
Chapter 2

Rigid Body Dynamics

2.1 Coordinates of a Rigid Body

A set of N particles forms a rigid body if the distance between any 2 particles is fixed:

rij ≡ |ri − rj| = cij = constant. (2.1)

Given these constraints, how many generalized coordinates are there?
If we know 3 non-collinear points in the body, the remaing points are fully determined

by triangulation. The first point has 3 coordinates for translation in 3 dimensions. The
second point has 2 coordinates for spherical rotation about the first point, as r12 is fixed.
The third point has one coordinate for circular rotation about the axis of r12, as r13 and r23

are fixed. Hence, there are 6 independent coordinates, as represented in Fig. 2.1. This result
is independent of N , so this also applies to a continuous body (in the limit of N →∞).

Figure 2.1: 3 non-collinear points can be fully determined by using only 6 coordinates. Since
the distances between any two other points are fixed in the rigid body, any other point of
the body is fully determined by the distance to these 3 points.

29



CHAPTER 2. RIGID BODY DYNAMICS

The translations of the body require three spatial coordinates. These translations can
be taken from any fixed point in the body. Typically the fixed point is the center of mass
(CM), defined as:

1
R = m

M

∑
iri, (2.2)

i

where mi is the mass of the i-th particle and ri the position of that particle with respect to
a fixed origin and set of axes (which will notationally be unprimed) as in Fig. 2.2. In the
case of a continuous body, this definition generalizes as:

1
R = r

M

∫
ρ(r) dV , (2.3)

V

where ρ(r) is the mass density at position r and we integrate over the volume V .

Figure 2.2: The three translational coordinates correspond to the position of the Center of
Mass, and the three rotational coordinates correspond to the three angles necessary to define
the orientation of the axis fixed with the body.

Rotations of the body are taken by fixing axes with respect to the body (we will denote
these body fixed axes with primes) and describing their orientation with respect to the
unprimed axes by 3 angles (φ, θ, ψ).

A particularly useful choice of angles are called Euler angles. The angle φ is taken as a
rotation about the z-axis, forming new x̃- and ỹ-axes while leaving the z-axis unchanged, as
shown in Fig. 2.3. The angle θ is then taken as a rotation about the x̃-axis, forming new
ỹ′- and z′-axes while leaving the x̃-axis unchanged, as shown in Fig. 2.4. Finally, the angle
ψ is taken as a rotation about the z′-axis, forming new x′- and y′-axes while leaving the
z′-axis unchanged, as shown in Fig. 2.5. (The x̃-axis is called the line of nodes, as it is the
intersection of the xy- and x̃ỹ-planes.)
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CHAPTER 2. RIGID BODY DYNAMICS

Figure 2.3: First rotation is
by φ around the original z
axis.

Figure 2.4: Second rotation
is by θ around the interme-
diate x̃ axis.

Figure 2.5: Final rotation
is by ψ around the final z′

axis.

Rotations can be described by 3 × 3 matrices U . This means each rotation step can be
described as a matrix multiplication. Where r = (x, y, z), then

cos(φ) sin(φ) 0


x
r̃ = Uφr = − sin(φ) cos(φ) 0 y

0 0 1


. (2.4)

z

Similar transformations can be written


for the other terms:

 

r̃′ = Uθr̃ , r′ = Uψr̃′ = UψUθr̃ = UψUθUφr.

Defining the total transformation as U , it can be written as:

U ≡ UψUθUφ ⇒ r′ = Ur. (2.5)

Care is required with the order of the terms since the matrices don’t commute. Writing U
out explicitly:

cos(ψ) sin(ψ) 0 1 0 0 cos(φ) sin(φ) 0
U = − sin(ψ) cos(ψ) 0


0 cos(θ) sin(θ)


− sin(φ) cos(φ) 0 (2.6)

0 0 1 0 − sin(θ) cos(θ) 0 0 1


.

All rotation matrices, including U


φ


, Uθ, Uψ, and U are


ortho


gonal. Orthogonal


matrices W

satisfy
W>W = WW> = 1 ⇔ W> = W−1, (2.7)

where 1 refers to the identity matrix and > to the transpose. This ensures that the length
of a vector is invariant under rotations:

r′2 = r>(W>W )r = r2. (2.8)
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CHAPTER 2. RIGID BODY DYNAMICS

Orthogonal matrices W have 9 entries but need to fulfill 6 conditions from orthogonality,
leaving only 3 free parameters, corresponding to the 3 angles necessary to determine the
rotation.

We can also view r′ = Ur as a transformation from the vector r to the vector r′ in
the same coordinate system. This is an active transformation, as opposed to the previous
perspective which was a passive transformation.

