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PREFACE

This text is intended as the basis for an intermediate course in mechanics at the
undergraduate level. Such a course, as essential preparation for advanced work in
physics, has several major objectives. It must develop in the student a thorough
understanding of the fundamental principles of mechanics. It should treat in detail
certain specific problems of primary importance in physics, for example, the
harmonic oscillator and the motion of a particle under a central force. The prob-
lems suggested and those worked out in the text have been chosen with regard to
their interest and importance in physics, as well as to their instructive value.

The choice of topics and their treatment throughout the book are intended to
emphasize the modern point of view. Applications to atomic physics are made
wherever possible, with an indication as to the extent of the validity of the results
of classical mechanics. The inadequacies in classical mechanics are carefully
pointed out, and the points of departure for quantum mechanics and for the theory
of relativity are indicated. The last two chapters then develop special relativistic
mechanics. The development, except for the last six chapters, proceeds directly
from Newton’s laws of motion, which form a suitable basis from which to attack
most mechanical problems. More advanced methods, using Lagrange’s equations
and tensor algebra, are introduced in Chapters 8 to 12.

An important objective of a first course in mechanics is to train the student to
think about physical phenomena in mathematical terms. Most students have a
fairly good intuitive feeling for mechanical phenomena in a qualitative way. The
study of mechanics should aim at developing an almost equally intuitive feeling
for the precise mathematical formulation of physical problems and for the physical
interpretation of the mathematical solutions. The examples treated in the text
have been worked out so as to integrate, as far as possible, the mathematical
treatment with the physical interpretation. After working an assigned problem,
the student should study it until he is sure he understands the physical interpreta-
tion of every feature of the mathematical treatment. He should decide whether
the result agrees with his physical intuition about the problem. If not, then either
his solution or his intuition should be appropriately corrected. If the answer is
fairly complicated, he should try to see whether it can be simplified in certain
special or limiting cases. He should try to formulate and solve similar problems
on his own.

Only a knowledge of differential and integral calculus has been presupposed.
Mathematical concepts beyond those treated in the first year of calculus are intro-
duced and explained as needed. A previous course in elementary differential equa-
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vi PREFACE

tions or vector analysis may be helpful, but it is the author’s experience that stu-
dents with an adequate preparation in algebra and calculus are able to handle the
vector analysis and differential equations needed for this course with the explana-
tions provided herein. A physics student is likely to get more out of his advanced
courses in mathematics if he has previously encountered these concepts in physics.

Since the book contains more than enough material for a two-semester under-
graduate course, an opportunity is provided for selection of topics to suit a particu-
lar class. The first seven chapters provide a basis for a one-semester course in
intermediate mechanics. By omitting some topics in earlier chapters the author
has found it possible in a one-semester course to include also parts of Chapters
8 or 9.

The text has been written so as to afford maximum flexibility in the selection
and arrangement of topics to be covered. With certain obvious exceptions, many
sections or groups of sections can be postponed or omitted without prejudice to
the understanding of the remaining material. Where particular topics presented
earlier are needed in later parts of the book, references to section and equation
numbers make it easy to locate the earlier material needed.

Later chapters depend primarily upon the material covered in Chapters 2, 3,
and 4, in Sections 1, 2, and 6 of Chapter 5, and Sections 1 and 2 of Chapter 7. When
this material has been covered, most of the material in later chapters will be
understandable. Section 5.11 should of course precede the material on fluid
motion in Chapter 8 if that is to be covered. Chapters 9 and 10 should be covered
before Chapter 11 or 12. The last two chapters on relativity may be taken up any
time after Chapter 7. Chapter 14 contains a few references, examples, and exten-
sions of material from Chapters 8, 9 and 10, but these may be omitted without af-
fecting the continuity of the remaining material.

In the first chapter the basic concepts of mechanics are reviewed, and the laws
of mechanics and of gravitation are formulated and applied to a few simple
examples. The second chapter undertakes a fairly thorough study of the problem
of one-dimensional motion. The chapter concludes with a study of the harmonic
oscillator as probably the most important example of one-dimensional motion.
Use is made of complex numbers to represent oscillating quantities. The last
section, on the principle of superposition, makes some use of Fourier series and
provides a basis for certain parts of Chapters 8 and 12. If these chapters are not to
be covered, Section 2.11 may be omitted or, better, skimmed to get a brief indica-
tion of the significance of the principle of superposition and the way in which
Fourier series are used to treat the problem of an arbitrary applied force function.

Chapter 3 begins with a development of vector algebra and its use in des-
cribing motions in a plane or in space. Boldface letters are used for vectors. Section
3.6 is a brief introduction to vector analysis, which is used very little in this book
except in Chapter 8, and it may be omitted or skimmed if Chapter 8 and a few
proofs in some other chapters are omitted. The author feels there is some advantage
in introducing the student to the concepts and notation of vector analysis at this
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stage, where the level of treatment is fairly easy; in later courses where the physical
concepts and mathematical treatment become more difficult, it will be well if the
notations are already familiar. The theorems stating the time rates of change of
momentum, energy, and angular momentum are derived for a moving particle,
and several problems are discussed, of which motion under central forces receives
major attention. Examples are taken from astronomical and from atomic problems.

In Chapter 4 the conservation laws of energy, momentum, and angular momen-
tum are derived, with emphasis on their position as cornerstones of present-day
physics. They are then applied to typical problems, particularly collision problems.
The two-body problem is solved, and the motion of two coupled harmonic oscil-
lators is worked out. The general theory of coupled oscillations is best treated by
means of linear transformations in vector spaces, as in Chapter 12, but the
behavior of coupled oscillating systems is too important to be omitted altogether
from even a one-semester course. The section on two coupled oscillators can be
omitted or postponed until Chapter 12. The rigid body is discussed in Chapter 5
as a special kind of system of particles. Only rotation about a fixed axis is treated;
the more general study of the motion of a rigid body is left to a later chapter, where
more advanced methods are used. The section on statics treats the problem of the
reduction of a system of forces to an equivalent simpler system. Elementary treat-
ments of the equilibrium of beams, flexible strings, and of fluids are given in
Sections 5.9, 5.10, and 5.11. With the exception of Sections 1, 2, 6, and 8, each of
which forms the basis for the material which follows, the various sections in
Chapter 5 are independent of one another and can be taken up in any order or
omitted as desired.

The theory of gravitation is studied in some detail in Chapter 6. The last
section, on the gravitational field equations, may be omitted without disturbing
the continuity of the remaining material. The laws of motion in moving coordinate
systems are worked out in Chapter 7, and applied to motion on the rotating earth
and to the motion of a system of charged particles in a magnetic field. Particular
attention is paid to the status in Newtonian mechanics of the “fictitious forces™
which appear when moving coordinate systems are introduced, and to the role to
be played by such forces in the general theory of relativity.

In Chapter 8 an introductory treatment of vibrating strings and of the motion
of fluids is presented, with emphasis on the fundamental concepts and mathematical
methods used in treating the mechanics of continuous media. Chapter 9 on
Lagrange’s equations is intended as an introduction to the methods of advanced
dynamics. Hamilton’s equations and the concept of phase space are presented,
since they are prerequisite to any later course in quantum mechanics or statistical
mechanics, but the theory of canonical transformations and the use of variational
principles are beyond the scope of this book. Chapter 10 develops the algebra of
tensors, including orthogonal coordinate transformations, which are required in
Chapters 11 and 12. The inertia tensor and the stress tensor are described in some
detail as examples. Section 10.6 on the stress tensor will enable the reader to extend
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the discussion of ideal fluids in Chapter 8 to a solid or viscous medium. The methods
developed in Chapters 9 and 10 are applied in Chapter 11 to the general rotation
of a rigid body about a point, and in Chapter 12 to the study of small vibrations
of a physical system about a state of equilibrium or of steady motion.

Chapter 13 is an introduction to the special theory of relativity. It presents
the basic concepts and physical principles. The chapter concludes with a deriva-
tion and discussion of the Lorentz transformation. Chapter 14 contains a fairly
complete development of relativistic particle mechanics. The mathematical tools
needed for most applications of the theory are presented. The reader wishing to
acquire a working mastery of the special theory of relativity will want to cover the
entire chapter. If only a basic understanding of relativistic dynamics is required,
then Sections 14.1, 14.2, 14.4, and 14.8 should suffice.

The problems at the end of each chapter are arranged in the order in which
the material is covered in the chapter, for convenience in assignment. An attempt
has been made to include a sufficient variety of problems to guarantee that anyone
who can solve them has mastered the material in the text. The converse is not
necessarily true, since most problems require more or less physical ingenuity in
addition to an understanding of the text. Many of the problems are fairly easy
and should be tractable for anyone who has understood the material presented. A
few are probably too difficult for most college juniors or seniors to solve without
some assistance. Those problems which are particularly difficult or time-consuming
are marked with an asterisk.

This third edition differs from the second edition of this text primarily in the
addition of the final two chapters on the theory of relativity, and in the addition
to the first seven chapters of some additional problems, similar to those contained
in the earlier editions but generally of a lower average level of difficulty.

Grateful acknowledgment is made to Professor Francis W. Sears of Dartmouth
College and to Professor George H. Vineyard of Brookhaven National Laboratory
for their many helpful suggestions, to Mr. Charles Vittitoe and Mr. Donald Roise-
land for a critical reading of Chapters 8 through 12, and to Professor Robert March
and Mrs. Vernita Aigner for a critical reading of Chapters 13 and 14. The author
is particularly grateful to the many teachers and students who have offered cor-
rections and suggestions for improvement which have been incorporated in this
third edition. While space does not permit mentioning individuals here, I hope
that each may find my thanks expressed in the changes that have been made in this
edition.

Madison, Wisconsin K.R.S.
May, 1971
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CHAPTER 1

ELEMENTS OF NEWTONIAN MECHANICS

1.1 MECHANICS, AN EXACT SCIENCE

When we say that physics is an exact science, we mean that its laws are expressed
in the form of mathematical equations which describe and predict the results of
precise quantitative measurements. The advantage in a quantitative physical
theory is not only the practical one that it gives us the power accurately to predict
and to control natural phenomena. By a comparison of the results of accurate
measurements with the numerical predictions of the theory, we can gain con-
siderable confidence that the theory is correct, and we can determine in what
respects it needs to be modified. It is often possible to explain a given phenomenon
in several rough qualitative ways, and if we are content with that, it may be im-
possible to decide which theory is correct. But if a theory can be given which
predicts correctly the results of measurements to four or five (or even two or three)
significant figures, the theory can hardly be very far wrong. Rough agreement
might be a coincidence, but close agreement is unlikely to be. Furthermore, there
have been many cases in the history of science when small but significant dis-
crepancies between theory and accurate measurements have led to the development
of new and more far-reaching theories. Such slight discrepancies would not even
have been detected if we had been content with a merely qualitative explanation

of the phenomena.

The symbols which are to appear in the equations that express the laws of a
science must represent quantities which can be expressed in numerical terms.
Hence the concepts in terms of which an exact science is to be developed must be
given precise numerical meanings. If a definition of a quantity (mass, for example)
is to be given, the definition must be such as to specify precisely how the value of
the quantity is to be determined in any given case. A qualitative remark about its
meaning may be helpful, but is not sufficient as a definition. As a matter of fact,
it is probably not possible to give an ideally precise definition of every concept
appearing in a physical theory. Nevertheless, when we write down a mathematical
equation, the presumption is that the symbols appearing in it have precise
meanings, and we should strive to make our ideas as clear and precise as possible
and to recognize at what points there is a lack of precision or clarity. Sometimes
a new concept can be defined in terms of others whose meanings are known, in
which case there is no problem. For example,

momentum = mass X velocity

gives a perfectly precise definition of “momentum” provided “mass” and “velocity”
1



2 ELEMENTS OF NEWTONIAN MECHANICS [1.1

are assumed to be precisely defined already. But this kind of definition will not
do for all terms in a theory, since we must start somewhere with a set of basic
concepts or “primitive” terms whose meanings are assumed known. The first
concepts to be introduced in a theory cannot be defined in the above way, since
at first we have nothing to put on the right side of the equation. The meanings of
these primitive terms must be made clear by some means that lies outside of the
physical theories being set up. We might, for example, simply use the terms over
and over until their meanings become clear. This is the way babies learn a language,
and probably, to some extent, freshman physics students learn the same way. We
might define all primitive terms by stating their meaning in terms of observation
and experiment. In particular, nouns designating measurable quantities, like
force, mass, etc., may be defined by specifying the operational process for measuring
them. One school of thought holds that all physical terms should be defined in
this way. Or we might simply state what the primitive terms are, with a rough
indication of their physical meaning, and then let the meaning be determined
more precisely by the laws and postulates we lay down and the rules that we give
for interpreting theoretical results in terms of experimental situations. This is the
most convenient and flexible way, and is the way physical theories are usually set
up. It has the disadvantage that we are never sure that our concepts have been
given a precise meaning. It is left to experience to decide not only whether our laws
are correct, but even whether the concepts we use have a precise meaning. The
modern theories of relativity and quanta arise as much from fuzziness in classical
concepts as from inaccuracies in classical laws.

Historically, mechanics was the earliest branch of physics to be developed as
an exact science. The laws of levers and of fluids in static equilibrium were known
to Greek scientists in the third century B.C. The tremendous development of
physics in the last three centuries began with the discovery of the laws of mechanics
by Galileo and Newton. The laws of mechanics, as formulated by Isaac Newton
in the middle of the seventeenth century, and the laws of electricity and magnetism,
as formulated by James Clerk Maxwell about two hundred years later, are the two
basic theories of classical physics. Relativistic physics, which began with the work
of Einstein in 1905, and quantum physics, as based upon the work of Heisenberg
and Schroedinger in 1925-1926, require a modification and reformulation of
mechanics and electrodynamics in terms of new physical concepts. Nevertheless,
modern physics builds on the foundations laid by classical physics, and a clear
understanding of the principles of classical mechanics and electrodynamics is still
essential in the study of relativistic and quantum physics. Furthermore, in the vast
majority of practical applications of mechanics to the various branches of
engineering and to astronomy, the laws of classical mechanics can still be applied.
Except when bodies travel at speeds approaching the speed of light, or when
enormous masses or enormous distances are involved, relativistic mechanics
gives the same results as classical mechanics; indeed, it must, since we know from
experience that classical mechanics gives correct results in ordinary applications.
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Similarly, quantum mechanics should and does agree with classical mechanics
except when applied to physical systems of molecular size or smaller. Indeed, one
of the chief guiding principles in formulating new physical theories is the require-
ment that they must agree with the older theories when applied to those phenomena
where the older theorins are known to be correct.

Mechanics is the study of the motions of material bodies. Mechanics may be
divided into three subdisciplines, kinematics, dynamics, and statics. Kinematics is
the study and description of the possible motions of material bodies. Dynamics is
the study of the laws which determine, among all possible motions, which motion
will actually take place in any given case. In dynamics we introduce the concept
of force. The central problem of dynamics is to determine for any physical system
the motions which will take place under the action of given forces. Statics is the
study of forces and systems of forces, with particular reference to systems of forces
which act on bodies at rest.

We may also subdivide the study of mechanics according to the kind of physical
system to be studied. This is, in general, the basis for the outline of the present
book. The simplest physical system, and the one we shall study first, is a single
particle. Next we shall study the motion of a system of particles. A rigid body may
be treated as a special kind of system of particles. Finally, we shall study the
motions of continuous media, elastic and plastic substances, solids, liquids, and
gases.

A great many of the applications of classical mechanics may be based directly
on Newton’s laws of motion. All of the problems studied in this book, except in
Chapters 9 to 14, are treated in this way. There are, however, a number of other
ways of formulating the principles of classical mechanics. The equations of
Lagrange and of Hamilton are examples. They are not new physical theories, for
they may be derived from Newton’s laws, but they are different ways of expressing
the same physical theory. They use more advanced mathematical concepts, they
are in some respects more elegant than Newton’s formulation, and they are in
some cases more powerful in that they allow the solutions of some problems
whose solution based directly on Newton’s laws would be very difficult. The
more different ways we know to formulate a physical theory, the better chance we
have of learning how to modify it to fit new kinds of phenomena as they are
discovered. This is one of the main reasons for the importance of the more advanced
formulations of mechanics. They are a starting point for the newer theories of
relativity and quanta.

1.2 KINEMATICS, THE DESCRIPTION OF MOTION

Mechanics is the science which studies the motions of physical bodies. We must
first describe motions. Easiest to describe are the motions of a particle, that is, an
object whose size and internal structure are negligible for the problem with which
we are concerned. The earth, for example, could be regarded as a particle for most
problems in planetary motion, but certainly not for terrestrial problems. We can
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Fig. 1.1 Rectangular coordinates specifying the position of a particle P relative to an
origin O.

describe the position of a particle by specifying a point in space. This may be done
by giving three coordinates. Usually, rectangular coordinates are used. For a
particle moving along a straight line (Chapter 2) only one coordinate need be
given. To describe the motion of a particle, we specify the coordinates as functions
of time:

one dimension: x(t),

three dimensions: x(t), y(t), z(t). (1.1)
The basic problem of classical mechanics is to find ways to determine functions
like these which specify the positions of objects as functions of time, for any
mechanical situation. The physical meaning of the function x(¢) is contained in
the rules which tell us how to measure the coordinate x of a particle at a time t.
Assuming we know the meaning of x(t), or at least that it has a meaning (this
assumption, which we make in classical mechanics, is not quite correct according
to quantum mechanics), we can define the x-component of velocity v, at time ¢ as*

d
%=x=£, (1.2)
and, similarly,
dy . dz
Uy:y:E’ UZ:Z:E’

*We shall denote a time derivative either by d/dt or by a dot. Both notations are given in
Eq. (1.2).
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We now define the components of acceleration a,, a,, a, as the derivatives of the
velocity components with respect to time (we list several equivalent notations
which may be used):

a5 _dvx_x,_dzx
X de T T At
. dv, . d%y
ay=vy=d_ty:yzgt_2’ (1.3)
dv, d*z
a, =0, = =

v, = =7 =—.
z =4t dr?

For many purposes some other system of coordinates may be more convenient
for specifying the position of a particle. When other coordinate systems are used,
appropriate formulas for components of velocity and acceleration must be worked
out. Srherical, cylindrical, and plane polar coordinates will be discussed in
Chapter 3. For problems in two and three dimensions, the concept of a vector is
very useful as a means of representing positions, velocities, and accelerations. A
systematic development of vector algebra will be given in Section 3.1.

