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communications, optical data processing to holography, etc. These applications have 

as background the phenomena of wave propagation, interference, diffraction and 

polarisation. Although there are many text books in this area, we feel that the concepts 

get better understood if the students work out a large number of problems. This 

book is a collection of problems (and their solutions) starting from basic phenomena 

in optics to their applications and we hope that this book will help students to get 

a better understanding of Optics and Photonics. The book is divided into many 

chapters covering various aspects of optics and photonics and each chapter has a 

number of problems followed by their solutions, placed at the end of the chapter. 

This will enable the student to refer to the solutions when necessary and at the same 

provide an opportunity to solve some or all of these problems by himself or herself 

before consulting the solutions.

For over 40 years, we have been teaching courses related to optics and photonics 

at IIT Delhi – these courses have been taught both at the undergraduate as well as at 

the postgraduate level. A large number of problems have emerged from the teaching 

of these courses. 

The topics covered in the present edition have been included, keeping in mind the 

needs of students pursuing B Sc and M Sc Physics, apart from courses like B Tech.

Our Objective

these.

ultimately the key to solving problems.

Features of the Book

 1.  – Important formulae and topics discussed in every chapter.

 3. Questions and Answers – Important concepts further enumerated in question 

and answer format.

 4.  – Over 400 numericals 

Preface



 

 5.  for better understanding 

of the concepts and principles.

Chapter Organisation

The book is divided into 24 chapters. Each chapter begins with a quick review on the 

important concepts and principles, helping students understand the chapter better. 

Chapter 1 deals with Matrix method in paraxial optics. Chapter 2 elucidates 

Fermat’s principle, Snell’s law and the ray equation. Chapters 3, 4, and 5 will make 

students understand Optical instruments, Aberrations, and Huygens’ principle and 

applications, respectively. 

The concept of interference has been divided into two parts-division of wave front 

has been dealt in Chapter 6 whereas Division of amplitude has been discussed in 

Chapter 7. Chapter 8 explains Multiple beam interferometry. Chapters 9 and 10 

are based on Fraunhofer diffraction. 

Chapters 11, 12, 13, 14, and 15 deal with Fresnel diffraction, Fourier optics 

and holography, Polarisation I: Basics and double refraction, Polarisation II: Jones 

vectors and Jones matrices, and Wave equation and its solutions.

Topics like Group velocity and Pulse dispersion, Basic laser physics, Basic 

concepts of F Basic 

waveguide theory and Concept of modes, and S

been explained in Chapters 16, 17, 18, 19, and 20.

The last four chapters in this book i.e., Chapters 21 to 24 help in understanding 

concepts of integrated optics, electro-optic effect, acousto-optic effect, and nonlinear 

optics.

In addition, the book also contains a number of multiple choice questions and 

references along with suggested readings at the end of the book.
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A Quick Review

In the paraxial approximation, rays remain close to the optical axis and are assumed 

¥ 1 matrix 

with elements l1 and x1

l1

1x

Ê
ËÁ

ˆ
¯̃

where x1 represents the distance from the axis and the parameter l

following equation:

 l = n sin a (1) 

which represents the product of the refractive index and the sine of the angle that the 

ray makes with the z axis (see Fig. 1.1). 

Fig. 1.1 In a homogeneous medium, the ray travels in a straight line.

1.1 EFFECT OF TRANSLATION

¥ 1 matrix with elements l1 and x1, then after 

propagating through a distance D in a homogeneous medium of refractive index n1, 

 
l

x

Ê
ËÁ

ˆ
¯̃

 = T
x

l1

1

Ê
ËÁ

ˆ
¯̃

Matrix Method in Paraxial 
Optics 1
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where, T = 
1 0

11D n/

Ê
ËÁ

ˆ
¯̃

 (3)

The matrix T is known as the translation matrix and represents the effect of 

translation through a distance D in a homogeneous medium of refractive index n1.

1.2 EFFECT OF REFRACTION

Consider a ray incident on a spherical surface (of radius R) separating two media 

of refractive indices n1 and n l¢, x¢) and (l≤, x≤) represent the 

coordinates of the ray at A¢ A≤ (just after refraction), 

then 

 
l≤

≤x

Ê
ËÁ

ˆ
¯̃

 = ¬
Ê
ËÁ

ˆ
¯̃

l¢
¢x

 (4)

where, ¬ = 
1

0 1

-Ê
ËÁ

ˆ
¯̃

P
 (5)

and P = 
n n

R
2 1-

 (6)

is known as the power ¥ ¬ characterises 

refraction through the spherical surface. Note that

 det ¬ = det T = 1 (7)

on the left of the point P are negative and coordinates on the right of P are positive 

Fig. 1.2 Imaging by a spherical refracting surface separating two media of refractive indices n1 and n2.
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Fig. 1.3 Signs of R1 and R2 for different types of lenses.

l¢, x¢) when it enters 

l≤, x≤) when it leaves the system (points P and 

Q in Fig. 1.4), then we can, in general, write 

 
l≤

≤x

Ê
ËÁ

ˆ
¯̃

 = S
x

l¢
¢

Ê
ËÁ

ˆ
¯̃

 (8)

where the matrix S = 
b a

d c

-
-

Ê
ËÁ

ˆ
¯̃

 (9)

Fig. 1.4 The object point O is at a distance –D1

assumed to be formed at a distance D2 from the last refracting surface.

is called the system matrix

note that:

The quantities b and c are dimensionless. The quantities a and P have the dimension 

of inverse length, and the quantity d has the dimension of length. In general, the units 

a and P are in cm–1 and d is in cm.

O is at a distance –D1 

D  from the last refracting 

surface (see Fig. 1.4). Thus,

 
l

x

Ê
ËÁ

ˆ
¯̃

 = 
1 0

1

1 0

12 1

1

1D

b a

d c D x

Ê
ËÁ

ˆ
¯̃

-
-

Ê
ËÁ

ˆ
¯̃ -

Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

l
 (10) 
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  = 
b aD a

bD aD D cD d c aD

+ -
+ - - -

Ê
ËÁ

ˆ
¯̃

1

2 1 2 1 2

l1

1x

Ê
ËÁ

ˆ
¯̃

 (11) 

Thus, x  = (bD  + aD1D  – cD1 – d)l1 + (c – aD )x1

x1 = 0) the image plane is 

x  = 0. Thus, for the image plane we must have 

 bD  + aD1D  – cD1 – d = 0 (13) 

or, 
b

D
a

c

D

d

D D1 2 1 2

+ - -  = 0 (14)

D1 and D . When D1 = 

, D  = 
c

a
. Corresponding to the image plane, we have

 
l

x

Ê
ËÁ

ˆ
¯̃

 = 
b aD a

c aD

+ -
-

Ê
ËÁ

ˆ
¯̃

1

20

l1

1x

Ê
ËÁ

ˆ
¯̃

 (15) 

For x  π
 x  = (c – aD )x1

M (= x /x1

 M = 
x

x
2

1

 = c – aD  (16)

Further, since

 
b aD a

c aD

+ -
-

1

20
 = 1

b + aD1 = 
1

2c aD-
 = 

1

M
 (17) 

1.3 UNIT PLANES

M

image space. Thus, if du1 and du  represent the distances of the unit planes from the 

refracting surfaces (see Fig. 1.5)1 17)

 b + adu1 = 
1

2c adu-
 = 1 (18) 

or, du1 = 
1 - b

a
 (19)

 1. U1 U  is the corresponding image 

plane.
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 du  = 
c

a

- 1

matrix S

u v is the distance of 

 D1 = u + du1 = u + 
1 - b

a

and  D  = v + du  = v + 
c

a

- 1

Fig. 1.5 U1 and U2

cross the second unit plane at the same height. 

 D  = 
d cD

b aD

+
+

1

1

D1 and D

 v + 
c

a

- 1
 = 

d cu c b a

b au b

+ + -
+ + -

( )/

( )

1

1

or, v = 
ad bc c au c au

a au

- + + - - +
+

( ) ( ) ( )

( )

1 1 1

1

  = 
au

a au( )1 +

where we have used the condition that 

 det S = bc – ad

 
1 1

v

-
u

 = a
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Thus, 1/a represents the focal length of the system if the distances are measured 

from the two unit planes.  
PROBLEMS

R) 

separating two media of refractive indices n1 and n . If (l1, x1) and (l , 

x ) represent the coordinates of the ray at O, and at I

that 

     
l

x

Ê
ËÁ

ˆ
¯̃

 = 

1

1 1

1

2 1 1 2

+ -

+
Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

Pu
n

P

n
Pu
n

u
n

P
n

v v

l1

1x

Ê
ËÁ

ˆ
¯̃

paraxial image

     
n n

u
2 1

v

-  = P = 
n n

R
2 1- 

lens formulae.

R1 R

lenses of focal lengths f1 and f t. 

the system matrix elements and the positions of the unit planes. Assume 

the ray diagram. 

 

 Fig. 1.6
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of the lens is 5 cm and the refractive index of the material of the lens is 1.5. 

surface.

H1 and H  

AH1 = 13.3 cm and that H  lies on the second surface as shown in Fig. 1.7. 

Further, show that the focal length is 40 cm.

 

 Fig. 1.7

thickness of the lens is 1.0 cm. The refractive index of the material of the lens 

 

 Fig. 1.8
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of the paraxial focal point and the unit planes. 

 1.9 
lens, determine the size and position of the image. 

 1.10 Consider a system of two thin lenses as shown in Fig. 1.9. For a 1 cm tall 

size of the image. 

 

 Fig. 1.9 A combination of two thin lenses.

SOLUTIONS

 1.1 (a) Let (l1, x1), (l¢, x¢), (l≤, x≤) and (l , x ) represent the coordinates of 

the ray at O, A¢ A≤ (just after refraction), and I 

     
l¢

¢x

Ê
ËÁ

ˆ
¯̃

 = 
1 0

11-
Ê
ËÁ

ˆ
¯̃u n/

l1

1x

Ê
ËÁ

ˆ
¯̃

     
l≤

≤x

Ê
ËÁ

ˆ
¯̃

 = 
1

0 1

-Ê
ËÁ

ˆ
¯̃

P l¢
¢x

Ê
ËÁ

ˆ
¯̃

     
l

x

Ê
ËÁ

ˆ
¯̃

 = 
1 0

12v/n

Ê
ËÁ

ˆ
¯̃

l≤
≤x

Ê
ËÁ

ˆ
¯̃

    or, 
l

x

Ê
ËÁ

ˆ
¯̃

 = 
1 0

12v/n

Ê
ËÁ

ˆ
¯̃

1

0 1

-Ê
ËÁ

ˆ
¯̃

P 1 0

11-
Ê
ËÁ

ˆ
¯̃u n/

l1

1x

Ê
ËÁ

ˆ
¯̃
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     Simple manipulations give 

     
l

x

Ê
ËÁ

ˆ
¯̃

 = 

1

1 1

1

2 1 1 2

+ -

+
Ê
ËÁ

ˆ
¯̃

- -
Ê
ËÁ

ˆ
¯̃

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

Pu
n

P

n
Pu
n

u
n

P
n

v v

l1

1x

Ê
ËÁ

ˆ
¯̃

     x  = 
v v

n

Pu

n

u

n

P

n
x

2 1 1
1

2
1

1 1+Ê
ËÁ

ˆ
¯̃

-
È

Î
Í

˘

˚
˙ + -Ê

ËÁ
ˆ
¯̃

l  (30)

x1 = 0) the image 

x

l1 should vanish and therefore 

     
u

n1

 = 
v

n

Pu

n2 1

1 +
Ê
ËÁ

ˆ
¯̃

    or, 
n n

u
2 1

v

-  = P = 
n n

R
2 1-

 (31)

    which is the equation determining the paraxial image. Hence, on the 

image plane 

     
l

x

Ê
ËÁ

ˆ
¯̃

 = 

1

0 1

1

2

+ -

-

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

Pu

n
P

P

n

v

l1

1x

Ê
ËÁ

ˆ
¯̃

    giving x  = 1
2

1-
Ê
ËÁ

ˆ
¯̃

vP

n
x  (33)

     m = 
x

x

P

n
2

1 2

1= - v
 (34)

     m = 
n

n u
1

2

v

 (35)

t and made of a material of relative 

refractive index n (see Fig. 1.10). Let R1 and R

P and 

emerge from point Q P and Q   l1

1x

Ê
ËÁ

ˆ
¯̃

 and 
l

x

Ê
ËÁ

ˆ
¯̃

 (36) 
  where l1 and l  are the optical direction cosines of the ray at P and Q x1 and 

x  are the distances of points P and Q from the axis (see Fig. 1.10). The ray, 
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in propagating from P to Q

(whose radius of curvature is R1) and the other at the second surface (whose 

radius of curvature is R )] and a translation through a distance  t in a medium 

of refractive index n. Thus    l

x

Ê
ËÁ

ˆ
¯̃

 = 
1

0 1

1 0

1

1

0 1

2 1 1

1

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

P

t n

P

x/

l  (37) 

  where, P1 = 
n

R

- 1

1

 and P  = 
1 1

2 2

-
-

-n

R

n

R
=  (38)

 

 Fig. 1.10 t. 

  represent the powers of the two refracting surfaces. Thus, our system matrix 

   S = 
b a

d c

-
-

Ê
ËÁ

ˆ
¯̃

 = 
1

0 1

1 0

1

1

0 1

2 1-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

P

t n

P

/

    = 

1 1

1

2
1 2 1

1

- - - -Ê
Ë

ˆ
¯

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

P t

n
P P

t

n
P

t

n

t

n
P

 (39) 

  Thus for a thick lens, the parameters of the system matrix are

   a = P1 + P 1 1-Ê
Ë

ˆ
¯

t

n
P b = 1 – 

P t

n
c = 1 – 

t

n
P1 d = –

t

n
 (40) 

   
1

f
 = a = P1 + P 1 1-Ê

Ë
ˆ
¯

t

n
P  

 P and Q is 

approximately t.
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   Thus,  
1

f
 = (n – 1)

1 1 1

1 2

2

1 2
R R

n t

nR R
-Ê

ËÁ
ˆ
¯̃

+
-( )

 (41) 

   For a thin lens, t Æ 0 and the system matrix takes the following form: 

   S = 
1

0 1

1 2- -Ê
ËÁ

ˆ
¯̃

P P

   Thus for a thin lens, 

   a = P1 + P   b = 1  c = 1  d = 0 (43)

a, b, c, and d

   D  + (P1 + P ) D1 D  – D1 = 0

  or, 
1 1

2 1D D
-  = P1 + P

    = (n – 1)
1 1

1 2R R
-Ê

ËÁ
ˆ
¯̃

 (44)

  or, 
1 1

2 1D D
-  = 

1

f
 (45)

  where, f = 
1

1 2P P+
 = ( )n

R R
- -

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙

-

1
1 1

1 2

1

 (46)

lens formula. Thus for a thin lens, the system matrix takes the following form: 

   S = 
1

1

0 1

-Ê

Ë

Á
Á

ˆ

¯

˜
˜

f  (47)  

 

   du1 = 
P t

n P P t n P
2

1 2 1

1

1+ -[ ( / ) ]
 (48)

  and du  = –
t

n

P

P P t n P
1

1 2 11+ -[ ( / ) ]
 (49)

R1 R

   P1 = P  = 
n

R

- 1
 (50)

  where, R R1 R

   du1 = 
t

n t

n

n

R

t

n

1

2
1 2-

-
ª  (51)

  and du  = –
t

n t

n

n

R

t

n

1

2
1 2-

-
ª -
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  where we have assumed t << R which is indeed the case for most thick lenses. 

The positions of the unit planes are shown in Fig. 1.11.

 

 Fig. 1.11

     S = 
1

1

0 1

1 0

1

1
1

0 1

2 1

-Ê

Ë

Á
Á

ˆ

¯

˜
˜

Ê
ËÁ

ˆ
¯̃

-Ê

Ë

Á
Á

ˆ

¯

˜
˜

f
t

f

      = 

1
1 1

1

2 1 2 1 2

1

-Ê
ËÁ

ˆ
¯̃

- + -Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

t

f f f

t

f f

t
t

f

 (53)

     Thus, the elements of the system matrix are

     a = 
1 1

1 2 1 2f f

t

f f
+ - b = 1 – 

t

f
c = 1 – 

t

f1
d = –t (54) 

f1 = 10 cm, f = 30 cm, t 

      = 

1
20

30

1

10

1

30

20

300

20 1
20

10

-Ê
Ë

ˆ
¯ - + -Ê

Ë
ˆ
¯

-Ê
Ë

ˆ
¯

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

      = 

1

3

2

30

20 1

-

-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

     Thus a = 
1

15
, b = 

1

3
, c = –1, d du1 = 

1 - b

a
du  = 

c

a

- 1
 =

planes (see Fig. 1.6). f = 
1

a
 = 15 cm. 
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    Now, 
1 1 1

v

-
u f

=  = a

    For u = – , v = f = 15 cm (distance measured from the second unit plane). 

lens.

 1.5 R1 = 45 cm, R  = –30 cm, t = 5 cm, n = 1.5

   P1 = 
n

R

- 1 1

901

=  and P  =
1 1

602

- n

R
=

  represents the power of the two refracting surfaces. Thus,

   a = P1 + P 1 1-Ê
ËÁ

ˆ
¯̃

t

n
P  = 

11

405
 ª b = 1 – 

P t

n
 = 

17

18
 ª 0.9444

   c = 1 – 
t

n
P1 = 

26

27
 ª d = –

t

n
 = –

10

3

   du1 = 
1 - b

a
 = 

1

18
 ¥ 

405

11
 ª

   du  = 
c

a

- 1
 = –

405

27 11¥
 ª –1.3636 cm

   Now, 
1 1 1

v

-
u f

=  = a u

   
1

v

1

92 0455.
 fi v = 61.37 cm (from the second unit plane)

ª 60 cm from the 

 

 Fig. 1.12 Figure for Problem 1.5. 
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 1.6 R1 = , R t n = 1.5

   P1 = 
n

R

- 1

1

 = 0 and P  = 
1

2

- n

R
 = 

1

40

   a = P1 + P 1 1-Ê
ËÁ

ˆ
¯̃

t

n
P  = P b = 1 – 

P t

n
 = 

2

3

   c = 1 – 
t

n
P1 d = - t

n
 = - 200

15

   dn1 = du1 = 
1 - b

a
 = 

40

3
 ª dn  = du  = 

c

a

- 1
 = 0

plane surface and the second nodal (and unit) plane lies on the second surface. 

Further, for u = – , the equation 

   
1 1

v

-
u

 = a v = 
1

a
 = 40 cm

  which is the focal length. 

 1.7 R1 = –10 cm, R t = 1.0 cm, n = 1.5

   P1 = 
n

R

- 1

1

 = –
1

20
P  = -

-n

R

1

2

 = - 1

40

   a = P1 + P 1 1-Ê
ËÁ

ˆ
¯̃

t

n
P b = 1 – 

P t

n
 = 1.0167 

   c = 1 – 
t

n
P1 d = - t

n
 = - 1

1 5.
 = –0.6667

   du1 = 
1 - b

a
 ª du  = 

c

a

- 1
 ª –0.440 cm

 1.8 We can easily calculate P1 = 0.03, P  = 0.03 and since t = 40 cm and n = 1.6, 

we get

   b a = 0.0375, d c

Second surface Refraction at Transmission Refraction at the

to image second surface through glass

1 0

1v

Ê
ËÁ

ˆ
¯̃

1 1 1 6 20

0 1

( . )/-Ê
ËÁ

ˆ
¯̃

1 0

40 1 6 1/ .

Ê
ËÁ

ˆ
¯̃

1 1 6 1 20

0 1

- -Ê
ËÁ

ˆ
¯̃

( . )/

    = 
1 0

1v

Ê
ËÁ

ˆ
¯̃

0 25 0 0375

25 0 25

. .

.

-Ê
ËÁ

ˆ
¯̃

    = 
0 25 0 0375

25 0 25 0 25 0 0375

. .

. . .

-
+ -

Ê
ËÁ

ˆ
¯̃v v
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   Thus at the image plane, the ray coordinates are 

  
l

x

Ê
ËÁ

ˆ
¯̃

 = 
0 25 0 0375

25 0 25 0 25 0 0375

. .

. . .

-
+ -

Ê
ËÁ

ˆ
¯̃v v

l1

1x

Ê
ËÁ

ˆ
¯̃

  This gives us 

  x v)l1 v)x1

  To determine the focal distance v, consider a ray incident parallel to the axis 

for which l1 x  is also zero. 

This gives us 

  0.0375v v = 6.7 cm

  (see Fig. 1.13). The system matrix elements are 

   a = 
1

f
 = 0.0375 cm–1 fi f ª

   b c d

 

 Fig. 1.13

   du1 = 
1 - b

a

  and du  = 
c

a

- 1

example, we cannot use the approximation t << R.



16 Problems and Solutions in Optics and Photonics

 1.9 f1 = +15 cm  f t1

   a = 
1

10
 = 

1

f
  b = 

45

20
  c = - 2

3
  d

  and du1 = 
1 - b

a
du  = 

c

a

- 1
 = - 50

3
cm 

  u

 

 Fig. 1.14 Figure for Problem 1.9.

  Since f = +10 cm, we get 

  v = 30 cm

  which represents the distance of the image plane from the second unit plane. 

Thus, the image is at a distance of 30 – 50/3 = 40/3 cm from the concave lens. 

  M = 
v

u

 1.10 Let v

Concave lens to Concave Convex lens to Convex
image lens concave lens lens convex lens

1 0

1v

Ê
ËÁ

ˆ
¯̃

1 1 10

0 1

+Ê
ËÁ

ˆ
¯̃

/ 1 0

8 1

Ê
ËÁ

ˆ
¯̃

1 1 20

0 1

-Ê
ËÁ

ˆ
¯̃

/ 1 0

40 1

Ê
ËÁ

ˆ
¯̃
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    = 
1 0

1v

Ê
ËÁ

ˆ
¯̃

2 2 0 01

32 0 6

. .

.+
Ê
ËÁ

ˆ
¯̃

    = 
2 2 0 01

2 2 32 0 6 0 01

. .

. . .v v+ +
Ê
ËÁ

ˆ
¯̃

   The image plane would correspond to 

v = 0

  or, v ª –14.5 cm

  i.e., it is at a distance of 14.5 cm to the left of the concave lens. If we compare 

  M = 0.6 + 0.01v = 0.6 – 0.01
32

2 2.

Ê
Ë

ˆ
¯  = + 1

2 2.



 

A Quick Review

2.1 FERMAT’S PRINCIPLE

Fermat’s principle states that the actual ray path between two points is the one for 

which the optical path length is stationary with respect to variations of the path.

 d nd

A BÆ
Ú  = 0 (1)

Using Fermat’s principle one can derive Snell’s law of refraction (see Problem 2.1):

 n1 sin f1 = n2 sin f2 (2) 

where f1 is the angle of incidence and f2 the angle of refraction (see Fig. 2.1).

Fig. 2.1 (a) For a ray incident on a denser medium, the ray bends towards the normal and the angle of 

refraction is less than the angle of incidence. (b) For a ray incident on a rarer medium, the ray 

bends away from the normal and the angle of refraction is greater than the angle of incidence. 

In each refraction, the Snell’s law n1 sin f1 = n2 sin f2 is obeyed.

We assume that the refractive index depends only on the x-coordinate. Such an 

inhomogeneous medium can be thought of as a limiting case of a medium consisting 

of a continuous set of thin slices of media of different refractive indices – [see 

 n1 sin f1 = n2 sin f2 = n3 sin f3 = … (3) 

Fermat's Principle, Snell's 
Law and Ray Equation 2
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Thus, in the limiting case of a continuous variation of refractive index [see 

Fig. 2.2(b)], the product 

 n(x) sin f(x) = n(x) cos q(x) = n1 cos q1 = b  (4)

is an invariant of the ray path; we will denote this invariant by b . In the above equation 

q (x) is the angle that the ray makes with the z-axis. The value of this invariant may be 

determined from the fact that if the ray initially makes an angle q1 (with the z-axis) at 

a point where the refractive index is n1, then the value of b  is n1 cos q1. 

Fig. 2.2 (a) In a layered structure, the ray bends in such a way that the product n1 sin f1 = n2 sin f2 = 

n3 sin f3 = … remains constant. (b) For a medium with continuously varying refractive index, 

the ray path bends in such a way that the product n(x) sin f(x) [= n(x) cos q(x)] remains 

constant.

2.2 RAY EQUATIONS IN INHOMOGENOUS MEDIA

Equation (4) can be used to derive the ray equation which can be written in either of 

the following forms (see Problem 2.4):

 
dx

dz

Ê
ËÁ

ˆ
¯̃

2

 = 
n x2

2

( )

b
 – 1 (5)

or, 
d x

dz

2

2
 = 

1

2
2

2

b

dn

dx
 (6)

The above equations represent rigorously correct ray equations when the refractive 

index depends only on the x-coordinate.

PROBLEMS

 2.1 Obtain the laws of refraction (i.e., Snell’s law) from Fermat’s principle. 

 2.2 Consider a spherical refracting surface SPM separating two media of 

refractive indices n1 and n2 (see Fig. 2.3). The point C represents the center 

of the spherical surface SPM. Consider two points O and Q such that the 

points O, C and Q are in a straight line. Calculate the optical path length OSQ 
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in terms of the distances x, y, r and the angle q (see Fig. 2.3). Use Fermat’s 

O and Q. Also, assuming 

the angle q to be small, determine the paraxial image of the point O.

 

  Fig. 2.3 SPM is a spherical refracting surface separating two media of refractive indices n1 

and n2. C represents the center of the spherical surface.

 2.3 Consider a set of rays, parallel to the axis, and incident on a paraboloidal 

pass through the focus of the paraboloid; a paraboloid is obtained by rotating a 

to focus parallel rays from a distant source, like in radio astronomy.

 

  Fig. 2.4

ACB is the directrix). It is for this reason that antennas (for 

collecting electromagnetic waves) or solar collectors are often paraboloidal in shape.
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 2.4 Assume the refractive index to depend only on the x-coordinate. Use Snell’s 

law [Eq. (4)] to derive the ray equation [Eqs (5) and (6)].

 2.5 Solve the ray equation in a homogeneous medium for which n(x) is a constant.

 2.6  (a) Obtain the ray paths in a medium characterised by the following refractive 

index variation

     n(x) = n0 + kx (7)

    Assume that at z = 0, the ray is launched at x = x1 making an angle q1, with 

the z-axis; thus

     x (z = 0) = x1

    and 
dx

dz
z =0

 = tan q1

   (b) Assume that k ª 1.234 ¥ 10–5 m–1 and rays are launched at x = x1 = 1.5 m, 

where n(x1) = 1.00026. Plot the ray paths when the angle that the ray 

makes with the horizontal axis are +0.2°, 0°, – 0.2°, –0.28°, – 0.3486° and 

–0.5°.

 2.7 (a) Consider an optical waveguide characterised by the refractive index 

distribution is usually written in the form:

     n2(x) = n1
2 1 2

2

- Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

D x

a
, | x | < a CORE

      = n2
2 = n1

2(1 – 2D), | x | > a CLADDING (8)

    The region |x | < a is known as the core of the waveguide and the region 

|x | > a is known as the cladding. Assuming that at z = 0, x = 0, show that 

for n2 < b  < n1, the ray paths are sinusoidal.

   (b) Derive an expression for the periodical length zp of the sinusoidal path. 

   (c) Assume n1 = 1.5, D = 0.01 and a = 20 mm; if q1 is the angle that the ray 

makes with the z axis at x = 0, calculate the values of zp corresponding to 

q1 = 4°, 8.13° and 20°.  

 2.8 In continuation of the previous problem, for n2 < b  < n1, the ray path (inside 

the core) of a parabolic index waveguide is given by

   x = x0 sin Gz (9)

  where, x0 = 
1

1
2 2

g
bn -   (10) 

   g = n
a1
2D

 (11)

  and G = 
g

b
 (12)

  Calculate the time taken by a ray to traverse a certain length through the 

parabolic index waveguide; such a calculation is of considerable importance 

 (see Sec. Eq. (17) of Chapter 18).
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 2.9 Discuss the ray paths in a medium characterized by the following refractive 

index variation

   n2(x) = n1
2 x < 0

    = n1
2 – gx x > 0 (13)

  Obtain the ray path for a ray incident on the origin (x = 0, z = 0) making an 

angle q1 with the z-axis.

 2.10 Consider a refractive index variation which saturates to a constant value as 

x Æ :

   n2(x) = n2
0 + n2

2(1 – e–ax); x > 0 (14)

  with n0 = 1.000233, n2 = 0.45836 and a = 2.303 m–1 (15) 

  Calculate the angle at which the ray should be launched at x = 0.43 m, so that 

it becomes horizontal at x = 0.2 m.

SOLUTIONS

 2.1 To obtain the laws of refraction, let PQ be a surface separating two media 

of refractive indices n1 and n2 as shown in Fig. 2.5. Let a ray starting from 

the point A, intersect the interface at R and proceed to B along RB. Clearly, 

for minimum optical path length, the incident ray, the refracted ray and the 

normal to the interface must all lie in the same plane. To determine that 

point R for which the optical path length from A to B is a minimum, we drop 

perpendiculars AM and BN from A and B respectively on the interface PQ. Let 

AM = h1, BN = h2 and MR = x. Then since A and B RN = L – x, where 

MN = L A to B

is

   Lop = n1 AR + n2 RB = n x h1
2

1
2+  + n L x h2

2
2
2( )- +  (16)

 

  Fig. 2.5 A and B are two points in media of refractive indices n1 and n2. The ray path 

connecting A and B will be such that n1 sin f1 = n2 sin f2.
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  To minimise this, we must have

   
dL

dx

op
 = 0 (17)

  i.e., 
n x

x h

1

2 2+
 – 

n L x

L x h

2

2 2

( )

( )

-

- +
 = 0 (18)

  Further, as can be seen from Fig. 2.5

   sin f1 = 
x

x h2
1
2+

  and sin f2 = 
( )

( )

L x

L x h

-

- +2
2
2

  Thus, Eq. (18) becomes

   n1 sin f1 = n2 sin f2 (19)

  which is the Snell’s law of refraction.

 2.2 From the triangle SOC (see Fig. 2.3) we have

   OS = [(x + r)2 + r2 – 2 (x + r) r cos q]1/2

    ª x rx r xr r2 2 2
2

1 2

2 2 2 1
2

+ + - + -
Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙( )

/

q

    ª x
rx r

x
1

2

2

2

1 2

+
+È

Î
Í

˘

˚
˙q

/

 ª x + 1

2

1 12 2r
r x

+Ê
Ë

ˆ
¯ q

  where we have assumed q (measured in radians) to be small so that we may 

use the expression

   cos q ª 1 – q 2

2
 

  and also make a binomial expansion. Similarly, by considering the triangle 

SCQ we would have

  SQ ª y – 1

2

1 12 2r
r y

-Ê
ËÁ

ˆ
¯̃

q

  Thus, the optical path length OSQ is given by

   Lop = n1 OS + n2 SQ

    ª (n1x + n2y) + 
1

2
2 1 2 2 1 2r

n

x

n

y

n n

r
+ -

-È
ÎÍ

˘
˚̇
q  (20)

  For the optical path to be an extremum, we must have

   
dL

d

op

q
 = 0 = r

n

x

n

y

n n

r
2 1 2 2 1+ -

-È
ÎÍ

˘
˚̇
q  (21)
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   Thus, unless the quantity inside the square brackets is zero we must have 

q = 0 implying that the only ray connecting the points O and Q will be the 

straight line path OPQ which also follows from Snell’s law because the ray 

OP hits the spherical surface normally and should proceed undeviated.

   On the other hand, if the value of y was such that the quantity inside the 

square brackets was zero, i.e., if y was equal to y0 such that

   
n

y
2

0

 + 
n

x
1  = 

n n

r
2 1-

 (22)

  then dLop/dq would vanish for all values of q; of course, q is assumed to be 

small – which is the paraxial approximation. Now, if the point I corresponds to 

PI = y0 (see Fig. 2.3) then all paths like OSI are allowed ray paths implying that 

all (paraxial) rays emanating from O will pass through I and I will therefore 

represent the paraxial image point. Obviously, all rays like OSI (which start 

from O and pass through I) take the same amount of time in reaching the point 

I.

   We should mention that Eq. (22) is a particular form of the equation 

determining the paraxial image point

   
n n

u
2 1

v

-  = 
n n

R
2 1-

 (23)

  with the sign convention that all distances measured to the right of the point P 

are positive and those to its left negative. Thus u = – x, v = +y and r = +R.

   In order to determine whether the ray path OPQ corresponds to minimum 

time or maximum time or stationary, we must determine the sign of d2Lop/dq2 

which is given by

  
d L

d

2

2

op

q
 = r

n

x

n

y

n n

r
2 1 2 2 1+ -

-È
ÎÍ

˘
˚̇

 = r n
y y

2
2

0

1 1-È
ÎÍ

˘
˚̇

   Obviously, if y > y0 (i.e., the point Q is on the right of the paraxial image 

point I) d2Lop/dq2 is negative and the ray path OPQ corresponds to maximum 

time in comparison with nearby paths and conversely. On the other hand, 

if y = y0, d2Lop/dq2 will vanish implying that the extremum corresponds to 

stationarity.

 2.3 Consider a ray PQ, parallel to the axis of the parabola, incident at the point 

Q

the point Q

QS will always pass through the focus S. 

However, this procedure will be quite cumbersome and as we will show below, 

the use of Fermat’s principle leads us to the desired results immediately.

the focus S and an arbitrary point P (see Fig. 2.4). Let the ray path be PQ¢S. 

According to Fermat’s principle the ray path will correspond to a minimum 

value of PQ ¢ + Q¢S. From the point Q¢ we drop a perpendicular Q ¢L¢, on the 

directrix AB Q¢L¢ = Q¢S. 
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Thus,

  PQ¢ + Q¢S = PQ¢ + Q ¢L¢

  Let L be the foot of the perpendicular drawn from the point P on AB. Then, 

for PQ¢ + Q¢L¢ to be a minimum, the point Q should lie on the straight line 

PL, and thus the actual ray which connects the points P and S will be PQ + 

QS where PQ is parallel to the axis. Therefore, all rays parallel to the axis 

will pass through S and conversely, all rays emanating from the point S will 

 2.4 If ds

   (ds)2 = (dx)2 + (dz)2  (24)

  or, 
ds

dz

Ê
Ë

ˆ
¯

2

 = 
dx

dz

Ê
ËÁ

ˆ
¯̃

2

 + 1 (25)

   
dz

ds
 = cos q = 

b

n x( )
 (26)

  Thus Eq. (25) becomes

   
dx

dz

Ê
ËÁ

ˆ
¯̃

2

 = 
n x2

2

( )

b
– 1 (27)

  For a given n(x) variation, Eq. (27) can be integrated to give the ray path x(z); 

however, it is often more convenient to put Eq. (27) in a slightly different form 

by differentiating it with respect to z:

   2
2

2

dx

dz

d x

dz
 = 

1
2

2

b

dn

dx

dx

dz

  or, 
d x

dz

2

2
 = 

1

2
2

2

b

dn

dx
 (28)

  Equations (27) and (28) represent rigorously correct ray equations when the 

refractive index depends only on the x-coordinate and we may use either of 

them to determine the ray paths.

 2.5 In a homogeneous medium for which n(x) is a constant. In such a case, the 

RHS of Eq. (28) is zero and one obtains

  
d x

dz

2

2
 = 0

  Integrating the above equation twice with respect to z, we obtain

  x = Az + B

  which is the equation of a straight line, as it ought to be in a homogeneous 

medium.

 2.6 Consider the refractive index variation

   n(x) = n0 + kx (29)
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d x

dz

2

2
 = 

1

2
2

2

b

dn

dx
 = 

k

b
2

[n0 + kx]

  or, 
d X

dz

2

2
 = k 2X(z) (30)

  where, X ∫ x + 
n

k
0  and k = 

k

b
 (31)

  Thus, the ray path is given by

   x(z) = –
n

k
0  + C1ek z + C2e–k z (32)

  where the constants C1 and C2 are to be determined from initial conditions. 

We assume that at z = 0, the ray is launched at x = x1 making an angle q1 with 

the z-axis; thus

   x(z = 0) = x1

  and 
dx

dz z =0

 = tan q1

 

  Fig. 2.6 Ray paths in a medium characterised by a linear variation of refractive index [see 

Eq. (7)] with parameters as given in Problem 6(b). The object point is at a height of 

1.5 m and the curves correspond to +0.2°, 0°, – 0.2°, – 0.28°, –0.3486° and –0.5°.

The shading shows that the refractive index increases with x.

   Elementary manipulations would give us 

   C1 = 
1

2

1
1 0 1 1x

k
n n+ +È

ÎÍ
˘
˚̇

( sin )q  (33)

  and C2 = 
1

2

1
1 0 1 1x

k
n n+ -È

ÎÍ
˘
˚̇

( sin )q  (34)
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  where n1 = n0 + kx1 represents the refractive index at x = x1 and we have used 

the fact that 

   b  = n1 cos q1 (35)

  Now, k ª 1.234 ¥ 10–5 m–1 and n (x1) = 1.00026 where x1 = 1.5 m; thus n0 = 

1.0002415. Figure 2.6 shows the ray path as given by Eq. (32) for q1 = + 0.2°, 

0°, –0.2°, –0.28°, –0.3486° and –0.5°.

 2.7 (a) In the core of the waveguide, we write the refractive variation as 

     n2(x) = n1
2 – g 2x2 (36)

    where, g = n
a1
2D

    We will use Eq. (27) to determine the ray paths. Equation (27) can be 

written as

     
dx

n x2 2
( ) -

Ú
b

 = ± Ú1

b
dz  (37)

    Substituting for n2(x), we get

     
dx

x x0
2 2-

Ú  = ± ÚG dz  (38)

    where, x0 = 
1

1
2 2

g
bn -  (39)

    and  G = 
g

b
 (40)

    Writing x = x0 sin q and carrying out the straightforward integration, we 

get

     x = ± x0 sin [G(z – z0)] (41)

    We can always choose the origin such that z0 = 0 so that the general ray 

path would be given by

     x = ± x0 sin G z (42)

   (b) For n1 = 1.5, D = 0.01, a = 20 mm, we get n2 = 1.485 and g = 1.0607 ¥ 
104 m–1. Obviously, rays will be guided in the core if n2 < b  < n1. When 

b  = n2, the ray path will become horizontal at the core-cladding interface. 

For b  < n2, the ray will be incident at the core-cladding interface at an 

angle greater than the critical angle and the ray will be refracted away. 

Thus, we may write

   n2 < b  < n1 fi Guided rays

   b  < n2 fi Refracting rays (43)

     In Fig. 2.7, the ray paths shown correspond to q1 = 4°, 8.13° and 20°; 

the corresponding values of b  are approximately 1.496 (> n2), 1.485 

(= n2) and 1.410 (< n2)—the last ray undergoes refraction at the core-
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cladding interface. It may be readily seen that the periodical length zp of 

the sinusoidal path is given by 

     zp = 
2p
G

 = 
2

2

1p qa cos

D
 (44)

    Thus for the two rays shown in Fig. 2.7 (with q1 = 4° and 8.13°) the values 

of zp would be

  0.8864 mm and 0.8796 mm

    respectively. Indeed, in the paraxial approximation, cos q1 ª 1 and all rays 

have the same periodic length. 

 

  Fig. 2.7 Typical ray paths in a parabolic index medium for parameters as given in Problem 

7(c) for q1 = 4°, 8.13° and 20°.

 2.8 The ray path (inside the core) is given by

   x = x0 sin G z (45)

  where x0 and G dt represent the time taken by 

a ray to traverse the are length ds:

   dt = 
ds

c n x/ ( )
 (46)

   Since, n(x)
dz

ds
 = b

  [see Eq. (26)] we may write Eq. (46) as

   dt = 
1

cb
n2(x)dz

    = 
1

cb
[n1

2 – g 2 x2]dz

  or, dt = 
1

cb
[n1

2 – g 2 x0
2 sin2 Gz]dz (47)



Fermat's Principle, Snell's Law and Ray Equation 29

  where in the last step we have used Eq. (45). Thus, if t (z) represents the time 

taken by the ray to traverse a distance z along the waveguide then

   t (z) = 
n

c
dz

x

c

z
dz

zz

1
2 2

0
2

00

1 2

2b

g

b
-

-
ÚÚ

cos ( )G

    = 
1 1

2 2

1

21
2 2

0
2

2
0
2

c
n x z

x

cb
g

g

b
-È

ÎÍ
˘
˚̇

+
G

sin 2Gz

  or, t (z) = 
1

2 41
2 2 1

2 2

c
n z

n

cb
b

b

g
[ ]

( )
+ +

-
 sin 2Gz (48) 

  where we have used Eq. (39).

