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Abstract
The localization of the elastic potential energy associated with transverse and longitudinal
waves in a stretched string is discussed. Some misunderstandings about different expressions
for the density of potential energy encountered in the literature are clarified. The widespread
opinion regarding the inherent ambiguity of the density of elastic potential energy is criticized.
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(Some figures may appear in color only in the online journal)

1. Introduction

A serious confusion exists in the minds of scientists and
in the literature concerning the density of potential energy
associated with waves in a strained string. Some authors
claim that the energy density in a string cannot be uniquely
specified. Different expressions for the density of elastic
potential energy have been suggested and discussed in several
recently published papers [1, 2, 4]. The situation is certainly
inadequate because the paradigm of classical mechanics
leaves no room for such ambiguities and uncertainties.

This confusion originates from the calculation of the
potential energy stored in a string in a well-known classic
textbook of Morse and Feshbach [5]. Unfortunately, the
results of this calculation are accompanied in [5] by erroneous
comments—one can encounter misconceptions even in such
reputable books. Comparing two different expressions for the
elastic potential energy, Morse and Feshbach come to the
conclusion: ‘The potential energy of a string element is not
unique, because the question of the energy of the endpoints
of the element under consideration cannot be uniquely
determined.’ However, this invalid conclusion essentially does
not follow from the calculations presented in [5], as we show
further in this paper.

From the general perspective, the interpretation suggested
in the above citation is unsatisfactory, because it is based on
the notion of the energy stored in a point. Indeed, the elastic
potential energy stored in a medium depends on how the
medium is deformed with respect to its equilibrium state. It

makes sense to consider deformation of a segment (even if
infinitesimal) of the string, but not deformation of a point.
A material point is characterized by its spatial position, but
it has no form or dimensions. Deformation of a material
point does not make sense. When the string is regarded as
a continuous system, that is, as a system with distributed
parameters (in contrast to a system with lumped parameters),
a finite energy (potential or kinetic) can be stored only in a
segment of a string, not in a point. Therefore the notion of
‘the energy of the endpoints’ can hardly have any physical
meaning for a continuous string.

Specifically, the calculation by Morse and Feshbach [5]
is applicable only to the potential energy of the entire string,
but not to the potential energy of its arbitrary segment. This
calculation cannot say anything about the spatial distribution
of the elastic potential energy along the string. Below we show
how this calculation can be modified in order to obtain the
proper unambiguous expression for the true density of the
potential energy associated with a wave in a string.

2. The potential energy of a transversely
distorted string

The elastic potential energy stored in a string depends
uniquely on the instantaneous shape of the string. For
simplicity, we consider planar distortions, which can be
described by two scalar quantities: momentary longitudinal
displacement ξ(x, t) of a string point whose equilibrium
coordinate is x and displacement ψ(x, t) of this point in the
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Figure 1. The string shape ψ(x, t) in a transverse wave at some
instant t and the forces exerted on the segment 1x by its neighbors.

transverse direction. In this section, we concentrate on the
contribution of transverse distortions ψ(x, t) to the elastic
potential energy of the string.

The momentary transverse displacements of the string
points in a wave at a certain time instant t are shown in
figure 1. Let us consider an elementary string segment, which
in the absence of a wave lies between x and x +1x . In
an undisturbed stretched string each segment already stores
some elastic potential energy. However, we are interested
here only in the additional potential energy associated with
a disturbance caused by the wave. The elementary treatments
in most textbooks (see, e.g., [6, 7]) typically assume that the
additional potential energy of the string element which is
disturbed by a transverse wave of small amplitude is given
approximately by the following expression:

1Epot =
1

2
T

(
∂ψ(x, t)

∂x

)2

1x . (1)

This expression is usually treated as the work done by the
approximately constant tension T in additional stretching of
the string element through 1

2 (∂ψ/∂x)21x as the element
is distorted and displaced transversely from the undisturbed
position into the current position with the left end of the
segment 1x located at (x, ψ(x, t)) and the right end—at
(x +1x, ψ(x +1x, t)).

