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Exercises 9.1
1. (a) Since f is already given by its Fourier series, we have from (4)
u(r, ) =100 4 1007 cos @ = 100 + 100 x.
(b) The equation of the isotherms is given by

T — 100
100

where T is a constant between 0 and 200 (these are the maximum and minimum values of f(6)).
Thus the isotherms are vertical lines inside the unit disk. The lines of heat flow are orthogonal to
the isotherms. Thus the heat flows along the horizontal direction. You can also get the equation of
the heat flow by appealing to (7). A harmonic conjugate of 100 + 100r cos @ is v(r, ) = 100rsin 0
or v(r, #) = 100y. Heat flows along the level curves of a harmonic conjugate; thus, the lines of heat
flow are given by 100y = C or y = c. These describe horizontal lines, as we said previously.

100+100x =T =z =

5. (a) Let us compute the Fourier coefficients of f. We have

50 (/4 25

= — df = —;
ag T Jo 9
100 100 T 100
ap = — cosnf df = — sinnf :—sinﬂ;
T Jo nmw o N 4
1 1 o1
bn:E sinnf df = —ﬂcosnﬁ = Oo(l—c mr)
T Jo nmw o nm 4
Hence
25 100 = 1 nm
f(@) = ? T g E (Sln — COS n9 —+ (1 — COS I) SlIl n@)
and
2 1
u(r, 0) = % + — 00 (sm I cosnf + (1 —cos _w) sin n9)
2 T = 4 4

(b) The isotherms are the level curves of th solution. The curves of heat flow are the level curves of
a harmonic conjugate of the solution, which is obtained by appealing to Proposition 1. We have

1
v(r, 0) = 109 (sm " sinnd — (1 — cos E) cos n9) r
n 4 4

™
n=

9. The problem does not have a solution because the normal derivative on the boundary does not

satisfy the compatibility condition
2m

£(6)d9 =

0
In fact,

27 27
f(0)do = / (50 — 50 cos 0) d = 1007.
0 0

13. Using the fact that the solutions must be bounded as r — oo, we see that ¢; = 0 in the first of
the two equations in (3), and ¢z = 0 in the second of the two equations in (3). Thus

r

R(r)=R,(r)=cpr " = (E)n forn=0,1,2,....
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The general solution becomes
oo a\n .
u(r,0) = ag + Z(;) (an cosn + by sinnb), r > a.
n=1
Setting r = a and using the boundary condition, we obtain

f(0) =ao + Z (an cosnb + b, sinnb) ,

n=1

which implies that the a,, and b,, are the Fourier coefficients of f and hence are given by (5).

189
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Solutions to Exercises 9.2
1. We appeal to the solution (5) with the coefficients (6). Since f(r) = 0, then A, = 0 for all n.

We have
1 2 oy
B = o ), e
4 Qn o,
= W/o Jo(s)sds (let s = TT)
4 an
O[?ljl an)Q[ 1( )] 0
4
R EACS) for all n > 1.
ay J1(0n
Thus

> JO(OL"T) Qnt
t)=4 ——2 ~_sin(—).
ulr =43 (%5
5. Since g(r) = 0, we have B,, = 0 for all n. We have

2 1
A, = 72/ Jo(arr)Jo(apr)rdr =0 for n # 1 by orthogonality.
J1 (O‘n) 0
Forn =1,

2 1
A = — J 2 d :1
= T, Pl =1

where we have used the orthogonality relation (12), Section 4.8, with p = 0. Thus

u(r, t) = Jo(ayr) cos(aqt).
9. (a) Modifying the solution of Exercise 3, we obtain

u(r, t) = Z MJQ(O["T) sin(au,ct).

— agci(an)?