   When b  = n1 (which corresponds to the ray along the z-axis)

    t (z) = 
z

c n/ 1

 (49)

  which is what we should have expected as the ray will always travel with 

speed c/n1. For large values of z, the second term on the RHS of Eq. (48) 

would make a negligible contribution to t (z) and we may write

   t (z) ª 
1

2
1
2

c

n
zb

b
+

È

Î
Í
Í

˘

˚
˙
˙

 (50)

   Now, if a pulse of light is incident on one end of the waveguide, it would 

in general excite all rays and since different rays take different amounts of 

time, the pulse will get temporally broadened. Thus, for a parabolic index 

waveguide, this broadening will be given by

   Dt = t (b  = n2) – t ( b  = n1)

  or, Dt = 
z

c

n n

n2
1 2

2

2

( )-
 ª 

zn

c
2

2
D2 (51)

  where in the last step we have assumed

   D ∫ 
n n

n

1
2

2
2

1
22

-
 ª 

n n

n
1 2

2

-
 (52)

   For n1 ª 1.5 and D ª 0.01, we get

   Dt ª 0.25 ns/km (53)

 2.9 In the region x > 0, n2(x) decreases linearly with x and Eq. (23) takes the form

  
d x

dz

2

2
 = -

g

2
2

b

   The general solution of which is given by

   x(z) = -
g

4
2

b
z2 + K1z + K2 (54)
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   Consider a ray incident on the origin (x = 0, z = 0) as shown in Fig. 2.8. 

Thus

   K2 = 0 and b  = n1 cos q1 (55)

   Further, 
dx

dz z =0

 = K1 = tan q1 (56)

   Thus, the ray path will be given by

   x(z) = (tan q1) z z < 0

    = -
gz

4
2

b
(z – z0) 0 < z < z0

    = -
gz0

2
4b

(z – z0) z > z0 

¸

˝

Ô
ÔÔ

˛

Ô
Ô
Ô

 

(57)

  where, z0 = 
2 1

2n

g
sin 2q1   

   Thus in the region 0 < z < z0, the ray path is a parabola. Typical ray paths 

are shown in Fig. 2.8, the calculations corresponds to

  n1 = 1.5, g = 0.1 m –1

  and different rays corresponds to

  q1 = 
p p p
9 6 4

, ,  and 
p
3

 

  Fig. 2.8 Parabolic ray paths (corresponding to q1 = 20°, 30°, 45° and 60°) in a medium 

characterised by refractive index variation as given in Problem 2.9. The ray paths in 

the region x < 0 are straight lines.
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 2.10 Now, at x = 0.43 m, n(x) = n1 ª 1.0642 and at x = 0.2 m, n(x) ª 1.03827. Thus, 

if q1 represents the angle that the ray makes with the z-axis at the launching 

point, then

  n1 cos q1 = 1.03827 ¥ cos 0

  implying

  q1 ª 13°

   Further, since the ray becomes horizontal at x = 0.2 m, the value of the 

invariant is given by b  = 1.03827.



A Quick Review

3.1 THE EYE

The eye can be considered an optical instrument which forms images of external 

objects on the retina. The interior part of the eye is a liquid having a refractive 

index of 1.33 (equal to that of water). The eye lens is a double convex lens having a 

refractive index of about 1.4. The ciliary muscles permit the change of the power of 

the eye lens which allows us to accommodate and focus objects at different distances. 

In fact since the cornea is a curved surface it also acts like a lens and has a power of 

about 43 Diopters. The eye lens has a nominal power of 17 Diopters. The distance 

from the cornea to the retina is about 24 mm.

3.2 MAGNIFYING GLASS

M =
angle subtended by the virtual image formed by the lens

anglle subtended by the object when located at a 
distance 25 ccm from the eye

(1)

should subtend an angle of 5 minutes of arc from the eye and each element of the 

letter should subtend an angle of 1 minute of arc. The normal VA is 1 minute of arc 

which is approximately equal to 2.9 ¥ 10–4 radians.

3.3 COMPOUND MICROSCOPE

Figure 3.1 shows a compound microscope consisting of an objective lens of focal 

length fo and eye piece of focal length fe. A real image of the object placed very close 

to the focus of the objective is formed by the objective and the eye piece provides for 

Mo = - -

h

h

L

f
i

o o

= (2)

Optical Instruments

3
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Fig. 3.1 A compound microscope consisting of an objective and an eye piece. The objective forms a 

The quantity L represents the distance between the back focus and the position 

of the image and is often referred to as the tube length. In standard microscopes L = 

160 mm.

Me =
254

fe

(3)

where we have used the fact that the least distance of distinct vision is 254 mm and 

the focal length is in mm.

M = Mo Me = - ¥
160 254

f fo e

(4)

3.4 TELESCOPE

Figure 3.2 shows a telescope in which parallel rays from a far off object are focused 

by an objective of focal length fo and the image formed by the objective is then 

fe
telescope is given by

M = -

f

f
o

e

(5)

Fig. 3.2 A telescope consisting of an objective lens and an eye piece. Parallel rays from a distant

object get focused on the focal plane of the objective and the eye piece provides for 
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PROBLEMS

3.1 Consider a compound microscope formed using an objective of focal length 

20 mm and an eye piece of focal length 30 mm. (a) What would be the 

3.2 Consider a telescope formed using an objective of focal length 20 cm and 

eye piece of focal length 2 cm. (a) What should be the distance between the 

3.3 Consider a camera with a lens of focal length 150 mm. (a) For f # numbers of 

f /16 and f

exposure time required for a picture taken with f /8 is 1 s, then what exposure 

time would be appropriate for the same picture taken with f

f # is the ratio of the focal length to the diameter of the lens and is referred to 

as the F-number.

3.4 Consider a magnifying glass of focal length 5 cm. An object is placed in front 

3.5 Consider a compound microscope made up of an objective lens of focal 

length 3 cm and an eye piece lens of focal length 5 cm. The distance between 

from the eye.

3.6 Consider a telescope with an objective lens of focal length 25 cm and an eye 

piece with a focal length of 5 cm. If the telescope is used to view an object 

3.7 Consider a microscope with an objective having a focal length of 3 mm and a 

3.8 Consider a microscope with objective and eye piece of focal lengths 6 cm and 

distance of the object from the objective of the microscope.

3.9 An astronomical telescope is to be constructed using an objective and an 

objective and the eye lens of 254 mm. (a) What should be the focal lengths of 

image formed by the telescope is to be resolvable by the eye, what should be 

3.10 A person wishes to read a board with letters of height 1 cm placed at a distance 
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SOLUTIONS

     M = - ¥
160

20

254

30
ª 65

  (b) For the given set of parameters, the distance of the image from the 

objective would be L + fo = 180 mm. Using the standard lens formula we 

obtain for the object distance from the objective to be 22.5 mm.

3.2 (a) The distance between the objective and the eye piece should be equal 

to the sum of the focal lengths of objective and the eye piece and hence 

should be 22 cm.

3.3 (a) Since f # is the ratio of focal length to diameter, the diameter of the 

aperture for f /16 and f /8 would be 9.375 mm and 18.75 mm respectively.

  (b) Since the exposure depends on the area of the aperture, with the halving 

of diameter when changing from f /8 to f /16, the required exposure time 

would increase by a factor of 4. Thus, the required exposure time for f /16

would be 4s.

3.4 For the virtual image to be formed at a distance of 25 cm from the lens, the 

object must be placed at a distance u given by

   
1

u
=

1

5

1

25
+

  giving u ª

   M =
25

4 17.
ª 6

3.5 For the virtual image to be formed at a distance of 25.4 cm from the eye piece, 

the image formed by the objective should be at a distance ue from the eye 

piece, where

   
1

ue

=
1 1

25 4fe

+

.

  This gives us ue ª 4.2 cm. Since the distance between the objective and the 

eye piece is 20 cm, the image formed by the objective lies at a distance of 

20 – 4.2 = 15.8 cm from the objective. For this, the distance uo of the object 

from the objective should be

   
1

uo

=
1 1

15 8fo

-

.

  which gives us ue ª Mo = 

15.8/3.7 ª Me = 25.4/4.2 ª 6. Hence, 

M = Mo ¥ Me ª 25.8.
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lie at a distance of 33.33 cm from the objective. For the eye piece to form 

the image at a distance of 25.4 cm, the distance of the image formed by the 

will be M = 
33 33

100

25 4

4 2

. .

.
¥ ª 2.

   If the height of the object placed at a distance of 1 m from the objective 

is 1 cm, then the angle subtended by the object at the eye would be 0.01 

3.7 For a tube length of 160 mm and an objective focal length of 3 mm, the overall 

¥ 10 = 533.3.

should be at the front focus of the eye piece, i.e., at a distance of 6 mm from 

41.67. Since the distance of the image from the objective lens is 200 mm 

and the focal length of the objective is 6 mm, the distance of the object from 

objective and the eye lens. Hence,

     M = -

f

f
o

e

 = –20

     Also the distance between the objective and the eye lens should be 

equal to the sum of the focal lengths of the objective and the eye lens. 

Hence,

       fo + fe = 254 mm

     Solving the above two equations, we obtain fe = 12.1 mm and fo = 

241.9 mm.

  (b) The height of the image (hi) produced by the objective at the limit of 

resolution is given by

       hi =
1 22. l f

d
o

o

     The angle subtended by this image on the eye when it lies at the front 

focal plane of the eye piece is hi /fe. For this to be resolvable by the eye, 

we must have

       
h

f
i

e

=
1 22. l

deye

     Thus we obtain

       do =
f

f
do

e
eye

    which gives us do = 80 mm.
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3.10 The angle subtended by the object at the eye is 10–5 radians. This angle should 

be increased to 5 minutes of arc or 15 ¥ 10–4



 

A Quick Review

4.1 CHROMATIC ABERRATION

Let us consider a parallel beam of white light incident on a thin convex lens as shown 

in Fig. 4.1. Since blue light gets refracted more than red light, the point at which the 

blue light would focus is nearer the lens than the point at which the red light would 

focus. Thus, the image will appear to be coloured. The difference in the focal lengths 

corresponding to red and blue colours is approximately given by (see Problem 4.1):

 fr – fb = 
n n

n
b r-
-

Ê
ËÁ

ˆ
¯̃1

 (1)

where nb and nr represent the refractive indices for the blue and red colours 

respectively and n = (nb + nr)/2. Equation (1) gives rise to what is known as chromatic 

aberration (see Problems 4.2-4.5).

Fig. 4.1 When white light consisting of a continuous range of wavelengths is incident on a lens, then 

each wavelength refracts by different amounts; this leads to chromatic aberration.

4.2 SPHERICAL ABERRATION

Let a beam of light parallel to the axis be incident on a thin lens [see Fig. 4.2(a)]. 

The light rays after passing the lens bend towards the axis and cross the axis at some 

point. If we restrict ourselves to the paraxial region, then we can see that all rays 

cross the z-axis at the same point which is at a distance fp from the lens; fp is known 

as the paraxial focal length of the lens. If one does not restrict to the paraxial region, 

Aberrations

4
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then in general, rays which are incident at different heights on the lens, hit the axis 

at different points. For example, for a convex lens, the marginal rays (which are 

incident near the periphery of the lens) focus at a point closer than the focal point of 

paraxial rays [see Fig. 4.2(a)]. Similarly, for a concave lens, rays which are incident 

farther from the axis appear to be emerging from a point which is nearer to the lens 

[see Fig. 4.2(b)]. The point at which the paraxial rays strike the axis (FP) is called 

the paraxial focus and the point at which the rays near the periphery strike is called 

the marginal focus (FM). The distance along the axis between the paraxial image 

point and the image corresponding to marginal rays (i.e., rays striking the edge of 

the lens) is termed longitudinal spherical aberration. Similarly, the distance between 

the paraxial image point and the point at which the marginal ray strikes the paraxial 

image plane is called the lateral spherical aberration [see Fig. 4.2(a)]. The image on 

any plane (normal to the z-axis) is a circular patch of light; however, as can be seen 

from Fig. 4.2(a), on a plane AB the circular patch has the least diameter. This is called 

the circle of least confusion. It may be mentioned that for an object lying on the 

axis of a cylindrically symmetric system (like a system of coaxial lenses), the image 

will suffer only from spherical aberration. All other off-axis aberrations like coma, 

astigmatism, etc., will be absent.

Fig. 4.2 (a) For a converging lens the focal point for marginal rays lies closer to the lens than the 

focal point for paraxial rays. The distance between the paraxial focal point and the marginal 

focal point is known as the longitudinal spherical aberration and the radius of the image at 

the paraxial focal plane is known as the lateral spherical aberration. The combined effect of 

defocusing and spherical aberration leads to the formation of a circle of least confusion, where 

the image would have the minimum diameter. (b) The spherical aberration of a diverging lens.
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The calculation of the spherical aberration even for a single spherical refracting 

 Dz = -
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where R represents the radius of curvature of the surface, n1 and n2 represent the 

refractive indices of the media on the left and right of the spherical surface (see 

Fig. 4.3). For a plane surface R = , Eq. (2) reduces to Eq. (24) with n = n2/n1.

Fig. 4.3 The aplanatic points of a spherical refracting surface.

In a similar manner, for a set of rays incident parallel to the axis, one can show that 

index n and placed in air, with the surfaces having radii of curvatures R1 and R2 

would be given by

 A = – 
f n

n
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 (4)

A is such that when it is multiplied 

by the cube of the height of the ray at the lens, one obtains the lateral spherical 

aberration. Thus, the lateral spherical aberration for rays hitting the lens at a height 

h would be

 Slat = Ah3 = -
-
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The longitudinal spherical aberration (which represents the difference between 

the marginal focal length and the paraxial focal length) would be given by

 Slong = Ah2f

  = -
-

¥ - -
+Ê

ËÁ
ˆ
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2
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 (6)

For a converging lens, Slong will always be negative implying that the marginal 

rays focus closer to the lens. For a thin lens of given power (i.e. of a given focal 

q, called the shape factor, by the following relation:

 q = 
R R

R R
2 1

2 1

+
-

 (7)

where R1 and R2 are the radii of curvatures of the two surfaces. For a given focal 

length of the lens, one can control the spherical aberration by changing the value 

of q. This procedure is called bending of the lens. Figure 4.4 shows the variation of 

spherical aberration with q for n = 1.5, f = 40 cm (i.e., P = 0.025 cm–1) and h = 1 cm. 

It can be seen that for values of q ª 0.7, the (magnitude of the) spherical aberration is 

minimum (but not zero). Thus, by choosing proper values of the radii, the spherical 

aberration can be minimised. It may be mentioned that the value q = +1 implies

R2 =  and hence it corresponds to a plano-convex lens with the convex side facing 

the incident light. On the other hand, for a plano-convex lens with the plane side 

facing the incident light R1 =  and q = –1. Thus, the spherical aberration is dependent 

on how the deviation is divided between the surfaces.

Fig. 4.4 Variation of spherical aberration and coma with the shape factor of a thin lens with n = 1.5, 

f = 40 cm and h = 1 cm. For calculating the coma we have assumed tan q = 1, i.e., rays make 

an angle of 45° with the axis.
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For a parallel beam of rays incident on a lens and inclined at angle with the z-axis 

(see Fig. 4.5), one can show that the coma in the image is given by (see, e.g., Ref. 

Gh2):

 Coma = 
3 1

2

1 2 1 12

1 2

2

2
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 (8)

In Fig. 4.4 we have plotted the variation of coma with the shape factor q. It can 

immediately be seen that for a lens with q = 0.8, coma is zero. Also both spherical 

aberration and coma are close to a minimum for a plano-convex (with the convex 

side facing the incident light) for which q = 1.0. As such, plano-convex lenses are 

extensively used in eyepieces.

Fig. 4.5 Parallel rays (inclined at an angle q with the axis) incident on a thin lens.

PROBLEMS

 4.1 Show that the chromatic aberration for a thin lens is given by Eq. (1).

 4.2 Consider an optical system of two thin lenses made of different materials 

placed in contact with each other. For example, one of the lenses may be made 

to have the same focal length for the blue and red colours, we must have

   
w w
f f

+ ¢
¢

 = 0 (9)

  where, w = 
n n

n
b r-

- 1
 and w¢ = 

¢ - ¢
¢ -

n n

n
b r

1
 (10)

  are known as the dispersive powers. Since w and w ¢ are both positive, f and f ¢ 
must be of opposite signs.
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 4.3 An achromatic doublet of focal length 20 cm is to be made by placing a 

convex lens of borosilicate crown glass in contact with a diverging lens of 

nr = 1.51462, nb = 1.52264, nr¢ = 1.61216 and

nb¢ = 1.62901, calculate the focal length of each lens; here the unprimed and 

respectively.

 4.4 Consider a separated doublet consisting of two thin lenses of focal lengths f and 

f ¢ and separated by a distance t. Calculate the focal length of the combination 

and show that the chromatic aberration is very small if the distance between 

the two lenses is equal to the mean of the focal lengths. (This is indeed the 

case for the Huygens’ eyepiece).

 4.5 An achromatic cemented doublet of focal length 25 cm is to be made from 

nb = 1.50529, nr = 1.49776) 

and a crown glass lens (nb = 1.66270, nr = 1.64357). Calculate the radii of 

curvatures of the different surfaces and the focal lengths of each of the two 

lenses.

 4.6 Rays parallel to the axis are incident on a spherical refracting surface of radius 

R separating media of refractive index n1 and n2. Assume n1 = 1.0, n2 = 1.5 and 

R = 10 cm; the height x may be assumed to be 0.0001 cm, 1.0 cm, 2.0 cm and 

3.0 cm.

   Write a small program to obtain the exact point at which the refracted ray 

will intersect the axis as a function of the height x of the incident ray. Discuss 

the longitudinal spherical aberration of the image.

 4.7 Consider a point object in front of a plane refracting surface. Obtain the 

paraxial image point and calculate the aberration in the image when we 

consider rays which hit the refracting surface at a height h.

 4.8 Consider a plane glass slab of thickness d made of a material of refractive index 

n, placed in air. By simple application of Snell’s law obtain an expression for 

the spherical aberration of the slab.

 4.9 Consider a spherical refracting surface of radius R. Show that for a point A 

[see Fig. 4.3] such that

   z0 = 
n n

n
1 2

1

+
R (11)

  the spherical aberration is zero. Notice that both z0 and R are negative 

quantities.

 4.10 Calculate the longitudinal spherical aberration of a thin plano-convex lens 

made of a material of refractive index 1.5 and whose curved surface has a 

radius of curvature of 10 cm, for rays incident at a height of 1 cm. Compare 

the values of the aberration when the convex side and the plane side face the 

incident light.

 4.11 Consider a lens made up of a material of refractive index 1.5 with a focal length 

25 cm. Assuming h = 0.5 cm and q = 45 , obtain the spherical aberration and 

coma for the lens or various values of the shape factor q and plot the variation 

in a manner similar to that shown in Fig. 4.4.
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SOLUTIONS

 4.1 The focal length of a thin lens is given by

   
1

f
 = (n – 1) 

1 1

1 2R R
-

Ê
ËÁ

ˆ
¯̃

 (12)

  If a change of n by dn (the change of n is due to the change in the wavelength 

of the light) results in a change of f by d f then we obtain by differentiating the 

above equation

   –

d f

f 2
 = dn

1 1

1 2R R
-

Ê
ËÁ

ˆ
¯̃

 = 
dn

n f- 1

1

   d f = -
-

f
n

n

d
1

  (13)

  which represents the chromatic aberration of a thin lens. If nb and nr represent 

the refractive indices for the blue and red colours respectively, then

   fr – fb = 
n n

n
b r-

-
Ê
ËÁ

ˆ
¯̃1

 (14)

  would represent the chromatic aberration.

 4.2 We consider an optical system of two thin lenses made of different materials 

placed in contact with each other. For example, one of the lenses may be made 

lens combination to have the same focal length for the blue and red colours. 

Let nb, ny and nr

lens corresponding to the blue, yellow and red colours respectively. Similarly, 

nb¢ , ny¢  and nr¢  represent the corresponding refractive indices for the second 

lens. If fb and f b¢
corresponding to the blue colour, and if Fb represents the focal length of the 

combination of the two lenses (placed in contact), then

   
1

Fb

 = 
1 1

f fb b

+
¢

 = (nb – 1) 
1 1

1 2R R
-

Ê
ËÁ

ˆ
¯̃

 + (nb¢ – 1) 1 1

1 2¢
-

¢
Ê
ËÁ

ˆ
¯̃R R

 (15)

  where R1 and R2

Thus, we may write

   
1

Fb

 = 
n

n f

n

n f
b b-
-

+
¢ -
¢ - ¢

1

1

1 1

1

1
 (16)

  where, 
1

f
 ∫ (n – 1)

1 1

1 2R R
-

Ê
ËÁ

ˆ
¯̃

, (17)

   
1

¢f
 ∫ (n¢ – 1)

1 1

1 2¢
-

¢
Ê
ËÁ

ˆ
¯̃R R

 (18)
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   n ∫ n nb r+
2

 ª ny, n¢ ∫ 
¢ + ¢n nb r

2
 ª n ¢y (19)

  f and f ¢
to a mean colour which is around the yellow region. Similarly, the focal length 

of the combination corresponding to the red colour would be given by

   
1

Fr

 = 
n

n f

n

n f
r r-
-

+
¢ -
¢ - ¢

1

1

1 1

1

1
 (20)

   For the focal length of the combination to be equal for blue and red colours, 

we must have

   
n

n f

n

n f
b b-

-
+

¢ -
¢ - ¢

1

1

1 1

1

1
 = 

n

n f

n

n f
r r-
-

+
¢ -
¢ - ¢

1

1

1 1

1

1

  or 
w w
f f

+ ¢
¢
 = 0 (21)

  where, w = 
n n

n
b r-

- 1
 and w ¢ = 

¢ - ¢
¢ -

n n

n
b r

1
 (22)

  are known as the dispersive powers. 

Since w and w ¢ are both positive, f and f ¢ 
must be of opposite signs for the validity 

of Eq. (21). A lens combination which 

doublet (see Fig. 4.2). It may be mentioned 

that if the two lenses are made of the same 

material, then w  = w ¢ and Eq. (9) would 

imply f = – f ¢; such a combination will 

achromatic doublet the two lenses must be 

of different materials.

 4.3  n ª 
n nb r+

2
 = 

1 52264 1 51462

2

. .+
 = 1.51863

   n¢ ª 
¢ + ¢n nb r

2
 = 

1 62901 1 61216

2

. .+
 = 1.62058

   Thus,  w = 
1 52264 1 51462

1 51863 1

. .

.

-
-

 = 0.01546

  and  w ¢ = 
1 62901 1 61216

1 62058 1

. .

.

-
-

 = 0.02715

   Substituting in Eq. (9), we obtain

   
0 01546 0 02715. .

f f
+

¢
 = 0

  or, 
f

f ¢
 = – 0.56942

Fig. 4.6 An achromatic doublet.
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   Now, for the lens combination to be of focal length 20 cm we must have

   
1 1

f f
+

¢
 = 

1

20

  or, 
1

f
[1 – 0.56942] = 

1

20

  or, f = 20 ¥ 0.43058 = 8.61 cm

  and f ¢ = –
f

0 56942.
 = – 15.1 cm

 4.4 We consider two thin lenses of focal lengths f and f ¢ separated by a distance t 

(see Fig. 4.7). The focal length of the combination F, would be

   
1

F
 = 

1

f f

t

f f
+

¢
-

¢
1

 (23)

 

 Fig. 4.7 The separated doublet.

   
1

f
 = (n – 1) 1 1

1 2R R
-

Ê
ËÁ

ˆ
¯̃

 (24)

  with a similar expression for 1

f ¢
. If Df and Dn represent the changes in the 

focal length and in the refractive index due to a change in the wavelength, then 

by differentiating Eq. (12), we obtain

   -
D f

f 2
 = Dn 

1 1

11 2R R

n

n f
-

Ê
ËÁ

ˆ
¯̃ -

=
D

( )

   Thus, differentiating Eq. (23), we obtain

   - DF

F 2
 = - -

¢
¢

+
¢

¢
+

¢
D D D Df

f

f

f

t

f

f

f

t

f

f

f2 2 2 2

    = 
D D D Dn

n f

n

n f

t

f

n

n f

t

f

n

n f( ) ( ) ( ) ( )-
+ ¢

¢ - ¢
- ¢

¢ - ¢
-

¢ -1 1 1 1
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    = 
w w
f f

t

f f
+ ¢

¢
-

¢
(w + w ¢) (25)

  where, as before, w and w ¢ represent the dispersive powers. Consequently, 

for the combination to have the same focal length for blue and red colours we 

should have

   
w w
f f

+ ¢
¢
 = 

t

f f ¢
(w + w ¢)

  or, t = 
w w

w w

f f¢ + ¢
+ ¢

 (26)

   If both the lenses are made of the same material, then w = w ¢ and the above 

   t = 
f f+ ¢

2
 (27)

  implying that the chromatic aberration is very small if the distance between 

the two lenses is equal to the mean of the focal lengths.

   nb = 1.50529 and nr = 1.49776

  Thus, n = 
n nb r+

2
 = 1.501525 and w = 

n nb r-
2

 ª 0.00501

  Similarly, for a crown glass lens

   nb¢ = 1.66270 and nr¢ = 1.64357

  Thus, n¢ = 
¢ + ¢n nb r

2
 = 1.654035 and w ¢ = 

¢ - ¢n nb r

2
 ª 0.01157

  For the system to be achromatic

   0 = 
w w
f f

+ ¢
¢

 = 
0 00501 0 01157. .

f f
+

¢
 fi 

f

f ¢
 ª –0.433

  Now, for the lens combination to be of focal length 25 cm, we must have

   
1 1

f f
+

¢
 = 

1

25
 fi 1

f
[1 – 0.433] = 

1

25
 fi f ª 14.2 cm

  fi f ¢ ª 32.8 cm

  Now 
1

f
 = (n – 1) 

1 1

1 2R R
-Ê

ËÁ
ˆ
¯̃

 = (n – 1)
2

1R
, when we have assumed R2 = R1. 

Thus

   R1 = 2(n – 1) f = 2 ¥ 0.5015 ¥ 14.2 ª 14.2 cm

   R2 = –R1 = –14.2 cm fi R¢1 = –14.2 cm

  fi 1

¢f
 = (n¢ – 1) 1 1

1 2¢
-

¢
Ê
ËÁ

ˆ
¯̃R R

 fi 1

2¢R
 = 

1

1¢R
 – 

1

1( )¢ - ¢n f

  fi 1

2¢R
 = - +

¥
1

14 2

1

0 654 32 8. . .
 fi R¢2 ª –42 cm
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 4.6 

  Fig. 4.8 A parallel beam of light is incident on a spherical surface separating two media of 

refractive indices n1 and n2. The point C represents the center of curvature of the 

refracting surface.

  Referring to Fig. 4.8, we may write

   sin f1 = 
x

R
;

   n1 sin f1 = n2 sin f2 fi f2 = sin–1 n

n
1 1

2

sin fÊ
ËÁ

ˆ
¯̃

   a = f1 – f2

   In D BCI: 
sin f2

CI
 = 

sin sina a

CB R
=

   Thus, OI = OC + CI = R + R 
sin

sin

f

a
2

 = R 1 2+
Ê
ËÁ

ˆ
¯̃

sin

sin

f

a

   The distance OI is represented by v. A simple MATLAB program is given 

below. We cannot take x = 0 – we take it to be a small number. The program 

corresponds to n1 = 1.0, n2 = 1.5, R = 10 cm and x is measured in cm.

   clear all;

   clc;

   n1=1.0;

   n2=1.5;

   r=10.0;

   x=0.00001;

   phi1=asin(x/r);

   phi2=asin(x*n1/(r*n2));

   alpha=phi1-phi2;

   v=r*(1.+ (sin(phi2)/sin(alpha)))

   x=1.0;

   phi1=asin(x/r);

   phi2=asin(x*n1/(r*n2));
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   alpha=phi1-phi2;

   v=r*(1.+ (sin(phi2)/sin(alpha)))

   x=2.0;

   phi1=asin(x/r);

   phi2=asin(x*n1/(r*n2));

   alpha=phi1-phi2;

   v=r*(1.+ (sin(phi2)/sin(alpha)))

   x=3.0;

   phi1=asin(x/r);

   phi2=asin(x*n1/(r*n2));

   alpha=phi1-phi2;

   v=r*(1.+ (sin(phi2)/sin(alpha)))

  The answer comes out as v = 30.0000 cm, v = 29.9332 cm, v = 29.7312 cm 

and v = 29.3891 cm respectively which shows the longitudinal spherical 

aberration of the image.

   The paraxial formula

   
n n

R
2 1

v

-  = 
n n

R
2 1-

  gives us 
1 5 1 0. .

v

-  = 
0 5

10

.
 fi v = 30 cm

 4.7 

Fig. 4.9 Refraction at a plane surface.

   Let the plane of the refracting surface be chosen as the plane z = 0. Let P 

be the object point. The z-axis is chosen to be along the normal (PO) from the 

point P to the surface. The plane z = 0 separates two media of refractive indices 

n1 and n2 n2 > n1. Consider a ray 

PM incident on the refracting surface (from the object) at a height h as shown 

Q. We 
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assume the origin to be at the point O. Let the z-coordinates of the points P 

and Q be z0 and z1 respectively. Obviously, both z0 and z1 would be negative 

quantities and the distances OP and OQ would be –z0 and –z1 respectively 

(see Fig. 4.9). We have to determine z1 in terms of z0. From Snell’s law we 

know that

   sin a = n sin b (28)

  where a and b are the angles that the incident and refracted rays make with the 

z-axis and

   n = 
n

n
2

1

 (29)

  Now, from Fig. 4.9 we have

   –z1 = h cot b = 
h

sin
sin

b
b1 2-

  or, z1 = - -
nh

nsin
sin

a
a1

1
2

2
 (30)

  where we have used Eq. (28). Since

   sin a = 
h

h z2
0
2+

 (31)

  we obtain

   z1 = –
nh

h
 (h2 + z2

0)1/2 1
1
2

2

2
0
2

1 2

-
+

È

Î
Í
Í

˘

˚
˙
˙n

h

h z( )

/

 (32)

  or, z1 = –n|z0| 1 1 1
2

0
2

1 2
2

2
0
2

2

0
2

1
1 2

+
È

Î
Í
Í

˘

˚
˙
˙

- +
Ê

Ë
Á

ˆ

¯
˜

È

Î

Í
Í

˘

˚

˙
˙

-
h

z

h

n z

h

z

/
/

 (33)

   The value of z1 given by the above equation is an exact expression in terms 

of z0. It can at once be seen that the image distance, z1, is a complicated 

function of the height h, at which the ray strikes the refracting surface. In the 

limit of h Æ 0, i.e., for paraxial rays, we get

   z1 = –n|z0| (34)

  which is the expression for the image distance in the paraxial region. To the 

next order of approximation, assuming |h/z0| << 1, we get

   z1 = –n|z0| 1
2

1
2

2

0
2

2

2
0
2

+
È

Î
Í
Í

˘

˚
˙
˙

-
È

Î
Í
Í

˘

˚
˙
˙

h

z

h

n z

    ª –n|z0| 1
2

1
2

0
2 2

2+ -
È

Î
Í
Í

˘

˚
˙
˙

h

z n
n( )  (35)

   Thus the aberration is given by

   Dz = – 
h

n z

2

02 | |
 (n2 – 1) (36)
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   The above equation gives the longitudinal spherical aberration. The negative 

sign implies that the nonparaxial rays appear to emanate from a point which is 

farther away from the paraxial image point.

 4.8 

 Fig. 4.10 Figure for Problem 4.8

  The object is assumed to be at the point O and the ray (undergoing refraction 

at height h) appears to come from the point I

   QS = d tan r

  Thus, BQ = BS + SQ = h + d tan r.

  Further, sin i = 
h

h u2 2+
 and sin i = n sin r

  fi sin r = 
h

n h n u2 2 2 2+
 fi tan r = 

h

n h n u( )2 2 2 21- +

  Now, IB = 
BQ

itan
 = 

h d r

h u

+ tan

/

    = 
u

h
h

dh

n h n u
+

- +

È

Î
Í
Í

˘

˚
˙
˙( )2 2 2 21

    = u + 
ud

nu

n h

n u
1

12 2

2 2

1 2

+
-È

Î
Í

˘

˚
˙

-
( )

/

  which is an exact expression. For h/u << 1

   IB ª u + 
d

n

n h d

n u
-

-( )2 2

3 2

1

2

  Thus, the spherical aberration is ª – 
( )n h d

n u

2 2

3 2

1

2

-
.
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 4.9 For z0 = 
n n

n
1 2

1

+
 R, one of the factors in Eq. (2) vanishes and the spherical 

aberration is zero. Indeed, it can be rigorously shown that all rays emanating 

from the point A appear to diverge from the point B.

 4.10 When the convex side is facing incident light [see Fig. 4.11(a)]

 

 Fig. 4.11

   R1 = +10 cm, R2 = , h = 1 cm

   
1

f
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201 2R R
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   Thus, Slong = Ah2f = –2.917 ¥ 10–3 ¥ 1 ¥ 1 ¥ 20 ª –0.058 cm

 (a) When the plane side is facing incident light [see Fig. 4.11(b)]

  R1 = , R2 = 10 cm, h = 1 cm. Obviously, f = 20 cm and P = 
1

20
 cm 1.

   Thus, A = -
¥

¥ ¥
- - -Ê

ËÁ
ˆ
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    = –0.01125 cm–2

   Thus, Slong = Ah2f = –0.225 cm

   
1

f
 = (n – 1) 

1 1

1 2R R
-

Ê
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ˆ
¯̃

 fi 
1 1

1 2R R
-  = 

1

1( )n f-
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   Also, q = 
R R

R R
2 1

2 1

+
-

 = 

1 1

1 1
1 2

1 2

R R

R R

+

-
 fi 

1 1

1 2R R
+  = 

q

n f( )-1

   Thus, 
1

1R
 = 

( )
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q

n f

+
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2 1
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1
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( )

( )

q

n f

-
-

1

2 1

   The longitudinal spherical aberration is given by
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   Similarly, the expression for coma is given by

   Coma = 
3 1
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 fh2 tan2 q
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A Quick Review

5.1 INTRODUCTION

Huygens’ theory is essentially based on a geometrical construction which allows us 

to determine the shape of the wavefront at any time, if the shape of the wavefront at 

an earlier time is known. According to Huygens’ principle, each point of a wavefront 

is a source of secondary disturbance and the wavelets emanating from these points 

spread out in all directions with the speed of the wave. The envelope of these wavelets 

gives the shape of the new wavefront. In Fig. 5.1, S1S2 represents the shape of the 

wavefront (emanating from the point O) at a particular time which we denote as t = 0. 

The medium is assumed to be homogeneous and isotropic. Let us suppose we want 

to determine the shape of the wavefront after a time interval of Dt. Then, with each 

point on the wavefront as center, we draw spheres of radius v Dt, where v is the speed 

of the wave in that medium. If we draw a common tangent to all these spheres, then 

we obtain the envelope which is again a sphere centered at O. Thus, the shape of the 

wavefront at a later time Dt is the sphere S1¢S ¢2.

Fig. 5.1 Huygens’ construction for the determination of the shape of the wavefront, given the shape 

of the wavefront at an earlier time. S1S2 is a spherical wavefront centered at O at a time, say 

t = 0. S 1¢S2¢ corresponds to the state of the wavefront at a time Dt, which is again spherical 

and centered at O. The dashed curve represents the backwave.

Huygens’ Principle and its 
Applications 5
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Let us consider spherical waves emanating from the point source O and striking 

the obstacle A (see Fig. 5.2). According to the rectilinear propagation of light (which 

is also predicted by corpuscular theory) one should obtain a shadow in the region PQ 

region of the geometrical shadow. However, at the time of Huygens, light was known 

to travel in straight lines and Huygens explained this by assuming that the secondary 

wavelets do not have any amplitude at any point not enveloped by the wavefront. 

Fig. 5.2 Rectilinear propagation of light. O is a point source emitting spherical waves and A is an 

obstacle which forms a shadow in the region PQ of the screen.

postulated that the secondary wavelets mutually interfere. The Huygens’ principle 

along with the fact that the secondary wavelets mutually interfere, is known as the 

Huygens–Fresnel principle. This principle can be used to understand diffraction 

phenomena from different apertures (see Chapters 9-11). 

PROBLEMS

 5.1 Use Huygens’ principle to obtain Snell’s law. 

 5.3 Consider a point source placed in front of a spherical surface of radius of 

curvature R separating media of refractive indices n1 and n2 (see Fig. 5.5). Use 

Huygens’ principle and obtain the relationship between the object distance u 

and image distance v. 5.4 From the formula for refraction at a single interface, obtain the lens formula.

 5.5 Consider a vibrating source moving through a medium with a speed V. Let the 

speed of propagation of the wave in the medium be v. Show that if V > v then 

a conical wavefront is set up whose half-angle is given by

   q = sin–1 
v

V

Ê
ËÁ

ˆ
¯̃  (1)
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 5.6 Use Huygens’ principle to study how a plane wavefront incident along the 

z-direction on an inhomogenous medium with a refractive index variation 

given by

   n2 (x, y) = n2
1 – g 2 (x2 + y2) (2)

 5.7 
from a point on the axis at a concave mirror of radius of curvature R and 

obtain the mirror equation

   
1 1

u
+
v

 = 
2

R
 (3) 5.8 Consider a plane wave incident obliquely on the face of a prism. Using 

Huygens’ principle, construct the transmitted wavefront and show that the 

deviation produced by the prism is given by

   d = i + t – A (4)

  where A is the angle of the prism, i and t are the angles of incidence and 

transmittance.

SOLUTIONS

 5.1 Let S1S2 be a surface separating two media with different speeds of propagation 

of light v1 and v2 as shown in Fig. 5.3. Let A1B1 be a plane wavefront incident 

on the surface at an angle i; A1B1 represents the position of the wavefront at an 

instant t = 0.

 

 Fig. 5.3 Refraction of a plane wavefront A1B1 by a plane interface S1S2 separating two media 

with different velocities of propagation of light v1 and v2 (< v1); i and r are the angles 

of incidence and refraction respectively. A2C2B2 corresponds to the shape of the 

wavefront at an intermediate time t1. Notice that r < i.
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   Let t be the time taken for the wavefront to travel the distance B1B3. Then 

B1B3 = v1t. In the same time the light would have travelled a distance A1A3 

= v2t in the second medium. (Note that the lines A1A3, B1B3, etc. are always 

normal to the wavefront; these represent rays in isotropic media). It can easily 

be seen that the incident and refracted rays make angles i and r with the 

normal. In order to determine the shape of the wavefront at the instant t = t 

we consider an arbitrary point C1 on the wavefront. Let the time taken for the 

disturbance to travel the distance C1C2 be t1. Thus, C1C2 = v1t1. From the 

point C2 we draw a secondary wavelet of radius v2(t – t1). Similarly from the 

point A1 we draw a secondary wavelet of radius v2t. The envelope of these 

secondary wavelets is shown as A3C3B3. The shape of the wavefront at the 

intermediate time t1 is shown as A2C2B2 and clearly B1B2 = C1C2 = v1t1 and 

A1A2 = v2t1. In the right-angled triangles B2C2B3 and C3C2B3, –B2C2B3 = i 

(the angle of incidence) and –C2B3C3 = r (the angle of refraction). Clearly,

  
sin

sin

i

r
 = 

B B C B

C C C B
2 3 2 3

2 3 2 3

/

/
 = 

v

v

1

2

 = 
n

n
2

1

  or, n1 sin i = n2 sin r (5)

  which is known as the Snell’s law. 

