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Preface

THE WORK of the Education Research Center at M.L.T. (formerly
the Science Teaching Center) is concerned with curriculum im-
provement, with the process of instruction and aids thereto, and
with the learning process itself, primarily with respect to students
at the college or university undergraduate level. The Center
was established by M.LI.T. in 1960, with the late Professor Francis
L. Friedman as its Director. Since 1961 the Center has been
supported mainly by the National Science Foundation; generous
support has also been received from the Kettering Foundation,
the Shell Companies Foundation, the Victoria Foundation, the
W. T. Grant Foundation, and the Bing Foundation.

The M.LT. Introductory Physics Series, a direct outgrowth
of the Center’s work, is designed to be a set of short books
which, taken collectively, span the main areas of basic physics.
The series seeks to emphasize the interaction of experiment and
intuition in generating physical theories. The books in the series
are intended to provide a variety of possible bases for intro-
ductory courses, ranging from those which chiefly emphasize
classical physics to those which embody a considerable amount
of atomic and quantum physics. The various volumes are in-
tended to be compatible in level and style of treatment but are
not conceived as a tightly knit package; on the contrary, each
book is designed to be reasonably self-contained and usable as
an individual component in many different course structures.
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The text material in the present volume is intended as an
introduction to the study of vibrations and waves in general, but
the discussion is almost entirely confined to mechanical systems.
Thus, except in a few places, an adequate preparation for it is a
good working knowledge of elementary kinematics and dynamics.
The decision to limit the scope of the book in this way was guided
by the fact that the presentation is quantitative and analytical
rather than descriptive. The temptation to incorporate dis-
cussions of electrical and optical systems was always strong, but
it was felt that a great part of the language of the subject could
be developed most simply and straightforwardly in terms of
mechanical displacements and scalar wave equations, with only
an occasional allusion to other systems.

On the matter of mathematical background, a fair famil-
iarity with calculus is assumed, such that the student will rec-
ognize the statement of Newton’s law for a harmonic oscillator
as a differential equation and be readily able to verify its solution
in terms of sinusoidal functions. The use of the complex ex-
ponential for the analysis of oscillatory systems is introduced at
an early stage; the necessary introduction of partial differential
equations is, however, deferred until fairly late in the book.
Some previous experience with a calculus course in which dif-
ferential equations have been discussed is certainly desirable,
although it is not in the author’s view essential.

The presentation lays more emphasis on the concept of
normal modes than is customary in introductory courses. It is
the author’s belief, as stated in the text, that this can greatly
enrich the student’s understanding of how the dynamics of a
continuum can be linked to the dynamics of one or a few par-
ticles. What is not said, but has also been very much in mind,
is that the development and use of such features as orthogonality
and completeness of a set of normal modes will give to the
student a sense of old acquaintance renewed when he meets these
features again in the context of quantum mechanics.

Although the emphasis is on an analytical approach, the
effort has been made to link the theory to real examples of the
phenomena, illustrated where possible with original data and
photographs. It is intended that this ‘“documentation” of the
subject should be a feature of all the books in the series.

This book, like the others in the series, owes much to the
thoughts, criticisms, and suggestions of many people, both
students and instructors. A special acknowledgment is due to



Prof. Jack R. Tessman (Tufts University), who was deeply
involved with our earliest work on this introductory physics
program and who, with the present author, taught a first trial
version of some of the material at M.LT. during 1963-1964.
Much of the subsequent writing and rewriting was discussed
with him in detail. In particular, in the present volume, the in-
troduction to coupled oscillators and normal modes in Chapter 5
stems largely from the approach that he used in class.

Thanks are due to the staff of the Education Research
Center for help in the preparation of this volume, with special
mention of Miss Martha Ransohoff for her enthusiastic efforts
in typing the final manuscript and to Jon Rosenfeld for his work
in setting up and photographing a number of demonstrations
for the figures.

A. P. FRENCH
Cambridge, Massachuseits
July 1970
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These are the Phenomena of Springs and springy bodies,
which as they have not hitherto been by any that I know
reduced to Rules, so have all the attempts for the
explications of the reason of their power, and of springiness
in general, been very insufficient.

ROBERT HOOKE, De Potentia Restitutiva (1678)



|
Periodic
motions

THE VIBRATIONS or oscillations of mechanical systems constitute
one of the most important fields of study in all physics. Virtually
every system possesses the capability for vibration, and most
systems can vibrate freely in a large variety of ways. Broadly
speaking, the predominant natural vibrations of small objects
are likely to be rapid, and those of large objects are likely to be
slow. A mosquito’s wings, for example, vibrate hundreds of
times per second and produce an audible note. The whole earth,
after being jolted by an earthquake, may continue to vibrate at
the rate of about one oscillation per hour. The human body itself
is a treasure-house of vibratory phenomena; as one writer has
put it!:
After all, our hearts beat, our lungs oscillate, we shiver when
we are cold, we sometimes snore, we can hear and speak because
our eardrums and larynges vibrate. The light waves which permit
us 10 see entail vibration. We move by oscillating our legs. We
cannot even say ‘“‘vibration” properly without the tip of the
tongue oscillating ... Even the atoms of which we are consti-
tuted vibrate.

The feature that all such phenomena have in common is
periodicity. There is a pattern of movement or displacement that
repeats itself over and over again. This pattern may be simple
'From R. E. D. Bishop, Vibration, Cambridge University Press, New York,

1965. A most lively and fascinating general account of vibrations with par-
ticular reference to engineering problems.
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Fig. 1-1 (a) Pressure variations inside the heart of a
cat (After Straub, in E. H. Starling, Elements of
Human Physiology, Churchill, London, 1907.)

(b) Vibrations of a tuning fork.

or complicated; Fig. 1-1 shows an example of each—the rather
complex cycle of pressure variations inside the heart of a cat, and
the almost pure sine curve of the vibrations of a tuning fork. In
each case the horizontal axis represents the steady advance of
time, and we can identify the length of time—the period T—
within which one complete cycle of the vibration is performed.

In this book we shall study 2 number of aspects of periodic
motions, and will proceed from there to the closely related phe-
nomenon of progressive waves. We shall begin with some dis-
cussion of the purely kinematic description of vibrations. Later,
we shall go into some of the dynamical properties of vibrating
systems—those dynamical features that allow us to see oscillatory
motion as a real physical problem, not just as a mathematical
exercise.

SINUSOIDAL VIBRATIONS

Our attention will be directed overwhelmingly to sinusoidal
vibrations of the sort exemplified by Fig. 1-1(b). There are two
reasons for this—one physical, one mathematical, and both basic
to the whole subject. The physical reason is that purely sinusoidal
vibrations do, in fact, arise in an immense variety of mechanical
systems, being due to restoring forces that are proportional to
the displacement from equilibrium. Such motion is almost always
possible if the displacements are small enough. If, for example,
we have a body attached to a spring, the force exerted on it at a
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displacement x from equilibrium may be written
F(x) = —(kix + kax2? 4 kax3 4 --+)

where k, ko, k3, etc., are a set of constants, and we can always
find a range of values of x within which the sum of the terms in
x2, x3, etc., is negligible, according to some stated criterion (e.g.,
1 part in 102, or 1 part in 10%) compared to the term —k,x, unless
k itself is zero. If the body is of mass m and the mass of the

spring is negligible, the equation of motion of the body then

becomes
2
dx
M'E' = —k1x
which, as one can readily verify, is satisfied by an equation of
the form
x = Asin(wt + ¢o) (1-1)

where w = (k,;/m)'/2, This brief discussion will be allowed to
serve as a reminder that sinusoidal vibration—simple harmonic
motion—is a prominent possibility in small vibrations, but also
that in general it is only an approximation (although perhaps a
very close one) to the true motion.

The second reason—the mathematical one—for the profound
importance of purely sinusoidal vibrations is to be found in a
famous theorem propounded by the French mathematician J. B.
Fourier in 1807. According to Fourier’s theorem, any disturbance
that repeats itself regularly with a period T can be built up from
(or is analyzable into) a set of pure sinusoidal vibrations of
periods T, T/2, T/3, etc., with appropriately chosen amplitudes—
i.e., an infinite series made up (to use musical terminology) of a
fundamental frequency and all its harmonics. We shall have
more to say about this later, but we draw attention to Fourier’s
theorem at the outset so as to make it clear that we are not limiting
the scope or applicability of our discussions by concentrating on
simple harmonic motion. On the contrary, a thorough familiarity
with sinusoidal vibrations will open the door to every conceivable
problem involving periodic phenomena.

THE DESCRIPTION OF SIMPLE HARMONIC MOTION

A motion of the type described by Eq. (1-1), simple harmonic
motion (SHM),! is represented by an x — ¢ graph such as that

1This convenient and widely used abbreviation is one that we shall employ
often.
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Fig. 1-2 Simple
harmonic motion of
period T and
amplitude A.

= AVARY,

shown in Fig. 1-2. We recognize the characteristic features of
any such sinusoidal disturbance:

1. It is confined within the limits x = A4. The positive
quantity 4 is the amplitude of the motion.

2. The motion has the period T equal to the time between
successive maxima, or more generally between successive occa-
sions on which both the displacement x and the velocity dx/dt
repeat themselves. Given the basic equation (1-1),

x = Asin(wt + ¢0)

the period must correspond to an increase by the amount 2 in
the argument of the sine function. Thus we have

ot + T)+ ¢o = (ot + ¢o) + 27
whence
o

= (1-2)

(5}

The situation at r = 0 (or at any other designated time, for that
matter) is completely specified if one states the values of both x
and dx/dt at that instant. For the particular time ¢ = 0, let
these quantities be denoted by x¢ and vy, respectively. Then we
have the following identities:

x0 = Asingo
vo = wA Cos o

If the motion is known to be described by an equation of the
form (1-1), these last two relationships can be used to calculate
the amplitude A4 and the angle ¢¢ (the initial phase angle of
the motion):

2 o 271/2 1 [ wxo
=+ ()] e ()
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The value of the angular frequency w of the motion is here as-
sumed to be independently known.

Equation (1-1) as it stands defines a sinusoidal variation of
x with ¢ over the whole range of ¢, regarded as a purely mathe-
matical variable, from —oo to +o. Since every real vibration
has a beginning and an end, it cannot therefore, even if purely
sinusoidal while it lasts, be properly described by Eq. (1-1) alone.
If, for example, a simple harmonic vibration were started at
t = t; and stopped at ¢ = t,, its complete description in mathe-
matical terms would require a total of three statements:

-0 <1 <11 x=0
<ttt x = Asin(wt + o)
2 <t <® x=0

This limitation on the validity of Eq. (1-1) as a complete descrip-
tion of a physically real harmonic vibration should always be
borne in mind. It is not just 2 mathematical quibble. As judged
by strictly physical criteria, a vibration does not appear to be
effectively a pure sinusoid unless it continues for a very large
number of periods. For example, if the ear were allowed to
receive only one complete cycle of the sound from a tuning fork,
vibrating as in Fig. 1-1(b), the aural impression would not at all
be that of a pure tone at the characteristic frequency of the fork,
but would instead be a confused jangle of tones.! It would be
premature, and in a sense irrelevant, to discuss the phenomenon
in any more detail at this point; the problem is again one of
Fourier analysis. What is important at this stage is to recognize
that the simple harmonic vibrations of an actual physical system
must be long-continued—must represent what is often called a
steady state of vibration—for Eq. (1-1) by itself to be used as an
acceptable description of them.

THE ROTATING-VECTOR REPRESENTATION

One of the most useful ways of describing simple harmonic mo-
tion is obtained by regarding it as the projection of uniform

1The complexity of the sound could be more convincingly demonstrated
with an automatic wave analyzer, because it is known that what we hear is
not an exact replica of an incoming sound wave—the ear adds distortions of
its own. See, for example, W. A. Van Bergeijk, J. R. Pierce, and E. A. David,
Waves and the Ear, Doubleday (Anchor Book), New York, 1960.
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circular motion. Imagine, for example, that a disk of radius 4
rotates about a vertical axis at the rate of w rad/sec. Suppose that
a peg P is attached to the edge of the disk and that a horizontal
beam of parallel light casts a shadow of the peg on a vertical
screen, as shown in Fig. 1-3(a). Then this shadow performs
simple harmonic motion with period 27/w and amplitude A4 along
a horizontal line on the screen.

More abstractly, we can imagine SHM as being the geo-
metrical projection of uniform circular motion. (By geometrical
projection we mean simply the process of drawing a perpendicular
to a given line from the instantaneous position of the point P.)

Screen

(a)

Parallel light

(b) 3

Fig. 1-3 Simple harmonic motion as the projection in
its own plane of uniform circular motion.

Periodic motions



In Fig. 1-3(b) we indicate the way in which the end point of the
rotating vector OP can be projected onto a diameter of the circle.
In particular we choose the horizontal axis Ox as the line along
which the actual oscillation takes place. The instantaneous posi-
tion of the point P is then defined by the constant length 4 and
the variable angle 6. It will be in accord with our usual conven-
tions for polar coordinates if we take the counterclockwise
direction as positive; the actual value of 6 can be written

0=wt+a

where a is the value of § at ¢ = 0.
As specified above, the displacement x of the actual motion
is given by

x = Acos 8 = Acos(wt + a) (1-3)

Superficially, this equation differs from our initial description of
simple harmonic motion according to Eq. (1-1). We can, how-
ever, readily satisfy the requirement that they be identical, be-
cause for any angle § we have

. T
cos @ = sin (0 + 5)

The identity of Egs. (1-1) and (1-3) requires

Asin(wt + ¢o) = Acos(wt + a)
ie.,

sin(w? + ¢o) = sin (wt + a4 7_2r>

The sines of two angles are equal if the angles are equal or if
they differ by any integral muitiple of 2x. Taking the simplest
of these possibilities, we can thus put

po=oa+7 (-4

The equivalence of Egs. (1-1) and (1-3) subject to the above
condition allows us to describe any simple harmonic vibration
equally well in terms of a sine or a cosine function. In much of
our future analysis, however, it will prove to be extremely profit-
able to fix upon the cosine form, so as to exploit the description
of the displacement as the projection of a uniformly rotating
vector on the reference axis of plane polar coordinates, The use
of this approach in all its richness hinges upon some mathematical
ideas which will be the subject of the next sections.

The rotating-vector representation



ROTATING VECTORS AND COMPLEX NUMBERS

The use of a uniform circular motion as a purely geometrical
basis for describing SHM embodies more than we have so far
chosen to recognize. This circular motion, once we have set it up,
defines SHM of amplitude 4 and angular frequency w along any
straight line in the plane of the circle. In particular, if we imagine
a y axis perpendicular to the real physical axis Ox of the actual
motion, the rotating vector OP defines for us, in addition to the
true oscillation along x, an accompanying orthogonal oscillation
along y, such that

x = Acos(wt + a)

y = Asinfwt + ) (1-5)

And even though this motion along y has no actual existence, we
can proceed precisely as if we were dealing always with the motion
of a point in two dimensions, as described by equations (1-5),
provided that, at the end, we extract only the x component, be-
cause this is the physically meaningful result of the motion
thus described.

Fig. 1-4 Cartesian
and polar representa-
tions of a rotating
vector.

There exists an unambiguous way of establishing and main-
taining the distinction between the physically real and the physi-
cally unreal components of the motion. Suppose that a vector
OP (Fig. 1-4) has the plane polar coordinates (7, §). The rectan-
gular (Cartesian) components (x, y) are, of course, defined by
the following equations:

x =rcosf y = rsinf

10 Periodic motions
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The complete vector r can then be expressed as the vector sum
of these two orthogonal components. If we chose to employ the
customary notation of vector analysis, we would introduce a
unit vector i to denote displacement along x, and a unit vector j
to denote displacement along y. We should then put

r=ix+jy
But without any sacrifice of informational content, we can define
the vector by means of the following equation:

r=x-+jy (1-6)

All that is required is an initial convention by which it is agreed
that Eq. (1-6) embodies the following statements:

1. A displacement, such as x, without any qualifying factors,
is to be made in a direction parallel to the x axis.

2. The term jy is to be read as an instruction to make the
displacement y in a direction parallel to the y axis. It is, in fact,
customary to dispense with the usual vector symbolism altogether,
by introducing a quantity z, understood to be the result of adding
Jy to x—i.e., identical with r as defined above. Thus we put

z=x+4jy a-7n

We now proceed to broaden the interpretation of the symbol j, by
reading it as an instruction to perform a counterclockwise rotation
of 90° upon whatever it precedes. Consider the following specific
examples:

a. To form the quantity jb, we step off a distance b along the
x axis and then rotate through 90° so as to end up with a dis-
placement of length b along y.

b. To form the quantity j2b we first form jb, as above, and
then apply to it a further 90° rotation—i.e., we identify j?b as
Jj(jb). But this at once leads to an important identity. Two suc-
cessive 90° rotations in the same sense convert a displacement b
(along the positive x direction) into the displacement —b. Hence
we set up the algebraic identity

2=~ (1-8)
The quantity j itself can thus be regarded, algebraically speaking,

as a square root of —1. (And —j is another square root, also
satisfying the above equation.)’

1The use of the symbol j for +/—1 has emerged rather naturally from our
quasi-geometrical approach. Very often, however, in mathematics texts, one
will find the symbol i used for this purpose. Physicists and engineers tend to

Rotating vectors and complex numbers



(@) (b)
Fig. 1-5 (a) Representation of a vector in the complex plane.
(b) Multiplication of z by j is equivalent to a 90° rotation.

c. Suppose we take a vector z having an x component of
length @ and a y component of length b (Fig. 1-52). What is jz?

We have
z=a-+tjb
jz = ja + j*b
= ja + (—b)

The summation of the new vector components on the right of the
above equation is shown in Fig. 1-5(b). The recipe is consistent!
The resultant vector jz is obtained from the original vector z
just by the extra rotation of 90°.

Whether or not you have been introduced to this kind of
analysis previously, you will be able to recognize that we are
walking along a dividing line—or, more properly, a bridge—
between geometry and algebra. If the quantities a and b are real
numbers, as we have assumed in example c, then the combination
z = a + jb is what is known as a complex number. But in
geometrical terms it can be regarded as a displacement along an
axis at some angle 6 to the x axis, such that tan § = b/a, as is
clear from Fig. 1-5(a).

In this representation of a vector by a complex number, we
have an automatic way of selecting out the physically relevant
part for the purpose of analyzing simple harmonic motion. If,
after solving an oscillatory motion problem in these terms, we
obtain a final answer in the form z = a + jb, where a and b are
both real numbers, then the quantity a is the wanted quantity,
and b can be discarded.

prefer the j notation, so as to reserve the symbol i for electric current—a not
insignificant consideration because the mathematical techniques we are de-
veloping here find some of their most important uses in connection with
electrical circuit problems.

12 Periodic motions



A quantity of the form jb alone (with b real) is called purely
imaginary. From the standpoint of mathematics as such, this is
perhaps an unfortunate term, because in the extension of the
concept of number from real to complex an “imaginary” com-
ponent such as jb is on an equal footing with a real component
such as a. But as applied to the analysis of one-dimensional
oscillations, this terminology conforms perfectly, as we have
already seen, to the physically real and unreal parts of an imagined
two-dimensional motion.

INTRODUCING THE COMPLEX EXPONENTIAL

13

The preceding discussion may not seem to have added much to
our earlier analysis. But now we are ready for the chief character,
the mathematical function toward which this development has
been directed. This is the complex exponential function—or, to
be more specific, the exponential function in the case in which
the exponent is imaginary in the mathematical sense mentioned
at the end of the last section. After introducing this function, we
shall find that our efforts in doing so are repaid many times over
in terms of the ease of handling oscillatory problems. Not all of
these benefits will be apparent right away, but they will come to
be appreciated more and more as one digs deeper into the subject.

We begin by taking the series expansions of the sine and
cosine functions:

3 5

smo=o—§r+%~- (1-9)
2 4

cos()=l——g—'+%--- (1-10)

These expansions, if not already familiar, are readily developed
with the help of Taylor’s theorem.’
Let us now form the following combination:

02 0% ot

COSG+jsin0=l+j0—-2—!-—j§?+a—!-+"' (1-11)

1By Taylor’s theorem,
2
FX) = O + 3 @) + 3£ + -
Therefore,

2 3
sing = sin0+ecos0+%(—sin0) +%(cosO)---

2 93
cos 8 = cos0 + 8(—sin0) + %(—cosO) + ;(sin0)~ .-

Introducing the complex exponential



We have seen that —1 is expressible as j2, so the above equation
can be rewritten as follows:

2 3

cos 6 4 jsin® = 1 + jo + —(’20') + —(’3(’?

(108

n!

+...

+

4 .- (1-12)

But the right-hand side of this equation has precisely the form
of the exponential series, with the exponent set equal to j§. Thus
we are enabled to write the following identity:

cos @ -+ jsinf = e (1-13)
This is a very dramatic result, mathematically speaking, providing
a clear connection between plane geometry (as represented by
trigonometric functions) and algebra (as represented by the ex-
ponential function). R. P. Feynman has called it “this amazing
jewel . . . the most remarkable formula in mathematics.”? It was
set up by Leonhard Euler in 1748.

Fig. 1-6 Geometrical
X interpretation of
Euler’s relation,

i et = cos @ + jsiné.

Let us display the geometrical character of the result. Using
“real” and “imaginary” axes Ox, Oy (Fig. 1-6) we draw OA of
length equal to cos 8, and AP of length equal to sin §. The vector
sum of these is OP; it is clearly of length unity and it makes the
angle 6 with the x axis. More generally, the multiplication of
any complex number z by e’ is describable, in geometrical terms,
as a positive rotation, through the angle 8, of the vector by which
z may be represented—without any alteration of its length. (Exer-
cise: Verify this.)

USING THE COMPLEX EXPONENTIAL
Why should the introduction of Eq. (1-13) be such an important

1IR. P. Feynman, R. B. Leighton, and M. L. Sands, Feynman Lectures on
Physics, Vol. I, Addison-Wesley, Reading, Mass., 1963.
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contribution to the analysis of vibrations? The prime reason is
the special property of the exponential function—its reappearance
after every operation of differentiation or integration. For the
problems that we shall be concerned with are problems involving
periodic displacements and the time derivatives of these displace-
ments. If, as often happens, the basic equation of motion contains
terms proportional to velocity and acceleration, as well as to
displacement itself, then the use of a simple trigonometric function
to describe the motion leads to an awkward mixture of sine and
cosine terms. For example:

If
x = Acos(wt + a)
then
dx .
i —wA sin(wt + )
-‘;—j;f = —w’4 cos(wt + a)

On the other hand, if we work with the combination x + jy,
with x and y as given by equations (1-5), we have the following:

z = Acos(wt + @) + jA4sin(wt + )

2 = Agittn

real part of z!

=
]

dz i(wt+a) .
= = jwAde'" = jwz
ar Jow J

d*z 2 . j 2
BT2‘ = (jw) Ae:(wl-}-a) = - 2Z

These three vectors are shown in Fig. 1-7 (using three separate
diagrams, because quantities of three physically different kinds—
displacement, velocity, acceleration—are being described). In
each case the physically relevant component is recognizable as
being the real component of the vector in question, and the phase
relationships are visible at a glance (given the result that each
factor of j is to be read as an advance in phase angle by 7/2).
This is a very trivial example that does not really display the

10ften abbreviated Re(z).

15 Using the complex exponential



PROBLEMS
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placement vector z )
and its real projection dxldt
x. (b) Velocity vector
dz/dt and its real
projection dx/dt.
(¢) Acceleration vec-
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power of the method, but we shall come to some more substantial
applications quite shortly.

de
th

1-1 Consider a vector z defined by the equation z = z,z2, where
zy =a+ jb,z2 = ¢ + jd.

(a) Show that the length of z is the product of the lengths of
zZy and Z9.

(b) Show that the angle between z and the x axis is the sum of
the angles made by z; and z2 separately.

1-2 Consider a vector z defined by the equation z = z3/z2 (z2 7 0),
where z; = a + jb, z2 = ¢ + jd.

(a) Show that the length of z is the quotient of the lengths of z;
and z2.

(b) Show that the angle between z and the x axis is the difference
of the angles made by z; and z2 separately.

1-3 Show that the multiplication of any complex number z by e is
describable, in geometrical terms, as a positive rotation through the
angle 0 of the vector by which z is represented, without any alteration
of its length.

1-4 (a) If z = Ae’, deduce that dz = jz df, and explain the meaning
of this relation in a vector diagram.

(b) Find the magnitudes and directions of the vectors 2 + jv/3)
and 2 — V/3)2.

16 Periodic motions
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1-5 To take successive derivatives of e”® with respect to 6, one merely
multiplies by j:

‘-1‘% (4e”) = jAe”

Show that this prescription works if the sinusoidal representation
e’® = cos 6 + jsin @ is used.

1-6 Given Euler’s relation e® = cos # + jsin 0, find
(a) The geometric representation of e~
(b) The exponential representation of cos 8.
(c) The exponential representation of sin 8.

1-7 (a) Justify the formulas cosf = (e?® + e=#)/2 and sinf =
(e® — e—%)/2j, using the appropriate series.

(b) Display the above relationships geometrically by means of
vector diagrams in the xy plane.

1-8 Using the exponential representations for sin # and cos 8, verify
the following trigonometric identities:

(a) sin?9 + cos20 = 1 (b) cos? # — sin?6 = cos 20

(c) 2sin@cosf = sin 20

1-9 Would you be willing to pay 20 cents for an object valued by a
mathematician at $7? (Remember that cos § + jsinf = )

1-10 Verify that the differential equation d2y/dx2 = —ky has as its
solution

y = Acos(kx) + B sin(kx)

where 4 and B are arbitrary constants. Show also that this solution
can be written in the form

y = Ccos(kx + &) = C Re[e*r+®] = Re[(Ce’*)e**]
and express C and a as functions of 4 and B.

1-11 A mass on the end of a spring oscillates with an amplitude of
5 cm at a frequency of 1 Hz (cycles per second). At ¢ = 0 the mass is
at its equilibrium position (x = 0).

(a) Find the possible equations describing the position of the
mass as a function of time, in the form x = 4 cos(wt + «), giving the
numerical values of 4, w, and a.

(b) What are the values of x, dx/dt, and d?x/dt? at t = § sec?

1-12 A point moves in a circle at a constant speed of 50 cm/sec. The
period of one complete journey around the circle is 6 sec. At r =0
the line to the point from the center of the circle makes an angle of 30°
with the x axis.

(a) Obtain the equation of the x coordinate of the point as a
function of time, in the form x = A4 cos(wt + «), giving the numerical
values of 4, w, and a.

(b) Find the values of x, dx/dt, and d?x/dt® at t = 2 sec.

Problems



*“. . . That undulation, each way free —
It taketh me.”

MICHAEL BARSLEY (1937), On his Julia, walking
(After Robert Herrick)
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The superposition

of

periodic motions

SUPERPOSED VIBRATIONS IN ONE DIMENSION

MANY PHYSICAL situations involve the simultaneous application
of two or more harmonic vibrations to the same system. Exam-
ples of this are especially common in acoustics. A phonograph
stylus, a microphone diaphragm, or a human eardrum is in
general being subjected to a complicated combination of such
vibrations, resulting in some over-all pattern of its displacement
as a function of time. We shall consider some specific cases of
this combination process, subject always to the following very
basic assumption:

The resultant of two or more harmonic vibrations will be taken
to be simply the sum of the individual vibrations. 1In the present
discussion we are treating this as a purely mathematical problem.
Ultimately, however, it becomes a physical question: Is the dis-
placement produced by two disturbances, acting together, equal
to the straightforward superposition of the displacements as they
would be observed to occur separately? The answer to this
question may be yes or no, according to whether or not the dis-
placement is strictly proportional to the force producing it. If
simple addition holds good, the system is said to be /inear, and
most of our discussions will be confined to such systems. As we

19



have just said, however, we are for the moment addressing our-
selves to the purely mathematical problem of adding two (or
more) displacements, each of which is a sinusoidal function of
time; the physical applicability of the results is not involved at
this point.

TWO SUPERPOSED VIBRATIONS OF EQUAL FREQUENCY

Suppose we have two SHM’s described by the following equations:
x1 = Ay cos(wt + ay)
x2 = Az cos(wt + ag)

Their combination is then as follows:
x = x1 + x2 = Aj cos(wt + a1) + Az cos(wt + ag) 2-1)

It is possible to express this displacement as a single harmonic
vibration:

x = Acos(wt + a)

The rotating-vector description of SHM provides a very nice way
of obtaining this result in geometrical terms. In Fig. 2-1(a) let
OP; be a rotating vector of length A, making the angle (wf + 1)
with the x axis at time . Let OP; be a rotating vector of length
A at the angle (wf + a2). The sum of these is then the vector
OP as defined by the parallelogram law of vector addition. As
OP, and OP; rotate at the same angular speed w, we can think
of the parallelogram OPPP; as a rigid figure that rotates bodily
at this same speed. The vector OP can be obtained as the vector

F P
P,
A,
A 2
(s — )
f K B/ A,
P,
wt + « wl + oy
X X
Q N, N O
(a) (b)

Fig. 2-1 (a) Superposition of two rotating vectors of
the same period. (b) Vector triangle for constructing
resultant rotating vector.
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sum of OP; and PP (the latter being equal to OP;3). Since
4LN,OP, = wt + a;, and LKP,P = wt + a3, the angle be-
tween OP; and PP is just ¢z — ;. Hence we have

A2 = A12 4+ A22 + 24142 cos(as — a1)

The vector OP makes an angle 8 [see Fig. 2-1(b)] with the vector
OP,, such that

AsinfB = Azsin(ae — ay)
and the phase constant « of the combined vibration is given by
a=a;+8

Use of the complex exponential formalism takes us, very directly,
to these same results. The rotating vectors OP; and OP; are
described by the following equations:

z1 = Ajeilwtten)
Z9 = A2el'(‘dt+a2)

Hence the resultant is given by
z=2; + Zg = Alei(wt+a1) + A2ei(wt+a2)

Observe the advantage of using the exponential form, which
allows us to take out the common factor exp j(wt + a;):

z = elwited[4; 4 Aaelle2—)] -2

Remembering that e’ is just an instruction to apply a positive
rotation through the angle 6, we see that the combination of
terms in square brackets specifies that a vector of length A, is
to be added at an angle (a3 — a,) to a vector of length 4;, and
the initial factor exp [j(wt + a;)] tells us that this whole diagram
is to be turned to the orientation shown in Fig. 2-1(b). If one
did not take advantage of these geometrical techniques, the task
of combining the two separate terms in Eq. (2-1) would be tire-
some and much less informative.

In general the values of 4 and « for the resultant disturbance
cannot be further simplified, but the special case in which the
combining amplitudes are equal is worth noting. If we denote the
phase difference (a3 — a;) between the two vibrations as §, then
from the geometry of the vector triangle in Fig. 2-1(b) one can
read off, more or less by inspection, the following results:

8
8=3

5 (2-3)
A = 2A41cos = 24, cos <§)

21 Two superposed vibrations of equal frequency
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e
Microphone

Fig. 2-2 Array to detect phase difference as function
of microphone position in the superposition of signals
Jfrom two loudspeakers.

A combination very much of this kind occurs if two identical
loudspeakers are driven sinusoidally from the same signal gener-
ator and the sound vibrations are picked up by a microphone at
a fairly distant point, as indicated in Fig. 2-2. If the microphone
is moved along the line OB, the phase difference & increases
steadily from an initial value of zero at O. If the wavelength of
the sound waves is much shorter than the separation of the
speakers, the resultant amplitude 4 may be observed to fall to
zero at several points between O and B, and rise to its maximum
possible value of 24, at other points midway between the zeros.
(We shall discuss such situations in more detail in Chapter 8.)

SUPERPOSED VIBRATIONS OF DIFFERENT
FREQUENCY; BEATS

22

Let us now imagine that we have two vibrations of different

Fig. 2-3 Superposi-
tion of rotating vec-
rors of different
periods.

The superposition of periodic motions



amplitudes 4;, As, and also of different angular frequencies
w1, we. Clearly, in contrast to the preceding example, the phase
difference between the vibrations is continually changing. The
specification of some initial nonzero phase difference is in general
not of major significance in this case. To simplify the mathe-
matics, let us suppose, therefore, that the individual vibrations
have zero initial phase, and hence can be written as follows:

x1 = Ai1coswit
xg2 = Asg cos wat

At some arbitrary instant the combined displacement will then
be as shown (OX) in Fig. 2-3. Clearly the length OP of the
combined vector must always lie somewhere between the sum and
the difference of 4, and A; the magnitude of the displacement

- T >

el 11
VIAVAYRYATATAVAYAL

4+
100/sec

50/sec

0.01 0.02
1. sec

Fig. 2-4 Superposition of two sinusoids with com-

mensurable periods (T, = 1/450 sec, T2 = 1/100 sec.)

(Photo by Jon Rosenfeld, Education Research Center,
M.IT).

Superposed vibrations and beats
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OX itself may be anywhere between zero and 4, + A..

Unless there is some simple relation between w, and w,, the
resultant displacement will be a complicated function of time,
perhaps even to the point of never repeating itself. The condition
for any sort of true periodicity in the combined motion is that
the periods of the component motions be commensurable—i.e.,
there exist two integers n; and n, such that

T =nmT) = noT2 (2-4)
The period of the combined motion is then the value of T as
obtained above, using the smallest integral values of #; and ng
for which the relation can be written.!

Even if the periods or frequencies are expressible as a ratio
of two fairly small integers, the general appearance of the motion
is not particularly simple. Figure 2-4 shows two component
sinusoidal vibrations of 450 and 100 Hz, respectively. The

repetition period is 0.02 sec, as may be inferred from the condition
=L _ N2
450 100
which requires n; = 9, no = 2, according to Eq. (2-4).

In those cases in which a vibration is built up of two com-
mensurable periods, the appearance of the resultant may depend
markedly on the relative initial phase of the combining vibrations.
This effect is illustrated in Figs. 2-5(a) and (b), both of which
make use, in the manner shown, of combining vibrations with
given values of amplitude and frequency. Only the phase rela-
tionship differs in the two cases. Interestingly enough, if these
were vibrations of the air falling upon the eardrum, the aural
effects of the two combinations would be almost indistinguishable.
It appears that the human ear is rather insensitive to phase in a
mixture of harmonic vibrations; the amplitudes and frequencies
dominate the situation, although significantly different aural
effects may be produced if the different phase relationships lead
to drastically different waveforms, as can happen if many fre-
quencies, rather than just two, are combined with particular phase
relationships.

If two SHM’s are quite close in frequency, the combined
disturbance exhibits what are called beats. This phenomenon can
be described as one in which the combined vibration is basically a
disturbance having a frequency equal to the average of the two
1If, for example, the ratio /w2 were an irrational (e.g., +/2), there would

exist no time, however long, after which the preceding pattern of displacement
would be repeated.

The superposition of periodic motions



400/sec

AVAVAV:VAVA
o = [NVOVAVAVAVAV:VAVAVAY
L AR A L

400/sec

600/sec
(b)

1=0

Fig. 2-5 (a) Superposition of two commensurable
sinusoids, of frequencies 400 sec=! and 600 sec™1,
whose maxima coincide at t = 0. (b) Superposition of
same sinusoids if their zeros coincide at t = 0. (Photos
by Jon Rosenfeld, Education Research Center, M.I.T.)

combining frequencies, but with an amplitude that varies peri-
odically with time—one cycle of this variation including many
cycles of the basic vibration.

The beating effect is most easily analyzed if we consider the
addition of two SHM’s of equal amplitude:

x1 = Acoswil

x2 = ACOS wal

Then by addition we get!
= 24008 (452 1) cos (2 1-22/) -9

1You may wish to recall the following trigonometric results:

cos (6 + ¢) = cos 6cos ¢ — sin Osin ¢
cos (6 — ¢) = cos 6cos ¢ + sin 6 sin ¢ (continued)
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Fig. 2-6 Superposition of sinusoids of nearly equal frequency
(600 sec and 700 sec—*) to produce beats. (Photo
by Jon Rosenfeld, Education Research Center, M.I.T.)

Clearly this addition, as a purely mathematical result, can be
carried out for any values of w; and w,. But its description as a
beat phenomenon is physically meaningful only if |w; — ws| K
wy + wq; i.e., if, over some substantial number of cycles, the
vibration approximates to sinusoidal vibration with constant
amplitude and with angular frequency (w; + ws)/2.

Figure 2-6 displays graphically the result of combining two
vibrations with a frequency ratio of 7:6. This is about as large a
ratio as one could have and still refer to the combination as a
beat vibration. It may be seen that the combined displacement
can be fitted within an envelope defined by the pair of equations

x = 24 cos (“" ; w2 t) (2-6)

because the rapidly oscillating factor in Eq. (2-5)—ie.,
cos(w; + wsq)t/2—always lies between the limits =+1, and
Eq. (2-6) describes a relatively slow amplitude-modulation of this
oscillation. If one refers to Fig. 2-6, one sees that the time be-
tween successive zeros of the modulating disturbance is one half-
period of the modulating factor as described by Eq. (2-6), i.e.,
a time equal to 27/(Jw; — ws|). This has the consequence that

Therefore,
cos (@ + ¢) + cos (@ — ¢) = 2cos 8 ¢cos ¢
In this identity, let 8 + ¢ = «, 8 — ¢ = 8. Then

cosa +cosB = 2cos(a jﬂ)cos(a ;ﬂ)

In the case under discussion, we put & = wit, B = waf.
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the beat frequency—as observed aurally, e.g., from two tuning
forks—is simply the difference of their individual frequencies and
not half this frequency, as might be suggested by a first glance at
Eq. (2-5). Thus, to take a specific case, if two tuning forks side
by side are vibrating at 255 and 257 vibrations per second, their
combined effect would be that of middle C (256 vibrations per
second) passing through a maximum of loudness twice every
second.

MANY SUPERPOSED VIBRATIONS OF THE SAME FREQUENCY'

27

The procedures that we have been describing can readily be
extended to an arbitrarily large number of combining vibrations.
The general case is of no great importance, but one situation, in
particular, is of great interest and wide application. It is the case
in which one has a superposition of a number of SHM’s, all of
the same frequency and amplitude, and with equal successive
phase differences. This problem has special relevance to the
analysis of multiple-source interference effects in optics and other
wave processes.

The situation is represented in Fig. 2-7. 'We suppose that
there are N combining vibrations, each of amplitude 4, and
differing in phase from the next one by an angle 8. Let the first

Fig. 2-7 Superposi-
tion of several rotat-
ing vectors of same
period and constant
incremental phase
differences.

1This section may be omitted without loss of continuity.
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of the component vibrations be described, for simplicity, by
the equation

x = Ao cos wt
The resultant disturbance will be given by the equation
X = Acos(wt + a)

From the geometry of Fig. 2-7, we can see that the combining
vectors form successive sides of an (incomplete) regular polygon.
Any such polygon can be imagined to be inscribed in a circle,
having some radius R and with its center at a point C. All the
corners (as, for example, the points X and L) lie on the circle,
and the angle subtended at C by any individual amplitude A4,
(e.g., KL) is equal to the angle & between adjacent vectors. Hence
the total angle OCP, subtended at C by the resultant vector A, is
equal to N5. We can then write the following geometrical
statements:

A
Ao

2R sin(N §/2)
2R sin(5/2)

Therefore,
sin(N 8/2)

A = A=56/2)

(27

Also, for the phase angle a through which the resultant A is
rotated relative to the first component vector, we have

a=-LCOB - LCOP

with
ZCOB = 90° — g
ZCOP = 90° — <N76)
Therefore,
a= (L—_l)_& 2-8)

2

Hence the resultant vibration along the x axis is described by the
following equation:
sin(N §/2) (N — 1)5]
sin(3/2) 2
This equation is basic to the analysis of the behavior of a diffrac-
tion grating, which acts precisely as a device to obtain from a

X = Ao cos [wt + 2-9)

28 The superposition of periodic motions



single beam of light a very large number of equal disturbances
with equal phase differences.

COMBINATION OF TWO VIBRATIONS AT RIGHT ANGLES

Fig. 2-8 Geometrical
representation of the
superposition of sim-
Dple harmonic vibra-
tions at right angles.

29

Everything we have discussed so far has been concerned with
harmonic motion along one physical dimension only, even
though in analyzing it we have introduced the helpful concept
of a vector rotating in a plane, such that the projection of the
vector on a certain defined direction should represent the actual
motion. We shall now discuss the essentially different problem
of combining two real harmonic vibrations that take place along
perpendicular directions, so that the resultant real motion is a
true two-dimensional motion. This is a problem of considerable
physical interest, and is appropriately discussed here because the
analysis of it draws upon the same techniques that we have
been using earlier in this chapter. The type of motion that we
are about to discuss can be extended in a straightforward way to
three-dimensional oscillations, such as one must in general sup-
pose possible—as, for example, in the case of an atom elastically

y
+4,
P
—A, +A'X
0
] —As !
{ I I
i 1 I
1 i
} ]
| Py
| :
A i
I : :
| i
i
C, X
Kou.t + oy

Combination of two vibrations at right angles



bound in the essentially three-dimensional structure of a crystal
lattice.

We now suppose, therefore, that a point experiences the
following displacements simultaneously:

A1 cos(wit + ay1)

y = Az cos(wat + a2)

We can construct this motion by means of a double application
of the rotating-vector technique. The way of doing this is dis-
played in Fig. 2-8. We begin by drawing two circles, of radii 4,
and A, respectively. The first is used to define the x displacement
C 1 X of the point P;. The second is used to define the y displace-
ment C,Y of the point P,. The two displacements together
describe the instantaneous position of the point P with respect
to an origin O that lies at the center of a rectangle of sides 24;
and 24 2.

One feature is immediately apparent. Whatever the relation
between the frequencies and the phases of the two combining
motions, the motion of the point P is always confined within the
rectangle, and also the sides of this rectangle are tangential to the
path at every point at which the path touches these boundary
lines.! We cannot say much more than this without specifying
something about the frequencies and phases, except for a general
comment about what happens if w; and ws are not commensu-
rable. In any such case, the position of P will never repeat itself,
and the path, if continued for long enough, will, from a physical
standpoint even if not from a strictly mathematical one, tend to
fill the whole interior of the bounding rectangle.

The most interesting examples of these combined motions
are those for which the frequencies are in some simple numerical
ratio and the difference of the initial phases is some simple frac-
tion of 27. One then has a motion that forms a closed curve in
two dimensions, with a period that is the lowest common multiple
of the individual periods. The problem is best discussed in terms
of specific examples, so let us look at a few.

x (2-10)

PERPENDICULAR MOTIONS WITH EQUAL FREQUENCIES

By a suitable choice of what we call # = 0, we can write the com-
bining vibrations in the following simple form:

1Except, perhaps, when the resultant motion goes into the corners of the
rectangle, in which case the geometric conditions at the corners are not
clearly defined.
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A1 cos wt
Ag cos(wt 4+ 8)

x
y

where § is thus the initial phase difference (and in this case the
phase difference at all later times, too) between the motions. By
specializing still further, to particular values of §, we can quickly
build up a qualitative picture of all possible motions for which
the combining frequencies are equal:

a. § = 0. In this case,

x = Aj cos wt
y = A2 cos wt

Therefore,
= A2
y = A

The motion is rectilinear, and takes place along a diagonal of
the rectangle such that x and y always have the same sign, both
positive or both negative. This represents what in optics is called
a linearly polarized vibration.

b. § = 7/2. We now have
x = A1 Ccos wt
y = Az cos(wt + 7/2) = — Az sin wt

The shape of this path is readily obtained by making use of the
fact that sin? wz + cos? w¢ = 1. This means that

o2 5

Azt e~
which is the equation of an ellipse whose principal axes lie along
the x and y axes.

Notice, however, that the equations tell us more than this.
We are dealing with kinematics, not geometry, and the ellipse is
described in a definite direction. As ¢ begins to increase from
zero, x begins to decrease from its greatest positive value, and y
immediately begins to go negative, starting from zero. This
means that the elliptical path takes place in the clockwise direction.

1

c. § = m. We now have

x = A cos wt

y = Az cos(wt + w) = — A2 cos wt
Therefore,
__ A
y = A X

Perpendicular motions with equal frequencies



Fig. 2-9 Superposi-

tion of simple har-
monic vibrations at
right angles with

initial phase difference

of n/4.
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This motion is like case a, but is along the other diagonal of the
rectangle.

d. # = 3w/2. This gives us

x = Aj cos wt
K7 d .
y = Az cos wt+—2— = +A; sin wt

We have an ellipse of the same form as in case b, but the motion
is now counterclockwise.

e. & = w/4. Note that we are jumping back here to the case
of a phase difference between 0 and =/2, i.e., intermediate be-
tween cases a and b. It is a less obvious case than those just
discussed, and lends itself to the graphical construction of
Fig. 2-8. The application of the method to this particular case
is shown in Fig. 2-9. The positions of the points P;, Po, on the
two reference circles are shown at a number of instants separated
by one eighth of a period (i.e., 7/4w). The points are numbered
in sequence, beginning with z = 0, when C,P,; (see Fig. 2-8) is
parallel to the x axis and C3 P is at the angle 8, i.e., 45°, measured
counterclockwise from the positive y axis. The projections from
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Fig. 2-10 Superposition of two perpendicular simple
harmonic motions of the same frequency for various
initial phase differences.

these corresponding positions of P, and P, then give us a set of
intersections, as shown in Fig. 2-9, representing the instantaneous
positions of the point P as it moves within the rectangle. The
locus defined by these points is an ellipse, on inclined axes,
described clockwise. The analytic equation of this ellipse can
be found, if desired, by eliminating 7 from the defining equations
for x and y:

x = Aj cos wt
y = Ascos(wt + w/4)

A2 Az .
= ——COsw!f — —— sIn wt

With the help of this last example, we can see how the pattern
of this combined motion develops as we imagine the phase differ-
ence & to increase from zero to 2x. Starting out from the linear
diagonal motion at & = 0, the motion becomes a clockwise
elliptical motion, opening up to a maximum width for & = 7/2,
and then closing down until at § = = we have linear motion
along the other diagonal. Beyond & = = we pass through a
similar sequence of elliptical motions (all of them now counter-
clockwise, however) until at & = 2 we are back at a situation
indistinguishable from & = 0. This sequence of motions is
illustrated in Fig, 2-10.
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Fig. 2-11 Abbrevi-
ated construction for

superposition of 6 28
vibrations at right 4,
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In all such problems the graphical method provides an
excellent way of constructing the resultant motion. As in the
example last discussed, the procedure is to mark on the reference
circles a set of points corresponding to successive equal increments
of time, and in particular to convenient submultiples of the
period, such as eighths or twelfths or sixteenths. Once one is
familiar with the process involved, one can make a more compact
diagram by taking the bounding rectangle and simply constructing
a semicircle on two adjacent sides. To illustrate this, let us take
the case w; = wg, § = 7/4, once again. With the division of
the reference circles into even submultiples of 2x, two different
points on the circle project to give the same value of the displace-
ment. Thus by drawing just a semicircle, one can convey as much
information as with the full circle, but many of the points are
used twice over, as indicated in Fig. 2-11. Once the points on the
reference circles have been numbered according to the correct
time sequence, the intersections that define the coordinate of the
actual motion are obtained just as before. (To avoid confusion
in this more condensed version of the diagram, we have used
letters rather than numbers to identify these intersections—
a=1,5b= 2 etc.)

Even if the instants chosen do not correspond to even sub-
multiples of the total period (or even to equal submultiples) we
can still indicate on the semicircle the correct sequence of points
corresponding to one complete tour around the reference circle.
It just involves imagining that the circle has been folded in half
along its principal diameter—i.e., the diameter parallel to the
component of the motion that this circle describes. But it econo-
mizes effort to pair off the points as we have done above.

The superposition of periodic motions



PERPENDICULAR MOTIONS WITH DIFFERENT FREQUENCIES;
LISSAJOUS FIGURES

Fig. 2-13 Lissajous
figures for w2 = 2w

with various initial
phase differences.
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It is a simple exercise, and a quite entertaining one, to extend
the above analysis to motions with different frequencies. We
give a few examples to illustrate the kind of results obtained.

Fig. 2-12 Construc-
tion of a Lissajous
figure.

In Fig. 2-12 we show the construction that one can make
ifws = 2w; and § = =/4. We have chosen to divide the reference
circle for the motion of frequency w, into eight equal time inter-
vals, i.e., into arcs subtending 45° each. During one complete
cycle of w4, we go through only a half-cycle of w,, and the points
on the reference circles are marked accordingly, taking account
of the assumed initial phase difference of 45°. To obtain one
complete period of the combined motion it is, of course, necessary
to go through a complete cycle of wy; this requires that, after
reaching the point marked “9,” we retrace our steps along the
lower semicircle and proceed for a second time through all the
points corresponding to a complete tour around the wg circle.
In this way we end up with a closed path which crosses itself at
one point and would be indefinitely repeated. Such a curve is
known as a Lissajous figure, after J. A. Lissajous (1822-1880),
who made an extensive study of such motions. If one introduces

= 2w,

AVIVTATA

s=ml4 s=m/2 8= 3nl4 8=

Perpendicular motions and Lissajous figures



a slow decay of amplitude with time the patterns become still
more exotic and have an esthetic appeal all their own. In Fig. 2-13
we show a set of such curves, all for wy = 2w,, with initial phase
differences of various sizes.

As one goes to more complicated frequency ratios, the re-
sulting curves tend to become more bizarre, and Fig. 2-14 shows
an assortment of examples. Such patterns are readily generated,
with flexible control over amplitudes, frequencies, and phases,
by applying different sinusoidal voltages to the x and y deflection
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Fig. 2-14 Lissajous
figures: various fre-
quency ratios with
various differences of
phase. (After J. H.
Poynting, J. J. Thom-
son, and W. S.
Tucker, Sound,
Griffin, London,
1949.)
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plates of a cathode-ray oscilloscope. Except in those cases where
the Lissajous figure goes into the exact corners of the bounding
rectangle, the ratio of the combining frequencies can be found by
inspection; it is given by the ratio of the numbers of tangencies
made by the figure with the adjacent sides of the rectangle. You
should satisfy yourself of the theoretical justification of this
result, and you can check its application to the various curves
of Fig. 2-14.

COMPARISON OF PARALLEL AND PERPENDICULAR SUPERPOSITION

It is perhaps instructive to make a direct comparison of the
superposition of two harmonic vibrations along the same line,
and the superposition of the same vibrations in the orthogonal
arrangement that leads to Lissajous figures. We have tried to
display this relationship in Fig. 2-15, for the simple case of two
vibrations of the same frequency and equal amplitudes. The
figure shows two sinusoidal vibrations combined for various
phase differences between zero and =. The lowest two curves of
each group show the individual original displacements as y
deflections on a double-beam oscilloscope with a linear time
base. Above each pair of curves is the sinusoid resulting from
the direct addition of these two y deflections. Finally, we show
the Lissajous pattern obtained by switching off the time base of
the oscilloscope and applying the two primary sinusoidal signals
to the x and y plates.

If the two primary signals are given by A cosw? and
A cos (wt + 8), we have the following results:

Parallel Superposition
y1 = A cos wt
ye = A cos (wt + 8)
) )
y=y1+y = (2A cos 5) cos (wt -+ 5)

[Note the smooth decrease of amplitude in proportion to cos (§/2)
as § increases from zero to =.]

Perpendicular Superposition

x = A cos wt
y = Acos (wt + §)
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(a) (b) (c)

&=137n/4 o=

(d) (e)

Fig. 2-15 Comparison of the results of adding two
harmonic vibrations (a) along the same line; (b) at

right-angles to form Lissajous patterns. (Photos by
Jon Rosenfeld, Education Research Center, M.LT.).
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PROBLEMS

Eliminating the explicit time dependence, we have
x2 — 2xpcos § + y% = A2sin? g,

defining an elliptic curve which degenerates into a straight line
for § = 0 or =, and into a circle for 8§ = x/2, as shown in the
photographs.

2-1 Express the following in the form z = Re[4eiw¢+2]
(a) z = sin wf + cos wt.

(b) z = cos(wt — w/3) — cos wt.
(¢) z = 2sinwt + 3 cos wt.
(d) z = sinwt — 2 cos(wt — w/4) + cos wt.

2-2 A particle is simultaneously subjected to three simple harmonic
motions, all of the same frequency and in the x direction. If the
amplitudes are 0.25, 0.20, and 0.15 mm, respectively, and the phase
difference between the first and second is 45°, and between the second
and third is 30°, find the amplitude of the resultant displacement and
its phase relative to the first (0.25-mm amplitude) component.

2-3 Two vibrations along the same line are described by the equations

y1 = Acos 10t
yo = Acos 12xn¢

Find the beat period, and draw a careful sketich of the resultant dis-
turbance over one beat period.

2-4 Find the frequency of the combined motion of each of the
following:

(a) sin(2rt — V/2) + cos(2x o).

(b) sin(127p) + cos(13wt — = /4).

(c) sin(3r) — cos(wt).

2-5 Two vibrations at right angles to one another are described by
the equations

x = 10 cos(5w1)

y = 10cos(10rt + m/3)
Construct the Lissajous figure of the combined motion.

2-6 Construct the Lissajous figures for the following motions:
(@) x = cos 2wt, y = sin 2wt.
(b) x = cos 2wt,y = cosRuwt — w/4).
(€) x = cos2wt, y = cos wt.

39 Problems



It is very evident that the Rule or Law of Nature in every
springing body is, that the force or power thereof to
restore it self to its natural position is always proportionate
to the Distance or space it is removed therefrom, whether
it be by rarefaction, or separation of its parts the one
Jrom the other, or by a Condensation, or crowding of those
parts nearer together. Nor is it observable in these bodies
only, but in all other springy bodies whatsoever, whether
Metal, Wood, Stones, baked Earths, Hair, Horns, Silk,
Bones, Sinews, Glass and the like. Respect being had to
the particular figures of the bodies bended, and to the
advantageous or disadvantageous ways of bending them.
ROBERT HOOKE, De Potentia Restitutiva (1678)



3
The free
vibrations of
physical systems

IN MAKING THE STATEMENT quoted opposite about the elastic
properties of objects, Robert Hooke rather overstated the case.
The restoring forces in any actual physical system are only ap-
proximately linear functions of displacement, as we noted near
the beginning of Chapter 1. Nevertheless, it is remarkable that
a vast variety of deformations of physical systems, involving
stretching, compressing, bending, or twisting (or combinations
of all of these) result in restoring forces proportional to displace-
ment and hence lead to simple harmonic vibration (or a super-
position of harmonic vibrations). In this chapter we shall con-
sider a number of examples of such motions, with particular
emphasis on the way in which we can relate the kinematic features
of the motion to properties that can often be found by purely
static measurement. We shall begin with a closer look at the
system that forms a prototype for so many oscillatory problems—
a mass undergoing one-dimensional oscillations under the type
of restoring force postulated by Hooke. Much of the discussion
in the next section will probably be familiar ground, but it is
important to be quite certain of it before proceeding further.

THE BASIC MASS-SPRING PROBLEM

In our first reference to this type of system in Chapter 1, we
characterized it as consisting of a single object of mass m acted
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Fig. 3-1 (a) Mass—
spring system,
(b) Mass-wire system,
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on by a spring [Fig. 3-1(a)] or some equivalent device, e.g., a
thin wire [Fig. 3-1(b)], that supplies a restoring force equal to
some constant k times the displacement from equilibrium. This
identifies, in terms of a system of a particularly simple kind, the
two features that are essential to the establishment of oscillatory
motions:

1. An inertial component, capable of carrying kinetic energy.
2. An elastic component, capable of storing elastic potential
energy.

By assuming that Hooke’s law holds we obtain a potential
energy proportional to the square of the displacement of the body
from equilibrium. By assuming that the whole inertia of the
system is localized in the mass at the end of the spring, we obtain
a kinetic energy equal to just mv2/2, where v is the speed of the
attached object. It should be noted that both of these assumptions
are specializations of the general conditions 1 and 2, and there
will be many instances of oscillatory systems to which these
special conditions do not apply. If, however, a system can be
regarded as being effectively a concentrated mass at the end of a
linear spring (“linear” referring to its elastic property rather than
to its geometry), then we can write its equation of motion in
either of two ways:

1. By Newton’s law (F = ma),

~kx = ma

2. By conservation of total mechanical energy (E),
$mv? + 3kx? = E
The second is, of course, the result of integrating the first
with respect to the displacement x, but both of them are differen-
tial equations for the motion of the system. It is important to be
able to recognize such differential equations wherever they emerge
from the analysis of a physical system. In explicit differential
form, they may be written as follows:
d’x
e

1 dx\? 17,2
am 7{ +§kx

Whenever one sees an equation analogous to either of the above,
one can conclude that the displacement x as a function of time
is of the form

+kx=0 3-1)

E (3-2)
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x = Acos(wt + o) (3-3)
where w? is the ratio (k/m) of the spring constant k to the inertia
constant m. This will hold good, given Eq. (3-1) or (3-2), even
if the system itself is not a single object on an effectively mass-
less spring.

In Eq. (3-3) it is to be noted that the constant w is defined
for all circumstances by the given values of m and k. The equation
contains two other constants—the amplitude 4 and the initial
phase a—which between them provide a complete specification
of the state of motion of the system at ¢ = 0 (or other designated
time) in any particular case. The initial statement of Newton’s
law in Eq. (3-1) contains no adjustable constants. Equation (3-2),
often referred to as the “first integral” of Eq. (3-1), is mathe-
matically intermediate between Eqgs. (3-1) and (3-3) and contains
one adjustable constant (the total energy E, which is equal to
kA2/2). The introduction of one more constant at each stage of
integration of the original differential equation (Newton’s law)
is always necessary, even though in a particular case the constant
may turn out to be zero. One can think of this as the reverse
of the process whereby, in any differentiation, a constant term
will disappear from sight.

