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PREFACE 

This series of physics problems and solutions which consists of seven 
volumes - Mechanics, Electromagnetism, Optics, Atomic, Nuclear and 
Particle Physics, Thermodynamics and Statistical Physics, Quantum Me- 
chanics, Solid State Physics - contains a selection of 2550 problems from 
the graduate-school entrance and qualifying examination papers of seven 
US. universities - California University Berkeley Campus, Columbia Uni- 
versity, Chicago University, Massachusetts Institute of Technology, New 
York State University Buffalo Campus, Princeton University, Wisconsin 
University - as well as the CUSPEA and C.C. Ting’s papers for selection 
of Chinese students for further studies in U.S.A. and their solutions which 
represent the effort of more than 70 Chinese physicists plus some 20 more 
who checked the solutions. 

The series is remarkable for its comprehensive coverage. In each area 
the problems span a wide spectrum of topics while many problems overlap 
several areas. The problems themselves are remarkable for their versati- 
lity in applying the physical laws and principles, their up-to-date realistic 
situations, and their scanty demand on mathematical skills. Many of the 
problems involve order-of-magnitude calculations which one often requires 
in an experimental situation for estimating a quantity from a simple model. 
In short, the exercises blend together the objectives of enhancement of one’s 
understanding of the physical principles and ability of practical application. 

The solutions as presented generally just provide a guidance to solving 
the problems, rather than step by step manipulation, and leave much to 
the students to work out for themselves, of whom much is demanded of the 
basic knowledge in physics. Thus the series would provide an invaluable 
complement to the textbooks. 

The present volume for Mechanics which consists of three parts - 
Newtonian Mechanics, Analytical Mechanics, and Special Relativity - 
contains 410 problems. 27 Chinese physicists were involved in the task 
of preparing and checking the solutions. 

V 



vi Preface 

In editing, no attempt has been made to unify the physical terms, units, 
and symbols. Rather , they are left to the setters’ and solvers’ own prefer- 
ence so as to reflect the realistic situation of the usage today. Great pains 
has been taken to trace the logical steps from the first principles to the final 
solutions, frequently even to the extent of rewritting the entire solution. 
In addition, a subject index has been included to facilitate the location of 
topics. These editorial efforts hopefully will enhance the value of the volume 
to the students and teachers alike. 

Yung-Kuo Lim 
Editor 



INTRODUCTION 

Solving problems in course work is an exercise of the mental faculties, 
and examination problems are usually chosen from, or set similar to, such 
problems. Working out problems is thus an essential and important aspect 
of the study of physics 

The series on Problems and Solutions in Physics comprises seven vol- 
umes and is the result of months of work of a number of Chinese physicists. 
The subjects of the volumes and the respective coordinators are as follows: 

1. Mechanics (Qiang Yuan-qi, Gu En-pu, Cheng Jiefu, Li Ze-hua, Yang 

2. EZectromagnetism (Zhao Sh-ping, You Jun-han, Zhu Jun-jie) 
3. Optics (Bai Gui-ru, Guo Guang-can) 
4. Atomic, Nuclear and Particle Physics (Jin Huai-cheng, Yang Baezhong, 

5 .  Thermodynamics and Statistical Physics (Zheng Jiu-ren) 
6.  Quantum Mechanics (Zhang Yong-de, Zhu Dong-pei, Fan Hong-yi) 
7. Solid State Physics and Miscellaneous Topics (Zhang Jia-lu, Zhou You- 

De-tian) 

Fm Yang-mei) 

yuan, Zhang Shi-ling) 

These volumes, which cover almost all aspects of university physics, 
contain some 2550 problems solved in detail. 

The problems have been carefully chosen from a total of 3100 problems 
collected from the China-U.S.A. Physics Examination and Application 
Programme, the Ph.D. Qualifying Examination on Experimental High 
Energy Physics sponsored by Chao-chong Ting, and the graduate qualifying 
examinations of seven world-renowned American universities: Columbia 
University, the University of California at Berkeley, Massachusetts Institute 
of Technology, the University of Wisconsin, the University of Chicago, 
Princeton University, and the State University of New York at Buffalo. 

Generally speaking, examination problems in physics in American uni- 
versities do not require too much mathematics. They can be characterized 

vii 



viii Introduction 

to a large extent as follows. Many problems are concerned with the 
various frontier subjects and overlapping domains of topics, having been 
selected from the setters’ own research encounters. These problems show a 
“modern” flavor. Some problems involve a wide field and require a sharp 
mind for their analysis, while others require simple and practical methods 
demanding a fine “touch of physics.” We believe that these problems, as 
a whole, reflect to  some extent the characteristics of American science and 
culture, as well as give a glimpse of the philosophy underlying American 
education. 

That being so, we consider it worthwhile to collect and solve these 
problems and introduce them to physics students and teachers everywhere, 
even though the work is both tedious and strenuous. About a hundred 
teachers and graduate students took part in this time-consuming task. 

This volume on Mechanics which contains 410 problems is divided into 
three parts: Part I consists of 272 problems on Newtonian Mechanics; 
Part 11, 84 problems on Analytical Mechanics; Part 111, 54 problems on 
Special Relativity. 

A small fraction of the problems is of the nature of mechanics as in 
general physics, while the majority properly belongs to theoretical me- 
chanics, with some on relativity. A wide range of knowledge is required 
for solving some of the problems which demand a good understanding 
of electromagnetism, optics, particle physics, mathematical physics, etc. 
We consider such problems particularly beneficial to  the student as they 
show the interrelationship of different areas of physics which one is likely 
to  encounter in later life. Twenty seven physicists contributed to this 
volume, notably Ma Qian-cheng, Deng You-ping, Yang Zhong-xia, J i  Shu, 
Yang De-tian, Wang Ping, Li Xiao-ping, Qiang Yuan-qi, Chen Wei-zu, Hou 
Bi-hui, and Chm Ze-xian. 

7 August 1991 
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PART I 

NEWTONIAN MECHANICS 





1. DYNAMICS OF A POINT MASS (1001-1108) 

1001 
A man of weight w is in an elevator of weight w. The elevator accelerates 

(a) What is the apparent weight of the man? 
(b) The man climbs a vertical ladder within the elevator at a speed v 

relative to the elevator. What is the man’s rate of expenditure of energy 
(power output)? 

( Wisconsin) 

Solution: 

vertically up at a rate a and at a certain instant has a speed V. 

(a) The apparent weight of the man is 

20 F = w f - a = w  
9 

g being the acceleration of gravity. 
(b) The man’s rate of expenditure of energy is 

1002 
An orbiting space station is observed to remain always vertically above 

the same point on the earth. Where on earth is the observer? Describe the 
orbit of the space station as completely as possible. 

( Wisconsin) 

Solution: 
The observer must be on the equator of the earth. The orbit of the 

space station is a large circle in the equatorial plane with center at the 
center of the earth. The radius of the orbit can be figured out using the 
orbiting period of 24 hours* as follows. Let the radius of the orbit be R 
and that of the earth be &. 

*For a more accurate calculation, the orbiting period should be taken as 23 hours 
56 minutes and 4 seconds. 

3 



4 Problems €4 Solutions on Mechanics 

We have 
mu2 G M m  

R R2 ’ 
where v is the speed of the space station, G is the universal constant of 
gravitation, m and M are the masses of the space station and the earth 

-=- 

respectively, giving 

As 

G M  
0 2  = - 

R ‘  

G M m  
m g = - ,  

% 
we have 

G M = G g .  

Hence 
2 - v -- R 

For circular motion with constant speed v,  the orbiting period is 

2xR T = - .  
21 

Hence 

and 

4x2R2 - g g  
T2 R 

= 4.2 x lo4 km %T2g 
R =  (7) 

1003 

In an amusement park there is a rotating horizontal disk. A child can 
sit on it at any radius (Fig. 1.1). As the disk begins to “speed up”, the 
child may slide off if the frictional force is insufficient. The mass of the 
child is 50 kg and the coefficient of friction is 0.4. The angular velocity is 
2 rad/s. What is the maximum radius R where he can sit and still remain 
on the disk? 

( WZsconsZn ) 
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Solution: 
Under the critical circumstance that the child just starts to slide, 

m k 2  = pmg , 

Hence 

As the centrifugal force is proportional to the radius, this is the maximum 
radius for no-sliding. 

Fig. 1.1. 

1004 

A cord passing over a frictionless pulley has a 9 kg mass tied on one end 
and a 7 kg mass on the other end (Fig. 1.2). Determine the acceleration 
and the tension of the cord. 

( Wisconsin) 

Solution: 
Neglecting the moment of inertia of the pulley, we obtain the equations 

of motion 
mlx = mlg - F 

and 
m2P = F - m2g . 
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Hence the tension of the cord and the acceleration are respectively 

and 

.. (m1 - m 2 ) g  - - 29 2 =  - 
r n l + m z  16 

= 1.225 m/s2 . 

X I *  
m l g  

m2 9 

Fig. 1.2. 

1005 

A brick is given an initial speed of 5 ft/s up an inclined plane at an angle 
of 30" from the horizontal. The coefficient of (sliding or static) friction is 
p = a / 1 2 .  After 0.5 s, how far is the brick from its original position? You 
may take g = 32 ft/s2. 

( Wisconsin ) 

Solution: 
Choose Cartesian coordinates as shown in Fig. 1.3. For x > 0, the 

equation of the motion of the brick is 

mx = -mgsintl - pmgcostl  , 

giving 
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Fig. 1.3. 

59 
8 

5 = -g(sinO+pcosO) = -- . 
The time of upward motion of the brick is then 

50 
t i  = - = 5/(5g/8) = 0.25 s 

-X 

and the displacement of the brick is 

For t > t l ,  x < 0 and the equation of motion becomes 

mx = -mg sin 0 + pmg cos 0 

or 
39 Z = -g(sinO - pcos0) = -- . 8 

The displacement during the time interval t l  = 0.25 s to t 2  = 0.5 s is 

so that the displacement of the brick at t = 0.5 s is 

5’ 51 + AX = 518 - 318 = 0.25 ft. 

1006 
A person of mass 80 kg jumps from a height of 1 meter and foolishly 

forgets to buckle his knees as he lands. His body decelerates over a distance 
of only one cm. Calculate the total force on his legs during deceleration. 

( Wisconsin) 
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Solution: 
The person has mechanical energy El = mg(h + s) just before he lands. 

The work done by him during deceleration is E2 = fs, where f is the total 
force on his legs. As El = E2, 

mgh 80 x 1 
f = -  S 4- mg = (0.01 + 80) g = 80809 N 

1007 
A m a s  M slides without friction on the roller coaster track shown in 

Fig. 1.4. The curved sections of the track have radius of curvature R. The 
mass begins its descent from the height h. At some value of h, the mass 
will begin to lose contact with the track. Indicate on the diagram where 
the mass loses contact with the track and calculate the minimum value of 
h for which this happens. 

( Wisconsin ) 

30° .. 

Fig. 1.4. 

Solution: 
Before the inflection point A of the track, the normal reaction of the 

track on the mass, N, is 

mu2 
R 

N = -  +mgsinB 

where v is the velocity of the mass. After the inflection point, 

mu2 N + = mgsinfl 

for which sin 0 = & , or 8 = 30". 
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The mass loses contact with the track if N 5 0. This can only happen 
for the second part of the track and only if 

mu2 - 2 mgsin8. 
R 

The conservation of mechanical energy 

1 
mg[h - (R - Rsine)] = ;;mu2 

then requires 
R sin 8 

h - R + Rsin8 2 - 
2 ,  

or 
R sin 8 

h > R - -  
2 .  

The earliest the mass can start to lose contact with the track is at A for 
which 0 = 30". Hence the minimum h required is y. 

1008 
Consider a rotating spherical planet. The velocity of a point on its 

equator is V. The effect of rotation of the planet is to make g at the equator 
112 of g at the pole. What is the escape velocity for a polar particle on the 
planet expressed as a multiple of V? 

(Wisconsin) 

Solution: 
Let g and g' be the gravitational accelerations at the pole and at the 

equator respectively and consider a body of mass m on the surface of the 
planet, which has a mass M. At the pole, 

GMm 
mg= - 

R2 ' 
giving 

GM = gR2 . 

At the equator, we have 

-- mV2 GMm , mg mg - - -mg = m g - - = -  
R R2 2 2 
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Hence g = 2V2/R. 

infinity from the planet, the body will have potential energy 
If we define gravitational potential energy with respect to a point at 

GMm dr = -- GMm -1, -7- R '  

Note that the negative sign in front of the gravitational force takes account 
of its attractiveness. The body at the pole then has total energy 

For it to escape from the planet, its total energy must be at least equal 
to the minimum energy of a body at infinity, i.e. zero. Hence the escape 

or 
= 2gR = 4V2 , 2GM 

v2 = - 
R 

i.e. 
v = 2 v .  

1009 

A small mass m rests at the edge of a horizontal disk of radius R; the 
coefficient of static friction between the mass and the disk is p. The disk is 
rotated about its axis at an angular velocity such that the mass slides off 
the disk and lands on the floor h meters below. What was its horizontal 
distance of travel from the point that it left the disk? 

( Wisconsin) 

Solution: 
The maximum static friction between the mass and the disk is f = pmg. 

When the small mass slides off the disk, its horizontal velocity 21 is given 
bY 

mu2 
- = pmg . 
R 

Thus 
v = m .  
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The time required to descend a distance h from rest is 

t=e. 

Therefore the horizontal distance of travel before landing on the floor is 
equal to 

vt = Jm. 

1010 
A marble bounces down stairs in a regular manner, hitting each step at 

the same place and bouncing the same height above each step (Fig. 1.5). 
The stair height equals its depth (tread=rise) and the coefficient of resti- 
tution e is given. Find the necessary horizontal velocity and bounce height 
(the coefficient of restitution is defined as e = -vf/vi, where vf and vi are 
the vertical velocities just after and before the bounce respectively). 

( Wisconsin) 

Fig. 1.5. 

Solution: 
Use unit vectors i, j as shown in Fig. 1.5 and let the horizontal velocity 

of the marble be Vh. The velocities just before and after a bounce are 
respectively 
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v1 = vhi + vi j  

v2 = vhi + v f j  . 
As the conditions at each step remain exactly the same, ui,vf and vh are 
all constant. The conservation of mechanical energy 

and 

1 1 2  -mu: = -mu2 + mgl 
2 2 

gives 
7J; = "f 2 + 291 . 

As by definition 
vf = -eui , 

the above gives 
v2=-* 291 
' 1 - e 2  

The time required for each bounce is 

va -?If 1 t = - - - . = - ,  
9 v h  

giving 
g l l - e  - 91 

'ui - vf 
q&=-- 

(1 + e)ui 
which is the necessary horizontal velocity. The bouncing height H is given 
by the conservation of mechanical energy 

1011 
Assume all surfaces to be frictionless and the inertia of pulley and cord 

negligible (Fig. 1.6). Find the horizontal force necessary to prevent any 
relative motion of ml, m2 and M. 

( Wisconsin ) 
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Fig. 1.6. 

Solution: 
The forces f i ,  F and mg are shown in Fig. 1.7. The accelerations of 

ml, m2 and M are the same when there is no relative motion among them. 
The equations of motion along the z-axis are 

(M+rn l  + r n z ) Z = F ,  
mix= fi . 

As there is no relative motion of m2 along the y-axis, 

fl  = m29 . 

Combining these equations, we obtain 

Fig. 1.7. 

1012 
The sun is about 25,000 light years from the center of the galaxy and 

travels approximately in a circle with a period of 170,000,000 years. The 
earth is 8 light minutes from the sun. From these data alone, find the 
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approximate gravitational mass of the galaxy in units of the sun's mass. You 
may assume that the gravitational force on the sun may be approximated 
by assuming that all the mass of the galaxy is at its center. 

( Wisconsin ) 

Solution: 

For the motion of the earth around the sun, 

mu2 - Gmm, -~ - 
r r2 ' 

where T is the distance from the earth to the sun, v is the velocity of the 
earth, m and m, are the maSses of the earth and the sun respectively. 

For the motion of the sun around the center of the galaxy, 

where R is the distance from the sun to the center of the galaxy, V is the 
velocity of the sun and M is the mass of the galaxy. 

Hence 

M = -  

Using V = 2rR/T, v = 2rr/t ,  where T and t are the periods of revolution 
of the sun and the earth respectively, we have 

With the data given, we obtain 

M = 1.53 x 101lm, . 

1013 

An Olympic diver of mass m begins his descent from a 10 meter high 
diving board with zero initial velocity. 

(a) Calculate the velocity Vo on impact with the water and the appre  
ximate elapsed time from dive until impact (use any method you choose). 

Assume that the buoyant force of the water balances the gravitational 
force on the diver and that the viscous force on the diver is h2. 
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(b) Set up the equation of motion for vertical descent of the diver 
through the water. Solve for the velocity V as a function of the depth 
x under water and impose the boundary condition V = VO at x = 0. 

(c) If b/m = 0.4 mu', estimate the depth at which V = Vo/lO. 
(d) Solve for the vertical depth x(t) of the diver under water in terms 

( Wisconsin) 
of the time under water. 

Solution: 

= & = d2 x 9.8 x 10 = 14 m/s . 
The time elapsed from dive to impact is 

(b) AS the gravitational force on the diver is balanced by the buoyancy, 
the equation of motion of the diver through the water is 

or, using x = xdx/dx, 
dx b _ -  - --dx. 
x m 

Integrating, with x = VO at x = 0, we obtain 

v x = voe-A;" . 
(c) When V = V,/lO, 

m In 10 
b 0.4 

x=- ln lO=--  - 5.76 m . 

(d) As dx/dt = &e-2x ,  

eAxdx = Vodt . 

Integrating, with x = 0 at t = 0, we obtain 

or 
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1014 

The combined frictional and air resistance on a bicyclist has the force 
F = aV, where V is his velocity and a = 4 newton-sec/m. At maximum 
effort, the cyclist can generate 600 watts propulsive power. What is his 
maximum speed on level ground with no wind? 

( Wisconsin) 

Solution: 
When the maximum speed is achieved, the propulsive force is equal to 

the resistant force. Let F be this propulsive force, then 

F = a V  and F V = 6 0 0 W .  

Eliminating F, we obtain 

600 
a 

V2 = - = 150 m2/s2 

and the maximum speed on level ground with no 

v = d36 = 12.2 m/s . 

wind 

1015 
A pendulum of mass rn and length 1 is released from rest in a horizontal 

position. A nail a distance d below the pivot causes the mass to move 
along the path indicated by the dotted line. Find the minimum distance d 
in terms of I such that the mass will swing completely round in the circle 
shown in Fig. 1.8. 

( Wisconsin) 

Fig. 1.8. 



Newtonian Mechanics 17 

Solution: 
Take the mass m as a point mass. At the instant when the pendulum 

collides with the nail, m has a velocity 2) = m. The angular momentum 
of the mass with respect to the point at which the nail locates is conserved 
during the collision. Then the velocity of the mass is still II at the instant 
after the collision and the motion thereafter is such that the mass is 
constrained to rotate around the nail. Under the critical condition that 
the mass can just swing completely round in a circle, the gravitational 
force is equal to the centripetal force when the mass is at the top of the 
circle. Let the velocity of the mass at this instant be v1, and we have 

or 
V: = ( I  - d)g . 

The energy equation 

mu2 mu; 
2 2 + 2mg( l -  d )  , -- -- 

or 
291 = ( 1  - d)g + 4(1 - d)g 

then gives the minimum distance as 

1016 
A mass m moves in a circle on a smooth horizontal plane with velocity 

vo at a radius &. The mass is attached to a string which passes through 
a smooth hole in the plane as shown in Fig. 1.9. (“Smooth” means 
frictionless.) 

(a) What is the tension in the string? 
(b) What is the angular momentum of m? 
(c) What is the kinetic energy of m? 
(d) The tension in the string is increased gradually and finally m moves 

in a circle of radius &/2.  What is the final value of the kinetic energy? 
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Fig. 1.9. 

(e) Why is it important that the string be pulled gradually? 
( Wisconsin) 

Solution: 

the circular motion, hence F = mug/&. 
(a) The tension in the string provides the centripetal force needed for 

(b) The angular momentum of the mass m is J = mvol&,. 
(c) The kinetic energy of the mass m is T = mvi/2. 
(d) The radius of the circular motion of the mass m decreases when the 

tension in the string is increased gradually. The angular momentum of the 
mass m is conserved since it moves under a central force. Thus 

or 
211 = 2v0 . 

The final kinetic energy is then 

(e) The reason why the pulling of the string should be gradual is that 
the radial velocity of the mass can be kept small so that the velocity of the 
mass cam be considered tangential. This tangential velocity as a function of 
R can be calculated readily from the conservation of angular momentum. 
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1017 
When a 5000 Ib car driven at 60 mph on a level road is suddenly put into 

neutral gear (i.e. allowed to coast), the velocity decreases in the following 
manner: 

where t is the time in sec. Find the horsepower required to drive this car 
at 30 mph on the same road. 
Useful constants: g = 22 mph/sec, 1 H.P. = 550 ft.lb/sec, 60 mph = 
88 ft/sec. 

( Wisconsin) 

Solution: 
Let KJ = 60 mph, then 

_ -  _ - -  vo 1 .  
60 V 

Hence 
dV -V2 -=-  
dt 6OVo ' 

and the resistance acting on the car is F = mV2/(6OV0), where m is the 
maas of the car. The propulsive force must be equal to the resistance F' 
at the speed of V' = 30 mph in order to maintain this speed on the same 
road. It follows that the horsepower required is 

37500 mph2.1b wt 37500 mph.lb wt =- - - 
9 S 22 

- 37500 88 ft.lb wt 
22 60 s 

ft.lb wt 

--._- 

= 2500- = 4.5 H.P. 
S 

Note that pound weight (lb wt) is a unit of force and 1 lb wt = g ft.lb/s2. 
The horsepower is defined as 550 ft.lb wt/ s . 
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1018 

A child of mass m sits in a swing of negligible mass suspended by a 
rope of length 1. Assume that the dimensions of the child are negligible 
compared with 1. His father pulls him back until the rope makes an angle 
of one radian with the vertical, then pushes with a force F = mg along the 
arc of a circle until the rope is vertical, and releases the swing. For what 
length of time did the father push the swing? You may assume that it is 
sufficiently accurate for this problem to write sine M 6 for 0 < 1. 

( Wisconsin ) 

Fig. 1.10. 

Solution: 
According to  Fig. 1.10, the equation of the motion of the child is 

mle = -mg - mgsine , 

or 
e +  (;)sine = - -9 (e 2 0 )  1 

With w2 = g/l, sin0 M 8, the above becomes 

e + w 2 e = - w  2 . 

The solution of this equation is 8 = Acos(wt) + Bsin(wt) - 1, where the 
constants A and B are found from the initial conditions 8 = 1, b = 0 at 
t = 0 to be A = 2, B = 0. Hence 
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When 0 = 0, 
1 
2 

COS(Wtl) = - , 
giving 

l r  
wt1= - , 

3 
i.e. 7 

This is the length of time the father pushed the swing. 

1019 
A particle of mass m is subjected to two forces: a central force fi and 

a frictional force f2, with 

fi = -Av (A > 0) , 
where v is the velocity of the particle. If the particle initially has angular 
momentum JO about T = 0,  find its angular momentum for all subsequent 
times. 

( Wisconsin) 

Solution: 
Write out the equations of motion of the particle in polar coordinates: 

m(i: - Te2) = f ( T )  - x i  , 
m(2d  + re') = -Are , 

or 
1 d(mr29) 
T dt 
--- - - h e .  

Letting J = mr28, we rewrite the last equation as follows: 

dJ -AJ - =-. 
dt m 

Integrating and making use of the initial angular momentum Jo, we obtain 

J =Joe-$' . 
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1020 
(a) A spherical object rotates with angular frequency w. If the only 

force preventing centrifugal disintegration of the object is gravity, what 
is the minimum density the object must have? Use this to estimate the 
minimum density of the Crab pulsar which rotates 30 times per second. 
(This is a remnant of a supernova in 1054 A.D. which was extensively 
observed in China!) 

(b) If the mass of the pulsar is about 1 solar mass (- 2 x 1030 kg or 
N 3 x 105Mearth ), what is the maximum possible radius of the pulsar? 

(c) In fact the density is closer to that of nuclear matter. What then is 
the radius? 

( CUSPEA ) 

Solution: 
(a) Consider the limiting case that the Crab pulsar is just about to 

disintegrate. Then the centripetal force on a test body at the equator of 
the Crab pulsar is just smaller than the gravitational force: 

mu2 GmM - = mRw2 <_ - 
R R2 ' 

or 

where m and M are the masses of the test body and the Crab pulsar 
respectively, R is the radius of the pulsar, v is the speed of the test body, 
and G is the gravitational constant. Hence the minimum density of the 
pulsar is 

lo30 )' = 1.5 x lo5 m = 150 km . 3M 
41r x 1.3 x 1014 

(c )  The nuclear density is given by 
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where mp is the mass of a proton and is approximately equal to the mass 
mH of a hydrogen atom. This can be estimated as follows: 

2 x 10-3 
2 x 6.02 x 1023 

mp M m H  = = 1.7 x kg 

With 
& M 1.5 x m , 

we obtain 

pnuclear M 1.2 x lOI7  kg/m . 
If p = pnuclear, the pulsar would have a radius 

~ 1 7 k m  . 4n x 1.2 x 1017 

1021 
Two weightless rings slide on a smooth circular loop of wire whose axis 

lies in a horizontal plane. A smooth string passes through the rings which 
carries weights at the two ends and at a point between the rings. If there 
is equilibrium when the rings are at points 30" distant from the highest 
point of the circle as shown in Fig. 1.11, find the relation between the three 
weights. 

( UC, Berkeley) 

Fig. 1.11. 
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Solution: 
Assume the string is also weightless. As no friction is involved, the 

tensions in the segments AC and AE of the string must be the same. Let 
the magnitude be T .  For the ring A to be at rest on the smooth loop, the 
resultant force on it must be along AO, 0 being the center of the loop; 
otherwise there would be a component tangential to the loop. Hence 

LOAE = LOAC = LAOE = 30" . 

The same argument applies to the segments B D  and B E .  Then by 
symmetry the point E at which the string carries the third weight must be 
on the radius HO,  H being the highest point of the loop, and the tensions 
in the segments B D  and B E  are also T .  

Consider the point E .  Each of the three forces acting on it, which are in 
equilibrium, is at an angle of 120" to  the adjacent one. As two of the forces 
have magnitude T ,  the third force must also have magnitude T .  Therefore 
the three weights carried by the string are equal. 

1022 
Calculate the ratio of the mean densities of the earth and the sun from 

6 = angular diameter of the sun seen from the earth = +". 
1 = length of 1" of latitude on the earth's surface = 100 km. 
t = one year = 3 x lo7 s. 
g = 10 ms-2. 

the following approximate data: 

( UC, Berkeley) 

Solution: 
Let r be the distance between the sun and the earth, Me and Ma be the 

masses and Re and R, be the radii of the earth and the sun respectively, 
and G be the gravitational constant. We then have 

2R, - 127r 7r - - -- = - r a d ,  
r 2360 360 

i.e. 
720R, r = - .  

7r 
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The above gives 

or 

For a mass m on the earth's surface, 

giving 

Hence 
- Pe 

Pa 
_ -  glr 720 -3 21r -2 

18 x 103 (n) (m) = 3'31 * 

1023 
A parachutist jumps at an altitude of 3000 meters. Before the par& 

(a) Assuming that air resistance is proportional to speed, about how 

(b) How far has she traveled in reaching this speed? 

chute opens she reaches a terminal speed of 30 m/sec. 

long does it take her to reach this speed? 

After her parachute opens, her speed is slowed to 3 m/sec. As she hits the 
ground, she flexes her knees to absorb the shock. 

(c) How far must she bend her knees in order to experience a deceleration 
no greater then log? Assume that her knees are like a spring with a resisting 
force proportional to displacement. 

(d) Is the assumption that air resistance is proportional to speed a 
reasonable one? Show that this is or is not the case using qualitative 
arguments. 

( UC, Berkeley) 

Solution: 
(a) Choose the downward direction as the positive direction of the 

x-axis. Integrating the differential equation of motion 
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dv 
- = g - f f v ,  
dt 

where a is a constant, we obtain 

9 v = - ( I  - e-Qt) . 

approaches its maximum, the terminal speed 

cy 

This solution shows that 
g/a,  when t --t 00. 

(b) Integrating the above equation, we obtain 

gt ge--at z = - + - .  
ff f f2  

Thus 5 -+ 00 as t -+ 00. This means that when the parachutist reaches the 
terminal speed she has covered an infinite distance. 

(c) As her speed is only 3 m/s, we may neglect any air resistance after 
she hits the ground with this speed. Conservation of mechanical energy 
gives 

where c is the distance of knee bending and v is the speed with which she 
hits the ground, considering the knee as a spring of constant k. Taking the 
deceleration -lOg as the maximum allowed, we have 

mg - kt = -10mg , 

i.e. 
< = llmg/k . 

The energy equation then gives 

= 0.102 m V2 32 [ = - = -  
9g 9 x 9.8 

(d) We have seen that if the air resistance is proportional to speed, the 
time taken to reach the terminal speed is 00 and the distance traveled is 
also 00. However, the actual traveling distance is no more than 3000 m and 
the traveling time is finite before she reaches the terminal speed of 30 m/s. 
Hence the assumption that air resistance is proportional to speed is not a 
reasonable one. 
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1024 

A satellite in stationary orbit above a point on the equator is intended to 
send energy to ground stations by a coherent microwave beam of wavelength 
one meter from a one-km mirror. 

(a) What is the height of such a stationary orbit? 
(b) Estimate the required size of a ground receptor station. 

(Columbia) 

Solution: 

to the spin angular velocity of the earth and is given by 
(a) The revolving angular velocity w of the synchronous satellite is equal 

G M m  
( R  + h)2 

m(R + h)w2 = 

Hence the height of the stationary orbit is 

GM h = (7) - R = 3.59 x lo4 km , 

using G = 6 . 6 7 ~  Nm2kg-2, M = 5.98 x kg , R = 6.37 x lo4 km . 
(b) Due to diffraction, the linear size of the required receptor is about 

% = l x (  3.59 x 104 )=3 .59x104m . 
D 

1025 
An inclined plane of maes M rests on a rough floor with coefficient of 

static friction p. A mass ml is suspended by a string which passes over 
a smooth peg at the upper end of the incline and attaches to a mass m2 

which slides without friction on the incline. The incline makes an angle 8 
with the horizontal. 

(a) Solve for the accelerations of ml, m2 and the tension in the string 

(b) Find the smallest coefficient of friction for which the inclined plane 

(Columbia) 

when p is very large. 

will remain at rest. 
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Solution: 

equations of motion of ml and m2 are (see Fig. 1.12) 
(a) When p is large enough, the inclined plane remains at rest. The 

m l g - T = m l a )  
T - m2gsin8 = 17120 , 

smooth 
plane 

rough ftoor 

Fig. 1.12. 

giving 

Fig. 1.13. 

(ml - m2 sin 8)s 
ml +ma 

mlmz(l +sinO)g 
ml +m2 

(b) The inclined plane is subjected to horizontal and vertical forces (see 

a =  

T =  

, 

Fig. 1.13) with 

f = Tcos8 - N1 sin8 ) 

N = Nl cos 8 + Mg + T( 1 + sin 8) , 
N1 = m2gcos8 . 

For the inclined plane to remain at rest, we require 

f l P N .  

The smallest coefficient of friction for the plane to remain stationary is 
therefore 

J 
Pmin = - N 

m2 cos O(m1 - m2 sin 8 )  
M(ml +rnz)+rnlm2(l  +sin8)2+ (ml +rnz)m2cos2e 

- - 
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1026 
A particle of mass m is constrained to move on the frictionless inner 

(a) Find the restrictions on the initial conditions such that the particle 

(b) Determine whether this kind of orbit is stable. 

surface of a cone of half-angle a, as shown in Fig. 1.14. 

moves in a circular orbit about the vertical axis. 

(Princeton) 

Fig. 1.14. Fig. 1.15. 

Solution: 

particle are 
(a) In spherical coordinates ( r ,O,v) ,  the equations of motion of the 

m(i: - re2 - T + ~  sin2 0 )  = F, , 
m(r8 + 2 i e  - 
m(r+ sin 8 + 2rq3 sin 8 + 2reg cos 0) = Fq . 

sin O cos 8) = Fe , 

As the particle is constrained to move on the inner surfwe of the cone, 

8 = constant = cy . 

Then 8 = 0, F, = -mgcosa, and Q. (1) becomes 

m(l - 1g2 sin2 a) = -mg cos a , (2) 

where 1 is its distance from the vertex 0 (see Fig. 1.15). For motion in 
a circular orbit about the vertical axis, i = 1 = 0. With 1 = l o ,  Eq. (2) 
becomes 

sin2 cy = gcosa . (3) 
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The right-hand side of Eq. (3) is constant so that @ = constant = $0, say. 
The particle has velocity vo tangential to the orbit given by vo = lo@o sin a. 
Equation (3) then gives 

v; = 910 cos a , 

which is the initial condition that must be satisfied by YO and lo. 

that lo becomes 10 + Al, $0 becomes $0 + A@. Equation (2) is now 
(b) Suppose there is a small perturbation acting on the particle such 

-9 cos a , 

or 
A1 - 21&A@ sin2 a - A@: sin2 a = lo+’ sin2 a - g cos a , 

where A1 is shorthand for d2(Al)/dt2, by neglecting terms of orders higher 
than the first order quantities A1 and A@. As the right-hand side of this 
equation vanishes on account of Eq. (3), we have 

A1 - 2lo$oA$ sin2 a - A@: sin2 a = 0 . (4) 

There is no force tangential to the orbit acting on the particle, so there is 
no torque about the vertical axis and the angular momentum of the particle 
about the axis is constant: 

2 2  mlv sin a = ml q3 sin a = constant = I c ,  say, 

or 

(5) 
2 k 1 @=- .  

m sin2 a 

Substituting 1 = lo + Al, + = $0 + A$ into Eq. (5) and neglecting terms of 
the second order or higher, we have 

Eliminating A@ from Eqs. (4) and (6), we obtain 

A[+ ( 3 ~ :  sin2 a )  01 = o . 

As the factor in brackets is real and positive, this is the equation of a 
“simple harmonic oscillator”. Hence the orbit is stable. 
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1027 
Three point particles with masses ml,m2 and mg interact with each 

(a) Write down the equations of motion. 
(b) The system can rotate in its plane with constant and equal distances 

between all pairs of masses. Determine the angular frequency of the rotation 
when the masses are separated by a distance d .  

(c) For ml >> m3 and m2 >> m3, determine the stability condition for 
motion of the mass m3 about the stationary position. Consider only motion 
in the orbital plane. 

other through the gravitational force. 

(MIT) 
Solution: 

Take the center of mass C of the system as the origin of coordinates and 
let the position vectors of ml,  m2, m3 be rl,  r2,r3 respectively as shown in 
Fig. 1.16. Denote 

rij = ri - rj ( i , j  = 1,2,3)  . 

Fig. 1.16. 

(a) The motion of the ith particle is given by 

3 Gmimj m . f .  - - c ___ 
a 1 -  r3. rij 1 

j # i  '3 

or 

Gm , 3 

a -  r3 ,  rij (2 = 1,273) - 
j#i 23 

Note that the minus sign is to indicate that the forces are attractive. 
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(b) With the given condition rij = d, Eq. (1) is rewritten as 

- 3  

3 3 

- C mjri - miri + C mjrj 
j = 1  

1 3 3 

-r, Emj + C m j r j  
j = 1  j = 1  

G M  -- - - d3 Ti 7 

where M = ml + m2 + m3. Note that the choice of the center of mass as 
origin makes C mjrj vanish. Thus the force on each particle points towards 

~ the center of mass of the system and is a harmonic force. With d constant, 
the system rotates about C with angular frequency 

.=g. 
(c) For m3 << ml and m3 << m2, the equation of motion of either of the 

masses ml and m2 can be written as 

.. G(mi+m2)  

- - G(mi + m2) 

d3 ri r .  - - a -  

ri, i =  1,2 . - 

r:2 

With the distance between ml and m2 constant, the system rotates about 
its center of mass with a constant angular frequency 

Use a rotating coordinate frame with origin at the center of mass of the 
system and angular frequency of rotation w and let the quantities r,r 
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refer to this rotating frame. Considering the motion of particle m3 in the 
laboratory frame, we have 

or 

If m3 is stationary, r 3  = r 3  = 0 and the above becomes 

With ml,m2 >> m3, C m j r j  = 0 gives mlrl M -m2r2 and the above 
becomes 

This relation shows that r3 is parallel to rl and thus the stationary position 
of m3 lies on the line joining ml and m2. At this position, the attractions 
of ml and m2 are balanced. 

Consider now a small displacement being applied to m3 at this sta- 
tionary position. If the displacement is along the line joining ml and 
m2, say toward ml ,  the attraction by ml is enhanced and that by m2 

is reduced. Then m3 will continue to move toward ml and the equilibrium 
is unstable. On the other hand, if the displacement is normal to the 
line joining ml and m2, both the attractions by ml and m2 will have 
a component toward the stationary position and will restore m3 to this 
position. Thus the equilibrium is stable. Therefore the equilibrium is stable 
against a transverse perturbation but unstable against a longitudinal one. 

1028 
A smooth sphere rests on a horizontal plane. A point particle slides 

frictionlessly down the sphere, starting at the top. Let R be the radius of 
the sphere. Describe the particle’s path up to the time it strikes the plane. 

(Chicago) 
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Fig. 1.17. 

Solution: 
As shown in Fig, 1.17, conservation of energy gives 

The radial force the sphere exerts on the particle is 

mw2 F = mgcose - - R '  
When F = 0, the constraint vanishes and the particle leaves the sphere. At 
this instant, we have 

V Z  

R 
- = gcose , 

w 2  = 2 g ~ (  1 - cos e) , 

giving 

2 case = -, 3 
or e = 48.2" , 

The particle leaves the sphere with a speed w = d m  at an angle 6 = 
48.2". After leaving the sphere, the particle follows a parabolic trajectory 
until it hits the plane. 
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1029 
Point charge in the field of a magnetic monopole. 
The equation of motion of a point electric charge e, of mass m, in the 

field of a magnetic monopole of strength g at the origin is 

The monopole may be taken as infinitely heavy. 
(a) Show that the kinetic energy T = mi2/2 is a constant of the motion. 
(b) Show that J = L + egr/r is also a constant of the motion, where 

(c) Use part (b) to show that the charged particle moves on the surface 
L = m r x r .  

of a right circular cone of opening angle t given by 

eg c o s t =  - , 
IJI 

with J as its symmetry axis (see Fig. 1.18). [Hint: Consider r .  J.] 

Fig. 1.18. 

Define a new variable R by 
1 -  1 A , .  

R =  -J x (r x J) = -[r - J(r . J)] , sin < sin < 
where J = J/IJI. R lies in the plane perpendicular to J, but with IRJ = 
R = Irl so that R may be obtained by rotating r as shown in the figure. 
You may use the fact that mR x R = J. 

(d) Find the equation of motion for R. 
(e) Solve the equation of motion part (d) by finding an effective potential 

V,tf(R), and describe all possible motions in R. 
(MITI 
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Solution: 

Hence T is a constant of the motion. 

T 

egi 
r 

= m r x i : + m i x i + - +  

I egr egr(r a i) 
= mr x i: + [T - 

T3 

r x ( i x r )  r x ( r x r )  = o .  T3  +ge T 3  = -ge 

Hence J is a constant of the motion. Note that in the above we have used 

r = + . -  

r x (r x r) = i (r  . r) - r (r .  i) . 
T 

(c) Let t be the angle between r and J and consider 

r e  J = r l ~ l  cost = r .  (mr x i + "'> = egr . 
T 

As 
eg cost = - = constant , 
IJI 

the charged particle moves on the surface of a right circular cone of opening 
angle (. 

(d) As J and t are constants of the motion, we have, using 

. L  r r x r  
mi: = -ge- r x r = -, L = J - eg-, 

m T T 3  l 
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m A  mR = -J x (r x J) 
sin < 

e2g2 
mT4 

R .  = -- 

This is the equation of motion for R. 
(e) Let q!~ be the angle between R and a fixed axis in the plane of R and 

r x J.  The above equation can be written as 

m(R9 + 2$R) = 0 .  

Equation ( 2 )  can be written &s 

d 
dt m(R2+ + 2RR$) = -(mR2$) = 0 . 

Hence 

As 

mR2$ = constant, 

Equation (1) can then be written as 

.. e2g2 J2  d 
m R =  -- +-- - ---V,a (R)  , mR3 mR3 dR 

with 

( J 2  - e2g2) 
1 

2mR2 

K e2g2 
2mR2 R2 tanQ= - , 

(3) 
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where K = e2g2 tan2 </2m. Using R = RdR/dR = dR2/2dR, Eq. ( 3 )  can 
be integrated to give 

1 .  K 
-mR2 -k = E , 
2 R 

where E is a constant. We then have 

Integrating, we obtain 

which gives the trajectory of the tip of R. Note that if J >> eg the motion is 
unbounded whatever the initial state, and if J < eg the motion is bounded 
when E < 0 and unbounded when E 2 0. 

1030 

Paris and London are connected by a straight subway tunnel (see 
Fig. 1.19). A train travels between the two cities powered only by the 
gravitational force of the earth. Calculate the maximum speed of the train 
and the time taken to travel from London to Paris. The distance between 
the two cities is 300 km and the radius of the earth is 6400 km. Neglect 
friction. 

(MITI 

Fig. 1.19. 
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Solution: 
Define 2, h, r as in Fig. 1.20 and assume the earth to be a stationary 

Taking the surface of the earth as homogeneous sphere of radius R. 
reference level, the gravitational potential energy of the train at x is 

Fig. 1.20. 

GmM 
rdr = - (r2 - R2) ,  

GmM 
2 ~ 3  

where m, M are the masses of the train and the earth respectively. Con- 
servation of mechanical energy gives, as the train starts from rest at the 
earth’s surface, 

mu2 GmM(r2 - R2)  = o ,  
-+ 2 2 ~ 3  

or 

where g = GM/R2 is the acceleration of gravity at the earth’s surface. As 

r2 = h2 + (150 - z ) ~  = (R2 - 150’) + (150 - z ) ~  = R2 - 3002 + x 2  , 
2 - 94300 - Z) 

R 
v -  

v is maximum when x = 150 km: 

= 185.6 m/s . 9.8 x 150 x 150 x 1 m  / 6400 Vmax = 
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The time from London to Paris is 

=L1&& = 7rE = 42.3 min . 

1031 
Three fixed point sources are equally spaced about the circumference of 

a circle of diameter a centered at the origin (Fig. 1.21). The force exerted by 
each source on a point mass of mass m is attractive and given by F = -kR, 
where R is a vector drawn from the source to the point mass. The point 
mass is placed in the force field at time t = 0 with initial conditions r = ro, 
r = VO. 

(a) Define suitable coordinates and write an expression for the force 
acting on the mass at any time. 

(b) Use Newton’s second law and solve the equation of motion for the 
initial conditions given above, namely, find r(t) in terms of ro, vo and the 
parameters of the system. 

(c) Under what conditions, if any, are circular orbits a solution? 
( M W  

Fig. 1.21. 

Solution: 

As they are equally spaced on a circle, we have 
(a) Let r1, r2, r3 be the position vectors of the three fixed point sources. 

rl + r2 + r3 = 0 . 
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The force acting on the particle m is 

F = -k(r - r1) - k(r - r2) - k(r - r3) = -3kr . 

(b) The equation of the motion of the point mass is 

mr+3kr=O,  

with the general solution 

r(t) = acos (Et) + bsin ( E t )  , 

a, b being constant vectors. 
Using the initial conditions r(0) = ro, i(0) = VO, we find 

and hence 

r(t> = ro cos (Et) + G v o  sin (gt) . 

(c) It is seen that if rolvo and ~GVO = TO, the trajectory is a circle. 

1032 
A phonograph turntable in the zy plane revolves at constant angular 

velocity w around the origin. A small body sliding on the turntable has 
location x ( t )  = (x(t),y(t),O). Here z and y are measured in an inertial 
frame, the lab frame. There are two forces in the lab frame: an elastic 
force of magnitude klxl towards the origin, and a frictional force -c(x - v), 
where c is a constant and v is the velocity of the turntable at the body's 
locat ion. 

(a) If the body is observed to stay at a fixed off-center point on the 

(b) Assume k has the value you found in (a). Solve for v(t) = x ( t )  with 

(c) In (b), find x( t ) .  Describe x ( t )  in words and/or with a rough sketch. 
(UC, Berkeley) 

turntable (i.e. it is at rest with respect to the turntable), how big is k? 

general initial conditions. 
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Solution: 

klxl, giving k = mu'. 
(a) The body has angular velocity w around the origin so that mu21xI = 

(b) In the lab frame the equation of motion for the small body is 

m i  = -kx - c(x - v) 
= - W 2 X  - c(X - w x x) . 

Let x, y, k ,  y, f ,  j i  be the coordinates, velocity and acceleration components 
in the rotating frame attached to the turntable. In the lab frame we have 

x =  (k -yw) i+ (y+zw) j ,  
x = (2 - 2yw - xw2)i + (y + 2xw - yw2)j , 

-kx = -kxi - kyj  , 
- c ( x - w  x x) = -&i -xyj . 

Note that in the above we have used o x i = wj,  w x j = -wi. The equation 
of motion in the lab frame is then written as 

m(x - 2gw - xw') = -kx - ck , 
m(y + 2xw - yw') = -ky - qj . 

(1) 
(2) 

Multiplying Eq. (2) by i = GI adding it to Eq. (1) and setting z = x+iy, 
we obtain 

m i  + ( 2 w i  + c ) i  = 0 .  

Integrating once we find 

9 (3) i = ioe-ct/me--i2wt 

namely, 

x = [io cos(2wt) + yo ~in (2wt ) ]e - "~ l~  , 
y = I-xo sin(2wt) + yo c o ~ ( 2 w t ) ] e - ~ ~ l ~  . 

(4) 

(5) 

By directly integrating Eqs. (4) and (5) or by integrating Eq. (3) and then 
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using z = x + iyl we obtain 

43 

m(c& + 2 ~ ~ 0 )  
c2 + 4m2w2 

x = x o +  

In the above, k o 1 ~ o  are the components of the velocity of the small body 
at t = 0 in the rotating frame. 

(c) Equations (6)  and (7) imply that, for the body on the turntable, even 
if x, y may sometimes increase at first because of certain initial conditions, 
with the passage of time its velocity in the turntable frame will decrease and 
the body eventually stops at a fixed point on the turntable, with coordinates 
((20 + m(d0 + 2 m w a i O ) ) / ( C 2  + 4m2w2), (go - m(2mwko - q j o ) ) / ( c 2  + 4m2w2)). 

1033 
A nonlinear oscillator has a potential given by 

kx2 mXx3 U(X) = - - - 
2 3 l  

with X small. 

Find the solution of the equation of motion to first order in A, assuming 
x = 0 at t = 0. 

(Princeton) 

Solution: 
The equation of the motion of the nonlinear oscillator is 

Neglecting the term mXx2, we obtain the zero-order solution of the equation 

x(0) = Asin(wt + 'p) , 
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where w = 
and we have 

and A is an arbitrary constant. As x = 0 at t = 0, cp = 0 

x(0) = Asin(wt) . 

Suppose the first-order solution has the form x(1) = x(0) + Ax1 . Substi- 
tuting it in the equation of motion and neglecting terms of orders higher 
than A, we have 

2 2 $1 + w 51 = q0) 
A2 

2 = -[1 - cos(2wt)l . 

To solve this equation, try a particular integral 

3 ~ 1  = B + C COS(~&) 

Substitution gives 

A2 A2 
2 

-3w2Ccos(2wt) + w 2 B  = - - 2 cos(2wt) . 

Comparison of coefficients gives 

The homogeneous equation 

has solution 
x1 = D1 sin(wt) + 0 2  cos(wt) , 

Hence we have the complete solution 

A2 A2 [ 2w2 6w2 
x(1) = (A + AD1) sin(wt) + X - + D2 cos(wt) + - cos(2wt) 

The initial condition x = 0 at t = 0 then gives 

2A2 
3W2 

D = - -  

and 
ql) = A'sin(wt) + - - - - cos(wt) + 

XA2 w2 " 2 3 
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where A' is an arbitrary constant. To determine A' and A, additional 
information such as the amplitude and the velocity at t = 0 is required. 

1034 
A defective satellite of mass 950 kg is being towed by a spaceship in 

empty space. The two vessels are connected by a uniform 50 m rope whose 
mass per unit length is 1 kg/m. The spaceahip is accelerating in a straight 
line with acceleration 5 m/sec2. 

(a) What is the force exerted by the spaceship on the rope? 
(b) Calculate the tension along the rope. 
(c) Due to exhaustion, the crew of the spaceship falls asleep and a 

short circuit in one of the booster control circuits results in the acceleration 
changing to a deceleration of 1 m/sec2. Describe in detail the consequences 
of this mishap. 

(SUNY, Buffalo ) 

Solution: 

F = (mrope + msatellite) a (a> 

= (950 + 50) x 5 = 5 x lo3 N. 

(b) Choose the point where the rope is attached to the satellite as the 
origin and the x-axis along the rope towards the spaceship. The tension 
along the rope is then 

F ( z )  = (meatellite + mrope(~))  * u 
= [950 + 1 x (50 - z)] x 5 
= 5 x 103 - 5x N. 

(c) After the mishap, the spaceship moves with an initial velocity vo and 
a deceleration of 1 m/s2, while the satellite moves with a constant speed 
VO. After the mishap, the two vessels will collide at a time t given by 

a 
2 

vot = 50 + vot - -t2 , 

or 
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1035 
A ball of mass M is suspended from the ceiling by a massless spring 

with spring constant k and relaxed length equal to zero. The spring will 
break if it is extended beyond a critical length 1 ,  ( l c  > M g / k ) .  An identical 
spring hangs below the ball (Fig. 1.22). If one slowly pulls on the end of 
the lower spring, the upper spring will break. If one pulls on the lower 
spring too rapidly, the lower spring will break. The object of this problem 
is to determine the force F ( t )  which, when applied to the end of the lower 
spring, will cause both springs to break simultaneously. 

F i t )  

Fig. 1.22. 

(a) Find an integral expression relating the length zl(t)  of the upper 

(b) Using any technique you like, find sl(t) and zz(t) for t > 0 when 
spring to the applied force F(t ) .  

F ( t )  has the particular form 

0, t < O  
at, t > o  ’ F ( t )  = 

where a is a constant. 
( c )  Use a careful sketch of your solutions to show that if a is too small, 

the upper spring will break. Similarly, shown that if a is too large, then 
the lower spring could break first. 

(d) Show that both springs break simultaneously when a is a solution 
of the equation 
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Solution: 
(a) The equations of motion for the ball and the lower spring are 

M21 = Mg - k x l +  k ~ 2  
k ~ 2  = F ( t )  . 

Eliminating 2 2 ,  we obtain 

M f l  + kz l  = F ( t )  + M g  . (1) 

To eliminate the constant term, let x1 = x + M g / k .  Equation (1) then 
becomes 

Let z = eiwty(t ) ,  where w = m. The above becomes 

Mx + k z  = F ( t )  . 

The homogeneous part of the above, 

can be solved by letting y = Cleat ,  where CI and a are constants. 
Substitution gives a = -2iw. 

A particular solution of (2) is obtained by letting L = e-2 iwt f ( t ) ,  which 
gives 

or 

Hence the general solution of (2) is 

and 
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where C 1 ,  Cz are constants of integration. For application to  the problem, 
either the real or the imaginary part of the last expression is used as the 
general solution. 

(b) The equation of motion is 

M X i +  kxl  = Mg (4) 

for t < 0, and 
MXI + ks l  = at + Mg (5) 

for t > 0. First obtain the solution of (4) by putting F ( t )  = 0 in (3). This 
gives 

where Ci is a constant of integration in place of C1. Taking the real part, 
we have 

x 1  = Ci sin(wt) + C 2  cos(wt) + - . M g  
k 

The solution of (5) is that of (4) plus a particular solution a t / k :  

at M g  
x1 = Ci sin(wt) + C 2  cos(wt) + - + - l c k  

At t = 0, x 1  = M g / k ,  2 2  = 0, x l  = 0, so that C 2  = 0, C{ = -a/kw.  Hence 

at M g  a ~ ( t )  = - + - - - sin(wt) , k k lcw 
at 
k 

x 2 ( t )  = - . 

(c) In Figs. 1.23 (for large a)  and 1.24 (for small a)  are plots of the 
curves for x 1  and 5 2 .  It is seen that the curve for X I  is given by a line 
x = M g / k  + a t / k ,  which is parallel to the 2 2  line minus an oscillatory term 
asin(wt)/kw whose amplitude is proportional to a. Hence, if tl and t 2  are 
the instants x 1  and 2 2  would reach l , ,  the critical length, we have for large 
a,  t 2  < t l ,  i.e. the lower spring will break first, and for small a,  tl < t 2 ,  

i.e. the upper spring will break first. 
(d) For the two springs to  break simultaneously, say at time t = t o ,  we 

require 

a t 0  

k 
4 t 0 )  = 1, = -, 

or 



Newtonian Mechanics 

x, ( t )  
X 

I 

0 

and 

or 

49 

Fig. 1.23. Fig. 1.24. 

Mg a 
zl(to) = I ,  = - + 1, - - sin (9) , k wk 

where w = m. 
1036 

A pendulum, made up of a ball of maas M suspended from a pivot 
by a light string of length L , is swinging freely in one vertical plane (see 
Fig. 1.25). By what factor does the amplitude of oscillations change if the 
string is very slowly shortened by a factor of 2? 

( Chicago ) 

Fig. 1.25. 
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Solution: Method 1 

For a periodic system with a parameter slowly changing, the action J 
is an adiabatic invariant. Now 

J =  PedO, ! 

f W 

where Pe = ML’O, i.e. 

. 2?r 
ML’8 4 8dt  = ML’(02)- J = 

- - 7rMg’/’O”L3’’ . 

Here we have used T = 27r/w, with w = m, for the period, and 

by taking 8 = do cos(wt + P O ) .  Then, as J is an adiabatic invariant, 

00 o( L-3’4 . 

When 
L -+ L/2, 00 -+ 1.6800 , 

i.e. the amplitude of oscillation is increased by a factor of 1.68. 

Method 8 

strate what an adiabatic invariant is. His proof is as follows: 
During discussion in a meeting, Einstein used this example to demon- 

Tension of string = Mg(cos8) + ~ (“a’) 
= M g ( I + $ ) .  

It is assumed that over a period, the length of the string is alrnost unchanged 
and that 0 is a small angle. 
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When L shortens slowly, the work done on the oscillator is -(N)AL, 
where N is the tension of the string, -AL is the displacement of the 
oscillator. Using the above, we obtain the work done as 

O2 
4 - M g A L - M g . A . A L .  

Under the action of the external force, the change in the oscillator's energy 
is 

A(-MgLcos&) = A  

1 
2 

= -MgAL + -MgA(L@) 

= -MgAL + 'Mg@AL + MgLOoAOo . 

The work done and the increment of energy must balance, giving 

2 

30: AL 
4 

LOoAOo + - = 0 , 

or 
L@A l n ( 0 0 L ~ ~ ~ )  = 0 . 

It follows that 
e 0 ~ 3 / 4  = constant , 

or 
00 cx L-3/4 . 

When 
L 

L --t 2, e0 --t 1.6860 . 

1037 
A perfectly reflecting sphere of radius r and density p = 1 is attracted 

to the sun by gravity, and repelled by the sunlight reflecting off its surface. 
Calculate the value of T for which these effects cancel. The luminosity of 
the sun is I ,  = 4 x gm. Give 
your answer in cm (assume a point-like sun). 

(UC, Berkeley) 

erg/sec and its mass is M, = 2 x 
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@ sphere 

Fig. 1.26. 

Solution: 
Let N ,  be the number of photons of frequency u passing through a unit 

area perpendicular to the direction of propagation in unit time, I ,  be the 
energy of sunlight of frequency u radiated by the sun in unit time, and R be 
the distance from the sun to the sphere. As R >> r ,  the incident sunlight 
may be considered parallel and in a direction opposite to the z-axis, as 
shown in Fig. 1.26. Then 

The photons collide elastically with the perfectly reflecting sphere at 
its surface. During a time interval At, for an elementary surface A S  at 
azimuth angle 8, the change of the momentum of photons of frequency u 
along the z-axis is 

1 hu hu 
- + - cos(28) cos8ASAt 
c c  

This gives rise to a force of magnitude 

AP,, 2hu 
At C 

AF,, = - - - - N ,  c0s3 0AS 

Then the total force exerted on the sphere by the sunlight of frequency u is 

Hence the total repelling force exerted by the sunlight is 
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The gravitational force the sun exerts on the sphere is 

where m = p * (4/3)7rr3 = (4/3)7rr3 is the mass of the sphere. When the 
two forces balance, we have 

I , r2  - 4GMs7rr3 
4R2c 3R2 ' 
-- 

or 

318 
167rcGM, 

16 x 3.14 x 3 x 10'0 x 6.67 x 

T =  

- 3 4 1033 
- 

x 2 x 1033 
= 5.97 x 1 0 - ~  cm . 

1038 

A particle of mass m moves along a trajectory given by x = xo coswlt, 

(a) Find the 5 and y components of the force. Under what condition is 

(b) Find the potential energy as a function of x and y. 
(c) Determine the kinetic energy of the particle. Show that the total 

( Wisconsin) 

y = yo sin w2t. 

the force a central force? 

energy of the particle is conserved. 

Solution: 
(a) Differentiating with respect to time, we obtain 

j. = - 2 0 ~ 1  sin(wlt), 

~ = gow2 cos(wzt), 

x = -xow: cos(w1t) , 
j j  = -yaw2 sin(&) . 2 

Newton's second law gives 

F = m(Zi + #j) = -m[x& cos(w1t)i + you: sin(w2t)jJ 
= -m(wTxi + wzyj) . 
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The x and y components of the force are therefore 

F, = - T T W ? X ,  

Fu = -W?Y . 

If w1 = w2, F is a central force F = -mw:r. 
(b) From 

F = - V V ,  

i.e. 

we obtain the potential energy 

1 
2 

v = -m(w;x2 +w;y2) . 

Note that we take the zero potential level at the origin. 
(c) The kinetic energy of the particle is 

The total energy is then 

E = T + V  
1 
2 

1 
2 

= -m[z!w: sin2(wlt) + ygwz cos2(w2t)] 

+ w?x; cos2(wlt) + wzy i  sin2(w2t) 

= -m(x;w; + ygw;, 

= constant . 

It is therefore conserved. 

1039 
A particle of mass m is projected with velocity 00 toward a fixed 

scattering center which exerts a repulsive force F = (mv:/2)6(r - a)i, 
where i is a unit vector along the radius from the force center, a is a fixed 
radius at which the force acts, and 01 is a constant having the dimensions 
of velocity. The impact parameter is s, as shown in Fig. 1.27. 
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(a) Find the potential energy. 
(b) Show that if wo < w1, the particle does not penetrate the sphere 

r = a, but bounces off, and that the angle of reflection equals the angle of 
incidence. 

(c) Sketch carefully the orbit you would expect for wo > w1, s = a/2. 
( Wisconsin) 

Fig. 1.27. 

Solution: 
(a) The force F, being a central force, is conservative. A potential can 

then be defined: 

V(r) = - F(r') . dr' = 

imw; for T < a ,  
for T > a . 

This is the potential energy of the particle in the field of the force. 
(b) The total energy T + V of the particle is conserved: 

1 2  1 1 
-mwi = -md2 + -mu1 , 
2 2 2 

i.e. IJ; - w? = d2,  where w' is the speed of the particle inside the sphere 
T = a. For the penetration to take place, w' must be real, i.e. we require 
that wo > w 1 .  

Then 
as the force is radial to the sphere, the radial component of the particle 
momentum will be reversed in direction but not changed in magnitude, 
while the component tangential to the sphere will remain the same. Hence, 
the angles of incidence and reflection, which are determined by the ratio of 
the magnitude of the tangential component to that of the radial component, 

If YO < w1, the particle cannot penetrate the sphere T = a. 
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are equal. Note that on account of conservation of mechanical energy, the 
magnitude of the particle momentum will not change on collision. 

(c) For 'UO > w1 and s = a/2, the particle will be incident on the sphere 
T = a with an incidence angle 00 = arcsin[(a/2)/a] = 30°, and penetrate 
the sphere. Let the angle it makes with the radial direction be 0. Then 
conservation of the tangential component of its momentum requires that 

VO 
2 

v'sind = vosin3O" = - , 

so that 0 is given by 

0 = axcsin (2&-J * 

As V is constant (i.e. no force) inside the sphere, the trajectory will be a 
straight line until the particle leaves the sphere. Deflection of the trajectory 
again occurs at r = a ,  and outside the sphere, the speed will again be wo 
with the direction of motion making an angle of 30" with the radial direction 
at the point of exit, as shown in Fig. 1.28. 

Fig. 1.28. 

1040 

A long-range rocket is fired from the surface of the earth (radius R )  with 
velocity v = (wT, ve) (Fig. 1.29). Neglecting air friction and the rotation of 
the earth (but using the exact gravitational field), obtain an equation to  
determine the maximum height H achieved by the trajectory. Solve it to  
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lowest order in ( H I R )  and verify that it gives a familiar result for the case 
that v is vertical. 

( Wisconsin) 

Fig. 1.29. 

Solution: 
Both the angular momentum and mechanical energy of the rocket are 

conserved under the action of gravity, a central force. Considering the 
initial state and the find state when the rocket achieves maximum height, 
we have 

mRue = m(R+ H)uh , 
1 G M m  1 G M m  -m(ui  + u,") - - = 2mvh2 - - 
2 R R + H '  

where the prime refers to the final state at which the radial component of 
its velocity vanishes, m and M are the masses of the rocket and the earth 
respectively. Combining the above two equations we obtain 

1 2  G M m  =-m(-) 1 R 2  ue-- G M m  -m(uo + u,") - - 
2 R 2 R + H  R + H '  

which gives the maximum height H .  Considering only terms first order in 
H I R ,  we have 

1 G M m  1 -rn(v: + v i >  - - rz -m (1 - F) v i  - - 
2 R 2 R 

and hence 
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For vertical launching] 210 = 0,  w, = v, and if H / R  is small, we can 
consider g as constant with g = GM/R2.  We then obtain the familiar 
formula 

1041 

In a few weeks Mariner 9 will be launched from Cape Kennedy on a 
mission to Mars. Assume that this spacecraft is launched into an elliptical 
orbit about the sun with perihelion at the earth’s orbit and aphelion at 
Mar’s orbit (Fig. 1.30). 

(a) Find the values of the parameters X and E of the orbit equation 
T = X ( 1 +  ~)/(1+ EcosO) and sketch the o r th .  

(b) Use Kepler’s third law to dalculate the time duration of the mission 
to  Mars on this orbit. 

(c) In what direction should the launch be made from earth for minimum 
expenditure of fuel? 

Mean distance of Mars from the sun = 1.5 A.U. 
Mean distance of the earth from the sun = 1 A.U. 

( Wisconsin) 

Fig. 1.30. 

Solution: 
(a) Let R1 be the distance of the earth from the sun and Rz that of 

Mars from the sun. Then 
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X ( 1 +  E )  

X ( 1 t  E )  

R1=-- - A ,  
l + E  

R 2 = - .  
1 - &  

Solving the equations, we obtain X = R1 = 1 A.U., E = 0.2. 

respectively. According to Kepler’s third law, T2/a3  = constant, 
(b) Let TI and T be the revolutional periods of the earth and Mariner 9 

or 

312 

TI = 1.253/2T1 = 1.40 years . Ri + R2 

The mission to Mars on this orbit takes 0.70 year. 
(c )  In order to economize on fuel, the rocket must be launched along 

the tangent of the earth’s orbit and in the same direction as the earth’s 
rot at ion. 

1042 

A comet in am orbit about the sun has a velocity 10 km/sec at aphelion 
and 80 km/sec at perihelion (Fig. 1.31). If the earth’s velocity in a circular 
orbit is 30 km/sec and the radius of its orbit is 1.5 x lo8 km, find the 
aphelion distance R, for the comet. 

( Wisconsin) 

Fig. 1.31. 
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Solution: 
Let v be the velocity of the earth, R the radius of the earth's orbit, m 

and m, the masses of the earth and the sun respectively. Then 

or 

mu2 - Gmm, _ _ ~  - 
R R2 ' 

Gm, = Rv2 . 
By the conservation of the mechanical energy and of the angular momentum 
of the comet, we have 

-Gm,m, m,vi -Gm,m8 m,v; +- +- 
mcRavUa = m&vp , 

where m, is the mass of the comet, and va and vp are the velocities of the 
comet at aphelion and at perihelion respectively. The above equations give 

- - 
Ra 2 RP 2 )  

1043 

A classical particle with energy EO and angular momentum L about 
point 0 enters a region in which there is an attractive central potential 
V = -G(r) centered on point 0. The particle is scattered by the potential. 

(a) Begin by assuming conservation of energy and angular momentum, 
and find the differential equation for dx/dr  in terms of Eo, L, G(r) ,  and T 

(and the particle mass m). 
(b) Find an equation for the distance of closest approach, rmin, in terms 

of E ,  L, G(rmin), and m. 
( Wisconsin) 

Solution: 

1 
2 

(4 
Eo = -m( i2  + r 2 P )  - G ( T )  , 
L = mr2e , 
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where 6 is shown in Fig. 1.32. Then 

As 
* L  g = -  dr  dr d0 .dr  

dt d6 dt 'de' mr2 ' 
- - - - . - =  

the above equation can be written as 

giving 

Fig. 1.32. 

(b) At closest approach T = rmin, 1' = 0. Hence 

1 
2 

Eo = -mr$,e2 - G(rmin) 

or 
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The result can also be obtained by putting dr lde = 0. 

1044 

A comet moves toward the sun with initial velocity 2’0. The mass of the 
sun is M and its radius is R. Find the total cross section B for striking the 
sun. Take the sun to be at rest and ignore all other bodies. 

( Wisconsin) 

Solution: 
Let the impact parameter of the comet be b. At the closest approach 

to the sun (closest distance T from the sun’s center), we have from the 
conservation of mechanical energy and angular momentum 

mV2 mV2 G M m  
2 2 T 

mbVo = mrV , 

-- - 
7 

where m is the mass of the comet and V its velocity at closest approach. 
From these, we find 

b = ~  JT. l+- 

If r < R, the comet will strike the sun. Hence the total cross section for 
striking the sun is 

(I = r[b(R)12 = rR2 1 f - ( ;:) 

1045 

A particle moves in a circular orbit of radius r under the influence of 
an attractive central force. Show that this orbit is stable if 
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where f ( r )  is the magnitude of the force as a function of the distance T 

from the center. 
( CUSPEA ) 

Solution: 
For the motion of a particle under the influence of a central force, we 

have 
mr28 = constant = L ,  say, 

mi: = -f + mre2 . 
Consider a particle traveling in a circular orbit of radius T subject to small 
radial and angular displacements 6r, 68: 

where w is the angular frequency of the particle moving in a circular orbit 
of radius T given by w 2 r  = f ( r ) .  As 

A L  M mr268 + 2mr86r , 
df mbi: M --6r + me26r + 2mr868 , 
dr 

e w + s o ,  
we have 

df A L  - 2mrw6r 
dr T 

m6i: M --6r + m 2 6 r  + 2w 

In the above, we have retained only terms first order in the small quantities. 
The circular orbit is stable only if 6r varies simple-harmonically. In 

other words, the stable condition is that the coefficient of 6r is negative: 

or 
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1046 

A particle of mass m is projected from infinity with a velocity Vo in 
a manner such that it would pass a distance b from a fixed center of 
inverse-square repulsive force (magnitude k/r2 ,  where k is a constant) if 
it were not deflected. Find: 

(a) the distance of closest approach, 
(b) the angular deflection which actually occurs, 
(c) the differential scattering cross section du/d f l  for a homogeneous 

( CUSPEA ) 
beam of particles scattered by this potential. 

Solution: 

(a) When the particle is at the closest distance from the fixed center of 
force, 1: = 0. Conservation of energy gives 

mV,2 k: mV2 - = - + -  

where R is the closest distance and V (= Re) is the speed of the particle 
when it reaches the pericenter. Conservation of angular momentum gives 

J = Vomb = mVR , 

2 R 2 '  

i.e., 

Hence 

or 

giving the closest distance 

VOb v = -  
R '  

mV,Z k: m V;b2 
---=-+--z, 2 R 2 R  

(b) The trajectory of the particle is shown in Fig. 1.33. The impulse of 
the force F acting on the particle is 

m 

Fdt = mAV , 
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where AV = Vf - Vi with lVfl = IViI = VO. Consider the component of 
the impulse in the direction of Vi. We have 

= mVo(cos20 - 1) . 

As F = 5 ,  mr2& = J ,  the left-hand side is 

Hence 

or 

mk 
J 

cos O'dO' = - - sin 20 

2mk 
- sin 6 cos 6 = 2 m ~ o  sin2 6 , 
J 

with E = amV:, which gives the angular deflection 20. 

Fig. 1.33. 

(c) The cross section corresponding to impact parameters between b and 

As b =  &cote, 
b + db is du = 2nbdb. 

using the absolute value. Thus 

d a  = 2n (&)2 S d O  

Then, as the scattering angle is 20, 

dR = 2n sin 20d(20) = 8n cos 0 sin OdO , 
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and thus 
2 1  

- -  :;-a(&) &%I’ 

which is just Rutherford’s scattering formula. 

1047 
Consider a planet of mass m in orbit around a sun of mass M .  Assume 

further that there is a uniform distribution of dust, of density p, throughout 
the space surrounding the sun and the planet. 

(a) Show that the effect of the dust is to add an additional attractive 
central force 

F ’ =  -mkr, where k =  - 4apG G = gravitational constant. 
3 ’  

You may neglect any drag force due to collision with the particles. 
(b) Consider a circular orbit for the planet corresponding to angular 

momentum L. Give the equation satisfied by the radius of the orbit, To,  in 
terms of L,  G ,  M ,  m and k .  You need not solve the equation. 

(c) Assume F‘ is small compared with the solar attraction and consider 
an orbit just slightly deviating from the circular orbit of part (b). By 
considering the frequencies of the radial and the azimuthal motion, show 
that the orbit is a precessing ellipse and calculate the angular frequency of 
precession, wp,  in terms of rg, p ,  G and M .  

(d)’Does the axis of the ellipse precess in the same or opposite direction 
to the orbital angular velocity? 

( CUSPEA ) 

Solution: 

(a) The mass of the dust in a sphere of radius T centered at the sun is 

4ar3p 
3 Mdust = - . 

If r is the distance of the planet from the sun, the gravitational force on 
the planet due to the attraction of the dust is, on account of the inverse 
distance square nature of gravitation, as if all the dust were concentrated 
at the sun. In other words, 
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- MdustmG -47rr3p mG -47rpGmr 
T 2  3 T 2  3 

= -mkr . - F' = - - 

(b) The planet has acceleration (F-rd', 2 id+r8)  in polar coordinates. 
Its equations of motion are therefore 

Multiplying ( 2 )  by T ,  we have 

or 

= o ,  d ( mr2 b )  
dt 

mr2b = L , 

where L is a constant. Thus the angular momentum L is a constant of the 
motion. Writing 

the radial equation becomes 

.. -GMm L2 
mr=- -mkr+? .  

r2 mr 

For a circular orbit, r = 0, and we have the equation for the radius TO of 
the orbit: 

-GMm L2 

mr0 
mkro + 7 = 0 ___- 

(c) Let q express a small radial excursion around T O ,  i.e. q = r - T O ,  in 
terms of which (1) becomes 
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as q <( TO.  Making use of the equation for circular orbit, we rewrite the 
above as 

271 GMm 371 L2 
m i j = G ( T ) - - - -  TO mr: mk71 

or 

This is the equation of a harmonic oscillator with angular frequency 

As the radial oscillation frequency is slightly larger than the azimuthal 
frequency 4, the orbit is a precessing ellipse. 

To first order in p the azimuthal frequency is not affected by the presence 
of dust: 

mr0 

. L  
8 = -  = wo . mri 

The precession frequency is 
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In order to express wp in terms of p,G,m and rg, use the expression of L 
for k = 0 (any error is second order in wp):  

(d) Since the radial oscillation is faster than the orbital revolution, the 
axis of the ellipse precesses in a direction opposite to the orbital angular 
velocity as shown in Fig. 1.34. 

Fig. 1.34. 

1048 

A meteorite of mass 1.6 x lo3 kg moves about the earth in a circular 
orbit at an altitude of 4.2 x lo6 m above the surface. It suddenly makes 
a head-on collision with another meteorite that is much lighter, and loses 
2.0% of its kinetic energy without changing its direction of motion or its 
total mass. 

(a) What physics principles apply to the motion of the heavy meteorite 

(b) Describe the shape of the meteorite's orbit after the collision. 
(c) Find the meteorite's distance of closest approach to the earth after 

(UC, Berkeley) 

after its collision? 

the collision. 

Solution: 
(a) The laws of conservation of mechanical energy and conservation of 

angular momentum apply to the motion of the heavy meteorite after its 
collision. 
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(b) For the initial circular motion, E < 0, so after the collision we still 
have E < 0. After it loses 2.0% of its kinetic energy, the heavy meteorite 
will move in an elliptic orbit. 

(c) From 
mu2 GmM - 

r r2 ’ 
we obtain the meteorite’s kinetic energy before collision: 

1 2  -mu = 
2 

- - 

GmM mgR2 - 
2r 2T 

m x 9.8 x lo3 x 64002 
2(6400 + 4200) 

= 1.89 x 107m Joules , 

where m is the mass of the meteorite in kg. The potential energy of the 
meteorite before collision is 

= -mu2 = -3.78 x 107m Joules . GmM 
r 

-~ 

During the collision, the heavy meteorite’s potential energy remains 
constant, while its kinetic energy is suddenly reduced to 

1.89 x 107m x 98% = 1.85 x 107m Joules. 

Hence the total mechanical energy of the meteorite after the collision is 

E = (1.85 - 3.78) x 107m = -1.93 x lO’m Joules . 
From 

-GmM - -mR2g E = -  - 
2a 2a , 

we obtain the major axis of the ellipse as 

R2g - (6400 x 103)2 x 9.8 2a = - 

= 2.08 x lo7 m = 2.08 x lo4 km . 

1.93 x 107 1.93 x 107 

As after the collision, the velocity of the heavy meteorite is still perpen- 
dicular to the radius vector from the center of the earth, the meteorite is 
at the apogee of the elliptic orbit. Then the distance of the apogee from 
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the center of the earth is 6400 + 4200 = 10600 km and the distance of the 
perigee from the center of the earth is 

r,in = 20800 - 10600 = 10200 km . 

Thus the meteorite’s distance of closest approach to the earth after the 
collision is 10200 - 6400 = 3800 km. 

From the above calculations, we see that it is unnecessary to know the 
mass of the meteorite, Whatever the mass of the meteorite, the answer is 
the same as long as the conditions remain unchanged. 

1049 

Given that an earth satellite near the earth’s surface takes about 90 min 
per revolution and that a moon satellite (of our moon, i.e., a spaceship 
orbiting our moon) takes also about 90 min per revolution, what interesting 
statement can you derive about the moon’s composition? 

( UC, Berkeley) 

Solution: 
Fkom the equation mrw2 = GmM/r2 for a body m to orbit around a 

fixed body M under gravitation, we find 

r3w2 = GM. 

Then if Me, Mm are the masses and re,  T, are the radii of the earth and 
moon respectively, and the periods of revolution of the earth and moon 
satellites are the same, we have 

or 
Me M m  
Ve Vm ’ 
-= -  

where V, and Vm are the volumes of the earth and moon respectively. It 
follows that the earth and moon have the same density. 
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1050 

The interaction between an atom and an ion at distances greater than 
contact is given by the potential energy V ( r )  = - C T - ~ .  (C = e2P2/2,  
where e is the charge and Pa the polarizability of the atom.) 

(a) Sketch the effective potential energy as a function of T .  

(b) If the total energy of the ion exceeds VO, the maximum value of the 
effective potential energy, the ion can strike the atom. Find VO in terms of 
the angular momentum L. 

(c) Find the cross section for an ion to strike an atom (Lee, to penetrate 
to  T = 0) in terms of its initial velocity 210. Assume that the ion is much 
lighter than the atom. 

(UC, Berkeley) 

Solution: 

(a) The effective potential energy as a function of T is 

where L is the angular momentum of the ion about the force center, and 
rn is the mass of the ion. Its variation with r is shown in Fig. 1.35. 

Fig. 1.35. 



Newtonian Mechanics 73 

(b) To find the maximum of V d ,  Vo, we set 

The solutions are 
2 
L r1 = oo, r2 = -Jcm . 

Consider 
d2Veg - -2OC 3L2 ---+- 
dr2 r6 mr4 * 

Substituting TI  and r2 in the above we obtain 

L' Hence at r = $&, Veg has a maximum value VO = 16c,,,a. 
(c) In terms of the total energy 

we can write m+ = 
Then as 

In terms ofL we can write I = 3. 
- d B  dd e = - = + -  

dt dr ' 
we have 

L - de I L - = - = - -  
dr 7: mr27: r2 

We can then find the angular displacement of the ion with respect to the 
atom as it travels from infinity to the closest distance r,in from the atom: 
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?-,,,in, the minimum distance of the ion to the atom, is determined by 
i.e., 

= 0,  

L2 

7-2 
2m(E - V )  - - = 0 , 

or 
2mEr4 - L2r2 + 2mC = 0 . 

Hence 
L2 f dL4 - 16m2EC L2 4mC -- - - T 2 .  = - - 

mm 4mE 4mE L2 ’ 
or 

Substituting rmin in el we obtain 

Why cannot we have a finite value for 61? It is on account of the fact 
that, under the condition E = KJ = while 1: + 0 as r + r,in, the 
transverse velocity re = $ + k, a constant, so that with passage of 
time the trajectory will infinitely approach a circle of radius rmin and no 
scattering occurs. 

If E > Vo, rmin as given above is complex, implying that there is no 
minimum distance from the atom, i.e., the ion will approach the atom 
infinitely. Physically this can be seen as follows. When the ion reaches 
the position at which & = VO, i. # 0 and the ion continues approaching 
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the atom. As L is conserved, the speed of the ion, (r2e2 + f 2 ) l I 2  = 
112 (A + f 2 )  , will become larger and larger as the atom is approached, 

if the expression for the potential energy V ( r )  = -5 continues to hold. 
But this is not so as other ion-atom interactions will come into play when 
the two bodies are close to each other. 

Suppose the ion approaches the atom with impact parameter b and 
initial velocity vo.Then to strike the atom we require 

1 L4 m2v$b4 
2 16Cm2 - 16C ' E =  -mvi > Vo = - - 

or ac 
b4 < - 

mv,2 ' 

Hence the cross section for the ion to strike the atom is 

g = r b 2  = -& 2lr 2c . 
VO 

1051 
Given a classical model of the tritium atom with a nucleus of charge +1 

and a single electron in a circular orbit of radius ro, suddenly the nucleus 
emits a negatron and changes to charge +2. (The emitted negatron escapes 
rapidly and we can forget about it.) The electron in orbit suddenly has a 
new situation. 

(a) Find the ratio of the electron's energy after to before the emission 
of the negatron (taking the zero of energy, as usual, to be for zero kinetic 
energy at infinite distance). 

(b) Describe qualitatively the new orbit. 
(c) Find the distance of closest and of farthest approach for the new 

(d) Find the major and minor axes of the new elliptical orbit in terms 

(UC, Berkeley) 

orbit in units of TO.  

of ro. 

Solution: 
(a) As the negatron leaves the system rapidly, we can assume that its 
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leaving has no effect on the position and kinetic energy of the orbiting 
electron . 

From the force relation for the electron, 

we find its kinetic energy 

and its total mechanical energy 

-e2 mu: e2 - El = - - - - - 
2 4T€oTo 8 ~ ~ 0 ~ 0  

before the emission of the negatron. After the emission the kinetic energy 
of the electron is still 6, while its potential energy suddenly changes 
to 

Thus after the emission the total mechanical energy of the orbiting electron 
is 

giving 

In other words, the total energy of the orbiting electron after the emission 
is three times as large as that before the emission. 

(b) As E2 = -, the condition Eq. (1) for circular motion is no 
longer satisfied and the new orbit is an ellipse. 

(c) Conservation of energy gives 

-3e2 -e2 m(.i.2 + ~ ' 8 ~ )  
+ 2  

- 
8 ~ ~ 0 ~ 0  ~ T I T E O T  

At positions where the orbiting electron is at the distance of closest or 
farthest approach to the atom, we have .i. = 0, for which 

-3e2 - mr2& e2 L2 e2 - -------- - - 
8 ~ ~ 0 ~ 0  2 2mOr 2mr2 27raor ' 



Newtonian Mechanics 77 

Then with 

the above becomes 
3r2 - 41-01- + rf = o , 

with solutions 

Hence the distances of closest and farthest approach in the new orbit are 
respectively 

r,, = 1 
1 
3’ 

T .  = -  min 

in units of TO. 

orbit respectively, and 2c the distance between its two focuses. We have 
(d) Let 2a and 2b be the major and minor axes of the new elliptical 

1052 

A satellite is launched from the earth on a radial trajectory away from 
the sun with just sufficient velocity to escape from the sun’s gravitational 
field. It is timed so that it will intercept Jupiter’s orbit a distance b behind 
Jupiter, interact with Jupiter’s gravitational field and be deflected by 90”’ 
i.e., its velocity after the collision is tangential to Jupiter’s orbit (Fig. 1.36). 
How much energy did the satellite gain in the collision? Ignore the sun’s 
gravitational field during the collision and assume that the duration of the 
collision is small compared with Jupiter’s period. 

(UC, Berkeley) 
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Solution: 
Let r represent the distance from Jupiter to the sun, vi the velocity of 

the satellite with respect to  the sun at the time it intercepts Jupiter's orbit 
a distance b behind it and before any interaction with it, and rn and M ,  
the masses of the satellite and the sun respectively. As the satellite just 
escapes the sun's gravitational field, we have 

mu; - GmM, 
2 r 

~~ - ' 

giving 

vi=/?=/ 2 x 4.01 x 1014 x 3.33 x 105 
7.78 x loll 

= 1.85 x lo4 m/s = 18.5 km/s , 
where we have used M,  = 3.33 x 105Me ( M e  is the earth's mass), GM, = 
gR2 ( R  is the radius of the earth) = 4.01 x 1014 m3/s2, T = 7.78 x lo1' m. 

The velocity V J  of Jupiter with respect to the sun is given by 

v: = GM, 
r T2 ' 
- -  

i.e. 

When the satellite just enters the gravitational field of Jupiter, its 
velocity in the Jupiter frame is 

or 
v, = J18.52 + 13.12 = 22.67 km/s. 

If b does not change during the encounter, conservation of the angular 
momentum of the satellite in the Jupiter frame shows that this is also the 
speed of the satellite in the Jupiter frame when it leaves the gravitational 
field of Jupiter. After the encounter, the satellite leaves the gravitational 
field of Jupiter with a velocity in the sun's frame tangential to Jupiter's 
orbit. Thus the speed of the satellite with respect to  the sun is 

vf = v, + V J  = 22.67 + 13.1 = 35.77 km/s 
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"r Jupiter's orbi t  - -  - - - - - _ _  

- ;P Fig. SUN 1.36. 

The energy gained by unit mass of the satellite in the collision is 
therefore 

= 468.6 x lo6 J/kg . 35.772 - 18.52 
2 

1053 
By what arguments and using what measurable quantities can one 

(a) The mass of the earth. 
(b) The mass of the moon. 
(c )  The distance from the earth to the sun. 

determine the following quantities with good accuracy? 

(Columbia) 

Solution: 

attraction of the earth. We have 
(a) The weight of a body on the earth arises from the gravitational 

Gm,m 
m g = -  

R2 
I 

whence the mass of the earth is 
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where the acceleration of gravity g, the radius of the earth R, and the 
gravitational constant G are measurable quantities. 

(b) Consider a 2-body system consisting of masses ml, m2, separated 
by T ,  under gravitational interaction. The force equation is 

ml +m2 
or 

47r27-3 
G(ml +m2) = ~ T2 ’ 

where mlrnz/(ml + m2) is the reduced mass of the system. Applying this 
to  the moon-earth system, we have 

h a 3  
G(m, + me) = - T2 ’ 

where m,, a and T are the mass, semimajor axis and period of revolution of 
the moon respectively. With the knowledge of me obtained in (a) and that 
of a and T determined by astronomical observations, m, can be obtained. 

Fig. 1.37. 

(c) Described below is a historical method for determining the ear thsun 
distance using the asteroid Eros. When the sun, earth and Eros are on a 
straight line as in Fig. 1.37, two observers A and B at latitudes A1 and A2 

in the meridian plane containing Eros and the sun measure the angles a1 
and a2 as shown in Fig. 1.38. As 

giving 
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Earth 

Fig. 1.38. 

and 

giving 

we have 

Re a1 - a  
sinpl sinal ’ 
-=- Re a1 - a  

sinp2 sinaz ’ 
-- -- 

(sina2 - sinal)  , p2 - 01 M s i n h  - sinpl = - 
a1 -a  

Re 

Re (sin a 2  - sin a1) 
a l - a x  

a 2 - a 1 - & + X 1  . 
Kepler’s third law gives 

a3 T2 

where T and TI are respectively the periods of revolution of the earth and 
Eros around the sun. The last two equations, used together, determine a. 

However, this method is not accurate because the orbits of revolution 
of the earth and Eros are elliptical, not circular (eccentricity of Eros’ orbit 
= 0.228), and the angle formed by their orbital planes is greater than 
loo. More accurate, but non-mechanical, methods are now available for 
determining the earth-sun distance. 

1054 

Two long concentric half-cylinders, with cross section as shown in 
Fig. 1.39, carry charges arranged to produce a radial electric field E = 
ke,/r between them. A particle of mass m, velocity v and negative 
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charge -q enters the region between the plates from the left in a direction 
perpendicular to the axis of the half-cylinders and perpendicular to the 
radial direction as in the figure. Since the velocity v has no component 
along the axis of the half-cylinders, consider only motion in the plane of 
the diagram for all calculations. 

Fig. 1.39. 

(a) If the particle moves on a circular path while between the plates, 
what must be the radius r of that path? 

(b) Next consider a trajectory for which the particle enters the region 
between the plates at the same distance r from the axis and the same speed 
as in (a), but at a small angle @ with the direction of the original path. For 
small p the point P at which this new trajectory again crosses the trajectory 
in (a) is independent of @. Find the location of that point P .  (Again the 
particle has no velocity component along the axis of the half-cylinders and 
remains in the plane of the diagram.) 

(c) How is the answer to part (a) changed if a uniform magnetic field is 
introduced parallel to the axis of the half-cylinders? 

(Columbia ) 

Solution: 
(a) As the particle moves in il circular path, we have 

- = q E = - ,  mv2 qk 
r r 

or 
2 - 9  k 

m 
v - - .  
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As long as the velocity v of the particle satisfies this relation, it will move 
in a circular path whose radius is equal to the distance between the incident 
line and the axis of the half-cylinders, while between the plates. 

(b) The particle enters the region between the half-cylinders at the 
same distance ro from the axis and with the same speed v as in (a), but 
at a small angle p with the direction of the original path. Conservation of 
angular momentum and energy gives 

mr2e = mrov , 
1 ( 5 )  = -mu2 1 

2 
-m(i2 + r2b2) + qkln 
2 

As the new trajectory deviates from the original one slightly, we set 

r = r o + 6 r ,  
d 

i. = -(&) , 
d t  

e = w o + s e ,  

where wo is the angular velocity for the original circular orbit, and 6r, 66 
are small quantities. Substitution in (1) gives 

. rov v 1 
()=-=- 

2 '  

or 

e2= (;)2/(l+z)4 

= (:>, [ 1 - * - + 1 0 ( 3 2 ]  6T ro . 

By a similar approximation, 

We can also write 
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Hence (2) can be written, neglecting small quantities higher than the second 
order, as 

qk mu2 (6r)2+ (- - T )  6r = 0 ,  
TO 

or, noting qk = mu2, 

Then taking the time derivative of both sides, we obtain 

s r = o ,  
dt2 

with solution 

where A and cp are constants of integration. The initial conditions 

r(0)  = T O ,  +(O) = vsinp , 

or 
d 
-6r = vsinp 
dt 

6r = 0, at t = 0 , 

give 
cp=O,  A = %  Jz sinp . 

Hence 

TO 

and the position of P is given 

e = et 

which is independent of p. 

At the point where this new trajectory crosses the trajectory in (a), 6r = 0. 
The second crossing takes place at a time t later given by 

U To JZ-t=r, or t = - -  
f i u ’  

bY 

1) 7r 



Newtonian Mechanics 85 

(c) If a uniform magnetic field parallel to the axis of the half-cylinders 
is used instead of the electric field, we will have 

Then the radius T of the circular path will be 
mu r = -  
qB * 

1055 

The orbit of a particle moving under the influence of a central force is 
re = constant. Determine the potential energy as a function of T .  

(Columbia) 

Solution: 

Newton’s second law gives 
Consider a central force F = rF(r)  acting on a particle of mass m. 

F = m(i: - r82) , 
0 = m(r l+  2i.8) 

in polar coordinates. Equation (2) gives 

or 

or 

by putting 

r2S = constant = h , say, 

8 = hu2 

1 
r = - .  

U 
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Then as 

. 2 - 1 2 4  2 3  TO - - h u  = h u ,  
U 

Eq. (1) becomes 
d2u F = -mh2u2 (s + u )  , 

which is often known as Binet’s formula. 
In this problem, let T = $ and write the equation of the trajectory as 

u=ce, 
where C is a constant. Binet’s formula then gives 

The potential energy is by definition 

taking an infinity point as the zero potential level. 

1056 

Mariner 4 was designed to travel from earth to  Mars in an elliptical 
orbit with its perihelion at earth and its aphelion at Mars. Assume that 
the orbits of earth and Mars are circular with radii RE and RM respectively. 
Neglect the gravitational effects of the planets on Mariner 4. 

(a) With what velocity, relative to  earth, does Mariner 4 have to leave 

(b) How long will it take to reach Mars? 
earth, and in what direction? 
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(c) With what velocity, relative to Mars, will it reach the orbit of Mars? 
(The time at which Mariner 4 leaves earth must be properly chosen if it is 
to arrive at Mars. Assume this is done.) 

( Columbia) 

Solution: 

conservative, we have 
As the gravitational force on Mariner 4, which is a central force, is 

mi2  GmM mh2 
E = - - -  +- 

where m and M are the masses of Mariner 4 and the sun respectively, G 
is the gravitational constant, and h = r2e is a constant. At the perihelion 
and aphelion of the elliptical orbit, i = 0, T = RE and T = RM respectively. 
Then 

-GmM mh2 -GmM mh2 
E = -  +-=- +- 

2 T 2r2 ' 

RM 2R2, RE 2Rg ' 
giving 

At the perihelion we obtain its velocity relative to the sun as 

~ G M R M  v = - =  
RE RE(RM + R E )  ' 

Suppose Mariner 4 is launched in a direction parallel to the earth's revolu- 
tion around the sun. The velocity relative to the earth with which Mariner 4 
is to leave the earth is then 

where V E  is the velocity of revolution of the earth. Similarly at the aphelion 
the velocity, relative to Mars, which Mariner 4 must have is 

IGM 
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Applying Kepler’s third law we have for the period T of revolution of 
Mariner 4 around the sun 

3 T 2  = T i  ( RE + R M  ) R E 3 ,  

where TE = period of revolution of the earth = 1 year. Hence the time 
taken for Mariner 4 to  reach Mars in years is 

1057 

A charged pion (T+ or T - )  has (non-relativistic) kinetic energy T .  A 
massive nucleus has charge Z e  and effective radius b. Considered classical, 
the pion “hits” the nucleus if its distance of closest approach is b or 
less. Neglecting nucleus recoil (and atomic-electron effects), show that the 
collision cross section for these pions is 

TP(T - V )  
for T+ , 

T I  
o =  

and 
&(T + V )  

for T -  , 
T ’  

U =  

where 

(Columbia) 

Solution: 
Let d be the impact parameter with which a pion approaches the nu- 

cleus. The pion has initial velocity @ and angular momentum m d ,  
where m is its mass. At the closest approach, the pion has no radial velocity, 
i.e., o, = 0, 21 = bs. Conservation of angular momentum gives 
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or 

Conservation of energy gives 

1 
2 

T = V + -rnb2e2 , 

as a potential V now comes into play, or 

The collision cross section is 

Putting V = F, for n+ we have 

~ = n b ' ( ~ ) ,  T - V  

and for n- , the potential is - and we have 

u = ~ b ~ ( ~ ) .  T + V  

1058 
Estimate how big an asteroid you could escape by jumping. 

(Columbia) 

Solution: 
Generally speaking, before jumping, one always bends one's knees to 

lower the center of gravity of the body by about 50 cm and then jumps up. 
You can usually reach a height 60 cm above your normal height. In the 
process, the work done is (0.5 + 0.6)mg, where m is the mass of your body 
and g is the acceleration of gravity. 
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It is reasonable to suppose that when one jumps on an asteroid of mass 
M and radius R one would consume the same energy as on the earth. Then 
to escape from the asteroid by jumping we require that 

GMm 
l.lmg = - 

If we assume that the density of the asteroid is the same as that of the 
earth, we obtain 

M R3 
ME R; ’ 

where M E  and RE are respectively the mass and radius of the earth. As 
g = GME/Rg, we find 

R ’  

- 

GM R3 R = - -  -- 
1.19 1 . 1 R ~  ’ 

or 
R = Jm = J1.l  x 6400 x lo3 = 2.7 x lo3 m 

1059 
You know that the acceleration due to gravity on the surface of the 

earth is 9.8 m/sec2, and that the length of a great circle around the earth 
is 4 x lo7 m. You are given that the ratios of moon/earth diameters and 
masses are 

= 0.0123 Mm 
- =0.27 and - Dm 
D e  n/r, 

respectively. 

gravitational field when starting from its surface. 

the moon’s temperature which reaches 100°C. 

(a) Compute the minimum velocity required to escape from the moon’s 

(b) Compare this speed with thermal velocities of oxygen molecules at 

(VC,  Berkeley) 

Solution: 

field be wmin, then 
(a) Let the velocity required to escape from the moon’s gravitational 

mvki, - GMmm 
2 Tm 

9 
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giving 

0*0123 . g a D, = 2.38 x 103'm/s =.JcTF) 

using g = GM,/r: ,  D,/De = 0.27 and Mm/Me = 0.0123. 

molecules at a temperature of 100°C is 3kT/2: 
(b) The average kinetic energy of the translational motion of oxygen 

1 3 
--mu2 = - k T .  
2 2 

Hence 

=538 m/s . 
32 x 1.67 x 

v, which is the root-mean-square speed of an oxygen molecule at the highest 
moon temperature, is smaller than urnin, the speed required to escape from 
the moon. 

1060 
An object of unit mass orbits in a central potential U ( r ) .  Its orbit is 

azimuthal angle measured in the orbital plane. Find U ( r )  to within a 
r = ae-68, where 6 is the 

multiplicative constant. 
(MITI 

Solution: 
Let 

Then 

-=--  - b 2 u ,  
de2 a 
d2u b2ebe 
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and Binet’s formula (Problem 1055) 

F = -mh2u2 ($ + u) 

gives for m = 1 

h2(b2 + 1 )  - d U ( r )  - -- 
dr  ’ 

F = -h2(b2 + l )u3 = - 
T3  

Integrating and taking the reference level for U ( T )  at T -+ 00, we obtain 

-h2 b 2 +  1 
V(T)  = - . - 

2 T2  ’ 
where h = r26 is the conserved angular momentum of the object about the 
force center and is to be determined by the initial condition. 

1061 

Hard sphere scattering. 
Show that the classical cross section for elastic scattering of point 

particles from an infinitely massive sphere of radius R is isotropic. 
( M I T )  

Solution: 
For elastic scattering, the incidence angle equals the angle of reflection. 

If 6 is the impact parameter, we have 
The angle of scattering is then cp = 28 as shown in Fig. 1.40. 

b = Rsin8 , 

and 
db = R cos Ode . 

The differential scattering cross section per unit solid angle 

2xbdb = 22sR2 sin 8 cos 8d8 = -22s sin p d p  , 

is given by 

dcr 
dCl 

or 
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. 

Fig. 1.40. 

do 1 R2sin28d8 
dR = 5 sinqdq 
- 

R2 sin cpdcp R2 
4 sincpdq 4 * 

- - 

Thus the classical differential cross section is independent of the angle of 
scattering. In other words, the scattering is isotropic. 

1062 
Find the angular distribution and total cross section for the scattering of 

small marbles of mass m and radius r from a massive billiard ball of mass 
M and radius R (m << M). You should treat the scattering as elastic, 
involving no frictional forces. 

