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Flipping photons backward: 
reversed Cherenkov radiation

Although the speed of light, or more precisely its phase velocity, is 

the ultimate velocity in a vacuum, it can be exceeded by particles in 

other media, such as water. When a charged particle travels through a 

dielectric medium at a speed greater than the phase velocity of light 

in that medium, electromagnetic radiation, or photons, are emitted 

as a Cherenkov cone. The blue glow seen in the water in nuclear 

reactors is an example of this. This phenomenon, known as Cherenkov 

radiation, was first observed by Cherenkov1 and theoretically 

interpreted by Tamm and Frank2. Since the energy and angle of the 

emission depend on the speed of the charged particles, the radiation 

can be used to detect and count those particles. Such devices, called 

Cherenkov counters, have made possible many prominent discoveries 

in nuclear and particle physics, including that of the antiproton3 and 

the J particle4. Today Cherenkov radiation has been, and is being, 

widely used in experiments for identifying fast particles, measuring 

the intensity of reactions, detecting labeled biomolecules, and 

determining the source and intensity of cosmic rays.

Because Cherenkov waves are only emitted if a particle is traveling 

faster than the speed of light in a medium, Cherenkov radiation only 

arises from high-energy particles. Also, in a conventional dielectric 

medium, the emitted radiation travels in the same direction as the 

particles and forms an expanding cone. Consequently, the charged 

particles will interfere with the detection of those photons. All of 

these problems could be solved if the radiation and particles moved in 

opposite directions. This is now possible, thanks to recently developed 

metamaterials that offer some novel electromagnetic properties 

Charged particles moving faster than light in a medium produce 
Cherenkov radiation. In traditional, positive index-of-refraction materials 
this radiation travels forward. Metamaterials, with negative indices of 
refraction, flip the radiation backward. This readily separates it from 
the particles, providing higher flexibility in photon manipulation and is 
useful for particle identification and counting. Here we review recent 
advances in reversed Cherenkov radiation research, including the first 
demonstration of backward emission. We also discuss the potential for 
developing new types of devices, such as ones that pierce invisibility 
cloaks.
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not found in nature5-20. In particular, metamaterials offer reversed 

Cherenkov radiation, a phenomenon in which the photon and charged 

particle naturally separate in opposite directions so that their physical 

interference is minimized.  Therefore, the influence of the noise of 

high-energy particles on useful information can be suppressed and the 

Cherenkov detector is shielded from radiation damage. 

With regard to Cherenkov radiation, of particular interest is that 

a properly designed metamaterial can be a left-handed or negative-

refractive-index medium. That is, unlike all known natural mediums, 

a suitably engineered metamaterial can simultaneously have negative 

real parts of both permittivity ε and permeability μ. These parameters, 

like the associated refractive index, have both real and imaginary 

components. In a left-handed medium, the electric field vector E, the 

magnetic field vector H, and the wave vector k form a left-handed 

triad, hence the name left-handed material21. This is the mirror image 

of conventional mediums, which are right-handed.

This difference impacts wave propagation. In contrast to a 

conventional medium, the phase propagation direction represented 

by the wave vector is opposite to the energy flow in a left-handed 

medium21, due to the negative real part of its refractive index. In 

other words, the wave undergoes a negative phase change while 

propagating forward in a left-handed medium. This characteristic leads 

to a backward emitted Cherenkov wave, which can be easily separated 

from the high-energy particles that produce it. Such a medium can 

be constructed out of artificial resonant elements whose sizes and 

spacings are much smaller than the wavelength of interest. These 

artificial elements play roles similar to that of atoms or molecules. An 

appropriate collection of these components produces a macroscopic 

electromagnetic response characterized by negative permittivity and 

negative permeability. Suitable left-handed metamaterials will allow us 

to exploit some exotic phenomena associated with Cherenkov radiation 

and open a new window of novel applications in high-energy physics, 

astrophysics, biology, and elsewhere.

Here we provide an overview of the basis for reversed Cherenkov 

radiation, examine how to achieve it, review results demonstrating 

it, and explore applications of metamaterials in it. We conclude by 

highlighting the practical potential of this field and the challenging 

work that remains to be solved in order to realize that potential.

Preserving time’s arrow
Understanding why a left-handed material flips the direction of 

Cherenkov radiation requires understanding the origin of that radiation. 