 5.2 

  Fig. 5.4 AB incident on a plane mirror. A¢B¢
wavefront; i and r

  Let us consider a plane wave AB incident at an angle i on a plane mirror as 

at t = 0 be AB. If the mirror was not present, then at a later time t the position 

of the wavefront would have been CB¢, where BB¢ = PP¢ = AC = vt and v 

is the speed of propagation of the wave. In order to determine the shape of 

t = t, we consider an arbitrary point P 

on the wavefront AB and let t1 be the time taken by a disturbance to reach 

the point P1 from P. From the point P1, we draw a sphere of radius v(t – t1). 
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We draw a tangent plane on this sphere from the point B¢. Since BB1 = PP1 

= vt1, the distance B1B¢ will be equal to P1P2 [= v(t – t1)]. If we consider 

triangles P2P1B¢ and B1P1B¢ then the side P1B¢ is common to both and since 

P1P¢ = B¢B2, and since both the triangles are right-angled triangles, –P2B¢P1 

= –B1P1B¢

 5.3 Let us consider spherical waves (emanating from the point P) incident on the 

curved spherical surface SBS¢. Let the shape of the wavefront at the time t = 0 

be ABC [see Fig. 5.5(a)]. In the absence of the spherical surface, the shape of 

the wavefront at a later time t would have been A1B1C1 where AA1 = BB1 = 

CC1 = v1t. We consider an arbitrary point Q on the wavefront ABC and let t1 

be the time taken for the disturbance to reach the point Q¢ (on the surface of 

the spherical wave); thus QQ¢ = v1t1. In order to determine the shape of the 

refracted wavefront at a later time t, we draw a sphere of radius v2(t – t1) 

from the point Q¢. We may draw similar spheres from other points on the 

spherical surface; in particular, the radius of the spherical wavefront from the 

point B, which is equal to BB2 will be v2t. The envelope of these spherical 

wavelets is shown as A1B2C1 which, in general, will not be a sphere. However, 

a small portion of any curved surface can be considered as a sphere and in 

this approximation we may consider A1B2C1 to be a sphere whose center of 

curvature is at the point M. The spherical wavefront will, therefore, converge 

towards the point M and hence the point M represents the real image of the 

point P. In actual practice the refracted wave will not be a spherical wave and 

hence it will not converge to a single point; this fact is responsible for the 

aberrations (see Chapter 4).

   We adopt a sign convention in which all distances, measured to the left of 

the point B, are negative and all distances measured to the right of the point B 

are positive. Thus,

   PB = –u (6)

  where u itself is a negative quantity. Further, since the point M lies on the right 

of B, we have

   BM = v (7)

  and similarly, BO = R (8)

  where O represents the center of curvature of the spherical surface.

   In order to derive a relation between u, v and R we use a theorem in 

geometry, according to which,

   (A1G)2 = GB ¥ (2R – GB) (9)

  where G is the foot of the perpendicular on the axis PM [see Fig. 5.5(b)]. In 

Fig. 5.5(b) the diameter B¢OB intersects the chord A1GC1 normally. If GB << 

R, then

  (A1G)2 ª 2R(GB)



Huygens’ Principle and its Applications 59

   Consider the spherical surface SBS¢ [see Fig. 5.5(a)] whose radius is R. 

Clearly,

   (A1G)2 = (2R – GB)GB

    ª 2R(GB) (10)

  where we have assumed GB << R. Similarly by considering the spherical 

surface A1B2C1 (whose center is at the point M) we obtain

   (A1G)2 ª 2v(GB2) (11)

  where v = BM ª B2M. In a similar manner,

   (A1G)2 ª 2(–u)GB1 (12)

 

  Fig. 5.5 (a) Refraction of a spherical wave ABC (emanating from the point source P) by a 

convex spherical surface SBS¢ separating media of refractive indices n1 and n2 

(> n1). A1B2C1 is the refracted wavefront, which is approximately spherical and 

whose center of curvature is at M. Thus M is the real image of P. O is the center of 

curvature of SS¢. (b) The diameter B¢OB intersects the chord A1GC1 normally.
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  Since u is a negative quantity, (A1G)2 is positive.

  Now, BB1 = v1t and BB2 = v2t

  Therefore, 
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  or, n1BB1 = n2BB2 (13)

  or, n1(BG + GB1) = n2(BG – GB2)

  or, n1 
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  where we have used Eqs (10), (11) and (12). Thus,

   
n n

u
2 1

v

-  = 
n n

R
2 1-

 (15)

  which may be rewritten in the form

   
n2

v

 = 
n

u

n n

R
1 2 1+

-

 5.4 We assume a thin lens made of a material of refractive index n2 to be placed 

in a medium of refractive index n1 (see Fig. 5.6). Let the radii of curvatures 

R1 and R2 respectively. Let v¢ be the 

distance of the image of the object P if the second surface were not present. 

Then,

 

  Fig. 5.6  A thin lens made of a medium of refractive index n2 placed in a medium of refractive 

index n1. The radii of curvatures of the two surfaces are R1 and R2. P is the image (at 

a distance v from the point O) of the point object P (at a distance –u from the point O).

   
n2

v¢
 – 

n

u
1  = 

( )n n

R
2 1

1

-
 (16)

   (Since the lens is assumed to be thin, all the distances are measured from 

the point O). This image now acts as an object to the spherical surface R2 on 

the left of which is the medium of refractive index n2 and on the right of which 
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is the medium of refractive index n1. Thus, if v

image point from O, then

   
n n1 2

v v

-
¢
 = 

( )n n

R
1 2

2

-
 (17)

   Adding Eqs (12) and (13), we obtain

   
n n

u
1 1
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-  = (n2 – n1) 
1 1
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  or, 
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ˆ
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 (20)

 5.5 Let at t = 0, the source be at the point P0 moving with a speed V in the 

x t. 

The disturbance emanating from the point P0 traverses a distance vt in time t. 

Thus, from the point P0 we draw a sphere of radius vt. We next consider the 

waves emanating from the source at a time t1 (< t). At time t1 let the source 

be at the position P1; consequently,

 P0P1 = Vt1

 

  Fig. 5.7  Generation of a shock wavefront by a vibrating particle P0 moving with a speed V, in 

a medium in which the velocity of propagation of the wave is v (< V).

   In order to determine the shape of the wavefront at t, we draw a sphere of 

radius v(t – t1) centered at P1. Let the source be at the position Q at the instant 

t. Then,

 P0Q = Vt

   We draw a tangent plane from the point Q, on the sphere whose origin is the 

point P1. Since

   P1L = v(t – t1) and P1Q = V (t – t1)

   sin q = 
P L

PQ
1

1

 = 
v

V
 (independent of t1) (21)
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   Since q is independent of t1, all the spheres drawn from any point on the 

line P0Q will have a common tangent plane. This plane is known as the shock 

wavefront and propagates with a speed v.

   It is interesting to point out that even when the source is not vibrating, if its 

speed is greater than the speed of sound waves, a shock wavefront is always 

set up. A similar phenomenon also occurs when a charged particle (like an 

electron) moves in a medium with a speed greater than the speed of light 

in that medium. The emitted light is known as Cerenkov radiation. If you 

from it; this is because of the Cerenkov radiation emitted by the fast moving 

electrons.

 5.6 Figure 5.8 shows the plane wavefront incident along the z-axis on the 

inhomogeneous medium. Since the refractive index decreases as x and y 

increase, the speed of the secondary wavelets emanating from portions of the 

incident wavefront will increase as we move away from the axis. Let us try to 

determine the shape of the wavefront at a time Dt; given that the wavefront at 

t = 0 is a plane wavefront A1B1 (see Fig. 5.8). We will have to draw spheres of 

radius v(x, y) Dt, centered at (x, y), where v(x, y) is the velocity of the wave 

at the point (x, y), which increases as x and y increase. Thus the radii of the 

spheres increase as we move away from the axis and if we draw a common 

tangent to all these spheres then the resulting wavefront is shown in Fig. 5.8 

as A2B2. It is at once evident that the wavefront which was initially plane has 

now become curved. If we again use the same procedure, then the shape of 

the wavefront at time 2Dt (say) is shown as A3B3. Thus, it is evident that in 

the present case the wavefront is getting focused. It should be borne in mind 

that since we are considering an inhomogeneous medium, the refractive index 

varies continuously with position. For the above construction to be valid, Dt 

should be small so that during this short interval the secondary wavelets may 

be assumed to be spherical.

 

  Fig. 5.8 The focusing of an incident plane wavefront in an inhomogeneous medium 

characterised by a refractive index variation given by Eq. (2).



Huygens’ Principle and its Applications 63 5.7 Figure 5.9 shows the spherical mirror GOG¢ of radius of curvature R and a 

point source placed at a distance u from the mirror. Spherical waves from the 

object point P are incident on the mirror. For the object position drawn in the 

O the remaining 

portion of the wavefront is still to reach the mirror. The portion at O gets 

G on the mirror, 

M. Now in the 

absence of the mirror the wavefront would have proceeded to the point S. 

Thus, OS = OM.

   Now, using the same approximation as in Problem 5.5, we have

   (GN)2 = 2R ¥ (NO)

   (GN)2 = 2u ¥ (NS)

   (GN)2 = 2v ¥ (NM)

  where we have assumed PO = u, QO = v and RO = R.

  Also, NS = NO + OS

  and NM = NO – OM = NO – OS

  From the above equations we obtain,

1 1

u
+
v

 = 
2

R

 

 Fig. 5.9
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d = 2 (n aa where 

a

a n

b/a l
b

n a

[Ans. ª

 

  Fig. 6.3 Fresnel’s biprism arrangement. C and L represent the positions of the crosswires and 
the eyepiece respectively. In order to determine d one introduce a lens between the 
biprism and the crossswires; L1 and L2 represent the two positions of the lens where 
the slits are clearly seen.

n

d

D

 

  Fig. 6.4 If a thin transparent sheet (of thickness t) is introduced in one of the beams, the fringe 
pattern gets shifted.
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D d1
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d D
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 Fig. 6.5 Fresnel’s two mirror arrangement.
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 Fig. 6.6 S1 and S2 represent two coherent sources.

l m d D S1O – S2O = 800 l
S1P – S2P P

[Ans.

D D

[Ans. ª
d l = 5 ¥ 

10–5 D n = 

n n

n1 n2

   r = 
sin cos sin cos

sin cos sin cos

q q q q

q q q q
1 1 2 2

1 1 2 2

-
+

t = 
2 1 1

2 1 1 2

n

n n

cos

cos cos

q

q q+
 = 

2 1 2

1 1 2 2

cos sin

sin cos sin cos

q q

q q q q+

  where q1 q2

d



Interference—Division of Wavefront 69

f  l /d where 

f

I/I  where I represents the 

l

 

 Fig. 6.7 Superposition of two plane waves on LL¢.

PP ¢

O

 

 Fig. 6.8 Superposition of a plane wave and a spherical wave emanating from the point O.
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S1P = [(D + d 2 + y2]1/2 S2P = [D2 + y2]1/2

 

Fig. 6.15 (a) S1 and S2 represent two coherent sources, (b) and (c) show typical interference fringes 
observed on the screen PP ¢ when D = 20 cm and D = 10 cm respectively.

S1P – S2P = D implies [(D + d 2 + y2]1/2 = D + [D2 + y2]1/2
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  Fig. 6.16 Interference pattern on the screen LL¢ for q1 = q2 = p /6 and l = 5000 Å. The fringes 
are parallel to the x-axis.
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  Fig. 6.17 Typical interference fringes observed on the screen PP ¢
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S ¢

   I ¢ = I0 cos2 
p
l

q
xd

D
d+È

ÎÍ
˘
˚̇

Ê
ËÁ

ˆ
¯̃

sin

S≤ (at an 

angle f
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   I≤ = I0 cos2 
p
l

f
xd

D
d-È

ÎÍ
˘
˚̇

Ê
ËÁ

ˆ
¯̃

sin

  I = I ¢ + I≤

Dl
l2/2Dl

P is d

   Dl << 
l2

2d

   x0 = 
l

l

2

2D
D

d

S

reaching S1 S2 S L >> a

waves reaching S1 S2 S d (a/L

x0

that

   
x d

D
0

 = 
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a
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A Quick Review

n2 d as shown in 

   D = 2n2d q ¢ (1)

  where q ¢

  
  Fig. 7.1

n2 d

ns

l0 

   D = 2n2d (2)

n2 ns

   D = ml0; m

Interference by Division 
of Amplitude 7
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   D = m +Ê
Ë

ˆ
¯

1
2

l0; m

   d = 
l0

24n
 (5)

S

AOB POQ. M represents a 

2nt where n t

   2nt = m +Ê
Ë

ˆ
¯

1
2

l0; m

   2nt = ml0; m

 
  Fig. 7.2 S

AOB

POQ M
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PROBLEMS

¥ 10

¥ 10

l ¥ 10–5

Ans.

Ans.

Ans.

l

Ans. m

Ans.

q¢ 
d = 5 ¥ 10 d

¥ 10 m 

q ¢ l = 5 ¥ 10–5
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2 n = 
l

m m
n

SOLUTIONS

 7.1 Fringe width b ª 
l

f2nf

; f
0 5

180

. ¥ p
radians ª ¥ 10  radians.

nf = 1

    b = 
5 10

2 8 73 10

5

3

¥

¥ ¥

-

-.
 ª

nf = 1.7

   b = 
5 10

2 1 7 10

5

3

¥

¥ ¥

-

-.
 ª ¥ 10

 2nf tf = m +Ê
Ë

ˆ
¯

1
2

l

  where tf nf

when
 2nf tf  = ml.

 7.2 b = 
1

100

cm

b = 
l
f2n

 fi f = 
l

b2n
 = 

6 10

2 1 0 01

5¥
¥ ¥

-

.
ª .

Fig. 7.3
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   2nf d = D = m +Ê
Ë

ˆ
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2
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2 1

n d
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( )+
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t1R1 = r2
m

  

Fig. 7.4
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  where n t

t = 

l0 n

li

  
2p
li

 2(Dd) = 2mp ; m

  where Dd

Dd Dd

l1 and l2

   
2

1

p
l

2(Dd) = 2mp;

   
2

2

p
l

2(Dd) = 2(m + 1)p;

  Dd = 
l l

l l
1 2

1 22( )-
Dd

l1 m
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1

p
l

2nt = (2m + 1)p;

l2 m
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A Quick Review

8.1 MULTIPLE REFLECTIONS FROM A 

 PLANE PARALLEL FILM

h (and of refractive 

index nf

by R

 T = 
1

1
2

2
+ ( )F sin

d
 (1)

where, d = 
2

0

p
l

D = 
4

0

p q

l

n hf fcos
 (2)

qf

 D = 2nf h cos qf (3)

Extended

source

f

L
Screenh

q

S

Fig. 8.1 The Fabry-Perot etalon.

is the corresponding path difference and

 F = 
4

1 2

R

R( )-
 (4)

 d = 2mp ; m = 1, 2, 3,… (5)

Multiple Beam 
Interferometry 8
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then T R is close to unity, then the 

d changes. The changes in d could be brought 

1

 2nf h cos qf = ml ; m = 1, 2, 3,… (6)

Dd 

 Dd ª 
4

F
 = 

2 1( )- R

R
 (7)

Dd 
qf h = h  + x l  = 5 ¥ –5

h

d p 1
0

+Ê
ËÁ

ˆ
¯̃

x

h

T 

with x for different values of F.

0.5

0 250 500

d = 800,000 p d = 800,002 p d = 800,004 p

F = 100

F = 1000

1

T

x (nm)

Fig. 8.2 T with x for a monochromatic beam incident 
normally on a scanning Fabry-Perot interferometer; the solid curve corresponds to F = 1000 
and the dashed curve corresponds to F = 100.

 1.
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8.2 MODES OF THE FABRY-PEROT CAVITY

qf

 n = 
c

l

Fig. 8.3 A beam having a spectral width of about 7000 MHz (around n0 = 6 ¥ 1014 Hz) is incident 
normally on a Fabry-Perot etalon with h = 10 cm and nf = 1. The output has 5 narrow spectral 
lines.

 n = nm = m 
c

h2

where m

8.3 RESOLVING POWER

 Resolving Power = 
n
nD

 = 
p nh F

c

 Resolving Power = 
l

lD
 = 

p

l

h F
 (11)

PROBLEMS

 

  n = n  = 6 ¥ 14
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  and a spectral width2 

h

h between 

L 

   h = h  + x (12)

 

h
0

P

Photodetector

L

x

 Fig. 8.4 A scanning Fabry-Perot interferometer. The intensity variation is recorded (by a 
photodetector) on the focal plane of the lens L.

n = n = 6 ¥ 14

h nf = 1. Calculate and plot the 

intensity variation at the point P as a function of x.

nf = 1, h F

q for 

l

l  

Dl l

nf = 1, h F

Concentric rings are observed on the focal plane of a lens of focal length 

 2. n  = 6 ¥ 14 l

Dl

l
 = 

Dn
n

 = 
7 10

6 10

9

14

¥
¥

 ª 1.2 ¥ –5 giving Dl  ª  

n = 6 ¥ 14
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corresponding value of m?

 (c) Calculate the angular width of each ring where the intensity falls by half 

will be the corresponding values of m? Will the lines be resolved?

nf = 1 and F

h = h  + x. With h

x

the corresponding value of m.

Dh

 (c) What would be the value of Dh if F

[Ans. (a) x ª m = 333334),

(m = 333335); (b) Dh ª

l l  + Dl
with nf = 1, F h Dl so that T = 

h for both the wavelengths.

h c = 3 ¥ n = n  = 5 ¥ 14 s–1. Plot T as a 

function of x x F F

 (b) Show that if n = (n  ± p p T 

vs. x

will be the corresponding values of d?

FP

 800 801

1.0

0.0025

T

l (mm)

 Fig. 8.5
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(1 + R)2/(1 – R)2.

SOLUTIONS

  dn = 
c

h2

  n = n = 6 ¥ 14

  and a spectral width3 

  n , n  ± dn and n  ± 2 dn

correspond to

  m

n = n = 6 ¥ 14 h nf = 1 and cos qf = 1, we get

   d = 
4 0 0pn ( )h x

c

+
p 1

0

+
Ê
ËÁ

ˆ
¯̃

x

h

   d p p p,…

  which will occur when

  x

F F

value of F.

  F = 
4

1 2

R

R( )-
  we readily obtain

  R2 – 2 1
2+Ê
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ˆ
¯̃F

 R fi R = 1 + 
2 2

1
F F

F- +

   F R ª

 3. n  = 6 ¥ 14 l

Dl

l
 = 

Dn
n

 = 
7 10

6 10

9

14

¥
¥

 ª 1.2 ¥ –5 giving Dl  ª

n = 6 ¥ 14
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q for l

   l  = l1

   

 Fig. 8.6 The variation of intensity with q for a Fabry-Perot interferometer with nf = 1, h = 
1.0 cm and F = 400, corresponding to l0 = 5000 Å (= l1) and l0 = 4999.98 Å (= l2).

 

 Fig. 8.7 The (computer generated) ring pattern as obtained (on the focal plane of a lens) in a 
Fabry-Perot etalon with nf = 1, h = 1.0 cm and F = 400, corresponding to l0 = 5000 Å 
(= l1) and l0 = 4999.98 Å (= l2).

   qf = cos–1 m

40000

Ê
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ˆ
¯̃



Multiple Beam Interferometry 95

   qf

  corresponding to m

   l  = l2

  we get qf = cos–1 m

40000 16.
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l l
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1 2
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h 80
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 fi h  ª

l = 6 ¥ –5 n2 = 1, h F

 (a) (1 – R)2 ◊ F = 4R fi 1 – 2R + R2 R

  fi R2 R fi R ª

   q = cos–1 m

n h

l
2 2

È

Î
Í

˘

˚
˙  = cos–1 m

33333 333.

È
ÎÍ

˘
˚̇

m = 33333, 33332, 

q2

   fq ª

q2 has to be in radians.
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 (c) We write m = cos q. Thus,

   Dm ª c

h Fpn
 fi sin q Dq ª l

ph F
 ª 1.35 ¥ –6

  fi Dq ª 
1 35 10 6.

sin

¥ -

q
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    ª 
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    ª 

  for m

above values and the values of q obtained for l = 6 ¥ –5

of Dq, we can easily see that the lines are well resolved.
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1

1
2

2+ Ê
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ˆ
¯F sin

d
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4

0
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 nf h cos qf

   l  = 6 ¥ –5 n2 = 1, h = h  + x with h

incidence qf T
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d = 
4

0

p
l

 h (n2 = 1). Thus,
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  where, p = ±1, ±2, ± Dn such 

that

   
4p nD

c
 ¥ h  = 2pp fi Dn = 

cp

h2 0

 = p ¥ 

T vs. x curve; the value of d will change by 2pp.

l1 and 

l2, then we have

     2n2d = ml1 = (m + 1)l2

m d

F

can obtain the value of F

F



 

A Quick Review

9.1 FRAUNHOFER DIFFRACTION BY A SINGLE SLIT

A plane wave (of wavelength l) is incident normally on a long narrow slit (of 
width b) and the Fraunhofer diffraction pattern is observed on the focal plane of the 

Fig. 9.1 Diffraction of a plane wave incident normally on a long narrow slit of width b. Notice that the 

spreading occurs along the width of the slit.

Fraunhofer Diffraction: I

9
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 E = A
sin b

b
cos (wt – b) (1)

where, b = 
p q

l

bsin
 (2) 

and q is the angle of diffraction along the width of the slit. The corresponding 
intensity distribution on the focal plane of the lens is given by (see Fig. 9.2)

Fig. 9.2 (a) The intensity distribution corresponding to the single slit Fraunhofer diffraction pattern. 

(b) Graphical method for determining the roots of the equation tan b = b.

 I = I0
sin2

2

b

b
 (3)

where, I0 represents the intensity at q = 0. The intensity is zero when

 b = mp fi b sin q = ml; m = ±1, ± 2, ± 3,…  (4)
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The maxima correspond to the roots of the transcendental equation [see Fig. 
9.2(b)]:

 tan b = b (5)

which occur at b ª 1.43p, b ª 2.46p,… (6)

9.2 FRAUNHOFER DIFFRACTION BY MULTIPLE SLITS

We next consider a plane wave (of wavelength l) incident normally on N parallel 
slits, each of width b, and the distance between two consecutive slits is assumed to be 
d

 E = A
sin b

b
[cos(wt – b) + cos(wt – b – F1) + … + cos{wt – b – (N – 1)F1}]

  = A
sin sin

sin
cos ( )

b

b

g

g
w b

N
t N- - -È

ÎÍ
˘
˚̇

1
2

1 1F  (7)

where, g = 
F1

2
 = 

p q

l

d sin
 (8)

Fig. 9.3 Fraunhofer diffraction of a plane wave incident normally on a multiple slit.

The corresponding intensity distribution on the focal plane of the lens is given by

 I = I0
sin2

2

b

b

sin

sin

2

2

Ng

g
 (9)

Principal maxima occur when, 

 g = mp fi d sin q = ml; m = 0, ±1, ± 2, ± 3,… (10)

Between two principal maxima, the intensity vanishes when, 

 g = 
p

N

p
; p = ±1, ± 2, ± 3,… but p π 0, ± N, ± 2N, ± 3N,… (11)

These are referred to as secondary minima. In a diffraction grating, N is usually a 
very large number, as such there are many minima between two principal maxima. 
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In addition, there are few diffraction minima which Returning to Eq. (9), we see that 
for N = 1 we obtain the single slit diffraction pattern. For N = 2 we obtain

 I = 4I0
sin2

2

b

b
cos2g (12)

which is a product of the single slit diffraction pattern and the two point interference 
pattern. 

9.3 RESOLVING POWER OF A GRATING

The resolving power of a grating is based on the Rayleigh criterion (see Fig. 9.4) and 
is given by

 R = 
l
lD

 = mN (13)

where N represent the total number of lines in the grating and m represents the order 
of the spectrum.

Fig. 9.4 The Rayleigh criterion for the resolution of two spectral lines.

9.4 DIFFRACTION BY A CIRCULAR APERTURE

A plane wave is incident normally on a circular aperture (of radius a) and a lens 
whose diameter is much larger than that of the aperture is placed close to the aperture 
as shown in Fig. 9.5. 

Fig. 9.5 Experimental arrangement for observing the Fraunhofer diffraction pattern by a circular aperture.
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The Fraunhofer diffraction pattern is observed on the focal plane of the lens. 
Because of the rotational symmetry of the system, the diffraction pattern will consist 
of concentric dark and bright rings; this diffraction pattern (as observed on the 
back focal plane of the lens) is known as the Airy pattern (see Fig. 9.6) and the 
corresponding intensity distribution is given by (see Problem 9.9)

 I = I0
2 1

2
J ( )v

v

È

ÎÍ
˘

˚̇
 (14)

where, v = 
2p
l

a sin q (15)

Fig. 9.6 Computer generated Airy patterns; (a) and (b) correspond to a = 0.5 mm and a = 0.25 mm 

respectively at the focal plane of a lens of focal length 20 cm (l = 0.5 mm).

a being the radius of the circular aperture, l the wavelength of light and q the angle 
of diffraction; I0 is the intensity at q = 0 (which represents the central maximum) 
and J1(v
convex lens

 v ª 
2

2 2 1 2
p
l

a
x y

f

( ) /+
 (16)

where f is the focal length of the lens. For those not familiar with Bessel functions, 
we may mention that the variation of J1(v) is somewhat like a damped sine curve [see 
Fig. 9.7] and although J1(0) = 0, we have

 Lt
v

v

vÆ0

12J ( )
 = 1 (17)

similar to the relation

 Lt
x

x

xÆ0

sin
 = 1 (18)

J1(v) occur at

 v = 3.832, 7.016, 10.174,… (19)
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Fig. 9.7 The variation of J1(v) with v.

Fig. 9.8 The intensity variation associated with the Airy pattern.

In Fig. 9.8 we have plotted the function

2 1
2

J ( )v

v

È

ÎÍ
˘

˚̇
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which represents the intensity distribution corresponding to the Airy pattern. Thus, 
the successive dark rings in the Airy pattern [see Fig. 9.6] will correspond to

 v = 
2p
l

a sin q = 3.832, 7.016, 10.174,… (20)

or sin q = 
3 832

2
. l

pa
, 

7 016
2
. l

pa
,… (21)

If f represents the focal length of the convex lens, then the

 Radii of the dark rings = f tan q ª 
3 832

2

. l

p

f

a
, 

7 016

2

. l

p

f

a
, … (22)

where we have assumed q to be small so that tan q ª sin q. In Figs. 9.6(a) and (b) 
we have shown the Airy patterns corresponding to the radius of the circular aperture 

l = 5000 Å and 
f = 20 cm. Thus,

ª 0.12 mm and 0.24 mm

corresponding to a = 0.5 mm and 0.25 mm respectively. 

9.5 LIMIT OF RESOLUTION

Consider two point sources, such as stars (so that we can consider plane waves 
entering the aperture) being focused by a telescope objective of diameter D. Each 
point source will produce its Airy pattern as schematically shown in Fig. 9.9. The 
diameters of the Airy rings will be determined by the diameter of the objective, its 
focal length and the wavelength of light. According to the Rayleigh criterion for the 

ring of the second, and this would happen when the angular separation of the two 
distant objects is given by

 Dq = 
1 22. l

D
 (23)

Fig. 9.9 The image of two distant objects on the focal plane of a convex lens. If the diffraction patterns 

are well separated, they are said to be resolved.
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PROBLEMS

 9.1 A plane wave (l = 5000 Å) falls normally on a long narrow slit of width 

minima. Repeat the calculations corresponding to a slit width of 0.1 mm. 
Interpret physically the change in the diffraction pattern.

 [Ans. 0.057°, 0.115°, 0.17°; 0.29°, 0.57°, 0.86°]
 9.2 A convex lens of focal length 20 cm is placed after a slit of width 0.6 mm. If 

a plane wave of wavelength 6000 Å falls normally on the slit, calculate the 
separation between the second minima on either side of the central maximum. 

 [Ans. ª0.08 cm]
 9.3 In the above problem calculate the ratio of the intensity of the principal 

  [Ans. ~ 21]
 9.4 A circular aperture of radius 0.01 cm is placed in front of a convex lens of focal 

length of 25 cm and illuminated by a parallel beam of light of wavelength 
5 ¥ 10–5

[Ans. 0.76, 1.4, 2.02 mm]
 9.5 Consider a plane wave incident on a convex lens of diameter 5 cm and of 

focal length 10 cm. If the wavelength of the incident light is 6000 Å, calculate 

calculations for a lens of same focal length but diameter 15 cm. Interpret the 
results physically.   [Ans. 1.46 ¥ 10–4 cm, 4.88 ¥ 10–5 cm]

 9.6 Consider a set of two slits each of width b = 5 ¥ 10–2 cm and separated by 
a distance d = 0.1 cm, illuminated by a monochromatic light of wavelength 
6.328 ¥ 10–5 cm. If a convex lens of focal length 10 cm is placed beyond the 

diffraction minimum.  [Ans. 0.0316 mm, 0.094 mm]
 9.7 Show that when b = d, the resulting diffraction pattern corresponds to a slit of 

width 2b.

grating is used for studying a light beam containing wavelength components 
from 4000 Å to 7000 Å.

 9.9 Consider a diffraction grating of width 5 cm with slits of width 0.0001 cm 
separated by a distance of 0.0002 cm. What is the corresponding grating 
element? How many orders would be observable at l = 5.5 ¥ 10–5 cm? 
Calculate the width of principal maximum. Would there be any missing 
orders?

 9.10 For the diffraction grating of the above problem, calculate the dispersion in 
different orders. What will be the resolving power in each order?

 9.11 A grating (with 15,000 lines per inch) is illuminated by white light. Assuming 
that white light consists of wavelengths lying between 4000 and 7000 Å, 
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 9.12 A grating (with 15,000 lines per inch) is illuminated by sodium light. The 
grating spectrum is observed on the focal plane of a convex lens of focal 
length 10 cm. Calculate the separation between the D1 and D2 lines of sodium. 
(The wavelengths of D1 and D2 lines are 5890 and 5896 Å respectively.) 

 9.13 Calculate the resolving power in the second order spectrum of a 1 inch grating 
having 15,000 lines.

 9.14 Consider a wire grating of width 1 cm having 1000 wires. Calculate the 
angular width of the second order principal maximum and compare the value 
with the one corresponding to a grating having 5000 lines in 1 cm. Assume 
l = 5.5 ¥ 10–5 cm.

spectrum corresponds to an angular deviation of 30°. If l = 6 ¥ 10–5 cm, 
calculate the grating element.

 9.16 Calculate the diameter of a telescope lens if a resolution of 0.1 seconds of arc 
is required at l = 6 ¥ 10–5 cm.

 9.17 Assuming that the resolving power of the eye is determined by diffraction 
effects only, calculate the maximum distance at which two objects separated 
by a distance of 2 m can be resolved by the eye. (Assume pupil diameter to be 
2 mm and l = 6000 Å.)

 9.18 A pinhole camera is essentially a rectangular box with a tiny pinhole in front. 
An inverted image of the object is formed on the rear of the box. Consider 
a parallel beam of light incident normally on the pinhole. If we neglect 
diffraction effects then the diameter of the image will increase linearly with 

reduce the diameter of the pinhole. Find the pinhole diameter for which the 
diameter of the geometrical image is approximately equal to the diameter of 

l = 6000 Å and a separation of 
15 cm between the pinhole and the rear of the box.  [Ans. 0.47 mm]

 9.19 Calculate the Fraunhofer diffraction pattern produced by a double slit 
arrangement with slits of widths b and 3b, with their centers separated by a 
distance 6b. 

 9.20 Plot the function

 
sin

sin

2

2

Ng

g

  for N = 5 and N  g corresponding to the secondary 
minima.

 9.21 Assuming ideal conditions, estimate the linear separation of two objects on 
the surface of the moon that can just be resolved by an observer on the earth 
using naked eye assuming a pupil diameter 5 mm. Assume a wavelength of 
550 nm.

 9.22 Show that for a diffraction grating with d = 2b, where b is the width of each 
slit and d is the spacing between the slits, all even order diffraction maxima 
will be absent in the diffraction pattern.
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 9.23 A grating with 200 lines (slits) per millimeter and of width 2 cm is fully 
illuminated by light consisting of wavelengths 600 nm and 600.1 nm. 

 (a) What is the lowest diffraction order where the two wavelengths will be 
resolved?

 (b) If the slits are of width 3 mm in the grating, then calculate the ratio of 
intensities of the 600 nm wavelength in the second order to that in the 

 9.24 For a diffraction grating illuminated normally by a plane wave of wavelength 

grating?
 9.25 Find the distance between the images of the two stars which are just resolved 

by a lens of focal length 3 m and diameter 10 cm. (Assume l = 5500 Å). 
Assuming the diameter of the pupil of the human eye to be 5 mm, show 
whether the two images can be resolved by the eye or not when viewed from 
a distance if 25 cm from the focal plane of the lens.

 9.26 Consider a telescope having an objective of diameter 5 cm and focal length 
30 cm. 

 (a) What is the minimum angular resolution of the telescope? (Assume l = 
0.5 m m.b). 

 (b) Assuming an eye pupil diameter of 4 mm, calculate the focal length of 
the eye piece required to fully utilise the objective resolution.

 9.27 A parallel laser beam with a diameter of 2 mm and a power of 10 W falls on a 
convex lens of diameter 25 mm and focal length 10 mm. If the wavelength of 
the laser beam is 500 nm, estimate the average intensity at the focused spot.

 9.28 Parallel light from 2 incoherent light sources of equal intensity falls on a long 
narrow slit of width ‘a’ and the Fraunhofer diffraction pattern is observed on 
the back focal plane of a lens. If the two sources are just resolved, calculate the 
drop in intensity (with respect to the maximum) midway between the maxima.

SOLUTIONS

 9.1 For minima b sin qm = ml fi qm = sin–1 ml
q

Ê
ËÁ

ˆ
¯̃

   Thus, for b = 0.05 cm for b = 0.01 cm

   q1 = sin–1 5 10

0 05

5¥Ê

Ë
Á

ˆ

¯
˜

-

.
 ª 0.057° q1 = sin–1 5 10

0 01

5¥Ê

Ë
Á

ˆ

¯
˜

-

.
 ª 0.29°

   q2 = sin–1 10 10

0 05

5¥Ê

Ë
Á

ˆ

¯
˜

-

.
 ª 0.115° q2 = sin–1 10 10

0 01

5¥Ê

Ë
Á

ˆ

¯
˜

-

.
 ª 0.57°
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   q3 = sin–1 15 10

0 05

5¥Ê

Ë
Á

ˆ

¯
˜

-

.
 ª 0.17° q3 = sin–1 15 10

0 01

5¥Ê

Ë
Á

ˆ

¯
˜

-

.
 ª 0.86°.

 9.2 Second minima occurs at sin q = 
2l
a

 fi q = 2 ¥ 10–3 rad.

  Therefore, the angular separation between the two ‘second’ minima, lying on 
either side of central maxima = 4 ¥ 10–3 rad. Thus, on the screen 

   The separation between the two minima = 4 ¥ 10–3 ¥ 20 = 0.08 cm.

 9.3 I = I0
sin2

2

b

b
 b ∫ 

p
l

b sin q 

  First maximum occurs at b = 1.43p. If I1

then

  
I

I
0

1
 = 

( . )

sin ( . )

1 43

1 43

2

2

p

p
 ª 21

 9.4 Radii of the dark rings

   r = f tan q = 
3 832

2

. l

p

f

a
, 

7 016
2

. l

p

f

a
, 

10 174
2

. l

p

f

a

    = 0.076 cm, 0.14 cm, 0.202 cm

3 832. l

p

f

D
 = 

3 832 6 10 10

5

5. ¥ ¥ ¥-

p
 

    = 1.46 ¥ 10–4 cm.

   For D
3 832 6 10 10

15

5. ¥ ¥ ¥-

p
 

   = 4.88 ¥ 10–5 cm.

   In the second case the beam gets diffracted to a lesser extent because the 
lens offers a larger aperture for the same wavelength.

 9.6 For N = 2, the interference term is given by

   
sin

sin

2

2

Ng

g
 = 4 cos2 g

  where, g  = 
p q

l

d sin
.

  Interference minima will occur when

  sin q = 
m

d

+( )1
2

l
 = m +Ê

Ë
ˆ
¯

1
2

6 328 10

0 1

5.

.

¥ -
 = 6.328 ¥ 10–4 m +Ê

Ë
ˆ
¯

1
2

 

  Thus sin q = 3.164 ¥ 10–4 and 9.492 ¥ 10–4 for m = 0 and 1 respectively. Thus, 
x = f tan q ª 0.0316 mm and 0.094 mm

 9.7 I = 4I0
sin2

2

b

b
cos2 g = 4I0

sin2

2

b

b
cos2b = I0

sin2

2

2b

b
¥ 

4
4

 = 4I0
sin

( )

2

2

2

2

b

b
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d sin q1,2 = l and 2l respec-
tively. For the visible regions of l 

  4 ¥ 10–5 < d sin q1 < 7 ¥ 10–5 and 8 ¥ 10–5 < d sin q2 < 14 ¥ 10–5

  Clearly q1 and q2 are disjoint for any value of d. The second and third order 
spectra will overlap.

 9.9 The grating element is d = 0.0002 cm. 

   Now d sin qm = ml fi 
m

d

l
 = sin qm £ 1

   fi m £ 
d

l
 = 

2 10

5 5 10

4

5

¥
¥

-

-.
 = 3.6

  Thus, we observe only three orders at l = 5.5 ¥ 10–5 cm.

  The number of lines in the grating = 
5

2 10 4

cm

cm¥ -  = 25000, thus, the width of 
principal maximum will be given by 

   Dqm = 
l

qNd mcos
 = 

5 5 10

25000 2 10

5

4

. ¥
¥ ¥

-

-   (qm ª 0)

    = 1.1 ¥ 10–5 rad

  Missing orders correspond to the following two equations being simultane-

b sin qn = nl and d sin qm = ml with qn = qm. Thus, 
b

d
 = 

n

m
 fi 

m = 2n, so every second principle maxima would be absent.

 9.10 d sin qm = ml; d = 2 ¥ 10–4 cm fi sin qm = 
l
d

, 
2l
d

, 
3l
d

 = 0.275, 0.55, 0.825 

for m = 1, 2 and 3. Thus, qm = 15.96°, 33.37°, 55.59°.

   Dispersion 
D
D

q
l

 = 
m

d cos qm

 ª 5.2 ¥ 10–5, 1.2 ¥ 10–4 and 2.7 ¥ 10–4 radians/Å 

for m = 1, 2 and 3 respectively. 

   R = mN

respectively.

 9.11 d = 
2 54

15000
.

 = 1.69 ¥ 10–4 cm fi sin q1 = 
l
d

 = 
4 10

1 693 10

5

4

¥
¥

-

-.
 to 

7 10

1 693 10

5

4

¥
¥

-

-.
    = 0.236 to 0.413

  fi q1 = 13.7°  to 24.4° fi Dq1 = 10.7°

   sin q2 = 
2l
d

 = 
8 10

1 693 10

5

4

¥
¥

-

-.
 to 

14 10

1 693 10

5

4

¥
¥

-

-.
 = 0.473 to 0.827 

  fi q2 = 28.20° to 55.79°

  fi Dq2 = 27.6°
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 9.12 d sin q1,2 = l1,2 

   d = 
2 54

15000
.

 ª 1.693 ¥ 10–4 cm fi sin q1 = 
5 89 10

1 693 10

5

4

.

.

¥
¥

-

-  ª 0.3479 

  fi q1 ª 20.36°

  Thus, 

  Dq ª 
m

d cos q
Dl ª 

1

1 693 10 0 9374. .¥ ¥-  ¥ 6 ¥ 10–8 ª 3.78 ¥ 10–4 radians

  fi separation ª f Dq ª 3.78 ¥ 10–3 cm

 9.13 R = 2N = 30000.

 9.14 d = 
1

1000

cm
 = 10–3 cm fi sin q2 = 

2l
d

 = 
10

10

4

3

-

-  = 0.1. 

  Now, the width of principal maxima Dq2 = 
l

qNd mcos

  fi Dq2 = 
l

qNd m1 2- sin
 = 

5 10

1000 10 0 99

5

3

¥
¥

-

- .
 = 5.02 ¥ 10–5 rad

  If N = 5000 lines, d = 2 ¥ 10–4 cm

  fi sin q2 = 
2l
d

 = 
10

2 10

4

4

-

-¥
 = 0.5 fi cos q2 ª 0.866

  fi Dq2 = 
5 10

0 866

5¥ -

.
 = 5.77 ¥ 10–5 rad

 9.15 2d sin 
d
2

 = l fi d = 
6 10

2 15

5¥
¥ ∞

-

sin
cm = 1.16 ¥ 10–4 cm.

