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Preface

Of the five editions of this text, this is the third edition that I have prepared. In
doing so, I have attempted to adhere to the late Jerry Marion’s original purpose of
producing a modern and reasonably complete account of the classical mechanics
of particles, systems of particles, and rigid bodies for physics students at the ad-
vanced undergraduate level. The purpose of the book continues to be threefold:

1. To present a modern treatment of classical mechanical systems in such a way
that the transition to the quantum theory of physics can be made with the
least possible difficulty.

2. To acquaint the student with new mathematical techniques wherever possi-
ble, and to give him/her sufficient practice in solving problems so that the
student may become reasonably proficient in their use.

3. To impart to the student, at the crucial period in the student’s career be-
tween “introductory” and “advanced” physics, some degree of sophistication
in handling both the formalism of the theory and the operational technique
of problem solving.

After a firm foundation in vector methods is presented in Chapter 1, further
mathematical methods are developed in the textbook as the occasion demands.
It is advisable for students to continue studying advanced mathematics in sepa-
rate courses. Mathematical rigor must be learned and appreciated by students of
physics, but where the continuity of the physics might be disturbed by insisting
on complete generality and mathematical rigor, the physics has been given
precedence.

Changes for the Fifth Edition

The comments and suggestions of many users of Classical Dynamics have been in-

corporated into this fifth edition. Without the feedback of the many instructors
v
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Special Feature

The author has kept one popular feature of Jerry Marion’s original book: the ad-
dition of historical footnotes spread throughout. Several users have indicated
how valuable these historical comments have been. The history of physics has
been almost eliminated from present-day curricula, and as a result, the student is
frequently unaware of the background of a particular topic. These footnotes are
intended to whet the appetite and to encourage the student to inquire into the
history of his field.

Teaching Aids

Teaching aids to accompany the textbook are available online at
http: /info.brookscole.com/thornton. The Instructor’s Manual (ISBN 0-534-
40898-2) contains solutions to all the end-of-chapter problems in addition to
Transparency Masters of selected key figures from the text. This password-
protected resource is easily printable in .pdf format. To receive your password,
just go to the above website and register; a username and password will be sent to
you once the information you have provided is verified. The verification
procedure ensures that you are an instructor teaching this course. If you are not
able to download the Instructor’s Manual files and would like a printed copy sent
to you, please contact your local sales representative. If you do not know who
your sales representative is, please visit www.brookscole.com, and click on the
Find your Rep tab, which is located at the top of the web page. Please do not dis-
tribute the Instructor’s Manual to students, or post the solutions on the Internet.
Students are not permitted to access the Instructor’s Manual.

Student Solutions Manual

A Student Solutions Manual by Stephen T. Thornton, which contains solutions to
25% of the problems, is available for sale to the students. Instructors are encour-
aged to order the Student Solutions Manual for their students to purchase at the
school bookstore. To package the Student Solutions Manual with the text, use
ISBN 0-534-08378-1, or to order the Student Solutions Manual separately use ISBN
0-534-40897-4. Students can also purchase the manual online at the publisher’s
website www.brookscole.com/ physics.

Acknowledgments

I would like to graciously thank those individuals who wrote me with suggestions
on the text or problems, who returned questionnaires, or who reviewed parts of
the 4th edition. They include
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vi PREFACE

who have used this text, it would not be possible to produce a textbook of signif-
icant value to the physics community. After the extensive revision for the fourth
edition, the changes in this edition have been relatively minor. Only a few re-
arrangements of material have been made. But several examples, especially nu-
merical ones, and many end-of-chapter problems have been added. Users have
not wanted extensive changes in the topics covered, but more examples for stu-
dents and a wider range of problems are always requested.

A strong effort continues to be made to correct the problem solutions avail-
able in the Instructor and Student Solutions Manuals. I thank the many users
who sent comments concerning various problem solutions, and many of their
names are listed below. Answers to even-numbered problems have again been in-
cluded at the end of the book, and the selected references and general biblio-
graphy have been updated.

Course Suitability

The book is suitable for either a one-semester or two-semester upper level (jun-
ior or senior) undergraduate course in classical mechanics taken after an intro-
ductory calculus-based physics course. At the University of Virginia we teach a
one-semester course based mostly on the first 12 chapters with several omissions
of certain sections according to the Instructor’s wishes. Sections that can be
omitted without losing continuity are denoted as optional, but the instructor can
also choose to skip other sections (or entire chapters) as desired. For example,
Chapter 4 (Nonlinear Oscillations and Chaos) might be skipped in its entirety
for a one-semester course. Some instructors choose not to cover the calculus of
variations material in Chapter 6. Other instructors may want to begin with
Chapter 2, skip the mathematical introduction of Chapter 1, and introduce the
mathematics as needed. This technique of dealing with the mathematics intro-
duction is perfectly acceptable, and the community is divided on this issue with a
slight preference for the method used here. The textbook is also suitable for a
full academic year course with an emphasis on mathematical and numerical
methods as desired by the instructor.

The textbook is appropriate for those who choose to teach in the traditional
manner without computer calculations. However, more and more instructors
and students are both familiar and adept with numerical calculations, and much
can be learned by doing calculations where parameters can be varied and real-
world conditions like friction and air resistance can be included. I decided be-
fore the 4th edition to leave the choice of method to the instructor and/or stu-
dent to choose the computer techniques to be used. That decision has been
confirmed, because there are many excellent software programs (including
Mathematica, Maple, and Mathcad to mention three) available to use. In addi-
tion, some Instructors have students write computer programs, which is an im-
portant skill to obtain.
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CHAPTER

Matrices, Vectors,
and Vector Calculus

1.1 Introduction

Physical phenomena can be discussed concisely and elegantly through the use of
vector methods.* In applying physical “laws” to particular situations, the results
must be independent of whether we choose a rectangular or bipolar cylindrical
coordinate system. The results must also be independent of the exact choice of
origin for the coordinates. The use of vectors gives us this independence. A
given physical law will still be correctly represented no matter which coordinate
system we decide is most convenient to describe a particular problem. Also, the
use of vector notation provides an extremely compact method of expressing
even the most complicated results.

In elementary treatments of vectors, the discussion may start with the state-
ment that “a vector is a quantity that can be represented as a directed line seg-
ment.” To be sure, this type of development will yield correct results, and it is
even beneficial to impart a certain feeling for the physical nature of a vector. We
assume that the reader is familiar with this type of development, but we forego
the approach here because we wish to emphasize the relationship that a vector
bears to a coordinate transformation. Therefore, we introduce matrices and ma-
trix notation to describe not only the transformation but the vector as well. We
also introduce a type of notation that is readily adapted to the use of tensors, al-
though we do not encounter these objects until the normal course of events re-
quires their use (see Chapter 11).

*Josiah Willard Gibbs (1839-1903) deserves much of the credit for developing vector analysis
around 1880-1882. Much of the present-day vector notation was originated by Oliver Heaviside
(1850-1925), an English electrical engineer, and dates from about 1893,
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We do not attempt a complete exposition of vector methods; instead, we
consider only those topics necessary for a study of mechanical systems. Thus in
this chapter, we treat the fundamentals of matrix and vector algebra and vector
calculus.

1.2 Concept of a Scalar

Consider the array of particles shown in Figure 1-1a. Each particle of the array is
labeled according to its mass, say, in grams. The coordinate axes are shown so
that we can specify a particular particle by a pair of numbers (x, ). The mass M
of the particle at (x, y) can be expressed as M(x, y); thus the mass of the particle
at x = 2, y = 3 can be written as M (x = 2, y = 3) = 4. Now consider the axes ro-
tated and displaced in the manner shown in Figure 1-1b. The 4 g mass is now lo-
cated at x’ = 4, y' = 3.5; that is, the mass is specified by M (x" = 4, y' = 3.5) = 4.
And, in general,

M(x, y) = M(x',y") (1.1)

because the mass of any particle is not affected by a change in the coordinate
axes. Quantities that are invariant under coordinate transformation—those that obey
an equation of this type—are termed scalars.

Although we can describe the mass of a particle (or the temperature, or the
speed, etc.) relative to any coordinate system by the same number, some physical
properties associated with the particle (such as the direction of motion of the
particle or the direction of a force that may act on the particle) cannot be speci-
fied in such a simple manner. The description of these more complicated quan-
tities requires the use of vectors. Just as a scalar is defined as a quantity that re-
mains invariant under a coordinate transformation, a vector may also be defined
in terms of transformation properties. We begin by considering how the coordi-
nates of a point change when the coordinate system rotates around its origin.

(a) (b)
FIGURE I-1 An array of particles in two different coordinate systems.
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1.3 Coordinate Transformations

Consider a point Pwith coordinates (x;, xo, x3) with respect to a certain coordi-
nate system.* Next consider a different coordinate system, one that can be gen-
erated from the original system by a simple rotation; let the coordinates of the
point Pwith respect to the new coordinate system be {xi, x5, x3). The situation is
illustrated for a two-dimensional case in Figure 1-2.

The new coordinate x; is the sum of the projection of x; onto the x{-axis
(the line Oa) plus the projection of x, onto the x{-axis (the line ab + bc); that is,

X1 = xy€08 60 + x,5in 0

.
= x;cos 0 + xgcos(g - 0) (1.2a)
The coordinate xy is the sum of similar projections: x; = Od — de, but the

line de is also equal to the line Of. Therefore

X = —x;8in 0 + x9cos 8

= x; cos(g + 9) + x,co0s 6 (1.2b)

Let us introduce the following notation: we write the angle between the
x;-axis and the x,-axis as (xj, x,), and in general, the angle between the x;-axis
and the x;-axis is denoted by (x;, x;). Furthermore, we define a set of numbers
Ay by

J— !
A = cos(x;j, x;) (1.3)
Xg-axis
x5-axis
I R
- e - xj-axis
AN N
Pid |
’ PRy 1 [
x2,/. a |b
e I
6 \
\
7] g .
x-axis
O ,/’ X1 1
I/,
’I

FIGURE 1-2 The position of a point P can be represented in two coordinate systems,
one rotated from the other.

*We label axes as x), xs, X4 instead of x, ¥, z to simplify the notation when summations are performed.
For the moment, the discussion is limited to Cartesian (or rectangular) coordinate systems.
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Therefore, for Figure 1-2, we have
A = cos(x, x;) = cos @
Alg = cos(xg, %) = cos(g - 9) = sin @
i > (1.4)
A9y = cos{xg, x1) = cos(§ + 0) = —sin @

Age = cOs(xg, X9) = cos 0 )

The equations of transformation (Equation 1.2) now become

x; = x;cos(x], x;) + xy cos(xi, x9)

= )tnxl + A]sz (l.5a)
X9 = xyC08(xg, x;) + x5 cOs(x9, X3)
= /\.21x1 + I\.22x2 (1-5b)

Thus, in general, for three dimensions we have

2] = A%y + Apgxs + Agsis |
xé - /\lel + /\22x2 + A23x3 > (1.6)
X5 = Ag;Xy + AgeXg + AgsXs )
or, in summation notation,
3
xl= 2hx;, i=123 (1.7)
=1
The inverse transformation is
x; = x1 cos(x], x;) + x5 cos(xy, x;) + x5 cos(xs, x;)
= Anx] + Agxs + Agyxg
or, in general,
3
%= 2A;xl, i=1,2,3 (1.8)
=1

The quantity A; is called the direction cosine of the x;-axis relative to the
x;-axis. It is convenient to arrange the A; into a square array called a matrix. The
boldface symbol A denotes the totality of the individual elements A; when
arranged as follows:

An A Agg
A=1Ay Apn Ay (1.9)
Asi Az Ass

Once we find the direction cosines relating the two sets of coordinate axes,
Equations 1.7 and 1.8 give the general rules for specifying the coordinates of a
point in either system.

When A is defined this way and when it specifies the transformation proper-
ties of the coordinates of a point, it is called a transformation matrix or a rota-
tion matrix.
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EXAMPLE 1.1

A point Pis represented in the (x;, xg, x3) system by P(2, 1, 3). In another coor-
dinate system, the same point is represented as P(xj, x3, x3) where x, has been
rotated toward x; around the x,-axis by an angle of 30° (Figure 1-3). Find the
rotation matrix and determine P(x{, x3, x3).

xg

X
x{

FIGURE 1-3 Example 1.1. A point Pis represented in two coordinate-systems, one
rotated from the other by 30°.

Solution. The direction cosines A,; can be determined from Figure 1-3 using
the definition of Equation 1.3.

A1 = cos(xq, ;) = cos(0°) =1
Az = cos(xq, x9) = cos(90°) =0
Az = cos(xq, x3) = cos(90°) =0
= cos(xs, %) = cos(90°) = 0
Agg = co0s(xg, x9) = c0s(30°) = 0.866
Ags = €OS(x, x3) = c0s(90° — 30°) = cos(60°) = 0.5
Ag; = cos(xs, x;) = cos(90°) = 0
= cos(xg, x¥9) = cos(90° + 30°) = —0.5
Ags = cos(x3, x3) = cos(30°) = 0.866
1 0 0
A=]|0 0866 0.5
0 —-05 0.866

>
m
I

>
3
!

and using Equation 1.7, P(x], xg, x3) is

x{ = /\le + A12x2 + I\.13X3 =X = 2
Xé = Aglx] + /\22x2 + /\23x3 = 0866x2 + 0.5x3 = 2.37
xé = A31x1 + /\52x2 + A33x3 = _0.5."02 + 08663&73 = 210
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Notice that the rotation operator preserves the length of the position vector.

r=Val+ad+ax3=VaPl+ 22+ x2 =374
11 X+ x3 1 2 3

1.4 Properties of Rotation Matrices™

To begin the discussion of rotation matrices, we must recall two trigonometric
results. Consider, as in Figure 1-4a, a line segment extending in a certain direc-
tion in space. We choose an origin for our coordinate system that lies at some
point on the line. The line then makes certain definite angles with each of the
coordinate axes; we let the angles made with the x;-, xo-, x5-axes be a, B3, v. The
quantities of interest are the cosines of these angles; cos a, cos B8, cos y. These
quantities are called the direction cosines of the line. The first result we need is
the identity (see Problem 1-2)

cos?a + cos?B + cos®y =1 (1.10)

Second, if we have two lines with direction cosines cos «, cos 8, cos y and cos o/,
cos f3’, cos 7', then the cosine of the angle 6 between these lines (see Figure 1-4b)
is given (see Problem 1-2) by

cosf = cosacosa’ + cosBcos B + cosycosy’ (1.11)

With a set of axes x;, x5, x5, let us now perform an arbitrary rotation about
some axis through the origin. In the new position, we label the axes xi, x9, x3.

@B,y
@pB.7)

.87

A !

x
1 x,

() (b)

FIGURE 14 (a) Aline segment is defined by angles (a, B, ) from the coordinate axes.
(b) Another line segment is added that is defined by angles (o', 8, ¥').

*Much of Sections 1.4-1.13 deals with matrix methods and transformation properties and will not be
needed by the reader until Chapter 11. Hence the reader may skip these sections until then if de-
sired. Those relations absolutely needed—scalar and vector products, for example—should already
be familiar from introductory courses.
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The coordinate rotation may be specified by giving the cosines of all the angles
between the various axes, in other words, by the A

Not all of the nine quantities A; are independent; in fact, six relations exist
among the Ay, so only three are independent. We find these six relations by
using the trigonometric results stated in Equations 1.10 and 1.11.

