Electromagnetic Theory I

Abdallah Sayyed-Ahmad **Department of Physics Birzeit University**

April 26, 2021

Chapter 4: Electric Fields in Matter

*** Polarization**

*** The Field of a Polarized Object # The Electric Displacement** *** Linear Dielectrics

Physical interpterion of bound charges

$$
\sigma_b = \frac{q}{A} = P
$$

$$
\sigma_b = \frac{q}{A_{end}} = P \cos \theta = \vec{P} \cdot \hat{n}
$$

If the polarization is nonuniform, we get accumulations of bound charge within the material.

$$
q_b = \int \rho_b d\tau = -\int \vec{\nabla} \cdot \vec{P} d\tau
$$

$$
V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \vec{\nabla}' \cdot \left(\frac{\vec{P}(\vec{r}')}{r'}\right) - \left(\frac{\vec{\nabla}' \cdot \vec{P}(\vec{r}')}{r'}\right) d\tau'
$$

$$
V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \oint \frac{\vec{P}(\vec{r}')}{r} \cdot d\vec{a}' + \frac{1}{4\pi\epsilon_0} \int -\left(\frac{\vec{\nabla}' \cdot \vec{P}(\vec{r}')}{r}\right) d\tau'
$$

$$
V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \oint \frac{\sigma_b}{r} da' + \frac{1}{4\pi\epsilon_0} \int \frac{\rho_b}{r} dr'
$$

$$
\rho_b = -\vec{\nabla} \cdot \vec{P}
$$

⁴ **Chapter 4: Electric Field in Matter 4.2 The Field of a Polarized Object**

Example: Find the electric field produced by a uniformly polarized sphere of radius R . (revisited)

Let us consider a positive and negative uniformly charged spheres with small center mismatch d

Recall, inside a uniformly charged sphere,

$$
\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3} \hat{r} = \frac{\rho r}{3\epsilon_0} \hat{r} = \frac{\rho}{3\epsilon_0} \vec{r}
$$

Hence, in the region of overlap between the two spheres,

$$
\vec{E} = \vec{E}_{+} + \vec{E}_{-} = \frac{\rho}{3\epsilon_{0}} (\vec{r}_{+} - \vec{r}_{-}) = -\frac{\rho}{3\epsilon_{0}} \vec{d}
$$

$$
= -\frac{1}{4\pi\epsilon_{0}} \frac{Q\vec{d}}{R^{3}} = -\frac{1}{4\pi\epsilon_{0}} \frac{\vec{p}}{R^{3}} = -\frac{\vec{p}}{3\epsilon_{0}}
$$

Example: A sphere of radius R carries a frozen-in polarization $\vec{P}(\vec{r}) =$ kr. Find The electric field everywhere

We have a spherically symmetric system so we can use Gauss's Law

For r<R,

$$
=\frac{Q_{enc}}{4\pi\epsilon_0}\frac{\hat{r}}{r^2}
$$

 \vec{E}

$$
Q_{enc} = \int\limits_{0}^{r} \rho_b 4\pi r^2 dr = -4\pi \int\limits_{0}^{r} \vec{\nabla} \cdot \vec{P} r^2 dr = -4\pi \int\limits_{0}^{r} 3kr^2 dr = -4\pi kr^3 \rightarrow \vec{E} = -\frac{kr\hat{r}}{\epsilon_0} = -\frac{\vec{P}}{\epsilon_0}
$$

For r>R,
\n
$$
Q_{enc} = \int_{R}^{R} \rho_b 4\pi r^2 dr + 4\pi R^2 \sigma_b = -4\pi \int_{0}^{R} \vec{\nabla} \cdot \vec{P} r^2 dr + 4\pi R^2 \vec{P} (R\hat{r}) \cdot \hat{r}
$$
\n
$$
= -4\pi \int_{R} 3kr^2 dr + 4\pi R^2 (kR\hat{r}) \cdot \hat{r} = -4\pi kR^3 + 4\pi kR^3 = 0 \rightarrow \vec{E} = 0
$$

4.3 The Electric Displacement

Gauss's Law in the presence of dielectrics

If any free charge exists within a dielectric, the total charge density can be written as

$$
\rho = \rho_f + \rho_b \rightarrow \epsilon_0 \vec{\nabla} \cdot \vec{E} = \rho_f - \vec{\nabla} \cdot \vec{P}
$$

 $p_f = \epsilon_0 \vec{\nabla} \cdot \vec{E} + \vec{\nabla} \cdot \vec{P} = \vec{\nabla} \cdot (\epsilon_0 \vec{E} + \vec{P}) = \vec{\nabla} \cdot \vec{D}$ We usually know the free energy charge density, Electric Displacement Vector

If symmetry is present, we can calculate \vec{D} by the integral form of Gauss's law,

$$
\int \vec{\mathbf{D}} \cdot d\vec{a} = \mathbf{Q}_{f_{enc}}
$$

Example: A long straight wire, carrying uniform line charge λ , is surrounded by rubber insulation out to a radius a . Find the electric displacement \vec{D} and the field \vec{E} .