( Columbia) 

Solution: 
As m << M, the massive billiard ball will remain stationary during 

scattering. As the scattering is elastic (see Fig. 1.41), the scattering angle 
8 is related to the angle of incidence by 

e=n-2e ,  
where 8 is given by 

(R + r )  sin8 = b . 



94 Problems €4 Solutions on Mechanics 

The differential scattering cross section is 

da (2nbdbl 2?r(sinBcosd. ( R + T ) ~ ~ O I  
dR dR 27~d cos (3 

- - - 

\ i ( R  + T - ) ~  sin QdQl - i ( R  + r)2d cos0 
- - - 

d cos 8 d cos 0 
1 
4 

= - ( R + r ) 2  . 

As $$ is isotropic, the total cross section is 

Fig. 1.41. 

1063 

A spaceship is in a circular orbit of radius TO around a star of mass 
M. The spaceship’s rocket engine may be fired briefly to  alter its velocity 
(instantaneously) by ari amount Av. The direction of firing is specified by 
the angle 0 between the ship’s velocity v and the vector from the tail to  
the nose of the ship (see Fig. 1.42). To conserve fuel in a sequence of N 
firings, it is desirable to minimize AV = CE1 lAvi(. AV is known as the 
specific impulse. 

(a) Suppose we want to use the ship’s engine to escape from the star. 
What is the minimum specific impulse required if the engine is fired in a 
single rapid burst? In what direction should the engine be fired? 
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Fig. 1.42. 

(b) Suppose we wish to visit a planet in a circular orbit of radius r1 > ro. 
What is the minimum specific impulse required to reach the planet's orbit 
if the engine is again fired in a single rapid burst? 

Suppose we want to use the ship's engine to cause it to crash into the 
star (assume the radius of the star to be negligible). Calculate the minimum 
specific impulse for both of the following firing strategies: 

(c) A single rapid burst at 0 = 180". 
(d) A single rapid burst at 0 = 0" and then a second burst at 0 = 180" 

at a later time. The timing of the second burst and the strength of each 
burst should be chosen to minimize the total specific impulse. 

( M W  
Solution: 

(a) Let vo be the speed of the spaceship in the circular orbit of radius 
ro, and 00, be the escape velocity for the orbit. Then 

the specific impulse required for escape is the least for B = 0, i.e., the initial 
velocity of the spaceship and the impulse are in the same direction, and is 
given by 
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Fig. 1.43. 

(b) After the first burst, the ship escapes from the circular orbit around 
the star and moves along a parabolic orbit. When the ship reaches the 
circular orbit T = TI of the planet, the engine is again fired in a single rapid 
burst (see Fig. 1.43). For the ship to move along the circular orbit of radius 
rl, its speed must be 

v l = g .  

Let vle be the speed of the ship as it arrives at T = r1 and before the burst. 
Conservation of angular momentum requires 

Conservation of energy gives 

1 G M m  
5mv:, = - , 

r1 

or 

Then the minimum specific impulse required is given by 

A V  = I v ~  - Vlel 
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or 

Hence 

(c) For a single rapid burst at B = 180", the minimum specific impulse 
is that which makes the speed of the spaceship u' = uo - AV = 0, so that 
it will fall onto the star. Hence the minimum impulse required is 

(d) If after the first burst with 8 = O", the ship acquires the escape 
velocity uoe = E, i.e., AV, = e(fi - l), it can escape from the 
orbit. The speed of the ship u is given by 

1 G M m  
-mu - - = constant. 
2 r 

As r -, 00, u -+ 0. The second burst can be fired when u E 0 at B = 180° 
to turn the ship around toward the star with a specific impulse AVz NN 0; 
thereafter the ship falls down to the star. The total impulse required is 

That this is the minimum impulse can be seen from the following. 
Suppose the first burst fired at 8 = 0" is 
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then the ship will move along an elliptic orbit. The speed is then minimum 
at the aphelion, at which point the second burst at 8 = 180’ should be fired 
to make AV2 small. Suppose at the aphelion the ship is at distance 7-2 from 
the star and has speed 212, then AV1 is given by the energy equation 

1 G M m  1 G M m  
-mu2 - - = -m(vo + AV1)2 - - 
2 7-2 2 TO 

and the angular momentum equation 

m1-2~2 = mro(w0 + AVI) . 

Eliminating r2 from the above, we have 

giving 

where the lower sign corresponds to the speed at the perihelion and the 
upper sign to the speed at the aphelion. At the aphelion, 

The second burst must be such that Av2 is equal to v2 in magnitude but 
opposite in direction in order that the ship can stop and fall down to the 
star, i.e., v2 + Av2 = 0. Thus 

or 

From the above it can be seen that the larger the value of AV1, the smaller 
is the specific impulse AV = AV1 + AVz, under the condition 
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Hence in order to minimize the total specific impulse, the first burst should 
carry impulse AVI = d m (  4 - 1) and after an infinitely long period 
of time, a second burst is fired with an infinitesimal impulse AVZ. 

1064 

“Interstellar bullets” are thought to be dense clumps of gas which 
move like ballistic particles through lower-density interstellar gas clouds. 
Consider a uniform spherical cloud of radius R, mass M ,  and a “bullet” of 
radius << R and mass m << M .  Ignore all non-gravitational interactions. 

(a) Obtain expressions for the force F(r), 0 < r < 00, suffered by the 
bullet in terms of the distance r from the cloud center, and for the potential 
energy V ( r ) ,  0 < r < 00. Sketch V ( r ) .  

(b) The bullet has angular momentum L = m(GMR/32)lI2 about r = 0 
and total energy E = -5GMm/4R. Find the orbit turning point(s). Is 
the bullet always in the cloud, outside the cloud, or sometimes inside and 
sometimes outside? 

(c) For L and E as in (b), obtain an expression for the differential orbit 
angle dB in terms of dr ,  r and R. 

(d) Obtain an orbit equation r(6, R) by integrating your answer to (c), 
you may wish to use 

- 2 ~  - b 
arcsin c < o .  

1 - -- dx  
a + b x + c x 2  6 d@=xFc’ 

Find the turning points and sketch the orbit. 

Solution: 

(a) The force F acting on the bullet is 

From the definition of potential energy V ( r ) ,  F = -VV(r), we have 
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V ( r )  = - laR F . dr - 

V ( r )  = - F . d r  ( R  5 T < 0 0 ) .  

F. dr (0 < r 5 R)  , 

1: 
Substituting in the appropriate expressions for F and integrating, we find 

G M m  { G M m  

(3R2 - r2 )  (0 < T 5 R) , -- 
2 ~ 3  

( R < r < m ) .  
V ( r )  = 

-- 
r 

A sketch of V ( r )  is shown in Fig. 1.44. 

I 

Fig. 1.44. Fig. 1.45. 

(b) As shown in Fig. 1.44, with total energy E = -5GMm/4R,  the 
bullet can only move inside the gas cloud in a region bounded by the turning 
points. At the turning points, 7: = 0, v = ve, Hence 

- -5GMm 
4 R  

GMm(r2 - 3 ~ 2 )  + - 
2 ~ 3  

Eliminating vg, we have for the turning distance r 

which has solutions 
2 f J Z  



Newtonian Mechanics 

giving 

101 

(c) Conservation of energy and of angular momentum give 

m(f2 + r2e2) E = V ( T )  + n 7 
L 

L = mr28 . 

Substituting in the above 

we have 

or 

i.e. 

5GMm GMm ---=- 
4 R  2 ~ 3  

2 ($) = r2 [-32 ( f ) 4  + 16 ( f ) 2  - 11 , 

- I f 2  dr 
d8 = [-32 (;)I + 16 (f)’ - 11 

- T . 
(d) To integrate the last equation, let x = ( T / R ) - ~  and rewrite the 

equation as 
dx  -2dB = 

4-32 + 1 6 ~  - x2 
Integrating, we obtain 

2~ - 16 
(Y - 28 = arcsin ~ 

8 f i  
or 

i.e. 

x = 8 + 4&sin(cr - 28) = 8 + ~ & ? c o s ( ~ B  + p) , 



102 Problems €4 Solutions o n  Mechanics 

where p is a constant of integration. By a suitable choice of the coordinate 
axes, we can make p = 0. At a turning point, r is either maximum or 
minimum, i.e. cos6' = kl .  Hence the turning points are given by 

Thus there are a total of 4 turning points as shown in Fig. 1.45. 

1065 

A very broad parallel beam of small particles of mass m and charge zero 
is fired from space towards the moon, with initial velocity Vo relative to the 
moon. 

(a) What is the collision cross section for the particles to hit the moon? 
Express the cross section 0 in terms of the moon's radius R, the escape 
velocity V,,, from the surface of the moon, and VO. Neglect the existence 
of the earth and of the sun. 

(b) If you are unable to derive the formula, partial credit will be given 
for a good formula guessed on the basis of dimensional analysis, and an 
argument as to what should be the answer in the two limits that Vo goes 
to  zero and Vo goes to  infinity. 

(UC, Berkeley) 

Solution: 
(a) Let the maximum impact parameter be b,=. The particles will hit 

the moon if their distances of closest approach are b,,, or less. Conserva- 
tion of energy and angular momentum give 

(1) 

rnVObmax = mVR . (2) 

mV: - mV2 GMm - - 
2 2 R '  

From Eq. (l) ,  we obtain 
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Equation (2) then gives 
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Hence the collision cross section for the particles to hit the moon is 

2 u = nbm, = nR2 

(b) For the two limiting cases we have 

U + O o  

u + .rrR2 
for Vo + 0 , 
for VO + 00 . 

These results can be understood as follows. For very small %, all the 
particles will be attracted to the moon as we have neglected the effects of 
the earth and the sun. For very large velocities, only those aimed at the 
moon will arrive there as the potential energy due to the moon’s attraction 
is negligible compared with the kinetic energy. 

To apply the method of dimensional analysis, we make a guess that the 
cross section will be the geometrical cross section of the moon with some 
dimensionless correction factor involving VO and V,,, : 

u = . r r R 2 [ 1 + 6 ( + ) 1 ]  , 

where a and b are unknown constants which cannot be determined by this 
method alone. a however must be positive to satisfy our expectations for 
the two limiting cases. 

1066 

Pretend that the sun is surrounded by a dust cloud extending out at 
least as far as the radius of the earth. The sun produces the familiar 
potential V = -GMm/r,  and the dust adds a small term V = kr2 /2 .  The 
earth revolves in a nearly circular ellipse of average radius TO. The effect of 
the dust may cause the ellipse to precess slowly. Find an approximate 
expression (to first order in k) for the rate of precession and its sense 
compared to the direction of revolution. 
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Hint: Consider small oscillations about T O .  

(UC, Berkeley) 

Solution: 
In the equation for radial motion of a body under central force the 

effective potential is 

-GMm Icr2 L2 
U(T) = ~ + -+- .  

T 2 2mr2 

The earth will move in a closed orbit of radius TO if U(TO) is an extreme 
value. i.e. 

(1) 

or 
L2 + kro - --j = 0 ,  GMm 

To” mr0 

from which TO can be determined. 
Expand U ( T- )  as a Taylor series: 

as (%),-=,.,, = 0,  retaining only the dominant terms. The energy equation 
can then be written with T - TO = x as 

x2 = constant . 1 1 d2U 
-mi2 + - (-) 2 2 dr2 r=ro 

Differentiating with respect to time gives 

Hence there are small oscillations about TO with angular frequency 
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where 
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using Eq. (1). For the near-circular orbit, L = mrgwo, and we find 

U”(r)  = 3k +mug , 

wo being the angular velocity of revolution around the sun. Thus to first 
order in k, we have 

and the rate of precession is 

As wr > wo, i.e. the period of radial oscillation is shorter than that of 
revolution, the direction of precession is opposite to that of rotation. 

1067 
A particle of mass m is bound by a linear potential U = k ~ .  
(a) For what energy and angular momentum will the orbit be a circle 

(b) What is the frequency of this circular motion? 
(c) If the particle is slightly disturbed from this circular motion, what 

(UC, Berkeley) 

of radius r about the origin? 

will be the frequency of small oscillations? 

Solution: 
The force acting on the particle is 

(a) If the particle moves in a circle of radius r ,  we have 

m u 2 r = k ,  
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i.e. 

The energy of the particle is then 

mu2 w 2 r 2  3kr E = kr+ - = kr + 2 = - 
2 2 

and its angular momentum about the origin is 

L = m w r 2 = m r  -=&P d:r 

(b) The angular frequency of circular motion is w = JA. 
(c) The effective potential is 

L2 
2mr2 ' 

ueff = kr + ~ 

The radius rg of the stationary circular motion is given by 

i.e. 

As 

113 

T o  = (2) 

the angular frequency of small radial oscillations about ro, if it is slightly 
disturbed from the stationary circular motion, is (Problem 1066) 

where wg is the angular frequency of the stationary circular motion. 
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1068 

A planet has a circular orbit around a star of mass M. The star 
explodes, ejecting its outer envelope at a velocity much greater than the 
orbital motion of the planet, so that the mass loss may be considered 
instantaneous. The remnant of the star has a mass M' which is much 
greater than the mass of the planet. What is the eccentricity of the 
planetary orbit after the explosion? (Neglect the hydrodynamic force 
exerted on the planet by the expanding shell. Recall that the eccentricity 
is given in terms of the energy E and angular momentum L by 

2EL2 
e 2 = 1 + -  MpK2 ' 

where M, is the mass of the planet and where the magnitude of the 
gravitational force between the star and planet is KIT:.)  

(UC, Berkeley) 

Solution: 
Before the explosion the planet moves in a circle of radius R around 

the star. As the eccentricity e of the orbit is zero, we have from the given 
equation for e 

-MpK2 E = -  
2L2 a 

As 
M v2 K P- - -  L = M , R v ,  R R2' 

we have 

Let L' and E' be respectively the angular momentum and total energy of 
the planet after the explosion. Then 

L ' = L ,  

E ' = E +  G(M - M')M, 
R 

With K = G M M ,  and K' = GM'M, we have for the eccentricity e of the 
orbit after the explosion 
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2 El Lt2 
Mp Kt2 

e 2 = 1 + -  

2 [-+- M K a  + y G ( M  - M‘)M,] L2 
= 1 +  M p  KI2 

=l+(g)2(l-g) , 

giving 

1069 

A satellite traveling in an elliptical orbit about the earth is acted on by 

(a) a non-central component to the earth’s gravitational field arising 

(b) an atmospheric drag which, because of the rapid decrease in pressure 

Give qualitative arguments showing how these perturbations will alter 

(UC, Berkeley) 

two perturbations: 

from polar flattening, 

with altitude, is concentrated near the perigee. 

the shape and orientation of a Keplerian orbit. 

Solution: 
(a) Owing to polar flattening of the earth (shaded area in Fig. 1.46), the 

equipotential surface in the neighboring space is a flattened sphere (dashed 
ellipsoid). 

Suppose the orbital plane N of the satellite makes an angle 6 with the 
equatorial plane M of the earth. 

As the equipotential surface deviates from the spherical shape, the 
earth’s gravitational force acting on the satellite, which is normal to the 
equipotential surface, does not direct toward the center of the earth (e.g, the 
forces on the satellite at A and B in Fig. 1.46). As the effect is quite small, 
the orbit of the satellite can still be considered, to first approximation, as 
circular. The effect of the non-radial component of the force cancels out 
over one period, but its torque with respect to the center of the earth does 
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M 

surface 

Fig. 1.46. 

not. This “equivalent” torque is directed into the plane of the paper and is 
perpendicular to the orbiting angular momentum L of the satellite, which 
is perpendicular to the orbit plane N and is in the plane of the paper. It 
will cause the total angular momentum vector to precess about L. 

(b) Because the atmospheric drag is concentrated near the perigee, it 
makes the satellite slow down at the perigee and reduces the energy and 
angular momentum of the satellite every time it crosses the perigee. This 
will make the apogee of the satellite’s orbit come closer and closer to the 
earth and finally the orbit will become a circle with a radius equal to the 
distance of the perigee to the center of the earth. Further action by the 
drag will further reduce its distance to the earth until it falls to the earth. 

1070 
A particle of mass m moves under the influence of an attractive central 

(a) Show that by a proper choice of initial conditions a circular orbit 

The circular orbit is now subjected to a small radial perturbation. 
(b) Determine the relation that must hold among f ( r ) ,  r and af/& for 

Now assume that the force law is of the form f ( r )  = --K/r”. 
(c) Determine the maximum value of n for which the circular orbit can 

(Princeton) 

force f ( r )  . 

can result. 

this orbit to be stable. 

be stable. 
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Solution: 

(a) The effective potential of the particle is 

where J is a constant and V is related to f by f = F, in terms of which 
the total energy is 

mf2  
E = - + v * .  2 

The motion can then be treated as one-dimensional, along the radial 
direction. The circular motion of the particle in the V field corresponds to  
the particle being at rest in the equilibrium position in the V* field. 

At the equilibrium position r = ro, 

dV' 
dr 
- -  - 0, 

or 

If the initial condition satisfies the above equality and E = V*(rg),  the 
orbit is a circular one. 

(b) For the orbit to  be stable, V' must be minimum at r = ro. This 
requires that 

i.e. 

af > o ,  3 J2 
mr4 dr 

or 
3J2 d2V -+- > 0,  mr4 dr2 

at  r = ro. 
(c) If f = -K/rn,  then a f /ar  = nK/rn+' and (1) gives 

J 2  = m K / ~ - g - ~  

Hence the condition 
3J2 af >(),  
mr4 dr 

i.e. 
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requires that n < 3 for the circular orbit to be stable. 

1071 

Consider a planet of mass m moving in a nearly circular orbit of radius 
R around a star of mass M .  There is, in addition to gravitation, a repulsive 
force on the planet proportional to the distance T from the star, F = Ar. 
Compute the angular velocity of precession of the periastron (point of 
closest approach to the star). 

(Princeton) 

Solution: 
The force on the planet is 

-GMm 
T2 

f=-  

With u = :, Binet’s formula (Problem 
orbit: 

-mh2u2 ($ + u)  = 

t AT 

1055) gives the equation for the 

A -GMmu2 + - 
U 

For nearly circular orbit we set u = uo + 6u, where Su is a small quan- 
tity. The above equation then gives, retaining only the lowest-order small 
quantities, 

A 
+u0+6u = G M m -  1 mh2 [s 6u) 

If the orbit is exactly circular, u = UO, 6u = 0, the above becomes 

A mh2uo = G M m  - - . 4 
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Using this equation in (1) we obtain 

or 

d2 (621) 3A 
mh2 [ 7 + bu] = ~ S U  , 

d2 (Su) 
dO2 

(3) 

Choosing suitable coordinate axes we can write its solution as 

Su = Bsin(a0) , 

where 

GMm - AR3 

as h2uo = GM - A/mui,  uo = 1/R. Then if 01 and 02 are the angles for 
two successive periastrons, we have 

a02 -a& = 2lr . 

or 
21r 
a 

A O = - .  

As a < 1, the angle of precession is 

a 
The time required for the line joining the periastron and the star to rotate 
through an angle AOp is 

A0 2.rr 
0 a0 

A t = - = _ .  

Hence the angular velocity of precession is 

As the angular velocity of revolution of the planet is by the definition of h 
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1072 
(a) A planet of mass m is orbiting a star of mass M. The planet 

experiences a small drag force F = -CYV due to motion through the star's 
dense atmosphere. Assuming an essentially circular orbit with radius T = TO 

at t = 0, ,calculate the time dependence of the radius. 
Assume that in addition to the 

Newtonian gravitational potential, the planet experiences a small additional 
potential so that its potential energy is actually 

(b) Now ignore the drag force. 

GMm E 

+p1 V ( r )  = -- 
T 

where E is a small constant. 
Calculate the rate of precession of the planetary perihelion, to lowest 

order in E.  You may assume the orbit is almost circular. In other words, 
you are to calculate the angle cp sketched in Fig. 1.47. 

(Princeton) 

Fig. 1.47. 

Solution: 
(a) As the drag force F is small, it can be considered as a small 

perturbation on the circular motion of the planet under the gravitational 
force of the star. The unperturbed energy equation is 

If the orbit is circular with radius T ,  we have 

and thus 
GMm 

2r 
E = - - ,  
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The drag force causes energy loss at the rate 

aGM - F . v = a v . v = a v 2 =  - .  
T 

This must be equal to 
dE GMmi. 
dt 27-2 

- -_ - -~ 

giving rise to 
. 2a 

m 
T = - - r  

whose integration gives 
-25734 

T = roe  m , 
where we have used r = TO at t = 0. 

and its total energy is 
(b) The planet is now moving in a central potential V ( T )  = - + 3 

1 J 2  
2 2mr2 

E = - m i .  + - + V ( T ) ,  

where J is the conserved angular momentum, J = mr2$. 
As . d r  dcp . dr 

dcp dt dcp cp- 3 
r = - - =  

we have 

dr = /-. ( ; ) d i p ,  

or 

In the unperturbed field Vo = -GMm/r ,  the orbit is in general an ellipse. 
However, in the perturbed field V ,  the orbit is not closed. During the time 
in which T varies from Tmin to rmax and back to rmin again, the radius vector 
has turned through an angle Acp given by 

Jdr 
A p = 2  

=-2-] U ( 2 m ( E - V ) - r d r .  
T2 aJ rmin 
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Writing V = 
series in powers of SV: 

+ f = VO + 6V, we expand the integrand as a Taylor 

The zero-order term gives 27r as the corresponding orbit is an ellipse. The 
first-order term gives 

the angle shown in Fig. 1.47. 
The variable over which the 

2mbVdr 
I 72 

' 

integration is to be carried out can be 
changed in the following way. We have 

i.e. 
J dr 

m mr2 dcp 

So the last integral can be written as 

With SV = e/r2  we obtain 

1073 
(a) Find the central force which results in the following orbit for a 

particle: 
r = a(i +case) . 
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(b) A particle of mass m is acted on by attractive force whose potential 
is given by U c( T - ~ .  Find the total cross section for capture for the particle 
coming from infinity with an initial velocity V,. 
Note: Parts (a) and (b) may refer to different forces. 

(Princeton) 

Solution: 

(a) In the central force field, the equations of motion for the particle are 

m(i: - re2)  = F(T)  , 
r28 = const. = h, say 

Then 

With T = a ( l  + cose), we also have 

.i. = -aBsinO , 

' 

-ah4 
T4 

- - -(2 - cose) = h2 - 

Using the above we can write (1) as 

3mh2a 
F ( T )  = m 

which is the central force required. 

Ueff 

Fig. 1.48. 
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(b) As U = -3, the effective potential is 
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L2 a Ueff = - - - 
2mr2 r4 ’ 

where L = mbV, is the angular momentum, which is conserved in a central 
force field, b being the impact parameter. To find the maximum of Uee ,  
consider 

-L2 4a dUeR - 
dr 7 7 2 ~ ~  r5 

+ - = o ,  -- - 

which gives 

as the distance where Ueff is maximum. Then 
1 4  

The form of Ueff is shown in Fig. 1.48. It is seen that only particles with 
total energy E > 170 will “fall” to the force center. Thus the maximum 
impact parameter for capture is given by E = UO, or 

giving 
1 /4 

b,,= (5) mV2 . 

Hence the total capture cross section is 

1074 

(a) A particle of mass m moves in a potential V ( T )  = k / r 2 ,  k > 0. 
Consider motion in the X-Y plane, letting T and 4 be the polar coordinates 
in that plane, and solve for T as a function of 4, angular momentum 1 and 
energy E (Fig. 1.49). 

(b) Use the result of part (a) to discuss (classical) scattering in this 
potential. Let 8 be the scattering angle. Relate the impact parameter to 8 
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Fig. 1.49. 

and E and thereby compute the differential cross section as a function of 0 
and E.  

(Princeton) 

Solution: 
(a) The force on the particle is 

aV 2k 
ar r3 

F = - - = - .  

Binet’s formula (Problem 1055) then becomes 

or * + (1  + -$) u = 0 ’ 

where h = r2$, u = 1/r. Its solution is 

u = Asin(w4 + 11,) , 
where w2 = 1 + 2k/mh2, and A and 11, are constants of integration to be 
determined from the initial conditions. 

It can be seen from Fig. 1.49 that for T -+ 00, i.e. u + 0, 4 -+ 0. Hence 

where the minus sign is chosen because for incidence r decreases with 
increasing t .  Then as 

$I = 0. Also for r + 00, i- + i-, given by E = irni.2, i.e. i-, = -@, 

. dr  . dr  h du r = -4 = -- = -h- = -Abcos(w$,) 
d 4  d4r2  d 4  
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we have, with 1 = h m ,  
1 

lw 
A = - d % Z  

and hence 

where w is given by 
2mk 

w 2 = 1 + -  
12 . 

(b) From the above result it can be seen that r is at a minimum when 
wcj = ;, i.e. at 4 = $0 = &. This is the distance of closest approach OC 
shown in Fig. 1.49. Due to the symmetry of the scattering, the scattering 
angle is 

Then as l 2  = m 2 b 2 f k  = 2b2mE, we have 

I - - =  e ( 1+- 2 ; k ) - l  = (l+&Ji , 
7r 

i.e. 
k - e 2  2e 

n2 lr b 2 E + k  ’ 
giving 

k ( T - e ) 2  
E (2n - e)e b = -  

as the relation between 8 and b. 
Particles with impact parameters between b and b + db will be scattered 

into angles between 8 and 0 + do, i.e. into a solid angle d R  = 2n sinedo. 
Hence the differential cross section at scattering angle 8 per unit solid angle 
is 

d a  2nbdb b db a = 12lrsinedsl= l az l  
- IC ++-e) -- 

E sin B (27~ - 8)282 . 
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1075 
Derive formulas and calculate the values of (a) the gravitational accel- 

eration at the surface of the moon, and (b) the escape velocity from the 
moon. 

(SUNY,  Buflalo) 

Solution: 
(a) Let M and R be the mass and radius of the moon respectively. 

Then by the law of universal gravitation and the definition of gravitational 
acceleration at the surface of the moon we have 

G M m  
R2 = m g ,  

where m is the mass of a body on the surface of the moon. The relation 
gives the gravitational acceleration at the surface of the moon as 

G M  
R2 (1.74 x 106)2 

6.67 x lo-" x 7.35 x 
g = - -  - = 1.62 m/s2 

(b) The potential energy of a projectile of mass rn at infinite distance 
from the moon p 4 00 is 

G m M  mgR2 
P P 

4 0 .  - -- -- - 

Its kinetic energy, a positive quantity, is at least zero. Hence for the 
projectile to  reach infinity from the surface of the moon, its total mechanical 
energy must be at least zero, by the conservation of energy. 

At the surface of the moon, the projectile has total energy 

1 2  E = -muo - mgR . 
2 

If wo is the escape velocity, we require E = 0, or 

vo = = d2 x 1.62 x 1.74 x lo6 = 2.37 x lo3 m/s . 

1076 

Consider the motion of a particle of mass m under the influence of a 
force F = -Kr, where K is a positive constant and r is the position vector 
of the particle. 
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(a) Prove that the motion of the particle lies in a plane. 
(b) Find the position of the particle as a function of time, assuming that 

at t = 0, x = a ,  y = 0, V, = 0, V, = V .  
(c) Show that the orbit is an ellipse. 
(d) Find the period. 
(e) Does the motion of the particle obey Kepler’s laws of planetary 

motion? 
(SUNY,  Buflalo) 

Solution: 
(a) For a central force field F = -Kr, 

r x F = Kr x r = 0 

Then as F = m d V / d t  we have 

dv 
dt 

r x - = = O ,  

or 
d(r x V) dv 

= V x V + r x  - = o .  dt dt 

Integrating we obtain 
r x V = h ,  

a constant vector. 
It follows that 

which shows that r is perpendicular to the constant vector h, i.e. r lies in 
a plane perpendicular to h. This proves that the motion of the particle is 
confined to a plane. We shall choose the plane as the xy plane with the 
origin at the center of the force. 

(b) The equation of the motion of the particle is 

mi: = -Kr , 

or, in Cartesian coordinates, 
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where w2 = K/m.  The general solution of the above set of equations is 

2 = A1 sin(wt + 41) , 
y = A2 sin(wt + 4 2 )  . 

With the initial conditions given, i.e. 

x = a s i n ( g t + ~ )  , 

y =  g h s i n ( g t )  . 

(c) The last set of equations describes an ellipse. 
parameter t we obtain the standard equation for an ellipse: 

Eliminating the 

2 2  y2 - + - = I  
a2 b2 

- with 

(d) (x,y) return to the same values when t increases by T such that 

- Hence the period is 

(e) Kepler’s third law states that ratio of the square of the period of 
revolution of a planet to the cube of the length of the semimajor axis of its 
orbit is a constant. Hence we have 
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i f a > b ,  (period) Ka3 

i f a < b .  
(length of semimajor axis)3 

As this ratio depends on m and a or m and Vo, Kepler’s third law is not 
obeyed. 

1077 
(a) A particle of mass m moves in a central field of potential energy U ( T ) .  

From the constants of the motion obtain the equation of the trajectory. 
Express the polar angle p in terms of T .  

(b) If the particle moves in from infinitely far away with initial speed 
Vo, impact parameter b, and is scattered to a particular direction 6 ,  define 
the differential cross section in terms of b. 

(c) Calculate the differential and total cross section for the scattering 
from a hard sphere. 

(SUNY, Buffalo) 

Solution: 
(a) If a particle of mass m moves in a central force field of potential 

energy U ( T ) ,  its mechanical energy E and angular momentum with respect 
to the center of the force rnh are conserved quantities. Thus 

1 
-m(f2 2 + r2+2) + V ( T )  = E , 

or 

As we also have 

. dr  dr  d p  d r  h dr  r = - = - - -  - +- = _ _  
dt  d p  dt  d p  r 2 d p  ’ 

the energy equation becomes 

1 m [ $ ( $ ) 2 + ~ 2 $ ]  2 + U ( r ) = E ,  
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i.e. 

or 

Fig. 1.50. 

hdr 

-[I3 - U(r)]  - h2 

r hdr 
+ = I  .J"-- -[(E - U(T)]  - h2 

which express 4 in terms of r. 
(b) The orbit of the particle in the central force field is symmetrical 

with respect to the line joining the center of the force to the point of closest 
approach ( O A  in Fig. 1.50). The angle of scattering of the particle is then 

9 = lr - 290  

with 90 given by 

hdr m 

-[[E - U(r)]  - h2 

where r,in is given by 1: = 0 in the energy equation, or E = U( r )  -1 ?$. 
The conservation laws give 

mV: 
(E=- mh=mbVo , 

2 '  

The scattering angle 8 can then be determined. 
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Let d N  denote the number of particles scatterred per unit time into the 
solid angle corresponding to scattering angles 8 and 8 + do,  and n denote 
the number of particles passing through unit cross sectional area of the 
beam per unit time. The differential cross section is defined as 

d N  
n 

d o = - .  

As the scattering angle 8 corresponds to a unique impact parameter b, we 
have 

i.e. 

d N  = 2nnbdb , 

d o  = 2nbdb.  

We can write the above 8s 

d o  = 2nb 
sin 8 

where d R  is the solid angle between two right circular cones of opening 
angles 8 and 8 + do: 

ds2 = 2n sin 8dB . 

Note that is known as the differential cross section per unit solid angle. 
( c )  A particle moves freely before it hits the hard sphere. Because 

it cannot enter into the interior of the sphere, momentum conservation 
requires that the incidence and refiected angles are equal as shown in 
Fig. 1.51. 

Fig. 1.51. 



126 Problems €4 Solutions on Mechanics 

Hence 
du ba a2 _ - _ _  - sin (S) = , 
dR 2sin8 

As this is independent of the scattering angle, the total scattering cross 
section is u = 47rg = na2, which is equal to the geometrical cross section 
of the hard sphere. 

1078 

When displaced and released, the 2 kg mass in Fig. 1.52 oscillates on 
the frictionless horizontal surface with period n/6 seconds. 

(a) How large a force is necessary to  displace the mas 2 cm from 
equilibrium? 

(b) If a small mass is placed on the 2 kg block and the coefficient of 
static friction between the small mass and the 2 kg block is 0.1, what is the 
maximum amplitude of oscillation before the small mass slips? 
(Assume the period is unaffected by adding the small mass.) 

( Wisconsin) 

Fig. 1.52. 

Solution: 

is 
Let k be the spring constant. The equation of the motion of the mass 

2 X + k x = O ,  

or 
x + w 2 x = o ,  
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where x is the displacement of the block from its equilibrium postition, and 
w2 = 5 .  The general solution is 

z = Acos(wt + 4) . 
The period of oscillation is 

giving w = 12 s-l, k = 288 Nm-l. If x = xo at t = 0, then q5 = 0, A = xo 
and the solution is x = 20 cos( 12t). 

(a) The force needed is 

f = kx = 288 x 2 x lo-’ = 5.76 N . 

(b) If the small mass moves together with the 2 kg block, it has the 
same acceleration as the latter, i.e. ji. = -144~0cos(l2t). Let its mass be 
m. When it starts to  slip, the maximum horizontal force on it just exceeds 
the static friction: 

0.1 x mg = 144m20 , 
giving 

0.98 3 xo = - = 6.8 x 10- m . 
144 

If 20 exceeds this value m will slip. Hence it gives the maximum amplitude 
for no slipping. 

1079 
Two synchronous tuning forks of identical frequency and loudness pro- 

duce zero net intensity at some point A. However if either one is sounded 
alone, a loudness I is heard at A. Explain in detail, as to a sophomore, 
what became of the law of conservation of energy. 

( Wisconsin) 

Solution: 
Let s1 and s2 be the distances between a point in space and the two 

tuning forks. Each of the forks alone produces oscillations at this point 
represented by 
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and 

y1= 11 sin [w ( t  - :)I , 

92 = 12 sin [w ( t  - :)I ) 

where c is the speed of sound. 
If s1 and s2 are both much larger than the distance between the two 

forks, we can regard 11 and 12 as approximately the same, i.e. I1 M 12 M 10. 
Then the resultant oscillation is 

Hence y = 0 if 

w ( s 2  - sl) = (2n + l)z, 7r n = 0 ) 1 , 2 ,  . . .  . 
2c 

Thus the resultant oscillation is zero at points where s2 - s1 is some odd 
multiple of X/2. This does not violate the law of conservation of energy 
as is evident when we consider the energy stored in the whole wave field. 
Although the amplitude and energy of oscillation are zero at the nodes, at 
the antinodes, the amplitude of oscillation is twice and the energy is four 
times that of the individual value. Detailed calculations will demonstrate 
that the energy of the resultant oscillation is equal to the sum of that of 
the individual oscillations. 

1080 
A mass rn moves in a plane in uniform circular motion with angular 

frequency w. The centripetal force is provided by a spring whose force 
constant is K (ignore gravity). A very small radial impulse is given to the 
mass. Find the frequency of the resulting radial oscillation. 

( Wisconsin) 
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Solution: 
In polar coordinates the equations of motion for the mass are 

m(i: - re2) = -K(r  - rg) , 
m(r8 + 274) = o . 

The second equation gives 

r20 = const. 

Let R be the radius of the uniform circular motion of the mass. We have 

mRw2 = K ( R  - T O ) ,  r2e = R2w . 
Let T' = T - R for departure from uniform circular motion. The radial 
equation can be written as 

= -E(T' + R - ro) . .. r4e2 R4w2 T - - = i : ' -  
7-3 ( R + T - ' ) ~  m 

If the radial impulse is very small, T' << R and the above becomes 

or 

It follows that the frequency of radial oscillation is w' = b w 2  + s. 

1081 

A particle of mass m moves under the action of a'restoring force -Kx 
and a resisting force -Rv, where x is the displacement from equilibrium 
and v is the particle's velocity. For fixed K and arbitrary initial conditions, 
find the value of R = R, giving the most rapid approach to equilibrium. 
Is it possible to pick initial conditions (other than 2 = v = 0) so that the 
approach is more rapid for R > R, and R < R,? Explain. 

( Wisconsin) 
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Solution: 

The equation of motion is mx + RX + Kx = 0. Assume x = Aeat, we 
obtain the indicia1 equation ma2 + Ra + K = 0, giving 

-R& \/R2 - 4Km a =  
2m 

In general, if R = R, = 2 m  (critical damping), the mass approaches 
equilibrium most rapidly. However, if R > R,, the mass may approach 
equilibrium even more rapidly under certain particular conditions. For 
now the general solution is 

-R - dE12 - 4Km 
5 = Aexp ) t + Bexp ( 2m 

We can choose initial conditions so that A = 0. Then the remaining term 
has a damping coefficient 

R+dR2-4Km R i d -  R, 
2m 2m 2m > - 7  

- -a = - 

so that approach to equilibrium is even faster than for critical damping. 
If R < R,, we have 

-R f id- 
2m 

a!= 7 

so that the general solution is 

2m 

Then the approach to equilibrium is oscillatory with a damping coefficient 

R Rc - < - .  
2m 2m 

The approach is always slower than for critical damping. 
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1082 
A freely running motor rests on a thick rubber pad to reduce vibration 

(Fig. 1.53). The motor sinks 10 cm into the pad. Estimate the rotational 
speed (revolutions per minute, i.e. RPM) at which the motor will exhibit 
the largest vertical vibration. 

(UC, Berkeley) 

Fig. 1.53. 

Solution: 

m is the mass of the motor. As x = 0.1 m, 
natural frequency of the system is 

Let the elastic coefficient of the rubber pad be k. Then kx = mg, where 
= f = 98 s - ~ .  Then the 

w = = 9.9 s-l. 

Hence when the motor is rotating at a rate 

w 60 x 9.9 
2lr 21T 
_ -  - ___ = 94.5 RPM , 

resonance will take place and the motor will exhibit the largest vertical 
vibration. 

1083 
A car is traveling in the x-direction and maintains constant horizontal 

speed v. The car goes over a bump whose shape is described by yo = 
A[l - cos(l~x/l)] for 0 5 x 5 21; yo = 0 otherwise (Fig. 1.54). Determine 
the motion of the center of mass of the car while passing over the bump. 
Represent the car as a mass m attached to a massless spring of relaxed 
length 10 and spring constant k. Ignore friction and assume that the spring 
is vertical at all times. 

(MIT) 
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Y 

t 
I rn 

Fig. 1.54. 

Solution: 
Let the location of the mass at time t be (z,y). Choose the origin so 

that z(0) = 0. Then ~ ( t )  = vt. The equation of the motion of the mass in 
the y-direction is 

mji = -k(y - yo - l o )  - mg 

Putting Y = y - A - lo + mg/k, we can write the above equation as 

mY + kY  = -kAcos (F). 
This equation describes the motion of a driven harmonic oscillator. Trying 
a particular solution of the form Y = B cos( F), we find 

2 
-mB ( y )  + kB = - k A  , 

i.e. 

Hence, the general solution of the equation of motion for the mass is 

with w = 4%. 
The initial conditions are y(0) = lo  - mg/k, $(O) = 0, giving C2 = 0, 

C1 = - (B + A )  = r n d Q A / ( k P  - mn2v2). Therefore the motion of the 
center of mass of the car is described by 
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y(t) = Ci COS(U~) + BCOS (F) + A +lo - m9 

1084 

A thin ring of mass M and radius r lies flat on a frictionless table. 
It is constrained by two extended identical springs with relaxed length 10 
( lo  >> r )  and spring constant k as shown in Fig. 1.55. 

(a) What are the normal modes of small oscillations and their frequen- 
cies? 

(b) What qualitative changes in the motion would occur if the relaxed 
lengths of the springs were 210? 

(MITI 

Fig. 1.55. 

Solution: 
(a) As lo >> T ,  any rotation of the ring will cause a negligible change of 

length in the springs, any elastic force so arising is also negligible. Newton's 
second law then gives 

210 + 2 

210 - x 

Mit = -k[J(210 + x)2 + y2 - lo] 

+ k[J(2Eo - x ) ~  + y2 - lo] 

&10 + x)2 + y2 

d(210 - x)2 + y2 ' 
Y MY = -k[J(210 + x)2 + y2 - lo] J( 210 + x)2 + y2 
Y - k[J(210 - x)2 + y2 - lo] 

d(210 - z)2 + y2 
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where x, y give the displacement of the center of the ring from the equi- 
librium position. Neglecting terms higher than the first order in the small 
quantities x, y, we have 

The above equations then become 

mx = -2kx , 
my = -ky , 

with solutions 

5 = A, cos(w,t + cp,) , 
Y = A,  cos(w,t + 9,) 7 

where w, = &, w, = &, and the constants A,, A,, cp,, 9, are 
determined by the initial conditions. These are the two normal modes of 
small oscillations. 

(b) With the relaxed length increased to 210, during the motion, one 
spring is extended while the other compressed. The latter will exert an 
elastic force on the ring opposite to that when extended. Assuming that the 
spring constant is the same for compression as for extension, the equations 
of motion are now 

210 - x 
- lc[J(210 ~ x)2 - 1 -  y2 - 2101 

J(210 - x)2 + y2 
M - 2 k x ,  
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retaining only the lowest order terms in the small qualities 2, y. It can be 
seen that the motion of the ring in the x-direction is similar to that in part 
(a) while the motion in the y-direction, though quite complicated, is of a 
higher order. 

1085 

Two particles are connected by a spring of spring constant K and zero 
equilibrium length. Each particle has mass m and positive charge q. A 
constant horizontal electric field E = Eoi is applied. Take into account 
the particles' Coulomb interaction but neglect magnetic effects, radiation, 
relativistic effects, etc. Assume the particles do not collide. 

(a) If the particles slide along a frictionless straight wire in the x 
direction and the distance d between them is constant, find d.  

(b) Find the acceleration of the center of mass in (a). 
(c) In (a), suppose the distance d ( t )  undergoes small oscillations around 

the equilibrium value you found. What is the frequency? 
(d) Suppose the particles slide along a horizontal frictionless table 

instead of the wire. Find the general solution of the equations of motion. 
You may leave your answer in terms of integrals. 

( M I T )  

Solution: 

we obtain the equations of motion 
(a) Considering the forces on the two particles as shown in Fig. 1.56, 

where F, is the mutual Coulomb force between the particles 

As 2 2  - 21 = d, a constant, 22 = 21. Subtracting (2) from (l), we obtain 
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Fig. 1.56. 

0 
E -  

Fig. 1.57. 

or 

(b) Adding (1)  and ( 2 )  we have 

2qE = m(21 + 2 2 )  , 
or 

.. qE x o = - ,  
m 

where 20 = + 2 2 )  is the center of mass of the system. 

(c) Subtracting (1) from ( 2 )  we obtain 

q2 
2 7 4 2 2  - x1)2 . m(2, - 21) + 2k(22 - 21) = 

Putting 2 2  - x1 = d + A d ,  where A d  << d ,  the above becomes 

q2 
2 ~ & o ( d  + A d ) 2  ’ m(A( i )  + 2k(d + A d )  = 

where Ad zi 9. As d3 = & $ and A d  << d ,  the above can be written 

m a d  + 6 k A d  = 0 

by retaining only the first order terms in y. It follows that the angular 
frequency of small oscillations is 

as 
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(d) With r1,r2 and 6 as defined in Fig. 1.57, we can write the equations 
of the two-dimensional motion as 

rnrl = qEi + k(r2 - r1) - F, , 
mr2 = qEi + k(r1 - r2) + F, , 

with 

Adding (3) and (4) we obtain 

which is equivalent to two scalar equations 

31 + y 2  = 0 .  

Integration gives 

qEt2 
m 21 + 2 2  = - + Clt + cz , 

(3) 
(4) 

( 5 )  

Y1 + Y 2  = a t + 0 2 ,  (6) 

where C1, C2, D1, D2 are constants of integration. Subtracting (3) from 
(4) we obtain 

m(r2 - rl) = 2F, - 2k(r2 - rl) . 

Put 1-2 - rl = r and rewrite the above as 

In polar coordinates we have 

so that 

giving 

. I d  
r dt 

re + 2i.8 = - - (r2b)  = 0 , 

r2b = constant = H ,  say .  
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As 
.. d r  .d+ 1 d - 2  H 2  = - = r- = - - (+2) r0 = - dt dr 2 d r  ’ 1-3 ’ 

it can be written as 

2H2 4kr +- - -  
d r  mOmr2 r3 m 
-((. d . 2  ) = ___ q2 

Integrating we obtain 

q2 2kr2 H 2  
momr m r2 ’ 

,i.2 = F - - - - - - 

where F is a constant. Integrating again we obtain 

dr = t + W ,  
F - 9’ - 2kra - H a  s’, momr m 7 

where W is a constant. Also, as 

(7) 

we have 

where V is a constant. 
The four equations (5)-(8) allow us to find 5 1 , 2 2 ,  y1 and y2 as functions 

of t .  Note that the constants of integrations C1, C2, D1, Dz,  H ,  V, F and W 
are to be determined from the initial conditions. 

1086 
A clockwork governor employs a vibrating weight on the end of a 

uniformly rotating) shaft, as shown in horizontal flywheel-driven (i.e. 
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Fig. 1.58. The flat spring has a spring constant K and can neither twist 
nor bend except in a direction perpendicular to its (relaxed) flat side. 
The angular velocity w of the shaft, externally driven, gradually increases 
until a “resonance” occurs (“resonance” here means that the weight swings 
in a circular orbit). Air friction (proportional to the velocity of the 
weight) dissipates the input energy and this limits the resonance to a 
finite amplitude. You may assume the spring deviation to be so small 
that the spring is always in its linear regime. For this problem, you need 
not explicitly include the air friction. 

(a) Show that there are two different angular frequencies at which a 
“resonance” can occur. What are the frequencies? 

(b) Describe the orbit of the weight for each of the two resonant 
frequencies (i.e. draw a picture of what the problem looks like). 

(c) At the lower frequency resonance, write down an equation for the 
steady-state shaft torque as a function of w and time. 

(d) Show that there is an upper bound on the shaft torque at the lower 
resonance. What happens if the driving clock spring yields a torque greater 
than this upper bound? 

(UC, Berkeley) 

+ ~ I 
gravity 

Fig. 1.58. 

Solution: 
(a) When the flywheel rotates with angular velocity w ,  the mass m 

undergoes three-dimensional motion. However, as the longitudinal oscilla- 
tion of the spring is small, we can consider the mass as not moving in the 
direction of the axis. As the spring can only bend in one direction, let r 
be the displacement of m in that direction, as shown in Fig. 1.59. The 
angular velocity is constant when “resonance” occurs and we shall consider 
the equation of the motion at resonance. 
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Fig. 1.59. 

As the elastic force is -Kr and the component of the gravitational force 
in the direction of T is mg cos(wt), we can, neglecting the air friction, write 
the equation of the motion of the vibrating weight as 

mgcos(wt) - Kr = m(i: - rw2)  , 

i.e. 
i: + A2r = gcos(wt) , 

where 
K 
m 

= - - J .  

Trying a particular solution r = Acos(wt), we find A = &. 
homogeneous equation i: + A2r = 0 has general solution 

The 

r = B cos( A t )  + C sin(At) . 

Then assuming the initial conditions r(0) = a,  +(O) = b, we obtain the 
general solution 

[cos(At) - cos(wt)] . (1) 
b 

r = acos(At) + - sin(At) + ~ 

A w2 - A2 

A circle of radius R can be described by an equation in polar coordinates 
of the form 

r = 2RcosB. 

Equation (1) can be written in this form under certain particular conditions 
as follows. If we let A in (1)  to go to zero, we shall obtain 

9 r = a + bt + -(1 - coswt) . 
W2 
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If we then put 

we obtain the equation of a circular orbit: 

T = -- cos(wt) 
w2 

This solution can be realized under the initial conditions a = -3, b = 0, 
and with the angular velocity w satisfying X = 0, or 

which is one of the resonant frequencies. 

becomes 
Another resonance is obtained if we put X = w in (l), which then 

b !It 
T = acos(wt) + - sin(wt) + - sin(&) . 

The last term on the right-hand side has an amplitude which diverges as 
time goes on. However, the air friction will dissipate the input energy and 
limit the resonance to a finite amplitude. Thus this term can be set to zero 
(which can be seen by inserting a damping term -p i  in the equation). We 
therefore neglect the last term and obtain 

w 2W 

b 
T = acos(wt) + - sin(&) = Acos(wt - a) , 

W 

which again describes a circular orbit. The corresponding resonant fre- 
quency is given by X = w, or 

(b) The orbits corresponding to the resonances are shown in Fig. 1.60. 
For the resonance at w1, the initial conditions must be chosen properly. On 
the other hand, the resonance at w2 can occur under any initial conditions 
which, however, determine the amplitude A and the angle a. w2 is therefore 
the practical resonance frequency. 

( c )  Consider the equation of the transverse motion of the mass 

F - mgsin(wt) = m(rk + 2wi) . 
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X 

Fig. 1.60. 

At the lower resonance, r = Acos(wt-a), we have w = 0, .i. = -wAsin(wt- 
a) ,  so that 

F = m[-2Aw2 sin(wt - a)  + gsin(wt)] , 

giving the torque as 

T = Fr  = mAcos(wt - a)[-2Aw2 sin(wt - a )  + gsin(wt)] . 

(d) There is no loss of generality in putting a = 0. Then 

r = mA (4 - A d )  sin(2wt) 

Hence r 5 mA( 5 - Aw’) for the lower resonance. If the torque yielded by 
the driving clock spring is greater than this upper bound, w will increase 
and the resonant state will no longer hold. 

1087 

A mass ml moves around a hole on a frictionless horizontal table. The 
mass is tied to a string which passes through the hole. A mass m2 is tied 
to the other end of the string (Fig. 1.61). 

(a) Given the initial position & and velocity Vo in the plane of the 
table and the masses ml and m2, find the equation that determines the 
maximum and minimum radial distances of the orbit. (Do not bother to  
solve it!) 
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m2 

Fig. 1.61. 

(b) Find the frequency of oscillation of the radius of the orbit when the 

(Princeton) 
orbit is only sightly different from circular. 

Solution: 
(a) The equations of motion of ml and m2 are 

ml(Y - re2) = -T , 
m1r2e = mlh , 
T - m2g = mzr, 

where mlh is the angular momentum, a constant. Eliminating T from (1) 
and (3), we obtain 

(ml + m2)+ - m1d2  + m2g = o . (4) 

Equations (2) and (4) give 

ml h2 
r3 

(ml + m2)F - - = -m2g . 

As ,f = ,+& dr - - 1& dr , the above can be readily integrated to give 

( 5 )  

At t = 0, r = &, 7: = ~ C O S ~ ,  re = h s i n 4 ,  so that h = a h s i n $ ,  where 
4 is the angle between rt, and Vo. Then the constant of integration C can 
be evaluated as 

1 
2 

C = -[(ml+ m z ) ~ :  cos2 4 + mlv: sin2 41 + mag& . 
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For r to be an extremum, 1: = 0, with which (6) becomes 

2m2gr3 - 2Cr2 + ml h2 = 0 , 

whose solution gives the maximum and minimum radial distances of r.  
(b) When the orbit of ml is circular, i: = 0, and (5) gives 

where ro is the radius 
different from circular, 
becomes 

(ml + 

(ro + x ) - ~  

As 

the above becomes 

of the circular orbit. When the orbit is slightly 
let r = ro + x ,  where x << ro. Equation (5) then 

Then using (7) we have 

This shows that x oscillates simple-harmonically with frequency 

1088 

(a) Consider a damped, driven harmonic oscillator (in one dimension) 
with equation of motion 

m x  = - w i x  - yx + A cos(wt) . 

What is the timeaveraged rate of energy dissipation? 
(b) Consider an anharmonic oscillator with equation of motion 

m x  = - w ; x  + ax2 + Acos(wt) , 
where (Y is a small constant. 
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At time t = 0, x = 0 and 3 = 0. Solve for the subsequent motion, 

(Princeton) 
including terms of first order in a. 

Solution: 
(a) The equation of motion is the real part of 

mf + m w i z  + y i  = AeiWt . 

For the steady-state solution we try z = zoeawt. Substitution gives 

20 = A - - Be-i$ 
m(w; - w2) + iyw 

with 

The rate of work done by the force F = Re(AeawWt) is 

1 
P = R e F .  Rei = - (F  + F * ) ( i  + i * )  4 

1 1 
4 4 = - ( F i  + F*i*  + F*i  + F i * )  = - ( F * i  + F i * )  , 

when averaged over one period as F i  and F*i* each carries a time factor 
ef2jwt which vanishes on integration over one period. Thus the average 
work done is 

iwAB . wAB 
(p) = -(e-iP - v = - sin cp 

4 2 
wAB B yw2 B 2  - yw2A2 

2 S l r w = - -  2 2[rn2(W,2 - w2) + 72w2] * 

- -- 

In steady state, this is equal to the rate of energy dissipation of the 
oscillator, which is given by the work done against the dissipative term, 
i.e. 

ii* w2B2 
(P') = y ( ~ e i ) ~  = y- = y- 2 2 .  

As noted, the two approaches give the same result. 
(b) The equation of motion is now 

m x  + m i x  - Acos(wt) = a x 2  . 
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As a is a small number, we can write the solution as 

2 = 20 + a21 + 2 x 2  + . . . 5z 20 + a21 
in first approximation. 20 is the solution for a = 0, i.e. of 

mi0 + w i x o  = Acos(wt) . 

A particular solution is obtained by putting 20 = B'cos(wt). Substitution 
gives B' = m ( w ; - w 2 ) .  A The general solution of the homogeneous part of the 
equation is harmonic. Hence the complete general solution is 

20 = C C O S ( U ~ ~  + II,) + 8' C O S ( U ~ )  . 
The initial condition 20 = xo = 0 at t = 0 then gives II, = 0, C = -B', or 

Substituting 5 = 20 + ax1 in (1) and neglecting powers of a higher than 
one, we have 

2 x6 
f l  +w0x1 M - m 

= -[cos(wt) B ' 2  - cos(wot)J 2 
m 

1 
m 2 2 

= B'" { 1 + 1 cos(2wt) + - cos(2wot) - cos[(wo - w) t ]  - cos[(wo + w ) t ]  

or, in complex form, 

For a particular solution try 

z1 = a + be'zwt + ce*2WOt + dei(wo-w)t  + f e i (wo+w) t  

Substitution gives 
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The general solution of (l), to first order in a,  is then 

5 = 50 + ax1 

= B"cos(wt) - cos(wot)] 

+ a { ~  cos(wot + e )  + a + b cos(2wt) + cos(2wot) 

+ dcos[(wo - w ) t ]  + f cos[(wo + w)tl} . 

The initial conditions 5 = j. = 0 at t = 0 then give 0 = 0 and 

Hence the motion of the anharmonic oscillator is described approximately 
bY 

A[cos(u~) - ~ ~ ~ ( w o t ) ]  10aA2 C O S ( U O ~ )  aA2 
X X  

m(w; - w2) + 3 m 3 w ; ( W 2  - 4w;)(w; - 4 w 2 )  + m 3 ( u ;  - w2)2 

+ 
w2 + 2wwo 

1089 
It is well known that if you drill a small tunnel through the solid, 

non-rotating earth of uniform density from Buffalo through the earth's 
center and to Ol&b on the other side, and drop a small stone into the 
hole, it will be seen at Olaffub after a time TI = 2, where wo is a constant. 
Now, instead of just dropping the stone, you throw it into the hole with an 
initial velocity 210. How big should vo be, so that it now appears at Olaffub 
after a time T2 = T1/2? Your answer should be given in terms of wo and 
R, the radius of the earth. 

(Princeton ) 

Solution: 
Let T be the distance of the stone, of mass m, from the center of the 

earth. The gravitational force on it is F = -G+ = -w;mr, where 

wo = @, p being the density of the uniform earth. The equation of 
the motion of the stone is then 
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2 r = -war . 
Thus the stone executes simple harmonic motion with a period T = 2. 
Then if the stone starts from rest at Buffalo, it will reach Olaffub after a 
time T I  = = $. 

The solution of the equation of motion is 

r = Acos(wt + cp) , 

Suppose now the stone starts at r = R with initial velocity 1: = -vo. We 
have 

R = A cos cp, -vo = -Awe sin cp , 

giving 

TO reach Olaffub at  t = 2 = &-, we require 

As sin2 cp + cos2 cp = 1, we have 

R2 + 2 = 1 ,  
R2 

R 2 + ( 2 ) 2  R2 + (t> 
giving 

1090 
(a) A particle of mass m moves under a conservative force with potential 

energy V ( x )  = cx/(x2 +a2) ,  where c and a are positive constants. Find the 
position of stable equilibrium and the period of small oscillations about it. 

(b) If the particle starts from this point with velocity v, find the range 
of values of v for which it (1) oscillates, (2) escapes to -00, (3) escapes to  
+oo. 

(Princeton) 
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Solution: 
(a) At the equilibrium position, F = -dV/dx = 0,  i.e. 

= O  dV - c(a2 - x 2 )  
dx  ( x 2  +.a2)2 

Thus there are two equilibrium positions, x1 = a, 2 2  = -a. Consider 

- - 

d2V - 2cx(x2 - 3a2) 
dx2 ( x 2  + a 2 ) 3  . 
-- 

We have 

> o .  
dx2 12 

< o ,  
dx2 11 

It follows that x 1  is a position of unstable equilibrium and x2 is a position 
of stable equilibrium. 

For small oscillations about the position of stable equilibrium, let x = 
-a + x', where x' << a. Then the equation of motion becomes 

cx' M -- d2 x' u ' (2a  - 5') m- == - 
dt2 [(d - a)2 + a212 2a3 ' 

Hence the period of small oscillations about z = -a is 

w v c  

(b) The total energy of the particle is 

mu2 mu2 c 
2 2 2a 

E = - + V ( - a ) = - - - .  

(1) For the particle to be confined in a region, we require E < 0, i.e. 

(2) AS E = $ + V ( Z ) ,  for the particle to reach x = -00, we require 
E > V(-oo) = 0, i.e. v > E .  
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(3) To escape to +w, the particle must pass through the point 22 = +a 
at which the potential energy is maximum. Hence we require E > V ( a )  = 

Z a '  1-e. c .  - - 
v > p .  ma 

1091 

A 3-45 inclined plane is fixed to a rotating turntable. A block rests on 
the inclined plane and the coefficient of static friction between the inclined 
plane and the block is pte = 114. The block is to remain at a position 
40 cm from the center of rotation of the turntable (see Fig. 1.62). Find the 
minimum angular velocity w to keep the block from sliding down the plane 
(toward the center). 

(SUNY, Buffalo) 

Fig. 1.62. Fig. 1.63. 

Solution: 
As shown in Fig. 1.63, the forces acting on the block are the gravitational 

force mg, the normal reaction N, the static friction f ,  and the centrifugal 
force with f = p s N ,  P = w 2 r .  Thus the conditions for equilibrium are 

mgsin8 = Pcos8 + p s N  , 
N = mgcos8 + Psino . 

Hence 
mgsin8 = Pcostl+ psmgcos8 +p,Psin8 , 
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giving 

or 

i.e. 

2 m g = w  r ,  

= ( { + a .  $) 0.4 
4 5  .9.s-  

sin 9 - p8 cos 9 
cos 9 + ps sin 9 

sinO-p,cose g 3 - 1 . 4  

P =  ( 
= (cos9+p8sinB) - 10.3 , 

w = 3.2 rad/s . 

1092 
A mass m hangs in equilibrium by a spring which exerts a force F = 

- K ( z  - Z), where z is the length of the spring and 1 is its length when 
relaxed. At t = 0 the point of support to which the upper end of the spring 
is attached begins to oscillate sinusoidally up and down with amplitude A, 
angular frequency w as shown in Fig. 1.64. Set up and solve the equation 
of motion for ~ ( t ) .  

(SVNY, Buflulo) 

Fig. 1.64. 

Solution: 
Take the upper end of the spring, P ,  as the origin of the z coordinate 

of the mass m. At t = 0 ,  P starts to oscillate sinusoidally, so the distance 
of P from the fixed support is Asin(wt). Then the mass m has equation of 
motion _" 

d" 
dt2 

m- [z + A sin(wt)] = mg - K ( z  - 1 )  
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Let y = x - 1  - y ,  wo" = 5 .  The above can be written as 

j i  + w:y = u2A sin(&) . 

Try a particular solution y = B sin(wt). Substitution gives 

w2A B=- 
wo" - w2 . 

Hence the general solution is 

w2A sin(&) 
y = Ccos(wot) + Dsin(w0t) + 

wo"-w2 . 

Using the initial condition 

mg 
K mg = K ( x  - I ) ,  i.e. z = - + I ,  or y = 0 

and y = 0, we have 

w3A 
C=O, D =  

wo(wo" - w2) 

and hence 

W 
x ( t )  = - sin(wt) - - sin(w0t) 

wo" - w2 WO 

1093 
A block of mass m slides without friction on an inclined plane of mass 

M which in turn is free to slide without friction on a horizontal table 
(Fig. 1.65). Write sufficient equations to find the motion of the block and 
the inclined plane. You do not need to solve these equations. 

Solution: 
As shown in Fig. 1.65, let x ,y  be a coordinate frame attached to 

the inclined plane, whose horizontal coordinate in the laboratory frame 
is denoted by X. The forces on the block and the inclined plane are as 
shown in the diagram. 

( Wisconsin) 
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N .. 

Y 

.. 
Mg 

Fig. 1.65. 

We have for the inclined plane 

MX = N s i n a ,  

for the motion of the block along the x direction 

rn(2 + Xcosa) = -mgsina , 
and for the motion of the block along the y direction 

-mXsina = N - mgcosa . 

These three equations for the three unknowns N, x and X can be solved to 
find the motion of the system. 

1094 

A merry-go-round (carousel) starts from rest and accelerates with a 
constant angular acceleration of 0.02 revolution per second per second. A 
woman sitting on a chair 6 meters from the axis of revolution holds a 2 kg 
ball (see Fig. 1.66). Calculate the magnitude and direction of the force 
she must exert to hold the ball 5 seconds after the merry-geround begins 
to rotate. Specify the direction with respect to the radius of the chair on 
which she is sitting. 

( Wisconsin) 

Solution: 
Consider two coordinate frames L, R with the same origin. L is fixed to 

the laboratory and R rotates with angular velocity w .  The time derivatives 
of a vector A in the two frames are related by 
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Fig. 1.66 

(%), = (g)R +w x A 

Then for a point of radius vector r from the origin we have 

and 

( g)L = ( : ) L  ( $ ) R  + ( 2)L + ( % ) L  
* 

As 

Putting 

R R L 

In the rotating frame attached to the carousel, the equation of the 
motion of the ball F = m (3) then gives 

L 

ma’ = F +mw2r - mLj x r - 2mw x v’ , 
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as w l r  so that r x (a x r) = -w2r. As the ball is held stationary with 
respect to the carousel, a’ = 0, v’ = 0,  and 

F = -mw2r + mw x r 

For the rotating frame R, take the z-axis along the axis of rotation and the 
x-axis from the center toward the chair. Then 

w = & k ,  r = r i .  

The force F acting on the ball is the resultant of the holding force f exerted 
by the woman and the gravity of the earth: 

F = f - m g k  

Hence 
f = -mw2ri + mcjrj + mgk . 

With 3 = 0.02 x 27r rad/s2, w = 53, m = 2 kg, r = 6 m, we have 

f = -4.743. + 1.51j + 19.6k N , 

of magnitude = 20.2 N. 

1095 

A planet of uniform density spins about a fixed axis with angular 
velocity w. Due to the spin the planet’s equatorial radius RE is slightly 
larger than its polar radius Rp as described by the parameter E = ( R E  - 
E P ) / R E .  The contribution to the gravitational potential resulting from 
this distortion is 

~ G M , E  Rg P2 (cos 8)  
5R3 @(R,B) = 7 

where 8 is the polar angle and Pz(cos8) = - f .  State a reasonable 
condition for equilibrium of the planet’s surface and compute the value 
of E in terms of the parameter X = *, where g is the gravitational 
acceleration. Make a numerical estimate of E for the earth. 

( Wisconsin) 
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I 

I 
I > X  

Fig. 1.67. 

Solution: 

The forces acting on a mass element Am on the surface of the planet 
are gravity, centrifugal force, and the constraint exerted by the rest of the 
planet. The condition for equilibrium of the surface is that the resultant of 
gravity and centrifugal force is perpendicular to the surface, i.e. it has no 
tangential component. 

Suppose the surface of the planet is an ellipsoid of revolution with the 
z-axis as its axis of symmetry as shown in Fig. 1.67. The line of intersection 
of the ellipsoid with the xz-plane is an ellipse: 

z = Rpcosa, x = &Sin& , 

where cw is a parameter. The polar angle 0 of a point on the ellipse is given 
bY 

x RE 
RP 

tan0 = - = - tancw 

The unit tangent r to the ellipse at this point is 

r m i d x + k d z =  i-+k- d a  ( :: i:) 
cos cw 

= (iREcoscw - kRpsincw)da = -(iR& - kRgtan8)da . 
RE 

The centrifugal force fi on Am is 

fi = iAmRu2 sin 8 
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and the gravitational force on it is 

1 GMeAm 2GMe~R%Am ~ ~ ( ~ ~ ~ e )  
+ 5R3 f2 = -vv = v 

6GMe.5 R& A m  
5R4 

sin6cosee~ . 1 ~ E R &  = G M , A m  ( R2 5R4 

As 

e, = isin6 + kcos8 , 
ee = icose - ksin8 , 

sin8cos2e i ~ E R &  sine 6ERi sin6P2(cos8) - - 
5R4 1 fi = GMeAm [-- - 5 ~ 4  

sin2 6 cos 81 k cosd 6.5R: 6.5 Rg +GMeAm -- - - cos ep2 (cos e) + 5R4 [ R2 5R4 

sin8 

with b = 6€R;/5R4.  
The condition for equilibrium of the surface is 

(fi + f2). 7- = 0 1 

which gives for R = R p  M RE 

Riw2  sin 0 - R&bGMe sin 9 M 0 . 

as g = T .  For earth, RE = 6378 x lo3 m, w = 24x3600 2 K  rad/s, g = 

9.8 m/s2, we have 
2.9 x 1 0 - ~  . 
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1096 

A satellite moves in a circular orbit around the earth. Inside, an 
astronaut takes a small object and lowers it a distance Ar from the center 
of mass of the satellite towards the earth. If the object is released from rest 
(as seen by the astronaut), describe the subsequent motion as seen by the 
astronaut in the satellite’s frame of reference. 

( Wisconsin ) 

Solution: 

The satellitc revolves around the earth with an angular velocity w. We 
assume that one side of the satellite always faces the earth, i.e. its spin 
angular velocity is also w. Choose a coordinate frame attached to the 
satellite such that the origin is at the center of mass of the satellite and the 
center of the earth is on the y-axis as shown in Fig. 1.68, where R is the 
distance of the satellite from the center of the earth. 

Fig. 1.68 

The equation of the motion of the small object of mass m in the satellite 
frame is given by (Problem 1094) 

F = rnr+mw x (w x r) + 2 m w  x r+mG x r 

= mi; - m w 2 r  + 2- x r , 

since & = 0, u . r = 0. Thus 

mi: = F+mw2r - 2 m w  x r . 

In the above, F is thc gravitational force exerted by the earth: 
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GMm ( R - r )  ( R - r ) x -  

x (1 + $) (R-r )  

GMm 
JR - 4 3  R3 (1- E$L)~ 

F = -  

GMm GMm 3GMmy 
r +  R3 eY , z- R -  - 

where mw2r is the centrifugal force and 

R3 R3 

-2mw x r = -2mwe, x (xe, + ye, + i ez)  

= -2mw(xe, - yez) 

is the Coriolis force. 
As initially, r = Arey,  and all the forces are in the xy-plane, the object 

always moves in this plane. Then r = 28, + ye,. If the satellite has mass 
m', we have 

GMm' 
R2 

~ = m ' a 2 ,  

or w2 = g. Then the second term of F cancels out the centrifugal force. 
The first term of F acts on the satellite as a whole and is of no interest to 
us. Hence the equation of motion becomes 

2 Pe, + ye, = 3w ye, - 2w(key - yez) 

or, in component form, 

y = 3 w  2 y - 2 w x ,  

x = 2wy . 

Integrating (2) and making use of the initial conditions j. = 0, y = Ar  at 
t = 0, we find 

k = 2w(y - AT) . (3) 

Substitution in (1) gives 

y = -w2 y + 4 w 2 A r ,  

whose general solution is y = A cos(wt) + B sin(wt) + 4Ar, A ,  B being 
constants. With the initial conditions y = Ar, y = 0 at t = 0, we find 

y = -3Ar cos(wt) + 4Ar . 
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Equation (3) now becomes 

x = 6wAr[l - cos(wt)] . 

Integrating and applying the initial condition x = 0 at t = 0, we obtain 

2 = 6Ar[wt - sin(&)] , 

Hence, the subsequent motion as seen by the astronaut in the satellite’s 
frame of reference is described by 

z = 6Ar[wt - sin(wt)] , 
y =  AT[^ - 3 COS(U~)] . 

1097 
Consider a hoop of radius a in a vertical plane rotating with angular 

velocity w about a vertical diameter. Consider a bead of mass m which 
slides without friction on the hoop as indicated in Fig. 1.69. 

Fig. 1.69. 

(a) Under what specific condition will the equilibrium of the bead at 
8 = 0 be stable? 

(b) Find another value of 8 for which, in certain circumstances, the bead 
will be in stable equilibrium. Indicate the values of w for which this stable 
equilibrium takes place. 
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(c) Explain your answer with the aid of appropriate graphs of the 
potential energy versus 0 as measured in the rotating frame. 

( Wisconsin) 

Solution: 
Consider a coordinate frame (r ,O) attached to the hoop and use the 

derivation in Problem 1094. As w is constant, we have in the rotating 
frame 

g = r + 2w x r + w x (w x r) . 

As 

g = -ge, = g cos Oe, - g sin Oeo , 
r = -ad2e, + aeeo 

w=we,  =-wcosOe,+wsinOeo, 
r = ae, , 

we have the equation of the motion of the bead in the ee direction in the 
rotating frame as 

a6 = -gsinO + au2sinOcos0 . (1) 

To find the equilibrium positions, let 0 = 0. The above then gives, for 
equilibrium, 0 = 0 and cos9 = 5. 

(a) When 0 is in the neighborhood of zero, 

O2 
2 

sinOw0, c o s O = l - - .  

We can approximate (1) to 

It is evident that if and only if w2 5 g/a, in which case the resultant force 
acting on the bead is always directed toward the equilibrium position, will 
the equilibrium of the bead at O = 0 be stable. 

(b) The other value of 0 for which the bead will be in equilibrium is 

0, = arccos (-&) 9 . 
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Let 8 = Oo + 68, where 68 << Bo. Then 

sin 8 = sin(& + 68) M sin 80 + cos e068 , 
C O S ~  = cos(80 + 68) M cos& - sinQ068 . 

Substitution in ( 1 )  gives 

+ I - -  w 2 6 8 = o .  
d268 
dt2 ( .G) 

Hence the condition of stable equilibrium is 

( c )  The potential energy of the bead in the rotating frame consists of 
two parts, i.e. gravitational potential energy V1 and centrifugal potential 
energy VZ, given by 

i.e. 
Vl = m g z  = mga(1 - cos0) , 

i.e. 
1 1 
2 2 

v2 = ---2r2 = - -ma2w2 sin2 8 . 

Thus 
1 
2 

v = v1 + v2 = mga( 1 - cos e )  - -ma2w2 sin2 8 

The two equilibrium positions are given by = 0: 

sin8 = 0, or 8 = 0 ,  
9 or 8 = arccos (3) 9 . cos8 = - 

w 2  

Figures 1.70 (a), (b), and ( c )  are the graphs of the potential energy versus 8 
as measured in the rotating framo for w < m, w = && and w > 
respectively. 
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The potential energy V must be a minimum for the equilibrium to be 
stable. This is the case for 8 = 0 in Figs. (a)  and (b) and for B = arccos( 5) 
ifi Fig. (c). The point B = 0 in Fig. (c) is an equilibrium position but the 
equilibrium is unstable as V is a maximum there. 

1098 

A perfectly smooth horizontal disk is rotating with an angular velocity 
w about a vertical axis passing through its center. A person on the disk at 
a distance R from the origin gives a perfectly smooth coin (negligible size) 
of mass m a push toward the origin. This push gives it an initial velocity V 
relative to the disk. Show that the motion for a time t ,  which is such that 
(d)’ is neglegible, appears to the person on the disk to be a parabola, and 
give the equation of the parabola. 

( Wisconsin ) 

Solution: 

Use a Cartesian coordinate frame attached to the disk such that the 
z-axis is along the axis of rotation and the x-axis is opposite to the initial 
velocity V of the coin, both 5, y-axis being on the plane of the disk. In this 
rotating frame, we have (Problem 1094), 

m d v  m d o  
-=FF-  x r -ma  x (w x r) - 2rnw x v 

dt d t  
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As there is no horizontal force on the coin after the initial push and w = wk, 
3 = 0, the above gives 

x = w2x + 2wy , 
y = w  y - 2 w x .  2 

Let z = x + iy. Then (1) + (2) x i gives 

i + 2iwi - w2z = o . (3) 

With z = e y t ,  we have the characteristic equation 

This has a double root y = -iw, so that the general solution of (3) is 

z = (A + iB)e-iWt + (C + iD)te-iWt 

The initial conditions are x = R, y = 0,  x = -V, y = 0, or z = R, i = -V, 
at  t = 0, which give 

R = A + i B ,  - V = w B + C + i ( D - w A ) ,  

or 
A = R ,  B = 0 ,  C = - V ,  D = w R  

Hence 
z = [ ( R  - V t )  + iRwt]e-i"t , 

or 

x = ( R  - V t )  cos(wt) + f i t  sin(wt) , 
y = -( R - Vt) sin(wt) + Rwt cos(wt) 

Neglecting the (wt)2 terms, the above become 

X Z R - V t ,  
y M - ( R  - Vt)wt + Rut = Vwt2 . 

Hence the trajectory is approximately a parabola y = 5 ( R  - z ) ~ .  
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1099 

A body is dropped from rest at a height h above the surface of the earth 
and at a latitude 40'N. For h = 100 m, calculate the lateral displacement 
of the point of impact due to the Coriolis force. 

( Columbia) 

Solution: 

If the body has mass m, in the rotating frame of the earth, a Coriolis 
force -2mw x i is seen to act on the body. We choose a frame with origin at 
the point on the earth's surface below the starting point of the body, with 
z-axis pointing south, y-axis pointing east and z-axis pointing vertically up 
(Fig. 1.71). Then the equation of the motion of the body in the earth frame 
is 

mi: = -mgk - 2mw x r 

t 

i .i 

L 
40" 0 w sin 40' 

Fig. 1.71. 

From the above, expressions for x, 5 and 2, can be obtained, which are 
readily integrated to give x, ~ and i .  These results are then used in the 
expressions for x, y and 2. As the time of the drop of the body is short 
compared with the period of rotation of the earth, we can ignore terms of 
order w2 and write the following: 
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$ = O ,  

y = 2gtw cos 40' 

z = - g .  

Integrating the above twice and using the initial conditions, we obtain 

x = O ,  
1 

y = ;gt2W~os40' , 
J 

The last equation gives the time of arrival of the body a t  the earth's surface 
t = 0: 

t =  e-. 
Then the lateral displacement of the body at  impact is 

y = ~ / ~ w c o s 4 0 °  = 0.017 m , 

1100 

(a) What are the magnitude and direction of the deflection caused by 
the earth's rotation to the bob of a plumb-line hung from the top to the 
bottom of the Sather Tower (Companile). 

(b) What is the point of impact of a body dropped from the top? 
Assume that Berkeley is situated at 0' north latitude and that the 

tower is L meters tall. Give numerical values for (a) and (b) based on your 
estimates of L and 8. 

(Columbia) 

Solution: 

(a) In Fig. 1.72, F, is the fictitious centrifugal force, a is the angle that 
mg, the apparent gravity, makes with the direction pointing to the center 
of the earth. The gravity mg0 for a non-rotating earth is related to the 
above quantities by 

m g = m g o + F , .  
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Fig. 1.72. 

Then by the force triangle, we have 

Fe m9 
sina sin8 ’ 

mRw2 cos 9 sin 9 

-=- 

or 
F, sin 0 Rw2 sin 29 - - - sins = ~ - 

m9 m9 29 

Hence the magnitude of the deflection of the bob is 

h2 sin 28 La = Larcsin ( 29 ) . 
(b) The lateral displacement of a body falling from rest at height L in 

the northern hemisphere due to the Coriolis force is to the east and has 
magnitude (Problem 1099) 

6 = -  :Jar -wcos0. 

1101 

Under especially favorable conditions, an ocean current circulating 
counter-clockwise when viewed from directly overhead was discovered in a 
well-isolated layer beneath the surface. The period of rotation was 14 hours. 
At what latitude and in which hemisphere was the current detected? 

( Columbia) 
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i j k  
a = - 2 w  -cosO 0 sin8 

'ux vy 0 

Solution: 

We choose a coordinate frame attached to the earth with origin at  the 
point on the earth's surface where the ocean current is, x-axis pointing 
south, y-axis pointing east and z-axis pointing vertically upward. The cir- 
culation in the ocean is due to the Coriolis force which causes an additional 
acceleration (Problem 1094) 

. 

a = -2w x v , 

aH = -2wsin8(-vyi + vzj) = -2w,k x v . 

As aH is always normal to v, it does not change the magnitude of the latter 
but only its direction. It causes the current to circulate in a circular path. 
Let R be the angular velocity of the circular motion. Then 

v2 
(aH( = 2wvsinO = - = vR , 

T 

where T is the radius of the circular path. Hence 

or 
0 = 59" . 

If the ocean current is on the northern hemisphere, w,k points toward 
the north pole and aH always points to the right of the velocity v. This 
makes v turn right and gives rise to clockwise circulation. In a similar 
way, in the southern hemisphere, the Coriolis force causes counter-clockwise 
circulation. Hence the circulating ocean current was detected at a latitude 
of 59"s. 
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1102 
A small celestial object, held together only by its self-gravitation, can be 

disrupted by the tidal forces produced by another massive body, if it comes 
near enough to that body. For an object of diameter 1 km and density 
2 g/cm3, find the critical distance from the earth (Roche limit). 

(UC, Berkeley) 

Solution: 
Suppose the earth is fixed in space and the small celestial object orbits 

around it at a distance 1 away as shown in Fig. 1.73. Let M be the mass 
of the earth, m the mass and p the density of the small celestial object. 
Consider a unit mass of the object on the line OC at distance x from C. 
We have from the balance of forces on it 

GM G($)nx3p 
(1 - x)w2 = - - 

( 1  - x)2 5 2  . 

We also have for the celestial body 

GMm 
mlw = - 

12 

which gives w2 to be used in the above. Then as 7 << 1, retaining only the 
lowest order in f ,  we have 

l = ( g .  

With M = 6 x g, p = 2 g/cm3, we find 

1 = 1.29 x lo9 cm = 1.29 x lo4 km . 
If 1 is less than this value, the earth’s attraction becomes too large for 
the unit mass to be held by the celestial body and disruption of the latter 
occurs. 

If the unit mass is located to the right of C on the extended line of OC, 
x is negative but the above conclusion still holds true. We may also consider 
a unit mass located off the line OC such as the point P in Fig. 1.74. We 
now have 

c d  - g r p G ~ ~ c o s ~ ,  4 d(i - .)2 + y 2 ~ 2  cos e = 
(1 - z ) 2  + y 2  
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Fig. 1.73. Fig. 1.74. 

with 
1 - 2  2 

cose = cosy3 = 
J(1-  X ) Z  + 312' Jm' 

As x/1 << 1, y /1  << 1, and retaining only the first-order terms we would 
obtain thc samc result. 

1103 

A merry-geround (MGR) has two orthogonal axes (x, y) painted on it, 
and is rotating on the earth (assume to be an inertial frame 20, yo, zo) 
with constant angular velocity w about a vertical axis. A bug of mass m is 
crawling outward without slipping along the x-axis with constant velocity 
wo (Fig. 1.75). What is the total force Fb exerted by the MGR on the bug? 
Give all components of Fb in the earth-frame coordinates XO, yo, zo of the 
bug. 

(UC, Berkeley) 

ZI 10 

4JJJ 

XO a;o 
X 

XO a;o 
X 

Fig. 1.75. 

Solution: 
In the rotating coordinate system (z, y, z ) ,  the bug, which crawls with 

constant velocity wo along the z-axis, has no acceleration, so that the 
horizontal force acting on it by the MGR is (Problem 1094) 
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F = 2mw x d + m w  x (w x r) , 

where w = we,, v’ = voe,, r = xe,. The bug has a weight -mge,, so that 
the MGR exerts a reaction force mgez on the bug. Hence the total force 
exerted by the MGR on the bug is 

Fb = 2mvowe, - mw2xe, + mgez . 
Choose the earth frame (20, yo, 20) such that at t = 0,  the corresponding 

axes coincide with those of the rotating frame. Then, denoting the unit 
vectors along the 20-, yo-, zo-axes by i , j ,  k respectively, we have 

ex = eos(wt)i + sin(wt)j , 
ey = - sin(wt)i + cos(wt)j , 
e , = k .  

For simplicity, assume that the bug was at the origin at t = 0 ,  then x = vat. 
In the earth frame, Fb can thus be written as 

Fb = -mvow[2sin(wt) + wt cos(wt)]i 

+ mvow[2cos(wt) - wt sin(wt)]j + mgk . 

1104 
Consider a collection of charged particles, all with the same 

charge/mass ratio (elm), interacting via conservative central forces. Prove 
that the motion of the particles in a small magnetic field B is identical with 
that in the absence of the field, when viewed in a coordinate system rotating 
with an appropriately chosen angular velocity w (Larmor’s theorem). What 
is the appropriate value of w and what is meant by “small”? 

(Chicago ) 

Solution: 
Assume the magnetic field to be uniform and let the central force on 

a particle be F(r). Consider two coordinate frames L and R with origins 
at the force center such that R rotates with angular velocity w about the 
common origin. Problem 1094 gives the equation of motion (in SI units) 
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F(r) + ev x B = ma (1) 

in L and 

F(r) + ev x B = ma’ + 2mw x v’ + mw x ( w  x r) (2) 

in R. As v = v’ + w x r, (2) can be written as 

ma’ = F(r) + ev x B - 2mw x (v  - w x r) - mw x (w  x r) 

= F(r) + v  x (eB + 2mw) + m w  x (a x r) . 

If R is chosen with 
eB 
2m 

w =  -- 

and if the centrifugal term mw x (w x r) can be neglected, the above becomes 

F(r) = ma’ , 

i.e. the motion of the particle when viewed in the rotating frame is the 
same as that in the absence of the magnetic field. 

This conclusion applies to  a system of particles with the same elm and 
subject to central forces with the same center. The particles will move as if 
the magnetic field were absent but the system as a whole precesses in the 
laboratory frame with angular velocity w. 

We have assumed that for cvery particle in the system, 

m J w  x (w  x r)l << 2m(w x vI , 

i.e. 

or 

2v 
r w < < - ,  

4mv 
er B<<-, 

which limits the strength of the field. 

1105 

The pivot point of a rigid pendulum is in forced vertical oscillation, 
given by ~ ( t )  = ~Ocos(ut) .  The pendulum consists of a massless rod of 
length L with a mass m attached a t  the end. 
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(a) Derive an equation of motion for 6, where 6 is the pendulum angle 

(b) Solve the equation to first order in 770 for the initial conditions 
indicated in Fig. 1.76. Assume 8 << 1 and 70 <( L. 

(i) 6 = a ,  6 = 0 ,  

and (ii) 6 = 0, 8 = a f i .  

difference in the two motions. 
(c) Evaluate the solutions for (i) and (ii) at resonance and describe the 

( M I T )  

Fig. 1.76. 

Solution: 
(a) Use Cartesian coordinates with origin at point 0 in Fig. 1.76, z-axis 

horizontal and y-axis vertically downward. We have 

z = Lsin6, y = L cos 6 + qop - cos(wt)] , 
mx = -Fsin6, mji = mg - Fcos6 . 

As 6 << 1 rad, we can omit terms involving e2 and take the approximation 
cos 6 M 1, sin 6 M 0. Then 

X w -Lee2 + ~ e ,  j i  M - ~ e e  + vow2 cos(wt) , 

and the equation of motion for 8 is 

-* 1 
L 6 + -19 - vow2 c ~ ~ ( w t ) ] e  = o . 
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(b) For an approximate solution to first order in (Y = t, let 

where cp satisfies the equation @ + w i p  = 0, with w i  = 5 ,  as well as the 
initial conditions for 8. 

(i) For initial conditions 8 = a ,  6 = 0, we have 

cp = acos(wot) , 
8 = ~ C O S ( W O ~ )  + ( ~ [ ( t )  . 

Substitution of the above in (1) gives, retaining only first order terms of cr, 

2 aw2 i'+ u,2E = aw cos(w0t) cos(wt) = __ {cos[(wo + w)t] + cos[(wo - w)t]} . 
2 

This has a particular solution 

cos[(wo + w)t] 
2wo + w 

cos[(wo - w)t] 
2w0 - w 

+ 
so that the general solution is 

awcos[(wo + w)t] 
2(2WO + w) 

awcos[(wo - w)t] 
2(2WO - w )  

= C1 cos(w0t) + Cz sin(wot) - + 

The initial conditions 6 = 0, i = 0 at  t = 0 then give 

and 

8 = acos(wot) 

1 .  awcos[(wo + w ) t ]  
2(2WO + w) 

awcos[(wo - w)t] 
2(2wo - w )  

+ +:{- aw2 cos(w0t) - 
(2wo + W)(2WO - w) 

(ii) For initial conditions 0 = 0, 6 = a d  = awo, let 

cp = usin(w0t) , 
8 = asin(w0t) + c r E ( t )  
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Substitution in (1) gives 

1 75 

m2 = -{sin[(wo + w) t ]  + sin[(wo - w ) t ] }  , 
2 

which has general solution 

aw sin[(wo + w)t]  aw sin[(wo - w) t ]  < = D1 cos(w0t) + Dz sin(w0t) - 
2(2wo + w) + 2(2wo -w) 

The initial conditions = 0, < = 0 at t = 0 then give 

aw2 D1 = o ,  D2 = 
(2wo + w ) (2wo - w) 

and hence 

0 = asin(w0t) 
w2 sin(wot) - awsin[(wo + w)t] awsin[(wo - w)t] 

(c) Resonance occurs at w = 2wo. As w x 2w0, we have for case (i) 

+" {  L (2wo + w)(2wo - w) 2(2wo + w) + 2(2wo-w) 

and for case (ii) 

7?0a 

4L f3 = asin(w0t) - - sin(3wot) = a 

It is seen that the amplitude at resonance is limited to M a in both cases. 
However, the two resonances occur at phases differing by $. 

1106 
A hemispherical bowl of radius R rotates around a vertical axis with 

constant angular speed a. A particle of mass M moves on the interior 
surface of the bowl under the influence of gravity (Fig. 1.77). In addition, 
this particle is subjected to a frictional force F = -kV,,1 , where k is a 
constant and Vrel is the velocity of the particle relative to the bowl. 
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(a) If the particle is a t  the bottom of the bowl (0 = 0), it is clearly in 
equilibrium. Show that if R > a, there is a second equilibrium value of 
8 and determine its value. 

(b) Suppose the particle is in equilibrium a t  the bottom of the bowl. 
To describe the motion of the particle in the vicinity of the equilibrium 
point, we construct a local inertial Cartesian coordinate system (5, y, z )  and 
neglect the curvature of the bowl except in calculating the gravitational 
restoring force. Show that for 1x1 << R, IyI << R, the particle position 
satisfies 2 = Re(zoext), y = Re(yoext ) ,  where 

2 

(P+ + ;)2+ (&) n2 = 0 .  

(c) Find the angular speed of the bowl, Ro, for which the particle’s 
motion is periodic. 

(d) There is a transition from stable to unstable a t  62 = no, By 
considering behavior of frequencies in the vicinity of Ro, prove that the 
motion is stable for R < Ro and unstable for R > R,. 

(MIT) 

Fig. 1.77. 

Solution: 
In a frame rotating with angular velocity a, the equation of motion of 

a particle of mass M is by Problem 1094 

F =  Ma’+2MSl  x v ’ + M f l  x (0 x r ) + M h  x r ,  

where a‘, v’ are the acceleration and velocity in the rotating frame. 
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For the rotating frame, choose a spherical frame (T,  8,  p) attached to the 
bowl with origin 0 at the center of the bowl, then b = 0. In the spherical 
coordinate frame, we have 

8,. = he + +sin80, , 
= -Be, + + cos Be, , 

e, = -$ sin Be, - (L, cos Bee . 

Then for a particle at r = re,, the velocity is 

v = l;e, + reee + r$ sin ee, , 

and the acceleration is 

a = (i' - re' - re2 sin' e)e, 
+ (re + 274 - T + ~  sin e cos e)ee 

+ (@sin 8 + 2 i $  sin 6 + 2r@ cos B)e, . 

(a) For the particle in the rotating bowl, we have 

f2 = -R cos ee, + R sin 8ee , 
i = T = 0, c = Re,, Vrel = Rdee + R$sinee, , 

where 

Mg = Mgcosee, - MgsinBee , 
N =  - N e , .  

Hence the equations of the motion of the particle in the rotating frame 
in the ee and eV directions are respectively 

M R ~  - M R ~ ~  sin e cos e 
= -Mg sin 0 - kR0 - 2MRR$ sin 9 cos 8 -k MRR2 sin cos 8 , 

and 
MR@ sin 0 + 2MR8$ cos 8 = -kR+ sin 8 + 2MRS28 cos 8 . 
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At equilibrium, 8 = 0, q3 = 0, 8 = 0, (Ej = 0, and we obtain 

-Mgsine+ A4RR2sint?cos8 = 0 ,  

which gives 
9 cost?= __ R 0 2  ' sine = 0, or 

Hence 13 = 0 is an equilibrium position. 
equilibrium position 

If R > &$ there is another 

e = arccos ( 7) 9 
RO ' 

(b) Use Cartesian coordinates (2, y, z )  for the local inertial frame with 
origin at  8 = 0 at  the bottom of the bowl and the z-axis along the axis of 
rotation. In this frame, the position vector of the particle, which is near 
the bottom of the bowl, is 

r' = zi + yj + zk M xi + yj  , 

neglecting the curvature of gthe bowl, and its equation of motion is 

Mf' = M g  - kV,,, + N . 

L 
X 

Fig. 1.78. 

As shown in Fig. 1.78, the component of the force N along r is approx- 
imately zero and the component of Mg along r is 

Mgx. Mgyj -Mg sin 13 cos cpi - Mg sin 8 sin (pj M - - I - -  
R R 
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as sine M f ,  coscp x 5 ,  sincp x 5 .  ~ l s o  8s it = vrel + 51 x r', 

- k ~ , , l  = -ki' + kn x r' 
= -k(k + yR)i - Ic(G - xR)j . 

Let x = zOeXt, y = yoeXt and the above becomes 

kR 

For a non-zero solution, we require 

Hence if this condition holds, we can describe the particle's position by 

z = Re(zoext), y = Re(yoext) . 
This conclusion is valid only for 1x1 << R, Iy( << R since we have neglected 
the curvature and considered the particle as moving in a horizontal plane. 

(c) The left-hand side of (1) can be factorized and shown to have 
solutions 

kX 9 kR 
M R  M X 2 + - + - = * i - .  

For periodic motion, X must be imaginary, X = iw ,  where w is real. Equating 
the real and imaginary parts on both sides, we have 

&)2 = 9 and w = f R  . 
R 

To satisfy these we require that 

R = f  - = f R o  c 
for the motion to be periodic. Note that the '+' and '-' signs correspond 
to two opposite directions of rotation. 

(d) As has been shown in (a), if R < 00, there is only one equilibrium 
position 8 = 0. The equilibrium at this point is stable. For R > a", 



180 Problems €4 Solutions on Mechanics 

n2 there are two equilibrium positions B = 0 and 8 = arccos(d). However 
the equilibrium at the former position is now unstable, so that the stable 
equilibrium is shifted to the latter position if R > Ro. Hence for 0 = 0,  
there is a transition from stable to unstable at R = Ro. 

1107 

A particle of mass m can slide without friction on the inside of a small 
tube bent in the form of a circle of radius a. The tube rotates about a 
vertical diameter at a constant rate of w rad/sec as shown in Fig. 1.79. Write 
the differential equation of motion. If the particle is disturbed slightly from 
its unstable equilibrium position at B = 0, find the position of maximum 
kinetic energy. 

(SUNY,  Buffalo) 

A 
Fig. 1.79. 

Solution: 

In a rotating coordinate frame (T,  8,p) attached to the circular tube, we 
have (Problem 1094) 

F = ma’+2rnw x v ’ + w  x (w x r) , 

with 
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F = m g + N  

w = w cos Oe, - w sin 8ee , 
a' = -ad2ep + aeee , 
v' = atlee, 

= -mgcosf?e, + mgsin8ee + Ne, , 

r = ae, . 
The equation for the motion in the ee direction is then 

mad = mg sin 6 + m u 2  sine cos e 

As d = $% = ;$$, the above with the initial condition 8 = e = 0 at 
t = 0 gives 

ad2 = au2 sin2 8 + 2g(1- cos 8)  . 
In an inertial frame that instantaneously coincides with the rotating frame, 
the velocity of the particle is 

v = v ' + w  x r = adeo +ausinee, , 

and its kinetic energy is 

1 
2 

1 
2 

E = -m(a2b2 + a2w2 sin2 e) 

= -m[w'a2 sin2 e + 2ga(1- case) + w'a2 sin' e] 

= ma[w2a sin2 e + g( 1 - cos e) ]  . 

For E to be a maximum at 60, we require 

(g) =o ,  (Z) < o .  
80 80 

As 

- = ma[2w2a sin e cos 8 + g sin e] = o , dE 
de 

d2 E 
- = ma[b2acos2 e + g cos e - 2w2a] , 
de2 

we have for the position of maximum kinetic energy 
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9 
2a 

if 
2w2a 2a 

eo = if w 2  < - , 

eo = xccos (2) w2 > - 9 . 

1108 

Let S be a set of axes centered at the earth's center, with the z-axis 
pointing north, forming an inertial frame. Let S' be similarly placed, but 
rotating with the earth. 

(a) Write down the non-relativistic equation giving the transformation 
of the time derivative of any vector from S' to  S. Use this to derive an 
expression for the Coriolis force experienced by a body moving in S'. Define 
all symbols. 

(b) In the northern hemisphere, find the direction of the Coriolis force 
on a body moving eastward and on one moving vertically upward. 

(c) Consider a body dropped from a height of 10 feet at a latitude of 
30"N. Find, approximately, the horizontal deflection due to  the Coriolis 
effect when it reaches the ground. Neglect air resistance. 

(SVNY, Buflulo) 

Solution: 
(a) Let X Y Z  be the inertial reference frame S and X'Y'Z '  the rotating 

frame S' fixed to the earth which rotates with angular velocity w .  In S', 
an arbitrary vector A can be written as 

A = A , i + A , j + A , k .  

In S ,  the time derivative of A is 

% = ( % i + > j + L k  dA dA 
dt dt dt 

Let d * / d t  denote time derivative in S', then 

d'A = dA, i+  dA $Lj+ dtk dA, 
dt dt 

The kinematics of a rigid body gives 
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d i  - = w x j ,  4 dk - = w x k .  - = w x i ,  
d t  d t  d t  

Hence 
d A  d * A  d * A  
-= -  +wx(A, i+A, j+A,k)=-+wxA.  dt  dt d t  

Thus for the radius vector r to a point P ,  we have 

d r  d'r 
dt dt t w x r ,  - 

d2r d* ( d * r  ) (:; ) 
dt2 d t  d t  

- + w x r  + w x  - + w x r  - 

d*2r d*r  d*w 
dt2 d t  d t  

-- - +2w x - + w  x (w x r) + - x r . 

Note that in the above 
du 

dt  d t  d t  
- w x w = -  

d'w du -- - - 

Newton's second law applies to the inertial frame, so for a particle of 
mass m at P acted on by a force F, we have 

d2r d*2r d'r d*w F = m- = m- + 2mw x - + mw x (w x r) + m- x r . dt2  dt2 d t  dt 

Denoting f by a dot and noting that for the earth w = 0, we write the 
above as 

mi: = F - 2 m  x r - m u  x (0 x r) 

for the rotating frame. This shows that Newton's second law can still be 
considered valid if, in addition to F, we introduce two fictitious forces: 
-2mw x r, the Coriolis force, and -mw x (w x r), the centrifugal force. 
Thus a body of mass m moving on earth with a velocity v' is seen by an 
observer on the earth to suffer a Coriolis force - 2 m  x v'. 

(b) Choose for S' a frame fixed at a point on the surface of the earth at 
latitude X and let its orthogonal unit vectors i, j, k be directed toward the 
south, the east and vertically upward respectively. Then 

w = -wcosXi+wsinXk. 