Finally, note that inversions like
−1 0 0

 
1 0 0

U =  0 −1 0
−
 or U =

0 0 1

0 1 0
0 0


(2.9)

−1


are not rotations. These have det(U) = −1, so they can be forbidden by demanding that
det(U) = 1. All orthogonal matrices have det(W ) = ±1 because det(W>W ) = (det(W ))2 =
1. In the language of group theory, the restriction to det(W ) = 1 gives the special or-
thogonal group SO(3) as opposed to simply O(3), the orthogonal group. We disregard the
det(U) = −1 subset of transformations because it is impossible for the system to undergo
these transformations continuously without the distance between the particles changing in
the process, so it would no longer be a rigid body.

Intuitively, we could rotate the coordinates (x, y, z) directly into the coordinates (x′, y′, z′)
by picking the right axis of rotation. In fact, the Euler theorem states that a general dis-
placement of a rigid body with one point fixed is a rotation about some axis. This theorem
will be true if a general rotation U leaves some axis fixed, which is satisfied by

Ur = r (2.10)

for any point r on this axis. This is an eigenvalue equation for U with eigenvalue 1. To
better understand this, we need to develop a little linear algebra.

Although the notion of an eigenvalue equation generally holds for linear operators, for
now the discussion will be restricted to orthogonal rotation matrices U . The eigenvalue
equation is

Uξ = λξ, (2.11)

where ξ is an eigenvector and λ is the associated eigenvalue. Rewriting this as

(U − λ1)ξ = 0 (2.12)

requires that det(U − λ1) = 0, so that U − λ1 is not invertible and the solution can be
non-trivial, ξ 6= 0. det(U − λ1) = 0 is a cubic equation in λ, which has 3 solutions, which
are the eigenvalues λα for α ∈ {1, 2, 3}. The associated eigenvectors are ξ(α) and satisfy

Uξ(α) = λαξ
(α), (2.13)
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CHAPTER 2. RIGID BODY DYNAMICS

where no implicit sum over repeated indices is taken. Forming a matrix from the resulting
eigenvectors as columns:

X =


↑ ↑ ↑ξ(1) ξ(2) ξ(3)


↓ ↓ ↓

 (2.14)

then we can rewrite Eq.(2.13) as

UX = X · diag(λ1, λ2, λ3)⇒ X−1UX = diag(λ1, λ2, λ3) (2.15)

This means X diagonalizes U . Since U is orthogonal, the matrix X is unitary (X†X =
XX† = 1). Note that > indicates transposition whereas † indicates Hermitian conjugation
(i.e. complex conjugation ? combined with transposition >).

Next we note that since det(U) = 1, then λ1λ2λ3 = 1. Additionally, |λα|2 = 1 for each α
because:

Uξ = λξ ⇒ ξ†U> = λ?ξ† ⇒ ξ†ξ = ξ†U>Uξ = |λ|2ξ†ξ . (2.16)

Finally, if λ is an eigenvalue, then so is λ?:

Uξ = λξ ⇒ Uξ? = λ?ξ? (2.17)

where ξ? is still a column vector but with its elements undergoing complex conjugation with
respect to ξ. Without loss of generality, let us say for a rotation matrix U that λ2 = λ?3.
Then 1 = λ1|λ 2

2| = λ1, so one of the eigenvalues is 1, giving Eq.(2.10), and thus proving
Euler’s Theorem. The associated eigenvector ξ(1) to the eigenvalue λ1 = 1 is the rotation
axis, and if λ2 = λ? iΦ

3 = e then Φ is the rotation angle about that axis.

In fact, we can make good use of our analysis of Euler’s theorem. Together the rotation
axis and rotation angle can be used to define the instantaneous angular velocity ω(t) such
that:

|ω| ˙= Φ and ω ‖ ξ(1) . (2.18)

The angular velocity will play an important role in our discussion of time dependence with
rotating coordinates in the next section. If we consider several consecutive displacements of

˙the rigid body, then each can have its own axis ξ(1) and its own Φ, so ω changes at each
instance of time, and hence ω = ω(t) (for the entire rigid body).

2.2 Time Evolution with Rotating Coordinates

Lets use unprimed axes (x, y, z) for the fixed (inertial) axes, with fixed basis vectors ei. We
will also use primed axes (x′, y′, z′) for the body axes with basis vectors e′i.
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CHAPTER 2. RIGID BODY DYNAMICS

If we consider any vector then it can be decomposed
with either set of basis vectors:

b =
∑

biei = bi
′e′i . (2.19)

i

∑
i

For fixed axes basis vectors by definition ėi = 0, while
for those in the body frame,

ė′i = ω(t)× e′i (2.20)

meaning vectors of fixed length undergo a rotation at
a time t. The derivation of this result is shown in the
figure on the right, by considering the change to the
vector after an infinitesimal time interval dt.