First, the x{-axis may be considered alone to be a line in the (x,, x4, x3) coor-
dinate system; the direction cosines of this line are (A, Ay, A3). Similarly, the di-
rection cosines of the x3-axis in the (x;, xo, x3) system are given by (Ag;, Agg, Ags).
Because the angle between the xj-axis and the xj-axis is /2, we have, from
Equation 1.11,

AuAgs + Ashes + Ashos = cos 8 = cos(m/2) = 0
or¥
;\U Ay =0
And, in general,
E,\ M =0, i#k (1.12a)

Equation 1.12a gives three (one for each value of 7 or k) of the six relations
among the A;.

Because the sum of the squares of the direction cosines of a line equals unity
(Equation 1.10), we have for the x{-axis in the (x,, xo, x3) system,

Af + Al + Af; = 1
or
g)\%j - él/\lj,\lj -1
and, in general,
EA M=1, i=k (1.12b)

which are the remaining three relatlons among the A;.
We may combine the results given by Equations 1.12a and 1.12b as

Z/\ Ay = (1.13)

where 8, is the Kronecker delta symbol’
0, ifi+k
Oy = 1.14
* {1, ifi =k (1.14)

The validity of Equation 1.13 depends on the coordinate axes in each of the
systems being mutually perpendicular. Such systems are said to be orthogonal,

*All summations here are understood to run from 1 to 3.
fIntroduced by Leopold Kronecker (1823-1891).
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and Equation 1.13 is the orthogonality condition. The transformation matrix A
specifying the rotation of any orthogonal coordinate system must then obey
Equation 1.13.

If we were to consider the x,-axes as lines in the x| coordinate system and
perform a calculation analogous to our preceding calculations, we would find
the relation

Ei)\zj)\ik = 8 (1.15)

The two orthogonality relations we have derived (Equations 1.13 and 1.15)
appear to be different. (Note: In Equation 1.13 the summation is over the second
indices of the A; whereas in Equation 1.15 the summation is over the first in-
dices.) Thus, it seems that we have an overdetermined system: twelve equations
in nine unknowns.* Such is not the case, however, because Equations 1.13 and
1.15 are not actually different. In fact, the validity of either of these equations
implies the validity of the other. This is clear on physical grounds (because the
transformations between the two coordinate systems in either direction are
equivalent), and we omit a formal proof. We regard either Equation 1.13 or 1.15
as providing the orthogonality relations for our systems of coordinates.

In the preceding discussion regarding the transformation of coordinates
and the properties of rotation matrices, we considered the point P to be fixed
and allowed the coordinate axes to be rotated. This interpretation is not unique;
we could equally well have maintained the axes fixed and allowed the point to
rotate (always keeping constant the distance to the origin). In either event, the
transformation matrix is the same. For example, consider the two cases illustrated
in Figures 1-6a and b. In Figure 1-ba, the axes x; and x, are reference axes, and
the x;- and xy-axes have been obtained by a rotation through an angle 6.

X9 X9

A - ,
\\ - 2] R
1 1

(a) (b)

FIGURE 1-5 (a) The coordinate axes x;,x, are rotated by angle 6, but the point P
remains fixed. (b) In this case, the coordinates of point P are rotated
to a new point P’, but not the coordinate system.

*Recall that each of the orthogonality relations represents six equations.
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Therefore, the coordinates of the point P with respect to the rotated axes may
be found (see Equations 1.2a and 1.2b) from

x] = x; cos @ + x,sin @ }

1.16
xg = — xy8in 6 + x cos @ (1.16)

However, if the axes are fixed and the point Pis allowed to rotate (as in Figure
1-5b) through an angle 6 about the origin (but in the opposite sense from that
of the rotated axes), then the coordinates of P’ are exactly those given by
Equation 1.16. Therefore, we may elect to say either that the transformation acts
on the point giving a new state of the point expressed with respect to a fixed co-
ordinate system (Figure 1-5b) or that the transformation acts on the frame of ref-
erence (the coordinate system), as in Figure 1-5a. Mathematically, the interpreta-
tions are entirely equivalent.

1.5 Matrix Operations*

The matrix A given in Equation 1.9 has equal numbers of rows and columns and
is therefore called a square matrix. A matrix need not be square. In fact, the co-
ordinates of a point may be written as a column matrix

X
X =1 x : (1.17a)
X3
Oor as a row matrix
X = (x1 X9 xg) (1.17b)

We must now establish rules to multiply two matrices. These rules must be
consistent with Equations 1.7 and 1.8 when we choose to express the x; and the
x/ in matrix form. Let us take a column matrix for the coordinates; then we have
the following equivalent expressions:

xl= 2 A, %; (1.18a)
j
X' = AX (1.18b)
X M A A X1
X3 ] =1 An A Ay || % (1.18¢)
2 Asi  Asp  Asg X3

X1 = A%y + Apxg + Apsxs
Xé = /\21x1 + A22x2 + A23x3 (1.18d)
x5 = Az1%1 T Agpdy + Agsxs

*The theory of matrices was first extensively developed by A. Cayley in 1855, but many of these ideas
were the work of Sir William Rowan Hamilton (1805-1865), who had discussed “linear vector opera-
tors” in 1852. The term matrix was first used by J. J. Sylvester in 1850.
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Equations 1.18a~d completely specify the operation of matrix multiplication
for a matrix of three rows and three columns operating on a matrix of three
rows and one column. {To be consistent with standard matrix convention we
choose X and X’ to be column matrices; multiplication of the type shown in
Equation 1.18c is not defined if X and X' are row matrices.)* We must now ex-
tend our definition of multiplication to include matrices with arbitrary numbers
of rows and columns.

The multiplication of a matrix A and a matrix B is defined only if the num-
ber of columns of A is equal to the number of rows of B. (The number of rows of
A and the number of columns of B are each arbitrary.) Therefore, in analogy
with Equation 1.18a, the product AB is given by

C= AB (1.19)
As an example, let the two matrices A and B be
3 -2 2
A=
(4 -3 5)
a b ¢
B=|[d ¢ f
g b J
We multiply the two matrices by
a b ¢
3 —
AB=(4 _: i) d e f (1.20)
g hJ

The product of the two matrices, C, is

— 2d + — %+ 2k Bc—2f+2j
C- ap (32— 2d+2 B8b—2+2h 3c— 2 2]) .21)
4a—3d+5g 4b—Be+Bh 4c— 3f+ Bj

To obtain the C; element in the ith row and jth column, we first set the two
matrices adjacent as we did in Equation 1.20 in the order A and then B. We then
multiply the individual elements in the ith row of A, one by one from left to
right, times the corresponding elements in the jth column of B, one by one
from top to bottom. We add all these products, and the sum is the C; element.
Now it is easier to see why a matrix A with m rows and n columns must be mult-
plied times another matrix B with » rows and any number of columns, say p. The
result is a matrix € of m rows and p columns.

*Although whenever we operate on X with the A matrix the coordinate matrix X must be expressed
as a column matrix, we may also write X as a row matrix (x;, X, x3), for other applications.



1.5 MATRIX OPERATIONS 11

EXAMPLE 1.2

Find the product AB of the two matrices listed below:

2 1 3
A=|-2 2 4
-1 -3 -4
-1 -2
B=| 1 2
3 4

Solution. We follow the example of Equations 1.20 and 1.21 to multiply the two
matrices together.

2 1 3\ /- -2
AB =| —2 4 1 2
-1 -3 -4 3 4
-2+1+9 —-4+2+12 8 10
AB=| 2+ 2+ 12 4+4+16| = 16 24
1-3-12 2—-6-16 —-14 -20

The result of multiplying a 3 X 3 matrix times a 3 X 2 matrix is a3 X 2 matrix.

It should be evident from Equation 1.19 that matrix multiplication is not
commutative. Thus, if A and B are both square matrices, then the sums

Ek:Aik B, and kZJB,.jk Ay

are both defined, but, in general, they will not be equal.

EXAMPLE 1.3

Show that the multiplication of the matrices A and B in this example is non-
commutative.

Solution. If A and B are the matrices

A=) o= ()

then
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but

thus

1.6 Further Definitions

A transposed matrix is a matrix derived from an original matrix by interchange
of rows and columns. We denote the transpose of a matrix A by A‘. According to
the definition, we have

Evidently,
(AHi= A (1.23)

Equation 1.8 may therefore be written as any of the following equivalent expres-
sions:

%= 2! (1.24a)
7
x; = 2ALx) (1.24b)
i
X = Alx’ (1.24c)
X1 A )\21 As x]
x2 - 1\12 A22 I\.32 xé (1 '24d)
Xg Az Agg  Agg x3

The identity matrix is that matrix which, when multiplied by another matrix,
leaves the latter unaffected. Thus

1A=A, B1=B (1.25)

-0 9 - (- 4

Let us consider the orthogonal rotation matrix A for the case of two dimensions:

A A
A= ( 11 12)
A1 Agg

that is,
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Agr A/ \Ap  Agp
_ ( Al + Ay ArAgy + /\12)\22)
AgiAn F Agedgg A + A%

Then

Using the orthogonality relation (Equation 1.13), we find
A+ AL, =A5 + A =1
AgiAn t AggAie = ApAgy + Ajgdge = 0

so that for the special case of the orthogonal rotation matrix A we have*

{1 0
AAL = (0 1) =1 (1.26)

The inverse of a matrix is defined as that matrix which, when multiplied by
the original matrix, produces the identity matrix. The inverse of the matrix A is
denoted by A%

AAl=1 (1.27)
By comparing Equations 1.26 and 1.27, we find

Al= A1 for orthogonal matrices ‘ (1.28)

Therefore, the transpose and the inverse of the rotation matrix A are identical.
In fact, the transpose of any orthogonal matrix is equal to its inverse.
To summarize some of the rules of matrix algebra:

1. Matrix multiplication is not commutative in general:

AB > BA (1.29a)
The special case of the multiplication of a matrix and its inverse is commu-
tative:

AA-l= ATA =1 (1.29b)

The identity matrix always commutes:
1IA=A1=A (1.29¢)

2. Matrix multiplication is associative:

[AB]C = A[BC] (1.30)

3. Matrix addition is performed by adding corresponding elements of the two
matrices. The components of € from the addition C = A + B are

C;= A; + B; (1.31)

Addition is defined only if A and B have the same dimensions.

*This result is not valid for matrices in general. It is true only for orthogenal matrices.



14 1 / MATRICES, VECTORS, AND VECTOR CALCULUS

1.7 Geometrical Significance
of Transformation Matrices

Consider coordinate axes rotated counterclockwise* through an angle of 90°
about the xs-axis, as in Figure 1-6. In such a rotation, x; = xg, x5 = —xy, X3 = Xs.
The only nonvanishing cosines are

cos(xp, xg) = 1 = Ay
cos(xg, 1) = —1 = Ag
cos(xg, x3) = 1 = Agg

so the A matrix for this case is

o0 1 0
A=1-1 0 0
0O 0 1
Next consider the counterclockwise rotation through 90° about the x;-axis,
as in Figure 1-7. We have x; = x;, x5 = X3, X3 = — X, and the transformation ma-
trix is
1 0
A, =10 0 1
0 -1

To find the transformation matrix for the combined transformation for rota-
tion about the x;-axis, followed by rotation about the new x;-axis (see Figure
1-8), we have

X' = AX (1.32a)
and
X" = AX’ (1.32b)
or
X" = AgA X (1.33a)
x| 1 0 0 0 1 0\/x 0 1 0\/x X9
xg | =10 0 1|]|-1T 0 O{xe|=[0 0O 1 |{xe] =125
X3 0 -1 ¢ 0 0 1/ \x4 1 0 0/ \x4 Xy
(1.33b)

*We determine the sense of the rotation by looking along the positive portion of the axis of rotation
at the plane being rotated. This definition is then consistent with the “right-hand rule,” in which the
positive direction of advance of a right-hand screw when turned in the same sense.
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W

Ay

TS X
90° rotation
about xg-axis

x1
FIGURE 1-6 Coordinate system X;, X9, X3 is rotated 90° counter-clockwise (ccw)

about the x3-axis. This is consistent with the right-hand rule of
rotation.

Ao

90° rotation
about x;-axis

X1 xl’

FIGURE 1-7 Coordinate system X;, Xy, X3 is rotated 90° ccw about the x;-axis.

X3
>
\_\ )(1 , A‘2 M
X9 x] x]
90° rotation 90° rotation

x]

. N "
about xs-axis about xj-axis  *3

FIGURE 18 Coordinate system x;, xo, X3 is rotated 90° ccw about the xs-axis followed
by a 90° rotation about the intermediate xj-axis.
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Therefore, the two rotations already described may be represented by a single
transformation matrix:

1\3 = Agl\l = (1.34)

—-— o O

1
0
0

S = O

and the final orientation is specified by x] = x,, x5 = x3, x5 = x;. Note that the
order in which the transformation matrices operate on X is important because
the multiplication is not commutative. In the other order,

Ay = Ay
0 1 0 1 0 0O
=|l-1 0 O 0 0 1
0O 0 1 g -1 O
0 0 1
=1 -1 0 O] #Ag (1.35)
0O -1 0

and an entirely different orientation results. Figure 1-9 illustrates the different
final orientations of a parallelepiped that undergoes rotations corresponding to
two rotation matrices A4, Ap when successive rotations are made in different
order. The upper portion of the figure represents the matrix product Ag A4, and
the lower portion represents the product A4 Ap.

Ay Ay
—-- —--
90° rotation 90° rotation
about xg-axis about xy-axis
X3
X
x
Ap Ay
— i

90° rotation | l: ; 90° rotation

about xg-axis about x3-axis

FIGURE 1-9 A parallelepiped undergoes two successive rotations in different order.
The results are different.
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Next, consider the coordinate rotation pictured in Figure 1-10 (which is the
same as that in Figure 1-2). The elements of the transformation matrix in two
dimensions are given by the following cosines:

cos(xy, X1} = cos 0 = Ay

cos{xy, X9) = cos(g — ) = sin @ = A,

2
co8{x3, xo) = c0OS 8 = Ago

cos(xg, x;) = cos(E + 0) = —sin § = Ay

Therefore, the matrix is

0 in 0
A, 2( cos sin ) (1.36a)

—sinf cos@

If this rotation were a three-dimensional rotation with x; = x5, we would
have the following additional cosines:

cos(xy, x3) = 0 = Ayq
cos(xg, x3) = 0 = Ao
cos(xg, x3) = 1 = Agg
cos(xg, 1) = 0 = Ay
cos(xg, x9) = 0 = Ago

and the three-dimensional transformation matrix is

cos 8 sing 0
A; = | —sinf cosf O (1.36b)
0 0 1

F
I
K

FIGURE 1-10 Coordinate system x;, X,, x5 is rotated an angle 8 ccw about the x3-axis.
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X3

(Inversion)

]

X3

FIGURE 1-11 An object undergoes an inversion, which is a reflection about the origin
of all the axes.

