
 

 

Legendre’s Polynomials  

 

4.1 Introduction       

The following second order linear differential equation with variable 

coefficients is known as Legendre’s differential equation, named after 

Adrien Marie Legendre (1752-1833), a French mathematician, who is 

best known for his work in the field of elliptic integrals and theory of 

numbers :  

                             �1 � ������ � 2��� 
 ��� 
 1�� � 0                                       …(1) 

where n is a non-negative integer.       

Legendre’s differential equation occurs in many physical and 

engineering problems involving spherical geometry and gravitation.      

4.2 Legendre’s Differential Equation        

We know that the differential equation of the form  

                              �1 � ������ � 2��� 
 ��� 
 1�� � 0                                       …(1)     

is called Legendre’s differential equation (or simply Legendre’s equation), 

where n is a non-negative integer.        

This equation can  also be put in the following form: 

                         
�

�� ��1 � ��� ��
��� 
 ��� 
 1�� � 0.                                                            

Clearly, the only singular points of (1) are x = 1, x = − 1 and x = ∞, 

which are regular. Therefore, the Legendre’s differential equation is a 

Fuchsian differential equation. 

Chapter-4 
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      The points other than singular points e.g., x = 0, x = 2, etc. behave like 

ordinary points of (1).        

Let the series solution of (1) be of the form 

                              � � ∑ ������, �� � 0����                                                             …(2) 

�                           � � ∑ �!�" 
 !��"
!�1∞!�0                                                         …(3) 

and                       �" � ∑ ���" 
 !��" 
 ! � 1�����$�����                                    …(4)       

Putting the above values of y, y and y" in (1), we have 

   ∑ �!�" 
 !��" 
 ! � 1��"
!�2 � �2∞!�0 ∑ �!�" 
 !��" 
 ! � 1��"
!�2∞!�0  

                                          �2� ∑ ���" 
 !�����$% 
 ��� 
 1� ∑ ������ � 0��������  

or            ∑ ���" 
 !��" 
 ! � 1�����$�����  

                                              � ∑ ��&�" 
 !��" 
 ! � 1� 
 2�" 
 !� � ��� 
 1�'���� � 0����  

or      ∑ �!�" 
 !��" 
 ! � 1��"
!�2∞!�0  

                                                  � ∑ ������ &�" 
 !�� 
 �" 
 !� � �� � �'���� � 0 

or        ∑ �!∞!�0 �" 
 !��" 
 ! � 1��"
!�2 

                                  � ∑ ������ &�" 
 ! 
 ���" 
 ! � �� 
 �" 
 ! � ��'���� � 0 

or       ∑ �!�" 
 !��" 
 ! � 1��"
!�2∞!�0          

                                       � ∑ ������ �" 
 ! � ���" 
 ! 
 � 
 1����� � 0           …(5)             

 which is an identity in x and, therefore, the coefficients of various powers 

of x in it should be zero. 

Thus, equating to zero, the coefficient of the smallest power of �, 

namely ��$� in (5), we get the following  indicial equation 

                   �0"�" � 1� � 0             or           "�" � 1� � 0,                () �0 � 0* 
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which gives two indicial roots k = k1 = 1 and k = k2 = 0.  

Note that the roots of indicial equation are unequal and differ by an 

integer.       

Now, to get the recurrence relation, we equate to zero, the coefficient 

of ����$�in (5). Thus, we have   

            �!�" 
 !��" 
 ! � 1� � �!�1�" 
 ! � 2 � ���" 
 ! � 2 
 � 
 1� � 0 

or                      �! � �"
!�2����"
!�1
���"
!��"
!�1� �!�2                                                          …(6)       

Next, equating to zero, the coefficient of ��$%in (5), we obtain 

                                      �1�" 
 1�" � 0                                                                     …(7)       

For k = 0, we note from (7)  that C1 is indeterminate.    

     Thus, putting k = 0 in (6), we get  �! � �!�2����!�1
��
!�!�1� �!�2                  …(8)                                                        

We now express C2, C4, C6…. in terms of C0 and C3, C5 C7…. in terms 

of C1 by assuming that C1 is finite.        

Putting m = 2 in (8), we have  �2 � ������
1�
2.1 �0 � � ���
1�

2! �0                  …(9)       

 Putting m = 4 in (8) and using (9), we obtain 

                       �4 � �2����3
��
4.3 �2 � ���2����
1���
3�

4! �0                                             …(10) 

and so on.        

Next, putting m = 3 in (8), we obtain 

                               �3 � �1����2
��
3.2 �1 � � ���1���
2�

3! �1                                          …(11)       

Again, putting m = 5 in (8) and using (11), we have 
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                              �5 � �3����4
��
5.4 �3 � ���3����1���
2���
4�

5! �1                               …(12) 

and so on.        

Now, the solution (2) can be re-written as:  

                  � � ����� 
 �%� 
 ���� 
 �/�/ 
 �0�0 
 �1�1 
 2 �, where k = 0 

or              � � ��� 
 ���� 
 �0�0 
 2 � 
 ��%� 
 �/�/ 
 �1�1 
 2 �                 …(13)        

Using the values of C2, C3, C4, C5,…... in the above equation, we get  

                 � � �� 31 � 4�4�%�
�! �� 
 �4$��4�4$%��4�/�

0! �0 � 2 5 
                                     
�% 3� � �4$%��4���

/! �/ 
 �4$/��4$%��4����4�0�
1! �1 
 2 5       …(14) 

which is the required general series solution, C0 and C1 being arbitrary 

constants. 

4.3. Solution of Legendre’s Differential Equation in 

Descending Powers         

Consider Legendre’s differential equation of the type 

                             �1 � ������ � 2��� 
 ��� 
 1�� � 0                                       …(1) 

where n is a non-negative integer.        

It is possible to obtain the solution of (1) in terms of descending 

powers of x. Due to its applications to physical problems, this form of 

solution of Legendre’s differential equation is more important.        

