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The Schrodinger equation (for a free particle) obeyed by
dis

ad  h29%¢
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where u is the mass of the particle and U its (constant) in-
ternal energy. The derivatives of the transformed wave
function @, such as it is expressed in terms of the initial
wave function & through (A. 1), are with respect to the
transformed coordinates (A. 2)
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(A. 6)

If we want the transformed wave function &’ to obey the
Schrédinger equation in the transformed coordinates, that
is,

P’ W h? 32d’
o’ 2p 9x"?

-U®=0 (A7)

whenever & obeys (A. 4), the coefficients of the independent
terms in ® and 3% /dx coming from the substitution of (A.
1), (A. 5a), and (A. 6) into (A. 7), must vanish:

—io+i2 ¥ g, (A.8)
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These equations imply the following simpler ones:

o _w
xR (A. 10a)
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so that the phase function is given by
S(x,1) = (w/h)(vx + v%/2) (A.11)

up to an irrelevant constant.

It is worth noting the similarity between the change in
the wave function of a free quantum particle, as given by
(A. 11), and the change in the action for a classical particle,
which, as the Lagrangian itself, is not invariant under a
Galilean transformation.’
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Point charge between two parallel grounded planes

Markus Zahn
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(Received 12 February 1976; revised 12 April 1976)

The problem of a point charge g between two parallel
conducting planes has been of interest because.a straight-
forward application of the method of images leads to an
infinite set of images within each conductor of alternating
signs and alternating spacings of 2a and 2b as illustrated
in Fig. 1. The total charge g. on each conductor is given by
the nonconvergent series of the form

Ge=—ql=1+1—-1+1=1+1=1+--2) (1)

and cannot be directly evaluated.
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The method of images can be used by considering the
problem of a point charge between concentric spheres' of
radius R and R + d and letting R go to infinity, or the
similar problem of two adjacent spheres of equal radii R
with centers separated by the distance D = 2R + d with the
point charge between and again taking the limit as the radii
of the spheres become infinite but with the distance d re-
maining finite. In each case an infinite series of images re-
sult, but the series converges because each successive image
decreases in magnitude.
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Fig. 1. A point charge ¢ between two parallel conducting planes leads o
an infinite set of image charges of alternating signs within each conduc-
tor.

A more difficult method is to solve the problem by
Green’s functions techniques.? The easiest method is to use
Green’s reciprocity theorem, which yields the total charge
on each conductor but not the electric field or surface
charge distribution.?

This note considers an alternative method using the
method of images applied to the well-known problem of two
conducting planes which intersect at an angle which is an
integer submultiple of .# If the angle of intersection is 7/,
there will be 2n — 1 1mage charges of alternating signs and
alternating angular spacings of 2« and 28 distributed about
the circle of radius pg as shown in Fig. 2. for a point charge
g a radial distarice po from the intersection of planes at angle
a from the lower plane and angle 8 = w/n — o from the
upper plane. We will solve this problem for any value of n
and then take the limit as n — « to model the original
parallel plane problem with the intersection of planes at
—c0

The potential at any point P between the conducting

95 =43+3a 2B

Fig. 2. A point charge g between two planes intersecting at an angle
which is an integer submultiple of = gives rise to a finite number of
image charges. :
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planes at radial distance p from the intersection of planes,
angular distance 6 from the lower plane, and an axial dis-
tance z from the point charge is given by

2n (=1)m
5 u 2)
where s, is the distance from each charge to the point P,

m = [p? + po? + 22— 2ppocos(d — 8,)]'/2.  (3)

The angles 8,, are the angles as measured from the lower
plane to each of the 2x charges:

(m=2)+ (m— 1),
(m—1DB+ (m—2)a,
The eléctric field is then

) (_lgm{[p

y=—2

4eg m=1 Sm.

m even,

m odd. )

m =

E=-vv=—"2
dreo m=1 Sm

— pocos (8 = 0,)]i, + posin(8 — 6,,)ip + zi.}. (5)
The surface charge on each electrode is given by
O'f(o = 0) = —eoE,g(o = 0), (6)

or(0 = —m/n) = ¢E¢(6 = —x/n).

The total charge on each conductor is then found by inte-
grating (6) over the whole plane. For the lower electrode

q:.(0=0) = fj f:j or(6=0)dpdz
—qpo J‘ f ( %ﬁ (=1)m sinfp dz)
p=0 - \m=]

(0 + p02 + 22— 2ppg cosf, ) ~¥?