Fundamentally, it is a shockwave, the photonic equivalent of a fast 

boat’s wake or the supersonic boom of a jet airplane. This photonic 

shockwave, or Cherenkov radiation, is created by a fast-moving charged 

particle as it barrels through a medium. Knowing this and something 

of the nature of left-handed metamaterials helps explain why there is 

neither a causality nor energy-momentum conservation paradox with 

backward Cherenkov radiation.

In a conventional, right-handed material, Cherenkov radiation 

possesses three key characteristics: 1) it appears only if the speed of 

the charged particle is greater than the speed of light in the medium, 

2) the constant phase front of the radiated wave forms a cone and 

propagates forward, and 3) the polarization of the electric field vector 

lies in the plane determined by the velocity vector of charge and the 

direction vector of the power radiation. This last characteristic means 

that the radiation exhibits a transverse magnetic field (TM), which has 

implications for the metamaterial attributes required to reverse the 

radiation.

Fig. 1a illustrates the physical origin of Cherenkov radiation. The 

figure shows the Ez field of the wave radiated from a charged particle 

moving with a speed v > c/n along the z-axis, where c is the speed of 

light in vacuum and n is the real part of the medium’s refractive index. 

The particle’s movement generates a forward Cherenkov radiation cone 

in a conventional material with a positive index of refraction. At time 

t0, the particle arrives at position 0 and drives the medium to radiate a 

spherical wave outward. A short time later (Δt), the particle has moved 

a distance of vΔt. During that time, the phase front of the radiated wave 

represented by the dashed lines in the figure has traveled a distance of 

cΔt/n. A shock wave is formed beside the particle with the group wave 

front coincident with the phase wave front. Both are perpendicular to 

the energy flux, represented by the Poynting vector. The angle between 

the direction of energy flow and the particle velocity is θ, which is 

determined by the particle’s speed and the medium’s refractive index by 

cos−1[c/(nv)]. The direction of the shock wave therefore forms a forward 

Cherenkov radiation cone with an angle of 2θ.

Fig. 1b shows the corresponding Cherenkov radiation in a left-

handed medium with negative real part of the refractive index. As the 

particle travels along the z direction, the emitted wave has the energy 

flowing outward (blue arrows) in a cone with angle, θ = cos−1[c/(nv)]. 

For n <−1 the angle is obtuse or backward pointing. The phase 

propagation represented by the wave vector (red arrows) is opposite 

the energy flow direction. As can be seen by the dashed lines in the 

figure, the phase fronts converge towards the path of the particle as 

time passes in what seems to be a violation of causality. This apparent 

paradox in the relationship between cause and effect is resolved 

because energy is carried by the group, and not the phase, velocity.

A left-handed medium is dispersive and so has a wavelength 

dependent response to radiation. In other words, its group and 

phase velocity are different. Thus, while the particle in Fig. 1b 

moves a distance of vΔt the phase front travels a distance of 

cΔt/n and the energy travels a distance of cΔt/ng, where c/n and 

c/ng are the phase and group velocities respectively. In this case, 

the group wave front is not perpendicular to the group velocity 

(energy direction). The cone angle of the group wave front, Φ, is 

180° – tan–1{[(n/ng)sinθ cosθ]/[1 – (n/ng)cos2θ]}. Consequently, the 

group wave front arising from the group propagation is no longer 

perpendicular to the Poynting vector. The shock wave is always behind 
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the moving particle. Thus, the backward cone formed by the group 

wave front obeys causality.

Conserving energy and momentum
With time’s arrow intact, another apparent paradox needs to be 

resolved. On first glance, it seems that reversed Cherenkov radiation 

violates energy-momentum conservation, with particles appearing to 

gain both momentum and energy. However, closer inspection shows 

that here too there is no problem. 

A charged particle loses energy in emitting Cherenkov radiation 

and, therefore, slows down. The popular simple definition of the 

time averaged wave momentum density is 〈G〉 = ½Re(ε E × μ*H*). 

The term in parenthesis is known as the Minkowski momentum22-24. 

However, this definition no longer holds in a left-handed medium; 

this is a good thing, because if it did backward Cherenkov radiation 

would not conserve energy and momentum. To see why, consider the 

simple case of an isotropic left handed medium with appropriate ε and 

μ. The simple definition leads to the wave momentum in the same 

backward direction as the energy flow defined by the Poynting vector 

since the real parts of both ε and μ are negative. In order to conserve 

momentum, the charged particle must gain momentum and thus also 

energy, violating the conservation of energy25.