(1) When the body moves eastward, v' = gj, the Coriolis force is 

F, = - 2 w  x v' = 2 m g  sin X i  + 2mwy cos Xk , 
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which has magnitude 

~ F J  = J ( 2 m w ~  sin ~ ) 2  + ( 2 m w ~  cos ~ ) 2  = 2 m w ~  

arid is pointing south at an inclination angle q5 given by 

tanq5= __ 
sin A 
cos A = t a n ( ;  - A )  . 

(2) When the body moves upward, v‘ = ik, the Coriolis force is 

F, = -2mw x v’ = -2mwicos4 , 

which has magnitude 2mw.i cos X and direction toward the west. 

( c )  The equations of motion for the free-fall body in S’ are 

mx = 2mwy sin X , 
my = -2mw(x sin X + i cos A) , { m,Y=-mg+2mwycosX, 

with initial conditions 3: = y = 0, z = h = 10 ft, x = y = i = 0 at t = 0. 
Integrating and using the initial conditions, we obtain 

x = 2wy sin X , 
y = -2w[zsinX + ( z  - h)cosX] , { i = -gt + 2wycosx * 

{ ,Y=-g .  

Substituting these into the original set of equations, we obtain 

2 = -4w2[xsinX + ( 2  - h)cosX]sinX , 
y = 2gtw cos x - 4w2y , 
z =  - g - 4 ~ ~ [ x s i n X + ( z - h ) c o s ~ ] c o s X .  

X = O ,  

y = 2gtw cos Xy , 

{ 
Neglecting the terms involving w2 , we have approximately 

Integrating, applying the initial conditions and eliminating t,  we obtain 

8w2 cos2 X 
Y2 = ( 9g ) ( h - Z I 3  
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When the body reaches the ground, z = 0, 

With h = 10 ft = 3.05 m, X = 30°, we find y = 1.01 x lo-* m. Hence the 
deflection due to the Coriolis effect is toward the east and has a magnitude 
0.01 cm. 

2. DYNAMICS OF A SYSTEM OF POINT MASSES 
(1109-1144) 

1109 
A cart of mass M has a pole on it from which a ball of mass p hangs from 

a thin string attached at point P .  The cart and ball have initial velocity V .  
The cart crashes onto another cart of mass m and sticks to it (Fig. 1.80). 
If the length of the string is R,  show that the smallest initial velocity for 
which the ball can go in circles around point P is V = [ (m + M)/m],/5$?. 
Neglect friction and assume M ,  rn >> p. 

( Wisconsin) 

P 

Fig. 1.80. 

Solution: 
As p < m, M ,  momentum conservation 

M V  = (M + m>v’ 
gives for the velocity of the two carts after collision, 
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MV 
M + m  

Consider the circular motion of the ball atop the cart M if it were 
stationary. If at the lowest and highest points the ball has speeds V1 and 
Vz respectively, we have 

v’=----. 

where T is the tension in the string when the ball is at the highest point. 
The smallest Vz is given by T = 0. Hence the smallest V1 is given by 

1 ;pVf = -pgR + 2pgR , 
2 2 

i.e. 
VI = &gR.  

With the cart moving, V1 is the velocity of the ball relative to the cart. 
As the ball has initial velocity V and the cart has velocity V’ after the 
collision, the velocity of the ball relative to the cart after the collision is 
V - V’. Hence the smallest V for the ball to go round in a circle after the 
collision is given by 

i.e. 

1110 

A cart of mass m moves with speed v as it approaches a cart of mass 
3m that is initially at rest. The spring is compressed during the head-on 
collision (Fig. 1.81). 

(a) What is the speed of the cart with mass 3m at the instant of 
maximum spring compression assuming conservation of energy? 

(b) How would your answer differ if energy is not conserved? 
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(c) What is the final velocity of the heavier cart after a long time has 

(d) Give the final velocity of the heavier cart in a completely inelastic 

( Wisconsin ) 

passed, if energy is conserved? 

collision. 

Solution: 
(a) When the spring is at maximum compression, the two carts are near- 

est each other and at that instant move with a velocity v', say. Conservation 
of momentum gives 

mu = (m + 3m)v' , 

i.e. 

Thus the heavier cart has speed 2 at that instant. 
(b) Even if mechanical energy is not conserved, the above result still 

holds since it has been derived from conservation of momentum which holds 
as long as no external force is acting. 

Fig. 1.81. 

(c) Conservation of energy and of momentum give 

mu2 mvi2 3mvh2 +- 2 2 2 '  
mv = mu: + 3mv: , 

where vi,  vi  are respectively the velocities after collision of the lighter and 
heavier carts. Hence the heavier cart has final velocity 

, 2mv v 

-=- 

_ -  v2=-- m+3m 2 '  

(d) If the collision is completely inelastic, the two carts will move 
together after collision. Their velocity is then as given in (a). 
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1111 

In terms of G, L and the masses: 

(a) What is the rotational period of an equal-mass (MI = M2 = M )  

(b) What is the period of an unequal-mass ( M I  # M2) double star of 

(c) What is the period of an equal-mass equilateral-triangle (side L )  

(d) What is the period of an unequal-mass ( M I  # M2 # M3) equilateral 

( Wisconsin ) 

double star of separation L? 

separation L? 

triple star? 

triple star? 

Solution: 

(a) Equal-mass double star 
The gravitational force on each star is f = G M 2 / L 2 .  The radius of circular 
orbit of each star with respect to the center of mass frame of the double 
star is R = L/2.  The centripetal acceleration of each star is a = v 2 / R ,  
where v is the speed of each star in the cms frame. Using these, we have 

Mu2 G M 2  
- 

R L2 ' 
or 

Hence the period of the double star is 

Fig. 1.82. 
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(b) Unequal-mass double star 
Let 0 be the center of mass of the double star. Then, as in Fig. 1.82, 

M1 L 
- A41 + A 4 2  . 1 -  M2 L 

- A 4 1  + M 2 '  
1 -  

For M I ,  f = GM1 A 4 2 1  L2 ,  the radius of circular motion is 11, and the 
centripetal acceleration is a1 = uf/11. Hence 

MlU: GM1M2 -- - 
1 1  L2 ' 

giving 

The rotational period of MI is then 

Interchange of the subscripts 1 and 2 shows that this is also the period T2 
of M2. 

Fig. 1.83. 

(c) Equal-mass equilateral-triangle triple star 
Let 0 be the center of mass of the triple star (Fig. 1.83). Geometry gives 
41 = f i L / 3 .  For M I ,  the resultant of the gravitational forces due to the 
other two stars points towards 0 and has magnitude (2GM2/L2)cos3O0 = 
&GM2/L2.  If its speed is u, we have 

M v 2  - &GM2 -- 
11 L2 ' 
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or 

so the period of the triple star is 

Y 

Fig. 1.84. 

(d) Unequal-mass equilateral triple star 
Use coordinates as shown in Fig. 1.84. The coordinates of MI, M2 and M3 
are (O,O),  (L,O) and ( L / 2 ,  e) respectively, and the radius vector of the 
center of mass C is 

The attractive forces exerted by M2 and M3 on M I  are respectively 

GMl M2 
f 1 2  = ~ 

L2 

and 

so that the resultant force on Ml is 
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This shows that f 1  is parallel to r,. Its magnitude is 

The radius of the circular orbit about the center of mass in which A41 

moves is 
r 

Then the equation of the motion of MI is 

giving for the speed v1 of M I ,  

Hence the rotational period of MI is 

2TR1 
Ti = - 

01 

which is obviously also the period of M2 and M3. 

1112 
A particle of mass m, charge q, and initial velocity v collides head-on 

with an identical particle initially at rest. What is the distance of closest 
approach between the two particles (in classical mechanics)? What is the 
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velocity of each particle at the instant of closest approach? What is the 
final velocity of each particle? Justify your answers. 

( Wisconsin ) 

Solution: 
The relative velocity is zero when the two particles are at closest 

approach. Conservation of momentum then gives mu = 2mv' and v' = 
v /2  as the velocity of each particle at the instant of closest approach. 
Conservation of energy gives 

mu2 mut2 mu" q2 +- + -  
2 2 2 r  

- 

and thus 
4q2 r = -  
mu2 

as the distance of closest approach. The final velocity of the incident particle 
is zero and that of the particle initially at rest is w. This can be seen from 
the symmetry of the problem. 

1113 

Two steel spheres, the lower of radius 2a and the upper of radius a, are 
dropped from a height h (measured from the center of the large sphere) 
above a steel plate as shown in Fig. 1.85. Assuming the centers of the 
spheres always lie on a vertical line and all collisions are elastic, what is the 
maximum height the upper sphere will reach? 
Hint: Assume the larger sphere collides with the plate and recoils before it 
collides with the small sphere. 

( Wisconsin) 

Solution: 

Let the mass of the smaller sphere be m1 and that of the larger one 
m2. Then m2 = 8ml. The landing velocity of the larger sphere is v2 = 
&$?@ and its velocity immediately after bouncing back from the 
steel plate is still v in magnitude. At this point, the descending velocity 
of the smaller sphere is w1 = d m  = 212. Let the velocities of the 
larger and smaller spheres after elastic collision be vi and vi respectively 
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6, 
,,,,, 1, ,,,, 1, 

Fig. 1.85. 

and take the upward direction as positive. Conservation of momentum and 
of mechanical energy give 

whose solution is 

Conservation of the mechanical energy of the smaller sphere thus gives the 
maximum height (measured from the steel plate) of the smaller sphere as 

Vi2 529 H = 3a + - = 3a + - (h  - 2a) . 
29 81 

1114 

A railroad flatcar of mass M can roll without friction along a straight 
horizontal track as shown in Fig. 1.86. N men, each of mass rn, are initially 
standing on the car which is at rest. 
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(a) The N men run to one end of the car in unison; their speed relative 
to the car is V,. just before they jump off (all at the same time). Calculate 
the velocity of the car after the inen have jumped off. 

(b) The N men run off the car, one after the other (only one man 
running at a time), each reaching a speed V,. relative to the car just before 
jumping off. Find an expression for the final velocity of the car. 

(c) In which case, (a) or (b), does the car attain the greater velocity? 
( CUSPEA ) 

Fig. 1.86. 

Solution: 
(a) As there is no horizontal external force acting, the center of mass of 

the system consisting of the flatcar and N men remains stationary. Taking 
the x-axis along the track, we have for the center of mass, 

Mxcar + Nmxman 
M + N m  Xcrn = 

xcm = 0 = MXcar +Nmxrn,, , 

where kCar and x,,,, are respectively the velocities of the car and each 
man after the men have jumped off. Writing x,,, = Vcar and noting that 
xman = V,,, - V,., we have 

M I L r  + Nm(Kar - Vr) = 0 ,  

giving 
NmV,. 

M + N m '  Vcar = 

(b) Consider the transition from n men to (n-1) men on the car. Let V, 
be the velocity of the car when n men are left on it. The total momentum 
of the car with the n men is 

P, = MV, + nmV, . 
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When the nth man jumps off the car with a speed V, relative to the car, 
the momentum of the system consisting of the car and n men is 

Pn-l = MVn-1 + (TI - l)mVn-l + m(Vn-l - V,) . 

Momentum conservation Pn-l = Pn gives 

( M  + nm)Vn = ( M  + nm)V,-l- mV, , 

or 
mVr 

vn-1 = vn + M + n m  ' 
Hence 

S 

m Vr K-8 = vn + c &f + - 2 + 
. 

i=l 

As n = N ,  VN = 0 initially, we have for s = N ,  

N > 1 
n=l 5 M + n r n  M + N m '  

the car in case (b) attains a greater final velocity. 

1115 
A projectile of mass m is shot (at velocity V )  at a target of mass M ,  

with a hole containing a spring of constant k. The target is initially at rest 
and can slide without friction on a horizontal surface (Fig. 1.87) . Find the 
distance Ax that the spring compresses at maximum. 

(CUSPEA ) 

M 
v m  

- a  
7 / 1 1  

Fig. 1.87. 
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Solution: 
At the instant the spring compresses at maximum, the projectile m and 

the target M move with the same velocity V,. Conservation of energy 

rnV2 mK2 MV: l c ( A ~ ) ~  -=-+-+- 
2 2 2 2 '  

and conservation of momentum 

mV = (rn + M)Ve 

give 

A x = /  k(m + M )  V 

1116 

A heavy star of mass M and radius R moves with velocity V through 
a very dilute gas of mass density p .  It pulls particles toward itself by its 
gravitational field and captures all of the atoms that strike its surface. 
Find the drag force on the star with the approximation that the thermal 
velocities of the atoms are negligible relative to  IVI and the interactions of 
atoms with each other can be neglected. 

(CWSPEA) 

V . . . * 

/ 
/ . 1 . 
* . * . 

Fig. 1.88. 

Solution: 
In a frame moving with the star, gas atoms move with velocity -V 

toward the star from infinity. Under the influence of the star's gravitational 
field, the trajectories of the gas atoms are as shown in Fig. 1.88. 
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Let b be the largest impact parameter for which a gas atom can just 
be captured by the star and u the velocity of the gas atom just before 
capturing. Conservation of angular momentum gives 

v R = b V ,  

and conservation of energy gives 

u2 G M  V 2  
2 R 2 ’  

- 

from which we obtain 

The drag force on the star is equal to the momentum absorbed per unit 
time: 

dP r b 2 V A t .  p( -V) F = - = ]im 
dt At-0 A t  

1117 

Consider a collection of point particles of mass m moving in circular 
orbits about a common center each with the same kinetic energy. If the 
only force present is the mutual (Newtonian) gravitational force, what is 
the particle density as a function of radius T from the center in order that 
the density remains constant in time? 
(Assume that the density is spherically symmetric.) 

(Columbia) 
Solution: 

Let T be the kinetic energy of each particle. As it moves in a circular 
orbit of radius T under the action of the mutual gravitational forces, we 
have 

Thus 
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giving 
2Tr 
Gm 

Mfr) = - 

as the total mass of the particles which move in a sphere of radius r at the 
common center. As 

d~ = 4nr2p(r)dr , 
we have 

from which we obtain the particle density 

P T 
m 2nr2Gm2 . 

n(r)  = - = 

1118 
Given a system of N point-masses with pairwise additive central forces, 

use Newton’s second and third laws to  demonstrate that the total angular 
momentum of this system is a constant. Does this calculation depend upon 
what point is chosen as the origin of coordinates? 

(UC, Berkeley) 

Solution: 
The angular momentum of a system of N point-masses about a fixed 

origin is by definition 
L = C r i x p , .  

i 

Newton’s second law Fi = % then gives 

i i j # i  i j#i  

where fij is the force the j t h  mass exerts on the ith mass. For two masses 
i and j ,  Newton’s third law gives 
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since ri - rj is parallel to fij. As the sum xi  CiZi(ri x fij) is due to pairs 
of forces like fij and fji, we have 

dL - = o ,  
dt 

i.e. 
L = constant. 

As the origin in this proof is arbitrary, the conclusion is independent of the 
choice of the origin of coordinates. 

1119 
Two stars with masses M and m separated by a distance d are in circular 

orbits around the stationary center of mass. The stars may be approximated 
by point masses. In a supernova explosion, the star of mass M loses a mass 
AM. The explosion is instantaneous, spherically symmetric, and exerts no 
reaction force on the remnant. It also has no direct effect on the other star. 
Show that the remaining binary system is bound when AM < (M + m)/2. 

( M I T )  

M - A M  

centre of moss 

m V 

‘2 

Fig. 1.89. 

Solution: 
Take the center of mass as the origin of a fixed frame and let r1, r 2  

be the distance from the center of mass to M, m respectively before the 
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explosion. We have 

Problems d Solutions on Mechanics 

The angular velocity w of the circular motion of M satisfies 

G M m  
mr2w2 = - 

G M m  
d2 ' M T ~ w ~  = - 

d2 ' 

or 

After M explodes a mass A M  leaves the star. As the explosion exerts no 
reaction force on the remnant and has no direct effect on the other star, 
the total potential and kinetic energies of the two stars in a frame attached 
to  the new center of mass are 

-G(M - A M f m  
V =  1 

T =  

d 

2 
( M  - A M ) ( T ~ w ) ~  m ( r 2 ~ ) ~  

+ 2  -To , 

where TO is the kinetic energy of the new system in the fixed frame if its 
total mass were concentrated at the center of mass. The momentum of the 
new system in the fixed frame (Fig. 1.89) is 

( M  - A M  + m)v = mr2w - ( M  - A M ) r l w  = r1wAM , 

where v is the velocity of the center of mass of the new system, as the 
momentum of the original system mr2w - Mrlw = 0. Therefore, the total 
energy of the new system in the new center of mass frame is 



Newtonian Mechanics 201 

1 
d 2 2 

G ( M  - A M ) m  + r ( M  - AM)(r lw j2  + - ~ ( T ~ w ) ’  T + V = -  

( A M ) 2  (r1u)2 1 
2 ( M  - A M + m ) 2  - - ( M - A M + m ) .  

G M m  1 1 G m A M  - - -- + - M ( T ~ w ) ~  + - m ( r 2 ~ ) ~  + ~ d 2 2 d 
1 ( A M ) 2 ( w ) 2  

= -- + ____ - 2 ~ ~ ( ~ 1 ~ ) 2  - 

-  AM(^^^)^ - 
2 2(M - A M  + m) 

( A M ) 2  (r1u)2 G M m  G m A M  1 
2d d 2 ( M - A M + m )  

1 1 (AM>2(W42 = --Mdrlw2 + drlw2AM - - A M ( T ~ w ) ~  - 
2 2 2(M - A M  + m )  

M - A M + m  

(2AM - M - m ) ( A M  - M )  . 

Md - 2dAM + T I A M  + 
drlw2 

2(M - A M  + m) 
= -  

The condition for the new two-star system to be bound is T + V < 0, 
i.e. 

2 A M < M + m ,  A M < M ,  

or 
2AM > M + m  , A M  > M . 

As A M  < M ,  the required condition is 

M + m  
2 A M < -  

1120 
The captain of a small boat becalmed in the equatorial doldrums decides 

to resort to the expedience of raising the anchor (m = 200 kg) to the top 
of the mast (s = 20 m). The rest of the boat has a mass of M = 1000 kg. 

(a) Why will the boat begin to move? 
(b) In which direction will it move? 
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(c) How fast will it move? 
( Chicago ) 

Solution: 
(a) The vertical motion of the anchor causes a Coriolis force -2mw x v, 

where v is the velocity of the anchor and w the angular velocity of the 
earth, and so the boat moves. 

(b) As w points to the north and v is vertically upward, the Coriolis 
force points toward the west. Hence the boat will move westward. 

(c) As the total angular momentum of the boat and anchor with respect 
to the center of mass of the earth in an inertial frame is conserved, we have 

( M  + m)r2wo = [ M T ~  + m ( r  + s ) ~ ] w  , 

where wo and w are the angular velocities of the earth and the boat 
respectively, T is the radius of the earth, giving 

W ( M  + m)r2 
wo ( M + m ) r 2 + 2 m r s  ’ 
_ -  N 

or 
-2ms 

N 
w - wo -2ms 

M N 

wo (A4 + m ) ~  + 2ms ( M  + m)r ’ 

Hence the relative velocity of the boat with respect to  the earth is 

-2mswo 
M + m  

u = r (w - W o )  = = -4.9 x 1 0 - ~  m/s 

The negative sign indicates that the boat moves westward. 

1121 
A simple classical model of the COz molecule would be a linear structure 

of three masses with the electrical forces between the ions represented by 
two identical springs of equilibrium length 1 and force constant k, as shown 
in Fig. 1.90. Assume that only motion along the original equilibrium line 
is possible, i.e. ignore rotations. Let m be the mass of 0- and M be the 
mass of C++. 

(a) How many vibrational degrees of freedom does this system have? 
(b) Define suitable coordinates and determine the equation of motion 

of the masses. 
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k - w 2  -k 0 
-k 2 k - M ~ ~  -k 
0 -k k - w 2  

(c) Seek a solution to the equations of motion in which all particles os- 
cillate with a common frequency (normal modes) and calculate the possible 
frequencies. 

(d) Calculate the relative amplitudes of the displacements of the parti- 
cles for each of these modes and describe the nature of the motion for each 
mode. You may use a sketch as part of your description. 

(e) Which modes would you expect to radiate electromagnetically and 
what is the multipole order of each? 

(h4IT) 

= O ,  

m M m 

0- C" 0- 0- C * -  0- 

Fig. 1.90. Fig. 1.91. 
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which has solutions 

w1= c, w2 = \/7nM, (2m + M ) k  and w3 = o .  

Angular frequencies w1 and w2 correspond to possible vibrations, while w3 

corresponds to the translational oscillations of the molecule as a whole. 
(d) Substituting w1 and w2 into the equations for Al ,  A2 and A3, we 

find that relative amplitudes are (9) for w1 and (+) for w2, as 

depicted in Fig. 1.92. 

0- c*’ 0- 
- 0 -  

W1 

0- C- 0- 
e,c. e, 

W 2  

Fig. 1.92. 

(e) The w1 mode will not give rise to radiation because the center of 
the charges remains stationary in the oscillations. The w2 mode can give 
rise to dipole radiation, while quadruple and higher multipole radiations 
are possible for both w2 and w3 modes. 

1122 
Take a very long chain of beads connected by identical springs of spring 

constant K and equilibrium length a, as shown in Fig. 1.93. Each bead is 
free to oscillate along the 5 direction. All beads have mass m except for 
one which has mass mo < m. The mass of the spring is negligibly small. 

(a) Far from the “special” bead, what is the relation between the wave 
vector and the frequency of the resulting oscillation? 

(b) For a wave of wave vector k, what is the reflection probability when 
the wave hits the special bead? 
Hint for part (b): Try a solution of the form 
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- x  

t t t f  t t t t t  
n .  -4 -3  - 2  -1 0 1 2 3 Ir 

Fig. 1.93. 

for n < 0 ,  
2,  = c p a n  for n > 0 ,  

-  ikon + Be-ikan 
Xn - 

where A ,  B ,  and C axe functions of time. 
( Chicago ) 

or 
2K 
m 

fAJ2 = -[1 -cos(ka)] 

(b) Try a solution of the form 

for n 5 0 ,  

for n 2 0 .  

- (Aeikan + Be-ikan 
X n  - 
2n = c e i ( k a n - w t )  

For 7t = 0, the above implies C = A + B .  Substituting the solution into the 
equation of the motion of the n = 0 bead, 

we find 
2 
mo ( A  + B )  = 2(A + B )  - ( A  + +aka - Ae-ika - Beika , K 
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or 
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Hence the reflection probability is 

1123 

Three bodies of equal mass m and indicated by i = 1,2,3 are constrained 
to perform small oscillations along different coplanar axes forming 120' 
angles at their common intersection, as shown in Fig. 1.94. Identical 
coupling springs hold these bodies near equilibrium positions which are 
at a distance 1 from the intersection on each axis, that is, the equilibrium 
length of each spring is &l. The following questions can be answered 
without resorting to general analytic procedures. 

Fig. 1.94. 

(a) Show that the equations of motion of the three bodies are represented 
by the coupled system 
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where zi(t) + I indicates their respective distances from the intersection. 
(Specifically, both K and k equal 3/4 of each spring constant.) 

(b) Verify that one normal mode is totally symmetric: 

Z l ( t )  = 5 2 ( t )  = 2 3 ( t )  , 
and determine its frequency. 

mine their frequency. 

orthogonal degenerate normal modes. 

sent orthogonal degenerate normal modes. 

(c) Show that the remaining normal modes are degenerate and deter- 

(d) Find a pair of real solutions { ~ l ( t ) , ~ 2 ( t ) , ~ 3 ( t ) }  that represent 

(e) Find an alternative pair of complex conjugate solutions that repre- 

(Chicago) 

Solution: 
(a) Let the constant of each spring be 11 and consider particles i and j 

which are located at zi and xj from their respective equilibrium positions. 
The stretch of the spring between the two particles is (xi + x3) cos30°, so 
the potential energy of the system is 

3rl u = -[(q + 2# + ( 2 2  + .3)2 + ( 2 3  + 21)2] . 8 
The force acting on the ith particle is then 

-E a2i - - -3 4 (2i+p) , 

giving its equation of motion as 

TTL& = - K z ~  - k(Zl+ 22  + 23) 
with K = k =  2. 
form 

(b) If z1 = 5 2  = 2 3 ,  all the three equations reduce to the uncoupled 

mi$ = - (K  + 3 k ) Z i  . 

xi = acos(wt + ‘p) 

The solution is 
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with 

(c) The remaining two normal modes are orthogonal to the above 
symmetric mode. They satisfy the condition 

z 1 + 2 2 + 2 3 = 0 ,  

for which the equations of motion reduce to the uncoupled form 

mxi = -Kx, . 
Setting zi = bi cos(w’t + cp’), we have 

The frequency is the same for both modes, and hence they are degenerate. 
(d) The two orthogonal degenerate normal modes have amplitudes b l ,  

b2, b3 satisfying xi 6i = 0. Hence 

61 = 0, 

bl = C, 

6 2  = -b3 = c , 
b2 = b3 = -- 

2 
C 

give a pair of real solutions, where c is an arbitrary real number. 
(e) Alternatively, allowing complex amplitudes, 

bl = d ,  b2 =de*?, b3 = &F* , 

where d is a real number, give a pair of orthogonal degenerate normal mode 
solutions. 

1124 
Three identical objects, each of mass m, are connected by springs of 

spring constant K ,  as shown in Fig. 1.95. The motion is confined to  one 
dimension. 

At t = 0, the masses are at rest at their equilibrium positions. Mass 
A is then subjected to an external timedependent driving force F ( t )  = 
fcos(wt), t > 0. Calculate the motion of mass G. 

(Princeton) 
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F 

0 

209 

----TsiF--T)-il * x  

Fig. 1.95. 

Solution: 

length of each spring. The equations of motion are 
Let X A ,  X B ,  xc he the coordinates of the three masses and a the relaxed 

The above set of equations can be written as 

or 

fcos(wt) = mgl , (1) 
fcos(wt) - 2aK = m& + Kg2 , (2) 

f cos(wt) = my3 + 3Ky3 , (3) 

with YI = X A  + X B  -t x c ,  g2 = X A  - x c ,  y3 = X A  - 2 x ~  + x c .  It can be 
seen that y1, y2 and 313 are the three normal coordinates of this vibrational 
system. The initial conditions are that at t = 0, 

or 
y1 = 3a, 312 = -2a, y3 = 0, k = & = 3i3 = 0 . 

Equation (1) can be integrated, with the use of initial conditions, to give 

f 
mu= 91 = -[1 - cos(wt)] + 3a . 
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To solve (2 ) ,  we try a particular solution 

~2 = A2 C O S ( ~ ~ )  + Ba 

and obtain A2 = ~k2, Bz = -2a. The general solution is 

f cos(wt) 
Yz = - 2a + Cz cos(w2t) + 0 2  sin(wzt) , 

K - mw2 

where w2 = 6, Initial conditions then give 

D 2 = 0 .  f 
K - w 2 ’  

c2 = - 

To solve (3) ,  we try a particular solution 

y3 = A ~ c o s ( ~ )  

and obtain A3 = f / ( 3 K  - mu2).  The general solution is 

f cos(wt) + C3 cos(w3t) + 0 3  sin(&) , 
3K - w2 Y3 = 

where w3 = E. Initial conditions then give 

D3=O. f 
c3 = - 

3K - mu2’ 

Therefore the solutions are as follows: 

f 
w 2  

f 
K - W 2  

y1 = -[l -- cos(wt)] + 3a , 

[cos(wt) - cos(wzt)] - 2a , Y2 = 

y3 = -- [cos(wt) - cos(wst)] . 
3K - w2 

The motion of C is a linear combination of y1, yz and y3: 
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a +  - [l - cos(wt)] xc = - - - + 13 = 2 Yl 92 
3 2 6  3mw2 

’ [cos(wt) - cos(wat)] 
+ 2m(w,2 - w2) 

’ [cos(wt) - cos(wst)] . 
+ Sm(w32 - w2) 

Note that w2 and w3 are the normal frequencies of the system. 

1125 
A model of benzene ring useful for some purposes is a wire ring strung 

with 6 frictionless beads, with springs taut between the beads, as shown 
in Fig. 1.96. The beads each has mass m and the springs all have spring 
constant K. The masses have been numbered for the grader’s convenience. 
The ring is fixed in space. 

(a) Calculate, or write down by intuition, the eigenfrequencies of the 
normal modes, indicating any degeneracies. In Fig. 1.97, picture each mode 
by drawing an arrow near each mass indicating the direction of motion and 
shading those masses at rest. 

(b) With what frequencies can the center of mass oscillate? 
(c) Which modes could be related to the modes of the red benzene 

molecule? 
Hint: Much algebra can be eliminated by considering the symmetries of the 
problem. 

(Princeton) 

0 5 6  

Fig. 1.96. Fig. 1.97. 
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Solution: 

(a) Let Qn be the displacement of the nth bead. Its equation of motion 
is 

Setting G,, = Aneiwt, we obtain 

or 

where ,, 

For the set of linear homogeneous equations to have a non-zero solution, 
the following determinant must vanish, i.e. 

E l O O O l  
l & l O O O  
0 1 & 1 0 0  
O O l E l O  
O O O l E 1  
l O O O l e  

= o ,  

or 
E6 - 6E4 + 9E2 - 4 = (& + 1)2(& - 1)2(& + 2)(€ - 2) = 0 . 

Thus the solutions are 

&1 = 2, &2 = -2, E 3  = 1, 
&4 = 1, &5 = -1, &6 = -1 . 

The corresponding eigenfrequencies are given by 

3K 
m 

w; = -, 4K w 2  - - l - m l  w ; = o ,  

3K & ! - ,  K + - .  K 
m m 

W: = -, 
m 
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It can be seen that modes 3 and 4 as well as modes 5 and 6 are degenerate. 
Substituting €1, €2,. . . , €6 one by one into the set of equations A,-1 +&An+ 
An+1 - - 0, we can find the ratios of amplitudes for each normal mode. The 
results are depicted in Fig. 1.98. The displacements of the six beads have 
the same magnitude in modes 1 ,2 ,3 ,  and 5 except in modes 3 and 5 the first 
and fourth beads are stationary. Their directions are shown in the figure, 
Mode 2 corresponds to rotation of the system as a whole. In mode 4, the 
displacements of the second bead and the fifth bead are twice as large as 
those of the others, and in mode 6, the displacements of the third bead 
and the sixth bead are also twice as large as those of the others. These 
larger displacements are indicated by two arrows in the same direction in 
the figures. 

Fig. 1.98. 

(b) It is seen from Fig. 1.98 that only in modes 5 and 6 can the center 

(c) As the center of mass of a real benzene molecule cannot oscillate, 
of mass oscillate with a frequency m. 
only modes 1, 2, 3, and 4 can be related to the real benzene molecule. 

1126 
Consider a classical system of point masses rn, with position vectors ri, 

(a) Consider the quantity xi miii . ri, assumed to remain finite at all 
each experiencing a net applied force Fi. 

times, and prove the virial theorem 
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1 T = --IF*. ri , 
i 

2 

where T is the total kinetic energy of the system and the bar denotes time 
average. 

(b) In the case of a single particle acted on by a central inverse-square 
law force, show that 

where V is the potential energy. 
(SUNY,  Buffalo) 

Solution: 

(a) Let Q(t)  = xi miri . ri. We have 

i i 

i i 

The time average of Q(t) is 

i.e. 

where T is the period if the motions are periodic with the same period, or 
T 4 00 otherwise. In both cases, the left-hand side of the equation is equal 
to zero and we have 

i 

as stated. 
(b) For a single particle acted on by a central inverse-square law force, 
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where C is a constant. The virial theorem then gives 

1127 

Three masses ml,m2 and m3, placed at the corners of an equilateral 
triangle of side s, attract each other according to Newton's law of gravita- 
tion. Determine the rotational motion which leaves the relative separation 
of each mass unchanged. 
Hint: Write down the force in c.m. system on one of the particles. 

( Wisconsin ) 

Y 

Fig. 1.99. 

Solution: 
In the Cartesian frame shown in Fig. 1.99, the three mass ml,  m2, m3 

have coordinates (O,O), (s, 0) and (:, 9) respectively, The position of the 
center of mass C is 

Now consider the forces acting on ml. There are two attractive forces 
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due to m2 and m3 respectively. Their resultant is 

As f1 is parallel to ro and both originate from the same point 0, f1 passes 
through the center of mass C. Thus ml  is acted upon by a central force 
with center at C and hence m l  moves in a circle about the center of mass 
C. The radius of this circular orbit is 

The linear velocity of ml  is u1 given by 2 = If1 1, or 

G m ~ + m ~ + m 2 m 3  
s ( m l + m 2 + m 3  

Ri 2 - -If11 = - 
ml 1 -  

By permutation of the indices, the above result applies also to m2 and m3. 
Hence the rotational motion which leaves the separation of each pair of 
masses unchanged is a circular motion of period 

which is the same for all three masses. 

1128 
Two non-relativistic particles of equal energy and equal mass as shown 

in Fig. 1.100 collide almost head-on. In a coordinate frame (the center 
of mass frame) moving with velocity V, the particles appear to collide 
head-on. 

(a) Find V, the velocity of the center of mass frame. 
(b) Compare the total energy in the center of mass system to the original 

total energy. 
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Y 
t 

Fig. 1.100. 

Express your answers in terms of the velocity u and the collision angle 

( Wisconsin ) 
80.  

Solution: 
Use the laboratory frame as shown in Fig. 1.100 and take the instant of 

the collision to be t = 0. The position vectors of ml and rnz at t < 0 are 

rl = uti , 
r2 = -ut(cosdd + sindaj) . 

Then the position vector of the center of mass is 

1 
2 

= - ~ t [ ( i  - cosd0)i - sindaj] 

as r n ~  = 7122 = m, say. 

is 
(a) The velocity of the center of mass, i.e. of the center of mass frame, 

U V = r - -[(l - cos80)i - sindaj] . ,- 2 

(b) In the center of mass frame, the velocity of ml is 

U V: = il - r, = ui - - [( 1 - cos do)i - sin daj] 
2 

U 
= -[(I + cosdo)i + sindOj] , 

2 

and the velocity of m2 is 
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Vl, = r2 - r, = -u[cos 8oi + sin &j] 

= - - [ ( I  + cos8o)i + sin8ojl . 

The total energy of ml and m2 is then 

u 
2 

on Mechanics 

- - [ ( l  U - cos8o)i - sin8ojl 
2 

As the original total energy is 

m1u2 m2u2 
2 2 

E = -  +- = m u 2 ,  

the ratio of the two energies is 

1129 

A rocket is projected straight up and explodes into three equally massive 
fragments just as it reaches the top of its flight (Fig. 1.101). One of the 
fragments is observed to come straight down in a time t l ,  while the other 
two land at  a time t 2 ,  after the burst. Find the height h(t1, tz)  at which 
the fragmentation occurred. 

( Wisconsin) 

v3yv2 “1 Y i 
Fig. 1.101. 

Sold ion: 

top of its flight. Conservation of momentum gives, after the burst, 
The velocity and momentum of the rocket are zero when it reaches the 
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m l v l +  m2v2 + m3v3 = 0 . 
As 

m1 = m2 = m3, v 1 +  v2 + v3 = o 

219 

As the second and third fragments land at the same time, the vertical 
components of v2 and v3 are the same. As v1 is vertically downward the 
vertical components of v2 and v3 are each - w 1 / 2 .  Hence for the first and 
second fragments we have 

giving 

211 = 

h =  

1130 
A satellite of mass m moves in a circular orbit of radius R with speed v 

about the earth. It abruptly absorbs a small mass 6m which was stationary 
prior to the collision. Find the change in the total energy of the satellite 
and, assuming the new orbit is roughly circular, find the radius of the new 
orbit. 

( Wisconsin) 

Solution: 

so that 
Before picking up the small mass, the satellite moves in a circular orbit 

mu2 GMm 
R R2 ' 

giving Rv2 = GM, where M is the mass of the earth. Hence its total energy 

-=- 

is 
1 GMm 1 E = - m v  --- - --mu2. 
2 R 2 
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After absorbing the stationary small mass 6m, the speed of the satellite 
changes to (considering the new orbit as roughly circular, although it is 
actually elliptic) 

21' = - mu 
m+6m ' 

and its total energy becomes 

1 1 m2v2 
2 2m+6m Et = --( m + 6m)vt2 = 

Hence the energy loss due to the collision is 

El - E = -mv 2(1--)=--mv2__ m 1 6m 
2 m+Sm 2 m+6m 

1 
2 

M -v26m. 

If the new radius is R' we also have 

R'vI2 = GM = Rv2 , 

giving 

1131 

For the system of 2 identical masses and massless springs shown in 
Fig. 1.102, calculate the period of oscillation if the masses are released 
from the initial symmetrical configuration shown. 

( Wisconsin) 

Fig. 1.102. 
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Soh tion: 

Consider one of them and write down the equation of motion 
Due to symmetry, the oscillations of the two masses are the same. 

m? = -Ks - K‘(Z + z) = - (K + 2K’)s , 

where s is the displacement from the respective equilibrium position. Then 
the angular frequency of oscillation is 

and the period of oscillation is 

Note that generally speaking, there are two modes of linear vibration for this 
system corresponding to two normal modes. But the symmetrical initial 
condition determines that only one mode is excited. 

1132 
Consider the earth-moon system and for simplicity assume that any 

interaction with other objects can be ignored. The moon, which moves 
around the earth more slowly than the earth rotates, creates tides on the 
earth. A similar situation exists on Mars, but with the difference that one 
of its moons revolves about Mars faster than the planet rotates. Show that 
one consequence of tidal friction is that in one system the moon-planet 
distance is increasing, and in the other it is decreasing. In which one is it 
decreasing? 

( Wisconsin) 

Solution: 
For the earth-moon system, the frictional force caused by the tides 

slows down the rotational speed of the earth. However, the total angular 
momentum of the earth-moon system is conserved because the interaction 
between this system and other objects can be ignored. The decrease in the 
earth’s rotational angular momentum will lead to an increase in the angular 
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momentum of the moon about the earth (to be exact, about the center of 
mass of the system). The angular momentum of the moon is J = mR2w. 
As 

GMm mRw2 = - R2 ’ 
we have 

Here we consider the center of the earth to be approximately fixed, so 
that R is the earth-moon distance. Then as J increases, R will increase 
also. Thus for the earth-moon system, the effect of tides is to increase the 
distance between the moon and the earth. 

For the Mars-moon system, the moon revolves about Mars faster than 
the latter rotates, so the frictional force caused by tides will speed up 
the rotation of Mars, whose rotational angular momentum consequently 
increases. As the total angular momentum is conserved, the angular 
momentum of the moon will decrease. The argument abovr: then shows 
that the distance between Mars and its moon will decrease. 

1133 

Two mass points, each of mass m, are at rest on a frictionless horizontal 
surface. They are connected by a spring of equilibrium length 1 and constant 
K .  An impulse I is given at time t = 0 to one of the mass points in a 
direction perpendicular to  the spring. Assume that the spring always lines 
up along the connecting length I ,  i.e. there is no bending. 

(a) After a time t ,  what will be the total energy and total momentum 

(b) What will be the velocity of the center of mass (including direction) 

(c) What will be the maximum separation between the two mass points 

(d) What will be the maximum instantaneous speed achieved by either 

(UC, Berkeley) 

of the two mass points? 

and the total angular momentum about the center of mass? 

during the motion that follows the impulse? 

particle? Explain your answer. 
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Solution: 
(a) On account of the conservation of momentum and of mechanical 

energy, the total momentum and total energy of the two mass points at 
time t are the same as those at time t = 0 just after the impulse is applied: 

(b) The system has total mass 2m, total momentum I, so that the center 

I 
2m 

of mass has velocity 

v,=-. 

Just after the impulse is given, the angular momentum of the system about 
the center of mass is L = 4. By the conservation of angular momentum in 
the center of mass frame, L is the angular momentum about the center of 
mass at  all later times. 

(c )  Let l~ denote the maximum separation required. Conservation of 
angular momentum and of mechanical energy 

give 
2mK& - 4mKllL + (2mK12 - 12)& + 1212 = 0 , 

whose positive real root is the maximum distance between the two mass 
points during the motion that follows the impulse. 

(d) Let x denote the distance between the two masses. Conservation of 
mechanical energy gives 

or 
m 1 - ( x ~ + ~  + 5') + - K ( x  - 1)' = constant , 
4 2 
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shows that when x = 1, the kinetic energy of the two mass points, given 
by the first term on the left-hand side, is maximum. This is the case at 
t = 0. Also, at t = 0, only the mass that had been given the impulse has a 
velocity while the other mass is still instantaneously at rest. Thus the first 
mass achieves a maximum speed 

I 
m 

V M  = - 

at time t = 0. 
The condition that x = 1 can be satisfied again from time to time. 

However, as the speed of the first mass will not be zero, the second mass 
cannot achieve this maximum speed. Therefore the maximum speed that 
can be achieved by the second mass is less than v,. 

1134 
A chain with mass/length = u hanging vertically from one end, where 

an upward force F is applied to  it, is lowered onto a table as shown in 
Fig. 1.103. Find the equation of motion for h, the height of the end above 
the table ( h  is the length of chain hanging freely). 

( Wisconsin) 

F 
t 

Fig. 1.103. 

Solution: 
As this problem involves variable mass it is more convenient to  work 

with momentum. Consider the change of momentum of the chain during a 
time interval t to t +At. If h and v are respectively the height and velocity 
of the freely-hanging portion of the chain at time t ,  its momentum is phv 
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at t and p ( h  - Ah)(w + Aw) at t + At (see Fig. 1.104). As a portion Ah of 
the chain has reached the table and transferred a momentum M pAhw to 
the latter during the interval, the momentum theorem gives 

p ( h  - A ~ ) ( w  + Aw) + pAhw - phv = (phg - F)At , 

or, retaining only the first-order terms, 

phAv = (phg - F)At . 
With At + 0, the above becomes 

phir = phg - F . 

As w = -h, we have the equation of motion 

F 
f F 

t t * A t  

Fig. 1.104. 

1135 
Use the rocket equation to find the rocket residual mass m (in terms of 

the initial mass) at which the momentum of the rocket is a maximum, for 
a rocket of mass m starting at rest in free space. The exhaust velocity is a 
constant WO. 

( Wisconsin) 

Solution: 
The equation of motion for a rocket, velocity w, in free space is 

mdw -vodm -=- 
dt dt ’ 
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i.e. 

Integrating, we obtain 

Y = -VO In 

where m o  is the rocket mass at firing. The momentum of the rocket is 

For it to be a maximum, we require 

- = -voln (2)  - uo = 0 .  
d P  
d m  

Hence the rocket has maximum momentum when its residual mass is 

1136 
A rocket is fired straight up with no initial velocity. It is propelled by 

ejection of mass with a constant velocity of ejection u relative to the rocket 
and at a constant rate so determined that the initial acceleration is zero. 
Assuming constant acceleration due to  gravity, 

(a) find the acceleration of the rocket as a function of time; 
(b) show how you would find the height of the rocket as a function of 

(It is not necessary to  do the integrals.) 
time. 

( Wisconsin) 

Solution: 
(a) Let v be the velocity of the rocket. The equation of motion is 

m d u  udm 
dt  d t  

- m g .  - - - -~ 

As d m l d t  = constant and m = mo,  d v l d t  = 0 at t = 0, the above gives 

dm mog 
d t  U 
_ -  _- - 
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at any time t after firing. Integrating we obtain 

The equation of motion now becomes 

or 
dv - g2t 
dt u - gt ' 

which expresses the acceleration of the rocket as a function of time. 
(b) The velocity at time t is 

dt' = -gt + uln 

Further integration gives the height of the rocket as a function of time: 

h = l  (-gt'+uln- 21 - gt' dt' . 

1137 

A bucket of mass M (when empty) initially at rest and containing a 
mass of water is being pulled up a well by a rope exerting a steady force P. 
The water is leaking out of the bucket at a steady rate such that the bucket 
is empty after a time T. Find the velocity of the bucket at the instant it 
becomes empty. 

( Wisconsin ) 

Solution: 
Let the total mass of the bucket and water be MI. Then 

mt 
T M ' = M + m - - - ,  
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where m is the initial mass of the water. As the leaking water has zero 
velocity relative to the bucket, the equation of motion is 

or 

P - M‘g d t =  ( P m - 9 ) d t  M’ M + m - T t  
dv = 

The velocity of the bucket at the instant it becomes empty is 

Pdt P T  M + m  
M + m - F t  - g ~ =  -1n m (T)  - g T .  

1138 

A rocket ship with mass MO and loaded with fuel of mass mo takes off 
vertically in a uniform gravitational field as shown in Fig. 1.105. It ejects 
fuel with velocity UO with respect to the rocket ship. The fuel is completely 
ejected during a time TO. 

(a) Find the equation of motion of the rocket in terms of dM/dt ,  UO, 9,  

(b) What is the velocity of the vehicle at the instant to  when all the fuel 
and M, where M is the mass of the rocket at time t. 

has been ejected, in terms of Mo, mo, g and to? 

(MITI 

V 

t 

Fig. 1.105. 
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Solution: 
(a) Consider a rocket, having mass M and velocity V ,  in time interval 

At ejecting a mass AM at a velocity UO relative to the rocket and gaining 
an additional velocity OV. Taking the vertical upward direction as positive, 
we have by the momentum theorem 

(M - AM)(V + A V )  + (V + Uo)AM - MV = - M g A t ,  

i.e. 
AM AV 

At At -UO- - Mg , M -  = 

or, in the limit At + 0, 

dV dM 
dt dt 

M -  = -Vo- - Mg , 

(b) The equation can be rewritten as 

dM 
M dV = -Uo- - gdt , 

Integrating we obtain 

V = -Uo In M - gt + K . 
As M = Mo + mo, V = 0 at t = 0, 

K = UO ln( MO + ma) . 

Hence when M = MO at t = to, we have 

Mo + mo v = ~ 0 1 n  ( Mo ) - gto . 

1139 
A droplet nucleates in uniform quiescent fog. It then falls, sweeping 

up the fog which lies in its path. Assume that it retains all the fog 
which it collects, that it remains spherical and experiences no viscous drag. 
Asymptotically, it falls with a uniform acceleration a: 

V ( t )  t at, for large t . 
Find a. 



230 P r o b l e m  €9 Solutions on Mechanics 

Solution: 
Let PI, p2 be the densities of the droplet and fog respectively, R( t )  

be the radius and V ( t )  the velocity of the droplet, and assume that the 
buoyancy of the air can be neglected. Making use of the "rocket equation" 
in Problem 1138, with 

and the replacement 

v 4 -v, 
dM -+--, d M  

dt dt 
we have 

4 

or 
dV dR 
dt dt R-- + 3 V -  = R g .  

The droplet sweeps out a cylinder rR2V in unit time so the rate of change 
of its mass m is 

giving 
v = 4 q R ,  

where q = p1/p2. We thus have 

4qRR + 12qR2 = Rg . 

As for large t ,  V = at or R = a we set R = bt2+c, where b, c are constants, 
47J' 

and substitute it in the differential equation. Equating the coefficients of 
t2 and to separately on the two sides of the equation, we have 

For a consistent solution, we take 
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Hence V = 4qR = 8qbt = f t ,  i.e. the asymptotic acceleration is 

1140 
An hour glass sits on a scale. Initially all the sand (mass m) in the glass 

(mass M) is held in the upper reservoir. At t = 0, the sand is released. If 
it exits the upper reservoir at a constant rate dmldt = A, draw (and label 
quantitatively) a graph showing the reading of the scale at all times t > 0. 

(MITI 

Solution: 
Suppose all the sand falls to the bottom of the lower reservoir so that 

for all grains the falling height is h. A grain falling through this distance 
will acquire a velocity V = when it reaches the bottom and the whole 
trip takes a time tl = 

For the reading of the scale, consider the following four periods of time: 
Period 1: The time t = 0 when the sand is released, to the time tl  when 

the sand begins to arrive at the bottom of the lower reservoir. The reading 
of the scale in this period is 

W 1 = ( M + m ) g - A t g ,  O < t < t l ,  

where t l  = m, 
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Period 2: The time tl when the sand begins to arrive at the bottom, to 
the time t 2  when all the sand has left the upper reservoir. In this period, 
the force on the scale consists of two parts: weight of the sand as given by 
the above equation with t = t l  and a part due to the impulse of the sand 
on the bottom of the reservoir with magnitude 

dm 
dt 

v- =Am. 

Hence the scale reads 

where t 2  = m/A. 

the time t 3  when all sand has reached the bottom. The scale reads 
Period 3: The time t 2  when all the sand has left the upper reservoir to 

w 3  = w 2  + X(t - t 2 ) g ,  t 2  < t < t 3  , 

where t 3  = t 2  + t l .  

reading of the scale is constant at 
Period 4: The time after all the sand has reached the bottom. The 

w4 = ( M + m ) g ,  t > t 3 .  

The reading of the scale is depicted in Fig. 1.107. 

1141 
A rocket of instantaneous mass m achieves a constant thrust F by 

emitting propellant at a low rate with high relative speed. The rocket 
directs its thrust always along the direction of its instantaneous velocity u. 
By so doing it moves from an initial radius r1 (measured from the center of 
the earth) to a larger radius ~ 2 ,  remaining in the same plane and following 
a path roughly like a spiral. The starting radius TI  is close to the earth’s 
radius TO,  where the gravitational acceleration is g ,  while r2 >> T O .  The 
angular coordinate from the earth’s center is 4. 

the motion? Discuss. 
(a) Is the angular momentum of the rocket per unit mass a constant of 
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(b) In terms of T ,  T O ,  i ,  and 4, derive expressions for the instantaneous 

(c) Derive expressions for i: and d in terms of the quantities listed above. 
(Princeton ) 

velocity u and the gravitational acceleration g .  

Solution: 
(a) Use polar coordinates ( T , + )  as given. The angular momentum of 

the rocket per unit mass is j = T". Although gravity is a central force, 
the rocket thrust is not. Hence the angular momentum is not a conserved 
quantity. 

(b) The instantaneous velocity of the rocket is 

u = urer + uver = ie, + r+ev 

with magnitude 

The gravitational acceleration g is 

GM g = -  
T2 

As go = q, it can be written as 
T O  

(c) The equation of the motion of the rocket is 

du 
dt 

f = m - ,  

where f = F + mg, rn = m(t),  terms involving % having been neglected. 
As the thrust F is always parallel to u, its components are F, = F:,  
Fv = F?. The gravitational acceleration is g = -ge,. Hence the equation 
of motion has component equations 

m(i: - rd2)  = f,. = FT mgor; 
J--F' 

J-' 
F T ~  

m(r4 + 214) = j b  = 

from which the expressions for i: and 5 can be obtained. 
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1142 

A rocket ship far from any gravitational field has a source of energy E 
on board. The ship has initial mass ml and final mass m2. 

(a) Find the maximum velocity v that the ship can achieve starting from 
rest. E, ml, and m2 are fixed, but the exhaust velocity w (relative to the 
ship) may vary as a function of the instantaneous mass m of the ship. 

(b) What is the maximum velocity v that can be obtained if the exhaust 
velocity w is constrained to be constant? 

(Princeton) 

Solution: 

(Problem 1138) 
(a) Integrating the equation of motion for the rocket ship 

dv dm m- = -w(m)- , 
dt d t  

and taking account of the initial conditions v = 0, m = ml at t = 0,  we 
have 

m 

Hence the maximum velocity is 

(b) If w is constant, the maximum velocity is 

1143 
A spherical dust particle falls through a water mist cloud of uniform 

density such that the rate of accretion onto the droplet is proportional to 
the volume of the mist cloud swept out by the droplet per unit time. If the 
droplet starts from rest in the cloud, find the value of the acceleration of 
the drop for large times. 

(Princeton ) 
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Solution: 
Suppose the spherical dust particle initially has mass MO and radius &. 

Take the initial position of the dust particle as the origin and the z-axis 
along the downward vertical. Let M ( t )  and R( t )  be the mass and radius of 
the droplet at time t respectively. Then 

J 

where p is the density of the water mist, giving 

dR 
dt dt - p 4 n R 2 - .  dM -- 

The droplet has a cross section r R 2  and sweeps out a cylinder of volume 
nR2X in unit time, where X is its velocity. As the rate of accretion is 
proportional to this volume, we have 

dM - = arR2X , 
dt 

a being a positive constant. Hence 

4P * X = - R .  
a 

The momentum theorem gives 

M ( t  + dt)x(t + dt)  - M ( t ) i ( t )  = Mgdt . 
Using Taylor's theorem to expand M ( t  + dt )  and x(t + d t )  and retaining 
only the lowest-order terms, we obtain 

dM 
dt 

x -  + MX = M g  . 

For large t ,  M ( t )  M $rR3p,  dMldt M 3 M R / R ,  and the above becomes 

R + R = - .  3k2 ag 
4P 

For a particular solution valid for large t ,  setting 

R( t )  = at2 , 
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where a is a constant, in the above we obtain 

Thus for large t ,  

Hence the acceleration for large times is g/7. 

1144 

Suppose a spacecraft of mass T T ~ Q  and cross-sectional area A is coasting 
with velocity vo when it encounters a stationary dust cloud of density p 
as shown in Fig. 1.108. If the dust sticks to the spacecraft, solve for the 
subsequent motion of the spacecraft. Assume A is constant over time. 

(Princeton) 

Fig. 1.108. 

Solution: 
Suppose the dust olLdrs no resistance to the spacecra 

law 

= o ,  d(mv)  
dt 

or 
dv d m  
dt dt 

m - + v - = O ,  

. Newtor. j second 

implies that mu = movo. Then as 

d m  - - - PAV , 
dt 

d m  = pvAdt, 
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we have 
dv pAdt - + - = o .  
v3 mow0 

1 2pAt 
v2 movo 

Integrating, we obtain 

+ C ,  - - _ -  

where C is a constant. If we measure time from the instant the spacecraft 
first encounters the dust, then v = vo at t = 0, giving C = vo2. Hence the 
motion of the spacecraft can be described by 

1 1 ZpAt - = - + -  
v2 vz movo a 

3. DYNAMICS OF RIGID BODIES (1145-1223) 

1145 
Two circular metal disks have the same mass M and the same thickness 

t. Disk 1 has a uniform density p1 which is less than p z ,  the uniform density 
of disk 2. Which disk, if either, has the larger moment of inertia? 

( Wisconsin) 

Solution: 
Let the radii of the disks be R1 and R2 respectively. 
Since the disks have the same mass and thickness, we have plR: = p 2 g ,  

or 

The moments of inertia of the disks are 

AS p1 < pz, 11 > 12. Hence disk 1 has the larger moment of inertia. 
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1146 
Given that the moment of inertia of a cube about an axis that passes 

through the center of mass and the center of one face is Io, find the moment 
of inertia about an axis through the center of mass and one corner of the 
cube. 

(UC, Berkeley) 

Solution: 

Use Cartesian coordinates with origin at the center of mass and the axes 
through the centers of the three pairs of faces of the cube. We have 

I, ,  = I,, = I , ,  = I0 , 
I,, = I y z  = I,, = 0 , 

I = P I , ,  + $Iyy  + u21zz - 2puI,+ - 2VXIZ, - 2XpI,, 

The moment of inertia about an axis having direction cosines A, p, u is 

= ( A 2  + p2 + 2 ) I o  . 

To find the direction cosines of a radius vector r from the origin to one 
corner of the cube, without loss of generality, we can just consider the 
corner with its 5, y, z coordinates all positive. Then 

r = a i + a j + a k ,  

where we have taken 2a as the length of a side of the cube. As Irl = &a 
we have 

so that 
I = I0 

1147 

A thin disk of radius R and mass M lying in the xy-plane has a point 
mass m = 5M/4 attached on its edge (as shown in Fig. 1.109). The moment 
of inertia of the disk about its center of mass is (the z-axis is out of the 
paper) 
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I=-[ 1 0 0  
MR2 0 1 0 

0 0 2  

Fig. 1.109. 

(a) Find the moment of inertia tensor of the combination of disk and 

(b) Find the principal moments and the principal axes about point A. 
(c) The disk is constrained to rotate about the y-axis with angular 

velocity w by pivots at A and B. Describe the angular momentum about A 
as a function of time and find the vector force applied at B (ignore gravity). 

(UC, Berkeley) 

point mass about point A in the coordinate system shown. 

Solution: 
(a) The contribution of a mass element Am at radius vector r = ($1, x 2 ,  

$3) to the moments and products of inertia about the origin is 

Ii j  = Am(r26ij - 2.z.) 2 3  , 

where Liij = 1 if i = j ,  6i j  = 0 if i # j. Thus the moment of inertia tensor 
of the point mass about A is 

1 -1 0 ~ M R ~  -(-; 4 ; :) 
The moment of inertia tensor of the disk about A ,  according to the 

theorem of parallel axes, is 
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MR2 - 

Hence the moment of inertia tensor of the disk and point mass about A 
is 

l O - 7  -5 0 
-5  6 - 7  0 = O ,  

4 o  0 1 6 - 7  

10 -5 0 MR2 

{ 16 - y)(y2 - 167 + 35) = 0 

The solutions are 

~ 1 = 1 6 ,  7 2 = 8 - a ,  73=8+@. 

Hence the three principal moments of inertia about A are 

I1 = 4MR2, I2 = ( 2 - - y )  MR2, 13 = (2-k F) M R 2 .  

The direction cosines (A, p,  u )  of the principal axes corresponding to Il are 
given by 

i.e. 

- 6 X - 5 ~ = 0 ,  

-5x - l o p  = 0 , 
o u = o .  

The solution is X = p = 0, u = arbitrary. As 

by definition, the direction cosines are 

X = O ,  p = o ,  u = l  
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The principal axes for I2 and 13 have direction cosines given by 

2 f a  -5 ( -6" - 2 f a  
0 

i.e. 

(2 f *))A - 5p = 0 , 
- 5 A + ( - 2 f d % ) p = O ,  

(8 f &)v = 0 , 
where the top sign is for I2 and the bottom sign, 13. 

The solutions are 

, u = o .  
X - 2 f e  0.677 
P 5 = { -1.477 - =  

Then as X2 +p2  + v 2  = X2 +p2  = 1, we have 

x2 - 4  0.828 
lCll = (2  + ') = { 0.561 ' 

0.561 
0.828 

We also require that the principal axes for I2 and 13 be orthogonal: 

We therefore take the principal axes as 

(0,0,1) 9 

(0.561,0.828,0) , 
(-0.828,0.561,0) . 

(c) The moment of inertia tensor I of the system of disk and mass 
point about the origin A found in (a) refers to a coordinate frame (5, y, z) 
attached to the disk. In this frame the angular momentum of the system 
rotating with angular velocity o is 

L = I w ,  
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or 
M R ~ W  (:!)=?(-: 10 -5  6 R)(i)=h(-i)  

0 16 

Consider a laboratory frame (d,y’,z’) having the same y-axis as the 
rotating frame (z,y,z) such that the respective axes coincide at t = 0, 
as shown in Fig. 1.110. 

Y : Y  

Fig. 1.110. 

As 

x‘ = xcos(wt) + zsin(wt), 
z‘ = -xsin(wt) + zcos(wt) , 

y‘ = y , 

we can define a transformation tensor 

cos(wt) 0 sin(wt) 

-sin(wt) 0 cos(wt) 
s = (  0 1 

so that a vector V is transformed according to 

V ‘ = S V .  

Applying the above to the angular momentum vector, we find the angular 
momentum about A in the laboratory frame: 

( ; ) = S L = 7 (  MR2w -5 cos(wt) 6 ) ,  
5 sin(wt) 



Newtonian Mechanics 243 

i.e. 

sin(wt) 
5MR2w L’ = - 

4 
- ~ M R ~ W  3MR2w 

Y 2 ’  
cos(wt), L‘ = - L’ = 

4 

considering the disk alone. The y-axis is a principal axis of inertia and 
so rotation about it will not cause any force to be exerted on the pivots. 
Hence the forces on the pivots are due entirely to the rotating mass point. 
In the rotating frame the mass point suffers a centrifugal force of magnitude 
5Mpa, which is balanced by forces exerted on the disk by the pivots. The 
forces on the pivots are reactions to these forces. Hence pivot B suffers 
a force of magnitude in the same direction as the centrifugal force 
on the mass point. In the laboratory frame this force rotates with angular 
velocity w . 

1148 

Four masses, all of value m, lie in the xg-plane at positions (z,g) = 
(a, 0), (-a, 0), (0, +2a), (0, -2a). These are joined by massless rods to form 
a rigid body. 

(a) Find the inertial tensor, using the x-, y-, z-axes as reference system. 
Exhibit the tensor as a matrix. 

(b) Consider a direction given by unit vector n that lies “equally 
between” the positive x-, g-, z-axes, i.e. it makes equal angles with these 
three directions. Find the moment of inertia for rotation about this axis. 

(c) Given that at a certain time t the angular velocity vector lies along 
the above direction ii, find, for that instant, the angle between the angular 
momentum vector and n. 

(VC, BerkeEeg) 

Solution: 
(a) The elements Iij of the inertial tensor are given by 

Iij = C mn(ri6ij - xnln,,) 
n 

where 
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As at least one of the coordinates of each mass is zero, xix j  = 0 so that 
Iij = 0 for all i # j. For i = j, because of symmetry we have 

I11 = 2m(a2 - a2) + 2m(4a2 - 0 )  = 8ma2 , 
122 = 2m(a2 - 0) + 2m(4a2 - 4a2) = 2ma2 , 
133 = 2m(a2 - 0) + 2m(4a2 - 0) = 10ma2 . 

Hence the inertial tensor is given by the matrix 

8ma2 o ( 2ma2 ) . 
0 10ma2 

(b) As the given direction makes the same angle with the axes, its 
The moment of inertia about this direction cosines X,,u,u are equal. 

direction is then 

I = x2111 /.?I22 4- V2133 - 2 / ~ V I 2 3  - 2 V x I 3 1  - 2xp112 
= (8ma2 + 2mw2 + 10ma2)X2 

= 20rna2x2 . 

The direction cosines are subject to  the condition 

x2 + p2 + Y 2  = 3x2 = 1 , 
giving X2 = $. Hence 

20 I = -ma2 
3 

(c) The direction n is given by 

n =  (;) = A ( ; )  

At time T ,  w is parallel to  n: 

w = w n = x w  ( i )  
The angular momentum at this instant is given by 

L = I w ,  
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or 

with magnitude 

L = Xma2wd82 + 22 + 102 = d E X m a 2 w  . 

The angle 4 between L and n is then given by 

L . n  X2ma2w(8+2+ 10) 1 20 
- 0.891 , - --- 

&Wm- cosqi = - = 
L Xma2w &i% 

i.e. 

1149 
Due to polar flattening, the earth has a slightly larger moment of inertia 

about its polar axis than about its equatorial axis. Assume axial symmetry 
about the polar axis. 

(a) Show that the dominant terms of the gravitational potential above 
the surface of the earth can be expressed as 

>I ' U=--[l--(;) T Ma2 ( 2 
GM C - A  2 3 ~ 0 ~ ~ 9 - 1  

where C and A are the moments of inertia about the polar and equatorial 
axes respectively, M is the earth's mass, a is the mean earth radius and r is 
the distance to the center of mass of the earth. The coefficient ( C - A ) / M a 2  
is about 

(b) What secular effect will the second term have upon a satellite tra- 
veling in a circular orbit around the earth? 

(c) If the normal to the plane of the satellite is inclined at an angle a to 
the polar axis of the earth, derive an expression for the magnitude of this 
effect by taking a time average over the circular orbit. 

(UC, Berkeley) 
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Solution: 

(a) Choose the polar axis as the z-axis and the equatorial plane as 
the sy plane. Let a mass element dM of the earth have position vector 
r‘ = (s’, y’, z’) and let a satellite above the surface of the earth have position 
vector r = (2, y, 2). Then the gravitational potential energy per unit mass 
of the satellite is 

integrating over the entire earth. Taylor expansion gives, neglecting terms 
of order higher than ($)2, 

r .  r’ r12 3 (r . r’)2] u = -  J7[i+--- GdM + -~ 
r2 21-2 2 r4 

As r is a constant vector and the earth is assumed to be a symmetrical 
ellipsoid, 

Hence 

] dM . 3(sz’ + yy’ + zz ‘y  - (2 + y2 + 22)(s’2 + y‘2 + 2‘2) 

2r2 

Due to the symmetry of the earth, the integrals of sly’, y‘z‘ and 2’s’ are 
all zero and we have 
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dM 
2T2 

- (&’2 + x2z12 + y25’2 + y22’2 + Z 2 X t 2  + 22y’2)] - . 

Now, the choice of the x- and y-axes is arbitrary (as long as they are in the 
equatorial plane), so that the integral of x’ is equal to that of y’. Thus 

u=- - - -  .&‘2 + y2y‘2 + 2z2z‘2 - 22212 - &‘2 - 2z2x’2 

(2 + y2)x“ - 2222’2 + (222 - 2 2  - y2)P 

1 d M  T T3  2T2 

- - 
r T3 2 9  

dM 
G M  G J (3.2 - r2)(zt2 - 5”) =- - - -  

T T3 2r2 

- G M  G 3 2  - -T - T3 (p - i) / [ ( d 2  + y t 2 )  - (d2 +y12)]dM 

As I ,  = Iu = A,  I, = C, z = T cos 9, where 9 is the angle between r and 
the polar axis, the above can be written as 

( 3cos2 8 - l)] u=-- 
T 2 

(b) Equation (1) can be written as U = U1 + U Z .  U1 = -? is the 
potential energy per unit mass the satellite would have if the earth were a 
perfect sphere. Uz arises from polar flattening. It gives rise to an additional 
force per unit mass of the satellite of F = -VU2. As VT = :, V T - ~  = +, 
V F 3  = 9, Vz2 = 2zk, 

F =  

Note that the first part in the square brackets is still a central force, albeit 
not of the inverse-square type. It does not change the magnitude and 
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direction of the angular momentum about the center of the earth; hence 
it has no effect on the plane of orbit, but only makes the satellite deviate 
from circular orbit slightly. The second part, 

is not a central force; it makes the orbit plane precess about the z-axis. 
(c) As the motion of the satellite is very nearly a uniform circular motion 

with center at the origin, because of symmetry the integral of Fzdt  over a 
period of the circular motion is equal to zero, so that its average effect on 
the motion is zero. The torque caused by Fz with respect to the center of 

Let the intersection of the orbital plane and the equatorial plane of the 
earth be the x-axis (Fig. 1.111). In the course of rotation, yz is always 
positive while the average value of zx is zero. So over one period, the 
average torque is directed in the -x direction. As the angula momentum 
vector lies in the yz-plane and is thus perpendicular to the average torque, 
the latter does not change the magnitude of the angular momentum. 

Z 

L T 

Fig. 1.111. 

The angular momentum vector L has two components L, and L,. As 
the average torque, which is in the -x direction, is perpendicular to L,, it 
does not affect the latter. Hence it does not change the angle cr between L 
and the z-axis. The result is that L will precess about the z-axis, describing 
a cone of semivertex angle cr in a frame fixed to a distant star. As the 
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(z, g, z )  frame is fixed with respect to the orbit, the z-axis will rotate around 
the center of the earth in the equatorial plane. 

Let 6 be the angle between the position vector of the satellite and the 
z-axis. Setting 8 = 0 at time t = 0, we have 0 = wt, w being the angular 
velocity of the satellite. As y = T sin 6 sin a, z = r sin 8 cos a, the average of 
M over one period T = % is 

3G(C - A) sin(2a) 
4 r 3  

= -i 

As (M) is perpendicular to the angular momentum L, this will cause the 
angular momentum vector to precess about the z-axis with angular velocity 

- (p=-- I(M)I - 3G(C - A) sin(2a) 
T2W 4T5W 

llbO 
A flywheel in the form of a uniformly thick disk 4 ft in diameter weighs 

600 lbs and rotates at 1200 rpm. Calculate the constant torque necessary 
to stop it in 2.0 min. 

( Wisconsin) 

Solution: 
The equation of motion for the flywheel is 

I ~ = - M ,  

where I is the moment of inertia and M is the stopping torque. Hence 

Mt 
I 6 = w g - -  

When the flywheel stops at time t, 9 = 0 and 
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I W O  M = - .  
t 

With I = 9 = 1200 lb f t2 ,  wo = 4 0 ~  rad/s, t = 120 s, 

M = 400~ pdl f t  = 39 lb ft. 

1151 
A structure is made of equal-length beams, 1 to 11, as shown in 

Fig. 1.112, hinged at the joints A, B, . . . , G. Point A is supported rigidly 
while G is only supported vertically. Neglect the beam weights. A weight 
w is placed at E. Each member is under pure tension T or compression C. 
Solve for the vertical support forces at A and G and find the tension T or 
compression C in each member. 

( Columbia) 

D F 

Fig. 1.112. Fig. 1.113. 

Solution: 

at A and G and for torques about A give 
Consider the structure as a whole. The equilibrium conditions for forces 

NAX = o  , 
NAY + NGY - W = 0 ,  

AE. W - AG. NGY = o , 
whence 

W 2w 
3 NAX =0, NAY = -, NGY = - 3 . 
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Then let the tensions and compressions in the rods be as shown in 
Fig. 1.113. Considering the equilibrium conditions for joint A we have 

NAY - TI sin60" = 0 , 
Cz -Ti ~ 0 ~ 6 0 "  = 0 , 

yielding 

Consider the balance of vertical forces at B , C , D , G ,  F. We obtain by 
inspection of Fig. 1.113 

Then considering the balance of horizontal forces at B, C ,  E, F we have 

T4 - (Ti + C3) ~ 0 ~ 6 0 "  = 0 , 
c6 - (c, 4- T5) COS 60" - c2 = 0 , 
clo - (cg - C,)C0S6O0 - c6 = 0 , 
T8 - (Ti1 + Cg) ~ 0 ~ 6 0 "  = 0 , 

yielding 

1152 
A uniform thin rigid rod of mass M is supported by two rapidly rotating 

rollers, whose axes are separated by a fixed distance a. The rod is initially 
placed at rest asymmetrically, as shown in Fig. 1.114. 

(a) Assume that the rollers rotate in opposite directions as shown in the 
figure. The coefficient of kinetic friction between the bar and the rollers is p .  
Write down the equation of motion of the bar and solve for the displacement 
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I * C  1 
I 

Fig. 1.114. Fig. 1.115. 

x(t) of the center C of the bar from roller 1 assuming x(0) = xo and 

(b) Now consider the case in which the directions of rotation of the 
rollers are reversed, as shown in Fig. 1.115. Calculate the displacement 
x(t), again assuming x ( 0 )  = 50 and X(0) = 0. 

(Princeton) 

X(0) = 0. 

Fig. 1.116. 

Solution: 
(a) The forces exerted by the rollers on the rod are as shown in Fig. 1.116. 

For equilibrium along the vertical direction we require 

N I  + NZ = Mg, aNz = xM, , 

giving 

The kinetic friction forces are 

f l  = PNl, f2 = PN2 1 

with directions as shown in the figure. Note that as the rollers rotate 
rapidly, a change in the direction of motion of the rod will not affect the 
directions of these forces. Newton’s second law then gives 
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PMg MX = fi - f2 = -(a a - 22) . 
With < = 22 - a, the above becomes 

which is the equation of motion of a harmonic oscillator. With the initial 
conditions 6 = 2x0 - a, 6 = 0 at t = 0, the solution is 

5 = (220 - a) cos(wt) , 
where 

Hence 
a 
2 

x = ( X o  - ;) cos(wt) + - I 

(b) With the directions of rotation of the rollers reversed, the friction 
forces also reverse directions and we have 

M X =  fi- f 1 ,  

or 

where < = 22 -a as before. The motion is no longer simple harmonic. With 
the same initial conditions, the solution is 

< = (20 - %> (e-wt + ewt)  = (2x0 - a)cosh(wt) , 

i.e. 
a 
2 

x = (20 - :) cosh(wt) + - , 
where w = @. Note that if 20 # :, the rod will move in one direction 
until it loses contact with one roller, at which time the equation cemes to 
apply. 

1153 
A torsion pendulum consists of a vertical wire attached to a mass which 

may rotate about the vertical. Consider three torsion pendulums which 
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consist of identical wires from which identical homogeneous solid cubes are 
hung. One cube is hung from a corner, one from midway along an edge, 
and one from the middle of a face, as shown in Fig. 1.117. What are the 
ratios of the periods of the three pendulums? 

( M W  

Fig. 1.117. 

Solution: 
In all the three cases, the vertical wire passes through the center of 

mass of the solid cube. As the ellipsoid of inertia of a homogeneous solid 
cube is a sphere, the rotational inertia about any direction passing through 
the center of mass is the same. Hence the periods of the three torsion 
pendulums are equal. 

1154 
Figure 1.118 shows a simple-minded abstraction of a camshaft with 

point masses rn and 2m fixed on massless rods, all in a plane. It rotates 
with constant angular velocity w around the axis 00' through the long 
shaft, held by frictionless bearings at 0 and 0'. 

(a) What is the torque with respect to  the mid-point of the long shaft 
exerted by the bearings? (Give magnitude and direction.) 

(b) Locate an axis, fixed in the plane of the masses, around which the 
thing could rotate with zero torque when the angular velocity is constant. 

(UC, Berkeley) 

Solution: 

Choose a coordinate system attached to the shaft with origin at the 
mid-point C of the long shaft, the z-axis along the axis 00' and the x-axis 
in the plane of the point masses, as shown in Fig. 1.119. 
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rt 
-- + 2mL 21 

Fig. 1.118. 

Fig. 1.119. 

The inertia tensor with respect to C is calculated using the formula 
Iij = C mn(rz6ij - xnixnj), where ri  = xg, + xz2  + x t 3 .  As the masses 

have coordinates 
n 

2m : ( O , O ,  l ) ,  
2m : ( O , O , - l ) ,  

m : (1 ,O  - 1 )  , 
m :  ( - l , O , l )  , 

we have 
6m12 8C)2 2 7 1 2 )  

2m12 0 2m12 
I = (  0 

Considering the angular momentum J and torque M about C ,  we have 

d7 d*J 
dt  dt  M = - = - + u x  J = U X  J ,  

where the star denotes differentiation with respect to the rotating coordi- 
nate system (5, y, z ) ,  as the angular velocity is constant. As 

J = I u = I ( : )  =2m12u(p)  , 
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M = W X  J =  

256 

we find 
i j k  
o o w =2ml2w2j. 

2mt2w O 2mi2w 

The torque with respect to the mid-point of the shaft exerted by the 
bearings has magnitude 2m12w2 and is in the y direction. 

(b) Denote the axis in the zz-plane about which the torque is zero as 
the 2'-axis and suppose it makes an angle 8 with the z-axis. As shown 
in Fig. 1.119, the z'-, y'- and 2'-axes form a Cartesian frame, where the 
2'-axis is also in the zz-plane. In this frame, the angular velocity w is 

w = (  w sin 0 ) 
w cos e 

and 
6m12w sin 8 + 2m12w cos t9 

0 
2ml2w sin e i- 2m12w cos e 

J = I w =  

Hence 

M = u x J  

i j k 
w sin 8 0 w c m e  

m12w(6sinB+2cos8) 0 2mZ2w(cose+sin8) 

- - 

= 2mz2w2(sin 28 + cos 2e)j 

For M = 0, we require that 

t a 2 e  = - 1 ,  

i.e. 8 = -22.5" or 67.5'. Note that the a'-axis, about which the torque 
vanishes, is a principal axis of inertia. As such it can also be found by the 
method of Problem 1147. 



Newtonian Mechanics 257 

1155 
A coin with its plane vertical and spinning with angular velocity w in 

its plane as shown in Fig. 1.120 is set down on a flat surface. What is the 
final angular velocity of the coin? (Assume the coin stays vertical; neglect 
rolling friction.) 

( Wisconsin) 

Fig. 1.120. 

Solution: 
The spinning coin is on a horizontal plane. As the forces acting on the 

coin, namely, the supporting force F and gravity P, both pass through the 
center of mass, the angular momentum of the coin about its center of mass 
is conserved. Hence the angular velocity is still w after it is set down on 
the surface. 

1156 
Human legs are such that a person of normal size finds it comfortable 

to walk at a natural, swinging pace of about one step per second, but 
uncomfortable to force a pace substantially faster or slower. Neglecting the 
effect of the knee joint, use the simplest model you can to estimate the 
frequency which determines this pace, and to find what characteristic of 
the leg it depends on. 

( Wisconsin) 

Soiut ion: 
In the 

simplest model, the swinging frequency of the leg should be equal to the 
Consider the human leg to be a uniform pole of length 1. 
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characteristic frequency of the pole when it swings about its end as a fixed 
point. The motion is that of a compound pendulum described by 

or 
.. 39 e + - e = o ,  

21 

for 8 small. Then the frequency of swing is v = &&. If we take 
1 M 0.4 m, v M 1 s-'. 

1157 

Cylinder C (mass 10.0 kg and radius 0.070 m) rolls without slipping on 
hill H as shown in Fig. 1.121. The string does not stretch and is wrapped 
around the cylinder C. 

(a) How far vertically upward does C move when the 2 kg mass moves 

(b) What are the magnitude and direction of the acceleration? 
(c) What are the magnitude and direction of the force of static friction 

down one meter? 

at the contact point P? 
( Wisconsin) 

Fig. 1.121. 
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Solution: 
(a) As the string is unstretchable, when the center of C moves up the 

inclined plane a distance Ax, the 2 kg mass will also drop Ax. However, 
as an additional length Ax of the string is also released in the process, 
the 2 kg mass will actually drop 2Ax. Thus when the 2 kg mass moves 
down one meter, C will move up the inclined plane 0.5 m, or vertically up 
0.5sin30" = 0.25 m. 

(b) The forces involved are shown in Fig. 1.121. The above effect means 
that for the 2 kg mass we have 

2mx = mg - F . 

For the cylinder we have 

M x = F + f - M g s i n 3 O 0 ,  
I B = ( F - f ) R ,  

where I = iMR2. Furthermore, as the cylinder rolls without slipping we 
also have 

The above equations give 

4 m - M  
x = (8m+ 3M) 

? = R e .  

g = -0.04359 = -0.426 ms-2 

Thus the acceleration has magnitude 0.426 ms-2 and acts downward along 
the inclined plane. 

(c) f = 4M(ii+g) = 40 x 0.5749 = 23.0 N. Its direction is upward along 
the inclined plane. 

1158 
A uniform hoop of mass M and radius R hangs in a vertical plane s u p  

ported by a knife edge at one point on the inside circumference. Calculate 
the natural frequency of small oscillations. 

( Wisconsin ) 
Solution: 

The moment of inertia of the hoop about the supporting knife edge is 

I = MR2 + MR2 = 2MR2 . 
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Q 
Fig. 1.122. 

Referring to Fig. 1.122, we have the equation of motion 

I0  = -MgRsinO , 

or 
I 8  = -MgRB 

for small oscillations. Hence the frequency is 

1159 

An ultr&high speed rotor consists of a homogeneous disc of mass M, 
radius R, and width 21. It is mounted on a shaft supported on bearings 
separated by a distance 2d as shown in Fig. 1.123. The two additional 
masses, of equal mass m, are arranged symmetrically so that the rotor 
remains in “static” balance. Find the timevarying force on the bearings if 
the rotor turns at angular velocity w. 

( Wisconsin) 

Fig. 1.123. 



Newtonian Mechanics 261 

Solution: 
In the rotating frame attached to the disk, the additional masses each 

suffers a centrifugal force m h 2 ,  resulting in a torque T = 2mRw21. This 
torque is balanced by a torque of the same magnitude but opposite in 
direction, supplied by the bearings which are separated by a distance 2d. 
Hence the bearings each suffers a force 5 = in the same direction 
as that of the centrifugal force on the nearer mass. In the fixed frame these 
rotate with angular velocity w. 

1160 

A 100 m2 solar panel is coupled to a flywheel such that it converts 
incident sunlight into mechanical energy of rotation with 1% efficiency. 

(a) With what angular velocity would a solid cylindrical flywheel of 
masa 500 kg and radius 50 cm be rotating (if it started from rest) at the 
end of 8 hours of exposure of the solar panel? 

Take the solar constant to be 2 cal/cm2/min, for the full time interval. 
(1 c d  = 4.2 Joules) 

(b) Suppose the flywheel, whose axle is horizontal, were suddenly re- 
leased from its stationary bearings and allowed to start rolling along a 
horizontal surface with kinetic coefficient of friction p = 0.1. How far will 
it roll before it stops slipping? 

(c) With what speed is the center of mass moving at that moment? 
(d) How much energy was dissipated in heat? 

(UC, Berketey) 

Solution: 

I = i m  R2, giving 
(a) The kinetic energy of rotation of the flywheel is E = !jIu;, where 

= 1136 radfs . 

(b) Measure time from the instant the flywheel is released, when it is 
rotating with angular velocity WO. After its release the only horizontal force 
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Fig. 1.124. 

on the flywheel is the frictional force as shown in Fig. 1.124. The equations 
of motion are 

Iw = - f R ,  mu = f . 
At time tl when the flywheel stops slipping, let its angular velocity be w1. 
The boundary conditions are w = WO, v = 0 at t = 0, w = wl,  v = v1 = hi 

at t = t l .  The above equations integrate to give 

I (w~ - W O )  = -fRtl 

mv=rnRLJl= f t l  . 

Note that these equations can also be 
consideration. Solving these we have 

tl WO 
w1= 3’ 

&s I = amR2, f = pmg. The distance 
stops slipping is 

obtained directly by an impulse 

W O R  

3p9 ’ 
- -  - 

covered by the flywheel before it 

(c) At tl the speed of the center of mass is 

W O R  vl  = Rwl = - = 189.3 ms 
3 

. 

(d) At  time 0 < t < t l ,  the equation of motion integrates to 

I(w - WO) = - fRt , 
mu= f t  . 

At 0 < t < t l ,  the flywheel both slips and rolls. Only the slipping part of 
the motion causes dissipation of energy into heat. The slipping velocity is 
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and the total dissipation of energy into heat is 

mR2w2 
6 = 2 = 2.688 x 10' J . 

This can also be obtained by considering the change in the kinetic energy 
of the flywheel: 

same as the above. 

1161 

A man wishes to break a long rod by hitting it on a rock. The end 
of the rod which is in his hand rotates without displacement as shown in 
Fig. 1.125. The man wishes to avoid having a large force act on his hand 
at the time the rod hits the rock. Which point on the rod should hit the 
rock? (Ignore gravity). 

( CUSPEA ) 

Fig. 1.125. Fig. 1.126. 
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Solution: 

Let the point of impact be at distance x from the end 0 held by the 
hand and the reaction to the force acting on the hand as a result of the 
application of F be F’, as shown in Fig. 1.126. Considering the motion of 
the center of mass C, we have 

( F  - F’)dt = mu ) I 
/[.(x-;) - F ’ ; ] d t = I w ,  

where u is the velocity of C, w the an ular velocity about C immediately 
after the application of F ,  and I = %, m being the mass of the rod. As 
0 is to remain stationary, we require 

Q 

or 
wl 
2 

v = - .  

We also require F’ M 0, so that 

I Fdt = mu, (x - a> 1 Fdt = Iw ) 

which give 
1 1 21 
6 2 3  

x = - + - = - - .  

1162 

The two flywheels in Fig. 1.127 are on parallel frictionless shafts but 
initially do not touch. The larger wheel has f = 2000 rev/min while the 
smaller is at rest. If the two parallel shafts are moved until contact occurs, 
find the angular velocity of the second wheel after equilibrium occurs (i.e. 
no further sliding at the point of contact), given that R1 = 2R2, I1 = 1612. 

( Wisconsin) 
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Fig. 1.127. 

Solution: 
Suppose the impulse of the interacting force between the two wheels 

from contact to equilibrium is J .  Then the torque of the impulse acting on 
the larger wheel is JR1 and that on the smaller wheel is JR2. 

We have Il(w1 - w: )  = JR1, 12wi = JR2, where w1 and w: are the 
angular velocities of the larger wheel before contact and after equilibrium 
respectively, and w& is the angular velocity of the smaller wheel after 
equilibrium. As there is no sliding between the wheels when equilibrium is 
reached, 

W; R1 = W& R2 . 
The above equations give 

- l.hl = 3200 rev/min . wt - - I& + I ~ R ;  - 

1163 
Two uniform cylinders are spinning independently about their axes, 

which are parallel. One has radius R1 and mass M I ,  the other R2 and 
M2. Initially they rotate in the same sense with angular speeds R1 and 
Rz respectively as shown in Fig. 1.128. They are then displaced until they 
touch along a common tangent. After a steady state is reached, what is the 
final angular velocity of each cylinder? 

(CUSPEA ) 

Solution: 

after steady state is reached, Then 
Let w1, w2 be the final angular velocities of the two cylinders respectively 
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Fig. 1.128. 

Let J1 and J2 be the time-integrated torque 2 exerts on 1 and 1 on 2, then 

or 

1164 
Three identical cylinders rotate with the same angular velocity s1 about 

parallel central axes. They are brought together until they touch, keeping 
the axes parallel. A new steady state is achieved when, at each contact line, 
a cylinder does not slip with respect to its neighbor as shown in Fig. 1.129. 
How much of the original spin kinetic energy is now left? 
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(The precise order in which the first and second touch, and the second and 
third touch, is irrelevant.) 

( CUSPEA ) 

Fig. 1.129. 

Solution: 
As there is no slipping, if R’ is the final angular velocity of cylinder 1, 

then cylinders 2 and 3 have final angular velocities -R’ and R’ respectively. 
Let I be the moment of inertia of each cylinder about its axis of rotation, 
Mij be the angular impulse imparted to the ith cylinder with respect to its 
axis of rotation by the j t h  cylinder. Newton’s third law requires that, as 
the cylinders have the same radius, 

Dynamical considerations give 

I(n’ - 0) = MI2 , 
I(--R‘ - R) = M2l+ M23 , 
I (R’  - 52) = M32 . 

(1) + (3) - (2) gives 
I(3R’ - 0) = 0 , 

or 

The ratio of the spin kinetic energies after and before touching is 

2 1  - _  T’ - - - ;(3IRf2) = (CV) - 
T i(31R2) 9 ’  
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1105 
Find the ratio of the periods of the two torsion pendula shown in 

Fig. 1.130. The two differ only by the addition of cylindrical masses as 
shown in the figure. The radius of each additional mass is 1/4 the radius 
of the disc. Each cylinder and disc have equal mass. 

( Wisconsin ) 

Fig. 1.130. 

Solution: 
Let 11 and I2 be the moments of inertia of the two torsion pendula 

respectively. If A is the restoring coefficient of each wire, then the equations 
of motion are 118 + A8 = 0, I28 f A8 = 0. Hence the angular frequencies of 
oscillation of the torsion pendula are w1 = and w2 = m. For 
the first pendulum, I1 = MR2/2, and for the second, 

Hence the ratio of the periods is 
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1166 
A long thin uniform bar of mass M and length L is hung from a fixed 

(assumed frictionless) axis at A as shown in Fig. 1.131. The moment of 
inertia about A is ML2/3. 

Fig. 1.131. 

(a) An instantaneous horizontal impulse J is delivered at B, a distance 

(b) In general, as a result of J, there will be an impulse J' on the bar 

(c) Where should the impulse J be delivered in order that J' be zero? 
(Wisconsin) 

a below A. What is the initial angular velocity of the bar? 

from the axis at A. What is J'? 

Solution: 

the impulse is delivered. As 00 = 0, the initial anguls velocity is 
(a) Ja = I(w - u o ) ,  where wo is the angular velocity of the bar before 

Ja 3Ja 
I M L 2  

(b) The initial velocity of the center of mass of the bar is v = wL/2.  So 
the change in the momentum of the bar is M v  = MwL/2.  AS this is equal 
to the total impulse on the bar, we have 

us-- --. 

MwL 
2 

J+J'=-. 

Hence 
M u L  

2 
J'= -- 

2L 
3 

J ' = O ,  if a = - .  
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Hence there will be no impulse from the axis if J is delivered at a point 
2 L / 3  below A.  

1167 

The crankshaft shown in Fig. 1.132 rotates with constant angular veloc- 
ity w. Calculate the resultant forces on the bearings. In a sketch show the 
directions of these reactions and the direction of the angular momentum. 

(Assume the crankshaft is made of thin rods with uniform density). 
(WC, Berkeley) 

Fig. 1.132. Fig. 1.133. 

Solution: 
Consider the motion in a frame attached to the crankshaft as shown 

in Fig. 1.133. As the rods are either parallel or perpendicular to the axis 
of rotation, the centrifugal force on each rod can be considered as that 
on a point of the same mass located at its center of mass. Let N denote 
the constraint force exerted by the bearing on each shaft. As there is no 
rotation about the z-axis, we require that the moments of the forces about 
0 should balance: 

b 3b  a 
2 2 2 

2 b .  N + - . p b .  au2 = - . pb - au2 + 2 b .  p a .  -w2 , 

giving 
P U 2  N = - ( a + b ) ,  2 

where p is the mass per unit length of the rods. The reactions on the 
bearings are equal and opposite to N as shown in Fig. 1.131. In a fixed 
frame these forces are rotating, together with the crankshaft, with angular 
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velocity w about the axle. The angular momentum of the crankshaft is 
given by 

where I is the moment of inertia tensor about 0 with elements 

n 

As all z = 0, IZ5 = 0. Furthermore it can be seen that I,, > 0, Iy, < 0. 
Hence the angular momentum L has direction in the rotating coordinate 
frame as shown in Fig. 1.133. Note that gravity has been neglected in the 
calculation, otherwise there is an additional constant force acting on each 
bearing, (2a + b)pg in magnitude and vertically downward in direction in 
the fixed frame. 

1168 
Two equal point masses M are connected by a massless rigid rod of 

length 2A (a dumbbell) which is constrained to rotate about an axle fixed 
to the center of the rod at an angle 8 (Fig. 1.134). The center of the rod 
is at the origin of coordinates, the axle along the z-axis, and the dumbbell 
lies in the sz-plane at t = 0. The angular velocity w is a constant in time 
and is directed along the z-axis. 

(a) Calculate all elements of the inertia tensor. (Be sure to specify the 
coordinate system you use.) 

(b) Using the elements just calculated, find the angular momentum of 
the dumbbell in the laboratory frame BS a function of time. 

(c) Using the equation L = r x p, calculate the angular momentum and 
show that it is equal to the answer for part (b). 

(d) Calculate the torque on the axle as a function of time. 
(e) Calculate the kinetic energy of the dumbbell. 

(VC, Berkeley) 
Solution: 

(a) Use a coordinate frame xyz attached to the dumbbell such that the 
two point masses are in the xz-plane. The elements of the inertia tensor 
about 0, given by Ijj = Cn mn(r26ij - xixj), are 
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X 

Fig. 1.134. 

I,, = 2MA2 cos2 8,  I,, = 2MA2, I,,  = 2MA2 sin2 8 , 
I,, = la/, = 0, I,, = -2MA2 cos @sin 8 = -MA2 sin2 8 . 

Thus 
2MA2 cos2 8 0 - MA2 sin 28 

I=( 0 2MA2 0 

-MA2 sin 28 0 2MA2 sin2 8 

(b) Use a laboratory frame z’y’z’ such that the z’-axis coincides with 
the z-axis of the rotating frame in (a) and that all the respective axes of 
the two frames coincide at t = 0. The unit vectors along the axes of the 
two frames are related by 

coswt sinwt 0 (“) = (-sinwt 0 
coswt 0 1  0 )  (3) . e3 

Then the inertia tensor in the laboratory frame is 

coswt -sinwt 0 

coswt sinwt 0 
-sinwt coswt 0 

0 1  

2MA2 cw2 8 0 - MA2 sin 28 

-MA2 sin 28 0 2MA2 sin2 0 
2MA2 0 

Hence the angular momentum of the dumbbell in the laboratory frame is 

- sin 28 cos wt 
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(c) The radius vectors of MI and M2 from 0 are respectively 

r1 = A(sinB,O,cos8) , 
r2 = A(-sinO,O,-cosO) 

in the rotating frame. Using the transformation for the unit vectors we 
have 

rl = A[sin 8(e: cos wt + ei sin wt) + e; cos O] 

1-2 = A(-sin8coswt,-sin8sinwtl-cosf?) 
= A(sin I3 cos wt, sin 8 sin wt, cos 0) , 

in the laboratory frame. The angular momentum of the system in the 
laboratory frame is 

L = Cr x p =  C M ~  x (w x r> = C M [ ~ ~ W  - (r.w)r] 

- MA2w cos f?(ei sin f? cos wt + e& sin f? sin wt + e3 cos 0) 
+ MA2w cos f?( -e: sin f? co8 wt - ek sin 8 sin wt - e& c a  f?) 

= MA2w(-ei sin28coswt - eisin28sinwt + ei2sin28) , 

= 2MA2we; 

same as that obtained in (b). 
(d) The torque on the axle is 

dL 
dt 

= MA2w2 [sin 28 sin wtei - sin 28 cos wtei] . 7'- 

(e) As w = (0, 0, w) the rotational kinetic energy of the dumbbell is 

-  MA^^^ sin2 8 . I w2 T = % -  
2 

1169 
A squirrel of mass m runs at a constant speed Vo relative to a cylindrical 

exercise cage of radius R and moment of inertia I as shown in Fig. 1.135. 
The cage has a damping torque proportional to its angular velocity. Neglect 
the dimensions of the squirrel compared with R. If initially the cage is at 
rest and the squirrel is at the bottom and running, find the motion of 



274 Problems €4 Solutions on Mechanics 

the squirrel relative to a fixed coordinate system in the small oscillation, 
underdamped case. Find the squirrel’s angular velocity in terms of its 
angle relative to the vertical for arbitrary angular displacements for the 
undamped case. Discuss any design criteria for the cage in this case. 

( Wisconsin) 

i 

Fig. 1.135. 

I +  
mg 

Fig. 1.136. 

Soh t ion: 

squirrel, the equation of motion is 
In a fixed coordinate frame, define 8 as shown in Fig. 1.136. For the 

mR8= f -mgsin8,  

and for the cage the equation of motion is 

I @  = - fR-  k@ , 

where f is the friction between the squirrel and the cage and k is a constant. 
In addition, as the squirrel has a constant speed VO relative to the cage, we 
have 

R(B - $) = Vo , 
which means 8 = 8, @ = 
from the equations of motion give 

- $. Making use of these and eliminating f 

kV0 
R 

(I + mR2)e + ke + mgRsin0 = ~ . 
For small oscillations, 8 << 1 and the above reduces to 

kV0 
R 

(I + mR2)e + kB + mgR8 = - . 
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A particular solution of this equation is 

kV0 ,g=- 
mgR2 ' 

while for underdamping the general solution for the homogeneous equation 
is 

8 = e-"(Asinwt + Bcoswt) , 

where 

I + mR2 
W =  

k 
2(1+ mR2)' 

b =  

Hence the general solution of the above equation is 

e = -  lcv0 + e-bt( A sin wt + B cos wt )  . 
mgR2 

Using the initial condition that at t = 0, 8 = 0, cp = 0, (i? = 0, b = 3,  we 
find 

b mgR e = - - -  ICh k' [coswt + ( - x) sinwt] e-6' 
mgR2 mgR2 

For the undamped case (k = 0), the differential equation is 

( I  + mR2)8 + mgR0 = 0 

'* 1 ddl or, aa 0 = S T ,  
( I  + mR2)db2 = -2mgR0d8 , 

which integrates to 

using the initial condition for b. Hence 

We require I + mR2 >> k for the undamped case to hold. Hence the cage 
should be designed with a large moment of inertia. 
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1170 

A thin square plate with side length a rotates at a constant angular 
frequency w about an axis through the center tilted by an angle 8 with 
respect to the normal to the plate. 

(a) Find the principal moments of inertia. 
(b) Find the angular momentum J in the laboratory system. 
(c) Calculate the torque on the axis. 

( UC, Berkeley) 

X ’  

t 

Fig. 1.137. 

Solution: 
(a) Take origin at the center 0 of the square. For a coordinate frame 

attached to the square, take the plane of the square as the xy-plane with the 
2- and y-axis parallel to the sides. The z-axis, which is along the normal, 
makes an angle 8 with the z’-axis of the laboratory frame about which the 
square rotates, as shown in Fig. 1.137. We also assume that the 2-, z- and 
2’-axes are coplanar. 

Then by symmetry the x-, y- and z-axes are the principal axes of inertia 
about 0, with corresponding moments of inertia 

ma2 ma2 
I,= = - 

6 ’  
Ixx  = Iuy = - 

12 ’ 

where m is the mass of the square. 

dinate axes is 
(b) The angular momentum J resolved along the rotating frame coor- 
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= 

ma' 0 

"aaWCos8 

We can choose the laboratory frame so that its y'-axis coincides with the 
y-axis at t = 0. Then the unit vectors of the two frames are related by 

e, = cos 8 cos wte,, + cos 8 sin wte,, + sin 8eZl , 
ey = - sin wte,t + cos wteyt , 
ex = - sin 8 cos wte,, - sin 8 sin wte,,! + cos eext . 

