b) The direction of i2 is out of the page. 
 
39. Using a magnifying glass, we see that all but i2 are directed into the page. Wire 3 is 
therefore attracted to all but wire 2. Letting d = 0.500 m, we find the net force (per meter 
length) using Eq. 29-13, with positive indicated a rightward force: 
 

0 3 51 2 4| |
2 2 2

i ii i iF
d d d d

μ
π

⎛ ⎞= − + + +⎜ ⎟
⎝ ⎠

 

 
which yields 7| | / 8.00 10 N/mF −= × . 
 
40. Using Eq. 29-13, the force on, say, wire 1 (the wire at the upper left of the figure) is 
along the diagonal (pointing toward wire 3, which is at the lower right). Only the forces 
(or their components) along the diagonal direction contribute. With θ = 45°, we find the 
force per unit meter on wire 1 to be 
 

( )( )
( )

2 2 2
0 0 0

1 12 13 14 12 13

2

2

3| | 2 cos 2 cos 45
2 2 2 2 2

4 T m A 15.0A3 1.12 N/m.
8.50 10 m2 2

i i iF F F F F F
a aa

μ μ μθ
π

π −

⎛ ⎞ ⎛ ⎞
= + + = + = °+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

× ⋅
= = ×

×

−7
−3

π π

π 10
10

 

 
The direction of 1F  is along ˆ ˆˆ (i j) / 2r = − . In unit-vector notation, we have  
 

 1
(1.12 N/m) ˆ ˆ ˆ ˆ(i j) (7.94 N/m)i ( 7.94 N/m)j

2
F ×

= − = × + − ×
-3

-4 -410 10 10  

 
41. The magnitudes of the forces on the sides of the rectangle that are parallel to the long 
straight wire (with i1 = 30.0 A) are computed using Eq. 29-13, but the force on each of 
the sides lying perpendicular to it (along our y axis, with the origin at the top wire and +y 
downward) would be figured by integrating as follows: 
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F i i
y

dy
a

a b

⊥

+
= zsides

2 0 1

2
μ
π

.  

 
Fortunately, these forces on the two perpendicular sides of length b cancel out. For the 
remaining two (parallel) sides of length L, we obtain 
 

( )
( )( )( )( )( )

( )

0 1 2 0 1 2

7 2
3

1 1
2 2

4 10 T m/A 30.0A 20.0A 8.00cm 300 10 m
3.20 10 N,

2 1.00cm 8.00cm

i i L i i bF
a a d a a b

μ μ
π π

π

π

− −
−

⎛ ⎞= − =⎜ ⎟+ +⎝ ⎠

× ⋅ ×
= = ×

+

 

 
and F  points toward the wire, or ĵ+ . That is, 3 ˆ(3.20 10 N) jF −= ×  in unit-vector notation.  
 
42. The area enclosed by the loop L is A d d d= =1

2
24 3 6( )( ) . Thus 

 
( )( )( )( )27 2 6

0 0 4 T m A 15A m 6 0.20m 4.5 10 T m.
c
B ds i jAμ μ − −⋅ = = = × ⋅ = × ⋅∫ π 10  

 
43. We use Eq. 29-20 2

0 / 2B ir aμ π=  for the B-field inside the wire ( r a< ) and Eq. 29-17 

0 / 2B i rμ π=  for that outside the wire (r > a).  
 
(a) At 0,r =  0B = . 
 

(b) At 0.0100mr = , 
7

40
2 2

(4 10 T m/A)(170A)(0.0100m) 8.50 10 T.
2 2 (0.0200m)

irB
a

μ π
π π

−
−× ⋅

= = = ×  

 

(c) At 0.0200mr a= = , 
7

30
2 2

(4 10 T m/A)(170A)(0.0200m) 1.70 10 T.
2 2 (0.0200m)

irB
a

μ π
π π

−
−× ⋅

= = = ×  

 

(d) At 0.0400mr = , 
7

40 (4 10 T m/A)(170A) 8.50 10 T.
2 2 (0.0400m)

iB
r

μ π
π π

−
−× ⋅

= = = ×  

 
44. We use Ampere’s law: B ds i⋅ =z μ 0 , where the integral is around a closed loop and i 

is the net current through the loop.  
 
(a) For path 1, the result is 
 

( ) ( )7 6
01

5.0A 3.0A (4 10 T m/A) 2.0A 2.5 10 T m.B ds μ π − −⋅ = − + = × ⋅ − = − × ⋅∫  

 
(b) For path 2, we find 
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( ) ( )7 5

02
5.0A 5.0A 3.0A (4 10 T m/A) 13.0A 1.6 10 T m.B ds μ − −⋅ = − − − = π× ⋅ − = − × ⋅∫  

 
45. (a) Two of the currents are out of the page and one is into the page, so the net current 
enclosed by the path is 2.0 A, out of the page. Since the path is traversed in the clockwise 
sense, a current into the page is positive and a current out of the page is negative, as 
indicated by the right-hand rule associated with Ampere’s law. Thus, 
 

( )7 6
0 (4 10 T m/A) 2.0A 2.5 10 T m.B ds iμ π − −⋅ = − = − × ⋅ = − × ⋅∫  

 
(b) The net current enclosed by the path is zero (two currents are out of the page and two 
are into the page), so B ds i⋅ = =z μ0 0enc . 

 
46. A close look at the path reveals that only currents 1, 3, 6 and 7 are enclosed. Thus, 
noting the different current directions described in the problem, we obtain 
 

( ) ( )( )7 3 8
0 07 6 3 5 5 4 10 T m/A 4.50 10 A 2.83 10 T m.B ds i i i i iμ μ − − −⋅ = − + + = = π× ⋅ × = × ⋅∫  

 
47. For r a≤ , 

( ) ( )
2

0 enc 0 0 0 0
00 0

2 2 .
2 2 2 3

r ri J rrB r J r rdr J rdr
r r a a

μ μ μ μ⎛ ⎞= = = =⎜ ⎟
⎝ ⎠∫ ∫p p

p p p
 

 
(a) At 0,r =  0B = . 
 
(b) At / 2r a= , we have  
 

( )
2 7 2 3 2

70 0
3

(4 10 T m/A)(310A/m )(3.1 10 m / 2) 1.0 10 T.
3 3(3.1 10 m)
J rB r
a

μ π − −
−

−

× ⋅ ×
= = = ×

×
 

 
(c) At ,r a=  

( )
7 2 3

70 0 (4 10 T m/A)(310A/m )(3.1 10 m) 4.0 10 T.
3 3
J aB r a μ − −

−π× ⋅ ×
= = = = ×  

 
48. (a) The field at the center of the pipe (point C) is due to the wire alone, with a 
magnitude of 

( )
0 wire 0 wire .

2 3 6C
i iB

R R
μ μ
π π

= =  

 
For the wire we have BP, wire > BC, wire. Thus, for BP = BC = BC, wire, iwire must be into the 
page: 



CHAPTER 29 1144 

( )
0 wire 0

,wire ,pipe .
2 2 2P P P

i iB B B
R R

μ μ
π π

= − = −  

 
Setting BC = –BP we obtain iwire = 3i/8 = 3 33(8.00 10 A) / 8 3.00 10 A− −× = × . 
 
(b) The direction is into the page. 
 
49. (a) We use Eq. 29-24. The inner radius is r = 15.0 cm, so the field there is 
 

( )( )( )
( )

7
40

4 10 T m/A 0.800A 500
5.33 10 T.

2 2 0.150m
iNB
r

μ
π π

−
−

π× ⋅
= = = ×  

 
(b) The outer radius is r = 20.0 cm. The field there is 
 

( )( )( )
( )

7
40

4 10 T m/A 0.800A 500
4.00 10 T.

2 2 0.200m
iNB
r

πμ
π π

−
−

× ⋅
= = = ×  

 
50. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with 
the intent to sum them) of all 1200 loops to the field at, say, the center of the solenoid. 
This would make use of all the information given in the problem statement, but this is not 
the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal 
solenoid (which does not make use of the coil radius) is the preferred method: 
 

B in i N
= = F

HG
I
KJμ μ0 0  

 
where i = 3.60 A, 0.950 m,=  and N = 1200. This yields B = 0.00571 T. 
 
51. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with 
the intent to sum them) of all 200 loops to the field at, say, the center of the solenoid. 
This would make use of all the information given in the problem statement, but this is not 
the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal 
solenoid (which does not make use of the coil diameter) is the preferred method: 
 

B in i N
= = F

HG
I
KJμ μ0 0  

 
where i = 0.30 A, 0.25 m,= and N = 200. This yields 43.0 10  TB −= × . 
 
52. We find N, the number of turns of the solenoid, from the magnetic field 

0 /oB in iNμ μ= = : 0/ .N B iμ=  Thus, the total length of wire used in making the 
solenoid is 
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2 2 2 2 60 10 230 10 130

18 0
108

0

2 3

π
π π

π
rN rB

i
= =

× ×

× ⋅
=

− −

−μ
. . .

.

m T m

2 4 10 T m / A A
m.

7

c hc hb g
c hb g  

 
53. The orbital radius for the electron is 
 

r mv
eB

mv
e ni

= =
μ0

 

which we solve for i: 
 

( )( )( )
( )( )( )( )

31 8

19 7 2
0

9.11 10 kg 0.0460 3.00 10 m s

1.60 10 C 4 T m A 100 0.0100m 2.30 10 m

0.272A.

mvi
e nrμ

−

− − −

× ×
= =

× π×10 ⋅ ×

=

 

 
54. As the problem states near the end, some idealizations are being made here to keep 
the calculation straightforward (but are slightly unrealistic).  For circular motion (with 
speed, v⊥, which represents the magnitude of the component of the velocity perpendicular 
to the magnetic field [the field is shown in Fig. 29-19]), the period is (see Eq. 28-17) 
 

T = 2πr/v⊥ = 2πm/eB. 
 
Now, the time to travel the length of the solenoid is /t L v=  where v|| is the component 
of the velocity in the direction of the field (along the coil axis) and is equal to v cos θ   
where θ  = 30º.  Using Eq. 29-23 (B = μ0in) with n = N/L, we find the number of 
revolutions made is t /T = 1.6 × 106. 
 
55. (a) We denote the B  fields at point P on the axis due to the solenoid and the wire as 
Bs  and Bw , respectively. Since Bs  is along the axis of the solenoid and Bw  is 
perpendicular to it, B Bs w⊥ . For the net field B  to be at 45° with the axis we then must 
have Bs = Bw. Thus, 

B i n B i
ds s w
w= = =μ μ

0
0

2π
,  

 
which gives the separation d to point P on the axis: 
 

( )( )3

6.00A 4.77cm.
2 2 20.0 10 A 10 turns cm

w

s

id
i nπ π −

= = =
×

 

 
(b) The magnetic field strength is 
 

( )( )( )7 3 52 2 4 10 T m A 20.0 10 A 10 turns 0.0100 m 3.55 10 T.sB B π − − −= = × ⋅ × = ×  
 



CHAPTER 29 1146 

56. We use Eq. 29-26 and note that the contributions to BP  from the two coils are the 
same. Thus, 
 

( )
( ) ( )

( )

72
60 0

3 222

8 4 10 T m/A (200) 0.0122A2 8 8.78 10 T.
5 5 5 5 0.25m2 2

P
iR N NiB

RR R

μ μ
−

−
π× ⋅

= = = = ×
⎡ ⎤+⎣ ⎦

 

 
BP  is in the positive x direction. 
 
57. (a) The magnitude of the magnetic dipole moment is given by μ = NiA, where N is the 
number of turns, i is the current, and A is the area. We use A = πR2, where R is the radius. 
Thus, 

μ = = = ⋅Ni Rπ π2 2 2300 4 0 0 025 2 4b gb g b g. . . .A m A m  
 
(b) The magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq. 
29-27: 

B
z

=
μ μ0

32π
.  

We solve for z: 

( )( )
( )

137 213
0

6

4 10 T m A 2.36 A m
46cm .

2 2 5.0 10 T
z

B
πμ μ

π π

−

−

⎛ ⎞× ⋅ ⋅⎛ ⎞ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

 
58. (a) We set z = 0 in Eq. 29-26 (which is equivalent using to Eq. 29-10 multiplied by 
the number of loops). Thus, B(0) ∝ i/R. Since case b has two loops, 
 

2 2 4.0b b a

a a b

B i R R
B i R R

= = = . 

 
(b) The ratio of their magnetic dipole moments is 
 

22

2

2 2 1 12 0.50.
2 2

b b b

a a a

iA R
iA R

μ
μ

⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠

 

 
59. The magnitude of the magnetic dipole moment is given by μ = NiA, where N is the 
number of turns, i is the current, and A is the area. We use A = πR2, where R is the radius. 
Thus, 

μ = = ⋅200 0 30 0 472 2b gb g b g. . .A m A mπ 0.050  
 
60. Using Eq. 29-26, we find that the net y-component field is 
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2 2

0 1 0 2
2 2 3/ 2 2 2 3/ 2

1 2

,
2 ( ) 2 ( )y

i R i RB
R z R z
μ μ

π π
= −

+ +
 

 
where  z1

2 = L2 (see Fig. 29-73(a)) and z2
2 = y2 (because the central axis here is denoted y 

instead of z).  The fact that there is a minus sign between the two terms, above, is due to 
the observation that the datum in Fig. 29-73(b) corresponding to By = 0 would be 
impossible without it (physically, this means that one of the currents is clockwise and the 
other is counterclockwise).   
 
(a) As y → ∞, only the first term contributes and (with By = 7.2 × 10−6 T given in this case) 
we can solve for i1.  We obtain i1 = (45/16π) Α  ≈ 0.90 A. 
 
(b) With loop 2 at y = 0.06 m (see Fig. 29-73(b)) we are able to determine i2 from 
 

2 2
0 1 0 2

2 2 3/ 2 2 2 3/ 2 .
2( ) 2( )

i R i R
R L R y
μ μ

=
+ +

 

 
We obtain i2 = (117 13 /50π) Α ≈ 2.7 A. 
 
61. (a) We denote the large loop and small coil with subscripts 1 and 2, respectively. 
 

B i
R1
0 1

1

7
5

2
4 10 15

2 012
7 9 10= =

× ⋅
= ×

−
−μ π T m A A

m
T.

c hb g
b g.

.  

 
(b) The torque has magnitude equal to 
 

( )( )( ) ( )

2
2 1 2 1 2 2 2 1 2 2 2 1

22 5

6

| | sin 90

1.3A 0.82 10 m 7.9 10 T

1.1 10 N m.

B B N i A B N i r Bτ μ μ π

π − −

−

= × = ° = =

= 50 × ×

= × ⋅

 

 
62. (a) To find the magnitude of the field, we use Eq. 29-9 for each semicircle (φ = π rad), 
and use superposition to obtain the result: 
 

( )7
0 0 0

7

(4 10 T m/A) 0.0562A1 1 1 1
4 4 4 0.0572m 0.0936m

4.97 10 T.

i i iB
a b a b

πμ π μ π μ
π π

−

−

× ⋅ ⎛ ⎞⎛ ⎞= + = + = +⎜ ⎟⎜ ⎟4 ⎝ ⎠ ⎝ ⎠
= ×

 

 
(b) By the right-hand rule, B  points into the paper at P (see Fig. 29-6(c)). 
 
(c) The enclosed area is 2 2( ) / 2,A a bπ π= +  which means the magnetic dipole moment 
has magnitude 
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2 2 2 2 3 2(0.0562A)| | ( ) [(0.0572m) (0.0936m) ] 1.06 10 A m .

2 2
i a bπ πμ −= + = + = × ⋅  

 
(d) The direction of μ  is the same as the B  found in part (a): into the paper.  
 
63. By imagining that each of the segments bg and cf (which are shown in the figure as 
having no current) actually has a pair of currents, where both currents are of the same 
magnitude (i) but opposite direction (so that the pair effectively cancels in the final sum), 
one can justify the superposition. 
 
(a) The dipole moment of path abcdefgha is 
 

( )( )
( )( )

2 2

2 2 2

ˆ ˆ ˆ ˆj i i j

ˆ ˆ6.0A 0.10m j (6.0 10 A m ) j .

bc f gb abgha cde f c ia iaμ μ μ μ

−

= + + = − + =

= = × ⋅
 

 
(b) Since both points are far from the cube we can use the dipole approximation. For  
(x, y, z) = (0, 5.0 m, 0), 
 

6 2 2
110

3 3

ˆ(1.26 10 T m/A)(6.0 10 m A) j ˆ(0, 5.0 m, 0) (9.6 10  T ) j .
2 2 m)

B
y

μ μ
π π

− −
−× ⋅ × ⋅

≈ = = ×
(5.0

 

 
64. (a) The radial segments do not contribute to ,PB  and the arc segments contribute 
according to Eq. 29-9 (with angle in radians).  If k^  designates the direction "out of the 
page" then 

0 0(7 / 4 rad) (7 / 4 rad)ˆ ˆk k
4 (4.00 m) 4 (2.00 m)P
i iB μ π μ π
π π

= −  

 
where i = 0.200 A.  This yields B →  = −2.75 × 10−8 k^  T, or | B → | = 2.75 × 10−8  T. 
 
(b) The direction is k̂− , or into the page. 
 
65. Using Eq. 29-20, 

 0
2| |

2
iB r
R

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, 

 
we find that r = 0.00128 m gives the desired field value. 
 
66. (a) We designate the wire along y = rA = 0.100 m wire A and the wire along y = rB = 
0.050 m wire B. Using Eq. 29-4, we have 
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60 0
net

ˆ ˆ ˆk k ( 52.0 10 T)k.
2 2

A B
A B

A B

i iB B B
r r

μ μ −= + = − − = − ×
p p

 

 
(b) This will occur for some value rB < y < rA such that 
 

μ μ0 0

2 2
i

r y
i

y r
A

A

B

Bp p−
=

−b g b g .  
 
Solving, we find y = 13/160 ≈ 0.0813 m. 
 
(c) We eliminate the y < rB possibility due to wire B carrying the larger current. We 
expect a solution in the region y > rA where 
 

μ μ0 0

2 2
i

y r
i

y r
A

A

B

Bp p−
=

−b g b g .  
 
Solving, we find y = 7/40 ≈ 0.0175 m. 
 
67. Let the length of each side of the square be a. The center of a square is a distance a/2 
from the nearest side. There are four sides contributing to the field at the center. The 
result is   

( ) ( )
0

center 22

2 2
4 .

2 2 4 2

i iaB
a aa a

μ μ
π

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ +⎝ ⎠

0

p  

 
On the other hand, the magnetic field at the center of a circular wire of radius R is 

0 / 2i Rμ  (e.g., Eq. 29-10). Thus, the problem is equivalent to showing that 
 

0 02 2 4 2 1
2

i i
a R a R
μ μ

π π
> ⇒ >  . 

 
To do this we must relate the parameters a and R. If both wires have the same length L 
then the geometrical relationships 4a = L and 2πR = L provide the necessary connection: 
 

4 2 .
2
Ra R a ππ= ⇒ =  

 
Thus, our proof consists of the observation that 
 

4 2 8 2 1
p p2a R R

= > ,  

 
as one can check numerically (that 8 2 1p2 > ). 
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68. We take the current (i = 50 A) to flow in the +x direction, and the electron to be at a 
point P, which is r = 0.050 m above the wire (where “up” is the +y direction). Thus, the 
field produced by the current points in the +z direction at P. Then, combining Eq. 29-4 
with Eq. 28-2, we obtain  

F e i r ve = − ×μ 0 2pb ge j.k  

 
(a) The electron is moving down: v v= − j  (where v = 1.0 × 107 m/s is the speed) so 
 

( ) 160 ˆ ˆi (3.2 10 N) i
2e
e ivF

r
μ −−

= − = ×
p

, 

or 16| | 3.2 10 NeF −= × . 
 
(b) In this case, the electron is in the same direction as the current: v v= i  so 
 

( ) 160 ˆ ˆj (3.2 10 N) j
2e
e ivF

r
μ
π

−−
= − = × , 

or 16| | 3.2 10 NeF −= × . 
 
(c) Now, v v= ± k  so Fe ∝ × = .k k 0  
 
69. (a) By the right-hand rule, the magnetic field B1  (evaluated at a) produced by wire 1 
(the wire at bottom left) is at φ = 150° (measured counterclockwise from the +x axis, in 
the xy plane), and the field produced by wire 2 (the wire at bottom right) is at φ = 210°. 
By symmetry B B1 2=d i  we observe that only the x-components survive, yielding 
 

50
1 2

ˆ ˆ2 cos 150 i ( 3.46 10 T)i 
2

iB B B μ
π

−⎛ ⎞= + = ° = − ×⎜ ⎟
⎝ ⎠

 

 
where i = 10 A,  = 0.10 m, and Eq. 29-4 has been used. To cancel this, wire b must 
carry current into the page (that is, the −k  direction) of value 
 

( )5
7

0

2 2 (0.087 m)3.46 10  T 15A
4 10 T m/Ab

ri B π π
μ π

−
−= = × =

× ⋅
 

 
where r = =3 2 0 087.  m and Eq. 29-4 has again been used. 
 
(b) As stated above, to cancel this, wire b must carry current into the page (that is, the z−  
direction). 
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70. The radial segments do not contribute to B → (at the center), and the arc segments 
contribute according to Eq. 29-9 (with angle in radians).  If  k^  designates the direction 
"out of the page" then 
 

0 0 0(  rad) ( / 2 rad) ( / 2 rad)ˆ ˆ ˆk k k
4 (4.00 m) 4 (2.00 m) 4 (4.00 m)

i i iB μ π μ π μ π
π π π

= + −  

 
where i = 2.00 A.  This yields B →  = (1.57 × 10−7 T) k^ , or 7| | 1.57 10 TB −= × . 
 
71. Since the radius is R = 0.0013 m, then the i = 50 A produces 
 

7
30 (4 10 T m/A)(50 A) 7.7 10 T

2 2 (0.0013 m)
iB
R

μ
π π

−
−π× ⋅

= = = ×  

 
at the edge of the wire. The three equations, Eq. 29-4, Eq. 29-17, and Eq. 29-20, agree at 
this point. 
 
72. (a) With cylindrical symmetry, we have, external to the conductors, 
 

B i
r

=
μ 0 enc

2p
 

 
which produces ienc = 25 mA from the given information. Therefore, the thin wire must 
carry 5.0 mA. 
 
(b) The direction is downward, opposite to the 30 mA carried by the thin conducting 
surface. 
 
73. (a) The magnetic field at a point within the hole is the sum of the fields due to two 
current distributions. The first is that of the solid cylinder obtained by filling the hole and 
has a current density that is the same as that in the original cylinder (with the hole). The 
second is the solid cylinder that fills the hole. It has a current density with the same 
magnitude as that of the original cylinder but is in the opposite direction. If these two 
situations are superposed the total current in the region of the hole is zero. Now, a solid 
cylinder carrying current i, which is uniformly distributed over a cross section, produces a 
magnetic field with magnitude 

B ir
R

=
μ 0

22p
 

 
at a distance r from its axis, inside the cylinder. Here R is the radius of the cylinder. For 
the cylinder of this problem the current density is 
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J i
A

i
a b

= =
−π 2 2c h ,  

 
where A = π(a2 – b2) is the cross-sectional area of the cylinder with the hole. The current 
in the cylinder without the hole is 

I JA Ja ia
a b1

2
2

2 2= = =
−

p  

 
and the magnetic field it produces at a point inside, a distance r1 from its axis, has 
magnitude 

B I r
a

ir a
a a b

ir
a b1

0 1 1
2

0 1
2

2 2 2
0 2
2 22 2 2

= =
−

=
−

μ μ μ
p p pc h c h .  

 
The current in the cylinder that fills the hole is 

I Jb ib
a b2

2
2

2 2= =
−

p  

 
and the field it produces at a point inside, a distance r2 from the its axis, has magnitude 
 

B I r
b

ir b
b a b

ir
a b2

0 2 2
2

0 2
2

2 2 2
0 2
2 22 2 2

= =
−

=
−

μ μ μ
p p pc h c h .  

 
At the center of the hole, this field is zero and the field there is exactly the same as it 
would be if the hole were filled. Place r1 = d in the expression for B1 and obtain 
 

( )
( )7

50
2 22 2

(4 10 T m/A) 5.25A (0.0200m)
1.53 10 T

2 [(0.0400m) (0.0150m) ]2
idB

a b
μ

ππ

−
−π× ⋅

= = = ×
−−

 

 
for the field at the center of the hole. The field points upward in the diagram if the current 
is out of the page. 
 
(b) If b = 0 the formula for the field becomes 
 

B id
a

=
μ 0

22p
.  

 
This correctly gives the field of a solid cylinder carrying a uniform current i, at a point 
inside the cylinder a distance d from the axis. If d = 0 the formula gives B = 0. This is 
correct for the field on the axis of a cylindrical shell carrying a uniform current. 
 
Note: One may apply Ampere’s law to show that the magnetic field in the hole is uniform. 
Consider a rectangular path with two long sides (side 1 and 2, each with length L) and 
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two short sides (each of length less than b). If side 1 is directly along the axis of the hole, 
then side 2 would also be parallel to it and in the hole. To ensure that the short sides do 
not contribute significantly to the integral in Ampere’s law, we might wish to make L 
very long (perhaps longer than the length of the cylinder), or we might appeal to an 
argument regarding the angle between B  and the short sides (which is 90° at the axis of 
the hole). In any case, the integral in Ampere’s law reduces to 
 

B ds i

B ds B ds i

B B L
side

rectangle enclosed

side in hole

side1 side2

z
z z

⋅ =

⋅ + ⋅ =

− =

μ

μ

0

1 2 0

0d i
 

 
where Bside 1 is the field along the axis found in part (a). This shows that the field at off-
axis points (where Bside 2 is evaluated) is the same as the field at the center of the hole; 
therefore, the field in the hole is uniform. 
 
74. Equation 29-4 gives 

i RB
= =

×

× ⋅
=

−2 2 7 30 10
4

321
6p p 0.880

p 100
-7μ

m T
T m A

A.
b gc h.

.  

 
75. The Biot-Savart law can be written as  
 

( ) 0 0
2 3

r̂, , .
4 4

i s i s rB x y z
r r

μ μ
π π

Δ × Δ ×
= =  

 
With Δ Δs s= j  and ˆ ˆ ˆi j k,r x y z= + +  their cross product is 
 

ˆ ˆ ˆ ˆ ˆ ˆ( j) ( i j k) ( i k)s r s x y z s z xΔ × = Δ × + + = Δ −  
 
where we have used ˆ ˆ ˆ ˆ ˆj i k, j j 0,× = − × =  and ˆ ˆ ˆj k i.× =  Thus, the Biot-Savart equation 
becomes 

( )
( )

( )
0

3 22 2 2

ˆ ˆi k
, , .

4

i s z x
B x y z

x y z

μ Δ −
=

π + +
 

 
(a) The field on the z axis (at x = 0, y = 0, and z = 5.0 m) is 
 

( ) ( )( )( )( )

( )( )
7 2

10
3/ 222 2

ˆ4 10 T m/A 2.0A 3.0 10 m 5.0m i ˆ0, 0, 5.0m (2.4 10 T)i.
4 0 0 5.0m

B
− −

−
× ⋅ ×

= = ×
+ +

p

p
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(b) Similarly, B (0, 6.0 m, 0) = 0, since x = z = 0. 
 
(c) The field in the xy plane, at (x, y, z) = (7 m, 7 m, 0), is 
 

( )
( ) ( )( )

2
11

3/ 22 2 2

ˆ(4 T m/A)(2.0A)(3.0 10 m)( 7.0m)k ˆ7.0m,7.0m,0 ( 4.3 10 T)k.
4 7.0m 7.0m 0

B
−

−× ⋅ × −
= = − ×

+ +

-7p 10

p
 

 
(d) The field in the xy plane, at (x, y, z) = (–3, –4, 0), is 
 

( )
( ) ( )( )

2
10

3/ 22 2 2

ˆ(4 T m/A)(2.0A)(3.0 10 m)(3.0m)k ˆ3.0m, 4.0m, 0 (1.4 10 T )k.
4 m 4.0m 0

B
−

−× ⋅ ×
− − = = ×

+ − +

-7p 10

p -3.0
 

 
Note: Along the x and z axes, the expressions for B  simplify to 
 

( ) ( )0 0
2 2

ˆ ˆ,0,0 k, 0,0, i.
4 4

i s i sB x B z
x z

μ μ
π π

Δ Δ
= − =  

 
The magnetic field at any point on the y axis vanishes because the current flows in the +y 
direction, so r̂ 0.ds × =  
 
76. We note that the distance from each wire to P is r d= =2 0 071. m.  In both parts, 
the current is i = 100 A. 
 
(a) With the currents parallel, application of the right-hand rule (to determine each of 
their contributions to the field at P) reveals that the vertical components cancel and the 
horizontal components add, yielding the result: 
 

402 cos 45.0 4.00 10 T
2

iB
r

μ −⎛ ⎞= ° = ×⎜ ⎟
⎝ ⎠p

 

 
and directed in the –x direction. In unit-vector notation, we have 4 ˆ( 4.00 10 T)iB −= − × . 
 
(b) Now, with the currents anti-parallel, application of the right-hand rule shows that the 
horizontal components cancel and the vertical components add. Thus, 
 

402 sin 45.0 4.00 10 T
2

iB
r

μ −⎛ ⎞= ° = ×⎜ ⎟
⎝ ⎠p

 

 
and directed in the +y direction. In unit-vector notation, we have 4 ˆ(4.00 10 T)jB −= × . 
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77. We refer to the center of the circle (where we are evaluating B ) as C. Recalling the 
straight sections discussion in Sample Problem — “Magnetic field at the center of a 
circular arc of current,” we see that the current in the straight segments that are collinear 
with C do not contribute to the field there. Eq. 29-9 (with φ = π/2 rad) and the right-hand 
rule indicates that the currents in the two arcs contribute 
 

μ μ0 0 0
i

R
i

R
p 2

4p
p 2

4p
b g b g

− =  

 
to the field at C. Thus, the nonzero contributions come from those straight segments that 
are not collinear with C. There are two of these “semi-infinite” segments, one a vertical 
distance R above C and the other a horizontal distance R to the left of C. Both contribute 
fields pointing out of the page (see Fig. 29-6(c)). Since the magnitudes of the two 
contributions (governed by Eq. 29-7) add, then the result is 
 

B i
R

i
R

= FHG
I
KJ =2

4 2
0 0μ μ
p p

 

 
exactly what one would expect from a single infinite straight wire (see Eq. 29-4). For 
such a wire to produce such a field (out of the page) with a leftward current requires that 
the point of evaluating the field be below the wire (again, see Fig. 29-6(c)). 
 
78. The points must be along a line parallel to the wire and a distance r from it, where r 

satisfies B i
r

Bwire ext= =
μ 0

2p
,  or 

 

r i
B

= =
× ⋅

×
= ×

−
−μ 0

3
3

2
100

2
4 0 10

p
1.26 10

p 5.0 10

-6

ext

T m A A

T
m.

c hb g
c h .  

 
79. (a) The field in this region is entirely due to the long wire (with, presumably, 
negligible thickness). Using Eq. 29-17, 
 

B i
r
w= = × −μ 0 3

2
4 8 10

p
. T  

 
where iw = 24 A and r = 0.0010 m. 
 
(b) Now the field consists of two contributions (which are anti-parallel) — from the wire 
(Eq. 29-17) and from a portion of the conductor (Eq. 29-20 modified for annular area): 
 

2 2
0 0 enc 0 0

2 2
0

| |
2 2 2 2

w w c i

i

i i i i r RB
r r r r R R

μ μ μ μ π π
π π π π π π

⎛ ⎞−
= − = − ⎜ ⎟−⎝ ⎠
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where r = 0.0030 m, Ri = 0.0020 m, Ro = 0.0040 m, and ic = 24 A. Thus, we find 
4| | 9.3 10 T.B −= ×  

 
(c) Now, in the external region, the individual fields from the two conductors cancel 
completely (since ic = iw): B = 0.  
 
80. Using Eq. 29-20 and Eq. 29-17, we have 
 

0 0
1 1 22

2

| |     | |
2 2

i iB r B
R r

μ μ⎛ ⎞= =⎜ ⎟
⎝ ⎠p p

 

 
where 4

1 1 20.0040m, 2.8 10 T, 0.010m,r B r−= = × =  and | | .B2
42 0 10= × − T.  Point 2 is 

known to be external to the wire since | | | |B B2 1< . From the second equation, we find i = 
10 A. Plugging this into the first equation yields R = 5.3 × 10–3 m. 
 
81. The “current per unit x-length” may be viewed as current density multiplied by the 
thickness Δy of the sheet; thus, λ = JΔy. Ampere’s law may be (and often is) expressed in 
terms of the current density vector as follows 
 

B ds J dAz z⋅ = ⋅μ 0  

 
where the area integral is over the region enclosed by the path relevant to the line integral 
(and J  is in the +z direction, out of the paper). With J uniform throughout the sheet, then 
it is clear that the right-hand side of this version of Ampere’s law should reduce, in this 
problem, to μ0JA = μ0JΔyΔx = μ0λΔx. 
 
(a) Figure 29-83 certainly has the horizontal components of B  drawn correctly at points 
P and P', so the question becomes: is it possible for B  to have vertical components in the 
figure?  
 

   

 
Our focus is on point P.  Suppose the magnetic field is not parallel to the sheet, as shown 
in the upper left diagram. If we reverse the direction of the current, then the direction of 
the field will also be reversed (as shown in the upper middle diagram). Now, if we rotate 
the sheet by 180°  about a line that is perpendicular to the sheet, the field will rotate and 
point in the direction shown in the diagram on the upper right. The current distribution 
now is exactly the same as the original; however, comparing the upper left and upper 
right diagrams, we see that the fields are not the same, unless the original field is parallel 
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to the sheet and only has a horizontal component. That is, the field at P must be purely 
horizontal, as drawn in Fig. 29-83. 
 
(b) The path used in evaluating B dsz ⋅  is rectangular, of horizontal length Δx (the 

horizontal sides passing through points P and P' respectively) and vertical size δy > Δy. 
The vertical sides have no contribution to the integral since B  is purely horizontal (so the 
scalar dot product produces zero for those sides), and the horizontal sides contribute two 
equal terms, as shown next. Ampere’s law yields 
 

0 0
12 .
2

B x x Bμ λ μ λΔ = Δ ⇒ =  

 

82. Equation 29-17 applies for each wire, with r R d= +2 22/b g  (by the Pythagorean 
theorem). The vertical components of the fields cancel, and the two (identical) horizontal 
components add to yield the final result 
 

( )( )
60 0

22

/ 22 1.25 10  T
2 2 / 2

i iddB
r r R d

μ μ
π π

−⎛ ⎞ ⎛ ⎞= = = ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ +

, 

 
where (d/2)/r is a trigonometric factor to select the horizontal component. It is clear that 
this is equivalent to the expression in the problem statement. Using the right-hand rule, 
we find both horizontal components point in the +x direction. Thus, in unit-vector 
notation, we have 6 ˆ(1.25 10  T)iB −= × . 
 
83. The two small wire segments, each of length a/4, shown in Fig. 29-85 nearest to point 
P, are labeled 1 and 8 in the figure (below left). Let k̂−  be a unit vector pointing into the 
page. 
 

 

 

 
We use the result of Problem 29-17: namely, the magnetic field at P2 (shown in Fig. 29-
43 and upper right) is  
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2 2 24P
i LB
R L R

μ
π

0=
+

. 

 
Therefore, the magnetic fields due to the 8 segments are 
 

B B
i

a
i

a

B B
i

a
i

a

B B
i

a
a

a a

i
a

P P

P P

P P

1 8
0 0

4 5
0 0

2 7
0

2 2 1 2
0

2
8 4

2
2

2
8 3 4

2
6

4 4
3 4

3 4 4

3
10

= = =

= = =

= = ⋅
+

=

μ μ

μ μ

μ μ

p p

p p

p p

b g

b g

b g b g b g

,

,

,

 

and 

B B
i

a
a

a a

i
aP P3 6

0

2 2 1 2
0

4 3 4
4

4 3 4 3 10
= = ⋅

+
=

μ μ
p pb g b g b g

.  

 
Adding up all the contributions, the total magnetic field at P is 
 

( ) ( )
( )

( )

8
0

1

4

2 2 3 1ˆ ˆ( k) 2 ( k)
2 6 10 3 10

2 4 T m A 10A 2 2 3 1 ˆ( k)
2 6m 10 3 10

ˆ2.0 10 T ( k).

P Pn
n

iB B
a

μ
π

π

π

=

−

⎛ ⎞
= − = + + + −⎜ ⎟⎜ ⎟

⎝ ⎠

× ⋅ ⎛ ⎞
= + + + −⎜ ⎟⎜ ⎟× ⎝ ⎠

= × −

∑
−7

−2

10

8.0 10
 

 
Note: If point P is located at the center of the square, then each segment would contribute 
 

0
1 2 8

2 ,
4P P P

iB B B
a

μ
π

= = =  

 making the total field  

0
center 1

8 28 .
4P

iB B
a
μ

π
= =  

 
84. (a) All wires carry parallel currents and attract each other; thus, the “top” wire is 
pulled downward by the other two: 
 

( )( )
( )

( )( )
( )

0 05.0A 3.2A 5.0A 5.0A
2 0.10m 2 0.20m

L L
F

μ μ
π π

= +  
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where L = 3.0 m. Thus, F = × −17 10 4. N.  
 
(b) Now, the “top” wire is pushed upward by the center wire and pulled downward by the 
bottom wire: 

( )( )
( )

( )( )
( )

0 0 55.0A 3.2A 5.0A 5.0A
| | 2.1 10 N

2 0.10m 2 0.20m
L L

F
μ μ −= − = ×

π π
. 

 
85. (a) For the circular path L of radius r concentric with the conductor 
 

( )
( )

2 2

0 enc 0 2 2
2 .

L

r b
B ds rB i i

a b

π
π μ μ

π

−
⋅ = = =

−∫  

Thus, 
( )

2 2
0
2 2

.
2

i r bB
ra b

μ
π

⎛ ⎞−
= ⎜ ⎟− ⎝ ⎠

 

 
(b) At r = a, the magnetic field strength is 
 

( )
2 2

0 0
2 2

.
22

i ia b
a aa b

μ μ
ππ

⎛ ⎞−
=⎜ ⎟− ⎝ ⎠

 

 
At r b B r b= − =, μ 2 2 0 . Finally, for b = 0 
 

2
0 0

2 22 2
i irrB
a r a

μ μ
π π

= =  

 
which agrees with Eq. 29-20. 
 
(c) The field is zero for r < b and is equal to Eq. 29-17 for r > a, so this along with the 
result of part (a) provides a determination of B over the full range of values. The graph 
(with SI units understood) is shown below. 
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86. We refer to the side of length L as the long side and that of length W as the short side. 
The center is a distance W/2 from the midpoint of each long side, and is a distance L/2 
from the midpoint of each short side. There are two of each type of side, so the result of 
Problem 29-17 leads to 
 

B i
W

L

L W

i
L

W

W L
=

+
+

+
2

2 2 4 2
2

2 2 4 2
0

2 2
0

2 2

μ μ
p pb g b g b g b g

.  

 
The final form of this expression, shown in the problem statement, derives from finding 
the common denominator of the above result and adding them, while noting that 
 

L W
W L

W L
2 2

2 2

2 2+

+
= + .  

 
87. (a) Equation 29-20 applies for r < c. Our sign choice is such that i is positive in the 
smaller cylinder and negative in the larger one. 
 

0
2 ,  .

2
irB r c
c

μ
π

= ≤  

 
(b) Equation 29-17 applies in the region between the conductors: 
 

0 ,  .
2

iB c r b
r

μ
π

= ≤ ≤  

 
(c) Within the larger conductor we have a superposition of the field due to the current in 
the inner conductor (still obeying Eq. 29-17) plus the field due to the (negative) current in  
that part of the outer conductor at radius less than r. The result is 
 

2 2
0 0

2 2 ,   .
2 2

i i r bB b r a
r r a b

μ μ
π π

⎛ ⎞−
= − < ≤⎜ ⎟−⎝ ⎠

 

 
If desired, this expression can be simplified to read 
 

B i
r

a r
a b

=
−
−

F
HG

I
KJ

μ 0
2 2

2 22π
.  

 
(d) Outside the coaxial cable, the net current enclosed is zero. So B = 0 for r ≥ a. 
 
(e) We test these expressions for one case. If a → ∞  and b → ∞  (such that a > b) then 
we have the situation described on page 696 of the textbook. 
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(f) Using SI units, the graph of the field is shown below: 
 

 
 
88. (a) Consider a segment of the projectile between y and y + dy. We use Eq. 29-12 to 
find the magnetic force on the segment, and Eq. 29-7 for the magnetic field of each semi-
infinite wire (the top rail referred to as wire 1 and the bottom as wire 2). The current in 
rail 1 is in the + i  direction, and the current in rail 2 is in the −i  direction. The field (in 
the region between the wires) set up by wire 1 is into the paper (the −k  direction) and 
that set up by wire 2 is also into the paper. The force element (a function of y) acting on 
the segment of the projectile (in which the current flows in the − j  direction) is given 
below. The coordinate origin is at the bottom of the projectile. 
  

( ) ( ) [ ]

( )

1 2 1 2 1 2

0 0

ˆ ˆ ˆj j i

î .
4 2 4

dF dF dF idy B dy B i B B dy

i ii dy
R w y y
μ μ

π π

= + = − × + − × = +

⎡ ⎤
= +⎢ ⎥

+ −⎢ ⎥⎣ ⎦

 

 
Thus, the force on the projectile is 
 

2 2
0 01 1 ˆ ˆi ln 1 i.

4 2 2
R w

R

i i wF dF dy
R w y y R

μ μ+ ⎛ ⎞ ⎛ ⎞= = + = +⎜ ⎟ ⎜ ⎟π + − π ⎝ ⎠⎝ ⎠
∫ ∫  

 
(b) Using the work-energy theorem, we have  
 

ΔK mv W F ds FLf= = = z ⋅ =1
2

2
ext .  

 
Thus, the final speed of the projectile is 
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v W
m m

i w
R

Lf = FHG
I
KJ = +FHG

I
KJ

L
NM

O
QP

=
× ⋅ × +

×

L

N
MM

O

Q
PP

= ×

−

−

2 2
2

1

2 4 10 450 10 1 12 4 0

2 10 10

2 3 10

1 2
0

2 1 2

7 3 2

3

1 2

3

ext

T m / A A cm / 6.7cm m

kg

m / s.

/ /

/

ln

ln . .

.

μ
π

π

π

c hc h b gb g
c h  

 
89. The center of a square is a distance R = a/2 from the nearest side (each side being of 
length L = a). There are four sides contributing to the field at the center. The result is   
 

( ) ( )
0

center 22

2 2
4 .

2 2 4 2

i iaB
a aa a

μ μ
π

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ +⎝ ⎠

0

p  

 
90. (a) The magnitude of the magnetic field on the axis of a circular loop, a distance z 
from the loop center, is given by Eq. 29-26: 
 

B N iR
R z

=
+

μ 0
2

2 2 3 22( )
,/  

 
where R is the radius of the loop, N is the number of turns, and i is the current. Both of 
the loops in the problem have the same radius, the same number of turns, and carry the 
same current. The currents are in the same sense, and the fields they produce are in the 
same direction in the region between them. We place the origin at the center of the left-
hand loop and let x be the coordinate of a point on the axis between the loops. To 
calculate the field of the left-hand loop, we set z = x in the equation above. The chosen 
point on the axis is a distance s – x from the center of the right-hand loop. To calculate 
the field it produces, we put z = s – x in the equation above. The total field at the point is 
therefore 

B N iR
R x R x sx s

=
+

+
+ − +

L
NM

O
QP

μ 0
2

2 2 3 2 2 2 2 3 22
1 1

2( ) ( )
./ /  

 
Its derivative with respect to x is 
 

dB
dx

N iR x
R x

x s
R x sx s

= −
+

+
−

+ − +
L
NM

O
QP

μ 0
2

2 2 5 2 2 2 2 5 22
3 3

2( )
( )

( )
./ /  

 
When this is evaluated for x = s/2 (the midpoint between the loops) the result is 
 

dB
dx

N iR s
R s

s
R s s ss/

/ /

/
( / )

/
( / )2

0
2

2 2 5 2 2 2 2 2 5 22
3 2

4
3 2
4

0= −
+

−
+ − +

L
NM

O
QP =

μ  
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independent of the value of s. 
 
(b) The second derivative is 
 

22 2
0

2 2 2 5/ 2 2 2 7 / 2

2

2 2 2 5/ 2 2 2 2 7 / 2

3 15
2 ( ) ( )

3 15( ) .
( 2 ) ( 2 )

N iRd B x
dx R x R x

x s
R x sx s R x sx s

μ ⎡
= − +⎢ + +⎣

⎤−
− + ⎥+ − + + − + ⎦

 

At x = s/2, 
 

22 2
0

2 2 2 5/ 2 2 2 7 / 2
/ 2

2 2 2 2 2 2
20

02 2 7 / 2 2 2 7 / 2

6 30 / 4
2 ( / 4) ( / 4)

6( / 4) 30 / 4 3 .
2 ( / 4) ( / 4)

s

N iRd B s
dx R s R s

N R R s s s RN iR
R s R s

μ

μ μ

⎡ ⎤
= − +⎢ ⎥+ +⎣ ⎦

⎡ ⎤− + + −
= =⎢ ⎥+ +⎣ ⎦

 

 
Clearly, this is zero if s = R. 
 
91. Let the square loop be in the yz plane (with its center at the origin) and the evaluation 
point P for the field be along the x axis (as suggested by the notation in the problem). The 
origin is a distance a/2 from each side of the square loop, so the distance from point P to 
each side of the square is, by the Pythagorean theorem, 
 

R a x a x= + = +2 1
2

42 2 2 2b g .  

 
We use the result obtained in Problem 29-17, but replace L with a and R with 

2 2 / 4,x a+  so the magnetic field due to one side of the square loop is 
 

1 2 2 2 2

4
4 4 4 2

i aB
x a x a

μ
π
0=

+ +
. 

 
We see that only the x components of the fields (contributed by each side) will contribute 
to the final result (other components cancel in pairs). The trigonometric factor is 
 

2 2
cos

4
a

a x
θ =

+
.  

Since there are four sides, we find 
 

2

1 2 2 2 2 2 2 2 2 2 2

4 4( ) 4 cos .
4 4 2 4 (4 ) 4 2

i ia a aB x B
x a x a a x x a x a

μ μθ
π π

0 0= = =
+ + + + +
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For x = 0, the above expression simplifies to 
 

2

2 2

2 24(0)
2

i iaB
aa a

μ μ
π π

0 0= =  

 
 which is the expression given in Problem 29-89.  Note that in the limit ,x a  we have  
 

2 2

3 3 3

4( ) ,
8 2 2

i a iaB x
x x x

μ μ μ μ
π π π

0 0 0≈ = =  

 
where 2iA iaμ = =  is the magnetic dipole of the square loop. The expression agrees with 
that given in Eq. 29-77. 
 
92. In this case L = 2πr is roughly the length of the toroid so 
 

B i N
r

ni= F
HG
I
KJ =μ μ0 0 0 02p

. 

 
This result is expected, since from the perspective of a point inside the toroid the portion 
of the toroid in the vicinity of the point resembles part of a long solenoid. 
 
93. We use Ampere’s law. For the dotted loop shown on the diagram, i = 0. The integral 

B ds⋅z  is zero along the bottom, right, and top sides of the loop. Along the right side the 

field is zero; along the top and bottom sides the field is perpendicular to ds . If  is the 
length of the left edge, then direct integration yields B ds B⋅ =z , where B is the 

magnitude of the field at the left side of the loop. Since neither B nor  is zero, Ampere’s 
law is contradicted. We conclude that the geometry shown for the magnetic field lines is 
in error. The lines actually bulge outward and their density decreases gradually, not 
discontinuously as suggested by the figure.  
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Chapter 30 
 
 
1. The flux ΦB BA= cosθ  does not change as the loop is rotated. Faraday’s law only 
leads to a nonzero induced emf when the flux is changing, so the result in this instance is 
zero. 
 
2. Using Faraday’s law, the induced emf is 
 

( ) ( )

( )( )( )

2

2

2 0.12m 0.800T 0.750m/s
0.452V.

B
d rd BAd dA drB B rB

dt dt dt dt dt
π

ε π

π

Φ
= − = − = − = − = −

= − −

=

 

 
3. The total induced emf is given by  
 

( )

2
0 0 0

2

( ) ( )

1.5 A(120)(4 T m A)(22000/m) 0.016m
0.025 s

0.16V.

Bd dB d di diN NA NA ni N nA N n r
dt dt dt dt dt

ε μ μ μ πΦ ⎛ ⎞= − = − = − = − = −⎜ ⎟
⎝ ⎠

⎛ ⎞= − × ⋅ ⎜ ⎟
⎝ ⎠

=

-7p 10 p  

 
Ohm’s law then yields | | / 0.016 V / 5.3 0.030 Ai Rε= = Ω = . 
 
4. (a) We use ε = –dΦB/dt = –πr2dB/dt. For 0 < t < 2.0 s: 
 

( )22 20.5T0.12m 1.1 10 V.
2.0s

dBr
dt

ε −⎛ ⎞
= − = − = − ×⎜ ⎟

⎝ ⎠
p p  

 
(b) For 2.0 s < t < 4.0 s: ε ∝ dB/dt = 0. 
 
(c) For 4.0 s < t < 6.0 s: 
 

ε = − = −
−

−
F
HG

I
KJ = × −p pr dB

dt
2 2 2012 05

6 0 4 0
11 10. .

. .
. .m T

s s
Vb g  

 
5. The field (due to the current in the straight wire) is out of the page in the upper half of 
the circle and is into the page in the lower half of the circle, producing zero net flux, at 
any time. There is no induced current in the circle. 
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6. From the datum at t = 0 in Fig. 30-35(b) we see 0.0015 A = Vbattery /R, which implies 
that the resistance is  

R = (6.00 μV)/(0.0015 A) = 0.0040 Ω. 
 
Now, the value of the current during 10 s < t < 20 s  leads us to equate 
  

(Vbattery + ε induced)/R = 0.00050 A. 
 
This shows that the induced emf is ε induced = −4.0 μV.  Now we use Faraday’s law: 
 

ε = − 
dΦB
dt  =  −A 

dB
dt  = −A a . 

 
Plugging in ε = − 4.0 ×10−6 V and A = 5.0 × 10−4 m2, we obtain a = 0.0080 T/s. 
 
7. (a)  The magnitude of the emf is 
 

ε = = + = + = + =
d
dt

d
dt

t t tBΦ 6 0 7 0 12 7 0 12 2 0 7 0 312. . . . .c h b g mV.  

 
(b) Appealing to Lenz’s law (especially Fig. 30-5(a)) we see that the current flow in the 
loop is clockwise. Thus, the current is to the left through R. 
 
8. The resistance of the loop is 
 

( ) ( )
( )

8 3
2

m
1.69 10 m 1.1 10 .

 m / 4

LR
A

π
ρ

π
− −

−3

0.10
= = × Ω⋅ = × Ω

2.5×10
 

 
We use i = |ε|/R = |dΦB/dt|/R = (πr2/R)|dB/dt|. Thus 
 

( )( )
( )

3

22

10A 1.1 10
1.4 T s.

m
dB iR
dt rπ π

−× Ω
= = =

0.05
 

 
9. The amplitude of the induced emf in the loop is 
 

6 2
0 0

4

(6.8 10 m )(4 T m A)(85400 / m)(1.28 A)(212 rad/s)

1.98 10 V.
m A niε μ ω −

−

= = × × ⋅

= ×

-7p 10  

 
10. (a) The magnetic flux ΦB  through the loop is given by  
 

( )( )22 2 cos 45B B rΦ = π ° = 2 2r Bπ . 
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Thus, 

( )222 2 3

3

2

3.7 10 m 0 76 10 T
4.5 10 s2 2 2

5.1 10 V.

Bd d r B r B
dt dt t

ππ πε
− −

−

−

×⎛ ⎞ ⎛ ⎞Φ Δ − ×⎛ ⎞= − = − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟Δ ×⎝ ⎠⎝ ⎠ ⎝ ⎠
= ×

 

 
(a) The direction of the induced current is clockwise when viewed along the direction of 
B . 
 
11. (a) It should be emphasized that the result, given in terms of sin(2π ft), could as easily 
be given in terms of cos(2πft) or even cos(2πft + φ) where φ is a phase constant as 
discussed in Chapter 15. The angular position θ of the rotating coil is measured from 
some reference line (or plane), and which line one chooses will affect whether the 
magnetic flux should be written as BA cosθ, BA sinθ or BA cos(θ + φ). Here our choice is 
such that ΦB BA= cosθ . Since the coil is rotating steadily, θ increases linearly with time. 
Thus, θ = ωt (equivalent to θ = 2πft) if θ is understood to be in radians (and ω would be 
the angular velocity). Since the area of the rectangular coil is A=ab, Faraday’s law leads 
to  

( ) ( ) ( )cos cos 2
2 sin 2

d BA d ft
N NBA N Bab f ft

dt dt
θ π

ε π π= − = − =  

 
which is the desired result, shown in the problem statement. The second way this is 
written (ε0 sin(2π ft)) is meant to emphasize that the voltage output is sinusoidal (in its 
time dependence) and has an amplitude of ε0 = 2πf NabB. 
 
(b) We solve  

ε0 = 150 V = 2π f NabB 
 
when f = 60.0 rev/s and B = 0.500 T. The three unknowns are N, a, and b which occur in 
a product; thus, we obtain Nab = 0.796 m2.  
 
12. To have an induced emf, the magnetic field must be perpendicular (or have a nonzero 
component perpendicular) to the coil, and must be changing with time.   
 
(a) For 2 ˆ(4.00 10 T/m) kB y−= × , / 0dB dt =  and hence ε = 0. 
 
(b) None. 
 
(c) For 2 ˆ(6.00 10 T/s) kB t−= × ,  
 

ε = − 
dΦB
dt   =  −A 

dB
dt  =  −(0.400 m × 0.250 m)(0.0600 T/s) = −6.00 mV, 

 
or |ε| = 6.00 mV. 
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(d) Clockwise. 
 
(e) For 2 ˆ(8.00 10 T/m s) kB yt−= × ⋅ ,  
 

ΦB = (0.400)(0.0800t) ydy∫  = 31.00 10 t−× , 
 
in SI units. The induced emf is / 1.00 mV,d B dtε = − Φ = − or |ε| = 1.00 mV. 
 
(f) Clockwise. 
 
(g) 0    0B εΦ = ⇒ = . 
 
(h) None. 
 
(i) 0    0B εΦ = ⇒ = . 
 
(j) None. 
 
13. The amount of charge is 
 

3 2

2

1 1.20 10 m( ) [ (0) ( )] [ (0) ( )] [1.60T ( 1.60T)]
13.0

2.95 10 C .

B B
Aq t t B B t

R R

−

−

×
= Φ − Φ = − = − −

Ω

= ×

 

 
14. Figure 30-40(b) demonstrates that /dB dt  (the slope of that line) is 0.003 T/s.  Thus, 
in absolute value, Faraday’s law becomes 
 

 ( )Bd d BA dBA
dt dt dt

ε Φ
= − = − = −  

 
where A = 8 ×10−4 m2.  We related the induced emf to resistance and current using Ohm’s 
law.  The current is estimated from Fig. 30-40(c) to be i = /dq dt =  0.002 A (the slope of 
that line).  Therefore, the resistance of the loop is 
 

 
4 2| | | / | (8.0 10  m )(0.0030 T/s) 0.0012
0.0020 A

A dB dtR
i i
ε −×

= = = = Ω . 

 
15. (a) Let L be the length of a side of the square circuit. Then the magnetic flux through 
the circuit is ΦB L B= 2 2/ , and the induced emf is 
 



 

  

1169

2

.
2

B
i

d L dB
dt dt

ε Φ
= − = −  

 
Now B = 0.042 – 0.870t and dB/dt = –0.870 T/s. Thus, 
 

ε i =
( . ( . /2 00

2
0870m) T s) = 1.74 V.

2

 

 
The magnetic field is out of the page and decreasing so the induced emf is 
counterclockwise around the circuit, in the same direction as the emf of the battery. The 
total emf is  

ε + εi = 20.0 V + 1.74 V = 21.7 V. 
 
(b) The current is in the sense of the total emf (counterclockwise). 
 
16. (a) Since the flux arises from a dot product of vectors, the result of one sign for B1 
and B2 and of the opposite sign for B3 (we choose the minus sign for the flux from B1 and 
B2, and therefore a plus sign for the flux from B3).  The induced emf is 
 

ε =  −Σ 
dΦB
dt   =  A ⎝⎜

⎛
⎠⎟
⎞dB1

dt   +  
dB2
dt  −  

dB3
dt  

=(0.10 m)(0.20 m)(2.0 × 10−6 T/s  + 1.0 ×10−6 T/s −5.0×10−6 T/s) 
= −4.0×10−8 V. 

 
The minus sign means that the effect is dominated by the changes in B3. Its magnitude 
(using Ohm’s law) is |ε| /R = 8.0 μA.  
 
(b) Consideration of Lenz’s law leads to the conclusion that the induced current is 
therefore counterclockwise.   
 
17. Equation 29-10 gives the field at the center of the large loop with R = 1.00 m and 
current i(t). This is approximately the field throughout the area (A = 2.00 × 10–4 m2) 
enclosed by the small loop. Thus, with B = μ0i/2R and i(t) = i0 + kt, where i0 = 200 A and  
 

k = (–200 A – 200 A)/1.00 s = – 400 A/s, 
we find 
 

(a) 
( )( )

( )

7
40 0

4 10 H/m 200A
( 0) 1.26 10 T,

2 2 1.00m
iB t
R

μ
−

−
π×

= = = = ×  

 

(b) 
( ) ( )( )

( )

74 10 H/m 200A 400A/s 0.500s
( 0.500s) 0,

2 1.00m
B t

−π× −⎡ ⎤⎣ ⎦= = = and 
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(c) 
( ) ( )( )

( )

7
4

4 10 H/m 200A 400A/s 1.00s
( 1.00s) 1.26 10 T,

2 1.00m
B t

π −
−

× −⎡ ⎤⎣ ⎦= = = − ×  

 
or 4| ( 1.00s) | 1.26 10 T.B t −= = ×  
 
(d) Yes, as indicated by the flip of sign of B(t) in (c). 
 
(e) Let the area of the small loop be a. Then ΦB Ba= ,  and Faraday’s law yields 
 

4 4
4 2

8

( )

1.26 10 T 1.26 10 T(2.00 10 m )
1.00 s

5.04 10 V .

Bd d Ba dB Ba a
dt dt dt t

ε

− −
−

−

Φ Δ⎛ ⎞= − = − = − = − ⎜ ⎟Δ⎝ ⎠
⎛ ⎞− × − ×

= − × ⎜ ⎟
⎝ ⎠

= ×

 

 
18. (a) The “height” of the triangular area  enclosed by the rails and bar is the same as the 
distance traveled in time v: d = vt, where v = 5.20 m/s. We also note that the “base” of 
that triangle (the distance between the intersection points of the bar with the rails) is 2d. 
Thus, the area of the triangle is 
 

A vt vt v t= = =
1
2

1
2

2 2 2( ( )( ) .base)(height)  

 
Since the field is a uniform B = 0.350 T, then the magnitude of the flux (in SI units) is  
 

ΦB = BA = (0.350)(5.20)2t2 = 9.46t2. 
 
At t = 3.00 s, we obtain ΦB = 85.2 Wb. 
 
(b) The magnitude of the emf is the (absolute value of) Faraday’s law: 
 

ε = = =
d
dt

dt
dt

tBΦ 9 46 18 9
2

. .  

 
in SI units. At t = 3.00 s, this yields ε = 56.8 V. 
 
(c) Our calculation in part (b) shows that n = 1. 
 
19. First we write ΦB = BA cos θ. We note that the angular position θ of the rotating coil 
is measured from some reference line or plane, and we are implicitly making such a 
choice by writing the magnetic flux as BA cos θ (as opposed to, say, BA sin θ). Since the 
coil is rotating steadily, θ increases linearly with time. Thus, θ = ωt if θ is understood to 
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be in radians (here, ω = 2πf is the angular velocity of the coil in radians per second, and f 
= 1000 rev/min ≈ 16.7 rev/s is the frequency). Since the area of the rectangular coil is A = 
(0.500 m) × (0.300 m) = 0.150 m2, Faraday’s law leads to 
 

ε
θ

= − = − =N
d BA

dt
NBA

d ft
dt

NBA f ft
cos cos

sinb g b g b g2
2 2

π
π π  

 
which means it has a voltage amplitude of 
 

( )( )( )( )2 3
max 2 2 16.7 rev s 100 turns 0.15m 3.5T 5.50 10 V .fNABε π π= = = ×  

 
20. We note that 1 gauss = 10–4 T. The amount of charge is 
 

4 2
5

2 cos 20( ) [ cos 20 ( cos 20 )]

2(1000)(0.590 10 T) (0.100m) (cos 20 ) 1.55 10 C .
85.0 140

N NBAq t BA BA
R R

−
−

°
= ° − − ° =

× π °
= = ×

Ω + Ω

 

 
Note that the axis of the coil is at 20°, not 70°, from the magnetic field of the Earth. 
 
21. (a) The frequency is 
 

 (40 rev/s)(2  rad/rev) 40 Hz
2 2

f ω π
π π

= = = . 

 
(b) First, we define angle relative to the plane of Fig. 30-44, such that the semicircular 
wire is in the θ = 0 position and a quarter of a period (of revolution) later it will be in the 
θ = π/2 position (where its midpoint will reach a distance of a above the plane of the 
figure). At the moment it is in the θ = π/2 position, the area enclosed by the “circuit” will 
appear to us (as we look down at the figure) to that of a simple rectangle (call this area A0, 
which is the area it will again appear to enclose when the wire is in the θ = 3π/2 position). 
Since the area of the semicircle is πa2/2, then the area (as it appears to us) enclosed by the 
circuit, as a function of our angle θ, is 
 

A A a
= +0

2

2
π cosθ  

 
where (since θ is increasing at a steady rate) the angle depends linearly on time, which 
we can write either as θ = ωt or θ = 2πft if we take t = 0 to be a moment when the arc is 
in the θ = 0 position. Since B  is uniform (in space) and constant (in time), Faraday’s law 
leads to 
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( ) ( )2 2
0 ( / 2)cos cos 2

2
B

d A a d ftd dA aB B B
dt dt dt dt

π θ
ε

+ πΦ π
= − = − = − = −  

 
which yields ε = Bπ2a2f sin(2πft). This (due to the sinusoidal dependence) reinforces the 
conclusion in part (a) and also (due to the factors in front of the sine) provides the voltage 
amplitude:  
 2 2 2 2 3(0.020 T) (0.020 m) (40 / s) 3.2 10 V.m B a fε π π −= = = ×  
 

22. Since cos sind d
dt dt

φ φφ= − , Faraday's law (with N = 1) becomes  

 

 ( cos ) sind d BA dBA
dt dt dt

φ φε φΦ
= − = − = . 

 
Substituting the values given yields |ε | = 0.018 V. 
 
23. (a) In the region of the smaller loop the magnetic field produced by the larger loop 
may be taken to be uniform and equal to its value at the center of the smaller loop, on the 
axis. Equation 29-27, with z = x (taken to be much greater than R), gives 
 

B iR
x

=
μ 0

2

32
i  

 
where the +x direction is upward in Fig. 30-45. The magnetic flux through the smaller 
loop is, to a good approximation, the product of this field and the area (πr2) of the smaller 
loop: 

ΦB
ir R
x

=
πμ 0

2 2

32
.  

 
(b) The emf is given by Faraday’s law: 
 

2 2 2 2 2 2
0 0 0

3 4 4

31 3 .
2 2 2

B ir R ir R ir R vd d dx
dt dt x x dt x

πμ πμ πμε
⎛ ⎞ ⎛ ⎞Φ ⎛ ⎞ ⎛ ⎞= − = − = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
(c) As the smaller loop moves upward, the flux through it decreases, and we have a 
situation like that shown in Fig. 30-5(b). The induced current will be directed so as to 
produce a magnetic field that is upward through the smaller loop, in the same direction as 
the field of the larger loop. It will be counterclockwise as viewed from above, in the same 
direction as the current in the larger loop. 
 
24. (a) Since B B= i  uniformly, then only the area “projected” onto the yz plane will 
contribute to the flux (due to the scalar [dot] product). This “projected” area corresponds 
to one-fourth of a circle. Thus, the magnetic flux ΦB  through the loop is 
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ΦB B dA r B= ⋅ =z 1
4

2π .  

Thus, 
 

2
2 2 3 51 1| | m) (3.0 10 T / s) 2.4 10 V .

4 4 4
Bd d r dBr B

dt dt dt
πε π π − −Φ ⎛ ⎞= = = = (0.10 × = ×⎜ ⎟

⎝ ⎠
 

 
(b) We have a situation analogous to that shown in Fig. 30-5(a). Thus, the current in 
segment bc flows from c to b (following Lenz’s law). 
 
25. (a) We refer to the (very large) wire length as L and seek to compute the flux per 
meter: ΦB/L. Using the right-hand rule discussed in Chapter 29, we see that the net field 
in the region between the axes of anti-parallel currents is the addition of the magnitudes 
of their individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident 
reflection symmetry in the problem, where the plane of symmetry is midway between the 
two wires (at what we will call x = 2 , where = =20 0 020mm m. ); the net field at any 
point 0 2< <x  is the same at its “mirror image” point − x . The central axis of one of 
the wires passes through the origin, and that of the other passes through x = . We make 
use of the symmetry by integrating over 0 2< <x  and then multiplying by 2: 
 

( ) ( )
2 2 2

0 0 2
2 2 2

d

B d
B dA B L dx B L dxΦ = = +∫ ∫ ∫  

 
where d = 0.0025 m is the diameter of each wire. We will use R = d/2, and r instead of x 
in the following steps. Thus, using the equations from Ch. 29 referred to above, we find 
 

/ 20 0 0 0
20

0 0

5 5

2 2
2 2 ) 2 2 )

1 2ln ln
2

0.23 10 T m 1.08 10 T m

R
B

R

i i i ir dr dr
L R r r r

i iR R
R

μ μ μ μ
π π π π

μ μ
π π

− −

⎛ ⎞ ⎛ ⎞Φ
= + + +⎜ ⎟ ⎜ ⎟( − ( −⎝ ⎠ ⎝ ⎠

⎛ − ⎞ −⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
= × ⋅ + × ⋅

∫ ∫

 

 
which yields ΦB/L = 1.3 × 10–5 T·m or 1.3 × 10–5 Wb/m. 
 
(b) The flux (per meter) existing within the regions of space occupied by one or the other 
wire was computed above to be 0.23 × 10–5 T·m. Thus, 
 

5

5

0.23 10 T m 0.17 17% .
1.3 10 T m

−

−

× ⋅
= =

× ⋅
 

 
(c) What was described in part (a) as a symmetry plane at x = / 2  is now (in the case of 
parallel currents) a plane of vanishing field (the fields subtract from each other in the 
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region between them, as the right-hand rule shows). The flux in the 0 2< <x /  region is 
now of opposite sign of the flux in the / 2 < <x  region, which causes the total flux (or, 
in this case, flux per meter) to be zero. 
 
26. (a) First, we observe that a large portion of the figure contributes flux that “cancels 
out.” The field (due to the current in the long straight wire) through the part of the 
rectangle above the wire is out of the page (by the right-hand rule) and below the wire it 
is into the page. Thus, since the height of the part above the wire is b – a, then a strip 
below the wire (where the strip borders the long wire, and extends a distance b – a away 
from it) has exactly the equal but opposite flux that cancels the contribution from the part 
above the wire. Thus, we obtain the non zero contributions to the flux: 
 

( )0 0 ln .
2 2

a

B b a

i ib aBdA b dr
r b a

μ μ
−

⎛ ⎞ ⎛ ⎞Φ = = = ⎜ ⎟⎜ ⎟π π −⎝ ⎠⎝ ⎠∫ ∫  

 
Faraday’s law, then, (with SI units and 3 significant figures understood) leads to 
 

( )

0 0

20

0

ln ln
2 2

9ln 10
2 2

9 10
ln .

2

B ib bd d a a di
dt dt b a b a dt
b a d t t

b a dt
b t a

b a

μ με
π π

μ
π

μ
π

⎡ ⎤Φ ⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

− − ⎛ ⎞= ⎜ ⎟−⎝ ⎠

 

 
With a = 0.120 m and b = 0.160 m, then, at t = 3.00 s, the magnitude of the emf induced 
in the rectangular loop is 
 

ε =
× −

−
F
HG

I
KJ = ×

−
−

4 10 016 9 3 10
2

012
016 012

5 98 10
7

7
π

π
c hb g b gc h.

ln .
. .

. .V  

 
(b) We note that / 0di dt >  at t = 3 s. The situation is roughly analogous to that shown in 
Fig. 30-5(c). From Lenz’s law, then, the induced emf (hence, the induced current) in the 
loop is counterclockwise. 
 
27. (a) Consider a (thin) strip of area of height dy and width = 0 020. m . The strip is 
located at some 0 < <y . The element of flux through the strip is 
 

d BdA t y dyBΦ = = 4 2c hb g  
 
where SI units (and 2 significant figures) are understood. To find the total flux through 
the square loop, we integrate: 
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( )2 2 3

0
4 2 .B Bd t y dy tΦ = Φ = =∫ ∫  

 
Thus, Faraday’s law yields 

ε = =
d
dt

tBΦ 4 3 .  

 
At t = 2.5 s, the magnitude of the induced emf is 8.0 × 10–5 V.  
 
(b) Its “direction” (or “sense’’) is clockwise, by Lenz’s law. 
 
28. (a) We assume the flux is entirely due to the field generated by the long straight wire 
(which is given by Eq. 29-17). We integrate according to Eq. 30-1, not worrying about 
the possibility of an overall minus sign since we are asked to find the absolute value of 
the flux. 

/ 2 0 0
/ 2

/ 2| | ( ) ln .
2 2 / 2

r b

B r b

i ia r ba dr
r r b

μ μ
π π

+

−

+⎛ ⎞ ⎛ ⎞Φ = = ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠∫  

 
When 1.5r b= , we have  
 

 8(4 T m A)(4.7A)(0.022m)| | ln(2.0) 1.4 10 Wb.
2B π

−× ⋅
Φ = = ×

-7p 10  

 
(b) Implementing Faraday’s law involves taking a derivative of the flux in part (a), and 
recognizing that /dr dt v= . The magnitude of the induced emf divided by the loop 
resistance then gives the induced current: 
 

0 0
loop 2 2

3

4 2

5

/ 2ln
2 / 2 2 [ ( / 2) ]

(4 T m A)(4.7A)(0.022m)(0.0080m)(3.2 10 m/s)
2 (4.0 10 )[2(0.0080m) ]

1.0 10 A.

ia iabvd r bi
R R dt r b R r b

μ με
π π

π
π

−

−

−

+⎛ ⎞= = − =⎜ ⎟− −⎝ ⎠

× ⋅ ×
=

× Ω

= ×

−710  

 
29. (a) Equation 30-8 leads to 
 

ε = = =BLv ( . .0 350 0 0481T)(0.250 m)(0.55 m / s) V . 
 
(b) By Ohm’s law, the induced current is  
 

i = 0.0481 V/18.0 Ω = 0.00267 A. 
 
By Lenz’s law, the current is clockwise in Fig. 30-50. 
 



CHAPTER 30 1176 

(c) Equation 26-27 leads to P = i2R = 0.000129 W. 
 
30. Equation 26-28 gives ε2/R as the rate of energy transfer into thermal forms (dEth /dt, 
which, from Fig. 30-51(c), is roughly 40 nJ/s).  Interpreting ε as the induced emf (in 
absolute value) in the single-turn loop (N = 1) from Faraday’s law, we have 
 

 ( )Bd d BA dBA
dt dt dt

ε Φ
= = = . 

 
Equation 29-23 gives B = μoni for the solenoid (and note that the field is zero outside of 
the solenoid, which implies that A = Acoil), so our expression for the magnitude of the 
induced emf becomes 

( ) coil
coil 0 coil 0 coil

didB dA A ni nA
dt dt dt

ε μ μ= = = . 

 
where Fig. 30-51(b) suggests that dicoil/dt = 0.5 A/s. With n = 8000 (in SI units) and Acoil 
= π(0.02)2  (note that the loop radius does not come into the computations of this problem, 
just the coil’s), we find V = 6.3 μV. Returning to our earlier observations, we can now 
solve for the resistance:  

R = ε 2/(dEth /dt) = 1.0 mΩ. 
 
31. Thermal energy is generated at the rate P = ε2/R (see Eq. 26-28). Using Eq. 27-16, the 
resistance is given by R = ρL/A, where the resistivity is 1.69 × 10–8 Ω·m (by Table 27-1) 
and A = πd2/4 is the cross-sectional area of the wire (d = 0.00100 m is the wire thickness). 
The area enclosed by the loop is 

A r L
loop loop

2= = FHG
I
KJπ π

π2

2

 

 
since the length of the wire (L = 0.500 m) is the circumference of the loop. This enclosed 
area is used in Faraday’s law (where we ignore minus signs in the interest of finding the 
magnitudes of the quantities): 

ε = = =
d
dt

A dB
dt

L dB
dt

BΦ
loop

2

4π
 

 
where the rate of change of the field is dB/dt = 0.0100 T/s. Consequently, we obtain 
 

( )
22 2 2 2 2 3 3 2 3

2
2 8

6

( / 4 ) ( / ) (1.00 10  m) (0.500 m) 0.0100 T/s
/( / 4) 64 64 (1.69 10 m)

3.68 10 W .

L dB dt d L dBP
R L d dt
ε π

ρ π πρ π

−

−

−

×⎛ ⎞= = = =⎜ ⎟ × Ω ⋅⎝ ⎠
= ×

 

 
32. Noting that |ΔB| = B, we find the thermal energy is 
 



 

  

1177

2 22 2 2

thermal

4 2 2 6 2

6 3

10

1 1

(2.00 10 m ) (17.0 10 T)
(5.21 10 )(2.96 10 s)

7.50 10 J.

Bdt B A BP t t A t
R R dt R t R t

ε

− −

− −

−

ΦΔ Δ⎛ ⎞ ⎛ ⎞Δ = = − Δ = − Δ =⎜ ⎟⎜ ⎟ Δ Δ⎝ ⎠⎝ ⎠
× ×

=
× Ω ×

= ×

 

 
33. (a) Letting x be the distance from the right end of the rails to the rod, we find an 
expression for the magnetic flux through the area enclosed by the rod and rails. By Eq. 
29-17, the field is B = μ0i/2πr, where r is the distance from the long straight wire. We 
consider an infinitesimal horizontal strip of length x and width dr, parallel to the wire and 
a distance r from it; it has area A = x dr and the flux is 
 

0

2B
id BdA xdr
r

μ
π

Φ = = . 

 
By Eq. 30-1, the total flux through the area enclosed by the rod and rails is 
 

0 0 ln .
2 2

a L

B a

ix ixdr a L
r a

μ μ
π π

+ +⎛ ⎞Φ = = ⎜ ⎟
⎝ ⎠∫  

 
According to Faraday’s law the emf induced in the loop is 
 

( )( )( )

0 0

7
4

ln ln
2 2

4 10 T m/A 100A 5.00m/s 1.00cm 10.0cmln 2.40 10 V.
2 1.00cm

B i ivd dx a L a L
dt dt a a

μ με
π π

π

π

−
−

Φ + +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

× ⋅ ⎛ ⎞+
= = ×⎜ ⎟

⎝ ⎠

 

 
(b) By Ohm’s law, the induced current is 
 

( ) ( )4 4/ 2.40 10 V / 0.400 6.00 10 A.i Rε − −= = × Ω = ×  
 
Since the flux is increasing, the magnetic field produced by the induced current must be 
into the page in the region enclosed by the rod and rails. This means the current is 
clockwise. 
 
(c) Thermal energy is being generated at the rate  
 

( ) ( )22 46.00 10 A 0.400P i R −= = × Ω = 71.44 10 W.−×  
  
(d) Since the rod moves with constant velocity, the net force on it is zero. The force of the 
external agent must have the same magnitude as the magnetic force and must be in the 
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opposite direction. The magnitude of the magnetic force on an infinitesimal segment of 
the rod, with length dr at a distance r from the long straight wire, is  
 

BdF = i B dr = ( )0 / 2 .i i r drμ π  
 
We integrate to find the magnitude of the total magnetic force on the rod: 
 

( )( )( )

0 0

7 4

8

ln
2 2

4 10 T m/A 6.00 10 A 100 A 1.00cm 10.0cmln
2 1.00cm

2.87 10 N.

a L

B a

i i i idr a LF
r a

μ μ
π π

π

π

+

− −

−

+⎛ ⎞= = ⎜ ⎟
⎝ ⎠

× ⋅ × ⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
= ×

∫

 

 
Since the field is out of the page and the current in the rod is upward in the diagram, the 
force associated with the magnetic field is toward the right. The external agent must 
therefore apply a force of 2.87 × 10–8 N, to the left. 
 
(e) By Eq. 7-48, the external agent does work at the rate  
 

P = Fv = (2.87 × 10–8 N)(5.00 m/s) = 1.44 × 10–7 W. 
 
This is the same as the rate at which thermal energy is generated in the rod. All the 
energy supplied by the agent is converted to thermal energy. 
 
34. Noting that Fnet = BiL – mg = 0, we solve for the current: 
 

i mg
BL R R

d
dt

B
R

dA
dt

Bv L
R

B t= = = = =
| | ,ε 1 Φ  

 
which yields vt = mgR/B2L2. 
 
35. (a) Equation 30-8 leads to 
 

(1.2T)(0.10 m)(5.0 m/s) 0.60 V .BLvε = = =  
 
(b) By Lenz’s law, the induced emf is clockwise. In the rod itself, we would say the emf 
is directed up the page. 
 
(c) By Ohm’s law, the induced current is i = 0.60 V/0.40 Ω = 1.5 A. 
 
(d) The direction is clockwise. 
 
(e) Equation 26-28 leads to P = i2R = 0.90 W. 
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(f) From Eq. 29-2, we find that the force on the rod associated with the uniform magnetic 
field is directed rightward and has magnitude 
 

F iLB= = =( . )( . .15 010 018A m)(1.2 T) N .  
 
To keep the rod moving at constant velocity, therefore, a leftward force (due to some 
external agent) having that same magnitude must be continuously supplied to the rod. 
 
(g) Using Eq. 7-48, we find the power associated with the force being exerted by the 
external agent:  

P = Fv = (0.18 N)(5.0 m/s) = 0.90 W, 
 
which is the same as our result from part (e). 
 
36. (a) For path 1, we have 
 

( ) ( ) ( )22 31 1 1
1 1 1 11

3

0.200m 8.50 10 T/s

1.07 10 V.

Bd dB dBdE ds B A A r
dt dt dt dt

π π −

−

Φ
⋅ = − = = = = − ×

= − ×

∫  

 
(b) For path 2, the result is 
 

 ( ) ( )22 3 32 2
22

0.300m 8.50 10 T/s 2.40 10 VBd dBE ds r
dt dt

π π − −Φ
⋅ = − = = − × = − ×∫ . 

 
(c) For path 3, we have 
 

E ds E ds E ds⋅ = ⋅ − ⋅ = − × − − × = ×z z z − − −

3 1

3 3 3

2
107 10 2 4 10 133 10. . .V V Vc h . 

 
37. (a) The point at which we are evaluating the field is inside the solenoid, so Eq. 30-25 
applies. The magnitude of the induced electric field is 
 

E dB
dt

r= = × = ×− −1
2

1
2

65 10 0 0220 715 103 5. . .T / s m V / m.c hb g  

 
(b) Now the point at which we are evaluating the field is outside the solenoid and Eq. 30-
27 applies. The magnitude of the induced field is 
 

E dB
dt

R
r

= = × = ×− −1
2

1
2

65 10
0 0600
0 0820

143 10
2

3
2

4.
.
.

.T / s
m
m

V / m.c h b g
b g  
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38. From the “kink” in the graph of Fig. 30-55, we conclude that the radius of the circular 
region is 2.0 cm.  For values of r less than that, we have (from the absolute value of Eq. 
30-20) 

2( )(2 ) Bd d BA dBE r A r a
dt dt dt

π πΦ
= = = =  

 
which means that E/r = a/2.  This corresponds to the slope of that graph (the linear 
portion for small values of r) which we estimate to be 0.015 (in SI units). Thus, 

0.030 T/s.a =  
 
39. The magnetic field B can be expressed as 
 

B t B B tb g b g= + +0 1 0sin ,ω φ  
 
where B0 = (30.0 T + 29.6 T)/2 = 29.8 T and B1 = (30.0 T – 29.6 T)/2 = 0.200 T. Then 
from Eq. 30-25 
 

E dB
dt

r r d
dt

B B t B r t= FHG
I
KJ = + + = +

1
2 2

1
20 1 0 1 0sin cos .ω φ ω ω φb g b g  

 
We note that ω = 2πf and that the factor in front of the cosine is the maximum value of 
the field. Consequently, 
 

( ) ( )( )( )( )2
max 1

1 12 0.200T 2 15 Hz 1.6 10 m 0.15 V/m.
2 2

E B f rπ π −= = × =  

 
40. Since NΦB = Li, we obtain 
 

ΦB
Li
N

= =
× ×

= ×
− −

−
8 0 10 50 10

400
10 10

3 3
7

. .
.

H A
Wb.

c hc h
 

 
41. (a) We interpret the question as asking for N multiplied by the flux through one turn: 
 

Φ Φturns T m Wb.= = = = × = ×− −N NBA NB rB π π2 3 2 330 0 2 60 10 0100 2 45 10c h b gc hb gb g. . . .  
 
(b) Equation 30-33 leads to 

L N
i

B= =
×

= ×
−

−Φ 2 45 10
380

6 45 10
3

4.
.

. Wb
A

H.  

 
42. (a) We imagine dividing the one-turn solenoid into N small circular loops placed 
along the width W of the copper strip. Each loop carries a current Δi = i/N. Then the 
magnetic field inside the solenoid is  
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7
70

0 0
(4 10 T m/A)(0.035A) 2.7 10 T.

0.16m
iN iB n i

W N W
μμ μ

−
−π× ⋅⎛ ⎞⎛ ⎞= Δ = = = = ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(b) Equation 30-33 leads to 
 

( )2 22 7 2
0 90/ (4 10 T m/A)(0.018m) 8.0 10 H.

0.16m
B R i W RR BL

i i i W
μ μ π −

−π πΦ π π× ⋅
= = = = = = ×  

 
43. We refer to the (very large) wire length as  and seek to compute the flux per meter:  
ΦB / .  Using the right-hand rule discussed in Chapter 29, we see that the net field in the 
region between the axes of antiparallel currents is the addition of the magnitudes of their 
individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident reflection 
symmetry in the problem, where the plane of symmetry is midway between the two wires 
(at x = d/2); the net field at any point 0 < x < d/2 is the same at its “mirror image” point 
d – x. The central axis of one of the wires passes through the origin, and that of the other 
passes through x = d. We make use of the symmetry by integrating over 0 < x < d/2 and 
then multiplying by 2: 
 

( ) ( )
/ 2 / 2

0 0
2 2 2

d a d

B a
B dA B dx B dxΦ = = +∫ ∫ ∫  

 
where d = 0.0025 m is the diameter of each wire. We will use r instead of x in the 
following steps. Thus, using the equations from Ch. 29 referred to above, we find 
 

( ) ( )
/ 20 0 0 0

20

0 0

2 2
2 2 2 2

1 2 ln ln
2

a d
B

a

i i i ir dr dr
a d r r d r

i id a d a
d a

μ μ μ μ
π π π π

μ μ
π π

⎛ ⎞ ⎛ ⎞Φ
= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

⎛ − ⎞ −⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫
 

 
where the first term is the flux within the wires and will be neglected (as the problem 
suggests). Thus, the flux is approximately  ΦB i d a a≈ −μ 0 / ln / .π b gc h  Now, we use Eq. 
30-33 (with N = 1) to obtain the inductance per unit length: 
 

7
60 (4 10 T m/A) 142 1.53ln ln 1.81 10 H/m.

1.53
BL d a
i a

μ π
π π

−
−Φ − × ⋅ −⎛ ⎞ ⎛ ⎞= = = = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
44. Since ε = –L(di/dt), we may obtain the desired induced emf by setting 
 

60V 5.0A/s,
12H

di
dt L

ε
= − = − = −  
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or | / | 5.0A/s.di dt =  We might, for example, uniformly reduce the current from 2.0 A to 
zero in 40 ms. 
 
45. (a) Speaking anthropomorphically, the coil wants to fight the changes—so if it wants 
to push current rightward (when the current is already going rightward) then i must be in 
the process of decreasing. 
 
(b) From Eq. 30-35 (in absolute value) we get 
 

L
di dt

= = = × −ε
/

.17 6 8 10 4V
2.5kA / s

H. 

 
46. During periods of time when the current is varying linearly with time, Eq. 30-35 (in 
absolute values) becomes | | | / | .L i tε = Δ Δ  For simplicity, we omit the absolute value 
signs in the following. 
 
(a) For 0 < t < 2 ms, 

ε = =
−

×
= ×−L i

t
Δ
Δ

4 6 7 0 0
2 0 10

16 103
4. .

.
.

H A
s

V.b gb g  

 
(b) For 2 ms < t < 5 ms, 

ε = =
−

−
= ×−L i

t
Δ
Δ

4 6 50 7 0
50 2 0 10

31 103
3. . .

. .
.

H A A
s

V.b gb g
b g  

 
(c) For 5 ms < t < 6 ms, 

ε = =
−

−
= ×−L i

t
Δ
Δ

4 6 0 50
6 0 50 10

2 3 103
4. .

. .
.

H A
s

V.b gb g
b g  

 
47. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 
proportional to resistance. Since the (independent) voltages for series elements add (V1 + 
V2), then inductances in series must add, eq 1 2L L L= + , just as was the case for resistances. 
Note that to ensure the independence of the voltage values, it is important that the 
inductors not be too close together (the related topic of mutual inductance is treated in 
Section 30-12). The requirement is that magnetic field lines from one inductor should not 
have significant presence in any other. 
 
(b) Just as with resistors, L Lnn

N
eq =

=∑ .
1

 
 
48. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 
proportional to resistance. Now, the (independent) voltages for parallel elements are 
equal (V1 = V2), and the currents (which are generally functions of time) add (i1 (t) + i2 (t) 
= i(t)). This leads to the Eq. 27-21 for resistors. We note that this condition on the 
currents implies 
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di t
dt

di t
dt

di t
dt

1 2b g b g b g
+ = .  

 
Thus, although the inductance equation Eq. 30-35 involves the rate of change of current, 
as opposed to current itself, the conditions that led to the parallel resistor formula also 
apply to inductors. Therefore, 

1 1 1

1 2L L Leq

= + .  

 
Note that to ensure the independence of the voltage values, it is important that the 
inductors not be too close together (the related topic of mutual inductance is treated in 
Section 30-12). The requirement is that the field of one inductor not to have significant 
influence (or “coupling’’) in the next. 
 

(b) Just as with resistors, 
1eq

1 1N

n nL L=

= ∑ . 

 
49. Using the results from Problems 30-47 and 30-48, the equivalent resistance is 
 

 
2 3

eq 1 4 23 1 4
2 3

(50.0 mH)(20.0 mH)30.0 mH 15.0 mH
50.0 mH 20.0 mH

59.3 mH.

L LL L L L L L
L L

= + + = + + = + +
+ +

=

 

 
50. The steady state value of the current is also its maximum value, ε/R, which we denote 
as im. We are told that i = im/3 at t0 = 5.00 s. Equation 30-41 becomes ( )0 /1 ,Lt

mi i e τ−= −  
which leads to 

τ L
m

t
i i

= −
−

= −
−

=0

1
5 00

1 3
12 3

ln /
.

/
.b g b g

s
ln 1

s.  

 
51. The current in the circuit is given by 0

Lti i e τ−= , where i0 is the current at time t = 0 
and τL is the inductive time constant (L/R). We solve for τL. Dividing by i0 and taking the 
natural logarithm of both sides, we obtain 
 

ln .i
i

t

L0

F
HG
I
KJ = −

τ
 

This yields 

τ L
t
i i

= − = −
×

=
−ln /
.

ln / .
.

0
3

10
10 10 10

0 217b g c h b ge j
s
A A

s. 

 
Therefore, R = L/τL = 10 H/0.217 s = 46 Ω. 
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52. (a) Immediately after the switch is closed, ε – εL = iR. But i = 0 at this instant, so εL = 
ε, or εL/ε = 1.00. 
 
(b) 2.0 2.0( ) 0.135 ,L L Lt

L t e e eτ τ τε ε ε ε ε− − −= = = =  or εL/ε = 0.135. 
 
(c) From ( ) Lt

L t e τε ε −=  we obtain 
 

ln ln 2 ln 2 0.693       / 0.693.L L L
L L

t t tε τ τ τ
τ ε

⎛ ⎞
= = ⇒ = = ⇒ =⎜ ⎟

⎝ ⎠
 

 
53. (a) If the battery is switched into the circuit at t = 0, then the current at a later time t is 
given by 

i
R

e t L= − −ε τ1 / ,c h  

 
where τL = L/R. Our goal is to find the time at which i = 0.800ε/R. This means 
 

/ /0.800 1 0.200 .L Lt te eτ τ− −= − ⇒ =  
 
Taking the natural logarithm of both sides, we obtain –(t/τL) = ln(0.200) = –1.609. Thus, 
 

t L
RL= = =

×
×

= ×
−

−1609 1609 1609 6 30 10
120 10

8 45 10
6

3
9. . . ( .

.
.τ H) s .

Ω
 

 
(b) At t = 1.0τL the current in the circuit is 
 

( )1.0 1.0 3
3

14.0V1 (1 ) 7.37 10 A .
1.20 10

i e e
R
ε − − −⎛ ⎞= − = − = ×⎜ ⎟× Ω⎝ ⎠

 

 
The current as a function of / Lt τ  is plotted below. 
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54. (a) The inductor prevents a fast build-up of the current through it, so immediately 
after the switch is closed, the current in the inductor is zero. It follows that 
 

1
1 2

100V 3.33A.
10.0 +20.0

i
R R

ε
= = =

+ Ω Ω
 

(b) 2 1 3.33A.i i= =  
 
(c) After a suitably long time, the current reaches steady state. Then, the emf across the 
inductor is zero, and we may imagine it replaced by a wire. The current in R3 is i1 – i2. 
Kirchhoff’s loop rule gives 

( )
1 1 2 2

1 1 1 2 3

0

0.

i R i R

i R i i R

ε

ε

− − =

− − − =
 

 
We solve these simultaneously for i1 and i2, and find  
 

( ) ( )( )
( )( ) ( )( ) ( )( )

2 3
1

1 2 1 3 2 3

100 V 20.0 30.0
10.0 20.0 10.0 30.0 20.0 30.0

4.55A,

R R
i

R R R R R R
ε + Ω + Ω

= =
+ + Ω Ω + Ω Ω + Ω Ω

=

 

 
(d) and 

( )( )
( )( ) ( )( ) ( )( )

3
2

1 2 1 3 2 3

100 V 30.0
10.0 20.0 10.0 30.0 20.0 30.0

2.73A.

Ri
R R R R R R

ε Ω
= =

+ + Ω Ω + Ω Ω + Ω Ω

=

 

 
(e) The left-hand branch is now broken. We take the current (immediately) as zero in that 
branch when the switch is opened (that is, i1 = 0).  
 
(f) The current in R3 changes less rapidly because there is an inductor in its branch. In 
fact, immediately after the switch is opened it has the same value that it had before the 
switch was opened. That value is 4.55 A – 2.73 A = 1.82 A. The current in R2 is the same 
but in the opposite direction as that in R3, that is, i2 = –1.82 A. 
 
A long time later after the switch is reopened, there are no longer any sources of emf in 
the circuit, so all currents eventually drop to zero. Thus, 
 
(g) i1 = 0, and  
 
(h) i2 = 0. 
 
55. Starting with zero current at t = 0 (the moment the switch is closed) the current in the 
circuit increases according to 
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i
R

e t L= − −ε τ1 / ,c h  

 
where τL = L/R is the inductive time constant and ε is the battery emf. To calculate the 
time at which i = 0.9990ε/R, we solve for t: 
 

( ) ( ) ( )/0.990 1 ln 0.0010 /     / 6.91.Lt
Le t t

R R
τε ε τ τ−= − ⇒ = − ⇒ =  

 
The current (in terms of 0/i i ) as a function of / Lt τ  is plotted below. 
 

 
 
56. From the graph we get Φ/i = 2 ×10−4 in SI units.  Therefore, with N = 25, we find the 
self-inductance is L = N Φ/i  = 5 × 10−3 H.  From the derivative of Eq. 30-41 (or a 
combination of that equation and Eq. 30-39) we find (using the symbol V to stand for the 
battery emf) 

di
dt

 = V
R

R
L  e−t/τL = V

L
e−t/τL = 7.1 × 102 A/s . 

 
57. (a) Before the fuse blows, the current through the resistor remains zero. We apply the 
loop theorem to the battery-fuse-inductor loop: ε – L di/dt = 0. So i = εt/L. As the fuse 
blows at t = t0, i = i0 = 3.0 A. Thus, 
 

( )( )0
0

3.0A 5.0H
1.5 s.

10V
i Lt
ε

= = =  

 
(b) We do not show the graph here; qualitatively, it would be similar to Fig. 30-15. 
 
58. Applying the loop theorem, 

ε − FHG
I
KJ =L di

dt
iR ,  

 
we solve for the (time-dependent) emf, with SI units understood: 
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( ) ( ) ( )( ) ( )( )

( )

3.0 5.0 3.0 5.0 6.0 5.0 3.0 5.0 4.0

42 20 .

di dL iR L t t R t
dt dt

t

ε = + = + + + = + +

= +
 

 
59. (a) We assume i is from left to right through the closed switch. We let i1 be the 
current in the resistor and take it to be downward. Let i2 be the current in the inductor, 
also assumed downward. The junction rule gives i = i1 + i2 and the loop rule gives i1R – 
L(di2/dt) = 0. According to the junction rule, (di1/dt) = – (di2/dt). We substitute into the 
loop equation to obtain 

L di
dt

i R1
1 0+ = .  

 
This equation is similar to Eq. 30-46, and its solution is the function given as Eq. 30-47: 
 

i i e Rt L
1 0= − ,  

 
where i0 is the current through the resistor at t = 0, just after the switch is closed. Now 
just after the switch is closed, the inductor prevents the rapid build-up of current in its 
branch, so at that moment i2 = 0 and i1 = i. Thus i0 = i, so 
 

( )1 2 1, 1 .Rt L Rt Li ie i i i i e− −= = − = −  
(b) When i2 = i1, 

11 .
2

Rt L Rt L Rt Le e e− − −= − ⇒ =  

 
Taking the natural logarithm of both sides (and using ln ln1 2 2b g = − ) we obtain 
 

ln 2 ln 2.Rt Lt
L R

⎛ ⎞ = ⇒ =⎜ ⎟
⎝ ⎠

 

 
A plot of 1 /i i  (solid line, for resistor) and 2 /i i  (dashed line, for inductor) as a function of 

/ Lt τ  is shown below. 
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60. (a) Our notation is as follows: h is the height of the toroid, a its inner radius, and b its 
outer radius. Since it has a square cross section, h = b – a = 0.12 m – 0.10 m = 0.02 m. 
We derive the flux using Eq. 29-24 and the self-inductance using Eq. 30-33: 
 

0 0 ln
2 2

b b

B a a

Ni Nih bB dA h dr
r a

μ μ
π π

⎛ ⎞ ⎛ ⎞Φ = = = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠∫ ∫  

and  

 
2

0 ln
2

B N hN bL
i a

μΦ ⎛ ⎞= = ⎜ ⎟π ⎝ ⎠
. 

 
Now, since the inner circumference of the toroid is l = 2πa = 2π(10 cm) ≈ 62.8 cm, the 
number of turns of the toroid is roughly N ≈ 62.8 cm/1.0 mm = 628. Thus 
 

( ) ( ) ( )272
40

4 10 H m 628 0.02m 12ln ln 2.9 10 H.
2 2 10
N h bL

a
πμ

π π

−
−

×⎛ ⎞ ⎛ ⎞= ≈ = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
(b) Noting that the perimeter of a square is four times its sides, the total length  of the 
wire is = =628 4 2 0 50b g b g. cm m , and the resistance of the wire is  
 

R = (50 m)(0.02 Ω/m) = 1.0 Ω. 
 
Thus, 

τ L
L
R

= =
×

= ×
−

−2 9 10 2 9 10
4

4. .H
1.0

s.
Ω

 

 
61. (a) If the battery is applied at time t = 0 the current is given by 
 

i
R

e t L= − −ε τ1c h ,  

 
where ε is the emf of the battery, R is the resistance, and τL is the inductive time constant 
(L/R). This leads to 

e iR t iRt

L

L− = − ⇒ − = −FHG
I
KJ

τ

ε τ ε
1 1ln .  

Since 
 

ln ln
. .

.
. ,1 1

2 00 10 10 0 10
50 0

0 5108
3 3

−FHG
I
KJ = −

× ×L
N
MM

O
Q
PP = −

−iR
ε

A
V

c hc hΩ
 

 
the inductive time constant is  
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τL = t/0.5108 = (5.00 × 10–3 s)/0.5108 = 9.79 × 10–3 s 

 
and the inductance is 
 

L RL= = × × =−τ 9 79 10 10 0 10 97 93 3. . .s H .c hc hΩ  
 
(b) The energy stored in the coil is 
 

U LiB = = × = ×− −1
2

1
2

97 9 2 00 10 196 102 3 2 4. . .H A J .b gc h  

 
62. (a) From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 
inductor is 
 

( ) ( ) ( )
21 2

2 11 1 .L L L Lt t t tB

L

d LidU diLi L e e e e
dt dt dt R R R

τ τ τ τε ε ε
τ

− − − −⎛ ⎞⎛ ⎞= = = − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Now,  
τL = L/R = 2.0 H/10 Ω = 0.20 s 

 
and ε = 100 V, so the above expression yields dUB/dt = 2.4 × 102 W when t = 0.10 s. 
 
(b) From Eq. 26-22 and Eq. 30-41, the rate at which the resistor is generating thermal 
energy is 

P i R
R

e R
R

et tL L
thermal = = − = −− −2

2

2

2 2 2
1 1ε ετ τc h c h .  

 
At t = 0.10 s, this yields Pthermal = 1.5 × 102 W. 
 
(c) By energy conservation, the rate of energy being supplied to the circuit by the battery 
is 

P P dU
dt

B
battery thermal W.= + = ×39 102.  

 
We note that this result could alternatively have been found from Eq. 28-14 (with Eq. 30-
41). 
 
63. From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 
inductor is 
 

( ) ( ) ( )
2 2/ 2 11 1L L L Lt t t tB

L

d LidU diLi L e e e e
dt dt dt R R R

τ τ τ τε ε ε
τ

− − − −⎛ ⎞⎛ ⎞= = = − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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where τL = L/R has been used. From Eq. 26-22 and Eq. 30-41, the rate at which the 
resistor is generating thermal energy is 
 

P i R
R

e R
R

et tL L
thermal = = − = −− −2

2

2

2 2 2
1 1ε ετ τc h c h .  

 
We equate this to dUB/dt, and solve for the time: 
 

( ) ( ) ( )
2 22

1 1 ln 2 37.0ms ln 2 25.6ms.L L Lt t t
Le e e t

R R
τ τ τε ε τ− − −− = − ⇒ = = =  

 
64. Let U t Li tB b g b g= 1

2
2 . We require the energy at time t to be half of its final value: 

U t U t LiB fb g b g= → ∞ =1
2

1
4

2 . This gives i t i fb g = 2 . But /( ) (1 )Lt
fi t i e τ−= − , so 

 
1 11       ln 1 1.23.
2 2

Lt

L

te τ

τ
− ⎛ ⎞− = ⇒ = − − =⎜ ⎟

⎝ ⎠
 

 
65. (a) The energy delivered by the battery is the integral of Eq. 28-14 (where we use Eq. 
30-41 for the current): 
 

( ) ( )

( ) ( ) ( )( )( )

2 2  

battery 0  0

6.70 2.00 s 5.50 H2

1 1

5.50 H 110.0 V
2.00 s

6.70 6.70

18.7 J.

t t Rt L Rt LLP dt e dt t e
R R R

e

ε ε− −

− Ω

⎡ ⎤= − = + −⎢ ⎥⎣ ⎦
⎡ ⎤−
⎢ ⎥= +
⎢ ⎥Ω Ω
⎣ ⎦

=

∫ ∫

 

 
(b) The energy stored in the magnetic field is given by Eq. 30-49: 
 

( ) ( ) ( ) ( )( )
22

22 6.70 2.00 s 5.50 H21 1 1 10.0V1 5.50H 1
2 2 2 6.70
5.10 J .

Rt L
BU Li t L e e

R
ε − Ω− ⎛ ⎞⎛ ⎞ ⎡ ⎤= = − = −⎜ ⎟⎜ ⎟ ⎣ ⎦Ω⎝ ⎠ ⎝ ⎠

=

 

 
(c) The difference of the previous two results gives the amount “lost” in the resistor:  
18.7 J – 5.10 J = 13.6 J. 
 
66. (a) The magnitude of the magnetic field at the center of the loop, using Eq. 29-9, is 
 

( )( )
( )

7
30

3

4 10 H m 100A
1.3 10 T .

2 2 50 10 m
iB

R
πμ

−
−

−

×
= = = ×

×
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(b) The energy per unit volume in the immediate vicinity of the center of the loop is 
 

( )
( )

232
3

7
0

1.3 10 T
0.63 J m .

2 2 4 10 H mB
Bu
μ π

−

−

×
= = =

×
 

 
67. (a) At any point the magnetic energy density is given by uB = B2/2μ0, where B is the 
magnitude of the magnetic field at that point. Inside a solenoid B = μ0ni, where n, for the 
solenoid of this problem, is  
 

n = (950 turns)/(0.850 m) = 1.118 × 103 m–1. 
 
The magnetic energy density is 
 

u n iB = = × ⋅ × =− −1
2

1
2

4 10 1118 10 6 60 34 20
2 2 7 3 1 2 2 3μ π T m A m A J mc hc h b g. . . .  

 
(b) Since the magnetic field is uniform inside an ideal solenoid, the total energy stored in 
the field is UB = uBV, where V is the volume of the solenoid. V is calculated as the 
product of the cross-sectional area and the length. Thus 
 

U B = × = ×− −34 2 17 0 10 0850 4 94 103 4 2 2. . . . .J m m m Jd ic hb g  

 
68. The magnetic energy stored in the toroid is given by U LiB = 1

2
2 , where L is its 

inductance and i is the current. By Eq. 30-54, the energy is also given by UB = uBV, 
where uB is the average energy density and V is the volume. Thus 
 

i u
L
B= =

×
=−

2 2 70 0 0 0200
90 0 10

558
3 3

3

V . .
.

. .
J m m

H
A

c hc h
 

 
69. We set u E u BE B= = =1

2 0
2 1

2
2

0ε μ  and solve for the magnitude of the electric field: 
 

( )( )
8

12 7
0 0

0.50T 1.5 10 V m .
8.85 10 F m 4 H m

BE
ε μ π− −

= = = ×
× ×10

 

 
70. It is important to note that the x that is used in the graph of Fig. 30-65(b) is not the x 
at which the energy density is being evaluated.  The x in Fig. 30-65(b) is the location of 
wire 2.  The energy density (Eq. 30-54) is being evaluated at the coordinate origin 
throughout this problem.  We note the curve in Fig. 30-65(b) has a zero; this implies that 
the magnetic fields (caused by the individual currents) are in opposite directions (at the 
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origin), which further implies that the currents have the same direction.  Since the 
magnitudes of the fields must be equal (for them to cancel) when the x of Fig. 30-65(b) is 
equal to 0.20 m, then we have (using Eq. 29-4) B1 = B2, or  
 

 0 1 0 2

2 2 (0.20 m)
i i
d

μ μ
π π

=  

      
which leads to (0.20 m) / 3d =  once we substitute 1 2 / 3i i=  and simplify.  We can also 
use the given fact that when the energy density is completely caused by B1 (this occurs 
when x becomes infinitely large because then B2 = 0) its value is uB = 1.96  × 10−9 (in SI 
units) in order to solve for B1: 
 1 02 BB μ μ= . 
 
(a) This combined with 1 0 1 / 2B i dμ π=  allows us to find wire 1’s current: i1 ≈ 23 mA. 
 
(b) Since i2 = 3i1 then i2 = 70 mA (approximately). 
 
71. (a) The energy per unit volume associated with the magnetic field is 
 

( )( )
( )

272 22
30 0

22 3
0 0

4 10 H m 10A1 1.0 J m .
2 2 2 8 8 2.5 10 m 2

B
i iBu

R R
μ μ

μ μ

−

−

π×⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠ ×

 

 
(b) The electric energy density is 
 

( ) ( ) ( )( )
2

222 12 30 0
0

315

1 1 8.85 10 F m 10A 3.3 10 m
2 2 2 2

4.8 10 J m .

E
iRu E Jε εε ρ −

−

⎛ ⎞ ⎡ ⎤= = = = × Ω⎜ ⎟ ⎣ ⎦⎝ ⎠

= ×

 

 
Here we used J = i/A and R A= ρ  to obtain ρJ iR= . 
 
72. (a) The flux in coil 1 is 
 

( )( )1 1

1

25mH 6.0mA
1.5 Wb.

100
L i
N

μ= =  

 
(b) The magnitude of the self-induced emf is 
 

( )( ) 21
1 25mH 4.0 A s 1.0 10 mV.diL

dt
= = ×  

 
(c) In coil 2, we find 
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 ( )( )1
21

2

3.0mH 6.0mA
90nWb

200
Mi
N

Φ = = = . 

 
(d) The mutually induced emf is 
 

( )( )1
21 3.0mH 4.0 A s 12mV.diM

dt
ε = = =  

 
73. (a) Equation 30-65 yields 

M
di dt

= = =
ε1

2

25 0
15 0

167.
.

. .mV
A s

mH  

(b) Equation 30-60 leads to 
 

N Mi2 21 1 167 360 6 00Φ = = =. . . .mH A mWbb gb g  
 
74. We use ε2 = –M di1/dt ≈ M|Δi/Δt| to find M: 
 

M
i t

= =
×

×
=

−

ε
Δ Δ1

3

3

30 10
6 0

13V
A 2.5 10 s

H
.

.c h  

 
75. The flux over the loop cross section due to the current i in the wire is given by 
 

0 0
wire ln 1 .

2 2
a b a b

a a

il il bB ldr dr
r a

μ μ
π π

+ + ⎛ ⎞Φ = = = +⎜ ⎟
⎝ ⎠∫ ∫  

Thus, 

M N
i

N l b
a

= = +FHG
I
KJ

Φ μ 0

2
1

π
ln .  

 
From the formula for M obtained above, we have 
 

( )( )( )7
5

100 4 10 H m 0.30 m 8.0ln 1 1.3 10 H .
2 1.0

M
π

π

−
−

× ⎛ ⎞= + = ×⎜ ⎟
⎝ ⎠

 

 
76. (a) The coil-solenoid mutual inductance is 
 

( )2
0 2

0 .scs
cs

s s

N i n RNM M R nN
i i

μ π
μ πΦ

= = = =  

 
(b) As long as the magnetic field of the solenoid is entirely contained within the cross 
section of the coil we have Φsc = BsAs = BsπR2, regardless of the shape, size, or possible 
lack of close-packing of the coil. 
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77. (a) We assume the current is changing at (nonzero) rate di/dt and calculate the total 
emf across both coils. First consider the coil 1. The magnetic field due to the current in 
that coil points to the right. The magnetic field due to the current in coil 2 also points to 
the right. When the current increases, both fields increase and both changes in flux 
contribute emf’s in the same direction. Thus, the induced emf’s are 
 

ε ε1 1 2 2= − + = − +L M di
dt

L M di
dt

b g b gand .  

 
Therefore, the total emf across both coils is 
 

ε ε ε= + = − + +1 2 1 2 2L L M di
dt

b g  

 
which is exactly the emf that would be produced if the coils were replaced by a single 
coil with inductance Leq = L1 + L2 + 2M. 
 
(b) We imagine reversing the leads of coil 2 so the current enters at the back of coil rather 
than the front (as pictured in the diagram). Then the field produced by coil 2 at the site of 
coil 1 is opposite to the field produced by coil 1 itself. The fluxes have opposite signs. An 
increasing current in coil 1 tends to increase the flux in that coil, but an increasing current 
in coil 2 tends to decrease it. The emf across coil 1 is 
 

ε1 1= − −L M di
dt

b g .  

Similarly, the emf across coil 2 is 
 

ε 2 2= − −L M di
dt

b g .  

The total emf across both coils is 
 

ε = − + −L L M di
dt1 2 2b g .  

 
This is the same as the emf that would be produced by a single coil with inductance  
 

Leq = L1 + L2 – 2M. 
 
78. Taking the derivative of Eq. 30-41, we have 
 

/ / /(1 )L L Lt t t

L

di d e e e
dt dt R R L

τ τ τε ε ε
τ

− − −⎡ ⎤= − = =⎢ ⎥⎣ ⎦
. 
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With τL = L/R (Eq. 30-42), L = 0.023 H and ε  = 12 V, t = 0.00015 s, and di/dt = 280 A/s, 
we obtain e− t/τL = 0.537.  Taking the natural log and rearranging leads to R = 95.4 Ω. 
 
79. (a) When switch S is just closed, V1 = ε and i1 = ε/R1 = 10 V/5.0 Ω = 2.0 A.  
 
(b) Since now εL = ε, we have i2 = 0. 
 
(c) is = i1 + i2 = 2.0 A + 0 = 2.0 A. 
 
(d) Since VL = ε, V2 = ε – εL = 0. 
 
(e) VL = ε = 10 V. 
 

(f) 2 10 V 2.0 A/s
5.0 H

Ldi V
dt L L

ε
= = = = .  

(g) After a long time, we still have V1 = ε, so i1 = 2.0 A. 
 
(h) Since now VL = 0, i2 = ε/R2 = 10 V/10 Ω = 1.0 A. 
 
(i) is = i1 + i2 = 2.0 A + 1.0 A = 3.0 A. 
 
(j) Since VL = 0, V2 = ε – VL = ε = 10 V. 
 
(k) VL = 0. 
 

(l) 2 0Ldi V
dt L

= = .  

 

80. Using Eq. 30-41: ( )1 ,Lti e
R

τε −= −  where τL = 2.0 ns, we find 

 
1ln 1.0 ns.

1 /Lt
iR

τ
ε

⎛ ⎞= ≈⎜ ⎟−⎝ ⎠
 

 
81. Using Ohm’s law, we relate the induced current to the emf and (the absolute value of) 
Faraday’s law: 

 | | 1 di
R R dt
ε Φ

= = . 

 
As the loop is crossing the boundary between regions 1 and 2 (so that “x” amount of its 
length is in region 2 while “D – x” amount of its length remains in region 1) the flux is 
 
         ΦB = xHB2 + (D – x)HB1= DHB1 + xH(B2 – B1) 
which means  
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dΦB
dt   = 

dx
dtH(B2 – B1) = vH(B2 – B1)  ⇒     i = vH(B2 – B1)/R. 

 
Similar considerations hold (replacing “B1” with 0 and  “B2” with B1) for the loop 
crossing initially from the zero-field region (to the left of Fig. 30-70(a)) into region 1.   
 
(a) In this latter case, appeal to Fig. 30-70(b) leads to  
 
     3.0 × 10− 6 A = (0.40 m/s)(0.015 m) B1 /(0.020 Ω) 
 
which yields B1 = 10 μT. 
 
(b) Lenz’s law considerations lead us to conclude that the direction of the region 1 field is 
out of the page. 
 
(c) Similarly, i = vH(B2 – B1)/R leads to 2 3.3 TB μ= .  
 
(d) The direction of 2B   is out of the page.  
 
82. Faraday’s law (for a single turn, with B changing in time) gives  
 

2( )Bd d BA dB dBA r
dt dt dt dt

ε πΦ
= − = − = − = − . 

 

In this problem, we find  /0 tBdB e
dt

τ

τ
−= − .   Thus, 2 /0 tBr e τε π

τ
−= .  

 
83. Equation 30-41 applies, and the problem requires 
 

iR = L 
di
dt = ε – iR 

 
at some time t (where Eq. 30-39 has been used in that last step).  Thus, we have 2iR = ε, 
or 

 ( )/ /2 2 (1 ) 2 1L Lt tiR e R e
R

τ τεε ε− −⎡ ⎤= = − = −⎢ ⎥⎣ ⎦
 

 
where Eq. 30-42 gives the inductive time constant as τL = L/R.  We note that the emf ε 
cancels out of that final equation, and we are able to rearrange (and take the natural log) 
and solve.  We obtain t = 0.520 ms. 
 
84. In absolute value, Faraday’s law (for a single turn, with B changing in time) gives  
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 2( )Bd d BA dB dBA R
dt dt dt dt

πΦ
= = =  

 
for the magnitude of the induced emf.  Dividing it by R2 then allows us to relate this to 
the slope of the graph in Fig. 30-71(b) [particularly the first part of the graph], which we 
estimate to be 80 μV/m2.  
 

(a) Thus,  
dB1
dt   =  (80 μV/m2)/π   ≈ 25 μT/s . 

 
(b) Similar reasoning for region 2 (corresponding to the slope of the second part of the 
graph in Fig. 30-71(b)) leads to an emf equal to 
 

2 21 2 2
1

dB dB dBr R
dt dt dt

π π⎛ ⎞− +⎜ ⎟
⎝ ⎠

  

 

which means the second slope (which we estimate to be 40 μV/m2) is equal to 2dB
dt

π .  

Therefore,  
dB2
dt   = (40 μV/m2)/π ≈ 13 μT/s. 

 
(c) Considerations of Lenz’s law leads to the conclusion that B2 is increasing. 
 
85. The induced electric field is given by Eq. 30-20: 
 

 .BdE ds
dt
Φ

⋅ = −∫  

 
The electric field lines are circles that are concentric with the cylindrical region. Thus, 
 

2 1(2 ) ( ) .
2

dB dBE r r E r
dt dt

π π= − ⇒ = −  

 
The force on the electron is ,F eE= − so by Newton’s second law, the acceleration is 

/ .a eE m= −  
  
(a) At point a,  

2 3 41 (5.0 10 m)( 10 10 T s) 2.5 10 V/m.
2 2
r dBE

dt
− − −⎛ ⎞= − = − × − × = ×⎜ ⎟

⎝ ⎠
 

 
With the normal taken to be into the page, in the direction of the magnetic field, the 
positive direction for E  is clockwise. Thus, the direction of the electric field at point a is 
to the left, that is 4 ˆ(2.5 10 V/m)i.E −= − ×  The resulting acceleration is 
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19 4

7 2
31

( 1.60 10 C)( 2.5 10 V/m) ˆ ˆi (4.4 10 m/s )i.
(9.11 10 kg)a

eEa
m

− −

−

− − × − ×
= = = ×

×
 

 
The acceleration is to the right.  
 
(b) At point b we have rb = 0, so the acceleration is zero. 
 
(c) The electric field at point c has the same magnitude as the field in a, but with its 
direction reversed. Thus, the acceleration of the electron released at point c is  
 

7 2 ˆ(4.4 10 m s )i .c aa a= − = − ×  
 
86. Because of the decay of current (Eq. 30-45) that occurs after the switches are closed 
on B, the flux will decay according to 
 
 1 2/ /

1 10 2 20,L Lt te eτ τ− −Φ = Φ Φ = Φ  
 
where each time constant is given by Eq. 30-42.  Setting the fluxes equal to each other 
and solving for time leads to 
 

20 10

2 2 1 1

ln( / ) ln(1.50) 81.1 s
( / ) ( / ) (30.0 / 0.0030 H) (25 / 0.0050 H)

t
R L R L

μΦ Φ
= = =

− Ω − Ω
 . 

 
87. (a) The magnitude of the average induced emf is 
 

( )( )2

avg

2.0T 0.20m
0.40V.

0.20s
iB B BAd

dt t t
ε − Φ ΔΦ

= = = = =
Δ

 

 
(b) The average induced current is 
 

i
Ravg
avg V

20 10
A.= =

×
=−

ε 0 40 203

.
Ω

 

 
88. (a)  From Eq. 30-28, we have  
 

 
9 2

3

(150)(50 10  T m ) 3.75 mH
2.00 10 A

NL
i

−

−

Φ × ⋅
= = =

×
. 

 
(b) The answer for L (which should be considered the constant of proportionality in  
Eq. 30-35) does not change; it is still 3.75 mH. 
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(c) The equations of Chapter 28 display a simple proportionality between magnetic field 
and the current that creates it.  Thus, if the current has doubled, so has the field (and 
consequently the flux).  The answer is 2(50) = 100 nWb. 
 
(d) The magnitude of the induced emf is (from Eq. 30-35)  
 

 
max

(0.00375 H)(0.0030 A)(377 rad/s) 0.00424 VdiL
dt

= = . 

 
89. (a) i0 = ε /R = 100 V/10 Ω = 10 A. 
 
(b) ( )( )22 21 1

02 2 2.0H 10A 1.0 10 JBU Li= = = × . 
 
90. We write 0

Lti i e τ−=  and note that i = 10% i0. We solve for t: 
 

t i
i

L
R

i
i

i
iL= F

HG
I
KJ = F

HG
I
KJ =

F
HG

I
KJ =τ ln ln . ln

.
. .0 0 0

0

2 00
0100

154H
3.00

s
Ω

 

 
91. (a) As the switch closes at t = 0, the current being zero in the inductor serves as an 
initial condition for the building-up of current in the circuit. Thus, at t = 0 the current 
through the battery is also zero. 
 
(b) With no current anywhere in the circuit at t = 0, the loop rule requires the emf of the 
inductor εL to cancel that of the battery (ε = 40 V). Thus, the absolute value of Eq. 30-35 
yields 

2bat | | 40 V 8.0 10 A s .
0.050 H

Ldi
dt L

ε
= = = ×  

 
(c) This circuit becomes equivalent to that analyzed in Section 30-9 when we replace the 
parallel set of 20000 Ω resistors with R = 10000 Ω. Now, with τL = L/R = 5 × 10–6 s, we 
have t/τL = 3/5, and we apply Eq. 30-41: 
 

( )3 5 3
bat 1 1.8 10 A.i e

R
ε − −= − ≈ ×  

 
(d) The rate of change of the current is figured from the loop rule (and Eq. 30-35): 
 

bat | | 0 .Li Rε ε− − =  
 
Using the values from part (c), we obtain |εL| ≈ 22 V. Then, 
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2bat | | 22 V 4.4 10 A s .
0.050 H

Ldi
dt L

ε
= = ≈ ×  

 
(e) As t → ∞ , the circuit reaches a steady state condition, so that dibat/dt = 0 and εL = 0. 
The loop rule then leads to 
 

3
bat bat

40 V| | 0   4.0 10 A.
10000Li R iε ε −− − = ⇒ = = ×

Ω
 

 
(f) As t → ∞ , the circuit reaches a steady state condition, dibat/dt = 0. 
 
92. (a) L = Φ/i = 26 × 10–3 Wb/5.5 A = 4.7 × 10–3 H. 
 
(b) We use Eq. 30-41 to solve for t: 
 

( )( )3
32.5A 0.754.7 10 Hln 1 ln 1 ln 1 2.4 10 s.

0.75 6.0VL
iR L iRt

R
τ

ε ε

−
−⎡ ⎤Ω×⎛ ⎞ ⎛ ⎞= − − = − − = − − = ×⎢ ⎥⎜ ⎟ ⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠ ⎣ ⎦

 

 

93. The energy stored when the current is i is 21
2BU Li= , where L is the self-inductance.  

The rate at which this is developed is  
 

BdU diLi
dt dt

=  

 
where i is given by Eq. 30-41 and /di dt  is obtained by taking the derivative of that 
equation (or by using Eq. 30-37).  Thus, using the symbol V to stand for the battery 
voltage (12.0 volts) and R for the resistance (20.0 Ω), we have, at 1.61 ,Lt τ=  
 

( ) ( )
2 2

/ / 1.61 1.61(12.0 V)1 1 1.15 W
20.0

L Lt tBdU V e e e e
dt R

τ τ− − − −= − = − =
Ω

. 

 
94. (a) The self-inductance per meter is 
 

( )( ) ( )( )2 22
0 4 H m 100 turns cm 1.6cm 0.10H m.L n Aμ π−7= = π×10 =  

 
(b) The induced emf per meter is 
 

ε
= = =

L di
dt

010 13 13. . .H m A s V mb gb g  
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95. (a) As the switch closes at t = 0, the current being zero in the inductors serves as an 
initial condition for the building-up of current in the circuit. Thus, the current through any 
element of this circuit is also zero at that instant. Consequently, the loop rule requires the 
emf (εL1) of the L1 = 0.30 H inductor to cancel that of the battery. We now apply (the 
absolute value of) Eq. 30-35 
 

di
dt L

L= = =
ε 1

1

6 0
0 30

20.
.

.A s  

 
(b) What is being asked for is essentially the current in the battery when the emfs of the 
inductors vanish (as t → ∞ ). Applying the loop rule to the outer loop, with R1 = 8.0 Ω, 
we have 

1 1 2
1

6.0V0 0.75A.L Li R i
R

ε ε ε− − − = ⇒ = =  

 
96. Since 2 ,A =  we have / 2 /dA dt d dt= . Thus, Faraday's law, with N = 1, becomes  
 

( ) 2Bd d BA dA dB B
dt dt dt dt

ε Φ
= − = − = − = −  

 
which yields ε = 0.0029 V. 
 
