
9 Partial Differential Equations in Polar and Cylindrical Coordinates

Exercises 9.1

1. (a) Since f is already given by its Fourier series, we have from (4)

u(r, θ) = 100 + 100r cos θ = 100 + 100 x.

(b) The equation of the isotherms is given by

100 + 100 x = T ⇒ x =
T − 100

100
,

where T is a constant between 0 and 200 (these are the maximum and minimum values of f(θ)).
Thus the isotherms are vertical lines inside the unit disk. The lines of heat flow are orthogonal to
the isotherms. Thus the heat flows along the horizontal direction. You can also get the equation of
the heat flow by appealing to (7). A harmonic conjugate of 100 + 100r cos θ is v(r, θ) = 100r sin θ
or v(r, θ) = 100 y. Heat flows along the level curves of a harmonic conjugate; thus, the lines of heat
flow are given by 100 y = C or y = c. These describe horizontal lines, as we said previously.

5. (a) Let us compute the Fourier coefficients of f . We have

a0 =
50
π

∫ π/4

0

dθ =
25
2

;

an =
100
π

∫ π/4

0

cos nθ dθ =
100
nπ

sin nθ

∣∣∣∣
π

0

=
100
nπ

sin
nπ

4
;

bn =
100
π

∫ π/4

0

sinnθ dθ = −100
nπ

cos nθ

∣∣∣∣
π

0

=
100
nπ

(1 − cos
nπ

4
).

Hence

f(θ) =
25
2

+
100
π

∞∑

n=1

1
n

(
sin

nπ

4
cos nθ + (1 − cos

nπ

4
) sin nθ

)
;

and

u(r, θ) =
25
2

+
100
π

∞∑

n=1

1
n

(
sin

nπ

4
cos nθ + (1 − cos

nπ

4
) sin nθ

)
rn.

(b) The isotherms are the level curves of th solution. The curves of heat flow are the level curves of
a harmonic conjugate of the solution, which is obtained by appealing to Proposition 1. We have

v(r, θ) =
100
π

∞∑

n=1

1
n

(
sin

nπ

4
sin nθ − (1 − cos

nπ

4
) cos nθ

)
rn.

9. The problem does not have a solution because the normal derivative on the boundary does not
satisfy the compatibility condition ∫ 2π

0

f(θ) dθ = 0.

In fact, ∫ 2π

0

f(θ) dθ =
∫ 2π

0

(50 − 50 cos θ) dθ = 100π.

13. Using the fact that the solutions must be bounded as r → ∞, we see that c1 = 0 in the first of
the two equations in (3), and c2 = 0 in the second of the two equations in (3). Thus

R(r) = Rn(r) = cnr−n =
( r

a

)n

for n = 0, 1, 2, . . . .
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The general solution becomes

u(r, θ) = a0 +
∞∑

n=1

(a

r

)n

(an cos nθ + bn sin nθ) , r > a.

Setting r = a and using the boundary condition, we obtain

f(θ) = a0 +
∞∑

n=1

(an cos nθ + bn sin nθ) ,

which implies that the an and bn are the Fourier coefficients of f and hence are given by (5).
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Solutions to Exercises 9.2

1. We appeal to the solution (5) with the coefficients (6). Since f(r) = 0, then An = 0 for all n.
We have

Bn =
1

αnJ1(αn)2

∫ 2

0

J0(
αnr

2
)r dr

=
4

α3
nJ1(αn)2

∫ αn

0

J0(s)s ds (let s =
αn

2
r)

=
4

α3
nJ1(αn)2

[sJ1(s)]
∣∣∣∣
αn

0

=
4

α2
nJ1(αn)

for all n ≥ 1.

Thus

u(r, t) = 4
∞∑

n=1

J0(αnr
2 )

α2
nJ1(αn)

sin(
αnt

2
).

5. Since g(r) = 0, we have Bn = 0 for all n. We have

An =
2

J1(αn)2

∫ 1

0

J0(α1r)J0(αnr)r dr = 0 for n 6= 1 by orthogonality.

For n = 1,

A1 =
2

J1(α1)2

∫ 1

0

J0(α1r)2r dr = 1,

where we have used the orthogonality relation (12), Section 4.8, with p = 0. Thus

u(r, t) = J0(α1r) cos(α1t).

9. (a) Modifying the solution of Exercise 3, we obtain

u(r, t) =
∞∑

n=1

J1(αn/2)
α2

ncJ1(αn)2
J0(αnr) sin(αnct).

(b) Under suitable conditions that allow us to interchange the limit and the summation sign (for
example, if the series is absolutely convergent), we have, for a given (r, t),

lim
c→∞

u(r, t) = lim
c→∞

∞∑

n=1

J1(αn/2)
α2

ncJ1(αn)2
J0(αnr) sin(αnct)

=
∞∑

n=1

lim
c→∞

J1(αn/2)
α2

ncJ1(αn)2
J0(αnr) sin(αnct)

= 0,

because limc→∞
J1(αn/2)

α2
ncJ1(αn)2

= 0 and sin(αnct) is bounded. If we let u1(r, t) denote the solution
corresponding to c = 1 and uc(r, t) denote the solution for arbitrary c > 0. Then, it is easy t check
that

uc(r, t) =
1
c
u1(r, ct).