SOLVING THE HARMONIC OSCILLATOR EQUATION
USING COMPLEX EXPONENTIALS

As a pattern for future calculations, let us take the basic differen-
tial equation, Eq. (3-1), and develop the familiar solution as
given in Eq. (3-3), making use of the complex exponential in
the process. Since it is not k and m individually, but only the
ratio k/m, that enters in any essential way, we begin by rewriting
Eq. (3-1) in the following more compact form:

d2x 2

-EE + wx=0 (3—4)
This states that x and its second time derivative are linearly
combined to give zero, or equivalently that d%x/dt? is a multiple
of x itself. The exponential function is known to have this latter

property; let us therefore put
x = Ce® (3-5)
where (to have things dimensionally correct) we have introduced

a coefficient C of the dimension of distance, and a coefficient p
such that pt is dimensionless—i.e., p has the dimension of (time) ™.
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Fig. 3-2 (a) Superposition of complex solutions of
Eg. (3—4) with C, = Ca. (b) Superposition of complex
solutions of Eq. (3—4) for nonzero initial phase angle.

Then by substitution in Eq. (3-4) we have
pCe® + ’Ce” = 0

which can be satisfied for any ¢, and for any value of C, provided

that
PPt+aw’=0
Therefore,
p2 = —w?
p = tjw 3-6)

Each of these values of p will satisfy the original equation. Having
no reason to discard either, we accept both, each with its own
value of C. Thus Eq. (3-5) becomes

x = Ciet 4 Cge—iot G-

Let us interpret Eq. (3-7) in terms of the rotating-vector
description of SHM. The first term on the right corresponds to
a vector C; rotating counterclockwise at angular speed w, the
second term to a vector C, rotating clockwise at the same speed.
These combine to give a harmonic oscillation along the x axis,
as shown in Fig. 3-2(a), if the lengths of C,; and C, are equal.
But C, and C,, as they appear in Eq. (3-7), do not have to be
real. We can satisfy Eq. (3-7) just as well if C, is rotated through
some angle « with respect to the direction defined by ¢, provided
that Cs is rotated through —a with respect to —w?, again making
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the vectors of equal length, as shown in Fig. 3-2(b).! This les.
restrictive condition then leads to the customary result:

x = Ceiwt+a) 4 Ce—ilwt+a)
= 2C cos(wt + a)
= A cos(w? + a)

The quantities Cy and Cy in Eq. (3-7), or 4 and « in the above
equation, represent equally well the two constants of integration
that must be introduced in the process of going from the second-
order differential equation (3.4)% to the final solution that ex-
presses x itself as a function of ¢.

The above analysis reveals incidentally that a rectilinear har-
monic motion can be produced by the superposition of two equal
and opposite real circular motions—which is a kind of converse
to the production of a circular Lissajous figure from two equal
and perpendicular linear oscillations. (Both of these results have
important applications in the description of polarized light.)
Having arrived at the final equation, we see that x can be described
as the real part of a rotating vector corresponding just to the first
term alone in Eq. (3.7).> Thus in many future calculations we
shall assume solutions simply of the following type:

x =real part of z  where z = Aewt+a (3-8)

This extended rediscussion of the simple harmonic oscillator,
although it deals only with very familiar results, may help to
provide some further insight into the workings of the rotating
complex vector description of SHM, and into the justification of
this approach.

ELASTICITY AND YOUNG'S MODULUS
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Let us turn now to the properties of matter that control the fre-
quency of a mass-spring type of system. If we consider an actual
coiled spring the problem is a complicated one. The attachment
of a load to such a spring, as shown in Fig. 3-3, gives rise to two
different effects, neither of which is a simple stretching process.
If we imagine a weight W suspended from a point on the vertical

INo other relationship leads to oscillation along the x axis alone. Try to
satisfy yourself on this point.

2The order of a differential equation is defined by the highest derivative
appearing in it.
30r the second term alone, if preferred.

Elasticity and Young’s modulus



axis of the coil, its effect is to produce a torque WR about any
point on the approximately horizontal axis of the wire composing
the spring. One effect of this—the chief effect in most springs—
is to twist the wire about on its own axis, and the descent of the
weight is primarily a consequence of this twisting process. But
there is a second effect: The coils of the spring will tighten or
loosen a little, so that the spring as a whole twists about the
vertical axis. This process involves a bending of the coils—i.e., a
change in their curvature.! The final result is, to be sure, expressi-
ble as a proportionality (the spring constant k) between the
applied load and the distance through which the load moves, but
in relating springiness to basic physical properties we shall do
well to turn aside from the familiar coiled spring to more straight-
forward problems.

w The simple stretching of a rod or wire provides the most
easily discussed situation of all. The behavior of such a system
under conditions of static equilibrium can be described as follows:

Fig. 3-3 Coiled 1. For a given material made up into rods or wires of a given
spring with suspended

mass. cross-sectional area, the extension A/ under a given force is pro-
portional to the original length /,. The dimensionless ratio
Al/ly is called the strain. This result can also be expressed by
saying that in a static experiment with a given rod, the displace-
ments of various points along it are proportional to their distances
from the fixed end, as shown in Fig. 3-4(a), because in such a
static situation the force AP applied at one end gives rise to a ten-
sion of magnitude AP along the whole length of the rod.

2. It is also found that, for rods of a given material, but of
different cross-sectional areas, the same strain (Al/lg) is caused
by applying forces proportional to the cross-sectional areas, as
in Fig. 3-4(b). The ratio AP/A is called the stress and has the
dimensions of force per unit area, or pressure.

3. Provided that the strain is very small—less than about
0.1% of the normal length Iy, the relation between stress and
strain is linear, in accordance with Hooke’s law. In this case we
can write

stress

strain
The value of this constant for any given material is called Young’s
modulus of elasticity (after the same Thomas Young who made
scientific history in 1801 with his optical interference experi-

= constant

1Whether a spring will tighten or loosen depends on the material of which
it is made,

46 The free vibrations of physical systems



Fig. 34 (a) Uni-
Sorm longitudinal ex-
tension of rod under
static conditions.

(b) Rods of different
cross sections Ay and
Az under tensions
AP 1 and AP 2.
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ments!). It is usually given the symbol Y. If we denote by dF
the force exerted by a stretched wire or rod on another object, we
can thus put

dF/A _

difte

1e.,

aF = =AY 4 (3-9)
lo

If we choose to denote the extension by x and the force by F, we
can alternatively write this result as follows:

AY
F——Tx

which then corresponds to the usual statement of the restoring
force due to a stretched springlike object and identifies the spring
constant k as AY/I, in this case. Table 3-1 lists the approximate

(3-10)

TABLE 3-1: TENSILE PROPERTIES OF MATERIALS

Material Young’s Modulus, N/m? Ultimate strength, N/m?
Aluminum 6 X 1010 2 X 108

Brass 9 X 1010 4 % 108
Copper 12 x 1010 5 % 108

Glass 6 X 1010 10 X 108

Steel 20 X 1010 11 % 108

1He also made important contributions to the first decipherment of Egyptian
hieroglyphics on the famous Rosetta Stone.
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values of Young’s modulus for some familiar solid materials.
Also shown are approximate values of the ultimate strength,
expressed as the stress at which the material is liable to fracture.
Notice that the Young’s modulus represents a stress correspond-
ing to 1009 elongation, a condition that is never approached in
the actual stretching of a sample. Failure occurs at stresses two
or three orders of magnitude less than this, i.e., at strain values of
between 0.1 and 1%. There is no possibility of obtaining, by
direct stretching of a wire or rod, the kind of large fractional
change of length that one can achieve so readily with a coiled
spring.

If a body of mass m is hung on the end of a wire, the period
of oscillations of very small amplitude is given by

_ mlo
T_zr"AY (3-11)

as one can see from the force law, Eq. (3-10). For example,
consider a mass of 1 kg hung on a steel wire of length 1 m and
diameter 1 mm. We have

'rrd2

A= T = 0.8 X 10_6m2
Therefore,

k= i;ol’z 1.6 X 10° N/m

Therefore,
2 -2
T = 200~ 1.6 X 10 “sec
or
1o 60 Hz
y = T

One sees that this wire acts as a very hard spring, and the oscilla-
tions, besides being of quite high frequency, must also be of very
small amplitude—only a small fraction of a millimeter in a 1-m
wire—if the strength limit of the material is not to be exceeded.

The result expressed in Eq. (3-11) can be rewritten in a
physically more vivid way if we introduce the increase of length,
h, that occurs in szatic equilibrium when the body of mass m is
first hung onto the wire. We have, by Eq. (3-10),

The free vibrations of physical systems



Therefore,
mlo h

AY g
Hence, from Eq. (3-11), we have

h
T=2r \/; (3-12)

Thus the period is the same as that of a simple pendulum of
length h. This makes a very straightforward way of computing
the period on the basis of a single measurement of static extension,
without any need for detailed knowledge of the characteristics
of the wire or the magnitude of the attached mass.

The macroscopic elastic property described by Young’s
modulus must, of course, be analyzable in terms of the micro-
scopic interactions between atoms in the material. Clearly, if
the over-all length of a wire increases by 1%, this means that the
individual interatomic spacings along that direction also increase
by 1%. Thus one can, in principle, relate the elastic modulus to
atomic properties as described by the potential-energy curve of
the interatomic forces. We shall not, however, pursue that line of
discussion here, because our immediate concern is with the mac-
roscopic description. Instead, we shall proceed to the discussion
of some other examples of simple harmonic motion.

FLOATING OBJECTS

If a floating object is slightly depressed or raised from its normal
position of equilibrium, there is called into play a restoring force
equal to the increase or decrease in the weight of liquid displaced
by the object, and periodic motion ensues. The situation becomes
especially simple if the floating body has a constant cross-sectional
area over the part that intersects the liquid surface. A hydrometer
(Fig. 3-5), as used to measure the specific gravity of battery acid
or antifreeze, is a nice practical example of this.

Let the mass of the hydrometer be m, and let the liquid
density be p. Denote the area of cross section as A. Then if the
hydrometer is at distance y above its normal floating level, the
volume of liquid displaced is equal to Ay and the equation of
motion (Newton’s law) becomes

2

y
m—s = —gpAy
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Fig. 3-5 Simple
hydrometer, capable

of vertical oscillations

when displaced from

normal floating posi-

tion.
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giving

gp4 _2n o _
po and T=2x 2o (3-13)

For example, a common type of battery hydrometer hasm ~ 10 g,
A = 0.25cm2,  Suppose that it is placed in battery acid of
specific gravity 1.2. Then (using MKS units) we have

m= 10~2kg

A= 25X 10"5m?2
g =~ 10 m/sec?

p = 1.2 X 103kg/m3

which gives
T = 1sec

On a much larger scale, one can consider such motion
occurring with a ship. To some approximation the sides of a big
ship are almost vertical, and its bottom more or less flat, as in
Fig. 3-6. In this case we can very conveniently express the mass
of the ship in terms of its draft, A:

m = pAh

where p is the density of water and A is the horizontal cross-
sectional area of the ship at the waterline. Substituting this in
Eq. (3-12) we find

h
T=2r \/; (3-14)

which is thus exactly like the simple pendulum equation that also
could be used for the vertical oscillations of a mass hung on a
wire [Eq. (3-12)]. If, for example, the draft of the ship is 10 m,
the period of such vertical oscillations would be about 6 sec.

Fig. 3-6 Cross
section of floating
ship.
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Fig. 3-7 (a) Simple
pendulum. (b) Sus-
pended mass of arbi-
trary shape on a
horizontal axis (rigid
pendulum.)
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Such a motion would not, however, be an important component
of the ship’s total pattern of oscillation. Rolling and pitching,
which do not involve any important rise or fall of the position of
the center of mass relative to the water surface, are more readily
excited by the action of the waves.

The so-called “‘simple pendulum,” as shown in Fig. 3-7(a), repre-
sents a familiar oscillatory system that is nevertheless a good deal
more complicated than the one-dimensional oscillators that we
have considered so far (although it must be admitted that, in
discussing the vertical oscillations of floating objects, we have
conveniently overlooked the tricky question of the motion of
the displaced liquid).

The problem of the pendulum is essentially two-dimensional,
even though the actual displacement is completely specified by a
single angle 6. Although the displacements are predominantly
horizontal, the motion depends in an essential way on the fact
that there is a rise and fall of the center of mass, with associated
changes of gravitational potential energy. The pendulum is, in
fact, well suited to an analysis beginning with a statement of
energy conservation, and because the final result is almost cer-
tainly familiar it provides a good example of this energy method,
which is of very great value in the analysis of more complicated
systems.

Referring now to Fig. 3-7(a), if the angle 6 is small we have
y < x and hence, from the geometry of the figure,

Pendulums
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where / is the length of the string.’ The statement of conservation
of energy is

%m02+m =E where 0= E2-|- Qz
& dt dt

Given the approximations already introduced, it is thus very
nearly correct to put

1 (dx\> , 1 mg »

zm(dt) ty7x=E
which we recognize, according to Eq. (3-2), as defining simple
harmonic motion with w = V/g/I.

By way of preparation for more complicated pendulums,
note the alternative statement of the problem in terms of the
angular displacement 6. Using this, we have

a9
v=1{ (E) (exactly)

y = I — cos §) ~ L6

so that our approximate statement of energy conservation is now
2
iml (fg) + 3mgl® = E

Consider now an arbitrary object that is free to swing in a
vertical plane. Let its center of mass C be a distance & from the
point of suspension, as shown in Fig. 3-7(b). Then the gain of
potential energy for an angular deflection 8 is mgho%/2. The
kinetic energy is the energy of rotation of the body as a whole
about O. Since every point in the body has angular speed d8/dt,
this kinetic energy can be written I(d6/df)%/2, where I is the
moment of inertia about the horizontal axis through O. Hence
we have

2
3 (fid—f) + imght® = E

It is in many instances convenient to introduce the moment of
inertia about a parallel axis through the center of mass. If this is
written as mkZ, where k is the “radius of gyration” of the body,

In the triangle ONP, we have (by Pythagoras’s theorem) /2 = (I — y)2 + x2.
Hence x2 = 2ly — y2 =~ 2ly.
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then the kinetic energy of rotation with respect to the center of
mass is mk*(d6/dt)?/2, to which must be added the kinetic energy
associated with the instantaneous linear speed A(d6/dt) of the
center of mass itself. Thus the energy-conservation equation
may also be written as follows:

2 2
Lmk? (%9;) +im (h %‘:) + imght® = E

from which we have

W = 8
7+ k2
2 2\ 172
T=2r (" :;"‘ ) (3-15)

WATER IN A U-TUBE

If a liquid is contained in a U-tube arrangement of constant cross
section with vertical arms, as shown in Fig. 3-8, we have a system
that resembles the pendulum in that, although the motion is two-
dimensional, it can be completely described in terms of the single
vertical displacement y of the liquid surface from equilibrium. !
Suppose that the total length of liquid column is / and its cross
section is 4. Then, if p is the liquid density, the total mass m of
liquid is pAl. We shall assume that every part of the liquid
moves with the same speed, dy/dt. The increase of gravitational
potential energy in the situation shown in Fig. 3-8 corresponds
to taking a column of liquid of length y from the left-hand tube,

Fig. 3-8 Oscillating
liquid column in a
U-tube.

'The side arms need not, in fact, be vertical, as long as they are straight; the
cross sections need not be equal, as long as they are constant; and the con-
necting tubing may be of different cross section again, provided the appropriate
geometrical scaling factors are used to express the displacement and speed
of any part of the liquid in terms of those in either of the side arms.
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raising it through the distance y, and placing it on the top of the
right-hand column. Thus we can put

U = gpAy?

The conservation of mechanical energy thus gives the following
equation:

1 dy 2 2
gpAl Z + gpAy" = E

Hence
2 28

T

w
1 21
T = 21r1,Z=1r\/% (3-16)

Note the similarity to the simple pendulum equation, but also
the subtle difference—that a liquid column in these circumstances
has the same period as a simple pendulum of length //2.

TORSIONAL OSCILLATIONS

The development of a restoring forque, and the existence of a
stored potential energy in a twisted object, are familiar mechanical
facts. If the torque M is proportional to the angular displacement
between two ends of an object, we can put

M= —co (3-17)

where c is the torsion constant of the system. The stored potential
energy is thus given by

U= —/Md0=%002

If the angular deflection 6 is given to a body of moment of inertia
T'attached to one end of the twisted system (and if the inertia of the
twisted system itself is negligible), we then have an energy-
conservation statement in the form

2
3 (%) + 36’ = E

and hence

w =
1
T=2n \[Z (3-18)

54 The free vibrations of physical systems



55

(b) ()

Fig. 3-9 (a) Shear deformation of rectangular block.
(b) Torgue on rectangular strips during shear deforma-
tion. (c) A twisted tube can be thought of as a large
collection of strips such as those shown in (b).

The relation of the torsion constant to the basic elastic
properties of the twisted material is less direct than the relation
of a spring constant to Young’s modulus for a stretched wire or
rod. The essential process is called a shear deformation of the
material. Suppose that a rectangular block of material is firmly
glued at its base to a table, and that its top face is glued to a flat
board [Fig. 3-9(a)]. Then a horizontal force P applied to the
board, in a direction parallel to two of the top edges of the block,
causes a deformation as shown.! Two of the side faces are
changed from rectangles into parallelograms. Thus the deforma-
tion can be characterized by the angle of shear, a. In terms of the
actual transverse displacement x of the top end of a block of
height /, we have (approximately)

X

o =2

)

It is found that the angle of shear is proportional to the ratio of
the applied transverse force to the area A of the top surface of
the block. The proportionality of the shear stress P/A to the
angle of shear x/I is expressed by a shear modulus, or modulus of
rigidity, usually denoted by n. If we denote by F (= —P) the
force exerted by the sheared material on the board, we can thus put

_ —F/A
T a
or
—nA
dF = —nAdo = 7 dx (3-19)

1The table, to maintain equilibrium, must supply a horizontal force —P and
also a counterclockwise torque of magnitude /P, so that the block is not
subjected to any resultant translatory force or any resultant torque.

Torsional oscillations
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These relations are thus of just the same type as we had for
longitudinal deformations—Eqgs. (3-9) and (3-10)—and the
rigidity modulus n has the same physical dimensions as Young’s
modulus. For most materials these two moduli are of the same
order of magnitude, although 7 is usually significantly less than
Y. Table 3-2 shows values of both for the same selection of
materials as in Table 3-1. Also shown is a third modulus—the
so-called bulk modulus, K, which describes the resistance of a
material to changes of volume.

TABLE 3-2: VALUES OF ELASTIC MODULI

Material Y, N/m? n, N/m? K, N/m?
Aluminum 6 X 1010 3 X 1010 7 X 1010
Brass 9 X 1010 3.5 X 1010 6 X 1010
Copper 12 X 1010 45 X 1010 13 X 1010
Glass 6 X 1010 2.5 X 1010 4 x 1010
Steel 10 X 1010 8 X 1010 16 x 1010

To introduce the calculation of restoring torques from shear-
ing processes, consider the situation shown in Fig. 3-9(b). Two
disks of radius » on spindles are connected by a pair of rectangular
strips of material. When one spindle is twisted through a small
angle 6, the end of each strip is moved transversely through a
distance rf. Thus the angle of shear is given by

ré
a=—

)

If each strip has a cross-sectional area A4, it provides a restoring
force, tangential to the disk, given by

F = —nA'—'IQ

This then means a torque, of magnitude rF, exerted about the
axis of twist by each strip.

Suppose now that one has a thin-walled tube, of mean
radius r and wall thickness Ar, as shown in Fig. 3-9(c). This can
be thought of as a whole collection of thin strips parallel to the
axis of the cylinder, all contributing restoring torques about
this axis. Thus the torque AM provided by the tube when its
ends are given a relative twist 6 is given by

nAr?o
)

AM = —

The free vibrations of physical systems



where
A = 27rAr
Hence

2mnr® Ar

AM = — 5

0

Finally if, as is most often the case, the twisted object is a solid
cylindrical rod, wire, or fiber, the total torque is obtained by
summing or integrating the above result. Hence we have

4
M=—-——-90 (solid cylinder) (3-20)

“THE SPRING OF AIR”

- 24

Fig 3-10 Piston in
vertical air column.
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One of our important topics in this book will be the analysis of
the vibrations of air columns and the production of musical
sounds. A useful foundation for this will be to consider a con-
fined column of gas as being very much like a spring. Robert
Boyle thought of the elasticity of a gas in just such terms, and
the heading of this section is from the title of the book that he
wrote about such matters.’ (The word “spring,” as Boyle used
it, actually means the quality of springiness.)

To tie the discussion as closely as possible to our earlier
analysis of the mass—spring system, suppose that we have a
cylindrical tube, closed at one end, with a well-fitting but freely
moving piston of mass m, as shown in Fig. 3-10. The entrapped
column of air acts like a quite strong spring, very resistant to
sudden pull or push; the effect is clearly demonstrated if one
closes the exit hole of a bicycle pump with one finger and tries
to move the plunger of the pump.

The piston has a certain equilibrium position, which will
vary according to whether the tube is horizontal or vertical. If
the tube is vertical, as shown in the figure, the pressure p of gas
in the tube must be sufficiently above atmospheric to support
the weight of the piston—just like the initial extension of a spring.
But now, if the piston is moved a distance y, lengthening the air
column, the internal pressure drops and the result is to provide a

1Robert Boyle, New Experiments Physico-Mechanical Touching [i.e., con-
cerning] the Spring of Air and Its Effects, Made for the Most Part in a New
Pneumatical Engine, Oxford, 1660.

“The spring of air”
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restoring force on m. We can, in fact, write an equation of the
form

F=AAp

where Ap is the change of pressure.
How big is the pressure change? One’s first thought might
well be to calculate it from Boyle’s law:

pV = const.

which would give us

pAV + VAp =0 (3-21)
Now
AV = Ay
V= Al
so that we should get
Y 4
Ap = 7
and hence
Fe — ’%’3 y (3-22)

Compare this with Eq. (3-10) for the stretching or compressing
of a solid rod. We see that in Eq. (3-22) the pressure p plays a
role exactly analogous to an elasticity modulus. Indeed, given
the assumption that Boyle's law applies, it is the elastic modulus
of the air. It is not the Young’s modulus, however, which is
definable only for a solid specimen with its own natural bounda-
ries. (Under the conditions of defining and measuring the Young’s
modulus, the column of material is free to contract laterally when
stretched, and to expand laterally when compressed, whereas
with a gas we must provide a container with essentially rigid
walls.) The appropriate modulus is that corresponding to changes
of total volume of the specimen associated with a uniform stress
in the form of a pressure change over its whole surface. This is
the bulk modulus, K, referred to earlier; it is defined in general
through the equation

(3-23)

You will recall that Boyle’s law describes the relation between

The free vibrations of physical systems



59

pressure and volume for a gas at constant temperature. Thus
Eq. (3-21) leads to a definition of the isothermal bulk modulus
of a gas:

Kisothcrmal =p (3_24)

For a gas at atmospheric pressure this modulus is thus equal to
about 10° N/m?2, i.e., five or six orders of magnitude less than for
familiar solid materials (see Table 3-2).

An important question is whether the spring constant of an
air column is indeed defined by the isothermal elasticity. In
general this is not the case. When a gas is suddenly compressed
it becomes warmer as a result of the work done on it; in other
words, the particles composing it are moving faster, on the
average. We have ignored this effect in using Boyle’s law to
calculate the change of pressure (and hence the restoring force)
for a given change of length of the air column. Since, according
to the kinetic theory of gases, the pressure is proportional to the
mean-squared molecular speed, this heating results in a greater
restoring force than we would otherwise have, and the elastic
modulus of the gas column is larger than the value p predicted
by Eq. (3-24). Experience bears out this conclusion. The pressure
is changed by a factor greater than the inverse ratio of the vol-
umes. Under completely adiabatic conditions (no flow of heat
into or out of the gas) the pressure-volume relationship turns
out to be the following!:

pVr = const. (adiabatic) (3-25)

From this we have

In p + 7In V = const.

> d_V+ V= 0
Kodiswatio = —V32 = % (3-26)
adiabatic = v =1p

The value of the constant 7 is close to 1.67 for monatomic gases,
1.40 for diatomic gases, and is less than 1.40 for all others (at
normal room temperatures). This enhanced elasticity under
adiabatic conditions then increases the frequency of any vibra-
tions involving enclosed volumes of gas.

1The exact basis of Eq. (3-25) will be considered when we discuss the speed
of sound in a gas.

“The spring of air”
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So far we have treated springs as though they had no inertia, and
acted purely as reservoirs of elastic potential energy. This, of
course, is at best an approximation, and in some circumstances
the inertia of the spring itself may play a dominant role. By
way of approaching this question, let us consider the problem,
beloved by textbook writers, of a body of mass m attached to a
uniform spring of total mass M and spring constant k.! How
does the period of oscillation differ from what it would be if the
spring were massless? Even without doing any calculations we
can predict that the period will be lengthened. But by how much?

A simple (and on the face of it reasonable) approach is to
suppose that the various parts of the spring undergo displace-
ments proportional to their distances from the fixed end, as indi-
cated in Fig. 3-11 (and just as in a static extension, as shown in
Fig. 3-4). We can then calculate the total kinetic energy of the
spring at any instant when the extension of its far end has a
displacement x.

Let the relaxed length of the spring be /, and let distance
measured from the fixed end be s (0 < s < I). Consider an ele-
ment of the spring lying between sand s + ds. Its mass is given by

dM = ATlds

and its displacement is the fraction s/l of x. Thus the kinetic
energy of this small element is given by

f
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Fig. 3—-11 Uniform extension of massive spring.

1As will appear later in this section, the problem has more than a merely
pedantic interest if one considers it in the right context.
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1(M s dx\?
dK = §<7d3> (7 E)

_ MY e,
“aw\ar) 'Y

At any given instant the total kinetic energy of the spring is ob-
tained by integrating the above expression, treating dx/dt as a
constant factor for this purpose. Hence we have

M [dx 2/’ 2
Ksprmg = 2—1§<E> 0 s ds
dx 2
T YY Kl
“M<dr>

The energy-conservation statement for the whole system thus
becomes

im §f2+1Md_x2+lkx2_E
2T\ ar ST\ dr ot -
giving
2 k

T m 4+ M/3

It would be as if one took a massless spring and added M/3 to
the mass attached to its end.

But is this true? Suppose, for example, that we took an
extreme case in which we removed the attached mass m alto-
gether, leaving ourselves with a system in which the spring itself
was the repository of all the kinetic energy as well as all the
elastic potential energy. Would the frequency of its free vibrations
be given by w = v/3k/M? The answer is no! The above calcula-
tion assumes the conditions of static extension of a uniform spring
—an extension proportional to the distance from the fixed end.
But this holds only if the stretching force is the same at all points
along the spring. And if there is a distribution of mass along the
spring, undergoing accelerations, this condition cannot possibly
apply. There must be a variation of stretching force with distance
along the spring. Our equation for w is only an approximation;
it is justified, however, if M << m, in which case the force along
the spring is roughly constant (whereas, for m = 0, the restoring
force must fall to zero at the free end, there being at this point an
acceleration but no attached mass).

The above example, although imperfectly treated here, pro-
vides an important link between the simple mass—spring system
and the free vibrations of an extended object. For, of course, a

Oscillations involving massive springs



freely vibrating rod, or air column, is precisely like a massive
spring with no mass attached at the end. It will be of central
importance for us to analyze more exactly the behavior of such a
system. We shall do this in Chapter 6. In the meantime, however,
we can use the crude discussion above to suggest the kind of
result that an exact treatment will give—that the frequency
v (= w/2r) of a free oscillation of a uniform spring of mass M
and spring constant k will be found to have the essential form

v = const. 4 f% (3-27)

(where the constant is a pure numerical factor), because this is
the only combination of k and M that has the dimension of a
frequency. We can even go a step further. Granted that Eq. (3-27)
holds, we can substitute for k and M in terms of the linear dimen-
sions, density, and elastic modulus of the material. Suppose,
for example, that we have a solid rod, of length /, cross section
A, density p, and Young's modulus Y. Then we have

M = Al
k= f’[—Y (Eq. (3-10)]
and hence

)= const. \/z’ (3-28)
l P

We can expect such an equation to describe the longitudinal
vibrations of a rod, although the numerical constant is as yet
undetermined.

THE DECAY OF FREE VIBRATIONS
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The free vibrations of any real physical system always die away
with the passage of time. Every such system inevitably has dissi-
pative features through which the mechanical energy of the
vibration is depleted. Our very knowledge of the existence of a
vibrating system is likely to imply a loss of energy on its part—
as, for example, when we hear a tuning fork as the result of
energy communicated by it to the air and then by the air to our
ears. Thus it is never strictly correct to describe these free vibra-
tions mathematically by a sinusoidal variation of constant ampli-
tude. We shall now consider how the equation of free vibrations
is modified by the introduction of dissipative forces.

The free vibrations of physical systems



Fig. 3-12 (a) Multi-
Dple-flash photograph
of free oscillations
with damping. The
camera was panned
sideways to separate
successive images.
(Photo by Jon Rosen-
feld, Education Re-
search Center,
M.LT.). (b) Graph of
damped oscillation,
obtained by measuring
a photograph obtained
in this way.
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We shall once again tie our discussion to the basic mass—
spring system. Figure 3—12 shows an actual example of the decay
of oscillations of such a system. To accentuate the damping, a
vane attached to the moving mass was immersed in a cylinder of
liquid; the multiple-flash photograph in Fig. 3-12(a) gives a
clear picture of the course of the motion. Figure 3-12(b) is a
graph based directly on measurements made on such a photo-
graph.

The resistive force of a fluid to a moving object is some func-
tion of the velocity of the object; its magnitude is well described
by the equation

R@) = b1v + bav?

The decay of frec vibrations



where v is the magnitude |v| of the velocity. This resistive force
is exerted oppositely to the direction of v itself. Provided v is small
compared to the ratio b,/b3, we can take the resistive force to be
given by the linear term alone. In this case the statement of
Newton’s law for the moving mass can be written

d*x
m:ﬁ—2 = —kx — bu
ie.,
d’x dx
m;t-2-+b-a+kx—0 (3—29)
or
d’x dx 2
:172' + 7 E +wx =0
where
v=2b L2k (3-30)
m m

It may be seen, then, that in this case the damping is characterized
by the quantity v, having the dimension of frequency, and the
constant wo would represent the angular frequency of the system
if damping were absent.

Let us now seek a solution of Eq. (3-30). We shall do this by
the complex exponential method, by assuming that x is the real
part of a rotating vector z, where z satisfies an equation like
Eq. (3-30), i.e.,

d’z dz

TGt wo’z =0 (3-30a)

We shall assume a solution of the form

z = APT (3-31)
just like Eq. (3-8), and containing the requisite two constants, 4
and a, for the purpose of adjusting our solution to the initial
values of displacement and velocity. Substituting in Eq. (3-30a)
we find

(=7 + jpY + wi)a P = 0
If this is to be satisfied for all values of ¢, we must have

—p% +jpY + wo? = (3-32)

This condition is one involving complex numbers; i.e., it really
contains two conditions, applying to the real and imaginary
components separately. It cannot be satisfied if the quantity p
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is purely real, because the term jpY would then be a pure imaginary
quantity with nothing to cancel it. We therefore put

p=n+tjs
where n and s are both real. Then
p2 = n?+4 2ns — s?
Substituting these in Eq. (3-32) gives the following:
—n2 —2ins + s2 4+ jnY —sY + w2 =0
We thus have two separate equations:
Real parts: —n2 42—y +we?=0
Imaginary parts: —2ns+nYy =0
From the second of these we get
Y

5=

2

Substituting s = 7/2 in the first equation then gives

“/2

2 2
n=w ——

4

Now look back to Eq. (3-31). Writing p as a complex
quantity n 4 js, we have
z = Aei(nt+]'st+a)

= Ae—alej(n(+a)
and hence
x = Ae~* cos(nt + a)

Substituting the explicit values of n and s we thus find the fol-
lowing solution:
—yt/2

x = Ae cos(wt + a) (3-33)
where
2 2
W = wo® — r_k_5o (3-34)

Figure 3-13 shows a plot of Eq. (3-33) for the particular case
a = 0. The envelope of the damped oscillatory curve is also
plotted in the figure.! The zeros of the curve are equally spaced
with a separation of w At = m, and so are the successive maxima
and minima, but the maxima and minima are only approximately

IThe notation has been modified very slightly, writing 4, instead of A4 to
denote the amplitude of the motion at + = 0.
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Fig. 3-13 Rapidly damped harmonic oscillations.

halfway between the zeros. Clearly w may be identified as the
natural angular frequency of the damped oscillator.

The curve in Fig. 3-13 is drawn for a case in which the decay
of the vibrations is rapid. If, however, the damping is small, the
motion approximates to SHM at constant amplitude over a
number of cycles. Under these conditions, one can express the
effect of the damping in terms of an exponential decay of the total
mechanical energy, E. For, if ¥ < w, we can say that around
time # the oscillations are well described over several cycles by
SHM of constant amplitude A4 such that

A@) = Age—rt? (3-35)

Now the total mechanical energy of a simple harmonic oscillator
is given by

E = }kA?
Hence, using the above value of 4, we have
E@) = 3kAp2e !
ie.,
E(r) = Ege (3-36)

This decay of the total energy is illustrated in Fig. 3-14.
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Fig. 3-14 Exponential decay of total energy during
the damping of harmonic oscillations.

You will recall that this whole analysis of the damping process
has been based on an assumption that the dissipation is due to a
resistive force proportional to the velocity. The situation would
be quite different (and far more difficult to handle) if some other
resistive law applied—e.g., R(v) ~ v?. It is worth pointing out,
however, that the exponential decay of energy as described by
Eq. (3-35) may and does arise from many diverse kinds of dissipa-
tive processes. For example, in an oscillatory electrical circuit
the rate of energy dissipation in a resistor is proportional to the
square of the current, but so also is the total electric and magnetic
energy of the circuit. The situation is, in fact, closely analogous
to the mechanical oscillator with viscous damping.

In atomic and nuclear physics, also, there are many inter-
actions that give rise to exponential decay of the energy of a
system and which lead to behavior of these systems analogous to
that of a simple mechanical oscillator with viscous damping.
Consequently, the analysis of such a mechanical oscillator pro-
vides one with some insight into all similar phenomena, although
it is a special case.

From the foregoing analysis, it is clear that the damped
oscillator is characterized by two parameters, wy and ¥ (= b/m).
The constant w is the angular frequency of undamped oscillations
and 7 is the reciprocal of the time required for the energy to
decrease to 1/e of its initial value. Thus wo and 7 are quantities
of the same dimensions. For convenience in applying our results
to diverse kinds of physical systems, we define a parameter called
the Q value (Q for quality) of the oscillatory system, given by
the ratio of these two quantities:

wo
0=2 (-37)
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Q is a pure number, large compared to unity for oscillating
systems with small rates of dissipation of energy. In terms of
the Q value, Eq. (3-34) becomes

2 2 1
W = W (1 - @) (3—38)

If Q is large compared to unity, and this important case is the
one with which we shall be mainly concerned, Eq. (3-38) gives
w = wy and the motion of the oscillator [Eq. (3-33)] is given very
nearly by

x = Age—0t2Q cos(wot + ) (3-39)

It may be noted that Q is closely related to the number of
cycles of oscillation over which the amplitude of oscillation falls
by a factor e. For according to Eq. (3-39) we have

A(t) = Aoe—wol/20

Let us measure the time ¢ in terms of the number of complete
cycles of oscillation, n. Then, given the approximation that
w = wy, we can put ¢ = 27n/wq. In terms of the number of
cycles elapsed, therefore, we can put

A(m) ~ Age—""10 (3-40)
so that the amplitude falls by a factor e in about Q/= cycles of
free oscillation.

In terms of wy and Q, we can rewrite Eq. (3-30) in the form

d* wo dx

¥ g di
and this will in many cases be a highly convenient form of the
basic differential equation for free oscillations, including damping,

of a great variety of physical systems, both mechanical and
nonmechanical.

+ wolx = 0 (3-41)

THE EFFECTS OF VERY LARGE DAMPING'
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You will have noted that the establishment of the equation for
free damped oscillations [Eq. (3-33)] depends essentially upon
our ability to introduce for these oscillations the angular frequency
w defined by the equation

2
2 2 7

4

INot strictly relevant to the oscillatory problem as such, but very closely
connected and added for the sake of completeness.
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But what if wo [= (k/m)"/?]is less than ¥/2 (= b/2m)? In this
case the motion is no longer oscillatory at all. We can get a strong
hint as to the form of the solution to the problem by referring
to the analysis preceding Eq. (3-33). We found that the differ-
ential equation of motion [Eq. (3-30)] is satisfied by a solution
of the form

x = Re[de "27+9)

where

n’ = wo2 - 7—2

4

Suppose now that wo? < v2/4. Then we can put
n? = —(r%/4 = we?)

and if we proceed to solve for n we have
n=jr%/4 — w2 = x£j8, say

Thus we have e/™ = eT#, which would define an exponential
decay of x with ¢ according to one or other of two possible
exponents:

e—(r/2+8)¢ or e—(v/2-B)t

A rigorous analysis shows that both exponentials are in general
necessary, and that the complete variation of x with ¢ is given
by the following equation:

x = A2 L g —ri2—p (3-42)

where

2 1/2
(-

The two adjustable constants 4; and 4, (which may be of either
sign) allow for the solution to be fitted to any given values of x
and dx/dt at a given instant, e.g., t = 0.

One last question may be raised in connection with this
heavily damped motion. What happens if wq and 7 /2 are exactly
equal to one another? In this case the right side of Eq. (3-42)
would reduce to two terms of exactly the same type, and only
one adjustable constant would remain. This is not, however,
an acceptable solution any longer; we still need two adjustable
constants. It turns out that the appropriate form of solution for
this case is

x = (A + Bfe—72 (3-43)

The effects of very large damping
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You can verify by substitution that this satisfies the basic equation
of motion Eq. (3-30) if wg = Y/2 or ¥ = 2w, exactly. This very
special condition corresponds to what is called critical damping.
In real mechanical systems the value of the damping constant Y
is often deliberately adjusted to meet this condition because,
under conditions of critical damping, a constant force suddenly
applied to the system (previously quiescent) will be followed by a
smooth approach to a new, displaced position of equilibrium with
no oscillation or overshoot. Such behavior is highly advantageous
in the moving parts of electrical meters and the like, with which
one may want to take a steady reading as soon as possible after
the meter has been connected or a switch closed.

3-1 An object of mass 1 g is hung from a spring and set in oscillatory
motion. At ¢t = 0 the displacement is 43.785 cm and the acceleration
is —1.7514 cm/sec2. What is the spring constant ?

3-2 A mass m hangs from a uniform spring of spring constant %.
(a) What is the period of oscillations in the system?
(b) What would it be if the mass m were hung so that
(1) It was attached to two identical springs hanging side
by side?
(2) It was attached to the lower of two identical springs
connected end to end? (See Figure)

3-3 A platform is executing simple harmonic motion in a vertical
direction with an amplitude of 5cm and a frequency of 10/x vibra-
tions per second. A block is placed on the platform at the lowest point
of its path.

(a) At what point will the block leave the platform?

(b) How far will the block rise above the highest point reached
by the platform?

3-4 A cylinder of diameter d floats with / of its length submerged.
The total height is L. Assume no damping. At time ¢ = 0 the cylinder
is pushed down a distance B and released.

(a) What is the frequency of oscillation?

(b) Draw a graph of velocity versus time from r = 0to r = one
period. The correct amplitude and phase should be included.

3-5 A uniform rod of length L is nailed to a post so that two thirds
of its length is below the nail. What is the period of small oscillations
of the rod?

The free vibrations of physical systems
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3-6 A circular hoop of diameter 4 hangs on a nail. What is the period
of its oscillations at small amplitude ?

3-7 A wire of unstretched length /o is extended by a distance 103/,
when a certain mass is hung from its bottom end. If this same wire is
connected between two points, 4 and B, that are a distance /o apart
on the same horizontal level, and the same mass is hung from the mid-
point of the wire as shown, what is the depression y of the midpoint,
and what is the tension in the wire?

| [" -]

4

3-8 (a) An object of mass 0.5 kg is hung from the end of a steel wire
of length 2m and of diameter 0.5 mm. (Young’s modulus = 2 X
1011 N/m?2). What is the extension of the wire?

(b) The object is lifted through a distance A (thus allowing the
wire to become slack) and is then dropped so that the wire receives a
sudden jerk. The ultimate strength of steel is 1.1 X 10° N/m2. What
is the largest possible value of 4 if the wire is not to break ?

3-9 (a) A solid steel ball is to be hung at the bottom end of a steel
wire of length 2 m and radius 1 mm. The ultimate strength of steel
is 1.1 X 109 N/m2. What are the radius and the mass of the biggest
ball that the wire can bear?

(b) What is the period of torsional oscillation of this system?
(Shear modulus of steel = 8 X 1019 N/m2. Moment of inertia of
sphere about axis through center = 2MR2/5.)

3-10 A metal rod, 0.5 m long, has a rectangular cross section of
area 2 mm?2.

(a) With the rod vertical and a mass of 60 kg hung from the
bottom, there is an extension of 0.25 mm. What is Young’s modulus
(N/m?) for the material of the rod?

(b) The rod is firmly clamped at the bottom as shown in the
sketch, and at the top a force F is applied in the y direction as shown
(parallel to the edge of length b). The result is a static deflection, y,
given by

41

Yab3 F

y=

If the force F is removed and a mass m, which is much greater than the
mass of the rod, is attached to the top end of the rod, what is the ratio
of the frequencies of vibration in the y and x directions (i.e., parallel
to edges of length b and a)?
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(¢) The mass is pulled aside in a certain transverse direction
and released. It then traces a path like the one sketched. What is
the ratio of a to b?

3-11 (a) Find the frequency of vibration under adiabatic conditions
of a column of gas confined to a cylindrical tube, closed at one end,
with a well-fitting but freely moving piston of mass m.

(b) A steel ball of diameter 2 cm oscillates vertically in a pre-
cision-bore glass tube mounted on a 12-liter flask containing air at
atmospheric pressure. Verify that the period of oscillation should be
about 1 sec. (Assume adiabatic pressure change withY = 1.4. Density
of steel = 7600 kg/m3.)

3-12 The motion of a linear oscillator may be represented by means
of a graph in which x is shown as abscissa and dx/dr as ordinate. The
history of the oscillator is then a curve.
(a) Show that for an undamped oscillator this curve is an ellipse.
(b) Show (at least qualitatively) that if a damping term is intro-
duced one gets a curve spiraling into the origin.

3-13 Verify that x = Ae%¢ cos wt is a possible solution of the equation
:172- + 'Y —_— + wo X =0
and find a and w in terms of ¥ and wo.

3-14 An object of mass 0.2 kg is hung from a spring whose spring
constant is 80 N/m. The object is subject to a resistive force given by
—bv, where v is its velocity in meters per second.

(a) Set up the differential equation of motion for free oscillations
of the system.

(b) If the damped frequency is v/3/2 of the undamped frequency,
what is the value of the constant 5?

(c) What is the Q of the system, and by what factor is the ampli-
tude of the oscillation reduced after 10 complete cycles?

3-15 Many oscillatory systems, although the loss or dissipation mecha-
nism is not analogous to viscous damping, show an exponential decrease
in their stored average energy with time, E = Eoe~'. A Q for such
oscillators may be defined using the definition Q = wo/7, where wo
is the natural angular frequency.

(a) When the note “middle C” on the piano is struck, its energy
of oscillation decreases to one half its initial value in about 1 sec. The
frequency of middle C is 256 Hz. What is the Q of the system?

(b) If the note an octave higher (512 Hz) takes about the same
time for its energy to decay, what is its Q?

(c) A free, damped harmonic oscillator, consisting of a
mass m = 0.1 kg moving in a viscous liquid of damping coefficient
b (Fyiscous = —bU), and attached to a spring of spring constant
k = 0.9 N/m, is observed as it performs damped oscillatory motion.

The free vibrations of physical systems



Its average energy decays to 1/e of its initial value in 4 sec. What is
the Q of the oscillator? What is the value of b?

3-16 According to classical electromagnetic theory an accelerated
electron radiates energy at the rate Ke2a2/c3, where K = 6 X
109 N—m2/C2, e = electronic charge (C), a = instantaneous ac-
celeration (m/sec?), and ¢ = speed of light (m/sec).

(a) If an electron were oscillating along a straight line with
frequency v (Hz) and amplitude 4, how much energy would it radiate
away during 1 cycle? (Assume that the motion is described adequately
by x = A sin 27vt during any one cycle.)

(b) What is the Q of this oscillator ?

(c) How many periods of oscillation would elapse before the
energy of the motion was down to half the initial value?

(d) Putting for » a typical optical frequency (i.e., for visible light)

estimate numerically the approximate Q and “half-life” of the radiat-
ing system.
3-17 A U-tube has vertical arms of radii r and 2r, connected by a
horizontal tube of length / whose radius increases linearly from r to 2r.
The U-tube contains liquid up to a height 4 in each arm. The liquid
is set oscillating, and at a given instant the liquid in the narrower arm
is a distance y above the equilibrium level.

(a) Show that the potential energy of the liquid is given by
U = ggprr?y2.

(b) Show that the kinetic energy of a small slice of liquid in the
horizontal arm (see the diagram) is given by

2 2
_ wr° dx dy
K = b0 e (dt)
(Note that, if liquid is not to pile up anywhere, the product velocity X
cross section must have the same value everywhere along the tube.)

(c) Using the result of part (b), show that the total kinetic energy
of all the moving liquid is given by

dy 2
K = Yprr’( + $h) (E)

(Ignore any nastiness at the corners.)
(d) From (a) and (c), calculate period of oscillations if / = 5k/2.
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3-18 This problem is much more ambitious than the usual problems,
in the sense that it requires putting together a greater number of parts.
But if you tackle the various parts as suggested, you should find that
they are not, individually, especially difficult, and the problem as a
whole exemplifies the power of the energy-conservation method for
analyzing oscillation problems.

L —————
h

4

You are no doubt familiar with the phenomenon of water sloshing
about in the bathtub. The simplest motion is, to some approximation,
one in which the water surface just tilts as shown but seems to remain
more or less flat. A similar phenomenon occurs in lakes and is called a
seiche (pronounced: saysh). Imagine a lake of rectangular cross sec-
tion, as shown, of length L and with water depth & (<L). The problem
resembles that of the simple pendulum, in that the kinetic energy is
almost entirely due to horizontal flow of the water, whereas the potential
energy depends on the very small change of vertical level. Here is a
program for calculating, approximately, the period of the oscillations:

(a) Imagine that at some instant the water level at the extreme
ends is at =y with respect to the normal level. Show that the increased
gravitational potential energy of the whole mass of walter is given by

U = gbpgLyo®

where b is the width of the lake. You get this result by finding the
increased potential energy of a slice a distance x from the center and
integrating.

(b) Assuming that the water flow is predominantly horizontal,
its speed v must vary with x, being greatest at x = 0 and zero at
x = =+L/2. Because water is incompressible (more or less) we can
relate the difference of flow velocities at x and x + dx to the rate of
change dy/dt of the height of the water surface at x. This is a continuity
condition. Water flows in at x at the rate vhb and flows out at x + dx
at the rate (v 4+ dv)hb. (We are assuming yo << 4.) The difference
must be equal to (b dx)(dy/dr), which represents the rate of increase of
the volume of water contained between x and x + dx. Using this
condition, show that

1 d
v(x) = v(0) — Exz%
where
() = L 9o
vO) = G
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(c) Hence show that at any given instant, the total kinetic energy
associated with horizontal motion of the water is given by

K = L ool (o’

T 60 A dt

To get this result, one must take the kinetic energy of the slice of water
lying between x and x - dx (with volume equal to bk dx), which moves
with speed v(x), and integrate between the limits x = =L/2.

(d) Now put

K 4+ U = const.

This is an equation of the form

dyo\’ 2
A <-E') + Byg = const.

and defines SHM of a certain period. You will find that this period
depends only on the length L, the depth 4, and g. [Note: This theory
is not really correct. The water surface is actually a piece of a sine
wave, not a plane surface. But our formula is correct to better than 1%,.
(The true answer is T = 2L/\/gh).]

(e) The Lake of Geneva can be approximated as a rectangular
tank of water of length about 70 km and of mean depth about 150 m.
The period of its seiche has been observed to be about 73 min. Com-
pare this with your formula.

3-19 A mass m rests on a frictionless horizontal table and is connected
to rigid supports via two identical springs each of relaxed length /o
and spring constant k (see figure). Each spring is stretched to a length
[ considerably greater than ly. Horizontal displacements of m from its
equilibrium position are labeled x (along 4AB) and y (perpendicular

to AB). ;
A ‘ B
% X
900 —O— 0000
(k) J (k)
l | ! 7

(a) Write down the differential equation of motion (i.e., Newton’s
law) governing small oscillations in the x direction.

(b) Write down the differential equation of motion governing
small oscillations in the y direction (assume y << /).

(¢) In terms of / and /o, calculate the ratio of the periods of
oscillation along x and y.

(d) Ifat+ = 0the mass m is released from the point x = y = Ao
with zero velocity, what are its x and y coordinates at any later time ¢?

(e) Draw a picture of the resulting path of m under the condi-
tions of part (d) if I = 9/¢/5.
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In the case of a cock putting its head into an empty
utensil of glass where it crowed so that the utensil thereby
broke, the whole cost shall be payable.

The Talmud (Baba Kamma, Chapter 2)
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Forced
vibrations and
resonance

THE PRECEDING CHAPTER was concerned entirely with the free
vibrations of various types of physical systems. We shail now
turn to the remarkable phenomena, of profound importance
throughout physics, that occur when such a system—a physical
oscillator—is subjected to a periodic driving force by an external
agency.

The key word is “resonance.” Everybody has at least a
qualitative familiarity with this phenomenon, and probably the
most striking feature of a driven oscillator is the way in which
a periodic force of a fixed size produces very different results
depending on its frequency. In particular, if the driving frequency
is made close to the natural frequency, then (as anyone who has
pushed a swing knows) the amplitude of oscillation can be made
very large by repeated applications of a quite small force. This is
the phenomenon of resonance. A force of about the same size
at frequencies well above or well below the resonant frequency is
much less effective; the amplitude produced by it remains quite
small. To judge by the quotation at the beginning of this chapter,
the phenomenon has been recognized for a very long time.} It
1As Alexander Wood remarks in his book Acoustics (Blackie & Son, London,
1940): “It seems difficult to believe that legislation should be designed to
cover a situation that had never arisen.” The example does seem rather
bizarre, however, and H. Bouasse, the French physicist who drew attention
to this Talmudic pronouncement, reported that he had himself reared a large

number of cocks, none of which developed a habit of putting their heads
inside glass vases!
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is typical of this type of motion that the driven system is com-
pelled to accept whatever repetition frequency the driving force
has; its tendency to vibrate at its own natural frequency may be
in evidence at first, but ultimately gives way to the external
influence.

To provide some initial feeling for the theoretical description
of the resonance phenomenon, without getting too involved with
analytical details, we shall begin by considering the simple though
physically unreal case of an oscillator in which the damping effect
is entirely negligible.

UNDAMPED OSCILLATOR WITH HARMONIC FORCING

We shall take our system to be the usual mass m on a spring of
spring constant k. To this we shall imagine the application of a
sinusoidal driving force F = Fgcoswt. The value of v/k/m,
representing the natural angular frequency of the system, will be
denoted by wo. Then the statement of the equation of motion,
in the form ma = net force, is

d*x
mﬁ = —kx 4+ Focos wt
or
m‘izf+k = Focos wt @-1)
dr2 x = foc

Before we discuss this differential equation of motion in detail,
let us consider the situation qualitatively. If the oscillator is
driven from its equilibrium position and then left to itself, it will
oscillate with its natural frequency wy. A periodic driving force
will, however, try to impose its own frequency® w on the oscillator.
We must expect, therefore, that the actual motion in this case is
some kind of a superposition of oscillations at the two frequencies
w and wo. The mathematically complete solution of Eq. (4-1) is
indeed a simple sum of these two motions. But because of the
inevitable presence of dissipative forces in any real system, the
free oscillations will eventually die out. The initial stage, in which
the two types of motion are both prominent, is called the transient.
After a sufficiently long time, however, the only motion in effect
present is the forced oscillation, which will continue undiminished
at the frequency w. When this condition has been achieved, we

1To avoid tiresome repetitions, we shall often refer to w simply as “frequency”
rather than “angular frequency” in contexts where no ambiguity is entailed.
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have what is called a steady-state motion of the driven oscillator.

Later we shall analyze the transient effects, but for the present
we shall focus our attention exclusively on the steady state of
the forced oscillation. In an ideal undamped oscillator, the effect
of the natural vibrations would never disappear, but we shall
temporarily ignore this embarrassing fact for the sake of the
simplicity that absence of damping brings to the forced-motion
problem.

The most striking feature of the motion will be the large res-
ponse near w = wy, but before embarking on the solution of Eq.
(4-1) in its entirety, let us point to some features of the motion in
the extremes of very low or very high values of the driving fre-
quency w. If the driving force is of very low frequency relative to
the natural frequency of free oscillations, we would expect the par-
ticle to move essentially in step with the driving force with an am-
plitude not very different from Fo/k (= Fo/mwy?), the displace-
ment which a constant force Fy would produce. This is equivalent
to stating that the term m(d®x/dt?) in Eq. (4-1) plays a relatively
small role compared to the term kx at very low frequencies, or
in other words that the response is controlled by the stiffness
of the spring. On the other hand, at frequencies of the driving
force very large compared to the natural frequency of free oscilla-
tion, the opposite situation holds. The term kx becomes small
compared to m(d2x/dt?) because of the large acceleration asso-
ciated with high frequencies, so that the response is controlled by
the inertia. In this case we expect a relatively small amplitude of
oscillation and this oscillation should be opposite in phase to
the driving force, because the acceleration of a particle in har-
monic motion is 180° out of phase with its displacement. It is
still not apparent from these remarks that the resonant amplitude
should greatly exceed that at low or high frequencies, but this
we shall now show.

To obtain the steady-state solution of Eq. (4-1) we set

x = Ccos wt 4-2)

We are assuming, in other words, that the motion is harmonic,
of the same frequency and phase as the driving force, and that
the natural oscillations of the system are not present. It must
be kept in mind that the assumption of Eq. (4-2) is tentative and
we must be prepared to reject it if we fail to find a value of the
as-yet-undetermined constant C such that Eq. (4-1) is satisfied
for arbitrary values of w and ¢. Differentiating Eq. (4-2) twice

Undamped oscillator with harmonic forcing
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Fig. 4-1 Amplitude

of forced oscillations F,
as a function of the k
driving frequency

(assuming zero damp- o
ing.) The negative
sign of the amplitude
Jor @ > wo corre-
sponds to a phase

lag = of displacement
with respect to driving
Jorce.

with respect to 7, we get
s
dr2
Substituting in Eq. (4-1) we thus have

2
= —w CCcoswt

—mw2C cos wt + kC cos wt = Fo cos wt

and hence

_ Fo _ Fo/m .
C_k—mw?_wo?—w2 S

Equation (4-3) satisfactorily defines C in such a way that Eq. (4-1)
is always satisfied. Thus we can take it that the forced motion is
indeed described by Eq. (4-2), with C depending on w according
to Eq. (4-3). This dependence is shown graphically in Fig. 4-1.
Notice how C switches abruptly from large positive to large
negative values as w passes through wq. The resonance phenom-
enon itself is represented by the result that the magnitude of C,
without regard to sign, becomes infinitely large at w = wg exactly.

Although Egs. (4-2) and (4-3) between them describe in a
perfectly adequate way the solution of this dynamical problem,
there is a better way of stating the result, more in accord with our
general description of harmonic motions. This is to express x
in terms of a sinusoidal vibration having an amplitude A4, by
definition a positive quantity, and a phase o at t = 0.

x = Acos(wt + a) “4-4)

It is not difficult to see that this implies putting 4 = |C| and
giving o one or other of two values, according to whether the
driving frequency w is less or greater than wq:
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Fig. 4-3 Motion of
simple pendulums re-
sulting from forced
harmonic oscillation
of the point of sus-
pension along the line
AB. (0) v < wq.
(b) @ > wo.
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Fig 4-2 (a) Abso-
lute amplitude of
Jorced oscillations as
a function of the driv-
ing frequency, for
zero damping.

(b) Phase lag of the
displacement with re-
spect to the driving
force as a function of
Sfrequency.

w < wo:a=

w>woa=

The response of the system over the whole range of w is then
represented by separate curves for the amplitude 4 and the
phase «, as shown in Fig. 4-2. The infinite value of 4 at v = wy,
and the discontinuous jump from zero to = in the value of « as
one passes through wg, must be unphysical, but, as we shall see,
they represent a mathematically limiting case of what actually
occurs in systems with nonzero damping.

The actual reversal of phase of the displacement with respect
to the driving force (i.e., from being in phase to being 180° out
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Undamped oscillator with harmonic forcing
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of phase) is shown in a very direct way by the behavior of a simple
pendulum that is driven by moving its point of suspension back
and forth horizontally in SHM. The situations for frequencies
well below and well above resonance are illustrated in Fig. 4-3.
Once the steady state has been established, the pendulum behaves
as though it were suspended from a fixed point corresponding to
a length greater than its true length / for w < wg, and less than
Ifor w > wyp. In the former case the motion of the bob is always
in the same direction as the motion of the suspension, whereas
in the latter case it is always opposite.

THE COMPLEX EXPONENTIAL METHOD FOR FORCED OSCILLATIONS

Having dealt with this simplest of forced vibration problems in
terms of sinusoidal functions, let us do it again using the complex
exponential. This has no special merit as far as the present
problem is concerned, but the technique, illustrated here in
elementary terms, will show to great advantage when we come to
deal with the damped oscillator. Our program is as follows:

1. We start with the physical equation of motion as given

by Eq. (4-1):
d*

mﬁ_" kx = Fo cos wt

2. We imagine the driving force Fy cos wt as being the pro-
jection on the x axis of a rotating vector Fy exp( jwt), as shown
in Fig. 4-4(a), and we imagine x as being the projection of a
vector z that rotates at the same frequency w [Fig. 4-4(b)].