97. The self-inductance and resistance of the coil may be treated as a "pure" inductor in 
series with a "pure" resistor, in which case the situation described in the problem may be 
addressed by using Eq. 30-41.  The derivative of that solution is 
 

/ / /(1 )L L Lt t t

L

di d e e e
dt dt R R L

τ τ τε ε ε
τ

− − −⎡ ⎤= − = =⎢ ⎥⎣ ⎦
 

 
With τL = 0.28 ms (by Eq. 30-42), L = 0.050 H, and ε = 45 V, we obtain di/dt = 12 A/s 
when t = 1.2 ms. 
 
98. (a)  From Eq. 30-35, we find L = (3.00 mV)/(5.00 A/s) = 0.600 mH. 
 
(b) Since NΦ = iL (where Φ = 40.0 μWb and i = 8.00 A), we obtain N = 120. 
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Chapter 31 
 
 
1. (a) All the energy in the circuit resides in the capacitor when it has its maximum 
charge. The current is then zero. If Q is the maximum charge on the capacitor, then the 
total energy is 

U Q
C

= =
×

×
= ×

−

−
−

2 6 2

6
6

2
2 90 10

2 3 60 10
117 10

.

.
.

C

F
J.

c h
c h  

 
(b) When the capacitor is fully discharged, the current is a maximum and all the energy 
resides in the inductor. If I is the maximum current, then U = LI2/2 leads to 
 

I U
L

= =
×

×
= ×

−

−
−2 2 1168 10

75 10
558 10

6

3
3

.
.

J
H

A.
c h

 

 
2. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to 
refer also to Fig. 31-1. The values of t when plate A will again have maximum positive 
charge are multiples of the period: 
 

t nT n
f

n nA = = =
×

=
2 00 10

5003.
. ,

Hz
sμb g  

 
where n = 1, 2, 3, 4, … . The earliest time is (n = 1) 5.00 s.At μ=  
 
(b) We note that it takes t T= 1

2  for the charge on the other plate to reach its maximum 
positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A 
acquires its most negative charge. From that time onward, this situation will repeat once 
every period. Consequently, 
 

( ) ( ) ( )
( ) ( )( )3

2 1 2 11 1( 1) 2 1 2 1 2.50 s ,
2 2 2 2 2 10 Hz

n n
t T n T n T n

f
μ

− −
= + − = − = = = −

×
 

 
where n = 1, 2, 3, 4, … . The earliest time is (n = 1) 2.50 s.t μ=  
 
(c) At t T= 1

4 , the current and the magnetic field in the inductor reach maximum values 
for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every half-
period (compare steps c and g in Fig. 31-1). Therefore, 
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( ) ( )( )( 1) 2 1 2 1 1.25 s ,
4 2 4L
T n T Tt n n μ−

= + = − = −  

 
where n = 1, 2, 3, 4, … . The earliest time is (n = 1) 1.25 s.t μ=  
 
3. (a) The period is T = 4(1.50 μs) = 6.00 μs. 
 

(b) The frequency is the reciprocal of the period: f
T

= = = ×
1 1

6 00
167 105

.
.

μs
Hz. 

 
(c) The magnetic energy does not depend on the direction of the current (since UB ∝ i2), 
so this will occur after one-half of a period, or 3.00 μs. 
 
4. We find the capacitance from U Q C= 1

2
2 : 

 

C Q
U

= =
×

×
= ×

−

−
−

2 6 2

6
9

2
160 10

2 140 10
9 14 10

.
.

C

J
F.

c h
c h  

 
5. According to U LI Q C= =1

2
2 1

2
2 ,  the current amplitude is 

 

I Q
LC

= =
×

× ×
= ×

−

− −

−300 10

4 00 10
4 52 10

6

3 6

2.

.
.C

1.10 10 H F
A.

c hc h
 

 
6. (a) The angular frequency is 
 

ω = = =
×

=
−

k
m

F x
m

8 0
0 50

89
13

.
.

.N
2.0 10 m kg

rad sc hb g  

 
(b) The period is 1/f and f = ω/2π. Therefore, 
 

T = = = × −2 2 7 0 10 2π π
89ω rad s

s..  

(c) From ω = (LC)–1/2, we obtain 
 

C
L

= = = × −1 1
89 50

2 5 102 2
5

ω rad s H
F.b g b g.

.  

 
7. Table 31-1 provides a comparison of energies in the two systems. From the table, we 
see the following correspondences: 
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2

2 2 2

1, , , ,

1 1 1, .
2 2 2 2

dx dqx q k m L v i
C dt dt
qkx mv Li
C

↔ ↔ ↔ = ↔ =

↔ ↔
 

 
(a) The mass m corresponds to the inductance, so m = 1.25 kg. 
 
(b) The spring constant k corresponds to the reciprocal of the capacitance. Since the total 
energy is given by U = Q2/2C, where Q is the maximum charge on the capacitor and C is 
the capacitance, 

C Q
U

= =
×

×
= ×

−

−
−

2 6 2

6
3

2
175 10

2 5 70 10
2 69 10

C

J
F

c h
c h.

.  

and 

k =
×

=−

1
2 69 10

3723. m / N
N / m. 

 
(c) The maximum displacement corresponds to the maximum charge, so 

4
max 1.75 10  m.x −= ×  

 
(d) The maximum speed vmax corresponds to the maximum current. The maximum 
current is 

I Q Q
LC

= = =
×

×
= ×

−

−

−ω 175 10

125 2 69 10
302 10

6

3

3C

H
A.

. . F
.

b gc h
 

 
Consequently, vmax = 3.02 × 10–3 m/s. 
 
8. We apply the loop rule to the entire circuit: 
 

( )1 1 1total j j jL C R L C R j j
j j j

di q di qL iR L iR
dt C dt C

ε ε ε ε ε ε ε
⎛ ⎞

= + + + = + + = + + = + +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑"  

with 
1 1, ,j j

j j jj

L L R R
C C

= = =∑ ∑ ∑  

 
and we require εtotal = 0. This is equivalent to the simple LRC circuit shown in Fig. 31-
26(b). 
 
9. The time required is t = T/4, where the period is given by 2 / 2 .T LCπ ω π= =  
Consequently, 
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( )( )6
4

2 0.050H 4.0 10 F2 7.0 10 s.
4 4 4
T LCt

ππ
−

−
×

= = = = ×  

 

10. We find the inductance from ( ) 1
/ 2 2 .f LCω π π

−
= =  

 

( ) ( )
5

22 2 2 3 6

1 1 3.8 10 H.
4 4 10 10 Hz 6.7 10 F

L
f Cπ π

−

−
= = = ×

× ×
 

 
11. (a) Since the frequency of oscillation f is related to the inductance L and capacitance 
C by f LC= 1 2/ ,π  the smaller value of C gives the larger value of f. Consequently,  

max min min max1/ 2 , 1/ 2 ,f LC f LCπ π= =  and 
 

maxmax

min min

365pF
6.0.

10pF
Cf

f C
= = =  

 
(b) An additional capacitance C is chosen so the ratio of the frequencies is 
 

r = =
160
054

2 96.
.

. .MHz
MHz

 

 
Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds 
to that of the tuning capacitor. If C is in picofarads (pF), then 
 

C
C

+

+
=

365
10

2 96
pF

pF
. .  

The solution for C is 

C =
−

−
=

365 2 96 10
2 96 1

36
2

2

pF pF
pF.b g b g b g

b g
.

.
 

 
(c) We solve f LC= 1 2/ π  for L. For the minimum frequency, C = 365 pF + 36 pF = 
401 pF and f = 0.54 MHz. Thus 
 

( ) ( ) ( )( )
4

2 222 12 6

1 1 2.2 10 H.
2 2 401 10 F 0.54 10 Hz

L
Cfπ π

−

−
= = = ×

× ×
 

 
12. (a) Since the percentage of energy stored in the electric field of the capacitor is  
(1 75.0%) 25.0%− = , then 
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U
U

q C
Q C

E = =
2

2

2
2

25 0%/
/

.  

 
which leads to / 0.250 0.500.q Q = =  
 
(b) From 

U
U

Li
LI

B = =
2

2

2
2

750%,/
/

.  

 
we find / 0.750 0.866.i I = =  
 
13. (a) The charge (as a function of time) is given by sinq Q tω= , where Q is the 
maximum charge on the capacitor and ω is the angular frequency of oscillation. A sine 
function was chosen so that q = 0 at time t = 0. The current (as a function of time) is 
 

i dq
dt

Q t= = ω ωcos ,  

 
and at t = 0, it is I = ωQ. Since ω = 1/ ,LC  
 

Q I LC= = × × = ×− − −2 00 3 00 10 2 70 10 180 103 6 4. . . .A H F C.b g c hc h  

 
(b) The energy stored in the capacitor is given by 
 

U q
C

Q t
CE = =

2 2 2

2 2
sin ω  

and its rate of change is 
dU
dt

Q t t
C

E =
2ω ω ωsin cos  

 
We use the trigonometric identity cos sin sinω ω ωt t t= 1

2 2b g  to write this as 
 

dU
dt

Q
C

tE =
ω ω

2

2
2sin .b g  

 
The greatest rate of change occurs when sin(2ωt) = 1 or 2ωt = π/2 rad. This means 
 

( )( )3 6 53.00 10 H 2.70 10 F 7.07 10 s.
4 4

t LCπ π π
ω

− − −= = = × × = ×
4

 

 
(c) Substituting ω = 2π/T and sin(2ωt) = 1 into dUE/dt = (ωQ2/2C) sin(2ωt), we obtain  
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2 2

max

2 .
2

EdU Q Q
dt TC TC

π π⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

 
Now T LC= = × × = ×− − −2 2 3 00 10 2 70 10 5 655 103 6 4π π . . .H F s,c hc h  so 

 

( )
( )( )

24

4 6
max

1.80 10 C
66.7 W.

5.655 10 s 2.70 10 F
EdU

dt
π −

− −

×⎛ ⎞ = =⎜ ⎟ × ×⎝ ⎠
 

 
We note that this is a positive result, indicating that the energy in the capacitor is indeed 
increasing at t = T/8. 
 
14. The capacitors C1 and C2 can be used in four different ways: (1) C1 only; (2) C2 only; 
(3) C1 and C2 in parallel; and (4) C1 and C2 in series.  
 
(a) The smallest oscillation frequency is 
 

( ) ( )( )
2

3 2 6 6
1 2

1 1 6.0 10 Hz
2 2 1.0 10 H 2.0 10 F 5.0 10 F

f
L C Cπ π − − −

= = = ×
+ × × + ×

. 

 
(b) The second smallest oscillation frequency is 
 

 
( )( )

2
1 2 6

1

1 1 7.1 10 Hz
2 2 1.0 10 H 5.0 10 F

f
LCπ π − −

= = = ×
× ×

. 

 
(c) The second largest oscillation frequency is 
 

( )( )
3

2 2 6
2

1 1 1.1 10 Hz
2 2 1.0 10 H 2.0 10 F

f
LCπ π − −

= = = ×
× ×

. 

 
(d) The largest oscillation frequency is 

 

( ) ( )( )( )
6 6

3
4 2 6 6

1 2 1 2

1 1 2.0 10 F 5.0 10 F 1.3 10 Hz
2 1.0 10 H 2.0 10 F 5.0 10 F2 /

f
LC C C C ππ

− −

− − −

× + ×
= = = ×

× × ×+
. 

 
15. (a) The maximum charge is Q = CVmax = (1.0 × 10–9 F)(3.0 V) = 3.0 × 10–9 C. 
 
(b) From U LI Q C= =1

2
2 1

2
2 /  we get 
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I Q
LC

= =
×

× ×
= ×

−

− −

−30 10

30 10 10 10
17 10

9

3 9

3.

. .
.C

H F
A.

c hc h
 

 
(c) When the current is at a maximum, the magnetic energy is at a maximum also: 
 

U LIB ,max . . .= = × × = ×− − −1
2

1
2

30 10 17 10 4 5 102 3 3 2 9H A J.c hc h  

 
16. The linear relationship between θ (the knob angle in degrees) and frequency f is 
 

f f f
f

= +
°

F
HG

I
KJ ⇒ = ° −

F
HG
I
KJ0

0

1
180

180 1θ θ  

 
where f0 = 2 × 105 Hz. Since f = ω/2π = 1/2π LC , we are able to solve for C in terms of 
θ : 

( ) ( )2 22 2 2
0

1 81
4 1 /180 400000 180

C
Lfπ θ π θ

= =
+ ° ° +

 

 
with SI units understood. After multiplying by 1012 (to convert to picofarads), this is 
plotted below: 

 
 

17. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular 
frequency of oscillation is ω = 1/ LC . Consequently, 
 

( )( )3 6

1 1 275 Hz.
2 2 2 54.0 10 H 6.20 10 F

f
LC

ω
π π π − −

= = = =
× ×

 

 
(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is 
zero. Thus, the maximum charge on the capacitor is Q = VC = (34.0 V)(6.20 × 10–6 F) = 
2.11 × 10–4 C. The current amplitude is 
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( )( )42 2 275 Hz 2.11 10 C 0.365A.I Q fQω π π −= = = × =  
 
18. (a)  From V = IXC we find ω = I/CV.  The period is then T = 2π/ω = 2πCV/I = 46.1 μs. 
 
(b) The maximum energy stored in the capacitor is  
 

 2 7 2 91 1 (2.20 10 F)(0.250 V) 6.88 10  J
2 2EU CV − −= = × = × . 

 
(c) The maximum energy stored in the inductor is also 2 / 2BU LI= = 6.88 nJ . 
 
(d) We apply Eq. 30-35 as V = L(di/dt)max . We can substitute L = CV2/I2 (combining 
what we found in part (a) with Eq. 31-4) into Eq. 30-35 (as written above) and solve for 
(di/dt)max .  Our result is  
 

 
2 3 2

3
2 2 7

max

(7.50 10 A) 1.02 10 A/s
/ (2.20 10 F)(0.250 V)

di V V I
dt L CV I CV

−

−

×⎛ ⎞ = = = = = ×⎜ ⎟ ×⎝ ⎠
. 

 
(e) The derivative of UB = 12 Li2 leads to  
 

 2 21sin cos sin 2
2

BdU LI t t LI t
dt

ω ω ω ω ω= = . 

 

Therefore, 2 3

max

1 1 1 (7.50 10 A)(0.250 V) 0.938 mW.
2 2 2

BdU LI IV
dt

ω −⎛ ⎞ = = = × =⎜ ⎟
⎝ ⎠

 

 
19. The loop rule, for just two devices in the loop, reduces to the statement that the 
magnitude of the voltage across one of them must equal the magnitude of the voltage 
across the other.  Consider that the capacitor has charge q and a voltage (which we’ll 
consider positive in this discussion) V = q/C.  Consider at this moment that the current in 
the inductor at this moment is directed in such a way that the capacitor charge is 
increasing (so i = +dq/dt). Equation 30-35 then produces a positive result equal to the V 
across the capacitor: V = −L(di/dt), and we interpret the fact that −di/dt > 0 in this 
discussion to mean that d(dq/dt)/dt = d2q/dt2 < 0 represents a “deceleration” of the 
charge-buildup process on the capacitor (since it is approaching its maximum value of 
charge).  In this way we can “check” the signs in Eq. 31-11 (which states q/C = − L 
d2q/dt2) to make sure we have implemented the loop rule correctly. 
 
20. (a) We use U LI Q C= =1

2
2 1

2
2 /  to solve for L: 

 

( )
22 22

6 3max max
3

1 1 1.50V4.00 10 F 3.60 10 H.
50.0 10 A

CV VQL C
C I C I I

− −
−

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = = = × = ×⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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(b) Since f = ω/2π, the frequency is 
 

( )( )
3

3 6

1 1 1.33 10 Hz.
2 2 3.60 10 H 4.00 10 F

f
LCπ π − −

= = = ×
× ×

 

 
(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where 
the period is the reciprocal of the frequency). Consequently, 
 

t T
f

= = =
×

= × −1
4

1
4

1
4 133 10

188 10
3

4

.
.

Hz
s.

e j
 

 
21. (a) We compare this expression for the current with i = I sin(ωt+φ0). Setting (ωt+φ) = 
2500t + 0.680 = π/2, we obtain t = 3.56 × 10–4 s. 
 
(b) Since ω = 2500 rad/s = (LC)–1/2, 
 

L
C

= =
×

= ×
−

−1 1
2500 64 0 10

2 50 102 2 6
3

ω rad / s F
H.b g c h.

.  

 
(c) The energy is 
 

U LI= = × = ×− −1
2

1
2

2 50 10 160 320 102 3 2 3. . .H A J.c hb g  

 
22. For the first circuit ω = (L1C1)–1/2, and for the second one ω = (L2C2)–1/2. When the 
two circuits are connected in series, the new frequency is 
 

( ) ( ) ( ) ( )

( ) ( )

eq eq 1 2 1 2 1 2 1 1 2 2 2 1 1 2

1 1 1 2 1 2

1 1 1
/ /

1 1 ,
/

L C L L C C C C L C C L C C C C

L C C C C C

ω

ω

′ = = =
+ + + +

= =
+ +

 

 
where we use ω − = =1

1 1 2 2L C L C .  
 
23. (a) The total energy U is the sum of the energies in the inductor and capacitor: 
 

( )
( )

( ) ( )2 26 3 32 2
6

6

3.80 10 C 9.20 10 A 25.0 10 H
1.98 10 J.

2 2 22 7.80 10 FE B
q i LU U U
C

− − −
−

−

× × ×
= + = + = + = ×

×
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(b) We solve U = Q2/2C for the maximum charge: 
 

Q CU= = × × = ×− − −2 2 7 80 10 198 10 556 106 6 6. . .F J C.c hc h  

 
(c) From U = I2L/2, we find the maximum current: 
 

I U
L

= =
×

×
= ×

−

−
−2 2 198 10

250 10
126 10

6

3
2

.
.

.
J

H
A.

c h
 

 
(d) If q0 is the charge on the capacitor at time t = 0, then q0 = Q cos φ and 
 

φ =
F
HG
I
KJ =

×
×

F
HG

I
KJ = ± °− −

−

−cos cos .
.

. .1 1
6

6

380 10
556 10

46 9q
Q

C
C

 

 
For φ = +46.9° the charge on the capacitor is decreasing, for φ = –46.9° it is increasing. 
To check this, we calculate the derivative of q with respect to time, evaluated for t = 0. 
We obtain –ωQ sin φ, which we wish to be positive. Since sin(+46.9°) is positive and 
sin(–46.9°) is negative, the correct value for increasing charge is φ = –46.9°. 
 
(e) Now we want the derivative to be negative and sin φ to be positive. Thus, we take 

46.9 .φ = + °  
 
24. The charge q after N cycles is obtained by substituting t = NT = 2πN/ω' into Eq.  
31-25: 
 

( ) ( )
( ) ( )

/ 2 / 2

2 / / 2

/

cos cos 2 /

cos 2

cos .

Rt L RNT L

RN L C L

N R C L

q Qe t Qe N

Qe N

Qe

π

π

ω φ ω π ω φ

π φ

φ

− −

−

−

′ ′ ′⎡ ⎤= + = +⎣ ⎦

= +

=

 

 
We note that the initial charge (setting N = 0 in the above expression) is q0 = Q cos φ, 
where q0 = 6.2 μC is given (with 3 significant figures understood). Consequently, we 
write the above result as ( )0 exp /Nq q N R C Lπ= − . 

 
(a) For N = 5, ( ) ( )( )5 6.2 C exp 5 7.2 0.0000032F/12H 5.85 C.q μ π μ= − Ω =  

 
(b) For N = 10, ( ) ( )( )10 6.2 C exp 10 7.2 0.0000032F/12H 5.52 C.q μ π μ= − Ω =  

 
(c) For N = 100, ( ) ( )( )100 6.2 C exp 100 7.2 0.0000032F/12H 1.93 C.q μ π μ= − Ω =  
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25. Since ω ≈ ω', we may write T = 2π/ω as the period and ω = 1/ LC  as the angular 
frequency. The time required for 50 cycles (with 3 significant figures understood) is 
 

( ) ( )( )( )3 6250 50 50 2 50 2 220 10 H 12.0 10 F

0.5104s.

t T LCπ π π
ω

− −⎛ ⎞= = = = × ×⎜ ⎟
⎝ ⎠

=
 

 
The maximum charge on the capacitor decays according toq Qe Rt L

max
/= − 2  (this is called 

the exponentially decaying amplitude in Section 31-5), where Q is the charge at time t = 0 
(if we take φ = 0 in Eq. 31-25). Dividing by Q and taking the natural logarithm of both 
sides, we obtain 

ln maxq
Q

Rt
L

F
HG
I
KJ = −

2
 

which leads to 
 

( ) ( )
3

3max
2 220 10 H2 ln ln 0.99 8.66 10 .

0.5104s
qLR

t Q

−
−

×⎛ ⎞
= − = − = × Ω⎜ ⎟

⎝ ⎠
 

 
26. The assumption stated at the end of the problem is equivalent to setting φ = 0 in Eq. 
31-25. Since the maximum energy in the capacitor (each cycle) is given by q Cmax /2 2 , 
where qmax is the maximum charge (during a given cycle), then we seek the time for 
which 

2 2
max

max
1 .

2 2 2 2
q Q Qq

C C
= ⇒ =  

 
Now qmax (referred to as the exponentially decaying amplitude in Section 31-5) is related 
to Q (and the other parameters of the circuit) by 
 

q Qe q
Q

Rt
L

Rt L
max

/ maxln .= ⇒
F
HG
I
KJ = −− 2

2
 

Setting q Qmax = / 2 , we solve for t: 
 

t L
R

q
Q

L
R

L
R

= −
F
HG
I
KJ = − F

HG
I
KJ =

2 2 1
2

2ln ln ln .max  

 
The identities ln ( / ) ln ln1 2 2 21

2= − = −  were used to obtain the final form of the 
result. 
 
27. Let t be a time at which the capacitor is fully charged in some cycle and let qmax 1 be 
the charge on the capacitor then. The energy in the capacitor at that time is 
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U t q
C

Q
C

e Rt L( ) max /= = −1
2 2

2 2
 

 
where 

q Qe Rt L
max

/
1

2= −  
 
(see the discussion of the exponentially decaying amplitude in Section 31-5). One period 
later the charge on the fully charged capacitor is  
 

( )2 /
max 2

2where = ,
'

R t T Lq Qe T
ω

− + π
=  

and the energy is 
2 2

( ) /max 2( ) .
2 2

R t T Lq QU t T e
C C

− ++ = =  

 
The fractional loss in energy is 
 

| | ( ) ( )
( )

.
/ ( )/

/
/ΔU

U
U t U t T

U t
e e

e
e

Rt L R t T L

Rt L
RT L=

− +
=

−
= −

− − +

−
−1  

 
Assuming that RT/L is very small compared to 1 (which would be the case if the 
resistance is small), we expand the exponential (see Appendix E). The first few terms are: 
 

e RT
L

R T
L

RT L− ≈ − + +/ .1
2

2 2

2 "  

 
If we approximate ω ≈ ω', then we can write T as 2π/ω. As a result, we obtain 
 

| | 21 1 .U RT RT R
U L L Lω

Δ π⎛ ⎞≈ − − + ≈ =⎜ ⎟
⎝ ⎠

"  

 
28. (a) We use I = ε/Xc = ωdCε: 
 

62 2 Hz)(1.50 10 F)(30.0 V) 0.283 A .d m d mI C f Cω ε π ε π 3 −= = = (1.00×10 × =  
 
(b) I = 2π(8.00 × 103 Hz)(1.50 × 10–6 F)(30.0 V) = 2.26 A. 
 
29. (a) The current amplitude I is given by I = VL/XL, where XL = ωdL = 2πfdL. Since the 
circuit contains only the inductor and a sinusoidal generator, VL = εm. Therefore, 
 

3

30.0V 0.0955A 95.5 mA.
2 2 Hz)(50.0 10 H)

mL

L d

VI
X f L

ε
π π 3 −= = = = =

(1.00×10 ×
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(b) The frequency is now eight times larger than in part (a), so the inductive reactance XL 
is eight times larger and the current is one-eighth as much. The current is now  
 

I = (0.0955 A)/8 = 0.0119 A = 11.9 mA. 
 
30. (a) The current through the resistor is 
 

30.0V 0.600 A .
50.0

mI
R
ε

= = =
Ω

 

 
(b) Regardless of the frequency of the generator, the current is the same, 0.600 A .I =  
 
31. (a) The inductive reactance for angular frequency ωd is given by L dX Lω= , and the 
capacitive reactance is given by XC = 1/ωdC. The two reactances are equal if ωdL = 1/ωdC, 
or 1/d LCω = . The frequency is 
 

2

6

1 1 6.5 10  Hz.
2 2 2 H)(10 10 F)

d
df LC

ω
π π π −3 −

= = = = ×
(6.0×10 ×

 

 
(b) The inductive reactance is  
 

XL = ωdL = 2πfdL = 2π(650 Hz)(6.0 × 10–3 H) = 24 Ω. 
 
The capacitive reactance has the same value at this frequency. 
 
(c) The natural frequency for free LC oscillations is / 2f LCω π π= =1/2 , the same as 
we found in part (a). 
 
32. (a) The circuit consists of one generator across one inductor; therefore, εm = VL. The 
current amplitude is  
 

325.0 V 5.22 10 A .
(377 rad/s)(12.7 H)

m m

L d

I
X L
ε ε

ω
−= = = = ×  

 
(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives εL = 0 
at that instant. Stated another way, since ε(t) and i(t) have a 90° phase difference, then ε(t) 
must be zero when i(t) = I. The fact that φ = 90° = π/2 rad is used in part (c). 
 
(c) Consider Eq. 31-28 with / 2mε ε= − . In order to satisfy this equation, we require 
sin(ωdt) = –1/2. Now we note that the problem states that ε is increasing in magnitude, 
which (since it is already negative) means that it is becoming more negative. Thus, 
differentiating Eq. 31-28 with respect to time (and demanding the result be negative) we 
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must also require cos(ωdt) < 0. These conditions imply that ωt must equal (2nπ – 5π/6) [n 
= integer]. Consequently, Eq. 31-29 yields (for all values of n) 
 

i I n= −F
HG

I
KJ = ×

F
HG
I
KJ = ×− −sin ( . .2 522 10 4 51 103 3π −

5π
6

π
2

A) 3
2

A .  

 
33. (a) The generator emf and the current are given by 
 
 sin( / 4), ( ) sin( 3 / 4).m d di t Iε ε ω π ω π= − = −  
 
The expressions show that the emf is maximum when sin(ωdt – π/4) = 1 or  
 

ωdt – π/4 = (π/2) ± 2nπ   [n = integer]. 
 
The first time this occurs after t = 0 is when ωdt – π/4 = π/2 (that is, n = 0). Therefore, 
 

33 3 6.73 10 s .
 rad/s)d

t π π
ω

−= = = ×
4 4(350

 

 
(b) The current is maximum when sin(ωdt – 3π/4) = 1, or  
 

ωdt – 3π/4 = (π/2) ± 2nπ   [n = integer]. 
 
The first time this occurs after t = 0 is when ωdt – 3π/4 = π/2 (as in part (a), n = 0). 
Therefore, 

25 5 1.12 10 s .
 rad/s)d

t π π
ω

−= = = ×
4 4(350

 

 
(c) The current lags the emf by / 2π+  rad, so the circuit element must be an inductor. 
 
(d) The current amplitude I is related to the voltage amplitude VL by VL = IXL, where XL is 
the inductive reactance, given by XL = ωdL. Furthermore, since there is only one element 
in the circuit, the amplitude of the potential difference across the element must be the 
same as the amplitude of the generator emf: VL = εm. Thus, εm = IωdL and 
 

L
I

m

d

= =
×

=−

ε
ω

30 0 0138. .V
(620 10 A)(350 rad / s)

H.3  

 
Note: The current in the circuit can be rewritten as 
 

3( ) sin sin
4 4d di t I Iπ πω ω φ⎛ ⎞ ⎛ ⎞= − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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where / 2.φ π= +  In a purely inductive circuit, the current lags the voltage by 90 .°  
 
34. (a) The circuit consists of one generator across one capacitor; therefore, εm = VC. 
Consequently, the current amplitude is 
 

I
X

Cm

C
m= = = × = ×− −ε ω ε (377 rad / s)(4.15 10 F)(25.0 V) 3.91 10 A .6 2  

 
(b) When the current is at a maximum, the charge on the capacitor is changing at its 
largest rate. This happens not when it is fully charged (±qmax), but rather as it passes 
through the (momentary) states of being uncharged (q = 0). Since q = CV, then the 
voltage across the capacitor (and at the generator, by the loop rule) is zero when the 
current is at a maximum. Stated more precisely, the time-dependent emf ε(t) and current 
i(t) have a φ = –90° phase relation, implying ε(t) = 0 when i(t) = I. The fact that φ = –90° 
= –π/2 rad is used in part (c). 
 
(c) Consider Eq. 32-28 with ε ε= − 1

2 m . In order to satisfy this equation, we require 
sin(ωdt) = –1/2. Now we note that the problem states that ε is increasing in magnitude, 
which (since it is already negative) means that it is becoming more negative. Thus, 
differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we 
must also require cos(ωdt) < 0. These conditions imply that ωt must equal (2nπ – 5π/6) [n 
= integer]. Consequently, Eq. 31-29 yields (for all values of n) 
 

3 23sin 2 (3.91 10 A) 3.38 10 A,
2

i I n π ππ − −⎛ ⎞5⎛ ⎞= − + = × − = − ×⎜ ⎟⎜ ⎟ ⎜ ⎟6 2⎝ ⎠ ⎝ ⎠
 

 
or 2| | 3.38 10 A.i −= ×  
 
35. The resistance of the coil is related to the reactances and the phase constant by Eq. 
31-65. Thus, 
 

X X
R

L C
R

L C d d−
=

−
=

ω ω φ1/ tan ,  

which we solve for R: 
 

2
6

1 1 1 1(2 Hz(8.8 10 H)
tan tan 75 (2 Hz)(0.94 10 F
89 .

d
d

R L
C

ω
φ ω

−
−

⎛ ⎞ ⎡ ⎤
= − = π)(930 × −⎜ ⎟ ⎢ ⎥° π)(930 ×⎣ ⎦⎝ ⎠
= Ω

 

 
36. (a) The circuit has a resistor and a capacitor (but no inductor).  Since the capacitive 
reactance decreases with frequency, then the asymptotic value of Z must be the resistance: 
R = 500 Ω. 
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(b) We describe three methods here (each using information from different points on the 
graph):   
 
method 1: At ωd = 50 rad/s, we have Z ≈ 700 Ω, which gives C = (ωd Z2 - R2 )−1 = 41 μF. 
 
method 2: At ωd = 50 rad/s, we have XC  ≈ 500 Ω, which gives C = (ωd XC)−1 = 40 μF. 
 
method 3: At ωd = 250 rad/s, we have XC  ≈ 100 Ω, which gives C = (ωd XC)−1 = 40 μF. 
 
37. The rms current in the motor is  
 

( ) ( )
rms rms

rms 2 2 2 2

420V 7.61A.
45.0 32.0L

I
Z R X

ε ε
= = = =

+ Ω + Ω
 

 
38. (a) The graph shows that the resonance angular frequency is 25000 rad/s, which 
means (using Eq. 31-4)  
 

C = (ω2L)−1 = [(25000)2 ×200 × 10−6]−1 = 8.0 μF. 
 
(b) The graph also shows that the current amplitude at resonance is 4.0 A, but at 
resonance the impedance Z becomes purely resistive (Z = R) so that we can divide the 
emf amplitude by the current amplitude at resonance to find R: 8.0/4.0 = 2.0 Ω. 
 
39. (a) Now XL = 0, while R = 200 Ω and XC = 1/2πfdC = 177 Ω.  Therefore, the 
impedance is  
 2 2 2 2(200 ) (177 ) 267 .CZ R X= + = Ω + Ω = Ω  
 
(b) The phase angle is 

 1 1 0 177tan tan 41.5
200

L CX X
R

φ − − ⎛ ⎞− − Ω⎛ ⎞= = = − °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠
 

 
 (c) The current amplitude is  

36.0 V 0.135 A .
267

mI
Z
ε

= = =
Ω

 

 
(d) We first find the voltage amplitudes across the circuit elements: 
 

(0.135A)(200 ) 27.0V
(0.135A)(177 ) 23.9V

R

C C

V IR
V IX

= = Ω ≈
= = Ω ≈

 

 
The circuit is capacitive, so I leads ε m . The phasor diagram is drawn to scale next. 
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40. A phasor diagram very much like Fig. 31-11(d) leads to the condition: 
 

VL – VC = (6.00 V)sin(30º) = 3.00 V. 
 
With the magnitude of the capacitor voltage at 5.00 V, this gives a inductor voltage 
magnitude equal to 8.00 V. Since the capacitor and inductor voltage phasors are 180° out 
of phase, the potential difference across the inductor is 8.00 V− . 
 
41. (a) The capacitive reactance is 
 

6

1 1 1 37.9 .
2 2 z)(70.0 10 F)C

d d

X
C f Cω π π −= = = = Ω

(60.0 Η ×
 

 
The inductive reactance 86.7 Ω is unchanged. The new impedance is 
 

2 2 2 2( ) (200 ) (37.9 86.7 ) 206 .L CZ R X X= + − = Ω + Ω − Ω = Ω  
 
(b) The phase angle is 
 

1 1 86.7 37.9tan tan 13.7 .
200

L CX X
R

φ − − ⎛ ⎞− Ω − Ω⎛ ⎞= = = °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠
 

 
(c) The current amplitude is 

36.0 V 0.175A.
206

mI
Z
ε

= = =
Ω

 

 
(d) We first find the voltage amplitudes across the circuit elements: 
 

(0.175 A)(200 ) 35.0 V
(0.175 A)(86.7 ) 15.2 V
(0.175 A)(37.9 ) 6.62V

R

L L

C C

V IR
V IX
V IX

= = Ω =
= = Ω =
= = Ω =
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Note that X XL C> , so that ε m  leads I. The phasor diagram is drawn to scale below. 
 

 
 
42. (a) Since Z = R2 + XL

2  and  XL = ωd L, then as ωd → 0 we find Z → R = 40 Ω. 
 
(b) L  =  XL /ωd  = slope = 60 mH. 
 
43. (a) Now XC = 0, while R = 200 Ω and  
 

XL = ωL = 2πfdL = 86.7 Ω 
 
both remain unchanged. Therefore, the impedance is  
 

2 2 2 2(200 ) (86.7 ) 218 .LZ R X= + = Ω + Ω = Ω  
 
(b) The phase angle is, from Eq. 31-65, 
 

1 1 86.7 0tan tan 23.4 .
200

L CX X
R

φ − − ⎛ ⎞− Ω −⎛ ⎞= = = °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠
 

 
(c) The current amplitude is now found to be  
 

36.0 V 0.165 A .
218

mI
Z
ε

= = =
Ω

 

 
(d) We first find the voltage amplitudes across the circuit elements: 
 

(0.165 A)(200 ) 33V
(0.165A)(86.7 ) 14.3V.

R

L L

V IR
V IX

= = Ω ≈
= = Ω ≈

 

 
This is an inductive circuit, so εm leads I. The phasor diagram is drawn to scale next. 
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44. (a) The capacitive reactance is 
 

6

1 1 16.6 .
2 2  Hz)(24.0 10 F)CX

fCπ π −= = = Ω
(400 ×

 

 
(b) The impedance is 
 

2 2 2 2

2 3 2

( ) (2 )

(220 ) [2 Hz)(150 10 H) 16.6 ] 422 .

L C CZ R X X R fL Xπ

π −

= + − = + −

= Ω + (400 × − Ω = Ω
 

 
(c) The current amplitude is 
 

I
Z

m= = =
ε 220 0521V

422
A .

Ω
.  

 
(d) Now X CC ∝ −

eq
1 . Thus, XC increases as Ceq decreases. 

 
(e) Now Ceq = C/2, and the new impedance is 
 

2 3 2(220 ) [2 Hz)(150 10 H) 2(16.6 )] 408 422 .Z −= Ω + π(400 × − Ω = Ω < Ω  
 
Therefore, the impedance decreases. 
 
(f) Since I Z∝ −1 , it increases. 
 
45. (a) Yes, the voltage amplitude across the inductor can be much larger than the 
amplitude of the generator emf. 
 
(b) The amplitude of the voltage across the inductor in an RLC series circuit is given by 
V IX I LL L d= = ω . At resonance, the driving angular frequency equals the natural angular 
frequency: ω ωd LC= = 1/ . For the given circuit 
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6

1.0 H 1000 .
(1.0 H)(1.0 10 F)

L
LX
LC −

= = = Ω
×

 

 
At resonance the capacitive reactance has this same value, and the impedance reduces 
simply: Z = R. Consequently, 
 

resonance

10 V 1.0 A .
10

m mI
Z R
ε ε

= = = =
Ω

 

 
The voltage amplitude across the inductor is therefore 
 

3(1.0A)(1000 ) 1.0 10 VL LV IX= = Ω = ×  
 
which is much larger than the amplitude of the generator emf. 
 
46. (a) A sketch of the phasors would be very much like Fig. 31-9(c) but with the label 
“IC” on the green arrow replaced with “VR.”   
 
(b) We have I R = I XC, or 

I R = I XC  →    R =  
1

 ωd C
  

 

which yields  5

1 1 159 Hz
2 2 2 (50.0 )(2.00 10 F)

df
RC

ω
π π π −= = = =

Ω ×
.  

 
(c) φ = tan−1(−VC /VR) = – 45°. 
 
(d) ωd = 1/RC =1.00 ×103 rad/s. 
 
(e) I = (12 V)/ R2 + XC

2  =  6/(25 2) ≈170 mA. 
 
47. (a) For a given amplitude εm of the generator emf, the current amplitude is given by 
 

2 2
.

( 1/ )
m m

d d

I
Z R L C
ε ε

ω ω
= =

+ −
 

 
We find the maximum by setting the derivative with respect to ω d  equal to zero: 
 

dI
d

E R L C L
C

L
Cd

m d d d
d dω

ω ω ω
ω ω

= − + − −
L
NM

O
QP +
L
NM

O
QP

−( ) [ ( / ) ] ./2 2 3 2
21 1 1  
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The only factor that can equal zero is ω ωd dL C− ( / )1 ; it does so for ω ωd LC= =1/ . 
For this, 

ω d LC
= =

×
=

−

1 1
100

224
( .  H)(20.0 10 F)

 rad / s .
6

 

 
(b) When ω ωd = , the impedance is Z = R, and the current amplitude is 
 

30.0 V 6.00 A .
5.00

mI
R
ε

= = =
Ω

 

 
(c) We want to find the (positive) values of ω d  for which / 2 :mI Rε=  
 

2 2
.

2( 1/ )
m m

d d
RR L C

ε ε

ω ω
=

+ −
 

 
This may be rearranged to yield 

ω
ωd

d

L
C

R−
F
HG

I
KJ =

1 3
2

2 . 

 
Taking the square root of both sides (acknowledging the two ± roots) and multiplying by 
ω dC , we obtain 

ω ωd dLC CR2 3 1 0( ) .± − =d i  

 
Using the quadratic formula, we find the smallest positive solution 
 

2 2 6

2 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )
2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)
2(1.00 H)(20.0 10 F)

219 rad/s .

CR C R LC
LC

ω
−

−

− −

−

− + + − × Ω
= =

×

× Ω + ×
+

×
=

 

 
(d) The largest positive solution 
 

2 2 6

1 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )
2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)
2(1.00 H)(20.0 10 F)

228 rad/s .

CR C R LC
LC

ω
−

−

− −

−

+ + + + × Ω
= =

×

× Ω + ×
+

×
=
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(e) The fractional width is 
 

1 2

0

228rad/s 219rad/s 0.040.
224 rad/s

ω ω
ω
− −

= =  

 
Note: The current amplitude as a function of dω  is plotted below.  
 

  
 
We see that I is a maximum at 224 rad/s,dω ω= =  and is at half maximum (3 A) at 219 
rad/s and 228 rad/s. 
 
48. (a) With both switches closed (which effectively removes the resistor from the 
circuit), the impedance is just equal to the (net) reactance and is equal to  
 

Xnet = (12 V)/(0.447 A) = 26.85 Ω. 
 
With switch 1 closed but switch 2 open, we have the same (net) reactance as just 
discussed, but now the resistor is part of the circuit; using Eq. 31-65 we find 
 

 net 26.85 100
tan tan15
XR

φ
Ω

= = = Ω
°

. 

 
(b) For the first situation described in the problem (both switches open) we can reverse 
our reasoning of part (a) and find   
 

Xnet first = tanR φ′ = (100 Ω) tan(–30.9º) = –59.96 Ω. 
 
We observe that the effect of switch 1 implies  
 

XC = Xnet – Xnet first = 26.85 Ω – (–59.96 Ω) = 86.81 Ω. 
 
Then Eq. 31-39 leads to C = 1/ωXC  = 30.6 μF. 
 
(c) Since Xnet = XL  – XC , then we find L = XL/ω = 301 mH . 
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49. (a) Since Leq = L1 + L2 and Ceq = C1 + C2 + C3 for the circuit, the resonant frequency 
is 

       

( )( )

( )( )

eq eq 1 2 1 2 3

3 3 6 6 6

1 1
2 2

1

2 1.70 10 H 2.30 10 H 4.00 10 F 2.50 10 F 3.50 10 F

796 Hz.

L C L L C C C
ω

π π

π − − − − −

= =
+ + +

=
× + × × + × + ×

=

 

 
(b) The resonant frequency does not depend on R so it will not change as R increases. 
 
(c) Since ω ∝ (L1 + L2)–1/2, it will decrease as L1 increases. 
 
(d) Since ω ∝ −Ceq

1/2  and Ceq decreases as C3 is removed, ω will increase. 
 
50. (a) A sketch of the phasors would be very much like Fig. 31-10(c) but with the label 
“IL” on the green arrow replaced with “VR.” 
 
(b) We have VR = VL, which implies 
 

I R = I XL   →    R  = ωd L 
 
which yields  f = ωd/2π = R/2πL = 318 Hz. 
 
(c) φ = tan−1(VL /VR) = +45°. 
 
(d) ωd = R/L = 2.00×103 rad/s. 
 
(e) I = (6 V)/ R2 + XL

2  = 3/(40 2) ≈ 53.0 mA. 
 
51. We use the expressions found in Problem 31-47: 
 

2 2 2 2

1 2
3 3 4 3 3 4,

2 2
CR C R LC CR C R LC

LC LC
ω ω+ + + − + +

= =  . 

 
We also use Eq. 31-4. Thus, 
 

Δω
ω

ω ω
ω

d CR LC
LC

R C
L

=
−

= =1 2 2 3
2

3 .  

 
For the data of Problem 31-47, 
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Δ
Ω

ω
ω

d =
×

= ×
−

−5 00
3 20 0 10

100
387 10

6
2.

.
.

. .b g c hF
H

 

 
This is in agreement with the result of Problem 31-47. The method of Problem 31-47, 
however, gives only one significant figure since two numbers close in value are 
subtracted (ω1 – ω2). Here the subtraction is done algebraically, and three significant 
figures are obtained. 
 
52. Since the impedance of the voltmeter is large, it will not affect the impedance of the 
circuit when connected in parallel with the circuit. So the reading will be 100 V in all 
three cases. 
 
53. (a) Using Eq. 31-61, the impedance is 
 

( ) ( )2 22 2( ) 12.0 1.30 0 12.1 .L CZ R X X= + − = Ω + Ω − = Ω  
 
(b) The average rate at which energy has been supplied is 
 

( ) ( )
( )

22
3 3rms

avg 22

120V 12.0
1.186 10 W 1.19 10 W.

12.07
RP

Z
ε Ω

= = = × ≈ ×
Ω

 

 
54. The amplitude (peak) value is 
 

V Vmax = = =2 2 100 141rms V V.b g  
 
55. The average power dissipated in resistance R when the current is alternating is given 
by P I Ravg rms

2= ,  where Irms is the root-mean-square current. Since I Irms = / 2 , where I is 
the current amplitude, this can be written Pavg = I2R/2. The power dissipated in the same 
resistor when the current id is direct is given by P i Rd= 2 .  Setting the two powers equal to 
each other and solving, we obtain 
 

i I
d = = =

2
2 60 184. .A

2
A.  

 
56. (a) The power consumed by the light bulb is P = I2R/2. So we must let Pmax/Pmin = 
(I/Imin)2 = 5, or 

I
I

Z
Z

Z
Z

R L
R

m

mmin

min

max

max

min

max/
/

.
F
HG
I
KJ =
F
HG

I
KJ =
F
HG
I
KJ =

+F
H
GG

I
K
JJ =

2 2 2 2 2
2

5ε
ε

ωb g
 

 
We solve for Lmax: 
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   L R
max

/
.

.= = = × −2 2 120 1000
2 60 0

7 64 10
2

2

ω
V W

Hz
H.b g

b gπ
 

 
(b) Yes, one could use a variable resistor. 
 
(c) Now we must let 

R R
R

max ,+F
HG

I
KJ =bulb

bulb

2

5  

or 

R Rmax . .= − = − =5 1 5 1
120
1000

17 8
2

d i d i b g
bulb

V
W

Ω  

 
(d) This is not done because the resistors would consume, rather than temporarily store, 
electromagnetic energy. 
 
57. We shall use 

( )

2 2

avg 2 22
.

2 2 1/
m m

d d

R RP
Z R L C

ε ε

ω ω
= =

⎡ ⎤+ −⎣ ⎦

 

 

where Z R L Cd d= + −2 21ω ω/b g  is the impedance.  
 
(a) Considered as a function of C, Pavg has its largest value when the factor 

( )22 1/d dR L Cω ω+ −  has the smallest possible value. This occurs for 1/ ,d dL Cω ω=  or 
 

C
Ld

= =
×

= ×
−

−1 1
2 60 0 60 0 10

117 102 2 2 3
4

ω πb g b g c h. .
.

Hz H
F.  

 
The circuit is then at resonance. 
 
(b) In this case, we want Z2 to be as large as possible. The impedance becomes large 
without bound as C becomes very small. Thus, the smallest average power occurs for C = 
0 (which is not very different from a simple open switch). 
 
(c) When ωdL = 1/ωdC, the expression for the average power becomes 
 

2

avg ,
2

mP
R

ε
=  

 
so the maximum average power is in the resonant case and is equal to 
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( )
( )

2

avg

30.0V
90.0 W.

2 5.00
P = =

Ω
 

 
(d) At maximum power, the reactances are equal: XL = XC. The phase angle φ in this case 
may be found from 

tan ,φ =
−

=
X X

R
L C 0  

which implies φ = 0° .  
 
(e) At maximum power, the power factor is cos φ = cos 0° = 1.  
 
(f) The minimum average power is Pavg = 0 (as it would be for an open switch). 
 
(g) On the other hand, at minimum power XC ∝ 1/C is infinite, which leads us to set 
tanφ = −∞ . In this case, we conclude that φ = –90°. 
 
(h) At minimum power, the power factor is cos φ = cos(–90°) = 0. 
 
58. This circuit contains no reactances, so εrms = IrmsRtotal. Using Eq. 31-71, we find the 
average dissipated power in resistor R is 
 

P I R
r R

RR
m= =

+
F
HG
I
KJrms

2 ε 2

.  

 
In order to maximize PR we set the derivative equal to zero: 
 

( ) ( )
( )

( )
( )

22 2

4 3

2
0

m mR
r R r R R r RdP R r

dR r R r R

ε ε⎡ ⎤+ − + −⎣ ⎦= = = ⇒ =
+ +

 

 
59. (a) The rms current is 
 

( )

( ) ( )( ) ( )( ){ }

rms rms
rms 22

22

2 1/ 2

75.0V

15.0 2 550Hz 25.0mH 1/ 2 550Hz 4.70 F

2.59A.

I
Z R fL fC

ε ε

π π

π π μ

= =
+ −

=
Ω + − ⎡ ⎤⎣ ⎦

=

 

 
(b) The rms voltage across R is  
 
 ( )( )rms 2.59 A 15.0 38.8VabV I R= = Ω = . 
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(c) The rms voltage across C is  
 

 
( )( )

rms
rms

2.59A 159 V
2 2 550 Hz 4.70 Fbc C

IV I X
fCπ π μ

= = = = . 

 
(d) The rms voltage across L is  
 
 ( )( )( )rms rms2 2 2.59A 550 Hz 25.0mH 224 Vcd LV I X I fL= = π = π = . 
 
(e) The rms voltage across C and L together is  
 
 159.5V 223.7 V 64.2Vbd bc cdV V V= − = − = . 
 
(f) The rms voltage across R, C, and L together is 
 

( ) ( )2 22 2 38.8V 64.2 V 75.0 Vad ab bdV V V= + = + = . 
 

(g) For the resistor R, the power dissipated is ( )22 38.8V
100 W.

15.0
ab

R
VP
R

= = =
Ω

 

(h) No energy dissipation in C. 
 
(i) No energy dissipation in L. 
 
60. The current in the circuit satisfies i(t) = I sin(ωdt – φ), where 
 

( )

( ) ( )( ) ( )( ){ }

22

22

1/

45.0 V

16.0 3000 rad/s 9.20mH 1/ 3000rad/s 31.2 F

1.93A

m m

d d

I
Z R L C

ε ε

ω ω

μ

= =
+ −

=
Ω + − ⎡ ⎤⎣ ⎦

=

 

 
and 

( )( )
( )( )( )

1 1

1

1/tan tan

3000rad/s 9.20mH 1tan
16.0 3000rad/s 16.0 31.2 F

46.5 .

L C d dX X L C
R R

ω ωφ

μ

− −

−

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎡ ⎤

= −⎢ ⎥Ω Ω⎣ ⎦
= °

 

 



 

  

1229

(a) The power supplied by the generator is 
 

( )
( )( ) ( )( ) ( )( )
( ) ( ) sin sin

1.93A 45.0V sin 3000rad/s 0.442 ms sin 3000rad/s 0.442 ms 46.5

41.4 W.

g d m dP i t t I t tε ω φ ε ω= = −

= − °⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
=

 

 
(b) With  

( ) sin( / 2) cos( )c c d c dv t V t V tω φ π ω φ= − − = − −  
 
where / ,c dV I Cω= the rate at which the energy in the capacitor changes is 
 

( ) ( ) ( )

( )
( )( ) ( )( ) ( )

2

2

2

6

2

sin cos sin 2
2

1.93A
sin 2 3000rad/s 0.442ms 2 46.5

2 3000rad/s 31.2 10 F

17.0 W.

c c

d d d
d d

d q qP i iv
dt C C

I II t t t
C C

ω φ ω φ ω φ
ω ω

−

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − − − = − −⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

= − − °⎡ ⎤⎣ ⎦×

= −

 

 
(c) The rate at which the energy in the inductor changes is 
 

( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

2 2

2

1 1sin sin sin 2
2 2

1 3000 rad/s 1.93A 9.20 mH sin 2 3000 rad/s 0.442 ms 2 46.5
2
44.1 W.

L d d d d
d di dP Li Li LI t I t LI t
dt dt dt

ω φ ω φ ω ω φ⎛ ⎞= = = − − = −⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= − °⎡ ⎤⎣ ⎦

=

 

 
(d) The rate at which energy is being dissipated by the resistor is 
 

( ) ( ) ( ) ( )( )22 2 2 2sin 1.93A 16.0 sin 3000 rad/s 0.442ms 46.5

14.4 W.
R dP i R I R tω φ= = − = Ω − °⎡ ⎤⎣ ⎦

=
 

 
(e) Equal. 44.1W 17.0 W 14.4 W 41.5 W .L R c gP P P P+ + = − + = =   
 
61. (a) The power factor is cos φ, where φ is the phase constant defined by the expression 
i = I sin(ωt – φ). Thus, φ = – 42.0° and cos φ = cos(– 42.0°) = 0.743. 
 
(b) Since φ < 0, ωt – φ > ωt. The current leads the emf. 
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(c) The phase constant is related to the reactance difference by tan φ = (XL – XC)/R. We 
have  

tan φ = tan(– 42.0°) = –0.900, 
 
a negative number. Therefore, XL – XC is negative, which leads to XC > XL. The circuit in 
the box is predominantly capacitive. 
 
(d) If the circuit were in resonance XL would be the same as XC, tan φ would be zero, and 
φ would be zero. Since φ is not zero, we conclude the circuit is not in resonance. 
 
(e) Since tan φ is negative and finite, neither the capacitive reactance nor the resistance 
are zero. This means the box must contain a capacitor and a resistor.  
 
(f) The inductive reactance may be zero, so there need not be an inductor. 
 
(g) Yes, there is a resistor. 
 
(h) The average power is 
 

P Imavg V A W.= = =
1
2

1
2

750 120 0 743 334ε φcos . . . .b gb gb g  

 
(i) The answers above depend on the frequency only through the phase constant φ, which 
is given. If values were given for R, L and C then the value of the frequency would also 
be needed to compute the power factor. 
 
62. We use Eq. 31-79 to find 
 

V V N
Ns p

s

p

=
F
HG
I
KJ = F

HG
I
KJ = ×100 500

50
100 103V V.b g .  

 
63. (a) The stepped-down voltage is 
 

V V N
Ns p

s

p

=
F
HG
I
KJ = F

HG
I
KJ =120 10

500
2 4V V.b g .  

 

(b) By Ohm’s law, the current in the secondary is I V
Rs

s

s

= = =
2 4
15

016. .V A.
Ω

 

 
We find the primary current from Eq. 31-80: 
 

I I N
Np s

s

p

=
F
HG
I
KJ = F

HG
I
KJ = × −016 10

500
32 10 3. .A A.b g  
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(c) As shown above, the current in the secondary is 0.16A.sI =  
 
64. For step-up transformer: 
 
(a) The smallest value of the ratio /s pV V is achieved by using T2T3 as primary and T1T3 as 
secondary coil: V13/V23 = (800 + 200)/800 = 1.25. 
 
(b) The second smallest value of the ratio /s pV V is achieved by using T1T2 as primary and 
T2T3 as secondary coil: V23/V13 = 800/200 = 4.00. 
 
(c) The largest value of the ratio /s pV V is achieved by using T1T2 as primary and T1T3 as 
secondary coil: V13/V12 = (800 + 200)/200 = 5.00. 
 
For the step-down transformer, we simply exchange the primary and secondary coils in 
each of the three cases above.   
 
(d) The smallest value of the ratio /s pV V is 1/5.00 = 0.200. 
 
(e) The second smallest value of the ratio /s pV V is 1/4.00 = 0.250. 
 
(f) The largest value of the ratio /s pV V is 1/1.25 = 0.800. 
 
65. (a) The rms current in the cable is I P Vtrms

3W / 80 10 V A.= = × × =/ .250 10 31253 c h  

Therefore, the rms voltage drop is Δ ΩV I R= = =rms A V3125 2 0 30 19. . .b gb gb g . 
 
(b) The rate of energy dissipation is P I Rd = = =rms

2 A W.3125 2 0 60 59. . .b gb gb gΩ  
 
(c) Now I rms

3W / 8.0 10 V A= × × =250 10 31253 c h . , so ( )( )31.25A 0.60 19V.VΔ = Ω =   
 
(d) Pd = = ×3125 0 60 59 102 2. . .A W.b g b gΩ  
 
(e) ( )3 3

rms 250 10 W/ 0.80 10 V 312.5 AI = × × = , so ( )( )312.5A 0.60VΔ = Ω = 21.9 10 V× .  
 
(f) ( ) ( )2 4312.5A 0.60 5.9 10 W.dP = Ω = ×   
 
66. (a) The amplifier is connected across the primary windings of a transformer and the 
resistor R is connected across the secondary windings.  
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(b) If Is is the rms current in the secondary coil then the average power delivered to R is 
P I Rsavg = 2 . Using sI =  ( )/p s pN N I , we obtain 
 

P
I N

N
Rp p

s
avg =
F
HG
I
KJ

2

.  

 
Next, we find the current in the primary circuit. This is effectively a circuit consisting of 
a generator and two resistors in series. One resistance is that of the amplifier (r), and the 
other is the equivalent resistance Req of the secondary circuit. Therefore, 
 

I
r R r N N R

p

p s

=
+

=
+

ε εrms

eq

rms

/d i2
 

 
where Eq. 31-82 is used for Req. Consequently, 
 

2 2

avg 22

( / )
.

( / )
p s

p s

N N R
P

r N N R

ε
=

⎡ ⎤+⎣ ⎦
 

 
Now, we wish to find the value of Np/Ns such that Pavg is a maximum. For brevity, let x = 
(Np/Ns)2. Then 

P Rx
r xRavg =

+
ε 2

2b g ,  

and the derivative with respect to x is 
 

dP
dx

R r xR
r xR

avg =
−

+

ε 2

3
b g
b g .  

 
This is zero for  

( ) ( )/ 1000 / 10 100.x r R= = Ω Ω =  
 
We note that for small x, Pavg increases linearly with x, and for large x it decreases in 
proportion to 1/x. Thus x = r/R is indeed a maximum, not a minimum. Recalling x = 
(Np/Ns)2, we conclude that the maximum power is achieved for 
  

/ 10p sN N x= = . 
 
The diagram that follows is a schematic of a transformer with a ten to one turns ratio. An 
actual transformer would have many more turns in both the primary and secondary coils. 
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67. (a) Let  ωt − =π π/ /4 2  to obtain ( ) 33 / 4 3 / 4 350 rad/s 6.73 10 s.t π ω π −= = = ×⎡ ⎤⎣ ⎦  
 
(b) Let / 4 / 2tω π π+ =  to obtain ( ) 3/ 4 / 4 350 rad/s 2.24 10 s.t π ω π −= = = ×⎡ ⎤⎣ ⎦  
 
(c) Since i leads ε in phase by π/2, the element must be a capacitor. 
 
(d) We solve C from X C IC m= =−ω εb g 1 / : 
  

( )( )
3

56.20 10 A 5.90 10 F.
30.0 V 350 rad/sm

IC
ε ω

−
−×

= = = ×  

 
68. (a) We observe that ωd = 12566 rad/s. Consequently, XL = 754 Ω and XC = 199 Ω. 
Hence, Eq. 31-65 gives 

φ =
−F

HG
I
KJ =−tan .1 122X X

R
L C  rad .  

 
(b) We find the current amplitude from Eq. 31-60:  
 

I
R X X

m

L C

=
+ −

=
ε

2 2
0 288

( )
. A .  

 
69. (a) Using ω = 2πf , XL = ωL, XC = 1/ωC and tan(φ) = (XL −XC)/R, we find  
 

φ = tan−1[(16.022 – 33.157)/40.0] = –0.40473 ≈ –0.405 rad. 
 
(b) Equation 31-63 gives  
 

I = 120/ 402 + (16-33)2   = 2.7576 ≈ 2.76 A. 
 
(c) XC  > XL  ⇒   capacitive. 
 
70. (a) We find L from X L fLL = =ω 2π :  
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( )
3

3
3

1.30 10 4.60 10 Hz.
2 2 45.0 10 H

LXf
Lπ π −

× Ω
= = = ×

×
 

 
(b) The capacitance is found from XC = (ωC)–1 = (2πfC)–1: 
 

( )( )
8

3 3

1 1 2.66 10 F.
2 2 4.60 10 Hz 1.30 10C

C
fXπ π

−= = = ×
× × Ω

 

 
(c) Noting that XL ∝ f and XC ∝ f –1, we conclude that when f is doubled, XL doubles and 
XC reduces by half. Thus,  
 

XL = 2(1.30 × 103  Ω) = 2.60 × 103 Ω . 
 
(d) XC = 1.30 × 103 Ω/2 = 6.50 × 102 Ω. 
 
71. (a) The impedance is  Z = (80.0 V)/(1.25 A) = 64.0 Ω. 
 
(b) We can write cos φ = R/Z. Therefore, 
 

R = (64.0 Ω)cos(0.650 rad) = 50.9 Ω. 
 
(c) Since the current leads the emf, the circuit is capacitive. 
 
72. (a) From Eq. 31-65, we have 
 

φ =
−F

HG
I
KJ =

−F
HG

I
KJ

− −tan tan ( / . )
( / . )

1 1 150
2 00

V V
V

V V
V

L C

R

L L

L

 

 
which becomes tan–1 (2/3 ) = 33.7° or 0.588 rad. 
 
(b) Since φ > 0, it is inductive (XL > XC). 
 
(c) We have VR = IR = 9.98 V, so that VL = 2.00VR = 20.0 V and VC = VL/1.50 = 13.3 V. 
Therefore, from Eq. 31-60, we have 
 

2 2 2 2( ) (9.98 V) (20.0 V 13.3 V) 12.0 Vm R L CV V Vε = + − = + − = . 
 
73. (a) From Eq. 31-4, we have L = (ω2C)−1 = ((2πf)2C)−1 = 2.41 μH. 
 
(b) The total energy is the maximum energy on either device (see Fig. 31-4).  Thus, we 
have Umax = 12 LI2 = 21.4 pJ. 
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(c) Of several methods available to do this part, probably the one most “in the spirit” of 
this problem (considering the energy that was calculated in part (b)) is to appeal to Umax = 
1
2 Q2/C (from Chapter 26) to find the maximum charge: Q = 2CUmax  = 82.2 nC. 
 
74. (a) Equation 31-4 directly gives 1/ LC  ≈ 5.77×103 rad/s. 
 
(b) Equation 16-5 then yields T = 2π/ω = 1.09 ms. 
 
(c) Although we do not show the graph here, we describe it:  it is a cosine curve with 
amplitude 200 μC and period given in part (b). 
 

75. (a) The impedance is 125V 39.1 .
3.20A

mZ
I

ε
= = = Ω  

 
(b) From V IRR m= = ε φcos ,  we get 
 

R
I

m= = =
ε φcos V rad

A
125 0 982

320
217b g b gcos .

.
. .Ω  

 
(c) Since X XL C− ∝ = −sin sin . ,φ 0 982 radb g  we conclude that XL < XC. The circuit is 
predominantly capacitive. 
 
76. (a) Equation 31-39 gives f = ω/2π = (2πCXC)−1 = 8.84 kHz. 
 
(b) Because of its inverse relationship with frequency, the reactance will go down by a 
factor of 2 when f increases by a factor of 2.  The answer is XC = 6.00 Ω. 
 
77. (a) We consider the following combinations: ΔV12 = V1 – V2, ΔV13 = V1 – V3, and ΔV23 
= V2 – V3. For ΔV12, 
 

( )

12
2 120120sin( ) sin ( 120 ) 2 sin cos

2 2

3 cos 60

d
d d

d

tV A t A t A

A t

ωω ω

ω

− °° ⎛ ⎞⎛ ⎞Δ = − − ° = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − °

 

where we use  
( ) ( )sin sin 2sin 2 cos 2α β α β α β− = − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 
and sin 60 3 2.° =  Similarly, 
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( )13
2 240240sin( ) sin ( 240 ) 2 sin cos 3 cos 120

2 2
d

d d d
tV A t A t A A tωω ω ω− °° ⎛ ⎞⎛ ⎞Δ = − − ° = = − °⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

and 

( )

23
2 360120sin( 120 ) sin ( 240 ) 2 sin cos

2 2

3 cos 180 .

d
d d

d

tV A t A t A

A t

ωω ω

ω

− °° ⎛ ⎞⎛ ⎞Δ = − ° − − ° = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − °

 

 
All three expressions are sinusoidal functions of t with angular frequency ωd. 
 
(b) We note that each of the above expressions has an amplitude of 3A . 
 
78. (a) The effective resistance Reff satisfies I R Prms

2
eff mechanical= , or 

 

R P
Ieff

mechanical

rms
2

hp W / hp
A

= = =
0100 746

0 650
1772

.
.

.b gb g
b g Ω  

 
(b) This is not the same as the resistance R of its coils, but just the effective resistance for 
power transfer from electrical to mechanical form. In fact I Rrms

2  would not give Pmechanical 
but rather the rate of energy loss due to thermal dissipation. 
 
79. (a) At any time, the total energy U in the circuit is the sum of the energy UE in the 
capacitor and the energy UB in the inductor. When UE = 0.500UB (at time t), then UB = 
2.00UE and  

U = UE + UB = 3.00UE. 
 
Now, UE is given by q C2 2/ , where q is the charge on the capacitor at time t. The total 
energy U is given by Q C2 2/ , where Q is the maximum charge on the capacitor. Thus,  
 

2 23.00 0.577 .
2 2 3.00
Q q Qq Q
C C

= ⇒ = =   

 
(b) If the capacitor is fully charged at time t = 0, then the time-dependent charge on the 
capacitor is given by q Q t= cosω . This implies that the condition q = 0.577Q is satisfied 
when cosωt = 0.557, or ωt = 0.955 rad. Since ω = 2π / T  (where T is the period of 
oscillation), 0.955 / 2 ,t T Tπ= = 0.152  or t / T = 0.152. 
 
Note: The fraction of total energy that is of electrical nature at a given time t is given by 
 

 
2 2

2 2
2

( / 2 ) cos 2cos cos
/ 2

EU Q C t tt
U Q C T

ω πω ⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

. 
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A plot of /EU U as a function of /t T is given below. 

 
 
From the plot, we see that / 1/ 3EU U =  at t / T = 0.152. 
 
80. (a) The reactances are as follows: 
 

 1 5 1

2 2 2 2

2 2 (400 Hz)(0.0242 H) 60.82

(2 ) [2 (400 Hz)(1.21 10 F)] 32.88

( ) (20.0 ) (60.82 32.88 ) 34.36 .

L d

C d

L C

X f L

X f C

Z R X X

π π

π π− − −

= = = Ω

= = × = Ω

= + − = Ω + Ω − Ω = Ω

 

 
With 90.0 V,ε =  we have 
 

 rms
90.0 V 2.62 A2.62 A 1.85 A

34.36 2 2
II I

Z
ε

= = = ⇒ = = =
Ω

. 

 
Therefore, the rms potential difference across the resistor is VR rms = Irms R = 37.0 V. 
 
(b) Across the capacitor, the rms potential difference is VC rms = Irms XC = 60.9 V. 
 
(c) Similarly, across the inductor, the rms potential difference is VL rms = Irms XL = 113 V. 
 
(d) The average rate of energy dissipation is Pavg = (Irms)2R = 68.6 W. 
 
81. (a) The phase constant is given by 
 

( )1 1 1/ 2.00tan tan tan 1.00 45.0 .
/ 2.00

L C L L

R L

V V V V
V V

φ − − −⎛ ⎞ ⎛ ⎞− −
= = = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
(b) We solve R from ε φm IRcos = :  
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R
I

m= =
°

×
=−

ε φcos . cos
. .

30 0 45
300 10

70 73

V
A

b gb g
Ω  

 
82. From Umax = 12 LI2 we get I = 0.115 A. 
 
83. From Eq. 31-4 we get   f = 1/2π LC  = 1.84 kHz. 
 
84. (a) With a phase constant of 45º the (net) reactance must equal the resistance in the 
circuit, which means the circuit impedance becomes  
 

Z = R 2  ⇒  R = Z/ 2  = 707 Ω. 
 
(b) Since f = 8000 Hz, then ωd  = 2π(8000) rad/s.  The net reactance (which, as observed, 
must equal the resistance) is therefore  
 

XL – XC  = ωdL – (ωdC)−1 = 707 Ω. 
 
We are also told that the resonance frequency is 6000 Hz, which (by Eq. 31-4) means  
 

 2 2 2 2 2 2

1 1 1 1
(2 ) 4 4 (6000 Hz)

C
L f L f L Lω π π π

= = = = . 

 
Substituting this for C in our previous expression (for the net reactance) we obtain an 
equation that can be solved for the self-inductance.  Our result is L = 32.2 mH. 
 
(c) C = ((2π(6000))2L)−1  = 21.9 nF. 
 
85. The angular frequency oscillation is related to the capacitance C and inductance L by 

1/ .LCω =  The electrical energy and magnetic energy in the circuit as a function of 
time are given by 

 

2 2
2

2
2 2 2 2 2

cos ( )
2 2
1 1 sin ( ) sin ( ).
2 2 2

E

B

q QU t
C C

QU Li L Q t t
C

ω φ

ω ω φ ω φ

= = +

= = + = +
 

 
The maximum value of UE is 2 / 2 ,Q C  which is the total energy in the circuit, U. 
Similarly, the maximum value of UB is also 2 / 2 ,Q C  which can also be written as 2 / 2LI  
using .I Qω=   
  
(a) We solve L from Eq. 31-4, using the fact that ω = 2πf: 
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L
f C

= =
× ×

= ×
−

−1
4

1

4 10 4 10 340 10
689 102 2 2 3 2 6

7

π π .
.

Hz F
H.

c h c h
 

 
(b) The total energy may be calculated from the inductor (when the current is at 
maximum): 

U LI= = × × = ×− − −1
2

1
2

689 10 7 20 10 179 102 7 3 2 11. . .H A J.c hc h  

 
(c) We solve for Q from U Q C= 1

2
2 / :  

 
Q CU= = × × = ×− − −2 2 340 10 179 10 110 106 11 7F J C.c hc h. .  

 
86. From Eq. 31-60, we have 2 2 2(220 V / 3.00 A) 69.3 .L LR X X= + ⇒ = Ω  
 
87. When the switch is open, we have a series LRC circuit involving just the one 
capacitor near the upper right corner. Equation 31-65 leads to 
 

o

1

tan tan( 20 ) tan 20 .
d

d

L
C

R

ω
ω φ

−
= = − ° = − °  

 
Now, when the switch is in position 1, the equivalent capacitance in the circuit is 2C. In 
this case, we have 

1

1
2 tan tan10.0 .

d
d

L
C

R

ω
ω φ

−
= = °  

 
Finally, with the switch in position 2, the circuit is simply an LC circuit with current 
amplitude 

2 2 1
1

m m m

LC d
dd

d

I
Z LCL C

ε ε ε

ωωω ω

= = =
−⎛ ⎞−⎜ ⎟

⎝ ⎠

 

 
where we use the fact that 1( )d dC Lω ω− >  in simplifying the square root (this fact is 
evident from the description of the first situation, when the switch was open). We solve 
for L, R and C from the three equations above, and the results are as follows: 
 

(a) 
2 o

120V 165
tan (2.00 A) tan ( 20.0 )

mR
I

ε
φ

− −
= = = Ω

− °
, 
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(b) 1

2 o

tan 120 V tan10.01 2 1 2 0.313 H
tan 2 (60.0 Hz)(2.00 A) tan ( 20.0 )

m

d

L
I

ε φ
ω φ

⎛ ⎞ ⎛ ⎞°
= − = − =⎜ ⎟ ⎜ ⎟π − °⎝ ⎠⎝ ⎠

, 

 
(c) and 

( ) ( )
2

1 0

5

2.00 A
2 1 tan / tan 2(2 )(60.0 Hz)(120 V) 1 tan10.0 / tan( 20.0 )

1.49 10  F.
d m

IC
ω ε φ φ π

−

= =
− − ° − °

= ×

 

 

88. (a) Eqs. 31-4 and 31-14 lead to 61 1.27 10 C .Q I LC
ω

−= = = ×  

 
(b) We choose the phase constant in Eq. 31-12 to be φ = −π / 2 , so that i0 = I in Eq.  
31-15). Thus, the energy in the capacitor is 
 

U q
C

Q
C

tE = =
2 2

2

2 2
(sin ) .ω  

 
Differentiating and using the fact that 2 sin θ cos θ  = sin 2θ, we obtain 
 

dU
dt

Q
C

tE =
2

2
2ω ωsin .  

 
We find the maximum value occurs whenever sin 2 1ωt = , which leads (with n = odd 
integer) to 

5 41 8.31 10 s, 2.49 10 s, .
2

n n nt LCπ π π
ω ω

− −= = = = × ×
2 4 4

…  

 
The earliest time is 58.31 10 s.t −= ×  
 
(c) Returning to the above expression for /EdU dt  with the requirement that sin2 1ωt = , 
we obtain 

dU
dt

Q
C

I LC

C
I
LC

I L
C

EF
HG
I
KJ = = = = × −

max

. .
2

2
2

3

2 2 2
5 44 10ω

d i
J / s  

 
89. The energy stored in the capacitor is given by U q CE = 2 2/ .  Similarly, the energy 
stored in the inductor is 21

2 .BU Li=  The rate of energy supply by the driving emf device 
is ,P iε ε=  where sin( )di I ω φ= −  and sinm dtε ε ω= . The rate with which energy 
dissipates in the resistor is 2 .RP i R=  
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(a) Since the charge q is a periodic function of t with period T, so must be UE. 
Consequently, UE will not be changed over one complete cycle. Actually, UE has period 
T/2, which does not alter our conclusion. 
 
(b) Since the current i is a periodic function of t with period T, so must be UB.  
 
(c) The energy supplied by the emf device over one cycle is 
 

 

0 0

0

sin( )sin( )

[sin cos cos sin ]sin( )

cos ,
2

T T

m d d

T

m d d d

m

U P dt I t t dt

I t t t dt

T I

ε ε ε ω φ ω

ε ω φ ω φ ω

ε φ

= = −

= −

=

∫ ∫
∫  

where we have used   
 

2

0 0
sin ( ) , sin( )cos( ) 0.

2
T T

d d d
Tt dt t t dtω ω ω= =∫ ∫  

 
(d) Over one cycle, the energy dissipated in the resistor is  
 

2 2 2

0 0
sin ( ) .

2
T T

R R d
TU P dt I R t dt I Rω φ= = − =∫ ∫  

 
(e) Since ε φ ε ε ε εm m R m m mI I V I IR I Rcos / / ,= = =b g b g 2  the two quantities are indeed the 
same. 
 
Note: In solving for (c) and (d), we could have used Eqs. 31-74 and 31-71. By doing so, 
we find the energy supplied by the generator to be 
 

P T I T T Imavg rms rms= = FHG
I
KJε φ ε φcos cosb g 1

2
 

 
where we substitute I I mrms rmsand= =/ / .2 2ε ε  Similarly, the energy dissipated by 
the resistor is 

P T I V T I I R T T I RRavg,resistor rms rms rms= = = FHG
I
KJb g b g 1

2
2 . 

 
The same results are obtained without any integration. 
 
90. From Eq. 31-4, we have C = (ω2L)−1 = ((2πf)2L)−1 = 1.59 μF. 
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91. Resonance occurs when the inductive reactance equals the capacitive reactance.  
Reactances of a certain type add (in series) just like resistances did in Chapter 28.  Thus, 
since the resonance ω values are the same for both circuits, we have for each circuit: 
 

 1 2
1 2

1 1,L L
C C

ω ω
ω ω

= =  

 
and adding these equations we find 

( )1 2
1 2

1 1 1L L
C C

ω
ω

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
. 

 
Since eq 1 2L L L= +  and 1 1 1

eq 1 2( )C C C− − −= + , 
 

ωLeq = 
eq

1
Cω

   ⇒    resonance in the combined circuit. 

 
92. When switch S1 is closed and the others are open, the inductor is essentially out of the 
circuit and what remains is an RC circuit. The time constant is τC = RC. When switch S2 
is closed and the others are open, the capacitor is essentially out of the circuit. In this case, 
what we have is an LR circuit with time constant τL = L/R. Finally, when switch S3 is 
closed and the others are open, the resistor is essentially out of the circuit and what 
remains is an LC circuit that oscillates with period 2T LCπ= . Substituting L = RτL and 
C = τC/R, we obtain 2 C LT π τ τ= . 
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Chapter 32 
 
 
1. We use 6

1
0Bnn=

Φ =∑  to obtain 
 

( )
5

6
1

1Wb 2 Wb 3Wb 4 Wb 5Wb 3Wb .B Bn
n=

Φ = − Φ = − − + − + − = +∑  

 
2. (a)   The flux through the top is +(0.30 T)πr2 where r = 0.020 m.  The flux through the 
bottom is +0.70 mWb as given in the problem statement.  Since the net flux must be zero 
then the flux through the sides must be negative and exactly cancel the total of the 
previously mentioned fluxes.  Thus (in magnitude) the flux though the sides is 1.1 mWb. 
 
(b) The fact that it is negative means it is inward. 
 
3. (a) We use Gauss’ law for magnetism: z ⋅ =B dA 0 . Now,  

 

z ⋅ = + +B dA CΦ Φ Φ1 2 , 

 
where Φ1 is the magnetic flux through the first end mentioned, Φ2 is the magnetic flux 
through the second end mentioned, and ΦC is the magnetic flux through the curved 
surface. Over the first end the magnetic field is inward, so the flux is Φ1 = –25.0 μWb. 
Over the second end the magnetic field is uniform, normal to the surface, and outward, so 
the flux is Φ2 = AB = πr2B, where A is the area of the end and r is the radius of the 
cylinder. Its value is 
 

Φ2
2 3 50120 160 10 7 24 10 72 4= × = + × = +− −π . . . . .m T Wb Wbb g c h μ  

 
Since the three fluxes must sum to zero, 
 

Φ Φ ΦC = − − = − = −1 2 25 0 72 4 47 4. . . .μ μ μWb Wb Wb  
 
Thus, the magnitude is | | 47.4 Wb.C μΦ =  
 
(b) The minus sign in CΦ indicates that the flux is inward through the curved surface. 
 
4. From Gauss’ law for magnetism, the flux through S1 is equal to that through S2, the 
portion of the xz plane that lies within the cylinder. Here the normal direction of S2 is +y. 
Therefore, 
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0 0

1 2 left
1( ) ( ) ( ) 2 ( ) 2 ln 3 .

2 2
r r r

B B r r r

i iLS S B x L dx B x L dx L dx
r x

μ μ
π π− − −

Φ = Φ = = = =
−∫ ∫ ∫  

 
5. We use the result of part (b) in Sample Problem — “Magnetic field induced by 
changing electric field,” 

( )
2

0 0 ,
2

R dEB r R
r dt

μ ε
= ≥  

to solve for dE/dt: 
 

( )( )
( )( )( )

7 3
13

22 12 2 2 3
0 0

2 2.0 10 T 6.0 10 m2 V2.4 10 .
m s4 T m A 8.85 10 C /N m 3.0 10 m

dE Br
dt Rμ ε

− −

−7 − −

× ×
= = = ×

⋅π×10 ⋅ × ⋅ ×
 

 
6. The integral of the field along the indicated path is, by Eq. 32-18 and Eq. 32-19, equal 
to  

 0 0 2

enclosed area (4.0 cm)(2.0 cm)(0.75 A) 52 nT m
total area 12 cmdiμ μ⎛ ⎞ = = ⋅⎜ ⎟

⎝ ⎠
. 

 
7. (a) Inside we have (by Eq. 32-16) 2

0 1 / 2dB i r Rμ π= , where 1 0.0200 m,r =  
0.0300 m,R =  and the displacement current is given by Eq. 32-38 (in SI units):  

 

 12 2 2 3 14
0 (8.85 10 C /N m )(3.00 10 V/m s) 2.66 10 AE

d
di

dt
ε − − −Φ

= = × ⋅ × ⋅ = × . 

 
Thus we find  
 

7 14
190 1

2 2

(4 10 T m/A)(2.66 10 A)(0.0200 m) 1.18 10  T
2 2 (0.0300 m)

di rB
R

μ π
π π

− −
−× ⋅ ×

= = = × . 

 
(b) Outside we have (by Eq. 32-17) 0 2/ 2dB i rμ π=  where r2 = 0.0500 cm.  Here we 
obtain  

7 14
190

2

(4 10 T m/A)(2.66 10 A) 1.06 10  T
2 2 (0.0500 m)

diB
r

μ π
π π

− −
−× ⋅ ×

= = = ×  

 
8. (a) Application of Eq. 32-3 along the circle referred to in the second sentence of the 
problem statement (and taking the derivative of the flux expression given in that sentence) 
leads to 

( )0 0(2 ) 0.60 V m/s rB r
R

π ε μ= ⋅ . 

 
Using r = 0.0200 m (which, in any case, cancels out) and R = 0.0300 m, we obtain 
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12 2 2 7
0 0

17

(0.60 V m/s) (8.85 10 C /N m )(4 10 T m/A)(0.60 V m/s)
2 2 (0.0300 m)

3.54 10  T .

B
R

ε μ
π π

− −

−

⋅ × ⋅ π× ⋅ ⋅
= =

= ×
 

 
(b) For a value of r larger than R, we must note that the flux enclosed has already reached 
its full amount (when r = R in the given flux expression).  Referring to the equation we 
wrote in our solution of part (a), this means that the final fraction ( /r R ) should be 
replaced with unity.  On the left hand side of that equation, we set r = 0.0500 m and solve.  
We now find  
 

12 2 2 7
0 0

17

(0.60 V m/s) (8.85 10 C /N m )(4 10 T m/A)(0.60 V m/s)
2 2 (0.0500 m)

2.13 10  T .

B
r

ε μ
π π

− −

−

⋅ × ⋅ π× ⋅ ⋅
= =

= ×
 

 
9. (a) Application of Eq. 32-7 with A = πr2 (and taking the derivative of the field 
expression given in the problem) leads to 
 
 ( )2

0 0(2 ) 0.00450 V/m sB r rπ ε μ π= ⋅ . 
 
For r = 0.0200 m, this gives  
 

0 0

12 2 2 7

22

1 (0.00450 V/m s)
2
1 (8.85 10 C /N m )(4 10 T m/A)(0.0200 m)(0.00450 V/m s)
2
5.01 10  T .

B rε μ

π− −

−

= ⋅

= × ⋅ × ⋅ ⋅

= ×

 

 
(b) With r > R, the expression above must replaced by 
 

( )2
0 0(2 ) 0.00450 V/m sB r Rπ ε μ π= ⋅ . 

 
Substituting r = 0.050 m and R = 0.030 m, we obtain B = 4.51 × 10−22 T. 
 
10. (a) Here, the enclosed electric flux is found by integrating 
 

3
2

0 0

12 (0.500 V/m s)(2 ) 1
2 3

r r

E
r rE rdr t rdr t r
R R

π π π
⎛ ⎞⎛ ⎞Φ = = ⋅ − = −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫  

 
with SI units understood.  Then (after taking the derivative with respect to time) Eq. 32-3 
leads to   

3
2

0 0
1(2 )
2 3

rB r r
R

π ε μ π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. 
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For r = 0.0200 m and R = 0.0300 m, this gives B = 3.09 × 10−20 T. 
 
(b) The integral shown above will no longer (since now r > R) have r as the upper limit; 
the upper limit is now R.  Thus,  
 

3
2 21 1

2 3 6E
Rt R t R
R

π π
⎛ ⎞

Φ = − =⎜ ⎟
⎝ ⎠

. 

Consequently, Eq. 32-3 becomes 
 

2
0 0

1(2 )
6

B r Rπ ε μ π=  

which for r = 0.0500 m, yields   
 

2 12 7 2
200 0 (8.85 10 )(4 10 )(0.030) 1.67 10  T .

12 12(0.0500)
RB
r

ε μ π− −
−× ×

= = = ×  

 
11. (a) Noting that the magnitude of the electric field (assumed uniform) is given by E = 
V/d (where d = 5.0 mm), we use the result of part (a) in Sample Problem – “Magnetic 
field induced by changing electric field:” 
 

( )0 0 0 0 .
2 2

r rdE dVB r R
dt d dt

μ ε μ ε
= = ≤  

 
We also use the fact that the time derivative of sin (ωt) (where ω = 2πf = 2π(60) ≈ 377/s 
in this problem) is ω cos(ωt). Thus, we find the magnetic field as a function of r (for r ≤ 
R; note that this neglects “fringing” and related effects at the edges): 
 

( )0 0 0 0 max
max maxcos

2 2
r rVB V t B

d d
μ ε μ ε ωω ω= ⇒ =  

 
where Vmax = 150 V. This grows with r until reaching its highest value at r = R = 30 mm: 
 

( )( )( )( )( )
( )

12 3
0 0 max

max 3

12

4 H m 8.85 10 F m 30 10 m 150V 377 s

2 2 5.0 10 m

1.9 10 T.

r R

RVB
d

μ ε ω
−7 − −

= −

−

π×10 × ×
= =

×

= ×

 

 
(b) For r ≤ 0.03 m, we use the expression max 0 0 max / 2B rV dμ ε ω=  found in part (a) (note 
the B ∝ r dependence), and for r ≥ 0.03 m we perform a similar calculation starting with 
the result of part (b) in Sample Problem — “Magnetic field induced by changing electric 
field:” 
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( )

( )

2 2 2
0 0 0 0 0 0

max max
max max max

2
0 0 max

cos
2 2 2

   for
2

R R RdE dVB V t
r dt rd dt rd

R V r R
rd

μ ε μ ε μ ε ω ω

μ ε ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= ≥

 

 
(note the B ∝ r–1 dependence — see also Eqs. 32-16 and 32-17). The plot (with SI units 
understood) is shown below. 
 

 
 

12. From Sample Problem — “Magnetic field induced by changing electric field,” we 
know that B ∝ r for r ≤ R and B ∝ r–1 for r ≥ R. So the maximum value of B occurs at r = 
R, and there are two possible values of r at which the magnetic field is 75% of Bmax. We 
denote these two values as r1 and r2, where r1 < R and r2 > R.  
 
(a) Inside the capacitor, 0.75 Bmax/Bmax = r1/R, or r1 = 0.75 R = 0.75 (40 mm) =30 mm. 
 
(b) Outside the capacitor, 0.75 Bmax/Bmax = (r2/R)–1, or  
 

r2 = R/0.75 = 4R/3 = (4/3)(40 mm) = 53 mm. 
 
(c) From Eqs. 32-15 and 32-17, 
 

( )( )
( )

7
50 0

max

4 10 T m A 6.0 A
3.0 10 T.

2 2 2 0.040m
di iB
R R

πμ μ
π π π

−
−

× ⋅
= = = = ×  

 
13. Let the area plate be A and the plate separation be d. We use Eq. 32-10: 
 

i d
dt

d
dt

AE A d
dt

V
d

A
d

dV
dtd

E= = = F
HG
I
KJ = F

HG
I
KJε ε ε ε

0 0 0
0Φ b g ,  

or 
dV
dt

i d
A

i
C

d d= = =
×

= ×−ε 0
6

515 7 5 10. . .A
2.0 10 F

V s  
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Therefore, we need to change the voltage difference across the capacitor at the rate of 
57.5 10  V/s× . 

 
14. Consider an area A, normal to a uniform electric field E . The displacement current 
density is uniform and normal to the area. Its magnitude is given by Jd = id/A. For this 
situation , 0 ( / )di A dE dtε= , so 

J
A

A dE
dt

dE
dtd = =

1
0 0ε ε .  

 
15. The displacement current is given by 0 ( / ),di A dE dtε=  where A is the area of a plate 
and E is the magnitude of the electric field between the plates. The field between the 
plates is uniform, so E = V/d, where V is the potential difference across the plates and d is 
the plate separation. Thus, 

i A
d

dV
dtd =

ε 0 .  

 
Now, ε0A/d is the capacitance C of a parallel-plate capacitor (not filled with a dielectric), 
so 

i C dV
dtd = .  

 
16. We use Eq. 32-14: 0 ( / ).di A dE dtε=  Note that, in this situation, A is the area over 
which a changing electric field is present. In this case r > R, so A = πR2. Thus, 
 

( )( )
12

22 12 2 2
0 0

2.0 A V7.2 10 .
m s8.85 10 C /N m 0.10 m

d di idE
dt A Rε ε π π −

= = = = ×
⋅× ⋅

 

 

17. (a) Using Eq. 27-10, we find E J i
A

= = =
× ⋅

×
=

−

−ρ ρ 162 10 100
500 10

0 324
8

6

.
.

. .
Ω m A

m
V m2

c hb g
 

 
(b) The displacement current is 
 

( )( )( )12 8
0 0 0 0

16

8.85 10 F/m 1.62 10 2000A s

2.87 10 A.

E
d

d dE d i dii A A
dt dt dt A dt

ρε ε ε ε ρ − −

−

Φ ⎛ ⎞= = = = = × × Ω⎜ ⎟
⎝ ⎠

= ×
 

(c) The ratio of fields is ( )
( )

16
180

0

due to 2 2.87 10 A 2.87 10 .
due to 2 100A

d d dB i i r i
B i i r i

μ π
μ π

−
−×

= = = = ×  

 
18. From Eq. 28-11, we have i = (ε / R ) e− t/τ  since we are ignoring the self-inductance of 
the capacitor. Equation 32-16 gives 
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 0
22

di rB
R

μ
π

= . 

 
Furthermore, Eq. 25-9 yields the capacitance  
 

 
2

110 (0.05 m) 2.318 10 F
0.003 m

C ε π −= = × , 

 
so that the capacitive time constant is  
 

τ = (20.0 × 106 Ω)(2.318 × 10−11 F) = 4.636 × 10−4 s. 
 
At t = 250 × 10−6 s, the current is 
 

i = 
12.0 V

20.0 x 106 Ω  e− t/τ  = 3.50  × 10−7 A . 

 
Since i = id (see Eq. 32-15) and r = 0.0300 m, then (with plate radius R = 0.0500 m) we 
find 

7 7
130

2 2

(4 10 T m/A)(3.50 10 A)(0.030 m) 8.40 10  T
2 2 (0.050 m)

di rB
R

μ
π π

− −
−π× ⋅ ×

= = = × . 

 
19. (a) Equation 32-16 (with Eq. 26-5)  gives, with A = πR2,  
 

2
0 0 0

02 2 2

7 2

( ) 1
2 2 2 2
1 (4 10 T m/A)(6.00 A/m )(0.0200 m) 75.4 nT .
2

d d d
d

i r J Ar J R rB J r
R R R

μ μ μ π μ
π π π

−

= = = =

= π× ⋅ =
  

(b) Similarly, Eq. 32-17 gives 
2

0 0 67.9 nT
2 2

d di J RB
r r

μ μ π
π π

= = = . 

 

20. (a) Equation 32-16 gives  0
2 2.22 T

2
di rB
R

μ μ
π

= = .  

(b) Equation 32-17 gives 0 2.00 T
2

diB
r

μ μ
π

= = .  

 
21. (a) Equation 32-11 applies (though the last term is zero) but we must be careful with 
id,enc .  It is the enclosed portion of the displacement current, and if we related this to the 
displacement current density Jd , then 
 

( )
3

2 2
enc 0 0

12 (4.00 A/m )(2 ) 1 / 8
2 3

r r

d d
ri J r dr r R r dr r
R

π π π
⎛ ⎞

= = − = −⎜ ⎟
⎝ ⎠

∫ ∫  
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with SI units understood.  Now, we apply Eq. 32-17 (with id replaced with id,enc) or start 

from scratch with Eq. 32-11, to get 0 enc 27.9 nT
2

diB
r

μ
π

= = . 

 
(b) The integral shown above will no longer (since now r > R) have r as the upper limit; 
the upper limit is now R.  Thus,  

 
3

2 2
enc

1 48
2 3 3d d

Ri i R R
R

π π
⎛ ⎞

= = − =⎜ ⎟
⎝ ⎠

. 

 

Now Eq. 32-17 gives 0 15.1 nT
2

diB
r

μ
π

= = .  

 
22. (a) Eq. 32-11 applies (though the last term is zero) but we must be careful with id,enc .  
It is the enclosed portion of the displacement current.  Thus Eq. 32-17 (which derives 
from Eq. 32-11) becomes, with  id replaced with id,enc, 
 

 0 enc 0 (3.00 A)( / )
2 2

di r RB
r r

μ μ
π π

= =  

 
which yields (after canceling r, and setting R = 0.0300 m) B = 20.0 μT. 
 

(b) Here  id = 3.00 A, and we get  0 12.0 T
2

diB
r

μ μ
π

= = . 

 
23. The electric field between the plates in a parallel-plate capacitor is changing, so there 
is a nonzero displacement current 0 ( / )d Ei d dtε= Φ  between the plates. 
 
Let A be the area of a plate and E be the magnitude of the electric field between the plates. 
The field between the plates is uniform, so E = V/d, where V is the potential difference 
across the plates and d is the plate separation. The current into the positive plate of the 
capacitor is 

 ( ) 0
0 0

( ) EA ddq d dV d Ed dEi CV C A
dt dt dt d dt dt dt

ε ε ε Φ
= = = = = = , 

 
which is the same as the displacement current.  
 
(a) At any instant the displacement current id in the gap between the plates equals the 
conduction current i in the wires. Thus id = i = 2.0 A. 
 
(b) The rate of change of the electric field is 
 

dE
dt A

d
dt

i
A

E d= F
HG

I
KJ = =

×
= ×

⋅−

1 2 0
85 10 10

2 3 10
0

0
0

12 2
11

ε
ε

ε
Φ .

. .
. .A

8 F m m
V

m sc hb g  



 

  

1251

 
(c) The displacement current through the indicated path is 
 

( )
22

2

0.50m2.0A 0.50A.
1.0md d

di i
L

⎛ ⎞ ⎛ ⎞
′ = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(d) The integral of the field around the indicated path is 
 

B ds id⋅ = ′ = × = × ⋅− −z μ 0
16 7126 10 050 6 3 10. . .H m A T m.c hb g  

 
24. (a) From Eq. 32-10, 
 

( ) ( ) ( )
( )( )( )

5 4 4
0 0 0 0

12 2 2 2 2 4

8

4.0 10 6.0 10 6.0 10 V m s

8.85 10 C /N m 4.0 10 m 6.0 10 V m s

2.1 10 A.

E
d

d dE di A A t A
dt dt dt

ε ε ε ε

− −

−

Φ ⎡ ⎤= = × − × = − × ⋅⎣ ⎦

= − × ⋅ × × ⋅

= − ×

 

 
Thus, the magnitude of the displacement current is 8| | 2.1 10 A.di

−= ×  
 
(b) The negative sign in di implies that the direction is downward.  
 
(c) If one draws a counterclockwise circular loop s around the plates, then according to 
Eq. 32-18, 

s dB ds iz ⋅ = <μ 0 0,  

 
which means that B ds⋅ < 0 . Thus B  must be clockwise. 
 
25. (a) We use B ds I⋅ =z μ 0 enclosed  to find 

 
( ) ( )( )( )

2
0 6 2 30 enclosed

0

7

1 1 1.26 10 H m 20 A m 50 10 m
2 2 2 2

6.3 10 T.

d
d

J rIB J r
r r

μμ μ
π π

− −

−

π
= = = = × ×

= ×

 

 

(b) From 2 2
0 0

E
d d

d dEi J r r
dt dt

π ε ε πΦ
= = = , we get 

 
dE
dt

Jd= =
×

= ×
⋅−ε 0

12
1220

885 10
2 3 10A m

F m
V

m s

2

.
. . 
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26. (a) Since i = id (Eq. 32-15) then the portion of displacement current enclosed is 
 

( )2

,enc 2

/ 3
1.33A.

9d

R ii i
R

π
π

= = =  

 
(b) We see from Sample Problem — “Magnetic field induced by changing electric field” 
that the maximum field is at r = R and that (in the interior) the field is simply 
proportional to r. Therefore, 
 

B
B

r
Rmax

.
= =

300mT
12.0mT

 

 
which yields r = R/4 = (1.20 cm)/4 = 0.300 cm.  
 
(c) We now look for a solution in the exterior region, where the field is inversely 
proportional to r (by Eq. 32-17): 
 

B
B

R
rmax

.
= =

300mT
12.0mT

 

 
which yields r = 4R = 4(1.20 cm) = 4.80 cm.   
 
27. (a) In region a of the graph, 
 

( )( )
5 5

12 2
0 0 6

4.5 10 N C 6.0 10 N C8.85 10 F m 1.6 m 0.71A.
4.0 10 s

E
d

d dEi A
dt dt

ε ε −
−

Φ × − ×
= = = × =

×
 

(b) id ∝ dE/dt = 0. 
 
(c) In region c of the graph, 
 

( )( )
5

12 2
0 6

4.0 10 N C| | 8.85 10 F m 1.6m 2.8A.
2.0 10 sd

dEi A
dt

ε −
−

− ×
= = × =

×
 

 
28. (a) Figure 32-34 indicates that i = 4.0 A when t = 20 ms.  Thus,  
 

Bi = μoi/2πr  = 0.089 mT. 
 
(b) Figure 32-34 indicates that i = 8.0 A when t = 40 ms. Thus, Bi ≈ 0.18 mT. 
 
(c) Figure 32-34 indicates that i = 10 A when t > 50 ms. Thus, Bi  ≈ 0.220 mT.  
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(d) Equation 32-4 gives the displacement current in terms of the time-derivative of the 
electric field: id = εoA(dE/dt), but using Eq. 26-5 and Eq. 26-10 we have E = ρi/A (in 
terms of the real current); therefore, id = εoρ(di/dt). For 0 < t < 50 ms, Fig. 32-34 indicates 
that di/dt = 200 A/s.  Thus, Bid = μoid /2πr  = 6.4 × 10−22 T. 
 
(e) As in (d), Bid = μoid /2πr  = 6.4 × 10−22 T. 
 
(f) Here di/dt = 0, so (by the reasoning in the previous step) B = 0. 
 
(g) By the right-hand rule, the direction of iB at t = 20 s is out of the page. 
 
(h) By the right-hand rule, the direction of idB at t = 20 s is out of the page. 
 
29. (a) At any instant the displacement current id in the gap between the plates equals the 
conduction current i in the wires. Thus imax = id max = 7.60 μA. 
 
(b) Since id = ε0 (dΦE/dt), 
 

d
dt

i
E dΦF

HG
I
KJ = =

×
×

= × ⋅
−

−
max

max . . .
ε 0

6

12
57 60 10 859 10A

8.85 10 F m
V m s  

 
(c) Let the area plate be A and the plate separation be d. The displacement current is 
 

( ) 0
0 0 0

E
d

Ad d d V dVi AE A
dt dt dt d d dt

εε ε εΦ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
Now the potential difference across the capacitor is the same in magnitude as the emf of 
the generator, so V = εm sin ωt and dV/dt = ωεm cos ωt. Thus, 0 m( / ) cosdi A d tε ωε ω=  
and max 0 m / .di A dε ωε=  This means 
 

( ) ( ) ( )( )212
30 m

6
max

8.85 10 F m 0.180 m 130rad s 220 V
3.39 10 m,

7.60 10 Ad

Ad
i

ε ωε
−

−
−

× π
= = = ×

×
 

 
where A = πR2 was used. 
 
(d) We use the Ampere-Maxwell law in the form B ds Id⋅ =z μ0 , where the path of 

integration is a circle of radius r between the plates and parallel to them. Id is the 
displacement current through the area bounded by the path of integration. Since the 
displacement current density is uniform between the plates, Id = (r2/R2)id, where id is the 
total displacement current between the plates and R is the plate radius. The field lines are 
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circles centered on the axis of the plates, so B  is parallel to ds . The field has constant 
magnitude around the circular path, so B ds rB⋅ =z 2π . Thus, 

 
2

0
0 2 22       .

2
d

d
i rrrB i B

R R
μπ μ
π

⎛ ⎞
= ⇒ =⎜ ⎟

⎝ ⎠
 

 
The maximum magnetic field is given by 
 

( )( )( )
( )

6
120 max

max 22

4 T m A 7.6 10 A 0.110m
5.16 10 T.

2 2 0m
di rB
R

πμ
π π

−7 −
−

×10 ⋅ ×
= = = ×

0.18
 

 
30. (a) The flux through Arizona is 
 

Φ = − = − × = − ×−B Ar 43 10 295 000 10 13 106 3 2 7T km m km Wb2c hc hc h, . ,  
 
inward. By Gauss’ law this is equal to the negative value of the flux Φ' through the rest of 
the surface of the Earth. So Φ' = 1.3 × 107 Wb. 
 
(b) The direction is outward. 
 
31. The horizontal component of the Earth’s magnetic field is given by Bh i= B cosφ , 
where B is the magnitude of the field andφ i  is the inclination angle. Thus 
 

B Bh

i

= =
°

=
cos cosφ

μ μ16
73

55T T .  

 
32. (a) The potential energy of the atom in association with the presence of an external 
magnetic field Bext  is given by Eqs. 32-31 and 32-32: 
 

orb ext orb, ext ext .z BU B B m Bμ μ μ= − ⋅ = − = −  
 
For level E1 there is no change in energy as a result of the introduction of Bext , so U ∝ m  
= 0, meaning that m = 0 for this level.  
 
(b) For level E2 the single level splits into a triplet (i.e., three separate ones) in the 
presence of Bext , meaning that there are three different values of m . The middle one in 
the triplet is unshifted from the original value of E2 so its m  must be equal to 0. The 
other two in the triplet then correspond to m  = –1 and m  = +1, respectively. 
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(c) For any pair of adjacent levels in the triplet, |Δ m | = 1. Thus, the spacing is given by 
 

24 24| ( ) | | | (9.27 10 J/T)(0.50T) 4.64 10 J.B B BU m B m B Bμ μ μ − −Δ = Δ − = Δ = = × = ×  
 
33. (a) Since m  = 0, Lorb,z = m h/2π = 0. 
 
(b) Since m  = 0, μorb,z = – m μB = 0. 
 
(c) Since m  = 0, then from Eq. 32-32, U = –μorb,zBext = – m μBBext = 0. 
 
(d) Regardless of the value of m , we find for the spin part 
 

U B Bs z B= − = ± = ± × = ± ×− −μ μ, . . .9 27 10 35 32 1024 25J T mT Jc hb g  
 
(e) Now m  = –3, so 
 

( ) ( )27
34 34

orb,

3 6.63 10 J s
3.16 10 J s 3.2 10 J s

2 2z
m hL

π π

−
− −

− × ⋅
= = = − × ⋅ ≈ − × ⋅  

 
(f) and ( ) ( )24 23 23

orb, 3 9.27 10 J T 2.78 10 J T 2.8 10 J T .z Bmμ μ − − −= − = − − × = × ≈ ×  
 
(g) The potential energy associated with the electron’s orbital magnetic moment is now 
 

( )( )23 3 25
orb, ext 2.78 10 J T 35 10 T 9.7 10 J.zU Bμ − − −= − = − × × = − ×  

 
(h) On the other hand, the potential energy associated with the electron spin, being 
independent of m , remains the same: ±3.2 × 10–25 J. 
 
34. We use Eq. 32-27 to obtain  
 

ΔU = –Δ(μs,zB) = –BΔμs,z, 
 
where μ μs z e Beh m, = ± = ±4π  (see Eqs. 32-24 and 32-25). Thus, 
 

ΔU B BB B B= − − − = = × = ×− −μ μ μb g c hb g2 2 9 27 10 0 25 4 6 1024 24. . . .J T T J  
 
35. We use Eq. 32-31: μ orb, z = – m μB. 
 
(a) For m  = 1, μorb,z = –(1) (9.3 × 10–24 J/T) = –9.3 × 10–24 J/T. 
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(b) For m  = –2, μorb,z = –(–2) (9.3 × 10–24 J/T) = 1.9 × 10–23 J/T. 
 
36. Combining Eq. 32-27 with Eqs. 32-22 and 32-23, we see that the energy difference is 
 

2 BU BμΔ =  
 
where μB is the Bohr magneton (given in Eq. 32-25).  With ΔU = 6.00 × 10−25 J, we 
obtain B = 32.3 mT. 
 
37. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of 
the loop is shown below: 

 
 
(b) The primary conclusion of Section 32-9 is two-fold: u  is opposite to B , and the 
effect of F  is to move the material toward regions of smaller | |B  values. The direction 
of the magnetic moment vector (of our loop) is toward the right in our sketch, or in the +x 
direction. 
 
(c) The direction of the current is clockwise (from the perspective of the bar magnet). 
 
(d) Since the size of | |B  relates to the “crowdedness” of the field lines, we see that F  is 
toward the right in our sketch, or in the +x direction. 
 
38. An electric field with circular field lines is induced as the magnetic field is turned on. 
Suppose the magnetic field increases linearly from zero to B in time t. According to Eq. 
31-27, the magnitude of the electric field at the orbit is given by 
 

E r dB
dt

r B
t

= FHG
I
KJ = FHG

I
KJ2 2

,  

 
where r is the radius of the orbit. The induced electric field is tangent to the orbit and 
changes the speed of the electron, the change in speed being given by 
 

Δv at eE
m

t e
m

r B
t

t erB
me e e

= = =
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ =

2 2
.  

 
The average current associated with the circulating electron is i = ev/2πr and the dipole 
moment is 
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( )2 1 .
2 2
evAi r evr

r
μ π

π
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
The change in the dipole moment is 
 

Δ Δμ = =
F
HG
I
KJ =

1
2

1
2 2 4

2 2

er v er erB
m

e r B
me e

.  

 
39. For the measurements carried out, the largest ratio of the magnetic field to the 
temperature is (0.50 T)/(10 K) = 0.050 T/K. Look at Fig. 32-14 to see if this is in the 
region where the magnetization is a linear function of the ratio. It is quite close to the 
origin, so we conclude that the magnetization obeys Curie’s law. 
 
40. (a) From Fig. 32-14 we estimate a slope of B/T = 0.50 T/K when M/Mmax = 50%. So  
 

B = 0.50 T = (0.50 T/K)(300 K) = 1.5×102 T. 
 
(b) Similarly, now B/T ≈ 2 so B = (2)(300) = 6.0×102 T. 
 
(c) Except for very short times and in very small volumes, these values are not attainable 
in the lab. 
 
41. The magnetization is the dipole moment per unit volume, so the dipole moment is 
given by μ = MV, where M is the magnetization and V  is the volume of the cylinder 
(V = πr L2 , where r is the radius of the cylinder and L is its length). Thus, 
 

( ) ( ) ( )22 3 2 25.30 10 A m m 5.00 10 m 2.08 10 J T .M r Lμ π π −2 − −= = × 0.500×10 × = ×  
 
42. Let 

K kT B B B= = ⋅ − − ⋅ =
3
2

2μ μ μd i  

which leads to 

T B
k

= =
×

×
=

−

−

4
3

4 10 10 050

3 138 10
0 48

23

23

μ . .

.
. .

J T T

J K
K

c hb g
c h  

 
43. (a) A charge e traveling with uniform speed v around a circular path of radius r takes 
time T = 2πr/v to complete one orbit, so the average current is 
 

.
2

e evi
T rπ

= =  

 
The magnitude of the dipole moment is this multiplied by the area of the orbit: 
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2 .

2 2
ev evrr

r
μ π

π
= =  

 
Since the magnetic force with magnitude evB is centripetal, Newton’s law yields evB = 
mev2/r, so / .er m v eB=  Thus, 
 

μ = F
HG
I
KJ = FHG
I
KJ
F
HG
I
KJ =

1
2

1 1
2

2ev m v
eB B

m v K
B

e
e

eb g .  

 
The magnetic force − ×ev B  must point toward the center of the circular path. If the 
magnetic field is directed out of the page (defined to be +z direction), the electron will 
travel counterclockwise around the circle. Since the electron is negative, the current is in 
the opposite direction, clockwise and, by the right-hand rule for dipole moments, the 
dipole moment is into the page, or in the –z direction. That is, the dipole moment is 
directed opposite to the magnetic field vector. 
 
(b) We note that the charge canceled in the derivation of μ = Ke/B. Thus, the relation μ = 
Ki/B holds for a positive ion.  
 
(c) The direction of the dipole moment is –z, opposite to the magnetic field. 
 
(d) The magnetization is given by M = μene + μini, where μe is the dipole moment of an 
electron, ne is the electron concentration, μi is the dipole moment of an ion, and ni is the 
ion concentration. Since ne = ni, we may write n for both concentrations. We substitute μe 
= Ke/B and μi = Ki/B to obtain 
 

( ) ( )
21 3

20 21 25.3 10 m 6.2 10 J+7.6 10 J 3.1 10 A m.
1.2Te i

nM K K
B

−
− −×

= + = × × = ×  

 
44. Section 32-10 explains the terms used in this problem and the connection between M 
and μ. The graph in Fig. 32-38 gives a slope of 
 

max

ext

/ 0.15 0.75 K/T
/ 0.20 T/K

M M
B T

= =  .  

Thus we can write 

 
max

0.800 T(0.75 K/T) 0.30
2.00 K

μ
μ

= = . 

 
45. (a) We use the notation P(μ) for the probability of a dipole being parallel to B , and 
P(–μ) for the probability of a dipole being antiparallel to the field. The magnetization 
may be thought of as a “weighted average” in terms of these probabilities: 
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( ) ( )
( ) ( )

( )
tanh .

B KT B KT

B KT B KT

N e eN P N P BM N
P P e e kT

μ μ

μ μ

μμ μ μ μ μμ
μ μ

−

−

−− − ⎛ ⎞= = = ⎜ ⎟+ − + ⎝ ⎠
 

 
(b) For μB kT<<  (that is, μB kT/ << 1) we have e±μB/kT ≈ 1 ± μB/kT, so 
 

M N B
kT

N B kT B kT
B kT B kT

N B
kT

= F
HG
I
KJ ≈

+ − −

+ + −
=μ μ μ μ μ

μ μ
μtanh .

1 1
1 1

2b g b g
b g b g  

 

(c) For μB kT>>  we have tanh (μB/kT) ≈ 1, so M N B
kT

N= F
HG
I
KJ ≈μ μ μtanh .  

 
(d) One can easily plot the tanh function using, for instance, a graphical calculator. One 
can then note the resemblance between such a plot and Fig. 32-14. By adjusting the 
parameters used in one’s plot, the curve in Fig. 32-14 can reliably be fit with a tanh 
function. 
 
46. From Eq. 29-37 (see also Eq. 29-36) we write the torque as τ  = −μBh sinθ where the 
minus indicates that the torque opposes the angular displacement θ (which we will 
assume is small and in radians).  The small angle approximation leads to 

hBτ μ θ≈ − , which is an indicator for simple harmonic motion (see section 16-5, 
especially Eq. 16-22).  Comparing with Eq. 16-23, we then find the period of oscillation 
is 

2
h

IT
B

π
μ

=  

 
where I is the rotational inertial that we asked to solve for. Since the frequency is given as 
0.312 Hz, then the period is T = 1/f = 1/(0.312 Hz) = 3.21 s. Similarly, Bh = 18.0 × 10−6 T 
and μ = 6.80 × 10−4 J/T.  The above relation then yields I = 3.19 × 10−9 2kg m .⋅  
  
47. (a) If the magnetization of the sphere is saturated, the total dipole moment is μtotal = 
Nμ, where N is the number of iron atoms in the sphere and μ is the dipole moment of an 
iron atom. We wish to find the radius of an iron sphere with N iron atoms. The mass of 
such a sphere is Nm, where m is the mass of an iron atom. It is also given by 4πρR3/3, 
where ρ is the density of iron and R is the radius of the sphere. Thus Nm = 4πρR3/3 and 
 

N R
m

=
4

3

3πρ .  

We substitute this into μtotal = Nμ  to obtain 
 

1 33
total

total
34 .

3 4
mR R

m
μπρ μμ

πρμ
⎛ ⎞

= ⇒ = ⎜ ⎟
⎝ ⎠
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The mass of an iron atom is m = = × = ×− −56 56 166 10 9 30 1027 26u u kg u kg.b gc h. .  
Therefore, 

R =
× ×

× ×

L
N
MM

O
Q
PP = ×

−

−

3 9 30 10 8 0 10

4 21 10
18 10

26 22

23

1 3

5
. .

.
.

kg J T

kg m J T
m.

3

c hc h
c hc hπ 14 103

 

 

(b) The volume of the sphere is ( )33 5 16 34 4 1.82 10 m 2.53 10 msV Rπ π
= = × = ×

3 3
 and the 

volume of the Earth is 

( )36 21 34 6.37 10 m 1.08 10 m ,eV π
= × = ×

3
 

 
so the fraction of the Earth’s volume that is occupied by the sphere is 
 

2 53 10
108 10

2 3 10
16

21
5.

.
. .×

×
= × −m

m

3

3  

 
48. (a) The number of iron atoms in the iron bar is 
 

N =
×

= ×
7 9 50 10

55847 6 022 10
4 3 10

23
23

. . .

. .
. .

g cm cm cm

g mol mol

3 2c hb gc h
b g c h  

 
Thus the dipole moment of the iron bar is 
 

μ = × × = ⋅−21 10 4 3 10 8 923 23. . . .J T A m2c hc h  
 
(b) τ = μB sin 90° = (8.9 A · m2)(1.57 T) = 13 N · m. 
 

49. (a) The field of a dipole along its axis is given by Eq. 30-29: B
z

=
μ μ0

32π
,  where μ is 

the dipole moment and z is the distance from the dipole. Thus, 
 

( )( )
( )

7 23
6

4 10 T m 1.5 10 J T
3.0 10 T.

2 m

A
B

π

π

− −
−

−9

× ⋅ ×
= = ×

10×10
 

 
(b) The energy of a magnetic dipole μ  in a magnetic field B  is given by 
 

U B B= − ⋅ = −μ μ φcos , 
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where φ is the angle between the dipole moment and the field. The energy required to 
turn it end-for-end (from φ = 0° to φ = 180°) is 
 

ΔU B= = × × = × ×− − − −2 2 15 10 30 10 9 0 1023 6 29 10μ . . .J T T J = 5.6 10 eV.c hc h  
 
The mean kinetic energy of translation at room temperature is about 0.04 eV. Thus, if 
dipole-dipole interactions were responsible for aligning dipoles, collisions would easily 
randomize the directions of the moments and they would not remain aligned. 
 
50. (a)  Equation 29-36 gives  
 
τ  = μrod B sinθ = (2700 A/m)(0.06 m)π(0.003 m)2(0.035 T)sin(68°) = 1.49 × 10−4  N m⋅ . 

 
We have used the fact that the volume of a cylinder is its length times its (circular) cross 
sectional area. 
 
(b) Using Eq. 29-38, we have 
 

ΔU = – μrod B(cos θf  – cos θi) 
                     = –(2700 A/m)(0.06 m)π(0.003m)2(0.035T)[cos(34°) – cos(68°)] 

=  –72.9 μJ. 
 
51. The saturation magnetization corresponds to complete alignment of all atomic dipoles 
and is given by Msat = μn, where n is the number of atoms per unit volume and μ is the 
magnetic dipole moment of an atom. The number of nickel atoms per unit volume is n = 
ρ/m, where ρ is the density of nickel. The mass of a single nickel atom is calculated using 
m = M/NA, where M is the atomic mass of nickel and NA is Avogadro’s constant. Thus, 
 

( )( )3 23
22 3

28 3

8.90g cm 6.02 10 atoms mol
9.126 10 atoms cm

58.71g mol
9.126 10 atoms m .

ANn
M

ρ ×
= = = ×

= ×

 

 
The dipole moment of a single atom of nickel is 
 

μ = =
×
×

= × ⋅−M
n

sat
3

2A m
m

A m4 70 10
9126 10

515 10
5

28
24.

.
. .  

 
52. The Curie temperature for iron is 770°C. If x is the depth at which the temperature 
has this value, then 10°C + (30°C/km)x = 770°C. Therefore, 
 

x =
° − °
°

=
770 10 25C C

30 C km
km. 
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53. (a) The magnitude of the toroidal field is given by B0 = μ0nip, where n is the number 
of turns per unit length of toroid and ip is the current required to produce the field (in the 
absence of the ferromagnetic material). We use the average radius (ravg = 5.5 cm) to 
calculate n: 

3
2

avg

400 turns 1.16 10 turns/m .
2 2 m)

Nn
rπ π −= = = ×

(5.5×10
 

Thus, 

i B
np = =

×
× ⋅ ×

=
−

−
0

0

3

7

0 20 10
4

014
μ

.
( /

.T
T m / A)(1.16 10 m)

 A .3π 10
 

 
(b) If Φ is the magnetic flux through the secondary coil, then the magnitude of the emf 
induced in that coil is ε = N(dΦ/dt) and the current in the secondary is is = ε/R, where R is 
the resistance of the coil. Thus, 

i N
R

d
dts = FHG
I
KJ

Φ .  

 
The charge that passes through the secondary when the primary current is turned on is 
 

0
.s

N d N Nq i dt dt d
R dt R R

ΦΦ Φ
= = = Φ =∫ ∫ ∫  

 
The magnetic field through the secondary coil has magnitude B = B0 + BM = 801B0, 
where BM is the field of the magnetic dipoles in the magnetic material. The total field is 
perpendicular to the plane of the secondary coil, so the magnetic flux is Φ = AB, where A 
is the area of the Rowland ring (the field is inside the ring, not in the region between the 
ring and coil). If r is the radius of the ring’s cross section, then A = πr2. Thus, 
 

Φ = 801 2
0πr B .  

 
The radius r is (6.0 cm – 5.0 cm)/2 = 0.50 cm and 
 

2 2 3 5801 m) (0.20 10 T) 1.26 10 Wb .π − − −Φ = (0.50×10 × = ×  
 

Consequently, 
5

550(1.26 10 Wb) 7.9 10 C .
8.0

q
−

−×
= = ×

Ω
 

 
54. (a) At a distance r from the center of the Earth, the magnitude of the magnetic field is 
given by 

20
3 1 3sin ,

4 mB
r

μ μ λ
π

= +  

 
where μ is the Earth’s dipole moment and λm is the magnetic latitude. The ratio of the 
field magnitudes for two different distances at the same latitude is 
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B
B

r
r

2

1

1
3

2
3= .  

 
With B1 being the value at the surface and B2 being half of B1, we set r1 equal to the 
radius Re of the Earth and r2 equal to Re + h, where h is altitude at which B is half its 
value at the surface. Thus, 

1
2

3

3=
+

R
R h

e

eb g .  

 
Taking the cube root of both sides and solving for h, we get 
 

( ) ( )( )1 3 1 3 32 1 2 1 6370km 1.66 10 km.eh R= − = − = ×  
 
(b) For maximum B, we set sin λm = 1.00. Also, r = 6370 km – 2900 km = 3470 km. Thus, 
 

( ) ( )
( )

( )
7 22 2

220
max 33 6

4

4 10 T m A 8.00 10 A m
1 3sin 1 3 1.00

4 4 m

3.83 10 T.

mB
r

πμ μ
π π

−

−

× ⋅ × ⋅
= + λ = +

3.47×10

= ×

 

 
(c) The angle between the magnetic axis and the rotational axis of the Earth is 11.5°, so 
λm = 90.0° – 11.5° = 78.5° at Earth’s geographic north pole. Also r = Re = 6370 km. Thus, 
 

( ) ( )
( )

7 22 2
20

33

5

4 10 T m A 8.0 10 J T 1 3sin 78.5
1 3sin

4 4 m

6.11 10 T.

m
E

B
R

πμ μ
π π

−

6

−

× ⋅ × + °
= + λ =

6.37×10

= ×

 

 
(d)φ i = ° = °−tan tan . . .1 2 785 84 2b g  
 
(e) A plausible explanation to the discrepancy between the calculated and measured 
values of the Earth’s magnetic field is that the formulas we used are based on dipole 
approximation, which does not accurately represent the Earth’s actual magnetic field 
distribution on or near its surface. (Incidentally, the dipole approximation becomes more 
reliable when we calculate the Earth’s magnetic field far from its center.) 
 
55. (a) From 2

eiA i Rμ π= =  we get 
 

i
Re

= =
×

×
= ×

μ
π π(6.37 102

22

6
88 0 10 6 3 10. .J / T

 m)
A .2  

 



CHAPTER 32 1264 

(b) Yes, because far away from the Earth the fields of both the Earth itself and the current 
loop are dipole fields. If these two dipoles cancel each other out, then the net field will be 
zero. 
 
(c) No, because the field of the current loop is not that of a magnetic dipole in the region 
close to the loop. 
 
56. (a) The period of rotation is T = 2π/ω, and in this time all the charge passes any fixed 
point near the ring. The average current is i = q/T = qω/2π and the magnitude of the 
magnetic dipole moment is 

2 21 .
2 2
qiA r q rωμ π ω
π

= = =  

 
(b) We curl the fingers of our right hand in the direction of rotation. Since the charge is 
positive, the thumb points in the direction of the dipole moment. It is the same as the 
direction of the angular momentum vector of the ring. 
 
57. The interacting potential energy between the magnetic dipole of the compass and the 
Earth’s magnetic field is  

U B Be e= − ⋅ = −μ μ θcos , 
 
where θ is the angle between μ  and Be . For small angle θ, 
 

U B B Be e eθ μ θ μ θ κθ μb g = − ≈ − −
F
HG
I
KJ = −cos 1

2
1
2

2
2  

 
where κ = μBe. Conservation of energy for the compass then gives 
 

2
21 1 const.

2 2
dI
dt
θ κθ⎛ ⎞ + =⎜ ⎟

⎝ ⎠
 

 
This is to be compared with the following expression for the mechanical energy of a 
spring-mass system: 

1
2

1
2

2
2m dx

dt
kxF

HG
I
KJ + = const. ,  

 
which yields ω = k m . So by analogy, in our case 
 

ω κ μ μ
= = =

I
B
I

B
ml

e e
2 12

,  

which leads to 
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μ ω
= =

×

×
= ×

−

−

ml
Be

2 2 2 2 2

6
2

12
0 050 4 0 10 45

12 16 10
8 4 10

. .
. .

kg m rad s

T
J T

b gc h b g
c h  

 

58. (a) Equation 30-22 gives  0
2 222 T

2
irB
R

μ μ
π

= = .  

 

(b) Equation 30-19 (or Eq. 30-6) gives 0 167 T
2

iB
r

μ μ
π

= = .  

 

(c) As in part (b), we obtain a field of 0 22.7 T
2

iB
r

μ μ
π

= = . 

 

(d) Equation 32-16 (with Eq. 32-15) gives 0
2 1.25 T

2
di rB
R

μ μ
π

= = .   

 

(e) As in part (d), we get 0
2 3.75 T

2
di rB
R

μ μ
π

= = .   

 
(f) Equation 32-17 yields B = 22.7 μT. 
 
(g) Because the displacement current in the gap is spread over a larger cross-sectional 
area, values of B within that area are relatively small. Outside that cross-sectional area, 
the two values of B are identical.  
 
59. (a) We use the result of part (a) in Sample Problem — “Magnetic field induced by 
changing electric field:” 

B r dE
dt

r R= ≤
μ ε0 0

2
forb g ,  

where r = 0.80R , and 
 

dE
dt

d
dt

V
d d

d
dt

V e V
d

et t= FHG
I
KJ = = −− −1

0
0τ τ

τ
c h .  