Summing over repeated indices, this means:

˙ ˙ ˙b = biei = b′ie
′ ˙
i + ω(t)× (b′ie

′
i) = b′ie

′
i + ω(t)× b

d
Defining

dR
as the time evolution in the fixed (F) frame and

dt
the time evolution in

dt
the rotating/body (R) frame, then vectors evolve in time according to

db dRb
=

dt
+ ω

dt
× b. (2.21)

As a mnemonic we have the operation “(d/dt) = dR/dt+ω×” which can act on any vector.
Let us apply this to the position r of a particle of mass m, which gives

dr dRr
=

dt
+ ω

dt
× r ⇔ vF = vR + ω × r. (2.22)

Taking another time derivative gives us the analog for acceleration:

F dvF
=

m

dRvF
=

dt
+ ω

dt
× vF (2.23)

dRvR
=

dRω
+

dt

d
r

dt
× + ω × Rr

+ ω
dt

× vR + ω × (ω × r) .

As dRr = vR is the velocity within the rotating body frame and dRvR

dt
= aR is the acceleration

dt

within the body frame, then

dRω
maR = F−mω × (ω × r)− 2mω × vR −m r

dt
× (2.24)

gives the acceleration in the body frame with respect to the forces that seem to be present
in that frame. The terms −mω × (ω × r) and −2mω × vR are, respectively, the centrifugal
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and Coriolis ficticious forces respectively, while the last term −mdRω force
dt
× r is a ficticious

that arises from non-uniform rotational motion, so that there is angular acceleration within
the body frame. The same result could also have been obtained with the Euler-Lagrange
equations for L in the rotating coordinates:

m
L = (ṙ + ω

2
× r)2 − V , (2.25)

and you will explore this on a problem set.

Note that the centrifugal term is radially outward and perpendicular to the rotation axis.
To see this, decompose r into components parallel and perpendicular to ω, r = r + r , then‖ ⊥
ω × r = ω × r , so −ω × (ω × r ) = w2r . This term is present for any rotating body.⊥ ⊥ ⊥
On the other hand, the Coriolis force is nonzero when there is a nonzero velocity in the
rotating/body frame: vR 6= 0.

Example: Consider the impact of the Coriolis force on projectile motion on the rotating
Earth, where the angular velocity is ωEarth = 2π 7.3 10 5 s 1. We work out the

24
−

×3600 s
≈ × −

cross-product −ω× vr as shown in Fig. 2.6 for a particle in the northern hemisphere, where
ω points to the north pole. Thus a projectile in the northern/southern hemisphere would be
perturbed to the right/left relative to its velocity direction vr.

Figure 2.6: For a projectile, in the Northern Hemisphere, the Coriolis pushes it to its right,
relative to its direction of motion.

Example: Consider a Foucault pendulum which hangs from a rigid rod, but is free to os-
cillate in two angular directions, as shown in Fig. 2.2. For θ � 1 and working to first order

˙in the small ω, the result derived from the Coriolis force gives φ ≈ ωEarth sin(λ). Here λ is
the latitude angle measured from equator. The precession is clockwise in the northern hemi-
sphere, and is maximized at the north pole where λ = 90◦. (This is proven as a homework
problem.)
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Example: Consider the Coriolis deflection of a freely falling body on Earth in the northern
hemisphere. We use the coordinate system shown below, where z is perpendicular to the
surface of the earth and y is parallel to the earth’s surface and points towards the north
pole.

Working to first order in the small ω gives us

maR = mv̇R = −mgẑ − 2mω × v, (2.26)

where the centrifugal terms of order O(ω2) are dropped. As an initial condition we take
v(t = 0) = v0ẑ. The term −ω × v points along x̂, so:

z̈ = −g +O(ω2) ⇒ vz = v0 − gt (2.27)

Moreover implementing the boundary condition that ẋ(t = 0) = 0:

g
ẍ = −2(ω × v)x = −2ω sin(θ)vz(t) ⇒ ẋ = −2ω sin(θ)

(
v0t− t2 . (2.28)

2

Taking also x(t = 0) = 0, and integrating one further time, the motion in the

)
x direction is:

0
x(t) = −2ω θ)

(v
sin(

g
t2

2
− t3

6

)
. (2.29)
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Lets consider this effect for a couple simple cases. If the mass m is dropped from a height
z(t = 0) = hmax with zero velocity, v0 = 0, then:

g
z = hmax − t2 (2.30)

2

and the mass reaches the floor at time

t1 =

√
2hmax

. (2.31)
g

From Eq.(2.28) we see that ẋ > 0 for all t, and that:

8ω sin(θ)h3

x(t = t1) = max > 0.
3g2

However, if the mass m is thrown up with an initial ż(t = 0) = v0 > 0 from the ground
(z = 0), then :

g
z(t) = v0t− t2 > 0. (2.32)

2

Here the particle rises to a maximum height z = v2
0/(2g) at time t = v0/g, and then falls

back to earth. Using Eq.(2.28) we see that ẋ < 0 for all t. If t1 is the time it reaches the
ground again (t1 = 2v0 ), then:

g

4ω sin(θ)v3

x(t = t1) = − 0 < 0. (2.33)
3g2

2.3 Kinetic Energy, Angular Momentum, and

the Moment of Inertia Tensor for Rigid Bodies

Returning to rigid bodies, consider one built out of N fixed particles The kinetic energy
is best expressed using CM coordinates, where R is the CM and we here take ri to be
the displacement of particle i relative to the CM. Once again making sums over repeated
subscripts as implicit, the kinetic energy (T ) of the system is given by:

1
T =

1˙MR2 +
2

miṙ
2
i . (2.34)

2

As the body is rigid, then points cannot translate relative to the body but can only rotate
so that ṙi = ω × ri. The rotational kinetic energy is then

1
TR =

1
miṙ

2

2 i =
1

mi(ω
2

× ri)
2 = mi

2

[
ω2r2

i − (ω · ri)2
]
. (2.35)
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Labeling Cartesian indices with a and b to reserve i and j for particle indices, then we
can write out this result making the indicies all explict as

1
TR = m 2

2

∑
i(δabri − riarib)ωaωb. (2.36)

i,a,b

It is convenient to separate out the parts in this formula that depend on the shape and
ˆdistributions of masses in the body by defining the moment of inertia tensor I for the discrete

body as

Îab ≡
∑

m 2
i(δabri

i

− riarib) . (2.37)

The analog for a continuous body of mass density ρ(r) is:

Îab ≡
∫

(r2δab − rarb)ρ(r) dV . (2.38)
V

In terms of the moment of inertia tensor, the kinetic energy from rotation can now be
written as:

1
TR =

1ˆ
2

∑
Iabωaωb =

a,b
2
· ˆω I · ω , (2.39)

where in the last step we adopt a convenient matrix multiplication notation.
The moment of inertia tensor can be written with its components as a matrix in the form

ˆ

∑ y2
i + z2

i −x
I =  iyi −xizi

mi −xiyi x2
i + z2

i

i

−yizi , (2.40)
−xizi −y z 2 2

i i xi + yi



where the diagonal terms are the “moments of inertia” and the


off-diagonal terms are the

ˆ ˆ ˆ“products of inertia”. Note also that I is symmetric in any basis, so Iab = Iba.

Special case: if the rotation happens about only one axis which can be defined as the z-axis
for convenience so that ω = (0, 0, ω), then TR = 1 Î 2

zzω which reproduces the simpler and
2

more familiar scalar form of the moment of inertia.

Lets now let ri be measured from a stationary point in the rigid body, which need not
necessarily be the CM. The angular momentum can be calculated about this fixed point.
Since vi = ω × ri, we can write the angular momentum as:

L = mir
2

i × vi = miri × (ω × ri) = mi

[
riω − (ω · ri)ri

]
. (2.41)

Writing out the components

La =
∑

ˆm (r2ω − (ω · r )r ) =
∑

ω m (δ r2
i i a i ia b i ab i ib

i,b

− riar ) =
i

∑
Iabωb, (2.42)

b
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which translates to the matrix equation:

ˆL = I · ω . (2.43)

This allows us to write the corresponding rotational kinetic energy as:

1
TR = ω

2
· L. (2.44)

Note that in general, L is not parallel to ω. We will see an explicit example of this below.
ˆAlso note that the formula that we used for I in this case is the same as we gave above. We

use these formulas whether or not ri is taken with respect to the CM.

ˆIt is useful to pause to see what precisely the calculation of I depends on. Since it in-
volves components of the vectors ri it depends on the choice of the origin for the rotation.

ˆFurthermore the entries of the matrix Iab obviously depend on the orientation of the axes
used to define the components labeled by a and b. Given this, it is natural to ask whether

ˆgiven the result for Iab with one choice of axes and orientation, whether we can determine
ˆan I ′a′b′ for a different origin and axes orientation. This is always possible with the help of

a couple of theorems.

ˆThe parallel axis theorem: Given ICM ˆabout the CM, it is simple to find IQ about a
different point Q with the same orientation for the axes. Referring to the figure below,

we define r′i as the coordinate of a particle i in the rigid body with respect to point Q and
ri to be the coordinate of that particle with respect to the CM, so that:

r′i = R + ri . (2.45)

By definition of the CM:∑
miri = 0 and we let M =

i

∑
mi. (2.46)

i
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The tensor of inertia around the new axis is then:

ÎQ
ab = mi(δabr

′2
i − ria′ rib′ ) (2.47)

= mi(δab(r
2
i + 2ri ·R + R2 − riarib − riaRb −Rarib −RaRb) , (2.48)

where the cross terms involving a single ri or single component ria sum up to zero by
Eq.(2.46). The terms quadratic in r are recognized as giving the moment of inertia tensor
about the CM. This gives the parallel axis theorem for translating the origin:

ÎQ ˆ
ab = M(δabR

2 −RaRb) + ICM
ab , (2.49)

If we wish to carry out a translation between P and Q, neither of which is the CM, then
we can simply use this formula twice. Another formula can be obtained by projecting the
parallel axis onto a specific axis n̂ where n̂2 = 1 (giving a result that may be familiar from
an earlier classical mechanics course):

n̂ · ÎQ · ˆn̂ = M( 2 − ˆR (n̂ ·R)2) + n̂ · ICM · n̂ = MR2[1− cos2(θ)] + n̂ · ICM · n̂
ˆ= MR2 sin2(θ) + n̂ · ICM · n̂ (2.50)

where n̂ ·R ≡ R cos(θ).