3. We then write the differential equation that governs z:

Fig. 44 (a) Complex representation of sinusoidal
driving force. (b) Complex representation of displace-
ment vector in the forced oscillation.

Fy

iof ol + o

(a) (b}
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d*z

mﬁ + kz = Foejwl 4-5)

4. We try the solution
2 = AP

Substituting in Eq. (4-5) this gives us
(—mw’A + k)’ = Foe™*

which can be rewritten as follows:

(0o® — w4 = ﬂ)e—ja
m

F
= Lcosa — jFi)sina 4-6)
m m

This contains two conditions, corresponding to the real and
imaginary parts on the two sides of the equation:

(w02— w2)A = @Cosa
m
0= — @sina
m

These clearly lead at once to the solutions represented by the
two graphs in Fig, 4-2.

FORCED OSCILLATIONS WITH DAMPING

83

At the end of Chapter 3 we analyzed the free vibrations of a
mass-spring system subject to a resistive force proportional to
velocity. We shall now consider the result of acting on such a
system with a force just like that considered in the previous
section. The statement of Newton’s law then becomes

d*x dx
mos = —kx—b7i;+Focoswt
or
2
d’x b dx k Fo
dr2 +m dt +mx_ mcoswt

Putting k/m = wq?, b/m = 7, this can be written
dr2

Let us now look for a steady-state solution to this equation.

+v d_x + w02x = Fo cos wt @7
dt m

Forced oscillations with damping



We shall go at once to the complex-exponential method; our
basic equation then becomes the following:

Z—i: + ‘Y% + wozz = F—':e’m @4-8)
We shall now assume the following solution:

z = AP 4-9)
with

x = Re (2)

Notice that we have assumed a slightly different equation for z
than we did in the previous section; we have written the initial
phase of z as — § instead of +a. Why did we do this? The clue
is to be found in Eq. (4-6). The right-hand side of the equation
can be read, in geometrical terms, as an instruction to take a
vector of length Fo/m and rotate it through the angle —a with
respect to the real axis. We are going to get a very similar equa-
tion now, and it will simplify things if we define our angle,
formally at least, as representing a positive (counterclockwise)
rotation. That is, & is formally a positive phase angle by which
the driving force leads the displacement.

Substituting from Eq. (4-9) into Eq. (4-8) we thus get

sy F .
(—?4 + jYwd + woed)d“ ™ = ;"e"”

Therefore,

@o° — &M + jrud = 2. @-10)
Now the elegance and perspicuity of the complex exponential
method are really displayed. We can read Eq. (4-10) as a geo-
metrical statement. The left-hand side tells us to draw a vector

of length (wo% — w?%)4, and then at right angles to it a vector of

Fig. 4-5 Geometrical representation of Eq. (4-10).

Foutd
Folm jyed Fylm . v
Jywi
\s 90° \o
(wo? —w?) 4 wn?4
(a} (b)
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length YwA. The right-hand side tells us to draw a vector of length
Fy/m at an angle & to the real axis. The equation requires that
these two operations bring us to the same point, so that the
vectors form a closed triangle, as shown in Fig. 4-5(a).! Clearly,
we have

(w02 — wz)A = fgcos 0
m

YwA = @ sin &
m

Therefore,
3 Fo/m
AW = [GF = e + Gl @-11)
Yw
tan 6(w) = w0? — w?

These same results can of course be obtained without introducing
complex exponentials. One simply assumes a solution of the form

x = Acos(wr — 8) “4-12)
Alw)
(a)
i
k
E - ¥
wy

&lew)

Fis Fig. 4-6 (a) De-
pendence of amplitude
upon driving frequency

(b) Jor forced oscillations
@2 with damping.
(b) Phase of displace-
ment with respect to
0 5 driving force as a

Wy Sfunction of the driving
Jfrequency.

1You may actually prefer to read the left-hand side of Eq. (4-10) even more
literally (in terms of its origins) as a sum of three vectors,

w024 + jywd + (j)2w2A4
as shown in Fig. 4-5(b).
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Fig. 4-7 (a) Di-
agrammatic sketch of
the “Texas Tower,” a
mechanical resonance
apparatus developed
by J. G. King at the
Education Research
Center, M.LT. (b)
Experimental
resonance curves for
amplitude and phase
lag obtained with this
apparatus. (Measure-
ments by G. J.
Churinoff, M.LT.
class of 1967.)
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and substitutes this in Eq. (4-7), which leads to the equation
(w02 — wz)A cos(wt — &) — YwAsin(wt — 8) = %cos wt

This must then be solved as a trigonometric identity true for all
t. The analysis is certainly not difficult, but it is less transparent

Driving amplitude 1

I //k Variable drive
Response :
9 ht
(a)
44
1180
3 -
E
< L
[ @
ERPyE ®
= 1% &
E
<
1 k-
= ‘Uu/277
0 E_/ & T I ﬁ 1 o°

04 0.6 0.8 1.0 1.2

Frequency, hz
(b)
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and instructive than the other.

The type of dependence of amplitude 4 and phase angle §
upon frequency w, for an assumed constant magnitude of Fj,
is shown in Fig. 4-6. (Remember that § is the angle by which
the driving force leads the displacement, or by which the dis-
placement lags behind the driving force.) These curves have a
clear general resemblance to those in Fig. 4-2 for the undamped
oscillator. As can be seen from the expression for tan § in equa-
tions (4-11), the phase lag increases continuously from zero
(at @ = 0) to 180° (in the limit w — o0); it passes through 90°
at precisely the frequency w,. Less obvious is the fact that the
maximum amplitude is attained at a frequency w,, somewhat less
than wg; in most cases of any practical interest, however, the
difference between w,, and w, is negligibly small.

These are some of the calculated features of a forced, damped
oscillator. How nearly are they exhibited by actual physical
systems? Figure 4-7 provides an answer in the form of experi-
mental results obtained with the type of physical system we have
been discussing. It is, to be sure, not a natural system but an
artificial one, devised specifically to display these features. Never-
theless, there is satisfaction in seeing that the pattern of behavior
described by our mathematical analysis (which might, after all,
bear no relation to reality) does, in fact, correspond quite well to
the behavior of a system containing a real spring and a real
viscous damping agency. This is the same system for which we
showed the decay of free oscillations in Fig. 3-12.

The features of Fig. 4-6 can also be nicely demonstrated in a
simple but, as it were, backhanded way, by applying a driving
force of some fixed frequency to a whole collection of oscillators
of different natural frequencies. This is readily done by a modi-
fication of an arrangement due to E. H. Barton (1918) in which
a number of light pendulums of different lengths are hung from
a horizontal bar that is rocked at the resonance frequency of
one pendulum in the middle of the range, as shown in Fig. 4-8(a).
When photographed edgewise the motions of the light pendulum
bobs, all driven at the same frequency, display, qualitatively at
least, the expected phase relationships. This is indicated in
Fig. 4-8(b), which shows the displacements of the small pen-
dulums at the instant when the driving bar is passing from left
to right through its equilibrium position, and then at a slightly
later instant. The short pendulums (for which wy > w) have

Forced oscillations with damping
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Synchronous
motor

©6
Pendulums ~©5} To Strobe
(70 cm to 100 cm) 90

r-’/ Amplifier

] -” Oscillator
Strobe Light

(a)

(b)

Fig. 4-8 A modern version of Barton's pendulums experiment. (a) A general
sketch of the arrangement. The strobe light flashes once per oscillation at a
controllable point in the cycle. (b) Displacements of the pendulums when the
driving force is passing through zero (left) and at a somewhat later instant
(right). In the latter photograph, note that the shorter pendulums have moved
in the same direction as the driver and the longer pendulums have moved in the
opposite direction, corresponding to & < 90° and & > 90° respectively.
(Photos by Jon Rosenfeld, Education Research Center, M.L.T.).
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8 < 90°, the long ones (for which wy < w) have § > 90°, and
so move contrary to the driver, and the pendulum in exact
resonance lags by 90°, being at maximum negative displacement
as the driver passes through zero.

EFFECT OF VARYING THE RESISTIVE TERM

In discussing the decay of free vibrations at the end of Chapter 3,
we introduced the “quality factor” Q, the pure number equal to
the ratio wo/Y. The larger the value of Q, the less the dissipative
effect and the greater the number of cycles of free oscillation for
a given decrease of amplitude. We shall now indicate how the
behavior of the resonant system changes as the Q of the system
is changed, other things being equal.

We shall put Eq. (4-11) (for A and tan &) into more con-
venient form for this purpose. First, substituting v = wy/Q

gives us
_ Fo/m
AW) = HaP = a2 + (o) O
0 @-13)
tan 8(w) = — ot
w2 — w

Furthermore, it will prove convenient for many purposes to use
the ratio w/wq, rather than w itself, as a variable. With this in
mind we shall rewrite equations (4-13) in the following form:

)

Fo wo/w
A t—
mwo2 wo o\ 1 V2
(: - w—o) o
or
A= Fo wo/w
Tk 2 2 “4-14)
@w ey, 1
(2-2) + 5
and
1/Q
e =G @
w wo

In Fig. 4-9 we show curves calculated from equations (4-14) to
show the variations with frequency of amplitude 4 and phase
lag & for different values of Q. Most of the change of & takes
place over a range of frequencies roughly from wo(1 — 1/Q) to
wo(l + 1/Q), ie., a band of width 2wy/Q centered on wy. In
the limit O — oo the phase lag jumps abruptly from zero to = as
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Fig. 4-9 (a) Ampli-
tude as function of
driving frequency for
different values of Q,
assuming driving force
of constant magnitude
but variable frequency.
(b) Phase difference &
as function of driving
frequency for different
values of Q.
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one passes through wy. Clearly the frequency wg is an important
property of the resonant system, even though it is not (except
for zero damping) the frequency with which the system would
oscillate when left to itself.

The amplitude A passes through a maximum for any value
of Q greater than 1/4/2—i.e., for all except the most heavily
damped systems. This maximum amplitude 4,, occurs, as we
noted earlier, at a frequency w,, that is less than w,. If we denote
by A4, the amplitude F,/k obtained for w — 0, then one can
readily show that the following results hold:

1 1/2
wo <1 - 2—Q—2')
%
1 1/2
<1 B w)

In Table 4-1 we list some values of w,/wg and 4,,/A4, for par-
ticular Q values. Notice that in most cases (Q > 5) the peak

Wm
“4-15)
Am = AO

TABLE 4-1: RESONANCE PARAMETERS OF DAMPED SYSTEMS

Q Wm/Wo An/Ao

1/4/2 0 1

1 1/4/2 = 0.707 2/4/3 = 1.15

2 Vi = 0.935 8/V14 = 2.06

3 VI = 0973 18/4/35 = 3.04

5 Vi = 0.990 50/4/99 = 5.03
>1 1 - 1/40% ol + 1/(80%)]

amplitude is close to being Q times the static displacement for
the same F,, and it occurs at a frequency quite close to wy. At
the frequency wy itself the amplitude is precisely QAo.

Figure 4-9 demonstrates how the sharpness of tuning of a
resonant system varies with Q. The arrangement of an array of
pendulums, as in Fig. 4-8(a), can be used to display the phe-
nomenon. The @ can be increased, without changing w,, by
making the bobs of the driven pendulums more massive. Figure
4-10 shows time-exposure photographs of the pendulums, first
unloaded and then with two different degrees of loading. This
clearly reveals the improvement in sharpness of tuning, even
though the absolute amplitudes of oscillation in the three pictures
are not strictly comparable. An instantaneous flash photograph
is superimposed on each time-exposure photograph, displaying
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Fig. 4-10 Time exposure photograph of Barton's
pendulums (cf. Fig. 4-8) showing resonance properties.
The pendulum bobs were light styrofoam spheres (from
PSSC Electrostatics Kit). (a) Pendulum bobs unloaded
and therefore heavily damped, showing little selective
resonance. (b) Each pendulum bob lightly loaded (with
one thumbtack) giving moderate damping and more
selective resonance. (c) Each pendulum bob heavily
loaded (one thumbtack + one small washer) giving
small damping and fairly high Q. (Photos by Jon
Rosenfeld, Education Research Center, M.1.T.) In each
case an instantaneous flash photograph is superim-
posed in order to display the phase relationships among
the driven pendulums.

the phase relationships among the driven pendulums for different
Q, corresponding to Fig. 4-9(b).

TRANSIENT PHENOMENA

92

Our discussion so far has taken the steady state as being com-
pletely established, as if the driving force Fgcos wt had been
acting since far back in the past and all trace of any natural
vibrations of the driven system had vanished. But of course in
any real situation the driving force is first brought into action
at some instant—which failing any reason to the contrary we
might as well call ¢+ = O0—and it is only some time later that our
steady-state conditions supervene. This transient stage may
occupy a very long time indeed if the damping of the free vibra-
tions is extremely small, and we shall even begin (again because
of its mathematical simplicity) with the case in which the damping
is effectively zero.
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To make the problem quite explicit, let us suppose that we
have a mass—spring system which, up to z = 0, is at rest. At
t = 0 the driving force is turned on, and thereafter the motion is
governed by Eq. (4-1), which we introduced at the beginning of
this chapter:

d*x
ME'F kx = Fgcos wt
or
2
Eidt_: + wolx = % cos wt 4-16)

Now we have already seen how this differential equation of
the forced motion leads to the following equation for x:

x = /Moot @-17)
wo2 — w?

This equation, however, contains no adjustable constants of
integration; the solution is completely specified by the values of
m, wg, Fo, and w, After our remarks in Chapter 3 about the need
to introduce two constants of integration in solving a second-order
differential equation, you may have wondered what became of
them in this case. More specifically and, as it were, empirically,
we can look at what Eq. (4-17) would give us for ¢ = 0, the in-
stant at which, according to our present assumptions, the driving
force is first switched on. The result is impossible! If, for example,
we suppose w < wo, the displacement at 1 = 0 immediately as-
sumes a positive value. But no system with nonzero inertia, acted
on by a finite force, can be displaced through a nonzero distance
in zero time. And if we suppose w > wy, the result is a still
greater absurdity—the mass would suddenly move to a negative
displacement under the action of a positive force. Quite clearly
Eq. (4-17) does not tell the whole story, and it is the transient
that comes to the rescue.

Mathematically, the situation is this. Suppose that we have
found a solution—call it x;—to Eq. (4-16) so that

d2X1

2 Fo
S - wo x] = — cOs wt
a2 + wo ' x1 o

And now suppose that we have also found a solution—call it xo—
to the equation of free vibration, so that

dzxz 2
—52— + wo X2 = 0
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Then by simple addition of these two equations we have

d¥(x1 + x2)

; R
2 + wo (x1 + x2) = - cos wt

Thus the combination x; + x. is just as much a solution of the
equation of forced motion as is x; alone. We have no mathe-
matical reason to exclude the contribution from x,; on the
contrary, we are absolutely obliged to include it if we are to take
care of the conditions existing at t = 0. We can say much the
same thing, although less precisely, from a purely physical stand-
point. The oscillations resulting from a brief impulse given to
the system at ¢ = 0 would certainly possess the natural frequency
wo. It is only if a periodic force is applied over many cycles that
the system learns, as it were, that it should oscillate with some
different frequency w. Thus one should expect that the motion,
at least in its initial stages, contains contributions from both
frequencies.

Turning now to the precise equations, the equation of the
free vibration of frequency w¢ does contain two adjustable con-
stants—an amplitude and an initial phase. Let us call them B
and 8 because we are using them to fit conditions at the beginning
of the forced motion. Then, according to the ideas outlined
above, we propose that the complete solution of the forced-
motion equation is as follows:

x = Bcos (wot + B) + Ccos wt (4-18)
where
Fo/m
T we? — w?

We can now tailor Eq. (4-18) to fit the initial conditions (in
this case) that x = 0 and dx/dt = O at ¢z = 0. For the condition
on x itself we have

0=Bcosg+ C
Also, differentiating Eq. (4-18), we have
% = —awoB sin(wot + B) — wC sin wt
Hence, at r = 0, we have
0 = —woBsin B
The second condition requires that 3 = 0 or =. Taking the
former (the final result is the same in either case) we get B = —C,

so that Eq. (4-18) becomes
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x = C(cos wt — cos wot) 4-19)

which is a typical example of beats, as shown in Fig. 4-11(a).
In the complete absence of damping these beats would continue
indefinitely; no steady state corresponding to Eq. (4-17) alone
would ever be reached. It is perhaps worth noting that the
conditions just after + = 0 now make excellent sense. If wt,
wo? K 1, we can put

2.2
coswt =~ 1 — ot
2
2.2
wo ¢
coswol = 1 — 02
Therefore,
en Fo/m (@ =) _1F
w2 — w2 2 2 m

Thus, precisely as we should expect, before the restoring forces
have been called into play the mass starts out in the direction of
the applied force with acceleration Fo/m.

You may wonder whether, granted that Eq. (4-18) can be
Jjustified as a solution of the forced-motion equation, it is therefore
the solution. Here we shall merely assert that there is a uniqueness
theorem for such differential equations, and if we have found any
solution with the requisite number of adjustable constants, it is
indeed the only solution of the problem.?!

Turning now to the more realistic case in which damping is
assumed to be present, we can without more ado postulate the
following combination of free and steady-state motions:

x = Be "% cos(wit + B) + 4 cos(wt — 8) (4-20)

where

o = w2—£1/2
1 0 4

and A, § are given by Eq. (4-11).

We shall not attempt here to delve into the purely mathe-
matical details of fitting the values of B and 8 to the values of x
and dx/drat r = 0. Itis just a more complicated version of what
we did above for the undamped oscillator. In Fig. 4-11(b),
however, we show the kind of motion that occurs—in general
tFor a fuller discussion see, for example, W. T. Martin and E. Reissner,

Elementary Differential Equations, Addison-Wesley, Reading, Mass., 2nd ed.,
1961.
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(a)

Fig. 4-11 (a) Re- (b)

sponse of an un-
damped harmonic os-
cillator to a periodic
driving force, as de-
scribed by Eq. (4-19).
This beat pattern
would continue in-
definitely. (b) Tran-
sient behavior of a
damped oscillator
with a periodic driving
force off resonance.
(c) Transient behavior
at exact resonance,  (C)
showing smooth
growth toward steady
amplitude. (Photos
by Jon Rosenfeld,
Education Research
Center, M.IT.)
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what looks like an attempt at beats, settling down to a motion
of constant amplitude at the driving frequency w. Figure 4-11(c)
shows the much simpler transient effect that occurs when the
damped oscillator is driven at its own natural frequency.

THE POWER ABSORBED BY A DRIVEN OSCILLATOR

It will often be a matter of importance and interest to know at
what rate energy must be fed into a driven oscillator to maintain
its oscillations at a fixed amplitude. As in any other dynamical
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situation, we can calculate the instantaneous power input, P,
as the driving force times the velocity:
_dw _ _dx

P=r=tg=t

Once again, let us consider first the undamped oscillator, for
which (because there are no dissipative effects) the mean power
input must come out to be zero. Taking the equations already
developed, and assuming the steady-state solution, we have

F = Fycos wt

X = w—:j)—/;%cosm = Ccos wt
Therefore,

v = —wCsin wt

P = —wCFy sin wt cos wt

This power input, being proportional to sin 2wt, is positive half
the time and negative for the other half, averaging out to zero
over any integral number of half-periods of oscillation. That is,
energy is fed into the system during one quarter-cycle and is
taken out again during the next quarter-cycle.

Coming now to the forced oscillator with damping, we have

x = Acos(wt — )
Therefore,

v = —wAdsin(wt — )
We can write this as

v = —vgsin(wt — )

where vy is the maximum value of v for any given values of F
and w. Taking the value of 4 from Eq. (4-14) we have

Fowo/k

|:w0 w2 1:|1I2
(:-w—o) t o

The value of v, passes through a maximum at w = wg, exactly,
a phenomenon that we can call velocity resonance.

Now let us consider the work and the power needed to main-
tain the forced oscillations. We have

vo(w) = 4-21)

P = —Fovo cos wt sin(wr — §)

—Foug cos wt(sin wt cos 6 — cos wt sin §)
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ie.,
P = —(Fovo cos 8) sin wt cos wt + (Fovg sin 8) cos2wt  (4-22)

If we average the power input over any integral number of cycles
the first term in Eq. (4-22) gives zero. The average of cos? wt,
however, is 3, so that the average power input is given by

P = }Fovosin 6 = $wAFo sin

With the help of Egs. (4-14) and (4-21) this becomes

- F02w0 1
P(w) 4-23)
HO (wo _w)*, 1
w W Q2

We see that this power input, like the velocity, passes through a
maximum at precisely w = wq for any Q. The maximum power
is given by

P = Fo’woQ _ QFo°
T2k 2mwo

(4-24)

The dependence of P on w for various Q is shown in Fig. 4-12(a).
It may be noted that the power input drops off toward zero for
very low and very high frequencies, and that except for low Q
the curves are nearly symmetrical about the maximum. It is
convenient to define a width for these power resonance curves by
taking the difference between those values of w for which the power
input is half of the maximum value. This can be done in a par-
ticularly clear and useful way if (as in most cases of interest) Q
is large. This means that the resonance is effectively contained
within a narrow band of frequencies close to wy. It is then possible
to write an approximate form of the equation for P(w), based on
the following piece of algebra:

wo w _ wo —w
w wo wwo
_ (wo + w)(wo — )
wwo

Hence, if w = wy, we can put

wo w _ 2wolwo — w)  2(wo — w)
W wo wo?2 wo

Substituting this in the denominator of Eq. (4-23), we have

1Recall, for example, that cos? ot = 4(1 4 cos 2wf) and that (cos 2wl)ay = 0
over a complete cycle,
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Fig. 4-12 (a) Mean
power absorbed by a
Jorced oscillator as a
Junction of frequency
Jor different values of
Q. (b) Sharpness of
resonance curve de-
termined in terms of
power curve.
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Now we have met the quantity wo/Q before. It is the damping
constant ¥ (= b/m) which characterizes the rate at which the
energy of a damped oscillator was found to decay in the absence
of a driving force:

E = Ege~ @9t _ Eoe™ (4-25)

[see Eq. (3-36)]. Thus the above equation for P can be written
(remembering also that k = mwy?) in the following simplified
form:

YFo® 1

2m 4(wo — w)2 + Y2

(approximate) P(w) = (4-26)
The frequencies wo &= Aw at which P(w) falls to half of the maxi-
mum value P(w,) are thus defined by

4Aw)® =72

ie.,
wo
2Aw = — 4-27
w5 @-27)

Thus we find that the width of the resonance curve for the driven
oscillator, as measured by the power input [Fig. 4-12(b)], is equal
to the reciprocal of the time needed for the free oscillations to
decay to 1/e of their initial energy. We can thus predict that if a
system is observed to have a very narrow resonance response (as
measured either by amplitude or by power absorption), then the
decay of its free oscillations will be very slow. And conversely,
of course, an observation of whether the free oscillations decay
quickly or slowly will tell us whether the response of the driven
oscillator is broad or narrow. What is our criterion of “slow”
or “fast,” “broad” or “narrow”? Equations (4-26) and (4-27)
tell us the answer. We can say that the resonance is narrow if
the width is only a small fraction of the resonant frequency, i.e., if

240 «1 (4-28a)
wo

and we can say that the decay of free oscillations is slow if the
oscillator loses only a small fraction of its energy in one period
of oscillation. Now from Eq. (4-25) we have

AE
—E‘ = —YAt

If for At we put the time 27 /wg, which is approximately equal to
the period of the free damped oscillation [Eq. (3—40)], we have
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—<K1 (4-28b)

Since ¥ = 2 Aw = wo/Q, the conditions described by Egs. (4-28a)
and (4-28b) can both be expressed by saying that the dimensionless
quantity Q must be large.

This relation between the resonance width of forced oscilla-
tion and the decrement of free oscillations is characteristic of a
wide variety of oscillatory physical systems, not only the mechani-
cal oscillator which we are here using as an example. In fact,
whenever such a physical system, in free oscillation, shows an
exponential loss of energy with time, it also displays a driven
response having resonance characteristics.

EXAMPLES OF RESONANCE
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In the course of our discussions we have made passing references
to the fact that many systems which, on the face of it, have very
little in common with a mass on a spring, nevertheless exhibit a
similar resonance behavior. In concentrating on the behavior of a
simple mechanical system, however, our analysis became very
detailed and specific. Now we shall broaden our view again, and
say something about resonance in quite different systems.

If we are to extend our ideas in this way, we need to be able
to say in rather general terms what we mean by resonance, and
we can begin by asking ourselves: What is the real essence of the
behavior of the mass and spring system? And putting aside the
mathematics we can say this: The system is acted on by an ex-
ternal agency, one parameter of which (the frequency) is varied.
The response of the system, as measured by its amplitude and
phase, or by the power absorbed, undergoes rapid changes as the
frequency passes through a certain value. The form of the re-
sponse is described by two quantities—a frequency w, and a
width ¥ (= wo/Q)—which characterize the distinctive properties
of the driven system. Resonance is the phenomenon of driving
the system under such conditions that the interaction between
the driving agency and the system is maximized. Whatever the
particular criteria applied, one can say that the interaction has
its maximum at or near wg, and that its most marked changes

Examples of resonance



occur over a range of about &7 with respect to the maximum.

When we carry over these ideas to the resonance behavior
of other physical systems, we shall find that the quantities that
characterize a resonance are not always frequency, absorbed
power, and amplitude. This will appear in some of the examples
that we shall now discuss.

ELECTRICAL RESONANCE

102

One of the most familiar and important resonant systems is the
electrical system made up of a capacitor and a coil, as shown in
Fig. 4-13. The analysis of such a system has a remarkable simi-
larity to the mechanical systems with which we have been con-
cerned so far. Let us consider first the free oscillations, ignoring
for the moment any dissipative process associated with the
electrical resistance. To begin with, we shall briefly describe the
essential electrical behavior of the individual components.

The capacitor is a device for storing electric charge and the
associated electrostatic potential energy. Its capacitance C is
defined as the measure of the charge g applied to the capacitor
plates divided by the measure of the voltage difference that this
charge produces:

=4
Ve
Therefore,
-4
Ve=¢

The action of the coil requires a somewhat more detailed descrip-
tion. Under D-C conditions the coil offers no opposition to the
flow of current, but if the current is changing with time it is found
that the coil (which we shall henceforth call an inductor) acts to
oppose that change (Lenz’s law). Under these circumstances

i C
i
+q9  —q
Fig. 4-13 Capacitor and in- L
ductor in series: the basic elec- —Joo0

trical resonance system. i
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there is a voltage difference ¥, between the ends of the inductor,
and this voltage is proportional to the rate of change of the
current /. The inductance L is defined by the relation

di
Vi = Lgt-

This equation says that a voltage ¥ must be applied between
the ends of the inductor in order to make the current change at
the rate di/dt.

In a circuit made up of just these two components, the sum
of V¢ and ¥V, must be zero, because an imaginary journey through
the capacitor and then through the inductor brings us back to
the same point on the circuit. Thus we have

2112 =0 @-29)

Now there is an intimate connection between g and /, because the
current in the circuit is just the rate of flow of charge past any
point. A current / flowing for a time df in the wire connected
to a capacitor plate will increase the charge on that plate by the
amount dq = idt, so we have

Hence Eq. (4-29) can be written

d2q 1

But this is precisely like the basic differential equation of SHM
for a mass-spring system, with g playing the role of x, L appearing
in the place of m, and 1/C replacing the spring constant k. We
can confidently assume the existence of free electrical oscillations
such that

T vIc
Now let us consider the effect of introducing a resistor, of
resistance R, as in Fig. 4-14(a). At current 7 it is necessary to
have a voltage Vr (= iR)applied between the ends of the resistor.
Thus the statement of zero net voltage drop in one complete tour
of the circuit is as follows:

Electrical resonance



Fig. 4-14 (a) Capacitor, in-
ductor, and resistor in series.
(b) Capacitor, inductor, and
resistor in series driven by a
sinusoidal voltage. (a)

i, C
P

¥, cos wt

(b)

9, s
C+1R+Ldt—0

ie.,
d2q dg 1
Lot Ry tci=0
or
2
Ta  Rds 1 q=0 (@-31)

a2 "L dr T Ic?
In this equation, R/L plays exactly the role of the damping
constant ¥, and in such a circuit the charge on the capacitor
plates (and the voltage V¢) will undergo exponentially damped
harmonic oscillations.
Finally, if the circuit is driven by an alternating applied

voltage, we have a typical forced-oscillator equation:

2
dg  Rdg , 1 ¥ )
dt2+Ldt+LCq_ 7 coswt (4-32)

Compare:

d* | b dx

k _Fo
ar EE_*-EX— mCOSCOI (4-33)

The connection between Egs. (4-32) and (4-33) becomes even
closer if one considers the energy of the system. Just as Fdx is
the amount of work done by the driving force Fin a displacement
dx, so V dq is the amount of work done by the driving voltage V
when an amount of charge dg passes through the circuit. One can
regard the oscillation as involving the periodic transfer of energy
between the capacitor and the inductor, with a continual dissipa-
tion of energy in the resistor. Comparison of the mechanical and
electrical equations suggests the classification of analogous quanti-
ties, as shown in Table 4-2.

We have discussed this phenomenon of electrical resonance
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TABLE 4-2: MECHANICAL AND ELECTRICAL RESONANCE

PARAMETERS
Mechanical system Electrical system

Displacement x Charge q
Driving force F Driving voltage V
Mass m Inductance L
Viscous force constant b Resistance R
Spring constant k& Reciprocal capacitance 1/C
Resonant frequency vk/m Resonant frequency 1/4/LC
Resonance width Y = b/m Resonance width Yy = R/L
Potential energy $kx? Energy of static charge $¢2/C
Kinetic energy Electromagnetic energy of moving

$m(dx/dD? = 3mv? charge 3L(dg/df)? = 3Li?
Power absorbed at resonance Power absorbed at resonance

Fo2/2b Vo2/2R

at some length because of its extremely close likeness to mechani-
cal resonance. Our other examples, although of great physical
importance, do not fall so completely into this pattern, and we
shall dispose of them more briefly.

OPTICAL RESONANCE

We have a great wealth of evidence that atoms behave like
sharply tuned oscillators in the processes of emitting and absorb-
ing light. Whenever the emission of light occurs under such
conditions that the radiating atoms are effectively isolated from
each other, as in a gas at low pressure, the spectrum consists of
discrete, very narrow lines; i.e., the radiated energy is concen-
trated at particular wavelengths. An incandescent solid—e.g.,
the filament of a light bulb—emits a continuous spectrum, but
the situation here is quite different, because each atom in a solid
is strongly linked to its neighbors, causing a drastic change in
the dynamical state of the electrons chiefly responsible for visible
or near-visible radiation.

We have just spoken of atoms as oscillators that emit their
characteristic frequencies. But how does this fit in with the
photon description of radiation, and with the picture of the
radiative process as one in which the atom undergoes a quantum
jump? The answer is by no means obvious. Before the advent
of quantum theory, one could visualize an electron describing a
circular orbit within an atom, and emitting light of a frequency
equal to its own orbital frequency. But now we can only say that
the frequency of the light is defined (through E = hv) by the
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Fig. 4-15 (a) Por-
tion of the solar spec-
trum, showing the
JSamous sodium D
lines at 5890 and
5896 A. (From F. A.
Jenkins and H. E.
White, Fundamentals
of Optics, McGraw-
Hill, New York,
1957.) (b) A qualita-
tive representation of
the intensity of the
solar spectrum as

a function of wave-
length, over the range
shown in (a).
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energy difference between two states of the atom; we can no
longer identify that frequency with a vibration of the atom itself.
Nevertheless the concept of the atom as an oscillator does in
some respects survive. If the emitted light is analyzed with an
interferometer, it is found to consist of wave trains of finite
length. The length of the wave trains, divided by ¢, defines a
time 7 which corresponds to the mean life of the radiating atoms
in their excited state, and the surplus energy of a collection of
excited atoms decays exponentially as e /7 (= e~ %) as the energy
is radiated away. Neither the photon picture nor the wave picture
alone tells us the whole story, but the model of the atom as a
damped oscillator provides an acceptable description of some
important aspects of the radiative process.

As we have seen, the concomitant of a natural frequency of
free oscillation is a resonance absorption at about that same
frequency. In the case of visible light the frequencies are too high
(= 10"® Hz) to be measurable, but we are able to describe both
emission and absorption in terms of characteristic wavelengths.
Probably the most famous example of resonance absorption for
light is provided by the Fraunhofer lines. These are the dark
lines that are observed in a spectrum analysis of the sun; they are
named after Joseph von Fraunhofer, who in a careful study
mapped 576 of them in 1814. Figure 4-15(a) shows a portion of

5890 5896

(a)

6000

Intensity

i j ! ]
5850 5900 5950 6000
Wavelength, A4
(b)
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the solar spectrum; the prominent Fraunhofer lines at 5890 and
5896 A are due to sodium. Figure 4-15(b) shows qualitatively
what a plot of intensity versus wavelength looks like; the intensity
dips sharply at the wavelength of the Fraunhofer lines, but is not
zero. (It was not Fraunhofer who first observed the absorption
lines,! but it was he who first recognized that some of them
coincided in wavelength with bright emission lines produced by
laboratory sources. It remained, however, for Kirchhoff and
Bunsen in 1861 to make a detailed comparison of the solar
spectrum with the arc and spark spectra of pure elements.)

One can be sure that the Fraunhofer lines are the result of
resonance absorption processes. The picture is that the continuous
radiation from hot and relatively dense matter near the sun’s
surface is selectively filtered, as it passes outward, by atoms in
the more tenuous vapors of the solar atmosphere. It would be
satisfying if one could trace out the detailed shape of an optical
absorption line and relate its width to the characteristic time
(= 1/7) for the decay of the spontaneous emission. This, how-
ever, is extremely hard to do. The chief enemy is the Doppler
effect. Both direct and indirect evidence show that a typical life-
time for an excited atom emitting visible light is about 1078 sec,
so that 7 is about 108sec™). The angular frequency of the
emitted light, as defined by 2xc/), is about 4 X 105 sec™!. Thus
we can calculate a line width &\ as follows:

A\ Y 10% _8
N o we s Ao~ 2X10

(Hence 8\ ~ 107*A for A ~ 5000 A.) But, unless special pre-
cautions are taken, the emitting atoms have random thermal
motions of several hundred meters per second, and we can esti-
mate a Doppler broadening of the spectral lines:

AX

A

~ 106

olc

The Doppler effect is thus about 100 times greater than any effect
due to the true lifetime of the radiating atom. Interatomic colli-
sions also disturb the situation, so that the resonance shapes of
spectral lines are more a matter of inference than of direct spectro-
scopic observation.

IThey were first noted by W. H. Wollaston in 1802. By 1895 a classic study
by the American physicist H. A. Rowland had resulted in the mapping of

1100 of them. Today about 26,000 lines have been catalogued between 3000
and 13,000 A.

Optical resonance



Fig. 4-16 Yield of
gamma rays as a
Sfunction of the energy
of bombarding protons
in the reaction

p+ Y¥F—20Ne | 7.
[From data of R. G.
Herb, S. C. Snowden,
and O. Sala, Phys.
Rev., 75, 246 (1949).]
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NUCLEAR RESONANCE
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The literature of nuclear physics contains innumerable examples
of nuclear resonances; Fig. 4-16 shows one of them. This process
of nuclear resonance differs in several ways from anything we
have discussed so far. The subject of Fig. 4-16 is a nuclear re-
action; the graph shows the relative yield of gamma rays as a
target of fluorine is bombarded with protons of different energies
around 875 keV. But what is the resonant system? It is not the
bombarded fluorine but the compound nucleus—2°Ne in an
excited state, denoted 2°Ne*, formed when a fluorine nucleus
captures a proton. This compound nucleus is unstable, and one
of its decay modes is by emission of gamma rays. The complete
process can be written as follows:

1 19 20 * 20
1H+ 9F——»lONe ——»10Ne+’)’

(The subscript shows the number of protons in a nucleus, and
the superscript the total of protons plus neutrons.)

The controllable parameter—the independent variable of
the interaction—is not a frequency but the energy of the bom-
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barding proton. This defines a basic property of the resonance:
the total energy of the 2°Ne* in its rest frame. The response of
the system is measured, not in terms of amplitude or absorbed
power, but in terms of the probability that an incident proton
will cause a gamma ray to be produced. This probability can be
described in terms of the effective target area (or cross section, o)
that each fluorine nucleus presents to the incident proton beam.
Finally, the detailed shape of the resonance curve is very similar
in analytic form to the approximate form (for high Q) of the
absorbed power curve of a mechanical oscillator [Eq. (4-26) and
Fig. 4-12]. A nuclear resonance such as the one of Fig. 4-16 can
be well described by the equation
a(Eo)
o(E) = o — EP . iy
Iz
The energy E, then corresponds to the peak of the resonance
curve, and the total width of the curve at half-height is given
by I'. Defined in this way, the energy width T is strictly analogous
to the frequency width ¥ of a mechanical or electrical resonance.
The full curve in Fig, 4-16 is drawn according to Eq. (4-34) with
appropriate values of E, and T, and it can be seen that the fit to
the data is excellent.

(4-34)

NUCLEAR MAGNETIC RESONANCE
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As a last example of resonance in other fields of physics, we shall
mention the resonant process by which atomic nuclei, behaving
as tiny magnets, can be flipped over in a magnetic field. It depends
upon a quantum phenomenon: that atomic magnets are limited
to having only a few discrete possible orientations with respect
to a magnetic field in a given direction. A proton, to take a
specific example, has only two possible orientations, one cor-
responding roughly to the north-seeking orientation of an ordi-
nary compass needle, and the other corresponding to the reverse
of this. There is a well-defined energy difference between these
orientations, corresponding to the work done against the mag-
netic forces in turning the nuclear magnet from one position to
the other. This energy difference is directly proportional to the
strength of the magnetic field in which the proton finds itself. If
photons of just the right energy come along, they can cause the
protons to switch from one orientation to the other. This can
be brought about by injecting electromagnetic radiation of just

Nuclear magnetic resonance



the right frequency; for protons in a field of about 5000 G the
resonance frequency is about 21 MHz. If all the protons in about
1 cm? of water are flipped in this way, they can be made to pro-
duce (through electromagnetic induction) a readily detectable
voltage in a pickup coil. If the magnetic field were held constant,
one would see this signal as a resonant function of the frequency
of the injected radiation. It is much more convenient, however, to
use a constant, sharply defined radiofrequency and vary the
strength of the applied magnetic field B. The magnitude of the
nuclear magnetic resonance signal can then be expressed as a
resonant function of the field strength:
Vo

4(Bo — B)?
—@Be +1
where B, is the field strength at exact resonance and AB is the
width of the resonance at half-height.

For their quite independent research on this phenomenon,

V(B) = 4-35)

Fig. 4-17 Magnetic resonance line of
protons in water containing MnSQOy as a
paramagnetic catalyst and obtained from
that component of the nuclear induction
signal which corresponds to absorption.
The photograph is of the trace on a
cathode-ray oscillograph with the vertical
deflection arising from the rectified and
amplified signal and the horizontal deflection
corresponding to different values of the
constant field. From Nobel Lectures:
Physics (1942-1962), Elsevier, Amsterdam,
1964.

F. Bloch and E. M. Purcell shared the Nobel Prize in physics in
1952. Figure 4-17 comes from the Nobel lecture that Bloch gave
at that time.

ANHARMONIC OSCILLATORS

So far this chapter reads altogether too much like a success story.
Everything works. We write down a differential equation and
obtain in every case an analytic solution that fits it exactly. We
point to actual physical systems that apparently conform perfectly
to our very simple mathematical model. Is nature really so
accommodating? The answer is that in certain cases—numerous
and varied enough to be of great physical importance—a system
can indeed be represented, with impressive accuracy, as a damped

110 Forced vibrations and resonance



111

oscillator with a restoring force proportional to the displacement
and a resistive force proportional to the velocity. But this is an
astonishing stroke of luck, and we have in fact been treading a
very narrow path. To appreciate just how special and favorable
are the situations that we have discussed, we shall glance briefly
at the effect of modifying the equations of motion.

Our original equation for the free oscillation of a mass on a
spring without damping was the following:

F=m——= —kx

This holds if the spring obeys a linear relation (Hooke’s law) for
any amount of extension or compression. But no real spring
behaves quite like this. With many springs it takes a slightly
different size of force to produce a given extension than to produce
an equal compression. The simplest asymmetry of this kind is
represented by a term in F proportional to x2. Or it may be that
the spring is symmetrical with respect to positive and negative
displacements, but that there is not strict proportionality of F
to x. The simplest symmetrical effect of this kind is described by a
term in F proportional to x3. The equations of motion for these
cases can be written as follows:

2

Nonlinear, asymmetric: mfiT: + kx + ax’ =0 (4-36a)
. . d2x 3
Nonlinear, symmetric: m 7l +kx+B8x =0 (4-36b)

If we try a solution of the form x = A cos wet in either of the
above equations we find at once that it does not work; the motion
is no longer describable as a harmonic vibration at some unique
frequency wo. We have instead what is called an anharmonic
oscillator. The motion is still periodic, in that (assuming no
damping) a given state of the motion recurs at equal intervals
T = 2n/w,, but instead of having x = A4 cos wet we find that
an infinite set of harmonics of wg is now needed to describe the
motion; i.e., we must put

-]
X = Z Ay cos(nwot — 8,)
n=1

in order to have a form of x that will satisfy the differential
equations,

In similar fashion, a resistive force varying as vZ or v3, in-
stead of v, makes impossible a clean, simple analytic description
of the motion of a damped oscillator.

Anharmonic oscillators
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What happens if an oscillator with nonlinear terms (in
restoring force, damping force, or both) is subjected to a sinusoi-
dal driving force? We shall not try to spell out the answer but
leave it as a challenge for your spare moments. Take, for example,
an oscillator whose free oscillations are described by Eq. (4-36a)
with a pure viscous force (~dx/dt) added, and assume a driving
force F = Fycos wt. Assume ax? < kx, put k/m = wo?, and
see if you can determine the frequency or frequencies w for which
the system exhibits resonance behavior. After investigating this
problem you will realize that the simple harmonic oscillator is
well named, and you will appreciate why a physicist will use it as
a model of a vibratory system if it can possibly be justified.

4-1 Construct a table, covering as wide a range as possible, of res-
onant systems occurring in nature. Indicate the order of magnitude
of (a) the physical size of each system, and (b) its resonant frequency.

4-2 Consider how to solve the steady-state motion of a forced oscil-
lator if the driving force is of the form F = Fgsinwt instead of
Fo cos wt.

4-3 An object of mass 0.2 kg is hung from a spring whose spring
constant is 80 N/m. The body is subject to a resistive force given by
—bv, where v is its velocity (m/sec) and b = 4 N-m™! sec.

(a) Set up the differential equation of motion for free oscillations
of the system, and find the period of such oscillations.

(b) The object is subjected to a sinusoidal driving force given by
F(t) = Fosinwt, where Fo = 2N and @ = 30 sec™!. In the steady
state, what is the amplitude of the forced oscillation ?

4-4 A block of mass m is connected to a spring, the other end of
which is fixed. There is also a viscous damping mechanism. The fol-
lowing observations have been made on this system:

(1) If the block is pushed horizontally with a force equal to mg,
the static compression of the spring is equal to A.

(2) The viscous resistive force is equal to mg if the block moves
with a certain known speed «.

(a) For this complete system (including both spring and damper)
write the differential equation governing horizontal oscillations of the
mass in terms of m, g, 4, and «.

Answer the following for the case that u = 3V/gh:

(b) What is the angular frequency of the damped oscillations ?

(c) After what time, expressed as a multiple of v/A/g, is the
energy down by a factor 1/e?

Forced vibrations and resonance
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(d) What is the Q of this oscillator ?

(e) This oscillator, initially in its rest position, is suddenly set
into motion at ¢t = 0 by a bullet of negligible mass but nonnegligible
momentum traveling in the positive x direction. Find the value of
the phase angle & in the equation x = Ae~7!/2 cos(wt — &) that
describes the subsequent motion, and sketch x versus ¢ for the first
few cycles.

(f) If the oscillator is driven with a force mg cos wt, where
w = 4/2g/h, what is the amplitude of the steady-state response?

4-5 A simple pendulum has a length (/) of 1 m. In free vibration the
amplitude of its swings falls off by a factor e in 50 swings. The pendu-
lum is set into forced vibration by moving its point of suspension
horizontally in SHM with an amplitude of 1 mm.

(a) Show that if the horizontal displacement of the pendulum
bob is x, and the horizontal displacement of the support is £, the
equation of motion of the bob for small oscillations is

d’x dx ., g __ g
E'*“YE-*-?X—TE

Solve this equation for steady-state motion, if £ = £ocos wr. (Put
wo? = g/1)

(b) At exact resonance, what is the amplitude of the motion of
the pendulum bob? (First, use the given information to find Q.)

(c) At what angular frequencies is the amplitude half of its
resonant value?

4-6 Imagine a simple seismograph consisting of a mass M hung
from a spring on a rigid framework attached to the earth, as shown.
The spring force and the damping force depend on the displacement
and velocity relative to the earth’s surface, but the dynamically sig-
nificant acceleration is the acceleration of M relative to the fixed stars.

(a) Using y to denote the displacement of M relative to the earth
and 7 to denote the displacement of the earth’s surface itself, show
that the equation of motion is

d’y dy 2 dn

7] +7 p +woy=— e

(b) Solve for y (steady-state vibration) if = C cos wt.

(c) Sketch a graph of the amplitude 4 of the displacement y as a
function of w (supposing C the same for all w).

(d) A typical long-period seismometer has a period of about
30sec and a @ of about 2. As the result of a violent earthquake the
earth’s surface may oscillate with a period of about 20 min and with
an amplitude such that the maximum accelerationisabout 10™9 m/sec2.
How small a value of 4 must be observable if this is to be detected?
4-7 Consider a system with a damping force undergoing forced
oscillations at an angular frequency w.
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(a) What is the instantaneous kinetic energy of the system?

(b) What is the instantaneous potential energy of the system?

() What is the ratio of the average kinetic energy to the average
potential energy? Express the answer in terms of the ratio w/wo.

(d) For what value(s) of w are the average kinetic energy and the
average potential energy equal? What is the total energy of the system
under these conditions?

(e) How does the total energy of the system vary with time for
an arbitrary value of w? For what value(s) of w is the total energy
constant in time?

4-8 A mass m is subject to a resistive force —bv but no springlike
restoring force.
(a) Show that its displacement as a function of time is of the form

D0 —nt
x=C——e
4

where Y = b/m.

(b) At ¢t = 0 the mass is at rest at x = 0. At this instant a
driving force F = Fg cos wt is switched on. Find the values of 4 and
é in the steady-state solution x = A4 cos(wt — §).

(c) Write down the general solution [the sum of parts (2) and
(b)] and find the values of C and v¢ from the conditions that x = 0
and dx/dr = 0 at ¢t = 0. Sketch x as a function of ¢.

4-9 (a) A forced damped oscillator of mass m has a displacement
varying with time given by x = A sin wt. The resistive force is —bv.
From this information calculate how much work is done against the
resistive force during one cycle of oscillation.

(b) For a driving frequency w less than the natural frequency wo,
sketch graphs of potential energy, kinetic energy, and total energy
for the oscillator over one complete cycle. Be sure to label important
turning points and intersections with their values of energy and time.

4-10 The power input to maintain forced vibrations can be calculated
by recognizing that this power is the mean rate of doing work against
the resistive force —bv.

(a) Satisfy yourself that the instantaneous rate of doing work
against this force is equal to hv2.

(b) Using x = A cos(wt — §), show that the mean rate of doing
work is bw2A42/2.

(c) Substitute the value of 4 at any arbitrary frequency and
hence obtain the expression for P as given in Eq. (4-23).

4-11 Consider a damped oscillator with m = 0.2kg, b = 4 N-m~!sec
and k = 80 N/m. Suppose that this oscillator is driven by a force
F = Fg cos wt, where Fo = 2N and w = 30sec™!.

(a) What are the values 4 and & of the steady-state response
described by x = A cos(wt — 6)?
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(b) How much energy is dissipated against the resistive force in
one cycle?
(c) What is the mean power input?

4-12 An object of mass 2 kg hangs from a spring of negligible mass.
The spring is extended by 2.5 cm when the object is attached. The
top end of the spring is oscillated up and down in SHM with an ampli-
tude of 1 mm. The Q of the system is 15.

(a) What is wo for this system?

(b) What is the amplitude of forced oscillation at w = wg?

(c) What is the mean power input to maintain the forced oscilla-
tion at a frequency 2% greater than wg? [Use of the approximate
formula, Eq. (4-26), is justified.]

100 F—————————-

80

60 -

40 -

Input power, watts

|
[l
L
L
201 Lol
| |
1 [}
1 1

w (sec™!)
4-13 The graph shows the power resonance curve of a certain mechani-
cal system when driven by a force Fy sin wt, where Fo = constant and
w is variable.

(a) Find the numerical values of wo and Q for this system.

(b) The driving force is turned off. After how many cycles of
free oscillation is the energy of the system down to 1/e3 of its initial
value? (e = 2.718.) (To a good approximation, the period of free
oscillation can be set equal to 27 /w¢.)

4-14 The figure shows the mean power input P as a function of driving
frequency for a mass on a spring with damping. (Driving force =

P, F—————————=

_Pm_

Mean input power
e e T

0.98w, w, 1.020,
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Fo sin wt, where Fo is held constant and w is varied.) The Q is high
enough so that the mean power input, which is maximum at wo, falls
to half-maximum at the frequencies 0.98wo and 1.02wo.

(a) What is the numerical value of Q?

(b) Ifthe driving force is removed, the energy decreases according
to the equation

E= Ege "

What is the value of v ?

(c) If the driving force is removed, what fraction of the energy
is lost per cycle?

A new system is made in which the spring constant is doubled,
but the mass and viscous medium are unchanged, and the same driving
force Fosin wt is applied. In terms of the corresponding quantities
for the original system, find the values of the following:

(d) The new resonant frequency wg’.

(e) The new quality factor Q'.

(f) The maximum mean power input Pr’.

(2) The total energy of the system at resonance, Eg’.

4-15 The free oscillations of a mechanical system are observed to have
a certain angular frequency wi. The same system, when driven by a
force Fgcos wt (where Fo = const. and w is variable), has a power
resonance curve whose angular frequency width, at half-maximum
power, is w1/S.

(a) At what angular frequency does the maximum power input
occur?

(b) What is the Q of the system?

(c) The system consists of a mass m on a spring of spring constant
k. In terms of m and k, what is the value of the constant b in the
resistive term —bv?

(d) Sketch the amplitude response curve, marking a few char-
acteristic points on the curve,

4-16 For the electrical system in the figure, find

1, COS wt
(a) The resonant frequency, wo. —
(b) The resonance width, 7.
(c) The power absorbed at resonance. R

p—

4-17 The graph shows the mean power absorbed by an oscillator when
driven by a force of constant magnitude but variable angular fre-
quency w.

(a) At exact resonance, how much work per cycle is being done
against the resistive force? (Period = 27/w.)
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P, watts

0995 10¢ 1005
x 108 x 10° (sec™!)

(b) At exact resonance, what is the foral mechanical energy Eo

of the oscillator ?
(c) If the driving force is turned off, how many seconds does it

take before the energy decreases to a value E = Ege~1?
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The question of the vibration of connected particles is a
peculiarly interesting and important problem . . . it is going
to have many applications.

LORD KELVIN, Baltimore Lectures (1884)



S

Coupled
oscillators and
normal modes'

THROUGHOUT THE PRECEDING TWO CHAPTERS we have confined
our analysis to systems having only one type of free vibration,
and characterized by a single natural frequency. A real physical
system, however, is usually capable of vibrating in many different
ways, and may resonate to many different frequencies—like a
sort of grand piano. We speak of these various characteristic
vibrations as modes, or, for reasons that will emerge later, as
normal modes of the system. A simple example is a flexible chain
suspended from one end. It is found that there is a whole suc-
cession of frequencies at which every point on the chain vibrates
in SHM at the same frequency, so that the shape of the chain
remains constant in the sense that the displacements of the various
parts always preserve fixed ratios. The first three modes (in
ascending order of frequency) for such a chain are shown in
Fig. 5-1. This is in effect only a one-dimensional object, and the
variety of natural modes of oscillation for two- and three-
dimensional objects is still greater.

IThis whole chapter may be bypassed if it is preferred to proceed directly to
the discussion of vibrations and waves in effectively continuous media. On
the other hand, an acquaintance with the contents of the present chapter, even
in rather general terms, may help in appreciating the sequel, for the many-
particle system does provide the natural link between the single oscillator

and the continuum. And it is not as mathematically formidable as it may
appear at first sight.
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Fig. 5-1 First three normal modes of vertical chain
with upper end fixed. (The tension is provided at each
point by the weight of the chain below that point and so
increases linearly with distance from the boitom.)

How do we go about the job of accounting for these numer-
ous modes and calculating their frequencies? The clue to this
question lies in the fact that an extended object can be regarded
as a large number of simple oscillators coupled together. A solid
body, for example, is composed of many atoms or molecules.
Every atom may behave as an oscillator, vibrating about an
equilibrium position. But the motion of each atom affects its
neighbors so that, in effect, all the atoms of the solid are coupled
together. The question then becomes: How does the coupling
affect the behavior of the individual oscillators?

We shall begin by discussing in some detail the properties of
a system of just two coupled oscillators. The change from one
oscillator to two may seem rather trivial, but this new system has
some novel and surprising features. Moreover, in analyzing its
behavior we shall develop essentially all the theoretical tools we
need to handle the problem of an arbitrarily large number of
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coupled oscillators—which will be our ultimate concern. And
this means that, from quite simple beginnings, we can end up
with a significant insight into the dynamical properties of some-
thing as complicated as a crystal lattice. That is no small achieve-
ment, and it is worth the little extra amount of mathematical
effort that our discussion will entail.

TWO COUPLED PENDULUMS

Fig. 5-2 (a) Coupled
pendulums in equilib-
rium position.

(b) Coupled pendu-
lums with one pendu-
Ium displaced.
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Let us begin with a very simple example. Take two identical
pendulums, 4 and B, and connect them with a spring whose
relaxed length is exactly equal to the distance between the pendu-
lum bobs, as shown in Fig. 5-2. Draw pendulum A4 aside while
holding B fixed and then release both of them. What happens?
Pendulum A swings from side to side, but its amplitude of
oscillation continuously decreases. Pendulum B, initially undis-
placed, gradually begins to oscillate and its amplitude continu-
ously increases. Soon, 4 and B have equal amplitudes. You
might think that now there would be no further change. But no,
the process continues. The amplitude of 4 continues to decrease
and that of B to increase until eventually the displacement of B
is equal (or about equal) to that originally given to A, and the
displacement of 4 diminishes toward zero. The starting condition
is almost reversed. Now it is easy to predict the sequel. The
motion of B is transferred back to A, and so it continues. The
energy, originally given to 4 (and to the spring), does not remain
confined to the oscillation of A4, but is transferred gradually to B
and continues to shuttle back and forth between 4 and B. Fig-
ure 5-3 shows records of actual motions of such a coupled system.
The pendulums, whose bobs were dry cells with flashlight bulbs
attached, were suspended from the ceiling and were photographed
from below by a camera that was pulled steadily along the floor.

Two coupled pendulums



Fig. 5-3 Motion of
two identical coupled
oscillators (pendulums
with flashlight bulbs
on the bobs). Pen-
dulum no. 1 was ini-
tially at rest at its
normal equilibrium
position. The damp-
ing of the system is
quite noticeable.
(Photo by Jon Rosen-
feld, Education Re-
search Center, M.1.T.)

Of course, it is the coupling spring that is responsible for

the observed behavior. As A oscillates, the spring pulls and
pushes on B. It provides a driving force that works on B and
sets it into motion. At the same time, the spring pulls and
pushes on A4, sometimes helping, sometimes hindering its motion.
But as B begins to move, the action of the spring on A4 is more to
hinder than to help. The net work done on A4 during one oscilla-
tion is negative, and the amplitude of 4 decreases.

Each of the motions recorded in Fig. 5-3 looks just like a
case of beats between two SHM’s of the same amplitude but
different frequencies. And that is precisely what they are. To
account for them in detail is not, however, an obvious matter:
Our “feeling” for the physical phenomenon helps us here only
qualitatively. But the problem becomes exceedingly simple if
we alter the starting conditions somewhat.

SYMMETRY CONSIDERATIONS

122

Suppose we draw both 4 and B aside by equal amounts [Fig.
5-4(a)] and then release them. The distance between them equals
the relaxed length of the coupling spring and therefore the spring
exerts no force on either pendulum. A and B will oscillate in
phase and with equal amplitudes, always maintaining the same
separation. Each pendulum might just as well be free (uncoupled).
Each oscillates with its free natural frequency wo (= Vg/l).
The equations of motion are

C cos wot

XA

-1

xp = C cos wot
where x4 and xg are the displacements of each pendulum from

its equilibrium position. This represents a normal mode of the
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Fig. 5-4 (a) Lower
normal mode of two
coupled pendulums,
(b) Higher normal
mode of two coupled
pendulums.
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coupled system. Both masses vibrate at the same frequency and
each has a constant amplitude (the same for both).

How many normal modes can we find? There is only one
other. Draw A and B aside by equal amounts but in opposite
directions [Fig. 5-4(b)] and then release them. Now, the coupling
spring is stretched; a half-cycle later it will be compressed, and
it does exert forces. The symmetry of the arrangement tells us
that the motions of 4 and B will be mirror images of each other.