As a final example, consider the transformation that results in the reflection
through the origin of all the axes, as in Figure 1-11. Such a transformation is

called an inversion. In such a case, x] = —x;, x5 = —Xo, X3 = —x3, and
-1 0 0
Ag = 0 -1 0 (1.37)
0 0 -1

In the preceding examples, we defined the transformation matrix Az to be
the result of two successive rotations, each of which was an orthogonal transfor-
mation; A3 = A,A,. We can prove that the successive application of orthogonal
transformations always results in an orthogonal transformation. We write

gy

x] = ;;\x xh = 2]

Combining these expressions, we obtain

Xy = 2 (;I'LkiAij) X

7

= ’ [Aly x;
Thus, we accomplish the transformation from x; to x7 by operating on X; with the
(#A) matrix. The combined transformation will then be shown to be orthogonal
if (uA)!= (uA)~!. The transpose of a product matrix is the product of the
transposed matrices taken in reverse order (see Problem 1-4); that is, (AB)‘ =
B! A!, Therefore

(MA)! = Alpt (1.38)
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But, because A and g are orthogonal, A’ = A™! and pu’ = u~!. Multiplying the
above equation by A from the right, we obtain

(MA) A = Au'pA
= AlA
= AA
=1
= (uA) A

Hence

(pAY) = (pA)™! (1.39)

and the gA matrix is orthogonal.

The determinants of all the rotation matrices in the preceding examples can
be calculated according to the standard rule for the evaluation of determinants
of second or third order:

A A
’M = /\U Am = AiAgg — ’\12/\21 (1.40)
91 92
Al A A
IA[ = A21 Ago /\23
At Age Ay
A A A A A A
= Ay 29 23| » 21 23 + Ay 21 92 (1.41)
Ags  Ags Ag; Asgs Ag1 Age

where the third-order determinant has been expanded in minors of the first
row. Therefore, we find, for the rotation matrices used in this section,

|A1| = |1\2| = = |1\5| =1
but
lAﬁl = _1

Thus, all those transformations resulting from rotations starting from the oviginal set
of axes have determinants equal to +1. But an ¢nversion cannot be generated by
any series of rotations, and the determinant of an inversion matrix is equal to —1.
Orthogonal transformations, the determinant of whose matrices is +1, are
called proper rotations; those with determinants equal to —1 are called im-
proper rotations, A/l orthogonal matrices must have a determinant equal to either
+1 or —1. Here, we confine our attention to the effect of proper rotations and do
not concern ourselves with the special properties of vectors manifest in improper
rotations.
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FEXAMPLE 1.4

Show that |A,| = 1and |Ag] = —1.
Solution.
1 0 0 )
|Ag] = |0 0 1|=+1] Oi 0—-(-1)=1
0 -1 0
-1 0 0
-1 0
[Agl =] 0 -1 0=—1l 0 _li——1(1—0)
0 0 -1

1.8 Definitions of a Scalar and a Vector in Terms
of Transformation Properties
Consider a coordinate transformation of the type
x| = 2y, (1.42)
J
with
Z,\ Ay = (1.43)

If, under such a transformatlon, a quantity ¢ is unaffected, then ¢ is called a
scalar (or scalar invariant).

If a set of quantities (A;, Ay, A;) is transformed from the x; system to the x;
system by a transformation matrix A with the result

Al= ZAUA] (1.44)

then the quantities A, transform as the coordinates of a point (i.e., according to
Equation 1.42), and the quantity A = (A,, Ay, As) is termed a vector.

1.9 Elementary Scalar and Vector Operations

In the following, A and B are vectors (with components A; and B;) and ¢, {, and
& are scalars.

Addition
A;+ B;= B, + A, Commutative law (1.45)
A, + (B;+ C) = (A, + B) + C; Associative law (1.46)



1.10  SCALAR PRODUCT OF TWO VECTORS 21

b+ =y + Commutative law (1.47)
d+ (Y + & = (p+ ) + & Associative law (1.48)
Multiplication by a scalar &
(A = B isavector (1.49)
&b = ¢ isascalar (1.50)

Equation 1.49 can be proved as follows:
B! = %',A,.].Bj = §/\,.J.§Aj
= 62./\,-,:A,- = fA;] (1.51)
J

and £A transforms as a vector. Similarly, £¢ transforms as a scalar.

1.10 Scalar Product of Two Vectors

The multiplication of two vectors A and B to form the scalar product is defined
to be

A-B=2A,B . (1.52)

where the dot between A and B denotes scalar multiplication; this operation is
sometimes called the dot product.

The vector A has components A;, A;, Az, and the magnitude (or length) of A
is given by :

Al = +VAZ+ A3+ A3=A (1.53)

where the magnitude is indicated by |A| or, if there is no possibility of confu-
sion, simply by A. Dividing both sides of Equation 1.52 by AB, we have

ot (1.54)

A;/A is the cosine of the angle a between the vector A and the x-axis (see
Figure 1-12). In general, A;/A and B;/B are the direction cosines A# and A2 of
the vectors A and B:

A-B

T 2ALAP (1.55)
The sum E,-A‘}A? is just the cosine of the angle between A and B (see Equation

1.11):
cos(A,B) = EA;-‘A?

or

A- B = AB cos(A, B) (1.56)
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X1

FIGURE 1-12 A vector A is shown in coordinate system x), Xg, x3 with its vector
components A, Ay, and As. The vector A is oriented at an angle &
with the x;-axis.

That the product A + B is indeed a scalar may be shown as follows. A and B
transform as vectors:

/i

Al=2A;A, Bl= gz\,—kBk (1.57)
j
Therefore the product A’ - B’ becomes

A'-B' = 2A'B]

-3(Fus)(Frn)

Rearranging the summations, we can write

A B =2 2N A A B,
But according to the orthogonality condition, the term in parentheses is just Ok
Thus,

A-B = Jz(gajkAjBk)
=§@@
=A'B (1.58)

Because the value of the product is unaltered by the coordinate transformation,
the product must be a scalar.

Notice that the distance from the origin to the point (%, %, x3) defined by
the vector A, called the position vector, is given by

Al = VAA=Vxi+ a3+ xl=\ 2a?



X3

('?15 E25 ES) A_B (x]: x29 x3)

B

X1
FIGURE 1-13 The vector A is the position vector of point (xy, xq, x3), and vector B is

the position vector of point (%, X, x3) The vector A — B is the
position vector from (%, Xg, X3) to (xy, X9, X3).

Similarly, the distance from the point (%, x,, x3) to another point (X, x,, X3) de-
fined by the vector B is

V2 -%)?=VA-B)-(A-B) = |A- B

That is, we can define the vector connecting any point with any other point as
the difference of the position vectors that define the individual ‘points, as in
Figure 1-13. The distance between the points is then the magnitude of the dif-
ference vector. And because this magnitude is the square root of a scalar prod-
uct, it is invariant to a coordinate transformation. This is an important fact and
can be summarized by the statement that orthogonal transformations are distance-
preserving transformations. Also, the angle between two vectors is preserved under
an orthogonal transformation. These two results are essential if we are to suc-
cessfully apply transformation theory to physical situations.
The scalar product obeys the commutative and distributive laws:

A‘B=2AB=2BA=B-A (1.59)
A B+C)=2A(B+ C),= ZA, (B, + C)

=2 (AB,+ AC) = (A-B) + (A-C) (1.60)

1.11 Unit Vectors

Sometimes we want to describe a vector in terms of the components along the
three coordinate axes together with a convenient specification of these axes. For
this purpose, we introduce unit vectors, which are vectors having a length equal
to the unit of length used along the particular coordinate axes. For example, the
unit vector along the radial direction described by the vector R is e, = R/ (|R| ).
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There are several variants of the symbols for unit vectors; examples of the most
common sets are (i, j, k), (e;, ey, €3), (e,, €, €;), and (r, 6, ¢ ). The following
ways of expressing the vector A are equivalent:

A= (A, Ay A3) or A=e A +edy + e Ay = e, (1.61)
or A=A+ Aj+ Ak

Although the unit vectors (i, j, k) and (f', 0, ) are somewhat easier to use, we
tend to use unit vectors such as (e, e,, €;3), because of the ease of summation no-
tation. We obtain the components of the vector A by projection onto the axes:

A=e A (1.62)

We have seen (Equation 1.56) that the scalar product of two vectors has a
magnitude equal to the product of the individual magnitudes multiplied by the
cosine of the angle between the vectors:

A-B = AB cos(A, B) (1.63)

If any two unit vectors are orthogonal, we have

€e;- ej - 5,] (1.64)

EXAMPLE 1.5

Two position vectors are expressed in Cartesian coordinates as A =i + 2j — 2k
and B = 4i + 2j — 3k. Find the magnitude of the vector from point A to point
B, the angle 0 between A and B, and the component of B in the direction of A.

Solution. The vector from point A to point Bis B — A (see Figure 1-13).
B-A=4i+2j—-3k—(i+2j—2k)=3—k
B—Al=Vo+1=V10
From Equation 1.56 :
A-B (it 2j—2k)- (4 +2j— 3k) ‘

cos 8 =
AB V9V29
4+44+6
cos § = ———— = 0.867
3(V29)
@ = 30°
The component of B in the direction of A is B cos § and, from Equation
1.56, P
A-B 14 :
B 6 =——=—=4.67
cos n 3
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1.12 Vector Product of Two Vectors

We next consider another method of combining two vectors—the vector prod-
uct (sometimes called the cross product). In most respects, the vector product of
two vectors behaves like a vector, and we shall treat it as such.* The vector prod-
uct of A and B is denoted by a bold cross X,

C=AXB (1.65)

where C is the vector resulting from this operation. The components of C are
defined by the relation

C = % £ A By (1.66)

where the symbol £;i 1s the permutation symbol or (Levi-Civita density) and has
the following properties:
0, ifanyindex is equal to any other index
ex =11, ifi j, kform an even permutation of 1, 2, 3 (1.67)
—1, ify4, j, kform an odd permutation of 1, 2, 3
An even permutation has an even number of exchanges of position of two sym-

bols. Cyclic permutations (for example, 123 — 231 — 312) are always even.
Thus

£199 = €313 = &1 = 0, etc.
E1o3 = €931 = €319 = +1
€132 = €13 = €391 = —1
Using the preceding notation, the components of C can be explicitly evaluated.

For the first subscript equal to 1, the only nonvanishing &, are &3 and &;30—
that is, for j, k = 2, 3 in either order. Therefore

G = jzksljkAjBk = E19349B5 + £130A3B,

= AyBg — A3B, (1.68a)

Similarly,
Co = AgB) — A1 Bg (1.68b)
Cs = AlB; — AsB, (1.68¢c)

Consider now the expansion of the quantity [ABsin(A, B)]*> = (ABsin#)2:
A?B%sin%0 = A?B? — A%?B2%cos?0

_ (EM)(Es?) - (EA,.BJ2

= (AgBs — A3By)* + (A3B, — A,B3)? + (ABy — A;B))? (1.69)

*The product actually produces an axial vector, but the term vector product is used to be consistent
with popular usage.
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FIGURE 1-14 The magnitude of the vector C determined by C = A X Bhasa
magnitude given by the area of the parallelogram ABsin 8, where 8
is the angle between the vectors A and B.

where the last equality requires some algebra. Identifying the components of C
in the last expression, we can write

(ABsin§)?2 = C} + C + C3 = |C?| = 2 (1.70)
If we take the positive square root of both sides of this equation,
C= ABsin 0 (1.71)

This equation states that if G = A X B, the magnitude of C is equal to the prod-
uct of the magnitudes of A and B multiplied by the sine of the angle between
them. Geometrically, AB sin 6 is the area of the parallelogram defined by the
vectors A and B and the angle between them, as in Figure 1-14.

EXAMPLE 1.6

Show by using Equations 1.52 and 1.66 that
A-(BXD)=D-(AXB) (1.72)

Solution. Using Equation 1.66, we have
(B X D), = ];EksijkBjDk
Using Equation 1.52, we have
A-(B X D) = %sﬁkAiﬁ-Dk (1.73)
Similarly, for the right-hand side of Equation 1.72, we have

D-(A X B) = %lzijkD,-AjBk

From the definition (Equation 1.67) of €4 We can interchange two adjacent in-
dices of g4, which changes the sign.

D-(AXB) =2 —g,DAB,

Lk
= Uzkejk,-AjBkD,- (1.74)

Because the indices 4, j, k are dummy and can be renamed, the right-hand sides
of Equations 1.73 and 1.74 are identical, and Equation 1.72 is proved. Equation
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1.72 can also be written as A » (B X D) = (A X B) - D, indicating that the scalar
and vector products can be interchanged as long as the vectors stay in the order
A, B, D. Notice that, if we let B = A, we have

A-AXD)=D-(AXA)=0
showing that A X D must be perpendicular to A.

A X B (i.e,, C) is perpendicular to the plane defined by A and B because
A:-(AXB) =0andB- (A X B) = 0. Because a plane area can be represented
by a vector normal to the plane and of magnitude equal to the area, C is evi-
dently such a vector. The positive direction of C is chosen to be the direction of
advance of a right-hand screw when rotated from A to B.

The definition of the vector product is now complete; components, magni-
tude, and geometrical interpretation have been given. We may therefore reason-
ably expect that C is indeed a vector. The ultimate test, however, is to examine
the transformation properties of C, and C does, in fact, transform as a vector
under a proper rotation.

We should note the following properties of the vector product that result
from the definitions:

(a) AXB=-BXxA (1.75)
but, in general,
(b) AX(BXC)#*AXB)xC (1.76)
Another important result (see Problem 1-22) is
AX(BXC)=A-CB—(A-B)C (1.77)
EXAMPLE 1.7
Find the product of (A X B) + (C X D).
Solution.

(A X B), = 25, A B,
ik

(CxXD); = LE EiimCi Dy,

The scalar product is then computed according to Equation 1.52:
(AXB)-(CxXD)= Z(stzjk AjBk)(lESilmCle)
i\ J m

Rearranging the summations, we have

(AxB)-(CxD) =2 ( . ejk,-elm,) 4 BGD,
Jok
where the indices of the &’s have been permuted (twice each so that no sign
change occurs) to place in the third position the index over which the sum is
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carried out. We can now use an important property of the £, (see Problem 1-22):

geijkslmk = 8,8;m — 8,0, (1.78)

We therefore have

(A X B)* (C X D) =2 (8,8, = 8;n8) A;B.C,Ds
Lm
Carrying out the summations over j and k, the Kronecker deltas reduce the ex-
pression to

(AXB)-(C xD)= LE (A;B,C.D, — A,B,CD,)

This equation can be rearranged to obtain

(A X B)-(CXD) = (EIZA, c,) (%Bmpm) — (ElBl c,) (%AmDm)

Because each term in parentheses on the right-hand side is just a scalar product,
we have, finally,

(AXB)-(C X D)= (A-C)(B-D) — (B-C)(A:D)

The orthogonality of the unit vectors e; requires the vector product to be
e; X e;= e, i J, kin cyclic order (1.79a)

We can now use the permutation symbol to express this result as

e Xe= Ek:ek i (1.79b)

The vector product C = A X B, for example, can now be expressed as
Cc-= % e €A By (1.80a)

By direct expansion and comparison with Equation 1.80a, we can verify a de-
terminantal expression for the vector product:

€ €y €3

C=AXB=[A A A (1.80b)
B B, B
We state the following identities without proof:
A:-BxXC)=B-(CxA) =C-(AXB)=ABC (1.81)
AX (BXxXC)=(A-C)B - (A-B)C (1.82)
(AXB):-(CXD)=A-[Bx (CxD)]
=A-[(B-D)C — (B-C)D] (1.83)
= (A-C)(B-D) — (A-D)(B-C)

(AX B) x (CXD) = [(A X B)-D]C — [(A X B)-C]D } (1.84)

= (ABD)C — (ABC)D = (ACD)B — (BCD)A
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1.13 Differentiation of a Vector
with Respect to a Scalar

If a scalar function ¢ = ¢(s) is differentiated with respect to the scalar variable s,
then, because neither part of the derivative can change under a coordinate
transformation, the derivative itself cannot change and must therefore be a
scalar; that is, in the x; and x] coordinate systems, ¢ = ¢’ and s = s, so d¢ = d¢’
and ds = ds’. Hence

2-4-9)

ds ds’ E

Similarly, we can formally define the differentiation of a vector A with re-
spect to a scalar s. The components of A transform according to

Al= ; XA, (1.85)

Therefore, on differentiation, we obtain (because the A; are independent of s’)

dA!  d dA;
s TN A = D
ds' ds'; U7 Y gy

Because s and s’ are identical, we have

dA]  [dA)\ dA;
—i = =2 —
ds ds i I\ ds

Thus the quantities dAj/ ds transform as do the components of a vector and
hence are the components of a vector, which we can write as dA/ ds.

