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Chapter 3: Potentials

m [aplace Equation
m The Method of Images
m Separation of Variables

m Multipole Expansion
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3.1 Laplace Equation

The goal is to find the electric field of a given stationary charge distribution using

Lo 1 7
E() = 4n60jp£2)fdr’

We can simplify this by exploiting symmetry and using Gauss 's law, but for most practical cases

finding V' is recommended
L R
4G dt
4me r

However this integral is often too tough to solve analytically. Therefore, the problem can be cast as
a partial differential equation called Poisson’s Equation (with appropriate boundary conditions)

V2V = —p/eg

We are sometimes interested in finding the potential in a region where there is no charge density. In
this case, Poisson's equation reduces to Laplace's equation:

VeV =R
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3.1.2 Laplace Equation

In generalized coordinates

1 (8 /hyhs OV @ (hihs OV 8 hyhy OV
e ) ) ()
h1h2h3 axl hl axl (9x2 hz axz a.X'3 hg ax:g

In Spherical coordinates

VZV_la( 6V)+ 1 6( HOV) 1 0V
r29r\' ar) " rZsin6 06 sin 00)  1r2sin2600¢2

In Cylindrical coordinates  In Cartesian coordinates

19/ 9Vy 1092V 02y . 0%V 0%V 0%V
217 — = e V4l = =0
v =5 (s55) t T ooz oxZ " ay2 " 922

S ds

Chapter 3: Potentials

C 3.1 Laplace Equation

"~ BIRZEIT UNIVERSITY



3.1.2 Laplace Equation in One Dimension

2 _aZV_
VV—ﬁ—O

The general solution

Vix) =mx+b

m and b can be determined from the boundary conditions

1 Laplace's equation tolerates no local
V(x) = > Vx+a)+V(x—a)l maxima or minima; Extreme values
of V must occur at the end points

—
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3.1.3 Laplace Equation in Two Dimensions

L. 0%V 0%V
e ="

The general solution is satisfied by

harmonic functions u,v:

f(z) =u(x,y) + iv(x,y) is analytic

(_)au_avandau_ ov
dx ady dy - 9x
Potential, Rubber membrane, Soap film
1 Laplace's equation tolerates no local
Vix,y) = 7R % Vdl maxima or minima; Extreme values
circle of V must occur at the boundary

points
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3.1.4 Laplace Equation in Three Dimensions

i 0%V . 0%V ’ 0%V .
- 0x2  dy? 9z

i 1
V(r)—47TR2 f Vda

Sphere

The value of V at point 7 is the average of IV over a
spherical surface of radius R centered at 7:

V has no local maxima or minima: all A charged particle cannot be held in a stable
J

extrema occur at the boundaries equilibrium
by electrostatic forces alone.
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3.1.4 Laplace Equation in Three Dimensions

Let us first start by calculating the average potential over a spherical surface of radius R
due to a single point charge g located outside the sphere at distance z.

V() =

4neo47 V() = —2

» =+/2%2 + R2 — 2zR cos 0

2T T
y J j 2sin @ dfdg¢
avg 4‘7TR2 477:60 \/Z -+ RZ — 2ZR COS 9
1 g 1.
2 4+ R2 _27R 6 5
= 2ZR 4me, V2t T dneg z
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3.1.5 Boundary Conditions and Uniqueness Theorem

The solution to Laplace’s equation
in some volume V is uniquely
determined if V is specified on 4 speciﬁed
the boundary surface S. on this

surface (S)

The potential in a volume V 1s uniquely determined 1f
a) the charge density in the region, and
b) the values of the potential on all boundaries are specified.
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3.1.5 Boundary Conditions and Uniqueness Theorem

Suppose there were two solutions to Laplace's equation V; and V, : Their difference V5
=V, — V,will obey Laplace's equation.

if V2V, = 0 and V?V, = 0, then V?V3 = V2V, —V?/; = 0

V; takes the value zero on all boundaries (since V; and V, are equal there).
But Laplace's equation allows no local maxima or minima all extrema occur on the boundaries.
So the maximum and minimum of V5 are both zero. Therefore V; must be zero everywhere,

if V2V, = _e% and V?V, = —Eﬁo,then V2V = V2V, — V2V, =0

- e _
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3.1.6 Boundary Conditions and Uniqueness Theorem

m  There are other circumstances in which we do not know the potential at the boundary,
but rather know the charges on various conducting surfaces.

m If you put charge Q; on the first conductor, Q, on the
second, ... Charges moves around resulting in some Integration surfaces
specified charge density in the region between the
conductors.

m Is the electric field now uniquely determined?

m  Or are there perhaps a number of different ways

) Outer boundary-
the charges could arrange themselves on their dopid ke aciafoity

respective conductors, each leading to a different
field?

In a volume I surrounded by conductors and containing a specified charge density .
the electric field is unlquely determined if the fozal charge on each conductor is given.