The correct definition of 〈G〉 has been addressed in26. If loss is 

negligible, then the proper formulation in a dispersive left-handed 

medium,〈G〉 = ½Re {ε E × μ*H*+½ k[∂ε/∂ω) E ⋅ E*+ (∂μ/∂ω) H ⋅ H*]}, 

is the simple definition plus material dispersion terms related to the 

electric and magnetic fields. This momentum density vector can be 

shown to be equal to the number of photons per unit volume times 

h- k, where h- is the reduced Plank constant, in agreement with its 

definition in quantum physics21,25. The time averaged Poynting vector 

〈S〉 = 〈E×H*〉 is opposite to the wave vector (see Box 1 for a discussion 

of this for a particular case), representing a backward propagating 

wave. The wave momentum is therefore in the forward direction, 

and the charge particle loses momentum and also energy as it travels 

through the medium. Momentum and energy are thus both conserved.

In an isotropic left-handed medium for which loss cannot be 

neglected, the momentum density 〈G〉 may be parallel to the energy 

flow27. This is because the material dispersion terms in the expression 

of 〈G〉 become minor compared with the first term represented by 

Minkowski momentum. However, momentum is still conserved because 

a recoiled force opposed by the medium will be raised as the wave 

attenuates in the lossy medium27.

Metamaterial design for reversed Cherenkov 
radiation
Realizing reversed Cherenkov radiation requires designing a suitable 

isotropic left-handed medium. Most of the previously designed left-

handed materials will not work, as shown by the following.

Fig. 1 Ez field of a photonic shockwave in a (a) conventional and (b) left-handed medium. Note that the energy flow is parallel to the wave vector in the 
conventional case and opposite for the left-handed case. (a) In a conventional medium with a real part of the refractive index n =2 and a charged particle with a 
velocity 99% of the speed of light in a vacuum, or v = 0.99c, the Cherenkov radiation forms a cone with θ = 60°. (b) Reversed Cherenkov radiation in a left-handed 
medium, with a fast moving charged particle with v = 0.99c. The energy flow forms a cone with an angle of θ= cos−1[c/(nv)] ≈ 115°. The phase wave front forms a 
cone with an angle of Φ = 172.6°, where Φ satisfies the following equation tan(180° – Φ) = [(n/ng)sinθ cosθ]/[1 – (n/ng)cos2θ]}. Both angles are related to

the relative permittivity and permeability of the medium. The relative permittivity follows a Drude dispersive model εr = 1 – ω
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The magnetic (μ) and electric (ε) tensors in general are 3 × 3 

complex matrice s. For the simple case of a charged particle moving and 

accelerated in the z-direction in a cylindrical coordinate system, the 

magnetic field is non-zero only along the ϕ direction and the electric 

field is non-zero only along the ρ and the z directions. Due to this 

symmetry, the only relevant components are along ϕ for the magnetic 

field and the other two orthogonal components for the electric field.

Previous metamaterial designs were mostly for electromagnetic 

waves with out-of-plane electric fields6,15-17,28-32. Thus they are not 

suitable for testing reversed Cherenkov radiation, which requires a 

transverse magnetic field. With this in mind, a new type of left-handed 

metamaterial has recently been experimentally fabricated for the 

detection of Cherenkov radiation33,34. An image is shown in Fig. 2a. 

The metamaterial is composed of many substrate layers repeated along 

the ϕ direction, with each layer consisting of split-ring resonators 

and metal wires. In each layer, orthogonal copper wires are printed on 

both sides of the thin dielectric sheet. They provide isotropic negative 

permittivity in the ρz plane, while the two L-shaped metal strips on the 

top side couple with the two on the bottom side to form an equivalent 

inductor/capacitor resonator. These supply a negative permeability 

response along the ϕ direction.