We can give a geometrical interpretation to the vector dA/ ds as follows. First,
for dA/ ds to exist, A must be a continuous function of the variable s: A = A(s).
Suppose this function is represented by the continuous curve I' in F igure 1-15; at
the point P, the variable has the value s, and at Q it has the value s + As. The de-
rivative of A with respect to s is then given in standard fashion by

A _ |im BA _ [im AG 1 As) — A(y)
ds As—0 As A0 As

(1.86a)

)

FIGURE 1-15 The vector A(s) traces out the function I'(s) as the variable s changes.
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The derivatives of vector sums and products obey the rules of ordinary vec-
tor calcutus. For example,

dA dB
—_(A + B) = + — (1.86b)
ds ds
dB dA
——(A B)=A-—+ —-B (1.86¢)
ds ds
d aB dA
—(AXB)=AX—+—XB 1.86d
ds( ) ds ds ( )
d dd
—(pA) = b — + —A 1.86
Spa) =S (1.86e)

and similarly for total differentials and for partial derivatives.

1.14 Examples of Derivatives—
Velocity and Acceleration

Of particular importance in the development of the dynamics of point particles
(and of systems of particles) is the representation of the motion of these parti-
cles by vectors. For such an approach, we require vectors to represent the posi-
tion, velocity, and acceleration of a given particle. It is customary to specify the
position of a particle with respect to a certain reference frame by a vector r, which
is in general a function of time: r = r(#). The velocity vector v and the acceleration
vector a are defined according to

d
v= —‘; = i (1.87)
dv d%r
==="_"=F 1.88
a dt  di? ! ( )

where a single dot above a symbol denotes the first time derivative, and two dots
denote the second time derivative. In rectangular coordinates, the expressions
forr, v, and a are

\
r = x,e; + x.€y + x3€5 = Ex,-e,- Position
3
. . ax; .
v=1i= e = e Velocity (1.89)
! i dt

d2

a=v=F= Ex, e, = ‘e, Acceleration
i i d, 2 J

Calculating these quantities in rectangular coordinates is straightforward because
the unit vectors e; are constant in time. In nonrectangular coordinate systems,
however, the unit vectors at the position of the particle as it moves in space are
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not necessarily constant in time, and the components of the time derivatives of r
are no longer simple relations, as in Equation 1.89. We do not discuss general
curvilinear coordinate systems here, but plane polar coordinates, spherical coordi-
nates, and cylindrical coordinates are of sufficient importance to warrant a discus-
sion of velocity and acceleration in these coordinate systems.*

To express v and a in plane polar coordinates, consider the situation in
Figure 1-16. A point moves along the curve s(¢) and in the time interval
to — t; = dt moves from P to P®. The unit vectors, e, and e,, which are or-
thogonal, change from e{! to e{? and from e{" to e(? . The change in e, is

e® — el = de, (1.90)

which is a vector normal to e, (and, therefore, in the direction of e;). Similarly,
the change in ey is

e’ — el = de, (1.91)
which is a vector normal to e;. We can then write
de, = dbe, (1.92)
and
dey, = —doe, (1.93)

where the minus sign enters the second relation because de, is directed opposite
to e, (see Figure 1-16).

s(t)

FIGURE 1-16 An object traces out the curve s(¢) over time. The unit vectors €, and €,
and their differentials are shown for two position vectors r; and rs.

* Refer to the figures in Appendix F for the geometry of these coordinate systems.
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Equations 1.92 and 1.93 are perhaps easier to see by referring to Figure 1-16.
In this case, de, subtends an angle df with unit sides, so it has a magnitude of 46.
It also points in the direction of ey, so we have de, = dfe,. Similarly, de, subtends
an angle d# with unit sides, so it also has a magnitude of d@, but from Figure 1-16
we see that degy points in the direction of —e, so we have de;, = —d#e,.

Dividing each side of Equations 1.92 and 1.93 by df, we have

é, = fe, (1.94)
é, = —be, (1.95)
If we express v as
dr d
== Et(fer)
= re, + ré, (1.96)

we have immediately, using Equation 1.94,

v =1 =re,+ rle, (1.97)

so that the velocity is resolved into a radial component # and an angular (or
transverse) component 76.
A second differentiation yields the acceleration:

d .
a = Et(';'er + 7‘989)

= e, + 7é, + ibe, + rle, + r0é,

= (F— r0%e, + (16 + 2i0)e, (1.98)
so that the acceleration is resolved in.too a ra(.iial component (¥ — r6?) and an
angular (or transverse) component (rf + 270).

The expressions for ds, ds? v% and v in the three most important coordi-
nate systems (see also Appendix F) are

Rectangular coordinates (x, y, z)

ds = dxlel + dx2e2 + dx3e3
ds? = dx} + dx} + dx}

v? = &3 + i} + 3 (499
vV = %€ + Xoey + Xseq
Spherical coordinates (r, 0, ¢)
ds = dre, + rdfe, + rsin 0 doe,
ds? = dr? + r2d6? + r2sin?6 dg? (1.100)

2

Il

72 + r202 + r2sin20 d')2

v=rte, + rﬂ'ee + rsin0q'5e¢

U
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(The expressions for plane polar coordinates result from Equation 1.100 by set-

ting dgp = 0.)
Cylindrical coordinates (1, ¢, z)
ds = dre, + rdde, + dze,

ds® = dr? + r’d¢? + d?
o = 52+ 122 + 32 (1.101)

v = te, + T(i)ed, + ze,

EXAMPLE 1.8

Find the components of the acceleration vector a in cylindrical coordinates.

Solution. The velocity components in cylindrical coordinates were given in
Equation 1.101. The acceleration is determined by taking the time derivative of v.

d

a,, ; .
a= pr v = E:(re, + rde, + ie)

= fe, + ¢, + ide, + rde, + rdé, + Ze, + ie,

We need to find the time derivative of the unit vectors e,, e, and e,. The
cylindrical coordinate system is shown in Figure 1-17, and in terms of the (x, y, z)
components, the unit vectors e,, €, and e, are

e, = (cos ¢, sin ¢, 0)
e, = (—sin ¢, cos ¢, 0)
e, = (0,0,1)

FIGURE 1-17 The cylindrical coordinate system (7, ¢, z) are shown with respect to the
Cartesian system (x, y, z).
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The time derivatives of the unit vectors are found by taking the derivatives of
the components.

& = (—d¢sin ¢, & cos ¢, 0) = —qied,

éc;b = (_d.) cos ¢:_(ﬁ sin ¢)’ O) = —d.)er

e, =0

We substitute the unit vector time derivatives into the above expression for a.
a=re,+ ’Fg{;e¢ + i(f)eq, + rq?)'ed, — rqwae, + Ze,
= (¥ — rdVe, + (rd + 2id)e, + e,

1.15 Angular Velocity

A point or a particle moving arbitrarily in space may always be considered, at a
given instant, to be moving in a plane, circular path about a certain axis; that is,
the path a particle describes during an infinitesimal time interval 6 may be rep-
resented as an infinitesimal arc of a circle. The line passing through the center
of the circle and perpendicular to the instantaneous direction of motion is
called the instantaneous axis of rotation. As the particle moves in the circular
path, the rate of change of the angular position is called the angular velocity:
By 1.102
T U (1.102)

Consider a particle that moves instantaneously in a circle of radius R about
an axis perpendicular to the plane of motion, as in Figure 1-18. Let the position
vector r of the particle be drawn from an origin located at an arbitrary point O
on the axis of rotation. The time rate of change of the position vector is the
linear velocity vector of the particle, ¥ = v. For motion in a circle of radius R, the
instantaneous magnitude of the linear velocity is given by

ao
v=R i Rw (1.103)
The direction of the linear velocity v is perpendicular to r and in the plane of the
circle.

It would be very convenient if we could devise a vector representation of
the angular velocity (say, w) so that all the quantities of interest in the motion
of the particle could be described on a common basis. We can define a direction
for the angular velocity in the following manner. If the particle moves instanta-
neously in a plane, the normal to that plane defines a precise direction in
space—or, rather—two directions. We may choose as positive that direction correspon-
ding to the direction of advance of a right-hand screw when turned in the same
sense as the rotation of the particle (see Figure 1-18). We can also write the mag-
nitude of the linear velocity by noting that R = rsina. Thus

U= rmsin a (1.104)

TR o
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O

FIGURE 1-18 A particle moving ccw about an axis according to the right-hand rule
has an angular velocity @ = v X r about that axis.

Having defined a direction and a magnitude for the angular velocity, we note
that if we write

vV=mwXr (1.105)

then both of these definitions are satisfied, and we have the desired vector rep-
resentation of the angular velocity.

We should note at this point an important distinction between finite and in-
finitesimal rotations. An infinitesimal rotation can be represented by a vector
(actually, an axial vector), but a finite rotation cannot. The impossibility of de-
scribing a finite rotation by a vector results from the fact that such rotations do
not commute (see the example of Figure 1-9), and therefore, in general, differ-
ent results will be obtained depending on the order in which the rotations are
made. To illustrate this statement, consider the successive application of two fi-
nite rotations described by the rotation matrices A; and A,. Let us associate the
vectors A and B in a one-to-one manner with these rotations. The vector sum is C =
A + B, which is equivalent to the matrix A; = A,A;. But because vector addition
is commutative, we also have C = B + A, with A, = A;A,. But we know that
matrix operations are not commutative, so that in general A; # A4 Hence, the
vector G is not unique, and therefore we cannot associate a vector with a finite
rotation.

Infinitesimal rotations do not suffer from this defect of noncommutation. We
are therefore led to expect that an infinitesimal rotation can be represented by a
vector. Although this expectation is, in fact, fulfilled, the ultimate test of the vec-
tor nature of a quantity is contained in its transformation properties. We give
only a qualitative argument here.

Refer to Figure 1-19. If the position vector of a point changes from r to r +
dr, the geometrical situation is correctly represented if we write

or = 60 X r (1.106)
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60

FIGURE 1-19 The position vector r changes to r + &r by an infinitesimal
rotation angle 46.

where 80 is a quantity whose magnitude is equal to the infinitesimal rotation
angle and that has a direction along the instantaneous axis of rotation. The
mere fact that Equation 1.106 correctly describes the situation illustrated in
Figure 1-19 is not sufficient to establish that 88 is a vector. (We reiterate that the
true test must be based on the transformation properties of 80.) But if we show
that two infinitesimal rotation “vectors”—o0, and 88,—actually commute, the sole
objection to representing a finite rotation by a vector will have been removed.

Let us consider that a rotation 80, takes r into r + 8r;, where ér; = 80; X r.
If this is followed by a second rotation 80, around a different axis, the initial po-
sition vector for this rotation ig r + dr;. Thus

Sry = 80y X (r + Or))
and the final position vector for 80, followed by 80 is
r+8r, =r+ [60; X r+ 80, X (r + Ory)]
Neglecting second-order infinitesimals, then,
drip; = 80, X r+ 80y X r (1.107)
Similarly, if 60, is followed by 80,, we have
r+8ry =1+ [0, X r + 60, X (r + 0ry)]
or
Sty = 58, X 1 + 80, X 1 (1.108)

Rotation vectors 8r;, and 8ry; are equal, so the rotation “vectors” 0, and 88, do
commute. It therefore seems reasonable that 60 in Equation 1.106 is indeed a
vector.
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It is the fact that §0 is a vector that allows angular velocity to be represented
by a vector, because angular velocity is the ratio of an infinitesimal rotation angle
to an infinitesimal time:

50

YY)

Therefore, dividing Equation 1.106 by 8¢, we have
or 60
—=——Xr
ot Ot
or, in passing to the limit, 8¢ — 0,
V=mXr

as before.

1.16 Gradient Operator

We now turn to the most important member of a class called vector differential
operators—the gradient operator.

Consider a scalar ¢ that is an explicit function of the coordinates x; and,
moreover, is a continuous, single-valued function of these coordinates through-
out a certain region of space. Under a coordinate transformation that carries the
x; into the x}, ¢'(x1, x5, x3) = ¢d(xy, %o, x3), and by the chain rule of differentia-
tion, we can write

o’ dp 0X;
s Sl (1.109)
ox; j 9x;9x)
The case is similar for d¢'/dx; and d¢’/dx3, so in general we have
o’ o 0%;
¢', = Zib—i, (1.110)
0x; J 9x;0x;
The inverse coordinate transformation is
X = 2y (1.111)

Differentiating,

0x; 9 ox;
J o Py k
P (g)nkj xk) = 5;),\@.(—;) (1.112)

ox; ax
But the term in the last parentheses is just §;, so
% _

ox! Ek:)tkjﬁik = A (1.113)

if
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Substituting Equation 1.113 into Equation 1.110, we obtain

W _ 5

0x; 7o

(1.114)

Because it follows the correct transformation equation of a vector (Equation
1.44), the function 8¢/dx; is the jth component of a vector termed the gradient
of the function ¢. Note that even though ¢ is a scalar, the gradient of ¢ is a vector.
The gradient of ¢ is written either as grad ¢ or as Vo (“del” ¢).

Because the function ¢ is an arbitrary scalar function, it is convenient to de-
fine the differential operator described in the preceding in terms of the gradient
operator:

(grad), = V, = % (1.115)

i

We can express the complete vector gradient operator as

9
grad = V = Eeia Gradient (1.116)

The gradient operator can (a) operate directly on a scalar function, as in
Vé; (b) be used in a scalar product with a vector function, as in V - A (the diver-
gence (div) of A); or (c) be used in a vector product with a vector function, as in
V x A (the curl of A). We present the grad, divergence, and curl:

5
grad ¢ = Vo = Ee,.g‘f (1.117a)
94,
div A = V-Azza—l (1.117b)
i ox;
aA
crlA =V X A= Eei-k —ke,- (1.117¢)
ik 7 Ox,

7

To see a physical interpretation of the gradient of a scalar function, consider
the three-dimensional and topographical maps of Figure 1-20. The closed loops
of part b represent lines of constant height. Let ¢ denote the height at any point

¢ = d(x, %, x3). Then
dp = Egdxi = ;(Vd))idxi

The components of the displacement vector ds are the incremental displace-
ments in the direction of the three orthogonal axes:

ds = (dxy, dxg, dxs) (1.118)

Therefore

dp = (Vo) - ds (1.119)
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FIGURE 1-20 (a) A three-dimensional contour map can be represented by (b) a
topographical map of lines ¢ representing constant height. The
gradient V¢ represents the direction perpendicular to the constant
¢ lines,

Let ds be directed tangentially along one of the isolatitude lines (i.e., along
a line for which ¢ = const.), as indicated in Figure 1-20. Because ¢ = const. for
this case, d¢p = 0. But, because neither V ¢ nor ds is in general zero, they must there-
fore be perpendicular to each other. Thus V¢ is normal to the line (or in three
dimensions, to the surface) for which ¢ = const.
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The maximum value of d¢ results when V¢ and ds are in the same direc-
tion; then,

(dP)max = |Vlds, for Vel ds
or

V| = (@) (1.120)
dS max

Therefore, V¢ is in the direction of the greatest change in ¢.
We can summarize these results as follows:

1. The vector V¢ is, at any point, normal to the lines or surfaces for which ¢ =

const.