This shows that if c increases, the time scale speeds proportionally to c, while the displacement
decreases by a factor of 1

c .
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Solutions to Exercises 9.3

1. The condition g(r, θ) = 0 implies that a∗
mn = 0 = b∗mn. Since f(r, θ) is proportional to sin 2θ,

only b2,n will be nonzero, among all the amn and bmn. This is similar to the situation in Example 2.
For n = 1, 2, . . ., we have

b2,n =
2

πJ3(α2,n)2

∫ 1

0

∫ 2π

0

(1 − r2)r2 sin 2θJ2(α2,nr) sin 2θr dθ dr

=
2

πJ3(α2,n)2

∫ 1

0

=π︷ ︸︸ ︷∫ 2π

0

sin2 2θ dθ(1 − r2)r3J2(α2,nr) dr

=
2

J3(α2,n)2

∫ 1

0

(1 − r2)r3J2(α2,nr) dr

=
2

J3(α2,n)2
2

α2
2,n

J4(α2,n) =
4J4(α2,n)

α2
2,nJ3(α2,n)2

,

where the last integral is evaluated with the help of formula (15), Section 4.3. We can get rid of the
expression involving J4 by using the identity

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x).

With p = 3 and x = α2,n, we get

=0︷ ︸︸ ︷
J2(α2,n) +J4(α2,n) =

6
α2,n

J3(α2,n) ⇒ J4(α2,n) =
6

α2,n
J3(α2,n).

So
b2,n =

24
α3

2,nJ3(α2,n)
.

Thus

u(r, θ, t) = 24 sin 2θ

∞∑

n=1

J2(α2,nr)
α3

2,nJ3(α2,n)
cos(α2,nt).

5. We have amn = bmn = 0. Also, all a∗
mn and b∗mn are zero except b∗2,n. We have

b∗2,n =
2

πα2,nJ3(α2,n)2

∫ 1

0

∫ 2π

0

(1 − r2)r2 sin 2θJ2(α2,nr) sin 2θr dθ dr.

The integral was computed in Exercise 1. Using the computations of Exercise 1, we find

b∗2,n =
24

α4
2,nJ3(α2,n)

.

hus

u(r, θ, t) = 24 sin2θ

∞∑

n=1

J2(α2,nr)
α4

2,nJ3(α2,n)
sin(α2,nt).

9. (a) For l = 0 and all k ≥ 0, the formula follows from (7), Section 4.8, with p = k:
∫

rk+1Jk(r) dr = rk+1Jk+1(r) + C.
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(b) Assume that the formula is true for l (and all k ≥ 0). Integrate by parts, using u = r2l,
dv = rk+1Jk+1(r) dr, and hence du = 2lr2l−1dr and v = rk+1Jk+1(r):

∫
rk+1+2lJk(r) dr =

∫
r2l[rk+1Jk(r)] dr

= r2l rk+1Jk+1(r) − 2l

∫
r2l−1rk+1Jk+1(r) dr

= rk+1+2lJk+1(r) − 2l

∫
rk+2lJk+1(r) dr

= rk+1+2lJk+1(r) − 2l

∫
r(k+1)+1+2(l−1)Jk+1(r) dr

and so, by the induction hypothesis, we get

∫
rk+1+2lJk(r) dr = rk+1+2lJk+1(r) − 2l

l−1∑

n=0

(−1)n2n(l − 1)!
(l − 1 − n)!

rk+2l−nJk+n+2(r) + C

= rk+1+2lJk+1(r)

+
l−1∑

n=0

(−1)n+12n+1l!
(l − (n + 1))!

rk+1+2l−(n+1)Jk+(n+1)+1(r) + C

= rk+1+2lJk+1(r) +
l∑

m=1

(−1)m2ml!
(l − m)!

rk+1+2l−mJk+m+1(r) + C

=
l∑

m=0

(−1)m2ml!
(l − m)!

rk+1+2l−mJk+m+1(r) + C,

which completes the proof by induction for all integers k ≥ 0 and all l ≥ 0.

13. The proper place for this problem is in the next section, since its solution invovles solving a
Dirichlet problem on the unit disk. The initial steps are similar to the solution of the heat problem
on a rectangle with nonzero boundary data (Exercise 11, Section 3.8). In order to solve the problem,
we consider the following two subproblems: Subproblem #1 (Dirichlet problem)

(u1)rr +
1
r
(u1)r +

1
r2

(u1)θθ = 0, 0 < r < 1, 0 ≤ θ < 2π,

u1(1, θ) = sin 3θ, 0 ≤ θ < 2π.

Subproblem #2 (to be solved after finding u1(r, θ) from Subproblem #1)

(u2)t = (u2)rr + 1
r (u2)r + 1

r2 (u2)θθ, 0 < r < 1, 0 ≤ θ < 2π, t > 0,

u2(1, θ, t) = 0, 0 ≤ θ < 2π, t > 0,

u2(r, θ, 0) = −u1(r, θ), 0 < r < 1, 0 ≤ θ < 2π.

You can check, using linearity (or superposition), that

u(r, θ, t) = u1(r, θ) + u2(r, θ, t)
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is a solution of the given problem.
The solution of subproblem #1 follows immediately from the method of Section 4.5. We have

u2(r, θ) = r3 sin 3θ.

We now solve subproblem #2, which is a heat problem with 0 boundary data and initial temperature
distribution given by −u2(r, θ) = −r3 sin 3θ. reasoning as in Exercise 10, we find that the solution
is

u2(r, θ, t) =
∞∑

n=1

b3nJ3(α3nr) sin(3θ)e−α2
3nt,

where

b3n =
−2

πJ4(α3n)2

∫ 1

0

∫ 2π

0

r3 sin2 3θJ3(α3nr)r dθ dr

=
−2

J4(α3n)2

∫ 1

0

r4J3(α3nr) dr

=
−2

J4(α3n)2
1

α5
3n

∫ α3n

0

s4J3(s) ds (where α3nr = s)

=
−2

J4(α3n)2
1

α5
3n

s4J4(s)
∣∣∣
α3n

0

=
−2

α3nJ4(α3n)
.