However, it seems natural that one can obtain the
additional potential energy of the string segment 1x also by
calculating the work done by transverse forces, directed along
the displacement of the segment. This alternative approach is
used by Morse and Feshbach [5].

In order to better understand what is actually calculated
in [5], next we consider the transverse forces in more detail.
When there is no wave disturbance, the forces exerted on
the segment 1x by its left and right neighbors have opposite
directions, and their magnitudes are equal to the tension T of
the undisturbed string. In a wave, the left end of the segment
at time t is displaced in the transverse y-direction through
distance ψ(x, t), and its right end—through distance ψ(x +
1x, t). The elastic forces exerted on a segment of a perfectly
flexible string by its neighbors are directed tangentially to the
string, so that at the left end the force makes an angle with the
x-direction whose tangent equals −∂ψ(x, t)/∂x , and at the
right end equals ∂ψ(x +1x, t)/∂x .

In a purely transverse wave the segment does not move
in the longitudinal direction; hence, the x-components of
the left and right forces are always equal to the tension T .

Therefore the transverse force Fy(x) exerted on the left end is
−T ∂ψ(x, t)/∂x and the force Fy(x +1x) exerted on the right
end is T ∂ψ(x +1x, t)/∂x . Hence, the net force 1Fy exerted
on the elementary segment 1x by its left and right neighbors
at the time t is proportional to the second spatial derivative of
ψ(x, t):

1Fy = T

[
∂ψ(x +1x, t)

∂x
−
∂ψ(x, t)

∂x

]
≈ T

∂2ψ(x, t)

∂x2
1x .

(2)
In a vibrating string (a string with a wave), this transverse
net force 1Fy imparts acceleration ∂2ψ/∂t2 to the string
element 1x , whose mass is equal to ρl1x (ρl is the linear
density of the string, that is, the mass per unit length of
the strained but undisturbed string). According to Newton’s
second law, we should equate the net force given by
equation (2) to ρl1x(∂2ψ/∂t2). This produces the standard
wave equation with vT =

√
T/ρl—the speed of transverse

waves. Traveling and standing waves equally satisfy this
equation. We emphasize that the work of the transverse elastic
force 1Fy , equation (2), exerted on the element 1x of the
oscillating string by its neighbors changes the total energy of
the element, that is, both potential and kinetic energies (not
only the potential energy).

The kinetic energy of a given string segment 1x in a
transverse wave is equal to 1

2ρl1x(∂ψ/∂t)2. To calculate
the additional potential energy associated with a given
momentary shape ψ(x, t) of the string on the basis of
work considerations, Morse and Feshbach [5] assumed that
transition of the string from its equilibrium shape ψ = 0 to
the given shape ψ(x, t) is executed quasi-statically through a
sequence of intermediate shapes.1

This sequence of shapes can be described by a function
βψ(x, t) (see figure 1). For the initial (undisturbed) state
ψ = 0 parameter β is equal to zero; all intermediate shapes
correspond to values of β changing from 0 to 1; the final
shape ψ(x, t) is obtained at β = 1. In an intermediate state
the transverse elastic force exerted on the segment by its
neighbors is equal to β1Fy with 1Fy given by equation (2).

To provide a quasi-static transition of the string from
ψ = 0 to ψ(x, t), the net elastic force (2) from the neighbors
must be balanced (in all intermediate configurations) by an
equal and opposite external force that should be exerted
on the string element 1x . In an intermediate configuration
characterized by some value of parameter β, this external
force is equal to −β1Fy , where1Fy is given by equation (2).
The work 1W done by this force while the segment 1x
moves to its position ψ(x, t) in the final configuration of the
string is

1W = −

∫ 1

0
βT

(
∂2ψ

∂x2

)
ψ dβ ·1x = −

1

2
Tψ

(
∂2ψ

∂x2

)
1x .