—1 Z ( l)m (tan“———,p—
2w p | o=

+ tan~! cotﬁm). 7

Care must be taken in the valuation of the inverse tangent
terms because the principal value of the angle must be used
which only extends over the range —#/2 < 6 < x/2. The
inverse tangent terms are equal to

2, 0<6,<mw
t -1 p = { 1('/ ! m
an _x)2, —n<b,<0 O
and
, 20 0<0,<m
tan~' cotf,, = { /2 = b, '"
O = w24 0,0, —w <ty <0 O
so that the solution of (7) can be reduced to
2 Z (—1)"4,,, neven
g(0=0)={""" (10)
4 (21r- }: (=1)0,, ) n odd
27
which for both cases, n even or odd, adds up to
a0=0)==g(1-2)=-2L2
w/n T
Since the total charge on the planes must equal —q,
4c(0 = —w/n) = —q — q.(6 = 0)
= —qan/r. (12)
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These results are true for any integer value of n. To apply
them to the original parallel plane problem, we let pg and
n go to infinity, so that

a = poq,
lim )b = poB,
—>® 1
""" \d = por/n. (13)

po-ro

So that (11) and (12) become the familiar results
g.(x =0) = —qb/d, q.(x=d)=—qa/d. (14)

The results of (11) and (12) happen also to be correct for
any opening angle, not just those which are integer sub-
multiples of w. This can be easily shown using Green’s
reciprocity theorem.
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Treatment of nonspecular reflection in the single-particle model of an

ideal gas

Arthur M. Lesk

Department of Chemistry, Fairleigh Dickinson University, Teaneck, New Jersey 07666

(Received 16 January 1976; revised 24 May 1976)

It is a common practice in elementary courses to intro-
duce the kinetic theory of gases by means of a simple model
consisting of a single particle moving in an enclosed volume.
In deriving the equation of state of an ideal gas from this
model, it is convenient to take the enclosure to have spher-
ical shape. Then, under the usual assumption of elastic and
specular reflection upon collision with the wall, the time
between collisions in a spherical enclosure is constant. It has
been pointed out that this simplifies the computation of the
force on the wall and the pressure of the “gas™!:2:

Force = rate of change of momentum
= momentum change per collision
X number of collisions per unit time.

Following Ref. 1, a particle of mass m moving at velocity
v in a spherical enclosure of radius R, on a trajectory
making an angle § with the normal to the wall at the point
of collision, will exert a force on the container of

F = (2mv cos 8) v/2R cos § = mv?/R.
The pressure will be

p=F_ (mv_z) (4rR?) = QD) (0?]2)

A R 47R3/3
leading to the familiar result

PV = % - kinetic erergy.

However, a more realistic picture of the interaction be-
tween particle and wall involves the absorption of the par-
ticle followed by remission some time later at an angle un-
correlated with the angle of incidence.?-¢ But, if the angle
between the trajectory of the particle and the normal to the
wall is not constant, then the numbér of collisions per unit
time and the momentum transfer per collision are also not
constant. The derivation of the equation PV = % (kinetic
energy) must therefore be reexamined.

Now it has been known for a long time that the second
law of thermodynamics ensures that no pressure differential
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can arise from different modes of interaction between
particles and surfaces.”-® For if surfaces with two different
coatings, 4 and B, were to feel different pressures upon
exposure to some gas G, it would be possible to construct
a perpetual motion machine of the second kind: Coat the
two surfaces of a plane rotor blade with the materials 4 and
B, mount the blade on a fixed shaft parallel to the plane of
the blade, and surround the assembly with an atmosphere
of gas G. In fact, the actual distribution of particles
emerging from a surface must follow a cosine law.®
However, it is a fundamerntal defect of the single-particle
model of an ideal gas that it cannot give a proper account
of any property of a gas that depends on the existence of
molecular chaos or upon equilibrium properties of large
numbers of interacting particles.'® The purpose of this note
is to point out that the choice of an enclosure of spherical
shape permits a simple kinematic demonstration, in the
context of the single-particle model, of the fact that the

A

Fig. 1. Trajectory of a particle in a spherical enclosure of radius R,
undcrgoing nonspecular reflection at point B. |AB| = 2R cosf; | BC| =
2r coslly.
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