(b) Under suitable conditions that allow us to interchange the limit and the summation sign (for
example, if the series is absolutely convergent), we have, for a given (r, t),

. o= Ji(an/2) .
Cli{glo U(T; t) = Cli}l{.lo Z WJO (O[nT) Sln(anct)
n=1 "1 n
S Ji(on/2) .
) ; M8 GZe a PO Sinne)
p— 0,

J1 (an/2) _
aZcdi(an)?
corresponding to ¢ = 1 and u.(r, t) denote the solution for arbitrary ¢ > 0. Then, it is easy t check
that

because lim,_, oo 0 and sin(apct) is bounded. If we let wy(r, t) denote the solution

1
’U,C(T, t) = —u1 (Ta Ct)'
C

This shows that if ¢ increases, the time scale speeds proportionally to ¢, while the displacement
decreases by a factor of %
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Solutions to Exercises 9.3

1. The condition g(r,0) = 0 implies that a},, =0 = b%,,,. Since f(r,d) is proportional to sin 26,
only by ,, will be nonzero, among all the a,,, and b,,,. This is similar to the situation in Example 2.
Forn =1, 2, ..., we have

2 27
bap = 72/ / (1- TQ)TQ sin 20.J5 (ag 1) sin 207 d6 dr
7TJ3 a2 n

=7

2 2 9
= — in? 260 do(1 — r*)r3 J. nr)d
7TJ3(042,n)2/0 /0 sin ( r9)r° Ja(og n 1) dr

2 1
= m/o (1—1"2)1"3572(0427"1") dr
2 2 4Js(a2n)
= — . n) = 95—
Ja3(a2.n)? a3, a(ozn) a3, J3(@an)?

where the last integral is evaluated with the help of formula (15), Section 4.3. We can get rid of the
expression involving Jy by using the identity

2p
Tp1(@) + Tpia (@) = L, (2).
With p =3 and & = asg 5, we get

=0

—
Ja(on) +Ja(ao ) = J3(en) = Jalaon) = > J3(aan).
2.n 2.n
So
,
S AT
Thus

Ja(va,nt)

a2 n']3 (012 n)

u(r, 0, t) = 243111292

cos(ag nt).

and b,

mn

5. We have a., = by = 0. Also, all a

. are zero except b3 ,. We have

2 2
by p=——7—3 / / (1 —72)r? sin 20.J5 (g 1) sin 20r do dr.
o Jo

T nJ3(0n)?
The integral was computed in Exercise 1. Using the computations of Exercise 1, we find

24

.
? a%,nJ3 (OZQW)

\n

hus
Ja(va nr)

sin(ag ,t).
o Ty(an,) SO2nt)

u(r, 0, t) = 245111292

n=1

9. (a) For I =0 and all k¥ > 0, the formula follows from (7), Section 4.8, with p = k:

/TkJrle (r)dr =" 1 (r) + C.
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(b) Assume that the formula is true for | (and all & > 0). Integrate by parts, using u = 72,

dv = r**1J 1 (r) dr, and hence du = 2ir*~1dr and v = r*1 T, 4 (r):
/Tk+1+2le(T) dr = /T2l[rk+1Jk(T)] dr
= M () - 20

T2lflrk+1Jk+1 (r)dr

Tk+1+2le+1(T) — 2l Tk+2le+1(T) dr

Tk+1+2le+1(T) _ 9 T(k+1)+1+2(l*1)Jk+1(T) dr

— T

and so, by the induction hypothesis, we get

/TkJrlJrQZJk(T) dr = ¢ () — 2lz

_ Tk+1+2le+1 (T)

-1 n n
n Z (—1) +19 +ll!rk+1+2l7(n+l)Jk+( +1)+1(T) +C
(l—(m+1) "

n=0

l
ke (=1m2mi
= r Jk+1(T) + Z W

PR 2=m g (1) + C

m2 l
= Z PR g1 (1) + C,

which completes the proof by induction for all integers £ > 0 and all [ > 0.

13. The proper place for this problem is in the next section, since its solution invovles solving a
Dirichlet problem on the unit disk. The initial steps are similar to the solution of the heat problem
on a rectangle with nonzero boundary data (Exercise 11, Section 3.8). In order to solve the problem,
we consider the following two subproblems: Subproblem #1 (Dirichlet problem)

1 1
(ul)rr + ;(ul)r + T_Q(UI)HH = 0; 0<r< 1; 0 S 0 < 27Ta

ui(l,0) = sin36, 0<0<2m.

Subproblem #2 (to be solved after finding uy(r, 8) from Subproblem #1)

(u2)e = (u2)pr + L(u2)r + S(u2)gp, 0<r <1, 0<60<2m, t>0,
us(l,0,t) = 0, 0<6<2m, t>0,
us(r, 0,0) = —uq(r, 0), 0<r<l1, 0<6<2m.