Hence the angular momentum resolved along the laboratory frame coordi- 
nate axes is 

c o s ~  coswt - sinwt - sin ecoswt $w sin e (zi) = (cosdsinwt coswt -singsinwt) ( 
sin 8 0 cos e d W  0 C 0 8  8 ) 

-- "1"' w sin B cos 9 cos wt 

yf w sin e cos e sin wt . =(-La Tw(i + cos2 e) ) 
(c) The torque on the axis is given by 

ex ell e x  
wsinB 0 wcos8 

g w s i n e  o $wccW~ 

M=($),ab =(:) + w x J = o x J  
rot 

mu2 
12 

= -- w2 sin 0 cos 8e, . 

The torque can be expressed in terms of components in the laboratory 
frame: 

M = - -w2 sin 8 co8 8( - sin wte,, + cos wte,, ) . ma2 
12 

This can also be obtained by differentiating L in the laboratory frame: 
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1171 

A thin flat rectangular piate, of mass M and sides a by 2a, rotates with 
constant angular velocity w about an axle through two diagonal corners, 
as shown in Fig. 1.138. The axle is supported at the corners of the plate 
by bearings which can exert forces only on the axle. Ignoring gravitational 
and frictional forces, find the force exerted by each bearing on the axle as 
a function of time. 

(Princeton) 

Fig. 1.138. 

Solution: 

Use a coordinate frame attached to the plate with the origin at the 
center of mass 0, the y-axis along the normal, and the z-axis parallel to 
the long side of the rectangle, as shown in Fig. 1.138. Then the 2-, y- and 
z-axes are the principal axes with principal moments of inertia 

4Ma2 
12 

Iz* = - . Ma2 5Ma2 I,, = - 12 7 &%, = 12’ 

Let z’ denote the axis of rotation and (Y the angle between the z- and 
2‘-axes. The angular momentum of the piate is 

4 cos a 

The torque on the axle of the plate is then 
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Ma2u2 - -- 
l2 

279 

ev eZ 

s ina 0 cosa 
sina o 4cosa 

r=(%) =($) + w x L = w x L  
fixed rot 

as sina = $, cosa = Let NA,  NB be the constraint forces exerted z* 
by the bearings on the axle at A, B respectively. Rotate the coordinate 
frame OXYZ about the y-axes so that the z and z‘-axis coincide. The new 
coordinate axes are the x/-axis, y‘-axis which is identical with the y-axis, 
and d-axis shown in Fig. 1.138. As the center of mass is stationary, we 
have 

N A ~ ,  + N B ~ ~  = 0,  N A ~ I  + N B ~ ~  = 0 . 

Considering the torque about 0 we have 

where d = 3AB = $a. The above equations give 

These forces are h e d  in the rotating frame. In a fixed coordinate frame 
they rotate with angular velocity w. In a fixed frame 0x”y”z” with the 
same 2‘-axis and the 2“-axis coinciding with the 2‘-axis at t = 0, 
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1172 
A homogeneous thin rod of mass M and length b is attached by means 

of an inextensible cord to a spring whose spring constant is k. The cord 
passes over a very small and smooth pulley fixed at P .  The rod is free to 
rotate about A without friction throughout the angular range --R < 0 5 m 
(Fig. 1.139). When c = 0 the spring has its natural length. It is assumed 
that b < a and that gravity acts downward. 

(a) Find the values of 0 for which the system is in static equilibrium, 
and determine in each case if the equilibrium is stable, unstable or neutral. 

(b) Find the frequencies for small oscillations about the points of stable 
equilibrium. 
(Note: line P A  is parallel to g) .  

(SVNY, Buffalo) 

! P  

Fig. 1.139. 

Solution: 
(a) Take the direction pointing out of the paper as the positive direction 

of the torques. The torque about point A due to gravity is 

L Mgb sin0 , ,- 2 

and that caused by the restoring force due to the spring is L k  = kc bsin81, 
where 01 is the angle formed by the rod with the rope, or, wing the sine 
theorem 

C a -- -- 
sin0 sin& ’ 
Lk = kbasinB. 

For equilibrium, we require L, + Lk = 0, or kasin0 = 9 sino. 
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i) If ka = Mg/2 ,  the equilibrium condition is satisfied for all 8 and the 
equilibrium is neutral. 

ii) If ka < Mg/2,  the equilibrium condition is satisfied if 8 = 0 or 8 = T. 
Consider the equilibrium at 8 = 0. Let 8 = 0 f e, where e > 0 is a small 
angle. Then 

Thus 

L < 0 for 8 = +e, 

L > 0 for 8 = - 6 .  

Hence L tends to increase e in both cases and the equilibrium is unstable. 
For the equilibrium at 8 = A f e, we have 

L = f (s - k a )  e 

Then 

L < 0 for 8 = T - e , 
L > 0 for 8 = ?r + E . 

In the case L tends to reduce E and the equilibrium is stable. 
iii) If ka > Mg/2,  the situation is opposite to that of (ii). Hence in this 

case 8 = 0 is a position of stable equilibrium and 8 = A is a position of 
unstable equilibrium. 

(b) Take the case of ka > Mg/2  where 8 = 0 is a position of stable 
equilibrium. Let 8 = e where E is a small angle. The equation of motion is 

or for small oscillations 

Hence the frequency of oscillation is 
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Similarly in the case ka < M g / 2 ,  the frequency of small oscillations about 
the position of stable equilibrium at 8 = lr is 

21r 2Mb 

1173 
A thin ring of mass M and radius R is pivoted at P on a frictionless 

table, as shown in Fig. 1.140. A bug of mass m runs along the ring with 
speed v with respect to the ring. The bug starts from the pivot with the 
ring at rest. How fast is the bug moving with respect to the table when it 
reaches the diametrically opposite point on the ring (point X)? 

( M I T )  

Fig. 1.140. 

Solution: 
The moment of inertia of the ring with respect to the pivot P is 

I = MR2 -I- MR2 = 2MR2 I 

When the bug reaches point X ,  its velocity with respect to the table is 
- 2Rw and the angular momentum of the ring about P is 

J = 2MR2w,  

where w is the angular velocity of the ring about P at that instant. 
Initially the total angular momentum of the ring and bug about P is zero. 
Conservation of angular momentum then gives 

2MR2w - 2mR(v - 2%) = 0 ,  
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or mu 
R ( M + 2 m )  ' 

w =  

The velocity of the bug at point X with respect to the table is 

1174 
A cone of height h and base radius R is constrained to rotate about its 

vertical axis, as shown in Fig. 1.141. A thin, straight groove is cut in the 
surface of the cone from apex to base as shown. The cone is set rotating 
with initial angular velocity wo around its axis and a small (point-like) bead 
of mass m is released at the top of the frictionless groove and is permitted 
to slide down under gravity. Assume that the bead stays in the groove, and 
that the moment of inertia of the cone about its axis is 10. 

(a) What is the mgular velocity of the cone when the bead reaches the 
bottom? 

(b) Find the speed of the bead in the laboratory just as it leaves the 
cone. 

(MITI 

Fig. 1.141. 

Solution: 
(a) As the total angular momentum of the system is conserved, the 

angular velocity w of the cone at the time when the bead reaches the bottom 
satisfies the relation 
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Iowo = (I0 + m R 2 ) w  
Hence 

IOU0 
I0 + mR2 ' 

W =  

(b) As the energy of the system is conserved, the velocity u of the bead 
when it reaches the bottom satisfies 

- 1 IOW; + mgh = -mu 1 2 1 2  + -low 
2 2 2 

with 
u ~ = $ + v : = ' u I + R ~ w ~ ,  

where 2111 is velocity of the bead parallel to the groove and u l  is that 
perpendicular to the groove. Thus 

1 1 1 1 - m v i  = z I ~ w ~  + mgh - -I0w2 - -mR2w2 , 
2 2 2 

giving 

(To + mR2) Iow2 1 ~ ~ 0 2  R~ 
?Ji = Iowi - + 2gh = I. + mR2 + 2 g h .  m ( Io+mR2)2  

Hence the velocity of the bead when it reaches the bottom is 

v = u l i  + ullj 

a and j being unit vectors along and perpendicular to the groove respec- 
tively, with magnitude 

Iow;R2 
+ 2 g h .  I0 + mR2 I0 + mR2 

This speed could have been obtained directly by substituting the expression 
for w in the energy equation. 

1175 
A thin uniform disc, radius a and mass m, is rotating freely on a 

frictionless bearing with uniform angular velocity w about a fixed vertical 
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axis passing through its center, and inclined at angle (r to the symmetry 
axis of the disc. What is the magnitude and direction of the torque, and of 
the net force acting between the disc and the axis? 

(Columbia) 

Fig. 1.142. 

Solution: 

Take a coordinate frame Ozyz attached to the disc with the origin at 
its center 0, the z-axis along the normal to the disc, and the x-axis in the 
plane of the z-axis and the axis of rotation z’, as shown in Fig. 1.142. The 
z-, y- and z-axes are the principal axes of the disc with principal moments 
of inertia 

1 1 1 
I --rna2, I - -ma2,  r - - m a 2 .  
2 - 4  v - 4  = - 2  

The angular momentum about 0 is 

0 

0 

1 
4 

= -ma2(wsinae, + 2wcosae,) . 

Hence the torque is 



286 Problems €4 Solutions on Mechanics 

1 
4 

= (w sinae, + w cosae,) x -ma2w(sinae, + 

- - - -ma2w sin a cos aey . 1 
4 

2 cos aez) 

The torque is in the plane of the disc and is perpendicular to the plane 
formed by the normal to the disc and the axis of rotation. It rotates with 
the disc. As the center of mass of the disc is stationary, the net force on 
the disc is zero. 

1176 
A moon of mass m orbits with angular velocity w around a planet of 

mass M .  Assume m << M .  The rotation of the moon can be neglected 
but the planet rotates about its axis with angular velocity CL. The axis of 
rotation of the planet is perpendicular to the plane of the orbit. Let I = 
moment of the inertia of the planet about its axis and D = distance from 
the moon to the center of the planet. 

(a) Find expressions for the total angular momentum L of the system 
about its center of mass and for the total energy E .  Eliminate D from both 
these expressions. 

(b) Generally the two angular velocities w and R are unequal. Suppose 
there is a mechanism such as tidal friction which can reduce E if w # R, 
but conserves angular momentum. By examining the behavior of E as a 
function of w, show that there is a range of initial conditions such that 
eventually w = R and a stable final configuration obtains. 

Famous examples of this effect occur in the orbits of the moons of 
Mercury and Venus. (However, it is the lighter body whose rotation is 
relevant in these examples.) 

(Princeton ) 

Solution: 
(a) As M >> m, the position of the planet can be considered to be fixed 

in space. The total angular momentum about the center of mass and the 
total energy of the system of moon and planet are then 
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L = I R + m D 2 w ,  
1 1 G M m  
2 2 D '  

E = -la2 + -mD2w2 - - 

Considering the gravitational attraction between the two bodies we have 

-- - mDw2 , GMm 
D2 

or 
D =  (-J GM 

Substituting this in the above gives 

L=IR+m(,) G2M2 , 

1 m 
2 2 

E = - 1 0 2  - - ( G M ~ ) %  . 

(b) As angular momentum is to be conserved, d L  = 0, giving 

ds2 - mD2 
dw 31 * 

For a configuration to be stable, the corresponding energy must be a 
minimum. Differentiating (l), we have 

d E  = IRdR - E(GM)Zw-idw 
3 

mD2 
3 

- - -(R - W ) d w  , 

d2E 2mD 
d w 2  3 
-- 

mD2 
9 W 

Hence for the configuration to be stable, we require that 

Q Z W ,  
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and furthermore that 

mD2 4R 
- + l > - .  I W 

This latter condition can be satisfied by a range of initial conditions. 

1177 
A pendulum consists of a uniform rigid rod of length L ,  mass M ,  a bug 

of mass M / 3  which can crawl along the rod. The rod is pivoted at one end 
and swings in a vertical plane. Initially the bug is at the pivot-end of the 
rod, which is at rest at an angle 60 (60 << 1 rad) from the vertical as shown 
in Fig. 1.143, is released. For t > 0 the bug crawls slowly with constant 
speed V along the rod towards the bottom end of the rod. 

(a) Find the frequency w of the swing of the pendulum when the bug 
has crawled a distance 1 along the rod. 

(b) Find the amplitude of the swing of the pendulum when the bug has 
crawled to  the bottom end of the rod (1  = 15). 

(c) How slowly must the bug crawl in order that your answers for part 
(a) and (b) be valid? 

( Wisconsin ) 

Fig. 1.143. 

Solution: 

rod and bug about the pivot is 
(a) when the bug has crawled a distance E ,  the moment of inertia of the 



Newtonian Mechanics 289 

1 1 1 
3 3 3 I = -ML2 + -M12 = -M(L2 + 1 2 )  

The equation of motion of the pendulum is 

d L 1 
- ( I d )  = -Mg-sine - -Mglsin6 , dt 2 3 

For small oscillations it becomes 

If the bug crawls so slowly that the change in 1 in a period of oscillation is 
negligible, i.e. i = v << lw, we can ignore the second term and write 

Hence the angular frequency of oscillation w is 

g(21+ 3L) 
w = J  2(L2 + 12)  ' 

(b) Consider the motion of the bug along the rod, 

M .. . Mgcos6 
3 - f ,  3 

- ( 1  - 162) = 

where f is the force exerted on the bug by the rod. As the bug crawls with 
constant speed, 1 = 0. Also for small oscillations, cos 6 M 1 - %. The above 
gives 

Mg Mg M1g2 
f=-- -0 +- 3 6 3 .  

The work done by f as the bug crawls a distance dl is then 

which is stored as energy of the system. The first term on the right-hand 
side is the change in the potential energy of the bug, while the second term 
is the change in the energy of oscillation E of the system, 
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d E  = - - - lo2 dl i ; I ( g :  ' )  
Under the condition 1 << Zw, 1 hardly changes in a period of oscillation and 
can be taken to be constant. For each 1, when we consider a full period, the 
kinematic quantities in the above equation can be replaced by their average 
values 

Now, in single harmonic oscillations the potential and kinetic energy are 
equal on average, so that 

- MgL - Mgl - 
V = -(1 - cosf?) + -(1 - cosf?) 

2 3 

M g L  1 -  E - - (z + 3 )  O2 = ; 

or 

- 6E 02 = 
Mg(3L + 21) ' 

Substituting these in the energy equation we have 

dE  1 

or 
l n E = - l n ( - ) + K ,  1 3L+2Z 

2 L 2 + P  

where K is a constant. Initially, 1 = 0, E = Eo, i.e. 

1 
2 

l n ~ ~  = -1n (S) + K , 

l n - = - l n [  E 1 (3L+2Z)L ] and we thus have 

Eo 2 3(L2 + 1 2 )  ' 
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When 1 = L,  

i.e. 

E 1 5  
In- = -1n- 

Eo 2 6 '  

E =  . 

8 is equal to the amplitude when 
1 = L,  the amplitude Om, is given by 

= 0 i.e. T = 0 and E = V .  When 

i M g  (5  L L Z  + 3) Omax = E . 

When 1 = 0, we have 
1 L -Mg . -O;  = Eo . 
2 2 

5 E ~ ,  the above expressions give Then as E = 6 

(c) We have neglected the radial velocity of the bug as compared with 
its tangential velocity: i << lw. This is the condition that must be assumed 
for the above to be valid. 

1178 
A uniform rod of mass m and length 1 has its lower end driven sinu- 

soidally up and down as shown in Fig. 1.144 with amplitude A and angular 
frequency w. It is a fact that for suitable choices of the parameters m, 1, A 
and w, the pendulum will undergo oscillations around the statically unstable 
position 0 = 0. (The motion is confined to the plane of the diagram.) 

(a) List all the components of all forces on the rod. 
(b) Is the angular momentum of the rod conserved? 
(c) Is the linear momentum of the rod conserved? 
(d) Is the energy of the rod conserved? 
(e) Find the components of the acceleration of the center of mass as 

functions of time expressed in terms of $( t ) .  
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( f )  Write down the equation of angular motion of the rod in terms of 

(g) Use (e) and (f) to find an equation of motion for 8(t). 

YOU ARE NOT ASKED TO SOLVE THIS EQUATION OF MOTION, 

(h) Qualitatively, what kind of motion is predicted when A = O? 
( i ) Physically, how is it that oscillations about the upright position can 

(Hint: how do you expect the frequency of the 8 motion to be related 

( Wisconsin) 

the forces on it. 

BUT TO INTERPRET IT: 

occur? 

to w?) 

Y 

Fig. 1.144. 

I 

Fig. 1.145. 

Solution: 
(a) The forces on the rod are the gravity mg, and the components fz, 

(b) The angular momentum of the rod is not conserved. 
(c) The linear momentum of the rod is not conserved. 
(d) The energy of the rod is not conserved. 
(e) Use a moving coordinate frame O’x’y’ as shown in Fig. 1.145 with 

the axes parallel to the corresponding axes of the fked frame Ozy, and the 
origin 0‘ moving along the y-axis such that its radius vector from 0 is 

f v  of the force f exerted by the moving pivot. 

ro = Acoswtj . 

Then the radius vector of the center of mass of the rod is 
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1 1 
2 2 

r = ro + - sin& + - cosej 

whence 

dr 1 a 

dt 2 
- -  

1 .. 1 -  
2 2 

d2r 1 
dt2 2 
- = - ( e c o s 8 -  b2 sin8)i - AW2 coswt + -8sin 8 + -02 cos 8 

The last equation gives the x and y components of the acceleration of the 
center of mass. 

(f) (g)  Let x‘, y’ be the coordinates of the center of mass of the rod in 
the moving frame. Then 

x=x’, y=y’+Acoswt ,  

and hence 
X = XI, j i  = 3 - A W ~ C O S W ~  . 

Newton’s second law gives 

mx’=mX= fi, 
m 2  = mji + mAw2 cos wt = f, + mAw2 cos wt . 

Thus to apply Newton’s second law in the moving frame, a fictitious force 
mAw2 cos wtj’ has to be added. 

Consider the rotation of the rod in the moving frame about the origin 
0’. We have 

1 *. 1 1 
-rnl28=mg.-s in8-mAw2coswt--s in8,  
3 2 2 

or 
*. 3 
8 = - (g  - Aw2coswt)sin8 . 

21 

(h) If A = 0, the motion is just that of rotation of a rod under the action 
of gravity, there being no difference between the moving and fixed frames. 

(i) Suppose the rod oscillates about the upright position 8 = 0. Then 
8 M 0 and the equation of angular motion becomes 



294 Problems d Solutions on Mechanics 

8+- (Aw2coswt -g )6=0 .  3 
21 

Thus, if A # 0 the torque of the fictitious force may sometimes act as 
restoring torque. For a certain interval of time we may have Aw2 cos wt-g > 
0 and oscillations about the upright position may occur. 

1179 
A yo-yo of mass M lies on a smooth horizontal table as shown in 

Fig. 1.146. The moment of inertia about the center may be taken as :MA2. 
A string is pulled with force F from the inner radius B as indicated in 
Fig. 1.147. 

Fig. 1.146. Fig. 1.147. 

(a) In what direction will the yo-yo roll if 6 = 0, 7r/2, 7r? 

(b) For what value of 8 will the yo-yo slide without rolling independent 
of the roughness (coefficient of friction) of the table or the magnitude of F? 

( c )  At what angle 0 will the yo-yo roll, independent of the smoothness 
of the table? 

(Columbia) 

Solution: 
Assume that the yo-yo is at rest before the application of the force F .  
(a) As there is no friction acting on the yo-yo, the direction of rolling is 

only determined by the direction of the torque of the applied force F about 
its center. The direction of rolling is shown in Fig. 1.147 for 0 = 0, 7r/2 or 

(b) The friction acting on the yo-yo is f = p N ,  where N is the normal 
reaction of the table, as shown in Fig. 1.146. The yo-yo will slide without 
rolling if 

lr. 
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F B  = p N A  . 
The acceleration a of the center of mass of the ysyo is given by 

Fcos8-pN = M a .  

Thus 
M a  B 
F A  c o s 8 = - + - .  

If this condition is satisfied, 8 is independent of p. It still depends on F 
unless a = 0, i.e. no motion. 

(c) Let the acceleration of the center of mass of the ysyo and its angular 
acceleration about the center be a and cr respectively. We have (Fig. 1.146) 

FcosO- f = M a ,  
1 
2 f A -  FB = - M A 2 a .  

For rolling without slipping, a = -A@. Eliminating a and a gives 

f=-( 2F 
A 

As 
f 5 p N  = p(Mg - F = sine) , 

for the y+yo to roll without slipping irrespective of the smoothness of the 
table, i.e. independent of p, we require 

Mg sine= - 
F ’  

2B cost)= - 
A ’  

A Mg tarlo=--. 
2B F 

Thus we require that, first of all, 2B < A ,  Mg < F .  Then two values of 8, 
one positive and one negative, with the same I sin81 are possible. 

1180 
A bowling ball of uniform density is thrown along a horizontal alley with 

initial velocity vo in such a way that it initially slides without rolling. The 
ball has mass m, coefficient of static friction pe and coefficient of sliding 
friction jhd with the floor. Ignore the effect of air friction. 
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Compute the velocity of the ball when it begins to roll without sliding. 
(Prince ton ) 

Solution: 

rise to an acceleration 
When the bowling ball slides without rolling the friction f = pdmg gives 

f a = -- = - p d g .  
m 

The moment of f gives rise to an angular acceleration IY given by 
2 
5 

f R  = - M R 2 a ,  

as the ball has a moment of inertia imR2 about an axis through its center, 
R being its radius. Suppose at time t the ball begins to roll without sliding. 
We require 

Rat = vo + at , 
giving 

VO 2mv0 - 2v0 
R a - a  7 f  7 p d g  

t=----- 

The velocity of the ball when this happens is 

5 
7 

v = vo+at = vo - pdgt = -210 

1181 
A coin spinning about its axis of symmetry with angular frequency w is 

set down on a horizontal surface (Fig. 1.148). After it stops slipping, with 
what velocity does it roll away? 

( Wisconsin) 

Solution: 
Take coordinates as shown in Fig. 1.149. Before the coin stops slipping, 

the frictional force is f = pmg, where p is the coefficient of sliding friction. 
Let x, be the x coordinate of the center of mass of the coin. The equations 
of motion of the coin before it stops slipping are 

mx, = -pmg , 
I 8  = -pmgR , 
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Fig. 1.148. Fig. 1.149. 

where rn and R are respectively the mass and radius of the coin, and 
I = Zrn R2. Integrating and using initial conditions x, = 0, 8 = w at 
t = 0, we have 

When the coin rolls without slipping, we have 

xc = -8R 

Suppose this happens at time t ,  then the above give 

or 
wR 
3P9 

t = - *  

At this time, the velocity of the center of mass of the coin is 

which is the velocity with which the coin rolls away without slipping. 

1182 
A wheel of mass M and radius R is projected along a horizontal surface 

with an initial linear velocity Vo and an initial angular velocity wo as shown 
in Fig. 1.150, so it starts sliding along the surface (w,~ tends to produce 
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rolling in the direction opposite to Vo). 
between the wheel and the surface be p. 

Let the coefficient of friction 

(a) How long is it till the sliding ceases? 
(b) What is the velocity of the center of mass of the wheel at the time 

(Columbia) 
when the slipping stops? 

vo + x 

Fig. 1.150. 

Solution: 
(a) Take the positive 2 direction as towards the right and the angular 

velocity d as positive when the wheel rotates clockwise. Assume the wheel 
has moment of inertia :MR2 about the axle. We then have two equations 
of motion: 

MX = - p M g ,  

1 -MR20 = p M g R .  
2 

Making use of the initial conditions x, = Vo, $, = -wo at t = 0 we obtain 
by integration 

x = vo - pgt , 

Let T be the time when sliding ceases. Then at T 

or 
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giving 
v O + R w O  

(b) The velocity of the center of mass of the wheel at the time when 

1 
3 

T =  
3P9 . 

slipping stops is 

X = Vo - PgT = -(2Vo - R w o )  . 

1183 

A thin hollow cylinder of radius R and mass M slides across a frictionless 
floor with speed VO. Initially the cylinder is spinning backward with angular 
velocity wo = 2V#/R as shown in Fig. 1.151. The cylinder passes onto a 
rough area and continues moving in a straight line. Due to friction, it 
eventually rolls. What is the final velocity Vf? 

Fig. 1.151. 

Solution: 

Fig. 1.152. 

Suppose the cylinder enters the rough area at time t = 0 and starts to 
roll without slipping at time t = to.  At 0 < t < t o  the equations of motion 
of the cylinder are (Fig. 1.152) 

dV 
d t  -f = M - ,  

dw f R = I -  
d t  

with I = MR2. Integrating we obtain 
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M(Vf - VO) = -1 t o  fdt  ) 

or 

giving 
I ( w ~  + W O )  = MR(V0 - V,) . 

The cylinder rolls without slipping at t = t o )  when V, = w f R .  We are also 
given woR = 2Vo. The last equation then gives 

1 
2 

v, = --vo . 

Hence the cylinder will eventually move backward with a speed ~ V O .  

1184 
Calculate the minimum coefficient of friction necessary to keep a thin 

circular ring from sliding as it rolls down a plane inclined at an angle 0 with 
respect to the horizontal plane. 

( Wisconsin) 

Y 

Fig. 1.153. 

Solution: 
Use coordinates as shown in Fig. 1.153 and write down the equations of 

motion for the ring: 

mx=mgsinO- f, I @ =  f R ,  
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where m and R are the mass and radius of the ring respectively, I = mR2 
is the moment of inertia of the ring about its axis of symmetry and f is the 
ststic friction on the ring. The above equations combine to give 

x +  RC;i=gsinO, 

The condition for no sliding is R$ = 5,  or R+ = x, giving 

1 
2 

x = -gs in9 .  

1 
2 

Hence 
f = mgsin9 - mx = -mgsin9. 

The normal reaction of the inclined plane is N = mgcos8, and for no 
slipping we require f < p N ,  or 

1 
-mg sin 0 < pmg cos 8 , 
2 

i.e. 
1 
2 
- tan8 < p .  

Hence the minimum coefficient of friction necessary to keep the ring from 
slipping is p = t tang. 

1185 

A solid uniform cylinder of mass m, radius R is plwed on a plane 
inclined at angle 19 relative to the horizontal as shown in Fig. 1.154. Let g 
denote the usud acceleration due to gravity, and let a be the acceleration 
along the incline of the axis of the cylinder. The coefficient of friction 
between cylinder and plane is p. 

For 0 less than some critical angle 8,, the cylinder will roll down the 
incline without slipping. 

(a) What is the angle 0,? 
(b) For 9 < 8,, what is the acceleration a? 

( CUSFEd ) 

Solution: 

the axis of the cylinder. The equations of motion are 
Let f denote the frictional furce and a the angular acceleration about 
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Fig. 1.154. 

mgsin8 - f = m a ,  

f R =  la, 

with 
I I = - M R ~ .  
2 

(a) If there is no slipping, we require a = Rcr, f < p N ,  where N ,  the 
normal reaction of the inclined plane, equals mgcos8. The equations of 
motion give 

1 
3 

f = -mgsin$ .  

Hence we require 
1 
3 

pmgcos6 > -mgsin8 ,  

or 
3p > t a n $ .  

Let tan$, = 3p. Then we require tan0 < tan8, for no slipping. Therefore 
the critical angle is BC = arctan 3p. 

(b) For 8 < 8,, the cylinder rolls without slipping and the above gives 

f 2  a = gsin8 - - = -gsin8 
m 3  

1186 

A wheel of radius T ,  mass m, and moment of inertia I = mR2 is pulled 
along a horizontal surface by application of a horizontal force F to a rope 
unwinding from an axle of radius b as shown in Fig. 1.155. You may assume 
there is a frictional force between the wheel and the surface such that the 
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wheel rolls without slipping. In the expression I = mR2 the quantity R is 
a constant with dimensions of length. 

(a) What is the linear acceleration of the wheel? 
(b) Calculate the frictional force that acts on the wheel. 

( Wisconsin ) 

Solution: 
Let z be the displacement of the center of mass of the wheel along the 

horizontal direction and 6 the angular displacement of the wheel from an 
initial direction through its center of mass. 

(a) The equations of motion of the wheel are (Fig. 1.155) 

m j ; . = F - f ,  
I e =  Fb+ f r .  

Fig. 1.155. 

The constraint €or no sliding is k = T O  or x = re. Hence 

mR2 --P= F b + ( F - m j i . ) r ,  
T 

or 

F(b + T)T 

which is the linear acceleration of the wheel. 

j;.= 
m(R2 + r2) ’ 

(b) The frictional force is 

f = F - m x  



304 Problems d Solutions on Mechanics 

1187 

A flat disc of mass m = 1.8 kg and radius r = 0.2 m lies on a frictionless 
horizontal table. A string wound around the cylindrical surface of the disc 
exerts a force of 3 Newtons in the northerly direction (Fig. 1.156). Find 
the acceleration (magnitude and direction) of the center of mass a and the 
angular acceleration a about the center of mass. Is a = ra? Explain. 

( Wisconsin) 

Fig. 1.156. 

Solution: 
The equations of motion are 

where I = mr2/2, giving 

f a = - = 1.7 m/s ) 

m 

2f a = - = 17 rad/s,  

The direction of a is the same as that o f f .  It is seen that a # ar. This is 
because as the disc lies on its flat surface the two motions are not related 
even though they are due to the same force. 

mr 

1188 

A wheel of radius R and moment of inertia I is mounted on a frictionless 
axle at 0. A flexible, weightless cord is wrapped around the rim of the 
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Fig. 1.157. 

wheel and carries a body of mass M which begins descending as shown in 
Fig. 1.157. What is the tension in the cord? 

( Wisconsin) 

Solution: 
Let F be the tension in the cord, x the position of the center of masti 

of the body and d the angular velocity of the body as shown in Fig. 1.157. 
We have the following equations: 

I ~ ' = F R ,  

+ R e ' ,  
MX = Mg- F , 

which yield 
M d  

I + M R 2  * 
F =  

1189 
Two uniform discs in a vertical plane of masses A41 and Mz with radii 

R1 and R2 respectively have a thread wound about their circumferences, 
and are thus connected as shown in Fig. 1.158. 

The first disc has h e d  frictionless horizontal axis of rotation through 
its center. Set up the equations to determine the acceleration of the center 
of mass of the second disc if it falls freely. 
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X 

Fig. 1.158. 

(You need not solve the equations.) 
(Wisconsin) 

Solution: 
Let F be the tension in the thread, 5 1  the distance of the center of mass 

of disc 2 from that of disc 1, and 8 1 ,  92 the angular velocities of the discs, 
as shown in Fig. 1.158. We have the equations of motion 

M2X= M z g - F ,  
I,& = FR1 , 
I292 = FR2 , 

where I1 = mlR7/2, 12 = m z e / 2 .  W2 also have the constraint 

X = Rid1 + Rzdz , 

or 
x = Rl& + R2& . 

Elom the four equations the unknowns 81, 32, x and F can be determined. 

1190 

A yo-yo of mass M is composed of 2 large disks of radius R and thickness 
t separated by a distance t with a shaft of radius r .  Assume a uniform 
density throughout. Find the tension in the massless string as the yeyo 
descends under the influence of gravity. 

(Wisconsin) 
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Solution: 

are respectively 
Let the density of the yo-yo be p, then its moment of inertia and mass 

1 1 
2 2 I = 2 * -7rtpR4 + -7r tpr4  , 

M = 27rtpR2 + rtp2 , 

whence 

The equations of motion of the yo-yo are 

MX = M g  - F , 
I 8  = Fr , 

where F is the tension in the string. We also have the constraint x = re. 
Fkom the above we obtain 

I M g  - (2R4 + r 4 ) M g  F =  
I + M r 2  - 2R4 + 4R2r2 + 31-4 * 

1191 

A sphere of mass M and radius R (I = $MR2)  rests on the platform 
of a truck. The truck starts from rest and has a constant acceleration A. 
Assuming that the sphere rolls without slipping, find the acceleration of 
the center of mass of the ball relative to the truck. 

( Wisconsin) 

Fig. 1.159. 
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Solution: 
Let 0xy and O'x'y' be coordinate frames attached to the truck and 

fixed in space respectively with the x- and 2'-axes along the horizontal as 
shown in Fig. 1.159. Denoting 0'0 = 6, we have for the center of mass of 
the sphere 

2' = x + El  or x ' = x + E .  

As the force acting on the sphere is the friction f ,  Newton's second law 
gives, writing A for (, 

__ 

f = Mj;' = M X +  MA , 

or 
M I = f - M A .  

Thus in the moving frame there is a fictitious force F = - M A  acting on the 
sphere through the center of mass, in addition to the friction f .  Considering 
the torque about the center of mass, we have 

I e =  f R  

with I = gMR2. We also have the constraint for no slipping, x = -Re, or 
x = -Re.  These three equations give x = - $ A l  which is the acceleration 
of the center of mass of the sphere relative to the truck. 

1192 
Referring to Fig. 1.160, find the minimum height h (above the top 

position in the loop) that will permit a spherical ball of radius r (which 
rolls without slipping) to maintain constant contact with the rail of the 
loop. (The moment of inertia of a sphere about the center is fm?.) 

( Wisconsin ) 

Solution: 
Conservation of mechanical energy requires that the kinetic energy of 

the sphere at the top position in the loop is equal to the decrease mgh in 
potential energy as it falls from the initial position to this position. The 
kinetic energy of the sphere is composed of two parts: the transiational 
kinetic energy of the sphere and the rotational kinetic energy of the sphere 
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Fig. 1.160. 

about its center of mass. Let rn, T,  v, w be respectively the mass, kinetic 
energy, velocity of the center of mass, and angular velocity about the center 
of mass of the sphere. Then 

1 1 
T = -mu2 + - Iw2 

2 2 

with I = gmr2. As the sphere rolls without slipping, v = wr and 

In the critical case, the force exerted by the loop on the sphere is zero when 
the latter reaches the top of the loop. In other words, the centripetal force 
needed for the circular motion of the sphere is supplied entirely by gravity: 

mu2 
R 
-- - r n g  1 

whence v2 = Rg and 
7 
10 

T = -mRg = mgh . 

Hence h = 7R/10 is the minimum initial height required. 

1193 
A sphere of radius b is at rest at tJ = 0 upon a fixed sphere of radius 

Q > b. The upper sphere is moved slightly to roll under the influence of 
gravity as shown in Fig. 1.161. The coefficient of static friction is pa > 0, 
the coefficient of sliding friction is p = 0. 
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(a) Briefly describe and explain the sequence of sphere motions in terms 

(b) Write the equation of constraint for pure rolling of the upper sphere 

(c) Write the equation of motion in terms of 6 and 8 for the part of the 

(d) Find a related equation between e and 8. 
(el Solve this equation for 8( t ) ,  assuming 0 < O(0) << 8( t ) .  You may 

of rolling, sliding and separation. 

on the lower sphere. 

motion where the sphere rolls without slipping. 

wish to use the relation 

1””- -2lntan(:) . 
sin (:) 

Fig. 1.161. 

Solution: 

(a) At first the upper sphere rolls without slipping, the angular velocity 
becoming larger and the normal pressure on it smaller with increasing 8. 
When the condition for pure rolling is not satisfied, the sphere begins to 
slide and finally when the centripetal force is not large enough to maintain 
the circular motion of the upper sphere, it will separate from the lower 
sphere. 

(b) Suppose initially 0, A, 0’, B are on the same vertical line. As the 
upper sphere rolls by an angle cp, its center has traveled through a path 
00’8, as shown in Fig. 1.161. Hence the condition for pure rolling is 
- 

(a + b)8 = bp . 
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(c) The equations of motion of the upper sphere are 

m(a + b)8 = rng sin I3 - f, 

2 
5 

where f is the static friction on the sphere. When the sphere rolls without 
slipping, we have from (b) 

I+ = -mb2+ = f b  , 

(a + b)d = b@ . 

Then the equations of motion give 

.. 5gsinI3 
7(a + b) 

e=- 

(4 As 

the last equation gives 

log cos I3 
0 2  = - + K .  

7(a + b )  

With 0 = 0 at O = 0, K = &. Hence 

. log( 1 - cos 0) 
7(a + b )  

8 2  = 

(el As 

d t  7(a + b)  

we have, with I30 = O(0) at t = 0, 

f e  dI3 f t  . 

or 

In (-) = a t ,  
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where cy = ,/&. Hence 

o = 4 arctan (eat tan 2) , 
valid for the part of the motion where the sphere rolls without slipping. 

1194 

A sphere of mass m, radius a, and moment of inertia $maz rolls without 
slipping from its initial position at rest atop a fixed cylinder of radius b (see 
Fig. 1.162). 

(a) Determine the angle Omax at which the sphere leaves the cylinder. 
(b) What are the components of the velocity of the sphere’s center at 

( Wisconsin) 
the instant it leaves the cylinder? 

Fig. 1.162. 

Solution: 
(a) The forces on the sphere are as shown in Fig. 1.162. The equations 

of motion for the center of mass of the sphere are 

m(a + b)d = mgsine - f , 
m(a + b)e2 = mgcose - N , 

(1) 
(2) 

and that for the rotation of the sphere is 

(3) 
2 
5 
-ma2* = fa . 
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The condition for it to roll without slipping is 

(a + b)8 = a@, or (a + b)8 = a+ . 

313 

(4) 

Fkom (3) and (4), we found 

2 
5 

f = -m(a + b)8 . 

Substitution in (1) gives 
.. 5gsinO 8=- 

7(a + b) . 
As 8 =  e =  0 at t = O  and e =  ig, it gives 

82 . = iog(1 - C O S ~ )  

7(a + 6 )  

Substitution in (2) gives 

10 
7 

N = mgcos6 - -mg(l - cos6) = mg 

After the sphere leaves the cylinder, N = 0. We assume that the coefficient 
of friction is large enough for the period of both rolling and slipping which 
occurs before the sphere leaves the cylinder to be negligible. Then at the 
instant N becomes zero, 8 = 8- given by 

10 
17 

~ 0 8 6 m a  = - . 

(b) At that imtant the velocity of the center of the sphere has magnitude 

and is parallel to the tangential direction of the cylinder at the point where 
e = emu. 

1195 
In Fig, 1.163, the ball on the left rolls horizontally without slipping at 

speed V toward an identical ball initially at rest. Each ball is a uniform 
sphere of mass M. Assuming that all the frictional forces are small enough 
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to have a negligible effect during the instant of collision, and that the 
instantaneous collision is perfectly elastic, calculate: 

(a) The velocity of each ball a long enough time after the collision when 
each ball is again rolling without slipping. 

(b) The fraction of the initial energy transformed by the frictional forces 
to thermal energy. 

The moment of inertia of a sphere of mass M, radius R about its center 
is $MR2. 

(CUSPEA ) 

Fig. 1.163. 

Solution: 
(a) Before the collision 

w 2 = 0 .  
V v1 = v, vz = 0, w1= R’ 

During the collision, as friction can be neglected, the forces with which 
the balls interact are directed through the centers so that the angular 
momentum about the center of each ball i s  conserved. Thus 

w; = w1, W ; = O .  

As the collision is elastic, conservation of translational momentum and that 
of kinetic energy then require 

v: = 0, v; = Vl = v . 
In the above, single primes denote quantities immediately after the collision. 
After some time, the balls again roll without slipping. Let the quantities 
at this time be denoted by double primes. The positive directions of these 
quantities are shown in Fig. 1.164. 

The angular momentum of each ball about some fixed point in the plane 
of motion is conserved. Consider the angular momentum of each ball about 
the point of contact with the horizontal plane. 
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For ball 1, 
MRV; + Iwi = MRV; + Iwy , 

or 
- I V  = ( M R +  ;) v; > 

R 

giving 

For ball 2, 

MRV,' + IW; = MRV," + Iw t  , 

giving 

Fig. 1.164. 



316 Problems Ed Solutions on Mechanics 

(b) The initial and final energies of the system are 

1 1 2 1  2 w. - - M V .  + -rW, = - ( M P  + p R 2 .  ") 
l - 2  2 2 R2 

1 1 
2 2 

Wj = - M ( V r 2  + V:2) + -I(wY2 + w:') 

1 2 VJ2 + V/2 + 5 (V?' + V:') 
1 7 29 
2 5 49 

- - - M V 2 .  - . - 

Hence the loss of energy is 

and the fractional loss is z. 

1196 
A small homogeneous sphere of mass m and radius r rolls without sliding 

on the outer surface of a larger stationary sphere of radius R as shown in 
Fig. 1.165. Let 0 be the polar angle of the small sphere with respect to a 
coordinate system with origin at the center of the large sphere and z-axis 
vertical. The smaller sphere starts from rest at the top of the larger sphere 

(a) Calculate the velocity of the center of the small sphere as a function 

(b) Calculate the angle at which the small sphere flies off the large one. 
(c) If one now allows for sliding with a coefficient of friction p, at what 

( Columbia) 

(e = 0). 

of e. 

point will the small sphere start to slide? 

Solution: 
(a) As the sum of the kinetic and potential energies of the small sphere 

is a constant of the motion when it rolls without sliding, we have 
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Fig. 1.165. 

1 1 2  
2 2 5  
--mu2 + - . -mr2 @' + mg(R + r )  cos e = mg(R + T )  

with v = T@ = (R + r)b, whence 

The velocity of the center of the small sphere is 

(b) At the moment of flying off, the support force on the small sphere 
N = 0. From the force equation 

?-FLU2 
mgcos% - N = - 

R + r  ' 

we find the angle 8, at which the small sphere flies off the large sphere as 
given by 

10 
'- 17 

case - - 

Thus 

e, =arccos ( z )  . 
Note that this derivation applies only for sufficiently large coefficient of 
friction. 
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(c) When the small sphere rolls without sliding, we have 

mgsin6 - f = mv , 
2 
5 

f r  = - m r 2 + ,  

= ( R + r ) e  = r + ,  

where f is the frictional force on the sphere. From these we find 

j = t m g s i n e .  
7 

At the moment when the sphere starts to  slide, the frictional force is 

i.e. 

mgcos6 - - R + r  r n V 2 )  . 

Then, using the expression for v from (a), we have 

2sin8 = 17pcos6 - lop. 

Solving this we find that the angle 0, at which the small sphere starts to 
slide is given by 

170p2 f d m  
289p2 + 4 

cost', = 

However, we require that 8, > 8,, or cos8, > cos6,. Where this can be 
satisfied by the value of p, we generally have to  take the upper sign. Hence 

6, = arccos 

1197 

A spherical ball of radius T is inside a vertical circular loop of radius 
(R+r)  as shown in Fig. 1.166. Consider two cases (i) rolling without sliding 
(ii) frictionless sliding without rolling. 
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(a) In each case what minimum velocity v1 must the sphere have at the 

(b) For a 10% smaller v1 and the sliding case, where on the loop will 
bottom of the loop so as not to fall at the top? 

falling begin? 
(Columbia) 

Fig. 1.166. 

Solution: 
(a) For rolling without sliding, Rd = rcp. Hence 

Re v "=+r=r ,  
where v is velocity of the center of the ball. In order that the ball does not 
fall at the top of the loop, the force Nt the loop exerts on the ball a t  the 
top must be such that 

Thus we require that 
v2 2 Rg . 

The minimum velocity vt that satisfies such condition is v; = Rg and the 
corresponding kinetic energy is 

At the bottom of the loop, if the ball has the required minimum velocity 
v1, we have 

T b = T t + & ,  
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i.e. 
7 7 

-mu; = -mu; + 2mRg, 
10 10 

giving 

or 

20 27 
7 7 

V: = V: + -Rg = -Rg , 

(ii) For sliding without rolling, we still require that v2 2 Rg at the top 
of the loop, i.e. the minimum velocity at the top is given by 

2 
vt = Rg 7 

and the corresponding kinetic energy is 

1 2  Ti = -mut . 
2 

Thus we have 
1 1 
-mu: = -mu: + 2mgR, 
2 2 

giving 

or 

V? = 5 R g ,  

v 1 = & .  

(b) Suppose falling begins at 6. At that moment the velocity v of the 
center of the ball is given by 

1 1 
-m(0.9v1)2 = -mu2 + mg(R - Rcos19) , 
2 2 

and 

with 

N = O  
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These equations give 

3Rgc0~8 = 2Rg - 0.81v; = -2.05Rg , 

i.e. 

321 

or 

C O S ~  = -0.683 , 

e = 133.10 . 

1198 

A uniform plank of length 2a is held temporarily so that one end leans 
against a frictionless vertical wall and the other end rests on a frictionIess 
floor making an angle 6 = 60 with the floor. When the plank is released, it 
will slide down under the influence of gravity. 

(a) Find the expression (as an integral if you like) for the time that it 
will take for the plank to reach a new angle 8. 

(b) At what value of 8 will the upper end of the plank leave the wall? 
(Columbia) 

Y 

t 

Fig. 1.167. 

Solution: 

gives 
(a) As no friction is involved mechanical energy is conserved, which 

I 

1 1 1  
2 2 3  
-ma2d2 + - -ma2b2 + mgasin8 = mgasindo , 
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2 
3 

i.e. 
-ad2 = g(sin8o - sine) 

or 

Note that the factor ;ma2 is the moment of inertia of the plank about a 
horizontal axis through its center of mass, and that the negative sign is to 
be used for d as 0 decreases as t increases. 

(b) Take coordinates as shown in Fig. 1.167. The center of mass of the 
plank has horizontal coordinate 

x = acose . 

Thus 
2 = -a(h2 cose + esino) . 

The forces on the plank are as shown in Fig. 1.167. At the instant the plank 
ceases to touch the wall, Nl = m2 = 0, i.e. 

dZCOSe = -8sinB. 

Differentiating (1) we have 

.* 39 e = --case. 
4a 

Substituting this and (1) in the above we have 

sin 8 = 2(sin 80 - sin 0 )  , 

2 sin8 = - sineo , 
3 

or 

i.e. 

being the value of 0 when the upper end of the plank leaves the wall. 
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1199 

A thin uniform stick of mass m with its bottom end resting on a fric- 
tionless table is released from rest at an angle 80 to the vertical (Fig. 1.168). 
Find the force exerted by the table upon the stick at an infinitesimally small 
time after its release. 

(UC, Berkeley) 

Fig. 1.168. 

Solution: 
As there is no friction, the forces acting on the stick are the normal sup  

port N and the gravity mg as shown in Fig. 1.168. Within an infinitesimal 
time of the release of the stick, the equations of motion are 

N - m g = m j i ,  

1 1 
-NLsinBo = -mL28, 
2 12 

where y is the vertical coordinate of the center of mass and &mL2 is the 
moment of inertia about a horizontal axis through the center of mass of the 
stick. As 

1 
2 

= -LcOse, 

as initially 
e=o,  e = e , .  

Hence 



324 Problems B Solutions on Mechanics 

N = mg +mji 

1 .. 
= mg - -mLd sin 60 

2 

= mg - 3N sin2 do , 

or 

*g 
1 + 3sin2 do 

N =  

1200 
Two long uniform rods A and B each 1 m long and of masses 1 kg (A) 

and 2 kg (B) lie parallel to each other on a frictionless horizontal plane 
(x,y). Rod B is initially at rest at y = 0, x = 0 to 2 = 1 m. Rod 
A is moving at 10 m/s in the positive y direction, and it extends from 
x = (-1 + e )  m to x = e m, ( e  << 1 m) as shown in Fig. 1.169. Rod A 
reaches y = 0 at t = 0 and collides elastically with B. Find the subsequent 
motion of the rods, ignoring the possibility of subsequent collisions. Check 
for equality of energy before and after collision. 

( Co2.tLtnbia) 

Y 

Y t 

Fig. 1.169. Fig. 1.170. 

Solution: 
Let I be the impulse rod A exerts on rod B during the collision. Its 

direction is the direction of the motion of A, i.e. the positive y direction. 
Let 'UA, W A ,  VB, W B ,  be the velocity of the center of mass and the angular 
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velocity about the center of mass of A and B respectively, as shown in 
Fig. 1.170. Denoting the masses of A, B by m A , m B  respectively, we have 

-I = m A ( V A  - 10) , 
1 1 
- I =  -m AWA 2 12 

I = m B v B  , 
1 1  -I= -m 
2 12 B W B .  

The condition of elastic collision means that the relative velocity of the 
points of collision remains the same in magnitude but reverses in direction: 

The above equations give 

61 
m A  

W A  = - = 20 rad/s , 

us=--- 61 - 10rad/s 
m B  

for the subsequent motion. The energy of the two rods before collision is 

1 E . - - . 1 * 1 O 2 = 5 0  J ' -  2 
and after collision is 

Hence the equality of energy holds. 
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1201 

A billiard ball of radius R and mass M is struck with a horizontal cue 
stick at a height h above the billiard table as shown in Fig. 1.171. Given 
that the moment of inertia of a sphere is iMR2,  find the value of h for 
which the ball will roll without slipping. 

( Wisconsin) 

Fig. 1.171. 

Solution: 

Suppose that f is the impact force on the ball exerted by the stick and 
that it acts for a time At causing a change of momentum of the ball of 
MAv and a change of its angular momentum about the center of mass of 
IAw. We have the equations of motion 

MAv = f a t ,  
IAw = f ( h  - R)At 

with I = iMR2,  which yield 

2R2Aw 
AU = 

5 ( h -  R) . 
As the ball is at rest initially, the velocity of its center of mass and the 
angular velocity after impact satisfy 

2R2w 
v =  

5(h - R )  ' 

The ball will roll without slipping if v = Rw. Hence we require 

5(h - R) = 2R , 
or 

7 h = - R .  
5 
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1202 
A uniform solid ball of radius a rolling with velocity v on a level surface 

collides inelastically with a step of height h < a, as shown in Fig. 1.172. 
Find, in terms of h and a, the minimum velocity for which the ball will 
“trip” up over the step. Assume that no slipping occurs at the impact 
point, and remember that the moment of inertia of a solid sphere with 
respect to an axis through its center is ;Ma2. 

( Wisconsin ) 

Fig. 1.172. 

Solution: 
Let LJ and w’, J and J‘ be the angular velocity of the ball with respect 

to its center of mass and its angular momentum about the point of impact 
A before and after collision with the step, respectively. We have 

2 2  7 J = mv(a - h) + -ma w = -mva - mvh 
5 5 

as v = au for rolling without slipping, and 

as the center of mass of the ball is momentarily at rest after the collision. 
Conservation of angular momentum requires 

7 -ma 2 1 - 7  w - -mva-mvh , 
5 5 

yielding 



328 Problems tY Solutions on Mechanics 

In order that the ball can just trip up over the step, its kinetic energy must 
be sufficient to provide for the increase in potential energy: 

1 I I2 - I w  =mgh, 2 

where I' = :ma2 +ma2 = ;ma2 is the moment of inertia of the ball about 
a horizontal axis through A. Hence the minimum velocity required is given 
bY 

-ma2 7 (1 - E)2 (:>a = mgh, 10 

yielding 

1203 

A parked truck has its rear door wide open as shown in the plane view 
in Fig. 1.173(a). At time t = 0 the truck starts to accelerate with constant 
acceleration a. The door will begin to close, and at a later time t the door 
will be passing through the position shown in Fig. 1.173(b) such that the 
door makes an angle 8 with its original orientation. You may assume that 
the door has mass m uniformally distributed along its length L. 

(a) Using 0 and its time derivatives to describe the motion, write down 
dynamic equations relating the two components, Fll and F l ,  of the force 
exerted on the door at the hinge to the kinematic quantities. FII is the 
component of the force parallel to the door in the plane of the diagram and 
F l  is the component perpendicular to the door. 

(b) Express 8 = &?/dt2, ql and FL in terms of 8, m, L and a. 
(c) Write down, but do not attempt to integrate, an expression for the 

total time elapsed from the start of acceleration to the closing of the door. 

( M I T )  
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(b) 
Fig. 1.173. 

Solution: 
(a) In a frame attached to the accelerating truck, the center of mass 

of the door has components of acceleration i L 8  perpendicular to the door 
and -3L8' parallel to the door. The directions of ql and F l  are as shown 
in Fig. 1.173(c). In this frame a fictitious force -ma acting at the center 
of mass is included in the equations of motion: 

1 -* 

2 
F l  - macos0 = --mL8, 

41 - masine = -m~8' , 1 
2 

1 1 
- L F l =  --mL2e , 
2 12 

where &mL2 is the moment of inertia of the door about an axis perpen- 
dicular to the top edge of the door through the center of mass. 

(b) The above equations give 

.. 3 ~ ~ 0 ~ 8  0 = -  

Fl = -macos8. 

A0 8 = i$, integrating the expression for 0 and noting that 0 = 8 = 0 
initially we have 

. 3asin8 82 = - 

2L ' 
1 
4 

L '  

3 5 
2 2 

whence 
ql = masin8 + -masin8 = -masin8 . 
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g = /y- 
dt 1 

the total time elapsed from start of acceleration to the closing of the door 
is 

1204 
Consider a solid cylinder of mass rn and radius r sliding without rolling 

down the smooth inclined face of a wedge of mass M that is free to move 
on a horizontal plane without friction (Fig. 1.174). 

(a) How far has the wedge moved by the time the cylinder has descended 
from rest a vertical distance h? 

(b) Now suppose that the cylinder is free to roll down the wedge without 
slipping. How far does the wedge move in this case? 

(c) In which case does the cylinder reach the bottom faster? How does 
this depend on the radius of the cylinder? 

(UC, Berkeley) 

Fig. 1.174. 

Solution: 
(a) Let < be the distance of the center of mass of the cylinder from 

its initial position. In a fixed coordinate frame, let x be the horizontal 
coordinate of the center of mass of the wedge. The horizontal component 
of the velocity of the cylinder in the fixed frame is j: - ( cos8. As the total 
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momentum of the system in the x direction is conserved, we have, since the 
system is initially at rest, 

~i + m ( i  - icose) = o , 
giving 

(M + m)k = micos6,  

Without loss of generality we set 5 = 5 = 0 at t = 0. Integration of the 
above then gives 

( M  3- m)z = mccose . 
When the cylinder has descended a vertical distance h, it has moved a 
distance < = A, and the wedge has moved a distance 

M i - m  
mh x=- ms case = - M + m C O t e .  

(b) If the cylinder is allowed to roll, conservation of the horizontal 
component of the total linear momentum of the system still holds. It follows 
that the result obtained in (a) is also valid here. 

(c) Conservation of the total mechanical energy of the system holds 
for both cases. As the center of mass of the cylinder has velocity (x - 
i COB 6, -(sin 6 )  and that of the wedge has velocity (i, 0), we have for the 
sliding cylinder, 

1 1 
2 2 
-m[ ( i  - i cos q2 +- i" sin' e] + - ~i~ = mgt sin e , 

and for the rolling cylinder, 

1 1 1 
-m[(k-icos8)2+i2sin2B]+ 51q32 + - M k 2  =mgcsinO 
2 2 

with I = imr2,  @ = f for rolling without sliding. As 

i = (-) m icose , 
M + m  

the above respectively reduce to 
m 

2(M + m) 
( M  + m sin2 6)i2 = mgt sin 6 , 

m [ 3 ~  + m ( l +  2 sin2 e) ] i2  = mgt sin 8 . 
4(M + m) 
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These equations have the form ( = bJT.  As ( = 0 at t = 0, integration 
gives t = id. Hence for the same ( = A, t 0: 3 .  As 

3M+m(l+2sin28)-2(M+msin28)  = M + m > O ,  

the sliding cylinder will take a shorter time to reach the bottom. 

1205 

A stepladder consists of two legs held together by a hinge at the top 
and a horizontal rope near the bottom, and it rests on a horizontal surface 
at 60" as shown in Fig. 1.175. If the rope is suddenly cut, what is the 
acceleration of the hinge at that instant? Assume the legs to be uniform, 
identical to each other, and neglect all friction. 

(VC, Berkeley) 

A 60' 60' 

Fig. 1.175. Fig. 1.176. 

Solution: 

Consider the instant when the horizontal rope is suddenly cut. 
By symmetry the forces which the two legs exert on each other at the 

hinge A are horizontal and the acceleration of A, a A l  is vertically downward. 
Consider one leg of the stepladder. The forces acting on it are as shown 

in Fig. 1.176. Let 1 be the length of the leg and a~ the acceleration of its 
center of mass C at the instant the rope is cut. We have 
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m g - N = m a c , ,  

F = mace , 
1 1 
-Nlcos60" - -F1sin6O0 = I8 
2 2 

with I = Aml2, or 
1 
3 

N - A F  = -mle .  

The velocity of A in terms of the velocity of C are given by 

Hence aA, which is in the y direction, has components 

Consider now the acceleration a8 of point B. At the instant the rope is 
cut it has only a horizontal component. Thus aBy = 0, i.e. 

1 * *  1 ** 

ac, - -10cos60° = acy - -18 = 0 . 
2 4 

The above consideration gives 

Using these in the equations of motion for C we find 

which gives the acceleration of the hinge as 

directed vertically downward. 



334 Problems & Solutions on Mechanics 

1206 

A particle of mass m and speed v collides elastically with the end of a 
uniform thin rod of mass M as shown in Fig. 1.177. After the collision, m 
is stationary. Calculate M .  

( M I T )  

Fig. 1.177. 

Solution: 
Let v, be the velocity of the center of mass of the rod and w the angular 

velocity of the rod about the center of mass. Conservation of momentum 
and that of energy of this system give 

mu = Mu, , 
1 1 1 
-mu2 = -Mu: + - Iw2 
2 2 2 

with I = M12, 1 being the length of the rod. Conservation of the angular 
momentum of the system about a fixed point located at the center of the 
rod before collision gives 

1 
-1mv = I w  , 
2 

The above equations give 
M = 4 m .  

1207 
A uniform thin cylindrical rod of length L and mass m is supported 

at its ends by two massless springs with spring constants kl and k2.  In 
equilibrium the rod is horizontal, as shown in Fig. 1.178. You are asked 
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to consider small-amplitude motion about equilibrium under circumstances 
where the springs can move only vertically. 

(a) First consider the special case kl = k2. Find the eigenfrequencies of 
the normal modes and describe the corresponding normal mode motions. 
Here you might well be guided by intuitive reasoning. 

(b) Now consider the general case where kl and kz axe not necessarily 
equal. Find the normal mode eigenfrequencies. 

(Princeton) 

Fig. 1.178. 

Solution: 
(a) Let y1 and 312 be the vertical displacements from the equilibrium 

position of the two ends of the rod as shown in Fig. 1.178. As the displace 
ment of the center of mass C is i(y1 + y2), its equation of translational 
motion is 

1 
p ( j i 1  + ji2) = - ~ Y I  - b y 2  . 

For small-amplitude rotation about the center of mass, we have 

1 
2 

Id = - -L(k ly l  - k2y2) 

with I = &mL2, 0 M y.  For ]El = k2 = k, the equations of motion 
reduce to 

2k 
$1 + ji2 = --(y1 m + yz) , 

51 - $2 = --(PI - y2) . 
6k 
m 
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Hence there exist two normal modes. 
(i) Symmetric mode 

Y B  = y1 + y2 

with eigenfrequency wd = e. This mode corresponds to vertical har- 
monic oscillation of the rod as a whole. 

(ii) Asymmetric mode 
Ya = y1 - Y 2  

with eigenfrequency w, = J,/$$ . This mode corresponds to harmonic 
oscillation about a horizont axis perpendicular to the rod and through 
its center of mass. 

(b) For the general case kl # k2, let y1 = AleiWt, 92 = A2eiwi, where w 
is the eigenfrequency of oscillation. The equations of motion now give 

For a non-zero solution we require 

1 
kl - -w2 

2 
Iw2 1 -- p l  

1.e. 

k2 - $w2 
= o ,  

$Lk2 - Iwa 

1 ~ 4  
- - (t + i m L )  (kl  + k2)w2 + Lklk2 = 0 , L 

or 
m2w4 - h ( k 1  + k2)w2 + 12klk2 = 0 . 

Solving for w2 we obtain the eigenfrequencies 

Note that for kl = k2 = k ,  this expression gives w = @,@, in 
agreement with (a). 
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1208 
A rigid wheel has principal moments of inertial I1 = I2 # I3 about 

its body-fixed principal axes 21, 8 2  and x3, 85 shown in Fig. 1.179. The 
wheel is attached at its center of mass to a bearing which allows frictionleas 
rotation about one spacefixed auis. The wheel is “dynamically balanced”, 
i.e. it can rotate at constant w # 0 and exert no torque on its bearing. 
What conditions must the components of w satisfy? Sketch the permitted 
motion( s) . 

(MITI 

t 

Fig. 1.179. 

we see that (3) can be readify integrated to give 

w3 = constant = R , say. 

We then rewrite (1) and (2) as 
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13 - z 
w 1 =  - (T) Rw2 , 

w 2  = ( 7) a w l  , 
13 - z 

which are the conditions that must be satisfied. 
equations gives 

Differentiating these 

2 
2 w1 = - (7.) w, = - (y) 13 - z w1= -a w1 , 

where a = (?)a. The general solution is 

w1 = wo cos(at + E ) ,  w2 = wo sin(at + E )  . 

Hence the total angular velocity has magnitude 

w = 4- = d i5q ,  
which is a constant. As w3 = is a constant the total angular velocity 
vector w makes a constant angle 0 with the x3-axis as shown in Fig. 1.179. 
Furthermore the plane of w and 2 3  rotates about the 2 3 - a X i s  with an 
angular velocity a, or a period 

2nI - - 2n - 
a (13 - I ) n  * 

The motion, which is the only one allowed, is sketched in Fig. 1.179. 

1209 

A rigid body is in space. All external influences (including gravity) are 

(a) Use Newton’s law to show that angular momentum is conserved; 

negligible. 

mention any assumptions made. 
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(b) Suppose the center of mass of the body is at rest in an inertial frame. 
Must its axis of rotation have a fixed direction? Justify your answer briefly. 

( UC, Berkeley) 

Solution: 

defined as 
(a) The angular momentum of a rigid body about a fixed point 0 is 

n 

where r, is the radius vector from 0 of a particle mi of the rigid body, 
which consists of n particles. As there axe no external forces, only internal 
forces act, and according to Newton’s second law 

n 

where F,j is the force acting on mi by particle mj of the rigid body. 
Consider 

n n n  

i i j#i 

By Newton’s third law, the internal forces Fij occur in pairs such that 

F . .  - -F.. y - 3r Y 

both acting along the same line joining the two particles. This means that 
the doublesummation on the right-hand side of (1) consists of sums like 

ri x F;j + r, x Fj, . 
As shown in Fig. 1.180, each such sum adds up to zero. Hence 

n 

Then 

or 
L = constant. 
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Fig. 1.180. 

That is, the angular momentum of a rigid body about an arbitrary point 
is conserved. 

(b) The above argument holds also for a point fixed in an inertial frame, 
so that the angular momentum L of the body about the center of mass is 
a constant vector in the inertial frame. However, the angular velocity w of 
the body about the center of mass need not be in the same direction as L. 
Only when the axis of rotation is along a principal axis of the body is w 
parallel to L. Hence, in general the axis of rotation is not fixed even though 
the direction of L is. 

1210 

The trash can beside the Physics Department mailboxes has a conical- 
shaped lid which is supported by a pivot at the center. Suppose you tip the 
cone of the lid and spin it rapidly with spin velocity w about the symmetry 
axis of the cone (Fig. 1.181). Does the lid precess in the same or opposite 
sense to the spin direction of w? Document your answer with appropriate 
formula and vector diagram. 

( Wisconsin) 

Solution: 
The torque of gravity about 0 is 

In a fixed frame we have 
- - oc 

x mg = -mg x L =up x L , dL OCL 
dt L L 
- = M = - -  
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Supporting 
QXlS ’ \  

Axis of 
symmetry 

1 c ,  J w  

mg \ 
Fig. 1.181. Fig. 1.182. 

- 
where w, = q. Thus L and hence the axis of symmetry of the lip 
precess with angular velocity up = about the vertical axis in a sense 
opposite to that of the spin, as shown in Fig. 1.182. 

- 

1211 

A rigid square massless frame contains 4 disks rotating as shown in 
Fig. 1.183. Each disk has mass m, moment of inertia l o ,  and rotational 
velocity WO. The frame is horizontal and pivots freely about a support at 
one corner. What is the precession rate? 

(MIT) 

Fig. 1.183. Fig. 1.184. 
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Solution: 
The angular momentum of each disk about its axis of rotation is Iowa 

with directions as shown in Fig. 1.184. The total angular momentum of the 
system about the pivot has magnitude L = 2f iIowo and a direction along 
OC, C being the center of mass of the system. Note that L is horizontal 
as the frame is horizontal. The torque due to gravity is 

- 

D L  
M = O C x 4 m g = - - ~ 4 4 m g .  

JZL 

g x L = O x L ,  

Hence 
2 a D m  - = M = - -  dL 

dt L 
where 

2&Dmg Dm 
g a = -  - -- - 

2 a 1 0 w o  IOU0 

is the precessional angular velocity. Hence the precession has a rate 
and is anticlockwise when seen from above. 

1212 

We consider an ideal free gyro, i.e. a rotationally symmetric rigid body 
(with principal moments of inertia I1 = 12 < 1 3 )  so suspended that it can 
rotate freely about its center of gravity, and move under the influence of 
no torque. Let w ( t )  be the instantaneous angular velocity vector, and let 
L( t )  be the instantaneous angular momentum. Let the unit vector u(t) 
point along the symmetry axis of the body (associated with the moment of 
inertia 13) .  These vectors are in an inertial frame with respect to which the 
body rotates. Derive expressions for L(t), w(t ) ,  and ~ ( t )  in terms of initial 
values uo = u(0) and wo = w(0) .  

(UC, Berkeley) 

Solution: 
Let t = 0 be an instant when L, w and the axis of symmetry of the 

gyro, u, are coplanar. Use a fixed coordinate frame Oxyz with origin at 
the center of mass of the gyro which at t = 0 has the z-axis along the 
angular momentum vector L and the y-axis perpendicular to the angular 
velocity wg. Also use a rotating coordinate frame Ox'y'z' attached to the 
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gyro such that the z'-axis coincides with the axis of symmetry and the 
&-axis is in the plane of z'- and z-axes at t = 0. The relation between the 
two frames is shown in Fig. 1.185, which also defines the Eulerian angles 
8, cp, $. Note that initially the y'- and y-axes coincide and +O = 90 = 0. 

As seen from Fig. 1.185, the angular velocity w ( t )  of the gyro can be 
expressed in the rotating frame in terms of the Eulerian angles as 

wXr = Osin$ - dsinecos+ , 
wul = BCOS+ + +sinesin+ , 
wzl = +case + + . 

L = Ilwxti' + I1q,lj' + 13wztk' 

Since the d-, y'- and 2'-axes are principal axes, L can be expressed as 

(1) 

for I1 = I z .  As there is no torque acting on the gyro, L = constant and is 
along the z-axis. Furthermore, the Euler equation 

I3i.1~1 - (I1 - I z ) c t ~ ~ ~ c + , ~  = O 

gives for 11 = IZ, 

AS 

wZl = constant = wort . 

:(w$ + w i l )  + I ~ w & ,  = constant , 

= wgxl 
we have 

wEI + wif  = constant = wgxl + 
since woY~ = woY = 0.  Hence 

L = J I ; ~ ; ~ ~  + I ~ W ~ ~ ,  k . 
It can also be expressed in terms of the Eulerian angles as (Fig. 1.185) 

L = -L sin e cos +it + L sine sin +j' + L cos ek' 

in the rotating frame. Comparing this with (1) we find 

~ c o s e  = 13wOz1 , 

showing that cose = constant = C O S ~ ~ ,  say, and thus b = 0. Furthermore, 

-LsinOcos$ = Iluxl  = -Il+sinecos$, 
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giving 
L 
I 

@ = - = constant. 

Similarly, 
~ ~ ~ ~ e =  I ~ w , ,  = I ~ ( + c o s ~ + $ )  , 

giving 

What the above means is that the motion of the free, symmetric gyro 
consists of two steady motions: a spin of angular velocity $ about the axis 
of symmetry and a precession of angular velocity $I about the constant 
angular momentum vector L. 

z 

z' 

.' \ 
X 

0 

Fig. 1.185. Fig. 1.186. 

Consider now the unit vector u(t), which is along the axis of symmetry, 
in the fixed frame (Fig. 1.185): 

u(t) = sin 0 cos cpi + sin 0 sin cpj + cos Ok . 

As 0 = Bo and at t = 0, cp = 0, we have 

u(0) = sin Boi + cos Ook , 
and, EIS 'p = @t,  

u(t) = uoZ cos(@t)i + uoZ sin(@t)j + uOzk . 
Consider the angular velocity w.  In the rotating frame, we have for 

time t 
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w = (-+sinBocos$,+sint?osin$,+cos80 +$) , 

as 0 = O0, 8 = 0, and for time t = 0 

Thus 
w = (wozf cos $, -woXf sin $, w o z ~ )  

with 
w = JTT- WOz’ + WOz, - wo . 

Hence w has a constant magnitude. It makes an angle a with the z-axis 
given by 

1 
= - (+ sin2 eo cos2 + + + sin2 eo sin’ T+!J + + cos2 eo + 4 cos e,) 

W 

- + + $coseo - 
7 

W 

which is a constant as +,$,w are all constants. It makes an angle p with 
the z’-axis given by 

which is also a constant. In the fked hame, 

w = (Gsinecoscp- 8sincp,$sinosincp- 8coscp,Qcose++) 
= (Q sin eo cos cp, Q sin eo sin cp, 11, cos eo + +) 

BS e = e,, e = 0. At t = 0, cp = $ = o SO that 

Hence 
w(t )  = woZ cos(+t)i + woz sin(+t)j + wOzk . 
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The precessions of w about L and u are depicted in Fig. 1.186. Note that 
u itself precesses about L. 

1213 
Let I I ,  I 2 ,  I 3  be the principal moments of inertia (relative to the center 

of mass) of a rigid body and suppose these moments are all different with 
I1 > I 2  > 13. If the body in free space is set to spin around one of the 
principal axes, it will continue spinning about that axis. However, we axe 
concerned about the stability. What happens if the initial spin axis is very 
close to, but not exactly aligned with, a principal axis? Stability implies 
that the spin axis never wanders far from that principal axis. One finds 
that the motion is in fact stable for the principal axes corresponding to 
I1 and Is, the largest and the smallest moments of inertia. Explain this 
analytically using Euler’s equations. 

( CUSPEA ) 

Solution: 

principal axes. Then, using Euler’s equations for zero torque 
Let W ~ , W Z , W ~  be the components of the angular velocity along the 

I l k 1  - W z W 3 ( 1 2  - 1 3 )  = 0 , 
I 2 k 2  - W3W1(13  - I 1 )  = 0 , 

- W 1 W 2 ( I 1  - 1 2 )  = 0 , 

we consider the following cases. 
(i) Suppose initially w directs almost parallel to the z-axis, i.e. w1 >> 

w 2 ,  w 3 .  If w 2 ,  w 3  remain small in the subsequent rotation, the motion is 
stable. As Iw( = constant and w = dw: f wi  + wz x W I ,  we can take w 1  

to be constant to first order. Then 

w : ( I l  - I 2 ) ( 1 3  - 1 1 )  4 = w 3  . 
I 3  Ia 

As I 1  > I 2 , I 3 ,  the coefficients on the right-hand side of the above are both 
negative and the equations of motion have the form of that of a harmonic 
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oscillator. Thus w2 and w3 will oscillate about same equilibrium values and 
remain small. Hence the motion is stable. The same conclusion is drawn if 
w is initially almost parallel to the z-axis. 

(ii) If o initially is almost parallel to the y-axis. The same consideration 
gives 

As 12 > 13,  I I  > I2, the coefficients on the right-hand side are both positive 
and the motion is unstable at least in first-order approximation. 

1214 

A spherical ball of mass m, radius R and uniform density is attached 
to a massless rigid rod of length 1 in such a way that the ball may spin 
around the rod. The ball is in a uniform gravitational field, say that of 
the earth. Supposing the ball and the rod rotate about the z-axis without 
nutation (i.e. 8 is fixed), the angular velocity of the rod and ball about 
the z-axis is w,  and the ball spins about the rod with angular velocity R. 
Give the relation between w and R (you may assume R/1< 1 though this 
is not necessary for the form of the solution). Does the ball move in a 
right-handed or a left-handed sense about the z-axis? 

(Columbia) 

Fig. 1.187. 
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Solution: 

The orientation of the ball can be described in terms of the Eulerian 
angles 8, cp, 1c, (Problem 1212). As there is no nutation, b = 0. The angular 
momentum of the ball about the origin 0 (Fig. 1.187) is 

2 
5 
2 
5 

L = -mR2@e, + 1 sin 8 . @ml sin Oe, 

= -mR2fler + m12 sin2 Owe, 

in cylindrical coordinates. As e, is fixed, 8 is a constant, we have 

where M is the torque due to gravity. As 

de, . - = 8ee + + sin 8e, = w sin 8e, , 
dt 

the above becomes 

2 
-mR2Rwsin8e, = le, x mg(-e,) = ImgsinOe, . 
5 

Hence 
w=- 

2R2R ' 
As + = w > 0, the ball moves in a right-handed sense about the z-axis. 

1215 

A gyroscope at latitude 45"N is mounted on bearings in such a way that 
the axis of spin is constrained to be horizontal but otherwise no torques 
occur in the bearings. Taking into account the rotation of the earth, show 
that an orientation with the axis of spin along the local north-south is 
stable and find the period for small oscillations of the spin axis about this 
direction. Assume that the rotor can be approximated by a thin circular 
ring (i.e. the spokes and other parts are of negligible mass). (In working 
out this problem it is simpler when writing the angular velocity of the rotor 
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I, I' 
m 

Fig. 1.188. 

about the x-axis (Fig. 1.188) to lump together the spin term and the term 
due to rotation of the earth). 

( VC, Berkeley) 

Solution: 
Use an inertial frame Ox'y'z' fixed with respect to a distant star which, 

at the instant under consideration, has the origin 0 at the center of mass 
of the rotor, the z'-axis pointing vertically up and the 2'-axis pointing 
north, and a rotating frame Oxyz attached to the earth with the same 
z-axis but with the x-axis at that instant along the spin axis of the rotor 
as shown in Fig. 1.188. Denote the spin angular velocity by w,  and the 
moments of inertia about the x-, y-, z-axes, which are the principal axes of 
the gyroscope, by C , A , A  respectively. The angular momentum then has 
components 

(Cw,  0, Ad) 

in the rotating frame, and 

(Cw cos 8, Cw sin 8, Ad) 

in the fixed frame. Note that the z component which is the same in both 
frames is contributed by the precession. In the fixed frame, the earth's 
rotational angular velocity at latitude X = 45"N has components 

R 
R(cos45",0,sin45") = - ( l , O ,  1) . Jz 
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Also, the only torques are those that constrain the spin axis to the hori- 
zontal so that 

M,I = o  I 
As 

M = ( g ) f i x  =(%) + f l x L = O ,  
rot 

or 
CwR Ad+ - 

for small 8. Note that for fl x L we have resolved the vectors in the fixed 
frame. The last equation shows that the spin axis oscillates harmonically 
about the local north-south direction with angular frequency 

W I  = g 
and the orientation is stable. The period is 

If the rotor is approximated by a thin circular ring of mass M and radius 
R, we have 

2a C = M R 2 ,  A = -  

1216 
A thin disk of mass M and radius A is connected by two springs of 

spring constant k to two fixed points on a frictionless table top. The disk is 
free to rotate but it is constrained to move in a plane. Each spring has an 
unstretched length of l o ,  and initially both are stretched to length I > lo in 
the equilibrium position, as shown in Fig. 1.189. What are the frequencies 
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Fig. 1.189. 

Fig. 1.190. 

of the normal modes of oscillation for small vibrations? Sketch the motion 
for each mode. 

(Princeton) 

Solution: 
The motion of the disk is confined to the vertical plane. Let the 

displacement of the center of mass from equilibrium be x and the angular 
displacement be 8, as shown in Fig. 1.190. To first order in 8, the restoring 
forces are 

F l = k ( Z + x - Z o ) ,  F ~ = k ( Z - X - Z o ) .  

The equations of motion are then 

~ j i .  = F2 - Fl = -2kx , 

or 
2k 
M P+ -x  = 0 ,  

and 
18 = (F2 +Fl)Asinp , 

where I = :MA2 and p is given by 

sin(a - p) sin8 
Z + A + x  Z + z ’  

=-- 
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or 

i.e. 

sinp=(7)sine=(i)e,  l + A  1 + A  

Equation (1) gives the angular frequency for linear oscillation, 

Equation (2) gives the angular frequency for rotational oscillation, 

4 k ( l -  lo)(-! + A )  
w 2 =  / M1A 

The normal mode frequencies of small oscillations are therefore 

w1 w2 - - 
2lT’ 21T ’ 

and the motions of the two normal modes are as shown in Fig. 1.191. 

Fig. 1.191. 

1217 
A simple symmetrical top consists of a disk of mass M and radius T 

mounted on the center C of the massless cylindrical rod of length 1 and 
radius a as shown in Fig. 1.192. The top is rotated with large angular 
velocity w ( t )  and is placed at an angle 8 to the vertical on a horizontal 
surface with a small coefficient of friction. Neglect nutation and assume 
that the rate of slowing of w ( t )  is small in one period of procession. 

(a) Describe the entire subsequent motion of the top. 
(b) Compute the angular frequency of the (slow) precession. 



Newtonian Mechanics 353 

Z 

X ’  

Y 

/ 

Fig. 1.192. 

(c) Estimate the time required before the axis of the top becomes 

(UC, Berkeley) 
vertical. 

Solution: 
(a) The motion of the top consists mainly of three components: 

(1) spinning with angular velocity w about its axis of symmetry, 
(2) a slow procession R about the vertical axis due to gravity, 
(3) motion of the axis of symmetry to come to the vertical gradually 

(b) Use two coordinate frames with origin 0 as shown in Fig. 1.192: a 
fixed frame Oxyz with the z-axis along the upward vertical, and a rotating 
frame Oxfyfzf with the z’-axis along the axis of symmetry in the same 
direction as the spin angular velocity w ,  both the x- and 2‘-axes being 
taken in the plane of the z- and 2’-axes at the instant under consideration. 
We have 

due to the effect of the frictional torque. 

(%)fix = ( % ) r o t  

Under the condition that the spin angular velocity w is very large, the total 
angular momentum can be taken to be approximately 

Further, as w does not change appreciably in a period of precession, 
($)rot M 0. We then have 
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with 

112= R(-sin8,0,cos8) , 
L = ( O , O ,  I3w) 

in the rotating frame, and 

g = g(sin 8,0, cos 8) 

In the fixed frame, the above gives 

1 
2 

13wn sin 8 = - Mlg sin 8 , 

i.e. 

a8 
1 3 = - M r  1 2  . 

2 
(c) When the axis of symmetry makes an angle 8 with the vertical, 

the frictional force f on the contact point of the rod with the ground is 
approximately p M g .  Actually only the left edge of the bottom end touches 
the ground. The frictional force is opposite to the slipping velocity of the 
contact point and has the direction shown in Fig. 1.192. This force causes 
an acceleration of the center of mass C of the top and generates a torque 
about C at the same time. Neglecting any specific condition of the rod, we 
can take the torque about C as approximately 

1 
2 

r M p M g -  -1j . 

This torque changes the magnitude of the angle 8 and causes the axis of 
symmetry to eventually become vertical. 

When the axis is vertical, the bottom of the rod contacts the ground 
evenly so that the frictional force is distributed symmetrically. The total 
torque about C due to friction is then zero. Actually the torque of the 
frictional force about the 2’-axis (relating to the z‘ component of L) does 
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not vanish altogether, but as the rod is so thin the torque is quite small 
and causes w to decrease only slowly. We have for the frictional torque 
approximately 

i.e. 

or 

1 
2 

-9I3w = -pMgl , 

which gives 

1218 

A heavy symmetrical top with one point fixed is precessing at a steady 
angular velocity R about the vertical axis z. What is the minimum spin w’ 
about its symmetrical axis z’ (z’ is inclined at an angle 0 with respect to the 
z-axis)? The top has mass m and its center of gravity is at a distance h from 
the fixed point. Use the coordinate systems indicated in Fig. 1.193, with 
the axes z, z’, x and x’ in the same plane at the time under consideration 
and assume I1 = I z .  

(SVNY, Bufolo) 

Fig. 1.193. 



356 Problems tY Solutions on Mechanics 

Solution: 
Referring to the Eulerian angles defined in Problem 1212, the torque 

due to gravity is in a direction perpendicular to the xz-plane and in the 
rotating frame Ox'y'z' attached to the top has components 

mgh sin 0 sin G1 mgh sin 0 cos $, 0 . 

Euler's equations, which apply in the rotating frame, are, for I1 = 1 2 ,  

Il& - (I1 - 1 3 ) w y ~ w z ~  = mghsinOsin$ , 
I ILjyj  - (I3 - I1)wz~w,~ = mghsinOcos$ , 

13Ljz, = 0 . 
The angular velocity vector w in the rotating frame has components 

-+sinOcos$, +sinesin+, + c o s ~  + 6 
as 8 = 0. So writing R for CL, and noting that $ = 0 for steady precession, 
the first Euler's equation becomes 

R2(11 - 13) cos0 - RI3lj) + mgh = 0 , 

giving 
. mgh + (Il - 13)R2 c o d  

I3R 
I J ' = $ =  

However for R to be red we require that 

I ~ W ' ~  - 4(11 - I3)mghcosO 2 0 , 

or 
1 

I3 
w' 2 -d4 ( I l  - I3)mghcosO . 

1219 
The game of "Jacks" is played with metal pieces that can be approxi- 

mated by six masses on orthogonal axes of length I with total mass M, as 
shown in Fig 1.194. 

(a) If you spin the jack around one of the axes so that there is a steady 
precession around the vertical (Fig. 1.195) what is the relation between the 
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spin velocity 8,  the precession rate, and the angle 8 between the vertical 
and the rotation axis of the jack? 

(b) What must the spin velocity be for the jack to spin stably around a 
vertical axis (i.e. 8 = O)? 

(Princeton) 

* +  
Side view Top view 

Fig. 1.194. Fig. 1.195. 

Solution: 

Use fixed frame Oxyz and rotating frame Ox'y'z' as in Problem 1212 
with 0 at the point of contact with the ground and the latter frame attached 
to the jack. The z-axis is along the upward vertical and the 2'-axis is along 
the mis of spin as shown in Fig. 1.195. The moments of inertia about the 
XI-, y'- and 2'-axes are 

I1 = 12 = 4m12 + 6m12 = 10m12 , 
I3 = 4m12 , 

with m = T .  
(a) In the rotating frame, the torque due to gravity has components 

6mgl sin 8 sin +, 6mgl sin 8 cos I), 0 , 

and the angular velocity w has components 

esin+ - GsinecosI), ecos+ + @sinesin+, 4 + dcose . 

Euler's equations then give 
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The last equation gives 

wzt = 6 ++case = s + ocose = constant . 

where R is the precession rate. 

tions sin8 w 8, cos8 M 1. Then sin$ x (I) + cos+ x (2) gives 
(b) If the spin axis is nearly vertical, B z= 0 and we take the approximac 

with C2 = $, s = 4. Hence for stable spin at 6 = 0 we require 

39 
1 

2R.9 - 30' - - > 0 , 

or 
3R 39 

s>-+- 
2 2 m  

1220 
A propeller-driven airplane flies in a circle, counterclockwise when 

viewed from above, with a constant angular velocity x with respect to 
an inertial frame. Its propeller turns at a constant angular velocity d$/dt 
clockwise as seen by the pilot. 

(a) For a flat, four-bladed propeller, what relations exist among the 
moments of inertia? 

(b) Find the magnitude and direction of the torque that must be applied 
to the propeller shaft by the bearings to maintain level flight in a circle. 

(UC, Berkeley) 

Solution: 
(a) Take a fixed frame Oxyz at the instantaneous position of the center 

of the propeller with the z-axis pointing vertically up and a rotating frame 
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z 
2’ y/; Y 

26 
x ,  x ’  

Fig. 1.196, 

Oz’y’z’ fixed to the propeller such that the d-axis is along the spin axis, 
and the z‘-axis is along a propeller blade, the z-axis being taken to coincide 
with the d-axes at the instant under consideration, as shown in Fig. 1.196. 
The rotating coordinate axes are then the principal axes with moments of 
inertia 

I2 = I3 = I  , 

and 11 = 21 by the perpendicular axis theorem. The angular velocity has 
components in the rotating frame of 

11, xsin+, xcos+ , 
where II, = dt .  Euler’s equations of motion 

I lkz#  - (I2 - I ~ ) W ~ ! W ~ ~  = Mz# , 
12Wyt - (I3 - I ~ )w~ ,w~ ,  = M,, , 
13&, - (11 - I ~ ) W = ~ W ~ ,  = M,, 

then give for the torque M exerted on the propeller shaft 

as 3 = constant and I2 = 13, 

as x = constant. Hence 
M = 2 1 4 ~  
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and as 
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M,! = 0 ,  
Mu# = M C O S ~  
M,, = -Msin$,  

M is in the plane of the propeller and has a direction along the y-axis of 
the fixed frame. 

1221 

A perfectly uniform ball 20 cm in diameter and with a density of 5 g/cm3 
is rotating in free space at 1 rev/s. An intelligent flea of g resides in 
a small (massless) house fixed to the ball's surface at a rotational pole as 
shown in Fig. 1.197. The flea decides to move the equator to the house by 
walking quickly to a latitude of 45" and waiting the proper length of time. 
How long should it wait? Indicate how you obtain this answer. 
Note: Neglect the small precession associated with the motion of the flea 
on the surface of the ball. 

(Princeton) 

0 I 

Fig. 1.197. Fig. 1.198. 

Solution: 
After the flea moves to a position of latitude 45" the angular velocity w 

no longer coincides with a principal axis of the system. This causes the ball 
to precess. As the mass of the flea is much smaller than that of the ball, 



Newtonian Mechanics 361 

the center of mass of the system can be taken to be at the center of the ball 
0. Use a fixed frame Oxcyz with the z-axis along the original direction of w 
and a rotating frame Ox‘y’z’ attached to the ball with the z‘-axis through 
the new position of the flea, with both the x- and 2‘-axes in the plane of 
the z- and 2’-axes at t = 0 as shown in Fig. 1.198. As the system is in free 
space, there is no external force. We assume that the flea moves so quickly 
to the new position that w remains the same at t = 0 as for t < 0. 

The rotating axes are the new principal axes. Let the corresponding 
moments of inertia be 11, 12 and 1 3  with 11 = 1 2  for symmetry. Euler’s 
equations are then 

Equation (3) shows that 

Wz‘ = constant =wozf . 

Equations (2) and (3) then give 

with $2 = 1 1 wo+t. Its solution is 

wXl = A cm(Rt + $) , 

where A and $ are constants. Equation (2) then gives 

wvf = Asin(flt + $) , 

Initially, w has components in the rotating frame 

These give 

Hence at time t, w has components 
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W 
w I - - cos(Rt + 7r) , " - a  

W 
wgt = - sin(Rt + T )  , a 

fi. 
W 

WZ' = - 

Thus, both the magnitude and the z' component of w are constant, and 
the angular velocity vector o describes a cone in the rigid body with axis 
along the 2'-axis. In other words, w precesses about the 2'-axis with an 
angular rate 

For the equator at be at the flea house, the angular velocity w must be 
midway between the 2'- and z'-axes, i.e. 

This means that Rt = x ,  or that the time required is 

2f i7r  !7rR3p = -7r x lo6 = 6 x lo6 s . 
- ( 3  5wm ) - - 

1222 
A horizontal bar of mass m and length 2 a  hangs by 2 parallel strings of 

length 2 a  attached to its two ends. The rod is suddenly given an angular 
velocity w about a vertical axis through its center. Calculate 

(a) the distance h to which the bar rises, 
(b) the initial increase in tension in each string. 

( Wisconsin) 

Solution: 
Use a fixed coordinate frame as shown in Fig. 1.199 with origin at the 

center of the bar, the z-axis vertically upward and the x-axis along the 
initial direction of the bar. 
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Fig. 1.199. 

(a) Take the zy-plane as the reference level for potential energy. The 
total mechanical energy of the bar at t = 0 at which instant it is given an 
angular velocity w is 

1 ma2w2 
2 6 

E = - Iw2 = - 

as I = $ma2. When the bar is at its highest position h, it has only a 
potential energy mgh. Conservation of mechanical energy then gives 

1 
rngh = -ma2w2 , 

6 
or 

(b) Due to symmetry, the bar is always horizontal during the motion 
while it rotates about the z-axis. Let the height of the bar be z and the 
angle it makes with the z-axis be 8 at time t. Assume the strings to be 
unstretchable then the distance between a point of support A' and the 
corresponding end of the bar A is constant. The coordinates of A and A' 
are respectively (acos8,asin8,z) and (a,0,2a). Thus 

a2(1-cosO)2+a2sin2e+(2a-z)2 = 4 a 2 ,  

i.e. 
z2 - 4az + 2a2(1 - = o . 

Differentiating twice with respect to time we obtain 

i 2 + z ~ - 2 a ~ + a 2 8 s i n ~ + a 2 b 2 c o s ~ = ~ ,  

or 
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At t = 0, 9 = 0, z = 0, i = 0, = w ,  we have z = fw2. Thus the vertical 
force on the bar is increased by mz = ; m u 2 .  As this is shared equally by 
the two supporting strings the initial increase in the tension of each string 
is 

1 1 
AT = -mz = -maw2. 

2 4 

1223 
A uniform rod of length 2a and mass M is rotated with constant angular 

velocity w in a horizontal circle of center B and radius b. The rod is hinged 
at A so that it can move freely only in the vertical plane containing it. The 
angle between the vertical and the rod is 9 as shown in Fig. 1.200. The 
earth's gravitational field is in the vertical direction. 

(a) Compute the kinetic and potential energies of the rod as a function 
of 6,  9 and w. 

(b) Find a general expression for the possible equilibrium positions of 
the rod. 

(c) Solve the expression found in part (b) by a graphical technique to 
find the equilibrium positions in each quadrant of 9 between 0 and 2a. 

(d) Which of these equilibrium positions are stable? Unstable? For each 
quadrant of 9 how does the existence of the equilibrium position(s) depend 
on the parameters w ,  b and a? 

(e) For each quadrant of 9 make a force diagram to verify qualitatively 
the existence and nature of the equilibrium positions. 

( M I T )  

Ilf, I 
I 1 -  

Fig. 1.200. Fig. 1.201. 
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Soh t ion: 
Use a coordinate frame Ox'y'z' such that the origin 0 coincides with 

B, the z'-axis is along the axis of rotation of angular velocity w and the 
x'-axis is in the vertical plane containing the zl-axis and the rod. 

(a) In this rotating frame the kinetic energy of the system is 

The potential energy consists of two parts, a centrifugal potential and 
a gravitational potential. In the rotating frame, a fictitious centrifugal 
force w 2 x '  must be introduced on every mass point m, corresponding 
to a potential -imx'2w2. For the entire system this fictitious centrifugal 
potential is - i I z tw2 ,  where I,, = $ma2sin2 8 + m(b + asin8)2. As the 
gravitational potential is mga cos 8, we have 

V = - - m  -a2sin28+(b+asin8)2 w2+mgacos8. 
2 3  " 

(b) For equilibrium, % = 0, which gives the equation for possible 
equilibrium positions of the rod, 

- n u 2  (b + :asin@) a .  cos 8 - mgasin 0 = 0 , 

or 

tan8=--(a a d  - +  b -sin8 4 ) . 9 
(c) Let the left-hand side of the above equation be fl and the right-hand 

side be f2 and draw these curves in Fig. 1.201. The equilibrium positions 
are given by their intersections. It can be seen that one equilibrium position 
occurs in each of the second and fourth quadrants of 8. In the third 
quadrant, f~ = tan8 is positive, and 

as sin 8 is negative. It is seen that only if f2 is positive and sdliciently large 
can there be one or two equilibrium positions, otherwise there will be none. 

(d) For an equilibrium position to be stable, we require that 
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at that position. As 

- d V  - - -mw2 ( b +  :asin6) acos6 - mgasin6, 
d6 

we require that 

d2V 4 
do2 3 
-- - - -ma2w2(cos2 6 - sin2 6 )  + m a h 2  sin 6 - mga cos 6 

ma cos2 6 
sin 6 

- - (-9 tan3 6 + h2) > o 

for an equilibrium position 6 to be stable. 
When 6 is in the second quadrant [$, n], as sin8 > 0, tan6 < 0, we have 

and the equilibrium is stable. 

have 
When 0 is in the fourth quadrant [%,2n], as sin0 < 0, tan0 < 0, we 

and the equilibrium is unstable. 
When 6 is in the third quadrant [n, 91, we write 

-u2 sin 6 tan2 6 + bw2 sec2 e 

maw2 
sin 6 )  

-- 

- = -T ( b -  - 

as sine < 0. Then if b < :a[ sin0I3, the equilibrium is stable, and if 
b > ;a[ sin6I3, the equilibrium is unstable. 
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(ii) 
Fig. 1.202. 

(iii) 

(e) The force diagram for each equilibrium situation is shown in 
Fig. 1.202, where (i), (ii) and (iii), are for the second, third and fourth 
quadrants respectively, with T and F denoting the support force by the 
hinge and the fictitious centrifugal force. By considering a small deviation 
68 from equilibrium, we see that (i) is stable and (iii) is unstable, while for 
(ii) the situation is more complicated; whether it is stable or not depends 
on the relative values of the parameters. 

4. DYNAMICS OF DEFORMABLE BODIES (1224-1272) 

1224 
A string is stretched between two rigid supports 100 cm apart. In the 

frequency range between 100 and 350 cps only the following frequencies 
can be excited: 160, 240, 320 cps. What is the wavelength of each of these 
modes of vibration? 

( Wisconsin) 

Solution: 
As the two ends of the string are fixed, we have nX = 2L, where L is the 

length of the string and n an integer. Let the wavelengths corresponding 
to frequencies 160, 240, 320 Hz be Xo, XI, XZ respectively. Then 

nXo = (n + 1)Xl = (n + 2)Xz = 200 , 
160X0 = 240x1 = 32oAz . 
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Hence n = 2, and 

Xo = 100 cm , XI = 67 cm , A2 = 50 cm . 

1225 

(a) Give the equation which relates the fundamental frequency of a 

(b) Derive your result from Newton’s equations by analysing what 

( Wisconsin) 

string to the physical and geometrical properties of the string. 

happens to a small section of the string. 

Fig. 1.203. 

Solution: 
(a) Let w be the fundamental frequency of a string of length 1, linear 

density p and tension F .  The equation relating F, 1 and p is 

(b) Consider a small length A1 of a string along the z direction underge 
ing small oscillations and let Fl , F2 be the tensions at its two ends, as shown 
in Fig. 1.203. For small oscillations, 0 x 0 and A0 is a second-order small 
quality. Furthermore as there is no x motion, we can take the x-component 
of the net force on A1 to be zero. Thus 
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fz = F2 cos(8 + A@) - F1 COSB 
M (F2 - F1)cosO - F2AOsin0 

x F 2  - Fi = 0 ,  

or F 2  M F1. Then 

A6 
d sin 8 

f a r =  Fsin(O+AO)-FsinOxF- 
dO 

dO d6 
dx dx 

= FcosO-Ax M F-AX . 

For small 6 ,  
dO d2y - O M -  dY 

dx’ dx dx2 ’ 
and the above becomes 

by Newton’s second law. As A1 M Ax, this gives 

which is the equation for a wave with velocity of propagation 

For the fundamental mode in a string of length 1 with the two ends fixed, 
the wavelength X is given by 1 = X/2. Hence the fundamental angular 
frequency is 

2TV T V  

1226 

A violin string on a violin is of length L and can be considered to be 
fastened at both ends. The fundamental of the open string has a frequency 
fo. The violinist bows the string at a distance L/4 from one end and touches 
the string lightly at the midpoint. 
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(a) Under these conditions, what is the lowest frequency he can excite? 

(b) What is the frequency of the first overtone under these conditions? 
( Wisconsin) 

Sketch the shape of the string. 

- - -_ . . 

Fig. 1.204. 

Solution: 

(a) For the open string, the wavelength Xo corresponding to the funda- 
mental frequency fo is given by A012 = L.  When the violinist bows at L/4  
from one end and touches the string at L/2 ,  the former point is a node and 
the latter point an antinode so that A0 = L.  Hence the string has the shape 
shown in Fig. 1.204 and, as fo o< 11x0, the fundamental frequency is 2fo. 

(b) The frequency of the first overtone is 4fo. 

1227 
A guitar string is 80 cm long and has a fundamental frequency of 400 Hz. 

In its fundamental mode the maximum displacement is 2 cm at the middle. 
If the tension in the string is 106 dynes, what is the maximum of that 
component of the force on the end support which is perpendicular to the 
equilibrium position of the string? 