The negative refractive index of the constructed metamaterial has 

been proved by the prism experiment for transverse magnetic polarized 

incidence (Fig. 2b). The refractive index of the metamaterial is negative 

from 8.1 to 9.5 GHz. The unit cell of the metamaterial has a size of 

3 mm, which is less than one tenth of the wavelength at the negative 

refraction region of 31 to about 37 mm. The composite structure 

therefore can be considered as an effective homogenous left-handed 

medium. As long as the particle is traveling in the ρz plane, Cherenkov 

radiation phenomena in the proposed metamaterial is the same as 

those in isotropic left-handed metamaterial. (For a more in-depth 

analysis of the new metamaterial, see Box 1.)

With the presently available fabrication technology, it is possible 

to reach much higher frequencies by scaling down the corresponding 

metamaterial lengths. However, metals may no longer behave as 

perfect conductors at such frequencies, perhaps rendering them less 

effective for the purpose of building a left-handed material.

To choose the most suitable out of many possible metamaterial 

designs for reversed Cherenkov radiation, the following considerations 

need to be carefully studied:

(1) The real parts of the components of μϕϕ, εzz, and ερρ must be 

negative. Therefore the split-ring resonators and the metal wires 

should be in plane, i.e. they may be located in the same substrate 

layer or in the top or bottom sides of the layer. The coupling 

between them should be minimized. For example, the metal wires 

shown in Fig. 2a cross over the centre of the split-ring resonators 

without any contact. The total net magnetic flux perpendicular to 

Fig. 2 (a) Configuration of the metamaterial for reversed Cherenkov radiation. (b) The measured real refractive index of the metamaterial, which is negative for 
frequencies between 8.1 and 9.5 GHz, for transverse magnetic polarized field incidence (the H indicating the magnetic field is perpendicular to the plane of the 
page). Reprinted figure with permission from34. © 2009 by the American Physical Society.

(b)

(a)
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the split-ring resonator plane produced by the induced currents in 

the wires vanishes due to the symmetry with respect to the wire, 

and therefore has little effect on the magnetic behavior of the split-

ring resonator.

(2) Since Cherenkov radiation is faint, a metamaterial with low loss 

is very important for successful detection. In the microwave 

frequencies, the dielectric loss dominates. Thus, a substrate with low 

loss should be used. At higher frequencies, such as in the terahertz 

or optical range, as mentioned above, a metal with a low loss such 

as silver or even superconductors may be needed. As dielectric 

loss is smaller compared with metallic loss at optical frequencies, 

some dielectric resonators with subwavelength resonant mode30,35 

may also be used in metamaterial design for reversed Cherenkov 

radiation in those regions.

(3) A metamaterial for reversed Cherenkov radiation must exhibit 

isotropic electrical response. The unit cell of the design therefore 

should have some kind of symmetry, such as rotational symmetry 

or rotoreflection symmetry.

Demonstrating reversed Cherenkov radiation
Even with the right metamaterial, it is challenging to experimentally 

test reversed Cherenkov radiation due to fabrication constraints. The 

intensity of Cherenkov radiation increases with higher frequencies, 

so the optical or ultraviolet spectrum is more suitable for detection. 

However, in order to create a metamaterial that is left-handed at 

optical or ultraviolet frequencies, the unit size of the metamaterial 

should be much smaller than the wavelength, which ranges from 

700 to 10 nm. Although great effort has been devoted to push the 

working frequency of metamaterials from microwave to optical 

To see at what frequencies the new metamaterial in reference 34 

is left-handed, consider the following. The effective permeability of 

the L-shaped split-ring resonators can be derived by computing the 

induced circumferential surface current per unit length J around the 

loop in a stack of rings, which behaves like a solenoid to an oscillating 

incident electromagnetic wave with a magnetic field H0 polarized 

along the ϕ direction68,69. Based on Ampere’s law, the magnetic 

fields inside and outside of the loop are Hint = H0 + J − FJ, and 

Hext = H0 − FJ, where F is the fractional area of the periodic unit cell in 

the ρz plane occupied by the interior of the split-ring resonator. The 

average magnetic flux is Bave = μ0FHint + μ0(1 − F)Hext or μ0H0. This is 

expected since the B field due to the current loop is continuous, and 

so the net effect of the current on Bave  must vanish.

On the other hand, the net effect of the current on the average 

magnetic field density does not disappear. It is Have = H0 − M, where 

M = FJ is the magnetic dipole moment per unit volume of the material. 

The effective permeability is therefore μeff = Bave/Have = μ0H0/(H0 − FJ). 

