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Magnetism from Conductors and Enhanced
Nonlinear Phenomena

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,Member, IEEE

Abstract—We show that microstructures built from nonmag-
netic conducting sheets exhibit an effective magnetic permeability
�e� , which can be tuned to values not accessible in naturally
occurring materials, including large imaginary components of
�e� . The microstructure is on a scale much less than the wave-
length of radiation, is not resolved by incident microwaves, and
uses a very low density of metal so that structures can be
extremely lightweight. Most of the structures are resonant due to
internal capacitance and inductance, and resonant enhancement
combined with compression of electrical energy into a very small
volume greatly enhances the energy density at critical locations
in the structure, easily by factors of a million and possibly
by much more. Weakly nonlinear materials placed at these
critical locations will show greatly enhanced effects raising the
possibility of manufacturing active structures whose properties
can be switched at will between many states.

Index Terms—Effective permeability, nonlinearity, photonic
crystals.

I. INTRODUCTION

I N A SENSE, every material is a composite, even if the
individual ingredients consist of atoms and molecules. The

original objective in defining a permittivity and permeability
was to present an homogeneous view of the electromagnetic

properties of a medium. Therefore, it is only a small step to
replace the atoms of the original concept with structure on a
larger scale. We shall consider periodic structures defined by
a unit cell of characteristic dimensions. The contents of the
cell will define the effective response of the system as a whole.

Clearly, there must be some restrictions on the dimensions
of the cell. If we are concerned about the response of the sys-
tem to electromagnetic radiation of frequency, the conditions
are easy to define as follows:

(1)

If this condition were not obeyed, there would be the
possibility that internal structure of the medium could diffract
as well as refract radiation giving the game away immediately.
Long wavelength radiation is too myopic to detect internal
structure and, in this limit, an effective permittivity and
permeability is a valid concept. In Section II, we shall discuss
how the microstructure can be related to , .

In an earlier paper [1], we showed how a structure consisting
of very thin infinitely long metal wires arranged in a three-
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dimensional (3-D) cubic lattice could model the response of a
dilute plasma, giving a negative below a plasma frequency
somewhere in the gigahertz range. Theoretical analysis of this
structure has been confirmed by experiment [2]. Sievenpiper
et al. have also investigated plasma-like effects in metallic
structures [3], [4].

Ideally, we should like to proceed in the magnetic case by
finding the magnetic analogue of a good electrical conductor:
unfortunately, there is not one. Nevertheless, we can find some
alternatives that we believe do give rise to interesting magnetic
effects.

Why should we go to the trouble of microstructuring a
material simply to generate a particular ? The answer
is that atoms and molecules prove to be a rather restrictive
set of elements from which to build a magnetic material.
This is particularly true at frequencies in the gigahertz range
where the magnetic response of most materials is beginning
to tail off. Those materials, such as the ferrites, that remain
moderately active are often heavy, and may not have very
desirable mechanical properties. In contrast, we shall show,
microstructured materials can be designed with considerable
magnetic activity, both diamagnetic and paramagnetic, and
can, if desired, be made extremely light.

There is another quite different motivation. We shall see
that strong magnetic activity implies strongly inhomogeneous
fields inside the material. In some instances, this may result
in local field strengths many orders of magnitude larger
than in free space. Doping the composite with nonlinear
material at the critical locations of field concentration gives
enhanced nonlinearity, reducing power requirements by the
field enhancement factor. This is not an option available in a
conventional magnetic material.

We show first how to calculate for a system, then we
propose some model structures that have magnetic activity
and give some numbers for these systems. Finally, we show
how electrostatic energy can be strongly concentrated in these
structures and, hence, demonstrate the potential for enhancing
nonlinear effects.