To describe a system of particles, we may specify the coordinates of each particle
in any convenient coordinate system. Or we may introduce other kinds of co-
ordinates, for example, the coordinates of the center of mass, or the distance
between two particles. If the particles form a rigid body, the three coordinates of
its center of mass and three angular coordinates specifying its orientation in space
are sufficient to specify its position. To describe the motion of continuous matter,
for example a fluid, we would need to specify the density p(x, y, z, t) at any point
(x, y, z) in space at each instant t in time, and the velocity vector v (x, y, z, t) with
which the matter at the point (x, y, z) is moving at time t. Appropriate devices for
describing the motion of physical systems will be introduced as needed.

1.3 DYNAMICS. MASS AND FORCE

Experience leads us to believe that the motions of physical bodies are controlled
by interactions between them and their surroundings. Observations of the behavior
of projectiles and of objects sliding across smooth, well-lubricated surfaces suggest
the idea that changes in the velocity of a body are produced by interaction with its
surroundings. A body isolated from all interactions would have a constant velocity.
Hence, in formulating the laws of dynamics, we focus our attention on accelera-
tions.

Let us imagine two bodies interacting with each other and otherwise isolated
from interaction with their surroundings. As a rough approximation to this
situation, imagine two boys, not necessarily of equal size, engaged in a tug of war
over a rigid pole on smooth ice. Although no two actual bodies can ever be isolated
completely from interactions with all other bodies, this is the simplest kind of
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situation to think about and one for which we expect the simplest mathematical
laws. Careful experiments with actual bodies lead us to conclusions as to what we
should observe if we could achieve ideal isolation of two bodies. We should
observe that the two bodies are always accelerated in opposite directions, and
that the ratio of their accelerations is constant for any particular pair of bodies no
matter how strongly they may be pushing or pulling each other. If we measure the
coordinates x; and x, of the two bodies along the line of their accelerations, then

551/5"2 = _k12’ (1.4)

where k,, is a positive constant characteristic of the two bodies concerned. The
negative sign expresses the fact that the accelerations are in opposite directions.

Furthermore, we find that in general the larger or heavier or more massive
body is accelerated the least. We find, in fact, that the ratio k,, is proportional
to the ratio of the weight of body 2 to that of body 1. The accelerations of two
interacting bodies are inversely proportional to their weights. This suggests the
possibility of a dynamical definition of what we shall call the masses of bodies in
terms of their mutual accelerations. We choose a standard body as a unit mass.
The mass of any other body is defined as the ratio of the acceleration of the unit
mass to the acceleration of the other body when the two are in interaction:

m; =ky = —Xy/X;, (L.5)

where m; is the mass of body i, and body 1 is the standard unit mass.

In order that Eq. (1.5) may be a useful definition, the ratio k,, of the mutual
accelerations of two bodies must satisfy certain requirements. If the mass defined
by Eq. (1.5) is to be a measure of what we vaguely call the amount of matter in a
body, then the mass of a body should be the sum of the masses of its parts, and this
turns out to be the case to a very high degree of precision. It is not essential, in
order to be useful in scientific theories, that physical concepts for which we give
precise definitions should correspond closely to any previously held common-
sense ideas. However, most precise physical concepts have originated from more
or less vague common-sense ideas, and mass is a good example. Later, in the
theory of relativity, the concept of mass is somewhat modified, and it is no longer
exactly true that the mass of a body is the sum of the masses of its parts.

One requirement which is certainly essential is that the concept of mass be
independent of the particular body which happens to be chosen as having unit
mass, in the sense that the ratio of two masses will be the same no matter what
unit of mass may be chosen. This will be true because of the following relation,
which is found experimentally, between the mutual acceleration ratios defined by
Eq. (1.4) of any three bodies:

kyokasksy = 1. (1.6)
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Suppose that body 1 is the unit mass. Then if bodies 2 and 3 interact with each
other, we find, using Eqgs. (1.4), (1.6), and (1.5),

Xp/X3 = —ky3
= —1/(ky2k3,)
= —ky3/kyz
= —ms/m,. (1.7

The final result contains no explicit reference to body 1, which was taken to be
the standard unit mass. Thus the ratio of the masses of any two bodies is the
negative inverse of the ratio of their mutual accelerations, independently of the
unit of mass chosen.

By Eq. (1.7), we have, for two interacting bodies,

myX, = —mX;. (1.8)

This suggests that the quantity (mass x acceleration) will be important, and we
call this quantity the force acting on a body. The acceleration of a body in space
has three components, and the three components of force acting on the body are

F,=m%, F,=mj, F,=ms (1.9)

The forces which act on a body are of various kinds, electric, magnetic, gravi-
tational, etc., and depend on the behavior of other bodies. In general, forces due
to several sources may act on a given body, and it is found that the total force
given by Egs. (1.9) is the vector sum of the forces which would be present if each
source were present alone.

The theory of electromagnetism is concerned with the problem of determining
the electric and magnetic forces exerted by electrical charges and currents upon
one another. The theory of gravitation is concerned with the problem of de-
termining the gravitational forces exerted by masses upon one another. The
fundamental problem of mechanics is to determine the motions of any mechanical
system, given the forces acting on the bodies which make up the system.

1.4 NEWTON’S LAWS OF MOTION
Isaac Newton was the first to give a complete formulation of the laws of mechanics.
Newton stated his famous three laws as follows:*

1. Every body continues in its state of rest or of uniform motion in a straight line
unless it is compelled to change that state by forces impressed upon it.

2. Rate of change of momentum is proportional to the impressed force, and is
in the direction in which the force acts.

*Isaac Newton, Mathematical Principles of Natural Philosophy and his System of the World,
tr. by F. Cajori (p. 13). Berkeley: University of California Press, 1934.
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3. To every action there 1s always opposed an equal reaction’

In the second law, momentum is to be defined as the product of the mass and
the velocity of the particle. Momentum, for which we use the symbol p, has three
components, defined along x-, y-, and z-axes by the equations

P, = mu,, p, = mv,, p, = mu,. (1.10)

The first two laws, together with the definition of momentum, Egs. (1.10), and the
fact that the mass is constant by Eq. (1.4),* are equivalent to Egs. (1.9), which
express them in mathematical form. The third law states that when two bodies
interact, the force exerted on body 1 by body 2 is equal and opposite in direction
to that exerted on body 2 by body 1. This law expresses the experimental fact given
by Eq. (1.4), and can easily be derived from Eq. (1.4) and from Egs. (1.5) and (1.9).

The status of Newton’s first two laws, or of Egs. (1.9), is often the subject of
dispute. We may regard Egs. (1.9) as defining force in terms of mass and
acceleration. In this case, Newton’s first two laws are not laws at all but merely
definitions of a new concept to be introduced in the theory. The physical laws are
then the laws of gravitation, electromagnetism, etc., which tell us what the forces
are in any particular situation. Newton’s discovery was not that force equals mass
times acceleration, for this is merely a definition of “force.” What Newton dis-
covered was that the laws of physics are most easily expressed in terms of the
concept of force defined in this way. Newton’s third law is still a legitimate physical
law expressing the experimental result given by Eq. (1.4) in terms of the concept
of force. This point of view toward Newton’s first two laws is convenient for many
purposes and is often adopted. Its chief disadvantage is that Egs. (1.9) define only
the total force acting on a body, whereas we often wish to speak of the total force
as a (vector) sum of component forces of various kinds due to various sources.
The whole science of statics, which deals with the forces acting in structures at
rest, would be unintelligible if we took Egs. (1.9) as our definition of force, for all
accelerations are zero in a structure at rest.

We may also take the laws of electromagnetism, gravitation, etc., together with
the parallelogram law of addition, as defining “force.” Equations (1.9) then become
a law connecting previously defined quantities. This has the disadvantage that the
definition of force changes whenever a new kind of force (e.g., nuclear force) is
discovered, or whenever modifications are made in electromagnetism or in
gravitation. Probably the best plan, the most flexible at least, is to take force
as a primitive concept of our theory, perhaps defined operationally in terms
of measurements with a spring balance. Then Newton’s laws are laws, and so

*In the theory of relativity, the mass of a body is not constant, but depends on 1ts velocity. In
this case, law (2) and Egs. (1.9) are not equivalent, and it turns out that law (2) is the correct
formulation. Force should then be equated to time rate of change of momentum. The simple
definition (1.5) of mass is not correct according to the theory of relativity unless the particles
being accelerated move at low velocities.
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are the laws of theories of special forces like gravitation and electromagnetism.

Aside from the question of procedure in regard to the definition of force, there
are other difficulties in Newton’s mechanics. The third law is not always true. It
fails to hold for electromagnetic forces, for example, when the interacting bodies
are far apart or rapidly accelerated and, in fact, it fails for any forces which
propagate from one body to another with finite velocities. Fortunately, most of
our development is based on the first two laws. Whenever the third law is used,
its use will be explicitly noted and the results obtained will be valid only to the
extent that the third law holds.

Another difficulty is that the concepts of Newtonian mechanics are not perfectly
clear and precise, as indeed no concepts can probably ever be for any theory,
although we must develop the theory as if they were. An outstanding example is
the fact that no specification is made of the coordinate system with respect to
which the accelerations mentioned in the first two laws are to be measured.
Newton himself recognized this difficulty but found no very satisfactory way of
specifying the correct coordinate system to use. Perhaps the best way to formulate
these laws is to say that there is a coordinate system with respect to which they
hold, leaving it to experiment to determine the correct coordinate system. It can
be shown that if these laws hold in any coordinate system, they hold also in any
coordinate system moving uniformly with respect to the first. This is called the
principle of Newtonian relativity, and will be proved in Section 7.1, although the
reader should find little difficulty in proving it for himself.

Two assumptions which are made throughout classical physics are that the
behavior of measuring instruments is unaffected by their state of motion so long
as they are not rapidly accelerated, and that it is possible, in principle at least, to
devise instruments to measure any quantity with as small an error as we please.
These two assumptions fail in extreme cases, the first at very high velocities, the
second when very small magnitudes are to be measured. The failure of these
assumptions forms the basis of the theory of relativity and the theory of quantum
mechanics, respectively. However, for a very wide range of phenomena, Newton’s
mechanics is correct to a very high degree of accuracy, and forms the starting
point at which the modern theories begin. Not only the laws but also the concepts
of classical physics must be modified according to the modern theories. However,
an understanding of the concepts of modern physics is made easier by a clear
understanding of the concepts of classical physics. These difficulties are pointed
out here in order that the reader may be prepared to accept later modifications in
the theory. This is not to say that Newton himself (or the reader either at this stage)
ought to have worried about these matters before setting up his laws of motion.
Had he doneso, he probably never would have developed his theory at all. It was
necessary to make whatever assumptions seemed reasonable in order to get started.
Which assumptions needed to be altered, and when, and in what way, could only
be determined later by the successes and failures of the theory in predicting
experimental results.
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1.5 GRAVITATION

Although there had been previous suggestions that the motions of the planets and
of falling bodies on earth might be due to a property of physical bodies by which
they attract one another, the first to formulate a mathematical theory of this
phenomenon was Isaac Newton. Newton showed, by methods to be considered
later, that the motions of the planets could be quantitatively accounted for if he
assumed that with every pair of bodies is associated a force of attraction pro-
portional to their masses and inversely proportional to the square of the distance
between them. In symbols,

Gmym,

>
r2

F (1.11)
where m,, m, are the masses of the attracting bodies, r is the distance between
them, and G is a universal constant whose value according to experiment is*

G = (6.6704-0.005) x 10~ cm3-sec " 2-g~ 1. (1.12)

For a spherically symmetrical body, we shall show later (Section 6.2) that the
force can be computed as if all the mass were at the center. For a small body of
mass m at the surface of the earth, the force of gravitation is therefore

F = mg, (1.13)
where

% = 980.2 cm-sec” 2, (1.14)

g=R

and M is the mass of the earth and R its radius. The quantity g has the dimensions
of an acceleration, and we can readily show by Egs. (1.9) and (1.13) that any freely
falling body at the surface of the earth is accelerated downward with an
acceleration g.

The fact that the gravitational force on a body is proportional to its mass,
rather than to some other constant characterizing the body (e.g., its electric
charge), is more or less accidental from the point of view of Newton’s theory.
This fact is fundamental in the general theory of relativity. The proportionality
between gravitational force and mass is probably the reason why the theory of
gravitation is ordinarily considered a branch of mechanics, while theories of other
kinds of force are not.

Equation (1.13) gives us a more convenient practical way of measuring mass
than that contemplated in the original definition (1.5). We may measure a mass
by measuring the gravitational force on it, as in a spring balance, or by comparing
the gravitational force on it with that on a standard mass, as in the beam or
platform balance; in other words, by weighing it.

*Smithsonian Physical Tables, 9th ed., 1954.
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1.6 UNITS AND DIMENSIONS

In setting up a system of units in terms of which to express physical measurements,
we first choose arbitrary standard units for a certain set of “fundamental” physical
quantities (e.g., mass, length, and time) and then define further derived units in
terms of the fundamental units (e.g., the unit of velocity is one unit length per unit
of time). It is customary to choose mass, length, and time as the fundamental
quantities in mechanics, although there is nothing sacred in this choice. We could
equally well choose some other three quantities, or even more or fewer than three
quantities, as fundamental.

There are three systems of units in common use, the centimeter-gram-second
or cgs system, the meter-kilogram-second or mks system, and the foot-pound-
second or English system, the names corresponding to the names of the three
fundamental units in each system.* Units for other kinds of physical quantities
are obtained from their defining equations by substituting the units for the
fundamental quantities which occur. For example, velocity, by Eq. (1.2),

dx
=
is defined as a distance divided by a time. Hence the units of velocity are cm/sec,
m/sec, and ft/sec in the three above-mentioned systems, respectively.

Similarly, the reader can show that the units of force in the three systems as
given by Egs. (1.9) are g-cm-sec” %, kg-m-sec™ 2, Ib-ft-sec 2. These units happen
to have the special names dyne, newton, and poundal, respectively. Gravitational
units of force are sometimes defined by replacing Eqgs. (1.9) by the equations

F,=mxlg, F,=mjlg, F,=miy, (1.15)

where g = 980.2 cm-sec™? = 9.802 m-sec”? = 32.16 ft-sec™? is the standard
acceleration of gravity at the earth’s surface. Unit force is then that force exerted
by the standard gravitational field on unit mass. The names gram-weight, kilogram-
weight, pound-weight are given to the gravitational units of force in the three
systems. In the present text, we shall write the fundamental law of mechanics in
the form (1.9) rather than (1.15); hence we shall be using the absolute units for
force and not the gravitational units.

Henceforth the question of units will rarely arise, since nearly all our examples
will be worked out in algebraic form. It is assumed that the reader is sufficiently
familiar with the units of measurement and their manipulation to be able to work
out numerical examples in any system of units should the need arise.

In any physical equation, the dimensions or units of all additive terms on both
sides of the equation must agree when reduced to fundamental units. As an

*In the mks system, there is a fourth fundamental unit, the coulomb of electrical charge,
which enters into the definitions of electrical units. Electrical units in the cgs system are all
defined in terms of centimeters, grams, and seconds. Electrical units in the English system are
practically never used.
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example, we may check that the dimensions of the gravitational constant in
Eq. (1.11) are correctly given in the value quoted in Eq. (1.12):

F = Gmims (111)
r
We substitute for each quantity the units in which it is expressed:
3 cpp—2_g—1
(g-cm-sec™?) = (m’-sec "¢ )(8)(®) _ (g-cm-sec™?). (1.16)

(cm?)

The check does not depend on which system of units we use so long as we use
absolute units of force, and we may check dimensions without any reference to
units, using symbols I, m, ¢t for length, mass, time:
3,—2_.—-1
(mig2) = LM ) _ oy (1.17)
()
When constant factors like G are introduced, we can, of course, always make the
dimensions agree in any particular equation by choosing appropriate dimensions
for the constant. If the units in the terms of an equation do not agree, the equation
is certainly wrong. If they do agree, this does not guarantee that the equation is
right. However, a check on dimensions in a result will reveal most of the mistakes
that result from algebraic errors. The reader should form the habit of mentally
checking the dimensions of his formulas at every step in a derivation. When
constants are introduced in a problem, their dimensions should be worked out
from the first equation in which they appear, and used in checking subsequent
steps.

1.7 SOME ELEMENTARY PROBLEMS IN MECHANICS.
Before beginning a systematic development of mechanics based on the laws
introduced in this chapter, we shall review a few problems from elementary
mechanics in order to fix these laws clearly in mind.

One of the simplest mechanical problems is that of finding the motion of a body
moving in a straight line, and acted upon by a constant force. If the mass of the
body is m and the force is F, we have, by Newton’s second law,

F = ma. (1.18)

The acceleration is then constant:

dv F

=—=_. 1.19

dt m (1.19)

If we multiply Eq. (1.19) by dt, we obtain an expression for the change in velocity
dv occurring during the short time dt:

dt. (1.20)

F
dv = —
m
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Integrating, we find the total change in velocity during the time ¢:

v t
J du:J Fu, (1.21)
vo om

N~ =£t, (1.22)

where v, is the velocity at t = 0. If x is the distance of the body from a fixed origin,
measured along its line of travel, then
dx F

v = E = Uo+% t. (123)

We again multiply by dt and integrate to find x:

X t F
J dx = J <UO+— t> dt, (1.24)
X0 0 m

F
X = x0+vot+%% t2, (1.25)

where x, represents the position of the body at t = 0. We now have a complete
description of the motion. We can calculate from Eqgs. (1.25) and (1.22) the velocity
of the body at any time ¢, and the distance it has traveled. A body falling freely
near the surface of the earth is acted upon by a constant force given by Eq. (1.13),
and by no other force if air resistance is negligible. In this case, if x is the height of
the body above some reference point, we have

F=—mg. (1.26)

The negative sign appears because the force is downward and the positive direction
of x is upward. Substituting in Egs. (1.19), (1.22), and (1.25), we have the familiar
equations

a=—g, (1.27)
v = vo—gt, (1.28)
X = Xq+vot —3gt>. (1.29)

In applying Newton’s law of motion, Eq. (1.18), it is essential to decide first to
what body the law is to be applied, then to insert the mass m of that body and the
total force F acting on it. Failure to keep in mind this rather obvious point is the
source of many difficulties, one of which is illustrated by the horse-and-wagon
dilemma. A horse pulls upon a wagon, but according to Newton’s third law the
wagon pulls back with an equal and opposite force upon the horse. How then
can either the wagon or the horse move? The reader who can solve Problem 6 at
the end of this chapter will have no difficulty answering this question.
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Fig. 1.2 Atwood’s machine.