 
Here V0 = 100 V. Thus, 
 

B t r V
d

e V r
d

e

e

e

t t

t

t

b g
c hd ib gb gb g

c hb g
c h

= FHG
I
KJ −FHG

I
KJ = −

= −
× ⋅ ×

×

= − ×

− −

− −
⋅

−
−

− −

μ ε
τ

μ ε
τ

τ τ0 0 0 0 0 0

7 12

3
12

13 12

2 2

4 10 8 85 10 100 0 80 16

2 12 10 5 0

12 10

2π T m A V mm

s mm

T

C
N m ms

ms

2. .

.

. .
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The magnitude is ( )13 12 ms( ) 1.2 10 T .tB t e− −= ×  
 
(b) At time t = 3τ, B(t) = –(1.2 × 10–13 T)e–3τ/τ = –5.9 × 10–15 T, with a magnitude |B(t)|= 
5.9 × 10–15 T. 
 
60. (a) From Eq. 32-1, we have 
 

( ) ( ) ( )( )2 3
in out

0.0070Wb 0.40T 9.2 10 Wb.B B r −Φ = Φ = + π = ×  
 
Thus, the magnetic of the magnetic flux is 9.2 mWb. 
 
(b) The flux is inward. 
 
61. (a) The Pythagorean theorem leads to 
 

2 2
2 2 2 20 0 0

3 3 3

20
3

cos sin cos 4sin
4 2 4

1 3sin ,
4

h v m m m m

m

B B B
r r r

r

μ μ μ μ μ μλ λ λ λ
π π π

μ μ λ
π

⎛ ⎞ ⎛ ⎞= + = + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +

 

 
where cos2 λm + sin2 λm = 1 was used. 
 

(b) We use Eq. 3-6: 
( )
( )

3
0

3
0

2 sin
tan 2 tan .

4 cos
mv

i m
h m

rB
B r

μ μ π λ
φ λ

μ μ π λ
= = =  

 
62. (a) At the magnetic equator (λm = 0), the field is 
 

( ) ( )
( )

7 22 2
50

33 6

4 10 T m A 8.00 10 A m
3.10 10 T.

4 4 6.37 10 m
B

r
πμ μ

π π

−
−

× ⋅ × ⋅
= = = ×

×
 

 
(b) φi = tan–1 (2 tan λm) = tan–1 (0) = 0° . 
 
(c) At λm = 60.0°, we find 
 

( )2 5 2 50
3 1 3sin 3.10 10 1 3sin 60.0 5.59 10 T.

4 mB
r

μ μ λ
π

− −= + = × + ° = ×  

 
(d)φi = tan–1 (2 tan 60.0°) = 73.9°. 
 
(e) At the north magnetic pole (λm = 90.0°), we obtain 
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( ) ( )22 5 50
3 1 3sin 3.10 10 1 3 1.00 6.20 10 T.

4 mB
r

μ μ λ
π

− −= + = × + = ×  

 
(f) φi = tan–1 (2 tan 90.0°) = 90.0°. 
 
63. Let R be the radius of a capacitor plate and r be the distance from axis of the capacitor. 
For points with r ≤ R, the magnitude of the magnetic field is given by 
 

B r dE
dt

=
μ ε0 0

2
,  

and for r ≥ R, it is 

B R
r

dE
dt

=
μ ε0 0

2

2
. 

 
The maximum magnetic field occurs at points for which r = R, and its value is given by 
either of the formulas above: 

B R dE
dtmax .=

μ ε0 0

2
 

 
There are two values of r for which B = Bmax/2: one less than R and one greater.  
 
(a) To find the one that is less than R, we solve 
 

μ ε μ ε0 0 0 0

2 4
r dE

dt
R dE

dt
=  

 
for r. The result is r = R/2 = (55.0 mm)/2 = 27.5 mm.  
 
(b) To find the one that is greater than R, we solve 
 

μ ε μ ε0 0
2

0 0

2 4
R

r
dE
dt

R dE
dt

=  

 
for r. The result is r = 2R = 2(55.0 mm) = 110 mm. 
 
64. (a) Again from Fig. 32-14, for M/Mmax = 50% we have B/T = 0.50. So T = B/0.50 = 
2/0.50 = 4 K. 
 
(b) Now B/T = 2.0, so T = 2/2.0 = 1 K. 
 
65. Let the area of each circular plate be A and that of the central circular section be a. 
Then 

( )

2

2 4 .
2

A R
a R

π
π

= =  
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Thus, from Eqs. 32-14 and 32-15 the total discharge current is given by i = id = 4(2.0 A) 
= 8.0 A. 
 
66. Ignoring points where the determination of the slope is problematic, we find the 
interval of largest | | /E tΔ Δ  is 6 μs < t < 7 μs. During that time, we have, from Eq. 32-14, 
 

( )( )2 6
0 0

| | 2.0m 2.0 10 V md
Ei A
t

ε εΔ
= = ×

Δ
 

 
which yields id = 3.5 × 10–5 A. 
 
67. (a) Using Eq. 32-13 but noting that the capacitor is being discharged, we have 
 

15
12 2 2 2

0

| | 5.0 A 8.8 10 V/m s
(8.85 10 C /N m )(0.0080 m)

d E i
dt Aε −= − = − = − × ⋅

× ⋅
 . 

 
(b) Assuming a perfectly uniform field, even so near to an edge (which is consistent with 
the fact that fringing is neglected in Section 32-4), we follow part (a) of Sample 
Problem — “Treating a changing electric field as a displacement current” and relate the 
(absolute value of the) line integral to the portion of displacement current enclosed: 
 

7
0 ,enc 0 2 5.9 10 Wb/m.d

WHB ds i i
L

μ μ −⎛ ⎞⋅ = = = ×⎜ ⎟
⎝ ⎠∫  

 
68. (a) Using Eq. 32-31, we find μorb,z = –3μB = –2.78 × 10–23 J/T. (That these are 
acceptable units for magnetic moment is seen from Eq. 32-32 or Eq. 32-27; they are 
equivalent to A·m2). 
 
(b) Similarly, for m = −4 we obtain μorb,z = 3.71 × 10–23 J/T. 
 
69. (a) Since the field lines of a bar magnet point toward its South pole, then the B  
arrows in one’s sketch should point generally toward the left and also towards the central 
axis. 
 
(b) The sign of B dA⋅  for every dA  on the side of the paper cylinder is negative. 
 
(c) No, because Gauss’ law for magnetism applies to an enclosed surface only. In fact, if 
we include the top and bottom of the cylinder to form an enclosed surface S then 

s
B dAz ⋅ = 0  will be valid, as the flux through the open end of the cylinder near the 

magnet is positive. 
 
70. (a) From Eq. 21-3, 
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E e
r

= =
× × ⋅

×
= ×

−

−4
160 10 8 99 10

5 2 10
5 3 102

19 9 2

11 2
11

π 0ε
. .

.
. .

C N m C

m
N C

2c hc h
c h

 

 

(b) We use Eq. 29-28: 
( )( )

( )

7 26
20

33 11

4 10 T m A 1.4 10 J T
2.0 10 T .

2 2 5.2 10 m
pB

r
πμμ

π π

− −
−

−

× ⋅ ×
= = = ×

×
 

 

(c) From Eq. 32-30, μ
μ μ

μ
μ

orb J T
J Tp

e

p

B

p

eh m
= = =

×
×

= ×
−

−

4 9 27 10
14 10

6 6 10
24

26
2π .

.
. .  

 
71. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of 
the loop is shown below: 

 
 
(b) For paramagnetic materials, the dipole moment μ  is in the same direction as B . From 
the above figure, μ  points in the –x direction. 
 
(c) Form the right-hand rule, since μ  points in the –x direction, the current flows 
counterclockwise, from the perspective of the bar magnet. 
 
(d) The effect of F  is to move the material toward regions of larger B  values. Since the 

size of B  relates to the “crowdedness” of the field lines, we see that F  is toward the left, 
or –x. 
 
72. (a)  Inside the gap of the capacitor, B1 = μoid r1 /2πR2 (Eq. 32-16); outside the gap the 
magnetic field is B2 = μoid /2πr2 (Eq. 32-17).  Consequently, B2 = B1R

2/r1 r2 = 16.7 nT. 
 
(b) The displacement current is id  = 2πB1R

2/μor1  = 5.00 mA. 
 
73. (a) For a given value of , m  varies from –  to + . Thus, in our case  = 3, and the 
number of different m ’s is 2  + 1 = 2(3) + 1 = 7. Thus, since Lorb,z ∝ m , there are a total 
of seven different values of Lorb,z. 
 
(b) Similarly, since μorb,z ∝ m , there are also a total of seven different values of μorb,z. 
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(c) Since Lorb,z = m h/2π, the greatest allowed value of Lorb,z is given by | m |maxh/2π = 
3h/2π. 
 
(d) Similar to part (c), since μorb,z = – m μB, the greatest allowed value of μorb,z is given by 
| m |maxμB = 3eh/4πme. 
 
(e) From Eqs. 32-23 and 32-29 the z component of the net angular momentum of the 
electron is given by 

net, orb, , .
2 2

s
z z s z

m hm hL L L
π π

= + = +  

 
For the maximum value of Lnet,z let m  = [ m ]max = 3 and ms = 1

2 . Thus 
 

net, max

1 3.53 .
2 2 2z

h hL
π π

⎛ ⎞⎡ ⎤ = + =⎜ ⎟⎣ ⎦ ⎝ ⎠
 

 
(f) Since the maximum value of Lnet,z is given by [mJ]maxh/2π with [mJ]max = 3.5 (see the 
last part above), the number of allowed values for the z component of Lnet,z is given by 
2[mJ]max + 1 = 2(3.5) + 1 = 8. 
 
74. The definition of displacement current is Eq. 32-10, and the formula of greatest 
convenience here is Eq. 32-17: 
 

( )( )6

7
0

2 0.0300m 2.00 10 T2 0.300 A .
4 10 T m Ad

r Bi
ππ

μ π

−

−

×
= = =

× ⋅
 

 
75. (a) The complete set of values are  
 

{−4, −3, −2, −1, 0, +1, +2, +3, +4}   ⇒     nine values in all. 
 
(b) The maximum value is 4μB = 3.71 × 10−23 J/T. 
 
(c) Multiplying our result for part (b) by 0.250 T gives U = +9.27 × 10−24 J. 
 
(d) Similarly, for the lower limit, U = −9.27 × 10−24 J. 
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Chapter 33 
 
 
1. Since λ λΔ << , we find Δf is equal to 
 

8 9
9

2 9 2

(3.0 10 m/s)(0.0100 10 m) 7.49 10 Hz.
(632.8 10 m)

c c λ
λ λ

−

−

Δ × ×⎛ ⎞Δ ≈ = = ×⎜ ⎟ ×⎝ ⎠
 

 
2. (a) The frequency of the radiation is 
 

f c
= =

×
× ×

= × −

λ
3 0 10

10 10 6 4 10
4 7 10

8

5 6
3.

( . )( .
.m / s

m)
Hz. 

 
(b) The period of the radiation is 
 

T
f

= =
×

= =−

1 1
4 7 10

212 3 323.
min

Hz
 s  s.  

 
3. (a) From Fig. 33-2 we find the smaller wavelength in question to be about 515 nm. 
 
(b) Similarly, the larger wavelength is approximately 610 nm. 
 
(c) From Fig. 33-2 the wavelength at which the eye is most sensitive is about 555 nm.  
 
(d) Using the result in (c), we have 
 

8
143.00 10 m/s 5.41 10 Hz

555 nm
cf ×

= = = ×
λ

. 

 
(e) The period is T = 1/f = (5.41 × 1014 Hz)–1 = 1.85 × 10–15 s. 
 
4. In air, light travels at roughly c = 3.0 × 108 m/s. Therefore, for t = 1.0 ns, we have a 
distance of 

d ct= = × × =−( . .30 10 0 308 9m / s) (1.0 10 s) m.  
 
5. If f is the frequency and λ is the wavelength of an electromagnetic wave, then fλ = c. 
The frequency is the same as the frequency of oscillation of the current in the LC circuit 
of the generator. That is, f LC= 1 2/ π , where C is the capacitance and L is the 
inductance. Thus 
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λ
π2 LC

c= .  

The solution for L is 
 

( )
( )( )

292
21

22 2 2 12 8

550 10 m
5.00 10 H.

4 4 17 10 F 2.998 10 m/s
L

Cc
λ

π π

−
−

−

×
= = = ×

× ×
 

 
This is exceedingly small. 
 
6. The emitted wavelength is 
 

( ) ( )( )8 6 122 2 2.998 10 m/s 0.253 10 H 25.0 10 F 4.74 m.c c LC
f

λ π π − −= = = × × × =  

 
7. The intensity is the average of the Poynting vector: 
 

I S cBm= = =
× ×

×
= ×

−

−avg
2

m / s T

H / m
W / m

2

0

8 4 2

6 2
6

2
30 10 10 10

2 126 10
12 10

μ
. .

.
. .

c hc h
c h

 

 
8. The intensity of the signal at Proxima Centauri is 
 

I P
r

= =
×

×
= × −

4
10 10

4 4 3 9 46 10
4 8 102

6

15 2
29

π π

.

. .
. .W

ly m / ly
W / m2

b gc h
 

 
9. If P is the power and Δt is the time interval of one pulse, then the energy in a pulse is 
 

E P t= = × × = ×−Δ 100 10 10 10 10 1012 9 5W s J.c hc h. .  
 
10. The amplitude of the magnetic field in the wave is 
 

B E
cm

m= =
×

×
= ×

−
−320 10

2 998 10
107 10

4

8
12.

.
.V / m

m / s
T. 

 
11. (a) The amplitude of the magnetic field is 
 

9 9
8

2.0V/m 6.67 10 T 6.7 10 T.
2.998 10 m/s

m
m

EB
c

− −= = = × ≈ ×
×

 

 
(b) Since the -waveE oscillates in the z direction and travels in the x direction, we have Bx 
= Bz = 0. So, the oscillation of the magnetic field is parallel to the y axis. 
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(c) The direction (+x) of the electromagnetic wave propagation is determined by E B× . If 
the electric field points in +z, then the magnetic field must point in the –y direction. 
 
With SI units understood, we may write 
 

( )

( )

15
15

8

9 15

2.0cos 10 /
cos 10

3.0 10

6.7 10 cos 10

y m

t x cxB B t
c

xt
c

π
π

π−

⎡ ⎤−⎡ ⎤⎛ ⎞ ⎣ ⎦= × − =⎜ ⎟⎢ ⎥ ×⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= × −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
12. (a) The amplitude of the magnetic field in the wave is 
 

B E
cm

m= =
×

= × −500
2 998 10

167 108
8.

.
.V / m

m / s
T.  

 
(b) The intensity is the average of the Poynting vector: 
 

I S E
c

m= = =
× ⋅ ×

= ×
−

−
avg

2V / m
T m / A m / s

W / m
2

0

2

7 8
2

2
500

2 4 10 2 998 10
331 10

μ
.

.
. .b g

c hc hπ
 

 
13. (a) We use I = 2

mE /2μ0c to calculate Em: 
 

E Im c= = × ⋅ × ×

= ×

−2 2 4 10 140 10 2 998 10

103 10

0
7 3 8

3

μ π T m / A W / m m / s

V / m.

2c hc hc h. .

.
 

 
(b) The magnetic field amplitude is therefore 
 

Bm = =
×

×
= × −E

c
m 103 10

2 998 10
343 10

4

8
6.

.
.V / m

m / s
T. 

 
14. From the equation immediately preceding Eq. 33-12, we see that the maximum value 
of ∂B/∂t is ωBm . We can relate Bm to the intensity:  
 

02m
m

c IEB
c c

μ
= = , 

 
and relate the intensity to the power P (and distance r) using Eq. 33-27.   Finally, we 
relate ω to wavelength λ using ω = kc = 2πc/λ.  Putting all this together, we obtain 
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 60

max

2 2 3.44 10  T/s
4

PB c
t c r

μ π
π λ

∂⎛ ⎞ = = ×⎜ ⎟∂⎝ ⎠
. 

 
15. (a) The average rate of energy flow per unit area, or intensity, is related to the electric 
field amplitude Em by I E cm= 2

02/ μ , so 
 

E cIm = = × × ×

= ×

− −

−

2 2 4 10 2 998 10 10 10

8 7 10

0
7 8 6 2

2

μ π H / m m / s W / m

V / m

c hc hc h.

. .
 

 
(b) The amplitude of the magnetic field is given by 
 

B E
cm

m= =
×

×
= ×

−
−8 7 10

2 998 10
2 9 10

2

8
10.

.
.V / m

m / s
T. 

 
(c) At a distance r from the transmitter, the intensity is 2/ 2 ,I P r= π  where P is the power 
of the transmitter over the hemisphere having a surface area 22 rπ . Thus 
 

( ) ( )22 6 2 32 2 m 10 10 W/m 6.3 10 W.P r Iπ π 3 −= = 10×10 × = ×  
 
16. (a) The power received is 
 

( )
( )

2
12 22

26

 m / 41.0 10 W 1.4 10 W.
4 6.37 10 m

rP π− −(300 )
= × = ×

π ×
 

 
(b) The power of the source would be 
 

( )( )
( )

1222 4 15 15
26

1.0 10 W4 4 2.2 10 ly 9.46 10 m/ly 1.1 10 W.
4 6.37 10 m

P r Iπ π
π

−⎡ ⎤×⎢ ⎥⎡ ⎤= = × × = ×⎣ ⎦ ⎢ ⎥×⎣ ⎦
 

 
17. (a) The magnetic field amplitude of the wave is 
 

B E
cm

m= =
×

= × −2 0
2 998 10

6 7 108
9.

.
.V / m

m / s
T.  

(b) The intensity is 
 

I E
c

m= =
× ⋅ ×

= ×
−

−
2

0

2

7 8
3

2
2 0

2 4 10 2 998 10
53 10

μ
.

.
. .

V / m
T m / A m / s

W / m2b g
c hc hπ
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(c) The power of the source is 
 

( ) ( )22 3 2
avg4 4 10 m 5.3 10 W/m 6.7 W.P r I −= π = π × =  

 
18. Equation 33-27 suggests that the slope in an intensity versus inverse-square-distance 
graph (I plotted versus r −2 ) is P/4π.  We estimate the slope to be about 20 (in SI units), 
which means the power is P = 4π(30) ≈ 2.5 ×102 W. 
 
19. The plasma completely reflects all the energy incident on it, so the radiation pressure 
is given by pr = 2I/c, where I is the intensity. The intensity is I = P/A, where P is the 
power and A is the area intercepted by the radiation. Thus 
 

( )
( ) ( )

9
7

6 2 8

2 1.5 10 W2 1.0 10 Pa.
1.00 10 m 2.998 10 m/sr

Pp
Ac −

×
= = = ×

× ×
 

 
20. (a) The radiation pressure produces a force equal to 
 

( ) ( ) ( ) ( )22 6
2 2 8

8

W/m 6.37 10 m
6.0 10 N.

2.998 10 m/sr r e e
IF p R R
c

3π 1.4×10 ×⎛ ⎞= π = π = = ×⎜ ⎟ ×⎝ ⎠
 

 
(b) The gravitational pull of the Sun on the Earth is 
 

( ) ( ) ( )
( )

11 2 2 30 24

grav 22 11

22

6.67 10 N m / kg 2.0 10 kg 5.98 10 kg

1.5 10 m

3.6 10 N,

s e

es

GM MF
d

−× ⋅ × ×
= =

×

= ×

 

 
which is much greater than Fr. 
 
21. Since the surface is perfectly absorbing, the radiation pressure is given by pr = I/c, 
where I is the intensity. Since the bulb radiates uniformly in all directions, the intensity a 
distance r from it is given by I = P/4πr2, where P is the power of the bulb. Thus 
 

p P
r cr = =

×
= × −

4
500
2 998 10

5 9 102 2 8
8

π π 1.5

W
4 m m / s

Pa.b g c h.
.  

 
22. The radiation pressure is 
 

p I
cr = =

×
= × −10

2 998 10
33 108

8W / m
m / s

Pa.
2

.
.  
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23. (a) The upward force supplied by radiation pressure in this case (Eq. 33-32) must be 
equal to the magnitude of the pull of gravity (mg).  For a sphere, the “projected” area 
(which is a factor in Eq. 33-32) is that of a circle A = πr2 (not the entire surface area of 
the sphere) and the volume (needed because the mass is given by the density multiplied 
by the volume: m = ρV) is 34 / 3V rπ= .  Finally, the intensity is related to the power P of 
the light source and another area factor 4πR2, given by Eq. 33-27.  In this way, with 

4 31.9 10 kg/m ,ρ = × equating the forces leads to 
 

3
2 11

2

4 14 4.68 10 W
3
r gP R c

r
ππ ρ

π
⎛ ⎞

= = ×⎜ ⎟
⎝ ⎠

. 

 
(b) Any chance disturbance could move the sphere from being directly above the source, 
and then the two force vectors would no longer be along the same axis. 
 
24. We require Fgrav = Fr or 

G mM
d

IA
c

s

es
2

2
= ,  

and solve for the area A: 
 

A cGmM
Id

s

es

= =
× ⋅ × ×

× ×

= × =

−

2
6 67 10 1500

2 140 10 150 10
9 5 10 0 95

2

11

3 11

5

( . / )(
( . )( .

. . .

N m kg kg)(1.99 10 kg)(2.998 10 m / s)
W / m m)

m km

2 2 30 8

2 2

2 2

 

 
25. Let f be the fraction of the incident beam intensity that is reflected. The fraction 
absorbed is 1 – f. The reflected portion exerts a radiation pressure of 
 

02
r

f Ip
c

=  

 
and the absorbed portion exerts a radiation pressure of 
 

p f I
ca =

−( ) ,1 0  

 
where I0 is the incident intensity. The factor 2 enters the first expression because the 
momentum of the reflected portion is reversed. The total radiation pressure is the sum of 
the two contributions: 

0 0 0
total

2 (1 ) (1 ) .r a
f I f I f Ip p p

c c
+ − +

= + = =  

 
To relate the intensity and energy density, we consider a tube with length  and cross-
sectional area A, lying with its axis along the propagation direction of an electromagnetic 
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wave. The electromagnetic energy inside is U uA= ,  where u is the energy density. All 
this energy passes through the end in time t c= / ,  so the intensity is 
 

.U uA cI uc
At A

= = =  

 
Thus u = I/c. The intensity and energy density are positive, regardless of the propagation 
direction. For the partially reflected and partially absorbed wave, the intensity just outside 
the surface is  

I = I0 + f I0 = (1 + f )I0, 
 
where the first term is associated with the incident beam and the second is associated with 
the reflected beam. Consequently, the energy density is 

u I
c

f I
c

= =
+( ) ,1 0  

the same as radiation pressure. 
 
26. The mass of the cylinder is ( / 4) ,m D Hρ π 2=  where D is the diameter of the cylinder. 
Since it is in equilibrium 
 

2 2

net
2 0.

4 4r
HD g D IF mg F

c
ρ π⎛ ⎞π ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

We solve for H: 
 

2

2 2 8 3 3

7

2 2 1
/ 4

2(4.60W)
m) / 4](9.8m/s )(3.0 10 m/s)(1.20 10 kg/m )

4.91 10 m.

I PH
gc D gcρ ρ

−3

−

⎛ ⎞= = ⎜ ⎟π⎝ ⎠

=
[π(2.60×10 × ×

= ×

 

 
27. (a) Since c f= λ ,  where λ is the wavelength and f is the frequency of the wave, 
 

f c
= =

×
= ×

λ
2 998 10

30
10 10

8
8.

.
.m / s

m
Hz. 

 
(b) The angular frequency is 
 

82 2 Hz) 6.3 10 rad/s.fω π π 8= = (1.0×10 = ×  
 
(c) The angular wave number is 
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k = = =
2 2 21π
λ

π
3.0 m

rad / m..  

 
(d) The magnetic field amplitude is 
 

6
8

300V/m 1.0 10 T.
2.998 10 m/s

m
m

EB
c

−= = = ×
×

 

 
(e) B  must be in the positive z direction when E  is in the positive y direction in order for 
E B×  to be in the positive x direction (the direction of propagation). 
 
(f) The intensity of the wave is 
 

2 2
2 2 2

8
0

(300V/m) 119W/m 1.2 10 W/m .
2 2(4 H/m)(2.998 10 m/s)

mEI
cμ π −7= = = ≈ ×

×10 ×
 

 
(g) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is 
delivered to it is I/c, so 
 

dp
dt

IA
c

= =
×

= × −( )( . )
.

.119 2 0
2 998 10

8 0 108
7W / m m

m / s
N.

2 2

 

 
(h) The radiation pressure is 
 

p dp dt
Ar = =

×
= ×

−
−/ .

.
.8 0 10

2 0
4 0 10

7
7N

m
Pa.2  

 
28. (a) Assuming complete absorption, the radiation pressure is 
 

p I
cr = =

×
×

= × −1 10
3 0 10

4 7 10
3

8
6.4

.
. .W m

m s
N m

2
2  

 
(b) We compare values by setting up a ratio: 
 

p
p

r

0

6

5
114 7 10

1 0 10
4 7 10=

×
×

= ×
−

−.
.

. .N m
N m

2

2  

 
29. If the beam carries energy U away from the spaceship, then it also carries momentum 
p = U/c away. Since the total momentum of the spaceship and light is conserved, this is 
the magnitude of the momentum acquired by the spaceship. If P is the power of the laser, 
then the energy carried away in time t is U = Pt. We note that there are 86400 seconds in 
a day. Thus, p = Pt/c and, if m is mass of the spaceship, its speed is 
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v p
m

Pt
mc

= = =
×

× ×
= × −(

( .
.10 10

15 10
19 10

3

3
3W)(86400 s)

kg)(2.998 10 m / s)
m / s.8  

 
30. (a) We note that the cross-section area of the beam is πd 2/4, where d is the diameter 
of the spot (d = 2.00λ). The beam intensity is 
 

I P
d

= =
×

×
= ×

−

−π π
2

3

9 2
9 2

4
5 00 10

2 00 633 10 4
3 97 10

/
.

. /
. .W

m
W / m

b gc h
 

 
(b) The radiation pressure is 
 

p I
cr = =

×
×

=
397 10
2 998 10

132
9 2

8

.
.

.W / m
m / s

Pa.  

 
(c) In computing the corresponding force, we can use the power and intensity to eliminate 
the area (mentioned in part (a)). We obtain 
 

F d p P
I

pr r r=
F
HG
I
KJ = FHG

I
KJ =

×

×
= ×

−
−π 2 3

2
11

4
500 10 132

167 10
. .

.
W Pa

3.97 10 W / m
N.9

c hb g
 

 
(d) The acceleration of the sphere is 
 

a F
m

F
d

r r= = =
×

× ×

= ×

−

−ρ( / )
( .

)[( . )(
. .

π π(5.00 1033

11

9

3

6
6 167 10

2 00 633 10
314 10

N)
kg / m m)]

m / s

3 3

2

 

 
31. We shall assume that the Sun is far enough from the particle to act as an isotropic 
point source of light.  
 
(a) The forces that act on the dust particle are the radially outward radiation force rF  and 

the radially inward (toward the Sun) gravitational force gF .  Using Eqs. 33-32 and 33-27, 
the radiation force can be written as 
 

22

2 24 4
S S

r
P P RIA RF

c r c r c
π

π
= = = , 

 
where R is the radius of the particle, and 2A Rπ=  is the cross-sectional area. On the other 
hand, the gravitational force on the particle is given by Newton’s law of gravitation (Eq. 
13-1): 
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3 3

2 2 2

(4 / 3) 4
3

S S S
g

GM m GM R GM RF
r r r

ρ π π ρ
= = = , 

 
where 3(4 / 3)m Rρ π=  is the mass of the particle. When the two forces balance, the 
particle travels in a straight path. The condition that r gF F=  implies 
 

2 3

2 2

4
4 3

S SP R GM R
r c r

π ρ
= , 

which can be solved to give 
 

26

8 3 3 11 3 2 30

7

3 3(3.9 10 W)
16 16 (3 10 m/s)(3.5 10 kg/m )(6.67 10  m /kg s )(1.99 10 kg)
1.7 10  m .

S

S

PR
c GMπ ρ π −

−

×
= =

× × × ⋅ ×
= ×

 
(b) Since gF  varies with 3R  and rF  varies with 2 ,R  if the radius R is larger, then g rF F> , 
and the path will be curved toward the Sun (like path 3).  
 
32. After passing through the first polarizer the initial intensity I0 reduces by a factor of 
1/2. After passing through the second one it is further reduced by a factor of cos2 (π – 
θ1 – θ2) = cos2 (θ1 + θ2). Finally, after passing through the third one it is again reduced by 
a factor of cos2 (π – θ2 – θ3) = cos2 (θ2 + θ3). Therefore, 
 

2 2 2 2
1 2 2 3

0
4

1 1cos ( )cos ( ) cos (50 50 )cos (50 50 )
2 2

4.5 10 .

fI
I

θ θ θ θ

−

= + + = °+ ° °+ °

= ×

 

 
Thus, 0.045% of the light’s initial intensity is transmitted. 
 
33. Let I0 be the intensity of the unpolarized light that is incident on the first polarizing 
sheet. The transmitted intensity is I I1

1
2 0= ,  and the direction of polarization of the 

transmitted light is θ1 = 40° counterclockwise from the y axis in the diagram. The 
polarizing direction of the second sheet is θ2 = 20° clockwise from the y axis, so the angle 
between the direction of polarization that is incident on that sheet and the polarizing 
direction of the sheet is 40° + 20° = 60°. The transmitted intensity is 
 

I I I2 1 060 1
2

60= °= °cos cos2 2 ,  

 
and the direction of polarization of the transmitted light is 20° clockwise from the y axis. 
The polarizing direction of the third sheet is θ3 = 40° counterclockwise from the y axis. 
Consequently, the angle between the direction of polarization of the light incident on that 
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sheet and the polarizing direction of the sheet is 20° + 40° = 60°. The transmitted 
intensity is 

2 4 2
3 2 0 0

1cos 60 cos 60 3.1 10 .
2

I I I I−= ° = ° = ×  

 
Thus, 3.1% of the light’s initial intensity is transmitted. 
 
34. In this case, we replace I0 cos2 70° by 1

2 0I  as the intensity of the light after passing 
through the first polarizer. Therefore, 
 

I If = °− ° = ° =
1
2

90 70 1
2

43 20 190
2 2cos ( ) ( )(cos ) .W / m W / m2 2  

 
35. The angle between the direction of polarization of the light incident on the first 
polarizing sheet and the polarizing direction of that sheet is θ1 = 70°. If I0 is the intensity 
of the incident light, then the intensity of the light transmitted through the first sheet is 
 

I I1 0
2

1
243 70 503= = °=cos ( ) cos . .θ W / m W / m2 2  

 
The direction of polarization of the transmitted light makes an angle of 70° with the 
vertical and an angle of θ2 = 20° with the horizontal. θ2 is the angle it makes with the 
polarizing direction of the second polarizing sheet. Consequently, the transmitted 
intensity is 

I I2 1
2

2
2503 20 4 4= = °=cos ( . ) cos . .θ W / m W / m2 2  

 
36. (a) The fraction of light that is transmitted by the glasses is 
 

I
I

E
E

E
E E

E
E E

f f v

v h

v

v v0

2

0
2

2

2 2

2

2 22 3
016= =

+
=

+
=

( . )
. . 

 
(b) Since now the horizontal component of E  will pass through the glasses, 
 

I
I

E
E E

E
E E

f h

v h

v

v v0

2

2 2

2

2 2

2 3
2 3

084=
+

=
+

=
( . )

( . )
. .  

 
37. (a) The rotation cannot be done with a single sheet. If a sheet is placed with its 
polarizing direction at an angle of 90° to the direction of polarization of the incident 
radiation, no radiation is transmitted. It can be done with two sheets. We place the first 
sheet with its polarizing direction at some angle θ, between 0 and 90°, to the direction of 
polarization of the incident radiation. Place the second sheet with its polarizing direction 
at 90° to the polarization direction of the incident radiation. The transmitted radiation is 
then polarized at 90° to the incident polarization direction. The intensity is  
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2 2 2 2
0 0cos cos (90 ) cos sinI I Iθ θ θ θ= ° − = , 

 
where 0I  is the incident radiation. If θ is not 0 or 90°, the transmitted intensity is not zero. 
 
(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of θ 
= 90°/n relative to the direction of polarization of the incident radiation. The polarizing 
direction of each successive sheet is rotated 90°/n in the same sense from the polarizing 
direction of the previous sheet. The transmitted radiation is polarized, with its direction of 
polarization making an angle of 90° with the direction of polarization of the incident 
radiation. The intensity is  

2
0 cos (90 / )nI I n= ° . 

 
We want the smallest integer value of n for which this is greater than 0.60I0. We start 
with n = 2 and calculate 2cos (90 / )n n° . If the result is greater than 0.60, we have obtained 
the solution. If it is less, increase n by 1 and try again. We repeat this process, increasing 
n by 1 each time, until we have a value for which 2cos (90 / )n n°  is greater than 0.60. The 
first one will be n = 5. 
 
Note: The intensities associated with n = 1 to 5 are: 
 

2
1 0

4
2 0 0 0

6
3 0 0

8
4 0 0

10
5 0 0

cos (90 ) 0
cos (45 ) / 4 0.25
cos (30 ) 0.422
cos (22.5 ) 0.531
cos (18 ) 0.605 .

n

n

n

n

n

I I
I I I I
I I I
I I I
I I I

=

=

=

=

=

= ° =
= ° = =
= ° =
= ° =
= ° =

 

 
Thus, we see that I  > 0.60I0 with 5 sheets. 
 
38. We note the points at which the curve is zero (θ2 = 0° and 90°) in Fig. 33-43.  We 
infer that sheet 2 is perpendicular to one of the other sheets at θ2 = 0°, and that it is 
perpendicular to the other of the other sheets when θ2 = 90°.  Without loss of generality, 
we choose θ1 = 0°, θ3 = 90°.   Now, when θ2 = 30°, it will be Δθ = 30° relative to sheet 1 
and Δθ′ = 60° relative to sheet 3.  Therefore, 
 

 2 21 cos ( ) cos ( ) 9.4%
2

f

i

I
I

θ θ ′= Δ Δ = . 

 
39. (a) Since the incident light is unpolarized, half the intensity is transmitted and half is 
absorbed. Thus the transmitted intensity is I = 5.0 mW/m2. The intensity and the electric 
field amplitude are related by I E cm= 2

02/ ,μ so  
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E cIm = = × × ×

=

−2 2 4
19

0
3μ ( )

.
π 10−7 H / m)(3.00 10 m / s)(5.0 10 W / m

V / m.

8 2

 

 
(b) The radiation pressure is pr = Ia/c, where Ia is the absorbed intensity. Thus 
 

pr =
×

×
= ×

−
−50 10

300 10
17 10

3

8
11.

.
.W / m

m / s
Pa.

2

 

 
40. We note the points at which the curve is zero (θ2 = 60° and 140°) in Fig. 33-44.  We 
infer that sheet 2 is perpendicular to one of the other sheets at θ2 = 60°, and that it is 
perpendicular to the other of the other sheets when θ2 = 140°.  Without loss of generality, 
we choose θ1 = 150°, θ3 = 50°.   Now, when θ2 = 90°, it will be |Δθ | = 60° relative to 
sheet 1 and |Δθ′ | = 40° relative to sheet 3.  Therefore, 
 

2 21 cos ( ) cos ( ) 7.3%
2

f

i

I
I

θ θ ′= Δ Δ = . 

 
41. As the polarized beam of intensity I0 passes the first polarizer, its intensity is reduced 
to 2

0 cos .I θ  After passing through the second polarizer, which makes a 90° angle with 
the first filter, the intensity is  

2 2
0 0( cos )sin /10I I Iθ θ= =  

 
which implies sin2 θ cos2 θ = 1/10, or sinθ cosθ = sin2θ /2 =1/ 10 . This leads to θ = 70° 
or 20°. 
 
42. We examine the point where the graph reaches zero: θ 2 = 160º.  Since the polarizers 
must be “crossed” for the intensity to vanish, then θ1 = 160º – 90º  = 70º.  Now we 
consider the case θ 2 = 90º (which is hard to judge from the graph).  Since θ1 is still equal 
to 70º, then the angle between the polarizers is now Δθ  =20º.  Accounting for the 
“automatic” reduction (by a factor of one-half) whenever unpolarized light passes 
through any polarizing sheet, then our result is  
 

1
2 cos2(Δθ) = 0.442 ≈ 44%. 

 
43. Let I0 be the intensity of the incident beam and f be the fraction that is polarized. Thus, 
the intensity of the polarized portion is f I0. After transmission, this portion contributes 
f I0 cos2 θ to the intensity of the transmitted beam. Here θ is the angle between the 
direction of polarization of the radiation and the polarizing direction of the filter. The 
intensity of the unpolarized portion of the incident beam is (1– f )I0 and after transmission, 
this portion contributes (1 – f )I0/2 to the transmitted intensity. Consequently, the 
transmitted intensity is 
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2
0 0

1cos (1 ) .
2

I f I f Iθ= + −  

 
As the filter is rotated, cos2 θ varies from a minimum of 0 to a maximum of 1, so the 
transmitted intensity varies from a minimum of 
 

I f Imin ( )= −
1
2

1 0  

to a maximum of 

max 0 0 0
1 1(1 ) (1 ) .
2 2

I f I f I f I= + − = +  

 
The ratio of Imax to Imin is 

I
I

f
f

max

min

.=
+
−

1
1

 

 
Setting the ratio equal to 5.0 and solving for f, we get f = 0.67. 
 
44. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 
 

 2 2
0 2 2

1 cos cos (90 )
2

I I θ θ= ° − . 

 

Using trig identities, we rewrite this as 2
2

0

1 sin (2 )
8

I
I

θ= . 

 
(a) Therefore we find θ2 = 12 sin–1 0.40 = 19.6°.   
 
(b) Since the first expression we wrote is symmetric under the exchange θ2 ↔ 90° – θ2, 
we see that the angle's complement, 70.4°, is also a solution. 
 
45. Note that the normal to the refracting surface is vertical in the diagram. The angle of 
refraction is θ2 = 90° and the angle of incidence is given by tan θ1 = L/D, where D is the 
height of the tank and L is its width. Thus 
 

1 1
1

1.10 mtan tan 52.31 .
0.850 m

L
D

θ − − ⎛ ⎞⎛ ⎞= = = °⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The law of refraction yields 
 

n n1 2
2

1

100 90
52 31

126= =
°

°
F
HG

I
KJ =

sin
sin

( . ) sin
sin .

. ,θ
θ
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where the index of refraction of air was taken to be unity. 
 
46. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-47(b) 
would consist of a “y = x” line at 45º in the plot. Instead, the curve for material 1 falls 
under such a “y = x” line, which tells us that all refraction angles are less than incident 
ones.  With θ2 < θ1 Snell’s law implies n2 > n1 . 
 
(b) Using the same argument as in (a), the value of n2 for material 2 is also greater than that 
of water (n1). 
 
(c) It’s easiest to examine the topmost point of each curve.  With θ2 = 90º and θ1 = ½(90º), 
and with n2 = 1.33 (Table 33-1), we find  n1 = 1.9 from Snell’s law. 
 
(d) Similarly, with θ2 = 90º and θ1 = ¾(90º), we obtain  n1 = 1.4. 
 
47. The law of refraction states 
 

n n1 2sin sin1 2θ θ= .  
 
We take medium 1 to be the vacuum, with n1 = 1 and θ1 = 32.0°. Medium 2 is the glass, 
with θ2 = 21.0°. We solve for n2: 
 

n n2 1
1

2

100 32 0
210

148= =
°
°

F
HG

I
KJ =

sin
sin

( . ) sin .
sin .

. .θ
θ

 

 
48. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b) 
would consist of a “y = x” line at 45º in the plot.  Instead, the curve for material 1 falls 
under such a “y = x” line, which tells us that all refraction angles are less than incident 
ones.  With θ2 < θ1 Snell’s law implies n2 > n1 . 
 
(b) Using the same argument as in (a), the value of n2 for material 2 is also greater than that 
of water (n1). 
 
(c) It’s easiest to examine the right end-point of each curve. With θ1 = 90º and θ2 = 
¾(90º), and with n1 = 1.33 (Table 33-1) we find, from Snell’s law, n2 = 1.4 for material 1. 
 
(d) Similarly, with θ1 = 90º and θ2 = ½(90º), we obtain  n2 = 1.9. 
 
49. The angle of incidence for the light ray on mirror B is 90° – θ. So the outgoing ray r' 
makes an angle 90° – (90° – θ) = θ with the vertical direction, and is antiparallel to the 
incoming one. The angle between i and r' is therefore 180°. 
 
50. (a) From  n1sinθ1 = n2sinθ2  and  n2sinθ2 = n3sinθ3, we find n1sinθ1 = n3sinθ3. This has 
a simple implication: that θ1 =θ3 when n1 = n3. Since we are given θ1 = 40º in Fig. 33-
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50(a), then we look for a point in Fig. 33-50(b) where θ3 = 40º.  This seems to occur at n3 
=  1.6, so we infer that n1 = 1.6. 
 
(b) Our first step in our solution to part (a) shows that information concerning n2 
disappears (cancels) in the manipulation.  Thus, we cannot tell; we need more 
information. 
 
(c) From 1.6sin70° = 2.4sinθ3 we obtain θ3 = 39°. 
 
51. (a) Approximating n = 1 for air, we have 
 

1 1 5 5sin (1)sin 56.9n θ θ θ= ⇒ ° =  
 
and with the more accurate value for nair in Table 33-1, we obtain 56.8°. 
 
(b) Equation 33-44 leads to 
 

n n n n1 1 2 2 3 3 4 4sin sin sin sinθ θ θ θ= = =  
so that 

1 1
4 1

4

sin sin 35.3 .n
n

θ θ− ⎛ ⎞
= = °⎜ ⎟

⎝ ⎠
 

 
52. (a) A simple implication of Snell’s law is that θ2 = θ1 when n1 = n2.  Since the angle of 
incidence is shown in Fig. 33-52(a) to be 30º, we look for a point in Fig. 33-52(b) where 
θ2 = 30º.  This seems to occur when n2 = 1.7.  By inference, then, n1 = 1.7. 
 
(b) From 1.7sin(60º) = 2.4sin(θ2) we get θ2 = 38°.  
 
53. Consider diagram (a) shown below. The incident angle is θ and the angle of refraction 
is θ2. Since 2 90θ α+ = °  and 2 180 ,φ α+ = °  we have 
 

( )2
190 90 180 .
2 2

φθ α φ= ° − = ° − ° − =  

 

 
(a) 

 
(b) 
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Next, examine diagram (b) and consider the triangle formed by the two normals and the 
ray in the interior. One can show that ψ is given by 
 
 22( )ψ θ θ= − . 
 
Upon substituting φ/2 for θ2, we obtain 2( / 2),ψ θ φ= −  which yields ( ) / 2.θ φ ψ= +  
Thus, using the law of refraction, we find the index of refraction of the prism to be 
 

1
2

1
2 2

sin ( )sin .
sin sin

n φ ψθ
θ φ

+
= =  

 
Note: The angle ψ is called the deviation angle. Physically, it represents the total angle 
through which the beam has turned while passing through the prism. This angle is 
minimum when the beam passes through the prism “symmetrically,” as it does in this 
case. Knowing the value of φ and ψ allows us to determine the value of n for the prism 
material.   
 
54. (a) Snell’s law gives   nair sin(50º) = n2b sin θ2b and nair sin(50º) = n2r sin θ2r where we 
use subscripts b and r for the blue and red light rays.  Using the common approximation 
for air’s index (nair = 1.0) we find the two angles of refraction to be 30.176° and 30.507°.  
Therefore, Δθ = 0.33°. 
 
(b) Both of the refracted rays emerge from the other side with the same angle (50°) with 
which they were incident on the first side (generally speaking, light comes into a block at 
the same angle that it emerges with from the opposite parallel side).  There is thus no 
difference (the difference is 0°) and thus there is no dispersion in this case. 
 
55. Consider a ray that grazes the top of the pole, as shown in the diagram that follows. 
Here θ1 = 90° – θ = 35°, 1 0.50 m,l =  and 2 1.50 m.l =  The length of the shadow is x + L. 
x is given by  

1 1tan (0.50 m) tan 35 0.35 m.x l θ= = ° =  
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According to the law of refraction, n2 sin θ2 = n1 sin θ1. We take n1 = 1 and n2 = 1.33 
(from Table 33-1). Then, 

θ θ
2

1 1

2

1 35 0
133

2555=
F
HG
I
KJ =

°F
HG

I
KJ = °− −sin sin sin sin .

.
. .

n
 

The distance L is given by 
 

2 2tan (1.50 m) tan 25.55 0.72 m.L l θ= = ° =  
 

The length of the shadow is 0.35 m + 0.72 m = 1.07 m. 
 
56. (a) We use subscripts b and r for the blue and red light rays.  Snell’s law gives  
 

θ2b = sin−1
⎝⎜
⎛

⎠⎟
⎞1

1.343 sin(70°)  = 44.403° 

θ2r = sin−1
⎝⎜
⎛

⎠⎟
⎞1

1.331 sin(70°)  = 44.911° 

 
for the refraction angles at the first surface (where the normal axis is vertical).  These rays 
strike the second surface (where A is) at complementary angles to those just calculated 
(since the normal axis is horizontal for the second surface).  Taking this into 
consideration, we again use Snell’s law to calculate the second refractions (with which 
the light re-enters the air):  
 

θ3b = sin−1[1.343sin(90°− θ2b)] = 73.636° 
θ3r = sin−1[1.331sin(90°− θ2r)] = 70.497° 

 
which differ by 3.1° (thus giving a rainbow of angular width 3.1°). 
 
(b) Both of the refracted rays emerge from the bottom side with the same angle (70°) with 
which they were incident on the topside (the occurrence of an intermediate reflection 
[from side 2] does not alter this overall fact: light comes into the block at the same angle 
that it emerges with from the opposite parallel side).  There is thus no difference (the 
difference is 0°) and thus there is no rainbow in this case. 
 
57. Reference to Fig. 33-24 may help in the visualization of why there appears to be a 
“circle of light” (consider revolving that picture about a vertical axis). The depth and the 
radius of that circle (which is from point a to point f in that figure) is related to the 
tangent of the angle of incidence. Thus, the diameter D of the circle in question is 
 

D h h
nc

w

= =
F
HG
I
KJ

L
NM

O
QP

= F
HG
I
KJ

L
NM

O
QP =

− −2 2 1 2 80 0 1
133

1821 1tan tan sin . tan sin
.

θ cm cm.b g  

 

58. The critical angle is θ c n
= F
HG
I
KJ = F

HG
I
KJ = °− −sin sin

.
.1 11 1

18
34  
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59. (a) No refraction occurs at the surface ab, so the angle of incidence at surface ac is 
90° – φ, as shown in the figure below. 
 

 
 
For total internal reflection at the second surface, ng sin (90° – φ) must be greater than na. 
Here ng is the index of refraction for the glass and na is the index of refraction for air. 
Since sin (90° – φ) = cos φ, we want the largest value of φ for which ng cos φ ≥ na. Recall 
that cos φ decreases as φ increases from zero. When φ has the largest value for which 
total internal reflection occurs, then ng cos φ = na, or 
 

φ =
F
HG
I
KJ = F

HG
I
KJ = °− −cos cos

.
. .1 1 1

152
48 9n

n
a

g

 

 
The index of refraction for air is taken to be unity. 
 
(b) We now replace the air with water. If nw = 1.33 is the index of refraction for water, 
then the largest value of φ for which total internal reflection occurs is 
 

φ =
F
HG
I
KJ = F

HG
I
KJ = °− −cos cos .

.
. .1 1 133

152
29 0n

n
w

g

 

 
60. (a) The condition (in Eq. 33-44) required in the critical angle calculation is θ3 = 90°. 
Thus (with θ2 = θc, which we don’t compute here), 
 

n n n1 1 2 2 3 3sin sin sinθ θ θ= =  
 
leads to θ1 = θ = sin–1 n3/n1 = 54.3°. 
 
(b) Yes. Reducing θ leads to a reduction of θ2 so that it becomes less than the critical 
angle; therefore, there will be some transmission of light into material 3. 
 
(c) We note that the complement of the angle of refraction (in material 2) is the critical 
angle. Thus, 

n n n n
n

n nc1 2 2
3

2

2

2
2

3
21sin =θ θcos = −

F
HG
I
KJ = −  

leading to θ = 51.1°. 
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(d) No. Reducing θ leads to an increase of the angle with which the light strikes the 
interface between materials 2 and 3, so it becomes greater than the critical angle. 
Therefore, there will be no transmission of light into material 3. 
 
61. (a) We note that the complement of the angle of refraction (in material 2) is the 
critical angle.  Thus, 

 
2

2 23
1 2 2 2 3

2

sin cos 1c
nn n n n n
n

θ θ
⎛ ⎞

= = − = −⎜ ⎟
⎝ ⎠

 

 
leading to θ = 26.8°. 
 
(b) Increasing θ leads to a decrease of the angle with which the light strikes the interface 
between materials 2 and 3, so it becomes greater than the critical angle; therefore, there 
will be some transmission of light into material 3. 
 
62. (a) Reference to Fig. 33-24 may help in the visualization of why there appears to be a 
“circle of light” (consider revolving that picture about a vertical axis). The depth and the 
radius of that circle (which is from point a to point f in that figure) is related to the 
tangent of the angle of incidence. The diameter of the circle in question is given by d = 
2h tan θc. For water n = 1.33, so Eq. 33-47 gives sin θc = 1/1.33, or θc = 48.75°. Thus, 
 

2 tan 2(2.00 m)(tan 48.75 ) 4.56 m.cd h θ= = ° =  
 
(b) The diameter d of the circle will increase if the fish descends (increasing h). 
 
63. (a) A ray diagram is shown below.  
 

 
 

Let θ1 be the angle of incidence and θ2 be the angle of refraction at the first surface. Let 
θ3 be the angle of incidence at the second surface. The angle of refraction there is θ4 = 
90°. The law of refraction, applied to the second surface, yields n sin θ3 = sin θ4 = 1. As 
shown in the diagram, the normals to the surfaces at P and Q are perpendicular to each 
other. The interior angles of the triangle formed by the ray and the two normals must sum 
to 180°, so θ3 = 90° – θ2 and  
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sin sin cos sin .θ θ θ θ3 2 2
2

290 1= °− = = −b g  
 
According to the law of refraction, applied at Q, n 1 12

2− =sin .θ  The law of refraction, 
applied to point P, yields sin θ1 = n sin θ2, so sin θ2 = (sin θ1)/n and 
 

n
n

1 1
2

1
2− =

sin .θ  

 
Squaring both sides and solving for n, we get 
 

n = +1 2
1sin .θ  

 
(b) The greatest possible value of sin2 θ1 is 1, so the greatest possible value of n is 
nmax . .= =2 141  
 
(c) For a given value of n, if the angle of incidence at the first surface is greater than θ1, 
the angle of refraction there is greater than θ2 and the angle of incidence at the second 
face is less than θ3 (= 90° – θ2). That is, it is less than the critical angle for total internal 
reflection, so light leaves the second surface and emerges into the air. 
 
(d) If the angle of incidence at the first surface is less than θ1, the angle of refraction there 
is less than θ2 and the angle of incidence at the second surface is greater than θ3. This is 
greater than the critical angle for total internal reflection, so all the light is reflected at Q. 
 
64. (a) We refer to the entry point for the original incident ray as point A (which we take 
to be on the left side of the prism, as in Fig. 33-53), the prism vertex as point B, and the 
point where the interior ray strikes the right surface of the prism as point C. The angle 
between line AB and the interior ray is β (the complement of the angle of refraction at the 
first surface), and the angle between the line BC and the interior ray is α (the complement 
of its angle of incidence when it strikes the second surface). When the incident ray is at 
the minimum angle for which light is able to exit the prism, the light exits along the 
second face. That is, the angle of refraction at the second face is 90°, and the angle of 
incidence there for the interior ray is the critical angle for total internal reflection. Let θ1 
be the angle of incidence for the original incident ray and θ2 be the angle of refraction at 
the first face, and let θ3 be the angle of incidence at the second face. The law of refraction, 
applied to point C, yields n sin θ3 = 1, so  
 

sin θ3 = 1/n = 1/1.60 = 0.625 ⇒  θ3 = 38.68°. 
 
The interior angles of the triangle ABC must sum to 180°, so α + β = 120°. Now, α = 
90° – θ3 = 51.32°, so β = 120° – 51.32° = 69.68°. Thus, θ2 = 90° – β = 21.32°. The law of 
refraction, applied to point A, yields  
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sin θ1 = n sin θ2 = 1.60 sin 21.32° = 0.5817. 
 
Thus θ1 = 35.6°. 
 
(b) We apply the law of refraction to point C. Since the angle of refraction there is the 
same as the angle of incidence at A, n sin θ3 = sin θ1. Now, α + β = 120°, α = 90° – θ3, 
and β = 90° – θ2, as before. This means θ2 + θ3 = 60°. Thus, the law of refraction leads to 
 

( )1 2 1 2 2sin sin 60 sin sin 60 cos cos 60 sinn n nθ θ θ θ θ= ° − ⇒ = ° − °  
 
where the trigonometric identity  
 

sin(A – B) = sin A cos B – cos A sin B 
 
is used. Next, we apply the law of refraction to point A: 
 

( )1 2 2 1sin sin sin 1/ sinn nθ θ θ θ= ⇒ =  
 

which yields  cos sin / sin .θ θ θ2
2

2
2 2

11 1 1= − = − nc h  Thus, 

 
sin sin / sin cos sinθ θ θ1

2 2
1 160 1 1 60= ° − − °n nb g  

or 
1 60 601

2 2
1+ ° = ° −cos sin sin sin .b g θ θn  

 
Squaring both sides and solving for sin θ1, we obtain 
 

sin sin

cos sin

. sin

cos sin
.θ 1 2 2 2 2

60

1 60 60

160 60

1 60 60
080=

°

+ ° + °
=

°

+ ° + °
=

n

b g b g
 

 
and θ1 = 53.1°. 
 
65. When examining Fig. 33-61, it is important to note that the angle (measured from the 
central axis) for the light ray in air, θ, is not the angle for the ray in the glass core, which 
we denote θ ' . The law of refraction leads to 
 

1

1sin sin
n

θ θ′ =  

 
assuming air 1.n = The angle of incidence for the light ray striking the coating is the 
complement of θ ', which we denote as θ'comp, and recall that 
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sin cos sin .′ = ′ = − ′θ θ θcomp 1 2  
 
In the critical case, θ'comp must equal θc specified by Eq. 33-47. Therefore, 
 

n
n n

2

1

2

1

2

1 1 1
= ′ = − ′ = −

F
HG

I
KJsin sin sinθ θ θcomp  

 
which leads to the result:  sin .θ = −n n1

2
2
2  With n1 = 1.58 and n2 = 1.53, we obtain 

 
θ = − = °−sin . . . .1 2 2158 153 232c h  

 
66. (a) We note that the upper-right corner is at an angle (measured from the point where 
the light enters, and measured relative to a normal axis established at that point the 
normal at that point would be horizontal in Fig. 33-62) is at tan−1(2/3) = 33.7º.  The angle 
of refraction is given by 

nair sin 40º = 1.56 sin θ2 
 
which yields θ2 = 24.33º if we use the common approximation nair = 1.0, and yields θ2 = 
24.34º if we use the more accurate value for nair found in Table 33-1. The value is less 
than 33.7º, which means that the light goes to side 3. 
 
(b) The ray strikes a point on side 3, which is 0.643 cm below that upper-right corner, and 
then (using the fact that the angle is symmetrical upon reflection) strikes the top surface 
(side 2) at a point 1.42 cm to the left of that corner.  Since 1.42 cm is certainly less than 3 
cm we have a self-consistency check to the effect that the ray does indeed strike side 2 as 
its second reflection (if we had gotten 3.42 cm instead of 1.42 cm, then the situation 
would be quite different). 
 
(c) The normal axes for sides 1 and 3 are both horizontal, so the angle of incidence (in the 
plastic) at side 3 is the same as the angle of refraction was at side 1.  Thus,  
 

1.56 sin 24.3º = nair sin θair     ⇒    θair = 40° . 
 
(d) It strikes the top surface (side 2) at an angle (measured from the normal axis there, 
which in this case would be a vertical axis) of  90º  − θ2 = 66º, which is much greater than 
the critical angle for total internal reflection (sin−1(nair /1.56 ) = 39.9º).  Therefore, no 
refraction occurs when the light strikes side 2. 
 
(e) In this case, we have  

nair sin 70º = 1.56 sin θ2 
 
which yields θ2 = 37.04º if we use the common approximation nair = 1.0, and yields θ2 = 
37.05º if we use the more accurate value for nair found in Table 33-1.  This is greater than 
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the 33.7º mentioned above (regarding the upper-right corner), so the ray strikes side 2 
instead of side 3. 
 
(f) After bouncing from side 2 (at a point fairly close to that corner) it goes to side 3. 
 
(g) When it bounced from side 2, its angle of incidence (because the normal axis for side 
2 is orthogonal to that for side 1) is 90º  − θ2 = 53º, which is much greater than the critical 
angle for total internal reflection (which, again, is sin−1(nair /1.56 ) = 39.9º).  Therefore, no 
refraction occurs when the light strikes side 2.  
 
(h) For the same reasons implicit in the calculation of part (c), the refracted ray emerges 
from side 3 with the same angle (70°) that it entered side 1. We see that the occurrence of 
an intermediate reflection (from side 2) does not alter this overall fact: light comes into 
the block at the same angle that it emerges with from the opposite parallel side. 
 
67. (a) In the notation of this problem, Eq. 33-47 becomes 
 

θ c
n
n

= −sin 1 3

2

 

 
which yields n3 =  1.39 for θc = φ = 60°. 
 
(b) Applying Eq. 33-44 to the interface between material 1 and material 2, we have 
 

n n2 130sin sin° = θ  
 
which yields θ = 28.1°. 
 
(c) Decreasing θ will increase φ and thus cause the ray to strike the interface (between 
materials 2 and 3) at an angle larger than θc. Therefore, no transmission of light into 
material 3 can occur. 
 
68. (a) We use Eq. 33-49: θ B wn= = = °− −tan tan1 1 133 531( . ) . .  
 
(b) Yes, since nw depends on the wavelength of the light. 
 
69. The angle of incidence θB for which reflected light is fully polarized is given by Eq. 
33-48 of the text. If n1 is the index of refraction for the medium of incidence and n2 is the 
index of refraction for the second medium, then  
 

1 1
2 1tan ( / ) tan (1.53/1.33) 49.0 .B n nθ − −= = = °  

 
70. Since the layers are parallel, the angle of refraction regarding the first surface is the 
same as the angle of incidence regarding the second surface (as is suggested by the 



 

  

1295

notation in Fig. 33-64). We recall that as part of the derivation of Eq. 33-49 (Brewster’s 
angle), the refracted angle is the complement of the incident angle: 
 

θ θ θ2 1 190= = °−( ) .c  
 
We apply Eq. 33-49 to both refractions, setting up a product: 
 

3 32
B1 2 B 2 3 1 2

1 2 1

(tan ) (tan )      (tan )(tan ).n nn
n n n

θ θ θ θ→ →

⎛ ⎞ ⎛ ⎞
= ⇒ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
Now, since θ2 is the complement of θ1 we have 
 

tan tan ( )
tan

.θ θ
θ2 1

1

1
= =c  

 
Therefore, the product of tangents cancel and we obtain n3/n1 = 1. Consequently, the third 
medium is air: n3 = 1.0. 
 
71. The time for light to travel a distance d in free space is t = d/c, where c is the speed of 
light (3.00 × 108 m/s). 
 
(a) We take d to be 150 km = 150 × 103 m. Then, 
 

t d
c

= =
×

×
= × −150 10

300 10
500 10

3

8
4m

m / s
s.

.
.  

 
(b) At full moon, the Moon and Sun are on opposite sides of Earth, so the distance 
traveled by the light is  
 

d = (1.5 × 108 km) + 2 (3.8 × 105 km) = 1.51 × 108 km = 1.51 × 1011 m. 
 
The time taken by light to travel this distance is 
 

11

8

1.51 10 m 500 s 8.4 min.
3.00 10 m/s

dt
c

×
= = = =

×
 

 
(c) We take d to be 2(1.3 × 109 km) = 2.6 × 1012 m. Then, 
 

t d
c

= =
×
×

= × =
2 6 10 8 7 10 2 4

12
3. . .m

3.00 10 m / s
s  h.8  

 
(d) We take d to be 6500 ly and the speed of light to be 1.00 ly/y. Then, 
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t d
c

= = =
6500 6500 ly

1.00 ly / y
 y.  

 
The explosion took place in the year 1054 – 6500 = –5446 or 5446 b.c. 
 
72. (a) The expression Ey = Em sin(kx – ωt) fits the requirement “at point P … [it] is 
decreasing with time” if we imagine P is just to the right (x > 0) of the coordinate origin 
(but at a value of x less than π/2k = λ/4 which is where there would be a maximum, at t = 
0).  It is important to bear in mind, in this description, that the wave is moving to the right.   
Specifically, 1(1/ )sin (1/ 4)Px k −=  so that Ey = (1/4) Em   at t = 0, there.  Also, Ey = 0 
with our choice of expression for Ey .  Therefore, part (a) is answered simply by solving 
for xP. Since k = 2πf/c we find  

 1 1sin 30.1 nm
2 4P

cx
fπ

− ⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

 
(b) If we proceed to the right on the x axis (still studying this “snapshot” of the wave at t 
= 0) we find another point where Ey = 0 at a distance of one-half wavelength from the 
previous point where Ey = 0.  Thus (since λ = c/f ) the next point is at x = 12 λ = 12 c/f and is 
consequently a distance  c/2f  − xP  = 345 nm to the right of P. 
 
73. (a) From kc = ω where k = 1.00 × 106 m–1, we obtain ω = 3.00 × 1014 rad/s. The 
magnetic field amplitude is, from Eq. 33-5,  
 

B = E/c = (5.00 V/m)/c = 1.67 × 10–8 T. 
 
From the fact that k̂−  (the direction of propagation), E Ey= ,j  and B  are mutually 
perpendicular, we conclude that the only nonzero component of B  is Bx, so that we have  
 

8 6 14(1.67 10  T)sin[(1.00 10 / m) (3.00 10 / s) ].xB z t−= × × + ×  
 
(b) The wavelength is λ = 2π/k = 6.28 × 10–6 m. 
 
(c) The period is T = 2π/ω = 2.09 × 10–14 s. 
 
(d) The intensity is 

I
c

= F
HG

I
KJ =

1 5 00
2

0 0332
0

2

μ
. . .V m W m2  

 
(e) As noted in part (a), the only nonzero component of B  is Bx. The magnetic field 
oscillates along the x axis. 
 
(f) The wavelength found in part (b) places this in the infrared portion of the spectrum. 
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74. (a) Let r be the radius and ρ be the density of the particle. Since its volume is (4π/3)r3, 
its mass is m = (4π/3)ρr3. Let R be the distance from the Sun to the particle and let M be 
the mass of the Sun. Then, the gravitational force of attraction of the Sun on the particle 
has magnitude 

F GMm
R

GM r
Rg = =2

3

2

4
3

π ρ .  

 
If P is the power output of the Sun, then at the position of the particle, the radiation 
intensity is I = P/4πR2, and since the particle is perfectly absorbing, the radiation pressure 
on it is 

p I
c

P
R cr = =

4 2π
.  

 
All of the radiation that passes through a circle of radius r and area A r= π 2 ,  
perpendicular to the direction of propagation, is absorbed by the particle, so the force of 
the radiation on the particle has magnitude 
 

2 2

2 2 .
4 4r r

Pr PrF p A
R c R c

π
π

= = =  

 
The force is radially outward from the Sun. Notice that both the force of gravity and the 
force of the radiation are inversely proportional to R2. If one of these forces is larger than 
the other at some distance from the Sun, then that force is larger at all distances. The two 
forces depend on the particle radius r differently: Fg is proportional to r3 and Fr is 
proportional to r2. We expect a small radius particle to be blown away by the radiation 
pressure and a large radius particle with the same density to be pulled inward toward the 
Sun. The critical value for the radius is the value for which the two forces are equal. 
Equating the expressions for Fg and Fr, we solve for r: 
 

r P
GM c

=
3

16π ρ
.  

 
(b) According to Appendix C, M = 1.99 × 1030 kg and P = 3.90 × 1026 W. Thus, 
 

r =
×

× ⋅ × × ×

= × −

3 390 10
16 199 10 300 10
58 10

26

30 8

7

( .
/ )( . )( .

.

W)
N m kg kg)(1.0 10 kg / m m / s)

m.

2 2 3 3π(6.67 10−11  

 
75. Let θ1 = 45° be the angle of incidence at the first surface and θ2 be the angle of 
refraction there. Let θ3 be the angle of incidence at the second surface. The condition for 
total internal reflection at the second surface is n sin θ3 ≥ 1. We want to find the smallest 
value of the index of refraction n for which this inequality holds. The law of refraction, 
applied to the first surface, yields n sin θ2 = sin θ1. Consideration of the triangle formed 
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by the surface of the slab and the ray in the slab tells us that θ3 = 90° – θ2. Thus, the 
condition for total internal reflection becomes  
 

1 ≤ n sin(90° – θ2) = n cos θ2. 
 
Squaring this equation and using sin2 θ2 + cos2 θ2 = 1, we obtain 1 ≤ n2 (1 – sin2 θ2). 
Substituting sin θ2 = (1/n) sin θ1 now leads to 
 

1 12
2

1
2

2 2
1≤ −

F
HG

I
KJ = −n

n
nsin sin .θ θ  

 
The largest value of n for which this equation is true is given by 1 = n2 – sin2 θ1. We 
solve for n: 

n = + = + ° =1 1 45 1222
1

2sin sin . .θ  
 
76. Since some of the angles in Fig. 33-66 are measured from vertical axes and some are 
measured from horizontal axes, we must be very careful in taking differences.  For 
instance, the angle difference between the first polarizer struck by the light and the 
second is 110º (or 70º depending on how we measure it; it does not matter in the final 
result whether we put Δθ1 = 70º or put Δθ1 = 110º).  Similarly, the angle difference 
between the second and the third is Δθ2 = 40º, and between the third and the fourth is Δθ3 
= 40º, also.  Accounting for the “automatic” reduction (by a factor of one-half) whenever 
unpolarized light passes through any polarizing sheet, then our result is the incident 
intensity multiplied by 

 2 2 2
1 2 3

1 cos ( )cos ( ) cos ( )
2

θ θ θΔ Δ Δ . 

 
Thus, the light that emerges from the system has intensity equal to 0.50 W/m2. 
 
77. (a) The first contribution to the overall deviation is at the first refraction: 
δθ θ θ1 = −i r .  The next contribution to the overall deviation is the reflection. Noting that 
the angle between the ray right before reflection and the axis normal to the back surface 
of the sphere is equal to θr, and recalling the law of reflection, we conclude that the angle 
by which the ray turns (comparing the direction of propagation before and after the 
reflection) is δθ θ2 180 2= °− r .  The final contribution is the refraction suffered by the ray 
upon leaving the sphere: δθ θ θ3 = −i r  again. Therefore, 
 

dev 1 2 3 180 2 4 .i rθ δθ δθ δθ θ θ= + + = ° + −  
 
(b) We substitute θ θr n i= −sin ( sin )1 1  into the expression derived in part (a), using the two 
given values for n. The higher curve is for the blue light. 
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(c) We can expand the graph and try to estimate the minimum, or search for it with a 
more sophisticated numerical procedure. We find that the θdev minimum for red light is 
137.63° ≈ 137.6°, and this occurs at θi = 59.52°. 
 
(d) For blue light, we find that the θdev minimum is 139.35° ≈ 139.4°, and this occurs at θi 
= 59.52°. 
 
(e) The difference in θdev in the previous two parts is 1.72°. 
 
78. (a) The first contribution to the overall deviation is at the first refraction: 
δθ θ θ1 = −i r .  The next contribution(s) to the overall deviation is (are) the reflection(s). 
Noting that the angle between the ray right before reflection and the axis normal to the 
back surface of the sphere is equal to θr, and recalling the law of reflection, we conclude 
that the angle by which the ray turns (comparing the direction of propagation before and 
after [each] reflection) is 180 2 .r rδθ θ= ° −  Thus, for k reflections, we have δθ θ2 = k r  to 
account for these contributions. The final contribution is the refraction suffered by the ray 
upon leaving the sphere: δθ θ θ3 = −i r  again. Therefore, 
 

dev 1 2 3 2( ) (180 2 ) (180 ) 2 2( 1) .i r r i rk k kθ δθ δθ δθ θ θ θ θ θ= + + = − + ° − = ° + − +  
 
(b) For k = 2 and n = 1.331 (given in Problem 33-77), we search for the second-order 
rainbow angle numerically. We find that the θdev minimum for red light is 230.37° 

230.4≈ ° , and this occurs at θi = 71.90°. 
 
(c) Similarly, we find that the second-order θdev minimum for blue light (for which n = 
1.343) is 233.48° 233.5≈ ° , and this occurs at θi = 71.52°. 
 
(d) The difference in θdev in the previous two parts is approximately 3.1°. 
 
(e) Setting k = 3, we search for the third-order rainbow angle numerically. We find that 
the θdev minimum for red light is 317.5°, and this occurs at θi = 76.88°. 
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(f) Similarly, we find that the third-order θdev minimum for blue light is 321.9°, and this 
occurs at θi = 76.62°. 
 
(g) The difference in θdev in the previous two parts is 4.4°. 
 
79. Let θ be the angle of incidence and θ2 be the angle of refraction at the left face of the 
plate. Let n be the index of refraction of the glass. Then, the law of refraction yields sin θ 
= n sin θ2. The angle of incidence at the right face is also θ2. If θ3 is the angle of 
emergence there, then n sin θ2 = sin θ3. Thus sin θ3 = sin θ and θ3 = θ.  
 

 
 
The emerging ray is parallel to the incident ray. We wish to derive an expression for x in 
terms of θ. If D is the length of the ray in the glass, then D cos θ2 = t and D = t/cos θ2. 
The angle α in the diagram equals θ – θ2 and  
 

x = D sin α = D sin (θ – θ2). 
Thus, 

x t
=

−sin ( )
cos

.θ θ
θ

2

2

 

 
If all the angles θ, θ2, θ3, and θ – θ2 are small and measured in radians, then sin θ ≈ θ, sin 
θ2 ≈ θ2, sin(θ – θ2) ≈ θ – θ2, and cos θ2 ≈ 1. Thus x ≈ t(θ – θ2). The law of refraction 
applied to the point of incidence at the left face of the plate is now θ ≈ nθ2, so θ2 ≈ θ/n 
and 

x t
n

n t
n

≈ −FHG
I
KJ =

−
θ θ θ1b g .  

 
80. (a) The magnitude of the magnetic field is 
 

B E
c

= =
×

= × −100
3 0 10

3 3 108
7V m

m s
T.

.
.  
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(b) With E B S× = μ 0 ,  where ˆ ˆk and ( j)E E S S= = − , one can verify easily that since 
ˆ ˆ ˆk ( i) j, B× − = −  has to be in the −x direction.  
 
81. (a) The polarization direction is defined by the electric field (which is perpendicular 
to the magnetic field in the wave, and also perpendicular to the direction of wave travel).  
The given function indicates the magnetic field is along the x axis (by the subscript on B) 
and the wave motion is along –y axis (see the argument of the sine function).  Thus, the 
electric field direction must be parallel to the  z axis. 
 
(b) Since k is given as 1.57 × 107/m, then λ = 2π/k = 4.0 × 10−7 m, which means f = c/λ = 
7.5 × 1014 Hz. 
 
(c) The magnetic field amplitude is given as Bm = 4.0 × 10−6 T.  The electric field 
amplitude Em is equal to Bm divided by the speed of light c.  The rms value of the electric 
field is then Em divided by 2 .  Equation 33-26 then gives I = 1.9 kW/m2. 
 
82. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 
 

 2 2
0 1 2

1 cos cos
2

I I θ θ′ ′=  

 
where 1 190 60θ θ′ = ° − = °  and 2 290 60θ θ′ = ° − = ° . This yields I/I0 = 0.031. 
 
83. With the index of refraction n = 1.456 at the red end, since sin θc = 1/n, the critical 
angle is θc = 43.38° for red. 
 
(a) At an angle of incidence of θ1 = 42.00° < θc, the refracted light is white.  
 
(b) At an angle of incidence of θ1 = 43.10°, which is slightly less than θc, the refracted 
light is white but dominated by the red end.  
 
(c) At an angle of incidence of θ1 = 44.00° > θc, there is no refracted light.  
 
84. Using Eqs. 33-40 and 33-42, we obtain 
 

( )( ) ( )2 2
0final

0 0

/ 2 cos 45 cos 45 1 0.125.
8

II
I I

° °
= = =  

 
85. We write m = ρV  where V = 4 33πR  is the volume. Plugging this into F = ma and 
then into Eq. 33-32 (with A = πR2, assuming the light is in the form of plane waves), we 
find 

ρ 4
3

3 2π πR a I R
c

= . 
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This simplifies to 

a I
cR

=
3

4ρ
 

 
which yields a = 1.5 × 10–9 m/s2. 
 
86. Accounting for the “automatic” reduction (by a factor of one-half) whenever 
unpolarized light passes through any polarizing sheet, then our result is  
 

1
2 (cos2(30º))3 = 0.21. 

 
87. The intensity of the beam is given by  
 

22
P PI
A rπ

= =  

 
where A = 2πr2 is the area of a hemisphere. The power of the aircraft’s reflection is equal 
to the product of the intensity at the aircraft’s location and its cross-sectional area: 

.r rP IA=  The intensity is related to the amplitude of the electric field by Eq. 33-26: 
2 2
rms 0 0/ / 2 .mI E c E cμ μ= =  

 
(a) Substituting the values given we get  
 

3
6 2

2 3 2

180 10 W 3.5 10  W/m
2 2 (90 10  m)

PI
rπ π

−×
= = = ×

×
. 

 
(b) The power of the aircraft’s reflection is 
 

6 2 2 7(3.5 10  W/m )(0.22 m ) 7.8 10  Wr rP IA − −= = × = × . 
 
(c) Back at the radar site, the intensity is 
 

7
17 2

2 3 2

7.8 10  W 1.5 10  W/m
2 2 (90 10  m)

r
r

PI
rπ π

−
−×

= = = ×
×

. 

 
(d) From 2

0/ 2 ,r mI E cμ=  we find the amplitude of the electric field to be 
 

 
8 17 2

0

7

2 2(3.0 10 m/s)(4 T m A)(1.5 10  W/m )

1.1 10  V/m.
m rE c Iμ −7 −

−

= = × π×10 ⋅ ×

= ×
 

 
(e) The rms value of the magnetic field is  
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7

16rms
rms 8

1.1 10  V/m 2.5 10 T.
2 2(3.0 10 m/s)
mE EB

c c

−
−×

= = = = ×
×

 

 
88. (a)  Setting v = c in the wave relation kv = ω = 2πf, we find f = 1.91 × 108 Hz. 
 
(b) Erms = Em/ 2  = Bm/c 2  = 18.2 V/m. 
 
(c) I = (Erms)2/cμo = 0.878 W/m2. 
 
89. From Fig. 33-19 we find nmax = 1.470 for λ = 400 nm and nmin = 1.456 for λ = 700 nm.  
(a) The corresponding Brewster’s angles are  
 

θB,max = tan–1 nmax = tan–1 (1.470) = 55.8°, 
 
(b) and θB,min = tan–1 (1.456) = 55.5°. 
 
90. (a) Suppose there are a total of N transparent layers (N = 5 in our case). We label 
these layers from left to right with indices 1, 2, …, N. Let the index of refraction of the air 
be n0. We denote the initial angle of incidence of the light ray upon the air-layer boundary 
as θi and the angle of the emerging light ray as θf. We note that, since all the boundaries 
are parallel to each other, the angle of incidence θj at the boundary between the j-th and 
the (j + 1)-th layers is the same as the angle between the transmitted light ray and the 
normal in the j-th layer. Thus, for the first boundary (the one between the air and the first 
layer) 

n
n

i1

0 1

=
sin
sin

,θ
θ

 

 
for the second boundary 

n
n

2

1

1

2

=
sin
sin

,θ
θ

 

 
and so on. Finally, for the last boundary 
 

n
nN

N

f

0 =
sin
sin

,θ
θ

 

 
Multiplying these equations, we obtain 
 

n
n

n
n

n
n

n
nN

i N

f

1

0

2

1

3

2

0

1

1

2

2

3

F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ =
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

sin
sin

sin
sin

sin
sin

sin
sin

.θ
θ

θ
θ

θ
θ

θ
θ

 

 
We see that the L.H.S. of the equation above can be reduced to n0/n0 while the R.H.S. is 
equal to sinθi/sinθf. Equating these two expressions, we find 
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sin sin sin ,θ θ θf i i
n
n

=
F
HG
I
KJ =0

0

 

 
which gives θi = θf. So for the two light rays in the problem statement, the angle of the 
emerging light rays are both the same as their respective incident angles. Thus, θf = 0 for 
ray a, 
 
(b) and θf = 20° for ray b. 
 
(c) In this case, all we need to do is to change the value of n0 from 1.0 (for air) to 1.5 (for 
glass). This does not change the result above. That is, we still have θf = 0 for ray a, 
 
(d) and θf = 20° for ray b. 
 
Note that the result of this problem is fairly general. It is independent of the number of 
layers and the thickness and index of refraction of each layer. 
 
91. (a) At r = 40 m, the intensity is 
 

( )( )

3
2

22 2

4(3.0 10 W) 83W m .
4 ) 4 rad 40m

P PI
d rπ π θ π

−

−3

×
= = = =

( ⎡ ⎤0.17×10⎣ ⎦

 

 
(b) ′ = = = ×P r I4 4 1 7 102 2 6π π(40m) W m W.2 (83 ) .  
 
92. The law of refraction requires that  
 

sin θ1/sin θ2 = nwater = const. 
 
We can check that this is indeed valid for any given pair of θ1 and θ2. For example, sin 
10° / sin 8° = 1.3, and sin 20° / sin 15°30' = 1.3, etc. Therefore, the index of refraction of 
water is nwater = 1.3. 
 
93. We remind ourselves that when the unpolarized light passes through the first sheet, its 
intensity is reduced by a factor of 2.  Thus, to end up with an overall reduction of one-
third, the second sheet must cause a further decrease by a factor of two-thirds (since 
(1/2)(2/3) = 1/3).  Thus, cos2θ = 2/3   ⇒    θ = 35°.  
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Chapter 34 
 
 
1. The bird is a distance d2 in front of the mirror; the plane of its image is that same 
distance d2 behind the mirror. The lateral distance between you and the bird is d3 = 5.00 
m. We denote the distance from the camera to the mirror as d1, and we construct a right 
triangle out of d3 and the distance between the camera and the image plane (d1 + d2). 
Thus, the focus distance is 
 

( ) ( ) ( )2 2 22
1 2 3 4.30 m 3.30 m 5.00 m 9.10 m.d d d d= + + = + + =  

 
2. The image is 10 cm behind the mirror and you are 30 cm in front of the mirror. You 
must focus your eyes for a distance of 10 cm + 30 cm = 40 cm. 
 
3. The intensity of light from a point source varies as the inverse of the square of the 
distance from the source. Before the mirror is in place, the intensity at the center of the 
screen is given by IP = A/d 2, where A is a constant of proportionality. After the mirror is 
in place, the light that goes directly to the screen contributes intensity IP, as before. 
Reflected light also reaches the screen. This light appears to come from the image of the 
source, a distance d behind the mirror and a distance 3d from the screen. Its contribution 
to the intensity at the center of the screen is 
 

2 2 .
(3 ) 9 9

P
r

IA AI
d d

= = =  

 
The total intensity at the center of the screen is 
 

10 .
9 9
P

P r P P
II I I I I= + = + =  

 
The ratio of the new intensity to the original intensity is I/IP = 10/9 = 1.11. 
 
4. When S is barely able to see B, the light rays from B must reflect to S off the edge of 
the mirror. The angle of reflection in this case is 45°, since a line drawn from S to the 
mirror’s edge makes a 45° angle relative to the wall. By the law of reflection, we find 
 

3.0mtan 45 1 1.5m.
/ 2 2 2
x dx

d
= ° = ⇒ = = =  

 
5. We apply the law of refraction, assuming all angles are in radians: 
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sin
sin

,θ
θ ′

=
n
n

w

air

 

 
which in our case reduces to θ' ≈ θ/nw (since both θ and θ ' 
are small, and nair ≈ 1). We refer to our figure on the right. 
 
The object O is a vertical distance d1 above the water, and 
the water surface is a vertical distance d2 above the mirror. 
We are looking for a distance d (treated as a positive 
number) below the mirror where the image I of the object is 
formed. In the triangle O AB 
 

1 1| | tan ,AB d dθ θ= ≈  
 
and in the triangle CBD 

2
2 2

2| | 2 tan 2 .
w

dBC d d
n

θθ θ′ ′= ≈ ≈  

 
Finally, in the triangle ACI, we have |AI| = d + d2. Therefore, 
 

( )

2 2
2 2 2 1 2 1 2

2 2| | | | | | 1| |
tan

2 200cm
250cm 200cm 351cm.

1.33

w w

d dAC AB BCd AI d d d d d d d
n n

θθ
θ θ θ

⎛ ⎞+
= − = − ≈ − = + − = + −⎜ ⎟

⎝ ⎠

= + − =

 

 
6. We note from Fig. 34-34 that m = 12  when p = 5 cm.  Thus Eq. 34-7 (the magnification 
equation) gives us i = −10 cm in that case.  Then, by Eq. 34-9 (which applies to mirrors 
and thin lenses) we find the focal length of the mirror is f = 10 cm.  Next, the problem 
asks us to consider p = 14 cm.  With the focal length value already determined, then Eq. 
34-9 yields i = 35 cm for this new value of object distance.  Then, using Eq. 34-7 again, 
we find m = i/p = −2.5. 
 
7. We use Eqs. 34-3 and 34-4, and note that m = –i/p. Thus, 
 

1 1 1 2
p pm f r

− = = .  

We solve for p: 
 

p r
m

= −FHG
I
KJ = −FHG

I
KJ =

2
1 1 350 1 1

2 50
105.

.
.cm

2
cm. 
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8. The graph in Fig. 34-35 implies that  f = 20 cm, which we can plug into Eq. 34-9 (with 
p =  70 cm) to obtain i =  +28 cm. 
 
9. A concave mirror has a positive value of focal length. For spherical mirrors, the focal 
length f is related to the radius of curvature r by 
 
 / 2f r= . 
 
The object distance p, the image distance i, and the focal length f are related by Eq. 34-4: 
 

 1 1 1
p i f

+ = . 

 
The value of i is positive for real images, and negative for virtual images.  
 
The corresponding lateral magnification is 

 im
p

= − . 

 
The value of m is positive for upright (not inverted) images, and negative for inverted 
images. Real images are formed on the same side as the object, while virtual images are 
formed on the opposite side of the mirror.  
 
(a) With f = +12 cm and p = +18 cm, the radius of curvature is r = 2f = 2(12 cm) = + 24 
cm.  
 

(b) The image distance is (18 cm)(12 cm) 36 cm.
18 cm 12 cm

pfi
p f

= = =
− −

 

 
(c) The lateral magnification is m = −i/p = − (36 cm)/(18 cm) = −2.0.   
 
(d) Since the image distance i is positive, the image is real (R). 
 
(e) Since the magnification m is negative, the image is inverted (I).   
 
(f) A real image is formed on the same side as the object. 
 
The situation in this problem is similar to that illustrated in Fig. 34-10(c). The object is 
outside the focal point, and its image is real and inverted.  
 
10. A concave mirror has a positive value of focal length.   
 
(a) Then (with  f = +10 cm and p =  +15 cm), the radius of curvature is 2 20 cmr f= = + .  
 
(b) Equation 34-9 yields i =  pf /( p − f ) = +30 cm.   
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(c)Then, by Eq. 34-7, m = −i/p = –2.0.   
 
(d) Since the image distance computation produced a positive value, the image is real (R).  
 
(e) The magnification computation produced a negative value, so it is inverted (I).   
 
(f) A real image is formed on the same side as the object. 
 
11. A convex mirror has a negative value of focal length.   
 
(a) With f = –10 cm and p = +8 cm, the radius of curvature is r = 2f = –20 cm. 
 

(b) The image distance is (8 cm)( 10 cm) 4.44 cm.
8 cm ( 10) cm

pfi
p f

−
= = = −

− − −
 

 
(c) The lateral magnification is m = −i/p = −(−4.44 cm)/(8.0 cm) = +0.56.   
 
(d) Since the image distance is negative, the image is virtual (V).   
 
(e) The magnification m is positive, so the image is upright [not inverted] (NI).   
 
(f) A virtual image is formed on the opposite side of the mirror from the object.  
 
The situation in this problem is similar to that illustrated in Fig. 34-11(c). The mirror is 
convex, and its image is virtual and upright. 
 
12. A concave mirror has a positive value of focal length.   
 
(a) Then (with  f = +36 cm and p =  +24 cm), the radius of curvature is r = 2f = + 72 cm. 
 
(b) Equation 34-9 yields i =  pf /( p − f ) =  –72 cm.   
 
(c) Then, by Eq. 34-7, m = −i/p = +3.0.   
 
(d) Since the image distance is negative, the image is virtual (V).   
 
(e) The magnification computation produced a positive value, so it is upright [not 
inverted] (NI).   
 
(f) A virtual image is formed on the opposite side of the mirror from the object.   
 
13. A concave mirror has a positive value of focal length.   
 
(a) Then (with  f = +18 cm and p =  +12 cm) , the radius of curvature is r = 2f = + 36 cm.  
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(b) Equation 34-9 yields i =  pf /( p − f ) =  –36 cm.   
 
(c) Then, by Eq. 34-7, m = −i/p = +3.0.   
 
(d) Since the image distance is negative, the image is virtual (V).   
 
(e) The magnification computation produced a positive value, so it is upright [not 
inverted] (NI).   
 
(f) A virtual image is formed on the opposite side of the mirror from the object. 
 
14. A convex mirror has a negative value of focal length.   
 
(a) Then (with  f = –35 cm and p =  +22 cm), the radius of curvature is r = 2f = –70 cm. 
 
(b) Equation 34-9 yields i =  pf /( p − f ) =  –14 cm.   
 
(c) Then, by Eq. 34-7, m = −i/p = +0.61.   
 
(d) Since the image distance is negative, the image is virtual (V).   
 
(e) The magnification computation produced a positive value, so it is upright [not 
inverted] (NI).   
 
(f) The side where a virtual image forms is opposite from the side where the object is. 
 
15. A convex mirror has a negative value of focal length.   
 
(a) With f = –8 cm and p =  +10 cm, the radius of curvature is r = 2f = 2(–8 cm) = –16 cm.   
 

(b) The image distance is (10 cm)( 8 cm) 4.44 cm.
10 cm ( 8) cm

pfi
p f

−
= = = −

− − −
 

 
(c) The lateral magnification is m = −i/p = −(−4.44 cm)/(10 cm) = +0.44. 
 
(d) Since the image distance is negative, the image is virtual (V).   
 
(e) The magnification m is positive, so the image is upright [not inverted] (NI).   
 
(f) A virtual image is formed on the opposite side of the mirror from the object. 
 
The situation in this problem is similar to that illustrated in Fig. 34-11(c). The mirror is 
convex, and its image is virtual and upright.  
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16. A convex mirror has a negative value of focal length.   
 
(a) Then (with  f = –14 cm and p =  +17 cm), the radius of curvature is r = 2f = –28 cm. 
 
(b) Equation 34-9 yields i =  pf /( p − f ) =  –7.7 cm.   
 
(c) Then, by Eq. 34-7, m = −i/p = +0.45.   
 
(d) Since the image distance is negative, the image is virtual (V).   
 
(e) The magnification computation produced a positive value, so it is upright [not 
inverted] (NI).   
 
(f) A virtual image is formed on the opposite side of the mirror from the object. 
 
17. (a) The mirror is concave. 
 
(b) f = +20 cm (positive, because the mirror is concave). 
 
(c) r = 2f = 2(+20 cm) = +40 cm.  
 
(d) The object distance p = +10 cm, as given in the table. 
 
(e) The image distance is i = (1/f – 1/p)–1 = (1/20 cm – 1/10 cm)–1 = –20 cm. 
 
(f) m = –i/p = –(–20 cm/10 cm) = +2.0.  
 
(g) The image is virtual (V). 
 
(h) The image is upright or not inverted (NI).  
 
(i) A virtual image is formed on the opposite side of the mirror from the object. 
 
18. (a) Since the image is inverted, we can scan Figs. 34-8, 34-10, and 34-11 in the 
textbook and find that the mirror must be concave.  
 
(b) This also implies that we must put a minus sign in front of the “0.50” value given for 
m. To solve for f, we first find i = –pm = +12 cm from Eq. 34-6 and plug into Eq. 34-4; 
the result is f = +8 cm.  
 
(c) Thus, r = 2f = +16 cm.  
 
(d) p = +24 cm, as given in the table. 
 
(e) As shown above, i = –pm = +12 cm. 
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(f) m = –0.50, with a minus sign. 
 
(g) The image is real (R), since i > 0.  
 
(h) The image is inverted (I), as noted above. 
 
(i) A real image is formed on the same side as the object. 
 
19. (a) Since r < 0 then (by Eq. 34-3) f < 0, which means the mirror is convex.  
 
(b) The focal length is f = r/2 = –20 cm.  
 
(c) r = – 40 cm, as given in the table.  
 
(d) Equation 34-4 leads to p = +20 cm. 
 
(e) i = –10 cm, as given in the table. 
 
(f) Equation 34-6 gives m = +0.50.  
 
(g) The image is virtual (V).  
 
(h) The image is upright, or not inverted (NI).  
 
(i) A virtual image is formed on the opposite side of the mirror from the object. 
 
20. (a) From Eq. 34-7, we get i =  −mp = +28 cm, which implies the image is real (R) and 
on the same side as the object.  Since m < 0, we know it was inverted (I).  From Eq. 34-9, 
we obtain f = ip/(i + p) =  +16 cm, which tells us (among other things) that the mirror is 
concave.  
 
(b) f = ip/(i + p) =  +16 cm. 
 
(c) r = 2f = +32 cm. 
 
(d) p = +40 cm, as given in the table. 
 
(e) i =  −mp = +28 cm. 
 
(f) m = −0.70, as given in the table. 
 
(g) The image is real (R).  
 
(h) The image is inverted (I). 
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(i) A real image is formed on the same side as the object. 
 
21. (a) Since f > 0, the mirror is concave.  
 
(b) f = + 20 cm, as given in the table. 
 
(c) Using Eq. 34-3, we obtain r = 2f = +40 cm.  
 
(d) p = + 10 cm, as given in the table. 
 
(e) Equation 34-4 readily yields i =  pf /( p − f ) = +60 cm.  
 
(f) Equation 34-6 gives m = –i/p = –2.0.  
 
(g) Since i > 0, the image is real (R). 
 
(h) Since m < 0, the image is inverted (I).  
 
(i) A real image is formed on the same side as the object. 
 
22. (a) Since 0 < m < 1, the image is upright but smaller than the object. With that in 
mind, we examine the various possibilities in Figs. 34-8, 34-10, and 34-11, and note that 
such an image (for reflections from a single mirror) can only occur if the mirror is convex.  
 
(b) Thus, we must put a minus sign in front of the “20” value given for f, that is, f = – 20 
cm.  
 
(c) Equation 34-3 then gives r = 2f = –40 cm.  
 
(d) To solve for i and p we must set up Eq. 34-4 and Eq. 34-6 as a simultaneous set and 
solve for the two unknowns. The results are p = +180 cm = +1.8 m, and 
 
(e)  i = –18 cm. 
 
(f) m = 0.10, as given in the table. 
 
(g) The image is virtual (V) since i < 0.  
 
(h) The image is upright, or not inverted (NI), as already noted.  
 
(i) A virtual image is formed on the opposite side of the mirror from the object. 
 
23. (a) The magnification is given by / .m i p= − Since p > 0, a positive value for m means 
that the image distance (i) is negative, implying a virtual image. Looking at the 
discussion of mirrors in Sections 34-3 and 34-4, we see that a positive magnification of 
magnitude less than unity is only possible for convex mirrors.   
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(b) With ,i mp= −  we may write (1 1/ )p f m= − . For 0 < m < 1, a positive value for p can 
be obtained only if  f < 0.  Thus, with a minus sign, we have f = −30 cm. 
 
(c) The radius of curvature is r = 2f = –60 cm. 
 
(d) The object distance is p = f (1 – 1/m) = (−30 cm)(1 –1/0.20) =  + 120 cm = 1.2 m. 
 
(e) The image distance is i = –mp =  –(0.20)(120 cm) = –24 cm. 
 
(f) The magnification is m = +0.20, as given in the table. 
 
(g) As discussed in (a), the image is virtual (V). 
 
(h) As discussed in (a), the image is upright, or not inverted (NI). 
 
(i) A virtual image is formed on the opposite side of the mirror from the object. 
 
The situation in this problem is similar to that illustrated in Fig. 34-11(c). The mirror is 
convex, and its image is virtual and upright.  
 
24. (a) Since m = − 1/2 < 0, the image is inverted. With that in mind, we examine the 
various possibilities in Figs. 34-8, 34-10, and 34-11, and note that an inverted image (for 
reflections from a single mirror) can only occur if the mirror is concave (and if p > f ).  
 
(b) Next, we find i from Eq. 34-6 (which yields i = mp = 30 cm) and then use this value 
(and Eq. 34-4) to compute the focal length; we obtain f = +20 cm.  
 
(c) Then, Eq. 34-3 gives r = 2f = +40 cm.  
 
(d) p = 60 cm, as given in the table. 
 
(e) As already noted, i = +30 cm.  
 
(f) m = − 1/2, as given. 
 
(g) Since i > 0, the image is real (R).  
 
(h) As already noted, the image is inverted (I).  
 
(i) A real image is formed on the same side as the object. 
 
25. (a) As stated in the problem, the image is inverted (I), which implies that it is real (R).  
It also (more directly) tells us that the magnification is equal to a negative value: m = 
−0.40.  By Eq. 34-7, the image distance is consequently found to be i = +12 cm.  Real 
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images don’t arise (under normal circumstances) from convex mirrors, so we conclude 
that this mirror is concave. 
 
(b) The focal length is f = +8.6 cm, using Eq. 34-9, f = +8.6 cm.  
 
(c) The radius of curvature is r = 2f = +17.2 cm ≈ 17 cm. 
 
(d) p = +30 cm, as given in the table. 
 
(e) As noted above, i = +12 cm. 
 
(f) Similarly, m = −0.40, with a minus sign. 
 
(g) The image is real (R).  
 
(h) The image is inverted (I). 
 
(i) A real image is formed on the same side as the object. 
 
26. (a) We are told that the image is on the same side as the object; this means the image 
is real (R) and further implies that the mirror is concave. 
 
(b) The focal distance is f = +20 cm.   
 
(c) The radius of curvature is r = 2f = +40 cm. 
 
(d) p = +60 cm, as given in the table. 
 
(e) Equation 34-9 gives i = pf/(p – f) =  +30 cm. 
 
(f) Equation 34-7 gives m = −i/p = −0.50. 
 
(g) As noted above, the image is real (R). 
 
(h) The image is inverted (I) since m < 0. 
 
(i) A real image is formed on the same side as the object. 
 
27. (a) The fact that the focal length is given as a negative value means the mirror is 
convex.   
 
(b) f = –30 cm, as given in the Table. 
 
(c) The radius of curvature is r = 2f = –60 cm.  
 
(d) Equation 34-9 gives p = if /(i – f) = +30 cm. 
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(e) i = –15, as given in the table. 
 
(f) From Eq. 34-7, we get m = +1/2 = 0.50.    
 
(g) The image distance is given as a negative value (as it would have to be, since the 
mirror is convex), which means the image is virtual (V). 
 
(h) Since m > 0, the image is upright (not inverted: NI). 
 
(i) The image is on the opposite side of the mirror as the object. 
 
28. (a) The fact that the magnification is 1 means that the mirror is flat (plane).  
 
(b) Flat mirrors (and flat “lenses” such as a window pane) have f = ∞ (or f = –∞ since the 
sign does not matter in this extreme case). 
 
(c) The radius of curvature is  r = 2f = ∞ (or r = –∞) by Eq. 34-3.  
 
(d) p = + 10 cm, as given in the table. 
 
(e) Equation 34-4 readily yields i =  pf /( p − f ) = –10 cm.  
 
(f) The magnification is m = –i/p = +1.0. 
 
(g) The image is virtual (V) since i < 0. 
 
(h) The image is upright, or not inverted (NI).  
 
(i) A virtual image is formed on the opposite side of the mirror from the object. 
 
29. (a) The mirror is convex, as given. 
 
(b) Since the mirror is convex, the radius of curvature is negative, so r = – 40 cm. Then, 
the focal length is f = r/2 = (–40 cm)/2  = –20 cm.  
 
(c) The radius of curvature is r = – 40 cm. 
 
(d) The fact that the mirror is convex also means that we need to insert a minus sign in 
front of the “4.0” value given for i, since the image in this case must be virtual. Equation 
34-4 leads to  

 ( 4.0 cm)( 20 cm) 5.0 cm
4.0 cm ( 20 cm)

ifp
i f

− −
= = =

− − − −
 

 
(e) As noted above, i = – 4.0 cm. 
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(f) The magnification is m = / ( 4.0 cm) /(5.0 cm)i p− = − −  = +0.80.  
 
(g) The image is virtual (V) since i < 0.  
 
(h) The image is upright, or not inverted (NI). 
 
(i) A virtual image is formed on the opposite side of the mirror from the object. 
 
The situation in this problem is similar to that illustrated in Fig. 34-11(c). The mirror is 
convex, and its image is virtual and upright.  
 
30. We note that there is “singularity” in this graph (Fig. 34-36) like there was in Fig. 34-
35), which tells us that there is no point where p = f  (which causes Eq. 34-9 to “blow 
up”).  Since p > 0, as usual, then this means that the focal length is not positive.  We 
know it is not a flat mirror since the curve shown does decrease with p, so we conclude it 
is a convex mirror.   We examine the point where m = 0.50 and p = 10 cm. Combining Eq. 
34-7 and Eq. 34-9 we obtain  

 i fm
p p f

= − = −
−

. 

 
This yields f = –10 cm (verifying our expectation that the mirror is convex). Now, for 

21 cm,p =  we find m = – f /(p – f)  = +0.32. 
 
31. (a) From Eqs. 34-3 and 34-4, we obtain  
 

 
2

pf pri
p f p r

= =
− −

. 

 
Differentiating both sides with respect to time and using vO = –dp/dt, we find 
 

v di
dt

d
dt

pr
p r

rv p r v pr
p r

r
p r

vI
O O

O= =
−

F
HG
I
KJ =

− − +

−
=

−
F
HG
I
KJ2

2 2
2 22

2b g
b g .  

 

(b) If p = 30 cm, we obtain vI =
−

L
NM

O
QP

=
15

15
50 056

2
cm

2 30 cm cm
cm / s cm / s.b g b g. .  

 

(c) If p = 8.0 cm, we obtain vI =
−

L
NM

O
QP

= ×
15

15
50 11 10

2

3cm
2 8.0 cm cm

cm / s cm / s.b g b g. .  

 

(d) If p = 1.0 cm, we obtain 
( ) ( )

2
15cm 5.0cm/s 6.7cm/s.

2 1.0cm 15cmIv
⎡ ⎤

= =⎢ ⎥
−⎢ ⎥⎣ ⎦
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32. In addition to n1 =1.0, we are given (a) n2 = 1.5,  (b) p = +10 cm, and (c) r = +30 cm. 
 
(d) Equation 34-8 yields 

i n n n
r

n
p

=
−

−
F
HG

I
KJ =

−
−

F
HG

I
KJ = −

−

2
2 1 1

1

15 15 10
30

10
10

18. . . .
cm cm

cm.  

 
(e) The image is virtual (V) and upright since 0i < .  
 
(f) The object and its image are on the same side. The ray diagram would be similar to 
Fig. 34-12(c) in the textbook. 
 
33. In addition to n1 =1.0, we are given (a) n2 = 1.5,  (b) p = +10 cm, and (d) 13i = − cm. 
 
(c) Equation 34-8 yields 
 

( ) ( )
1 1

1 2
2 1

1.0 1.51.5 1.0 32.5cm 33 cm
10 cm 13 cm

n nr n n
p i

− −⎛ ⎞ ⎛ ⎞= − + = − + = − ≈ −⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
. 

 
(e) The image is virtual (V) and upright.  
 
(f) The object and its image are on the same side. The ray diagram would be similar to 
Fig. 34-12(e). 
 
34. In addition to n1 =1.5, we are given (b) p = +100, (c) r = −30 cm, and (d) 600i = + cm. 
 
(a) We manipulate Eq. 34-8 to separate the indices: 
 

( )1 1
2 2 2

1 1 1 1 1.5 1.5       0.035 0.035
30 600 100 30

n nn n n
r i p r

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = + ⇒ − = + ⇒ − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
which implies n2 = 1.0.  
 
(e) The image is real (R) and inverted. 
 
(f) The object and its image are on the opposite side. The ray diagram would be similar to 
Fig. 34-12(b) in the textbook.  
 
35. In addition to n1 =1.5, we are also given (a) n2 = 1.0,  (b) p = +70 cm, and (c) r = +30 
cm. Notice that 2 1n n< . 
 
(d) We manipulate Eq. 34-8 to find the image distance: 
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i n n n
r

n
p

=
−

−
F
HG

I
KJ =

−
−

F
HG

I
KJ = −

− −

2
2 1 1

1 1

10 10 15
30

15
70

26. . . .
cm cm

cm.  

 
(e) The image is virtual (V) and upright.  
 
(f) The object and its image are on the same side.  
 
The ray diagram for this problem is similar to the one shown in Fig. 34-12(f). Here 
refraction always directs the ray away from the central axis; the images are always virtual, 
regardless of the object distance. 
 
36. In addition to n1 =1.5, we are given (a) n2 =1.0,  (c) r = −30 cm and (d) 7.5i = − cm. 
 
(b)We manipulate Eq. 34-8 to find p: 
 

1

2 1 2

1.5 10 cm.1.0 1.5 1.0
30 cm 7.5 cm

np n n n
r i

= = =
− − −− − −

 

 
(e) The image is virtual (V) and upright.  
 
(f) The object and its image are on the same side. The ray diagram would be similar to 
Fig. 34-12(d) in the textbook. 
 
37. In addition to n1 =1.5, we are given (a) n2 =1.0,  (b) p = +10 cm, and (d) 6.0i = − cm. 
 
(c) We manipulate Eq. 34-8 to find r: 
 

( ) ( )
1 1

1 2
2 1

1.5 1.01.0 1.5 30 cm.
10 cm 6.0 cm

n nr n n
p i

− −⎛ ⎞ ⎛ ⎞= − + = − + =⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
 

 
(e) The image is virtual (V) and upright.  
 
(f) The object and its image are on the same side. The ray diagram would be similar to 
Fig. 34-12(f) in the textbook, but with the object and the image located closer to the 
surface. 
 
38. In addition to n1 =1.0, we are given (a) n2=1.5,  (c) r = +30 cm, and (d) 600i = + . 
 
(b) Equation 34-8 gives 

1

2 1 2

1.0 71cm.1.5 1.0 1.5
30 cm 600 cm

np n n n
r i

= = =
− − −−

 

 



 

  

1319

(e) With 0i > , the image is real (R) and inverted.  
 
(f) The object and its image are on the opposite side. The ray diagram would be similar to 
Fig. 34-12(a) in the textbook. 
 
39. (a) We use Eq. 34-8 and note that n1 = nair = 1.00, n2 = n, p = ∞, and i = 2r: 
 

100
2

1. .
∞

+ =
−n

r
n

r
 

 
We solve for the unknown index: n = 2.00. 
 
(b) Now i = r so Eq. 34-8 becomes 

n
r

n
r

=
−1,  

 
which is not valid unless n → ∞  or .r → ∞  It is impossible to focus at the center of the 
sphere. 
 
40. We use Eq. 34-8 (and Fig. 34-11(d) is useful), with n1 = 1.6 and n2 = 1 (using the 
rounded-off value for air): 

16 1 1 16. .
p i r

+ =
− . 

 
Using the sign convention for r stated in the paragraph following Eq. 34-8 (so that 

5.0 cmr = − ), we obtain i = –2.4 cm for objects at p = 3.0 cm. Returning to Fig. 34-38 
(and noting the location of the observer), we conclude that the tabletop seems 7.4 cm 
away. 
 
41. (a) We use Eq. 34-10: 
 

f n
r r

= − −
F
HG
I
KJ

L
NM

O
QP

= −
∞

−
−

F
HG

I
KJ

L
NM

O
QP

= +
− −

( ) ( . )1 1 1 15 1 1 1
20

40
1 2

1 1

cm
cm.  

 
(b) From Eq. 34-9, 

i
f p

= −
F
HG
I
KJ = −
F
HG

I
KJ = ∞

− −
1 1 1

40
1

40

1 1

cm cm
.  

 
42. Combining Eq. 34-7 and Eq. 34-9, we have m( p – f ) = – f.  The graph in Fig. 34-39 
indicates that m = 0.5 where p = 15 cm, so our expression yields f = –15 cm.  Plugging 
this back into our expression and evaluating at p = 35 cm yields m = +0.30. 
 
43. We solve Eq. 34-9 for the image distance: 
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1
1 1 .fpi
f p p f

−
⎛ ⎞

= − =⎜ ⎟ −⎝ ⎠
 

 
The height of the image is thus 
 

h mh i
p

h
fh

p fi p p
p= =

F
HG
I
KJ =

−
=

−
=

(
.

.75
27 0 075

50mm)(1.80 m)
m m

mm.  

 
44. The singularity the graph (where the curve goes to ±∞) is at p = 30 cm, which implies 
(by Eq. 34-9) that f = 30 cm > 0 (converging type lens).  For p = 100 cm, Eq. 34-9 leads 
to i =  +43 cm. 
 
45. Let the diameter of the Sun be ds and that of the image be di. Then, Eq. 34-5 leads to 
 

( )( )( )2 8
3

11

20.0 10 m 2 6.96 10 m
| | 1.86 10 m

1.50 10 m
1.86 mm.

i s s s
i fd m d d d
p p

−
−

× ×⎛ ⎞ ⎛ ⎞
= = ≈ = = ×⎜ ⎟ ⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
=

 

 
46. Since the focal length is a constant for the whole graph, then 1/p + 1/i = constant.  
Consider the value of the graph at p = 20 cm; we estimate its value there to be –10 cm.  
Therefore, 1/20 + 1/(–10) = 1/70 + 1/inew .  Thus, inew = –16 cm. 
 
47. We use the lens maker’s equation, Eq. 34-10: 
 

1 1 1 1

1 2f
n

r r
= − −

F
HG
I
KJb g  

 
where f is the focal length, n is the index of refraction, r1 is the radius of curvature of the 
first surface encountered by the light, and r2 is the radius of curvature of the second 
surface. Since one surface has twice the radius of the other and since one surface is 
convex to the incoming light while the other is concave, set r2 = –2r1 to obtain 
 

1 1 1 1
2

3 1
21 1 1f

n
r r

n
r

= − +
F
HG

I
KJ =

−( ) ( ) .  

 
(a) We solve for the smaller radius r1: 
 

r n f
1

3 1
2

3 15 1 60
2

45=
−

=
−

=
( ) ( . )( mm) mm. 

 
(b) The magnitude of the larger radius is 2 1| | 2 90 mmr r= = .  
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48. Combining Eq. 34-7 and Eq. 34-9, we have m( p – f ) = –f.  The graph in Fig. 34-42 
indicates that m = 2 where p = 5 cm, so our expression yields f = 10 cm.  Plugging this 
back into our expression and evaluating at p = 14 cm yields m = –2.5. 
 
49. Using Eq. 34-9 and noting that p + i = d = 44 cm, we obtain  
 

p2 – dp + df = 0. 
Therefore, 
 

p d d df= ± − = ± − =
1
2

4 22 44 4 44 222( ) ( (cm 1
2

cm) cm)(11 cm) cm.2  

 
50. We recall that for a converging (C) lens, the focal length value should be positive ( f = 
+4 cm).   
 
(a) Equation 34-9 gives i =  pf/(p – f) = +5.3 cm.  
 
(b) Equation 34-7 gives m = /i p− = −0.33.   
 
(c) The fact that the image distance i is a positive value means the image is real (R). 
 
(d) The fact that the magnification is a negative value means the image is inverted (I).   
 
(e) The image is on the opposite side of the object (see Fig. 34-16(a)). 
 
51. We recall that for a converging (C) lens, the focal length value should be positive ( f = 
+16 cm).   
 
(a) Equation 34-9 gives i =  pf/(p – f)  = – 48 cm.  
 
(b) Equation 34-7 gives m = /i p−  = +4.0.   
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI). 
 
(e) The image is on the same side as the object (see Fig. 34-16(b)). 
 
52. We recall that for a converging (C) lens, the focal length value should be positive ( f = 
+35 cm).   
 
(a) Equation 34-9 gives i =  pf/(p – f) = –88 cm. 
 
(b) Equation 34-7 give m = /i p− = +3.5.   
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
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(d) A positive value of magnification means the image is not inverted (NI).   
 
(e) The image is on the same side as the object (see Fig. 34-16(b)). 
 
53. For a diverging (D) lens, the focal length value is negative. The object distance p, the 
image distance i, and the focal length f are related by Eq. 34-9: 
 

1 1 1
f p i

= + . 

 
The value of i is positive for real images, and negative for virtual images. The 
corresponding lateral magnification is / .m i p= −  The value of m is positive for upright 
(not inverted) images, and is negative for inverted images. 
 
For this lens, we have f = –12  cm and p = +8.0 cm.   
 

(a) The image distance is (8.0 cm)( 12 cm) 4.8 cm.
8.0 cm ( 12) cm

pfi
p f

−
= = = −

− − −
 

 
(b) The magnification is m = / ( 4.8 cm) /(8.0 cm)i p− = − − = +0.60.   
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).   
 
(e) The image is on the same side as the object. 
 
The ray diagram for this problem is similar to the one shown in Fig. 34-16(c). The lens is 
diverging, forming a virtual image with the same orientation as the object, and on the 
same side as the object. 
 
54. We recall that for a diverging (D) lens, the focal length value should be negative ( f 
= –6  cm).   
 
(a) Equation 34-9 gives i =  pf/(p – f) = –3.8 cm. 
 
(b) Equation 34-7 gives m = /i p−  =  +0.38.   
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).   
 
(e) The image is on the same side as the object (see Fig. 34-16(c)). 
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55. We recall that for a diverging (D) lens, the focal length value should be negative ( f 
= –14  cm).   
 

(a) The image distance is (22 cm)( 14 cm) 8.6 cm.
22 cm ( 14) cm

pfi
p f

−
= = = −

− − −
 

 
(b) The magnification is m = / ( 8.6 cm) /(22 cm)i p− = − − = +0.39.   
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).   
 
(e) The image is on the same side as the object. 
 
The ray diagram for this problem is similar to the one shown in Fig. 34-16(c). The lens is 
diverging, forming a virtual image with the same orientation as the object, and on the 
same side as the object. 
 
56. We recall that for a diverging (D) lens, the focal length value should be negative ( f 
= –31  cm).   
 
(a) Equation 34-9 gives i =  pf/( p– f) = –8.7 cm.  
 
(b) Equation 34-7 gives m = /i p− = +0.72.   
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).   
 
(e) The image is on the same side as the object (see Fig. 34-16(c)). 
 
57. We recall that for a converging (C) lens, the focal length value should be positive ( f = 
+20 cm).   
 

(a) The image distance is (45 cm)(20 cm) 36 cm.
45 cm 20 cm

pfi
p f

= = = +
− −

 

 
(b) The magnification is m = / ( 36 cm) /(45 cm) 0.80.i p− = − + = −   
 
(c) The fact that the image distance is a positive value means the image is real (R). 
 
(d) A negative value of magnification means the image is inverted (I).   
 
(e) The image is on the opposite side of the object. 
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The ray diagram for this problem is similar to the one shown in Fig. 34-16(a). The lens is 
converging, forming a real, inverted image on the opposite side of the object. 
 
58. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –63 cm. 
 
(b) Equation 34-7 gives m = /i p− = +2.2.  
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).  
 
(e) The image is on the same side as the object. 
  
59. Since r1 is positive and r2 is negative, our lens is of double-convex type. The lens 
maker’s equation is given by Eq. 34-10: 

1 1 1 1

1 2f
n

r r
= − −

F
HG
I
KJb g  

 
where f is the focal length, n is the index of refraction, r1 is the radius of curvature of the 
first surface encountered by the light, and r2 is the radius of curvature of the second 
surface. The object distance p, the image distance i, and the focal length f are related by 
Eq. 34-9: 

1 1 1
f p i

= + . 

 
For this lens, we have r1 = +30 cm, r2 = – 42 cm, n = 1.55 and p = +75 cm.   
 
(a) The focal length is  

 1 2

2 1

( 30 cm)( 42 cm) 31.8 cm
( 1)( ) (1.55 1)( 42 cm 30 cm)

r rf
n r r

+ −
= = = +

− − − − −
. 

 
Thus, the image distance is  

(75 cm)(31.8 cm) 55 cm.
75 cm 31.8 cm

pfi
p f

= = = +
− −

 

 
(b) Equation 34-7 give m = / (55 cm) /(75 cm)i p− = − = −0.74.   
 
(c) The fact that the image distance is a positive value means the image is real (R). 
 
(d) The fact that the magnification is a negative value means the image is inverted (I).   
 
(e) The image is on the opposite side of the object. 
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The ray diagram for this problem is similar to the one shown in Fig. 34-16(a). The lens is 
converging, forming a real, inverted image on the opposite side of the object. 
 
60. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –26 cm.  
 
(b) Equation 34-7 gives m = /i p− = +4.3.  
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).  
 
(e) The image is on the same side as the object. 
  
61. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –18 cm.  
 
(b) Equation 34-7 gives m = /i p− = +0.76.  
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).  
 
(e) The image is on the same side as the object. 
 
62. (a) Equation 34-10 yields  

1 2

2 1

30 cm
( 1)( )

r rf
n r r

= = +
− −

 

 
Since f > 0, this must be a converging (“C”) lens. From Eq. 34-9, we obtain 
 

1 1 15cm.1 1 1 1
30 cm 10 cm

i
f p

= = = −
− −

 

 
(b) Equation 34-6 yields m = /i p− = –(–15 cm)/(10 cm) = +1.5.  
 
(c) Since i < 0, the image is virtual (V).  
 
(d) Since m > 0, the image is upright, or not inverted (NI).  
 
(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(b) 
of the textbook. 
 
63. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –30 cm. 
 
(b) Equation 34-7 gives m = /i p− = +0.86.  
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(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).  
 
(e) The image is on the same side as the object. 
 
64. (a) Equation 34-10 yields  

( ) 1
1 2

1 1/ 1/ 120 cm.
1

f r r
n

−= − = −
−

 

 
Since f < 0, this must be a diverging (“D”) lens. From Eq. 34-9, we obtain 
 

1 1 9.2cm .1 1 1 1
120 cm 10 cm

i
f p

= = = −
− −

−

 

 
(b) Equation 34-6 yields m = /i p− = –(–9.2 cm)/(10 cm) = +0.92.  
 
(c) Since i < 0, the image is virtual (V).  
 
(d) Since m > 0, the image is upright, or not inverted (NI).  
 
(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(c) 
of the textbook. 
 
65. (a) Equation 34-10 yields  

1
1 2

1 (1/ 1/ ) 30 cm.
1

f r r
n

−= − = −
−

 

 
Since f < 0, this must be a diverging (“D”) lens. From Eq. 34-9, we obtain 
 

1 1 7.5cm.1 1 1 1
30 cm 10 cm

i
f p

= = = −
− −

−

 

 
(b) Equation 34-6 yields m = /i p− = –(–7.5 cm)/(10 cm) = +0.75.  
 
(c) Since i < 0, the image is virtual (V).  
 
(d) Since m > 0, the image is upright, or not inverted (NI).  
 
(e) The image is on the same side as the object. The ray diagram is similar to Fig. 34-16(c) 
of the textbook. 
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66. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = –9.7 cm.  
 
(b) Equation 34-7 gives m = /i p− = +0.54.  
 
(c) The fact that the image distance is a negative value means the image is virtual (V). 
 
(d) A positive value of magnification means the image is not inverted (NI).  
 
(e) The image is on the same side as the object. 
 
67. (a) Combining Eq. 34-9 and Eq. 34-10 gives i = +84 cm.  
 
(b) Equation 34-7 gives m = /i p− = −1.4.   
 
(c) The fact that the image distance is a positive value means the image is real (R). 
 
(d) The fact that the magnification is a negative value means the image is inverted (I).   
 
(e) The image is on the side opposite from the object. 
 
68. (a) A convex (converging) lens, since a real image is formed. 
 
(b) Since i = d – p and i/p = 1/2, 
 

p d
= = =

2
3

2 40 0
3

26 7
.

.
cm

cm.b g  

(c) The focal length is 
 

( )1 1 2 40.0 cm1 1 1 1 2 8.89 cm .
/ 3 2 / 3 9 9

df
i p d d

− −⎛ ⎞ ⎛ ⎞= + = + = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
69. (a) Since f > 0, this is a converging lens (“C”).  
 
(d) Equation 34-9 gives 

1 1 10cm.1 1 1 1
10 cm 5.0 cm

i
f p

= = = −
− −

 

 
(e) From Eq. 34-6, m = –(–10 cm)/(5.0 cm) = +2.0.  
 
(f) The fact that the image distance i is a negative value means the image is virtual (V). 
 
(g) A positive value of magnification means the image is not inverted (NI).  
 
(h) The image is on the same side as the object. 
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70. (a) The fact that m < 1 and that the image is upright (not inverted: NI) means the lens 
is of the diverging type (D) (it may help to look at Fig. 34-16 to illustrate this). 
 
(b) A diverging lens implies that f = –20 cm, with a minus sign. 
 
(d) Equation 34-9 gives i = –5.7 cm.  
 
(e) Equation 34-7 gives m = /i p− = +0.71.   
 
(f) The fact that the image distance i is a negative value means the image is virtual (V). 
 
(h) The image is on the same side as the object. 
 
71. (a) Eq. 34-7 yields i = –mp = –(0.25)(16 cm) = –4.0 cm. Equation 34-9 gives f = –5.3 
cm, which implies the lens is of the diverging type (D).  
 
(b) From (a), we have f = –5.3 cm. 
 
(d) Similarly, i = –4.0 cm. 
 
(f) The fact that the image distance i is a negative value means the image is virtual (V). 
 
(g) A positive value of magnification means the image is not inverted (NI).  
 
(h) The image is on the same side as the object. 
  
72. (a) Equation 34-7 readily yields i = +4.0 cm.  Then Eq. 34-9 gives f = +3.2 cm, which 
implies the lens is of the converging type (C).  
 
(b) From (a), we have f = +3.2 cm. 
 
(d) Similarly, i = +4.0 cm. 
 
(f) The fact that the image distance is a positive value means the image is real (R). 
 
(g) The fact that the magnification is a negative value means the image is inverted (I).   
 
(h) The image is on the opposite side of the object. 
 
73. (a) Using Eq. 34-6 (which implies the image is inverted) and the given value of p, we 
find i = –mp = +5.0 cm; it is a real image. Equation 34-9 then yields the focal length: f = 
+3.3 cm. Therefore, the lens is of the converging (“C”) type.  
 
(b) From (a), we have f = +3.3 cm. 
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(d) Similarly, i = –mp = +5.0 cm. 
 
(f) The fact that the image distance is a positive value means the image is real (R). 
 
(g) The fact that the magnification is a negative value means the image is inverted (I).   
 
(h) The image is on the side opposite from the object. The ray diagram is similar to Fig. 
34-16(a) of the textbook.  
 
74. (b) Since this is a converging lens (“C”) then f > 0, so we should put a plus sign in 
front of the “10” value given for the focal length.  
 
(d) Equation 34-9 gives 

1 1 20cm.1 1 1 1
10 cm 20 cm

i
f p

= = = +
− −

 

 
(e) From Eq. 34-6, m = –20/20 = –1.0.  
 
(f) The fact that the image distance is a positive value means the image is real (R). 
 
(g) The fact that the magnification is a negative value means the image is inverted (I).   
 
(h) The image is on the side opposite from the object. 
 
75. (a) Since the image is virtual (on the same side as the object), the image distance i is 
negative. By substituting /( )i fp p f= −  into / ,m i p= − we obtain 
 

 .i fm
p p f

= − = −
−

 

 
The fact that the magnification is less than 1.0 implies that f must be negative. This 
means that the lens is of the diverging (“D”) type.  
 
(b) Thus, the focal length is 10 cm.f = −  
 
(d) The image distance is 

(5.0 cm)( 10 cm) 3.3 cm.
5.0 cm ( 10 cm)

pfi
p f

−
= = = −

− − −
 

 
(e) The magnification is / ( 3.3 cm) /(5.0 cm) 0.67m i p= − = − − = + . 
 
(f) The fact that the image distance i is a negative value means the image is virtual (V). 
 
(g) A positive value of magnification means the image is not inverted (NI).  



CHAPTER 34 1330 

 
The ray diagram for this problem is similar to the one shown in Fig. 34-16(c). The lens is 
diverging, forming a virtual image with the same orientation as the object, and on the 
same side as the object. 
 
76. (a) We are told the magnification is positive and greater than 1. Scanning the single-
lens-image figures in the textbook (Figs. 34-16, 34-17, and 34-19), we see that such a 
magnification (which implies an upright image larger than the object) is only possible if 
the lens is of the converging (“C”) type (and if p < f ).  
 
(b) We should put a plus sign in front of the “10” value given for the focal length.  
 
(d) Equation 34-9 gives 

1 1 10cm.1 1 1 1
10 cm 5.0 cm

i
f p

= = = −
− −

 

 
(e) / 2.0m i p= − = + . 
 