II. DEFINING AN EFFECTIVE PERMEABILITY

We are seeking to build structures with effective epsilon
and as follows:

(2)

where we assume that the structure is on a scale much shorter
than the wavelength of any radiation so that we can sensibly
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Fig. 1. Unit cell of a periodic structure. We assume that the unit cell
dimensions are much smaller that the wavelength of radiation, and average
over local variations of the fields. In the case of theBBB-field, we average over
the faces of the cell and in the case of theHHH-field, over one of the edges.

speak of an average value for all the fields. A key question is
“how do the averages differ?” Clearly, if the structure is made
of thin wires or sheets of metal, then if the averages were
taken over the same regions of space,, would always
be unity. However, we observe that Maxwell’s equations

(3)

may be applied in the integral form

(4)

where the line integral is taken over a loop “,” which encloses
an area “.”

This form of the equations immediately suggests a prescrip-
tion for averaging the fields. For simplicity, we shall assume
that the periodic structure is described by a unit cell whose
axes are orthogonal, as shown in Fig. 1. Some of the arguments
used in this section are similar to those we used in deriving a
finite-difference model of Maxwell’s equations [5].

We choose to define the components of by averaging
the -field along each of the three axes of the unit cell. If we
assume a simple cubic system

(5)

There is only one caveat concerning the definition of the
unit cell: its edges must not intersect with any of the structures
contained within the unit cell. This leaves us free to cut the
structure into a whole number of unit cells when we come
to create a surface and ensures that the parallel component
of is continuous across the surface as required in a
consistent theory of an effective medium.

To define , we average the -field over each of the
three faces of the unit cell, defined as follows:

surface defined by the vectors, ;
surface defined by the vectors, ;

Fig. 2. ModelA consists of a square array of metallic cylinders designed to
have magnetic properties in the direction parallel to the axes of the cylinders.

surface defined by the vectors, .

Hence, we define

(6)

The ratio defines the effective epsilon andfrom (2)

(7)

Thus, if we seek a large effect, we must try to create fields
that are as inhomogeneous as possible.

We shall explore various configurations of thin sheets of
metal, derive , and discuss the results with a view to
making the effect as large as possible.

III. EXAMPLES OF MAGNETIC MICROSTRUCTURES

A. An Array of Cylinders

We start with a very simple structure for the purposes of
illustration, i.e., “model A” shown in Fig. 2. Let us apply an
external field , which we shall take to be parallel to the
cylinders. We assume that the cylinders have a conducting
surface so that a current per unit length flows. The field
inside the cylinders is

(8)

where the second term on the right-hand side is the field caused
directly by the current, and the third term is the result of
the depolarizing fields with sources at the remote ends of the
cylinders. If the cylinders are very long, the depolarizing field
will be uniformly spread over the unit cell, but will have the
same number of lines of force in it as the direct field inside
the cylinders. We now calculate the total electromotive force
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(emf) around the circumference of a cylinder as follows:

emf

(9)

where is the resistance of the cylinder surface per unit area.
The net emf must balance and, therefore,

(10)

We are now in a position to calculate the relevant averages.
The average of the -field over the entire unit cell is

(11)

However, if we average the -field over a line lying entirely
outside the cylinders

(12)

Hence, we define

(13)

For an infinitely conducting cylinder or in the high fre-
quency limit, is reduced by the ratio of the cylinder
volume to the cell volume. This ratio of volumes will turn
out to be the key factor in determining the strength of the
effect in all our models. Evidently, in the present model,
can never be less than zero or greater than unity. It should
also be mentioned that to maximize the effect, we could have
replaced the metallic cylinders with prisms of square cross
section to maximize the volume enclosed within the prism.

If the resistivity of the sheets is high, then the additional
contribution to is imaginary, but always less than unity

(14)

A further point that should be noted is that all the structures
we discuss have electrical as well as magnetic properties. In

Fig. 3. ModelB consists of a square array of cylinders as for modelA, but
with the difference that the cylinders now have internal structure. The sheets
are divided into a “split ring” structure and separated from each other by a
distanced. In any one sheet, there is a gap that prevents current from flowing
around that ring.