You can check, using linearity (or superposition), that

’LL(T, 95 t) = ’Lbl(T, 9) + ’LLQ(T, 95 t)
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is a solution of the given problem.
The solution of subproblem #1 follows immediately from the method of Section 4.5. We have

ua(r, 0) = r®sin 36.

We now solve subproblem #2, which is a heat problem with 0 boundary data and initial temperature
distribution given by —us(r, #) = —r®sin 30. reasoning as in Exercise 10, we find that the solution
is

us(r, 0, t) = Z banJs(a,r) sin(36) e *sn?

n=1
where
b 2 / /277 3 sin? 30.J5 (3, 7)r df d
n = r°sin QspT)T r
3 mJa(asn)? 0 B
) /1 () d
= T r asy,r) dr
Jalasa)? Jo = 7
=2 L ™ ) ds (where )
= —— s s)ds (where as,r = s
Ti(azn)? a3, Jo ’ ’
-2 1 4 Qsn
= — —35"J
Jy(azn)? agns 4(s) 0
B -2
N O‘Bn']4(a3n)'
Hence

_Js(@snt) s

u(r, 0, t) = r* sin 30 — 2sin(30)
n—1 a3nJ4 aBn
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Solutions to Exercises 9.4

1. Using (2) and (3), we have that

u(p, z) = ZAnJO(/\np) sinh(\,z), A, = %7
n=1
where a,, = gy is the nth positive zero of Jy, and
Ay = : | 100 d
" T Sinh(Onh)a i (an)? S, P IOVRPIPaP

200 1
gm@%wm%VA o(anp)p dp

200 an
B let s = an
Sinh(2an)a%J1(an)2/0 Jo(s)sds (let s = app)
200 an
- J
SiDh(QOén)oz%Jl(anP[ 1(s)s] .
_ 200
~ sinh(2a)anJi (o)’

So

Jo(app) sinh(ay, 2)
=2
00 Z sinh(2a, ) J1 (o)

5. (a) We proceed exactly as in the text and arrive at the condition Z(h) = 0 which leads
us to the solutions

Z(z) = Zp(z) = sinh(An(h — 2)), where A\, = %.

So the solution of the problem is
u(p, z) = Z CnJo(Anp) sinh(N, (h — 2)),
n=1

where

2 a
a2y ()2 sinhi( A, ) /0 F(p)Jo(Anp)p dp-

(b) The problem can be decomposed into the sum of two subproblems, one treated in the
text and one treated in part (a). The solution of the problem is the sum of the solutions of
the subproblems:

Cp =

Z (A Jo(Anp) sinh(A,2) + Cp Jo(Anp) sinh(\, (b — z))),

n=1

where

2

A, =
a?Ji(ay,)? sinh(A,h)

/0 ' f2(p)Jo(Anp)p dp,
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and
2

O = () sinh ) /0 Fi(p)To(Anp)p dp.

9. We use the solution in Exercise 8 with a =1, h =2, f(z) = 10z. Then

2
nmwz
B, = ——— 0zsin — d
n Io(mr)/o zsin 5 z

(_1)n+1'

Thus

195
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Solutions to Exercises 9.5

1. Write (1) in polar coordinates:

1 1
¢rr + ;¢r + T_2¢99 - _k¢ ¢(CL, 9) - O
Consider a product solution ¢(r, ) = R(r)©(6). Since 0 is a polar angle, it follows that
O(0 + 2m) = O(8);

in other words, © is 27-periodic. Plugging the product solution into the equation and simplifying,
we find

R"© + {R'© + 5 RO" = —kR6;
(R"+ 1R +kR)© = — L RO";

TQ% +T% +kr? = —%;
hence
R// !
T2§+TE+I€T2:)\,
and
@//
_6:)\ = 0"+ X0 =0,

where A is a separation constant. Our knowledge of solutions of second order linear ode’s tells us
that the last equation has 27-periodic solutions if and only if

A=m? m=0,+£l, £2,....

3

This leads to the equations
0" +m?e =0,

and
1 !

T2§+TE+I€T2:WL

These are equations (3) and (4). Note that the condition R(a) = 0 follows from ¢(a, ) = 0 =
R(a)O(0) =0 = R(a) =0 in order to avoid the constant 0 solution.

? = rPR'+rR + (kr* —=m*)R=0.