Consider the motion of the system illustrated in Fig. 1.2. Two masses m, and
m, hang from the ends of a rope over a pulley, and we will suppose that m, is
greater than m,. We take x as the distance from the pulley to m,. Since the length
of the rope is constant, the coordinate x fixes the positions of both m, and m,.
Both move with the same velocity

_dx

==, 1.
i (1.30)

v

the velocity being positive when m; is moving upward and m, is moving down-
ward. If we neglect friction and air resistance, the forces on m; and m, are

F,=—mg+r, (1.31)
F, = myg—r, (1.32)

where 7 is the tension in the rope. The forces are taken as positive when they tend
to produce a positive velocity dx/dt. Note that the terms involving t in these
equations satisfy Newton’s third law. The equations of motion of the two masses
are

—mg+1t = mya, (1.33)
myg—1T = mya, (1.34)

where a is the acceleration dv/dt, and is the same for both masses. By adding
Egs. (1.33) and (1.34), we can eliminate t and solve for the acceleration:
d>x  (my—my)
A b Bt Y 1.35
a4 dtz (ml + m2) g ( )
The acceleration is constant and the velocity v and position x can be found at
any time ¢ as in the preceding example. We can substitute for a from Eq. (1.35) in
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either Eq. (1.33) or (1.34) and solve for the tension:

2
= MM (1.36)
my+my,
As a check, we note that if m; = m,, then a = 0 and
= mig = myg, (137)

as it should if the masses are in static equilibrium. As a matter of interest, note
that if m, >> m,, then

a=g, (1.38)
T = 2m,g. (1.39)

The reader should convince himself that these two results are to be expected in
this case.

my ~in 8

my cos 0

/ RN my //
Y

my | N ,
~ /

y
Fig. 1.3 Forces acting on a brick sliding Fig. 1.4 Resolution of forces into com-
down an incline. ponents parallel and perpendicular to the
incline.

When several forces act on a body, its acceleration is determined by the vector
sum of the forces which act. Conversely, any force can be resolved in any con-
venient manner into vector components whose vector sum is the given force, and
these components can be treated as separate forces acting on the body.* As an
example, we consider a brick of mass m sliding down an incline, as shown in

*A systematic development of vector algebra will be given in Chapter 3. Only an under-
standing of the parallelogram law for vector addition is needed for the present discussion.
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Fig. 1.3. The two forces which act on the brick are the weight mg and the force F
with which the plane acts on the brick. These two forces are added according to
the parallelogram law to give a resultant R which acts on the brick:

R = ma. (1.40)

Since the brick is accelerated in the direction of the resultant force, it is evident
that if the brick slides down the incline without jumping off or penetrating into
the inclined plane, the resultant force R must be directed along the incline. In
order to find R, we resolve each force into components parallel and perpendicular
to the incline, as in Fig. 1.4. The force F exerted on the brick by the plane is resolved
in Fig. 1.4 into two components, a force N normal to the plane preventing the
brick from penetrating the plane, and a force f parallel to the plane, and opposed
to the motion of the brick, arising from the friction between the brick and the
plane. Adding parallel components, we obtain

R = mg sin 0—f, (1.41)
and
0 = N—mg cos 6. (1.42)

If the frictional force fis proportional to the normal force N, as is often approxi-
mately true for dry sliding surfaces, then

f = uN = pumg cos 0, (1.43)
where u is the coefficient of friction. Using Eqs. (1.43), (1.41), and (1.40), we can
calculate the acceleration:

a = g (sin 8—p cos 0). (1.44)

The velocity and position can now be found as functions of the time ¢, as in the
first example. Equation (1.44) holds only when the brick is sliding down the
incline. If it is sliding up the incline, the force f will oppose the motion, and the
second term in Eq. (1.44) will be positive. This could only happen if the brick were
given an initial velocity up the incline. If the brick is at rest, the frictional force f
may have any value up to a maximum p/N:

f < uN, (1.45)

where pu, the coefficient of static friction, is usually greater than u. In this case R
is zero, and

f =mg sin 6 < ugng cos 6. (1.46)

According to Eq. (1.46), the angle 6 of the incline must not be greater than a
limiting value 6,, the angle of repose:

tan 0 < tan 6, = u,. (1.47)

If 6 is greater than 0,, the brick cannot remain at rest.
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Ifa body moves with constant speed v around a circle of radius 7, its acceleration
is toward the center of the circle, as we shall prove in Chapter 3, and is of magnitude

a=—, (1.48)
r
Such a body must be acted on by a constant force toward the center. This centripetal
force is given by

F=ma=—". (1.49)

Note that mv?/r is not a “centrifugal force” directed away from the center, but is
mass times acceleration and is directed toward the center, as is the centripetal
force F. As an example, the moon’s orbit around the earth is nearly circular, and
if we assume that the earth is at rest at the center, then, by Eq. (1.11), the force on
the moon is

GMm

r?

F

(1.50)

where M is the mass of the earth and m that of the moon. We can express this
force in terms of the radius R of the earth and the acceleratior. g of gravity at the
earth’s surface by substituting for GM from Eq. (1.14):

R2
F="0" (1.51)
r
The speed v of the moon is
2nr
= 1.52
v=— (1.52)

where T is the period of revolution. Substituting Egs. (1.51) and (1.52) in Eq. (1.49),
we can find r:

P9l R2T2.

= (1.53)

This equation was first worked out by Isaac Newton in order to check his inverse
square law of gravitation.* It will not be quite accurate because the moon’s orbit
is not quite circular, and also because the earth does not remain at rest at the
center of the moon’s orbit, but instead wobbles slightly due to the attraction of
the moon. By Newton’s third law, this attractive force is also given by Eq. (1.51).
Since the earth is much heavier than the moon, its acceleration is much smaller,
and Eq. (1.53) will not be far wrong. The exact treatment of this problem is given
in Section 4.7. Another small error is introduced by the fact that g, as determined

*Isaac Newton, op. cit., p. 407.



18 ELEMENTS OF NEWTONIAN MECHANICS

experimentally, includes a small effect due to the earth’s rotation. (See Section 7.3.)
If we insert the measured values,

g = 980.2 cm-sec™ 2,

R = 6,368 km,
T = 274 days,
we obtain, from Eq. (1.53),
r = 383,000 km.
The mean distance to the moon according to modern measurements is
r = 385,000 km.

The values of r and R available to Newton would not have given such close
agreement.

PROBLEMS

1. Compute the gravitational force of attraction between an electron and a proton at a
separation of 0.5 A (1 A = 1078 c¢m). Compare with the electrostatic force of attraction at
the same distance.

2. The coefficient of viscosity 1 is defined by the equation

F dv

A~ "y
where F is the frictional force acting across an area A in a moving fluid, and dv is the difference
in velocity parallel to A between two layers of fluid a distance ds apart, ds being measured
perpendicular to A. Find the units in which the viscosity n would be expressed in the foot-
pound-second, cgs, and mks systems. Find the three conversion factors for converting co-
efficients of viscosity from one of these systems to another.

3. A fluid flows through a cylindrical pipe of length I and radius a. A pressure difference AP
(force per umt area) causes a flux @ (volume per second) to flow through the pipe. Assume
that AP is proportional to I and depends otherwise only on @, on the radius a of the pipe,
and on the viscosity # and where # is defined in Problem 2. Show from dimensional con-
siderations that AP must also be proportional to 5 and to ® and inversely proportional to a*.

4. A system of units often used by mechanical engineers chooses, in addition to the foot
and the second, a third fundamental unit of force, the pound-weight (usually just called pound).
The unit of mass 1s then a derived unit, based on Eqs (1.9), and 1s called the slug. Express the
slug in terms of the fundamental units (ft, Ib-wt, sec). Express the slug in terms of pounds in
the foot-pound-second system. Find the gravitational constant G in the foot-pound-weight-
second system.
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5. A motorist is approaching a green traffic light with speed vy, when the light turns to
amber.

a) If his reaction time is t, during which he makes his decision to stop and applies his foot
to the brake, and if his maximum braking deceleration 1s a, what is the minimum distance
Smin from the intersection at the moment the light turns to amber in which he can bring his
car to a stop?

b) If the amber light remains on for a time t before turning red, what is the maximum
distance s,,,, from the intersection at the moment the light turns to amber such that he can
continue into the intersection at speed v, without running the red light?

¢) Show that if his initial speed v, is greater than

U0 max = 2‘1([ - T)a

there will be a range of distances from the intersection such that he can neither stop in time
nor continue through without running the red light.

d) Make some reasonable estimates of 7, ¢, and a, and calculate v ,,,, 1n miles per hour. If
Vo = %Vo ma Calculate s.;, and s,

6. A boy of mass m pulls (horizontally) a sled of mass M. The coefficient of friction between
sled and snow is p.

a) Draw a diagram showing all forces acting on the boy and on the sled.

b) Find the horizontal and vertical components of each force at a moment when boy and
sled each have an acceleration a.

c) If the coefficient of static friction between the boy’s feet and the ground is y,, what is
the maximum acceleration he can give to himself and the sled, assuming traction to be the
limiting factor?

7. A floor mop of mass m is pushed with a force F directed along the handle, which makes
an angle § with the vertical. The coefficient of friction with the floor is .

a) Draw a diagram showing all forces acting on the mop.

b) For given 0, y, find the force F required to slide the mop with uniform velocity across
the floor.

c) Show that if 8 is less than the angle of repose [as defined by Eq. (1.47)], the mop cannot
be started across the floor by pushing along the handle. Neglect the mass of the mop handle.

8. A box of mass m slides across a horizontal table with coefficient of friction u. The box
is connected by a rope which passes over a pulley to a body of mass M hanging alongside

the table. Find the acceleration of the system and the tension in the rope.

9. The brick shown in Figs. 1.3 and 1.4 1s given an initial velocity v, up the incline. The
angle 0 is greater than the angle of repose. Find the distance the brick moves up the incline,
and the time required for it to slide up and back to its original position.

10. A curve in a highway of radius of curvature r is banked at an angle f with the horizontal.
If the coefficient of friction is ug, what 1s the maximum speed with which a car can round the

curve without skidding?
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11. Assuming the earth moves in a circle of radius 93,000,000 miles, with a period of revolution
of one year, find the mass of the sun in tons

12. a) Compute the mass of the earth from its radius and the values of g and G.

b) Look up the masses and distances of the sun and moon and compute the force of
attraction between earth and sun and between earth and moon. Check your results by making
arough estimate of the ratio of these two forces from a consideration of the fact that the former
causes the earth to revolve about the sun once a year, whereas the latter causes the earth to
wobble in a small circle, approximately once a month, about the common center of gravity
of the earth-moon system.

13. The sun 1s about 25,000 light years from the center of the galaxy, and travels
approximately in a circle at a speed of 175 mi/sec. Find the approximate mass of the galaxy by
assuming that the gravitational force on the sun can be calculated as if all the mass of the
galaxy were at its center. Express the result as a ratio of the galactic mass to the sun’s mass.
You do not need to look up either G or the sun’s mass to do this problem if you compare the
revolution of the sun around the galactic center with the revolution of the earth about the sun.

14. A neutron star is a collection of neutrons bound together by their mutual gravitation
with a density comparable to that of an atomic nucleus (approximately 10'* g/cm3). Assume
that the neutron star is a sphere and show that the maximum frequency with which it may
rotate, if mass is not to fly off at the equator, is f = (pG/3n)*/, where p is the density. Calculate
ffor a density of 10'? g/cm?. It has been suggested that pulsars, which emit regular bursts of
radiation at repetition rates up to about 30/sec, are rotating neutron stars.



CHAPTER 2

MOTION OF A PARTICLE IN ONE DIMENSION

2.1 MOMENTUM AND ENERGY THEOREMS
In this chapter, we study the motion of a particle of mass m along a straight line,
which we will take to be the x-axis, under the action of a force F directed along the
x-axis. The discussion will be applicable, as we shall see, to other cases where the
motion of a mechanical system depends on only one coordinate, or where all but
one coordiante can be eliminated from the problem.

The motion of the particle is governed, according to Egs. (1.9), by the equation

“ 2 =F 2.1)

Before considering the solution of Eq. (2.1), we shall define some concepts which
are useful in discussing mechanical problems and prove some simple general
theorems about one-dimensional motion. The linear momentum p, according to
Eq. (1.10), is defined as

dx
= =m—. 2.2
p=mv=m_ 22
From Eq. (2.1), using Eq. (2.2) and the fact that m is constant, we obtain
dp
L 2.3
dt @3)

This equation states that the time rate of change of momentum is equal to the
applied force, and is, of course, just Newton’s second law. We may call it the
(differential) momentum theorem. If we multiply Eq. (2.3) by dt and integrate
from ¢, to t,, we obtain an integrated form of the momentum theorem:
t2

P2=pP1 =] F dt. (2.4
Equation (2.4) gives the change in momentum due to the action of the force F
between the times ¢, and t,. The integral on the right is called the impulse delivered
by the force F during this time; F must be known as a function of ¢ alone in order
to evaluate the integral. If F is given as F(x, v, t), then the impulse can be computed
for any particular given motion x(t), v(t).

A quantity which will turn out to be of considerable importance is the kinetic

energy, defined (in classical mechanics) by the equation

T = Imv?. (2.5)
21
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If we multiply Eq. (2.1) by v, we obtain

or

di(zmv ) = = Fu. (2.6)

Equation (2.6) gives the rate of change of kinetic energy, and may be called the
(differential) energy theorem. If we multiply by dt and integrate from ¢, to t,, we
obtain the integrated form of the energy theorem:

2

T,—T, =\ Fudt 2.7)

51
Equation (2.7) gives the change in energy due to the action of the force F between
the times t, and t,. The integral on the right is called the work done by the force
during this time. The integrand Fv on the right is the time rate of doing work, and.
is called the power supplied by the force F. In general, when F is given as F(x, v, t),
the work can only be computed for a particular specified motion x(t), v(t). Since
v = dx/dt, we can rewrite the work integral in a form which is convenient when F
is known as a function of x:

T,-T, =] "Fdx. (2.8)

2.2 DISCUSSION OF THE GENERAL

PROBLEM OF ONE-DIMENSIONAL MOTION

If the force F is known, the equation of motion (2.1) becomes a second-order
ordinary differential equation for the unknown function x(t). The force F may be
known as a function of any or all of the variables t, x, and v. For any given motion
of a dynamical system, all dynamical variables (x, v, F, p, T, etc.) associated with
the system are, of course, functions of the time ¢, that is, each has a definite value
at any particular time t. However, in many cases a dynamical variable such as the
force may be known to bear a certain functional relationship to x, or to v, or to
any combination of x, v, and t. As an example, the gravitational force acting on a
body falling from a great height above the earth is known as a function of the
height above the earth. The frictional drag on such a body would depend on its
speed and on the density of the air and hence on the height above the earth; if
atmospheric conditions are changing, it would also depend on t. If F is given as
F(x, v, t), then when x(t) and v(t) are known, these functions can be substituted to
give F as a function of the time ¢ alone; however, in general, this cannot be done
until after Eq. (2.1) has been solved, and even then the function F(t) may be different
for different possible motions of the particle. In any case, if F is given as F(x, v, t)
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(where F may depend on any or all of these variables), then Eq. (2.1) becomes a
definite differential equation to be solved:
d*x

1 ,
= m F(x, x, t). (2.9)

This is the most general type of second-order ordinary differential equation, and
we shall be concerned in this chapter with studying its solutions and their ap-
plications to mechanical problems.

Equation (2.9) applies to all possible motions of the particle under the action of
the specified force. In general, there will be many such motions, for Eq. (2.9)
prescribes only the acceleration of the particle at every instant in terms of its
position and velocity at that instant. If we know the position and velocity of a
particle at a certain time, we can determine its position a short time later (or
earlier). Knowing also its acceleration, we can find its velocity a short time later.
Equation (2.9) then gives the acceleration a short time later. In this manner, we
can trace out the past or subsequent positions and velocities of a particle if its
position x, and velocity v, are known at any one time t,. Any pair of values of
Xo and v, will lead to a possible motion of the particle. We call t, the initial instant,
although it may be any moment in the history of the particle, and the values of
X, and v, at t, we call the initial conditions. Instead of specifying initial values for
x and v, we could specify initial values of any two quantities from which x and v
can be determined; for example, we may specify x, and the initial momentum
Do = mvy. These initial conditions, together with Eq. (2.9), then represent a
perfectly definite problem whose solution should be a unique function x(t) repre-
senting the motion of the particle under the specified conditions.

The mathematical theory of second-order ordinary differential equations leads
to results in agreement with what we expect from the nature of the physical
problem in which the equation arises. The theory asserts that, ordinarily, an
equation of the form (2.9) has a unique continuous solution x(t) which takes on
given values x, and v, of x and X at any chosen initial value t, of ¢. “Ordinarily”
here means, as far as the beginning mechanics student is concerned, “in all cases of
physical interest.”* The properties of differential equations like Eq. (2.9) are derived
in most treatises on differential equations. We know that any physical problem
must always have a unique solution, and therefore any force function F(x, x, t)
which can occur in a physical problem will necessarily satisfy the required con-
ditions for those values of x, X, t of physical interest. Thus ordinarily we do not
need to worry about whether a solution exists. However, most mechanical
problems involve some simplification of the actual physical situation, and it is
possible to oversimplify or otherwise distort a physical problem in such a way

*For a rigorous mathematical statement of the conditions for the existence of a solution of
Eq. (2.9), see a text on differential equations, e.g. W. Leighton, An Introduction to the Theory of
Differential Equations. New York: McGraw-Hill, 1952. (Appendix 1.)
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that the resulting mathematical problem no longer possesses a unique solution.
The general practice of physicists in mechanics and elsewhere is to proceed,
ignoring questions of mathematical rigor. On those fortunately rare occasions
when we run into difficulty, we then consult our physical intuition, or check our
lapses of rigor, until the source of the difficulty is discovered. Such a procedure may
bring shudders to the mathematician, but it is the most convenient and rapid
way to apply mathematics to the solution of physical problems. The physicist,
while he may proceed in a nonrigorous fashion, should nevertheless be acquainted
with the rigorous treatment of the mathematical methods which he uses.

The existence theorem for Eq. (2.9) guarantees that there is a unique mathe-
matical solution to this equation for all cases which will arise in practice. In some
cases the exact solution can be found by elementary methods. Most of the problems
considered in this text will be of this nature. Fortunately, many of the most
important mechanical problems in physics can be solved without too much
difficulty. In fact, one of the reasons why certain problems are considered im-
portant is that they can be easily solved. The physicist is concerned with discovering
and verifying the laws of physics. In checking these laws experimentally, he is free,
to a large extent, to choose those cases where the mathematical analysis is not too
difficult to carry out. The engineer is not so fortunate, since his problems are
selected not because they are easy to solve, but because they are of practical
importance. In engineering, and often also in physics, many cases arise where the
exact solution of Eq. (2.9) is difficult or impossible to obtain. In such cases various
methods are available for obtaining at least approximate answers. The reader is
referred to courses and texts on differential equations for a discussion of such
methods.* From the point of view of theoretical mechanics, the important point
is that a solution always does exist and can be found as accurately as desired. We
shall restrict our attention to examples which can be treated by simple methods.