For such a solution, let us assume that the Legendre’s differential 

equation (1) has a series solution of the form 

                              � � ∑ ����$�, �� � 0����                                                              …(2)                                                           

Then, by Frobenius method, we can find two linearly independent 

solutions of (1) in descending powers of x as:            
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               �% � 6 3�4 � 4�4$%�
���4$%� �4$� 
 4�4$%��4$���4$/�

�.0��4$%���4$/� �4$0 � 2 5                            …(3) 

and         �� � 7 3�$4$% 
 �4�%��4���
���4�/� �$4$/ 
 �4�%��4����4�/��4�0�

�.0��4�/���4�1� �$4$1 
 2 5        …(4)       

If we take  6 � %./.1…��4$%�
4! , the solution (3) is denoted by Pn (x) and is 

called Legendre’s function of the first kind or Legendre’s polynomial 

of degree n [since (3) is a terminating series and so, it gives rise to a 

polynomial of degree n]. Again, if we take 7 � 4!
%./.1…��4�%�, the solution (4) is 

denoted by Qn(x) and is called Legendre’s function of the second kind. 

Since n is positive, (4) is an infinite or non-terminating series and hence 

Qn(x) is not a polynomial. Thus, Pn(x) and Qn(x) are two linearly 

independent solutions of (1). Hence, the most general solution of (1) is 

given by  

                                          � � 9:4��� 
 ;<4���                                                        …(5) 

where A and B are arbitrary constants.       

Remarks: When there is no confusion regarding the variable x, we 

shall use a shorter notation :4 for :4���, :4  for 
�

�� :4��� and so on. 

4.4 Legendre’s Functions of First and Second Kinds             

 Legendre’s function of the first kind or Legendre’s polynomial of 

degree n is denoted by Pn(x) and is defined by  

         :4��� � %./.1…��4$%�
4! 3�4 � 4�4$%�

���4$%� �4$� 
 4�4$%��4$���4$/�
�.0��4$%���4$/� �4$0 � 2 5             …(1)         

We can also write :4��� in a compact from as : 

                               :4��� � ∑ ��1�=(4 �⁄ *=�� ��4$�=�!
�?=!�4$�=�!�4$=� �4$�=                                  …(2) 

where [n/2] = � �4$%� �⁄ ,AB 4 AC DEE4 �⁄ ,AB 4 AC FGFH I.  
Legendre’s function of the second kind is denoted by Qn(x) and is 

defined by 
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<4��� � 4!
%./.1…��4�%� 3�$4$% 
 �4�%��4���

���4�/� �$4$/ 
 �4�%��4����4�/��4�0�
�.0��4�/���4�1� �$4$1 
 2 5 …(3) 

4.5 First Few Legendre’s Polynomials         

Using the definition (1) or (2), the first few Legendre’s polynomials 

are given by  

        :���� � 1, :%��� � �, :���� � %
� �3�� � 1�, :/��� � %

� �5�/ � 3��   

       :0��� � %
J �35�0 � 30�� 
 3�, :1��� � %

J �63�1 � 70�/ 
 15��, etc. 

4.6. Generating Function for Legendre’s Polynomial Pn(x)        

The function (1−2x h + h
2
)
−1/2

 is called as the generating function for 

Pn(x) and, therefore, Pn(x) is the coefficient of h
n
 in the expansion of         

(1 – 2xh + h
2
)
−1/2

 in ascending powers of h, i.e., (1 – 2xh + h
2
)

−½
 �∑ M4�4�� :4���, |�| O 1 and |M| S 1.          

Proof: Since |M| S 1 and |�| O 1 , therefore, we can write  

        (1 – 2xh + h
2
)

- ½
 = {1 – h (2x – h)}

-1/2  

         � 1 
 %
� M�2� � M� 
 %./

�.0 M��2� � M�� 
 2 
 %./…��4$/�
�.0…��4$�� M4$%�2� � M�4$%     

                                                                    
%./…��4$/�

�.0…� M4�2� � M�4 
 2      …(1)        

�  Coefficient of h
n
 in R.H.S. of (1) is  

          � %./…��4$%�
�.0…�4 . �2��4 � %./…��4$/�

�.0…��4$��
 � � 1�%�2��4$� 
 %./…��4$1�

�.0…��4$0�  4$����2��4$0 � 2 

          � %./…��4$%�
�.0…�4 24 3�4 � �4

�4$% �� � 1� �?TU
�U 
 �4��4$��

��4$%���4$/� . �4$���4$/�
�! . �?TV

�U � 2 5 
          � %./…��4$%�

4! 3�4 � �4
�4$% . �� � 1� �?TU

�U 
 �4��4$��
��4$%���4$/� . �4$���4$/�

�! . �?TV
�U � 2 5 

          � %./…��4$%�
4! 3�4 � 4�4$%�

���4$%� �4$� 
 4�4$%��4$���4$/�
�.0��4$%���4$/� �4$0 � 2 5  

          � :4���.     
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Thus, we can say that in the expansion of (1 – 2xh + h
2
)

−1/2
, in ascending 

powers of h, the Legendre’s polynomials P0(x), P1(x),P2(x),…. respectively 

are the coefficients of h0
, h

1
, h

2
,…. in the expansion given by (1).         

Hence, we have     �1 � 2M� 
 M��$%/� � ∑ M4�4�� :4���, where :���� � 1.         

This shows that Pn(x) is the coefficient of h
n
 in the expansion of �1 � 2M� 
 M��$%/�. This is why �1 � 2M� 
 M��$%/� is called as the generating 

function of the Legendre’s polynomial Pn(x). 

4.7 Murphy’s Formula for Legendre’s Polynomial Pn(x)       

Consider the Legendre’s differential equation  

                   �1 � �2��  �  2�� 
 ��� 
 1�� � 0                                              …(1) 

 where n is a non-negative integer.        

It has only three singular points namely x = 1, x = −1 and x = ∞ and 

all are regular. Therefore, Legendre ‘s differential equation  is a Fuchsian 

differential equation with three regular singular points x = 1 , x = −1 and  

x = ∞ .       

Let us find the solution of (1) about the singular point x = 1 as follows:      

The substitution t = 
%
� �1 � �� transfers the singular point x = 1 to t = 0.        

In this case, the Legendre’s differential equation (1) is transformed  to 

the following differential equation: 

                   X�1 � X���� 
 �1 
 2X��� 
 ��� 
 1�� � 0                                              …(2)       

This transformed differential equation is in the hypergeometric form 

with a = − n , b = n + 1 and c = 1.       

All solutions of the transformed differential equation (2) are 

represented by the P- symbol as follows: 
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                    � � : Y0 1   ∞            0 0 � 
 1     X0 0 ��         Z                                                                         …(3) 

       

Hence, all solutions of the Legendre’s differential equation (1) are 

represented by the following P- symbol : 

                   � � : Y0 �1 ∞            0 0 � 
 1    � 0 0 ��            Z                                                                         …(4)       

One of the solutions of  the differential equation (2) is the polynomial 

F(− n; n + 1; 1;t).       