5. We proceed as in Example 1 and try

u(r, 0) = i i I M) (Amn cosml + By, sinmb) = i i Omn(r, 0),

m=0n=1 m=0n=1

where ¢y (1, 0) = T (Ann ) (Apn cosmé 4+ By, sinm@). We plug this solution into the equation,
use the fact that V(¢n) = —A2,, dmn, and get

v? (Z > bmnlr, 9)) = 1= dmnlr, 0)

m=0n=1 m=0n=1
= Y Y VP (Gmn(, 0) =1 =D (1, 6)
m=0n=1 m=0n=1
= Z Z A @mn (15 0) =1 — Z Z(bmn(ra 0)
m=0n=1 m=0n=1
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We recognize this expansion as the expansion of the function 1 in terms of the functions ¢,,,.
Because the right side is independent of 6, it follows that all A,,,, and B,,, are zero, except Ag .
So

hE

(l—a )Aonjo(aon) )—1,

n=1

which shows that (1—a?2,,,)A¢.. = ao.n is the nth Bessel coefficient of the Bessel series expansion of
order 0 of the function 1 This series is computed in Example 1, Section 4.8. We have

> 2
1= Z aijo(ao,nr) 0<r<l1.

Hence
9 2
0o = o e 7 4 T aaan i
and so
u(r, ) = ngl (1— a%m)jo,njl (@0,n) Folea,ar)-
9. Let
o-{3 WLt

Then the equation becomes V2?u = f(r, §), where f(r, §) = h(r)sinf. We proceed as in the previous
exercise and try

= i i Amn® ) (Amn cosml + By, sinmb) = i i G (1, 0),

m=0n=1

where ¢pn (1, 0) = T (Amn ) (Apn cosmé 4+ By, sinm@). We plug this solution into the equation,
use the fact that V2(¢n) = =2 dmn = —a2,, dmn, and get

2(2 > bmnlr, 9)) = h(r)sinf
m=0n=1

= Z Z V2 (¢mn(r, 0)) = h(r) sin 6

m=0n=1

= ZZ A2, D (1, 0) = h(r)sin 6.

m=0n=1

We recognize this expansion as the expansion of the function i(r) sin 6 in terms of the functions ¢,,,.
Because the right side is proportional to sin 6, it follows that all A,,,, and B,,,, are zero, except Bj .
So

sin @ Z —a3, BinJi(ar,r) = h(r)sinb,

n=1

which shows that —a?, By, is the nth Bessel coefficient of the Bessel series expansion of order 1 of
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the function h(r):

Thus

2
_alnBL"

Ja(a1m

a?,nJQ(OZlﬂJ

JQ(O&LH/Z)

9 1/2
B / r2Jy (aq 1) dr
0

2

Otl,n/2 9
—_— J d
O[inz]2(0[1,n)2 /0 s () ds

Otl,n/2

5 52 J5(s)

0

201 pJa(arn)?

o0

JQ Oq n/2)

T 9 —smﬂz 20[171!]2—),]1(0117717").
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Solutions to Exercises 9.6

1. Bessel equation of order 3. Using (7), the first series solution is

( z\2k+3 1 g3 1 a° 1 a7

oo _1)k
J3(x)_kzok!(k+3)!(§) “T68 1.2432 2120128

5. Bessel equation of order % The general solution is

y(x) = ClJ%-ﬁ-CgJﬁg

- (i & - 6 )

+02(1.r1(71) (g)j_ 1.1}( ) (;)_Jr)

NI~

So

9. Divide the equation through by z? and put it in the form

y=0 forx>0.

, o1, a?-9
Yy + -y + 3
T T

Now refer to Appendix A.6 for terminology and for the method of Frobenius that we are about to
use in this exercise. Let
22 —9

pa)= = for gla) =227

The point z = 0 is a singular point of the equation. But since zp(z) = 1 and 22 ¢(z) = 2% — 9 have
power series expansions about 0 (in fact, they are already given by their power series expansions), it
follows that = = 0 is a regular singular point. Hence we may apply the Frobenius method. We have
already found one series solution in Exercise 1. To determine the second series solution, we consider
the indicial equation
r(r —1) 4+ por +qo = 0,

where pg = 1 and go = —9 (respectively, these are the constant terms in the series expansions of
xp(z) and x%¢(x)). Thus the indicial equation is