Fig. 4. When a magnetic field parallel to the cylinder is switched on it
induces currents in the “split rings,” as shown here. The greater the capacitance
between the sheets, the greater the current.

this particular case, we can crudely estimate for electric fields
perpendicular to the cylinders

(15)

where is the fraction of the structure not internal to a
cylinder. In deriving (15), we assume that the cylinder is
a perfect conductor and neglect depolarizing fields arising
from interaction between cylinders. Inclusion of in our
calculations removes one difficulty by ensuring that

(16)

Evidently, without the velocity of light in the effective
medium would have exceeded that in free space. Most of the
structures discussed in this paper have a similar.

B. Capacitative Array of Sheets Wound on Cylinders

The previous structure showed a limited magnetic effect.
We now show how to extend the range of magnetic properties
available to us by introducing capacitative elements into the
structure. We take the same structure of cylinders as before,
except that the cylinders are now built in a “split ring”
configuration, as shown in Fig. 3.

The important point is that there is a gap that prevents
current from flowing around any one ring. However, there
is a considerable capacitance between the two rings, which
enables current to flow (see Fig. 4).

Detailed calculations give

(17)
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Fig. 5. The effective magnetic permeability for modelB shows a resonant
structure dictated by the capacitance between the sheets and magnetic in-
ductance of the cylinder. We sketch the typical form of a highly conducting
sample,� � 0. Below the resonant frequency,�e� is enhanced, but above
resonance,�e� is less than unity and may be negatively close to the resonance.

where is the fractional volume of the cell occupied by the
interior of the cylinder

(18)

and is the capacitance per unit area between the two sheets

(19)

Hence,

(20)

Since we now have capacitance in the system that can
balance the inductance present, has a resonant form, which
is sketched in Fig. 5.

Fig. 5 illustrates the generic form of for all the struc-
tures we present here.

We define to be the frequency at which diverges
as follows:

(21)

and to be the “magnetic plasma frequency”

(22)

Note that the separation between and , which is
a measure of the range of frequencies over which we see a
strong effect, is determined by

(23)

the fraction of the structure not internal to a cylinder. As for
the case , the simple cylinder, the high frequency limit is
given by

(24)

We mention in passing that the system sustains longitudinal
magnetic modes at the magnetic plasma frequency, the analog

Fig. 6. Generic dispersion relationship for resonant structures with a�e� .
The solid lines represent twofold degenerate transverse modes and the dashed
line a single longitudinal magnetic plasmon mode.

of the plasma modes of a gas of free electrical charges [6],
[7]. Of course, we have no free magnetic poles, only the
appearance of such as currents around the cylinders make the
cylinder ends appear to support free magnetic poles in the
fashion of a bar magnet.

Together with , given in (15), which is also applicable
here, we can illustrate a generic dispersion relationship, as
shown in Fig. 6.

The relevant points to note are as follows.

1) Wherever is negative there is a gap in the dispersion
relationship, i.e., for

(25)

2) A longitudinal magnetic plasma mode, dispersionless in
this approximation, is seen at .

3) The dispersion relation converges asymptotically to the
free-space light cone, as discussed above. In fact, metal-
lic structures in general represent a fresh approach to the
photonic insulator concept introduced independently by
Yablonovitch [8], [9] and John [10].

If we take the following values:

m

m

m (26)

we get

Hz (27)

Hz (28)

Note that the frequency at which the structure is active
corresponds to a free-space wavelength of 10 cm, much greater
that the 0.5-cm separation between cylinders. This will be
typical of these capacitative structures and implies that the
effective medium approximation will be excellent.

C “Swiss Roll” Capacitor

We take the same arrangement of cylinders on a square
lattice as before, except that the cylinders are now build
as shown in Fig. 7. The important point is again that no
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Fig. 7. In modelC, a metallic sheet is wound around each cylinder in a coil.
Each turn of the coil is spaced by a distanced from the previous sheet.

Fig. 8. When a magnetic field parallel to the cylinder is switched on, it
reduces currents in the coiled sheets, as shown here. Capacitance between the
first and last turns of the coil enables the current to flow.

current can flow around the coil, except by virtue of the self
capacitance (see Fig. 8).