(3)

1 We note an erroneous statement in [8]: ‘. . . the work done on a string
element to bring it to a particular configuration must be the same whether the
distortion of the string was done quasi-statically or otherwise. Quasi-staticity
is indeed assumed in the derivation for simplicity, yet the result cannot depend
on quasi-staticity.’ This is another misunderstanding about the potential
energy. As already mentioned above, in an oscillating string the work done
by unbalanced transverse forces, equation (2), is equal to the change in the
total energy of the string element.
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However, we claim that this work1W cannot be treated as the
potential energy stored in the segment 1x , and equation (3)
does not describe the actual distribution of potential energy
in the distorted string. Indeed, it is impossible to move the
segment 1x to the final position ψ(x, t) without moving its
neighbors. The required equilibrium of the entire distorted
string in all intermediate positions can be provided only by
exerting appropriate external forces simultaneously on all the
elements of the string. Hence only the total amount of work
done by all these external forces gives the potential energy
stored in the entire distorted string. This energy is calculated
by integrating expression (3) along the whole string (between
fixed endpoints x = a and x = b):

Epot = −
1

2
T

∫ b

a
ψ

(
∂2ψ

∂x2

)
dx . (4)

We note that the total amount of work done by elastic forces
during the quasi-static transition from ψ = 0 to ψ(x, t) is
zero, because the forces of interaction between adjoining
segments of the string are equal and opposite. The potential
energy stored in the whole string, equation (4), is equal to the
work of external forces that are needed to balance the elastic
forces during the quasi-static transition of the string from
the undisturbed state ψ = 0 to ψ(x, t). The expression (4)
was obtained by Morse and Feshbach [5] for the potential
energy associated with a wave in a string. The existence of
two different expressions, (1) and (3), which, being integrated
along the string, give the same value for the potential energy,
was interpreted in [5] as an impossibility to define uniquely
the density of potential energy in a wave. Our claim is that
although equation (4) is certainly correct, the integrand in (4),
which is given by equation (3), cannot be regarded as the true
linear density of the elastic potential energy. We emphasize
that the approach used in [5] allows us to calculate only the
total amount of potential energy stored in the entire string.

The true expression for the linear density should
unambiguously describe actual localization of elastic potential
energy in the string. To obtain this expression from work
considerations, instead of calculating the work needed to move
the given segment from ψ = 0 to ψ(x, t) as is done above
and in [5], we should rather calculate the work of external
forces needed to quasi-statically produce the required final
distortion of this segment through all intermediate distortions.
Indeed, the potential energy stored in an individual segment
of the string depends on distortion of the element, but not
on its absolute position. To perform this calculation, let us
consider the left end of the segment 1x to be immovable,
while its right end is moved transversely through intermediate
positions over the distance (∂ψ/∂x)1x (see figure 1). To
characterize intermediate states of the segment 1x in this
transition, let us introduce, following the calculation by Morse
and Feshbach [5], some parameter β that varies from 0 to 1. In
an intermediate position, when the right end of this segment
occurs at the point (x +1x, β1x(∂ψ/∂x)), we should exert
on the right end a transverse external force βT (∂ψ/∂x),
together with the longitudinal force T , in order to provide
the equilibrium of the segment. The work done by this
external force is equal to the potential energy stored in the

segment 1x :

1Epot =

∫ 1

0
βT

(
∂ψ

∂x

) (
∂ψ

∂x

)
dβ ·1x =

1

2
T

(
∂ψ

∂x

)2

1x .

(5)
We find that this calculation gives just the commonly used
expression (1) for potential energy that can be found in
most textbooks. The true spatial distribution of the additional
elastic potential energy associated with a purely transverse
distortion of a string to instantaneous shape ψ(x, t) is
uniquely described by the linear density εpot =

1
2 T (∂ψ/∂x)2,

which is proportional to the square of the transverse fractional
distortion. For the entire string, this expression certainly gives
the same value Epot of the stored potential energy as the
above-cited calculation by Morse and Feshbach [5]. Indeed,
from equation (4), we obtain through integration by parts:

Epot =

∫ b

a

1

2
T

(
∂ψ

∂x

)2

dx −
1

2
T

[
ψ

(
∂ψ

∂x

)]b

a

. (6)

The integrand in the first term is exactly the commonly used
expression (1) for the linear density of potential energy. When
the string is of finite length and a standing wave is excited, the
boundary term in equation (6) vanishes for either fixed or free
endpoint boundary conditions, because at points x = a and
x = b either ψ = 0 (nodes) or ∂ψ/∂x = 0 (antinodes). When
the string is infinitely long, the boundary term also vanishes
for any disturbance of finite length and durance.