r—9=0 = r; =3, ro=-3.
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The indicial roots differ by an integer. So, according to Theorem 2, Appendix A.6, the second
solution y» may or may not contain a logarithmic term. We have, for x > 0,

yo =kyyInx + 273 Z bpr™ =ky; Inx + Z byz™ 3,

m=0 m=0

where ag # 0 and by # 0, and k& may or may not be 0. Plugging this into the differential equation
22y +ay + (22 =9y =0

and using the fact that y; is a solution, we have

Yo = kyilnx+ Z D™ 3
m=0
) = kyllna+kL — )bz
b yiIna + x+ﬂ;(m oz
"o g Y yl - m—5
ys = kyi nx—l—k +k— +Z (m —4)bpyx

m=0
_ Y = m—>5,
= kyf 1nx+2k kﬁ—l— Z()(m—3)(m—4)bmx ;
oy +ayh + (@ = 9)ye

= ka*y)Inz + 2kxy) — ky; + Z m —3)(m — 4)bz™ 3

m=0

+kzy Inx + ky, + Z (m — 3)byz™ 3

m=0
+(2% = 9) |kysInx + Z bya™ 3
m=0

=0

= klnz[2®y] +zy] + (2® — Ny |

+2kzy) + Z [(m —3)(m — 4)by, + (m — 3)b, — Qbm]xmf?’

m=0
[eS)
+$2 E bmxmffi
m=0

= 2kxy, + Z (m — 6)mbyz™ 3 + Z bz™ !

m=0 m=0
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To combine the last two series, we use reindexing as follows

i (m — 6)mbyz™ 3 + i bpz™ !
m=0 m=0

—5hz 2+ Z (m — 6)mb,,z™ 3 + Z byy_ox™ 3

m=2 m=2

Y Z [(m — 6)mb,, + bm,z]xmf?’.

m=2

Thus the equation

22yl + xyhy + (22 — 9y =0

implies that

2kxyy — bbyx ™% + Z [(m — 6)mby, + bm,Q] ™3 = (.
m=2
This equation determines the coefficients b,, (m > 1) in terms of the coefficients of y;. Furthermore,
it will become apparent that k cannot be 0. Also, by is arbitrary but by assumption by # 0. Let’s
take by = 1 and determine the the first five b,,’s.
Recall from Exercise 1

_ 1@ 12 1 e
y1_1~68 1-24 32 2-120 128 '
So
, 3 a? 5 at 7 af
Y1 = < 7 .94 29

168 1.2432 2.120128 "
and hence (taking k = 1)

oz 6k a3 10k x° n 14k 27 n
T —_ —_— R — e
NTT68  1.2432 " 2120 128

The lowest exponent of x in

2kxy) — 5bix 2 4+ Z [(m — 6)mby, + bm,g]xmfg

m=2

is 272, Since its coefficient is —5b;, we get b; = 0 and the equation becomes

2zy; + Z [(m — 6)mby, + by—o]z™ 5.

m=2
Next, we consider the coefficient of z71. Tt is (—4)2by + by. Setting it equal to 0, we find

bp 1
by = — = —.
T8 8
Next, we consider the constant term, which is the m = 3 term in the series. Setting its coefficient
equal to 0, we obtain

(—3)3()3 +b=0 = 0b3=0
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because by = 0. Next, we consider the term in z, which is the m = 4 term in the series. Setting its
coefficient equal to 0, we obtain

1

1
(=2)4bs+b2 =0 = by 302 =11

Next, we consider the term in 22, which is the m = 5 term in the series. Setting its coefficient equal
to 0, we obtain b5 = 0. Next, we consider the term in 23, which is the m = 6 term in the series plus
the first term in 2kxzy]. Setting its coefficient equal to 0, we obtain

k 1
0+0 - =0 = k=-8y=—.
+ b4 + 3 4 3
Next, we consider the term in x4, which is the m = 7 term in the series. Setting its coefficient equal

to 0, we find that by = 0. It is clear that bg,,+1 = 0 and that

Lo+ L+ L4 1og
~——ylnr+—+—+—x+---
Y2 g 2 8z 64

Any nonzero constant multiple of ys is also a second linearly independent solution of ;. In particular,
384 yo is an alternative answer (which is the answer given in the text).