(f) The fact that the image distance i is a negative value means the image is virtual (V). 
 
(g) A positive value of magnification means the image is not inverted (NI).  
 
(h) The image is on the same side as the object. 
 
77. (a) Combining Eqs. 34-7 and 34-9, we find the focal length to be 
 

 16 cm 80 cm
1 1/ 1 1/1.25

pf
m

= = =
− −

. 

 
Since the value of f is positive, the lens is of the converging type (C).  
 
(b) From (a), we have f = +80 cm. 
 
(d) The image distance is (1.25)(16 cm) 20 cm.i mp= − = − = −  
 
(e) The magnification is m = + 1.25, as given. 
 
(f) The fact that the image distance i is a negative value means the image is virtual (V). 
 
(g) A positive value of magnification means the image is not inverted (NI).  
 
(h) The image is on the same side as the object. 
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The ray diagram for this problem is similar to the one shown in Fig. 34-16(b). The lens is 
converging. With the object placed inside the focal point (p < f), we have a virtual image 
with the same orientation as the object, and on the same side as the object. 
 
78. (a) We are told the absolute value of the magnification is 0.5 and that  the image was 
upright (NI). Thus, m = +0.5. Using Eq. 34-6 and the given value of p, we find i = –5.0 
cm; it is a virtual image. Equation 34-9 then yields the focal length: f = –10 cm. 
Therefore, the lens is of the diverging (“D”) type.  
 
(b) From (a), we have f = –10 cm. 
 
(d) Similarly, i = –5.0 cm. 
 
(e) m = +0.5, with a plus sign. 
 
(f) The fact that the image distance i is a negative value means the image is virtual (V). 
 
(h) The image is on the same side as the object. 
 
79. (a) The fact that m > 1 means the lens is of the converging type (C) (it may help to 
look at Fig. 34-16 to illustrate this). 
 
(b) A converging lens implies f = +20 cm, with a plus sign.   
 
(d) Equation 34-9 then gives i = –13 cm. 
 
(e) Equation 34-7 gives m = /i p− = +1.7.   
 
(f) The fact that the image distance i is a negative value means the image is virtual (V). 
 
(g) A positive value of magnification means the image is not inverted (NI).  
 
(h) The image is on the same side as the object. 
 
80. (a) The image from lens 1 (which has f1 = +15 cm) is at i1 = –30 cm (by Eq. 34-9). 
This serves as an “object” for lens 2 (which has f2 = +8 cm) with p2 = d – i1 = 40 cm.  
Then Eq. 34-9 (applied to lens 2) yields i2 = +10 cm. 
 
(b) Equation 34-11 yields M = m1m2 1 1 2 2 1 2 1 2( / )( / ) /i p i p i i p p= − − = = –0.75.  
 
(c) The fact that the (final) image distance is a positive value means the image is real (R). 
 
(d) The fact that the magnification is a negative value means the image is inverted (I).   
 
(e) The image is on the side opposite from the object (relative to lens 2). 
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81. (a) The image from lens 1 (which has f1 = +8 cm) is at i1 = 24 cm (by Eq. 34-9). This 
serves as an “object” for lens 2 (which has f2 = +6 cm) with p2 = d – i1 = 8 cm.  Then Eq. 
34-9 (applied to lens 2) yields i2 = +24 cm. 
 
(b) Equation 34-11 yields M = m1m2 1 1 2 2 1 2 1 2( / )( / ) /i p i p i i p p= − − = = +6.0.  
 
(c)The fact that the (final) image distance is a positive value means the image is real (R). 
 
(d) The fact that the magnification is positive means the image is not inverted (NI).   
 
(e) The image is on the side opposite from the object (relative to lens 2).  
 
82. (a) The image from lens 1 (which has f1 = –6 cm) is at i1 = –3.4 cm (by Eq. 34-9). 
This serves as an “object” for lens 2 (which has f2 = +6 cm) with p2 = d – i1 = 15.4 cm.  
Then Eq. 34-9 (applied to lens 2) yields i2 = +9.8 cm. 
 
(b) Equation 34-11 yields M = –0.27.  
 
(c) The fact that the (final) image distance is a positive value means the image is real (R). 
 
(d) The fact that the magnification is a negative value means the image is inverted (I).  
 
(e) The image is on the side opposite from the object (relative to lens 2). 
 
83. To analyze two-lens systems, we first ignore lens 2, and apply the standard procedure 
used for a single-lens system. The object distance p1, the image distance i1, and the focal 
length f1 are related by: 

1 1 1

1 1 1
f p i

= + . 

 
Next, we ignore the lens 1 but treat the image formed by lens 1 as the object for lens 2. 
The object distance p2 is the distance between lens 2 and the location of the first image. 
The location of the final image, i2, is obtained by solving  
 

2 2 2

1 1 1
f p i

= +  

where f2 is the focal length of lens 2. 
 
(a) Since lens 1 is converging, f1 = +9 cm, and we find the image distance to be 

1 1
1

1 1

(20 cm)(9 cm) 16.4 cm.
20 cm 9 cm

p fi
p f

= = =
− −

 

 
This serves as an “object” for lens 2 (which has f2 = +5 cm) with an object distance given 
by p2 = d – i1 = –8.4 cm. The negative sign means that the “object” is behind lens 2. 
Solving the lens equation, we obtain 
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2 2

2
2 2

( 8.4 cm)(5.0 cm) 3.13 cm.
8.4 cm 5.0 cm

p fi
p f

−
= = =

− − −
 

    
(b) The overall magnification is M = m1m2 1 1 2 2 1 2 1 2( / )( / ) /i p i p i i p p= − − = = –0.31.   
 
(c) The fact that the (final) image distance is a positive value means the image is real (R). 
 
(d) The fact that the magnification is a negative value means the image is inverted (I).  
 
(e) The image is on the side opposite from the object (relative to lens 2).  
 
Since this result involves a negative value for p2 (and perhaps other “non-intuitive” 
features), we offer a few words of explanation: lens 1 is converging the rays toward an 
image (that never gets a chance to form due to the intervening presence of lens 2) that 
would be real and inverted (and 8.4 cm beyond lens 2’s location).  Lens 2, in a sense, just 
causes these rays to converge a little more rapidly, and causes the image to form a little 
closer (to the lens system) than if lens 2 were not present.    
 
84. (a) The image from lens 1 (which has f1 = +12 cm) is at i1 = +60 cm (by Eq. 34-9). 
This serves as an “object” for lens 2 (which has f2 = +10 cm) with p2 = d – i1 = 7 cm.  
Then Eq. 34-9 (applied to lens 2) yields i2 = –23 cm. 
 
(b) Equation 34-11 yields M = m1m2 1 1 2 2 1 2 1 2( / )( / ) /i p i p i i p p= − − = = –13.  
 
(c) The fact that the (final) image distance is negative means the image is virtual (V). 
 
(d) The fact that the magnification is a negative value means the image is inverted (I). 
 
(e) The image is on the same side as the object (relative to lens 2). 
 
85. (a) The image from lens 1 (which has f1 = +6 cm) is at i1 = –12 cm (by Eq. 34-9). This 
serves as an “object” for lens 2 (which has f2 = –6 cm) with p2 = d – i1 = 20 cm.  Then Eq. 
34-9 (applied to lens 2) yields i2 = –4.6 cm. 
 
(b) Equation 34-11 yields M = +0.69.  
 
(c) The fact that the (final) image distance is negative means the image is virtual (V). 
 
(d) The fact that the magnification is positive means the image is not inverted (NI).   
 
(e) The image is on the same side as the object (relative to lens 2). 
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86. (a) The image from lens 1 (which has f1 = +8 cm) is at i1 = +24 cm (by Eq. 34-9). This 
serves as an “object” for lens 2 (which has f2 = –8 cm) with p2 = d – i1 = 6 cm.  Then Eq. 
34-9 (applied to lens 2) yields i2 = –3.4 cm. 
 
(b) Equation 34-11 yields M = –1.1.  
 
(c) The fact that the (final) image distance is negative means the image is virtual (V). 
 
(d) The fact that the magnification is a negative value means the image is inverted (I).  
 
(e) The image is on the same side as the object (relative to lens 2). 
 
87. (a) The image from lens 1 (which has f1 = –12 cm) is at i1 = –7.5 cm (by Eq. 34-9). 
This serves as an “object” for lens 2 (which has f2 = –8 cm) with  
 

p2 = d – i1 = 17.5 cm. 
 
Then Eq. 34-9 (applied to lens 2) yields i2 = –5.5 cm. 
 
(b) Equation 34-11 yields M = +0.12.  
 
(c) The fact that the (final) image distance is negative means the image is virtual (V). 
 
(d) The fact that the magnification is positive means the image is not inverted (NI). 
 
(e) The image is on the same side as the object (relative to lens 2). 
 
88. The minimum diameter of the eyepiece is given by 
 

d d
mey

ob mm
36

mm.= = =
θ

75 21.  

 
89. (a) If L is the distance between the lenses, then according to Fig. 34-20, the tube 
length is  

s = L – fob – fey = 25.0 cm – 4.00 cm – 8.00 cm = 13.0 cm. 
 
(b) We solve (1/p) + (1/i) = (1/fob) for p. The image distance is  
 

i = fob + s = 4.00 cm + 13.0 cm = 17.0 cm, 
so 

( )( )ob

ob

17.0 cm 4.00 cm
5.23 cm.

17.0 cm 4.00 cm
ifp

i f
= = =

− −
 

 
(c) The magnification of the objective is 
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m i
p

= − = − = −
17 0
523

325.
.

. .cm
cm

 

 
(d) The angular magnification of the eyepiece is 
 

m
fθ = = =

25 25 313cm cm
8.00 cmey

. .  

 
(e) The overall magnification of the microscope is 
 

M mm= = − = −θ 325 313 10 2. . . .b gb g  
 
90. (a) Now, the lens-film distance is 
 

i
f p

= −
F
HG
I
KJ = −
F
HG

I
KJ =

− −
1 1 1

50
1

100
53

1 1

.
.

cm cm
cm. 

 
(b) The change in the lens-film distance is 5.3 cm – 5.0 cm = 0.30 cm. 
 
91. (a) When the eye is relaxed, its lens focuses faraway objects on the retina, a distance i 
behind the lens. We set p = ∞ in the thin lens equation to obtain 1/i = 1/f, where f is the 
focal length of the relaxed effective lens. Thus, i = f = 2.50 cm. When the eye focuses on 
closer objects, the image distance i remains the same but the object distance and focal 
length change. If p is the new object distance and f ' is the new focal length, then 
 

1 1 1
p i f

+ =
′
.  

We substitute i = f and solve for f ': 
 

′ =
+

= =f pf
f p

40 0 2 50
40 0

2 35
. .
.

.
cm cm
cm + 2.50 cm

cm.b gb g  

 
(b) Consider the lens maker’s equation 

1 1 1 1

1 2f
n

r r
= − −

F
HG
I
KJb g  

 
where r1 and r2 are the radii of curvature of the two surfaces of the lens and n is the index 
of refraction of the lens material. For the lens pictured in Fig. 34-46, r1 and r2 have about 
the same magnitude, r1 is positive, and r2 is negative. Since the focal length decreases, the 
combination (1/r1) – (1/r2) must increase. This can be accomplished by decreasing the 
magnitudes of both radii. 
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92. We refer to Fig. 34-20. For the intermediate image, p = 10 mm and  
 

i = (fob + s + fey) – fey = 300 m – 50 mm = 250 mm, 
so 

1 1 1 1
250

1
10

9 62
f i p

f
ob

obmm mm
mm,= + = + ⇒ = .  

 
and  

s = (fob + s + fey) – fob – fey = 300 mm – 9.62 mm – 50 mm = 240 mm. 
 
Then from Eq. 34-14, 

M s
f f

= − = −
F
HG

I
KJ
F
HG

I
KJ = −

ob ey

cm mm
9.62 mm

mm
50 mm

25 240 150 125. 

 
93. (a) Without the magnifier, θ = h/Pn (see Fig. 34-19). With the magnifier, letting  
 

i = – |i| = – Pn, 
we obtain 

1 1 1 1 1 1 1
p f i f i f Pn

= − = + = + .  

Consequently, 

m h p
h P

f P
P

P
f fn

n

n

n
θ

θ
θ

=
′

= =
+

= + = +
/
/

/ /
/

.1 1
1

1 1 25 cm  

 

With f = 10 cm, 25 cm1 3.5
10 cm

mθ = + = . 

 
(b) In the case where the image appears at infinity, let | |i i= − → −∞ , so that 
1/ 1/ 1/ 1/p i p f+ = = , we have 
 

/ 1/ 25 cm .
/ 1/

n

n n

Ph p fm
h P P f fθ

θ
θ

′
= = = = =  

With f = 10 cm, 
25 cm 2.5.
10 cm

mθ = =  

 
94. By Eq. 34-9, 1/i + 1/p is equal to constant (1/f ). Thus,  
 

1/(–10) + 1/(15) = 1/inew + 1/(70). 
 
This leads to inew = –21 cm. 
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95. A converging lens has a positive-valued focal length, so f1 = +8 cm, f2 = +6 cm, and f3 
= +6 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between the results 
of one calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use Eq. 34-7 
for each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 34-11) 
for the net magnification of the system.  Our intermediate results for image distances are 
i1 = 24 cm and i2 = –12 cm.  Our final results are as follows:  
 
(a) i3 = +8.6 cm. 
 
(b) m =  +2.6. 
 
(c) The image is real (R). 
 
(d) The image is not inverted (NI). 
 
(e) It is on the opposite side of lens 3 from the object (which is expected for a real final 
image). 
 
96. A converging lens has a positive-valued focal length, and a diverging lens has a 
negative-valued focal length. Therefore, f1 =  – 6.0 cm, f2 = +6.0 cm, and f3 = +4.0 cm. We 
use Eq. 34-9 for each lens separately, “bridging the gap” between the results of one 
calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use Eq. 34-7 for 
each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 34-11) for 
the net magnification of the system.  Our intermediate results for image distances are i1 
= –2.4 cm and i2 = 12 cm.  Our final results are as follows:  
 
(a) i3 = – 4.0 cm. 
 
(b) m = −1.2. 
 
(c) The image is virtual (V). 
 
(d) The image is inverted (I). 
 
(e) It is on the same side as the object (relative to lens 3) as expected for a virtual image. 
 
97. A converging lens has a positive-valued focal length, so f1 = +6.0 cm, f2 = +3.0 cm, 
and f3 = +3.0 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between 
the results of one calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use 
Eq. 34-7 for each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 
34-11) for the net magnification of the system.  Our intermediate results for image 
distances are i1 = 9.0 cm and i2 = 6.0 cm.  Our final results are as follows:  
 
(a) i3 = +7.5 cm. 
 
(b) m = −0.75. 
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(c) The image is real (R). 
 
(d) The image is inverted (I).  
 
(e) It is on the opposite side of lens 3 from the object (which is expected for a real final 
image). 
 
98. A converging lens has a positive-valued focal length, so f1 = +6.0 cm, f2 = +6.0 cm, 
and f3 = +5.0 cm. We use Eq. 34-9 for each lens separately, “bridging the gap” between 
the results of one calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use 
Eq. 34-7 for each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 
34-11) for the net magnification of the system.  Our intermediate results for image 
distances are i1 = –3.0 cm and i2 = 9.0 cm.  Our final results are as follows:  
 
(a) i3 = +10 cm. 
 
(b) m =  +0.75. 
 
(c) The image is real (R). 
 
(d) The image is not inverted (NI). 
 
(e) It is on the opposite side of lens 3 from the object (which is expected for a real final 
image).  
 
99. A converging lens has a positive-valued focal length, and a diverging lens has a 
negative-valued focal length. Therefore, f1 =  – 8.0 cm, f2 =  – 16 cm, and f3 = +8.0 cm. 
We use Eq. 34-9 for each lens separately, “bridging the gap” between the results of one 
calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use Eq. 34-7 for 
each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 34-11) for 
the net magnification of the system.  Our intermediate results for image distances are i1 
= –4.0 cm and i2 = –6.86 cm.  Our final results are as follows:  
 
(a) i3 = +24.2 cm. 
 
(b) m = −0.58. 
 
(c) The image is real (R). 
 
(d) The image is inverted (I). 
 
(e) It is on the opposite side of lens 3 from the object (as expected for a real image). 
 
100. A converging lens has a positive-valued focal length, and a diverging lens has a 
negative-valued focal length. Therefore, f1 =  +6.0 cm, f2 = − 4.0 cm, and f3 = −12 cm. We 
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use Eq. 34-9 for each lens separately, “bridging the gap” between the results of one 
calculation and the next with p2 = d12  – i1 and p3 = d23  – i2.  We also use Eq. 34-7 for 
each magnification (m1, etc.), and m = m1 m2 m3  (a generalized version of Eq. 34-11) for 
the net magnification of the system.  Our intermediate results for image distances are i1 
= –12 cm and i2 = –3.33 cm.  Our final results are as follows:  
 
(a) i3 = – 5.15 cm ≈ – 5.2 cm . 
 
(b) m = +0.285 ≈  +0.29. 
 
(c) The image is virtual (V). 
 
(d) The image is not inverted (NI). 
 
(e) It is on the same side as the object (relative to lens 3) as expected for a virtual image. 
 
101. For a thin lens,  

(1/p) + (1/i) = (1/f ), 
 
where p is the object distance, i is the image distance, and f is the focal length. We solve 
for i: 
 

i fp
p f

=
−

.  

 
Let p = f + x, where x is positive if the object is outside the focal point and negative if it 
is inside. Then, 

i f f x
x

=
+( ) .  

 
Now let i = f + x', where x' is positive if the image is outside the focal point and negative 
if it is inside. Then, 

′ = − =
+

− =x i f f f x
x

f f
x

( ) 2

 

and xx' = f 2. 
 
102. (a) There are three images. Two are formed by single reflections from each of the 
mirrors and the third is formed by successive reflections from both mirrors. The positions 
of the images are shown on the two diagrams that follow. The diagram on the left shows 
the image I1, formed by reflections from the left-hand mirror. It is the same distance 
behind the mirror as the object O is in front, and lies on the line perpendicular to the 
mirror and through the object. Image I2 is formed by light that is reflected from both 
mirrors. 
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We may consider I2 to be the image of I1 formed by the right-hand mirror, extended. I2 is 
the same distance behind the line of the right-hand mirror as I1 is in front, and it is on the 
line that is perpendicular to the line of the mirror. The diagram on the right shows image 
I3, formed by reflections from the right-hand mirror. It is the same distance behind the 
mirror as the object is in front, and lies on the line perpendicular to the mirror and 
through the object. As the diagram shows, light that is first reflected from the right-hand 
mirror and then from the left-hand mirror forms an image at I2. 
 
(b) For θ = 45°, we have two images in the second mirror caused by the object and its 
“first” image, and from these one can construct two new images I and I' behind the first 
mirror plane. Extending the second mirror plane, we can find two further images of I and 
I' that are on equal sides of the extension of the first mirror plane. This circumstance 
implies there are no further images, since these final images are each other’s “twins.” We 
show this construction in the figure below. Summarizing, we find 1 + 2 + 2 + 2 = 7 
images in this case. 

 
 
(c) For θ = 60°, we have two images in the second mirror caused by the object and its 
“first” image, and from these one can construct two new images I and I' behind the first 
mirror plane. The images I and I' are each other’s “twins” in the sense that they are each 
other’s reflections about the extension of the second mirror plane; there are no further 
images. Summarizing, we find 1 + 2 + 2 = 5 images in this case. 
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For θ = 120°, we have two images I'1 and I2 behind the extension of the second mirror 
plane, caused by the object and its “first” image (which we refer to here as I1). No further 
images can be constructed from I'1 and I2, since the method indicated above would place 
any further possibilities in front of the mirrors. This construction has the disadvantage of 
deemphasizing the actual ray-tracing, and thus any dependence on where the observer of 
these images is actually placing his or her eyes. It turns out in this case that the number of 
images that can be seen ranges from 1 to 3, depending on the locations of both the object 
and the observer.  
 
(d) Thus, the smallest number of images that can be seen is 1. For example, if the 
observer’s eye is collinear with I1 and I'1, then the observer can only see one image (I1 
and not the one behind it). Note that an observer who stands close to the second mirror 
would probably be able to see two images, I1 and I2. 
 
(e) Similarly, the largest number would be 3. This happens if the observer moves further 
back from the vertex of the two mirrors. He or she should also be able to see the third 
image, I'1, which is essentially the “twin” image formed from I1 relative to the extension 
of the second mirror plane. 
 
103. We place an object far away from the composite lens and find the image distance i. 
Since the image is at a focal point, i = f, where f equals the effective focal length of the 
composite. The final image is produced by two lenses, with the image of the first lens 
being the object for the second. For the first lens, (1/p1) + (1/i1) = (1/f1), where f1 is the 
focal length of this lens and i1 is the image distance for the image it forms. Since p1 = ∞, 
i1 = f1. The thin lens equation, applied to the second lens, is (1/p2) + (1/i2) = (1/f2), where 
p2 is the object distance, i2 is the image distance, and f2 is the focal length. If the thickness 
of the lenses can be ignored, the object distance for the second lens is p2 = –i1. The 
negative sign must be used since the image formed by the first lens is beyond the second 
lens if i1 is positive. This means the object for the second lens is virtual and the object 
distance is negative. If i1 is negative, the image formed by the first lens is in front of the 
second lens and p2 is positive. In the thin lens equation, we replace p2 with –f1 and i2 with 
f to obtain 

− + =
1 1 1

1 2f f f
 

or 
1 1 1

1 2

1 2

1 2f f f
f f

f f
= + =

+
.  

Thus, 

f f f
f f

=
+
1 2

1 2

.  

 
104. (a) In the closest mirror M1, the “first” image I1 is 10 cm behind M1 and therefore 
20 cm from the object O. This is the smallest distance between the object and an image 
of the object. 
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(b) There are images from both O and I1 in the more distant mirror, M2: an image I2 
located at 30 cm behind M2. Since O is 30 cm in front of it, I2 is 60 cm from O. This is 
the second smallest distance between the object and an image of the object. 
 
(c) There is also an image I3 that is 50 cm behind M2 (since I1 is 50 cm in front of it). 
Thus, I3 is 80 cm from O. In addition, we have another image I4 that is 70 cm behind M1 
(since I2 is 70 cm in front of it). The distance from I4 to O for is 80 cm. 
 
(d) Returning to the closer mirror M1, there is an image I5 that is 90 cm behind the mirror 
(since I3 is 90 cm in front of it). The distances (measured from O) for I5 is 100 cm = 1.0 
m.  
 
105. (a) The “object” for the mirror that results in that box image is equally in front of the 
mirror (4 cm). This object is actually the first image formed by the system (produced by 
the first transmission through the lens); in those terms, it corresponds to i1 = 10 – 4 =  
6 cm. Thus, with f1 = 2 cm, Eq. 34-9 leads to 
 

1 1 1 300
1 1 1

1p i f
p+ = ⇒ = . cm.  

 
(b) The previously mentioned box image (4 cm behind the mirror) serves as an “object” 
(at p3 = 14 cm) for the return trip of light through the lens (f3 = f1 = 2 cm). This time, Eq. 
34-9 leads to 

1 1 1 2 33
3 3 3

3p i f
i+ = ⇒ = . cm. 

 
106. (a) First, the lens forms a real image of the object located at a distance 
 

i
f p f f

f1
1 1

1

1 1

1

1
1 1 1 1

2
2= −

F
HG

I
KJ = −
F
HG

I
KJ =

− −

 

to the right of the lens, or at  
p2 = 2(f1 + f2) – 2f1 = 2f2 

 
in front of the mirror. The subsequent image formed by the mirror is located at a distance 
 

i
f p f f

f2
2 2

1

2 2

1

2
1 1 1 1

2
2= −

F
HG

I
KJ = −
F
HG

I
KJ =

− −

 

to the left of the mirror, or at  
p'1 = 2(f1 + f2) – 2f2 = 2f1 

 
to the right of the lens. The final image formed by the lens is at a distance i'1 to the left of 
the lens, where 
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′ = −
′

F
HG

I
KJ = −
F
HG

I
KJ =

− −

i
f p f f

f1
1 1

1

1 1

1

1
1 1 1 1

2
2 .  

 
This turns out to be the same as the location of the original object.  
 
(b) The lateral magnification is 
 

m i
p

i
p

i
p

f
f

f
f

f
f

= −
F
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I
KJ −
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I
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′
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I
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I
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I
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I
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1

1
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1

2
2
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2
2

10. . 

 
(c) The final image is real (R). 
 
(d) It is at a distance i'1 to the left of the lens, 
 
(e) and inverted (I), as shown in the figure below.  

 
 
107. (a) In this case m > +1, and we know that lens 1 is converging (producing a virtual 
image), so that our result for focal length should be positive. Since  
|P + i1| = 20 cm and i1 = – 2p1, we find p1 = 20 cm and i1 = – 40 cm. Substituting these 
into Eq. 34-9, 

1 1 1

1 1 1
p i f

+ =  

 
leads to  

1 1
1

1 1

(20 cm)( 40 cm) 40 cm,
20 cm ( 40 cm)

p if
p i

−
= = = +

+ + −
 

 
which is positive as we expected. 
 
(b) The object distance is p1 = 20 cm, as shown in part (a). 
 
(c) In this case 0 < m < 1 and we know that lens 2 is diverging (producing a virtual 
image), so that our result for focal length should be negative. Since |p + i2| = 20 cm and 
i2 = – p2/2, we find p2 = 40 cm and i2 = – 20 cm. Substituting these into Eq. 34-9 leads to 
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2 2
2

2 2

(40 cm)( 20 cm) 40 cm,
40 cm ( 20 cm)

p if
p i

−
= = = −

+ + −
 

 
which is negative as we expected. 
 
(d) The object distance is p2 = 40 cm, as shown in part (c). 
 
The ray diagram for lens 1 is similar to the one shown in Fig. 34-16(b). The lens is 
converging. With the fly inside the focal point (p1 < f1), we have a virtual image with the 
same orientation, and on the same side as the object. On the other hand, the ray diagram 
for lens 2 is similar to the one shown in Fig. 34-16(c). The lens is diverging, forming a 
virtual image with the same orientation but smaller in size as the object, and on the same 
side as the object. 
 
108. We use Eq. 34-10, with the conventions for signs discussed in Sections 34-6 and 34-
7. 
 
(a) For lens 1, the biconvex (or double convex) case, we have 
 

f n
r r

= − −
F
HG
I
KJ

L
NM

O
QP

= − −
−

F
HG

I
KJ

L
NM

O
QP

=
− −

1 1 1 15 1 1
40

1
40

40
1 2

1 1

b g b g.
cm cm

cm.  

 
(b) Since f > 0 the lens forms a real image of the Sun. 
 
(c) For lens 2, of the planar convex type, we find 
 

( )
1

1 11.5 1 80cm.
40cm

f
−

⎡ ⎤⎛ ⎞
= − − =⎢ ⎥⎜ ⎟∞ −⎝ ⎠⎣ ⎦

 

 
(d) The image formed is real (since f > 0). 
 
(e) Now for lens 3, of the meniscus convex type, we have 
 

( )
1

1 11.5 1 240cm 2.4 m.
40cm 60cm

f
−

⎡ ⎤⎛ ⎞
= − − = =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

 
(f) The image formed is real (since f > 0). 
 
(g) For lens 4, of the biconcave type, the focal length is 
 

( )
1

1 11.5 1 40cm.
40cm 40cm

f
−

⎡ ⎤⎛ ⎞
= − − = −⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦
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(h) The image formed is virtual (since f < 0). 
 

(i) For lens 5 (plane-concave), we have ( )
1

1 11.5 1 80cm.
40cm

f
−

⎡ ⎤⎛ ⎞
= − − = −⎢ ⎥⎜ ⎟∞⎝ ⎠⎣ ⎦

 

 
(j) The image formed is virtual (since f < 0). 
 

(k) For lens 6 (meniscus concave), ( )
1

1 11.5 1 240cm 2.4 m.
60cm 40cm

f
−

⎡ ⎤⎛ ⎞
= − − = − = −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

 
(l) The image formed is virtual (since f < 0). 
 
109. (a) The first image is figured using Eq. 34-8, with n1 = 1 (using the rounded-off 
value for air) and n2 = 8/5. 

1 8
5

16 1
p i r

+ =
−.  

 
For a “flat lens” r = ∞, so we obtain  

i = – 8p/5 = – 64/5 
 
(with the unit cm understood) for that object at p = 10 cm. Relative to the second surface, 
this image is at a distance of 3 + 64/5 = 79/5. This serves as an object in order to find the 
final image, using Eq. 34-8 again (and r = ∞) but with n1 = 8/5 and n2 = 4/3. 
 

8
5

4
3

0
′

+
′

=
p i

 

which produces (for p' = 79/5)  
 

i' = – 5p/6 = – 79/6 ≈ – 13.2. 
 
This means the observer appears 13.2 + 6.8 = 20 cm from the fish. 
 
(b) It is straightforward to “reverse” the above reasoning, the result being that the final 
fish image is 7.0 cm to the right of the air-wall interface, and thus 15 cm from the 
observer. 
 
110. Setting nair = 1, nwater = n, and  p =  r/2 in Eq. 34-8 (and being careful with the sign 
convention for r in that equation), we obtain i =  –r/(1 + n), or |i| = r/(1 + n).  Then we use 
similar triangles (where h is the size of the fish and h′  is that of the “virtual fish”) to set 
up the ratio 

h′
r – |i|  =  

 h 
 r/2   . 
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Using our previous result for |i|, this gives h′/h = 2(1 – 1/(1 + n)) = 1.14. 
 
111. (a) Parallel rays are bent by positive-f lenses to their focal points F1, and rays that 
come from the focal point positions F2 in front of positive-f lenses are made to emerge 
parallel. The key, then, to this type of beam expander is to have the rear focal point F1 of 
the first lens coincide with the front focal point F2 of the second lens. Since the triangles 
that meet at the coincident focal point are similar (they share the same angle; they are 
vertex angles), then Wf/f2 = Wi/f1 follows immediately. Substituting the values given, we 
have  

 2

1

30.0 cm (2.5 mm) 6.0 mm.
12.5 cmf i

fW W
f

= = =  

 
(b) The area is proportional to W 2. Since intensity is defined as power P divided by area, 
we have  

22 2 2
21 1

2 2 2
2 2

   1.6 kW/m .f f i
f i

i i f

P WI W f fI I
I P W W f f

⎛ ⎞
= = = ⇒ = =⎜ ⎟

⎝ ⎠
 

 
(c) The previous argument can be adapted to the first lens in the expanding pair being of 
the diverging type, by ensuring that the front focal point of the first lens coincides with 
the front focal point of the second lens. The distance between the lenses in this case is  
 

f2 – |f1| = 30.0 cm – 26.0 cm = 4.0 cm. 
 
112. The water is medium 1, so n1 = nw, which we simply write as n. The air is medium 2, 
for which n2 ≈ 1. We refer to points where the light rays strike the water surface as A (on 
the left side of Fig. 34-56) and B (on the right side of the picture). The point midway 
between A and B (the center point in the picture) is C. The penny P is directly below C, 
and the location of the “apparent” or virtual penny is V. We note that the angle ∠CVB  
(the same as ∠CVA ) is equal to θ2, and the angle ∠CPB  (the same as ∠CPA ) is equal to 
θ1. The triangles CVB and CPB share a common side, the horizontal distance from C to B 
(which we refer to as x). Therefore, 

tan .θ θ2 = =
x

d
x
da

1and tan  

 
Using the small angle approximation (so a ratio of tangents is nearly equal to a ratio of 
sines) and the law of refraction, we obtain 
 

2 2 1

1 1 2 a

tan sin           
tan sin

a

x
d n d nx n d
d

θ θ
θ θ

≈ ⇒ ≈ ⇒ ≈  

 
which yields the desired relation: da = d/n. 
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Chapter 35 
 
 
1. The fact that wave W2 reflects two additional times has no substantive effect on the 
calculations, since two reflections amount to a 2(λ/2) = λ phase difference, which is 
effectively not a phase difference at all. The substantive difference between W2 and W1 is 
the extra distance 2L traveled by W2. 
 
(a) For wave W2 to be a half-wavelength “behind” wave W1, we require 2L = λ/2, or L = 
λ/4 = (620 nm)/4 =155 nm using the wavelength value given in the problem. 
 
(b) Destructive interference will again appear if W2 is 3

2 λ  “behind” the other wave. In 
this case, 2 3 2′ =L λ , and the difference is 
 

3 620 nm 310nm .
4 4 2 2

L L λ λ λ′ − = − = = =  

 
2. We consider waves W2 and W1 with an initial effective phase difference (in 
wavelengths) equal to 1

2 , and seek positions of the sliver that cause the wave to 
constructively interfere (which corresponds to an integer-valued phase difference in 
wavelengths). Thus, the extra distance 2L traveled by W2 must amount to 31

2 2,λ λ , and so 
on. We may write this requirement succinctly as 

2 1 where 0,1, 2, .
4

mL m+
= λ = …  

 
(a) Thus, the smallest value of /L λ  that results in the final waves being exactly in phase 
is when m = 0, which gives / 1/ 4 0.25L λ = = . 
 
(b) The second smallest value of /L λ that results in the final waves being exactly in 
phase is when m = 1, which gives / 3 / 4 0.75L λ = = . 
 
(c) The third smallest value of /L λ that results in the final waves being exactly in phase 
is when m = 2, which gives / 5 / 4 1.25L λ = = . 
 
3. (a) We take the phases of both waves to be zero at the front surfaces of the layers. The 
phase of the first wave at the back surface of the glass is given by φ1 = k1L – ωt, where k1 
(= 2π/λ1) is the angular wave number and λ1 is the wavelength in glass. Similarly, the 
phase of the second wave at the back surface of the plastic is given by φ2 = k2L – ωt, 
where k2 (= 2π/λ2) is the angular wave number and λ2 is the wavelength in plastic. The 
angular frequencies are the same since the waves have the same wavelength in air and the 
frequency of a wave does not change when the wave enters another medium. The phase 
difference is 
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( )1 2 1 2
12 .

 
k k L Lφ φ

⎛ ⎞
− = − = −⎜ ⎟

⎝ ⎠1 2

1p 
l l

 

 
Now, λ1 = λair/n1, where λair is the wavelength in air and n1 is the index of refraction of 
the glass. Similarly, λ2 = λair/n2, where n2 is the index of refraction of the plastic. This 
means that the phase difference is  

( )1 2 1 2
air

2 .n n Lπφ φ
λ

− = −  

 
The value of L that makes this 5.65 rad is 
 

L
n n

=
−

−
=

×
= ×

−
−φ φ1 2

1 2

9
6

2
565 400 10

2
360 10b g

b g
c h
b g

l
p p 1.60 -1.50

air m
m.

.
.  

 
(b) 5.65 rad is less than 2π rad = 6.28 rad, the phase difference for completely 
constructive interference, and greater than π rad (= 3.14 rad), the phase difference for 
completely destructive interference. The interference is, therefore, intermediate, neither 
completely constructive nor completely destructive. It is, however, closer to completely 
constructive than to completely destructive. 
 
4. Note that Snell’s law (the law of refraction) leads to θ1 = θ2 when n1 = n2.  The graph 
indicates that θ2 = 30° (which is what the problem gives as the value of θ1) occurs at n2 = 
1.5.  Thus, n1 = 1.5, and the speed with which light propagates in that medium is 
 

8
8

1

2.998 10 m s 2.0 10 m s.
1.5

cv
n

×
= = = ×  

 
5. Comparing the light speeds in sapphire and diamond, we obtain 
 

( )8 71 1 1 12.998 10 m s 4.55 10 m s.
1.77 2.42s d

s d

v v v c
n n

⎛ ⎞ ⎛ ⎞Δ = − = − = × − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
6. (a) The frequency of yellow sodium light is 
 

8
14

9

2.998 10 m s 5.09 10 Hz.
589 10 m

cf
λ −

×
= = = ×

×
 

 
(b) When traveling through the glass, its wavelength is 
 

589nm 388 nm.
1.52n n

λλ = = =  
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(c) The light speed when traveling through the glass is 
 

( )( )14 9 85.09 10 Hz 388 10 m 1.97 10 m s.nv f −= = × × = ×l  
 
7. The index of refraction is found from Eq. 35-3: 
 

n c
v

= =
×

×
=

2 998 10
192 10

156
8

8

.
.

. .m s
m s

 

 
8. (a) The time t2 it takes for pulse 2 to travel through the plastic is 
 

t L
c

L
c

L
c

L
c

L
c2 155 170 160 145

6 30
= + + + =

. . . .
. .  

 
Similarly for pulse 1: 

t L
c

L
c

L
c

L
c1

2
159 165 150

6 33
= + + =

. . .
. .  

 
Thus, pulse 2 travels through the plastic in less time. 
 
(b) The time difference (as a multiple of L/c) is 
 

Δt t t L
c

L
c

L
c

= − = − =2 1
6 33 6 30 0 03. . . .  

 
Thus, the multiple is 0.03. 
 
9. (a) We wish to set Eq. 35-11 equal to 1/ 2,  since a half-wavelength phase difference is 
equivalent to a π radians difference. Thus, 
 

L
n nmin .

.=
−

=
−

= =
l

2 2 1

620
145

1550 155b g b g
nm

2 1.65
nm  m.μ  

 

(b) Since a phase difference of 3
2

 (wavelengths) is effectively the same as what we 

required in part (a), then 
 

L
n n

L=
−

= = =
3 3 3 155 4 65
2 1

l
2b g b gmin . .μ μm m. 

 
10. (a) The exiting angle is 50º, the same as the incident angle, due to what one might call 
the “transitive” nature of Snell’s law:  n1 sinθ 1 = n2 sinθ 2 = n3 sinθ 3 = … 
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(b) Due to the fact that the speed (in a certain medium) is c/n (where n is that medium’s 
index of refraction) and that speed is distance divided by time (while it’s constant), we 
find  

t = nL/c = (1.45)(25 × 10−19 m)/(3.0 × 108 m/s) = 1.4 × 10−13 s = 0.14 ps. 
 

11. (a) Equation 35-11 (in absolute value) yields 
 

L n n
l 2 1

6

9

850 10
500 10

160 150 170− =
×

×
− =

−

−

.
. . . .

m
m

c h b g  

 
(b) Similarly, 

L n n
l 2 1

6

9

850 10
500 10

172 162 170− =
×

×
− =

−

−

.
. . . .

m
m

c h b g  

 
(c) In this case, we obtain 
 

L n n
l 2 1

6

9

325 10
500 10

179 159 130− =
×

×
− =

−

−

.
. . . .

m
m

c h b g  

 
(d) Since their phase differences were identical, the brightness should be the same for (a) 
and (b). Now, the phase difference in (c) differs from an integer by 0.30, which is also 
true for (a) and (b). Thus, their effective phase differences are equal, and the brightness in 
case (c) should be the same as that in (a) and (b). 
 
12. (a) We note that ray 1 travels an extra distance 4L more than ray 2.  To get the least 
possible L that will result in destructive interference, we set this extra distance equal to 
half of a wavelength: 

 420.0 nm4 52.50 nm
2 8 8

L Lλ λ
= ⇒ = = = . 

 
(b) The next case occurs when that extra distance is set equal to 32 λ.  The result is 
 

3 3(420.0 nm) 157.5 nm
8 8

L λ
= = = . 

 
13. (a) We choose a horizontal x axis with its origin at the left edge of the plastic. 
Between x = 0 and x = L2 the phase difference is that given by Eq. 35-11 (with L in that 
equation replaced with L2). Between x = L2 and x = L1 the phase difference is given by an 
expression similar to Eq. 35-11 but with L replaced with L1 – L2 and n2 replaced with 1 
(since the top ray in Fig. 35-35 is now traveling through air, which has index of refraction 
approximately equal to 1). Thus, combining these phase differences with λ = 0.600 μm, 
we have 



 

 

1351

 

( ) ( ) ( ) ( )2 1 2
2 1 1

3.50 m 4.00 m 3.50 m1 1.60 1.40 1 1.40
0.600 m 0.600 m

0.833.

L L Ln n n μ μ μ
λ λ μ μ

− −
− + − = − + −

=

 

 
(b) Since the answer in part (a) is closer to an integer than to a half-integer, the 
interference is more nearly constructive than destructive. 
 
14. (a) For the maximum adjacent to the central one, we set m = 1 in Eq. 35-14 and obtain 
 

( )( )1 1
1

1

1
sin sin 0.010 rad.

100m

m
d

θ − −

=

⎡ ⎤⎛ ⎞= = =⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

ll
l

 

 
(b) Since y1 = D tan θ1 (see Fig. 35-10(a)), we obtain  
 

y1 = (500 mm) tan (0.010 rad) = 5.0 mm. 
 
The separation is Δy = y1 – y0 = y1 – 0 = 5.0 mm. 
 
15. The angular positions of the maxima of a two-slit interference pattern are given by 

sind mθ λ= , where d is the slit separation, λ is the wavelength, and m is an integer. If θ 
is small, sin θ may be approximated by θ in radians. Then, θ = mλ/d to good 
approximation. The angular separation of two adjacent maxima is Δθ = λ/d. Let λ' be the 
wavelength for which the angular separation is greater by10.0%. Then, 1.10λ/d = λ'/d. or  
 

λ' = 1.10λ = 1.10(589 nm) = 648 nm. 
 
16. The distance between adjacent maxima is given by Δy = λD/d (see Eqs. 35-17 and 
35-18). Dividing both sides by D, this becomes Δθ = λ/d with θ in radians. In the steps 
that follow, however, we will end up with an expression where degrees may be directly 
used. Thus, in the present case, 

0.20 0.15 .
1.33

n
n d nd n

λ λ θθ Δ °
Δ = = = = = °  

 
17. Interference maxima occur at angles θ such that d sin θ = mλ, where m is an integer. 
Since d = 2.0 m and λ = 0.50 m, this means that sin θ = 0.25m. We want all values of m 
(positive and negative) for which |0.25m| ≤ 1. These are –4, –3, –2, –1, 0, +1, +2, +3, and 
+4. For each of these except –4 and +4, there are two different values for θ. A single 
value of θ (–90°) is associated with m = –4 and a single value (+90°) is associated with m 
= +4. There are sixteen different angles in all and, therefore, sixteen maxima. 
 
18. (a) The phase difference (in wavelengths) is 
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φ = d sinθ/λ = (4.24 µm)sin(20°)/(0.500 µm) = 2.90 . 
 
(b) Multiplying this by 2π gives φ = 18.2 rad. 
 
(c) The result from part (a) is greater than 52  (which would indicate the third minimum) 
and is less than 3 (which would correspond to the third side maximum). 
 
19. The condition for a maximum in the two-slit interference pattern is d sin θ = mλ, 
where d is the slit separation, λ is the wavelength, m is an integer, and θ is the angle made 
by the interfering rays with the forward direction. If θ is small, sin θ may be 
approximated by θ in radians. Then, θ = mλ/d, and the angular separation of adjacent 
maxima, one associated with the integer m and the other associated with the integer m + 1, 
is given by Δθ = λ/d. The separation on a screen a distance D away is given by  
 

Δy = D Δθ = λD/d. 
Thus, 

Δy =
×

×
= ×

−

−
−

500 10 540
120 10

2 25 10
9

3
3

m m
m

m = 2.25 mm.
c hb g.

.
.  

 
20. (a) We use Eq. 35-14 with m = 3: 
 

θ = F
HG
I
KJ =

×

×

L
N
MM

O
Q
PP =

− −
−

−sin sin
.

.1 1
9

6

2 550 10
7 70 10

0 216m
d
l m

m
rad.

c h
 

 
(b) θ = (0.216) (180°/π) = 12.4°. 
 
21. The maxima of a two-slit interference pattern are at angles θ given by d sin θ = mλ, 
where d is the slit separation, λ is the wavelength, and m is an integer. If θ is small, sin θ 
may be replaced by θ in radians. Then, dθ = mλ. The angular separation of two maxima 
associated with different wavelengths but the same value of m is  
 

Δθ = (m/d)(λ2 – λ1), 
 
and their separation on a screen a distance D away is  
 

Δ Δ Δy D D mD
d

= ≈ = LNM
O
QP −

=
×

L
NM

O
QP

× − × = ×−
− − −

tan

.
.

θ θ l l2 1b g
b g c h3 10

600 10 480 10 7 2 103
9 9 5m

5.0 10 m
m m m.

 

 
The small angle approximation tan Δθ ≈ Δθ (in radians) is made. 
 



 

 

1353

22. Imagine a y axis midway between the two sources in the figure. Thirty points of 
destructive interference (to be considered in the xy plane of the figure) implies there are 
7 1 7 15+ + =  on each side of the y axis.  There is no point of destructive interference on 
the y axis itself since the sources are in phase and any point on the y axis must therefore 
correspond to a zero phase difference (and corresponds to θ = 0 in Eq. 35-14).  In other 
words, there are 7 “dark” points in the first quadrant, one along the +x axis, and 7 in the 
fourth quadrant, constituting the 15 dark points on the right-hand side of the y axis.  Since 
the y axis corresponds to a minimum phase difference, we can count (say, in the first 
quadrant) the m values for the destructive interference (in the sense of Eq. 35-16) 
beginning with the one closest to the y axis and going clockwise until we reach the x axis 
(at any point beyond S2).  This leads us to assign m = 7 (in the sense of Eq. 35-16) to the 
point on the x axis itself (where the path difference for waves coming from the sources is 
simply equal to the separation of the sources, d); this would correspond to θ = 90° in Eq. 
35-16.  Thus,  

d = ( 7 + 12  )λ =  7.5 λ     7.5d
λ

⇒ = . 

 
23. Initially, source A leads source B by 90°, which is equivalent to 1 4  wavelength. 
However, source A also lags behind source B since rA is longer than rB by 100 m, which 
is100 1 4m 400m =  wavelength. So the net phase difference between A and B at the 
detector is zero. 
 
24. (a) We note that, just as in the usual discussion of the double slit pattern, the x = 0 
point on the screen (where that vertical line of length D in the picture intersects the screen) 
is a bright spot with phase difference equal to zero (it would be the middle fringe in the 
usual double slit pattern).  We are not considering x < 0 values here, so that negative 
phase differences are not relevant (and if we did wish to consider x < 0 values, we could 
limit our discussion to absolute values of the phase difference, so that, again, negative 
phase differences do not enter it). Thus, the x = 0 point is the one with the minimum 
phase difference. 
 
(b) As noted in part (a), the phase difference φ = 0 at x = 0. 
 
(c) The path length difference is greatest at the rightmost “edge” of the screen (which is 
assumed to go on forever), so φ is maximum at x = ∞. 
 
(d) In considering x = ∞, we can treat the rays from the sources as if they are essentially 
horizontal.  In this way, we see that the difference between the path lengths is simply the 
distance (2d) between the sources.  The problem specifies 2d = 6.00 λ, or 2d/λ = 6.00. 
 
(e) Using the Pythagorean theorem, we have 
 

2 2 2 2( ) ( )
1.71

D x d D x d
φ

λ λ
+ + + −

= − =  
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where we have plugged in D = 20λ, d = 3λ and x = 6λ. Thus, the phase difference at that 
point is 1.71 wavelengths. 
 
(f) We note that the answer to part (e) is closer to 32  (destructive interference) than to 2 
(constructive interference), so that the point is “intermediate” but closer to a minimum than 
to a maximum. 
 
25. Let the distance in question be x. The path difference (between rays originating from 
S1 and S2 and arriving at points on the x > 0 axis) is 
 

d x x m2 2 1
2

+ − = +FHG
I
KJ l,  

 
where we are requiring destructive interference (half-integer wavelength phase 
differences) and  0,1, 2, .m = …  After some algebraic steps, we solve for the distance in 
terms of m: 

x d
m

m
=

+
−

+2

2 1
2 1

4b g
b g

l
l

. 

 
To obtain the largest value of x, we set m = 0: 
 

( )22
3

0

3.00
8.75 8.75(900 nm) 7.88 10  nm 7.88 mdx λ λ λ μ

λ λ
λ

= − = − = = = × = .
4 4

 

 
26. (a) We use Eq. 35-14 to find d: 
 

d sinθ = mλ     ⇒       d = (4)(450 nm)/sin(90°) = 1800 nm . 
 
For the third-order spectrum, the wavelength that corresponds to θ = 90° is 
 

λ = d sin(90°)/3 = 600 nm . 
 
Any wavelength greater than this will not be seen.  Thus, 600 nm < θ  ≤ 700 nm are 
absent. 
 
(b) The slit separation d needs to be decreased.  
 
(c) In this case, the 400 nm wavelength in the m = 4 diffraction is to occur at 90°.  Thus 
 

dnew sinθ = mλ     ⇒        dnew = (4)(400 nm)/sin(90°)  =  1600 nm . 
 
This represents a change of   
 

|Δd| = d – dnew = 200 nm = 0.20 µm. 
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27. Consider the two waves, one from each slit, that produce the seventh bright fringe in 
the absence of the mica. They are in phase at the slits and travel different distances to the 
seventh bright fringe, where they have a phase difference of 2πm = 14π. Now a piece of 
mica with thickness x is placed in front of one of the slits, and an additional phase 
difference between the waves develops. Specifically, their phases at the slits differ by 
 

2 2 2 1p
l

p
l

p
l

x x x n
m

− = −b g  
 
where λm is the wavelength in the mica and n is the index of refraction of the mica. The 
relationship λm = λ/n is used to substitute for λm. Since the waves are now in phase at the 
screen, 

2 1 14p
l

px n − =b g  

or 

x
n

=
−

=
×

−
= ×

−
−7

1
7 550 10

158 1
6 64 10

9
6l m
m.

c h
.

.  

 
28. The problem asks for “the greatest value of x… exactly out of phase,” which is to be 
interpreted as the value of x where the curve shown in the figure passes through a phase 
value of π radians.  This happens as some point P on the x axis, which is, of course, a 
distance x from the top source and (using Pythagoras’ theorem) a distance d2 + x2   from 
the bottom source.  The difference (in normal length units) is therefore d2 + x2   – x, or 
(expressed in radians) is  2π

 λ  ( d2 + x2   – x) .  We note (looking at the leftmost point in the 

graph) that at x = 0, this latter quantity equals 6π, which means d = 3λ. Using this value 
for d, we now must solve the condition  
 

 ( )2 22 d x xπ π
λ

+ − = . 

 
Straightforward algebra then leads to x = (35/4)λ, and using λ = 400 nm we find x = 3500 
nm, or 3.5 μm. 
 
29. The intensity is proportional to the square of the resultant field amplitude. Let the 
electric field components of the two waves be written as 
 

 1 10

2 20

sin
sin( ),

E E t
E E t

ω
ω φ

=
= +

 

 
where E10 = 1.00, E20 = 2.00, and φ = 60°. The resultant field is 1 2E E E= + . We use the 
phasor diagram to calculate the amplitude of E. 
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The phasor diagram is shown on the right. The resultant 
amplitude Em is given by the trigonometric law of 
cosines: 

 
( )2 2 2

10 20 10 202 cos 180 .mE E E E E φ= + − ° −  
 

Thus, 
 

Em = + − ° =100 2 00 2 100 2 00 120 2 652 2. . . . cos . .b g b g b gb g  
 
 

 

Note: Summing over the horizontal components of the two fields gives 
 

10 20cos 0 cos 60 1.00 (2.00)cos 60 2.00hE E E= + ° = + ° =∑ . 
 
Similarly, the sum over the vertical components is 
 

10 20sin 0 sin 60 1.00sin 0 (2.00)sin 60 1.732vE E E= + ° = ° + ° =∑ . 
 
The resultant amplitude is  
 2 2(2.00) (1.732) 2.65mE = + = , 
 
which agrees with what we found above. The phase angle relative to the phasor 
representing E1 is  

 1 1.732tan 40.9
2.00

β − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

. 

 
Thus, the resultant field can be written as (2.65)sin( 40.9 ).E tω= + °  
 
30. In adding these with the phasor method (as opposed to, say, trig identities), we may 
set t = 0 and add them as vectors: 
 

y
y

h

v

= °+ ° =
= °+ ° =

10 0 8 0 30 16 9
10 0 8 0 30 4 0

cos . cos .
sin . sin .

 

 
so that 

y y y

y
y

R h v

v

h

= + =

=
F
HG
I
KJ = °−

2 2

1

17 4

13 3

.

tan . .β
 

Thus, 
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y y y y t tR= + = + = + °1 2 17 4 133sin . sin .ω β ωb g b g . 
 
Quoting the answer to two significant figures, we have ( )17sin 13y tω≈ + ° . 
 
31. In adding these with the phasor method (as opposed to, say, trig identities), we may 
set t = 0 and add them as vectors: 
 

y

y
h

v

= °+ °+ − ° =

= °+ °+ − ° =

10 0 15 30 50 45 265

10 0 15 30 50 45 4 0

cos cos . cos .

sin sin . sin .
b g
b g  

 
so that 

2 2

1

26.8 27

tan 8.5 .

R h v

v

h

y y y

y
y

β −

= + = ≈

⎛ ⎞
= = °⎜ ⎟

⎝ ⎠

 

 
Thus, ( ) ( )1 2 3 sin 27sin 8.5Ry y y y y t tω β ω= + + = + = + ° . 
   
32. (a) We can use phasor techniques or use trig identities.  Here we show the latter 
approach.  Since  

sin a + sin(a + b) = 2cos(b/2)sin(a + b/2), 
 
we find 
 1 2 02 cos( / 2)sin( / 2)E E E tφ ω φ+ = +  
 
where E0 = 2.00 µV/m, ω = 1.26 × 1015 rad/s, and φ = 39.6 rad.  This shows that the 
electric field amplitude of the resultant wave is  
 

02 cos( / 2) 2(2.00 V/m)cos(19.2 rad) 2.33 V/mE E φ μ μ= = = . 
 
(b) Equation 35-22 leads to 

2
0 04 cos ( / 2) 1.35I I Iφ= =  

 
at point P, and 

2
center 0 04 cos (0) 4I I I= =  

 
at the center. Thus, center/ 1.35 / 4 0.338I I = = .   
 
(c) The phase difference φ (in wavelengths) is gotten from φ in radians by dividing by 2π.  
Thus, φ = 39.6/2π = 6.3 wavelengths.  Thus, point P is between the sixth side maximum 
(at which φ = 6 wavelengths) and the seventh minimum (at which φ = 61

2  wavelengths). 
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(d) The rate is given by ω = 1.26 × 1015 rad/s. 
 
(e) The angle between the phasors is φ = 39.6 rad = 2270° (which would look like about 
110° when drawn in the usual way). 
 
33. With phasor techniques, this amounts to a vector addition problem 

G G G G
R A B C= + +  

where (in magnitude-angle notation) 
G G G
A B C= ∠ ° = ∠ ° = ∠ − °10 0 5 45 5 45b g b g b g, , ,and  

where the magnitudes are understood to be in μV/m. We obtain the resultant (especially 
efficient on a vector-capable calculator in polar mode): 
 G

R = ∠ ° + ∠ ° + ∠ − ° = ∠ °10 0 5 45 5 45 171 0b g b g b g b g.  
 
which leads to 

E tR = 171. sinμ ωV mb g b g  
 
where ω = 2.0 × 1014 rad/s. 
 
34. (a) Referring to Figure 35-10(a) makes clear that  
 

θ = tan−1(y/D) = tan−1(0.205/4) = 2.93°. 
 
Thus, the phase difference at point P is φ = dsinθ /λ = 0.397 wavelengths, which means it 
is between the central maximum (zero wavelength difference) and the first minimum ( 12  
wavelength difference).  Note that the above computation could have been simplified 
somewhat by avoiding the explicit use of the tangent and sine functions and making use 
of the small-angle approximation (tanθ ≈ sinθ). 
 
(b) From Eq. 35-22, we get (with φ = (0.397)(2π) = 2.495 rad) 
 

2
0 04 cos ( / 2) 0.404I I Iφ= =       

at point P and 
2

center 0 04 cos (0) 4I I I= =  
 
at the center. Thus, center/ 0.404 / 4 0.101I I = = .   
 
35. For complete destructive interference, we want the waves reflected from the front and 
back of the coating to differ in phase by an odd multiple of π rad. Each wave is incident 
on a medium of higher index of refraction from a medium of lower index, so both suffer 
phase changes of π rad on reflection. If L is the thickness of the coating, the wave 
reflected from the back surface travels a distance 2L farther than the wave reflected from 
the front. The phase difference is 2L(2π/λc), where λc is the wavelength in the coating. If 
n is the index of refraction of the coating, λc = λ/n, where λ is the wavelength in vacuum, 
and the phase difference is 2nL(2π/λ). We solve 
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2 2 2 1nL mp
l

pF
HG
I
KJ = +b g  

 
for L. Here m is an integer. The result is 

L
m

n
=

+2 1
4
b gl .  

 
To find the least thickness for which destructive interference occurs, we take m = 0. Then, 
 

( )
9

7600 10 m 1.20 10 m.
4 1.25

L
n

−
−×

= = = ×
l
4

 

 
36. (a) On both sides of the soap is a medium with lower index (air) and we are 
examining the reflected light, so the condition for strong reflection is Eq. 35-36.  With 
lengths in nm, 

λ  =  
2n2L
m + 12

   = 

⎧
⎪
⎪
⎨
⎪
⎪⎩

  

3360    for m = 0
1120    for m = 1
672     for m = 2
480     for m = 3
373     for m = 4
305     for m = 5

 

 
from which we see the latter four values are in the given range. 
 
(b) We now turn to Eq. 35-37 and obtain 
 

λ  =  
2n2L

m    =  

⎧
⎪
⎪
⎨
⎪
⎪⎩

  

1680    for m = 1
840     for m = 2
560     for m = 3
420     for m = 4
336     for m = 5

 

 
from which we see the latter three values are in the given range. 
 
37. Light reflected from the front surface of the coating suffers a phase change of π rad 
while light reflected from the back surface does not change phase. If L is the thickness of 
the coating, light reflected from the back surface travels a distance 2L farther than light 
reflected from the front surface. The difference in phase of the two waves is 2L(2π/λc) – 
π, where λc is the wavelength in the coating. If λ is the wavelength in vacuum, then λc = 
λ/n, where n is the index of refraction of the coating. Thus, the phase difference is 
2nL(2π/λ) – π. For fully constructive interference, this should be a multiple of 2π. We 
solve 
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2 2 2nL mπ π π
λ
F
HG
I
KJ − =  

 
for L. Here m is an integer. The solution is 

L
m

n
=

+2 1
4
b gλ .  

 
To find the smallest coating thickness, we take m = 0. Then, 
 

L
n

= =
×

= ×
−

−λ
4

560 10
4 2 00

7 00 10
9

8m m
.

. .b g  

 
38. (a)  We are dealing with a thin film (material 2) in a situation where n1 > n2 > n3, 
looking for strong reflections; the appropriate condition is the one expressed by Eq. 35-
37.  Therefore, with lengths in nm and L = 500 and n2 = 1.7, we have 
 

λ  =  
2n2L

m   =   

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

1700    for m = 1
850     for m = 2
567     for m = 3
425     for m = 4

 

 
from which we see the latter two values are in the given range. The longer wavelength 
(m=3) is 567 nm.λ =  
 
(b) The shorter wavelength (m = 4) is 425 nm.λ =  
 
(c) We assume the temperature dependence of the refraction index is negligible.  From 
the proportionality evident in the part (a) equation, longer L means longer λ. 
 
39. For constructive interference, we use Eq. 35-36:  
 

2 1 22n L m= +b gλ . 
 
For the smallest value of L, let m = 0: 
 

 
( )0

2

624nm 117nm 0.117 m.
2 4 1.33

L
n

μλ 2
= = = =  

 
(b) For the second smallest value, we set m = 1 and obtain 
 

( ) ( )1 0
2 2

1 1 2 3 3 3 0.1173 m 0.352 m.
2 2

L L
n n

λ λ μ μ
+

= = = = =  
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40. The incident light is in a low index medium, the thin film of acetone has somewhat 
higher n = n2, and the last layer (the glass plate) has the highest refractive index. To see 
very little or no reflection, the condition 
 

( )1
2

2
2 where 0,1, 2,L m mn= + = …l  

 
must hold. This is the same as Eq. 35-36, which was developed for the opposite situation 
(constructive interference) regarding a thin film surrounded on both sides by air (a very 
different context from the one in this problem). By analogy, we expect Eq. 35-37 to apply 
in this problem to reflection maxima. A more careful analysis such as that given in 
Section 35-7 bears this out. Thus, using Eq. 35-37 with n2 = 1.25 and λ = 700 nm yields 
 

0, 280nm, 560nm, 840nm,1120nm,L = … 
 
for the first several m values. And the equation shown above (equivalent to Eq. 35-36) 
gives, with λ = 600 nm, 
 

L = 120nm,360nm,600nm,840nm,1080nm,… 
 
for the first several m values. The lowest number these lists have in common is 

840 nm.L =  
 
41. In this setup, we have 2 1n n< and 2 3n n> , and the condition for destructive 
interference is  

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The second least thickness is (m = 1)  
 

 1 342 nm1 161 nm
2 2(1.59)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
42. In this setup, we have 2 1n n> and 2 3n n> , and the condition for constructive 
interference is  

2

2

412     ,     0,1, 2,...
2 2 1

LnL m m
n m
λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ +⎝ ⎠

 

Thus, we get 

 2

2

4 4(285 nm)(1.60) 1824 nm  ( 0)
4 / 3 4(285 nm)(1.60) / 3 608 nm  ( 1)

Ln m
Ln m

λ
= = =⎧

= ⎨ = = =⎩
. 

 
For the wavelength to be in the visible range, we choose m = 1 with 608 nm.λ =   
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43. When a thin film of thickness L and index of refraction n2 is placed between materials 
1 and 3 such that 1 2n n> and 3 2n n>  where n1 and n3 are the indexes of refraction of the 
materials, the general condition for destructive interference for a thin film is 
 

 2

2

22         ,      0,1,2,...LnL m m
n m
λ λ= ⇒ = =  

 
where λ is the wavelength of light as measured in air. Thus, we have, for 1m =  
 
 22 2(200 nm)(1.40) 560 nmLnλ = = = . 
 
44. In this setup, we have 2 1n n< and 2 3n n< , and the condition for constructive 
interference is  
 

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The second least thickness is (m = 1)  
 

 1 587 nm1 329 nm
2 2(1.34)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
45. In this setup, we have 2 1n n> and 2 3n n> , and the condition for constructive 
interference is  

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The third least thickness is (m = 2)  
 

 1 612 nm2 478 nm
2 2(1.60)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
46. In this setup, we have 2 1n n< and 2 3n n> , and the condition for destructive 
interference is  
 

2

2

412     ,     0,1, 2,...
2 2 1

LnL m m
n m
λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ +⎝ ⎠

 

Therefore,  
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2

2

2

4 4(415 nm)(1.59) 2639 nm  ( 0)
4 / 3 4(415 nm)(1.59) / 3 880 nm  ( 1)
4 / 5 4(415 nm)(1.59) / 5 528 nm  ( 2)

Ln m
Ln m
Ln m

λ
= = =⎧

⎪= = = =⎨
⎪ = = =⎩

. 

 
For the wavelength to be in the visible range, we choose m = 3 with 528 nm.λ =   
 
47. In this setup, we have 2 1n n< and 2 3n n< , and the condition for destructive 
interference is  

2

2

22     ,     0,1,2,...LnL m m
n m
λ λ= ⇒ = =  

Thus, we have  
 

 2

2

2 2(380 nm)(1.34) 1018 nm  ( 1)
(380 nm)(1.34) 509 nm  ( 2)

Ln m
Ln m

λ
= = =⎧

= ⎨ = = =⎩
. 

 
For the wavelength to be in the visible range, we choose m = 2 with 509 nm.λ =   
 
48. In this setup, we have 2 1n n< and 2 3n n< , and the condition for constructive 
interference is  
 

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The second least thickness is (m = 1)  
 

 1 632 nm1 339 nm
2 2(1.40)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
49. In this setup, we have 2 1n n> and 2 3n n> , and the condition for constructive 
interference is  

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The third least thickness is (m = 2)  
 

 1 382 nm2 273 nm
2 2(1.75)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
50. In this setup, we have 2 1n n> and 2 3n n< , and the condition for destructive 
interference is  
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2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The second least thickness is (m = 1)  
 

 1 482 nm1 248 nm
2 2(1.46)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
51. In this setup, we have 2 1n n> and 2 3n n< , and the condition for destructive 
interference is  
 

2

2

412     ,     0,1, 2,...
2 2 1

LnL m m
n m
λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ +⎝ ⎠

 

Thus,   

 2

2

4 4(210 nm)(1.46) 1226 nm  ( 0)
4 / 3 4(210 nm)(1.46) / 3 409 nm  ( 1)

Ln m
Ln m

λ
= = =⎧

= ⎨ = = =⎩
. 

 
For the wavelength to be in the visible range, we choose m = 1 with 409 nm.λ =   
 
52. In this setup, we have 2 1n n> and 2 3n n> , and the condition for constructive 
interference is  

2

2

412     ,     0,1, 2,...
2 2 1

LnL m m
n m
λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ +⎝ ⎠

 

Thus, we have  
 

 
2

2

2

4 4(325 nm)(1.75) 2275 nm  ( 0)
4 / 3 4(325 nm)(1.75) / 3 758 nm  ( 1)
4 / 5 4(325 nm)(1.75) / 5 455 nm  ( 2)

Ln m
Ln m
Ln m

λ
= = =⎧

⎪= = = =⎨
⎪ = = =⎩

. 

 
For the wavelength to be in the visible range, we choose m = 2 with 455 nm.λ =   
 
53. We solve Eq. 35-36 with n2 = 1.33 and λ = 600 nm for m = 1, 2, 3,…: 
 

113 nm, 338nm, 564nm, 789nm,L = … 
 
And, we similarly solve Eq. 35-37 with the same n2 and λ = 450 nm: 
 

0,169nm, 338nm, 508nm, 677 nm,L = …  
 
The lowest number these lists have in common is L = 338 nm. 
 



 

 

1365

54. The situation is analogous to that treated in Sample Problem — “Thin-film 
interference of a coating on a glass lens,” in the sense that the incident light is in a low 
index medium, the thin film of oil has somewhat higher n = n2, and the last layer (the 
glass plate) has the highest refractive index. To see very little or no reflection, according 
to the Sample Problem, the condition 

2

12 where 0,1, 2,
2

L m m
n

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

…l  

 
must hold. With λ = 500 nm and n2 = 1.30, the possible answers for L are 
 

96nm, 288nm, 481nm, 673nm, 865nm,...L =  
 
And, with λ = 700 nm and the same value of n2, the possible answers for L are 
 

135nm, 404nm, 673nm, 942nm,...L =  
 
The lowest number these lists have in common is L = 673 nm. 
 
55. The index of refraction of oil is greater than that of the air, but smaller than that of the 
water. Let the indices of refraction of the air, oil, and water be n1, n2, and n3, respectively. 
Since 1 2n n< and 2 3n n< , there is a phase change of π rad from both surfaces. Since the 
second wave travels an additional distance of 2L, the phase difference is 
 

 
2

2 (2 )Lπφ
λ

=  

 
where λ2 2/ nλ= is the wavelength in the oil. The condition for constructive interference 
is 

2

2 (2 ) 2 ,L mπ π
λ

=  

or 

2

2 ,  0,1, 2,...L m m
n
λ

= =  

 
(a) For 1, 2,...,m =  maximum reflection occurs for wavelengths 
 

( )( )2 2 1.20 460nm2 1104nm , 552nm, 368nm,...n L
m m

λ = = =  

 
We note that only the 552 nm wavelength falls within the visible light range. 
 
(b) Maximum transmission into the water occurs for wavelengths for which reflection is a 
minimum. The condition for such destructive interference is given by 
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2 1
2

4
2 12

2L m
n

n L
m

= +FHG
I
KJ ⇒ =

+
l l  

 
which yields λ = 2208 nm, 736 nm, 442 nm … for the different values of m. We note that 
only the 442-nm wavelength (blue) is in the visible range, though we might expect some 
red contribution since the 736 nm is very close to the visible range. 
 
Note: A light ray reflected by a material changes phase by π rad (or 180°) if the refractive 
index of the material is greater than that of the medium in which the light is traveling. 
Otherwise, there is no phase change. Note that refraction at an interface does not cause a 
phase shift. 
 
56. For constructive interference (which is obtained for λ = 600 nm) in this circumstance, 
we require 

 2
2 2n
k kL

n
λλ= =  

 
where k = some positive odd integer  and n is the index of refraction of the thin film.  
Rearranging and plugging in L = 272.7 nm and the wavelength value, this gives 
 

(600 nm) 0.55
4 4(272.7 nm) 1.818
k k kn k

L
λ

= = = = . 

 
Since we expect n > 1, then k = 1 is ruled out.  However, k = 3 seems reasonable, since it 
leads to n = 1.65, which is close to the “typical” values found in Table 34-1.  Taking this 
to be the correct index of refraction for the thin film, we now consider the destructive 
interference part of the question.  Now we have 2L = (integer)λdest /n.  Thus,  
 

λdest = (900 nm)/(integer). 
 
We note that setting the integer equal to 1 yields a λdest value outside the range of the 
visible spectrum.  A similar remark holds for setting the integer equal to 3.  Thus, we set 
it equal to 2 and obtain λdest  = 450 nm. 
 
57. In this setup, we have 2 1n n> and 2 3n n> , and the condition for minimum 
transmission (maximum reflection) or destructive interference is  
 

2

2

412      ,     0,1, 2,...
2 2 1

LnL m m
n m
λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ +⎝ ⎠

 

 
Therefore,  
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 2

2

4 4(285 nm)(1.60) 1824 nm  ( 0)
4 / 3 4(415 nm)(1.59) / 3 608 nm  ( 1)

Ln m
Ln m

λ
= = =⎧

= ⎨ = = =⎩
 

 
For the wavelength to be in the visible range, we choose m = 1 with 608 nm.λ =   
 
58. In this setup, we have 2 1n n> and 2 3n n> , and the condition for minimum 
transmission (maximum reflection) or destructive interference is  
 

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The third least thickness is (m = 2)  
 

 1 382 nm2 273 nm
2 2(1.75)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
59. In this setup, we have 2 1n n< and 2 3n n> , and the condition for maximum 
transmission (minimum reflection) or constructive interference is  
 

2

2

412     ,     0,1, 2,...
2 2 1

LnL m m
n m
λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ +⎝ ⎠

 

Thus, we have  
 

 
2

2

2

4 4(415 nm)(1.59) 2639 nm  ( 0)
4 / 3 4(415 nm)(1.59) / 3 880 nm  ( 1)
4 / 5 4(415 nm)(1.59) / 5 528 nm  ( 2)

Ln m
Ln m
Ln m

λ
= = =⎧

⎪= = = =⎨
⎪ = = =⎩

. 

 
For the wavelength to be in the visible range, we choose m = 3 with 528 nm.λ =   
 
60. In this setup, we have 2 1n n< and 2 3n n< , and the condition for maximum 
transmission (minimum reflection) or constructive interference is  
 

2

2

22     ,     0,1,2,...LnL m m
n m
λ λ= ⇒ = =  

Thus, we obtain  

 2

2

2 2(380 nm)(1.34) 1018 nm  ( 1)
(380 nm)(1.34) 509 nm  ( 2)

Ln m
Ln m

λ
= = =⎧

= ⎨ = = =⎩
. 

  
For the wavelength to be in the visible range, we choose m = 2 with 509 nm.λ =   
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61. In this setup, we have 2 1n n> and 2 3n n> , and the condition for minimum 
transmission (maximum reflection) or destructive interference is  
 

2

2

412      ,     0,1, 2,...
2 2 1

LnL m m
n m
λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ +⎝ ⎠

 

Therefore, 

 
2

2

2

4 4(325 nm)(1.75) 2275 nm  ( 0)
4 / 3 4(415 nm)(1.59) / 3 758 nm  ( 1)
4 / 5 4(415 nm)(1.59) / 5 455 nm  ( 2)

Ln m
Ln m
Ln m

λ
= = =⎧

⎪= = = =⎨
⎪ = = =⎩

 

 
For the wavelength to be in the visible range, we choose m = 2 with 455 nm.λ =   
 
62. In this setup, we have 2 1n n< and 2 3n n> , and the condition for maximum 
transmission (minimum reflection) or constructive interference is  
 

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The second least thickness is (m = 1)  
 

 1 342 nm1 161 nm
2 2(1.59)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
63. In this setup, we have 2 1n n> and 2 3n n< , and the condition for maximum 
transmission (minimum reflection) or constructive interference is  
 

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The second least thickness is (m = 1)  
 

 1 482 nm1 248 nm
2 2(1.46)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
64. In this setup, we have 2 1n n> and 2 3n n< , and the condition for maximum 
transmission (minimum reflection) or constructive interference is  
 

2

2

412     ,     0,1, 2,...
2 2 1

LnL m m
n m
λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ +⎝ ⎠

 

Thus, we have 
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 2

2

4 4(210 nm)(1.46) 1226 nm  ( 0)
4 / 3 4(210 nm)(1.46) / 3 409 nm  ( 1)

Ln m
Ln m

λ
= = =⎧

= ⎨ = = =⎩
 

 
For the wavelength to be in the visible range, we choose m = 1 with 409 nm.λ =   
 
65. In this setup, we have 2 1n n< and 2 3n n< , and the condition for minimum 
transmission (maximum reflection) or destructive interference is  
 

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The second least thickness is (m = 1)  
 

 1 632 nm1 339 nm
2 2(1.40)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
66. In this setup, we have 2 1n n< and 2 3n n< , and the condition for maximum 
transmission (minimum reflection) or constructive interference is  
 

2

2

22     ,     0,1,2,...LnL m m
n m
λ λ= ⇒ = =  

Thus, we have (with m =1)  
 
 22 2(200 nm)(1.40) 560 nmLnλ = = = . 
 
67. In this setup, we have 2 1n n< and 2 3n n< , and the condition for minimum 
transmission (maximum reflection) or destructive interference is  
 

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The second least thickness is (m = 1)  
 

 1 587 nm1 329 nm
2 2(1.34)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
68. In this setup, we have 2 1n n> and 2 3n n> , and the condition for minimum 
transmission (maximum reflection) or destructive interference is  
 

2 2

1 12      ,     0,1, 2,...
2 2 2

L m L m m
n n
λ λ⎛ ⎞ ⎛ ⎞= + ⇒ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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The third least thickness is (m = 2)  
 

 1 612 nm2 478 nm
2 2(1.60)

L ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

 
69. Assume the wedge-shaped film is in air, so the wave reflected from one surface 
undergoes a phase change of π rad while the wave reflected from the other surface does 
not. At a place where the film thickness is L, the condition for fully constructive 
interference is 2 1

2nL m= +b gl,  where n is the index of refraction of the film, λ is the 
wavelength in vacuum, and m is an integer. The ends of the film are bright. Suppose the 
end where the film is narrow has thickness L1 and the bright fringe there corresponds to m 
= m1. Suppose the end where the film is thick has thickness L2 and the bright fringe there 
corresponds to m = m2. Since there are ten bright fringes, m2 = m1 + 9. Subtract 
2 1 1

1
2nL m= +b gl  from 2 92 1

1
2nL m= + +b gl  to obtain 2n ΔL = 9λ, where ΔL = L2 – L1 is 

the change in the film thickness over its length. Thus, 
 

ΔL
n

= =
×

= ×
−

−9 9 630 10
2 150

189 10
9

6l
2

m
m.

c h
b g.

.  

 
70. (a) The third sentence of the problem implies mo = 9.5 in 2 do = moλ initially.  Then, 
Δt = 15 s later, we have m′ = 9.0 in 2d′ = m′λ.  This means  
 

|Δd| = do − d′ =  12 ( moλ − m′λ)  = 155 nm . 
 
Thus, |Δd| divided by Δt gives 10.3 nm/s. 
 
(b) In this case, mf = 6 so that  
 

do − df =  12 (moλ − mf λ)  = 74 λ = 1085 nm = 1.09 µm. 
 
71. Using the relations of Section 35-7, we find that the (vertical) change between the 
center of one dark band and the next is 
 

4500 nm 250 nm 2.50 10 mm.
2 2

y λ −Δ = = = = ×  

 
Thus, with the (horizontal) separation of dark bands given by Δx = 1.2 mm, we have 
 

θ θ≈ = = × −tan .Δ
Δ

y
x

2 08 10 4 rad. 

 



 

 

1371

Converting this angle into degrees, we arrive at θ = 0.012°. 
 
72. We apply Eq. 35-27 to both scenarios: m = 4001 and n2 = nair, and m = 4000 and n2 = 
nvacuum = 1.00000: 

2 4001 4000L
n

L= =b g b gl l
1.00000air

and 2 .  

 
Since the 2L factor is the same in both cases, we set the right-hand sides of these 
expressions equal to each other and cancel the wavelength. Finally, we obtain 
 

nair = =100000 4001
4000

100025. . .b g  

 
We remark that this same result can be obtained starting with Eq. 35-43 (which is 
developed in the textbook for a somewhat different situation) and using Eq. 35-42 to 
eliminate the 2L/λ term. 
 
73. Consider the interference of waves reflected from the top and bottom surfaces of the 
air film. The wave reflected from the upper surface does not change phase on reflection 
but the wave reflected from the bottom surface changes phase by π rad. At a place where 
the thickness of the air film is L, the condition for fully constructive interference 
is 2 1

2L m= +b gl  where λ (= 683 nm) is the wavelength and m is an integer. This is 
satisfied for m = 140: 
 

L
m

=
+

=
×

= ×
−

−
1
2

9
5

1405 683 10
2

4 80 10
b g b gc hl

2
.

.
m

m = 0.048mm.  

 
At the thin end of the air film, there is a bright fringe. It is associated with m = 0. There 
are, therefore, 140 bright fringes in all. 
 
74. By the condition mλ = 2y where y is the thickness of the air film between the plates 
directly underneath the middle of a dark band), the edges of the plates (the edges where 
they are not touching) are y = 8λ/2 = 2400 nm apart (where we have assumed that the 
middle of the ninth dark band is at the edge).  Increasing that to y' = 3000 nm would 
correspond to m' = 2y'/λ = 10 (counted as the eleventh dark band, since the first one 
corresponds to m = 0).  There are thus 11 dark fringes along the top plate. 
 
75. Consider the interference pattern formed by waves reflected from the upper and lower 
surfaces of the air wedge. The wave reflected from the lower surface undergoes a π rad 
phase change while the wave reflected from the upper surface does not. At a place where 
the thickness of the wedge is d, the condition for a maximum in intensity is 
2 1

2d m= +b gl,  where λ is the wavelength in air and m is an integer. Therefore,  
 

d = (2m + 1)λ/4. 
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As the geometry of Fig. 35-45 shows, d R R r= − −2 2 ,  where R is the radius of 
curvature of the lens and r is the radius of a Newton’s ring. Thus, 
2 1 2 2m R R r+ = − −b gl 4 .  First, we rearrange the terms so the equation becomes 

 
( )2 2 2 1

.
4

m
R r R

+
− = −

l
 

 
Next, we square both sides, rearrange to solve for r2, then take the square root. We get 
 

r
m R m

=
+

−
+2 1

2
2 1

16

2b g b gl l2

.  

 
If R is much larger than a wavelength, the first term dominates the second and 
 

( )2 1
, 0,1, 2,

2
m R

r m
λ+

= = …  

 
Note: Similarly, one may show that the radii of the dark fringes are given by 
 

.r mRλ=  
 
76. (a) We find m from the last formula obtained in Problem 35-75: 
 

m r
R

= − =
×

×
−

−

−

2 3 2

9

1
2

10 10

5 0 589 10
1
2l

m

m m
c h
b gc h.

 

 
which (rounding down) yields m = 33. Since the first bright fringe corresponds to m = 0, 
m = 33 corresponds to the thirty-fourth bright fringe. 
 
(b) We now replace λ by λn = λ/nw. Thus, 
 

( )( )
( )( )

2322

9

1.33 10 10 m1 1 1 45.
2 2 25.0m 589 10 m

w
n

n

n rrm
R R

−

−

×
= − = − = − =

×l l
 

 
This corresponds to the forty-sixth bright fringe (see the remark at the end of our solution 
in part (a)). 
 
77. We solve for m using the formula r m R= +2 1b g l 2  obtained in Problem 35-75 and 
find m = r2/Rλ – 1/2. Now, when m is changed to m + 20, r becomes r', so  
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m + 20 = r' 2/Rλ – 1/2. 

 
Taking the difference between the two equations above, we eliminate m and find 
 

R r r
=

′ −
=

−

×
=

−

2 2 2 2

720
0 368 0162

20 546 10
100

l
. .cm cm

cm
cm.b g b g

c h  

 
78. The time to change from one minimum to the next is Δt = 12 s. This involves a 
change in thickness ΔL = λ/2n2 (see Eq. 35-37), and thus a change of volume  
 

ΔV = πr²ΔL =
2

²
2
r
n

π λ      ⇒      
2

²
2

dV r
dt n t

π λ
=

Δ
 = 

π(0.0180)² (550 x 10-9)
2(1.40) (12)   

 
using SI units.  Thus, the rate of change of volume is 1.67 × 10−11 m3/s. 
 
79. A shift of one fringe corresponds to a change in the optical path length of one 
wavelength. When the mirror moves a distance d, the path length changes by 2d since the 
light traverses the mirror arm twice. Let N be the number of fringes shifted. Then, 2d = 
Nλ and 

λ = =
×

= × =
−

−2 2 0 233 10
792

588 10 588
3

7d
N

.
.

m
m nm .

c h
 

 
80. According to Eq. 35-43, the number of fringes shifted (ΔN) due to the insertion of the 
film of thickness L is ΔN = (2L / λ) (n – 1). Therefore, 
 

L N
n

=
−

=
−

=
λΔ

2 1
589 7 0
2 140 1

52b g
b gb g
b g

nm
m

.
.

. .μ  

 
81. Let φ1 be the phase difference of the waves in the two arms when the tube has air in it, 
and let φ2 be the phase difference when the tube is evacuated. These are different because 
the wavelength in air is different from the wavelength in vacuum. If λ is the wavelength 
in vacuum, then the wavelength in air is λ/n, where n is the index of refraction of air. This 
means 

( )
1 2

4 12 22
n LnL

ππ πφ φ
λ λ λ

−⎡ ⎤− = − =⎢ ⎥⎣ ⎦
 

 
where L is the length of the tube. The factor 2 arises because the light traverses the tube 
twice, once on the way to a mirror and once after reflection from the mirror. Each shift by 
one fringe corresponds to a change in phase of 2π rad, so if the interference pattern shifts 
by N fringes as the tube is evacuated, 
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4 1
2

π
λ

π
n L

N
−

=
b g  

and 

n N
L

= + = +
×

×
=

−

−
1

2
1

60 500 10

2 50 10
100030

9

2

λ m

m
c h
c h.

. .  

 
82. We apply Eq. 35-42 to both wavelengths and take the difference: 
 

1 2
2 2 1 12 .L LN N L

1 2 1 2

⎛ ⎞
− = − = −⎜ ⎟λ λ λ λ⎝ ⎠

 

 
We now require N1 – N2 = 1 and solve for L: 
 

1 1
51 1 1 1 1 1 2.91 10 nm 291 m.

2 2 588.9950 nm 589.5924 nm
L μ

− −

1 2

⎛ ⎞ ⎛ ⎞
= − = − = × =⎜ ⎟ ⎜ ⎟λ λ ⎝ ⎠⎝ ⎠

 

 
83. (a) The path length difference between rays 1 and 2 is 7d – 2d = 5d. For this to 
correspond to a half-wavelength requires 5d = λ/2, so that d = 50.0 nm. 
 
(b) The above requirement becomes 5d = λ/2n in the presence of the solution, with n = 
1.38. Therefore, d = 36.2 nm. 
 
84. (a) The minimum path length difference occurs when both rays are nearly vertical.  
This would correspond to a point as far up in the picture as possible.  Treating the screen 
as if it extended forever, then the point is at y = ∞. 
 
(b) When both rays are nearly vertical, there is no path length difference between them.  
Thus at y = ∞, the phase difference is φ = 0. 
 
(c) At y = 0 (where the screen crosses the x axis) both rays are horizontal, with the ray 
from S1 being longer than the one from S2 by distance d.   
 
(d) Since the problem specifies d = 6.00λ, then the phase difference here is φ = 6.00 
wavelengths and is at its maximum value. 
 
(e) With D = 20λ, use of the Pythagorean theorem leads to 
 

φ =   
L1 − L2

 λ    =  
d² + (d + D)² − d² + D²

 λ    = 5.80 

 
which means the rays reaching the point  y = d have a phase difference of roughly 5.8  
wavelengths. 
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(f) The result of the previous part is “intermediate” — closer to 6 (constructive 
interference) than to 5 

1
2  (destructive interference). 

 
85. The angular positions of the maxima of a two-slit interference pattern are given by 

sinL d mθ λΔ = = , where ΔL is the path-length difference, d is the slit separation, λ is the 
wavelength, and m is an integer. If θ is small, sin θ may be approximated by θ in radians. 
Then, θ = mλ/d to good approximation. The angular separation of two adjacent maxima is 
Δθ = λ/d. When the arrangement is immersed in water, the wavelength changes to λ' = 
λ/n, and the equation above becomes 

d
λθ

′
′Δ = . 

 
Dividing the equation by Δθ = λ/d, we obtain 
 

Δ
Δ

′
=

′
=

θ
θ

l
l

1
n

.  

 
Therefore, with n = 1.33 and Δθ = 0.30°, we find Δθ ' = 0.23°. 
 
Note that the angular separation decreases with increasing index of refraction; the greater 
the value of n, the smaller the value of Δθ. 
 
86. (a) The graph shows part of a periodic pattern of half-cycle “length” Δn = 0.4.  Thus 
if we set n = 1.0 + 2Δn  = 1.8 then the maximum at n = 1.0 should repeat itself there.  
 
(b) Continuing the reasoning of part (a), adding another half-cycle “length” we get 
1.8 2.2n+ Δ =  for the answer. 
 
(c) Since Δn = 0.4 represents a half-cycle, then Δn/2 represents a quarter-cycle.  To 
accumulate a total change of 2.0 – 1.0 = 1.0 (see problem statement), then we need 2Δn + 
Δn/2 = 5/4th of a cycle, which corresponds to 1.25 wavelengths. 
 
87. When the interference between two waves is completely destructive, their phase 
difference is given by 
 (2 1) , 0,1, 2,...m mφ π= + =  
 
The equivalent condition is that their path-length difference is an odd multiple of / 2,λ  
where λ is the wavelength of the light.    
 
(a) Looking at the figure (where a portion of a periodic pattern is shown) we see that half 
of the periodic pattern is of length ΔL = 750 nm (judging from the maximum at x = 0 to 
the minimum at x = 750 nm); this suggests that the wavelength (the full length of the 
periodic pattern) is λ = 2 ΔL = 1500 nm.  A maximum should be reached again at x = 
1500 nm (and at x = 3000 nm, x = 4500 nm, …). 
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(b) From our discussion in part (b), we expect a minimum to be reached at each value x = 
750 nm + n(1500 nm), where n = 1, 2, 3, … .   For instance, for n = 1 we would find the 
minimum at x = 2250 nm. 
 
(c) With λ = 1500 nm (found in part (a)), we can express x = 1200 nm as x = 1200/1500 = 
0.80 wavelength. 
 
88. (a) The difference in wavelengths, with and without the n = 1.4 material, is found 
using Eq. 35-9: 

 ( 1) 1.143LN n
λ

Δ = − = . 

 
The result is equal to a phase shift of (1.143)(360°) = 411.4°, or  
 
(b) more meaningfully, a shift of 411.4° − 360° = 51.4°. 
 
89. The wave that goes directly to the receiver 
travels a distance L1 and the reflected wave 
travels a distance L2. Since the index of 
refraction of water is greater than that of air this 
last wave suffers a phase change on reflection of 
half a wavelength. To obtain constructive 
interference at the receiver, the difference L2 – L1 
must be an odd multiple of a half wavelength. 
Consider the diagram on the right. The right 
triangle on the left, formed by the vertical line 
from the water to the transmitter T, the ray 
incident on the water, and the water line, gives 
Da = a/ tan θ. The right triangle on the right, formed by the vertical line from the water to 
the receiver R, the reflected ray, and the water line leads to / tanbD x θ= . Since Da + Db 
= D, 

tan .θ =
+a x
D

 

 
We use the identity sin2 θ = tan2 θ / (1 + tan2 θ) to show that  
 

2 2sin ( ) / ( )a x D a xθ = + + + . 
This means 
 

L a a D a x
a xa2

2 2

= =
+ +

+sinθ
b g

 

 
and 
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( )22

2 .
sinb

x D a xxL
a xθ
+ +

= =
+

 

Therefore, 
 

L L L
a x D a x

a x
D a xa b2 2 2

2 2
2 2= + =

+ + +

+
= + +

b g b g b g .  

 
Using the binomial theorem, with D2 large and a2 + x2 small, we approximate this 
expression: ( )2

2 / 2 .L D a x D≈ + +  The distance traveled by the direct wave is 

L D a x1
2 2= + −b g . Using the binomial theorem, we approximate this expression: 

( )2
1 / 2 .L D a x D≈ + −  Thus, 

 

L L D a ax x
D

D a ax x
D

ax
D2 1

2 2 2 22
2

2
2

2
− ≈ +

+ +
− −

− +
= .  

 
Setting this equal to m + 1

2b gλ , where m is zero or a positive integer, we find 

x m D a= + 1
2 2b gb gλ . 

 
90. (a) Since P1 is equidistant from S1  and S2 we conclude the sources are not in phase 
with each other.  Their phase difference is Δφsource = 0.60 π rad, which may be expressed 
in terms of “wavelengths” (thinking of the λ ⇔ 2π correspondence in discussing a full 
cycle) as  

Δφsource = (0.60 π / 2π) λ = 0.3 λ 
 
(with S2 “leading” as the problem states).  Now S1  is closer to P2 than S2 is.  Source S1 is 
80 nm (⇔ 80/400 λ = 0.2 λ ) from P2 while source S2 is 1360 nm (⇔ 1360/400 λ = 3.4 λ ) 
from P2.  Here we find a difference of  Δφpath = 3.2 λ (with S1 “leading” since it is closer).  
Thus, the net difference is  
 

Δφnet = Δφpath –  Δφsource =  2.90 λ, 
or 2.90 wavelengths. 
 
(b) A whole number (like 3 wavelengths) would mean fully constructive, so our result is 
of the following nature: intermediate, but close to fully constructive. 
 
91. (a) Applying the law of refraction, we obtain sin θ2 / sin θ1 = sin θ2 / sin 30° = vs/vd. 
Consequently, 
 

( )1 1
2

3.0 m s sin 30sin 30sin sin 22 .
4.0 m s

s

d

v
v

θ − − °⎡ ⎤⎛ ⎞°
= = = °⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
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(b) The angle of incidence is gradually reduced due to refraction, such as shown in the 
calculation above (from 30° to 22°). Eventually after several refractions, θ2 will be 
virtually zero. This is why most waves come in normal to a shore. 
 
92. When the depth of the liquid (Lliq ) is zero, the phase difference φ is 60 wavelengths; 
this must equal the difference between the number of wavelengths in length L = 40 µm 
(since the liquid initially fills the hole) of the plastic (for ray r1) and the number in that 
same length of the air (for ray r2).  That is, 
 

plastic air 60
Ln Ln

λ λ
− = . 

 
(a) Since λ = 400 × 10−9 m and nair = 1 (to good approximation), we find nplastic = 1.6. 
 
(b) The slope of the graph can be used to determine nliq , but we show an approach more 
closely based on the above equation: 
 

 plastic liq 20
Ln Ln

λ λ
− =  

 
which makes use of the leftmost point of the graph.  This readily yields nliq = 1.4. 
 
93. The condition for a minimum in the two-slit interference pattern is d sin θ = (m + ½)λ, 
where d is the slit separation, λ is the wavelength, m is an integer, and θ is the angle made 
by the interfering rays with the forward direction. If θ is small, sin θ may be 
approximated by θ in radians. Then, θ = (m + ½)λ/d, and the distance from the minimum 
to the central fringe is 

 1tan sin
2

Dy D D D m
d
λθ θ θ ⎛ ⎞= ≈ ≈ = +⎜ ⎟

⎝ ⎠
, 

 
where D is the distance from the slits to the screen. For the first minimum m = 0 and for 
the tenth one, m = 9. The separation is 
 

1 1 99
2 2

D D Dy
d d d
λ λ λ⎛ ⎞Δ = + − =⎜ ⎟

⎝ ⎠
. 

 
We solve for the wavelength: 
 

l = =
× ×

×
= × =

− −

−
−d y

D
Δ

9
015 10 18 10

9 50 10
6 0 10 600

3 3

2
7

.
.

m m

m
m  nm.

c hc h
c h  
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Note: The distance between two adjacent dark fringes, one associated with the integer m 
and the other associated with the integer m + 1, is  
 

Δy = Dθ = Dλ/d. 
 
94. A light ray traveling directly along the central axis reaches the end in time 
 

t L
v

n L
cdirect = =

1

1 .  

 
For the ray taking the critical zig-zag path, only its velocity component along the core 
axis direction contributes to reaching the other end of the fiber. That component is  
v1 cos θ ', so the time of travel for this ray is 
 

( )
1

zig zag 2
1 1
cos 1 sin /

n LLt
v c nθ θ

= =
′ −

 

 
using results from the previous solution. Plugging in sinθ = −n n1

2
2
2  and simplifying, 

we obtain 

t n L
c n n

n L
n czig zag = =1

2 1

1
2

2/
.b g  

 
The difference is  

2
1 1 1 1

zig zag direct
2 2

1n L n L n L nt t t
n c c c n

⎛ ⎞
Δ = − = − = −⎜ ⎟

⎝ ⎠
 . 

  
With n1 = 1.58, n2 = 1.53, and L = 300 m, we obtain  
 

81 1
8

2

(1.58)(300 m) 1.581 1 5.16 10 s 51.6 ns
3.0 10 m/s 1.53

n L nt
c n

−⎛ ⎞ ⎛ ⎞Δ = − = − = × =⎜ ⎟ ⎜ ⎟× ⎝ ⎠⎝ ⎠
. 

 
95. When the interference between two waves is completely destructive, their phase 
difference is given by 
 (2 1) , 0,1, 2,...m mφ π= + =  
 
The equivalent condition is that their path-length difference is an odd multiple of / 2,λ  
where λ is the wavelength of the light.    
 
(a) A path length difference of λ/2 produces the first dark band, of 3λ/2 produces the 
second dark band, and so on. Therefore, the fourth dark band corresponds to a path length 
difference of 7λ/2 = 1750 nm = 1.75 μm. 
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(b) In the small angle approximation (which we assume holds here), the fringes are 
equally spaced, so that if Δy denotes the distance from one maximum to the next, then the 
distance from the middle of the pattern to the fourth dark band must be 16.8 mm =  
3.5 Δy. Therefore, we obtain Δy = 16.8/3.5 = 4.8 mm. 
 
Note: The distance from the mth maximum to the central fringe is 
 

 bright tan sin Dy D D D m
d
λθ θ θ= ≈ ≈ = . 

 
Similarly, the distance from the mth minimum to the central fringe is  
 

dark
1
2

Dy m
d
λ⎛ ⎞= +⎜ ⎟

⎝ ⎠
. 

 
96. We use the formula obtained in Sample Problem — “Thin-film interference of a 
coating on a glass lens:” 

( )
min

min
2

0.200     0.200.
4 4 1.25

LL
n λ
λ λ

= = = λ ⇒ =  

 
97. Let the position of the mirror measured from the point at which d1 = d2 be x. We 
assume the beam-splitting mechanism is such that the two waves interfere constructively 
for x = 0 (with some beam-splitters, this would not be the case). We can adapt Eq. 35-23 
to this situation by incorporating a factor of 2 (since the interferometer utilizes directly 
reflected light in contrast to the double-slit experiment) and eliminating the sin θ factor. 
Thus, the phase difference between the two light paths is Δφ = 2(2πx/λ) = 4πx/λ. Then 
from Eq. 35-22 (writing 4I0 as Im) we find 
 

I I I x
m m= F
HG
I
KJ = F

HG
I
KJcos cos .2 2

2
2Δφ π
λ

 

 
The intensity / mI I  as a function of /x λ  is plotted below. 

 
 
From the figure, we see that the intensity is at a maximum when  
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 , 0,1, 2,...
2
mx mλ= =  

 
Similarly, the condition for minima is  
 

( )1 2 1 , 0,1, 2,...
4

x m mλ= + =  

 
98. We note that ray 1 travels an extra distance 4L more than ray 2.  For constructive 
interference (which is obtained for λ = 620 nm) we require 
 

4L  = mλ       where m = some positive integer. 
 

For destructive interference (which is obtained for λ′ = 4196 nm) we require 
 

4L  = k2 λ′      where k = some positive odd integer. 

 
Equating these two equations (since their left-hand sides are equal) and rearranging, we 
obtain 

k = 2 m λ
 λ′  = 2 m 620

496  = 2.5 m . 

 
We note that this condition is satisfied for k = 5 and m = 2.  It is satisfied for some larger 
values, too, but recalling that we want the least possible value for L, we choose the 
solution set (k, m) = (5, 2).  Plugging back into either of the equations above, we obtain 
the distance L:  

4L  = 2λ     ⇒       L = λ2  = 310.0 nm . 

 
99. (a) Straightforward application of Eq. 35-3 /n c v= and v = Δx/Δt yields the result: 
pistol 1 with a time equal to Δt = nΔx/c = 42.0 × 10–12 s = 42.0 ps. 
 
(b) For pistol 2, the travel time is equal to 42.3 × 10–12 s. 
 
(c) For pistol 3, the travel time is equal to 43.2 × 10–12 s. 
 
(d) For pistol 4, the travel time is equal to 41.8 × 10–12 s.  
 
(e) We see that the blast from pistol 4 arrives first. 
 
100. We use Eq. 35-36 for constructive interference: 2n2L = (m + 1/2)λ, or 
 

l =
+

=
+

=
+

2
1 2

2 150 410
1 2

1230
1 2

2n L
m m m

.
,b gb gnm  nm  
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where m = 0, 1, 2, …. The only value of m which, when substituted into the equation 
above, would yield a wavelength that falls within the visible light range is m = 1. 
Therefore, 

l =
+

=
1230
1 1 2

492nm  nm .  

 
101. In the case of a distant screen the angle θ is close to zero so sin θ ≈ θ. Thus from Eq. 
35-14, 

sin ,m m
d d d
λ λ λθ θ ⎛ ⎞Δ ≈ Δ = Δ = Δ =⎜ ⎟

⎝ ⎠
 

 
or d ≈ λ/Δθ = 589 × 10–9 m/0.018 rad = 3.3 × 10–5 m = 33 μm. 
 

102. We note that Δφ = 60° = π3  rad.  The phasors rotate with constant angular velocity 

 

 15
16

/ 3 rad 4.19 10 rad/s
2.5 10 st

φ πω −

Δ
= = = ×

Δ ×
. 

 
Since we are working with light waves traveling in a medium (presumably air) where the 
wave speed is approximately c, then kc = ω (where k = 2π/λ), which leads to 
 

λ = cπ
ω

2  = 450 nm. 
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Chapter 36 
 
 
1. (a) We use Eq. 36-3 to calculate the separation between the first (m1 = 1) and fifth 

2( 5)m = minima: 

( )2 1sin .m D Dy D D m m m
a a a
λ λ λθ ⎛ ⎞Δ = Δ = Δ = Δ = −⎜ ⎟

⎝ ⎠
 

 
Solving for the slit width, we obtain 
 

a
D m m

y
=

−
=

× −
=

−λ 2 1
6400 550 10 5 1

0 35
2 5b g b gc hb g

Δ

mm mm
mm

mm
.

. .  

(b) For m = 1, 

sin
.

. .θ = =
×

= ×
−

−m
a
λ 1 550 10

2 5
2 2 10

6
4b gc hmm

mm
 

 
The angle is θ = sin–1 (2.2 × 10–4) = 2.2 × 10–4 rad. 
 
2. From Eq. 36-3, 

a m
l

= =
°

=
sin sin .

. .
θ

1
450

141  

 
3. (a) A plane wave is incident on the lens so it is brought to focus in the focal plane of 
the lens, a distance of 70 cm from the lens. 
 
(b) Waves leaving the lens at an angle θ to the forward direction interfere to produce an 
intensity minimum if a sin θ = mλ, where a is the slit width, λ is the wavelength, and m is 
an integer. The distance on the screen from the center of the pattern to the minimum is 
given by y = D tan θ, where D is the distance from the lens to the screen. For the 
conditions of this problem, 

sin
.

. .θ = =
×

×
= ×

−

−
−m

a
λ 1 590 10

0 40 10
1475 10

9

3
3b gc hm

m
 

 
This means θ = 1.475 × 10–3 rad and  
 

y = (0.70 m) tan(1.475 × 10–3 rad) = 1.0 × 10–3 m. 
 
4. (a) Equations 36-3 and 36-12 imply smaller angles for diffraction for smaller 
wavelengths. This suggests that diffraction effects in general would decrease. 
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(b) Using Eq. 36-3 with m = 1 and solving for 2θ (the angular width of the central 
diffraction maximum), we find 
 

2 2 2 0 50
5 0

111 1θ = F
HG
I
KJ =

F
HG
I
KJ = °− −sin sin .

.
.l

a
m

m
 

 
(c) A similar calculation yields 0.23° for λ = 0.010 m. 
 
5. (a) The condition for a minimum in a single-slit diffraction pattern is given by  
 

a sin θ = mλ, 
 
where a is the slit width, λ is the wavelength, and m is an integer. For λ = λa and m = 1, 
the angle θ is the same as for λ = λb and m = 2. Thus,  
 

λa = 2λb = 2(350 nm) = 700 nm. 
 
(b) Let ma be the integer associated with a minimum in the pattern produced by light with 
wavelength λa, and let mb be the integer associated with a minimum in the pattern 
produced by light with wavelength λb. A minimum in one pattern coincides with a 
minimum in the other if they occur at the same angle. This means maλa = mbλb. Since λa 
= 2λb, the minima coincide if 2ma = mb. Consequently, every other minimum of the λb 
pattern coincides with a minimum of the λa pattern. With ma =2, we have mb = 4. 
 
(c) With ma =3, we have mb = 6. 
 
6. (a) θ = sin–1 (1.50 cm/2.00 m) = 0.430°. 
 
(b) For the mth diffraction minimum, a sin θ = mλ. We solve for the slit width: 
 

a m
= =

°
=

λ
sin sin .

. .
θ

2 441
0 430

0118
nm

mmb g  

 
7. The condition for a minimum of a single-slit diffraction pattern is 
 

sina mθ λ=  
 
where a is the slit width, λ is the wavelength, and m is an integer. The angle θ is 
measured from the forward direction, so for the situation described in the problem, it is 
0.60° for m = 1. Thus, 

9
5633 10 m 6.04 10 m .

sin sin 0.60
ma λ

θ

−
−×

= = = ×
°
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8. Let the first minimum be a distance y from the central axis that is perpendicular to the 
speaker. Then  

sinθ = + = =y D y m a a2 2 1 2c h λ λ  (for m = 1). 
Therefore, 
 

( ) ( ) ( )( ) ( )2 2 2

100 m 41.2 m .
1 1 0.300 m 3000 Hz 343m s 1s

D Dy
a af v

= = = =
λ − − ⎡ ⎤ −⎣ ⎦

 

 
9. The condition for a minimum of intensity in a single-slit diffraction pattern is a sin θ = 
mλ, where a is the slit width, λ is the wavelength, and m is an integer. To find the angular 
position of the first minimum to one side of the central maximum, we set m = 1: 
 

θ 1
1 1

9

3
4589 10

100 10
589 10= F

HG
I
KJ =

×
×

F
HG

I
KJ = ×− −

−

−
−sin sin

.
. .λ

a
m
m

rad  

 
If D is the distance from the slit to the screen, the distance on the screen from the center 
of the pattern to the minimum is 
 

y D1 1
4 3300 589 10 1767 10= = × = ×− −tan . tan . . .θ m rad mb g c h  

 
To find the second minimum, we set m = 2: 
 

θ 2
1

9

3
3

2 589 10
100 10

1178 10=
×

×

F
HG

I
KJ

= ×−
−

−
−sin

.
. .

m
m

rad
c h

 

 
The distance from the center of the pattern to this second minimum is  
 

y2 = D tan θ2 = (3.00 m) tan (1.178 × 10–3 rad) = 3.534 × 10–3 m. 
 
The separation of the two minima is  
 

Δy = y2 – y1 = 3.534 mm – 1.767 mm = 1.77 mm. 
 
10. From y = mλL/a we get 
 

(632.8nm)(2.60) [10 ( 10)] 24.0 mm .
1.37 mm

m L Ly m
a a
λ λ⎛ ⎞Δ = Δ = Δ = − − =⎜ ⎟

⎝ ⎠
 

 
11. We note that 1 nm = 1 ×10–9 m = 1 ×10–6 mm. From Eq. 36-4, 
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Δ Δφ θ= FHG
I
KJ =

×
F
HG

I
KJ
F
HG

I
KJ ° =−

2 2
589 10

010
2

30 266 76

π
λ

πx sin . sin . .b g
mm

mm rad  

 
This is equivalent to 266.7 rad – 84π = 2.8 rad = 160°. 
 
12. (a) The slope of the plotted line is 12, and we see from Eq. 36-6 that this slope should 
correspond to 
 

12 12(610 nm)12 2330 nm 2.33 ma aπ λ μ
λ π π

= ⇒ = = = ≈  

 
(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer 
for diffraction minima, but for the moment we will solve for it as if it could be any real 
number): 

( )max max

2330 nmsin 3.82
610 nm

a am θ
λ λ

= = = ≈  

                                          
which suggests that, on each side of the central maximum (θcentr = 0), there are three 
minima; considering both sides then implies there are six minima in the pattern.  
 
(c) Setting m = 1 in Eq. 36-3 and solving for θ yields 15.2°. 
 
(d) Setting m = 3 in Eq. 36-3 and solving for θ yields 51.8°. 
 
13. (a) θ = sin–1 (0.011 m/3.5 m) = 0.18°. 
 
(b) We use Eq. 36-6: 
 

( )
6

0.025mm sin 0.18
sin 0.46 rad .

538 10 mm
a ππα θ

λ −

°⎛ ⎞= = =⎜ ⎟ ×⎝ ⎠
 

 
(c) Making sure our calculator is in radian mode, Eq. 36-5 yields 
 

I
Im

θ α
α

b g
= FHG

I
KJ =

sin . .
2

0 93  

 
14. We will make use of arctangents and sines in our solution, even though they can be 
“shortcut” somewhat since the angles are small enough to justify the use of the small 
angle approximation. 
 
(a) Given y/D = 15/300 (both expressed here in centimeters), then θ = tan−1(y/D) = 2.86°.  
Use of Eq. 36-6 (with a = 6000 nm and λ = 500 nm) leads to 
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( )6000nm sin 2.86sin 1.883rad.
500nm

a ππ θα
λ

°
= = =  

Thus,  
2sin 0.256 .p

m

I
I

α
α

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
(b) Consider Eq. 36-3 with “continuously variable” m (of course, m should be an integer 
for diffraction minima, but for the moment we will solve for it as if it could be any real 
number): 

 sin (6000 nm)sin 2.86 0.60
500 nm

am θ
λ

°
= = ≈ , 

 
which suggests that the angle takes us to a point between the central maximum (θcentr = 0) 
and the first minimum (which corresponds to m = 1 in Eq. 36-3). 
 
15. (a) The intensity for a single-slit diffraction pattern is given by 
 

I Im=
sin2

2

α
α

 

 
where α = (πa/λ) sin θ, a is the slit width, and λ is the wavelength. The angle θ is 
measured from the forward direction. We require I = Im/2, so 
 

sin .2 21
2

α α=  

 
(b) We evaluate sin2 α and α 2 2  for α = 1.39 rad and compare the results. To be sure 
that 1.39 rad is closer to the correct value for α than any other value with three significant 
digits, we could also try 1.385 rad and 1.395 rad. 
 
(c) Since α = (πa/λ) sin θ, 

θ α
= F
HG
I
KJ

−sin .1 λ
πa

 

 
Now α/π = 1.39/π = 0.442, so 

θ = F
HG

I
KJ

−sin . .1 0 442λ
a

 

 
The angular separation of the two points of half intensity, one on either side of the center 
of the diffraction pattern, is 
 



CHAPTER 36 1388 

Δθ θ= = F
HG

I
KJ

−2 2 0 4421sin . .λ
a

 

(d) For a/λ = 1.0, 
( )12sin 0.442 1.0 0.916 rad 52.5θ −Δ = = = ° . 

 
(e) For a/λ = 5.0, 

( )12sin 0.442 5.0 0.177 rad 10.1θ −Δ = = = ° . 
 
(f) For a/λ = 10, Δθ = = = °−2 0 442 10 0 0884 5061sin . . . .b g rad  
 
16. Consider Huygens’ explanation of diffraction phenomena. When A is in place only 
the Huygens’ wavelets that pass through the hole get to point P. Suppose they produce a 
resultant electric field EA. When B is in place, the light that was blocked by A gets to P 
and the light that passed through the hole in A is blocked. Suppose the electric field at P 
is now

G
EB . The sum 

G G
E EA B+  is the resultant of all waves that get to P when neither A nor 

B are present. Since P is in the geometric shadow, this is zero. Thus 
G G
E EA B= − , and since 

the intensity is proportional to the square of the electric field, the intensity at P is the 
same when A is present as when B is present. 
 
17. (a) The intensity for a single-slit diffraction pattern is given by 
 

I Im=
sin2

2

α
α

 

 
where α is described in the text (see Eq. 36-6). To locate the extrema, we set the 
derivative of I with respect to α equal to zero and solve for α. The derivative is 
 

dI
d

Imα
α

α
α α α= −2 3

sin cos sin .b g  

 
The derivative vanishes if 0α ≠  but sin α = 0. This 
yields α = mπ, where m is a nonzero integer. These 
are the intensity minima: I = 0 for α = mπ. The 
derivative also vanishes for α cos α – sin α = 0. This 
condition can be written tan α = α. These implicitly 
locate the maxima. 
 
(b) The values of α that satisfy tan α = α can be 
found by trial and error on a pocket calculator or 
computer. Each of them is slightly less than one of 
the values ( )1

2 radm π+ , so we start with these 
values. They can also be found graphically. As in the 
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diagram that follows, we plot y = tan α and y = α on the same graph. The intersections of 
the line with the tan α curves are the solutions. The smallest α is 0α = . 
 
(c) We write α = +m 1

2b gπ  for the maxima. For the central maximum, α = 0 and 
1/ 2 0.500m = − = − . 

 
(d) The next one can be found to be α = 4.493 rad. 
 
(e) For α = 4.4934, m = 0.930. 
 
(f) The next one can be found to be α = 7.725 rad. 
 
(g) For α = 7.7252, m = 1.96. 
 
18. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 
your eye,” the maximum distance is 
 

( )( )
( )
3 3

9
R

5.0 10 m 4.0 10 m
30m .

1.22 1.22 550 10 m
D DL

dθ

− −

−

× ×
= = = =

λ ×
 

 
19. (a) Using the notation of Sample Problem — “Pointillistic paintings use the 
diffraction of your eye,” 

L D
d

=
λ /122

2 50 10
122 650 10

019
6 3

9.
(

. (
.=

× ×
×

=
− −

−

m)(1.5 10 m)
m)

m .  

 
(b) The wavelength of the blue light is shorter so Lmax ∝ λ–1 will be larger. 
 
20. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 
your eye,” the minimum separation is 
 

( ) ( )( )2
3

R

1.22 1.6 10 m1.22 6.2 10 m 53m .
2.3m

D L L
d

θ
−×λ⎛ ⎞= = = × =⎜ ⎟

⎝ ⎠
 

 
21. (a) We use the Rayleigh criteria. If L is the distance from the observer to the objects, 
then the smallest separation D they can have and still be resolvable is D = LθR, where θR 
is measured in radians. The small angle approximation is made. Thus, 
 

D L
d

= =
× ×

×
= × ×

−

−

122 122 8 0 10 550 10
50 10

11 10
10 9

3
7. . .

.
. .λ m m

m
m = 1.1 10 km4c hc h

 

 
This distance is greater than the diameter of Mars; therefore, one part of the planet’s 
surface cannot be resolved from another part. 
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(b) Now d = 5.1 m and 
 

D =
× ×

= × =
−122 8 0 10 550 10

51
11 10 11

10 9
4

. .
.

. .
m m

m
m km

c hc h
 

 
22. (a) Using the notation of Sample Problem — “Pointillistic paintings use the 
diffraction of your eye,” the minimum separation is 
 

D L L
d

= = FHG
I
KJ =

× ×
≈

−

θ R

m m
m

 m.122 400 10 122 550 10
0 005

50
3 9. .

.
l c hb gc h

b g  

 
(b) The Rayleigh criterion suggests that the astronaut will not be able to discern the Great 
Wall (see the result of part (a)). 
 
(c) The signs of intelligent life would probably be, at most, ambiguous on the sunlit half 
of the planet. However, while passing over the half of the planet on the opposite side 
from the Sun, the astronaut would be able to notice the effects of artificial lighting. 
 
23. (a) We use the Rayleigh criteria. Thus, the angular separation (in radians) of the 
sources must be at least θR = 1.22λ/d, where λ is the wavelength and d is the diameter of 
the aperture. For the headlights of this problem, 
 

( )9
4

R 3

1.22 550 10 m
1.34 10 rad,

5.0 10 m
θ

−
−

−

×
= = ×

×
 

 
or 41.3 10 rad−× , in two significant figures. 
 
(b) If L is the distance from the headlights to the eye when the headlights are just 
resolvable and D is the separation of the headlights, then D = LθR, where the small angle 
approximation is made. This is valid for θR in radians. Thus, 
 

4
4

R

1.4m 1.0 10 m 10km .
1.34 10 rad

DL
θ −= = = × =

×
 

 
24. We use Eq. 36-12 with θ = 2.5°/2 = 1.25°. Thus, 
 

d = =
°

=
122 122 550

125
31.

sin
.

sin .
.λ

θ
μ

nm
mb g  

 
25. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 
your eye,” the minimum separation is 
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( ) ( )( )9
8

R

1.22 550 10 m
1.22 3.82 10 m 50m .

5.1m
D L L

d
θ

−×λ⎛ ⎞= = = × =⎜ ⎟
⎝ ⎠

 

 
26. Using the same notation found in Sample Problem — “Pointillistic paintings use the 
diffraction of your eye,” 

D
L d

= =θ R 122. l  

 
where we will assume a “typical” wavelength for visible light: λ ≈ 550 × 10–9 m. 
 
(a) With L = 400 × 103 m and D = 0.85 m, the above relation leads to d = 0.32 m. 
 
(b) Now with D = 0.10 m, the above relation leads to d = 2.7 m. 
 
(c) The military satellites do not use Hubble Telescope-sized apertures. A great deal of 
very sophisticated optical filtering and digital signal processing techniques go into the 
final product, for which there is not space for us to describe here. 
 
27. Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 
your eye,” 

2 3
6 3

9
R

(5.0 10 m)(4.0 10 m) 1.6 10 m 1.6 10 km .
1.22 / 1.22(0.10 10 m)

D DL
dθ

− −

−

× ×
= = = = × = ×

λ ×
 

 
28. Eq. 36-14 gives θR = 1.22λ/d, where in our case θR ≈ D/L, with D = 60 μm being the 
size of the object your eyes must resolve, and L being the maximum viewing distance in 
question. If d = 3.00 mm = 3000 μm is the diameter of your pupil, then 
 

( )( )
( )

560 m 3000 m
2.7 10 m 27cm.

1.22 1.22 0.55 m
DdL

μ μ
μ

μ
= = = × =

λ
 

 
29. (a) Using Eq. 36-14, the angular separation is 
 

( )( )9
7

R

1.22 550 10 m1.22 8.8 10 rad .
0.76md

θ
−

−
×λ

= = = ×  

 
(b) Using the notation of Sample Problem — “Pointillistic paintings use the diffraction of 
your eye,” the distance between the stars is 
 

( )( )( )
( )( )

12
7

R

10ly 9.46 10 km ly 0.18
8.4 10 km .

3600 180
D Lθ

× π
= = = ×  

 
(c) The diameter of the first dark ring is 
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( )( )( )
( )( )

5
R

2 0.18 14m
2 2.5 10 m 0.025mm .

3600 180
d Lθ −π

= = = × =  

 
30. From Fig. 36-42(a), we find the diameter D′  on the retina to be 
 

2.00 cm(2.00 mm) 0.0889 mm
45.0 cm

LD D
L
′

′ = = = . 

 
Next, using Fig. 36-42(b), the angle from the axis is  
 

 1 1/ 2 0.0889 mm / 2tan tan 0.424
6.00 mm

D
x

θ − −′⎛ ⎞ ⎛ ⎞= = = °⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
Since the angle corresponds to the first minimum in the diffraction pattern, we have 
sin 1.22 / dθ λ= , where λ is the wavelength and d is the diameter of the defect. With 

550 nm,λ =  we obtain 
 

 51.22 1.22(550 nm) 9.06 10  m 91 m
sin sin(0.424 )

d λ μ
θ

−= = = × ≈
°

. 

 
31. (a) The first minimum in the diffraction pattern is at an angular position θ, measured 
from the center of the pattern, such that sin θ = 1.22λ/d, where λ is the wavelength and d 
is the diameter of the antenna. If f is the frequency, then the wavelength is 
 

8
3

9

3.00 10 m s 1.36 10 m .
220 10 Hz

c
f

λ −×
= = = ×

×
 

Thus, 

θ = F
HG
I
KJ =

×

×

F
HG

I
KJ

= ×− −
−

−
−sin . sin

. .
.

. .1 1
3

2
3122 122 136 10

55 0 10
3 02 10λ

d
m

m
rad

c h
 

 
The angular width of the central maximum is twice this, or 6.04 × 10–3 rad (0.346°). 
 
(b) Now λ = 1.6 cm and d = 2.3 m, so 
 

( )2
1 3

1.22 1.6 10 m
sin 8.5 10 rad.

2.3m
θ

−
− −

⎛ ⎞×
⎜ ⎟= = ×
⎜ ⎟
⎝ ⎠

 

 
The angular width of the central maximum is 1.7 × 10–2 rad (or 0.97°). 
 
32. (a) We use Eq. 36-12: 
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( ) ( )( )
( )( )

1 1 1
3

1.22 1.22 1450 m s1.22sin sin sin 6.8 .
25 10 Hz 0.60 m

sv f
d d

λθ − − −
⎡ ⎤⎡ ⎤⎛ ⎞ ⎢ ⎥= = = = °⎢ ⎥⎜ ⎟ ×⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
(b) Now f = 1.0 × 103 Hz so 
 

122 122 1450
0 60

2 9 1. .
.

. .l
d

=
×

= >
b gb g
c hb g

m s
1.0 10 Hz m3

 

 
Since sin θ cannot exceed 1 there is no minimum. 
 
33. Equation 36-14 gives the Rayleigh angle (in radians):  
 

1.22
R

D
d L

λθ = =  
 
where the rationale behind the second equality is given in Sample Problem — 
“Pointillistic paintings use the diffraction of your eye.” 
 
(a) We are asked to solve for D and are given λ = 1.40 × 10−9 m, d = 0.200 × 10−3 m, and 

32000 10  mL = × .  Consequently, we obtain D = 17.1 m. 
 
(b) Intensity is power over area (with the area assumed spherical in this case, which 
means it is proportional to radius-squared), so the ratio of intensities is given by the 
square of a ratio of distances:   (d/D)2 = 1.37 × 10−10. 
 
34. (a) Since θ = 1.22λ/d, the larger the wavelength the larger the radius of the first 
minimum (and second maximum, etc). Therefore, the white pattern is outlined by red 
lights (with longer wavelength than blue lights). 
 
(b) The diameter of a water drop is 
 

( )
( )( )

7
4

1.22 7 10 m1.22 1.3 10 m .
1.5 0.50 2

d λ
θ

−
−

×
= ≈ = ×

° π180°
 

 
35. Bright interference fringes occur at angles θ given by d sin θ = mλ, where m is an 
integer. For the slits of this problem, we have d = 11a/2, so  
 

a sin θ = 2mλ/11 . 
 
The first minimum of the diffraction pattern occurs at the angle θ1 given by a sin θ1 = λ, 
and the second occurs at the angle θ2 given by a sin θ2 = 2λ, where a is the slit width. We 
should count the values of m for which θ1 < θ < θ2, or, equivalently, the values of m for 
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which sin θ1 < sin θ < sin θ2. This means 1 < (2m/11) < 2. The values are m = 6, 7, 8, 9, 
and 10. There are five bright fringes in all. 
 
36. Following the method of Sample Problem — “Double-slit experiment with diffraction 
of each slit included,” we find 

3

6

0.30 10 m 6.52
46 10 m

d
a

−

−

×
= =

×
 

 
which we interpret to mean that the first diffraction minimum occurs slightly farther 
“out” than the m = 6 interference maximum.  This implies that the central diffraction 
envelope includes the central (m = 0) interference maximum as well as six interference 
maxima on each side of it.  Therefore, there are 6 + 1 + 6 = 13 bright fringes (interference 
maxima) in the central diffraction envelope. 
 
37. In a manner similar to that discussed in Sample Problem — “Double-slit experiment 
with diffraction of each slit included,” we find the number is 2(d/a) – 1 = 2(2a/a) – 1 = 3. 
 
38. We note that the central diffraction envelope contains the central bright interference 
fringe (corresponding to m = 0 in Eq. 36-25) plus ten on either side of it.  Since the 
eleventh order bright interference fringe is not seen in the central envelope, then we 
conclude the first diffraction minimum (satisfying sinθ = λ/a) coincides with the m = 11 
instantiation of Eq. 36-25: 

d = 
mλ

sin θ  =  
11 λ
 λ/a   = 11 a . 