ˆExample: Lets consider an example of the calculation of I for a situation where L is not
parallel to ω. Consider a dumbbell made of 2 identical point passes m attached by a massless
rigid rod (but with different separations r1 and r2 from the axis of rotation), spinning so
that ω = ωẑ and so that the rod makes an angle α with the axis of rotation, as shown

We define body axes where the masses lie in the yz-plane. Here,

r1 = (0, r1 sinα, r1 cosα) and r2 = (0,−r2 sinα,−r2 cosα). (2.51)
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Then using the definition of the moment inertia tensor:

I = m(x2 + y2) +m(x2 + y2 2 2 2
zz 1 1 2 2) = m(r1 + r2) sin α

I = m(y2 + z2) +m(y2 + z2 2
xx 1 1 2 2) = m(r1 + r2

2)

I 2 2 2
yy = m(x1 + z1) +m(x2 + z2

2) = m(r2
1 + r2

2) cos2 α (2.52)

Ixy = Iyx = m(−x1y1 − x2y2) = 0

Ixz = Izx = m(−x1z1 − x2z2) = 0

Iyz = Izy = m(−y1z1 − y2z2) = −m(r2 2
1 + r2) sinα cosα

ˆPlugging these into L = I · ω, recalling that only ωz is non-zero, this gives

L = (0, Iyzω, Izzω). (2.53)

Thus in this example L is not parallel to ω.

Next, instead of translating the axes in a parallel manner, let us keep the origin fixed and
rotate the axes according to an orthogonal rotation matrix U satisfying U>U = UU> = 1.
Vectors are rotated as

L′ = UL , ω′ = Uω and therefore ω = U>ω′. (2.54)

Putting these together

L′ ˆ= UI · ˆω = (UIU> ˆ) · ω′ ⇒ I ′ ˆ= UIU>, (2.55)

ˆwhere I ′ is the new moment of inertia tensor. (The fact that it transforms this way defines
it as a tensor.) This allows us to calculate the new moment of inertia tensor after a rotation.

ˆFor a real symmetric tensor I, there always exists a rotation from an orthogonal matrix
ˆ ˆU that diagonalizes I giving a diagonal matrix I ′:

0

D̂ =


I 1 0

I 0 I2 0
0 0 I3

 . (2.56)

The entries of the diagonal moment of inertia tensor, Iα, are real and positive. This is
just a special case of saying a Hermitian matrix can always be diagonalized by a unitary
transformation (which is often derived in a Quantum Mechanics course as part of showing
that a Hermitian matrix has real eigenvalues and orthogonal eigenvectors). The positivity
of diagonal matrix follows immediately from the definition of the moment of inertia tensor
for the situation with zero off-diagonal terms.
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ˆThe axes that make I diagonal are called the principal axes and the components Iα are
the principal moments of inertia. We find them by solving the eigenvalue problem

Î · ξ = λ ξ, (2.57)

where the 3 eigenvalues λ give the principal moments of inertia Iα, and are obtained from
ˆsolving det(I − λ1) = 0. The[ corresponding 3 real orthogonal eigenvectors ξ(α) are the

principal axes. Here U> = ξ(1) ξ(2) ξ(3) , where the eigenvectors vectors fill out the
columns. Then, without summing over repeated

]
indices:

1
Lα = Iαωα and T = Iα ω

2

2 α , (2.58)
α

where Lα and ωα are the components of L and ω, respectiv

∑
ely, evaluated along the principal

axes.

To summarize, for any choice of origin for any rigid body, there is a choice of axes that
ˆdiagonalizes I. For T to separate into translational and rotational parts, we must pick the

origin to be the CM. Often, the principal axes can be identified by a symmetry of the body.

Example: for a thin rectangle lying in the yz-plane with one edge coinciding with the z-axis,
and the origin chosen as shown below, then Iyz = 0 as the body is symmetric under z ↔ −z,
while Ixz = Ixy = 0 as the body lies entirely within x = 0. Hence these are principal axes.

Sometimes, symmetry allows multiple choices for the principal axes.

Example: for a sphere, any orthogonal axes through the origin
are principal axes.

Example: for a cylinder whose central axis is
aligned along the z-axis, because of rotational
symmetry any choice of the x- and y-axes gives
principal axes.
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Example: Lets consider an example where the principal axes may not be apparent, which
we can solve through the eigenvalue problem. Consider a uniform cube with sides of length
a, mass m, and having the origin at one corner, as shown below.