Now, replacing  X 7� �1 � �� 2⁄ , we can have one of the solutions of 

Legendre’s differential equation (1) as:  

                       :���� � [ \��, � 
 1; 1; 1��
2 ^                                                              …(5) 

which is the polynomial solution of (1). This relation (5) for Pn(x) is 

known as the Murphy’s formula for Legendre’s polynomial Pn(x). 

4.8. Laplace’s Definite Integrals for Pn(x)        

(I) Laplace’s First Integral for Pn(x): When n is a positive integer , 

then Laplace’s first integral for Pn(x)  is given by  

                               :4��� � %
_ ` (� a b��� � 1� cos f*4 gf_�                                      …(1)         

Proof: From integral calculus, we have  

                                   ` �h
iaj kDC h

_� � _
biU$jU, where 6� l 7�.                                      …(A)        

Putting a = 1 – hx and b = h  b��� � 1� so that a
2
 – b

2
 = (1− hx)

2
 – h

2
 

(x
2
 – 1) = 1 – 2hx + h

2
.  

      Using these values of a, b and a
2
 – b

2
 in (A), we have 
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                    m�1 � 2M� 
 M��$%/� � ` (1 � M� a Mb��� � 1� cos f*$% gf_�  

                                                        � ` (1 � M&_� � n b��� � 1� cos f'$% gf 

                                                        � ` (1 � MX*$%_� gf, where X � � n b��� � 1� cos f 

or                         m ∑ M4�4�� :4��� � ` �1 � MX 
 M�X� 
 2 
 M4X4 
 2 �_� gf  

                                                        � ` (∑ �MX�4�4�� *gf_� � ∑ (M4 ` X4_��4�� gf*.           
Equating the coefficients of h

n
 on both sides, we have 

                            m :4��� � ` X4_� gf � ` (� a b��� � 1� cos f*4 gf_�  

   or                            :4��� � %
_ ` (� a b��� � 1� cos f*4 gf_� .      

(II) Laplace’s Second Integral for op�q�: When n is a positive 

integer, then Laplace’s second integral for :4��� is given by  

                                   :4��� � %
_ ` �h

(�ab��U$%� kDC h*?rs ._�                                                …(2)       

Proof: From integral calculus, we have 

                                ` �h
iaj kDC h � _

biU$jU ,_�  where 6� l 7�.                                        …(A)      

Putting a = hx – 1 and b = h b��� � 1� so that a
2
 – b

2
 = 1 – 2hx + h

2
.  

Using these values of a, b and a
2
 – b

2
 in (A), we have 

             m�1 � 2M� 
 M��$%/� � ` (1 � M� a Mb��� � 1� cos f*$% gf_�   

or          
_
t 31 � 2 %

t � 
 %
tU5$%/� � ` (M&� a b��� � 1�_� cos f' � 1*$%gf  

or                   
_
t ∑ %

t?�4�� :4��� � ` �MX � 1�$%_� gf, where X � � a b��� � 1� cos f 

                                    � ` %
tu

_� 31 � %
tu5$% gf � ` %

tu
_� 31 
 %

tu 
 %
tsuU 
 2 
 %

t?u? 
 2 5 gf   

                         � ` 3 %
tu 
 %

tUuU 
 %
tvuv 
 2 
 %

t?rsu?rs 
 2 5 gf � ∑ 3 %
t?rs ` %

u?.s_� gf5�4��_�    
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                         � ∑ w %
t?rs ` �h

��ab��U$%� kDC h�?rs_� x�4��                

Now, equating the coefficient of 
%

t?rs from both sides, we have 

                              m :4��� � ` �h
��ab��U$%� kDC h�?rs_�  

 �                                   :4��� � %
_ ` �h

��ab��U$%� kDC h�?rs_�     

Remarks: Replacing n by – (n + 1) in Laplace’s second integral, we 

have 

                                  :$�4�%���� � %
_ ` &� a b��� � 1� cos f'4 gf_�  

                                                     � :4���,                           [From Laplace’s first integral.]      

Hence, we have      o$�p�y��q� � op�q� , which can also be obtained by 

using the Murphy’s formula for Pn(x). 

 4.9. Orthogonal Properties of Legendre’s Polynomials     

(I) ` oz�q��y$y op�q�{q � | }~ z � p.         (II) ` (op�q�*��y$y {q � �
�p�y.        

Proof: (I) Legendre’s differential equation may be written as  

                                   
�

�� ���� � 1� ��
��� 
 ��� 
 1�� � 0                                            …(1)          

Since :4��� is a solution of Legendre’s differential equation (1), 

therefore, we have 

        �                          
�

�� ���� � 1� ��?�� � 
 ��� 
 1�:4 � 0.                                       …(2)         

Similarly, if we consider the Legendre’s differential equation 

                                                 
�

�� ���� � 1� ��
��� 
 !�! 
 1�� � 0                            …(3)        

Then, we have        
�

�� ���� � 1� ����� � 
 !�! 
 1�:� � 0.                           …(4)        
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Multiplying (2) by :� and (4) by :4 and then subtracting, we have 

          :� �
�� ��1 � ��� ��?�� � � :4 �

�� ��1 � ��� ����� � 
 &��� 
 1� � !�! 
 1�':4:� � 0       

Integrating the above between the limits – 1 to 1, we have  

  ` 3:� �
�� ��1 � ��� ��?�� �5$%$% g� � ` 3:4 �

�� ��1 � ��� ����� �5$%$% g� 

                                                                
&��� 
 1� � !�! 
 1�' ` :�:4g� � 0%$%       

On integrating by parts, we obtain  

          3:��1 � ��� ��?�� 5$%
�% � ` ��?��

�%$% ��1 � ��� ��?�� � g� � 3:4�1 � ��� ����� 5$%
�%

 

                         
 ` ��?��
�%$% ��1 � ��� ����� � g� 
 (��� 
 1� � !�! 
 1�* ` :�:4g� � 0.�%$%  

     or                 &��� 
 1� � !�! 
 1�' ` :�:4g� � 0�%$%      

Hence, we have      ` :����:4���g� � 0,�%$%  if ! � �       

(II) We know that the generating function for :4��� is  given by 

                                 �1 � 2M� 
 M��$%/� � ∑ M4:4����4��                                          …(3)  