 
Thus, the ratio d/a is equal to 11. 
 
39. (a) The first minimum of the diffraction pattern is at 5.00°, so 
 

a = =
°

=
λ

sin
.

sin .
. .

θ
μ μ0 440

500
505m m  

 
(b) Since the fourth bright fringe is missing, d = 4a = 4(5.05 μm) = 20.2 μm. 
 
(c) For the m = 1 bright fringe, 
 

( )5.05 m sin1.25sin 0.787 rad .
0.440 m

a π μπ θα
λ μ

°
= = =  

 
Consequently, the intensity of the m = 1 fringe is 
 

I Im= FHG
I
KJ = F

HG
I
KJ =

sin . sin .
.

. ,α
α

2
2

2
27 0 0 787

0 787
57mW cm rad mW cmd i  
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which agrees with Fig. 36-45. Similarly for m = 2, the intensity is I = 2.9 mW/cm2, also 
in agreement with Fig. 36-45. 
 
40. (a) We note that the slope of the graph is 80, and that Eq. 36-20 implies that the slope 
should correspond to 
 

80 80(435 nm)80 11077 nm 11.1 md dπ λ μ
λ π π

= ⇒ = = = ≈ . 

 
(b) Consider Eq. 36-25 with “continuously variable” m (of course, m should be an integer 
for interference maxima, but for the moment we will solve for it as if it could be any real 
number): 

( )max max

11077 nmsin 25.5
435 nm

d dm θ
λ λ

= = = ≈  

 
which indicates (on one side of the interference pattern) there are 25 bright fringes.  Thus 
on the other side there are also 25 bright fringes.  Including the one in the middle, then, 
means there are a total of 51 maxima in the interference pattern (assuming, as the 
problem remarks, that none of the interference maxima have been eliminated by 
diffraction minima). 
 
(c) Clearly, the maximum closest to the axis is the middle fringe at θ = 0°. 
 
(d) If we set m = 25 in Eq. 36-25, we find 
 

 1 1 (25)(435 nm)sin sin sin 79.0
11077 nm

mm d
d
λλ θ θ − −⎛ ⎞ ⎛ ⎞= ⇒ = = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

   
41. We will make use of arctangents and sines in our solution, even though they can be 
“shortcut” somewhat since the angles are [almost] small enough to justify the use of the 
small angle approximation. 
 
(a) Given y/D = (0.700 m)/(4.00 m), then  
 

 1 1 0.700 mtan tan 9.93 0.173 rad
4.00 m

y
D

θ − −⎛ ⎞ ⎛ ⎞= = = ° =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
Equation 36-20 then gives 
 

( )24.0 m sin 9.93sin 21.66 rad.
0.600 m

d π μπ θβ
λ μ

°
= = =  

                                
Thus, use of Eq. 36-21 (with a = 12 µm and λ = 0.60 µm) leads to 
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( )12.0 m sin 9.93sin 10.83 rad .
0.600 m

a π μπ θα
λ μ

°
= = =  

Thus,  

( )
2 2

22sin sin10.83rad(cos ) cos 21.66 rad 0.00743
10.83m

I
I

α β
α

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 . 

          
(b) Consider Eq. 36-25 with “continuously variable” m (of course, m should be an integer 
for interference maxima, but for the moment we will solve for it as if it could be any real 
number): 

( )24.0 m sin 9.93sin 6.9
0.600 m

dm
μθ

μ
°

= = ≈
λ

 

 
which suggests that the angle takes us to a point between the sixth minimum (which 
would have m = 6.5) and the seventh maximum (which corresponds to m = 7). 
 
(c) Similarly, consider Eq. 36-3 with “continuously variable” m (of course, m should be 
an integer for diffraction minima, but for the moment we will solve for it as if it could be 
any real number): 

( )12.0 m sin 9.93sin 3.4
0.600 m

am
μθ

μ
°

= = ≈
λ

 

 
which suggests that the angle takes us to a point between the third diffraction minimum 
(m = 3) and the fourth one (m = 4).  The maxima (in the smaller peaks of the diffraction 
pattern) are not exactly midway between the minima; their location would make use of 
mathematics not covered in the prerequisites of the usual sophomore-level physics course. 
 
42. (a) In a manner similar to that discussed in Sample Problem — “Double-slit 
experiment with diffraction of each slit included,”  we find the ratio should be d/a = 4. 
Our reasoning is, briefly, as follows: we let the location of the fourth bright fringe 
coincide with the first minimum of diffraction pattern, and then set sin θ = 4λ/d = λ/a (so 
d = 4a). 
 
(b) Any bright fringe that happens to be at the same location with a diffraction minimum 
will vanish. Thus, if we let  
 

 1 2 1sin
4

m m m
d a a
λ λ λθ = = =  , 

 
or m1 = 4m2 where 2 1,2,3,m = …. The fringes missing are the 4th, 8th, 12th, and so on. 
Hence, every fourth fringe is missing. 
 
43. (a) The angular positions θ of the bright interference fringes are given by d sin θ = mλ, 
where d is the slit separation, λ is the wavelength, and m is an integer. The first 
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diffraction minimum occurs at the angle θ1 given by a sin θ1 = λ, where a is the slit width. 
The diffraction peak extends from –θ1 to +θ1, so we should count the number of values of 
m for which –θ1 < θ < +θ1, or, equivalently, the number of values of m for which – sin θ1 
< sin θ < + sin θ1. This means – 1/a < m/d < 1/a or –d/a < m < +d/a. Now  
 

d/a = (0.150 × 10–3 m)/(30.0 × 10–6 m) = 5.00, 
 
so the values of m are m = –4, –3, –2, –1, 0, +1, +2, +3, and +4. There are 9 fringes. 
 
(b) The intensity at the screen is given by 
 

I Im= F
HG
I
KJcos sin2

2

β α
α

c h  

 
where α = (πa/λ) sin θ, β = (πd/λ) sin θ, and Im is the intensity at the center of the pattern. 
For the third bright interference fringe, d sin θ = 3λ, so β = 3π rad and cos2 β = 1. 
Similarly, α = 3πa/d = 3π/5.00 = 0.600π rad and 
 

sin sin .
.

. .α
α
F
HG
I
KJ = FHG

I
KJ =

2 20 600
0 600

0 255π
π

 

 
The intensity ratio is I/Im = 0.255. 
 
Note: The expression for intensity contains two factors: (1) the interference factor 2cos β  
due to the interference between two slits with separation d, and (2) the diffraction factor 

2[(sin ) / ] ,α α  which arises due to diffraction by a single slit of width a. In the limit 
0,a →  (sin ) / 1,α α →  and we recover Eq. 35-22 for the interference between two slits 

of vanishingly narrow slits separated by d. Similarly, setting d = 0 or equivalently, β = 0, 
we recover Eq. 36-5 for the diffraction of a single slit of width a. A plot of the relative 
intensity is given below. 

 
 
44. We use Eq. 36-25 for diffraction maxima: d sin θ = mλ. In our case, since the angle 
between the m = 1 and m = –1 maxima is 26°, the angle θ corresponding to m = 1 is θ = 
26°/2 = 13°. We solve for the grating spacing: 
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( )( )1 550nm

2.4 m 2 m.
sin sin13
md μ μ

θ
λ

= = = ≈
°

 

 
45. The distance between adjacent rulings is  
 

d = 20.0 mm/6000 = 0.00333 mm = 3.33 μm. 
 
(a) Let ( )sin 0, 1, 2,d m mθ = λ = ± ± … . Since |m|λ/d > 1 for |m| ≥ 6, the largest value of θ 
corresponds to | m | = 5, which yields  
 

( )1 1 5(0.589 m)sin | | / sin 62.1
3.33 m

m d μθ
μ

− − ⎛ ⎞
= λ = = °⎜ ⎟

⎝ ⎠
. 

 
(b) The second largest value of θ corresponds to |m| = 4, which yields  
 

( )1 1 4(0.589 m)sin | | / sin 45.0
3.33 m

m d μθ
μ

− − ⎛ ⎞
= λ = = °⎜ ⎟

⎝ ⎠
. 

 
(c) The third largest value of θ corresponds to | m | = 3, which yields  
 

( )1 1 3(0.589 m)sin | | / sin 32.0
3.33 m

m d μθ
μ

− − ⎛ ⎞
= λ = = °⎜ ⎟

⎝ ⎠
. 

 
46. The angular location of the mth order diffraction maximum is given by mλ = d sin θ. 
To be able to observe the fifth-order maximum, we must let sin θ|m=5 = 5λ/d < 1, or 
 

λ < = =
d
5

100
5

635. .nm / 315 nm  

 
Therefore, the longest wavelength that can be used is λ = 635 nm.  
 
47. The ruling separation is  
 

d = 1/(400 mm–1) = 2.5 × 10–3 mm. 
 
Diffraction lines occur at angles θ such that d sin θ = mλ, where λ is the wavelength and 
m is an integer. Notice that for a given order, the line associated with a long wavelength 
is produced at a greater angle than the line associated with a shorter wavelength. We take 
λ to be the longest wavelength in the visible spectrum (700 nm) and find the greatest 
integer value of m such that θ is less than 90°. That is, find the greatest integer value of m 
for which mλ < d. Since  
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6

9

2.5 10 m 3.57
700 10 m

d −

−

×
= ≈

λ ×
, 

 
that value is m = 3. There are three complete orders on each side of the m = 0 order. The 
second and third orders overlap. 
 
48. (a) For the maximum with the greatest value of m = M we have Mλ = a sin θ < d, so 
M < d/λ = 900 nm/600 nm = 1.5, or M = 1. Thus three maxima can be seen, with m = 0, 
±1. 
 
(b) From Eq. 36-28, we obtain 
 

Δθ λ
θ

θ
θ

θ λ
hw

nm
900 nm

= = = = F
HG
I
KJ

L
NM

O
QP

=
F
HG

I
KJ

L
NM

O
QP

= °

−

−

N d
d

N d N N dcos
sin
cos

tan tan sin

tan sin . .

1

1
1000

600 0 051

1

1

 

 
49. (a) Maxima of a diffraction grating pattern occur at angles θ given by d sin θ = mλ, 
where d is the slit separation, λ is the wavelength, and m is an integer. The two lines are 
adjacent, so their order numbers differ by unity. Let m be the order number for the line 
with sin θ = 0.2 and m + 1 be the order number for the line with sin θ = 0.3. Then, 0.2d = 
mλ and 0.3d = (m + 1)λ. We subtract the first equation from the second to obtain 0.1d = λ, 
or  

d = λ/0.1 = (600 × 10–9m)/0.1 = 6.0 × 10–6 m. 
 
(b) Minima of the single-slit diffraction pattern occur at angles θ given by a sin θ = mλ, 
where a is the slit width. Since the fourth-order interference maximum is missing, it must 
fall at one of these angles. If a is the smallest slit width for which this order is missing, 
the angle must be given by a sin θ = λ. It is also given by d sin θ = 4λ, so  
 

a = d/4 = (6.0 × 10–6 m)/4 = 1.5 × 10–6 m. 
 
(c) First, we set θ = 90° and find the largest value of m for which mλ < d sin θ. This is the 
highest order that is diffracted toward the screen. The condition is the same as m < d/λ 
and since  

d/λ = (6.0 × 10–6 m)/(600 × 10–9 m) = 10.0, 
 
the highest order seen is the m = 9 order. The fourth and eighth orders are missing, so the 
observable orders are m = 0, 1, 2, 3, 5, 6, 7, and 9. Thus, the largest value of the order 
number is m = 9. 
 
(d) Using the result obtained in (c), the second largest value of the order number is m = 7. 
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(e) Similarly, the third largest value of the order number is m = 6. 
 
50. We use Eq. 36-25. For m = ±1 
 

sin (1.73 m) sin( 17.6 ) 523 nm,
1

d
m

θ μλ ± °
= = =

±
 

 
and for m = ±2, 

λ μ
=

± °
±

=
( .173

2
524m) sin( 37.3 ) nm. 

 
Similarly, we may compute the values of λ corresponding to the angles for m = ±3. The 
average value of these λ’s is 523 nm. 
 
51. (a) Since d = (1.00 mm)/180 = 0.0056 mm, we write Eq. 36-25 as 
 

1 1sin sin (180)(2)m
d

θ − −λ⎛ ⎞= = λ⎜ ⎟
⎝ ⎠

 

 
where λ1 = × −4 10 4 mm and λ2 = × −5 10 4 mm. Thus, Δθ θ θ= − = °2 1 21. . 
 
(b) Use of Eq. 36-25 for each wavelength leads to the condition 
 

m m1 1 2 2λ λ=  
 
for which the smallest possible choices are m1 = 5 and m2 = 4. Returning to Eq. 36-25, 
then, we find 

( )
4

1 1 11 1 10  mm)sin sin sin 0.36 21 .
0.0056 mm

m
d

θ
−

− − −⎛ ⎞λ 5(4.0×⎛ ⎞= = = = °⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
(c) There are no refraction angles greater than 90°, so we can solve for “mmax” (realizing 
it might not be an integer): 
 

max 4
2 2

sin 90 0.0056 mm 11
10  mm

d dm −

°
= = = ≈

λ λ 5.0×
 

 
where we have rounded down. There are no values of m (for light of wavelength λ2) 
greater than m = 11. 
 
52. We are given the “number of lines per millimeter” (which is a common way to 
express 1/d for diffraction gratings); thus, 
 

1
d  =  160 lines/mm    ⇒    d = 6.25 × 10−6 m . 
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(a) We solve Eq. 36-25 for θ with various values of m and λ.  We show here the m = 2 
and λ = 460 nm calculation: 
 

( )
9

1 1 1
6

10  m)sin sin sin 0.1472 8.46 .
6.25 10  m

m
d
λθ

−
− − −

−

⎛ ⎞2(460×⎛ ⎞= = = = °⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
 

  
Similarly, we get 11.81° for m = 2 and λ = 640 nm, 12.75° for m = 3 and λ = 460 nm, 
and 17.89° for m = 3 and λ = 640 nm.  The first indication of overlap occurs when we 
compute the angle for m = 4 and λ = 460 nm; the result is 17.12° which clearly shows 
overlap with the large-wavelength portion of the m = 3 spectrum. 
 
(b) We solve Eq. 36-25 for m with θ = 90° and λ = 640 nm.  In this case, we obtain m = 
9.8 which means that the largest order in which the full range (which must include that 
largest wavelength) is seen is ninth order. 
 
(c) Now with m = 9, Eq. 36-25 gives θ = 41.5° for λ = 460 nm. 
 
(d) It similarly gives θ = 67.2° for λ = 640 nm. 
 
(e) We solve Eq. 36-25 for m with θ = 90° and λ = 460 nm.  In this case, we obtain m = 
13.6 which means that the largest order in which the wavelength is seen is the thirteenth 
order. Now with m = 13, Eq. 36-25 gives θ = 73.1° for λ = 460 nm. 
 
53. At the point on the screen where we find the inner edge of the hole, we have tan θ = 
5.0 cm/30 cm, which gives θ = 9.46°. We note that d for the grating is equal to  
1.0 mm/350 = 1.0 × 106 nm/350.  
 
(a) From mλ = d sin θ, we find 
 

( )( )61.0 10 nm/350 0.1644sin 470nm .dm θ ×
= = =

λ λ λ
 

 
Since for white light λ > 400 nm, the only integer m allowed here is m = 1. Thus, at  
one edge of the hole, λ = 470 nm. This is the shortest wavelength of the light that passes 
through the hole. 
 
(b) At the other edge, we have tan θ ' = 6.0 cm/30 cm, which gives θ ' = 11.31°. This 
leads to 

61.0 10 nmsin sin(11.31 ) 560 nm.
350

dλ θ
⎛ ⎞×′ ′= = ° =⎜ ⎟
⎝ ⎠

 

 
This corresponds to the longest wavelength of the light that passes through the hole. 
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54. Since the slit width is much less than the wavelength of the light, the central peak of 
the single-slit diffraction pattern is spread across the screen and the diffraction envelope 
can be ignored. Consider three waves, one from each slit. Since the slits are evenly 
spaced, the phase difference for waves from the first and second slits is the same as the 
phase difference for waves from the second and third slits. The electric fields of the 
waves at the screen can be written as 
 

1 0

2 0

3 0

sin( )
sin( )
sin( 2 )

E E t
E E t
E E t

ω
ω φ
ω φ

=
= +
= +

 

  
where φ = (2πd/λ) sin θ. Here d is the separation of 
adjacent slits and λ is the wavelength. The phasor 
diagram is shown on the right. It yields 
 

E E E E= + = +0 0 0 1 2cos cos cos .φ φ φb g  
 
for the amplitude of the resultant wave. Since the intensity of a wave is proportional to 
the square of the electric field, we may write I AE= +0

2 21 2cosφb g , where A is a constant 
of proportionality. If Im is the intensity at the center of the pattern, for which φ = 0, then  
I AEm = 9 0

2.  We take A to be I Em / 9 0
2  and obtain 

 

I I Im m= + = + +
9

1 2
9

1 4 42 2cos cos cos .φ φ φb g c h  
 

55. If a grating just resolves two wavelengths whose average is λavg and whose separation 
is Δλ, then its resolving power is defined by R = λavg/Δλ. The text shows this is Nm, 
where N is the number of rulings in the grating and m is the order of the lines. Thus 
λavg/Δλ = Nm and 

( )( )
avg 3656.3nm 3.65 10 rulings.

1 0.18nm
N

m
λ

λ
= = = ×

Δ
 

 
56. (a) From R Nm= =l Dl  we find 
 

( )
( )

415.496 nm 415.487 nm 2
23100.

2 415.96 nm 415.487 nm
N

m
λ

λ
+

= = =
Δ −

 

 
(b) We note that d = (4.0 × 107 nm)/23100 = 1732 nm. The maxima are found at 
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θ = F
HG
I
KJ =

L
NM

O
QP

= °− −sin sin
.

. .1 1 2 4155
1732

28 7m
d
l b gb gnm

nm
 

 
57. (a) We note that d = (76 × 106 nm)/40000 = 1900 nm. For the first order maxima λ = 
d sin θ, which leads to 

θ = F
HG
I
KJ =

F
HG

I
KJ = °− −sin sin .1 1 589

1900
18λ

d
nm
nm

 

 
Now, substituting m = d sin θ/λ into Eq. 36-30 leads to  
 

D = tan θ/λ = tan 18°/589 nm = 5.5 × 10–4 rad/nm = 0.032°/nm. 
 
(b) For m = 1, the resolving power is R = Nm = 40000 m = 40000 = 4.0 × 104. 
 
(c) For m = 2 we have θ = 38°, and the corresponding value of dispersion is 0.076°/nm. 
 
(d) For m = 2, the resolving power is R = Nm = 40000 m = (40000)2 = 8.0 × 104. 
 
(e) Similarly for m = 3, we have θ = 68°, and the corresponding value of dispersion is 
0.24°/nm. 
 
(f) For m = 3, the resolving power is R = Nm = 40000 m = (40000)3 = 1.2 × 105. 
 
58. (a) We find Δλ from R = λ/Δλ = Nm: 
 

Δλ = = =
λ

Nm
500

5 0 3
0 056nm

600 / mm mm
nm = 56 pm.b gb gb g.

.  

 
(b) Since sin θ = mmaxλ/d < 1, 
 

m d
max /

. .< =
×

=
−λ

1
600 500 10

33
6mm mmb gc h  

 
Therefore, mmax = 3. No higher orders of maxima can be seen. 
 
59. Assuming all N = 2000 lines are uniformly illuminated, we have 
 

l
l
av

Δ
= Nm  

 
from Eq. 36-31 and Eq. 36-32. With λav = 600 nm and m = 2, we find Δλ = 0.15 nm. 
 
60. Letting R = λ/Δλ = Nm, we solve for N: 
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( )

( )
589.6nm 589.0nm / 2

491.
2 589.6nm 589.0nm

N
m

λ
λ

+
= = =

Δ −
 

 
61. (a) From d sin θ = mλ we find 
 

d
m

= =
°

= ×
λavg

sin
nm

nm = 10 m.
θ

μ
3 589 3

10
10 104.

sin
.b g  

 
(b) The total width of the ruling is 
 

L Nd R
m

d
d

m
= = FHG

I
KJ = =

−
= ×

λavg nm m
nm nm

m = 3.3 mm.
Δλ

589 3 10
3 589 59 589 00

33 103.
. .

.b gb g
b g

μ
μ  

 
62. (a) From the expression for the half-width Δθ hw (given by Eq. 36-28) and that for the 
resolving power R (given by Eq. 36-32), we find the product of Δθ hw and R to be 
 

Δθ
θ θ

θ
θ

θhw R
N d

Nm m
d

d
d

=
F
HG

I
KJ = = =

λ λ
cos cos

sin
cos

tan ,  

 
where we used mλ = d sin θ (see Eq. 36-25). 
 
(b) For first order m = 1, so the corresponding angle θ1 satisfies d sin θ1 = mλ = λ. Thus 
the product in question is given by 
 

( ) ( )

( )

1 1
1 2 2 2

1 1 1

2

sin sin 1 1tan
cos 1 sin 1/ sin 1 / 1

1 0.89.
900nm/600nm 1

d

θ θθ
θ θ θ

= = = =
− − λ −

= =
−

 

 
63. The angular positions of the first-order diffraction lines are given by d sin θ = λ. Let 
λ1 be the shorter wavelength (430 nm) and θ be the angular position of the line associated 
with it. Let λ2 be the longer wavelength (680 nm), and let θ + Δθ be the angular position 
of the line associated with it. Here Δθ = 20°. Then,  
 

 1 2sin , sin( )d dλ θ λ θ θ= = + Δ . 
We write  

sin (θ + Δθ) as sin θ cos Δθ + cos θ sin Δθ, 
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then use the equation for the first line to replace sin θ with λ1/d, and cos θ with 
1 1

2 2− λ d .  After multiplying by d, we obtain 
 

λ θ λ θ λ1
2

1
2

2cos sin .Δ Δ+ − =d  
 
Solving for d, we find 
 

d =
− +

=
− ° + °

°
= = × −

λ λ θ λ θ
θ

2 1
2

1
2

2

2 2

2

4

680 430 20 430 20
20

914 914 10

cos sin
sin

cos sin
sin

.

Δ Δ
Δ

b g b g

b g b g b g nm  nm  nm

 nm mm.

 

 
There are 1/d = 1/(9.14 × 10–4 mm) = 1.09 × 103 rulings per mm. 
 
64. We use Eq. 36-34. For smallest value of θ, we let m = 1. Thus, 
 

θ min sin
pm

pm
= F
HG
I
KJ =

×

L
N
MM

O
Q
PP = °− −1 1

3

1 30
2 0 30 10

2 9m
d
l

2
sin

.
. .b gb g

c h  

 
65. (a) For the first beam 2d sin θ1 = λA and for the second one 2d sin θ2 = 3λB. The 
values of d and λA can then be determined: 
 

d B= =
°

= ×
3

2
3 97
2 60

17 10
2

2l
sin sin

.
θ

pm
pm.b g  

 
(b) ( )( )2 2

12 sin 2 1.7 10 pm sin 23 1.3 10 pm.A dλ θ= = × ° = ×  
 
66. The x-ray wavelength is λ = 2d sin θ = 2(39.8 pm) sin 30.0° = 39.8 pm. 
 
67. We use Eq. 36-34.  
 
(a) From the peak on the left at angle 0.75° (estimated from Fig. 36-46), we have 
 

( ) ( )1 12 sin 2 0.94 nm sin 0.75 0.025nm 25 pm.dλ θ= = ° = =  
 
This is the shorter wavelength of the beam. Notice that the estimation should be viewed 
as reliable to within ±2 pm.  
 
(b) We now consider the next peak: 
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l2 = = ° = =2 2 0 94 115 0 038 382d sin . sin . .θ  nm nm pm.b g  

 
This is the longer wavelength of the beam. One can check that the third peak from the left 
is the second-order one for λ1. 
 
68. For x-ray (“Bragg”) scattering, we have 2d sin θm = m λ.  This leads to 
 

2d sin θ2

 2d sin θ1
   = 

2 λ
1 λ      ⇒      sin θ2 = 2 sin θ1 . 

 
Thus, with θ1= 3.4°, this yields θ2 = 6.8°.  The fact that θ2 is very nearly twice the value 
of θ1 is due to the small angles involved (when angles are small, sin θ2 / sin θ1  = θ2/θ1). 
 
69. Bragg’s law gives the condition for diffraction maximum: 
 

2d msinθ = l  
 
where d is the spacing of the crystal planes and λ is the wavelength. The angle θ is 
measured from the surfaces of the planes. For a second-order reflection m = 2, so 
 

( )9
10

2 0.12 10 m
2.56 10 m 0.26nm.

2sin 2sin 28
md λ

θ

−
−

×
= = = × ≈

°
 

 
70. The angle of incidence on the reflection planes is θ = 63.8° – 45.0° = 18.8°, and the 
plane-plane separation is d a= 0 2 .  Thus, using 2d sin θ = λ, we get 
 

a d0 2 2 0 260
2 18 8

0 570= = =
°

=
l

2 sin
.
sin .

.
θ

nm nm. 

 
71. We want the reflections to obey the Bragg condition 2d sin θ = mλ, where θ is the 
angle between the incoming rays and the reflecting planes, λ is the wavelength, and m is 
an integer. We solve for θ: 
 

θ = F
HG
I
KJ =

×

×

F
HG

I
KJ

=− −
−

−
sin sin

.

.
. .1 1

9

9

0125 10

2 0 252 10
0 2480m

d
m

ml
2

m

m
c h
c h  

 
(a) For m = 2 the above equation gives θ = 29.7°. The crystal should be turned 

45 29.7 15.3φ = ° − ° = °  clockwise.  
 
(b) For m = 1 the above equation gives θ = 14.4°. The crystal should be turned 

45 14.4 30.6φ = ° − ° = °  clockwise.  
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(c) For m = 3 the above equation gives θ = 48.1°. The crystal should be turned 

48.1 45 3.1φ = ° − ° = °  counterclockwise.  
 
(d) For m = 4 the above equation gives θ = 82.8°. The crystal should be turned 

82.8 45 37.8φ = ° − ° = °  counterclockwise.  
 
Note that there are no intensity maxima for m > 4, as one can verify by noting that mλ/2d 
is greater than 1 for m greater than 4. 
 
72. The wavelengths satisfy  
 

mλ = 2d sin θ = 2(275 pm)(sin 45°) = 389 pm. 
 
In the range of wavelengths given, the allowed values of m are m = 3, 4. 
 
(a) The longest wavelength is 389 pm/3 = 130 pm. 
 
(b) The associated order number is m = 3. 
 
(c) The shortest wavelength is 389 pm/4 = 97.2 pm. 
 
(d) The associated order number is m = 4. 
 
73. The sets of planes with the next five smaller interplanar spacings (after a0) are shown 
in the diagram that follows. 
 

 
 
(a) In terms of a0, the second largest interplanar spacing is 0 02 0.7071a a= . 
 
(b) The third largest interplanar spacing is 0 05 0.4472a a= . 
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(c) The fourth largest interplanar spacing is 0 010 0.3162a a= . 
 
(d) The fifth largest interplanar spacing is 0 013 0.2774a a= . 
 
(e) The sixth largest interplanar spacing is 0 017 0.2425a a= . 
 
(f) Since a crystal plane passes through lattice points, its slope can be written as the ratio 
of two integers. Consider a set of planes with slope m/n, as shown in the diagram that 
follows. The first and last planes shown pass through adjacent lattice points along a 
horizontal line and there are m – 1 planes between. If h is the separation of the first and 
last planes, then the interplanar spacing is d = h/m. If the planes make the angle θ with 
the horizontal, then the normal to the planes (shown dashed) makes the angle φ = 90° – θ. 
The distance h is given by h = a0 cos φ and the interplanar spacing is d = h/m = (a0/m) 
cos φ. Since tan θ = m/n, tan φ = n/m and   
 

cos tan .φ φ= + = +1 1 2 2 2m n m  
Thus, 

d h
m

a
m

a
n m

= = =
+

0 0
2 2

cos .φ  

 

 
 
74. (a) We use Eq. 36-14: 

( )( )6
4

R

1.22 540 10 mm
1.22 1.3 10 rad .

5.0mmd
θ

−
−

×λ
= = = ×  

 
(b) The linear separation is D = LθR = (160 × 103 m) (1.3 × 10–4 rad) = 21 m. 
 
75. Letting d sin θ = mλ, we solve for λ: 
 

λ =
d

m m m
sin ( .θ

=
°

=
10 2500mm / 200)(sin30 ) nm  
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where 1, 2, 3 .m = …  In the visible light range m can assume the following values: m1 = 4, 
m2 = 5 and m3 = 6.  
 
(a) The longest wavelength corresponds to m1 = 4 with λ1 = 2500 nm/4 = 625 nm. 
 
(b) The second longest wavelength corresponds to m2 = 5 with λ2 = 2500 nm/5 = 500 nm. 
 
(c) The third longest wavelength corresponds to m3 = 6 with λ3 = 2500 nm/6 = 416 nm. 
 
76. We combine Eq. 36-31 (R = λavg /Δλ) with Eq. 36-32 (R = Nm) and solve for N: 
 

N = 
λavg

m Δλ  =  
590.2 nm

2 (0.061 nm)  = 4.84 × 103 . 

 
77. As a slit is narrowed, the pattern spreads outward, so the question about “minimum 
width” suggests that we are looking at the lowest possible values of m (the label for the 
minimum produced by light λ = 600 nm) and m' (the label for the minimum produced by 
light λ' = 500 nm). Since the angles are the same, then Eq. 36-3 leads to 
 

m mλ λ′ ′=  
 
which leads to the choices m = 5 and m' = 6. We find the slit width from Eq. 36-3: 
 

9
3

9

5(600 10 m) 3.00 10  m
sin sin(1.00 10 rad)
ma

θ

−
−

−

λ ×
= = = ×

×
. 

 
The intensities of the diffraction are shown below (solid line for orange light, and dashed 
line for blue-green light). The angle θ = 0.001 rad corresponds to m = 5 for the orange 
light, but 6m′ =  for the blue-green light. 
 

 
 
78. The central diffraction envelope spans the range –θ1 < θ < + θ1 where 

1
1 sin ( / ).aθ λ−=  The maxima in the double-slit pattern are located at 
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θ m
m
d

= −sin ,1 l  

so that our range specification becomes 
 

  1 1 1sin sin sin ,m
a d a
λ λ λ− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞− < < +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
which we change (since sine is a monotonically increasing function in the fourth and first 
quadrants, where all these angles lie) to 
 

− < < +
l l l
a

m
d a

.  

 
Rewriting this as –d/a < m < +d/a, we find –6 < m < +6, or, since m is an integer, –5 ≤ m 
≤ +5. Thus, we find eleven values of m that satisfy this requirement. 
 
79. (a) Since the resolving power of a grating is given by R = λ/Δλ and by Nm, the range 
of wavelengths that can just be resolved in order m is Δλ = λ/Nm. Here N is the number 
of rulings in the grating and λ is the average wavelength. The frequency f is related to the 
wavelength by f λ = c, where c is the speed of light. This means f Δλ + λΔf = 0, so 
 

Δλ Δ Δ= − = −
λ λ
f

f
c

f
2

 

 
where f = c/λ is used. The negative sign means that an increase in frequency corresponds 
to a decrease in wavelength. We may interpret Δf as the range of frequencies that can be 
resolved and take it to be positive. Then, 
 

λ λ2

c
f

Nm
Δ =  

and 

Δf c
Nm

=
λ

.  

 
(b) The difference in travel time for waves traveling along the two extreme rays is Δt = 
ΔL/c, where ΔL is the difference in path length. The waves originate at slits that are 
separated by (N – 1)d, where d is the slit separation and N is the number of slits, so the 
path difference is ΔL = (N – 1)d sin θ and the time difference is 
 

Δt
N d

c
=

−1b g sin
.

θ
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If N is large, this may be approximated by Δt = (Nd/c) sin θ. The lens does not affect the 
travel time. 
 
(c) Substituting the expressions we derived for Δt and Δf, we obtain 
 

Δ Δf t c
Nm

N d
c

d
m

= FHG
I
KJ
F
HG

I
KJ = =

λ λ
sin sin .θ θ 1  

 
The condition d sin θ = mλ for a diffraction line is used to obtain the last result. 
 
80. Eq. 36-14 gives the Rayleigh angle (in radians):  
 

1.22
R

D
d L

λθ = =  
 
where the rationale behind the second equality is given in Sample Problem — 
“Pointillistic paintings use the diffraction of your eye.”  We are asked to solve for D and 
are given λ = 500 × 10−9 m, d = 5.00 × 10−3 m, and L = 0.250 m.  Consequently, D = 3.05 
×10−5 m. 
 
81. Consider two of the rays shown in Fig. 36-49, one just above the other. The extra 
distance traveled by the lower one may be found by drawing perpendiculars from where 
the top ray changes direction (point P) to the incident and diffracted paths of the lower 
one. Where these perpendiculars intersect the lower ray’s paths are here referred to as 
points A and C. Where the bottom ray changes direction is point B. We note that angle 
∠ APB is the same as ψ, and angle BPC is the same as θ (see Fig. 36-49). The difference 
in path lengths between the two adjacent light rays is  
 

Δx = |AB| + |BC| = d sin ψ + d sin θ. 
 
The condition for bright fringes to occur is therefore 
 

Δx d m= + =(sin sin )ψ θ λ  
 
where m = 0, 1, 2, …. If we set ψ = 0 then this reduces to Eq. 36-25. 
 
82. The angular deviation of a diffracted ray (the angle between the forward extrapolation 
of the incident ray and its diffracted ray) is 'ψ ψ θ= + . For m = 1, this becomes 
 

1' sin sin
d

ψ ψ θ ψ ψ− λ⎛ ⎞= + = + −⎜ ⎟
⎝ ⎠

 

 
where the ratio λ/d = 0.40 using the values given in the problem statement. The graph of 
this is shown next (with radians used along both axes). 
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83. (a)  The central diffraction envelope spans the range –θ1 < θ < +θ1 where 
1

1 sin ( / )aθ λ−=  which could be further simplified if the small-angle approximation were 
justified (which it is not, since a is so small).  The maxima in the double-slit pattern are at 
 

θ m
m
d

= −sin ,1 l  

so that our range specification becomes 
 

1 1 1sin sin sin ,m
a d a

− − −λ λ λ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− < < +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
which we change (since sine is a monotonically increasing function in the fourth and first 
quadrants, where all these angles lie) to 
 

.m
a d a
λ λ λ

− < < +  

 
Rewriting this as –d/a < m < +d/a we arrive at the result –7 < m < +7, which implies 
(since m must be an integer) –6 < m < +6, which amounts to 13 distinct values for m.  
Thus, thirteen maxima are within the central envelope. 
 
(b) The range (within one of the first-order envelopes) is now 
 

1 1 1sin sin sin ,m
a d a

− − −λ λ 2λ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− < < +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
which leads to d/a < m < 2d/a or 7 < m < 14.  Since m is an integer, this means 8 < m < 
13, which includes 6 distinct values for m in that one envelope.  If we were to include the 
total from both first-order envelopes, the result would be twelve, but the wording of the 
problem implies six should be the answer (just one envelope). 
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The intensity of the double-slit interference experiment is plotted next. The central 
diffraction envelope contains 13 maxima, and the first-order envelope has 6 on each side 
(excluding the very small peak corresponding to m = 7).  
 

  
 
84. The central diffraction envelope spans the range − < < +θ θ θ1 1  where 

1
1 sin ( / ).aθ λ−=  The maxima in the double-slit pattern are at 

 

θ m
m
d

= −sin ,1 l  

so that our range specification becomes 
 

1 1 1sin sin sin ,m
a d a
λ λ λ− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞− < < +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
which we change (since sine is a monotonically increasing function in the fourth and first 
quadrants, where all these angles lie) to 
 

.m
a d a
λ λ λ

− < < +  

 
Rewriting this as − < < +d a m d a/ /  we arrive at the result m d a mmax max/< ≤ +1. Due to 
the symmetry of the pattern, the multiplicity of the m values is 2mmax + 1 = 17 so that 
mmax = 8, and the result becomes 

8 9< ≤
d
a

 

 
where these numbers are as accurate as the experiment allows (that is, “9” means “9.000” 
if our measurements are that good). 
 
85. We see that the total number of lines on the grating is (1.8 cm)(1400/cm) = 2520 = N.  
Combining Eq. 36-31 and Eq. 36-32, we find 
 

Δλ = 
λavg
Nm  = 

450 nm
(2520)(3) = 0.0595 nm = 59.5 pm. 
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86. Use of Eq. 36-21 leads to D = 
1.22λL

d   =  6.1 mm. 

 
87. Following the method of Sample Problem — “Pointillistic paintings use the 
diffraction of your eye,” we have 

1.22λ
d   =  

D
L   

 
where λ = 550 × 10−9 m, D = 0.60 m, and d = 0.0055 m.  Thus we get L = 4.9 × 103 m. 
 

88. We use Eq. 36-3 for m  = 2:  2sin 3.3
sin sin 37

a mm aλ θ
λ θ

= ⇒ = = =
°

 . 

 
89. We solve Eq. 36-25 for d: 
 

9
6 42(600 10  m) 2.203 10  m 2.203 10  cm

sin sin 33
md λ

θ

−
− −×

= = = × = ×
°

 

   
which is typically expressed in reciprocal form as the “number of lines per centimeter” 
(or per millimeter, or per inch): 

1
d  = 4539 lines/cm . 

 
The full width is 3.00 cm, so the number of lines is (4539 /cm)(3.00 cm) = 1.36 × 104. 
 
90. Although the angles in this problem are not particularly big (so that the small angle 
approximation could be used with little error), we show the solution appropriate for large 
as well as small angles (that is, we do not use the small angle approximation here).  
Equation 36-3 gives 
 
      mλ =  a sinθ    ⇒   θ  = sin–1(mλ/a) = sin–1[2(0.42 µm)/(5.1 µm)] = 9.48°. 
 
The geometry of Figure 35-10(a) is a useful reference (even though it shows a double slit 
instead of the single slit that we are concerned with here).  We see in that figure the 
relation between y, D, and θ: 
 

y = D tan θ  = (3.2 m) tan(9.48°) = 0.534 m . 
 
91. The problem specifies d = 12/8900 using the mm unit, and we note there are no 
refraction angles greater than 90°.  We convert λ = 500 nm to 5 × 10−4 mm and solve Eq. 
36-25 for "mmax" (realizing it might not be an integer): 
 

mmax =  
d sin 90°

λ  = 4

12
(8900)(5 10 )−×

  ≈  2 
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where we have rounded down.  There are no values of m (for light of wavelength λ) 
greater than m = 2. 
 
92. We denote the Earth-Moon separation as L. The energy of the beam of light that is 
projected onto the Moon is concentrated in a circular spot of diameter d1, where d1/L = 
2θR = 2(1.22λ/d0), with d0 the diameter of the mirror on Earth. The fraction of energy 
picked up by the reflector of diameter d2 on the Moon is then η' = (d2/d1)2. This reflected 
light, upon reaching the Earth, has a circular cross section of diameter d3 satisfying  
 

d3/L = 2θR = 2(1.22λ/d2). 
 
The fraction of the reflected energy that is picked up by the telescope is then η'' = (d0/d3)2. 
Consequently, the fraction of the original energy picked up by the detector is 
 

( )( )

( )( )
( )( )

22 42

0 0 2 0 22

3 1 0 2

4

13
6 8

2.44 2.44 2.44

2.6m 0.10m
4 10 .

2.44 0.69 10 m 3.82 10 m

em em em

d d d d dd
d d d d d d d

η η η

−
−

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
′ ′′= = = =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ λ λ λ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤
⎢ ⎥= ≈ ×

× ×⎢ ⎥⎣ ⎦

 

 
93. Since we are considering the diameter of the central diffraction maximum, then we 
are working with twice the Rayleigh angle. Using notation similar to that in Sample 
Problem — “Pointillistic paintings use the diffraction of your eye,” we have 2(1.22λ/d) = 
D/L. Therefore, 

d L
D

= =
× ×

=
−

2 122 2
122 500 10 354 10

91
0 047

9 5. . .
.

. .λ b gc hc hm m
m

m  

 
94. Letting d sin θ = (L/N) sin θ = mλ, we get 
 

λ =
(L N

m
/ ) sin ( .

( )( )
θ

=
× °

=
10 10

1 10000
500

7 nm)(sin 30 ) nm .  

 
95. We imagine dividing the original slit into N strips and represent the light from each 
strip, when it reaches the screen, by a phasor. Then, at the central maximum in the 
diffraction pattern, we would add the N phasors, all in the same direction and each with 
the same amplitude. We would find that the intensity there is proportional to N2. If we 
double the slit width, we need 2N phasors if they are each to have the amplitude of the 
phasors we used for the narrow slit. The intensity at the central maximum is proportional 
to (2N)2 and is, therefore, four times the intensity for the narrow slit. The energy reaching 
the screen per unit time, however, is only twice the energy reaching it per unit time when 
the narrow slit is in place. The energy is simply redistributed. For example, the central 
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peak is now half as wide, and the integral of the intensity over the peak is only twice the 
analogous integral for the narrow slit. 
 
96. The condition for a minimum in a single-slit diffraction pattern is given by Eq. 36-3, 
which we solve for the wavelength: 
 

4sin (0.022 mm)sin 1.8 6.91 10 mm 691 nm .
1

a
m

θ −°
λ = = = × =  

 
97. Equation 36-14 gives the Rayleigh angle (in radians):  
 

 R
1.22 D

d L
λθ = =  

 
where the rationale behind the second equality is given in Sample Problem — 
“Pointillistic paintings use the diffraction of your eye.”  We are asked to solve for d and 
are given λ = 550 × 10−9 m, D = 30 × 10−2 m, and L = 160 × 103 m. Consequently, we 
obtain d = 0.358 m 36 cm≈ . 
 
98. Following Sample Problem — “Pointillistic paintings use the diffraction of your eye,” 

we use Eq. 36-17 and obtain L Dd
= =

122
164

. λ
m .  

 
99. (a) Use of Eq. 36-25 for the limit-wavelengths (λ1 = 700 nm and λ2 = 550 nm) leads 
to the condition 

m m1 2l l1 2≥  
 
for m1 + 1 = m2 (the low end of a high-order spectrum is what is overlapping with the 
high end of the next-lower-order spectrum). Assuming equality in the above equation, we 
can solve for “m1” (realizing it might not be an integer) and obtain m1 ≈ 4 where we have 
rounded up. It is the fourth-order spectrum that is the lowest-order spectrum to overlap 
with the next higher spectrum. 
 
(b) The problem specifies d = (1/200) mm, and we note there are no refraction angles 
greater than 90°. We concentrate on the largest wavelength λ = 700 nm = 7 × 10–4 mm 
and solve Eq. 36-25 for “mmax” (realizing it might not be an integer): 
 

max 4

sin 90 (1/ 200) mm 7
7 10  mm

dm
λ −

°
= = ≈

×
 

 
where we have rounded down. There are no values of m (for the appearance of the full 
spectrum) greater than m = 7. 
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Chapter 37 
 
 
1. From the time dilation equation Δt = γΔt0 (where Δt0 is the proper time interval, 
γ β= −1 1 2/ ,  and β = v/c), we obtain 
 

β = − FHG
I
KJ1 0

2Δ
Δ
t
t

.  

 
The proper time interval is measured by a clock at rest relative to the muon. Specifically, 
Δt0 = 2.2000 μs. We are also told that Earth observers (measuring the decays of moving 
muons) find Δt = 16.000 μs. Therefore, 
 

2
2.2000 s1 0.99050.
16.000 s

μβ
μ

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 

 
2. (a) We find β from γ β= −1 1 2/ :  
 

( )22

1 11 1 0.14037076.
1.0100000

β
γ

= − = − =  

 

(b) Similarly, ( ) 21 10.000000 0.99498744.β −= − =  
 

(c) In this case,  ( ) 21 100.00000 0.99995000.β −= − =  
 

(d) The result is ( ) 21 1000.0000 0.99999950.β −= − =   
 
3. (a) The round-trip (discounting the time needed to “turn around”) should be one year 
according to the clock you are carrying (this is your proper time interval Δt0) and 1000 
years according to the clocks on Earth, which measure Δt. We solve Eq. 37-7 for β: 
 

22
0 1y1 1 0.99999950.

1000y
t
t

β
⎛ ⎞Δ⎛ ⎞= − = − =⎜ ⎟⎜ ⎟Δ⎝ ⎠ ⎝ ⎠
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(b) The equations do not show a dependence on acceleration (or on the direction of the 
velocity vector), which suggests that a circular journey (with its constant magnitude 
centripetal acceleration) would give the same result (if the speed is the same) as the one 
described in the problem. A more careful argument can be given to support this, but it 
should be admitted that this is a fairly subtle question that has occasionally precipitated 
debates among professional physicists. 
 
4. Due to the time-dilation effect, the time between initial and final ages for the daughter 
is longer than the four years experienced by her father: 
 

tf daughter – ti daughter  =   γ(4.000 y) 
 

where γ is the Lorentz factor (Eq. 37-8).  Letting T denote the age of the father, then the 
conditions of the problem require 
 

Ti  =  ti daughter +  20.00 y ,  Tf  =  tf daughter – 20.00 y  . 
 

Since Tf  − Ti  = 4.000 y, then these three equations combine to give a single condition 
from which γ can be determined (and consequently v): 
 

44 = 4γ    ⇒      γ  = 11     ⇒     β = 2 30
11  = 0.9959. 

 
5. In the laboratory, it travels a distance d = 0.00105 m = vt, where v = 0.992c and t is the 
time measured on the laboratory clocks. We can use Eq. 37-7 to relate t to the proper 
lifetime of the particle t0: 
 

( )

2
20

02
    1 1 0.992

0.9921 /

t v dt t t
c cv c

⎛ ⎞= ⇒ = − = −⎜ ⎟
⎝ ⎠−

 

 
which yields t0 = 4.46 × 10–13 s = 0.446 ps. 
 
6. From the value of Δt in the graph when β = 0, we infer than Δto in Eq. 37-9 is 8.0 s.  
Thus, that equation (which describes the curve in Fig. 37-22) becomes 
 

0
2 2

8.0 s
1 ( / ) 1

tt
v c β

Δ
Δ = =

− −
. 

 
If we set β = 0.98 in this expression, we obtain approximately 40 s for Δt. 
 
7. We solve the time dilation equation for the time elapsed (as measured by Earth 
observers): 

Δ
Δt t

=
−

0
21 0 9990( . )
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where Δt0 = 120 y. This yields Δt = 2684 y 32.68 10  y.≈ ×  
 
8. The contracted length of the tube would be 
 

( )2 2
0 1 3.00 m 1 (0.999987) 0.0153m.L L β= − = − =  

 
9. (a) The rest length L0 = 130 m of the spaceship and its length L as measured by the 
timing station are related by Eq. 37-13. Therefore,  
 

( ) ( )22
0 1 ( / ) 130 m 1 0.740 87.4 m.L L v c= − = − =  

 
(b) The time interval for the passage of the spaceship is 
 

Δt L
v

= =
×

= × −87 4
300 10

394 10
8

7.
.

.m
0.740 m / s

s.b gc h  

 
10. Only the “component” of the length in the x direction contracts, so its y component 
stays 

sin 30 (1.0 m)(0.50) 0.50my y′ = = ° = =  
 
while its x component becomes 
 

2 21 (1.0 m)(cos30 ) 1 (0.90) 0.38m.x x β′ = − = ° − =  
 
Therefore, using the Pythagorean theorem, the length measured from S' is 
 

( ) ( )22 2 2(0.38 m) (0.50 m) 0.63m.x y′ ′ ′= + = + =  

 
11. The length L of the rod, as measured in a frame in which it is moving with speed v 
parallel to its length, is related to its rest length L0 by L = L0/γ, where γ β= −1 1 2/  and 
β = v/c. Since γ must be greater than 1, L is less than L0. For this problem, L0 = 1.70 m 
and β = 0.630, so  

( ) ( )22
0 1 1.70 m 1 0.630 1.32 m.L L β= − = − =  

 
12. (a) We solve Eq. 37-13 for v and then plug in: 
 

2 2

0

11 1 0.866.
2

L
L

β
⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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 (b) The Lorentz factor in this case is 
( )2

1 2.00
1 /v c

γ = =
−

. 

 
13. (a) The speed of the traveler is v = 0.99c, which may be equivalently expressed as 
0.99 ly/y. Let d be the distance traveled. Then, the time for the trip as measured in the 
frame of Earth is  

Δt = d/v = (26 ly)/(0.99 ly/y) = 26.26 y. 
 
(b) The signal, presumed to be a radio wave, travels with speed c and so takes 26.0 y to 
reach Earth. The total time elapsed, in the frame of Earth, is  
 

26.26 y + 26.0 y = 52.26 y . 
 
(c) The proper time interval is measured by a clock in the spaceship, so Δt0 = Δt/γ. Now  
 

2 2

1 1 7.09.
1 1 (0.99)

γ
β

= = =
− −

 

 
Thus, Δt0 = (26.26 y)/(7.09) = 3.705 y. 
 
14. From the value of L in the graph when β = 0, we infer that L0 in Eq. 37-13 is 0.80 m.  
Thus, that equation (which describes the curve in Fig. 37-23) with SI units understood 
becomes 
 ( )2 2

0 1 ( / ) 0.80 m 1L L v c β= − = − . 
 
If we set β = 0.95 in this expression, we obtain approximately 0.25 m for L. 
 
15. (a) Let d = 23000 ly = 23000 c y, which would give the distance in meters if we 
included a conversion factor for years →  seconds. With Δt0 = 30 y and Δt = d/v (see Eq. 
37-10), we wish to solve for v from Eq. 37-7. Our first step is as follows: 
 

0
2 2

23000 y 30 y   ,
1 1

tdt
v ββ β

Δ
Δ = = ⇒ =

− −
 

 
at which point we can cancel the unit year and manipulate the equation to solve for the 
speed parameter β. This yields 
 

( )2

1 0.99999915.
1 30 / 23000

β = =
+
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(b) The Lorentz factor is 21/ 1 766.6680752γ β= − = . Thus, the length of the galaxy 
measured in the traveler’s frame is  
 

0 23000 ly 29.99999 ly 30 ly.
766.6680752

LL
γ

= = = ≈  

 
16. The “coincidence” of x = x' = 0 at t = t' = 0 is important for Eq. 37-21 to apply 
without additional terms. In part (a), we apply these equations directly with  
 

v = +0.400c = 1.199 × 108 m/s, 
 
and in part (c) we simply change v v→ −  and recalculate the primed values. 
 
(a) The position coordinate measured in the S' frame is 
 

( ) ( )( )
( )

8 8
5

2 2

3.00 10 m 1.199 10 m/s 2.50s
2.7 10 m 0,

1 1 0.400

x vtx x vtγ
β

× − ×−′ = − = = = × ≈
− −

 

 
where we conclude that the numerical result (2.7 × 105 m or 2.3 × 105 m depending on 
how precise a value of v is used) is not meaningful (in the significant figures sense) and 
should be set equal to zero (that is, it is “consistent with zero” in view of the statistical 
uncertainties involved).  
 
(b) The time coordinate measured in the S' frame is 
 

( )( )
( )

8 8

2 2 2

2.50s 0.400 3.00 10 m / 2.998 10 m/s/ 2.29s.
1 1 0.400

vx t x ct t
c

βγ
β

− × ×−⎛ ⎞′ = − = = =⎜ ⎟
⎝ ⎠ − −

 

 
(c) Now, we obtain 
 

( )( )
( )

8 8
8

2 2

3.00 10 m 1.199 10 m/s 2.50 s
6.54 10 m.

1 1 0.400

x vtx
β

× + ×+′ = = = ×
− −

 

 
(d) Similarly,  
 

( )( )
( )

8 8

2 2

2.50s 0.400 3.00 10 m / 2.998 10 m/s
3.16s.

1 0.400

vxt t
c

γ
+ × ×⎛ ⎞′ = + = =⎜ ⎟

⎝ ⎠ −
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17. The proper time is not measured by clocks in either frame S or frame S' since a single 
clock at rest in either frame cannot be present at the origin and at the event. The full 
Lorentz transformation must be used: 
 

( ) and ( / )x x vt t t x cγ γ β′ ′= − = −  
 
where β = v/c = 0.950 and 

2 2

1 1 3.20256
1 1 (0.950)

γ
β

= = =
− −

. 

Thus, 
3 8 6

5

( ) (3.20256) 100 10 m (0.950)(2.998 10 m/s)(200 10 s)

1.38 10 m 138 km.

x x vtγ −′ ⎡ ⎤= − = × − × ×⎣ ⎦
= × =

 

 
(b) The temporal coordinate in S’ is  
 

3
6

8

4

(0.950)(100 10 m)( / ) (3.20256) 200 10 s
2.998 10 m/s

3.74 10 s 374 s .

t t x cγ β

μ

−

−

⎡ ⎤×′ = − = × −⎢ ⎥×⎣ ⎦
= − × = −

 

 
18. The “coincidence” of x = x' = 0 at t = t' = 0 is important for Eq. 37-21 to apply 
without additional terms. We label the event coordinates with subscripts: (x1, t1) = (0, 0) 
and (x2, t2) = (3000 m, 4.0 × 10–6 s).   
 
(a) We expect (x'1, t'1) = (0, 0), and this may be verified using Eq. 37-21.  
 
(b) We now compute (x'2, t'2), assuming v = +0.60c = +1.799 × 108 m/s (the sign of v is 
not made clear in the problem statement, but the figure referred to, Fig. 37-9, shows the 
motion in the positive x direction). 
 

8 6
3

2 2 2

6 8
6

2 2 2

3000 m (1.799 10 m/s)(4.0 10 s) 2.85 10  m
1 1 (0.60)

4.0 10 s (0.60)(3000 m) /(2.998 10 m/s) 2.5 10 s
1 1 (0.60)

x vtx

t x ct

β

β
β

−

−
−

− − × ×′ = = = ×
− −

− × − ×′ = = = − ×
− −

 

 
(c) The two events in frame S occur in the order: first 1, then 2. However, in frame S' 
where 2 0t′ < , they occur in the reverse order: first 2, then 1. So the two observers see the 
two events in the reverse sequence. 
 
We note that the distances x2 – x1 and 2 1x x′ ′−  are larger than how far light can travel 
during the respective times 2 1 2 1( ( ) 1.2 km and | | 750m)c t t c t t′ ′− = − ≈ , so that no 
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inconsistencies arise as a result of the order reversal (that is, no signal from event 1 could 
arrive at event 2 or vice versa). 
 
19. (a) We take the flashbulbs to be at rest in frame S, and let frame S' be the rest frame of 
the second observer. Clocks in neither frame measure the proper time interval between 
the flashes, so the full Lorentz transformation (Eq. 37-21) must be used. Let ts be the time 
and xs be the coordinate of the small flash, as measured in frame S. Then, the time of the 
small flash, as measured in frame S', is 
 

s
s s

xt t
c

β⎛ ⎞′ = γ −⎜ ⎟
⎝ ⎠

 

where β = v/c = 0.250 and  
 

γ = − = − =1 1 1 1 0 250 103282 2/ / ( . ) .β . 
 
Similarly, let tb be the time and xb be the coordinate of the big flash, as measured in frame 
S. Then, the time of the big flash, as measured in frame S', is 
 

.b
b b

xt t
c

β⎛ ⎞′ = γ −⎜ ⎟
⎝ ⎠

 

 
Subtracting the second Lorentz transformation equation from the first and recognizing 
that ts = tb (since the flashes are simultaneous in S), we find 
 

3
5

8

( ) (1.0328)(0.250)(30 10 m)' 2.58 10 s
3.00 10 m/s

s bx xt
c

γβ −− ×
Δ = = = ×

×
 

where ' ' 'b st t tΔ = − . 
 
(b) Since Δt' is negative, tb' is greater than ts' . The small flash occurs first in S'. 
 
20. From Eq. 2 in Table 37-2, we have  
 

Δt = v γ Δx′/c² + γ Δt′. 
 
The coefficient of Δx′ is the slope (4.0 µs/400 m) of the graph, and the last term 
involving Δt′ is the “y-intercept” of the graph.  From the first observation, we can solve 
for β = v/c = 0.949 and consequently γ = 3.16. Then, from the second observation, we 
find   

6
72.00 10 s' 6.3 10 s .

3.16
tt

γ

−
−Δ ×

Δ = = = ×  

 
21. (a)  Using Eq. 2′ of Table 37-2, we have 
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6
2 8

(400 m)1.00 10 s
2.998 10 m/s

v x xt t t
c c

β βγ γ γ −⎛ ⎞Δ Δ⎛ ⎞ ⎛ ⎞′Δ = Δ − = Δ − = × −⎜ ⎟⎜ ⎟ ⎜ ⎟ ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
 
where the Lorentz factor is itself a function of β (see Eq. 37-8).  
 
(b) A plot of Δt′  as a function of β  in the range 0 0.01β< <  is shown below: 
 

 
 
Note the limits of the vertical axis are +2 μs and  –2 μs.  We note how “flat” the curve is 
in this graph; the reason is that for low values of β, Bullwinkle’s measure of the temporal 
separation between the two events is approximately our measure, namely +1.0 μs.  There 
are no nonintuitive relativistic effects in this case. 
 
(c) A plot of Δt′  as a function of β  in the range 0.1 1β< <  is shown below: 
 

 
 
(d) Setting  

6
8

(400 m)' 1.00 10 s 0
2.998 10 m/s

xt t
c

β β−⎛ ⎞Δ⎛ ⎞Δ = γ Δ − = γ × − =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
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leads to  
8 6(2.998 10 m/s)(1.00 10 s) 0.7495 0.750
400m

c t
x

β
−Δ × ×

= = = ≈
Δ

. 

 
(e) For the graph shown in part (c), as we increase the speed, the temporal separation 
according to Bullwinkle is positive for the lower values and then goes to zero and finally 
(as the speed approaches that of light) becomes progressively more negative.  For the 
lower speeds with  

Δt′  > 0 ⇒ tA′  <  tB′  ⇒   0 0.750β< < , 
 
according to Bullwinkle event A occurs before event B just as we observe.  
 
(f) For the higher speeds with  
 

Δt′  < 0  ⇒    tA′  >  tB′  ⇒ 0.750 1β< < , 
 
according to Bullwinkle event B occurs before event A (the opposite of what we observe).   
 
(g) No, event A cannot cause event B or vice versa. We note that  
 

Δx/Δt = (400 m)/(1.00 μs) = 4.00 ×108 m/s > c. 
 
A signal cannot travel from event A to event B without exceeding c, so causal influences 
cannot originate at A and thus affect what happens at B, or vice versa. 
 
22. (a) From Table 37-2, we find 
 

( ) ( )
2

400 m (299.8 m)[400 m (1.00 s)]
1

x x v t x c t c βγ γ β γ β μ
β

−′Δ = Δ − Δ = Δ − Δ = − =
−

 

 
(b) A plot of 'xΔ  as a function of β  with 0 0.01β< <  is shown below: 

 
 
(c) A plot of 'xΔ  as a function of β  with 0.1 1β< <  is shown below: 
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(d) To find the minimum, we can take a derivative of Δx′ with respect to β, simplify, and 
then set equal to zero: 
 

2 3/ 22
0

(1 )1
d x d x c t x c t
d d

β β
β β ββ

⎛ ⎞′Δ Δ − Δ Δ − Δ⎜ ⎟= = =
⎜ ⎟ −−⎝ ⎠

 

This yields 
8 6(2.998 10 m/s)(1.00 10 s) 0.7495 0.750
400 m

c t
x

β
−Δ × ×

= = = ≈
Δ

 

 
(e) Substituting this value of β into the part (a) expression yields Δx′ = 264.8 m 

265 m≈ for its minimum value. 
 
23. (a) The Lorentz factor is 
 

γ =
−

=
−

=
1

1
1

1 0 600
125

2 2β ( . )
. .  

 
(b) In the unprimed frame, the time for the clock to travel from the origin to x = 180 m is 
 

t x
v

= =
×

= × −180 100 10 6m
(0.600)(3.00 10 m / s)

s .8 .  

 
The proper time interval between the two events (at the origin and at x = 180 m) is 
measured by the clock itself. The reading on the clock at the beginning of the interval is 
zero, so the reading at the end is 
 

6
71.00 10 s 8.00 10 s .

1.25
tt
γ

−
−×′ = = = ×  

 
24. The time-dilation information in the problem (particularly, the 15 s on “his 
wristwatch… which takes 30.0 s according to you”) reveals that the Lorentz factor is γ = 
2.00 (see Eq. 37-9), which implies his speed is v = 0.866c. 
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(a) With γ = 2.00, Eq. 37-13 implies the contracted length is 0.500 m. 
 
(b) There is no contraction along the direction perpendicular to the direction of motion 
(or “boost” direction), so meter stick 2 still measures 1.00 m long. 
 
(c) As in part (b), the answer is 1.00 m. 
 
(d) Equation 1′ in Table 37-2 gives 
 

( ) 8 9
2 1 (2.00) 20.0 m (0.866)(2.998 10 m/s)(40.0 10 s)

19.2 m

x x x x v tγ −′ ′ ′ ⎡ ⎤Δ = − = Δ − Δ = − × ×⎣ ⎦
=

 

 
(e) Equation 2′ in Table 37-2 gives 
 

( ) ( )2
2 1

9 8

/ /

(2.00) 40.0 10 s (0.866)(20.0 m) /(2.998 10 m/s)

35.5 ns .

t t t t v x c t x cγ γ β
−

′ ′ ′Δ = − = Δ − Δ = Δ − Δ

⎡ ⎤= × − ×⎣ ⎦
= −

 

 
In absolute value, the two events are separated by 35.5 ns. 
 
(f) The negative sign obtained in part (e) implies event 2 occurred before event 1. 
 
25. (a) In frame S, our coordinates are such that x1 = +1200 m for the big flash, and x2 = 
1200 – 720 = 480 m for the small flash (which occurred later). Thus,  
 

Δx = x2 – x1 = –720 m. 
 

If we set Δx' = 0 in Eq. 37-25, we find 
 

0 720 500 10 6= − = − − × −γ γ( ) ( .Δ Δx v t vm s)c h  
 
which yields v = –1.44 × 108 m/s, or / 0.480v cβ = = . 
 
(b) The negative sign in part (a) implies that frame S' must be moving in the –x direction.  
 
(c) Equation 37-28 leads to 
 

8
6

2 8 2

( 1.44 10 m/s)( 720m)5.00 10 s
(2.998 10 m/s)

v xt t
c

γ γ −⎛ ⎞Δ − × −⎛ ⎞′Δ = Δ − = × −⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
, 
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which turns out to be positive (regardless of the specific value of γ). Thus, the order of 
the flashes is the same in the S' frame as it is in the S frame (where Δt is also positive). 
Thus, the big flash occurs first, and the small flash occurs later. 
 
(d) Finishing the computation begun in part (c), we obtain 
 

6 8 8 2
6

2

5.00 10 s ( 1.44 10 m/s)( 720m)/(2.998 10 m/s) 4.39 10 s .
1 0.480

t
−

−× − − × − ×′Δ = = ×
−

 

 
26. We wish to adjust Δt so that 
 

( )0 ( 720 m )x x v t v tγ γ′= Δ = Δ − Δ = − − Δ  
 
in the limiting case of | |v c→ . Thus, 
 

6
8

720m 2.40 10 s .
2.998 10 m/s

x xt
v c

−Δ Δ
Δ = = = = ×

×
 

 
27. We assume S' is moving in the +x direction. With u' = +0.40c and v = +0.60c, Eq. 37-
29 yields 

u u v
u v c

c c
c c c

c=
+

+
=

+
+ +

=
'
' /

. .
( . )( . ) /

. .
1

0 40 0 60
1 0 40 0 60

0812 2  

 
28. (a) We use Eq. 37-29: 
 

2

0.47 0.62 0.84 ,
1 / 1 (0.47)(0.62)

v u c cv c
uv c
′+ +

= = =
′+ +

 

 
in the direction of increasing x (since v > 0). In unit-vector notation, we have 

ˆ(0.84 )iv c= . 
 
(b) The classical theory predicts that v = 0.47c + 0.62c = 1.1c, or ˆ(1.1 )iv c= . 
 
(c) Now v' = –0.47c î  so 
 

2

0.47 0.62 0.21 ,
1 / 1 ( 0.47)(0.62)

v u c cv c
uv c
′+ − +

= = =
′+ + −

 

or ˆ(0.21 )iv c=  
 
(d) By contrast, the classical prediction is v = 0.62c – 0.47c = 0.15c, or ˆ(0.15 )iv c= . 
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29. (a) One thing Einstein’s relativity has in common with the more familiar (Galilean) 
relativity is the reciprocity of relative velocity. If Joe sees Fred moving at 20 m/s 
eastward away from him (Joe), then Fred should see Joe moving at 20 m/s westward 
away from him (Fred). Similarly, if we see Galaxy A moving away from us at 0.35c then 
an observer in Galaxy A should see our galaxy move away from him at 0.35c, or 0.35 in 
multiple of c.  
 
(b) We take the positive axis to be in the direction of motion of Galaxy A, as seen by us. 
Using the notation of Eq. 37-29, the problem indicates v = +0.35c (velocity of Galaxy A 
relative to Earth) and u = –0.35c (velocity of Galaxy B relative to Earth). We solve for 
the velocity of B relative to A: 
 

2

/ / ( 0.35) 0.35 0.62
1 / 1 ( 0.35)(0.35)

u u c v c
c uv c
′ − − −

= = = −
− − −

, 

or | '/ | 0.62.u c =  
 
30. Using the notation of Eq. 37-29 and taking “away” (from us) as the positive direction, 
the problem indicates v = +0.4c and u = +0.8c (with 3 significant figures understood). We 
solve for the velocity of Q2 relative to Q1 (in multiple of c): 
 

2

/ / 0.8 0.4 0.588
1 / 1 (0.8)(0.4)

u u c v c
c uv c
′ − −

= = =
− −

 

 
in a direction away from Earth. 
 
31. Let S be the reference frame of the micrometeorite, and S' be the reference frame of 
the spaceship. We assume S to be moving in the +x direction. Let u be the velocity of the 
micrometeorite as measured in S and v be the velocity of S' relative to S, the velocity of 
the micrometeorite as measured in S' can be solved by using Eq. 37-29: 
 

2 2 .
1 / 1 /

u v u vu u
u v c uv c
′ + −′= ⇒ =
′+ −

 

 
The problem indicates that v = –0.82c (spaceship velocity) and u = +0.82c 
(micrometeorite velocity). We solve for the velocity of the micrometeorite relative to the 
spaceship: 

2

0.82 ( 0.82 ) 0.98
1 / 1 (0.82)( 0.82)

u v c cu c
uv c
− − −′ = = =

− − −
 

 
or 2.94 × 108 m/s. Using Eq. 37-10, we conclude that observers on the ship measure a 
transit time for the micrometeorite (as it passes along the length of the ship) equal to 
 

6
8

350m 1.2 10 s .
2.94 10 m/s

dt
u

−Δ = = = ×
′ ×
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Note: The classical Galilean transformation would have given   
 

u' = u – v = 0.82c –(– 0.82c) = 1.64c, 
 
which exceeds c and therefore, is physically impossible.  
 
32. The figure shows that u′ = 0.80c when v = 0.  We therefore infer (using the notation 
of Eq. 37-29) that u = 0.80c.  Now, u is a fixed value and v is variable, so u′ as a function 
of v is given by 

2

0.80
1 / 1 (0.80) /

u v c vu
uv c v c
− −′ = =

− −
 

                                                 
which is Eq. 37-29 rearranged so that u′ is isolated on the left-hand side.  We use this 
expression to answer parts (a) and (b). 
 
(a) Substituting v = 0.90c in the expression above leads to u′ = − 0.357c  ≈ − 0.36c. 
 
(b) Substituting v = c in the expression above leads to u′ = −c (regardless of the value of 
u). 
 
33. (a) In the messenger’s rest system (called Sm), the velocity of the armada is 
 

2 2

0.80 0.95 0.625 .
1 / 1 (0.80 )(0.95 ) /

m

m

v v c cv c
vv c c c c
− −′ = = = −

− −
 

 
The length of the armada as measured in Sm is 
 

20
1 (1.0 ly) 1 ( 0.625) 0.781 ly .LL

vγ
= = − − =

′
 

 
Thus, the length of the trip is 

0.781ly 1.25 y .
| | 0.625c
Lt
v

′
′ = = =

′
 

 
(b) In the armada’s rest frame (called Sa), the velocity of the messenger is 
 

2 2

0.95 0.80 0.625 .
1 / 1 (0.95 )(0.80 ) /

a

a

v v c cv c
vv c c c c
− −′ = = =

− −
 

 
Now, the length of the trip is 
 

0 1.0 ly 1.60 y .
0.625

Lt
v c

′ = = =
′
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(c) Measured in system S, the length of the armada is 
 

L L
= = − =0 210 1 080 0 60

γ
. ( . ) . ,ly ly  

so the length of the trip is 
0.60ly 4.00 y .

0.95 0.80m a

Lt
v v c c

= = =
− −

 

 
34. We use the transverse Doppler shift formula, Eq. 37-37: f f= −0

21 β , or 
 

21 1 1 .β
λ λ0

= −  

We solve for λ − λ0 : 

0 0 2 2

1 11 (589.00 mm) 1 2.97 nm .
1 1 (0.100)

λ λ λ
β

⎡ ⎤⎛ ⎞
⎜ ⎟− = − = − = +⎢ ⎥⎜ ⎟− ⎢ − ⎥⎝ ⎠ ⎣ ⎦

 

 
35. The spaceship is moving away from Earth, so the frequency received is given directly 
by Eq. 37-31. Thus, 
 

f f=
−
+

=
−
+

=0
1
1

100 0 9000
1 0 9000

22 9β
β

( .
.

.MHz) 1 MHz .  

 
36. (a) Equation 37-36 leads to a speed of 
 

8 6 6(0.004)(3.0 10 m/s) 1.2 10 m/s 1 10 m/s.v cλ
λ

Δ
= = × = × ≈ ×  

 
(b) The galaxy is receding. 
 
37. We obtain 

620 nm 540 nm 0.13 .
620 nm

v c c cλ
λ

Δ −⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 
38. (a) Equation 37-36 leads to 
 

8 612.00nm (2.998 10 m/s) 7.000 10 m/s.
513.0nm

v cλ
λ

Δ
= = × = ×  
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(b) The line is shifted to a larger wavelength, which means shorter frequency. Recalling 
Eq. 37-31 and the discussion that follows it, this means galaxy NGC is moving away 
from Earth. 
 
39. (a) The frequency received is given by 
 

0
1 1 0.20      
1 1 0.20

c cf f β
β λ λ0

− −
= ⇒ =

+ +
 

which implies 
1 0.20nm) 550 nm .
1 0.20

λ +
= (450 =

−
 

 
(b) This is in the yellow portion of the visible spectrum. 
 
40. (a) The work-kinetic energy theorem applies as well to relativistic physics as to 
Newtonian; the only difference is the specific formula for kinetic energy. Thus, we use 
Eq. 37-52  

W = ΔK = mec2(γ – 1) 
 
and mec2 = 511 keV = 0.511 MeV (Table 37-3), and obtain 
 

2

2 2

1 11 (511keV) 1 79.1 keV .
1 1 (0.500)

eW m c
β

⎡ ⎤⎛ ⎞
⎜ ⎟= − = − =⎢ ⎥
⎜ ⎟ ⎢ ⎥− −⎝ ⎠ ⎣ ⎦

 

 

(b) W =
−

−F
HG

I
KJ

=0 511 1

1 0 990
1 311

2
.

.
.MeV MeV.b g

b g
 

 

(c) W =
−

−F
HG

I
KJ

=0 511 1

1 0 990
1 10 9

2
.

.
.MeV MeV.b g

b g
 

 
41. (a) From Eq. 37-52, γ = (K/mc2) + 1, and from Eq. 37-8, the speed parameter is 

β γ= −1 1 2/ .b g  Table 37-3 gives mec2 = 511 keV = 0.511 MeV, so the Lorentz factor is 
 

100MeV 1 196.695.
0.511MeV

γ = + =  

(b) The speed parameter is 
 

( )2
11 0.999987.

196.695
β = − =  
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Thus, the speed of the electron is 0.999987c, or 99.9987% of the speed of light.  
 
42. From Eq. 28-37, we have 
 

[ ]2 23(4.00151u) 11.99671u (0.00782u)(931.5MeV/u)
7.28Mev.

Q Mc c= −Δ = − − = −

= −
 

 
Thus, it takes a minimum of 7.28 MeV supplied to the system to cause this reaction. We 
note that the masses given in this problem are strictly for the nuclei involved; they are not 
the “atomic” masses that are quoted in several of the other problems in this chapter. 
 
43. (a) The work-kinetic energy theorem applies as well to relativistic physics as to 
Newtonian; the only difference is the specific formula for kinetic energy. Thus, we use W 
= ΔK where K = mec2(γ – 1) (Eq. 37-52), and mec2 = 511 keV = 0.511 MeV (Table 37-3). 
Noting that  

ΔK = mec2(γf – γi), 
we obtain 
 

( )
( ) ( )

2

2 2 2 2

1 1 1 1511keV
1 1 1 0.19 1 0.18

0.996  keV 1.0 keV.

e

f i

W K m c
β β

⎛ ⎞ ⎛ ⎞= Δ = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠
= ≈

 

 
(b) Similarly, 

( )
( ) ( )2 2

1 1511keV 1055keV 1.1 MeV.
1 0.99 1 0.98

W ⎛ ⎞= − = ≈⎜ ⎟⎜ ⎟− −⎝ ⎠

 

 
We see the dramatic increase in difficulty in trying to accelerate a particle when its initial 
speed is very close to the speed of light. 
 
44. The mass change is 
 

ΔM = − = −4 002603 1007825 0 008712. . .u +15.994915u u +18.998405u u.b g b g  
 
Using Eq. 37-50 and Eq. 37-46, this leads to 
 

Q M c= − = − − =Δ 2 0 008712 9315 812. . .u MeV / u MeV.b gb g  
 
45. The distance traveled by the pion in the frame of Earth is (using Eq. 37-12) d = vΔt. 
The proper lifetime Δt0 is related to Δt by the time-dilation formula: Δt = γΔt0. To use this 
equation, we must first find the Lorentz factor γ (using Eq. 37-48). Since the total energy 
of the pion is given by E = 1.35 × 105 MeV and its mc2 value is 139.6 MeV, then 
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γ = =
×

=
E

mc2

5135 10
139 6

967 05.
.

. .MeV
MeV

 

 
Therefore, the lifetime of the moving pion as measured by Earth observers is 
 

Δ Δt t= = × = ×− −γ 0
9 5967 1 350 10 3385 10. . .b gc hs s,  

 
and the distance it travels is 
 

d c t≈ = × × = ×−Δ 2 998 10 3385 10 1015 108 5 4. . .m / s s m = 10.15kmc hc h  
 
where we have approximated its speed as c (note: its speed can be found by solving Eq. 
37-8, which gives v = 0.9999995c; this more precise value for v would not significantly 
alter our final result). Thus, the altitude at which the pion decays is 120 km – 10.15 km = 
110 km. 
 
46. (a) Squaring Eq. 37-47 gives 
 

E mc mc K K2 2 2 2 22= + +c h  
 
which we set equal to Eq. 37-55. Thus, 
 

( ) ( ) ( ) ( )2 2
2 222 2 2 2

22 .
2

pc K
mc mc K K pc mc m

Kc
−

+ + = + ⇒ =  

 
(b) At low speeds, the pre-Einsteinian expressions p = mv and K mv= 1

2
2  apply. We note 

that pc K>>  at low speeds since c v>>  in this regime. Thus, 
 

m
mvc mv

mv c
mvc
mv c

m→
−

≈ =
b g c h
c h

b g
c h

2 1
2

2 2

1
2

2 2

2

1
2

2 22 2
.  

 
(c) Here, pc = 121 MeV, so 

m
c

=
−

=
121 55

2 55
1056

2 2

2b g . .MeV / c2  

 
Now, the mass of the electron (see Table 37-3) is me = 0.511 MeV/c2, so our result is 
roughly 207 times bigger than an electron mass, i.e., / 207em m ≈ . The particle is a muon. 
 
47. The energy equivalent of one tablet is  
 

mc2 = (320 × 10–6 kg) (3.00 × 108 m/s)2 = 2.88 × 1013 J. 
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This provides the same energy as  
 

(2.88 × 1013 J)/(3.65 × 107 J/L) = 7.89 × 105 L 
 
of gasoline. The distance the car can go is  
 

d = (7.89 × 105 L) (12.75 km/L) = 1.01 × 107 km. 
 
This is roughly 250 times larger than the circumference of Earth (see Appendix C). 
 
48. (a) The proper lifetime Δt0 is 2.20 μs, and the lifetime measured by clocks in the 
laboratory (through which the muon is moving at high speed) is Δt = 6.90 μs. We use Eq. 
37-7 to solve for the speed parameter: 
 

22
0 2.20 s1 1 0.948

6.90 s
t
t

μβ
μ

⎛ ⎞Δ⎛ ⎞= − = − =⎜ ⎟⎜ ⎟Δ⎝ ⎠ ⎝ ⎠
. 

 
 
(b) From the answer to part (a), we find γ = 3.136. Thus, with (see Table 37-3) 
 

mμc2 = 207mec2 = 105.8 MeV, 
Eq. 37-52 yields 
 

( )2 1 (105.8MeV)(3.136 1) 226 MeV.K m cμ γ= − = − =  
 
(c) We write mμc = 105.8 MeV/c and apply Eq. 37-41: 
 

p m v m c c c= = = =γ γ βμ μ 3136 1058 0 9478 314. . .b gb gb gMeV / MeV /  
 
which can also be expressed in SI units (p = 1.7 × 10–19 kg·m/s). 
 
49. (a) The strategy is to find the γ factor from E = 14.24 × 10–9 J and mpc2 = 1.5033 × 
10–10 J and from that find the contracted length. From the energy relation (Eq. 37-48), we 
obtain 

9

2 10

14.24 10  J 94.73.
1.5033 10  Jp

E
m c

γ
−

−

×
= = =

×
 

 
Consequently, Eq. 37-13 yields 
 

30 21 cm 0.222 cm 2.22 10  m.
94.73

LL
γ

−= = = = ×  
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(b) From the γ factor, we find the speed: 
 

v c c= −
F
HG
I
KJ =1 1 0 99994

2

γ
. . 

 
Therefore, in our reference frame the time elapsed is 
 

 100
8

0.21 m 7.01 10 s
(0.99994)(2.998 10 m/s)

Lt
v

−Δ = = = ×
×

. 

  
(c) The time dilation formula (Eq. 37-7) leads to 
 

10
0 7.01 10 st tγ −Δ = Δ = ×  

 
Therefore, according to the proton, the trip took  
 

Δt0 = 2.22 × 10–3/0.99994c = 7.40 × 10–12 s. 
 
50. From Eq. 37-52, γ = (K/mc2) + 1, and from Eq. 37-8, the speed parameter is 

β γ= −1 1 2/ .b g  
 
(a) Table 37-3 gives mec2 = 511 keV = 0.511 MeV, so the Lorentz factor is 
 

10.00MeV 1 20.57,
0.5110MeV

γ = + =  

 
(b) and the speed parameter is 
 

( )
( )

2
2

11 1/ 1 0.9988.
20.57

β γ= − = − =  

 
(c) Using mpc2 = 938.272 MeV, the Lorentz factor is  
 

γ = 1 + 10.00 MeV/938.272 MeV = 1.01065 1.011≈ . 
 
(d) The speed parameter is 
 

21 0.144844 0.1448.β γ −= − = ≈  
 
(e) With mαc2 = 3727.40 MeV, we obtain γ = 10.00/3727.4 + 1 = 1.00268 1.003≈ .  
 
(f) The speed parameter is  
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21 0.0731037 0.07310β γ −= − = ≈ . 

 
51. We set Eq. 37-55 equal to (3.00mc2)2, as required by the problem, and solve for the 
speed. Thus, 

( ) ( ) ( )2 22 2 29.00pc mc mc+ =  
 
leads to 8 2.83 .p mc mc= ≈  
 
52. (a) The binomial theorem tells us that, for x small, 
 

(1 + x)ν   ≈  1  +  ν x +  ½ ν(ν − 1) x² 
 

if we ignore terms involving x3 and higher powers (this is reasonable since if x is small, 
say x = 0.1, then x3 is much smaller: x3 = 0.001).  The relativistic kinetic energy formula, 
when the speed v is much smaller than c, has a term that we can apply the binomial 
theorem to; identifying –β² as x and –1/2 as ν, we have   

 
2 1/ 2(1 )γ β −= −  ≈  1  +  (–½)(–β ²)  +  ½ (–½)((–½) − 1)(–β ²)2. 

 
Substituting this into Eq. 37-52 leads to 

 
K  = mc²(γ – 1) ≈  mc²[(–½)(–β ²)  +  ½ (–½)((–½) − 1)(–β ²)2] 

 
which simplifies to  
   K  ≈  12 mc² 

2β   + 38 mc² 4β =  12 mv² + 38 mv4/c² . 
 
(b) If we use the mc² value for the electron found in Table 37-3, then for β = 1/20, the 
classical expression for kinetic energy gives 
 
 Kclassical  =  12 mv²  = 12 mc² 2β  = 12 (8.19 × 10−14 J) (1/20)2  = 1.0 × 10−16 J . 
 
(c) The first-order correction becomes 
 
 Kfirst-order  =  38 mv4/c²  = 38 mc² 4β  = 38 (8.19 × 10−14 J) (1/20)4  = 1.9 × 10−19 J 
       
which we note is much smaller than the classical result. 
 
(d) In this case, β = 0.80 = 4/5, and the classical expression yields 
 
 Kclassical  =  12 mv²  = 12 mc² 2β = 12 (8.19 ×  10−14 J) (4/5)2  = 2.6 × 10−14 J . 
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(e) And the first-order correction is 
 
 Kfirst-order  =  38 mv4/c²  = 38 mc² 4β  = 38 (8.19 ×  10−14 J) (4/5)4  = 1.3 × 10−14 J 
 
which is comparable to the classical result.  This is a signal that ignoring the higher order 
terms in the binomial expansion becomes less reliable the closer the speed gets to c. 
 
(f) We set the first-order term equal to one-tenth of the classical term and solve for β: 
 

            
3
8 mc² 4β   = 1

10 ( 12 mc² 2β  ) 
 
and obtain 2 /15 0.37β = ≈ .   
 
53. Using the classical orbital radius formula 0 / | |r mv q B= , the period is 
 

0 02 / 2 / | | .T r v m q Bπ π= =  
 
In the relativistic limit, we must use 
 

0| | | |
p mvr r

q B q B
γ γ= = =  

which yields   

0
2 2

| |
r mT T

v q B
π πγ γ= = =  

 
(b) The period T is not independent of v.  
 
(c) We interpret the given 10.0 MeV to be the kinetic energy of the electron. In order to 
make use of the mc2 value for the electron given in Table 37-3  
(511 keV = 0.511 MeV) we write the classical kinetic energy formula as 
 

K mv mc v
c

mcclassical = =
F
HG
I
KJ =

1
2

1
2

1
2

2 2
2

2
2 2c h c hβ .  

 
If Kclassical = 10.0 MeV, then 
 

β = = =
2 2 10 0

0511
6 2562

K
mc

classical MeV
MeV

.
.

. ,b g  

 
which, of course, is impossible (see the Ultimate Speed subsection of  Section 37-2). If 
we use this value anyway, then the classical orbital radius formula yields 
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( ) ( ) ( )

( ) ( )

31 8
3

19

9.11 10 kg 6.256 2.998 10 m/s
4.85 10 m.

| | 1.6 10 C 2.20T
mv m cr
q B eB

β
−

−
−

× ×
= = = = ×

×
 

 
(d) Before using the relativistically correct orbital radius formula, we must compute β in 
a relativistically correct way: 
 

2 10.0 MeV( 1) 1 20.57
0.511 MeV

K mc γ γ= − ⇒ = + =  

 
which implies (from Eq. 37-8) 
 

2 2

1 11 1 0.99882.
(20.57)

β
γ

= − = − =  

Therefore, 
 

31 8

19

2

(20.57) (9.11 10 kg)(0.99882)(2.998 10 m/s)
| | (1.6 10 C)(2.20T)
1.59 10 m.

mv m cr
q B eB
γ γ β −

−

−

× ×
= = =

×

= ×

 

 
(e) The classical period is 
 

3
11

8

2 2 (4.85 10 m) 1.63 10 s.
(6.256) (2.998 10 m/s)

rT
c

π π
β

−
−×

= = = ×
×

 

 
(f) The period obtained with relativistic correction is 
 

10
8

2 2 (0.0159 m) 3.34 10 s.
(0.99882) (2.998 10 m/s)

rT
c

π π
β

−= = = ×
×

 

 
54. (a) We set Eq. 37-52 equal to 2mc2, as required by the problem, and solve for the 
speed. Thus, 

2 2

2

1 1 2
1

mc mc
β

⎛ ⎞
⎜ ⎟− =
⎜ ⎟−⎝ ⎠

 

leads to 2 2 / 3 0.943.β = ≈  
 
(b) We now set Eq. 37-48 equal to 2mc2 and solve for the speed. In this case, 
 

2
2

2
2

1
mc mc

β
=

−
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leads to 3 / 2 0.866.β = ≈  
 
55. (a) We set Eq. 37-41 equal to mc, as required by the problem, and solve for the speed. 
Thus, 

mv
v c

mc
1 2 2−

=
/

 

leads to 1/ 2 0.707.β = =  
 
(b) Substituting 1/ 2β =  into the definition of γ, we obtain 
 

( )2 2

1 1 2 1.41.
1 1/ 21 /v c

γ = = = ≈
−−

 

(c) The kinetic energy is 
 

( ) ( )2 2 2
01 2 1 0.414 0.414 .K mc mc mc Eγ= − = − = =  

 
which implies 0/ 0.414K E = . 
 
56. (a) From the information in the problem, we see that each kilogram of TNT releases  
(3.40 × 106 J/mol)/(0.227 kg/mol) = 1.50 × 107 J.  Thus,  
 

(1.80 × 1014 J)/(1.50 × 107 J/kg) = 1.20 × 107 kg 
 
of TNT are needed.  This is equivalent to a weight of ≈ 1.2 × 108 N.  
 
(b) This is certainly more than can be carried in a backpack.  Presumably, a train would 
be required. 
 
(c) We have 0.00080mc2 = 1.80 × 1014 J, and find m = 2.50 kg of fissionable material is 
needed.  This is equivalent to a weight of about 25 N, or 5.5 pounds. 
 
(d) This can be carried in a backpack. 
 
57. Since the rest energy E0 and the mass m of the quasar are related by E0 = mc2, the rate 
P of energy radiation and the rate of mass loss are related by  
 

P = dE0/dt = (dm/dt)c2. 
Thus, 

dm
dt

P
c

= =
×

×
= ×2

41

8 2
241 10

2 998 10
111 10W

m / s
kg / s.

.
.

c h
 

 
Since a solar mass is 2.0 × 1030 kg and a year is 3.156 × 107 s, 



 

  

1441

 
dm
dt

= ×
×

×
F
HG

I
KJ ≈111 10 3156 10

2 0 10
1824

7

30. .
.

kg / s s / y
kg / smu

smu / y.c h  

 
58. (a) Using K = mec2 (γ – 1) (Eq. 37-52) and  
 

mec2 = 510.9989 keV = 0.5109989 MeV, 
 
we obtain 

2

1.0000000keV1 1 1.00195695 1.0019570.
510.9989keVe

K
m c

γ = + = + = ≈  

 
(b) Therefore, the speed parameter is 
 

2 2

1 11 1 0.062469542.
(1.0019570)

β
γ

= − = − =  

 
(c) For 1.0000000 MeVK = , we have 
 

2

1.0000000MeV1 1 2.956951375 2.9569514.
0.5109989MeVe

K
m c

γ = + = + = ≈  

 
(d) The corresponding speed parameter is  
 

21 0.941079236 0.94107924.β γ −= − = ≈  
 
(e) For K = 1.0000000 GeV, we have 
 

2

1000.0000MeV1 1 1957.951375 1957.9514.
0.5109989MeVe

K
m c

γ = + = + = ≈  

 
(f) The corresponding speed parameter is  
 

21 0.99999987β γ −= − = . 
 
59. (a) Before looking at our solution to part (a) (which uses momentum conservation), it 
might be advisable to look at our solution (and accompanying remarks) for part (b) 
(where a very different approach is used). Since momentum is a vector, its conservation 
involves two equations (along the original direction of alpha particle motion, the x 
direction, as well as along the final proton direction of motion, the y direction). The 
problem states that all speeds are much less than the speed of light, which allows us to 
use the classical formulas for kinetic energy and momentum ( K mv= 1

2
2  and p mv= ,  
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respectively). Along the x and y axes, momentum conservation gives (for the components 
of voxy ): 

oxy oxy, oxy,
oxy

oxy oxy, oxy,
oxy

4
17

10 .
17

x x

p
y p p y p p

mm v m v v v v
m

m
m v m v v v v

m

α
α α α α= ⇒ = ≈

= + ⇒ = − ≈ −
 

 
To complete these determinations, we need values (inferred from the kinetic energies 
given in the problem) for the initial speed of the alpha particle (vα) and the final speed of 
the proton (vp). One way to do this is to rewrite the classical kinetic energy expression as 
K mc= 1

2
2 2( )β  and solve for β (using Table 37-3 and/or Eq. 37-46). Thus, for the proton, 

we obtain 

β p
p

p

K
m c

= = =
2 2 4 44

938
0 09732

( . . .MeV)
MeV

 

 
This is almost 10% the speed of light, so one might worry that the relativistic expression 
(Eq. 37-52) should be used. If one does so, one finds βp = 0.969, which is reasonably 
close to our previous result based on the classical formula. For the alpha particle, we 
write  

mαc2 = (4.0026 u)(931.5 MeV/u) = 3728 MeV 
 
(which is actually an overestimate due to the use of the “atomic mass” value in our 
calculation, but this does not cause significant error in our result), and obtain 
 

βα
α

α

= = =
2 2 7 70

3728
0 0642

K
m c

( . . .MeV)
MeV

 

 
Returning to our oxygen nucleus velocity components, we are now able to conclude: 
 

v v

v v

x x

y p y p

oxy, oxy,

oxy, oxy,

≈ ⇒ ≈ = =

≈ ⇒ ≈ = =

4
17

4
17

4
17

0 064 0 015

1
17

1
17

1
17

0 097 0 0057

α αβ β

β β

( . ) .

| | ( . ) .
 

 
Consequently, with  

moxyc2 ≈ (17 u)(931.5 MeV/u) = 1.58 × 104 MeV, 
we obtain 
 

2 2 2 4 2 2
oxy oxy oxy, oxy,

1 1( ) ( ) (1.58 10 MeV)(0.015 0.0057 )
2 2
2.08 MeV.

x yK m c β β= + = × +

≈
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(b) Using Eq. 37-50 and Eq. 37-46, 
 

2(1.007825u 16.99914u 4.00260u 14.00307u)
(0.001295u)(931.5MeV/u)

Q c= − + − −
= −

 

 
which yields Q = –1.206 MeV 1.21 MeV≈ − . Incidentally, this provides an alternate way 
to obtain the answer (and a more accurate one at that!) to part (a). Equation 37-49 leads to 
 

oxy 7.70MeV 1206MeV 4.44MeV 2.05MeV.pK K Q Kα= + − = − − =  
 
This approach to finding Koxy avoids the many computational steps and approximations 
made in part (a). 
 
60. (a) Equation 2′ of Table 37-2 becomes 
 

Δt′ = γ(Δt − βΔx/c) = γ [1.00 μs − β(240 m)/(2.998 × 102 m/μs )]  
                            (1.00 0.800 ) sγ β μ= −  
 
where the Lorentz factor is itself a function of β (see Eq. 37-8).  
 
(b) A plot of Δt′ is shown for the range 0 0.01β< < : 
 

 
 
(c) A plot of Δt′ is shown for the range 0.1 1β< < : 
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(d) The minimum for the Δt′ curve can be found by taking the derivative and simplifying 
and then setting equal to zero: 
 

d t
dβ
Δ ′ =  γ 

3(βΔt – Δx/c) = 0 . 

 
Thus, the value of β for which the curve is minimum is β = Δx/cΔt = 240/299.8, or 

0.801β = . 
 
(e) Substituting the value of β from part (d) into the part (a) expression yields the 
minimum value Δt′ = 0.599 µs. 
 
(f) Yes. We note that Δx/Δt = 2.4 ×108 m/s < c.  A signal can indeed travel from event A 
to event B without exceeding c, so causal influences can originate at A and thus affect 
what happens at B.  Such events are often described as being “time-like separated” – and 
we see in this problem that it is (always) possible in such a situation for us to find a frame 
of reference (here with β ≈ 0.801) where the two events will seem to be at the same 
location (though at different times). 
 
61. (a) Equation 1′ of Table 37-2 becomes  
 

Δx′ = γ (Δx − β cΔt) = γ [(240 m) − β(299.8 m)] . 
 
(b) A plot of Δx′ for 0 0.01β< <  is shown below: 
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(c) A plot of Δx′ for 0.1 1β< <  is shown below: 
 

 
 
We see that Δx′ decreases from its β = 0 value (where it is equal to Δx = 240 m) to its 
zero value (at β ≈ 0.8), and continues (without bound) downward in the graph (where it is 
negative, implying event B has a smaller value of x′ than event A!).  
 
(d) The zero value for Δx′ is easily seen (from the expression in part (b)) to come from 
the condition  Δx − β cΔt = 0.  Thus β = 0.801 provides the zero value of Δx′. 
 
62. By examining the value of u′ when v = 0 on the graph, we infer u = −0.20c. Solving 
Eq. 37-29 for u′ and inserting this value for u, we obtain 
 

u′ = 
u − v

 1 − uv/c²  = 
−0.20c − v
 1 + 0.20v/c  

 
for the equation of the curve shown in the figure. 
 
(a) With v = 0.80c, the above expression yields u′ = −0.86c. 
 
(b) As expected, setting v = c in this expression leads to u′ = −c. 
 
63. (a) The spatial separation between the two bursts is vt. We project this length onto the 
direction perpendicular to the light rays headed to Earth and obtain Dapp = vt sin θ. 
 
(b) Burst 1 is emitted a time t ahead of burst 2. Also, burst 1 has to travel an extra 
distance L more than burst 2 before reaching the Earth, where L = vt cos θ (see Fig. 37-
29); this requires an additional time t' = L/c. Thus, the apparent time is given by 
 

T t t t vt
c

t v
capp

cos cos= − ′ = − = − FHG
I
KJ

L
NM

O
QP

θ θ1 .  

(c) We obtain 
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V
D
T

v c
v c

c c capp
app

app

sin
cos

sin 30.0
cos30.0

= =
−
L
NM

O
QP =

°
− °
L
NM

O
QP =

( / )
( / )

( . )
( . )

. .θ
θ1

0 980
1 0 980

3 24  

 
64. The line in the graph is described by Eq. 1 in Table 37-2: 
 

Δx = vγΔt′ + γΔx′ =  (“slope”)Δt′   +  “y-intercept” 
 
where the “slope” is 7.0 × 108 m/s. Setting this value equal to vγ leads to v = 2.8 ×108 m/s 
and γ = 2.54.  Since the “y-intercept” is 2.0 m, we see that dividing this by γ leads to Δx′ 
= 0.79 m. 
 
65. Interpreting vAB  as the x-component of the velocity of A relative to B, and defining the 
corresponding speed parameter βAB = vAB /c, then the result of part (a) is a straightforward 
rewriting of Eq. 37-29 (after dividing both sides by c).  To make the correspondence with 
Fig. 37-11 clear, the particle in that picture can be labeled A, frame S′ (or an observer at 
rest in that frame) can be labeled B, and frame S (or an observer at rest in it) can be 
labeled C.  The result of part (b) is less obvious, and we show here some of the algebra 
steps: 

 1 11
1 1 1

AC BCAB
AC AB BC

AC AB BC

M M M β ββ
β β β

− −−
= ⋅ ⇒ = ⋅

+ + +
 

   
We multiply both sides by factors to get rid of the denominators 
 

(1 )(1 )(1 ) (1 )(1 )(1 )AC AB BC AB BC ACβ β β β β β− + + = − − +  
and expand: 

1 – βAC + βAB + βBC – βAC βAB – βAC βBC + βAB βBC – βAB βBC βAC = 
    1 + βAC  – βAB – βBC – βAC βAB – βAC βBC + βAB βBC  + βAB βBC βAC 

 
We note that several terms are identical on both sides of the equals sign, and thus cancel, 
which leaves us with 
 

–βAC + βAB + βBC   – βAB βBC βAC =  βAC – βAB – βBC  + βAB βBC βAC 
 
which can be rearranged to produce 
 

2 2 2 2AB BC AC AB BC ACβ β β β β β+ = +  . 
 
The left-hand side can be written as 2βAC (1 + βAB βBC ) in which case it becomes clear 
how to obtain the result from part (a) [just divide both sides by 2(1 + βAB βBC )]. 
 
66. We note, because it is a pretty symmetry and because it makes the part (b) 
computation move along more quickly, that  
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 1 1
1 1

MM
M

β β
β

− −
= ⇒ =

+ +
. 

 
Here, with βAB  given as 1/2  (see the problem statement), then MAB is seen to be  1/3 
(which is (1 – 1/2)  divided by  (1 + 1/2) ). Similarly for βBC  .   
 
(a) Thus,  

1 1 1
3 3 9AC AB BCM M M= ⋅ = ⋅ =  . 

(b) Consequently,  

βAC  = 
1 − MAC

1 + MAC
  = 1 1/ 9

1 1/ 9
−
+

 =  
8
10 =  

4
5 = 0.80. 

 
(c) By the definition of the speed parameter, we finally obtain vAC   = 0.80c. 
 
67. We note, for use later in the problem, that  
 

1 1
1 1

MM
M

β β
β

− −
= ⇒ =

+ +
 

 
Now, with βAB  given as 1/5 (see problem statement), then MAB is seen to be 2/3 (which is 
(1 – 1/5)  divided by  (1 + 1/5) ).  With βBC  = − 2/5, we similarly find MBC =  7/3,  and for 
βCD  = 3/5  we get MCD =  1/4 . Thus,  

   

MAD  = MAB MBC MCD  =  
2
3 · 

7
3  · 

1
4 =  

7
18   . 

Consequently,  

 βAD  = 
1 − MAD

1 + MAD
  = 1 7 /18

1 7 /18
−
+

 =  
11
25 = 0.44. 

   
By the definition of the speed parameter, we obtain vAD   = 0.44c. 
 
68. (a) According to the ship observers, the duration of proton flight is Δt' = (760 
m)/0.980c = 2.59 μs (assuming it travels the entire length of the ship). 
 
(b) To transform to our point of view, we use Eq. 2 in Table 37-2. Thus, with Δx' =  
–750 m, we have 

( )2(0.950 ) 0.572 s.t t c x cγ μ′ ′Δ = Δ + Δ =  
 
(c) For the ship observers, firing the proton from back to front makes no difference, and 
Δt' = 2.59 μs as before.  
 
(d) For us, the fact that now Δx' = +750 m is a significant change. 
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( )2(0.950 ) 16.0 s.t t c x c μ′ ′Δ = γ Δ + Δ =  

 
69. (a) From the length contraction equation, the length ′Lc  of the car according to 
Garageman is 

′ = = − = − =L L Lc
c

cγ
β1 305 0 9980 1932 2( . ( . ) .m) 1 m. 

 
(b) Since the xg axis is fixed to the garage, xg2 = Lg = 6.00 m.  
 
(c) As for tg2, note from Fig. 37-32(b) that at tg = tg1 = 0 the coordinate of the front 
bumper of the limo in the xg frame is ′Lc ,  meaning that the front of the limo is still a 
distance L Lg c− ′  from the back door of the garage. Since the limo travels at a speed v, the 
time it takes for the front of the limo to reach the back door of the garage is given by 
 

Δt t t
L L

vg g g
g c= − =

− ′
=

−
×

= × −
2 1 8

86 00 193
0 9980 2 998 10

136 10. .
. ( .

.m m
m / s)

s.  

 
Thus tg2 = tg1 + Δtg = 0 + 1.36 × 10–8 s = 1.36 × 10–8 s. 
 
(d) The limo is inside the garage between times tg1 and tg2, so the time duration is tg2 – tg1 
= 1.36 × 10–8 s. 
 
(e) Again from Eq. 37-13, the length ′Lg  of the garage according to Carman is 
 

′ = = − = − =L
L

Lg
g

gγ
β1 6 00 0 9980 0 3792 2( . ( . ) .m) 1 m.  

 
(f) Again, since the xc axis is fixed to the limo, xc2 = Lc = 30.5 m.  
 
(g) Now, from the two diagrams described in part (h) below, we know that at tc = tc2 
(when event 2 takes place), the distance between the rear bumper of the limo and the back 
door of the garage is given by L Lc g

− ′ .  Since the garage travels at a speed v, the front 

door of the garage will reach the rear bumper of the limo a time Δtc later, where Δtc 
satisfies 

Δt t t
L L

vc c c
c g= − =

− ′
=

−
×

= × −
1 2 8

7305 0 379
0 9980 2 998 10

101 10. .
. ( .

.m m
m / s)

s.  

 
Thus tc2 = tc1 – Δtc = 0 – 1.01 × 10–7 s = –1.01 × 10–7 s. 
 
(h) From Carman’s point of view, the answer is clearly no. 
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(i) Event 2 occurs first according to Carman, since tc2 < tc1. 
 
(j) We describe the essential features of the two pictures. For event 2, the front of the 
limo coincides with the back door, and the garage itself seems very short (perhaps failing 
to reach as far as the front window of the limo). For event 1, the rear of the car coincides 
with the front door and the front of the limo has traveled a significant distance beyond the 
back door. In this picture, as in the other, the garage seems very short compared to the 
limo. 
 
(k) No, the limo cannot be in the garage with both doors shut.  
 
(l) Both Carman and Garageman are correct in their respective reference frames. But, in a 
sense, Carman should lose the bet since he dropped his physics course before reaching 
the Theory of Special Relativity! 
 
70. (a) The relative contraction is 
 

21
2 2 20

8
0 0

12

(1 )| | 1 1 1 630m/s1 1 1 1
2 2 2 3.00 10 m/s

2.21 10 .

LL
L L

γ β β β
−

−

⎛ ⎞−Δ ⎛ ⎞= = − − ≈ − − = = ⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
= ×

 

 
(b) Letting | | ( ) .Δ Δ Δt t t− = − = =0 0 1 100γ τ μs , we solve for Δt0 : 
 

6

0 2 1/ 2 2 2 8 21
2

2 2(1.00 10 s)(1d/86400s)
1 (1 ) 1 1 1 [(630m/s)/(2.998 10 m/s)]

5.25 d .

t τ τ τ τ
γ β β β

−

−

×
Δ = = ≈ = =

− − − + − ×
=

 

 
71. Let v be the speed of the satellites relative to Earth. As they pass each other in 
opposite directions, their relative speed is given by rel, 2cv v=  according to the classical 
Galilean transformation. On the other hand, applying relativistic velocity transformation 
gives 

 rel 2 2

2
1

vv
v c

=
+

. 

(a) With v = 27000 km/h, we obtain rel, 2cv v= = 2(27000 km/h) = 5.4 × 104  km/h. 
 
(b) We can express c in these units by multiplying by 3.6: c = 1.08 × 109 km/h. The 
fractional error is 
 

rel, rel 10
2 2 9 2

rel,

1 11 1 6.3 10 .
1 1 [(27000 km/h) /(1.08 10 km/h)]

c

c

v v
v v c

−−
= − = − = ×

+ + ×
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Note: Since the speeds of the satellites are well below the speed of light, calculating their 
relative speed using the classical Galilean transformation is adequate. 
 

72. Using Eq. 37-10, we obtain / 6.0 y 0.75.
2.0 y 6.0 y

v d c
c t

β = = = =
+

 

 
73. The work done to the proton is equal to its change in kinetic energy. The kinetic 
energy of the proton is given by Eq. 37-52: 
 

2 2 2 2 ( 1)K E mc mc mc mcγ γ= − = − = −  
 
where 21/ 1γ β= −  is the Lorentz factor. Let v1 be the initial speed and v2 be the final 
speed of the proton. The work required is 
 

2 2 2 2
2 1 2 1( 1) ( 1) ( )W K mc mc mc mcγ γ γ γ γ= Δ = − − − = − = Δ . 

 
When β2 = 0.9860, we have γ2 = 5.9972, and when β1 = 0.9850, we have γ1 = 5.7953. 
Thus, Δγ = 0.202 and the change in kinetic energy (equal to the work) becomes (using Eq. 
37-52) 

2( ) (938 MeV)(5.9972 5.7953) 189 MeVW K mc γ= Δ = Δ = − =  
 
where mc2 = 938 MeV has been used (see Table 37-3). 
 
74. The mean lifetime of a pion measured by observers on the Earth is Δ Δt t= γ 0 , so the 
distance it can travel (using Eq. 37-12) is 
 

d v t v t= = =
× ×

−
=

−

Δ Δγ 0

8

2

0 99 2 998 10
1 0 99

55( . )( .
( . )

m / s)(26 10 s) m .
9

 

 
75. The strategy is to find the speed from E = 1533 MeV and mc2 = 0.511 MeV (see 
Table 37-3) and from that find the time. From the energy relation (Eq. 37-48), we obtain 
 

2 22 0.511 MeV1 1 0.99999994
1533 MeV

mcv c c c c
E

⎛ ⎞ ⎛ ⎞= − = − = ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
so that we conclude it took the electron 26 y to reach us. In order to transform to its own 
“clock” it’s useful to compute γ directly from Eq. 37-48: 
 

2

1533 MeV 3000
0.511 MeV

E
mc

γ = = =  
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though if one is careful one can also get this result from γ = −1 1 2/ ( / )v c . Then, Eq. 
37-7 leads to 

0
26 y 0.0087 y
3000

tt
γ
Δ

Δ = = =  

 
so that the electron “concludes” the distance he traveled is 0.0087 light-years (stated 
differently, the Earth, which is rushing toward him at very nearly the speed of light, 
seemed to start its journey from a distance of 0.0087 light-years away). 
 
76. We are asked to solve Eq. 37-48 for the speed v.  Algebraically, we find 
 

22

1 mc
E

β
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

. 

 
Using E = 10.611×10−9 J and the very accurate values for c and m (in SI units) found in 
Appendix B, we obtain β = 0.99990. 
 
77. The speed of the spaceship after the first increment is v1 = 0.5c. After the second one, 
it becomes 

1
2 2 2 2

1

0.50 0.50 0.80 ,
1 ' 1 (0.50 )

v v c cv c
v v c c c
′ + +

= = =
+ +

 

 
and after the third one, the speed is 
 

v v v
v v c

c c
c c c

c3
2

2
2 21

0 50 050
1 050 080

0 929=
+

+
=

+
+

=
'
'

. .
( . ) ( . )

. .  

 
Continuing with this process, we get v4 = 0.976c, v5 = 0.992c, v6 = 0.997c, and v7 = 
0.999c. Thus, seven increments are needed. 
 
78. (a) Equation 37-37 yields 

2
0 0

2
0

1 ( / )1      
1 1 ( / )

λ λ λβ β
λ β λ λ

−−
= ⇒ =

+ +
. 

 
With 0 / 434 / 462λ λ = , we obtain 0.062439β = , or v = 1.87 × 107 m/s. 
 
(b) Since it is shifted “toward the red” (toward longer wavelengths) then the galaxy is 
moving away from us (receding). 
 
79. We use Eq. 37-54 with mc2 = 0.511 MeV (see Table 37-3): 
 

2 2 22 (2.00 MeV) 2(2.00 MeV)(0.511 MeV)pc K Kmc= + = +  
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This readily yields p = 2.46 MeV/c. 
 
80. Using Appendix C, we find that the contraction is 
 

| |

( . ) .
.

.

ΔL L L L L= − = −
F
HG
I
KJ = − −

= × − −
×

×
F
HG

I
KJ

F
H
GG

I
K
JJ

=

0 0 0
2

6
4

8

2

1 1 1 1

2 6 370 10 1 1 30 10
2 998 10

0 064

γ
βe j

 m m s
m s

 m.

 

 
81. We refer to the particle in the first sentence of the problem statement as particle 2. 
Since the total momentum of the two particles is zero in S', it must be that the velocities 
of these two particles are equal in magnitude and opposite in direction in S'. Letting the 
velocity of the S' frame be v relative to S, then the particle that is at rest in S must have a 
velocity of  u v'1 = −  as measured in S', while the velocity of the other particle is given by 
solving Eq. 37-29 for u': 

2
2 2 2

2

( / 2) .
1 / 1 ( / 2)( / )

u v c vu
u v c c v c

− −′ = =
− −

 

 
Letting 2 1u u v′ ′= − = , we obtain 
 

2

( / 2)    (2 3) 0.27
1 ( / 2)( / )

c v v v c c
c v c

−
= ⇒ = ± ≈

−
 

 
where the  quadratic formula has been used (with the smaller of the two roots chosen so 
that v ≤ c). 
 
82. (a) Our lab-based measurement of its lifetime is figured simply from  
 

t = L/v = 7.99 × 10–13 s. 
 
Use of the time-dilation relation (Eq. 37-7) leads to 
 

Δt0
13 2 137 99 10 1 0 960 2 24 10= × − = ×− −( . ) ( . ) . s  s.  

 
(b) The length contraction formula can be used, or we can use the simple speed-distance 
relation (from the point of view of the particle, who watches the lab and all its meter 
sticks rushing past him at 0.960c until he expires): L = vΔt0 = 6.44 × 10–5 m. 
 
83. (a) For a proton (using Table 37-3), we have 
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2

2

938MeV 6.65GeV
1 (0.990)

pE m cγ= = =
−

 

 
which gives 2 6.65GeV 938MeV 5.71GeVpK E m c= − = − = . 
 
(b) From part (a), 6.65GeVE = . 
 

(c) Similarly, we have 2

2

(938MeV)(0.990)/( ) / 6.58GeV/
1 (0.990)

p p
cp m v m c c cγ γ β= = = =

−
. 

 
(d) For an electron, we have 

2

2

0.511MeV 3.62MeV
1 (0.990)

eE m cγ= = =
−

 

 
which yields 2 3.625MeV 0.511MeV 3.11MeVeK E m c= − = − = . 
 
(e) From part (d), 3.62MeVE = . 
 

(f) 2

2

(0.511MeV)(0.990)/( ) / 3.59MeV/
1 (0.990)

e e
cp m v m c c cγ γ β= = = =

−
. 

 
84. (a) Using Eq. 37-7, we expect the dilated time intervals to be 
 

τ γτ τ
= =

−
0

0
21 ( / )

.
v c

 

 
(b) We rewrite Eq. 37-31 using the fact that the period is the reciprocal of frequency 
( f R R= −τ 1  and f0 0

1= −τ ): 

τ β
β

τ β
β

τR
Rf

f c v
c v

= =
−
+

F
HG

I
KJ =

+
−

=
+
−

−
1 1

1
1
10

1

0 0 . 

 
(c) The Doppler shift combines two physical effects: the time dilation of the moving 
source and the travel-time differences involved in periodic emission (like a sine wave or 
a series of pulses) from a traveling source to a “stationary” receiver). To isolate the 
purely time-dilation effect, it’s useful to consider “local” measurements (say, comparing 
the readings on a moving clock to those of two of your clocks, spaced some distance 
apart, such that the moving clock and each of your clocks can make a close comparison 
of readings at the moment of passage). 
 
85. Let the reference frame be S in which the particle (approaching the South Pole) is at 
rest, and let the frame that is fixed on Earth be S'. Then v = 0.60c and u' = 0.80c (calling 
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“downward” [in the sense of Fig. 37-34] positive). The relative speed is now the speed of 
the other particle as measured in S: 
 

2 2

0.80 0.60 0.95 .
1 / 1 (0.80 )(0.60 ) /

u v c cu c
u v c c c c
′ + +

= = =
′+ +

 

 
86. (a) ΔE = Δmc2 = (3.0 kg)(0.0010)(2.998 × 108 m/s)2 = 2.7 × 1014 J. 
 
(b) The mass of TNT is 
 

mTNT

 J  kg mol
J

 kg.=
×

×
= ×

2 7 10 0 227
3 10

18 10
14

6
7. .

.4
.

c ha f
 

 
(c) The fraction of mass converted in the TNT case is 
 

Δm
m

TNT

TNT

kg)(0.0010)
 kg

=
×

= × −( .
.

. ,3 0
18 10

1 6 107
9  

 
Therefore, the fraction is 0.0010/1.6 × 10–9 = 6.0 × 106. 

 
87. (a) We assume the electron starts from rest. The classical formula for kinetic energy is 
Eq. 37-51, so if v = c then this (for an electron) would be 21 1

2 2 (511 ke V)mc = =  
255.5 ke V  (using Table 37-3). Setting this equal to the potential energy loss (which is 
responsible for its acceleration), we find (using Eq. 25-7) 
 

255.5 keV 255 keV 255.5 kV 256 kV.
| |

V
q e

= = = ≈  

 
(b) Setting this amount of potential energy loss (|ΔU| = 255.5 keV) equal to the correct 
relativistic kinetic energy, we obtain (using Eq. 37-52) 
 

( )

2
2

22

1 11 | | 1
11

mc U v c
U mcv c

⎛ ⎞ ⎛ ⎞⎜ ⎟− = Δ ⇒ = + ⎜ ⎟⎜ ⎟ − Δ⎝ ⎠−⎝ ⎠

 

 
which yields v = 0.745c = 2.23 × 108 m/s. 
 
88. We use the relative velocity formula (Eq. 37-29) with the primed measurements being 
those of the scout ship. We note that v = –0.900c since the velocity of the scout ship 
relative to the cruiser is opposite to that of the cruiser relative to the scout ship. 
 

2

0.980 0.900 0.678 .
1 / 1 (0.980)(0.900)

u v c cu c
u v c
′+ −

= = =
′+ −
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Chapter 38 
 
 
1. (a) With E = hc/λmin = 1240 eV·nm/λmin = 0.6 eV, we obtain λ = 2.1 × 103 nm = 2.1 
μm.  
 
(b) It is in the infrared region. 
 
2. Let 

1
2

2m v E hc
e = =photon λ

 

and solve for v: 
 

( )

( ) ( )
( )( )

2
2 2

8 5
3

2 2 2

2 1240eV nm
2.998 10 m/s 8.6 10 m/s.

590 nm 511 10 eV

e e e

hc hc hcv c c
m m c m cλ λ λ

= = =

⋅
= × = ×

×

 

 
Since v c<< ,  the nonrelativistic formula K mv= 1

2
2  may be used. The mec2 value of 

Table 37-3 and 1240eV nmhc = ⋅  are used in our calculation. 
 
3. Let R be the rate of photon emission (number of photons emitted per unit time) of the 
Sun and let E be the energy of a single photon. Then the power output of the Sun is given 
by P = RE. Now  

E = hf = hc/λ, 
 
where h = 6.626 × 10–34 J·s is the Planck constant, f is the frequency of the light emitted, 
and λ is the wavelength. Thus P = Rhc/λ and 
 

( )( )
( )( )

26
45

34 8

550nm 3.9 10 W
1.0 10 photons/s.

6.63 10 J s 2.998 10 m/s
PR

hc
λ

−

×
= = = ×

× ⋅ ×
 

 
4. We denote the diameter of the laser beam as d. The cross-sectional area of the beam is 
A = πd 2/4. From the formula obtained in Problem 38-3, the rate is given by 
 

( )
( )( )

( )( )( )

3

22 34 8 3

21 2

4 633nm 5.0 10 W

/ 4 6.63 10 J s 2.998 10 m/s 3.5 10 m

1.7 10 photons/m s .

R P
A hc d

λ
π π

−

− −

×
= =

× ⋅ × ×

= × ⋅
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5. The energy of a photon is given by E = hf, where h is the Planck constant and f is the 
frequency. The wavelength λ is related to the frequency by λf = c, so E = hc/λ. Since h = 
6.626 × 10–34 J·s and c = 2.998 × 108 m/s, 
 

hc =
× ⋅ ×

×
= ⋅

−

− −

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

Thus, 

E =
⋅1240eV nm

λ
.  

With  
λ = (1, 650, 763.73)–1 m = 6.0578021 × 10–7 m = 605.78021 nm, 

 
we find the energy to be 

E hc
= =

⋅
=

λ
1240
60578021

2 047eV nm
nm

eV.
.

.  

 
6. The energy of a photon is given by E = hf, where h is the Planck constant and f is the 
frequency. The wavelength λ is related to the frequency by λf = c, so E = hc/λ. Since h = 
6.626 × 10–34 J·s and c = 2.998 × 108 m/s, 
 

hc =
× ⋅ ×

×
= ⋅

−

− −

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

Thus, 

E =
⋅1240eV nm

λ
.  

With 589 nmλ = , we obtain 
1240eV nm 2.11eV.

589nm
hcE
λ

⋅
= = =  

 
7. The rate at which photons are absorbed by the detector is related to the rate of photon 
emission by the light source via 

abs
abs emit2(0.80) .

4
AR R

rπ
=  

 
Given that 6 2

abs 2.00 10  mA −= ×  and 3.00 m,r =  with abs 4.000 photons/s,R =  we find the 
rate at which photons are emitted to be 
 

( )
2 2

8
emit abs 6 2

abs

4 4 (3.00 m) 4.000 photons/s 2.83 10 photons/s
(0.80) (0.80)(2.00 10  m )

rR R
A

π π
−= = = ×

×
. 
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Since the energy of each emitted photon is  
 

ph
1240 eV nm 2.48 eV

500nm
hcE
λ

⋅
= = = , 

 
the power output of source is 
 

( )8 8 10
emit emit ph 2.83 10 photons/s (2.48 eV) 7.0 10 eV/s 1.1 10 W.P R E −= = × = × = ×  

 
8. The rate at which photons are emitted from the argon laser source is given by R = 
P/Eph, where P = 1.5 W is the power of the laser beam and Eph = hc/λ is the energy of 
each photon of wavelength λ. Since α = 84% of the energy of the laser beam falls within 
the central disk, the rate of photon absorption of the central disk is 
 

′ = = =
× ⋅ × ×

= ×

− −
R R P

hc
α α

/
. .

. . /

.

λ
0 84 15

6 63 10 2 998 10 515 10

3 3 10

34 8 9

18

b gb g
c hc h c h

W
J s m / s m

photons / s.

 

 
9. (a) We assume all the power results in photon production at the wavelength 

589 nmλ = . Let R be the rate of photon production and E be the energy of a single 
photon. Then,  

P = RE = Rhc/λ, 
 
where E = hf and f = c/λ are used. Here h is the Planck constant, f is the frequency of the 
emitted light, and λ is its wavelength. Thus, 
 

( )( )
( )( )

9
20

34 8

589 10 m 100 W
2.96 10 photon/s.

6.63 10 J s 3.00 10 m/s
PR

hc
λ

−

−

×
= = = ×

× ⋅ ×
 

 
(b) Let I be the photon flux a distance r from the source. Since photons are emitted 
uniformly in all directions, R = 4πr2I and 
 

( )
20

7
4 2

2.96 10 photon/s 4.86 10 m.
4 4 1.00 10 photon/m s

Rr
Iπ π

×
= = = ×

× ⋅
 

 
(c) The photon flux is 
 

( )

20
18

22 2

2.96 10 photon/s photon5.89 10 .
4 m s4 2.00m

RI
rπ π

×
= = = ×

⋅
 

 
10. (a) The rate at which solar energy strikes the panel is 
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P = =139 2 60 361. . .kW / m m kW.2 2c hc h  

 
(b) The rate at which solar photons are absorbed by the panel is 
 

( )( ) ( )
3

34 8 9
ph

22

3.61 10 W
6.63 10 J s 2.998 10 m/s / 550 10 m

1.00 10  photons/s.

PR
E − −

×
= =

× ⋅ × ×

= ×

 

 
(c) The time in question is given by 
 

t N
R

A= =
×

×
=

6 02 10
100 10

60 2
23

22

.
. /

.
s

s.  

 
11. (a) Let R be the rate of photon emission (number of photons emitted per unit time) 
and let E be the energy of a single photon. Then, the power output of a lamp is given by P 
= RE if all the power goes into photon production. Now, E = hf = hc/λ, where h is the 
Planck constant, f is the frequency of the light emitted, and λ is the wavelength. Thus  
 

 Rhc PP R
hcλ
λ

= ⇒ =  . 

 
The lamp emitting light with the longer wavelength (the 700 nm infrared lamp) emits 
more photons per unit time. The energy of each photon is less, so it must emit photons at 
a greater rate. 
 
(b) Let R be the rate of photon production for the 700 nm lamp. Then, 
 

( )( )
( )( )

21
19

700nm 400J/s
1.41 10 photon/s.

1.60 10 J/eV 1240eV nm
PR

hc
λ

−
= = = ×

× ⋅
 

 
12. Following Sample Problem — “Emission and absorption of light as photons,” we 
have 

( )( )( )34 8
17

9

100 / s 6.63 10 J s 2.998 10 m/s
3.6 10 W.

550 10 m
RhcP
λ

−
−

−

× ⋅ ×
= = = ×

×
 

 
13. The total energy emitted by the bulb is E = 0.93Pt, where P = 60 W and  
 

t = 730 h = (730 h)(3600 s/h) = 2.628 × 106 s. 
 
The energy of each photon emitted is Eph = hc/λ. Therefore, the number of photons 
emitted is 
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N E
E

Pt
hc

= = =
×

× ⋅ × ×
= ×

− −
ph

W s

J s m / s m
0 93 0 93 60 2 628 10

6 63 10 2 998 10 630 10
4 7 10

6

34 8 9
26.

/
. .

. . /
. .

λ

b gb gc h
c hc h c h  

 
14. The average power output of the source is 
 

9 10
emit

7.2 nJ 3.6 nJ/s 3.6 10  J/s 2.25 10 eV/s
2 s

EP
t

−Δ
= = = = × = ×

Δ
. 