The vector V¢ has the direction of the maximum change in ¢.

3. Because any direction in space can be specified in terms of the unit vector n
in that direction, the rate of change of ¢ in the direction of n (the directional
derivative of ¢) can be found from n - V¢ = dp/an.

e

The successive operation of the gradient operator produces

yov-32%_ & (1.121)

i dx; 0x; i 0x?

This important product operator, called the Laplacian,* is also written

2
v (1.122)

i dx?

When the Laplacian operates on a scalar, we have, for example,

2
V2 = EM

T (1.123)

1.17 Integration of Vectors

The vector resulting from the volume integration of a vector function A = A(x,)
throughout a volume V is given by!

J Adv = (IAldv, JAde, ngdv) (1.124)
v v Vv 14

*After Pierre Simon Laplace (1749-1827); the notation V? is ascribed to Sir William Rowan
Hamilton.

*The symbol J, actually represents a triple integral over a certain volume V. Similarly, the symbol [
stands for a double integral over a certain surface S.
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FIGURE 1-21 The differential da is an element of area of the surface. Its direction is
normal to the surface.

Thus, we integrate the vector A throughout V simply by performing three sepa-
rate, ordinary integrations.

The integral over a surface S of the projection of a vector function A = A(x,)
onto the normal to that surface is defined to be

JA-da
s

where da is an element of area of the surface (Figure 1-21). We write da as a vec-
tor quantity because we may attribute to it not only a magnitude da but also a di-
rection corresponding to the normal to the surface at the point in question. If
the unit normal vector is n, then

da = nda (1.125)

Thus, the components of da are the projections of the element of area on the
three mutually perpendicular planes defined by the rectangular axes:

da;, = dx,dxs, etc. (1.126)
Therefore, we have

LA' da = LA~ nda (1.127)
or

LA-da = JsiZA,-dai (1.128)

Equation 1.127 states that the integral of A over the surface S is the integral of
the normal component of A over this surface.

The normal to a surface may be taken to lie in either of two possible.‘ direc-
tions (“up” or “down”); thus the sign of n is ambiguous. If the surface is closed, we
adopt the convention that the oufward normal is positive,

The line integral of a vector function A = A(x,) along a given path extend-
ing from the point B to the point Cis given by the integral of the component of
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B

FIGURE 1-22 The element ds is an element of length along the given path from B to
C. Its direction is along the path at a given point.

A along the path

J A-ds = J 2 A, dx, (1.129)
BC BC ¢

The quantity ds is an element of length along the given path (Figure 1-22). The
direction of ds is taken to be positive along the direction the path is traversed. In
Figure 1-22 at point P, the angle between ds and A is less than 7/2, so A + ds is
positive at this point. At point Q, the angle is greater than 7/2, and the contri-
bution to the integral at this point is negative.

It is often useful to relate certain surface integrals to either volume integrals
(Gauss’s theorem) or line integrals (Stokes’s theorem). Consider Figure 1-23,
which shows a closed volume Venclosed by the surface S. Let the vector A and its
first derivatives be continuous throughout the volume. Gauss’s theorem states
that the surface integral of A over the closed surface Sis equal to the volume in-
tegral of the divergence of A (V-A) throughout the volume V enclosed by the
surface S. We write this mathematically as

jA-da= JV-Adv (1.130)
S v

Gauss’s theorem is sometimes also called the divergence theorem. The theorem is
particularly useful in dealing with the mechanics of continuous media.

See Figure 1-24 for the physical description needed for Stokes’s theorem,
which applies to an open surface S and the contour path C that defines the sur-
face. The curl of the vector A (V X A) must exist and be integrable over the en-
tire surface S. Stokes’s theorem states that the line integral of the vector A
around the contour path C is equal to the surface integral of the curl of A over
the surface defined by C. We write it mathematically as

JA-ds = J (VX A)-da (1.131)
C M

where the line integral is around the closed contour path C. Stokes’s theorem is
particularly useful in reducing certain surface integrals (two dimensional) to, it
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Surface §

Volume V

FIGURE 1-23 The differential da is an element of area on a surface S that surrounds
a closed volume V,

Surface §

Contour C /

FIGURE 1-24 A contour path Cdefines an open surface S. A line integral around the

path Cand a surface integral over the surface Sis required for Stokes’s
theorem.

is hoped, a simpler line integral (one dimensional). Both Gauss’s and Stokes’s
theorems have wide application in vector calculus. In addition to mechanics,
they are also useful in electromagnetic applications and in potential theory.

PROBLEMS

1-1.  Find the transformation matrix that rotates the axis x; of a rectangular coordinate
system 45° toward x, around the x-axis.

1-2.  Prove Equations 1.10 and 1.11 from trigonometric considerations.

1-3.  Find the transformation matrix that rotates a rectangular coordinate system
through an angle of 120° about an axis making equal angles with the original three
coordinate axes.

1-4. Show
(a) (AB)! = B‘A’ (b) (AB)"! = B !A"!

1-5. Show by direct expansion that |A|? = 1. For simplicity, take A to be a two-
dimensional orthogonal transformation matrix.
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1-8.

1-9.

1-10.

1-11.

1-12,

1-13.
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Show that Equation 1.15 can be obtained by using the requirement that the trans-
formation leaves unchanged the length of a line segment.

Consider a unit cube with one corner at the origin and three adjacent sides lying
along the three axes of a rectangular coordinate system. Find the vectors describ-
ing the diagonals of the cube. What is the angle between any pair of diagonals?

Let A be a vector from the origin to a point Pfixed in space. Let r be a vector from
the origin to a variable point Q(x;, x9, x3). Show that

A.r= A?
is the equation of a plane perpendicular to A and passing through the point P.

For the two vectors

A=i+2—k B=-2+3+k

find
(a) A — Band |A — B| (b) component of Balong A (c) angle between A and B
(d)AXB (e) (A — B) X (A + B)

A particle moves in a plane elliptical orbit described by the position vector
r = 2bsin wti + bcos wtj

(a) Find v, a, and the particle speed.
{b) What is the angle between v and a at time { = 7/2w?

Show that the triple scalar product (A X B) - C can be written as

A Ay Ay
(AXB)-C=|B, B, B
G G G

Show also that the product is unaffected by an interchange of the scalar and vector
product operations or by a change in the order of A, B, G, as long as they are in
cyclic order; that is,

AXB)-C=A-BXC)=B-(CXA)=(CXA)-B, etc

We may therefore use the notation ABC to denote the triple scalar product. Finally,
give a geometric interpretation of ABC by computing the volume of the paral-
lelepiped defined by the three vectors A, B, C.

Let a, b, ¢ be three constant vectors drawn from the origin to the points A, B, C,
What is the distance from the origin to the plane defined by the points A, B, C?
What is the area of the triangle ABC?

X is an unknown vector satisfying the following relations involving the known vec-
tors A and B and the scalar ¢,

AXX=B, A-X=d.

Express X in terms of A, B, ¢, and the magnitude of A.
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1-14.

1-15.

1-16.

1-17.

1-18.

1-19.

1-20.

1-21.

1-22.

Consider the following matrices:

1 2 -1 2 1 0 2 1
A=1{0 3 1|, B=|0 -1 2|, C€C=|4 3
2 0 1 1 1 3 1 0
Find the following

(a) |AB| (b) AC (c) ABC (d) AB — B’A’
Find the values of a needed to make the following transformation orthogonal.

0

1
0 ~a
0

R R ©

[2

What surface is represented by r-a = const. that is described if a is a vector of con-
stant magnitude and direction from the origin and r is the position vector to the
point P(x;, x9, x3) on the surface?

Obtain the cosine law of plane trigonometry by interpreting the product (A — B) -
(A -~ B) and the expansion of the product.

Obtain the sine law of plane trigonometry by interpreting the product A X B and
the alternate representation (A — B) X B.

Derive the following expressions by using vector algebra:
(@) cos (@ — B) = cos a cos B + sin « sin B
(b) sin (&« — B) =sinacos B — cosasin B

Show that
(a) ;jsijk 61] = () (b) J;Eksijk Eg'k = 28,‘1 (C) %Sijk Eip = 6

ij
Show (see also Problem 1-11) that
ABC = gtsy.,,A,.Bjc,,

Evaluate the sum Ee,-j,,e,mk (which contains 3 terms) by considering the result for

all possible combinations of 4, j, /, m; that is,
@i=j b)i=1 (c)i=m d)yj=1 e)j=m Hi=mnm
@iFlorm (hjFlorm

Show that
Zk EiinCimp = Silajm - Bimaﬂ

and then use this result to prove

AX(BxC)=(A-C)B~ (A-B)C
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1-23,

1-24.

1-25.

1-26.

1-27.

1-28.

1-29.

1-30.

1-31.

1-32.

1-33.
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Use the g, notation and derive the identity
(A X B) X (CxD)=(ABD)C — (ABC)D

Let A be an arbitrary vector, and let e be a unit vector in some fixed direction. Show
that

A=ceA-e)teX (AXe)

What is the geometrical significance of each of the two terms of the expansion?
Find the components of the acceleration vector a in spherical coordinates.

A particle moves with v = const. along the curve r = k(1 + cos 0) (a cardioid). Find
t-e, = a-e,|al,and 6.

If r and & = v are both explicit functions of time, show that

%[r X (vxrl=ra+ xv)v— (v2+r-ar

Show that

V(n|r|) = %

Find the angle between the surfaces defined by r? = 9 and x + y + z* = 1 at the
point (2, —2, 1).

Show that V(¢r) = ¢V + Vb

Show that
_ r df 1
(a) V" = nr» Ir (b) VA(n) =-— (c) V¥(Inr) = =
rdr T
Show that

J(Qar-i‘ + 2bf - ¥)dt = ar® + bi? + const.

where r is the vector from the origin to the point (x;, xy, %3). The quantities rand ¥
are the magnitudes of the vectors r and £, respectively, and a and 4 are constants.

Show that

where C is a constant vector.
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1-34.

1-35.

1-36.

1-37.

1-38.

1-39.

1-40.

141.

Evaluate the integral

fA X Adt

Show that the volume common to the intersecting cylinders defined by x? + 2 = g2
and x% + z2 = a?is V= 16a%/3.

Find the value of the integral [;A - da, where A = xi — yj + zk and Sis the closed
surface defined by the cylinder ¢* = x? + y2 The top and bottom of the cylinder
are at z = d and 0, respectively.

Find the value of the integral [;A - da, where A = (x2 + 3% + 22) (xi + yj + zk) and
the surface S is defined by the sphere R? = x? + 32 + z2 Do the integral directly
and also by using Gauss’s theorem.

Find the value of the integral [g(V X A) - da if the vector A = yi + zj + xk and Sis
the surface defined by the paraboloid z = 1 — x? — y2, where z = 0.

A plane passes through the three points (x, y, z) = (1, 0, 0}, (0, 2, 0}, (0, 0, 3).

(a) Find a unit vector perpendicular to the plane. (b) Find the distance from the
point (1, 1, 1) to the closest point of the plane and the coordinates of the closest
point.

The height of a hill in meters is given by z = 2xy — 3x% — 4y — 18x + 28y + 12,
where x is the distance east and y is the distance north of the origin. (a) Where is
the top of the hill and how high is it? (b) How steep is the hill at x = y = 1, that is,
what is the angle between a vector perpendicular to the hill and the z axis? (c) In
which compass direction is the slope at x = y = 1 steepest?

For what values of a are the vectors A = 2gi — 2j + ak and B = ai + 24j + 2k
perpendicular?



CHAPTER

Newtonian Mechanics—
Single Particle

2.1 Introduction

The science of mechanics seeks to provide a precise and consistent descrip-
tion of the dynamics of particles and systems of particles, that is, a set of phys-
ical laws mathematically describing the motions of bodies and aggregates of
bodies. For this, we need certain fundamental concepts such as distance and
time. The combination of the concepts of distance and time allows us to
define the velocity and acceleration of a particle. The third fundamental
concept, mass, requires some elaboration, which we give when we discuss
Newton’s laws.

Physical laws must be based on experimental fact. We cannot expect a pri-
ori that the gravitational attraction between two bodies must vary exactly as
the inverse square of the distance between them. But experiment indicates
that this is so. Once a set of experimental data has been correlated and a pos-
tulate has been formulated regarding the phenomena to which the data refer,
then various implications can be worked out. If these implications are all veri-
fied by experiment, we may believe that the postulate is generally true. The
postulate then assumes the status of a physical law. If some experiments dis-
agree with the predictions of the law, the theory must be modified to be con-
sistent with the facts.

Newton provided us with the fundamental laws of mechanics. We state these
laws here in modern terms, discuss their meaning, and then derive the implications

48
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of the laws in various situations.* But the logical structure of the science of me-
chanics is not straightforward. Our line of reasoning in interpreting Newton’s laws
is not the only one possible." We do not pursue in any detail the philosophy of me-
chanics but rather give only sufficient elaboration of Newton’s laws to allow us to
continue with the discussion of classical dynamics. We devote our attention in this
chapter to the motion of a single particle, leaving systems of particles to be dis-
cussed in Chapters 9 and 11-13.

2.2 Newton’s Laws

We begin by simply stating in conventional form Newton’s laws of mechanics:

I. A body remains at rest or in uniform motion unless acted wpon by a force.

II. A body acted upon by a force moves in such a manner that the time rate of change of
momentum equals the force.

IDII. If two bodies exert forces on each other, these forces are equal in magnitude and oppo-
site in direction.

“

These laws are so familiar that we sometimes tend to lose sight of their true
significance (or lack of it) as physical laws. The First Law, for example, is mean-
ingless without the concept of “force,” a word Newton used in all three laws. In
fact, standing alone, the First Law conveys a precise meaning only for zero force;
that is, 2 body remaining at rest or in uniform (i.e., unaccelerated, rectilinear)
motion is subject to no force whatsoever. A body moving in this manner is
termed a free body (or free particle). The question of the frame of reference
with respect to which the “uniform motion” is to be measured is discussed in the
following section.

In pointing out the lack of content in Newton’s First Law, Sir Arthur
Eddington® observed, somewhat facetiously, that all the law actually says is that
“every particle continues in its state of rest or uniform motion in a straight line

*Truesdell (Tr68) points out that Leonhard Euler (1707-1783) clarified and developed the
Newtonian concepts. Euler “put most of mechanics into its modern form” and “made mechanics
simple and easy” (p. 106).

tErnst Mach (1838-1916) expressed his view in his famous book first published in 1883; E. Mach, Die
Mechanic in ihrer Entwicklung historisch-kritisch dargestellt [The science of mechanics] (Prague, 1883).
A translation of a later edition is available (Ma60). Interesting discussions are also given by
R. B. Lindsay and H. Margeneau (Li36) and N. Feather (Fe59).