Hence

u(r, θ, t) = r3 sin 3θ − 2 sin(3θ)
∞∑

n=1

J3(α3nr)
α3nJ4(α3n)

e−α2
3nt.
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Solutions to Exercises 9.4

1. Using (2) and (3), we have that

u(ρ, z) =
∞∑

n=1

AnJ0(λnρ) sinh(λnz), λn =
αn

a
,

where αn = α0,n is the nth positive zero of J0, and

An =
2

sinh(λnh)a2J1(αn)2

∫ a

0

f(ρ)J0(λnρ)ρ dρ

=
200

sinh(2αn)J1(αn)2

∫ 1

0
J0(αnρ)ρ dρ

=
200

sinh(2αn)α2
nJ1(αn)2

∫ αn

0
J0(s)s ds (let s = αnρ)

=
200

sinh(2αn)α2
nJ1(αn)2

[J1(s)s]
∣∣∣∣
αn

0

=
200

sinh(2αn)αnJ1(αn)
.

So

u(ρ, z) = 200
∞∑

n=1

J0(αnρ) sinh(αnz)
sinh(2αn)αnJ1(αn)

.

5. (a) We proceed exactly as in the text and arrive at the condition Z(h) = 0 which leads
us to the solutions

Z(z) = Zn(z) = sinh(λn(h − z)), where λn =
αn

a
.

So the solution of the problem is

u(ρ, z) =
∞∑

n=1

CnJ0(λnρ) sinh(λn(h − z)),

where
Cn =

2
a2J1(αn)2 sinh(λnh)

∫ a

0
f(ρ)J0(λnρ)ρ dρ.

(b) The problem can be decomposed into the sum of two subproblems, one treated in the
text and one treated in part (a). The solution of the problem is the sum of the solutions of
the subproblems:

u(ρ, z) =
∞∑

n=1

(
AnJ0(λnρ) sinh(λnz) + CnJ0(λnρ) sinh(λn(h − z))

)
,

where
An =

2
a2J1(αn)2 sinh(λnh)

∫ a

0
f2(ρ)J0(λnρ)ρ dρ,
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and
Cn =

2
a2J1(αn)2 sinh(λnh)

∫ a

0
f1(ρ)J0(λnρ)ρ dρ.

9. We use the solution in Exercise 8 with a = 1, h = 2, f(z) = 10z. Then

Bn =
1

I0

(
nπ
2

)
∫ 2

0

0z sin
nπz

2
dz

=
40

nπ I0

(
nπ
2

)(−1)n+1.

Thus

u(ρ, z) =
40
π

∞∑

n=1

(−1)n+1

n I0

(
nπ
2

)I0

(nπ

2
ρ
)

sin
nπz

2
.
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Solutions to Exercises 9.5

1. Write (1) in polar coordinates:

φrr +
1
r
φr +

1
r2

φθθ = −kφ φ(a, θ) = 0.

Consider a product solution φ(r, θ) = R(r)Θ(θ). Since θ is a polar angle, it follows that

Θ(θ + 2π) = Θ(θ);

in other words, Θ is 2π-periodic. Plugging the product solution into the equation and simplifying,
we find

R′′Θ + 1
r
R′Θ + 1

r2 RΘ′′ = −kRΘ;(
R′′ + 1

r
R′ + kR

)
Θ = − 1

r2 RΘ′′;

r2 R′′

R + r R′

R + kr2 = −Θ′′

Θ ;

hence

r2R′′

R
+ r

R′

R
+ kr2 = λ,

and
−Θ′′

Θ
= λ ⇒ Θ′′ + λΘ = 0,

where λ is a separation constant. Our knowledge of solutions of second order linear ode’s tells us
that the last equation has 2π-periodic solutions if and only if

λ = m2, m = 0, ±1, ±2, . . . .

This leads to the equations
Θ′′ + m2Θ = 0,

and
r2 R′′

R
+ r

R′

R
+ kr2 = m2 ⇒ r2R′′ + rR′ + (kr2 − m2)R = 0.

These are equations (3) and (4). Note that the condition R(a) = 0 follows from φ(a, θ) = 0 ⇒
R(a)Θ(θ) = 0 ⇒ R(a) = 0 in order to avoid the constant 0 solution.

5. We proceed as in Example 1 and try

u(r, θ) =
∞∑

m=0

∞∑

n=1

Jm(λmnr)(Amn cos mθ + Bmn sin mθ) =
∞∑

m=0

∞∑

n=1

φmn(r, θ),

where φmn(r, θ) = Jm(λmnr)(Amn cos mθ + Bmn sin mθ). We plug this solution into the equation,
use the fact that ∇2(φmn) = −λ2

mnφmn, and get

∇2

( ∞∑

m=0

∞∑

n=1

φmn(r, θ)

)
= 1 −

∞∑

m=0

∞∑

n=1

φmn(r, θ)

⇒
∞∑

m=0

∞∑

n=1

∇2 (φmn(r, θ)) = 1 −
∞∑

m=0

∞∑

n=1

φmn(r, θ)

⇒
∞∑

m=0

∞∑

n=1

−λ2
mnφmn(r, θ) = 1 −

∞∑

m=0

∞∑

n=1

φmn(r, θ)

⇒
∞∑

m=0

∞∑

n=1

(1 − α2
mn)φmn(r, θ) = 1.
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We recognize this expansion as the expansion of the function 1 in terms of the functions φmn.
Because the right side is independent of θ, it follows that all Amn and Bmn are zero, except A0,n.
So

∞∑

n=1

(1 − α2
mn)A0,nJ0(α0,n)r) = 1,

which shows that (1−α2
mn)A0,n = a0,n is the nth Bessel coefficient of the Bessel series expansion of

order 0 of the function 1. This series is computed in Example 1, Section 4.8. We have

1 =
∞∑

n=1

2
α0,nJ1(α0,n)

J0(α0,nr) 0 < r < 1.