If the pendulums were free and either one were displaced a
small distance x, the restoring force would be mwoZx. But in
the present situation the coupling spring is stretched (or com-
pressed) a distance 2x and exerts a restoring force of 2kx, where
k is the spring constant. Thus the equation of motion for 4 is

2

d’x
mT; + mwozxA + 2kx, =0
or
dx4 2 4 502, = 0
dl-z + (wo” + 2w )xa =

where we have let w.2 = k/m. This is an equation for simple
harmonic motion of frequency ' given by

1/2
o = (o + 20" = (5 + %>

l m

For the given starting conditions, its solution is

xa = Dcosw't (5-2a)
The motion of B is the mirror image of 4, and therefore

xp = —Dcosw't (5-2b)

Each pendulum oscillates with simple harmonic motion, but the

Symmetry considerations



action of the coupling spring has been to increase the restoring
force and therefore to increase the frequency over that of the
uncoupled oscillation. The motions of 4 and B are clearly always
180° out of phase in this type of oscillation, which constitutes the
second normal mode.

It is perhaps worth pointing out that if either of the pen-
dulums is clamped, the angular frequency of the other, under
the action of the gravity plus the coupling spring, is equal to
@o? + w.2)Y2. Thus if one chooses to regard this motion as
being, in a sense, the motion characteristic of one pendulum
alone, the normal modes have frequencies that are displaced
above or below the single-pendulum value.

THE SUPERPOSITION OF THE NORMAL MODES

In both the above cases, the motion once begun will, in the
absence of damping forces, continue without change. No transfer
of energy occurs from some one mode of oscillation to another.
An important reason for introducing these two easily solved
cases is that any motion of the pendulums, in which each starts
from rest, can be described as a combination of these two. Let
us see how that can be done.

Take an arbitrary moment when pendulum A4 is at x4 and
pendulum B at xp (Fig. 5-5). The spring is stretched an amount
xa — xp and therefore pulls on 4 and B with a force whose
magnitude is k(x4 — xg). Thus the magnitude of the restoring
force on 4 is

mwo2xa + k(xa — xg)
and on Bitis

mwo2xp — k(xa — xg)

Fig. 5-5 Coupled
pendulums in arbitrary Ly, .
configuration. i
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Therefore, the equations of motion for 4 and B are

M% + mwo’xa + k(xs — xg) =0
5—
m d;:;B + mwo2x1; — k(xa—x)=0 )
Again letting w,2 = k/m, we can write these as follows:
d2x,1 2 2 2. _
W—i—(wo + we )xa —wexp =0
Pxs 5-4)

+ (@0 + we)xp — W xa =0

dr

The first equation, describing the acceleration of A, contains a
term in xp. And the second equation contains a term in xg4.
These two differential equations cannot be solved independently
but must be solved simultaneously. A motion given to 4 does
not stay confined to A4 but affects B, and vice versa.

Actually, these equations are not difficult to solve. If we add
the two together, we get

2

5,—2 (xa + x3) + wo’(xa + xg) =0

and if we subtract the second equation from the first, we get
2
arz
These are familiar equations for simple harmonic oscillations.
In the first, the variable is x, + xp and the frequency is wo. In
the second, the variable is x4, — xp and the frequency is w’ =
(wo? + 2w,2)V2, These two frequencies correspond precisely
to those of the two normal modes that we identified previously.
If we let x4 + xp = ¢q; and x4 — xp = g3, we have two inde-
pendent equations in ¢; and gs:

(x4 — x5) + (wo + 207)(xa — x5) = 0

dar 2 _
e + wo'q1 =
d
quz + g2 =0
Possible solutions (although not the most general ones) are
= Ccoswot
(special case) 7 @o (5-5)

g2 = Dcosw't

where C and D are constants which depend upon the initial condi-
tions. [The lack of generality in Eqs. (5-5) can be recognized in
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the fact that we have set the initial phases equal to zero.]

We have here two independent oscillations. They represent
another description of the normal modes, as represented by
oscillations of the variables ¢, and g, respectively, and these
variables are consequently called normal coordinates. Changes
in the value of ¢, occur independently of g, and vice versa.

In terms of our original coordinates, x4 and xp, the solu-
tions are

1 = 3(q1 + q2) = $Ccos wot + ¥D cos w't

special case
Gp ) xp = ¥(@1 — q2) = 3C cos wot — $D cos 't

(5-6)

If C = 0, both pendulums oscillate with the frequency o’,
or if D = 0, with the frequency w,. These are the frequencies of
the individual normal modes and are called normal frequencies.
We see that a characteristic of a normal frequency is that both
x4 and xp can oscillate with that frequency.

Let us now apply Egs. (5-6) to the analysis of the coupled
motion shown in Fig. 5-3. The initial conditions (at ¢z = 0)
are as follows:

dx dx
x4 = Ao d—t"=o xg =0 —d;”-=0

It may be noted that the conditions on the initial velocities are
automatically met by Eqs. (5-6), because differentiation with
respect to ¢ gives us terms in sin wof and sin w’z only, all of which
go to zero at 1 = 0. From the conditions on the initial displace-
ments themselves we have

x4 = Ao = 3C+1D
xg=0 =3C—4%D

Therefore,
C= Ay D = Ao

Hence with these particular starting conditions we have, by
substitution back into equations (5-6), the following results:

xa = 2Ao(cos wot + cos w'p)
xp = $Ao(cos wot — cos w't)

which can be rewritten as follows:

w — wo o 4+ wo
Ap cos < 2 I> cos < 2 t>
Ao sin W — o t ) sin o + wo t &
0 2 2

Coupled oscillators and normal modes
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Each of these is a sinusoidal oscillation of angular frequency
(v’ + wo)/2, modulated in amplitude in the way discussed in
Chapter 2. The amplitude associated with each of the pendulums
is zero at the instant when the amplitude associated with the
other is a maximum—although the actual displacement of the
Iatter at any such instant depends on the instantaneous value
of (o' + we)t/2.

OTHER EXAMPLES OF COUPLED OSCILLATORS

There are many different ways of coupling two pendulums or
other oscillators together; let us consider a few.

In Fig. 5-6 we show how two pendulums may be coupled
through an auxiliary mass, m << M, connected by strings to the
major suspending wires. From the symmetry of the arrangement,
we can guess that the normal modes will be the motions for which
xp = +x,4. If x4 = +xp = q,, the mass m rises and falls with
the main masses M, but if x4 = —xp = ¢, the mass m will be
highest when the masses M are at their greatest separation, and
will fall as the masses approach each other. Thus there are two
distinct normal mode frequencies, neither of which (in general)
is equal to that of one pendulum alone.

Four other mechanical coupled systems are shown in Fig. 5-7.
The first diagram represents two pendulum bobs that are mounted
on rigid bars, the upper ends of which are clamped to a wire.
The pendulums swing in planes perpendicular to the wire. Unless
the pendulums swing in phase, with equal amplitudes, the con-
necting wire is twisted and provides a coupling torque that is
proportional to the difference of angular displacements.

In Fig. 5-7(b) we show another system in which the coupling
is provided by elastic restoring forces. Two small masses are
mounted at the ends of a hacksaw blade (or other strip of springy
metal) which is held at its center by a yielding support. If one

Fig. 5~6 Mass-coupled pen-
dulums.
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Fig. 5-7 (a) Rigid
pendulums coupled by
horizontal torsion rod,
(b) Masses at ends of
metal strip. (¢) Wil-
berforce pendulum.
(d) Rectangular block
on springs.
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(a) (b)

M

(c) (d)

mass is pulled aside, as shown, and then released, the motion is
quickly transferred to the other mass through a typical super-
position of normal modes.

Figure 5-7(c) shows a curious device known as the Wilber-
force pendulum.! A mass with adjustable outriggers is suspended
from a coil spring. If the mass is pulled down and released, the
motion is at first a simple vertical oscillation, but as time goes on
this oscillation dies down and is replaced by a vigorous rotational
oscillation of the mass (about a vertical axis). Then the vertical
linear oscillation returns as the rotational oscillation again weak-
ens. It is important for the operation of this toy that the periods
of the two types of motion be nearly equal; the adjustable out-
riggers are there to permit this to be arranged. The coupling
between the linear and angular motions comes from the fact that,
as we mentioned in Chapter 3, when a coil spring is stretched its
end twists a little, or conversely that if it is twisted it tends to
lengthen or shorten. By pulling the mass down and twisting it
through an appropriate angle, it is possible to release the system
so that it oscillates in a normal mode with constant amplitude in
both components (linear and angular) of the motion.

INamed after L. R. Wilberforce, a British professor of physics, who published
a detailed study of it in 1894,

Coupled oscillators and normal modes



Our last diagram [Fig. 5-7(d)] represents a rectangular block
supported on two springs. One mode of this system is a vertical
oscillation in which the block remains horizontal and both springs
are equally stretched or compressed. But there is another mode
in which the springs undergo equal and opposite displacements;
the block then performs a twisting oscillation about a horizontal
axis, without any change in the height of its center of gravity. A
car resting on its front and rear suspensions has some resemblance
to this arrangement. If the front end were lifted and then released,
one might find the oscillation transferred to the rear at a later
time, if damping had not already brought the system to rest.

NORMAL FREQUENCIES: GENERAL ANALYTICAL APPROACH
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Suppose it were not easy to discover the normal modes from
symmetry considerations, or not easy to solve the simultaneous
differential equations. How then could we plough through to a
solution? We make use of the characteristic we discussed in
connection with Egs. (5-6). Both x4 and xp can oscillate with
one of the normal frequencies. Let us take, therefore,

x4 = Ccos wt (5-8)
xp = C'cos wt
and see if there are values of w and C and C’ for which these
expressions are solutions of equations (5-4):

d’xa 2 2 2

2z T @0+ od)xs — wlxs =0

d2XB

dr?
If there are suitable values of w, they will then be the normal
frequencies. Of course, we have already found that C and C’
must be equal in magnitude, but in our present approach to the
problem we shall act as though we do not know that yet. Be-
sides, the equality of C and C’ is true only in the very special
problem we have been considering and is not true in more gen-
eral cases.

Substituting equations (5-8) into equations (5-4), we get

(—w? + wo? + wA)C —w?C =0
= @02C + (—0? + wo? + wHC = 0

(5-4)

+ (wo2 + wf)xl; — wlxa =0

For an arbitrary value of w, these constitute two simultaneous

Normal frequencies: general analytical approach
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equations for the unknown amplitudes C and C’. If they are
independent equations, there is only one solution—C = 0,C’ = 0
—which simply means that, for an arbitrary value of w, equations
(5-8) are not a solution to the problem.

But if these two equations are not independent—i.e., if the
second is just a multiple of the first—then we have in effect only
one equation for the two amplitudes C and C’. In this case, C
can have any value. But once C is chosen, then C’ is fixed.

For what value of w are the two equations not independent
and thus able to yield nonzero solutions for C and C'? From
the first equation, we have

C we’
[ + wo2 + w2 (5-9a)
and, from the second,
2 2 2
£ - © + w + w (5-9b)

c’ w2

If C and C’ are not both zero, the right-hand sides of those equa-
tions must be equal. Thus

2 2 2 2
We —w 4+ wo + w.

—w? + wo? + w2 h w2

or
(_w2 + w02 + wc2)2 (wc2)2

Hence

2 2 2 2
-0+ w + w, = *w,

2 2 2 2
w = wo + w, £

We have two solutions for w; let us call them o’ and w’’:

w'? = wo? + 2w,

w2 = wo?

The positive square roots of these expressions are the two normal
frequencies of the system; once again we have arrived at the now
familiar results.

We can now get the relation between C and C’ for each of
the normal modes, from equations (5-9). For v = o/,

9
c’

and, for v = w’,

= —1
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Thus we have arrived at two specific forms of equations (5-8)
which are solutions to the coupled differential equations of motion
[equations (5-4)]:

x4 = Ccos wot X4 D cos o't
and (5-10)
xp = Ccoswot XB —Dcos w't

Since the magnitude of the amplitude is arbitrary and determined
only by the initial conditions, we have used two different symbols
(i.e., C and D) to denote the amplitudes associated with the
separate normal modes.

The differential equations are linear (only the first powers of
X4, XB, d°x4/dt?, and d*xp/dt? appear), and therefore the sum
of the two solutions is also a solution:

= Ccoswot + Dcosw't

. XA
special case 5-11
Gp ) xp = Ccoswot ~ Dcosw't ( )

Once again we have obtained the solutions previously given by
equations (5-6).' But this time our approach has been purely
analytical and general, with no prior appeal to the symmetry
of the system.

Let us complete this discussion by giving the general solution
to the equations of free oscillation of this coupled system. It may
be readily seen that the differential equations (5-4) are equally
well fitted by assuming solutions with nonzero initial phases,
although there is a systematic phase relationship between x4
and xp in a particular mode. Specifically, instead of equations
(5-10) we may in general have the following:

x4 = Ccos(wot + a)
Lower mode:
xp = Ccos(wot + a)

x4 = Dcos(w’t + B)
— D cos(w’t + B)

(5-12)
Higher mode:

XB

The existence of four adjustable constants then allows us to fit
these solutions to arbitrary values of the initial displacements
and velocities of both pendulums. This removes the restriction

IThere is a factor of 2 lacking throughout in equations (5-10) as compared
with equations (5-6), but this makes no difference at all when one fixes the
values of the coefficients via the initial values of x4 and xp.
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to zero initial velocity that required us to label our earlier solu-
tions as special cases.

FORCED VIBRATION AND RESONANCE FOR TWO
COUPLED OSCILLATORS

132

So far we have merely considered the free vibrations of a system
of two coupled oscillators, thereby discovering the characteristic
natural frequencies (just two of them) at which the system is able
to vibrate as a kind of unit. But what happens if the system is
driven at an arbitrary frequency by an external agency? Our
intuition, backed up by actual experience, is that large amplitudes
of oscillation occur when the driving frequency is close to one of
the natural frequencies, whereas at frequencies far removed from
these the response of the driven system is relatively small. We
shall consider in detail how this emerges from the equations of
motion in the simplest possible case—for two coupled identical
pendulums with negligible damping, for which we have already
identified the normal modes.

Our discussion will closely parallel the analysis of the forced
single oscillator as in Chapter 4. Just as in that case, we shall
assume that the damping effects are small enough to be ignored
in the equations of motion, but that, nevertheless, perhaps after a
very large number of cycles of oscillation, the transient effects
have disappeared so that the motion of each pendulum occurs at
constant amplitude at the frequency of the driving force.

Let us suppose, then, that a harmonic driving force F cos wt
is applied to pendulum A4 (e.g., by moving its point of suspension
back and forth sinusoidally), the motion of pendulum B being
controlled only by its own restoring force and the coupling spring.
The statement of Newton’s law for pendulum B is thus just the
same as we had in considering the free vibrations, and the equa-
tion for A is modified only to the extent of adding the term
Fy cos wt—although this addition represents, of course, a major
change in the physical situation. Our two equations of motion
thus become the following [see equations (5-3) for the free-
vibration equations]:

2

m% -+ mwo2xA + k(x4 — xp) = Fopcoswt
m@ -+ mwo2xB ~ k(x4 — xg) =0 w02 -8
dr? )
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which, dividing through by m, become

d2 + (w + w, )xA - wc2xn = @cos wt

drz m

d* k

d‘\;B + (wO + we )XB - wczxA =0 <wc2 = _>
t m

Rather than dealing with x4 and xp separately, we shall proceed
at once to introduce the normal coordinates g, (= x4 + xp)
and g, (= x4 — xp), which, as we have seen, can be used to
characterize the motion of the system as a whole. Adding the
differential equations above, we get

d’ q1 _Fo _
a2 + wo q1 = mCOS wt (5-13a)

Subtracting them, we get

d’ dqz
d2

where

w'? = wo? + 20,2

+ w = L COs wt (5-13b)
m

The simplification of the problem is remarkable. It is just as
though we had two harmonic oscillators, of natural frequencies
wp and o’. We can clearly describe the steady-state solutions by
the equations

g1 = Ccoswr  where C = /M _
w2 — w2 )
(5-14
F
g2 = Dcoswt  where D = ,(’&
w2 — w2

The amplitudes C and D exhibit just the kind of resonance be-
havior shown for a single oscillator in Fig. 4-1. Having obtained
them, we can extract the frequency dependence of the individual
amplitudes 4 and B of the two pendulums, for we have

x4 = Acoswt  where A4 = 3(C + D)
xg = Bcoswt  where B = 3(C — D)
These give us the following results:
Fo (w0’ + we) —
m (wo2 — w2) (w2 — w2)
Fo wc2
m (wo2 — w2)(@'2 — w?)
The variation of these quantities with v is shown in Fig. 5-8. In
the region of frequencies dominated by the lower resonance, the

A(w) =

(5-15)
B(w) =

Forced vibrations of two coupled oscillators



Fig. 5-8 Forced re-
sponse of two coupled
pendulums with neg-
ligible damping. The
normal modes have
the frequencies wo and
«'. (a) Amplitude of
first pendulum as a
JSunction of driving
frequency

[w1 = (wo? + «'2)V2].
(b) Amplitude of sec-
ond pendulum as a
JSunction of driving
Sreguency.
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displacements of 4 and B are always of the same sign—i.e., in
phase with one another. In the region of frequencies dominated
by the higher resonance, the displacements are of opposite sign
and hence 180° out of phase. The introduction of nonzero damp-
ing would, as with the single driven oscillator, lead to a smooth
variation of phase with frequency as one goes through the
resonances.

One feature in particular of Fig. 5-8 might be commented
on, because it seems (and is) physically impossible. This is the
fact that at a certain frequency w, between the resonances, we have
A = 0 and B nonzero. Yet from the assumed conditions of the
problem it is clear that the periodic forcing of pendulum B de-
pends on the motion of pendulum 4. In any real system some
small oscillation of the bob of pendulum A would be essential.
The frequency w; at which the apparently anomalous situation
develops is precisely the natural frequency of a single pendulum,
with coupling spring attached, under the circumstance that the
other pendulum is held quite fixed—w; = (wo? + w.2)Y2 In
the complete absence of damping forces an arbitrarily small
driving force of frequency wj, caused by arbitrarily small vibra-
tions of pendulum A4, would cause an arbitrarily large response in

(b)

Coupled oscillators and normal modes



pendulum B. The existence of damping forces, however small,
would destroy this condition, and would mean that the amplitude
A(w), although becoming very small near w,, would never fall
quite to zero. The full description would now, however, necessi-
tate the detailed consideration of the system as a combination of a
pair of oscillators with damping, and the complexity of the
analysis would be greatly increased.

The main point to be learned from this analysis is the con-
firmation that one can trace out the normal modes of a coupled
system by means of resonance observations, and that the steady-
state motions of the component parts at resonance are just like
what they would be for the same system in free vibration at the
same frequency.

MANY COUPLED OSCILLATORS

Any real macroscopic body, such as a piece of solid, contains
many particles, not just two, so we have the strongest of motives
for tackling the problem of an arbitrary number of similar oscil-
lators coupled together. The work of the preceding sections has
equipped us to do this. Our investigation of such a system can
lead us to a description of the oscillations of a continuous medium,
and thence by an easy transition to the analysis of wave motions.

It would be possible for us to go directly from Newton’s
law to continuum mechanics.! But the route we have chosen,
via the modes of oscillation of coupled systems, is richer and in
essence is more correct—for there is no such thing as a truly
continuous medium. Moreover, you may be interested to know
that our present route is the one that Newton and his successors
themselves took. Perhaps this in itself merits an introductory
digression.

Not long after Newton, two members of the remarkable
Bernoulli family (John Bernoulli and his son Daniel) embarked
on a detailed study of the dynamics of a line of connected masses.
They showed that a system of N masses has exactly N independent
modes of vibration (for motion in one dimension only). Then in
1753 Daniel Bernoulli enunciated the superposition principle for
such a system—stating that the general motion of a vibrating
system is describable as a superposition of its normal modes.
(You will recall that earlier in this chapter we developed this

1As mentioned in the footnote at the beginning of this chapter, you can do
this by going directly to Chapter 6.
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result for the system of two oscillators.) In the words of Leon
Brillouin, who has been a major contributor to the theory of
crystal-lattice vibrations!:

This investigation by the Bernoullis may be said to form the be-
ginning of theoretical physics as distinct from mechanics, in the
sense that it is the first attempt to formulate laws for the motion
of a system of particles rather than for that of a single particle.
The principle of superposition is important, as it is a special case
of a Fourier series, and in time it was extended to become a
statement of Fourier’s theorem.

(We shall come to the notions of Fourier analysis in Chapter 6.)
After this preamble let us now turn to the detailed analysis
of an N-particle system.

N COUPLED OSCILLATORS

Fig. 5-9 N equi-
distant particles along
a massless string.
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In our treatment of the motion of a two-oscillator system, we
confined our attention to oscillations which may be termed
longitudinal—the motions of the pendulum bobs have been along
the line connecting them. The treatment is quite similar, as we
shall soon see, for transverse oscillations where the particles
oscillate in a direction perpendicular to the line connecting them.
And because transverse oscillations are easier to visualize and
to display than longitudinal oscillations, we shall analyze the
transverse oscillations of a prototype system of many particles.

Consider a flexible elastic string to which are attached N
identical particles, each of mass m, equally spaced a distance /
apart. Let us hold the string fixed at two points, one at a distance
/ to the left of the first particle and the other at a distance / to the
right of the Nth particle (Fig. 5-9).

The particles are labeled from 1 to N, or from O to N + 1
if we include the two fixed ends and treat them as if they were
particles with zero displacement. If the initial tension in the
string is T and if we confine ourselves to small transverse displace-
ments of the particles, then we can ignore any increase in the
tension of the string as the particles oscillate. Suppose, for

Fixed _ _ R Fixed

voo A

c 1 2 3 N-1 N N+1

L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York,
1953.
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Fig. 5-10 Force diagram for transversely displaced
masses on a long string.

example, that particle 1 is displaced to y; and particle 2 to y,
(Fig. 5-10); then the length of string between them becomes
I' = l/cos a;. For a; « 1 rad, then cosa; = 1 — «2/2 and
I" =~ I(1 + «,%/2). The increase in length is /x;2/2, and any
increased tension that is proportional to this may be ignored in
comparison to any term proportional to the first power of «.

In the configuration as shown the resultant x component of
force on particle 2 is —T cos a; + T cos ay = 3T(e;2 — ay?),
a difference between two second-power terms in «. For small
values of a; and ay, it is exceedingly small and we shall pay it
no attention in what follows.

Figure 5-10 shows a configuration of the particles at some
instant of time during their transverse motion. We shall restrict
ourselves to y displacements that are small compared to /. The
resultant y component of force on a typical particle, say the pth
particle, is

Fp, = —=Tsina,_1 + Tsina,

The approximate values of the sines are

sin@,—] = y,,_—[y,,__l
sin e, = y____p+11— Ve
Therefore,
F,= — ;(y,, - yp-1) + "71;(yp+1 = ¥p)

and this must equal the mass m times the transverse acceleration
of the pth particle. Thus
2
dyp

T T 200y — w0’ Opst + ypm1) = 0 (5-16)

where we have put
T 2

— = wo
ml

N coupled oscillators



138

We can write a similar equation for each of the N particles.
Thus we have a set of N differential equations, one for each value
of p from 1 to N. Remember that yo = 0and yx4; = 0.

You may find it helpful to consider the simple special cases
of Eq. (5-16)for N = land N = 2. If N = 1, we have

d2y1 2

—dt_2_ + 2wo"y1 =0
There is transverse harmonic motion of angular frequency
woV'2 = (2T/mi)"2, as one can conclude directly from a con-
sideration of Fig. 5-11(a). If N = 2, we have

d*v1 2 2
e 4 2w0"y1 — wo'y2 = 0
d’y2 2 2
—d,—2+2woy2—woy1 =0

These are similar to Eqs. (5-4) for the two coupled pendulums,
but we now have the simplification that w, and w, are equal, so
that wo2 + w.2 in equations (5-4) corresponds to 2w ? here, and
w.? there becomes w,? here. The angular frequencies of the
normal modes in this case are in a definite numerical relationship;
their actual values are wo and wev/3. The modes for N = 2 are
illustrated in Figs. 5-11(b) and (c). The actual configuration of
the strings makes almost self-evident the relation between the
natural frequencies here, but as we go to larger numbers of
particles the results are far less obvious and we must resort to a
more general type of analysis.

n

} l

PR PR

@ N-1(w o, \?)

Fig. 5-11 Normal (b) N — 2 Lower mode (w - w,)
modes of the two

simplest loaded-string
systems. (@) N = I,
one mode only.

(b)Y N = 2, lower
mode. (¢) N = 2,
higher mode. (c) N — 2 Higher mode (v wy \ 3)
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FINDING THE NORMAL MODES FOR N COUPLED OSCILLATORS
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We apply basically the same analytical technique to our N differ-
ential equations as we previously used for the two equations.
We seek the normal modes; i.e., we look for sinusoidal solutions
such that each particle oscillates with the same frequency. We set

yp = Apcos wt wr=12...,N) 5-17)

where 4, and w are the amplitude and frequency of vibration of
the pth particle. If we can find values of 4, and w for which
equations (5-17) satisfy the N differential equations (5-16), then
we have accomplished our purpose. Note that the velocity of any
particle can be obtained from equations (5-17) and is

d .
—ay-tf= —wdysinet (p=1,2,...,N)

Thus, by choosing equations (5-17) as a trial solution, we are
automatically restricting ourselves to the additional boundary
condition that each particle has zero velocity at ¢ = 0; ie.,
each particle starts from rest.

Substituting equations (5-17) into the differential equations
(5-16), we get

(—w? + 2wo2)A1 — wo?(42 + 4p) = 0
(—w? + 2w02)A2 — wo?(As + 41) = 0

(—w? + 2004, — w2 (Apr1 + 4p—1) =0

(—w? + 2wo2)A4y — wo2(AN+1 — Ay_1) =0

This formidable-looking set of N simultaneous equations can
be written more compactly as follows:

(—w? + 2w0H)A4, — wo?(dp—1 + Apy1) = 0
(r=12,...,N) (5-18)

Our earlier boundary condition requiring the ends to be held
fixed means that 49 = Oand Ay, = 0.

The question we are asking ourselves is whether all N of
these equations can be satisfied by using the same value of w®
in each. We saw earlier how to tackle such a problem when only
two coupled oscillators were involved. The assumption that a
solution existed (other than the trivial one of having all ampli-
tudes equal to zero) led to restrictions on the ratios of the ampli-
tudes [as expressed by equations (5-9)]. We have the same situa-
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tion in this more complex problem. If we rewrite equations (5-18)
as

2 2
Ap—l :‘ Ap+1 — w +22w0 (p = 1, 2, e, N) (5_19)
P wo

we see that, for any particular value of w, the right side is constant,
and therefore the ratio on the left must be a constant and inde-
pendent of the value of p. What values can be assigned to the
Ap’s such that this condition will be satisfied and at the same
time give 49 = Oand Ay, = 0?

We shall not pretend to solve Eq. (5-19) but will simply draw
attention to a remarkable result that gives the key to the problem.
Suppose that the amplitude of particle p is expressible in the form

A, = Csin pf (5-20)

where 6 is some angle. If a similar equation is used to define the
amplitudes of the adjacent particles p — 1 and p 4 1, we shall
have

Ap—1 4+ Apy1 = Clsin{p — 1)8 + sin(p + 1)6]

2C sin pf cos 8

But C sin p# is just 4, so that we have

Ap—1 + Appa

1 = 2cos @ (5-21)

This means that the recipe represented by Eq. (5-20) is successful.
The right-hand side of Eq. (5-21) is a constant, independent of p,
which is just what we need so as to have a condition equivalent
to Eq. (5-19). It can be used to satisfy all N of the equations
(5-18) from which we started. All that remains is to find the
value of 8. This we can do by imposing the requirement that
A, =0 for p =0 and p= N 4 1. The former condition is
automatically satisfied; the latter will hold good if (V 4+ 1)8 is
set equal to any integral multiple of =. Thus we put

(N4 1)0 = nr n=1,2,3...)

(5-22)
6 = nmw
N4+1
Substituting for 8 in Eq. (5-20) we thus get
_ . pnw .
A,,-Csm(N+1) (5-23)

The permitted frequencies of the normal modes are also
determined, for from Eqgs. (5-19) through (5-22) we have

Coupled oscillators and normal modes



Ap1 + Ap_1 _ —0° + 200" _ 5 cos [
Ay wo?

N+1

Therefore,

2 2|, _ nw
o = 2wo [l cos (—N+ l)]

_ 2 .2 nw
= 4wo” sin [—2(N+ 1)]

Taking the square root of this, we have

(5-24)

_, in[_ﬂ__]
@ = oSN IN T+ 1)

PROPERTIES OF THE NORMAL MODES FOR
N COUPLED OSCILLATORS
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Having obtained the mathematical solutions to this problem of
N coupled oscillators, let us look more closely at the motions
that the equations describe.

First, we observe that, according to Eq. (5-24), different
values of the integer # define different normal mode frequencies.
It is therefore appropriate to label a mode, and its distinctive
frequency, by the value of n. Thus we shall put

nmw
2(1v_+"1)] (5-25)

Next, we must recognize that the motion of a given particle
(or oscillator) depends both on its number along the line (p) and
on the mode number (#). The amplitude of its motion can thus
be written as follows:

_ Cosin(-P"T _
Ayn = Cysin (N+ 1) (5-26)

where C, defines the amplitude with which the particular mode »n
is excited. The actual displacement of the pth particle when the
entire collection of particles is oscillating in the nth mode is thus
given by

wp = 2w sin[

Yor(t) = Apn COS Wt (5-27)

where w, and 4,, are given by Eqs. (5-25) and (5-26), respec-
tively. The above equation implies that each particle is at rest at
the time ¢ = 0, but as with the two-oscillator problem we can
satisfy arbitrary initial conditions by putting

Properties of modes for N coupled oscillators



Fig. 5-12 Graph of
the mode frequency as
a function of mode
number. It is con-
venient to graph wy,
against the quantity
nx/2(N + 1) rather
than against n itself.
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0 3 e 2(N + 1)

Ypu() = Apn cos(wat — 8,) (5-27a)

where each different mode can be assigned its own phase §,,.

How many normal modes are there? We saw that with two
coupled oscillators there were just two normal modes. If your
intuition should tell you that with N oscillators there are only
N independent modes, you would be right.! This fact is, however,
somewhat hidden in Egs. (5-25) and (5-26), because values of
w, and A,, are defined for every integral value of n. The point is,
though, that beyond # = N the equations do not describe any
physically new situations.

We can make this clear, as far as the mode frequencies are
concerned, with the help of Fig. 5-12. Thisis a graph of Eq. (5-25)
—modified to the extent that w is defined as being always positive.
As we go fromn = 1 ton = N we find N different characteristic
frequencies. At n = N + 1, which corresponds to =/2 on the
abscissa, a maximum frequency wp.x (= 2w,) is reached, but it
does not correspond to a possible motion because [as Eq. (5-26)
shows] all the amplitudes A4,,, are zero at this value of n. For
n = N + 2, we have

(N + 2)r)

WN42 = 2wo Sin _2(T'|'_l)_

P __IYL]
ST T AN F D

[ Nrm
2(V + 1)

= 2wo sin

Therefore,
WN42 = WN

Similarly, wy43 = wwv—1, and so on. And a similar duplication
occurs in every subsequent range of N 4 1 values of .

IThis is for a one-dimensional system. Two dimensions gives 2N, three
dimensions gives 3N.

Coupled oscillators and normal modes



Fig. 5-13 (a) Plot
of sin [px/(N + D]
as a function of p.
The particles are at
the positions defined
by integral values of p
and are joined by
straight segments of
string. (b) Positions
of particles at various
times for lowest mode.
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It is only a short step to see that the relative amplitudes of
the particles in a normal mode repeat themselves also. Thus, for
example, we have, from Eq. (5-26),

p(N + 2)7]
N+1

ApNy2 Cny2 sin [

pN1r]
N+1

. pNm
Cn42 sin (—N T 1)

~ Apn

Cn42 sin [2p1r -

and it is easy to show that a similar matching occurs for any
othern > N 4 1.

Let us see what the various normal modes look like.
first mode is given by # = 1. The particle displacements are

The

pr

N+1
At a given instant of time, the C; cos w;? factor is the same for
all particles. Only the sin[pr/(N + 1)] factor distinguishes the
displacements of the different particles. The white curve in
Fig. 5-13(a) is a plot of sin[pr/(N 4 1)] versus p, as p varies
continuously from 0 to N 4+ 1. Actual particles, however, are
located at the discrete values p = 1, 2, ..., N. The sine curve
is therefore only a guide for locating the particles, and the string
consists of straight-line segments connecting the particles.

As 1 increases, each particle oscillates in the y direction with

y,,1=Clsin( )COSwlt r=12,...,N)

Properties of modes for N coupled oscillators
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Fig. 5-14 Positions of particles at various times for
second mode (n = 2).

frequency w;. A whole set of sine curves for different values of ¢,
and the corresponding locations of the particles, are shown in
Fig. 5-13(b). For the second mode, n = 2 and

N -+

The particle displacements at different instants of time are shown
in Fig. 5-14. If the number of particles should happen to be
odd, there would be one particle at the center of the line and in
this mode it would remain at rest, as indicated in Fig. 5-14.
Remember that ws differs from w;, and therefore this pattern
oscillates with a different frequency than the previous one—
almost twice as great, in fact.

In Fig. 5-15 we show a set of diagrams of the normal modes
for a set of four particles on a stretched string. This displays very
beautifully how the pattern of displacements retraces its steps
after reaching n = 5, even though the sine curves that determine
the A4,, are all different. These sketches for a small value of N
also allow one to appreciate how remarkable it is that the dis-
placements of every particle in every mode for such a system
should fall upon a sine curve, when the string connecting them
may follow an entirely different path.

. 2
yp2=Czsln( pwl)coswzt (pr=12,...,N)

LONGITUDINAL OSCILLATIONS

As we explained at the outset, we chose to consider transverse
vibrations, rather than longitudinal ones, as a basis for analyzing
the behavior of a system comprising a large number of coupled
oscillators. The eye and the brain can take in, at a glance, what
is happening to each and every particle when a string of masses
is set into transverse oscillations. But now let us see how the

144 Coupled oscillators and normal modes
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Fig. 5-15 Modes of weighted vibrating string, N = 4.
Note that n = 6, 7, 8, 9 repeat patterns of n = 4, 3,

2, 1 with opposite sign. (Adapted from J. C. Slater

and N. H. Frank, Mechanics, McGraw-Hill, New York,
1947.)

same kind of analysis applies to a system of particles connected
by springs along a straight line, and limited to motions along that
line. This may seem like a very artificial system, but a line of
atoms in a crystal is surprisingly well represented by such a model
~—and so, to a lesser extent, is a column of gas.

We shall again assume that the particles are of mass m and
when at rest are spaced by distances / [Fig. 5-16(a)]. But now
the restoring forces are provided by the stretching or compression

~———— =

(@) 209™-*—3000000™*—0000000™*—770"

Fig. 5-16 (a) Spring-
coupled masses in

equilibrium.

(b) Spring-coupled (b) @M@W@W
masses after small _,‘ ¢ ‘,I £
longitudinal displace-

ment.
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of the springs; the spring constant for each spring can be written
as mwy2. Let the displacements of the masses from their equi-
librium positions be denoted by £, £, . . ., &, [see Fig. 5-16(b)].

Then the equation of motion of the pth particle is as follows:

d’t, 2 2
m dr? = mwo (Eﬂ+1 - Ep) — mwo (fp — &p—1)
ie.,
d’t, 2 2
a2 + 200°¢p — w0 Epp1 + £p—1) = 0 (5-28)

This has precisely the same form as Eq. (5-16), so we know that
mathematically all the features we have discovered for the trans-
verse vibrations of the loaded string have their counterparts in
this new system. That is to say, the motion of the pth particle in
the nth normal mode is given by

Epn(1) = C,sin (%) COS Wnt

where
(5-29)

nx ]
2(N+ 1)

A very nice quantitative study of such systems has become
possible through the use of air suspensions, in which a flow of
air (at pressures just a little above atmospheric) from holes in a
bearing surface can be made to provide an almost completely
frictionless support for objects gliding over the surface. Fig-
ure 5-17 shows the results of measurements made with such an
apparatus.? The masses were each about 0.15 kg, and the spring
constants were such that the frequency w, was 5.68 sec™ .

The figure shows the observed frequencies v, (= wy/2r) of
the various normal modes, plotted as a function of the variable
n/(N 4+ 1). The graph contains measurements made with a
system of 6 masses (and 7 springs) and with a longer but otherwise
similar system of 12 masses (and 13 springs). Since w, was the
same for both, the results for the two systems should fall upon
the single curve:

_9n_wo o ( n w
T x N+12

1We use the Greek letter £ so as to reserve the ordinary x for total distance
from one end.

w, = 2wo sin[

2R. B. Runk, J. L. Stull, and O. L. Anderson, Am. J. Phys., 31, 915 (1963).
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Fig, 5-17 Experi-
mental values of
mode frequency v,
plotted against mode
number for a line of
identical spring-
coupled masses.
[Note that abscissa is
n/(N + I), rather
than n; this allows
data for two different
valuesof N(N = 6
and N = 12) 1o be
fitted to same theo-
retical curve.] [From
R. B. Runk, J. L.
Stull, and O. L.
Anderson, Am. J.
Phys., 31, 915
(1963).1
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It may be seen that the experimental values conform extremely
well to the theoretical ones.

Suppose now that we allow the number of masses in a
coupled system to become very large. To make the discussion
explicit, we shall take the case of the transverse vibrations of
particles on a stretched string. A real string, just by itself, is in
fact already a collection of a large number of closely spaced
atoms. Once again we can be sure that our conclusions will
apply equally to the line of masses connected by springs in
longitudinal vibration.

We shall let & increase but, at the same time, let the spacing
I between neighboring particles decrease so that the length of
string, L = (N + 1)/, remains constant. We shall also decrease
the mass of each particle so that the total mass, M = Nm, also
remains constant.

What happens to the normal frequencies? We have found
that

= 20 sin nw
W, = Lwg Sl ——-—2(N+ l)

where wg = (T/ml)Y2. First, consider the normal modes for
which the mode number » is small. Then as N becomes very
large, we can put

N very large



. [ nmw ]~ nmw
SMON+ Ol T2+ 1

Therefore,

T 1/2 nr T 1/2 nr
o 2(F1) 2N+ D (m—/z) Y]
But (N 4+ 1)/ = L, the total length of the string, and m/! is the

mass per unit length (linear density) which we shall denote by p.
Thus, approximately,

(T 1/2
W, = n—(—) n=12,...) (5-30)
L\u

In particular,

_T(T\"
wr=7 u

and then w, = nw;. The normal frequencies are integral multiples
of the lowest frequency w;. Remember, however, that this is
only an approximation, even though for n << N it is an exceed-
ingly good one.

What about the particle displacements? Previously, we
found that, in the nth mode, the displacement of the pth particle is

Ypn = Cysin (prl) COS Wyt

Instead of denoting the particle by its p value, we can specify
its distance, x, from the fixed end of the string. Now

x = pl
Hence

pnm _ pihm nmx
N+1 N+ L
In place of y,,, we can write y,(x, r), by which we mean the
y displacement at the time 7 of the particle located at x, when the
string is vibrating in the nth mode. Thus

nmrx

Ya(x, 1) = C,sin (T) COS Wyt n=12.. (5-31)

As N becomes very large, the x values, which locate the particles,
get closer and closer together and x can be taken as a continuous
variable going from 0 to L. The white sine curves of Figs. 5-13,
5-14, and 5-15 are now the actual configurations of the string
in its different modes. It does not take much imagination to
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Fig. 5-18 (a) Lon-
gitudinal vibrations in
the highest mode of a
line of spring-coupled
masses. (b) Trans-
verse vibrations in the
highest mode of a line
of masses on a
stretched string.
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connect such motions with the possibility of wave disturbances
traveling along the string, but we shall not proceed to that sub-
ject just yet.

Let us now consider the highest possible mode, n = N. If
N is very large, we have

. N=m .7
Wmax = 2w0 sin [m] = 2w0 sin (E) = 2w0 (5—32)

In this mode (as we shall show in a moment) each particle has,
at every instant, a displacement that is opposite in sign to the
displacements of its nearest neighbors, and—except for those
particles near to one or the other of the fixed ends—these dis-
placements are almost equal in magnitude. Thus for longitudinal
oscillations the situation is somewhat as indicated in Fig. 5-18(a),
and for the more readily visualizable case of transverse oscilla-
tions it is like Fig. 5-18(b).

This relationship of the adjacent displacements can be in-
ferred with the help of Eq. (5-26):

_ . pnw
Apn = C,,sm(N+ 1)

Putting » = N, we have

_ . pNw
A,,_N = Cysin (N+ 1)

which we can write as

Apn = Cnsin(pr — ap)

where
pr

TN+1

First, note that in going from p to p + 1, the sign of the amplitude
is reversed, because the angle pr changes from an odd to an even
multiple of = (or vice versa) and the angle «, is less than = for

Op

N very large
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Fig. 5-19 Amplitudes of a complete line of particles
in the highest mode for a string fixed at both ends.

every p (since p < N). This puts successive values of (pr — a;)
into opposite quadrants. Thus we can put

Sil‘l [L]
(highestmode,n = Ny -J2_ - — N+ U 545
Ap+1 “in [(p + 1)1r]
il Y

Notice next that, apart from the alternation of sign, Eq. (5-33)
describes a distribution of amplitudes that fit on a half-sine curve
drawn between the two fixed ends, as shown in Fig. 5-19 for the
case of transverse vibrations of a line of masses.! Thus over
most of the central region of the line the displacements are almost
equal and opposite. Consider, for example, a line of 1000 masses.
Then for 100 < p < 900 the successive amplitudes differ by less
than 1. It is only toward the ends of the line that the appearance
differs markedly from Fig. 5-18(b). It is then easy to see why the
frequency should be nearly equal to 2w,. Consider the particle P
in Fig. 5-19. If its displacement at some instant is y, the displace-
ments of its neighbors are both approximately —y. Thus if the
tension in the connecting strings is 7, the transverse component
of force due to each is approximately (2y//)T, and the equation
of motion of P is given by

d’y 2y
m 7 = —ZTT
or
dy 4T 2
az S T T ey

(Remember that the magnitudes of the transverse displacements
are grossly exaggerated in the diagrams; we really are supposing
y < [, as usual.) The above equation thus defines SHM of angular

INote that this result holds for the highest mode even for small N—see, for
example, the fourth diagram in Fig. 5-15.
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frequency 2wg approximately—and a little further consideration
will convince you that the exact frequency is a shade /ess than
2w, just as Eq. (5-32) requires.

In all of our discussion of normal modes up until now we
have, with good reason, laid great emphasis on the boundary
conditions that are applied—whether, for example, the ends of a
line of masses are fixed or free. It may, however, have become
apparent to you during this last discussion that the properties of
the very high modes of a line of very many particles depend
relatively little on the precise boundary conditions, even though
the low modes are critically dependent on them. Thus the above
calculation of the highest mode frequency of the system requires
only the realization that the displacements of successive particles
are approximately equal and opposite. We should have arrived
at the same approximate value of the highest mode frequency if
we had assumed that one end of the line was fixed and the other
end free. It should be realized, however, that this is only approxi-
mately true, and that the effect of the precise boundary conditions
must always in principle be considered.

NORMAL MODES OF A CRYSTAL LATTICE
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We shall not do more than touch on this subject, which, in fact,
requires whole books to do it justice. However, the analysis of
the previous section carries over in a very successful way to the
description of the vibrational modes of solids. This is not too
surprising, because, as we have remarked, the interaction between
adjacent atoms is, as far as small displacements are concerned,
remarkably like that of a spring. And the structure of a solid is a
lattice of greater or lesser regularity, justifying the frequently used
comparison of a crystal lattice to a three-dimensional bedspring
with respect to its vibrational behavior.

If we try to apply Egs. (5-29) and (5-30) to a solid, we can
think of a line of atoms along one of the principal directions in
the lattice, so that u is the total mass of all the atoms per unit
length, or the mass of one atom divided by the interatomic
separation, /. But what is the tension 7? In Chapter 3 we intro-
duced a strong hint for calculating the spring constant due to
internal elastic forces. Dimensionally, the ratio T/u is the same
as the ratio Y/p of the Young’s modulus to the density. The use
of this is suggested even more strongly when we think of stretched

Normal modes of a crystal lattice



springs as shown in Fig. 5-16. Thus we shall consider the possi-
bility of describing crystal vibration frequencies » (= w/27)
through the following relation:

) nw 1 { Y\"?
Vp = 2!/0 sin [m] where o = 2—,(;) (5—34)
For solids, as we have seen (see Table 3-1), the values of Y

are of the order of 101! N/m2, so that, because the densities p are

of the order of 10% kg/m3, the ratio Y/p is of the order of

107 m2/sec?. The interatomic distance / is of the order of

107 19m. Thus we should have
vo =~ 1013 sec—1

This is the highest frequency that the lattice could support. The
low modes are well described by the analogues of Eq. (5-30):

1 Y 1/2
42

where L is the thickness of the crystal. Thus the Jowest frequency
of vibration of a crystal 1 cm across would be of the order
of 10° Hz.

To return to the highest possible mode, this is the one in
which adjacent atoms are displaced oppositely to one another
(see Fig. 5-18). Such motion can be very effectively stimulated
by light falling upon an ionic crystal such as sodium chloride, in
which the Na*t and Cl~ ions are always being pushed in opposite
directions by the electric field of the light wave. From our very
rough calculation, we see that a resonance condition between
the light and the lattice might be expected to occur at a frequency
of the order of 10'2 Hz, corresponding to a wavelength of the
order of 3 X 107%m, or 30u. This is infrared. Figure 5-20

100
80
R
§ 60
a
Fig. 5-20 Trans- =
. . , & 40
mission of infrared £
radiation through a Pt
thin (0.17 p) sodium 20
chloride film.
[After R. B. Barnes, 0
Z. Physik, 75, 723 40 45 50 55 60 65 70
(1932).] Wavelength,
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shows a beautiful example of just such a resonance, resulting in
increased absorption of light by the crystal at wavelengths in the
neighborhood of 60u. It was observed using an extremely thin
slice of NaCl—only about 10~7 m thick.

5-1 The best way to get a feeling for the behavior of a coupled oscil-
lator system is to make your own, and experiment with it under various
conditions. Try making a pair of identical pendulums, connected by
a drinking straw that can be set at various distances down the threads
(see sketch). Study the motions for oscillations both in the plane of
the pendulums (when they move toward or away from one another)
and also perpendicular to this plane. Try measuring the normal mode
periods and also the period of transfer of motion from one to the other
and back. Do your results conform to what the text describes?

5-2 Two identical pendulums are connected by a light coupling
spring. Each pendulum has a length of 0.4 m, and they are at a place
where g = 9.8 m/sec2. With the coupling spring connected, one
pendulum is clamped and the period of the other is found to be 1.25 sec
exactly.

(a) With neither pendulum clamped, what are the periods of the
two normal modes ?

(b) What is the time interval between successive maximum
possible amplitudes of one pendulum after one pendulum is drawn
aside and released?

5-3 A mass m hangs on a spring of spring constant k. In the position
of static equilibrium the length of the spring is /. If the mass is drawn
sideways and then released, the ensuing motion will be a combination
of (a) pendulum swings and (b) extension and compression of the
spring. Without using a lot of mathematics, consider the behavior of
this arrangement as a coupled system.

5-4 Two harmonic oscillators 4 and B, of mass m and spring con-
stants k4 and kp, respectively, are coupled together by a spring of
spring constant k¢. Find the normal frequencies «’ and «'’ and describe
the normal modes of oscillation if kg2 = kiks.

5-5 Two identical undamped oscillators, 4 and B, each of mass m
and natural (angular) frequency wg, are coupled in such a way that
the coupling force exerted on A is am(d®xp/dt?), and the coupling
force exerted on B is am(d?®x,/dt?), where a is a coupling constant of
magnitude less than 1. Describe the normal modes of the coupled
system and find their frequencies.

5-6 Two equal masses on an effectively frictionless horizontal air
track are held between rigid supports by three identical springs, as

Problems
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shown. The displacements from equilibrium along the line of the
springs are described by coordinates x4 and xp, as shown. If either of
the masses is clamped, the period T (= 2#/w) for one complete vibra-
tion of the other is 3 sec.

V. A B
%—QWD“—O——’DDDD“—O—@DDD‘—%
—_— —_— v

Xy Xp

(a) If both masses are free, what are the periods of the two normal
modes of the system? Sketch graphs of x4 and xp versus 7 in each
mode. At ¢ = 0, mass A is at its normal resting position and mass B
is pulled aside a distance of 5 cm. The masses are released from rest
at this instant.

(b) Write an equation for the subsequent displacement of each
mass as a function of time.

(c) What length of time (in seconds) characterizes the periodic
transfer of the motion from B to A4 and back again? After one cycle,
is the situation at # = 0 exactly reproduced? Explain.

5-7 Two objects, 4 and B, each of mass m, are connected by springs
as shown. The coupling spring has a spring constant k., and the other
two springs have spring constant k. If B is clamped, A vibrates at a
frequency v4 of 1.81sec—1. The frequency »1 of the lower normal
mode is 1.14 sec—1,

% A B
%—/DDDD —(O—"0000— )—0000 \——%
k, m A, m Ao A

(a) Satisfy yourself that the equations of motion of 4 and B are

m—dzxA——kx — k(xs — xB)
dr2 = 0X4 e\ X4 B
&2

md—f2€= ~koxp — kc(xp — x4)

(b) Putting wo = Vko/m, show that the angular frequencies
w1 and we of the normal modes are given by

w1 = wo, w2 = [wo® 4+ Qk/m)]12,
and that the angular frequency of A when Bis clamped (x5 = 0always)
is given by

wa = [wo? + (k./m)]1/?

(¢) Using the numerical data above, calculate the expected
frequency (v2) of the higher normal mode. (The observed value
was 2.27 sec™1)

(d) From these same data calculate the ratio k./ko of the two
spring constants.

Coupled oscillators and normal modes
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5-8 (a) A force F is applied at point 4 of a pendulum as shown. At
what angle 6 (< 1 rad) is the new equilibrium position? What force
F’, applied at m, would produce the same result?

(a) (b)

Two identical pendulums consisting of equal masses mounted on
rigid, weightless rods, are arranged as shown. A light spring (un-
stretched when both rods are vertical, and placed as shown) provides
the coupling.

(b) Write down the differential equations of motion for small-
amplitude oscillations in terms of #; and §2. (Neglect damping.)

(c) Describe the motion of the pendulums in each of the normal
modes.

(d) Calculate the frequencies of the normal modes of the system.

[Hint: The symmetry of the system can be exploited to good
advantage, particularly in parts (c) and (d), as long as the answers
obtained this way are checked in the equations.]
5-9 The CO2 molecule can be likened to a system made up of a

central mass m2 connected by equal springs of spring constant & to
two masses m1 and m3 (with mg = m).

0 16 C‘l 0 16
O——0O—2000—0
ny, A n,; k nt;

(a) Set up and solve the equations for the two normal modes in
which the masses oscillate along the line joining their centers. [The
equation of motion for mg is ma(d2x3/dt?) = —k(x3 — x2) and
similar equations can be written for m1 and ms.]

(b) Putting m1 = m3 = 16 units, me = 12 units, what would
be the ratio of the frequencies of the two modes, assuming this classical
description were applicable?

5-10 Two equal masses are connected as shown with two identical
massless springs of spring constant k. Considering only motion in the
vertical direction, show that the angular frequencies of the two normal
modes are given by w2 = (3 &= v/5)k/2m and hence that the ratio
of the normal mode frequencies is (v/5 + 1)/(v/5 — 1). Find the
ratio of amplitudes of the two masses in each separate mode. (Note:

Problems
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You need not consider the gravitational forces acting on the masses,
because they are independent of the displacements and hence do not
contribute to the restoring forces that cause the oscillations. The
gravitational forces merely cause a shift in the equilibrium positions
of the masses, and you do not have to find what those shifts are.)

5-11 The sketch shows a mass M on a frictionless plane connected
to support O by a spring of stiffness k. Mass Mo is supported by a
string of length / from M;.

Frictionless plane

yo A | M,
IR ¢
i
0
X
% 4“2

(a) Using the approximation of small oscillations,

X2 — X1

sin =~ tan § = 7

and starting from F = ma, derive the equations of motion of M;
and Mo:

Mix, = —kx; + Mz%(XZ - xl)
. M.
Mok = — ng(xz - x1)

(b) For M} = M2 = M, use the equations to obtain the normal
frequencies of the system.

(c) What are the normal-mode motions for M; = Ms = M
and g/I > k/M?

5-12 Two equal masses m are connected to three identical springs
(spring constant k) on a frictionless horizontal surface (see figure).
One end of the system is fixed; the other is driven back and forth with
a displacement X = X cos w¢. Find and sketch graphs of the resulting
displacements of the two masses.

—>X A B \
— 0000 —)—"0000"—)—" 000D
A m k

m k

5-13 A string of length 3/ and negligible mass is attached to two fixed
supports at its ends. The tension in the string is T..

Coupled oscillators and normal modes



(a) A particle of mass m is attached at a distance / from one end
of the string, as shown. Set up the equation for small transverse oscilla-
tions of m, and find the period.

(b) An additional particle of mass m is connected to the string
as shown, dividing it into three equal segments each with tension T.
Sketch the appearance of the string and masses in the two separate
normal modes of transverse oscillations.

(c) Calculate w for that normal mode which has the higher
frequency.

! {

m m

O )

A T
!

5-14 To get a feeling for the use of the equation,

_ . pnw
Apn = Cy sin (N+ 1)

[Eq. (5-26) in the text], which describes the amplitudes of connected
particles in the various normal modes, take the case N = 3 and tabu-
late, in a 3 X 3 array, the relative numerical values of the amplitudes
of the particles (p = 1, 2, 3) in each of the normal modes (n = 1, 2, 3).

1
A—O—0O—0O——8

5-15 An elastic string of negligible mass, stretched so as to have a
tension T, is attached to fixed points 4 and B, a distance 4/ apart, and
carries three equally spaced particles of mass m, as shown.

(a) Suppose that the particles have small transverse displace-
ments y1, y2, and ys, respectively, at some instant. Write down the
differential equation of motion for each mass.

(b) The appearance of the normal modes can be found by draw-
ing the sine curves that pass through 4 and B. Sketch such curves so
as to find the relative values and signs of 41, A2, and 43 in each of the
possible modes of the system.

(c) Putting y; = Aisinwt, yo = Azsinwt, y3 = Agsinwf in
the equations (a), use the ratios A;:A42: 43 from part (b) to find the
angular frequencies of the separate modes.
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5-16 Consider a system of N coupled oscillators driven at a frequency
w < 2wo (i.e,, yo = 0, yv41 = hcoswr). Find the resulting ampli-
tudes of the N oscillators. [Hint: The differential equations of motion
are the same as in the undriven case (only the boundary conditions
are different). Hence try 4, = C sin ap, and determine the necessary
values of a and C. (Nore: If w > 2wg, a is complex and the wave
damps exponentially in space.)]

5-17 It is shown in the text that the highest normal-mode frequency
of a line of masses can be found by considering a particle near the
middle of the line, bordered by particles that have almost equal and
opposite displacements to its own. Show that the same frequency can
be calculated by considering the firsz particle in the line, acted on by
the tension in the segments of string joining it to the fixed end and to
particle 2 (see Fig. 5-19 and the related discussion).

158 Coupled oscillators and normal modes






Here we are concerned with one of the most ancient branches
of mathematics, the theory of the vibrating string, which
has its roots in the ideas of the Greek mathematician

Pythagoras.
NORBERT WIENER, I Am a Mathematician (1956)



6

Normal modes of
continuous systems.
Fourier analysis

OUR DISCUSSIONS in this chapter will not be limited to vibrating
strings. If they were, one might well question their importance.
After all, who, apart from a segment of the musicians’ com-
munity, depends on stretched strings for making a living? The
fact is, though, that through a full analysis of this almost absurdly
elementary physical system—through an understanding of its
dynamics, its natural vibrations, its response at different fre-
quencies—we are introduced to results and concepts that have
their counterparts throughout the realm of physics, including
electromagnetic theory, quantum mechanics, and all the rest. We
are not primarily concerned with studying the string for its own
sake, but it provides an almost ideal starting point. In particular,
as far as mechanics proper is concerned, we can proceed from the
analysis of the string to the vibrational behavior of almost any
system that can be regarded as having a continuous structure.
Ultimately, as we know, on a sufficiently microscopic scale this
analysis must fail; we shall be driven back to the picture of any
piece of material as being made up of great numbers of discrete
particles, strongly interacting with one another. That was the
subject of Chapter 5. But any piece of ordinary matter, large
enough to be seen or touched, is so nearly homogeneous and
continuous that it is profitable, and for most purposes justifiable,
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Fig. 6-1 Vibration
of a string in various
simple modes (n = 1,
2, 3,5). (FromD. C.

Miller, The Science
of Musical Sounds,
Macmillan, New

York, 1922.)

to make a fresh analysis of its behavior from this macroscopic
point of view. That, then, will be the basis of everything we do
in the present chapter.

THE FREE VIBRATIONS OF STRETCHED STRINGS

As implied by the quotation at the beginning of this chapter, the
study of vibrating strings has a long history. The reason is, of
course, the musical use of stretched strings since time immemorial.
Pythagoras is said to have observed how the division of a stretched
string into two segments gave pleasing sounds if the lengths of
those segments bore a numerically simple ratio. Our interest here,
however, is not in the musical effects, but in the basic mechanical
fact that a string, with both ends fixed, has a number of well-
defined states of natural vibration, as shown in Fig. 6-1. These
are called stationary vibrations, in the sense that each point on
the string vibrates transversely in SHM with constant amplitude,
the frequency of this vibration being the same for all parts of the
string. Such stationary vibrations represent the so-called normal

162 Normal modes of continuous systems
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Fig. 6-2 Force dia- 7 I
gram for short seg-

ment of massive string l

in transverse vibra- X X+ Av
tion.

modes of the string. In all except the lowest mode, there exist
points at which the displacement remains zero at all times. These
are nodes; the positions of maximum amplitude are called
antinodes. One can thus think of these basic states of vibration
as being stationary in the additional sense that the nodes remain
at fixed points along the string. This is made especially clear in
Fig. 6-1, because it is a time exposure.

