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Two Non-Commutative Binomial Theorems

Walter Wyss

Abstract

We derive two formulae for (A+B)n, where A and B are elements in
a non-commutative, associative algebra with identity.

1 Introduction

Let A be an associative algebra, not necessarily commutative, with identity. For
two elements A and B in A, that commute, i.e.

AB = BA (1)

the well-known Binomial Theorem reads

(A+B)n =

n∑
k=0

(
n
k

)
AkBn−k (2)

If A and B do not commute, we find the first formula for (A + B)n that
retains the binomial coefficient. It also gives a representation of e(A+B) that is
different from the Campell-Baker-Hausdorff representation [3]. The first formula
is then applied to a problem in non-commutative geometry. The second formula
for (A+B)n complements the first one. We apply it to a problem in quantum
mechanics.

2 The First Non-Commutative Binomial Theo-
rem

Let A be an associative algebra, not necessarily commutative, with identity 1.
L(A) denotes the algebra of linear transformations from A to A.

Definition 1

Let A and X be elements of A.

1. A can be looked upon as an element in L(A) by
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A(X) = AX (3)

i.e. leftmultiplication

2. The element dA in L(A) is defined by

dA(X) = [A,X] = AX −XA (4)

We now have the following trivial relations:

Statements

1. As elements in L(A), A and dA commute, i.e.

AdA(X) = dAA(X) (5)

2. dA is a derivation on A, i.e.

dA(XY ) = (dAX)Y +X(dAY ) (6)

3.
(A− dA)X = XA (7)

4. Jacobi identity

dAdB(C) + dBdC(A) + dCdA(B) = 0 (8)

These simple statements are sufficient to prove the following non-commutative
Binomial Theorem [1], [2].

Theorem 1

For A and B elements in A, and 1 being the identity in A

(A+B)n =

n∑
k=0

(
n
k

)
{(A+ dB)k1}Bn−k (9)

Proof. The formula holds true for n=1. We now proceed by induction.

(A+B)n+1 = (A+B)(A+B)n = (A+ dB +B − dB)(A+B)n

= (A+ dB +B − dB)

n∑
k=0

(
n
k

)
{(A+ dB)k1}Bn−k

Using the previous Statements, we get
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(A+B)n+1 =

n∑
k=0

(
n
k

)
[A{(A+ dB)k1}Bn−k + {dB(A+ dB)k1}Bn−k + {(A+ dB)k1}Bn−k+1]

=

n∑
k=0

(
n
k

)
[{(A+ dB)k+11}Bn−k + {(A+ dB)k1}Bn−k+1]

=

n∑
k=1

(
n
k

)
{(A+ dB)k1}Bn−k+1 +Bn+1

+

n∑
k=1

(
n

k − 1

)
{(A+ dB)k1}Bn−k+1 + {(A+ dB)n+11}

From the identity (
n
k

)
+

(
n

k − 1

)
=

(
n+ 1
k

)
we then get

(A+B)n+1 =

n+1∑
k=0

(
n+ 1
k

)
{(A+ dB)k1}Bn+1−k

3 The Essential Non-Commutative Part

We write
(A+ dB)n1 = An +Dn(B,A) (10)

For a commutative algebra, Dn(B,A) is identically zero. We thus call
Dn(B,A) the essential non-commutative part.
Dn(B,A) satisfies the following recurrence relation

Dn+1(B,A) = dBA
n + (A+ dB)Dn(B,A) (11)

with
D0(B,A) = 0

Definition 2

1.

Mn =

n∑
k=0

(
n
k

)
AkBn−k (12)

2.
Dk(B,A) = Dk (13)

We now have the following obvious corollary.
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Corollary 1

(A+B)n = Mn +

n∑
k=0

(
n
k

)
DkB

n−k (14)

4 Exponentials

We have as a consequence of the first non-commutative Binomial Theorem

Corollary 2

eA+B = [eA+dB1]eB (15)

Proof.

eA+B =

∞∑
n=0

1

n!
(A+B)n

=

∞∑
n=0

1

n!

n∑
k=0

(
n
k

)
{(A+ dB)k1}Bn−k (16)

=

∞∑
k=0

∞∑
n=k

1

k!(n− k)!
{(A+ dB)k1}Bn−k

eA+B = [eA+dB1]eB

By splitting of the essential non-commutative part we get

Corollary 3

eA+B = eAeB +

∞∑
n=0

1

k!
Dke

B (17)

This is different from the Campell-Baker-Hausdorff formula.