Hence

(1 − α2
mn)A0,n =

2
α0,nJ1(α0,n)

⇒ A0,n =
2

(1 − α2
mn)α0,nJ1(α0,n)

;

and so

u(r, θ) =
∞∑

n=1

2
(1 − α2

mn)α0,nJ1(α0,n)
J0(α0,nr).

9. Let

h(r) =
{

r if 0 < r < 1/2,
0 if 1/2 < r < 1.

Then the equation becomes ∇2u = f(r, θ), where f(r, θ) = h(r) sin θ. We proceed as in the previous
exercise and try

u(r, θ) =
∞∑

m=0

∞∑

n=1

Jm(λmnr)(Amn cos mθ + Bmn sin mθ) =
∞∑

m=0

∞∑

n=1

φmn(r, θ),

where φmn(r, θ) = Jm(λmnr)(Amn cos mθ + Bmn sin mθ). We plug this solution into the equation,
use the fact that ∇2(φmn) = −λ2

mnφmn = −α2
mnφmn, and get

∇2

( ∞∑

m=0

∞∑

n=1

φmn(r, θ)

)
= h(r) sin θ

⇒
∞∑

m=0

∞∑

n=1

∇2 (φmn(r, θ)) = h(r) sin θ

⇒
∞∑

m=0

∞∑

n=1

−α2
mnφmn(r, θ) = h(r) sin θ.

We recognize this expansion as the expansion of the function h(r) sin θ in terms of the functions φmn.
Because the right side is proportional to sin θ, it follows that all Amn and Bmn are zero, except B1,n.
So

sin θ

∞∑

n=1

−α2
1nB1,nJ1(α1nr) = h(r) sin θ,

which shows that −α2
1nB1,n is the nth Bessel coefficient of the Bessel series expansion of order 1 of
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the function h(r):

−α2
1nB1,n =

2
J2(α1,n)2

∫ 1/2

0

r2J1(α1,nr) dr

=
2

α3
1,nJ2(α1,n)2

∫ α1,n/2

0

s2J1(s) ds

=
2

α3
1,nJ2(α1,n)2

s2J2(s)
∣∣∣
α1,n/2

0

=
J2(α1,n/2)

2α1,nJ2(α1,n)2
.

Thus

u(r, θ) = sin θ

∞∑

n=1

− J2(α1,n/2)
2α3

1,nJ2(α1,n)2
J1(α1,nr).
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Solutions to Exercises 9.6

1. Bessel equation of order 3. Using (7), the first series solution is

J3(x) =
∞∑

k=0

(−1)k

k!(k + 3)!

(x

2

)2k+3

=
1

1 · 6
x3

8
− 1

1 · 24
x5

32
+

1
2 · 120

x7

128
+ · · · .

5. Bessel equation of order 3
2
. The general solution is

y(x) = c1J 3
2

+ c2J− 3
2

= c1

(
1

1 · Γ(5
2)

(x

2

)3
2 − 1

1 · Γ(7
2 )

(x

2

) 7
2

+ · · ·
)

+c2

(
1

1 · Γ(−1
2 )

(x

2

)− 3
2 − 1

1 · Γ(1
2 )

(x

2

) 1
2

+ · · ·
)

.

Using the basic property of the gamma function and (15), we have

Γ(5
2 ) = 3

2Γ(3
2) = 3

2
1
2Γ(1

2) = 3
4

√
π

Γ(7
2 ) = 5

2Γ(5
2) = 15

8

√
π

−1
2
Γ(−1

2
) = Γ(1

2
) =

√
π ⇒ Γ(−1

2
) = −2

√
π.

So

y(x) = c1

√
2

πx

(
4
3

x2

4
− 8

15
x4

16
+ · · ·

)

c2

√
2

πx
(−1)

(
−1

2
2
x
− x

2
− · · ·

)

= c1

√
2

πx

(
x2

3
− x4

30
+ · · ·

)
+ c2

√
2

πx

(
1
x

+
x

2
− · · ·

)

9. Divide the equation through by x2 and put it in the form

y′′ +
1
x

y′ +
x2 − 9

x2
y = 0 for x > 0.

Now refer to Appendix A.6 for terminology and for the method of Frobenius that we are about to
use in this exercise. Let

p(x) =
1
x

for q(x) =
x2 − 9

x2
.

