Physics 116C Solutions to Homework Set #2 Fall 2011

1 Boas, problem p.578, 12.7-5

Show that f_ll dx P(x) =0, 1>0:
This is immediate once we remember that Py(xz) = 1: then

1 1 1
/_del(x):/ del(ac)'lz/ dx P(z)Py(x) =0, 1#0 (1)

1 -1 -1

because of the orthogonality of the Legendre polynomials in the interval (—1,1).

2 Boas, problem p.580, 12.8-5

Find the norm of ze~*"/2 on the interval (0, +00) and state the normalized function:
To find the norm N, we have to calculate

N? = / ze /2 ge 2y = / 22 dz; (2)
0 0
this can be written as ~
/ 22e %’ dz | with k=1; (3)
0
Now, if we call I(k) = [;° e ** we have N2 = — %I(k:)‘k:l. I(k) can be retrieved from the Gaussian
integral
o 1
/_Ooe_kxzdajZ\/%, = I(k‘)zg\/g (4)
Finally, we find
d 1 -1 U 1
N?2=— —I(k = ~r=k3? yo N = _qgt/4
it B V™3 A — 2" 5)
The normalized function is then
%:Ee_gﬁ/2 = on VAge*/2 (6)

3 Boas, problem p.581, 12.9-5
Expand the following function in Legendre series:

f(w):{w—kl, -1<x<0 7)

l—2z, O<a<1

Now, we write f(x) = >_;°, ¢ P/(z), with unknown coefficients ¢;; because of the orthogonality of the
Legendre Polynomials, if we multiply f(z) by F;(z) and integrate between —1 and 1, we have:

/1 dwf(x)P(x)—ic /1 dx Py, (z)P(z) = ¢ 2 (8)
. l —mzom . m l _l2l—|-1

1



Because f(x) is an even function of x, all the odd coefficients will be zero. We want to find an explicit
expression for the coefficient ¢;:

_20+1
l+/d:1:fPl

M{/ 1+ 2)P(x )dx+/01(1—x)Pl(a:)da;}

_ 2 + ! {/ Pz / zP(z)dr — /OI:EPJ(CU)diﬂ} )

We know from problem 1 on this homework set that

1
2 2, forl=0
P(z)dx = =1 " ’ 10
[lx) 20+1" %,mu%u (10)
The case of [ # 0 was treated in problem 1. For [ = 0, we have Py(z) = 1 and the integral is trivial. In the

second integral on the right hand side of (@), change variables 2 — —z and then use P;(—z) = (—1)'P(z).
It follows that:

0 1 1
/ a;Pl(x)dx:—/O xPl(—x)dx:—(—l)l/O xP/(x)dx . (11)

-1

Hence, we conclude that:
20+1 !
¢ =0 — 5 [1 + (—1)@ / xPy(z)dx . (12)
0

Note that (I2]) implies that ¢; = 0 for odd I. Thus, cyy1 = 0 as expected since f(x) is an even
function of x. Thus, its expansion in terms of Legendre polynomials must involve only even functions
which correspond to even I. Since 1 + (—1)! = 2 for even I, we can rewrite (I2)) as

=1, (13)
1

co = —(4l + 1)/ xPy(x)dx, for1=1,2,3,..., (14)
0

cor41 =0, for 1 =0,1,2,3,..., (15)

where ¢y has been obtained by inserting Py(x) = 1 into (I2)) and computing the integral explicitly.
Our remaining task is to compute:

1
/0 x Py (z)dz . (16)

There are many ways to do this. Perhaps the simplest is to make use of the recursion relation given in
eq. (5.8a) on p. 570 of Boas:

IP(2) = (21— )aP1(2) — (L — )P (2). (17)
Replacing ¢ — 2] + 1, the above recursion relation can be rewritten as:
(2l + 1)P21+1(33) = (4l + 1)33P21(Z’) - 2lP21_1(Z') . (18)

We can now solve this equation for Py (z),

2+ 1 9
“+1p
nyr i@t e

JZPgl(J}) = Pgl_l(x) . (19)



Inserting this result into (IQ) yields:

! 20+1 [* 20 !
/0 zPy(z)dr = 4[—+1/0 P2l+1(33)+m/0 Py_y1(z). (20)