By symmetry we have

m
Ixx = Iyy = Izz =

a

a3

∫
0

∫ a

0

∫ a

(x2 + y2 2
) dx dy dz =

0

ma2, (2.59)
3

m
Ixy = Iyz = Ixz =

a

a3

∫
0

∫ a

0

∫ a 1

0

−xz dx dy dz = − ma2.
4

Thus the matrix is

Î = ma2


+2

1
3
− 1

4
−

4

−1 +2
4

1
3
−

4

−1 1
4
− +2

4


3

 . (2.60)

The principal moments of inertia are found from

ˆdet(I − λ1) =

(
11

2

ma2

12
− λ
) (

1
ma2

6
− λ
)

= 0 . (2.61)

This gives I1 = λ1 = 1ma2. Solving
6

ˆ(I − λ 11 )ξ(1) = 0 we find ξ(1) = (1, 1, 1). (2.62)

The remaining eigenvalues are degenerate:

1
I2 = I3 = λ2 = λ3 = ma2 (2.63)

12

ˆso there is some freedom in determining the corresponding principal axes from (I−λ 12 )ξ(2,3) =
0, though they still should be orthogonal to each other (and ξ(1)). One example of a solution
is:

ξ(2) = (1,−1, 0) and ξ(3) = (1, 1,−2) (2.64)
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Using these principal axes and the same origin, the moment of inertia tensor becomes

ma2

ÎD =

1

6


0 00 1 0
2

0 0 1


2

 . (2.65)

In contrast, if we had chosen the origin as the center of the cube, then one choice for the
ˆprincipal axes would have the same orientation, but with ICM = 1ma21. This result could

6

be obtained from Eq. (2.65) using the parallel axis theorem.

2.4 Euler Equations

Consider the rotational motion of a rigid body about a fixed point (which could be the CM
but could also be another point). We aim to describe the motion of this rigid body by
exploiting properties of the body frame. To simplify things as much as possible, for this
fixed point, we choose the principal axes fixed in the body frame indexed by α ∈ {1, 2, 3}.
Using the relation between time derivatives in the inertial and rotating frames, the torque
is then given by:

dL
τ =

dRL
=

dt
+ ω

dt
× L (2.66)

where ω = ω(t). For example:

dRL1
τ1 = + ω2L3 − ω3L2. (2.67)

dt

Not summing over repeated indices and using the formula for angular momentum along
the principal axes gives Lα = Iαωα. Since we have fixed moments of inertia within the
body we have dRIα/dt = 0. Note that dω/dt = dRω/dt + ω × ω = dRω/dt, so its rotating
and inertial time derivatives are the same, and we can write ω̇α without possible cause of
confusion. Thus dRLα/dt = Iαω̇α. This yields the Euler equations :

I1ω̇1 − (I2 − I3)ω2ω3 = τ1

I2ω̇2 − (I3 − I1)ω3ω1 = τ2 (2.68)

I3ω̇3 − (I1 − I2)ω1ω2 = τ3

where in all of these ω and τ are calculated in the rotating/body frame. This can also be
written as

τα = Iα ω̇α + εαlk ωl ωk Ik , (2.69)

with α fixed but a sum implied over the repeated l and k indicies. Here εabc is the fully
antisymmetric Levi-Civita symbol.
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Solving these equations gives ωα(t). Since the result is expressed in the body frame,
rather than the inertial frame of the observer, this solution for ω(t) may not always make
the physical motion transparent. To fix this we can connect our solution to the Euler angles
using the relations

˙ ˙ω1 = ωx′ = φ sin θ sinψ + θ cosψ ,

˙ω2 = ωy′ = φ sin θ cosψ − θ̇ sinψ , (2.70)

˙ ˙ω3 = ωz′ = φ cos θ + ψ.

These results should be derived as exercise for the student.

Example: let us consider the stability of rigid-body free rotations (τ = 0). Is a rotation
ω = ω1e1 about the principal axis e1 stable?
Perturbations can be expressed by taking ω = ω1e1 +κ2e2 +κ3e3, where κ2 and κ3 are small
and can be treated to 1st order. The Euler equations are:

(I2 )
ω̇1

− I3
= κ2κ3 = O(κ2)

I1

≈ 0, (2.71)

so ω1 is constant at this order, and

(I3
κ̇2 =

− I1) (I1
ω1 κ3 and κ̇3 =

− I2)

I2

ω1 κ2 . (2.72)
I3

Combining these two equations yields[
(I − I )(I − I )ω2

3 1 1 2
κ̈ = 1

2
2

]
κ2. (2.73)

I I3

The terms in the square bracket are all constant, and is either negative = −w2 with an
oscillating solution κ 2

2 ∝ cos(wt + φ), or is positive = α with exponential solutions κ2 ∝
aeαt + be−αt. If I1 < I2,3 or I2,3 < I1 then the constant prefactor is negative, yielding stable
oscillatory solutions. If instead I2 < I1 < I3 or I3 < I1 < I2 then the constant prefactor
is positive, yielding an unstable exponentially growing component to their solution! This
behavior can be demonstrated by spinning almost any object that has three distinct principal
moments of inertia.