    Also, we have     �1 � 2M� 
 M��$%/� � ∑ M�:�����4��                                          …(4)     

Multiplying the corresponding sides of (3) and (4), we get  

                                 �1 � 2M� 
 M��$% � ∑ ∑ M��4:����:4���.�4������      

Integrating the above between the limits – 1 to + 1, we have  

                       ` �1 � 2M� 
 M��$%�%$% g� � ∑ ∑ 3M��4 �` :����:4����%$% �5�4������  

or        ∑ ` M�4�%$%�4�� (:4���*� 
 ∑ ` M��4:����:4����%$%��,4����4 g� � ` ��
�%$�t��tU� �%$%       

Now, since ` :����:4����%$%  g� � 0, where ! � �. Therefore, we have 
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        ∑ ` M�4�%$%�4�� (:4���*�g� � ` ��
�%$�t��tU� �%$% � � %

�t (log�1 � 2M� 
 M��*$%�% 

� � %
�t &log�1 � M�� � log�1 
 M��' ,    

� %
t (log�1 � M� � log�1 � M� *   

                                                � %
t 3\M � tU

� 
 tv
/ � 2 ^ � \�M � tU

� � tv
/ � 2 ^5 

                                                � �
t 3M 
 tv

/ 
 t�
1 
 2 5 � �

t ∑ tU?rs
�4�%�4�� � ∑ �tU?

�4�%�4��      

Now, equating the coefficients of M�4 from both sides, we have  

                                            ` (:4���*�g� � �
�4�%

�%$%       

Remarks: Making use of the Kronecker delta, the results (I) and (II) 

can be written in compact from as  

                                     ` :����:4����%$% g� � �
�4�% ��4 

where Kronecker delta ��4 is defined by   ��4 � � %,AB ��4.
�,AB ��4 I 

4.10 Recurrence Formulae for Legendre’s Polynomials       

(I) ��p 
 y�q op�q� � �p 
 y�op�y�q� 
 pop$y�q�.       
Proof :  Generating function for :4��� is given by 

                                 �1 � 2�M 
 M��$%/� � ∑ M4:4����4��                                    …(1)       

Differentiating both sides of (1) w.r.to h, we have 

                            � %
� �1 � 2�M 
 M��$//���2� 
 2M� � ∑ �M4$%:4����4��        

Multiplying both sides by( 1 � 2�M 
 M�) and simplifying, we have 

                       �� � M��1 � 2�M 
 M��$%/� � �1 � 2�M 
 M�� ∑ �M4$%:4����4��  

or                      �� � M� ∑ M4:4����4�� � �1 � 2�M 
 M�� ∑ �M4$%:4����4�� , on using (1) 
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or         � ∑ M4:4����4�� � ∑ M4�%:4����4�� � ∑ �M4$%:4����4�� � 2� ∑ �M4:4����4��  

                                                                                       
 ∑ �M4�%:4����4��                 …(2)      

Equating the general coefficients of M4 on both sides of (2), we have 

                     �:4��� � :4$%��� � �� 
 1�:4�%��� � 2��:4��� 
 �� � 1�:4$%��� 

or                             �2� 
 1��:4��� � �� 
 1�:4�%��� 
 �:4$%���.      
This recurrence relation is the classical three-term relation for Pn(x) 

and it is a pure recurrence relation for Legendre’s polynomials.       

Remarks: Equating the general coefficients of M4$% on both sides of 

(2), we get  

                      �:4$%��� � :4$���� � �:4��� � 2��� � 1�:4$%��� 
 �� � 2�:4$���� 

or                           pop�q� � ��p � y�qop$y�q� � �p � y�op$��q�.         
This is a substitute recurrence relation of (I) and may be directly 

obtained by replacing n by (n – 1) in (I).      

(II)  pop�q� � qo�p�q� � o�p$y�q�,         
Proof: Generating function for :4��� is given by 

                             �1 � 2�M 
 M��$%/� � ∑ M4:4����4��                                         …(1)      

Differentiating (1) w.r.to h, we have  

                                   �� � M��1 � 2�M 
 M��$//� � ∑ �M4$%:4����4��                      …(2)       

Again, differentiating (1) w.r.to x, we have  

                              M�1 � 2�M 
 M��$//� � ∑ M4: 4����4��                                   …(3)       

Multiplying both sides of (3) by (x – h), we have  

or                   M�� � M��1 � 2�M 
 M��$//� � �� � M� ∑ M4: 4����4��                       …(4)       

Now, from (2) and (4), we have  

                    M ∑ �M��1:����∞��0 � �� � M� ∑ M�: ����∞��0  
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or                     ∑ �M4:4����4�� � � ∑ M4: 4����4�� � ∑ M4�%: 4����4��                     …(5)       

Equating the general coefficients of M4 on both sides of (5), we have  

                                            �:4��� � �: 4��� � : 4$%���       

This recurrence relation is a differential recurrence relation.    

(III) ��p 
 y�op��� � o�p�y�q� � o�p$y�q�.    

Proof: From recurrence formula (I), we have  

                           �2� 
 1��:4��� � �� 
 1�:4�%��� 
 �:4$%���.                       …(1)     

Differentiating both sides of (1) w.r.t. x, we have 

    �2� 
 1��:�4��� 
 �2� 
 1�:4��� � �� 
 1�:�4�%��� 
 �:�4$%���,                 …(2)      

From recurrence formula (II) we have  

                                �:�4��� � �:4��� 
 : 4$%���                                              …(3)       

Eliminating �: 4 from (2) and (3), we have 

      �2� 
 1�(�:4��� 
 :�4$%���* 
 �2� 
 1�:4��� � �� 
 1�:�4�%��� 
 �:�4$%��� 

or         �2� 
 1��� 
 1�:4��� � �� 
 1�:�4�%��� 
 �:�4$%��� � �2� 
 1�:�4$%��� 

or                            �2� 
 1��� 
 1�:4��� � �� 
 1�:�4�%��� � �� 
 1�:�4$%���.  
         �                              ��p 
 y�op�q� � o�p�y�q� � o�p$y�q�          