{:'-ﬁ:, ‘,4: i )‘-)/ :/-Ia; Chapter 3: Potentials 1

BIRZEIT UNIVERSITY 3.1 Laplace Equation



3.1.6 Boundary Conditions and Uniqueness Theorem

= — Ql = — QtOt
V.E, =2 $ =g $ B
Bk B €o )
s €o ith conducting surface outer boundary
V-E; =p/eg 0 0
— —> i = — tot
E2°da:— f Ez'da:
€o €o
ith conducting surface outer boundary
E3:E2—E1 v’ES:O ng da=20
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3.1.6 Boundary Conditions and Uniqueness Theorem

V . (Vgﬁg) — ng) : Eg Ezg ‘ VV?, — —E%

j V(V:;Eg)d'[:f‘/gfgda:o:—j E%d‘l’
Q Q
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3.2 The Method of Images

It is a method that replaces the original boundary by appropriate image charges so simplify
the formal solution of Poisson equation of the original problem.
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3.2 The Method of Images

The equation above the grounded plane

V2V = —q8(x)8(¥)6(z — d) /€

Boundary condition

V(x,y,0) =0

Solution

1 q q
Vix,y,2) = {47T€0 [\/xz +y2+(z—d)? Jx2+y2+ (z+d)?
0 z<0
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3.2.2 Induced Surface Charge

Induced charge density
3 aV el qd
7T TR, o 2m(x%+y%+d?)3/2

Total induced charge

0 = f f Uda—f f qd dxdy
2T (x2 + y? 4+ d?)3/2

Q_JZ”JOO 1 qd sdsd¢ gd |~

e == —q
2 213/2 1
2m (s + d?) (s2 + d2)?

Chapter 3: Potentials 16

3.2 The Method of Images

2.2 L ¥/ \ v
‘{n")," vielt
-y /\\—_—. ~

BIRZEIT UNIVERSITY



3.2.3 Force

Force on q

ﬁ_lfﬁdQ_lfﬁ ;
 4me, 21  4me, 21004

j“j“’ 1 (—xa?—yf/+dz“)< 1 qd )dd
= — X
4meo ) ) OGP+ Y2+ 0D (2 +y2 + a2\ 2w (22 + 32 + a2)2) T

® (—xX —yy +d2) q*d?
A T
87‘[ €0 (x? + y?% 4+ d?)3  4me, (s2 + d2)3
) 2 J2 B 2
LI Fu?| = -— d 7
lé6me, L 4A1re0(2d)?
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3.2.3 Energy

d
fd qZ qZ 1 B qZ 1

A — = —
Aey(22)% 5 Ameg 4z Amey 4d

(00)

W=jﬁ-di=

Different from the energy for assembly of two charges
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3.2.4 Other Image Problems

The equation
V2V = —q8(x)8(¥)6(2)/€o

Boundary condition

V(x, v, d) =
V(x,y,—d) =0
Solution

a [1. N (-D)" D" )
4ﬂ60[r+z(\/x + y? +(Z+2nd)2+\/xz+y2+(z—2nd)2 ]
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3.2.4 Other Image Problems

A positive point charge q is located at distances d; and d», respectively, from
two grounded perpendicular conducting half-planes, as shown in the figure. Determine
the force on q caused by the charges induced on the planes.

—
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3.2.4 Other Image Problems
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3.2.4 Other Image Problems

A positive point charge q is located at distances a out side of a metallic
grounded sphere. Determine the force on g caused by the charges induced on the sphere.

The equation
V2V = —q8(x)8(¥)6(z — a) /€
Boundary condition
V(R

Solution

1 [aiees
Vi, y,2) :4neo 4f“+47
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3.2.4 Other Image Problems

V(RE) =0 — — (q @ >=o

" 4meg\a—R 'R—b
1 q q'
V(—R2) =0 =0
(=R2) _)4neo<a+R+R+b>
or
q q' ( 1 q_'> _ 0
EmL— + -
(a+R+R+b> a—R R—D
o _ R b
q’ = —q q 1L a—+ R -0
a+R a—R R—b
Al 555 gl Chapter 3: Potentials
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3.2.4 Other Image Problems

R—b_R+b
a—R a+R

(R — B S ER GEE  (iy|

R°—bR+aR —ab =R?* — bR+ aR + ab

RZ
2aR = 2ab > b = —
a
RZ
, R+b IS R
10 qa+R g qa+R_ qa
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3.2.4 Other Image Problems

Solution
1 (g ¢ g [ 1 R 1
V » o — = = = P T
(x,5,2) 47T60[4f' /r] Amte, | |7 — aZ| aF_R_ZA
a
B 1 qq’ g’ R 1
F = >Z = — = >
4meg (a — b) Aey a R2
(¢-%)
q* Ra
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3.2.4 Other Image Problems

Induced Charge density

q

1

V() =

R

1

4mey |Vr2 + a2 — 2ar cos 6 GJ R4 R2

q

1

2
r¢«+——2—1rcosf
K a |

1

V(@) =

Amey |Vr2 + a2 — 2ar cos 6 \[azrz

1%

_E —
O or
=R

0O —
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pz T R? — 2ar cos 6

q(R* — a?)
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