Using Faraday’s law for electromagnetic force and letting the current in 

the metallic loop equal to the displacement current in the gap formed 

by the top and bottom L-strips yields the effective permeability of the 

split-ring resonators as a function of F, inductance, capacitance, and 

other geometrical and material parameters.

The resultant effective permeability follows a Lorentz dispersive 

model. For a perfect conductor, it is negative within the frequency 

range ω0 ≤ ω ≤ ω0/ [1 – FLg/(Lg + Li)]1/2, where Lg is the geometrical 

inductance and Li the inertial inductance that arises from the finite 

electron mass in the metal. Using the parameters found in34 yields 

f0 = (2π)-1ω0 ≈ 11 GHz. Employing a computer method to accurately 

calculate the capacitance between the gap70 by including the fringing 

electric effect, we get a more accurate resonant value around 8 GHz, 

in good agreement with the experimental results34.

The magnetic response of the split-ring resonator to Hρ and Hz 

fields is negligible, thus we get μρρ = μ0 and μzz = μ0. The effective 

magnetic parameters tensor of the structure is therefore given by 

μ = diag[ μ∥ μ⊥ μ∥ ], where μ⊥= μeff following a Lorentz dispersive 

model, and μ∥ = μ0. 

The effective negative permittivity is determined by calculating the 

capacitances and inductances in the wire medium71,72,73. These 

calculations show that the effective permittivity of the wire medium 

is negative below ωep, which is inversely related to the distance 

between two adjacent wires.

The electric response of the wire array follows a Drude dispersive 

model. The two-dimensional wire array shown in Fig. 2a behaves like 

an isotropic low frequency plasma in the xz plane. Since the electrical 

response of the wire medium to the Ey field can be neglected, the 

constitutive parameter tensor is therefore given by ε = diag[ε∥ ε⊥ ε∥ ], 
where ε∥ = εeff following a Drude dispersive model, and ε⊥= ε0 is the 

dielectric constant of the background medium.

We can separate all field components into their ϕ, ρ, ζ components 

from the Maxwell equations23. For the transverse magnetic 

case, the field depends on only the μ⊥and ε∥ components. The 

original constitutive parameter tensors, which are 3×3 complex 

matrix, are therefore diagonalized here. The Maxwell equations 

are reduced to ks×Hϕ = −ωε∥ Es, and ks×Es = ωμ⊥Hϕ. Note that 

μ⊥and ε∥ follow Lorentz and Drude dispersive model respectively. 

For the lossless case in the overlapped frequency band where 

both of them are negative, the time averaged Poynting vector is 

〈S〉 = 〈Es × Hϕ*〉 = ks|Es|2 /(2ωμ⊥). This is opposite to the wave vector 

ks for a negative μ⊥representing a backward propagating wave. It also 

shows that Es, Hϕ, and ks form a left-handed triad.

The Helmholtz wave equation gives ks = 
ω
—

c
n

—, where the refractive 

index n = ±√
//
—μ
μ
—⊥

0 

ε—
ε—0

∥–. Since for any passive medium, analytic 

continuation arguments require the imaginary parts of the 

permeability, the permittivity, and the refractive index to be positive, 

we therefore must pick the negative sign for the solution of n. 

Box 1 Analyzing negativity
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frequencies8,10,12,15-17,36-40, fabrication techniques are still much less 

mature at optical frequencies. Furthermore, the loss in the metal 

increases as it scales to the optical spectrum, making the signal weaker 

and detection more difficult.

Another challenge involves measurement issues. Convincingly 

demonstrating reversed Cherenkov radiation in a left-handed medium 

requires measuring the far field of the radiated waves. However, it is 

not yet practical to build a large block of left-handed medium and 

measure the far field inside it.

Despite these challenges, Cherenkov radiation in a metamaterial-

loaded waveguide with a charged particle beam incidence has been 

carried out at microwave frequencies41-43. An energy peak in microwave 

radiation was observed at the left-handed band of the metamaterial, 

showing some evidence of Cherenkov radiation. Although backward 

Cherenkov radiation was not observed due to beam fluctuations43, it 

was the first experimental attempt to use a charged particle beam to 

measure Cherenkov radiation in a metamaterial. In order to convincingly 

demonstrate the backward Cherenkov radiation in a left-handed 

medium, our group proposed the concept of using a waveguide with an 

array of open slots to emulate a fast moving charged particle. This setup 

sidesteps the problem of weak Cherenkov radiation from a charged 

particle in the microwave frequencies, enabling the verification of 

reversed Cherenkov radiation in the low frequency band34. 