2.3 APPLIED FORCE DEPENDING ON THE TIME

If the force F is given as a function of the time, then the equation of motion (2.9)
can be solved in the following manner. Multiplying Eq. (2.9) by dt and integrating
from an initial instant ¢, to any later (or earlier) instant ¢, we obtain Eq. (2.4),
which in this case we write in the form

t
mo—mvo = | F(o)de. (2.10)
to

Since F(t) is a known function of ¢, the integral on the right can, at least in principle,
be evaluated and the right member is then a function of ¢ (and t,). We solve for
v:

dx 1"
v=" = uﬁ#to F(t) dt. (2.11)

*W. E. Milne, Numerical Calculus. Princeton. Princeton University Press, 1949 (Chapter 5)
H. Levy and E. A. Baggott, Numerical Solutions of Differential Equations. New York: Dover
Publications, 1950.
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Now multiply by dt and integrate again from ¢, to ¢:

x—x0=vdn4a+%jt[jtﬂndﬂdt (2.12)

To avoid confusion, we may rewrite the variable of integration as t' in the first
integral and " in the second:

t t'’
x = x0+vo(t—t0)+%f dt” J F(t')dt. (2.13)
to to

This gives the required solution x(t) in terms of two integrals which can be evalu-
ated when F(z) is given. A definite integral can always be evaluated. If an explicit
formula for the integral cannot be found, then at least it can always be computed
as accurately as we please by numerical methods. For this reason, in the discussion
of a general type of problem such as the one above, we ordinarily consider the
problem solved when the solution has been expressed in terms of one or more
definite integrals. In a practical problem, the integrals would have to be evaluated
to obtain the final solution in usable form.*

Problems in which F is given as a function of ¢ usually arise when we seek to
find the behavior of a mechanical system under the action of some external
influence. As an example, we consider the motion of a free electron of charge —e
when subject to an oscillating electric field along the x-axis:

E, = E, cos (ot +0). (2.14)
The force on the electron is
F = —eE, = —eE, cos (wt+6). (2.15)
The equation of motion is
dv
mo = —eE, cos (wt +6). (2.16)
We multiply by dt and integrate, taking t, = 0:
_dx eEysinf  eE, .
D= =70 +—mw——-m—w sin (wt + 6). (2.17)

*The reader who has studied differential equations may be disturbed by the appearance of
three constants, t,, v, and X, in the solution (2.13), whereas the general solution of a second-
order differential equation should contain only two arbitrary constants. Mathematically,
there are only two independent constants in Eq. (2.13), an additive constant containing the
terms x, — vyt plus a term from the lower limit of the last integral, and a constant multiplying
t containing the term v, plus a term from the lower limit of the first integral. Physically, we
can take any initial instant ¢,, and then just two parameters x, and v, are required to specify
one out of all possible motions subject to the given force.



26 MOTION OF A PARTICLE IN ONE DIMENSION 2.3

Integrating again, we obtain

E Eosin 0\  ¢E
x=x0_eo_°359+<vo+e o 31 >r+e O cos(wt+0).  (218)
ma maow ma

If the electron is initially at rest at x, = 0, this becomes

eEjcosf eEysinf  eE,
x= - —+ t+—5
mw mw mw

cos (wt +0). (2.19)

It is left to the reader to explain physically the origin of the constant term and the
term linear in ¢ in Eq. (2.19) in terms of the phase of the electric field at the initial
instant. How do the terms in Eq. (2.19) depend on e, m, E,, and w? Explain
physically. Why does the oscillatory term turn out to be out of phase with the
applied force?

The problem considered here is of interest in connection with the propagation
of radio waves through the ionosphere, which contains a high density of free
electrons. Associated with a radio wave of angular frequency w is an electric field
which may be given by Eq. (2.14). The oscillating term in Eq. (2.18) has the same
frequency w and is independent of the initial conditions. This coherent oscillation
of the free electrons modifies the propagation of the wave. The nonoscillating
terms in Eq. (2.18) depend on the initial conditions, and hence on the detailed
motion of each electron as the wave arrives. These terms cannot contribute to the
propagation characteristics of the wave, since they do not oscillate with the
frequency of the wave, although they may affect the leading edge of the wave which
arrives first. We see that the oscillatory part of the displacement x is 180° out of
phase with the applied force due to the electric field. Since the electron has a
negative charge, the resulting electric polarization is 180° out of phase with the
electric field. The result is that the dielectric coefficient of the ionosphere is less
than one. (In an ordinary dielectric at low frequencies, the charges are displaced
in the direction of the electric force on them, and the dielectric coefficient is greater
than one.) Since the velocity of light is

v = cleu/Eopto)” V12, (2.20)

where ¢ = 3 x 108 m/sec and ¢/e, and u/u, are the relative dielectric and magnetic
coefficients respectively, and since pu = pu, here, the (phase) velocity v of radio
waves in the ionosphere is greater than the velocity ¢ of electromagnetic waves in
empty space. Thus waves entering the ionosphere at an angle are bent back
toward the earth. The effect is seen to be inversely proportional to w2, so that for
high enough frequencies, the waves do not return to the earth but pass out through
the ionosphere.
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Only a slight knowledge of electromagnetic theory is required to carry this dis-
cussion through mathematically.* The dipole moment of the electron displaced
from its equilibrium position is
2 2
Eq cos (wt+0) = ——— E, 2.21)
mw

—ex = —
m?

if we consider only the oscillating term. If there are N electrons per cm?, the total
dipole moment per unit volume is

Ne?
P.=—E,. .
o= ok, (222)
The electric displacement is
Ne? .
D, = ¢oE,+P, = & <1 - e2> E, (mks units). (2.23)
mw
Since the electric permittivity is defined by
D, =¢E,_, (2.24)
we conclude that
gleg = 1— Ne? 2.25
O mw?” (2.25)
and since u = u,,
Ne2 -1/2
v=rc <1 _mw2> . (2.26)

2.4 DAMPING FORCE DEPENDING ON THE VELOCITY
Another type of force which allows an easy solution of Eq. (2.9) is the case when
F is a function of v alone:

dv
— = F(v). 2.27
m= = F() 227)
To solve, we multiply by [mF(v)] ™' dt and integrate from ¢, to ¢:
v dv t—t,
—— = . 22
J,,o F(v) m (2.28)

The integral on the left can be evaluated, in principle at least, when F(v) is given,
and an equation containing the unknown v results. If this equation is solved for v
(we assume in general discussions that this can always be done), we will have an

equation of the form
V=—=0@|0V =l 2.29
It 0 . ( . )

*See, e.g., F. W. Sears and M. W. Zemansky, University Physics, 3rd ed., Reading, Mass.:
Addison-Wesley, 1964. (Sections 26.7, 27.7, 27.9.)
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The solution for x is then

! —t
X = xO+J ® (vo,t °> dt. (2.30)
to m

In the case of one-dimensional motion, the only important kinds of forces which
depend on the velocity are frictional forces. The force of sliding or rolling friction
between dry solid surfaces is nearly constant for a given pair of surfaces with a
given normal force between them, and depends on the velocity only in that its
direction is always opposed to the velocity. The force of friction between lubricated
surfaces or between a solid body and a liquid or gaseous medium depends on the
velocity in a complicated way, and the function F(v) can usually be given only in
the form of a tabulated summary of experimental data. In certain cases and over
certain ranges of velocity, the frictional force is proportional to some fixed power
of the velocity:

F = (F)bv". (2.31)

If n is an odd integer, the negative sign should be chosen in the above equation.
Otherwise the sign must be chosen so that the force has the opposite sign to the
velocity v. The frictional force is always opposed to the velocity, and therefore
does negative work, ie., absorbs energy from the moving body. A velocity-
dependent force in the same direction as the velocity would represent a source of
energy; such cases do not often occur.

As an example, we consider the problem of a boat traveling with initial velocity
vo, Which shuts off its engines at t, = 0 when it is at the position x, = 0. We
assume the force of friction given by Eq. (2.31) with n = 1:

— = —bv. 2.32
mdt bo (2.32)

We solve Eq. (2.32), following the steps outlined above [ Egs. (2.27) through (2.30)]:

J” dv b
— = -,
oo U m

v b
In—= ——1,
Vo m
v = voe” 2m, (2.33)

We see that as t — oo, v — 0, as it should, but that the boat never comes com-
pletely to rest in any finite time. The solution for x is

t
X =J vge b dt
A 0

mo,

=0 (1—etm), (2.34)
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Ast — o0, x approaches the limiting value

_ mu,

Xs = (2.35)
Thus we can specify a definite distance that the boat travels in stopping. Although
according to the above result, Eq. (2.33), the velocity never becomes exactly zero,
when ¢ is sufficiently large the velocity becomes so small that the boat is practically
stopped. Let us choose some small velocity v such that when v < v we are willing
to regard the boat as stopped (say, for example, the average random speed given
to an anchored boat by the waves passing by it). Then we can define the time ¢,
required for the boat to stop by

vy =vpe Mt = —In—2. (2.36)

Since the logarithm is a slowly changing function, the stopping time t, will not
depend to any great extent on precisely what value of v, we choose so long as it is
much smaller than v, It is often instructive to expand solutions in a Taylor series
in t. If we expand the right side of Egs. (2.33) and (2.34) in power series in t, we
obtain*

b= g% (2.37)
m
1bo, ,
L JER (2.38)
X =1 > m + -

Note that the first two terms in the series for v and x are just the formulas for a
particle acted on by a constant force — bv,, which is the initial value of the frictional
force in Eq. (2.32). This is to be expected, and affords a fairly good check on the
algebra which led to the solution (2.34). Series expansions are a very useful means
of obtaining simple approximate formulas valid for a short range of time.

The characteristics of the motion of a body under the action of a frictional force
as given by Eq. (2.31) depend on the exponent n. In general, a large exponent n

*The reader who has not already done so should memorize the Taylor series for a few simple

functions like
2 X3 4

—lxd oy

ity x .

¢ RPN
x2 x3 x*

In(14+x) = x—— 42X 4o

n(l+x)=x 2+3 4+

nn—1) , nn—-1)n-2) ,

> x*+ 3 x
These three series are extremely useful in obtaining approximations to complicated formulas,
valid when x is small.

(I4+x)"=1+nx+
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will result in rapid initial slowing but slow final stopping, and vice versa, as one
can see by sketching graphs of F versus v for various values of n. For small enough
values of n, the velocity comes to zero in a finite time. For large values of n, the
body not only requires an infinite time, but travels an infinite distance before
stopping. This disagrees with ordinary experience, an indication that while the
exponent n may be large at high velocities, it must become smaller at low velocities.
The exponent n = 1 is often assumed in problems involving friction, particularly
when friction is only a small effect to be taken into account approximately. The
reason for taking n = 1 is that this gives easy equations to solve, and is often a
fairly good approximation when the frictional force is small, provided b is properly
chosen.

2.5 CONSERVATIVE FORCE

DEPENDING ON POSITION. POTENTIAL ENERGY

One of the most important types of motion occurs when the force F is a function
of the coordinate x alone:

— = F(x). 2.
m— = Fx) (2.39)
We have then, by the energy theorem (2.8),
Imv? —tmvl = S F(x)dx. (2.40)

The integral on the right is the work done by the force when the particle gocs from
Xo to x. We now define the potential energy V(x) as the work done by the force
when the particle goes from x to some chosen standard point x;:

V(x) = j F(x)dx = —L F(x) dx. (2.41)

The reason for calling this quantity potential energy will appear shortly. In terms
of V(x), we can write the integral in Eq. (2.40) as follows:

Sx FO)dx = —V(x)+ V(xy) (2.42)

0

With the help of Eq. (2.42), Eq. (2.40) can be written
Imv? + V(x) = tmvd + V(x,). (2.43)

The quantity on the right depends only on the initial conditions and is therefore
constant during the motion. It is called the total energy E, and we have the law of
conservation of kinetic plus potential energy, which holds, as we can see, only when
the force is a function of position alone:

Imv?+V(x) = T+V = E. (2.44)
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Solving for v, we obtain

dx 2 12
=—= [—[E— . 2.45
V=" \/ LE-V()] (245)
The function x(t) is to be found by solving for x the equation
m (* _
\/EJ [E-V(x)] Y2 dx = t—t,. (2.46)

In this case, the initial conditions are expressed in terms of the constants E and x,,.

In applying Eq. (2.46), and in taking the indicated square root in the integrand,
care must be taken to use the proper sign, depending on whether the velocity v
given by Eq. (2.45) is positive or negative. In cases where v is positive during some
parts of the motion and negative during other parts, it may be necessary to carry
out the integration in Eq. (2.46) separately for each part of the motion.

From the definition (2.41) we can éxpress the force in terms of the potential
énergy:

Fo 47 (2.47)
dx

This equation can be taken as expressing the physical meaning of the potential
energy. The potential energy is a function whose negative derivative gives the
force. The effect of changing the coordinate of the standard point x; is to add a
constant to V(x). Since it is the derivative of ¥ which enters into the dynamical
equations as the force, the choice of standard point x, is immaterial. A constant
can always be added to the potential V(x) without affecting the physical results.
(The same constant must, of course, be added to E.)

As an example, we consider the problem of a particle subject to a linear re-
storing force, for example, a mass fastened to a spring:

F = —kx. (2.48)
The potential energy, if we take x, = 0, is
V(x) = —j (= kx) dx
0
x2, (2.49)

N|=
==~

Equation (2.46) becomes, for this case, with t, = 0,

/% J (E—1kx?)~17 dx = 1. (2.50)
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Now make the substitutions

sinf =x [ (2.51)

w= | (2.52)

so that

@ * _15y2y-1/2 =l ’ _—__1_ —
/2LO(E Lkx2)= 112 dx wLOde ~(0-0o)

and, by Eq. (2.50),
0=cowt+0,.

We can now solve for x in Eq. (2.51):

2E
X = \/—kg sin 6 = A sin (wt+ 0y), (2.53)
where
A= Elg . (2.54)

Thus the coordinate x oscillates harmonically in time, with amplitude A and
frequency w/2m. The initial conditions are here determined by the constants 4
and 6, which are related to E and x, by

E = 1kA?, (2.55)
xO = A Sin 00 . (256)

Notice that in this example we meet the sign difficulty in taking the square root
in Eq. (2.50) by replacing (1 —sin? 6)™!/2 by (cos 0)~ !, a quantity which can be
made either positive or negative as required by choosing 6 in the proper quadrant.

A function of the dependent variable and its first derivative which is constant
for all solutions of a second-order differential equation, is called a first integral of
the equation. The function imx? + V(x) is called the energy integral of Eq. (2.39).
An integral of the equations of motion of a mechanical system is also called a
constant of the motion. In general, any mechanical problem can be solved if we
can find enough first integrals, or constants of the motion.

Even in cases where the integral in Eq. (2.46) cannot easily be evaluated or the
resulting equation solved to give an explicit solution for x(t), the energy integral,
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Fig. 2.1 A potential-energy function for one-dimensional motion.

Eq. (2.44), gives us useful information about the solution. For a given energy E,
we see from Eq. (2.45) that the particle is confined to those regions on the x-axis
- where V(x) < E. Furthermore, the velocity is proportional to the square root of
the difference between E and V(x). Hence, if we plot V(x) versus x, we can give a
good qualitative description of the kinds of motion that are possible. For the
potential-energy function shown in Fig. 2.1 we note that the least energy possible
is E,. At this energy, the particle can only be at rest at x,. With a slightly higher
energy E,, the particle can move between x; and x,; its velocity decreases as it
approaches x; or x,, and it stops and reverses its direction when it reaches either
X, Of x,, which are called turning points of the motion. With energy E,, the particle
may oscillate between turning points x; and x,, or remain at rest at x5. With
energy E,, there are four turning points and the particle may oscillate in either of
the two potential valleys. With energy E,, there is only one turning point; if the
particle is initially traveling to the left, it will turn at x¢ and return to the right,
speeding up over the valleys at x, and xs, and slowing down over the hill between.
At energies above Eg, there are no turning points and the particle will move in
one direction only, varying its speed according to the depth of the potential at
each point.
When a particle is oscillating near a point of stable equilibrium, we can find an
approximate solution for its motion. Let V(x) have a minimum at x = x,, and
expand the function V(x) in a Taylor series about this point:

dv
V(x) = V(xo)+ (a) (x—xo)

X0

1 (d*V s
2 (K) (=0

1(d*V 3 (2.57)
+5<d—ﬁ‘>xo‘x’x°) t
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The constant V(x,) can be dropped without affecting the physical results. Since
X, 1S a minimum point,

av d*v

) = — ] =0 .

(&) (&)= s
Making the abbreviations
d*v

k=(—] , 2.59
(). o5
x' =x—X,, (2.60)

" we can write the potential function in the form
V(x') = 3kx'?--. (2.61)

For sufficiently small values of x’, provided k # 0, we can neglect the terms
represented by dots, and Eq. (2.61) becomes identical with Eq. (2.49). Hence, for
small oscillations about any potential minimum, except in the exceptional case
k = 0, the motion is that of a harmonic oscillator, with frequency given by Eqgs.
(2.52) and (2.59).

A point where V(x) has a minimum is called a point of stable equilibrium. A
particle at rest at such a point will remain at rest. If displaced a slight distance, it
will experience a restoring force tending to return it, and it will oscillate about the
equilibrium point. A point where V(x) has a maximum is called a point of unstable
equilibrium. In theory, a particle at rest there can remain at rest, since the force
is zero, but if it is displaced the slightest distance, the force acting on it will push it
farther away from the unstable equilibrium position. A region where V(x) is
constant is called a region of neutral equilibrium, since a particle can be displaced
slightly without suffering either a restoring or a repelling force.

This kind of qualitative discussion, based on the energy integral, is simple and
very useful. Study this example until you understand it well enough to be able to
see at a glance, for any potential energy curve, the types of motion that are possible.

It may be that only part of the force on a particle is derivable from a potential
function V(x). Let F’ be the remainder of the force:

F=——+F. (2.62)

In this case the energy (T + V) is no longer constant. If we substitute F from Eq.
(2.62) in Eq. (2.1), and multiply by dx/dt, we have, after rearranging terms,

%(T+ V)= Fn. (2.63)
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The time rate of change of kinetic plus potential energy is equal to the power
delivered by the additional force F'.

2.6 FALLING BODIES
One of the simplest and most commonly occurring types of one-dimensional
motion is that of falling bodies. We take up this type of motion here as an illustration
of the principles discussed in the preceding sections.

