PHYS 232

Draw the following table on the top of your answer sheet:

la l	1 b	1c	1d	1e	2	Total
15	15	15	5	10	40	100

1. Solve the Schroedinger equation for a particle with mass m moving with energy E in a potential

where $U_0 > 0$ and E > 0 and $E < U_0$.

- a. Write down the wavefunction in the three regions. (15%)
- **b.** Apply the continuity conditions. (15%)
- **c.** Find the equation that determines the energy. (15%)
- **d.** Obtain an approximate answer for the ground state energy of an electron in such a potential by the iteration method for the case:

$$U_0 = 200 \text{ eV} \text{ and } L = 0.4 \text{ nm}.$$
 (5%)

- e. Compare your answer with the ground state energy of an electron in an infinite square well with the same L. (10%)
- 2. Show that

$$\psi(x) = A x \exp [-b x^2]$$

is a solution of the Schroedinger equation for a particle moving in the Harmonic Oscillator potential $V(x) = \frac{1}{2} m\omega^2 x^2$.

What is the corresponding energy? What is b?

(40%)