2.5 Symmetric Top with One Point Fixed

This section is devoted to a detailed analysis of a particular example that appears in many
situations, the symmetric top with one point fixed, acted upon by a constant force.
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Labeling the body axes as (x, y, z) and the fixed axes
as (xI, yI, zI), as depicted in the right, symmetry implies
that I1 = I2, and we will assume that I1,2 6= I3. The
Euler angles are as usual (φ, θ, ψ). From the figure we

˙see that ψ is the rotation rate of the top about the
˙(body) z-axis, φ is the precession rate about the zI fixed

˙inertial axis, and θ is the nutation rate by which the
top may move away or towards the zI axis. The Euler
equations in this case are

I1ω̇1 − (I2 − I3)ω2ω3 = τ1,

I1ω̇2 − (I3 − I1)ω3ω1 = τ2, (2.74)

I3ω̇3 = 0 = τ3 .

Since the CM coordinate R is aligned along the z-axis there is no torque along z, τ3 = 0,
leading to a constant ω3.

There are two main cases that we will consider.

˙Case: τ = 0 and θ = 0

˙The first case we will consider is when τ = 0 (so there is no gravity) and θ = 0 (so there
is no nutation). Then

dL
= τ = 0

dt
⇒ L = constant (2.75)

Let us define the constant:
I

Ω ≡ 3 − I1
ω3 . (2.76)

I1

Then the Euler equations for this situation reduce to:

ω̇1 + Ωω2 = 0 and ω̇2 − Ωω1 = 0 . (2.77)

The simplest solution correspond to ω1(t) = ω2(t) = 0, where we just have a rotation about
the z-axis. Here:

L = L3 e3 where L3 = I3ω3

˙ ˙ ˙ω1 = ω2 = 0 ⇒ θ = φ = 0 and ψ = ω3 . (2.78)

In this case L ‖ ω. A more general situation is when L and ω are not necessarily parallel,
and ω1 and ω2 do not vanish. In this case Eq. (2.77) is solved by:

ω1 = C sin(Ωt+D) and ω2 = −C cos(Ωt+D). (2.79)
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The simple case corresponds to C = 0, so now we take
C > 0 (since a sign can be accounted for by the constant
phase D). This solution means ω precesses about the
body z-axis at the rate Ω, as pictured on the right.
Since ω2

1 + ω2
2 is constant, the full ω = |ω| is constant,

and is given by ω2 = C2 + ω2
3.

The energy here is just rotational kinetic energy TR =
1ω
2
· L which is constant too, since both ω and L are

constant. Thus ω also precesses about L.

We can picture this motion by thinking about a body cone that rolls around a cone in the
fixed coordinate system, where in the case pictured with a larger cone about L we have
I1 = I2 > I3.

To obtain more explicit results for the motion we can relate Eq.(2.79) to Euler angles. Since
θ̇ = 0, we take θ = θ0 to be constant. The other Euler angles come from:   ˙C sin(Ωt+D) sin(θ φ

ω = −C cos(Ωt D) =  0) sin(ψ)
+ ˙sin(θ0) cos(ψ)φ

ω3 ˙ ˙cos(θ0)φ+ ψ



Adding the squares of the 1st and 2nd components gives

 . (2.80)

2 2 ˙C = sin (θ0) φ2. (2.81)

To be definite, take the positive square root of this equation to give

C
φ̇ =

C
φ

sin(θ0)
⇒ = t+ φ0. (2.82)

sin(θ0)

The first two equations in Eq. (2.80) are then fully solved by taking ψ = π −Ωt−D, so we
find that both φ and ψ have linear dependence on time. Finally the third equation gives a
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relation between various constants

ω3 = C cot(θ0)− Ω. (2.83)

˙ ˙ ˙Thus, we see that the solution has φ and ψ are constants with θ = 0. If we had picked the
opposite sign when solving Eq. (2.81) then we would have found similar results:

C
φ̇ = − and

sin(
⇒ ψ =

θ0)
−Ωt−D ω3 = −C cot(θ0)− Ω . (2.84)

Case: τ 6 ˙= 0 and θ 6= 0

˙Now we consider the general case where τ 6= 0 and θ 6= 0. It is now more convenient to
use the Lagrangian than the Euler equations directly. Since I1 = I2, using

1
T =

˙ ˙sin(θ) sin(ψ)φ+ cos(ψ)θ

I (ω2 + ω2) + I ω2 ˙
1 3 and ω = ˙sin(θ) cos(ψ)φ sin(ψ)θ , (2.85)

2 1 2 3

( )  −
˙ ˙


cos(θ)φ+ ψ


gives us the kinetic energy



I1
T =

I˙
2

(
θ2 + sin2 ˙θ φ2

)
3

+
2

˙ ˙ψ + cos θ φ . (2.86)
2

Moreover, V = mgR cos(θ), so in the Lagrangian L =

(
T

)
−V the variables φ and ψ are cyclic.