A body falling near the surface of the earth, if we neglect air resistance, is subject
to a constant force

F = —myg, (2.64)

where we have taken the positive direction as upward. The equation of motion is

m——s = —myg. - (2.65)

The solution may be obtained by any of the three methods discussed in Sections
2.3, 2.4, and 2.5, since a constant force may be considered as a function of either
t,v, or x. The reader will find it instructive to solve the problem by all three methods.
We have already obtained the result in Chapter 1 [Egs. (1.28) and (1.29)].

In order to include the effect of air resistance, we may assume a frictional force
proportional to v, so that the total force is

F = —mg—bv. (2.66)

The constant b will depend on the size and shape of the falling body, as well as on
the viscosity of the air. The problem must now be treated as a case of F(v):

dv
= = —mg—bo. 67
m 0 mg — bv (2.67)
Taking v, = 0 at t = 0, we proceed as in Section 2.4 [Eq. (2.28)]:
v dv bt
—_— = —— 2.68
Lvﬂmg/b) m 269
We integrate and solve for v:
b= —%(1—(!"/"'). (2.69)

We may obtain a formula useful for short times of fall by expanding the exponential
function in a power series:

by
m

V= —gt+3—=1>+ . (2.70)
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Thus for a short time (t << m/b), v = —gt, approximately, and the effect of air
resistance can be neglected. After a long time, we see from Eq. (2.69) that

v = —7’ 1 t > b-
The velocity mg/b is called the terminal velocity of the falling body in question.
The body reaches within 1/e of its terminal velocity in a time ¢t = m/b. We could
use the experimentally determined terminal velocity to find the constant b. We
now integrate Eq. (2.69), taking x, = 0:

m2g bt _im
X = 72_<1 —%—e bef ) (271)

By expanding the exponential function in a power series, we obtain
b
x = g+t et (272)

If t << m/b, x = —4gt?, asin Eq. (1.29). When t >> m/b,

X = m—zg_%t
= b2 b .

This result is easily interpreted in terms of terminal velocity. Why is the positive
constant present?

It is worth noting that we may obtain the series solution (2.70) directly from the
differential equation (2.67) without solving it exactly. Let us first neglect altogether
the term involving b, so that the solution is

9 = —gt.

Substitute this result in the last term in Eq. (2.67) and integrate again:
b
o = —gr43 2
m

This result agrees with the first two terms in Eq. (2.70). If we put v = 'V into the
last term in Eq. (2.67) and integrate, we get a better approximation v®, good to
order b?, and so on. This method of successive approximations is often useful in
solving an equation containing a small term which in a zero-order approximation
may be neglected. A similar method can be used to solve by successive approxi-
mations an algebraic equation containing one or more small terms.

For small heavy bodies with large terminal velocities, a better approximation
may be

F = by (2.73)
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The reader should be able to show that with the frictional force given by Eq. (2.73),
the result (taking x, = vy = 0 at t; = 0) is

()
t if << m
gi, by ’
—\/%, if > \/
x = —Tlncosh< b—gt>
b m
—4gt2, il < JE,
bg

m mg if
7 In2 /bt if m»/ (2.75)

Again there is a terminal velocity, given this time by (mg/b)!/?. The terminal
velocity can always be found as the velocity at which the frictional force equals
the gravitational force, and will exist whenever the frictional force becomes
sufficiently large at high velocities.

In the case of bodies falling from a great height, the variation of the gravitational
force with height should be taken into account. In this case, we neglect air re-
sistance (in order to be able to use the energy method), and measure x from the
center of the earth. Then if M is the mass of the earth and m the mass of the falling
body,

(2.74)

B

M
F=_m2? (2.76)
X
and
X MG .
Vm=—JFw_—27, 2.77)
where we have taken x; = oo in order to avoid a constant term in V(x). Equation
(2.45) becomes
2 MG\'?
p= 93X ij @51—>. (2.78)
dt x

The plus sign refers to ascending motion, the minus sign to descending motion.
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b ()

Fig. 2.2 Plot of V(x) = —(mMG/x).

The function V(x) is plotted in Fig. 2.2. We see that there are two types of
motion, depending on whether E is positive or negative. When E is positive, there
1s no turning point, and if the body is initially moving upward, it will continue to
move upward forever, with decreasing velocity, approaching the limiting velocity

2E
w= | (2.79)

When E is negative, there is a turning point at a height

mMG
If the body is initially moving upward, it will come to a stop at x;,and fall back to
the earth. The dividing case between these two types of motion occurs when the
initial position and velocity are such that E = 0. The turning point is then at
infinity, and the body moves upward forever, approaching the limiting velocity
v; = 0. If E = 0, then at any height x, the velocity will be

v, = \/2M 4 (2.81)

X

This is called the escape velocity for a body at distance x from the center of the
earth, because a body moving upward at height x with velocity v, will just have
sufficient energy to travel upward indefinitely (if there is no air resistance).

To find x(t), we must evaluate the integral

) dx = \/2 (2.82)
mMG\'? ~ \m” '
E4+— —
X0 :t< + X >
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where x, is the height at ¢t = 0. To solve for the case when E is negative, we

substitute
—Ex
0 = 2.83
cos \/ G (2.83)
Equation (2.82) then becomes
mMG (° 2
——— | 2cos? = |—t 2.84
(—E)3/2Lo cos” 0 do \/mt (2.84)

(We choose a positive sign for the integrand so that 6 will increase when ¢ in-
creases.) We can, without loss of generality, take x, to be at the turning point x,
since the body will at some time in its past or future career pass through x; if no
force except gravity acts upon it, provided E < 0. Then 6, = 0, and

(—?%2—(0+sin 0 cos ) = \/% t,
or
0+% sin 20 = \/—2—@ t, (2.85)
XT
and
X = Xp cos” 0. (2.86)

This pair of equations cannot be solved explicitly for x(¢). A numerical solution
can be obtained by choosing a sequence of values of 0 and finding the corresponding
values of x and ¢ from Egs. (2.85) and (2.86). That part of the motion for which x
is less than the radius of the earth will, of course, not be correctly given, since
Eq. (2.76) assumes all the mass of the earth concentrated at x = 0 (not to mention
the fact that we have omitted from our equation of motion not only air resistance,
but also the forces which would act on the body when it collides with the earth).

The solution can be obtained in a similar way for the cases when E is positive
or zero.

2.7 THE SIMPLE HARMONIC OSCILLATOR

The most important problem in one-dimensional motion, and fortunately one of
the easiest to solve, is the harmonic or linear oscillator. The simplest example is
that of a mass m fastened to a spring whose constant is k (Fig. 2.3). If we measure x
from the relaxed position of the spring, then the spring exerts a restoring force

F=—kx. (2.87)
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F——]

Fig.2.3 Model of a simple harmonic oscillator.

The potential energy associated with this force is
V(x) = tkx2. (2.88)

The equation of motion, if we assume no other force acts, is
2

mc;Tf+ kx = 0. (2.89)
Equation (2.89) describes the free harmonic oscillator. Its solution was obtained
in Section 2.5. The motion is a simple sinusoidal oscillation about the point of
equilibrium. In all physical cases there will be some frictional force acting, though
it may often be very small. As a good approximation in most cases, particularly
when the friction is small, we can assume that the frictional force is proportional
to the velocity. Since this is almost the only kind of frictional force for which the
problem can easily be solved, we shall restrict our attention to this case. If we use
Eq. (2.31) for the frictional force with n = 1, the equation of motion then becomes

d*x  dx
—+b—+kx =0. 290
m— b kx (2.90)
This equation describes the damped harmonic oscillator. Its motion, at least for
small damping, consists of a sinusoidal oscillation of gradually decreasing ampli-
tude, as we shall show later. If the oscillator is subject to an additional impressed
force F(t), its motion will be given by
d* dx
dtf+b +kx = F(z). (291)

If F(t) is a sinusoidally varying force, Eq. (2.91) leads to the phenomenon of
resonance, where the amplitude of oscillation becomes very large when the
frequency of the impressed force equals the natural frequency of the undamped
free oscillator.

Theimportance of the harmonic oscillator problem lies in the fact that equations
of the same form as Egs. (2.89) through (2.91) turn up in a wide variety of physical
problems. In almost every case of one-dimensional motion where the potential
energy function ¥(x) has one or more minima, the motion of the particle for small
oscillations about the minimum point follows Eq. (2.89), as we have shown in
Section 2.5.
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When a solid is deformed, it resists the deformation with a force proportional
to the amount of deformation, provided the deformation is not too great. This
statement is called Hooke’s law. It follows from the fact that the undeformed solid
is at a potential-energy minimum and that the potential energy may be expanded
in a Taylor series in the coordinate describing the deformation. If a solid is de-
formed beyond a certain point, called its elastic limit, it will remain permanently
deformed; that is, its structure is altered so that its undeformed shape for minimum
potential energy is changed. It turns out in most cases that the higher-order terms
in the series (2.57) are negligible almost up to the elastic limit, so that Hooke’s law
holds almost up to the elastic limit. When the elastic limit is exceeded and plastic
flow takes place, the forces depend in a complicated way not only on the shape of
the material, but also on the velocity of deformation and even on its previous
history, so that the forces can no longer be specified in terms of a potential-energy
function.

Thus practically any problem involving mechanical vibrations reduces to that
of the harmonic oscillator at small amplitudes of vibration, that is, so long as the
elastic limits of the materials involved are not exceeded. The motions of stretched
strings and membranes, and of sound vibrations in an enclosed gas or in a solid,
result in a number of so-called normal modes of vibration, each mode behaving
in many ways like an independent harmonic oscillator. An electric circuit con-
taining inductance L, resistance R, and capacitance C in series, and subject to an
applied electromotive force E(t), satisfies the equation

d*q _dq ¢
4 242 = E@), 2.92
Ldt2+Rdt+C (0 (2.92)

where ¢ is the charge on the condenser and dg/dt is the current. This equation is
identical in form with Eq. (2.91). Early work on electrical circuits was often carried
out by analogy with the corresponding mechanical problem. Today the situation
is often reversed, and the mechanical and acoustical engineers are able to make
use of the simple and effective methods developed by electrical engineers for
handling vibration problems. The theory of electrical oscillations in a transmission
line or in a cavity is similar mathematically to the problem of the vibrating string
or resonating air cavity. The quantum-mechanical theory of an atom can be put
in a form which is identical mathematically with the theory of a system of harmonic
oscillators.

2.8 LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Equations (2.89) to (2.91) are examples of second-order linear differential equations.
The order of a differential equation is the order of the highest derivative that occurs
in it. Most equations of mechanics are of second order. (Why?) A linear differential
equation is one in which there are no terms of higher than first degree in the
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dependent variable (in this case x) and its derivatives. Thus the most general type
of linear differential equation of order n would be

n n—lx

d d d
a,(t) def+ y- 1) T+ ay(0) d—’:+ ao(t)x = b(e). (2.93)

If b(t) = 0O, the equation is said to be homogeneous; otherwise it is inhomogeneous.
Linear equations are important because there are simple general methods for
solving them, particularly when the coefficients a,, a,, . . . , a, are constants, as in
Eqgs. (2.89) to (2.91). In the present section, we shall solve the problem of the free
harmonic oscillator [Eq. (2.89)], and at the same time develop a general method
of solving any linear homogeneous differential equation with constant coefficients.
This method is applied in Section 2.9 to the damped harmonic oscillator equation
(2.90). In Section 2.10 we shall study the behavior of a harmonic oscillator under a
sinusoidally oscillating impressed force. In Section 2.11 a theorem is developed
which forms the basis for attacking Eq. (2.91) with any impressed force F(t), and
the methods of attack are discussed briefly.

The solution of Eq. (2.89), which we obtained in Section 2.5, we now write in
the form

X = A sin (wqt +0), Wy = /k/m. (2.94)

This solution depends on two “arbitrary” constants 4 and 6. They are called
arbitrary because no matter what values are given to them, the solution (2.94) will
satisfy Eq. (2.89). They are not arbitrary in a physical problem, but depend on the
initial conditions. It can be shown that the general solution of any second-order
differential equation depends on two arbitrary constants. By this we mean that
we can write the solution in the form

x =x(t; Cy, Cy), (2.95)

such that for every value of C; and C,, or every value within a certain range,
x(t; C,, C,) satisfies the equation and, furthermore, practically every solution of
the equation is included in the function x(t; C,, C,) for some value of C, and
C,.* If we can find a solution containing two arbitrary constants which satisfies
a second-order differential equation, then we can be sure that practically every
solution will be included in it. The methods of solution of the differential equations
studied in previous sections have all been such as to lead directly to a solution
corresponding to the initial conditions of the physical problem. In the present
and subsequent sections of this chapter, we shall consider methods which lead to
a general solution containing two arbitrary constants. These constants must then

*The only exceptions are certain “singular” solutions which may occur in regions where the
mathematical conditions for a unique solution (Section 2.2) are not satisfied.
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be given the proper values to fit the initial conditions of the physical problem;
the fact that a solution with two arbitrary constants is the general solution
guarantees that we can always satisfy the initial conditions by proper choice of
the constants.

We now state two theorems regarding linear homogeneous differential
equations:
Theorem 1. Ifx = x,(t) is any solution of a linear homogeneous differential equation,
and C is any constant, then x = Cx,(t) is also a solution.

Theorem 2. [If x = x,(t) and x = x,(t) are solutions of a linear homogeneous
differential equation, then x = x,(t)+ x,(t) is also a solution.

We prove these theorems only for the case of a second-order equation:

2
X a0 4 agx = o. (2.96)

a(0) dt dt

The proof can easily be generalized to higher-order equations. Assume that
x = x,(t) satisfies Eq. (2.96). Then

()d()

a,(t) +ay(t)

Hence x = Cx(t) also satisfies Eq. (2.96). If x(¢) and x,(t) both satisfy Eq. (2.96),
then

+ay(t) (Cx,) = C[az(t) e lia l(t) +a0(t) :|= 0.

d? (x1 +x2) d(x; +x5)

+a,(t) i +a(t) (x4 +x3)

a,(t)
d2
=|:a2(t) i 1(1) +a0(t) ]

|:a2(t) i 2ta 1(t) +ao(t)x2:| 0.

Hence x = x;(t)+ x,(t) also satisfies Eq. (2.96). The problem of finding the general
solution of Eq. (2.96) thus reduces to that of finding any two independent “par-
ticular” solutions x,(¢) and x,(¢), for then Theorems 1 and 2 guarantee that

x = Cyx4(£)+ Cyx(t) (2.97)

is also a solution. Since this solution contains two arbitrary constants, it must be
the general solution. The requirement that x,(t) and x,(t) be independent means
in this case that one is not a multiple of the other. If x, () were a constant multiple
of x,(t), then Eq. (2.97) would really contain only one arbitrary constant. The
right member of Eq. (2.97) is called a linear combination of x, and x,.

In the case of equations like (2.89) and (2.90), where the coefficients are constant,
a solution of the form x = e” always exists. To show this, assume that a,, a,,
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and a, are all constant in Eq. (2.96) and substitute

d d?
N SR as9
We then have
(a2p*+arp+ag)e? = 0. (2.99)

Canceling out e”, we have an algebraic equation of second degree in p. Such an
equation has, in general, two roots. If they are different, this gives two independent
functions e satisfying Eq. (2.96) and our problem is solved. If the two roots for
p should be equal, we have found only one solution, but then, as we shall show in
the next section, the function

x = te? (2.100)
also satisfies the differential equation. The linear homogeneous equation of nth

order with constant coefficients can also be solved by this method.
Let us apply the method to Eq. (2.89). Making the substitution (2.98), we have

mp*+k =0, (2.101)
whose solution is
k ] k
p= j:\/—E = Fiwo, Wy = \/E . (2.102)
This gives, as the general solution,
x = C,e 4 C e~ i®0, (2.103)

In order to interpret this result, we remember that
e = cos 6+i sin 0. (2.104)

If we allow complex numbers x as solutions of the differential equation, then the
arbitrary constants C, and C, must also be complex in order for Eq. (2.103) to be
the general solution. The solution of the physical problem must be real, hence we
must choose C,; and C, so that x turns out to be real. The sum of two complex
numbers is real if one is the complex conjugate of the other. If

C = a+ib, (2.105)
and

C* = a—ib, (2.106)
then

C+C* = 2q,

C—C* = 2ib. (2.107)
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Now ¢ is the complex conjugate of e so that if we set C; = C, C, = C*,
then x will be real:

x = Ce'®0' 4 C*eg ™ot (2.108)

We could evaluate x by using Eqgs. (2.104), (2.105), and (2.106), but the algebra is
simpler if we make use of the polar representation of a complex number:

C =a+ib = re®, (2.109)
C*=a—ib=re ", (2.110)
where
r=(a®+b*)"?,  tan 0 = b/a, (2.111)
a=rcosb, b =rsin0. (2.112)

The reader should verify that these equations follow algebraically from Eq. (2.104).
If we represent C as a point in the complex plane, then a and b are its rectangular
coordinates, and r and 6 are its polar coordinates. Using the polar representation
of C, Eq. (2.108) becomes (we set r = $A)

X = %Aei(wot+0)+%Ae—i(wot+0)
= A cos (wot +0). (2.113)

This is the general real solution of Eq. (2.89). It differs from the solution (2.94)
only by a shift of /2 in the phase constant 6.

Setting B; = A cos 0, B, = — A sin 0, we can write our solution in another
form:

x = B, cos wyt+ B, sin w,t. (2114

The constants 4, 6, or B,, B,, are to be obtained in terms of the initial values x,
v at t = 0 by setting

Xy = Acos 0 = By, (2.115)
Vo = —weA sin 0 = wyB, - (2.116)
The solutions are easily obtained:
5 0(2) 1/2
A= x0+ﬁ> , (2.117)
0
Uo
tan = — , (2.118)
XoWo
or
B, = xq, (2.119)
B, =22 (2.120)
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Another way of handling Eq. (2.103) would be to notice that, since Eq. (2.89)
contains only real coefficients, a complex function can satisfy it only if both real
and imaginary parts satisfy it separately. (The proof of this statement is a matter
of substituting x = u+iw and carrying out a little algebra.) Hence if a solution is
(wesetr = A)

X = Ceiwot — Aei(wot+0)

= A cos (wot + 60)+iA sin (wet +0), (2.121)

then both the real and imaginary parts of this solution must separately be solutions,
and we have either solution (2.113) or (2.94). We can carry through the solutions
of linear equations like this, and perform any algebraic operations we please on
them in their complex form (so long as we do not multiply two complex numbers
together), with the understanding that at each step what we are really concerned
with is only the real part or only the imaginary part. This procedure is often useful
in the treatment of problems involving harmonic oscillations, and we shall use it
in Section 2.10.
It is often very convenient to represent a sinusoidal function as a complex
exponential:
eiO + e—iO
>

cos 0 = real part of e = (2.122)

sin § = imaginary part of e = ¢ (2.123)

2i
Exponential functions are easier to handle algebraically than sines and cosines.
The reader will find the relations (2.122), (2.123), and (2.104) useful in deriving
trigonometric formulas. The power series for the sine and cosine functions are
readily obtained by expanding e in a power series and separating the real and
imaginary parts. The trigonometric rule for sin (A+ B) and cos (4+ B) can be
easily obtained from the algebraic rule for adding exponents. Many other examples
could be cited.