The above discussion refers only to potential energy of
the string associated with purely transverse distortions of
the string.2 We claim that there is no inherent ambiguity
in the potential energy density associated with waves in
a string, contrary to the misleading discussions one can
encounter in the literature since the textbook of Morse and
Feshbach [5]. For example, Rowland [1, 3] claims that the
ambiguity in the potential energy density arises when only
the transverse motion of string elements is considered and
that this ambiguity is removed only by taking into account
the longitudinal motion of elements of the string (‘. . . the
difference is merely an artefact of making the assumption that
longitudinal motion can be neglected’—a quotation from [3]).

Any longitudinal distortion described by some function
ξ(x, t) gives an independent unambiguous contribution to
the potential energy. This contribution is discussed below in
section 4. We emphasize again that the standard expression (1)
refers only to a purely transverse distortion whose shape
ψ(x, t) uniquely defines the corresponding contribution to
the potential energy of the string. The existence of an
unambiguous expression, equation (1), for the potential
energy density associated with transverse distortions is not
related, contrary to the statement in [3], to possible generation

2 Purely transverse waves in a stretched string can exist if longitudinal and
transverse waves are characterized by equal velocities. This condition holds
for a slinky spring, which is often used as a convenient tool for lecture
demonstrations. In the general case, transverse waves excited in a stretched
string produce additional small longitudinal distortions due to nonlinear
effects. Rowland [3] has shown that these small longitudinal distortions can
make a contribution to the potential energy density of the same order of
magnitude as the original transverse distortions. This means that generally
it may be necessary to take these nonlinear effects into account in calculating
the true density of potential energy. If the speed of longitudinal waves is much
greater than the speed of transverse waves, the elastic potential energy in
a wave is almost uniformly distributed along the string by virtue of these
additional longitudinal distortions.

3
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of the longitudinal distortions caused by the internal forces
acting between adjoining segments of a transversely distorted
string.

3. Energy transformations in a transverse wave

For a purely transverse traveling wave of an arbitrary shape
ψ(x, t)= f (x − vTt), equation (1) shows that the linear
densities of kinetic and potential energies are equal to one
another at a spatial point x at a time instant t ; they rise and
fall together. In particular, for a sinusoidal wave ψ(x, t)=

A sin(kTx −ωt) (here kT = ω/vT), both εkin and εpot oscillate
with frequency 2ω, reaching simultaneously their minimum
(zero) values at crests and troughs and maximum values
1
2ρlω

2 A2 (equal for both) at points of zero displacement
ψ(x, t)= 0. Clear qualitative and quantitative descriptions of
the energy transformations in a transverse sinusoidal traveling
wave can be found in many standard textbooks.

The commonly accepted expression (1) for the potential
energy density εpot is consistent with the conservation of
energy. Indeed, the power P(x, t) transmitted by a transverse
wave through some point of the string can be calculated as the
product of the transverse force −T (∂ψ/∂x) exerted at a point
x on the adjoining string element, and the velocity (∂ψ/∂t) of
this point. For a sinusoidal traveling wave this yields:

P(x, t)= −T
∂ψ

∂x

∂ψ

∂t
=

1

2
ρlω

2 A2vT[1 + cos 2(kTx −ωt)].

(7)
We see that P(x, t) equals the total energy density (εkin +
εpot) times the wave speed vT. The momentary value of
P(x, t) oscillates with the frequency 2ω between zero and the
maximum value ρlω

2 A2vT. This unidirectional energy flow
through any point x of the string is constant only on the time
average: 〈P(x, t)〉 =