 9.16 
1 22. l

D
 = 

0 1
3600

.
 ¥ 

p
180

 = 4.85 ¥ 10–7 fi D ª 150 cm.

 9.17 Let the distance be x.

  fi 
1 22. l

D
 = 

2
x

; D = 2 mm = 2 ¥ 10–3 m; l = 6 ¥ 10–7 m

  fi x = 
2

1.22 6 10¥ ¥ -7
 ¥ 2 ¥ 10–3 ª 5.5 km

  Thus, two objects (separated by 2 m) at a distance of about 5 km should be 
resolvable by the eye.

  q ª 1 22. l
D

ª 2 ¥ 15 ¥ q ª 
2 15 1 22 6 10 5¥ ¥ ¥ ¥ -.

D
  Thus the required condition is 

   D ª 
2 15 1 22 6 10 5¥ ¥ ¥ ¥ -.

D
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  Fig. 9.10 The image formed in a pinhole camera for different diameters of the pinhole. 

[Ref: http://www.cs.berkeley.edu/~daf/book/chapter-4.pdf]

  fi D ª 0.047 cm = 0.47 mm (see Fig. 9.10)

 9.19 AC = 6b – 
3
2 2
b b+  = 5b (see Fig. 9.11)

q is

   E = a[cos w t + cos (w t – f) + … 

+ cos (w t – (n – 1)f)] + a[cos (w t 

– F1) + cos (w t – f – F1) + … 

+ cos (w t – (3n – 1)f – F1)]

    = a
sin /

sin /

nf

f

2

2
cos w ft n- -È

ÎÍ
˘
˚̇

1
2

1( )  

+ 3a
sin /

sin /

3 2

3 2

nf

f
cos w ft n- - -È

ÎÍ
˘
˚̇

1
2

3 1 1( ) F

    = A
sin b

b
cos w b

f
t - +Ê

Ë
ˆ
¯2

 + 3A
sin 3

3

b

b

    cos w b
f

t - - +Ê
Ë

ˆ
¯3

21F

  where b = 
1
2

nf = 
p q

l

bsin
; F1 = 

2p
l

◊ 5b sin q 
= 10b 

   Thus, E = 
Asin b

b
cos

sin

sin
cosw b

f b

b
w b

f
t t- +Ê

Ë
ˆ
¯ + - +Ê

Ë
ˆ
¯

È

ÎÍ
˘

˚̇2

3
13

2

    = 
Asin b

b
C t C t1 22 2

cos sinw
f

w
f

+Ê
Ë

ˆ
¯ + +Ê

Ë
ˆ
¯

È
ÎÍ

˘
˚̇

  where, C1 = cos b + (3 – 4 sin2 b ) cos 13b 

Fig. 9.11
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  and C2 = sin b + (3 – 4 sin2 b) sin 13b

   I = I0
sin2

2

b

b
(C1

2 + C2
2)

 9.20 See Fig. 9.12

 

  Fig. 9.12 The variation of the function sin2 (Ng )/sin2g with g for N = 5 and 12. As N becomes 

larger, the function would become more and more sharply peaked at g = 0, ± p, 

± 2p, ±3p,….

 9.21 The angular separation that can be resolved is given by

  q = 
1 22. l

d
 ª 

0 67 10

5 10

6

3

. ¥
¥

-

-
 = 0.13 ¥ 10–3

  Assuming the distance of moon from the earth to be given by 3.84 ¥ 105 km, 
the linear separation that can be resolved comes out to be 3.84 ¥ 105 ¥ 0.13 ¥ 
10–3 ª 50 km.
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 9.22 The intensity pattern in a diffraction grating is given by Eq. (9). In this case 
since d = 2b, we have b = g /2. Even order grating spectra correspond to g = 
2mp (m = 1, 2, 3…). For these angles we would have b = mp (m = 1, 2, 3…). 
For these values of b, the diffraction term gives zero and hence all even orders 
will be absent. Note that along these directions the amplitudes of all the slits 
add constructively but there is no diffracted amplitude along these directions 
as they coincide with the diffraction minima of each slit.

 9.23 (a) The number of illuminated slits equals 200 ¥ 20 = 4000. Using the formula 
m > 1.5. This means 

by

   
I

I
2

1
 = 

sin
sin

sin

p q

l

p q

l

b

b

2

2

2
Ï
Ì
Ó

¸
˝
˛

Ï
Ì
Ó

¸
˝
˛

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

 ¥ 

p q

l

p q

l

b

b

sin

sin
sin

1

1

2
Ï
Ì
Ó

¸
˝
˛

Ï
Ì
Ó

¸
˝
˛

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

    where q1 and q2

spectra appear. Note that the interference term got cancelled in taking the 
ratio. Now the angles at which the two orders appear satisfy the following 
equations:

   d sin q1 = l

   d sin q2 = 2l

     Also from the values given in the problem, d = 5 mm and b = 3 mm. 
Using these values in the equation for the ratio we obtain 

  
I

I
2

1

 ª 0.096

 9.24 It is given that the maximum order seen is 6. Hence, the value of d must lie 
between 5l and 6l which implies that 2.675 mm < d < 3.21 mm. Now since 
there is an order appearing at 35°, we must have

  d = m
0 535

35
.

sin ∞
ª 0.93m

  The value of m satisfying the condition on d is 3. Hence this must be the third 
order and in such a case the value of d will be 2.799 mm.

 9.25 The separation between the two spots will be

  l =
1 22. l

d
f ª 20.13 mm

   The angle subtended by the two spots on the eye placed at a distance of 
25 cm will be 0.805 ¥ 10–4 rad. The resolving power of the eye for an opening 
of 5 mm is 1.34 ¥ 10–4 rad. Hence the eye will not be able to resolve the two 
images although they are resolved by the telescope.
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 9.26 (a) The angular resolution of the telescope will be

    qtel = 
1 22. l

d
 = 

1 22 0 5 10

5 10

6

2

. .¥ ¥
¥

-

-  ª 1.22 ¥ 10–5 rad

   (b) The angular resolution of the eye will be

    qeye = 
1 22. l

d
 = 

1 22 0 5 10

4 10

6

3

. .¥ ¥
¥

-

-  ª 1.525 ¥ 10–4 rad

 9.27 The radius of the focused spot would be a ~ 3.05 mm. Thus, the intensity of the 
focused spot would be P/pa2 ~ 3.4 ¥ 1011 W/m2.

 9.28 The diffraction pattern of a single slit with a single source is given by Eq. (3). 
The two sources would be just resolved when the maximum of one falls on 

q = l/b, the 
intensity midway would be 

   Imid = 2
sin

p
l

l

p
l

l

b

b

b

b

2

2

2
È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

 = 
8
2p

 ª 0.81



 

A Quick Review

For an electromagnetic wave propagating in the +z direction, the transverse 

Ex or Ey) satisfy the scalar wave equation

 —2y = em0 

∂
∂

2

2

y

t

If we assume the time dependence of the form e–iw t and write

 y = U x, y, z) e–iw t

we would obtain

 —2U + k2U

where, k = w em0  = 

w
v

 

and U 

 U x, y, z) = FÚÚ kx, ky) e
i k x k y k zx y z( )+ +

 dkx dky

where, kz = ± k k kx y
2 2 2- -

For waves making small angles with the z axis we may write

 kz = k k kx y
2 2 2- -  ª k 1

2

2 2

2
-

+È

Î
Í
Í

˘

˚
˙
˙

k k

k

x y

 U x, y, z) = 
i z

eikz

l
UÚÚ x, h, 0) exp ik

z
x y

2
2 2( ) ( )- + -{ }È

ÎÍ
˘
˚̇

x h  dxdh

where the integral is over the area of the aperture on the plane z

 U x, y, z) ª 
i zl

 eikz exp 
ik

z
x y

2
2 2( )+{ } UÚÚ x, h, 0)

exp 
ik

z2
2 2( )x h+{ } e–i ux + vh) dxdh

Fraunhofer Diffraction II: 
The Diffraction Integral 10
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where, u = 
2p

l

x

z
 and v = 

2p

l

y

z

 

Fresnel diffraction integral. In the next chapter we will use the above integrals to 

z to be so large that the 

function

exp 
ik

z2
2 2( )x h+{ }

 U x, y, z) ª 
i zl

 eikz exp 
ik

z
x y

2
2 2( )+{ } UÚÚ x, h, 0) e–i ux + vh) dxdh

side is the two dimensional Fourier transform of the function U x, h
Fraunhofer diffraction pattern is the 

Fourier transform of the aperture function.

Fig. 10.1 A plane wave incident normally on an aperture. The diffraction pattern is observed on the 

screen SS¢.

PROBLEMS

b 

x
we will have

   U x, h, 0) = A

       

x

x

<

>

¸

˝
Ô

˛
Ô

b

b

2

2
    = 0

   for all values of h
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 Fig. 10.2 Diffraction of a plane wave incident normally on a long narrow slit of width b. Notice 

that the spreading occurs along the width of the slit.

width b x-axis) separated by distance d 

case, we will have

   U x, h, 0) = A

       

- - < < - + - < < + ¸
˝
Ô

Ǫ̂

d b d b d b d b

2 2 2 2 2 2 2 2
x xand for

elsewhere
 

    
= 0

  

  for all values of h

 

 Fig. 10.3 Diffraction of a plane wave incident normally on two long narrow slits of width b. 

Notice that the spreading occurs along the width of the slit.

that

   U x, h, 0) = A

    = 0 

0 < < < < + ¸
˝
˛

x xb d d band for

elsewhere  

    for all values of h

d = b
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N equidistant slits each of 

width b so that

 U x, h, 0) = A   

  = 0 

0 1 1< < < < + º - < < - + ¸
˝
˛

x x xb d d b N d N d b; ; ; ( ) ( )

elsewhere  

  for all values of h

b 

x-axis) and width a h
For such a case, we will have

   U x, h, 0) = A

    
= 0

 

x h< < ¸
˝
Ô

Ǫ̂

b a

2 2
and

everywhere else
 

  for all values of h

l ¥  cm incident normally on a rectangular 

¥

on the x f = 0) and also on the y q

 

that

   U x, h, 0) = A

    = 0 

0 1 2< < < < + ¸
˝
˛

x xb d d band for

elsewhere  

  for all values of h

d = b

width b  + b2

a 

. 

 

 Fig. 10.4(a) Diffraction of a plane wave incident on a circular aperture of radius a.
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 Fig. 10.4(b) Cylindrical coordinates (r, f) on the plane of the circular aperture.

l ¥
a mm 

is covered by a thin slide of glass of 

mm so 

that it covers half the slit as shown in the 

   Calculate the corresponding Fraunhofer 

m
 

  

 Fig. 10.5

a as 

Fig. 10.6
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a as 

without actual integration, that if the aperture is 

displaced by a distance x0 along the x-direction, there 

 

Fig. 10.8

b is illuminated 

obliquely by a plane parallel beam at an angle q0 

corresponding Fraunhofer diffraction pattern 

SOLUTIONS

z axis we may write

   kz = k k kx y
2 2 2- -  ª k 1

2

2 2

2
-

+È

Î
Í
Í

˘

˚
˙
˙

k k

k

x y

   U x, y, z) = eik z ÚÚ F kx, ky) exp i k x k y
k k

k
zx y

x y+ -
+Ê

ËÁ
ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

2 2

2
 dkx dky

z = 0 will be given by

   U x, y, z = 0) = ÚÚ F kx, ky) e
i k x k yx y( )+

 dkx dky

U x, y, z = 0) is the Fourier transform of F kx, ky

will give us

   F kx, ky) = 
1

2 2( )p
 UÚÚ  x, h, 0) e

i k kx y- +( )x h
 dxdh

Fig. 10.7

Fig. 10.9
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F kx, ky

   U x, y, z) = 
e

U
ikz

4 2p ÚÚ x, h, 0) I I2 dxdh

  where, I  = Ú  exp [ikx x – x -
È

ÎÍ
˘

˚̇
ik

k
zx

2

2
 dkx

    = 
4 2p
li z

 exp 
ik x

z

( )-È
ÎÍ

˘
˚̇

x 2

2

  and we have used the following integral

   e x x- +Ú a b2

 dx = 
p
a
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b

a

2
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È

ÎÍ
˘

˚̇
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Î
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˚
˙
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k
z

y
2

2
 dky

    = 
4 2p
li z

 exp 
ik y

z
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˘
˚̇

h 2

2

U x, y, z) = 
i zl

 eikz UÚÚ x, h, 0) 

   exp 
ik

z
x y

2
2 2{( ) ( ) }- + -È

ÎÍ
˘
˚̇

x h  dxdh

 

   U x, y, z) = 
A

i zl
 eikz exp 

ik

z
x y

b

b

2
2 2

2

2

( )
/

/

+{ } -

+

Ú  e–iux dx Ú  e–ivh dh

d v) = 
1

2p Ú  e–ivh dh

  and 

-

+

Ú
b

b

/

/

2

2

e–iux dx = 
1

2

2

-
-

-

+

iu
e iu

b

bx

/

/
 = 

2

2

2 2

u

e e

i

iub iub/ /- -

 = b
sin b

b

  where, b = 
ub

2
 = 

p
l
bx

z
 ª 

p q

l

bsin

  and sin q ª 
x

z
; q representing the angle of diffraction along the x

   U x, y, z) = 
Ab

i zl
 eikz exp 

ik

z
x y

2
2 2( )+{ } sin b

b
Ê
ËÁ

ˆ
¯̃

 2pd v

d function, the intensity is zero except on the x

x-axis will be

   I = I0 

sin2

2

b

b
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   U x, y, z) = 
A

i zl
 eikz exp 

ik

z
x y

2
2 2( )+{ } G Ú  e–ivh dh

  where, G = 

- -

- +

Ú
d b

d b

2 2

2 2

 e–iux dx + 

d b

d b

2 2

2 2

-

+

Ú  e–iux dx

  Carrying out the straight forward integrations, we get

   G = b 
sin b

b
eig + e–ig ) = b

sin b

b
Ê
ËÁ

ˆ
¯̃

g

  where, g  = 
ud

2
 = 

p
l
dx

z
 ª 

p q

l

d sin

x-axis and the intensity 

distribution along the x-axis will be

     I = I0 
sin2

2

b

b

2 g

sin2

2

b

b

Ê

Ë
Á

ˆ

¯
˜  represents the diffraction pattern produced by a single slit 

and the term cos2 g  represents the interference pattern produced by 2 point 

sources separated by distance d

     G = e iu

b

-Ú x

0

 dx + e iu

d

d b

-
+

Ú x  dx

      Carrying out the integrations we get

     G = e bi-Ê
ËÁ

ˆ
¯̃

b b

b

sin
e–iud/2)

    or, G = e bi-Ê
ËÁ

ˆ
¯̃

b b

b

sin
e–ig 2 cos g

    where, b and g
expression for G

d = b, we will have g = b = 
p q

l

bsin
 and

     G = e bi-Ê
ËÁ

ˆ
¯̃

b b

b

sin
e–ig 2 cos g ) = e–i2b 2

2

2
b

sin b

b
Ê
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ˆ
¯̃
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     I = I0 
sin

( )

2

2

2

2

b

b

of width 2b.

   G = e iu

b

-Ú x

0

 dx + e iu

d

d b

-
+

Ú x  dx +…+ 

( )

( )

N d

N d b

-

- +

Ú
1

1

 e–iux dx

  Carrying out the integrations, we get

   G = e bi-Ê
ËÁ

ˆ
¯̃

b b

b

sin
e–iud/2 +…+ e–i N ud/2)

    = e b
e

e
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i
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Ê
ËÁ
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2
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Ni i N- - -Ê

ËÁ
ˆ
¯̃

Ê
ËÁ
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b gb

b

g

g

sin sin

sin
( )1

   I = I0 
sin sin

sin

2

2

2

2

b

b

g

g

N

sin2

2

b

b

Ê

Ë
Á

ˆ

¯
˜  represents the diffraction pattern produced by a 

single slit and the second term 
sin

sin

2

2

Ng

g

Ê

ËÁ
ˆ

¯̃
 represents the interference pattern 

produced by N

d = b, we will have g = b = 
p q

l

bsin
 and

   I = I0 

sin sin

sin

2

2

2

2

b

b

b

b

N
 = I0 N

2 sin

( )

2

2

N

N

b

b

  and we will have single slit diffraction pattern corresponding to a single slit of 

width Nb

 

aperture will be given by

   U x, y, z) = 
A

i zl
 eikz exp 

ik

z
x y

2
2 2( )+{ } -

+

Ú b
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/

/

2

2

e–iux dx 
-

+

Ú a
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/

2
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Carrying out the integration as in the previous section we obtain

   U x, y, z) = 
Aba

i zl
 eikz exp 

ik

z
x y

2
2 2( )+{ } 

sin b

b
Ê
ËÁ

ˆ
¯̃

 
sin g

g
Ê
ËÁ

ˆ
¯̃

  where b

   g = 
va

2
 = 

p

l

ay

z
 ª 

p f

l

a sin

  and sin f ª 
y

z
; f representing the angle of diffraction along the y

   I P) = I0 
sin sin2

2

2

2

g

g

b

b

a = b) 

a = b z

and we have assumed l ¥

 Fig. 10.10 (a) A square aperture of side 0.01 cm. (b) The corresponding (computer generated) 

Fraunhofer diffraction pattern on a screen at a distance of 100 cm from the aperture; 

l = 5 ¥ 10–5 cm.

x-axis, minima will occur at b sin q = ml or at

   x = f tan q ª f sin q = 
m f

b

l
 = 

m

20

    ª

y-axis, minima will occur at b sin q = ml or at

   y = f tan q ª f sin q = 
m f

a

l
 = 

m

30

    ª ,… cm
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     G = e iu

b

-Ú x

0

1
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 dx
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ËÁ

ˆ
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 + e e biud i- -Ê

ËÁ
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    where, b  = 

1

2
 ub  and b2 = 

1

2
 ub2

the x-axis) will be proportional to

    b e bi
1

1

1
2

2

2

2
sin sinb

b

b

b
f+ -

    where f = b  – b2 – ud

   x = r cos f and h = r sin f

   Further, because of the circular symmetry of the system the diffraction 

pattern will be of the form of concentric circular rings with their centers at the 

point O ¢
the x y x by 

x y2 2+ y = 0

    v = 0 and sin q ª 
x

z

  where q is the angle that OP makes with the z

   u = 
2p
l

x

z
 = k sin q

   U P) = 
A

i zl
 eikz exp 

ikr

z

2

2

Ï
Ì
Ó

¸
˝
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ÚÚ
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z

2

2
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2
2
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q( sin )k
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k asin

Ú  J0 z) dz

  where z = k r sin q and use has made of the following well known relation

   J0 z ) = 
1

2p
 e i±Ú z f

p

cos

0

2

 df
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   If we further use the relation

   
d

dz
 [z J z z J0 z

   U P) = 
A

i zl
 eikz exp 

ikr

z

2

2

Ï
Ì
Ó

¸
˝
˛
 

2
2

p

q( sin )k
 z z

q
J

ka
1 0
( )

sinÈÎ ˘̊

    = 
A

i zl
 eikz exp 

ikr

z

2

2

Ï
Ì
Ó

¸
˝
˛
 p a2 

2 1J ( )v

v

È
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˘
˚̇

  where v = k a sin q

   I P) = I0 
2 1

2
J ( )v

v

È
ÎÍ

˘
˚̇

  where I0 is the intensity at the point O ¢

 

 Fig. 10.11 Computer generated Airy patterns; (a) and (b) correspond to a = 0.5 mm and a = 

0.25 mm respectively at the focal plane of a lens of focal length 20 cm (l = 0.5 mm).

   rn = f tan q ª 
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the Fraunhofer diffraction pattern of the given aperture would be proportional 

to

  e iu

a

-Ú x

0

2/

 dx – e iu

a

a

-Ú x

/ 2

 dx

  Integrating and simplifying we obtain the intensity variation in the Fraunhofer 

diffraction pattern to be given by sin2 
uaÊ

Ë
ˆ
¯ the intensity 

u

A ) be chosen as the origin and let the line 

connecting the two apertures be along the x

A2 d

diffraction due to the pair of apertures would be proportional to

   F u, v) = ÚÚ f x, h) e – i ux + vh) dx dh

  where u = 
2p
l

x

z
 and v = 

2p

l

y

z

   F u, v) = e i u

A

- +ÚÚ ( )x hv

1

 dx dh + e i u

A

- +ÚÚ ( )x hv

2

 dxdh

   In the second integral we replace x by z = x – d and since the two apertures 

x, h
x, h) in the second integral would be the same and both 

integrals would represent the Fraunhofer diffraction integral of a rectangular 

   F u, v) = A e– iud sin sinb

b

g

g

  where A is the amplitude at the center of the diffraction pattern produced by a 

single rectangular aperture and b = ua/2, b = vb/2 with angles of diffraction 

q and f along the x- and y

would be proportional to

   F u, v I0 cos2 
p

l

xd

z
 

sin b

b
Ê
ËÁ

ˆ
¯̃

2

 
sin g

g
Ê
ËÁ

ˆ
¯̃

2

A ) be chosen as the origin and let the line 

connecting the two apertures be along the x

A2 d

   F u, v) = e i u

A

- +ÚÚ ( )x hv

1

 dx dh + e i u

A

- +ÚÚ ( )x hv

2

 dx dh
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   In the second integral we replace x by z = x – d and since the two apertures 

x, h
x, h) in the second integral would be the same and 

both integrals would represent the Fraunhofer diffraction integral of a circular 

   F u, v) = A e– iud 2 1J ( )v

v

È
ÎÍ

˘
˚̇

  where A is the amplitude at the center of the diffraction pattern produced by 

a single circular aperture and where v = k a sin q
observed would be proportional to

   F u, v I0 cos2 
ud

2
 

2 1

2
J ( )v

v

Ê
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¯̃

intensity pattern

   F u, v I0 cos2 
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2
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2
 

2 1

2
J ( )v

v

Ê
ËÁ

ˆ
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x0 and y0 along the x- and y-directions respectively then the corresponding 

Fraunhofer diffraction pattern will be given by

   �F u, v) = ÚÚ f x – x0, h – y0) e– i ux + vh) dx dh

    = e
i ux y- +( )0 0v  ÚÚ f z, s) e– i uz + vs) dzds
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   U = C J
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0

1

2
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Ú z ) z dz

  where z = k a sin q
aperture, we obtain for the intensity pattern,
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2 1 2
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  where I0 represents the intensity along the axis and k = a /a2 k = 0 
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x-axis, we can write for the incident 

plane wave will have a phase distribution given by e
ikx- sin q0 on the plane of 

   F u) = Ú
b

b

/

/

2

2

e
ik+ x qsin 0

e– iux dx

   I q) = I0 
sin{ (sin sin )/ }

(sin sin )/

p q q l

p q q l

b

b

-
-

È

Î
Í

˘

˚
˙

0

0

2

q = q0 and the zeroes will correspond 

to

q – sin q0) = ±m 
l
b



 

A Quick Review

11.1 FRESNEL DIFFRACTION INTEGRAL

If U (x, y, 0) represents the amplitude and phase distribution on the plane z = 0, then 
z

 U (x, y, z) = 
1

i zl
 eikz UÚÚ  (x¢, y¢, 0) exp 

ik

z
x x y y

2
2 2{( ) ( ) }- ¢ + - ¢È

ÎÍ
˘
˚̇

 dx¢dy¢ (1)

 U (x, y, z) = 
1

i zl
 eikz UÚÚ  (x, h, 0) exp 

ik

z
x y

2
2 2{( ) ( ) }- + -È

ÎÍ
˘
˚̇

x h  dxdh (2)

 z = 0 (see 

Fig. 11.1 A plane wave incident normally on an aperture. The integration in Eq. (2) is carried out over 
the area of the aperture.

Fresnel Diffraction

11
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11.2 DIFFRACTION OF A GAUSSIAN BEAM

z

distribution on the plane z

 U (x, y, 0) = A exp -
+È

Î
Í
Í

˘

˚
˙
˙

x y

w

2 2

0
2  (3)

z

at a distance w0 from the z e

e2 w0 is called the spot size

 U (x, y, z) ª A

i( )1 + g
 exp -
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Î
Í
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˘

˚
˙
˙

x y

w z

2 2

2 ( )
 eiF (4)

g = 
l

p

z

w0
2  (5)

 w (z) = w0 1 2+ g  = w0 1
2 2

2
0
4

+ l

p

z

w
 (6)

 F = kz
k

R z2 ( )
 (x2 y2) (7)

and R (z) ∫ z 1
1
2

+
Ê

ËÁ
ˆ

¯̃g
 = z 1

2
0
4

2 2
+

È

Î
Í
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˘

˚
˙
˙

p

l

w

z
 (8)

R (z

11.3 FRESNEL INTEGRALS

 C (t) = cos

0

21
2

t

pÚ Ê
ËÁ

ˆ
¯̃u  du

and S (t) = sin

0

21
2

t

pÚ Ê
Ë

ˆ
¯u  du (10)

t C (t) and S (t) are 
odd functions of t

 C (–t) = –C (t) and S (–t) = –S (t) (11)

Ú  exp i
up 2

2

È

Î
Í

˘

˚
˙ du = 

p
p- i /2

 = 2 2eip /  = 2 eip i (12)
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Also, Ú  exp i
up 2

2

È

Î
Í

˘

˚
˙ du = 2 cos sin

0

2

0

21
2

1
2Ú ÚÊ

ËÁ
ˆ
¯̃ + Ê

ËÁ
ˆ
¯̃

È

Î

Í
Í

˘

˚

˙
˙

p pu du i u du

  = 2 [C ( S ( )]

Thus, C ( ) = 
1
2

 = S (

 C ( ) = S ( ) = 
1
2

; C (0) = S (0) = 0 (13)

 C (–t) = –C (t) and S (–t) = –S (t) (14)

t are tabulated in

Table 11.1 Table of Fresnel Integrals (adapted from Ref. Ab 1;
 more accurate values can be found there)

t C (t) S (t) t C (t) S (t)

11.4 THE STRAIGHT EDGE DIFFRACTION PATTERN

x

P (on the screen) to be (0, y

 U (P) = 
A

i z
e d dikz

l
x hÚ Ú

0

 exp 
ik

z
y

2
2 2{ ( ) }x h+ -È

ÎÍ
˘
˚̇

 (15)
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Fig. 11.2 Diffraction of a plane wave incident normally on a straight edge.

 I (P) ª 
1
2

 I0 
1
2

1
20

2

0

2

-{ } + -{ }È

Î
Í
Í

˘

˚
˙
˙

C S( ) ( )v v  (16)

v0 = – 2
lz

 y (17)

Fig. 11.3 The intensity variation corresponding to the straight edge diffraction pattern.

and C (v0) and S (v0

v0 ª
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I ª I0 I0 I0

minima occur at v0 ª I ª I0 I0 I0 

Fig. 11.4 Computer generated intensity distribution corresponding to the straight edge diffraction 
pattern.

PROBLEMS

  U (x, y, 0) = A x and y

   U (x, y, z) = Aeikz (18)

a

z x = y

l = 6 ¥ 10–5

radius a

 (a) Assume a z

z and 
l = 5 ¥ 10–5 cm and 
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 (b) Assume z a

a

a

the z x = y

¥ 10–5

of the same radius?

Ans. 5 ¥ 10–5 cm]
I0 is incident 

P (at a distance b 
from the center of the circular aperture) is 
on the axis and the distance of the point P 

 

b
l
3

axial point P?

   I (x, y, z) = 
I0

21 + g
 exp -

+È

Î
Í
Í

˘

˚
˙
˙

2 2 2

2

( )

( )

x y

w z

q

   tan q ª l
pw0

    (20)

 I

-

+

ÚÚ  (x, y, z) dxdy of 

z

 R (z

front1

 

Fig. 11.5
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l m
beam at z = 10 m for w0 = 1 mm and for w0 w0 represents the 

z

l mm) can be assumed to be Gaussian 
w0 = 1 mm and w0

diameter at z l mm and interpret 

l mm and that at 
z

R

l = 1 mm, R = 100 cm and the distance 

wT) and lateral (wL) directions as

   y (x, y) = A exp - -
Ê

Ë
Á

ˆ

¯
˜

x

w

y

wL T

2

2

2

2  (21)

x and y
wT ª mm and wL ª 2 m

 

 Fig. 11.7

     I (P) ª 1
2

 I0 
1
2

1
20

2

0

2

-{ } + -{ }È

Î
Í
Í

˘

˚
˙
˙

C S( ) ( )v v  (22) 

y I0 and for 
y

Fig. 11.6
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y

v0

v0 ª
I ª I0 I0 I0

three minima occur at v0 ª I ª I0, 
I0 I0

l0 = 
5000 Å and d I I0 at the points O, 
P (y Q (y R (y O

 

 Fig. 11.8

l m

Ans. ª 4480 Å]

I I0 Ans. y ª
z = 0)

   E (x) = A cos 
2p x

a

Ê
Ë

ˆ
¯

   I (x) = A2 cos2 
2p x

a

Ê
Ë

ˆ
¯

of z
m z-direction 

converging
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10 m at a certain position and a diverging spherical phase front of radius of 

SOLUTIONS

U (x, y

  U (x, y, z) = 
A

i zl
 eikz e

ik

z
X

2
2

Ú  dX e
ik

z
Y

2
2

Ú  dY

X = x – x and Y = y – h

   e x x- +Ú a b2

 dx = 
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2

4
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Î
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 (23)

   U (x, y, z) = 
A
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 eikz p p2 2z
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z

ik-
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˚
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Î
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  or, U (x, y, z) = Aeikz (24)

z

substitute x = y = 0 to obtain

   U (0, 0, z) ª 
A

i zl
 eikz ÚÚ exp ik

z2
2 2( )x h+È

ÎÍ
˘
˚̇
 dxdh

  u (x, h, 0) = A
x2 h2 a2

polar coordinates

   x = r cos f and h = r sin f
  to obtain

   U (0, 0, z) ª 
A

i zl
 eikz 

f

p

= 0

2

Ú  
r = 0

a

Ú  exp ik

z2
2rÈ

ÎÍ
˘
˚̇
 rdrdf

    ª 
A

i zl
 eikz ( )e

z

ik
i2 1a -È

ÎÍ
˘
˚̇
 [2p] = U0 (1 – e2ia)

  or, U (0, 0, z) ª –2iU0 eia sin a (25) 

a = 
k

z4
 a2 and U0 = Aeikz

 z-axis in the absence of the 

   I (0, 0, z) ª 4 I0 sin2 a (26)
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a = np ; n

   z = 
a

n

2

2 l
, n  (27)

a = n +Ê
Ë

ˆ
¯

1
2

 p

   z = 
a

n

2

2 1( )+ l
, n  (28)

     z = 
a

n

2

2 1l( )+
 = 

10

6 10 2 1

2

5

-

-¥ ¥ +( )n
 ª

l = 5 ¥ 10–5 z

a = 2n zl  ª n  cm ª

U1 (P) and U2 (P P due to a 

   U1 (P U2 (P) = U0 (P

U0 (P) [= Aeikz

   U2 (P) = U0 (P) – U1 (P)
    = U0 (P) – U0 (P) [1 – e2ia] = U0 (P) e2ia (30)

U1 (P

   U P2
2

( )  = U P0
2

( )

P on the axis of a circular disc, I2 (P), 

   I2 (P) = I0 (31)

p = 
a

d

2

l
 = (2n n

     Thus, d = 
( . )

( )

0 01

6 10 2 1

2

5¥ ¥ +- n
 cm ª

    for n
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    d = 
5

6n
 cm ª

 

 Fig. 11.9 The Poisson spot at the center of the shadow of a one cent coin; the screen is
20 m from the coin and the source of light is also 20 m from the coin. Photograph 
from Ref. R: 1; used with permission from P. M. Rinard and American association 
of Physics Teachers.

a

d

2

l
l = 

a

d

2

 = 
( . )0 1
200

2

 

   = 5 ¥ 10–5

z = b and if a represents the radius of the circular aperture, then

  b +Ê
ËÁ

ˆ
¯̃

l
3

2

 = b2 a2 fi b
l
3

 = b 1
2

2
+ a

b
 ª b

a

b

2

2

a

b

2

l
 = 

2
3

   a = 
k

z4
 a2 = 

p
l2 b

 a2 = 
p
3

  and I (0, 0, z) ª 4 I0 sin2 a = 4 I0 sin2 
p
3

 = 3 I0

w (z) = w0 1
2 2

2
0
4

+ l

p

z

w
z >>

Ê

Ë
Á

ˆ

¯
˜

p

l

w0
2

     w (z) ª w0 
l

p

z

w0
2  = 

l
p

z

w0
 (32)
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z

q

     tan q = 
w z

z

( )
 ª 

l
p w0

 (33)

     

-

+

ÚÚ  I (x, y, z) dxdy = 
p w0

2

2
 I0 (34)

z

x-y z

diverging

   u ~ 
1
r

 eikr (35)

z = R

   r = x y R2 2 2+ +  = R 1
2 2

2
+

+x y

R
 ª R

x y

R

2 2

2
+

 (36)

x y R

Thus on the plane z = R, the phase 

R

   eikr ª eikR e
ik

R
x y

2
2 2( )+

 (37)

   exp i
k

R
x y

2
2 2( )+È

ÎÍ
˘
˚̇
 (38)

  (on the x-y plane) represents a diverging 
R

   R (z) ª z 1 0
4

2 2
+

Ê

Ë
Á

ˆ

¯
˜

p

l

w

z

Fig. 11.10 A spherical wave diverging 
from the point O. The dashed 
curve represents a section of 
the spherical wavefront at a 
distance R from the source.
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w0

   tan q ª 
l

p w0
 = 

5 10 4¥ -

p
q  ª

  and w (z) = w0 1
2 2

2
0
4

+
l

p

z

w
 = 10–3 1

0 5 10 10

10

6 2 2

2 12
+

¥

¥

-

-
( . )

p
 ª

  at z = 10 m

w0

  2q ª w ª z = 10 m

  

Fig. 11.11 Diffraction divergence of a Gaussian beam whose phase front is plane at z
shows the increase in the diffraction divergence as the initial spot size is decreased from 
1 mm to 0.25 mm; the wavelength is assumed to be 5000 Å.

   2w = 2w0 1
2 2

2
0
4

1 2

+
È

Î
Í
Í

˘

˚
˙
˙

l

p

z

w

/

w0 l ¥ 10–5 cm, z = 2000 cm

   l

p

2 2

2
0
4

z

w
 ª fi 2w ª 

w0 l and z

   l

p

2 2

2
0
4

z

w
 ª 10143 fi 2w ª 
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w0

  At l = 5 ¥ 10–5 cm for w0 z

   l

p

2 2

2
0
4

z

w
 ª fi 2w ª

l = 6 ¥ 10–5 cm, w0 z = 2000 cm

   2w = 2w0 1
2 2

2
0
4

1 2

+
È

Î
Í
Í

˘

˚
˙
˙

l

p

z

w

/

 ª

   R (z) ª z 1
2

0
4

2 2
+

È

Î
Í
Í

˘

˚
˙
˙

p

l

w

z
 ª ª 1017 cm

l = 10–6 m, R = 1 m, d

  Thus, R = d 1
2

0
4

2 2
+

È

Î
Í
Í

˘

˚
˙
˙

p

l

w

d
 fi w0 = 

l
p
d R

d
-È

ÎÍ
˘
˚̇

1
1 4/

 ª 4 ¥ 10–4

U (x, y, z) = 
a

i iT L( ) ( )1 1+ +g g
 exp - -

È

Î
Í
Í

˘

˚
˙
˙

x

w

y

w

2

1
2

2

2
2  e iF

  Thus, I (x, y, z) = 
I

T L

0

2 21 1( )( )+ +g g
 exp - -

È

Î
Í
Í

˘

˚
˙
˙

2 22

1
2

2

2
2

x

w z

y

w z( ) ( )

w2
1 (z) = wT g 2

T )  = wT 1
2 2

2 4

1 2

+
È

Î
Í
Í

˘

˚
˙
˙

l

p

z

wT

/

 ª 
l

p
z

wT

z)

  and w2
2 (z) = wL g 2

L)  = wL 1
2 2

2 4

1 2

+
È

Î
Í
Í

˘

˚
˙
˙

l

p

z

wL

/

 ª 
l

p
z

wL

z)

   U (P) = 
A

i zl
 eikz d dx hÚ Ú

0

 exp 
ik

z
y

2
2 2{ ( ) }x h+ -È

ÎÍ
˘
˚̇
 (40)

u and v such that,

   
1
2

 pu2 = k

z2
 x2 and 

1
2

 pv
2 = 

k

z2
 (h – y)2 = 

p
lz

 (h – y)2 (41)

  Thus, u = 
2

l z
 x and v = 

2
l z

 (h – y) (42)
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x

    dxÚ  exp 
ik

z2
2xÈ

ÎÍ
˘
˚̇
 = 

l z

2
 duÚ  exp 

i up 2

2

È

Î
Í

˘

˚
˙  = 

l z

2
 2 [C ( iS ( )]

    = 
l z

2
i) (43)

h

   dh

0
Ú  exp 

ik

z
y

2
2( )h -È

ÎÍ
˘
˚̇
 = 

l z

2
 dv

v0

Ú  exp 
ipv2

2

Ê

ËÁ
ˆ

¯̃

    = 
l z

2
 d

i
d

i
v

v
v

v

v

exp exp
p p2

0

2

0
2 2

0Ê

ËÁ
ˆ

¯̃
-

Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í

˘

˚

˙
˙ÚÚ

    = 
l z

2
 [{C ( iS ( )} – {C (v0 iS (v0)}]

    = 
l z

2
 

1
2

1
20 0-{ } + -{ }È

ÎÍ
˘
˚̇

C i S( ) ( )v v  (44)

   U (P) = 
( )1

2
- i

 U0 
1
2

1
20 0-{ } + -{ }È

ÎÍ
˘
˚̇

C i S( ) ( )v v  (45)

U0 = Aeikz

y

v0  and 

C (– ) = – 1
2

 = S (–

   U (P) = 
( )1

2
- i

 U0 i) = U0 (46)

P is deep inside 
y), v0

 and since C ( ) = 
1
2

 = S (

  U (P) Æ

   I (P) = 
1
2

 I0 
1
2

1
20

2

0

2

-{ } + -{ }È

Î
Í
Í

˘

˚
˙
˙

C S( ) ( )v v  (47)
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  If the point P
the line LL¢ y = 0 and hence v0

   I (P) = 
1
2

 I0 
1
4

1
4

+È
ÎÍ

˘
˚̇
 = 

1
4

 I0 (48)

th of the 

y

v0

v0 = – 2
ld

 y = – 2

5 10 1005¥ ¥-
 y = –20 y y is measured in centime-

O, P, Q and R v0 = 0, –1, –2, 

C (0) = 0 = S (0); C S

   C S C

   S

   
I

I0
 = 

1
2

1
2

1
20

2

0

2

-{ } + -{ }È

Î
Í
Í

˘

˚
˙
˙

C S( ) ( )v v

    = 
1
4

 for v0 = 0

    ª v0 = –1 (y

    ª v0 = –2 (y

    ª v0 y

v0 = – 2
ld

 y = – 2

6 10 505¥ ¥-
 y y y is measured in 

v0 ª
y ª v0 ª

y ª

v0 ª v0 = – 2
ld

 y

2
300l ¥

 ¥ l ª ¥ 10–5

y = ymax and the next minimum occurs 
at y = ymin, then

   – 2
ld

 ymax ª 2
ld

 ymin ª



Fresnel Diffraction 147

   Thus, Dy = ymin – ymax 
ld

2
6 10 100

2

5¥ ¥-
 ª

   At v0 = 0, 
I

I0

   At v0
I

I0
 ª

   At v0
I

I0
 ª 

   At v0
I

I0
 ª 

  Indeed at v0 C (v0 S (v0
I

I0
 

ª v0 ª

y ª ld

2
 ª

   U (x, y) = Ceikz exp i
z

a

pl
2

Ê
ËÁ

ˆ
¯̃

 cos 
2p x

a

Ê
ËÁ

ˆ
¯̃

z

   I (x, z) = C2 cos2 
2p x

a

Ê
ËÁ

ˆ
¯̃

I (x, z) is independent of z
distribution at all planes normal to the z-axis is the same as that in the object 

w0 = 
3l
p

w0

z ª 
a2

l
 = 32 cm

z



 

A Quick Review

12.1 FOURIER OPTICS

If f (x y

 g (x y) = 
1

l f ÚÚ f (x¢ y¢) exp [–2p i (ux¢ + vy¢ )]dx¢dy¢ (1)

u = x/l f v = y/l f and x and y

x0 y0

x0/l f y0/l f

12.2 HOLOGRAPHY

Fourier Optics and 
Holography 12
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PROBLEMS

given by

   g (x y) = A + B cos 6p x + C cos 12py;  (x  y in mm) (2)

P1

g (x) = A cos cos
2 2p px

a

x

b
+È

ÎÍ
˘
˚̇

P2

   T (x) = 1 for x < 0

     0 for x > 0 (3)

P3.

 f ff f

Object
plane

Spatial
frequency
plane

Image
plane

x
P1 L1 L2P2 P3

z

x

z

 Fig. 12.1 

a

f
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h(x) = px p is a constant 

   f (x y) = 1 + 0.2 cos 20
5

x +Ê
Ë

ˆ
¯

p
 + 0.3 sin 50

8
y +Ê

Ë
ˆ
¯

p
 (4)

x and y

m

f

distribution of the form

   I (x y) = A exp -
Ê

ËÁ
ˆ

¯̃
p 2 2

0 04

x

.
 exp -

Ê

ËÁ
ˆ

¯̃
p 2 2

0 01

y

.
 (5)

x and y

l = 1.0 mm and f = 20 cm.

g(x) is produced on 

P1 P2

having a transmittance given by sin 2ppx p

P3. (Consider 

f (x) = 1 + 
1

2
cos (200x) 

P1 cm

x

L2

P2. 