( Wisconsin) 

Fig. 1.205. 
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Solution: 
Use Cartesian coordinates with the x-axis along the equilibrium position 

of the string and the origin at one of its fixed ends. Then the two fixed 
ends are at x = 0 and x = I = 80 cm, as shown in Fig. 1.205. At x = 0, 
the y-component of the force on the support is 

BY 
ax  ’ F, = Tsin6 N T6 N T- 

where T is the tension in the string. The guitar string has a sinusoidal form 

y = yosin [w (t - 31 

y =  2sin wt - - cm ( 3 
Hence at x = 0. 

27rT F - --cM(wt) * -  80 
and 

7rT 

40 
F,,, = - = 7.85 x lo4 dynes . 

1228 
A transverse traveling sinusoidal wave on a long stretched wire of mass 

The maximum 

(a) Write an expression for the amplitude y as a function of t and x, 

(b) What is the energy density (energy/unit length)? 
(c) What is the power transmitted along the wire? 
(d) If the wave is generated by a mechanical device at x = 0, find the 

( Wisconsin) 

per unit length p has frequency w and wave speed c. 

amplitude is yo, where yo << A. The wave travels toward increasing x. 

where 2: is distance measured along the wire. 

transverse force F,(t) that it exerts on the wire. 

Solution: 
(a) y = yosin [w (t - $)I.  
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(b) Every point the wave travels through undergoes simple harmonic 
motion. Consider an element of the wire from x to x + Ax. The mechanical 
energy of the element is the sum of its potential and kinetic energies and is 
a constant equal to  the maximum of its kinetic energy. As 

y=WyoCos[W(t-;)] ) 

the maximum vibrational velocity of the element is wyo and its total 
mechanical energy is 

Hence the energy per unit length of the string is 

(c) As the wave travels at a speed c, the energy that passes through a 
point on the string in time t is E d .  Hence the power transmitted is 

(d) The tension T in the string is given by c = fi (Problem 1225). 
The transverse force the mechanical device exerts on the wire at x = 0 is 
(Problem 1227) 

1229 

A violin string, 0.5 m long, has a fundamental frequency of 200 Hz. 

(a) At what speed does a transverse pulse travel on this string? 
(b) Draw a pulse before and after reflection from one end of the string. 
( c )  Show a sketch of the string in the next two higher modes of oscillation 

( Wisconsin ) 
and give the frequency of each mode. 
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Befoe refkctian 

After reflection 

Fig. 1.206. Fig. 1.207. 

Solution: 

the fundamental mode is given by X/2 = 1. Hence 
(a) For a string of length 1 fastened at both ends, the wavelength X of 

v = Xv = 21v = 2 x 0.5 x 200 = 200 m/s . 

(b) Figure 1.206 shows the shape of a pulse before and after reflection 

(c) The frequencies of the next two higher modes are 400 Hz and 600 Hz. 
from one end of the string. 

The corresponding shapes of the string are as shown in Fig. 1.207. 

1230 
A piano string of length 1 is fixed at both ends. The string has a linear 

mass density u and is under tension T. 
(a) Find the allowed solutions for the vibrations of the string. What are 

the allowed frequencies and wavelengths? 
(b) At time t = 0 the string is pulled a distance s from equilibrium 

position at its midpoint so that it forms an isosceles triangle and is then 
released (s << 1,  see Fig. 1.208). Find the ensuing motion of the string, 
using the Fourier analysis method. 

(Columbia) 

Solution: 
(a) The vibration of the string is described by the wave equation 

(Problem 1225) 
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Y 

Y - - - - -  
X 

-> 

I X f 
Fig. 1.208. 

aZy ua2y 

ax2 T W  

Y(0, t) = Y(l, t) = 0 

Y(X, t) = X(t)A(t) 

= o ,  - - -- 

subject to the conditions 

for all t. Let 

and obtain from the above 

1 d2X u &A 
X dx2 T A  dt2 ' 

As the left-hand side depends only on x and the right-hand side only on t, 
each must be equal to a constant; let it be -k2. We then have the ordinary 
differential equations 

-- =-- 

- + k 2 X = 0 ,  
d2 X 
dx2 

d2A 
dt2 
- + v2k2A = 0 , 

where v = 8. 
Solutions of the above equations are respectively 

X(x) = c1 cos(kx) + c2 sin(kx) , 
A(t) = bl cos(vkt) + & sin(vkt) . 

With the boundary conditions X(0) = X(1) = 0, we have 

c1 = 0, c2 sin(kl) = 0 . 
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As c1 and c2 cannot both be zero (otherwise y(x,t) would be identically 
zero), we have to choose sin(lc1) = 0 or 

k l =  nz, n = 1,2 ,3 . .  

Thus the allowed general solution is 

nnvt 00 

y ( q  t )  = [.. cos (7) nnvt + B n  sin (T)] sin (7) , 
n=l 

where we have replaced the integration constants blcz by A, and b2c2 by 
Bn for integer n. Each term in the general solution is an allowed solution 
corresponding to an allowed mode. The period for the nth mode is given 
bY 

n m  
1 

-Tn = 2 s  , 

the frequency being 

1 n  

and the wavelength being 

v 21 
un 

- - = - - .  n -  

(b) Initially the string is as shown in Fig. 1.208. As 

the initial conditions are 

Furthermore, the string is initially at rest so 
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Hence 

and the A, are given by 
B,=O, 

00 

~ ( x ,  01 = C A,  sin 
n= 1 

Multiply both sides by sin(mrx/l) and integrate from 0 to 1: 

00 

Ly(z,O)sin (7) mrx  dz = A . l  sin (y) sin (I) mTX dx 
n=l 

mnx 

Jd" sin2 ~4 = - ~ , l .  

= A ,  sin2 (7) dx 

- - 1 
2 

Hence 

= 9 [? xsin (7) dx + 2 s l  (1 - :) sin (7) dz] 

89 mr - - 
(mr)2 sin (T> 1 

use having been made of the formulae 

1 
2 

1 X J U2 a 

sin(mz) sin(nx)da: = -rbmn , 

zsin(az)dx = - sin(ax) - - cos(ax) . 

Thus the motion of the string is described by 

89 nmt n r x  00 

y(z, t )  = c sin ( y )  cos (7) sin (c) 
n= 1 

with v = @. 
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1231 
A spring of rest length X and force constant k has a mass m. One end 

is fixed and the other end is attached to a mass M. The orientation is 
horizontal, and M moves on a frictionless surface. 

(a) Derive a wave equation for longitudinal oscillation of this system. 
(b) Find the frequency of the lowest mode as a function of mass for the 

(Princeton) 
case where M and k axe finite and m << M. 

Fig. 1.209. 

Solution: 
(a) Take the x-axis along the length of the spring with origin at the 

fixed end and consider a section of length Ax extending from x to x + Ax 
as shown in Fig. 1.209. Then as M moves to the right, the point x moves 
to x + + A< as shown in 
Fig. 1.210. 

and the point x + Ax moves to x + Ax + 

0 

Fig. 1.210. 

Let 0 be the Young’s modulus of the spring. The restoring force F is 
given by F = aoAl/l, where a is the area of the cross section of the spring 
and All1 is the extension per unit length. Write KO for au. The net force 
on the section under consideration is 
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which by Newton's second law is equal to PAX (a2t /a t2)x ,  p being the mass 
per unit length of the spring, assumed constant for small extensions. Thus 

or 

This is the equation for propagation of longitudinal waves along the spring 
and gives the velocity of propagation as 

as k = Ko/X by definition. 
(b) Try a solution of the form 

where w ,  'p are constants. Substitution in the wave equation gives 

Its general solution is 

= Asin(Kz) + Bcos(Kz) , 

A, B being constants of integration. The boundary condition 
x = 0 gives B = 0. We also have from Newton's second law 

= 0 at 

or 
m KX tan(KX) = - , M 
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which can be solved to give a series of K ,  and hence of the vibrational 
frequencies of the spring. 

For m << M and the lowest frequency, tan(KX) 1: K X  and the above 
becomes 

w2m m -= -  
k M '  

giving the lowest angular frequency as 

w = & .  

Note that this is just the vibrational frequency of an oscillator which 
consists of a massless spring of force constant k with one end fixed and the 
other end connected to a mass M. 

To obtain a more accurate approximate solution, expand 

1 
3 

tan(KX) = KX + - ( K X ) 3  + . 
and retain the first two terms only. We then have 

1 -1 

( K X ) 2  = - M " [  1 + - ( K X ) 2 ]  : x ; [l - p X ) 2 ]  , 

or 

giving 

3M+m 

1232 
(a) Suppose you have a string of uniform mass per unit length p and 

length 1 held at both ends under tension T .  Set up the equation for small 
transverse oscillations of the string and then find the eigenfrequencies. 

(b) Now consider the case where the string is free at one end and 
attached to a vertical pole at the other end, and is rotating about the 
pole at an angular frequency w (neglect gravity) as shown in Fig. 1.211. 
Set up the equation for small transverse oscillations for this case. 
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(c) Find the eigenfrequencies. 
(Hint: the equation you get should look familiar in terms of the Legendre 

(CUSPEA ) 
polynomials.) 

Fig. 1.211. 

Solution: 
(a) Consider a section of the string as shown in Fig. 1.212. The y- 

component of the tension at x is 

F,(x) = -Tsin8 M -TO x -T - , (3 
Similarly at x + A x  

F,(x + A x )  M T (g) . 
z+Az 

Note that T is constant. Thus 

The section has length A x ,  mass P A X ,  and by applying Newton’s second 
law to the section we have 

This is the wave equation for small transverse oscillations, the velocity of 
propagation being = The general solution is (Problem 1230) 
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The eigenfrequencies are 

Fig. 1.212. 

(b) Take a rotating frame Oxyz attached to the spring with the y-axis 
along the axis of rotation and the x-axis along the string. There is a 
fictitious centrifugal force acting on the string which is balanced by the 
tension. Consider a section Ax of the string. The difference of tension 
across its ends is 

-AT = PAX * X W ~  , 

whence 
- -pw2x. dT 

dx 
- -  

Integrating and applying the boundary condition T = 0 at x = 1 we find 

1 T = jpw2(12 - x2) . 

Following the procedure of (a) we have 

F,(x + AX) - F,(x) = 

- x 2 ) -  Ax ax ""1 
Newton's second law gives 
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or 

for small transverse oscillations. 

equation then becomes 
(c) Try a solution of the type y N and let 6 = 7 .  The above 

2 a2y dy 2R2 
(1  - 5 )- - 2<- + --Jy = 0 , q2 85 

with 0 5 5 5 1. This differential equation has finite solutions if 

n being an integer. The equation is then known as Legendre’s differential 
equation and the solutions are known as Legendre’s polynomials. Thus the 
eigenfrequencies are given by 

-n(n + 1) , 

where n = 1’2’3, .  . . . However we still have to satisfy the boundary 
condition 9 = 0 at ( = 0. This limits the allowable n to  odd integers 
1,3 ,5 , .  . . since Legendre’s polynomials P,(<) = 0 at 6 = 0 only for odd 
values of n. 

1233 
A long string of linear density (mass per unit length) p is under tension 

T.  A point mass m is attached at a particular point of the string. A wave 
of angular frequency w traveling along the string is incident from the left. 

(a) Calculate what fraction of the incident energy is reflected by the 
mass m. 

(b) Suppose that the point mass m is replaced by a string of linear 
density p,,, >> p and short length 1 such that 1 = m/pm.  For what range of 
1 values (for fixed m) does the answer for (a) remain approximately correct? 

( CUSPEA ) 
Solution: 

Divide the space into two regions with separation at the location of m, 
which is taken to be the origin of the x-axis, as shown in Fig. 1.213. In 
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Fig. 1.213. 

region 1, let the wave function be 

where k = w/v, v = being the velocity of the wave (Problem 1225), 
and the second term of the right-hand side represents the reflected wave. 
In region 2 we have 

y(2) = BeikX 

At x = 0, where the mass m is located, we require that 

= 

i.e. 
l + A = B .  

Furthermore, considering the forces on the point mass m we have 

where for y we can use either y(’) or y(’). Then 

- w 2 B  = ikT(B - 1 + A )  . 
Solving (1) and ( 2 )  we have 

- m u 2  

2ikT -t- mu2’ 

2ikT 
2ikT t mu2 ’ 

A =  

B =  

Therefore the fraction of the incident energy that is reflected is 
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(b) The calculation in (a) still applies provided 1 << A, where X is the 
wavelength, being 

Hence the condition that the answer to (a) remains approximately correct 
is ,,2.fi. W 

1234 
A per-dctly flexible string with uniform linear mass density p anc length 

L is hanging from a fixed support with its bottom end free, as shown in 
Fig. 1.214. 

(a) Derive the partial differential equation describing small transverse 
(in one plane) oscillations of the string, and from it, the differential equation 
for the form of the normal modes. 

(b) Solve this differential equation using standard (power series) meth- 
ods (the trick for transforming it into Bessel’s equation is not what is 
wanted), and, using approximate numerical methods, solve for the fre- 
quency of the lowest normal mode. 

(Princeton ) 

J, 
X 

Fig. 1.214. 

Solution: 
(a) Use coordinate frame Oxyz as shown in Fig. 1.214. following the 

procedure of Problem 1232, we have, by Newton’s second law, for a section 
Ax of the string 
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or 

The tension T in the string at x is related to the gravity by 

T = i L p g d x  = pg(L - x) , 

so the above equation becomes 

This is the partial differential equation for small transverse oscillations of 
the string. Applying the method of separation of variables by putting 

y ( x , t )  = <(X)T(t)  7 

we obtain 
1 8 7  I d  

g r  dt2 < dx 
-- = -- [ ( L  - x , $ ]  . 

As the left-hand side depends on t alone and the right-hand side depends 
on z alone, each must be equal to a constant, say -A, X being a positive 
number. We thus have the equivalent ordinary differential equations 

dx [ ( L - x ) g ]  + A <  = o  , 

d2T 
dt2 - + X g 7 = 0 .  

The boundary conditions are 

i.e. 

c(0) = 0, < ( L )  = finite . 

(b) The <-equation can be written aa 

(z - L)<” + <’ - A< = 0 . 
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As x = L is a regular singular point, the equation has a solution of the 

00 
form 

< = c a,(x - L)" . 
n=O 

Then 
m M 

m m 

1 2 

m m 

2 1 

and the &equation becomes 
W 

(a1 - ~ a o )  + C[(n + 1)2an+i - AU,](Z - L ) ~  = o . 

Equating the coefficients of (x - L)" on both sides of the equation, we find 

1 

x 
a1 = Xao, a,+1 = ____ (n + l ) z a n  

Hence 

x x2 
22 22 ' 
x A3 

a2 = -a1 = -a0 

a3 z -a2 = - 
32 ( 3 .  2 y a o  ' 

. . . . . .  

An 
a, = - (n!yao ' 

. . . . . .  

giving 



Newtonian Mechanics 387 

The boundary condition < ( O )  = 0 then yields 

1 
= 1 - XL+ - X 2 L 2 -  .. . = 0 .  (-1)"(XL)rn 

f(XL) = c (n!)2 4 
0 

This equation can be solved to find the roots XL, which then give the 
frequencies of the various modes, f i / 2 n ,  according to the 7-equation. 

For an approximate solution we retain only the terms up to n = 2 in 
f (XL) : 

1 
f(AL) M 1 - XL + ; T ( X L ) Z  , 

Newton's approximate method gives a better approximate root of f( XL) = 
0, ak+l, if we input an approximate root cYk by calculating 

As 
1 

f'(XL) x -1 + p , 
if we take a1 = 0, then 

a2 = 1, 

(yg = 1 - - = 1.5, 

~ ( ( Y z )  x 0.25 , 
f ( a 3 )  x 0.625 * 

0.25 
-0.5 

As f(a3) is quite close to zero we can consider a3 = 1.5 as the smallest 
positive root. Thus 

1.5 
L 

for the lowest mode. Then for this mode 

Xmin = - . 

and the frequency is 
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1235 
A common lecture demonstration is as follows: hold or clamp a one- 

meter long thin aluminium bar at the center, strike one end longitudinally 
(i.e. parallel to the axis of the bar) with a hammer, and the result is a 
sound wave of frequency 2500 Hz. 

(a) F'rom this experiment, calculate the speed of sound in air. 
(b) Fkom this experiment, calculate the speed of sound in aluminium. 
(c) Where might you hold the bar to excite a frequency of 3750 Hz? 

Explain. Does it matter which end of the bar is struck? Explain. 
(d) Suppose you hold the bar at the center as before, but strike the bar 

transverse to its length, rather longitudinally. Qualitatively explain why 
the resultant sound wave is of lower frequency than before. 

(UC, Berkeley) 

Solution: 
(a) The point where the bar is struck is an antinode and the point where 

it is held a node. With the bar held at the center and its one end struck, 
the wavelength X is related to its length L by X = 2L. Hence the speed of 
sound propagation in the aluminium bar is 

V A ~  = U X  = 2uL = 2 x 2500 x 1 = 5000 m/s . 

The speed of sound in a solid is 

where Y is the Young's modulus of its material and p its density. The speed 
of sound in a fluid is - 

v = d " ,  P 

where M is its bulk modulus and p its density. For adiabatic compression 
of a gas, A4 = yp ,  where p is its pressure and y the ratio of its principal 
specific heats; y = 1.4 for air, a diatomic gas. Hence 
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With 

p = 1.013 x lo6 dyn/cm2 
Y = 7.05 x lo1' dyn/cm2 , 

(standard atmosphere) , 

~ A I  = 2.7 g/cm3 , 
pair = 1.165 x g/cm3 (at 30°C) , 
vair = 6.83 x x 5000 = 341 m/s . 

(b) V A ~  = 5000 m/s. 
(c) Suppose the bar is held at distance x from the struck end. We have 

5000 1 x u  
4 4w 4 x 3750 3 

Hence the bar is to be held at Q m from the struck end. If it is so held but 
struck at the other end, we would have 

- m .  - - x = - = - =  

2 v  
3 4w 
- = -  

and the frequency would become 1875 Hz. 
(d) If the bar is struck transversely, the wave generated will be trans- 

verse, not compressional, and the velocity of propagation is then given by 

v = E ,  

where N is the shear modulus. As the shear modulus of a solid is generally 
smaller than its bulk modulus, v is now smaller. And as 

V v = -  
2L 

the frequency generated is lower. 

1236 
(a) A violin string of length L with linear density p kg/m and tension 

T newtons undergoes small oscillations (Fig. 1.215 (a)). Write the solutions 
for the fundamental and first harmonic, and sketch their x-dependences. 
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Give the angular frequency w1 of the fundamental and w2 of the first 
harmonic. 

(b) The left-hand 1/3 of the string is wrapped so as to  increase its linear 
density to 4p kg/m (Fig. 1.215 (b)). Repeat part (a), i.e. derive and sketch 
the new fundamental and first harmonic, and express the new w1 and w2 

in terms of the original w1 and w2 of part (a). 
(VC, Berkeley) 

Solution: 
(a) Use coordinates as shown in Fig. 1.215 (a). The equation of motion 

for the string is (Problem 1225) 

from which it is seen that the wave propagating along the string has velocity 
v = m. As the two ends of the string are fixed the fundamental mode 
(Fig. 1.216 (a)) has wavelength X1 given by 

Hence the fundamental angular frequency is 

2av lr I?; 

The solution for the fundamental mode is 

y1 = A~ sin ( y )  cos(wlt + cpl) , 
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where A l l  'pl are constants to be determined from the initial conditions. 
The wavelength for the first harmonic (Fig. 1.216 (b)) is A2 = L. Hence for 
the first harmonic the angular frequency is 

2nv 27r 15; 

and the solution is 

312 = A2 sin (T) cos(w2t + (p2) 

where A2,  cp2 are constants to be determined from the initial conditions. 
(b) The equations of motion for the two sections are 

The boundary conditions are that for all t ,  y = 0 at x = 0, L, and y and 
agldx are continuous at x = L/3 .  Thus the solutions of the equations of 
motion are 

with 

and 
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(&) (A1 cos wt + B1 sin wt) sin 

(E) = (A2 cos wt + B2 sin wt) sin 

(E) W 
- (A1 cos wt + B1 sin wt) cos 
V l  

W _- (A2 cos wt + B2 sin wt) cos - - 
2 V l  

Equating separately the coefficients of cos wt and sin wt on the two sides of 
the last two equations gives 

A1 sin (&) - Azsin (E) = 0 ,  

A1-cos(G) W Lw + A ~ $ c o s ( E )  = 0 ,  
V1 

B1 sin (E ) - B2 sin (&) = 0 , 

B l W c o s ( E )  v1 +B~:COS(~) = O .  

For A1 , Az, B1, B2 not all zero we require 

sin (Z) - sin (&) 
0 v1 cos (&) COS (E) 

3w 2Lw - - - s i n ( K ) = o ,  4vl 

i.e. 
2Lw 
- = n ~ ,  n = l , 2 , 3  , . . .  
3Vi 

Hence the new fundamental and first harmonic angular frequencies are 
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For the fundamental frequency w i ,  

A2 = A1, B2 = B1 . 

For the first harmonic frequency wa, 

A2 = -2A1, B2 = -2B1 . 

The corresponding wave forms are sketched in 
respectively. 

I 
I 

(b) 

(a) and (b) of Fig. 1.217 

W l  

*z 

Fig. 1.217. 

1237 

A string of infinite length has tension T and linear density 0. At t = 0, 
the deformation of the string is given by the function f(x), and its initial 
velocity distribution by g ( x ) .  What is the motion of the string for t > O? 

( Chicago ) 

Solution: 
The deformation of the string travels as a wave following the wave 

equation 

= O  a21/ 1 a29 
a x 2  v2 a t ~  
- - -- 
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with 

The general solution is a sum of waves traveling in the -x and +x directions: 

y = f1(z + vt) + f2(. - vt) . 

The initial conditions give 

fl(2) + f2(5) = f(.) I 

9(X) f i b )  - f m  = 2, I 

with ( = z + vt, ( = z - vt respectively. Integrating (2) gives 

(3) 

C being an arbitrary constant. Combining Eqs. (1) and (3) we obtain 

f2(2) = 5 f(z) - - g(z ' )dz '  - c . 
l [  :I" 1 

Hence 

p(z, t )  = fl(. + vt) + f& - vt)  

=1( 2 [ f ( z + v t ) + -  V J"+wt g(z')dz' + c] 

11 + [f(x - vt) - - J""tg(z')d21 - c 

1 = 1 [f(. + vt) + f(z - vt) + - J,,, 9(x')dx' 

V 

1 z+vt 

2 
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1238 

A long wave packet with amplitude A composed predominantly of 
frequencies very near wo propagates on an infinitely long string of linear 
mass density p stretched with a tension T as shown in Fig. 1.218. The 
packet encounters a bead of mass m attached to the string as shown in the 
sketch. 

(a) What is the amplitude of the transmitted wave packet? 
(b) In the limit of large rn and high frequency (large WO), how does the 

amplitude of the transmitted wave depend on wo? 

(MITI 

Fig. 1.218. 

Solution: 

is 8 wave equation (Problem 1225) 
(a) The equation of motion for the string for small transverse oscillations 

= o ,  a2Y P a2Y - - -- 
ax2 T a t 2  

the velocity of wave propagation being v = k m .  For waves of angular 
frequency w, define wave number 

k = - = w  - 
V 8- 

For waves with angular frequencies very nearly wo, the wave equation has 
solutions 
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where A, B ,  C are the amplitudes of the incident, reflected and transmitted 
waves respectively, and the position of the bead is taken to be the origin 
of the x-axis. The continuity of the displacement at the boundary requires 
y1 = yz at z = 0 for all t, i.e. 

A + B = C .  

The equation of the motion of the bead is 

m (3) = -TsinO1 +TsinOz 
z=o 

where &,Oz are the angles the string makes with the z-axis for z < 0 and 
z > 0 respectively as shown in Fig. 1.219. Thus 

- w ; C  = -ikT(A - B )  -I- ikTC , 

or 

Y 

I X  
0 

Fig. 1.219. 

As A + B = C we have 
2A c= (z+$) ’  
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and the amplitude of the transmitted wave is 

(b) In the limit of large m and large wo we have 

2A 1 
7TEwo WO 

p ~ = - ~ c x - .  

1239 
A uniform string has length L and mass per unit length p. It undergoes 

small transverse vibration in the (z,y) plane with its endpoints held fixed 
at (0,O) and (L, 0) respectively. The tension is K. A velocity-dependent 
frictional force is present: if a small piece of length 61 has transverse velocity 
v the frictional force is -kv& Using appropriate approximations, the 
following equations hold for the vibration amplitude y(z, t): 

(i) % + a g = b a ,  (ii) y(0,t) = 0 = y(L,t). 

(a) Find the constants a and b in (i). If you cannot do this part, take a 

(b) Find all solutions of (i) and (ii) which have the product form y = 
and b as given positive constants and go on. 

X ( z ) T ( t ) .  You may assume a2 c b/L2. 
(c)  suppose Y ( X ,  0) = 0, 

~(z, 0) = A sin ( y )  + B s i n ( F )  . 

Here A and B are constants. Find y ( x , t ) .  
(d) Suppose, instead, that a = 0 and Q(x,O) = 0 while 

o 1 x 1 g .  
y(5,O) = { 

A ( L - x ) ,  $ I x < L  

Find y(z, t). 
( UC, Berkeley) 
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Solution: 
(a) The frictional force acting on unit length of the string is -kv = 

- k d y / d t ,  so the transverse vibration of the string is described by 

or 

a 2 y  aZy ay 
at2 a x 2  at 

azY IC ay K a2y 

p- = K- - k- , 

- at= + (-) p - at = (7) dz2 . 
Hence a = k / p ,  b = K / p .  

obtain 
(b) Setting y = X ( z ) T ( t )  and substituting it in the wave equation we 

T" aT' bX" 
T + T = -  x .  

As the left-hand side depends only on t and the right-hand side depends 
only on x, each must be equal to  a constant, say -bA2. Thus we have 

x" + A2X = 0 , 
T" + aT' + bX2T = 0 . 

Using the boundary conditions 

y(O,t)  = y(L,t)  = 0, i.e. X(O) = X ( L )  = O , 

we obtain the solutions for the first equation 

X n  (x) = A, sin( A,z) = A, sin - (n3 
where A, is a constant and n = 1,2 ,3 , .  . . . The second equation then 
becomes 

T " + a T ' + b  - T = O .  (32 
Letting T( t )  = e p t  we obtain the characteristic equation 

2 n2.1r2b 
P +ap+-=O, L2 

whose solutions are 

-a f da2 - 4n2.1r2b/L2 a 
2 2 

= -- f i w ,  , P* = 
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where 

is real as b/L2 > a2. Hence the solution of the second equation can be 
written as 

T, = [CA sin(w,t) + Q, cos(wnt)]e-+ , 

and thus 
n r x  

yn = sin (7) [c, sin(w,t) + D n  cos(wnt)le-' 

grouping the constants in each term into one. The general solution of the 
wave equation is thus 

n=l 

(c) As y(z,O) = 0, D, = 0 for all n and we have 
00 

y(xl t )  = C C, sin ( - ny)  sin(w,t)e-+ . 
n=l 

and 

Then as 
00 

y ( x , 0) = A sin ( y )  + B sin ( y )  = C Cn sin ( y) w, , 
n=l 

we have 
B 

1 c5=- 
A 

c3 = - 

and all other Cn = 0. Hence 

[ w", ( 'y) sin (wst) + - sin - sin(w5t) e - q  y (z , t )  = -sin - (") ] w5 

with 
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(d) Starting with the general solution 

we find Cn = 0 for all n as 3i(x,O) = 0. Then 

0 5 X l L / 2 ,  m 

y ( x ,  0) = c Dn sin = { Ax’ 
n=l A(L - x ) ,  L / 2  _< 2 5 L . 

As 

m x x  W L  
m-T2 L 

y ( x l  0 )  sin (7) d x  = 1 D, sin ( y) sin (I) dx 
n=l Q 

we have 

2 L  m x x  
D ,  = 1 y (x ,O)  sin (G) dx 

4 A L  -- - sin ( y )  . 
m-T 

Note that we have used the formula 

x 1% sin(rnx) sin(nx)dx = -&n 
2 

in the above. Finally we have 

where 

n x  
L wn = -4 

a s a = 0 .  
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1240 

(a) Plot the pressure and air displacement diagrams along a pipe closed 

(b) What is the frequency of this mode relative to the fundamental? 
at one end for the second mode. 

( Wiswtasin) 

pipe 

pressure 

displacement 

PL-- I * I .++ I 

t- I 

Fig. 1.220. 

Solution: 
(a) The pressure and air displacement as functions of distance from the 

closed end are sketched in Fig. 1.220. 
(b) For this mode, L = 3X/4, while for the fundamental mode, L = X/4. 

Hence if wo is the fundamental frequency, the frequency of this mode is 3w0. 

1241 
An organ pipe of length 1 open on both ends is used in a subsonic wind 

tunnel to measure the Mach number v / c  of air in the tunnel as shown in 
Fig. 1.221. The pipe when fixed in the tunnel is observed to resonate with 
a fundamental period t. If v / c  = 1/2, calculate the ratio of periods t / t o  
where to is the fundamental period of the pipe in still air. 

( Wiswnstn) 
Solution: 

As the organ pipe is open at both ends, the fundamental wavelength of 
sound in resonance with it is given by X/2 = 1. The corresponding period 
is 
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Fig. 1.221 

A 21 t = - = - -  
2 1 2 1  

where u is the velocity of sound relative to the pipe. 

still air, c, and the fundamental period is 

t o = = - .  

When the air in the pipe is still, v is equal to the velocity of sound in 

21 
C 

When the air in the pipe moves with velocity 4 2 ,  the pipe can be 
considered to move with velocity -c/2 in still air. Thus 21 = c - ( - c /2 )  = 
3c/2 and the period is 

21 41 
- 3c 3c 

t = - = - - .  
2 

Hence we have the ratio 
t 2  - - _ -  

to 3 . 

1242 

The speed of sound in a gas is calculated as 

adiabatic bulk modulus 
v = J  density 

(a) Show that this is a dimensionally-correct equation. 
(b) This formula implies that the propagation of sound through air 

is a quasistatic process. On the other hand, the speed for air is about 
340 m/sec at a temperature for which the rms speed of an air molecule is 
about 500 m/sec. How then can the process be quasistatic? 

( Wisconsin ) 
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Solution: 

while the adiabatic factor is dimensionless. Thus dimensionally 
(a) The dimensions of the bulk modulus are the same as those of pressure 

adiabatic bulk modulus g/cm - s2 
N = cm2/s2 , 

density g/cm3 

which are the dimensions of w2. Hence the formula is dimensionally correct. 
(b) Consider for example sound of frequency 1000 Hz. Its wavelength 

is about 0.34 m. Although the rms speed of an air molecule is large, its 
collision mean free path is only of the order of lod5 cm, much smaller than 
the wavelength of sound. So the motion of the air molecules does not affect 
sound propagation through air, which is still adiabatic and quasistatic. 

1243 
A vertical cylindrical pipe, open at the top, can be partially filled with 

water. Successive resonances of the column with a 512 sec-' tuning fork 
are observed when the distance from the water surface to the top of the 
pipe is 15.95 cm, 48.45 cm, and 80.95 cm. 

(a) Calculate the speed of sound in air. 
(b) Locate precisely the antinode near the top of the pipe. 
(c) The above measurements are presented to you by a team of sopho- 

( Wisconsin ) 
more lab students. How would you criticize their work? 

Fig. 1.222. 
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Solution: 
(a) The wave forms of the successive resonances in the air column are 

shown in Fig. 1.222. It is seen that for successive resonances, the air columns 
differ in height by half a wavelength: d = X/2. As 

d = 48.45 - 15.95 = 80.95 - 48.45 = 32.50 cm , 
X = 2d = 65.00 cm . 

The velocity in air is then 

v = Xu = 0.6500 x 512 = 330 m/s . 

(b) As X/4 = 16.25 cm and 16.25 cm-15.95 cm = 0.30 cm, the 
uppermost antinode is located at 0.30 cm above the top of the pipe. 

(c) This method of measuring sound velocity in air is rather inaccurate 
as the human ear is not sensitive enough to  detect precisely small variations 
in the intensity of sound, and the accuracy of measurement is rather limited. 
Still, the data obtained are consistent and give a good result. The students 
ought to  be commended for their careful work. 

1244 

Two media have a planar, impermeable interface as &..own in Fig. 223. 
Plane acoustic waves of pressure amplitude A and frequency f are generated 
in medium (l), directed toward medium (2). Take A and f as given 
quantities and assume the wave propagation is normal to the interface. 
Medium (1) has density p1 and sound velocity c1, while medium (2) has 
density p2 and sound velocity c2. 

(a) What are the appropriate boundary conditions at the interface? 
(b) Apply these boundary conditions to  derive the pressure amplitude 

A, of the wave reflected back into medium (1) and the pressure amplitude 
B of the wave transmitted into medium (2). 

( CUSPEA ) 

Solution: 
(a) The boundary conditions at the interface are 
(i) the pressure is continuous, 
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- A  - LB Fig. 1.223. z 

(ii) the component of the rate of fluid displacement perpendicular to 

(b) Take the z-axis perpendicular to the interface with the origin on the 
the interface is continuous, otherwise the interface would be permeable. 

interface and let the pressure be 

Aei(wt-kl X )  for the incident wave, 

r for the reflected wave, A e i (wt -k l r )  

~ ~ i ( w t  - ka X )  for the transmitted wave, 

with kj = w / c j ,  cj  being the velocity of sound in the j t h  medium. The 
boundary condition (i) gives 

A + A r  = B . (1) 

The velocity of sound in a fluid is given by 

where M = -p(Av/v)-' is the bulk modulus, Av being the change of the 
original volume v by an excess pressure p. For a compressional wave, Av 
is solely longitudinal so that 

Av A[ a[ 
A % - = -  
v Ax 8 z  ' 

where [ is the displacement of fluid layers from their equilibrium positions. 
Thus 
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or 

Integrating we have 
e i ( w t y k r )  

t m  * ikpc2 * 

For the three waves we have respectively 

and thus 

The boundary condition(ii) states that at z = 0, 

{ A  + { A ,  = i B  1 

or 

Combining Eqs. (1) and (2) we obtain the amplitudes of the reflected and 
transmitted pressure waves: 

P2Cz - P l C l  

P l C l  + P2C2 
A,  = A 

2 A P 2 C 2  

P l C l  + P2C2 
B =  
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1245 

Let the speed of sound in air be c and the velocity of a source of sound 
moving through the air be v in the x-direction. 

(a) For w < c: a pulse of sound is emitted at the origin at time t = 0. 
Sketch the relationship of the wavefront at time t to the position of the 
sound at time t .  Label your sketch carefully. Write an equation for the 
position of the wavefront as seen from the source at time t .  

(b) For u > c: a source emits a continuous signal. Sketch the wavefront 
set up by the moving source. Indicate on your sketch the construction 
which leads to your result. Write an equation relating the shape of the 
wavefront to other known factors in the problem. 

( Wisconsin) 

Y Y '  

I 
Fig. 1.224. 

Solution: 
(a) Let S be the position of the source at time t .  Take coordinate frames 

0x9, Sx'y' with origins at 0 and S, the x-, 2'-axes along OS, and the y-, 
y'-axes parallel to each other as shown in Fig. 1.224. We have 

x' = x - ut, yl = y 

The wavefront at  time t is given by x = ct cos cp, y = ct sin cp, with 0 5 cp 5 
21r. Then the wavefront as seen from the source is given by xf = ct cos cp-ut, 
yl = ct sin cp. 

(b) Suppose the source moves from point 0 to point S in the time 
interval t = 0 to t = t and consider the signals emitted at t = 0 and 
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intermediate instants t l , t z , .  . . , when the source is at 5'1, $2,. . . , with 
OS1 = vtl ,  OS2 = vt2, . . . . Each signal will propagate from the point 
of emission as a spherical wave. At time t, the wavefronts of the signals 
emitted at 0, S 2 ,  Sz , . .  . will have radii d, c( t - t l ) ,  c(t-t2), . . . , respectively. 
As 

. . .  - - 
ct c(t - t l )  - c(t - t z )  
vt v(t - t l )  v ( t  - t2) 

- - - - 

all these wavefronts will be enveloped by a cone with vertex at  S of semi- 
vertex angle 0 given by 

ct c 
vt 7) 

sin$ = - = - , 

as shown in Fig. 1.225. Hence the resultant wavefront of the continuous 
signal is a cone of semi-vertex angle arcsin(c/v) with the vertex at the 
moving source. 

It-- v t  ---_I 

Fig. 1.225. 

1246 

The velocity of sound in the atmosphere is 300 m/s. An airplane is 
traveling with velocity 600 m/s at an altitude of 8000 m over an observer 
as shown in Fig. 1.226. How far past the observer will the plane be when 
he hears the sonic boom? 

(Wisconsin) 



Newtonian Mechanics 409 

Fig. 1.226. Fig. 1.227. 

Solution: 
As the velocity v of the source S is greater than the velocity c of sound 

propagation, the wavefront is a cone with vertex at the moving source 
(Problem 1245). The observer at A will hear the sonic boom, which was 
emitted when the source was at 0, when the cone sweeps past him, as 
shown in Fig. 1.227. The source is now at S. Let A’ be a point on the path 
of the source directly above A. We have 

O A  I AS, O A  = ct, 0s = vt , 

h d  ct 
x 

and 
C - - 

AS - JOS2 - OA2 - Jm 
or 

x = h / n  = SOOOJ- = 1.39 x lo4 m . 

This is the horizontal distance of the plane from the observer when he 
hears the sonic boom. Note that the semi-vertex angle of the cone is 
0 = arcsin (c/w) as required. 

1247 

It is a curious fact that one occasionally hears sound from a distant 
source with startling clarity when the wind is blowing from the source 
toward the observer. 

(a) Show that this effect cannot be explained by “the wind carrying the 
sound along with it”, i.e. a uniform wind velocity cannot account for the 
effect. 
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(b) Wind blowing over the ground has a vertical velocity gradient which 
can be well represented near the ground by the formula u = ky2, where y is 
the height above the ground and k is a constant which depends on the wind 
speed outside of the boundary layer where the parabolic velocity profile is 
a good approximation. For a given value of k and of the speed of sound 
us,  calculate the distance s, downwind from a sound source, where the 
maximum enhancement of sound intensity occurs. 
HINT: You may assume that the sound rays follows low, arc-like paths 
which are well represented by 

y = hsin (7) . 

(c) One also notices an enhancement of the transmission of sound over 

(Princeton) 
a lake, even for no wind. What is happening in this case? 

Solution: 
(a) The effect cannot be explained by the wind carrying the sound with 

it, for across the path of a uniformly moving wind, all observers would then 
hear the sound with equal clarity. This not being the case the effect is 
in fact due to refraction of sound brought about by the variation of the 
sound velocity, with respect to a fixed observer, at different points of the 
medium. This may arise from two possible causes, temperature gradient or 
velocity gradient in the moving wind. The velocity of compressional waves 
in a gas varies with temperature T as @. It also varies if the velocity of 
the medium itself varies. Refraction of sound changes the direction of its 
wavefront. Near the surface of the earth, both gradients may be present 
and the path of sound can bend in different ways, making it possible for a 
distant observer to hear it with startling clarity. 

Fig. 1.228. 
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(b) Take coordinate axes as shown in Fig. 1.228. It is assumed that the 
wind velocity near ground is horizontal with a vertical gradient, i.e. 

21 = 21, = Icy2 , 

so the medium can be considered as consisting of horizontal layers with 
different sound velocities. The law of refraction is 

sin 8 - = constant, V 

where 8 is the angle between the direction of sound propagation in the layer 
and the vertical, and V is the velocity of sound with respect to the ground. 
Consider two points on the sound path with variables 

el = 8, V2 = us + v, sin0 = us + vsin8 , 
82 = 8 + do, V2 = V, + (v + dv) sin(8 + do) . 

The law of refraction then gives 

us + (v + dv) sin(8 + do) - sin(8 + do) 

As sin(8 + d8) M sin0 + cos8d8, retaining only the lowest order terms we 
have 

- 
v, + vsin8 sin 8 

Thus 

or 

1 .  
kh2 1 
v, sine0 
---- - 

On the other hand the given sound path yields 

dy slrh KX 

dx s S 
cot8= - = - c o s - ,  
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in particular, 
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2 - = J l + ( ? ) .  1 
sin do 

Substituting this in the above gives the path length s, downwind from the 
sound source, where maximum enhancement of sound intensity occurs as 

T V S  

,/k(2vs + kh2) 

(c) The speed of sound in a gas varies with absolute temperature T as 
fi. Vertically above a lake, for some range of heights, the temperature 
increases during daytime and establishes a vertical gradient. So does the 
speed of sound. Refraction of sound occurs during daytime similar to that 
described in (b). 

3 =  

1248 

Consider a plane standing sound wave of frequency lo3 Hz in air at 
300 K. Suppose the amplitude of the pressure variation associated with this 
wave is 1 dyn/cm2 (compared with the ambient pressure of lo6 dyn/cm2). 
Estimate (order of magnitude) the amplitude of the displacement of the air 
molecules associated with this wave. 

(Columbia) 

Solution: 
The longitudinal displacement < from equilibrium of a point in a plane 

stationary compressional wave in the x direction can be expressed as 

with k = nr/l, 1 being 
velocity of the wave is 

< = sin(kx)e-awt , 

the thickness of the gas and n = 1 , 2 , .  . . . The 

Here the bulk modulus M is by definition 
-1  

M = - p ( ? )  , 
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p being the excess pressure and V the original volume. Consider a cylinder 
of the gas of cross-sectional area A and length Ax. We have 

-=-  Av A A t x - - .  a5 
v AAX a x  

Then 

where po = Mk(0 = p 2 k ( o  is the amplitude of the excess pressure. Hence 

Po 
50 = ~ pv2k * 

For the lowest mode 

n = 1 ,  A = 2 1 ,  

2lr 2nu 
A v  

k = - = - ,  

u being the frequency of the sound wave. Thus 

For an ideal gas 
m 
M paV = -RT , 

giving 

P = m = p , M  
V RT ’ 

where pa, T are the ambient pressure and temperature respectively. As 
po = 1 dyn/cm2 = 10-1 N/m2, pa = lo6 dyn/cm2 = lo5 N/m2, M = 
29 x kg/mol, R = 8.31 J/mol/K, T = 300 K ,  v = 340 m / s ,  
u = lo3 Hz , we find t o  = 4x m as the amplitude of the displacement 
of the air molecules. 
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1249 

An acoustical motion detector emits a 50 kHz signal and receives the 
echo signal. If the echoes have Doppler shift frequency components depart- 
ing from 50 kHz by more than 100 Hz, a “moving object” is registered. 
For a sound velocity in air of 330 m fsec, calculate the speed with which 
an object must move toward (or away from) the detector in order to be 
registered as a “moving object”. 

( Wisconsin ) 

Solution: 
Consider a source emitting sound of frequency u. The Doppler effect 

has it that if an observer moves with velocity v toward the source he will 
detect the frequency as 

. / = (? )u ,  

c being the speed of sound propagation. On the other hand, if the source 
moves with velocity v toward the observer, who is stationary, then 

v / =  (+ c - u  

Thus the object, moving toward the detector, receives a signal of frequency 

and the signal after reflection by the object is detected by the detector as 
having frequency 

For the moving object to be registered, we must have Y” = v f Av,  where 
Au >. 10’ Hz. Then 

u f A u =  ( - ) u ,  c - v  c + v  

or 
cAu CAU 

v = f  E f -  , 
2u f Av 2u 

as Au << u.  Hence the object must be moving toward or receding from the 
detector a t  
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= 0.330 m/s 330 x lo2 
v ’ 2 x 5 x 1 0 4  

for it to be registered. 

1250 

A student near a railroad track hears a train’s whistle when the train is 
coming directly toward him and then when it is going directly away. The 
two observed frequencies are 250 and 200 Hz. Assume the speed of sound 
in air to be 360 m/s. What is the train’s speed? 

( Wisconsin ) 

Solution: 

Let vo, u1, v2 be respectively the frequency of the whistle emitted by the 
train, and the frequencies heard by the student when the train is coming 
and when it is moving away. The Doppler effect has it that 

v1= (z) c - v  vo , 

t? = (-&) vo 1 

where c is the speed of sound and v is the speed of the train, and thus 

Putting in the data, we have 

360 + v 1.25 = ~ 

360 - v 

or 
2.25 720 
0.25 2v ’ 

- 

and thus 
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1251 
The velocity of blood flow in an artery can be measured using Doppler- 

shifted ultrasound. Suppose sound with frequency 1.5 x lo6 Hz is reflected 
straight back by blood flowing at 1 m/s. Assuming the velocity of sound 
in tissue is 1500 m/s and that the sound is incident at a very small angle 
as shown in Fig. 1.229, calculate the frequency shift between the incident 
and reflected waves. 

( Wisconsin) 

Sound source 

and *'))) 1 
r t c e  tver - Y = 1 m/s  

Fig. 1.229. 

Solution: 
As the sound is incident at a very small angle, the blood can be 

considered to be flowing directly away. Then the results of Problem 1249 
can be applied with v replaced by -v: 

u q - > . .  c - v  
c + v  

The frequency shift is then 

2vv 2vv 
C + V  C 

v" - y = _- M -- - - -2 x lo3 Hz . 

1252 

A car has front- and back-directed speakers mounted on its roof, and 
drives toward you with a speed of 50 ft/s, as shown in Fig. 1.230. If the 
speakers are driven by a 1000 Hz oscillator, what beat frequency will you 
hear between the direct sound and the echo off a brick building behind the 
car? (Take the speed of sound as 1000 ft/s.) 

( Wisconsin) 



Newtonian Mechanics 417 

Fig. 1.230. 

Solution: 
The sound from the back-directed speaker has Doppler frequency 

where c and v are the speeds of sound and the car respectively, and Y is 
the frequency of the sound emitted. As the wall is stationary with respect 
to the observer, Vb is also the frequency as heard by the latter. The sound 
from the front-directed speaker has Doppler frequency 

u l = ( " ) u .  C - V  

Hence the beat frequency is 

1253 

A physics student holds a tuning fork vibrating at 440 Hz and walks 
at 1.2 m/s away from a wall. Does the echo from the wall have a higher 
or lower pitch than the tuning fork? What beat frequency does he hear 
between the fork and the echo? The speed of sound is 330 m/s. 

( Wisconsin ) 

Solution: 

the wall at speed v,  the sound that is incident on the wall has frequency 
As the tuning fork, which emits sound of frequency u, moves away from 
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Then the student, who is moving away from the wall at speed v, hears the 
reflected frequency 

c--21 c - v  

As 
2vv 

< O .  Jl - "  = -- 
c + v  

the echo has a lower frequency. The beat frequency between the fork and 
the echo is 

2vu 2uv - z - = 3.2 HZ . 
c + v  c 

1254 

A rope is attached at one end to a wall and is wrapped around a capstan 
through an angle 0. If someone pulls on the other end with a force F as 
shown in Fig. 1.231(a), find the tension in the rope at a point between the 
wall and the capstan in terms of F ,  8 and ps,  the coefficient of friction 
between the rope and capstan. 

(Columbia) 

T.? tcs 
Fig. 1.231. 

Solution: 

Consider an element of the rope as shown in Fig. 1.231(b). The forces 
acting on the element are the tensions T and T + AT at its two ends, the 
reaction N exerted by the capstan, and the friction f .  As the element is in 
equilibrium we have 
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f + (T+ AT)cos ( y )  - Tcos ( y )  = 0,  

N - (T + AT) sin ( $ ) - T s i n ( y ) = O .  

In first-order approximation the above equations become 

j ' i- (T+ AT) - T = 0, or f = - A T ,  

A0 A0 
2 2 

N - T -  - T- = 0, or N = TAB. 

Then as f = p, N , we find 

Integrating we have 
T = Ce-p*9 , 

where C is a constant. As T = F at 8 = 0, C = F .  Hence 

T = Fe-Fee . 

1255 

A uniform, very flexible rope of length L and mass per unit length 
p is hung from two supports, each at height h above a horizontal plane, 
separated by a distance 220, as shown in Fig. 1.232. 

(a) Derive the shape of the curve assumed by the rope. 
HINT: A parameter in your solution will depend on a transcendental 

equation, which need not be solved. However, any differential equations 
which you encounter should be solved. 

(b) Find an expression for the tension in the rope at the supports. 
Suppose the supports are now replaced by frictionless pulleys of negligi- 

ble size, and a uniform rope of infinite length is hung over the two pulleys 
(see Fig. 1.232). There is no friction between the rope and the table. In 
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1 
/ I  / / I  f I f  1 1 1 1 1 1 1 1  f 1 1 1  I 1 1 1  

Fig. 1.232. 

this case the shape of the curve assumed by the rope depends only on a 
dimensionless parameter a = h/xo. 

(c) Assuming that the rope hangs in a smooth curve with minimum 
height c, derive a transcendental equation relating h/c  to a. 

(d) Find an exact solution for the shape of the rope when LY << 1. 
(e) Relate the shape of the rope in parts (c) and (d) to the shape of a 

soap film stretched between two circular wires of radius h and separation 
2x0 as shown in Fig. 1.233. 

( M I T )  

Y 

Fig. 1.233. 

Y + 

I 
X 

- X 0  0 x : x o  
x.dx 

Fig. 1.234. 

Solution: 

(a) Use coordinates as shown in Fig. 1.234 and let the tension in the 
rope be T = T ( x ) .  Consider an infinitesimal element between the points z 
and x + dx. Conditions for equilibrium are 
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d (T cos 0 )  
dx  

= 0, or TcosB = constant = A,  say . 

The second equation gives 

As 

we have 
Ill 1 

sin@= dm' case= JW 

and the above equations become 

T = A , / ~ ' ,  
Ay" = p g J m  . 

Writing (2) as 
1 dY' - P9 

, /WZ - - A '  

or 
d P9 -((sinh-' y')  = - , dx A 

and integrating, we obtain 

where C is a constant. As y 1  = 0 at x = 0, C = 0 and 

y 1  = sinh (A) PSX . 

Further integrating gives 

(3) 

PSX A 
PS 

y = - cosh ( A) + B 
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With the boundary condition y = h at x = X O ,  we find 

Hence the shape of the rope is described by 

with the constant A yet to be determined. Consider the tensions T ( f x o )  
at the supports x = f x o .  Their y-components satisfy 

2Tsin8 = Lpg , 

i.e. 
2Ty' 
JW = Lpg 

Using Eqs. (1)  and (3), we can write this as 

2 A  sinh (A) P W O  = Lpg , 

from which A can be determined. The tensions in the rope at x = ltxo are 
given by (1) to  be 

use having been made of Eq. (3). 

equal. Hence 
(c) The tensions T(+xo) in the rope on the two sides of each pulley are 

T ( f X 0 )  = hP9 1 

or, by Eq. (5), 
Acosh ( T )  P S X O  = h p g  . 

Substituting this in (4) gives the equation describing the shape of the rope 
between the pulleys: 

A P9" y ( x )  = - cosh ( -;i-) 
PS 

Let y = c at x = 0, then c = A/pg. As y = h at 

(6) 

x = xo, we have 

h=ccosh(:) , 
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or 
h - = cosh (k) . 
C 

(7) 

This equation determines h/c  as a function of cr = h/xo only. Equation ( 6 )  
can be written as 

- Y C  = -cosh (9;) 
h h  

If we scale the coordinates by h, i.e. 

,$=- X v = -  Y 
h' h '  

we have 
C q = - cosh (tt) . 
h 

This equation, which describes the shape of the curve, depends only on h/c,  
which in term depends only on a = h/zo through Eq. (7) .  

(d) Physically, c < h, so that if a << 1, cosh(h/m) >> 1. Then for h to 
remain finite, we require c -+ 0 as indicated by Eq. (7). This means that 
the whole rope is lying on the ground. 

(e) Let 0 be the coefficient of surface tension of the soap. For equilibrium 
in the horizontal direction at a point (2 ,  y) on the film, we have 

(. .2Ay cos e)z+dz - (0 . 2ny cOs el, = o , 
or 

d 
dx 
-(27r.ycos8) = 0 ,  

i.e. 
ycos8 = constant . 

Suppose y = c at x = 0, then as 8 = 0 for x = 0, the constant is equal to 
c. Furthermore, as 

we have 

or 

y = C J G p  
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with u = y/c. Integrating we have 

x = ccosh- (!) + constant . 

As y = c at x = 0, the constant is zero. Hence 

y=ccosh(:) , 

which is identical with Eq. ( 6 )  of part (c). 

1256 

(a) A bounded, axially symmetric body has mass density p ( x ,  y ,  z )  = 
p(r,  0). At large distances from the body its gravitational potential has the 
form 

where 

p(x' ,  y l ,  z')dx'dy'dd = 27r p(r' ,  #)TI2 sin O'dr'dO' J 
is the total mass. Find f(0).  

(b) A small test body has mass density u(z,y,z) and is placed in 
a gravitational potential d(z, y ,  z) .  What is its gravitational potential 
energy? 

(c) Suppose the body in (a) is spherically symmetric, i.e. p = p ( r ) ,  
then 4 = q 5 ( ~ ) .  Suppose the body is made of gas and supported against 
its own gravity by a pressure p ( r ) .  Denote its radius by R. Some of the 
following integrals correctly represent the gravitational potential energy 
of the body, others are incorrect by simple numerical factors (positive or 
negative). Identify the correct ones and find the missing factors for the 
others. That is, if U = potential energy/ 47r, then is 
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-1 p-r3dr d4 ? 
dr 

2 

4nG lR (g) r2dr  

il pQr2dr ? 
R 

R - I  pr2dr ? 

? 

(d) The test body in (b) is placed with its center of mass at (0, 0, T O )  in 
a spherically symmetric potential 

MG 
4 ( T )  = -- . 

T 

For large TO the gravitational potential energy has the form 

mGM d -- 
TO 

where m = J o d 3 x .  Find d. 
(UC, Berkeley) 

P 
P l f 3  D 

Test body 

0 

Fig. 1.235. Fig. 1.236. 

Solution: 
(a) As in Fig. 1.235 take z-axis along the axis of symmetry and origin 

0 inside the body. The gravitational potential (potential energy per unit 
mass of test body) at a distant point P due to the body is 
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where V‘ is the volume of the body. 
As 

(r - r‘)2 = r2 + rr2 - 2rr’cos(e’ - e) , 
for large distances from the body Ir - r’1-l can be approximated: 

Substituting it in the integral gives 

4 = - - - 2n p(r’, 6 ’ ) ~ ‘ ~  sin B’dr’de’ “ S  r 

Comparing it with the given form 

we find 
f(0) = -2nG p(r’, 8 ’ ) ~ ’ ~  sin O‘cos(0 - O’)dr’dO’ . J 

(b) In a gravitational potential (b(z,y, z) the potential energy of a test 
body with mass density (~(z ,  y, z )  and volume V is 

w = J, 42, Y, z)dJ(z, 9,  z)dV . 

(c) For a closed system of mass density p and volume V the gravitational 
energy is 

W = - L p 4 d V .  1 
2 

Then for a spherically symmetric gaseous body of radius R we have 
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taking the origin at its center. Thus 

Thus integral (iii) is correct. 
Consider a spherical shell of the gaseous body of radius r and thickness 

AT. As the body is supported against its own gravity by pressure p ,  we 
require that for equilibrium 

4nr2 [p(r) - p ( r  + AT)] - 4nr2p-Ar d 4  = 0 , dr 

or 

Poissons's equation for attracting masses is 

or, for spherical symmetry, 

giving 

Hence 

Outside the spherical body, p is zero and dpldr = 0. Hence 
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Equation (1) can then be written as .=-I 1 R d  q 5 z ( r 2 $ ) d r  
8xG 

r 

2 
- - - L l R r 2 ( g )  8xG dr 

Thus integral (ii)  has to be multiplied by a factor -;. Consider now integral 
( i ) .  It can be written as 

2 
- - 1 l R r d  ( r $ )  

- - i l R r 2  ($) 2 d r ,  

8?rG 

- - 
[r3 ( $ ) 2 1 0  R -JdRr2  ($)'.I 8nG 

- 
8?rG 

which is the same as Eq. (2). Hence integral (i)  is correct. 
Integral (iv) can be written as 

pdr3 = -f [-.if - l R r 3 $ d r ]  

R 
= il r3$dr 

=--  pr - d r .  
.? dT 
1 3 4 5  
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Compared with integral (i), which is correct, it has to be multiplied by a 
factor 3. 

(d) Let C be the center of mass of the test body, and consider a volume 
element dV' at radius vector r' from C as shown in Fig. 1.236. We have 

r = r o + r ' ,  

or 
r2 = r: + rI2 + ror' cos 8' , 

giving 

The gravitational potential energy of the test body is 

where V' is the volume of the test body. Use spherical coordinates (r', 8', cp') 
with origin at C, we have 

dV' = T ' ~  sin B'dr'dB'drp' 

and can write the above as 

W = - + / u(T', 8', (p1)d3 sin 28'dr'de'dcp' + 0 
TO 

Hence 
d = % / a(#, 8', c p ' ) ~ ' ~  sin 28'dr'dB'drp' . 

2 

1257 

A beam of seasoned oak, 2 in x 4 in in cross section is built into a 
concrete wall so as to extend out 6 f t ,  as shown in Fig. 1.237. It is oriented 
so as to support the load L with the least amount of bending. The elastic 
limit for oak is a stress of 7900 lb/in2. The modulus of elasticity, 1 (dpldl) ,  
is 1.62 x lo6 lb/in2. What is the largest load L that can be supported 
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without permanently deforming the beam and what is the displacement of 
the point P under this load? In working this problem make reasonable 
approximations, including that it is adequate to equate the radius of the 
curvature of the beam to - (d2g/dz2)-1 instead of the exact expression. 

(uc, Berkeley) 

L 

Fig. 1.237. 

Solution: 
Neglect shear stresses and assume pure bending. During bending, the 

upper fibers will be extended while the lower fibers are compressed, and 
there is a neutral plane N'N which remains unstrained. Consider fibers a 
distance 5 from N'N as shown in Fig. 1.237. Let the radius of curvature of 
N'N be T and that of the fibers under consideration T + 5. The latter thus 
suffer a longitudinal strain 

Consider a cross section A of the beam at x. The longitudinal stress at 5 
from the neutral axis in which the cross section intersects the neutral plane 
is 

where E is the Young's modulus of the material. The total moment of the 
longitudinal stresses about the neutral axis is 

M ( x )  = T t d A  = !! / t 2 d A  = - EI . s T T 

I is the moment of inertia of the cross-sectional area about the neutral axis. 
The maximum bending moment occurs at the cross section z = 0 and the 
maximum stress occurs at the upper and lower boundaries. As 
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M(0)h - Llh 
I I 

TmaX =z - - - 

For least bending the beam should be mounted so that its height is 2h = 4 in 
and width w = 2 in. Thus 

With 1 = 72 in, limiting stress T,, = 7900 lb/in2, this gives the maximum 
load as 

7900 x 32 
3 x 7 2 ~ 2  

L =  = 585 lb . 

Y 

t L 

Fig. 1.238. 

Figure 1.238 shows the bending of the neutral plane N ’ N .  Equation ( 1 )  
gives 

Integrating and noting that dy/dx = 0 at x = 0, we have 

Further integration with y = 0 at x = 0 gives 
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The displacement of the point P is therefore 

- -4.21 i n .  
~ 1 3  

3EI 

1258 

Many elementary textbooks quote Pascal’s principle for hydrostatics as 
“any change in the pressure of a confined fluid is transmitted undiminished 
and instantaneously to all other parts of the fluid”. Is this a violation of 
relativity? Explain clearly what “instantaneously” must mean here. 

( Wisconsin) 

Solution: 
Pascal’s principle does not really violate relativity. It assumes the fluid 

to be incompressible, which is a simplified model and does not correspond 
to a real fluid. 

A change in the pressure at a point of a fluid is transmitted throughout 
the fluid with the speed of sound. As the size of an ordinary container is 
very small compared with the distance traversed by sound in a short time, 
the change in pressure appears to be transmitted to all parts of the fluid 
instantaneously. 

1259 

A beam balance is used to measure the mass rnl of a solid of volume 
V1 which has a very low density p1. This solid is placed in the left-hand 
balance pan and metal weights of a very high density p2 are placed in the 
right-hand pan to achieve balance. 

(a) If the balancing is first carried out in air and then the balance casing 
is evacuated, will the apparatus remain balanced? If not, which pan will 
go down? 

(b) Determine the percentage error (if any) in the measured mass rnl 
when the balancing is carried out in air (density of air = P A ) .  

( Wzsconsan) 
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Solution: 

(a) The apparatus will not remain balanced after the balance casing 
is evacuated. The left-hand pan, which carries a lower density solid, and 
hence an object of a larger volume, will go down, as it had been supported 
more by air in the earlier balancing. 

(b) Let the true and apparent masses of the solid be m and ml respec- 
tively. Then 

m ml 
P1 pz 

m g  - --PAS = m l g  - -PAS ? 

or 

i.e. 

1260 

A bucket of water is rotated at a constant angular velocity w about 
its symmetry axis. Determine the shape of the surface of the water after 
everything has settled down. 

(MITI 

Fig. 1.239. 
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Solution: 
Consider a particle of water of mass m at the surface. Two forces act 

on it: a force F normal to the surface due to neighboring water particles, 
and gravity mg, as shown in Fig. 1.239. As it moves in a circular orbit with 
constant angular velocity w ,  in a cylindrical coordinate system with origin 
at the lowest point of the surface we have 

Fcose = mg , 
Fsin0 = 7 7 ~ ~ ~  , 

where 0 is the angle formed by the normal to the water surface and the 
z-axis. Hence 

tan0 = - . w2r 
9 

As tan0 is the slope of the curve representing the shape of the surface, 

dz W’T - = -  
dT 9 ’ 

giving 

as z = 0 for T = 0. Hence the surface is a paraboloid generated by rotating 
the above parabola about the z-axis. 

1261 
A device consisting of a thin vertical tube and wide horizontal tube 

joined together in the way shown in Fig. 1.240 is immersed in a fluid of 
density p j .  The density and pressure of the external atmosphere are pa 
and pa respectively. The end of the horizontal tube is then sealed, and 
subsequently the device is rotated as shown with constant angular velocity 
w. You may treat the air everywhere as an ideal gas at fixed temperature, 
and you may ignore the variation of density with altitude. Finally, ignore 
capillarity and surface friction. 

Find the height h to which the fluid rises in the vertical tube to second 
order in w .  

(Princeton ) 
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Fig. 1.240. 

Solution: 
The pressure p and density p of the air in the horizontal tube are not 

uniform. Consider a vertical layer of the air of thickness dx at distance z 
from the axis of rotation as shown in Fig. 1.240. As the tube is rotating 
with angular velocity w ,  we have 

I ~ ( x  + d x )  - p ( x ) ] A  = w2xpAdx , 
A being the cross-sectional area of the tube, or 

dP 2 - = w  x p .  
dx  

Treating air as an ideal gas of molecular weight M ,  we have 
m 

pV = -RT , M 
or 

where R is the gas constant. Hence 

M 
RT d p =  -dp 

and 

Integration of the above gives 

Mw2 In - =- (L) 2 R T x 2 ’  
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where po is the density of the air at x = 0. Thus 

with a = Mw2/2RT. po can be determined by considering the total mass 
of the air in the tube: 1" pSdx = paSL , 

i.e. 

Po 1" eax= dx = p,L . 

For moderate w,  Q is a small number. As 

the above becomes approximately 

POL (1 + p) M paL , 

or 

Po" ( 1 -  G) p a .  

As p is proportional to p since the temperature is assumed the same 
everywhere, we have the pressure at x = 0 as 

Po = (1 - 

Consider now the liquid in the thin vertical tube. For equilibrium we 
have 

Pa = P o  +&/ 1 

or 
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1262 
A cylindrical container of circular cross section, radius R, is so supported 

that it can rotate about its vertical axis. It is first filled with a liquid 
(assumed to be incompressible) of density p to a level h above its flat 
bottom, The cylinder is then set in rotation with angular velocity w about 
its axis. The angular velocity is kept constant, and we wait for a while until 
a steady state is achieved. It is assumed that the liquid does not overflow, 
and it is also assumed that no portion of the bottom is "dry". 

(a) Find the equation for the upper surface of the liquid. 
(b) Find an expression for the pressure p ( z )  on the cylindrical surface 

at a height z above the bottom. 
(c) Find an expression for the pressure po(z )  along the axis at a height 

z above the bottom. 
(d) Is the fluid flow as viewed by a stationary observer irrotational? The 

liquid is, of course, subject to the influence of gravity, and we assume that 
the normal atmospheric pressure pa prevails in the environment. 

( UC, Berkeley) 

z 
f 

Fig. 1.241. 

Solution: 
(a) Consider a vertical plane containing the axis of rotation. Let o be 

the angle made by the tangent to the upper surface of the liquid with the 
horizontal at a point distance < from the rotational axis and height Q above 
the lowest point of the upper surface, as shown in Fig. 1.241. Following 
Problem 1260 we have 
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Its integration gives the parabola 

The upper surface is obtained by rotating this parabola about the axis of 
rotation. 

(b) The upper surface of the liquid is an isobaric surface with a pres- 
sure equal to the atmosphere pressure p a .  Note that each such revolving 
parabola in the liquid is an isobaric surface, the difference in pressure 
between it and the upper surface being determined by the distance between 
the two surfaces along the rotational axis. Let h be the height of the lowest 
point of the upper surfaces above the bottom of the container. The height 
of the highest point of the upper surface above the bottom is then 

w2 R2 
29 

h l = h + - .  

If S = 7rR2 and ho is the height of the liquid when it is not rotating, the 
total volume of the liquid is 

7rW2R4 z (hl - 9> w2 R2 rR2 , 
= hlS - - 

4g 

giving 
w2R2 

49 
h l = h o + - ,  

and hence 
w2R2 

49 
h = h o - -  

The pressure on the cylindrical surface at a height z above the bottom is 
therefore 
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V x v = V x ( w x r ) = V x  

(c) The pressure along the axis at a height z above the bottom is 

i j k  
o o w 
X Y Z  

1-wy wx 0 

= 2wk. 

As V x v # 0, the fluid flow is rotational. 

1263 
Given that the angular diameter of the moon and that of the sun are 

nearly equal and that the tides raised by the moon are about twice as high 
as those raised by the sun, what statement can you derive about the relative 
densities of the sun and moon? 

(UC, Berkeley) 

Solution: 
Let Re, &, R, be the radii, Me, M,, Ma the masses of the earth, moon 

and sun, and denote by h,, h, the heights of the tides raised by the moon 
and sun at a point on earth, and by D,, D, the distances of the moon and 
sun from the center of the earth, respectively. The disturbing effect of the 
moon at a point on the earth's surface may be represented by a potential 
which is approximately 

where 8 is the moon's zenith distance at that point. This being equal to 
gh,, where 
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is the acceleration due to the earth's gravity, we have 

For the same zenith distance, 
h, = ( 3J3 2 = ( 3J3 (2) 3 Pm , 

ha P a  

with pm, pa denoting the average densities of the moon and sun respectively. 
As the angular diameters of the moon and sun as seen from the earth are 
approximately equal, we have 

and hence 
= 2 ,  Pm - hm 

p a  ha 
which is the density of the moon relative to that of the sun. 

1264 

A hypothetical material out of which an astronomical object is formed 
has an equation of state 

1 
p =  - K p 2 ,  

2 
where p is the pressure and p the mass density. 

(a) Show that for this material, under conditions of hydrostatic equilib 
rium, there is a linear relation between the density and the gravitational 
potential. The algebraic sign of the proportionality term is important. 

(b) Write a differential equation satisfied at hydrostatic equilibrium by 
the density. What boundary conditions or other physical constraints should 
be applied? 

(c) Assuming spherical symmetry, find the radius of the astronomical 
object at equilibrium. 

(UC, Berkeley) 
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Solution: 
(a) Suppose the fluid is acted upon by an external force F per unit 

volume. Consider the surfaces normal to the z-axis of a volume element 
d~ = dzdydz of the fluid. At equilibrium F is balanced by the pressure in 
the fluid, thus 

i.e. 

or 
F = V p .  

Then if f is the external force per unit mass of the fluid, we have 

1 
P 

f = - V p .  

As p is given by the equation of state, we have 

VP = KPVP 

and 
f = KVp 

If the external force is due to gravitational potential 4, then 

f = - V d .  

A comparison with the above gives 

V$+ K V p  = 0 ,  

or 
4 + Kp = constant 

Hence $ and p are related linearly. 
(b) Poisson’s equation 

V24 = 4nGp 

then gives 
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This is the differential equation that has to  be satisfied by the density at 
equilibrium. The boundary condition is that p is zero at the edge of the 
astronomical object. 

(c) For spherical symmetry use spherical coordinates with origin at the 
center of the object. The last equation then becomes 

d2p 2 d p  47rGp - + -- + - = o .  
dr2  T dr K 

Let u = pr ,  w2 = 4nG/K and write the above as 

d2u 
dr2 
- + w2u = 0 ,  

which has solution 
u = uo sin(wr + p) , 

giving 
To Po p = - sin(wr + 0) , 

T 

where T O ,  po and /3 are constants. The boundary condition p = 0 at T = R, 
where R is the radius of the astronomical object, requires 

w R + p = n n ,  n = l , 2 , 3  ,... . 

However, the density p must be positive so that WT + p 5 x. This means 
that n = 1 and wR + ,6 = x. Consider 

f = K V p  

sin(wr + 0) + Z w  cos(wr + p)] e, 
T 

= -K= cos(wr + p>[tan(wr + p)  - wrle, . 
T2 

Due to symmetry we require f = 0 at T = 0. This means that as T + 0 

1 
3 

tan(wr + p )  - WT = p + -(WT +fly+. . . + 0 .  

Hence p = 0 and wR = x, giving the radius as 
- 
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1265 

Consider a self-gravitating slab of fluid matter in hydrostatic equilibrium 
of total thickness 2h and infinite lateral extent (in the x and y directions). 
The slab is uniform such that the density p(z) is a function of z only, and the 
matter distribution is furthermore symmetric about the midplane z = 0. 
Derive an expression for the pressure p in this midplane in terms of the 
quantity 

without making any assumption about the equation of state. 
( UC, Berkeley) 

Fig. 1.242, 

Solution: 

(Problem 1264) 
In hydrostatic equilibrium the applied force on unit mass of the fluid is 

1 
P 

f = - V p .  

As there is variation only in the z-direction, 

Consider the gravitational force acting on unit mass at a point at 20, as 
shown in Fig. 1.242, by a layer of the fluid of thickness dz at z: 
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J dz 

-1 

Id r2 + (zo - z)2 
= - 2 ~ G p ( z ) ( z o  - Z) 

The total gravitational force acting on the unit mass at z = zo is 

ZO 

= -27rG Lx0 p(z)dz 

as p(z) is symmetric with respect to the plane z = 0. Applying Eq. (1) to 
the point z = zo and integrating, we have 

This gives for symmetric p(z) 

Setting cp(z0) = p(z)dz, we have dcp/dzo = p(z0) and 

where D = J t p ( z ) d z .  Using the boundary condition p ( h )  = 0 we finally 
obtain 

p ( 0 )  = 27rGu2 , 
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1266 
(a) A boat of mass M is floating in a (deep) tank of water with vertical 

sidewalls. A rock of mms m is dropped into the boat. How much does the 
water level in the tank rise? If the rock misses the boat and falls into the 
water, how much does the water level rise then? 
(You may assume any reasonable shapes for the tank, boat and rock, if you 
require.] 

(b) A U-tube with arms of different cross-sectional areas A1, A2 is filled 
with an incompressible liquid to a height d, as shown in Fig. 1.243. Air 
is blown impulsively into one end of the tube. Describe quantitatively the 
subsequent motion of the liquid. You may neglect surface tension effects 
and the viscosity of the fluid. 

(UC, Berkeley) 

d 

Fig. 1.243. Fig. 1.244. 

Solution: 
(a) Let pw and pr be the densities of water and the rock, St and Sh the 

horizontal cross-sectional areas of the tank and boat, respectively. With 
the rock in the boat, the boat will sink a distance (from water surface) Ah 
such that an additional buoyancy is made available of magnitude 

mg = PwSbAhg 

giving 
m A h = -  

p w s b  
This will cause the water level in the tank to rise by A H  given by 

&AH & A h ,  

or m A H = - .  
Pw st 
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If the rock misses the boat and falls into the water, it drops to the bottom 
of the tank. This increases the “water” volume by m/pr,  which then causes 
the water level in the tank to  rise a height 

m A H = - .  
Pr St 

(b) The motion of the fluid is irrotational and non-steady, and is 
described by Bernoulli’s equation of the form 

1 84) -pv2 + p + u - p- = constant , 
2 at 

which holds for all points of the fluid at any given time t .  Here U is the 
potential of the external force F defined by F = -VU, and 4 is the velocity 
potential defined by v = -V4, Consider two surface points 1, 2, one on 
each arm of the vessel, at distances q , z 2  from the equilibrium level d ,  as 
shown in Fig. 1.244. Bernoulli’s equation gives 

1 2  841 1 a4 
at 

- 2 P l +  P l  + u1- p- = -p; + p2 + u2 - p 2  a t 2  

with 

pl = p2 = atmospheric pressure , 
u1 = (d + n ) p g ,  

v1 = X I ,  

u2 = ( d  - x2)pg  , 
0 2  = x 2  , 

retaining only first order terms of the small quantities x 1 , x 2  and their time 
derivations. In the same approximation, Bernoulli’s equation becomes 

9 
d 

($1 + 22) + - ( 5 1  + .2) = 0 . 

Making use of the continuity equation 
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we have 

447 

9x1 2 , + - = 0 ,  
d 

gx2 2 , + - = 0 .  
d 

Hence the subsequent motion of the liquid is that of harmonic vibration 
with angular frequency w = m. 

1267 
A space station is made from a large cylinder of radius l& filled with 

air. The cylinder spins about its symmetry axis at angular speed w to 
provide acceleration at the rim equal to the gravitational acceleration g at 
the earth’s surface. 

If the temperature T is constant inside the station, what is the ratio of 
air pressure at the center to the pressure at the rim? 

(MITI 
Solution: 

Consider a cylindrical shell of air of radius r and thickness Ar. The 
pressure difference across its curved surfaces provides the centripetal force 
for the rotating air. Thus 

[p(r + Ar) - p(Ar)]27rrl = w 2 r .  2.rrrZpAr , 

where p is the density of the air and 1 is the length of the cylinder, giving 

dP 2 - = p w  r .  
dr 

The air follows the equation of state of an ideal gas 

rn 
PV = -RT , M 

or 

where T and M are the absolute temperature and molecular weight of air 
and R is the gas constant. Hence 
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d p  - Mw2 
dr  RT p r '  

-- - 

Integrating we have 

i.e. 

as the acceleration at the rim, w2&, is equal to g .  Hence the ratio of the 
Dressures is 

1268 

Calculate the surface figure of revolution describing the equatorial bulge 
attained by a slowly rotating planet. Assume that the planet is composed 
entirely of an incompressible liquid of density p and total mass M that 
rotates with uniform angular velocity w. When rotating, the equilibrium 
distance from the center of the planet to its poles is 4. 

(a) Write down the equation of hydrostatic equilibrium for this problem. 
(b) Solve for the pressure near the surface of the planet using the crude 

approximation that the gravitational field near the surface can be written 
as - G M r / r 2 .  

(c) Find an equation for the surface of the planet. 
(d) If the equatorial bulge (Re - 4) is a small fraction of the planetary 

radius, find an approximation to the expression obtained in (c) to describe 
the deviation of the surface from sphericity. 

(e) For the case of earth (% = 6400 km, M = 6 x kg) make a 
numerical estimate of the height of the equatorial bulge. 

( M I T )  
Solution: 

(a) Use coordinate as shown in Fig. 1.245 and consider a point P in 
the planet. In equilibrium the external forces are balanced by the pressure 
force per unit volume, 
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v p =  ( 2 . r :  - -,o ) , 
in spherical coordinates with the assumption that the planet is symmetric 
with respect to the axis of rotation. 

Y 

X 

,cosA 

Fig. 1.245. Fig. 1.246. 

Now use a rotating coordinate frame attached to the planet such that 
the 2’-axis coincides with the axis of rotation and the dz’-plane contains 
OP. In this frame a fictitious centrifugal force per unit volume, pw2r cos A, 
where X = - 8 is the latitude, has to the introduced. Let F be the 
gravitational force per unit volume. Then the forces involved are as shown 
in Fig. 1.246. As d8 = -dX, we can write apla8 = -ap/aX and have, in 
the x‘ and 2’ directions, 

2 c o s X -  -sinX= aP F,t +pw2rcosX, 

%sinX+-cosA=F,t. aP 

& T a x  

ar raX 

(b) The gravitational force per unit volume at P, as given, has compe 
nents 

pGM sin X F,t = - pG M cos X F,! = - 
T2 r2 

Substitution in l3q. (2) gives 
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which, with Eq. (l), then gives 

PGM = p 2 r  cos2 x - - a P  
dr r2 
- 

As p = 0 at T = R, its integration gives 

For a point a depth h under the surface at latitude A, we have, as r = R-  h 
with h << R, 

1 1  h - _ -  
r R = R ~  r2 - R2 = -2Rh, 

and 

(c) The surface of the planet is an equipotential surface. The potential 
(potential energy per unit mass) at the surface due to  gravitational force is 

G M  
R 

U = -- + constant . 

The potential 4 due to the centrifugal force is given by 

-v#= -- - = (w2rcos2X,w2rcosXsinX) . ( :?Trtt) 
Thus 

or 

As 

= -w2r cos2 x , - 84 
dr 

1 
2 

4 = --w2r2 cos2 x + f ( ~ )  . 

1 -EL = w2r cos x sin x + - f ’ ( ~ )  = w2r cos x sin x , 
raX r 

f’(z) = O or f(z) = constant. 

Hence for the surface we have 

1 Gm 
2 R 

- -w2R2 cos2 X - ~ = constant . 
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At the poles, X = &$, R = Rp. We thus have 

1 GM - w ~ c o s ~ X R ~ - - R + G M = O .  
2 RP 

(d) At the equator, X = 0, R = Re, and the above equation becomes 

Re - w2RZ = 2GM ( Rp ) . 
The deviation of the surface from sphericity is therefore 

Re - RP w2RZ - RP 2GM * 

(e) For the earth, 

R = 6400 km, Re M 4 = 6400 km , M = 6 x kg , 
27r 

24 x 3600 
s-l, G = 6.67 x 10-l' Nm2/kg2 , w =  

we have 
Re - Rp = 11 km . 

1269 
The compressibility K of a gas or liquid is defined as K = - ( d V / V ) / d p ,  

where -dV is the volume decrease due to a pressure increase dp. Air (at 
STP) has about 15,000 times greater compressibility than water. 

(a) Derive the formula for the velocity v of sound waves, l/v2 = Kp, 
where p is the mass density. Use any method you wish. (A simple model 
will suffice.) 

(b) The velocity of sound in air (at STP) is about 330 m/s. Sound 
velocity in water is about 1470 m/s. Suppose you have water filled with a 
homogeneous mixture of tiny air bubbles (very small compared with sound 
wavelengths in air) that occupy only 1% of the volume. Neglect the effect 
the bubbles have on the mass density of the mixture (compared with pure 
water). Find the compressibility K of the mixture, and thus find v for 
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Fig. 1.247. 

the mixture. Compare the numerical value of u for the given 1% volume 
fraction with v for pure water or air. 

(UC, Berkeley) 

Solution: 

(a) Without loss of generality, we can consider the problem in one di- 
mension and suppose the front of the compressed region, i.e. the wavefront, 
propagates from left to right at speed u. For convenience we use coordinates 
such that the compressed region is at rest, then the gas particles in the 
region not reached by the wave will move from left to right at speed u in 
this frame. Let the pressure and density in the latter region be p and p 
respectively. When the particles enter the compressed area, their velocity 
changes to u+du,  pressure changes to p + d p ,  and density changes to p+dp, 
as shown in Fig. 1.247. The mass of gas passing through a unit area of the 
wavefront is 

P = (P + dp)(u  + du) 7 

yielding, to first-order quantities, 

The change of momentum per unit time crossing the unit area is 

( p  + d p ) ( ~  + d ~ )  . (U + d v )  - p~ . v = v 2 d p  + 2 p d ~  . 

By Newton's second law this corresponds to the excess pressure of the 
right-hand side over the left-hand side. Thus 

u2dp + 2 p d v  = p - ( p  + dp)  = -dp . 

The above two equations give 

u2dp = d p  . 



Newtonian Mechanics 453 

For a given mass m of the gas, 

m = p V  

or 

Hence 

Or 

dV 
V 

d p =  - p -  . 

i.e. 
1 v=- 
d G *  

(b) For the mixture given, 

dV1 + dV2 - K1V1 + K2V2 - dV K = - - = -  
VdP VdP V 

For water and air we have respectively 

1 
212 - - 

K2P2 , 2 -  
2 1  v1 = - 

KlPl , 
and so 

K2 
K1 P2 

1 
= (g)2 1.293 x 

= 1.53 x lo4 . 

Hence, for the mixture, 

- 118 m/s , 1 1 1470 v=- m ” d m = m -  
which is much less than the velocity of sound in pure water or air. 
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1270 
Consider the spherically symmetric expansion of a homogeneous, self- 

gravitating gas with negligible pressure. The initial conditions of expansion 
are unspecified; instead, you are given that when the density is PO, a fluid 
element at a radius & from the origin has a velocity uo. 

(a) Find v(R) .  
(b) Describe the ultimate fate of the gas in terms of vo, Ra and pa. 

(UC, Berkeley) 

Soiution: 
(a) Consider the motion of a unit mass at the surface of the gas, 

conservation of mechanical energy gives 

1 GM 1 G M  
2"o - - R o 2  = -v2 - - R '  

where M = 47rp0%/3 is the total mass of the gas. Hence the speed of the 
unit mass when the radius of the volume of gas is R is 

(b) As R increases, u decreases, and finally u = 0 and expansion stops 
when the radius becomes 

1271 
An incompressible fluid of mass density p, viscosity 9 is pumped in 

steady-state laminar flow through a circular pipe of internal radius R and 
length L. The pressure at the inlet end is p l ,  the pressure at the exit is p z ,  
Pl > P2. 

Let Q be the mass of fluid that Rows through the pipe per unit time. 
Compute &. 

( CUSPEA ) 
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Solution: 

pipe. For laminar flow the velocity v of the fluid has components 
Use cylindrical coordinates (T ,  cp, z )  with the z-axis dong the axis of the 

21, = UV = 0, 21, = v . 

Furthermore, because of symmetry, v = v(T).  Then in the Navier-Stokes 
equation 

bv 
at p- + ~ ( v * V ) V  - vV2v + Vp = F , 

&/& = 0 for steady-state motion, 

av* 
(v V)v = 21,-e, = 0 , az  

as v = v,(T), and the external force per unit volume F is zero provided 
gravity can be neglected, we have 

v p  = qv2v . 
This becomes 

for v = v(r)e,. As the right-hand side of the first equation depends on T 

while p is a function of z, either side must be a constant, which is 

aP P Z - P l -  AP 
az L L '  

where Ap = pl - pz. Hence 

( T S )  = - (Z )  T . 

Integration gives 

(71, Cz being constants. As 

V ( T )  = finite , v(R) = 0 , 
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we reauire 

Hence 
AP 
477L 

v = -(R' - r2 )  

The mass of the fluid flowing through the pipe per unit time is then 

R n p ~ 4 ~ p  Q = p /  v .2nrdr = -~ . 
0 817L 

1272 
A sphere of radius R moves with uniform velocity u in an incompressible 

(V 3 V(Z) = 0, v(z) being the velocity of the fluid), non-viscous, ideal fluid. 

(a) Determine the velocity v of the fluid passing any point on the surface 
of the sphere. 

(b) Calculate the pressure distribution over the surface of the sphere. 
(c) What is the force necessary to keep the sphere in uniform motion? 

(Columbia) 

Fig. 1.248. 

Solution: 
We can consider the sphere as being at rest while the fluid flows past 

it with velocity v = --u as shown in Fig. 1.248. Use spherical coordinates 
( r ,  8, 'p) with origin at the center of the sphere such that the velocity of the 
Auid is in the direction 0 = n. Define the velocity potential qI by 

v = -vqI 
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The incompressibility of the fluid means that 

v .  v = -V2$ = 0 .  

Thus 4 satisfies Laplace's equation. The boundary 

457 

conditions are 

as the surface of the sphere is impenetrable, and 

$ = O  for r + o o  

as = -u = constant at large distances from the sphere. 
The general solution of Laplace's equation is 

As the geometry is cylindrically symmetric, $ is independent of 'p and we 
have to take rn = 0. Thus we have 

where P'(Cos8) are the Legendre polynomials, and a,, b, are arbitrary 
constants. As 4 = 0 for r + 00, we require a, = 0. As 

, A # \  m 

we require 
bn = 0 for all n # 1 

and 
1 

bl = --uR3 . 
2 

Hence 
uR3 
2r2 

~ = - - c ~ e .  
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(a) At  a point (R, 6 )  on the sphere the velocity of the fluid is 

1 
2 = -ucosOe, - -usin0eg . 

(b) Bernoulli’s equation for the irrotational steady flow of a nonviscous, 
incompressible fluid is 

1 
-pv2 + p + I/ = constant , 

where U = constant if there is no external force. Consider a point (R, 6 )  
on the surface of the sphere and a point at infinity, where the pressure is 

2 

or 
3 
8 

p ( ~ ,  6 )  = -pu2 sin2 0 + po . 

This gives the distribution of the pressure over the surface of the sphere. 

direction of u and has magnitude 
(c) The net total force exerted by the pressure on the sphere is in the 

F, = p c 0 ~ 6 d S  J 

= O  

Hence no force is required to keep the sphere in uniform motion. This can 
be anticipated as the sphere moves uniformly without friction. 
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ANALYTICAL MECHANICS 





1. LAGRANGE'S EQUATIONS (2001-2027) 

2001 
A massless spring of rest length lo (with no tension) has a point mass 

m connected to one end and the other end fixed so the spring hangs in the 
gravity field as shown in Fig. 2.1. The motion of the system is only in one 
vertical plane. 

(a) Write down the Lagrangian. 
(b) Find Lagrange's equations using variables 8, X = (r - ro)/ro, where 

(c) Discuss the lowest order approximation to the motion when X and 
= 0, X = A,  4 = wpB at 

(d) Discuss the next order approximation to the motion. Under what 

( Wisconsin) 

ro is the rest length (hanging with mass m). Use w," = k/m, WE = g / r o .  

8 are small with the initial conditions 8 = 0, 
t = 0. A and B are constants. 

conditions will the X motion resonate? Can this be realized physically? 

Fig. 2.1. 

Solution: 

velocity v = ( f ,rd).  Thus 
(a) In polar coordinates (r ,8)  as shown in Fig. 2.1, the mass m has 

1 
2 

T = -m(i2 + TW) , 

v = -mgrcos8 + - k ( ~  - 10)' , 1 
2 

k being the spring constant. The Lagrangian of m is therefore 

1 1 
2 2 L = T - V = -m(f2  + r2e2) + mgr cos 8 - -k(r  - . 

46 1 
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(b) 
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gives 

mi: - mre2 - mgcos8 + k ( r  - l o )  = 0 . 

gives 
mr2e + 2rnrf8 + mgr sin 8 = o . 

The rest length of the spring with mass m hanging, ro, is given by Hooke's 
law 

k(r0 - l o )  = mg . 
Thus with X = ( r  - ro)/ro we have 

and the equations of motion become 

i; + - kX - (1 + x)e2 + 7 ( 1 -  9 cos8) = 0 , 
m 7 0  

9 
TO 

(1 + + 2 i e  + - sine = o ; 

or, with w," = $, w i  = 6 ,  
i; + (w," - e2)x - d2 + w;(i - case) = o , 

(1  + ~ ) e  + 2 i 4  + w;sinO = o . 

(c) When X and B are small, we can neglect second order quantities in 
8, A, 8, A, and the equations of motion reduce to 

i ;+w,"X=O, 

e + w ; e = o  
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in the lowest order approximation. For the given initial conditions, we find 

A = Acos(w,t) , 
8 = Bsin(w,t) . 

Thus A and B each oscillates sinusoidally with angular frequencies w, and 
w, respectively, the two oscillations differing in phase by 7r/2. 

(d) If we retain also terms of the second order, the equations become 

A + u , A  2 - ' 2  - e - -wp2e2 1 , 2 
(1 + ~ ) e  + a i d  + w;e = o . 

Using the results of the lowest order approximation, the first equation above 
can be approximated as 

1 
2 

1 
4 

+ w,"X x -B2w~[2cos2(wpt) - sin2(wpt)] 

= -B2~~[3cos(2wPt) + 11 . 

Thus A may resonate if w, = 2wp. However this is unlikely to realize 
physically since as the amplitude of X increases toward a resonance the 
lowest order approximation no longer holds and higher order effects will 
take place. Furthermore the nonlinear properties of the spring will also 
come into play, invalidating the original simplified model. 

2002 

A disk of mass M and radius R slides without friction on a horizontal 
surface. Another disk of mass m and radius T is pinned through its center 
to a point off the center of the first disk by a distance b, so that it can 
rotate without friction on the first disk as shown in Fig. 2.2. Describe the 
motion and identify its constants. 

( Wisconsin) 

Solution: 
Take generalized coordinates as follows: x,y, the coordinates of the 

center of mass of the larger disk, 0, the angle of rotation of the larger disk 
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@-- 
> X  

l M a l  
Fig. 2.2. Fig. 2.3. 

and cp the angle of rotation of the smaller disk as shown in Fig. 2.3. The 
center of mass of the smaller disk has coordinates 

x + bcos0, I/ + bsin0 

and velocity components 

Hence the total kinetic energy of the system of the two disks is 

1 1 
2 4 

T = - M ( k 2  + y2) + -MR2e2 

1 1 
2 4 

+ -m[(k - b8sin0)~ + (6 + M j c o s ~ ) ~ ]  + -mr242 

and the Lagrangian is 

L = T - V = T  
1 1 
2 4 

= - ~ ( k ~  + ~ 2 )  + - 

Consider Lagrange’s equations 
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we have 
OL - = constant , 
OX 

or 
(M + m ) j  - mb8, sin e = constant 

As aL/ay = 0, we have aL/Ojr = constant, or 

(M + m)j, + mbe cos 0 = constant . 
As aL/a(p = 0, we have a L  fa$ = constant, or 

$ = constant . 

As 

_ -  - -mbxbcose - mb$bsinO , ae 

ae 2 

aL 

% = ~MR2b+mb2~-mbxsin6+mbjrcosf l ,  

we have the equation of motion 

(4) 
1 -MR28 + mb2e - rnbxsine + m@cosB = 0 . 
2 

Equations (1)-(4) describe the motion of the system. Since V = 0 and 
T + V = constant as there is no external force, the total kinetic energy 
of the system, T ,  is a conserved quantity. Conservation of the angular 
momentum about the center of mass of the system requires that, as + = 
constant, 8 = constant too. 

2003 
A uniform solid cylinder of radius R and mass M rests on a horizontal 

plane and an identical cylinder rests on it, touching it along the highest 
generator as shown in Fig 2.4. The upper cylinder is given an infinitesimal 
displacement so that both cylinders roll without slipping. 
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(a) What is the Lagrangian of the system? 
(b) What are the constants of the motion? 
(c) Show that as long as the cylinders remain in contact 

12g( 1 - cos 8) 
e2  = 

R(17 + 4 ~ 0 ~ 8  - 4 ~ 0 s ~  8) ' 
where 8 is the angle which the plane containing the axes makes with the 
vertical. 

( Wisconsin ) 

Fig. 2.4. 

Solution: 
(a) The system possesses two degrees of freedom so that two generalized 

coordinates are required. For these we use 81, the angle of rotation of the 
lower cylinder, and 8, the angle made by the plane containing the two axes 
of the cylinders and the vertical. 

Initially the plane containing the two axes of the cylinders is vertical. 
At a later time, this plane makes an angle 8 with the vertical. The original 
point of contact, A, now moves to A' on the lower cylinder and to A" on 
the upper cylinder. With the angles so defined we have from Fig. 2.4 

o1 + 8 = e2 - 8 ,  

or 
O2 = O1 + 28 . 

Taking Cartesian coordinates (z, y) in the vertical plane normal to the 
axes of the cylinders and through their centers of mass, as shown in Fig. 2.4, 
we have, at t > 0, for the lower cylinder 
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and for the upper cylinder 

467 

2 2  = z1+ 2Rsin8, 

Y ~ = ~ R - ~ ( R - c o s ~ )  = R + ~ R c o s O  

The corresponding velocity components are 

The kinetic energy of the lower cylinder is thus 

1 1 3 
2 4 

q = -M$: + , M R ~ ~ ;  = - M R ~ ~ ;  , 

and that of the upper cylinder is 

1 1 
T2 = -M(X$ + 6;) + -MR2bi 2 4 

1 1 
2 4 

1 
4 

= - M R ~ ( ~ :  - 4 e 1 8 ~ ~ ~ e + 4 8 2 ) +  - M R ~ ( ~ ;  +4ele+4e2) 

= -MR2[38: + 4&b(1- 2cos8) + 12b2] . 

The potential energy of the system, taking the horizontal plane as level of 
reference, is 

V = Mg(yl+ 9 2 )  = 2MR(1+ cos8)g . 
Hence the Lagrangian of the system is 

L = T - V  
1 
2 

= -MR2[38f + 281b(1- 2 ~ 0 ~ 8 )  + 6d2] - 2MR(1+ cos8)g . 

(b) As only gravity is involved, the total mechanical energy of the system 
is a constant of the motion: 

E = T + V  
1 
2 = -MR2[3b: + 2b18(l- 2cos8) + 6b2] + 2MR(1+ cos8)g 

= constant. 
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Furthermore, if aL/aqi = 0, Lagrange's equation 

requires that aL/aq, is conserved. For the system under consideration, 
aL/aO, = 0 so that 

(c) As long as the cylinders remain in contact the results of (b) hold. 
Initially, 8 = 0, O1 = 0 = 0, so that 

1 
-MR2i3@ + 2&8fl - 2 ~ 0 ~ 8 )  + 662] + 2MR(1+ C0sO)g = 4MRg , 2 

MR2 [36l + 6( 1 - 2 cos $)I = 0 . 
These combine to give 

2 12 e"l8 - (1 - 2cos8) ] = -(1 - cosqg , 
R 

i.e. 

2004 

Two particles of the same mass m are constrained to slide along a thin 
rod of mass M and length L, which is itself free to move in any manner. 
Two identical springs link the particles with the central point of the rod. 
Consider only motions of this system in which the lengths of the springs 
(i.e. the distances of the two particles from the center of the rod) are equal. 
Taking this to be an isolated system in space, find equations of motion 
for it and solve them (up to the point of doing integrations). Describe 
qualitatively the motion. 

( Wisconsin) 
Solution: 

Use a fixed Cartesian coordinate frame, and a moving frame with origin 
at the midpoint 0 of the rod and its Cartesian axes parallel to those of 
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I' 
z A 

X X' 

Fig. 2.5. 

the former respectively. Let (r,  8,cp) be the spherical coordinates of a point 
referring to the moving frame, as shown in Fig. 2.5. Then the point 0 has 
coordinates (z ,y ,z)  in the fixed frame and the two masses have spherical 
coordinates (T, 6 ,  'p) and (-r, 8 , ~ )  in the moving frame. 

The kinetic energy of a system is equal to the kinetic energy it would 
have if all its mass were concentrated at the center of mass plus the kinetic 
energy of motion about the center of mass. As 0 is the center of mass of 
the system, we have 

1 
2 

T = - ( M  + 2m)(k2 + ~2 + i2)  + m ( f 2  + r2e2 + T ~ + ~  sin2 0) + Trot , 

where Trot is the rotational kinetic energy of the rod. The angular velocity 
of the rod about 0 is 

w = +costlev - +sinBee - Oe, , 

resolved along its principal axes, the corresponding moments of inertia 

Hence 

= - M L ~ ( ~ ~  1 + +' sin2 e) 
24 

The system is in free space so the only potential energy is that due to the 
action of the springs, 

1 2 v = 2 .  -K(r  - r0)2 = K ( r  - To)  , 2 
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where K and ro are the spring constant and the natural length of each 
spring respectively. Hence 

L = T - V  

1 
24 

+ - M L ~ ( P  + +’ sin2 8) - K(r - ro)2 . 

Lagrange’s equations 

then give the following constants of motion: 

( M  + 2m)i = constant , 
( M  + 2m)y = constant , 
( M  + 2m)b = constant , 

(2mr2 + 12 M L ~  + sin2 8 = constant . 
l )  

The first three equations show that the velocity (i, i ,  i )  of the center of 
mass of the system is a constant vector. Thus the center of mass moves in 
a uniform rectilinear motion with whatever velocity it had initially. The 
last equation shows that the component of the angular momentum about 
the 2’-axis is a constant of the motion. Since the axis has been arbitrarily 
chosen, this means that the angular momentum is conserved. 