1
2 T A2ωkT =

1
2ρlω

2 A2vT.
For a standing wave described, say, by the wavefunction

A sin(kTx)sin(ωt), the densities of kinetic and potential
energies are given by the following expressions:

εkin =
1
2ρl A2ω2 sin2(kTx) cos2(ωt), (8)

εpot =
1
2ρl A2ω2 cos2(kTx) sin2(ωt). (9)

At the nodes, kTx = nπ (n = 0,±1,±2, . . .) and εkin is
always zero, while εpot oscillates between zero and the
maximum value 1

2ρlω
2 A2 with the frequency 2ω. At the

antinodes, cos kTx = 0 and εpot is always zero, while εkin

oscillates between zero and the same maximum value
1
2ρlω

2 A2. The density of the total mechanical energy in the
string εkin + εpot also oscillates with time with the frequency
2ω and with an amplitude that is position dependent. (The
amplitude has maximum values at nodes and antinodes and
is equal to zero half-way between them). The energy flow
P(x, t) in the standing wave

P(x, t)= − T
∂ψ(x, t)

∂x

∂ψ(x, t)

∂t

= −
1

4
ρlω

2 A2vT sin(2kTx) sin(2ωt) (10)

is always zero at nodes and antinodes, where sin(2kTx)= 0.
In particular, the flow is equal to zero at the endpoints of the

x x Δ+ x

ξ (   )x t, ξ (   )x t,x Δ+

F(   )x Δ+ xF(   )x

Figure 2. Displacement and distortion of a string segment 1x
caused by a longitudinal wave ξ(x, t) at some instant t and the
forces exerted on the edges of the segment.

string: the energy of the whole oscillating string is conserved.
However, for all points of the string between a node and the
adjoining antinodes this is true only for the time average:
〈P(x, t)〉 = 0 over an integer number of half-periods. During
a quarter period the energy flow is directed from nodes to
antinodes, and during the next quarter period its direction is
reversed. A quantitative description of energy transformations
in a standing wave can be found in [9].

Nevertheless, one can encounter in the literature
misconceptions concerning the energy transfer in a standing
wave. For example, the author of [2] writes: ‘Unlike the
case of a traveling wave, in a standing wave there is no
energy transfer, and the total mechanical energy of each string
element is expected to be stationary.’ This is certainly an
erroneous statement. Adjoining elements of the string interact
and exchange energy even in the standing wave. In a standing
wave the mechanical energy of an individual string element is
not conserved: the energy is obviously transferred back and
forth between nodes and antinodes. Indeed, at the moment
when the oscillating string passes through its equilibrium,
the string energy is wholly kinetic and is localized near the
antinodes. Conversely, a quarter period later the string energy
is wholly potential and is localized near the nodes. This means
that in the meantime (during this quarter period), the energy
of the standing wave travels from antinodes toward nodes
transforming simultaneously from kinetic energy to potential
energy. During the next quarter period, the string energy is
transferred back from nodes to antinodes and transformed
simultaneously from potential energy to kinetic energy.

4. Potential energy of a longitudinally
distorted string

Next we calculate the contribution of longitudinal distortions
to the potential energy of a strained string. This issue is
important not only for the case of purely longitudinal waves,
or when transverse and longitudinal waves are simultaneously
excited by the source. Even when only transverse waves are
excited in a strained string, small longitudinal distortions
may appear by virtue of nonlinear effects (see footnote 2).
These distortions can make a contribution to the potential
energy density of the same order of magnitude as the original
transverse distortions [3].

Let the longitudinal distortion of a string caused by a
wave be described by a function ξ(x, t). Then the left edge
of some segment 1x at time instant t is displaced from its
undisturbed position x through distance ξ(x, t), and the right
edge—through distance ξ(x +1x, t), as shown in figure 2.