13. The equation is of the form given in Exercise 10 with p = 3/2. Thus its general solution is
Y= Cl$3/2z]3/2($) + 023:3/2}/3/2(33).

Using Exercise 22 and (1), you can also write this general solution in the form

sinx COS T .
y = Cx — COoST| + Cox |— —sinx
x x

= ¢ [sinz —xcosx]+ ca[—cosx — xsing].

In particular, two linearly independent solution are
y1 =sinx —xcosx and Yy, =cosx + xrsinz.

This can be verified directly by using the differential equation (try it!).

17. We have
y = x Pu,
y = —pr P lu4a P
y' = plp+1)a P Put2(-p)aT P P
zy" + (1 +2p)y +ay = z[pp+1)2x P Pu—2pz P + 2P

+(1+2p) [ —pz P u+ 7P| + 2 Pu

= 2 P 2P + [—2px + (14 2p)a]u/
+p(p+1) — (1 + 2p)p + 2°]u]

= g7 P! [3:2u” + v’ + (22 — p2)u] .
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Thus, by letting y = x7Pu, we transform the equation
zy’ +(1+2p)y +ay =0
into the equation

e P 2 + zu’ + (2° — p?)u] =0,

which, for x > 0, is equivalent to
22 + v’ + (2 — p*)u =0,
a Bessel equation of ordr p > 0 in u. The general solution of the last equation is
u=c1Jp(x) + c2Yp(z).

Thus the general solution of the original equation is

Y = ciz7PJ, () + coxPY,(2).

21. Using (7),

R S o VA
J,%(x) = kZ_OWM(g)

_ 2 D e

= \ﬁimz_

k 92k 2k
- \/72 k' (2k l\/_zzk (by Exercise 44(a))

203
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22. (a) Using (7),

= (—1)k x\2k+3
Ji(z) = S —— (2
3(@) kzzok!F(k—l-%—i-l) (2)
$2k+2

\/5§: (="
v L T (k+ 2 + §) 22572
\/7 k 9 92k+1L| p2k+2
Z k' 2k + 3)(2k + 1) 22452
1 1
(T(k+2+ 2) I(k+1+ 2) (k+1+ 5) then use Exercise 44(b))

2k +2) oo . .
\/72 2k +3)! T (multiply and divide by (2k + 2))

© 1 yk—1
= 2 D™ k) x?*  (change k to k — 1)

T (2k +1)!
N Y i T
T (2k + 1)!
_ li (=D*t 225 [ 2 — (k! 22k
T (2k)! T (2k + 1)!
2 ( sinx)
= — | —cosx + ——
T x

25. (a) Let u= %67%(‘”4’), Y(u) = y(t),e 4+ = "4—2 u?; then

dy dY du 1 d?y d (g _ a _1(y_
— Y (—e—slat=b)y. OTY —(Y’ _—Lat—b) ) — yle—attb |y & —L(at—b)
at w0 i T g (Ve ¢ oTreer
So
Y//efater 4 Y/gefé(atfb) 4 YefaiH»b — O = Y// 4 gy/efé(atfb) 4 Y — O,
upon multiplying by e ~t. Using u = 2¢2(@=0) we get

1
Y'+-Y'+Y =0 = Y +uY’ +4*Y =0,
u
which is Bessel’s equation of order 0.

(b) The general solution of u?Y” +uY’ +u?Y = 0is Y (u) = c1Jo(u) + c2Yo(u). But Y (u) = y(t)
and u = Ze —z(at=b) g4

2
y(t):cljo( e z(at b))+02}/0( e 2(at b))
a

(¢) (1) If ¢ =0 and c2 # 0, then
2
Y(t) = e2¥p(Se 2 70),
a

As t — oo, u — 0, and Yy(u) — —oo. In this case, y(t) could approach either +oo or —oo
depending on the sign of ¢o. y(t) would approach infinity linearly as near 0, Yp(x) = lnz so
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y(t) ~In (%e*%(at*b)) ~ At.
(ii) If ¢1 # 0 and ¢o = 0, then

2

y(t) = Cljo(—ei%(atib)).

a
As t — oo, u(t) — 0, Jo(u) — 1, and y(t) — ¢;1. In this case the solution is bounded.
(ii) If e £ 0 and ¢g # 0, as t — oo, u(t) — 0, Jo(u) — 1, Yo(u) — —o0o. Since Yy will dominate, the
solution will behave like case (i).