P3 l = 0.6 mm 

(b) l = 0.4 mm.

 (i) f (x) = A + B cos (20px) sin (50px

 (ii) f (x) = A + B cos2 (100p x)

x

g (x y) = A + B cos a x 
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   f (x y) = A(1 + 0.1 sin (20p x)) e x y- +( )2 2

 (6)

x and y x-variation of the 

y

d

of q l

l

Sm

SOLUTIONS

–1 –1; the 

x-direction and the second to the y-direction.

     x y = 0

     x y = 0

     x y = 0

     x y = +0.72 mm

     x y = – 0.72 mm

a and 1/b

x-axis corresponding to the positions ±l f /a and ±lf /b. 

x-axis to be imaged by 

l f /a

be exp[– 2p ix/a] and corresponding to the spot +l f/b

p ix/b

  exp[–2pix/a] + exp[–2pix/b]

  2 + 2 cos [2p x (1/a – 1/b)]
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l f /a

f (x

   g (x y) = 
1

l f ÚÚ f (x¢ y¢) exp[–2pi(ux¢ + vy¢)]dx ¢dy¢ (7)

u  = x/l f v = y/l f and x and y are measured on the Fourier transform 

px

g (x y) px

   h (x y) = 
1

l f ÚÚ px¢g (x¢ y¢) exp[–2pi(ux¢ + vy¢)]dx¢dy¢ 

    = 
1

2

l f

Ê
ËÁ

ˆ
¯̃ p

i

1

2p
∂

∂�u
g x y i ux y dx dy( , ) exp[ ( )]¢ ¢ - ¢ + ¢ ¢ ¢È

ÎÍ
˘
˚̇ÚÚ 2p � �v  (8)

    = 
1

l f

Ê
ËÁ

ˆ
¯̃

p
1

2pi x

∂
∂

[ f (–x y)]

the x

p –1 p) mm–1.

     x y = 0

     x = ±2/p

     x y = ±5/p mm

   g (x y) = 
A

fl ÚÚ exp - ¢Ê

ËÁ
ˆ

¯̃
p 2 2

0 04

x

.
exp -

¢Ê

ËÁ
ˆ

¯̃

p 2 2

0 01

y

.
 exp[– 2pi (�ux¢ + �vy¢)]dx¢dy¢ 

    = 0.02
A

fpl
exp -

+È

Î
Í
Í

˘

˚
˙
˙

( )4

100

2 2

2 2

x y

fl
 (9)

factor) is given by

   g (x) = Ú f (x¢) e iux- ¢2p dx¢ (10)

   h(x) = g (x) sin 2ppx (11)
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be given by

   p (x) = Ú h (x≤) e iux- ¢¢2p dx≤

    = Ú g (x≤) sin 2ppx≤ Ú f (x¢) e–2p i x≤x¢/l fdx¢ e–2p i xx≤/l f  (12)

    = Ú dx¢ Ú dx≤f (x¢) sin 2ppx≤e–2p i x≤x¢/l f e–2p i xx≤/l f  

obtain

   p(x) = 
1

2i Ú f (x¢)dx¢ Ú dx≤ exp - ¢¢
+ ¢

-Ï
Ì
Ó

¸
˝
˛

Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

2p
l

ix
x x

f
p

- - ¢¢
+ ¢

+Ï
Ì
Ó

¸
˝
˛

Ê
ËÁ

ˆ
¯̃

˘

˚
˙
˙

exp 2p
l

ix
x x

f
p

    = 
1

2i Ú f (x¢) d
l

d
l

x x

f
p

x x

f
p

+ ¢
-Ê

ËÁ
ˆ
¯̃

-
+ ¢

+Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ dx¢

    = 
( )l f

i

2

2
[ f (–x + pl f ) – f (–x – pl f )] (13)

x = pl f and the other 

at x = –pl f.

p mm–1

x-direction. 

x ª 1.91 mm and x ª

x ª –1.27 mm and x ª

P3

 (i) f (x) = A + 
B

2
[sin (70p x) + sin (30p x)]

–1 and 15 mm–1.

 (ii) f (x) = A + 
B

2
[1 + cos 200p x]

–1. 
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x = l fa and the other at x = –l fa y-axis.

g (x y) = B cos a x

g2(x y) = B2 cos2a x.

x

  –4 –2 0 2 4 x

f x( )

 Fig. 12.2

   g (x y) = 
1

l f ÚÚ A (1 + 0.1 sin (20p x¢)) e x y- ¢ + ¢( )2 2

    exp [–2pi ( �ux¢ + �vy¢)] dx¢dy¢

    = 
A

f

p
l

exp{ { }}
.

exp{- + + -È
ÎÍ

p p2 2 2 20 1

2
� �u

i
v

     {( ) }}
.

exp{ {( ) }}� � � �u
i

u+ + - - - + ]10
0 1

2
102 2 2 2 2

v vp  (14)

�u  = x/l f = ±10. If the 
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given by

   f (x y) = 
A

d
exp (ikd ) exp i

k

d
x y

2
2 2( )+È

ÎÍ
˘
˚̇

 (15)

   g (x y) = Bexp[ikx sin q] (16)

z

q z x-z

   T (x y) = | f (x y) + g (x y)|2

    = 
A

d

2

2
 + B2 + 

AB

d
 exp + +

Ê

ËÁ
ˆ

¯̃
+

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È
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Í

˘

˚
˙
˙

ik
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d
x

y
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2 2

2 2
sin q  

     + 
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d
exp + -

Ê
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ˆ
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+

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

È

Î
Í
Í

˘

˚
˙
˙

ik
x

d
x

y

d

2 2

2 2
sin q  (17)

g (x y

g (x y) and T (x y

  First term

  
A

d
B

2

2

2+
Ê

ËÁ
ˆ

¯̃
Beikx sin q

  Second term

  AB

d

2

exp ik
x y

d

2 2

2

+Ï
Ì
Ô

ÓÔ

¸
˝
Ô
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È

Î
Í
Í

˘

˚
˙
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  Third term

   
AB

d
exp - -

Ê

ËÁ
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¯̃
+

Ï
Ì
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ÓÔ

¸
˝
Ô

Ǫ̂

È
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˚
˙
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x

d
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y

d

2 2

2
2

2
sin q
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   h (x y) = B exp[– ikx sin q] (18)

   T (x y) = 
A

d
B

2

2

2+
Ê

ËÁ
ˆ

¯̃
Be –ikxsin q + 

AB

d

2
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¸
˝
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È

Î
Í
Í
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˚
˙
˙

ik
x y

d

2 2

2
 (19)

x

d

 12.15 The recorded intensity distribution is given by

   T (x y) = 
A

d

2

2
 + B2 + 

AB

d
exp -

+Ï
Ì
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ÓÔ

¸
˝
Ô
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exp +

+Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
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˙

ik
x y

d

2 2

2

    = 
A

d

2

2
 + B2 + 

2AB

d
cos 2

2
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p
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+Ï
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 (20)

k by 2p/l

the form cos (2pa x a

   s = 
1

2p
d

dx
(2pax) = a (21)

x

x f (x

x-derivative of f (x) 

and dividing by 2p. 

   In the present case since the expression is symmetric in x and y

x

obtained as

   s (x) = 
1

2p
d

dx
2

2

2

p
l
x

d

Ê
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ˆ

¯̃
 = 

x

dl
 (22)

x.
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Sm x

Sm. This is given by

   R = ldSm (23)

R



 

A Quick Review

13.1 LINEARLY POLARISED WAVES

x

 E = x̂E0 kz – w t + f0

E0

z f0 x̂ 

x

 k = 
2

0

p
l

n

n  l0  

y

 E = ŷE0  kz – wt + f0

ŷ

y E a 

y

E E kz t

E E kz t

x

y

=

=

0 0

0 0

sin cos( )

cos cos( )

a w f

a w f

- +
- +

¸
˝
Ô

Ǫ̂
 

x y

Polarisation I: Basics and 

Double Refraction 13

Fig. 13.1 A linearly polarised wave with its 

E vector making an angle a with 

the y-axis. The propagation of the 

wave is in the +z direction.
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13.2 MALUS’ LAW
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Fig. 13.2 An unpolarised light beam gets x-polarised after passing through the polaroid P1, the 

pass axis of the second polaroid P2 makes an angle q with the x-axis. The intensity of the 

emerging beam will vary as cos2q.
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Fig. 13.3 A RCP (right circularly polarised) wave propagating in the +z direction.
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Fig. 13.4 A LCP (left circularly polarised) wave propagating in the +z direction.

13.4 ELLIPTICALLY POLARISED WAVES
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 BREWSTER’S LAW
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Fig. 13.5 When an unpolarised beam of light is incident on a dielectric at the polarising angle [i.e., the 

angle of incidence is equal to tan–1(n2/n1

E-vector perpendicular to the plane of incidence. The transmitted beam is partially polarised. 
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D k D

o D k 

  Fig. 13.6 For the ordinary wave (in uniaxial crystals), D and E vectors are in the y direction; k 

and S are in the same direction in the x-z plane and H also lies in the x-z plane.

e D k

D ◊ k 

 

  Fig. 13.7 For the extraordinary wave (in uniaxial crystals), E, D, S and k vectors would lie in 

the x-z plane and H will be in the y direction. S is at right angles to E and H; D is at 

right angles to k and H.
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  Fig. 13.8 A linearly polarised beam making an angle 45° with the y-axis gets converted to a 

LCP after propagating through a calcite QWP whose optic axis is along the y-axis 

as shown by lines parallel to the y-axis. Further, an LCP gets converted to a RCP 

after propagating through a calcite HWP; the optic axis of the HWP is also assumed 

to be along the y-direction.
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Ë
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˜
˜
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c
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n

c

w
2
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n

n

w
2
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Ê

Ë
Á

ˆ

¯
˜ Ex = – ia Ey
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n

n

w
2

2
1-

Ê

Ë
Á

ˆ

¯
˜ Ey = ia Ex

c e m0 0

   
n

n

w
2

2

2

1-
Ê

Ë
Á

ˆ

¯
˜  = a  

nw = n ± a

Ey = ± iEx

nr ( )= n 1 + a nl ( )= n 1 - a

   k = kr = 
w
c

nr = 
w
c

n + a

k = kl = 
w
c

nl = 
w
c

n - a

nw = nr

   Ex = E ei k z tr
0

( )- w

Ey = + iEx = E e
i k z tr

0
2

- +Ê
ËÁ

ˆ
¯̃w

p

r nw = nl

   Ex = E e
i k z tl

0
( )- w  

Ey = – iEx = E e
i k z tl

0
2

- -Ê
ËÁ

ˆ
¯̃w

p

l

a

   nr – nl = n [ ]1 1+ - -a a  
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ÓÔ

¸
˝
Ô

Ǫ̂
(RCP) + 

E t
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y
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2
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=
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f f wt f f wt

    = a wt – q )

f  = kr z = 
w
c

nr z f  = klz = 
w
c

nl z 

   a q f f a q f f

a q

   Ey wt – f wt – f )

f f wt f  

f wt

    = a wt – q )

a q f f  

a q f f

x

y z y

z

p

   
2

0

p
l

nz – ny)d = 
p
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nx ny nz

x-z ny
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x-z q
z

   
1

2n ( )q
 = 

cos2

2

q

nx

 + 
sin2

2

q

nz

 

q n q) = ny q



 

A Quick Review

Through Jones calculus, it becomes quite straightforward to determine the polarisation 
state of the beam emerging from a polariser or a phase retarder (like a QWP or a 
HWP). An x-polarised plane wave (propagating in the +z-direction) is described by

 E = x̂E0 cos (k z – wt) = x̂E0 Re [e i (kz – wt)] (1)

Such a wave is written as E0 | x >, where

 |x > = 
1

0

Ê
ËÁ
ˆ
¯̃

 (2)

is the normalised Jones vector representing a x-polarised wave. Similarly, a 
y-polarised wave

 E = ŷE0 cos (kz – w t) = ŷE0 Re[ei(kz – w t)] (3)

is written as E0| y >, where

 | y > = 
0

1

Ê
ËÁ
ˆ
¯̃

 (4)

is the normalised Jones vector representing a y-polarised wave; in writing Eqs. (2) 
and (3), we have neglected the common phase factor ei(kz–wt) which is implicitly 
assumed. A linearly polarised wave whose E 
vector makes an angle a with the y-axis (see 
Fig. 14.1) is represented by the normalised 
Jones vector

 | LP a > = sin a | x > + cos a | y > = 
sin

cos

a

a

Ê
ËÁ

ˆ
¯̃

 (5)

For an RCP (propagating in the z-direction) we 
may write (see Fig. 14.2):

 E = x̂e i (kz – wt) + ŷe i (kz – wt + p/2) (6)

Thus, neglecting the (unimportant) phase factor, 
the normalised Jones vector representing an 
RCP will be

 |RCP > = 
1

2

1
2eip /

Ê

ËÁ
ˆ

¯̃
 = 

1

2

1

i

Ê
ËÁ
ˆ
¯̃

 (7)

Polarisation II: Jones 
Vectors and Jones Matrices 14

Fig. 14.1 A linearly polarised wave 

with its E vector making an 

angle a with the y-axis. The 

propagation of the wave is in 

the +z direction.
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Fig. 14.2 A right circularly polarised wave propagating in the +z direction.

Similarly, the normalised Jones vector representing an LCP will be

 |LCP > = 
1

2

1

-
Ê
ËÁ

ˆ
¯̃i

 (8)

Let us next consider a calcite (or a quartz) phase retarder like a QWP or a HWP; 
we assume its optic axis to be along the y-axis (see Fig. 14.3). The ‘modes’ of such a 
device are linearly polarised along the x and y-directions; the x-polarised wave will 
be the ordinary wave and the y-polarised wave will be the extra-ordinary wave. Thus, 
if E ¢x and E ¢y are the x and y
the retardation plates (of thickness d ), then 

 E ¢x = e
ik do Ex

 E ¢y = e
ik de Ey

where, ko = 
2

0

p
l

no and ke = 
2

0

p
l

ne (9)

Fig. 14.3 A linearly polarised beam making an angle 45° with the y-axis gets converted to a LCP after 

propagating through a calcite QWP whose optic axis is along the y-axis as shown by lines 

parallel to the y-axis. Further, an LCP gets converted to a RCP after propagating through a 

calcite HWP; the optic axis of the HWP is also assumed to be along the y-direction.
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Since, only the relative phase difference is of interest, we may write

 E ¢x = eiFEx

 E ¢y = Ey

where, F = (ko – ke)d = 
2

0

p
l

(no – ne)d (10)

is the phase difference introduced by the phase retarder. Thus, we may write

 
¢
¢

Ê

ËÁ
ˆ

¯̃

E

E

x

y

 = 
eiF 0

0 1

Ê

ËÁ
ˆ

¯̃

E

E

x

y

Ê

ËÁ
ˆ

¯̃
 = TPR 

E

E

x

y

Ê

ËÁ
ˆ

¯̃
 (11)

where TPR is Jones matrix for the phase retarder and is given by

 TPR = 
eiF 0

0 1

Ê

ËÁ
ˆ

¯̃
 (12)

For calcite (which is a negative crystal), no = 1.65836 and ne = 1.48641 at
l0 = 5893 Å. Since no > ne, F will be positive; the y-polarised extra-ordinary wave 

will travel faster than the x-polarised ordinary wave c

n

c

no e

<
Ê
ËÁ

ˆ
¯̃

. Thus, for a calcite 

QWP (with its optic axis along the y-direction), F = +
p
2

 and

 TQWP = 
i 0

0 1

Ê
ËÁ

ˆ
¯̃

 (fast axis along the y-direction) (13)

For a quartz QWP, no < ne and with its optic axis along the y-direction, F = – 
p
2

 and

 TQWP = 
-Ê

ËÁ
ˆ
¯̃

i 0

0 1
 (slow axis along the y-direction) (14)

On the other hand, for a HWP, F = +p for calcite and F = –p for quartz. Thus, 
for both cases

 THWP = 
-Ê

ËÁ
ˆ
¯̃

1 0

0 1
 (15)

The Jones matrix for a phase retarder (like a QWP or a HWP) whose optic axis 
makes an angle a with the horisontal axis ( y-axis) is discussed in Problem 14.13. 
The Jones matrix for a linear polariser making an angle a with the horizontal axis 
( y-axis) is given by (see Problem 14.8)

 TLP (a) = 
sin sin cos

sin cos cos

2a a

a a a

a

2

Ê

Ë
Á

ˆ

¯
˜  (16)

An elliptically polarised wave (with its major axis either along the x or y-direction) 
is given by
 Ex = a cos (kz – wt) = a Re ei(kz – w t)

 Ey = ∓ b sin (kz – wt) = b Re e
i k z t- ±Ê
ËÁ

ˆ
¯̃w

p
2
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where the upper (and lower) signs correspond to the REP and LEP respectively. 
Thus, the corresponding normalised Jones vectors can be written as

 | REP > = 
1

2 2a b+

a

be i+

Ê

ËÁ
ˆ

¯̃p / 2
 = 

cos

sin

e

ei

Ê
ËÁ

ˆ
¯̃

; e = tan–1 b

a

Ê
ËÁ

ˆ
¯̃

 with 0 £ e £ 
p
2

 (17)

where a and b are assumed to be real and positive; and

 | LEP > = 
1

2 2a b+

a

be i-

Ê

ËÁ
ˆ

¯̃p / 2
 = 

cos

sin

e

e-
Ê
ËÁ

ˆ
¯̃i

; e = tan–1 b

a

Ê
ËÁ

ˆ
¯̃

 with 0 £ e £ p
2

 (18)

The parameter e is known as the ellipticity. For the REP shown in Fig. 14.4

b

a
 ª 3 fi e ª p

2 5.

and the normalised Jones vector will be

|REP > = 
0 31

0 95

.

. i

Ê
ËÁ

ˆ
¯̃

Fig. 14.4 A right elliptically polarised wave propagating in the +z direction.

Obviously e = 0 represents the x-polarised wave, e = 
p
4

 represents a circularly 

polarised wave and e = 
p
2

 represents the y-polarised wave.

The use of Jones matrices makes it very straightforward to consider more 
complicated cases like two QWP with their axes at an angle.

PROBLEMS

 14.1 The state of polarisation is described by the following normalised Jones vector 

  
0 8

0 6

.

.-
Ê
ËÁ

ˆ
¯̃i

   Determine the x and y
of rotation and ellipticity.
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 14.2 Write the normalised Jones vector for the following values of Ex and Ey 

   Ex = a cos (kz – wt)

   Ey = –b cos (kz – wt – f)

 14.3 Consider a calcite QWP whose optic axis is along the y-axis (see Fig. 14.3). 
By using Jones matrices, obtain the output state of polarisation when the 
incident beam is

 (a) x polarised
 (b) y polarised
 (c) Left Circularly Polarised (LCP)
 (d) Linearly Polarised with its E making an angle of 45° with the y-axis
 (e) Linearly Polarised with its E making an angle of 30° with the y-axis
 (f ) Left Elliptically Polarised (LEP) with its E given by

   Ex = 
1
2

 E0 cos (kz – wt)

   Ey = 
3

2
E0 sin (kz – wt)   (19)

 14.4 Consider a calcite HWP whose optic axis is along the y-axis (see Fig. 14.3). 
By using Jones matrices, obtain the output state of polarisation when the 
incident beam is

 (a) x-polarised
 (b) y polarised
 (c) Left Circularly Polarised (LCP)
 (d) Linearly Polarised with its E making an angle of 45° with the y-axis
 (e) Linearly Polarised with its E making an angle of 30° with the y-axis
 (f ) Left Elliptically Polarised (LEP) with its E given by Eq. (19).

 14.5  (a) Consider a calcite QWP followed by a calcite HWP; in both of them the 
optic axis is along the y-axis (see Fig. 14.3). Find the Jones matrix for the 
combination and obtain the output state of polarisation when the incident 
beam is linearly polarised with its E making an angle of 45° with the 
y-axis,

be the same.

 14.6 Consider a quartz QWP whose optic axis is along the y-axis (see Fig. 14.3). By 
using Jones matrices, obtain the output state of polarisation when the incident 
beam is

 (a) x polarised
 (b) y polarised
 (c) Left Circularly Polarised (LCP)
 (d) Linearly Polarised with its E making an angle of 45° with the y-axis
 (e) Linearly Polarised with its E making an angle of 30° with the y-axis
 (f ) Left Elliptically Polarised (LEP) with its E given by Eq. (19).
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 14.7 Consider now a calcite QWP fol-
lowed by a quartz QWP; in both of 
them the optic axis is along the y-
axis. Find the Jones matrix for the 
combination. 

 14.8 (a) Show that the Jones matrix for 
a linear polariser making an angle 
a with the horisontal axis (y-axis) 
is given by Eq. (16). (b) Write the 
Jones matrix for the x-polariser, for 
the y-polariser and for a polariser 
which polarises at +45° angle and 
at 135° angle with the y-axis (see
Figs 14.1 and 14.5).

 14.9 (a) Consider a calcite QWP (with its 
optic axis along the y-axis) followed 
by a Polaroid with its pass axis making angle a with the y-axis (a) Find the 
Jones matrix for the combination. (b) For an incident x
the state of polarisation after it comes out of the QWP.

 14.10 Consider a Polaroid (with its pass axis making angle a with the y-axis) 
followed by a calcite QWP with its optic axis along the y-axis. (a) Find the 
Jones matrix for the combination; (b) For an incident x
the state of polarisation after it comes out of the QWP; (c) what will be the 
output SOP if a = p /4.

 14.11 Consider a REP with its major axis along the h direction and described by the 
following Jones vector (see Fig. 14.6).

   |REP > = 
E

E

x

h

Ê

Ë
Á

ˆ

¯
˜  = 

cos

sin

e

e-
Ê
ËÁ

ˆ
¯̃i

 (20)

 

  Fig. 14.6 A right elliptically polarised wave with its major axis making an angle a with the 

y-axis; the wave is propagating in the +z direction.

 

Fig. 14.5 A linearly polarised wave making 

an angle of 135° with the y-axis; 

the propagation is in the +z 

direction.
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  The h axis makes an angle a with the y-axis as shown in Fig. 14.6. Calculate 
the Jones vector 

  
E

E

x

y

Ê

ËÁ
ˆ

¯̃

 14.12 For calcite, the values of no and ne for l0 = 4046 Å are 1.68134 and 1.49694 
respectively; corresponding to l0 = 7065 Å the values are 1.65207 and 
1.48359 respectively. At l0 = 4046 Å the calcite plate is a QWP (a) Write the 
Jones matrix for the calcite plate for l0 = 4046 Å and for l0 = 7065 Å. (b) A 
left-circularly polarised beam of l0 = 7065 Å is incident on this calcite plate. 
Obtain the state of polarisation of the emergent beam.

 14.13 Consider a calcite (or quartz) phase retarder whose optic axis makes an angle 
a with the y-axis; we choose the h axis along this direction and the x axis 
perpendicular to that (see Fig. 14.7). If Ex and Ey are the x and y components 

E ¢x and E¢y are 
the x and y

phase retarder then show that 

   
¢
¢

Ê

ËÁ
ˆ

¯̃

E

E

x

y

 = TPR (a)
E

E

x

y

Ê

ËÁ
ˆ

¯̃
 (21)

  where, TPR(a) = 
e e

e e

i i

i i

F F

F F

cos sin ( )sin cos

( )sin cos sin cos

2 2

2 2

1

1

a a a a

a a a a

+ -

- +

ÊÊ

Ë
Á

ˆ

¯
˜  (22) 

  represents the Jones matrix of a calcite (or quartz) phase retarder whose optic 
axis makes an angle a with the y-axis.

 

  Fig. 14.7 A calcite (or quartz) phase retarder whose optic axis is along the h axis which 

makes an angle a with the y-axis; the wave is propagating in the +z direction.

 14.14 Use the results of the previous problem to calculate the output state of 
polarisation for an x-polarised light incident on a (a) calcite QWP (b) calcite 
HWP; in each case, the optic axis makes an angle p/4 with the y-axis.
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SOLUTIONS

 14.1 |LEP > = 
0 8

0 6

.

.-
Ê
ËÁ

ˆ
¯̃i

 = 
0 8

0 6 2

.

. /e i-

Ê

ËÁ
ˆ

¯̃p

  Thus, Ex = 0.8E0 Re ei (kz – w t) = 0.8E0 cos (kz – wt)

   Ey = 0.6 E0 Re e
i k z t- -Ê
ËÁ

ˆ
¯̃w

p
2  = 0.6E0 sin (kz – wt)

  At z = 0, we will have

   Ex = 0.8 E0 cos wt

    Ey = –0.6E0 sin wt

  which will represent an LEP with ellipticity given by

   e = tan–1 0 6
0 8
.
.

Ê
ËÁ

ˆ
¯̃  ª 

p
4 9.

 14.2 Ex = a cos (kz – wt) = a Re ei (kz – wt)

  Ey = –b cos (kz – wt – f) = –b Re ei(kz – w t – f)

  Thus, the normalised Jones vector will be

  
1

2 2a b+

a

be i-

Ê

ËÁ
ˆ

¯̃- f

 14.3 The Jones matrix for a calcite QWP with its fast axis along the y-direction is 
given by

  
i 0

0 1

Ê
ËÁ

ˆ
¯̃

 (a) The x polarised beam will remain x polarised.
 (b) The y polarised beam will remain y polarised

 (c) The normalised Jones vector for the LCP is given by |LCP > = 
1

2

1

-
Ê
ËÁ

ˆ
¯̃i
 . 

Thus,

  |output > = 
i 0

0 1

Ê
ËÁ

ˆ
¯̃

1

2

1

-
Ê
ËÁ

ˆ
¯̃i

 = 
i

2

1

1-
Ê
ËÁ

ˆ
¯̃

  which is a linearly polarised wave with its E making an angle of 135° 
with the x-axis (see Fig. 14.5).

 (d) The Jones matrix for linearly polarised wave with its E making an angle 
of 45° with the y-axis is given by 

   |45° > = 
1

2

1

1

Ê
ËÁ

ˆ
¯̃
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  Thus,

   |output > = 
i 0

0 1

Ê
ËÁ

ˆ
¯̃

1

2

1

1

Ê
ËÁ

ˆ
¯̃

E0 = 
1

2 1

iÊ
ËÁ

ˆ
¯̃

E0 = 
i

i2

1

-
Ê
ËÁ

ˆ
¯̃

E0

  which is a left circularly polarised wave.
 (e) The Jones vector for a linearly polarised wave with its E making an 

angle of 30° with the y-axis is given by 

   |60° > = 
sin

cos

30

30

∞
∞

Ê
ËÁ

ˆ
¯̃

E0 = 
1
2

1

3

Ê

Ë
Á

ˆ

¯
˜ E0

  Thus, |output > = 
i 0

0 1

Ê
ËÁ

ˆ
¯̃

1
2

1

3

Ê

Ë
Á

ˆ

¯
˜ E0 = 

1
2 3

iÊ

Ë
Á

ˆ

¯
˜ E0 = 

i

i2

1

3-

Ê

Ë
Á

ˆ

¯
˜ E0

  which is a left elliptically polarised wave with its minor axis along the 
x-axis.

 (f ) The incident left elliptically polarised wave is given by

   Ex = 1
2

E0 cos (kz – wt) = 
1
2

E0 Re e i (kz – wt)

   Ey = 
3

2
E0 sin (kz – wt) = 

3

2
E0 Re e

i k z t- -Ê
ËÁ

ˆ
¯̃w

p
2

  Thus, the Jones vector for the incident LEP will be

   | input > = 
1
2

1

3-

Ê

Ë
Á

ˆ

¯
˜

i
E0

  and the beam coming out of the QWP will be given by

   |output > = 
¢
¢

Ê

ËÁ
ˆ

¯̃

E

E

x

y

 = 
i 0

0 1

Ê
ËÁ

ˆ
¯̃

1
2

1

3-

Ê

Ë
Á

ˆ

¯
˜

i
E0 = 

1
2 3

i

i-

Ê

Ë
Á

ˆ

¯
˜ E0

    = 
1
2 3

i

i-

Ê

Ë
Á

ˆ

¯
˜ E0

  which is LP with its E making an angle of 150° with the y-axis.
 14.4 In continuation of the previous problem we just have to replace everywhere

   TQWP = 
i 0

0 1

Ê
ËÁ

ˆ
¯̃

 by THWP = 

-Ê
ËÁ

ˆ
¯̃

1 0

0 1

 (c) For a LCP incident on the HWP, the beam coming out will be given by

   |output > = 
-Ê

ËÁ
ˆ
¯̃

1 0

0 1
1

2

1

-
Ê
ËÁ

ˆ
¯̃i

 = 
- Ê

ËÁ
ˆ
¯̃

i

i2

1

  which is a RCP.
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 (d) For a linearly polarised wave (with its E making an angle of 45° with the 
y-axis), the beam coming out of the HWP will be given by  

   |output > = 
-Ê

ËÁ
ˆ
¯̃

1 0

0 1
1

2

1

1

Ê
ËÁ

ˆ
¯̃

E0 = 
1

2

1

1

-Ê
ËÁ

ˆ
¯̃

E0

  which is a linearly polarised wave with E making an angle of 135° with the 
y-axis.

 14.5 The Jones matrix for the combination will be

   T = THWP TQWP = 
-Ê

ËÁ
ˆ
¯̃

1 0

0 1

i 0

0 1

Ê
ËÁ

ˆ
¯̃

 = 
-Ê

ËÁ
ˆ
¯̃

i 0

0 1

   This should have been obvious because a QWP followed by a HWP is 
equivalent to phase retarder with

   F = 
p
2

 + p = 
3
2
p

 fi eiF = – i 

   Since the Jones matrix for a linearly polarised wave with its E making an 
angle of 45° with the y-axis is given by

   |45° > = 
1

2

1

1

Ê
ËÁ

ˆ
¯̃

  the beam coming out of the HWP will be given by

   |output > = 
-Ê

ËÁ
ˆ
¯̃

i 0

0 1
1

2

1

1

Ê
ËÁ

ˆ
¯̃

 = 
- Ê

ËÁ
ˆ
¯̃

i

i2

1

  which represents a RCP as shown in Fig. 14.3.
 (b) When the HWP is followed by a QWP we will have

  T = TQWP THWP = 
i 0

0 1

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

1 0

0 1
 = 

-Ê
ËÁ

ˆ
¯̃

i 0

0 1

  which is the same as in (a). This is a consequence of the fact that if we have a 

optic axes are in the same direction.
 14.6 In continuation of Problem 14.5 we just have to replace everywhere

   TQWP
calcite = 

i 0

0 1

Ê
ËÁ

ˆ
¯̃

 by TQWP
quartz = 

-Ê
ËÁ

ˆ
¯̃

i 0

0 1
 (23)

 14.7 The Jones matrix of the combination will be

   T = TQWP
quartz

TQWP
calcite = 

i 0

0 1

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

i 0

0 1
 = 

1 0

0 1

Ê
ËÁ

ˆ
¯̃

 (24)

 14.8 Consider a polaroid whose pass axis makes an angle a with the y-axis; we 
choose the h axis along this direction and the x axis perpendicular to that (see 
Fig. 14.8). If Ex and Ey are the x and y
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incident on the polaroid, then for the light coming out of the polaroid, the x 
and h

   E¢x = 0

  and E¢h = Ex sin a + Ey cos a

 

 Fig. 14.8 A linearly polarised wave whose electric vector oscillates along a direction making 

an angle a with the y-axis; the wave is propagating in the +z direction.

  Thus, the corresponding x and y

   E ¢x = E ¢h sin a + E ¢x cos a = Ex sin2 a + Ey sin a cos a

  and E ¢y = E ¢h cos a – E ¢x sin a = Ex sin a cos a + Ey cos2a

  Thus 
¢
¢

Ê

ËÁ
ˆ

¯̃

E

E

x

y
 = TLP (a)

E

E

x

y

Ê

ËÁ
ˆ

¯̃
 (25)

  where, TLP (a) = 
sin sin cos

sin cos cos

2

2

a a a

a a a

Ê

Ë
Á

ˆ

¯
˜  (26)

 (b) For the x-polariser, a = 
p
2

 and we will have

   TLP a
p

=
2

Ê
ËÁ

ˆ
¯̃  = 

1 0

0 0

Ê
ËÁ

ˆ
¯̃

  (x-polariser) (27)

  For the y-polariser, a = 0 and we will have

   TLP (a = 0) = 
0 0

0 1

Ê
ËÁ

ˆ
¯̃

  (y-polariser) (28)

  For a polariser which polariser at +45° angle with the y-axis.

   TLP a
p

=
4

Ê
ËÁ

ˆ
¯̃  = 

1
2

1 1

1 1

Ê
ËÁ

ˆ
¯̃

  (45°-polariser) (29)
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  For a polariser which polarises at +135° angle with the y-axis.

   TLP a
p

=
3
4

Ê
ËÁ

ˆ
¯̃

 = 
1
2

1 1

1 1

-
-

Ê
ËÁ

ˆ
¯̃

  (135°-polariser) (30)

 14.9 A calcite QWP (with its optic axis along the y-axis) is followed by a polaroid 
with its pass axis making angle a with the y-axis

 (a) The Jones matrix for the combination will be

   T = TLP (a)TQWP = 
sin sin cos

sin cos cos

2

2

a a a

a a a

Ê

Ë
Á

ˆ

¯
˜

i 0

0 1

Ê
ËÁ

ˆ
¯̃

     = 
i

i

sin sin cos

sin cos cos

2

2

a a a

a a a

Ê

Ë
Á

ˆ

¯
˜  (31)

 (b) The Jones vector for the incident LEP is [see Solution 14.3(f )]

   | input > = 
1
2

1

3-

Ê

Ë
Á

ˆ

¯
˜

i
E0

   Thus, the state of polarisation after it comes out of the polaroid will be

   |output > = 
i

i

sin sin cos

sin cos cos

2

2

a a a

a a a

Ê

Ë
Á

ˆ

¯
˜

1
2

1

3-

Ê

Ë
Á

ˆ

¯
˜

i
E0

    = 
( sin cos )i a a- 3

2

sin

cos

a

a

Ê
ËÁ

ˆ
¯̃

E0

  which is a linearly polarised wave making an angle a with the horizontal 
axis. This should have been obvious because we have a polaroid at the 
end so the output has to be linearly polarised along the pass axis of the 
polaroid.

 14.10 A polaroid (with its pass axis making angle a with the y-axis) is followed by 
a calcite QWP with its optic axis along the y-axis. 

 (a) The Jones matrix for the combination will be

   T = TQWP TLP (a) = 
i 0

0 1

Ê
ËÁ

ˆ
¯̃

sin sin cos

sin cos cos

2

2

a a a

a a a

Ê

Ë
Á

ˆ

¯
˜

    = 
i isin sin cos

sin cos cos

2

2

a a a

a a a

Ê

Ë
Á

ˆ

¯
˜



Polarisation II: Jones Vectors and Jones Matrices 199

 (b) The SOP of the emergent wave will be

    |output > = 
i isin sin cos

sin cos cos

2

2

a a a

a a a

Ê

Ë
Á

ˆ

¯
˜

1

0

Ê
ËÁ

ˆ
¯̃

    = sin a
i sin

cos

a

a

Ê
ËÁ

ˆ
¯̃
 = sin a

sin

cos

/a

a

pei 2Ê

ËÁ
ˆ

¯̃

   Thus, Ex = E0 sin2a Re e
i k z t- +Ê
ËÁ

ˆ
¯̃w

p
2  = –E0 sin2a sin (kz – wt)

   Ey = E0 sin a cos a Re ei(kz – w t) = E0 sin a cos a cos (kz – wt)

  which is a left elliptically polarised light with major and minor axes 
along the x and y directions.

 (c) For a = p/4, the output will be a LCP.

 14.11 |REP > = 
E

E

x

h

Ê

Ë
Á

ˆ

¯
˜  = 

cos

sin

e

e-
Ê
ËÁ

ˆ
¯̃i

   Now, Ex = Ex cos a + Eh sin a

  and Ey = –Ex sin a + Eh cos a

   Thus, 
E

E

x

y

Ê

ËÁ
ˆ

¯̃
 = 

cos sin

sin cos

a a

a a-
Ê
ËÁ

ˆ
¯̃

E

E

x

h

Ê

Ë
Á

ˆ

¯
˜

    = 
cos sin

sin cos

a a

a a-
Ê
ËÁ

ˆ
¯̃

cos

sin

e

e-
Ê
ËÁ

ˆ
¯̃i

    = 
cos cos sin sin

sin cos cos sin

a e a e

a e a e

-
- -

Ê
ËÁ

ˆ
¯̃

i

i
 (32)

14.12 For the QWP at l0 = 4046 Å

   F = 
2

0

p
l

(no – ne)d = 
p
2

   Thus, d = 
l0

4( )n no e-
 = 

4 046 10

4 1 68134 1 49694

5.

( . . )

¥
-

-

 ª 5.49 ¥ 10–5 cm

   At l0 = 7065 Å, the phase difference introduced is given by:

    F = 
2

0

p
l

(n0 – ne)d = 2

7 065 10 5

p

. ¥ -
 ¥ (1.65207 – 1.48359)

    ¥ 5.49 ¥ 10–5 cm
    ª 

p
3 82.

   Thus, T (l0 = 4046 Å) = 
eip / 2 0

0 1

Ê

ËÁ
ˆ

¯̃
 = 

i 0

0 1

Ê
ËÁ

ˆ
¯̃
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   T (l0 = 7065 Å) = 
eip / .3 82 0

0 1

Ê

ËÁ
ˆ

¯̃

   Thus, if a left-circularly polarised beam of l0 = 7065 Å is incident on this 
calcite plate, the state of polarisation of the emergent beam will be given by

   |output Ò = 
eip / .3 82 0

0 1

Ê

ËÁ
ˆ

¯̃
1

2

1

-
Ê
ËÁ

ˆ
¯̃i

 = 
1

2

e

e

i

i

p

p

/ .