This can now be evaluated by making use a the following result derived in class (this result is also given
in problem 23-3 on p. 615 of Boas):

! (=1)!Py(0)  (=D)H2 -1 (=D)}21 - 1)
/0 Pon@)de = — o= = om0 1)
Therefore,
! 20 +1 (=D} (21 — ! 21 (—1)=1 (21 -3
/0 vPu(w)de = (I + 1) Al+1 2011 (22)
Noting that (I + 1)! = (I 4+ 1)I! and (20 — 1)!! = (21 — 1)(2] — 3)!!, one can rewrite (22)) as:
! (—1)F (20 = 3) [(21 +1)(21 — 1)
P - —9
/0 x Py (x)dx 40+1 21! 2(1+1) :
o=
== 201 2(1+1)
(=D -3
2+1(1 +1)!
Inserting this result back into (I4)) yields:
(=Dl 4+ 1)(20 = 3)N B
cop = T+ 1] , forl=1,2,3,... (23)

Combining this result with (I3]) and (I3]), it follows that the first few coefficients in the Legendre series
for f(z) are given byEl

60:%762:_%764:%766:_11_2387"'7 (24)
whereas ¢y = ¢c3 = ¢5 = -+ = 0. Hence, we conclude that
f(x) = 5Po(x) — 2Pa(2) + 5 Pa(x) — g5 Po() +--- . (25)

4 Boas, problem p.582, 12.9-16

Prove the least square approximation property of the Legendre polynomials:
given f(z) the function to be approximated and p;(x) the orthonormal Legendre polynomials, we can
expand f(x) in this basis:

F(@) = copo(x) + e1p1(z) + copa(z) + ... = > eypi(x) (26)
=0

LOf course, we can always compute the first few terms of the Legendre series explicitly. For example,

1 0 1 1’2 0 LEZ 1

200:/ dxf(:c)Po(x):/ (:c—|—1)dx—|—/(1—:c)d:cz——|—x +zrz——| =1 = =3

~1 —1 0 2 —1 2,
2 E 0 1. 5 ! 1. 5 1 5
—co = dz f(x)Pa(x) = (x+1)zBz"—Dde+ | 1—2)z(3z" —1)de = —- == 2 =—3
5 . . 2 ) 2 4 8
2 E 0 1 4 9 * 1 4 9 1 3
—cy = dz f(x)Ps(x) = (x+1)5(352" =30z +3)de+ [ (1—x)<(352" —302" +3)de = — — = —
9 . . 8 . 8 24 16

etc.



The coefficient ¢; are found by multiplying f(x) by p; and integrating between —1 and 1:

/ dx f(z)pi(@ / dx Z cmpm ()1 (2 Zcm ml = Cl (27)

Now let F(x) = bopo(x) + bip1(z) + bapa(x) be the (unknown) quadratic polynomial satisfying the
least square condition, that is, such that

1= / dr[f(z) - F(a)]? (25)

-1

is a minimum. Squaring the bracket and using the orthonormality of the p;’s we can rewrite I as
1 1
i :/ de [f2(2) + F(2) — 2/ (2)F (2) :/ de [f2(2)] + B2+ b3+ B2 — 2byco — 2brer — 2bocy =
-1 -1

1
= / FA(@)dx + (bo — co)® + (b — c1)® + (ba — c2)* — cf — ] — c3. (29)
—1

We are looking for the unknown coefficients b; that minimize I; now, there are only three terms in [ that
depend on the b’s, and they form a sum of squared numbers: then, I is minimum when these terms are
zero, that is, when b; = ¢;. Finally, we have found that the coefficients of the quadratic polynomial that
best approximates a function f(z) are the coefficients of the Legendre expansion of the function itself.

Now we can generalize this result to approximate any function to a polynomial of degree n; writing
the polynomial as F(z) = Y ;" bipi(x) and trying to minimize the integral I = f_ll dz [f(z) — F()]?,
working as we did above we find terms depending on the b’s of this form:

(bo — 60)2 + (bl — 61)2 + ...+ (bn — Cn)2.

Again, this sum is minimal for b; = ¢;, that is, when the approximated polynomial is given by the Legendre
expansion of the function itself.