The elastic force Fx (x, t) of interaction between
adjoining segments of the stretched string consists of

4



Phys. Scr. 86 (2012) 035403 E I Butikov

a constant tension T and an additional part related to
nonuniform distortion produced by the wave. According to
Hooke’s law, this additional force is proportional to the
fractional distortion of an elementary segment [ξ(x +1x)−
ξ(x)]/1x0, where 1x0 is the equilibrium length of the
segment 1x in the unstretched string (at T = 0). Thus

Fx (x, t)≈ T + SY
ξ(x +1x)− ξ(x)

1x0
. (11)

Here Y is Young’s modulus of the string material and S is the
cross-sectional area of the string. We can express the second
term in the right-hand side of equation (11) in terms of the
spatial derivative of ξ(x, t) by substituting into equation (11)
the undisturbed length 1x0 through 1x from 1x = 1x0(1 +
T/SY ). Therefore we can write the following expression for
the momentary elastic force Fx (x, t) in a cross-section x :

Fx (x, t)= T + (SY + T )
∂ξ(x, t)

∂x
. (12)

Next we consider the net force 1Fx exerted on the segment
1x by its left and right neighbors. The force exerted on
the left-hand edge of the segment is given by the negative
of equation (12); for the force exerted on the right-hand edge
we should replace x in equation (12) by x +1x . Therefore
the net force1Fx exerted on the segment1x by its neighbors
is proportional to the second spatial derivative of disturbance
ξ(x, t):

1Fx = (SY + T )

[
∂ξ(x +1x, t)

∂x
−
∂ξ(x, t)

∂x

]
≈ (SY + T )

∂2ξ(x, t)

∂x2
1x . (13)

We note that the first term T in the local elastic force Fx (x, t),
equation (12), gives no contribution to the net force 1Fx ,
equation (13)—this uniform tension T produces equal and
opposite forces exerted on the left and right edges of the string
segment 1x .

In a string with a wave the longitudinal net force
1Fx , equation (13), imparts acceleration ∂2ξ/∂t2 to the
string element 1x . The mass 1m of this segment is equal
to ρl1x , where ρl = m/L is the linear density, or 1m =

m1x/L , where m = ρSL0 is the total mass of the string, ρ
is volume density of the string material, L0 is the length of
the unstretched string and L is the undisturbed (equilibrium)
length of the string, which is stretched uniformly by the
force T = SY (L − L0)/L0. By equating the net force given
by (13) to 1m(∂2ξ/∂t2), we obtain the wave equation for the
longitudinal motion with the wave speed v2

L = (SY + T )/ρl =

(Y/ρ)(1 + T/SY )2 ≈ Y/ρ.
We emphasize that in the string with a wave, the work

of the elastic force (13) exerted on the element 1x by
its neighbors changes the total energy of the segment, that
is, both potential and kinetic energies. The kinetic energy
of the string segment 1x in a longitudinal wave is equal
to 1

21m(∂ξ/∂t)2. To calculate from work considerations
the potential energy stored in the string whose longitudinal
distortion is described by some function ξ(x, t), we should
assume that the transformation of the string from the
undisturbed state ξ = 0 to ξ(x, t) occurs quasi-statically

through a sequence of intermediate configurations. Following
the calculation by Morse and Feshbach [5], we introduce
again some parameter β varying from 0 to 1, so that the
string distortion in an intermediate configuration is given by
βξ(x, t). During the quasi-static transformation the net elastic
force exerted on the string segment 1x by its neighbors
in all intermediate configurations should be balanced by an
equal and opposite external force −β1Fx with 1Fx given
by equation (13). We note that at T � SY this force is almost
independent of the string tension T . The work 1W done by
this external longitudinal force while the segment 1x moves
to its new position ξ(x, t) is

1W = −

∫ 1

0
β(SY + T )

(
∂2ξ

∂x2

)
ξ dβ ·1x

= −
1

2
(SY + T )ξ

(
∂2ξ

∂x2

)
1x . (14)

This work 1W cannot be treated as the elastic potential
energy stored in the particular segment 1x , because it
is impossible to move the segment 1x to the final
position ξ(x, t) without moving its neighbors. The required
equilibrium of the entire distorted string in all intermediate
positions can be provided only by exerting appropriate
longitudinal external forces simultaneously on all the
elements of the string. Hence, only the total amount of work
done by all these external forces gives the potential energy
stored in the entire distorted string. This energy is calculated
by integrating expression (14) along the whole string (between
fixed endpoints x = a and x = b):