/

3 82

2-

Ê

Ë
Á

ˆ

¯
˜

   Thus, Ex = 
E0

2
 Re e

i k z t- +Ê
ËÁ

ˆ
¯̃w

p
3 82.  and Ey = 

E0

2
 Re e

i k z t- -Ê
ËÁ

ˆ
¯̃w

p
2

   At z = 0, we will have

   Ex = 
E0

2
cos w

p
t -Ê

ËÁ
ˆ
¯̃3 82.

 and Ey = –
E0

2
sin wt

14.13 Consider a calcite phase retarder whose optic axis makes an angle a with the 
y-axis; we choose the h axis along this direction and the x axis perpendicular 
to that (see Fig. 14.8). If Ex and Ey are the x and y components of the electric 

   Ex = Ex cos a – Ey sin a 

   Eh = Ex sin a + Ey cos a (33)

   Thus, 
E

E

x

h

Ê

Ë
Á

ˆ

¯
˜  = 

cos sin

sin cos

a a

a a

-Ê
ËÁ

ˆ
¯̃

E

E

x

y

Ê

ËÁ
ˆ

¯̃
 (34)

   Now, if E¢x and E ¢h are the x and h
comes out of the phase retarder, then

   
¢

¢

Ê

Ë
Á

ˆ

¯
˜

E

E

x

h

 = TPR

E

E

x

h

Ê

Ë
Á

ˆ

¯
˜  = 

eiF 0

0 1

Ê

ËÁ
ˆ

¯̃

E

E

x

h

Ê

Ë
Á

ˆ

¯
˜  (35) 

  where TPR is Jones matrix for the phase retarder [see Eq. (12)]. Thus, if E ¢x and 
E ¢y are the x and y
the phase retarder then

   
¢
¢

Ê

ËÁ
ˆ

¯̃

E

E

x

y

 = 
cos sin

sin cos

a a

a a-
Ê
ËÁ

ˆ
¯̃

¢
¢

Ê

ËÁ
ˆ

¯̃

E

E

x

h

     = 
cos sin

sin cos

a a

a a-
Ê
ËÁ

ˆ
¯̃

eiF 0

0 1

Ê

ËÁ
ˆ

¯̃

E

E

x

h

Ê

Ë
Á

ˆ

¯
˜

     = 
cos sin

sin cos

a a

a a-
Ê
ËÁ

ˆ
¯̃

eiF 0

0 1

Ê

ËÁ
ˆ

¯̃

cos sin

sin cos

a a

a a

-Ê
ËÁ

ˆ
¯̃

E

E

x

y

Ê

ËÁ
ˆ

¯̃
 (36)
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   Simple matrix multiplication would give the desired result.

 14.14 For a QWP eiF = i and for a = 
p
4

 we will have

   TPR
p
4

Ê
ËÁ

ˆ
¯̃  = 

1
2

1 1

1 1

+ -
- +

Ê
ËÁ

ˆ
¯̃

i i

i i

  Thus, for an incident x-polarised light,

   
¢
¢

Ê

ËÁ
ˆ

¯̃

E

E

x

y

 = 
1
2

1 1

1 1

+ -
- +

Ê
ËÁ

ˆ
¯̃

i i

i i

1

0

Ê
ËÁ

ˆ
¯̃

 = 
1
2

1

1

+
-

Ê
ËÁ

ˆ
¯̃

i

i
 = 

1

2

2

2

e

e

i

i

p

p

/

/-

Ê

Ë
Á

ˆ

¯
˜



 

A Quick Review

The equation

 
∂

∂

2

2

Y

x
 = 

1
2

2

2
v

∂

∂

Y

t
 (1)

is known as the one-dimensional wave equation. This is because of the fact that the 

most general solution of the above equation is given by (see Problem 15.7)

 Y (x, t) = f (x – vt) + g (x + vt) (2)

where f and g are arbitrary functions of their arguments. The term f (x – vt) represents 

a wave propagating in the +x direction with speed v and the term g (x + vt) represents 

a wave propagating in the –x direction with speed v. For example, the function

 Y (x, t) = A cos (kx – wt) (3)

can be written as

 Y (x, t) = A cos [k (x – vt)] (4)

Since x and t appear as (x – vt), the above form of Y (x, t) would satisfy Eq. (1) and 

would represent a wave propagating in the +x direction with speed v given by

 v = 
w
k

 = nl (5)

where, n = 
w
p2

 and l = 
2p
k

 (6)

represent respectively the frequency and wavelength associated with the wave. 

Similarly, the function

 Y (x, t) = A sin (kx + wt) (7)

can be written as

 Y (x, t) = A sin [k (x + vt)] (8)

and would represent a wave propagating in the –x direction with speed v = w /k. Thus 

whenever, from physical considerations, we are able to derive an equation of the type 

given by Eq. (1), we can predict the existence of waves and calculate the velocity of 

Maxwell's Equations and 
The Wave Equation 15
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propagation of these waves. For example, if we apply Newton’s laws of motion to 

a vibrating string under tension T, we can derive the following equation (see, e.g., 

Ref. Gh1)

 
∂
∂

2

2

y

x
 = 

1

T /r
∂
∂

2

2

y

t
 (9)

where r is the mass per unit length of the string (which is assumed to be along the 

x direction). The above equation shows the existence of transverse waves on a string 

and that the velocity of these waves will be given by:

 v = 
T

r
 (10)

Similarly for sound waves propagating in a gas, one can derive from physical 

considerations (see, e.g., Chapter 11 of Ref. Gh1)

 
∂
∂

2

2

x

x
 = 

r

g P

∂
∂

2

2

x

t
 (11)

where x (x) represents the (longitudinal) displacement of the gas, r the density of 

the gas and g = Cp/C
v

(longitudinal) sound waves in a gas will be given by:

 v = 
g

r

P
 (12)

The equation 

 —2Y = 
1
2

2

2
v

∂
∂

Y
t

 (13)

is known as the three-dimensional wave equation. In the above equation

 —2Y = div grad Y (14)

and in the Cartesian system of coordinates

 —2Y = 
∂
∂

2

2

Y
x

 + 
∂
∂

2

2

Y
y

 + ∂
∂

2

2

Y
z

 (15)

The function

 Y (x, y, z, t) = A cos (k ◊ r – wt) (16)

represents a plane wave propagating along the direction of k. At all points on a plane 

normal to k, the quantity k ◊ r is a constant; thus the phase fronts are perpendicular to 

k. Further, if we substitute Eq. (16) in Eq. (15), we would obtain

 
w 2

2k
 = v2 (17) 

where,

 k2 = k2
x + k2

y + k2
z (18)
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Around the middle of the nineteenth century, Maxwell summed up all laws of 

electricity and magnetism in the form of four equations—which are now referred 

to as Maxwell’s equations. In a charge free, homogeneous and isotropic dielectric, 

Maxwell’s equations are given by

  — ◊ E = 0 (19)

  — ◊ H = 0 (20)

 — ¥ E = –m
∂
∂
H

t
 (21)

and — ¥ H = e
∂
∂
E

t
 (22)

where E and H e and 

m represent the dielectric permittivity and magnetic permeability of the dielectric. 

Using these equations, he showed that the Cartesian components of the electric and 

 —2Y = em ∂
∂

2

2

Y
t

 (23)

After deriving the wave equation, Maxwell could predict the existence of 

electromagnetic waves whose velocity will be given by:

 v = 
1

em
 (24)

In free space,

 e = e0 = 8.854 ¥ 10–12 C2 N–2 m–2 and m = m0 = 4p ¥ 10–7 Ns2 C–2 (25)

and we obtain

 v = c = 
1

0 0e m
 = 2.99794 ¥ 108 ms–1 (26)

which is the speed of light in free space. Maxwell argued that since the (predicted) 

speed of electromagnetic waves was very close to the measured value of speed of 

light,

Light must be an electromagnetic wave

In a dielectric

 v = 
c

n
 (27)

where the refractive index (n) of a dielectric (characterised by dielectric permittivity 

e and magnetic permeability m) would be given by 

 n = 
c

v

 = 
em

e m
0

0 0

 = 
e
e0

 = k  (28)

where we have assumed m ª m0 which is true for almost all dielectrics and

 k = 
e
e0

 (29)

is known as the dielectric constant of the medium.
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PROBLEMS

 15.1 The displacement associated with a wave is given by

 (a) y (x, t) = 0.1 cos (0.2x – 2t)

 (b) y (x, t) = 0.2 sin (0.5x + 3t)

 (c) y (x, t) = 0.5 sin 2p  (0.1x – t)

  where in each case x and y are measured in centimeters and t in seconds. 

Calculate the wavelength, amplitude, frequency and the velocity in each case.

 15.2 Show that the functions

   Y (x, t) = Aei (kx + wt), Y (x, t) = Aei (w t + kx) and Y (x, t) = Ae

x t
-

-( )v
2

2s

  satisfy Eq. (1) and therefore each of the above functions would represent a 

wave.

 15.3 Show that the functions

    Y (x, t) = Ae

x-
2

2s cos wt and Y (x, t) = Ae

x-
2

2s e

t-
2

2t

  do not satisfy Eq. (1) and hence do not represent waves. 

 15.4 Show that the plane wave solutions 

   E = E0 exp [i (k ◊ r – wt)] (30)

  and H = H0 exp [i (k ◊ r – wt)] (31)

  where E0 and H0 are space and time independent vectors satisfy Maxwell’s 

equations [Eqs (19)-(22)] and show that

   k ◊ E = 0 (32)

   k ◊ H = 0 (33)

   H = 
k E¥

wm
 (34)

  and E = 
H k¥

we
 (35)

  Thus E, H and k are at right angles to each other showing the transverse 

nature of the waves. Using the above equations show that

   H0 = 
k

wm
E0 (36)

 (b) Substitute Eq. (35) in Eq. (34) to obtain the following expression for the 

velocity of electromagnetic waves

   v = 
w
k

 = 
1

em
 (37)
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 15.5 In continuation of the previous problem, use Maxwell’s equations to derive the 

wave equation, determine the velocity of electromagnetic waves in a dielectric 

and hence derive an expression for the refractive index of the dielectric.

 15.6 For an x-polarised plane electromagnetic wave propagating in the +z direction, 

   E = x̂E0 exp[i (kz – w t)] (38)

   Ex = E0 cos (kz – wt), Ey = 0, Ez = 0 (39)

     x = x – vt and h = x + vt (40)

    Using the above variables, show that Eq. (1) transforms to the following 

equation

     
∂

∂ ∂

2Y
x h

 = 0 (41)

   (b) Integrate the above equation to obtain the general solution given by 

Eq. (2).

 15.8 Write the three-dimensional wave equation [Eq. (13)] in spherical coordinates 

(r, q, f). Assume Y to be a function only of r and t, and obtain the general 

solution of the wave equation.

 15.9 A Gaussian pulse is propagating in the +x-direction and at t = t0 the displace-

ment is given by

  y (x, t = t0) = a exp -
-È

Î
Í
Í

˘

˚
˙
˙

( )x b 2

2s

   Find y (x, t).

 15.10 A sonometer wire is stretched with a tension of 1 N. Calculate the velocity of 

transverse waves if r = 0.2 g/cm.

 15.11 The displacement associated with a three-dimensional wave is given by 

  y (x, y, z, t) = a cos
3

2

1

2
kx ky t+ -

È

Î
Í
Í

˘

˚
˙
˙

w

  Show that the wave propagates along a direction making an angle 30° with the 

x-axis.

15.12 Obtain the unit vector along the direction of propagation for a wave, the 

displacement of which is given by

  y (x, y, z, t) = a cos [2x + 3y + 4z – 5t]

  where x, y and z are measured in centimeters and t in seconds. What will be 

the wavelength and the frequency of the wave?
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SOLUTIONS

 15.1 (a) a = 0.1 cm; k = 
2p
l

 = 0.2 cm–1 fi l ª 31.4 cm

    w = 2 s–1 fi n ª 0.32 s–1; v = 
2

0 2.
 = 10 cm/s.

    Wave propagating in the +x direction.

    (b) a = 0.2 cm; k = 
2p
l

 = 0.5 cm–1 fi l ª 12.6 cm 

    w = 3 s–1 fi n ª 0.48 s–1; v = 
3

0 5.
 = 6 cm/s.

    Wave propagating in the –x direction.

    (c) a = 0.5 cm; k = 0.2p = 
2p
l

 fi l ª 10 cm

    n = 1 s–1; v = 10 cm/s. 

    Wave propagating in the +x direction

 15.4 Maxwell’s equations are given by Eqs (19)-(22). Now,

   — ◊ E = 
∂
∂
E

x
x  + 

∂
∂
E

y

y
 + 

∂
∂
E

z
z

  Since, Ex = E0x exp [i (k ◊ r – wt)] = E0x exp[i (kx x + ky y + kz z – wt)]

  we get 
∂
∂
E

x
x  = ikx E0x exp[i(kx x + ky y + kzz – w t)]

  Thus, the Maxwell’s equation — ◊ E = 0 would give us

  i [kx E0x + ky E0y + kz E0z] exp[i (k ◊ r – w t)] = 0 

  implying 

   k ◊ E = 0 (42) 

  Similarly, the equation — ◊ H = 0 would give us

   k ◊ H = 0 (43)

  The above two equations tell us that E and H are at right angles to k, thus the 

waves are transverse in nature. Now, using Eq. (29)

    (— ¥ E)x = 
∂

-
∂
∂

Ê

ËÁ
ˆ

¯̃

E

y

E

z
z y

∂
 = i [ky E0z – kx E0y] exp [i (k ◊ r – w t)] 

    = i (k ¥ E)x 

  Thus, Eq. (21) gives us

   i (k ¥ E)x = iw m Hx fi Hx = 
( )k E¥ x

wm
 (44)

  Similarly we can write for the y and z components of Eq. (21) and obtain the 

vector equation

   H = 
k E¥
wm

 (45)
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  Similarly, Eq. (22) would give us

   E = 
H k¥

we
 (46)

  showing that k, E and H are at right angles to each other. From Eqs (45) one 

readily gets

   H0 = 
k

wm
E0 (47)

  Substituting for H from Eq. (34) in Eq. (35), we get

   E = 
1
2w em

 [(k ¥ E) ¥ k]

    = 
1
2w em

[(k ◊ k)E – (k ◊ E) ¥ k] (48)

  where we have used the vector identity

   (A ¥ B) ¥ C = (A ◊ C)B – (B ◊ C)A (49)

  Since k ◊ E = 0, we get

   E = 
k 2

2w em
E

  Thus, k = w em  (50)

  and the speed of propagation of the electromagnetic wave is given by

   v = 
w
k

 = 
1

em
 (51)

 15.5 If we take the curl of Eq. (21), we would obtain

   curl curl E = – m
∂
∂t

curl H = – em ∂
∂

2
E

t2
 (52)

  where we have used Eq. (22). Now, the operator —2
E is by the 

following equation;

   —2
E ∫ grad div E – curl curl E (53)

  Using Cartesian coordinates, one can easily show that

   (—2
E)x = 

∂

∂

2E

x

x

2
 + 

∂

∂

2E

y

x

2
 + 

∂

∂

2E

z

x

2
 = div grad Ex (54)

  i.e., a Cartesian component of —2
E is the div grad of the Cartesian component1. 

Thus, using 

  curl curl E = grad div E – —2
E

 1. However, (—2
E)r π grad div Er 
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  we obtain

   grad div E – —2
E = –em0

∂
∂

2
E

t 2
 (55)

  or, —2
E = em

∂
∂

2
E

t 2
 (56)

  where we have used the equation div E = 0. Equation (56) is known as the 

three-dimensional wave equation and each Cartesian component of E

the scalar wave equation:

   —2Y = em
∂
∂

2

2

Y
t

 (57)

H 

   —2
H = em ∂

∂

2
H

t 2
 (58)

  The velocity of propagation (v) of the wave is simply given by

   v = 
1

em
 (59) 

   Hx = 0, Hy = H0 cos (kz – wt), Hz = 0 (60)

  with H0 = 
k

wm
E0 (61)

 15.7 We introduce the new variables 

   x = x – vt and h = x + vt. 

  Thus, 
∂
∂
x

x
 = 1 and 

∂
∂
h

x
 = 1

  Now, in terms of the independent variables x and h

   
∂
∂
Y
x

 = 
∂
∂

∂
∂

Y
x

x

x
 + 

∂
∂

∂
∂

Y
h

h

x
 = 

∂
∂
Y
x

 + 
∂
∂
Y
h

  Further, 
∂
∂

2

2

Y
x

 = 
∂

∂x
∂
∂

+ ∂
∂

Ê
ËÁ

ˆ
¯̃

Y Y
x h

∂
∂
x

x
 + ∂

∂h
∂
∂

+ ∂
∂

Ê
ËÁ

ˆ
¯̃

Y Y
x h

∂
∂
h

x

    = 
∂
∂

2

2

Y
x

 + 2 ∂
∂ ∂

2Y
x h

 + ∂
∂

2

2

Y
h

 (62)

  Similarly, since 
∂
∂
x

t
 = –v and 

∂
∂
h

t
 = +v, we get

   
∂
∂
Y
t

 = 
∂
∂

∂
∂

Y
x

x

t
 + 

∂
∂

∂
∂

Y
h

h

t
 = –v

∂
∂
Y
x

 + v
∂
∂
Y
h
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  and 
∂
∂

2

2

Y
t

 = –v
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

+ ∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

È

Î
Í

˘

˚
˙x x

x

h x

hY Y
t t

 

    +v 
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

+ ∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

∂
∂

È

Î
Í

˘

˚
˙x h

x

h h

hY Y
t t

  or, 
∂
∂

2

2

Y
t

 = v2 ∂
∂

- ∂
∂ ∂

+ ∂
∂

Ê

ËÁ
ˆ

¯̃

2

2

2 2

2
2

Y Y Y
x x h h

 (63)

  Substituting Eqs (62) and (63) in Eq. (1) we get

  
∂

∂
∂
∂

Ê
ËÁ

ˆ
¯̃h x

Y
 = 0

  Thus, ∂
∂
Y
x

 has to be independent of h; however it can be an arbitrary 

function of x:

   
∂
∂
Y
x

 = F (x )

  or, Y (x, h) = FÚ (x )dx + constant of integration

  The constant of integration can be an arbitrary function of h. Further, since the 

integral of an arbitrary function is again an arbitrary function, we obtain as the 

general solution of the wave equation

   Y (x, h) = f (x) + g (h) = f (x – vt) + g(x + vt) (64)

  where f and g are arbitrary functions of their arguments.

 15.8 In spherical coordinates 

   —2Y = 1
2r

∂
∂r

r
r

2 ∂
∂

Ê
ËÁ

ˆ
¯̃

Y
 + 

1
2r sinq

∂
∂q

sinq
q

∂
∂

Ê
ËÁ

ˆ
¯̃

Y
 + 

1
2 2r sin q

∂
∂

2

2

Y
f

 (65)

  Since Y is a function only of r and t, we have

   —2Y (r, t) = 
1
2r r

∂
∂ r

r
2 ∂

∂
Ê
ËÁ

ˆ
¯̃

Y  (66)

  Thus, the wave equation becomes

   
1
2r r

∂
∂

r
r

2 ∂
∂

Ê
ËÁ

ˆ
¯̃

Y
 = 

1
2

2

2
v

∂
∂

Y
t

 (67)

  Making the transformation

   Y (r, t) = 
u r t

r

( , )
 (68)

  we obtain

   r2 ∂
∂
Y
r

 = r2 ∂
∂

Ê
ËÁ

ˆ
¯̃r

u

r
 = r

∂
∂
u

r
 – u

  Thus, 
1
2r r

∂
∂

r
t

2 ∂
∂

Ê
ËÁ

ˆ
¯̃

Y
 = 

1 2

2r

u

r

∂
∂
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  and the wave equation [Eq. (67)] will take the form

   
∂
∂

2

2

u

r
 = 1

2

2

2
v

∂
∂

u

t
 (69)

  which is of the same form as Eq. (1). Thus, the general solution will be

   Y (r, t) = 
f r t( )- v

r

 + 
g r t( )+ v

r

 (70)

  The function 
f r t( )- v

r

 will represent an outgoing spherical wave with 

amplitude decreasing as 
1

r
 and therefore the intensity decreasing as 1

2r
. 

Similarly the term g r t( )+ v

r

 will represent an incoming spherical wave.

 15.9 y (x, t) = a exp -
- - -È

Î
Í
Í

˘

˚
˙
˙

( ( ))x b t tv 0
2

2s

 15.10 T = 1 N = 105 dynes, r = 0.2 g/cm, v = 
T

r
 = 

10

0 2

5

.
 ª 707 cm/s

 15.11 kx = 
3

2
k; ky = 

1

2
k; kz = 0

   tan q = 
k

k

y

x

 = 
1

3
 fi q = 30°

15.12 kx = 2 cm–1; ky = 3 cm–1 and kz = 4 cm–1

   k = 29  = 
2p
l

 fi l = 
2

29

p
 ª 1.17 cm

   w = 5 s–1 fi n = 
5

2p
 ª 0.796 s–1

   Unit vector along the direction of propagation will be given by

  ˆk  = 
k

k
x
x̂ + 

k

k

y
ŷ + 

k

k
z
ẑ  = 

2

29
x̂ + 

3

29
ŷ + 

4

29
ẑ



 

A Quick Review

Consider a plane wave propagating along the + z direction:

 Y(z, t) = Aei (w t – kz) (1)

If the wave is propagating in a medium characterised by the refractive index variation 
n(w), then 

 k (w) = w
c

 n(w) (2)

The phase velocity of the wave is given by

 vp = 
w
k

 (3)

A temporal pulse travels with the group velocity given by

 vg = 
1

dk d/ w
 (4)

Thus, 
1
vg

 = dk

dw
 = 1

c
n

dn

d
( )w w

w
+È

ÎÍ
˘
˚̇

 (5) 

In free space n(w) = 1 at all frequencies; hence

 vg = vp = c (6) 

Since, w = 
2

0

p
l

c
 (7)

we get 
1
vg

 = 1
0 0

0c
n

dn

d
( )l l

l
-

È

Î
Í

˘

˚
˙  (8)

and the time taken by a pulse to traverse a length L of the dispersive medium is given 
by

 t = 
L

gv
 = 

L

c
n

dn

d
( )l l

l0 0
0

-
È

Î
Í

˘

˚
˙  (9) 

For a source having a spectral width of Dl0, the temporal broadening of a pulse will 
therefore be given by

 Dtm = d

d

t
l0

 Dl0 = –
L

c

Dl

l
0

0

l
l

0
2

2

0
2

d n

d

È

Î
Í
Í

˘

˚
˙
˙

 (10)

Group Velocity and Pulse 
Dispersion 16
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The quantity Dtm is usually referred as material dispersion because it is due to the 
material properties of the medium–hence the subscript m. Indeed, after propagating 
through a length L of the dispersive medium, a pulse of temporal width t0 will get 
broadened to tf where

 t f
2 = t0

2 + (Dtm)2 (11)

In Eq. (10), we assume L = 1 km (= 1000 m), Dl0 = 1 nm (= 10–9 m) to obtain 

in ps/km-nm):

 Dm = 
D
D
t

l
m

L 0
 = – 10

3

4

0l
l

l
0
2

2

0
2

d n

d

È

Î
Í
Í

˘

˚
˙
˙

where we have used c ª 3 ¥ 108 m/s = 3 ¥ 10–7 km/ps and l0 [in Eq. (12)] is measured 
in mm and the quantity inside the square brackets is dimensionless. The quantity 
Dm

material properties of the medium) and hence the subscript m on D; it is tabulated 
(for pure silica) in Table 18.1. 

For pure silica, the refractive index variation can be assumed to be given by the 
following convenient approximate empirical formula (in the wavelength domain 
0.5 mm < l0 < 1.6 mm)

 n(l0) ª C0 – al0
2 + 

a

l0
2

 (13) 

where C0 ª 1.451, a ª 0.003 and l0 is measured in mm. [A more accurate expression 
for n(l0) is given in Problem 16.5].

PROBLEMS 16.1 Using the empirical formula given by Eq. (13) calculate the phase and group 
velocities in silica at l0 = 0.7 mm, 0.8 mm, 1.0 mm, 1.2 mm and 1.4 mm. 
Compare with the (more accurate) values given in Table 18.1. 16.2 Using the empirical formula given by Eq. (13)

 (a) Calculate the zero dispersion wavelength.
 (b) Calculate the material dispersion at 800 nm in ps/km.nm.

[1.32 mm; –101 ps/km.nm] 16.3 Let,
   n(l0) = n0 + Al0 (14)

   where l0 is the free space wavelength. Derive expressions for phase and group 
velocities.

  16.4 In 1836, Cauchy gave the following approximate formula to describe the 
wavelength dependence of refractive index in glass in the visible region of the 
spectrum

   n(l) = A + 
B

l0
2
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    Now, n(l1) = 1.50883; n(l2) = 1.51690 for borosilicate glass

   n(l1) = 1.45640; n(l2) = 1.46318 for vitreous quartz

  where l1 = 0.6563 mm and l2 = 0.4861 mm.

 (a) Calculate the values of A and B.
 (b) Using the Cauchy formula calculate the refractive index at 0.5890 mm and 

0.3988 mm and compare with the corresponding experimental values:

   (i) (1.51124 and 1.52546) for borosilicate glass and 
   (ii) (1.45845 and 1.47030) for vitreous quartz.

 16.5 The refractive index variation for pure silica in the wavelength region 
0.5 mm < l0 < 1.6 mm is accurately described by the following empirical 
formula [Ref. Pa1]:

   n (l0) = C0 + C1l0
2 + C2l 0

4 + 
C

l

3

0
2( )l -

 + 
C

l

4

0
2 2( )l -

 + 
C

l

5

0
2 3( )l -

 (15)

  where C0 = 1.4508554, C1 = – 0.0031268, C2 = – 0.0000381, C3 = 0.0030270, 
C4 = – 0.0000779, C5 = 0.0000018, l = 0.035 and l0 is measured in mm. 

Calculate and plot n(l0) and d n

d

2

0
2l

 in the wavelength domain 0.5 mm < l0 
< 1.6 mm.

 16.6  (a) For a Gaussian pulse given by

     E (z = 0, t) = E0 e

t-
2

0
2t eiw0 t (16)

    show that the spectral width is approximately given by

     Dw ª 
2

0t
 (17)

   (b) Assume l0 = 8000 Å. Calculate Dw
w0

 for t0 = 1 ns and for t0 = 1 ps. 16.7 The time evolution of a Gaussian pulse in a dispersive medium is given by 
(see Ref. Gh1 and Gh2):

   E(z, t) = 
E

ip

0

1 +
e

i t k z( )w0 0- exp -

-
Ê

ËÁ
ˆ

¯̃

+

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

t
z

ip

gv

2

0
2 1t ( )

 (18)

   where,  p ∫ 
2

0
2

g

t

z
 and g = d k

d

2

2w
 (19)

 (a) Show that the pulse broadening is given by

   Dt = 2

0

z

t
|g | (20)

 (b) Using Eq. (2), show that

    g = 
l0

22pc
l

l
0
2

2

0
2

d n

d

È

Î
Í
Í

˘

˚
˙
˙

 (21)
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 (c) Using the above equation, calculate Dt and show that the results are 
consistent with Eq. (10). 

 16.8 (a) For pure silica, at l0 = 1.55 mm, d n

d

2

0
2l

 ª – 0.004165 mm–2. Calculate (with 
proper units the value of g .

  (b) Calculate the value of Dt for a 100 ps pulse propagating through a 2 km 

 16.9  (a) For the propagating Gaussian pulse given by Eq. (18) show that the 
frequency chirp is given by

     Dw = 
2

10
2 2

p

p
t

z

gt ( )+
-

Ê

ËÁ
ˆ

¯̃v

 (22)

    where p
   (b) Assume a 100 ps (= t0) pulse at l0 = 1 mm. Calculate the frequency chirp 

Dw
w0

at t – z/vg = –100 ps, –50 ps, +50 ps and +100 ps. Assume z = 1 km 

and other values from Table 18.1.
 16.10 Repeat the previous problem for l0 = 1.5 mm; the values of t0 and z remain the 

same. Discuss the qualitative difference in the results obtained in the previous 
problem.

 16.11 The frequency spectrum of E(0, t) is given by the function A(w). Show that 
the frequency spectrum of E(z, t) is simply

  A(w)e–ik(w)z

  implying that no new frequencies are generated–different frequencies 
superpose with different phases at different values of z.

SOLUTIONS 16.1 n(l0) = C0 – al0
2 + 

a

l0
2

 = C0 – a l
l

0
2

0
2

1-
È

Î
Í
Í

˘

˚
˙
˙

; 
dn

dl0
 = –2al0 – 2

0
3

a

l

  ng = 
c

gv
 = C0 – al0

2 + 
a

l 0
2

 + 2al0
2 + 

2

0
2

a

l
 = C0 + a l

l
0
2

0
2

3+
È

Î
Í
Í

˘

˚
˙
˙

   Now, C0 ª 1.451, a = 0.003 and l0 should be in mm. Thus at l0 = 0.7 mm, 
0.8 mm, 1.0 mm, 1.2 mm and 1.4 mm, we get 

   l0
2 – 1

0
2l

 ª –1.551, –0.923, 0, 0.746, 1.450

   Thus, n(l0) ª 1.456, 1.454, 1.451, 1.449, 1.455

   Similarly, ng (l0) ª 1.4708, 1.4670, 1.4630, 1.4616, 1.4615

   Actually the group index ng  attains a minimum around l0 ª 1.32 mm. The 
phase and group velocities are c/n and c/n g respectively.
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 16.2  (a) n(l0) ª 1.451 – 0.003 l
l

0
2

0
2

1-
Ê

Ë
Á

ˆ

¯
˜

     
dn

dl0
 ª – 0.003 2

2
0

0
3

l
l

+
Ê

Ë
Á

ˆ

¯
˜  (mm)–1

     d n

d

2

0
2l

 ª –0.006 1
3

0
4

-
Ê

Ë
Á

ˆ

¯
˜

l
 (mm)–2

     Thus, d n

d

2

0
2l

 (and hence material dispersion) vanishes when

    l0 ª 31/4 mm ª 1.32 mm.

  (b) At l0 = 800 nm = 0.8 mm

     l0
2 d n

d

2

0l
 = 0.64 ¥ - -Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙0 006 1

3

0 84
.

.
 ª +0.0243

     Thus, using Eq. (19)

    Dm ª – 10
3 0 8

4

¥ .
(+ 0.0243) ª –101 ps/km.nm    which may be compared with the more accurate value of –106.6 ps/ km. nm 

(see Table 18.1).

 16.3 
dn

d l0
 = A

   Thus, 

   
1
vg

 = 
1

0 0
0c

n
dn

d
( )l l

l
-

È

Î
Í

˘

˚
˙  = 

1
c

[n0 + Al0 – l0A] = 
n

c
0  fi vg = 

c

n0

   vp = 
c

n ( )l0
 = 

c

n A0 0+ l

 16.4 n(l1) = A + 
B

l1
2

 and n(l2) = A + 
B

l 2
2

   Thus, B
1 1

2
2

1
2l l

-
Ê

Ë
Á

ˆ

¯
˜  = n(l2) – n(l1) fi B = 

l l

l l

1
2

2
2

1
2

2
2-

[n(l2) – n(l1)]

    For l1 = 0.6563 mm and l2 = 0.4861 mm 
l l

l l

1
2

2
2

1
2

2
2-

 ª 5.23 ¥ 10–13 m2

    Thus, for borosilicate glass 

   B = 5.23 ¥ 10–13[1.51690 – 1.50883] ª 4.22 ¥ 10–15 m2 fi A = 1.499
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    Thus, at l = 0.5890 mm, n = 1.51120 and at l = 0.3988 mm, n = 1.52557
    Similarly, for vitreous quartz

    B = 5.23 ¥ 10–13[1.46318 – 1.45640] ª 3.546 ¥ 10–15 m2 fi A = 1.44817

    Thus, at l = 0.5890 mm, n = 1.45839 and at l = 0.3988 mm, n = 1.47047

   y = l0
2 and z = l0

2 – l
   Then,
   n(l0) = C0 + C1y + C2 y2 + 

C

z
3  + 

C

z

4
2

 + 
C

z

5
3

   
dn

d l0
 = C C y

C

z

C

z

C

z
1 2

3
2

4
3

5
4

2
2 3

+ - - -
È

ÎÍ
˘

˚̇
2l0

  and 
d n

d

2

0
2l

 = 2
2 6 12

2
3

3
4

4
5

5
C

C

z

C

z

C

z
+ + +

È

ÎÍ
˘

˚̇
4l0

2 

+ 2 C C y
C

z

C

z

C

z
1 2

3
2

4
3

5
4

2
2 3

+ - - -
È

ÎÍ
˘

˚̇

   A GNUPLOT program for calculating n(l0) [denoted as n(x)], dn

dl0

[denoted 

as np(x)], and d n

d

2

0
2l

 [denoted as npp(x)] is given below. The respective plots 

are shown in the diagrams.

 GNUPLOT Program

 #Variation of the group velocity and npp for pure 

silica

 set multiplot

 set nokey

 #set yrange [1.440:1.458]

 #set yrange [-0.02:0.12]

 #set yrange [-0.025:-0.010]

 set xrange [0.5:1.65]

 set xtics 

 set ytics 

 c=2.99792

 c0=1.4508554

 c1=-0.0031268

 c2=-0.0000381

 c3=0.0030270

 c4=-0.0000779

 c5=0.0000018
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 el=0.035

 y(x)=1/(x*x - el)

 n(x)=c0+ c1*x*x +c2*x*x*x*x +c3*y(x) +c4*y(x)*y(x)+c5* 

y(x)*y(x)*y(x)

 np(x)=2*c1*x+4*c2*x*x*x-2*x*c3*y(x)*y(x) 

-4*x*c4*y(x)*y(x)*y(x)-6*x*c5*y(x)*y(x)*y(x)*y(x)

 n p p ( x ) = 2 * c 1 + 1 2 * c 2 * x * x - 2 * c 3 * y ( x ) * y ( x ) * ( 1 

-4*x*x*y(x))-4*c4*y(x)*y(x)*y(x)*(1-6*x*x*y(x)) 

-6*c5*y(x)*y(x)*y(x)*y(x)*(1-8*x*x*y(x))

 ng(x)=n(x) - x*npp(x)

 vg(x)=c/ng(x)

 nppn=npp(.85)

 f0(x)=0.

 f1(x)=x*x*npp(x)

 f2(x)=-10000.0*f1(x)/(c*x)

 #plot n(x),f0(x) w l 1

 #plot npp(x),f0(x) w l 1

 #plot np(x)w l 1

 

 Fig. 16.1 Variation of n (l0) with l0 for pure silica with n(l0) given by Eq. (15)
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Fig. 16.2 Variation of 
dn

dl0

 with l0 for pure silica with n (l0) given by Eq. (15)

Fig. 16.3 Variation of 
d n

d

2

0
2l

 with l0 for pure silica with n (l0) given by Eq. (15) 

 16.6 (a) Consider a Gaussian pulse for which we may write

     E (z = 0, t)  = E0 e e

t

i t
-

+

2

0
2

0t w  (23)

    A wave packet can always be expressed as a superposition of plane waves 
of different frequencies:

     E (z, t) = A e di t k z( ) [ ]w ww -Ú  (24)
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    Obviously,

     E(z = 0, t) = A e di t( )w ww+Ú  (25)

    Thus,

     A(w) = 
1

2
0

p
wE z t e dti t( , )= -Ú  (26)

    Substituting from Eq. (23) we get

     A(w) = 
E0

2p
e

t-

Ú
2

0
2t e

i t- -( )w w0 dt

       = 
E0 0

2

t

p
exp - -È

ÎÍ
˘
˚̇

1
4 0

2
0
2( )w w t    (27)

    where we have used

     e dxx x- +Ú a b2

 = 
p
a

b ae
2 4/  (28)

    In general, A(w
spectral density

     S (w) = | A(w) |2 (29)

    For the Gaussian pulse,

     S(w) = 
E0

2
0
2

4

t

p
exp - -È

ÎÍ
˘
˚̇

1
2

2
0
2( )w w t0  (30)

    If the FWHM (Full Width at Half Maximum) is Dw, then 

exp - Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙

1
4 2

2

0
2Dw t  = 

1
2

    which would give
Dw t0 ª 2.4

    Thus, the spectral width is approximately given by

     Dw ª 
2

0t
 (31)

   (b) l0 = 8 ¥ 10–7 m fi w = 
2

0

p
l

c
 = 

2 3 10

8 10

8

7

p ¥ ¥

¥ -  ª 2.36 ¥ 1015 s–1

     Dw = 2

0t
 = 2 ¥ 109 s–1 and 2 ¥ 1012 s–1 for t0 = 1 ns and 1 ps respectively. 

Thus,

     
Dw
w

 ª 10–6 and 10–3 which represent the spectral purity of the pulse.
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 16.7 The intensity distribution corresponding to Eq. (18) would be given by

   I (z, t) = 
I

z
0

0t t( )/
exp -

-
Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

t
z

z

gv

2

2t ( )
 (32)

  where, t 2(z) ∫ t0
2 (1 + p2) (33)

   Thus, the pulse broadening will be given by

   Dt = t t2
0
2( )z -

    = | p |t0 = 
2

0

| |g

t

z
 (34)

 (b) Now, g = d k

d

2

2w
 = 

d

dw
1

0
0c

n
dn

d
-

Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙l

l

    = 
1

0c

d

dl
n

dn

d
( )l l

l0 0
0

-
È

Î
Í

˘

˚
˙

d

d

l

w
0

  or, g = 
l

p

0
22 c

l
l

0
2

2

0
2

d n

d

È

Î
Í
Í

˘

˚
˙
˙

 (35)

  where the quantity inside the square brackets is dimensionless. Further, since 
the spectral width of the Gaussian pulse is given by [see Eq. (31)]

   Dw ª 
2

0t
 

  we may write

   
1

0t
 ª 1

2
Dw ª 1

2
2

0
2

p

l

c |Dl0| (36)

  Substituting for t0 from the above equation and for g [from Eq. (35)] in 
Eq. (34) we get

   Dt = 
z

cl 0
l

l
0
2

2

0
2

d n

d
Dl0 (37)

  which is the same as Eq. (10).

 16.8 At l0 = 1.55 mm, d n

d

2

0
2l

 ª –0.004165 mm–2 [see Table 18.1]

  Thus, 

   g = 
l

p

0
22 c

l
l

0
2

2

0
2

d n

d

È

Î
Í
Í

˘

˚
˙
˙

 ª –
1 55 10

2 9 10

6

16

. ¥

¥ ¥

-

p
[1.55 ¥ 1.55 ¥ 0.004165]

    ª –2.743 ¥ 10–26 m–1 s2
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   Dt = 
2 | |g

t

z

0
 ª 

2 2 743 10 2 10

10

26 3

10

¥ ¥ ¥ ¥-

-
.

( )
 ª 1.1 ps

 16.9 If we carry out simple manipulations, Eq. (18) can be written in the form:

   E (z, t) = 
E

z

0

0
1 2[ ( )/ ] /t t

 exp -

-
Ê

ËÁ
ˆ

¯̃

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

t
z

z

gv

2

2t ( )
 exp [i (F (z, t) – k0z)] (38)

  where the phase term is given by

   F (z, t) = w0t + k t
z

g

-
Ê

ËÁ
ˆ

¯̃v

2

 – 
1
2

tan–1 p (39)

  and k (z) = 
p

pt 0
2 21( )+

 (40)

   Equation (39) represents the phase term and the instantaneous frequency is 
given by

   w (t) = 
∂
∂
F
t

 = w0 + 2k t
z

g

-
Ê

ËÁ
ˆ

¯̃v

 (41)

  showing that w (t) changes within the pulse. The frequency chirp is therefore 
given by

   Dw = w (t) – w0 = 2k t
z

g

-
Ê

ËÁ
ˆ

¯̃v

 (42)

 (b) l0 = 1 mm fi w0 = 
2

0

p
l

c
 ª 1.885 ¥ 1015 Hz; t0 = 100 ps = 10–10 s. 

   At l0 = 1 mm, d n

d

2

0
2l

 ª +0.0120 (mm)–2 [see Table 18.1]

   Thus, g = 
d k

d

2

2w
 = 

l

p

0
22 c

l
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0
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0
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d n

d

È

Î
Í
Í

˘

˚
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˙
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6

8 2

-

¥ ¥p ( )
[1 ¥ 0.0120]

ª 2.12 ¥ 10–26 m–1 s2
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2

0
2

g

t

z
 ª 

2 2 12 10 10

10

26 3

10 2

¥ ¥ ¥-

-
.

( )
 ª 4.24 ¥ 10–3

   
D

0

w
w

 = 
2

10 0
2 2

p

pw t ( )+
t

z

g

-
Ê
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ˆ

¯̃v

 ª 4.5 ¥ 10–10
t

z

g

-
Ê

ËÁ
ˆ

¯̃v

   where t
z

g

-
Ê
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ˆ

¯̃v

 is measured in pico seconds. Thus, Dw
w0

 ª –4.5 ¥ 10–8, – 2.25 
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¥ 10–8, +2.25 ¥ 10–8 and + 4.5 ¥ 10–8 at t
z

g

-
Ê

ËÁ
ˆ

¯̃v

 = –100 ps, – 50 ps, +50 ps 

and +100 ps respectively.