1Enunciated in 1687 by Sir Isaac Newton (1642-1727) in his Philosophiae naturalis principia mathemai-
ica [ Mathematical principles of natural philosophy, normally called Principia] (London, 1687). Previously,
Galileo (1564-1642) generalized the results of his own mathematical experiments with statements
equivalent to Newton’s First and Second Laws. But Galileo was unable to complete the description of
dynamics because he did not appreciate the significance of what would become Newton's Third
Law—and therefore lacked a precise meaning of force.

§Sir Arthur Eddington (Ed30, p. 124).
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except insofar as it doesn’t.” This is hardly fair to Newton, who meant something
very definite by his statement. But it does emphasize that the First Law by itself
provides us with only a qualitative notion regarding “force.”

The Second Law provides an explicit statement: Force is related to the time
rate of change of momentum. Newton appropriately defined momentum (al-
though he used the term quantity of motion) to be the product of mass and veloc-
ity, such that

p=mv (2.1)
Therefore, Newton’s Second Law can be expressed as
dp d
F=—=— .
i a'™ @2

The definition of force becomes complete and precise only when “mass” is de-
fined. Thus the First and Second Laws are not really “laws” in the usual sense;
rather, they may be considered definitions. Because length, time, and mass are
concepts normally already understood, we use Newton'’s First and Second Laws
as the operational definition of force. Newton’s Third Law, however, is indeed a
law. It is a statement concerning the real physical world and contains all of the
physics in Newton’s laws of motion.*

We must hasten to add, however, that the Third Law is not a general law of
nature. The law does apply when the force exerted by one (point) object on an-
other (point) object is directed along the line connecting the objects. Such
forces are called central forces; the Third Law applies whether a central force is
attractive or repulsive. Gravitational and electrostatic forces are central forces,
so Newton’s laws can be used in problems involving these types of forces.
Sometimes, elastic forces (which are actually macroscopic manifestations of mi-
croscopic electrostatic forces) are central. For example, two point objects con-
nected by a straight spring or elastic string are subject to forces that obey the
Third Law. Any force that depends on the velocities of the interacting bodies is
noncentral, and the Third Law may not apply. Velocity-dependent forces are
characteristic of interactions that propagate with finite velocity. Thus the force
between moving electric charges does not obey the Third Law, because the force
propagates with the velocity of light. Even the gravitational force between mov-
ing bodies is velocity dependent, but the effect is small and difficult to detect.
The only observable effect is the precession of the perihelia of the inner planets
(see Section 8.9). We will return to a discussion of Newton’s Third Law in
Chapter 9.

To demonstrate the significance of Newton’s Third Law, let us paraphrase it
in the following way, which incorporates the appropriate definition of mass:

*The reasoning presented here, viz., that the First and Second Laws are actually definitions and that
the Third Law contains the physics, is not the only possible interpretation. Lindsay and Margenau
(Li36), for example, present the first two Laws as physical laws and then derive the Third Law as a
consequence.
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IIX'. If two bodies constitute an ideal, isolated system, then the accelerations of these bodies
are always in opposite directions, and the ralio of the magnitudes of the accelerations
is constant. This constant ratio is the inverse ratio of the masses of the bodies.

With this statement, we can give a practical definition of mass and therefore give
precise meaning to the equations summarizing Newtonian dynamics. For two
isolated bodies, 1 and 2, the Third Law states that

Fl = ""FQ (2-3)
Using the definition of force as given by the Second Law, we have
dp; dp;
— = —— 4
de dt (24a)

or, with constant masses,

"M ar )T "\ (24b)

and, because acceleration is the time derivative of velocity,

my(a;) = my(—ay) (2.4¢)
Hence,
m2 _ _ﬂ
” = s . (2.5)

where the negative sign indicates only that the two acceleration vectors are op-
positely directed. Mass is taken to be a positive quantity.

We can always select, say, m; as the unit mass. Then, by comparing the ratio
of accelerations when m, is allowed to interact with any other body, we can de-
termine the mass of the other body. To measure the accelerations, we must have
appropriate clocks and measuring rods; also, we must choose a suitable coordi-
nate system or reference frame. The question of a “suitable reference frame” is
discussed in the next section.

One of the more common methods of determining the mass of an object is
by weighing—for example, by comparing its weight to that of a standard by
means of a beam balance. This procedure makes use of the fact that in a gravita-
tional field the weight of a body is just the gravitational force acting on the body;
that is, Newton’s equation F = ma becomes W = mg, where g is the acceleration
due to gravity. The validity of using this procedure rests on a fundamental as-
sumption: that the mass m appearing in Newton’s equation and defined accord-
ing to Statement ITI" is equal to the mass m that appears in the gravitational force
equation. These two masses are called the inertial mass and gravitational mass,
respectively. The definitions may be stated as follows:

Inertial Mass: That mass determining the acceleration of a body under the action of a
given force.

Gravitational Mass: That mass determining the gravitational forces between a body
and other bodies.
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Galileo was the first to test the equivalence of inertial and gravitational mass
in his (perhaps apocryphal) experiment with falling weights at the Tower of Pisa.
Newton also considered the problem and measured the periods of pendula of
equal lengths but with bobs of different materials. Neither Newton nor Galileo
found any difference, but the methods were quite crude.* In 1890 E6tvas' de-
vised an ingenious method to test the equivalence of inertial and gravitational
masses. Using two objects made of different materials, he compared the effect of
the Earth’s gravitational force (i.e., the weight) with the effect of the inertial
force caused by the Earth’s rotation. The experiment involved a null method
using a sensitive torsion balance and was therefore highly accurate. More recent
experiments (notably those of Dicke?), using essentially the same method, have
improved the accuracy, and we know now that inertial and gravitational mass are
identical to within a few parts in 10'2. This result is considerably important in the
general theory of relativity.S The assertion of the exact equality of inertial and
gravitational mass is termed the principle of equivalence.

Newton’s Third Law is stated in terms of two bodies that constitute an iso-
lated system. It is impossible to achieve such an ideal condition; every body in the
universe interacts with every other body, although the force of interaction may be
far too weak to be of any practical importance if great distances are involved.
Newton avoided the question of how to disentangle the desired effects from all
the extraneous effects. But this practical difficulty only emphasizes the enormity
of Newton’s assertion made in the Third Law. It is a tribute to the depth of his
perception and physical insight that the conclusion, based on limited observa-
tions, has successfully borne the test of experiment for 300 years. Only within the
20th century did measurements of sufficient detail reveal certain discrepancies
with the predictions of Newtonian theory. The pursuit of these details led to the
development of relativity theory and quantum mechanics."

Another interpretation of Newton’s Third Law is based on the concept of
momentum. Rearranging Equation 2.4a gives

d
21+ p) =0

or
p1 T po = constant (2.6)

The statement that momentum is conserved in the isolated interaction of two
particles is a special case of the more general conservation of linear momen-
tum. Physicists cherish general conservation laws, and the conservation of lin-
ear momentum is believed always to be obeyed. Later we shall modify our defi-

*In Newton's experiment, he could have detected a difference of only one part in 103

tRoland von Eétvas (1848-1919), a Hungarian baron; his research in gravitational problems led to
the development of a gravimeter, which was used in geological studies.

1P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (N.Y.) 26, 442 (1964). See also Braginsky and
Pavov, Sov. Phys.-JETP 34, 463 (1972).

§See, for example, the discussions by P. G. Bergmann (Be46) and ]J. Weber (Web61}. Weber’s book
also provides an analysis of the E6tvos experiment.

[ISee also Section 2.8.

g S
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nition of momentum from Equation 2.1 for high velocities approaching the
speed of light.

2.3 Frames of Reference

Newton realized that, for the laws of motion to have meaning, the motion of
bodies must be measured relative to some reference frame. A reference frame is
called an inertial frame if Newton’s laws are indeed valid in that frame; that is, if
a body subject to no external force moves in a straight line with constant velocity
(or remains at rest), then the coordinate system establishing this fact is an iner-
tial reference frame. This is a clear-cut operational definition and one that also
follows from the general theory of relativity.

If Newton’s laws are valid in one reference frame, then they are also valid in
any reference frame in uniform motion (i.e., not accelerated) with respect to
the first system.* This is a result of the fact that the equation F = m¥ involves the
second time derivative of r: A change of coordinates involving a constant velocity
does not influence the equation. This result is called Galilean invariance or the
principle of Newtonian relativity.

Relativity theory has shown us that the concepts of absolute rest and an ab-
solute inertial reference frame are meaningless. Therefore, even though we con-
ventionally adopt a reference frame described with respect to the “fixed” stars—
and, indeed, in such a frame the Newtonian equations are valid to a high degree
of accuracy—such a frame is, in fact, not an absolute inertial frame. We may,
however, consider the “fixed” stars to define a reference frame that approxi-
mates an “absolute” inertial frame to an extent quite sufficient for our present
purposes.

Although the fixed-star reference frame is a conveniently definable system
and one suitable for many purposes, we must emphasize that the fundamental
definition of an inertial frame makes no mention of stars, fixed or otherwise. If a
body subject to no force moves with constant velocity in a certain coordinate sys-
tem, that system is, by definition, an inertial frame. Because precisely describing
the motion of a real physical object in the real physical world is normally diffi-
cult, we usually resort to idealizations and approximations of varying degree;
that is, we ordinarily neglect the lesser forces on a body if these forces do not sig-
nificantly affect the body’s motion.

If we wish to describe the motion of, say, a free particle and if we choose for
this purpose some coordinate system in an inertial frame, then we require that
the (vector) equation of motion of the particle be independent of the position of
the origin of the coordinate system and independent of its orientation in space.
We further require that time be homogeneous; that is, a free particle moving
with a certain constant velocity in the coordinate system during a certain time

*In Chapter 10, we discuss the modification of Newton'’s equations that must be made if it is desired
to describe the motion of a body with respect to a noninertial frame of reference, that is, a frame that
is accelerated with respect to an inertial frame.
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1

FIGURE 2-1 We choose to describe the path of a free particle moving along the path
ACin a rectangular coordinate system whose origin moves in a circle.
Such a system is not an inertial reference frame.

interval must not, during a later time interval, be found to move with a different
velocity.

We can illustrate the importance of these properties by the following exam-
ple. Consider, as in Figure 2-1, a free particle moving along a certain path AC. To
describe the particle’s motion, let us choose a rectangular coordinate system
whose origin moves in a circle, as shown. For simplicity, we let the orientation of
the axes be fixed in space. The particle moves with a velocity v, relative to an in-
ertial reference frame. If the coordinate system moves with a linear velocity v,
when at the point B, and if v, = v,, then to an observer in the moving coordinate
system the particle (at A) will appear to be at rest. At some later time, however,
when the particle is at C and the coordinate system is at D, the particle will ap-
pear to accelerate with respect to the observer. We must, therefore, conclude
that the rotating coordinate system does not qualify as an inertial reference
frame.

These observations are not sufficient to decide whether time is homoge-
neous. To reach such a conclusion, repeated measurements must be made in
identical situations at various times; identical results would indicate the homo-
geneity of time.

Newton’s equations do not describe the motion of bodies in noninertial sys-
tems. We can devise a method to describe the motion of a particle by a rotating
coordinate system, but, as we shall see in Chapter 10, the resulting equations con-
tain several terms that do not appear in the simple Newtonian equation F = ma.
For the moment, then, we restrict our attention to inertial reference frames to
describe the dynamics of particles.
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2.4 The Equation of Motion for a Particle

Newton’s equation F = dp/d¢ can be expressed alternatively as

F= d _odv 9.7

dt(mv) m a mt (2.7)
if we assume that the mass m does not vary with time. This is a second-order dif-
ferential equation that may be integrated to find r = r(#) if the function F is
known. Specifying the initial values of r and & = v then allows us to evaluate the
two arbitrary constants of integration. We then determine the motion of a parti-
cle by the force function F and the initial values of position r and velocity v.

The force F may be a function of any combination of position, velocity, and
time and is generally denoted as F(r, v, f). For a given dynamic system, we nor-
mally want to know r and v as a function of time. Solving Equation 2.7 will help
us do this by solving for ¥. Applying Equation 2.7 to physical situations is an im-
portant part of mechanics.

In this chapter, we examine several examples in which the force function is
known. We begin by looking at simple force functions (either constant or de-
pendent on only one of r, v, and ¢) in only one spatial dimension as a refresher
of earlier physics courses. It is important to form good habits in problem solving.
Here are some useful problem-solving techniques.

1. Make a sketch of the problem, indicating forces, velocities, and so forth.

2. Write down the given quantities. '

3. Write down useful equations and what is to be determined.

4. Strategy and the principles of physics must be used to manipulate the equa-
tions to find the quantity sought. Algebraic manipulations as well as differ-
entiation or integration is usually required. Sometimes numerical calcula-
tions using a computer are the easiest, if not the only, method of solution.

5. Finally, put in the actual values for the assumed variable names to determine
the quantity sought.

Let us first consider the problem of a block sliding on an inclined plane. Let
the angle of the inclined plane be 6 and the mass of the block be 100 g. The
sketch of the problem is shown in Figure 2-2a.

(a) (b)
FIGURE 2-2 Examples 2.1 and 2.2.
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EXAMPLE 2.1

If a block slides without friction down a fixed, inclined plane with 8 = 30°, what
is the block’s acceleration?

Solution. 'Two forces act on the block (see Figure 2-2a): the gravitational force F,
and the plane’s normal force N pushing upward on the block (no friction in this
example). The block is constrained to be on the plane, and the only direction the
block can move is the x-direction, up and down the plane. We take the + x-direc-
tion to be down the plane. The total force F,, is constant; Equation 2.7 becomes

Fou =F,+ N

and because F,, is the net resultant force acting on the block,
F.. = mf
or
F, + N = m¥ (2.8)

This vector must be applied in two directions: x and y (perpendicular to x).
The component of force in the y-direction is zero, because no acceleration oc-
curs in this direction. The force F,is divided vectorially into its x-and y-compo-
nents (dashed lines in Figure 2-2a). Equation 2.8 becomes

y-direction

—F,cos6 + N=0 (2.9)
x-direction
F, sin @ = mi (2.10)
with the required result
F mg sin 0
#=Ssing = e gsin @
m m
¥ = gsin(30°) = §= 4.9 m/s? (2.11)

Therefore the acceleration of the block is a constant.
We can find the velocity of the block after it moves from rest a distance x,
down the plane by multiplying Equation 2.11 by 2x and integrating

2xX = 2xgsin 0

d d
E:(&Q) = 2g sin 6 ﬁ

[ d(x?) = 2gsin OJ dx
0

0
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At t=0,both x = & = 0, and, at ¢ = #5,,,, x = x,, and the velocity x = .

v = 2gsin 0 x,

Uy = V2gsin 8 x,

EXAMPLE 2.2

If the coefficient of static friction between the block and plane in the previous

rest?