5 Boas, problem p.584, 12.10-3

Show that the functions P/"(z) for each m are a set of orthogonal functions on (—1, 1), that is, show that

1
/ do PP(2)P™(2) =0,  I4n: (30)
-1
We recall the associated Legendre equation
m2
and rewrite it as
d m/ m2 m
[ -apm )+ i+ - 2| B =0 (32)

Writing this equation for P (x), multiplying it by P/™(x), multiplying ([B2]) by P;"(z) and subtracting the
two resulting equations we find

P;?% (1-2*)P™'] - P{”% (1—2*)P)' ]+ (1 +1) —n(n+ )] PP =0 (33)
(1= ) EPEP — PP 4+ U1+ 1) — n(n+ 1)] BPPP =0 (34)

dx



Integrating between —1 and 1, we have
1 1
(L= a)(PPP™ — PP [ +1) = n(n+ 1) / dz PP = (35)
—1 -1

The integrated term is zero, so we have proven the orthogonality relation (30)) for [ # n.

6 Boas, problem p.584, 12.10-8

Write the definition of the associated Legendre function by Rodrigues’ formula

1 dl+m

() = oy (1 = 2®)"2 - (a® = 1)) (36)
with m replaced by —m.
We have .
-m _ - 1 .2\—m/2 2 1\,
B =g =) e @ = U (37)

we quote the following relation from problem 12.10.7

di-m (=) oy 4
dzl—m (I +m)! o dzglitm

and substituting (B8] in [B7) we find

(e~ 1) =

—m)! l+m
= 21%!(1 —2?)™m? 8 - m;;(:vz - )mddx“rm (2?2 - 1) = (39)
— (l — m)' 1 —-m m m dl+m - m(l - m)' m
TR (1—2)"™2(—1)"(1 — 2?) pm (22— 1)' = (=1) 0T m)!Pl ()  (40)

Because P,™ is proportional to P/, it also solves the equation (BIJ).

7 Boas, problem p.587, 12.11-13

Solve y" +y'/x? = 0 by power series.
We take y(z) = Y7 apa™ and substitute to find

- man s Yonaam =0 = Y nln— e+ Y+ D =0

n=2 n=1 n=2 n=0
nn—1
a1x 2 + 2a00 ! + Z n(n — 1)anx”_2 + (n+ 1)an+1:17n_2 =0 = pi1 = —Qan (41)
o n+1
Naively looking at the convergence of the series Y ° jana™ by the ratio test, we have
lim |2 = lim 0= oo (42)
n—00 | Oy n—oo

The series looks divergent and one is tempted to say that there is no power series solution of the equation.

But if we look back at ([AIl) we see that the starting terms of the series have zero coefficients: we must
have a1 = as = 0; in turn, this tells us that a, = 0, for all values of n > 0: they are all zero. The only
coefficient without constraints is ag, implying y(x) = ap = const and one sees that this is a solution of the
equation, as 3y’ = y” = 0.



8 Boas, problem p.590, 12.12-8

Prove that 1
: —-3/2 _ .
ili%x J3p2(x) = 3\/2/71'. (43)
We write down the series for J3/;
= (=1)" T\ 203
A — — . 44
3/2 ;::Of(n—i—l)F(n—i-l—F%) (2) o

This series starts with a 2%/2 term; if we multiply by 23/2 and take the limit # — 0, the other terms in

the series are proportional to 2* — 0. Then

1 1 1 1 /2
lim 2=3/2J - = 9732 - 9-3/2_ = 9-3/2 _ _\/j. 45
e = R g Ve W

where we used I'(z + 1) = 2I'(z) and T'(3) = /7.

9 Boas, problem p.590, 12.12-9

\/EJl/Q(ZE) =sinz: (46)
2
We simply substitute the series for p = %:

T T 2n+3
\/;J1/2 \/72 n+1 n+1+ )<2> - (47)

Prove that

( 1) 2n _
- V52 B D T T 1)
= nzzo 7(2’” n 1)'1132 +1 = S1inx (49)

10 Boas, problem p.591, 12.13-6

Show from (o) () — T ()
~cos(mp)Jp(x) — J_p(x
Np(.%') - sin(ﬂp) (50)
that
Nent1yy2(@) = (=1)" T _gp41)2(2) : (51)
For p = 2”+1 we have cosmp = 0 and sinp = (—1)"; plugging those values back in (BQ) we find
Nengny2(@) = = (=1)"J_2n41)/2(2). (52)