Let us now consider the dynamics of such vibrations. We
shall suppose that the string is of length L, with its ends held
fixed at the points x = 0, x = L. We shall suppose further that
the string has a uniform linear density (mass per unit length)
equal to u and that it is stretched with a tension 7.! At some
instant let the configuration of some portion of the string be as
shown in Fig. 6-2. In Chapter 5 we considered the equivalent
problem for point particles connected by a massless string, and
showed then that to a good approximation the tension remains
unchanged when the system is deformed from its equilibrium
configuration. Thus, for a short segment of the string, of length
Ax, the net force acting on it is given by

F, = Tsin(@ + Af) — Tsiné
F, = Tcos(@ + AB) — T cos 6

where 6, # + A4 are the directions of tangents to the string at the
ends of the segment, i.e., at x and x + Ax.

We are assuming that the transverse displacement p is small,
so that § and 6 4+ A6 are small angles. In this case we have

F, =~ TAf
F.~0

2

The equation governing the transverse motion of the segment is
thus (very nearly)

In this chapter the symbol T will nor be used to denote the period of a
vibration.

The free vibrations of stretched strings



TAO = (uAx)a, (6-1)

Now 6 embodies the variation of y with x at a given value of the
time 7, and a, embodies the variation of y with 7 at a given value
of x. Therefore, in rewriting Eq. (6-1) in terms of x, y, and ¢ we
must use partial derivatives, and we have the following

relationship:
9y
tanf = Ix
2
2 _ 9y
sec” 0Af = 35 Ax

But sec § = 1, and so

62y
Al = (ﬁAx
Also
oo
YT 92
Thus Eq. (6-1) becomes
3%y %y
TﬁAx = ;I,AX'a—tz
Therefore,
% ud¥y
% = T o ©2)

It is clear from this equation that 7/u has the dimension of the
square of a speed, and this will prove to be none other than the
speed with which progressive waves travel on a long string having
these values of u and 7. This aspect of things, however, we shall
not take up until Chapter 7. For the moment, we shall simply
define the speed v through the equation

1/2
v = (Z) 6-3)
1)

and will then rewrite Eq. (6-2) in the following more compact
form:
oy _1d

32~ 2 o €4

We shall now look for solutions of this equation corresponding
to the kind of situation physically represented by a stationary
vibration. This means that every point on the string is moving
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with a time dependence of the form cos wt, but that the amplitude

of this motion is a function of the distance x of that point from

the end of the string. (Our assumed time dependence would

require every point on the string to be instantaneously stationary

att = 0. If this is not soan initial phase angle must be introduced.)
Thus we assume

y(x, 1) = f(x) cos wt (6-5)

This then gives us

%y 2

a—t2' = —w f(x)cos wt
62y d2f

gt = g !

(Notice that, since f is by definition a function of x only, we can
write d%f /dx?2, instead of a partial derivative.) Substituting these
derivatives in Eq. (6-4) then gives us

dy _ _ e

dx2 r2

f

But this is the familiar differential equation satisfied by a sine or
cosine function. Remembering that we have defined x = 0 as
corresponding to one of the fixed ends of the string, with zero
transverse displacement at all times, we know that an acceptable
solution must be of the form

f(x) = Asin (%‘) (6-6)

But we have the further boundary condition that the displacement
is always zero at x = L. Hence we must also have

Asin <%> =0
v
Therefore,
— = nrwr 6-7)

where n is any (positive) integer.

It will be convenient to introduce the number of cycles per
unit time, v, equal to w/2r. The frequencies of the permitted
stationary vibrations are thus given by

no n (T\"?
=w_r(= 8
T oL 2L<y> ©8)

The free vibrations of stretched strings
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where n, according to this calculation, may be 1, 2, 3, ... to
infinity.!

A vivid way of describing the shape of the string at any
instant, in any particular mode #, is obtained by recognizing that
the total length of the string must exactly accommodate an
integral number of half-sine curves, as implied by Eq. (6-7). We
can therefore define a wavelength, \,,, associated with the mode »,
such that

A= — (6-9)

Hence, from Eq. (6-6), the shape of the string in mode # is char-
acterized by the following equation:

Sa(x) = Aqnsin (Z;rnx) = A, sin (%) (6-10)

and the complete description of the motion of the string is thus
as follows:

27x

An

5] _"n_7r lez—nw
n"'L u = 1

Since all the possible frequencies of a given stretched string
are, according to the above analysis, simply integral multiples of
the lowest possible frequency, w,, a particular interest attaches
to this basic mode—the fundamental. It is the frequency of the
fundamental that defines what we recognize as the characteristic
pitch of a vibrating string, and which therefore defines for us the
tension required to obtain a certain note from a string of given
mass and length.

A, sin COS Wyt 6-11)

Yalx, t)

where

Example. The E string of a violin is to be tuned to a fre-
quency of 640 Hz. Its length and mass (from the bridge to the
end)are 33 cm and 0.125 g, respectively. What tension is required?

1The essential form of this functional dependence of » on L, T, and x was
discovered by Galileo.

Normal modes of continuous systems



From Eq. (6-8) we have

_L z,1/2
S TA W

and we shall put 4 = m/L, where m is the total mass. This then
gives us

T = 4mLv,2
= 4(1.25 X 1074)(0.33)(6.4 X 102)? (MKS)
=~ 68N

This is therefore a pull of about 15 Ib. (The total pull of all four
strings in an actual violin is about 50 1b.)

THE SUPERPOSITION OF MODES ON A STRING

In a stringed instrument such as a piano, the string is struck once
at some chosen point. At the moment of impact, and for a brief
instant thereafter, the string is sharply pushed aside near this
point, and its shape is nothing like a sine curve. Shortly thereafter,
however, it settles down to a motion which is a simple super-
position of the fundamental and a few of its lowest harmonics.
It is a physically very important fact that these vibrations can occur
simultaneously and to all intents independently of one another.
It can happen because the properties of the system are such that
the basic dynamical equation (6-2) is linear—i.e., only the first
power of the displacement y occurs anywhere in it. If various
individual solutions of this equation, corresponding to the various
individual harmonics, are denoted y,, yo, y3, etc., then the sum
of these also satisfies the basic equation, and the motion thereby
described can always be considered as resolvable into these
individual components. Figure 6-3 shows some examples of such
compound or superposed vibrations. Their mutual independence
can be demonstrated by suddenly stopping the transverse motion
of the string at a point that is a node for some harmonics but not
for others. Those component vibrations for which the point is a
node will continue unaffected ; the others will be quenched. Thus,
for example, if a piano string has been set sounding loudly by
striking the key, which is kept held down, and the string is then
touched one third the way along its length, all component vibra-
tions are stopped except the third, sixth, etc., multiples of the
fundamental frequency.

ITen newtons = 2.2 lb.
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Fig. 6-3 Compound
vibrations of a string,
made up of combina-
tions of simple modes.
(From D. C. Miller,
The Science of Musi-
cal Sounds, Mac-
millan, New York,
1922,)

This principle of independence and superposition for the
various normal modes of a vibrating system will be seen to have
a fundamental importance for the analysis of complicated dis-
turbances; indeed, it is a foundation stone for Fourier analysis.
The phenomenon as manifested in a vibrating string was first
clearly discussed by Daniel Bernoulli in 1753. Because a real
string will not, in practice, be perfectly described by our idealized
equations, the independence of the separate modes will not be
really complete, although in some circumstances it may be very
nearly so.

FORCED HARMONIC VIBRATION OF A STRETCHED STRING

168

As we have seen above, the free vibrations of a string with both
ends rigidly fixed are strictly limited to the fundamental frequency
and integral multiples thereof. But now, just as we did in Chap-
ter 4 for a simple harmonic oscillator, we shall consider the
response of the string to a periodic driving force. For the purpose
of having a simple and well-defined discussion, we shall imagine
that the end of the string at x = L remains firmly fixed, but that
the end at x = Ois vibrated transversely at some arbitrary angular
frequency and with an amplitude B.

Just as in Eq. (6-5), we shall suppose a steady-state solution
of the form

y(x, 1) = f(x)cos wt
but now subject to the following conditions:

Normal modes of continuous systems
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¥(0, ) = Bcos wt
y(L’ t) =0

The basic equation of motion is still Eq. (6-4), so that f(x) must
be a sinusoidal function of x. We therefore put

f(x) = Asin (Kx + a)
From Eq. (6-4) we then get K = w/v, so that

f(x) = Asin (% + a)

This is just like Eq. (6-6) except for having an adjustable parame-
ter «. From the boundary condition at x = L, we then have

sin (ﬁ + a) =0
17
Therefore,
wL
o tesm

where p is an integer. From the boundary condition at x = 0,
we get

B = Asina

Therefore,

A= — 5 (6-12)

. < wL)
sin{ pr — >

The implication of this result is that, for a given amplitude of the
forced displacement at the extreme end, the response of the string
as a whole will be very large whenever the driving frequency is
close to one of the natural frequencies defined by Eq. (6-8).
Indeed, according to Eq. (6-12) the driven amplitude would
become infinitely large at the exact natural frequencies, and the
situation at nearby frequencies would be somewhat as shown in
Fig. 6-4. We know, however, that the existence of damping
forces will eliminate these unreal infinities, and the actual behavior
will simply be to have 4/B>> 1 for v = w,.

The important feature of the above result is that we build up
a large forced response with a small driving amplitude by having
the forcing take place at a point which is close to being a node of
one of the natural vibrations. Clearly, however, it cannot be a
node exactly, because by definition we are imposing motion there.
Also, in any real system, the kind of large-amplitude response

Forced harmonic vibration of a stretched string



Fig. 64 Configura-
tions of string driven
just below and just
above the natural fre-
quency of a normal
mode of vibration.

Z

shown in Fig. 6-4 comes about only after an application of the
small periodic driving force over many periods of vibration.
There is no magic way of suddenly feeding into the system the
large energy represented by the resonant amplitude of vibration.
It is very much like the slow growth of a forced, damped oscillator
during the transient stage, as indicated in Fig. 4-11(c).

[Anyone who reads this and who is also familiar with the
design of pianos may be somewhat puzzled by this matter of
driving a string at or near a node to get resonant response. For it
is the practice to have the piano hammer strike the string about
one seventh of the total length along it. And the purpose and
effect of this is to suppress the unpleasant-sounding seventh
harmonic, not to encourage it, as the above analysis might imply.
The point is that any nonzero displacement at a point which is
precisely the node of a certain harmonic does not, when applied
via a single impulse (as opposed to periodic forcing), represent a
means of exciting that particular natuial vibration of the system.]

Having seen something of these basic features of the free
and forced vibrations of a string, let us now turn to some other
systems which exhibit the same kind of behavior.

LONGITUDINAL VIBRATIONS OF A ROD

170

When the end of a metal rod is struck lengthwise, vibrations of
quite high audible frequencies are produced. If the rod is suitably
supported—e.g., by a thin clamp at its midpoint—the vibrations
persist for quite a time. The Q of the system, especially in the
case of the lowest of the possible natural frequencies, is quite
high, and may in some cases result in a surprisingly pure tone.
We touched briefly on the properties of this type of system in
Chapter 3, in connection with the problem of a body attached to
a massive spring. We recognized that the natural frequency of
vibration must be proportional to v/ Y/p, where Y is the Young’s
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A x + Ax

Fig. 6-5 (a) Mas-
sive rod. (b) Massive (a) § ]
rod after a longi-

tudinal displacement
under nonstatic condi-

tions. The shaded sec- 7

tion contains the same (b)
amount of material as 7

the shaded section in v+é v Ax - £ FAE

(a).

modulus and p is the density. Now we shall go into the situation
more carefully.

The problem is actually very much like that of the stretched
string, but you are likely to find it a good deal harder to visualize
because the displacement is in the same direction as x instead of
being transverse to it. We shall use the symbol # to designate
the displacement, from the equilibrium position, of each particle
in the rod that was initially at a distance x from some section that
is assumed to be fixed (or at any rate permanently unaccelerated).
Then we shall consider the equation of motion of a thin slice of
the rod which in the undisturbed state is contained between x and
x + Ax—Fig. 6-5(a).

Then, as indicated in Fig. 6-5(b) (in which, of course, the
displacements are much exaggerated), the material shown shaded
is bodily shifted and also stretched. It is pulled in opposite direc-
tions by the forces F; and F;. Now the magnitude of F; depends
on the fractional change of interatomic separations af x. Simi-
larly, F; depends on the fractional change of separation az x + Ax.
These forces will in general be slightly different. As a result of
the deformation, however, all the material in our slice is in a state
of stress, and we can define an average value of this stress in
terms of the over-all strain. The length of the slice (originally Ax)
has increased by Af. Therefore,

Af

average strain = —
& Ax

Af
average stress = Y Ax

We now recognize that we can define the stress af a particular
value of x as being the value of Y(8£/dx) at that point." And
then, for a point Ax farther along, we have

Note the partial derivative, because the stress at a given x is also going to
vary with 7.

Longitudinal vibrations of a rod



d(stress)
dx

Thus, if the cross-sectional area of the rod is «, we have

(stress at x + Ax) = (stress at x) + Ax

_ap
F1 = aYax
B : 9t
Fo = aY6x+ aYax2Ax
and so
%t
F2 - F1 = aYa—xéAx

That ends the conceptually difficult part of the calculation.
We now apply Newton’s law to the material lying between
x and x + Ax. If the density is p, its mass is pa Ax. Its accelera-
tion is the second time derivative of the displacement, which is
just £in the limit of vanishingly small Ax [see Fig. 6-5(b)]. Hence
we have
9%t 9%

aYa—x2AX = panﬁ

or

- Yor 2 ae ©13)

with v = (Y/p)'/2. This then is really just like Eq. (6-2) for the
stretched string, and we can begin looking for solutions of the type

£(x, 1) = f(x) cos wt (6-14)

There is, however, an important difference of boundary condi-
tions. In most circumstances we shall not have both ends of the
rod fixed. It could be arranged, but usually the rod will be
clamped either at one end, leaving the other end free, or at the
center, leaving both ends free.

We shall just consider the case where one end is fixed. This
comes nearest to our earlier, primitive consideration of the oscilla-
tion of a massive spring (Chapter 3). Let the fixed end be at
x = 0, and the free end at x = L. We know that Eq. (6-13)
implies a sinusoidal variation of ¢ with x at any instant, and so
we can put

f(x) = Asin (%) (6-15)

just as in Eq. (6-6).
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Fig. 6-6 Longi-

tudinal normal modes (b)
of massive rod

clamped at one end.

For clarity the longi-

tudinal displacements

are represented as {c)
though they were

transverse.
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The condition at x = L must express the fact that this is a
free end. In physical terms this means that the stress there is
zero. No adjacent material is pulling on the end of the rod at
that point, and conversely there is no adjacent material to be
accelerated. Hence, at x = L, we have

of
F—aYa—.-x—

From Egs. (6-14) and (6-15), this means

or
L= P (6-16)

where 7 is a positive integer.! The natural frequencies of the rod
are thus given by

N A —1/\V2
Y = 2L2) g (;) 6-17)

Using the condition given by Eq. (6-16), one can see that
the length of the rod must accommodate an integral number of
quarter-wavelengths of sine curves. The three lowest modes are
shown schematically in Fig. 6-6, but remember that the displace-
ments are really longitudinal, not transverse.

The lowest mode of such a rod, clamped at one end, has a
frequency given by

IThe use of (n — %)= rather than (# + 3)x in Eq. (6-16) allows us to number
the modes 1, 2, 3, etc.

Longitudinal vibrations of a rod



Suppose, for example, we had an aluminum rod, I m long. We
would have, in this case,

Y = 6 X 101%kg/m/sec?

p =~ 2.7 X 103 kg/m?
giving

v1 = 1200 Hz

1/2
v1 1 (—}:> (6-18)

It is interesting to compare our exact result, Eq. (6-18), with
what we obtained in Chapter 3 (see discussion on p. 61). As-
suming (wrongly) that the stress and strain at any instant during
the vibration have the same values along the whole length of the
rod, we found the following formula for the frequency of a rod
fixed at one end:

1 3k 1/2 \/5 Y 1/2
won) »=3:(5) = 32(3)

Instead of the coefficient 1 in Eq. (6-18) we would have had
A/3/2x = 1/3.6, causing us to overestimate the frequency by
about 10%.

THE VIBRATIONS OF AIR COLUMNS

174

It is clear that a column of air, or other gas, represents a system
almost equivalent to a solid rod. Each has its internal elasticity,
and the comparison that we began in Chapter 3 can be pressed
further in the light of our present discussion.

With an air column it is worth considering all the modes that
can be obtained by having either one end or both ends open.
An open end represents (approximately, at any rate) a condition
of zero pressure change during the oscillation and a place of
maximum movement of the air. A closed end, on the other hand,
is a place of zero movement and maximum pressure variation.
If air is contained in a tube with one end closed and the other
end open, the mode of vibration, and the associated frequency, is
defined by one of the situations represented in Fig. 6-7(a), all
with a node at one end and an antinode at the other. But it is
possible, as shown in Fig. 6-7(b), to get another set of vibrations
by leaving both ends of the tube open, hence giving an antinode
of displacement at each end. For a tube of a given length, the
possible frequencies are then all the integral multiples of the

Normal modes of continuous systems
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Fig. 6-7 (a) First three normal modes of tube open at one end
only. (b) First three normal modes of tube open at both ends.

frequency of the lowest mode with one end closed—the first
diagram in Fig. 6-7. The odd multiples all belong to the closed-
tube situation, and the even multiples to the open tube. It may
be noted that alternate modes in the open-end sequence (those
with a node at the center) correspond to the closed-end modes of
a column of length L/2. It may also be noted that a tube with
both ends closed has the same set of natural frequencies as one
with both ends open, although it differs from it by an interchange
of the positions of nodes and antinodes.’

IThe vibrations of the air columns in actual musical instruments involve
many subtleties not even hinted at in this account. The basic rypes of mode
are, however, very much as enumerated here. A normal “flue” organ pipe
always has an antinode at its mouth (at the bottom end) and may be closed or
open at the top. A flute is essentially like an open organ pipe, but in reed
instruments (including reed organ pipes and brass instruments in which lips
act as reeds) the end with the reed approximates a closed end; the other end
is of course open. The reed acts as a driving agent at the resonant frequency
of the air column. It feeds in energy at a point approximating to a node of
displacement—very much like the string being driven at one end. If you want
to read more about this and other fascinating topics in the physics of music,
the following books can be recommended as a starting point: Arthur Benade,
Horns, Strings and Harmony, Doubleday (Science Study Series), New York,
1960; Sir James Jeans, Science and Music, Cambridge University Press,
New York, 1961; Jess J. Josephs, The Physics of Musical Sound, Van Nostrand
(Momentum Books), Princeton, N.J., 1967; John Backus, The Acoustical
Foundations of Music, W. W. Norton, New York, 1969.
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THE ELASTICITY OF A GAS

The preceding description allows us to enumerate the relative
frequencies of an air column, but now let us consider the absolute
frequency for a gas column of a given length. We are essentially
concerned with the correct evaluation of the speed v that appears
in the basic differential equation—one just like Eq. (6-13). And
this means that we must use an appropriate elastic modulus, K,
for the gas, to use in place of the Young’s modulus, Y. In Chap-
ter 3 we pointed out that the modulus of a gas was to be defined
by the equation
dp
= - VW

and that for the oscillations of a gas the variations of p and V
take place under adiabatic conditions—conditions of no heat
transfer into or out of the gas—which means that the temperature
rises and falls and hence that Boyle’s law does not describe the re-
lation between p and ¥. Now we shall make an explicit calculation.

Suppose that a tube of cross-sectional area 4 and length /,
closed by a piston, contains gas at a pressure p and of density p
(Fig. 6-8). According to the kinetic theory for an ideal gas, the
pressure is given by

P = 3ptPms (6-19)

where vZ, is the mean squared speed of the molecules.! If the
total mass of gas in the tube is m, we can rewrite Eq. (6-19)
as follows:

_m.2
p—3Al rms

And this can be written more simply if we introduce the total
kinetic energy of translation, E}, of all the particles:

2
E. = %mvrms

Fig. 6-8 Tube with | ! .Il

piston.
1The suffix rms stands for root mean square.
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Substituting this, we find

P35 (6-20)

We shall now consider a movement of the piston, causing a
change of the pressure throughout the gas column, and performed
in such a way that the work done on the gas by the piston is
retained within the gas, thus representing a change in its internal
energy. The force needed to cause a compression is essentially
equal to pA, so that the work done on the gas, in consequence of
a change of length, A/, of the gas column, is given by

AW = —pAAl

and so is positive if A/ is negative. If we assume that this work
goes exclusively into increasing the kinetic energy of translation
of the molecules, we have

AE, = —pAAl (6-21)

However, the change of length A/ is accompanied by changes of
p as well as of Ey; from Eq. (6-20) we have, by differentiation,

2 {1 Al
Ap = EZ (7AEI. - EEL>

Therefore,
2 Alf2 E,
A[) = 3—A[AEk - T(_ _>
But, with the help of Egs. (6-20) and (6-21), this becomes

2 Al
Ap = 3—/41(—1’/4A1) - 7(1’)
Al
= 5,2
3P 7

Since the cross-sectional area of the gas column is assumed to
remain unchanged, the value of A//] can be equated to the frac-
tional volume change AV/V. Hence we have

o _yplr_ s
Kadmbntlc = VAV = 3P (6_22)

This is to be compared to the isothermal elastic modulus, which
is just equal to p (see Chapter 3). The speed v defined by this
adiabatic value of K is thus given by

(1.667p>“ 2
U=
p
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Actually this expression works for some gases, but not all—and
not for air itself. What are the assumptions that have gone into
producing it? They are, first, that the work done on the gas in
compression is all used to increase the energy of the gas, rather
than going into heat losses to the surrounding material; second,
that this energy retained within the gas goes entirely into raising
the kinetic energy of translation of the molecules, rather than
being used in part to increase the energy of their internal motions.

The first condition appears to be satisfied for acoustic vibra-
tions in all gases. The second condition, however, works only
for molecules that really behave like hard billiard balls—which
points in particular to the monatomic gases He, Ne, A, etc. For
other gases, including air, some of the work done on (or by) the
gas results in changes of the internal rotations or vibrations of
the molecules. Hence, for a given change of volume, the change of
kinetic energy of translation—which determines the pressure,
according to Eq. (6-20)—is less than our calculation would imply,
and so, as we said in Chapter 3, the elasticity of a gas in adiabatic
vibration is expressible as

Kadiabatic = VP (6-23)
where 1 < v < 5.

For air the value of ¥ is found to be close to 1.40, and for air
at room temperature and ordinary pressure we have

p =~ 1.0 X 10° N/m’

p=~12 kg/m3
Thus, for example, if we had a tube 1 m long, closed at one end,

its lowest mode would, by analogy with Eq. (6-18), have a fre-
quency given by

V___l_'_Y_pll2
VT AL\ p

=~ 84Hz

A COMPLETE SPECTRUM OF NORMAL MODES
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In the preceding sections we have discussed the natural vibra-
tions, otherwise called normal modes, of various types of physical
system. Setting aside the differences in detail, the systems were
assumed to have the following features in common:

1. Each system was taken to be effectively one-dimensional
and of limited length,
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2. Each system was taken to be continuous and uniform in
its structure.

3. Each system was subject to boundary conditions at its ends.

4. Each system was controlled by restoring forces propor-
tional to the displacement from equilibrium.

It followed from these conditions that each system possessed
a whole set of distinct modes of vibration, each mode character-
ized by a mode number 7, a frequency »,, and a wavelength \,—
this last being simply related to the length L of the system and
to the mode number. It also emerged that the characteristic
frequencies varied linearly with » for any given system. Let us
now ask some questions about these results.

First, how many different modes can a given system have?
If one accepts our treatment of the problem at its face value, the
number of distinct modes is infinite—although discrete. Is this
true? Not quite. If you have followed through the discussion of
the last chapter, you will have learned that a line of N interacting
particles has a total of N different normal modes of vibration of a
given type (e.g., purely transverse or purely longitudinal). For
example, a rod 1 m long should be thought of as made up of lines
of atoms separated from one another by distances of the order
of 1A. Thus it would have only about 10!° normal modes,
instead of infinitely many. But of course 10 is a monstrous
number—almost infinite for most physical considerations. The
main point, though, is that we can envisage a complete set, or
spectrum, of all the possible normal modes of a given system, and
can be sure that, by allowing the mode number » to take on all
its possible values, from 1 to N or from 1 to oc, we have enumer-
ated them all.

Second, what are the permitted wavelengths of the stationary
vibrations on a uniform one-dimensional system of a given
length L? This depends on the boundary conditions. We shall
be devoting special attention to the case in which the displacement
is zero at both ends. In that case, as we have seen, the wave-
lengths A, are given by the particularly simple relation—Eq. (6-9):

2L
T

An

This is a purely geometrical result, in the sense that it depends
only on the form of the equations of motion, and has nothing to
do with such quantities as the elasticity and density of the medium.
It is good for any value of ».
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Fig. 6-9 Variation
of the mode frequency
with mode number up
1o maximum possible
frequency for a one-
dimensional system.
In the shaded area

X n (approx)

the relation between L

vy, and n is very

nearly linear. Y n o

Third, what about the frequencies of the normal modes?
Does the linearity of v,, versus » hold for very high modes, in the
way that it seems to do, with great exactitude, for those first few
dozen harmonics that alone are of importance in acoustic phe-
nomena? It will be remembered that, for a system with both
ends fixed, we had the particularly simple result—Eq. (6-8):
nv
2L
where v is a speed that appears to be uniquely defined by the
inertial and restoring properties of the medium. But this simple
proportionality of v, to n is not generally true. For a simple, one-
dimensional system, the frequency increases less and less rapidly
with mode number until a limiting frequency is reached at the
highest possible mode number, N, as shown in Fig. 6-9.) The
system is not capable of vibrating at any higher frequency than
this. In the type of one-dimensional system we have described,
this phenomenon is tied very directly to the fact that the number
of particles participating in the motion is not infinitely large.
In fact, however, the proportionality of v, to # is a rather special
result, and ceases to apply with any generality when we go to two-
and three-dimensional systems.? Nevertheless, the important
feature remains—that a given one-dimensional system, with speci-
fied boundary conditions, has a denumerable set (even if infinite)
of characteristic natural modes of vibration.

Vn =

1For further discussion, refer back to Chapter 5.

2Even in a one-dimensional system that is treated as being continuous in
structure, the relation between the mode frequencies becomes quite different
if the system is not uniform—e.g., a stretched string whose thickness increases
continuously from one end to the other, or (as shown in Fig. 5-1) a uniform
chain hanging vertically, in which the tension decreases steadily from the
top downward.
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Let us end this general discussion of the normal modes by
drawing attention to two features, already referred to, that are
of especially great importance:

1. The boundary conditions, as applied in this case at the
two ends of the one-dimensional system, play a decisive role in
determining the character of the normal modes.

2. Given the linearity of our basic equations of motion, any
or all of the normal modes of vibration can coexist with arbitrary
relative values of amplitude and phase.

NORMAL MODES OF A TWO-DIMENSIONAL SYSTEM
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We shall turn our attention now to a brief consideration of the
normal modes of systems that are essentially two-dimensional,
such as a stretched elastic sheet or a thin metal plate. As with the
one-dimensional systems, the specification of boundary conditions
—now, primarily, around the edges—limits the permissible mo-
tions to a few particular classes: the normal modes that are con-
sistent with the stated boundary conditions. The precise character
of the normal modes may be very beautifully indicative of any
symmetries that a given physical system possesses.

The simplest case to consider is that of a rectangular vibrating
membrane., By analogy with the one-dimensional case of a
vibrating string, a rectangular membrane with a fixed outer
boundary has normal modes describable by sines and cosines
as follows:

2(x, ¥, 1) = Cpyn, sin 27X ) sin ramy cos wyat
L, L,

where the normal mode frequencies are (6-24)
_ (§)l/2[("11r)2 + (il2_1.r)2i|ll2
o L, L,

S = force/unit length (surface tension)

w

—
[

Here

¢ = mass/unit area
ni,ne=1,2,3,...

L., L, = lengths of the sides of the membrane.

This equation may look a little formidable, but its structure can
be clearly recognized if one compares it to the equation for the
normal modes of a stretched string:
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yalx, 1) = A, sin (ﬁ{i‘) COS Wyt

w_ﬂ_l,uz
n LM

The product of sine functions in Eq. (6-24) guarantees that the
displacement z is always zero along the boundaries, and the value
of w is characterized by two integers instead of one. The complete
membrane can be imagined, if one so desires, as a whole set of
strings stretched parallel to one another, along (let us say) the x
direction, and all satisfying the same wavelength condition with
respect to that direction. But these strings must also be considered
as cross-connected along lines parallel to the y direction, satisfying
some other wavelength condition between y = Oand y = L,.
The actual dynamics can be constructed by considering a
small rectangular patch of the membrane at some arbitrary x
and y [see Fig. 6-10(a)]. The surface tension S acts as a certain
force per unit length exerted in the surface perpendicular to any
line considered. Thus if our patch has edges of length Ax and Ay,
the force in the xz plane at each end is S Ay, and the force in the
yz plane is S Ax. The mass of the patch is ¢ Ax Ay. Considering
now the side view in the xz plane, as shown in Fig. 6-10(b), the
situation is just like that shown in Fig. 6-2. The transverse force
due to the curvature of the membrane in the xz plane is given by

where

2

0z
SAyAb, = SﬁAxAy

Fig. 6-10 (a) Force diagram for a small area Ax Ly
of an elastic membrane. (b) Cross section of force
diagram in the xz plane.

S Ay

(a) (b)
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But the membrane is curved in the yz plane, too, and the force
due to this is given by

saxas, = s 2axA

X aby = W x4y
The total force is the sum of these, and the mass being accelerated
is ¢ Ax Ay. Hence the equation of motion (ma = F) becomes
8’z 0% 9z
O'AXAyw = S(ﬁ + W)AXAJ’

or

3z %2 oo’z

PR R T 623)
This equation of motion is a direct extension of Eq. (6-2). By
recognizing that there may exist stationary vibrations of the form

2(x, y, t) = f(x)g(y) cos wt

we come quite straightforwardly to the exact expressions for f,
g, and w that are given in Eq. (6-24).

As we said in the last section, the mode frequencies for a
two-dimensional system do not in general exhibit simple numeri-
cal relationships—not even in the simplest possible geometry, a
square. On the other hand, the points of zero displacement at
all ¢ are connected by nodal lines—straight lines parallel to the
sides of the rectangle—which correspond in a very simple way
to the geometrical conditions imposed at the boundaries.

In Fig. 6-11 we show the few lowest modes of a rectangle
that is almost but not quite a square. Its sides are taken to be of
lengths 1.05L and 0.95L, giving an area almost exactly equal
to L2 It is convenient to express the possible frequencies as
multiples of a frequency w; defined by

_1_l'§1/2 —L§1/2i|
AV "1=32I\s

This is the lowest frequency with which a square membrane of
side L could vibrate if it were fixed along two opposite edges and
were free along the other two edges. From Eq. (6-24), the normal
mode frequencies of our rectangle are given by

m 2 ne 271/2

On Fig. 6-11 are shown the nodal lines (dashed) with shading to

Normal modes of a two-dimensional system



n

n

(0.95 % 1.05) (1.00 > 1.00) =~

i
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Wyl wlzlwl
rectangle square rectangle square
(0.95 X 1.05) (1.00 = 1.00)

n
V3 Y,
1.42 (- 141) 3 1 ] 3.05

V10
(=3.16)
2.18 1 3.30
V5
(= 2.24)
2.31 3 3.56
V13
(= 3.61)
28 V8 .
4 (= 2.83) 2 3.69

Fig. 6-11 Normal modes of plane rectangular surface
compared to those of a square of the same area. Shaded
areas and clear areas have displacements of opposite
sign perpendicular to the plane of the diagram and
passing through zero at the nodal lines.

show which portions of the membrane have displacements in
the same direction at any instant.

The normal mode frequencies for a perfectly square mem-
brane would be /2 wy, /5 w1, V8 w1, etc. We have deliberately
chosen something that is almost but not quite square so as to draw
attention to an interesting and important feature. We notice a
tendency for the modes of our rectangle to clhssify themselves in
pairs in which the values of n; and %o (if different) are inter-
changed. The frequencies of these paired modes are quite similar
and they bracket the frequency that both of these modes would
have in a perfectly square membrane. The limiting case—the
perfect square—is what is called degenerate; a single frequency
may correspond to two geometrically distinct patterns of vibra-
tion, and the number of normal modes is greater than the number
of distinct frequencies. There are other circumstances, too, in
which the vibrations of a rectangular membrane may be degener-
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Fig. 6-12 Normal
modes of soap film.
(Demonstrated by
Prof. A. M. Hudson,
using a specially
strong soap film solu-
tion compounded of
detergent, glycerin,
and a little sugar.)

ate. If, for example, the ratio L;/L, is expressible as a ratio of
integers, at least two different sets of the numbers (#,, n2) may
be found which lead to the same value of the frequency. This
phenomenon of degeneracy is important, not only in classical
mechanics, but also in atomic and nuclear systems. As an
example, in the original Kepler-like model of the hydrogen atom,
developed by Bohr and Sommerfeld, the electron is pictured as
traveling around the proton in certain ““allowed” orbits—not just
the circular ones that Bohr originally proposed, but a variety of
ellipses corresponding to different values of the orbital angular
momentum. Many of these distinct orbits correspond in the
simplest form of the theory to the same total energy for the
electron, but the fact that they are all different is important when
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Fig. 6-13 Normal
modes of disk.
Shaded area and clear
areas have displace-
ments of opposite
sign, passing through
zero at the nodal lines.

v; = 2.30p, vy = 2.65p, v = 2.92v,

it comes to counting the number of distinguishable states available
to an electron in an atom.

The vibrations of soap films, formed on a wire frame that
defines a rigid boundary, provide a vivid demonstration of normal
modes. Figure 6-12 shows two of the modes of a rectangular
membrane as obtained in this way.

Another very important class of vibrations on two-dimen-
sional systems is obtained when the boundary is circular. If again

Fig. 6-14 Displacement maxima of modes of soap
films. (Photos by Ludwig Bergmann, supplied by Prof.
U. Ingard, M I.T.)
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we take this boundary to be fixed, the normal modes express the
symmetry of the arrangement by being concentric circles and
diametral lines. A rich variety of vibrations is possible; Fig. 6-13
illustrates the lowest six modes of such a system.

Fig. 6-15 Chladni figures showing nodal lines. (From
Mary Waller, Chladni Figures: A Study in
Symmetry, Bell, London, 1961.)
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More complex modes of rectangular and circular systems
can be excited in soap films by driving them from a nearby loud-
speaker which is emitting the appropriate frequency. Figure 6-14
shows some examples; in this photograph the white lines are
reflections from the displacement maxima, not the nodal lines.

E. F. Chladni (1756-1827) devised a method for making
visible the vibrations of a metal plate clamped at one point or
supported at three or more points. Fine sand sprinkled on the
plate comes to rest along the nodal lines where there is no motion.
The plate may be excited by stroking with a violin bow or by
holding a small piece of “dry ice” against the plate. Touching a
finger at some point will prevent all oscillations except those for
which a nodal line passes through the point touched. Figure 6-15
illustrates some particularly beautiful Chladni figures obtained
by Mary Waller.

NORMAL MODES OF A THREE-DIMENSIONAL SYSTEM
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A solid block of any material always has some degree of elasticity,
and in consequence has a spectrum of normal modes of vibration.
This will be true even if—just like the strings and membranes we
have been discussing—its boundaries are imagined to be held
fixed. For example, a jellylike material that completely fills a
more or less rigid container can be felt to be vibrating in a complex
way if the container is given a sudden blow.

In the case of one-dimensional and two-dimensional systems,
we have been able to discuss and display the characteristic modes
of transverse oscillation in a rather vivid manner. When we come
to three-dimensional systems we do not any longer have a spare
dimension, as it were, along which the displacement may be seen
to take place. We shall just content ourselves, therefore, with
pointing out that one can set up, for three dimensions, a differen-
tial equation of motion that is in strict analogy to the equations
we have previously set up for one and two dimensions., The
equation will be of the form

v v 14w

Ttz "z (6-26)

where v is some characteristic speed—e.g., the speed defined by
the value of /K/p, where K is the appropriate bulk modulus of
elasticity. The scalar quantity ¥ might then be the magnitude of
the pressure at any given position and time. In discussing the

Normal modes of continuous systems



normal vibrations of a rod or an air column, we were in effect
using a one-dimensional reduction of this equation. The medium
in those cases was certainly three-dimensional, but we chose to
confine our attention to vibrations describable in terms of one
position coordinate only.

We recognize that boundary conditions must now be speci-
fied on all the external surfaces of the system. For a rectangular
block, fixed over its whole boundary, we can imagine a set of
normal modes very much like those of a rectangular membrane.
But now the nodal points lie on a set of surfaces, and each normal
vibration must now be characterized by a set of three integers,
instead of two (membrane) or one (string). Further than this,
however, we shall not attempt to go. Instead, we shall return
now to the study of one-dimensional problems and the coexistence
of a number of normal modes in such a system.

FOURIER ANALYSIS

Suppose we have a string of length L fixed at its two ends. Then,
as we have seen, it should be able (subject to certain assumptions
about the dynamics) to vibrate in any of an infinite number of
normal modes. Allowing for the necessary freedom of choice of
both amplitude and phase of a given mode, we shall put

ya(x, 1) = A, sin (?) cos(wat — 8z) (6-27)

Furthermore, we can imagine that a/l these modes are permitted
to be present, so that the motion of the string is completely speci-
fied by the following equation:

y(x,t) = D Ay sin (12—") cos(wnt — 8,) (6-28)
n=1

The actual motion of the string may of course be very hard to
visualize—but as long as the physical assumptions leading to
Eq. (6-27) are justified, we can assume that an arbitrary synthesis
of this type is possible.

Imagine now that a flash photograph is made of the oscillat-
ing system. This will show its configuration at some specific time
to. The quantities cos(wnfy — 98.) can then be treated just as a
set of fixed numbers, and the displacement of the string at any
designated value of x can be written as follows:

y(x) = > Bysin (ﬁ’—'f)
n=1 L
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where (6-29)

B, = A, cos(wnfo — &)

We now make the following assertion: It is possible to take any
Jorm of profile of the string, described by y as a function of x be-
tween x = 0 and x = L (subject to the conditions y = Oat x = 0
and x = L) and analyze it into an infinite series of sine functions
as given in Eq. (6-29).

There may seem to be a large measure of arbitrariness about
the above statement. This arbitrariness disappears, however, if
one considers the continuous string as the limit, for N — o0, of a
row of N connected particles. This is where the insights provided
by the discussions of Chapter 5 come to our aid. We could see
clearly, for a finite number of particles, how there were precisely
N normal modes. The description of each mode involved two
adjustable constants—amplitude and phase. Any motion of the
N particles, under the influence of their mutual interactions, was
then describable in terms of a superposition of the normal modes.
And the existence of a total of 2NV adjustable constants allowed us
to assign arbitrary values of initial displacement and velocity to
every particle. Our present statement is the logical consequence
of applying this result to an arbitrarily large number of con-
nected particles.

There is, of course, no actual physical system in which the
number of particles is infinite. Thus, in going to this limit, we
are, in fact, translating our problem from the world of physics
into the world of mathematics. And Eq. (6-29)—a remarkably
simple statement—is the basis of one of the most powerful tech-
niques in all of mathematical physics—that of Fourier analysis.
The great French mathematician Lagrange (1736-1813), who
made mechanics his special province, developed the theory of
the vibrating string in just the way that we have chosen to follow,
and as long ago as 1759 he came to the verge of enunciating the
result expressed in Eq. (6-29). But it was another French mathe-
matician, J. B. Fourier, who (in 1807) was the first to assert that
indeed a completely arbitrary function could be described over a
given interval by such a series. It is, on the face of things, an
extraordinarily unlikely result; it goes against common sense,
and yet it is true. We shall shortly consider a specific example of
its application, but first let us point to another result that is
contained in our dynamical solution for a vibrating system,

Consider the general transverse motion of the continuous
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string, as given by Eq. (6-28). According to our original calcula-
tions on the continuous string, as developed early in this chapter,
the frequencies w, are integral multiples of a fundamental fre-
quency w;—see Eq. (6-11) and the preceding analysis. If we now
fix attention on a particular value of x, we can write 4,, sin(nwx/L)
as a constant coefficient C,, and thus have

y(t) = 2, Cncos(wnt — 8,)  where w, = nw; (6-30)
n=1

And what this states is that any possible motion of any point on
the string is periodic in the time 27 /w,, where w, is the frequency
of the lowest mode, and further that this periodic motion can
be written as a combination, with suitable amplitudes and phases,
of pure sinusoidal vibrations comprising all possible harmonics
of w,. This then is a Fourier analysis in time, rather than in space.
You may notice that the expansions expressed by Eqgs. (6-29) and
(6-30) are of slightly different form. Not only is one made up
of sines and the other of cosines, but also, if we cover the whole
interval of the variables, we see that nwx/L changes by an integral
multiple of =, whereas nw;f changes by an integral multiple of 2.
However, as long as our interest is only in representing the func-
tion within the designated range, and not outside it, too, the
difference need not concern us.!

FOURIER ANALYSIS IN ACTION
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To put the Fourier analysis into practice, we must be able to
determine the coefficients of the component sine or cosine func-
tions. The process of doing this is called harmonic analysis, and
the properties of sine and cosine functions make it a quite sim-
ple affair.

Consider the expansion for y(x), as given by Eq. (6-29),

y(x) = Z:l B, sin (n_z,!)

1Actually, over the range 0 < wif < m, an arbitrary function y(r) can be
fitted by expressions even simpler than Eq. (6-30) and in strict analogy to
Eq. (6-29). It can be described in terms of cosines only, or of sines only, as
follows:
cosines only: y(r) = D_C,cos nwt
sines only: p(r) = 3D, sinnwit
Because the cosine representation is an even function of wi# and the sine

representation is an odd function, these behave quite differently in the
range r < wif < 2.
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Suppose we want the amplitude associated with a particular value
of n—say n;. To find it we multiply both sides of the equation by
sin(nywx/L) and integrate with respect to x over the range from
zero to L:

L . 5
/ y(x) sin (%) dx = ) B, /0 sin ("_Z{) sin (_nirx) dx
0 =
6-31)

On the right we still appear to have an infinite series of terms.
But now consider the properties of an integral whose integrand
is a product of sines. Given any two angles, 8 and ¢, we have

cos(@ — ¢) = cos fcos ¢ + sin fsing
cos(f + @) = cosf cosp — sin fsing

Therefore,
sin 8 sin ¢ = 4[cos (8 — @) — cos(@ + ¢)]

Hence we can put

in (1) i (22) - = e

_ cos[(n +Ln1)1rX]}

Therefore,

. [(nwx\ . (m7mx L .1 — mrx
/sm (—L—) sm( 2 )dx = P — nl)sm[ 13 ]

L . 1+ m)mx
T Zntn + nl)s‘“[ L ]

If we insert the limits x = 0, x = L, the values of
sin(n £ ny)wx/L are all zero. Thus at first sight it would appear
that we had got rid of the right-hand side of Eq. (6-31) altogether.
But then we notice that the quantity (n — n,) appears in the
denominator of one of the integrals. Thus if » = »n;, we have
one integral of the form 0/0. And it at once turns out that, al-
though all other terms are zero, this one is not. For if n = n,,
the integral to be evaluated is the following:

L L
.o [ mmx _ _ 2mwx
/(; sin (T) dx = %—/(; [1 cos( T )] dx

The cosine term contributes nothing between the given limits, but
the other part gives us L/2. Thus we arrive at the following
identity:
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(c) ()

Fig. 6-16 (a) Function to be analyzed—a triangular
sawtooth. (b) (c), (d) Partial Fourier syntheses, using
2, 5 and 10 terms respectively.

L
. [nrx L
[) y(x) sin (—L—) dx = 7 B,

ie.,

L
2 . [ nmx
B, = I /0 y(x) sin (—L—) dx 6-32)

This equation determines for us the amplitude B, associated with
any given value of » in the harmonic analysis of y(x).

If y(x) is a purely empirical curve, the evaluation of the
Fourier coefficients B, is a matter for computers or graphical
integration. But if the form of y(x) can be described by an exact
analytic function, we can obtain a general formula for all the
B,’s. To illustrate the procedure, let us take the profile shown in
Fig. 6-16(a). This is like the shape of a string that is stretched
aside at one extreme end. (Of course, at x = L exactly we must
have y = 0; we are assuming, however, that our equation for y
holds good for points arbitrarily close to the end.) The evaluation
of the B,’s then proceeds as follows:

Fourier analysis in action



L
2 . [ nmx
B, = Z /; kx sin (—L—) dx

Integrating by parts, we find

_ 2£4 cos nw
i n

One recognizes that the values of B, fall into two categories, ac-
cording to whether » is odd or even, because the value of cos nx
alternates between the values +1 and —1. We have, in fact,

nodd: B, = &'
nmw
neven: B, = — Zﬂ,
nmw

If one wishes, however, one can represent both sets by means of
the single formula
nt1 2kL
Bn = (_) + F
It is now an easy matter to tabulate the various amplitudes
(Table 6-1). Thus our description of the triangular profile
becomes

2kL ) . [=x 1. (2mx 1. (3=x
y(x) = — {sm (f) -3 sin (—L—) + 3 sin (—L—> .. I

TABLE 6-1: VALUES OF Bp/kL

n B./kL

1 2 = 0.636
™

2 -1 = —-0.318
™
2

3 p = 0212
1

4 ~ 5 = —0.159
2

5 5 = 0127
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The result of synthesizing various numbers of terms, using the
numerical coefficients of which the first five are listed in Table
6-1, is shown in Figures 6-16(b)-(d). By including further
terms we can make the fit as good as we have the patience to
achieve. And it is quite remarkable that, with so few terms as
we have used, one can simulate the general trend of a profile that
differs so radically from any sine curve—especially one that
departs so far from zero at one end.

The sine curves in terms of which this Fourier analysis is
made represent an example of what are called orthogonal func-
tions. The description ‘“‘orthogonal” belonged originally, of
course, to geometry. The orthogonality of two sine functions in
Fourier analysis is described by the result

L
/ sin M) sin {22 ) dgx = 0 for n1 # no (6-33)
0 L L

This may at first sight appear to have no connection with the
geometrical condition, but it is not so far removed as one might
think. For if we have two vectors, A and B, the condition that
they are orthogonal (perpendicular) to each other is that their
scalar product be zero. In terms of their components this can
be written

A.B, + AyBy + A.B.=0 (6_34)

Now if we replaced the continuous integral of Eq. (6-33) by a
summation over a very large number, N, of separate terms (as
we might do if we were evaluating the integral by numerical
methods), a particular value of x could be written as x,, where

_pL
- N

Xp
Thus Eq. (6-33) would be replaced by the following statement:

L& mwp nowp

XI,;SIH<N)SIH(N)=O for n; # ng

If we write the condition for orthogonality of two ordinary vectors
in the form

> A4,B,=0 forALlB

we see that, in a purely formal sense, the difference between the
two statements is merely that one of them involves quantities that
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are completely described by just three components, whereas the
other needs N components (and, in the limit, infinitely many).
The possibility of analyzing an arbitrary function in terms of a
set of orthogonal functions (not necessarily sines or cosines) is
one of the most important and widely used techniques in theoreti-
cal physics and engineering.

NORMAL MODES AND ORTHOGONAL FUNCTIONS

196

We shall end with a few remarks that take us back to actual
physical systems. We have seen how the characteristic vibrations
of a uniform string are (ideally) describable by sinusoidal func-
tions that are orthogonal in the sense just discussed. Each dif-
ferent mode can exist independently of all the others, and one
can thus, in principle, change the amplitude associated with a
given mode without affecting any of the others. In this sense, the
adjective “‘normal” applied to the individual modes is a true
characterization of their mutual independence—quite analogous
to the mutual independence of displacements along perpendicular
directions.

Dynamically, too, this orthogonality holds. The total energy
of a string vibrating in a superposition of its normal modes is just
the sum of the energies for the modes individually. If one writes
down the expression for the sum of kinetic and potential energies
for a small segment of the string at some arbitrary value of x, it
consists of two types of terms: (1) terms involving squares of
sines or cosines of the same argument, pertaining to a single
mode; (2) terms involving products of sines or cosines of different
arguments, representing cross terms from different modes. Be-
cause of the orthogonality condition, Eq. (6-33), the terms of
type 2 all yield zero when the energy is summed over the whole
length of the string. Thus the basic modes are indeed dynamically
orthogonal to one another in a very complete way.

Our discussion of this independence, or orthogonality, of
the normal modes of a system really began with our analysis of
the motions of two coupled pendulums in Chapter 5. You may
have chosen to accept our suggestion of possibly bypassing
Chapter 5 in a first reading. Whether or not you did this, you
may well find it helpful to refer back to the beginning of Chapter
5 at this point, and concentrate on following the main line of
development from there, so as to be reminded of the common
thread that runs through this whole subject.

Normal modcs of continuous <y stems



PROBLEMS

6-1 A uniform string of length 2.5m and mass 0.01 kg is placed
under a tension 10 N.

(a) What is the frequency of its fundamental mode ?

(b) If the string is plucked transversely and is then touched at a
point 0.5 m from one end, what frequencies persist ?

6-2 A string of length L and total mass M is stretched to a tension 7.
What are the frequencies of the three lowest normal modes of oscilla-
tion of the string for transverse oscillations? Compare these fre-
quencies with the three normal mode frequencies of three masses each
of mass M/3 spaced at equal intervals on a massless string of tension T’

and total length L.
L L
4 4 4

i~

g0
O
Iz O

w|

3 3

6-3 The derivation of free vibrations of a stretched string in the text
ignores gravity. Is this omission justified? How would the analysis
proceed if gravitational effects were included ?

6-4 Show that the analysis in the text for free vibrations of a hori-
zontal string is also valid for a vertical string if T >> mg.

6-5 A stretched string of mass m, length L, and tension T is driven
by two sources, one at each end. The sources both have the same
frequency » and amplitude A4, but are exactly 180° out of phase with
respect to one another. What is the smallest possible value of w con-
sistent with stationary vibrations of the string?

6-6 A uniform rod is clamped at the center, leaving both ends free.
(a) What are the natural frequencies of the rod in longitudinal
vibration?
(b) What is the wavelength of the nth mode?
(c) Where are the nodes for the nth mode?

6-7 Derive the wave equation for vibrations of an air column. Your
final result should be

3% _pd%

x2 K or2
where £ is the displacement from the equilibrium position, p is the
mass density, and X is the elastic modulus.
6-8 Show that for vibrations of an air column:

(a) An open end represents a condition of zero pressure change

during the oscillation and hence a place of maximum movement of
the air (an antinode).
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(b) A closed end is a place of zero movement (a node) and hence
maximum pressure variation.

6-9 A room has two opposing walls which are tiled. The remaining
walls, floor, and ceiling are lined with sound-absorbent material. The
lowest frequency for which the room is acoustically resonant is 50 Hz.

(a) A complex noise occurs in the room which excites only the
lowest two modes, in such a way that each mode has its maximum
amplitude at ¢+ = 0. Sketch the appearance, for each mode separately,
of the displacement versus x at ¢ = 0, ¢ = 1/200 sec,and r = 1/100 sec.

(b) It is observed that the maximum displacement of dust parti-
cles in the air (which does not necessarily occur at the same time at
each position!) at various points between walls is as follows:

x ‘ L/4 L/2 3L/4
fmex | 4106 +10p  —10u

What are the amplitudes of each of the two separate modes?

6-10 A laser can be made by placing a plasma tube in an optical
resonant cavity formed by two highly reflecting flat mirrors, which
act like rigid walls for light waves (see figure). The purpose of the
plasma tube is to produce light by exciting normal modes of the cavity.

Plasma tube 5 £ !
|l——=1 & i
. ;

Vo frequency

(a) (b)

(a) What are the normal mode frequencies of the resonant
cavity? (Express your answer in terms of the distance L between the
mirrors and the speed of light ¢.)

(b) Suppose that the plasma tube emits light centered at fre-
quency vg = 5 X 10'4 Hz with a spectral width Ay, as shown in the
sketch. The value of Ay is such that all normal modes of the cavity
whose frequency is within 1.0 X 10% Hz of »o will be excited by
the plasma tube.

(1) How many modes will be excited if L = 1.5m?

(2) What is the largest value of L such that only orne normal mode
will be excited (so that the laser will have only one output frequency)?
(¢ = 3 X 108 m/sec.)

6-11 (a) Find the total energy of vibration of a string of length L,
fixed at both ends, oscillating in its nth characteristic mode with an
amplitude 4. The tension in the string is T and its total mass is M,
(Hint: Consider the integrated kinetic energy at the instant when the
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string is straight so that it has no stored potential energy over and above
what it would have when not vibrating at all.)

(b) Calculate the total energy of vibration of the same string if
it is vibrating in the following superposition of normal modes:

. [mx . [ 3mx T
y(x, 1) = Aj sin (—L—> cos wit + Aszsin (T) cos (w3t -~ Z)

(You should be able to verify that it is the sum of the energies of the
two modes taken separately.)

6-12 A string of length L, which is clamped at both ends and has a
tension 7, is pulled aside a distance 4 at its center and released.

(a) What is the energy of the subsequent oscillations?

(b) How often will the shape shown in the figure reappear?
(Assume that the tension remains unchanged by the small increase of
length caused by the transverse displacements.) [Hint: In part (a),
consider the work done against the tension in giving the string its initial
deformation.]

!
Ih

! L !

6-13 Consider a uniform cube of side L in which the characteristic
wave speed is v. Show that for this system the total number of modes
of vibration corresponding to frequencies between » and » + dv is

4L3v2 Av/m208 if w/LKArL v

[Hint: Since vL/mv = (m12 + n2? + n3?)1/2 consider a cubic lattice
of points, letting x = n1, y = n2, z = n3. The number of points in
any region of this lattice is thus equal to the volume of that region,
and the modes corresponding to a given frequency » correspond to
those points located a distance r = »L/mv from the origin. The desired
result is therefore equal to 4nr? Ar. What would the result be for a
square? A rod? How would your answer be altered if a rectangular
solid of sides a, b, and ¢ were considered instead of a cube?

6-14 Find the Fourier series for the following functions (0 < x < L):
@) y(x) = Ax(L — x).
(b) y(x) = Asin(mx/L).
_ |Asin@mx/L),0 < x < L/2
© ¥ = Io, L2<x<L.

6-15 Find the Fourier series for the motion of a string of length L if
@) y(x,0) = Ax(L — x); (dy/30),=¢ = 0.
(b) y(x,0) = 0; (dy/01)=¢g = Bx(L — x).
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Is the ocean composed of water or of waves or of both?
Some of my fellow passengers on the Atlantic were
emphatically of the opinion that it is composed of waves;
but I think the ordinary unprejudiced answer would be that
it is composed of water.

SIR ARTHUR EDDINGTON, New Pathways in Science (1935)



7

Progressive

waves

WHAT IS A WAVE?

FOR MANY PEOPLE—perhaps for most—the word “wave” conjures
up a picture of an ocean, with the rollers sweeping onto the beach
from the open sea. If you have stood and watched this phenome-
non, you may have felt that for all its grandeur it contains an
element of anticlimax. You see the crests racing in, you get a
sense of the massive assault by the water on the land—and indeed
the waves can do great damage, which means that they are carriers
of energy—but yet when it is all over, when the wave has reared
and broken, the water is scarcely any farther up the beach than
it was before. That onward rush was not to any significant extent
a bodily motion of the water. The long waves of the open sea
(known as the swell) travel fast and far. Waves reaching the
California coast have been traced to origins in South Pacific
storms more than 7000 miles away, and have traversed this
distance at a speed of 40 mph or more. Clearly the sea itself has
not traveled in this spectacular way; it has simply played the role
of the agent by which a certain effect is transmitted. And here
we see the essential feature of what is called wave motion. A
condition of some kind is transmitted from one place to another
by means of a medium, but the medium itself is not transported.
A local effect can be linked to a distant cause, and there is a time
lag between cause and effect that depends on the properties of the
medium and finds its expression in the velocity of the wave. All
material media—solids, liquids, and gases—can carry energy and
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information by means of waves, and our study of coupled oscil-
lators and normal modes has paved the way for an understanding
of this important phenomenon.

Although waves on water are the most familiar type of wave,
they are also among the most complicated to analyze in terms of
underlying physical processes. We shall, therefore, not have very
much to say about them. Instead, we shall turn to our old
standby—the stretched string—about which we have learned a
good deal that can now be applied to the present discussion.

NORMAL MODES AND TRAVELING WAVES

Fig. 7-1 (a) Travel-
ing wave being gen-
erated. (b) Traveling
wave plus reflected
traveling wave.

(c) Resultant standing
wave (normal mode)
at maximum ampli-
tude. (d) Same stand-
ing wave as in (c) but
at an instant when

the displacements are
much less than maxi-
mum.
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To set up a particular normal mode of a stretched string, one
could make a template of exactly the shape of the string at maxi-
mum amplitude in this mode and fit the string to it. Then the
sudden removal of this constraint from the string would lead to
continuing vibration in this mode alone.