Solution. We need a new sketch to indicate the additional frictional force f (see
Figure 2-2b). The static frictional force has the approximate maximum value

Jmax = M N (2.12)

and Equation 2.7 becomes, in component form,

y-direction
—F,cos6 + N=0 (2.13)

x-direction
—f T+ Fg sin @ = mXx (2.14)

The static frictional force f will be some value f, = f, ., required to keep ¥ = 0
—that is, to keep the block at rest. However, as the angle 6 of the plane in-
creases, eventually the static frictional force will be unable to keep the block at
rest. At that angle 8', f, becomes

£0=0") = frax = u,N= p,F,cos
and
mi = Fysin 0 — f,.
mi = Fysin 6 — p F, cos 6 (2.15)
X = g(sin 0 — u,cos8)
Just before the block starts to slide, the acceleration ¥ = 0, so
sinf — pu,cos8 =0
tan § = u, = 0.4
0 = tan"1(0.4) = 22°

EXAMPLE 2.3

After the block in the previous example begins to slide, the coefficient of ki-
netic (sliding) friction becomes u, = 0.3. Find the acceleration for the angle
0 = 30°.
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Solution. Similarly to Example 2.2, the kinetic friction becomes (approxi-
mately)

fi = N = p, F,cos 8 (2.16)

and
mi = F,sin @ — f, = mg (sin & — u, cos 6) (2.17)
X¥=g(sinf — u,cosh) =024 ¢ (2.18)

Generally, the force of static friction (f,.x = u,N) is greater than that of
kinetic friction (f, = w, N). This can be observed in a simple experiment. If we
lower the angle 8 below 16.7°, we find that ¥ < 0, and the block eventually
stops. If we raise the block back up above 8 = 16.7°, we find that the block does
not start sliding again until 8 = 22° (Example 2.2). The static friction deter-
mines when it starts moving again. There is not a discontinuous acceleration as
the block starts moving, because of the difference between i, and g,;. For small
speeds, the coefficient of friction changes rather quickly from uto u,.

The subject of friction is still an interesting and important area of research.
There are still surprises. For example, even though we calculate the absolute
value of the frictional force as f= uN, research has shown that the frictional
force is directly proportional, not to the load, but to the microscopic area of
contact between the two objects (as opposed to the apparent contact area). We
use pN as an approximation because, as Nincreases, so does the actual contact
area on a microscopic level. For hundreds of years before the 1940s, it was ac-
cepted that the load—and not the area—was directly responsible. We also be-
lieve that the static frictional force is larger than that of kinetic friction because
the bonding of atoms between the two objects does not have as much time to
develop in kinetic motion.

Effects of Retarding Forces

We should emphasize that the force F in Equation 2.7 is not necessarily constant,
and indeed, it may consist of several distinct parts, as seen in the previous exam-
ples. For example, if a particle falls in a constant gravitational field, the gravita-
tional force is F, = mg, where g is the acceleration of gravity. If, in addition, a
retarding force F, exists that is some function of the instantaneous speed, then
the total force is

F=F,+F,

= mg + F,(v) (2.19)

It is frequently sufficient to consider that F (v) is simply proportional to some
power of the speed. In general, real retarding forces are more complicated, but
the power-law approximation is useful in many instances in which the speed
does not vary greatly. Even more to the point, if F, x v", then the equation of
motion can usually be integrated directly, whereas, if the true velocity depend-
ence were used, numerical integration would probably be necessary. With the
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power-law approximation, we can then write
v
F = mg — mkv"; (2.20)

where £ is a positive constant that specifies the strength of the retarding force
and where v/v is a unit vector in the direction of v. Experimentally, we find
that, for a relatively small object moving in air, n = 1 for velocities less than
about 24 m/s (~ 80 ft/s). For higher velocities but below the velocity of sound
(~ 330 m/s or 1,100 ft/s), the retarding force is approximately proportional to
the square of the velocity.* For simplicity, the v? dependence is usually taken
for speeds up to the speed of sound.

The effect of air resistance is important for a ping-pong ball smashed to an
opponent, a high-flying softball hit deep to the outfield, a golfer’s chip shot, and
a mortar shell lofted against an enemy. Extensive tabulations have been made
for military ballistics of projectiles of various sorts for the velocity as a function of
flight time. There are several forces on an actual projectile in flight. The air re-
sistance force is called the drag W and is opposite to the projectile’s velocity as
shown in Figure 2-3a. The velocity v is normally not along the symmetry axis of
the shell. The component of force acting perpendicular to the drag is called the
lift L,. There may also be various other forces due to the projectile’s spin and os-
cillation, and a calculation of a projectile’s ballistic trajectory is quite complex.
The Prandtl expression for the air resistance’ is

W= %chAvg (2.21)

where ¢y is the dimensionless drag coefficient, p is the air density, v is the veloc-
ity, and A is the cross-sectional area of the object (projectile} measured perpen-
dicularly to the velocity. In Figure 2-3b, we plot some typical values for ¢y, and in
Figures 2-3¢ and d we display the calculated air resistance Wusing Equation 2.21
for a projectile diameter of 10 cm and using the values of ¢y shown. The air re-
sistance increases dramatically near the speed of sound (Mach number M =
speed/speed of sound). Below speeds of about 400 m/s it is evident that an
equation of at least second degree is necessary to describe the resistive force. For
higher speeds, the retarding force varies approximately linearly with speed.
Several examples of the motion of a particle subjected to various forces are
given below. These examples are particularly good to begin computer calcula-
tions using any of the available commercial math programs and spreadsheets or
for the students to write their own programs. The computer results, especially
the plots, can often be compared with the analytical results presented here.
Some of the figures shown in this section were produced using a computer, and

*The motion of a particle in a medium in which there is a resisting force proportional to the speed
or to the square of the speed (or to a linear combination of the two) was examined by Newton in his
Principia (1687). The extension to any power of the speed was made by Johann Bernoulli in 1711.
The term Stokes’ law of resistance is sometimes applied to a resisting force proportional to the speed;
Newton'’s law of resistance is a retarding force proportional to the square of the speed.

tSee the article by E. Melchior and M. Reuschel in Handbook on Weaponry (Rh82, p. 137).
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FIGURE 2-3 (a) Aerodynamic forces acting on projectile. W is the drag (air resistive
force) and is opposite the velocity of the projectile v. Notice that v may
be at an angle a from the symmetry axis of projectile. The component
of force acting perpendicular to the drag is called the lift L ,. The point
D1is the center of pressure. Finally, the gravitational force F, acts down.
If the center of pressure is not at the projectile’s center of mass, there is
also a torque about the center of mass. (b) The drag coefficient cy,
from the Rheinmetall resistance law (Rh82), is plotted versus the Mach
number M. Notice the large change near the speed of sound where
M = 1. (c) The air resistive force W (drag) is shown as a function of
velocity for a projectile diameter of 10 cm. Notice the inflection near
the speed of sound. (d) Same as (c) for higher velocities.

several end-of-chapter problems are meant to develop the student’s computer
experience if so desired by the instructor or student.

EXAMPLE 2.4

As the simplest example of the resisted motion of a particle, find the displace-
ment and velocity of horizontal motion in a medium in which the retarding
force 1s proportional to the velocity.

Solution. A sketch of the problem is shown in Figure 2-4. The Newtonian equa-
tion F = ma provides us with the equation of motion:



2.4 THE EQUATION OF MOTION FOR A PARTICLE 61

> - Resisting force F = kmv

FIGURE 24 Example 2.4.

x-direction

= @—-k (2.22
ma—mdt mu .22)

where kmv is the magnitude of the resisting force (k = constant). We are not
implying by this form that the retarding force depends on the mass m; this form
simply makes the math easier. Then

dv
f? = “kf‘” (2.23)

Inv=—kt+ C

The integration constant in Equation 2.23 can be evaluated if we prescribe the
initial condition v(t = 0) = v,. The C, = In vy, and

v = e K ' (2.24)

We can integrate this equation to obtain the displacement x as a function of
time:

d
v="2 voe Kt
dt
v
x = vOJ'e_k‘dt = —fe_k‘ + C, (2.25a)

The initial condition x(¢ = 0) = 0 implies C; = vy/k. Therefore
v
x=(1—eh (2.25b)
This result shows that x asymptotically approaches the value vy/k as ¢t — oo.
We can also obtain the velocity as a function of displacement by writing
d_dvdt _dv 1
dx dtdx dt v
so that
dv d
v = gy
dx dt

or
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from which we find, by using the same initial conditions,

v = vy — kx (2.26)

Therefore, the velocity decreases linearly with displacement.

EXAMPLE 2.5

Find the displacement and velocity of a particle undergoing vertical motion in a
medium having a retarding force proportional to the velocity.

Solution. Let us consider that the particle is falling downward with an iniual
velocity v, from a height % in a constant gravitational field (Figure 2-5). The
equation of motion is

z-direction

dv
F=m— = —mg— kmv (2.27)
dt
where —kmuv represents a positive upward force since we take z and v = z to be
positive upward, and the motion is downward—that is, v < 0, so that —kmv > 0.
From Equation 2.27, we have
dv

kv-l-g:

—dt (2.28)

Integrating Equation 2.28 and setting v(t = 0) = v,, we have (noting that vy, < 0)

1
%ln(kv-{-g) =—t+c

kv+ g= g kttke
dz g hkuytyg
= — = —= 4 —kt ]
v 0 L . e (2.29)

h "10 U
‘ Gravitational force = mg

1 Resisting force = kmv

FIGURE 2-5 Example 2.5,
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el
Terminal speed, v,

Time
FIGURE 2-6 Results for Example 2.5 indicating the downward speeds for various
mitial speeds v, as they approach the terminal velocity.

Integrating once more and evaluating the constant by setting z(¢ = 0) = &, we
find

(1 — e~k . (2.30)

Equation 2.29 shows that as the time becomes very long, the velocity ap-
proaches the limiting value — g/ k; this is called the terminal velocity, v,.
Equation 2.27 yields the same result, because the force will vanish—and hence
no further acceleration will occur—when v = —g/ k. If the initial velocity ex-
ceeds the terminal velocity in magnitude, then the body immediately begins to
slow down and v approaches the terminal speed from the opposite direction.
Figure 2-6 illustrates these results for the downward speeds (positive values).

EXAMPLE 2.6

Next, we treat projectile motion in two dimensions, first without considering air
resistance. Let the muzzle velocity of the projectile be v, and the angle of eleva-
tion be 6 (Figure 2-7). Calculate the projectile’s displacement, velocity, and range.

Solution. Using F = mg, the force components become
x-direction

0 = mi (2.31a)

y-direction

—mg = my (2.31b)
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FIGURE 2.7 Example 2.6.
Neglect the height of the gun, and assume x = y = 0 at ¢ = 0. Then
¥=0
X = v, cos @
X = yyt cos 0 (2.32)
and
y= ¢
y=—gt+ y,sin @
— o2
y = st + yyt sin 6 (2.33)

The speed and total displacement as functions of time are found to be

v="Vi2+ §2 = (v3 + g2 — 2u,gl sin )12 (2.34)
and
249 1/2
r=Vux?+y?= (v%ﬁ + gz— — vpgt?sin 0) (2.35)

We can find the range by determining the value of x when the projectile falls
back to ground, that is, when y = 0.

_ & - _
y=t 7+vosm9 =0 (2.36)

One value of y = 0 occurs for ¢ = 0 and the other one fort = T,

—gT
Tg+vosin0=0

_ 2y,sin 0

2.37
P (2.37)
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The range R is found from

203
x(t=T) = range = ? sin 6 cos @ (2.38)

2
R = range = % sin 26 (2.39)

Notice that the maximum range occurs for 8 = 45°.

Let us use some actual numbers in these calculations. The Germans used a
long-range gun named Big Bertha in World War I to bombard Paris. Its muzzle
velocity was 1,450 m/s. Find its predicted range, maximum projectile height,
and projectile time of flight if 8 = 55°. We have v, = 1450 m/s and 6 = 55°, so
the range (from Equation 2.39) becomes

_ (1450 m/s)?

9.8 m/s? [sin(110°)] = 202 km

Big Bertha’s actual range was 120 km. The difference is a result of the real
effect of air resistance.

To find the maximum predicted height, we need to calculated y for the
time 7/2 where T'is the projectile time of flight:

_ (2)(1450 m/s) (sin55°)
T= 9.8 m/s? = 2425
—oT? T
ymax<t=g = g8f +£;—sin9
_ —(9.8m/s) (242 5)2 N (1450 m/s) (242 s) sin(55°)
a 8 2
= 72 km

EXAMPLE 2.7

Next, we add the effect of air resistance to the motion of the projectile in the
previous example. Calculate the decrease in range under the assumption that
the force caused by air resistance is directly proportional to the projectile’s
velocity.

Solution. The initial conditions are the same as in the previous example.

x(t=10) =0=y1t=0)
(t=0) = yycos6=U (2.40)
J(t=0) = yysinf@ =V

However, the equations of motion, Equation 2.31, become

mxk = —hkmx (2.41)
my = —kmy — mg (2.42)
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Equation 2.41 is exactly that used in Example 2.4. The solution is therefore
U
x = ;(l — ¢k (2.43)

Similarly, Equation 2.42 is the same as the equation of the motion in Example
2.5. We can use the solution found in that example by letting 2 = 0. (The fact
that we considered the particle to be projected downward in Example 2.5 is of no
consequence. The sign of the initial velocity automatically takes this into ac-
count.) Therefore
= - gt + RV + g
k k?
The trajectory is shown in Figure 2-8 for several values of the retarding force
constant k for a given projectile flight.

The range R’, which is the range including air resistance, can be found as
previously by calculating the time T required for the entire trajectory and then
substituting this value into Equation 2.43 for x. The time T is found as previ-
ously by finding ¢ = T'when y = 0. From Equation 2.44, we find

RV + g
gk

This is a transcendental equation, and therefore we cannot obtain an analytic

expression for 7. Nonetheless, we still have powerful methods to use to solve

(1 — e %t (2.44)

T

(1 — ¢ *T) (2.45)

¥
1.5~
€
"‘E 1.0 —
%.o k=0 (Parabolic motion)
D 0.005
< 0.01
g 05 0.02
g=
& 0.04 R
= 0.08
0 ; k | | | L 1 N
1 \ 2 \ 3\ 4
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Horizontal distance (10*m)
FIGURE 2-8 The calculated trajectories of a particle in air resistance (F, = —kmv)

for various values of k (in units of s7!). The calculations were performed
for values of 8 = 60° and v, = 600 m/s. The values of y (Equation 2.44)
are plotted versus x (Equation 2.43).
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such problems. We present two of them here: (1) a perturbation method to find an
approximate solution, and (2) a numerical method, which can normally be as ac-
curate as desired. We will compare the results.

Perturbation Method To use the perturbation method, we find an expanston pa-
rameter or coupling constant that is normally small. In the present case, this param-
eter is the retarding force constant k, because we have already solved the present
problem with £ = 0, and now we would like to turn on the retarding force, but
let £ be small. We therefore expand the exponential term of Equation 2.45 (see
Equation D.34 of Appendix D) in a power series with the intention of keeping
only the lowest terms of k", where k is our expansion parameter.

