
Physics 116C Solutions to Homework Set #3 Fall 2011

1 Boas, problem p.594, 12.16-8

Find the solutions of the followind differential equation in terms of Bessel functions:

y′′ + xy = 0 : (1)

This is an equation of the form

y′′ +
1− 2a

x
y′ +

[

(bcxc−1)2 +
a2 − p2c2

x2

]

y = 0 (2)

with
1− 2a = 0, (bc)2 = 1, 2(c− 1) = 1, a2 − p2c2 = 0 (3)

or

a = 1
2 , c =

3

2
, b =

2

3
, p =

1

3
(4)

Then the solution of (1) is
y = x1/2Z1/3(

2
3x

3/2) (5)

The general solution is then
y = x1/2[J1/3(

2
3x

3/2) +BN1/3(
2
3x

3/2)] (6)

2 Boas, problem p.597, 12.17-2

From problem 12.9, J1/2(x) =
√

2/πx sinx. Use the recursion relation d
dx [x

−pJp(x)] = −x−pJp+1(x) find
J3/2 and J5/2 and verify the formulas for the spherical Bessel functions in terms of sinx and cos x:

We have

J3/2 = −x1/2
d

dx
[x−1/2J1/2] = −

√

2

π
x
d

dx

[

sinx

x

]

= −
√

2

π
x

[

cosx

x
− sinx

x2

]

(7)

J5/2 = −x3/2
d

dx
[x−3/2J3/2] =

√

2

π
x3

d

dx

[

cos x

x2
− sinx

x3

]

=

√

2

π
x3
[

−sinx

x2
− 2

cos x

x3
− cos x

x3
+ 3

sinx

x4

]

Now we want to verify that

jn(x) =
√

π/2xJ 2n+1

2

(x) = xn
(

−1

x

d

dx

)n(sinx

x

)

(8)

So we write down

j0(x) =

√

π

2x
J1/2 =

√

π

2x

√

2

πx
sinx =

sinx

x
≡ x0

(

−1

x

d

dx

)0(sinx

x

)

; (9)

j1(x) =

√

π

2x
J3/2 = −

√

π

2x

√

2

π
x

[

cos x

x
− sinx

x2

]

=

[

cos x

x
− sinx

x2

]

≡ −x
1

x

d

dx

(

sinx

x

)

;

j2(x) =

√

π

2x
J5/2 = −

√

π

2x

√

2

π
x3
[

−sinx

x2
− 3

cos x

x3
+ 3

sinx

x4

]

=

[

−sinx

x
− 3

cos x

x2
+ 3

sinx

x3

]

= (10)

≡ x2
(

−1

x

d

dx

)2(sinx

x

)

=

(

−1

x

d

dx
+

d2

dx2

)(

sinx

x

)

(11)

Formula (8) is then verified.
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3 Boas, problem p.597, 12.17-4

Using Ip(x) = i−pJp(ix), Kp(x) =
π
2 i

p+1H
(1)
p (ix) and the results stated in problem 17.2 and 17.3 for J1/2

and Y1/2 show that

I1/2(x) =

√

2

πx
sinhx and K1/2(x) =

√

π

2x
e−x : (12)

We calculate the hyperbolic Bessel functions as

I1/2(x) = i−1/2J1/2(ix) = i−1/2

√

2

πix
sin(ix) =

√

2

πx
sinhx (13)

K1/2(x) =
π

2
i3/2H

(1)
1/2(ix) =

π

2
i3/2

(

√

2

πix
sin(ix)− i

√

2

πix
cos(ix)

)

(14)

= −
√

π

2x
(sinhx− coshx) =

√

π

2x
e−x

after using sinhx = −i sin(ix) and coshx = cos(ix).

4 Boas, problem p.598, 12.17-12

Obtain the following recursion relation for the spherical Bessel function:

jn−1(x) + jn+1(x) = (2n+ 1)
jn(x)

x
: (15)

This follows directly from the definition of the spherical Bessel function and the recursion relation for the
Bessel functions of the first kind:

Jp−1 + Jp+1 =
2p

x
Jp(x) (16)

jn−1(x) + jn+1(x) =

√

π

2x

(

J 2n−1

2

(x) + J 2n+3

2

(x)
)

=

√

π

2x

2n+ 1

x
J2n+1/2(x) = (2n+ 1)

jn(x)

x
(17)

5 Boas, problem p.600, 12.18-5

Use the recursion relation for J and N and Problem 18.4 to show that

Jn(x)Nn+1(x)− Jn+1(x)Nn(x) = − 2

πx
: (18)