 
Since the energy of each photon emitted is  
 

ph
1240 eV nm 2.07 eV

600nm
hcE
λ

⋅
= = = , 

 
the rate at which photons are emitted by the source is 
 

10
10emit

emit
ph

2.25 10 eV/s 1.09 10 photons/s.
2.07 eV

PR
E

×
= = = ×  

 
Given that the source is isotropic, and the detector (located 12.0 m away) has an 
absorbing area of 6 2

abs 2.00 10  mA −= ×  and absorbs 50% of the incident light, the rate of 
photon absorption is  
 

( )
6 2

10abs
abs emit2 2

2.00 10  m(0.50) (0.50) 1.09 10 photons/s 6.0 photons/s.
4 4 (12.0 m)
AR R

rπ π

−×
= = × =  

 
15. The energy of an incident photon is E = hf, where h is the Planck constant, and f is 
the frequency of the electromagnetic radiation. The kinetic energy of the most energetic 
electron emitted is  

Km = E – Φ = (hc/λ) – Φ, 
 
where Φ is the work function for sodium, and f = c/λ, where λ is the wavelength of the 
photon. The stopping potential Vstop is related to the maximum kinetic energy by eVstop = 
Km, so  
 

eVstop = (hc/λ) – Φ 
and 

stop

1240eV nm 170 nm.
5.0eV 2.2eV

hc
eV

λ ⋅
= = =

+ Φ +
 

 
Here eVstop = 5.0 eV and hc = 1240 eV·nm are used. 
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Note: The cutoff frequency for this problem is  
 

 
19

14
0 34

(2.2 eV)(1.6 10  J/eV) 5.3 10 Hz
J s

f
h

−

−

Φ ×
= = = ×

6.626×10 ⋅
. 

 
16. We use Eq. 38-5 to find the maximum kinetic energy of the ejected electrons: 
 

K hfmax . . .= − = × ⋅ × −−Φ 414 10 30 10 2 315 15eV s Hz eV = 10eV.c hc h  
 
17. The speed v of the electron satisfies  
 

K m v m c v c Ee emax / .= = = −1
2

2 1
2

2 2c hb g photon Φ  
 
Using Table 37-3, we find 
 

v c
E

m ce

=
−

= ×
−

×
= ×

2
2 998 10

2 580 4 50
511 10

6 76 102
8

3
5photon m / s

eV eV
eV

m / s.
Φd i c h b g.

. .
.  

 
18. The energy of the most energetic photon in the visible light range (with wavelength of 
about 400 nm) is about E = (1240 eV·nm/400 nm) = 3.1 eV (using the value hc = 1240 
eV·nm). Consequently, barium and lithium can be used, since their work functions are 
both lower than 3.1 eV. 
 
19. (a) We use Eq. 38-6: 
 

( )
stop

1240eV nm/400nm 1.8eV/ 1.3V.hf hcV
e e e

λ ⋅ −−Φ −Φ
= = = =  

 
(b) The speed v of the electron satisfies  
 

K m v m c v c Ee emax / .= = = −1
2

2 1
2

2 2c hb g photon Φ  
 
Using Table 37-3, we find 
 

( ) ( ) ( )photon stop stop 8
2 3

5

2 2 2 2 1.3V
2.998 10 m/s

511 10 eV

6.8 10 m/s.
e e e

E eV eV e
v c

m m m c
−Φ

= = = = ×
×

= ×

 

 
20. Using the value hc = 1240 eV·nm, the number of photons emitted from the laser per 
unit time is 
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R P
E

= =
×

⋅ ×
= ×

−

−
ph

W
eV nm / 600 nm)(1.60 10 J / eV)

s,2 00 10
1240

6 05 10
3

19
15.

(
. /  

 
of which (1.0 × 10–16)(6.05 × 1015/s) = 0.605/s actually cause photoelectric emissions. 
Thus the current is  
 

i = (0.605/s)(1.60 × 10–19 C) = 9.68 × 10–20 A. 
 
21. (a) From r = mev/eB,  the speed of the electron is v = rBe/me. Thus, 
 

2 2 2 4 2 19 2
2

max 31 19

1 1 ( ) (1.88 10 T m) (1.60 10 C)
2 2 2 2(9.11 10 kg)(1.60 10 J/eV)
3.1 keV.

e e
e e

rBe rB eK m v m
m m

− −

− −

⎛ ⎞ × ⋅ ×
= = = =⎜ ⎟ × ×⎝ ⎠
=

 

 
(b) Using the value hc = 1240 eV·nm, the work done is 
 

W E K= − =
⋅

×
− =−photon

eV nm
nm

keV keV.max .1240
71 10

310 143  

 
22. We use Eq. 38-6 and the value hc = 1240 eV·nm: 
 

K E hc hc
max

max

.= − = − =
⋅

−
⋅

=photon
eV nm

nm
eV nm

nm
eV.Φ

λ λ
1240

254
1240

325
107  

 
23. (a) The kinetic energy Km of the fastest electron emitted is given by  
 

Km = hf – Φ = (hc/λ) – Φ, 
 
where Φ is the work function of aluminum, f is the frequency of the incident radiation, 
and λ is its wavelength. The relationship f = c/λ was used to obtain the second form. 
Thus, 

Km =
⋅

−
1240

200
4 20eV nm

nm
eV = 2.00 eV. , 

 
where we have used hc = 1240 eV·nm.  
 
(b) The slowest electron just breaks free of the surface and so has zero kinetic energy. 
 
(c) The stopping potential V0 is given by Km = eV0, so  
 

V0 = Km/e = (2.00 eV)/e = 2.00 V. 
 
(d) The value of the cutoff wavelength is such that Km = 0. Thus, hc/λ = Φ, or  
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λ = hc/Φ = (1240 eV·nm)/(4.2 eV) = 295 nm. 

 
If the wavelength is longer, the photon energy is less and a photon does not have 
sufficient energy to knock even the most energetic electron out of the aluminum sample. 
 
24. (a) For the first and second case (labeled 1 and 2) we have  
 

eV01 = hc/λ1 – Φ ,     eV02 = hc/λ2 – Φ, 
 
from which h and Φ can be determined. Thus, 
 

( )
( ) ( ) ( ) ( )

1 2 15
1 11 1 17

1 2

1.85eV 0.820eV 4.12 10 eV s.
3.00 10 nm/s 300nm 400nm

e V V
h

c λ λ
−

− −− −

− −
= = = × ⋅

⎡ ⎤− × −⎣ ⎦

 

 
(b) The work function is 
 

2 2 1 1

1 2

3( ) (0.820 eV)(400 nm) (1.85 eV)(300 nm) 2.27 eV.
300 nm 400 nm

V Vλ λ
λ λ

− −
Φ = = =

− −
 

 
(c) Let Φ = hc/λmax to obtain 

λmax .
= =

⋅
=

hc
Φ

1240
2 27

545eV nm
eV

nm. 

 
25. (a) We use the photoelectric effect equation (Eq. 38-5) in the form hc/λ = Φ + Km. 
The work function depends only on the material and the condition of the surface, and not 
on the wavelength of the incident light. Let λ1 be the first wavelength described and λ2 be 
the second. Let Km1 = 0.710 eV be the maximum kinetic energy of electrons ejected by 
light with the first wavelength, and Km2 = 1.43 eV be the maximum kinetic energy of 
electrons ejected by light with the second wavelength. Then, 
 

1 2
1 2

, .m m
hc hcK K
λ λ

= Φ + = Φ +  

 
The first equation yields Φ = (hc/λ1) – Km1. When this is used to substitute for Φ in the 
second equation, the result is  
 

(hc/λ2) = (hc/λ1) – Km1 + Km2. 
 
The solution for λ2 is 
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1
2

1 2 1

(1240V nm)(491nm)
( ) 1240eV nm (491nm)(1.43eV 0.710eV)

382nm.
m m

hc
hc K K

λ ⋅
λ = =

+ λ − ⋅ + −

=
 

 
Here hc = 1240 eV·nm has been used.  
 
(b) The first equation displayed above yields 
 

Φ = − =
⋅

− =
hc Kmλ1

1
1240

491
0 710 182eV nm

nm
eV eV.. .  

 
26. To find the longest possible wavelength λmax (corresponding to the lowest possible 
energy) of a photon that can produce a photoelectric effect in platinum, we set Kmax = 0 in 
Eq. 38-5 and use hf = hc/λ. Thus hc/λmax = Φ. We solve for λmax: 
 

λ max .
= =

⋅
=

hc
Φ

1240
532

233eV nm
nm

nm.  

 
27. (a) When a photon scatters from an electron initially at rest, the change in wavelength 
is given by  

Δλ = (h/mc)(1 – cos φ), 
 
where m is the mass of an electron and φ is the scattering angle. Now, h/mc = 2.43 × 10–12 
m = 2.43 pm, so  
 

Δλ = (h/mc)(1 – cos φ) = (2.43 pm)(1 – cos 30°) = 0.326 pm. 
 
The final wavelength is  
 

λ' = λ + Δλ = 2.4 pm + 0.326 pm = 2.73 pm. 
 
(b) Now, Δλ = (2.43 pm)(1 – cos 120°) = 3.645 pm and  
 

λ' = 2.4 pm + 3.645 pm = 6.05 pm. 
 
28. (a) The rest energy of an electron is given by E = mec2. Thus the momentum of the 
photon in question is given by 
 

2
31 8 22(9.11 10 kg)(2.998 10 m/s) 2.73 10 kg m/s

0.511 MeV / .

e
e

m cEp m c
c c

c

− −= = = = × × = × ⋅

=

 

 
(b) From Eq. 38-7, 
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34
12

22

6.63 10 J s 2.43 10 m=2.43 pm.
2.73 10 kg m/s

h
p

λ
−

−
−

× ⋅
= = = ×

× ⋅
 

 
(c) Using Eq. 38-1, 

8
20

12

2.998 10 m/s 1.24 10 Hz.
2.43 10 m

cf
λ −

×
= = = ×

×
 

 
29. (a) The x-ray frequency is 
 

8
18

12

2.998 10 m/s 8.57 10 Hz.
35.0 10 m

cf
λ −

×
= = = ×

×
 

 
(b) The x-ray photon energy is 
 

E hf= = × ⋅ × = ×−( . .414 10 355 1015 4eV s)(8.57 10 Hz) eV.18  
 
(c) From Eq. 38-7, 
 

34
23

12

6.63 10 J s 1.89 10 kg m/s 35.4 keV / .
35.0 10 m

hp c
−

−
−

× ⋅
= = = × ⋅ =

λ ×
 

 
30. The (1 – cos φ) factor in Eq. 38-11 is largest when φ = 180°. Thus, using Table 37-3, 
we obtain 

max 2

1240MeV fm(1 cos180 ) (1 ( 1)) 2.64 fm
938MeVp

hc
m c

⋅
Δλ = − ° = − − =  

 
where we have used the value hc = 1240 eV·nm =1240 MeV·fm. 
 
31. If E is the original energy of the photon and E' is the energy after scattering, then the 
fractional energy loss is 

E E E
E E

λ
λ λ

′Δ − Δ
= =

+ Δ
 

 
using the result from Sample Problem – “Compton scattering of light by electrons.” Thus 
 

/ 0.75 3 300 %.
1 / 1 0.75

E E
E E

λ
λ

Δ Δ
= = = =

− Δ −
 

 
A 300% increase in the wavelength leads to a 75% decrease in the energy of the photon. 
 
32. (a) Equation 38-11 yields 
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Δλ =
h

m ce

( ( . .1 2 43 4 86− = − ° = +cos ) pm)(1 cos180 ) pm.φ  

 
(b) Using the value hc = 1240 eV·nm, the change in photon energy is 
 

1 1.(1240 eV nm) 40.6 keV.
0.01 nm 4.86 pm 0.01 nm

hc hcE
⎛ ⎞

Δ = − = − = −⎜ ⎟′λ λ +⎝ ⎠
 

 
(c) From conservation of energy, ΔK = – ΔE = 40.6 keV. 
 
(d) The electron will move straight ahead after the collision, since it has acquired some of 
the forward linear momentum from the photon. Thus, the angle between +x and the 
direction of the electron’s motion is zero. 
 
33. (a) The fractional change is 
 

1

( / 1 1 1
/
1 1 .

( )(1 cos ) 1C

E hc
E hc

λ λ λλ λ
λ λ λ λ λ λ λ

λ λ λ λ φ −

Δ Δ ) 1 1⎛ ⎞ ⎛ ⎞= = Δ = − = − = −⎜ ⎟ ⎜ ⎟′ ′ + Δ⎝ ⎠ ⎝ ⎠

= − = −
/Δ +1 / − +

 

 
If λ = 3.0 cm = 3.0 × 1010 pm and φ = 90°, the result is 
 

11 9
10 1

1 8.1 10 8.1 10  %.
(3.0 10 pm/2.43pm)(1 cos90 ) 1

E
E

− −
−

Δ
= − = − × = − ×

× − ° +
 

 
(b) Now λ = 500 nm = 5.00 × 105 pm and φ = 90°, so 
 

6 4
5 1

1 4.9 10 4.9 10  %.
(5.00 10 pm/2.43pm)(1 cos90 ) 1

E
E

− −
−

Δ
= − = − × = − ×

× − ° +
 

 
(c) With λ = 25 pm and φ = 90°, we find 
 

2
1

1 8.9 10 8.9 %.
(25pm/2.43pm)(1 cos90 ) 1

E
E

−
−

Δ
= − = − × = −

− ° +
 

 
(d) In this case,  
 

λ = hc/E = 1240 nm·eV/1.0 MeV = 1.24 × 10–3 nm = 1.24 pm, 
so 

1

1 0.66 66 %.
(1.24pm/2.43pm)(1 cos90 ) 1

E
E −

Δ
= − = − = −

− ° +
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(e) From the calculation above, we see that the shorter the wavelength the greater the 
fractional energy change for the photon as a result of the Compton scattering. Since ΔE/E 
is virtually zero for microwave and visible light, the Compton effect is significant only in 
the x-ray to gamma ray range of the electromagnetic spectrum. 
 
34. The initial energy of the photon is (using hc = 1240 eV·nm) 
 

51240eV nm 4.13 10 eV
0.00300 nm

hcE
λ

⋅
= = = × . 

 
Using Eq. 38-11 (applied to an electron), the Compton shift is given by 
 

( ) ( ) 2 3

1240eV nm1 cos 1 cos90.0 2.43 pm
511 10 eVe e e

h h hc
m c m c m c

φ ⋅
Δλ = − = − ° = = =

×
 

 
Therefore, the new photon wavelength is  
 

λ' = 3.00 pm + 2.43 pm = 5.43 pm. 
 
Consequently, the new photon energy is 
 

51240eV nm 2.28 10 eV
0.00543nm

hcE ⋅′ = = = ×
′λ

 

 
By energy conservation, then, the kinetic energy of the electron must be equal to  
 
 5 5 5 144.13 10 2.28 10 eV 1.85 10 eV 3.0 10  JeK E E E −′= Δ = − = × − × = × ≈ × . 
 
35. (a) Since the mass of an electron is m = 9.109 × 10–31 kg, its Compton wavelength is 
 

34
12

31 8

6.626 10 J s 2.426 10 m 2.43 pm.
(9.109 10 kg)(2.998 10 m/s)C

h
mc

λ
−

−
−

× ⋅
= = = × =

× ×
 

 
(b) Since the mass of a proton is m = 1.673 × 10–27 kg, its Compton wavelength is 
 

34
15

27 8

6.626 10 J s 1.321 10 m 1.32 fm.
(1.673 10 kg)(2.998 10 m/s)Cλ

−
−

−

× ⋅
= = × =

× ×
 

 
(c) We note that hc = 1240 eV·nm, which gives E = (1240 eV·nm)/λ, where E is the 
energy and λ is the wavelength. Thus for the electron,  
 

E = (1240 eV·nm)/(2.426 × 10–3 nm) = 5.11 × 105 eV = 0.511 MeV. 
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(d) For the proton,  
 

E = (1240 eV·nm)/(1.321 × 10–6 nm) = 9.39 × 108 eV = 939 MeV. 
 
36. (a) Using the value hc = 1240 eV·nm, we find 
 

λ =
hc
E

=
⋅

= × =−1240
0511

2 43 10 2 433nm eV
MeV

nm pm.
.

. .  

 
(b) Now, Eq. 38-11 leads to 
 

(1 cos ) 2.43pm (2.43pm)(1 cos90.0 )

4.86pm.
e

h
m c

λ λ λ λ φ′ = + Δ = + − = + − °

=
 

 
(c) The scattered photons have energy equal to 
 

2.43 pm(0.511 MeV) 0.255 MeV.
4.86 pm

E E λ
λ

⎛ ⎞⎛ ⎞′ = = =⎜ ⎟⎜ ⎟′⎝ ⎠ ⎝ ⎠
 

 
37. (a) From Eq. 38-11,  

(1 cos )
e

h
m c

θΔλ = − . 

 
In this case φ = 180° (so cos φ = –1), and the change in wavelength for the photon is 
given by Δλ = 2h/mec. The energy E' of the scattered photon (with initial energy E = hc/λ) 
is then 

21 / 1 (2 / )( / ) 1 2 /
50.0keV 41.8keV .

1 2(50.0 keV)/0.511MeV

e e

hc E E EE
h m c E hc E m cλ λ λ λ

′ = = = =
+ Δ + Δ + +

= =
+

 

 
(b) From conservation of energy the kinetic energy K of the electron is given by  
 

K = E – E' = 50.0 keV – 41.8 keV = 8.2 keV. 
 
38. Referring to Sample Problem — “Compton scattering of light by electrons,” we see 
that the fractional change in photon energy is 
 

n ( / )(1 cos ) .
( / ) ( / )(1 cos )

E E h mc
E hc E h mc

φ
φ

− Δλ −
= =

λ + Δλ + −
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Energy conservation demands that E – E' = K, the kinetic energy of the electron. In the 
maximal case, φ = 180°, and we find 
 

( / )(1 cos180 ) 2 / .
( / ) ( / )(1 cos180 ) ( / ) (2 / )

K h mc h mc
E hc E h mc hc E h mc

− °
= =

+ − ° +
 

 
Multiplying both sides by E and simplifying the fraction on the right-hand side leads to 
 

K E mc
c E mc

E
mc E

=
+

F
HG

I
KJ =

+
2

2 2

2

2

/
/ / /

.  

 
39. The magnitude of the fractional energy change for the photon is given by 
 

ph

ph

( / 1
/

E hc
E hc

λ λλ λ β
λ λ λ λ λ λ λ

Δ Δ ) 1 1 Δ⎛ ⎞ ⎛ ⎞= = Δ = − = =⎜ ⎟ ⎜ ⎟+ Δ + Δ⎝ ⎠ ⎝ ⎠
 

 
where β = 0.10. Thus Δλ = λβ/(1 – β). We substitute this expression for Δλ in Eq. 38-11 
and solve for cos φ: 

2

ph

( )cos 1 1
(1 ) (1 )

(0.10)(511 keV)1 0.716 .
(1 0.10)(200keV)

mc mc mc
h h E

λβ βφ λ
β β

= − Δ =1− = −
− −

= − =
−

 

 
This leads to an angle of φ = 44°. 
 
40. The initial wavelength of the photon is (using hc = 1240 eV·nm) 
 

1240eV nm 0.07086 nm
17500eV

hc
E

λ ⋅
= = =  

 
or 70.86 pm. The maximum Compton shift occurs for φ = 180°, in which case Eq. 38-11 
(applied to an electron) yields 
 

2 3

1240eV nm(1 cos180 ) (1 ( 1)) 0.00485 nm
511 10 eVe

hc
m c

λ
⎛ ⎞ ⎛ ⎞⋅

Δ = − ° = − − =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠
 

 
where Table 37-3 is used. Therefore, the new photon wavelength is  
 

λ' = 0.07086 nm + 0.00485 nm = 0.0757 nm. 
 
Consequently, the new photon energy is 
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41240eV nm 1.64 10 eV 16.4 keV .

0.0757 nm
hcE
λ

⋅′ = = = × =
′

 

 
By energy conservation, then, the kinetic energy of the electron must equal  
 

E' – E = 17.5 keV – 16.4 keV = 1.1 keV. 
 
41. (a) From Eq. 38-11 
 

(1 cos ) (2.43pm)(1 cos90 ) 2.43pm .
e

h
m c

λ φΔ = − = − ° =  

 
(b) The fractional shift should be interpreted as Δλ divided by the original wavelength: 
 

62.425pm 4.11 10 .
590nm

λ
λ

−Δ
= = ×  

 
(c) The change in energy for a photon with λ = 590 nm is given by 
 

ph 2

15 8

2

6

(4.14 10 eV s)(2.998 10 m/s)(2.43pm)
(590nm)

8.67 10 eV .

hc hcE λ
λ λ

−

−

Δ⎛ ⎞Δ = Δ ≈ −⎜ ⎟
⎝ ⎠

× ⋅ ×
= −

= − ×

 

 
(d) For an x-ray photon of energy Eph = 50 keV, Δλ remains the same (2.43 pm), since it 
is independent of Eph.  
 
(e) The fractional change in wavelength is now 
 

3
2

15 8
ph

(50 10 eV)(2.43pm) 9.78 10 .
/ (4.14 10 eV s)(2.998 10 m/s)hc E

λ λ
λ

−
−

Δ Δ ×
= = = ×

× ⋅ ×
 

 
(f) The change in photon energy is now 
 

ph ph
1 1

1
hcE hc Eλ α

λ λ λ λ λ λ α
Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ Δ + Δ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
where α = Δλ/λ. With Eph = 50 keV and α = 9.78 × 10–2 , we obtain ΔEph =  –4.45 keV. 
(Note that in this case α ≈ 0.1 is not close enough to zero so the approximation ΔEph ≈ 
hcΔλ/λ2 is not as accurate as in the first case, in which α = 4.12 × 10–6. In fact if one were 
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to use this approximation here, one would get ΔEph ≈ –4.89 keV, which does not amount 
to a satisfactory approximation.) 
 
42. (a) Using Table 37-3 and the value hc = 1240 eV·nm, we obtain 
 

2

1240eV nm 0.0388nm.
2 2(511000eV)(1000eV)2e e

h h hc
p m K m c K

⋅
λ = = = = =  

 
(b) A photon’s de Broglie wavelength is equal to its familiar wave-relationship value. 
Using the value hc = 1240 eV·nm, 
 

1240eV nm 1.24nm .
1.00keV

hc
E

λ ⋅
= = =  

 
(c) The neutron mass may be found in Appendix B. Using the conversion from electron-
volts to Joules, we obtain 
 

34
13

27 16

6.63 10 J s 9.06 10 m.
2 2(1.675 10 kg)(1.6 10 J)n

h
m K

λ
−

−

− −

× ⋅
= = = ×

× ×
 

 
43. The de Broglie wavelength of the electron is 
 

2 2e e

h h h
p m K m eV

λ = = = ,  

 
where V is the accelerating potential and e is the fundamental charge. This gives 
 

34

31 19 3

12

J s
2 2(9.109 10 kg)(1.602 10 C)(25.0 10 V)

7.75 10 m 7.75pm.
e

h
m eV

−

− −

−

6.626×10 ⋅
λ = =

× × ×

= × =

 

 
44. The same resolution requires the same wavelength, and since the wavelength and 
particle momentum are related by p = h/λ, we see that the same particle momentum is 
required. The momentum of a 100 keV photon is  
 

p = E/c = (100 × 103 eV)(1.60 × 10–19 J/eV)/(3.00 × 108 m/s) = 5.33 × 10–23 kg·m/s. 
 
This is also the magnitude of the momentum of the electron. The kinetic energy of the 
electron is 

K p
m

= =
× ⋅

×
= ×

−

−
−

2 23 2

31
15

2
5 33 10

2 9 11 10
156 10

.

.
.

kg m / s

kg
J.

c h
c h  
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The accelerating potential is 
 

V K
e

= =
×
×

= ×
−

−

156 10
160 10

9 76 10
15

19
3.

.
.J

C
V.  

 
45. (a) The kinetic energy acquired is K = qV, where q is the charge on an ion and V is 
the accelerating potential. Thus  
 

K = (1.60 × 10–19 C)(300 V) = 4.80 × 10–17 J. 
 
The mass of a single sodium atom is, from Appendix F,  
 

m = (22.9898 g/mol)/(6.02 × 1023 atom/mol) = 3.819 × 10–23 g = 3.819 × 10–26 kg. 
 
Thus, the momentum of an ion is 
 

p mK= = × × = × ⋅− − −2 2 3819 10 4 80 10 191 1026 17 21. . .kg J kg m / s.c hc h  

 
(b) The de Broglie wavelength is 
 

34
13

21

6.63 10 J s 3.46 10 m.
1.91 10 kg m/s

h
p

λ
−

−
−

× ⋅
= = = ×

× ⋅
 

 
46. (a) We need to use the relativistic formula  
 

( )2 2 2/ / /ep E c m c E c K c= − ≈ ≈  

( )2since .eE m c>>  So 
 

8
9

1240eV nm 2.5 10 nm 0.025 fm.
50 10 eV

h hc
p K

λ −⋅
= ≈ = = × =

×
 

 
(b) With 5.0 fmR = , we obtain 2/ 2.0 10R λ = × .  
 
47. If K is given in electron volts, then 
 

34 9 1/2

31 19

1/2

J s 1.226 10 m eV
2 2(9.109 10 kg)(1.602 10 J/eV)

1.226nm eV ,

h h
p mK KK

K

λ
− −

− −

6.626×10 ⋅ × ⋅
= = = =

× ×

⋅
=
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where K is the kinetic energy. Thus, 
 

K =
⋅F

HG
I
KJ =

⋅F
HG

I
KJ = × −1226 1226

590
4 32 10

2 2
6. . .nm eV nm eV

nm
eV.

1/2 1/2

λ
 

 
48. Using Eq. 37-8, we find the Lorentz factor to be  
 

 
2 2

1 1 7.0888
1 ( / ) 1 (0.9900)v c

γ = = =
− −

. 

 
With p mvγ=  (Eq. 37-41), the de Broglie wavelength of the protons is 
 

 
34

16
27 8

6.63 10  J s 1.89 10  m
(7.0888)(1.67 10 kg)(0.99 3.00 10 m/s)

h h
p mv

λ
γ

−
−

−

× ⋅
= = = = ×

× × ×
. 

 
The vertical distance between the second interference minimum and the center point is  
 

 2
1 31
2 2

L Ly
d d

λ λ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

 
where L is the perpendicular distance between the slits and the screen. Therefore, the 
angle between the center of the pattern and the second minimum is given by 
 

 2 3tan
2

y
L d

λθ = = . 

Since dλ � , tanθ θ≈ , and we obtain 
 

 
16

8 6
9

3 3(1.89 10  m) 7.07 10 rad (4.0 10 )
2 2(4.00 10  m)d
λθ

−
− −

−

×
≈ = = × = × °

×
. 

 
49. (a) The momentum of the photon is given by p = E/c, where E is its energy. Its 
wavelength is 

1240eV nm 1240 nm.
1.00eV

h hc
p E

λ ⋅
= = = =  

 
(b) The momentum of the electron is given by p mK= 2 ,  where K is its kinetic energy 
and m is its mass. Its wavelength is 

λ = =
h
p

h
mK2

.  

 
If K is given in electron volts, then 
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34 9 1/2 1/2

31 19

J s 1.226 10 m eV 1.226nm eV .
2(9.109 10 kg)(1.602 10 J/eV) K KK

λ
− −

− −

6.626×10 ⋅ × ⋅ ⋅
= = =

× ×
 

 
For 1.00 eVK = , we have 
 

1/21.226nm eV 1.23 nm.
1.00eV

λ ⋅
= =  

(c) For the photon, 
 

6
9

1240eV nm 1.24 10 nm 1.24 fm.
1.00 10 eV

hc
E

λ −⋅
= = = × =

×
 

 
(d) Relativity theory must be used to calculate the wavelength for the electron. According 
to Eq. 38-51, the momentum p and kinetic energy K are related by  
 

(pc)2 = K2 + 2Kmc2. 
Thus, 

( ) ( )( )22 2 9 9 6

9

2 1.00 10 eV 2 1.00 10 eV 0.511 10 eV

1.00 10 eV.

pc K Kmc= + = × + × ×

= ×
 

 
The wavelength is 
 

6
9

1240eV nm 1.24 10 nm 1.24 fm.
1.00 10 eV

h hc
p pc

λ −⋅
= = = = × =

×
 

 
50. (a) The momentum of the electron is  
 

34
24

9

6.63 10 J s 3.3 10 kg m/s.
0.20 10 m

hp
λ

−
−

−

× ⋅
= = = × ⋅

×
 

 
(b) The momentum of the photon is the same as that of the electron: 

243.3 10 kg m/s.p −= × ⋅  
 
(c) The kinetic energy of the electron is 
 

( )
( )

2242
18

31

3.3 10 kg m/s
6.0 10 J 38 eV.

2 2 9.11 10 kge
e

pK
m

−
−

−

× ⋅
= = = × =

×
 

 
(d) The kinetic energy of the photon is 
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( )( )24 8 16
ph 3.3 10 kg m/s 2.998 10 m/s 9.9 10 J 6.2 keV.K pc − −= = × ⋅ × = × =  

 
51. (a) Setting λ = = −h p h E c m ce/ / / ,b g2 2 2  we solve for K = E – mec2:  
 

( )
22

22 4 2
3

1240eV nm 0.511MeV 0.511MeV
10 10 nm

0.015 MeV 15 keV.

e e
hcK m c m c −

⎛ ⎞⋅⎛ ⎞= + − = + −⎜ ⎟⎜ ⎟λ ×⎝ ⎠ ⎝ ⎠
= =

 

 
(b) Using the value 1240eV nmhc = ⋅  
 

5
3

1240eV nm 1.2 10 eV 120 keV.
10 10 nm

hcE
λ −

⋅
= = = × =

×
 

  
(c) The electron microscope is more suitable, as the required energy of the electrons is 
much less than that of the photons. 
 
52. (a) Since K m c= =7 5 4 9322. ,MeV << MeVα b g  we may use the nonrelativistic 

formula p m K= 2 α .  Using Eq. 38-43 (and noting that 1240 eV·nm = 1240 MeV·fm), 
we obtain 
 

( )( )( )2

1240 MeV fm 5.2fm.
2 4u 931.5MeV/u 7.5MeV2

h hc
p m c Kα

λ ⋅
= = = =  

 
(b) Since λ = 52. fm << 30fm,  to a fairly good approximation, the wave nature of the α 
particle does not need to be taken into consideration. 
 
53. The wavelength associated with the unknown particle is  
 

,p
p p p

h h
p m v

λ = =  

 
where pp is its momentum, mp is its mass, and vp is its speed. The classical relationship pp 
= mpvp was used. Similarly, the wavelength associated with the electron is λe = h/(meve), 
where me is its mass and ve is its speed. The ratio of the wavelengths is  
 

λp/λe = (meve)/(mpvp), 
so 

( )
31

27
4

9.109 10 kg 1.675 10 kg.
3 1.813 10

e e
p e

p p

vm m
v

λ
λ

−
−

−

×
= = = ×

×
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According to Appendix B, this is the mass of a neutron. 
 
54. (a) We use the value 1240nm eVhc = ⋅ : 
 

photon
1240nm eV 1.24keV

1.00nm
hcE
λ

⋅
= = = . 

 
(b) For the electron, we have 
 

( ) ( )
( )

22 22

2

/ / 1 1240eV nm 1.50 eV.
2 2 2 2 0.511 MeV 1.00nme e e

h hcpK
m m m c

λ λ ⎛ ⎞⋅
= = = = =⎜ ⎟

⎝ ⎠
 

 
(c) In this case, we find 
 

9
photon 6

1240nm eV 1.24 10 eV 1.24 GeV.
1.00 10 nm

E −

⋅
= = × =

×
 

 
(d) For the electron (recognizing that 1240 eV·nm = 1240 MeV·fm) 
 

K p c m c m c hc m c m ce e e e= + − = + −

=
⋅F

HG
I
KJ + −

×

2 2 2 2 2 2 2 2 2

2
21240

100
0 511 0 511

c h b g c h

b g

/

.
. .

λ

MeV fm
fm

MeV MeV

= 1.24 10 MeV = 1.24GeV.3

 

 
We note that at short λ (large K) the kinetic energy of the electron, calculated with the 
relativistic formula, is about the same as that of the photon. This is expected since now K 
≈ E ≈ pc for the electron, which is the same as E = pc for the photon. 
 
55. (a) We solve v from λ = h/p = h/(mpv): 
 

( )( )
34

6
27 12

6.626 10 J s 3.96 10 m/s.
1.6705 10 kg 0.100 10 mp

hv
m

−

− −

× ⋅
= = = ×

λ × ×
 

 
(b) We set eV K m vp= = 1

2
2  and solve for the voltage: 

 

( )( )
( )

227 62
4

19

1.6705 10 kg 3.96 10 m/s
8.18 10 V 81.8 kV.

2 2 1.60 10 C
pm v

V
e

−

−

× ×
= = = × =

×
 

 
56. The wave function is now given by 
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Ψ( , ) .( )x t e i kx t= − +ψ ω

0  
 
This function describes a plane matter wave traveling in the negative x direction. An 
example of the actual particles that fit this description is a free electron with linear 
momentum Gp hk= −( / )�2π i  and kinetic energy  
 

2 2 2

22 8e e

p h kK
m m

= =
π

 . 

 
57. For U = U0, Schrödinger’s equation becomes 
 

2 2

02 2

8 [ ] 0.d m E U
dx h

ψ ψπ
+ − =  

 
We substitute ψ ψ= 0e

ikx .  The second derivative is  
2

2 2
02 .ikxd k e k

dx
ψ ψ ψ= − = −  

The result is 
2

2
02

8 [ ] 0.mk E U
h

ψ ψπ
− + − =  

Solving for k, we obtain 
 

2

0 02

8 2[ ] 2 [ ].mk E U m E U
h h
π π

= − = −  

 
58. (a) The wave function is now given by 
 

Ψ( , ) ( ).( ) ( )x t e e e e ei kx t i kx t i t ikx ikx= + = +− − + − −ψ ψω ω ω
0 0  

 
Thus, 

2 2 2 22 2
0 0 0

2 2 2 2
0 0

2
0

| ( , ) | ( )

              | (cos sin ) (cos sin ) | 4 (cos )

              2 (1 cos2 ).

i t ikx ikx i t ikx ikx ikx ikxx t e e e e e e e e

kx i kx kx i kx kx

kx

ω ωψ ψ ψ

ψ ψ

ψ

− − − − −Ψ = + = + = +

= + + − =

= +

 

 
(b) Consider two plane matter waves, each with the same amplitude ψ 0 2/  and 
traveling in opposite directions along the x axis. The combined wave Ψ is a standing 
wave: 
 

( ) ( )
0 0 0 0( , ) ( ) (2 cos ) .i kx t i kx t ikx ikx i t i tx t e e e e e kx eω ω ω ωψ ψ ψ ψ− − + − − −Ψ = + = + =  
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Thus, the squared amplitude of the matter wave is 
 

| ( , )| ( cos ) ( ),Ψ x t kx e kxi t2
0

2 2

0
22 2 1= = +−ψ ψω cos2  

 
which is shown below. 
 

 
 
(c) We set Ψ x t kx, cosb g b g2

0
22 1 2 0= + =ψ  to obtain cos(2kx) = –1. This gives 

 

( ) ( )22 2 2 1 0,1, 2, 3,kx n nπ π
λ

⎛ ⎞= = + , =⎜ ⎟
⎝ ⎠

…  

We solve for x: 

x n= +
1
4

2 1b gλ .  

 
(d) The most probable positions for finding the particle are where ( ) ( ), 1 cos 2x t kxΨ ∝ +  
reaches its maximum. Thus cos 2kx = 1, or 
 

( )22 2 2 , 0,1, 2, 3,kx n nπ π
λ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

…  

We solve for x and find x n=
1
2

λ .  

 
59. We plug Eq. 38-17 into Eq. 38-16, and note that 
 

d
dx

d
dx

Ae Be ikAe ikBeikx ikx ikx ikxψ
= + = −− −c h .  

 
Also, 
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d
dx

d
dx

ikAe ikBe k Ae k Beikx ikx ikx ikx
2

2
2 2ψ

= − = − −−c h .  

Thus, 
d
dx

k k Ae k Be k Ae Beikx ikx ikx ikx
2

2
2 2 2 2 0ψ ψ+ = − − + + =−c h .  

 
60. (a) Using Euler’s formula eiφ = cos φ + i sin φ, we rewrite ψ(x) as 
 

( ) ( ) ( ) ( )0 0 0 0cos sin cos sin ,ikxx e kx i kx kx i kx a ibψ ψ ψ ψ ψ= = + = + = +  
 
where a =ψ0 cos kx and b = ψ0 sin kx are both real quantities. 
 
(b) The time-dependent wave function is 
 

ψ ψ ψ ψ
ψ ω ψ ω

ω ω ω( , ) ( )
[ )] [ sin )]

( )x t x e e e e
kx t i kx t

i t ikx i t i kx t= = =
= − + −

− − −
0 0

0 0cos( ( .
 

 
61. The angular wave number k is related to the wavelength λ by k = 2π/λ and the 
wavelength is related to the particle momentum p by λ = h/p, so k = 2πp/h. Now, the 
kinetic energy K and the momentum are related by K = p2/2m, where m is the mass of the 
particle. Thus p mK= 2  and 

k mK
h

=
2π 2 .  

 
62. (a) The product *nn can be rewritten as 
 

nn a ib a ib a ib a i b a ib a ib

a iba iab ib ib a b

∗ ∗ ∗ ∗ ∗= + + = + + = + −

= + − + − = +

b gb g b gc h b gb g
b gb g2 2 2 ,

 

 
which is always real since both a and b are real. 
 
(b) Straightforward manipulation gives 
 

( ) ( )

2

2 2 2 2 2 2 2 2 2 2

| ( )( ) | | ( ) | | ( ) ( ) |

.

nm a ib c id ac iad ibc i bd ac bd i ad bc

ac bd ad bc a c b d a d b c

= + + = + + + − = − + +

= − + + = + + +
 

 
However, since  

n m a ib c id a b c d

a c b d a d b c

= + + = + +

= + + +

2 2 2 2

2 2 2 2 2 2 2 2 ,
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we conclude that |nm| = |n| |m|. 
 
63. If the momentum is measured at the same time as the position, then 
 

Δ
Δ

p
x

≈ =
× ⋅

= × ⋅
−

−= 6 63 10
2 50

21 10
34

24. . .J s
pm

kg m s
πb g  

 
64. (a) Using the value 1240nm eVhc = ⋅ , we have 
 

3

1240nm eV 124keV .
10.0 10 nm

hcE
λ −

⋅
= = =

×
 

 
(b) The kinetic energy gained by the electron is equal to the energy decrease of the 
photon: 
 

( ) ( )( )
10.0pm

1 cos 2.43pm 1 cos180

1 1
1

124keV
1 1

40.5keV.
C

hc hc EE hc

E

φ
λ

λ − − °

Δλ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞Δ = Δ = − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟λ λ λ + Δλ λ λ + Δλ + λ/Δλ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= =
+ +

=

 

 
(c) It is impossible to “view” an atomic electron with such a high-energy photon, because 
with the energy imparted to the electron the photon would have knocked the electron out 
of its orbit. 
 
65. We use the uncertainty relationship Δ Δx p ≥ = . Letting Δx = λ, the de Broglie 
wavelength, we solve for the minimum uncertainty in p: 
 

2 2
h pp

x πλ π
Δ = = =

Δ
 

 
where the de Broglie relationship p = h/λ is used. We use 1/2π = 0.080 to obtain Δp = 
0.080p. We would expect the measured value of the momentum to lie between 0.92p and 
1.08p. Measured values of zero, 0.5p, and 2p would all be surprising. 
 
66. With 

( )2
2

2

8
exp 2 ,bbL m U E

T e L
h

−
⎛ ⎞π −
⎜ ⎟≈ = −
⎜ ⎟
⎝ ⎠

 

we have 
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( )
( )( )

( )

22 1240eV nm ln 0.0011 ln 16.0eV
2 4 2 0.511MeV 4 0.70nm

5.1eV.

b
h TE U

m Lπ π
⎡ ⎤⋅⎛ ⎞= − = − ⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
=

 

 
67. (a) The transmission coefficient T for a particle of mass m and energy E that is 
incident on a barrier of height Ub and width L is given by 
 

2 ,bLT e−=  
where 

( )2

2

8
.bm U E

b
h

π −
=  

For the proton, we have 
 

( )( )( )
( )

2 27 13

234

14 1

8 1.6726 10 kg 10MeV 3.0MeV 1.6022 10 J MeV

6.6261 10 J s

5.8082 10 m .

b
− −

−

−

π × − ×
=

× ⋅

= ×

 

 
This gives ( )( )14 1 155.8082 10 m 10 10 m 5.8082,bL − −= × × = and 
 

2(5.8082) 69.02 10 .T e− −= = ×  
 
The value of b was computed to a greater number of significant digits than usual because 
an exponential is quite sensitive to the value of the exponent.  
 
(b) Mechanical energy is conserved. Before the proton reaches the barrier, it has a kinetic 
energy of 3.0 MeV and a potential energy of zero. After passing through the barrier, the 
proton again has a potential energy of zero, thus a kinetic energy of 3.0 MeV. 
 
(c) Energy is also conserved for the reflection process. After reflection, the proton has a 
potential energy of zero, and thus a kinetic energy of 3.0 MeV. 
 
(d) The mass of a deuteron is 2.0141 u = 3.3454 × 10–27 kg, so 
 

( )( )( )
( )

2 27 13

234

14 1

8 3.3454 10 kg 10MeV 3.0MeV 1.6022 10 J MeV

6.6261 10 J s

8.2143 10 m .

b
− −

−

−

π × − ×
=

× ⋅

= ×

 

 
This gives ( )( )14 1 158.2143 10 m 10 10 m 8.2143,bL − −= × × = and 
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2(8.2143) 87.33 10 .T e− −= = ×  
 

(e) As in the case of a proton, mechanical energy is conserved. Before the deuteron 
reaches the barrier, it has a kinetic energy of 3.0 MeV and a potential energy of zero. 
After passing through the barrier, the deuteron again has a potential energy of zero, thus a 
kinetic energy of 3.0 MeV. 
 
(f) Energy is also conserved for the reflection process. After reflection, the deuteron has a 
potential energy of zero, and thus a kinetic energy of 3.0 MeV. 
 
68. (a) The rate at which incident protons arrive at the barrier is  
 

19 211.0kA 1.60 10 C 6.25 10 sn −= × = × . 
 
Letting nTt = 1, we find the waiting time t: 

 

( ) ( )

( ) ( )( )

2
1

2

21

111 104

81 exp 2

2 0.70nm1 exp 8 938MeV 6.0eV 5.0eV
6.25 10 s 1240eV nm

3.37 10 s 10 y,

p bm U E
t nT L

n h
−

⎛ ⎞π −
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

⎛ ⎞π⎛ ⎞
= −⎜ ⎟⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
= × ≈

 

 
which is much longer than the age of the universe. 
 
(b) Replacing the mass of the proton with that of the electron, we obtain the 
corresponding waiting time for an electron: 
 

( ) ( )

( ) ( )( )

1

2

21

19

81 exp 2

2 0.70nm1 exp 8 0.511MeV 6.0eV 5.0eV
6.25 10 s 1240eV nm

2.1 10 s.

e bm U E
t nT L

n h

2
−

−

⎡ ⎤π −
⎢ ⎥= =
⎢ ⎥⎣ ⎦

⎡ ⎤π⎛ ⎞
= −⎢ ⎥⎜ ⎟× ⋅⎝ ⎠ ⎣ ⎦
= ×

 

 
The enormous difference between the two waiting times is the result of the difference 
between the masses of the two kinds of particles. 
 
69. (a) If m is the mass of the particle and E is its energy, then the transmission 
coefficient for a barrier of height Ub and width L is given by 
 

2 ,bLT e−=  
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where 
( )2

2

8
.bm U E

b
h

π −
=  

 
If the change ΔUb in Ub is small (as it is), the change in the transmission coefficient is 
given by 

2 .b b
b b

dT dbT U LT U
dU dU

Δ = Δ = − Δ  

Now, 

( )
( )

( )

22

2 2

81 8 1 .
2 22

b

b b bb

m U Edb m b
dU h U E h U EU E

π −π
= = =

− −−
 

Thus, 

.b

b

UT LTb
U E

Δ
Δ = −

−
 

With 
 

( )( )( )
( )

2 31 19
9 1

234

8 9.11 10 kg 6.8 eV 5.1 eV 1.6022 10 J eV
6.67 10 m ,

6.6261 10 J s
b

− −
−

−

π × − ×
= = ×

× ⋅
 

 
we have 9 1 12 1(6.67 10 m )(750 10 m ) 5.0,bL − − −= × × =  and 
 

( ) ( )( )0.010 6.8eV
5.0 0.20 .

6.8eV 5.1eV
b

b

UT bL
T U E

ΔΔ
= − = − = −

− −
 

 
There is a 20% decrease in the transmission coefficient. 
 
(b) The change in the transmission coefficient is given by 
 

22 2bLdTT L be L bT L
dL

−Δ = Δ = − Δ = − Δ  

and 

( )( )( )9 1 122 2 6.67 10 m 0.010 750 10 m 0.10 .T b L
T

− −Δ
= − Δ = − × × = −  

 
There is a 10% decrease in the transmission coefficient. 
 
(c) The change in the transmission coefficient is given by 
 

22 2 .bLdT db dbT E Le E LT E
dE dE dE

−Δ = Δ = − Δ = − Δ  
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Now, ( )2b bdb dE db dU b U E= − = − − , so 
 

( ) ( )( )0.010 5.1eV
5.0 0.15 .

6.8eV 5.1eVb

T EbL
T U E

Δ Δ
= = =

− −
 

 
There is a 15% increase in the transmission coefficient. 
 
70. (a) Since p p p px y x y= = = =0 0, Δ Δ . Thus from Eq. 38-20 both Δx and Δy are 
infinite. It is therefore impossible to assign a y or z coordinate to the position of an 
electron. 
 
(b) Since it is independent of y and z the wave function Ψ(x) should describe a plane 
wave that extends infinitely in both the y and z directions. Also from Fig. 38-12 we see 
that |Ψ(x)|2 extends infinitely along the x axis. Thus the matter wave described by Ψ(x) 
extends throughout the entire three-dimensional space. 
 
71. Using the value 1240eV nmhc = ⋅ , we obtain 
 

6
7

1240eV nm 5.9 10 eV 5.9 eV.
21 10 nm

hcE μ
λ

−⋅
= = = × =

×
 

 
72. We substitute the classical relationship between momentum p and velocity v, v = p/m 
into the classical definition of kinetic energy, K mv= 1

2
2  to obtain K = p2/2m. Here m is 

the mass of an electron. Thus p mK= 2 . The relationship between the momentum and 
the de Broglie wavelength λ is λ = h/p, where h is the Planck constant. Thus, 
 

.
2
h
mK

λ =  

If K is given in electron volts, then 
 

34 9 1/2

31 19

1/2

J s 1.226 10 m eV
2(9.109 10 kg)(1.602 10 J/eV)

1.226 nm eV .

KK

K

λ
− −

− −

6.626×10 ⋅ × ⋅
= =

× ×

⋅
=

 

 
73. We rewrite Eq. 38-9 as 
 

h
m

h
m

v
v cλ λ

− =
−'

cos
( / )

cos ,φ θ
1 2

 

and Eq. 38-10 as 
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2
sin sin .

1 ( / )
h v

m v c
φ θ

λ
=

′ −
 

 
We square both equations and add up the two sides: 
 

2 2 2 2

2

1 1 1cos sin ,
1 ( / )

h v
m v c

φ φ
λ λ λ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

 
where we use sin2 θ + cos2 θ = 1 to eliminate θ. Now the right-hand side can be written as 
 

v
v c

c
v c

2

2
2

21
1 1

1−
= − −

−
L
NM

O
QP( / ) ( / )

,  

so 
2 2 2

2

1 1 1 1cos sin 1 .
1 ( / )

h
v c mc

φ φ
λ λ λ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

 
Now we rewrite Eq. 38-8 as 

2

1 1 11 .
1 ( / )

h
mc v cλ λ

⎛ ⎞− + =⎜ ⎟′⎝ ⎠ −
 

 
If we square this, then it can be directly compared with the previous equation we obtained 
for [1 – (v/c)2]–1. This yields 
 

2 2 2 21 1 1 1 11 cos sin 1 .h h
mc mc

φ φ
λ λ λ λ λ

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦
 

 
We have so far eliminated θ and v. Working out the squares on both sides and noting that 
sin2 φ + cos2 φ = 1, we get 

(1 cos ) .h
mc

λ λ λ φ′− = Δ = −  

 
74. (a) The average kinetic energy is 
 

K kT= = × = × ×− − −3
2

3
2

138 10 300 6 21 1023 21. . . J / K K J = 3.88 10 eV2c hb g  

 
(b) The de Broglie wavelength is 
 

( )( )
34

10

27 21

6.63 10 J s 1.46 10 m.
2 2 1.675 10 kg 6.21 10 Jn

h
m K

λ
−

−

− −

× ⋅
= = = ×

× ×
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75. (a) The average de Broglie wavelength is 
 

λavg
avg avg

eV nm

3 4 MeV eV / K K

m = 73pm.

= = = =

=
⋅

×

= ×

−

−

h
p

h
mK

h
m kT

hc

mc kT2 2 3 2 2

1240

938 8 62 10 300

7 3 10

2

5

11

/

.

.

b g c h

b gb gc hb g
 

 
(b) The average separation is 
 

( )( )23

3
avg 53 3

1.38 10 J/K 300K1 1 3.4nm.
1.01 10 Pa/

d
n p kT

−×
= = = =

×
 

 
(c) Yes, since avg avg .dλ <<  
 
76. (a) We calculate frequencies from the wavelengths (expressed in SI units) using Eq. 
38-1. Our plot of the points and the line that gives the least squares fit to the data is 
shown below. The vertical axis is in volts and the horizontal axis, when multiplied by 
1014, gives the frequencies in Hertz. 
 
From our least squares fit procedure, we determine the slope to be 4.14 × 10–15 V·s, 
which, upon multiplying by e, gives 4.14 × 10–15 eV·s. The result is in very good 
agreement with the value given in Eq. 38-3. 
 

 
 
(b) Our least squares fit procedure can also determine the y-intercept for that line. The y-
intercept is the negative of the photoelectric work function. In this way, we find Φ =  
2.31 eV. 
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77. We note that  
| | ( ) ( ) .e e e e eikx ikx ikx ikx ikx2 1= = =∗ −  

 
Referring to Eq. 38-14, we see therefore that | | | | .ψ 2 2= Ψ  
 
78. From Sample Problem — “Compton scattering of light by electrons,” we have 
 

2

( / )(1 cos ) (1 cos )E h mc hf
E mc

λ φ φ
λ λ λ

′Δ Δ −
= = = −

′+ Δ
 

 
where we use the fact that λ + Δλ = λ' = c/f '. 
 
79. The de Broglie wavelength for the bullet is 
 

34
35

3

6.63 10 J.s 1.7 10 m .
(40 10 kg)(1000m/s)

h h
p mv

λ
−

−
−

×
= = = = ×

×
 

 
80. (a) Since  

Eph = h/λ = 1240 eV·nm/680 nm = 1.82 eV < Φ = 2.28 eV, 
 
there is no photoelectric emission.  
 
(b) The cutoff wavelength is the longest wavelength of photons that will cause 
photoelectric emission. In sodium, this is given by  
 

Eph = hc/λmax = Φ, 
or  

λmax = hc/Φ = (1240 eV·nm)/2.28 eV = 544 nm. 
 
(c) This corresponds to the color green. 
 
81. The uncertainty in the momentum is  
 

Δp = m Δv = (0.50 kg)(1.0 m/s) = 0.50 kg·m/s, 
 
where Δv is the uncertainty in the velocity. Solving the uncertainty relationship Δ Δx p ≥ =  
for the minimum uncertainty in the coordinate x, we obtain 
 

Δ
Δ

x
p

= =
⋅
⋅

=
= 0 60

2 0 50
019.

.
. .J s

kg m s
m

πb g  

 
82. The difference between the electron-photon scattering process in this problem and the 
one studied in the text (the Compton shift, see Eq. 38-11) is that the electron is in motion 
relative with speed v to the laboratory frame. To utilize the result in Eq. 38-11, shift to a 
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new reference frame in which the electron is at rest before the scattering. Denote the 
quantities measured in this new frame with a prime (' ), and apply Eq. 38-11 to yield 
 

0 (1 cos ,
e e

h h
m c m c

λ λ λ π 2′ ′ ′Δ = − = − ) =  

 
where we note that φ = π (since the photon is scattered back in the direction of incidence). 
Now, from the Doppler shift formula (Eq. 38-25) the frequency f '0  of the photon prior to 
the scattering in the new reference frame satisfies 
 

0 0
0

1 ,
1

cf f β
λ β

+′ = =
′ −

 

 
where β = v/c. Also, as we switch back from the new reference frame to the original one 
after the scattering 

1 1 .
1 1

cf f β β
β β

− −′= =
′+ λ +

 

 
We solve the two Doppler-shift equations above for λ' and λ'0 and substitute the results 
into the Compton shift formula for Δλ': 
 

2
0

1 1 1 1 2 .
1 1 e

h
f f m c

β βλ
β β

− −′Δ = − =
+ +

 

 
Some simple algebra then leads to 
 

E hf hf h
m ce

= = +
+
−

F
HG

I
KJ

−

0 2

1

1 2 1
1

β
β

.  

 
83. With no loss of generality, we assume the electron is initially at rest (which simply 
means we are analyzing the collision from its initial rest frame). If the photon gave all its 
momentum and energy to the (free) electron, then the momentum and the kinetic energy 
of the electron would become 

, ,hfp K hf
c

= =  

 
respectively. Plugging these expressions into Eq. 38-51 (with m referring to the mass of 
the electron) leads to 

( )
( ) ( )
pc K Kmc
hf hf hfmc

2 2 2

2 2 2

2
2

= +

= +
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which is clearly impossible, since the last term (2hfmc2) is not zero. We have shown that 
considering total momentum and energy absorption of a photon by a free electron leads to 
an inconsistency in the mathematics, and thus cannot be expected to happen in nature. 
 
84. The kinetic energy of the car of mass m moving at speed v is given by E mv= 1

2
2 , 

while the potential barrier it has to tunnel through is Ub = mgh, where h = 24 m. 
According to Eq. 38-21 and 38-22 the tunneling probability is given by 2bLT e−≈ , where 
 

( ) ( )

( ) ( )( ) ( )

2 22 1
2

2 2

22
34

38 1

88

1500kg 12 9.8 m s 24m 20 m s
6.63 10 J s 2

1.2 10 m .

b
m mgh mvm U E

b
h h

−

−

π −π −
= =

2π ⎡ ⎤= −⎢ ⎥× ⋅ ⎣ ⎦

= ×

 

 
Thus,  

( )( )38 1 392 2 1.2 10 m 30m 7.2 10bL −= × = × . 
 
One can see that 2bLT e−≈  is very small (essentially zero). 
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Chapter 39 
 
 
1. According to Eq. 39-4, En ∝ L– 2. As a consequence, the new energy level E'n satisfies 
 

′
=

′F
HG
I
KJ =

′
F
HG
I
KJ =

−E
E

L
L

L
L

n

n

2 2 1
2

,  

 
which gives ′ =L L2 .  Thus, the ratio is / 2 1.41.L L′ = =  
 
2. (a) The ground-state energy is 
 

( )
( )

( )
2342

22 18
1 22 31 12

6.63 10 J s
1 1.51 10 J

8 8(9.11 10 kg) 200 10 m

9.42eV.

e

hE n
m L

−
−

− −

⎛ ⎞× ⋅⎛ ⎞ ⎜ ⎟= = = ×⎜ ⎟ ⎜ ⎟× ×⎝ ⎠ ⎝ ⎠
=

 

 
(b) With mp = 1.67 × 10– 27 kg, we obtain 
 

( )
( )

( )
2342

22 22
1 22 27 12

3

6.63 10 J s
1 8.225 10 J

8 8(1.67 10 kg) 200 10 m

5.13 10 eV.

p

hE n
m L

−
−

− −

−

⎛ ⎞× ⋅⎛ ⎞ ⎜ ⎟= = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟× ×⎝ ⎠ ⎝ ⎠
= ×

 

 
3. Since En ∝ L– 2 in Eq. 39-4, we see that if L is doubled, then E1 becomes (2.6 eV)(2)– 2 
= 0.65 eV. 
 
4. We first note that since h = 6.626 × 10–34 J·s and c = 2.998 × 108 m/s,  
 

hc =
× ⋅ ×

×
= ⋅

−

− −

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

 
Using the mc2 value for an electron from Table 37-3 (511 × 103 eV), Eq. 39-4 can be 
rewritten as 

E n h
mL

n hc
mc Ln = =

2 2

2

2 2

2 28 8
b g
c h .  

The energy to be absorbed is therefore 
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( ) ( )
( )

( )
( ) ( )

2 22 2 2

4 1 22 2 2 3

4 1 15 15 1240eV nm
90.3eV.

8 8 8 511 10 eV 0.250nme e

h hc
E E E

m L m c L

− ⋅
Δ = − = = = =

×
 

 
5. We can use the mc2 value for an electron from Table 37-3 (511 × 103 eV) and hc = 
1240 eV · nm by writing Eq. 39-4 as 
 

E n h
mL

n hc
mc Ln = =

2 2

2

2 2

2 28 8
b g
c h .  

 
For n = 3, we set this expression equal to 4.7 eV and solve for L: 
 

L
n hc

mc En

= =
⋅

×
=

b g
c h

b g
c hb g8

3 1240

8 511 10 4 7
085

2 3

eV nm

eV eV
nm.

.
.  

 
6. With m = mp = 1.67 × 10– 27 kg, we obtain 
 

( )
( )

( )
2342

22 21
1 22 27 12

6.63 10 J.s
1 3.29 10 J  0.0206eV.

8 8(1.67 10 kg) 100 10 m

hE n
mL

−
−

−

⎛ ⎞×⎛ ⎞ ⎜ ⎟= = = × =⎜ ⎟ ⎜ ⎟⎝ ⎠ × ×⎝ ⎠
 

 
Alternatively, we can use the mc2 value for a proton from Table 37-3 (938 × 106 eV) and 
hc = 1240 eV · nm by writing Eq. 39-4 as 
 

E n h
mL

n hc
m c Ln

p

= =
2 2

2

2 2

2 28 8
b g
d i .  

 
This alternative approach is perhaps easier to plug into, but it is recommended that both 
approaches be tried to find which is most convenient. 
 
7. To estimate the energy, we use Eq. 39-4, with n = 1, L equal to the atomic diameter, 
and m equal to the mass of an electron: 
 

( ) ( )
( )( )

22 342
2 10

22 31 14

1 6.63 10 J s
3.07 10 J=1920MeV 1.9 GeV.

8 8 9.11 10 kg 1.4 10 m

hE n
mL

−
−

− −

× ⋅
= = = × ≈

× ×
 

 
8. The frequency of the light that will excite the electron from the state with quantum 
number ni to the state with quantum number nf is  
 

( )2 2
28 f i

E hf n n
h mL
Δ

= = −  
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and the wavelength of the light is 

l = =
−

c
f

mL c
h n nf i

8 2

2 2d i .  

The width of the well is  

 
2 2

2

( )
8

f ihc n n
L

mc
λ −

= . 

 
The longest wavelength shown in Figure 39-27 is 80.78 nm,λ = which corresponds to a 
jump from 2in =  to 3fn = . Thus, the width of the well is  
 

 
2 2 2 2

2 3

( ) (80.78 nm)(1240eV nm)(3 2 ) 0.350nm 350 pm.
8 8(511 10 eV)

f ihc n n
L

mc
λ − ⋅ −

= = = =
×

 

 
9. We can use the mc2 value for an electron from Table 37-3 (511 × 103 eV) and hc = 
1240 eV · nm by rewriting Eq. 39-4 as 

E n h
mL

n hc
mc Ln = =

2 2

2

2 2

2 28 8
b g
c h .  

 
(a) The first excited state is characterized by n = 2, and the third by n' = 4. Thus, 
 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2 2
2 2 2 2

22 2 3

1240eV nm
4 2 6.02eV 16 4

8 8 511 10 eV 0.250nm

72.2eV .

hc
E n n

mc L
⋅

′Δ = − = − = −
×

=

 

 
Now that the electron is in the n' = 4 level, it can “drop” to a lower level (n'') in a variety 
of ways. Each of these drops is presumed to cause a photon to be emitted of wavelength 
 

( )
( )

2 2

2 2

8
.

n n

mc Lhc
E E hc n n

λ
′ ′′

= =
− ′ ′′−

 

 
For example, for the transition n' = 4 to n'' = 3, the photon emitted would have 
wavelength 

( )( )
( )( )

23

2 2

8 511 10 eV 0.250 nm
29.4 nm,

1240eV nm 4 3
λ

×
= =

⋅ −
 

 
and once it is then in level n'' = 3 it might fall to level n''' = 2 emitting another photon. 
Calculating in this way all the possible photons emitted during the de-excitation of this 
system, we obtain the following results: 
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(b) The shortest wavelength that can be emitted is 4 1 13.7nm.→ =l  
 
(c) The second shortest wavelength that can be emitted is 4 2 17.2nm.→ =l  
 
(d) The longest wavelength that can be emitted is 2 1 68.7 nm.→ =l  
 
(e) The second longest wavelength that can be emitted is 3 2 41.2nm.→ =l  
 
(f) The possible transitions are shown next. The energy levels are not drawn to scale. 
 

 
 
(g) A wavelength of 29.4 nm corresponds to 4 3→  transition. Thus, it could make either 
the 3 1→  transition or the pair of transitions: 3 2→  and 2 1→ . The longest wavelength 
that can be emitted is 2 1 68.7 nm.→ =l  
 
(h) The shortest wavelength that can next be emitted is 3 1 25.8nm.→ =l  
 
10. Let the quantum numbers of the pair in question be n and n + 1, respectively. Then 
 

En+1 – En = E1 (n + 1)2 – E1n2 = (2n + 1)E1. 
Letting 
 

E E n E E E E E En n+ − = + = − = − =1 1 4 3
2

1
2

1 12 1 3 3 4 3 21b g b g c h ,  
 
we get 2n + 1 = 21, or n = 10. Thus, 
 
(a) the higher quantum number is n + 1 = 10 + 1 = 11, and 
 
(b) the lower quantum number is n = 10. 
 
(c) Now letting 
 

E E n E E E E E En n+ − = + = − = − =1 1 4 3
2

1
2

1 12 1 2 2 4 3 14b g b g c h ,  
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we get 2n + 1 = 14, which does not have an integer-valued solution. So it is impossible to 
find the pair of energy levels that fits the requirement. 
 
11. Let the quantum numbers of the pair in question be n and n + 1, respectively. We note 
that  

E E
n h

mL
n h
mL

n h
mLn n+ − =

+
− =

+
1

2 2

2

2 2

2

2

2

1
8 8

2 1
8

b g b g  

 
Therefore, En+1 – En = (2n + 1)E1. Now 
 

E E E E E n En n+ − = = = = +1 5
2

1 1 15 25 2 1b g ,  
 
which leads to 2n + 1 = 25, or n = 12. Thus, 
 
(a) The higher quantum number is n + 1 = 12 + 1 = 13. 
 
(b) The lower quantum number is n = 12.  
 
(c) Now let 

E E E E E n En n+ − = = = = +1 6
2

1 1 16 36 2 1b g ,  
 
which gives 2n + 1 = 36, or n = 17.5. This is not an integer, so it is impossible to find the 
pair that fits the requirement. 
 
12. The energy levels are given by En = n2h2/8mL2, where h is the Planck constant, m is 
the mass of an electron, and L is the width of the well. The frequency of the light that will 
excite the electron from the state with quantum number ni to the state with quantum 
number nf is  

( )2 2
28 f i

E hf n n
h mL
Δ

= = −  

and the wavelength of the light is 

( )
2

2 2

8 .
f i

c mL c
f h n n

λ = =
−

 

 
We evaluate this expression for ni = 1 and nf = 2, 3, 4, and 5, in turn. We use h = 6.626 × 
10– 34 J · s, m = 9.109 × 10– 31kg, and L = 250 × 10– 12 m, and obtain the following results: 
 
(a) 6.87 × 10– 8 m for nf = 2, (the longest wavelength).  
 
(b) 2.58 × 10– 8 m for nf = 3, (the second longest wavelength).  
 
(c) 1.37 × 10– 8 m for nf = 4, (the third longest wavelength).  
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13. The position of maximum probability density corresponds to the center of the well:  
/ 2 (200 pm) / 2 100 pm.x L= = =  

 
(a) The probability of detection at x is given by Eq. 39-11: 
 

 
2

2 22 2( ) ( ) sin sinn
n np x x dx x dx x dx

L L L L
π πψ

⎡ ⎤⎛ ⎞ ⎛ ⎞= = =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
For 3,n = 200 pm,L =  and 2.00 pmdx = (width of the probe), the probability of 
detection at / 2 100 pmx L= =  is 
 

( )2 22 3 2 3 2 2( / 2) sin sin 2.00 pm 0.020
2 2 200 pm
Lp x L dx dx dx

L L L L
π π⎛ ⎞ ⎛ ⎞= = ⋅ = = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

 
(b) With 1000N =  independent insertions, the number of times we expect the electron to 
be detected is (1000)(0.020) 20n Np= = = . 
 
14. From Eq. 39-11, the condition of zero probability density is given by 
 

 sin 0n nx x m
L L
π π π⎛ ⎞ = ⇒ =⎜ ⎟

⎝ ⎠
 

 
where m is an integer. The fact that 0.300x L=  and 0.400x L=  have zero probability 
density implies 

( ) ( )sin 0.300 sin 0.400 0n nπ π= =  
 
which can be satisfied for 10n m= , where 1,2,...m =  However, since the probability 
density is nonzero between 0.300x L=  and 0.400x L= , we conclude that the electron is 
in the 10n =  state. The change of energy after making a transition to 9n′ =  is then equal 
to 

( ) ( )
( ) ( )

( )
2342

2 2 2 2 17
22 31 10

6.63 10  J s
| | 10 9 2.86 10  J

8 8 9.11 10 kg 2.00 10 m

hE n n
mL

−
−

− −

× ⋅
′Δ = − = − = ×

× ×
. 

 
15. The probability that the electron is found in any interval is given by P dx= z ψ 2 ,  

where the integral is over the interval. If the interval width Δx is small, the probability 
can be approximated by P = |ψ|2 Δx, where the wave function is evaluated for the center 
of the interval, say. For an electron trapped in an infinite well of width L, the ground state 
probability density is 

ψ 2 22
= F

HG
I
KJL

x
L

sin ,p  
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so 

P x
L

x
L

= FHG
I
KJ
F
HG
I
KJ

2 2Δ sin .p  

 
(a) We take L = 100 pm, x = 25 pm, and Δx = 5.0 pm. Then, 
 

P =
L
NM

O
QP
L
NM

O
QP
=

2 5 0
100

25
100

0 0502.
sin . .

pm
pm

pm
pm

b g b gp
 

 
(b) We take L = 100 pm, x = 50 pm, and Δx = 5.0 pm. Then, 
 

P =
L
NM

O
QP
L
NM

O
QP
=

2 5 0
100

50
100

0102.
sin . .

pm
pm

pm
pm

b g b gp
 

 
(c) We take L = 100 pm, x = 90 pm, and Δx = 5.0 pm. Then, 
 

P =
L
NM

O
QP
L
NM

O
QP
=

2 5 0
100

90
100

0 00952.
sin . .

pm
pm

pm
pm

b g b gp
 

 
Note: The probability as a function of x is plotted next. As expected, the probability of 
detecting the electron is highest near the center of the well at x = L/2 = 50 pm. 
 

 
 
16. We follow Sample Problem — “Detection potential in a 1D infinite potential well” in 
the presentation of this solution. The integration result quoted below is discussed in a 
little more detail in that Sample Problem. We note that the arguments of the sine 
functions used below are in radians. 
 
(a) The probability of detecting the particle in the region 0 / 4x L≤ ≤  is 
 

/ 4/ 4 2

0
0

2 2 sin 2sin 0.091.
2 4

L y yy dy
L

π
π

π π
⎛ ⎞⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠∫  
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(b) As expected from symmetry, 
 

2

/ 4
/ 4

2 2 sin 2sin 0.091.
2 4

L y yy dy
L

π
π

π
ππ π

⎛ ⎞⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠∫  

 
(c) For the region / 4 3 / 4L x L≤ ≤ , we obtain 
 

3 / 4
3 / 4 2

/ 4
/ 4

2 2 sin 2sin 0.82
2 4

L y yy dy
L

π
π

π
ππ π

⎛ ⎞⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠∫  

 
which we could also have gotten by subtracting the results of part (a) and (b) from 1; that 
is, 1 – 2(0.091) = 0.82. 
 
17. According to Fig. 39-9, the electron’s initial energy is 106 eV. After the additional 
energy is absorbed, the total energy of the electron is 106 eV + 400 eV = 506 eV. Since it 
is in the region x > L, its potential energy is 450 eV (see Section 39-5), so its kinetic 
energy must be 506 eV – 450 eV = 56 eV. 
 
18. From Fig. 39-9, we see that the sum of the kinetic and potential energies in that 
particular finite well is 233 eV. The potential energy is zero in the region 0 < x < L. If the 
kinetic energy of the electron is detected while it is in that region (which is the only 
region where this is likely to happen), we should find K = 233 eV. 
 
19. Using / (1240eV nm)/E hc λ λ= = ⋅ , the energies associated with aλ , bλ  and cλ  are  
 

 

1240eV nm 85.00 eV
14.588 nm

1240eV nm 256.0 eV
4.8437 nm

1240eV nm 426.0 eV.
2.9108 nm

a
a

b
b

c
c

hcE

hcE

hcE

λ

λ

λ

⋅
= = =

⋅
= = =

⋅
= = =

 

The ground-state energy is  
 
 1 4 450.0 eV 426.0 eV 24.0 eVcE E E= − = − = . 
 
Since 2 1aE E E= − , the energy of the first excited state is 
 
 2 1 24.0 eV 85.0 eV 109 eVaE E E= + = + = . 
 
20. The smallest energy a photon can have corresponds to a transition from the non-
quantized region to 3.E Since the energy difference between 3E  and 4E  is 
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4 3 9.0 eV 4.0 eV 5.0 eVE E EΔ = − = − = , 

 
the energy of the photon is photon 2.00 eV 5.00 eV 7.00 eVE K E= + Δ = + = . 
 
21. Schrödinger’s equation for the region x > L is 
 

d
dx

m
h

E U
2

2

2

2 0
8 0ψ ψ+ − =
π .  

 
If ψ = De2kx, then d 2ψ/dx2 = 4k2De2kx = 4k2ψ and 
 

d
dx

m
h

E U k m
h

E U
2

2

2

2 0
2

2

2 0
8 4 8ψ ψ ψ ψ+ − = + −
π π .  

 
This is zero provided 

k
h

m U E= −
π 2 0b g.  

 
The proposed function satisfies Schrödinger’s equation provided k has this value. Since 
U0 is greater than E in the region x > L, the quantity under the radical is positive. This 
means k is real. If k is positive, however, the proposed function is physically unrealistic. 
It increases exponentially with x and becomes large without bound. The integral of the 
probability density over the entire x-axis must be unity. This is impossible if ψ is the 
proposed function. 
 
22. We can use the mc2 value for an electron from Table 37-3 (511 × 103 eV) and hc = 
1240 eV · nm by writing Eq. 39-20 as 
 

E h
m

n
L

n
L

hc
mc

n
L

n
Lnx ny

x

x

y

y

x

x

y

y
, .= +

F
HG

I
KJ = +

F
HG

I
KJ

2
8 8

2 2

2

2

2

2

2

2

2

2

2

b g
c h  

For nx = ny = 1, we obtain 
 

( )
( ) ( ) ( )

2

1,1 2 23

1240eV nm 1 1 0.734 eV.
8 511 10 eV 0.800nm 1.600nm

E
⎛ ⎞⋅
⎜ ⎟= + =
⎜ ⎟× ⎝ ⎠

 

 
23. We can use the mc2 value for an electron from Table 37-3 (511 × 103 eV) and hc = 
1240 eV · nm by writing Eq. 39-21 as 
 

E h
m

n
L

n
L

n
L

hc
mc

n
L

n
L

n
Lnx ny nz

x

x

y

y

z

z

x

x

y

y

z

z
, , .= + +

F
HG

I
KJ = + +

F
HG

I
KJ

2
8 8

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

b g
c h  
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For nx = ny = nz = 1, we obtain 
 

( )
( ) ( ) ( ) ( )

2

1,1 2 2 23

1240eV nm 1 1 1 3.21 eV.
8 511 10 eV 0.800nm 1.600nm 0.390nm

E
⎛ ⎞⋅
⎜ ⎟= + + =
⎜ ⎟× ⎝ ⎠

 

 
24. The statement that there are three probability density maxima along / 2xx L=  implies 
that 3yn =  (see for example, Figure 39-6). Since the maxima are separated by 2.00 nm, 
the width of yL is (2.00 nm) 6.00 nm.y yL n= = Similarly, from the information given 
along / 2yy L= , we find 5xn =  and (3.00 nm) 15.0 nm.x xL n= =  Thus, using Eq. 39-20, 
the energy of the electron is 
 

222 34 2

, 2 2 31 9 2 9 2

20

(6.63 10  J s) 1 1
8 8(9.11 10 kg) (3.00 10  m) (2.00 10  m)
2.2 10  J .

x y

yx
n n

x y

nnhE
m L L

−

− − −

−

⎛ ⎞ ⎡ ⎤× ⋅
= + = +⎜ ⎟ ⎢ ⎥⎜ ⎟ × × ×⎣ ⎦⎝ ⎠
= ×

 

 
25. The discussion on the probability of detection for the one-dimensional case found in 
Section 39-4 can be readily extended to two dimensions. In analogy to Eq. 39-10, the 
normalized wave function in two dimensions can be written as  
 

 
,

2 2( , ) ( ) ( ) sin sin

4 sin sin .

x y x y

yx
n n n n

x x y y

yx

x y x y

nnx y x y x y
L L L L

nn x y
L L L L

ππψ ψ ψ

ππ

⎛ ⎞⎛ ⎞
= = ⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
The probability of detection by a probe of dimension x yΔ Δ  placed at ( , )x y  is 
 

2
2 2

,
4( )( , ) ( , ) sin sin .

x y

yx
n n

x y x y

nnx yp x y x y x y x y
L L L L

ππψ
⎛ ⎞⎛ ⎞Δ Δ

= Δ Δ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
With 150 pmx yL L L= = = and 5.00 pmx yΔ = Δ = , the probability of detecting an 
electron in ( , ) (1,3)x yn n =  state by placing a probe at (0.200 , 0.800 )L L  is 
 

( ) ( )

2
2 2 2 2

2

2
2 2 3

4( ) 4(5.00 pm) 3sin sin sin 0.200 sin 0.800
(150 pm)

5.00 pm4 sin 0.200 sin 2.40 1.4 10 .
150 pm

yx

x y x y

nnx yp x y L L
L L L L L L

ππ π π

π π −

⎛ ⎞⎛ ⎞Δ Δ ⎛ ⎞ ⎛ ⎞= = ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞

= = ×⎜ ⎟
⎝ ⎠
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26. We are looking for the values of the ratio 
 

E
h mL

L n
L

n
L

n nnx ny x

x

y

y
x y

,
2 2

2
2

2

2

2
2 2

8
1
4

= +
F
HG

I
KJ = +FHG

I
KJ  

 
and the corresponding differences. 
 
(a) For nx = ny = 1, the ratio becomes 1 1251

4+ = . .  
 
(b) For nx = 1 and ny = 2, the ratio becomes 1 4 2 001

4+ =b g . .  One can check (by computing 
other (nx, ny) values) that this is the next to lowest energy in the system. 
 
(c) The lowest set of states that are degenerate are (nx, ny) = (1, 4) and (2, 2). Both of 
these states have that ratio equal to 1 16 5001

4+ =b g . .  
 
(d) For nx = 1 and ny = 3, the ratio becomes 1 9 3251

4+ =b g . .  One can check (by computing 
other (nx, ny) values) that this is the lowest energy greater than that computed in part (b). 
The next higher energy comes from (nx, ny) = (2, 1) for which the ratio is 4 1 4 251

4+ =b g . .  
The difference between these two values is 4.25 – 3.25 = 1.00. 
 
27. The energy levels are given by 
 

E h
m

n
L

n
L

h
mL

n
n

n n
x

x

y

y
x

y
x y, = +

L
NMM

O
QPP
= +
L
NMM

O
QPP

2 2

2

2

2

2

2
2

2

8 8 4
 

 
where the substitutions Lx = L and Ly = 2L were made. In units of h2/8mL2, the energy 
levels are given by 2 2 / 4x yn n+ . The lowest five levels are E1,1 = 1.25, E1,2 = 2.00, E1,3 = 
3.25, E2,1 = 4.25, and E2,2 = E1,4 = 5.00. It is clear that there are no other possible values 
for the energy less than 5. The frequency of the light emitted or absorbed when the 
electron goes from an initial state i to a final state f is f = (Ef – Ei)/h, and in units of 
h/8mL2 is simply the difference in the values of 2 2 / 4x yn n+  for the two states. The 

possible frequencies are as follows: ( ) ( ) ( )0.75 1, 2 1,1 , 2.00 1,3 1,1 ,3.00 2,1 1,1 ,→ → →  

( ) ( ) ( ) ( ) ( )3.75 2, 2 1,1 ,1.25 1,3 1, 2 , 2.25 2,1 1, 2 ,3.00 2, 2 1, 2 ,1.00 2,1 1,3 ,→ → → → →

( ) ( )1.75 2, 2 1,3 ,0.75 2, 2 2,1 ,→ →  all in units of h/8mL2.  
 
(a) From the above, we see that there are 8 different frequencies. 
 
(b) The lowest frequency is, in units of h/8mL2, 0.75 (2, 2→2,1). 
 
(c) The second lowest frequency is, in units of h/8mL2, 1.00 (2, 1→1,3). 
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(d) The third lowest frequency is, in units of h/8mL2, 1.25 (1, 3→1,2). 
 
(e) The highest frequency is, in units of h/8mL2, 3.75 (2, 2→1,1). 
 
(f) The second highest frequency is, in units of h/8mL2, 3.00 (2, 2→1,2) or (2, 1→1,1). 
 
(g) The third highest frequency is, in units of h/8mL2, 2.25 (2, 1→1,2). 
 
28. We are looking for the values of the ratio 
 

E
h mL

L n
L

n
L

n
L

n n nn n n x

x

y

y

z

z
x y z

x y z, ,
2 2

2
2

2

2

2

2

2
2 2 2

8
= + +
F
HG

I
KJ = + +d i  

 
and the corresponding differences. 
 
(a) For nx = ny = nz = 1, the ratio becomes 1 + 1 + 1 = 3.00. 
 
(b) For nx = ny = 2 and nz = 1, the ratio becomes 4 + 4 + 1 = 9.00. One can check (by 
computing other (nx, ny, nz) values) that this is the third lowest energy in the system. One 
can also check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 2) and (1, 2, 2). 
 
(c) For nx = ny = 1 and nz = 3, the ratio becomes 1 + 1 + 9 = 11.00. One can check (by 
computing other (nx, ny, nz) values) that this is three “steps” up from the lowest energy in 
the system. One can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 1) 
and (3, 1, 1). If we take the difference between this and the result of part (b), we obtain 
11.0 – 9.00 = 2.00. 
 
(d) For nx = ny = 1 and nz = 2, the ratio becomes 1 + 1 + 4 = 6.00. One can check (by 
computing other (nx, ny, nz) values) that this is the next to the lowest energy in the system. 
One can also check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 1) and (1, 2, 1). 
Thus, three states (three arrangements of (nx, ny, nz) values) have this energy. 
 
(e) For nx = 1, ny = 2 and nz = 3, the ratio becomes 1 + 4 + 9 = 14.0. One can check (by 
computing other (nx, ny, nz) values) that this is five “steps” up from the lowest energy in 
the system. One can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 2), 
(2, 3, 1), (2, 1, 3), (3, 1, 2) and (3, 2, 1). Thus, six states (six arrangements of (nx, ny, nz) 
values) have this energy. 
 
29. The ratios computed in Problem 39-28 can be related to the frequencies emitted using 
f = ΔE/h, where each level E is equal to one of those ratios multiplied by h2/8mL2. This 
effectively involves no more than a cancellation of one of the factors of h. Thus, for a 
transition from the second excited state (see part (b) of Problem 39-28) to the ground 
state (treated in part (a) of that problem), we find 
 



 

  

1501

f h
mL

h
mL

= − F
HG
I
KJ =

F
HG
I
KJ9 00 300

8
6 00

82 2. . . .b g b g  

 
In the following, we omit the h/8mL2 factors. For a transition between the fourth excited 
state and the ground state, we have f = 12.00 – 3.00 = 9.00. For a transition between the 
third excited state and the ground state, we have f = 11.00 – 3.00 = 8.00. For a transition 
between the third excited state and the first excited state, we have f = 11.00 – 6.00 = 5.00. 
For a transition between the fourth excited state and the third excited state, we have f = 
12.00 – 11.00 = 1.00. For a transition between the third excited state and the second 
excited state, we have f = 11.00 – 9.00 = 2.00. For a transition between the second excited 
state and the first excited state, we have f = 9.00 – 6.00 = 3.00, which also results from 
some other transitions. 
 
(a) From the above, we see that there are 7 frequencies. 
 
(b) The lowest frequency is, in units of h/8mL2, 1.00. 
 
(c) The second lowest frequency is, in units of h/8mL2, 2.00. 
 
(d) The third lowest frequency is, in units of h/8mL2, 3.00. 
 
(e) The highest frequency is, in units of h/8mL2, 9.00. 
 
(f) The second highest frequency is, in units of h/8mL2, 8.00. 
 
(g) The third highest frequency is, in units of h/8mL2, 6.00. 
 
30. In analogy to Eq. 39-10, the normalized wave function in two dimensions can be 
written as  

 
,

2 2( , ) ( ) ( ) sin sin

4 sin sin .

x y x y

yx
n n n n

x x y y

yx

x y x y

nnx y x y x y
L L L L

nn x y
L L L L

ππψ ψ ψ

ππ

⎛ ⎞⎛ ⎞
= = ⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 
The probability of detection by a probe of dimension x yΔ Δ  placed at ( , )x y  is 
 

2
2 2

,
4( )( , ) ( , ) sin sin .

x y

yx
n n

x y x y

nnx yp x y x y x y x y
L L L L

ππψ
⎛ ⎞⎛ ⎞Δ Δ

= Δ Δ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
A detection probability of 0.0450 of a ground-state electron ( 1x yn n= = ) by a probe of 

area 2400 pmx yΔ Δ = placed at ( , ) ( / 8, / 8)x y L L=  implies 
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22
2 2 4

2

4(400 pm ) 20 pm0.0450 sin sin 4 sin
8 8 8
L L

L L L L
π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 
Solving for L, we get 27.6 pmL = . 
 
31. The energy E of the photon emitted when a hydrogen atom jumps from a state with 
principal quantum number n to a state with principal quantum number n′  is given by 
 

2 2

1 1E A
n n

⎛ ⎞= −⎜ ⎟′⎝ ⎠
 

 
where A = 13.6 eV. The frequency f of the electromagnetic wave is given by f = E/h and 
the wavelength is given by λ = c/f. Thus, 
 

2 2

1 1 1 .f E A
c hc hc n nλ

⎛ ⎞= = = −⎜ ⎟′⎝ ⎠
 

 
The shortest wavelength occurs at the series limit, for which n = ∞. For the Balmer series, 

2n′ =  and the shortest wavelength is λB = 4hc/A. For the Lyman series, 1n′ =  and the 
shortest wavelength is λL = hc/A. The ratio is λB/λL = 4.0. 
 
32. The difference between the energy absorbed and the energy emitted is 
 

E E hc hc
photon absorbed photon emitted

absorbed emitted

− = −
λ λ

.  

 
Thus, using hc = 1240 eV · nm, the net energy absorbed is 
 

( )1 1 11240eV nm 1.17 eV .
375nm 580 nm

hc
λ

⎛ ⎞⎛ ⎞Δ = ⋅ − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
33. (a) Since energy is conserved, the energy E of the photon is given by E = Ei – Ef, 
where Ei is the initial energy of the hydrogen atom and Ef is the final energy. The electron 
energy is given by (– 13.6 eV)/n2, where n is the principal quantum number. Thus, 
 

( ) ( )3 1 2 2
13.6eV 13.6eV 12.1eV .

3 1
E E E − −
= − = − =  

(b) The photon momentum is given by 
 

p E
c

= =
×

×
= × ⋅

−
−

121 160 10
300 10

6 45 10
19

8
27

. .
.

. .
eV J eV

m s
kg m s

b gc h
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(c) Using hc = 1240 eV · nm, the wavelength is 1240eV nm 102nm.
12.1eV

hc
E

λ ⋅
= = =  

 
34. (a) We use Eq. 39-44. At r = 0, P(r) ∝ r2 = 0. 
 

(b) At r = a, ( )
2 2

2 2 1
3 2

4 4 4 10.2nm .
5.29 10 nm

a a e eP r a e
a a

− −
− −

−= = = =
×

 

 

(c) At r = 2a, ( ) ( )
4 4

2 4 1
3 2

4 16 162 5.54nm .
5.29 10 nm

a a e eP r a e
a a

− −
− −

−= = = =
×

 

 
35. (a) We use Eq. 39-39. At r = a, 
 

( )
( )

2
2 2 2 3

333 2 2

1 1 1 291nm .
5.29 10 nm

a ar e e e
aa

ψ − − − −

−

⎛ ⎞
= = = =⎜ ⎟ ππ⎝ ⎠ π ×

 

 
(b) We use Eq. 39-44. At r = a, 
 

( )
2 2

2 2 1
3 2

4 4 4 10.2nm .
5.29 10 nm

a a e eP r a e
a a

− −
− −

−= = = =
×

 

 
36. (a) The energy level corresponding to the probability density distribution shown in 
Fig. 39-23 is the n = 2 level. Its energy is given by 
 

2 2

13.6eV 3.4eV.
2

E = − = −  

 
(b) As the electron is removed from the hydrogen atom the final energy of the proton-
electron system is zero. Therefore, one needs to supply at least 3.4 eV of energy to the 
system in order to bring its energy up from E2 = – 3.4 eV to zero. (If more energy is 
supplied, then the electron will retain some kinetic energy after it is removed from the 
atom.) 
 
37. If kinetic energy is not conserved, some of the neutron’s initial kinetic energy is used 
to excite the hydrogen atom. The least energy that the hydrogen atom can accept is the 
difference between the first excited state (n = 2) and the ground state (n = 1). Since the 
energy of a state with principal quantum number n is –(13.6 eV)/n2, the smallest 
excitation energy is  

( ) ( )2 1 2 2

13.6eV 13.6eV 10.2eV .
2 1

E E E − −
Δ = − = − =  

 



CHAPTER 39 1504 

The neutron does not have sufficient kinetic energy to excite the hydrogen atom, so the 
hydrogen atom is left in its ground state and all the initial kinetic energy of the neutron 
ends up as the final kinetic energies of the neutron and atom. The collision must be elastic. 
 
38. From Eq. 39-6, ΔE hf= = × ⋅ × =−414 10 6 2 10 2 615 14. . . .eV s Hz eVc hc h  
 
39. The radial probability function for the ground state of hydrogen is  
 

P(r) = (4r2/a3)e– 2r/a, 
 

where a is the Bohr radius. (See Eq. 39-44.) We want to evaluate the integral 
0

∞z P r dr( ) .  

Equation 15 in the integral table of Appendix E is an integral of this form:  
 

10

!n ax
n

nx e dx
a

∞ −
+=∫  

 
We set n = 2 and replace a in the given formula with 2/a and x with r. Then 
 

0 3 0

2 2
3 3

4 4 2
2

1
∞ ∞ −z z= = =P r dr

a
r e dr

a a
r a( )

( )
./  

 
40. (a) The calculation is shown in Sample Problem — “Light emission from a hydrogen 
atom.” The difference in the values obtained in parts (a) and (b) of that Sample Problem 
is 122 nm – 91.4 nm ≈ 31 nm. 
 
(b) We use Eq. 39-1. For the Lyman series, 
 

Δf =
×
×

−
×
×

= ×− −

2 998 10
914 10

2 998 10
122 10

8 2 10
8

9

8

9
14.

.
. .m s

m
m s
m

Hz . 

 
(c) Figure 39-18 shows that the width of the Balmer series is 656.3 nm – 364.6 nm ≈  
292 nm 0.29 mμ≈ .  
 
(d) The series limit can be obtained from the ∞→ 2  transition: 
 

8 8
14 14

9 9

2.998 10 m s 2.998 10 m s 3.65 10 Hz 3.7 10 Hz.
364.6 10 m 656.3 10 m

f − −

× ×
Δ = − = × ≈ ×

× ×
 

 
41. Since Δr is small, we may calculate the probability using p = P(r) Δr, where P(r) is 
the radial probability density. The radial probability density for the ground state of 
hydrogen is given by Eq. 39-44: 
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P r r
a

e r a( ) /=
F
HG
I
KJ

−4 2

3
2  

where a is the Bohr radius. 
 
(a) Here, r = 0.500a and Δr = 0.010a. Then, 
 

2
2 / 2 1 3 3

3

4 4(0.500) (0.010) 3.68 10 3.7 10 .r ar rP e e
a

− − − −⎛ ⎞Δ
= = = × ≈ ×⎜ ⎟
⎝ ⎠

 

 
(b) We set r = 1.00a and Δr = 0.010a. Then, 
 

2
2 / 2 2 3 3

3

4 4(1.00) (0.010) 5.41 10 5.4 10 .r ar rP e e
a

− − − −⎛ ⎞Δ
= = = × ≈ ×⎜ ⎟
⎝ ⎠

 

 
42. Conservation of linear momentum of the atom-photon system requires that 
 

recoil photon recoilp
hfp p m v
c

= ⇒ =  

 
where we use Eq. 39-7 for the photon and use the classical momentum formula for the 
atom (since we expect its speed to be much less than c). Thus, from Eq. 39-6 and Table 
37-3, 

( )
( )( )

( ) ( )
2 2

4 1
recoil 2 6 8

13.6eV 4 1
4.1 m s .

938 10 eV 2.998 10 m sp p

E EEv
m c m c c

− −− −−Δ
= = = =

× ×
 

 
43. (a) and (b) Letting a = 5.292 × 10– 11 m be the Bohr radius, the potential energy 
becomes 

U e
a

= − =
× ⋅ ×

×
= − × = −

−

−
−

2 9 2 19 2

11
18

4
8 99 10 1602 10

5 292 10
4 36 10 27 2

πε0

. .
.

. . .
N m C C

m
J eV

2c hc h
 

 
The kinetic energy is K = E – U = (– 13.6 eV) – (– 27.2 eV) = 13.6 eV. 
 
44. (a) Since E2 = – 0.85 eV and E1 = – 13.6 eV + 10.2 eV = – 3.4 eV, the photon energy 
is   

Ephoton = E2 – E1 = – 0.85 eV – (– 3.4 eV) = 2.6 eV. 
 
(b) From 

E E
n n2 1

2
2

1
213 6 1 1 2 6− = − −

F
HG

I
KJ =( . ) .eV  eV  

we obtain 
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1 1 2 6
136

3
16

1
4

1
22

2
1
2 2 2n n

− = ≈ − = −
.
.

. eV
eV

 

 
Thus, n2 = 4 and n1 = 2. So the transition is from the n = 4 state to the n = 2 state. One can 
easily verify this by inspecting the energy level diagram of Fig. 39-18. Thus, the higher 
quantum number is n2 = 4. 
 
(c) The lower quantum number is n1 = 2. 
 
45. The probability density is given by 2| ( , ) | ,n m rψ θ  where ( , )n m rψ θ is the wave 

function. To calculate 2| | * ,n m n m n mψ ψ ψ=  we multiply the wave function by its 

complex conjugate. If the function is real, then * .n m n mψ ψ=  Note that ie φ+ and ie φ− are 
complex conjugates of each other, and eiφ e– iφ = e0 = 1. 
 
(a) ψ210 is real. Squaring it gives the probability density: 
 

2
2 / 2

210 5| | cos .
32

r ar e
a

ψ θ−=
π

 

 
(b) Similarly, 

| | sin/ψ θ21 1
2

2

5
2

64+
−=

r
a

e r a

π
 

and 
2

2 / 2
21 1 5| | sin .

64
r ar e

a
ψ θ−

− =
π

 

 
The last two functions lead to the same probability density. 
 
(c) For 0,m =  the probability density 2

210| |ψ  decreases with radial distance from the 
nucleus. With the 2cos θ  factor, 2

210| |ψ  is greatest along the z axis where θ = 0. This is 
consistent with the dot plot of Fig. 39-24(a). 
 
Similarly, for 1,m = ±  the probability density 2

21 1| |ψ ±  decreases with radial distance 
from the nucleus. With the 2sin θ  factor, 2

21 1| |ψ ±  is greatest in the xy-plane where θ = 
90°. This is consistent with the dot plot of Fig. 39-24(b). 
 
(d) The total probability density for the three states is the sum: 
 

2 2
2 2 2 / 2 2 2 /

210 21 1 21 1 5 5

1 1| | | | | | cos sin sin .
2 2

r a r ar re e
a a

ψ ψ ψ θ θ θ
π π

− −
+ −

⎡ ⎤+ + = + + =⎢ ⎥32 32⎣ ⎦
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The trigonometric identity cos2 θ + sin2 θ = 1 is used. We note that the total probability 
density does not depend on θ or φ; it is spherically symmetric. 
 
46. From Sample Problem — “ Probability of detection of the electron in a hydrogen 
atom,” we know that the probability of finding the electron in the ground state of the 
hydrogen atom inside a sphere of radius r is given by 
 

p r e x xx( ) = − + +−1 1 2 22 2c h  
 
where x = r/a. Thus the probability of finding the electron between the two shells 
indicated in this problem is given by 
 

( ) ( )2 2 2 2

2 1
( 2 ) (2 ) ( ) 1 1 2 2 1 1 2 2

                     0.439.

x x

x x
p a r a p a p a e x x e x x− −

= =
⎡ ⎤ ⎡ ⎤< < = − = − + + − − + +⎣ ⎦ ⎣ ⎦

=
 

 
47. According to Fig. 39-24, the quantum number n in question satisfies r = n2a. Letting r 
= 1.0 mm, we solve for n: 

n r
a

= =
×
×

≈ ×
−

−

10 10
5 29 10

4 3 10
3

11
3.

.
. .m

m
 

 
48. Using Eq. 39-6 and hc = 1240 eV · nm, we find 
 

ΔE E hc
= = =

⋅
=photon

eV nm
nm

eV
λ

1240
1216

10 2
.

. .  

 
Therefore, nlow = 1, but what precisely is nhigh? 
 

lowhigh 2 2

13.6eV 13.6eV    10.2eV
1

E E E
n

= + Δ ⇒ − = − +  

 
which yields n = 2 (this is confirmed by the calculation found from Sample Problem — 
“Light emission from a hydrogen atom). Thus, the transition is from the n = 2 to the n = 1 
state. 
 
(a) The higher quantum number is n = 2. 
 
(b) The lower quantum number is n = 1. 
 
(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions. 
 
49. (a) We take the electrostatic potential energy to be zero when the electron and proton 
are far removed from each other. Then, the final energy of the atom is zero and the work 
done in pulling it apart is W = – Ei, where Ei is the energy of the initial state. The energy 
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of the initial state is given by Ei = (–13.6 eV)/n2, where n is the principal quantum 
number of the state. For the ground state, n = 1 and W = 13.6 eV. 
 
(b) For the state with n = 2, W = (13.6 eV)/(2)2 = 3.40 eV. 
 
50. Using Eq. 39-6 and hc = 1240 eV · nm, we find 
 

photon
1240 eV nm 12.09 eV.

106.6 nm
hcE E
λ

⋅
Δ = = = =  

 
Therefore, nlow = 1, but what precisely is nhigh? 
 

high low 2 2

13.6 eV 13.6 eV    12.09 eV
1

E E E
n

= + Δ ⇒ − = − +  

 
which yields n = 3. Thus, the transition is from the n = 3 to the n = 1 state. 
 
(a) The higher quantum number is n = 3. 
 
(b) The lower quantum number is n = 1. 
 
(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions. 
 
51. According to Sample Problem — “ Probability of detection of the electron in a 
hydrogen atom,” the probability the electron in the ground state of a hydrogen atom can 
be found inside a sphere of radius r is given by 
 

p r e x xx( ) = − + +−1 1 2 22 2c h  
 
where x = r/a and a is the Bohr radius. We want r = a, so x = 1 and 
 

p a e e( ) ( ) . .= − + + = − =− −1 1 2 2 1 5 0 3232 2  
 
The probability that the electron can be found outside this sphere is 1 – 0.323 = 0.677. It 
can be found outside about 68% of the time. 
 
52. (a) ΔE = – (13.6 eV)(4– 2 – 1– 2) = 12.8 eV. 
 
(b) There are 6 possible energies associated with the transitions 4 →  3, 4 →  2, 4 →  1, 3 
→  2, 3 →  1 and 2 →1.  
 
(c) The greatest energy is 4 1 12.8 eV.E → =  
 
(d) The second greatest energy is ( )( )2 2

3 1 13.6eV 3 1 12.1 eVE − −
→ = − − = . 
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(e) The third greatest energy is ( )( )2 2

2 1 13.6eV 2 1 10.2 eVE − −
→ = − − = . 

 
(f) The smallest energy is ( )( )2 2

4 3 13.6eV 4 3 0.661 eVE − −
→ = − − = . 

 
(g) The second smallest energy is ( )( )2 2

3 2 13.6eV 3 2 1.89 eVE − −
→ = − − = . 

 
(h) The third smallest energy is ( )( )2 2

4 2 13.6eV 4 2 2.55 eV.E − −
→ = − − =  

 
53. The proposed wave function is 

ψ = −1
3 2πa

e r a  

 
where a is the Bohr radius. Substituting this into the right side of Schrödinger’s equation, 
our goal is to show that the result is zero. The derivative is 
 

d
dr a

e r aψ
= − −1

5 2π
 

so 

r d
dr

r
a

e r a2
2

5 2

ψ
= − −

π
 

and 
1 1 2 1 1 2 1
2

2
5 2r

d
dr

r d
dr a r a

e
a r a

r aψ ψF
HG
I
KJ = − +LNM

O
QP = − +LNM

O
QP

−

π
.  

 
The energy of the ground state is given by E me h= − 4

0
2 28ε  and the Bohr radius is given 

by a h me E e a= = −2
0

2 2 8ε π πε0, . so  The potential energy is given by U e r= − 2 4πε0 , 
so 
 

8 8
8 4

8
8

1 2

1 2 1 1 2

2 2

2 2

2

2

2

2

π π
πε πε

π
πε

π
ε

2 2

0 0

2

0

0

m
h

E U m
h

e
a

e
r

m
h

e
a r

me
h a r a a r

− = − +
L
NM

O
QP

= − +LNM
O
QP

= − +LNM
O
QP = − +LNM

O
QP

ψ ψ ψ

ψ ψ .
 

 
The two terms in Schrödinger’s equation cancel, and the proposed function ψ satisfies 
that equation. 
 
54. (a) The plot shown below for |ψ200(r)|2 is to be compared with the dot plot of Fig.  
39-23. We note that the horizontal axis of our graph is labeled “r,” but it is actually r/a 
(that is, it is in units of the parameter a). Now, in the plot below there is a high central 
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peak between r = 0 and r ∼ 2a, corresponding to the densely dotted region around the 
center of the dot plot of Fig. 39-22. Outside this peak is a region of near-zero values 
centered at r = 2a, where ψ200 = 0. This is represented in the dot plot by the empty ring 
surrounding the central peak. Further outside is a broader, flatter, low peak that reaches 
its maximum value at r = 4a. This corresponds to the outer ring with near-uniform dot 
density, which is lower than that of the central peak. 
 

 
 
(b) The extrema of ψ2(r) for 0 < r < ∞ may be found by squaring the given function, 
differentiating with respect to r, and setting the result equal to zero: 
 

−
− −

=−1
32

2 4 06

( ) ( ) /r a r a
a

e r a

π
 

 
which has roots at r = 2a and r = 4a. We can verify directly from the plot above that r = 
4a is indeed a local maximum of ψ 200

2 ( ).r  As discussed in part (a), the other root (r = 2a) 
is a local minimum. 
 
(c) Using Eq. 39-43 and Eq. 39-41, the radial probability is 
 

P r r r r
a

r
a

e r a
200

2
200
2

2

3

2

4
8

2( ) ( ) ./= = −FHG
I
KJ

−π ψ  

 
(d) Let x = r/a. Then 
 

22
/ 2 2 4 3 2

200 30 0 0 0

1( ) 2 (2 ) ( 4 4 )
8 8

1[4! 4(3!) 4(2!)] 1
8

r a x xr rP r dr e dr x x e dx x x x e dx
a a

∞ ∞ ∞ ∞− − −⎛ ⎞= − = − = − +⎜ ⎟
⎝ ⎠

= − + =

∫ ∫ ∫ ∫
 

 

where we have used the integral formula 
0

∞ −z =x e dx nn x ! . 
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55. The radial probability function for the ground state of hydrogen is  
 

P(r) = (4r2/a3)e– 2r/a, 
 
where a is the Bohr radius. (See Eq. 39-44.) The integral table of Appendix E may be 

used to evaluate the integral r rP r dravg =
∞z0 ( ) .  Setting n = 3 and replacing a in the given 

formula with 2/a (and x with r), we obtain 
 

( )
3 2 /

avg 43 30 0

4 4 6( ) 1.5 .
2

r ar rP r dr r e dr a
a a a

∞ ∞ −= = = =∫ ∫  

 
56. (a) The allowed energy values are given by En = n2h2/8mL2. The difference in energy 
between the state n and the state n + 1 is 
 

ΔE E E n n h
mL

n h
mLn nadj = − = + − =
+

+1
2 2

2

2

2

21
8

2 1
8

b g b g  

and 
ΔE

E
n h

mL
mL

n h
n
n

adj =
+L

NM
O
QP
F
HG
I
KJ =

+2 1
8

8 2 12

2

2

2 2 2

b g .  

 
As n becomes large, 2 1 2n n+ →  and 2 1 2 22 2n n n n n+ → =b g . 
 
(b) No. As adj,n E→∞ Δ  and E do not approach 0, but ΔEadj/E does. 
 
(c) No. See part (b). 
 
(d) Yes. See part (b). 
 
(e) ΔEadj/E is a better measure than either ΔEadj or E alone of the extent to which the 
quantum result is approximated by the classical result. 
 
57. From Eq. 39-4, 

E E h
mL

n h
mL

n h
mL

nn n+ − =
F
HG
I
KJ + −

F
HG
I
KJ =
F
HG
I
KJ +2

2

2
2

2

2
2

2

28
2

8 2
1b g b g.  

 
58. (a) and (b) In the region 0 < x < L, U0 = 0, so Schrödinger’s equation for the region is 
 

d
dx

m
h

E
2

2

2

2

8 0ψ ψ+ =
π  

 
where E > 0. If ψ2 (x) = B sin2 kx, then ψ (x) = B' sin kx, where B' is another constant 
satisfying B' 2 = B. Thus, 
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2
2 2

2 sin ( )d k B kx k x
dx
ψ ψ′= − = −  

 and  
d
dx

m
h

E k m
h

E
2

2

2

2
2

2

2

8 8ψ ψ ψ ψ+ = − +
π π .  

 
This is zero provided that 

k mE
h

2
2

2

8
=

π .  

 
The quantity on the right-hand side is positive, so k is real and the proposed function 
satisfies Schrödinger’s equation. In this case, there exists no physical restriction as to the 

sign of k. It can assume either positive or negative values. Thus, k
h

mE= ±
2 2π .  

 
59. (a) and (b) Schrödinger’s equation for the region x > L is 
 

d
dx

m
h

E U
2

2

2

2 0
8 0ψ ψ+ − =
π ,  

 
where E – U0 < 0. If ψ2 (x) = Ce– 2kx, then ψ(x) = C'e– kx, where C' is another constant 
satisfying C' 2 = C. Thus, 

2
2 2

2 4 4kxd k C e k
dx
ψ ψ−′= =  

 and 
d
dx

m
h

E U k m
h

E U
2

2

2

2 0
2

2

2 0
8 8ψ ψ ψ ψ+ − = + −
π π .  

 

This is zero provided that k m
h

U E2
2

2 0
8

= −
π .  

 
The quantity on the right-hand side is positive, so k is real and the proposed function 
satisfies Schrödinger’s equation. If k is negative, however, the proposed function would 
be physically unrealistic. It would increase exponentially with x. Since the integral of the 
probability density over the entire x axis must be finite, ψ diverging as x →∞  would be 
unacceptable. Therefore, we choose 
 

k
h

m U E= − >
2 2 00
π b g .  

 
60. We can use the mc2 value for an electron from Table 37-3 (511 × 103 eV) and hc = 
1240 eV · nm by writing Eq. 39-4 as 
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E n h
mL

n hc
mc Ln = =

2 2

2

2 2

2 28 8
b g
c h .  

 
(a) With L = 3.0 × 109 nm, the energy difference is 
 

E E2 1

2

3 9 2
2 2 191240

8 511 10 3 0 10
2 1 13 10− =

× ×
− = × −

c hc h c h
.

. eV.  

 
(b) Since (n + 1)2 – n2 = 2n + 1, we have 
 

ΔE E E h
mL

n
hc

mc L
nn n= − = + = ++1

2

2

2

2 28
2 1

8
2 1b g b gc h b g.  

 
Setting this equal to 1.0 eV, we solve for n: 
 

( )
( )

( ) ( ) ( )
( )

22 2 3 9
19

2 2

4 4 511 10 eV 3.0 10 nm 1.0eV1 1 1.2 10 .
2 21240eV nm

mc L E
n

hc

Δ × ×
= − = − ≈ ×

⋅
 

 
(c) At this value of n, the energy is 
 

En =
× ×

× ≈ ×
1240

8 511 10 3 0 10
6 10 6 10

2

3 9 2
18 2 18

c hc h c h
.

eV.  

Thus, 
18

13
2 3

6 10 eV 1.2 10 .
511 10 eV

nE
mc

×
= = ×

×
 

 
(d) Since 2/ 1nE mc , the energy is indeed in the relativistic range. 
 
61. (a) We recall that a derivative with respect to a dimensional quantity carries the 
(reciprocal) units of that quantity. Thus, the first term in Eq. 39-18 has dimensions of ψ 
multiplied by dimensions of x– 2. The second term contains no derivatives, does contain ψ, 
and involves several other factors that turn out to have dimensions of x– 2: 
 

( )
( )

[ ]
2

22

8 kg J
J s

m E U x
h
π

− ⇒⎡ ⎤⎣ ⎦ ⋅
 

 
assuming SI units. Recalling from Eq. 7-9 that J = kg·m2/s2, then we see the above is 
indeed in units of m– 2 (which means dimensions of x– 2). 
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(b) In one-dimensional quantum physics, the wave function has units of m– ½, as shown in 
Eq. 39-17. Thus, since each term in Eq. 39-18 has units of ψ multiplied by units of x– 2, 
then those units are m– 1/2· m– 2 = m– 2.5. 
 
62. (a) The “home-base” energy level for the Balmer series is n = 2. Thus the transition 
with the least energetic photon is the one from the n = 3 level to the n = 2 level. The 
energy difference for this transition is 
 

ΔE E E= − = − −FHG
I
KJ =3 2 2 2136 1

3
1
2

1889. . .eV eVb g  

 
Using hc = 1240 eV · nm, the corresponding wavelength is 
 

1240eV nm 658nm .
1.889eV

hc
E

λ ⋅
= = =
Δ

 

 
(b) For the series limit, the energy difference is 
 

ΔE E E= − = −
∞

−FHG
I
KJ =∞ 2 2 2136 1 1

2
340. . .eV eVb g  

 

The corresponding wavelength is then 1240eV nm 366nm .
3.40eV

hc
E

λ ⋅
= = =
Δ

 

 
63. (a) The allowed values of  for a given n are 0, 1, 2, ..., n – 1. Thus there are n 
different values of . 
 
(b) The allowed values of m  for a given  are – , –  + 1, ..., . Thus there are 2  + 1 
different values of m . 
 
(c) According to part (a) above, for a given n there are n different values of . Also, each 
of these ’s can have 2  + 1 different values of m  [see part (b) above]. Thus, the total 
number of m ’s is 

1
2

0

(2 1) .
n

n
−

=

+ =∑  

 
64. For n = 1 

( )( )
( ) ( ) ( )

431 194

1 2 22 2 12 34 19
0

9.11 10 kg 1.6 10 C
13.6eV .

8 8 8.85 10 F m 6.63 10 J s 1.60 10 J eV
em eE
hε

− −

− − −

× ×
= − = − = −

× × ⋅ ×
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Chapter 40 
 
 
1. The magnitude L of the orbital angular momentum L  is given by Eq. 40-2: 

( 1)L = + . On the other hand, the components zL are zL m= , where ,...m = − + . 
Thus, the semi-classical angle is cos /zL Lθ = . The angle is the smallest when m = , or 
 

 1cos     cos
( 1) ( 1)

θ θ −
⎛ ⎞

= ⇒ = ⎜ ⎟⎜ ⎟+ +⎝ ⎠
. 

  
With 5= , we have 1cos (5 / 30) 24.1 .θ −= = °  
 
2. For a given quantum number n there are n possible values of , ranging from 0 to 1n − . 
For each  the number of possible electron states is N = 2(2  + 1). Thus the total 
number of possible electron states for a given n is 
 

( )
1 1

2

0 0
2 2 1 2 .

n n

nN N n
− −

= =

= = + =∑ ∑  

 
Thus, in this problem, the total number of electron states is Nn = 2n2 = 2(5)2 = 50. 
 
3. (a) We use Eq. 40-2: 
 

( ) ( ) ( )34 341 3 3 1 1.055 10 J s 3.65 10 J s.L − −= + = + × ⋅ = × ⋅  
 
(b) We use Eq. 40-7: zL m= . For the maximum value of Lz set m  = . Thus 
 

[ ] ( )34 34
max

3 1.055 10 J s 3.16 10 J s.zL − −= = × ⋅ = × ⋅  
 
4. For a given quantum number n there are n possible values of , ranging from 0 to  
n – 1. For each  the number of possible electron states is N  = 2(2  + 1). Thus, the 
total number of possible electron states for a given n is 
 

( )
1 1

2

0 0

2 2 1 2 .
n n

n
l l

N N n
− −

= =

= = + =∑ ∑  

 
(a) In this case n = 4, which implies Nn = 2(42) = 32. 
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(b) Now n = 1, so Nn = 2(12) = 2. 
 
(c) Here n = 3, and we obtain Nn = 2(32) = 18. 
 
(d) Finally, n Nn= → = =2 2 2 82c h . 
 
5. (a) For a given value of the principal quantum number n, the orbital quantum number 

 ranges from 0 to n –  1. For n = 3, there are three possible values: 0, 1, and 2. 
 
(b) For a given value of , the magnetic quantum number m  ranges from − to + . For 

= 1, there are three possible values: – 1, 0, and +1. 
 
6. For a given quantum number there are (2 + 1) different values of m . For each 
given m  the electron can also have two different spin orientations. Thus, the total 
number of electron states for a given  is given by N = 2(2 + 1). 
 
(a) Now  = 3, so N  = 2(2 × 3 + 1) = 14. 
 
(b) In this case, = 1, which means N  = 2(2 × 1 + 1) = 6. 
 
(c) Here  = 1, so N  = 2(2 × 1 + 1) = 6. 
 
(d) Now = 0, so N  = 2(2 × 0 + 1) = 2. 
 
7. (a) Using Table 40-1, we find  = [ m ]max = 4. 
 
(b) The smallest possible value of n is n = max +1 ≥  + 1 = 5.  
 
(c) As usual, ms = ± 1

2 , so two possible values. 
 
8. (a) For 3= , the greatest value of m  is 3m = . 
 
(b) Two states ( ms = ± 1

2 ) are available for 3m = . 
 
(c) Since there are 7 possible values for m  :  +3, +2, +1, 0, – 1, – 2, – 3, and two possible 
values for sm , the total number of state available in the subshell 3=  is 14.  
 
9. (a) For = 3 , the magnitude of the orbital angular momentum is  
 

( )1L = + =  ( )3 3 1 12+ = . 
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So the multiple is 12 3.46.≈  
 
(b) The magnitude of the orbital dipole moment is  
 

μ μ μorb = + =1 12b g B B . 

So the multiple is 12 3.46.≈  
  
(c) The largest possible value of m  is 3m = = . 
 
(d) We use L mz =  to calculate the z component of the orbital angular momentum. The 
multiple is 3m = . 
 
(e) We use μ μz Bm= −  to calculate the z component of the orbital magnetic dipole 
moment. The multiple is 3m− = − . 
 
(f) We use cosθ = +m 1b g  to calculate the angle between the orbital angular 

momentum vector and the z axis. For = 3  and 3m = , we have cos 3/ 12 3 / 2θ = = , 
or 30.0θ = ° . 
 
(g) For = 3  and 2m = , we have cos 2 / 12 1/ 3θ = = , or 54.7θ = ° . 
 
(h) For = 3  and 3m = − , cos 3/ 12 3 / 2θ = − = − , or 150θ = ° . 
 
10. (a) For n = 3 there are 3 possible values of : 0, 1, and 2. 
 
(b) We interpret this as asking for the number of distinct values for m  (this ignores the 
multiplicity of any particular value). For each  there are 2  + 1 possible values of m . 
Thus the number of possible 'sm  for  = 2 is (2  + 1) = 5. Examining the  = 1 and 

0=  cases cannot lead to any new (distinct) values for m , so the answer is 5. 
 
(c) Regardless of the values of n, and m , for an electron there are always two possible 
values of ms:± 1

2 . 
 
(d) The population in the n = 3 shell is equal to the number of electron states in the shell, 
or 2n2 = 2(32) = 18. 
 
(e) Each subshell has its own value of . Since there are three different values of  for n 
= 3, there are three subshells in the n = 3 shell. 
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11. Since L L L L L L L Lx y z x y z
2 2 2 2 2 2 2 2= + + + = −, . Replacing L2 with +1 2b g  and Lz 

with m , we obtain 

L L mx y
2 2 21+ = + −b g .  

 
For a given value of , the greatest that m  can be is , so the smallest that L Lx y

2 2+  

can be is + − =1 2b g . The smallest possible magnitude of m  is zero, so the 

largest L Lx y
2 2+  can be is +1b g . Thus, 

 
≤ + ≤ +L Lx y

2 2 1b g .  
 
12. The angular momentum of the rotating sphere, sphereL , is equal in magnitude but in 

opposite direction to atomL , the angular momentum due to the aligned atoms. The number 
of atoms in the sphere is 

 AN mN
M

= , 

 
where 236.02 10 / molAN = ×  is Avogadro’s number and 0.0558 kg/molM =  is the molar 
mass of iron. The angular momentum due to the aligned atoms is 
 

 atom 0.12 ( ) 0.12
2

A
s

N mL N m
M

= = . 

 
On the other hand, the angular momentum of the rotating sphere is (see Table 10-2 for I) 
 

2
sphere

2
5

L I mRω ω⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. 

 
Equating the two expressions, the mass m cancels out and the angular velocity is 
 

23 34

2 3 2

5

5 5(6.02 10 / mol)(6.63 10  J s/2 )0.12 0.12
4 4(0.0558 kg/mol)(2.00 10  m)

4.27 10 rad/s

AN
MR

πω
−

−

−

× × ⋅
= =

×
= ×

. 

  
13. The force on the silver atom is given by 
 

 ( )z z z
dU d dBF B
dz dz dz

μ μ= − = − − =  
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where zμ  is the z component of the magnetic dipole moment of the silver atom, and B is 
the magnetic field. The acceleration is 
 

( / ) ,z zF dB dza
M M

μ
= =  

 
where M is the mass of a silver atom. Using the data given in Sample Problem —“Beam 
separation in a Stern-Gerlach experiment,” we obtain 
 

( )( )24 3
24

25

9.27 10 J T 1.4 10 T m
7.2 10 m s .

1.8 10 kg
a

−

−

× ×
= = ×

×
 

 
14. (a) From Eq. 40-19, 

 

F dB
dzB= = × × = ×− −μ 9 27 10 16 10 15 1024 2 21. . . .J T T m Nc hc h  

 
(b) The vertical displacement is 
 

22 21
2 5

27 5

1 1 1 1.5 10 N 0.80m 2.0 10 m.
2 2 2 1.67 10 kg 1.2 10 m s

F lx at
m v

−
−

−

⎛ ⎞ ⎛ ⎞×⎛ ⎞⎛ ⎞Δ = = = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ × ×⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
15. The magnitude of the spin angular momentum is  
 

S s s= + =1 3 2b g d i , 

 
where s = 1

2  is used. The z component is either Sz = 2  or − 2 .  
 
(a) If Sz = + 2  the angle θ between the spin angular momentum vector and the positive 
z axis is 

θ = F
HG
I
KJ = F

HG
I
KJ = °− −cos cos . .1 1 1

3
54 7S

S
z  

 
(b) If Sz = − 2 , the angle is θ = 180° – 54.7° = 125.3° 125 .≈ °  
 
16. (a) From Fig. 40-10 and Eq. 40-18, 

 

ΔE BB= =
×

×
=

−

−2
2 9 27 10 050

160 10
58

24

19μ μ
. .

.
.

J T T
J eV

eV
c hb g

 

(b) From ΔE = hf we get 
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24
10

34

9.27 10 J 1.4 10 Hz 14 GHz .
6.63 10 J s

Ef
h

−

−

Δ ×
= = = × =

× ⋅
 

(c) The wavelength is 
8

10

2.998 10 m s 2.1 cm.
1.4 10 Hz

c
f

λ ×
= = =

×
 

 
(d) The wave is in the short radio wave region. 
 
17. The total magnetic field, B = Blocal + Bext, satisfies ΔE = hf = 2μB (see Eq. 40-22). 
Thus, 

( )( )
( )

34 6

local ext 26

6.63 10 J s 34 10 Hz
0.78 T 19 mT .

2 2 1.41 10 J T
hfB B
μ

−

−

× ⋅ ×
= − = − =

×
 

 
18. We let ΔE = 2μBBeff (based on Fig. 40-10 and Eq. 40-18) and solve for Beff: 
 

( )( )eff 7 5

1240nm eV 51 mT .
2 2 2 21 10 nm 5.788 10 eV TB B

E hcB
μ μ − −

Δ ⋅
= = = =

λ × ×
 

 
19. The energy of a magnetic dipole in an external magnetic field B  is 
U B Bz= − ⋅ = −μ μ , where μ  is the magnetic dipole moment and μz is its component 
along the field. The energy required to change the moment direction from parallel to 
antiparallel is ΔE = ΔU = 2μzB. Since the z component of the spin magnetic moment of 
an electron is the Bohr magneton ,Bμ  
 

( )( )242 2 9.274 10 J T 0.200TBE Bμ −Δ = = × =  243.71 10 J−×  . 
 
The photon wavelength is 
 

( )( )34 8
2

24

6.626 10 J s 2.998 10 m s
5.35 10 m .

3.71 10 J
c hc
f E

λ
−

−
−

× ⋅ ×
= = = = ×

Δ ×
 

 
20. Using Eq. 39-20 we find that the lowest four levels of the rectangular corral (with this 
specific “aspect ratio”) are nondegenerate, with energies E1,1 = 1.25, E1,2 = 2.00, E1,3 = 
3.25, and E2,1 = 4.25 (all of these understood to be in “units” of h2/8mL2). Therefore, 
obeying the Pauli principle, we have 
 

E E E E Eground = + + + = + + +2 2 2 2 125 2 2 00 2 3 25 4 251 1 1 2 1 3 2 1, , , , . . . .b g b g b g  
 
which means (putting the “unit” factor back in) that the lowest possible energy of the 
system is Eground = 17.25(h2/8mL2). Thus, the multiple of 2 2/ 8h mL  is 17.25.  
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21. Because of the Pauli principle (and the requirement that we construct a state of lowest 
possible total energy), two electrons fill the n = 1, 2, 3 levels and one electron occupies 
the n = 4 level. Thus, using Eq. 39-4, 
 

( ) ( ) ( ) ( )

( )

ground 1 2 3 4
2 2 2 2

2 2 2 2
2 2 2 2

2 2

2 2

2 2 2

2 1 2 2 2 3 4
8 8 8 8

2 8 18 16 44 .
8 8

E E E E E
h h h h
mL mL mL mL

h h
mL mL

= + + +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 
Thus, the multiple of 2 2/ 8h mL  is 44.  
 
22. Due to spin degeneracy ( 1/ 2sm = ± ), each state can accommodate two electrons. 
Thus, in the energy-level diagram shown, two electrons can be placed in the ground state 
with energy 2 2

1 4( / 8 )E h mL= , six can occupy the “triple state” with 2 2
2 6( / 8 )E h mL= , 

and so forth. With 11 electrons, the lowest energy configuration consists of two electrons 
with 2 2

1 4( / 8 ),E h mL=  six electrons with 2 2
2 6( / 8 ),E h mL=  and three electrons with 

2 2
3 7( / 8 )E h mL= . Thus, we find the ground-state energy of the 11-electron system to be 

 

[ ]

2 2 2

ground 1 2 3 2 2 2

2 2

2 2

4 6 72 6 3 2 6 3
8 8 8

(2)(4) (6)(6) (3)(7) 65 .
8 8

h h hE E E E
mL mL mL

h h
mL mL

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The first excited state of the 11-electron system consists of two electrons with 

2 2
1 4( / 8 ),E h mL=  five electrons with 2 2

2 6( / 8 ),E h mL=  and four electrons with 
2 2

3 7( / 8 )E h mL= . Thus, its energy is 
 

[ ]

2 2 2

1st excited 1 2 3 2 2 2

2 2

2 2

4 6 72 5 4 2 5 4
8 8 8

(2)(4) (5)(6) (4)(7) 66 .
8 8

h h hE E E E
mL mL mL

h h
mL mL

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Thus, the multiple of 2 2/ 8h mL  is 66.  
 