In this instance, we find for the effective permeability

(29)

where is as before the fraction of the structure not internal
to a cylinder, and the capacitance per unit area between the
first and the last of the coils is

(30)

The critical frequencies are

(31)

(32)

Fig. 9. Dispersion with frequency of�e� for a Swiss roll structure, cal-
culated for the parameters shown in (36), assuming that the metal has zero
resistivity.

If we take the values we used before in (26)

m

m

m

(33)

we get

Hz (34)

(35)

i.e., there is much more capacitance in this model and the range
of active frequencies is an order of magnitude lower than it
was in model , which used only two overlapping sheets.

Choosing an even smaller scale and reducing the number
of turns in order to drive up the frequencies to our range of
interest

m

m

m

(36)

we get

Hz (37)

Hz (38)

Note that the free-space wavelength at the plasma frequency
is around 3 cm, and compare this to the very much smaller
spacing between cylinders of 0.05 cm.

We shall now calculate the dispersion of for various
parameters. First let us take the parameters given in (36). The
resulting dispersion of is shown in Fig. 9.

We next enquire “what is the effect of making the sheets
resistive?” Below we present a series of calculations for
various values of the resistivity given in

In Fig. 10, we increase the resistivity from 0.1 to 10.0.
Note the broadening of the resonance, the complementary
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Fig. 10. Dispersion with frequency of�e� for a Swiss roll structure, calculated for the parameters shown in (36), for various values of the resistivity
of the sheets: 0.1, 2.0, 5.0, 10.0
.

(a) (b)

Fig. 11. Dispersion with frequency of�e� for a Swiss roll structure. (a) Calculated for the parameters shown in (36), except that the resistivity of the sheets
is now 2.0
, and the radius of the cylinders has been reduced from 2.0� 10�4 to 12.6� 10�4 m, thus raising the resonant frequency by a factor of two.
(b): d, the spacing between the sheets, has been reduced to 0.25� 10�5 m, bringing the resonant frequency back to the original value.

behavior of and , dictated by Kramers Kronig, and
how resistivity limits the maximum effect achieved.

We next explore the dependence on the radius of the
cylinders. In Fig. 11, the radius of the cylinders is decreased,
reducing the volume fraction occupied by the cylinders, and
raising the resonant frequency by a factor of two. We also
decrease , the spacing between the sheets, increasing the

capacitance in the system and bringing the resonant frequency
back down to its original value.

Using capacitative cylindrical structures such as the Swiss
roll structure, we can adjust the magnetic permeability typ-
ically by a factor of two and, in addition, if we desire,
introduce an imaginary component of the order of unity. The
latter implies that an electromagnetic wave moving in such
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(a) (b)

Fig. 12. (a) Plan view of a split ring showing definitions of distances. (b)
Sequence of split rings shown in their stacking sequence. Each split ring
comprises two thin sheets of metal. The ring shown is a scaled-up version,
defined by the parameters shown in Fig. 13.

a material would decay to half its intensity within a single
wavelength. This presumes that we are seeking broad-band
effects that persist over the greater part of the 2–20-GHz
region. However, if we are prepared to settle for an effect
over a narrow range of frequencies, spectacular enhancements
of the magnetic permeability can be achieved, limited only be
the resistivity of the sheets and by how narrow a band we are
willing to tolerate.

IV. A N ISOTROPICMAGNETIC MATERIAL

The structures shown above give magnetic properties when
the field is aligned along the axes of the cylinders, but
have essentially zero magnetic response in other directions.
They suffer from another potential problem: if the alternate
polarization is considered where the electric field is not parallel
to the cylinders, the system responds like an effective metal
because current is free to flow along the length of the cylinders.
For some applications, this highly anisotropic behavior may be
undesirable. Therefore, we redesign the system with a view to
restoring isotropy and minimizing purely electrical effects.