The point x = 0 is a singular point of the equation. But since x p(x) = 1 and x2 q(x) = x2 − 9 have
power series expansions about 0 (in fact, they are already given by their power series expansions), it
follows that x = 0 is a regular singular point. Hence we may apply the Frobenius method. We have
already found one series solution in Exercise 1. To determine the second series solution, we consider
the indicial equation

r(r − 1) + p0r + q0 = 0,

where p0 = 1 and q0 = −9 (respectively, these are the constant terms in the series expansions of
xp(x) and x2q(x)). Thus the indicial equation is

r − 9 = 0 ⇒ r1 = 3, r2 = −3.
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The indicial roots differ by an integer. So, according to Theorem 2, Appendix A.6, the second
solution y2 may or may not contain a logarithmic term. We have, for x > 0,

y2 = ky1 lnx + x−3
∞∑

m=0

bmxm = ky1 ln x +
∞∑

m=0

bmxm−3,

where a0 6= 0 and b0 6= 0, and k may or may not be 0. Plugging this into the differential equation

x2y′′ + xy′ + (x2 − 9)y = 0

and using the fact that y1 is a solution, we have

y2 = ky1 ln x +
∞∑

m=0

bmxm−3

y′2 = ky′1 ln x + k
y1

x
+

∞∑

m=0

(m − 3)bmxm−4;

y′′2 = ky′′1 lnx + k
y′1
x

+ k
xy′1 − y1

x2
+

∞∑

m=0

(m − 3)(m − 4)bmxm−5

= ky′′1 lnx + 2k
y′1
x

− k
y1

x2
+

∞∑

m=0

(m − 3)(m − 4)bmxm−5;

x2y′′2 + xy′2 + (x2 − 9)y2

= kx2y′′1 lnx + 2kxy′1 − ky1 +
∞∑

m=0

(m − 3)(m − 4)bmxm−3

+kxy′1 ln x + ky1 +
∞∑

m=0

(m − 3)bmxm−3

+(x2 − 9)

[
ky1 ln x +

∞∑

m=0

bmxm−3

]

= k ln x
[

=0︷ ︸︸ ︷
x2y′′1 + xy′1 + (x2 − 9)y1

]

+2kxy′1 +
∞∑

m=0

[
(m − 3)(m − 4)bm + (m − 3)bm − 9bm

]
xm−3

+x2
∞∑

m=0

bmxm−3

= 2kxy′1 +
∞∑

m=0

(m − 6)mbmxm−3 +
∞∑

m=0

bmxm−1.
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To combine the last two series, we use reindexing as follows

∞∑

m=0

(m − 6)mbmxm−3 +
∞∑

m=0

bmxm−1

= −5b1x
−2 +

∞∑

m=2

(m − 6)mbmxm−3 +
∞∑

m=2

bm−2x
m−3

= −5b1x
−2 +

∞∑

m=2

[
(m − 6)mbm + bm−2

]
xm−3.

Thus the equation
x2y′′2 + xy′2 + (x2 − 9)y2 = 0

implies that

2kxy′1 − 5b1x
−2 +

∞∑

m=2

[
(m − 6)mbm + bm−2

]
xm−3 = 0.

This equation determines the coefficients bm (m ≥ 1) in terms of the coefficients of y1. Furthermore,
it will become apparent that k cannot be 0. Also, b0 is arbitrary but by assumption b0 6= 0. Let’s
take b0 = 1 and determine the the first five bm’s.

Recall from Exercise 1

y1 =
1

1 · 6
x3

8
− 1

1 · 24
x5

32
+

1
2 · 120

x7

128
+ · · · .

So

y′1 =
3

1 · 6
x2

8
−

5
1 · 24

x4

32
+

7
2 · 120

x6

128
+ · · ·

and hence (taking k = 1)

2kxy′1 =
6k

1 · 6
x3

8
− 10k

1 · 24
x5

32
+

14k

2 · 120
x7

128
+ · · · .

The lowest exponent of x in

2kxy′1 − 5b1x
−2 +

∞∑

m=2

[
(m − 6)mbm + bm−2

]
xm−3

is x−2. Since its coefficient is −5b1, we get b1 = 0 and the equation becomes

2xy′1 +
∞∑

m=2

[
(m − 6)mbm + bm−2

]
xm−3.

Next, we consider the coefficient of x−1. It is (−4)2b2 + b0. Setting it equal to 0, we find

b2 =
b0

8
=

1
8
.

Next, we consider the constant term, which is the m = 3 term in the series. Setting its coefficient
equal to 0, we obtain

(−3)3b3 + b1 = 0 ⇒ b3 = 0
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because b1 = 0. Next, we consider the term in x, which is the m = 4 term in the series. Setting its
coefficient equal to 0, we obtain

(−2)4b4 + b2 = 0 ⇒ b4 =
1
8
b2 =

1
64

.

Next, we consider the term in x2, which is the m = 5 term in the series. Setting its coefficient equal
to 0, we obtain b5 = 0. Next, we consider the term in x3, which is the m = 6 term in the series plus
the first term in 2kxy′1. Setting its coefficient equal to 0, we obtain

0 + b4 +
k

8
= 0 ⇒ k = −8b4 = −1

8
.

Next, we consider the term in x4, which is the m = 7 term in the series. Setting its coefficient equal
to 0, we find that b7 = 0. It is clear that b2m+1 = 0 and that

y2 ≈ −1
8
y1 ln x +

1
x3

+
1

8 x
+

1
64

x + · · ·

Any nonzero constant multiple of y2 is also a second linearly independent solution of y1. In particular,
384 y2 is an alternative answer (which is the answer given in the text).

13. The equation is of the form given in Exercise 10 with p = 3/2. Thus its general solution is

y = c1x
3/2J3/2(x) + c2x

3/2Y3/2(x).

Using Exercise 22 and (1), you can also write this general solution in the form

y = c1x

[
sin x

x
− cos x

]
+ c2x

[
−cos x

x
− sin x

]

= c1 [sin x − x cos x] + c2 [− cos x − x sin x] .

In particular, two linearly independent solution are

y1 = sin x − x cos x and y2 = cos x + x sin x.

This can be verified directly by using the differential equation (try it!).