(IV)  �p 
 y�op�q� � o�p�y�q� � qo�p�q�     

Proof: Writing recurrence formulae (II) and (III), we have  

                                      �:4��� � �:�4��� � :�4$%���                                       …(1) 

and                           �2� 
 1�:4��� � :�4�%��� � :�4$%���                                      …(2)          

Subtracting (1) from (2), we have  

                                  �p 
 y�op�q� � o�p�y�q� � qop�q�     
(V) �y � q��o�p�q� � p(o p$y�q� � qo p�q�*.      
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Proof:  Replacing n by (n – 1) is recurrence formula (IV), we have  

                                     �:4$%��� � :�4��� � �:�4$%���.                                   …(1) 

 Writing recurrence formula (II), we have    �:4��� � �:�4��� � :�4$%���…(2)      

 Multiplying (2) by x and then subtracting from (1), we have 

                    �&:4$%��� � �:4���' � �1 � ���:�4���     

 or                         �y � q��o�p�q� � p�o p$y�q� � qo p�q��.    
(VI) �y � q��o�p�q� � �p 
 y�(qop�q� � op�y�q�*.    
Proof:  Writing recurrence formula (I), we have 

                          �2� 
 1��:4��� � �� 
 1�:4�%��� 
 �:4$%���                          …(1) 

which may also be written as  

                       �� 
 1��:4��� 
 ��:4��� � �� 
 1�:4�%��� 
 �:4$%��� 

or                   �� 
 1�(�:4��� � :4�%���* � �(:4$%��� � �:4���*.        
Writing recurrence formula (V), we have  

                                  �1 � ���:�4��� � �(:4$%��� � �:4���*.                           …(2)      

Now, from (1) and (2), we have 

                                  �y � q��o�p�q� � �p 
 y�(qop�q� � op�y�q�*.               …(3) 

4.11 Beltrami’s Result        

The following relation is known as Beltrami’s Result:  

                   �2� 
 1���� � 1�:�4��� � ��� 
 1�(:4�%��� � :4$%���*.      
Proof : From recurrence formulae (V) and (VI), we have  

                                  �1 � ���:�4��� � �(:4$%��� � �:4���*                            …(1) 

and                                   �1 � ���:�4��� � �� 
 1�(�:4��� � :4�%���*                  …(2)        

Multiplying (1) by (n +1) and (2) by n and then adding, we get 



106 

 

                        (�� 
 1� 
 �*�1 � ���:�4��� � ��� 
 1�(:4$%��� � :4�%���* 
or                                 �2� 
 1���� � 1�:�4��� � ��� 
 1�(:4�%��� � :4$%���*.      
4.12 Christoffel’s Expansion        

The following relation is known as Christoffel’s Expansion: 

 :�4��� � �2� � 1�:4$%��� 
 �2� � 5�:4$%��� 
 �2� � 9�:4$%��� 
 2, the last 

term of the series being 3P1(x) or P0(x) according as n is even or odd.        

Proof: From recurrence formula (III), we have  

                                  :�4�%��� � �2� 
 1�:4��� 
 :�4$%���                            …(A) 

     Replacing n by (n – 1), we have  :�4��� � �2� � 1�:4$%���
:�4$����   …(1)       

Replacing n by (n – 2), (n – 4),….4,2 in (1), we have  

                                                 :�4$���� � �2� � 5�:4$/��� 
 :�4$0���        …(2) 

                                                          :�4$0��� � �2� � 9�:4$1��� 
 :�4$����         …(3) 

                                                     …   ….   ….  ….   ….   ….  …. 

                                                       :����� � 3:%��� 
 :����� � 3:%���   () :����� � 0*      
Adding (1),(2),(3), ……, we have (when n is even): 

      :�4��� � �2� � 1�:4$%��� 
 �2� � 5�:4$/��� 
 �2� � 9�:4$1��� 
 2 
 3:%���      

Again, when n is odd, the last of the above relation is  

                 :�/��� � 5:���� 
 :�%��� � 5:���� 
 :����.           () :�%��� � 1 � :����*     
Adding as before, we have (when n is odd): 

                 :�4��� � �2� � 1�:4$%��� 
 �2� � 5�:4$/��� 
 2 
 5:���� 
 :����. 
    Hence      :�4��� � �2� � 1�:4$%��� 
 �2� � 5�:4$/��� 
 �2� � 9�:4$1��� 
 2    

The last term of the series being 3P1(x) or P0(x) according as n is even 

or odd. 
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4.13 Christoffel’s Summation Formula          

The following formula is known as Christoffel’s Summation 

Formula: 

           ∑ �2� 
 1�4=�� :=���:=��� � �� 
 1� 3�?rs����?���$�?rs����?���
��$�� 5       

Proof: From recurrence formula (I), we have  

                  �2� 
 1��:���� � �� 
 1�:�
1��� 
 �:��1���                                 …(1) 

and               �2� 
 1��:���� � �� 
 1�:�
1��� 
 �:��1���                                 …(2)        

Multiplying (1) by :=��� and (2) by :=��� and then subtracting, we have  

      �2� 
 1��� � ��:����:���� � �� 
 1�(:�
1���:���� � :�
1���:����*       
                                                             ��(:=$%���:=��� � :=$%���:=���*                …(3)      

Now, putting r = 0 in (3), we have  

                 �� � ��:����:���� � :%���:���� � :%���:����                                 …(A0) 

                                                                  () :���� � 1 � :����6�g :%��� � � � :%���*      
Again, putting r = 1, 2, 3,….., (n – 1), n in (3), we have  

        3�� � ��:1���:1��� � 2(:2���:1��� � :2���:1���* 

                                                                          �(:����:%��� � :����:%���*           …(A1)  

       5�� � ��:2���:2��� � 3(:3���:2��� � :3���:2���*        

                                                                          �2(:%���:���� � :%���:����*       …(A1) 

                       ….    ….       …..          …..        ….    ….   ….     ……   ….. 

                       ….    ….       …..          …..        ….    ….   ….     ……   ….. 