The quoted result from Problem 18.4 is

JpN
′
p − J ′

pNp =
2

πx
, (19)

and we use the recursion relations (holding for both N and J)

Jp−1 − Jp+1 = 2J ′
p (20)

We prove it by induction: first we show that it holds for n = 0, then we show that if it holds for n− 1 it
also does for n, completing the proof:
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• Starting from n = 0, we want to prove

J0N1 − J1N0 = − 2

πx
(21)

This is easy: we have J1 = J−1 − 2J ′
0 = −J1 − 2J ′

0 =⇒ J1 = −J ′
0 so that

J0N1 − J1N0 = −J0N
′
0 + J ′

0N0 = − 2

πx
(22)

• We assume that

Jn−1(x)Nn(x)− Jn(x)Nn−1(x) = − 2

πx
(23)

Then, using (20), we have

Jn(x)Nn+1(x)− Jn+1(x)Nn(x) = Jn(x)Nn−1(x)− 2Jn(x)N
′
n(x)− Jn−1(x)Nn(x) + 2J ′

n(x)Nn(x) =

=
2

πx
− 2

2

πx
= − 2

πx
(24)

and the proof is complete.

6 Boas, problem p.600, 12.18-6

For the initial conditions θ = θ0, θ̇ = 0 show that the constants A, B of Boas, page 598, are given by

A = −πu20
2

θ0N2(u0), B =
πu20
2

θ0J2(u0) : (25)

where u = bl1/2 = 2
√
g
v l1/2.

The solution to the pendulum differential equation is given as

θ = Au−1J1(u) +Bu−1N1(u) (26)

Differentiating and using the recursion relations, we also have

dθ

du
= −[Au−1J2(u) +Bu−1N2(u)] (27)

But for u = u0 we have θ = θ0, θ̇ = 0:

dθ

du
=

dθ

dt

dt

du
= θ̇

1
1
2bl

−1/2v
= 0 if θ̇ = 0 (28)

Then, we have







θ0 = Au−1
0 J1(u0) +Bu−1

0 N1(u0)

0 = Au−1
0 J2(u0) +Bu−1

0 N2(u0)

=⇒







A = −BN2(u0)/J2(u0)

B = u0θ0J2(u0)1/[N1(u0)J2(u0)−N2(u0)J1(u0)]
(29)

By using (18) for n = 1, we find the constants A and B

B =
πu20
2

θ0J2(u0), A = −πu20
2

θ0N2(u0) (30)
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7 Boas, problem p.603, 12.19-1

We are going to prove eq. 19.10, p. 602; given the Bessel function of order p, Jp(x) we have

x(xJ ′
p)

′ + (α2x2 − p2)Jp(αx) = 0 (31)

x(xJ ′
p)

′ + (β2x2 − p2)Jp(βx) = 0 (32)

for any value of α, β. Calling u = Jp(αx) and v = Jp(βx), we get

(vxu′ − uxv′)

∣

∣

∣

∣

1

0

+ (α2 − β2)

∫ 1

0
xuv dx = 0 (33)

Now, if we assume that α is a zero of the Bessel function, we have u(1) = Jp(α) = 0 and

Jp(β)αJ
′
p(α) + (α2 − β2)

∫ 1

0
xuv dx = 0 =⇒

∫ 1

0
xuv dx =

Jp(β)αJ
′
p(α)

β2 − α2
(34)

For β → α, this is
∫ 1

0
xuv dx = lim

β→α

J ′
p(β)αJ

′
p(α)

2β
= 1

2J
′
p
2(α) (35)

We can express this result in other forms using the recursion relation:

J ′
p(x) = −p

x
Jp(x) + Jp−1(x) =

p

x
Jp(x)− Jp+1(x) (36)

As α is a zero, we have J ′
p(α) = Jp−1(α) = −Jp+1(α), and

∫ 1

0
xuv dx = 1

2J
2
p−1(α) =

1
2J

2
p+1(α) (37)

8 Boas, problem p.603, 12.19-6

By problem 19.5,
∫ 1
0 xN1/2(αx)N1/2(βx)dx = 0 if α, β are two different zeros of N1/2(x). We can write

N1/2(x) as
√

π

2x
N1/2(x) =

cos x

x
(38)

so that its zeros are αn =
(

n+ 1
2

)

π. So we have

∫ 1

0
xN1/2(αnx)N1/2(αmx) dx =

∫ 1

0

2

π

1√
αn

cos[(n+ 1
2)πx]

1√
αm

cos[(m+ 1
2)πx] dx = 0 for n 6= m (39)