Lagrange’s equations also give the following equations of motion: 

K 
m i: - re2 - rd2 sin2 8 + -(r - ro) = 0, 

These and the + equation above describe the motion about the center of 
mass of the system. 

Thus under the constraint that the two masses m slide along the rod 
symmetrically with respect to the midpoint 0, the motion of the center of 
mass 0 of the system is a uniform rectilinear motion, and the motion of 
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the system about 0 is such that the total angular momentum about 0 is 
conserved. 

2005 

A rectangle coordinate system with axes x, y, z is rotating relative to 
an inertial frame with constant angular velocity w about the z-axis. A 
particle of mass m moves under a force whose potential is V(x,y,z). Set 
up the Lagrange equations of motion in the coordinate system x, y, z. 
Show that their equations axe the same as those for a particle in a fixed 
coordinate system acted on by the force -VV and a force derivable from 
a velocity-dependent potential U. Find U. 

( Wisconsin) 

Solution: 

Let the inertial frame have the same origin as the rotating frame and 
axes d ,y ’ , z ’ .  Denote the velocities of the particle in the two frames by v 
and v’. As 

v’ = v + u x r 

v“ = v2 + 2v - w x r + (w x r)2 

= x2 + p 2  + i2 + 24xp - Sy) + wy.2 + y2) , 

and the Lagrangian of the particle in the inertial frame, expressed in 
quantities referring to the rotating frame, 

L = T - V  
1 1 
2 2 

= -m(x2 + j12 + i2) + w ( x 6  - xy) + - w 2 ( x 2  -t- y2) - v . 
Lagrange’s equations 

aL 
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then give 

mx - 2mwy - 

mji + 2mwx  - 

dV 
dX 

W 2 X  + - = 0 ’  

dV 
aY 

m w 2 y  i- - = 0 , 

For a particle of mass m moving in a fixed frame (2, y, z) under a force 
-VV and an additional velocity-dependent potential U ,  the Lagrangian is 

L = -m(k2 + y2 + i2)  - v - u . 1 
2 

A comparison of this with the Lagrangian obtained previously gives 

u = - w ( x y - k y ) - - w  1 2 2  (x + y ) .  2 
2 

This Lagrangian would obviously give rise to the same equations of motion. 

2006 

(a) Show that the moment of inertia of a thin rod about its center of 
mass is rnl2 /12 .  

(b) A long thin tube of negligible mass is pivoted so that it may rotate 
without friction in a horizontal plane. A thin rod of mass M and length 
I slides without friction in the tube. Choose a suitable set of coordinates 
and write Lagrange’s equations for this system. 

(c) Initially the rod is centered over the pivot and the tube is rotating 
with angular velocity wo. Show that the rod is unstable in this position, 
and describe its subsequent motion if it is disturbed slightly. What are the 
radial and angular velocities of the rod after a long time? (Assume the 
tube is long enough that the rod is still inside.) 

( Wisconsin) 

Solution: 
(a) By definition the moment of inertia is 
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Fig. 2.6. 

1 1 2  I = RqAm, = x2pdx = -p13 = -ml . 12 12 
i 

(b) Take the angle 8 between the thin tube and a fixed horizontal line 
through the pivot and the distance x of the center of mass of the thin 
rod from the pivot of the tube, as shown in Fig. 2.6, as the generalized 
coordinates. We have 

1 1 
2 24 T = - M ( k 2  + x2e2) + -M1262, V = 0 , 

and the Lagrangian 

1 1 
2 24 

L = - M ( 2  + 2242) + -M12e2 . 

Lagrange’s equations then give 

z d X e ,  ‘ 2  

M x 2 +  -12  e=constant =c, say. ( : 2 )  
( c )  The initial conditions x = 0, 6 = wo give 

1 
2 

C = -Ml2w0 , 

i.e. 

We then have 
.. 1dx2 14w;x x=--= 

2 dx ( 1 2 ~ ~  + 1 2 ) 2  
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Integrating we obtain, as initially x = 0,  x = 0,  

It is noted that the speed of the rod in the tube, 

increases as its distance from the initial position increases. Thus the rod 
is unstable at the initial position. For t 4 00, x 4 00, e -+ 0 and 
k 4 I w o / ~ .  Hence, after a long time, the rotation will slow down to 
zero while the speed of the rod in the tube will tend to an upper limit. The 
distance z however will be ever increasing. 

2007 

A block of mass M is rigidly connected to a massless circular track of 
radius a on a frictionless horizontal table as shown in Fig. 2.7. A particle 
of mass m is confined to move without friction on the circular track which 
is vertical. 

(a) Set up the Lagrangian, using B as one coordinate. 
(b) Find the equations of motion. 
(c) In the limit of small angles, solve that equations of motion for 8 as 

( Wisconsin) 
a function of time. 

Fig. 2.7. 
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Solution: 

(a) As the motion of the system is confined to a vertical plane, use a 
fixed coordinate frame x, y and choose the x coordinate of the center of the 
circular track and the angle t9 giving the location of m on the circular track 
as the generalized coordinates 85 shown in Fig. 2.7. The coordinates of the 
mass m axe then (x + asin 0,  -a cos8). As M is rigidly connected to the 
circular track its velocity is (x, 0). Hence the Lagrangian is 

1 1 
2 2 

L = T - v = - M $ ~  + -rn[(x + aecose>2 + a2d2 sin2 e] + mga cose 

1 1 
2 2 

= - M X ~  + -m[$2 + a2e2 + 2 a d  cos el + mga cos e . 

aL 
8X = Mj.  + m i  + ma8cosO , 

- -maxflsine - mgasine , aL _ -  ae 
- ma2e + max cos e , aL 

ae 
_ -  

Lagrange’s equations 

give 

( M  + m)x + madcose - mae2 sine = 0 , 

ad+xcosd+gs ine=O.  

(c) For small oscillations, 0 and 6 are small quantities of the 1st order. 
Neglecting higher order terms the equations of motion become 

( M + m ) 3 + m a e = O ,  
a l j + g + g e = O .  
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Eliminating x we have 

= o .  ( M  + m)g6 e +  Mu 

Hence 
8 = A sin(&) + B cos(wt) , 

where w = J ( M  + m)g/Ma is the angular frequency of oscillation and A 
and B are constants to be determined from the initial conditions. 

2008 

Consider a particle of mass m moving in a bound orbit with potential 

(a) Find pr and pe as functions of T ,  6,  i and 4. Is either one constant? 
(b) Using the virial theorem show that 

V ( r )  = - k / r .  Using polar coordinates in the plane of the orbit: 

k 
r Jr + Je = f -dt , 

where 

(c) Show that 

using 
dr 1 

= K, rk = :(u& JZ) . .r d-r2 + ar - b 

(d) Using the results of (c) show that the period of the orbit is the same 
for the r and 8 motions, nameiy, 

( Wisconsin) 
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Solution: 
(a) We have 

1 k 
2 r 

L = T - 1/ = -m(f2  + r2e2) + - . 
The generalized momenta are 

As there is no B in L, pe = mr29 is a constant of the motion. 
(b) 

J ,  + Je = f midr + f mr28de 

= f rnf’dt + f mr2e2dt  

= f m(f2  + r 2 d 2 ) d t  

= 2  T d t = 2 T r ,  f 
where r is the period and T is the average kinetic energy of the particle 
over one period. For a particle moving in a bound orbit in the field of an 
inverse-square law force the virial theorem takes the form 

Thus 
J ,  + Je = -Vr = -d t  . 

- f: 
(c) The total energy of the particle 

where h = r28 = p e / m  = constant, is a constant. The above gives 
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+ = &?/% + 2’cr - h2 
r m 

=*E.;//JrpE, 
where it should be noted that E < 0 for bound orbits. 

i. = 0, i.e. 
For a bound orbit, r- 5 r 5 r+. The extreme values of r are given by 

kr mh2 r + - - - = O .  
E 2E 

r2 - ar + b = 0 ,  
Writing this as 

where a, b are positive numbers a = - k / E ,  b = -mh2 / 2 E ,  we have 

r* = :(a* JG). 

Then 

dr 
./-r2 + ar - b -2E 

using the value given for the integral. 
(d) As E is a constant, we have 
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or 

27 'El 

1 
27 = - (Jr  + JO) = - ~ 

giving 

2009 

Two identical discs of mass M and radius R are supported by three 
identical torsion bars, as shown in Fig. 2.8, whose restoring torque is 
7 = -Ice where k = given torsion constant for length 1 and twist angle 
0. The discs are free to rotate about the vertical axis of the torsion bars 
with displacements from equilibrium position. Neglect moment of 
inertia of the torsion bars. For initial conditions el(0) = 0, &(O) = 0, 
& ( O )  = 0, & ( O )  = R = given constant, how long does it take for disc 1 to 
get all the kinetic energy? You may leave this in the form of an implicit 
function. 

( UC, Berkeley) 

Fig. 2.8. 

Solution: 
If I is the moment if inertia of each disc, the Lagrangian of the system 

is 
1 1 
2 2 

L = - I ( &  + e;) - - k [ e :  + e; + (el - e2)2] . 
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The two Lagrange's equations are 

iel + lc(2e1 - e2) = o , 
ie2 + lc(2e2 - el) = o . 

These combine to give 

I(& + e,) + k(el + e,) = o , 
I ( &  - e2) + %(el - 0,) = o . 

The solutions are respectively 

el + e2 = A+ sin (8 t + p+) , 

el - e2 = A- sin (g t + p-) . 

The initial conditions 

e 1 + e 2 = o ,  e 1 - e 2 = o  at t = o  

give 'p+ = p- = 0. The conditions 

h 1 + d 2 = ~ ,  h 1 - d 2 = - ~  at t = O  

give 

A+ =fig, A- = --a/-&. 
Hence 

02 = ~ f i  2 [ 6 sin ( fi t) + &sin (g t) ] , 

e, = ' a  2 [cos (& t )  + COS (fi t)] 

Only when 8, = a, i.e. after a time t given by 

COS(&t) = - c o s ( G t )  , 

will disc 1 get all the kinetic energy. 
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It should be noted that the kinetic energy of the system is not a constant. 
When t satisfies the above equation, disk 1 does take all the kinetic energy 
of the system at that time. However, this kinetic energy varies from time 
to time this happens. 

2010 

A thin, uniform rod of length 2L and mass M is suspended from a 
massless string of length 1 tied to a nail. As shown in Fig. 2.9, a horizontal 
force F is applied to the rod’s free end. 

Write the Lagrange equations for this system. For very short times 
(so that all angles are small) determine the angles that the string and the 
rod make with the vertical. Start from rest at t = 0. Draw a diagram to 
illustrate the initial motion of the rod. 

( UC, Berkeley) 

Fig. 2.9. 

Fig. 2.10. 
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Solution: 
As the applied force F is horizontal and initially the string and rod 

are vertical, the motion is confined to a vertical plane. Take Cartesian 
coordinates as shown in Fig. 2.10 and denote the angles made by the string 
and the rod with the vertical by & , O 2  respectively. The center of mass 
of the rod has coordinates (1 sin81 + Lsin02, -1  cosOl - LcosO,) and thus 
velocity (141 cos el + L& cos e,, Z& sin el + L& sin e,). Its moment of inertia 
about a perpendicular axis through its center is M L 2 / 3 .  Hence its kinetic 
energy is 

1 1 
2 6 

T = - M [ z ~ ~ ;  + ~ ~ e ;  + 2 ~ i e , d ,  cos(el - e,)] + -ML,~; 

and its potential energy is 

= -Mg(zcosel + ~ ~ ~ ~ e ~ )  . 

The potential U of the horizontal force is by definition 

U = -  F . d r = - F ( l s i n 8 1 + 2 L s i n & ) .  s 
The Lagrangian is therefore 

L = T - V - U  

1 1 
= - ~ [ i ~ b ?  + ~ ~ 8 ;  + 2 ~ z b ~ e ~ c o s ( 0 ~  - e,)] + -ML%; 

2 6 

+ Mg(Z cos el + L cos 6 2 )  + F(1 sin dl + 2L sin e,) 

Lagrhge’s equations 

then give 

~ l & +  M L ~ ,  cos(01 - o ~ )  + M L ~ ;  sin(e1 - e,) 
+ Mgsin& - Fco& = 0, 

4 ~ ~ 8 ,  + ~ 1 8 ~  cos(ol - 0,) - M Z ~ ?  sin(el - e,) 
3 

+ MgsinO, - 2Fcos02 = 0 .  
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Note that if F is small so that el, 02, 81, 82 can be considered small then, 
retaining only first order terms, the above become 

Ml& + ML& + MgB1 - F = 0 , 
4 -ML92 + Ml& + Mge2 - 2F = 0 . 
3 

The motion starts from rest at t = 0. For a very short time At 
afterwards, the force can be considered as giving rise to a horizontal impulse 
FAt and an impulsive torque FLAt about the center of mass of the rod. 
We then have 

m t  = M ( Z &  cos el + L& cos e2) 
Ml& + ML& , 

as the angle el, e2 are still small, and 

1 
3 

FLAt = -MLae2 

Eliminating FAt from the above, we have 

2L * 

31 
el M --e2 

- 
As 81 = &At NN &At/2, 02 NN e 2 A t / 2 ,  the above gives 

2L 
31 

el M --e2 . 

The initial configuration of the system is shown in Fig. 2.11. 

Fig. 2.11. 
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201 1 

Consider a binary star system. 

(a) Write the Lagrangian for the system in terms of the Cartesian 
coordinates of the two stars rl and r2. 

(b) Show that the potential energy is a homogeneous function of the 
coordinates of degree -1, i.e. 

~ ( a r l , a r 2 )  = a - ' ~ ( r I , r 2 )  , 

where cr is a real scaling parameter. 
(c) Find a transformation which leaves the Lagrangian the same up to  a 

multiplication constant (thereby leaving the physics unchanged) and thus 
find Kepler's third law relating the period of revolution of the system to 
the size of its orbit. 

( Chicago ) 

Solution: 

respectively, from the origin of a fixed coordinate frame. Then 
(a) Let r l ,  r2 be the radius vectors of the binary stars, masses m1,m2 

and the Lagrangian is 

i.e. the potential energy is a homogeneous function of the coordinates of 
degree -1.  

(c) Let R be the radius vector of the center of mass of the binary system 
from the origin of the fixed coordinate frame, and ri , ra be the radius vectors 
of mi,  m2 from the center of mass respectively. By definition 
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t t  where r = rl - r2 = rl - c2. 
We can then write the Lagrangian as 

As L does not depend on R = (x, y, z )  explicitly, aL/dx ,  aL/a& aLla.5 
and hence (ml +m2)R are constant. Therefore the first term of L, which is 
the kinetic energy of the system as a whole, is constant. This terms can be 
neglected when we are interested only in the internal motion of the system. 
Thus 

L =  ( 77111732 ) [$rI2 + G W l +  M2)] 
ml+ m2 1.1 

which may be consider BS the Lagrangian, apart from a multiplicative 
constant, of the motion of one star in the gravitational field of a fixed star 
of mass ml +m2. Let ml be this “moving” star and consider its centripetal 
force: 

. G m l ( m l + m )  mlre2 = 
T2 9 

or 

where T = 2x18 is the period of ml about m2, which is Kepler’s third law. 
The same is of course true for the motion of m2 about ml. 

2012 
Two thin beams of mass m and length 1 axe connected by a frictionless 

hinge and a thread. The system rests on a smooth surface in the way shown 
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in Fig. 2.12. At t = 0 the thread is cut. In the following you may neglect 
the thread and the mass of the hinge. 

(a) Find the speed of the hinge when it hits the floor. 
(b) Find the time it takes for the hinge to hit the floor, expressing this 

(Princeton) 
in terms of a concrete integral which you need not evaluate explicitly. 

Y 

t 

A, X 

Fig. 2.12. 

Solution: 

(a) Due to  symmetry, the hinge will fall vertically. Take coordinates as 
shown in Fig. 2.12 and let 8 be the angle each beam makes with the floor. 
Then the centers of mass of the beams have coordinates 

1 1 
2 2 X I  = -1 cos 8, y1 = -1 sin8 , 

1 1 
2 2 

x2 = - - tc0~8,  y2 = -1sin8, 

and velocity components 

1 .  1 .  
2 2 

1 '  1 
2 2 

xl = --18sin8, 

x2 = -18sin8, 

yl = - 1 8 ~ 0 ~ 8 ,  

y2 = -1ecos8. 

Each beam has a moment of inertial m12/12 about a horizontal axis through 
its center of mass. The Lagrangian of the system is 
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L = T - V  
1 1 
4 12 

1 .  
3 

= -ml2d2 + -m12d2 - mglsine 

= -ml2e2 - mgl sin 6 . 

Lagrange's equation 

Then gives 
39 
21 

8 + - case = 0 .  

the above integrates to 

'2 - 39 8 - -(1-2sinO) . 
Hence when the hinge hits the floor, 9 = 0 and 

21 

e=-g 
i.e. 

IVI = pel = 

(b) The time taken for the hinge to hit the floor is given by 

dB 

2013 
A uniform rod of the length L and mass M moves in the vertical 

zz-plane, one of its end-points. A being subject to the constraint z = 
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x t a n a  (a  = constant inclination to the horizontal x-axis). Derive the 
Lagrangian equations of motion in terms of the generalized coordinates 
q1 = s and q2 = 8 (see Fig. 2.13). Use these to determine if a pure 
translational motion (8 = constant) is possible and, if so, for which values 
of 8. 

(Princeton) 

Fig. 2.13. 

Solution: 
The coordinates and velocity components of the center of mass of the 

rod are 

1 1 
2 2 

1 .  1 .  
2 2 

x = SCOSQ - -Lsin6, z = s s ina  - -Lcos8 , 

x = scosa  - -L6cos8, i = Bsina + -L8sin6 , 

and the moment of inertia of the rod about a perpendicular axis through 
the center of mass is ML2/12, so the Lagrangian is 

L = T - V  

1 1 
2 24 

= - M ( E ~  + i2)  + - M L ~ ~ ~  - M g z  

Lagrange’s equations 

-0 
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then give 

1 1 
2 2 

B -  -&os(e+a)+ - ~ b ~ s i n ( ~ + a ) + g s i n a = ~  , 

2 
3 

iicos(e + a> - -LB - gsin8 = 0 .  

If the motion is pure translational, 8 = constant, b = 0,  8 = 0 and the 
above become 

d + gsina = 0, 

scos(8 + a) - gsin8 = 0 . 
Eliminating s gives 

sin a cos(8 + a) = - sin 8 , 
or 

e = - a .  

2014 
A spherical pendulum consists of a point mass m tied by a string of 

length 1 to a fixed point, so that it is constrained to move on a spherical 
surface as shown in Fig. 2.14. 

(a) With what angular velocity will it move on a circle, with the string 
making a constant angle 00 with the vertical? 

(b) The mass in the circular orbit as in part (a) above receives an 
impulse perpendicular to its velocity, resulting in an orbit which has its 
highest point with the string making an angle 81 with the vertical. Write 
down (but do not try to solve) the equation which may be solved for the 
angle the string makes with the vertical when the mass is at its lowest point. 

(c) For the case in which the amplitude of the oscillations about 80 is 
small, solve for the frequency of these oscillations. 

(Princeton) 

Solution: 
Use a rotating coordinate frame, as shown in Fig. 2.14, with the z-axis 

vertical and the z-axis in the vertical plane containing the string and mass 
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Fig. 2.14. 

m. The mass has coordinates ( 1  sin 8,0,  -1  cos B ) ,  where B is the angle which 
the string makes with the vertical. Let 9 be the angular velocity of m about 
the z-axis. The velocity of m in a fixed frame is given by 

with 
i- = (ibcose,O,Z8sinB), + = (o ,o ,+)  . 

The Lagrangian is then 

1 
2 

L = T - V = -mv2 - m g z  

= Am(~b2  + 1292 sin2 6) + mgl cos 0 . 
2 

Lagrange’s equations 

= o  

give 

9 
1 

8 - d2 sinecose + - sine = 0, 

+sin2 e = constant . 

(a) For circular motion with constant angle 6 = 00, 8 = 0 and Eq. (1) 
gives 

= w ,  say. 
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The equations of motion can now be written as 

491 

+sin2e= wsin2t+-, , 
cos 8 
sin3 e B - ~ ~ s i n ~ ~ ~ - + + ~ ~ ~ ~ ~ ~ s i n ~ = ~ .  

As 4 = dd2/2d0, Eq. (1) can be integrated to 

w2 sin4 eo 
sin2 8 

82 = - + ~ W ~ C O S O O C O S O + K .  

At the highest point of the orbit of m, 6 = 0 and 0 = 81, giving 

sin4 eo 
sin2 el K = w 2 - -  2w,2 cm eo cw el . 

At the lowest point, e = 0, 8 = 62, and we have 

which may be solved for 6, in terms of 80 and 81. 
(c) Let 8 = a + O0 with ty 4 e0. As 

c o d  M coseo - asin80, sin8 M sin00 +acme0 , 

with 8 = &, Eq. (1) reduces to 

ti + w2 ~ i n 6 ~ c o s 8 ~ [ a ( t a n 8 ~  + 3cote0) - 1 + 1 + scot eo] = o , 
i.e. 

ii! + w2 (sin2 e, + 4 cos2 eo)a = o , 
or 

a+W2(i+3Cos2eo)a!=o.  

Hence f3 oscillates about e0 with angular frequency 
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2015 
A spring pendulum consists of a mass m attached to one end of a 

massless spring with spring constant k .  The other end of the spring is tied 
to a fixed support. When no weight is on the spring, its length is 1. Assume 
that the motion of the system is confined to a vertical plane. Derive the 
equations of motion. Solve the equations of motion in the approximation 
of small angular and radial displacements from equilibrium. 

(SUNY, Buffalo) 

Fig. 2.15. 

Solution: 

Use coordinates as shown in Fig. 2.15. The mass m has coordinates 
( r  sin 8 ,  -T cos 8 )  and velocity components (re cm 6++ sin 0, re sin 0- f  cos 8)  
and hence kinetic energy 

and potential energy 

1 
2 

V = - k ( r  - 1)’ - mgrcos8 . 

The Lagrangian is therefore 

Lagrange’s equations 
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then give the equations of motion 

mi: - mrb2 + k(r  - I )  - mgcose = 0, 

~ 9 + 2 i b + g s i n 0 = 0 .  

The equilibrium position in polar coordinates (TO, 6 0 )  is given by i: = 9 = 0, 

For small oscillations about equilibrium, 6 is a small angle. Let p = r-ro 
with p << TO and write the equations of motion as 

or, neglecting higher order terms of the small quantities p, p ,  4, 
k 
m 

-* 9 
TO 

p + - p = o ,  

e + - e = o .  

Thus both the radial and angular displacements execute simple harmonic 
motion about equilibrium with angular frequencies m, respec- 
tively. The solutions are 

or 

r = l + - + A c m ( ~ t + e ~ )  mg k , 

and 

where the constants A, 91, B, ( p ~  are to be determined from the initial 
conditions. 
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2016 
A particle is constrained to be in a plane. It is attracted to a fixed point 

P in this plane; the force is always directed exactly at P and is inversely 
proportional to the square of the distance from P. 

(a) Using polar coordinates, write the Lagrangian of this particle. 
(b) Write Lagrangian equations for this particle and find at least one 

first integral. 

Solution: 
(SVNY, BuflaZo) 

(a) Choose polar coordinates with origin at P in the plane in which the 
particle is constrained to move. The force acting on the particle is 

k being a positive constant. Its potential energy with respect to infinity is 

V = - L E ' . d r = - - .  k 
r 

The kinetic energy of the particle is 

1 
2 

T = -m(+2 + r 2 @ )  . 

Hence the Lagrangian is 

1 k 
L = T - V = -m(+' 2 + r2e2 )+; 

(b) Lagrange's equations 

then give the equations of motion 

k 
mi:+- = o ,  

r2 
d 
,(mr%) = 0 . 

The second equation gives immediately a first integral 

mr2e = constant , 
which means that the angular momentum with respect to P is conserved. 
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2017 

Consider two particles interacting by way of a central force (potential 
= V ( T )  where r is the relative position vector). 

(a) Obtain the Lagrangian in the center of mass system and show that 
the energy and angular momentum are conserved. Prove that the motion is 
in a plane and satisfies Kepler’s second law (that r sweeps out equal areas 
in equal times). 

(b) Suppose that the potential is V = kr2/2 ,  where k is a positive 
constant, and that the total energy E is known. Find expressions for the 
minimum and maximum values that T will have in the course of the motion. 

(SUNY, Bu&lo) 

Y 

Fig. 2.16. 

Solution: 
As the forces acting on the particles always direct along the line of 

separation, the motion is confined to whatever plane the particles initially 
move in. Use polar coordinates in this plane as shown in Fig. 2.16 with 
origin at the center of mass of the particles. By definition of the center of 
mass, 

mlrl + m2r2 = 0 , 

i.e. 
mlrl = -m2r2 , 

or 
mlrl = m2r2 

for the magnitudes. 
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(a) The kinetic energy of the particle are 

T=-l '  ml m2 
r1I2 + - I r 2 l 2  

2 2 

where p = mlmz/(ml + m2) is the reduced mass of the system. The 
potential energy is 

Hence the Lagrangian is 

using ~2 and 8 as the generalized coordinates. 
The Lagrangian L does not depend on t explicitly. So 

- dL - - ~ ( B L d q j  _- + -q3 d L  ) 
dt aqj dt @j 

d BL 
dt Bqj 

= -c-qj , 

use having been made of Lagrange's equations. Hence 

BL - L = constant . 

In the present case, 
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and the above gives 

497 

showing that the total energy is conserved. Note that this proof is possible 
because V does not depend on the velocities explicitly. 

As L does not depend on 6' explicitly, Lagrange's equation gives 

a~ m2r28 - = 22 = constant = J , say . ae P 

The angular momentum of the system about the center of mass is 

Hence the angular momentum is conserved. The above also implies 

i.e. 
-=--  - constant, r2A6' 2AS 

At At 
where AS is the area swept out by r in time At. Thus Kepler's second law 
is satisfied. 

(b) The total energy 

can be written as 
1 J 2 1  1 E = -p+ + -- + -kr2 
2 2pr2 2 

When r is a maximum or minimum, 1: = 0. Hence the extreme values of T 

are given by 
kpr4 - 2Epr2 + J2  = 0 . 
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2018 
A particle is attracted to a force center by a force which varies inversely 

as the cube of its distance from the center. Derive the equations of motion 
and solve them for the orbits. Discuss how the nature of the orbits depends 
on the parameters of the system. 

(SUNY, Buffalo) 

Solution: 
As the particle moves under a central force its motion is confined to 

a plane. We use polar coordinates in this plane with origin at the force 
center. For the force 

kr F = - -  
r4 ’ 

where k is a positive constant, the potential energy is 

Hence the Lagrangian is 

Lagrange’s equations 

then give 

mr2e = b, (a constant) , 
. k  

mr-mrO2 + - = 0 
T 3  

Let u = :. The first equation becomes 

As 
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the second equation becomes 

d2u -+ 
de2 

Hence, if b2 > mk, 

1 
u =  -cos 

TO 

i.e. 

d-F 1 -  - (e-e,) ] , 

if b2 < mk, 

i.e. 

Here (rot&) is a point on the orbit. 

2019 
Assume the Lagrangian for a certain one-dimensional motion is given 

bY 

where 7, m, k are positive constants. What is the Lagrange's equation? 
Are there any constants of motion? How would you describe the motion? 
Suppose a point transformation is made to another generalized coordinate 
S, given by 

s = exp (T) q . 

What is the Lagrangian in terms of S? Lagrange's equation? Constants 
of motion? How would you describe the relationship between the two 
solutions? 

(SVNY, Buflalo) 
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Solution: 
Lagrange’s equation 

gives 
e+(mq + rmq + Icq) = o ) 

or 
kq 4 +rq + - m = 0 .  

As L contains q, t explicitly, there is no constant of motion. 
Try solutions of the form q - eQt. Substitution gives 

k 
m 

c y 2 + - f c y + - = O 1  

whose solutions are 

2 m 

Write this as cy = -: f b and consider the three possible cases. 

(i) 3 < 6. b is imaginary; let it be ig. The general solution is 

q = e-% (AeiPt + &-*Pt) ) 

or 
q = e-%(A’cospt + B’sinpt) , 

A, B ,  A’, B’ being constants. Thus the motion is oscillatory with attenuat- 
ing amplitude. 

(ii) : = &. b = 0 and we have 

-y  
9=9oe  I 

showing that the motion is non-oscillatory with q attenuating from the 
value qo at t = 0. 

(iii) $ > G. b = 0 and 

q = e - g  (cebt  + De-bt) , 
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C and D being constants. This motion is also non-oscillatory and time- 
attenuating . 

The three cases can be characterized as underdamped, critically damped 
and overdamped. 

If we include the time factor in the generalized coordinate by a point 
transformat ion 

the Lagrangian becomes 

L = i r n  ( S  - p S ) '  1 - i k S 2  . 
2 

Lagrange's equation then gives the equation of motion 

s -+- w2S = 0 
2 with w2 = k/m - (7/2) . As 3 = ig, integration gives 

S2 + w2s2 = constant . 

Hence there is now a constant of motion. Physically, however, the situation 
is not altered. As S,S both contain t implicitly, this constant actually 
changes with time. 

For 7/2 < m, w2 is positive, i.e. w is real, and the equation of 
motion in S describes a simple harmonic motion without damping. For 
7/2 = m, w = 0 and the motion in S is uniform. For 7/2 > m, w 
is imaginary and the motion is non-oscillatory with time attenuation. How- 
ever, as noted above, S contains a hidden attenuating factor exp(-yt/2c) 
which causes time attenuation in all the three cases. 

We may conclude that both sets of solutions describe identical physical 
situations but in the second set the attenuating time factor exp( -7t /2)  is 
absorbed in the generalized coordinates and the treatment proceeds as if it 
were nonexistent. 

2020 

A bead of mass rn slides without friction on a rotating wire hoop of 
radius a whose axis of rotation is through a vertical diameter as shown in 
Fig. 2.17. The constant angular velocity of the hoop is w. 
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(a) Write the Lagrangian for the system and find any constants of the 

(b) Locate the positions of equilibrium of the bead for w < w, and 

Which of these positions of equilibrium are stable and unstable? 
(d) Calculate the oscillation frequencies of small amplitude vibrations 

(WC, Berkeley) 

motion that may exist. 

w > w,, where w, = m. 

about the points of stable equilibrium. 

Fig. 2.17. 

Solution: 
(a) Use a rotating polar coordinate frame attached to the loop as shown 

in Fig. 2.17. In this frame, in additional to the gravitational force on the 
mass, mg, a fictitious centrifugal force f as shown has to be introduced. In 
polar coordinates 

f = ( w 2 r  sin2 8,  w 2 r  sin e cos e )  , 
mg = (mg cos 8 ,  -mg sin 0) . 

f can be expressed in terms of a potential Vf by 

i.e. 
1 V, = --mr2w2 sin2 6 . 
2 
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Similarly the gravitational potential is 

Vg = -mgr cos 6 . 
The particle velocity is (i, re). With the constraint r = a, the Lagrangian 
is 

1 1 
2 2 L = T - V = -ma2e2 + -ma2w2sin28+mgacos8. 

As aL/at = 0 and V does not contain 8 explicitly, 9b’Llb’e - L = constant 
(Problem 2017). Hence 

1 1 
2 2 
-ma2e2 - -ma2w2 sin2 e - mgacose = constant , 

which means that T + V = constant. 
(b) Lagrange’s equation gives the equation of motion 

aB-au2sinecos8+gsine= 0. 

At a position of equilibrium, 8 = 0, so 

sin6(aw2cose-g) = o ,  
or 

a sin qW2 cos e - w,2) = o 
with wf = t. 

brium positions at 8 = 0, T .  

position at 

If w < wc, w2 cos 0 < w,“ and hence sin 8 = 0, and we have two equili- 

If w > wc, we have in addition to the above positions an equilibrium 

wc 9 
w2 a d  

( c )  Suppose 80 is an equilibrium position and let 8 = 80 + a,  where Q 

is a small quantity. The equation of motion reduces, retaining up to first 
order terms, to 

uii + (g cos eo - au2 cos 2eo)a - au2 sin eo cos eo + g sin eo = o , 

2 case = - = - . 

or, as 8 = 0 at 8 = eo, 

t l . + ( ~ c o ~ e o - w 2 c o ~ 2 e o  ) Q = o .  
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If w < m, the coefficient of a is positive for the equilibrium at 60 = 0. 
So this is a position of stable equilibrium. The coefficient is negative for 
the equilibrium at 00 = 7rl showing that it is an unstable equilibrium. 

If w > ,/&, equilibrium also occurs at coseo = g / a w 2 .  In this case 
the coefficient of a is 

%oseo-2w 2 c o s 2 e o + w 2 = -  ( w -?  f ) > O ,  
a W 2  

so that the equilibrium is a stable one. 

equilibrium is 
(d) The angular frequency of small vibrations about a point of stable 

at 0, = 0 , 

2021 
Particles of mass ml and m2, connected by a light spring with spring 

constant k ,  are at rest on a frictionless horizontal surface. 

(a) An impulse I of very short duration is delivered to ml. The direction 
of the impulse is from r n l  to mp. How far will m2 move before coming to 
rest for the first time? 

(b) Is it possible by delivering a short impulse to r n l  to have the system 
move from rest so that it is rotating without oscillation? Explain. 

(UC, Berkeley) 

Solution: 
(a) Take the initial position of ml as origin and the direction from ml 

t o  m2 as the positive direction of the x-axis. The Lagrangian of the system 
is 

1 1 2 1  2 L = T - V = -rnlxi + -mzx2 - -k(x2 - x i  - 1 )  , 2 2 2 
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where 1 is the natural length of the spring, being equal to 22 - 21 at t = 0. 
Lagrange’s equations 

give 

m l f l  = k(x2  - x 1  - 1 )  , 
m2x2 = -Ic(z2 - 21 - I )  . 

From the above, we obtain 

or, by setting u = 22 - XI - 1, w2 = k(m1 + rn2)/mlm2, 

i i + w 2 u = o .  

The general solution is 
u = acos(wt + o) , 

giving 

where a and a are constants. The initial conditions z1 = 0, 22 = 1 ,  
51 = I/m1, x 2  = 0 at t = 0 then give 

22 - 21 - 1 = acos(wt + a) , 

acoso = 0 , 
I 

ml 
awsino= - , 

with solution 
71 I 

f f = -  a = - .  
2 ’  mlw 

Hence 
22 - 21 = 1 + I cos (wt + ;) 

mlw 
Conservation of momentum gives 

mlx1+ m2x2 = I . 
Integrating and applying the initial conditions we obtain 

mlxl + m2x2 = m2l+ I t  . 
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This and Eq. (1) together give 

I sin(wt) - I t  
x 2 = 1 +  

ml +ma (m1 +mz)w 

I - I cos(wt) 
and thus 

52 = 
m1+m2 m1+mz 

When m2 comes to rest for the first time, x 2  = 0, and the above gives 
cos(wt) = 1 for the first time. Hence when m2 comes to rest for the first 
time, 

At that time m2 has moved a distance 

27T I ~ -/m,m, 

(b) If the impulse given to ml has a component perpendicular to the line 
joining the two particles the system will rotate about the center of mass, in 
addition to the linear motion of the center of mass. In a rotating frame with 
origin at the center of mass and the z-axis along the line joining the two 
particles, there will be (fictitious) centrifugal forces acting on the particles in 
addition to the restoring force of the string. At the positions of the particles 
where the forces are in equilibrium the particles have maximum velocities 
on account of energy conservation (Problem 2017). Hence oscillations will 
always occur, besides the rotation of the system as a whole. 

2022 

A sphere of mass M and radius R rolls without slipping down a triangu- 
lar block of mass m that is free to move on a frictionless horizontal surface, 
as shown in Fig. 2.18. 

(a) Find the Lagrangian and state Lagrange’s equations for this system 
subject to the force of gravity at the surface of the earth. 

(b) Find the motion of the system by integrating Lagrange’s equation, 
given that all objects are initially at rest and the sphere’s center is at a 
distance H above the surface. 

(UC, Berkeley) 
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Fig. 2.18. 

Solution: 
(a) Use a fixed coordinate frame as shown in Fig. 2.18 and let 8 be the 

angle of rotation of the sphere. As the sphere rolls without slipping down 
the inclined plane, its center will have coordinates 

(z + ( l o  + R6) cos (p, H - R8 sin cp) 

and velocity 
(x + Re cos cp, -Re sin ‘p) . 

Note that at t = 0, x = 0, 
Lagrangian is 

= 0, [ = to, y = H ,  x = 8 = 0. Then the 

1 1 
2 2 

+ - MR2d2 - Mg(H - R8 sin cp) . 

L = T - V = -mx2 + - M ( x 2  + R2d2 + 2Rdcos’p) 

1 
5 

Lagrange’s equations 

give 

(m + M)X + MR9~0scp = 0 , 
xcoscp + -Re - gsincp = 0 . 7 

5 

(b) Eliminating X from the above gives 
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or, on integration and use of initial conditions, 

5(m + M )  sin ‘p gt2 
2[7(m + M )  - 5Mcos2 ‘p] R ’ e =  

and thus 
5M sin(2p) 

4[7(m -t M )  - 5M cos2 ’p] 
x = -  M R C W e  = - gt2 . 

m + M  

Note that, as the sphere rolls down the plane, the block moves to the left 
as expected from momentum conservation. 

2023 
Two mass points ml and ma (ml # m2) are connected by a string of 

length 1 passing through a hole in a horizontal table. The string and mass 
points move without friction with ml on the table and m2 free to move in 
a vertical line. 

(a) What initial velocity must ml be given so that m2 will remain 
motionless a distance d below the surface of the table? 

(b) If m2 is slightly displaced in a vertical direction, small oscillations 
ensue. Use Lagrange’s equations to find the period of these oscillations. 

(UC, Berkeley) 

I 

Fig. 2.19. 



Analytical Mechanics 509 

Solution: 

centripetal force on it is equal to the gravitational force on mz: 
(a) ml must have a velocity v perpendicular to the string such that the 

m1v2 - = m2g , l - d  
or 

(b) Use a frame of polar coordinates fixed in the horizontal table a~ 
shown in Fig. 2.19. mz has z-coordinate - ( I  - T )  and thus velocity r.  The 
Lagrangian of the system is then 

1 1 
2 2 

L = T - V = -ml(i2 + r2b2) + -m2i2 + mZg(1- r )  . 

Lagrange’s equations give 

mlr2b = constant , 
(ml+ rnz)i: - m,ri2 + m2g = o . 

At t = 0, T = 1 - d ,  v = JmZ(1 - d)g/ml = VO, say, so 

Hence 

m1r2e = ml(l - d)280 = m l / w ,  

r82 = - r4d2 - - -  mz ( 1  - d ) 3 g  
giving 

~3 ml 

and 

Let T = ( I  - d )  + p, where p << ( I  - d). Then 

-3 

i: = g, T-3  = ( I  - d)-3  (1 4- A) M ( I  - d)-3  (1 - ”) 
l - d  
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and the above equation becomes 

Hence p oscillates about 0, i.e. T oscillates about the value 1 - d, with 
angular frequency 

or period 

2024 

Two rods AB and BC, each of length a and mass m, are frictionlesdy 
joined at B and lie on a frictionless horizontal table. Initially the two rods 
(i.e. point A ,  B,  C )  are collineax. An impulse is applied at point A in 
a direction perpendicular to the line ABC. Find the motion of the rods 
immediately after the impulse is applied. 

(Columbia) 

Y 

I X  
0 

Fig. 2.20. 

Solution: 
As the two rods AB, BC axe freely joined at B,  take coordinates as 

shown in Fig. 2.20 and let the coordinates of B be (x,y). Then the center 
of mass of BC has coordinates 
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and velocity 

( j. + :ah1 cos 0 1 ~ 1 -  

and that of AB has coordinates 

(z + iasind2,y + -acose2 
2 l )  

and velocity 

(j.+:ae2cosez,y- 

Each rod has a moment of inertia about its center of mass of ma2/12. Hence 
the total kinetic energy is 

1 
4 

5’ + zi2 + -a2@ + ael(xcosel - isinel)  

1 + -m x2 + fi2 + -a2@ + a&(icose2 - $sine2) 2 l [  4 

= l m  k(52 + 1 2 )  + aj(e, cosel + e2cos62) - aL(e1 sine1 + e2sine2)] 
2 

1 
6 

+ -may@ + 4;) . 

The impulse is applied at A in a direction perpendicular to the line 
ABC. Thus the virtual moment of the impulse is Pb(y + ac0~62) and the 
generalized components of the impulse are 

Qz = 0, Qar = P,  Qe, = 0, Qea = -aPsin& . 
Lagrange’s equations for impulsive motion are 

where i, f refer to the initial and final states of the system relative to the 
application of impulse. Note that at t = 0 when the impulse is applied, 
81 = -7r/2, 82 = ~ / 2 .  Furthermore, for the initial state, 6,  = 42 = x = y = 
0. As 
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dT 1 .  - = 2 m x  + -ma(& cos 81 + 82 cos 8 2 )  , ax 2 

- 2my  - -ma(O1 sin61 + &sin02) , aT 
ay 2 

1 '  - _  

a T 1  1 1 .  
- = - m a x  cos 81 - -malj sin 81 + -ma2& , 

a T 1  1 1 
- = - m a x  cos 82 - -may  sin 82 + -ma2& , 

a& 2 2 3 

ae2 2 2 3 

Lagrange's equations give 

2 m k  

2mlj + -ma(& 1 - &> 2 
1 1 .  
2 3 
1 1 
2 3 

-ma$ + -ma281 

- -may  + -ma2& 

The solution is 

= o ,  
= P ,  

= o ,  

= -aP . 

- 

- 

Hence immediately after the application of impulse, the center of mass of 
BC has velocity 

(k,lj+ iat j1)  = (o,-g) , 

and that of AB has velocity 

2025 

Consider a particle of mass m moving in a plane under a central force 

k k' 
it. T3 

F ( r )  = -7 + - 
(assume k > 0).  
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(a) What is the Lagrangian for this system in terms of the polar 

(b) Write down the equations of motion for T and 8, and show that the 

(c) Assume that 1' > -mk'. Find the equation for the orbit, i.e. T as a 

(Columbia) 

coordinates r, 8 and their velocities? 

orbital angular momentum 1 is a constant of the motion. 

function of 8. 

Solution: 
(a) As 

k k' F(T)  = -- + - 
T2 T3 ' 

k k' V ( r )  = - L F ( T ) d r  = -- + - 
T 2r2 

The Lagrangian is then 

(b) Lagrange's equations give the equations of motion 

' 2  k k' m(i: - r8 ) + - - - = 0 ,  
r2 r3 

m(re 4- 2+e) = 0 . 
The second equation has first integral mT2b = constant. This quantity is 
the angular momentum of the mass about the origin 1 = T . mrd. 

(c) Let u = r-l. As r = u-l, 

du * du 1 1 du 
d8 d8mr2 md8 ' 

+ = -21-2-9 = -u-2-- = --- 

.. 1 d2u. 12 d2u ,. = ---8 = --u2- 
m do2 m2 dd2 ' 
12 12u3 

mr3 m 
mr42 = - = - , 

Q. (1) becomes 
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A special solution is 

mk 

As l 2  > -mk', i.e. > -1, 

mlc' 
1 1 + y > o  

and the general solution is 

u = A c o s ( ~ ~ 8 + c r )  + E2 + mlc mk' ' 

where A, cr are constants. By a suitable choice of coordinates, cr can be put 
to zero. Hence the equation of the trajectory can be written as 

r = [Acos (JG 8 )  + 12 4 -I 

2026 

A point particle of mass m is constrained to move frictionlessly on the 
inside surface of a circular wire hoop of radius r ,  uniform density and mass 
M. The hoop is in the zy-plane, can roll on a fixed line (the z-axis), but 
does not slide, nor can it lose contact with the x-axis. The point particle 
is acted on by gravity exerting a force along the negative y-axis. At t = 0 
suppose the hoop is at rest. At this time the particle is at the top of the 
hoop and is given a velocity wo along the z-axis. What is the velocity vf,  
with respect to the fixed axis, when the particle comes to the bottom of 
the hoop? Simplify your answer in the limits m / M  + 0 and M / m  + 0. 

( Columbia) 

Solution: 
Use a fixed coordinate frame as shown in Fig. 2.21 and let the coordi- 

nates of the center of the hoop be (z,y). Then the mass m has coordinates 

(z + r sin 8, r + r cos 0) 
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Y 

I 

Fig. 2.21. 

and velocity 
(i + r8 cos 0, -re sin 0) . 

As the hoop has moment of inertia Mr2, the system has kinetic energy 

1 1 
2 2 2 

T = -m(iz  + r2e2 + 2 ~ x 8 ~ 0 s ~ )  + -MP + 

and potential energy 
V = mg(r +rcos0) . 

Hence the Lagrangian is 

1 
2 L = T - V = Mi? + -m(x2 + r2e2 + 2r38 cos 0) - mgr( 1 + cos 0) . 

As a L / a x  = 0, Lagrange’s equation gives 

( 2 ~  + m)k + mrb case = constant . (1) 

At t = 0, m is at the top of the hoop, x = 0, 0 = 0, rb = vo, giving the 
value of the constant as muo. When m is at the bottom of the hoop, 0 = T ,  

the velocity of the mass is 

vf = x +recosIr = x - re , 
and Eq. (1) becomes 

2Mx + mvf = mvo . 
The total energy is conserved so that between these two points we have 

Mx2 + -mu; 1 = -muo 1 2  + 2 m g r .  
2 2 
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Eliminating x between the last two equations gives 

( 2 M  + m)$ - 2mvovj - [(2M - m)v; + 8Mgr] = 0 . 

The solutions are 

In the limit m / M  + 0, ~f + *Jm. The negative sign is to be 
chosen as for M >> m, k is small and vf N -re. In the limit M / m  -+ 0, 
Vf + 210. 

2027 

(a) A particle slides on the inside of a smooth vertical paraboloid of 
revolution r2 = ax. Show that the constraint force has a magnitude = 

constant . (1 + $) - 3  . What is its direction? 
(b) A particle of mass rn is acted on by a force whose potential is V(r). 

(1) Set up the Lagrangian function in a spherical coordinate system 
which is rotating with angular velocity w about the x-axis. 

(2) Show that your Lagrangian has the same form as in a fixed coordi- 
nate system with the addition of a velocity-dependent potential U (which 
gives the centrifugal and Coriolis forces). 

(3) Calculate from U the components of the centrifugal and Coriolis 

( Wisconsin) 
forces in the radial ( r )  and azimuthal (4) directions. 

Solution: 
(a) Use cylindrical coordinates (r,cp,z) as shown in Fig. 2.22. In 

Cartesian coordinates the particle, mass m, has coordinates 

(T cos cp, r sin cp, z) , 

velocity 
(7: cos cp - +sin cp, 7: sin cp + rdcos cp, i )  , 



Analytical Mechanics 517 

@ ,  X r l  Y 

Fig. 2.22. 

and hence Lagrangian 

1 
2 

L = T - V = -m( i2  + r2g2 + i2) - mgz . 

The constraint equation is 

2 f(r,cp,a)=-r + a z = O ,  

or 
-2rdr + adz  = 0 I 

Lagrange's equations 
d aL 8L 
dt aq, aqi 
- - - _ _  - Q i  i 

where Qi are the generalized forces of constraint, then give, making use of 
Lagrange's undetermined multiplier A, 

mi: - mr+' = -2rA , 
m i + m g = a X ,  

mr2+ = constant = J ,  say. 

The equation of constraint z = $ gives 

. 2ri. .. 2rr  2f2 
z = -  , z = -  +--.  

a a a 

Using Eqs. (3) and (4), we rewrite the total energy 

1 
2 

E = -m(f2 + r2+' + i2) + mga , 

(4) 
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which is conserved, as 

_-___-__ 2E J 2  2 g T 2 )  (1 ~ 4 ~ ~ ~ ) ~ '  
m m2r2 a 1 

m 
- (2ri: + ~, i .~)  + mg = aX . 
a 

and Eq. (2) as 

Making use of Eqs. (1) and (3), this becomes 

252 
+ m g + -  mar2 

Expression ( 5 )  then reduces it to 

The force of constraint is thus 

f = -2rAe, + aXe, , 

of magnitude 

( 5 )  

This force is in the rz-plane and is perpendicular to the inside surface of 
the paraboloid. (It makes an angle arctan(-a/2r) with the r-axis while 
the slope of the parabola is 2 7 - l ~ ) .  

(b) As shown in Fig. 2.23, in spherical coordinates ( r ,  8, 'p) an infinites- 
imal displacement of the particle can be resolved as 

Sr = ( b ~ ,  rS8, T S ~  sin 8) , 

i = (+,re,  r+ sin e )  . 
(1) Suppose the coordinate frame rotates with angular velocity w about 

the z-axis. Then the velocity of the particle with respect to a fixed frame 

v' = r + w x r , 

and its velocity as 

1s 
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Fig. 2.23. 

so the kinetic energy of the particle is 

1 
2 

T = -m[r2 + 2i - w x r + (w x r)2] . 

Referring to the rotating frame and using spherical coordinates we have 

= (r,  O,O), 

w x r = (0,O,wrsin0) , 
w = (wcos6,-wsin6,0) , 

2r - w x r = 2wr2+sin2 6 , 
(w x r)' = w2r2 sin2 6 , 

i2 = 1 2  + r2b2 + T ~ + ~  sin' 6 . 
Hence 

L = T - V  
1 
2 

= -m(i2 + r2e2 + r2+' sin2 6 + 2ur2+sin' 0 + w2r2 sin2 6 )  - V ( T )  . 

Note that this is the Lagrangian of the particle with respect to a fixed frame, 
which is to be used in Lagrange's equations, using coordinates referring to 
the rotating frame. 

(2) The Lagrangian can be written as 

1 
2 

L = -m(i2 +- r2e2 + T2g2  sin2 e) - u - v 
with 
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1 
2 

u = - -m(2wr2+ sin2 e + w2r2 sin2 6 )  . 

Thus L has the form of the Lagrangian the particle would have if the 
coordinate frame referred to were fixed and the particle were under a 
potential U + V, i.e. with an additional velocity-dependent potential U .  

(3) Write the Lagrangian as 

L = T' - u - v = L' - u , 
where 

1 
2 

L' = T' - V 

T' = -m(i2 + r2e2 + r2+2 sin2 e) , 

are the kinetic and Lagrangian the particle would have if the coordinate 
frame referred to were fixed. Lagrange's equations 

can be written as 

Q: are the generalized forces that have to be introduced because of the fact 
that the frame referred to is rotating. Differentiating U we find 

QL = 2 w r +  sin2 B + w 2 r  sin2 B , 
Q', = 2 w r 2 +  sin B cos B + w 2 r 2  sin B cos B , 
QL = -2mwri sin2 0 - 2 w r 2 8  sin 0 cos 0 . 

The generalized components Q$ of a force F' are defined by 

i.e. 
Fr6r + FerSB+ F,T sin869 = QV6r + Qe68 + Q,Gp . 



Analytical Mechanics 621 

Hence 

F, = Qk = 2 w r d  sin2 8 + w 2 r  sin2 8 , 

Fe = 2 = 2 w r ~ s i n ~ c o s B + w 2 r s i n 8 c o s 8 ,  Q' 
T 

are the components of the centrifugal and Coriolis forces in the directions of 
er, ee, e,,,. Note that the velocity-dependent terms are due to the Coriolii 
force while the remaining terms are due the centrifugal force. 

2. SMALL OSCILLATIONS (2028-2067) 

2028 

A mass M is constrained to slide without friction on the track A B  as 
shown in Fig. 2.24. A mass m is connected to M by a massless inextensible 
string. (Make small angle approximation.) 

(a) Write a Lagrangian for this system. 
(b) Find the normal coordinates (and describe them). 
(c) Find expressions for the normal coordinates as functions of time. 

(Wisconsin) 

Y 

Fig. 2.24. 
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Solution: 
(a) Use coordinates as shown in Fig. 2.24. M and m have coordinates 

(2, 0), 

respectively. The Lagrangian of the system is then 

(x + bsin8, -bcosO) 

1 1 
2 2 

L = T - V =  - M x 2 + - m ( x 2 + b 2 8 2 + 2 b x 8 ~ ~ ~ 8 ) + m g b c o s 8  

(b) For small oscillations, 0 and 8 are small quantities and we have the 
approximate Lagrangian 

1 1 
2 2 

L = - M k 2  + -m(P + b 2 P  + 2 6 k b ) + m g b  

Lagrange’s equations 

then give (m + M)? +ma = C, a constant, 2 + be + g0 = 0. 
In the above, the first equation can be written as 

(rn + M)?j = C 

by setting 
mbe 

m + M ’  
v=z+--- 

As (m + M ) 2  + mb8 = 0, the second equation can be written as 

The two new equations of motion are now independent of each other. 
Hence q and 8 are the normal coordinates of the system. The center of 
mass of the system occurs at a distance from M along the string. 
Hence 17 is the 2-coordinate of the center of mass. Equation (1) shows that 
the horizontal motion of the center of mass is uniform. The other normal 
coordinate, 8, is the angle the string makes with the vertical. 

(c) Equation (1) has the solution 

Ct 
m + M  r ] = -  + D ,  
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and Eq. (2) has solution 

8 = ACOS(& + B) , 

where 

is the angular frequency of small oscillations of the string and A, B,  C, D 
are constants. 

2029 

A simple pendulum is attached to a support which is driven horizontally 
with time as shown in Fig. 2.25. 

(a) Set up the Lagrangian for the system in terms of the generalized 
coordinates 6 and y, where 8 is the angular displacement from equilibrium 
and y(t) is the horizontal position of the pendulum support. 

(b) Find the equation of motion for 8. 
(c) For small angular displacements and a sinusoidal motion of the 

support 
y = yocos(wt) . 

Find the steady-state solution to the equation of motion. 
( Wisconsin) 

Fig. 2.25. 
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Solution: 
(a) The mass m has coordinates 

(ys + I sin 8, - I  cos 8 )  

(9s + 18 cos 8 , l8  sin 8) 
and velocity 

Hence the Lagrangian is 

(b) Lagrange’s equation 

= o  

gives 
18 + g* c o s ~  + gsine = 0 . 

(c) For ys = yocos(wt) and small 8, the above reduces to 

e + u,ze = E w 2  cos(wt) 
1 

with wo = f l . A particular solution is obtained by putting 8 = A cos(wt). 
Substitution gives 

YOUZ 

l (W$  - w2) . A =  

The general solution is then 

yow2 cos (wt ) 
l(W$ - WZ) 

8 =  - + A cos(w0t) + B sin(w0t) . 

Resonance will take place if wo M w. As long as w # WO, the motion of the 
system is steady. 

2030 

A solid homogeneous cylinder of radius I and mass m rolls without 
slipping on the inside of a stationary larger cylinder of radius R as shown 
in Fig. 2.26. 
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(a) If the small cylinder starts at rest from an angle 80 from the vertical, 
what is the total downward force it exerts on the outer cylinder as it passes 
through the lowest point? 

(b) Determine the equation of motion of the inside cylinder using 
Lagrangian techniques. 

(c) Find the period of small oscillations about the stable equilibrium 
position. 

( Wisconsin) 

Y 

f 

X 

Fig. 2.26. 

Solution: 

cylinder has coordinates 
Take coordinates as shown in Fig. 2.26. The center of m a s  of the rolling 

((R - r )  sin8, -(R - r )  cos 0) 

and velocity 
((R - r)bcos8, ( R  - rlbsine) . 

The cylinder has moment of inertia imr2 and the condition of rolling 
without slipping means 

(R - r)8 = rcp . 

(a) Initially 6 = 0 at 8 = 80. Suppose the cylinder has velocity 21 when 
it passes through the lowest point 8 = 0. Conservation of the total energy 
T + V gives 

1 2 1 2 ' 2  - m ~  + -mr rf, - mg(R - T )  = -mg(R - r)cos80 , 
2 4 
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or, with rci, = ( R  - r)8,  v = ( R  - r)8, 

4 
3 

mv2 = - ( R  - T)(I - cos&)mg . 

The force exerted by the cylinder on the outer cylinder as it passes through 
the lowest point is vertically downward and has magnitude 

4 
3 

= mg + - (1 - cos &)mg 

= L g ( 7  - 4coseo) . 
3 

(b) The Lagrangian of the cylinder is 

1 1 
2 4 L = T - v = - m ( ~  - r)282 + -mr2ci,’ + mg(R - r )  

n 
& 

= - m ( ~  - r)’b2 + mg(R - r )  cos 8 . 
4 

Lagrange’s equation 

gives 

(c) For small oscillations about the equilibrium position 0 = 0,  the 
equation of motion reduces to  

B +  (A) e = o I 

This has the form of the equation for simple harmonic motion. Hence the 
equilibrium is stable and has period 
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2031 
A bead of mass m is constrained to move on a hoop of radius b. The 

hoop rotates with constant angular velocity w around a vertical axis which 
coincides with a diameter of the hoop. 

(a) Set up the Lagrangian and obtain equations of motion of the bead. 
(b) Find the critical angular velocity R below which the bottom of the 

hoop provides a stable equilibrium position for the bead. 
( c )  Find the stable equilibrium position for w > R. 

( Wisconsin) 

Solution: 
(a) Use a rotating frame attached to the hoop as shown in Fig. 2.27. 

The mass m hascoordinates (bsin8,bcosO) and velocity (bBcos6, &sin@) 
referring to the rotating frame. In addition to the potential mgbcos8 due 
to gravity, a potential due to a fictitious centrifugal force mxw2 has to be 
introduced. As 

Y 

Fig. 2.27. 

dU 
d X  

mxw2 = -- , 

we can take 
1 1 
2 2 

u = - - w 2 x 2  = - - W 2 b 2  sin2 8 . 

Hence 
1 
2 

L = T - U - V = -mb2(@ + u2 sin2 8) - mgbcos9 . 
Lagrange’s equation 
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then gives 
be - bw2sin0cos0 - gsine = 0 I 

(b) At the bottom of the hoop, 0 = ?r. Let 8 = r+a,  where a is a small 
quantity. As 

sinO=sin(?r+a)= - s i n a = - a ,  

case = c0+ + a )  = - -Osa = -1 , 

the equation of motion becomes 

For a to oscillate about the equilibrium position, i.e. for the equilibrium 
to be stable, we require 

Hence for stable equilibrium, w must be smaller than a critical angular 
frequency R = ,/f. 

(c) At equilibrium, 8 = 0 and the equation of motion becomes 

b w 2 s i n e c o s e + g s i n e = ~ .  

Having considered the case 0 = 0 in (b), we can take sin0 # 0 and so the 
above gives 

9 coseo = -- 
b w 2  

for the other equilibrium position. 

small quantity. As 
To test the stability of this equilibrium, let p = 8 - 80, where p is a 

sin 0 = sin(& + p) = sin 80 + p cos 00 , 
c o d  = cos(e0 + p )  fi: cosO0 - psinOO , 

the equation of motion becomes 

bfl - bw2 sin Oo cos Oo - h2(cos2 do - sin2 O0)p - g sin 0, - gp  cos 0, = 0 , 
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or, using the value of cos 00, 

529 

P +  (1 - 6) p = 0 .  

Hence the equilibrium is stable since 88 w > R, 1 - & > 0. 

2032 
Consider the longitudinal motion of the system of massea and springs 

(a) What are the normal-mode frequencies of the system? 
(b) If the left-hand mass receives an impulse Po at t = 0, find the motion 

of the left-hand mass as a function of time. 
(c) If, alternatively, the middle mass is driven harmonically at a fre- 

quency wo = 2&, will it move in or out of phase with the driving motion? 
Explain. 

illustrated in Fig. 2.28, with M > m. 

(wdsconszn) 

M m M 
k k 

Fig. 2.28. 

Solution: 
(a) Let Z I , X ~ , Z ~  be the displacements of the three masses, counting 

from the left, from their equilibrium positions. The Lagrangian of the 
system is 

1 1 1 1 1 a 
2 2 2 2 2 L = T - v = -Mk? + -m2; + -Mki  - -k(z2 - 21)2 - -k(13  - 22) 

Lagrange’s equations 
2. (”> - - aL = 0 
dt ad, aq, 



530 Problems d Solutions on Mechanics 

k - w 2 M  -k 0 
-k  2 k - w 2 m  -k  
0 -k  k - w 2 M  

then give 

= 0 ,  

MZ1 + k(X1 - 5 2 )  = 0 , 
m32 + k(x2 - x l )  + k ( z 2  - x 3 )  = 0 , 
M33 + k(zc, - 2 2 )  = 0 . 

Try a solution of the type 
x .  - x .  e i W t  . z - a0 

Substitution gives 

which has solutions 

w = 0,  

Hence the system has three normal-mode (angular) frequencies 

w 1 =  0,  w2 = &, w3 = {gEJ. 
(b) For w = w1, Eqs. ( 2 )  give 

Equations (1) then give 

2 1  = 2 2 = 2 3 = a t + b ,  

where a , b  are constants, showing that in this mode the three masses 
undergo translation as a, rigid body without oscillation. 

For w = w2, Eqs. ( 2 )  give 

2 2  = 0,  2 3  = -21 , 
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and Eqs. (1) give 

The solutions are then 

x1 = A sin(w2t) + B cos(w2t) , 
2 2  = o ,  
23 = -21 . 

In this mode the middle mass stays stationary while the two end masses 
oscillate harmonically exactly out of phase with each other. 

For w = w3, we have, similarly, 

21 = C sin(w3t) + D cos(w3t) , 
2MXl 

2 2  = -- 

x3 = x1 . 
m '  

Here the two outer m w e s  oscillate with the same amplitude and phase, 
while the inner one oscillates out of phase and with a different amplitude. 

The general longitudinal motion of the system is some linear conibinsr 
tion of the normal-modes: 

X I  = at + b + A sin(w2t) + B cos(w2t) + C sin(w3t) + D cos(w3t) , 

2 2  = at + b - - [C sin(w3t) + D cos(w3t)l , 

23 = at + b - A sin(w2t) - B cos(w2t) + C sin(w3t) + D cos(w3t) , 

2M 
m 

The initial conditions that at t = 0, 

PO 
x1 = -, m 2 1  = 2 2  = x3 = 0, x2 = x3 = 0 

then give 
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PO 
m + 2 M  ' a =  

PO 
2Mw2 ' 

A = -  

P0m 
2M(m+2M)W3 ' c= 

b = B = D = O .  

Hence the motion of the left-hand mass is given by 

[ m + 2M + 

t sin(w2t) m sin(w3t) 
+ 2M(m + 2M)w3 

21 = Po 

(c) Suppose the middle mass has motion given by 

2 2  = 220sin(wot) . 

The first equation of (1) now becomes 

21 + wix1 = ~22x20 sin(w0t) . 

In steady state 2 1  moves with the same frequency as the driving motion: 

x1 = zlosin(w0t) . 
Substitution in the above gives 

As m - 4M < 0, the left-hand mass will move out of phase with the driving 
motion. 

2033 
Two pendulums of equal length 1 and equal mass m are coupled by a 

massless spring of constant k as shown in Fig. 2.29. The unstretched length 
of the spring is equal to the distance between the supports. 

(a) Set up the exact Lagrangian in terms of appropriate generalized 
coordinates and velocities. 
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(b) Find the normal coordinates and frequencies of small vibrations 
about equilibrium. 

(c) Suppose that initially the two masses are at rest. An impulsive force 
gives a horizontal velocity w toward the right to the mass on the left. What 
is the motion of the system in terms of the normal coordinates? 

( Wisconsin) 

Solution: 
(a) Assume the masses are constrained to move in a vertical plane. Let 

the distance between the two supports be d, which is also the unstretched 
length of the spring, and use Cartesian coordinates 8s shown in Fig. 2.29. 
The masses have coordinates 

and velocities 

(14, cos el, l4, sin el), (14, cos e2, 142 sin e,), 
respectively. The length of the spring is the distance between the two 
masses: 

,/(d+1sin02 - 1 s i n 8 1 ) 2 + ( 1 ~ ~ ~ 0 2 - 1 c o ~ 0 1 ) 2  . 

m 

Fig. 2.29. 

Hence the Lagrangian of the system is 
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(b) As 
d L  
861 

-- 

= mgl sin 81 - k ( Jd2 + 2dZ(sin 8, - sin 81) + 212 - 212 cos(82 - 81) - d) 

dZ cos el + l 2  sin(& - 81) 
,/d2 + 2dl(sin 82  - sin 61) + 212 - 212 cos(& - 0,) 

X 

d + l ( 8 2  - 81) 
M mgl& - kZ [ Jd2 + 2d1(& - 8,) - d] x 

Jd2 + 2dZ(82 - 01) 

[d + @2 - el)] 
1 

M mgl81 - kl 

neglecting second and higher order terms in & , 8 2  which are small quanti- 
ties. Similarly, 

= mgM2 + kZ2(82 - 81) . aL 
882 

-- 

Thus the equations of motion for small oscillations are 

1 1 
2 

Let 
9 = ~ ( 8 1  + 82)) < = -(81 - 82) 

and the above give 

i j + - i - = O ,  911 
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These show that q and 6 are the normal coordinates with the corresponding 
normal (angular) frequencies 

(c) The solutions of the equations of motion in the normal coordinates 
axe 

q = Acos(w1t) + Bsin(w1t) , 
[ = Ccos(w2t) + Dsin(w2t) . 

At t = 0, O1 = O2 = 0, giving q = [ = 0; and O1 = Y ,  82 = 0, giving 
+ = < =  5 .  Thus 

and 
vsin(w1t) v sin(w2t) 

q =  21Wl ' < =  21w2 ' 
giving the motion of the system in terms of the normal coordinates. 

2034 

Four identical masses axe connected by four identical springs and con- 
strained to move on a frictionless circle of radius b as shown in Fig. 2.30. 

(a) How many normal-modes of small oscillations axe there? 
(b) What are the frequencies of small oscillations? 

( Wisconsin) 

Fig. 2.30. 
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Solution: 

(a) Take the lengths of arc S I , S ~ , S ~ ,  and s4 of the four masses from their 
initial equilibrium positions as the generalized coordinates. The kinetic 
energy of the system is 

I 
2 

T = -m(sf + .4; + sg + si) . 

As the springs are identical, at equilibrium the four masses are positioned 
symmetrically on the circle, i.e. the arc between two neighboring masses, 
the nth and the (n + l)th, subtends an angle at the center. When the 
neighboring masses are displaced from the equilibrium positions, the spring 
connecting them will extend by 

for small oscillations for which s, are small. 
Thus the potential energy is 

This system has four degrees of freedom and hence four normal-modes. 
(b) The T and V matrices are 

so the secular equation is 

which has four roots 0, O,G, e. Hence the angular frequencies of small 

oscillations are 6 and @. 
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2035 

A simple pendulum of length 41 and mass m is hung from another 
simple pendulum of length 31 and mass rn. It is possible for this system to 
perform small oscillations about equilibrium such that a point on the lower 
pendulum undergoes no horizontal displacement. Locate that point. 

( Wisconsin) 

Solution: 
Use Cartesian coordinates as shown in Fig. 2.31. The upper and lower 

masses have, respectively, coordinates 

(31 sin el, -31 cos el) , 
(31 sin + 41 sin e2, -31 cos - 41 cos 8,) 

and velocities 

m 

Fig. 2.31. 

The Lagrangian of the system is then 

1 L = T - v = -m[18Z2b? + 16Z28,2 + 24Z261b2 cos(el - e,)] 
2 
+ rng(61 coa 81 + 41 cos 82) . 
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Lagrange's equations 
d L  

give 
g sin 81 

1 
381 + 282 cos(81 - 82) + 28; sin(& - 8 2 )  + ___ = 0 

or, retaining only first order terms for small oscillations, 

.. 961 391 + + - = 0 , 1 
and, similarly, 

'. s& 381 + 482 + - = 0 . 
t 

Try 81 = 810eiwt, 82 = 820eiwt. The above equations give 

(f - b2) 810 - 2~ 2 820 = 0 

The secular equation 

has roots 

w = * f i ,  *&. 
Hence there are two normal-mode frequencies. For 

w1 = 8, 820 = -Blo or 82 = -el; 

The general small oscillations are a linear combination of the two normal- 
modes. 

A point on the lower pendulum at distance < from the upper mass has 
x-coordinate 31 sin 81 $- < sin 82 and thus x-component velocity 
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For it to have no horizontal displacement, 5 = 0. 
8 2  = -81, this requires 

For the w1 mode, 

(31 - ()dl = 0, or [ = 31 . 

For the w2 mode, 82 = :el, x = 0 would require 

As [ is positive this is not possible unless 8, = 0, i.e. there is no 
motion. Therefore when the system undergoes small oscillations with 
angular frequency f i , a point on the lower pendulum at distance 31 from 
the upper mass has no horizontal displacement. 

2036 

(a) Find the Lagrangian equations of motion for the coplanar double 
oscillator shown in Fig. 2.32 in the vibration limit, assuming massless strings 
or connecting rods. From them find the normal frequencies of the system. 

Fig. 2.32. 

(b) Now consider a simple pendulum of mass m, again in the small- 
vibration limit. Suppose the string of length 1 is shortened very slowly 
(by being pulled up through a frictionless hole in the support as shown in 
Fig. 2.33), so that the fractional change in 1 over one period is small. How 
does the amplitude of vibration of rn vary with t? 

( Wisconsin) 
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mg 

Fig. 2.33. 

Solution: 
(a) The coordinates of ml, m2 are 

(Il  sin el, -Z1 cos el) , 
(ZI sin el + l 2  sin d2, -11 cos el - 1, cos e,) 

and their velocities are 

respectively. The Lagrangian of the system is then 

neglecting terms higher than second order in the small quantities 81,& in 
the small vibration limit. Lagrange’s equations 

then give 
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Let 01 = O l ~ e ~ ~ ~ ,  O2 = OzOeiWt and obtain the secular equation 

or 
~ ~ ~ ~ w 4  - g(zl + i2)w2 + g2 = o . 

The normal frequencies w1, w2 are given by the solutions of this equation: 

x [(m+ m2)(l2 + 12)  * J(w+ m2)2(11+ 1 2 ) ~  - 4(ml+ na-d)mllllz] . 
(b) As shown in Fig. 2.33. The forces on m are the tension f in the 

string and the gravity mg. These provide for the centripetal force: 

f - mgcoso = mrd2 . 

When the string is shortened by dr ,  the work done by f is 

d W  = f a dr = - f d r  

M -mgdr + -mgO2 - mrd2 dr  

= -mgdr + d E  , 
(: ) 

where dE is the part relating to the oscillations, for small angle oscillations. 
As the change in T, the length of the string, is small over a period, we can 
take average 

Also, the vibration can be considered simple harmonic, i.e. 

8 = 80 cos(wt + ‘p) , 
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where w = E. Then if T = % is the period we have 

- i.e. 
mrdz = mg82 

The energy of the pendulum is 

1 1 . 1  
-mr2d2 - mgrcosd x -mgr + -mr202 + -mgr8' , 
2 2 2 

so that 
- 1 7 1  
E = -mr2d2 + -mgr@ = mgrp . 

2 2 

Hence 

dz dr 
E 2r . 
_ -  _ _  _ -  

Integrating we have 
- 
Er2 = constant , 

or 
e;2 = constant. 

Let the amplitudes at string lengths T ,  1 be d,, 4 respectively, then 

2037 

A particle in an isotropic three-dimensional harmonic oscillator poten- 
tial has a natural angular frequency WO. Find its vibration frequencies if it 
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is charged and is simultaneously acted on by uniform magnetic and electric 
fields. Discuss your result in the weak and strong field limits. 

( Wisconsin) 

Solution: 
Assume that the uniform magnetic and electric fields, B and E, are 

mutually perpendicular and take their directions as along the z- and x-axes 
respectively. Then as 

B k = V x A ,  E i = - V @ ,  

we can take the vector and scalar potentials as 

1 
2 

A = -(-Byi + Bxj), @ = -Ex 

As the particle is an isotropic harmonic oscillator of natural cuigular fre- 
quency wo and has charge e, say, its potential energy is 

1 
2 

V =  - w i r 2 + e @ - e i . A ,  

where r = (2, y, z )  is the displacement of the particle from the origin, in SI 
units. Hence the Lagrangian is 

1 
2 

+ eEx + -eB(-ky + xy) . 

Lagrange’s equations 

then give 

eBy eE 
m m  

2 +&& - - - - - - 0 ,  

eBx 
m ij + w,y + - = 0 , 
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The last equation shows that the vibration in the z-direction takes place 
with the natural angular frequency WO.  Letting x = X I  + 3, the first two 
equations become 

. . I  2 I eBY x +wox - - = o ,  m 

e B x l  
m y + w,y + - = 0 . 

Try a solution of the type 

and we obtain the matrix equation 

The secular equation 

2 e B w  
ieBw 

= (wo" - w2)2 - (--) = 0 
w; - w 2  

then gives 
e B w  
m 

W 2 f  - - wo" = 0 ,  

which has two positive roots 

Hence the three normal-mode angular frequencies are W O ,  w+ and w-. Note 
that the last two modes of oscillations are caused by the magnetic field 
alone, whereas the electric field only causes a displacement 4 along its 
direction. 

mu0 

For weak fields, $ << W O ,  we have 

e B  e B  
2m 2m 

w + = w o + - ,  w - = w o - - .  
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For strong fields, >> W O ,  we have 

1 eB eB 2m2wg 
w + x -  -+ -  1+- 

2 [ m m ( e 2 B 2 ) ]  

2038 
Three particles of equal mass m move without friction in one dirnen- 

sion. Two of the particles are each connected to the third by a massless 
spring of spring constant k. Find normal-modes of oscillation and their 
corresponding frequencies. 

(CUSPEA ) 

Solution: 
Number the masses from the left as shown in Fig. 2.34 and let 21, z2, z3 

be the displacements of the respective masses from their equilibrium posi- 
tions. The Lagrangian of the system is 

l k 2 k 3  

m rn m 

Fig. 2.34. 

Lagrange’s equations 
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give 

k - m 2  -k 0 
-k 2k - m2 -k 
0 -k k - m u 2  

Problems B Solutions on Mechanics 

= m 2 ( k  - w ~ ) ( w ~  - 3k)  = 0 

mji-I + k(x1 - x 2 )  = 0 , 
mX2 + k(xz  - 21) + k ( ~ 2  - 5 3 )  = O , 

mf3 + k ( ~ 3  - ~ 2 )  = O . 

Trying a solution of the type 

we can write the above as a matrix equation 

-k  (k--Fz 2 k - m w 2  
-k k - m 2  

These are the normal-mode angular frequencies of the system. The corre- 
sponding normal-modes are as follows. 

(i) w1 = 0 
Equation (2) gives A = B = G and thus XI = 2 2  = x3 .  The first of 

Eqs. (1) then gives 

XI = 0,  or XI = a t + b ,  

where a , b  are constants. Hence in this mode the three masses undergo 
uniform translation together as a rigid body and no vibration occurs. 

(ii) w2 = & 
Equation (2) gives B = 0, A = -C. In this mode the middle mass 

remains stationary while the outer masses oscillate symmetrically with 
respect to it. The displacements are 
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21 = A C O S ( U ~ ~  + 9) , 
2 2 = 0 ,  

23 = - A C O S ( W ~ ~  + 9) , 
cp being a constant. 

(iii) w3 = fi 
Equation (2) gives B = -2A, C = A. In this mode the two outer 

masses oscillate with the same amplitude and phase while the middle mass 
oscillates exactly out of phase with twice the amplitude with respect to the 
other two masses. The displacements are 

2 1  = Acos(w3t + ’p) , 
5 2  = -2Acos(w3t + ‘p) , 
13 = Acos(w3t + ‘p) . 

The three normal-modes are shown in Fig. 2.35. 

Fig. 2.35. 

2039 

A rectangular plate of mass M, length a and width b is supported at each 
of its corners by a spring with spring constant k as shown in Fig. 2.36. The 
springs are confined so that they can move only in the vertical direction. For 
small amplitudes, find the normal-modes of vibration and their frequencies. 
Describe each of the modes. 

(UC, Berkeley) 

Solution: 
Use Cartesian coordinates with origin at the center of mass C of the 

plate when the plate is in equilibrium, the z-axis vertically upwards, the I- 
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Fig. 2.36. Fig. 2.37. 

and y-axes along the axes of symmetry in the plane of the plate, and let the 
angles of rotation about the x- and y-axes be cp, 0 respectively, as shown in 
Fig. 2.37. If z is the vertical coordinate of C, the vertical coordinates of 
the four corners are 

1 1 
2 2 

ZA = z - -acp + -be , 
1 1 

ZB = z - -up 2 - zM9 , 

1 1 
ZD = Z +  -acp- zbe , 

2 

1 1 
2 2 

zE  = z +  -ap-t  -be, 

for small angle oscillations. 

grangian is 
As the coordinates are relative to the equilibrium positions, the L a  

L = T - V  

1 1 1 a 1  

2 24 24 

1 1 1 1 
2 24 24 2 

= - M i 2  + -Ma2@‘ + -Mb202 - - k ( z i  2 + Z: -+ Z; + z;) - M g z  

= - M i 2  + - Ma2+’ + - Mb2b2 - -k(4z2 + a2cp2 + b202) - M g z  . 
Lagrange’s equations 

then give 
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M f + 4 k z + M g = O ,  

1 -M$ + k p  = 0 ,  
12 

1 - M 9  + k8 = 0 .  
12 

By putting z = z' - 2, the first equation can be written as 

Mf'  + 4kz' = 0 . 

The equations show that the normal-mode angular frequencies axe 

w1= 2 g ,  w2 = w3 = 2g 
If we define 

we can, neglecting a constant term in the potential energy, write 

1 
2 

v = -(w2 I t 1  2 + 4 5 ;  + wi5i32) . 

These are both in quadratic form, slowing that 5 1 ,  5 2 ,  & are the normal- 
mode coordinates. 

Denoting the amplitudes of z', cp, 8 by z;, cpol80 respectively, we obtain 
from the equations of motion 

(4k - M w 2 ) a  = 0, 

It can be seen that if w = w1 then zo # 0, cpo = 80 = 0. If w = w2 or wg, 
then zo = 0, and one or both of pol 00 are not zero. 
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2040 

A particle moves without friction on the inside wall of an axially sym- 
metric vessel given by 

1 
2 z = - b ( 2  + y2) , 

where b is a constant and z is in the vertical direction, as shown in Fig. 2.38. 
(a) The particle is moving in a circular orbit at height z = zo. Obtain 

its energy and angular momentum in terms of zo, b, g (gravitational 
acceleration), and the mass m of the particle. 

(b) The particle in the horizontal circular orbit is poked downwards 
slightly. Obtain the frequency of oscillation about the unperturbed orbit 
for very small oscillation amplitude. 

(UC, Berkeley) 

Y 

X 

Fig. 2.38. 

Solution: 
(a) Use coordinates as shown in Fig. 2.38. As 2 = T cos 8, y = T sine, 

the vessel can be represented by 

z = -b ( s2  1 + y2) = -br 1 2  
2 2 

The Lagrangian of the particle is 

1 1 
2 

= -m(i2 + ~ ’ 6 ’  + bZr2i2) - Z m g ~ 2  
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Lagrange's equation for T then gives 

(1 + b2r2)i: - b2rf2 - re2 + gbr = 0 . (1) 

As the particle motion is confined to a circle of height zo and radius T O ,  

say, we have 

1 2  
T = T o ,  i = i: = 0,  zo = -br, , 2 

e2 = gb = R2, say . 
The total energy of the particle is then 

1 T + V = sm(riR2 + gk;) = mgbri = 2mgz0 , 

and the angular momentum about the center of the circle is 

J = mr . r9 = mr$= 2mzo 

(b) For the perturbed motion, let r = TO + p where p << T O ,  Lagrange's 
equation for 8 shows that the angular momentum mr2e is conserved. Hence. 

- r4b2 r;R2 - r;gb = - _ - _ -  - 
r3 7.3 r3 

and Eq. (1) becomes 

by neglecting terms 
p, p ,  p. The angular 
therefore 

(1 + b2ri)f i  + 4gbp = 0 

of order higher than the first in the small quantities 
frequency of small amplitude oscillations about ro is 

2041 

A block of mass m is attached to a wedge of mass M by a spring with 
spring constant k. The inclined frictionless surface of the wedge makes 
an angle a to the horizontal. The wedge is free to slide on a horizontal 
frictionless surface, as shown in Fig. 2.39. 
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(a) Given the relaxed length of the spring alone is d, find the value SO 
when both the block and the wedge are at rest. 

(b) Find the Lagrangian for the system as a function of the x coordinate 
of the wedge and the length of the spring s. Write the equations of motion. 

(c) What is the natural frequency of vibration? 
(UC, Berkeley) 

Fig. 2.39. 

Solution: 

inclined surface is zero: 
(a) When the block is in equilibrium, the sum of forces parallel to the 

mgsina - k(s0 - d )  = O , 
yielding 

mg sin a 
k so = ~ + d .  

(b) Let the height of the wedge be h. Use coordinates as shown in 
Fig. 2.39 and let the horizontal coordinate of the left side of the wedge be 
2. Then the mass m will have coordinates 

(x + scosa,h - ssina)  . 
The Lagrangian of the system is then 

L = T - V  

1 1 
2 2 

= - ~ 2  + -m~(j. + icosa)' + (Ssin~u)'] 

1 
2 

- - k ( s  - d)2  - mg(h - ssina)  

1 1 1 
2 2 2 

= - (m + M ) k 2  + -mi2 + mkscosa - - k ( s  - d)2  - mg(h - ssina)  . 
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Lagrange’s equations then give the equations of motion 

( m + M ) 5 + m s c o s a = O ,  

mgcosa + ms + ks - (kd + mgsina) = 0 . 
(c) Setting 

kd + mg sin (Y 

k 
s = s ’ +  7 

we can write the above equations as 

(m + M)Z + mi’cosa = 0 , 
m5cosc~ + mS‘ + ks’ = 0 . 

Consider a solution of the form 

2 = AeiWty sf = B e i W t  > 

the above give the secular equation 

-(m + M)W2 - w 2 c o s a  
-w2 COSCY k - w2 

yielding 

w1 = 0, 0 2  = J -  k ( m  + M) . 

As the motion related to w1 is not oscillatory but as a whole translational 
along the x-axis, there is only one natural frequency of vibration, w2. 

m ( ~  + msin2 a) 

2042 

An uniform log with length L, cross-sectional area A and mass M is 
floating vertically in water ( p  = 1.0) and is attached by a spring with 
spring constant K to a uniform beam which is pivoted at the center as 
shown in Fig. 2.40(a). The beam has the same mass and is twice the length 
of the log. The log is constrained to move vertically and the natural length 
of the spring is such that the equilibrium position of the beam is horizontal. 

(a) Find the normal-modes (frequencies and ratio of displacements) for 
small displacements of the beam. 
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(b) Discuss the physical significance of the normal-modes in the limit of 

(UC, Berkeley) 
a very strong spring. 

Solution: 
Use coordinates as shown in Fig. 2.40(b) with x denoting the displace 

ment of the top of the vertical rod from its equilibrium position (the 
downward direction being taken as positive), and O the angle of rotation of 
the beam. At equilibrium (Fig. 2.40(a)), the spring is in its natural length 
xo and does not exert a force on the rod. With p = 1 we have 

M g  = [L - ( h  - ~ o ) ] A g  . 
When the beam has rotated an angle 8 (Fig. 2.40(b)) the spring is extended 
by x - LO and the upward thrust of the water is 

av, -[L - ( h  - xo - x ) ] A ~  = -- , ax 
giving 

v, = Ag 1’ { [ L  - (h  - ZO)] + 2‘) dx’ 

= [ L  - ( h  - xO)IAgx + s A g z 2  1 

1 
2 

= Mgx + -Agx2 . 

Hence the total potential energy is 
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1 1 
2 2 

V = -Mgx + Mgx + -Agx2 + - K ( x  - LO)' 

1 1 
2 2 

= -Agx2 + - K ( x  - . 

The beam has moment of inertia $ML2,  so the total kinetic energy is 

1 1 
2 6 

T = - M ? ~  + - M L ~ O ~  

Thus the Lagrangian is 

1 1 1 1 L = T - V = - M i 2  + -ML202 - -Agx2 - - K ( x  - LO)' . 
2 6 2 2 

Lagrange's equations 

give 

MP + Agx + K ( x  - LO) = 0, 

M L ~  - 3 ~ ( ~  - LO)  = o . 
'Tky a solution of the type x = DeiWt , 8 = BeiWt and write the above 85 

( K  + A9 - Mw2)D - K L B  = 0, 
-3KD + (3KL - MLw2)B = 0 . 

The secular equation is then 

I -3K 

M2w4 - M ( 4 K  + Ag)w2 + 3KAg = 0 . 

3KL - MLw2 = ' - K L  I K + Ag - Mw2 

or 

The two positive roots 

4K + Ag f J ( 4 K  + Ag)' - l2KAg 
w * = d  2M 

are the two normal-mode angular frequencies of the system for small oscil- 
lations of the beam. 
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The ratios of the displacements are 

x D 3K - Mw' 2K - Ag J(4K + Ag)' - 12KAg 
LO - BL - 3K 6K 

- - - 

with the top sign for w+ and the bottom sign for w-. 
(b) In the limit of a very strong spring, K -+ 00. As MX, Agx, ML6 

are all finite, this requires that x - L8 -+ 0, i.e. x -+ LO. Eliminating the 
K ( z  - LO) terms from the equations of motion and making use of L6 M x, 
we find 

4MX + 3Agx = 0 

and hence the angular frequency of oscillation 

p 
4M . W =  

The ratio of the displacements is 

and they are in the same phase. Note that these results cannot be obtained 
from the previous ones by putting K -+ 00 because the constraint relations 
are different. Physically, the constraint x M LO means that the system 
oscillates with the spring keeping its length constant, which is expected for 
a very strong spring. 

2043 

Two unequal masses M and m (M > m) hang from a support by strings 
of equal lengths 1. The masses are coupled by a spring of spring constant 
K and of unstretched length equal to the distance between the support 
points as shown in Fig. 2.41. Find the normal-mode frequencies for the 
small oscillations along the line between the two masses. Give the relation 
between the motion of M and that of m in each mode. Write down the 
most general solution. 

Now specialize for the case where at t = 0, m is at rest at  its equilibrium 
position, and M is released from rest with an initial positive displacement. 
If the total energy of the system is Eo and the spring is very weak, find the 
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- L -  

Fig. 2.41. 

maximum energy acquired by m during the subsequent motion for the case 
= 2. (Where did you use the assumption that the spring is weak?) 

(UC, Berkeley) 

Solution: 
Use coordinates as shown in Fig. 2.41 with origin 0 at the equilibrium 

position of the maas m and the 2- and y-axes along the horizontal and ver- 
tical directions respectively and let the distance between the two supports 
be L. The masses m and M then have coordinates 

and velocities 

respectively. The Lagrangian of the system is 

L = T - V  

1 1 1 
2 2 = -mZ28? + 5M128," - -KZ2(sin& - sin81)2 

1 1 1 1 
2 2 2 

x -rnZ2eT + -MZ%," - ZK12(02 - tI1)' - -gl(me: +Me,") 

for small oscillations in the horizontal direction. 
Lagrange's equations 
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then give 

ml81 + (mg + K1)& - K162 = 0 , 
Ml& + ( M g  + Kl)& - K161 = 0 . 

Try a solution of the type el = AeiWt, 82 = BeiWt and write the above as 

(mg + ?ki mlw2 -K1 
M g + K I - M l w 2 )  (t) =“ 

The secular equation is then 

mg + Kl - mlw2 1 -K1 

yielding the normal-mode angular frequencies 

As 

we have 

A M g + K l - M l w 2  
B Kl  
_ -  - 

7 

= 1 for w = w 1  , A 
B 
- 

for w = w2 . A’ M 
B’ m 

- - - _ _  

Hence, for w = w1, 

for w = w2, 

m 
M 61 = A’COS(WZ~ + cpz), 82 = --A’cos(wzt + cp2) , 

and the most general solution is 
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Initially at t = 0, 81 = 82 = 0, giving $1 = @Z = 0, and 81 = 0, 82 = 80, 
giving 

A ' = - A .  M A = -  
m+Meo7 

If the initial total energy is Eo, then as 

1 1 
2 2 

Eo = - K12# + - MgZ9: , 

we have, as 60 is positive, 

If in addition, M = 2m, the general solution reduces to 

2 
3 
2 1 
3 2 

el = -eo[cos(wlt) - cos(w2t)l , 

ez = -eo[cos(wlt) + - cos(w2t)l , 

with 

w1 = fi, wz = /-, 2mt eo = ,/r (2mg + K2)Z . 

The energy of m is 

1 1 
2 2 

E~ = -rn12@ + -mgle: . 

If the spring is very weak, we can take K1<< mg so that 

where 
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We then have 

2 
9 

E~ = -mgl@ [I + (1 + s ) ~  sin2(w2t) + cos2(w2t) 

-2(1+ 6) sin(w1t) sin(w2t) - 2cos(wlt) cos(wat)] 

4 
9 

M -Eo[l - cos(w16t)] , 

neglecting 6 as compared with unity. Hence the maximum energy of m is 
~ E o .  

2044 

Two small spheres of mass M are suspended between two rigid supports 
as shown in Fig. 2.42. We assume that both particles can move in the plane 
of the figure, sideways and up and down. The three springs are equal, of 
spring constant K. The springs are under tension: in its unstretched con- 
dition each spring would be of length %. The springs are assumed massless 
and perfectly elastic. Assuming small oscillations about the equilibrium 
configuration shown above, find the frequencies for the four normal-modes 
of the system. 

(UC, Berkeley) 

Fig. 2.42. Fig. 2.43. 

Solution: 
Since the motion is confined to the plane of the diagram of Fig. 2.42, 

the sideway motion is to be interpreted as longitudinal along the springs. 
Let (z1,yl) and (zz,y2) be the horizontal and vertical displacements 

of the spheres, numbered from the left, from their respective positions 
of equilibrium. Using coordinates as shown in Fig. 2.43, rn1,mz have 
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coordinates (a + x1,y1), (2u + x2,yz) respectively. T&ing the equilibrium 
configuration (Fig. 2.42) as the state of zero potential, we have for the 
system the potential energy 

V = 1K 2 [ d M -  ;I2 - f K  (i)2 

Consider 

a2 

4 
a2 + x: + 2axl+ 9: + - - udu2 +x: + 2axl+ y: 

As the term involving the squareroot sign can be written as 

x: + 2ax1+ I:) 
a2 (I+ a2 

1 4x1 ) + f (i) ( - 5 )  F ]  M U 2  [ l+  5 ( a2 
1 x;+2ax1 +yT 

1 1 
2 2 = a2 + -(x: + 2ax1+ y;) - -x: 

retaining only terms of orders up to  the second in the small quantities X I ,  y1, 
the above becomes 
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The same approximation is taken over the other terms. Hence 

1 
2 = - w 2 :  + 22; + y: + 9: - 22122 - y1y2) + Mg(y1+ yz) . 

The Lagrangian is then 

L = T - V  

Lagrange’s equations 

give 

MXl + 2 K ~ l -  K x ~  = 0 ,  

MXl + 2 K ~ 2  - K x ~  = 0 ,  

I 
Mgl +Ky1- -Kyz+Mg 2 = o  , 

1 
Mjiz +Ky2 - -Kyl+ Mg = O  . 2 

It is seen that the equations naturally separate into two groups, those in 
2 1 , ~  and those in y1,y2. Let 

5, = AieiWt 

Then the first two equations give the secular equation 

-K  
2K - Mw2 

1 = (3K - Mw2)(K - Mw2) = 0 2K - Mw’ 
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yielding two normal-mode angular frequencies 

for longitudinal oscillations. 
For the second group of two equations, let 

They can then be written as 

M& + Kyk - -Ky: 1 = 0 
2 

w i n g  a solution of the type 

we obtain the secular equation 

which yields the normal-mode angular frequencies 

for vertical oscillations. 

2045 

A simple pendulum of length L is suspended at the rim of a wheel 
of radius b which rotates within the vertical plane with constant angular 
velocity R (Fig. 2.44). We consider only the motion in which the bob of 
the pendulum swings in the plane of the wheel. 

(a) Write an exact differential equation of motion for the angular dis- 
placement 8 of the bob. Also write a simplified form valid when the 
oscillation amplitude is very small. 
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(b) Assume that both the radius 6 and the oscillation amplitude of 
the bob are very small. Give an approximate steady-state solution of the 
equation of motion valid under the assumptions. 
(You may ignore transients which will die out, if there is a slight dissipation.) 

(UC, BerkeEey) 

Fig. 2.44. 

nr 

Y 

Fig. 2.45. 

Solution: 
(a) Use coordinates as shown in Fig. 2.45. The mass m has coordinates 

(bsin(Rt + 'p) + Lsin@,bcos(fit + 'p) + Lcos6) 

and velocity 

(bR cos(Rt + 'p) + Le cos 8, -bR sin(0t + 'p) - Le sin 6 )  , 

where 'p is a constant. 
The Lagrangian of m is then 

L = T - V  

1 
2 

= -m[b2R2 + L2b2 + 26LRbcos(B - Rt - 'p)] 

+ mgp cos(fit + 'p) + L cos el I 

Lagrange's equation 

gives 
+ bR2sin(B - a t  - 'p) +gsinB = 0 . 
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For small-amplitude oscillations, sin 8 M 8, cos 8 x 1, 

sin(8 - Rt - 'p) M Bcos(Rt + 'p) - sin(Rt + 'p) , 

and the equation of motion becomes 

Le + [bR2 cos(Rt + 'p) + 918 - bR2 sin(Rt + 'p) = 0 . 

(b) For b and 8 small, we have, retaining terms of only up to the first 
order of b, 8, e,  

L e + g 8  - bR2sin(Rt +'p) = 0 . 
In the steady state, the pendulum will swing with the same frequency as 
the rotation of the wheel, so we can assume 

8 = acos(Rt + 'p) + psin(Rt + 'p) , 

where a, /3 axe constants. Substitution in the equation of motion gives 

(-LO2 + g)[acos(Rt + 'p) + psin(Rt + 'p)] - bR2 sin(Rt + 'p) = 0 . 

As this equation must be true for any arbitrary time, the coefficients of 
cos(Rt + 'p) and sin(Rt + 'p) must separately vanish: 

-aLR2 + g a  = 0 ,  
g p  - @LO2 - bR2 = 0 . 

As R is given, we must have a = 0 in the first equation. The second 
equation gives 

bR2 p=- 
g - L R 2 '  

Hence the steady-state solution is 

bR2 sin( Rt + 'p) 

g - La2 e =  

2046 

Three equal point masses m move on a circle of radius b under forces 
derivable from the potential energy 

~ ( a ,  p, 7) = vo(e-" + e-p + e-7) . 
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where a, p, y are their angular separations in radians, as shown in Fig. 2.46. 
When a = p = y = F, the system is in equilibrium. Find the normal-mode 
frequencies for small departure from equilibrium. 
(Note that a, p, y are not independent since a + /3 + y = 27r.) 

( UC, Berkeley) 

Fig. 2.46. Fig. 2.47. 

Solution: 

Let el,&, 83 be the angular displacements of the three masses from their 
equilibrium positions as shown in Fig. 2.47. We have 

2n 

2n 

2n 

a = - + e 2 - e 1 ,  3 

p = - + e 3 - e 2 ,  3 

~ = - + + 1 - 8 3 .  3 

As 

5 5 2  

l! 2! 
e-= M 1 - - + - - ... 

we can write the potential energy as 
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2A - Bw2 - A  - A  
- A  2A-Bw2 - A  
-A  -A  2A-Bw2 

567 

= O ,  

V = Voe-?g[,-(e2-el) + ,-(83-'92) + e - ( f h - e 3 ) ]  

M V0e-v 3 - (e2 - el) - (e3 - e,) - (el - e3) 

1 1 1 1 
2 2 

[ 
+ p2 - + -(e3 - e2)2 + -(el - e3)2 

= ~ ( 3  + e:: + e; + e; - e1e2 - e2e3 - e3e1) 

with A = VO exp (-%), retaining terms of orders up to the second in the 
small quantities el, 02,03. 

As the velocities are &, b&, d3, the kinetic energy is 

1 
2 

T = - B(8: + 8; + 8;) 

with B = mb2. 
The Lagrangian is therefore 

L = T - V  
= ~ ( e ;  + 8; + 8;) - ~ ( 3  + e: + e; + e; - ele2 - e2e3 - e3el) . 

0 -2A A - B w 2  
0 2A - Bw2 -A 

-3A + Bw2 - A  2A-Bw2 

Lagrange's equations 

= Bw2(-3A + B w ~ ) ~  = 0 
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Hence the normal-mode angular frequencies are 

w1 = 0 ,  w2 = w3 = 
mb2 

Note that w1 does not give rise to oscillations, for in this case the equations 
of motion give el = e2 = 03  and the system as a whole rotates with a 
constant angular velocity. The other two normal-modes are degenerate and 
there is only one normal-mode frequency 

&e.P(-;) 1 3vo . 