Epot = −
1

2
(SY + T )

∫ b

a
ξ

(
∂2ξ

∂x2

)
dx . (15)

We note again that the integrand in (15), which is given by
equation (14), cannot be regarded as true linear density of the
elastic potential energy stored in the longitudinally distorted
string. Similarly to the case of transverse distortion, we can
obtain from (15) another expression for the potential energy
through integration by parts:

Epot =
1

2
(SY + T )

∫ b

a

(
∂ξ

∂x

)2

dx −
1

2
(SY + T )

[
ξ

(
∂ξ

∂x

)]b

a

.

(16)

When the string is of finite length and a standing wave is
excited, the boundary term in the right-hand side of (16)
vanishes, because at fixed endpoints x = a and x = b
longitudinal displacement ξ = 0. When the string is infinitely
long, the boundary term also vanishes for any disturbance of
finite length and durance. We recall that for the case of a
transverse distortion the integrand in the similar expression (6)
described the true localization of the elastic potential energy.
Can we say the same about the integrand in (16) for the case
of a longitudinal distortion?

To answer this question, let us try to calculate from
work considerations the elastic potential energy stored in the
given segment, rather than in the entire string. Instead of
calculating the work needed to move the given segment to
its disturbed position ξ(x, t), we should calculate the work of
external forces needed to quasi-statically produce the required
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λ

εpot kinε

λ2

ξ
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x

ξ/

Figure 3. Instantaneous displacements of string particles in a longitudinal traveling wave ξ(x, t), and the densities of potential and kinetic
energies.

final distortion of this segment through all intermediate
distortions. To do this, let us consider the left edge of the
segment 1x to be immovable, while its right edge is moved
through intermediate positions over the distance 1x(∂ξ/∂x).
To characterize intermediate states of the segment 1x in this
transition, let us introduce again, following the calculation
by Morse and Feshbach [5], some parameter β varying from
0 to 1. In an intermediate position, when the right edge of
this segment occurs at β1x(∂ξ/∂x), we should exert on
it, according to equation (12), an external force T +β(SY +
T )(∂ξ/∂x) in order to provide the equilibrium of the segment.
The work done by this external force is equal to the potential
energy stored in the segment 1x :

1Epot =

∫ 1

0

(
T +β(SY + T )

∂ξ

∂x

)
∂ξ

∂x
dβ ·1x

= T

(
∂ξ

∂x

)
1x +

1

2
(SY + T )

(
∂ξ

∂x

)2

1x . (17)

We note that in this calculation of the work, which is done
by the external force when the left-hand end of the segment
1x is immovable, the component T of the external force (the
uniform tension) executes some nonzero work, and makes
a contribution to the potential energy of the segment 1x ,
expressed by the first term in (17).

The second term in the right-hand side of the
expression (17) is proportional to the square of (∂ξ/∂x)
and coincides with the integrand of (16). For longitudinal
waves in unstrained rods this is the only contribution to the
potential energy: for T = 0 equation (17) reduces to 1Epot =
1
2 SY (∂ξ/∂x)21x . Therefore the localization of potential
energy and transformations of energy in longitudinal waves
in an unstrained elastic rod are quite similar to those in purely
transverse waves on a string (see section 3).

In contrast with the expression (1) for the potential energy
of a transverse distortion, which is wholly proportional to
the square of (∂ψ/∂x) (and with the potential energy of a
longitudinal distortion in an unstrained rod), the first term in
the right-hand side of equation (17) is proportional to the first
power of (∂ξ/∂x). Peculiarities in the energy transformations
in waves on strained strings or rods under tension arise from
this term, which is related with the work done by the force of
uniform tension T . This work and the corresponding portion
of the potential energy of segment 1x give no contribution to
the energy of the entire string. The first term in equation (17)
is related solely to some relocation of the elastic potential
energy: for segments in which (∂ξ/∂x) > 0 this term gives
a positive contribution, and vice versa. Over any traveling
disturbance of finite length with ξ = 0 beyond the disturbance
and over an entire standing wave in a string with fixed