17. We have

y = x−pu,

y′ = −px−p−1u + x−pu′,

y′′ = p(p + 1)x−p−2u + 2(−p)x−p−1u′ + x−pu′′,

xy′′ + (1 + 2p)y′ + xy = x
[
p(p + 1)x−p−2u − 2px−p−1u′ + x−pu′′]

+(1 + 2p)
[
− px−p−1u + x−pu′] + x x−pu

= x−p−1
[
x2u′′ + [−2px + (1 + 2p)x]u′

+[p(p + 1) − (1 + 2p)p + x2]u
]

= x−p−1
[
x2u′′ + xu′ + (x2 − p2)u

]
.



Section 9.6 Bessel’s Equation and Bessel Functions 203

Thus, by letting y = x−pu, we transform the equation

xy′′ + (1 + 2p)y′ + xy = 0

into the equation

x−p−1
[
x2u′′ + xu′ + (x2 − p2)u

]
= 0,

which, for x > 0, is equivalent to

x2u′′ + xu′ + (x2 − p2)u = 0,

a Bessel equation of ordr p > 0 in u. The general solution of the last equation is

u = c1Jp(x) + c2Yp(x).

Thus the general solution of the original equation is

Y = c1x
−pJp(x) + c2x

−pYp(x).

21. Using (7),

J− 1
2
(x) =

∞∑

k=0

(−1)k

k!Γ(k − 1
2 + 1)

(x

2

)2k−1
2

=

√
2
x

∞∑

k=0

(−1)k

k!Γ(k + 1
2
)
x2k

22k

=

√
2
x

∞∑

k=0

(−1)k

k!
22kk!

(2k)!
√

π

x2k

22k
(by Exercise 44(a))

=

√
2

π x

∞∑

k=0

(−1)k

k!
x2k

(2k)!
=

√
2

π x
cos x.
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22. (a) Using (7),

J 3
2
(x) =

∞∑

k=0

(−1)k

k!Γ(k + 3
2 + 1)

(x

2

)2k+3
2

=

√
2
x

∞∑

k=0

(−1)k

k!Γ(k + 2 + 1
2 )

x2k+2

22k+2

=

√
2

πx

∞∑

k=0

(−1)k

k!
2 22k+1k!

(2k + 3)(2k + 1)!
x2k+2

22k+2

(Γ(k + 2 +
1
2
) = Γ(k + 1 +

1
2
)Γ(k + 1 +

1
2
) then use Exercise 44(b))

=

√
2

π x

∞∑

k=0

(−1)k(2k + 2)
(2k + 3)!

x2k+2 (multiply and divide by (2k + 2))

=

√
2

π x

∞∑

k=1

(−1)k−1(2k)
(2k + 1)!

x2k (change k to k − 1)

=

√
2

π x

∞∑

k=1

(−1)k−1[(2k + 1) − 1]
(2k + 1)!

x2k

=

√
2

π x

∞∑

k=1

(−1)k−1

(2k)!
x2k −

√
2

π x

∞∑

k=1

(−1)k−1

(2k + 1)!
x2k

=

√
2

π x

(
− cos x +

sin x

x

)
.

25. (a) Let u = 2
a

e−
1
2 (at−b), Y (u) = y(t), e−at+b = a2

4
u2; then

dy

dt
=

dY

du

du

dt
= Y ′ (−e−

1
2 (at−b));

d2y

dt2
=

d

du

(
Y ′ (−e−

1
2 (at−b))

)
= Y ′′e−at+b + Y ′ a

2
e−

1
2 (at−b).

So
Y ′′e−at+b + Y ′ a

2
e−

1
2 (at−b) + Y e−at+b = 0 ⇒ Y ′′ +

a

2
Y ′e−

1
2 (at−b) + Y = 0,

upon multiplying by eat−b. Using u = 2
a
e−

1
2 (at−b), we get

Y ′′ +
1
u

Y ′ + Y = 0 ⇒ u2Y ′′ + uY ′ + u2Y = 0,

which is Bessel’s equation of order 0.
(b) The general solution of u2Y ′′ + uY ′ + u2Y = 0 is Y (u) = c1J0(u) + c2Y0(u). But Y (u) = y(t)
and u = 2

ae−
1
2 (at−b), so

y(t) = c1J0(
2
a
e−

1
2 (at−b)) + c2Y0(

2
a
e−

1
2 (at−b)).

(c) (i) If c1 = 0 and c2 6= 0, then

y(t) = c2Y0(
2
a
e−

1
2 (at−b)).

As t → ∞, u → 0, and Y0(u) → −∞. In this case, y(t) could approach either +∞ or −∞
depending on the sign of c2. y(t) would approach infinity linearly as near 0, Y0(x) ≈ ln x so
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y(t) ≈ ln
(

2
a
e−

1
2 (at−b)

)
≈ At.

(ii) If c1 6= 0 and c2 = 0, then

y(t) = c1J0(
2
a
e−

1
2 (at−b)).

As t → ∞, u(t) → 0, J0(u) → 1, and y(t) → c1. In this case the solution is bounded.
(ii) If c1 6= 0 and c2 6= 0, as t → ∞, u(t) → 0, J0(u) → 1, Y0(u) → −∞. Since Y0 will dominate, the
solution will behave like case (i).