23. In terms of the quantum numbers nx, ny, and nz, the single-particle energy levels are 
given by 

E h
mL

n n nn n n x y zx y z, , .= + +
2

2
2 2 2

8 d i  
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The lowest single-particle level corresponds to nx = 1, ny = 1, and nz = 1 and is E1,1,1 = 
3(h2/8mL2). There are two electrons with this energy, one with spin up and one with spin 
down. The next lowest single-particle level is three-fold degenerate in the three integer 
quantum numbers. The energy is  
 

E1,1,2 = E1,2,1 = E2,1,1 = 6(h2/8mL2). 
 
Each of these states can be occupied by a spin up and a spin down electron, so six 
electrons in all can occupy the states. This completes the assignment of the eight 
electrons to single-particle states. The ground state energy of the system is  
 

Egr = (2)(3)(h2/8mL2) + (6)(6)(h2/8mL2) = 42(h2/8mL2). 
 
Thus, the multiple of 2 2/ 8h mL  is 42. 
 
Note: We summarize the ground-state configuration and the energies (in multiples 
of 2 2/ 8h mL ) in the chart below: 
 

nx ny nz ms energy 
1 1 1 –1/2, + 1/2 3 + 3 
1 1 2 –1/2, + 1/2 6 + 6 
1 2 1 –1/2, + 1/2 6 + 6 
2 1 1 –1/2, + 1/2 6 + 6 
   total 42 

  
24. (a) Using Eq. 39-20 we find that the lowest five levels of the rectangular corral (with 
this specific “aspect ratio”) have energies  
 

E1,1 = 1.25, E1,2 = 2.00, E1,3 = 3.25, E2,1 = 4.25, E2,2 = 5.00 
 
(all of these understood to be in “units” of h2/8mL2). It should be noted that the energy 
level we denote E2,2 actually corresponds to two energy levels (E2,2 and E1,4; they are 
degenerate), but that will not affect our calculations in this problem. The configuration 
that provides the lowest system energy higher than that of the ground state has the first 
three levels filled, the fourth one empty, and the fifth one half-filled: 
 

E E E E Efirst excited = + + + = + + +2 2 2 2 125 2 2 00 2 325 5001 1 1 2 1 3 2 2, , , , . . . .b g b g b g  
 
which means (putting the “unit” factor back in) the energy of the first excited state is  
Efirst excited = 18.00(h2/8mL2). Thus, the multiple of 2 2/ 8h mL  is 18.00.  
 
(b) The configuration that provides the next higher system energy has the first two levels 
filled, the third one half-filled, and the fourth one filled: 
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( ) ( ) ( )second excited 1,1 1,2 1,3 2,12 2 2 2 1.25 2 2.00 3.25 2 4.25E E E E E= + + + = + + +  
 
which means (putting the “unit” factor back in) the energy of the second excited state is 
 

Esecond excited = 18.25(h2/8mL2). 
 
Thus, the multiple of 2 2/ 8h mL  is 18.25.  
 
(c) Now, the configuration that provides the next higher system energy has the first two 
levels filled, with the next three levels half-filled: 
 

( ) ( )third excited 1,1 1,2 1,3 2,1 2,22 2 2 1.25 2 2.00 3.25 4.25 5.00E E E E E E= + + + + = + + + +  
 
which means (putting the “unit” factor back in) the energy of the third excited state is 
Ethird excited = 19.00(h2/8mL2). Thus, the multiple of 2 2/ 8h mL  is 19.00.  
 
(d) The energy states of this problem and Problem 40-22 are suggested below: 
 
__________________ third excited 19.00(h2/8mL2) 
 
 
 
__________________ second excited 18.25(h2/8mL2) 
 
__________________ first excited 18.00(h2/8mL2) 
 
 
 
__________________ ground state 17.25(h2/8mL2) 
 
25. (a) Promoting one of the electrons (described in Problem 40-21) to a not-fully 
occupied higher level, we find that the configuration with the least total energy greater 
than that of the ground state has the n = 1 and 2 levels still filled, but now has only one 
electron in the n = 3 level; the remaining two electrons are in the n = 4 level. Thus, 
 

E E E E E

h
mL

h
mL

h
mL

h
mL

h
mL

h
mL

first excited = + + +

=
F
HG
I
KJ +

F
HG
I
KJ +
F
HG
I
KJ +

F
HG
I
KJ

= + + +
F
HG
I
KJ =
F
HG
I
KJ

2 2 2

2
8

1 2
8

2
8

3 2
8

4

2 8 9 32
8

51
8

1 2 3 4

2

2
2

2

2
2

2

2
2

2

2
2

2

2

2

2

b g b g b g b g

b g .

 

 
Thus, the multiple of 2 2/ 8h mL  is 51.  
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(b) Now, the configuration which provides the next higher total energy, above that found 
in part (a), has the bottom three levels filled (just as in the ground state configuration) and 
has the seventh electron occupying the n = 5 level: 
 

E E E E E

h
mL

h
mL

h
mL

h
mL

h
mL

h
mL

second excited = + + +

=
F
HG
I
KJ +

F
HG
I
KJ +

F
HG
I
KJ +
F
HG
I
KJ

= + + +
F
HG
I
KJ =
F
HG
I
KJ

2 2 2

2
8

1 2
8

2 2
8

3
8

5

2 8 18 25
8

53
8

1 2 3 5

2

2
2

2

2
2

2

2
2

2

2
2

2

2

2

2

b g b g b g b g

b g .

 

Thus, the multiple of 2 2/ 8h mL  is 53.  
 
(c) The third excited state has the n = 1, 3, 4 levels filled, and the n = 2 level half-filled: 
 

E E E E E

h
mL

h
mL

h
mL

h
mL

h
mL

h
mL

third excited = + + +

=
F
HG
I
KJ +
F
HG
I
KJ +

F
HG
I
KJ +

F
HG
I
KJ

= + + +
F
HG
I
KJ =
F
HG
I
KJ

2 2 2

2
8

1
8

2 2
8

3 2
8

4

2 4 18 32
8

56
8

1 2 3 4

2

2
2

2

2
2

2

2
2

2

2
2

2

2

2

2

b g b g b g b g

b g .

 

 
Thus, the multiple of 2 2/ 8h mL  is 56.  
 
(d) The energy states of this problem and Problem 40-21 are suggested below: 
 
 
_______________________ third excited 56(h2/8mL2) 
 
_______________________ second excited 53(h2/8mL2) 
 
_______________________ first excited 51(h2/8mL2) 
 
 
_______________________ ground state 44(h2/8mL2) 
 
26. The energy levels are given by 
 

( )
22 22 2

2 2 2
, , 2 2 2 28 8x y z

yx z
n n n x y z

x y z

nn nh hE n n n
m L L L mL

⎛ ⎞
= + + = + +⎜ ⎟⎜ ⎟

⎝ ⎠
. 

 
The Pauli principle requires that no more than two electrons be in the lowest energy level 
(at E1,1,1 = 3(h2/8mL2) with nx = ny = nz = 1), but — due to their degeneracies — as many 
as six electrons can be in the next three levels,  
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E' = E1,1,2 = E1,2,1 = E2,1,1 = 6(h2/8mL2) 
 

E'' = E1,2,2 = E2,2,1 = E2,1,2 = 9(h2/8mL2) 
  

E''' = E1,1,3 = E1,3,1 = E3,1,1 = 11(h2/8mL2).  
 
Using Eq. 39-21, the level above those can only hold two electrons:  
 

E2,2,2 = (22 + 22 + 22)(h2/8mL2) = 12(h2/8mL2). 
 
And the next higher level can hold as much as twelve electrons and has energy  
 

E'''' = 14(h2/8mL2). 
 
(a) The configuration that provides the lowest system energy higher than that of the 
ground state has the first level filled, the second one with one vacancy, and the third one 
with one occupant: 

E E E Efirst excited = + ′ + ′′ = + +2 5 2 3 5 6 91 1 1, , b g b g  
 
which means (putting the “unit” factor back in) the energy of the first excited state is 

 
Efirst excited = 45(h2/8mL2). 

 
Thus, the multiple of 2 2/ 8h mL  is 45. 
 
(b) The configuration that provides the next higher system energy has the first level filled, 
the second one with one vacancy, the third one empty, and the fourth one with one 
occupant: 

E E E Esecond excited = + ′ + ′′ = + +2 5 2 3 5 6 111 1 1, , b g b g  
 
which means (putting the “unit” factor back in) the energy of the second excited state is 
Esecond excited = 47(h2/8mL2). Thus, the multiple of 2 2/ 8h mL  is 47. 
 
(c) Now, there are a couple of configurations that provide the next higher system energy. 
One has the first level filled, the second one with one vacancy, the third and fourth ones 
empty, and the fifth one with one occupant: 
 

E E E Ethird excited = + ′ + ′′′ = + +2 5 2 3 5 6 121 1 1, , b g b g  
 
which means (putting the “unit” factor back in) the energy of the third excited state is 
Ethird excited = 48(h2/8mL2). Thus, the multiple of 2 2/ 8h mL  is 48. The other configuration 
with this same total energy has the first level filled, the second one with two vacancies, 
and the third one with one occupant. 
 
(d) The energy states of this problem and Problem 40-25 are suggested below: 
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__________________ third excited 48(h2/8mL2) 
 
__________________ second excited 47(h2/8mL2) 
 
 
 
__________________ first excited 45(h2/8mL2) 
 
 
 
__________________ ground state 42(h2/8mL2) 
 
27. (a) All states with principal quantum number n = 1 are filled. The next lowest states 
have n = 2. The orbital quantum number can have the values = 0  or 1 and of these, the 

= 0  states have the lowest energy. The magnetic quantum number must be m = 0  since 
this is the only possibility if = 0 . The spin quantum number can have either of the 
values, ms = − 1

2  or + 1
2 . Since there is no external magnetic field, the energies of these 

two states are the same. Therefore, in the ground state, the quantum numbers of the third 
electron are either 1 1

2 22, 0, 0,  or 2, 0, 0,s sn m m n m m= = = = − = = = = + . That is, 
( , , , )sn m m = (2,0,0, +1/2) and (2,0,0, −1/2). 
 
(b) The next lowest state in energy is an n = 2, = 1 state. All n = 3 states are higher in 
energy. The magnetic quantum number can be m = − +1 0 1, , ;or  the spin quantum 
number can be ms = − +1

2
1
2or . Thus, ( , , , )sn m m = (2,1,1, +1/2), (2,1,1, −1/2), 

(2,1,0, 1/ 2)+ , (2,1,0, 1/ 2)− , (2,1, 1, 1/ 2)− +  and (2,1, 1, 1/ 2)− − .  
 
28. For a given value of the principal quantum number n, there are n possible values of 
the orbital quantum number , ranging from 0 to n – 1. For any value of , there are 
2 1+  possible values of the magnetic quantum number m , ranging from  to − + . 
Finally, for each set of values of  and m , there are two states, one corresponding to the 
spin quantum number ms = − 1

2  and the other corresponding to ms = + 1
2 . Hence, the total 

number of states with principal quantum number n is 
 

1

0

2 (2 1).
n

N
−

=

= +∑  

Now 
1 1

0 0

2 2 2 ( 1) ( 1),
2

n n n n n n
− −

= =

= = − = −∑ ∑  

 
since there are n terms in the sum and the average term is (n –  1)/2. Furthermore, 
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1

0
1 .

n

n
−

=

=∑  

Thus N n n n n= − + =2 1 2 2b g . 
 
29. The total number of possible electron states for a given quantum number n is 
 

( )
1 1

2

0 0
2 2 1 2 .

n n

nN N n
− −

= =

= = + =∑ ∑  

 
Thus, if we ignore any electron-electron interaction, then with 110 electrons, we would 
have two electrons in the 1n =  shell, eight in the 2n =  shell, 18 in the 3n =  shell, 32 in 
the 4n =  shell, and the remaining 50 ( 110 2 8 18 32= − − − − ) in the 5n =  shell. The 50 
electrons would be placed in the subshells in the order , , , , , ,...s p d f g h  and the resulting 
configuration is 2 6 10 14 185 5 5 5 5s p d f g . Therefore, the spectroscopic notation for the 
quantum number  of the last electron would be g.  
 
Note, however, when the electron-electron interaction is considered, the ground-state 
electronic configuration of darmstadtium actually is 14 9 1[Rn]5 6 7f d s , where 
 

[ ] 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6Rn :1 2 2 3 3 3 4 4 4 4 5 5 5 6 6s s p s p d s p d f s p d s p  
 
represents the inner-shell electrons. 
 
30. When a helium atom is in its ground state, both of its electrons are in the 1s state. 
Thus, for each of the electrons, n = 1,  = 0, and m  = 0. One of the electrons is spin up 
ms = + 1

2b g  while the other is spin down ms = − 1
2b g . Thus,  

 
(a) the quantum numbers ( , , , )sn m m  for the spin-up electron are (1,0,0,+1/2), and  
 
(b) the quantum numbers ( , , , )sn m m  for the spin-down electron are (1,0,0,−1/2). 
 
31. The first three shells (n = 1 through 3), which can accommodate a total of 2 + 8 + 18 
= 28 electrons, are completely filled. For selenium (Z = 34) there are still 34 –  28 = 6 
electrons left. Two of them go to the 4s subshell, leaving the remaining four in the 
highest occupied subshell, the 4p subshell.  
 
(a) The highest occupied subshell is 4p. 
 
(b) There are four electrons in the 4p subshell. 
 
For bromine (Z = 35) the highest occupied subshell is also the 4p subshell, which 
contains five electrons.  
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(c) The highest occupied subshell is 4p. 
 
(d) There are five electrons in the 4p subshell. 
 
For krypton (Z = 36) the highest occupied subshell is also the 4p subshell, which now 
accommodates six electrons.  
 
(e) The highest occupied subshell is 4p. 
 
(f) There are six electrons in the 4p subshell. 
 
32. (a) The number of different 's is 2 1 3,m + =  ( 1,0, 1m = − ) and the number of 
different 'ssm  is 2, which we denote as +1/2 and −1/2. The allowed states are 

1 1 2 2( , , , )s sm m m m = (1, +1/2, 1, −1/2), (1, +1/2, 0, +1/2), (1, +1/2, 0, −1/2), (1, +1/2, −1, 
+1/2), (1, +1/2, −1, −1/2), (1, −1/2, 0, +1/2), (1, −1/2, 0, −1/2), (1, −1/2, −1, +1/2), 
(1, −1/2, −1, −1/2), (0, +1/2, 0, −1/2), (0, +1/2, −1, +1/2), (0, +1/2, −1, −1/2), (0, −1/2, −1, 
+ 1/2), (0, −1/2, −1, −1/2), ( −1, +1/2, −1, −1/2). So, there are 15 states. 
 
(b) There are six states disallowed by the exclusion principle, in which both electrons 
share the quantum numbers: 1 1 2 2( , , , )s sm m m m =(1, +1/2, 1, +1/2), (1, −1/2, 1, −1/2), (0, 
+1/2, 0, +1/2), (0, −1/2, 0, −1/2), (−1, +1/2, −1, +1/2), (−1, −1/2, −1, −1/2). So, if the 
Pauli exclusion principle is not applied, then there would be 15 + 6 = 21 allowed states. 
 
33. The kinetic energy gained by the electron is eV, where V is the accelerating potential 
difference. A photon with the minimum wavelength (which, because of E = hc/λ, 
corresponds to maximum photon energy) is produced when all of the electron’s kinetic 
energy goes to a single photon in an event of the kind depicted in Fig. 40-15. Thus, with 

1240eV nm,hc = ⋅   

eV hc
= =

⋅
= ×

λmin .
. .1240

010
124 104eV nm

nm
eV  

 
Therefore, the accelerating potential difference is V = 1.24 × 104 V = 12.4 kV. 
 
34. With hc = 1240 eV·nm = 1240 keV·pm, for the Kα line from iron, the energy 
difference is 

1240keV pm 6.42 keV.
193pm

hcE
λ

⋅
Δ = = =  

 
We remark that for the hydrogen atom the corresponding energy difference is 
 

ΔE12 2 1136 1
2

1
1

10= − −FHG
I
KJ =. .eV eVb g  
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That this difference is much greater in iron is due to the fact that its atomic nucleus 
contains 26 protons, exerting a much greater force on the K- and L-shell electrons than 
that provided by the single proton in hydrogen. 
 
35. (a) The cut-off wavelength λmin is characteristic of the incident electrons, not of the 
target material. This wavelength is the wavelength of a photon with energy equal to the 
kinetic energy of an incident electron. With hc = 1240 eV·nm, we obtain 
 

2
min 3

1240eV nm 3.54 10 nm 35.4pm .
35 10 eV

λ −⋅
= = × =

×
 

 
(b) A Kα photon results when an electron in a target atom jumps from the L-shell to the 
K-shell. The energy of this photon is  
 

E = 25.51 keV – 3.56 keV = 21.95 keV 
 
and its wavelength is  
 

λKα = /hc E  = (1240 eV·nm)/(21.95 × 103 eV) = 5.65 × 10– 2 nm = 56.5 pm. 
 
(c) A Kβ photon results when an electron in a target atom jumps from the M-shell to the 
K-shell. The energy of this photon is 25.51 keV – 0.53 keV = 24.98 keV and its 
wavelength is  
 

λKβ = (1240 eV·nm)/(24.98 × 103 eV) = 4.96 × 10– 2 nm = 49.6 pm. 
 
36. (a) We use mineV hc λ=  (see Eq. 40-23 and Eq. 38-4). With hc = 1240 eV·nm = 1240 
keV·pm, the mean value of minλ  is 
 

min
1240keV pm 24.8pm .

50.0keV
hc
eV

λ ⋅
= = =  

 
(b) The values of λ for the Kα and Kβ lines do not depend on the external potential and are 
therefore unchanged. 
 
37. Suppose an electron with total energy E and momentum p spontaneously changes into 
a photon. If energy is conserved, the energy of the photon is E and its momentum has 
magnitude E/c. Now the energy and momentum of the electron are related by 
 

( ) ( ) ( )2 222 2 2 2E pc mc pc E mc= + ⇒ = − . 
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Since the electron has nonzero mass, E/c and p cannot have the same value. Hence, 
momentum cannot be conserved. A third particle must participate in the interaction, 
primarily to conserve momentum. It does, however, carry off some energy. 
 
38. From the data given in the problem, we calculate frequencies (using Eq. 38-1), take 
their square roots, look up the atomic numbers (see Appendix F), and do a least-squares 
fit to find the slope: the result is 5.02 × 107 with the odd-sounding unit of a square root of 
a hertz. We remark that the least squares procedure also returns a value for the y-intercept 
of this statistically determined “best-fit” line; that result is negative and would appear on 
a graph like Fig. 40-17 to be at about – 0.06 on the vertical axis. Also, we can estimate 
the slope of the Moseley line shown in Fig. 40-17: 
 

( . . ) . ./195 050 10
40 11

50 10
9

7 1 2−
−

≈ ×
Hz Hz

1/2

 

 
These are in agreement with the discussion in Section 40-10. 
 
39. Since the frequency of an x-ray emission is proportional to (Z – 1)2, where Z is the 
atomic number of the target atom, the ratio of the wavelength λNb for the Kα line of 
niobium to the wavelength λGa for the Kα line of gallium is given by 
 

( ) ( )2 2
Nb Ga Ga Nb1 1Z Zλ λ = − − , 

 
where ZNb is the atomic number of niobium (41) and ZGa is the atomic number of gallium 
(31). Thus, 

( ) ( )2 2
Nb Ga 30 40 9 16 0.563λ λ = = ≈ . 

 
40. (a) According to Eq. 40-26, f Z∝ −( ) ,1 2  so the ratio of energies is (using Eq. 38-2) 
 

21 .
1

f Z
f Z

−⎛ ⎞= ⎜ ⎟′ ′ −⎝ ⎠
 

  
(b) We refer to Appendix F. Applying the formula from part (a) to Z = 92 and Z' = 13, we 
obtain 

2 21 92 1 57.5 .
1 13 1

E f Z
E f Z

− −⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟′ ′ ′ − −⎝ ⎠ ⎝ ⎠
 

 
(c) Applying this to Z = 92 and Z' = 3, we obtain 
 

2
392 1 2.07 10 .

3 1
E
E

−⎛ ⎞= = ×⎜ ⎟′ −⎝ ⎠
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41. We use Eq. 36-31, Eq. 39-6, and hc = 1240 eV·nm = 1240 keV·pm. Letting 
2d m mhc Esin /θ = =λ Δ , where θ = 74.1°, we solve for d: 
 

(1)(1240 keV nm) 80.3 pm .
2 sin 2(8.979 keV 0.951 keV)(sin 74.1 )

mhcd
E θ

⋅
= = =

Δ − °
 

 
42. Using hc = 1240 eV·nm = 1240 keV·pm, the energy difference EL – EM for the x-ray 
atomic energy levels of molybdenum is 
 

1240 keV pm 1240 keV pm 2.2 keV .
63.0 pm 71.0 pmL M

L M

hc hcE E E ⋅ ⋅
Δ = − = − = − =

λ λ
 

 
43. (a) An electron must be removed from the K-shell, so that an electron from a higher 
energy shell can drop. This requires an energy of 69.5 keV. The accelerating potential 
must be at least 69.5 kV. 
 
(b) After it is accelerated, the kinetic energy of the bombarding electron is 69.5 keV. The 
energy of a photon associated with the minimum wavelength is 69.5 keV, so its 
wavelength is 

2
min 3

1240 eV nm 1.78 10 nm 17.8 pm .
69.5 10 eV

λ −⋅
= = × =

×
 

 
(c) The energy of a photon associated with the Kα line is 69.5 keV – 11.3 keV = 58.2 keV 
and its wavelength is  
 

λKα = (1240 eV·nm)/(58.2 × 103 eV) = 2.13 × 10– 2 nm = 21.3 pm. 
 
(d) The energy of a photon associated with the Kβ line is  
 

E = 69.5 keV –  2.30 keV = 67.2 keV 
 
and its wavelength is, using hc = 1240 eV·nm, 
 

λKβ = hc/E = (1240 eV·nm)/(67.2 × 103 eV) = 1.85 × 10– 2 nm = 18.5 pm. 
 
44. (a) and (b) Let the wavelength of the two photons be λ1 and 2λ λ λ1= + Δ . Then, 
 

1 1

  hc hceV
λ λ λ

= + ⇒
+ Δ

 
( ) ( )2

1

2 4
.

2
λ λ λ λ

λ
λ

0 0− Δ − ± Δ +
=

Δ
 

 
Here, Δλ = 130 pm and  
 

λ0 = hc/eV = 1240 keV·pm/20 keV = 62 pm, 
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where we have used hc = 1240 eV·nm = 1240 keV·pm. We choose the plus sign in the 
expression for λ1 (since λ1 > 0) and obtain 
 

( ) ( )2

1

130pm 62pm 2 130pm 62pm 4
87 pm

2 62 pm
λ

− − + +
= = . 

 
The energy of the electron after its first deceleration is 
 

1

1240 keV pm20 keV 5.7 keV .
87 pmi

hcK K ⋅
= − = − =

λ
 

 
(c) The energy of the first photon is 
 

1
1240 keV pm 14 keV

87 pm
hcE
λ1

⋅
= = = . 

 
(d) The wavelength associated with the second photon is 
 

2
2 pm pm 2.2 10 pm .λ λ λ1= + Δ =87 +130 = ×  

 
(e) The energy of the second photon is 
 

2 2
2

1240 keV pm 5.7 keV.
2.2 10 pm

hcE
λ

⋅
= = =

×
 

 
45. The initial kinetic energy of the electron is K0 = 50.0 keV. After the first collision, the 
kinetic energy is K1 = 25 keV; after the second, it is K2 = 12.5 keV; and after the third, it 
is zero.  
 
(a) The energy of the photon produced in the first collision is 50.0 keV – 25.0 keV =  
25.0 keV. The wavelength associated with this photon is 
 

2
3

1240eV nm 4.96 10 nm 49.6 pm
25.0 10 eV

hc
E

λ −⋅
= = = × =

×
 

 
where we have used hc = 1240 eV·nm. 
 
(b) The energies of the photons produced in the second and third collisions are each 
12.5 keV  and their wavelengths are 
 

2
3

1240eV nm 9.92 10 nm 99.2pm .
12.5 10 eV

λ −⋅
= = × =

×
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46. The transition is from n = 2 to n = 1, so Eq. 40-26 combined with Eq. 40-24 yields 
 

f m e
h

Ze=
F
HG
I
KJ −FHG

I
KJ −

4

0
2 3 2 2

2

8
1
1

1
2

1
ε

( )  

 
so that the constant in Eq. 40-27 is 
 

C m e
h

e= = ×
3

32
4 9673 10

4

0
2 3

7 1 2

ε
. /Hz  

 
using the values in the next-to-last column in the table in Appendix B (but note that the 
power of ten is given in the middle column). 
 
We are asked to compare the results of Eq. 40-27 (squared, then multiplied by the 
accurate values of h/e found in Appendix B to convert to x-ray energies) with those in the 
table of Kα energies (in eV) given at the end of the problem. We look up the 
corresponding atomic numbers in Appendix F.  
 
(a) For Li, with Z = 3, we have  
 

( )
34 22 2 7 1/2 2

theory 19

6.6260688 10 J s( 1) 4.9673 10 Hz (3 1) 40.817eV.
1.6021765 10 J/eV

hE C Z
e

−

−

× ⋅
= − = × − =

×
 

 
The percentage deviation is 
 

 theory exp

exp

40.817 54.3percentage deviation 100 100 24.8% 25%.
54.3

E E
E

⎛ ⎞− −⎛ ⎞= = = − ≈ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
(b) For Be, with Z = 4, using the steps outlined in (a), the percentage deviation is –15%. 
 
(c) For B, with Z = 5, using the steps outlined in (a), the percentage deviation is –11%. 
 
(d) For C, with Z = 6, using the steps outlined in (a), the percentage deviation is –7.9%. 
 
(e) For N, with Z = 7, using the steps outlined in (a), the percentage deviation is –6.4%. 
 
(f) For O, with Z = 8, using the steps outlined in (a), the percentage deviation is –4.7%. 
 
(g) For F, with Z = 9, using the steps outlined in (a), the percentage deviation is –3.5%. 
 
(h) For Ne, with Z = 10, using the steps outlined in (a), the percentage deviation is –2.6%. 
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(i) For Na, with Z = 11, using the steps outlined in (a), the percentage deviation is –2.0%. 
 
(j) For Mg, with Z = 12, using the steps outlined in (a), the percentage deviation is –1.5%. 
 
Note that the trend is clear from the list given above: the agreement between theory and 
experiment becomes better as Z increases. One might argue that the most questionable 
step in Section 40-10 is the replacement e Z e4 2 41→ −b g  and ask why this could not 

equally well be e Z e4 2 49→ −.b g  or ( )24 4.8 .e Z e→ −  For large Z, these subtleties would 
not matter so much as they do for small Z, since Z – ξ ≈ Z for Z >> ξ. 
 
47. Let the power of the laser beam be P and the energy of each photon emitted be E. 
Then, the rate of photon emission is 
 

( ) ( )
( ) ( )

3 6
16 1

34 8

5.0 10 W 0.80 10 m
2.0 10 s .

6.63 10 J s 2.998 10 m s
P P PR
E hc hc

λ
λ

− −
−

−

× ×
= = = = = ×

× ⋅ ×
 

 
48. The Moon is a distance R = 3.82 × 108 m from Earth (see Appendix C). We note that 
the “cone” of light has apex angle equal to 2θ. If we make the small angle approximation 
(equivalent to using Eq. 36-14), then the diameter D of the spot on the Moon is 
 

( ) ( ) ( )8 9
3

2 3.82 10 m 1.22 600 10 m1.222 2 4.7 10 m 4.7km.
0.12m

D R R
d

λθ
−× ×⎛ ⎞= = = = × =⎜ ⎟

⎝ ⎠
 

 
49. Let the range of frequency of the microwave be Δf. Then the number of channels that 
could be accommodated is 
 

N f
= =

× −
= ×

− −

Δ
10

2 998 10 450 650

10
2 1 10

8 1 1

7

MHz

m s nm nm

MHz

.
. .

c h b g b g
 

 
The higher frequencies of visible light would allow many more channels to be carried 
compared with using the microwave. 
 
50. From Eq. 40-29, N2/N1 = ( )2 1E E kTe− − . We solve for T: 
 

( ) ( ) ( )
42 1

23 15 13
1 2

3.2eV 1.0 10 K.
ln 1.38 10 J K ln 2.5 10 6.1 10
E ET

k N N −

−
= = = ×

× × ×
 

 
51. The number of atoms in a state with energy E is proportional to e– E/kT, where T is the 
temperature on the Kelvin scale and k is the Boltzmann constant. Thus the ratio of the 
number of atoms in the thirteenth excited state to the number in the eleventh excited state 
is 13 11/ ,E kTn n e−Δ=  where ΔE is the difference in the energies:  
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ΔE = E13 –  E11 = 2(1.2 eV) = 2.4 eV. 

 
For the given temperature, kT = (8.62 × 10– 2 eV/K)(2000 K) = 0.1724 eV. Hence, 
 

n
n

e13

11

2 4 0 1724 79 0 10= = ×− −. . . .  

 
52. The energy of the laser pulse is  
 
 6 6(2.80 10  J/s)(0.500 10  s) 1.400 JpE P t −= Δ = × × = . 
 
Since the energy carried by each photon is  
 

 
34 8

19
9

(6.63 10  J s)(2.998 10 m/s) 4.69 10 J
424 10 m

hcE
λ

−
−

−

× ⋅ ×
= = = ×

×
, 

 
the number of photons emitted in each pulse is 
 

18
19 

1.400J 3.0 10 photons.
4.69 10 J

pE
N

E −= = = ×
×

 

 
With each atom undergoing stimulated emission only once, the number of atoms 
contributed to the pulse is also 183.0 10× . 
 
53. Let the power of the laser beam be P and the energy of each photon emitted be E. 
Then, the rate of photon emission is 
 

( ) ( )
( ) ( )

3 9
15 1

34 8

2.3 10 W 632.8 10 m
7.3 10 s .

6.63 10 J s 2.998 10 m s
P P PR
E hc hc

− −
−

−

× ×λ
= = = = = ×

λ × ⋅ ×
 

 
54. According to Sample Problem — “Population inversion in a laser,” the population 
ratio at room temperature is Nx/N0 = 1.3 × 10– 38. Let the number of moles of the lasing 
material needed be n; then N0 = nNA, where NA is the Avogadro constant. Also Nx = 10. 
We solve for n: 

n N
N

x

A

=
×

=
× ×

= ×
− −13 10

10
13 10 6 02 10

13 10
38 38 23

15

. . .
. .c h c hc h mol  

 
55. (a) If t is the time interval over which the pulse is emitted, the length of the pulse is  
 

L = ct = (3.00 × 108 m/s)(1.20 × 10– 11 s) = 3.60 × 10– 3 m. 
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(b) If Ep is the energy of the pulse, E is the energy of a single photon in the pulse, and N 
is the number of photons in the pulse, then Ep = NE. The energy of the pulse is  
 

Ep = (0.150 J)/(1.602 × 10– 19 J/eV) = 9.36 × 1017 eV 
 
and the energy of a single photon is E = (1240 eV·nm)/(694.4 nm) = 1.786 eV. Hence, 
 

N
E
E

p= =
×

= ×
9 36 10

1786
524 10

17
17.

.
. .eV

eV
photons  

 
56. Consider two levels, labeled 1 and 2, with E2 > E1. Since T = – |T | < 0, 
 

N
N

e e eE E kT E E k T E E k T2

1

2 1 2 1 2 1 1= = = >− − − − − −b g c h .  

 
Thus, N2 > N1; this is population inversion. We solve for T: 
 

T T E E
k N N

= − = −
−

= −
× +

= − ×
−

2 1

2 1
5

52 26
1 0100

2 75 10
ln

.
ln .

.b g c h b g
eV

8.62 10 eV K
K.  

 
57. (a) We denote the upper level as level 1 and the lower one as level 2. From N1/N2 =  

( )2 1E E kTe− −  we get (using hc = 1240 eV·nm) 
 

( ) ( )1 2 20
1 2 2 5

16

1240eV nm4.0 10 exp
(580nm)(8.62 10 eV/K)(300K)

5.0 10 1,

E E kT hc kTN N e N e− − − λ
−

−

⎡ ⎤⋅
= = = × −⎢ ⎥×⎣ ⎦
= × <<

 

  
so practically no electron occupies the upper level. 
 
(b) With N1 = 3.0 × 1020 atoms emitting photons and N2 = 1.0 × 1020 atoms absorbing 
photons, then the net energy output is 
 

( ) ( ) ( ) ( ) ( )34 8
20

1 2 photon 1 2 9

6.63 10 J s 2.998 10 m s
2.0 10

580 10 m
68J.

hcE N N E N N
−

−

× ⋅ ×
= − = − = ×

λ ×
=

 

 
58. For the nth harmonic of the standing wave of wavelength λ in the cavity of width L 
we have nλ = 2L, so nΔλ + λΔn = 0. Let Δn = ±1 and use λ = 2L/n to obtain 
 

( )
( )

2
12

7

533 nm
1.8 10 m 1.8 pm.

2 2 8.0 10 nm
n

n n L
λ λ λλ λ −Δ ⎛ ⎞Δ = = = = = × =⎜ ⎟ ×⎝ ⎠
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59. For stimulated emission to take place, we need a long-lived state above a short-lived 
state in both atoms. In addition, for the light emitted by A to cause stimulated emission of 
B, an energy match for the transitions is required. The above conditions are fulfilled for 
the transition from the 6.9 eV state (lifetime 3 ms) to 3.9 eV state (lifetime 3 μs) in A, and 
the transition from 10.8 eV (lifetime 3 ms) to 7.8 eV (lifetime 3 μs) in B. Thus, the 
energy per photon of the stimulated emission of B is 10.8 eV 7.8 eV 3.0 eV− = . 
 
60. (a) The radius of the central disk is 
 

1.22 (1.22)(3.50 cm)(515 nm) 7.33 m.
3.00 mm

fR
d

μλ
= = =  

 
(b) The average power flux density in the incident beam is 
 

5 2
2 2

4(5.00W) 7.07 10 W/m .
/ 4 (3.00mm)

P
d

= = ×
π π

 

 
(c) The average power flux density in the central disk is 
 

10 2
2 2

(0.84) (0.84)(5.00W) 2.49 10 W/m .
m)

P
R μ

= = ×
π π(7.33

 

 
61. (a) If both mirrors are perfectly reflecting, there is a node at each end of the crystal. 
With one end partially silvered, there is a node very close to that end. We assume nodes 
at both ends, so there are an integer number of half-wavelengths in the length of the 
crystal. The wavelength in the crystal is λc = λ/n, where λ is the wavelength in a vacuum 
and n is the index of refraction of ruby. Thus N(λ/2n) = L, where N is the number of 
standing wave nodes, so 
 

( )( ) 5
9

2 1.75 0.0600 m2 3.03 10 .
694 10 m

nLN
λ −= = = ×

×
 

 
(b) Since λ = c/f, where f is the frequency, N = 2nLf/c and ΔN = (2nL/c)Δf. Hence, 
 

Δ
Δf c N
nL

= =
×

= ×
2

2 998 10 1
2 175 0 0600

143 10
8

9
.

. .
.

m s
m

Hz.
c hb g
b gb g  

 
(c) The speed of light in the crystal is c/n and the round-trip distance is 2L, so the round-
trip travel time is 2nL/c. This is the same as the reciprocal of the change in frequency. 
 
(d) The frequency is  
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f = c/λ = (2.998 × 108 m/s)/(694 × 10– 9 m) = 4.32 × 1014 Hz 
 
and the fractional change in the frequency is  
 

Δf/f = (1.43 × 109 Hz)/(4.32 × 1014 Hz) = 3.31 × 10– 6. 
 
62. The energy carried by each photon is  
 

 
34 8

19
9

(6.63 10  J s)(2.998 10 m/s) 2.87 10 J
694 10 m

hcE
λ

−
−

−

× ⋅ ×
= = = ×

×
. 

 
Now, the photons emitted by the Cr ions in the excited state can be absorbed by the ions 
in the ground state. Thus, the average power emitted during the pulse is  
 

 
19 19

61 0
6

( ) (0.600 0.400)(4.00 10 )(2.87 10  J) 1.1 10  J/s
2.00 10  s

N N EP
t

−

−

− − × ×
= = = ×

Δ ×
 

 
or 61.1 10  W× . 
 
63. Due to spin degeneracy ( 1/ 2sm = ± ), each state can accommodate two electrons. 
Thus, in the energy-level diagram shown, two electrons can be placed in the ground state 
with energy 2 2

1 3( / 8 )E h mL= , six can occupy the “triple state” with 2 2
2 6( / 8 )E h mL= , 

and so forth. With 22 electrons in the system, the lowest energy configuration consists of 
two electrons with 2 2

1 3( / 8 )E h mL= , six electrons with 2 2
2 6( / 8 ),E h mL=  six electrons 

with 2 2
3 9( / 8 ),E h mL=  six electrons with 2 2

4 11( / 8 ),E h mL=  and two electrons with 
2 2

5 12( / 8 )E h mL= . Thus, we find the ground-state energy of the 22-electron system to be 
 

[ ]

ground 1 2 3 4 5
2 2 2 2 2

2 2 2 2 2

2

2

2

2

2 6 6 6 2
3 6 9 11 122 6 6 6 2

8 8 8 8 8

(2)(3) (6)(6) (6)(9) (6)(11) (2)(12)
8

186 .
8

E E E E E E
h h h h h

mL mL mL mL mL
h
mL

h
mL

= + + + +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
= + + + + ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
Thus, the multiple of 2 2/ 8h mL  is 186.  
 
64. (a) In the lasing action the molecules are excited from energy level E0 to energy level 
E2. Thus the wavelength λ of the sunlight that causes this excitation satisfies 
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ΔE E E hc
= − =2 0 λ

,  

 
which gives (using hc = 1240 eV·nm) 
 

λ =
hc

E E2 0

31240
0 289 0

4 29 10
−

=
⋅
−

= ×
eV nm
eV

nm = 4.29 m.
.

. μ  

 
(b) Lasing occurs as electrons jump down from the higher energy level E2 to the lower 
level E1. Thus the lasing wavelength λ' satisfies 
 

Δ ′ = − =
′

E E E hc
2 1 λ

,  

which gives 
4

2 1

1240 eV nm 1.00 10 nm 10.0 m.
0.289 eV 0.165 eV

hc
E E

λ μ⋅′ = = = × =
− −

 

 
(c) Both λ and λ' belong to the infrared region of the electromagnetic spectrum. 
 
65. (a) Using hc = 1240 eV·nm,  
 

( )
1 2

1 1 1 11240eV nm 2.13meV .
588.995nm 589.592 nm

E hc
λ λ

⎛ ⎞ ⎛ ⎞
Δ = − = ⋅ − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
(b) From ΔE = 2μBB (see Fig. 40-10 and Eq. 40-18), we get 
 

B E

B

= =
×
×

=
−

−

Δ
2

213 10
2 5788 10

18
3

5μ
.

.
.eV

eV T
Tc h  

 
66. (a) The energy difference between the two states 1 and 2 was equal to the energy of 
the photon emitted. Since the photon frequency was f = 1666 MHz, its energy was given 
by  

hf = (4.14 × 10– 15 eV·s)(1666 MHz) = 6.90 × 10– 6 eV. 
Thus, 

6
2 1 6.90 10 eV 6.90 eV.E E hf μ−− = = × =  

 
(b) The emission was in the radio region of the electromagnetic spectrum. 
 
67. Letting eV = hc/λmin (see Eq. 40-23 and Eq. 38-4), we get 
 

min
1240nm eV 1240pm keV 1240pmhc

eV eV eV V
λ ⋅ ⋅

= = = =  
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where V is measured in kV. 
 
68. (a) The distance from the Earth to the Moon is dem = 3.82 × 108 m (see Appendix C). 
Thus, the time required is given by 
 

t d
c

em= =
×

×
=

2 2 382 10
2 998 10

2 55
8

8

.
.

. .
m

m s
s

c h
 

 
(b) We denote the uncertainty in time measurement as δt and let 2δdes = 15 cm. Then, 
since dem ∝ t, δt/t = δdem/dem. We solve for δt: 
 

δ δt t d
d

em

em

= =
×

= × −2 55 015
2 382 10

50 10
8

10. .
.

. .
s m

m
sb gb g

c h  

 
(c) The angular divergence of the beam is 
 

 
3 3

1 1 4
8

1.5 10 1.5 102 tan 2 tan (4.5 10 )
3.82 10emd

θ − − −⎛ ⎞ ⎛ ⎞× ×
= = = × °⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

. 

 
69. (a) The intensity at the target is given by I = P/A, where P is the power output of the 
source and A is the area of the beam at the target. We want to compute I and compare the 
result with 108 W/m2. The beam spreads because diffraction occurs at the aperture of the 
laser. Consider the part of the beam that is within the central diffraction maximum. The 
angular position of the edge is given by sin θ = 1.22λ/d, where λ is the wavelength and d 
is the diameter of the aperture (see Exercise 61). At the target, a distance D away, the 
radius of the beam is r = D tan θ. Since θ is small, we may approximate both sin θ and 
tan θ by θ, in radians. Then,  

r = Dθ = 1.22Dλ/d 
and 
 

( )
( ) ( )

( ) ( )

262
25

2 22 3 6

5.0 10 W 4.0m
2.1 10 W m ,

1.22 1.22 3000 10 m 3.0 10 m

P PdI
r D −

×
= = = = ×

π π λ ⎡ ⎤π × ×⎣ ⎦

 

 
not great enough to destroy the missile. 
 
(b) We solve for the wavelength in terms of the intensity and substitute I = 1.0 × 108 
W/m2: 

6
7

3 8 2

4.0m 5.0 10 W 1.40 10 m 140nm.
1.22 1.22(3000 10 m) (1.0 10 W/m )

d P
D I

λ −×
= = = × =

π × π ×
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70. (a) From Fig. 40-14 we estimate the wavelengths corresponding to the Kβ line to be 
λβ = 63.0 pm. Using hc = 1240 eV·nm = 1240 keV·pm, we have 
 

Eβ = (1240 keV·nm)/(63.0 pm) = 19.7 keV 20 keV≈ . 
 
(b) For Kα,  with λα = 70.0 pm,  
 

1240keV pm 17.7keV 18 keV
70.0pm

hcEα
αλ

⋅
= = = ≈ . 

 
(c) Both Zr and Nb can be used, since Eα < 18.00 eV < Eβ and Eα < 18.99 eV < Eβ. 
According to the hint given in the problem statement, Zr is the best choice. 
 
(d) Nb is the second best choice. 
 
71. The principal quantum number n must be greater than 3. The magnetic quantum 
number m  can have any of the values – 3, – 2, – 1, 0, +1, +2, or +3. The spin quantum 
number can have either of the values − 1

2 or + 1
2 . 

 
72. For a given shell with quantum number n the total number of available electron states 
is 2n2. Thus, for the first four shells (n = 1 through 4) the numbers of available states are 
2, 8, 18, and 32 (see Appendix G). Since 2 + 8 + 18 + 32 = 60 < 63, according to the 
“logical” sequence the first four shells would be completely filled in an europium atom, 
leaving 63 – 60 = 3 electrons to partially occupy the n = 5 shell. Two of these three 
electrons would fill up the 5s subshell, leaving only one remaining electron in the only 
partially filled subshell (the 5p subshell). In chemical reactions this electron would have 
the tendency to be transferred to another element, leaving the remaining 62 electrons in 
chemically stable, completely filled subshells. This situation is very similar to the case of 
sodium, which also has only one electron in a partially filled shell (the 3s shell). 
 
73. (a) The length of the pulse’s wave train is given by  
 

L = cΔt = (2.998 × 108 m/s)(10 × 10– 15 s) = 3.0 × 10– 6 m. 
 

Thus, the number of wavelengths contained in the pulse is 
 

6

9

3.0 10 m 6.0.
500 10 m

LN
λ

−

−

×
= = =

×
 

 
(b) We solve for X from 10 fm/1 m = 1 s/X: 
 

X =
×

=
× ×

= ×− −

1 1
10 10

1
10 10 315 10

32 1015 15 7
6s m

m
s

s y
yb gb g

c hc h.
. .  
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74. One way to think of the units of h is that, because of the equation E = hf and the fact 
that f is in cycles/second, then the “explicit” units for h should be J·s/cycle. Then, since 
2π rad/cycle is a conversion factor for cycles radians→ , = h 2π  can be thought of as 
the Planck constant expressed in terms of radians instead of cycles. Using the precise 
values stated in Appendix B, 
 

34 34
34

19

16

6.62606876 10 J s 1.05457 10 J s1.05457 10 J s
2 2 1.6021765 10 J eV
6.582 10 eV s.

h − −
−

−

−

× ⋅ × ⋅
= = = × ⋅ =

π π ×

= × ⋅

 

 
75. Without the spin degree of freedom the number of available electron states for each 
shell would be reduced by half. So the values of Z for the noble gas elements would 
become half of what they are now: Z = 1, 5, 9, 18, 27, and 43. Of this set of numbers, the 
only one that coincides with one of the familiar noble gas atomic numbers (Z = 2, 10, 18, 
36, 54, and 86) is 18. Thus, argon would be the only one that would remain “noble.” 
 
76. (a) The value of  satisfies ( ) 21 L+ ≈ = = , so  743 10L− − × . 
 
(b) The number is 2 + 1 ≈ 2(3 × 1074) = 6 × 1074. 
 
(c) Since 

( ) ( ) ( )
max

min 74

1 1 1cos 1 1
2 2 3 101 1

m
θ = = ≈ − = −

×+ +
 

 
or cos ~

min minθ θ− − ≈ − −1 2 1 10 62 74 , we have  
 

θ min
~− = × 0− −10 3 6 174 38 rad . 

 
The correspondence principle requires that all the quantum effects vanish as → 0. In 
this case L  is extremely small so the quantization effects are barely existent, with 
θ min

~ ~− −−10 038 rad . 
 
77. We use eV = hc/λmin (see Eq. 40-23 and Eq. 38-4): 
 

( )( )( )19 3 12
34min

8

1.60 10 C 40.0 10 eV 31.1 10 m
6.63 10 J s .

2.998 10 m s
eVh

c
λ

− −
−

× × ×
= = = × ⋅

×
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Chapter 41 
 
 
1. According to Eq. 41-9, the Fermi energy is given by 
 

E h
m

nF = FHG
I
KJ

3
16 2

2 3 2
2 3

π

/
/  

 
where n is the number of conduction electrons per unit volume, m is the mass of an 
electron, and h is the Planck constant. This can be written EF = An2/3, where 
 

2/3 2 /32 34 2
38 2 2

31

3 3 (6.626 10 J s) 5.842 10 J s / kg .
9.109 10 kg16 2 16 2

hA
mπ π

−
−

−

× ⋅⎛ ⎞ ⎛ ⎞= = = × ⋅⎜ ⎟ ⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
 

 
Since 2 21 J 1 kg m / s ,= ⋅  the units of A can be taken to be m2·J. Dividing by 

191.602 10 J/eV,−×  we obtain 19 23.65 10 m eV.A −= × ⋅  
 
2. Equation 41-5 gives 

 
3/ 2

1/ 2
3

8 2( ) mN E E
h
π

=  

 
for the density of states associated with the conduction electrons of a metal. This can be 
written 

1/ 2( )N E CE=  
where 

 

3/ 2 31 3/2
56 3/2 3 3

3 34 3

27 3 2/3

8 2 8 2 (9.109 10 kg) 1.062 10 kg / J s
(6.626 10 J s)

6.81 10 m (eV) .

mC
h
π π −

−

− −

×
= = = × ⋅

× ⋅

= × ⋅

 

Thus, 
1/ 2 27 3 2/3 1/2 28 3 1( ) 6.81 10 m (eV) (8.0eV) 1.9 10 m eV .N E CE − − − −⎡ ⎤= = × ⋅ = × ⋅⎣ ⎦  

 
This is consistent with that shown in Fig. 41-6. 
 
3. The number of atoms per unit volume is given by n d M= / , where d is the mass 
density of copper and M is the mass of a single copper atom. Since each atom contributes 
one conduction electron, n is also the number of conduction electrons per unit volume. 
Since the molar mass of copper is 63.54g / mol,A =   
 

23 1 22/ (63.54g / mol)/(6.022 10 mol ) 1.055 10 gAM A N − −= = × = × . 
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Thus, 

n =
×

= × = ×−
− −8 96

1055 10
8 49 10 8 49 1022

22 3 28.
.

. . .g / cm
g

cm m
3

3  

 
4. Let E1 = 63 meV + EF and E2 = – 63 meV + EF. Then according to Eq. 41-6, 
 

P
e eE E kT xF1

1
1

1
11

=
+

=
+−( )/  

 
where x E E kTF= −( ) /1 . We solve for ex: 
 

e
P

x = − = − =
1 1 1

0 090
1 91

91 .
. 

Thus, 

2 12 ( ) / ( ) / 1

1 1 1 1 0.91,
1 1 1 (91/ 9) 1F FE E kT E E kT xP

e e e− − − − −= = = = =
+ + + +

 

 
where we use E2 –  EF = – 63 meV = EF –  E1 = – (E1 –  EF). 
 
5. (a) Equation 41-5 gives 

 
3/ 2

1/ 2
3

8 2( ) mN E E
h
π

=  

 
for the density of states associated with the conduction electrons of a metal. This can be 
written 

1/ 2( )N E CE=  
where 

 
3/ 2 31 3/2

56 3/2 3 3
3 34 3

8 2 8 2 (9.109 10 kg) 1.062 10 kg / J s .
(6.626 10 J s)

mC
h
π π −

−

×
= = = × ⋅

× ⋅
 

 
(b) Now, 2 21 J 1kg m / s= ⋅  (think of the equation for kinetic energy K mv= 1

2
2 ), so 1 kg =  

1 J·s2·m– 2. Thus, the units of C can be written as 
 

( ) ( )/ /J s m J s J m2 2 3 3/2⋅ ⋅ ⋅ ⋅ = ⋅− − − − −3 2 3 2 3 3 . 
This means 
 

C = × ⋅ × = × ⋅− − − − −( . )( . . ./1062 10 1602 10 681 1056 3 19 27 3 3 2J m J / eV) m eV3/2 3/2  
 
(c) If E = 5.00 eV, then 
 

27 3 3/2 1/ 2 28 1 3( ) (6.81 10 m eV )(5.00eV) 1.52 10 eV m .N E − − − −= × ⋅ = × ⋅  
 



 

  

1545

6. We note that n = 8.43 × 1028 m– 3 = 84.3 nm– 3. From Eq. 41-9, 
 

E hc
m c

nF
e

= =
⋅

×
=−0121 0121 1240

511 10
84 3 7 0

2

2
2 3

3
3 2 3. ( ) . ( ( . ) ./ /eV nm)

eV
nm eV

2

 

 
where we have used 1240eV nm.hc = ⋅  
 
7. (a) At absolute temperature T = 0, the probability is zero that any state with energy 
above the Fermi energy is occupied. 
 
(b) The probability that a state with energy E is occupied at temperature T is given by 
 

P E
e E E kTF

( ) ( )/=
+−

1
1

 

 
where k is the Boltzmann constant and EF is the Fermi energy. Now, E –  EF = 0.0620 eV 
and  

5( ) / (0.0620eV) /(8.62 10 eV / K)(320K) 2.248FE E kT −− = × = , 
so 

2.248

1( ) 0.0955.
1

P E
e

= =
+

 

 
See Appendix B for the value of k. 
 
8. We note that there is one conduction electron per atom and that the molar mass of gold 
is 197g mol/ . Therefore, combining Eqs. 41-2, 41-3, and 41-4 leads to 
 

n =
×

= ×−
−( . / )( / )

( / )
. .19 3 10

197
590 10

3 6 3 3
28g cm cm m

g mol) / (6.02 10 mol
m23 1

3  

 
9. (a) According to Appendix F the molar mass of silver is 107.870 g/mol and the density 
is 10.49 g/cm3. The mass of a silver atom is 
 

107 870 10
6 022 10

1791 10
3

23 1
25.

.
.×

×
= ×

−

−
−kg / mol

mol
kg .  

 
We note that silver is monovalent, so there is one valence electron per atom (see Eq.  
41-2). Thus, Eqs. 41-4 and 41-3 lead to 
 

3 3
28 3

25

10.49 10 kg/m 5.86 10 m .
1.791 10 kg

n
M
ρ −

−
−

×
= = = ×

×
 

 
(b) The Fermi energy is 
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2 34 2
2/3 28 3 2/3

31

19

0.121 (0.121)(6.626 10 J s) (5.86 10 m )
9.109 10 kg

8.80 10 J 5.49eV.

F
hE n

m

−
−

−

−

× ⋅
= = = ×

×

= × =

 

 
(c) Since E mvF F= 1

2
2 , 

v E
mF

F= =
×
×

= ×
−

−

2 2 880 10
9109 10

139 10
19

31
6( .

.
.J)

kg
m / s .  

 
(d) The de Broglie wavelength is 
 

 
34

10
31 6

6.626 10 J s 5.22 10 m.
(9.109 10 kg)(1.39 10 m/s)F

h
mv

λ
−

−
−

× ⋅
= = = ×

× ×
 

 
10. The probability Ph that a state is occupied by a hole is the same as the probability the 
state is unoccupied by an electron. Since the total probability that a state is either 
occupied or unoccupied is 1, we have Ph + P = 1. Thus, 
 

P
e

e
e eh E E kT

E E kT

E E kT E E kTF

F

F F
= −

+
=

+
=

+−

−

− − −1 1
1 1

1
1( )/

( )/

( )/ ( )/ .  

 
11. We use  

1( ) /1/ 2
O ( ) ( ) ( ) 1FE E kTN E N E P E CE e

−−⎡ ⎤= = +⎣ ⎦ , 
where  

3/ 2 31 3/2
56 3/2 3 3

3 34 3

27 3 3/ 2

8 2 8 2 (9.109 10 kg) 1.062 10 kg / J s
(6.626 10 J s)

6.81 10 m (eV) .

mC
h
π π −

−

− −

×
= = = × ⋅

× ⋅

= × ⋅

 

 
(a) At E = 4.00 eV, 
 

( )
( )

27 3 3/ 2 1/ 2
28 3 1

O 5

6.81 10 m (eV) (4.00eV)
1.36 10 m eV .

exp (4.00eV 7.00eV) /[(8.62 10 eV / K)(1000K)] 1
N

− −
− −

−

× ⋅
= = × ⋅

− × +
 

 
(b) At E = 6.75 eV, 
 

( )
( )

27 3 3/ 2 1/ 2
28 3 1

O 5

6.81 10 m (eV) (6.75eV)
1.68 10 m eV .

exp (6.75eV 7.00eV) /[(8.62 10 eV / K)(1000K)] 1
N

− −
− −

−

× ⋅
= = × ⋅

− × +
 

 
(c) Similarly, at E = 7.00 eV, the value of No(E) is 9.01 × 1027 m– 3· eV– 1. 
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(d) At E = 7.25 eV, the value of No(E) is 9.56 × 1026 m– 3· eV– 1. 
 
(e) At E = 9.00 eV, the value of No(E) is 1.71 × 1018 m– 3· eV– 1. 
 
12. The molar mass of carbon is m = 12.01115 g/mol and the mass of the Earth is Me = 
5.98 × 1024 kg. Thus, the number of carbon atoms in a diamond as massive as the Earth is 
N = (Me/m)NA, where NA is the Avogadro constant. From the result of Sample Problem – 
“Probability of electron excitation in an insulator,” the probability in question is given by 
 

24
/ / 23 93

A

43 42

5.98 10 kg (6.02 10 / mol)(3 10 )
12.01115g / mol

9 10 10 .

g gE kT E kTe
e

MP N N e
m

− − −

− −

⎛ ⎞×⎛ ⎞= = = × ×⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

= × ≈

 

 
13. (a) Equation 41-6 leads to 
 

1 5 1ln ( 1) 7.00eV (8.62 10 eV / K)(1000K)ln 1 6.81eV.
0.900FE E kT P− − ⎛ ⎞= + − = + × − =⎜ ⎟

⎝ ⎠
 

 
(b) ( )1/ 2 27 3 3/ 2 1/2 28 3 1( ) 6.81 10 m eV (6.81eV) 1.77 10 m eV .N E CE − − − −= = × ⋅ = × ⋅  
 
(c) 28 3 1 28 3 1

O ( ) ( ) ( ) (0.900)(1.77 10 m eV ) 1.59 10 m eV .N E P E N E − − − −= = × ⋅ = × ⋅  
 
14. (a) The volume per cubic meter of sodium occupied by the sodium ions is 
 

23 12 3
3

Na
(971kg)(6.022 10 / mol)(4 / 3)(98.0 10 m) 0.100m ,

(23.0g / mol)
V π −× ×

= =  

 
so the fraction available for conduction electrons is 1 100 1 0100 0 900− = − =( / . ) . .VNa

3m , 
or 90.0%. 
 
(b) For copper, we have 
 

23 12 3
3

Cu
(8960kg)(6.022 10 / mol)(4 / 3)(135 10 m) 0.1876m .

(63.5g / mol)
V

−
−× π ×

= =  

 
Thus, the fraction is 1 100 1 0876 0124− = − =( / . ) . .VCu

3m , or 12.4%. 
 
(c) Sodium, because the electrons occupy a greater portion of the space available. 
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15. The Fermi-Dirac occupation probability is given by P e E kT
FD = +1 1/ /Δc h , and the 

Boltzmann occupation probability is given by /
B

E kTP e−Δ= . Let f be the fractional 
difference. Then 

f P P
P

e
e

E kT
e

E kT

E kT
=

−
=

−−
+

−
B FD

B

Δ

Δ

Δ
/

/

/ .
1

1  

Using a common denominator and a little algebra yields f e
e

E kT

E kT=
+

−

−

Δ

Δ

/

/ .
1

 The solution for 

e– ΔE/kT is 

e f
f

E kT− =
−

Δ / .
1

 

 
We take the natural logarithm of both sides and solve for T. The result is 
 

T E

k f
f

=

−
F
HG
I
KJ

Δ

ln
.

1

 

 
(a) Letting f equal 0.01, we evaluate the expression for T: 
 

19
3

23

(1.00eV)(1.60 10 J/eV) 2.50 10 K.
0.010(1.38 10 J/K)ln

1 0.010

T
−

−

×
= = ×

⎛ ⎞× ⎜ ⎟−⎝ ⎠

 

 
(b) We set f equal to 0.10 and evaluate the expression for T: 
 

19
3

23

(1.00eV)(1.60 10 J/eV) 5.30 10 K.
0.10(1.38 10 J/K)ln

1 0.10

T
−

−

×
= = ×

⎛ ⎞× ⎜ ⎟−⎝ ⎠

 

 
The fractional difference as a function of T is plotted below: 
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With a given ΔE, the difference increases with T. 
 
16. (a) The ideal gas law in the form of Eq. 20-9 leads to p = NkT/V = n0kT. Thus, we 
solve for the molecules per cubic meter: 
 

5
25 3

0 23

(1.0atm)(1.0 10 Pa/atm) 2.7 10 m .
(1.38 10 J/K)(273K)

pn
kT

−
−

×
= = = ×

×
 

 
(b) Combining Eqs. 41-2, 41-3, and 41-4 leads to the conduction electrons per cubic 
meter in copper: 

3 3
28 3

27

8.96 10 kg/m 8.43 10 m .
(63.54)(1.67 10 kg)

n −
−

×
= = ×

×
 

 
(c) The ratio is 0/n n = (8.43 × 1028 m– 3)/(2.7 × 1025 m– 3) = 3.1 × 103. 
 
(d) We use davg = n– 1/3. For case (a), davg, 0 = (2.7 × 1025 m– 3)– 1/3 = 3.3 nm. 
 
(e) For case (b), davg = (8.43 × 1028 m– 3)– 1/3 = 0.23 nm. 
 
17. Let N be the number of atoms per unit volume and n be the number of free electrons 
per unit volume. Then, the number of free electrons per atom is n/N. We use the result of 
Problem 41-1 to find n: EF = An2/3, where A = 3.65 × 10–19 m2 · eV. Thus, 
 

3/ 2 3/ 2
29 3

19 2

11.6eV 1.79 10 m .
3.65 10 m eV

FEn
A

−
−

⎛ ⎞ ⎛ ⎞= = = ×⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
 

 
If M is the mass of a single aluminum atom and d is the mass density of aluminum, then 
N = d/M. Now,  
 

M = (27.0 g/mol)/(6.022 × 1023 mol–1) = 4.48 × 10–23 g, 
 
so  

N = (2.70 g/cm3)/(4.48 × 10– 23 g) = 6.03 × 1022 cm– 3 = 6.03 × 1028 m– 3. 
 
Thus, the number of free electrons per atom is 
 

29 3

28 3

1.79 10 m 2.97 3.
6.03 10 m

n
N

−

−

×
= = ≈

×
 

 
18. The mass of the sample is  
 
 3 3(9.0 g/cm )(40.0 cm ) 360 gm Vρ= = = , 
which is equivalent to  
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360 g 6.0 mol
60 g/mol

mn
M

= = = . 

 
Since the atoms are bivalent (each contributing two electrons), there are 12.0 moles of 
conduction electrons, or  
 

23 24
A (12.0 mol)(6.02 10 / mol) 7.2 10N nN= = × = × . 

 
19. (a) We evaluate P(E) =  ( )1/( 1)FE E kTe − +  for the given value of E, using 
 

kT =
×

×
=

−

−

( .
.

. .1381 10
1602 10

0 02353
23

19

J / K)(273K)
J / eV

eV  

 
For E = 4.4 eV, (E –  EF)/kT = (4.4 eV –  5.5 eV)/(0.02353 eV) = – 46.25 and 
 

46.25

1( ) 1.0.
1

P E
e−= =

+
 

 
(b) Similarly, for E = 5.4 eV, P(E) = 0.986 0.99≈ . 
 
(c) For E = 5.5 eV, P(E) = 0.50. 
 
(d) For E = 5.6 eV, P(E) = 0.014. 
 
(e) For E = 6.4 eV, P(E) = 2.447 × 10– 17≈2.4 × 10– 17. 
 
(f) Solving P = 1/(eΔE/kT + 1) for eΔE/kT, we get 
 

e
P

E kTΔ / .= −
1 1  

 
Now, we take the natural logarithm of both sides and solve for T. The result is 
 

( ) ( )
19

2
231 1

0.16

(5.6eV 5.5eV)(1.602 10 J/eV) 699K 7.0 10 K.
ln 1 (1.381 10 J/K)ln 1P

ET
k

−

−

Δ − ×
= = = ≈ ×

− × −
 

 
20. The probability that a state with energy E is occupied at temperature T is given by 
 

P E
e E E kTF

( ) ( )/=
+−

1
1

 

 
where k is the Boltzmann constant and EF is the Fermi energy. Now,  
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6.10 eV 5.00 eV 1.10 eVFE E− = − =  
and  

5

1.10eV 8.51
(8.62 10 eV / K)(1500K)

FE E
kT −

−
= =

×
, 

so 
4

8.51

1( ) 2.01 10 .
1

P E
e

−= = ×
+

 

 
From Fig. 41-6, we find the density of states at 6.0 eV to be about 

28 3( ) 1.7 10 / m eV.N E = × ⋅  Thus, using Eq. 41-7, the density of occupied states is 
 
 28 3 4 24 3

O ( ) ( ) ( ) (1.7 10 / m eV)(2.01 10 ) 3.42 10 / m eV.N E N E P E −= = × ⋅ × = × ⋅  
 
Within energy range of 0.0300 eVEΔ =  and a volume 8 35.00 10  m ,V −= ×  the number of 
occupied states is 
 

24 3 8 3
O

15

number ( ) (3.42 10 / m eV)(5.00 10  m )(0.0300 eV)states
5.1 10 .

N E V E −⎛ ⎞ = Δ = × ⋅ ×⎜ ⎟
⎝ ⎠

= ×
 

 

21. (a) At T = 300 K, f kT
EF

= =
×

= ×
−

−3
2

3 8 62 10
2 7 0

55 10
5

3( . /
( .

. .eV K)(300K)
eV)

 

 

(b) At T = 1000 K, f kT
EF

= =
×

= ×
−

−3
2

3 8 62 10
2 7 0

18 10
5

2( . /
( .

. .eV K)(1000K)
eV)

 

 
(c) Many calculators and most math software packages (here we use MAPLE) have built-
in numerical integration routines. Setting up ratios of integrals of Eq. 41-7 and canceling 
common factors, we obtain 

frac
E e dE

E e dE

E E kT

E

E E kT

F

F

F

=
+

+

−∞

−∞

z
z

/ ( )

/ ( )

( )/

( )/

1

1
0

 

 
where k = 8.62 × 10– 5 eV/K. We use the Fermi energy value for copper (EF = 7.0 eV) and 
evaluate this for T = 300 K and T = 1000 K; we find frac = 0.00385 and frac = 0.0129, 
respectively. 
 
22. The fraction f of electrons with energies greater than the Fermi energy is 
(approximately) given in Problem 41-21: 
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f kT
EF

=
3 2/  

 
where T is the temperature on the Kelvin scale, k is the Boltzmann constant, and EF is the 
Fermi energy. We solve for T: 
 

5

2 2(0.013)(4.70eV) 472 K.
3 3(8.62 10 eV / K)

FfET
k −= = =

×
 

 
23. The average energy of the conduction electrons is given by 
 

E
n

EN E P E dEavg =
∞z1 0

( ) ( )  

 
where n is the number of free electrons per unit volume, N(E) is the density of states, and 
P(E) is the occupation probability. The density of states is proportional to E1/2, so we may 
write N(E) = CE1/2, where C is a constant of proportionality. The occupation probability 
is one for energies below the Fermi energy and zero for energies above. Thus, 
 

E C
n

E dE C
n

EF

EF

avg = =z 3 2 5 2

0

2
5

/ / .  

Now 

 1/ 2 3/ 2

0 0

2( ) ( ) .
3

FE

F
Cn N E P E dE C E dE E

∞
= = =∫ ∫  

 
We substitute this expression into the formula for the average energy and obtain 
 

E C E
CE

EF
F

Favg =
F
HG
I
KJ
F
HG

I
KJ =

2
5

3
2

3
5

5 2
3 2

/
/ .  

 
24. From Eq. 41-9, we find the number of conduction electrons per unit volume to be 
 

3/ 2 3/ 23/ 2 2 6

2 2 2

3 28 3

4 3

( )16 2 16 2 16 2 (0.511 10 eV)(5.0 eV)
3 3 ( ) 3 (1240 eV  nm)

50.9 / nm 5.09 10 /m
8.4 10  mol/m .

e F e Fm E m c En
h hc

π π π⎛ ⎞ ⎛ ⎞×⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠
= = ×

≈ ×

 

 
Since the atom is bivalent, the number density of the atom is 
 

4 3
atom / 2 4.2 10  mol/m .n n= = ×  

 
Thus, the mass density of the atom is 
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4 3 5 3 3

atom (4.2 10  mol/m )(20.0 g/mol) 8.4 10 g/m 0.84 g/cm .n Mρ = = × = × =  
 
25. (a) Using Eq. 41-4, the energy released would be 
 

19
avg 23

4

(3.1g) 3 (7.0eV)(1.6 10 J/eV)
(63.54g / mol)/(6.02 10 / mol) 5

1.97 10 J.

E NE −⎛ ⎞= = ×⎜ ⎟× ⎝ ⎠
= ×

 

 
(b) Keeping in mind that a watt is a joule per second, we have 
 

41.97 10 J 197s.
100J/s

Et
P

×
= = =  

 
26. Let the energy of the state in question be an amount ΔE above the Fermi energy EF. 
Then, Eq. 41-6 gives the occupancy probability of the state as 
 

F F( ) / /

1 1 .
1 1E E E kT E kTP

e e+Δ − Δ= =
+ +

 

We solve for ΔE to obtain 
 

ΔE kT
P

= −FHG
I
KJ = × −F

HG
I
KJ = × −ln ( . .1 1 138 10 1 91 1023 21J / K)(300K) ln 1

0.10
J ,  

 
which is equivalent to 5.7 × 10– 2 eV = 57 meV. 
 
27. (a) Combining Eqs. 41-2, 41-3, and 41-4 leads to the conduction electrons per cubic 
meter in zinc: 
 

n =
×

= × = ×− −2 7133
6537 10

131 10 131 1023
23 29 3( . )

( .
. .g / cm

g / mol) / (6.02 mol)
cm m .

3
3  

 
(b) From Eq. 41-9, 
 

 
2 34 2 29 3 2/3

2 /3
31 19

0.121 0.121(6.63 10 J s) (1.31 10 m ) 9.43eV.
(9.11 10 kg)(1.60 10 J / eV)F

e

hE n
m

− −

− −

× ⋅ ×
= = =

× ×
 

 
(c) Equating the Fermi energy to 1

2
2m ve F  we find (using the mec2 value in Table 37-3) 

 

v E c
m cF

F

e

= =
×

×
= ×

2 2 9 43 2 998 10
511 10

182 10
2

2

8

3
6( . )( . / . /eV m s)

eV
m s .

2
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(d) The de Broglie wavelength is 
 

λ = =
× ⋅

× ×
=

−

−

h
m ve F

6 63 10
911 10

0 40
34

31

.
( .

.J s
kg)(1.82 10 m / s)

nm .6  

 
28. Combining Eqs. 41-2, 41-3, and 41-4, the number density of conduction electrons in 
gold is 
 

n = ×
= × =− −( . / )( . / )

( / )
. . .19 3 6 02 10

197
590 10 59 0

3 23
22 3 3g cm mol

g mol
cm nm  

 
Now, using 1240eV nm,hc = ⋅  Eq. 41-9 leads to 
 

2 2
2/3 3 2/3

2 3

0.121( ) 0.121(1240eV nm) (59.0nm ) 5.52eV .
( ) 511 10 eVF

e

hcE n
m c

−⋅
= = =

×
 

 
29. Let the volume be v = 1.00 × 10– 6 m3. Then, 
 

28 3 6 3 19
total avg avg

4

3(8.43 10 m )(1.00 10 m ) (7.00eV)(1.60 10 J/eV)
5

5.71 10 J 57.1 kJ.

K NE n Eν − − −⎛ ⎞= = = × × ×⎜ ⎟
⎝ ⎠

= × =

 

 
30. The probability that a state with energy E is occupied at temperature T is given by 
 

P E
e E E kTF

( ) ( )/=
+−

1
1

 

 
where k is the Boltzmann constant and  
 

2 34 2
2/3 28 3 2/3 19

31

0.121 0.121(6.626 10 J s) (1.70 10 m ) 3.855 10 J
9.11 10 kgF

e

hE n
m

−
− −

−

× ⋅
= = × = ×

×
 

 
is the Fermi energy. Now,  
 

19 19 204.00 10  J 3.855 10  J 1.45 10  JFE E − − −− = × − × = ×  
and  

20

23

1.45 10  J 5.2536
(1.38 10 J / K)(200K)

FE E
kT

−

−

− ×
= =

×
, 

so 
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3
5.2536

1( ) 5.20 10 .
1

P E
e

−= = ×
+

 

 
Next, for the density of states associated with the conduction electrons of a metal, Eq. 41-
5 gives 

 

( )

( )( )

3/ 2 31 3/2 1/ 21/ 2 19
3 34 3

1/ 256 3/2 3 3 19

46 3

8 2 8 2 (9.109 10 kg)( ) 4.00 10 J
(6.626 10 J s)

1.062 10 kg / J s 4.00 10 J

6.717 10 / m J

mN E E
h
π π −

−
−

−

×
= = ×

× ⋅

= × ⋅ ×

= × ⋅

 

 
where we have used 1 kg =1 J·s2·m– 2 for unit conversion. Thus, using Eq. 41-7, the 
density of occupied states is 
 
 46 3 3 44 3

O ( ) ( ) ( ) (6.717 10 / m J)(5.20 10 ) 3.49 10 / m J.N E N E P E −= = × ⋅ × = × ⋅  
 
Within energy range of 203.20 10  JE −Δ = ×  and a volume 6 36.00 10  m ,V −= ×  the number 
of occupied states is 
 

44 3 6 3 20
O

19

number ( ) (3.49 10 / m  J)(6.00 10  m )(3.20 10  J)states
6.7 10 .

N E V E − −⎛ ⎞ = Δ = × ⋅ × ×⎜ ⎟
⎝ ⎠

= ×
 

 
31. (a) Since the electron jumps from the conduction band to the valence band, the energy 
of the photon equals the energy gap between those two bands. The photon energy is given 
by hf = hc/λ, where f is the frequency of the electromagnetic wave and λ is its 
wavelength. Thus, Eg = hc/λ and 
 

34 8
7

19

(6.63 10 J s)(2.998 10 m / s) 2.26 10 m 226nm .
(5.5eV)(1.60 10 J/eV)g

hc
E

λ
−

−
−

× ⋅ ×
= = = × =

×
 

 
Photons from other transitions have a greater energy, so their waves have shorter 
wavelengths. 
 
(b) These photons are in the ultraviolet portion of the electromagnetic spectrum. 
 
32. Each arsenic atom is connected (by covalent bonding) to four gallium atoms, and 
each gallium atom is similarly connected to four arsenic atoms. The “depth” of their very 
nontrivial lattice structure is, of course, not evident in a flattened-out representation such 
as shown for silicon in Fig. 41-10.  
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Still we try to convey some sense of this (in the [1, 0, 0] view shown — for those who 
might be familiar with Miller indices) by using letters to indicate the depth: A for the 
closest atoms (to the observer), b for the next layer deep, C for further into the page, d for 
the last layer seen, and E (not shown) for the atoms that are at the deepest layer (and are 
behind the A’s) needed for our description of the structure. The capital letters are used for 
the gallium atoms, and the small letters for the arsenic.  
 
Consider the arsenic atom (with the letter b) near the upper left; it has covalent bonds 
with the two A’s and the two C’s near it. Now consider the arsenic atom (with the letter d) 
near the upper right; it has covalent bonds with the two C’s, which are near it, and with 
the two E’s (which are behind the A’s which are near :+). 
 
(a) The 3p, 3d, and 4s subshells of both arsenic and gallium are filled. They both have 
partially filled 4p subshells. An isolated, neutral arsenic atom has three electrons in the 4p 
subshell, and an isolated, neutral gallium atom has one electron in the 4p subshell. To 
supply the total of eight shared electrons (for the four bonds connected to each ion in the 
lattice), not only the electrons from 4p must be shared but also the electrons from 4s. The 
core of the gallium ion has charge q = +3e (due to the “loss” of its single 4p and two 4s 
electrons). 
 
(b) The core of the arsenic ion has charge q = +5e (due to the “loss” of the three 4p and 
two 4s electrons). 
 
(c) As remarked in part (a), there are two electrons shared in each of the covalent bonds. 
This is the same situation that one finds for silicon (see Fig. 41-10). 
 
33. (a) At the bottom of the conduction band E = 0.67 eV. Also EF = 0.67 eV/2 =  
0.335 eV. So the probability that the bottom of the conduction band is occupied is 
 

( ) 6

F
5

1 1 1.5 10 .
0.67eV 0.335eVexp 1 exp 1

(8.62 10 eV K)(290K)

P E
E E

kT

−

−

= = = ×
−⎛ ⎞ ⎛ ⎞−+ +⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
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(b) At the top of the valence band E = 0, so the probability that the state is unoccupied is 
given by 

( ) ( ) ( ) ( ) ( )( )5F F 0 0.335eV 8.62 10 eV K 290K

6

1 1 11 1
1 1 1

1.5 10 .

E E kT E E kTP E
e e e

−− − − ⎡ ⎤− − ×⎣ ⎦

−

− = − = =
+ + +

= ×

 

 
34. (a) The number of electrons in the valence band is 
 

N N P E N
ev v

v
E E kTvev F

= =
+−b g b g 1

.  

 
Since there are a total of Nv states in the valence band, the number of holes in the valence 
band is 

( ) ( )F Fhv ev
11 .

1 1v v

v
v v E E kT E E kT

NN N N N
e e− − −

⎡ ⎤= − = − =⎢ ⎥+ +⎣ ⎦
 

 
Now, the number of electrons in the conduction band is 
 

N N P E N
ec c

c
E E kTcec F

= =
+−b g b g 1

,  

Hence, from Nev = Nhc, we get 
N

e
N

e
v

E E kT
c

E E kTv c− − −+
=

+F Fb g b g1 1
.  

 
(b) In this case, F( ) 1cE E kTe − >>  and e E E kTv− − >>( )F 1. Thus, from the result of part (a), 
 

( ) ( ) ,E E E Ec F v F

c v
kT kT

N N
e e− − −≈  

 
or ( )2v c FE E E kT

v ce N N− + ≈ . We solve for EF: 
 

( )1 1 ln .
2 2c

v
F v

c

NE E E kT
N

⎛ ⎞
≈ + + ⎜ ⎟

⎝ ⎠
 

 
35. Sample Problem — “Doping silicon with phosphorus” gives the fraction of silicon 
atoms that must be replaced by phosphorus atoms. We find the number the silicon atoms 
in 1.0 g, then the number that must be replaced, and finally the mass of the replacement 
phosphorus atoms. The molar mass of silicon is SiM = 28.086 g/mol, so the mass of one 
silicon atom is  
 

0,Si Si / Am M N= = (28.086 g/mol)/(6.022 × 1023 mol– 1) = 4.66 × 10– 23 g 
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and the number of atoms in 1.0 g is  
 

Si Si 0,Si/N m m= = (1.0 g)/(4.66 × 10– 23 g) = 2.14 × 1022. 
 
According to the Sample Problem, one of every 5 × 106 silicon atoms is replaced with a 
phosphorus atom. This means there will be  
 

PN = (2.14 × 1022)/(5 × 106) = 4.29 × 1015 
 
phosphorus atoms in 1.0 g of silicon. The molar mass of phosphorus is PM = 30.9758 
g/mol, so the mass of a phosphorus atom is  
 

0,P P / Am M N= =  (30.9758 g/mol)/(6.022 × 10– 23 mol– 1) = 5.14 × 10– 23 g. 
 
The mass of phosphorus that must be added to 1.0 g of silicon is  
 

P P 0,Pm N m= = (4.29 × 1015)(5.14 × 10– 23 g) = 2.2 × 10– 7 g. 
 
36. (a) The Fermi level is above the top of the silicon valence band. 
 
(b) Measured from the top of the valence band, the energy of the donor state is  
 

E = 1.11 eV – 0.11 eV = 1.0 eV. 
 
We solve EF from Eq. 41-6: 
 

( ) ( ) ( ) 11 5 5ln 1 1.0eV 8.62 10 eV K 300K ln 5.00 10 1

0.744eV.

FE E kT P
−− − −⎡ ⎤⎡ ⎤= − − = − × × −⎣ ⎦ ⎢ ⎥⎣ ⎦

=
 

 
(c) Now E = 1.11 eV, so 
 

( ) ( ) ( ) ( )( )5

7

1.11eV 0.744eV 8.62 10 eV K 300K

1 1 7.13 10 .
1 1

FE E kTP E
e e

−

−
− ⎡ ⎤− ×⎣ ⎦

= = = ×
+ +

 

 
37. (a) The probability that a state with energy E is occupied is given by 
 

P E
e E E kTF

b g b g=
+−

1
1

 

 
where EF is the Fermi energy, T is the temperature on the Kelvin scale, and k is the 
Boltzmann constant. If energies are measured from the top of the valence band, then the 
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energy associated with a state at the bottom of the conduction band is E = 1.11 eV. 
Furthermore,  

kT = (8.62 × 10– 5 eV/K)(300 K) = 0.02586 eV. 
 
For pure silicon, EF = 0.555 eV and  
 

(E – EF)/kT = (0.555 eV)/(0.02586 eV) = 21.46. 
Thus, 

P E
e

b g =
+

= × −1
1

4 79 1021 46
10

. . .  

(b) For the doped semiconductor,  
 

(E – EF)/kT = (0.11 eV)/(0.02586 eV) = 4.254 
and 

P E
e

b g =
+

= × −1
1

140 104 254
2

. . .  

 
(c) The energy of the donor state, relative to the top of the valence band, is 1.11 eV – 0.15 
eV = 0.96 eV. The Fermi energy is 1.11 eV – 0.11 eV = 1.00 eV. Hence,  
 

(E – EF)/kT = (0.96 eV – 1.00 eV)/(0.02586 eV) = – 1.547 
and 

P E
e

b g =
+

=−

1
1

08241 547. . .  

 
38. (a) The semiconductor is n-type, since each phosphorus atom has one more valence 
electron than a silicon atom. 
 
(b) The added charge carrier density is  
 

nP = 10– 7 nSi = 10– 7 (5 × 1028 m– 3) = 5 × 1021 m– 3. 
 
(c) The ratio is  

(5 × 1021 m– 3)/[2(5 × 1015 m– 3)] = 5 × 105. 
 
Here the factor of 2 in the denominator reflects the contribution to the charge carrier 
density from both the electrons in the conduction band and the holes in the valence band. 
 
39. The energy received by each electron is exactly the difference in energy between the 
bottom of the conduction band and the top of the valence band (1.1 eV). The number of 
electrons that can be excited across the gap by a single 662-keV photon is  
 

N = (662 × 103 eV)/(1.1 eV) = 6.0 × 105. 
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Since each electron that jumps the gap leaves a hole behind, this is also the number of 
electron-hole pairs that can be created. 
 
40. (a) The vertical axis in the graph below is the current in nanoamperes: 
 

 
(b) The ratio is 
 

0 5
0.50V 8

0.50V
0 5

0.50eVexp 1
(8.62 10 eV K)(300K)

2.5 10 .
0.50eVexp 1

(8.62 10 eV K)(300K)

v

v

I
I

I
I

−
=+

=−
−

⎡ ⎤⎛ ⎞+
−⎢ ⎥⎜ ⎟×⎝ ⎠⎣ ⎦= = ×

⎡ ⎤⎛ ⎞−
−⎢ ⎥⎜ ⎟×⎝ ⎠⎣ ⎦

 

 
41. The valence band is essentially filled and the conduction band is essentially empty. If 
an electron in the valence band is to absorb a photon, the energy it receives must be 
sufficient to excite it across the band gap. Photons with energies less than the gap width 
are not absorbed and the semiconductor is transparent to this radiation. Photons with 
energies greater than the gap width are absorbed and the semiconductor is opaque to this 
radiation. Thus, the width of the band gap is the same as the energy of a photon 
associated with a wavelength of 295 nm. Noting that 1240eV nm,hc = ⋅ we obtain 
 

gap
1240eV nm 1240eV nm 4.20eV.

295nm
E

λ
⋅ ⋅

= = =  

 
42. Since (using 1240eV nmhc = ⋅ ) 
 

photon
1240eV nm 8.86eV 7.6eV,

140nm
hcE
λ

⋅
= = = >  

 
the light will be absorbed by the KCI crystal. Thus, the crystal is opaque to this light. 
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43. We denote the maximum dimension (side length) of each transistor as max , the size of 
the chip as A, and the number of transistors on the chip as N. Then 2

max .A N=  Therefore, 
 

( )( )22
5

max 6

1.0in. 0.875in. 2.54 10 m in.
1.3 10 m 13 m.

3.5 10
A
N

μ
−

−
× ×

= = = × =
×

 

 
44. (a) According to Chapter 25, the capacitance is C = κε0A/d. In our case κ = 4.5, A = 
(0.50 μm)2, and d = 0.20 μm, so 
 

C A
d

= =
×

= ×
−

−κε μ
μ

0
12 2

17
4 5 885 10 0 50

0 20
50 10

. . .
.

.
b gc hb gF m m

m
F. 

 
(b) Let the number of elementary charges in question be N. Then, the total amount of 
charges that appear in the gate is q = Ne. Thus, q = Ne = CV, which gives 
 

N CV
e

= =
×

×
= ×

−

−

50 10 10
16 10

31 10
17

19
2

. .
.

. .
F V

C
c hb g

 

 
45. (a) The derivative of P(E) is 
 

( ) / ( ) /
( ) / ( ) /2 2

1 1 1 .
[ 1] [ 1]

F F

F F

E E kT E E kT
E E kT E E kT

dP d e e
dE e dE e kT

− −
− −

− −
= =

+ +
 

 
For E = EF, we readily obtain the desired result: 
 

( ) /
( ) / 2

1 1 1 .
[ 1] 4

F F

F F
F

E E kT
E E kT

E E

dP e
dE e kT kT

−
−

=

−
= = −

+
 

 
(b) The equation of a line may be written as y = m(x –  xo) where m = – 1/4kT is the slope, 
and xo is the x-intercept (which is what we are asked to solve for). It is clear that P(EF) = 
1/2, so our equation of the line, evaluated at x = EF, becomes  
 

1/2 = (– 1/4kT)(EF –  xo), 
 

which leads to xo = EF + 2kT. The straight line can be rewritten as ( )1 1
2 4 Fy E E

kT
= − − . 

 
46. (a) For copper, Eq. 41-10 leads to 
 

d
dT
ρ ρα= = × ⋅ × = × ⋅− − − −[ ] ( )( ) /Cu

1m K m K .2 10 4 10 8 108 3 11Ω Ω  
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(b) For silicon, 
 

d
dT
ρ ρα= = × ⋅ − × = − × ⋅− −[ ] ( )( ) . /Si

1m K m K .3 10 70 10 21 103 3 2Ω Ω  

 
47. The description in the problem statement implies that an atom is at the center point C 
of the regular tetrahedron, since its four neighbors are at the four vertices. The side length 
for the tetrahedron is given as a = 388 pm. Since each face is an equilateral triangle, the 
“altitude” of each of those triangles (which is not to be confused with the altitude of the 
tetrahedron itself) is 1

2 3h a′ =  (this is generally referred to as the “slant height” in the 
solid geometry literature). At a certain location along the line segment representing the 
“slant height” of each face is the center C' of the face. Imagine this line segment starting 
at atom A and ending at the midpoint of one of the sides. Knowing that this line segment 
bisects the 60° angle of the equilateral face, it is easy to see that C' is a distance 
AC a' /= 3 . If we draw a line from C' all the way to the farthest point on the 

tetrahedron (this will land on an atom we label B), then this new line is the altitude h of 
the tetrahedron. Using the Pythagorean theorem, 
 

2
2 2 2 2( ) .

33
ah a AC a a⎛ ⎞′= − = − =⎜ ⎟

⎝ ⎠
 

 
Now we include coordinates: imagine atom B is on the +y axis at y h ab = = 2 3/ , and 
atom A is on the +x axis at / 3ax AC a′= = . Then point C' is the origin. The tetrahedron 
center point C is on the y axis at some value yc, which we find as follows: C must be 
equidistant from A and B, so 

2
2 2 22

3 3b c a c c c
ay y x y a y y⎛ ⎞− = + ⇒ − = +⎜ ⎟

⎝ ⎠
 

 
which yields y ac = / 2 6 . 
 
(a) In unit vector notation, using the information found above, we express the vector 
starting at C and going to A as 

r x y a
ac a c= − −)i + ( j = a

3
i j .

2 6
 

 
Similarly, the vector starting at C and going to B is  
 

r y ybc b c
a= − =( ) /j j2 3 2 . 

Therefore, using Eq. 3-20, 
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θ =
⋅F

HG
I
KJ = −FHG

I
KJ

− −cos cos1 1 1
3

r r
r r
ac bc

ac bc

 

 
which yields θ = 109.5° for the angle between adjacent bonds. 
 
(b) The length of vector rbc  (which is, of course, the same as the length of rac ) is 
 

3 388pm 3| | 237.6 pm 238 pm.
2 2 2 2bc
ar = = = ≈  

 
We note that in the solid geometry literature, the distance a

2
3
2  is known as the 

circumradius of the regular tetrahedron. 
 
48. According to Eq. 41-6, 
 

P E E
e e eF E E E kT E kT xF F

( ) ( )/ /+ =
+

=
+

=
++ −Δ Δ Δ

1
1

1
1

1
1

 

where x E kT= Δ / . Also, 
 

P E E
e e eF E E E kT E kT xF F

( ) .( )/ /+ =
+

=
+

=
+− − − −Δ Δ Δ

1
1

1
1

1
1

 

Thus, 

P E E P E E
e e

e e
e eF F x x

x x

x x( ) ( )
( )( )

.+ + − =
+

+
+

=
+ + +
+ +

=−

−

−Δ Δ
1

1
1

1
1 1
1 1

1  

 
A special case of this general result can be found in Problem 41-4, where ΔE = 63 meV 
and  

P(EF + 63 meV) + P(EF –  63 meV) = 0.090 + 0.91 = 1.0. 
 
49. (a) Setting E = EF (see Eq. 41-9), Eq. 41-5 becomes 
 

N E m m
h

h
m

nF( ) .
/

/= F
HG

I
KJ

8 2 3
16 23

1 3
1 3π

π
 

 
Noting that 16 2 2 2 24 1 2 9 2= =/ /  so that the cube root of this is 2 2 23 2/ = , we are able to 
simplify the above expression and obtain 
 

N E m
h

nF( ) = 4 32
23 π  

 
which is equivalent to the result shown in the problem statement. Since the desired 
numerical answer uses eV units, we multiply numerator and denominator of our result by 
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c2 and make use of the mc2 value for an electron in Table 37-3 as well as the value  
1240eV nmhc = ⋅ : 

 

N E mc
hc

n n nF( )
( )

(
(

( . )/ / /=
F
HG

I
KJ =

×
⋅

F
HG

I
KJ = ⋅− −4 3 4 511 10

1240
3 4 11

2

2
23 1 3

3
23 1 3 2 1 1 3π π

eV)
eV nm)

nm eV2  

 
which is equivalent to the value indicated in the problem statement. 
 
(b) Since there are 1027 cubic nanometers in a cubic meter, then the result of Problem 41-
3 may be written as 

n = × =− −8 49 10 84 928 3 3. . .m nm  
 
The cube root of this is n1/3 ≈ 4.4/nm. Hence, the expression in part (a) leads to 
 

2 1 1 3 1 28 3 1( ) (4.11nm eV )(4.4nm ) 18nm eV 1.8 10 m eV .FN E − − − − − − −= ⋅ = ⋅ = × ⋅  
 
If we multiply this by 1027 m3/nm3, we see this compares very well with the curve in Fig. 
41-6 evaluated at 7.0 eV. 
 
50. If we use the approximate formula discussed in Problem 41-21, we obtain 
 

frac = × +
≈

−3 8 62 10 273
2 55

0 03
5( . /

( . )
. .eV K)(961 K)

eV
 

 
The numerical approach is briefly discussed in part (c) of Problem 41-21. Although the 
problem does not ask for it here, we remark that numerical integration leads to a fraction 
closer to 0.02. 
 
51. We equate EF with 1

2
2m ve F  and write our expressions in such a way that we can make 

use of the electron mc2 value found in Table 37-3: 
 

v E
m

c E
mcF

F F= = = ×
×

= ×
2 2 3 0 10 2 7 0

511 10
16 102

5
5

3( . / ) ( .
.

. / .km s eV)
eV

km s  

 
52. The numerical factor ( )2/3

3
16 2π

 is approximately equal to 0.121.  

 
53. We use the ideal gas law in the form of Eq. 20-9: 
 

28 3 23 8 3(8.43 10 m )(1.38 10 J/K)(300 K) 3.49 10 Pa 3.49 10 atm .p nkT − −= = × × = × = ×  
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Chapter 42 
 
 
1. Kinetic energy (we use the classical formula since v is much less than c) is converted 
into potential energy (see Eq. 24-43). From Appendix F or G, we find Z = 3 for lithium 
and Z = 90 for thorium; the charges on those nuclei are therefore 3e and 90e, respectively. 
We manipulate the terms so that one of the factors of e cancels the “e” in the kinetic 
energy unit MeV, and the other factor of e is set to be 1.6 × 10–19 C. We note that 

01 4k πε=  can be written as 8.99 × 109 V·m/C. Thus, from energy conservation, we have 
 

( )( )( )9 19V m
C1 2

6

8.99 10 3 1.6 10 C 90
3.00 10 eV

ekq qK U r
K

−⋅× × ×
= ⇒ = =

×
 

 
which yields r = 1.3 × 10– 13 m (or about 130 fm). 
 
2. Our calculation is similar to that shown in Sample Problem — “Rutherford scattering 
of an alpha particle by a gold nucleus.” We set 
 

( )( )0 Cu min5.30 MeV= 1/ 4 /K U q q rαε= = π  
 
and solve for the closest separation, rmin: 
 

( )( )( )( )19 9
Cu Cu

min 6
0 0

14

2 29 1.60 10 C 8.99 10 V m/C
4 4 5.30 10 eV

1.58 10 m 15.8 fm.

eq q kq qr
K K

α α

πε πε

−

−

× × ⋅
= = =

×

= × =

 

 
We note that the factor of e in qα = 2e was not set equal to 1.60 × 10– 19 C, but was 
instead allowed to cancel the “e” in the non-SI energy unit, electron-volt. 
 
3. Kinetic energy (we use the classical formula since v is much less than c) is converted 
into potential energy. From Appendix F or G, we find Z = 3 for lithium and Z = 110 for 
Ds; the charges on those nuclei are therefore 3e and 110e, respectively. From energy 
conservation, we have 

Li Ds

0

1
4

q qK U
rπε

= =  

 
which yields  
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9 2 2 19 19
Li Ds

13
0

14

1 (8.99 10 N m C )(3 1.6 10 C)(110 1.6 10 C)
4 (10.2 MeV)(1.60 10  J/MeV)
4.65 10  m 46.5 fm.

q qr
Kπε

− −

−

−

× ⋅ × × × ×
= =

×
= × =

 

 
4. In order for the α particle to penetrate the gold nucleus, the separation between the 
centers of mass of the two particles must be no greater than  
 

r = rCu + rα = 6.23 fm + 1.80 fm = 8.03 fm. 
 
Thus, the minimum energy Kα is given by 
 

( )( )( )( )

Au Au

0

9 19
6

15

1
4

8.99 10 V m/C 2 79 1.60 10 C
28.3 10 eV.

8.03 10 m

q q kq qK U
r r

e

α α
α πε

−

−

= = =

× ⋅ ×
= = ×

×

 

 
We note that the factor of e in qα = 2e was not set equal to 1.60 × 10– 19 C, but was 
instead carried through to become part of the final units. 
 
5. The conservation laws of (classical kinetic) energy and (linear) momentum determine 
the outcome of the collision (see Chapter 9). The final speed of the α particle is 
 

v m m
m m

vf iα
α

α
α=

−
+

Au

Au

, 

 
and that of the recoiling gold nucleus is 
 

v m
m m

vf iAu,
Au

=
+

2 α

α
α .  

 
(a) Therefore, the kinetic energy of the recoiling nucleus is 
 

( )

( ) ( )( )
( )

2
2 2 Au

Au, Au Au, Au 2
Au Au

2

2 41 1
2 2

4 197 u 4.00 u
5.00 MeV

4.00 u 197 u
0.390 MeV.

f f i i
m m mK m v m v K

m m m m
α α

α α
α α

⎛ ⎞
= = =⎜ ⎟+ +⎝ ⎠

=
+

=

 

 
(b) The final kinetic energy of the alpha particle is 
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( )

2 2
2 2Au Au

Au Au

2

1 1
2 2

4.00 u 197 u5.00 MeV
4.00 u 197 u

4.61 MeV.

f f i i
m m m mK m v m v K
m m m m

α α
α α α α α α

α α

⎛ ⎞ ⎛ ⎞− −
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠
=

 

 
We note that K K Kaf f i+ =Au, α  is indeed satisfied. 
 
6. (a) The mass number A is the number of nucleons in an atomic nucleus. Since m mp n≈  
the mass of the nucleus is approximately Amp. Also, the mass of the electrons is 
negligible since it is much less than that of the nucleus. So M Amp≈ . 
 
(b) For 1H, the approximate formula gives  
 

M ≈ Amp = (1)(1.007276 u) = 1.007276 u. 
 
The actual mass is (see Table 42-1) 1.007825 u. The percentage deviation committed is 
then  

δ = (1.007825 u – 1.007276 u)/1.007825 u = 0.054%≈0.05%. 
 
(c) Similarly, for 31P, δ = 0.81%. 
 
(d) For 120Sn, δ = 0.81%. 
 
(e) For 197Au, δ = 0.74%. 
 
(f) For 239Pu, δ = 0.71%. 
 
(g) No. In a typical nucleus the binding energy per nucleon is several MeV, which is a bit 
less than 1% of the nucleon mass times c2. This is comparable with the percent error 
calculated in parts (b) – (f) , so we need to use a more accurate method to calculate the 
nuclear mass. 
 
7. For 55Mn the mass density is 
 

( ) ( )( ) ( )
17 3

31/315 23

0.055kg/mol 2.3 10 kg/m
4 / 3 1.2 10 m 55 6.02 10 / mol

m
M
V

ρ
−

= = = ×
⎡ ⎤π × ×⎣ ⎦

. 

 
(b) For 209Bi,  
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ρm
M
V

= =
× ×

= ×
−

0 209

4 3 1 2 10 209 6 02 10
2 3 10

15 1 3 3 23

17.

/ . . /
. .

/

kg / mol

m mol
kg / m3

πa f c ha f c h
 

 
(c) Since V r r A A∝ = ∝3

0
1 3 3/ ,c h  we expect ρm A V A A∝ ∝ ≈/ / const.  for all nuclides. 

 
(d) For 55Mn, the charge density is 
 

( )( )
( ) ( )( )

19
25 3

31/315

25 1.6 10 C
1.0 10 C/m .

4 / 3 1.2 10 m 55
q

Ze
V

ρ
−

−

×
= = = ×

⎡ ⎤π ×⎣ ⎦

 

 
(e) For 209Bi, the charge density is 

ρq
Ze
V

= =
×

×
= ×

−

−

83 1 6 10

4 3 1 2 10 209
8 8 10

19

15 1 3 3
24a fc h

a f c ha f
.

/ .
. .

/

C

m
C / m3

π
 

 
Note that ρq Z V Z A∝ ∝/ /  should gradually decrease since A > 2Z for large nuclides. 
 
8. (a) The atomic number Z = 39 corresponds to the element yttrium (see Appendix F 
and/or Appendix G). 
 
(b) The atomic number Z = 53 corresponds to iodine. 
 
(c) A detailed listing of stable nuclides (such as the Web site http://nucleardata. 
nuclear.lu.se/nucleardata) shows that the stable isotope of yttrium has 50 neutrons (this 
can also be inferred from the Molar Mass values listed in Appendix F). 
 
(d) Similarly, the stable isotope of iodine has 74 neutrons. 
 
(e) The number of neutrons left over is 235 –  127 –  89 = 19. 
 
9. (a) 6 protons, since Z = 6 for carbon (see Appendix F). 
 
(b) 8 neutrons, since A – Z = 14 – 6 = 8 (see Eq. 42-1). 
 
10. (a) Table 42-1 gives the atomic mass of 1H as m = 1.007825 u. Therefore, the mass 
excess for 1H is  

Δ = (1.007825 u –  1.000000 u)= 0.007825 u. 
 
(b) In the unit MeV/c2,  
 

Δ = (1.007825 u – 1.000000 u)(931.5 MeV/c2·u) = +7.290 MeV/c2. 
 
(c) The mass of the neutron is mn = 1.008665 u. Thus, for the neutron,  
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Δ = (1.008665 u – 1.000000 u) = 0.008665 u. 

 
(d) In the unit MeV/c2,  
 

Δ = (1.008665 u – 1.000000 u)(931.5 MeV/ c2·u) = +8.071 MeV/c2. 
 
(e) Appealing again to Table 42-1, we obtain, for 120Sn,  
 

Δ = (119.902199 u – 120.000000 u) = – 0.09780 u. 
 
(f) In the unit MeV/c2,  
 

Δ = (119.902199 u – 120.000000 u) (931.5 MeV/ c2·u) = – 91.10 MeV/c2. 
 
11. (a) The de Broglie wavelength is given by λ = h/p, where p is the magnitude of the 
momentum. The kinetic energy K and momentum are related by Eq. 37-54, which yields 
 

pc K Kmc= + = + =2 2 22 200 2 200 0 511 200 5MeV MeV MeV MeV.a f a fa f. .  
 
Thus, 

6
6

1240eV nm 6.18 10 nm 6.2 fm.
200.5 10 eV

hc
pc

λ −⋅
= = = × ≈

×
 

 
(b) The diameter of a copper nucleus, for example, is about 8.6 fm, just a little larger than 
the de Broglie wavelength of a 200-MeV electron. To resolve detail, the wavelength 
should be smaller than the target, ideally a tenth of the diameter or less. 200-MeV 
electrons are perhaps at the lower limit in energy for useful probes. 
 
12. (a) Since 0U > , the energy represents a tendency for the sphere to blow apart. 
 
(b) For 239Pu, Q = 94e and R = 6.64 fm. Including a conversion factor for J eV→  we 
obtain 
 

U Q
r

= =
× × ⋅

× ×
F
HG

I
KJ

= ×

−

− −

3
20

3 94 1 60 10 8 99 10

5 6 64 10
1

115 10

2

0

19 2 9

15 19

9

πε

. .

.

.

C N m / C

m
eV

1.60 10 J

eV = 1.15GeV.

2 2c h c h
c h  

 
(c) Since Z = 94, the electrostatic potential per proton is 1.15 GeV/94 = 12.2 MeV/proton.  
 
(d) Since A = 239, the electrostatic potential per nucleon is 1.15 GeV/239 = 4.81 
MeV/nucleon.  
 
(e) The strong force that binds the nucleus is very strong. 
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13. We note that the mean density and mean radius for the Sun are given in Appendix C. 
Since ρ = M/V where V r∝ 3,  we get r ∝ −ρ 1 3/ . Thus, the new radius would be 
 

r Rs
s=
F
HG
I
KJ = ×

×
F
HG

I
KJ = ×

ρ
ρ

1 3
8

17

1 3
46 96 10 1410

2 10
13 10

/ /

. .m kg / m
kg / m

m.
3

3c h  

 
14. The binding energy is given by  
 

( ) 2
be AmH nE Zm A Z m M cΔ = + − −⎡ ⎤⎣ ⎦ , 

 
where Z is the atomic number (number of protons), A is the mass number (number of 
nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and AmM  is 
the mass of a 244

95 Am  atom. In principle, nuclear masses should be used, but the mass of 
the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 

AmM , so the result is the same. First, we calculate the mass difference in atomic mass 
units:  
 

Δm = (95)(1.007825 u) + (244 – 95)(1.008665 u) –  (244.064279 u) = 1.970181 u. 
 
Since 1 u is equivalent to 931.494013 MeV,  
 

ΔEbe = (1.970181 u)(931.494013 MeV/u) = 1835.212 MeV. 
 
Since there are 244 nucleons, the binding energy per nucleon is  
 

ΔEben = E/A = (1835.212 MeV)/244 = 7.52 MeV. 
 
15. (a) Since the nuclear force has a short range, any nucleon interacts only with its 
nearest neighbors, not with more distant nucleons in the nucleus. Let N be the number of 
neighbors that interact with any nucleon. It is independent of the number A of nucleons in 
the nucleus. The number of interactions in a nucleus is approximately NA, so the energy 
associated with the strong nuclear force is proportional to NA and, therefore, proportional 
to A itself. 
 
(b) Each proton in a nucleus interacts electrically with every other proton. The number of 
pairs of protons is Z(Z –  1)/2, where Z is the number of protons. The Coulomb energy is, 
therefore, proportional to Z(Z –  1). 
 
(c) As A increases, Z increases at a slightly slower rate but Z2 increases at a faster rate 
than A and the energy associated with Coulomb interactions increases faster than the 
energy associated with strong nuclear interactions. 
 
16. The binding energy is given by  
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( ) 2

be EuH nE Zm A Z m M cΔ = + − −⎡ ⎤⎣ ⎦ , 
 
where Z is the atomic number (number of protons), A is the mass number (number of 
nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and EuM  is 
the mass of a 152

63Eu  atom. In principle, nuclear masses should be used, but the mass of 
the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 

EuM , so the result is the same. First, we calculate the mass difference in atomic mass 
units:  
 

Δm = (63)(1.007825 u) + (152 –  63)(1.008665 u) –  (151.921742 u) = 1.342418 u. 
 
Since 1 u is equivalent to 931.494013 MeV,  
 

ΔEbe = (1.342418 u)(931.494013 MeV/u) = 1250.454 MeV. 
 
Since there are 152 nucleons, the binding energy per nucleon is  
 

ΔEben = E/A = (1250.454 MeV)/152 = 8.23 MeV. 
 
17. It should be noted that when the problem statement says the “masses of the proton 
and the deuteron are …” they are actually referring to the corresponding atomic masses 
(given to very high precision). That is, the given masses include the “orbital” electrons. 
As in many computations in this chapter, this circumstance (of implicitly including 
electron masses in what should be a purely nuclear calculation) does not cause extra 
difficulty in the calculation. Setting the gamma ray energy equal to ΔEbe, we solve for the 
neutron mass (with each term understood to be in u units): 
 

n d H 2

2.22332.013553212 1.007276467
931.502

1.0062769 0.0023868

E
m M m

c
γ= − + = − +

= +
 

 
which yields mn = 1.0086637 u ≈  1.0087 u. 
 
18. The binding energy is given by  
 

( ) 2
be RfH nE Zm A Z m M cΔ = + − −⎡ ⎤⎣ ⎦ , 

 
where Z is the atomic number (number of protons), A is the mass number (number of 
nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and RfM  is 
the mass of a 259

104 Rf  atom. In principle, nuclear masses should be used, but the mass of 
the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 
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RfM , so the result is the same. First, we calculate the mass difference in atomic mass 
units:  
 

Δm = (104)(1.007825 u) + (259 –  104)(1.008665 u) –  (259.10563 u) = 2.051245 u. 
 
Since 1 u is equivalent to 931.494013 MeV,  
 

ΔEbe = (2.051245 u)(931.494013 MeV/u) = 1910.722 MeV. 
 
Since there are 259 nucleons, the binding energy per nucleon is  
 

ΔEben = E/A = (1910.722 MeV)/259 = 7.38 MeV. 
 
19. Let f24 be the abundance of 24Mg, let f25 be the abundance of 25Mg, and let f26 be the 
abundance of 26Mg. Then, the entry in the periodic table for Mg is  
 

24.312 = 23.98504f24 + 24.98584f25 + 25.98259f26. 
 
Since there are only three isotopes, f f f24 25 26 1+ + = . We solve for f25 and f26. The second 
equation gives f f f26 24 251= − − . We substitute this expression and f24 = 0.7899 into the 
first equation to obtain  
 
24.312 =(23.98504)(0.7899) + 24.98584f25 + 25.98259–(25.98259)(0.7899) – 25.98259f25.  
 
The solution is f25 = 0.09303. Then,  
 

f26 = 1 –  0.7899 –  0.09303 = 0.1171. 78.99% 
 
of naturally occurring magnesium is 24Mg. 
 
(a) Thus, 9.303% is 25Mg. 
 
(b) 11.71% is 26Mg. 
 
20. From Appendix F and/or G, we find Z = 107 for bohrium, so this isotope has N =  
A –  Z = 262 –  107 = 155 neutrons. Thus, 
 

( )

( )( ) ( )( )( )( )

2
H Bh

ben

107 1.007825u 155 1.008665u 262.1231u 931.5MeV u
262

nZm Nm m c
E

A
+ −

Δ =

+ −
=

 

 
which yields 7.31 MeV per nucleon. 
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21. Binding energy is the difference in mass energy between a nucleus and its individual 
nucleons. If a nucleus contains Z protons and N neutrons, its binding energy is given by 
Eq. 42-7: 

( )2 2 2
be H n( ) ,E mc Mc Zm Nm M cΔ = − = + −∑  

 
where mH is the mass of a hydrogen atom, mn is the mass of a neutron, and M is the mass 
of the atom containing the nucleus of interest.  
 
(a) If the masses are given in atomic mass units, then mass excesses are defined by 

( ) ( )2 2
H H n n1 , 1 ,m c m cΔ = − Δ = − and ( ) 2.M A cΔ = −  This means 2 2

H H ,m c c= Δ +  
2 2

n n ,m c c= Δ +  and 2Mc =  2.AcΔ +  Thus,  
 

( ) ( ) 2
be H n H n ,E Z N Z N A c Z NΔ = Δ + Δ −Δ + + − = Δ + Δ −Δ  

 
where A = Z + N is used.  
 
(b) For 79

197 Au,  Z = 79 and N = 197 –  79 = 118. Hence, 
 

ΔEbe MeV MeV MeV MeV.= + − − =79 7 29 118 8 07 31 2 1560a fa f a fa f a f. . .  
 
This means the binding energy per nucleon is ΔEben MeV MeV.= =1560 197 7 92a f / .  
 
22. (a) The first step is to add energy to produce 4 3He + H→ p , which — to make the 
electrons “balance” — may be rewritten as  4 3He H+ H→1 . The energy needed is  
 

( ) ( )( )3 1 4
2

1 H H He
3.01605u+1.00783u 4.00260u 931.5MeV/u

19.8MeV.

E m m m cΔ = + − = −

=
 

 
(b) The second step is to add energy to produce 3 H H.→ +n 2  The energy needed is  
 

( ) ( )( )2 3
2

2 H H
2.01410u+1.00867 u 3.01605u 931.5MeV/u

6.26MeV.
nE m m m cΔ = + − = −

=
  

 
(c) The third step: 2 H → +p n,  which — to make the electrons “balance” — may be 
rewritten as 2 H H +→1 n.  The work required is  
 

( ) ( )( )1 2
2

3 H H
1.00783u 1.00867 u 2.01410u 931.5MeV/u

2.23MeV.
nE m m m cΔ = + − = + −

=
 

 
(d) The total binding energy is  
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be 1 2 3E E E EΔ = Δ + Δ + Δ = 19.8MeV 6.26MeV 2.23MeV 28.3MeV.+ + =  
 
(e) The binding energy per nucleon is  
 

Δ ΔE E Aben be MeV / 4 = 7.07MeV.= =/ .28 3  
 
(f) No, the answers do not match. 
 
23. The binding energy is given by  
 

( ) 2
be H n PuE Zm A Z m M cΔ = + − −⎡ ⎤⎣ ⎦ , 

 
where Z is the atomic number (number of protons), A is the mass number (number of 
nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and MPu is the 
mass of a 94

239 Pu  atom. In principle, nuclear masses should be used, but the mass of the Z 
electrons included in ZMH is canceled by the mass of the Z electrons included in MPu, so 
the result is the same. First, we calculate the mass difference in atomic mass units:  
 

Δm = (94)(1.00783 u) + (239 – 94)(1.00867 u) –  (239.05216 u) = 1.94101 u. 
 
Since the mass energy of 1 u is equivalent to 931.5 MeV,  
 

ΔEbe = (1.94101 u)(931.5 MeV/u) = 1808 MeV. 
 
Since there are 239 nucleons, the binding energy per nucleon is  
 

ΔEben = E/A = (1808 MeV)/239 = 7.56 MeV. 
 
24. We first “separate” all the nucleons in one copper nucleus (which amounts to simply 
calculating the nuclear binding energy) and then figure the number of nuclei in the penny 
(so that we can multiply the two numbers and obtain the result). To begin, we note that 
(using Eq. 42-1 with Appendix F and/or G) the copper-63 nucleus has 29 protons and 34 
neutrons. Thus, 
 

( ) ( )( )( )be 29 1.007825u 34 1.008665u 62.92960 u 931.5MeV/u

551.4MeV.

EΔ = + −

=
 

 
To figure the number of nuclei (or, equivalently, the number of atoms), we adapt Eq.  
42-21: 

NCu
g

62.92960 g / mol
atoms / mol atoms.=

F
HG

I
KJ × ≈ ×

3 0 6 02 10 2 9 1023 22. . .c h  

 
Therefore, the total energy needed is 
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N ECu be MeV MeV.Δ = × = ×551 2 9 10 1 6 1022 25.4 . .a fc h  
 
25. The rate of decay is given by R = λN, where λ is the disintegration constant and N is 
the number of undecayed nuclei. In terms of the half-life T1/2, the disintegration constant 
is λ = (ln 2)/T1/2, so 
 

N R RT
= = =

× ×

= ×

−

λ
1 2

10 7

22

2
6000 3 7 10 5 27 316 10

2

5 33 10

/

ln
. / . .

ln

.

Ci s Ci y s / y

nuclei.

1a fc ha fc h
 

 
26. By the definition of half-life, the same has reduced to 1

2  its initial amount after 140 d. 
Thus, reducing it to 1

4
1
2

2= a f  of its initial number requires that two half-lives have passed: 
t = 2T1/2 = 280 d. 
 
27. (a) Since 60 y = 2(30 y) = 2T1/2, the fraction left is 2– 2 = 1/4 = 0.250. 
 
(b) Since 90 y = 3(30 y) = 3T1/2, the fraction that remains is 2– 3 = 1/8 = 0.125. 
 
28. (a) We adapt Eq. 42-21: 
 

( )23 18
Pu

0.002g 6.02 10 nuclei/mol 5.04 10 nuclei.
239g/mol

N
⎛ ⎞

= × ≈ ×⎜ ⎟
⎝ ⎠

 

 
(b) Eq. 42-20 leads to 

R N
T

= =
×

×
= ×

ln ln
.41

.4 /
/

2 5 10 2
2 10

1 10
1 2

18

4
14

y
y 

 
which is equivalent to 4.60 × 106/s = 4.60 × 106 Bq (the unit becquerel is defined in 
Section 42-3). 
 
29. (a) The half-life T1/2 and the disintegration constant are related by T1/2 = (ln 2)/λ, so 
 

T1/2 = (ln 2)/(0.0108 h– 1) = 64.2 h. 
 
(b) At time t, the number of undecayed nuclei remaining is given by 
 

N N e N et t T= =− −
0 0

2 1 2λ ln / / .a f  
 
We substitute t = 3T1/2 to obtain 

N
N

e
0

3 2 0 125= =− ln . . 
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In each half-life, the number of undecayed nuclei is reduced by half. At the end of one 
half-life, N = N0/2, at the end of two half-lives, N = N0/4, and at the end of three half-lives, 
N = N0/8 = 0.125N0. 
 
(c) We use 

N N e t= −
0

λ . 
 
Since 10.0 d is 240 h, λt = (0.0108 h– 1) (240 h) = 2.592 and 
 

N
N

e
0

2 592 0 0749= =− . . .  

 
30. We note that t = 24 h is four times T1/2 = 6.5 h. Thus, it has reduced by half, four-fold: 
 

( )
4

19 191 48 10 3.0 10 .
2

⎛ ⎞ × = ×⎜ ⎟
⎝ ⎠

 

 
The fraction of the Hg sample remaining as a function of time (measured in days) is 
plotted below. 

 
 
31. (a) The decay rate is given by R = λN, where λ is the disintegration constant and N is 
the number of undecayed nuclei. Initially, 0 0 ,R R Nλ= =  where N0 is the number of 
undecayed nuclei at that time. One must find values for both N0 and λ. The disintegration 
constant is related to the half-life 1/ 2T  by 
 

( ) ( ) ( ) 3 1
1/ 2ln2 / ln 2 / 78h 8.89 10 h .Tλ − −= = = ×  

 
If M is the mass of the sample and m is the mass of a single atom of gallium, then N0 = 
M/m. Now,  

m = (67 u)(1.661 × 10– 24 g/u) = 1.113 × 10– 22 g 
and  
 

N0 = (3.4 g)/(1.113 × 10– 22 g) = 3.05 × 1022. 
 
Thus, 
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R0 = (8.89 × 10– 3 h– 1) (3.05 × 1022) = 2.71 × 1020 h– 1 = 7.53 × 1016 s– 1. 
 
(b) The decay rate at any time t is given by 
 

R R e t= −
0

λ  
 
where R0 is the decay rate at t = 0. At t = 48 h, λt = (8.89 × 10– 3 h– 1) (48 h) = 0.427 and 
 

R e= × = ×− − −7 53 10 4 91 1016 1 0 427 16. . ..s s 1c h  
 
32. Using Eq. 42-15 with Eq. 42-18, we find the fraction remaining: 
 

N
N

e et T

0

2 1 2 30 2 29 0 49= = =− −ln / / ln / . .  

 
33. We note that 3.82 days is 330048 s, and that a becquerel is a disintegration per second 
(see Section 42-3). From Eq. 34-19, we have 
 

N R T
V V

= = ×FHG
I
KJ = ×1 2 5

3
10

32
155 10 330048

2
7 4 10

ln
.

ln
.Bq

m
s atoms

m
 

 
where we have divided by volume v. We estimate v (the volume breathed in 48 h =  
2880 min) as follows: 
 

( )
3liters 1m breaths2 40 2880 min

breath 1000 L min
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
which yields v ≈ 200 m3. Thus, the order of magnitude of N is 
 

( ) ( )10 3 13
3

atoms7 10 200m 1 10 atoms.
m

N⎛ ⎞ ⎛ ⎞≈ × ≈ ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

V
V

 

 
34. Combining Eqs. 42-20 and 42-21, we obtain 
 

M N M
M

RT
sam

K

A

g / mol
mol

= =
F
HG
I
KJ ×
F
HG

I
KJ

1 2
232

40
6 02 10

/

ln . /
 

 
which gives 0.66 g for the mass of the sample once we plug in 1.7 × 105/s for the decay 
rate and 1.28 × 109 y = 4.04 × 1016 s for the half-life. 
 
35. If N is the number of undecayed nuclei present at time t, then 
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dN
dt

R N= − λ  

 
where R is the rate of production by the cyclotron and λ is the disintegration constant. 
The second term gives the rate of decay. Rearrange the equation slightly and integrate: 
 

dN
R N

dt
t

N

N

−
= zz λ 00

 

 
where N0 is the number of undecayed nuclei present at time t = 0. This yields 
 

−
−
−

=
1

0λ
λ
λ

ln .R N
R N

t  

We solve for N: 

N R N R e t= + −FH
I
K

−

λ λ
λ

0 . 

 
After many half-lives, the exponential is small and the second term can be neglected. 
Then, N = R/λ, regardless of the initial value N0. At times that are long compared to the 
half-life, the rate of production equals the rate of decay and N is a constant. 
 
36. We have one alpha particle (helium nucleus) produced for every plutonium nucleus 
that decays. To find the number that have decayed, we use Eq. 42-15, Eq. 42-18, and 
adapt Eq. 42-21: 
 

N N N e N et T
A0 0

2 20000 2 241001 12 0
239

11 2− = − = −− −ln / ln // .d i c hg / mol
g / mol

 

 
where NA is the Avogadro constant. This yields 1.32 × 1022 alpha particles produced. In 
terms of the amount of helium gas produced (assuming the α particles slow down and 
capture the appropriate number of electrons), this corresponds to 
 

mHe mol
g / mol g.=

×
×

F
HG

I
KJ = × −132 10

6 02 10
4 0 87 9 10

22

23
3.

. /
. .a f  

 
37. Using Eq. 42-15 and Eq. 42-18 (and the fact that mass is proportional to the number 
of atoms), the amount decayed is 
 

( ) ( )
( ) ( ) ( ) ( )

1/ 21/ 2

1/ 2 1/ 2

ln 2 /ln 2/
16.0 h 14.0 h 0 0

ln 2 / 16.0 /12.7 h ln 2 14.0 h/12.7h ln 2ln 2 /
0

| | 1 1

       5.50g

       0.265g.

fi

f f

f i

t Tt T
t t

t T ht T

m m m m e m e

m e e e e

−−
= =

− − −−

Δ = − = − − −

⎡ ⎤= − = −⎣ ⎦
=

 

 
38. With 4

1/ 2 3.0 h 1.08 10 s,T = = × the decay constant is (using Eq. 42-18) 
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 5
4

1/ 2

ln 2 ln 2 6.42 10 / s
1.08 10 sT

λ −= = = ×
×

. 

 
Thus, the number of isotope parents injected is 
 

 
6 10

9
5

(8.60 10 Ci)(3.7 10 Bq/Ci) 4.96 10
6.42 10 / s

RN
λ

−

−

× ×
= = = ×

×
. 

 
39. (a) The sample is in secular equilibrium with the source, and the decay rate equals the 
production rate. Let R be the rate of production of 56Mn and let λ be the disintegration 
constant. According to the result of Problem 42-35, R = λN after a long time has passed. 
Now, λN = 8.88 × 1010 s– 1, so R = 8.88 × 1010 s– 1. 
 
(b) We use N = R/λ. If T1/2 is the half-life, then the disintegration constant is  
 

λ = (ln 2)/T1/2 = (ln 2)/(2.58 h) = 0.269 h– 1 = 7.46 × 10– 5 s– 1, 
 
so N = (8.88 × 1010 s– 1)/(7.46 × 10– 5 s– 1) = 1.19 × 1015. 
 
(c) The mass of a 56Mn nucleus is  
 

m = (56 u) (1.661 × 10– 24 g/u) = 9.30 × 10– 23 g 
 
and the total mass of 56Mn in the sample at the end of the bombardment is  
 

Nm = (1.19 × 1015)(9.30 × 10– 23 g) = 1.11 × 10– 7 g. 
 
40. We label the two isotopes with subscripts 1 (for 32P) and 2 (for 33P). Initially, 10% of 
the decays come from 33P, which implies that the initial rate R02 = 9R01. Using Eq. 42-17, 
this means 

01 1 01 02 2 02
1 1 .
9 9

R N R Nλ λ= = =  

 
At time t, we have R R e t

1 01
1= −λ and R R e t

2 02
2= −λ . We seek the value of t for which R1 = 

9R2 (which means 90% of the decays arise from 33P). We divide equations to obtain 
 

( ) ( )1 2
01 02/ 9,tR R e λ λ− − =  

and solve for t: 

( ) ( )
( ) ( )1 2

2

01 0201
1 1

1 2 02 1/ 2 1/ 2

ln 1/ 9ln / 91 ln
9 ln 2 / ln 2 / ln 2 14.3d 25.3d

209d.