It makes sense to have unbounded solutions because eventually the spring wears out and does

not affect the motion. Newton’s laws tell us the mass will continue with unperturbed momentum,
e, ast — o0, 3y’ =0 and so y(t) = c1t + ca, a linear function, which is unbounded if ¢; # 0.
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Solutions to Exercises 9.7

1. (a) Using the series definition of the Bessel function, (7), Section 9.6, we have

d. _, L d & (—1)* 2 2k

"l = agm@
N (—1)* d (a\2k & (—1)*2k 1 /g 2k—1
= Y w0 (2) X G,z ()

(—1)* T 2k—1
2°(k—D)IT(k+p+1) (5)

k=0
> (-1)™ 2N 2mA+1
- _ el tm="Fk—1
mzzo 2emIT(m + p+2) (2) (set m )
N T
— P =y (* D
* nlz:()m!F(m+p+2) (2) Ty ().

To prove (7), use (1):
d
E[prp(x)] =2l Ji(x) = /prp,l(x) dx = 2P Jp(z) + C.
Now replace p by p+ 1 and get
/prrlJp(x) dr = zP 1 (2) + C,

which is (7). Similarly, starting with (2),

d

E[xprp(x)] =—a2Plpu(z) = —/xprerl ()de =aPJp(z) +C

= /xprpH(x) de = —x P J,(x) +C.
Now replace p by p — 1 and get
/xprrlJp(x) de = —2 PN, 1 (2) + C,

which is (8).
(b) To prove (4), carry out the differentiation in (2) to obtain

T PIN@) — pr (@) = 0PI (@) = @if@) - ply(e) = —adyi (@),
upon multiplying through by zP*!. To prove (5), add (3) and (4) and then divide by x to obtain
Jpr() = Jyia(w) = 2J3(2).
To prove (6), subtract (4) from (3) then divide by .

5. /Jl(x) dx = —Jo(z) + C, by (8) with p = 1.



/ Js(x) do

13. Use (6) with p = 4.

J5(z) =

17. (a) From (17),

A =

Thus, for 0 < x < 1,

W/o f(x)Jo(ajz)r de =
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[z 2 J3(x)] dw
22 = u, 2 J3(x) dr = dv, 2vdr = du,v = —x "2 Jo(x)
—Ja(x) + 2/3:71(]2(3:) de = —Jo(z) — 22~ 'y (2) + C

To(w) — %Jl () — %Jl () + C(use (6) with p = 1)

Jolz) — %Jl () +C.

Sa) = (o) = o) (by (6) with p=3)
1) e = St
- 1) (%JQ(@ _ Jl(x)> —ZJa(x) (by (6) with p=2)
1

2 2

Ji(aj)?

/ Jo(ajz)x dz
0

—_ ]J s)sds (let v;x = s
TR ), s (etage =

o . 2CJ1 (O[j)
— 7 3

- agdi(ay)

w=3 %%(am

(b) The function f is piecewise smooth, so by Theorem 2 the series in (a) converges to f(x) for all

0 <z <1, except at © = ¢, where the series converges to the average value

T
flehtfe=) ~ 1
2 2
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21. (a) Take m = 1/2 in the series expansion of Exercise 20 and you’ll get

- J1/2 ;T
=2 for 0 1
Z ‘o J3/2 aJ orU<x <l

where «; is the jth positive zero of J; /o(x). By Example 1, Section 4.7, we have

[ 2 .
Jija(x) = —sinz.

aj=gm forj=1,2,....
(b) We recall from Exercise 11 that

So

2 sinx
J3/2(x) = — ( . —cosx) .
So the coefficients are
A = 2 B 2
! aj Jzpa(ag)  jmJ3/a(jm)
2

. 2 sinjm .
ITA =7 (—jﬂ cos]w)

= (-1~ 7

and the Bessel series expansion becomes, or 0 < = < 1,

Vi = Z \/7571/2(% )-

(c) Writing J; /2(x) in terms of sin 2 and simplifying, this expansion becomes

Voo = i_o: \/7571/2(%)

> . 2 [ 2
B VNN R
N ] 7TO[j

<
—

2 = (—1)771 sin(ij)'