It makes sense to have unbounded solutions because eventually the spring wears out and does
not affect the motion. Newton’s laws tell us the mass will continue with unperturbed momentum,
i.e., as t → ∞, y′′ = 0 and so y(t) = c1t + c2, a linear function, which is unbounded if c1 6= 0.
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Solutions to Exercises 9.7

1. (a) Using the series definition of the Bessel function, (7), Section 9.6, we have

d

dx
[x−pJp(x)] =

d

dx

∞∑

k=0

(−1)k

2pk!Γ(k + p + 1)

(x

2

)2k

=
∞∑

k=0

(−1)k

2pk!Γ(k + p + 1)
d

dx

(x

2

)2k

=
∞∑

k=0

(−1)k2k

2pk!Γ(k + p + 1)
1
2

(x

2

)2k−1

=
∞∑

k=0

(−1)k

2p(k − 1)!Γ(k + p + 1)

(x

2

)2k−1

= −
∞∑

m=0

(−1)m

2pm!Γ(m + p + 2)

(x

2

)2m+1

(set m = k − 1)

= −x−p
∞∑

m=0

(−1)m

m!Γ(m + p + 2)

(x

2

)2m+p+1

= −x−pJp+1(x).

To prove (7), use (1):

d

dx
[xpJp(x)] = xpJp−1(x) ⇒

∫
xpJp−1(x) dx = xpJp(x) + C.

Now replace p by p + 1 and get
∫

xp+1Jp(x) dx = xp+1Jp+1(x) + C,

which is (7). Similarly, starting with (2),

d

dx
[x−pJp(x)] = −x−pJp+1(x) ⇒ −

∫
x−pJp+1(x) dx = x−pJp(x) + C

⇒
∫

x−pJp+1(x) dx = −x−pJp(x) + C.

Now replace p by p − 1 and get
∫

x−p+1Jp(x) dx = −x−p+1Jp−1(x) + C,

which is (8).
(b) To prove (4), carry out the differentiation in (2) to obtain

x−pJ ′
p(x) − px−p−1Jp(x) = −x−pJp+1(x) ⇒ xJ ′

p(x) − pJp(x) = −xJp+1(x),

upon multiplying through by xp+1. To prove (5), add (3) and (4) and then divide by x to obtain

Jp−1(x) − Jp+1(x) = 2J ′
p(x).

To prove (6), subtract (4) from (3) then divide by x.

5.
∫

J1(x) dx = −J0(x) + C, by (8) with p = 1.
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9.
∫

J3(x) dx =
∫

x2[x−2J3(x)] dx

x2 = u, x−2J3(x) dx = dv, 2x dx = du, v = −x−2J2(x)

= −J2(x) + 2
∫

x−1J2(x) dx = −J2(x) − 2x−1J1(x) + C

= J0(x) − 2
x

J1(x) − 2
x

J1(x) + C(use (6) with p = 1)

= J0(x) − 4
x

J1(x) + C.

13. Use (6) with p = 4. Then

J5(x) =
8
x

J4(x) − J3(x)

=
8
x

[
6
x

J3(x) − J2(x)
]
− J3(x) (by (6) with p = 3)

=
(

48
x2

− 1
)

J3(x) − 8
x

J2(x)

=
(

48
x2

− 1
)(

4
x

J2(x) − J1(x)
)
− 8

x
J2(x) (by (6) with p = 2)

=
(

192
x3

− 12
x

)
J2(x) −

(
48
x2

− 1
)

J1(x)

=
12
x

(
16
x2

− 1
)[

2
x

J1(x) − J0(x)
]
−
(

48
x2

− 1
)

J1(x)

(by (6) with p = 1)

= −12
x

(
16
x2

− 1
)

J0(x) +
(

384
x4

− 72
x2

+ 1
)

J1(x).

17. (a) From (17),

Aj =
2

J1(αj)2

∫ 1

0

f(x)J0(αjx)x dx =
2

J1(αj)2

∫ c

0

J0(αjx)x dx

=
2

α2
jJ1(αj)2

∫ cαj

0

J0(s)s ds (let αjx = s)

=
2

α2
jJ1(αj)2

J1(s)s

∣∣∣∣∣

cαj

0

=
2cJ1(αj)
αjJ1(αj)2

.

Thus, for 0 < x < 1,

f(x) =
∞∑

j=1

2cJ1(αj)
αjJ1(αj)2

J0(αjx).

(b) The function f is piecewise smooth, so by Theorem 2 the series in (a) converges to f(x) for all
0 < x < 1, except at x = c, where the series converges to the average value f(c+)+f(c−)

2
= 1

2
.
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21. (a) Take m = 1/2 in the series expansion of Exercise 20 and you’ll get

√
x = 2

∞∑

j=1

J1/2(αjx)
αj J3/2(αj)

for 0 < x < 1,

where αj is the jth positive zero of J1/2(x). By Example 1, Section 4.7, we have

J1/2(x) =

√
2

π x
sin x.

So
αj = jπ for j = 1, 2, . . . .

(b) We recall from Exercise 11 that

J3/2(x) =

√
2

π x

(
sin x

x
− cos x

)
.

So the coefficients are

Aj =
2

αj J3/2(αj)
=

2
jπ J3/2(jπ)

=
2

jπ
√

2
π jπ

(
sin jπ

jπ − cos jπ
)

= (−1)j−1

√
2
j

and the Bessel series expansion becomes, or 0 < x < 1,

√
x =

∞∑

j=1

(−1)j−1

√
2
j
J1/2(αjx).

(c) Writing J1/2(x) in terms of sin x and simplifying, this expansion becomes

√
x =

∞∑

j=1

(−1)j−1

√
2
j
J1/2(αjx)

=
∞∑

j=1

(−1)j−1

√
2
j

√
2

π αj
sin αj

=
2
π

∞∑

j=1

(−1)j−1

j

sin(jπx)√
x

.