To this end, we need a basic unit that is more easily packed
into arrays than is a cylinder and that avoids the continuous
electrical path provided by a metal cylinder. We propose an
adaptation of the “split ring” structure, in which the cylinder
is replaced by a series of flat disks each of which retains
the “split ring” configuration, but in slightly modified form
(see Fig. 12). First, we shall calculate the properties of disks
stacked in a square array, as shown if Fig. 13. This structure
is still anisotropic, a problem we shall address in a moment,
but by eliminating the continuous conducting path that the
cylinders provided, it eliminates most of the electrical activity
along this direction.

The two-dimensional square array of Fig. 13 can be made
by printing with metallic inks. If each printed sheet is then
fixed to a solid block of inert material with thickness, the
blocks can be stacked to give columns of rings. This would
establish magnetic activity along the direction of stacking, i.e.,
the -axis. The unit cell of this structure is shown in Fig. 14
on the left-hand side.

How do we make a symmetrical structure? Start from the
structure just described, comprising successive layers of rings

Fig. 13. Plain view of a split ring structure in a square array (lattice spacing
a).

Fig. 14. Building 3-D symmetry: each successive restacking of the structure
adds a ring to another side of the unit cell.

stacked along the -axis. Next, cut up the structure into a
series of slabs thickness, make incisions in the – -plane,
and be careful to avoid slicing through any of the rings. Each
of the new slabs contains a layer of rings, but now each ring is
perpendicular to the plane of the slab and is embedded within.
Print onto the surface of each slab another layer of rings and
stack the slabs back together again. The unit cell of this second
structure is shown in the middle of Fig. 14.

In the next step, a third set of slabs is produced by cutting
in the – -plane, printing on the surface of the slabs, and
reassembling. Finally, we now have a structure with cubic
symmetry whose unit cell is shown in the right-hand side of
Fig. 14.

Of course, an alternate method of manufacturing this struc-
ture would be to start from a set of cubes of the inert material
and laboriously stick rings to their sides before assembling
the cubes into a lattice. The cut-and-paste method we suggest
above is much more efficient.

Now, let us calculate the effective permeability. First, we
need to calculate the capacitance between the two elements of
the split ring. We shall assume

(39)

(40)

(41)

Under these conditions, we can calculate the capacitance
between unit length of two parallel sections of the metallic
strips

(42)
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(a) (b)

Fig. 15. Plot of �e� for the cubic split ring structure calculated using the chosen parameters. (a) For copper rings,�1 = 200:0. (b) For more
resistive rings,�1 = 2000:0.

The effective magnetic permeability we calculate, on the
assumption that the rings are sufficiently close together and
that the magnetic lines of force are due to currents in the
stacked rings, are essentially the same as those in a continuous
cylinder. This can only be true if the radius of the rings is of
the same order as the unit cell side. We arrive at

(43)

where is the resistance of unit length of the sheets measured
around the circumference.

To give some examples, let us choose a convenient set of
parameters

m

m

m

m

m (44)

Figs. 12 and 13 show the rings drawn to scale. These
parameters do not quite satisfy all the inequalities, which
is difficult to do with reasonable numbers, but note that the
inequalities are only important to the accuracy of our formulas,
not to the functioning of the structure. The resonant frequency
at which diverges is given by

(45)

or

GHz (46)

If we choose to manufacture the split rings from a layer of
copper, it is easily possible to achieve . Evidently,
from Fig. 15, this produces a highly resonant structure.

In order to see a substantial effect, we have to increase the
resistance either by increasing the resistivity of the material of
which the rings are made or by making them thinner.

The scaling of frequency with size can be deduced from
(45), in which we see that the resonant frequency scales
uniformly with size: if we double the size of all elements
in a given structure, the resonant frequency halves. Nearly all
the critical properties are determined by this frequency.

V. ENHANCED NONLINEAR EFFECTS

We have seen how the addition of capacitance to the struc-
ture gives a far richer variety of magnetic behavior. Typically,
this happens through a resonant interaction between the natural
inductance of the structure and the capacitative elements and,
at the resonant frequency, electromagnetic energy is shared
between the magnetic fields and the electrostatic fields within
the capacitative structure. To put this more explicitly, take the
split ring structure described in Figs. 12 and 13, most of the
electrostatic energy of the capacitor is located in the tiny gap
between the rings. Concentrating most of the electromagnetic
energy in this very small volume will results in an enormously
enhanced energy density.