To see why this is so, consider a monochromatic microwave 

propagating in the slot waveguide. As it does so, it is emitted through 

each of the slots with a fixed phase delay relative to its neighboring 

slots. This behavior occurs because the input microwaves take a longer 

time to travel to the more distant slots. The slot waveguide thus 

functions as a phased dipole array.

Comparing the electric current carried by a moving charged particle 

with the current density of the slot waveguide in the frequency 

domain shows that they are very similar. One difference is that the 

moving charged particle contains the whole spectrum of frequencies. 

The slot waveguide, in contrast, has only one working frequency. 

As far as that single frequency is concerned, though, the radiation 

produced by moving charged particles and that by the phased dipole 

array are exactly the same. Therefore, the slot waveguide emulates 

a monochromatic Cherenkov source with its charged particle moving 

with a frequency-dependent speed of v = ω/kz.

In experiments, a prism-like sample is used for measurement 

instead of building a large block of left-handed medium. Although 

filled with air, the waveguide is directly in contact with the left-handed 

metamaterial and has an effective radius of about 5 mm. This distance 

is significantly smaller than the wavelength of interest which is larger 

than 30 mm.  Consequently, the radiation is effectively emitted inside 

the left-handed metamaterial. During these experiments, the radiation 

is observed being emitted backward, as illustrated in Fig. 3. At the 

exit face of the left-handed metamaterial, the reversed Cherenkov 

wave gets further refracted into a negative refraction band while the 

ordinary Cherenkov wave gets refracted into a positive refraction band. 

Thus, the reversed Cherenkov wave can be easily distinguished from a 

forward Cherenkov wave (Fig. 3a).

An example using the parameters from these experiments directly 

demonstrates this backward emission of Cherenkov radiation. At 

8.5 GHz, the real part of the index of refraction of the left-handed 

material is n = -2.7. The measured exit angle of the wave at the surface 

of the prism is γ = -22°, therefore the incident angle of the radiation 

at the entrance of the prism is θi = 8°. The angle of the prism’s exit 

surface is τ = 18.4°. Therefore, the emission angle from the source 

of θ = 90°– θi + τ = 100.4° is in the backward direction.This can be 

compared to the predicted value. Due to the phase difference between 

neighbouring slots in the experiment, the emission angle of the 

Fig. 3 (a) Experimental setup demonstrating reversed Cherenkov radiation, with a slot waveguide modeling a fast charged particle traveling from top to bottom 
(downward pointing purple arrow). The prism-like metamaterial filters the reversed Cherenkov wave, which is emitted backward from its origin and then refracted 
backward when exiting the left-handed metamaterial. (b) Sum of the radiation power in each angle in the negative refraction band (solid line) and positive 
refraction band (dashed line). Reprinted figure with permission from34. © 2009 by the American Physical Society.

(b)(a)
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radiation in vacuum from the slot waveguide is at 58°, equivalent to a 

particle speed of 1.9c. In the left-handed metamaterial with n = –2.7, 

the corresponding backward emission angle of the radiation from the 

slot waveguide should then be 101.2°, which is in good agreement with 

the above measured value of 100.4°. The observed far field pattern 

in negative refraction band therefore demonstrates the reversed 

Cherenkov radiation in the left-handed medium (Fig. 3b).

Perspective and challenges
The unusual Cherenkov radiation in metamaterials opens a new 

window for many applications. For particle identification, reversed 

Cherenkov radiation has a distinct advantage: the photon and charged 

particle naturally separate in opposite directions so their physical 

interference is minimized.

Moreover, the left-handed metamaterial we have introduced is 

only electrically isotropic in two orthogonal directions. With further 

refinement, a metamaterial can be made to be isotropic, anisotropic, 

and bi-anisotropic. Many striking phenomena may be realized with such 

choices of materials44-48. One interesting possibility is that Cherenkov 

radiation without any velocity threshold may be generated by utilizing 

an anisotropic metamaterial. This unusual phenomenon has been 

previously observed in metallic grating49 and photonic crystals50,51. 