It is much more likely, however, that one would establish the
mode by vibrating one end of the string from side to side in simple
harmonic motion at the frequency of the mode desired. But what
really happens in that case? The stationary vibration does not
come into existence immediately. What happens is that a traveling
wave begins moving along the string. At any instant it is a
sinusoidal function of x [Fig. 7-1(a)]. But when the advancing
wave reaches the fixed end of the string (x = L) there occurs a
process of reflection (which we shall consider more carefully in

m— )

@ MWWMF—
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@ kMV\N\/VV\./\/\N\/I

Maximum
displacement
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Chapter 8) and the motion of any point on the string becomes
the resultant effect of these two oppositely traveling disturbances
[Fig. 7-1(b)]. And after the reflected wave has arrived back at
the driven end, there will develop (if the frequency is right in
relation to the length and the tension and the mass per unit length
of the string) a standing wave which is precisely the normal mode
desired [Fig. 7-1(c)]. Thereafter the string continues to vibrate
in the manner characteristic of a normal mode; i.e., each point
of it continues to vibrate transversely in SHM, and certain nodal
points will remain permanently at rest [Fig. 7-1(d)]. Once the
normal mode has been established in this way, and the requisite
energy fed into it by the driver, the end at x = 0is held stationary.

At this point we can usefully introduce the results of our
formal analysis of the normal modes of a stretched string. We
found that a continuous string of length L, fixed at both ends,
could in principle vibrate in an infinite number of normal modes.
These modes are described by the equation

Ya(x, 1) = A, sin (?) COS wat (7-1)
where
1/2
wa = %({) (7-2)

(T is the tension in the string and u the mass per unit length.) You
will recall that » is an integer, and that if one idealizes to the case
of a truly continuous string, then » may run all the way up to
infinity. Now let us use a bit of elementary mathematics to cast
Eq. (7-1) into a different form. Given any two angles, 6 and ¢,
we have the identity:

sin(@ + ¢) + sin(@ — ¢) = 2sin 6 cos ¢
Therefore,
sin 0 cos ¢ = $[sin(@ + ¢) + sin(@ — ¢)]

Applying this result to Eq. (7-1), we have

. nmwx N nwx . nwx
sin (T) Cos wut = % [sm (T - w,.t) + sin (T + w,.t)]

Hence the nth normal mode for transverse vibrations of the string
can be described by the following equation:

1Remember, however, that #» does have a finite upper limit, and also that
Eq. (7-2) for w, is strictly only an approximation, which fails when » is large.
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Yalx, 1) = 34, sin (EZ—X - w,.t) + 14, sm( + w,.t)
7-3)

If in addition we make use of Eq. (7-2) for w,, we have

i =yt (= )
i sm[mr (x N \[ )] -4

Finally, as we saw in discussing normal modes in Chapter 6, and
as is in any case dimensionally apparent in Eq. (7-4), we can
define a characteristic speed v through the equation

1/2
b= (I> (7-5)
I

What we shall now proceed to verify is that Eq. (7-4) is an explicit
mathematical description of two traveling waves going in opposite
directions.

Suppose we fix attention on the first of the two terms on
the right-hand side of Eq. (7-4). It is of the following form:

y(x,t) = Asin [2%- x —vur )] (7-6)

where A = 2L/n. If we imagine first that the time is frozen at
some particular instant, the profile of the disturbance is a sine
wave with a distance A between crests (or between any other two
successive values of x having the same values of displacement
and slope). The quantity A is, of course, the wavelength of the
particular disturbance. Let us now fix attention on any one
value of y, corresponding to certain values of x and ¢, and ask
ourselves where we find that same value of y at a slightly later
instant, # 4 As. If the appropriate location is x + Ax, we must
have

y(x, 1) = y(x + Ax, t + Af)
Therefore,

sin [2% (x — ut)] = sin (2%- [(x + Ax) — e(t + At)])

It follows from this that the values of Ax and At are related
through the equation

Ax — vAt=0
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Fig. 7-2 Incremental
displacement of wave
traveling in the posi-
tive x direction.
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At time - L— At time 1 + At

L-ax

ie.,

Ax
Kl— =P

What this implies is that, as indicated in Fig. 7-2, the wave as a
whole is moving in the positive x direction with speed v.

In an exactly similar way, we can see that the second term in
Eq. (74) describes a wave of the same wavelength, but traveling
in the negative x direction with speed v. The standing wave appears
to be precisely equivalent, mathematically, to the superposition
of these two oppositely moving waves of the same wavelength
and amplitude. In saying this, however, we must introduce an
important qualification. The curve described by Eq. (7-6), and
its counterpart with (x 4 o) in the argument of the sine function,
represent sine waves of infinite extent—i.e., defined automatically,
by the equations, to exist at all x at all z. But the system that we
took as our starting point was a string of finite length L, not an
infinite one. Thus our new description of the normal mode in
terms of traveling waves is not really correct. It is easy, however,
to see what lies behind the discrepancy. Figure 7-3 shows several
successive stages in the progress of the two oppositely moving
waves. Also shown is the result of adding ordinates of the two
so as to obtain the resultant displacement as a function of x. At
the points A4 and B, distance L apart, this displacement is zero at
all times (as, of course, it was required to be from the original
statement of the problem). In between, it varies exactly according
to Eq. (7-1). One can say then that, as far as conditions between
x =0 and x = L are concerned, the description in terms of
infinite wave trains is correct. The fact that there is no continua-
tion of the disturbance outside these limits is a physical condition
that was already concealed when we wrote down the equation
of a normal mode by means of the single equation

Normal modes and traveling waves
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Fig. 7-3 Two ex- L
actly similar sinusoi-
dal waves traveling in
opposite directions and
the resultant standing - L B
waves.

Yalx, t) = A, sin ("—Z’f) COS wnt

because, of course, the function sin(nrx/L) is likewise a function
extending over the whole domain of x. We ought to have been
more careful; the proper description of the vibrating string in
terms of continuous functions of x must be spelled out as follows
for three distinct regions:
-0 < x<0: y(x,t) =0
. nmwx
0 < x<L: yux,2) = A, sin (T) COS wpt -7
L<x< ow:yx,t) =0

It was important to make the above remarks, because, as
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we first remarked in Chapter 1, it is all too easy to forget the
limitations that the actual boundary conditions place upon a
given physical situation. One is liable, unthinkingly, to allow a
mathematical description to wander beyond the limits of its
relevance. But having said that, let us now use our imagination
to broaden the application of our ideas.

PROGRESSIVE WAVES IN ONE DIRECTION

In the last section we saw how a normal mode of vibration of a
stretched string is describable as a combination of two progressive
sine waves, identical to one another except for the direction of
travel. Why not, then, suppose that on a sufficiently long string
it might be possible to set up a sine wave traveling in one direction
only? The initiation of such a wave would be carried out exactly
as indicated in Fig. 7-1(a), but let us now imagine that the fixed
end of the string is very far away—i.e., the total length L of the
string is very large compared to the wavelength \. After a number
of cycles of oscillation at x = 0, the front end of the disturbance
has moved out of the field of view (Fig. 7-4), and the description
of all that we see to the right of the plane x = 0 is contained
in the equation [Eq. (7-6)]

y(x, 1) = Asin [27” (x — vt)]

The generation of this wave comes about as the result of oscillating
the left-hand end of the string up and down in SHM of amplitude
A and with a frequency » given by

v=y (ore=2m/N) (7-8)
Explicitly, the equation for y as a function of rat x = O is
. [ 2mvt .
yo() = —Asin (T) = —Asinwt

The appearance of the string at any given time, f, is described by

Fig. 7-4 Generation of traveling wave on a long string.
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Fig. 7-5 Traveling finite wave train.

y(x, to) = Asin [ZTT (x - vto)]

Asin (2;\r_x - (po)

where ¢ is a constant angle for the purpose of this instantaneous
description of the appearance of the wave. If the end of the string
at x = O were at rest up to ¢ = r,, were vibrated sinusoidally
fromt = ¢, tot = t, and were kept at rest from ¢, onward, then
there would appear on the string a train of sine waves of limited
extent, contained at any instant between x = x; and x = xs, as
shown in Fig. 7-5. The front end of the disturbance, farthest
away from the end x = 0, corresponds to the commencement of
the vibration at ¢ = ¢, and the rear end to its termination at
t = ts. We have, in fact,

x1 — x2 = vtz — t1)

This is a particular example of a very important result:

The propagation of the wave along the string at the constant
speed v is, in effect, a means of translating the variation of displace-
ment with time at a fixed position into a corresponding variation of
displacement with position at any designated time.!

For any pure sinusoidal disturbance, the wave speed v is
definable as the product v\ [see Eq. (7-8)]. And according to
Eq. (7-5), the value of v for waves on a stretched string has the
same value, /T/u, for all wavelengths. This lack of any depend-
ence of v on X\ or v does not hold generally true for wave motions.
For the time being, however, we shall confine ourselves to situa-
tions for which it can be assumed valid.

Let us now set up the differential equation that governs the
propagation of a one-dimensional wave as described by Eq. (7-7).

IThere is a concealed subtlety here. As we shall see later, one cannot take it
for granted that a sinusoidal vibration of /imited duration in time will generate
a purely sinusoidal wave of limited extent in space. But there will still exist
a correspondence between what happens at the source and what appears on
the string.
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This will be a relation between the partial derivatives of the
displacement y with respect to x and 1. We have

% = 2—7'-Acos|:2—7r(x - vt)]

ox A A
dy 27w 27
Frinimie Acos[—)\— x - vt)]
Should we then write the differential equation of the wave as
o _ _1oy,
ax v’

There would be nothing to prevent this, but it would cramp our
style somewhat, because the above equation applies only to waves
traveling in the positive x direction. For suppose we take the
equation

y = Asin[z% (x + vt)]

of a wave traveling in the negative x direction. We should

then have

dy 2r 27

iy Acos[)\ x+ vt)]

dy 2m 27

Frimiy Acos[)\ (x + vt)]
and hence

o _ 1

x vt

However, by forming the second derivatives, we arrive at a rela-
tionship that is true for sine waves of any wavelength traveling
in either direction:
Py _ 14y )
xz  v2 or2
It comes as no surprise that this is the identical equation of
motion from which we started in Chapter 6 [Eq. (6-4)] and which
yielded us the normal modes of a stretched string or other con-
tinuous one-dimensional system subject to linear restoring forces

WAVE SPEEDS IN SPECIFIC MEDIA

Any system governed by Eq. (7-9) is a system in which sinusoidal
waves of any wavelength can travel with the speed v. It may then
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be a matter of interest to calculate the value of v in any particular
case. For example, suppose that a string or wire having
u = 0.5 g/m is stretched with a force of 100 N. For transverse
waves on such a string we should have

1/2
v = <%) ~ 450 m/sec

On the other hand, a rope or length of rubber hose, with a mass
per unit length of about 1 kg/m would, if stretched to the same
tension, carry waves at only about 10 m/sec—which is actually
still quite rapid.

We have developed Eq. (7-9) in terms of transverse waves
only; but as we saw in Chapter 6, the longitudinal vibrations of
a column of elastic material are governed by an equation of
exactly the same form:

— (7-10)

This is the basic differential equation for compressional waves
traveling along one dimension—waves of a type that can be
lumped together under the general title of sound, even though
only a limited range of their frequencies is detectable by the
human ear. It is appropriate at this point to consider the speed
of such sound waves in different materials.

1. Solid bars. The value of v for waves traveling along the
length of a bar or rod is defined by the Young’s modulus and
the density:

Y 1/2
()
p

Table 7-1 shows some data on Young’s modulus, density, and
the calculated and observed speeds of sound in various materials.
It may be seen that speeds of several thousand meters per second

TABLE 7-1: YOUNG'S MODULI AND SOUND VELOCITIES

Material Y, N/m? kg/m3 V'Y/p, m/sec v, m/sec
Aluminum 6.0 X 1010 27 X 108 4700 5100
Granite 5.0 X 1010 2.7 X 103 4300 ~5000
Lead ~1.6 X 1010 114 x 103 1190 1320
Nickel 21.4 X 1010 89 x 103 4900 4970
Pyrex 6.1 x 1010 2.25 X 108 5200 5500
Silver 7.5 X 1019 104 Xx 103 2680 2680
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are typical, and that the agreement between calculated and ob-
served values is not too bad. It is worth remembering that the
Young’s modulus is based on static measurements, whereas the
propagation of sound depends on the response of the material to
rapidly alternating stresses, so exact agreement is not necessarily
to be expected. Also, the use of Young’s modulus assumes that
the material is free to expand or contract sideways (very slightly,
of course) as the wave of compression or decompression passes
by. But bulk material is not free to do this; the resistance to
deformation is in effect increased, and so the calculated speed
is raised. The difference is not enormous, however (it is of the
order of 15%,), and for the purpose of the present discussion we
shall not consider it further.

The speed of these elastic waves in solids is notably high. A
compressional wave in granite, for example, such as might be
generated by an earthquake, has a speed of about 5 km/sec, and
would travel about halfway around the earth in the space of 1 hr.

2. Liguid columns. A liquid, like a gas, is characterized in its
elastic behavior by its bulk modulus, K. Liquids are, in general,
far more compressible than solids, without being very much less
dense; this means that sound waves travel in liquids more slowly
than in solids. The most important case is water. The volume
of water is decreased by about 2.39, by application of a pressure
of about 500 atm (1 atm =~ 105 N/m?). This gives a bulk modu-
lus of about 2.2 X 109 N/m?, and as p =~ 10° kg/m3, we have

12
v = <§) =~ 1500 m/sec

This is quite close to the actual figure, and most liquids carry
compressional waves at a speed of the order of 1 km/sec.

3. Gas columns. We saw in Chapter 6 how the frequencies of
vibration of a gas column depend on an adiabatic modulus of
elasticity that may differ very significantly from the isothermal
modulus. This large difference arises because of the high com-
pressibility of a gas, which means that substantial amounts of
work are done on it if the pressure is changed. Although the
vibrations in a solid or a liquid may also be adiabatic, the much
smaller compressibility means that relatively far less energy can
be accepted in this way, and the isothermal and adiabatic elastic
moduli are not very different.

In Chapter 6 we pointed out that the adiabatic elasticity
modulus of a gas is given by

Wave speeds in specific media



Kgiabatic = VP (1 <7< %)

1/2
b= <R> (7-11)
P

For air, ¥ = 1.4, p = 1.2 kg/m3, and this gives

so that

v = 340 m/sec

It is worth giving a little more attention to Eq. (7-11). The
general gas equation for a mass m of an effectively ideal gas of
molecular weight M is

m
pV— A_JRT

where R is the gas constant and T is the absolute temperature.
Since the ratio m/V is just the density p, Eq. (7-11) would give us

1/2
b= <Z§_T> (-12)

The velocity of sound in a gas would thus be expected to be
(a) independent of pressure or density, (b) proportional to the
square root of the absolute temperature, and (c) inversely pro-
portional to the square root of the molecular weight. Results (a)
and (b) are correct for any given gas, at least over a wide range
of p or T, and (c) is borne out if we compare various gases of the
same molecular type (e.g., all diatomic).

The other particularly interesting feature about Eq. (7-11)
comes to light if we recall the simple kinetic theory calculation of
the pressure of a gas. This calculation leads to the result [Eq.
(6-19), p. 176]:

_ 1,2
P = 3PUrms

where v, is the root-mean-square speed of the molecules. From
this result we therefore have

3 1/2
Veme = (-”) (7-13)
p

Comparing Egs. (7-11) and (7-13), we see that the speed of sound
in a gas, as given by our calculation, is just about equal to the
mean speed of the molecules themselves. As the information that
(for example) one end of a gas column has been struck must be
carried by the molecules themselves, this approximate equality
of sound and molecular speeds (at a few hundred meters per
second) makes good sense.
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SUPERPOSITION

Fig. 7-6 Super-
position of two travel-
ing waves of slighily
different wavelength.

213

We have seen how it is possible to cause a stretched string to
vibrate in a superposition made up of an arbitrary selection of
its normal modes. Let us now consider the closely related problem
of setting up progressive waves of several different wavelengths
on a long string or other such medium. To begin with, let us take
the very simple case of two waves of equal amplitude, both travel-
ing along the positive x direction and separately described by
equations of the form of Eq. (7-7):

yn=4 sin[i—"r (x — vt)]
! (7-14)
y2 = Asin [2_1r (x — vt)]
A2

Because of what we have learned about the linear superposition
of displacements in systems obeying equations like Eq. (7-9), we
know that the resultant displacement is just the sum of y, and
y2. Hence we have

2r

y=yity2=4 Isin [— x — vt)] 4 sin [2—7r (x — vt)]}
M A2

Since both waves have (we assume) the same velocity v, the
combined disturbance moves like a structure of unchanging
shape, just as a wave of a single wavelength is like a rigid sine
curve moving along at speed v. The shape of the combination is
most easily considered if we put £ = 0; we then have

. [ 27x . {27
y = A [sm (—)‘—1—) -} sin (E)]

Such a combination, for two wavelengths not very different from
one another, is shown in Fig. 7-6. It looks precisely like a case of
beats, as discussed in Chapter 2. Indeed, it is a beat phenomenon,
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although the modulation of amplitude is here a function of posi-
tion instead of time. In discussing such superposed waves (and
in other connections, too) it is extremely convenient to introduce
the reciprocal of the wavelength. This quantity k (= 1/X\) is
called the wave number; it is the number of complete wavelengths
per unit distance (and need not, of course, be an integer).!

In terms of wave numbers, the equation for the superposed
wave form can be written as follows:

y = Alsin 2wk1x 4 sin 2wkax]
or

y = 2Acos [r(k1 — k2)x] sin <21r ’i:_ﬁ? x) (7-15)

The distance from peak to peak of the modulating factor is defined
by the change of x corresponding to an increase of = in the
quantity m(k1 — ky)x. Denoting this distance by D, we have

1 _ M2
ki — ks X —M\
If the wavelengths are almost equal, we can write them as
A, N 4 AM, and thus we have (approximately)

2

A
D=5

D=

This means that a number of wavelengths given approximately
by A/AX is contained between successive zeros of the modulation
envelope.

The production of such superposed traveling waves on a
string can be brought about by imposing two different frequencies
and amplitudes of vibration simultaneously at one end of the
string. This is expressed mathematically by considering the situa-
tion at x = O for the displacements defined by equations (7-14).
We then have

. 2wvt . f 2wut
yo(t) = — A4 [sm (T) + sin <—E->]

The ratio 2zv/\ defines the angular frequency w of each vibration,
and so we have

yo(t) = —A[sin w1t + sinwat]

'Warning! Because the combination 2x/\ occurs extremely frequently in
the mathematical description of waves, it has become a common practice in
theoretical physics to use the phrase “wave number” and the symbol & to
designate this combination, which is equal to 2=k in our present notation.
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Fig. 7-7 Waveforms
of (a) Flute.

(b) Clarinet. (c) Oboe.
(d) Saxophone. (From
D. C. Miller, Sound
Waves and Their
Uses, Macmillan,
New York, 1938.)

215

(a)

This then is an explicit case of beats in time, and we see here a
particular example of the way in which a time-dependent dis-
turbance at the source generates a space-dependent disturbance
in the medium.

This superposition of waves is particularly beautifully illus-
trated by sound waves. In the transmission of sound from a
source to a receiver we have a dual application of the principle
just quoted. At the source there is some variation of displacement
with time, as a result of which a train of sound waves is set up
and travels away from the source. At some later time these
waves, or some portion of them, fall upon a detector, producing
in it a time-dependent displacement which, ideally, has exactly
the same form as that which occurred at the source. Figure 7-7
shows some choice examples, and illustrates the way in which the
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harmonics of a given instrument combine to generate a pattern
that repeats itself over and over again. The patterns represent
the response of the receiver, but we can imagine at any instant a
disturbance of the air, periodic in distance, to which the received
signal corresponds.

You may think of a wave as something that involves a whole
succession of crests and troughs, but this is not at all necessary.
Indeed, innumerable situations occur in which a single, isolated
pulse of disturbance travels from one place to another through
a medium—e.g., a single word of greeting or command shouted
from one person to another. Pulses of this sort can be set up by
taking a stretched spring (or elastic string) and producing in it a

;j

Fig. 7-8 Generation
and motion of a pulse
along a spring, shown
by a series of pictures
taken with a movie
camera. (From
Physical Science
Study Committee,
Physics, Heath,
Boston, 1965.)

)
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local deformation—e.g., by twitching one end and then holding
it still. Figure 7-8 shows the subsequent behavior of such a pulse.
It travels along at a constant speed, so that at any instant only a
limited region of the spring is disturbed, and the regions before
and behind are quiescent. The pulse will continue to travel in
this way until it reaches the far end of the spring, at which point
a reflection process of some sort will occur. As long as the pulse
continues uninterrupted, however, it appears to preserve the same
shape, as Fig. 7-8 shows. How can we relate the behavior of
such pulses to what we have already learned of sinusoidal waves?
The answer is provided by Fourier analysis, and in the following
discussion we shall see how this connection can be made. Itisa
very rewarding study, because it frees one to consider the trans-
mission of any signal whatsoever.

Let us imagine first that we have an immensely long rope
and that we oscillate one end up and down in simple harmonic
motion with a period of 1 hr. To make things specific, let us
suppose that the rope has a tension of 100 N and is of linear
density 1 kg/m. Then the wave speed v/T/u is 10 m/sec, and the
wavelength of our wave would be this speed v divided by the
frequency v (= 1/3600 sec™?!) or, equivalently, the speed multi-
plied by the period (3600 sec), giving us A = 36,000 m or about
22 miles! Let us imagine that our rope is several times longer
than this—say 100 miles altogether. This particular arrangement
is physically absurd, of course, but the consideration of it will
help us to develop the essential ideas.

Suppose now that we oscillate the end of the rope with a
combination of harmonics of the basic frequency. The second
harmonic would generate sine waves of wavelength 18,000 m,
the twenty-second harmonic would generate waves of wavelength
about 1 mile, and the 36,000th harmonic would generate waves
of wavelength 1 m. We cite these as specific examples, but the
main point is that we can envisage the possibility of superposing
thousands upon thousands of different sinusoidal vibrations at
the driving end of the rope, all of them integral multiples of the
same basic (and extremely low) frequency, and all giving rise to
waves traveling along the rope at the same speed. And in conse-
quence of this we would have, moving along the rope, a repeating
pattern of disturbance, basically similar to those shown in
Figs. 7-6 and 7-7, but in which the repetition distance was
enormously long—and equal, in fact, to the wavelength associated

with the basic frequency of 1 hr™?,
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But now let us introduce the remarkable possibilities implied
in Fourier’s theorem. Its claim is that, as we saw in Chapter 6
[Eq. (6-30)] any time-dependent pattern of displacement that
repeats itself periodically (with a periodicity of 2x/w;) can be
expressed as a linear combination of the infinite set of harmonics
represented by w, and all its integral multiples:

W) = Z_)l C cos(nwyt — 8,) (7-16)

And the converse of this is that we can synthesize any repetitive
pattern we like by means of the complete spectrum of harmonics
of the basic frequency w, /2.

In particular, now, we can imagine a disturbance which is
zero over most of the repetition period; some examples are shown
in Fig. 7-9. According to Fourier’s theorem, each of these, and
any other such repetitive function of time, can be constructed
from sinusoidal vibrations which, individually, are ever-continuing
functions of time. The absence of any displacement over most
of the repetition period 2r/w, is brought about by just the right
combination of harmonics, resulting in complete cancellation
in this region, but nevertheless building up to give the particular
nonzero disturbance over part of the period, as desired.

It will be noted that Eq. (7-16) [which is identical with
Eq. (6-30)] implies that both sine and cosine functions of nw;?
are needed for the representation of an arbitrary periodic func-
tion, for we have

Crcos(nwit — 8,) = Ay sin nwit 4+ B, cos nwyt

Fig. 7-9 Examples of periodically repeated distur-
bances, zero over most of the repetition period.
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Fig. 7-10 Shifting origin to achieve symmetry in
various types of pulse.

Certain forms of y(¢) will, however, be describable in terms of
sine functions or cosine functions alone. Specifically, if y(?) is an
even function of ¢, so that f(—1) = +f£(f) for any ¢, then the
Fourier analysis requires cosine functions only; whereas if it is an
odd function, so that f(—7) = —f(¢), then sine functions only
will suffice. This kind of simplification will always be possible
if the function y(r) has odd or even symmetry with respect to
its midpoint in time. One may, however, have to shift the origin
of 7 to exploit this symmetry. Thus, for example, in Fig. 7-9(a)
the function y(¢), consisting of 2% cycles of a sine wave followed
by zero disturbance, is neither odd nor even with respect to the
time origin shown. On the other hand, if the origin is shifted to
the point O’, corresponding to the central crest of the sine wave
train, the function then is an even function with respect to O'.
Similarly, any whole number of cycles of a sine wave, repeated
at regular intervals, could be represented as an odd function
through the appropriate shift of origin. In such cases a single
repetition period is most conveniently measured between

= —r/w; and t = +=/w,, rather than between 0 and 27z /w;.
Figure 7-10 illustrates the application of this procedure to typical
even or odd pulses.
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Example.! Suppose that we want to generate a wave in the
form of 100 cycles of the 1000th harmonic—occupying one tenth
of the basic repetition period—followed by zero disturbance for
the other 909, of the time. This would resemble the situation
shown in Fig. 7-10(d). As referred to the midpoint of the wave
train the function is described by the following equations over
the repetition period between —r/w; and +7/w;:

W) = Aosin Nowt 0 < |1] < 2207
Nw
1 (7-17)

007! ki

= —— < —

y(it) =0 Nt <] <L o

where
N = 1000

Since the function is odd, it is analyzable in terms of the complete
set of functions sin nw;t only [i.e., all the phase angles §, in
Eq. (7-16) are equal to »/2]:

y(t) = 2 Cpsin nwyt (7-18)
n=1

and the coefficients C, are obtained through the exploitation of
the orthogonality of the sine functions with respect to integration
over a complete period 27/w,:

0 if ny 5% ng
*/wy
/ sin mwit sin newitdt =4 .
- o1 if m = np

Hence we have, after multiplying Eq. (7-18) by sin nw;¢ and
integrating, the result

xlwy
w1 .
Cph=— y(t) sin nwit dt
™ —xlwy

In this we substitute for y(¢) as given by equations (7-17), which
therefore gives us

4 100x/Nw,

w1Ag . .

Cp, = / sin Nwit sin nw;t dt
™ —100x/Nwy

(Note that the limits of integration are now +100r/Nw,, because
outside these limits the integrand is zero.) Let us evaluate this
integral by using the relation

sin Nw17 sin nwit = $[cos(N — n)wit — cos(N -+ mwit]

1This may be skipped without any loss of continuity.
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Therefore,

/sin Nogtsinnwitdt = % [sm(N — mwut _ sin(N + n)wlt]

(N—-mw1 N+ nn

Inserting the limits on f, we see that w;f takes on the values
+100r/N. Hence we have

» .in [mow(x - n)] .in [1001r(x + n)]
G== N =nmwr N+ nm

Here we shall introduce an approximation. We note that
the first term inside the braces develops a small denominator for
n = N, whereas the denominator of the second term is always
large. The maximum possible value of the numerator in each is
unity. Thus it is possible for most purposes to ignore the second
term, which allows us to write a simplified approximate expression
for the amplitudes C,:

or

__ 1004, {sin 8, _ 1007(N — n)
Cp = N < o, ) where 6, = N

These values of C, are sizable only in the neighborhood of n = N.
The function (sin 6,,)/6, is unity at 6, = 0 and falls to zero at
6, = += (beyond which it oscillates through negative and then
positive values with steadily decreasing amplitude).! If N = 1000,
as we have assumed, then 0, = 47 atn = N £+ 10. And what
this means is that the spectrum of our group of 100 cycles of
N = 1000 is, primarily, a cluster of contributions as shown in
Fig. 7-11, with n = 1000 itself providing the biggest single
amplitude.

If we allowed our chosen vibration to continue for a larger
number of cycles, its spectrum in terms of the pure harmonics,
indefinitely maintained, would narrow down until, in the limit
of infinitely many cycles, we would, of course, be left with the
single pure harmonic N = 1000 all by itself. On the other hand,
a pulse made up of only a few cycles of a given harmonic fre-
IThe appearance of negative values of C, can, as in our discussion of the
forced oscillator, be described by a phase change of . One could, therefore,

describe these contributions in terms of positive values of C, associated with
phases of &, equal to 3x/2 (or —=/2) instead of =/2.
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Fig. 7-11 Frequency
spectrum (amplitude
plotted against fre-
quency, as obtained
by Fourier analysis)
Jor a signal consisting
of 100 cycles of a
pure sine wave re-
peated at time inter-
vals of 1000 cycles.
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quency would require the use of an exceedingly broad spectrum
(i.e., many harmonics with comparable amplitudes) in its Fourier
synthesis.! This essentially inverse connection between the dura-
tion of a pulse and the width of its frequency spectrum is a very
fundamental one. It is precisely this kind of result that we drew
attention to in Chapter 1, giving in effect a warning that perfectly
pure sinusoidal disturbances do not really exist. But, of course,
a sinusoidal vibration that continues for, let us say, a million
cycles is very close indeed to having a frequency spectrum con-
sisting of a single sharp line.

Let us return now to the more qualitative aspects of a re-
peated vibration with long intervals of quiescence between-times.
We regard this vibration, caused at a given place, as being
analyzed into its complete spectrum of Fourier components.
Provided, now, that the wave speed associated with each com-
ponent frequency is precisely the same, these intermittent but
periodically repeated vibrations will give rise to isolated pulses,
equally spaced, traveling through the medium. With our very
long rope, for example, one could imagine the possibility of
generating wave pulses of the sort shown in Fig. 7-9(c), with an
over-all length of a few meters, and separated by the basic repeti-
tion distance of 36 km. To all intents and purposes these would
be isolated, individual disturbances. It does not take much imagi-
nation, in fact, to see that the principles of Fourier analysis can
be pushed to a limit in which the repetition period is infinitely
long, and so, therefore, is the repetition distance of a waveform
in the traveling wave. We can thus envisage the description of

1You should satisfy yourself that the preceding analysis implies this property.
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one single, nonrepeated pattern of displacement as a function of
time or position, in terms of a complete (continuous) spectrum
of sinusoidal disturbances with periods or wavelengths extending
up to infinitely large values.

It is in the above terms, then, and subject to the condition
that the speed of pure sinusoidal waves is independent of their
frequency or wavelength, that we can envisage the propagation,
without any change of shape, of arbitrary isolated pulses through
a medium. Let us now consider some features of the motion of
such pulses.

MOTION OF WAVE PULSES OF CONSTANT SHAPE

Given a pulse that satisfies the conditions discussed above, we
can proceed to discuss its behavior in quite general terms. Sup-
pose that a pulse is moving from left to right, and that at a time
we shall call # = O it is described by a certain equation:

Ye=0) = f(x)
If the pulse as a whole is traveling at a velocity v, then at a later
time ¢ the displacement that originally existed at some particular
value of x (say x;) is found to be now at x5, where

x2 = x1 + vt

The equation of the pulse at this new value of ¢ can be obtained
by recognizing that a picture of the pulse at time ¢ looks just the
same as a picture at # = 0 except for a shift of the origin of x by
the distance vr (see Fig. 7-12). We can express this mathe-
matically by saying that the transverse displacement, for any
values of x and ¢, is given by

y(x, £) = f(x — vt) (7-19)

The choice of this analytic form can be verified, just as for the
particular case of a pure sine wave, by considering the condition
for a particular value of y to be found at (x 4+ Ax, ¢ + Af) after
being previously observed at (x, 7). In similar fashion a pulse
traveling from right to left is described by

y(x, 1) = glx + vt) (7-20)
Fig. 7-12 Move- s
ment of an arbitrary y
traveling pulse. Xy Xo =xy + UL
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Fig. 7-13 (a) In-
cremental displace-
ment of the pulse de-

scribed by Eq. (7-21).

(b) Distribution of
transverse velocities
during incremental
pulse displacement.
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(a) z

(o) R =y / s S
R 0

The exact form of the functions f and g is immaterial. All that
matters is that y should be expressible as a function of x + vz.
Thus, for example, we could define a certain shape of pulse,
moving from left to right, by the equation

b3

y(x, t) = m (7—21)
Sketches of this pulse for t = 0 and for a slightly later time are
shown in Fig. 7-13(a). The peak of the pulse would be of height
b, and this peak would pass through the point x = 0 at ¢ = Q.
The pulse would fall to half-maximum height at the points
x = vt &= b and would be down to less than 109, of its peak
height for [x — vz| > 3b. And one could write down any number
of other possible pulse shapes, using powers, exponentials, trigo-
nometric functions, etc. But all such pulses travel in the same
way, preserving their shape and moving at the same speed v, if
they are correctly described by one or the other of Egs. (7-19)
and (7-20).

It is very important for an understanding of waves to appre-
ciate how the motion of a wave profile along its direction of
propagation (x) can be the consequence of particle displacements
that are purely along a transverse direction (). Thus, for example,
the pulse of Fig. 7-13(a) moves to the right because, at any
instant, the transverse displacement of every point to the left of
the peak is decreasing and the displacement of every point to the
right of the peak is increasing. It is an automatic consequence
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of these motions that the peak displacement occurs at larger and
larger values of x as time goes on.

Let us calculate the distribution of transverse velocities for
the pulse described by Eq. (7-21). The transverse velocity of any
particle of the medium (spring, string, or whatever) is the rate
of change of y with ¢ at some given value of x, i.e.,

v, = QX
T’

where we use the partial derivative notation, recognizing that y
is a function of both x and ¢ and that we are holding x fixed.
Thus, from Eq. (7-21) we have
-3 -3

6% = (x — 0121 o7 5° + & — o0’

Uy =

ie.,

26%(x — vt)v
62 + (x — vN212
This defines the transverse velocity at any point at any time.
Suppose now that we want the distribution of transverse velocities
at t = 0, when the peak of the pulse is passing through the point
x = 0. Putting # = 0in Eq. (7-22) we have

2b%x

The graph of this velocity distribution is shown in Fig. 7-13(b),
and it is easy to see how these velocities, operating for a short
time Az, give rise to small vector displacements that shift the pulse
as a whole in the way indicated in Fig. 7-13(a). It must be
recognized, of course, that the velocity distribution itself moves
with the pulse, so that the condition v, = 0 is always satisfied
at the peak of the pulse. The form of Eq. (7-22) embodies this
condition, because it shows that v,, like p itself, is a function of
the combined variable x — vt.

You may have recognized already that there is an intimate
connection between the transverse velocity and the slope of the
pulse profile. For suppose (see Fig. 7-14) that an instantaneous
picture of a pulse shows a small portion of it to be along the
straight line AB. The slope can be measured as 4’B/4A4’. But
in some short interval of time At the line AB would move to A'B’;
this time is given by

AA

vylx, 1) = (7-22)

vy(x, 0) =

At =
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Fig. 7-14  Relation . Ax A
between transverse
displacement of a
medium and longi-
tudinal displacement
of a traveling pulse. P

where v is the velocity with which the pulse travels. If, however,
we confined our observations to the particular value of x indicated
by the vertical line, we should see the transverse displacement
change from PB to PA’ as the pulse passed by. The amount of
this displacement is thus just the negative of the distance 4’B,
and the associated transverse velocity is

— A'B/At = —v(A'B/AA").

Let us express this in the language of partial derivatives. The
slope A’B/AA’ is the value of Ay/Ax at some fixed value of ¢,
and from the above discussion we can see that (in the limit) the
following relation holds:

i)
vy = v

ox
Since v, is the value of Ay/At at some fixed value of x, we can

alternatively write this as

_ 0y dy
=9 T TVax

Thus the transverse velocity at any point is directly proportional
to the slope of the pulse profile at that point.

We can complete this analysis by recalling that v itself is
defined as the limiting value of Ax/Ar for some fixed value of y, i.e.,

v = a-.—x
T ot
Putting all these together gives the following result:
Uy === — = — (7-23)

Equation (7-23) is deceptively like the chain rule for ordinary
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differentiation—but notice the minus sign. What we have here is
a special case of a more general kind of situation, in which some
quantity y is a function of both position and time. It may vary
from place to place at a given instant, and it may vary with time
at a given place. Two successive observations of y, separated
by a time At, and at positions separated by Ax, then differ by an
amount Ay which can be expressed as follows:

_dyy, o
Ay = 3 At + 6xAx
The over-all rate of change of y is thus given by
dy 0y dy
ar = o T Vax 724

where v is the velocity Ax/At. The operator 8/dt + vd/dx is often
called the convective derivative. It defines the way of obtaining
the time rate of change of y if one’s point of observation is being
moved along at some defined velocity—as for example, through
the bodily movement of a fluid. And if, in Eq. (7-24), one inserts
the condition dy/dt = 0, this corresponds to fixing attention on a
particular value of y, just as we have indeed done in defining the
motion of a point of given displacement in an arbitrary pulse
profile. But this condition—dy/dt = 0—then converts Eq. (7-24)
into the special statement expressed in Eq. (7-23).

It is easy to see that our general equations, Egs. (7-19) and
(7-20), both satisfy the same basic differential equation of wave
motion. [We have, of course, really assured ourselves of this in
advance, by first recognizing that any such traveling pulse is a
superposition of sinusoidal waves that all obey Eq. (7-9).] We
have the two equations

Y06, 1) = ‘f (x = o)
g(x + vt)
For the first of them, we have
ady af d(x — vt) _

fl

ax d(x — vr) dx

where f” is the derivative of f with respect to the whole argument
(x — vt). Differentiating again,

& —_ f/l

dx2

where f’/ is the second derivative of f with respect to (x — vt).
Differentiating now with respect to ¢,
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rrint iy i)

And, after a second differentiation,

0y o = oty
012

Comparing these two second derivatives, we see that
o0r2 0x2

which thus reproduces Eq. (7-9). And if we go through the same
procedure with the function g(x 4 vr), which describes an arbi-
trary disturbance traveling in the negative x direction, the only
difference is that a factor +4v, instead of —v, appears as a result
of each differentiation with respect to ¢. Thus after two differen-
tiations, the functions fand g are seen to obey the same equation.

SUPERPOSITION OF WAVE PULSES
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In the last section we limited ourselves to the consideration of
individual pulses. But one of the most important and interesting
features of the behavior of such pulses is that two of them,
traveling in opposite directions, can pass right through each other
and emerge from the encounter with their separate identities.

Fig. 7-15 Successive
superposition of two
pulses that are re-
versed right to left =
and top to bottom
with respect to one
another and that

travel in opposite di- R v
rections.
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This is superposition at work once again, in a very remarkable
form. Figure 7-15 shows what is perhaps the most surprising
type of such superposition. Two symmetrical pulses are traveling
in opposite directions; they are exactly alike, except that one is
positive and the other is negative. As they pass through each
other, there comes a moment at which the whole spring or string
is straight; it is as if the pulses had annihilated each other, and
so, in a sense, they have. But your intuitions will tell you that
each pulse was carrying a positive amount of energy, which cannot
simply be washed out. And, indeed, the pulses do reappear.’
But what is it that preserves the memory of them through the
stage of zero displacement, so that they are recovered intact in
their original form? It is the velocity of the different parts of the
system. The string at the instant of zero transverse deformation
has a distribution of transverse velocities characteristic of the two
superposed pulses—and the velocity distribution of a symmetrical
positive pulse traveling to the right is exactly the same as that of
a similar negative pulse traveling to the left. This is implied by
Eq. (7-23)—since reversing the signs of both dy/8x and dx/o¢
leaves v, unchanged—but is also immediately apparent if one
makes a sketch of the two pulses as they appear at two successive
instants. Thus the transverse displacements cancel, but the
transverse velocities add, and for this one instant the whole energy

Fig. 7-16 Geometri-
cal idealizations of —

simple types of pulse.

L eonardo da Vinci, one of the keenest observers of all time, studied waves
extensively and recognized the results of such superposition, but did not
discern the mechanism. Thus he wrote: “All the impressions caused by
things striking upon the water can penetrate one another without being
destroyed. One wave never penetrates another; but they only recoil from the
spot where they strike.” See The Notebooks of Leonardo da Vinci, translated
by Edward McCurdy, Braziller, New York, 1956.

Superposition of wave pulses



of the system resides in the kinetic energy associated with these
velocities. But let us concentrate for the moment on the purely
kinematic aspects of the problem.

It may for some purposes be convenient to assume simple
geometric shapes for pulse profiles—such as the rectangle, tri-
angle, and trapezoid shown in Fig. 7-16. With a triangular pulse,
for example, the transverse velocity is the same for all points
along each side of the pulse, and the consequences of superposing
such pulses are easily analyzed. It should be realized, however,
that such shapes are unphysical. Thus the passage of a rectangular
pulse would require the transverse velocity to be infinitely great
as the vertical sides of the pulse passed by. And any pulse profile
with sharp corners (such as the trapezoid) implies discontinuous
changes in transverse velocity, which in turn means infinite
accelerations requiring infinite forces. Any real pulse, therefore,
has rounded corners and sloping sides, however exotic its shape
may be otherwise.

DISPERSION; PHASE AND GROUP VELOCITIES

We have given the equation of a progressive sine wave in the
form [Eq. 7-7)]

y(x,t) = A sin[ZT’r (x — vt)]

For a stretched string, regarded as having a continuous distribu-
tion of mass, we had the relation [Eq. (7-5)]

T 1/2
()
o

According to these equations, a given string, under a given tension,
will carry sinusoidal waves of all wavelengths at the same speed v.
This is, however, an idealization which will certainly fail, to some
degree, for any actual string. We pointed to this limitation most
particularly in Chapter 5, in our discussion of the normal modes
of a line of connected masses. What emerged there was that for
a lumpy string of length L, fixed at its ends, the wavelength \,
that could be associated with a given normal mode, n, was 2L/n—
just as for a continuous string—but that the mode frequency »,
was not simply proportional to ». Instead, the mode frequency
was found to be given by
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- sz
Vn = Zy0 Sl ‘2‘(—N+ 1)

so that the value of 2y, defined an upper limit to the possible
frequency of any line made up of a finite number (N) of masses
[see Eq. (5-25) p. 141]. For n << N, this reduced to the same
result as for a continuous string, with v, proportional to n. But
with increasing », the values of v, would rise less and less rapidly
than this proportionality would require.

In general, therefore, we must expect that, for waves on a
string, pure sinusoidal waves of high frequency and short wave-
length tend to travel with smaller speeds than the longer waves.
This is one example of what is called dispersion, a variation of
wave speed with wavelength.

The phenomenon of dispersion is to be found in many
different kinds of media, with different underlying physical
mechanisms. And what we want to stress is not the very special
analysis that led us to the dispersive property of a string of beads,
but the fact of dispersion itself. The word suggests a separation
of what was at first in one place, and that is exactly what it entails.
We see it happening when white light passes through a prism and
is spread out into its different colors. The velocity for waves of
red light in glass is greater than that for waves of blue light, and
the refraction of light upon entering the prism is given by Snell’s
law:

sin i

—_——=n=
smnr

S0

so that the angle of refraction varies with the color according to
the variation of velocity. In a one-dimensional problem the dis-
persion would mean that two long but limited trains of waves, of
different wavelengths, would get further apart as time went on, if
initially they overlapped. Also each individual wave train, being
itself an admixture of pure sine waves of slightly different velocities,
would become distorted and more spread out with the passage
of time. Only a pure sine wave of effectively infinite extent, with
a unique wavelength and frequency, would move with a uniquely
defined velocity in a dispersive medium. (Of course, the dispersion
may be negligible in particular circumstances—and for the special
case of light waves in vacuum it appears to be strictly zero.)

To discuss the consequences of dispersion more concretely,
we shall consider what happens if we have two sinusoidal waves
of slightly different wavelengths traveling in the same direction

Dispersion; phase and group velocities
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(but perhaps at different speeds) along a string. Suppose for
simplicity that they have equal amplitudes, and that they are
described by the following equations:
y1 = Asin2nx(kix — vit) (7-25)
y2 = Asin 2mr(ka2x — vat)
These are very much like the equations (7-14) that we wrote down
in order to calculate the waveform of two waves having the same
velocity. For convenience in handling the equations, however,
we are using the wave number k instead of 1/\, and we are
explicitly inserting the frequency » in place of the ratio v/A. In
general, now, we are supposing that these two waves have differ-
ent characteristic speeds:

" v2
v1=k—l=V1)\1 02=k—2=V2)\2

The superposition of these two waves gives us a combined
disturbance as follows:

y = Alsin 2w(k1x — vit) + sin 2w(kax — vot)]

Using the same trigonometric relations as we employed before,
this becomes

y = 2Acosml(k1 — k2)x — (v1 — w2)t]

X sin21r|ik1 -; k2x -4 _; l'zt]

At ¢ = 0 this looks just like the superposed waves of Fig. 7-6.
But now let us consider what happens with the passage of time.
The above expression for y can be interpreted as a rapidly alter-
nating wave of short wavelength, modulated in amplitude by an
envelope of long wavelength. Both of these wavelike disturbances
move. But they may have different speeds. A place of maximum
possible amplitude necessarily moves at the speed of the envelope.

If the two combining waves are of almost the same wave-
length, we can simplify our description of the combined dis-
turbance by putting

k1 — ke = Ak vi —ve = Av

k1+k2=k v1+v2=v
2 2
Then we get
y = 2Acos m(x Ak — t Av) sin 2w(kx — vt) (7-26)

In this expression we can then identify two characteristic veloci-

Progressive waves



233

ties. One of these is the speed with which a crest belonging to
the average wave number k moves along. This is called the phase
velocity, vp:

=\ (7-27)

Up =

e

The other is the velocity with which the modulating envelope
moves. Because this envelope encloses a group of the short waves,
the velocity in question is called the group velocity, vg:
N

Ak dk
The phase velocity is the only kind of velocity that we have asso-
ciated with a wave up till now. It is given this name because it
represents the velocity that we can associate with a fixed value of
the phase in the basic shortwave disturbance—e.g., representing
the advance of x with ¢ for a point of zero displacement.

The group velocity is of great physical importance, because
every wave train has a finite extent, and except in those rare cases
where we follow the motion of an individual wave crest, what we
observe is the motion of a wave group. Also, it turns out that the
transport of energy in a wave disturbance takes place at the
group velocity. To treat such questions effectively one needs
to use, not just two sine waves, but a whole spectrum, sufficient
to define a single isolated pulse or wave group, in the manner
we discussed earlier. When this is done, the value of the group
velocity is still found to be given by Eq. (7-28).

The existence of dispersion does, of course, carry important
implications for this matter of analyzing an arbitrary pulse into
pure sinusoids. If these sinusoids have different characteristic
speeds, the shape of the disturbance must change as time goes on.
In particular, a pulse that is highly localized initially will suffer
the fate of becoming more and more spread out as it moves along.

A striking example of the difference between phase and group
velocities is provided by waves in deep water—so-called “‘gravity
waves.” These are strongly dispersive; the wave speed for a well-
defined wavelength—what we must now call the phase velocity—
is proportional to the square root of the wavelength. Thus we
can put

vy = C)\1/2 = Ck—l/2

(7-28)

Vg

where C is a constant. But v, = v/k, by Eq. (7-27). Hence we
have

— CkllZ
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Therefore,
dv
dk

But dv/dk is the group velocity, and thus we have

—-1/2
= 3Ck

vy = 3v,
so that the component wave crests will be seen to run rapidly
through the group, first growing in amplitude and then apparently
disappearing again. You may have noticed this curious effect on
the surface of the sea or some other body of deep water.

Sound waves in gases, like the other elastic vibrations we
have considered, are nondispersive—at least, to the extent that
our theoretical description is correct. This is a fortunate circum-
stance. Imagine the chaos and aural anguish that would result
if sounds of different frequencies traveled at different speeds
through the air. Listening to an orchestra could be a veritable
nightmare. Of course, it would have its compensations—we
could, for example, analyze sounds with a prism of gas, just as
we can analyze light with a prism of glass. But as human beings
we can be content that this possibility does not offer itself.

THE PHENOMENON OF CUT-OFF'

234

Closely linked to the property of dispersion is the very remarkable
effect known as cut-off. This term describes the inability of a
dispersive medium to transmit waves above (or possibly below)
a certain critical frequency. The effect is implicit in the analysis
of the normal modes of a line of N separated masses, for which
we found [see Eq. (5-24), p. 141]

wn = 2wosin (T
n = 200 SR\

where L = (N + 1)/. We can imagine that the length L of the
line is increased indefinitely, without changing the separation / be-
tween adjacent masses. In this case the wave number &, (= n/2L)
becomes in effect a continuous variable, and we can write the
relationship between frequency v and wave number k as follows:

v(k) = 2vq sin(rkl) (7-29)
Clearly Eq. (7-29) does not permit any value of »(k)

'This section can be omitted without loss of continuity.
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Fig. 7-17 Ampli-
tude relationships for
particles on a string,
driven at left end.

(a) Static equilibrium,
v=0. (b) v K vo.
©) v = V/2vo.

(d) Highest mode,
v=2vo. ()v > vo
(N v > 2vo.
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greater than 2y,. Thus we recognize (as already discussed on
p. 142) the existence of a maximum normal mode frequency
vm (= 2vy = wo/7). This frequency v,, corresponds to a wave
number k,, such that

Tkl = w/2

or to a wavelength \,, equal to 2/. But if we had such a line of
masses, there would be nothing to prevent us from shaking one
end at a frequency greater than v,. What, in fact, happens in
this case?

To find out, we go back to the equation that relates the
amplitudes of successive masses in the coupled system vibrating
at some frequency » (or w). From Eq. (5-19) we have the fol-
lowing relationship between the amplitudes 4,_;, A,, Ap.41 for
three successive particles (see p. 140):

Apr + Apn ="+ 200" g
) a— (7-30)

Let us consider the kind of picture that this equation gives us for
various values of ».

a. v = 0. In this case,
A4y = %(Ar—l + Ar+1)

The amplitude varies linearly with distance along the line; it is a
simple static equilibrium [Fig. 7-17(a)] with one end of the line

The phenomenon of cut-off
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pulled transversely aside from the normal resting position. The
effective wavelength is infinite.

b. ¥ K vy. We now have

A, > %(Ap—l + Ap41)
Any one amplitude is greater than the average of the two adjacent
ones—but not very much. The effect is to produce a slight curva-

ture, toward the axis, of a smooth curve joining the particles
{Fig. 7-17(b)] which ensures a sinusoidal form.

c. v = v/2v,. This is a very special case. We now have

Ap—1 + 4p1
Ap
Remember that this must be satisfied for every set of three con-
secutive masses, not just for a particular set. It requires

=0

Apy1 = —Ap
but it appears to place no requirement on the ratio A,_1/4,.
Thus the situation might be as indicated in Fig. 7-17(c). The
wavelength associated with this frequency is clearly 4/, where /
is the interparticle distance. This conclusion is confirmed by
Eq. (7-29), which for k = 1/41 gives us

v = 2vosin7‘—‘r = \/fvo

d. v = 2v¢. This represents the maximum frequency »,, for
a normal mode. From Eq. (7-30) we have

A, = _%(Ap—l + Apt1)
It requires an alternation of positive and negative displacements
of the same size, as shown in Fig. 7-17(d) and as discussed near

the end of Chapter 5. The wavelength is 2/, again in conformity
with Eq. (7-29).

e. v > 2vo. Suppose that v is greater than 2v,, but not very
much greater. Then 4, is opposite in sign to the mean of 4,_;
and A4,., and also

|4p] < %lAp—l + Ap+1|
This implies a slight curvature, away from the axis, of the smooth
curves joining alternate particles. If it is the left hand of the line
that is being shaken, we would be led to Fig. 7-17(e) as a reason-
able representation of the displacements. The amplitudes alternate
in sign, and fall off in magnitude in geometric proportion—i.e.,
exponentially. This is the phenomenon of cut-off.
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Let us put ¥ = 2vy + Aw, and let the ratios A,_;/4,,
Ap/Apt1, etc., be set equal to —(1 + f), where f is some small
fraction. From Eq. (7-30) we have

Aot Apir _ —? 42

A, A, vo?
Therefore,

— (20 + Av)?
vo2

—A+H=-a+N7 +2

Therefore,

—[4v0° + 4vo Av + (AV)]] +2
vo2

—l=f= Q= f+fi=

ie.,

2
_2_f2+...=_2_ﬁ_<é'_'>

vo Yo

Hence, approximately,

Av 1/2
r=2(2)

The further we go above the critical frequency v,, the more
drastic is the attenuation as we proceed along the line, as sug-
gested by the comparison of Figs. 7-17(e) and (f).

f. v > 2. This brings us to the situation of being far above
the critical frequency of cut-off. It will now be very nearly correct
to put

Ap—1 _ _ ﬁ
A, w2
Thus, for example, if v = 2p,, = 4, it will be almost true to
say that only the first particle in the line—the one being agitated
by some external driving agency—will show any appreciable

response; the rest of the line behaves almost as a rigid structure.

THE ENERGY IN A MECHANICAL WAVE
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At any instant the particles of a medium carrying a wave are in
various states of motion. Clearly the medium is endowed with
energy that it does not have in its normal resting state. There are
contributions from the potential energy of deformation as well as
from the kinetic energy of the motion. We shall calculate the
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T

dx

L — e

x

Fig. 7-18 Displace-

A+ dx

ment and extension

of a short segment of

string carrying a
transverse elastic
wave.

238

total energy associated with one complete wavelength of a
sinusoidal wave on a stretched string.

By way of approaching this problem, we shall consider first
a small segment of the string—so short that it can be regarded as
effectively straight—that lies between x and x + dx, as shown
in Fig. 7-18. We shall make the usual assumptions that the dis-
placements of the particles in the string are strictly transverse
and that the magnitude of the tension T is not changed by the
deformation of the string from its normal length and configuration.

The mass of the small segment is pdx, and its transverse
velocity (u,) is dy/dt. Hence, for this segment, we have

N 1 v\

kinetic energy = sudx (Ft)
and we can define a kinetic energy per unit length—what is called
the kinetic-energy density—for such a one-dimensional medium:

2
kinetic-energy density = %I—; = %n (%) (7-31)

The potential energy can be calculated by finding the amount by
which the string, when deformed, is longer than when it is straight.
This extension, multiplied by the assumed constant tension T, is
the work done in the deformation. Thus, for the segment, we have
potential energy = T(ds — dx)
where
ds = (@3 + dyD)V'?

ay 271/2
~a+ (@)

If we assume that the transverse displacements are small, so that
dy/dx < 1, we can approximate the above expression using the
binomial expansion to two terms, thus getting

1 foy 2
ds—dx~i($) dx

Therefore,

2
potential energy =~ 1T (6_y> dx
dx
Hence we have

2
potential-energy density = ‘%j =~ % T (g—) (7-32)
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It is worth noting that the kinetic-energy and potential-
energy densities, as given by Eqs. (7-31) and (7-32), are equal.
For, as we have seen, a traveling wave on the string is of the form

y(x9t) =f(X:I: Dt) =f(Z), say,

where
<T)112
v=1{-—
u
Thus
9y _
= @
W _
Frie +uf'(2)
Therefore,
dK
& = wirer
dUu
= = HUrer

which are equal since T = pp2. Although this equality of the
two energy densities cannot be assumed to hold good in all con-
ceivable situations, it is in keeping with what we know about the
equal division, on the average, of the total energy of simple
mechanical systems subject to linear restoring forces.

Suppose now that we have, in particular, a sinusoidal wave
described by the equation

y(x, ) = Asin 2wy <t - %) (7-33)
Then at any given value of x we have

u(x, 1) = ?—5 = 2avAcos 2wy <t - %)

X
= up cos 2my <t - ;)

where uy (= 2wv4) is the maximum speed of the transverse
motion. Let us consider this distribution of transverse velocities
at the time ¢ = 0. At this instant we have

—27vx 2mwvx
u(x) = ug cos p = up COs p

Since v/v = 1/A, this can equally well be written
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u(x) = up cos (2—;)—‘)

The Kkinetic-energy density is thus given by

dK ;2 4 2 o2f2mx

;;—%#" = $pug” cos ()\)

The total kinetic energy in the segment of string between x = 0
and x = X is thus

A
_ 2 2 [27x
K = 3uuo A cos <_—>\ )dx

ie.,
K = 10w’ (7-34)

This, then, is the kinetic energy associated with one complete
wavelength of the disturbance. (You can easily verify that the
same answer is obtained by integrating the kinetic-energy density
between any two values of x separated by A at a given instant.)

The potential energy over the same portion of the string
must, as we have already seen, be equal to the kinetic energy.
For the sake of being quite explicit, however, we will carry out
the calculation. From Eq. (7-33) we have

a_y = - 2mvA cos 2wy (t - f)
dx v v

Thus at ¢ = 0 we have

<")_y _ 27vA cos 2mvx - 2ﬂ'_Ac0S 2_1rJ_t
dx/)i—0 v v ] A A

Hence the potential-energy density [Eq. (7-32)] is given by
au _ W4T o <2Lx>

dx 2 A
Integrating over one wavelength then gives
U TAT
A

Putting T = uv? = uwr2\%, this gives us
U = w2422\ (7-35)

which can be recognized as equal in magnitude to K, as given
by Eq. (7-34), if we use the identity uy = 27vA4.
The total energy per wavelength, E, can be written

E = }0wuo? (7-36)
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and is thus equal to the kinetic energy that a piece of the string
of length A would have if all of it were moving with the maximum
transverse velocity u, associated with the wave.

Although we have chosen to make this calculation for a
sinusoidal wave, equivalent results can be calculated for other
kinds of waveform (see Problem 7-23 for one such example).

THE TRANSPORT OF ENERGY BY A WAVE

Imagine that one end of a very long string is being oscillated
transversely so as to generate a sinusoidal wave traveling out
along the string. The calculations of the previous section clearly
require that this process must involve a continuing input of
energy. For each new length \ of the string that is set in motion
by the wave, the amount of energy given by Eq. (7-36) must be
supplied. The work equivalent to this energy must therefore be
supplied by the driving agent (the source) at the end of the string.
Let us see how this can be verified.