 16.10 l0 = 1.5 mm fi w0 = 
2

0

p
l

c
 ª 1.257 ¥ 1015 Hz

   t0 = 100 ps = 10–10 ps, z = 1 km = 103 m

   At l0 = 1.5 mm, d n

d

2

0
2l

 ª –0.00365 (mm)–2 

    g = 
1 5 10

2 3 10

6

8 2

.

( )

¥

¥ ¥

-

p
[–1.5 ¥ 1.5 ¥ 0.00365] ª –2.18 ¥ 10–26 m–1 s2

   p = 
2

0
2

g

t

z
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2 2 18 10 10
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26 3

10 2

¥ ¥ ¥-

-
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 ª –4.36 ¥ 10–3

   
Dw
w0

 = 
2

10 0
2 2

p

pw t ( )+
t

z

g

-
Ê
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ˆ

¯̃v

 ª – 6.94 ¥ 10–10
t

z

g

-
Ê

ËÁ
ˆ

¯̃v

  where t
z

g

-
Ê
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ˆ

¯̃v

 is measured in pico seconds. Thus, Dw
w0

 ª + 6.94 ¥ 10–8, 

+3.47 ¥ 10–8, –3.47 ¥ 10–8 and + 6.94 ¥ 10–8 at t
z

g

-
Ê

ËÁ
ˆ

¯̃v

 = –100 ps, –50 ps, 

+50 ps and + 100 ps respectively.
   The qualitative difference in the results obtained in the previous and in the 

present problem is the fact that at l = 1 mm we have negative dispersion and 
the front end is red shifted (Dw is negative) and the trailing end is blue shifted. 
The converse is true at l = 1.5 mm where we have positive dispersion.

 16.11 We can write Eq. (24) as 

  E(z, t) = G z e di t( , )w wwÚ
   where G (w, z) ∫ A(w)e– ik z. The inverse Fourier transform is given by

   G (w, z) = 
1

2p
E z t e dti t( , ) -Ú w

  or, A(w)e– ik z = 
1

2p
E z t e di t( , ) -Ú w w

   showing that the frequency spectrum of E (z, t) is simply A(w)e–ik z implying 
that no new frequencies are generated.



 

A Quick Review

17.1 EINSTEIN COEFFICIENTS

The quantities A21, B12 and B21

A21 is given by

 A21 = 
1

tsp

 (1)

where tsp

Fig. 17.1 E1 and E2 represent the energy levels of an atom. N1 and N2 represent the number of atoms 

(per unit volume) in the energy levels E1 and E2 respectively.

 B12 = B21 = B (2)

and 
A

B
21

21
 = 

�w

p

3
0
3

2 3

n

c
 (3)

where n0

 
A

B u
21

21 ( )w
 = exp

�w
k TB

Ê
ËÁ

ˆ
¯̃

– 1 (4)

Lasers
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where u(w

 u(w) = 
�w

p

3
0
3

2 3

n

c

1

1exp
�w
k TB

Ê
ËÁ

ˆ
¯̃
-

 (5)

17.2 LINESHAPE FUNCTIONS

17.2.1 Natural Broadening

 g(w) = 
2tsp

p

1

1 4 0
2 2+ -( )w w tsp

 (6)

where tsp = 1/A21

Lorentzian is

 DwN = 
1

tsp

g(w) is

 g d( )w wÚ  = 1 (8)

17.2.2 Collisonal Broadening

by

 g(w)  = 
t

p
c 1

1 0
2 2+ -( )w w t c

 (9)

where tc

 Dwc = 
2

t c

 (10)

–6s corresponds to a Dv

 tc ª 
1

8
2
3

1 2

p
Ê
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ˆ
¯̃

/

 
( ) /Mk T

pa

B
1 2

2
 (11)

where M a

and p
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17.2.3 Doppler Broadening

 g(w)  = 
c

w0

M

k TB2

1
2

p

Ê
ËÁ

ˆ
¯̃

exp -
-È

Î
Í
Í

˘

˚
˙
˙

Mc

k TB

2
0

2

0
22

( )w w

w
 (12)

w0

 DwD = 2w0 
2

2

1
2k T

Mc

B ln 2
Ê
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ˆ
¯̃

 (13)

17.3 THE THRESHOLD CONDITION

Let N1 and N2

E1 and E2 E1 can 
absorb the incident radiation at a frequency w = (E2 – E1)/� and be excited to E2

 (N2 – N1) ≥ 
4 1

2
0
3

3

n n

c

t

t g

sp

c ( )w
 (14)

where, g (w

 n0

 tsp = 1/A21 Æ 1,

 tc
cavity reduces by a factor 1/e) and is given by

 
1
tc

 = 
c

dn2 0
 (2a1d R1R2) (15)

with R1 and R2 a1 

17.3.1 Absorption and Emission Cross Sections

The absorption cross section sa

 sa = 
p

w

2 2

2
0
2

c

n tsp

g(w) (16)

se sa
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17.3.2 Gain Co-efficient

g is given by

 g = 
p

w

2 2

2
0
2

c

n tsp

g(w) (N2 – N1

where N1 and N2

17.4 MODES IN A CAVITY

d are given 
by

 v = vm = m 
c

n d2 0
 (18)

where m is an integer and n0 represents the 

17.4.1 Stability Condition

R1 and R2 and separated by a distance d

 0 £ 1
1

-
Ê
ËÁ

ˆ
¯̃

d

R
1

2
-

Ê
ËÁ

ˆ
¯̃

d

R
 £ 1 (19)

Fig. 17.3 A resonator consisting of two spherical mirrors.

 w2(z1) = 
l
p
d

 
g

g g g
2

1 1 21( )-  (20)

Fig. 17.2 An optical resonator consisting of 

two plane mirrors separated by a 

distance d.
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 w2(z2) = 
l
p
d

 
g

g g g
1

2 1 21( )-  (21)

where w(z1) and w(z2

 g1 = 1 – 
d

R1
g2 = 1 – 

d

R2
 (22)

17.4.2 Quality Factor

Q

 Q = 
4 0 0pn n d

c

1
2 1 2al d R R- ln

 (23)

where R1 and R2 d is the 
a

17.4.3 Mode Locking

 I = I0
sin[ ( ) ]

sin[ ]

p dn

pdn

N t

t

+Ï
Ì
Ó

¸
˝
˛

1
2

 (24)

where dn N

PROBLEMS

l

n = n0 = 6 ¥ 1014

M1 and M2 at z = z1 = –d1 and at z = z2 = +d2 

d1 and d2

d = d1 + d2

z

z = 0 is given by

   u(x, y) = a exp -
+È

Î
Í
Í

˘

˚
˙
˙

x y

w

2 2

0
2  (25) 
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z w0 is the spot size 
beam waist.

z

   w (z) = w0 1
2

+ z

a
 and R(z) = z + 

a
z

 (26)

  where a = 
p

l

2
0
4

2

w

   w2
0 = 

l
p

d

g g g g( )1 2 1 22+ -
 g g g g1 2 1 21( )-

  where, g1 = 1 – d

R1

 and g2 = 1 – 
d

R2

 (28)

w0

have

   0 £ 1
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-
Ê
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ˆ
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d

R
1

2
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Ê
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ˆ
¯̃

d

R
 £ 1 (29)

d 

      w2
0 = 

l

p

d
 

R

d
-Ê

ËÁ
ˆ
¯̃1  (30)

    (For R < d, w0

l
m d ª R ª

w0

  (c) If we increase R w0?

separated by a distance d = R1 R2

l = 1 m
spot size w0

g1, g2 and w0 for

R1 = R2 = 
d

2
 so that the center of 

R1 = R2 = d so that the center of 

 

Fig. 17.4 A simple resonator 

consisting of a plane 

mirror and a concave 

mirror.
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u(w), A and B
  [Ans.

–3 –3 –1 3 J –1s–2

T ~ 103 ° w ª ¥ 1015

l ª

P Æ 1S

transition w P

  tsp ª ¥ 10–9 s

A and B n0 ª 
[Ans. w ª ¥ 1016 B21 ª ¥ 1020 3 J–1s–2]

D1 l ª 5890 Å)

tsp ª
width DnN and DlN

T DnD and DlD

  [kB ª ¥ 10–23 M  ª 23 MH MH ª ¥ 10

  [Ans. DlN ª 10–4 DlD ª

–2

M = 20 ¥ ¥ 10 a T

tc

2 l0 ª m
2 T ª

DnD and DlD [M
2
 ª 44MH

[Ans. DnD ª DlD ª

tc ª 5 ¥ 10–8 R1

R2 d n0 ª 1 and a1 ª
Dnp

dn

    [Ans. (a) d ª Dnp ª dn ª

l = 6328 Å) we have d ª R1 ª R2 ª
a1 ª 0, tsp ª 10  s, DnD ª ¥ 109 n0 tc and (N2 – N1) th

[Ans. ¥ 108 –3]

l0 m d n0 ª 1, R1 ª 1, 
R2 ª Dnp and the passive cavity 

tc ac ª Ans. ms]

dn)sp

Dd

w0
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Dn = 108

g(w
11

Ans. Po E = 38 nJ]

–1) 

9 3

 Fig. 17.5

index of unity)?
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–1

   g (n) = g (n0) exp -
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Ì
Ó

¸
˝
˛

È

Î
Í
Í

˘

˚
˙
˙

4 0
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n n

nD

  where n0 is the center frequency, g (n0
–1 and Dn 

E2 and E1

E2 m E3 E2 to be very 

E1
19 –3

  3 —— E3 = 3 eV
  2 ——  E2 = 1 eV
  1 ——  E1 = 0 eV

  The A

   A32 ¥ 10  s–1, A31 = 10 s–1, A21 = 108 s–1

15 3, what is the 
Æ 2 transition?

SOLUTIONS
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3 10
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¥
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m s
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/
 = 5 ¥ 1014
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5 10 2 60

3 10
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3 10

2 0 6
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m s
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.
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   dn = 
c

d2

   n0 – 2dn, n0 – dn, n0, n0 + dn and n0 + 2dn

  corresponding to m = 399998, 399999, 400000, 400001 and 400002, 

Fig. 17.6 The output of a typical multi-longitudinal mode (MLM) laser [Adapted from Ref. Lil]..

M1 and M2 are at z = z1 = –d1 and at z = z2 = +d2 

z

   w(z) = w0 1
2

+ z

a
 and R(z) = z + 

a
z

  where a = 
p

l

2
0
4

2

w
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a
d2

R1 and R2
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( )R d d

R R d
2

1 2 2

-
+ -  and d2 = 

( )R d d

R R d
1

1 2 2

-
+ -
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   g1 = 1 – 
d

R1
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d
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d

g1 1-
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 Fig. 17.7 The stability diagram for optical resonators. The shaded region corresponds to 

d R1 =  and R2 = R giving 
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g1 = 1 and g2 = 1 – 
d

R
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l
p
d R

d
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ˆ
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d ª R ª g1 = 1, g2
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d 1
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l
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u(w)dw w 
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      Thus, unit of u(w)dw –3 fi [u (w –3

   (b) [A] = s–1

 
= N2 B21 u(w)
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T, for frequencies, w kBT/�, 
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  For the 2P Æ 1S n1 = 2, n2 = 1 and Z = 1 and 
we get

  l ª ¥ 10 w = 2pn = 
2p
l

c
 ª ¥ 1016 

�w ª 

P

   tsp = 
1

21A
 ª ¥ 10–9 s

  Thus, A21 ª 6 ¥ 108 s–1



Lasers 237
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   P = rdr d I r

a
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p
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   Energy inside the cavity is nhn
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A Quick Review

18.1 STEP INDEX FIBER

given by (see Fig. 18.1)

  
n n r a

n r a

=

=

1

2

0 < <

>

¸
˝
Ô

Ǫ̂
 (1)

where n1 and n2 (< n1) represent respectively the refractive indices of core and 

cladding and a D through the 

following equations

  D 1
2

2
2

1
2∫

-n n

n2
 (2)

When n1 ª n2, i.e., when D 

  D ª
-

ª
-n n

n

n n

n
1 2

2

1 2

1

 (3)

Fig. 18.1

Fiber Optics I: Basic Con-
cepts and Ray Optics Con-
siderations in Multimode 
Fibers

18
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 NA = sin im = n n1
2

2
2-  (4) 

where im
with the z

Fig. 18.2 If the angle of incidence (at the core-cladding interface) is greater than the critical angle, it 

 V = 
2

0

p

l
a n n1

2
2
2-  = 

2
2

0
1

p

l
an D  (5)

where l0 is the wavelength of operation. For V ≥

  N Vª 1

2
2

Thus, for V

  D Dt i

n L

c
@ 1

18.2 ATTENUATION

power P1 results in an output power P2, then the loss in decibels is given by

 a = 10 log10

P

P

input

output

Ê

ËÁ
ˆ

¯̃
 (8)

Thus, if the output power is only one hundredth of the input power, then the loss is 

as

 P 10 P

¤ ª

 Poutput Pinput a
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18.3 MATERIAL DISPERSION

For an optical pulse having a spectral width Dl0, the pulse broadening due to the 

dependence of the refractive index n on wavelength is given by [see Eq. (10) of 

 Dtm = -
È

Î
Í
Í

˘

˚
˙
˙

L

c

d n

d

Dl

l
l

l

0

0
0
2

2

0
2

 (11)

where L c ª 3 ¥ 108 l0 

-
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l
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4

0
0
2

2

0
2l

l
l

d n

d

È

Î
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Í

˘

˚
˙
˙

where we have used c ª 3 ¥ 108 ¥ 10 l0 m
Dm is usually 

m on D; it is tabulated (for pure 

is given by

 Dt = ( ) ( )D Dt ti m
2 2+  (13)

n (l0), 
dn

dl0

, 
d n

d

2

0
2l

 and Dm for pure silica.

B ), in one type of extensively used coding 

  Bmax
.ª 0 7

Dt
 (14)

Table 18.1 Values of n and Dm for pure silica1

l0 (m n (l0)
dn

dl0

(m ) d n

d

2

0
2l

(m ) Dm 

0.80

0.85

1.00

1.45282

1.45208

0.0541

0.0400

0.0221

0.0120

 1.

Contd.
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1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.45013

0.0020

18.23

21.52

18.4 PARABOLIC INDEX FIBER

The refractive index distribution (in the transverse direction) of a parabolic index 

  
n r n

r

a
r a

n r a

2
1
2

2

2
2

1 2 0( ) =

=

- Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙ < <

>

¸

˝
Ô

˛
Ô

D
 (15)

where n1 represents the refractive index on the axis of the core and n2(< n1) represents 

the refractive index of cladding and a

D V

respectively. For V ≥

  N Vª 1

4
2

Fig. 18.3

Table 18.1 Contd.
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For V

 Dti = 
n L

c

n n

n
2 1 2

2

2

2

-Ê
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ˆ
¯̃

When D << 1, the above equation can be written as

  D Dt i

n L

c
ª 2 2

2
 (18)

18.5 POWER LAW PROFILE

A broad class of multimoded

refractive index distribution

 n2(r) = n1
2

1 2- Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙D r

a

q

;  0 < r < a 

  = n2
2 = n1

2 D);  r > a 

where r corresponds to a cylindrical radial 

coordinate, n1 represents the value of the 

refractive index on the axis (i.e., at r = 0), 

n2 represents the refractive index of the 

cladding and a represents the radius of 

or a q  q = 1, q = 2 and q =  

correspond to the linear, parabolic, and step 

  N
q

q
Vª

+2 2
2

( )
 (20)

q = 2) with V

q = ) with V

Fig. 18.4
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L

described by a q

 t b( ) = A
B

Lb
b

+Ê
ËÁ

ˆ
¯̃

 (21)

where, A = 
2

2c q( )+
; B = 

qn

c q
1
2

2( )+
 (22)

n2 < b  < n1.

PROBLEMS

 18.1 Calculate the critical angle for (a) the glass-air interface (n1 = 1.5, n2 = 1.0) 

and (b) for the glass-water interface, n n1 21 5
4

3
= =. ,

Ê
Ë

ˆ
¯.

n1 = 1.5, D = 0.015 and a = 25 m
air. Calculate n2 im).

[Ans.

[Ans.

mW after traversing through 

[Ans.

the power at the output end.

[Ans.

0.5 m l0 m -

   n(l0) ª C0 al0
2 + 

b

l0
2

 (23)

  where C0 ª 1.451, a ª 0.003(m , b ª 0.003(m 2 and l0

m l0 = 0.80 m l0 = 0.85 m
l0 ª 1.32 m

m
wavelength 

    
d n

d

2

0
2l

 ª m
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m
this wavelength

    
d n

d

2

0
2l

 ª m

operating at l0 = 1.55 m

    
d n

d

2

0
2l

 ª 0.0042 (m

Dl0 ª
n1 and n2 representing the core and cladding 

q
z-axis. Show that all rays for which

   q < qc = cos
n

n
2

1

Ê
ËÁ

ˆ
¯̃

 (24)

    D Dt i

n L

c
@ 1  (25)

q

n2 < b  < n1. Using Eq. (21), calculate the ray 

 (a) F q = ),

 (b) F q = 2), and

 (c) F q D)

n1 = 1.5, a = 40 m D = 0.015 operating at 0.85 m

n1 = 1.5, a = 40 m D

bit rate.
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fastest ray corresponds to the one propagating along the axis while for the 

with the axis.

SOLUTIONS

 18.1 For the glass-air interface, n1 = 1.5, n2 = 1.0 and the critical angle is given by 

   fc = sin
1 0

1 5

.

.
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ˆ
¯ ª

   On the other hand, for the glass-water interface, n1 = 1.5, n2
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  the negative sign indicating that higher wavelengths travel faster than lower 

wavelengths. Thus for Dl0 ª
Dtm ª

operating at l0 = 1.55 m

  
d n

d

2

0
2l

 ª 0.0042 (m

  Dm ª

  the positive sign indicating that higher wavelengths travel slower than lower 

wavelengths. Thus for Dl0 ª
dispersion) will be Dtm ª

q = 0 and q = qc = cos
n

n
2

1

Ê
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ˆ
¯̃

 [see 
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  and t  = t (b = n1) = 
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c
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therefore given by
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   The axial ray corresponds to b  = n1

the axis corresponds to b = n2. Calculating t



 

A Quick Review

We consider a waveguide with refractive index depending only on the x coordinate: 

 n2 = n2(x) (1) 

When the refractive index variation depends only on the x coordinate, we can always 

choose the z-axis along the direction of propagation of the wave and we may, without 

any loss of generality, write the solutions of Maxwell’s equations in the form

 E = E(x)e i (w t – b z) (2)

 H = H (x)e i (w t – b z) (3)

The above equations  the modes of the system. Thus,

only as they propagate through the waveguide along z.

The quantity b represents the propagation constant of the mode. If we substitute 

the above solutions in Maxwell’s equations, we will obtain two independent sets of 

Ey, Hx and 

Hz with Ex, Ez and Hy vanishing, giving rise to what are known as TE modes because 

correspond to nonvanishing values of Ex, Ez and Hy with Ey, Hx and Hz vanishing, 

a transverse component.

For TE modes, Ey (x

 
d E

dx

y
2

2
+ [k 2

0 n2(x) – b 2]Ey = 0 (4)

where, k0 = w e m0 0  = 
w

 (5)

is the free space wave number and =
1

0 0e m

Ê

Ë
Á

ˆ

¯
˜ is the speed of light in free space. 

Once Ey (x) is known, we can determine Hx and Hz from the following equations: 

 Hx = –
b

wm0

Ey (x) and Hz = 
i

wm0

dE

dx

y
 (6)

Basic Waveguide Theory 
and Concept of Modes 19
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Since Ey and Hz represent tangential components,

 E y and 
dE

dx

y
 must be continuous everywhere (7)

Further, when the refractive index distribution is symmetric about x = 0; that is, when

 n2(– x) = n2(x) (8)

the solutions are either symmetric or antisymmetric functions of x (see

Problem 19.11). Thus we must have,

 Ey (–x) = Ey (x) symmetric modes (9)

 Ey (– x) = –Ey (x) antisymmetric modes (10)

For TM modes, Hy (x

 n2(x)
d

dx

1
2n x

dH

dx

y

( )

È

Î
Í
Í

˘

˚
˙
˙

 + [k 2
0 n2(x) – b2]Hy (x) = 0 (11)

Once Hy (x) is known, we can determine Ex and Ez from the following equations: 

 Ex = 
b

we0
2n x( )

Hy and Ez = 
1

0
2i n xwe ( )

dH

dx

y
 (12)

Further, since Hy (x) and Ez (x) are tangential component, 

 Hy and 1
2n

dH

dx

y  must be continuous everywhere (13)

19.1 STEP INDEX SYMMETRIC PROFILE 

between materials of slightly lower refractive indices and is characterised by the 

following refractive index variation (see Fig. 19.1).

 n (x) = 

n x
d

n x
d

1

2

2

2

; | |

; | |

<

>

Ï

Ì
Ô

Ó
Ô

 (14)

with n1 > n2. The above equation describes what is usually referred to as a step-index 

 n2
2 < 

b 2

0
2k

 < n1
2  GUIDED MODES (15) 

the solutions are oscillatory in nature in the region |x | < 
d

2
 and exponential in nature 

in the region | x | > 
d

2
. Only for certain discrete values of b, will we have decaying 
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solutions in the region x > 
d

2
 as well as in the region x < –

d

2
; these are the discrete 

guided modes of the waveguide. On the other hand, when b 2 < k2
0 n2

2, the solutions 

are also oscillatory in the region | x | > 
d

2
 and they correspond to what are known as 

radiation modes of the waveguide. These radiation modes correspond to rays that 

and when these are excited, they quickly leak away from the core of the waveguide.

Fig. 19.1 A planar dielectric waveguide of thickness d (along x

the y direction. Light propagates along the z direction.

 neff ∫ 
b

k0

 (16)

Thus, for guided modes

 n2 < neff < n1 (17)

19.2 TE MODES OF A SYMMETRIC STEP 

 INDEX PLANAR WAVEGUIDE 

the propagation constants 
b

k0

(for the TE modes) are determined by solving the 

following transcendental equations:

 x tan x  = 
V

2

2
2Ê

ËÁ
ˆ
¯̃ - x  for symmetric modes (18)

and – x cot x  = 
V

2

2
2Ê

ËÁ
ˆ
¯̃ - x  for antisymmetric modes (19)

where, x = 
k d

2
  (20) 

 k = k n0
2

1
2 2- b   (21)

and V = k0d n n1
2

2
2-   (22)
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Fig. 19.2 Variation of x tan x (solid curve) and – x cot x (dashed curve) as a function of x. The points of 

intersection of these curves with the quadrant of a circle of radius V /2 determine the discrete 

propagation constants of the waveguide.

Since the equation

 h = 
V

2

2
2Ê

ËÁ
ˆ
¯̃ - x  (23)

(for positive values of x ) represents a circle (of radius V

the x–h plane1, the numerical evaluation of the allowed values of x (and hence of 

the propagation constants) is quite simple. In Fig. 19.2 we have plotted the functions 

x tan x (solid curve) and – x cot x (dashed curve) as a function of x. For a given value 

 1. This follows from the fact that if we square Eq. (37) we would get h2 + x2 = 
V

2

2
Ê
ËÁ

ˆ
¯̃ which 

represents a circle of radius V/2.
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of V, the points of intersection of these curves with the quadrant of the circle would 

determine the allowed (discrete) values of x. The two circles in Fig. 19.2 correspond 

to V/2 = 2 and V V = 4 we will 

have one symmetric and one antisymmetric mode and for V = 10 we will have two 

symmetric and two antisymmetric modes. In general, when

 (m – 1)p < V < mp (24)

the waveguide will support a total of m

dimensionless propagation constant

  ∫ 

b 2

0
2 2

2

1
2

2
2

k
n

n n

-

-
 = 

n n

n n
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2

2
2

1
2

2
2

-

-
 = 

g 2 2

2

d

V
 (25)

where, g 2 = b2 – k2
0 n2

2 (26) 

giving 
g d

2
 = 

1

2
V  (27)

Further,  (k2 + g 2)
d 2

4
 = 

1

4
[k2

0 d2(n2
1 – n2

2)] = 
1

4
V 2 (28) 

 x = 
k d

2
 = 1

4 4
2

2 2

V
d

-
Ê
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ˆ

¯̃

g

   = 
1

2
1V b-  (29)

Thus, Eqs (18) and (19) can be written in the form

 
1

2
1V b-Ê

ËÁ
ˆ
¯̃

tan 
1

2
1V b-Ê

ËÁ
ˆ
¯̃

 = 
1

2
V b  for symmetric modes (30)

 - -Ê
ËÁ

ˆ
¯̃

1

2
1V b cot

1

2
1V b-Ê

ËÁ
ˆ
¯̃

 = 
1

2
V b  for antisymmetric modes (31)

Obviously, because of Eq. (15), for guided modes we will have

 0 <  < 1 (32)

For a given value of V, solutions of Eqs (30) and (31) will give us discrete values of 

; the mth solution (m = 0, 1, 2, 3, …) is referred to as the TEm mode. In Table 19.1 

we have tabulated the discrete values of  for various values of V. For any given (step 

index) waveguide we just have to calculate V, and then obtain the corresponding 

value of  either by solving Eqs (30) and (31) or by using Table 19.1. From the values 

of , one can obtain the propagation constants by using the following equation [see 

Eq. (25)]:

 
b

k0

 = [ ( )]n b n n2
2

1
2

2
2+ -  (33)
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Table 19.1 Values of the normalised propagation constant 
(corresponding to TE modes) for a symmetric pla-
nar waveguide; the values are generated by using 
the software in Ref. Gh3. Notice that for V < p we 
will have only one TE mode which will be sym-
metric in x and for p < V < 2p we will have two TE 
modes one of them will be symmetric in x and the 
other anti-symmetric in x.

V 0 ) 1) V 0) 1) 2)

 1.000 .189339  4.000 .734844 .101775 

 1.125 .225643  4.125 .745021 .123903 

 1.250 .261714  4.250 .754647 .146349 

 1.375 .297049  4.375 .763756 .168864 

 1.500 .331290  4.500 .772384 .191259 

 1.625 .364196  4.625 .780563 .213390 

 1.750 .395618  4.750 .788321 .235151 

 1.875 .425479  4.875 .795686 .256461 

 2.000 .453753  5.000 .802683 .277265 

 2.125 .480453  5.125 .809335 .297523 

 2.250 .505616  5.250 .815663 .317210 

 2.375 .529300  5.375 .821689 .336310 

 2.500 .551571  5.500 .827429 .354817 

 2.625 .572502  5.625 .832902 .372731 

 2.750 .592169  5.750 .838123 .390056 

 2.875 .610649  5.875 .843107 .406800 

 3.000 .628017  6.000 .847869 .422976 

 3.125 .644344  6.125 .852420 .438596 

 3.250 .659701 .002702  6.250 .856772 .453676 

 3.375 .674151 .011415  6.375 .860938 .468231 .001845

 3.500 .687758 .024612  6.500 .864926 .482278 .008819

 3.625 .700579 .041077  6.625 .868748 .495834 .019189

 3.750 .712667 .059875  6.750 .872412 .508916 .031806

 3.875 .724073 .080292  6.875 .875926 .521541 .045942

 4.000 .734844 .101775  7.000 .879298 .533727 .061106

 Ey (x) = A cos k xei (w t – b z)

  = 
1

2
Aei (w t – b z –  k x) + 

1

2
Aei (w t – b z + k x) (34)
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Thus, a guided mode can be considered to be a superposition of two plane waves 

with

 kx = k, ky = 0, kz = b (35)

and kx = –k, ky = 0, kz = b  (36)

In each case k 2
x + k2

y + k 2
z = b2 + k2 = k2

0 n2
1. Thus, the two plane waves make angles 

+q and –q with the z-axis where 

 cos q = 
b

b k2 2+
 = 

b

k n0 1

 (37)

Since b takes discrete values, a guided mode can be considered to be superposition 

of two plane waves propagating at discrete angles with the z-axis (see Fig. 19.3).

Fig. 19.3

waves propagating at particular angles ±q with the z

19.3 TM MODES OF A SYMMETRIC STEP 

 INDEX PLANAR WAVEGUIDE 

For TM modes, one has to solve Eq. (11) [with continuity conditions given by 

Eq. (13)] and one obtains the following transcendental equations which determine 

the discrete propagation constants b/k0 

 x tan x = 
n

n
1

2

2
Ê
ËÁ

ˆ
¯̃

V

2

2
2Ê

ËÁ
ˆ
¯̃ - x  for symmetric TM modes (38)

and –x cot x = 
n

n
1

2

2
Ê
ËÁ

ˆ
¯̃

V

2

2
2Ê

ËÁ
ˆ
¯̃ - x  for antisymmetric TM modes (39)

where x and V  and V, we have 

 1

2
1V b-Ê

ËÁ
ˆ
¯̃

tan 1

2
1V b-Ê

ËÁ
ˆ
¯̃

 = 
n

n
1

2

2
Ê
ËÁ

ˆ
¯̃

1

2
V b  for symmetric TM modes (40)

–
1

2
1V b-Ê

ËÁ
ˆ
¯̃ cot

1

2
1V b-Ê

ËÁ
ˆ
¯̃  = 

n

n
1

2

2
Ê
ËÁ

ˆ
¯̃

1

2
V b   for antisymmetric TM modes (41)
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19.4 TE MODES IN A PARABOLIC INDEX MEDIUM

For a parabolic index medium characterised by the following refractive index 

distribution:

 n2(x) = n2
1 1 2

2

- Ê
ËÁ

ˆ
¯̃

È
ÎÍ

˘
˚̇

D x

a
, | x | < a CORE (42)

  = n2
2 = n2

1 (1 – 2D), | x | > a CLADDING

the propagation constants are approximately given by

 b = bm ª k0 n1 1
2 1 2

0 1

-
+È

Î
Í
Í

˘

˚
˙
˙

( )m

k n a

D
; m = 0, 1, 2, 3,… mmax (43)

where the maximum value of m (= mmax

above expression for b is valid when 

 V ∫ k0 a n n1
2

2
2-  = k0an1 2D  ≥ 10 (44)

i.e., when the waveguide supports a large number of modes.

PROBLEMS

 19.1 Consider a step index planar waveguide with d = 3 mm, n1 = 1.5 and 

n2 = 1.49153. The value of n2 is chosen such that n n1
2

2
2-  = 

1

2p
. Using 

Table 19.1, calculate the discrete values of  (and hence of b /k0) for 

l0 = 1.5 mm, 1.0 mm and 0.6 mm. Show that in each case, the values of b/k0 lie 

between n1 and n2.

 19.2 In the above example, for l0 = 0.6 mm, calculate the values of q that the 

component waves will make with the z-axis; show that the corresponding 

angles of incidence at the core-cladding interface is greater than the critical 

angle.

 19.3 Using Eq. (43) and assuming 
2

0 1

D
k n a

<< 1, show that the group velocity is 

approximately independent of the mode number.

 19.4 Consider a step index planar waveguide with d = 2.5 mm, n1 = 1.5 and 

n2 = 1.47. Assume the operating wavelength l0 = 1.0 mm. Use Table 19.1 and 

linear interpolation, to determine the discrete values of  (and hence of b / k0).

 19.5 (a) Consider a symmetric step-index waveguide [see Eq. (14)] with n1 = 1.5, 

n2 = 1.46, d = 4 mm operating at l0 = 0.6328 mm. Calculate the number of 

TE and TM modes.

   (b) Consider TE modes in a step index planar waveguide with n1 = 1.5, 

d = 2 mm and the value of n2 is chosen such that n n1
2

2
2-  = 

1

p
. For 

l0 = 1 mm, 0.8 mm and 0.66667 mm calculate (using Table 19.1) the values 
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of  and the corresponding value of b/k0. Show that the values of b/k0 lie 

between n1 and n2.

 19.6 Consider now a parabolic index waveguide [see Eq. (43)] with n1 = 1.50, 

n2 = 1.46, a = 2 mm operating again at l0 = 0.6328 mm. Assuming the validity 

of Eq. (43) and that for discrete guided modes we must have n2
2 < 

b 2

0
2k

 < n2
1, 

calculate the maximum value of m and the total number of TE modes.

 19.7 Consider a step index symmetric waveguide with n1 = 1.50, n2 = 1.48, 

operating at l0 = 0.6328 mm. Calculate the value of d so that V = 6. Using 

Table 19.1, calculate the values of , the corresponding propagation constants 

b /k0 and the angles that the component waves make with the z-axis.

 19.8 We consider the same waveguide as in the previous problem. At what 

wavelength will the value of V be equal to 3. Using Table 19.1, calculate the 

value of  and the corresponding propagation constant b/k0.

 19.9  (a) Consider a symmetric step-index waveguide [see Eq. (14)] with n1 = 1.49, 

n2 = 1.46, d = 4 mm operating at l0 = 0.6328 mm. Solve Eqs (18) and (19) 

to calculate the values of b/k0.

   (b) Calculate the corresponding values of qm.

 19.10 (a) Consider a step index symmetric waveguide with n1 = 1.503, n2 = 1.500 

and d = 4 mm. For l0 = 1 mm, calculate the value of V and use linear 

interpolation of the numbers given in Table 19.1 to calculate the value of 

b/k0.

   (b) If the operating wavelength is changed to 0.5 mm, show that V = 4.771 

and by linear interpolation of the numbers given in Table 19.1 calculate 

the discrete values of b/k0 ands the corresponding angles that the waves 

make with the z-axis.

 19.11 In Eq. (4), make the transformation x Æ – x and assuming n2(x) = n2(– x) 

show that Ey (–x Ey (x); hence we must have 

Ey (– x) = l Ey (x). Make the transformation x Æ – x again to prove that the 

solutions are either symmetric or antisymmetric functions of x [i.e., prove 

Eqs (9) and (10)].

  n2(x) = n2
0 – a x2

    Starting from the scalar wave equation and using the fact that the 

y (x) = Ae
x w- 2

0
22/

    Calculate w0. Obtain the propagation constant of the fundamental mode.

 19.13 Consider a symmetric planar waveguide with n1 = 2.3, n2 = 2.2 and d = 2 mm 

operating at l0 = 1.0 mm.

 (a) How many guided TE and TM modes will the waveguide support?

 (b) What are the minimum and maximum possible values of b of the TE1 

mode?
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 (c) In what range of l0 values will the waveguide be single moded (TE0 and 

TM0)?

   n2(x) = n1
2; |x | < d1

    = n2
2; d1 < | x | < d2

    = n2
3; | x | > d2

  with n1 > n3 > n2. Write down the range of propagation constant for guided 

modes in such a waveguide.

Problem 19.14 but with n1 = n3. Can such a waveguide support guided modes? 

 19.16 A symmetric single mode planar waveguide is excited by light which is 

polarised at 45° to the x-axis and lying in the x-y plane. Show that the state of 

polarisation will repeat itself after propagation through a certain distance and 

obtain this distance. Assume that the propagation constants of the TE and TM 

modes are bTE and bTM.

SOLUTIONS

 19.1 For d = 3 mm, n1 = 1.5 and n2 = 1.49153, we get

  n n1
2

2
2-  = 

1

2p
 and V = 

2

0
1
2

2
2p

l
d n n-  = 

d

l0

 = 
3

0l
 

  (where l0 is measured in mm) and 

  
b

k0

 = n
b

2
2

24
+

È

Î
Í

˘

˚
˙

p
.

  For l0 = 1.5 mm, V is equal to 2.0 and from Table 19.1 we see that there 

will be only one TE mode with  = 0.453753; the corresponding value of 

b / k0 ª 1.49538. The same waveguide operating at l0 = 1.0 mm will have 

V = 3.0 and from Table 19.1 we see that there will be again only one TE mode 

with  = 0.628017; the corresponding value of b / k0 ª 1.49686. However, for 

l0 = 0.6 mm, V = 5.0 and there will be two TE modes with  = 0.802683 (the 

TE0 mode) and the other with  = 0.277265 (the TE1 mode). The correspond-

ing values of b / k0 ª 1.49833 and 1.49389. Finally, for l0 = 0.4286 mm, V = 7.0 

and there will have 3 TE modes with  = 0.879298 (TE0), 0.533727 (TE1) and 

0.061106 (TE2). The corresponding values of b /k0 are approximately given by

  
b

k0

ª 1.4990, 1.49606 and 1.49205

  respectively. Notice that all values of b/k0 lie between n1 and n2. Further, 

in each case, the waveguide will support equal number of TM modes (see 

Fig. 19.2). Further, as the wavelength is made smaller, the waveguide will 
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support larger number of modes and in the limit of the wavelength tending 

to zero, we will have a very large number of modes which is nothing but the 

ray-optics limit.

 19.2 For l0 = 0.6 mm, V will be 5.0 and we will have two TE modes with 

b/ k0 ª 1.49833 and 1.49389. Since n1 = 1.5, the values of cos q will be 0.99889 

and 0.99593 and therefore

  q ª 2.70° and 5.17°

  corresponding to the symmetric TE0 mode and the antisymmetric TE1 mode 

respectively.

 19.3 When 
2

0 1

D
k n a

<< 1 and for not too large values of m, we may carry out a 

binomial expansion in Eq. (43) to obtain

   b = bm ª k0 n1 – m +Ê
ËÁ

ˆ
¯̃

1

2
2D
a

    ª 
w

n1 – m +Ê
ËÁ

ˆ
¯̃

1

2
2D
a

; m = 0, 1, 2, 3, … (45)

  Thus the group velocity vg of the mode will be given by,

   
1

vg

 = 
d

d

b

w
 ª 

n

c
1  (46)

  independent of the mode number. Thus, in this approximation, all modes 

travel with the same group velocity. Indeed, using ray optics, we had shown 

in Problem 2.8 that all rays take approximately the same time to propagate 

through a certain distance of a parabolic index waveguide. It is for this reason 

systems.

 19.4 For n1 = 1.5, n2 = 1.47, d = 2.5 mm and l0 = 1.0 mm, we get V = 4.6888. If we 

carry out linear interpolation we would obtain for the TE0 mode

   = 0.780563 + 
0 788321 0 780563

0 125

. .

.

-
 ¥ 0.0638 ª 0.78452

  We therefore get 
b

k0

 ª 1.49359. Similarly for the TE1 mode.

 = 0.213390 + 
0 235151 0 213390

0 125

. .

.

-
 ¥ 0.0638 ª 0.22450

  and the corresponding value of b/k0 will be ª 1.47679. Once again, both 

values of b/k0 lie between n1 and n2.

 19.5 (a) We have a symmetric step-index waveguide [see Eq. (14)] with n1 = 1.50, 

n2 = 1.46, d = 4 mm operating at l0 = 0.6328 mm. Thus,

     
V

2
 = 

k d0

2
n n1

2
2
2-  = 

p
l

d

0

n n1
2

2
2-  = 

4

0 6328

p
.

1 5 1 462 2. .-

      ª 6.833
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    which is about 2.18p
5 TM modes.

   (b) Consider TE modes in a step index planar waveguide with d = 2.0 mm, 

n1 = 1.50, and the value of n2 is chosen such that n n1
2

2
2-  = 

1

p
. Thus,

     V = k0d n n1
2

2
2-  = 

2

0

d

l
 = 

4

0l
 (where l0 is measured in microns)

      = 4.0, 5.0 and 6.0

    for l0 = 1 mm, 0.8 mm and 0.66667 mm respectively. Using Table 19.1, the 

corresponding values of  are

(0.734844 and 0.101775), (0.802683 and 0.277265) and 

(0.847869 and 0.422976)

    Now, n n1
2

2
2-  = 

1

p
fi n2

2 = n1
2 – 

1
2p

 ª 2.1486 fi n2 ª 1.4658

    Thus, 
b

k0

 = n
b

2
2

24
+

È

Î
Í

˘

˚
˙

p
 = 2 1486

4 2
. +

È

Î
Í

˘

˚
˙

p
 and the corresponding 

value of b /k0 are given by

    (1.4721, 1.4667); (1.4727, 1.4682) and (1.4731, 1.4695)

    for l0 = 1 mm, 0.8 mm and 0.66667 mm, respectively. As can be seen all 

values of b/k0 lie between n1 and n2.