Here a metamaterial would provide an additional solution with more 

material flexibility. The radiation pattern would cover a much larger 

angle from forward to backward. Thus, a Cherenkov detector based on 

anisotropic metamaterial would possess strong velocity sensitivity and 

good radiation directionality.

Also, new phenomena are predicted to arise when fast 

particles travel in a layered medium52-56. An intriguing one is that 

electromagnetic detection of a perfect invisibility cloak becomes 

possible through the use of Cherenkov radiation56. Such cloaks have 

received great interest recently57-67. Based on a transformation 

method, they rely on metamaterials with specific parameters to 

manipulate light. However, they cannot do the same for a particle 

beam and that provides a means to penetrate and detect them 

(See Box 2).

One way to look at backward Cherenkov radiation in the left-

handed medium is as radiation phenomena arising from a charged 

particle moving in a virtual negative electromagnetic space. This 

concept opens up the door to even wider applications. By constructing 

the metamaterial with specific parameters to mimic the virtual 

electromagnetic space, we can flexibly manipulate the Cherenkov 

photons. These photons have potential applications in High Energy 

Physics, Astrophysics, and novel radiation sources.

As a first step, experimental work34 has demonstrated that the 

manipulation of Cherenkov photon is possible in a left-handed medium. 

Future work will involve direct demonstration of reversed Cherenkov 

radiation using actual moving charged particles, which is crucial for 

practical applications. Achieving low loss metamaterials that work in 

Theoretical work shows that the ideal cloak can be perfectly invisible 

from electromagnetic waves61. However, no matter in what frequency 

band the invisibility cloak works, it can still be electromagnetically 

detected. This could be done by shooting a fast charged beam through 

the cloak, which will not be refracted as the photons are56.

With such a beam, a broadband Cherenkov wave would be 

radiated out as the particles travel through the cloak, making it 

visible. The characteristics of the photonic shockwave would not 

only reveal the cloak but would also provide information about 

its composition. This is because the angle of the emitted photons 

would depend upon the refractive index of the cloak.

A spherical invisibility cloak is a transformed curved electromagnetic 

space equivalent to a virtual flat electromagnetic free space for 

photons but not for a charged beam. Thus, Cherenkov radiation in 

the cloak can be viewed as a radiation phenomenon when a charged 

particle moves nonlinearly in a virtual curved space with a bent 

trajectory (Box 2 Fig. 1a and b). The velocity of the particle can be 

greater than the speed of light in the virtual electromagnetic space 

and thus generate radiation (Box 2 Fig. 1c).

In practice, this would require that the high-energy particle beam 

intersect the invisibility cloak. This could be done through some 

sort of scanning system. For practical reasons, this would probably 

be deployed at the entrance to a location. The beam, or multiple 

beams, would crisscross the opening, thereby ensuring that 

nothing unseen, or undetected, entered.

Box 2 Piercing invisibility cloaks

Box 2 Fig. 1 Trajectory of a fast-moving charged particle inside the 
transformation metamaterial-based cloak compared with the trajectory 
of a photon in (a) the physical curved electromagnetic space and (b) 
the virtual flat electromagnetic space. (c) E field of the Cherenkov 
wave radiated from a charged particle traveling through the curved 
electromagnetic space (here from a spherical cloak). Dotted line 
represents the trajectory of the particle beam with its centre marked with 
the small arrow. Reprinted figure with permission from56. © 2009 by the 
American Physical Society.

(b)(a)

(c)
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the optical spectrum is important as the sharp resonance easily allows 

the negative refractive index to be much smaller than -1, the necessary 

condition to observe backward Cherenkov radiation. Another task is 

to develop three-dimensional optical metamaterials15-17, which are 

important to realize devices based on backward Cherenkov radiation.

Conclusion
Metamaterials, with their unusual electromagnetic properties, can 

enable many new applications, such as perfect lenses, invisibility cloaks, 

and reversed Cherenkov detectors. With the observation of backward 

emission, reversed Cherenkov radiation has been demonstrated and 

the corresponding detectors are now possible. With the transformation 

optics method, metamaterials with specific parameters could mimic 

virtual electromagnetic space. This allows further control of the motion 

of the charged particle in the virtual space, offering great flexibility 

to manipulate the Cherenkov photons. The newly gained capability of 

flexible parameters may lead to further innovations in particle physics, 

astrophysics, and biomolecular science.  
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