(it j VT

Upon multiplying both sides by /x, we obtain

Tr =

SR

— (=1t
Zfsm(]wx) for 0 <z <1,

j=1
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=xT.

which is the familiar Fourier sine series (half-range expansion) of the function f(z)

25. By Theorem 2 with p = 1, we have
2 1
)2/ Ji(oq jz) dx

A = —
J JQ(OZ1J
Oél,jjz )7 / ds (let ay jz =)
= J by (8) with p =1
), O ) vy =
_ —2[o(ony) ~ (%)
a1,z (0 5)?
—2[Jo(a1,5) = Jo(%52)]

B a1, Jo(ar,)?

where in the last equality we used (6) with p = 1 at © = a1; (so Jo(a1,;) + J2(a1;) = 0 or

— Jo (%54

Jo(ev1,;) = —J2(an j)). Thus, for 0 <z <1
)] Jl(alij).

2i 2 JO O[1J
j=1 alJJO al])

2

29. By Theorem 2 with p = 1, we have
1 2
J x/2)xd
ST ), Deaa/2e ds

A =
2 o

/ Ji(s)sds (let oy jz/2 =s).
a15)* Jo

OzijJQ(
Since we cannot evaluate the definite integral in a simpler form, just leave it as it is and write the

Bessel series expansion as
e’} ai,j
[/ Ja( )sds] Ji(o jx/2) for 0 <z <2

0

=1 O[% JJQ (5] J
For y to be bounded near 0, we must take co = 0. For

33. p=13,y= c1JL(Az) + oY1 (A).
y(m) = 0, we must take A = \; = ij =j,j=1,2,...(see Exercises 21); and so
BB ) = ey 1) 2 sinG)
=Y; = C1.; €T) = C1 5 — Ssin(7x
v=y LI AT J

(see Example 1, Section 4.7)
One more formula. To complement the integral formulas from this section, consider the following

interesting formula. Let a, b, ¢, and p be positive real numbers with a # b. Then
[aJp(be) Jp—1(ac) — bJy(ac)Jp—1(bc)].

¢ c
‘/0 Jp(ax) Jp(bx)x dx = 1)2_72
= Jp(ax) satisfies

To prove this formula, we note that y;

x2y’1/+xy1+(a2x2—p2)y1:()
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and yo = Jp(bx) satisfies

a?yy +ayy + (BPa? —p?)y2 = 0.

Write these equations in the form

2,..2 2
/ a’z? —p
(zy}) +y’1+7y1 =0

and - 5
/ bx® —p
(25) +vp+ ———

Multiply the first by y2 and the second by y — 1, subtract, simplify, and get

y1:O.

o (1) = 1 (215)" = 1o (0? — a®)z.
Note that ;
So

d
(b — aHyryox = 7 [yz(xyi) — Y (xyé)]a

x
and, after integrating,

C

!/ !/
= z Y21 — y1vh)

C

(b* — a®) /0 Cyl (2)y2(z)z de = [y2(zy;) — y1 (zyh)]

.
On the left, we have the desired integral times (b? — a?) and, on the right, we have

c[Jp(be)ad)(ac) — bJy(ac) ], (be)| — clady(0)J,(0) — bJ,(0)J,(0)].
Since J,(0) = 0 if p > 0 and Jj(z) = —J1(=), it follows that J,(0).J,(0) — J,(0)J,(0) = 0 for all
p > 0. Hence the integral is equal to

¢ c
1 :/0 Jp(ax) Jp(bx)x dx = (e

— a2

[ap (be)J,(ac) — bJp(ac)J;(bc)] .

Now using the formula

we obtain
¢
I = 307 —a7) [adp(be) (Jp—1(ac) — Jpi1(ac)) — bdy(ac) (Jp—1(be) — Jpi1(be))].
Simplify with the help of the formula

T (@) = L1y (a) — Ty @)

and you get
I = WC_QQ) [0 (b6) (Jp-1(ac) - (%Jp(ac) — Jp-1(ac)))
0Ty () (T2 (b6) — (22T, (be) — Tp-a (b))
= s [ady(be) Ty (ac) = b (ac) Ty (b)),
as claimed.

Note that this formula implies the orthogonality of Bessel functions. In fact its proof mirrors
the proof of orthogonality from Section 9.7.