We have a cylindrically symmetric system so we can use Gauss's Law

$$
\int \vec{D} \cdot d\vec{a} = Q_{f_{enc}}
$$

For $s < a$,

$$
\int \vec{D} \cdot d\vec{a} = D2\pi sL = Q_{fenc} = \lambda L \to \vec{D}(\vec{s}) = \frac{\lambda}{2\pi s} \hat{s}
$$
\n
$$
\vec{E} = \frac{1}{\epsilon_0} (\vec{D} - \vec{P})
$$
\nGaussian surface

Inside the rubber the electric field cannot be determined, since we do not know \vec{P}

For $s > a$,

$$
\vec{D}(\vec{s}) = \frac{\lambda}{2\pi s} \hat{s} \& \vec{E} = \frac{1}{\epsilon_0} (\vec{D} - \vec{P}) = \vec{E} = \frac{1}{\epsilon_0} (\vec{D} - 0) = \frac{\lambda}{2\pi \epsilon_0 s} \hat{s}
$$

 \overline{a}

Example: A thick spherical shell (inner radius a, outer radius b) is made of dielectric material with a "frozen-in" polarization $\vec{P}(\vec{r}) = k \frac{\hat{r}}{r}$ (No free charge inside). Find the electric field in all three regions

We have a spherically symmetric system so we use Gauss's law

$$
\vec{D} = \frac{Q_{fenc}}{4\pi} \frac{\hat{r}}{r^2}
$$

e charges anywhere, so always $Q_{fenc} = 0$

$$
\vec{D} = 0
$$

For
$$
\mathbf{r} < a
$$
, $\vec{E} = \frac{1}{\epsilon_0} (\vec{D} - \vec{P}) = \frac{1}{\epsilon_0} (\vec{0} - \vec{0}) = 0$

For **b** > **r** > a,
$$
\vec{E} = \frac{1}{\epsilon_0} (\vec{D} - \vec{P}) = \frac{1}{\epsilon_0} (\vec{0} - k \frac{\hat{r}}{r}) = -\frac{k\hat{r}}{\epsilon_0 r}
$$

For
$$
\mathbf{r} > \mathbf{b}
$$
, $\vec{E} = \frac{1}{\epsilon_0} (\vec{D} - \vec{P}) = \frac{1}{\epsilon_0} (\vec{0} - \vec{0}) = 0$

But no free

4.3 The Electric Displacement

A deceptive parallel: misleading comparison between \vec{E} and \vec{D}

 $\vec{\nabla} \cdot \vec{D} = \rho_f$ is similar to $\vec{\nabla} \cdot \vec{E} = \rho/\epsilon_0$

"to solve problems involving dielectrics, you just forget all about the bound charge, calculate the field as you ordinarily would using Coulomb law, only call the answer D **instead of** \vec{E} "

$$
\overrightarrow{D}(\vec{r}) = \frac{1}{4\pi} \int \frac{\rho_f}{r^2} \hat{r} d\tau
$$

This is because

$$
\vec{\nabla}\times\vec{D}=\vec{\nabla}\times(\epsilon_0\vec{E}+\vec{P})=\vec{\nabla}\times\vec{P}\neq 0
$$

4.3 The Electric Displacement

Boundary Conditions $\vec{\nabla} \cdot \vec{\mathbf{D}} = \rho_f \rightarrow$

 $\vec{\nabla} \cdot \vec{E} = \rho/\epsilon_0 \rightarrow$

 $\vec{\nabla}\times\vec{D}=\vec{\nabla}\times\vec{P}\rightarrow$

 $D^{\perp}_{above} - D^{\perp}_{below} = \sigma_f$

The *normal component of* \vec{D} is discontinuous

 $E_{above}^{\perp} - E_{below}^{\perp} = 1$ $/ \epsilon_0 (\sigma_f + \sigma_b)$

 $D_{above}^{\parallel} - D_{below}^{\parallel} =$ $P_{above}^{\parallel} - P_{below}^{\parallel}$ $E_{above}^{\parallel} - E_{below}^{\parallel} = 0$

$$
\overrightarrow{\nabla}\times\overrightarrow{E}=0\rightarrow
$$

Susceptibility, Permittivity and Dielectric constant

For linear dielectrics, if the electric field is weak, $\vec{P} \propto \vec{E}$

 $\vec{P} = \epsilon_0 \chi_e \vec{E}$

Electric susceptibility

*The electric field is the total field from free charges and the polarization itself.

$$
\vec{D} = (\epsilon_0 \vec{E} + \vec{P}) = (\epsilon_0 \vec{E} + \epsilon_0 \chi_e \vec{E})
$$

= $\epsilon_0 (1 + \chi_e) \vec{E} = \epsilon \vec{E}$

Relative permittivity or dielectric constant

$$
\epsilon_r = \frac{\epsilon}{\epsilon_0}
$$

Permittivity

4.4 Linear Dielectrics

Example: A metal sphere of radius a carries a charge Q. It is surrounded, out to radius b , by linear dielectric material of permittivity ϵ . Find the potential V at the center (relative to infinity).

Chapter 4: Electric Field in Matter 4.4 Linear Dielectrics