2.9 THE DAMPED HARMONIC OSCILLATOR
The equation of motion for a particle subject to a linear restoring force and a
frictional force proportional to its velocity is [Eq. (2.90)]

mxX+bx+kx =0, (2.124)
where the dots stand for time derivatives. Applying the method of Section 2.8,

we make the substitution (2.98) and obtain
mp*+bp+k = 0. (2.125)
b b\* k]
p= _ﬂi[<ﬂ> _E] . (2.126)

The solution is
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We distinguish three cases: (a) k/m > (b/2m)?, (b) k/m < (b/2m)?, and (c) k/m =
(b/2m)>.
In case (a), we make the substitutions

wo = \/E, (2.127)

m
y = i, (2.128)
2m
w; = (w5 —7y)"?, (2.129)

where y is called the damping coefficient and (w,/27) is the natural frequency of
the undamped oscillator. There are now two solutions for p:

p= —y+tion,. (2.130)
The general solution of the differential equation is therefore
x = Cye nHioty C e viont (2.131)
Setting
C, =34e®  C,=134e7", (2.132)
we have
x = Ae " cos (w t+6). (2.133)

This corresponds to an oscillation of frequency (w,/2n) with an amplitude de™ "
which decreases exponentially with time (Fig. 2.4). The constants A4 and 0 depend

1

A

-1

Fig. 2.4 Motion of damped harmonic oscillator. Heavy curve: x = Ae™” cos wt, y = w/8.
Light curve: x = +Ade™ ™.
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upon the initial conditions. The frequency of oscillation is less than without
damping. The solution (2.133) can also be written

x = e "(B, cos w t+ B, sin w;1). (2.134)

In terms of the constants w, and y, Eq. (2.124) can be written
%4 2yx+wix = 0. (2.135)

This form of the equation is often used in discussing mechanical oscillations.
The total energy (kinetic plus potential) of the oscillator is

E = ims? +1kx?. (2.136)

It is no longer constant; the friction —bx plays the role of F’ in Eq. (2.63). In the
important case of small damping, y << w,, we can set w; = w, and neglect y
compared with w,, and we have for the energy corresponding to the solution
(2.133), approximately,

E = 1kA%e™ 2" = Epe™ 2. (2.137)
Thus the energy falls off exponentially at twice the rate at which the amplitude
decays. The fractional rate of decline or logarithmic derivative of E is

1dE_dInE _
Edt dt

~2y. (2.138)

We now consider case (b), (w, < 7). In this case, the two solutions for p are
p=—7=—-y=0"—wp)"” (2.139)
P=—7=—y+@*—w))%

The general solution is
x = Cie "+ Cre " (2.140)

These two terms both decline exponentially with time, one at a faster rate than
the other. The constants C; and C, may be chosen to fit the initial conditions.
The reader should determine them for two important cases: x, # 0, v, = 0 and
xo = 0, vy # 0, and draw curves x(t) for the two cases. .

In case (c), (wy = ), we have only one solution for p:

p=—y. (2.141)
The corresponding solution for x is

x=e " (2.142)
We now show that, in this case, anoth;er solution is

x =te " (2.143)



2.9] THE DAMPED HARMONIC OSCILLATOR 49

()

(¢)
(a)

\/ |
Fig. 2.5 Return of harmonic oscillator to equilibrium. (a) Underdamped. (b) Overdamped.
(c) Critically damped.

To prove this, we compute

X =e M—yte” ",

X = —2?€_vt+')’2te_y'. (2144)
The left side of Eq. (2.135) is, for this x,
X+ 2p%+wgx = (wg—y*)te” " (2.145)

This is zero if w, = y. Hence the general solution in case w, = y is
x =(Ci+Cyt)e™ ™. (2.146)
If we keep either w, or y fixed and let the other vary, we see from Eq. (2.139) that
V1> Ye > V2o (2.147)

where y, is the value when y = w,. The Solution (2.146) therefore declines ex-
ponentially at a rate intermediate between that of the two exponential terms in
Eq. (2.140). Hence, for fixed y or w,, the solution (2.146) falls to zero faster after a
sufficiently long time than the solution (2.140), except in the case C, = 0 in Eq.
(2.140). Cases (a), (b), and (c) are important in problems involving mechanisms
which approach an equilibrium position under the action of a frictional damping
force, e.g., pointer reading meters, hydraulic and pneumatic spring returns for
doors, etc. In most cases, it is desired that, if displaced, the mechanism move
quickly and smoothly back to its equilibrium position. For a given damping
coefficient y, or for a given w,, this is accomplished in the shortest time without
overshoot if w, = y [case (c)].* This case is called critical damping. If w, < 7, the
system is said to be overdamped; it behaves sluggishly and does not return as
quickly to x = 0 as for critical damping. If w, > 7, the system is said to be under-
damped; the coordinate x then overshoots the value x = 0 and oscillates. Note
that at critical damping, w, = 0, so that the period of oscillation becomes infinite.

*Note, however, Problem 41 at the end of this chapter.
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The behavior is shown in Fig. 2.5 for the case of a system displaced from equi-
librium and released (x, # 0, v, = 0). The reader should draw similar curves for
the case where the system is given a sharp blow at ¢t = 0 (i.e,, xqg = 0, vy # 0).

2.10 THE FORCED HARMONIC OSCILLATOR

The harmonic oscillator subject to an external applied force is governed by Eq.
(2.91). In order to simplify the problem of solving this equation, we state the
following theorem:

Theorem 3. If xt) is a solution of an inhomogeneous linear equation [e.g., Eq.
(2.91)], and x,(t) is a solution of the corresponding homogeneous equation [e.g.,
Eq. (2.90)], then x(t) = x{t)+ x,(t) is also a solution of the inhomogeneous equation.

This theorem applies whether the coefficients in the equation are constants or
functions of t. The proof is a matter of straightforward substitution, and is left to
the reader. In consequence of Theorem 3, if we know the general solution x, of
the homogeneous equation (2.90) (we found this in Section 2.9), then we need find
only one particular solution x; of the inhomogeneous equation (2.91). For we can
add x; to x, and obtain a solution of Eq. (2.91) which contains two arbitrary
constants and is therefore the general solution.

The most important case is that of a sinusoidally oscillating applied force. If
the applied force oscillates with angular frequency w and amplitude F,, the
equation of motion is

2
md—§+bd—x+kx = F, cos (wt+6,), (2.148)
dt dt
where 6, is a constant specifying the phase of the applied force. There are, of course,
many solutions of Eq. (2.148), of which we need find only one. From physical
considerations, we expect that one solution will be a steady oscillation of the
coordinate x at the same frequency as the applied force:

x = A, cos (wt+0y). (2.149)

The amplitude A4, and phase 6, of the oscillations in x will have to be determined
by substituting Eq. (2.149) in Eq. (2.148). This procedure is straightforward and
leads to the correct answer. The algebra is simpler, however, if we write the force
as the real part of a complex function:*

F(t) = Re(Fqe'), (2.150)
FO \= Foeioo. (2.151)

*Note the use of bold face type (F, x) to distinguish comple:: quantities from the corresponding
real quantities (F, x).
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Thus if we can find a solution x(t) of
d*>x  dx ot
m—c—i?+b:i—t+kx = Foe 5 (2152)

then, by splitting the equation into real and imaginary parts, we can show* that
the real part of x(z) will satisfy Eq. (2.148). We assume a solution of the form
X = Xqe",
so that
X = iwxee, X = —w?Xxye'. (2.153)
Substituting in Eq. (2.152), we solve for x,:

Fo/m

The solution of Eq. (2.152) is therefore
iwt
x = xgeiot — — Fo/m)e (2.155)

0 — o’ +2iyw

The simplest way to write Eq. (2.155) is to express the denominator in polar form
[Eq. (2.109)]:

2
03—0? +2iy0 = [(0F— 0?)? +4y20?]"? exp (i tan”! — ya’w2~>. (2.156)
7=

It is convenient to define the angle

n o, o _, 0—w?
=_— — =t e 2.1
B > tan R —a? an 2w (2.157)
2 2
. wg—w
R (P e U 2159
2
cos § = L

. 2.159
[(w(z) — wz)z +4V2w2]1/2 ( ‘ )
This definition is purely a matter of taste, and is arranged so that § = 0 when
o = wgand f — +7/2 as w — + 0. (See Fig. 2.6.) This definition also makes our
treatment parallel to the customary treatment of Eq. (2.92) in electrical engineering.
If we use Egs. (2.156) and (2.157) and the fact that

i = e, (2.160)

*The assertion “we can show that . .. ” throughout this book will mean that the reader who
has followed the discussion to this point should be able to supply the proof himself. (In this
case, put x = x+iy and the result falls out.) Long or tricky proofs will either be given in the
text, or a reference cited, or the reader will be warned that it is not easy.
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we may rewrite Eq. (2.155) in the form

Fy i(wt+ 00 + B)
= Horto+h) 2.161
X im[(w3 — 0?)? +4y*w?]'? ¢ ( )
The complex velocity is

oF,

m[(w§ — w?)? +4y*w*]'? gl@ttorh, (2.162)

X = iwx =

The real position and velocity are then

x = Re(x)
Fy 1 .
= (=P Fayo] e S @t b0+ B (2.163)
and
% = Re(%)
Fo )
- cos (wt + 0o+ B). (2.164)

; [(w(z) _wz)z +4y2w2]1/2
This is a particular solution of Eq. (2.148) containing no arbitrary constants. By
Theorem 3 and Eq. (2.133), the general solution (for the underdamped oscillator)
is
Fo/m

x = Ae " cos(wt+0
A [ S

777 S0 @+ G0+ ). (2163)

This solution contains two arbitrary constants A, 6, whose values are determined
by the initial values x,, vy at t = 0. The first term dies out exponentially in time
and is called the transient. The second term is called the steady state, and oscillates
with constant amplitude. The transient depends on the initial conditions. The
steady state which remains after the transient dies away is independent of the
initial conditions. (When there is no damping, y = 0, the “transient” does not
die away, but we may still define it as that part of the solution which has the
natural frequency w; = wg; the term “transient” is not very descriptive in this
case.)

In the steady state, the rate at which work is done on the oscillator by the
applied force is

2

. Fj w
XF(t) = W

[(w* — w})* + 4w

=i cos (wt+6,) cos (wt+ 0, + )

_ F§ wcos Bcos® (wt+6,) F§ wsin fsin 2wt +6,)
T om [(0*— o)+ 420 2m[(0? —wd)? +4y* 0]V

(2.166)
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Puv, (v = o)

8, (v = §wo)

P, (v =w)

B (‘)’ = 'un)

wo

—7r/2

Fig. 2.6 Power and phase of forced harmonic oscillations.

The last term on the right is zero on the average, while the average value of
cos? (wt+0,) over a complete cycle is 3. Hence the average power delivered by
the applied force is

. F? cos B )
Pav = <XF(t)>av = 2m [(w2_w%)2+4,y2w2]1/2’

(2.167)

or

P,, = 3F,x,, cos B, (2.168)

where X, is the maximum value of X. A similar relation holds for power delivered
to an electrical circuit. The factor cos f is called the power factor. In the electrical
case, f§ is the phase angle between the current and the applied emf. Using formula
(2.162) for cos f, we can rewrite Eq. (2.167):

F} yo?
av — m ((1)2—0)%)24'4'))2602'

P (2.169)

It is easy to show that in the steady state power is supplied to the oscillator at the
same average rate that power is being dissipated by friction, as of course it must
be. The power P,, has a maximum for w = w,. In Fig. 2.6, the power P, (in
arbitrary units) and the phase § of steady-state forced oscillations are plotted
against w for two values of y. The heavy curves are for small damping; the light
curves are for greater damping. Formula (2.169) can be simplified somewhat in
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case y << w,. In this case, P, is large only near the resonant frequency w,, and
we shall deduce a formula valid near v = w,. Defining

Aw = w—wy, (2.170)
and assuming Aw << w,, we have
(0* —wd) = (0+we) Aw = 2w Aw, (2.171)
w? = wi. (2.172)
Hence
B 2.173)

v oy

This simple formula gives a good approximation to P,, near resonance. The
corresponding formula for f§ is

. Y . ) —Aw
Cos B = [(Ag))Z—W’ sin ﬁ = W . (2174)
When o << @, f = n/2, and Eq. (2.164) becomes
F F(t
x = 20 cos (wt+6y) = —() (2.175)
wim k

This result is easily interpreted physically; when the force varies slowly, the
particle moves in such a way that the applied force is just balanced by the restoring

force. When w > w,, § = —n/2, and Eq. (2.164) becomes
. Fo F(1)
X & ——j . cos (0t +0,) = e (2.176)

The motion now depends only on the mass of the particle and on the frequency
of the applied force, and is independent of the friction and the restoring force.
This result is, in fact, identical with that obtained in Section 2.3 [see Egs. (2.15)
and (2.19)] for a free particle subject to an oscillating force.

We can apply the result (2.165) to the case of an electron bound to an equi-
librium position x = 0 by an elastic restoring force, and subject to an oscillating
electric field:

E, = E, cos wt, (2.177)
F = —eE, cos wt. (2.178)
The motion will be given by
E .
% = Ae=" cos (i +0)— Lo S (@+D) (2.179)

m [(0*—wd)*+4y*?]' 2"
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The term of interest here is the second one, which is independent of the initial
conditions and oscillates with the frequency of the electric field. Exparding the
second term, we get

‘o _eEy sin f cos wt _eE, cos f§ sin wt
B R R K (R e U
_ —eE, cos ot Wi —w?
m [(w?—wd)* +4y*w?]
_eEq sin wt 2yw

m [(0® — ) + 40 (2.180)

The first term represents an oscillation of x in phase with the applied force at low
frequencies, 180° out of phase at high frequencies. The second term represents an
oscillation of x that is 90° out of phase with the applied force, the velocity x for
this term being in phase with the applied force. Hence the second term corresponds
to an absorption of energy from the applied force. The second term contains a
factor y and is therefore small, if y << w,, except near resonance. If we imagine a
dielectric medium consisting of electrons bound by elastic forces to positions of
equilibrium, then the first term in Eq. (2.180) will represent an electric polarization
proportional to the applied oscillating electric field, while the second term will
represent an absorption of energy from the electric field. Near the resonant
frequency, the dielectric medium will absorb energy, and will be opaque to electro-
magnetic radiation. Above the resonant frequency, the displacement of the electrons
is out of phase with the applied force, and the resulting electric polarization will be
out of phase with the applied electric field. The dielectric constant and index of re-
fraction will be less than one. For very high frequencies, the first term of Eq. (2.180)
approaches the last term of Eq. (2.18), and the electrons behave as if they were free.
Below the resonant frequency, the electric polarization will be in phase with the
applied electric field, and the dielectric constant and index of refraction will be
greater than one.

Computing the dielectric constant from the first term in Eq. (2.180), in the same
manner as for a free electron [see Egs. (2.20) to (2.26)], we find, for N electrons per

—_

J \W
| w

wq

Fig. 2.7 Dielectric constant and energy absorption for medium containing harmonic
oscillators.
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unit volume:

Ne? wi—w?
—=14+— . 2.181
€0 L (03— w?)? +4y*w? ( )
The index of refraction for electromagnetic waves (14 = ) is
1/2
no o (#_8>
v Ho€o
12 (2.182)
()"
For very high or low frequencies, Eq. (2.181) becomes
2
14N o < oo, (2.183)
€ mw}
2
LA L (2.184)
€o ®

The mean rate of energy absorption per unit volume is given by Eq. (2.169):

dE _ Ne’Ej yw?
d m  (0*—wd)+4’0*

(2.185)

The resulting dielectric constant and energy absorption versus frequency are
plotted in Fig. 2.7. Thus the dielectric constant is constant and greater than one
at low frequencies, increases as we approach the resonant frequency, falls to less
than one in the region of “anomalous dispersion” where there is strong absorption
of electromagnetic radiation, and then rises, approaching one at high frequencies.
The index of refraction will follow a similar curve. This is precisely the sort of
behavior which is exhibited by matter in all forms. Glass, for example, has a
constant dielectric constant at low frequencies; in the region of visible light its
index of refraction increases with frequency; and it becomes opaque in a certain
band in the ultraviolet. X-rays are transmitted with an index of refraction very
slightly less than one. A more realistic model of a transmitting medium would
result from assuming several different resonant frequencies corresponding to
electrons bound with various values of the spring constant k. This picture is then
capable of explaining most of the features in the experimental curves for ¢ or n
versus frequency. Not only is there qualitative agreement, but the formulas (2.181)
to (2.185) agree quantitatively with experimental results, provided the constants
N, w, and y are properly chosen for each material. Likewise the shapes of the
absorption lines in the spectra of gases fit Formula (2.173). The success of this
theory was one of the reasons for the adoption, until the year 1913, of the “jelly
model” of the atom, in which electrons were imagined embedded in a positively
charged jelly in which they oscillated as harmonic oscillators. The experiments of



2.10] THE FORCED HARMONIC OSCILLATOR 57

Rutherford in 1913 forced physicists to adopt the “planetary” model of the atom,
but this model was unable to explain even qualitatively the optical and electro-
magnetic properties of matter until the advent of quantum mechanics. The result
of the quantum-mechanical treatment is that, for the interaction of matter and
radiation, the simple oscillator picture gives essentially correct results when the
constants are properly chosen.*

We now consider an applied force F(t) which is large only during a short time
interval 6t and is zero or negligible at all other times. Such a force is called an
impulse, and corresponds to a sudden blow. We assume the oscillator initially at
rest at x = 0, and we assume the time Jt so short that the mass moves only a
negligibly small distance while the force is acting. According to Eq. (2.4), the
momentum just after the force is applied will equal the impulse delivered by the
force:

mv, = p, = [ Fdt, (2.186)

where v, is the velocity just after the impulse, and the integral is taken over the
time interval 6t during which the force acts. After the impulse, the applied force is
zero, and the oscillator must move according to Eq. (2.133) if the damping is less
than critical. We are assuming Jt so small that the oscillator does not move

appreciably during this time, hence we choose 6§ = —(n/2)—w;t,, in order that
x = 0 att = t,, where t, is the instant at which the impulse occurs:
x = Ae " sin [w,(t—t,)]- (2.187)
The velocity at t = ¢ is
Vo = w;Ae” ", (2.188)
Thus
Vo
A = —¢, (2.189)
@y

The solution when an impulse p, is delivered at t = t, to an oscillator at rest is
therefore

0, t <to,
X =] Po_ st i [ap (1t o (2.190)
l—mwl e sin [w,(t—to)], > t,.

