Electromagnetic Theory I

Abdallah Sayyed-Ahmad Department of Physics Birzeit University

May 19, 2021

Chapter 5: Magnetostatics

* The Lorentz Force Law * The Biot-Savart Law * The Divergence and Curl of \vec{B} * Magnetic Vector Potential (\vec{A})

Introduction

Lodestone (Magnetite Fe₃O₄) Known by Ancient civilizations

Orsted 1820 Battery Wir Wooden Wire Clamp Compass Current Flow Current Flow Battery Battery Wir Wire Wooden Wooden Wire Clamp Wire Clamp Compass Compass

Magnetic Fields due to currents

Moving charges generate magnetic fields

Force between two wires

The forces between charges in motion:

- Attraction of parallel currents
- Repulsion of antiparallel currents
- Does charging up the wires make simply the electrical repulsion
- of like charges?
- The wires are electrically neutral.
- It is not electrostatic in nature.

Lorentz Force Law

The net force on Q in the presence of both electric and magnetic fields:

$$\vec{F} = Q(\vec{E} + \vec{v} \times \vec{B})$$

The magnetic force in a charge Q, moving with velocity \vec{v} in a magnetic field \vec{B}

$$\vec{F}_{mag} = Q(\vec{v} \times \vec{B})$$

Magnetic forces do not work!

$$dW_{mag} = \vec{F}_{mag} \cdot d\vec{l} = Q(\vec{v} \times \vec{B}) \cdot \vec{v}dt = 0$$

Magnetic forces may change the direction in which a particle moves, but they cannot speed it up or slow it down.

Example: Cyclotron motion?: If a charge Q moves counterclockwise, with speed ν , around a circle of radius R, in a plane perpendicular to \vec{B} . what path will it follow?

Cyclotrons represent the first model of modern particle accelerators. The magnetic force is inward, and has a fixed magnitude to sustain uniform circular motion:

$$\left|\vec{F}_{mag}\right| = \left|Q\left(\vec{v} \times \vec{B}\right)\right| = QvB = \frac{mv^2}{R} \rightarrow \omega = \frac{v}{R} = \frac{QB}{m}$$

Experimentally the momentum of a particle can be found using p = mv = QBR

If the velocity has a parallel component to the magnetic field, we get helical motion

Example: Cycloid motion?: If a charge Q at rest is released from the origin, what path it will follow?

 $\vec{E} = E\hat{z}$ $\vec{B} = B\hat{x}$ $\vec{v} = \dot{y}\hat{y} + \dot{z}\hat{z}$ $\vec{v}_0 = 0, \vec{r}_0 = 0$ $\vec{F} = Q(\vec{E} + \vec{v} \times \vec{B})$ $\vec{F} = QE\hat{z} + Q \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 0 & \dot{y} & \dot{z} \\ B & 0 & 0 \end{vmatrix}$ $\vec{F} = Q(B\dot{z}\hat{y} + (E - B\dot{y})\hat{z})$

$$\vec{F} = Q(B\dot{z}\hat{y} + (E - B\dot{y})\hat{z}) = m\vec{a} = m(\ddot{y}\hat{y} + \ddot{z}\hat{z})$$

$$Q(E - B\dot{y}) = m\ddot{z}$$

$$\vec{y} = \frac{QB}{m}\ddot{z} = \frac{Q^2B^2}{m^2}\left(\frac{E}{B} - \dot{y}\right) = \omega^2\left(\frac{E}{B} - \dot{y}\right)$$

$$QB\dot{z} = m\ddot{y}$$

$$y(t) = -\frac{E}{\omega B} \sin \omega t + \frac{E}{B} t$$
$$z(t) = -\frac{E}{\omega B} \cos \omega t + \frac{E}{\omega B}$$

 $\vec{v}_0 = 0, \vec{r}_0 = 0 \rightarrow$

let
$$R = \frac{E}{\omega B}$$

$$(z - R)^2 = (-R\cos\omega t + R - R)^2 = R^2\cos^2\omega t$$
$$(y - R\omega t)^2 = (R\sin\omega t + R\omega t - R\omega t)^2 = R^2\sin^2\omega t$$

$$(y - R\omega t)^2 + (z - R)^2 = R^2 \sin^2 \omega t + R^2 \cos^2 \omega t = R^2$$

Cycloid motion: a circle, of radius R, with its center $(0, R\omega t, R)$ travels in the y-direction at a constant speed, v = E/B

Currents

A line charge λ traveling down at velocity \vec{v}

$$\vec{I} = \lambda \vec{v}$$

The magnetic force on a segment of current-carrying wire is

$$\vec{F}_{mag} = \int \vec{v} \times \vec{B} \, dq = \int \vec{v} \times \vec{B} \, \lambda dl = \int \vec{I} \times \vec{B} \, dl$$

 \vec{l} and $d\vec{l}$ are in the same direction

For a steady current along the wire

$$\vec{F}_{mag} = I \int d\vec{l} \times \vec{B}$$

When charge flows over surface with surface current density $\vec{\kappa}$

$$\vec{\kappa} = \frac{d\vec{l}}{dl^{\perp}} = \sigma\vec{v}$$

The magnetic force on the sheet

 $\vec{\kappa}$:current per unit width-perpendicular-to-flow

$$\vec{F}_{mag} = \int \vec{v} \times \vec{B} \, dq = \int \vec{v} \times \vec{B} \, \sigma da = \int \vec{\kappa} \times \vec{B} \, da$$

When charge flows through a volume with volume current density \vec{J}

$$\vec{J} = \frac{d\vec{I}}{da^{\perp}} = \rho\vec{v}$$

The magnetic force on the sheet

 \vec{J} :current per unit area-perpendicular-to-flow

$$\vec{F}_{mag} = \int \vec{v} \times \vec{B} \, dq = \int \vec{v} \times \vec{B} \, \rho d\tau = \int \vec{J} \times \vec{B} \, d\tau$$

Continuity equation

 $\vec{J} = \frac{d\vec{I}}{da^{\perp}}$

The current crossing a surface S can be written as

$$I = \int_{S} J da_{\perp} = \int_{S} \vec{J} \cdot d\vec{a}$$

But, the total charge per unit time leaving a volume V is

Conservation of
charge
$$\int_{S} \vec{J} \cdot d\vec{a} = \int_{V} \vec{\nabla} \cdot \vec{J} d\tau = -\frac{d}{dt} \int_{V} \rho d\tau = -\int_{V} \frac{\partial \rho}{\partial t} d\tau$$

Continuity equation

$$\vec{\nabla} \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$$

(Local charge conservation)

$$\frac{\partial \rho}{\partial t} = 0 \to \vec{\nabla} \cdot \vec{J} = 0 \to \int_{S} \vec{J} \cdot d\vec{a} = 0 \to \sum_{k} I_{k} = 0 \quad \text{(Kirchhoff's current law)}$$

Example: Suppose the current density distributed over a wire of circular cross section, with radius a is given by J = ks. Find the total current in the wire

$$I = \int_{S} \vec{J} \cdot d\vec{a} = \int_{0}^{2\pi} \int_{0}^{a} ks \, sds \, d\phi = 2\pi k \int_{0}^{a} s^{2} ds = \frac{2\pi k a^{3}}{3}$$