Upon multiplying both sides by
√

x, we obtain

x =
2
π

∞∑

j=1

(−1)j−1

j
sin(jπx) for 0 < x < 1,
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which is the familiar Fourier sine series (half-range expansion) of the function f(x) = x.

25. By Theorem 2 with p = 1, we have

Aj =
2

J2(α1,j)2

∫ 1

1
2

J1(α1,jx) dx

=
2

α1,jJ2(α1,j)2

∫ α1,j

α1,j
2

J1(s) ds (let α1,jx = s)

=
2

α1,jJ2(α1,j)2
[−J0(s)

∣∣∣∣
α1,j

α1,j
2

(by (8) with p = 1)

=
−2
[
J0(α1,j) − J0(

α1,j

2
)
]

α1,jJ2(α1,j)2

=
−2
[
J0(α1,j) − J0(

α1,j

2
)
]

α1,jJ0(α1,j)2
,

where in the last equality we used (6) with p = 1 at x = α1,j (so J0(α1,j) + J2(α1,j) = 0 or
J0(α1,j) = −J2(α1,j)). Thus, for 0 < x < 1,

f(x) = −2
∞∑

j=1

−2
[
J0(α1,j) − J0(

α1,j

2 )
]

α1,jJ0(α1,j)2
J1(α1,jx).

29. By Theorem 2 with p = 1, we have

Aj =
1

2 J2(α1,j)2

∫ 2

0

J1(α2,jx/2)x dx

=
2

α2
1,jJ2(α1,j)2

∫ α1,j

0

J1(s)s ds (let α1,jx/2 = s).

Since we cannot evaluate the definite integral in a simpler form, just leave it as it is and write the
Bessel series expansion as

1 =
∞∑

j=1

2
α2

1,jJ2(α1,j)2

[∫ α1,j

0

J1(s)s ds

]
J1(α1,jx/2) for 0 < x < 2.

33. p = 1
2 , y = c1J 1

2
(λx) + c2Y 1

2
(λx). For y to be bounded near 0, we must take c2 = 0. For

y(π) = 0, we must take λ = λj =
α 1

2 ,j

π = j, j = 1, 2, . . . (see Exercises 21); and so

y = yi = c1,jJ1(
α 1

2 ,j

π
x) = c1,j

√
2

πx
sin(jx)

(see Example 1, Section 4.7).

One more formula. To complement the integral formulas from this section, consider the following
interesting formula. Let a, b, c, and p be positive real numbers with a 6= b. Then

∫ c

0

Jp(ax) Jp(bx)x dx =
c

b2 − a2

[
aJp(bc)Jp−1(ac) − bJp(ac)Jp−1(bc)

]
.

To prove this formula, we note that y1 = Jp(ax) satisfies

x2y′′1 + xy′1 + (a2x2 − p2)y1 = 0
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and y2 = Jp(bx) satisfies
x2y′′2 + xy′2 + (b2x2 − p2)y2 = 0.

Write these equations in the form

(
xy′1
)′ + y′1 +

a2x2 − p2

x
y1 = 0

and
(
xy′2
)′ + y′2 +

b2x2 − p2

x
y1 = 0.

Multiply the first by y2 and the second by y − 1, subtract, simplify, and get

y2

(
xy′1
)′ − y1

(
xy′2
)′ = y1y2(b2 − a2)x.

Note that
y2

(
xy′1
)′ − y1

(
xy′2
)′ =

d

dx

[
y2(xy′1) − y1(xy′2)

]
.

So
(b2 − a2)y1y2x =

d

dx

[
y2(xy′1) − y1(xy′2)

]
,

and, after integrating,

(b2 − a2)
∫ c

0

y1(x)y2(x)x dx =
[
y2(xy′1) − y1(xy′2)

]∣∣∣
c

0
= x

[
y2y

′
1 − y1y

′
2

]∣∣∣
c

0
.

On the left, we have the desired integral times (b2 − a2) and, on the right, we have

c
[
Jp(bc)aJ ′

p(ac) − bJp(ac)J ′
p(bc)

]
− c
[
aJp(0)J ′

p(0) − bJp(0)J ′
p(0)

]
.

Since Jp(0) = 0 if p > 0 and J ′
0(x) = −J1(x), it follows that Jp(0)J ′

p(0) − Jp(0)J ′
p(0) = 0 for all

p > 0. Hence the integral is equal to

I =
∫ c

0

Jp(ax) Jp(bx)x dx =
c

b2 − a2

[
aJp(bc)J ′

p(ac) − bJp(ac)J ′
p(bc)

]
.

Now using the formula

J ′
p(x) =

1
2
[
Jp−1(x) − Jp+1(x)

]
,

we obtain

I =
c

2(b2 − a2)
[
aJp(bc)

(
Jp−1(ac) − Jp+1(ac)

)
− bJp(ac)

(
Jp−1(bc) − Jp+1(bc)

)]
.

Simplify with the help of the formula

Jp+1(x) =
2p

x
Jp(x) − Jp−1(x)

and you get

I =
c

2(b2 − a2)

[
aJp(bc)

(
Jp−1(ac) − (

2p

ac
Jp(ac) − Jp−1(ac))

)

−bJp(ac)
(
Jp−1(bc) − (

2p

bc
Jp(bc) − Jp−1(bc))

)]

=
c

b2 − a2

[
aJp(bc)Jp−1(ac) − bJp(ac)Jp−1(bc)

]
,

as claimed.
Note that this formula implies the orthogonality of Bessel functions. In fact its proof mirrors

the proof of orthogonality from Section 9.7.