 �2� � 1��� � ��:4$%���:4$%��� � �. (:4���. :4$%��� � :4���:4$%���* 
                                         ���� � 1�(:4$����:4$%��� � :4$����:4$%���*          …(An -1) 

  �2� � 1��� � ��: ���: ��� � �� 
 1�(:4�%���: ��� � :4�%���: ���* 
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                                                            ���:4$%���:4 ��� � :4$%���:4 ����            …(An)    

Adding (A0), (A1), (A2),….(An-1) and (An) together, we have 

                  �� � �� ∑ �2� 
 1�4=�� :=���:=��� � �� 
 1�(:4�%���:4 ��� � :4�%:4 ���* 
  or                             ∑ �2� 
 1�4=�� :=���:=��� � �� 
 1� 3�?rs����?���$�?rs����?���

��$�� 5 
  4.14. Rodrigue’s Formula for Pn(x)          

The following is known as the  Rodrigue’s formula for Pn(x): 

                               op�q� � y
p!�p . {p

{qp �q� � y�p          

Proof: Let us take                � � ��� � 1�4.                                                …(1)       

Differentiating it w.r.t x, we have �� � 2����� � 1�4$%               

Multiplying both sides by ��� � 1�  and using (1), we have  

                                     ��� � 1��� � 2���                                                          …(2)     

Differentiating it (2), (n + 1) times by Lebnitz’s theorem, we have 

      ��� � 1� �?rU�
��?rU 
 �� 
 1� �?rs�

��?rs . 2� 
 �4�%�4
�!

�?�
��? . 2 � 2� 3�. �?rs�

��?rs 
 �� 
 1� �?�
��? . 15 

or                  ��� � 1� �?rU�
��?rU 
 2� �?rs�

��?rs � ��� 
 1� �?�
��? � 0    

or                 �1 � ��� �?rU�
��?rU � 2� �?rs�

��?rs 
 ��� 
 1� �?�
��? � 0.                                      …(3)        

Putting 
�?�
��? � � in (3), it becomes  

                          �1 � ��� �U�
��U � 2� ��

�� 
 ��� 
 1�� � 0                                         …(4) 

which is the Legendre’s differential equation whose solution is given by z 

= C Pn(x), where C is a constant. 

  �                                               
�?�
��? � �:4���                                                   …(5)         

Putting x = 1 in (4), and then using Pn(1) = 1, we get 
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                                         \�?�
��?^��% � �     ,   since Pn(1) = 1.                                 …(6)         

Now, from (1), we have  

                                            � � �1 � ���4 � �� 
 1�4. �� � 1�4                      …(7)         

Differentiating (7) w.r.t. x, n times by Leibnitz’s theorem, we have 

             
�?�
��? � �� � 1�4. �?

��? �� 
 1�4 
 �. � �?Ts
��?Ts �� 
 1�4� . ��� 
 1�4$% 
 2 

                                                 
� � � 
�� �� 
 1�4� �?Ts

��?Ts �� � 1�4 
 �� 
 1�4 �?
��? �� � 1�4 

   � �� � 1�4�! 
 � 4!
%! �� 
 1���� � 1�4 
 2 
 �. ��� 
 1�4$% 4!

%! �� � 1� 
 �� 
 1�4. �!        
Putting x = 1 in it, we have \�?�

��?^��% � �1 
 1�4 . �!             
Using (6) in it, we find    � � 24 . �!                                                              …(8)                                

Therefore, by putting the value of C from (8) in (5), we get  

                                 :4��� � %
4!�?. . �?

��? ��� � 1�4.                                                       …(9) 

which is the required Rodrigue’s formula for Pn(x). 

Illustrative Examples 
Example 1. Using generating function for Pn(x), prove the following:   

           :���� � 1, :%��� � �, :���� � sU�3�� � 1�, :/��� � sv�5�/ � 3��  

and                         :0��� � s��35�  0 � 30�� 
 3�. 

Solution: Generating function for Pn(x) is given by  

             ∑ M4�4�� :4��� � �1 � 2�M 
 M��$%/� � (1 � M�2� � M�*$%/� 

         � 1 
 t
� �2� � M� 
 %./

�.0 M��2� � M�� 
 %./.1
�.0.� M/�2� � M�� 
 %./.1.�

�.0.�.J M0�2� � M�0 
 2 

or      :���� 
 M:%��� 
 M�:���� 
 M/:/��� 
 M0:0��� 
 2 

                       � 1 
 �. M 
 sU�3�� � 1�M� %
� �5�/ � 3��M/ 
 s��35�� 
 30� 
 3�M0 
 2       
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Equating the coefficients of like powers of h on both sides, we have  

                                 :���� � 1, :%��� � �, 
                                 :���� � %

� �3�� � 1� 

                                 :/��� � %
� �5�/ � 3�� 

                                 :0��� � %
J �35�0 
 30�� 
 3� 

Example 2. Express f(x) = x
4
 + 2x

3
 + 2x

2
 – x – 3 in terms of Legendre’s 

polynomials. 

Solution: We know that 

                                      :���� � 1, :%��� � �,                                                          …(1) 

                                         :���� � sU�3�� � 1�                                                             …(2) 

                                         :/��� � sU�5�/ � 3��                                                           …(3) 

                                         :0��� � %
J �35�0 
 30�� 
 3�                                            …(4)           

Now, from (4), we have �0 � �v�:0��� 
 ���� � vv�.                 
Again, from (3), we have �/ � U�:/��� 
 v��.                
Next, from (2), we have �� � Uv:���� 
 sv.                
Also, from (1), we have    � � :%���, 1 � :����.            
Substituting in succession the values of x

4
, x

3
,….in the given 

polynomial, we have  

                         ���� � �v�:0��� 
 ���� � vv� 
 2�/ 
 2�� � � � 3 

                                  � �v�:0��� 
 2�/ 
 U�� �� � � � s��v�  

                                  � �v�:0��� 
 2 3�
1 :/��� 
 /

1 �5 
 U�� �� � � � s��v�  

                                  � �v�:0��� 
 V�:/��� 
 U�� �Uv:���� 
 sv� 
 s�� � %�J
/1   
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                                 � �v�:0��� 
 V�:/��� 
 V�Vs:���� 
 s�� � UUVs�� 

                                 � �v�:0��� 
 V�:/��� 
 V�Vs:���� 
 s�:%� � UUVs��:����. 

Example 3. Prove that    :4�0� � Y 0     , if � �� �gg
�$4�?/U4!

�?&�4/��!'U , if � �� ����I 
Solution: We know that the generating function for Pn(x) is  

                     ∑ M4�4�� :4��� � �1 � 2�M 
 M��$%/�                                                     …(1)      

Putting x = 0 in both sides of (1), we have  

            ∑ M4�4�� :4�0� � �1 
 M��$%/� � &�1 � ��M��'$%/� 

        � 1 
 %
� ��M�� 
 %./

�.0 ��M��� 
 %./.1
�.0.� ��M��/ 
 2 
 %./.1…��=$%�

�.0…�= ��M��= 
 2       …(2) 

We observe that all the powers of h in R.H.S. of (2) are even. 