We have the proved that the functions cos(n + 1
2)πx are a set of orthogonal functions on (0, 1). We can

find the normalization constant using (35):

∫ 1

0
xN1/2(αnx)N1/2(αnx) dx =

∫ 1

0

2

παn
cos[(n + 1

2)πx] cos[(n + 1
2)πx] dx =

1

2

[

d

dx

(

√

2

πx
cos x

)

∣

∣

∣

∣

x=αn

]2

=

=
1

π

[

1

x

(

sinx
√
x− cos x

1

2
√
x

)
∣

∣

∣

∣

x=αn

]2

=
1

παn
(40)

The orthonormal functions are then
1√
2
cos[(n + 1

2)πx]. (41)
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9 Boas, problem p.604, 12.20-6

Evaluate the following limit:

lim
x→0

xjn(x)yn(x) = lim
x→0

x

(

xn

(2n+ 1)!!
+O(xn+2)

)(

−(2n − 1)!!

xn+1
+O(x1−n)

)

(42)

= −(2n− 1)!!

(2n+ 1)!!
= − 1

2n+ 1
(43)

10 Boas, problem p.606, 12.21-3

Find one solution of the differential equation by series and then find the second solution by the method
of reduction of order :

x2y′′ + x2y′ − 2y = 0 (44)

Inserting the series y(x) =
∑∞

n=0 anx
n+s, we have

∞
∑

n=0

(n+ s)(n+ s− 1)anx
n+s +

∞
∑

n=0

(n+ s)anx
n+s+1 − 2

∞
∑

n=0

anx
n+s = 0 . (45)

Shifting the index on the second sum, we obtain:

∞
∑

n=0

[(n+ s)(n+ s− 1)− 2]anx
n+s +

∞
∑

n=1

(n+ s− 1)an−1x
n+s = 0 . (46)

For n = 0 we obtain the indicial equation, s(s−1)a0−2a0 = (s+1)(s−2)a0 = 0, which yields the indicial
indices s = −1 and s = 2.

For s = −1, the recurrence relation obtained by setting the coefficient of xn+s to zero for n = 1, 2, 3, . . .
is given by:

n(n− 3)an = −(n− 2)an−1 , for n = 1, 2, 3, . . . (47)

It follows that a1 = −1
2a0 and a2 = 0. When we put n = 3 in (47), we obtain the equation 0 = 0. Thus,

a3 is a free parameter that is not determined by (47). However, it is a simple matter to check that all
higher coefficients a4, a5, a6, . . . can be determined from a3. You can easily check that:

an+3 =
6a3(−1)n

(n+ 3)(n + 2)n!
, for n = 0, 1, 2, 3, . . . (48)

Thus, the series solution obtained is:

y(x) = −1
2a0

(

1− 2

x

)

+
6a3
x

∞
∑

n=0

(−1)nxn+3

(n + 3)(n + 2)n!
. (49)

Thus, by employing s = −1, we have already obtained two linearly independent solutions—one propor-
tional to a0 and one proportional to a3.

What would have happened if we had obtained the recurrence relation corresponding to s = 2? It is
straightforward to check that the resulting recurrence relation is:

n(n+ 3)an = −(n+ 1)an−1 , for n = 1, 2, 3, . . . (50)

which yields

an =
6a0(−1)n

(n+ 3)(n + 2)n!
, for n = 0, 1, 2, 3, . . . (51)
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Thus, for s = 2 one obtains the series solution

6a0x
2

∞
∑

n=0

(−1)nxn

(n+ 3)(n + 2)n!
, (52)

which simply reproduces the second linearly independent solution obtained in (49). This is not surprising,
since the recurrence relation given by (47) starting from n = 4 is precisely the same relation as (47)
starting from n = 1 [check this by letting n → n + 3 in (47)]. In the class handout on series solutions
to differential equations, this corresponds to case 3 in which the indicial indices differ by an integer, but
neither series solution involves a logarithm.

Boas instructs us to complete this problem as follows. First identify the simpler solution as the one
proportional to a0 in (49),

y1(x) = 1− 2

x
. (53)

Instead of finding the second solution by explicitly evaluating the sum that multiplies a3 in (49) [or
equivalently, evaluating the sum in (52)], Boas suggests that we make use of the “reduction of order”
method for obtaining the second linearly independent solution. In the class handout on the Wronskian, I
showed that for the differential equation,

a0(x)y
′′ + a1(x)y

′ + a2(x)y = 0 , (54)

the reduction of order method yields

y2(x) = y1(x)

∫

W (x)

[y1(x)]2
dx , (55)

where the Wronskian is given by Abel’s formula,

W (x) = c exp

{

−
∫

a1(x)

a0(x)
dx

}

(56)

and c is a constant, which we can ignore in this calculation since it can be reabsorbed into the definition
of y2(x). In the present problem, a0(x) = a1(x) = x2, and we immediately obtain W (x) = e−x. Hence,

y2(x) =

(

1− 2

x

)
∫

e−x

(

(1− 2

x

)−2

=

(

1− 2

x

)
∫

x2e−x

(x− 2)2

=

(

1− 2

x

)(

2 + x

2− x

)

e−x = −
(

1 +
2

x

)

e−x .