Here we have neglected the short time ot during which the force acts.
We see that the result of an impulse-type force depends only on the total
impulse p, delivered, and is independent of the particular form of the function F(¢),

*See John C. Slater, Quantum Theory of Matter. New York: McGraw-Hill Book Co., 1951.
(Page 378.)
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provided only that F(t) is negligible except during a very short time interval t.
Several possible forms of F(t) which have this property are listed below:

0, t<to,
F(t) ={ po/ot, ty <t <ty+dt, (2.191)
0, t > ty+0t,
Po Ot 1
F(t) = - -
(® (IO 0 <t < o, (2.192)
Po (t—to)2:|
Fit)=——=exp| ————|, —00 <t < o0, 2.193
g ot/n p[ (61) (2.193)

The reader may verify that each of these functions is negligible except within an
interval of the order of ot around ¢,, and that the total impulse delivered by each
is po. The exact solution of Eq. (2.91) with F(z) given by any of the above expressions
must reduce to Eq. (2.190) when 6t — 0 (see Problem 55).

2.11 THE PRINCIPLE OF SUPERPOSITION.
HARMONIC OSCILLATOR WITH ARBITRARY APPLIED FORCE

An important property of the harmonic oscillator is that its motion x(t), when
subject to an applied force F(t) which can be regarded as the sum of two or more
other forces F,(), F,(t), . . ., is the sum of the motions x,(t), x,(¢), . . . , which it
would have if each of the forces F (t) were acting separately. This principle applies
to small mechanical vibrations, electrical vibrations, sound waves, electromagnetic
waves, and all physical phenomena governed by linear differential equations. The
principle is expressed in the following theorem.

Theorem 4. Let the (finite or infinite*) set of functions x,(t),n =1,2,3, ..., be
solutions of the equations

mx,+bx,+kx, = F(t), (2.194)
and let
F(t) = ) F,(¢). (2.195)
Then the function
x(t) = Y, x,(t) (2.196)
satisfies the equation
mxX+bx +kx = F(¢). (2.197)

*When the set of functions is infinite, there are certain mathematical restrictions which need
not concern us here.
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To prove this theorem, we substitute Eq. (2.196) in the left side of Eq. (2.197):
mi+bx+kx =mY X,+bY %, +kY x,

=Y (mx,+bx,+kx,)

= ;Fn(t)

= F(1).

This theorem enables us to find a solution of Eq. (2.197) whenever the force F(t)

can be expressed as a sum of forces F,(t) for which the solutions of the corresponding
equations (2.194) can be found. In particular, whenever F(f) can be written as a

sum of sinusoidally oscillating terms:

F(t) = ¥ C, cos (w,t +6,), (2.198)

a particular solution of Eq. (2.197) will be, by Theorem 4 and Eq. (2.163),

C, 1

i T [ e L (2.199)
22
B, = tan™! Do D
2yw,

The general solution is then

x = Ae” " cos (0)1t+0)+29 sin (w,t +60,+ B,)

2.2
n m [(wf —wé)z +4y2a>f]1/2 > (2.200)

where 4 and 6 are, as usual, to be chosen to make the solution (2.200) fit the initial
conditions.

We can write Egs. (2.198) and (2.199) in a different form by setting
A,=C,cos8,, B,=—-C,sinf,. (2.201)
Then
F(t) = Y (A, cos w,t+ B, sin ,t), (2.202)

and

A, sin (w,t + B,)— B, cos (w,t+ B,)

X = Z m[(wZ _ wé)z + 4’))2602]1/2 (2.203)
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An important case of this kind is that of a periodic force F(t), that is, a force
such that

F(t+T) = F(), (2.204)

where T is the period of the force. For any continuous function F(z) satisfying
Eqg. (2.204) (and, in fact, even for only piecewise continuous functions), it can be
shown that F(t) can always be written as a sum of sinusoidal functions:

i 2nnt . 2mnt
F(t) = 340+ Y, <An cos 2=+ B, sin %) (2.209)
n=1

where

T
A”=—Jv F(t)COS@dt, n=0’1’2""’
o T
(2.206)

T
B,,=%LF(:) sin@dt, n=1,23....
This result enables us, at least in principle, to solve the problem of the forced
oscillator for any periodically varying force. The sum in Eq. (2.205) is called a
Fourier series.* The actual computation of the solution by this method is in most
cases rather laborious, particularly the fitting of the constants 4, 6 in Eq. (2.200)
to the initial conditions. However, the knowledge that such a solution exists is
often useful in itself. Note also that the transient part of the solution, which depends
on the initial conditions, dies out eventually if the oscillator is damped, and we
are left after a long time with the steady-state solution (2.199). If any of the fre-
quencies 2nn/T coincides with the natural frequency w, of the oscillator, then the
corresponding terms in the series in Egs. (2.199) or (2.203) will be relatively much
larger than the rest. Thus a force which oscillates nonsinusoidally at half the
frequency w, may cause the oscillator to perform a nearly sinusoidal oscillation
at its natural frequency w,,.

A generalization of the Fourier series theorem [Egs. (2.205) and (2.206)] appli-
cable to nonperiodic forces is the Fourier integral theorem, which allows us to
represent any continuous (or piecewise continuous) function F(t), subject to
certain limitations, as a superposition of harmonically oscillating forces. By
means of Fourier series and integrals, we may solve Eq. (2.197) for almost any
physically reasonable force F(t). We shall not pursue the subject further here.
Suffice it to say that while the methods of Fourier series and Fourier integrals are
of considerable practical value in solving vibration problems, their greatest

*For a proof of the above statements and a more complete discussion of Fourier series, see
Dunham Jackson, Fourier Series and Orthogonal Polynomials. Menasha, Wisconsin: George
Banta Pub. Co., 1941. (Chapter 1.)
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F()

14

Fig. 2.8 Representation of a force as a sum of impulses. Heavy curve: F(t). Light curve:

2nF D).

importance in physics probably lies in the fact that in principle such a solution
exists. Many important results can be deduced without ever actually evaluating
the series or integrals at all.

A method of solution known as Green’s method is based on the solution (2.190)
for an impulse-type force. We can think of any force F(t) as the sum of a series of
impulses, each acting during a short time ¢ and delivering an impulse F(t) 6t:

F(t)= ) Fy®), (2.207)
0, if t<t,, where t, = not,
F,(t) ={ F(t,), if b, <t <thiq» (2.208)
0, if t> .

As 6t — 0, the sum of all the impulse forces F,(t) will approach F(t). (See Fig. 2.8.)
According to Theorem 4 and Eq. (2.190), a solution of Eq. (2.197) for a force given
by Eq. (2.207) is

F(t,) ot .

x(t) = )

n=—oo

—y(t—tn) of —
— sin [w,(t—t,)], (2.209)

where t, <t < t,,+;. If we let 6t — 0 and write ¢, = t/, Eq. (2.209) becomes

' F() N
1) = Al (2o ] ¢ /. .
x(t) f-w o, e sin [w,(t—t')] dt (2.210)
The function
0, if ¢ >t
G(t, t') ={ e 771 (2.211)

sin [w,(t—t")], if t<t,
1

is called the Green’s function for Eq. (2.197). In terms of Green’s function,

x(f) = sf G(t, )F(t) dt'. 2212)
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If the force F(t) is zero for t < t,, then the solution (2.210) will give x(t) = O for
t < t,. This solution is therefore already adjusted to fit the initial condition that
the oscillator be at rest before the application of the force. For any other initial
condition, a transient given by Eq. (2.133), with appropriate values of 4 ard 6,
will have to be added. The solution (2.210) is useful in studying the transient
behavior of a mechanical system or electrical circuit when subject to forces of
various kinds.

PROBLEMS

1. a) A certain jet engine at its maximum rate of fuel intake develops a constant thrust
(force) of 3000 1b-wt. Given that 1t 1s operated at maximum thrust during take-off, calculate
the power (in horsepower) delivered to the airplane by the engine when the airplane’s velocity
is 20 mph, 100 mph, and 300 mph (1 horsepower = 746 watts).

b) A piston engine at its maximum rate of fuel intake develops a constant power of 500
horsepower. Calculate the force it applies to the airplane during take-off at 20 mph, 100 mph,
and 300 mph.

2. A particle of mass m is subject to a constant force F. At t = 0 it has zero velocity. Use the
momentum theorem to find its velocity at any later time t. Calculate the energy of the particle
at any later time from both Eqgs. (2.7) and (2.8) and check that the results agree.

3. A particle of mass m is subject to a force given by Eq. (2.192). (In Eq. (2.192), 6t is a fixed
small time interval.) Find the total impulse delivered by the force during the time — oo < t < co.
If its init1al velocity (at t — — o0) 1s vy, what 1s its final velocity (as t — 00)? Use the momentum
theorem.

4. A high-speed proton of electric charge e moves with constant speed v, in a straight line
past an electron of mass m and charge — e, initially at rest. The electron is at a distance a from
the path of the proton.

a) Assume that the proton passes so quickly that the electron does not have time to move
appreciably from its initial position until the proton is far away. Show that the component of
force in a direction perpendicular to the line along which the proton moves 1s

e’a
T dmeg (@ + 032
where t = 0 when the proton passes closest to the electron.

b) Calculate the impulse delivered by this force.

¢) Write the component of the force in a direction parallel to the proton velocity and show
that the net impulse in that direction is zero.

d) Using these results, calculate the (approximate) final momentum and final kinetic energy
of the electron.

€) Show that the condition for the original assumption in part (a) to be valid is
(€?/4mey) << Smvd.

(mks units)

5. A particle of mass m at rest at t = 0 is subject to a force F(t) = F sin® wt.
a) Sketch the form you expect for v(t) and x(z), for several periods of oscillation of the force.
b) Find v(¢) and x(t) and compare with your sketch.
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F(t)I

Fo ————— —

[l e
0 t
Fig. 2.9 Force in Problem 6.

6. A particle of mass m, initial velocity v, is subject beginning at ¢t = 0 to a force F(t) as
sketched in Fig. 2.9.

a) Make a sketch showing F(t) and the expected form of v(t) and x(¢).

b) Devise a simple function F(t) having this form, and find x(t) and v(z).

7. A particle which had originally a velocity v, is subject to a force given by Eq. (2.191).

a) Find v(t) and x(¢).

b) Show that as 6t — 0, the motion approaches motion at constant velocity with an abrupt
change in velocity at t = ¢, of amount py/m. (6t is a fixed time interval.)

8. A microphone contains a diaphragm of mass m and area A, suspended so that it can
move freely in a direction perpendicular to the diaphragm. A sound wave impinges on the
diaphragm so that the pressure on its front face is

p = po+p' sin wt.

Assume that the pressure on its back face remains constant at the atmospheric pressure p,.
Neglecting all other forces except that due to the pressure difference across the diaphragm,
find its motion. In an actual microphone there is a restoring force on the diaphragm which
keeps it from moving too far. Since this force is neglected here, nothing prevents the diaphragm
from drifting away with a constant velocity. Avoid this difficulty by choosing the initial
velocity so that the motion is purely oscillatory. If the output voltage of the microphone is to
be proportional to the sound pressure p’ and independent of w, how must it depend upon the
amplitude and frequency of the motion of the diaphragm?

9. A tug of war is held between two teams of five men each. Each man weighs 160 Ib and
can initially pull on the rope with a force of 200 Ib-wt. At first the teams are evenly matched,
but as the men tire, the force with which each man pulls decreases according to the formula

F = (200 Ib-wt) e,

where the mean tiring time 7 is 10 sec for one team and 20 sec for the other. Find the motion.
Assume the men do not change their grip on the rope. (g = 32 ft-sec™2.) What is the final
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velocity of the two teams? Which of our assumptions is responsible for this unreasonable
result?

10. A particle initially at rest is subject, beginning at ¢ = 0, to a force
F = Fye™ " cos (wt+0).

a) Find its motion.
b) How does the final velocity depend on 6, and on w? [Hint: The algebra is simplified by
writing cos (wt+ 8) in terms of complex exponential functions.]

11: A boat with initial velocity v, is slowed by a frictional force
F = —be™.

a) Find its motion.
b) Find the time and the distance required to stop.

12. A boat is slowed by a frictional force F(v). Its velocity decreases according to the formula

v= C(t - tl)z’
where C is a constant and t, is the time at which it stops. Find the force F(v).

13. A jet engine which develops a constant maximum thrust F, is used to power a plane
with a frictional drag proportional to the square of the velocity. If the plane starts at t = 0
with a negligible velocity and accelerates with maximum thrust, find its velocity v(z).

14. Assume that the engines of a propeller-driven airplane of mass m deliver a constant
power P at full throttle. Find the force F(v). Neglecting friction use the method of Section 2.4
to find the velocity and position of the plane as it accelerates down the runway, starting from
rest at t = 0. Check your result for the velocity using the energy theorem. In what ways are
the assumptions in this problem physically unrealistic? In what ways would the answer be
changed by more realistic assumptions?

15. The engine of a racing car of mass m delivers a constant power P at full throttle. Assuming
that the friction is proportional to the velocity, find an expression for v(z) if the car accelerates
from a standing start at full throttle. Does your solution behave correctly as ¢t — c0?

16. a) A body of mass m slides on a rough horizontal surface. The coefficient of static friction
is u,,and the coefficient of sliding friction is u. Devise an analytic function F(v) to represent
the frictional force which has the proper constant value at appreciable velocities and reduces
to the static value at very low velocities.

b) Find the motion under the force you have devised if the body starts with an initial velocity
g-

17. Find o(t) and x(t) for a particle of mass m which starts at x, = 0 with velocity v,, subject
to a force given by Eq. (2.31) with n % 1. Find the time to stop, and the distance required to
stop, and verify the remarks in the last paragraph of Section 2.4.
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18. A particle of mass m is subject to a force
F = —kx+kx®/a®

where k, a are constants.

a) Find V(x) and discuss the kinds of motion which can occur.

b) Show that if E = 4ka? the integral in Eq. (2.46) can be evaluated by elementary methods.
Find x(t) for this case, choosing x, t, in any convenient way. Show that your result agrees
with the qualitative discussion in part (a) for this particular energy.

19. A particle of mass m is repelled from the origin by a force inversely proportional to the
cube of its distance from the origin. Set up and solve the equation of motion if the particle is

initially at rest at a distance x, from the origin.

20. A mass'm is connected to the origin with a spring of constant k, whose length when
relaxed is I. The restoring force is very nearly proportional to the amount the spring has been
stretched or compressed so long as it is not stretched or compressed very far. However, when
the spring is compressed too far, the force increases very rapidly, so that it is impossible to
compress the spring to less than half its relaxed length. When the spring is stretched more
than about twice its relaxed length, it begins to weaken, and the restoring force becomes zero
when it is stretched to very great lengths.

a) Devise a force function F(x) which represents this behavior. (Of course a real spring is
deformed if stretched too far, so that F becomes a function of its previous history, but you
are to assume here that F depends only on x.)

b) Find V(x) and describe the types of motion which may occur.

21. A particle of mass m is acted on by a force whose potential energy is
V = ax?—bx>.

a) Find the force.

b) The particle starts at the origin x = 0 with velocity v,. Show that, if |vg| < v,, where v,
is a certain critical velocity, the particle will remain confined to a region near the origin.
Find v..

22. An alpha particle in a nucleus is held by a potential having the shape shown in Fig. 2.10.
a) Describe the kinds of motion that are possible.
b) Devise a function V(x) having this general form and having the values — ¥, and V; at
x = 0and x = +x,, and find the corresponding force.

1" (2)

+1
_/1\ /I\ X

-y Ty
_1v(l

Fig. 2.10
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23. A particle is subject to a force
a
F = —kx +—3 .
X

a) Find the potentijal V(x), describe the nature of the solutions, and find the solution x(t).
b) Can you give a simple interpretation of the motion when E? >> ka?

24. A particle of mass m is subject to a force given by

F_p <a2 28a5+27a8>'

x2 x5 | xB
The particle moves only along the positive x-axis.

a) Find and sketch the potential energy. (B and a are positive.)

b) Describe the types of motion which may occur. Locate all equilibrium points and determine
the frequency of small oscillations about any which are stable.

c) A particle starts at x = 3a/2 with a velocity v = —uv,, where v, is positive. What is the
smallest value of v, for which the particle may eventually escape to a very large distance?
Describe the motion in that case. What is the maximum velocity the particle will have? What
velocity will it have when it is very far from 1its starting point?

25. The potential energy for the force between two atoms in a diatomic molecule has the
approximate form:

a b
PO
where x is the distance between the atoms and a, b are positive constants.

a) Find the force.

b) Assuming one of the atoms is very heavy and remains at rest while the other moves along
a straight line, describe the possible motions.

c) Find the equilibrium distance and the period of small oscillations about the equilibrium
position if the mass of the lighter atom is m.

26. Find the solution for the motion of a body subject to a linear repelling force F = kx.
Show that this is the type of motion to be expected in the neighborhood of a point of unstable
equilibrium.

27. A particle of mass m moves in a potential well given by

—Voa?(a® +x?)
V(x) = —gﬁ
a*+x

a) Sketch V(x) and F(x).

b) Discuss the motions which may occur. Locate all equilibrium points and determine the
frequency of small oscillations about any that are stable.

c) A particle starts at a great distance from the potential well with velocity v, toward the
well. As it passes the point x = g, it suffers a collision with another particle, during which it
loses a fraction a of its kinetic energy. How large must o be in order that the particle thereafter
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remains trapped in the well? How large must o be in order that the particle be trapped in one
side of the well? Find the turning points of the new motion if a = 1.

28. Solve Eq. (2.65) by each of the three methods discussed in Sections 2.3, 2.4, and 2.5.

29. Derive the solutions (2.74) and (2.75) for a falling body subject to a frictional force
proportional to the square of the velocity.

30. A body of mass m falls from rest through a medium which exerts a frictional drag (force)
bell.

a) Find its velocity v(¢).

b) What is the terminal velocity?

¢) Expand your solution in a power series in t, keeping terms up to ¢,

d) Why does the solution fail to agree with Eq. (1.28) even for short times t?

31. A projectile is fired vertically upward with an initial velocity v,. Find its motion, assuming
a frictional drag proportional to the square of the velocity. (Constant g.)