εpot

kinε

ξ

ξ

εpot

ξ = 0

d dxξ/

d dxξ/

t = 0

t = T /4

t = T /2

0

0

Figure 4. Instantaneous displacements of string particles in a
longitudinal standing wave ξ(x, t)= B sin(kLx)cos(ωt) and the
densities of potential and kinetic energies.

ends, this term integrates to zero. In an infinite sinusoidal
wave, the mean value of this term over an integer number of
wavelengths is zero. We emphasize that the potential energy
described by the first term of equation (17) does not appear
due to the wave disturbance: this term describes only the
spatial redistribution of the energy already existing in the
uniformly taut rod or string.

Expression (17) for the potential energy of the wave on a
strained string is compatible with the conservation of energy.
The total energy flow P(x, t) through arbitrary point x is
given by the power of the force exerted at this point on the
string by its part located to the left of x : P(x, t) is equal
to −Fx (x, t), given by equation (12), times the longitudinal
velocity (∂ξ/∂t) of the string point x . We can easily show
that the energy flow satisfies the continuity equation when
the energy density ε = εkin + εpot is given by the expressions:
εkin =

1
2ρl(∂ξ/∂t)2, εpot = T (∂ξ/∂x)+ 1

2 (SY + T )(∂ξ/∂x)2.
This is consistent with equation (17).

Figure 3 illustrates the redistribution of potential
energy in a traveling longitudinal wave ξ(x, t)= Bsin(kLx −

ωt), kL = ω/vL. Circles on the axis show momentary
displacements of the string points from their equilibrium
positions. For the portions of the string where these circles
are dense, the first term in (17), proportional to (∂ξ/∂x), is
negative. Therefore at such places the potential energy density
εpot is smaller than εkin. For the portions where (∂ξ/∂x) is
positive, εpot is greater than εkin. The average (over an integer
number of half-wavelengths) values of εpot and εkin are equal
to one another.

The potential energy (17) is transferred by the wave along
the string in the direction of propagation with velocity vL

together with the kinetic energy.
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Displacements of the string points and the densities
of potential and kinetic energies in a standing longitudinal
wave described by the function ξ(x, t)= Bsin(kLx)cos(ωt)
are shown in figure 4 for time moments t = 0, t = T0/4
and t = T0/2 (T0 = 2π/ω). At t = T0/4 all string points are
crossing their equilibrium positions, the potential energy εpot

is zero, the total energy is equal to kinetic energy εkin, which
is localized near the antinodes. At t = 0 and t = T0/2 the
kinetic energy εkin is zero, while εpot reaches its maximum.
The potential energy εpot is localized near the nodes, but due
to the first term in equation (17) which is linear in fractional
distortion (∂ξ/∂x), the density εpot in the neighboring nodes
has different values. The contributions to εpot of terms linear
and quadratic in (∂ξ/∂x) are shown in figure 4 by dashed
lines. During a quarter period the energy travels from nodes
toward antinodes, transforming simultaneously from elastic
potential energy to kinetic energy. During the next quarter
period these transformations reverse.

5. Concluding remarks

In this paper, we have tried to clarify misunderstandings
and contradictions encountered in the literature regarding the
energy of waves in strained strings. We have shown that
there is no inherent ambiguity in the elastic potential energy
associated with transverse waves, contrary to the widespread
opinion originating from the classic textbook of Morse
and Feshbach [5]. When the transverse and longitudinal
distortions of the string caused by the wave are known,

the localization of potential energy is uniquely defined by
equations (1) and (17) for the density of potential energy. The
occurrence in equation (17) of the term proportional to the first
power of the longitudinal distortion explains the redistribution
by the wave of potential energy already stored in the string by
virtue of preliminary stretching. This unambiguous relocation
of potential energy was demonstrated by considering the
examples of traveling and standing longitudinal waves.
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