11 Boas, problem p.593, 12.15-7

(a) Using %[x_pjp(a:)] = —z PJp 1 (x), show that

=1: (53)
0

/ " h(@)da = —Jo(x)
0

That is immediate once we make the substitution and integrate by parts:

0 o] d S
/O Ji(2)dz = — /O de Gl Jox)) = —o(w)| =1 (54)
(b) Use F(p) = [5~ e PtJo(at) = (p? + a®)~1/2 to show that
/ T =1 (55)
0

This is also immediate, as fooo Jo(t) is the Laplace transform of the Bessel function calculated in p = 0
(with @ = 1).

/ T o) = F(0) = (1) 2 =1 (56)
0

12 Boas, problem p.616, 12.23-19

(a) The generating function of the Bessel functions of integral order p = n is

®(x,h) = exp [; (h— —)] Z A" T, (57)

By expanding the exponential, show that the n = 0 term is Jy(z):

i —1/h>] _ (58)
B T
n=0 n=0 k=0
:g (5) w%m'( 1)kpn-2k (60)

0 k=0

We are looking for a term of the form hJy(z); the power of h in (G0) is n — 2k, so that happens only for
even n; then we change the sum variable to n = 2[, and Jy will come from a single term (k =) in the
sum over k: we have

B 1 /a2 (20)! - (—1)! z\2
Jolw) = El: 20! (2) Y= zl: T+ D0 +1) (2) (61)
which is the definition of the Bessel function Jy(x).

(b) Show that ®(z,h) is a solution of the differential equation

>2d 4P d\?
2 2 _ .
. —— tz ir :L"<I>—<h—dh> ®=0: (62)

7



We write down the derivatives of ®:

de 1 1 2o 1 1\ dd = 1
wos(p)e @il e Fos(em)e (05)
2o oz [ 2 a2 1)? d\? d® 42

—— ==+ (1+— ) @ h— | ®=h— +h*— 4
dn? 2< h3> L < +h2> ’ ( dh> an " (64)

Equation (62]) is then verified:
2 1\? =z 1 , 1 1 a2 1\°
z(’“z) +§<h‘ﬁ>” ‘5(“5)”5‘1(“5) =0 (65)

Now, one can verify that this implies that the functions J,,(x) in the series ® = > h"™J, () satisfy Bessel’s
equation; substituting the series in (62]) we have

22> R (@) x> BT (@) +a?> h () = > Pt (x) =0 (66)
from which we find Bessel’s equation
227 () + xJ) (x) 4 (22 — n?)J,(z) = 0. (67)

Finally, we want to verify that the function J,, is a series that starts with the coefficient % (%)n, that is,
that J,, is the solution to Bessel’s equation that is regular in the origin (so that ® is indeed the generating
functional of the Bessel functions). We look at the expression ([60):

Se,h) =Y W)=Y Y % (g)m k'(mmi - (—1)kpm-2k (68)
n m=0k=0 ’ '

Again, we have multiple terms in the sum contributing to the n-th power of h: m — 2k =n = k =
(m—mn)/2

e n even, n = 2N: since k is an integer, this receives contributions only from even values of m,
m=2M,sothat k=M — N

B 2\ 2M 1 MoN . . B
Jan () —%: (2> (M—N)!(M—i—N)!( 1) ,  changing variable L = M — N

(—1)F N 2L+2N
- ZL: LI(L + 2N)! (5) (69)

One recognizes that this is the series form of the Bessel function J,, for n = 2/N.

e n odd, n = 2N + 1: since k is an integer, this receives contributions only from odd values of m,
m=2M + 1, sothat k=M — N

B 2N\ 2M+1 1 MoN . ‘ B

Jon+1(x) —%: (2) (M—N)!(M+N+1)!( 1) ,  changing variable L = M — N
- (_1)L 2\ 2L+2N+1
_EL:L!(L+2N+1)! (2) (70)

Again, one sees that this is the expression of the Bessel function J,, for n = 2N + 1.

Finally, we have found that ®(z,h) is indeed the generating functional of the Bessel functions.
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