5 Application of Theorem 1 for

dBA = hA2 (18)

Definition 3

For h a scalar and n an integer we introduce

γn(h) = [1 + h][1 + 2h] · · · [1 + (n− 1)h], γ0(h) = 1 (19)
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Lemma 1

The following properties hold

1.
γ1(h) = 1, γn(0) = 1, γn(1) = n!

2.
γk+1(h) = (1 + kh)γk(h)

Proof. Direct verification

Now, from Corollary 1 (14)

(A+B)n = Mn +

n∑
k=2

(
n
k

)
DkB

n−k

Dk = dBA
k−1 + (A+ dB)Dk−1, D2 = dBA

we find

Lemma 2

1.
dBA

k = khAk+1

2.
Dk = {γk(h)− 1}Ak

Proof.

1.

dBA = hA2

Since dB is a derivation we have by induction

dBA
k = (dBA

k−1)A+Ak−1(dBA)

= (k − 1)hAk+1 +Ak−1hA2 = khAk+1

2. By induction and D2 = hA2, we find

Dk = dBA
k−1 + (A+ dB){γk−1(h)− 1}Ak−1

= dBA
k−1 + {γk−1(h)− 1}Ak + γk−1(h)dBA

k−1 − dBAk−1

= {γk−1(h)− 1}Ak + γk−1(h)(k − 1)hAk

= {[1 + (k − 1)h]γk−1(h)− 1}Ak

Dk = {γk(h)− 1}Ak
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Now

(A+B)n = Mn +

n∑
k=2

(
n
k

)
DkB

n−k

=

n∑
k=0

(
n
k

)
AkBn−k +

n∑
k=2

(
n
k

)
{γk(h)− 1}AkBn−k

= Bn +

(
n
1

)
ABn−1 +

n∑
k=2

(
n
k

)
γk(h)AkBn−k

Finally,

(A+B)n =

n∑
k=0

(
n
k

)
γk(h)AkBn−k (20)

The result can also be found in [4]

Note: For h = 1, i.e. dBA = A2, we find

(A+B)n =

n∑
k=0

(
n
k

)
k!AkBn−k

(A+B)n =

n∑
k=0

n!

(n− k)!
AkBn−k (21)

Also, if on the vector space of infinitely often differentiable function on R we
introduce the operators

A = x, B = x2
d

dx
(22)

we have dBA = A2. Thus the representation (21) applies.

6 The Second Non-Commutative Binomial The-
orem

Let A and B be in A. With

Mn =

n∑
k=0

(
n
k

)
AkBn−k ∈ A (23)

we have
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Lemma 3

1.
M0 = 1,M1 = A+B (24)

2.
M1Mn = Mn+1 + dBMn (25)

Proof.

1. Obvious

2.

M1Mn = (A+B)

n∑
k=0

(
n
k

)
AkBn−k

=

n∑
k=0

(
n
k

)
Ak+1Bn−k +

n∑
k=0

(
n
k

)
BAkBn−k

=

n∑
k=0

(
n
k

)
Ak+1Bn−k +

n∑
k=0

(
n
k

)
{dBAk +AkB}Bn−k

=

n+1∑
s=1

(
n

s− 1

)
AsBn+1−s +

n∑
k=0

(
n
k

)
AkBn+1−k +

n∑
k=0

(
n
k

)
{dBAk}Bn−k

= An+1 +Bn+1 +

n∑
k=1

[(
n

k − 1

)
+

(
n
k

)]
AkBn+1−k + dB

n∑
k=0

(
n
k

)
AkBn−k

= An+1 +Bn+1 +

n∑
k=1

(
n+ 1
k

)
AkBn+1−k + dBMn

M1Mn = Mn+1 + dBMn

Lemma 4

Mn
1 = Mn +

n−2∑
k=0

Mk
1 dBMn−1−k (26)