We shall take the same sinusoidal wave equation as in the
last section [Eq. (7-33)]:

y(x,t) = Asin 27y (t — %)

We shall assume that the string has one end at x = 0 and is
driven at this point (Fig. 7-19). The driving force, F, equal in
magnitude to the tension, T, must be applied in a direction tangent
to the string, as shown in the figure. The motion of the end point,
assumed to be purely transverse, is given by the equation

yo(t) = Asin 27wt

The component of F in the direction of this transverse motion is
given by

- ng~ —1(
F,= —Tsinf = T(ax)m=0

From Eq. (7-33) we have

]
Fig. 7-19 Generation of Yo /
sinusoidal wave on stretched F =
string, showing applied force \/
vector at an arbitrary instant.
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o _ McosZm:(t - f)
ax v v

Therefore,

_ 2mAT

F, = cos 2wyt

We can now calculate the work done in any given time as the
integral of F, dy,:

2nvAT
v

W= /Fy dyo = /cos 27yt d(A sin 27vt)

2
= -(zﬂ’vﬁ)—z' / cos” 2xvt dt

We can express this more simply by recognizing that 2xvA is the
maximum speed u, of the transverse motion. Thus we can put

uozT
W= - cos? 2xvt dt

Let us evaluate this work for one complete period of the wave,
by taking the integral from ¢t = O to t = 1/v. Then we have

1/¥

2
chcle = HO—I (1 4+ cos 4‘n’Vl)dt
2v Jo
The term cos 4xvt contributes nothing in this complete cycle,
so we have
2
ug' T
Weyele = (1-37)

2vp

Since T = pv? and v = v/, this can be expressed in the alterna-
tive forms

Weyele = 3Q\muo? = 2120242\ (7-38)

which are just twice the values of the kinetic energy and potential
energy per wavelength, as given in Eqs. (7-34) and (7-35).

The rate of doing work, as described by the mean power
input P, is obtained by taking Eq. (7-37) for the work per cycle
and multiplying by the number of cycles per unit time (v). This
gives us

o’

P= =5 = Lpuov (7-39)

(Recall that T = uv®.) We recognize P as being equal to the total
energy per unit length that the wave adds to the string (3uuo?)

242 Progressive waves



multiplied by the wave speed (v), which may be thought of (at
least until the wave reaches the far end of the string) as represent-
ing the additional length of string per unit time to become involved
in the disturbance. The energy is not retained at the source; it
flows along the string, which thus acts as a medium for the trans-
port of energy from one point to another, the speed of transport
being equal to the wave speed v.! (Note that once a given portion
of the string has become fully involved in the wave motion, its
average energy remains constant.)

MOMENTUM FLOW AND MECHANICAL RADIATION PRESSURE
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It is natural to expect that, associated with the transport of energy
by a mechanical wave, there must also be a transport of mo-
mentum. And it is tempting to suppose that the ratio of energy
transport to momentum transport is essentially the wave speed v
(in much the same way as the ratio of energy to momentum for
a particle is essentially—but for a factor of 3—equal to the
particle speed). This, however, is not, in general, the case. The
calculation of the wave momentum involves a detailed considera-
tion of the properties of the medium, and the results can be
surprising. For example, one would conclude that the longi-
tudinal waves in a bar that obeys Hooke’s law exactly can carry
no momentum at all. The perfectly elastic medium in this sense
does not exist, but the calculation of the momentum flow in a
real medium then becomes a subtle and sometimes difficult matter.

A question closely related to that of momentum flow is the
mechanical force exerted by waves on an object that absorbs or
reflects them. It is well established, for example, that longitudinal
waves in a gas (sound waves) exert a pressure on a surface placed
in their path, and the existence of this pressure must certainly be
associated with a transport of momentum by the waves. In this
particular case the force exerted on a surface by the waves is
indeed given in order of magnitude by the rate of energy flow
divided by the wave speed—a relation that holds exactly for
electromagnetic waves. Once again it should, however, be empha-
sized that the precise result depends on assumptions about the
equation of state (i.e., the equation that relates changes of stress

1We are here assuming no dispersion. If the medium is dispersive, it turns

out that it is the group velocity that characterizes the velocity of transport
of energy.

Momentum flow and radiation pressure



and density) for the medium. The existence of momentum flow,
and of associated longitudinal forces, depends essentially on non-
linearities in the equations of motion which are not compatible
with strictly sinusoidal wave solutions. This puts the problem
outside the scope of our present discussions, so we shall not
pursue it further.!

WAVES IN TWO AND THREE DIMENSIONS

244

In Chapter 6 we gave some examples of the normal modes of
systems that were essentially two-dimensional—soap films and
thin flat plates. The simplest case is that of a membrane (of which
a soap film is, in fact, a good example) subjected to a uniform
tension S (per unit length) as measured across any line in its
plane. If we introduce rectangular coordinates x, y in the plane
of the membrane, and describe transverse displacements in terms
of a third coordinate, z, then, as we saw, the following wave
equation results:

%z 8% 18%

a2 T 2= o

The wave velocity v is given by

(7-40)

where o is the surface density (i.e., mass per unit area) of the
membrane.

If the symmetry of such a system is rectangular, it is possible
to apply Eq. (7-40) at once and obtain solutions in the form of
straight waves, of the form

z(x,y,1) = flax + By — vt)

Suitable superpositions of such waves, in a system with rectangular
boundaries, correspond to normal modes such as those shown
in Fig. 6-11.

If, on the other hand, the natural symmetry of the system is
circular—as it might be, for example, if waves were generated
on a membrane by setting one point of it into transverse motion,
then it is appropriate to introduce plane polar coordinates r, 8
1For fuller discussions of wave momentum and pressure, see the article
“Radiation Pressure in a Sound Wave,” by R. T. Beyer, Am. J. Phys., 18,

25 (1950), and the book by R. B. Lindsay, Mechanical Radiation, McGraw-
Hill, New York, 1960.

Progressive waves



in the place of x and y. Let us limit ourselves to a completely
symmetrical case, in which the displacement z is independent of
6 at a given value of ». Then Eq. (7—40) goes over into the fol-
lowing form:

%z 19z 18%
PR M i T -41)

The traveling waves that represent solutions of this equation are
expanding circular wavefronts. One can recognize more or less
intuitively that the amplitude of vibration becomes less as r
increases, because the disturbance is being spread over the perim-
eters of circles of increasing radius. The precise solutions are
obtained in terms of special functions called Bessel’s functions.
At sufficiently large » the second term on the right in Eq. (7-41)
becomes almost negligible compared to the first, and to some
approximation the equation reverts to that for straight wave-
fronts of constant amplitude. (More accurately, the amplitude
falls off approximately as 1/+/r.) This is, of course, the impression
one has if one is very far from the origin of circular waves and
sees only a small portion of the perimeter of the wavefront.
Finally, we can set up a wave equation for a three-dimen-
sional medium, such as a block of elastic solid, or air not confined
to a tube. This also we quoted in Chapter 6:
v v v 19y

Tt " e

(cylindrical symmetry)

(742)

where ¥ is some variable such as the local magnitude of the
pressure. The combination of differential operators on the left-
hand side is named the Laplacian (after P. S. de Laplace, a near
contemporary of Lagrange) and is given the special symbol V2
for short (pronounced ‘“del-squared”). Thus we write Eq. (7-42)
in the alternative form
1 8°¥

vZ 32

As with the two-dimensional medium, if we have a system with
rectangular symmetries it is appropriate to look for plane-wave
solutions of the wave equation:

Y(x,y,2,1) = flax 4+ By + Yz — vt)

But, on the other hand, if spherical symmetry suggests itself—as
with the waves that would be generated if a small explosion took
place deep in the ground—then we introduce the radius r and
two angles to define the position of a point. For a system in

Vi = (7-43)
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which the wave amplitude depends on r only, the differential
equation reduces to the following:
v 28¥ 19w

(spherical symmetry) Fwy + vt vy (7-44)

It is easy to verify that this equation is satisfied by simple harmonic
waves whose amplitude falls off inversely with r:

Y(r, ) = —f sin 27w (vt — kr) (745)

Remembering that the energy flow for a one-dimensional wave is
proportional to the amplitude squared, one can see in Eq. (7-45)
the implication that the time average of [¥(r, ¢)]%, multiplied by
the area 4xr? of a sphere of radius r, defines a rate of outflow of
energy that is independent of the distance from a point source
that generates the waves. In the absence of dissipation or absorp-
tion, this is just what one would expect to find.

7-1 Satisfy yourself that the following equations can all be used to
describe the same progressive wave:

y = Asin2x(x — vt)/\

y = Asin2n(kx — vt)

y = Asin 2x[(x/\) — (¢/T)]
y = —Asinw(t — x/v)

y = Alm{exp [j2w(kx — »t)]}

7-2 The equation of a transverse wave traveling along a string is
given by y = 0.3 sin (0.5x — 50¢), where y and x are in centimeters
and ¢ is in seconds.

(a) Find the amplitude, wavelength, wave number, frequency,
period, and velocity of the wave.

(b) Find the maximum transverse speed of any particle in the
string.
7-3 What is the equation for a longitudinal wave traveling in the
negative x direction with amplitude 0.003 m, frequency 5 sec—1, and
speed 3000 m/sec?

7-4 A wave of frequency 20 sec—! has a velocity of 80 m/sec.

(a) How far apart are two points whose displacements are 30°
apart in phase?

(b) At a given point, what is the phase difference between two
displacements occurring at times separated by 0.01 sec?

7-5 A long uniform string of mass density 0.1 kg/m is stretched with
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a force of 50 N. One end of the string (x = 0) is oscillated transversely
(sinusoidally) with an amplitude of 0.02 m and a period of 0.1 sec, so
that traveling waves in the +x direction are set up.

(a) What is the velocity of the waves?

(b) What is their wavelength ?

(c) If at the driving end (x = 0) the displacement (y)at¢ = 0is
0.01 m with dy/dt negative, what is the equation of the traveling
waves ?

7-6 It is observed that a pulse requires 0.1 sec to travel from one
end to the other of a long string. The tension in the string is provided
by passing the string over a pulley to a weight which has 100 times the
mass of the string,

(a) What is the length of the string?

(b) What is the equation of the third normal mode?

7-7 A very long string of the same tension and mass per unit length
as that in Problem 7-6 has a traveling wave set up in it with the fol-
lowing equation:

y(x, t) = 0.02sin7(x — vt)

where x and y are in meters, ¢ in seconds, and v is the wave velocity
(which you can calculate). Find the transverse displacement and
velocity of the string at the point x = 5 m at the time # = 0.1 sec.

7-8 Two points on a string are observed as a traveling wave passes
them. The points are at x1 = 0 and x2 = 1 m. The transverse mo-
tions of the two points are found to be as follows:

y1 = 0.25sin 3¢
y2 = 0.2sin(3nt + 7/8)

(a) What is the frequency in hertz?

(b) What is the wavelength ?

(c) With what speed does the wave travel ?

(d) Which way is the wave traveling? Show how you reach
this conclusion,

(Warning! Consider carefully if there are any ambiguities allowed
by the limited amount of information given.)

7-9 A symmetrical triangular pulse of maximum height 0.4 m and
total length 1.0 m is moving in the positive x direction on a string on
which the wave speed is 24 m/sec. At ¢ = 0 the pulse is entirely
located between x = 0 and x = 1 m. Draw a graph of the transverse
velocity versus time at x = xo = +1m.

7-10 The end (x = 0) of a stretched string is moved transversely with
a constant speed of 0.5 m/sec for 0.1 sec (beginning at # = 0) and is
returned to its normal position during the next 0.1 sec, again at con-
stant speed. The resulting wave pulse moves at a speed of 4 m/sec.
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(a) Sketch the appearance of the string at + = 0.4 sec and at
t = 0.5sec.
(b) Draw a graph of transverse velocity against x at ¢ = 0.4 sec.

7-11 Suppose that a traveling wave pulse is described by the equation
B

b2 4 (x — vt)2

with b = S5cm and v = 2.5 cm/sec. Draw the profile of the pulse as

it would appear at ¢+ = 0 and ¢t = 0.2sec. By direct subtraction of

ordinates of these two curves, obtain an appropriate picture of the

transverse velocity as a function of x at + = 0.1 sec. Compare with

what you obtain by calculating dy/dr at an arbitrary ¢ and then putting
t = 0.1 sec.

y(x, 8) =

7-12 The figure shows a pulse on a string of length 100 m with fixed
ends. The pulse is traveling to the right without any change of shape,
at a speed of 40 m/sec.

7
2 ¥
i
im|[im| O.1m
40m 60m .
7 7

(a) Make a clear sketch showing how the transverse velocity of
the string varies with distance along the string at the instant when the
pulse is in the position shown.

(b) What is the maximum transverse velocity of the string
(approximately) ?

(c) If the total mass of the string is 2 kg, what is the tension T
init?

(d) Write an equation for y(x,t) that numerically describes
sinusoidal waves of wavelength 5 m and amplitude 0.2 m traveling to
the left (i.e., in the negative x direction) on a very long string made of
the same material and under the same tension as above.

7-13 A pulse traveling along a stretched string is described by the
following equation:
X
b2 4 2x — ut)?
(a) Sketch the graph of y against x for ¢t = 0.
(b) What are the speed of the pulse and its direction of travel ?
(c) The transverse velocity of a given point of the string is
defined by
_
at

y(x, t) =

Uy
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Calculate v, as a function of x for the instant r = 0, and show by
means of a sketch what this tells us about the motion of the pulse
during a short time At.

7-14 A closed loop of uniform string is rotated rapidly at some con-
stant angular velocity w. The mass of the string is M and the radius
is R. A tension T is set up circumferentially in the string as a result
of its rotation.

(a) By considering the instantaneous centripetal acceleration of
a small segment of the string, show that the tension must be equal to
Mw?R /2.

(b) The string is suddenly deformed at some point, causing a
kink to appear in it, as shown in the diagram, Show that this could
produce a distortion of the string that remains stationary with respect
to the laboratory, regardless of the particular values of M, w, and R.
But is this the whole story? (Remember that pulses on a string may
travel both ways.)

7-15 Two identical pulses of equal but opposite amplitudes approach
each other as they propagate on a string. At ¢t = 0 they are as shown
in the figure. Sketch to scale the string, and the velocity profile of the
string mass elements, at t+ = 1sec, # = 1.5sec, t = 2 sec.

10 cm/sec
| — ’crlocm—’l ZClm
s |00 o= 20— 2=

10cm/sec

7-16 It is desired to study the rather rapid vertical motion of the
moving contact of a magnetically operated switch. To do this, the
contact is attached to one end (Q) of a horizontal fishline of total
mass 5 g (5 X 10—3 kg) and total length 12.5 m. The other end of the
line passes over a small, effectively frictionless pulley, and a mass of
10 kg is hung from it, as shown in the sketch. The contact is actuated
so that the switch (initially open) goes into the closed position, remains
closed for a short time, and opens again. Shortly thereafter the string

za
| ge———=
(a) 0 9
10kg[ |
(b)
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is photographed, using a high-speed flash, and it is found to be de-
formed between 5 and 6 m, as shown (x = 0 is the point O where the
string is connected to the contact.)

(a) For how long was the switch completely closed?

(b) Draw a graph of the displacement of the contact as a function
of time, taking t = 0 to be the instant at which the contact first began
to move.

(c) What was the maximum speed of the contact? Did it occur
during closing or during opening of the switch ?

(d) At what value of ¢ was the photograph taken?

(Assume g = 10 m/sec?.)

7-17 The following two waves in a medium are superposed:
y1 = Asin(5x — 10f)
y2 = Asin(dx — 9¢)

where x is in meters and 7 in seconds.

(a) Write an equation for the combined disturbance.

(b) What is its group velocity ?

(c) What is the distance between points of zero amplitude in
the combined disturbance?

7-18 The motion of ripples of short wavelength (< 1cm) on water
is controlled by surface tension. The phase velocity of such ripples
is given by

oo 2_7I"§ 1/2
» = px

where S is the surface tension and p the density of water.

(a) Show that the group velocity for a disturbance made up of
wavelengths close to a given A is equal to 3v,/2.

(b) What does this imply about the observed motion of a group
of ripples traveling over a water surface?

(c) If the group consists of just two waves, of wavelengths 0.99
and 1.01 cm, what is the distance between crests of the group?

7-19 The relation between frequency » and wave number k for waves
in a certain medium is as shown in the graph. Make a qualitative
statement (and explain the basis for it) about the relative magnitudes
of the group and phase velocities at any wavelength in the range
represented.

7-20 Consider a U-tube of uniform cross section with two vertical
arms. Let the total length of the liquid column be /. Imagine the liquid
to be oscillating back and forth, so that at any instant the levels in the
side arms are at 4=y with respect to the equilibrium level, and all the
liquid has the speed dy/dr.

(a) Write down an expression for the potential energy plus
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kinetic energy of the liquid, and hence show that the period of oscilla-
tion is mV/21/g.

(b) Imagine that a succession of such tubes can be used to define
a succession of crests and troughs as in a water wave (see the diagram).
Taking the result of (a), and the condition A = 2/ implied by this
analogy, deduce that the speed of waves on water is something like
(gN)V2/x. (Assume that only a small fraction of the liquid is in the
vertical arms of the U-tube.)

(c) Use the exact result, v = (g\/27)1/2, to calculate the speed
of waves of wavelength 500 m in the ocean.

7-21 Consider a system of N coupled oscillators (N >> 1), each sepa-
rated from its nearest neighbors by a distance /.

(a) Find the wavelength and frequency of the nth mode of
oscillation.

(b) Find the phase and group velocities for this mode. What are
they for the casesn <K Nandn = N+ 1?

7-22 You are given the problem of analyzing the dynamics of a line
of cars moving on a one-lane highway. One approach to this problem
is to assume that the line of cars behaves like a group of coupled
oscillators. How would you set this problem up in a tractable way?
Make lots of assumptions.

7-23 One end of a stretched string is moved transversely at constant
velocity u, for a time 7, and is moved back to its starting point with
velocity —u,, during the next interval 7. As a result, a triangular pulse
is set up on the string and moves along it with speed v. Calculate the
kinetic and potential energies associated with the pulse, and show that
their sum is equal to the total work done by the transverse force that
has to be applied at the end of the string.

7-24 Consider a longitudinal sinusoidal wave ¢ = &o cos 2rk(x — vt)
traveling down a rod of mass density p, cross-sectional area .S, and
Young’s modulus Y. Show that if the stress in the rod is due solely to
the presence of the wave, the kinetic-energy density is 1 pS(0%/01)2,
and the potential-energy density is 3 YS(6£/8x)2. Thus show that the
kinetic energy per wavelength and the potential energy per wavelength
both equal 1(pSM\uo2, where uo is the maximum particle velocity
(0¢/01).

7-25 Verify that the wave equation for spherically symmetric waves
[Eq. (7-44)] is satisfied by simple harmonic waves whose amplitudes
fall off inversely with r.
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We shall see in this chapter how sounds quarrel,
fight, and when they are of equal strength destroy
one another, and give place to silence.
ROBERT BALL, Wonders of Acoustics (1867)



8
Boundary effects
and interference

THE PRECEDING CHAPTER was concerned with waves that could be
imagined as traveling uninterrupted in a specified medium. This
chapter is chiefly about some of the effects that take place when
a traveling wave encounters a barrier, or a different medium,
or small obstacles. Such effects represent an enormous field of
study, and the present account is not intended to be more than a
first glimpse of the analysis of these phenomena. We shall begin
with our old standby, the stretched string, and will consider
what happens when a traveling wave on a string encounters a
discontinuity of some kind.

REFLECTION OF WAVE PULSES

In discussing the connection between standing waves and traveling
waves on a stretched string, we necessarily made some reference
to the conditions that exist at the two ends of any string of
limited length. We pointed out that, as a matter of experience,
one can set up a standing wave by agitating one end of a string,
thereby generating a traveling wave which undergoes some process
of reflection at the far end. The outgoing and returning waves
then conspire to produce a standing-wave pattern with nodes at
fixed positions.
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More quantitatively, we recognized that a given normal
mode on a string with fixed ends can be regarded as the super-
position of two sine waves of equal amplitude, wavelength, and
frequency, traveling in opposite directions. To be specific, we
noted that the following two statements are mathematically
equivalent:

Normal mode:

nwx

y(x, 1) = Asin (—L—> cos wt
Two traveling waves:

A. (nwx A . [nrx
2.0 = Jon (5 - ) + in (% + )

If we take the second of these statements, and fix attention on
the conditions at x = 0 or x = L, we have

¥, 1) = y(L, 1)

A, A .
-2—sm(—w1) + -2—sm wt

- gsinwt + gsinwt
What this says is that these oppositely traveling waves must, at
all times, produce equal and opposite displacements at the fixed
ends—which is, of course, pretty obviously necessary. And the
main point is that this same condition must define the reflection
process for any traveling wave when it encounters a rigid boundary.

Let us take a second look at another such superposition
process. In connection with Fig. 7-15, we discussed the super-
position of two symmetrical pulses of opposite displacements,
traveling in opposite directions along a string. An interesting fact
can be noted in this example: The point on the string at which
the two pulses meet remains at rest at all times! The waves pass
through in opposite directions without causing any displacement
of the point at any time. We could consider the point to be
rigidly fixed to a wall without altering the wave pattern in any
manner. This gives us the clue as to what happens when a wave
pulse is incident upon the end of a string which is held stationary:
A pulse of opposite displacement is reflected from the end and
travels back toward the source.

This inverted reflection is not so mysterious when we con-
sider that the arrival of a positive displacement will exert an
upward force on the support which holds the end fixed (see
Fig. 8-1). By Newton’s third law, the support exerts a reaction

Boundary cffects and interference
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Virtual Incident
pulse pulse

Fig. 81 (a) Reflection at a fixed end, (b) Reflection
at a free end. One may think of reflection as if the
string extended indefinitely beyond its actual terminus.
The pulse can be considered to continue on into the
imaginary portion as though the support were not there,
while at the same time a “virtual” pulse, which has
been rtraveling in the imaginary portion, moves out info
the real string and forms the reflected pulse. The
nature of the reflected pulse depends on whether the end
is fixed or free. (Figure adapted from F. W. Sears
and M. W. Zemansky, University Physics, 3rd ed.,
Part 1, Addison-Wesley, Reading, Mass., 1963.)

Reflection of wave pulses

Virtual
pulse

-
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Fig. 8-2 Reflection and

M
transmission at a junction

between dissimilar strings. 0 e

force in the opposite direction back on the string, thus generating
a pulse of opposite polarity which travels backward toward
the source.

If the end of the string is completely free to move (e.g., if
it were tied to a massless ring on a frictionless vertical rod?!), the
arrival of a positive pulse will exert an upward reaction force
back on the string, generating a pulse of positive polarity. This
positive pulse is then transmitted back along the string. Reflection
from a “free” end thus produces a pulse of the same polarity
traveling back toward the source.

If a string with a certain tension and mass per unit length
is fastened to another string with a different u, in general some
reflection will take place (as well as some transmission) at the
discontinuity. To see quantitatively how this comes about, con-
sider a pulse of the form f;(¢t — x/v;) moving along a stretched
cord of linear density u;, which is joined to a cord of linear
density u, at x = 0 (Fig. 8-2).2 Assuming partial reflection and
partial transmission at the junction, the transverse displacements
in the two strings can be assumed to be given by the following
equations:

yilx, t) = f1 (t - vi) + g(t_l- vﬁ)
l ' @-1)

yalx, 1) = f2 (f - i)
U2

Because the ends of the two cords remain in contact with each

1Another method of achieving a “free” termination is to tie it to a very much
less massive string.

2Writing the pulse as f{r — x/v) instead of our usual f(x — cf) is more
appropriate in this analysis, basically because when a wave passes from one
medium to another the wavelength changes but the frequency does not.
Thus we associate the changed factors with the x coordinate and not with .
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other, the transverse displacements, y, at the point x = 0, must
be the same for both cords. Also, at each instant the cords must
join with equal slopes and have equal tensions; otherwise the
element of mass represented by the junction would be given a very
large acceleration. Thus we have the following two conditions:

100, 8) = y2(0,¢)

91 _ 9ye
©0,0=--01

ax
ie.,
HO) + 810D = £ (8-2)
RO = 28l 0) = & 5O 8-3)
Integrating Eq. (8-3), we have
v2f1(t) — v2gi(r) = v1fa(t) @4
Solving Egs. (8-2) and (8-4) for g, and f; in terms of f;, we find
_ Vg — U1
gi(?) = U22+ Ulf1(t) s
—_ b2
fo(t) = o5 F 01 fi(r)

As they stand, equations (8-5) are merely a description of
the state of affairs at x = 0 at any arbitrary value of 7. Now,
however, we shall introduce a somewhat subtle but very important
piece of reasoning. What equations (8-5) do is to relate the
values of f, g1, and f at the same value of their argument. For
any given value, say 7, of this argument, we have g,(7) =
const. X f1(7), and fo(7) = const. X f1(r). But one is not
restricted to interpreting 7 as the value of 7z at x = 0. It can be
used to define all other values of x and ¢ that are related in the
manner required by the basic statement of a given traveling wave.
Thus the function f is defined to be a function of the argument
t — x/v,, and the function g, is defined to be a function of the
argument ¢ + x/v;. Suppose each of these arguments is set equal
to the same value 7, as required by Eq. (8-5). Clearly we cannot
use the same pair of values of x and ¢ for both; let us therefore
label the values as xy, 7, and x,, t,. Then we have

X5 Xg

T=1— a =1, + H

If we put 7, = 1, = ¢, then we must have

Xg = — Xy

Reflection of wave pulses



and what this means is that the displacement associated with
pulse g, at any given instant, at any given value of x, is directly
related to the value of f; as calculated at the same time at the
position —x. Specifically, according to the first of equations
(8-5), we have

& (f + v_1x> = Hﬂ (l‘ - %) (8-6a)
And what this says is that the reflected pulse, besides being scaled
down by the factor (v2 — v1)/(V2 + v1), is reversed right to left
with respect to the incident pulse. If v; < v, it is also turned
upside down.

In a similar way we can relate the transmitted waveform f,
to the incident waveform f;. At a given value of ¢ the correspond-
ing values of x (call them x; and x,) are defined by the relation

X1 x2

T=t—"=t—=

Dy D2

Hence x; = (v2/vy)x;, and the second of equations (8-5) re-
quires us to put

vex/v1y 202 X
fz(t— - )— ol (r— E) (8-6b)

This tells us that, compared to the incident pulse, the transmitted

/-—\—)'- Uy Time
-4
/\ .
N b,
Fig. 8-3 Partial re-
flection and trans- //\
mission of triangular ~7 +2
wave pulse at the
Junction of two strings. ‘/\
Pulse is incident from BT =7 =3
string with higher vy, =%
wave speed. / § 2 +6

(vz = 3v1) V"
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pulse suffers not only a change in height but also a scale change
along x.

In using the above relationships, it is to be noted that if the
pulse f; is incident from the negative x direction and if the junc-
tion is at x = 0, then the functions f; and g, represent physically
real displacements only if x < 0, whereas f, represents a physi-
cally real displacement only if x > 0. Thus, for example, in using
Eq. (8-6a), we find the real displacement in the reflected pulse g;,
at some negative value of x, by considering what the displacement
of the incident pulse f; would have been if it had continued on
into the region of positive x, and then multiplying by the factor
(ve — v1)/(vg 4+ vy). In Fig. 8-3 we show the development of
the reflected and transmitted pulses from a given incident pulse
for the particular case vy = v,/2.

As extreme cases of Eq. (8-6a) we have the following:

a. String 2 infinitely massive:

re =0

—X X
g<t+71—> = —ﬁ(t-—a)

b. String 2 massless or absent:

Vg =

g(t+:_—lx>=f1<t—£>

These then represent the two situations shown in Fig. 8-1.
Figure 84 shows some actual examples of the reflection and
transmission of pulses traveling along stretched springs.

IMPEDANCES: NONREFLECTING TERMINATIONS'
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The kind of behavior discussed in the last section can be treated
in a very illuminating way by introducing the concept of the
mechanical impedance of a physical system subjected to driving
forces. This impedance is defined as the ratio of the driving force
to the associated velocity of displacement. You will recognize
here a strong similarity to the electrical concept of resistance,
which is the ratio of an applied voltage to the associated current

'This section may be omitted without loss of continuity. (But it is not difficult,

and may be quite instructive, given some acquaintance with the properties
of basic electric circuit elements.)

Impedances: nonreflecting terminations
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VAR

(b)

Fig. 8—4 Photographs of pulses encouniering the
boundary between 1wo media. (a) Pulse passing from a
light spring (right) to a heavy spring. At the junction
the pulse is partially transmitted and partially reflected.
You will note that the reflected pulse is upside down.
(b) Pulse passing from a heavy spring (lef?) to a light
spring. At the junction the pulse is partially transmitted
and partially reflected. The reflected pulse is right side
up. (¢) Pulse on a spring reflected from a junction with
a very light thread. The whole pulse returns right side
up. The blurring of pictures indicates that the particles
of the thread are moving at high speed as the pulse
passes. Can you determine the direction of this motion
in each of the frames? (Photographs from Physical
Science Study Committee, Physics, Heath, Boston,
1965.)

MM

(c)

(and the current is the rate of flow of charge). But in mechanical
and electrical systems alike, there is in general a phase difference
between the driving force and the velocity (or between voltage
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and current). Ohm’s law expresses a relation in which voltage
and current are always in phase. Thus, for example, if we apply
across the ends of a resistor a voltage given by

V= Vg cos wt
then the resulting current is given by
I = Ipcos wt

where

But if, for example, this same alternating voltage were applied
across the plates of a capacitor, it would be the charge ¢, not
the current 7, that was in phase with the voltage, for we have

qg=CV
-
T odr
Hence, if

V = Vo cos wt

we have
= —wCVop sin wt
ie.,
I = Ipcos (wt + g)
where
Ip = wCVy

There is thus a phase difference of 90° between ¥ and I in this
case. And if one connected the resistor and the capacitor in
series, with the voltage across the combination, then the phase
difference would be neither 0° nor 90°. In these more general
situations, therefore, the ratio of driving voltage to current in-
volves both a magnitude and a phase, and the quantity which
embodies.the specification of both of these is called the impedance
of the system. You will recall that the relation between driving
force and displacement in a mechanical oscillator with damping
(Chapter 4) was very much of this same character, and, just as
in that case, the use of complex quantities provides a simple and
economical way of displaying both the amplitude and the phase
relationships. It is customary, in fact, to characterize the im-
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Fig. 8-5 Condi-
tions at the driven
end of a stretched
string.

pedance by a single complex quantity, Z, and to express voltage
and current by complex exponentials. Thus, to define the im-
pedance of a capacitor, we would put

V= Vo™
q = CVee™*
dq . Fwt .
I= i JoCVoe' = joCV
Therefore,
V 1
Ze =T = juC

Returning now to the matter of traveling waves on a string, con-
sider first the generation of such a wave through the application
of a transverse driving force at any point. Assume that the string
lies to the right of this point so that the wave being generated is
of the form

¥(x, t) = f(t — x/v)

Then we have

ay X
vy=6—t-=f’(t—;)

F, = _Ta_y:Z’f,(t_f)

ox v v

(Note that the force exerted on the string is the negative of
T 9y/ox—see Fig. 8-5.)
We thus define the impedance Z through the equation

F, T
Z=-t== 8-7

vy U
Since v = +/T/u, this identifies for us what we can call the
characteristic impedance of the string in terms of its tension and

linear density:
zZ = (T'? (3-8)

This quantity is purely real; the driving force and the velocity
are always in phase with one another—in electrical terminology,
this impedance is purely resistive.

Now let us consider, in these same terms, the conditions at
a junction between two different strings. As before, we shall
choose x = 0 at the junction point, and shall assume a wave
incident from negative x along string 1. Thus equations (8-1)
again describe the form of solution we expect:

262 Boundary effects and interference



neN=nH (r - %) + &1 (t + Uil)
yo(x,f) = fo (t - v_xz)

At x = 0 we thus require
=)+ &' = 'O

(8-9)

Fo=Dpvo) - Dove = By
(In the second equation we require only that the sransverse forces
should be the same. One could, for example, imagine a difference
between the magnitudes of the tensions 7'y, T’ if two stretched
strings were connected via a ring around a smooth rod, simulating
a rigid connection with respect to displacement along x, but
offering no resistance along y.)

Introducing the characteristic impedances Z;, Z, of the two
strings, we thus have the following two conditions:

fr@) + g/ @t) = £/ (1)
Zif{(t) — Z1gl (t) = Zaf 2 (1)
From those equations we can proceed to results just like Egs. (8-5)
and (8-6), except that now we have

810,10 = f1(0 9

Z +Z (8-10)

f20,1) = o———-110,1)

Z-I-Z

We see that, in these terms, the amount of reflection that
occurs when a traveling wave encounters a junction is specified
entirely by the characteristic impedance presented to it at the
junction. It does not have to be another string, but can be any-
thing at all, characterized by a certain value of F,/v,. We again
recognize in Eq. (8-10) the two results already discussed: (1) in-
finite impedance Z,, giving g,(0, 1) = —f1(0, ¢t) and (2) zero
impedance Z,, giving g1(0, 1) = +/1(0, 1).

But now let us consider the possibility of zero reflection.
According to the first of equations (8-10) this is achieved by
putting Z, = Z,. One way of fulfilling this is to have another
string of exactly the same tension and linear density—which, of
course, is no junction at all. Another way [Eq. (8-8)] is to have
a second string of different tension and linear density, but having
Topg = Tiuy. But a third way is to have the end of our first string
dipping into a tank of oil of the right consistency. For we are very
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familiar with the law of viscous resistance, which for low speeds
gives a force proportional to the velocity, and this is just the law
we need to define a constant impedance according to the basic
definition expressed in equation (8-7). Of course, the propor-
tionality as such is not enough; the actual value of F/v must be
equal to the value of \/Tu for the string. But we have here the
possibility of an ideal termination for the string. Waves traveling
along the string in one direction advance into the oil tank and
vanish. By terminating the string in this way, it can be made to
behave just as if it were infinitely long; one says that the load,
represented by the oil tank, is perfectly matched to the string.
All the energy that is carried to the end of the string by the
advancing waves is caught and absorbed there. The analogy with
the problem of conveying electrical energy from a source to a
load as effectively as possible is very apparent, and this matter of
correct impedance matching is, of course, of enormous practical
importance—another example of the ubiquity of problems that
can be related to the behavior of a simple stretched string.

One last remark on this question of junctions. There is no
such thing as a completely abrupt transition from one medium
to another. There will always be some nonzero distance (even
if it is only one atomic diameter) over which the transition occurs.
Calculations of the type we have made will describe the situation
very well if the length of the transition region is very small com-
pared to the wavelength involved. But if the wavelength is small
enough, or the transition gradual enough, one may cease to have
any appreciable amount of reflection. An extreme case is an
imagined completely smooth variation of properties along the
string. For example, consider the uniform string hanging verti-
cally (with u = constant but T increasing linearly with distance
up from the bottom) as shown in Fig. 5-1; or a uniformly tapered
string at constant tension throughout. These have no identifiable
discontinuities at which Eq. (8-1) or (8-9) might be applied. An
incident wave is led by the nose, as it were. It suffers a smooth
change of wavelength and can be brought out at the far end in a
very different condition than it had initially. Such carefully
graduated systems are frequently used in acoustical and electrical
wave propagation,

LONGITUDINAL VERSUS TRANSVERSE WAVES: POLARIZATION

264

It is perhaps appropriate at this point to comment briefly on the
basic types of wave disturbances—transverse and longitudinal—
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that we have encountered in the study of one-dimensional
wave propagation,

The stretched string is essentially a carrier of transverse
waves. A long spring, on the other hand, is capable of carrying
both transverse and longitudinal disturbances. In this respect a
spring is a better analogue of a real solid, which can also carry
both transverse (shear) waves and longitudinal (compressional)
waves. A column of liquid or gas, in contrast to a solid, has no
elastic resistance to change of shape, only to change of density.
Thus a column of a fluid (e.g., air) carries only longitudinal waves,
except—and it is a very important exception—when gravity or
surface tension provides in effect an elastic restoring force against
transverse deformations.

With transverse waves, we may need to recognize the possible
existence of two different directions of polarization for the vibra-
tions—perpendicular to one another and to the direction of
propagation. It may even be that these different polarization
states have different wave speeds associated with them—as, for
example, in a crystalline medium in which the interatomic spacings
are closer in one direction than another. Thus it is quite con-
ceivable that in an anisotropic crystal there may be three different
wave speeds along a given direction—one for longitudinal waves
and two for the distinct directions of transverse polarization.

When we consider a one-dimensional wave of any kind en-
countering a boundary or a barrier, the results developed in the
last two sections will describe what happens. It may be worth
pointing out, however, that a given interface may behave differ-
ently with respect to longitudinal and transverse waves. Suppose,
for example, that water rests in a tank with smooth vertical walls.
The interface between water and wall then acts as an almost
completely rigid boundary with respect to longitudinal waves,
but as a completely free end with respect to transverse waves. If
standing waves were to be set up, the wall would represent a node
for longitudinal vibrations of the water but an antinode for
transverse vibrations.

WAVES IN TWO DIMENSIONS

At this point we shall take leave of the purely one-dimensional
problems, so as to devote some attention to phenomena which,
for the most part, require at least a two-dimensional space (e.g.,
waves on a surface) for their appearance. These are phenomena
which involve a change in direction of a traveling wave, or which
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involve the superposition of disturbances arriving at a given
point from different directions. Essentially these same phenomena
also occur in the propagation of waves in three dimensions, but
the two-dimensional cases are easier to consider and embody
most of the important ideas.

Basically, we shall be dealing with various kinds of solutions
to the two-dimensional wave equation, as expressed in one or
other of the two forms quoted in Chapter 7 [Egs. (7-40) and

(7—41)]1:
o o 1d%

or ax2 T gy2z v2 9r2 @-11)
o 1a 19
az ' rar v29r2

For the most part, however, we shall be able to confine our
attention to two special forms of wave:

1. Plane waves or straight waves (the latter being a more
appropriate description for waves on a surface). Such waves are
generated by oscillations of a straight or flat object of linear
dimensions large compared to the wavelength.

2. Circular waves, generated by an object whose linear
dimensions are small compared to the wavelength. (Such waves
in three dimensions would be called spherical.)

As we mentioned in Chapter 7, circular waves at large dis-
tance from the source become in effect straight waves, which
often simplifies the analysis of their behavior. In particular, at
large r we can, to some approximation, ignore the further decrease
in amplitude that must, in principle, be taken into account if a
further change of r is involved. This simplification applies
particularly to the consideration of interference effects due to
two or more small sources.

We shall not be concerned with solving equations (8-11) in
any rigorous sense. Instead, we shall start with the assumption
that we have straight waves or circular waves, as the case may
be, and will consider their behavior in various physical situations.
A complete and accurate solution to any problem in wave propa-
gation would, in principle, mean solving the basic differential
equation subject to the restrictions represented by the particular
conditions at all boundaries. Very few situations can be exactly
analyzed in this way, and so one resorts to physically reasonable

INote that the second equation is a special case, based on the assumption
that the displacement z is independent of the direction 6.
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approximations that in most cases are fully justified by their
success, At the root of most of these approximate treatments is
a concept that was first introduced by C. Huygens in 1678 and
further developed by J. A. Fresnel in 1816 and subsequently.
This cencept is that, as a wave progresses through a medium,
one can treat each point on the advancing wavefront as a new
source. The detailed development of this idea is the subject of
the next section.

THE HUYGENS-FRESNEL PRINCIPLE

Suppose that a disturbance occurs at some point in a tank of
water—a small object is dropped into the water, for example,
or the surface is touched with a pencil point. Then an expanding
circular wave pulse is created. Ignoring the effects of dispersion,
we can say that the pulse expands at some speed v. If the pulse is
created at the origin at ¢+ = 0, then particles of the medium at a
distance r from the origin are set in motion at ¢ = r/v. It was
Huygens’ view that the effects occurring at r 4+ Ar at time
t + Ar/v could be ascribed to the agitation of the medium at r
at time ¢, thus treating the disturbance very explicitly as something
handed on from point to adjacent point through the medium.
Both Huygens and Fresnel applied this idea to the propagation of
light, in which the behavior of the medium lay beyond the scope
of observation. It is quite probable, however, that this picture of
things was suggested by the observed behavior of ripples on water.
In particular, if waves traveling outward from a source encounter
a barrier with only a tiny aperture in it (“tiny” meaning of width
Fig. 86 Generation Small compared to a wavelength), then this aperture appears to
of Huygens' wavelets  act just like a new point source, from which circular waves spread

at a narrow aperture o\t - Thijs phenomenon is shown in Fig. 8-6. It does not matter
in an advancing wave-

front. (a) Circular
primary waves.

(From R. W. Pohl,
Physical Principles of
Mechanics and
Acoustics, Blackie,
London, 1932.)

(b) Straight primary
waves. (From the
film “Ripple Tank
Phenomena™ Part I,
Education Develop-
ment Center, Newton,
Mass.)
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Fig. 87 Construc-
tion of wavefront by
Huygens' method.
[From C. Huygens,
Treatise on Light
(translated by S. P.
Thompson), Dover,
New York, 1962.)

whether the original waves are straight or circular; what the
small aperture does is to act as a source of circular waves in
either case. This is very reasonable, because the effect of the
barrier is to suppress all propagation of the original disturbance
except through the aperture at which the displacement of the
medium is free to communicate itself further.

Huygens’ principle accounts nicely for the fact that an un-
impeded circular wave pulse gives rise to a subsequent circular
wavefront and a straight pulse gives rise to a straight wavefront.
Figure 8-7, from Huygens’ original book,! indicates how, given
a circular wavefront HBGI, there will be developed from it at a
later time a circular wavefront DCEF. This comes about because
each point, such as B, gives rise to a circular wavelet KCL, and
the totality of these wavelets generates a reinforcement along
the line DCEF that is tangent to them all at a given instant. This
locus is characterized by the fact that the shortest distance be-
tween it and the original wavefront is everywhere equal to v Af,
where At is the time elapsed since the wavefront was at HBGI.
A similar construction for a straight wavefront implies that this
generates a subsequent wavefront parallel to itself.

There is, however, more in this than meets the eye. The
Huygens construction, as we have described it, would define two
subsequent wavefronts, not one. In addition to a new wavefront
farther away from the source, there would be another one cor-
responding to a wavefront moving back toward the source. But
we know that this does not happen. If the Huygens way of

1C, Huygens, Treatise on Light, 1690 (translated by S. P. Thompson, Dover,
New York, 1962).
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Fig. 8-8 Point S,
on an expanding cir-
cular wave originating n
from O, acts as a \
secondary source B A

whose effect at P de- Lo 'V TS |
pends upon the

obliquiry angle 0 as

well as on the dis-

tance SP.

visualizing wave propagation is to be acceptable, it must in-
corporate the unidirectional property of a traveling wave. This
can be achieved by requiring that the disturbance starting out
from a given point in the medium at a given instant is not equally
strong in all directions. Specifically, if O (Fig. 8-8) is the true
original source, and S is the origin of a Huygens wavelet, and P
is the point at which the disturbance is being recorded, then the
effect at P due to the region near S is a function f(6) of the angle
6 between OS and SP. In particular, f(6) = O for § = .

As far as our present discussion is concerned, the Huygens
construction offers a useful but essentially qualitative contribution
to the analysis of wave propagation. To do more with it is, in
fact, a quite difficult matter. One must define the properties of
the secondary sources on an advancing wavefront in such a way
that they produce the precise effect that is required of them. A
specific mathematical formulation of Huygens’ principle in these
terms was published by H. Helmholtz in 1859 and was developed
further by G. Kirchhoff in 1882.! Despite its artificiality, the
method is very valuable in the analysis of the optical interference
effects that occur when a beam of light is partially interrupted by
obstacles. And even without the mathematics, as we shall see,
one can use the Huygens approach as a guide.

More often than not, we are dealing with continuing sinusoi-
dal waves, rather than with individual pulses—and even an
individual pulse is describable, as we have seen, in terms of super-
positions of infinite wave trains, via Fourier analysis. This means
'This was for wave propagation in three dimensions. Actually—and surpris-
ingly—the formulation and use of the principle for two dimensions is more
difficult and less clearcut than for three. But this is an esoteric point, quite
unsuitable for discussion here. For fuller discussions of Huygens’ principle,
see B. Rossi, Oprics, Addison-Wesley, Reading, Mass., 1957, or (for a
thorough mathematical discussion) B. B. Baker and E. T. Copson, The

Mathematical Theory of Huygens' Principle, Oxford University Press, New
York, 1950.
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that we can, at every instant, regard each point on an arbitrarily
chosen surface as a secondary source of Huygens wavelets. Al-
though the waves themselves are advancing, the amplitude of
the sinusoidal disturbance at any given point is independent of
time. This means that, once account has been taken of the
relative phases of disturbances arriving at a given point from
any designated surface, the explicit time dependence can often be
disregarded. This will become apparent as we consider specific
problems in diffraction and interference.

REFLECTION AND REFRACTION OF PLANE WAVES

Just as with waves on a string, we can, in general, expect a partial
reflection and a partial transmission of waves in a medium when
they encounter a boundary between two different media. But,
with waves in two or three dimensions, we must now also con-
sider the possible changes in direction.

The simplest case is if a straight wave strikes a straight
boundary. We then have the familiar laws of reflection and re-
fraction as described in Snell’s laws. These results are easily
obtained by means of the Huygens construction. In Fig. 8-9,
the line A4’ represents a straight wavefront at the instant when
the point 4 encounters the boundary. At a later time, the wave-
front has advanced, in the original medium, to the position BB’

Fig. 8-9 (a) Reflection and refraction by Huygens'
construction. (b) Proof of Snell’s Law by Huygens'
construction.

\ X
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[Fig. 8-9(a)]. Each successive point along the boundary between
A and B, as it is reached by the wavefront, becomes the center of
new Huygens wavelets, advancing into the second medium and
traveling back into the original medium. The tangents to these
wavelets will be the new wavefronts.

Still later, the original wavefront touches the boundary at
point C’ [Fig. 8-9(b)]. At that same moment, the wavelet that
started out earlier from point A4, spreading back into the original
medium, will have attained a radius AC”’. The line C'C"”, tangent
to this latter wavelet, will also be tangent to all the wavelets
arising from the points along the boundary between A and A’.}
The line C'C” is a new wavefront. And from the geometry of
the figure, if / and # denote the angles made with the boundary by
the incident and reflected wavefronts, we have

A'C’ AC”

ac = ac s

sini =
The angle between the boundary and the wavefront is equal to
the angle between the normal to the boundary and the normal to
the wavefront. But this latter direction represents what would
be called the ray direction (at least in optics), i.e., the direction
of a narrow beam of progressive waves.? Thus the angles i and #/
represent the angles of incidence and reflection for rays en-
countering a straight boundary.

(Actually, the above discussion of the reflection process may
seem hard to reconcile with the property, normally required of
Huygens’ secondary wavelets, that there should be a vanishingly
small amplitude in the backward direction. One can argue, how-
ever, that the presence of a sharp boundary does create a new and
different situation, in which the production of strong backward
wavelets becomes possible.)

The process of refraction is analyzed in a similar way. Re-
ferring again to Fig. 8-9(b), we must specify the radius of the
Huygens wavelet that has advanced from A into the second
medium from the time the wavefront was at 44’ to the time when
it touches the boundary at C’. Then C’C’”, drawn tangent to this
wavelet (and to all the other wavelets at this instant), is the wave-
front in medium 2. If the wave velocities in the two media are

1You should satisfy yourself that this is so.

2This orthogonality of ray direction and wavefront may seem obvious, but
actually ceases to hold in anisotropic media, in which the Huygens wavelets
may be elliptical instead of circular.
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v, and v, respectively, and if the time involved is Az, we have
A'C' = v1 At  AC" = vo At

The angle of refraction, r, is the angle between C'4 and C'C"",
and from the geometry we have

sini = 2 sinr = 22 A
'S A =ac
Therefore,
sini 0
sinr v (8-12)

The problem of calculating the actual amplitudes of the reflected
and transmitted waves is not a trivial one. Indeed, it is not a
single problem. Longitudinal (compressional) waves behave dif-
ferently from transverse waves, and with transverse waves, fur-
thermore, the case in which the displacement is perpendicular
to the plane of Fig. 8-9 (as it would be with water waves) differs
from that in which the displacement lies in the plane of the figure.
That is, with transverse waves the behavior depends on the state
of polarization. Because of these complexities, we shall not
attempt to analyze such problems. But it may be noted that at
normal incidence (i = 0) we have an essentially one-dimensional
problem once again. A distinction between longitudinal and
transverse disturbances may still remain, however, as we have
already mentioned (p. 265) for the case of a fluid medium in
contact with an effectively immovable but smooth solid boundary.
There will be effectively 1009, reflection of any incident wave.
But if the wave is longitudinal, the boundary acts as one that is
completely rigid and the reflected wave displacement at the
boundary must be equal and opposite to that of the incident wave;
whereas if the wave is transverse, the boundary offers no resistance
and the reflection takes place without any reversal of sign of the
displacement (see our earlier discussions of one-dimensional
boundary problems).

In Fig. 8-10 we show examples of the reflection and refraction
of water waves, as observed in a ripple tank. In the refraction,
one can clearly see the change of wavelength (by the factor vy/v,)
that occurs as the disturbance passes into the second medium.

We shall not present here any discussion of the reflection or
refraction of circular waves at straight or curved boundaries.
Such situations can, however, be nicely analyzed in terms of the
behavior of Huygens wavelets. One sees clearly how mirrors and
lenses modify incident wavefronts leading to focusing or defocus-
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(a)

Fig. 8-10 (a) Re-
flection of straight
water waves at a rigid
boundary (i = 45°).
(b) Refraction of
water waves at the
boundary between re-
gions of different
water depth and
hence different wave
speed. (From the
film “Ripple Tank
Phenomena,” Part I,
Education Develop-
ment Center, Newton,
Mass.)

|

ing effects and other such phenomena, also describable as modi-
fications of the paths of rays according to Snell’s laws.

On the specific question of refraction, it is perhaps worth
pointing out that a change of direction of the wavefront occurs
whenever the velocity of the waves varies with position. This can
happen within a single medium under certain conditions. For
example, the speed of compressional waves (sound) in gases is a
function of temperature. [Specifically v ~ /T—see Chapter 7,
Eq. (7-12)]. Thus, if there is a temperature gradient in a gas,
waves traveling through the gas will be progressively bent. Again,

(b)
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if the medium itself is in motion in such a way that different parts
have different velocities, refraction will occur. In air near the
earth’s surface there may be both a temperature gradient and a
velocity gradient. Depending on their signs, and on the direction
of propagation of the waves, a train of sound waves may either be
bent up away from the earth’s surface, or alternatively may be
caused to hug the surface. In the latter case there may be an
enhanced audibility of the sound over considerable distances.

DOPPLER EFFECT AND RELATED PHENOMENA

If the source of a periodic disturbance moves with respect to a
medium, the pattern of waves produced by it is modified. The
simplest case is of a source moving in a straight line at constant
velocity. There are two very different situations, according to
whether the speed of the source is less or greater than the speed
of the waves that it generates. These two situations are shown
schematically in Fig. 8-11. The position of the source, S, is
shown at a succession of equal intervals of time. These could,
for example, be instants at which the source generates a brief
pulse, or instants separated by one period of a smooth sinusoidal
vibration of the source. In any case, a circle with a given posi-
tion of S as center represents the locus of points influenced at a
given subsequent instant by waves spreading out from S.

Fig. 8-11 Successive wavefronts produced at equal
time intervals from (a) source moving at less than wave speed,
(b) source moving at more than wave speed.

So Ss S,

(a) (b)
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Let the speed of the source be u, and let the wave speed be v.
Then at a time ¢ after the initiation of one of the circular waves,
the radius of the wavefront is vf and the source has moved a
distance ut. If u < v, we have a situation as shown in Fig. 8-11(a).
The circular wavefronts lie one inside another. The distance
between successive wavefronts is least along the direction of mo-
tion of the source and greatest at 180° to this direction. If 7 is the
time interval between the successive positions of S shown in
Fig. 8-11(a), then these separations of the wavefronts are (v — u)7
and (v + u)r. Butvr represents the distance between wavefronts
in any direction if the source is stationary. Thus there is a
systematic variation of wavelength with direction for the waves
emitted from a moving source; this is the Doppler effect. In
particular, we have

Amin = Ao (1 - 5) Amax = Ao (1 + 5)
1 1

The situation is more complicated for other directions, but
can be simply analyzed if the distance from the source to the point
of observation is very large compared to one wavelength. We
then have a situation of the kind shown in Fig. 8-12. The points
marked S, and S,, represent the positions of the source at ¢t = 0
and at ¢ = n7 (n periods later). Since the speed of the source is u,
we have

SoSn = Xn = unr

Since the point of observation, P, is assumed to be far away, the
angle SoPS, is very small. This means that the wavefronts
arriving at P from S, and S, (and all intermediate source points)
are almost parallel. Suppose that the wave W from S bas just

Fig. 8-12 Waves
arriving at a distant
point P from a source
moving from Sy to S,,.
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reached P. This defines a time tp equal to r¢/v. The wave from
S, started out at ¢ = n7; thus at time 7p it has been traveling
only for a time t, — n7; its wavefront is at W,,, and we have

$.Q = v(tp — n7)
= rg — vnr

The distance between the wavefronts can be taken to be equal
to either QP or Q'P (the difference between them is insignificant).
If we put S,P = r,, we have

QP =ry, — 8,0 =rn— ro+ vnr
But if we drop a perpendicular from S, onto the line SoP, we

also have NP = r, (again because of the smallness of the angle
SoPS,), so that

ro — r. = SoN = x,cosd
ie.,
ro — rp, = unrcos @
Substituting this in the preceding expression for QP, we have

QP =~ QP =~ vnr — unrcos @

= mho <l _ ucoso)
v

But Q'P or QP spans n wavelengths of the disturbance as ob-
served at the direction 8 to the moving source. Thus we have

AO) = No <1 - “Cz’s 0) (8-13)

What this means, very simply, is that the Doppler effect depends
on the component of source velocity in the direction of the
observer. The frequency at which successive wavefronts pass
through the point of observation P is the wave speed divided by
the wavelength. Thus we have

»(6) = Y, (8-14)

v

This last equation is the most appropriate statement of the Doppler
effect in acoustics, because the effect is detected through the
change in pitch of the note received from a moving source.

Let us turn now to the case in which the source velocity
exceeds the wave velocity, This gives us a situation like that
shown in Fig. 8-11(b). Suppose that the source is at Sgatr = 0.
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(a)

Fig. 8-13 Water
waves produced in a
ripple tank by a mov-
ing source. (From
the film **Ripple Tank
Phenomena,” Part
III, Education De-
velopment Center,
Newton, Mass.)

(a) Source speed less
than wave speed
(Doppler effec).

(b) Source speed
greater than wave
speed (shock wave). (b)

Then at the later time ¢ = nr, the source is at S,, where
SoS, = nur, and the wavefront from S, has attained a radius
of nvr. At the position of S,, at this instant, the waves are only
just beginning to be generated. If tangent lines are drawn from
S,, to the circular wavefront from S|, these lines are also tangent
to all the other intermediate circles. Our earlier experience with
the Huygens construction would suggest that the result is a rein-
forcement of the wavelets along these lines, which thus act as
straight wavefronts traveling outward at the speed v. The angle
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a which these wavefronts make with the line of motion of the
source is defined through the relation

SoP

sinae = ——
SoS»

14
=- (8-15)
The ratio u/v is called the Mach number, and the angle « is the
Mach angle (which exists only if the Mach number is greater
than 1).

Figure 8-13 shows actual examples of the wave patterns
generated in a ripple tank by a moving source for Mach numbers
less than and greater than 1.

To see more explicitly how the locus of the circular waves
for u > v acts as a concentrated straight wavefront, consider the
times of arrival of the successive circular waves at a point P
far away from the moving source. We can refer again to Fig. 8-12.
Again suppose that a wave starts out from S, at ¢ = 0, and that
a wave starts out from S, at ¢ = nr. The times of arrival of
these waves at P are given by
ro
v

fo =
r
th = nr + =
v

Thus

ro—r
t,.—to=n1'———n

We shall again put ro — r, = x, cos § = nut cos 0, giving

ucosf
t, — g = nr 1——0—'

Clearly if 4 < v, t, is always greater than ty—i.e., the waves
arrive in the same order in which they are emitted. But if u > v,
the time sequence depends on 6. And, in particular, there is a
value of 6 for which all the wavefronts arrive at P at the same
instant. Calling this angle 6,, we have

cos 0o = Z (8-16)

This value of 4 is the complement of the Mach angle, and defines
the direction, perpendicular to the straight wavefront itself, along
which this region of concentration of the circular wavelets travels.
In such terms we can understand the production of effects like
sonic booms. If a source S [Fig. 8-14(a)] is traveling at a speed
greater than the wave speed, and an observer is at P, then a line

Boundary effects and interference
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Fig. 8-14 (a) At SN
the direction \\\ \\\
6 = cos '@/w), = - "
pulses from the mov- o S o
ing source (u > t) e, -

pile up simultaneously //’

at the observation
point P. (b) Pro-
duction of sonic
booms.

Shock wave zone

(b}

drawn from P at an angle 6, to the direction of motion of the
source will intersect the line of motion of the source at a point S,
At a time r/v after the source passes through S, P will suddenly
receive the pile-up of wavelets which are generated by the source
over a short distance from S, onward, but which reach P simul-
taneously. [At this instant, the source itself has traveled a distance
uro/v beyond Sy—see Fig. 8-14(a).] Prior to this instant, P was
receiving no disturbances. After the pile-up has traveled beyond
P, there will continue to be an arrival of normal wavelets—but
without benefit of reinforcement through simultaneous arrival
they may be too weak to be noticeable.