2047 

Three point particles, two of mass m and one of mass M ,  are constrained 
to lie on a horizontal circle of radius r .  They are mutually connected by 
springs, each of constant K ,  that follow the arc of the circle and that 
are of equal length when the system is at rest as shown in Fig. 2.48. 
Assuming motion that stretches the springs only by a small amount from 
the equilibrium length ( 2 ~ / 3 ) ,  

M 

Fig. 2.48. 

(a) describe qualitatively the modes of motion that are simple harmonic 

(b) find a precise set of normal coordinates, one corresponding to each 

(c) find the frequency of each mode. 

in time (the normal-modes); 

mode; 

( UC, Berkeley) 
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Solution: 
(a) As the system is not acted upon by external torque, its angular 

momentum is conserved. This means that there is a normal-mode in which 
the system rotates as a whole. Consequently there are only two Vibrational 
degrees of freedom. Let $I,&, #3 be respectively the angular displacements 
of m, M ,  m from their equilibrium positions and let their amplitudes be 
c1 , c2, c3. When considering the vibration of the masses relative to their 
equilibrium positions, we can take the total angular momentum of the 
system to be zero. Then the two vibrational normal-modes correspond 

(b) Let the natural length of each spring be a and denote the equilibrium 

27rr 
length by b, i.e. 

b =  - 
3 ’  

The Lagrangian of the system is 

L = T - V  

1 - + rez - rel - a), + ( b  + re3 - re2 - u), + ( b  + re, - re3 - 
Lagrange’s equations : ($) - g = 0 

then give the differential equations of motion 

mel + ~ ( 2 4  - e2 - e3) = o , 
M& + ~ ( 2 e ~  - e3 - el) = o , 
me3 + ~ ( 2 8 ~  - el - e,) = o . 

The above sum up to 

mi$ + M &  + me3 = o , 
and the first and third equations give 

m(el - i3) + 3 ~ ( e ~  - e3) = o . 
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These can be written as 

mc=O, 
mij +3Kq = 0 

if we set 

q = 8 1  - 8 3 .  

Hence < and q are normal-mode coordinates of the system. 

which the system rotates as a whole and there is no oscillation. 
Equation (1) shows that w1 = 0. Thus corresponding to this mode in 

Equation (2) shows that 

..=E. 
To find the third normal coordinate, we choose the coordinate transforma- 
tion 

41 = 81, 42 = 82g, 43 = 03 

to make the kinetic energy a sum of squares: 

1 
2 

T = -mr2(q; + qg + 4:) . 

ql,  q2,43 are just like Cartesian coordinates. The transformation between 
the three normal coordinates and the three “Cartesian” coordinates 41, 92,  

43 must be linear. We already have 

Assume the third normal coordinate to be 

It should be orthogonal to the <-, 77-axes. Resolving along the qi-axes we 
have 
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Orthogonality means that 

which yield A = C, B = - 2 A f i .  Since a normal coordinate remains so 
after multiplying it with a nonzero constant, we can set A = 1, then 

The equations of motion then give 

yielding 
w3 = p m  + M ) K  

m M  

(c) w1, w2, w3 are the normal-mode angular frequencies corresponding to 
the three normal coordinates <, q,  C respectively. 

2048 

A ring of mass M and radius R is supported from a pivot located at one 
point of the ring, about which it is free to rotate in its own vertical plane. 
A bead of mass m slides without friction about the ring (Fig. 2.49). 

(a) Write the Lagrangian for this system. 
(b) Write the equations of motion. 
(c) Describe the normal-modes for small oscillations in the limits 

(d) Find the frequencies of the normal-modes of small oscillations for 

( VC, Berkeley) 

m>> M a n d m < M .  

general m and M. 

Solution: 

of mass of the ring have coordinates 
(a) Use coordinates as shown in Fig. 2.49. The mass m and the center 
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Pivot xGqM m 

Y 

Fig. 2.49. 

(RsinB + Rsincp, Rcos8f Rcoscp), (Rsin8, Rcos8) 

and velocities 

(Rbcos8 + Rgcoscp, -Resin8 - Rgsincp), (R8cos8, -RbsinO) 

respectively. The ring has moment of inertial 2MR2 about the pivot. The 
Lagrangian of the system is then 

L = T - V  
. 1  

2 
= M R ~ O ~  + - m ~ ~ [ e ~  + g2 + ;legcos(e - cp)]  

+ (M + m)gRcos8 + mgRcoscp , 
taking the pivot as the reference level of potential energy. 

(b) Lagrange’s equations 

d d L  d L  
dt (&) - aQz = O  

give the equations of motion 

(2M + m)Rd + mRgcos(8 - cp) 

+ mRd2 sin(8 - cp)  + (m + M)g sin 8 = 0, 

R$ + Rdcos(8 - cp) - Re2 sin(8 - cp) + gsincp = 0 . 

(c),(d) For small oscillations, 8, cp, 8, (I, are small and the above reduce 
to 

(2M + m)Rd + mR$ + ( M  + m)g8 = 0 , 
R @ + R d + g p = O .  
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Try a solution of the type 0 = AeiWt, 'p = BeiWt and write these equations 
as a matrix equation 

( M  + m)g - ( 2 ~  + m)Rw2 - m h 2  
-Rw2 g - h 2 )  (t) = O .  

;:g: I 
The secular equation 

(m + M)g  - (2M + m ) h 2  
-Rw2 

= ( 2 h 2  - g ) [ M h 2  - (m + M)g]  = 0 

has positive roots 

which are the normal-mode angular frequencies of the system. The ratio of 
the amplitudes is 

for w = w l ,  _ -  
B -  Rw -- My,, for w = w 2  . 

A 
" l = @ '  - = l ,  

i.e. 8 and 'p have the same amplitude and phase; 

i.e. 8 and 'p have the same amplitude but opposite phases. 
I f m < M ,  

A 
u1=& - = l ,  

i.e. 8 and 'p have the same amplitude and phase as in the above; 

A m  
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i.e. 8 has a much smaller amplitude than cp and the two oscillations are 
opposite in phase. 

2049 

A particle of mass m is constrained to move on the parabola z = $ in 
the plane, a is a constant length, and there is a constant gravitational force 
acting in the negative z direction. 

(a) Define a suitable generalized coordinate for the problem. 
(b) Write the Lagrangian in terms of your generalized coordinate and 

(c) Where is the equilibrium position for the particle? 
(d) Write the equation for small oscillations about this equilibrium. 
(e) Solve the equations you get in (d). 

velocity. 

(Columbia) 

Solution: 
(a) We choose x as the generalized coordinate of the particle. 
(b) The particle has coordinates (5, x )  = ( x ,  $) and velocity ( k ,  $) = 

(i!,%). Then 

1 
2 

T = -m(*' + i2) = 

mgx2 V = m g z = -  
a 

The Lagrangian is therefore 

or 

(c) The equilibrium position is given by 

bV 2mgx 
ax a 0, - =-= 

x = o .  

Then z = 0 also. Thus the equilibrium position is (0,O). 

Neglecting terms of orders greater than two we obtain 
(d) For small oscillations about equilibrium, x,? are small quantities. , 
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Lagrange’s equation 

then gives 

a 
(e) This equation has general solution 

x = A c o s ( E i ! + e )  , 

where A,& are constants of integration to be determined from the initial 
conditions. 

2050 

A thin uniform bar of mass m and length $ is suspended by a string 
of length 1 and negligible mass. Give the normal frequencies and normal- 
modes for small oscillations in a plane. 

Solution: 
Use coordinates as shown in Fig. 2.50. The center of mass of the bar 

has coordinates ( 1  sincp+ $1 sine, -1  coscp- $ 1  cost)) and velocity (l@coscp+ 
~lecosf3,l@sincp + il9sin8). The bar has moment of inertia 

(Columbia) 

Fig. 2.50. 
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Hence its Lagrangian is 

L = T - V  

for small oscillations, retaining only terms of up to the second order of the 
small quantities 8, 'p, 4, +. 

Lagrange's equation 

give 

3 *. 
4 
- l B + l l J + g C p = O ,  

1 8 + l l J + g B = O .  

With a solution of the form 

the above give 

= o  
g - l w 2  -1w2 

The secular equation 

-2EW2 g - l w 2  
g - l w 2  -1w2 i = o ,  

i.e. 
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has solutions 
~ ~ = ( 4 i 2 h ) f = ( l & h ) ~ f  , 

or 

w = ( h * l ) f i ,  

since w has to be positive. Hence the normal-mode angular frequencies are 

The ratio of amplitudes is 

B g - l d  -$ f o r w = w 1  , 

$ for w = w 2  . A 1w2 

Thus in the normal-mode given by w1, 0 and 'p are opposite in phase, while 
in that given by w2, 6 and cp are in phase. In both cases the ratio of the 
amplitude of 'p to that of 8 is 

& : 2 .  

2051 

A simple pendulum consisting of a mass m and weightless string of 
length 1 is mounted on a support of mass M which is attached to a horizontal 
spring with force constant k as shown in Fig. 2.51. 

(a) Set up Lagrange's equations. 
(b) Find the frequencies for small oscillations. 

(Columbia) 

X 

Fig. 2.51 
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Solution: 
(a) Use coordinates with origin at the position of m when the system 

is in equilibrium, and the 2- and y- axes along the horizontal and verti- 
cal directions respectively as shown in Fig. 2.51. Then M and m have 
coordinates and velocities 

( z , l ) ,  (z+ls in8 ,1- Icos8)  

(i, o), (i + 18 cos e,l8 sine) 

respectively. The Lagrangian of the system is 

L z T - V  
1 1 1 
2 2 2 

= - M i z  + -m( i2  + 1’8’ + 2 1 5 8 ~ 0 ~ 8 )  - Mgl - mglfl  - cos8) - -kx2  . 

Lagrange’s equations 
8L 

then give 

(M+m)x-m182s in8+m18cos8+ka:=0,  

1 i + j i . c o s e + g s i n 8 = 0 .  

(b) For small oscillations, a:,Q,k, 8 are small quantities. 
terms of orders higher than two, the equations of motion become 

Neglecting 

( M  +m)Z + mlB+ ka: = 0 ,  

z e + x + g e = o .  
Set 

z = Aexp(iwt) , 8 = Bexp(iwt) 

These equations become 

k - ( M  + m)w2 -mlw2) (;) = o .  
g - lw2 

The secular equation 

k - ( M  + m)w2 -mlw2 I = Mlw2 - (g(M + m) + kl]w2 + gk = 0 
g - 1w2 
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has two positive roots 

579 

g(M + m) + kl + d [ g ( M  + m) + klI2 - 4Mlgk 
2M1 w1= [ 

which are the normal-mode angular frequencies of the system. 

2052 

Two masses, 2m and m, are suspended from a fixed frame by elastic 
springs as shown in Fig. 2.52. The elastic constant (force/unit length) of 
each spring is k. Consider only vertical motion. 

(a) Calculate the frequencies of the normal-modes of oscillations of this 
system. 

(b) The upper mass 2m is slowly displaced downwards from the equilib 
rium position by a distance 1 and then let go, so that the system performs 
free oscillations. Calculate the subsequent motion of the lower mass m. 

(Columbia) 

Fig. 2.52. 

Solution: 

(a) Let the natural lengths of the upper and lower springs be 1 1 , / 2 ,  and 
denote the positions of the upper and lower masses by yl, y2 as shown in 
Fig. 2.52, respectively. The Lagrangian is then 
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L = T - V  

Lagrange’s equations 

give 

Let Y1 =y: t01, Y2 =Y; +772- 

The above can be written as 

2my: + 2kyi - Icy; = 0 , 
my; +ky; - kyi = 0 , 

if we set 
3mg + k l ~  4mg + kll + kl2 

k 01 = 1 q 2 =  

Note that g1 = 01, y2 = 02 are the equilibrium positions of the masses 2m 
and m respectively, as can be seen from the force equations 

3mg = H Y l  - 11) 1 

mg = k(y2 - y1 - 1 2 )  . 

With a solution of the type 

we have 

k - W 2  -Ic )(+. 
The secular equation 

2k - 2 w 2  
k - w 2  
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has two positive roots 

which are the angular frequencies of the normal-modes of osciIlation. As 

B 2 k - 2 ~ ~  
- - = r h ,  A -  k 

the corresponding normal-modes are (-b) and (&). 

(b) The general motion of the system is given by 

= A cos(w+t + 91) + A' cos(w-t + 9 2 )  , 
~4 = -hAcos(w+t + cpl) + JZA'cos(w-t + 9 2 )  . 

The initial condition is that at t = 0, 

y! = y; = 1,  y; = ?j; = 0 . 
This gives 

Hence the motion of the mass 2m is described by 

2053 

Three massless springs of natural length fi and spring constant K are 
attached to a point particle of mass m and to the fixed points (-1, l), ( 1 , l )  
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and (-1, -1) as shown in Fig. 2.53. The point mass m is allowed to move 
in the (x, y)-plane only. 

(a) Write the Lagrangian for the system. 
(b) Is there a stable equilibrium for the point mass? Where is it? 
(c) Give the Lagrangian appropriate for small oscillations. 
(d) Introduce normal coordinates and solve for the motion of the particle 

(e) Sketch the normal-modes of vibration. 
in the small oscillation approximation. 

(CoZumbica) 
Y 

Fig. 2.53. 

Solution: 
(a) Let the coordinates of the mass m be (x, y). Its Lagrangian is then 

L = T - V  

1 
2 

- -K[J(x - 1)2 + (y - 1)2 - J2]2 

1 
2 

- -K[J(x + 1)2 + (y - 1)2 - J 2 ] 2  

1 
2 

(b) Rom the conditions of a stable equilibrium 

- -K[J(x + 1)2 + (y + 1)2 - &I2 . 

a2v 2 a ~  a2v , o ,  -+-+- a V  - = o ,  aY ax2 axay ay2 
aV 
C3X 
- _  - 0,  

we find one stable equilibrium position (0,O).  
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(c) For small oscillations, x ,  y ,  i, p are small quantities. Expanding L 
and retaining only the lowest-order terms in these small quantities we have 

1 1 1 
L = ,mi2 + ,mp2 - - K ( 3 x 2  + 2xy  + 3y2)  . 

4 L L 

(d) The kinetic and potential 
by matrices 

energies can respectively be represented 

We have the matrix equation 

For nonvanishing solutions we require that 

or 
(2K - m d ) ( K  - m w 2 )  = 0 . 

Its two positive roots give the normal frequencies and the corresponding 
normal-modes of vibrations 

w1=  E, u1= (i) , 

w2 = E, u, = (I1) 
The general motion of the particle for small oscillations is then 

where A, B,cpl,q2 are constants to be determined from the initial condi- 
tions. The normal coordinates are given by 

id 

where aij are the elements of the matrix T. Thus for the w1 mode, the 
normal coordinate is 

= U l m x  + U2my = U l m ( x  + y )  . 
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The constant factor U l m  is immaterial and we can take 

t = x + y .  

Similarly for the w2 mode 

and we can take 

v = x - y .  

c ,q  are the normal coordinates of the system. 

(e) For w1 = dg, 

so the point mass oscillates along the line y = x as shown in Fig. 2.54(a). 

For w2 = @, 

and the point mass oscillates along the line y = --2 as shown in Fig. 2.54(b). 

2054 

One simple pendulum is hung from another; that is, the string of the 
lower pendulum is tied to the bob of the upper one. Using arbitrary lengths 
for the strings and arbitrary masses for the bobs, set up the Lagrangian 
of the system. Use the angles each string makes with the vertical as 
generalized coordinates. Discuss small oscillations of this system. What 
are the normal-modes? What are the corresponding frequencies? Show 
that in the special case of equal masses and equal lengths the frequencies 

are given by J-. Under what conditions will the system move as a 
single piece? 

(Columbia) 
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Solution: 

585 

Fig. 2.55. 

Let ml, m2 be the masses of the bobs and 11 ,  l2  the lengths of the two 
strings, as shown in Fig. 2.55. The two bobs ml,  m2 have coordinates 

(11 sin&, -Z1 cos81), ( E l  sine1 + Z2 sin&, -11 cos& - t2cos02) 

and velocities 

respectively. Then the kinetic energy T of the system is given by 

and the potential energy V is given by 

For small oscillations, we have retained only terms of up to the order two 
of the small quantities 81, 82, 81, 82. The Lagrangian of the system is given 
by L = T - V. To find the normal-modes we write these in matrix form: 
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2 

2T = C Mijeiej = O'MO , 
i,j=l 

2 

2V = VO + K&Oj = VO + Q'K8 , 
i , j=l 

with 

and 8', 6' being the transpose matrices of 8, 6 respectively. Considering 
a solution of the type 

(;;) = (2;) cos(wt + E )  , 

we have 
(K - W ~ M ) A  = o , 

i.e. 
(mi + ma)l i (g  - l1w2) -m21112w2 ) (:;) = o .  

- m2l l2w2 m212(9 - 12w2) 
For Al, A2 not to be zero identically we require 

(ml+ mz) l l (g  - l lw2)  -md112w2 
-m21112w2 m 2 h ( g  - h w 2 )  

mlh12w4 - ( ~ 2  + 12)(m1+ m2)gw2 + (ml + m2)g2 = o 
or 

Its positive roots 
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are the normal-mode angular frequencies of the system. As 

the normal-modes are given by 

x A& COS(W&~ + Q) , 
where the top and bottom signs correspond to w+, and w- respectively. 
The general solution is 

e2 = A+ cos(w+t + &+) + A- cos(w-t + E - 1  , 
where A+, A _ ,  E+ and E -  are constants to be determined from the initial 
conditions. 

In the specid case of equal masses and equal lengths, rnl = r n 2  = m, 
11 = 12 = 1,  the normal frequencies are 

Wf = J$z). 
For the system to move as a single piece, we require 81 = 62, i.e. 

or 
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As the left-hand side is positive , the bottom sign of the right-hand side 
has to be used. Furthermore, squaring both sides gives 

Zlzzml(m1 + m2) = 0 

This requires either 11 = 0, or 12 = 0, or ml = 0. Each of these cases 
will reduce the two-pendulum system into a one-pendulum one. Hence the 
twependulum system cannot move as a single piece. 

2055 

(a) Consider two simple pendulums each of mass m and length 1 joined 
by a massless spring with spring constant k as shown in Fig. 2.56(a). The 
distance between the pivots is chosen so that the spring is unstreched when 
the pendulums are vertical. Find the frequencies and normal-modes for the 
small oscillations of this system about equilibrium. 

(b) Now consider an infinite row of pendulums with each pendulum 
connected to  its neighbors just as the pair in part (a) is connected, as shown 
in Fig. 2.56(b). Find the normal-modes and the corresponding frequencies 
for this new system. 

(Columbia) 

Fig. 2.56. Fig. 2.57. 

Solution: 
(a) Let a be the natural length of each spring. Number the pendulums 

from the left, and use coordinates with the origin at the equilibrium position 
of the bob of pendulum 1 and the z-, y-axes along the horizontal and vertical 
directions, as shown in Fig. 2.57. Then the two bobs have coordinates 

and velocities 
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(lbl cos el, Z& sin el), ( ~ 4 ~  cos e2, ld2 sin ez) 

respectively. The Lagrangian of the system is 

L = T - V  

= im(1 1 242 +1282 2 )  - mgZ(2 - cos& - cos02) 

1 
- - k ( a + ~ s i n 8 ~ - 1 s i n 0 ~  -a)' 2 

for small oscillations. 
Lagrange's equations 

give 

m12& + mgMl - k12(02 - 0,) = 0 , 
mP82 + mgze2 + kz2(e2 - el) = o . 

Let 5 = O1 + e2, 7)  = el - e2. The sum and difference of the above two 
equations give 

z i ' + g t = o ,  
mZij + (mg + 2kZ)q = 0 . 

Hence and 7)  are the two normal coordinates of the system with the normal 
angular frequencies 

As 

their amplitudes 211,212 have the ratio 

211 : 212 = 1 : 1 
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for the w1 mode, for which 77 = 0, and 
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for the w2 mode, for which < = 0. 
(b) The same treatment gives 

L = T - V  

e2 - + (e, - e2)2 + . . . 1 
2 

- -kl [( 

+ (en - en-1)2 + (On+l - 0,)’ + * - 1  . 

Lagrange’s equations then give 

i.e. 

mle, + mgOn + kl(28,  - - en-l)  = 0 . 

Since 8, remains finite as n 4 00, assume the amplitude varies periodically 
along the x-axis and try 

where the “wave number” K. = F, with the “wavelength” X being integral 
multiples of a, i.e. X = pa, p = 1,2,3, .  . . . Substitution gives 

2k 
m 

w = + -[1 - cos(K.a)] . 

The first few normal angular frequencies are for 
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3k 
l m  p =  3, 

p = 4, 

w3 = \i'+ -, 
wq = {G, 

...... . . . . . . .  .. . 

The corresponding normal-modes (for p = 1,2,3,4,. . . ) are 

A e - i W t  
1 ,,.. . Ae-iwt 

2056 

Consider a particle of mass m moving in two dimensions in a potential 

(a) At what point (20, yo) is the particle in stable equilibrium? 
(b) Give the Lagrangian appropriate for small oscillations about this 

equilibrium position. 
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(c) What are the normal frequencies of vibration in (b)? 
( Columbia) 

Solution: 
(a) A point where aV/ax = 0, W / a y  = 0, a2V/ax2 > 0, a2V/8y2 > 0 

and 
a2 V a2v a2v 
-(dx)2 + 2-dxdy + -(dy)2 > 0 
ax2 axay  aY2 

is a point of stable equilibrium. For the given potential we find two such 
points, (a, 0 )  and (- m, 0) .  

(b) V is a minimum at a point of stable equilibrium (xo,yo). At a 
neighboring point (2, y), we have, to second order of the small qualities 
2 - 20, Y - Yo, 

for the equilibrium point ( fi, 0 ) .  
Translate the coordinate system to the new origin 

x f = x - & ,  y ’ = y ,  

and take the new origin as the reference level for potential energy. Then 

V(x’,yf) = - k  2 + -y 
2 ( l2 :: 1 2 )  

and the Lagrangian is 
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Similarly for the other point of equilibrium, we set 

and obtain the same Lagrangian, but with XI ’ ,  y” replacing X I ,  yl. 
(c) The secular equation 

IV - W 2 T I  = 0 , 

or 

has positive roots 

= O  2k - w2 0 
6 --2 
A 1  0 

These are the normal angular frequencies for small oscillations of the 
system, about either of the points of equilibrium. 

2057 

A negligibly thin piece of metal of mass m in the shape of a square 
hangs from two identical springs at two corners as shown in Fig. 2.58. The 
springs can move only in the vertical plane. Calculate the frequencies of 
vibration of the normal-modes of small amplitude oscillations. 

(UC, Berkeley) 

Fig. 2.58. Fig. 2.59. 
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Solution: 

Let x be the vertical displacement of the center of mass of the square 
from its equilibrium position and 8 the angle of rotation of the square in 
the vertical plane containing the springs as shown in Fig. 2.59. The square 
has moment of inertial ims2,  s being the length of each side of the square. 
For small 0, the extensions of the springs are x + is8 and x - ;so. Hence 
the kinetic and potential energies are 

T = -mj. 1 2 1  + -ms2e2 , 
2 12 

where k is the spring constant, taking the potential reference level at the 
equilibrium position, and the Lagrangian is 

1 2 1  - L = T - v = -mj. + --ms262 + mgx - k 
2 12 

Lagrange's equations 

give 

mx + 2kx - mg = 0, 
1 1 -ms2e + -ks28 = 0 . 
6 2 

Let X I  = x - 2 and we can write the first equation as 

mx' + 2kx' = 0 . 

Thus x' and 6 are the normal coordinates of the system with the corre- 
sponding normal angular frequencies 
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2058 

A small sphere, mass m and radius r ,  hangs like a pendulum between 
two plates of a capacitor, BS shown in Fig. 2.60, from an insulating rod of 
length 1. The plates are grounded and the potential of the sphere is V. 

Fig. 2.60. 

The position of the sphere is displaced by an amount Ax. Calculate the 
frequency of small oscillations and specify for what conditions of the voltage 
V such oscillations occur. Make reasonable approximations to simplify the 
calculation. 

( UC, Berkeley) 

Solution: 

We assume that the mass of the insulating rod and the radius of the 
sphere are very small and can be neglected. The charge on the sphere is 

q = 47r~0rV , 

€0  being the permittivity of free space. According to the method of images, 
the forces between the sphere and the plates of the capacitor are the same 
as those between the charges on the sphere and its images symmetrically 
located at positions as shown in Fig. 2.60. Take z-axis along the horizontal 
with origin at the equilibrium position. The kinetic and potential energies 
of the system are respectively 
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For small z, x M 119, 

1 
b2 - 4x2 

and the Lagrangian is 

Lagrange's equation 

gives 

Hence the angular frequency of small oscillations is 

The condition for such oscillations to take place is that w be real, i.e. 
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I 
I 
I 

-I- 
I 
I 
I 

Fig. 2.61 

Note that the above solution is only approximate since the images 
themselves will produce more images, some of which are shown in Fig. 2.61, 
which also have to be taken into account. Thus the potential due to 
electrostatic interactions is 

1 1 
(272 - l ) b  - 22 + (2n - l ) b  + 22 

m 

2nb 

q2 1 4x2 

are0 n=l 

m 

“ - - C ( ( 2 n - l ) b  [l’(2n-l)2b2] -&} 
+ 

4i2e2p =--( q2 a+- b2 ) 
2reob 

with 
1 m 1 m 

a = C 2n(2n - 1)’  P = C (2n - 113 . 
n=l n=l 

This would give 

and the condition for oscillations 
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The /3 series converges rapidly. With maximum n = 3, p = 1.05 and 
the third decimal remains unchanged when more terms are added. As 
p-4 = 0.98, the two-image calculation gives a good approximation. 

2059 

A smooth uniform circular hoop of mass M and radius a swings in 
a vertical plane about a point 0 at which it is freely hinged to a fixed 
support. A bead B of mass rn slides without friction on the hoop. Denote 
the inclination OC (where C is the center of the hoop) to the downward 
vertical by cp. 

(a) Find the equations of motion for 8 and cp. 
(b) Find the characteristic frequencies and normal-modes for small 

oscillations about the position of stable equilibrium. 
( Chicago ) 

Solution: 

Fig. 2.62 

(a) The moment of inertia of the hoop about 0 is 

I = Ma2 + Ma2 = 2Ma2 . 
Use coordinates as shown in Fig. 2.62. The coordinates and velocity of the 
bead are respectively 

(a  sin8 + asincp, -acos 8 - acos cp), (ad cos 8 + a9  cos cp, ad sin 8 +a+ sincp) . 
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The Lagrangian of the system is 

1 
2 

L = T - V = Maze2 + -ma2[e2 + d2 + 2&cos(8 - cp)] 

+ Mga cos 8 + mga(cos 8 + cos cp) 

1 1 
2 2 

= -(2M + m)a2e2 + -ma2+2 + ma28+cos(8 - 9) 

+(M+m)gacosO+mgacoscp. 

Lagrange's equations give 

( 2 ~  + m ) a j  + ma+ cos(8 - cp) + map2 sin(@ - cp) + ( M  i- m)g sin B = o , 
aBcos(8 - 'p) + a+ - aPsin(8 - cp) +gsincp = 0 . 

(b) For small oscillations, retaining terms up to second order in the 
small quantities 8, cp, 6, p, we have from the above 

+ = O  M + m  g8 m 
' + ( 2 M + m ) ; + 2 M + m  

9 
a 

e +  - cp+@ = 0 .  

For R solution of the type 8 = Aexp(iwt), cp = Bexp(iwt), the above 
become 

w2 
2 M + m  

B = O ,  

+ 2 ~ +  (! - w 2 )  B = O .  

For nonzero solutions the determinant of the coefficients must vanish. Thus 

whose two positive roots 
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are the characteristic angular frequencies of the system for small oscilla- 
tions. As $ = 5 - 1, we have for w = w1, 2 = 1 and the normal-mode 
(i), for w = w2, 6 = -* and the normal-mode ( M + ~ )  . 1 

m 

2060 

A small body of mass m and charge q is constrained to move without 
friction on the interior of a cone of opening angle 2 a .  A charge -q is fixed 
at the apex of the cone as shown in Fig. 2.63. There is no gravity. Find the 
frequency of small oscillations about equilibrium trajectories of the moving 
body in terms of $0, the equilibrium angular velocity of the body around 
the inside of the cone. Assume ZI << c so that radiation is negligible. 

( UC, Berkeley) 

X y- - q  Y 

Fig. 2.63 

Solution: 
Use coordinates as shown in Fig. 2.63. In the Cartesian system, m has 

coordinates (r  cos cp, r sin cp, z ) ,  or, as z = r cot a, (r  cos cp, r sin cp, rcot a), 
and velocity 

(icoscp - r@sincp, rsincp + r$coscp, i cot a) . 
The Lagrangian is then 

1 q2 sin a 
= -m(i2 csc2 a + r2$') + ___ . 

2 4mor 
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Lagrange's equations 

give 

q2 sin a 
mi:csc2a - mrg2 + - = O 

4f f&oT2  

mr2+ = J (constant) , 

or, combining the above, 

J2  q2sina 
mr3 4?reor2 

mfcsc a--+-=O. 

For the equilibrium trajectory, 

the above becomes 
J 2  - q2sina 

mri 47r~,-,r,2 . 

For small oscillations about equilibrium, let T = TO +<, where < << T O .  Then 

- _ -  

and Eq. (1) becomes 

Hence the angular frequency for small oscillations is 

as 
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2061 
A flywheel of moment of inertia I rotates about its center in a horizontal 

plane. A mass m can slide freely along one of the spokes and is attached to 
the center of the wheel by a spring of natural length 1 and force constant k 
as shown in Fig. 2.64. 

(a) Find an expression for the energy of this system in terms of r ,  i ,  
and the angular momentum J .  

(b) Suppose the flywheel initially has a constant angular velocity Ro 
and the spring has a steady extension r = T O .  Use the result of part (a) 
to determine the relation between Ro and TO and the frequency of small 
oscillations about this initial configuration. 

( M I T )  

Fig. 2.64. 

Solution: 

of the flywheel at time t .  The system has angular momentum 
(a) Let T be the distance of m from the center and 8 the angular velocity 

J = I S  + mr2b 

and energy 

1 1 1 
T + V = - I e 2  + -m(i2 + r2b2) + - k ( r  - 1 ) 2  2 2 2 

1 1 + -mi2 + -k(r - 1)' . 5 2  - - 
2 ( I +  m.2) 2 2 
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(b) The Lagrangian of the system is 

1 1 1 - 1  
2 2 2 2 

L = T - V = - Id2  + -mt2 + -mr202 - -k(r  - Z)2  . 

Lagrange's equations 

give 

mi: - mrd2 + k(r - 1 )  = 0 , 
( I  + mr2)d = constant = J , 

or, combining the two, 

mr J 2  
mi: - + k(r - I )  = 0 . (I + mr2)2 

Initially, i: = 0, r = TO, 

about this equilibrium configuration, let r = TQ + p ,  where p << TQ. As 
= Ro, J = (I + mr;)Ro. For small oscillations 

mr J 2  m(ro + P )  J 2  

(I + mr2)2 (I + mr; + 2mrop)z 

(I + mr;)2 ro I +mr; 

mro J 2  
(I + mr,2)2 

M mroJ2 (1+ p 4 m r 0 ~  ) 
M 

mro J 2  
N N 

mro J 2  
= mro@ = k(r0 - 1 )  , 

( I  + m ~ ; ) 2  

&. (2) becomes 

3mr; - I 
P +  [L + ( I +mr; ) "Q] P = 0 .  

Therefore, provided that I is such that 

k 
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the system will oscillate about the initial configuration with angular f r e  
quency 

3mrg - I 
I + mrg 

after a small perturbation. Note that Eq. (1) implies 

kl rg = k-mR$ ’ 
i.e. TO itself is related to Ro, 

2062 

Three point-like masses (two of them equal) and the massless springs 
(constant K) connecting them are constrained to move in a frictionless tube 
of radius R. This system is in gravitational field (g)  as shown in Fig. 2.65. 
The springs are of zero length at equilibrium and the masses may move 
through one another. Using Lagrangian methods, find the normal-modes 
of small vibration about the position of equilibrium of this system and 
describe each of the modes. 

(UC, Berkeley) 

P 

T a m 

M c 
<bs 

0 

Fig. 2.65. Fig. 2.66. 

Solution: 
Use Cartesian coordinates ( 1 , ~ )  as shown in Fig. 2.66. The ith mass 

has coordinates (Rsindi, R(l  - cosdi)). For small oscillations these can be 
approximated as (R&, ;Re:), or (xi, iz:) with zi = Rdi. Then, neglecting 
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-K 2K + 9 - Mw2 -K 
0 -K K + ? - d  

terms of orders greater than two of the small quantities zi, ii, we have for 
the kinetic and potential energies 

= o ,  

1 1 1 
T = -mx: + -Mxi  + -mi: , 2 2 2 

1 1 1 1 
V = -K(xI  - ~ 2 ) ~  + - K ( x ~  - ~ 3 ) ~  + - m ( ~ :  + 3:) + - M x ~  , 2 2 2 2 

and the Lagrangian 

1 1 1 L = -mx: + - M x i  + -mx: 
2 2 2 

Lagrange’s equations give 

2 2  - K ( z ~ +  23) = 0 , 

Letting 
x j  = AjeiWt 

in the above we obtain the matrix equation 
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S K K  1 
- + - + - - f K  
R 2m M 

Equation (1) gives 

A2 A2 mg mu2 -=-=I+--- 
A1 A3 RK K ' 

These equations give for w1: A3 = -A1, A2 = 0; 

forwz: B3 = B1, B2 - = negative; 
B1 

= positive. c2 for w3: C3 = C1, - 
C1 

Hence the three corresponding normal-modes are 

("0" -A1 ( 2 ) :  (g) 
€or w1, w2, w3 respectively, where 

C 2 =  " - - - + m  
2 M  4m2 m M  M 2  

The three normal modes are depicted in Fig. 2.67 
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2063 
In the theory of small oscillations one frequently encounters Lagrangian 

of the form L = T - V ,  where 

N N 

i , j=l  i , j = l  

The matrices A = (a i j )  and B = (bjj) are real and symmetric. 

(a) Prove that A is positive definite, i.e. 

for an arbitrary column matrix x. Prove that in general the eigenvalues of 
such a matrix are greater than or equal to zero. Show that we need not be 
concerned with zero eigenvalues. 

(b) Prove the existence of the matrices A*i. 
(c) Introduce new coordinates 0, by 

N 

where S is an N x N matrix. Show that S can be chosen so that A and B 
are diagonalized. Interpret the diagonal elements of the transformed B. 

(SUNY,  Buflalo) 

Solution: 
(a) By definition, 

in Cartesian coordinates. After a linear transformation 

it becomes 
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but is still >_ 0. In matrix form, 

where 

q =  (") 
QN 

and the dagger denotes its transpose matrix. As the velocities 2 1 ,  x 2 , .  . . 
and hence the generalized velocities q 1 , 4 2 , .  . . are arbitrary, we have 

T = x + ~ ~  2 o 
for an arbitrary column matrix x. That is, A is positive definite. 

Suppose x, is an eigenvector of A with eigenvalue A,. By definition, 

Ax, = A,x, , 

where A, is a real number as A is symmetrical and real. Then 

N 
xLAx, = xfiX,x, = A,xLx, = A, C xi, . 

As this is greater or equal to zero as shown above, the eigenvalues A, 2 0. 
If A, = 0, there is no oscillation for the corresponding mode, which then 

does not concern us. The vibrational degrees of freedom are simply reduced 
by one. 

i=l 

(b) For the matrices A*+ to exist we require that 

det IAl > 0 . 
A real symmetrize matrix can be diagonalized by an orthogonal matrix S, 
i.e. one for which StS = I, the unit matrix: 

StAS = A ,  

where X is a diagonal matrix elements A;j = A&. Writing IAl for det IAI, 
we have 

N 
IAl = lAllStllSl = IStAS( = 1x1 = n A; > 0 

i=l 
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by the result of (a) (any zero X has been eliminated). Hence A*i exists. 
(c) Introduce new coordinates 8, by 

N 

j=1  

where S which diagonalizes A is orthogonal. Consider 

T =  at^^ = (A- 4 s ~ ) ~ A A -  4 se 
= 4 ) ~ A A -  se . 

As A is real symmetric, At = A and 

(A-i)t = (At)-i = A-3 , 

the above becomes 
T = btstse = btIb . 

Similarly 
V = qtBq = tItStA-iBA-iStI, 

As A,B are real symmetric, 

(A-&BA-i)t = (A-t)tBt(A-t)t = A-4BA-t . 
A-4BA-i is real symmetric and can be diagonalized by the orthogonal 
matrix S. We therefore have 

N N 
T = Ed;, v , 

j=1 j = 1  

where Bj are the diagonal elements of the diagonalized matrix of 
A - * B A - ~ ,  i.e. 

( s ~ A - ~ B A - ~ s ) ~ ~  = B ~ s ~ ~  . 
The Lagrangian is 

N 
L = T - v = C(e? - B.02) 

3 3 3  
j=1 

and Lagrange's equations 
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give 
8i+Bje i=O,  i = 1 , 2  , . . . ,  N .  

Hence Bi are the squares of the normal angular frequencies wi of the system. 

2064 

A Ayball governor consists of two masses m connected to arms of length 
1 and a mass M as shown in Fig. 2.68. The assembly is constrained to 
rotate around a shaft on which the mass M can slide up and down without 
friction. Neglect the mass of the arms, air friction, and assume that the 
diameter of the mass M is small. Suppose first that the shaft is constrained 
to rotate at an angular velocity wo. 

(a) Calculate the equilibrium height of the mass M .  
(b) Calculate the frequency of small oscillations around this value. 

(c) Does the frequency of small oscillation change? If so, calculate the 

(Princeton) 

Suppose the shaft is now allowed to rotate freely. 

new value. 

m 

Fig. 2.68. 

Solution: 
(a) Use a rotating coordinate frame with the z-axis in the plane of the 

governor arms as shown in Fig. 2.68. In this frame the masses m, m and M 
have coordinates (-1sinQ,O, -1cosQ), (1sin8,0, -1cosf3), ( O , O ,  - 2 1 ~ 0 ~ 8 )  
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respectively. In a fixed coordinate frame with the same origin and z-axis, 
the velocity is given by r’ = i + o o  x r, where wo = (0, 0, wo). Hence the cor- 
responding velocities are ( 4 8  cos 8, lwo sin 8,Z8 sin e ) ,  (le cos 8, -Zwo sin 8, 
18sin O ) ,  (0, 0, -218 sin 8 ) .  Thus the kinetic energy, potential energy and 
Lagrangian of the system are respectively 

T = m12w; sin2 8 + m12e2 + 2M12e2 sin2 8 , 
V = -2mgl cos 8 - 2Mgl cos 8 , 
L = T - V = rnl2w; sin2 8 + m12e2 + 2M12e2 sin2 8 + 2( M + m)gl cos 8 . 

Lagrange’s equation 

then gives 

2 ( m  + 2M sin2 8)le + 2M1b2 sin 28 - mlw; sin 28 + 2 ( m  + M ) g  sin8 = 0 . 

At equilibrium, 4 = 0, 8 = 0, 8 = go and the above becomes 

mlw; sin 2e0 = 2(m + M ) g  sin o0 . (1) 

Solving for 80 we obtain two equilibrium positions: 

(i) 80 = 0, 

The distances of the mass M at the two equilibrium positions from the top 
of the shaft are respectively 

(i) 21 cosOo = 21, 

(b) When 80 = 0, the governor collapses and there is no oscillation. 
Consider the equilibrium given by (ii). Let 8’ = 8 - 80, then 8 = e’. For 
small oscillations, 8‘ << 80,  

sin 8 x sin o0 + 8’ cos o0 , 
sin 28 x sin 2e0 + 28’ cos 28, . 
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The equation of motion becomes, retaining only first order terms of the 
small quantities 8', e', 8' and taking account of (l), 

(m + 2~ sin2 e,)ie' + [(m + ~ ) g  cos e, - mlwi cos ae,]el = o . 
Hence the oscillation frequency is 

~~ 

= -l- J (m + M)g cos e, - mlwg cos 28, 

(c) One would expect the oscillation frequency to be different since the 
angular velocity wo in the above is arbitrary. Let p be the angle of rotation 
about the shaft. Putting w = (L, in the Lagrangian we have 

L = m12e2 sin2 8 + ml2e2 + 2M12d2 sin2 8 + 2(m + M)gl cos6 . 

2n (m + 2M sin2 60)l 

Lagrange's equations give 

+sin2 8 = c (a constant) , 
2(m+2M~in~8) l e+2M18~s in28-rn l~~s in28+2(rn+M)gs in8  = 0 ,  

which combine to give 

cm e 
s1n3 e (m+2M~in~f3) l~+M18~sin2f?-mlc~-  +(m+M)gsinfI=O. (2) 

At equilibrium, 8 = 0, d = 0 and 8 = 00, which is given by 

cos e, 
mlc2- - - (m + M)g sin 60 . 

sin3 eo 
For small oscillations about 60, let 8 = 60 + O', where 8' << 8,. As 

cos e 
sin3 e 

cos 0, - 8' sin 0, 
(sin 0, + 8' cos 00)3 

mlc2- M mlc2 

cm eo 
M mk2- ( 1 - e' tan eo - 38' cot eo) 

sin3 eo 
= (m + M)gsin80 [ 1 - ( 1 + 2cos2 8 0 )  @/I 

sin 0, cos 0, 7 

Eq. (2) becomes 
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Hence the frequency of small oscillations is 

(m + M)g(l 4- 3cos2 60) 
(m + 2M sin2 0o)l cos80 ' 

2066 

A particle of mass M moves along the x-axis under the influence of 
the potential energy V ( x )  = - K x e x p ( - a x ) ,  where K and a are positive 
constants. Find the equilibrium position and the period of small oscillations 
about this equilibrium position. Consider also the cases where K and/or a 
are negative. 

(Princeton) 

Solution: 
Expand the potential near a point 50: 

V ( x )  = V ( X 0 )  + (s)zo (z - 5 0 )  + 5 ( a2v)zo (z - xo)2 +. . . . 
For 20 to be an equilibrium position, 

= K(az0 - 1)e-OZo = 0 , (3zo 
giving 

A8 

1 
a 

x o = - .  

ak 
e 

= aK(2 - axo)e-azo = - > 0 , 

the equilibrium is stable. 

1 < = x - xo = 2 - - 
a 

Let 

and take zo as the reference level of potential energy. Then the potential 
at < is 
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The Lagrangian is then 

Lagrange's equation 

yields 
a K  

e 
Mi'+-<=O. 

This shows that the angular frequency of small oscillations about the 
equilibrium position is 

and the period is 

W 

If both a and K are negative, then a K  is positive and the above results 

If only one of a, K is negative then 
still hold. 

which means that the potential at equilibrium is a maximum and the 
equilibrium is unstable. Hence no oscillation occurs. This can also be 
seen from the equation of motion, which would give an imaginary w. 

2066 

A particle of mass m moves under gravity on a smooth surface the 
equation of which is z = x2 + y2 - xy, the z-axis being vertical, pointing 
upwards. 

(a) Find the equations of motion of the particle. 
(b) Find the frequencies of the normal-modes for small oscillations about 

the position of stable equilibrium. 
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(c) If the particle is displaced from equilibrium slightly and then re- 
leased, what must be the ratio of the 5 and y displacements to guarantee 
that only the higher frequency normal-mode is excited? 

( Wisconsin) 

Solution: 

(4 As 

2 2  z = x  + y  - 2 9 ,  
t = 223. + 2yy - iy - xy = S(22 - y) + y(2y - 2) . 

The Lagrangian is 

L = T - V  
1 = -m[P  + y2 + P ( 2 2  - y)2 + $(2y - 2)2 + 2i6(22 - y)(2y - .)I 
2 
- mg(z2 + y2 - xy) . 

Lagrange’s equations 

give 

d 
dt 

d 
dt 

- [ k  + k(2x - y)2 + y(2x - y)(2y - .)I 
= 2k2(2x - y) - yy2y - 2) + 2kY(2y - 2) - kQ(22 - y) - 292 + gy , 
-[y + Q(2y - 2)2 + i (22  - Y)(2Y - 211 
= 2@2(2y - x)  - P ( 2 2  - y) + 2kY(22 - y) - kQ(2y - 2) - 2931 + g2 . 

dV dV 
- = w ( 2 x  - y), L9X & - = mg(2y - 2) , 

equilibrium occurs at the origin (0,O). For small oscillations about the 
origin, 2, y, i, y are small quantities and the equations of motion reduce to 

x + 2 g x - g y = o  , 
y + 2 g y - g x = o .  
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Considering a solution of the type 

we find the secular equation 

2g - w2 = (9 - w2)(3g - w2) = 0 . 
-g I I -9 

29 - w2 

Its position roots 
w 1 = &  w 2 = &  

are the angular frequencies of the normal-modes of the system. Note that 
as w1, w2 are real the equilibrium is stable. 

(c) As 
Yo - 29 - w2 
2 0  9 

for the higher frequency mode to be excited we require 5 = -1. Hence the 
initial displacements of x and y must be equal in magnitude and opposite 
in sign. Note that under this condition the lower frequency mode, which 
requires yo/xo = 1, is not excited. 

2067 

A rigid structure consists of three massless rods joined at a point 
attached to two point masses (each of mass m) as shown in Fig. 2.69, 
with AB = BC = L, B D  = 1 ,  the angle ABD = DBC = 8. The rigid 
system is supported at the point D and rocks back and forth with a small 
amplitude of oscillation. What is the oscillation frequency? What is the 
limit on 1 for stable oscillations? 

(CUSPEA ) 

Solution: 
The structure oscillates in a vertical plane. Take it as the xy-plane as 

shown in Fig. 2.70 with the origin at the point of support D and the y-axis 
vertically upwards. We have 

_ _ -  
AD = C D  = b = JL2 + 1' - 2L1 c08 8 , 
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8 

Fig. 2.69. 

Fig. 2.70. 

and the angles between and 
respectively, where a = 8 + @, + being given by 

with the vertical are a + cp, a - cp 

b 1 
sin8 sin$ a 

-=- 

The masses ml, m2 have coordinates 

and velocities 
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L = T - V = mb2$2 + ntgb[cos(a + cp) + COS((Y - cp)] . 
Lagrange’s equation 

= O  
d a L  a L  
dt(STjJ-6 

then gives 

For small oscillations, cp << a and 

2mb2+j + mgb[sin(a + cp) - sin(o - cp)] = 0 , 

sin(a f cp) w sina f cpcosa , 
so the equation of motion reduces to 

b+ + cpgcosa = 0 , 
giving the angular frequency as 

w = /F g cos a 

As 

cos a = cos(8 + $) = cos 8 cos $ - sin 8 sin $ 

= 1 ( d m  c o s ~  - 1sin28 
b 

we have 

Since 

1 
b 

= -(Lcos8 - 1 )  , 

g(Lcos8 - 1 )  
= Jv + 12 - 2L1 COS 8 . 

mgb[cos(a COS(Q - cp)l 

= 2mgbcosa 

at the equilibrium position cp = 0, oscillations are stable if cosa > 0. This 
requires that 

Lcos8-1 > o ,  

1 < Lcos8. 
or 
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3. HAMILTON’S CANONICAL EQUATIONS (2068-2084) 

2068 

A flyball governor for a steam engine consists of two balls, each of mass 
m, attached by means of four hinged arms, each of length 1,  to sleaves 
located on a vertical rod. The lower sleeve has mass M and negligible 
moment of inertial, and is free to slide up and down the rod without friction. 
The upper sleeve is fastened to the rod. The system is constrained to rotate 
with constant angular velocity w .  

(a) Choose suitable coordinates and write the Lagrangian and Hamilt* 
nian functions for the system. Neglect weights of arms and rod, and neglect 
friction. 

(b) Discuss the motion. 
(c) Determine the height z of the lower sleeve above its lowest posi- 

tion, as a function of w,  €or steady motion. Find the frequency of small 
oscillations about this steady motion. 

( Wisconsin ) 

Solution: 
(a) The governor is as shown in Fig. 2.68 of Problem 2064. Referring 

to the coordinates as shown and using the results obtained there, we have 

L = T - V  
= m12w2 sin2 8 + m12e2 + 2M12e2 sin2 0 + 2 ( m  + M)gl cos9 . 

The Hamiltonian is 
H = ep, - L 

with the generalized momentum pe defined as 

a L  
pe = - = 2(m + 2M sin2 0)126 . ae 

Thus 

H = $0 - m12w2 sin2 8 - (m + 2M sin2 9)12e2 - 2 ( m  + M)gl cose 
n 

- - P i  - m12w2 sin2 9 - 2 ( m  + M)gZ cos 8 
4(m + 2M sin2 8)12 
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(b) Lagrange's equation 

gives 

2(m + 2M sin2 0)le + 2Mle2 sin 28 - mlw2 sin 28 + 2(m + M)gsin 8 = 0 . 
The motion is discussed in Problem 2064. Briefly, M will oscillate up and 
down the vertical rod about an equilibrium position given by 

(c) At equilibrium, M has z coordinate -21 cos 80. Hence its height 
above the lowest point is 

21 - 2zcoseO = 21 1 - [ (m m l d  + M)gl 
The angular frequency of small oscillations about the equilibrium position 
is (Problem 2064) 

m + M)g cos 8, - mlw2 cos 2d0 
(m + 2M sin2 &)l 

m sin2 eo 
m + 2~ sin2 eo 

with 
2 

sin 2 e0 = 1 - [ (m:wY)g] . 

2069 

Consider the two-body system consisting of (1) a point particle of maas 
m and (2) a rotator of finite size and mass M (see Fig. 2.71). This rotator is 
a rigid body which has uniform density, has an axis of symmetry, and, like 
the particle of mass m, is free to move. Discuss the motion of this system 
if the particle is attracted to every element of the rotator by a Coulomb 
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or gravitational force. Include in your discussion answers to the following 
questions. 

(a) How many degrees of freedom does this system have? 
(b) What would be a suitable set of coordinates? 
(c) What is the Lagrangian (or Hamiltonian)? (Write it down or say 

how you would try.) 
(d) On what coordinates does the interaction between the particle and 

the rotator depend? 
(e) How many constants of motion can you infer, and what are they 

physically? 
(f) What orbits of this system are closely similar to orbits of two point 

masses? Describe the nature of their (small) difference. What is the nature 
of the motion of the rotator relative to its center of mass? 

(Wisconsin) 

m 
/ 0'. 

Fig. 2.71. 

Solution: 
(a) The system has 9 degrees of freedom, of which 3 belong to the mass 

m and 6 belong to the rigid rotator. 
(b) One may take generalized coordinates as follows: 3 coordinatw z, g, 

t describing the position of the mass m, 3 Coordinates X, Y, 2 describing 
the position of the center of mass of the rigid rotator, 3 Euler's angles cp, 8, 
yj describing rotation relative to the center of mass of the rotator, the axis 
of symmetry of the rotator being taken as the 2'-axis of the rest coordinate 
system of the rotator. 

(c) The kinetic energy of the system consists of three parts: kinetic 
energy of the point mass m and the translational and rotational kinetic 
energies of the rotator, namely, 

T = T i + T z + T s  , 
with 
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T3 = - ( W l r W 2 1 W 3 )  1 (::: ::: : ) ( 2 )  , 0 I33 
2 

where w1, w ~ ,  w3 are related to Euler's angles (Problem 1212) by 

w1 = ~ C O S ~ C ,  + +sinOsin+ , 
w2 = -@sin+ + +sinOcos+ , 
w ~ = + c o s 6 + ~ ,  

and the inertia tensor is with respect to the center of mass of the rotator 
with the Z'-axis in the direction of the axis of symmetry. The calculation 
of the potential energy is more complex. Imagine a series of spherical shells 
centered at the mass m and consider a shell of inner and outer radii r and 
T + dr respectively. The potential due to Coulomb interaction between the 
element dM of the rotator in the shell and the particle is 

GmdM 
r 

d V = - - ,  

where G is the gravitational constant. 
system is 

Then the total potential of the 

V = - G m / F .  

The Lagrangian of the system, L = T - V, can then be obtained. 
(d) The interaction between the particle and the rotator depends on 

X - x, Y - y, Z - z,  cp and 6.  
(e) As the interaction is conservative and the space is uniform and 

isotropic, the constants of motion are the energy T + V ,  total angular 
momentum (each of the three components) and total momentum (each of 
the three components) of the system. 

(f) When the mass and the rotator are far removed from each other, 
their orbits are closely similar to those of two point masses. The difference 
stems from the fact that for the rotator the center of mass and the center 
of gravitational force do not coincide, so the torque of the gravitational 
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force about the center of mass makes the rotator revolve around its center 
of mass. 

2070 

A motor turns a vertical shaft, to which is attached a simple pendulum 
of length I and mass m as shown in Fig. 2.72. The pendulum is constrained 
to move in a plane. This plane is rotated at constant angular speed w by 
the motor. 

(a) Find the equations of motion of the mass m. 
(b) Solve the equations of motion, obtaining the position of the mass as 

a function of time for all possible motions of this system. For this part use 
small angle approximations. 

(c) Find the angular frequencies of any oscillatory motions. 
(d) Find an expression for the torque that the motor must supply. 
(e) Is the total energy of this system constant in time? Is the Hamilte 

(VC, Berkeley) 
nian function constant in time? Explain briefly. 

motor Fx 
I \ m 

Fig. 2.72. 

Solution: 
(a) Use rotating coordinates as shown in Fig. 2.72 with the x- and z - m a  

in the plane of oscillation of the pendulum. In this frame the mass m has 
coordinates 
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(1sin8,0, -1cos8) 

and velocity 
(l4 cos 8,0,14 sin 8 )  . 

In the fixed frame m has an additional velocity 

w x r = (O,O,w) x (lsin8,0,-1cos8) 

= (0, wl sin 8,O) . 

Hence the Lagrangian of the system is 

1 1 
2 2 L = T - V = -m128’ + -m12w2 sin’ 8 + mgl cos 8 , 

Lagrange’s equation 

then gives 
B+($-wzcos8)sine=O. 

(b) For equilibrium, 8 = 0. The equation of motion gives the equilibrium 
positions as 

9 el = 0, e2 = mccos (Iwz) . 
For oscillation near 81 = 0, in the small angle approximation the 

equation of motion reduces to 

d + ( $ - w 2 ) e = o .  

If w < fi, the equilibrium is stable. 8 is harmonic and can be represented 
bY 

q t )  = cos(alt + cpl) , 
where A l l  cp1 are constants to be determined from the initial conditions, 
and $21 = ,/- is the angular frequency of small angle oscillations. If 
w > fl, the equilibrium is unstable. 

For oscillations near 02, let 0 = 8’ + a, where a << 82. The equation of 
motion is then, in the first approximation, 

a+ ( f - w 2 c o s 0 ~ + w 2 a s i n e ~  ( s i n ~ Z + a c o s ~ ~ ) = ~ ,  
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or 
i i + a w 2 s i n 2 8 2 = ~ .  

a(t)  = A2 cm(R2t + cp2) , 
The solution is 

where R2 = wsin82 = &d- is the angular frequency of small 
oscillations about 02, A2, cp2 are constants to be determined from the initial 
conditions. Hence 

e ( t )  = A2 cos(R2t + cp2) + 82 . 
(c) For small angle oscillations about 81, the angular frequency is $21 = 

(d) The angular momentum about the z-axis is 

J = ml sin8 - 1 sin8 w = m12w sin2 8 . 

d p ;  and about 82, R2 = & d m .  

The torque the motor must supply is therefore 

dJ de 
dt dt 

M = - = m~~usin(28)- , 

where for 0 the expressions obtained in (b) are to be used. 
(e) The kinetic energy in the fixed frame, T, is not a homogeneous 

quadratic function of the generalized velocity, 80 the mechanical energy 
is not conservative. Physically, the pendulum is constrained to oscillate 
in a plane which is rotating. So the constraint is not a stable one and 
the mechanical energy is not conserved. On the other hand, not being an 
explicit function oft ,  the Hamiltonian H is conserved. 

Note that while in the fixed frame the mechanical energy is not con- 
served, as the system is an unstable holomorphic one and all the external 
forces are conservative, the generalized energy H is conserved. We have 

1 1 
2 2 

= -ml2b2 - -ml2w2 sin2 8 - mgl cos e = constant . 

In the rotating frame fixed to the motor, because of the fictitious 
centrifunal force 

..a 

aV 
a(lsin8) ’ mlw2 sin 8 = - 
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the potential energy is 

1 
2 

v = - -ml2w2 sin2 e - mgl cos 8 , 

so that the total energy is 

1 
2 
-ml2b2 + v = H = constant . 

Therefore, whether the mechanical energy is conserved or not depends on 
the choice of reference frame. 

2071 
The classical interaction between two inert gas atoms, each of mass m, 

is given by the potential 

2A B 
T6 T12 

V ( T )  = -- + -, A , B  > 0, T = Irl - r21 . 

(a) Give the Hamiltonian for the system of the two atoms. 
(b) Describe completely the lowest energy classical state(s) of this 

(c) If the energy is slightly higher than the lowest [part (b)], what are 

( Wisconsin) 

system. 

the possible frequencies of the motion of the system? 

Solution: 
(a) The center of mass of the system is given by R = f(rl + r2) = 

(2, g, z ) ,  the reduced mass is p = & = y ,  and the total mass is M = 2m. 
Let r = rl - 12.  Then the kinetic energy of the system is 

1 1 
2 2 

T = - M R 2  + -pi 

= - M R ~  1 + -p(r2 1 .  + r2e2 + r2qj2 sin2 e )  
2 2 

and the Lagrangian is 

L = T - V  
1 1 2A B 

= - M ( ? ~  + G~ + i2) + - p ( i 2  + r2S2 + Pqj2 sin2 6 )  + - T6 - - ,.12 ’ 
2 2 



Analyticnl Mechanics 627 

where r ,  0, cp are the spherical coordinates of a frame fixed at the center of 
mass. The generalized momenta are 

The Hamiltonian is 

t 

(b) The lowest energy state corresponds to p ,  = pv = p ,  = pr = pg = 
p ,  = 0 and an ro which minimizes 

2A B 
r6 r12 

+ - .  -- 

Letting 
d 2A 

(--F + $) = 0 7 

we obtain TO = ( B / A ) Q  as the distance between the two atoms for the 
lowest energy classical state. For this state the energy of the system is 

(c) If the energy is only slightly higher than the lowest and the degrees 
of freedom corresponding to 2, y, z, 6, p are not excited yet (pz = p ,  = p ,  = 
pe = p ,  = 0), we have 

As 
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the Lagrangian is 

where p = T - TO << TO. Lagrange’s equation gives 

a P + 7 2 A ( s )  A 4  p = o .  

Hence 

2072 

Consider a particle of mass m which is constrained to move on the 
surface of a sphere of radius R. There are no external forces of any kind 
on the particle. 

(a) What is the number of generalized coordinates necessary to describe 

(b) Choose a set of generalized coordinates and write the Lagrangian of 

(c) What is the Hamiltonian of the system? Is it conserved? 
(d) Prove that the motion of the particle is along a great circle of the 

(Columbia) 

the problem? 

the system. 

sphere. 

Solution: 

(a) As the particle is constrained to move on the surface of a sphere, 
there are two degrees of freedom and hence two generalized coordinates are 
needed. 

(b) Choose (0, ‘p) of spherical coordinates as the generalized coordinates. 
As there are no external forces, V = 0. The Lagrangian of the system is 
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(c) As pi = E, we have 

629 

pe = mR28, p, = mR2+sin2 8 , 

Since the Hamiltonian H is not an explicit function of time, it is a constant 
of the motion, or, in other words, conserved. 

(d) Hamilton’s equation 

gives 
p ,  = +sin2 e = constant . 

We can choose the set of coordinates ( 8 , ~ )  so that the initial condition is 
+ = 0 at t = 0. Then the above constant is zero at all time: + sin2 8 = 0. 
As 8 cannot be zero at all time, + = 0, or cp = constant, the motion of the 
particle is along a great circle of the sphere. 

2073 
A light, uniform U-shaped tube is partially filled with mercury (total 

mass M, mass per unit lengthp) as shown in Fig. 2.73. The tube is mounted 
so that it can rotate about one of the vertical legs. Neglect friction, the 
mass and moment of inertia of the glass tube, and the moment of inertia 
of the mercury column on the axis of rotation. 

(a) Calculate the potential energy of the mercury column and describe 
its possible motion when the tube is not spinning. 

(b) The tube is set in rotation with an initial angular velocity wo with the 
mercury column at rest vertically with a displacement zo from equilibrium. 

1) Give the Lagrangian for the system. 
2) Give the equation of motion. 
3) What quantities are conserved in the motion? Give expressions for 

these quantities. 
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I 
ri h 7” 

Fig. 2.73. 

4) Describe the motion qualitatively as completely as you can. 
( Wisconsin) 

(a) Let z be the distance of the top of the mercury column from its 
equilibrium position. Suppose an external force F acting on the descending 
top causes it to descend slowly a distance d z .  Then F = 2pzg  and its work 
done is 

dW = F d z  = 2 z p g d z  . 
This work is stored as potential energy d V .  Hence the potential energy of 
the mercury column is V = p g z 2 .  If the tube is not spinning, the mercury 
column will oscillate about the equilibrium position and the Lagrangian of 
the system is 

Solution: 

1 
L = - p s i 2  2 - pgz2 , 

where s = 1 + 2 h .  Lagrange’s equation gives 

Hence the mercury column will oscillate with an angular frequency 

(b) The system has 2 degrees of freedom when the U-shaped tube 
is spinning. z and the angle of rotation 0 are taken as the generalized 
coordinates. 
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1) We have 

1 1 '  1 T = -p(h  - z ) i 2  + - p l  (i2 + s2b2)dz  + Zp(h + z)(z2 + Z'b') , 
2 2 

v = pgz2 , 

so .the Lagrangian is 

2) Lagrange's equations 

give 

1 
2 

sz + 292 - -z2e2 = 0 , 

12b= constant. 

As pe  = g ,  the last equation can be written as pe = constant. With the 

initial conditions 0 = WO,  i = 0, t = 20 at t = 0, we have 
e 

PO = p (i + h + a) 12wo 

3) The Hamiltonian of the system is 

H = p , i + p e O -  L 
1 

= :ps i2  + (i + h + Z )  12b2 + pgZ2 = T + V , 
2 

where p ,  = $$ = psi .  Thus H is equal to the total energy of the system. 
In terms of the canonical variable we have 

H = - +  P2 P i  +pgz2 . 
2ps 2 ( ; + h + z ) p l 2  
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As H does not depend on t explicitly, it is a constant of the motion, in 
addition to the constant 

Pe = P (!j + h + z )  1’8. 

Using the initial conditions given we obtain 

4) The motion of the mercury column consists of two components. One 
is the rotation together with the tube. The angular velocity of rotation 
changes in connection with the upand-down motion of the column. When 
z increases the rotation slows down, and vice verse, to keep the angular 
momentum about the vertical axis constant. The other component is the 
motion of the column in the tube. The equation of motion in z is 

A 
s f  + 292 = 

( i + h + z ) ’  ’ 

where A = 6 is a constant. Generally speaking, there are three 
equilibrium positions corresponding to  the three roots of the equation 

A 

( 4  + h + z)’ ’ 

2gz = 

Near each equilibrium position, the column undergoes small oscillations. 
Suppose z1 is one of the equilibrium positions, i.e. 

A 
(i + h + 21)’ ’ 

2921 = 

For small oscillations let z = 21 + z’ where zf is a small quantity. The 
equation of motion becomes 

- 2 A 2  
s f ’  + 292’ = (4 + h + z 1 ) 3  ’ 

giving the angular frequency of oscillations 
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As R is real , the equilibrium positions are all stable. 

2074 

A particle under the action of gravity slides on the inside of a smooth 
paraboloid of revolution whose axis is vertical. Using the distance from the 
axis, T ,  and the azimuthal angle cp as generalized coordinates, find 

(a) The Lagrangian of the system. 
(b) The generalized momenta and the corresponding Hamiltonian. 
(c) The equation of motion for the coordinate T as a function of time. 
(d) If f = 0, show that the particle can execute small oscillations 

about the lowest point of the paraboloid, and find the frequency of these 
oscillations. 

(Columbia) 

Solution: 

in cylindrical coordinates (T,  cp, z )  is represented by 
Suppose the paraboloid of revolution is generated by a parabola which 

2 z = A T ,  

where A is a positive constant. 
(a) The Lagrangian of the system is 

1 1 
2 2 

= - m ( l  + 4A2r2) i2  + -mr2$2 - Amg? . 

(b) The generalized momenta are 

d L  
dT 

p ,  = - = m(1 + 4A2r2)+ , 
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and the Hamiltonian is 

1 1 
2 2 

= - m ( l +  4A2r2)f2 + - m ~ ~ @ ~  + Amgr2 

+- ” +Amgr2 . - P? - 
2m( 1 + 4A2r2) 2mr2 

(c) Lagrange’s equations 

give 

m( 1 + 4A2r2)i: + 4mA2rf2 - mr+’ + 2Amgr = 0 , 
mr + = constant. 2 

Letting the constant be mh and eliminating CL, from the first equation, we 
obtain the equation for T :  

(1 + 4A2r2)r3i: + 4A2r4P + 2Agr4 = h2 . 

(d) If CL, = 0, the first equation of (c) becomes 

(1 + 4A2r2)i: + 4A2ri2 + 2Agr = 0 , 

The lowest point of the paraboloid is given by T = 0. For small oscillations 
in its vicinity, T ,  i ,  i: are small quantities. Then to  first approximation the 
above becomes 

i .+2Agr = 0 .  

As the coefficient of T is positive, the particle executes simple harmonic 
motion about T = 0 with angular frequency 

w = & .  

2075 

A nonrelativistic electron of mass m, charge -e in a cylindrical mag- 
neton moves between a wire of radius a at a negative electric potential 
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- 4 0  and a concentric cylindrical conductor of radius R at zero potential. 
There is a uniform constant magnetic field B parallel to the axis. Use 
cylindrical coordinates r ,  0, z. The electric and magnetic vector potentials 
can be written as 

(ee is a unit vector in the direction of increasing 0). 

(a) Write the Lagrangian and Hamiltonian functions. 
(b) Show that there are three constants of the motion. Write them 

down, and discuss the kinds of motion which can occur. 
(c) Assuming that an electron leaves the inner wire with zero initial 

velocity, there is a value of the magnetic field B, such that for B 5 B, the 
electron can reach the outer cylinder, and for B > B, the electron cannot 
reach the outer cylinder. Find B, and make a sketch of the electron's 
trajectory for this case. 
You may assume that R >> a. 

( Wisconsin) 

Solution: 

(a) In SI units, the Lagrangian is 

1 
2 

L = T - V =  - m r 2 + e d - e r . A .  

As 
1 

A = (0, -Br, 0) , 
2 i. = ( f ,  re, i), 

the above becomes 

The generalized momenta are 

and the Hamiltonian is 
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H = p,+ + p e e  + p , i  - L 

1 
2 

= -m(+' + r2e2 + 2') - e 4  

P2 
2 P, 1 1 

2m 2mr2 

2 

= - + - ( p .  + l e B r 2 )  + - ed 

= L [p: + (: + Z e B r ) ' + p : ]  1 - e.4. 
2m 

(b) As H is not an explicit function of time, i t  is a constant of the 
motion. Also, as 

b H  p .  - -- , 
a91 

1 -  

if H does not contain qi explicitly, pi is a constant of the motion. Hence 
pe ,p ,  are constants of the motion. Explicitly, 

H = L 2m [p: + (: + ; e B r ) ' + p : ]  - eq5 = E , 

' 1  
pe = m r 2 0  - - e B r 2  = C1 , 

2 

p ,  = mi = C2 , 

where El C1, C2 are constants. 
(c) The initial conditions r = a,  1: = 13 = i = 0 at t = 0 give 

1 
2 

E = -  eb = ebo, C1 = - - e B a 2 ,  C2 = 0 .  

p ,  = C, = 0 means that there is no motion along the a-direction. H = E 
gives 

Suppose a value B, of the magnetic field will just make the electron reach 
the outer cylinder. As then p ,  = 0 at r = R, the above gives 
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If we assume that a << R, this reduces to 

B C ' R  

At T = R, p ,  is given by 

p ,  is real at T = R if B 5 Bc. Hence 

2 

(Bf - B2)  ( a e R )  . 

under this condition the electron 
can reach the outer cylinder. If B > B,, p ,  is imaginary at T = R and the 
electron cannot reach the outer cylinder. For the latter case the trajectory 
of the electron is as sketched in Fig. 2.74. 

Fig. 2.74. 

2076 

Consider the Lagrangian 

1 
2 

L = -m(k2 - W 2 2 2 ) e y '  

for the motion of a particle of mass m in one dimension (z). The constants 
m , ~  and w are real and positive. 

(a) Find the equation of motion. 
(b) Interpret the equation of motion by stating the kinds of force to 

which the particle is subject. 
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(c) Find the canonical momentum, and from this construct the Hamil- 

(d) Is the Hamiltonian a constant of the motion? Is the energy con- 

(e) For the initial conditions x(0)  = 0 and k(0)  = WO, what is x ( t )  

( Wisconsin) 

tonian function. 

served? Explain. 

asymptotically as t + oo? 

Solution: 
(a) Lagrange’s equation 

gives the equation of motion 

x -k w2x = --fx . 
(b) The particle moves as a damped harmonic oscillator. It is subject 

to an restoring force - m 2 x  and a damping force -myx proportional to 
its speed. 

(c) The canonical momentum is 

and the Hamiltonian is 

p2e-rt 1 
2m 2 

- - + -mu2x2eYt . 

(d) Since H depends explicitly on time, it is not a constant of motion. 
It follows that energy is not conserved also. Physically, in the course of 
the motion, the damping force continually does negative work, causing 
dissipation of energy. 

(e) Try a solution of the type x - ,aRt.  Substitution in the equation of 
motion gives 

R2 - iyR - w2 = 0 , 
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which has solutions 

Hence 

The initial conditions x = 0, 5 = 210 at t = 0 give 

B = - A ,  A = -  VO 

4- 
If y < 2w, let &/- = iw l .  Then 

so that x -+ 0 as t + 00. 

be no oscillation and x will decrease monotonically to zero as t -+ 00. 

If y > 2w, both y f d- are real and positive so that there will 

2077 
A particle is confined inside a box and can move only along the x-axis. 

The ends of the box move toward the center with a speed small compared 
with the particle's speed (Fig. 2.75). 

(a) If the momentum of the particle is po when the walls of the box are 
at a distance 20 apart, find the momentum of the particle at any later time. 
Collisions with the walls are perfectly elastic. Assume that at all times the 
speed of the particle is much less than the speed of light. 

(b) When the walls are a distance x apart what average external force 
must be applied to each wall in order to move it at constant speed V? 

(UC, Berkeley) 

Solution: 
(a) Consider a collision of the particle with one of the walls. As the 

collision is perfectly elastic, the relative speeds before and after the collision 
are equal. If the particle is incident with speed v and reflected back with 
speed v' and the wall has speed V towards the particle, we have 
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Fig. 2.75. 

v + v = v' - v, 
i.e. 

v ' = v + 2 V .  

Thus after each collision, the magnitude of the particle momentum gains 
an amount 2 m V ,  m being the mass of the particle. When the walls are at  
a distance x apart, as V is much smaller than the speed of the particle, the 
interval between two consecutive collisions is 

x xm T = - -  -- 

p being the particle momentum. The change of momentum in time dt  is 

($1 p ' 

dt  2Vpdt  
T X 

d p =  2 m V -  = - , 

As the walls move toward each other with speed V ,  

x = x o - 2 V t ,  

measuring time from the moment x = 50. Then 

Pdx dp  = --. 
X 

As p = po when x = XO, its integration gives 

POX0 - POX0 p = - -  
x x o - 2 V t  . 

(b) Consider a collision of the particle with one wall. The momentum 
acquired by the particle is 

p + 2mV - (-p) = 2p + 2 m V  
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The interval between two consecutive collisions with the wall is 

so that the change of momentum due to collisions with the wall in a time 
dt is 

dp = 2 ( p  + mV)- . dt 
T' 

Hence 
- dP - - (P+mV)P M-- P2 - P* 
d t  x m  x m  m x 3  

as 5 >> V .  This is the force exerted by the wall on the particle. To keep 
the walls moving at constant speed, a force of the same magnitude must 
apply to each wall. The problem can also be solved using the Hamiltonian 
formalism. Use a reference frame attached to one of the walls, say the 
left-hand wall. As shown in Fig. 2.75, the particle has velocity -$ - V .  
The Hamiltonian is 

1 H = - m  - + v  2 (: > 2  

The force on the particle is p which is given by Hamilton's equation: 

. a H  p i x ;  
a x  mx3 

- p = - - - - .  

207a 

The Poisson bracket is defined by 

(a) Show that for a dynamicd quantity a ( q , p ,  t )  

da  da 
dt at - = [.,HI + - . 
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A two-dimensional oscillator has energies 

1 
2 

T ( f ,  y) = -m(P + y2)  , 
1 

V(x,y) = -K(x2 + y2) + Cxy , 2 

where C and K are constants. 

to a nonisotropic harmonic oscillator. 
(b) Show by a coordinate transformation that this oscillator is equivalent 

(c) Find two independent constants of the motion and verify using part 

(d) If C = 0 find a third constant of the motion. 
(e) Show that for the isotropic oscillator the symmetric matrix 

(4. 

is a constant of the motion by expressing each element in terms of the 
known constants of motion. 

( Wisconsin ) 

Solution: 
(a) Using Hamilton’s canonical equations 

a H  dH 
Qk = -, pk =--- 

apk dqk ’ 
we find 

da aa da da - = - q k  + - p k  + - dt dqk dpk a 
- da dH da d H  aa 
- 

da 
at 

= [a ,H]  + - . 
(b) Introducing the new variables 

1 1 
1 7 =  -(x+Y), E =  -(X-Y) I Jz Jz 

we have 
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1 1 
2 =  -(v+<), Y =  4 v - o  * Jz Jz 

T = -m 4 [(fi+02 + ( f i  -02] 
Then 

1 

1 
2 

1 1 

= -m(7i2 + ('1 , 

v = ,K"V + o2 + (V - 021 + p ( V 2  - t2 )  

1 1 
2 
1 1 
2 

= -K(V2 + S 2 )  + f ( v 2  - E 2 )  

= - (K  + C)q2 + s ( K  - C)c2 , 

L = L 1 + L 2 ,  

with 

1 ' 2  1 
~2 = -m< - - ( K  - c)<' . 

Note that the form of L1 and L2 indicates that q and [ are normal 
coordinates. Hence the system is equivalent to two harmonic oscillators 
with angular frequencies 

2 2 

respectively. As the frequencies are different the system acts as a non- 
isotropic harmonic oscillator. 

(c) As the canonical momenta are by definition 

l3L f i ,  p c = - - r = m < ,  
l3L 

p - - - ; = m  
f ) -  077 a< 
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This can also be written as 

with H I ,  H2 corresponding to L1, L2 respectively, i.e. 

- = o  dH2 
d t  

Hence H I ,  H2 are two independent constants of the motion. 

Hamiltonian is 
(d) If C = 0 ,  w1 = w2 and the oscillator becomes an isotropic one. The 

1 2  1 1 1 
H = - p ,  + - p i  + -Kq2 + - K J 2  

2 m  2m 2 2 

Let J = m ( q p t  - Jp , ) .  Then as 

dJ 
dt - = [&HI 

J is also a constant of the motion. 

coordinates. 
motion: 

(e) For the isotropic oscillator, C = 0 and 2, y already are normal 
As shown above, there are three known constants of the 

2 
PZ 2 1  

El = - + - K x 2 ,  E2 = !k + - K y 2 ,  J = m ( ~ p ,  - y p Z )  . 2 m  2 2 m  2 
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As A11 = E l ,  A22 = E2, the diagonal elements of the matrix Aij are 
constants of the motion. Consider 

E1E2 - - K J~ = (% 2 1  + - K x 2 )  ($ + 5 ~ g 2 )  1 - - ( x p p  K - ypz) 2 4m3 2m 2 2m 4m 

Since the left-hand side is a constant, A12 = A21 = constant. Hence A is a 
matrix of constant elements. 

2079 

Consider the system of particles ml = m2 connected by a rope of length 
1 with r n 2  constrained to stay on the surface of an upright cone of half-angle 
a and ml hanging freely inside the cone, the rope passing through a hole 
at the top of the cone as shown in Fig. 2.76. Neglect friction. 

(a) Give an appropriate generalized coordinate system for the problem. 
(b) Write the Lagrangian of the system and the equation of motion for 

(c) Write the Hamiltonian for the system. 
(d) Express the angular frequency for 7732 moving in a circular orbit in 

( Wisconsin) 

each generalized coordinate. 

terms of the variables of the problem. 

Fig. 2.76. 

Solution: 
(a) Use spherical coordinates with origin at the top of the cone as 

shown in Fig. 2.76. The coordinates of m1,mz are respectively (r,O,cp), 
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(1  - T ,  T - a,  P). The variables r, 8, cp, p are taken to be the generalized 
coordinates. 

(b) The velocities of ml,m2 are respectively (+,rd,r+sinO), ( - + , O , ( l -  
r)bsin(.lr - a)) .  The Lagrangian of the system is then 

L = T - V  
1 
2 

- mgr cos 8 + mg( 1 - r )  cos a . 

= -m[2f2 + r2e2 + T ~ + ~  sin2 8 + (Z - r12b2 sin2(r - a)] 

Lagrange's equations 
d L  

give 

mr2+ sin2 8 = p, ,  

m(Z - r)2bsin2(r - a)  = p a ,  

2i: - r(d2 + d2 sin2 8) + (Z - r)b2 sin2 a + g(cos o + cos a)  = o , 
~ 8 + 2 + e - r + ~ s i n 0 c o s e - g s i n 0 = 0 .  

a constant , 

a constant , 

(c) Two other canonical momenta are 

The Hamiltonian is 

p; 
2 =-+-  Pr P; + p ;  + 

4m 2mr2 2mr2 sin2 6 2 m ( ~  - r)2 sin2 a 

(d) If m2 moves in a circular orbit, T = constant and the angular 
frequency of revolution is 

PO 
m(Z - r)2 sin2 a ' 

P =  
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2080 

The transformation equations between two sets of coordinates are 

Q = ln ( l+  q i  cwp) 

P = 2(1+ q* cosp)qi sinp . 

(a) Show directly from these transformation equations that Q, P are 

(b) Show that the function that generates this transformation between 
canonical variables if g and p are. 

the two sets of canonical variables is 

F3 = -[exp(Q) - 112 tanp . 

the transformation is canonical. Then if Q, p are canonical variables, so are 
Q, P .  

(b) Solving the transformation equations for q and p we obtain 

q = (eQ - 112 sec2p , 
P = 2eQ(eQ - 1) tanp . 

Since the transformation is canonical, there exists a generating function 
F3(Q,p) such that 

aF3 , p = - -  aF3 

aP aQ ' 

q =  -- 

give the transformation equations. As 
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= -d[(eQ - 

= -d[(eQ - 1)’tanpl , 
t anp  - (8 - 1)’dtanp 

we obtain 
~3 = -(eQ - 1)2 tanp 

2081 
A particle of mass m moves in one dimension q in a potential energy 

field V ( q )  and is retarded by a damping force -2myq proportional to its 
velocity. 

(a) Show that the equation of motion can be obtained from the La- 
grangian 

1 
and that the Hamiltonian is 

where p = mqexp(2yt) is the momentum conjugate to  q. 
(b) For the generating function 

WQ, p, t )  = exp(-/t)qP 

find the transformed Hamiltonian K ( Q :  P, t) .  For an oscillator potential 

show that the transformed Hamiltonian yields a constant of the motion 

P 2  1 
2m 2 

K = - + - W ~ Q + ~ Q P .  

(c )  Obtain the solution q( t )  for the damped oscillator from the constant 
of the motion in (b) in the underdamped case y < w. You may need the 
integral 
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dx 
- sin-’ x . 

Solution: 

649 

( Wisconsin ) 

(a) Lagrange’s equation 

gives 

The particle is seen to be subject to a potential force -% and a damping 
force -2m7q proportional to its speed. Hence the given Lagrangian is 
appropriate. The Hamiltonian is given by 

with 

Thus 

(b) For the generating function &(q, P, t )  we have 

As F2 = qPert, 

p = Pert, Q = qert , 

For an oscillator of potential 
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the transformed Hamiltonian is 

P2 1 
2m 2 

K = - + - w ~ Q ~  + " I ~ ~ .  

As it does not depend on time explicitly, K is a constant of the motion. 
(c) Hamilton's canonical equations are 

Differentiating the second equation and making use of the original equations 
we have 

Q + (w2 - r2 )Q  = 0 . 

In the underdamped case, w > y and we may set 

W ]  = Jm, 
where w1 is real positive. The solution is then 

Q = Asin(w1t f 'p) , 

where A, cp are constants. AS 

we have 

1 1 1 
K = 5m[(Q-rQ)2+~ZQ2+2yQ(Q-yQ)] = 5m(Q2+wTQ2) = --:A2, 2 

giving 

Hence the solution is 
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2082 

Suppose that a system with time-independent Hamiltonian Ho(q, p )  has 
imposed on it an external oscillating field, so that the Hamiltonian becomes 
H = Ho(q ,p )  - Eqsinwt, where E and w are given constants. 

(a) What is the physical interpretation of E sin wt? 
(b) How are the canonical equations of motion modified? 
(c) Find a canonical transformation which restores the canonical form 

of the equations of motion. What is the “new” Hamiltonian? 
( Wisconsin ) 

Solution: 
(a) A possible interpretation is shown in the following example. A par- 

ticle of charge e moves in an electric field uniform in space but oscillating in 
time, namely an electrical field whose strength is represented by ( E / e )  sinwt. 
Then E sin wt is the force exerted on the particle by the electric field. 

(b) Hamilton’s canonical equations of motion are now 

q = - = -  a H  aHo 
a P  a P  ’ 

. a H  aH0 
P =  -- = -- +Esin(wt) . 

aq &! 

and wish to find a new Hamiltonian 

K ( Q , P )  = Ho(q,P) 

by a canonical transformation. Let the generating function be Fz(q, P,t). 
AS 

m2 - = K - H = qsin(wt) , at 
we take 

EQ 
F2 = qP - - COS(&) . 

W 

The transformation equations are 

cos(wt) , p = - = p - E  m2 
aq W 
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and 

Then 

& 

W 
P = p + - cos(wt) , 

= Ho(q,  p )  - E q  sin(wt) + E q  sin(wt) 

& 

W 
= Ho(Q,  P - - C O S ( W ~ ) )  

aK aHo a p  dHo - Q = Q ,  - - - - __ -- _ _ -  
a p  ap aP a p  

aK - aH0 aq aH0 

aQ aq a Q -  aq 
= p - Esin(wt) = P , -- - 

use having been of the results in (b). Hence the transformation restores 
the canonical form of the equations of motion with the Hamiltonian Ha. 

2083 

(a) Solve the Hamilton-Jacobi equation for the generating function 
S(ql a,  t )  in the case of a single particle moving under the Hamiltonian 
H = i p 2 .  Find the canonical transformation q = q(0, a) ,  and p = p ( P ,  a) ,  
where /3 and a are the transformed coordinate and momentum respectively. 
Interpret your result. 

(b) If there is a perturbing Hamiltonian H’ = :q2,  then a will no 
longer be constant. Express the transformed Hamiltonian K (using the 
same transformation found in part (a)) in terms of a , P  and t .  Solve for 
P ( t )  and a(t)  and show that the perturbed solution 

is simple harmonic. You may need the integrals 



Analytical Mechanics 653 

- 1 tan xdx = ln(cos x) 

( Wasconsin) 

Solution: 
(a) The Hamilton-Jacobi equation 

with p = $$ becomes, for this case, 

as+’(”) 2 = o  
at 2 aq 

As H does not depend on q , t  explicitly, we can take the two terms 
on the left-hand side as equal to - 7 , ~  respectively, where 7 is at most a 
function of p. Then 

Setting a = f i , we have the generating function 

s = & q - y t .  

S = a q - - a  1 2  t 
2 

The constant a can be taken to be the new momentum P. The transfor- 
mation equations are thus 

As g = /3+at, the particle moves with uniform velocity /3 in the q,p system. 
(b) The perturbed Hamiltonian is 

P2 q2 H = - + - .  
2 2  

It is transformed to 
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by the transformation equations in (a). Hamilton's equations 

. dK p=-- . d K  Q = -  
dP ' 8Q 

give 
6 = ( p  + at)t, & = - (p + at) . 

Note that a = P ,  p 3 Q can no longer be considered constant as H has 
been changed. The last equations combine to give 

showing that a is harmonic: 

a = a0 sin@ + p) , 

where (yo, 'p are constants, and thus 

0 = -& - at = -aO[cos(t + 'p) + tsin(t + p)] . 

The transformation equations then give 

p = a = cro sin(t + p) , 
q = p + a t =  - & =  -aOCOS(t+p). 

Hence the solution for the perturbed system is harmonic. 

2084 

(a) Let us apply a shearing force on a rectangular solid block as shown 
in Fig. 2.77. Find the relation between the displacement u and the applied 
force within elastic limits. 

Assume 
a transverse plane wave which proceeds in the x-direction and whose 
oscillations are in the y-direction. Derive the equations of motion for the 
displacement. 

(c) Find the expression for the speed of the transverse elastic wave. 

(b) The elastic properties of a solid support elastic waves. 

(SVNY, Bufl'alo) 
Solution: 

(a) Hooke's law for shearing 
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Fig. 2.77. 

F 
x = n c p ,  

where F is the shearing force, n the shear modulus of the material of the 
block, cp the shear angle, and A the cross sectional area of the block parallel 
to F, gives the resulting displacement as 

as cp is a small angle. 

strain is 
(b) The potential energy of a unit volume of the block due to shear 

1 

The kinetic energy of the block during shearing is 

Jd' $ p A  ( $ ) ' d x ,  

p being the density of the block. 
considered and Hamilton's principle 

Within the elastic limits, energy is 

6 l r  Lift = 0 

applies. Thus 

(T - V ) d t  = 6 lr Jd' [ 14 2 (">I a x  - $ (g) '1 Adxdt = 0 . 
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As, integrating by parts, we have 

and as 6u = 0 at y = 0, 1 and t = t l ,  t Z ,  the above becomes 

giving 
6% pa% = o  - - -- 
ax2 n at2 

as the equation of motion for the displacement u. 

along the x-direction as a transverse wave with speed 
( c )  The equation shows that u, which is in the y-direction, propagates 
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SPECIAL RELATIVITY (3001-3054) 

3001 

(a) Briefly describe the dilemma which necessitated the development of 
the special theory of relativity. 

(b) Describe an earlier theory which could have eliminated the need for 
special relativity and name an experiment which proved this theory to be 
wrong. 

(c) Describe one modern experiment which lends credence to the special 
theory of relativity. 

( Wisconsin ) 

Solution: 

(a) According to Maxwell’s electromagnetic theory, the velocity of prop 
agation of electromagnetic waves in free space, c, is a constant independent 
of the velocity of the source of the electromagnetic radiation. This is 
contrary to the Galilean transformation which was known to apply between 
inertial frames. If Maxwell’s theory holds in one inertial frame, it would 
not hold in another inertial frame that has relative motion with respect to 
the first. The dilemma was that either Maxwell’s electromagnetic theory 
or Newtonian mechanics holds but not both, even though both appeared 
to be well established. 

(b) An earlier theory which attempted to resolve the dilemma was the 
theory of ether. It presupposed that the universe was filled with a fictitious 
all-pervasive medium called the ether and that Maxwell’s theory holds 
only in a frame at rest relative to the ether. But Michelson’s experiment 
purported to measure the velocity of the earth relative to the ether always 
gave a zero result even though the earth moves in the solar system and 
the solar system itself moves. Thus the presence of ether cannot be 
demonstrated and the ether theory has to be abandoned. 

(c) Take as example Herter’s experiment measuring the time of arrival 
of two photons emitted in the annihilation of a positron in flight. The 
detectors were at different locations which had the same distance from the 
place where the annihilation took place . It was found that the two photons 
arrived at the detectors simultaneously. This indicates that light emitted 
in different directions from a rapidly moving source has a constant speed. 

659 
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3002 
A space traveler with velocity v synchronizes his clock (t' = 0) with his 

earth friend ( t  = 0). The earthman then observes both clocks simultane- 
ously, t directly and t' through a telescope. What does t read when t' reads 
one hour? 

(UC, Berkeley) 

Solution: 
Let C,C' be inertial frames attached to the earth and spaceship re- 

spectively with the x-axes along the direction of relative velocity, and set 
t l  = t i  = 0 ,  x1 = xi = 0 when the clocks are synchronized. Consider the 
event that the spaceship clock reads t:. The transformation equations are 

d 2  = y (d ' ,  + Px',) = yd' ,  1 

52 = y(x', + Pd'z) = yPcth , 

where = :, y = a , as xk = xi = 0. Light signal takes a time J1-p 

to reach the earthman. Hence his clock will read 

when he sees th = 1 hour through a telescope. 

3003 

A light source at rest at position x = 0 in reference frame S emits two 
pulses (called PI and Pz) of light, Pl at t = 0 and P2 at t = T .  A frame S' 
moves with velocity v x  with respect to S. An observer in frame S' receives 
the initial pulse PI at time t' = 0 at x' = 0. 

(a) Calculate the time r' between the reception of the pulses at x' = 0 
as a function of r and p = i. 

(b) From (a) determine an exact expression for the longitudinal 
Doppler effect, that is, calculate A' in terms of X and p, where A and A' are 
the vacuum wavelengths of light as measured in S and S' respectively. 
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(c) Calculate to first and second order in the Doppler shift of the Hp 
emission (A = 4861.33 A) from the neutralization to H atoms of protons 
accelerated through a potential of 20 kV. Assuming that emission occurs 
after acceleration and while the protons drift with constant velocity. Also, 
assume that the optical axis of the spectrometer is parallel to the motion 
of the protons. 

( Chicago ) 

Solution: 

Fig. 3.1. 

(a) The inertial frames S, S’ are as shown in Fig. 3.1. Assume that the 
origins 0 and 0’ coincide at t = t’ = 0 so that the emission of PI and its 
arrival at the observer both occur at z = 0, t = 0, x‘ = 0, t’ = 0 as given. 
The emission of Pz is at x = 0, t = r in S and 

2’ = y(x - pct) = -ypm , 

in S. The signal take a time 

At’ = - I x ’ 1  = $7 
C 

to arrive at the observer. Hence the observer records the time of arrival as 

t ’+  At’ = y(1 + p ) r  , 

or 



662 Problems €4 Solutions on Mechanics 

(b) As r,r' are the intervals between two consecutive pulses in S, S' 

1 ' 1  

respectively, we have the frequencies 

v = -  , v = -  
7 T I  

and wavelengths 

in S and S' respectively. 
(c) The protons have energy 20 keV each, much smaller that the rest 

mass energy of 936 MeV, so that their velocity can be obtained nonrela- 
tivistically. Thus 

C mc2 936 

As /3 is small, we can expand X'(p) as a power series 

The first order shift of the Ho emission is 

Ax = Xp = 4861 x 6.54 x = 31.8 A, 

and the second order shift is 

3004 

(a) Consider Lorentz transformations (LT) between the frames S, S' 
and S" indicated in Fig. 3.2, where the x-axes are all parallel, and S' 
and S" are moving in the positive x-direction. Prove that for this type of 
transformation the inverse of an LT is an LT, and that the resultant of two 
LT's is another LT. 
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Y Y ’  Y ”  

Fig. 3.2. 

If the velocity of S’ relative to S is q, and the velocity of S” relative 
to S’ is 212, derive the expression for the velocity of S” relative to S. 

(b) In particle physics, the interaction between particles is thought of 
as arising from the exchange of a particle as shown in Fig. 3.3. Prove that 
the particle exchanged is not real but virtual. 

(SUZVY, Buffalo) 

Fig. 3.3. Fig. 3.4. 

Solution: 
The Lorentz transformation between the frames S ,  S‘ is given by 

2’ = 71(2 - P l C t ) )  y’ = y, z’ = z ,  d’ = Y l ( C t  - P12) , 
where 

According to the principle of relativity, all inertial frames are equivalent, 
so the transformation from S to S’ should have the same form as the 
transformation from S’ to S. However, as the velocity of S’ relative to 
S is 211 the velocity of S relative to S‘ is -211. The transformation from S’ 
to S ,  i.e. the inverse transformation, is therefore 

2 = y1(d + P I C t ‘ ) ,  y = y’, 2 = z’, ct = y1(d‘ +Pl2‘) , 

which is seen to be also a Lorentz transformation. 
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Consider 

5‘‘ = Y2(Z’ - P2Ct ’ )  = W I [ ( Z  - P l C t )  - h ( c t  - PlZ) ]  

Ct” = y2@’ - P25’) = y2y1[(1 + PlP2)Ct - (P1 + P 2 ) 4  , 
= Y2Y1[(1+ PlPZ), - (01 + P2)Ct I  I 

where 

Writing 

we have 

1 

P1 + P2 1 

1 + 0102 ’ = J r -p  ’ P =  

or 
y = y1y2(1 + PlPZ) . 

y“ = y, 

Hence the transformation from S to S“ is given by 

Z” = r ( x  - Pet), 2’’ = z ,  d” = y ( d  - Px)  , 
showing that it is also a Lorentz transformation. Thus the resultant of two 
LT’s is also an LT. 

Note that Pc is the velocity of S” relative to 5’. This can be shown 
directly as follows. Consider the transformation between S and S’. Differ- 
entiating we have 

dx = 71 ( d ~ ’  + Plcdt’) I 

cdt = y1 (cdt‘ + 01 dx’) ’ 
and 

dx v ’ + v ~  v = - =  
dt I + % ’  

Thus with v’, the velocity of a point relative to S’, and 01, the velocity of 
S’ relative to S ,  the velocity of the point relative to S is given by the above 
relation. If the point is at rest in S”, then v‘ = 212 and the relation gives 
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P1 + P2 

1 + PlP2 
P =  

as expected. 
(b) As shown in Fig. 3.4, by exchanging a particle of 4-momentum q in 

the interaction, the Cmomenta of particles 1 and 2, p l  and p2 change to p i  
and pb, respectively. The conservation of Cmomentum requires 

P', = Pl + Q, P'z = P2 - Q - 
Let the mass of particle 1 be ml and that of the exchange particle of 
Cmomentum q be m and consider the first Cmomentum equation. The 
momentum part gives 

4=p; -P1 1 

or 
2 -  I2 2 Q -P1 +Pl -2Pl .P:  9 

Equations (1) and (2) combine to give 

m2 = 2m:(1- r1-y; + ~ 1 r i P l P :  cos6) . 
We have to show that m2 < 0 so that the interaction cannot be real, but 
has to be virtual. As y2p2 = -y2 - 1, we have to show 

JF Jy;2-lcose < rly: - 1 , 

(+ - 1)($ - 1) CW2 6 < (717: - 1y . 
or 

This would be true if the following is true: 

(7; - w2 - 1) < (717: - 9 
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or 
471 - < 0 

Since this always holds, the interaction has to be virtual. 

3005 

(a) Given that (r, ct) is a relativistic Cvector, justify the statement that 
(ck, w )  is a relativistic 4-vector. 

(b) Given that an atom at rest emits light of angular frequency wo and 
that this atom is traveling at velocity v either directly towards or away 
from an observer, use the Lorentz transformation to derive a formula for 
the frequency observed by the observer for the two cases (towards or away 
from the observer). 

(UC, Berkeley) 

Solution: 

(a) Consider a plane electromagnetic wave 

E = Eoei(k.r-wt) H = Hoei(k.r-Wt) 
7 

in an inertial frame C. In another inertial frame C‘ moving with relative 
velocity w along the x-direction, the field vectors E’, H’ are given by 

These relations require that the exponential function in E and H be 
invariant: 

k’ . r’ - wit’ = k . r - wt . 
Since (r, ct) is a Cvector, its components transform according to 

2’ = -/(” - pet>, y’ = y, z‘ = z ,  ct’ = y(ct - px) . 
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Letting k = ( k l ,  kz ,  k3), k’ = ( k i l  kh, k$ )  we have 

k’ . r’ - w’t’ = k:y (x  - p c t )  + k i y  + khz - w‘y 

z -t k i y  + k i z  - y(w‘ + pck’,)t 

Comparing the coefficients of the independent variables x ,  gl z,  t on the two 
sides of the equation, we find 

ckl = y(ck:  + Pw‘), ckz = ckb, ck3 = ck i ,  w = Y(W’ + Pck;) . 