Therefore, equating the coefficients of h
n
 from both sides of (2), we 

have  

                           :4�0� � 0, if n is odd.                                                                     …(3) 

Again, equating the coefficients of h
2m

 from both sides of (2), we have 

                   :���0� � %./.1…���$%�
�.0.�….�� ��1�� � ��1�� ����!

�U���!�U                                      …(4) 

Putting 2m = n in above, we have  

                      :4�0� � �$%�?/U 4!
�?&�4/��!'U                                                                                   …(5) 

Example 4. Prove that �1 � 2�� 
 ���$%/� is a solution of the equation 

                               � �U����
��U 
 �

�� ��1 � ��� ��
��� � 0 

Solution. Let   � � �1 � 2�� 
 ���$%/� � ∑ �4�4�� :4, where :4 � :4��� 

Then, we have                  �� � � ∑ �4�4�� :4 � ∑ �4�%�4�� :4 

�                                       
�U����

��U � �U
��U (∑ �4�%�4�� :4* � ∑ �� 
 1��4�%�4�� :4 
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or                               � �U
��U ���� � ∑ �� 
 1���4�4�� :4   

Also, we have                        
��
�� � ∑ �4�4�� :4, 

�                 
�

�� ��1 � ��� ��
��� � �

�� &�1 � ��� ∑ �4�4�� : 4' 

                                                         � �1 � ��� ∑ �4�4�� :�4 � 2� ∑ �4�4�� : 4  

Substituting the values from (1) and (2) in the L.H.S. of the given 

equation, we have 

   
�U����

��U 
 �
�� ��1 � ��� ��

��� � ∑ (��� 
 1��4�4�� :4 
 �1 � ����4: 4 � 2��4: 4  

                                            � ∑ �4�4�� (�1 � ���:  4 � 2�: 4 
 ��� 
 1�:4* 
                                            � ∑ �4�4�� . 0 [since Pn is a solution of Legendre’s equation] 

                                         = 0. 

Example 5. Prove that |Pn(x)|O 1, when – 1 O x O 1. 

Solution: From Laplace’s first integral for Pn(x), we have   

                                  :4��� � %
_ ` 3� a �b�1 � ��� cos f54_� gf                                …(1)       

If – 1 O x O 1, then putting � � cos � in (1), we get 

                 :4�cos �� � %
_ ` �cos � a � sin � cos f�4_� gf. 

    �              |:4���| � |:4�cos ��| � �%
_ ` �cos � a � sin � cos f�4_� gf� 

                                 � %
_ �` �cos � a � sin � cos f�4_� gf� 

                                 O %
_ ` |�cos � a � sin � cos f�4|_� gf 

                                 � %
_ ` �b�cos � a � sin � cos f���4_� gf 

                                 O %
_ ` �b�cos� � 
 sin� � cos� f�4_� gf      

                                O %
_ ` �b�cos� � 
 sin� ��4_� gf   , since  ���f O 1                 
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                            � %
_ ` gf_� � %

_ (f*�_ � %
_ . m � 1. 

Hence, we have |Pn(x)| O 1, when  – 1 O x O 1. 

Example 6. Prove  Pn(x) = P-(n+1)(x) by using Murphy’s Formula for Pn(x). 

Solution:  Murphy’s formula for Pn(x) is given by  

                                          :���� � [ \��, � 
 1; 1; 1��
2 ^                                           …(1)        

From symmetric property of hypergeometric function, we have  

               [ \��; � 
 1; 1; %$�
� ^ � [ \� 
 1; ��; 1; %$�

� ^ � :$�4�%����                      …(2)         

Thus, from (5) and (6), we get  

                                          :���� � :���
1����                                                            …(3) 

EXERCISE 4 

Using Rodrigue’s formula for Pn(x), prove the following: 

1. :���� � 1, :%��� � �, :���� � sU�3�� � 1�, :/��� � sU�5�/ � 3�� 

and                    :0��� � s��35�0 � 30�� 
 3� . 

2. Show that Pn(1) = (1). 

3. (i) Show that Pn (− x) = (− 1)
n
 Pn(x). Hence, deduce that Pn (− 1) = (− 1)

n
. 

(ii) Prove that Pn(x) is an even or odd function of x according as n is even or odd 

respectively. 

4. Prove that :�4��� � :�4$���� � �2� � 1�:4$%��� 

5. Prove that �:�¡��� � :�J��� 
 9:¡���. 
6. Show that 11��� � 1�:�1��� � 30(:���� � :0���*. 
7. Prove that 

�%���
��%$�����U�s/U � %

� � ∑ (:4��� 
 :4�%���*�4�� �4. 
8. Show that 

�%$�U�
�%$�����U�v/U � ∑ �2� 
 1��4�� :4����4 . 

9. Prove that  
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(i) ` :4 ���g� � �?rs���$�?Ts���
��4�%� 
 �   and      (ii)  ` :4���g�%� � �?Ts���$�?rs���

��4�%�  

10. Show that ` �:4���:4$%���g� � �4
04U$%

�%$% . 

11. Prove that ` �1 � ����%$% (:�4���*�g� � �4�4�%�
�4�% . 

12. Prove that (i) ` :4�%$% ���g� � 0, � � 0 and    (ii) ` :��%$% ���g� � 2. 
13. Evaluate (i) ` �/�%$% :0���g�   (ii) ` �¡¡�%$% :%�����g�   and  (iii)  ` ��:����g��%$% . 

14. If Pn(x) is defined by the relation �1 � 2�M 
 M��$%/� � ∑ M4:4����4�� , then, show 

that  �1 � ���:  4��� � 2�: 4��� 
 ��� 
 1�:4��� � 0 

15. Prove that ` (:�4���*��%$% g� � ��� 
 1�. 
16. Express x

8
 as series in Legendre’s polynomials of various degrees. 