R RRt
R T Tλ λ − −

⎡ ⎤⎛ ⎞ ⎣ ⎦= = =⎜ ⎟− − ⎡ ⎤−⎝ ⎠ ⎣ ⎦
=
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41. The number N of undecayed nuclei present at any time and the rate of decay R at that 
time are related by R = λN, where λ is the disintegration constant. The disintegration 
constant is related to the half-life T1/2 by λ = (ln 2)/T1/2, so R = (N ln 2)/T1/2 and 
  

T1/2 = (N ln 2)/R. 
 
Since 15.0% by mass of the sample is 147Sm, the number of 147Sm nuclei present in the 
sample is 

N =
×

= ×−

0 150 1 00
147 1 661 10

6 143 1024
20. .

.
. .

a fa f
a fc h

g
u g / u

 

Thus, 

T1 2

20
186 143 10 2

120
3 55 10/

. ln
.=

×
= × ×−

c h
s

s = 1.12 10 y.1
11  

 
42. Adapting Eq. 42-21, we have 
 

( )9 14sam 23
Kr

Kr

20 10 g 6.02 10 atoms mol 1.3 10 atoms.92g molA
MN N
M

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

−×= = × = ×  

 
Consequently, Eq. 42-20 leads to 
 

R N
T

= =
×

= ×
ln . ln

.
.2 13 10 2

184
4 9 10

1 2

14
13c h

s
Bq. 

 
43. Using Eq. 42-16 with Eq. 42-18, we find the initial activity: 
 

R Re et T
0

2 1 2 8 24 2 83 61 87 4 10 9 0 10= = × = ×ln / / ln / .. .Bq Bq.c h  
 
44. The number of atoms present initially at 0t =  is 6

0 2.00 10N = × . From Fig. 42-19, 
we see that the number is halved at 2.00 s.t =  Thus, using Eq. 42-15, we find the decay 
constant to be 

 10 0

0

1 1 1ln ln ln 2 0.3466 s
2.00 s / 2 2.00 s

N N
t N N

λ −⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
At 27.0 st = , the number of atoms remaining is 
 
 6 (0.3466/ s)(27.0 s)

0 (2.00 10 ) 173tN N e eλ− −= = × ≈ . 
 
Using Eq. 42-17, the decay rate is 
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 (0.3466 / s)(173) 60 / s 60 BqR Nλ= = ≈ = . 
  
45. (a) Equation 42-20 leads to 
 

sam
8 27

1 2 atom

12

ln 2 ln 2 ln 2 0.0010kg
30.2y 9.53 10 s 137 1.661 10 kg

3.2 10 Bq.

MR N
T m −

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟× × ×⎝ ⎠⎝ ⎠
= ×

 

 
(b) Using the conversion factor 101 Ci 3.7 10  Bq,= × 123.2 10 Bq 86 Ci.R = × =  
 
46. (a) Molybdenum beta decays into technetium: 
 

42
99 Mo Tc +→ +−

43
99 e v  

 
(b) Each decay corresponds to a photon produced when the technetium nucleus de-excites 
(note that the de-excitation half-life is much less than the beta decay half-life). Thus, the 
gamma rate is the same as the decay rate: 8.2 × 107/s. 
 
(c) Equation 42-20 leads to 
 

N
RT

= = = ×1 2 6

2
38 6 0 3600

2
12 10

ln
.

ln
. .

s h s hb gb gb g  

 
47. (a) We assume that the chlorine in the sample had the naturally occurring isotopic 
mixture, so the average mass number was 35.453,  as given in Appendix F. Then, the 
mass of 226Ra was 

m =
+

= × −226
226 2 35

0 10 76 1 10 3

.453
. .a f a fg g. 

 
The mass of a 226Ra nucleus is (226 u)(1.661 × 10– 24 g/u) = 3.75 × 10– 22 g, so the number 
of 226Ra nuclei present was  
 

N = (76.1 × 10– 3 g)/(3.75 × 10– 22 g) = 2.03 × 1020. 
 
(b) The decay rate is given by  

R = Nλ = (N ln 2)/T1/2, 
 
where λ is the disintegration constant, T1/2 is the half-life, and N is the number of nuclei. 
The relationship λ = (ln 2)/T1/2 is used. Thus, 
 

R =
×

×
= × −2 03 10 2

1600 3156 10
2 79 10

20

7
9. ln

.
. .

c h
a fc hy s / y

s 1  
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48. (a) The nuclear reaction is written as 238 4U Th + He.→234  The energy released is 
 

ΔE m m m c1
2

238 05079 931 5
4 25

= − −

= − −

=

U He Th

u 4.00260 u 234.04363u MeV / u
MeV.

b g
a fa f. .

.
 

 
(b) The reaction series consists of 238 237U U n,→ +  followed by 
 

237 236

236 235

235 234

U Pa p
Pa Pa n

Pa Th p

→ +

→ +

→ +

 

 
The net energy released is then 
 

ΔE m m m c m m m c

m m m c m m m c

m m m m c

n p

n p

n p

2
2 2

2 2

22 2

238 05079 2 1 00867 2 1 00783 234 04363 931 5

24 1

= − − + − −

+ − − + − −

= − − −

= − − −

= −

238 237 237 236

236 235 235 234

238 234

U U U Pa

Pa Pa Pa Th

U Th

u u u u MeV / u

MeV.

d i d i
d i d i

d i
a f a f a f. . . . .

.

 

 
(c) This leads us to conclude that the binding energy of the α particle is 
 

2 2 241 28 32m m m cn p+ − = − − =He MeV 4.25MeV MeV.d i . .  

 
49. The fraction of undecayed nuclei remaining after time t is given by 
 

N
N

e et t T

0

2 1 2= =− −λ ln / /a f  

 
where λ is the disintegration constant and T1/2 (= (ln 2)/λ) is the half-life. The time for 
half the original 238U nuclei to decay is 4.5 × 109 y.  
 
(a) For 244Pu at that time, 

( ) ( )( )9

7
1/ 2

ln 2 4.5 10 yln 2
39

8.0 10 y
t

T
×

= =
×

 

and 
39.0 17

0

1.2 10 .N e
N

− −= ≈ ×  
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(b) For 248Cm at that time, 
 

ln ln .
.4/

2 2 4 5 10
3 10

9170
1 2

9

5

a f a fc ht
T

=
×

×
=

y
y

 

and 
N
N

e
0

9170 39833 31 10= = ×− −. . 

 
For any reasonably sized sample this is less than one nucleus and may be taken to be zero. 
A standard calculator probably cannot evaluate e– 9170 directly. Our recommendation is to 
treat it as (e– 91.70)100. 
 
Note: Since 248 244 2381/ 2 1/ 2 1/ 2Cm Pu U

( ) ( ) ( ) ,T T T< <  with ( ) 1/ 2ln 2 /
0/ ,t TN N e−=  we have 

 
248 244 2380 0 0Cm Pu U

( / ) ( / ) ( / ) .N N N N N N< <  
 
50. (a) The disintegration energy for uranium-235 “decaying” into thorium-232 is 
 

( ) ( )( )235 232 3
2

3 U Th He
235.0439u 232.0381u 3.0160u 931.5MeV/u

9.50MeV.

Q m m m c= − − = − −

= −
 

 
(b) Similarly, the disintegration energy for uranium-235 decaying into thorium-231 is 
 

( ) ( )( )235 231 4
2

4 U Th He
235.0439u 231.0363u 4.0026u 931.5MeV/u

4.66MeV.

Q m m m c= − − = − −

=
 

 
(c) Finally, the considered transmutation of uranium-235 into thorium-230 has a Q-value 
of  

( ) ( )( )235 230 5
2

5 U Th He
235.0439 u 230.0331u 5.0122 u 931.5MeV/u

1.30 MeV.

Q m m m c= − − = − −

= −
 

 
Only the second decay process (the α decay) is spontaneous, as it releases energy. 
 
51. Energy and momentum are conserved. We assume the residual thorium nucleus is in 
its ground state. Let Kα be the kinetic energy of the alpha particle and KTh be the kinetic 
energy of the thorium nucleus. Then, Q = Kα + KTh. We assume the uranium nucleus is 
initially at rest. Then, conservation of momentum yields 0 = pα + pTh, where pα is the 
momentum of the alpha particle and pTh is the momentum of the thorium nucleus.  
Both particles travel slowly enough that the classical relationship between momentum 
and energy can be used. Thus K p mTh Th

2
Th= / 2 , where mTh is the mass of the thorium 
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nucleus. We substitute pTh = – pα and use K p m
α α α= 2 2/  to obtain KTh = (mα/mTh)Kα. 

Consequently, 
 

( )
Th Th

4.00u1 1 4.196MeV 4.269MeV.
234u

m mQ K K K
m m

α α
α α α

⎛ ⎞ ⎛ ⎞
= + = + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
52. (a) For the first reaction 
 

( ) ( )( )2
1 Ra Pb C 223.01850u 208.98107u 14.00324u 931.5MeV/u

31.8MeV.
Q m m m c= − − = − −

=
 

 
(b) For the second one 
 

 ( ) ( )( )2
2 Ra Rn He 223.01850 u 219.00948u 4.00260 u 931.5MeV/u

5.98MeV.
Q m m m c= − − = − −

=
 

 
(c) From U ∝ q1q2/r, we get 
 

U U q q
q q

e e
e e

C
1 2 30 0

6 0
86 2 0

86≈ FHG
I
KJ = =Pb

Rn He

MeV
82

MeV..
.
.

b g b gb gb gb g  

 
53. Let MCs be the mass of one atom of 55

137 Cs and MBa be the mass of one atom of  56
137 Ba.  

To obtain the nuclear masses, we must subtract the mass of 55 electrons from MCs and the 
mass of 56 electrons from MBa. The energy released is  
 

Q = [(MCs – 55m) –  (MBa –  56m) –  m] c2, 
 
where m is the mass of an electron. Once cancellations have been made, Q = (MCs –  
MBa)c2 is obtained. Therefore, 
 

[ ] ( ) ( )( )2 2136.9071u 136.9058u 0.0013u 0.0013u 931.5MeV/u
1.21MeV.

Q c c= − = =
=

 

 
54. Assuming the neutrino has negligible mass, then 
 

Δmc m ce
2 2= − −m mTi Vb g .  

 
Now, since vanadium has 23 electrons (see Appendix F and/or G) and titanium has 22 
electrons, we can add and subtract 22me to the above expression and obtain 
 

Δmc m m c m m ce e
2 2 222 23= + − − = −m mTi V Ti Vb g b g .  
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We note that our final expression for Δmc2 involves the atomic masses, and that this 
assumes (due to the way they are usually tabulated) the atoms are in the ground states 
(which is certainly not the case here, as we discuss below). The question now is: do we 
set Q = – Δmc2 as in Sample Problem —“Q value in a beta decay, suing masses?” The 
answer is “no.” The atom is left in an excited (high energy) state due to the fact that an 
electron was captured from the lowest shell (where the absolute value of the energy, EK, 
is quite large for large Z). To a very good approximation, the energy of the K-shell 
electron in Vanadium is equal to that in Titanium (where there is now a “vacancy” that 
must be filled by a readjustment of the whole electron cloud), and we write 

2
KQ mc E= −Δ −  so that Eq. 42-26 still holds. Thus, 

 
Q m m c EK= − −V Tib g 2

.  
 
55. The decay scheme is n p + e +→ − ν.  The electron kinetic energy is a maximum if no 
neutrino is emitted. Then,  

Kmax = (mn –  mp –  me)c2, 
 
where mn is the mass of a neutron, mp is the mass of a proton, and me is the mass of an 
electron. Since mp + me = mH, where mH is the mass of a hydrogen atom, this can be 
written Kmax = (mn –  mH)c2. Hence,  
 

Kmax = (840 × 10– 6 u)c2 = (840 × 10– 6 u)(931.5 MeV/u) = 0.783 MeV. 
 
56. (a) We recall that mc2 = 0.511 MeV from Table 37-3, and hc = 1240 MeV·fm. Using 
Eq. 37-54 and Eq. 38-13, we obtain 
 

λ = =
+

=
⋅

+
= ×

h
p

hc
K Kmc2 2

2

2

2
1240

10 2 10 0511
9 0 10MeV fm

MeV MeV MeV
fm.

. . .
.

b g b gb g
 

 
(b) r = r0A1/3 = (1.2 fm)(150)1/3 = 6.4 fm.  
 
(c) Since λ >> r  the electron cannot be confined in the nuclide. We recall that at least λ/2 
was needed in any particular direction, to support a standing wave in an “infinite well.” A 
finite well is able to support slightly less than λ/2 (as one can infer from the ground state 
wave function in Fig. 39-6), but in the present case λ/r is far too big to be supported. 
 
(d) A strong case can be made on the basis of the remarks in part (c), above. 
 
57. (a) Since the positron has the same mass as an electron, and the neutrino has 
negligible mass, then  

Δmc m ce
2 2= + −m mB Cb g .  
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Now, since carbon has 6 electrons (see Appendix F and/or G) and boron has 5 electrons, 
we can add and subtract 6me to the above expression and obtain 
 

Δmc m m c m m m c
e e e

2 2 27 6 2= + − − = + −m mB C B Cd i b g .  
 
We note that our final expression for Δmc2 involves the atomic masses, as well an “extra” 
term corresponding to two electron masses. From Eq. 37-50 and Table 37-3, we obtain 
 

Q m m m c m m ce= − − = − −C B C B MeV2 2 05112 2b g b g b g. .  
 

(b) The disintegration energy for the positron decay of carbon-11 is 
 

( ) ( )11.011434u 11.009305u 931.5MeV/u 1.022MeV
0.961MeV.

Q = − −
=

 

 
58. (a) The rate of heat production is 
 

dE
dt

R Q N Q
T

f
m

Qi i i i
ii

i

i
i

ii

= = =
F
HG
I
KJ

=
×

× ×

×

×

L
N
MM

+
×

×
+

×

===

−

−

−

− −

∑∑∑ λ1
1 21

3

1

3

1

3

13

7 27

6

9

6

10

6

2 100

100 2 160 10

315 10 1661 10

4 10 517

238 4 47 10

13 10 42 7

232 141 10

4 10 131

40 1

ln .

. ln .

. .

.

.

.

.

.

/

kg

kg J / MeV

s / y kg / u

MeV

u y

MeV

u y

MeV

u

b g

b gb gc h
c hc h

c hb g
b gc h

c hb g
b gc h

c hb g
b g .

.

28 10

10 10

9

9

×

O
Q
PP

= × −

y

W.

c h

 

 
(b) The contribution to heating, due to radioactivity, is  
 

P = (2.7 × 1022 kg)(1.0 × 10– 9 W/kg) = 2.7 × 1013 W, 
 
which is very small compared to what is received from the Sun. 
 
59. Since the electron has the maximum possible kinetic energy, no neutrino is emitted. 
Since momentum is conserved, the momentum of the electron and the momentum of the 
residual sulfur nucleus are equal in magnitude and opposite in direction. If pe is the 
momentum of the electron and pS is the momentum of the sulfur nucleus, then pS = – pe. 
The kinetic energy KS of the sulfur nucleus is  
 

2 2/ 2 / 2S S S e SK p M p M= = , 
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where MS is the mass of the sulfur nucleus. Now, the electron’s kinetic energy Ke is 
related to its momentum by the relativistic equation 2 2 2( ) 2e e ep c K K mc= + , where m is 
the mass of an electron. Thus, 
 

K
p c
M c

K K mc
M cS

e

S

e e

S

= =
+

=
+

= × −

b g b g b gb g
b gb g

2

2

2 2

2

2

5

2
2

2
2 171 0 511

2 32 9315

7 83 10

1.71MeV MeV MeV
u MeV / u

MeV = 78.3 eV

. .
.

.

 

 
where mc2 = 0.511 MeV is used (see Table 37-3). 
 
60. We solve for t from R = R0e– λt: 
 

t R
R

= = FHG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

L
NM

O
QP = ×

1 5730 153
630

500
100

161 100 3

λ
ln ln .

.
.
.

.y
ln 2

y.  

 
61. (a) The mass of a 238U atom is (238 u)(1.661 × 10– 24 g/u) = 3.95 × 10– 22 g, so the 
number of uranium atoms in the rock is  
 

NU = (4.20 × 10– 3 g)/(3.95 × 10– 22 g) = 1.06 × 1019. 
 
(b) The mass of a 206Pb atom is (206 u)(1.661 × 10– 24 g) = 3.42 × 10– 22 g, so the number 
of lead atoms in the rock is  
 

NPb = (2.135 × 10– 3 g)/(3.42 × 10– 22 g) = 6.24 × 1018. 
 
(c) If no lead was lost, there was originally one uranium atom for each lead atom formed 
by decay, in addition to the uranium atoms that did not yet decay. Thus, the original 
number of uranium atoms was  
 

NU0 = NU + NPb = 1.06 × 1019 + 6.24 × 1018 = 1.68 × 1019. 
 
(d) We use 

U U0
tN N e λ−=  

 
where λ is the disintegration constant for the decay. It is related to the half-life T1 2/  by  
λ = ln / ./2 1 2b g T  Thus, 
 

9 19
9U 1/ 2 U

19
U0 U0

1 4.47 10 y 1.06 10ln ln ln 2.97 10 y.
ln 2 ln 2 1.68 10

N T Nt
N Nλ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞× ×
= − = − = − = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
62. The original amount of 238U the rock contains is given by 
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m me et
0

2 260 106 4 47 109

3 70 385= = =
×FH IK ×FH IKλ . .

ln / .
mg mg.

y yb g b g  
 
Thus, the amount of lead produced is 
 

′ = −
F
HG
I
KJ = − F

HG
I
KJ =m m m m

m0
206

238

385 3 70 206
238

0132b g b g. . .mg mg mg. 

 
63. We can find the age t of the rock from the masses of 238U and 206Pb. The initial mass 
of 238U is 

m m mU U Pb0

238
206

= + .  

 
Therefore,  

( ) ( ) 1/ 2U U
2380

ln 2 /
U U U Pb

/ 206 .t Ttm m e m m eλ −−= = +  
We solve for t: 
 

( )U

9
1/ 2 U Pb

U

9

238 / 206 4.47 10 y 238 0.15mgln ln 1
ln2 ln 2 206 0.86mg

1.18 10 y.

T m m
t

m
⎡ ⎤⎛ ⎞+ ⎛ ⎞× ⎛ ⎞= = +⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦
= ×

 

 
For the β decay of 40K, the initial mass of 40K is 
 

m m m m mK K Ar K Ar0
40 40= + = +/ ,b g  

 
so 

m m e m m et t
K K0

K
K Ar

K= = +− −λ λb g .  
 
We solve for mK: 

( )( ) ( )
K

9 9K K

Ar Ar
K ln 2 1.18 10 y / 1.25 10 y

1.6mg 1.7mg.
1 1 1

t

t t

m e mm
e e e

λ

λ λ

−

− × ×
= = = =

− − −
 

 
64. We note that every calcium-40 atom and krypton-40 atom found now in the sample 
was once one of the original numbers of potassium atoms. Thus, using Eq. 42-14 and Eq. 
42-18, we find 
 

K

K Ar Ca 1 2

1 ln 2ln     ln
1 1 8.54

N t t
N N N T

⎛ ⎞ ⎛ ⎞= −λ ⇒ = −⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠⎝ ⎠
 

 
which (with T1/2 = 1.26 × 109 y) yields t = 4.28 × 109 y. 
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65. The decay rate R is related to the number of nuclei N by R = λN, where λ is the 
disintegration constant. The disintegration constant is related to the half-life 1/ 2T  by 
 

1/ 2

1/ 2

ln 2  
ln 2

RTRN
T

λ
λ

= ⇒ = =  . 

 
Since 1 Ci = 3.7 × 1010 disintegrations/s, 
 

N =
× ×

= ×
−250 37 10 2 7 8 64 10

2
311 10

10 1 4
18

Ci s Ci d s / db gc hb gc h. / . .
ln

. .  

 
The mass of a 198Au atom is M = (198 u)(1.661 × 10– 24 g/u) = 3.29 × 10– 22 g, so the mass 
required is  
 

N M = (3.11 × 1018)(3.29 × 10– 22 g) = 1.02 × 10– 3 g = 1.02 mg. 
 
66. The becquerel (Bq) and curie (Ci) are defined in Section 42-3.  
 
(a) R = 8700/60 = 145 Bq. 
 

(b) R =
×

= × −145 392 10 9Bq
3.7 10 Bq / Ci

Ci.10 .  

 
67. The absorbed dose is  
 

 
3

4 42.00 10  Jabsorbed dose 5.00 10  J/kg 5.00 10  Gy
4.00 kg

−
− −×

= = × = ×  

 
where 1 J/kg 1Gy.=  With RBE 5= , the dose equivalent is  
 

4 4 3dose equivalent RBE (5.00 10  Gy) 5(5.00 10  Gy) 2.50 10  Sv
2.50 mSv .

− − −= ⋅ × = × = ×
=

 

 
68. (a) Using Eq. 42-32, the energy absorbed is 
 

2 4 10 75 184. × =− Gy kg mJ.c hb g  
 
(b) The dose equivalent is 
 

( )( )4 32.4 10 Gy 12 2.9 10 Sv− −× = × . 
 
(c) Using Eq. 42-33, we have 32.9 10 Sv 0.29 rem−× = . 
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69. (a) Adapting Eq. 42-21, we find 
 

N0

3 23
18

2 5 10 6 02 10
239

6 3 10=
× ×

= ×
−. . /

. .
g mol

g / mol
c hc h

 

 
(b) From Eq. 42-15 and Eq. 42-18, 
 

( ) ( ) ( )( )1/ 2 12 h ln 2/ 24,100 y 8760 h/yln 2 / 18 11
0| | 1 6.3 10 1 2.5 10 .t TN N e e−− ⎡ ⎤⎡ ⎤Δ = − = × − = ×⎣ ⎦ ⎣ ⎦  

 
(c) The energy absorbed by the body is 
 

( ) ( ) ( ) ( ) ( )11 130.95 0.95 5.2 MeV 2.5 10 1.6 10 J/MeV 0.20 J.E Nα
−Δ = × × =  

 
(d) On a per unit mass basis, the previous result becomes (according to Eq. 42-32) 
 

0 20 2 3 10 3. .mJ
85kg

J / kg = 2.3mGy.= × −  

 
(e) Using Eq. 42-31, (2.3 mGy)(13) = 30 mSv. 
 
70. From Eq. 19-24, we obtain 
 

6
avg 10

5

2 2 5.00 10 eV 3.87 10 K.
3 k 3 8.62 10 eV/K

K
T −

⎛ ⎞ ⎛ ⎞×
= = = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

 
71. (a) Following Sample Problem — “Lifetime of a compound nucleus made by neutron 
capture,” we compute 

ΔE
t

≈ =
× ⋅

×
= ×

−

−

=
avg

eV fs
s

eV.
414 10 2

10 10
6 6 10

15

22
6

. /
.

.
c h π

 

 
(b) In order to fully distribute the energy in a fairly large nucleus, and create a 
“compound nucleus” equilibrium configuration, about 10–15 s is typically required. A 
reaction state that exists no more than about 10–22 s does not qualify as a compound 
nucleus. 
 
72. (a) We compare both the proton numbers (atomic numbers, which can be found in 
Appendix F and/or G) and the neutron numbers (see Eq. 42-1) with the magic nucleon 
numbers (special values of either Z or N) listed in Section 42-8. We find that 18O, 60Ni, 
92Mo, 144Sm, and 207Pb each have a filled shell for either the protons or the neutrons (two 
of these, 18O and 92Mo, are explicitly discussed in that section). 
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(b) Consider 40K, which has Z = 19 protons (which is one less than the magic number 20). 
It has N = 21 neutrons, so it has one neutron outside a closed shell for neutrons, and thus 
qualifies for this list. Others in this list include 91Zr, 121Sb, and 143Nd. 
 
(c) Consider 13C, which has Z = 6 and N = 13 – 6 = 7 neutrons. Since 8 is a magic number, 
then 13C has a vacancy in an otherwise filled shell for neutrons. Similar arguments lead to 
inclusion of 40K, 49Ti, 205Tl, and 207Pb in this list. 
 
73. A generalized formation reaction can be written ,X x Y+ →  where X is the target 
nucleus, x is the incident light particle, and Y is the excited compound nucleus (20Ne). We 
assume X is initially at rest. Then, conservation of energy yields 
 

m c m c K m c K EX x x Y Y Y
2 2 2+ + = + +  

 
where mX, mx, and mY are masses, Kx and KY are kinetic energies, and EY is the excitation 
energy of Y. Conservation of momentum yields p px Y= .Now,  
 

22

2 2
x xY

Y x
Y Y Y

p mpK K
m m m

⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
 

so 
m c m c K m c m m K EX x x Y x Y x Y

2 2 2+ + = + +/b g  
and 

K m
m m

m m m c Ex
Y

Y x
Y X x Y=

−
− − +b g 2 .  

 
(a) Let x represent the alpha particle and X represent the 16O nucleus. Then,  
 

(mY – mX – mx)c2 = (19.99244 u –15.99491 u – 4.00260 u)(931.5 MeV/u)  
                                         = – 4.722 MeV 
 
and 

( )19.99244u 4.722MeV+25.0MeV 25.35MeV 25.4 MeV.
19.99244u 4.00260u

Kα = − = ≈
−

 

 
(b) Let x represent the proton and X represent the 19F nucleus. Then,  
 

(mY – mX –  mx)c2 = (19.99244 u –18.99841 u –1.00783 u)(931.5 MeV/u)  
                                          = – 12.85 MeV 
 
and 

Kα = −
− =

19 99244
19 99244 100783

12 85 12 80.
. .

. .u
u u

MeV + 25.0MeV MeV.b g  
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(c) Let x represent the photon and X represent the 20Ne nucleus. Since the mass of the 
photon is zero, we must rewrite the conservation of energy equation: if Eγ is the energy of 
the photon, then  

Eγ + mXc2 = mYc2 + KY + EY. 
 
Since mX = mY, this equation becomes Eγ = KY + EY. Since the momentum and energy of 
a photon are related by pγ = Eγ/c, the conservation of momentum equation becomes Eγ/c 
= pY. The kinetic energy of the compound nucleus is  
 

22

22 2
Y

Y
Y Y

EpK
m m c

γ= = . 

 
We substitute this result into the conservation of energy equation to obtain 
 

E
E
m c

E
Y

Yγ
γ= +
2

22
.  

This quadratic equation has the solutions 
 

E m c m c m c EY Y Y Yγ = ± −2 2 2 22c h .  

 
If the problem is solved using the relativistic relationship between the energy and 
momentum of the compound nucleus, only one solution would be obtained, the one 
corresponding to the negative sign above. Since  
 

mYc2 = (19.99244 u)(931.5 MeV/u) = 1.862 × 104 MeV, 
we have 

Eγ = × − × − ×

=

1862 10 1862 10 2 1862 10 250

250

4 4 2 4. . . .

.

MeV MeV MeV MeV

MeV.

c h c h c hb g  
 
The kinetic energy of the compound nucleus is very small; essentially all of the photon 
energy goes to excite the nucleus. 
 
74. Using Eq. 42-15, the amount of uranium atoms and lead atoms present in the rock at 
time t is  

 U 0

Pb 0 U 0 0 0 (1 )

t

t t
N N e
N N N N N e N e

λ

λ λ

−

− −

=
= − = − = −

 

 
and their ratio is 

 Pb

U

1 1
t

t
t

N e e
N e

λ
λ

λ

−

−

−
= = − . 

The age of the rock is 



 

  

1593

 

( )
9

9Pb 1/ 2 Pb

U U

1 4.47 10 yln 1 ln 1 ln 1 0.30 1.69 10 y
ln 2 ln 2

N T Nt
N Nλ

⎛ ⎞ ⎛ ⎞ ×
= + = + = + = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

 
75. Let Z

A X  represent the unknown nuclide. The reaction equation is 
 

Z
A X + →−0

1
1
0n e +2 He.2

4  
 
Conservation of charge yields Z + 0 = – 1 + 4 or Z = 3. Conservation of mass number 
yields A + 1 = 0 + 8 or A = 7. According to the periodic table in Appendix G (also see 
Appendix F), lithium has atomic number 3, so the nuclide must be 3

7 Li . 
 
76. The dose equivalent is the product of the absorbed dose and the RBE factor, so the 
absorbed dose is  
 

(dose equivalent)/(RBE) = (250 × 10– 6 Sv)/(0.85) = 2.94 × 10– 4 Gy. 
 
But 1 Gy = 1 J/kg, so the absorbed dose is 
 

2 94 10 1 2 94 104 4. .×
⋅

F
HG

I
KJ = ×− −Gy J

kg Gy
J / kg.c h  

 
To obtain the total energy received, we multiply this by the mass receiving the energy:  
 

E = (2.94 × 10– 4 J/kg)(44 kg) = 1.29 × 10– 2 J ≈1.3 × 10– 2 J. 
 
77. Since R is proportional to N (see Eq. 42-17) then N/N0 = R/R0. Combining Eq. 42-14 
and Eq. 42-18 leads to 
 

t
T R

R
= −

F
HG
I
KJ = − = ×1 2

0

4

2
5730

2
0 020 3 2 10

ln
ln

ln
ln . . .y yb g  

 
78. Let AA0N  be the number of element AA at 0t = . At a later time t, due to radioactive 
decay, we have  

AA0 AA BB CCN N N N= + + . 
 

The decay constant is 

 
1/ 2

ln 2 ln 2 0.0866 / d
8.00 dT

λ = = = . 

 
Since BB CC/ 2N N = , when CC AA/ 1.50N N = , BB AA/ 3.00N N = . Therefore, at time t, 
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AA0 AA BB CC AA AA AA AA3.00 1.50 5.50N N N N N N N N= + + = + + = . 
 
Since AA AA0

tN N e λ−= , combining the two expressions leads to 
 

AA0

AA

5.50tN e
N

λ= =  

which can be solved to give 
ln(5.50) ln(5.50) 19.7 d

0.0866 / d
t

λ
= = = . 

 
79. Since the spreading is assumed uniform, the count rate R = 74,000/s is given by  
 

R = λN = λ(M/m)(a/A), 
 
where M = 400 g, m is the mass of the 90Sr nucleus, A = 2000 km2, and a is the area in 
question. We solve for a: 
 

a A m
M

R AmRT
M

= FH
I
K
F
H
I
K =

=
× ×

×

= × =− −

λ
1 2

6 7

23

2

2

2000 10 90 29 315 10 74 000
400 6 02 10 2

7 3 10 730

/

ln

. , /
. / ln

. .

m g / mol y s / y s
g mol

m cm

2

2 2

c ha fa fc ha f
a fc ha f  

 
80. (a) Assuming a “target” area of one square meter, we establish a ratio: 
 

rate through you
total rate upward

m
km m km

=
×

= × −1
2 6 10 1000

38 10
2

5 2 2
12

.
. .c hb g  

 
The SI unit becquerel is equivalent to a disintegration per second. With half the beta-
decay electrons moving upward, we find 
 

rate through you = 1
2

s s1 10 38 10 19 1016 12 4× × = ×−c hc h. .  

 
which implies (converting s h→ ) that the rate of electrons you would intercept is R0 = 7 
× 107/h. So in one hour, 7 × 107 electrons would be intercepted. 
 
(b) Let D indicate the current year (2003, 2004, etc.). Combining Eq. 42-16 and Eq. 42-
18, we find 

R R e et T D= = ×− − −
0

2 7 1996 2 30 21 2 7 10ln ln . .h yc h b g b g  
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81. The lines that lead toward the lower left are alpha decays, involving an atomic 
number change of ΔZα = – 2 and a mass number change of ΔAα = – 4. The short 
horizontal lines toward the right are beta decays (involving electrons, not positrons) in 
which case A stays the same but the change in atomic number is ΔZβ = +1. Figure 42-20 
shows three alpha decays and two beta decays; thus, 
 

Z Z Z Z A A Af i f i= + + = +3 2 3Δ Δ Δα β αand .  
 
Referring to Appendix F or G, we find Zi = 93 for neptunium, so  
 

Zf = 93 + 3(– 2) + 2(1) = 89, 
 
which indicates the element actinium. We are given Ai = 237, so Af = 237 + 3(– 4) = 225. 
Therefore, the final isotope is 225Ac. 
 
82. We note that 2.42 min = 145.2 s. We are asked to plot (with SI units understood) 
 

ln lnR R e R et t= + ′− − ′
0 0

λ λc h  
 
where R0 = 3.1 × 105, R0' = 4.1 × 106, λ = ln 2/145.2, and λ' = ln 2/24.6. Our plot is 
shown below. 

 
 
We note that the magnitude of the slope for small t is λ' (the disintegration constant for 
110Ag), and for large t is λ (the disintegration constant for 108Ag). 
 
83. We note that hc = 1240 MeV·fm, and that the classical kinetic energy 1

2
2mv  can be 

written directly in terms of the classical momentum p = mv (see below). Letting 
 

/ / ,p p h x h rΔ Δ Δ  
we get 

( )
( )

( )
( ) ( )( )

2 22

22 2 1/3

1240MeV fm
30MeV.

2 2 2 938MeV 1.2fm 100

hcpE
m mc r

⋅
= =

⎡ ⎤
⎣ ⎦
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84. (a) The rate at which radium-226 is decaying is 
 

R N
T

M
m

= =
F
HG
I
KJ
F
H
I
K =

×

×
= × −λ

ln ln . . /
.

. .
/

2 2 1 00 6 02 10
1600 315 10 226

3 66 10
1 2

23

7
7a fa fc h

a fc ha f
mg mol

y s / y g / mol
s 1  

 
The activity is 73.66 10 Bq.×  
 
(b) The activity of 222Rn is also 73.66 10 Bq.×  
 
(c) From RRa = RRn and R = λN = (ln 2/T1/2)(M/m), we get 
 

( )( )( )
( )( )( )

Rn

Ra

3
1/ 2 9Rn

Rn Ra
1/ 2 Ra

3.82d 1.00 10 g 222u
6.42 10 g.

1600y 365d/y 226u
T mM M
T m

−
−

⎛ ⎞ ×⎛ ⎞
= = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
85. Although we haven’t drawn the requested lines in the following table, we can indicate 
their slopes: lines of constant A would have – 45° slopes, and those of constant N – Z 
would have 45°. As an example of the latter, the N – Z = 20 line (which is one of 
“eighteen-neutron excess”) would pass through Cd-114 at the lower left corner up 
through Te-122 at the upper right corner. The first column corresponds to N = 66, and the 
bottom row to Z = 48. The last column corresponds to N = 70, and the top row to Z = 52. 
Much of the information below (regarding values of T1/2 particularly) was obtained from 
the Web sites http://nucleardata.nuclear.lu.se/nucleardata and http://www.nndc.bnl.gov/ 
nndc/ensdf.  

118Te  119Te  120Te  121Te  122Te 

6.0 days 16.0 h 0.1% 19.4 days 2.6% 

117Sb  118Sb  119Sb  120Sb  121Sb 

2.8 h 3.6 min 38.2 s 15.9 min 57.2% 

116Sn  117Sn  118Sn  119Sn  120Sn 

14.5% 7.7% 24.2% 8.6% 32.6% 

115In  116In  117In  118In  119In 

95.7% 14.1 s 43.2 min 5.0 s 2.4 min 

114Cd  115Cd  116Cd  117Cd  118Cd 

28.7% 53.5 h 7.5% 2.5 h 50.3 min 
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86. Using Eq. 42-3 ( 1/3
0r r A= ), we estimate the nuclear radii of the alpha particle and Al 

to be 

 
15 1/3 15

15 1/3 15
Al

(1.2 10  m)(4) 1.90 10  m
(1.2 10  m)(27) 3.60 10  m.

r
r
α

− −

− −

= × = ×
= × = ×

 

  
The distance between the centers of the nuclei when their surfaces touch is 
 

15 15 15
Al 1.90 10  m 3.60 10  m 5.50 10  mr r rα

− − −= + = × + × = × . 
 
From energy conservation, the amount of energy required is 
 

9 2 2 19 19
Al

15
0

12 6

1 (8.99 10 N m C )(2 1.6 10 C)(13 1.6 10 C)
4 5.50 10 m
1.09 10  J 6.79 10 eV

q qK
r

α

πε

− −

−

−

× ⋅ × × × ×
= =

×
= × = ×

 

 
87. Equation 24-43 gives the electrostatic potential energy between two uniformly 
charged spherical charges (in this case q1 = 2e and q2 = 90e) with r being the distance 
between their centers. Assuming the “uniformly charged spheres” condition is met in this 
instance, we write the equation in such a way that we can make use of k = 1/4πε0 and the 
electronvolt unit: 
 

U k e e
r

e
r r

= = ×
⋅F

H
I
K

×
=

×− −2 90 8 99 10
3 2 10 90 2 59 109

19 7a fa f c h a f
.

. .V m
C

C
eV 

 
with r understood to be in meters. It is convenient to write this for r in femtometers, in 
which case U = 259/r MeV. This is shown plotted below. 
 

 
 
88. We take the speed to be constant, and apply the classical kinetic energy formula: 
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( )( ) ( )

2

1/315

8

22

22
22 /

1.2 10 m 100 2 938MeV
3.0 10 m/s 5MeV

4 10 s.

nmd d r mct r
v K c KK m

−

−

= = = =

×
≈

×

≈ ×

 

 
89. We solve for A from Eq. 42-3: 
 

A r
r

=
F
HG
I
KJ =
F
HG
I
KJ =

0

3 3
3 6 27. .fm
1.2 fm

 

 
90. The problem with Web-based services is that there are no guarantees of accuracy or 
that the Web page addresses will not change from the time this solution is written to the 
time someone reads this. Still, it is worth mentioning that a very accessible Web site for a 
wide variety of periodic table and isotope-related information is 
http://www.webelements.com. Two sites, http://nucleardata.nuclear.lu.se/nucleardata and 
http://www.nndc.bnl.gov/nndc/ensdf, are aimed more toward the nuclear professional. 
These are the sites where some of the information mentioned below was obtained. 
 
(a) According to Appendix F, the atomic number 60 corresponds to the element 
neodymium (Nd). The first Web site mentioned above gives 142Nd, 143Nd, 144Nd, 145Nd, 
146Nd, 148Nd, and 150Nd in its list of naturally occurring isotopes. Two of these, 144Nd and 
150Nd, are not perfectly stable, but their half-lives are much longer than the age of the 
universe (detailed information on their half-lives, modes of decay, etc. are available at the 
last two Web sites referred to, above). 
 
(b) In this list, we are asked to put the nuclides that contain 60 neutrons and that are 
recognized to exist but not stable nuclei (this is why, for example, 108Cd is not included 
here). Although the problem does not ask for it, we include the half-lives of the nuclides 
in our list, though it must be admitted that not all reference sources agree on those values 
(we picked ones we regarded as “most reliable”). Thus, we have 97Rb (0.2 s), 98Sr (0.7 s), 
99Y (2 s), 100Zr (7 s), 101Nb (7 s), 102Mo (11 minutes), 103Tc (54 s), 105Rh (35 hours), 109In 
(4 hours), 110Sn (4 hours), 111Sb (75 s), 112Te (2 minutes), 113I (7 s), 114Xe (10 s), 115Cs 
(1.4 s), and 116Ba (1.4 s). 
 
(c) We would include in this list: 60Zn, 60Cu, 60Ni, 60Co, 60Fe, 60Mn, 60Cr, and 60V. 
 
91. (a) In terms of the original value of u, the newly defined u is greater by a factor  
of 1.007825. So the mass of 1H would be 1.000000 u, the mass of 12C would be 
 

(12.000000/1.007825) u = 11.90683 u. 
 
(b) The mass of 238U would be (238.050785/ 1.007825) u = 236.2025 u. 
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92. (a) The mass number A of a radionuclide changes by 4 in an α decay and is 
unchanged in a β decay. If the mass numbers of two radionuclides are given by 4n + k 
and 4n' + k (where k = 0, 1, 2, 3), then the heavier one can decay into the lighter one by a 
series of α (and β) decays, as their mass numbers differ by only an integer times 4. If A = 
4n + k, then after α-decaying for m times, its mass number becomes  
 

A = 4n + k –  4m = 4(n –  m) + k, 
still in the same chain. 
 
(b) For 235U, 235 = 58 × 4 + 3 = 4n + 3. 
 
(c) For 236U, 236 = 59 × 4 = 4n.  
 
(d) For 238U, 238 = 59 × 4 + 2 = 4n + 2.  
 
(e) For 239Pu, 239 = 59 × 4 + 3 = 4n + 3.  
 
(f) For 240Pu, 240 = 60 × 4 = 4n.  
 
(g) For 245Cm, 245 = 61 × 4 + 1 = 4n + 1. 
 
(h) For 246Cm, 246 = 61 × 4 + 2 = 4n + 2. 
 
(i) For 249Cf, 249 = 62 × 4 + 1 = 4n + 1. 
 
(j) For 253Fm, 253 = 63 × 4 + 1 = 4n + 1. 
 
93. The disintegration energy is 
 

Q m m c EK= − −

= − −
V Ti

u 48.94787 u MeV / u MeV
= 0.600 MeV.

b g
b gb g

2

48 94852 9315 0 00547. . .  

 
94. We locate a nuclide from Table 42-1 by finding the coordinate (N, Z) of the 
corresponding point in Fig. 42-4. It is clear that all the nuclides listed in Table 42-1 are 
stable except the last two, 227Ac and 239Pu. 
 
95. (a) We use R = R0e– λt to find t: 
 

t R
R

T R
R

= = = =
1

2
14 28 3050

170
59 50 1 2 0

λ
ln

ln
ln . ln ./ d

ln 2
d. 

 
(b) The required factor is 
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( )1/ 2 3.48d/14.28d ln 2ln 2/0 1.18.t TtR e e e
R

λ= = = =  

 
96. (a) Replacing differentials with deltas in Eq. 42-12, we use the fact that ΔN = – 12 
during Δt = 1.0 s to obtain 
 

184.8 10 / sN t
N

λ λ −Δ
= − Δ ⇒ = ×  

 
where N = 2.5 × 1018, mentioned at the second paragraph of Section 42-3, is used. 
 
(b) Equation 42-18 yields T1/2 = ln 2/λ = 1.4 × 1017 s, or about 4.6 billion years. 
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Chapter 43 
 
 
1. (a) Using Eq. 42-20 and adapting Eq. 42-21 to this sample, the number of fission-
events per second is 
 

R N
T

M N
M T

A
fission

sam

U

23

17

fission fission

g)(6.02 10 mol) ln2
g / mol)(3.0 10 y)(365 d / y)

fissions / day.

= =

=
×
×

=

ln ln

( . /
(

/ /

2 2

10
235

16

1 2 1 2  

 
(b) Since 1/ 21/R T∝  (see Eq. 42-20), the ratio of rates is 
 

R
R

T
α

αfission 1/2

fission

T
y
y

= =
×
×

= ×1 2
17

8
83 0 10

7 0 10
4 3 10/ .

.
. .  

 
2. When a neutron is captured by 237Np it gains 5.0 MeV, more than enough to offset the 
4.2 MeV required for 238Np to fission. Consequently, 237Np is fissionable by thermal 
neutrons. 
 
3. The energy transferred is 
 

2
U238 U239( )

(238.050782 u 1.008664 u 239.054287 u)(931.5 MeV/u)
4.8 MeV.

nQ m m m c= + −
= + −
=

 

 
4. Adapting Eq. 42-21, there are 
 

N M
M

NAPu
sam

Pu

g
239 g / mol

/ mol)= =
F
HG

I
KJ × = ×

1000 6 02 10 2 5 1023 24( . .  

 
plutonium nuclei in the sample. If they all fission (each releasing 180 MeV), then the 
total energy release is 4.54 × 1026 MeV. 
 
5. The yield of one warhead is 2.0 megatons of TNT, or 
 

28 28yield 2(2.6 10  MeV) 5.2 10  MeV= × = × . 
 
Since each fission event releases about 200 MeV of energy, the number of fissions is 
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28
265.2 10  MeV 2.6 10

200 MeV
N ×

= = × . 

 
However, this only pertains to the 8.0% of Pu that undergoes fission, so the total number 
of Pu is 

26
27 3

0
2.6 10 3.25 10 5.4 10  mol

0.080 0.080
NN ×

= = = × = × . 

 
With 0.239 kg/mol,M =  the mass of the warhead is 
 

3 3(5.4 10  mol)(0.239 kg/mol) 1.3 10  kgm = × = × . 
 
6. We note that the sum of superscripts (mass numbers A) must balance, as well as the 
sum of Z values (where reference to Appendix F or G is helpful). A neutron has Z = 0 and 
A = 1. Uranium has Z = 92. 
 
(a) Since xenon has Z = 54, then “Y” must have Z = 92 – 54 = 38, which indicates the 
element strontium. The mass number of “Y” is 235 + 1 – 140 – 1 = 95, so “Y” is 95Sr. 
 
(b) Iodine has Z = 53, so “Y” has Z = 92 – 53 = 39, corresponding to the element yttrium 
(the symbol for which, coincidentally, is Y). Since 235 + 1 – 139 – 2 = 95, then the 
unknown isotope is 95Y. 
 
(c) The atomic number of zirconium is Z = 40. Thus, 92 – 40 – 2 = 52, which means that 
“X” has Z = 52 (tellurium). The mass number of “X” is 235 + 1 – 100 – 2 = 134, so we 
obtain 134Te. 
 
(d) Examining the mass numbers, we find b = 235 + 1 – 141 – 92 = 3. 
 
7. If R is the fission rate, then the power output is P = RQ, where Q is the energy released 
in each fission event. Hence,  
 

R = P/Q = (1.0 W)/(200 × 106 eV)(1.60 × 10– 19 J/eV) = 3.1 × 1010 fissions/s. 
 
8. (a) We consider the process 98 49Mo Sc Sc.→ + 49  The disintegration energy is  
 

Q = (mMo –  2mSc)c2 = [97.90541 u –  2(48.95002 u)](931.5 MeV/u) = +5.00 MeV. 
 
(b) The fact that it is positive does not necessarily mean we should expect to find a great 
deal of molybdenum nuclei spontaneously fissioning; the energy barrier (see Fig. 43-3) is 
presumably higher and/or broader for molybdenum than for uranium. 
 
9. (a) The mass of a single atom of 235U is  
 
 0m = (235 u)(1.661 × 10– 27 kg/u) = 3.90 × 10– 25 kg,  
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so the number of atoms in m = 1.0 kg is 
 

N = m/m0 = (1.0 kg)/(3.90 × 10– 25 kg) = 2.56 × 1024 ≈ 2.6 × 1024. 
 
An alternate approach (but essentially the same once the connection between the “u” unit 
and NA is made) would be to adapt Eq. 42-21. 
 
(b) The energy released by N fission events is given by E = NQ, where Q is the energy 
released in each event. For 1.0 kg of 235U,  
 

E = (2.56 × 1024)(200 × 106 eV)(1.60 × 10– 19 J/eV) = 8.19 × 1013 J ≈ 8.2 × 1013 J. 
 
(c) If P is the power requirement of the lamp, then  
 

t = E/P = (8.19 × 1013 J)/(100 W) = 8.19 × 1011 s = 2.6 × 104 y. 
 

The conversion factor 3.156 × 107 s/y is used to obtain the last result. 
 
10. The energy released is 
 

Q m m m m m cn n= + − − −
= − − −
=

(
( . . . .

U Cs Rb )
u u u u)(931.5 MeV / u)

MeV.

2
235 04392 100867 140 91963 92 92157

181

2

 

 
11. If MCr is the mass of a 52Cr nucleus and MMg is the mass of a 26Mg nucleus, then the 
disintegration energy is  
 

Q = (MCr – 2MMg)c2 = [51.94051 u – 2(25.98259 u)](931.5 MeV/u) = – 23.0 MeV. 
 
12. (a) Consider the process 239 99U n Ce Ru Ne.140+ → + +  We have  
 

Zf –  Zi = ZCe + ZRu –  ZU = 58 + 44 –  92 = 10. 
 
Thus the number of beta-decay events is 10. 
 
(b) Using Table 37-3, the energy released in this fission process is 
 
Q m m m m m cn e= + − − −

= + − − −
=

( )
( . . . . ( .

U Ce Ru

u u u u)(931.5 MeV / u) MeV)
MeV.

10
238 05079 100867 139 90543 98 90594 10 0511

226

2

 
13. (a) The electrostatic potential energy is given by 
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U Z Z e
r r

=
+

1
4

2

π 0ε
Xe Sr

Xe Sr

 

 
where ZXe is the atomic number of xenon, ZSr is the atomic number of strontium, rXe is 
the radius of a xenon nucleus, and rSr is the radius of a strontium nucleus. Atomic 
numbers can be found either in Appendix F or Appendix G. The radii are given by r = 
(1.2 fm)A1/3, where A is the mass number, also found in Appendix F. Thus,  
 

rXe = (1.2 fm)(140)1/3 = 6.23 fm = 6.23 × 10– 15 m 
 
and  

rSr = (1.2 fm)(96)1/3 = 5.49 fm = 5.49 × 10– 15 m. 
 
Hence, the potential energy is 
 

19 2
9 11

15 15

(54)(38)(1.60 10 C)(8.99 10 V m/C) 4.08 10 J
6.23 10 m 5.49 10 m

251 MeV.

U
−

−
− −

×
= × ⋅ = ×

× + ×

=

 

 
(b) The energy released in a typical fission event is about 200 MeV, roughly the same as 
the electrostatic potential energy when the fragments are touching. The energy appears as 
kinetic energy of the fragments and neutrons produced by fission. 
 
14. (a) The surface area a of a nucleus is given by  
 

( )22 1/3 2 /3
04 4 .a R R A Aπ π ∝  

 
Thus, the fractional change in surface area is 
 

Δa
a

a a
ai

f i

i

=
−

=
+

− = +
( ) ( )

( )
. .

/ /

/

140 96
236

1 0 25
2 3 2 3

2 3  

 
(b) Since V ∝ R3 ∝ (A1/3)3 = A, we have 
 

ΔV
V

V
V

f

i

= − =
+

− =1 140 96
236

1 0. 

 
(c) The fractional change in potential energy is 
 

2 2 2 1/3 2 1/3
Xe Xe Sr Sr

2 2 1/3
U U

/ / (54) (140) (38) (96)1 1 1
/ (92) (236)

0.36.

f

i

U Q R Q RU
U U Q R

− −

−

+Δ +
= − = − = −

= −
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15. (a) The energy yield of the bomb is  
 

E = (66 × 10– 3 megaton)(2.6 × 1028 MeV/ megaton) = 1.72 × 1027 MeV. 
 
At 200 MeV per fission event,  
 

(1.72 × 1027 MeV)/(200 MeV) = 8.58 × 1024 
 

fission events take place. Since only 4.0% of the 235U nuclei originally present undergo 
fission, there must have been (8.58 × 1024)/(0.040) = 2.14 × 1026 nuclei originally present. 
The mass of 235U originally present was  
 

(2.14 × 1026)(235 u)(1.661 × 10– 27 kg/u) = 83.7 kg ≈  84 kg. 
 
(b) Two fragments are produced in each fission event, so the total number of fragments is  
 

2(8.58 × 1024) = 1.72 × 1025 ≈ 1.7 × 1025. 
 
(c) One neutron produced in a fission event is used to trigger the next fission event, so the 
average number of neutrons released to the environment in each event is 1.5. The total 
number released is  

(8.58 × 1024)(1.5) = 1.29 × 1025 ≈ 1.3 × 1025. 
 
16. (a) Using the result of Problem 43-4, the TNT equivalent is 
 

( .
.

.2 50
2 6 10

4 4 10 4428
4kg)(4.54 10 MeV / kg)

MeV / 10 ton
ton kton.

26

6

×
×

= × =  

 
(b) Assuming that this is a fairly inefficiently designed bomb, then much of the remaining 
92.5 kg is probably “wasted” and was included perhaps to make sure the bomb did not 
“fizzle.” There is also an argument for having more than just the critical mass based on 
the short assembly time of the material during the implosion, but this so-called “super-
critical mass,” as generally quoted, is much less than 92.5 kg, and does not necessarily 
have to be purely plutonium. 
 
17. (a) If X represents the unknown fragment, then the reaction can be written 
 

235 1 82
92 0 32U n Ge XA

Z+ → +  
 
where A is the mass number and Z is the atomic number of the fragment. Conservation of 
charge yields 92 + 0 = 32 + Z, so Z = 60. Conservation of mass number yields 235 + 1 = 
83 + A, so A = 153. Looking in Appendix F or G for nuclides with Z = 60, we find that 
the unknown fragment is 60

153 Nd.  
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(b) We neglect the small kinetic energy and momentum carried by the neutron that 
triggers the fission event. Then,  

Q = KGe + KNd, 
 
where KGe is the kinetic energy of the germanium nucleus and KNd is the kinetic energy of 
the neodymium nucleus. Conservation of momentum yields p pGe Nd+ = 0.  Now, we can 
write the classical formula for kinetic energy in terms of the magnitude of the momentum 
vector: 

K mv p
m

= =
1
2 2

2
2

 

which implies that 
2 2 2
Nd Ge Ge Ge Ge

Nd Ge
Nd Nd Nd Ge Nd2 2 2

p p M p MK K
M M M M M

= = = = . 

 
Thus, the energy equation becomes 
 

Ge Nd Ge
Ge Ge Ge

Nd Nd

M M MQ K K K
M M

+
= + =  

and 

K M
M M

QGe
Nd

Nd Ge

u
153 u u

MeV) MeV.=
+

=
+

=
153

83
170 110(  

(c) Similarly, 

K M
M M

QNd
Ge

Nd Ge

u
153 u u

MeV) MeV.=
+

=
+

=
83

83
170 60(  

 
(d) The initial speed of the germanium nucleus is 
 

6 19
7Ge

Ge 27
Ge

2 2(110 10 eV)(1.60 10 J/eV) 1.60 10 m/s.
(83 u)(1.661 10 kg/u)

Kv
M

−

−

× ×
= = = ×

×
 

 
(e) The initial speed of the neodymium nucleus is 
 

v K
MNd

Nd

ND

eV)(1.60 10 J / eV)
u)(1.661 10 kg / u)

m / s.= =
× ×

×
= ×

−

−

2 2 60 10
153

8 69 10
6 19

27
6(

(
.  

 
18. If P is the power output, then the energy E produced in the time interval Δt (= 3 y) is 
 

E = P Δt = (200 × 106 W)(3 y)(3.156 × 107 s/y) = 1.89 × 1016 J 
= (1.89 × 1016 J)/(1.60 × 10– 19 J/eV) = 1.18 × 1035 eV  
= 1.18 × 1029 MeV.  
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At 200 MeV per event, this means (1.18 × 1029)/200 = 5.90 × 1026 fission events occurred. 
This must be half the number of fissionable nuclei originally available. Thus, there were 
2(5.90 × 1026) = 1.18 × 1027 nuclei. The mass of a 235U nucleus is  
 

(235 u)(1.661 × 10– 27 kg/u) = 3.90 × 10– 25 kg, 
 
so the total mass of 235U originally present was (1.18 × 1027)(3.90 × 10– 25 kg) = 462 kg. 
 
19. After each time interval tgen the number of nuclides in the chain reaction gets 
multiplied by k. The number of such time intervals that has gone by at time t is t/tgen. For 
example, if the multiplication factor is 5 and there were 12 nuclei involved in the reaction 
to start with, then after one interval 60 nuclei are involved. And after another interval 300 
nuclei are involved. Thus, the number of nuclides engaged in the chain reaction at time t 
is N t N k t t( ) ./= 0

gen  Since P ∝ N we have 
 

P t P k t t( ) ./= 0
gen  

 
20. We use the formula from Problem 43-19: 
 

gen/ (5.00 min)(60 s/min)/(0.00300s) 3
0( ) (400MW)(1.0003) 8.03 10 MW.t tP t P k= = = ×  

 
21. If R is the decay rate then the power output is P = RQ, where Q is the energy 
produced by each alpha decay. Now  
 

R = λN = N ln 2/T1/2, 
 
where λ is the disintegration constant and T1/2 is the half-life. The relationship 

1/ 2(ln 2) /Tλ =  is used. If M is the total mass of material and m is the mass of a single 
238Pu nucleus, then 
 

N M
m

= =
×

= ×−

100 2 53 1024. . .kg
(238 u)(1.661 10 kg / u)27  

Thus, 
24 6 19

7
1/ 2

ln 2 (2.53 10 )(5.50 10 eV)(1.60 10 J/eV)(ln2) 557W.
(87.7y)(3.156 10 s/y)

NQP
T

−× × ×
= = =

×
 

 
22. We recall Eq. 43-6: Q ≈ 200 MeV = 3.2 × 10– 11 J. It is important to bear in mind that 
watts multiplied by seconds give joules. From E = Ptgen = NQ we get the number of free 
neutrons: 

N
Pt

Q
= =

× ×
×

= ×
−

−
gen W s)

J
( )( .

.
. .500 10 10 10

32 10
16 10

6 3

11
16  
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23. Let P0 be the initial power output, P be the final power output, k be the multiplication 
factor, t be the time for the power reduction, and tgen be the neutron generation time. Then, 
according to the result of Problem 43-19, 
 

P P k t t= 0
/ .gen  

 
We divide by P0, take the natural logarithm of both sides of the equation, and solve for  
ln k: 

3
gen

0

1.3 10 s 350 MWln ln ln 0.0006161.
2.6 s 1200 MW

t Pk
t P

−⎛ ⎞ ⎛ ⎞×
= = = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
Hence, k = e– 0.0006161 = 0.99938. The power output as a function of time is plotted below: 
 

 
 
Since the multiplication factor k is smaller than 1, the output decreases with time. 
 
24. (a) We solve Qeff from P = RQeff: 
 

Q P
R

P
N

mPT
Meff

27u)(1.66 10 kg / u)(0.93 W)(29 y)(3.15 s / y)
kg)(ln 2)(1.60 10 J / MeV)

MeV.

= = =

=
× ×
× ×

=

−

− −

λ
1 2

7

3 13

2
90 0 10

100 10
12

/

ln
( .

( .
.

 

 
(b) The amount of 90Sr needed is 
 

M = =
150 32W

(0.050)(0.93 W / g)
kg..  

 
25. (a) Let vni be the initial velocity of the neutron, vnf be its final velocity, and vf be the 
final velocity of the target nucleus. Then, since the target nucleus is initially at rest, 
conservation of momentum yields mnvni = mnvnf + mvf and conservation of energy yields 
1
2

2 1
2

2 1
2

2m v m v mvn ni n nf f= + .  We solve these two equations simultaneously for vf. This can 
be done, for example, by using the conservation of momentum equation to obtain an 



 

  

1609

expression for vnf in terms of vf and substituting the expression into the conservation of 
energy equation. We solve the resulting equation for vf. We obtain  
 

vf = 2mnvni/(m + mn). 
 
The energy lost by the neutron is the same as the energy gained by the target nucleus, so 
 

ΔK mv m m
m m

vf
n

n
ni= =

+
1
2

1
2

42
2

2
2

( )
.  

 
The initial kinetic energy of the neutron is K m vn ni= 1

2
2 ,  so 

 

2

4 .
( )

n

n

m mK
K m m

Δ
=

+
 

 
(b) The mass of a neutron is 1.0 u and the mass of a hydrogen atom is also 1.0 u. (Atomic 
masses can be found in Appendix G.) Thus, 
 

ΔK
K

=
+

=
4 10
10 10

10( .
( . .

. .u)(1.0 u)
u u)2  

 
(c) Similarly, the mass of a deuterium atom is 2.0 u, so  
 

(ΔK)/K = 4(1.0 u)(2.0 u)/(2.0 u + 1.0 u)2 = 0.89. 
 
(d) The mass of a carbon atom is 12 u, so  
 

(ΔK)/K = 4(1.0 u)(12 u)/(12 u + 1.0 u)2 = 0.28. 
 
(e) The mass of a lead atom is 207 u, so  
 

(ΔK)/K = 4(1.0 u)(207 u)/(207 u + 1.0 u)2 = 0.019. 
 
(f) During each collision, the energy of the neutron is reduced by the factor 1 – 0.89 = 
0.11. If Ei is the initial energy, then the energy after n collisions is given by E = (0.11)nEi. 
We take the natural logarithm of both sides and solve for n. The result is 
 

ln( / ) ln(0.025 eV/1.00 eV) 7.9 8.
ln 0.11 ln 0.11

iE En = = = ≈  

 
The energy first falls below 0.025 eV on the eighth collision. 
 
Note: The fractional kinetic energy loss as a function of the mass of the stationary atom 
(in units of / nm m ) is plotted below. 
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From the plot, it is clear that the energy loss is greatest (ΔK/K = 1) when the atom has the 
same as the neutron.   
 
26. The ratio is given by 
 

( )5 5

8 8

( ) (0) ,
( ) (0)

tN t N e
N t N

λ λ5 8− −=  

or 

 
15 8

10 1
8 8 5

9

( ) (0)1 1ln ln[(0.0072)(0.15) ]
( ) (0) (1.55 9.85)10 y

3.6 10 y.

N t Nt
N t Nλ λ

−
− −

5

⎡ ⎤⎛ ⎞⎛ ⎞
= =⎢ ⎥⎜ ⎟⎜ ⎟− −⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
= ×

 

 
27. (a) Pavg = (15 × 109 W·y)/(200,000 y) = 7.5 × 104 W = 75 kW. 
 
(b) Using the result of Eq. 43-6, we obtain 
 

27 9 7
3U total

13

(235u)(1.66 10 kg/u)(15 10 W y)(3.15 10 s/y) 5.8 10 kg
(200MeV)(1.6 10 J/MeV)

m EM
Q

−

−

× × ⋅ ×
= = = ×

×
. 

 
28. The nuclei of 238U can capture neutrons and beta-decay. With a large amount of 
neutrons available due to the fission of 235U, the probability for this process is 
substantially increased, resulting in a much higher decay rate for 238U and causing the 
depletion of 238U (and relative enrichment of 235U). 
 
29. Let t be the present time and t = 0 be the time when the ratio of 235U to 238U was 3.0%. 
Let N235 be the number of 235U nuclei present in a sample now and N235,0 be the number 
present at t = 0. Let N238 be the number of 238U nuclei present in the sample now and 
N238,0 be the number present at t = 0. The law of radioactive decay holds for each species, 
so 

235
235 235,0

tN N e λ−=  
and 
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N N e t
238 238 0= −

, .λ238  
 
Dividing the first equation by the second, we obtain 
 

r r e t= − −
0

( )λ λ235 238  
 
where r = N235/N238 (= 0.0072) and r0 = N235,0/N238,0 (= 0.030). We solve for t: 
 

235 238 0

1 ln .rt
rλ λ

⎛ ⎞
= − ⎜ ⎟− ⎝ ⎠

 

 
Now we use λ235 1 22

235
= (ln ) / /T  and λ238 1 22

238
= (ln ) / /T  to obtain 

 

235 238

238 235

8 9
1/ 2 1/ 2

9 8
1/ 2 1/ 2 0

9

(7.0 10 y)(4.5 10 y) 0.0072ln ln
( ) ln 2 (4.5 10 y 7.0 10 y) ln 2 0.030

1.7 10 y.

T T rt
T T r

⎛ ⎞ × × ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟− × − × ⎝ ⎠⎝ ⎠

= ×

 

 
How the ratio r = N235/N238 changes with time is plotted below. In the plot, we take the 
ratio to be 0.03 at t = 0. At t = 91.7 10  y×  or 1/ 2,238/ 0.378,t T = r is reduced to 0.072. 

 
 
30. We are given the energy release per fusion (Q = 3.27 MeV = 5.24 × 10– 13 J) and that 
a pair of deuterium atoms is consumed in each fusion event. To find how many pairs of 
deuterium atoms are in the sample, we adapt Eq. 42-21: 
 

N M
M

Nd
d

pairs
sam

A2
g

2(2.0 g / mol)
mol)= =

F
HG

I
KJ × = ×

1000 6 02 10 15 1023 26( . / . .  

 
Multiplying this by Q gives the total energy released: 7.9 × 1013 J. Keeping in mind that a 
watt is a joule per second, we have 
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t =
×

= × = ×
7 9 10

100
7 9 10 2 5 10

13
11 4. . .J

W
s y.  

 
31. The height of the Coulomb barrier is taken to be the value of the kinetic energy K 
each deuteron must initially have if they are to come to rest when their surfaces touch. If 
r is the radius of a deuteron, conservation of energy yields 
 

2

0

12 ,
4 2

eK
rπε

=  

so 
2 19 2

9 14
15

0

1 (1.60 10 C)(8.99 10 V m/C) 2.74 10 J
4 4 4(2.1 10 m)

170 keV.

eK
rπε

−
−

−

×
= = × ⋅ = ×

×

=

 

 
32. (a) Our calculation is identical to that in Sample Problem — “Fusion in a gas of 
protons and required temperature” except that we are now using R appropriate to two 
deuterons coming into “contact,” as opposed to the R = 1.0 fm value used in the Sample 
Problem. If we use R = 2.1 fm for the deuterons, then our K is simply the K calculated in 
the Sample Problem, divided by 2.1: 
 

K
K

d d
p p

+
+= = ≈

21
360

21
170

. .
keV keV.  

 
Consequently, the voltage needed to accelerate each deuteron from rest to that value of K 
is 170 kV. 
 
(b) Not all deuterons that are accelerated toward each other will come into “contact” and 
not all of those that do so will undergo nuclear fusion. Thus, a great many deuterons must 
be repeatedly encountering other deuterons in order to produce a macroscopic energy 
release. An accelerator needs a fairly good vacuum in its beam pipe, and a very large 
number flux is either impractical and/or very expensive. Regarding expense, there are 
other factors that have dissuaded researchers from using accelerators to build a controlled 
fusion “reactor,” but those factors may become less important in the future — making the 
feasibility of accelerator “add-ons” to magnetic and inertial confinement schemes more 
cost-effective. 
 
33. Our calculation is very similar to that in Sample Problem – “Fusion in a gas of 
protons and required temperature” except that we are now using R appropriate to two 
lithium-7 nuclei coming into “contact,” as opposed to the R = 1.0 fm value used in the 
Sample Problem. If we use 
 

R r r A= = = =0
1 3 12 7 2 3/ ( . .fm) fm3  
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and q = Ze = 3e, then our K is given by (see the Sample Problem) 
 

2 2 2 19 2

12 15
0

3 (1.6 10 C)
16 16 (8.85 10 F/m)(2.3 10 m)

Z eK
rπε π

−

−

×
= =

× ×
 

 
which yields 2.25 × 10–13 J = 1.41 MeV. We interpret this as the answer to the problem, 
though the term “Coulomb barrier height” as used here may be open to other 
interpretations. 
 
34. From the expression for n(K) given we may write n(K) ∝ K1/2e– K/kT. Thus, with  
 

k = 8.62 × 10– 5 eV/K = 8.62 × 10– 8 keV/K, 
we have 
 

avg

1/ 2 1/ 2
( ) /

8 7
avg avg

( ) 5.00keV 5.00keV 1.94keVexp
( ) 1.94keV (8.62 10 keV)(1.50 10 K)

0.151.

K K kTn K K e
n K K

− −
−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
= = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ × ×⎝ ⎠ ⎝ ⎠⎝ ⎠
=

 

 
35. The kinetic energy of each proton is  
 
 23 7 16(1.38 10  J/K)(1.0 10  K) 1.38 10  JBK k T − −= = × × = × . 
 
At the closest separation, rmin, all the kinetic energy is converted to potential energy:  
 

2

tot
0 min

12
4

qK K U
rπε

= = =  . 

Solving for rmin, we obtain 
 

2 9 2 2 19 2
13

min 16
0

1 (8.99 10 N m C )(1.60 10 C) 8.33 10 m 1 pm.
4 2 2(1.38 10 J)

qr
Kπε

−
−

−

× ⋅ ×
= = = × ≈

×
 

 
36. The energy released is  
 

2 2
He H2 H1( )

(3.016029 u 2.014102 u 1.007825 u)(931.5 MeV/u)
5.49 MeV.

Q mc m m m c= −Δ = − − −
= − − −
=

 

 
37. (a) Let M be the mass of the Sun at time t and E be the energy radiated to that time. 
Then, the power output is  

P = dE/dt = (dM/dt)c2, 
 
where E = Mc2 is used. At the present time, 
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( )
26

9
22 8

3.9 10 W 4.3 10 kg s .
2.998 10 m s

dM P
dt c

×
= = = ×

×
 

 
(b) We assume the rate of mass loss remained constant. Then, the total mass loss is  
 

ΔM = (dM/dt) Δt = (4.33 × 109 kg/s) (4.5 × 109 y) (3.156 × 107 s/y)  
                         = 6.15 × 1026 kg. 
 
The fraction lost is 

26
4

30 26

6.15 10 kg 3.1 10 .
2.0 10 kg 6.15 10 kg

M
M M

−Δ ×
= = ×

+ Δ × + ×
 

 
38. In Fig. 43-10, let Q1 = 0.42 MeV, Q2 = 1.02 MeV, Q3 = 5.49 MeV, and Q4 =  
12.86 MeV. For the overall proton-proton cycle 
 

Q Q Q Q Q= + + +
= + + + =

2 2 2
2 0 42 102 5 49 12 86 26 7

1 2 3 4

( . . . . .MeV MeV MeV) MeV MeV.
 

 
39. If MHe is the mass of an atom of helium and MC is the mass of an atom of carbon, then 
the energy released in a single fusion event is  
 

( ) 2
He C3 [3(4.0026 u) (12.0000 u)](931.5 MeV/u) 7.27 MeV.Q M M c= − = − =  

 
Note that 3MHe contains the mass of six electrons and so does MC. The electron masses 
cancel and the mass difference calculated is the same as the mass difference of the nuclei. 
 
40. (a) We are given the energy release per fusion (calculated in Section 43-7: Q = 26.7 
MeV = 4.28 × 10– 12 J) and that four protons are consumed in each fusion event. To find 
how many sets of four protons are in the sample, we adapt Eq. 42-21: 
 

( ) ( )23 26sam
4 A

H

1000g 6.02 10 mol 1.5 10 .
4 4 1.0g molp
MN N
M

⎛ ⎞
= = × = ×⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
Multiplying this by Q gives the total energy released: 6.4 × 1014 J. It is not required that 
the answer be in SI units; we could have used MeV throughout (in which case the answer 
is 4.0 × 1027 MeV). 
 
(b) The number of 235U nuclei is 
 

N235
23 241000

235
6 02 10 2 56 10=

F
HG

I
KJ × = ×

g
g mol

mol. . .c h  
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If all the U-235 nuclei fission, the energy release (using the result of Eq. 43-6) is 
 

N Q235
22 26 132 56 10 200 51 10 8 2 10fission MeV MeV J= × = × = ×. . . .c hb g  

 
We see that the fusion process (with regard to a unit mass of fuel) produces a larger 
amount of energy (despite the fact that the Q value per event is smaller). 
 
41. Since the mass of a helium atom is  
 

(4.00 u)(1.661 × 10– 27 kg/u) = 6.64 × 10– 27 kg, 
 
the number of helium nuclei originally in the star is  
 

(4.6 × 1032 kg)/(6.64 × 10– 27 kg) = 6.92 × 1058. 
 

Since each fusion event requires three helium nuclei, the number of fusion events that can 
take place is  

N = 6.92 × 1058/3 = 2.31 × 1058. 
 
If Q is the energy released in each event and t is the conversion time, then the power 
output is P = NQ/t and 
 

( )( )( )58 6 19
15

30

8

2.31 10 7.27 10 eV 1.60 10 J eV
5.07 10 s

5.3 10 W
1.6 10 y .

NQt
P

−× × ×
= = = ×

×

= ×

 

 
42. We assume the neutrino has negligible mass. The photons, of course, are also taken to 
have zero mass. 
 

Q m m m c m m m m m c

Q m m m c m m m c

Q m m m c m m m c

p e e e e

p p

p p

1 2
2

1 2
2

2 2 3
2

2 3
2

3 3 4
2

3 4
2

2 2

2 1007825 2 014102 2 0 0005486 9315

0 42

2 014102 1007825 3016029 9315
549

2 2 2 2

2 3 016029 4 002603 2

= − − = − − − −

= − −

=

= + − = + −

= + −

=

= − − = − −

= − −

d i b g b g
b g b g b g

d i d i
b g b g

d i d i
b g

. . . .

.

. . . ) .
.

. .

u u u MeV u

MeV

u u u MeV u
MeV

u u 1007825 9315

12 86

. .

. .

u MeV u

MeV
b g b g

=

 

 
43. (a) The energy released is 
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( )

( ) ( ) ( )
2 3 4 1

2
H He He H

5 2

5 2.014102u 3.016029u 4.002603u 1.007825u 2 1.008665u 931.5MeV u

24.9MeV.

nQ m m m m m c= − − − −

= − − − −⎡ ⎤⎣ ⎦
=

 
(b) Assuming 30.0% of the deuterium undergoes fusion, the total energy released is 
 

E NQ M
m

Q= =
F
HG

I
KJ

0 300
5
. .

2 H

 

Thus, the rating is 
 

R E
=

×

=
× ×

=

−

2 6 10
0 300 500 24 9

5 2 0 166 10 2 6 10

8 65

28

27 28

.
. .

. . .

. .

MeV megaton TNT
kg MeV

u kg u MeV megaton TNT

megaton TNT

b gb gb g
b gc hc h  

 
44. The mass of the hydrogen in the Sun’s core is m MH Sun= 0 35 1

8. b g . The time it takes 
for the hydrogen to be entirely consumed is 
 

t M
dm dt

= =
×

× ×
= ×H

kg

kg s s y
y

0 35 2 0 10

6 2 10 315 10
5 10

1
8

30

11 7
9

. .

. .
.

b gb gc h
c hc h  

 
45. (a) Since two neutrinos are produced per proton-proton cycle (see Eq. 43-10 or Fig. 
43-10), the rate of neutrino production Rν satisfies 
 

R P
Qv = =

×

×
= ×

−
−2 2 39 10

26 7 16 10
18 10

26

13
38 1

.

. .
. .

W

MeV J MeV
s

c h
b gc h  

 
(b) Let des be the Earth to Sun distance, and R be the radius of Earth (see Appendix C). 
Earth represents a small cross section in the “sky” as viewed by a fictitious observer on 
the Sun. The rate of neutrinos intercepted by that area (very small, relative to the area of 
the full “sky”) is 
 

R R R
dv v

e

es
,

. .
.

. .Earth

s m
m

s=
F
HG
I
KJ =

× ×
×

F
HG

I
KJ = ×

−
−π

π

2

2

38 1 6

11

2
28 1

4
18 10

4
6 4 10
15 10

8 2 10
c h
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46. (a) The products of the carbon cycle are 2e+ + 2ν + 4He, the same as that of the 
proton-proton cycle (see Eq. 43-10). The difference in the number of photons is not 
significant. 
 
(b) We have 

( )
carbon 1 2 6

1.95 1.19 7.55 7.30 1.73 4.97 MeV
24.7 MeV

Q Q Q Q= + + +

= × + + + +

=

 

 
which is the same as that for the proton-proton cycle (once we subtract out the electron-
positron annihilations; see Fig. 43-10):  
 

Qp– p = 26.7 MeV –  2(1.02 MeV) = 24.7 MeV. 
 
47. (a) The mass of a carbon atom is (12.0 u)(1.661 × 10– 27 kg/u) = 1.99 × 10– 26 kg, so 
the number of carbon atoms in 1.00 kg of carbon is  
 

(1.00 kg)/(1.99 × 10– 26 kg) = 5.02 × 1025. 
 
The heat of combustion per atom is  
 

(3.3 × 107 J/kg)/(5.02 × 1025 atom/kg) = 6.58 × 10– 19 J/atom. 
 
This is 4.11 eV/atom. 
 
(b) In each combustion event, two oxygen atoms combine with one carbon atom, so the 
total mass involved is 2(16.0 u) + (12.0 u) = 44 u. This is  
 

(44 u)(1.661 × 10– 27 kg/u) = 7.31 × 10– 26 kg. 
 

Each combustion event produces 6.58 × 10– 19 J so the energy produced per unit mass of 
reactants is  

(6.58 × 10– 19 J)/(7.31 × 10– 26 kg) = 9.00 × 106 J/kg. 
 
(c) If the Sun were composed of the appropriate mixture of carbon and oxygen, the 
number of combustion events that could occur before the Sun burns out would be  
 

(2.0 × 1030 kg)/(7.31 × 10– 26 kg) = 2.74 × 1055. 
 

The total energy released would be  
 

E = (2.74 × 1055)(6.58 × 10– 19 J) = 1.80 × 1037 J. 
 
If P is the power output of the Sun, the burn time would be 
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37
10 3

26

1.80 10 J 4.62 10 s 1.46 10 y,
3.9 10 W

Et
P

×
= = = × = ×

×
 

 
or 31.5 10 y,×  to two significant figures. 
 
48. In Eq. 43-13, 
 

( ) ( ) ( )2 3
2

H He
2 2 2.014102u 3.016049u 1.008665u 931.5MeV u

3.27MeV .
nQ m m m c= − − = − −⎡ ⎤⎣ ⎦

=
 

 
In Eq. 43-14, 
 

( ) ( ) ( )2 3 1
2

H H H
2 2 2.014102u 3.016049u 1.007825u 931.5MeV u

4.03MeV .

Q m m m c= − − = − −⎡ ⎤⎣ ⎦

=
 

 
Finally, in Eq. 43-15, 
 

Q m m m m cn= + − −

= + − −

=

2 3
2

2 014102 3016049 4 002603 1008665 9315
17 59

H H He4

u u u u MeV u
MeV

d i
b g. . . . .

. .
 

 
49. Since 1.00 L of water has a mass of 1.00 kg, the mass of the heavy water in 1.00 L is 
0.0150 × 10– 2 kg = 1.50 × 10– 4 kg. Since a heavy water molecule contains one oxygen 
atom, one hydrogen atom and one deuterium atom, its mass is  
 

(16.0 u + 1.00 u + 2.00 u) = 19.0 u = (19.0 u)(1.661 × 10– 27 kg/u)  
                                                             = 3.16 × 10– 26 kg. 
 
The number of heavy water molecules in a liter of water is  
 

(1.50 × 10– 4 kg)/(3.16 × 10– 26 kg) = 4.75 × 1021. 
 
Since each fusion event requires two deuterium nuclei, the number of fusion events that 
can occur is N = 4.75 × 1021/2 = 2.38 × 1021. Each event releases energy  
 

Q = (3.27 × 106 eV)(1.60 × 10– 19 J/eV) = 5.23 × 10– 13 J. 
 
Since all events take place in a day, which is 8.64 × 104 s, the power output is 
 

P NQ
t

= =
× ×

×
= × =

−2 38 10 523 10
8 64 10

144 10 14 4
21 13

4
4

. .
.

. . .
c hc hJ

s
W kW  
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50. (a) From E = NQ = (Msam/4mp)Q we get the energy per kilogram of hydrogen 
consumed: 

E
M

Q
mpsam

MeV J MeV

kg
J kg= =

×

×
= ×

−

−4
26 2 160 10

4 167 10
6 3 10

13

27
14

. .

.
. .

b gc h
c h  

 
(b) Keeping in mind that a watt is a joule per second, the rate is 
 

dm
dt

=
×

×
= ×

39 10
6 3 10

6 2 10
26

14
11.

.
. .W

J kg
kg s  

 
This agrees with the computation shown in Sample Problem — “Consumption rate of 
hydrogen in the Sun.” 
 
(c) From the Einstein relation E = Mc2 we get P = dE/dt = c2dM/dt, or 
 

dM
dt

P
c

= =
×

×
= ×2

26

8 2
93 9 10

3 0 10
4 3 10.

.
. .W

m s
kg s

c h
 

 
(d) This finding, that / /dm dt dM dt> , is in large part due to the fact that, as the protons 
are consumed, their mass is mostly turned into alpha particles (helium), which remain in 
the Sun. 
 
(e) The time to lose 0.10% of its total mass is 
 

t M
dM dt

= =
×

× ×
= ×

0 0010 0 0010 2 0 10
4 3 10 315 10

1 5 10
30

9 7
10. . .

. .
. .

a fc h
c hc h

kg
kg s s y

y  

 
51. Since plutonium has Z = 94 and uranium has Z = 92, we see that (to conserve charge) 
two electrons must be emitted so that the nucleus can gain a +2e charge. In the beta decay 
processes described in Chapter 42, electrons and neutrinos are emitted. The reaction 
series is as follows: 
 

238 239 239

239

U n Np U
Np Pu239

+ → + + +

→ + +

e v
e v

 

 
52. Conservation of energy gives Q = Kα + Kn, and conservation of linear momentum 
(due to the assumption of negligible initial velocities) gives |pα| = |pn|. We can write the 
classical formula for kinetic energy in terms of momentum: 
 

K mv p
m

= =
1
2 2

2
2
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which implies that Kn = (mα/mn)Kα.  
 
(a) Consequently, conservation of energy and momentum allows us to solve for kinetic 
energy of the alpha particle, which results from the fusion:  
 

n

17.59MeV 3.541MeV
1 ( / ) 1 (4.0015u/1.008665u)

QK
m mα

α

= = =
+ +

 

 
where we have found the mass of the alpha particle by subtracting two electron masses 
from the 4He mass (quoted several times in this Chapter 42).  
 
(b) Then, Kn = Q – Kα yields 14.05 MeV for the neutron kinetic energy.  
 
53. At T = 300 K, the average kinetic energy of the neutrons is (using Eq. 20-24) 
 

K KTavg eV / K)(300 K) 0.04 eV.= = × ≈−3
2

3
2

8 62 10 5( .  

 
54. First, we figure out the mass of U-235 in the sample (assuming “3.0%” refers to the 
proportion by weight as opposed to proportion by number of atoms): 
 

238 235
U 235 sam

238 235 16

(97%) (3.0%)(3.0%)
(97%) (3.0%) 2

0.97(238) 0.030(235)(0.030)(1000 g)
0.97(238) 0.030(235) 2(16.0)

26.4 g.

m mM M
m m m−

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠

⎛ ⎞+
= ⎜ ⎟+ +⎝ ⎠
=

 

 
Next, the number of 235U nuclei is 
 

N235
2226 4

235
6 77 10=

×
= ×

( . / . .g)(6.02 10 mol)
g / mol

23

 

 
If all the U-235 nuclei fission, the energy release (using the result of Eq. 43-6) is 
 

N Q235
22 25 126 77 10 200 135 10 217 10fission MeV) MeV J.= × = × = ×( . ) ( . .  

 
Keeping in mind that a watt is a joule per second, the time that this much energy can keep 
a 100-W lamp burning is found to be 
 

t =
×

= × ≈
217 10

100
217 10 690

12
10. .J

W
s y.  
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If we had instead used the Q = 208 MeV value from Sample Problem — “Q value in a 
fission of uranium-235,” then our result would have been 715 y, which perhaps suggests 
that our result is meaningful to just one significant figure (“roughly 700 years”). 
 
55. (a) From ρH = 0.35ρ = npmp, we get the proton number density np: 
 

( )( )5 3
31 3

27

0.35 1.5 10 kg m0.35 3.1 10 m .
1.67 10 kgp

p

n
m

ρ −
−

×
= = = ×

×
 

 
(b) From Chapter 19 (see Eq. 19-9), we have  
 

N
V

p
kT

= =
×

×
= ×

−
−101 10

138 10 273
2 68 10

5

23
25 3.

.
.Pa

J K K
mc hb g  

 
for an ideal gas under “standard conditions.” Thus,  
 

n
N V

p

b g =
×
×

= ×
−

−

314 10
2 44 10

12 10
31 3

25 3
6.

.
. .m

m
 

 
56. (a) Rather than use P(v) as it is written in Eq. 19-27, we use the more convenient nK 
expression given in Problem 43-34. The n(K) expression can be derived from Eq. 19-27, 
but we do not show that derivation here. To find the most probable energy, we take the 
derivative of n(K) and set the result equal to zero: 
 

dn K
dK

n
kT K

K
kT

e
K K

K kT

K Kp p

( ) .
( )

,/ /

/
/

=

−

=

= −
F
HG

I
KJ =

113 1
2

03 2 1 2

3 2

 

 
which gives K kTp = 1

2 .  Specifically, for T = 1.5 × 107 K we find  
 

K kTp = = × × = ×−1
2

1
2

8 62 10 65 105 7 2( . .eV / K)(1.5 10 K) eV  

 
or 0.65 keV, in good agreement with Fig. 43-10. 
 
(b) Equation 19-35 gives the most probable speed in terms of the molar mass M, and 
indicates its derivation. Since the mass m of the particle is related to M by the Avogadro 
constant, then using Eq. 19-7, 
 

v RT
M

RT
mN

kT
mp

A

= = =
2 2 2 . 
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With T = 1.5 × 107 K and m = 1.67 ×10– 27 kg, this yields vp = 5.0 ×105 m/s. 
 
(c) The corresponding kinetic energy is  
 

K mv m kT
m

kTv p p, = =
F
HG
I
KJ =

1
2

1
2

22

2

 

 
which is twice as large as that found in part (a). Thus, at T = 1.5 × 107 K we have Kv,p = 
1.3 keV, which is indicated in Fig. 43-10 by a single vertical line. 
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Chapter 44 
 
 
1. By charge conservation, it is clear that reversing the sign of the pion means we must 
reverse the sign of the muon. In effect, we are replacing the charged particles by their 
antiparticles. Less obvious is the fact that we should now put a “bar” over the neutrino 
(something we should also have done for some of the reactions and decays discussed in 
Chapters 42 and 43, except that we had not yet learned about antiparticles). To 
understand the “bar” we refer the reader to the discussion in Section 44-4. The decay of 
the negative pion is π− → +−μ v. A subscript can be added to the antineutrino to clarify 
what “type” it is, as discussed in Section 44-4. 
 
2. Since the density of water is ρ = 1000 kg/m3 = 1 kg/L, then the total mass of the pool is 
ρV = 4.32 × 105 kg, where V is the given volume. Now, the fraction of that mass made up 
by the protons is 10/18 (by counting the protons versus total nucleons in a water 
molecule). Consequently, if we ignore the effects of neutron decay (neutrons can beta 
decay into protons) in the interest of making an order-of-magnitude calculation, then the 
number of particles susceptible to decay via this T1/2 = 1032 y half-life is 
 

( )5
pool 32

27

(10 /18) 4.32 10  kg(10 /18)
1.44 10 .

1.67 10  kgp

M
N

m −

×
= = = ×

×
 

 
Using Eq. 42-20, we obtain 
 

R N
T

= =
×

≈
ln . ln

.
/

2 144 10 2
10

1
1 2

32

32

c h
y

decay y  

 
3. The total rest energy of the electron-positron pair is 
 
 2 2 22 2(0.511 MeV) 1.022 MeVe e eE m c m c m c= + = = = . 
 
With two gamma-ray photons produced in the annihilation process, the wavelength of 
each photon is (using 1240 eV nmhc = ⋅ ) 
 

3
6

1240 eV nm 2.43 10  nm 2.43 pm.
/ 2 0.511 10 eV

hc
E

λ −⋅
= = = × =

×
 

 
4. Conservation of momentum requires that the gamma ray particles move in opposite 
directions with momenta of the same magnitude. Since the magnitude p of the 
momentum of a gamma ray particle is related to its energy by p = E/c, the particles have 
the same energy E. Conservation of energy yields mπc2 = 2E, where mπ is the mass of a 
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neutral pion. The rest energy of a neutral pion is mπc2 = 135.0 MeV, according to Table 
44-4. Hence, E = (135.0 MeV)/2 = 67.5 MeV. We use 1240 eV nmhc = ⋅  to obtain the 
wavelength of the gamma rays: 
 

5
6

1240 eV nm 1.84 10  nm 18.4 fm.
67.5 10 eV

λ −⋅
= = × =

×
 

 
5. We establish a ratio, using Eq. 22-4 and Eq. 14-1: 
 

( )( )
( )( )

211 2 2 312 2 2
gravity

22 2 2 9 2 2 19
electric

43

6.67 10 N m C 9.11 10  kg4

9.0 10 N m C 1.60 10  C

2.4 10 .

e eF Gm r Gm
F ke r e

ε
− −

0

−

−

× ⋅ ×π
= = =

× ⋅ ×

= ×

 

 
Since F Fgravity electric ,<<  we can neglect the gravitational force acting between particles in a 
bubble chamber. 
 
6. (a) Conservation of energy gives  
 

Q = K2 + K3 = E1 – E2 – E3 
 
where E refers here to the rest energies (mc2) instead of the total energies of the particles. 
Writing this as  

K2 + E2 – E1 = –(K3 + E3) 
 
and squaring both sides yields 
 

K K E K E E E K K E E2
2

2 2 2 1 1 2
2

3
2

3 3 3
22 2 2+ − + − = + +b g .  

 
Next, conservation of linear momentum (in a reference frame where particle 1 was at rest) 
gives  |p2| = |p3| (which implies (p2c)2 = (p3c)2). Therefore, Eq. 37-54 leads to 
 

K K E K K E2
2

2 2 3
2

3 32 2+ = +  
  
which we subtract from the above expression to obtain 
 

− + − =2 2 1 1 2
2

3
2K E E E Eb g .  

 
This is now straightforward to solve for K2 and yields the result stated in the problem. 
 
(b) Setting E3 = 0 in 

K
E

E E E2
1

1 2
2

3
21

2
= − −b g  
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and using the rest energy values given in Table 44-1 readily gives the same result for Kμ 
as computed in Sample Problem – “Momentum and kinetic energy in a pion decay.” 
 
7. Table 44-4 gives the rest energy of each pion as 139.6 MeV. The magnitude of the 
momentum of each pion is pπ = (358.3 MeV)/c. We use the relativistic relationship 
between energy and momentum (Eq. 37-54) to find the total energy of each pion: 
 

E p c m cπ π π= + = + =( ) ( ) ( . ( . .2 2 2 358 3 139 6 384 5 MeV)  Mev)  MeV.2  
 
Conservation of energy yields  
 

mρc2 = 2Eπ = 2(384.5 MeV) = 769 MeV. 
 
8. (a) In SI units, the kinetic energy of the positive tau particle is 
 

K = (2200 MeV)(1.6 × 10–13 J/MeV) = 3.52 × 10–10 J. 
 
Similarly, mc2 = 2.85 × 10–10 J for the positive tau. Equation 37-54 leads to the relativistic 
momentum: 
 

( ) ( )( )22 2 10 10 10
8

1 12 3.52 10  J 2 3.52 10  J 2.85 10  J
2.998 10 m/s

p K Kmc
c

− − −= + = × + × ×
×

 
which yields p = 1.90 × 10–18 kg·m/s. 
 
(b) The radius should be calculated with the relativistic momentum: 
 

r mv
q B

p
eB

= =
γ
| |

 

 
where we use the fact that the positive tau has charge e = 1.6 × 10–19 C. With B = 1.20 T, 
this yields r = 9.90 m. 
 
9. From Eq. 37-48, the Lorentz factor would be 
 

6

2

1.5 10  eV 75000.
20 eV

E
mc

γ ×
= = =  

 
Solving Eq. 37-8 for the speed, we find 
 

22

1 11
1 ( / )

v c
v c

γ = ⇒ = −
γ−
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which implies that the difference between v and c is 
 

2 2

1 11 1 1 1
2

c v c c
γ γ

⎛ ⎞ ⎛ ⎞⎛ ⎞
− = − − ≈ − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

"  

 
where we use the binomial expansion (see Appendix E) in the last step. Therefore, 
 

2 2

1 1(299792458m s) 0.0266 m s 2.7 cm s
2 2(75000)

c v c
γ

⎛ ⎞⎛ ⎞
− ≈ = = ≈⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

 
10. From Eq. 37-52, the Lorentz factor is 
 

2

80 MeV1 1 1.59.
135 MeV

K
mc

γ = + = + =  

 
Solving Eq. 37-8 for the speed, we find 
 

( )
22

1 11
1

v c
v c

γ
γ

= ⇒ = −
−

 

 
which yields v = 0.778c or v = 2.33 × 108 m/s. Now, in the reference frame of the 
laboratory, the lifetime of the pion is not the given τ value but is “dilated.” Using Eq.  
37-9, the time in the lab is 
 

t = = × = ×− −γτ ( . ) . .159 8 3 10 13 1017 16 s  s.c h  
 
Finally, using Eq. 37-10, we find the distance in the lab to be 
 

( ) ( )8 16 82.33 10 m s  1.3 10  s 3.1 10  m.x vt − −= = × × = ×  
 
11. (a) The conservation laws considered so far are associated with energy, momentum, 
angular momentum, charge, baryon number, and the three lepton numbers. The rest 
energy of the muon is 105.7 MeV, the rest energy of the electron is 0.511 MeV, and the 
rest energy of the neutrino is zero. Thus, the total rest energy before the decay is greater 
than the total rest energy after. The excess energy can be carried away as the kinetic 
energies of the decay products and energy can be conserved. Momentum is conserved if 
the electron and neutrino move away from the decay in opposite directions with equal 
magnitudes of momenta. Since the orbital angular momentum is zero, we consider only 
spin angular momentum. All the particles have spin / 2 . The total angular momentum 
after the decay must be either  (if the spins are aligned) or zero (if the spins are 
antialigned). Since the spin before the decay is / 2,=  angular momentum cannot be 
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conserved. The muon has charge –e, the electron has charge –e, and the neutrino has 
charge zero, so the total charge before the decay is –e and the total charge after is –e. 
Charge is conserved. All particles have baryon number zero, so baryon number is 
conserved. The muon lepton number of the muon is +1, the muon lepton number of the 
muon neutrino is +1, and the muon lepton number of the electron is 0. Muon lepton 
number is conserved. The electron lepton numbers of the muon and muon neutrino are 0 
and the electron lepton number of the electron is +1. Electron lepton number is not 
conserved. The laws of conservation of angular momentum and electron lepton number 
are not obeyed and this decay does not occur. 
 
(b) We analyze the decay ee μμ ν ν− +→ + + in the same way. We find that charge and the 
muon lepton number Lμ are not conserved. 
 
(c) For the process μμ π ν+ +→ + , we find that energy cannot be conserved because the 
mass of muon is less than the mass of a pion. Also, muon lepton number Lμ  is not 
conserved. 
 
12. (a) Noting that there are two positive pions created (so, in effect, its decay products 
are doubled), then we count up the electrons, positrons, and neutrinos: 2 5 4e e+ −+ + +v v .  
 
(b) The final products are all leptons, so the baryon number of A2

+  is zero. Both the pion 
and rho meson have integer-valued spins, so A2

+  is a boson. 
 
(c) A2

+  is also a meson. 
 
(d) As stated in (b), the baryon number of A2

+  is zero. 
 
13. The formula for Tz as it is usually written to include strange baryons is Tz = q – (S + 
B)/2. Also, we interpret the symbol q in the Tz formula in terms of elementary charge 
units; this is how q is listed in Table 44-3. In terms of charge q as we have used it in 
previous chapters, the formula is  

 1 ( )
2z

qT B S
e

= − + . 

 
For instance, Tz = + 1

2  for the proton (and the neutral Xi) and Tz = − 1
2  for the neutron (and 

the negative Xi). The baryon number B is +1 for all the particles in Fig. 44-4(a). Rather 
than use a sloping axis as in Fig. 44-4 (there it is done for the q values), one reproduces 
(if one uses the “corrected” formula for Tz mentioned above) exactly the same pattern 
using regular rectangular axes (Tz values along the horizontal axis and Y values along the 
vertical) with the neutral lambda and sigma particles situated at the origin. 
 
14. (a) From Eq. 37-50, 
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2 2( )

1189.4MeV 493.7MeV 139.6MeV 938.3MeV
605MeV.

pK
Q mc m m m m c+ + +Σ π
= −Δ = + − −

= + − −
=

 

 
(b) Similarly, 
 

Q mc m m m m c
K p= − = + − −

= + − −
= −

−Δ
Λ

2 2
0

1115 6 135 0 493 7 938 3
181

( )

. . . .
π0

MeV MeV MeV MeV
MeV.

 

 
15. (a) The lambda has a rest energy of 1115.6 MeV, the proton has a rest energy of 
938.3 MeV, and the kaon has a rest energy of 493.7 MeV. The rest energy before the 
decay is less than the total rest energy after, so energy cannot be conserved. Momentum 
can be conserved. The lambda and proton each have spin / 2  and the kaon has spin zero, 
so angular momentum can be conserved. The lambda has charge zero, the proton has 
charge +e, and the kaon has charge –e, so charge is conserved. The lambda and proton 
each have baryon number +1, and the kaon has baryon number zero, so baryon number is 
conserved. The lambda and kaon each have strangeness –1 and the proton has strangeness 
zero, so strangeness is conserved. Only energy cannot be conserved. 
 
(b) The omega has a rest energy of 1680 MeV, the sigma has a rest energy of 1197.3 
MeV, and the pion has a rest energy of 135 MeV. The rest energy before the decay is 
greater than the total rest energy after, so energy can be conserved. Momentum can be 
conserved. The omega and sigma each have spin / 2  and the pion has spin zero, so 
angular momentum can be conserved. The omega has charge –e, the sigma has charge –e, 
and the pion has charge zero, so charge is conserved. The omega and sigma have baryon 
number +1 and the pion has baryon number 0, so baryon number is conserved. The 
omega has strangeness –3, the sigma has strangeness –1, and the pion has strangeness 
zero, so strangeness is not conserved. 
 
(c) The kaon and proton can bring kinetic energy to the reaction, so energy can be 
conserved even though the total rest energy after the collision is greater than the total rest 
energy before. Momentum can be conserved. The proton and lambda each have spin 2 
and the kaon and pion each have spin zero, so angular momentum can be conserved. The 
kaon has charge –e, the proton has charge +e, the lambda has charge zero, and the pion 
has charge +e, so charge is not conserved. The proton and lambda each have baryon 
number +1, and the kaon and pion each have baryon number zero; baryon number is 
conserved. The kaon has strangeness –1, the proton and pion each have strangeness zero, 
and the lambda has strangeness –1, so strangeness is conserved. Only charge is not 
conserved. 
 
16. To examine the conservation laws associated with the proposed reaction 

0p p e+ −+ →Λ +Σ + , we make use of particle properties found in Tables 44-3 and 44-4.  
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(a) With (p) 1, (p) 1,q q= + = − 0( ) 0,q Λ =  ( ) 1,q +Σ = +  and ( ) 1q e− = − , we have 
1 ( 1) 0 1 ( 1)+ − = + + − . Thus, the process conserves charge. 
 
(b) With (p) 1, (p) 1,B B= + = −  0( ) 1,B Λ =  ( ) 1,B +Σ = +  and ( ) 0B e− = , we have 
1 ( 1) 1 1 0+ − ≠ + + . Thus, the process does not conserve baryon number. 
 
(c) With (p) (p) 0,e eL L= =  0( ) ( ) 0,e eL L +Λ = Σ =  and ( ) 1eL e− = , we have 
0 0 0 0 1+ ≠ + + , so the process does not conserve electron lepton number. 
 
(d) All the particles on either side of the reaction equation are fermions with 1/ 2s = . 
Therefore, (1/ 2) (1/ 2) (1/ 2) (1/ 2) (1/ 2)+ ≠ + +  and the process does not conserve spin 
angular momentum. 
 
(e) With (p) (p) 0,S S= =  0( ) 1,S Λ =  ( ) 1,S +Σ = +  and ( ) 0S e− = , we have 
0 0 1 1 0+ ≠ + + , so the process does not conserve strangeness. 
 
(f) The process does conserve muon lepton number since all the particles involved have 
muon lepton number of zero. 
 
17. To examine the conservation laws associated with the proposed decay process 

n K pπ− − −Ξ → + + + , we make use of particle properties found in Tables 44-3 and 44-4.  
 
(a) With ( ) 1q −Ξ = − , ( ) 1, (n) 0, (K ) 1,q q qπ − −= − = = −  and (p) 1,q = +  we have 

1 1 0 ( 1) 1− = − + + − + . Thus, the process conserves charge. 
 
(b) Since ( ) 1B −Ξ = + , ( ) 0,B π − =  (n) 1, (K ) 0,B B −= + =  and (p) 1,B = +  we have 

1 0 1 0 1 2+ ≠ + + + = . Thus, the process does not conserve baryon number. 
 
(c) ,−Ξ  n and p are fermions with 1/ 2s = , while and Kπ − −  are mesons with spin zero. 
Therefore, 1/ 2 0 (1/ 2) 0 (1/ 2)+ ≠ + + + and the process does not conserve spin angular 
momentum. 
 
(d) Since ( ) 2S −Ξ = − , ( ) 0,S π − =  (n) 0, (K ) 1,S S −= = −  and (p) 0,S =  we have 

2 0 0 ( 1) 0,− ≠ + + − +  so the process does not conserve strangeness. 
 
18. (a) Referring to Tables 44-3 and 44-4, we find that the strangeness of K0 is +1, while 
it is zero for both π+ and π–. Consequently, strangeness is not conserved in this decay; 
K0 → ++π π−  does not proceed via the strong interaction. 
 
(b) The strangeness of each side is –1, which implies that the decay is governed by the 
strong interaction. 
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(c) The strangeness or Λ0 is –1 while that of p + π– is zero, so the decay is not via the 
strong interaction. 
 
(d) The strangeness of each side is –1; it proceeds via the strong interaction. 
 
19. For purposes of deducing the properties of the antineutron, one may cancel a proton 
from each side of the reaction and write the equivalent reaction as 
 

p n .+π → +  
  
Particle properties can be found in Tables 44-3 and 44-4. The pion and proton each have 
charge +e, so the antineutron must be neutral. The pion has baryon number zero (it is a 
meson) and the proton has baryon number +1, so the baryon number of the antineutron 
must be –1. The pion and the proton each have strangeness zero, so the strangeness of the 
antineutron must also be zero. In summary, for the antineutron, 
 
(a) q = 0,  
 
(b) B = –1,  
 
(c) and S = 0. 
 
20. (a) From Eq. 37-50, 
 

Q mc m m m cp= − = − −

= − − =

Δ
Λ

2 2
0

1115 6 938 3 139 6 37 7

( )

. . . .
π−

MeV MeV MeV MeV.
 

 
(b) We use the formula obtained in Problem 44-6 (where it should be emphasized that E 
is used to mean the rest energy, not the total energy): 
 

K
E

E E Ep p= − −

=
− −

=

1
2

1115 6 938 3 139 6
2 1115 6

5 35

2 2

2 2

Λ
Λc h

a f a f
a f

π

. . .
.

.
MeV MeV MeV

MeV
MeV.

 

 
(c) By conservation of energy, 
 

K Q Kpπ−
= − = − =37 7 5 35 32. . .4MeV MeV MeV. 

 
21. (a) As far as the conservation laws are concerned, we may cancel a proton from each 
side of the reaction equation and write the reaction as p x→ +Λ0 . Since the proton and 
the lambda each have a spin angular momentum of 2, the spin angular momentum of x 
must be either zero or . Since the proton has charge +e and the lambda is neutral, x must 
have charge +e. Since the proton and the lambda each have a baryon number of +1, the 
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baryon number of x is zero. Since the strangeness of the proton is zero and the 
strangeness of the lambda is –1, the strangeness of x is +1. We take the unknown particle 
to be a spin zero meson with a charge of +e and a strangeness of +1. Look at Table 44-4 
to identify it as a K+ particle. 
 
(b) Similar analysis tells us that x is a spin - 1

2  antibaryon (B = –1) with charge and 
strangeness both zero. Inspection of Table 44-3 reveals that it is an antineutron. 
 
(c) Here x is a spin-0 (or spin-1) meson with charge zero and strangeness +1. According 
to Table 44-4, it could be a 0K  particle. 
 
22. Conservation of energy (see Eq. 37-47) leads to 
 

K mc K m m m c Kf i n i= − + = − − +

= − − +
=

− −Δ
Σ

2 2

1197 3 139 6 939 6 220
338

( )

. . .
π

MeV MeV MeV MeV
MeV.

 

 
23. (a) Looking at the first three lines of Table 44-5, since the particle is a baryon, we 
determine that it must consist of three quarks. To obtain a strangeness of –2, two of them 
must be s quarks. Each of these has a charge of –e/3, so the sum of their charges is –2e/3. 
To obtain a total charge of e, the charge on the third quark must be 5e/3. There is no 
quark with this charge, so the particle cannot be constructed. In fact, such a particle has 
never been observed. 
 
(b) Again the particle consists of three quarks (and no antiquarks). To obtain a 
strangeness of zero, none of them may be s quarks. We must find a combination of three 
u and d quarks with a total charge of 2e. The only such combination consists of three u 
quarks. 
 
24. If we were to use regular rectangular axes, then this would appear as a right triangle. 
Using the sloping q axis as the problem suggests, it is similar to an “upside down” 
equilateral triangle as we show below. 
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The leftmost slanted line is for the –1 charge, and the rightmost slanted line is for the +2 
charge. 
 
25. (a) We indicate the antiparticle nature of each quark with a “bar” over it. Thus, u u d  
represents an antiproton. 
 
(b) Similarly, u d d  represents an antineutron. 
 
26. (a) The combination ddu has a total charge of − − + =1

3
1
3

2
3 0b g , and a total strangeness 

of zero. From Table 44-3, we find it to be a neutron (n). 
 
(b) For the combination uus, we have Q = + + − =2

3
2
3

1
3 1 and S = 0 + 0 – 1 = –1. This is 

the Σ+ particle. 
 
(c) For the quark composition ssd, we have Q = − − − = −1

3
1
3

1
3 1 and S = – 1 – 1 + 0 = – 2. 

This is a Ξ− . 
 
27. The meson 0K  is made up of a quark and an anti-quark, with net charge zero and 
strangeness 1S = − . The quark with 1S = −  is s . By charge neutrality condition, the anti-
quark must be d . Therefore, the constituents of 0K  are s and d . 
 
28. (a) Using Table 44-3, we find q = 0 and S = –1 for this particle (also, B = 1, since that 
is true for all particles in that table). From Table 44-5, we see it must therefore contain a 
strange quark (which has charge –1/3), so the other two quarks must have charges to add 
to zero. Assuming the others are among the lighter quarks (none of them being an anti-
quark, since B = 1), then the quark composition is sud . 
 
(b) The reasoning is very similar to that of part (a). The main difference is that this 
particle must have two strange quarks. Its quark combination turns out to be uss . 
 
29. (a) The combination ssu has a total charge of − − + =1

3
1
3

2
3 0b g , and a total strangeness 

of – 2. From Table 44-3, we find it to be the 0Ξ  particle. 
 
(b) The combination dds has a total charge of ( )1 1 1

3 3 3 1− − − = − , and a total strangeness 

of –1. From Table 44-3, we find it to be the −Σ  particle. 
 
30. From γ = 1 + K/mc2 (see Eq. 37-52) and 1v c cβ γ −2= = −  (see Eq. 37-8), we get 
 

v c K
mc

= − +FH
I
K
−

1 1 2

2

. 

 
(a) Therefore, for the Σ*0 particle, 
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2

8 81000MeV(2.9979 10 m s) 1 1 2.4406 10 m s.
1385MeV

v
−

⎛ ⎞
= × − + = ×⎜ ⎟

⎝ ⎠
 

 
For Σ0, 

2
8 81000 MeV(2.9979 10 m s) 1 1 2.5157 10 m s.

1192.5MeV
v

−
⎛ ⎞

′ = × − + = ×⎜ ⎟
⎝ ⎠

 

 
Thus Σ0 moves faster than Σ*0. 
 
(b) The speed difference is 
 

8 6(2.5157 2.4406)(10 m s) 7.51 10 m s.v v v′Δ = − = − = ×  
 
31. First, we find the speed of the receding galaxy from Eq. 37-31: 
 

2 2
0 0

2 2
0 0

2

2

1 ( ) 1 ( )
1 ( ) 1 ( )

1 (590.0 nm 602.0 nm) 0.02013
1 (590.0 nm 602.0 nm)

f f
f f

λ λβ
λ λ

− −
= =

+ +

−
= =

+

 

 
where we use f = c/λ and f0 = c/λ0. Then from Eq. 44-19, 
 

 
( )( )8

8
0.02013 2.998 10 m s

2.77 10  ly .
0.0218 m s ly

v cr
H H

β ×
= = = = ×

⋅
 

 
32. Since  

0
1 12 2
1 1

β βλ λ λ
β β0

+ +
= = ⇒ =

− −
, 

 
the speed of the receding galaxy is 3 / 5v c cβ= = . Therefore, the distance to the galaxy 
when the light was emitted is 
 

8
9(3 / 5) (0.60)(2.998 10 m/s) 8.3 10  ly .

0.0218 m s ly
v c cr
H H H

β ×
= = = = = ×

⋅
 

 
33. We apply Eq. 37-36 for the Doppler shift in wavelength: 
 

v
c

λ
λ
Δ

=  
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where v is the recessional speed of the galaxy. We use Hubble’s law to find the 
recessional speed: v = Hr, where r is the distance to the galaxy and H is the Hubble 
constant ( )3 m

s ly21.8 10 .−
⋅×   Thus,  

 
 ( )( )3 8 621.8 10 m/s ly 2.40 10  ly 5.23 10 m/sv −= × ⋅ × = ×  
and 

 
6

8

5.23 10 m s (656.3 nm) 11.4 nm .
3.00 10 m s

v
c

λ λ
⎛ ⎞×

Δ = = =⎜ ⎟×⎝ ⎠
 

 
Since the galaxy is receding, the observed wavelength is longer than the wavelength in 
the rest frame of the galaxy. Its value is  
 

656.3 nm + 11.4 nm = 667.7 nm ≈  668 nm. 
 
34. (a) Using Hubble’s law given in Eq. 44-19, the speed of recession of the object is 
 

( )( )40.0218 m/s ly 1.5 10 ly 327 m/s.v Hr= = ⋅ × =  
 
Therefore, the extra distance of separation one year from now would be 
 

10(327 m/s)(365 d)(86400 s/d) 1.0 10  m.d vt= = = ×  
 
(b) The speed of the object is 2327 m/s 3.3 10 m/s.v = ≈ ×  
 
35. Letting v = Hr = c, we obtain 
 

 
8

10 103.0 10 m s 1.376 10  ly 1.4 10  ly .
0.0218m s ly

cr
H

×
= = = × ≈ ×

⋅
 

 
36. (a) Letting  

v r Hr v G M re( ) ,= ≤ = 2  
we get M r H G3 2 2≥ . Thus, 
 

2

2 3

3 3 .
4 3 4 8

M M H
r r G

ρ
π π π

= = ≥  

 
(b) The density being expressed in H-atoms/m3 is equivalent to expressing it in terms of 
ρ0 = mH/m3 = 1.67 × 10–27 kg/m3. Thus, 
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 ( ) ( ) ( ) ( )
( )( )

22 15 32
3

3 2 27 3
0

3

3 0.0218m s ly 1.00ly 9.460 10  m H atoms m3 H atoms m
8 8 m kg s 1.67 10 kg m

5.7 H atoms m .

H
G

ρ
ρ −11 −

⋅ ×
= =

π π 6.67×10 ⋅ ×

=

 

 
37. (a) From f = c/λ and Eq. 37-31, we get 
 

0 0
1 1( ) .
1 1

β βλ λ λ λ
β β

− −
= = + Δ

+ +
 

 
Dividing both sides by λ0 leads to 
 

11 (1 )
1

z β
β

−
= +

+
 

 
where 0/z λ λ= Δ . We solve for β: 

β =
+ −
+ +

=
+

+ +
( )
( )

.1 1
1 1

2
2 2

2

2

2

2

z
z

z z
z z

 

 
(b) Now z = 4.43, so 
 

β =
+

+ +
=

4 43 2 4 43
4 43 2 4 43 2

0 934
2

2

. .
. .

. .b g b g
b g b g  

 
(c) From Eq. 44-19, 
 

 
( )( )8

10
0.934 3.0 10 m s

1.28 10 ly .
0.0218m s ly

v cr
H H

β ×
= = = = ×

⋅
 

 
38. Using Eq. 39-33, the energy of the emitted photon is 
 

 3 2 2 2

1 1(13.6 eV) 1.89 eV
3 2

E E E ⎛ ⎞= − = − − =⎜ ⎟
⎝ ⎠

 

and its wavelength is 
 

 7
0

1240 eV  nm 6.56 10  m
1.89 eV

hc
E

λ −⋅
= = = × . 

 
Given that the detected wavelength is 33.00 10  mλ −= × , we find  
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3
3

7
0

3.00 10  m 4.57 10
6.56 10  m

λ
λ

−

−

×
= = ×

×
. 

 
39. (a) From Eq. 41-29, we know that N N e E kT

2 1 =
−Δ . We solve for ΔE: 

 

( )( )51

2
4

1 0.25ln 8.62 10 eV K 2.7K ln
0.25

2.56 10 eV 0.26 meV.

NE kT
N

−

−

−⎛ ⎞Δ = = × ⎜ ⎟
⎝ ⎠

= × ≈

 

 
(b) Using 1240eV nm,hc = ⋅  we get 
 

6
4

1240eV nm 4.84 10 nm 4.8mm.
2.56 10 eV

hc
E −

⋅
λ = = = × ≈

Δ ×
 

 
40. From F GMm r mv rgrav = =2 2  we find M v∞ 2 . Thus, the mass of the Sun would be 
 

2 2
Mercury

Pluto

47.9km s 102 .
4.74km ss s s s

v
M M M M

v
⎛ ⎞ ⎛ ⎞

′ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
41. (a) The gravitational force on Earth is only due to the mass M within Earth’s orbit. If 
r is the radius of the orbit, R is the radius of the new Sun, and MS is the mass of the Sun, 
then  

M r
R

Ms= FHG
I
KJ =

×
×

F
HG

I
KJ × = ×

3 11

12

3
30 25150 10

590 10
199 10 327 10.

.
. . .m

m
kg kgc h  

 
The gravitational force on Earth is given by GMm r 2 , where m is the mass of Earth and 
G is the universal gravitational constant. Since the centripetal acceleration is given by v2/r, 
where v is the speed of Earth, GMm r mv r2 2=  and 
 

v GM
r

= =
× ⋅ ×

×
= ×

−6 67 10 3 27 10
150 10

121 10
11 2 25

11
2

. .
.

. .
m s kg kg

m
m s

3c hc h
 

 
(b) The ratio is  

 
2

4

1.21 10 m s 0.00405.
2.98 10 m s

×
=

×
 

 
(c) The period of revolution is 
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( )11
9

2

2 1.50 10 m2 7.82 10 s 247 y .
1.21 10 m s

rT
v

π ×π
= = = × =

×
 

 
Note: An alternative way to calculate the speed ratio and the periods is as follows. Since 

,v M∼ the ratio of the speeds can be obtained as 
 

3/ 23/ 2 11

12
0

1.50 10 m 0.00405.
5.90 10 mS

v M r
v M R

⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
 

 
In addition, since 1/ 1/ ,T v M∼ ∼  we have 
 

 
3/ 23/ 2 12

0 0 11

5.90 10 m(1 y) 247 y.
1.50 10 m

SM RT T T
M r

⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
 

 
42. (a) The mass of the portion of the galaxy within the radius r from its center is given 
by  ′ =M r R Mb g3 . Thus, from GM m r mv r′ =2 2  (where m is the mass of the star) we 
get 

v GM
r

GM
r

r
R

r GM
R

=
′
= F

HG
I
KJ =

3

3 .  

 
(b) In the case where M' = M, we have 
 

T r
v

r r
GM

r
GM

= = =
2 2 2 3 2π

π
π .  

 
43. (a) For the universal microwave background, Wien’s law leads to 
 

max

2898 m K 2898mm K 2.6K .
1.1mm

T μ
λ

⋅ ⋅
= = =  

 
(b) At “decoupling” (when the universe became approximately “transparent”), 
 

max
2898 m K 2898 m K 0.976 m 976 nm.

2970KT
μ μλ μ⋅ ⋅

= = = =  

 
44. (a) We substitute λ = (2898 μm·K)/T into the expression:  
 

E = /hc λ = (1240 eV·nm)/λ. 
First, we convert units:  
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2898 μm·K = 2.898 × 106 nm·K and 1240 eV·nm = 1.240 × 10–3 MeV·nm. 
 
Thus, 

E
T

T=
× ⋅

× ⋅
= ×

−
−

1240 10
2 898 10

4 28 10
3

6
10

.
.

. .
MeV nm

nm K
MeV K

c h c h  

 
(b) The minimum energy required to create an electron-positron pair is twice the rest 
energy of an electron, or 2(0.511 MeV) = 1.022 MeV. Hence, 
 

T E
=

×
=

×
= ×− −4 28 10

1022
4 28 10

2 39 1010 10
9

.
.

.
. .

MeV K
MeV

MeV K
K  

 
45. Since only the strange quark (s) has nonzero strangeness, in order to obtain S = –1 we 
need to combine s with some non-strange anti-quark (which would have the negative of 
the quantum numbers listed in Table 44-5). The difficulty is that the charge of the strange 
quark is –1/3, which means that (to obtain a total charge of +1) the anti-quark would have 
to have a charge of + 4

3 . Clearly, there are no such anti-quarks in our list. Thus, a meson 
with S = –1 and q = +1 cannot be formed with the quarks/anti-quarks of Table 44-5. 
Similarly, one can show that, since no quark has q = − 4

3 , there cannot be a meson with S 
= +1 and q = –1. 
 
46. Assuming the line passes through the origin, its slope is 0.40c/(5.3 × 109 ly). Then, 
 

T
H c

= = =
×

=
×

≈ ×
1 1 53 10

0 40
53 10

0 40
13 10

9 9
9

slope
ly y y.

.
.

.
.  

 
47. The energy released would be twice the rest energy of Earth, or  
 

E = 2mc2 = 2(5.98 × 1024 kg)(2.998 × 108 m/s)2 = 1.08 × 1042 J. 
 
The mass of Earth can be found in Appendix C. As in the case of annihilation between an 
electron and a positron, the total energy of the Earth and the anti-Earth after the 
annihilation would appear as electromagnetic radiation. 
 
48. We note from track 1, and the quantum numbers of the original particle (A), that 
positively charged particles move in counterclockwise curved paths, and — by 
inference — negatively charged ones move along clockwise arcs. This immediately 
shows that tracks 1, 2, 4, 6, and 7 belong to positively charged particles, and tracks 5, 8 
and 9 belong to negatively charged ones. Looking at the fictitious particles in the table 
(and noting that each appears in the cloud chamber once [or not at all]), we see that this 
observation (about charged particle motion) greatly narrows the possibilities: 
 

tracks 2,4,6,7, particles , , ,
tracks 5,8,9 particles , ,

C F H J
D E G

↔
↔
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This tells us, too, that the particle that does not appear at all is either B or I (since only 
one neutral particle “appears”). By charge conservation, tracks 2, 4 and 6 are made by 
particles with a single unit of positive charge (note that track 5 is made by one with a 
single unit of negative charge), which implies (by elimination) that track 7 is made by 
particle H. This is confirmed by examining charge conservation at the end-point of track 
6. Having exhausted the charge-related information, we turn now to the fictitious 
quantum numbers. Consider the vertex where tracks 2, 3, and 4 meet (the Whimsy 
number is listed here as a subscript): 
 

2 0 6

4 6

tracks 2,4 particles , ,
tracks 3 particle or

C F J
B I

−↔
↔

 

 
The requirement that the Whimsy quantum number of the particle making track 4 must 
equal the sum of the Whimsy values for the particles making tracks 2 and 3 places a 
powerful constraint (see the subscripts above). A fairly quick trial and error procedure 
leads to the assignments: particle F makes track 4, and particles J and I make tracks 2 and 
3, respectively. Particle B, then, is irrelevant to this set of events. By elimination, the 
particle making track 6 (the only positively charged particle not yet assigned) must be C. 
At the vertex defined by 

A F C→ + + track5b g_ ,  
 
where the charge of that particle is indicated by the subscript, we see that Cuteness 
number conservation requires that the particle making track 5 has Cuteness = –1, so this 
must be particle G. We have only one decision remaining: 
 

tracks 8,9, particles ,D E↔  
 
Re-reading the problem, one finds that the particle making track 8 must be particle D 
since it is the one with seriousness = 0. Consequently, the particle making track 9 must be 
E. 
 
Thus, we have the following: 
 
(a) Particle A is for track 1. 
 
(b) Particle J is for track 2. 
 
(c) Particle I is for track 3. 
 
(d) Particle F is for track 4. 
 
(e) Particle G is for track 5. 
 
(f) Particle C is for track 6. 
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(g) Particle H is for track 7. 
 
(h) Particle D is for track 8. 
 
(i) Particle E is for track 9. 
 
49. (a) We use the relativistic relationship between speed and momentum: 
 

p mv mv

v c
= =

−
γ

1 2b g
,  

which we solve for the speed v: 
 

( )22

11 .
/ 1

v
c pc mc
= −

+
 

 
For an antiproton mc2 = 938.3 MeV and pc = 1.19 GeV = 1190 MeV, so 
 

v c c= −
+

=1 1
1190 938 3 1

0 7852MeV MeV.
. .b g  

 
(b) For the negative pion mc2 = 193.6 MeV, and pc is the same. Therefore, 
 

v c c= −
+

=1 1
1190 1936 1

0 9932MeV MeV.
. .b g  

 
(c) Since the speed of the antiprotons is about 0.78c but not over 0.79c, an antiproton will 
trigger C2. 
 
(d) Since the speed of the negative pions exceeds 0.79c, a negative pion will trigger C1. 
 
(e) We use Δt = d/v, where d = 12 m. For an antiproton 
 

( )
8

8

1 5.1 10 s 51ns.
0.785 2.998 10 m s

t −Δ = = × =
×

 

(f) For a negative pion 
 

Δt =
×

= × =−12
0 993 2 998 10

4 0 10 40
8

8m
m s

s ns
. .

. .c h  
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