These relations are exactly the same as those for (r, c t ) :  

z = y(z’ + P d ’ ) ,  y = y’, z = z’, ct = y(ct’ + P.’) * 

Hence ( c k ,  w )  is a relativistic Cvector. 
(b) Let the observer be at the origin of C and the atom be at the origin 

of C‘ (the atom is moving away from the observer with velocity Pc).  The 
angular frequency as measured by the observer is w. As light from the atom 
that reaches the observer must have been emitted in the - x  direction, we 
have 

k’ = ( - k f l 0 , O )  = - - , O , O  (: ) 
by definition. The transformation relation then gives 

w = y(w‘ - PW’)  = y(l  - P)wo = wo/- 1 - P  J- * - c + v  

If the atom is moving towards the observer, Pc in the above is to be 
replaced by -/3c and we have 

w = w o / g  1 + P  = ../=. 
c - v  



668 Problems €4 Solutions on Mechanics 

3006 

A spaceship is moving away from the earth at a speed v = 0.8~. When 
the ship is at a distance of 6.66 x lo8 km from earth as measured in the 
earth’s reference frame, a radio signal is sent out to  the spaceship by an 
observer on earth. How long will it take for the signal to reach the ship: 

(a) As measured in the ship’s reference frame? 
(b) As measured in the earth’s reference frame? 
(c) Also give the location of the space ship when the signal is received, 

in both frames. 
(SUNY,  Bu’alo) 

Solution: 

Let the observer on earth be at the origin of the inertial frame C and 
the spaceship be at rest in the inertial frame C’ moving with velocity /3c 
relative to  C along the x direction. For convenience consider (b) first. 

(b) Consider the problem in C. At time t = to  when the ship is at x,, a 
radio signal is sent out by the observer. It is received by the spaceship at 
time t l .  As the velocity of propagation of the signal is c we have 

yielding 

as the time taken for the signal to reach the ship. 
(a) Consider the two events 

Eo : sending out of signal by the observer on earth, 

El : arrival of the signal at the ship. 

In C the x and t coordinates are 
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tb  = y ( to - F) = yto , 

t: = 7 (t, - 5) = y[(l - p>tl +Pto] 

Hence the time of travel of the signal in the ship’s frame is 

t’ - t’ - - y(l - p)(tl - to) = - to) = 3.7 x 103 . 

(c) The location of the spaceship when the signal is received is 

21 = (t l  - to)c = 1.11 x lo4 x 3 x lo5 = 3.33 x lo9 km 

in the earth’s frame, and xi = 0 in the ship’s frame. 

3007 

A globe of (rest) radius &, with identifiable markings on it, is moving 
with a speed v with respect to an observer located a large distance away. 
The observer takes a picture of the globe at the time that he sees the globe 
moving perpendicular to the line joining himself with the globe. What does 
he see when he develops the film? 

(Columbia) 

Solution: 
Consider a thin square ABCD of (rest) side 1 moving with velocity v 

relative to an observer P at a large distance 1 away such that the plane of 
the square contains the line of sight as shown in Fig. 3.5, and the instant 
when AB is perpendicular to the line of sight. Light from D‘ emitted at 
an earlier time when D waa at D’ intersects the extension of the line AB 
at El at the instant under consideration. Then 

- -  
I ---- -- DID DIE’ - 

V c ccose ’ 
- -  tv 
E I A  = DID - 1 tan0 = 1 sec0 - tan8 M - = /3l > c  
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with 0 = :, since for L >> I ,  0 M 0. As AB is moving with velocity v, on 

account of Lorentz contraction, it will be seen as AB' = = l d w ,  
where y = 1 

- 

m' 

D' D c 

\ I  
Y 
P 

Fig. 3.5. Fig. 3.6. 

Consider now the square ABCD after rotating through an angle a,  as 
shown in Fig. 3.6, with Q given by sinrr = /3. We have 

E'A = l s ina  = 10, AB'= lcosrr = l d m .  

The relationship among the points El, A ,  B' in the above two cases are 
exactly the same. Hence the moving square in Fig. 3.5 will be photographed 
as the stationary square shown in Fig. 3.6. As the object is a sphere, it will 
still be photographed as a sphere. 
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3008 

An atomic clock is carried once around the world by a jet plane and 
then compared with a previously synchronized a.nd similar clock that did 
not travel. Approximately how large a discrepancy does special relativity 
predict? 

(Columbia) 
Solution: 

Suppose the jet plane moves with velocity pc. Let its rest frame be 
S' and the earth's frame be S. The two frames can be considered as 
approximately inertial. Lorentz transformation ct = y(d' + px') give for 
Ax' = 0,  since the clock is fixed in C', At = Tat', where 7 = Then 

for p << 1, we have 
m. 

or 
1 
2 

At - At' N -p2At' . 

Take for example a jet fighter flying at 1000 m/s, about three times the 
speed of sound. The earth has radius 6400 km, so the fighter takes 

27r x 6400 x lo3 
1000 

= 4.02 x lo4 

to fly once around the earth. The clock carried by the fighter will be slower 
bY 

= 2.2 x 1 0 - ~  . 4.02 x 104 2 

At - At'= (-) 1000 x 
3 x 10s 2 

3009 

(a) Write down the Lorentz transformation for the position 4-vector and 

(b) Show that the Doppler effect on light frequency can be expressed its 
derive the transformation for the momentum 4-vector. 

i) v = vo - -I- when the source and observer are approaching; 
d l - u  
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ii) u = UOJZ when the source and observer are receding; 

iii) u = uo when the source and observer are in perpendicular m 
directions passing each other. 

(SUN Y, Buflalo ) 

Solution: 

(a) Consider two inertial frames C,C' with the corresponding axes 
parallel to each other such that C' moves with a velocity v = ,Oc along 
the x direction and that the origins coincide at t = t' = 0. The Lorentz 
transformation for the position 4-vector x" = (r, ct)  F (2, y, z,  ct)  is 

where 
Y 0 0 -PY 

Q ; = ( :  0 1 0  1 :)  
-PY 0 0 Y 

w i t h y = ( 1 - p 2 ) - i .  
The momentum 4-vector is defined as 

where E = mc2 is the total energy. As all Cvectors transform in the same 
way, its transformation is given by 

(b) The wave Cvector is defined by 

k" = ( k c , w )  . 

Its transformation 
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can be written as 

, kh = k,, k: = k,, W' = ~ ( w  - PkZc) . ( Ow) kL =? kz - 7 

To obtain the Doppler effect, let the frames of the light source and 

i) When the source and observer approach each other let DOC be the 
= -PO. The 

observer be El C respectively. 

relative velocity of the former relative to the latter. Then 
inverse transformation is 

w = ?(W' + PkLc) = ?(W' - PokLC) 

As k; = k' = 0 k' = -k' = -id , we have 
2 f t  

w = $1 + p0)W' = wq- 1 + Po 
1 - P o  

or 

where w' = 2nuo is the proper angular frequency of the light and w is the 
angular frequency as measured by the observer. Note that k, = -k as the 
light has to be emitted backwards to reach the observer. 

ii) When the source and observer are receding from each other, we have 
p = Do, DOC being the velocity of the former relative to the latter. Thus 

or 

iii) When the source and observer are in perpendicular directions passing 
each other, let the source be at (0, y', 0) in C' and the observer be at (0, 0,O) 
in C. They pass each other at t = t' = 0, when ki  = 0, k; = -k, ki = 0. 
The transformation equation for w then gives 

W' 

Jcp '  w = ?(w' + PkLc) = TW' = 
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3010 

A monochromatic transverse wave with frequency v propagates in a 
direction which makes an angle of 60" with the z-axis in the reference 
frame K of its source. The source moves in the x-direction at speed v = $c 
towards an observer at rest in the K' frame (where his z'-axis is parallel to 
the z-axis). The observer measures the frequency of the wave. 

(a) Determine the measured frequency u' in terms of the proper fre- 

(b) What is the angle of observation in the K' frame? 
quency u of the wave. 

(SUNY, BuflaEo) 

Solution: 
The frame K of the light source moves with velocity pc relative to  K', 

the observer's frame. The (inverse) transformation of the components of 
the wave 4-vector is given by 

kLc = y(k,c + ow) ,  W' = T(W -t /3kxc) , 

where y = (1 - p2)- 4. The angular frequency of the wave in K is w = 2 ~ u .  
If the angle between the light and the z-axis is 8, then 

khc = kyc, k:c = kzc, 

k, = kcos8, k, = ksin8, k, = 0, w = k c .  

or 

The above can also be written as 
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As 

the angle k' makes with the 2'-axis is given by 

, k; - cos8+P cose = - - P 1 + pcose * 

With ,O = 0.8, 8 = 60°, we have 

1 + 0.8 cos 60" 1.4 7 
(4 

(b) 

) v =  f i v =  3 V )  d m  u ' = (  

0.5 +0.8 13 - - cos = - 
1 + 0.8 x 0.5 14 ' 

giving 8' = 21.8". 

3011 
Consider two twins. Each twin's heart beats once per second, and each 

twin broadcasts a radio pulse at each heartbeat. The stay-at-home twin 
remains at rest in an inertial frame. The traveler starts at rest at time zero, 
very rapidly accelerates up to velocity v (within less than a heartbeat, and 
without perturbing his heart!). The traveler travels for time t l  by his clock, 
all the while sending out pulses and receiving pulses from home. Then at 
time t l  he suddenly reverses his velocity and arrives back home at time 
2tl. How many pulses did he send out altogether? How many pulses did he 
receive during the outgoing trip? How many did he receive on the ingoing 
half of his trip? What is the ratio of total pulses received and sent? Next 
consider the twin who stays at home. He sends out pulses during the entire 
trip of the traveler. He receives pulses from the traveler. From time zero 
to t 2  (by his clock) he receives Doppler-lowered-frequency pulses. At time 
t 2  he starts receiving Doppler-raised-frequency pulses. Let t 3  be the time 
interval from time t 2  till the end of the trip. How many pulses does he 
receive during interval t 2 ?  During t ~ ?  What is the ratio between these? 
What is the ratio of the total number of pulses he sends to the total he 
receives? Compare this result with the analogous result for the traveler. 

( UC, Berkeley) 
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Solution: 
Consider inertial frames C, C' with C' moving with velocity 2) relative to 

C in the direction of the x-axis. The transformation relations for space-time 
and angular frequency four-vectors are 

2' = r (x  - v t ) ,  

Y' = Y, z ' = z ,  

2 = y(x' + vt') , 

t' = .(t - F) , t = y (t' + $), 
w' = y(w - VIE,), w = y(w' + vk:) , 
k& = k,, k: = k ,  , 

where 

Y being the frequency. 
Let C,C' be the rest frames of the twin A who stays at home and the 

twin B who travels, respectively, with A, B located at the respective origins. 
As the times of acceleration and deceleration of B are small compared with 
the time of the trips, C' can still be considered inertial. Measure time in 
seconds so that Y has numerical value one in the rest frame. At the start 
of the journey of B, t = t' = 0. 

Consider fmm the point of view of B. 
(i) The total trip takes time At' = 2tl. Thus B sends out 2tl pulses for 

(ii) For the outgoing trip, = H ,  k, = z ,  and the pulses received by B 
the entire trip. 

have frequency 

since Y = 1 as C is the rest frame of A. Hence B receives 

pulses during the outgoing trip. 
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(ii) For the ingoing trip, p = -:, k, = z ,  and 

v’ = y(1+ 0). = y( l  + p) . 

Hence B receives 

V’tl = $1 + P ) t l  = t l / 3  

pulses during the ingoing trip. 
(i.1 

total pulses received by B - y(1 - 0 ) t l  + ~ ( l  + p ) t l  = = 1 
- 

total pulses sent by B 2tl d K p *  
Consider from the point of view of A 
(i) In the interval t = 0 to t = t2, A receives Doppler-lowered-frequency 

pulses indicating that B is moving away during the interval, i.e. = :. As 
the pulses have to be emitted in -2’ direction to reach A, kk = -z .  Thus 

v = y(v’ - pv’) = $1 - P)v’ = y(l - 0) , 

since v‘ = 1 as C‘ is the rest frame of B, and the number of pulses received 
is $1 - p) t2 .  The interval of time during which B, starting at t = t’ = 0, 
moves away from A is transformed by 

since Ax‘ = 0, B being stationary in C’. However, A and B communicate 
by light pulses, whose time of travel 

where x is the coordinate of B in C, must be taken into account. Hence 

i.e. the number of pulses received is 

$1 - P)tz = t2 J : ; ; - t l .  - - 
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(ii) In the time interval t 3  from t = t z  to the end of journey, A receives 
Doppler-raised-frequency pulses, indicating that C’ moves toward C, i.e. 
P = -?!. As k‘ = - W  

C c ’  . = y(v‘ + 0.’) = $1 + P).’ = $1 + P )  . 

By a similar argument as that in (i) we have 

Hence the number of pulses received is 

$1 + P) t3  = tl . 

(iii) 

lowered-frequency pulses received by A 
raised-frequency pulses received by A 

t 1 = - = 1  
tl 

total number of pulses sent by A 
total number of pulses received by A 

t 2  + t 3  Y ( 1  + 0)tl + Y ( 1  - P)tl - 1 -- - - - 
2tl 2tl - ? =  d m -  

This is the same as the ratio of the number of pulses received by B to that 
sent by B during the entire trip, as expected since counting of numbers is 
invariant under Lorentz transformation. 

3012 

A spaceship has a transmitter and a receiver. The ship, which is 
proceeding at constant velocity directly away from the mother earth, sends 
back a signal pulse which is reflected from the earth. Forty seconds later 
on the ship’s clock the signal is picked up and the frequency received is one 
half the transmitter frequency. 

(a) At the time when the radar pulse bounces off the earth what is the 
position of the earth as measured in the spaceship frame? 

(b) What is the velocity of the spaceship relative to the earth? 
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(c) At the time when the radar pulse is received by the spaceship where 

( UC, Berkeley ) 
is the ship in the earth frame? 

Solution: 
Let the spaceship and the earth be at the origins of inertial frames C' 

and C respectively with C' moving with velocity pc relative to C in the x 
direction such that x' = x = 0 at t = t' = 0. 

(a) The velocity of the radar pulse is c in all directions. So in C' the 
pulse takes a time Q = 20 s to reach the earth. Hence the position of the 
earth when the pulse bounces off the earth is x' = -20 c = -6 x lo9 m as 
measured in the ship's frame. 

(b) In C the angular frequency w of the signal is observed to be 

w = y(w' + pck;) 

with w' = WO, the proper angular frequency of the signal, k; = -? as the 
signal has to go in the -XI direction to reach the earth, and 7 = 

Thus 
ma 

w = y(l - p)w, . 
After reflection from the earth's surface, the angular frequency will be 
observed in C' as 

W" = T(W - @kZ) 

with kz = '$, w = y( 1 - P)wo. Thus 

1 w" = y(l  - p)w = y y 1 -  p y w o  = (; - ; ;) WO = p o  7 

yielding , 

Hence the velocity of the spaceship relative to the earth is 

1 
3 

v = - x 3 x 10' = 108m/s . 

(c) In C', when the signal bounces off the earth the time is 
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as the earth moves with relative velocity -pc. When the signal is received 
by the ship, the time is t’ = 60 + 20 = 80 s. As the ship is stationary at 
the origin of C’, x’ = 0. This instant is perceived in C as a time 

As the ship moves away from the earth at a velocity pc = ic ,  its position 
in C at this instant is 

80 
3 

x = Pct = --yc = 8.5 x lo9 m . 

3013 
A point source S of monochromatic light emits radiation of frequency f .  

An observer A moves at constant speed v along a straight line that passes 
at a distance d from the source as shown in Fig. 3.7. 

(a) Derive an expression for the observed frequency as function of the 
distance x from the point of closest approach 0. 

(b) Sketch an approximate graph of your answer to (a) for the case of 

(UC, Berkeley) 
= 0.80. 

Fig. 3.7. Fig. 3.8. 

Solution: 
(a) Let the rest frames of the light source S and the observer A be C 

and C’ respectively, taking the direction of the relative velocity v as along 
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the x, 2’-axes. The transformation of the wave 4-vector components is 

ckk = y(Ck, - DW), k, = k;, k: = k,,  W’ = T(W - pckx) , 
. As kx = k sin 8, k = z ,  we have * where Ikl = :, p = t ,  7 = 

w’ = y(w - pwsin8) = yw(1- psin8) . 
With sin8 = &2, w = 2nf’, w = 2nf, the above gives the observed 
freauencv as 

1 (b) If @ = 0.8, 7 = = and 

To find the shape of f ,  consider the following: 

f‘ - 5 
f - 3 ‘  
- 2 = 0, 

An approximate sketch of the graph of f is given in Fig. 3.8. 

3014 
Consider monochromatic radiation emitted at the sun with frequency 

us cps, and received at the earth with frequency u, cps. Use the Ftiemannain 
matrix form 

goo = (1 + 7 )  7 911 = g22 = 933 = -1, gp#” = 0 , 
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where 9 is the gravitational potential energy per unit mass, to derive 
the “gravitational red shift” as a function of the difference of 
gravitational potentials at the sun and earth. 

(SUNY, Buffalo) 

Solution: 

In a gravitational field it is always possible to define a frame relative 
to which the field vanishes over a limited region and which behaves as an 
inertial frame. A frame freely falling in the gravitational field is such a 
frame. A standard clock at rest in such a frame measures the local proper 
time interval. 

Consider the emission of monochromatic radiation by an atom at rest 
at point PI in a gravitational field and use a coordinate frame in which the 
atom is at rest. If the period is t in the coordinate time, the period T in 
the local proper time is 

T = t d m .  
Suppose successive crests of the radiation emitted from PI at coordinate 

times t o ,  t o  + t are received at another fixed point P2 at coordinate times 
t o  + T and t o  + T + t ,  where T is the difference between the coordinate times 
of emission at PI and reception at P2. If the gravitational field is static, T 
is a constant and the period measured in the coordinate time is 

However, a standard clock measuring the local proper time at P2 will give 
the period as 

7’ = t d z m .  
Hence the frequency Y of the line emitted at Pi and the frequency Y‘ 
observed at P2, as measured by identical standard clocks, are related by 

If P I ,  P2 are on the sun and the earth respectively, this gives the gravita- 
tional red shift as 
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3015 
A mirror is moving through vacuum with relativistic speed w in the x 

direction. A beam of light with frequency wi is normally incident (from 
2 = +oo) on the mirror, as shown in Fig. 3.9. 

(a) What is the frequency of the reflected light expressed in terms of w,, 
c and v? 

(b) What is the energy of each reflected photon? 
(c )  The average energy flux of the incident beam is Pi (watts/m2). What 

is the average reflected energy flux? 
(MITI 

Y Y '  

Fig. 3.9. 

Solution: 
(a) Let C, C' be the rest frames of the light source and observer, and of 

the mirror respectively. The transformation for angular frequency is given 
bY 

w' = -/(U - pck,),  w = y(u' + pck;) , 
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where /? = :, y = 1 For the incident light, w = wi,  k, = -?, the 
mirror perceives 

-* 

u; = y(wi + &a) = y( 1 + P)w, . 

wr = Y(W; + /?ck!J 

On reflection, w: = wl.  The observer in C will perceive 

with k: = w:/c, or 

w, = y ( 1 +  P)w:. = y2(1 +/?)"a 

= ( m ) w i = ( z ) u i  l + P  

as the angular frequency of the reflected light. 
(b) The energy of each reflected photon is 

b,= (->tiwi. c + v  
c - v  

(c) If n is the number of photons per unit volume of the beam, its 
average energy flux is ncfw. The average energy flux of the reflected beam 
is therefore 

P, = nctiw, = (-) c + v  nctiw, = (*) P, . 
c - v  c - v  

3016 

As seen by an inertial observer 0, photons of frequency u are incident, 
at an angle 8, to the normal, on a plane mirror. These photons are reflected 
back at an angle 8, to the normal and at a frequency u' as shown in Fig. 3.10. 
Find 8, and Y' in terms of 8, and u if the mirror is moving in the 2 direction 
with velocity v relative to 0. What is the result if the mirror were moving 
with a velocity v in the y direction? 

(Princeton) 

Solution: 

Figs. 3.10 and 3.11 respectively and use the transformation relations 
Let C ,  C' be the rest frames of the observer and the mirror, as shown in 
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Y Y’  

685 

Fig. 3.10. Fig. 3.11. 

W i t h k , = % = k  k -&!,=&EL 
C c ’  7 - c  ’ , we have for the incident light 

or 

kicos8: =yki(cos&+p),  k: =rk;(l+pcOSBi). 

On reflection, wk = wi ,  8: = 8i, so for the reflected light we have 

or 

i.e. 
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/ u ( l + 2 1 3 c o s ~ 1 + P ~ )  v =  
1 - p2 I 

If the mirror moves in the y-direction, the motion will have no effect on 
the reflection process and we still have 

v‘ = u , e, = B~ 

3017 

In a simplified version of the ending of one of Fred Hoyle’s novels, the 
hero, traveling at high Lorentz factor a t  right angles to the plane of our 
galaxy (Fig. 3.12), said he appeared to be inside and heading toward the 
mouth of a “goldfish bowl” with a blue rim and a red body (Fig. 3.13). 
Feynman betted 25 cents that the light from the galaxy would not look 
that way. We want to  see who was right. Take the relative speed to be 
/3 = 0.99 and the angle cp in the frame of the galaxy to  be 45” (Fig. 3.12). 

(a) Derive (or recall) an expression for the relativistic aberration and 
use it to calculate (Fig. 3.13) the direction from which light from the edge 
of the galaxy appears to come when viewed in the spacecraft. 

(b) Derive (or recall) the relativistic Doppler effect and use it to  calculate 
the frequency ratio u‘/u for light from the edge. 

(c) Calculate cpl and v l / u  at enough angles ’p to  decide who won the 
bet. 

(UC, Berkeley) 

Solution: 

(a) Let C’, C be inertial frames attached to the spaceship and the galaxy 
respectively with El moving with velocity u along the x-direction which is 
perpendicular to  the galactic plane as shown in Fig. 3.12. The velocities of 
a point, u and u’, in C and C‘ are related by the transformation for velocity 
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Y 

f 

Fig. 3.12. Fig. 3.13. 

where y = 2 with P = :. Consider light coming from a point at the 

rim of the galactic circle as shown in the figure, for which 
+F 

UZ = ccoscp, uy = csincp, U, = 0 

Then ' ccoscp-v 
u:, = ccoscp = 

1 - pcoscp ' 
or 

0.707 - 0.99 
1 - 0.99 x 0.707 

= -0.943 , - - I coscp-P coscp = 
1 - PCOS cp 

giving cp' = 160.6'. This is the angle the direction of the light makes with 
the direction of motion of the spaceship as seen by the traveler. This angle 
is supplementary to the angle cp' shown in Fig. 3.13. 

(b) The transformation for angular frequency, 

W' = T(W - Pck,) 
= Y(W - Pck cos ~ p )  

= yw(1-  Pcoscp) , 
gives - 

u' W I  1 - 0.99 x 0.707 - = - = y(1-  Pcoscp) = = 2.13 . 
u w  diTEii=F 

(c) The above result shows that the light from the rim is blue-shifted. 
For light from the center, cp = 0 and 

v' 
- = ~ ( l  - P )  = 0.071 , 
V 
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showing that it is red-shifted. The critical direction between blue shift and 
red shift is given by v' = u, or 

cos cp = 1 (1 - $) = 0.868 , 
P 

i.e. cp = 29.8". 
As the spaceship leaves the center of the galaxy, at first cp = 90" and 

U' 
- = 7 = 7.09 , 
U 

so all the light from the galaxy appears blue-shifted. As it gains distance 
from the galaxy, light from the center starts to become red-shifted. As the 
spaceship goes further out, light from a larger and larger central region 
will appear red-shifted. Only light from the rim is blue-shifted. Finally 
at a large distance away, cp = 0 and 5 = 0.071, so all the light from the 
galaxy is red-shifted. Thus the statement of Fred Hoyle's hero is correct 
and Feynman loses the bet. 

3018 

As observed in an inertial frame S, two spaceships are travelling in o p  
posite directions along straight, parallel trajectories separated by a distance 
d as shown in Fig. 3.14. The speed of each ship is c/2, where c is the speed 
of light. 

Y 

.'c X 

Fig. 3.14. 
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(a) At the instant (as viewed from S) when the ships are at the points of 
closest approach (indicated by the dotted line in the figure), ship (1) ejects 
a small package which has speed 3 4 4  (also as viewed from 5’). From the 
point of view of the observer in ship (l), at what angle must the package 
be aimed for it to be received by ship (2)? Assume the observer in ship 
(1) has a coordinate system whose axes are parallel to those of S and, as 
shown in the figure, the direction of motion is parallel to the y-axis. 

(b) What is the speed of the package as seen by the observer in ship 

( CUSPEA ) 
(I)? 

Soh t ion: 
(a) Consider the events in the frame S. The package must have uy = 5 

so that after traveling a distance Ax = d it will have the same y-coordinate 
as ship (2). Thus in S, the package must have velocity components 

Let S’ be the inertial frame attached to ship (1) with its coordinate axes 
x‘, y‘, z‘ parallel to the corresponding axes x, y, z of S. As S’ has a velocity 
v1 = - 5 ,  which is in the y-direction, relative to S, the transformation for 
velocity is given by 

where 
1 2 

Hence 

, 

Thus ship (1) must aim the package at an angle 01 with the direction of 
ship (2) given by 
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or 
a = 64.2' . 

(b) The speed of the package as seen by the observer in ship (1) is 

3019 

Two particles with the same mass m are emitted in the same direction, 
with momenta 5mc and lOmc respectively. As seen from the slower one, 
what is the velocity of the faster particle, and vice verse? (c = speed of 
light). 

( Wisconsin) 

Solution: 
In the laboratory frame KO, the slower particle has momentum 

mylvl = mylplc = 5mc , 

giving 

or 
712 = 26 . 

Similarly for the faster particle, the velocity is 

Let K1, Kz be the rest frames of the slower and faster particles respec- 
tively. The transformation for velocity between KO and K ,  which moves 
with velocity w in the z direction relative to KO, is 
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I u x - v  
u, = - u,v ' 

1-- 
C2 

Thus in K1, the velocity of the faster particle is 

In K2, the velocity of the slower particle is 

I v1 -v2 
211 v2 1-- 

C2 

= - 0 . 5 9 5 ~ ~  v1 = 

3020 
Observer 1 sees a particle moving with velocity v on a straight-line 

trajectory inclined at an angle cp to his z-axis. Observer 2 is moving with 
velocity u relative to observer 1 along the z-direction. Derive formulas for 
the velocity and direction of motion of the particle as by seen observer 2. 
Check that you get the proper result in the limit v + c. 

(UC, Berkeley) 

Solution: 
Let K, K' be the rest frames of the observers 1 and 2 respectively with 

parallel axes such that the z-axis is in the plane of v and u as shown in 
Fig. 3.15. The transformation for velocity gives 

Fig. 3.15. 
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1 v z - u  vcoscp-u 
vz=-- uv, - uv cos cp ' I - -  

C2 C2 

with--y= JW' Hence 

u 2 v 2  sin2 cp 
C2 

v 2  + u 2  - 2vucoscp - 
uv cos cp 

1-- 
C2 

- - 

Thus observer 2 sees a particle moving with velocity v' on a straight-line 
trajectory inclined at an angle cp' to the z'-axis. 

In the limit v 4 c,  

1 - -  
C 

This shows that c in any direction is transformed 
the basic assumption of special relativity that c is 

c - ucoscp 

l-- 
ucoscp = c *  

C 

into c, in agreement with 
the same in any direction 

in any inertial frame. This suggests that our answer is correct. 

3021 

(a) A photon of energy Ei is scattered by an electron, mass me, which 
is initially at rest, as shown in Fig. 3.16. The photon has a final energy 
E f .  Derive, using special relativity, a formula that relates E f  and Ei to 8, 
where 8 is the angle between the incident photon and the scattered photon. 
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(b) In bubble chambers, one frequently observes the production of an 
electron-positron pair by a photon. Show that such a process is impossible 
unless some other body, for example a nucleus, is involved. Suppose that the 
nucleus has mass M and an electron has mass me. What is the minimum 
energy that the photon must have in order to produce an electron-positron 
pair? 

(Princeton) 

Fig. 3.16. 

Solution: 
(a) The scattering is known as the Compton effect. Conservation of 

energy gives 
Ei + mec2 = Ef + Ee , 

where Ee is the energy of the electron after scattering. Conservation of 
momentum gives 

P i = P f + P e i  

where Pi and Pf are the momenta of the photon before and after scattering 
respectively, Pe is the momentum of the electron after scattering. We also 
have from the contraction of the momentum 4-vector of the electron 

E," = mqc4 + P,"c2 , 

or 
(m,c2 + Ei - Ef)2 = m$c4 + (Pi - P f ) 2 ~ 2  . 

For the photon, Ei = Pic, Ef = Pfc, and this becomes 

2mec2(Ei - Ef) + (Ei - Ef)2 = Ef + Ej - 2EiEj c-8 , 
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or 

(b) Suppose the reaction y --+ e- + e+ is possible. Then the energy and 
momentum of the system must be conserved in all inertial frames. Consider 
a frame attached to the center of mass of the created pair. In this frame, 
the electron and positron will move in a straight line passing through the 
origin away from each other with the same speed v and the total momentum 
in zero. Conservation of momentum requires that the momentum of the 
original photon is also zero. However, each particle has energy meyc2,  where 
y=- and the system has total energy 2meyc2. This must also be 

the energy of the original photon, by energy conservation. It follows that 
the original photon must have a momentum 2meyc, contradicting the result 
obtained by momentum conservation. Hence the reaction is not possible. 

Energy and momentum can both be conserved if another particle, say 
a nucleus of mass M ,  is involved. In the case the photon just has enough 
energy E to create such a pair and M is initially at rest, the pair will be 
created at rest, i.e. 

h7 

E + Mc2 = Myc2 + 2mec2 , 

with p = i, v being the velocity of the nucleus after the * where 7 = 

pair creation. Momentum conservation give 

As yP = d v ,  this gives 

2 

Y 2  = 1 + (A) 
and the energy equation becomes 

( E  + Mc2 - 2m,c2)' = E2 + M2c4 , 

giving 
~ = 2 (  M - m e  ) m , ~ .  

M - 2me 
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As A4 >> me, the minimum photon energy required is just slightly more 
than the rest energy of the created pair, 2mec2. 

3022 
(a) A cosmic ray proton collides with a stationary proton to give an 

excited system moving highly relativistically (y = 1000). In this system 
mesons are emitted with velocity Pc. If in the moving system a meson is 
emitted at an angle 8 with respect to the forward direction, at what angle 
0 will it be observed in the laboratory? 

(b) Apply the result you obtained in (a) above to mesons (rest energy 
140 MeV) emitted in the moving system with momentum 0.5 GeV/c. What 
will 0 be if 8 is go"? What will be the maximum value of 0 observed in the 
laboratory? 

(UC, Berkeley) 

Solution: 
(a) Let C, C' be the laboratory frame and a frame attached to the center 

of mass of the excited system respectively with C' moving with velocity Pc 
relative to C in the z-direction. The velocity of a meson emitted in C' with 
velocity Pc at angle 9 to the 2'-axis is transformed to C as 

Hence the meson is emitted in C at an angle 0 to the z-axis given by 

P sin 8 
tme = 

7 ( P  cos e + P)  ' 
where 

= 1000 , 

= 1 - 0.5 x lop6 = 0.9999995 . 
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(b) If 8 = go', the angle of emission 8 in C is given by 

The momentum of the emitted meson is 

p = mr@c = 0.5 GeV/c , 
m being the rest mass of the meson. Then with 7 = -&, 

- 0.5 70 = __ = 3.571 , 
0.14 

or 
= 0.963 , - 3.571 3.571 p=-=  

7 Jm 
since 

2 - -2  (7s) - 7  - 1 .  

Hence 

0'963 = 9.63 x rad = 5.52 x deg = 3.31' . Jm e=ttane= 

The maximum value of 8 is given by 

dtan8 
de 

-- - 0 ,  

i.e. 
(pcos 8 + p)  cos S + psin2 8 = o , 

or by 

Hence 

which gives 

- 0  case = -- 
P 

0.963 
0.9999995 6 = axccos (- ) = 164.4' , 

= 0.205' = 12.3' . 1 0.963 x sin 164.4' [ 1000 x (0.963~0s 164.4O + 0.9999995) e = mctm 
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This is obviously the maximum angle observed in the laboratory since the 
minimum angle is 0" for 6 = 0" and @ = 180". 

3023 

(a) Calculate the momentum of pions ( T )  that have the same velocity 
as protons having momentum 400 GeV/c. This is the most probable 
momentum that the produced pions have when 400 GeV/c protons strike 
the target at Fermilab. The pion rest mass is 0.14 GeV/c2. The proton 
rest mass is 0.94 GeV/c2. 

(b) These pions then travel down a decay pipe of 400 m length where 
some of them decay to produce the neutrino beam for the neutrino detector 
located more than 1 km away as shown in Fig. 3.17. What fraction of the 
pions decay in the 400 m? The pions' proper mean lifetime is 2.6 x sec. 

(c) What is the length of the decay pipe a~ measured by observers in 
the pion rest frame? 

(d) The pion ( 7 ~ )  decays into a muon ( p )  and a neutrino (v). (The neu- 
trino has zero rest mass.) Using the relationship between total relativistic 
energy and momentum show that the magnitude of the decay fragments' 
momentum in the pion rest frame, q, is given by 

where M is the pion rest mass and m is the muon rest mass. 
(e) The neutrino detectors are, on the average, approximately 1.2 km 

from the point where the pions decay. How large should the transverse 
dimension (radius) of the detectors be in order to have a chance of detecting 
all the neutrinos that are produced in the forward hemisphere in the pion 
rest frame? 

(UC, Berkeley) 

Solution: 
(a) The momentum of a particle of rest mass m and velocity Pc is 

P = m7Pc , 
where 7 = 1 For the same velocity 
momentum is 

is a constant. Hence the pion 0. 
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neutrino 
400 GeV detector 

proton 
beam - shielding 

focusing 
system 

Fig. 3.17. 

0 14 
P7r = (%) - 0.94 p - - x 400 = 59.6 GeV/c . 

(b) Let C,C' be the laboratory frame and the rest frame of the pions 
respectively. As 

At = 7 (At'+ y) =?At' , 

the laboratory lifetime r of the pions is equal to  yroj where TO is the proper 
lifetime of the pions and y its Lorentz factor in C. If n is the number of 
pions in the beam, we have 

or 

n = noexp (-:) , 

no being the number of pions at t = 0. For a pion of momentum 59.6 GeV/c, 

59.6 
0.14 7 P  = ~ = 425.5 , 

and 
= 0.1205 . 

400 - 
1 - t 

T ~ P C T O  425.5 x 3 x 10' x 2.6 x lo-' 

Hence the fraction of pions that decays in the pipe is 

= 0.1135 = 11.35% . 1 - e-0.1205 

(c) The length of the decay pipe in C' is by definition 1' = xi - xi, 
where x1,,x$ are the coordinates of its two ends taken at the same instant 
t'. As 

21 = y(z; + Bct ' ) ,  2 2  = y(x; + pet') , 
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we have 
5 2  - 2 1  = y(5L - 2;) 

or 
1 = yl‘ , 

i.e. 
= 0.94 m . I 1 400 400 400 1 = - = -  % - = -  

y 7 rP 425.5 

(d) The energy of a particle of rest mass m, momentum p ,  velocity pc,  
Lorentz factor y is 

E = m y 2  = m c Z J y m  = Jm2c472~2 + m2c4 

= 

since p = mypc.  Consider the decay T -, p + v in the rest frame of the 
pion. As the momentum is initially zero, the momenta of the p and Y must 
be equal in magnitude and opposite in direction, lpPl = lpvJ = q. Energy 
conservation gives 

Mc2 = & G T G G + q c ,  

use having been of the fact that the pion is at rest in C’ and that the 
neutrino has zero rest mass, which in turn yields 

M 2  - m2 ‘=( 2 M  ) “  
(e) A neutrino emitted with velocity PIC at angle 9’ to the 2’-axis in the 

rest frame of the pion, C’, is observed to move in a direction at angle 9 to 
the x-axis in the laboratory frame C, where 9 is given by (Problem 3022) 

sin gf - - B’ sin 8‘ 
tane = 

y(P’cos9’fP) y(cos9’+P) ’ 
as the neutrino, having zero rest mass, must always move with velocity c. 
For 9’ 5 5 ,  

1 1 < - = -  1 
tane 5 

r(cos9’ + p) - rP 425.5 . 
Hence 9 5 2.35 x lop3 rad. For a detector at 1.2 km away to detect all the 
neutrinos with 9’ 5 $, it must have a transverse dimension 

R = 1.2 x lo3 x 2.35 x = 2.82 m . 
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3024 

In a simplified model of a relativistic nucleus-nucleus collision, a nucleus 
of rest mass ml and speed 01 collides head-on with a target nucleus of mass 
m2 at rest. The composite system recoils at speed PO and with center of 
mass energy €0 .  Assume no new particles are created. 

(a) Derive relativistically correct relations for Po and €0. 
(b) Calculate Po and EO (in MeV) for a 40Ar nucleus impinging at 

P1 = 0.8 on a 238U nucleus. 
(c) A proton is emitted with Oc = 0.2 at 0, = 60" to the forward 

direction in the frame of the recoiling Ar + U system. Find its laboratory 
speed / 3 l  and laboratory direction 01 to within a few percent, making 
nonrelativistic approximations if they are warranted. 

(UC, Berkeley) 

Solution: 
As implied by the question the velocity of light is taken to be one for 

(a) For a system, E2 - p 2  is invariant under Lorentz transformation. In 
convenience. 

the laboratory frame C, writing 71 = 2 m' 
E2 - p 2  = (mlrl  + m2)2 - (m1-rlPd2 I 

In the center of mass frame E', El2 - pr2 = E:. Hence 

EE = (mi71 + m2)2 - (m171P1)~ 
= rn:y;(1- P; )  + 2rnlm271+ rn; 
= rn: + m3 + 2mlmzyl , 

or 

In the laboratory, the system of ml,  m2 has total momentum mly& and 
total energy mlyl + m2. These are conserved quantities so that after the 
collision the composite system will move with velocity 
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(b) The masses are approximately 

ml = 40 x 0.94 = 37.6 GeV , 
m2 = 238 x 0.94 = 223.7 GeV . 

Then 

2 x 37.6 x 223.7 
J l T 4  EO = b . 6 '  + 223.72 + 

= 282 GeV = 2.82 x lo5 MeV , 
37.6 x 0.8 

37.6 + 223.7 x Jm = 0.175 . Po = 

(c) The velocity components are transformed according to 

0 . 2 ~ 0 ~ 6 0 '  + 0.175 
1 + 0 . 2 ~ 0 ~ 6 0 ~  x 0.175 

= 0.270 , Pc5 +Po - - 
1 +&& Pl5 = 

= 0.168 , f l c u d m  0.2sin60'dl - 0.175% o =  
1 + &&I 1 + 0 . 2 ~ 0 ~ 6 0 "  x 0.175 Plv = 

so the laboratory speed and direction of emission are respectively 

Pi = d0.272 + 0.16g2 = 0.318 , 
0.168 

81 = arctan (027) = 31.9' . 

Note that as 

= 0.983 , 1 
1 + 0.1 x 0.175 

- - 1 
1 +Pczpo 

both differing from 1 by less than 4%, applying nonrelativistic approxim% 
tions we can still achieve an accuracy of more than 96%: 

Plz Pcz + PO = 0.275 , 
= PCu = 0.173 , 

0.173 
0.275 

61 = arctan (-) = 32.2' . 
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3025 

In high energy proton-proton collisions, one or both protons may 
“diffractively dissociate” into a system of a proton and several charged 
pions. The reactions are 

(1)  P + P + P + (P + nr),  
(2) P + P +  ( p + n r ) + ( p + m 7 r ) .  

Here n and m count the number of produced pions. 
In the laboratory frame, an incident proton of total energy E (the 

projectile) strikes a proton at rest (the target). Find the incident proton 
energy EO that is 

(a) the minimum energy for reaction (1) to take place when the target 
dissociates into a proton and 4 pions, 

(b) the minimum energy for reaction (1) to take place when the projec- 
tile dissociates into a proton and 4 pions, 

(c) the minimum energy for reaction (2) to take place when both protons 
dissociate into a proton and 4 pions. 

m, = 0.140 GeV , rnp = 0.938 GeV . 
( Chicago ) 

Solution: 
The quantity E2 - p 2  for a system, where we have taken c = 1 for 

convenience, is invariant under Lorentz transformation. If the system 
undergoes a nuclear reaction that conserves energy and momentum, the 
quantity will also remain the same after the reaction. In particular for a 
particle of rest mass m, 

E2 - p 2  = m 2 .  

(a) The energy for the reaction 

P + P + P + (P + 4r) 
is minimum when all the final particles are at rest in an inertial frame, 
particularly the center of mass frame C’. Then in the laboratory frame C, 

E 2 2  - p  = ( E o + m  P ) ’ - ( ( E 2 -  m i )  = 2rn,Eo + 2mi , 

El2 - pt2 = (2m, + 4m,)2 , 
and in C’, 
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so that 
2mpE0 = 2mi + 16mpm?r + 16m: , 

giving 
m; + 8 m P m T  + 8mq 

mP 
Eo = = 2.225 GeV 

as the minimum energy the incident proton must have to  cause the reaction. 
(b) Since both the initial particles are protons and the final state 

particles are the same as before, the minimum energy remains the same, 
2.225 GeV. 

(c) For the reaction 

P + P  -+ (P+4T) + (P+ 4T) , 
we have 

(Eo + mP)’ - ( E i  - mg) = ( 2 m ,  + 8m,)’ , 
giving the minimum incident energy as 

mi + 1 6 m p m a  + 32m: 

mP 
Eo = = 3.847 GeV 

3026 
Consider the elastic scattering of two spinless particles with masses m 

and p as shown in Fig. 3.18. The Lorentz-invariant scattering amplitude 
(S-matrix element) may be considered as a function of the two invariant 
variables 

s = ( K ~  + P ~ ) ~  - (K + P ) ~  

and 
t = (KA - KO)’ - (K’ - K)’ 

with K 2  = Kt2 = p2 and P2 = PI2 = m2. Obtain the physical (i.e. 
allowed) region in the (5, t )  manifold. Compute the boundary curve t ( s )  
and make a qualitative drawing. 

( Chicago ) 
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mass p mass m 

Fig. 3.18. 

Solution: 
In the elastic scattering 

k + p + k ’ + P ’  , 

if the system is isolated, the total energy-momentum 4-vector is conserved: 

K + P =  K ’ + P ‘ .  

In the center of mass frame of the system, the total momentum is zero: 

K’ + P’ = K + P = 0 ,  

Thus 

s = (KO +Po)’ - (K + P)’ = (KO + Po)’ 
= ( d s T p  + JSTG)’ 
= (JsT j2  + J S G F ) 2  , 

as P2 = K2 in the center of mass frame, and 

t = (Kh - KO)’ - (K’ - K)’ 
= -(K’ - K)2 

= -(K” + K2 - 2K’. K) 
= -2K2(1 - C O S ~ )  , 

where 6 is the angle of scattering of k, as the scattering is elastic. 

6 varies from 0 to 7r: 
To find the physical region in the (5 ,  t) manifold, consider cos 6, where 
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e = o ,  cos8=1,  t = O ;  
8 = T ,  C O S ~  = -1, t = -4K2 . 

Hence the physical region is given by 

t < o  and s ~ ( J < + / q ) ' ,  

the boundaries being t = 0 and that given by 

or 

4m2p2 - (s - m2 - p2)2 t =  
9 

= --[s 1 - (m + p)2][8 - (m - PI2]  . S 

The physical region is shown as shaded area in Fig. 3.19. 

Fig. 3.19. 

3027 
Consider the pion photoproduction reaction 

7 + P - + P + T 0  9 

where the rest energy is 938 MeV for the proton and 135 MeV for the 
neutral pion. 
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(a) If the initial proton is at rest in the laboratory, find the laboratory 
threshold gamma-ray energy for this reaction to  "go". 

(b) The isotropic 3K cosmic blackbody radiation has an average photon 
energy of about lop3 eV. Consider a head-on collision between a proton 
and a photon of energy lop3 eV. Find the minimum proton energy that 
will allow this pion photoproduction reaction to go. 

(c) Speculate briefly on the iniplications of your result [for part (b)] for 
the energy spectrum of cosmic-ray protons. 

(UC,  Berkeley) 

Solution: 
(a) The quantity E2 - P2c2 is invariant under Lorentz transformation 

and for an isolated system is the same before and after a reaction. The 
threshold y-ray energy is that for which the final state particles are all at 
rest in the center of mass frame. Thus 

2 

(E-, + mpc2)2 - (+) c2 = (m, + m,)2c4 , 

where E, is the energy of the photon and % its momentum, giving 

(m: + 2m,m,)c4 
2m,c2 

E-, = = 144.7 MeV 

as the threshold y-ray energy. 

momenta are opposite in direction. Then 
(b) That the proton collides head-on with the photon means that their 

C 
c2 = (m, + m,)2c4 , 

where y = 1 /3c being the velocity of a proton with the minimum 

energy to  initiate the photoproduction reaction, giving 
G' 

with E, = lo-' MeV. As this implies y >> 1, we can take /3 = 1. Hence 
y = 7.235 x lo1" and the minimum proton energy is 

Ep = 0.938 x 7.235 x lo1' = 6.787 x 10" GeV . 
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(c) The result implies that the part of the energy spectrum of cosmic-ray 
protons with E > 6.79 x lo1' GeV will be depleted to some degree due to 
interaction with the cosmic blackbody radiation. 

3028 
A beam of lo6 Ki' mesons per second with /3 G f = 5 is observed to 

interact with a lead brick according to the reaction 

K; + Brick + K," + Brick 

with the internal state of the lead brick identical before and after the reac- 
tion. The directions of motion of the incoming KF and outgoing K," may 
also be considered to be identical. (This is called coherent regeneration.) 

Using 

m(Kl)  = 5 x lo8 eV/c2 , 
m(Kl)  - m(K,) = 3.5 x eV/c , 

give the magnitude and direction of the average force (either in dynes or in 
newtons) exerted on the brick by this process. 

(UC, Berkeley) 

Solution: 
Denote m(Kl),m(K,) by mi,m, respectively. 

meson, the energy and momentum are respectively 
For an incoming Kl 

1 
q = r n l y ~ c = f i . - m l c = m l c .  

Since the internal state of the lead brick remains the same after the reaction, 
the energies of the beam before and after the reaction must also be the same. 
Thus 

El = E, . 

Jz 

As 



708 Problems & Solutions on Mechanics 

P,c 2 2  = Ez - m,c 2 4  

= E: - m,c 2 4  = 2m;c4 - [ml - (ml - ma)]  2 4  c 

M m;c4 + 2ml(ml- m,)c4 

or 
2 PaC M mlc2 + (ml - m,)c2 = a c  + (ml - m,)c 

as ml - m, << ml. Hence 

(Pa - 8)  M (ml - m,)c = 3.5 x eV/c . 
The change of momentum per second of the beam due to the reaction is 

This is the average force exerted by the brick on the beam. As the 
momentum of the beam becomes larger after the interaction, this force is 
in the direction of the beam. Consequently the force exerted by the beam 
on the brick is opposite to the beam and has a magnitude 1.87 x N. 

3029 

A T meson with a momentum of 5m,c makes an elastic collision with a 
proton (mp = 7m,) which is initially at rest (Fig. 3.20). 

Fig. 3.20. 

(a) What is the velocity of the c.m. reference frame? 
(b) What is the total energy in c.m. system? 
(c) Find the momentum of the incident pion in the c.m. system. 

( UC, Berkeley) 
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Solution: 
(a) The system has total momentum P = p ,  = 5m,c and total energy 

E = d m  + mpc2 = dEmnc2 + 7m,c2 . 
Hence it moves with a velocity B, which is also the velocity of the cm.  
system, in the laboratory given by 

(b) E2 - P2c2 is invariant under Lorentz transformation, so the total 
energy E' in the c.m. Erame is given by 

E2 - p2c2 = El2 , 

as the total momentum in the c.m frame is by definition zero. Hence 

El2 = (a + 7)2m:c4 - 25m:c4 = ( 1 4 d E  + 50)m:c4 , 

(c) The total energy in the c.m. frame is 

E ' = d m + d & i j 2  

since lpb1 = lp:I in the c.m. frame and mp = 7m,. From (b) we have 
E' = d m  mxc2. Substituting this in the above and solving for 
p k ,  we have 

35m,c 
= 3.18m,c . 

50 + 1 4 a  

3030 
High-energy neutrino beams at Fermi laboratory are made by first 

forming a monoenergetic 7r+ (or K+) beam and then allowing the pions 
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to decay by T+ -t p+ + v. Recall that the mass of the pion is 140 MeV/c2 
and the mass of the muon is 106 MeV/c2. 

(a) Find the energy of the decay neutrino in the rest frame of the T+. 

In laboratory frame, the energy of the neutrino depends on the decay 

(b) Find the energy of a neutrino produced in the forward direction 

(c) Find the angle f3 at which the neutrino’s energy has fallen to half of 

angle 0 (Fig. 3.21) .  Suppose the T+ beam has an energy of 200 GeV. 

(e = 0). 

its maximum energy. 
( Chicago ) 

Fig. 3.21. 

Solution: 
(a) For convenience use units such that c = 1 ( m , E , p  are all in 

MeV). Consider the Lorentz-invariant and conserved quantity E 2  - p 2 .  In 
laboratory frame, before the decay 

E 2 2  - p  = E i - p : = m : .  

In the rest frame of the pion, after the decay 

- (ph + P:)~ E’2 - pt2 = (EL + 

= 2p:” + m; + 2 p : & 5 3  , 

as p: = -pL, and EL = p;  assuming the neutrino to have zero rest mass. 
Equating the above two expressions gives 
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(b) ln the laboratory frame (Fig. 3.21), momentum conservation gives 

p, =p,cos8+ppcosa, p , s in8=pps ina ,  

and energy conservation gives 

E, = E, + Ell 

As p, = E,, p: = EE - m:, the last two equations give 

m2, - m2 
2(Em - p ,  cos8) ’ 

Pu = 

As E, >> m,, we have 

p, =En/%- E, [l- f (2)2] , 

and hence 

For neutrinos emitted in the forward direction, 8 = 0 and 

E,NN 1- - ET=85.4GeV . [ (32] 

E, is maximum €or neutrinos emitted at 8 = 0. For E, at half the maximum 
value, i.e. 

( mz ) 2 - 2Ei - (2E: - mz)cos8 ’ 
m: - m i  E, - (mz - EE)ET 



712 Problems -55 Solutions on Mechanics 

as 8 is obviously small. Hence 

m, 
E, 

8 = - = 0.0007 rad = 2.4’ . 

3031 

(a) A particle of mass ml = 1 g traveling at 0.9 times the speed of 
light collides head-on with a stationary particle of mass m2 = 10 g and 
is embedded in it. What is the rest mass and velocity of the resulting 
composite particle? 

(b) Now suppose ml to be stationary. How fast should m2 be moving 
in order to produce a composite with the same rest mass as in part (a)? 

(c) Again, if ml is stationary, how fast should m2 be traveling in order 
to produce a composite that will have the same velocity that you found for 
the composite in part (a)? 

(SUNY,  Buflalo) 

Solution: 

energy and of momentum give 
(a) Let the composite have mass m and velocity pc. Conservation of 

m y 2  = (mlyl+ m2)c2, mypc  = m l y A c  . 

where y = etc. Hence m’ 

Thus the composite has rest mass 12.1 g and velocity 0.168~.  
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(b) The roles of ml and m2 are now interchanged so that 

which is the same expression as before with p1 --t P2.  Then as rnl,mz, m 
remain the same, /32 must have the value of p1 before, that is, m2 must 
move with velocity 0.9~. 

(c) As in (b), we have 

m2Pz 

m2 + m l J m ;  ’ 
P =  

or 
2 2  2 (mi + mlP )p2 - 2m3& + (mi - m:)p2 = 0 .  

As m$ >> mipa, the above can be reduced to 

m2,& - 2m3?~2 + (mi - m:)p2 = o , 

pz= (1+%)/3=0.185, m2 p =  

Hence m2 should travel at 0.185~ or 0.151~. 

3032 
A particle with mass m and total energy Eo travels at a constant velocity 

V which may approach the speed of light. It then collides with a stationary 
particle with the same mass m, and they are seen to scatter elastically at 
the relative angle 8 with equal kinetic energies. 

(a) Determine 8, relating it to m and Eo. 
(b) Find the numerical value of 8 in the following limits: 

(i) low energy (V << c) ,  
(ii) high energy (V N c) . 

(SVNY, Buflalo) 
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Solution: 
(a) As the elastically scattered particles have the same mass and the 

same kinetic energy, their momenta must make the same angle g with the 
incident direction and have the same magnitude. Conservation of energy 
and of momentum give 

mc2 + Eo = 2E, 

where E , p  are the energy and momentum of each scattered particle. Squar- 
ing both sides of the energy equation we have 

m2c4 + Ei  + 2Eomc2 = 4(p2c2 + d C 4 )  , 
or 

Pic2 E: - m2c4 
E i  + 2Eomc2 - 3m2c4 = ~ = 

cos2 (;) cos2 ( g )  ' 
giving 

(b) (i) V << c,  Eo M mc2,  

giving 
7r e x -  
2 

(ii) V 4 c, EO >> mc2, 

cos (;) M 1 , 

giving 0 M 0. 

3033 
Of particular interest in particle physics at present are weak interac- 

tions at high energies. These can be investigated by studying high-energy 
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neutrino interactions. One can produce neutrino beams by letting IT and 
K mesons decay in flight. Suppose a 200 GeV/c IT meson beam is used to 
produce neutrinos via the decay IT + p + u. The lifetime of a IT meson is 
7,i = 2.60 x lo-' s in its rest frame, and its rest energy is 139.6 MeV. The 
rest energy of the muon is 105.7 MeV, and the neutrino is massless. 

(a) Calculate the mean distance traveled by the pions before they decay. 
(b) Calculate the maximum angle of the muons (relative to the pion 

(c) Calculate the minimum and maximum momenta the neutrinos can 

(UC, Berkeley) 

direction) in the laboratory. 

have. 

Solution: 
(a) Let m be the rest mass of a pion. As myPc2 = 200 GeV, we have 

200 
0.1396 

70 = d m  = - = 1432.7 

and can take 
O X  1, y =  1433. 

On account of time dilation, the laboratory lifetime of a pion is T = 77, = 

1433 x 2.6 x lo-' = 3.726 x s. So the mean distance traveled by the 
pions before they decay is 

TC = 3.726 x x 3 x 10' = 1.12 x lo4 m = 11.2 km . 

(b) The total energy of the system in the rest frame C' of the pion is 
its rest energy mTc2. Conservation of energy requires that for 7r + ,LL + u,  

m,c2 = EL +EL , 

the prime being used to denote quantities in the C' frame. As the total 
momentum is zero in C', p; = -pL and EL = pLc = p;c, assuming the 
neutrino to have zero rest mass. Thus 

1 2  ' 2 2 -  1 2 2 =  2 4  (m,c2 - E,) = p ,  c -p,c EF - m,c , 

giving 
(m: + mz)c2 

2% 
E' = = 109.8 MeV c1 
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Take the x'-axis along the direction of motion of the pion. Transformation 
equations for the muon momentum are 

C 

p ,  sin e = pL sin 8' , 

giving 

For 8 to be maximum, we require 

dtan8 
do' 

-_  - 0 ,  

which gives 

or 8' = 105.7". This in turn gives 

e = 0.0112" = 0.675' . 
Note that this is the maximum angle of emission in the laboratory since 
the minimum angle is 0, corresponding to 8' = 0. 

(c) The neutrino has energy 

EL = m,c2 - EL = 139.6 - 109.8 = 29.8 MeV 

and momentum p: = 29.8 MeV/c in El. EL can be transformed to the C 
frame by 

E, = y ( ~ :  + pp:ccosei) . 

p,=7( i+Pcose i )p : .  

As E, = pvc, EL = pLc, the above can be written as 

Hence neutrinos emitted in the forward direction of the pion rest frame, i.e. 
8' = 0,  will have the largest momentum in the laboratory of 

( P v ) m ,  = Y ( 1 +  P M  = 7 2yE' - - 8.54 x lo4 MeV/c , 
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while neutrinos emitted backward in C' will have the smallest momentum 
in the laboratory of 

3034 

A K meson of rest energy 494 MeV decays into a p meson of rest energy 
106 MeV and a neutrino of zero rest energy. Find the kinetic energies of 
the p meson and neutrino into which the K meson decays while a t  rest. 

( VC, Berkeley) 

Solution: 

Conservation of energy gives 

as p,, = -p,, or p, = p,, for momentum conservation. Hence 

Thus 

= 235.6 MeV , 

= 258.4 MeV . 

Therefore the kinetic energy of the neutrino is 235.6 MeV, and that of the 
muon is 258.4 - 106 = 152.4 MeV. 



718 Problems €4 Solutions on Mechanics 

3035 
The dot product of two four-vectors 

is here defined as 
A ' " B , = A " B " - A . B .  

Consider the reaction shown in Fig. 3.22 in which particles of masses ml 

and m2 are incident and particles of masses m3 and m4 emerge. The p's 
and 9's are their four momenta. The variables given below are commonly 
used to describe such a reaction: 

s = (91 + P d 2 ,  t = (91 - q 2 ) 2 ,  u = (gl - p 2 ) 2  . 

(a) Show that 
4 

a= I 

(b) Assume the reaction is elastic scattering and let 

ml = m3 = p,  m2 = m4 = m . 

In the c.m. frame let the initial and final three-momenta of the particle of 
mass p be k and k' respectively. Express s, t and u in terms of k and k', 
simplifying as much as possible. Interpret s, t and u. 

(c) Assume that in the laboratory frame the particle of mass m is 
initially at rest. Express the initial and final laboratory energies of particle 
p, as well as the scattering angle, in terms of s ,  t and u. 

(SUNY, Buflulo) 

Fig. 3.22. 



Special Relativity 719 

Solution: 
Use units for which the velocity of light c = 1 for convenience. 

(a) q2 is defined as qaqa with qo = (q', q), qa = (q', -q). The quantity 
qoqa is invariant under Lorentz transformation. Evaluating it in the rest 
frame of the particle: 

q 2 = (qo)2  - q2 = E2 - q2 = m2 . 

s + t + u = (Q1 + P d 2  + ((11 - q 2 I 2  + (91 - P2I2 

Now 

= d + q ; + P q + P ; + 2 q l * ( q l  - q 2 + P l  -P2) 

= m; +mi +m; +m: +2q1.  (q1-  q2 + P l  - p z )  1 

As the 4momenta satisfy the energy-momentum conservation law 

Q1 +P1 = 42 +PZ 7 

we have 
4 

i=l 
(b) In the center of mass frame, 

Hence 

and 

3 = (Q1 + P d 2  = q; + p :  + 2q1 'PI 
= p2 + k2 - k2 + m2 + k2 - k2 + 2 d ( p 2  + k2)(m2 + k2) + 2k2 

= p2 + m2 + 2 d ( p 2  + k2)(m2 + k 2 )  + 2k2 , 
t = ((21 - q2)2 = 4; + q; - 2q1 - q2 

= 2p2 - 2 d ( p 2  + k2)(p2 + P 2 )  + 2k - k' , 
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Thus, 

is the square of the total energy of the incident particles in the center of 
mass frame, t is the square of the forward transfer and u is the square of 
the backward transfer of 4-momentum during the collision. s, t, u which are 
Lorentz invariant quantities are known as Mandelstam variables. 

(c) In the laboratory frame, we have 

and 

2 
9: = Q;IQla = p , 922 = p 2  7 

91 + Pl = q2 + P2 * 

Then 

~ = ( ~ l + P 1 ) 2 = 9 : + P : + 2 9 1 ' P l  

t = (91 - q2I2 = 9: + q; - 2q1 .92 

' 1 L = ( 9 1 - P 2 ) 2 = ( 4 2 - P 1 ) 2 = 4 ; + P : - 2 q 2 ' p ,  

= p2  +m2 +2q?m, 

= 2p2 - 29:9; + 2% . q 2  , 

= p2 + m2 - 2qgm . 

Hence the initial laboratory energy of particle p is 

s - p 2 - m 2  
q ? =  2m , 

the final laboratory energy of p is 

-u + p 2  + m2 
q;= 2m , 

and the scattering angle 0 is given by 
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3036 
The following question is a question on Newtonian gravity. 

(a) Calculate the radius and density of a solar-mass star (M = 2x g) 
from which light could not escape. 

(b) The universe can be thought of as a sphere of gas of uniform density 
p ( t )  and zero total energy expanding against its self-gravity. Show that if 
pressure can be neglected the interparticle distance increases as t2I3. 

(UC, Berkeley) 

Solution: 
(a) By the equivalence of mass and energy, a photon of energy E = mc2 

has an equivalent mass m. The potential of a particle of mass m at the 
surface of a star of mass M and radius R is 

G M m  V=-- 

where G is the constant of gravitation. Hence for the photon to escape the 
star, we require E + V 2 0, or E 2 -V. Conversely the photon will be 
confined to the star if E 5 -V, i.e. 

R '  

GMm 
mc2 I - R '  

or 

= 1.48 x lo5 cm = 1.48 km . GM 6.67 x 10-8 x 2 x 1033 
(3 x 1010)Z 

- R S - -  
C2 

The density p of the sun must then be 

2 x 1033 
p 2 M (i -xR3 )-' = (i) (1.48 x 105)3 

= 1.47 x 10-l x 1033 = 1.47 x 1017 g/cm3 
1015 

Note that this result is consistent with the gravitational red shift. A photon 
of frequency u emitted by the star will have a frequency u' at a large distance 
from it, where 

( Z) u ' = u  1 - -  
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For the photon to escape the gravitational field of the star we require that 
v' 2 0, or 

GM 
R 2 -  

c2 . 
(b) In the expansion of a gas under the condition of uniform density, the 

distance between two given particles is proportional to the linear dimension 
of the gas and the position of any gas particle can be taken to be the center 
of expansion. Consider two gas particles A,  B separated by a distance R. 
We can treat A as at the center of expansion and B as on the surface of 
a sphere with center at A.  According to  Newton's law of gravitation, B 
will suffer an attractive gravitational force toward A of - per unit mass, 
where M = $7rR3p, p being the density of the gas, is the mass of the sphere 
of gas. Note that the mass of the gas outside the sphere does not exert a 
net force on B. Neglecting pressure the equation of the motion of B is 

Writing 
d2R dkdR 1 d R 2  
dt2 dR dt 2 dR 

and noting that M does not change during the expansion, we have by 
integration 

- - - - -- - -__ 

R2 G M  
2 R 

k2 GM 
2 R  

- + K ,  - -- 

or 
K = - - - -  - T + V ,  

T ,  V being the kinetic and potential energies of the particle per unit mass. 
K = 0 if the total energy is zero. Hence 

- "=*/%.  
dt 

The positive sign has to  be taken for expansion. Integrating, we have, with 
R = I& at t = to, 

2 
- ( R j  - R j )  = m ( t  - t o )  . 
3 

At large t >> t o ,  R >> & and 

R c c t z .  
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3037 
An astronaut takes an ordinary flashlight, turns it on, and leave it out 

in space (spin-stabilized by some rotation about its axis). What additional 
speed will this “photon-rocket” have gained by the time the batteries give 
out in two hours? 

(Columbia) 

Solution: 
Suppose the flashlight bulb is located at the focus of a paraboloid 

reflector so that almost the entire light output goes out in one direction. If 
the power of the flashlight is N watts and the time interval it is turned on 
is t ,  the total energy of the photons emitted is E = N t .  If the orientation 
of the flashlight does not change, it will gain a momentum 

E N t  m u = - = -  
c c  

or an additional speed 
N t  
mc 

v = -  

m being the mass of the flashlight, since a photon of energy E has a 
momentum E. 

For example, if N = 1 W, m = 0.3 kg, t = 2 hours, 

1 x 2 x 3600 
0.3 x 3 x lo8 V =  = 8 x m/s . 

3038 
A hypothetical flashlight emits a well-collimated beam and is capable of 

converting a significant fraction of its rest mass into light. If the flashlight 
starts at rest with mass mo, and is then turned on and allowed to move 
freely along a straight line, find its rest mass m when it reaches a velocity 
v relative to its original rest frame. Do not assume c >> o. 

(UC, Berkeley) 

Solution: 

Let the total energy of all the photons emitted before the light reaches 
the velocity o = pc be E. Then the total momentum of the photons is 
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and is opposite in direction to v. Let the rest mass of the flashlight be m 
when its velocity is w. Conservation of energy gives 

m y 2  + E = moc2 , 

and conservation of momentum gives 

with y = - Eliminating E from the above gives m’ 
m y U +  P )  = mo 1 

3039 
A particle of charge q,  mass m moves in a circular orbit of radius R in 

(a) Find B in terms of q,  R, m, and the angular frequency w. 
(b) The speed of the particle is constant (since the B field does no work 

on it). An observer moving with uniform velocity PX does not, however, 
see the particle’s speed as constant. What is ub ( the zero component of 
the particle’s Pvelocity) as measured by this observer? 

(c) Calculate $$ and , thus, $. How can the energy of the particle 
change? 

(Princeton) 

the zy-plane in a uniform magnetic field B = Bz. 

Solution: 
(a) The equation of motion of the particle in the laboratory is 

d P  - = ~ u x B .  
dt  

As p and u are parallel, 

d p  1 dp2 p .  - = _ _  - - qp .U x B = 0 .  
d t  2 d t  
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Hence p2 and thus the magnitude of p and u are constant. It follows that 

1 

is also a constant. 
written as 

with w = qB/my,,. 

Then, as p = rn~,,u, the equation of motion can be 

du 
dt 

= u x w  - 

As 

= (5, ?j, O), w = ( O , O ,  w )  , 
it becomes 

X=&, y=-j.w, 2=0. 

Since the motion is confined to the xy-plane, the e equation need not be 
considered. The other two equations combine to give 

i'+ i w i  = 0 

e = pe-'("t+'P) + to , 
by putting x + i y  = <. It has general solution 

where p,cp are real constants and 
is equivalent to 

is a complex constant. This solution 

x - xo = Rcos(wt + cp), y - yo = -Rsin(wt + cp) , 
showing that the motion is circular with a radius R given by 

u = @ q L R w ,  

w being the angular velocity of revolution. Hence 

1 nw 1 

(b) Let S,S' be respectively the laboratory frame and the rest frame 
of the moving observer. The zeroth component of the velocity four-vector, 
defined as ua = (-y,c, .y,,u), transforms according to 

7:. = 7(7d - P r u 4  1 
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where y = 1 Thus 

uI = ' 0 - 7uc = yyu(c - 

JcjF. 

= yyu(c + PwRsin(wt + cp)] 

= yyu [c + Pu sin(Wir + cp)l > 

where r is the proper time of the particle. Thus u& is not constant in S'. 
(c) 

- du6 = yytpwu cos(wyur + cp) 
d r  = R ( g )  2 P  d7cos 

1 - P  

If the four-momentum is defined as p" = (rnuo, p ) ,  then, as rn is a constant, 

which signifies a change of energy 

d E  dpL 
d r  d r  
- = c- 

Note that in the S' frame, the electromagnetic field is given by 

so that there is also an electric field in the S' frame which does work on 
the particle. 

3040 

When two beams of protons of kinetic energy T collide head-on, the 
available energy for reactions is the same as for a single beam of what kinetic 
energy colliding with stationary protons? (Use relativistic expressions). 

( UC, Berkeley) 
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Solution: 
The quantity E2 - p 2  for a system is invariant under Lorentz trans- 

formation. Consider the head-on collision of two protons, each of kinetic 
energy T ,  and suppose that in the rest frame S' of one of the protons the 
other proton has total energy E' and momentum p'. As in the laboratory 
frame the total momentum of the two protons is zero, we have 

(2mc2 + 2T)2 = (E' + mc2)2 - pt2c2 
= (El + mc2)2 - (El2 - m2c4) 
= 2E'mc2 + 2m2c4 , 

or 
2T2 + 4Tmc2 + m2c4 

mc2 
where m is the rest mass of the proton. Hence the energy available for 

E' = 

reactions is 
2T2 + 4Tmc2 E' - mc2 = n 

mcL 

3041 
A photon of momentum p impinges on a particle at rest of mass m .  
(a) What is the total relativistic energy of photon plus particle in the 

(b) What is the magnitude of the particle's momentum in the center of 

(c) If elastic backward scattering of the photon occurs, what is the 

( UC, BerkeZey ) 

center of mass frame of reference? 

mass frame? 

momentum of the final photon in the laboratory frame? 

Solution: 

under Lorentz transformation: 
(a) Consider the quantity E2 - P2c2 of the system which is invariant 

(pc + mc2)2 - p2c2 = El2 , 

where El is total energy of the system in the center of mass frame, which 
is by definition the inertial frame in which the total momentum vanishes. 
Hence 
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(b) In the center of mass frame, the total momentum P’ = 0 and p the 
momentum of the particle is equal and opposite to that of the photon p‘. 
Momentum transformation 

gives 
P c  1 p = - =  pc 
E p c + m c 2 ’  ’=,/- 

for the center of mass frame. The particle momentum in the center of mass 
frame is then, using the transformation equation again, 

(c) Let the final momenta of the photon and the particle be -p l  and p2 
respectively. Conservation of energy and of momentum give 

These combine to give 

or 

3042 

We consider the possibility that one of the recently discovered particles, 
the $’ (3.7), can be produced when a photon collides with a proton in the 
reaction 

’ + P  - + P + $ ‘ .  
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In this problem we shall take the mass of $' to be 4Mp, where Mp is the 
proton mass, which is a reasonable approximation. The target proton is 
initially at rest and the incident photon has energy E in the laboratory 
system. 

(a) Determine the minimum energy E that the photon must have for 
the above reaction to be possible. The answer can be given in units of MPc2 
(=938 MeV). 

(b) Determine the velocity, i.e. v /c ,  for the $' particle when the photon 
energy E is just above the threshold energy Eo. 

(UC, Berkeley)  

Solution: 
(a) At threshold, the final-state particles p,+' are stationary in the 

center of mass frame. Using the fact that the quantity E2-P2c2 is invariant 
under Lorentz transformation and for an isolated system is conserved, we 
have, as a photon of energy E has momentum 5, 

(Eo + M P c ~ ) ~  - E i  = (M,c' + 4 ~ 4 , ~ ~ ) ~  , 

giving 
Eo = 12M,c2 

as the threshold photon energy. 
(b) Near threshold, the $' is produced at rest in the center of mass 

frame, so its velocity in the laboratory is the 
i.e. of the system: 

Pc2 EOC v = - =  
E Eo +MPc2 

velocity of the center of mass, 

12 
13 
-c . - - 

3043 

An antiproton of energy EO interacts with a proton at rest to produce 
two equal mass particles, each with mass m,. One of these produced 
particles is detected at an angle of 90' to the incident beam as measured 
in the laboratory. Calculate the total energy (E8)  of this particle and show 
that it is independent of m, as well as of Eo. 

(UC, Berkeley)  
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Solution: 

depicted in Fig. 3.23. Momentum conservation gives 

p1 = p2 sin 8 , 

Antiproton and proton have the same mass m, say. The collision is 

po = p2 cos 8, 

or 
p;  = P i  + P? 

Fig. 3.23. 

Energy conservation gives 

E~ + mc2 = E, + dpic2 + m;c4 . 

Combining the last two equations gives 

(Eo + mc2)2 + E," - 2(Eo + mc2)E, = pic2 + p:c2 + mac4 , 

or 
2m2c4 + 2Eomc2 = ~ ( E o  + mc2)ES , 

since E i  = p8c2 + m2c4, E," = pfc2 + m%c4. Hence 

E, = mc2 . 
It is seen that E,  depends only on the proton mass but is independent of 
either m, or Eo. 

3044 

(a) A particle of mass m and charge e moves at relativistic speed v 
in a circle of radius R, the orbit being normal to  a static, homogeneous 
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magnetic field B as shown in Fig. 3.24. Find R in terms of the other 
parameters (radiation may be ignored). 

(b) An observer 0‘ moving at fixed velocity v along the y-axis sees an 
orbit that looks like Fig. 3.25. The points a , b , c , d , e  on the two figures 
correspond. 

(i) What is the distance y; - y;I measured by O’? 
(ii) What is the acceleration $$ of the particle at  c, where it is instan- 

(iii) What causes the acceleration at c as seen by O’? 
taneously at rest? 

(Princeton) 

Fig. 3.24. Fig. 3.25. 

Solution: 
(a) If p is the momentum of the particle, we have 

* = e v x B ,  
dt 

and thus 
p . d t = Z d t =  d~ l d p 2  e m y v . v x ~ = O ,  

where 7 = *. Hence p and so y and w have constant magnitudes. As 

shown in Prbblem 3039, the orbit is a circle of radius R given by v = Rw, 
where 

(b) Let C,C’ be the laboratory frame and the frame of the moving 
observer respectively, with C’ moving relative to C in the y-direction with 
velocity -w. Lorentz transformation becomes 
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y' = y(y - act> = T(Y + vt> 7 

z' = 2, x' = 2 , 
ct' = y(ct - py) = ,-y (ct + --) V Y  , 

&s p = - x  

(i) As 

V7r 
= y  ( - 2 R + - )  W 

(7r - 2)yv (7r - 2)mv - - - - 
W eB (1 - $) 

(ii) At point c, 4 = 0, 2 = -v, 

d2x -v2 
_ _ -  - - (centripetal acceleration) , 
dt2 R 

d2Y - = o  (tangential acceleration) . 
dt2 

The velocity component $ transforms according to 

In a similar way, 
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-=-( d2x' d dx' ) -  1 
dtl2 dt' dt' 

dx 1 - 

- 2 -yevB ----'yvw=-* 
m 

- v + v  dy' 3 + v  
dtt I +  3% 1 - va  2 

At point c, 

=-=o.  

As $$ = 0, $$ = 0 also, the particle velocity u' = 0. 

- =  

(iii) The transformation equations for the electromagnetic field are 

Eh = E,, = 0, 
EL = 7 ( E Z  - P C B ~ )  = 0, 

EL = r(Ez + @B,) = -TUB , 

BL = B, = 0,  

BI = 7 (Bz  + P ;Ex) = y B  , 

(In the usual geometry let y replace 2, z replace y, x replace z to obtain 
the above). Then in C' the Lorentz force acting on the particle at c is 

F' = e(E' + u' x B') = eE' , 

or 
F' = Fi = -7evB , 
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and the acceleration is -?, in agreement with (b). Hence the accelem 
tion arises because of the presence of an electric field in C'. 

3045 

A charged particle (with charge e and rest mass rn) moves in an electrc+ 
magnetic field which is constant in space and time and whose components 
are E = (a ,  0 , O )  and B = ( O , O ,  b)  in a Lorentz frame S. It is assumed that 
(El # IBIS State the differential equations for the particle's four-vector 
velocity (as function of the proper time). Show that the solutions may be 
expressed as superpositions of exponentials, and determine the exponents. 
Under what conditions (on E and B) are all components of the four-velocity 
bounded along every trajectory? 

(Princeton) 

Solution: 
The motion of the particle is described by the 4-vector equation 

dP" - = = a ,  

d s  

where d s  = cdr,  r being the proper time of the particle, 

F* = (TF, L u .  F) , 
c 

with y = 1 and u being the velocity of the particle. 

The force acting on the particle is the Lorentz force 

F = e ( E + u x B ) .  

With u = (ux,uy,uz), E = (a,O, 0), B = (O,O,b), and u.F = eu.E = emuz, 
we have 

a + buLz/, -hX, 0,"") 
C 

Hence the equations of motion are 
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dul e 
d r  c m -  = -(cbu 2 + a=4), 

duz 
d r  

du3 

m-=-ebul  , 

m - = O ,  
dr 

du4 eaul 
d r  C 

m - = - .  

Thus 213 is a constant and need not be considered further. To solve the 
other equations, try 

U .  3 - A .  - 3e j = 1,2,4. 

The equations now become 

e 
mXAl-  ebAz - -aA4 = 0 , 

ebAl+ mXA2 = 0 , 
e 

--aA1+ mXA4 = 0 . 

For a solution where not all A’s vanish, we require 

C 

C 

i.e. 

The roots are 

A1=0, X 2 = 5 @ = 2 G ,  X 3 = - s / i G 5 G .  
mc mc 

The general solution for the equation of motion is a superposition of 
exponentials with these exponents. For all components of the 4-velocity 
to be bounded along every trajectory we require that the X’s are either 
zero or imaginary, i.e. 

a 5 cb, or IEl Sc/BI 
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3046 

A particle of charge e, energy E ,  and velocity v moves in a magnetic 
field generated by a magnetic dipole of strength M located at the origin 
and directed along the z-axis. If the particle is initially in the zy-plane at a 
distance R from the origin and moving radially outward, give the minimum 
and maximum radii it will reach (assume the orbit is bounded). 

( Chicago ) 

Solution: 

A particle of charge e, rest mass m and velocity u moving in an 
electromagnetic field of scalar potential @ and vector potential A has 
Lagrangian 

mc2 L = -- - e @ + e u . A .  
Y 

where y = 1. Since there is no electric field, @ = 0. The vector Jx 
potential due  to  ;-magnetic dipole of moment M at the origin is 

In spherical coordinates as shown in Fig. 3.26, we have 

M = (Mcos8, -Msin8,0) , 
r = (r,O,O) 7 

so that 
po Msine .  

With u = (i, re, T @  sine), the Lagrangian is 

A = - -  
47T T 2  '' ' 

mc2 PO eM sin2 8 
L = - - + -  d .  y 4~ r 

Note that as u2 = i2 +r2b2 +r2d2 sin2 8, L does not depend on cp explicitly. 
Hence 

4~ r 
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T 

X J '  
Fig. 3.26. 

Initially the particle is at T = R and moves with velocity v = 1: in the 
sy-plane, i.e. T = R, 8 = %, + = 0 initially, giving gT for the constant. 
Furthermore, as the only force on the particle is that due to the magnetic 
dipole at the origin whose magnetic lines of force at the xy-plane are 
perpendicular to the plane, the magnetic force is also in this plane and 
the motion is confined to the plane. Hence 6 = 0, 0 = 4 at all times. Thus 

myr v+-- = -- . 2 .  P o e M  P o e M  
4n T 4n R 

At the maximum and minimum radii, 7: = 0 and u = r+ip. Since 
magnetic force does no work as 

u u x (V x A) = 0 , 

the magnitude of u is equal to the initial speed v, i.e. T+ = f v ,  and y is a 
constant. Letting 

PO e M  
( y =  -~ 

4n myv ' 
we have 

f~~~ - C W + ~ R  = 0 .  

For the upper sign the roots are 

For the lower sign the roots are 
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r = E ( - l + / - ) ,  2R 

where the positive sign is to be used since r is positive. Examining these 
roots we find 

r,nax = 5 2R (1 + /-) , 

3047 

It is well known that planets move in elliptical orbits around the sun 
and the derivation of the orbit equation is a standard exercise in classical 
mechanics. However, if the effects of special relativity only are taken into 
account, the orbit is a precessing ellipse of the form 

where a = 1 corresponds to the classical result of zero precession. 

(a) Derive this equation and express a and rg in terms of fundamental 
constants of the orbit (such as energy, angular momentum, etc.) 

(b) Given that the mean radius of the orbit of Mercury is 58 x lo6 km 
and that its orbital period is 88 days, calculate the precession of Mercury's 
orbit in seconds of arc per century. (This effect does not, of course, account 
for the total precession rate of Mercury.) 

( Chicago ) 

Solution: 
(a) Consider a planet of mass m and velocity v. As it moves in an 

elliptical orbit, i.e. in a plane, use polar coordinates (r, 6 )  with the sun at 
the origin. The Lagrangian of the system is 

mc2 GmM L = - - + -  
Y r 
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where y = - & with 

2 -  v2 ,i.2 + r2e2 p - - =  
C2 c2 ’ 

M being the mass of the sun. As 

Lagrange’s equations 

give 

d . G m M  -(my+) - myr02 + - - - 0 ,  
dt T 2  

myr23 = b, a constant . 
Letting u = :, the last two equations combine to give 

f (:%) +hub- GmMu2 = 0 ,  

or 

as 

The total energy of the planet is 

G m M  
r E = m y c  - - .  

Thus 
GmMu2 GmM 

- - ( E  + G m M p )  be b2 c2 

and Eq. (1) becomes 
d2u G m M E  - de2 + a = ~ b2c2 ’ 

where - 
a2 = 1 - ( T ) L  G m M  . 
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A special solution of Eq. (2) is 

and its general solution is thus 

G m M E  
u = Acos[a(O - Oo)] + ~ 

b2c2a2 ' 
where A and 00  are constants. The orbit is therefore given by 

with 

A, 8, being constants, and b, E being the angular momentum about the sun 
and the total energy of the planet respectively. 

(b) Suppose T is minimum at 81 and it next returns to this minimum 
at 82. Then a(& - 8,) = 2n. Hence the perihelion advances an angle 

in one period of revolution. Note that there is no precession if a = 1. Since 
the amount of precession is small compared with 2n, a is close to unity and 
can be expressed as 

and we have 
2 G m M  

per period of revolution. From a consideration of the gravitational attrac- 
tion we have 

= myFb2 , G m M  
r2 

where F is the mean radius of the orbit of Mercury. As 

b = myF2b , 
G m M  Fb 21rF 

bc c rc  
-= -= -  
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where r = 88 days is the period of one revolution. In a century there are 

= 414.8 
100 x 365 

88 
revolutions, so that the total precession per century is 

58 x lo6 
(88 x 24 x 3600 x 3 x lo5 

€3 = 414.8 x 47r3 x 

= 3.326 x rad 
= 6.86 seconds of arc . 

This is about Q of the observed d u e ,  which can only be accounted for if 
general relativity is used for the calculation. 

3048 

Derive the Hamiltonian of a particle traveling with momentum p = 
when it is placed in the fields defined by .m 

H = V x A .  

(SUNY, Buffalo) 

Soh t ion: 

units ,. 
The Lagrangian of the particle, assumed to have charge q,\is in Gaussian 

and its Hamiltonian is defined as 

H = Ciipi - L , 
i 

where x i  is the velocity component given, in Cartesian coordinates, by 
v = (?I, & , k ~ )  and pi  is the canonical momentum given by pi = E. As 

1 x: + x; + x; , c2 ’ 
_ -  
y 2 - 1 -  C2 
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and 
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v . A = C X i A i  , 
i 

we have 

and 

To write H in terms of p, we note that 

or 

and thus 

Therefore 

H =  /W+@. 
3049 

What is the velocity of a particle if its kinetic energy equals its rest 

( Wisconsin) 
energy? 
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Solution: 
The kinetic energy of a particle of rest mass mo is 

T = E - moc2 = moc2(r - 1) , 

where 7 = *. As this equals mc2, 7 = 2. Hence 

3050 

A beam of electrons is scattered by a fixed scattering target as shown 
in Fig. 3.27. The electrons are elastically scattered. Each electron has an 
energy E = %moc2 and the beam has a flux of Q electrons per second. 

(a) What is the velocity of the incident electrons? 
(b) What are the magnitude and direction of the force on the scattering 

target due to the electrons? 
(Wisconsin) 

Fig. 3.27. 
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Solution: 
(a) As E = moyc2 = gmoc2, y = = 4- = $. Hence the 

electron velocity is 0 . 8 ~ .  
(b) Since the electrons are elastically scattered, they have the same 

speed before and after scattering and conservation of the momentum paral- 
lel to the target requires that the incident and scattering angles are equal. 
Then after scattering the normal component of the momentum changes sign 
but remains the same in magnitude. Hence 

and 

4 J z  Ap = 2pn = 2moyv cos45' = -moc . 

The force F on the target due to the beam of electrons is equal to the 
impulse given to it per unit time by the beam. As Q electrons impinge on 
the target in unit time, 

3 

F = 2p,Q = S Q m o c ,  
3 

and it acts vertically onto the target. 

3051 
The principle of equivalence asserts that gravitational and inertial 

masses are equal. Does a photon have nonzero gravitational mass? Explain. 
Suppose a photon is falling toward the earth and it falls a distance of 10 m. 
Calculate the effect on the frequency of the photon. What experimental 
technique could be used to measure this frequency change? 

( Wisconsin) 

Solution: 
The gravitational mass of a photon is not zero but is equal to the inertial 

E hv 
c2 c2 ' 

mass 
m z - = -  

in accordance with the principle of equivalence, even though its rest mass 
is zero. When the photon falls a distance I in a gravitational field g, its 
energy increases and so does its frequency: 
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hv'=hv+mgl=hv 1 + -  . ( 2) 
Writing Y' = v + Au, we have 

Thus falling through a distance of 10 m in the gravitational field of the earth, 
the frequency of a photon will increase (blue shift) by a factor 1+1.1 x 
The slight increase in frequency can be detected experimentally using the 
Mossbauer effect. 

3052 

Consider a very high energy scattering experiment invoIving two parti- 
cles with the same rest mass ma, one initially at rest and the other incident 
with momentum p and total energy E. 

(a) Find the velocity of the center of mass p' = $. 
(b) In the extreme relativistic limit pc >> m0c2, find the total energy 

E' of the system in the center of mass frame (i.e. the frame in which the 
total %momentum is zero). 

(Wisconsin) 

Solution: 
(a) The system of two particles has total energy E +- moc2 and total 

momentum p in the laboratory system. The velocity of the center of mass, 
which is the velocity of the system as a whole, in units of c,  is then 

p' = Pc 
E + moc2 

(b) The quantities E2 - p2c2 of a system is invariant under Lorentz 
transformation. In the laboratory frame it is 

( E  + moc2)2 - p2c2 = 2~moc' + 2m;c4 

as E2 - p 2 2  = m$c4. In the center of mass frame it is (2E>21 where E is 
the total energy of each particle. Hence 
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in the extreme relativistic limit for which pc >> moc2, since in this case 

E =  4 m F j . p c > > m O c 2 .  

3053 

A particle of rest mass m and initial velocity uo along the z-axis is 
subject after t = 0 to a constant force F acting in the y-direction. Find its 
velocity at any time t ,  and show that Iv) -+ c as t -+ 00. 

( Wisconsin) 

Solution: 

The equation of motion 

d 
dt 

F = - ( ~ T v )  

where y = 1 can be written as m' 
d 
d t  myk) ,  F = -(mry) 

d 
dt 

0 = - (  

with v = (k,d)l  F = (0, F ) .  As F is constant for t > 0 and initially 2 = vo, 
d = 0, F = 0, the above integrate to give 

m y x  = myouo, m y y  = Ft 

where 70 = ~ &. Hence 

or 
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giving 
rn2$v: + F2t2 

m27,2v; + m2c2 + F2t2 ‘ 
82 = 

v = p c =  ‘ 
rn2$c2 + F2t2 

The velocity components are 

. TOVO . F t  
Y m y  

, y = - ,  x = -  

where 

For t --+ 00, as rnyovo, myoc remain constant we have 

3054 

An electron of energy E >> mc2 and a photon of energy W collide. 

(a) What is W’,  the energy of the photon in the electron (e) frame of 
reference? 

(b) If W’ << mc2,  the electron recoil can be neglected and the energy of 
the photon in the e-frame is unchanged as a result of the scattering process. 
What are the minimum and maximum values of the energy of the scattered 
photon in the laboratory ( L )  frame? 

( Wisconsin ) 

Solution: 
(a) Suppose the photon makes angles 8,  8’ with the initial direction of 

motion of the electron, which is taken to be the direction of the x-axis, in 
the L- and e-frames respectively. As (pc,  E )  forms a Cvector, the photon 
energy transforms according to 
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E where y = =, ,d = 
the electron in the L-frame. As E >> me2, 

with p = $ d E 2  - m2c4 being the momentum of 

Hence 

mc2 2E 1 --(I E - case) + -case w . 

(b) In the e-frame, the electron is initially at rest. If its recoil can 
be neglected, the incident photons must be scattered back along the line 
of incidence with the same energy in accordance with the conservation of 
energy and of momentum. The transformation of energy and momentum 
of the photon is given by 

or 
sin 8 tan 8’ = 

7 ( c ~ ~  8 - p) ’ 
and 

mc2 2E 1 E ~ = ~ ( i + p ~ ~ ~ e ’ ) w ~ ~  --(i+cose~)--co~e’ w‘. (3) [ mc2 

Equation (1) shows that for W’ to be maximum, cos8 = -1 or 8 = A and 

2E 
mc2 

w;= x ~ 

Equation (2) gives 8’ = IT. The photon is scattered back so that after 
the collision 8’ = 0. Equation (3) then gives the corresponding energy in 
Gframe: 

2E 
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Similarly, for the minimum energy, cos 0 = 1, or 0 = 0, and 

mc2 
2E w ; ~ ~  = -w, el = o . 

After scattering 8' = ?r and 





Index to Problems 

Acceleration of gravity on moon 1075 
Air in spinning cylinder 1267 
Ball bouncing down steps 1010 
Beam balance 1259 
Bending of beam 1257 
Benzene ring 1125 
Billiard ball 1201 
Binary stars 1111 1119 2011 
Bowling ball 1140 
Camshaft 1154 
Canonical transformation 2080 2082 
Capstan 1254 
Celestial systems 

earth-moon 1059 1132 
earth-satellite 1002 1024 1049 1069 1096 1130 1176 
earth-sun 1022 1053 1066 3047 
planet-star 1047 1068 1071 1072 

between plates 1054 
between wire and concentric cylinder 2075 
connected by spring 1085 
in cone 2060 
in electric and magnetic fields 2037 3045 3048 
in magnetic field 1029 3039 3044 3046 

ball and steps 1202 
bodies through spring 1110 1115 
charged particles 1112 
equal masses 1112 1128 3025 3032 3035 3040 3043 3052 

Charge particle 

Collision between 

751 



752 Index 

kaon and lead block 3028 
nuclei 3024 
particle and rod 1206 
photon and particle 3021 3022 3027 3041 3042 3054 
rods 1200 
spheres 1195 
unequal masses 3026 3029 3031 

Comet 1042 1044 
Compton effect 3021 
Coriolis force 1099 1100 1101 1108 1120 
COZ molecule 1121 
Crankshaft 1167 
Cross section for 

capture 1073 
collision 1044 1050 1057 1065 

inside cylinder 2030 
on cylinder 2003 
on horizontal plane 1182 1183 1186 1187 
on inclined plane 1157 1184 1185 1204 

Cylinder 

Decay rate 3023 
Disk constrained by springs 1216 
Disk on disk 2002 
Doppler effect 1249 1250 1251 1252 1253 3003 3009 3011 3017 
Elastic waves 2084 
Energy-momentum four-vector 3009 
Escape velocity 1058 1075 
Expansion of gas 1270 
Falling 

chain 1134 
spheres 1113 
stick 1199 
water droplet 1139 1143 

Flashlight in space 3037 3038 
Floating log suspended by spring 2042 
Flywheel 1150 1160 1162 1163 1164 1182 
Governor 1086 2064 2068 
Gravitational mass 3051 



Index 753 

Gravitational potential 1256 
Gravitational red shift 3014 
Gyroscope (top) 1211 1212 1215 1217 1218 
Hamiltonian-Jacobi equation 2083 
Hoop on knife edge 1158 
Hour glass 1140 
Hydrogen atom 1051 
Hydrostatic equilibrium 1264 1265 
Impulse on rod 1166 2024 
Larmor’s theorem 1104 
Leaking bucket 1137 
Leaning plank 1198 
Liquid flow rate 1271 
Liquid in 

rotating L-tube 1261 
spinning cylinder 1260 1262 
U-tube 1266 

Lorentz transformation 3004 3007 
Man 

diving 1013 
escaping from asteroid 1058 
in elevator 1001 
jumping 1006 1023 
on bicycle 1014 
walking 1156 

between moving walls 2077 
constrained by springs 1078 
in central force field 1043 1050 1055 1060 1070 1073 

in circular motion 1016 1045 1067 1080 
in cone 1026 1174 
in cylinder 1169 
in fixed orbit 2008 2049 
in interstellar cloud 1064 1116 
in one-dimensional potential field 1090 2019 2065 2081 
in paraboloid 2027 2040 2074 
in rotating bowl 1106 

Mass (particle) 

1074 1076 1077 2008 2016 2018 2025 2027 



754 Index 

in twedimensional potential field 2056 
interacting with rotator by gravitation 2069 
on circular track 2007 
on fixed inclined plane 1005 
on given trajectory 1038 
on rolling hoop 2026 
on rotating disk 1003 1009 1032 1091 1094 1098 1103 
on rotating ring 1173 
on sliding block 1011 
on sliding wedge 1025 1093 2041 
on smooth surface 2066 
on sphere 1028 2072 
on spinning hoop 1097 1107 2020 2031 
on spinning planet 1008 1221 
on spoke of flywheel 2061 
on swinging loop 2048 2059 
on swinging rod 1177 
suspended by spring 1035 1092 2001 2015 
under attractive forces 1031 
under central force and friction 1019 
under restoring force and friction 1081 
with one-dimensional Lagrangian 2076 

Mass of galaxy 1012 
Masses (particles) 

in circular motion 1117 
interacting by central forces 1027 2017 2071 
joined by rod 1168 
joined by springs 1122 1123 1124 1131 1133 2004 2021 

joined by string 1087 2023 2047 2079 
on circle 2046 2047 

Matrix theory of small oscillations 2063 
Men jumping off flatcar 1114 
Meteorite 1048 
Moment of inertia 1145 1146 1147 1148 
Motor on rubber pad 1082 
Moving mirror 3015 3016 
Moving vehicle 1017 1083 

2032 2034 2038 2044 2047 2052 2053 2062 



I n d e x  755 

Moving-vehicle door 1203 
Muon as decay product 3033 3034 
Neutrino as decay product 3030 3033 3034 
Nonlinear oscillator 1033 1088 
Pair production of electrons 3021 
Pascal’s principle 1258 1266 
Pendulum 1015 1018 1036 2036 

between capacitor plates 2058 
double 2035 2036 2050 2054 
joined by spring 2033 2043 2055 
on colliding cart 1109 
on moving support 1105 2028 2029 2045 2051 2070 
spherical 2014 
spring 2001 2015 
torsion 1153 1165 

Plate supported by springs 2039 2057 
Poisson bracket 2078 
Polar flattening of planet 1095 1149 1268 
Propeller 1220 
Pulley system 1004 1188 1189 
Pulsar 1020 
Rigid body in space 1209 1213 
Ring constrained by springs 1084 
Rocket 1040 1135 1136 1138 1141 1142 

Rod 
exploding 1129 

hitting rock 1161 
in rotating tube 2006 
on rollers 1152 
suspended by springs 1027 
suspended by strings 1222 2010 2013 
with moving pivot 1178 

Roller coaster 1007 1192 
Rotating 

coordinate frame 2005 
plate 1170 1171 1175 
rod 1172 1223 

Rotor 1159 



756 Index 

Scattering 1039 1046 1061 1062 1074 1077 3050 
Sonic boom 1246 
Sound 

at interface between media 1244 
from moving source 1245 1246 
in moving medium 1247 
standing waves 1248 

through dust cloud 1047 1144 
Spacecraft 1034 1041 1052 1056 1063 1411 1267 3006 3018 

Special relativity, basis for 3001 3003 3012 
Speed of sound 1235 1242 1243 1269 
Sphere 

as reflector of light 1037 
in fluid 1272 
inside ring 1197 
on cart 1191 
on cylinder 1194 
on horizontal plane 1180 
on inclined plane 2022 
on sphere 1193 1196 

ball on rod 1214 
coin 1155 1181 
cone 1210 
disk 1147 1175 
structure (jack) 1219 

Static equilibrium 1021 1151 
Stepladder (hinged beams) 1205 1209 2012 
String hanging between supports 1255 
Swinging structure 2067 
System of particles 1118 1126 1127 
Tides 1102 1263 
Time dilation 3002 3008 
Torsion bars 2009 
Tuning fork 1079 
Tunnel through earth 1030 1089 
Velocity-energy relation 3049 3053 
Velocity transformation 3004 3019 3020 

Spinning 



Index 757 

Vibrating 
air column 1240 1241 1243 1248 
bar 1235 
string 1224 1225 1226 1227 1228 1229 1230 1231 1232 

1233 1235 1236 1237 1238 1239 
Viral theorem 1117 1126 2008 
Wave four-vector 3005 3010 3013 
Yo-yo 1190 

on horizontal plane 1179 




	Cover
	Problems and Solutions on Mechanics
	Preface
	CONTENTS
	Introduction
	Part I Newtonian Mechanics
	1. Dynamics of a Point Mass (1001-1108)
	2. Dynamics of a System of Point Masses (1109-1144)
	3. Dynamics of Rigid Bodies (1145-1223)
	4. Dynamics of Deformable Bodies (1224-1272)

	Part II Analytical Mechanics
	1. Lagrange's Equations (2001-2027)
	2. Small Oscillations (2028-2067)
	3. Hamilton's Canonical Equations (2068-2084)

	Part III Special Relativity
	Special Relativity (3001-3054)

	Index to Problems