If we wish to enhance the nonlinear behavior of a given
compound, we locate a small amount of the substance in the
gap where the strong electrostatic fields are located. Since
the response scales as the cube of the field amplitude, we
can expect enhancements of the order of the energy density
enhancement squared. Furthermore, not only does the structure
enhance the nonlinearity, it does so in a manner that is very
economical with the material: less that 1% of the structure
need be filled with the nonlinear substance.

Note that there is a symmetry between, on the one hand,
the present structures designed to generate a magnetic perme-
ability and within which we find enhanced electrostatic fields
and, on the other hand, the earlier thin-wire structures [1],
[2] designed to generate a negative electrical permittivity, and
within which we find enhanced magnetic fields.
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Fig. 16. The emf acting around one of the sheets of the split ring in Fig. 12
as a function of the distances around the ring.Vin denotes the emf on the
inner ring, andVout that on the outer ring. Note that this ring is cut ats = 0

so that the emf is discontinuous.

We shall now calculate the energy density in the capacitance
between the two split rings in Figs. 12 and 13. First, we
calculate the voltage between the two rings as a function of
the incident magnetic field . The electric field between the
two halves of the ring is shown in Fig. 16 and is of the order

(47)

We calculate that

(48)

Hence, on substituting from (42) and (47) into (48)

(49)

We now argue that the electrostatic energy density in the
incident electromagnetic field is equal to the magnetic energy
density, which, in turn, can be related to the electrostatic
energy density in the ring. Hence,

(50)

If we evaluate this formula on resonance, we get a much
simplified formula as follows:

resonant enhancement

(51)

Let us take as an example the following parameters used
to calculate Fig. 15:

m

m

m

(52)

Fig. 17. Enhancement of the energy density of the electric field within the
gap between the split rings (see Figs. 12 and 13) for two different values of
the resistivity of the metal sheet. The corresponding values of�e� are shown
in Fig. 15.

Hence,

(53)

A more detailed picture of enhancement as a function of
frequency is shown in Fig. 17.

For example, a beam of microwaves at 13.41 GHz with
power flux of 10 W m has an electric field strength of the
order of 2 10 V m in vacuo. If this beam were incident
on, and entirely transmitted into, our magnetic structure, it
would generate a field strength of the order of 10V m
in the space between the split rings, or of the order of 10
V between the edges of the two rings: more than enough
to cause electrical breakdown in air. It is evident that these
structures have considerable potential for enhancing nonlinear
phenomena. Furthermore, the nonlinear medium need only
be present in the small volume within which the energy is
concentrated, opening the possibility of using small quantities
of expensive material, and reducing any requirements of
mechanical integrity that a larger structure would impose.

In passing, we draw an analogy with surface-enhanced
Raman scattering (SERS), observed on rough metallic
surfaces—typically silver surfaces. The Raman signal from
molecules absorbed on these surfaces may be enhanced by
factors of the order of 10over that seen on insulating surfaces.
The Raman effect is proportional to the second power of the
electromagnetic-mode density at the surface, and it is known
that roughness can enhance the local-mode density by factors
of up to 10 –10 , hence, the spectacular Raman enhancement
(see [11] for further details and references). A very similar
local enhancement takes place in our system and, we expect,
can be exploited in an analogous fashion.

In conclusion, we have shown how to design structures
made from nonmagnetic thin sheets of metal, which respond
to microwave radiation as if they had an effective magnetic
permeability. A wide range of permeabilties can be achieved
by varying the parameters of the structures. Since the active
ingredient in the structure, the metal film, comprises a very
small fraction of the volume, typically 1:10, the structures
may be very light, and reinforced with strong insulating mate-
rial to ensure mechanical strength, without adversely affecting
their magnetic properties. It is likely that the structures will
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be exploited for their ability to concentrate the electromagnetic
energy in a very small volume, increasing its density by a huge
factor, and greatly enhancing any nonlinear effects present.
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