32. Derive equations analogous to Egs. (2.85) and (2.86) for the motion of a body whose
velocity is greater than the escape velocity. [ Hint: Set sinh B = (Ex/mMG)*/2.]

33. Find the motion of a body projected upward from the earth with a velocity equal to the
escape velocity. Neglect air resistance.

34. Starting with €2 = ('), obtain formulas for sin 26, cos 26 in terms of sin 6, cos 6.

35. By writing cos 6 in the form (2.122) derive the formula
cos®*0 = % cos 30+3 cos 6.

36. Find the general solutions of the equations:
a) mxX+bx—kx =0,
b) mx—bx+kx = 0.

Discuss the physical interpretation of these equations and their solutions, assuming that they
are the equations of motion of a particle.

37. Show that when w3 —y? is very smali, the underdamped solution (2.133) is approximately
equal to the critically damped solution (2.146), for a short time interval. What is the relation
between the constants C;, C, and A, 0? This result suggests how one might discover the
additional solution (2.143) in the critical case.

38. A freely rolling freight car weighing 10* kg arrives at the end of its track with a speed
of 2 m/sec. At the end of the track is a snubber consisting of a firmly anchored spring with
k = 1.6 x 10* kg/sec?. The car compresses the spring. If the friction is proportional to the
velocity, find the damping constant b, for critical damping. Sketch the motion x(t) and find
the maximum distance by which the spring is compressed (for b = b,). Show that if b > b,,
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the car will come to a stop, but if b < b,, the car will rebound and roll back down the track.
(Note that the car is not fastened to the spring. As long as it pushks on the spring, it moves
according to the harmonic oscillator equation, but instead of pulling on the spring, it will
simply roll back down the track.)

39. A mass m subject to a linear restoring force — kx and damping — bx is displaced a distance
X, from equilibrium and released with zero initial velocity. Find the motion in the under-
damped, critically damped, and overdamped cases.

40. Solve Problem 39 for the case when the mass starts from its equilibrium position with
an initial velocity v,. Sketch the motion for the three cases.

41. Solve Problem 39 for the case when the mass has an initial displacement x, and an
initial velocity v, directed back toward the equilibrium point. Show that if |ve|>|Y1x0], the
mass will overshoot the equilibrium in the critically damped and overdamped cases so that
the remarks at the end of Section 2.9 do not apply. Sketch the motion in these cases.

42. It is desired to design a bathroom scale with a platform deflection of one inch under a
200-1b man. If the motion is to be critically damped, find the required spring constant k and
the damping constant b. Show that the motion will then be overdamped for a lighter person.
If a 200-1b man steps on the scale, what is the maximum upward force exerted by the scale
platform against his feet while the platform is coming to rest?

43. A mass of 1000 kg drops from a height of 10 m on a platform of negligible mass. It is
desired to design a spring and dashpot on which to mount the platform so that the platform
will settle to a new equilibrium position 0.2 m below its original position as quickly as possible
after the impact without overshooting.

a) Find the spring constant k and the damping constant b of the dashpot. Be sure to examine
your proposed solution x(t) to make sure that it satisfies the correct initial conditions and

does not overshoot.
b) Find, to two significant figures, the time required for the platform to settle within 1 mm

of its final position.

44. A force Foe™™ acts on a harmonic oscillator of mass m, spring constant k, and damping
constant b. Find a particular solution of the equation of motion by starting from the guess

that there should be a solution with the same time dependence as the applied force.

45. a) Find the motion of a damped harmonic oscillator subject to a constant applied
force F,, by guessing a “steady-state” solution of the inhomogeneous equation (2.91) and adding
a solution of the homogeneous equation.

b) Solve the same problem by making the substitution x" = x —a, and choosing the constant
a so as to reduce the equation in x’ to the homogeneous equation (2.90). Hence show that the
effect of the application of a constant force is merely to shift the equilibrium position without
affecting the nature of the oscillations.

46. An underdamped harmonic oscillator is subject to an applied force
F = Fye™™ cos (wt+0).
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Find a particular solution by expressing F as the real part of a complex exponential function
and looking for a solution for x having the same exponential time dependence.

47. An undamped harmonic oscillator (b = 0), initially at rest, is subject beginning at t = 0
to an applied force F sin wt. Find the motion x(¢).

48. An undamped harmonic oscillator (b = 0) is subject to an applied force F, cos wt.
Show that if w = w,, there is no steady-state solution. Find a particular solution by starting
with a solution for w = wq+¢, and passing to the limit ¢ — 0. [Hint: If you start with the
steady-state solution and let ¢ — 0, it will blow up. Try starting with a solution which fits the
initial condition x, = 0, so that it cannot blow up at ¢t = 0.]

49. A critically damped harmonic oscillator with mass m and spring constant k, is subject
to an applied force F, cos wt. If, at t = 0, x = xy and v = v,, what is x(t)?

50. A force F cos (wt+0,) acts on a damped harmonic oscillator beginning at ¢t = 0.
a) What must be the initial values of x and v in order that there be no transient?
b) Ifinstead x, = v, = 0]find the amplitude A and phase 6 of the transient in terms of F, 0.

x—

Fig. 2.11

51. A massmisattached to a spring with force constant k, relaxed length [, as shown in Fig. 2.11.1
The left end of the spring is not fixed, but is instead made to oscillate with amplitude g,
frequency w, so that X = a sin wt, where X is measured from a fixed reference point 0. Write
the equation of motion, and show that it is equivalent to Eq. (2.148) with an applied force ka
sin wt, if the friction is given by Eq. (2.31). Show that, if the friction comes instead from a
dashpot connected between the ends of the spring, so that the frictional force is —b(x — X),
then the equation of motion has an additional applied force wba cos wt.

52. An automobile weighing one ton (2000 Ib, including passengers but excluding wheels
and everything else below the springs) settles one inch closer to the road for every 200 1b of
passengers. It is driven at 20 mph over a washboard road with sinusoidal undulations having
a distance between bumps of 1 ft and an amplitude of 2 in (height of bumps and depth of
holes from mean road level). Find the amplitude of oscillation of the automobile, assuming
it moves vertically as a simple harmonic oscillator without damping (no shock absorbers).
(Neglect the mass of wheels and springs.) If shock absorbers are added to provide damping,
is the ride better or worse? (Use the result of Problem 51.)
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53. An undamped harmonic oscillator of mass m, natural frequency w,, is initially at rest
and is subject at t = 0 to a blow so that it starts from x, = 0 with initial velocity v, and
oscillates freely until t = 3n/2w,. From this time on, a force F = B cos (wt+6) is applied.
Find the motion.

54. Find the motion of a mass m subject to a restoring force —kx, and to a damping force
(+)umg due to dry sliding friction. Show that the oscillations are isochronous (period in-
dependent of amplitude) with the amplitude of oscillation decreasing by 2ug/w3 during each
half-cycle until the mass comes to a stop. [ Hint: Use the result of Problem 45. When the force
has a different algebraic form at different times during the motion, as here, where the sign of
the damping force must be chosen so that the force is always opposed to the velocity, it is
necessary to solve the equation of motion separately for each interval of time during which a
particular expression for the force is to be used, and to choose as initial conditions for each
time interval the final position and velocity of the preceding time interval.]

55. An undamped harmonic oscillator (y = 0), initially at rest, is subject to a force given by
Eq. (2.191).

a) Find x(¢).

b) For a fixed p,, for what value of 6t is the final amplitude of oscillation greatest?

c) Show that as 6t — 0, your solution approaches that given by Eq. (2.190).

56. Find the solution analogous to Eq. (2.190) for a critically damped harmonic oscillator
subject to an impulse p, delivered at ¢t = ¢,

57. a) Find, using the principle of superposition, the motion of an underdamped oscillator
[y = (1/3)w,] initially at rest and subject, after ¢ = 0, to a force
F = A sin wyt+ B sin 3wyt

where w, is the natural frequency of the oscillator.
b) What ratio of B to A4 is required in order for the forced oscillation at frequency 3w, to
have the same amplitude as that at frequency w,?

58. A force Fy(1—e~*) acts on a harmonic oscillator which is at rest at ¢ = 0. The mass is
m, the spring constant k = 4ma?, and b = ma. Find the motion. Sketch x(z).

*59, Solve Problem 58 for the case k = ma?, b = 2ma.

60. Find, by the Fourier-series method, the steady-state solution for the damped harmonic
oscillator subject to a force
F(o) = 0, if nT <t<@+)T,
CFy, i m+HT <t < (m+1T,
where n is any integer, and T = 67/w,, where w, is the resonance frequency of the oscillator.
Show that if y << w,, the motion is nearly sinusoidal with period T/3.

*An asterisk is used, as explained in the Preface, to indicate problems which may be particularly
difficult.
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61. Find, by the Fourier-series method, the steady-state solution for an undamped harmonic
oscillator subject to a force having the form of a rectified sine-wave:
F(t) = F, [sin wyt],

where w, 1s the natural frequency of the oscillator.
62. Solve Problem 58 by using Green’s solution (2.210).

63. An underdamped oscillator initially at rest is acted upon, beginning at ¢t = 0, by a force
given by Eq. (2.191). Find its motion by using Green’s solution (2.210).

64. Using the result of Problem 56, find by Green’s method the motion of a critically damped
oscillator initially at rest and subject to a force F(z).



CHAPTER 3

MOTION OF A PARTICLE
IN TWO OR THREE DIMENSIONS

3.1 VECTOR ALGEBRA

The discussion of motion in two or three dimensions is vastly simplified by the
introduction of the concept of a vector. A vector is defined geometrically as a
physical quantity characterized by a magnitude and a direction in space. Ex-
amples are velocity, force, and position with respect to a fixed origin. Schematically,
we represent a vector by an arrow whose length and direction represent the
magnitude and direction of the vector. We shall represent a vector by a letter in
boldface italic type. The same letter in ordinary italics will represent the magnitude
of the vector. (See Fig. 3.1.) The magnitude of a vector may also be represented
by vertical bars enclosing the vector symbol:

A =4l 3.1)

Two vectors are equal if they have the same magnitude and direction; the concept
of a vector itself makes no reference to any particular location.*

\

/

Fig. 3.1 A vector 4 and its magnitude 4.

Fig. 3.2 Definition of multiplication of a vector by a scalar (¢ > 0).

*A distinction is sometimes made between “free” vectors, which have no particular location
in space; “sliding” vectors, which may be located anywhere along a line; and “fixed” vectors,
which must be located at a definite point in space. We prefer here to regard the vector as
distinguished by its magnitude and direction alone, so that two vectors may be regarded as
equal if they have the same magnitude and direction, regardless of position n space. In the
case of a vector quantity like force, it may then be necessary to specify not only the vector
which describes its magnitude and direction, but also the location at which it is applied.

72



3.1] VECTOR ALGEBRA 73

A quantity represented by an ordinary (positive or negative) number is often
called a scalar, to distinguish it from a vector. We define a product of a vector
A and a positive scalar ¢ as a vector cA4 in the same direction as 4 of magnitude
cA. If ¢ is negative, we define cA as having the magnitude |c|A and a direction
opposite to 4. (See Fig. 3.2.) It follows from this definition that

|| = le| 4] (32)
It is also readily shown, on the basis of this definition, that multiplication by a
scalar is associative in the following sense:

(cd)A = c(dA). (3.3)

It is sometimes convenient to be able to write the scalar to the right of the vector,
and we define Ac as meaning the same vector as cA4:

Ac = cA. (34

We define the sum (4 + B) of two vectors A and B as the vector which extends
from the tail of 4 to the tip of B when A is drawn with its tip at the tail of B, as in
Fig. 3.3. This definition is equivalent to the usual parallelogram rule, and is more
convenient to use. It is readily extended to the sum of any number of vectors, as
in Fig. 3.4.

On the basis of the definition given in Fig. 3.3, we can readily prove that
vector addition is commutative and associative:

A+B =B+4, (3.5)
(A+B)+C = A+(B+C). (3.6)

According to Eq. (3.6), we may omit parentheses in writing a vector sum, since the
order of adding does not matter. From the definitions given by Figs. 3.2 and 3.3,
we can also prove the following distributive laws:

¢(A+B) = cA+cB, 3.7)
(c+d)A = cA+dA. (3.8)

These statements can be proved by drawing diagrams representing the right and
left members of each equation according to the definitions given. For example,

T

Fos

A A+B+C+ D

Fig. 3.3 Definition of addition of two vectors.  Fig. 3.4 Addition of several vectors.
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(A+B)+Cn A+ (B+C)
Fig. 3.5 Proof of Eq. (3.6).

the diagram in Fig. 3.5 makes it evident that the result of adding C to (4 + B) is
the same as the result of adding (B+ C) to A.

According to Egs. (3.3) through (3.8), the sum and product we have defined
have most of the algebraic properties of sums and products of ordinary numbers.
This is the justification for calling them sums and products. Thus it is unnecessary
to commit these results to memory. We need only remember that we can manipulate
these sums and products just as we manipulate numbers in ordmary algebra,
provided we remember that the product defined by Fig. 3.2 can be formed only
between a scalar and a vector, and the result is a vector, and that the sum defined
by Fig. 3.3 can be formed only between two vectors, and the result is a vector.

A vector may be represented algebraically in terms of its components or
projections along a set of coordinate axes. Drop perpendiculars from the tail and
tip of the vector onto the coordinate axes as in Fig. 3.6. Then the component of
the vector along any axis is defined as the length of the segment cut off on the
axis by these perpendiculars. The component is taken as positive or negative
according to whether the projection of the tip of the vector lies in the positive or
negative direction along the axis from the projection of the tail. The components

w

B
o e ]
=

‘—Al/_

-

(a) (b)

Fig. 3.6 (a) Components of a vector in a plane. (b) Components of a vector in space.
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Ay Ayy
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e
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=

Fig. 3.7 Diagrammatic proof of the formula 4 = 4, £+ A4,).

of a vector A4 along x-, y-, and z-axes will be written 4,, A, and A,. The notation
(A,, A,, A,) will sometimes be used to represent the vector A4:

A=A, A, A). ' (3.9)

If we define vectors £, §, £ of unit length along the x-, y-, z-axes respectively, then
we can write any vector as a sum of products of its components with £, y, £:*

A= AZ+AP+A42 (3.10)

The correctness of this formula can be made evident by drawing a diagram in
which the three vectors on the right, which are parallel to the three axes, are added
to give A. Figure 3.7 shows this construction for the two-dimensional case.

We now have two equivalent ways of defining a vector: geometrically as a
quantity with a magnitude and direction in space, or algebraically as a set of three
numbers (4,, A,, A,), which we call its components.t The operations of addition
and multiplication by a scalar, which are defined geometrically in Figs. 3.2 and
3.3 in terms of the lengths and directions of the vectors involved, can also be
defined algebraically as operations on the components of the vectors. Thus cA4 is
the vector whose components are the components of 4, each multiplied by c:

cA = (cA,, cA,, cA.), (3.11)

and A + B is the vector whose components are obtained by adding the components
of A and B:

A+B = (A, +B,,A,+B,, A,+B,). (3.12)

*We will use the caret over a boldface italic letter to denote a vector of unit length.

tThese two ways of defining a vector are not quite equivalent as given here, for the algebraic
definition requires that a coordinate system be set up, whereas the geometric definition does
not refer to any particular set of axes. This flaw can be remedied by making the algebraic
definition also independent of any particular set of axes. This is done by studying how the
components change when the axes are changed, and defining a vector algebraically as a set
of threc quantities which transform in a certain way when the axes are changed. This refine-
ment will not concern us in this chapter.
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Fig. 3.8 Proof of equivalence of algebraic and geometric definitions of vector addition.

The equivalence of the definitions (3.11) and (3.12) to the corresponding geometrical
definitions can be demonstrated by drawing suitable diagrams. Figure 3.8 con-
stitutes a proof of Eq. (3.12) for the two-dimensional case. All vectors are drawn
in Fig. 3.8 so that their components are positive; for a complete proof, similar
diagrams should be drawn for the cases where one or both components of either
vector are negative. The length of a vector can be defined algebraically as follows:

|A| = (A2+ A2+ 42D, (3.13)

where the positive square root is to be taken.

We can now give algebraic proofs of Egs. (3.2), (3.3), (3.5), (3.6), (3.7), and (3.8),
based on the definitions (3.11), (3.12), and (3.13). For example, to prove Eq. (3.7),
we show that each component of the left side agrees with each component on the
right. For the x-component, the proof runs:

[c(A +B)], = (A +B), [by Eq. (3.11)]
= c¢(A,+B,) [by Eq. (3.12)]
= cA,+cB,
= (cA);+(cB), [by Eq. (3.11)]
= (cA +cB),. [by Eq. (3.12)]

Since all components are treated alike in the definitions (3.11), (3.12), (3.13), the
same proof holds for the y- and z-components, and hence the vectors on the left
and right sides of Eq. (3.7) are equal.

In view of the equivalence of the geometrical and algebraic definitions of the
vector operations, it is unnecessary, for geometrical applications, to give both an
algebraic and a geometric proof of each formula of vector algebra. Either a geo-
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Fig. 3.9 Two methods of subtraction of vectors.

metric or an algebraic proof, whichever is easiest, will suffice. However, there are
important cases in physics where we have to consider sets of quantities which
behave algebraically like the components of vectors although they cannot be
interpreted geometrically as quantities with a magnitude and direction in ordinary
space. In order that we may apply the rules of vector algebra in such applications,
it is important to know that all of these rules can be proved purely algebraically
from the algebraic definitions of the vector operations. The geometric approach
has the advantage of enabling us to visualize the meanings of the various vector
notations and formulas. The algebraic approach simplifies certain proofs, and
has the further advantage that it makes possible wide applications of the mathe-
matical concept of a vector, including many cases where the ordinary geometric
meaning is no longer retained.

We may define subtraction of vectors in terms of addition and multiplication
by —1:

A—B =A+(-B)=(A,—B,, A,—B,, A,—B,). (3.14)

The difference A — B may be found geometrically according to either of the two
schemes shown in Fig. 3.9. Subtraction of vectors may be shown to have all the
algebraic properties to be expected by analogy with subtraction of numbers.

It is useful to define a scalar product (A - B) of two vectors 4 and B as the product
of their magnitudes times the cosine of the angle between them (Fig. 3.10):

A*B = AB cos 6. (3.15)

The scalar product is a scalar or number. It is also called the dot product or inner
product, and can also be defined as the product of the magnitude of either vector
times the projection of the other along it. An example of its use is the expression
for the work done when a force F acts through a distance s not necessarily parallel
toit:

W = Fscos 0 = F-s.

A

Fig. 3.10 Angle between two vectors.
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