The indefinite integral above can be computed by the substitution y = x − 2 followed by an integration
by parts. Luckily, the indefinite integral

∫

dy(e−y/y) drops out of the final answer, and the end result is
rather simple.

For fun, let us check that the same result can be obtained by evaluating the sum proportional to a3
in (49). Define the function:

f(x) =

∞
∑

n=0

(−1)nxn+3

(n+ 3)(n + 2)n!
. (57)

Then, taking two derivatives, we obtain:

f ′′(x) =
∞
∑

n=0

(−1)nxn+1

n!
= xe−x , (58)
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after recognizing the power series for e−x. We now integrate twice to get back to f(x),

f ′(x) =

∫

f ′′(x)dx = −(x+ 1)e−x + C1 ,

f(x) =

∫

f ′(x)dx = (x+ 2)e−x + C1x+ C2 .

The constants of integration C1 and C2 can be determined by noting that the first term in the power
series of f(x) is O(x3). Noting that

(x+ 2)e−x = (x+ 2)
[

1− x+ 1
2x

2 − 1
6x

3 +O(x4)
]

= 2− x+ 1
6x

3 +O(x4) , (59)

it follows that we must take C1 = 1 and C2 = −2. Thus, we conclude that:

f(x) = (x+ 2)e−x + x− 2 . (60)

Indeed the first term of the power series given by (57) is 1
6x

3 as required. Using this result in (49), we see
that the term proportional to 6a3 is

(

1 +
2

x

)

e−x + 1− 2

x
. (61)

Hence, (49) can be rewritten as:

y(x) =
(

6a3 − 1
2a0
)

(

1− 2

x

)

+ 6a3

(

1 +
2

x

)

e−x . (62)

Thus, we again confirm that the two linearly independent solutions are:

y1(x) = 1− 2

x
and y2(x) =

(

1 +
2

x

)

e−x . (63)

11 Boas, problem p.606, 12.21-9

Solve the differential equation by Frobenius’ method and then find the second solution using Fuchs’s
theorem:

x2y′′ + (x2 − 3x)y′ + (4− 2x)y = 0. (64)

We write the solution as a series
∑

n=0 anx
n+s; the equation becomes

∑

(n+ s)(n+ s− 1)anx
n+s +

∑

(n+ s)(anx
n+s+1 − 3anx

n+s) +
∑

(4anx
n+s − 2anx

n+s+1) = 0(65)

∑

xn+s

[

(n+ s)(n+ s− 1)an + (n− 1 + s)an−1 − 3(n + s)an + 4an − 2an−1

]

= 0(66)

for n = 0 we find the indicial equation

s(s− 1)− 3s + 4 = 0 =⇒ s2 − 4s + 4 = 0 =⇒ s = 2 (67)

The series starts with a x2 term; for s = 2, the relation between the an’s becomes

[(n+ 2)(n + 1)− 3(n + 2) + 4]an + [(n + 1)− 2]an−1 = 0 =⇒ n2an + (n− 1)an = 0 (68)

for n = 1, we have a1 = 0, implying an = 0 ∀n ≥ 1. The first solution is then

S1(x) = a0x
2 (69)
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Because the roots of the indicial equation coincide, by Fuchs’s theorem we expect the other solution to be
of the form

y(x) = S1(x) ln x+ S2(x). (70)

We now want to find the unknown series S2(x) =
∑

bnx
n: plugging (70) in (64),

y′ = S′
1 lnx+ S1

1

x
+ S′

2, y′′ = S′′
1 lnx+

2

x
S′
1 − S1

1

x2
+ S′′

2 (71)

2xS′
1 − S1 + (x− 3)S1 + x2S′′

2 + (x2 − 3x)S′
2 + (4− 2x)S2 = 0. (72)

∑

xn
[

n(n− 1)bn + (n− 1)bn−1 − 3nbn + 4bn − 2bn−1

]