This means that the momenta

∂L
pφ = 2 ˙= I θ)

˙ 1 sin (θ) + I3 cos2 ˙( φ+ I3 cos(θ)ψ (2.87)
∂φ
∂L

p

[ ]
ψ = ˙ ˙= I

˙ 3(ψ + cos(θ)φ) = I3ω3 (2.88)
∂ψ

are conserved (constant). Here pψ is same as the angular momentum L3 discussed in the case
above. The torque is along the line of nodes, and pφ and pψ correspond to two projections
of L that are perpendicular to this torque (i.e. along ẑI and ẑ). Additionally, the energy is
given by

I1
E = T + V =

I˙
2

(
θ2 + sin2 ˙(θ)φ2

)
3

+
2

˙ ˙ψ + cos(θ)φ +mgR cos(θ) (2.89)
2

˙ ˙and is also conserved. Solving the momentum equations,

(
Eq.

)
(2.87), for φ and ψ gives

p˙ φ
φ =

− pψ cos(θ)
(2.90)

I1 sin2(θ)

p˙ ψ
ψ =

(p

I3

− φ − pψ cos(θ)) cos(θ)
.

I1 sin2(θ)
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Note that once we have a solution for θ(t) that these two equations then allow us to imme-
diately obtain solutions for φ(t) and ψ(t) by integration. Eq. (2.90) can be plugged into the
energy formula to give

I1
E =

(
θ̇2 pφ

+
− pψ cos(θ))2

2

p2
ψ

+
2I1 sin2(θ)

+mgR cos(θ), (2.91)
2I3

which is a (nonlinear) differential equation for θ, since all other quantities that appear are
simply constants. To simplify this result take u = cos(θ) so that:

u̇2
˙1− u2 = sin2 , u̇ = − ˙(θ) sin(θ)θ , θ2 = . (2.92)

1− u2

Putting all this together gives:

u̇2 2
=

2

(
EI3 − p2

ψ mgR

2I1I3

− 1
u

I1

)(
1− u2

)
− p

2

(
φ − pψu
I

)2

V
1

≡ − eff(u) , (2.93)

which is a cubic polynomial that we’ve defined to be the effective potential Veff(u). The
solution to this from

du
dt = ±√ (2.94)

−2Veff(u)

yields a complicated elliptic function, from which it is hard to get intuition for the motion.
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Figure 2.7: Allowed region for solutions for the top’s nutation angle θ that solve Eq. (2.95).

Instead, we can look at the form of Veff(u), because

1
u̇2 + Veff(u) = 0 (2.95)

2

is the equation for the energy of a particle of unit mass m = 1, kinetic energy u̇2/2, a
potential Veff(u), and with vanishing total energy. The cubic equation will have in general
three roots where Veff(u) = 0. Since the kinetic energy is always positive or zero, the potential
energy must be negative or zero in the physical region, and hence the particle can not pass
through any of the roots. The roots therefore serve as turning points. Furthermore, physical
solutions are bounded by −1 ≤ (u = cos θ) ≤ 1. While the precise values for the roots will
depend on the initial conditions or values of E, pψ, and pφ, we can still describe the solutions
in a fairly generic manner.

Consider two roots u1 and u2 (corresponding respectively to some angles θ1 and θ2 as
u = cos(θ)) satisfying Veff(u1) = Veff(u2) = 0, where Veff(u) < 0 for u1 < u < u2; as shown
in Fig. 2.7. We see that u1 and u2 correspond to the turning points of the motion. The
region u1 < u < u2 corresponds to the region where the motion of our top lives and gives
rise to a periodic nutation, where the solution bounces between the two turning points.
Depending on the precise value of the various constants that appear in this Veff this gives
rise to different qualitative motions, with examples shown in Figs. 2.8–2.11. Recalling that
˙ ˙φ = (pφ − pψu)/[I 2

1(1 − u )], we see that the possible signs for φ will depend on pφ and pψ.
In Fig. 2.8 the top nutates between θ1 and θ2 while always precessing in the same direction
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˙Figure 2.8: φ > 0
˙Figure 2.9: φ has both

signs

Figure 2.10: at θ2 we
˙ ˙have φ = 0, θ = 0

Figure 2.11: No nu-
tation

˙ ˙with φ > 0, whereas in Fig. 2.9 the precession is also in the backward direction, φ < 0, for
˙part of the range of motion. In Fig. 2.10 the top has φ = 0 at θ2, before falling back down

˙in the potential and gaining φ > 0 again. This figure also captures the case where we let go
˙ ˙of a top at θ = θ2 ≥ 0 that initially has ψ > 0 but φ = 0. Finally in Fig. 2.11 we have the

situation where there is no nutation oscillation because the two angles coincide, θ1 = θ2.
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