KV + g 1 1
T= KT — —k2T? + —k3T3 — .- 46
gk ( 2" 6 ) 240

If we keep only terms in the expansion through %, this equation can be re-
arranged to yield
2V/g 1
= _———— + —kT? 2.47

1+RrVg 3 ( )
We now have the expansion parameter & in the denominator of the first term on
the right-hand side of this equation. We need to expand this term in a power se-
ries (Taylor series, see Equation D.8 of Appendix D):

1

O — — 2 __ ...
1+ kV/g 1 = (kV/g) + (kV/g) (2.48)

where we have kept only terms through k?, because we only have terms through
k in Equation 2.47. If we insert this expansion of Equation 2.48 into the first
term on the righthand side of Equation 2.47 and keep only the terms in £ to first
order, we have

2V [Tr? 2Vv?

T=—+ (— - —)k + O(k?) (2.49)

g \3 ¢
where we choose to neglect O(k?), the terms of order k2 and higher. In the limit
k — 0 (no air resistance), Equation 2.49 gives us the same result as in the previ-
ous example:

2V 2yysin b

T(k=0) = T,
( ) =Ty p P

Therefore, if k is small (but nonvanishing), the flight time will be approximately
equal to 7. If we then use this approximate value for T = T; in the right-hand
side of Equation 2.49, we have

A% A%
T=""1--= ' 2.50
g( 3g) (250

which is the desired approximate expression for the flight time.
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Next, we write the equation for x (Equation 2.43) in expanded form:
U 1

1
x:z(kt—§k2t2+gk3t3— ) (2.51)

Because x(¢t = T) = R’, we have approximately for the range
1
R = U(T 5 kT2) (2.52)
where again we keep terms only through the first order of k. We can now evalu-

ate this expression by using the value of T from Equation 2.50. If we retain only
terms linear in &, we find

20V 4kV
R =—— (1 - —) (2.53)
g 3¢
The quantity 2UV/g can now be written (using Equations 2.40) as
UV 2vj 5
20V _ 2% 0 cosd = 2 sin 20 = R (2.54)
g g g
which will be recognized as the range R of the projectile when air resistance is
neglected. Therefore
4kV
R = R(l - —) (2.55)
3g

Over what range of values for k would we expect our perturbation method to be
correct? If we look at the expansion in Equation 2.48, we see that the expansion
will not converge unless kV/g < 1 or k < g/V, and in fact, we would like £<<
g/V = g/(vysin 6).

Numerical Method Equation 2.45 can be solved numerically using a computer
by a variety of methods. We set up a loop to solve the equation for T for many
values of k up to 0.08 s~1: Ti(k). These values of T; and k; are inserted into
Equation 2.43 to find the range R;, which is displayed in Figure 2-9. The range
drops rapidly for increased air resistance, just as one would expect, but it does
not display the linear dependence suggested by the perturbation method solu-
tion of Equation 2.55.

For the projectile motion described in Figures 2-8 and 2-9, the linear ap-
proximation is inaccurate for k values as low as 0.01 s™! and incorrectly shows
the range is zero for all values of k larger than 0.014 s~!. This disagreement with
the perturbation method is not surprising because the linear result for the range
R’ was dependent on k <& g/(v, sin 6) = 0.02 s™!, which is hardly true for even
k = 0.01 s~1. The agreement should be adequate for k£ = 0.005 s™'. The results
shown in Figure 2-8 indicate that for values of k£ > 0.005 s™!, the drag can hardly
be considered a perturbation. In fact, for k¢ > 0.01 s~! the drag becomes the
dominant factor in the projectile motion.
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FIGURE 2-9 The range values calculated approximately and numerically for the
projectile data given in Figure 2-8 are plotted as a function of the
retarding force constant k.

The previous example indicates how complicated the real world can be. In that
example, we still had to make assumptions that were nonphysical—in assuming,
for example, that the retarding force is always linearly proportional to the veloc-
ity. Even our numerical calculation is not accurate, because Figure 2-3 shows us
that a better assumption would be to include a v? retarding term as well.
Adding such a term would not be difficult with the numerical calculation, and
we shall do a similar calculation in the next example. We have included the au-
thor’s Mathcad file that produced Figures 2-8 and 2-9 in Appendix H for those
students who might want to reproduce the calculation. We emphasize that there
are many ways to perform numerical calculations with computers, and the stu-
dent will probably want to become proficient with several.

EXAMPLE 2.8

Use the data shown in Figure 2-3 to calculate the trajectory for an actual pro-
jectile. Assume a muzzle velocity of 600 m/s, gun elevation of 45°, and a pro-
jectile mass of 30 kg. Plot the height y versus the horizontal distance x and
plot y, %, and j versus time both with and without air resistance. Include only
the air resistance and gravity, and ignore other possible forces such as the
lift.

Solution. First, we make a table of retarding force versus velocity by reading
Figure 2-3. Read the force every 50 m/s for Figure 2-3c and every 100 m/s for
Figure 2-3d. We can then use a straight line interpolation between the tabular



70 2 / NEWTONIAN MECHANICS—SINGLE PARTICLE

values. We use the coordinate system shown in Figure 2-7. The equations of
motion become

X = T (2.56)
£,
y=-,"28 (2.57)

where F, and F, are the retarding forces. Assume gis constant. F;, will always be a
positive number, but £, > 0 for the projectile going up, and F;, < 0 for the pro-

jectile coming back down. Let 6 be the projectile’s elevation angle from the hor-
izontal at any instant.

v= "V + y? (2.58)
9

tan 0 = ~ (2.59)
X

EF,=Fcosé@ (2.60)

F,= Fsin ¢ (2.61)

We can calculate F, and F at any instant by knowing % and j. Over a small time
interval, the next x and j can be calculated.

t

X = J % dt + v, cos 8 (2.62)
0
(t

y= ; ¥ dt + vy sin 6 (2.63)
[t

x= | xdt (2.64)
Jo
rt

y= | yadt (2.65)
Jo

We wrote a short computer program to contain our table for the retarding
forces and to perform the calculations for x, ¥, x, and y as a function of time. We
must perform the integrals by summations over small time intervals, because
the forces are time dependent. Figure 2-10 shows the results.

Notice the large difference that the air resistance makes. In Figure 2-10a,
the horizontal distance (range) that the projectile travels is about 16 km com-
pared to almost 37 km with no air resistance. Our calculation ignored the fact
that the air density depends on the altitude. If we take account of the decrease
in the air density with altitude, we obtain the third curve with a range of 18 km
shown in Figure 2-10a. If we also included the lift, the range would be still
greater. Notice that the change in velocities in Figures 2-10c and 2-10d mirror
the air resistive force of Figure 2-3. The speeds decrease rapidly until the speed
reaches the speed of sound, and then the rate of change of the speeds levels off
somewhat.
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FIGURE 2-10 The results of Example 2.8. The solid lines are the results if no air resis-
tance is included, whereas the dashed lines include the results of adding
the air resistive force. In (a) we also include the effect of the air density
dependence, which becomes smaller as the projectile rises higher.

This concludes our subsection on the effects of retarding forces. Much more
could be done to include realistic effects, but the method is clear. Normally, one ef-
fectis added at a time, and the results are analyzed before another effect is added.

Other Examples of Dynamics

We conclude this section with two additional standard examples of dynamical
particle-like behavior.

EXAMPLE 2.9

Atwood’s machine consists of a smooth pulley with two masses suspended from
a light string at each end (Figure 2-11). Find the acceleration of the masses and
the tension of the string (a) when the pulley center is at rest and (b) when the
puiley is descending in an elevator with constant acceleration a.
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FIGURE 2-11 Example 2.9; Atwood’s machine.

Solution. 'We neglect the mass of the string and assume that the pulley is
smooth—that is, no friction on the string. The tension 7T must be the same
throughout the string. The equations of motion become, for each mass, for
case (a),

mi, = mg— T (2.66)
mgﬁ = mgg_ T (2-67)

Notice again the advantage of the force concept: We need only identify the
forces acting on each mass. The tension T'is the same in both equations. If
the string is inextensible, then ¥, = — ¥, and Equations 2.66 and 2.67 may be
combined

m¥E = mg — (meg — Mmg¥y)
mg — (Mmag + Mmaky)

Rearranging,

. :g(ﬂh—mz) _

kl - 55.2 (2-68)

ml+m2

If m, > my, then ¥ > 0,and % < 0. The tension can be obtained from
Equations 2.68 and 2.66:
T=mg— mi
T= mg— mg )
m, + My

2
T = LMimag (2.69)

m1+m2
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For case (b), in which the pulley is in an elevator, the coordinate system
with origins at the pulley center is no longer an inertial system. We need an in-
ertial system with the origin at the top of the elevator shaft (Figure 2-11b). The
equations of motion in the inertial system (x} = x{ + x,, x] = x5 + x,) are

L .o p . _
mix, = my(x; + %) = mg— T

ma¥y = my(¥Xy + X)) = mog— T

SO
mlfl =mg—T— mlx]: =m(g— a) — T} 2.70)
MoXo = Mog — T — moXy = mo(g — @) — T
where % = ¥ = a. We have ¥, = —#,, so we solve for %, as before by eliminat-
ing T:
(my — my)
o o oA T M) 1
B= s (gm0 @.71)
and
2mimqo(g — a)
T = 2Mmatg (2.72)
my + moy

Notice that the results for the acceleration and tension are just as if the acceler-
ation of gravity were reduced by the amount of the elevator acceleration a.
The change for an ascending elevator should be obvious.

EXAMPLE 2.10

In our last example in this lengthy review of the equations of motion for a parti-
cle, let us examine particle motion in an electromagnetic field. Consider a
charged particle entering a region of uniform magnetic field B—for example,
the earth’s field—as shown in Figure 2-12. Determine its subsequent motion.

Solution. Choose a Cartesian coordinate system with its yaxis parallel to the
magnetic field. If ¢ is the charge on the particle, v its velocity, a its acceleration,
and B the earth’s magnetic field, then

v=xi+ jj+ ik
a =X+ 5§+ ik
B = Bj

The magnetic force F = gv X B = ma, so

m(Zi + §j + #K) = q(%i + 5j + k) X Byj = gBy(ik — i)
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FIGURE 2-12 Example 2.10; a moving particle enters a region of magnetic field.

Equating like vector components gives

mix = —qB,i
my =0 (2.73)
mzZ = gB,x

Integrating the second of these equations, my = 0, yields
¥ = Jo
where j; is a constant and is the initial value of J- Integrating a second time gives
¥ = Jot + yo
where y, is also a constant.

To integrate the first and last equations of Equation 2.73, let & = ¢B,/m, so
that

Z = ax

* _ai} (2.74)

These coupled, simultaneous differential equations can be easily uncoupled by
differentiating one and substituting it into the other, giving

P =af = —a%

¥=—af = —a2

so that

o e
Ee e z} (2.75)

= —@x

23]
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Both of these differential equations have the same form of solution. Using the
technique of Example C.2 of Appendix C, we have

x= Acosat+ Bsin at + x,

z= A'cos at + B'sin at + z,

where A, A, B, B’, x;, and z,, are constants of integration that are determined by
the particle’s initial position and velocity and by the equations of motion,
Equation 2.74. These solutions can be rewritten

(x — x9) = Acos at + Bsin at

(y = Yo) = ot (2.76)
(z — z9) = A’ cos at + B’ sin at

The x- and z-coordinates are connected by Equation 2.74, so substituting
Equations 2.76 into the first equation of Equation 2.74 gives

—a?Acosat — a’Bsinat = —a(—aA’sin af + aB’ cos at) 2.77

Because Equation 2.77 is valid for all ¢, in particular ¢ = 0 and ¢ = 7/2aq,
Equation 2.77 yields

—a’A = —a’B’
so that
A=PR
and
—a’B = a?A’
gives
B=-A

We now have

(x — x4) = Acos af + Bsin at

(¥ = y0) = ot (2.78)
(z— 2z9) = —Bcosat + Asin at

Ifatt=0,z = %,and x = 0, then from Equation 2.78, differentiating and set-
ting ¢ = 0 gives

aB=10
and

a!A=i0
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SO
Z
(x — xy) = o o8 at
(9 = ¥o) = Yot
%o .
(z — zo) = 5 Sin at
Finally,

(Ga)eor(%)
X — xo = cos
4By m

(y = 30) = Jot > (2.79)

(o)
(z— zp) =| = |sin| —
4By m j

These are the parametric equations of a circular helix of radius z4m/¢B,. Thus,
the faster the particle enters the field or the greater its mass, the larger the
radius of the helix. And the greater the charge on the particle or the stronger
the magnetic field, the tighter the helix. Notice also how the charged particle is
captured by the magnetic field—just drifting along the field direction. In this
example, the particle had no initial component of its velocity along the x-axis,
but even if it had it would not drift along this axis (see Problem 2-31). Finally,
notice that the magnetic force on the particle always acts perpendicular to its
velocity and hence cannot speed it up. Equation 2.79 verifies this fact.

The earth’s magnetic field is not as simple as the uniform field of this exam-
ple. Nevertheless, this example gives some insight into one of the mechanisms by
which the earth’s magnetic field traps low-energy cosmic rays and the solar wind to
create the Van Allen belts.

2.5 Conservation Theorems

We now turn to a detailed discussion of the Newtonian mechanics of a single
particle and derive the important theorems regarding conserved quantities. We
must emphasize that we are not proving the conservation of the various quant-
ties. We are merely deriving the consequences of Newton’s laws of dynamics.
These implications must be put to the test of experiment, and their verification
then supplies a measure of confirmation of the original dynamical laws. The fact
that these conservation theorems have indeed been found to be valid in many
instances furnishes an important part of the proof for the correctness of
Newton’s laws, at least in classical physics.

The first of the conservation theorems concerns the linear momentum of a
particle. If the particle is free, that is, if the particle encounters no force, then
Equation 2.2 becomes simply p = 0. Therefore, p is a vector constant in time,
and the first conservation theorem becomes
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L. The total linear momentum p of a particle is conserved when the total force on it is
zero.

Note that this result is derived from a vector equation, p = 0, and therefore
applies for each component of the linear momentum. To state the result in
other terms, we let s be some constant vector such that F - s = 0, independent of
time. Then

p . s = F . s = O
or, integrating with respect to time,
p * s = constant (2.80)

which states that the component of linear momentum in a direction in which the force
vanishes is constant in time.

The angular momentum L of a particle with respect to an origin from which
the position vector r is measured is defined to be

L=rxp (2.81)

The torque or moment of force N with respect to the same origin is defined
to be

N=rxF i (2.82)

where r is the position vector from the origin to the point where the force F is
applied. Because F = mv for the particle, the torque becomes

N=rXmv=rXp

Now
L=%&Xp)=ﬁXp)+ﬁxp)
but
FIXp=tXmv=mXxXr1)=0
SO

L=rxp=N (2.83)

If no torques act on a particle (i.e., if N = 0), then L = 0 and L is a vector con-
stant in time. The second important conservation theorem is

II. The angular momentum of a particle subject to no torque is conserved.
We remind the student that a judicious choice of the origin of a coordinate

system will often allow a problem to be solved much more easily than a poor
choice. For example, the torque will be zero in coordinate systems centered
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along the resultant line of force. The angular momentum will be conserved in
this case.

If work is done on a particle by a force F in transforming the particle from
Condition 1 to Condition 2, then this work is defined to be

2
W = f F-dr (2.84)
1

If F is the net resultant force acting on the particle,

dv dr dv
F- = — e —— = —_— i
dr=m ot dtdt m 5 vd
m d m d 1
= —— . dt:———— 2 dtzd — 2 -85
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