Proof. This is true for n = 2,

M2
1 = M1M1 = M2 + dBM1
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Now by induction

Mn−1
1 = Mn−1 +

n−3∑
k=0

Mk
1 dBMn−2−k

Mn
1 = M1M

n−1
1 = M1Mn−1 +

n−3∑
k=0

Mk+1
1 dBMn−2−k

= Mn + dBMn−1 +

n−2∑
s=1

Ms
1dBMn−1−s

Mn
1 = Mn +

n−2∑
k=0

Mk
1 dBMn−1−k

Theorem 2

(A+B)n = Mn +

n−2∑
k=0

(A+B)kdBMn−1−k (27)

Proof. This is lemma 4 with M1 = A+B

7 Application of Theorem 2 for the case

dBA = dBM1 = C, and dAC = dBC = 0 (28)

Then
dBA

k = kCAk−1, dBMn = nCMn−1 (29)

and

(A+B)n = Mn +

n−2∑
k=0

(n− 1− k)CMk
1Mn−2−k

Ansatz

(A+B)n =

[n2 ]∑
k=0

Mn−2kAn,k (30)

with
An,0 = 1 (31)

and An,k commuting with A and B.
[n2 ] denotes the greatest integer less than n

2 .
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From
(A+B)n+1 = M1(A+B)n

we have
[n+1

2 ]∑
k=0

Mn+1−2kAn+1,k = M1

[n2 ]∑
k=0

Mn−2kAn,k

or

Mn+1 +

[n+1
2 ]∑

k=1

Mn+1−2kAn+1,k = M1{Mn +

[n2 ]∑
k=1

Mn−2kAn,k}

From (25) and (23) we find

M1Mn = Mn+1 + nCMn−1

resulting in

[n+1
2 ]∑

k=1

Mn+1−2kAn+1,k = nCMn−1+

[n2 ]∑
k=1

Mn+1−2kAn,k+

[n2 ]∑
k=1

(n−2k)CMn−1−2kAn,k

(32)

For n even, n = 2N , (32) reads

N∑
k=1

M2N+1−2kA2N+1,k = 2NCM2N−1+

N∑
k=1

M2N+1−2kA2N,k+

N−1∑
k=1

(2N−2k)CM2N−1−2kA2N,k

or

M2N−1A2N+1,1 +

N∑
k=2

M2N+1−2kA2N+1,k = 2NCM2N−1 +M2N−1A2N,1 +

N∑
k=2

M2N+1−2kA2N,k

+

N∑
k=2

M2N+1−2k(2N + 2− 2k)A2N,k−1

Comparing coefficients gives the recurrence relation

A2N+1,k = A2N,k + (2N + 2− 2k)CA2N,k−1

or
An+1,k = An,k + (n+ 2− 2k)CAn,k−1, k ≥ 1 (33)

Note, that for n odd, n = 2N + 1, we get the same relation
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Lemma 5

The recurrence relation (33) with An,0 = 1 has the solution

An,k =
n!

(n− 2k)!k!2k
Ck (34)

and (30) becomes

(A+B)n =

[n2 ]∑
k=0

Mn−2k
n!

(n− 2k)!k!2k
Ck (35)

Proof. by direct verification
This result can also be found in [5]

Note: On the vector space of infinitely often differentiable function on R we
introduce the operators

A = x,B = λ
d

dx
,where λ is a scalar. (36)

Then dBA = λ, or C = λ1. Thus the above representation (35) applies.

In particular

(x+ λ
d

dx
)n =

[n2 ]∑
k=0

Mn−2k
n!

(n− 2k)!k!2k
λk

where

Mn =

n∑
r=0

(
n
r

)
xr

dn−r

dxn−r
, Mn1 = xn

resulting in

(x+ λ
d

dx
)n1 =

[n2 ]∑
k=0

xn−2k
n!

(n− 2k)!k!2k
λk (37)

For λ = −1, we get

(x− d

dx
)n1 = n!

[n2 ]∑
k=0

(−1)k
xn−2k

(n− 2k)!k!2k
(38)
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The right-hand side are the Hermite polynomials.

Thus

Hen(x) = (x− d

dx
)n1 (39)
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