In practice, an airplane traveling at supersonic speed gener-
ates a double boom, owing to the formation of two principal
shock fronts, one at its nose and the other at its tail. These, for
a plane traveling horizontally, at constant velocity, are in the
form of conical surfaces that are cariied along with the plane
[see Fig. 8-14(b)]. Their intersection with the ground is hyperbolic
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in shape. As this pattern sweeps over any particular point, the
sonic boom is heard there.’

DOUBLE-SLIT INTERFERENCE

280

We shall now consider more explicitly what happens when an
advancing wave is obstructed by barriers. From the standpoint
of Huygens’ principle, each unobstructed point on the original
wavefront acts as a new source, and the disturbance beyond the
barrier is the superposition of all the waves spreading out from
these secondary sources. Because all the secondary sources are
driven, as it were, by the original wave, there is a well-defined
phase relationship among them. This condition is called coher-
ence, and it implies in turn a systematic phase relation among
the secondary disturbances as they arrive at any more distant
point. As a result there exists a characteristic interference pattern
in the region on the far side of the barrier.

The simplest situation, and one that is basic to the analysis
of all others, is to have the original wave completely obstructed
except at two arbitrarily narrow apertures. In a two-dimensional
system these then act as point sources. The analogous situation
for waves in three dimensions is to have two long parallel slits
which act as line sources. We briefly discussed such an arrange-
ment in Chapter 2, when first considering the superposition of
harmonic vibrations, and you are probably familiar with it also
in connection with Thomas Young’s historic experiment (per-
formed about 1802) that displayed the interference of light waves
in an unmistakable fashion.

In Fig. 8-15 we indicate a wavefront approaching two slits
S and S5, which are assumed to be very narrow but equal. For
simplicity we shall suppose that the slits are equally far from
some point which acts as the primary source of the wave. Thus
the secondary sources S; and S are in phase with one another.
If the original wave is a continuing simple harmonic disturbance,
S; and S, in turn generate simple harmonic waves. At an
arbitrary point P, the disturbance is obtained by adding together
the contributions arriving at a given instant from §; and S,.
In general, we need to consider two characteristic effects:

1. The disturbances arriving at P from S; and S are different
in amplitude, for a dual reason. First the distances ry and r; are

1For a fuller account, see, for example, the article “Sonic Boom™” by H. A.
Wilson, Jr., Scientific American, Jan. 1962, pp. 36-43.
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Fig. 8-15 Double- fromwar\i/e ;:onst Surce
slit interference. I =8

different, and the amplitude generated by an expanding circular
disturbance falls off with increasing distance from the source.
Second, the angles 6, and 65 are different, and a Huygens wavelet
has an amplitude which falls away (as discussed earlier, in connec-
tion with Fig. 8-8) with increasing obliquity.

2. There is a phase difference between the disturbances at
P, corresponding to the time difference (r2 — ri)/v, where v
is the wave speed.

We shall concentrate on situations for which the distances
ry and rg are large compared to the distance d between S; and
S5. Then the difference between the amplitudes due to S, and S»
at Pis negligible. But there remains the possibility of an important
phase difference between the two disturbances, and it is this which
dominates the general appearance of the resultant wave pattern.
We see the typical consequences in Fig. 8-16, which is a ripple-
tank photograph. There exist loci—nodal lines—along which the
resultant disturbance is almost zero at all times. It is easy to
calculate their positions. At any point such as P in Fig. 8-15, the
displacement as a function of time is of the form

yp(t) = Ai1cos w (t — :’—l) + Az cos w (t - 2—2) 8-17)
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Fig. 8-16 Double- - -
slit interference of - -

water waves. (From
Phenomena,” Part 11,
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if the time dependence of the disturbances at S; and S, is as
cos wt. Equation (8-17) embodies the fact that a given sequence
of displacements at either source gives rise, at a time r/v later, to
a similar sequence at a point distance r away. Thus if we can put
Ay = Ay (= Ay, say), then

Ao [cos w (t r1)
13}

= 2Ao cOs wt COS [3 (re — rl)]
2v

ye(t)

1
|
|
+
8
[72]
€
~
.
|
S|
~—
e J

Introducing the wavelength A = v/v = 27v/w, we thus have

M]

ye() = 2Ap cos wt oS [ x (8-18)
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A given nodal line is defined by the condition that the quantity
w(re — r1)/\ is some odd multiple of =/2. Thus we can put

w(ra — r1)

™
-~ @+ D3

or
re—ri=(n+H\  (nodal lines) (8-19)

where n is any positive or negative integer (or zero). The nodal
lines are thus a set of hyperbolas, which divide up the whole
region beyond the slits in a well-defined way. Within the areas
between the nodal lines, one can draw a second set of hyperbolas
which define lines of maximum displacement—in the sense that,
at a given distance from the slits, and between two given nodal
lines, the amplitude of the resultant disturbance reaches its great-
est value. It is easy to see that the condition for this to occur is

ro —r1 = n\ (interference maxima) (8-20)

The important parameter that governs the general appear-
ance of the interference pattern is the dimensionless ratio of the
slit separation d to the wavelength . This fact is manifested in
its simplest form if we consider the conditions at a large distance
from the slits—i.e., r 3> d. Then (referring back to Fig. 8-15)
the value of r, — r, can be set equal to d'sin § with negligible
error. Hence the condition for interference maxima becomes

dsing, = n\ sin @, = n—; (8-21)
and the amplitude at some arbitrary direction is given by
A(6) = 24, cos ("d ;‘“ 9) (8-22)

We see from this that the interference at a large distance from
the slits is essentially a directional effect. That is, if the positions
of nodes and interference maxima are observed along a line paral-
lel to the line joining the two apertures, the /inear separations of
adjacent maxima (or zeros) increase in proportion to the distance
from the slits.

The general features of the interference pattern for a double-
slit system are nicely illustrated in Fig. 8-17 for two different
values of d/\. These are not real wave patterns but simulated
ones, obtained by superposing two sets of concentric circles.®

1Done with items from “Moiré Patterns” kit, made by Edmund Scientific
Co., Barrington, N.J.
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distributed by Edmund

Scientific Co., Bar-
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(Photo by Jon Rosen-
feld, Education Re-
search Center, M.I.T.)
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A special interest often attaches to the case when d/\ is very
large. This is especially so in optical interference, where the wave-
length (~6 X 1077 m) is likely to be extremely small compared
to the slit separation (typically ~0.1 mm). Under these conditions
(\/d = 10~2) we can replace sin 6, by 6,, itself in Eq. (8-21), so
that the angular separation between any two successive inter-
ference maxima becomes just M/d, very nearly. Furthermore, at
a given distance D from the slits, the successive interference
maxima are equally spaced, with a separation D\/d.

MULTIPLE-SLIT INTERFERENCE (DIFFRACTION GRATING)

284

In discussing the double-slit problem we have indicated in some
detail how the interference pattern is formed. But in more compli-
cated situations we shall limit ourselves to considering the state
of the interference at distances that are large compared to the
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linear dimensions of the system of apertures. This permits us to
assume the following:

1. Equally wide (unobstructed) portions of the original
wavefront give contributions of equal amplitude at any point
considered.

2. The lines to a given observation point from the various
unobstructed parts of the original wavefront are almost parallel.

Let us analyze in these terms the interference pattern due
to an array of N equally spaced slits. As with the double-slit
problem, we shall assume for the moment that the individual slits
all have the same very small width. Let the spacing between
adjacent slits be d. We shall assume that the various slits are all
driven in phase, as they would be if the primary wave were
straight (i.e., from a very distant primary source) and parallel
to the plane of the slits (Fig. 8-18). The difference in paths for
secondary waves arriving at a point P from adjacent slits is equal
to dsin 6. This then defines a time difference d'sin /v and a
phase difference & given by

wdsing  2wndsin §

6 = > = A (8_23)

The resultant displacement at P is thus of the form

ye(t) = Ao cos(wt — ¢1) 4+ Ao cos(wt — ¢1 — 6)
+ Ao cos{wt — ¢1 — 28) + - - - (to N terms)
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Fig. 8-19 Vector diagrams for diffraction grating
(N =10). (@) =0, 2, 4x, etc. (b} = 2x/N
(= 36°. ()& = 3x/N (= 54°). (d)é = 4x/N

(=72°. ()8 = 5«/N (= 90°). (f)é = 6x/N

(= 108°). (g) 6 = 7x/N (= 126°).

where ¢; = 2zr;/\ is the phase difference corresponding to the
distance »; from the first slit to the point P.

We have already considered this superposition problem in
Chapter 2. The amplitude A of the resultant is obtained by
taking the vector sum of N vectors of length A, each of which
makes an angle § with its next neighbor (see Fig. 2-7). The
result is

sin(N §/2)
°sin(8/2)

Now let us consider how 4 depends on the angle 6, given the

A= (8-24)
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equation (8-23) for §. It is especially illuminating to do this with
the help of a series of vector diagrams, such as those shown in
Fig. 8-19 for the particular case N = 10.

1. When 6 = 0, the combining vectors are all in line and add
together:

A = NAg

This therefore represents the biggest possible resultant amplitude.
It occurs also for every value of 6 given by Eq. (8-21). That is, an
array of N slits, of spacing d, has what are called principal maxima
at the same directions as a two-slit system of the same spacing.

2. When § = 2x/N, 4n/N, 67 /N, etc., the combining vectors
form a closed polygon and we have

A=0

We can see this equally well from Eq. (8-24), because in all these
cases the angle N§/2 is an integral multiple of w, making the
numerator zero.

3. In between these zeros there will be values of §, and hence
of 6, that define intermediate maxima of displacement. These are
called subsidiary maxima of the multiple-slit interference pattern,
and their amplitudes are much less than those of the principal
maxima—although their precise angular positions and relative
amplitudes are not very readily evaluated, as you will discover if
you try to calculate the maximum values of 4 from Eq. (8-24).
In Fig. 8-19, the amplitude in diagram (c¢) for & = 3=/N is
approximately equal to that of the first subsidiary maximum, and
is only about one-fifth of that of the principal maximum.

4. After N — 1 zeros, and N — 2 subsidiary maxima, we
arrive at the value § = 2=, which defines the next principal maxi-
mum of the diffraction pattern.

Figure 8-20 is a comparison of the variations of amplitude
with § for a double-slit and a 10-slit system with equal interslit
spacings. (Note the difference of vertical scales.) The “bouncing-
ball” appearance of these curves is the result of taking 4 to be
always positive, whereas Eq. (8-24) would define alternate posi-
tive and negative values between successive pairs of zeros. The
effect of using more slits is to sharpen up the principal maxima.
It is precisely this property, of course, that makes a diffraction
grating a valuable tool in spectroscopy, because it implies a very
sharp angular resolution for light of a given wavelength. Most
of the intensity is concentrated within narrow angular ranges

Multiple-slit interference



Fig. 8-20 (a) Varia-
tion of amplitude with
phase difference for
two-slit interference.
(b) Variation of am-
plitude with phase
difference for ten-slit
interference.
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around the directions of the principal maxima—the so-called
zero-order (straight through), first-order, second-order, etc., max-
ima of the pattern. Figure 8-21 shows a multiple-slit interference
pattern (N = 8) produced in a ripple tank. The effective con-
centration of the waves into just three beams—one of zero order
and two of first order—is clearly shown. (Why are no higher
orders present?)

DIFFRACTION BY A SINGLE SLIT

288

It is clear that no individual slit or aperture can be arbitrarily
narrow, and this fact gives rise to characteristic interference be-
havior from the various regions of one slit alone. We have re-
frained from discussing this earlier because the analysis of the
N-slit problem provides some valuable background.

Figure 8-22 is a greatly enlarged diagram of an individual
narrow slit, of breadth b. We assume that all parts of it are driven
in phase by an incident plane wave. Now if the disturbance on
the far side of the slit is to be studied at an angle 8 to the normal,
as shown, there is a net path difference of b sin 6 from the two

Boundary eflects and interference
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Fig. 8-21 Eight-slit interference of water waves. (From the film “Ripple
Tank Phenomena,” Part 11, Education Development Center, Newton, Mass.)
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sides of the slit to the point of observation, and an associated
phase difference of 2xb sin 6/A. If we imagine the slit divided
up into a large number of strips of equal width As, any one of
these, a distance s from one extreme edge of the slit, produces at
the observation point a displacement proportional to As with a
phase (relative to waves from the edge of the slit) equal to
2xs sin 6/X. If we accepted this description of the situation, we
could find the resultant amplitude as a function of 8 by construct-
ing a vector diagram just like those in Fig. 8-19 for the diffraction
grating. It would correspond to putting N = s/As, and
o = 2w Assin 6/A. But, of course, this subdivision into a finite
number of strips is artificial. What we must do is to imagine the
limit of this description as As — 0 and N — . We then have a
continuous variation of phase in proportion to distance across the
slit. The implication of this is that our vector diagram becomes
a smooth circular arc, with the following properties:

1. The angle between the tangents at its two ends is the
total phase difference 2xb sin 6/A.

2. The length of the arc corresponds to the total amplitude
that the slit would provide (for given values of r and 6) if all parts
of the slit could somehow produce their effects in phase with
one another. If the obliquity factor in the Huygens wavelets is
ignored, this arc length is always equal to the amplitude A,
produced (at a given distance r from the slit) for 6 = 0.

The calculation of the resultant amplitude is now a straight-
forward matter. In Fig. 8-23 we indicate the basis of the cal-

Fig. 8-23 Vector diagrams for single-slit diffraction.

27 b sin ¢
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Fig. 8-24 Variation
of amplitude with di-
rection in single-slit
diffraction.

(a= wbsin0/x,
where 6 is the direc-
tion of observation
and b is the slit
width.) (a) Ampli-
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or — value).

(b) Absolute magni-
tude of amplitude.
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culation. For a given value of the total phase difference ¢, the
vector diagram becomes a circular arc of radius R such that

Ao = Ry

The resultant amplitude A under these conditions is the chord
of this arc and hence is given by

A = 2Rsin(p/2)
Thus we have
¢ whsin@

% where 2= "x
This variation of resultant amplitude with direction is thus of the
form (sin &)/c, where a = ¢/2. This function (more formally
identified as a Bessel function of order zero) has a zero whenever
/2 is an integral multiple of =. Its general appearance is shown
in Fig. 8-24(a). In Fig. 8-24(b) it is replotted without regard to
sign, and its close resemblance to the amplitude curve for a
diffraction grating [Fig. 8-20(b)] is then more readily appreciated.

It follows from this analysis that one slit, alone, can give rise
to a diffraction pattern with a system of nodal lines, as shown in
Fig. 8-25. It is essentially like the pattern around the central
(zero-order) maximum of a diffraction grating, rather than a

A= Ao (8-25)

Diflraction by a single slit



Fig. 8-25 Single-slit
diffraction of water
waves. (From the
Jilm *“Ripple Tank
Phenomena,” Part 11,
Education Develop-
ment Center, Newton,
Mass.)
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double-slit pattern. The subsidiary maxima are relatively feeble;
their amplitudes are approximately proportional to the values of
(sin o)/a for a = 3n/2, 57/2, etc., i.e., for ¢ = 3, 5w, etc. (Not
exactly, because the maxima do not occur at precisely these phase
values.) Relative to an amplitude 1 for x = 0, these other maxima
would thus have amplitudes of about 2/37 (0.21), 2/5x (0.13),
etc. (see Fig. 8-24).

Note that the first zeros occur for directions such that the
path difference from the two sides of the slit is just one complete
wavelength. This makes good sense if one imagines the single slit
as being made up of two contiguous slits, each of width 5/2.
The path difference between waves from the centers (or other
pairs of corresponding points) of these two parts is then \/2,
which is the condition for destructive interference. The other
nodal lines for a single slit can be understood in a similar way.

It should always be remembered that all our discussion per-
tains to points of observation that are far from the slit or slits.

Boundary effects and interference



This is particularly important now that we have recognized the
consequences of finite slit width. For, of course, at positions
close to a slit, we see the effect of slit width in a much more direct
way. A portion, of width b, of the incident wavefront is permitted
to pass through, and a strong disturbance exists over this region,
whereas all other points on the far side of the barrier are in the
geometrical shadow. How far away must we go before our descrip-
tion in terms of angles of diffraction takes over? We can establish
a criterion, as follows: The central maximum of the diffraction
pattern of a slit of width b extends over a range of angles =+6,,,
where

. A
sin 6,, = 3

[This is implied by Eq. (8-25).] At a distance D from the slit
(Fig. 8-26), this maximum would define a linear spread equal to
=+ Dtan 6,,. On the other hand, a purely geometrical image of the
slit would always be of width b. Thus the diffraction is dominant
if the following condition holds:

Dtan6,> b

If A is small compared to b, we can put tan 8,, = sin6,, = \/b,
and our condition becomes

B2
b> < (8-26)

&
]
e
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Fig. 8-26 Condi-
tions for Fraunhofer
diffracrion.
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Fig. 8-27 (a) Single-slit diffraction of sound waves

(N = 1.45 cm). (b) Polar diagram of same pattern.
Length of line from O 10 the curve in any direction
gives relative intensity in that direction. (Afier R. W.
Pohl, Physical Principles of Mechanics and Acoustics,
Blackie, London, 1932.)

This important criterion defines the conditions for what is called
Fraunhofer diffraction—the type we have been discussing.

INTERFERENCE PATTERNS OF REAL SLIT SYSTEMS

Having discussed the effects of finite slit width, we are now in a
position to analyze the diffraction or interference patterns (the
terms are essentially interchangeable) of any perforated barrier.
In doing so, however, we shall consider not the resultant ampli-
tude, but the intensity—i.e., the rate at which the resultant wave
delivers energy to a region of a given size at various points. Now
for a wave of a given frequency or wavelength in a given medium,
the power transported by the wave is proportional to the square
of the amplitude. Thus we are essentially concerned with cal-
culating 4% as a function of direction at some given distance
from the diffracting aperture. We shall take the specific cases of
single slit, double slit, and multiple slit (grating).

294 Boundary effects and interference



295

1. Single slit. For a single slit, on the basis of Eq. (8-25), we
have

wbsin @
A

sin o

2
I6) = Iy (——a—> where a =

(8-27)

Figure 8-27 shows a beautiful example of such a pattern, ob-
tained by R. W. Pohl with sound waves. The wavelength \ was
1.45cm (corresponding to a supersonic frequency of about
23 kHz), and the slit width b was 11.5 cm. The second version
of the pattern is a polar diagram; in this the distance measured
from the origin to any point on the curve is proportional to the
intensity in that particular direction.

Once one has recognized that it is A2, rather than A itself,
that provides a measure of the most important quantity—the
energy flow-—one appreciates better how very important the
central maximum is compared to the others. The heights (theo-
retically) of the most important subsidiary maxima, i.e., those
nearest to the central maximum, are only about 59, of the central
one, and about 939, of the total transmitted energy lies between
the zeros on either side of the central maximum. Incidentally, the
squaring of the ordinates in curves like Fig. 8-24(b) gets rid of
the discontinuities of slope at the zeros (satisfy yourself that this
follows from the equations).

2. Double slit. In this case we have a combination of two
effects—the characteristic diffraction pattern of one slit alone,
and the interference between the two slits. The intensity is given
by an expression of the form

. 2
16) = 41, (“i‘%) cos? (g) (8-28)

where a = (wb sin 8)/x and & = (2nd sin 6)/\. Here I, is the
maximum intensity (for § = 0) that would be obtained from one
slit alone. The above equation is based on Eq. (8-22) for two
slits of negligible width, combined with Eq. (8-27).

Careful measurements on a double-slit interference pattern
will reveal this modulation of the basic interference effect by the
single-slit pattern. The slit separation d (measured between
centers) is necessarily larger (and perhaps much larger) than the
width b of an individual slit, so the angular width of the single-
slit modulation is significantly larger than the angular separation
between the interference peaks. If the slits are extremely narrow
compared to their separation, the whole double-slit pattern may

Interference patterns of real slit systems



Fig. 8-28 Double-slit diffraction patterns, showing in-
fluence of widih of individual slit. (a) Acoustic pattern,
with \ = 1.45 cm. (After R. W. Pohl, Physical
Principles of Mechanics and Acoustics, Blackie,
London, 1932.) (b) Optical pattern, with \ = 7300 A.
[From A. P. French, J. G. King, and D. J. Cronin, “An
Interference Fringe Photometer,” Am. J. Phys., 33, 628
(1965).1
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lie within the central maximum of the single-slit diffraction
pattern. Figure 8-28(a) (again from Pohl) is an acoustic inter-
ference pattern obtained under such conditions (b/d = 1/10).
Figure 8-28(b) is an optical double-slit pattern for which b/d =~ %.
The limits of intensity imposed by the single-slit diffraction factor
are nicely indicated in this case.

It is worth commenting on the factor 4 in Eq. (8-28). For
6 = 0 the intensity due to two slits is four times as great as that
due to one slit by itself. Clearly, however, the total amount of
energy transported by waves through two slits is only twice that
passed by one slit alone. The augmentation by a factor of more
than 2 in some directions is offset by the existence of zero in-
tensity in other directions—along the nodal lines. The interference
is essentially a redistribution of the available energy.

3. Diffraction grating. The appropriate formula in this case
is the combination of Eq. (8-27) with Eq. (8-24). This gives us

sin @\ [ sin(V 8/2) [P

0 = 10(%) [ | &-29)
[You can check that for N = 2 this reproduces Eq. (8-28).] A
quantitative study of the fine details of such a multiple-slit pattern
for mechanical waves (e.g., sound) is not easy; any ordinary

Fig. 829 Intensity pattern of acoustic diffraction grating
(N = 7) for N\ = 1.45 cm. (After R. W. Pohl, Physical Prin-
ciples of Mechanics and Acoustics, Blackie, London, 1932.)
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laboratory contains all kinds of extraneous surfaces and objects
that scatter the waves and give background. Figure 8-29, how-
ever, shows how the main features of the expected pattern are
displayed. This was obtained (by R. W. Pohl) using a grating
of seven slits and sound of wavelength 1.45 cm.

As with the double-slit system, we may note the redistribu-
tion of the available energy. If we ignore the variation of the
factor (sin a/e)?, each principal maximum reaches an intensity
equal to N2 times that due to a single slit. The width of this maxi-
mum is, however, only about 1/N of the separation between
maxima. The combination of these factors gives an integrated
intensity equal to N times that due to one slit alone.

8-1 Two strings, of tension T and mass densities u; and uo, are
connected together. Consider a traveling wave incident on the bound-
ary. Find the ratio of the reflected amplitude to the incident amplitude,
and the ratio of the transmitted amplitude to the incident amplitude,
for the cases u2/u;1 = 0,0.25,1, 4, o,

8-2 Two strings, of tension T and mass densities x1 and u2, are con-
nected together. Consider a traveling wave incident on the boundary.
Show that the energy flux of the reflected wave plus the energy flux of
the transmitted wave equals the energy flux of the incident wave.
[Hint: The energy flux of a wave (the energy density times the wave
speed) is proportional to 42/v, where A is the amplitude and v is the
wave speed.]

8-3 Consider the circuit drawn in the figure. Calculate the value of the
resistance X for maximum power dissipation through it.

8—4 Consider the circuit drawn in the figure. What value of w
produces maximum power dissipation through the resistance R? (Hint:
Consider the impedance of the circuit.)

8-5 A plane wave of sound in air falls on a water surface at normal
incidence. The speed of sound in air is about 334 m/sec and the speed
in water is about 1480 m/sec.
[The appropriate boundary conditions for longitudinal waves are con-
tinuity of wave displacement and wave pressure. The latter is given by
K(0£/3x), where K is the bulk modulus of the medium. (This follows
from Ap = —KAV/V = —KA§/Ax.) Since the wave speed v is
given by (K/p)!/2, the reflection and transmission coefficients are
expressible in terms of p and v only.]

(a) What is the amplitude of the sound wave that enters the
water, expressed as a fraction of the amplitude of the incident wave?
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(b) What fraction of the incident energy flux enters the water?

8-6 (a) You may have observed that water waves advancing toward
shore have their wavefronts almost always parallel to the shoreline,
independent of the direction of the wind. Noting the fact that the
velocity of waves in water decreases as the depth of the water decreases,
use Huygens’ Principle to explain this phenomenon.

(b) To make the analysis of (a) more specific, assume that waves,
initially traveling in the x direction, enter a region in which their
speed v has a systematic variation with the distance y perpendicular to
the direction of travel. (For example, x could be the direction paraliel
to the shore, and y would then be the direction perpendicular to the
shore.) Show that the direction of the waves will begin to follow the
arc of a circle of radius R, such that

[

R = By

8-7 (a) As was developed in the text [Eq. (7-12) p. 212], the velocity
of sound in a gas is proportional to the square root of the absolute
temperature 7. Use this fact, and the result of the previous problem,
to show that when a thermal gradient exists in the vertical direction
(z) sound waves will be turned initially with a radius of curvature

_z2r
" dl/dz
(b) On a still day, the temperature of the atmosphere is found to

decrease more or less linearly with height. Sketch the paths of “rays”
of sound emitted from a source suspended high in the atmosphere.
Assuming that the velocity of sound at ground level is 1100 ft/sec,
estimate the horizontal distance at which an airplane flying at 15,000 ft
first becomes audible to an observer on the ground, if the temperature
decreases by 1° C per 500-ft increase in altitude.

8-8 (a) A police car, traveling at 60 mi/hr, passes an innocent
bystander while sounding its siren, which has a frequency of 2000 Hz.
What is the over-all change of frequency of the siren as heard by the
bystander?

(b) The police car continues down the street, the far end of which

is blocked by a high brick wall. What does the bystander hear when
the acoustic reflections from the wall are superposed on the sound
coming directly from the siren?
8-9 Sodium atoms, thermally excited, are found to emit light of
characteristic wavelength A = 6000A. The radiation from a sodium-
vapor source is found not to be perfectly monochromatic, but contains
a distribution of wavelengths in the range (6000 4+ .02);\. If this
broadening of the sodium line is due predominantly to the Doppler
effect (which it is), determine the approximate temperature of the
sodium source. (Speed of light = 3 X 108 m/sec).
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8-10 Lord Rayleigh, in his famous treatise The Theory of Sound, (Vol.
11, Sec. 298) noted that an observer, if he were to travel away from a
musical performance at exactly twice the velocity of sound, “would
hear a musical piece in correct time and tune, but backwards.” Though
this certainly seems plausible, think out in detail what is involved in
this amusing result.

8-11 Sound waves travel horizontally from a source to a receiver.
Assume that the source has a speed u, that the receiver has a speed v
(in the same direction) and that a wind of speed w is blowing from the
source toward the receiver. Show that, if the source emits sound of
frequency »o, and if the speed of sound in still air is ¥, the frequency
recorded by the receiver is given by

V—-—v+w

V=”°V—u+w

Note that if the velocities of source and receiver are equal, the existence
of the wind makes no difference to the observed frequency of the
received signal.

8-12 The text (pp. 275-276) develops the theory of the Doppler effect
for a moving source, with a distant observer at a direction 6 to the
motion of the source. It is shown [Eq. (8-14)] that the received
frequency is given by

44

1 — ucosé
v

v(6) =

(a) Show that, if the source is at rest, and the observer has the
velocity — u, so that the relative velocity of source and observer is the
same as before, the frequency detected by the observer is given by

V(6) = v (1 + @)

(b) Find the approximate difference between » and ». It is a
matter of great importance in physics that for light waves in vacuum,
in contrast to sound waves in air, there is no such difference; only the
relative velocity of source and observer appears in the result. This is
one of the features built into Einstein’s special theory of relativity,
according to which there is no identifiable medium with respect to
which the velocity of light has some characteristic velocity.

8-13 A source of sound of frequency »o moves horizontally at constant
speed u in the x direction at a distance # above the ground. An
observer is situated on the ground at the point x = 0; the source
passes over this point at 7 = 0.

(a) Show that the signal received at any time fg at the ground
was emitted by the source at an earlier time #s, such that
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: u2 _ lh2 u2 221/2
—-U—2 ts—l}z—z 1—32— + utg

(b) Show that the frequency of the received signal, as a function
of the emission time tg, is given by

V0
u utg

1+ (% + w2tg2)l’2

v(ts) =

(The expression for v as a function of the reception time tg is con-
siderably more complicated.)

(¢) The frequency of received sound from such a source is
observed to be 5500 Hz when the source is far away and approaching;
it falls to 4500 Hz when the source is far away and receding. Further-
more, the frequency is observed to fall from 5100 Hz to 4900 Hz during
a time of 4 sec as the source passes overhead. Deduce the speed and
the altitude of the source. Approximate freely to simplify the algebra.
(This kind of analysis is used to infer speed and altitude for earth
satellites from the variation with time of the received frequency of a
radio transmitter in the satellite.)

8-14 (a) A source, S, of sound of wavelength X\ is placed a small
distance d away from a flat, reflecting wall. Show that this gives rise to
an interference pattern of just the kind that would be caused if the
wall were absent and a second source, S’, were placed a distance d
behind the wall. Prove that this “image source” would have to be 180°
out of phase with S, and consider what implications this has for the
resulting interference pattern, as compared with that due to a normal
double-source arrangement in which the two sources are in phase.

(b) If a hi-fi speaker is placed 1 ft from a wall, what range of
audio frequencies will produce two or more interference fringes in a
room of moderate size (e.g., 12 ft X 18 ft)? If you were sitting 12 ft
from the speaker, with your head 3 ft from the wall, what frequencies
would tend to be suppressed by the interference effects?

8-15 Consider an N-slit diffraction grating with slit spacing 0.05 mm
and A\ = 5000 A.

(a) Approximately how many orders of principal maxima are
there?

(b) What is the ratio of the two amplitudes 4 and A4o? (Ao is
the amplitude which would result if N = 1.)

(c) Show that your answer to part (b) reduces to the result
derived in the text for a two-slit system if N = 2.

(d) If N = 100 find (approximately) the ratio of the amplitude
of the first subsidiary maximum to that of the principal maximum.

8-16 A Fraunhofer diffraction experiment is performed using light of
wavelength 5000 A with a slit of width 0.05 mm.
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(a) How far away must the detecting screen be?

(b) If a two-slit system is used, what is the ratio of intensities of
the first side-maximum to the central maximum if the distance between
the centers of the (identical) slits is 0.1 mm? 0.05 mm?

8-17 Sound of frequency 2000 Hz falls at normal incidence on a high
wall in which there is a vertical gap, 18 in. wide. A man is walking
parallel to the wall at a distance of 50 ft from it on the far side. Over
what range of distance would he hear an intensity of sound more than
509% of the maximum value? More than 5%,?

302 Boundary cffects and interference



A short
bibliography

An introduction to mechanical vibrations and waves may, of course,
be found in many textbooks of general physics. Some of the older
books, in particular, have good and interesting discussions of sound
waves and music (for example, Lloyd W. Taylor, Physics, The Pioneer
Science, Dover, New York, 1959, or R. A. Millikan, Duane Roller,
and E. C. Watson, Mechanics, Molecular Physics, Heat, and Sound,
M.L.T. Press, Cambridge, Mass., 1965, both reprints of books first
published considerably earlier). The well-known affinity between
scientists and music is apparent in these and many other sources.

The following annotated list comprises books that relate either
to individual topics or to the whole scope of the present text. In
general these references are comparable in level to the present book,
although some of them are definitely more advanced and many of
them treat individual topics in far greater detail.

Backus, John, The Acoustical Foundations of Music, Norton, New
York, 1969.
A book about the physics of musical sound, based on a uni-
versity course for musicians, not scientists.
Barker, J. R., Mechanical and Electrical Vibrations, Methuen Mono-
graph, Methuen, London, 1964 (also Wiley, New York).
A rather thorough analytical discussion of oscillatory systems,
written from a theoretical engineering standpoint.
Benade, Arthur, Horns, Strings and Harmony, Doubleday, Science
Study Series, New York, 1960.
A loving account, in delightfully simple terms, written by a
physicist who is also a dedicated musician. Almost no mathe-
matics, but rich in physical ideas and results.
Bishop, R. E. D., Vibration, Cambridge University Press, New York,
1965.
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A very fine general account of vibrations, with special reference
to engineering problems. Based on the 133rd set of the re-
nowned Christmas Lectures at the Royal Institution, London.
Bland, D. R., Vibrating Strings, Library of Mathematics Series,
Routledge and Kegan Paul, London, 1960.
A detailed mathematical analysis of vibrations and waves on
strings, including some consideration of resistive and dis-
sipative effects.
Booker, H. G., 4 Vector Approach to Oscillations, Academic, New
York, 1965.
A book about the complex vector method for the analysis of
oscillatory motion, showing to full advantage the power and
the scope of this approach.
Braddick, H. 1. J., Vibrations, Waves, and Diffraction, McGraw-Hill,
New York, 1965.
An account that moves quickly through much the same set of
theoretical topics as in the present book, but goes further,
especially in the discussion of Fourier analysis and the math-
ematical basis of Huygens’s principle.
Brillouin, L., Wave Propagation in Periodic Structures, Dover, New
York, 1953.
A classic work on the theory of vibrations and waves in lattices,
analyzed from the standpoint of circuit theory and electrical
engineering but with applications to basic problems in the
atomic theory of solids.
Coulson, C. A., Waves, Oliver & Boyd, Edinburgh, 1941 [also Wiley
(Interscience), New York].
A general introduction to the mathematical theory of various
kinds of waves and normal-mode problems.
Crawford, F. S., Waves (Berkeley Physics Series, Vol. 3), McGraw-
Hill, New York, 1968.
A very thorough and rich discussion of the physics of waves,
beginning with the normal-mode problem. It concerns itself
extensively with electromagnetic waves and optics, as well as
with mechanical waves. It is packed with sophisticated things
but also with ingenious suggestions for many delightful home-
and-kitchen experiments. A real tour de force.
Den Hartog, J. P., Mechanical Vibrations, McGraw-Hill, New York,
1956.
A well-known and excellent textbook about vibrational prob-
lems from an engineering standpoint.
Feather, N., Vibrations and Waces, Edinburgh University Press,
Edinburgh, 1961 [also Penguin Books, London (1964)].
An extended essay, rather than a textbook, with many in-
teresting pieces of incidental fact and comment. There are

304 A short bibliography



quite detailed discussions of mechanical vibrations, sound and
water waves, and the phenomena of interference and diffraction.

Jeans, J. H., Science and Music, Cambridge University Press, New

York, 1961.
A book intended primarily for the nonscientist. Almost no
mathematics but much detail about the production and hearing
of musical sounds.

Josephs, J. J., The Physics of Musical Sound, Momentum Books, Van

Nostrand Reinhold, New York, 1967.
Quite similar in scope to the books by Benade and Jeans but
at a higher technical and theoretical level as far as the physics
is concerned.

Kinsler, L. E., and Frey, A. R., Fundamentals of Acoustics, Wiley,

New York, 1962,
A book that closely links theory and practice in the production,
transmission, and reception of sound. Aimed primarily at
acoustic engineers.

Lindsay, R. B., Mechanical Radiation, McGraw-Hill, New York, 1960.
A detailed theoretical treatise on mechanical waves and acous-
tics. Quite advanced, and rich in details.

Magnus, K., Vibrations, Blackie, London, 1965.

A book about the mathematical analysis of mechanical vibra-
tion, with considerable attention to nonlinear systems,

McLachlan, N. W., Theory of Vibrations, Dover, New York, 1951.

A concise theoretical introduction to the analysis of linear and
nonlinear mechanical systems.

Morse, P. M., Vibration and Sound, McGraw-Hill, New York, 1948,

An authoritative theoretical account of vibrating systems and

the transmission and scattering of sound. Well above the level

of the present book.
and Ingard, K. U,, Theoretical Acoustics, McGraw-Hill, New
York, 1968.
This book is basically a much expanded modern revision of the
preceding reference.

Pain, H. J., The Physics of Vibrations and Waves, Wiley, New York,

1968.
In its general coverage this quite resembles the present text.
It is more purely theoretical (and somewhat more advanced in
this respect) and contains some explicit discussion of electro-
magnetic wave theory.

Pearson, J. M., A Theory of Waves, Allyn & Bacon, Boston, 1966.

A fairly sophisticated introduction to the formal theory of
mechanical and electromagnetic waves.

Pohl, R. W., Physical Principles of Mechanics and Acoustics, Blackie,

London, 1932,
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A book that ties the development of the subject to observation,
experiment, and demonstration in every possible way. There
is very little mathematics, but the book should not be called
elementary, for it is packed with physics. Based upon its
author’s renowned lectures at the University of Gottingen.,
Rayleigh, Lord (J. W. Strutt), The Theory of Sound, Dover, New York,
1945.
The great classic theoretical treatise on this subject. Vol. I is
concerned with vibrating systems, Vol. II with waves in fluids.
The mathematical level is high, but the book is full of fascinat-
ing observational details.
Stephens, R. W. B, and Bate, A. E., Wave Motion and Sound, Edward
Arnold & Co., London, 1950.
An interesting and extremely well organized textbook for a
self-contained course on mechanical vibrations and acoustics.
Somewhat above the level of the present text. It links the
subject very effectively to practical applications.
Stoker, J. J., Nonlinear Vibrations, Wiley (Interscience), New York,
1950.
This book begins where the present book leaves off. It is con-
cerned exclusively with the mathematical analysis of vibrating
systems. For the ambitious reader only.
, Water Waves, Wiley (Interscience), New York, 1957.
A very detailed and quite advanced theoretical study of water
waves of all kinds.
Sutton, O. G., Mathematics in Action, Harper Torchbooks, New
York, 1960.
An informal and delightful introduction to the use of mathe-
matics in physical problems. It is listed here because it contains
a very nice chapter entitled “An Essay on Waves.”
Temple, G., and Bickley, W. G., Rayleigh’s Principle, Dover, New
York, 1956.
An introduction to the detailed mathematical analysis by which
the characteristic frequencies of complicated mechanical sys-
tems can be obtained from a calculation of the total energy.
(Rayleigh’s principle itself states that the lowest vibrational
mode of an elastic system has that distribution of kinetic and
potential energies which makes the frequency a minimum.)
Timoshenko, S., Vibration Problems in Engineering, Van Nostrand
Reinhold, New York, 1937.

A well-known older treatise on the detailed application of
mathematical principles to mechanical vibrating systems.
Towne, D. H., Wave Phenomena, Addison-Wesley, Reading, Mass.,

1967.
A detailed discussion of wave propagation, with a strong
emphasis on electromagnetic waves and optics. There is a
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good mix of theory and experiment. Significantly above the
level of the present text.
Waldron, R. A., Waves and Oscillations, Momentum Books, Van
Nostrand Reinhold, New York, 1964.
A good brief survey of mechanical and electromagnetic waves
in theory and experiment. Includes a discussion of guided
waves.
Wood, A., Acoustics, Blackie, London, 1940.
A very thorough general account of theory and observation in
acoustic vibrations and waves. It is a scholarly book in the
best sense, replete with details accumulated by the author
during a long and dedicated study of the subject.
(rev. by J. M. Bowsher), The Physics of Music, Methuen,
London, 1961.
A book very similar to that of Jeans, but with a stronger em-
phasis on details and technicalities. All such books acknowledge
their indebtedness to the great nineteenth-century treatise, The
Sensations of Tone, by H. von Helmholtz.
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Answers to problems

CHAPTER 1
14 () ry = V7, tan by = \/3/2; r2 = 7,
B2 = —20, (tan 82 = —44/3).
1-9 Yes; it is worth almost 21 cents.
I-10 C = (4% 4+ B®)Y2; tana = —B/A.
I-11 @) A =5cm; w = 2rsec™!; a = +x/2. (b) (For
a = 4+7/2) x = 5/3/2cm; dx/dt = 5w cm/sec; d®x/dt? =
—10/372 cm/sec?.
1-12 (@) A = 150/mcm; w = w/3sec™!; a = ©/6.
(b) x = —75\/3/r cm; dx/dt = —25cm/sec; d2x/dt® =
257/4/3 em/sec?.
CHAPTER 2
2-1 Values of (4, @) are (a) /2, —=x/4; (b) 1, —27/3; (c) V13,
—tan~1(2); (d) 2 — V2, 3x/4.
2-2 A ~ 0.52mm; § ~ 33.5°.
2-3 1 sec.
24 (@) v = 1sec™1; (b) 6.25sec™1; (c) 0.49sec— 1.
CHAPTER 3

3-1 k = 25dyn/cm.

3-2 (@) To = 2n(m/k)V2; (b) To/\/2; (c) /2 To.
3-3 @y =25cm; (b) 1.25cm.
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34 (@) w = (g/DV2
3-5 2r(2L/3g) V2.
3-6 2n(d/g)V2.
3-7 y = 19/20; tension = 5 X weight of object.
3-8 (a) 0.25 mm; (b) 0.23 m.
3-9 (a) 22 cm radius, 360 kg; (b) 66 sec.
3-10 (a) 5.9 X 1011 N/m2; (b) b/a; (c) 1.5.
3-11 (@) w = (YpA/mD1/2,
3-14 (b) 4 N-sec/m; (b) Q = 1.
3-15 (@) Qo = 5127/log. 2; (b) 2Q0; () Q = 12,
b = 0.025 kg/sec.
3-16 (a) 874v3A2Ke2/c3; (b) mc3/4nwvKe?; (c) (Q log, 2)/2m;
(d) Q >~ 2.5 X 107; half-life ~ 5 X 1079 sec.
3-17 (d) 2x(2h/g)1/2.
3-19 (¢) T./T, = (1 — lo/DV'2; (d) x(r) = Ao cos(Qk/m)1/?t,
y(0) = Ao cos[2k(I — lo)/ml'/2t.

CHAPTER 4

4-3 (@ T = n/5v/3 sec; (b) 1.3 cm.

44 (b) (35g/36M)V/%; () 3(h/®)V%; ) Q = 3; () 6 = w/2;
() 0.904.

4-5 (b) 15.7cm; (c) wo == 0.017 sec—L.

4-6 (d) About 200 A.

4-8 (b) A = Fo/mw(w? +7H)12; tan § = —7/w.

4-9 (a) ThwA2.

4-11 (a) 1.3 cm, 130°; (b) 0.063 J; (c) 0.30 W.

4-12 (a) 19.8 sec—1; (b) 1.5 cm; (c) 0.086 W.

4-13 (a) wo = 40sec™!, Q = 20; (b) 16.

4-14 (a) Q = 25; (b)Y = 0.04wo; (c) 0.087; (d) v/ 2wo;

() V2 Q; () P; (8) Eo.

4-15 (a) 1.005w1; (b) Q = 5 (very nearly); (c) 0.2(mk)/2 (approx.).
4-16 (@) wo = (LC)~V2; (b)Y = 1/CR; (c) P,, = I0%R/2.
4-17 (@) 27 X 1073 73; (b) 103 J; (c) 10— sec.

CHAPTER 5
5-2 (a) 1.27 sec, 1.23 sec; (b) 40 sec (approx.).

— 2 1/2
e R g

If ke? = kakp, o' = [(ka + ks + ke)/m1Y2, " = (ke/m)V/2.
5-5 w = wo(l = &)~ V/2,

5-6 (@) V/6 sec, 32/2 sec; (¢) 3v2(v/3 + 1)/2 sec.

5-7 () 2.29sec™L; (d) ke/ko = 1.52.

5-8 (@) (g/L)'%; [(g/L) + (2ka®/mL2H)]V2,

529 (d) (V2 = 1.91.
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CHAPTER 6

CHAPTER 7

5-10 In “slow” mode, amplitude ratio (upper/lower) =
“5 - 1)/2; in fast mode, ratio = (/5 + 1)/2.

5-11 (b) w* = [(k/2M) + (g/D] £ [(k/2M)2 + (g/D%]V/2,
5-13 (a) Period = 27 (2ml/3T)V/2; (c) w = (3T/ml)'/2.
5-15 () 2 — V2)%w0, v/ 200, 2 + /2) 200, where
wo = (T/mhV2,

5-16 o = cos™I[l — (02/2w02)]; C = h/sin[a(N + D).

6-1 (@) v1 = 10sec™!; (b) » = 50, 100, 150, etc., sec—! (all
integer multiples of 50 sec—1).

6-2 vy =m1(n=12273),v3%=T/4AML; vz = 0.84v,,
1.55v1, 2.04v;.

6-5 w = w(T/LM)/2,

6-6 (@) wn = [2n — Dx(Y/p)'/21/L; (B) N = L/(n — 3);
@WOx=Ln—%+k)/Cn—-1 *k=0,...,n— 1,...).
6-9 (b) A1 = 10, A2 = 10 (1 — 1/4/2) =~ 3 .

6-10 (a) v, = nc/2L; (b) (1) 21, (2) 15 cm.

6-11 (a) (A2n2x2T)/4L; (b) (412 + 9432)w2T/4L.

6-12 (a) TL{[1 + (h/L)2]V2 — 1} ~ 2Th2/L; (b) every

2 (ML/T)V/2 sec.
6-14 y(x) = > w=1 B, sin(nwx /L), where
8AL2 3
@ B, = ‘ AL2/(nm)3  nodd
0 n even;
(b) B =A4,B, =0,ifn = 1;
1)+ D2
©) (1)—4/‘ nodd
w(n? — 4)
B, =
A/2 n = 2
0 neven, n % 2,
6-15 y(x,8) = Y. 7_1 C, sin(nwx/L), where
2 3
(a) Cn — {SAL COS("wlt)/(mr) n odd
0 neven;
2 ¢ 4.3
®) C, = {SBL sin(nw1)/n*r3w; nodd
0 neven

(w1 = angular frequency of lowest mode).

7-2 @A =03cmA=4cm, K =025cm™!, » = 25 sec™,

T = 0.04 sec, v = 100 cm/sec; (b) 157 cm/sec.
7-3 & = 0.003 sin 27[(x/600) + 57)].
74 (a) 3m; (b) 72°.
7-5 (a) 224 m/sec; (b) 2.24 m;

©) y(x, ) = 0.02sin(2.80x — 62.8¢ + 0.52).
7-6 (a) 10m; (b) y = A sin(3wx/L) cos(30r?).
7-7 y = zero; dy/dt ~ 6 m/sec.
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7-8 (a) » = 1.5 Hz;
16
bB)YN=——m,n=1,2,3,... for positive moving wave,
16n — 1
16 . .
——m,n = 0,1,2,3,. .. for negative moving wave;
16n 4+ 1
(c) t = +8/5m/sec, etc., v = —24 m/sec, etc.;

(d) insufficient data.
7-12 (b) vy,(max) = 4 m/sec; (c) T = 32 N;
() y(x, ) = 0.2 sin 27 (8¢t + x/5).
7-13 (b) v = u/2, direction = +x;

© W __ 4w "

dt|io (b2 + 4x?)?

7-16 (a) 8 X 10~% sec; () pax = 12.5 m/sec, during opening;
@t =12 X102 sec.

7-17 (a) y(x, 1) = 24 (X '>><sin<9x 19:)-
- ) = 24cos|{= — = Sx——=t);
) yix “\27 2 20 2

(b) 1 m/sec; (c) 2z m.

7-18 (c) 50 cm,

7-20 (c) 28 m/sec ~ 63 miles/hr.

7-21 (@) N\, = 2I(N + 1)/n; w. = 2wo sin[nr/2(N + 1];
(b) vp(”) = wuhn/27,

. |+ Dr
vy(n) = [lwo(N + 1)/7] Ism [—Z(N . 1)]

. [ nm ]l
— Ssimn|——--—-¢"
2(N + 1)

8-1 gi/f1=1,40, =% —1; f2/f1 = 2,%,1,3,0.
8-3 X = R for maximum dissipation.
84 w = (LC)~'2 for maximum dissipation, when L, C, R are
given.
8-5 (@) 5.5 X 10—¢; (b) 1.1 X 1073,
8-7 (b) nearly 20 miles.
8-8 (a) total frequency drop = 320 Hz.
8-9 T ~ 900°K.
8-12 (b) »(8) — v'(6) == wo(u cos 6/v)2.
8-13 (c) speed ~ 0.1v = 110 ft/sec; altitude =~ 1100 to 1200 ft.
8-14 (b) All audio frequencies above about 1300 Hz; integer
multiples of (approx.) 2200 Hz.
8-15 (a) 100; (b) A/Ao¢ = sin(100xN sin 6)/sin(100x sin 6); (d) .
8-16 (a) a distance much larger than 5 mm;
(b) for d = 0.1 mm, the ratio is roughly 0.44;
for d = 0.05 mm, about 0.05.
8-17 I/I.« > 0.5 for about 8 ft each side of maximum;
I/I,,x > 0.05 for about 16 ft each side.
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Index

Adiabatic compression, 59, 176

Air, elastic moduli of, 59, 178
spring of, 57

Air columns, 57, 174

Amplitude (def), 6

Anderson, O. L., 146, 147

Backus, J., 175, 303
Baker, B. B., 269

Ball, R., 252

Barker, J. R., 303
Barnes, R. B., 152
Barsley, M., 18
Barton, E. H., 87
Barton’s pendulums, 87, 88, 92
Bate, A. E., 306
Beats, 22, 122, 215
Benade, A., 175, 303
Bergmann, L., 186
Bernoulli, D., 135, 168
Bernoulli, J., 135
Beyer, R. T, 244
Bickley, W. G., 306
Bishop, R. E. D,, 3, 303
Bland, D. R., 304
Bloch, F., 110
Booker, H. G., 304
Bouasse, H., 77

Boyle, R., 57

Boyle’s law, 58
Braddick, H. J. J., 304
Brillouin, L., 136, 304
Bulk modulus, 56, 176
Bunsen, R. W., 107

Characteristic impedance, 262

Chladni, E. F., 188

Chladni figures, 187, 188

Churinoff, G. J., 86

Coherence, 280

Complex exponentials, see Exponential,
complex

Complex numbers, 10

Convective derivative, 227

Copson, E. T., 269

Coulson, C. A, 304

Coupled oscillators, 120, 124, 127, 136

forced, 132

Crawford, F. S., 304

Critical damping, 70

Cronin, D. J., 296

Crystal lattice, 151

Cut-off, 234

Damped oscillations, 62
David, E. A., 7
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Degeneracy, 184 Hudson, A. M., 185

Den Hartog, J. P., 304 Huygens, C., 267, 268

Diffraction, single-slit, 288 Huygens’ principle, 267

Diffraction grating, 28, 284 use of, 270, 275, 280

Dispersion, 230

Doppler effect, 107, 274 Impedance

Double slit, 280, 295 characteristic, 262

electrical, 261

Eddington, A. S., 200 mechanical, 259, 262

Elastic moduli, 46, 55, 58, 176, 210 Impedance matching, 263

Elasticity, 41, 45, 55, 57, 151, 176 Ingard, K. U., 305

Energy, in progressive wave, 237 Interference, 281, 284, 294
of harmonic oscillator, 42, 66 Interference patterns, 282, 284, 285, 289, 296

Energy densities, 238 Isothermal compression, 59

Energy flow in wave, 241, 246, 295

Energy transport by wave, 241 Jeans, J. H., 175, 305

Euler, L., 14 Jenkins, F. A., 106

Euler’s formula, 14 Josephs, J. J., 305

Exponential, complex, 13, 14
use of, 21, 43, 64, 82

Exponential decay, 66 Kelvin, Lord, 118

King, J. G., 86, 296
Kinsler, L. E., 305

Feather, N., 304 Kirchhoff, G., 107, 269

Feynman, R. P., 14
Forced vibrations, 78, 83, 96, 168

Fourier, J. B., 5, 190 Lagrange, J. L., 190
Fourier analysis, 168, 189, 191, 218 Laplace, P. S. de, 245
Fourier synthesis, 195, 222 Laplacian, 245
Fourier’s theorem, 5, 136, 190, 218 Leighton, R. B., 14
Frank, N. H., 145 Lindsay, R. B., 244, 305

Fraunhofer, J. von, 106 L?ssaJ:ous, J. A, 3S
Fraunhofer diffraction, 293 Lissajous figures, 35, 36, 38, 45
Fraunhofer lines, 106 Longitudinal oscillations, 57, 60, 144,

French, A. P., 296 ‘ 179, 174
Fresnel, J. A., 267 Longitudinal waves, 210, 264

Frey, A. R, 305
Mach number, 278

Galilei, G., 166 Magnus, K., 305
Gas, elasticity of, 59, 176 Martin, W. T., 95
Geneva, Lake of, 75 McCurdy, E., 229
Gravity waves, 233 McLachlan, N. W., 305
Group velocity, 233 Miller, D. C., 162, 168, 215
Mode, see Normal modes

Harmonic motion, see SHM Moduli, elastic, 46, 48, 55; (tabulated), 47,
Harmonic oscillator, see Oscillator, 56

harmonic Momentum of wave, 243
Helmholtz, H., 269 Morse, P. M., 305
Herb, R. G., 108
Hooke, R., 2, 40, 41 Nodal lines, 281, 291
Hooke’s law, 40, 41, 42 Normal frequencies, 126, 129, 141, 165
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Normal modes, 119, 122, 129, 139
of continuous string, 162
degeneracy of, 184
of loaded string, 139, 141, 147
of membranes, 181
orthogonality of, 196
properties of, 141, 147
of rods, 170
spectrum of, 178
superposition of, 124, 167
of 3-dimensional system, 188
and traveling waves, 202

Organ pipes, 175
Orthogonality, 195
and normal modes, 196
Oscillations
free, damped, 62
undamped, 41, 48, 51, 54, 60
longitudinal, 57, 60, 144, 149, 170
transverse, 136, 139, 147, 162, 181
Oscillator
anharmonic, 110
damped, 63, 67
energy of, 66
forced
damped, 83, 96
power input, 96
undamped, 78
harmonic, 41, 43
damped, 62
energy of, 42, 66
overdamped, 68
torsional, 54
Oscillators, coupled, see Coupled oscillators
Overdamped oscillator, 68

Pain, H. J., 305
Pearson, J. M., 305
Pendulum

rigid, 51

simple, 49, 51

driven, 81, 87

Pendulums, coupled, 121, 124

driven, 132
Periodicity, 3, 6
Phase angle, 6, 80, 84
Phase lag, 80, 84, 89
Phase velocity, 233
Pierce, J. R., 7

315 Index

Pohl, R. W., 267, 294, 297, 305
Polarization, 264

Power input to resonant system, 96, 98
Poynting, J. H., 36

Principal maxima, 287

Pulses, see Wave pulses

Purcell, E. M., 110

Pythagoras, 162

Q, 67, 89, 91
Quality factor, see Q

Radiation pressure, 243
Rayleigh, Lord (J. W. Strutt), 306
Reflection, 253
partial, 256
Refraction, 270
Reissner, E., 95
Resonance, 77, 80, 89, 133, 169
electrical, 102
magnetic, 109
nuclear, 108
optical, 105
Resonance parameters, 91; (table), 105
Resonance width, 89, 98, 100, 101, 107,
109, 110
Resonant frequency, 87, 91, 97, 98, 133, 169
Rigidity modulus, 55, 56
Ripple tank photographs, 267, 273, 277,
282, 289, 292
Rods, speed of sound in, 210
vibration of, 62, 170
Rosenfeld, J., 23, 25, 26, 38, 63, 88, 92,
96, 122, 284
Rossi, B., 269
Rotating vectors, 7, 10
Rowland, H. A., 107
Runk, R. B., 146, 147

Sala, O., 108
Sands, M. L., 14
Sears, F. W,, 255
Seiche, 74
Shear modulus, 55, 56
SHM, 5,7, 15
angular, 52, 54
damped, 62
of floating objects, 49
geometric representation, 8, 44



of liquid column, 53
of pendulums, 51
SHM'’s, superposed
different frequencies, 22
equal frequency, 20, 27, 44
parallel, 20, 22, 27, 37, 281, 285
perpendicular, 29, 30, 35, 37
Shock waves, 277, 279
Simple harmonic motion, see SHM
Single slit, 288, 295
Slater, J. C., 145
Snell’s laws, 270
Snowden, S. C., 108
Sonic boom, 279
Sound, 57
speed of, 209; (table), 210
Spring, vibration of, 60
Standing waves (stationary waves), 164, 189
Starling, E. H,, 4
Stephens, R. W. B., 306
Stoker, J. J., 306
Strain, 46
Straub, H., 4
Strength, tensile, 47
Stress, 46, 55
String, continuous
forced vibration of, 168
and Fourier analysis, 189, 193
normal modes of, 162, 167, 189
progressive waves on, 202, 207
String, loaded, 136, 147
cut-off phenomena in, 234
Stull, J. L., 146, 147
Superposition, 19, 135
of normal modes, 124, 135, 167, 189
of progressive waves, 213, 232, 280
of SHM’s, 20, 22, 27, 29, 35, 37, 281, 285
of wave pulses, 228
Sutton, O. G., 306

Talmud, 76

Taylor’s theorem, 13

Temple, G., 306

Tensile strength, 47

Thompson, S. P., 268

Thomson, J. J., 36

Timoshenko, S., 306

Torsional oscillator, see Oscillator
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Towne, D. H., 306

Transients, 92

Transverse waves, 204, 208, 213, 264
Tucker, W. S., 36

Undulation, female, 18

Van Bergeijk, W. A., 7
Vector diagrams, 286, 290
Velocity resonance, 97
Vinci, Leonardo da, 229

Waldron, R. A., 307
Waller, M., 187
Wave equations, 209, 228, 245, 246
Wave number, 214
Wave pulses, 216, 224
Fourier analysis of, 219
motion of, 223
reflection of, 253, 256
superposition of, 228
Waves, 201
energy in, 237
energy transport by, 201, 241, 246, 295
longitudinal, 210, 264
momentum flow in, 243
and normal modes, 202
progressive, 164, 202, 207, 230
speed of, 164, 204, 210, 212, 233
standing (stationary), 164, 189
superposition of, 214, 232, 280
transverse, 204, 208, 213, 264
2- and 3-dimensional, 244, 265
White, H. E., 106
Width, see Resonance width
Wiener, N., 160
Wilberforce, L. R., 128
Wilberforce pendulum, 128
Wilson, H. A., Jr., 280
Wollaston, W. H., 107
Wood, A., 77, 307

Young, T., 46
Young’s modulus, 46, 48, 56, 62, 151,
170, 210

Zemansky, M. W, 255