= a0x
2 − 4a0x

2 − a0(x
3 − 3x2) = −a0x

3

Here we find the relation

(n2 − 4n+ 4)bn + (n− 3)bn−1 =

{

0, n > 3
−a0, n = 3

, (73)

We can rewrite the relation as bn = − n−3
(n−2)2 bn−1 = (n−3)(n−4)

(n−2)2(n−3)2 bn−2 = . . .. The first terms of the series
are

S2(x) = −a0x
3 + a0

1

4
x4 − a0

1

3 · 3 · 2x
5 + a0

1

4 · 4 · 3 · 2x
6 + · · · (74)

Then the general solution to (64) is a linear combination of the two particular solutions:

y(x) = Ax2 +B

[

x2 lnx− x3 +
1

2 · 2!x
4 − 1

3 · 3!x
5 +

1

4 · 4!x
6 + . . .

]

(75)

12 Boas, problem p.618, 12.23-26

Verify Bauer’s formula eixw =
∑∞

0 (2l + 1)iljl(x)Pl(w).

We can write the Legendre series, eixw =
∑∞

l=0 clPl(w). The coefficients cl are given by
∫ 1

−1
dw eixwPl(w) =

∑

m

cm

∫ 1

−1
dwPl(w)Pm(w) =

2

2l + 1
cl =⇒ cl =

2l + 1

2

∫ 1

−1
dw eixwPl(w) (76)

We can see cl as a function of x, y(x) = cl. Then we can find y′ and y′′:

y′(x) =
2l + 1

2

∫ 1

−1
dw (iw)eixwPl(w), y′′(x) =

2l + 1

2

∫ 1

−1
dw (iw)2eixwPl(w) (77)

so that they satisfy spherical Bessel’s equation

x2y′′ + 2xy′ + [x2 − l(l + 1)]y = 0 : (78)
∫ 1

−1
dw eixwPl(w)[−x2w2 + 2ixw + (x2 − l(l + 1))] =

∫ 1

−1
dw eixwPl(w)[x

2(1− w2) + 2ixw − l(l + 1)]

We look at the first two terms in this expression:
∫ 1

−1
dw [x2(1 −w2) + 2ixw]Ple

ixw = −
∫ 1

−1
dw (1− w2)Pl(w)

d2

dw2
eixw +

∫ 1

−1
dw 2ixwPle

ixw =

= −(1− w2)Pl(w)
d

dw
eixw

∣

∣

∣

∣

1

−1

+

∫ 1

−1
dw (−2wPl + (1− w2)P ′

l )
d

dw
eixw +

∫ 1

−1
dw 2ixwPle

ixw = (79)

=

∫ 1

−1
dw (−2ixw)Pl(w)e

ixw +

∫ 1

−1
dw (1− w2)P ′

l

d

dw
eixw +

∫ 1

−1
dw 2ixwPle

ixw = (80)

= (1− w2)Pl(w)e
ixw

∣

∣

∣

∣

1

−1

−
∫ 1

−1
dw [(1− w2)P ′

l ]
′eixw (81)
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So that now equation (78) reads

∫ 1

−1
dw eixw

[

d

dw
[(1− w2)P ′

l ] + l(l + 1)Pl(w)

]

= 0 (82)

where the expression is zero because we have Legendre’s equation in the brackets. Because cl satisfies the
spherical Bessel equation, it is given by a linear combination of the Bessel functions:

cl = Ajl(x) +Bnl(x) (83)

We can compute the cl(x) integral for small values of x by expanding eixw:

cl(x) =
2l + 1

2

∫ 1

−1

(

∞
∑

n=0

(ixw)n

n!
Pl(w)

)

dw =
2l + 1

2

ilxl

l!

∫ 1

−1
wlPl(w) +O(xl+2) (84)

To calculate the integral, we use Rodrigues’ formula for the Legendre polynomials:

∫ 1

−1
dwwlPl(w) =

∫ 1

−1
dwwl 1

2ll!

dl

dwl
(w2 − 1)l = (−1)l

1

2l

∫ 1

−1
dw(w2 − 1)l =

1

2l

√
πΓ(l + 1)

Γ(l + 3
2)

=
2 · l!

(2l + 1)!!

(85)
where we integrated by parts as we did in Homework set #1, Problem 9. So we found that

cl(x) = (2l + 1)il
xl

(2l + 1)!!
+O(xl+2) (86)

but this is also the expansion of jl(x) for small x; thus, cl is not singular at the origin and can be written
in terms of jl(x). Putting everything together, we have found that

eixw =
∞
∑

l=0

clPl(w) =
∞
∑

l=0

(2l + 1)iljl(x)Pl(w). (87)
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