17. Express the following in terms of Legendre’s polynomials: 

(i) �� � 5�� 
 6� 
 1       and            (ii)   5�/ 
 � 

18. Prove that  

(i) �� 
 sU:���� 
 Uv:����,                 (ii) �/ � v�:%��� 
 Uv:/���. 
19. If ���� � �0, �1 S � S 0�,   0 S � S 1,I then show that  

               ���� � sV:���� 
 sU:%��� 
 �s�:���� � vvU:0��� 
 2 

20. Prove that �0 � sv�(8:0��� 
 20:���� 
 7:����*. 
21. Solve the Legendre’s differential equation �1 � ������ � 2� �� 
 ��� 
 1�� � 0 

about its ordinary point x = 0 by assuming a solution of the form y = ∑ ��������  and 

show that the general solution of it is given by � � 6£ 
 7�, where  

           £ � 1 � 4�4�%�
�! �� 
 4�4$���4�%��4�/�

0! �0 � 2 

and      � � � � �4$%��4���
/! �/ 
 �4$%��4$/��4����4�0�

1! �1 � 2 

22. Prove that : 

(i) �2� 
 1�� :4��� � �� 
 1�:4�%��� 
 �:4$%���. 
(ii)  �:4��� � �:�4��� � :�4$%��� 

(iii) �2� 
 1�:4��� � :�4�%��� � :�4$%��� 

(iv) �� 
 1�:4��� � :�4�%��� � �:�4��� 
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23. Prove that 

(i) �1 � ���:�4��� � �(: 4$%��� � �: 4���*  
(ii) �1 � ���:�4��� � �� 
 1�(�:4��� � :4�%���*  
24. Prove that  �2� 
 1���� � 1�:�4��� � ��� 
 1�(:4�%��� � :4$%���*.. 

ANSWERS 

13.(i) 0           (ii) 0                (iii) 4/15 

16.  
%�J

�0/1 :J��� 
 �0
0¡1 :���� 
 0J

%0/ :0��� 
 0�
¡¡ :���� 
 %

¡ :���� 

17. (i) 
�
1 :/��� � %�

/ :���� 
 /1
1 :%��� � �

/ :����,     (ii) 2:/��� 
 4:%���. 
OBJECTIVE TYPE QUESTIONS 

Choose the correct alternative in the following questions: 

1. Legendre’s differential equation is : 

(A) �1 � ������ � 2� �� 
 ��� 
 1�� � 0  

     (B) �1 � ������ 
 2� �� 
 ��� 
 1�� � 0    

     (C) �1 � ������ � 2� �� 
 ��� 
 1�� � 0  

 

     (D) �1 � ������ � 2� �� � ��� 
 1�� � 0.  
 

2. The value of Pn (1) is : 

 

(A) 0                                                 (B) 1 

(C) n                                                  (D) 
%
4 

3.  Rodrigue’s  formula for Pn (x) is : 

 

(A) :4��� � %
�?¤4I �?

��?  ��� � 1�4       (B) :4��� � %
�?¤4I �?

��?  ��� � 1�4 

(C) :4��� � %
�? �?

��?  ��� � 1�4           (D) :4��� � %
�? �?

��?  ��� � 1�4 . 
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4. The value of ` :4���%$%  dx when n � 0 is : 

(A)  0                                                 (B) 2 

(C) 1                                                  (D) – 1. 

5. The value of ` :�4���%$%  dx is : 

(A)  1                                                 (B) 0 

(C) x                                                   (D) 2n. 

6. Let �%��� � £, ����� � �/, �/��� � 1 
 9� 
 ;��. If �/��� is orthogonal to  �%���  

 

and ����� on the  interval  ( - 2, 2),  then   

(A)  A = 0, B = 1                               (B) A = 0, B = 0 

(C) A = 0, B = � /
0                              (D) None of these 

7.  The value of Pn (−1) is : 

(A)  1                                                 (B) 0 

(C) – 1                                               (D) (−1)
n
 

8.  The following differential equation is known as: 

       �1 � ������ � 2� �� 
 ��� 
 1�� � 0   

(A)  Hermite’s equation                     (B) Legendre’s equation 

(C) Chebyshev equation                    (D) Bessel’s equation 

9.  All  roots of Pn(x) = 0 are : 

(A)  Real                                            (B) Some real and  some complex 

     (C)   0                                                 (D) Complex  

10.  If Pn(x) is Legendre’s polynomial, then  

(A)  :4���� � :4���                           (B) :4���� � ��1�4:4��� 

     (C)   :4��1� � 1                                 (D) None of these  
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11.  Two real function f1(x) and f2(x) are said to be orthogonal functions on interval  

6 O � O 7, if  
(A)  ` �%���ji �����g� S 0                     (B) ` �%���ji �����g� l 0 

     (C)   ` �%���ji �����g� � 0                     (D) None of these  

12. �1 � ���:�4��� � �:4$%��� 
 2 � 0 

(A)  :4���                                                (B)  2�:4��� 

     (C)   �:4���                                             (D) ���:4��� 

13. The value of P0 (x) is : 

(A)  0                                                       (B) ∞ 

     (C)   1                                                     (D) None of these 

14.  ` :4 ���g� � 2 

(A)  
%

�?rs &:4�%��� � :4$%���'              (B) :4�%��� � :4$%��� 

     (C)   
%

�4 &:4�%��� � :4$%���'                 (D) :4�%��� 
 :4$%���. 

15. The value of 
%

�?4!
�?

��? ��� � 1�� is : 

(A)  0                                                     (B) 1 

     (C)   :4���                                              (D) None of these 

16.  The value of ` �¡¡�%$% :%�����g� is 

(A)  1                                                    (B) − 1 

     (C)   0                                                   (D) None of these 

17.  :4���� � ��1�4 …. 
(A)  :4���                                             (B) :$4��� 

     (C)   <4���                                            (D) <$4��� 
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18. :�4�%�0� � 2 

(A)  0                                                  (B) 1 

     (C)   n                                                 (D) 2n + 1 

19.  :4��1� � 2 

(A)  0                                                  (B) 1 

     (C)  − 1                                                (D) ��1�4 

20.  All roots of :4��� � 0 lie between  

(A)  �1 and  +1                                  (B) 0 and 1 

     (C)   0 and n                                        (D) – n and n 

ANSWERS 

1. (A)     2. (B)    3. (A)     4. (A)     5. (B)    6. (C)    7. (D)   8. (B)    9. (A)  10.(B) 

11.(C)   12. (D)  13.(C)   14. (A)   15. (C)  16. (C)  17. (A)  18. (A) 19. (D) 20.(A) 