 19.6 For a parabolic index waveguide, the allowed values of b2 for discrete guided 

modes are given by

  b2 = b 2
m = k2

0 n1
2 – (2m + 1)

k n

a
0 1 2D

; m = 0, 1, 2, 3,…

  which can be written as

  m = 
1

2 2
10

2
1
2 2

0 1

k n

k n a

m-
-

È

Î
Í
Í

˘

˚
˙
˙

b

D /

   For a guided mode, the minimum value of b is k0 n2; thus if mmax represents 

the maximum value of m; then mmax must be the integer less than

   
1

2 2
10

2
1
2

0
2

2
2

0 1

k n k n

k n a

-
-

È

Î
Í
Í

˘

˚
˙
˙D /

 = 
1

2
1

2 2

2

V a

V a

/

/
-

È

Î
Í
Í

˘

˚
˙
˙

 = 
1

2
[V – 1]

  Now, V = k0a n n1
2

2
2-  = 

2

0

p
l

a n n1
2

2
2-  

    = 
2

0 6328

p
.

 ¥ 2 ¥ 1 5 1 462 2. .- ª 6.8

  Thus, mmax must be the integer less than 2.9; and therefore in this approxima-

tion there will be only 2 TE modes. 
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 19.7 V = k0d n n1
2

2
2-  = 

2

0

p
l

d
n n1

2
2
2-  

  Thus, V = 6 = 
2

0 6328

pd

.
1 5 1 482 2. .-  (where d is measured in microns)

  fi d = 
6 0 6328

2 1 5 1 482 2

¥

-

.

. .p
 ª 2.4752 mm 

  For V = 6, there are only 2 TE modes; the two values of  are: 0.847869 and 

0.422976. Now,

  
b

k0

 = n
b

2
2

24
+

È

Î
Í

˘

˚
˙

p
 = 2 1904

4 2
. +

È

Î
Í

˘

˚
˙

p

  Thus the corresponding value of b/k0 are 1.4872 (= n1 cos q1) and 

1.4836 (= n1 cos q2) where q1 and q2 are the angles that the component waves 

make with the z-axis. Since, we get q1 ª 7.49° and q2 ª 8.48°.

 19.8 The wavelength (at which the value of V will be equal to 3) must be 1.2656 mm. 

For V = 3, there will be only one TE mode and the corresponding value of  

will be: 0.628017. The corresponding value of b/k0 will be: 

  
b

k0

 = n
b

2
2

24
+

È

Î
Í

˘

˚
˙

p
 = 2 1904

4 2
. +

È

Î
Í

˘

˚
˙

p
 ª 1.485 

  which lies between n1 and n2.

 19.9 V = 
2

0

p
l

d
n n1

2
2
2-  = 

8

0 6328

p
.

1 49 1 462 2. .-  ª 11.815

  Thus, V/2 ª 5.91. In Fig. 19.2, if we plot the quadrant of a circle of radius 

5.91, we will have four points of intersection; two corresponding to 

symmetric modes and two corresponding to anti-symmetric modes. Now, the 

transcendental equation for symmetric modes [see Eq. (30)]

  
1

2
1V b-Ê

ËÁ
ˆ
¯̃

tan
1

2
1V b-Ê

ËÁ
ˆ
¯̃

 = 
1

2
V b

  can be written as

  Q ( ) = 
1

2
1V b-Ê

ËÁ
ˆ
¯̃

sin
1

2
1V b-Ê

ËÁ
ˆ
¯̃

 – 
1

2
V b cos

1

2
1V b-Ê

ËÁ
ˆ
¯̃

 = 0

  One can use any program (like GNUPLOT or MATLAB or MATHEMATICA) to 

plot Q( ) as a function of  in the region 0 <  < 1. We have used GNUPLOT 

to plot Q ( ) as a function of 
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that there are two (symmetric) TE modes one around  ª 0.95 (TE0 mode) and 

the other around  ª 0.55 (TE2 mode). In order to get greater accuracy, one 

may plot Q ( ) in the vicinity of the roots as we have done in Figs. 19.5 and 

 are close to 0.948 and 0.5474. In fact if 

we use the ‘Find root’ program in MATHEMATICA (or a similar program in 

MATLAB), we would obtain

 = 0.948421 (TE0 mode) and  ª 0.547390 (TE2 mode)

Fig. 19.4 The program for the GNU plot and (b) the corresponding variation of Q (b)

 Fig. 19.5

GNU Program

set yrange[-10:10]

set xrange[0.:1.0]

set nokey

set ytics

set xtics

V=11.815

p0(x)=0.

p1(x)=0.5*V*sqrt(1-x)

p2(x)=0.5*V*sqrt(x)*cos(p1(x))

p3(x)=p1(x)*sin(p1(x))

Q(x)=p3(x)-p2(x)

plot p0(x)w|8,Q(x)w|8

GNU Program

set yrange[-0.2:0.2]

set xrange[0.945:0.950]

set nokey

set ytics

set xtics

V=11.815

p0(x)=0.

p1(x)=0.5*V*sqrt(1-x)

p2(x)=0.5*V*sqrt(x)*cos(p1(x))

p3(x)=p1(x)*sin(p1(x))

Q(x)=p3(x)-p2(x)

plot p0(x)w|8,Q(x)w|8
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 Fig. 19.6

 Similarly, the transcendental equation for anti-symmetric modes [see Eq. (31)]

  –
1

2
1V b-Ê

ËÁ
ˆ
¯̃

cot
1

2
1V b-Ê

ËÁ
ˆ
¯̃

 = 
1

2
V b

 can be written as

  R ( ) = 
1

2
1V b-Ê

ËÁ
ˆ
¯̃

cos
1

2
1V b-Ê

ËÁ
ˆ
¯̃

 + 
1

2
V b sin

1

2
1V b-Ê

ËÁ
ˆ
¯̃

 = 0

 Fig. 19.7

One can again use any program to plot Q ( ) as a function of  in the region 0 <  

GNU Program

set yrange[-0.05:0.05]

set xrange[0.547:0.548]

set nokey

set ytics

set xtics

V=11.815

p0(x)=0.

p1(x)=0.5*V*sqrt(1-x)

p2(x)=0.5*V*sqrt(x)*cos(p1(x))

p3(x)=p1(x)*sin(p1(x))

Q(x)=p3(x)-p2(x)

plot p0(x)w|8,Q(x)w|8

GNU Program

set yrange[-8.0:8.0]

set xrange[0.:1.0]

set nokey

set ytics

set xtics

V=11.815

p0(x)=0.

p1(x)=0.5*V*sqrt(1-x)

p2(x)=0.5*V*sqrt(x)*sin(p1(x))

p3(x)=p1(x)*cos(p1(x))

R(x)=p3(x)+p2(x)

plot p0(x)w|8,R(x)w|8
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modes one around  ª 0.8 (TE1 mode) and the other around  ª 0.2 (TE3 mode). In 

order to get greater accuracy, one may plot Q ( ) in the vicinity of the roots as we 

 are close to 0.800 and 

0.224. In fact if we use the ‘Find root’ program in MATHEMATICA (or a similar 

program in MATLAB), we would obtain

 = 0.795397 (TE1 mode) and  ª 0.223714 (TE3 mode)

 Fig. 19.8

 Fig. 19.9

 The corresponding values of 
b

k0

 can easily be obtained by using the equation

   
b

k0

 = [ ( )]n b n n2
2

1
2

2
2+ -

 and we get, b /k0

      the TE0 mode,

      as the TE1 mode,

set yrange[-0.3:0.3]

set xrange[0.790:0.80]

set nokey

set ytics

set xtics

V=11.815

p0(x)=0.

p1(x)=0.5*V*sqrt(1-x)

p2(x)=0.5*V*sqrt(x)*sin(p1(x))

p3(x)=p1(x)*cos(p1(x))

R(x)=p3(x)+p2(x)

plot p0(x)w|8,R(x)w|8

set yrange[-0.3:0.3]

set xrange[0.22:0.23]

set nokey

set ytics

set xtics

V=11.815

p0(x)=0.

p1(x)=0.5*V*sqrt(1-x)

p2(x)=0.5*V*sqrt(x)*sin(p1(x))

p3(x)=p1(x)*cos(p1(x))

R(x)=p3(x)+p2(x)

plot p0(x)w|8,R(x)w|8
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    = 1.4765 for the second symmetric mode which is denoted 

     as the TE2 mode,

  and  = 1.4668 for the second anti-symmetric mode which is 

     denoted as the TE3 mode.

  Now, b/k0 = n1cos q = 1.49 cos q. Thus,

   q = cos–1 b /k

n
0

1

Ê
ËÁ

ˆ
¯̃

 = cos–1 1 4885

1 49

.

.

Ê
ËÁ

ˆ
¯̃  ª 2.6° for the TE0 mode,

  Similarly,

     q = cos–1 1 4839

1 49

.

.

Ê
ËÁ

ˆ
¯̃  ª 5.2° for the TE1 mode,

     q = cos–1 1 4765

1 49

.

.

Ê
ËÁ

ˆ
¯̃  ª 7.7° for the TE2 mode, and

     q = cos–1 1 4668

1 49

.

.

Ê
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ˆ
¯̃

 ª 10.1° for the TE3 mode.

 19.10 (a) n1 = 1.503, n2 = 1.500 and d = 4 mm. and l0 = 1 mm. Thus, 

    V = 
2

0

p
l

d n n1
2

2
2-  = 

2

1

p
 ¥ 4 ¥ 1 503 1 5002 2. .- ª 2.3855

     Now, (V = 2.375) ª 0.529300 and (V = 2.500) ª 0.551571. Thus, 

     (V = 2.3855) ª 0.529300 + (0.551571 – 0.529300) ¥ 
0 0105

0 125

.

.
 

      ª 0.5312

     Now, 
b

k0

 =  [ ( )]n b n n2
2

1
2

2
2+ -  = 1 5 0 5312 1 503 1 52 2 2. . ( . . )+ ¥ -

      ª 1.5016

   (b) V = 4.771

     Now, (V = 4.750) ª 0.788321 and 0.235151 

    and (V = 4.875) ª 0.795686 and 0.256461.

   (V = 4.771) ª 0.788321 + (0.795686 – 0.788321) ¥ 
0 021

0 125

.

.
    ª 0.7896

   
b
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 = [ ( )]n b n n2
2

1
2

2
2+ -  = 1 5 0 7896 1 503 1 52 2 2. . ( . . )+ ¥ -

    ª 1.5024

     Similarly, for the second mode 

     (V = 4.771) ª 0.235151 + (0.256461 – 0.235151) ¥ 
0 021
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.
      ª 0.2387
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2
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 19.11 We will show that if 

   n2(x) = n2(–x) (47)

  i.e., if the refractive index distribution function is symmetric about x = 0 then 

the eigen functions of the wave equation are either symmetric functions of x 

[i.e., y (x) = y (–x)] or antisymmetric functions2 of x [i.e., y (x) = –y (–x)]; 

we are representing Ey (x) by y (x).

wave equation [Eq. (4)] in the form 

    
d x

dx

2

2

y ( )
 + k 2

0 n
2(x) y (x) = b 2y (x) (48)

  Making the transformation x Æ –x we get

   
d x

dx

2

2

y ( )-
 + k 2

0 n
2(x) y (– x) = b 2y (–x) (49)

   where we have used the fact that n2(x) = n2(–x). Comparing the above two 

equations, we see that y (x) and y (– x) are eigenfunctions belonging to the 

same eigenvalue b2. Thus, y (–x) must be a multiple of y (x):

   y (–x) = ly (x)

  Clearly, y (x) = ly (–x) = l2y (x)

  so that l2 = 1 or l = ± 1. Hence, 

   y (–x) = ±y (x) (50)

  proving the theorem.

 19.12 Substituting the solution in Eq. (4) we obtain the following equation:

  –
1

0
2w

 + 
x

w

2

0
4

 + k2
0 n

2
0 – k2

0 ax2 – b2 = 0

x

of x2 on both sides must be equal and so also with the x-independent term. 

Thus, we obtain 

     w2
0 = 

1

0k a

  and  b 2 = k2
0 n

2
0 – k0 a

 19.13 (a) For the given waveguide parameters, V = k0d ( )n n1
2

2
2- ª 2.683p. Thus, 

the waveguide will support three TE modes and three TM modes.

 2. The theorem is strictly true for nondegenerate states only. By a nondegenerate state, we 

imply that there is only one wave function for a particular value of b2. If for the same 

value of b2, there are more than one linearly independent wave function, we have what 

is known as a degenerate state. For degenerate states the wave functions need not be 

symmetric or antisymmetric functions of x. However, even for degenerate states one 

can always construct appropriate linear combinations which are either symmetric or 

antisymmetric functions of x.
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   (b) The maximum and minimum values of  of the TE1 mode would be 2.3k0 

and 2.2k0 respectively.

   (c) The waveguide will be single moded in the range 0 < d < 0.745 mm.

Hence, the guided modes will have their propagation constants in the range 

n1 > �b  > n3.

 19.15 No, such a waveguide cannot support any guided modes.

 19.16 For exciting the TE mode of the waveguide, the incident polarisation must 

be along the y-direction while for exciting the TM mode of the waveguide, 

the incident polarisation must be along the x-direction. When light polarised 

at 45° to the x-axis and lying in the x-y plane is incident on the waveguide, 

then the incident light is a linear combination of the x- and y-polarisations and 

thus it will excite both the TE and the TM modes of the waveguide. Since the 

propagation constants of the TE and TM modes are unequal they will develop 

a phase difference as they propagate and this will change the polarisation state 

of the propagating wave. The polarisation will repeat itself when the phase 

difference between the two modes becomes equal to 2p. 

   Thus, if L is the distance for the polarisation to return to the incident 

polarisation, then we have

   (b TE – bTM) L = 2p or L = 
2p

b b( )TE TM-
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r, f, z

 Y r, f, z, t R r
cos

sin

l

l

f

f

Ï
Ì
Ó

¸
˝
˛
 ei w t – b z ; l

where w b  R r

 r
d R

dr
r

dR

dr
+ + {[k  n r b ] r  – l } R

where, k
w
c

2

0

p
l

l

l ≥
polarisation states and to the f lf or sin lf l

are f

n n r a 

 n
b 2

0
2k

n   GUIDED MODES

n r( )

n1

n2

Core
Cladding

a

Fig. 20.2

n1 n2

r = a

 

l

l

b
lf and the other to sin lf



274 Problems and Solutions in Optics and Photonics

b R r

b  guided 

modes l
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The second class of solutions correspond to
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with A ª B ª b which are within 

Table 20.1 Values of b, (bV)¢ and V(bV)≤ vs V for a 

 V  b b 
d

dV
 (bV) V(bV)≤

20.3 SPOT SIZE OF THE FUNDAMENTAL MODE
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20.4 SPLICE LOSS DUE TO TRANSVERSE 

 MISALIGNMENT
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 a  ª u w
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on the other and, for w ª  m m

Fig. 20.4

20.5 PULSE DISPERSION IN SINGLE MODE FIBERS
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where l c  ¥
per picosecond] and
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are known as the 
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A Quick Review

Integrated optics deals with optical devices on a planar substrate much like integrated 

electronic circuits. By having the optical components like source, modulators, 

switches, taps, etc. the integrated optical circuit is to process optical signals in an 

propagation of light among different devices on the same integrated optical chip, it 

Figure 21.1 shows a planar waveguide in which a high index planar region is 

surrounded by lower index regions. The high index region is usually fabricated on 

a substrate and the upper region is referred to as cover. If the refractive indices of 

the substrate and the cover are the same, then such a waveguide is referred to as 

a symmetric planar waveguide. If the two refractive indices are different then it 

corresponds to an asymmetric planar waveguide.

nc

nf

ns

z

x

Fig. 21.1

In a planar waveguide the modes split into two groups namely TE and TM modes. 

y-direction 

x and z components. Similarly for 

y-direction) and the 

x and z. For a given refractive indices of the 

symmetric planar waveguide the fundamental modes TE0 and TM0 have no cutoffs 

Integrated Optics

21
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The guided modes of a planar waveguide have to satisfy boundary conditions 

nf , substrate index of ns and cover index of nc, the propagation constant of TE modes 

is obtained as solutions of the following transcendental equation:

 tan k f d = 
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where A is a constant and is determined by the power carried by the mode.

The propagation constant of TM modes is determined from the following 

eigenvalue equation:
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The cut off of the modes are given by

 Vc
TE = tan–1 a  + mp; TE modes 

 Vc
TM = tan –1 ( / )a g 2  + mp

A directional coupler consists of two closely lying waveguides in which there 

amplitudes of the modes of the two waveguides are given by A and B, then they 
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dz
 = –ikBe iDb z

 
dB

dz
 = –ik Ae –iDb z

where k
wavelength of operation and the distance between the two waveguides. The quantity 

Db represents the difference in the propagation constant of the two interacting modes. 

If at the input power is coupled into one of the waveguides, then the fractional 

power at any value of z in the coupled waveguide is given by
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The fractional power remaining in the input waveguide is 1 – P2 z).

When Db = 0, i.e., when the two modes have the same propagation constant then 

there is complete power exchange between the two waveguides. If Db π 0 then the 

power transfer is incomplete. This is used in realising optical switches using the 

electro optic effect.

A periodic variation in the waveguide property such as refractive indices of core 

or cladding or the thickness of the waveguide can lead to coupling of light between 

a forward propagating and a backward propagating mode. If the effective index of 

the mode is neff , then the spatial period L
mode propagating in the backward direction is

 L = 
lB

n2 eff

where lB is called the Bragg wavelength. Such a device behaves as a wavelength 

 Rp = tanh2 
p

l
DnLI

B

Ê
ËÁ

ˆ
¯̃
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where I I

periodic perturbation, Dn represents the peak value of refractive index modulation of 

the periodic variation and L represents the length of the periodic medium.

obtain for the overlap integral

 I ª 1 – e
a w-2 2

0
2/

where a

symmetrically placed in the core of the waveguide) and w0

of the mode.

If the length of the grating is L

denoted by k then the bandwidth of the 
 Dl = 

l

l
B

Bn L

nLI
2 2

1
eff

+ Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

D

PROBLEMS

x-cut and a z-cut LiNbO  crystal. Planar waveguides are grown 

on these by proton exchange techniques. What modes can the waveguides 

support when light propagates along the ‘y’ and ‘z’ directions in the x-cut 

waveguide and along the ‘x’ and ‘y’ directions in the z-cut waveguide?

 21.2 A directional coupler with two identical waveguides is designed to have a 

coupling length of 2 mm. What is the permissible variation in the fabrication 

of the length of the coupler so that in the cross-state if unit power is incident 

on waveguide 1, the power emanating from the same waveguide is less than 

–20 dB.

Fig. 21.2;

d

n
1

a

b ns n
1

a

d

n
2

a

b ns n
2

a 
Fig. 21.2

   If n1 > n2, which coupler has a larger coupling length and why?

least sensitive to fabrication errors in the coupler length. What value of Db /k 

would you chose and why?

n1 n2 = 2.2 and d = 2 mm 

operating at l0 = 1.0 mm.
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neff of the TE1 

mode?

l0 0 and 

TM0)?

 
n

n
1

n
2

n
3

–d
2

–d
1 0 d

1
d
2

x

 Fig. 21.3

   For n1 > neff > n2, write down the solution for Ey for symmetric TE modes 

nf nc = 1.0 and 

ns mm, then 

0 mode can 

propagate.

the cutoff?

variation;

   n x e–x/10; x > 0

    = 1.0; x

  where, x is measured in mm.

l = 1 m x mm.

x = 0.

neff for guided modes in the waveguide?

b/k0

turning points of the rays corresponding to this mode?
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nf and a 

substrate and cover index of ns. If the effective index of the fundamental mode 

is neff

is l0.

electrodes for fabricating a phase modulator using LiNbO .

 
 Fig. 21.4

   What should be the direction of the optic axis of the crystal and the state of 

polarisation of the mode for minimum voltage for p Electro-optic 

Y-branch with input as shown. If the power 

in the input waveguide is P0 what would be the output power? Assume all 

branches to be single mode waveguides.

 
 Fig. 21.5

 21.12 Obtain the variation of power in the two waveguides of a directional coupler 

Db = 0) with the following initial conditions;

a b

a b

a b i

a b i

 with an effective 

l0 mm. What 
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condition, G = 0) are given as;

   
dA

dz
 = –ikB; 

dB

dz
 = –ikA

  where A and B represent the amplitude of the two modes and k represents 

l0 mm, what periodicity would 

you choose? In a Mach-Zehnder interferometer with unequal arm lengths, as the input 

mm and 

m m mm). 

the difference in arm lengths.

L L+ D

L

Fig. 21.6 Shown below is P2 z) in a directional coupler when unit power is incident at 

z

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

0.9

Fig. 21.7

k and Db of the directional coupler.

divided between the two waveguides?
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SOLUTIONS

 21.1 In proton exchange technique only the extraordinary index increases in 

the exchanged region. Hence x-cut y-propagating crystal will support only 

TE modes while x-cut z-propagating crystal no modes would be supported. 

Similarly, in the z-cut x-propagating or y-propagating crystals, only TM 

modes will be supported.

 21.2 Power remaining in the input waveguide at any length L is given by

 P1 = cos2 
p L

Lc2

Ê
ËÁ

ˆ
¯̃

   If the length of the coupler is exactly Lc

Lc ± DL then the power exiting the 

   P1 = cos2 
p
2

1 +È
ÎÍ

˘
˚̇

Ê
ËÁ

ˆ
¯̃

DL

Lc

 = sin2 p
2

DL

Lc

Ê
ËÁ

ˆ
¯̃

assuming DL L, we obtain

  DL 
Lc

p
 ª

n1 > n2

such a coupler would be least sensitive to errors in length. For such a coupler 

we need to have Db = 2k.

V p. Hence, the number of guided TE 

neff of the TE1

2.2 respectively.

V p. Thus for l > 

mm, the waveguide would be single moded.

d1 x d1, the solution would be

   Ey = A sin k x + B cos kx

   k2 = k 2
0 n2

1 – n2
eff )

   For symmetric solution A = 0 and for antisymmetric solution B = 0.

   For d1 x d2

   Ey = Ced x + De–d x



296 Problems and Solutions in Optics and Photonics

   d 2 = k 2
0 n2

eff  – n2
2)

   For d2 x

   Ey = Ee–g x

   g 2 = k 2
0 n2

eff  – n2)

a

for the waveguide to support only the fundamental TE mode, the V 

mm.

g c and at cutoff since the effective 

index of the mode is ns mm.

b = k0 n x0) ª mm–1

neff

x mm and x = 0.

width and the depths of penetration of the mode into the surrounding cladding 

regions. The depth of penetration is the distance from the interface where the 

e of its value on the interface and is given by 1/g where

  g = k0 ( )n nseff
2 2-

   Hence, the modal width would be approximately

   w = d + 
2

g
 = d + 

2

0
2 2k n ns( )eff -

r , for 

the z-direction and the polarisation should be oriented along the z-direction. 

x-cut, y-propagating or y-cut, 

x-propagating and the incident light should be polarised parallel to the surface 

of the waveguide.

 21.11 Since all waveguides are single moded, the output power would be half of 

the input power. The other half of the power will get radiated away into the 

substrate.

there will be no exchange of power between the waveguides.

p/2 out of phase. In one of the cases, as the waves 

the other case to the second waveguide. In both cases after complete transfer 

the power will exchange periodically between the waveguides.
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  K = 
2p
L

 = Db = 
2p
l0

 Dneff

  where K is the propagaton constant of the acoustic wave and L is the acoustic 

wavelength. Substituting for the values we obtain the required acoustic 

mm.

l1 and the 

l2, then we 

have

   
2p
l1

 neff Dl = 2mp;

   
2p
l2

 neff Dl m + 1)p ;

   Eliminating m from the above two equations we obtain the required value 

of Dl mm.

   P2, max = 
k

k
b

2

2
2

4
+

D

   This happens when,

   k
b2

2

4
+

Ê
ËÁ

ˆ
¯̃

D
 L = 

p
2

we obtain k p m–1 and Db –1.

   The length at which the power gets equally divided among the two 

waveguides is given by

   P2 L) = 
k

k
b

k
b2

2
2

2 2
2

4

4
+

+
Ê
ËÁ

ˆ
¯̃ ¢

È

Î
Í
Í

˘

˚
˙
˙D

D
sin L

L¢



 

A Quick Review

linear electro-optic effect Pockels effect

Kerr effect

   D 1
2nij

Ê

ËÁ
ˆ

¯̃
 = r Eijk k

k =1 2 3, ,

Â i j

ri jk

i j

   D 1
2ni

Ê
ËÁ

ˆ
¯̃
 = r Eik k

k =1 2 3, ,

Â i

   
x

n

y

n

z

nx y z

2

2

2

2

2

2
+ +

nx ny nz

Electro-Optic Effect

22
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   r33 = 30.8 ¥ 10–12

   r13 ¥ 10–12

   r  = 28 ¥ 10–12
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   Vp = 
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3
632n ro
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   Vp = 
l0

3
63n r

d

L
o

Ê
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ˆ
¯̃

   Here d L

   Vp = 
l0

3
33

3
13( )n r n r

d

L
e o-

Ê
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ˆ
¯̃

   d = 2
l
p
L

l L

d

 d

L

 Fig. 22.1

PROBLEMS
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 Fig. 22.2
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V

 Fig. 22.4
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W
no k = 21. e0 ¥
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z

 Fig. 22.5

   no = 2.28

   ne = 2.20

   r33 = 30 ¥ 10–12 

   r13 = 8 ¥ 10–12

   l0 = 1 m
   t

SOLUTIONS
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     nx = n

     ny ¢ ª n – 
n r Ex

3
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2

     nz ¢ ª n + 
n r Ex
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y ¢ z¢.
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 n3
0 r V
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   l0 = 
0 6.

m
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m

m

m
x
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z
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x z

change.

n0 ± m ¥ 109 m = 

J 2
1 z z ~ 1.8 ¥ 10–3.

   Dn = 
1

2p RC

C R

d L

C = e0kdL d = e0k L
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A Quick Review

When an acoustic wave is launched into a medium, it creates a periodic strain 

variation which propagates alongwith the acoustic wave. The strain causes a change 

in the refractive indices of the medium through the strain optic effect. Acousto-optic 

effect refers to the change in the optical properties of a medium in the presence of an 

acoustic wave. The presence of the acoustic wave creates a periodic refractive index 

variation in the medium and this periodic variation leads to diffraction of an incident 

light beam. In the regime of Raman Nath diffraction, the medium behaves as a thin 

phase grating and one observes multiple order diffraction while in the regime of 

Bragg diffraction, the medium behaves as a volume phase grating and one observes 

a single order diffraction. 

 1. If L is the length of the medium, k is the propagation constant of the light wave 

and K is the propagation constant of the acoustic wave, then Raman Nath 

diffraction occurs when

   L << 
k

K 2
 (1)

 2. For Bragg diffraction we must satisfy

   L >> 
k

K 2
 (2)

 3. The angle of diffraction (within the medium) corresponding to the mth order 

of Raman Nath diffraction is given by

   sin qm = m
l0

0n L
; m = 0, ±1, ±2,… (3)

  where l0 is the free space optical wavelength, n0 is the refractive index of the 

medium in the absence of the acoustic wave and L is the wavelength of the 

acoustic wave.

mth order Raman Nath diffraction is given 

by

   hm = J 2
m (z ) (4)

  where z = k0DnL with Dn is the peak refractive index modulation due to 

the presence of the acoustic wave and L is the length of interaction with the 

acoustic wave.

Acousto-Optic Effect

23
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 5. Coupled mode equations for small Bragg angle diffraction

   
dA

dx
0  = k A+ eiDa x; 

dA

dx
+  = - -k aA e i x

0
D  (5)

  where, k ª 
p

l

Dn

0

 (6)

   Da = a – a+ (7)

   b+ = b + K (8)

   k2 ª k2
+ = (a2 + b2) = (a 2

+ + b 2
+)  (9)

  The powers carried by the incident and diffracted waves are | |A0
2
 and | |A+

2
 

respectively.

 6. Power coupled in small angle Bragg diffraction

   P+ = 
k

k
a

2

2
2

4
+ D

sin2 k
a2

2

4
+

È

Î
Í
Í

˘

˚
˙
˙

D
x  (10)

 7. Coupled mode equations for large Bragg angle diffraction:

   
dA

dx
0  = 

b

b| |
s bA ei z

+
D ; 

dA

dx
+  = –

b

b
+

+| |
s bA e i z

0
- D  (11)

  where, s ª 
p

l

Dn

0

 (12)

   Db = b + K – b+ (13)

   a+ = a (14)

   k2 ª k2
+ = (a2 + b2) = (a 2

+ + b 2
+) (15)

  and | |A0
2

and | |A+
2
 represent the power carried by the incident light wave and 

the +1 order diffracted light wave.

 8. For codirectional coupling, the signs of b and b+ are the same while in contra 

directional coupling they have opposite signs

 9. Power coupled in codirectional coupling

   P+(L) = 
s

s
b

2

2
2

4
+

D
sin2 s

b2
2

4
+

Ê

Ë
Á
Á

ˆ

¯
˜
˜

D
L  (16)

   P+ = tanh2 sL (17)

 11. Bandwidth for codirectional interaction

   Dl = 
3

2 0
L
L

l  (18)

   dl = 
l

p
B

nL

2

( )s p2 2 2L +  (19)
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 13. Relationship between acoustic intensity and strain s  in the medium

   Ia = 
1

2
rn 3

a s 2  (20)

PROBLEMS

 23.1 Light undergoes Raman Nath diffraction from acoustic waves propagating in 

water. State what will happen to the diffracted light waves as (a) the frequency 

of the acoustic wave is changed (b) as the amplitude of the acoustic wave is 

changed.

 23.2 Consider Raman Nath diffraction of a light wave at l0 = 1 mm from acoustic 

waves of frequency 10 MHz propagating in water (n = 1.33). If the cell 

width is 1 cm and Dn produced by the acoustic waves is 2 ¥ 10–6, obtain the 

 23.3 A light beam consisting of two wavelength components at 0.6 and 0.61 mm 

-

0.1434 ¥ 10–2 degrees. Assuming the angles of diffraction to be small, calcu-

late the frequency of the acoustic wave. Assume na = 1500 m/s and refractive 

index of water 1.33.

 23.4 Raman Nath diffraction of light at 500 nm occurs from a standing acoustic 

wave at frequency 10 MHz propagating in water. What time dependent 

intensity variation, if any, of light do you expect to observe along the direction 

na = 1500 m/s, n = 1.33].

 23.5 Consider a thin medium (of thickness d along x) with a refractive index 

variation given by 

   n(z) = n0 – a z;

   A plane light wave is incident normally as shown in 

x = d) 

and interpret the result.

 23.6 A laser beam at a wavelength of 1500 nm is propagating in an isotropic 

medium of refractive index 1.5 and na

frequency is launched in such a direction that a frequency upshifted diffracted 

light wave satisfying the Bragg condition appears at an angle (within the 

medium) making 2° to the incident light wave. Calculate the frequency 

difference between the incident and the diffracted light waves. 

characteristic:

   Center wavelength lc = 1550 nm

R = 81%

Dn = 5 ¥ 10–5, what should be the length of the 

x

z
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 (b) What would you do to reduce the spectral width of the grating without 

 23.8 When light at l0 = 1.06 m n = 1.92 and 

na = 3.1 km/s, we observe an acousto optically diffracted beam appearing 

at right angles. What is the frequency and direction of propagation of the 

 23.9 Consider a glass slide of refractive index 1.5 with a thickness varying as 

  t = t0 + Dt sin 600 p z (z in m)

  with t0 = 1 mm, Dt = 0.03 mm. Light wave at a wavelength of 600 nm is 

incident normally on the slide and undergoes Raman Nath diffraction

I order in air.

 (b) Calculate the approximate power of the I order.

   n = 1.5 + 0.001 sin 5p z; (z is measured in mm)

23.11 Light of wavelength l0 = 1 mm undergoes +1 order Bragg diffraction by 

acoustic waves of frequency fa in a medium with n0 = 2.0 and na = 5 km/s. 

P+ on the angle of incidence q for 

a length of interaction of 10 mm.

 
Fig. 23.1

 (a) Calculate the acoustic frequency.

k.

3 for which n0 = 2.28, ne = 2.20 and na = 3.6 km/s and 

with both the light beam and the acoustic beam propagating perpendicular to 

the optic axis along the same direction.

 (a) For l0 = 1500 nm, what should be the acoustic frequency for maximum 

 (c) If the input light has ordinary polarisation, will the diffracted light 

length of the periodic refractive index region needs to be increased/decreased 

Ans. 1.34)
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 23.14 A medium is characterised by a refractive index variation of the form

   n(z) = 1.5 + 0.001 sin Kz  (z is measured in mm)

l0 = 1.5 mm when illuminated normally.

 (a) What is the value of K

n0 = 1.5.

 (a) Calculate the period, the length and the peak refractive index modulation 

of the grating. 

 
 Fig. 23.2

Show that in the case of codirectional coupling 

  
d

dz
(| | | | )A A0

2 2+ +  = 0.

Show that in the case of contra directional coupling

  
d

dz
(| | | | )A A0

2 2- +  = 0.

SOLUTIONS

 23.1 (a) As the frequency of the acoustic wave changes, the angle of diffraction of 

all orders will change and the diffracted beams would scan angularly.

of all orders will change leading to an intensity modulation of all orders.

J 2
1 (z ) where 

z = (2p/ l0)DnL J1(x) 

by x/2. Substituting the values of various parameters we obtain a diffraction 

¥ 10–4.



Acousto-Optic Effect 313

given approximately by 

  qd = 
l0 fa

an

be 

  Dqd = 
( )Dl0 fa

an

   Substituting the values of various parameters we obtain the acoustic 

frequency of 3.75 MHz.

 23.4 A standing acoustic wave consists of acoustic waves propagating in both 

directions. Each of the acoustic waves would induce Raman Nath diffraction 

along the same set of directions. However, since the two acoustic waves are 

propagating in opposite directions, the frequency shift produced by the two 

acoustic waves will be of opposite signs. Hence, the diffracted beams in each 

order will beat with each other producing sinusoidal intensity modulation. 

modulated at a frequency of 20 MHz.

x = 0, the incident plane wave propagating along the x-direction 

will be given by 

  E = A

   The thin medium induces phase changes at different values of z depending 

on the refractive index at z

distribution at the output of the medium at x = d will be given by

  E = Ae– ikn (z)d = A ikn0d + ikda z]  

   The above expression represents a plane wave propagating with a 

z-component of propagation vector –ka. Thus, the emerging wave is a plane 

wave propagating along a direction making an angle of sin–1(ad ) with the 

x-axis and propagating along the –z-direction. 

 23.6 When small angle Bragg diffraction takes place, the angular deviation between 

the incident and diffracted beam is 2qB where qB is the Bragg angle. In the 

given problem the angle of deviation is given as 2°. Hence, the Bragg angle 

must be 1°. Using the formula for Bragg angle, we obtain the frequency of the 

acoustic wave to be 139.6 MHz. Hence, the frequency of the diffracted beam 

is upshifted by 139.6 MHz with respect to the incident beam.

of 0.81, we must have sL ~ 1.472. Using the expression of s, we get the 

required length of the grating as 1.4 cm.

  (b) This can be achieved by increasing the grating length and decreasing Dn 

such that DnL remains constant. 

 23.8 Since the diffracted light wave makes an angle of 90° with the incident light 

wave, the acoustic wave must be propagating at an angle of 45° with respect 
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to the light wave. Using the Bragg condition we obtain for the frequency of 

the acoustic wave 

  fa = 
2

0

n an

l

    Substituting the various values we obtain for the acoustic frequency 

7.94 GHz.

 23.9 (a) First order Raman Nath diffraction occurs at an angle given by 

  q = sin–1 l0

L
Ê
ËÁ

ˆ
¯̃

 ª 0.01°

J 2
1 (z ) where z = k0nDt. Substituting 

the values we obtain z ª 0.47. Since for small z, J1(z ) ª z/2, the diffraction 

l0 = 2nL. 

Using the various values we obtain the peak wavelength as 1.2 mm.

 23.11 (a) Since the Bragg angle is 0.025 rad, the frequency of the acoustic wave is 

500 MHz.

kL = 3 2/ . 

Using L = 10 mm, we obtain k ª 1.05 ¥ 10–2  m–1.

have orthogonal polarisations. Thus, the required Bragg condition is 

given by: 

    K = ko – ke = 
2

0

p
l

(no – ne)

     Using the various values, the frequency of the acoustic wave is 

192 MHz.

  ( b) Using the expression for the bandwidth, we obtain L > 3.04 cm. 

  (c) Since the incident light wave and the acoustic wave are propagating in the 

same direction and the incident wave is an ordinary wave, the diffraction 

corresponds to –1 order diffraction.

R, then tanh sL = R . If L1 and L2 are the two lengths 

R1 and R2, then

   tanh s L1 = R1

   tanh s L2 = R2

   Using the given values, we obtain the values of sL1 and sL2 and ratio of the 

two lengths as 1.34.

23.14 (a) K = 4p mm–1.

   (b) For the given parameters, s = 2.09 ¥ 10–3 mm–1

is 0.25, the length of interaction is 0.26 mm.

using the Bragg condition, we obtain the period of index modulation as 

0.517 m
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sL

use Eq. (19) to obtain the length of the grating as 1.768 cm.

   Using various values in Eq. (12), we obtain Dn ~ 7.26 ¥ 10–5.

directional coupling,

  
dA

dx
0  = sA+ ; 

dA

dx
+  = - sA0

  assuming that both b and b+ are positive. Now,

  
d

dz
(| | | | )A A0

2 2+ +  = A0
* dA

dz
0  + A0

dA

dz
0
*

 + A+
* dA

dz
+  + A+

dA

dz
+
*

 = 0

directional coupling,

  
dA

dx
0  = sA+ ; 

dA

dx
+  = sA0

   assuming b to be positive and b+ to be negative. Now,

  
d

dz
(| | | | )A A0

2 2- +  = A0
* dA

dz
0  + A0

dA

dz
0
*

 – A+
* dA

dz
+  – A+

dA

dz
+
*

 = 0



 

A Quick Review

 1. For large intensities of light, matter behaves in a nonlinear fashion and we can 

describe the electric polarisation of the medium by the following equation:

   √ = e0cE + 2e0dE 2+ e0c (3)
E

3+ … (1)

c 

represents the linear susceptibility and the second and third terms represent 

d and c (3) represent second order and third 

order susceptibilities respectively.

 2. The second term corresponds to second order nonlinearity and is present only 

in media possessing no inversion symmetry. The third term corresponds to 

third order nonlinearity and is found in all media.

 3. The second term leads to second harmonic generation, sum and difference 

self phase modulation, cross phase modulation and four wave mixing. This is 

 4. The coupled equations describing second harmonic generation are given by

   
dE

dz
1  = – ik E2 E

*
1 e– i Dkz;

   
dE

dz
2  = – ikE2

1 e
iDkz; (2)

   k = 
w d

cn1

   Dk = k2 – 2k1 (3)

  where E1 and E2

wave at  frequency w and the second harmonic at frequency 2w and n1 and n2 

represent the  refractive indices of the media at these frequencies respectively. 

k1 and k2  represent the propagation constants at frequencies w and 2w 

respectively.

   h = 
P L

P
2

1 0

( )

( )
 = 

2 0
2

1
2

2

m w

cn n
d2 L2 P

A
1 sinc2 Dk L

2

Ê
ËÁ

ˆ
¯̃

 (4)
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  where P1 and P2 represent the powers at frequencies w and 2w, respectively, 

A is the area of cross section of the beams and L is the length of interaction.

 6. In vectorial form the nonlinear polarisation for second harmonic generation is 

given by

   Pi
(2w) = e0dijk Ej

(w) Ek
(w); i, j, k = 1, 2, 3 (5)

  where Ej
(w) represents the j th w frequency 

and similarly Ek
(w) represents the k th w 

frequency. dijk is a tensor of rank three. The last two indices can be contracted 

and the tensor in contracted form is represented by dij with i = 1, 2, 3 and

j = 1.2 … 6.

 7. The components of nonlinear polarisation at the second harmonic and the 

the following equation:

   

P

P

P

x

y

z

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

 = e0

d d d d d d

d d d d d d

d d d d d d

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

Ê

Ë

Á
ÁÁÁ

ˆ

¯

˜
˜̃

E E

E E

E E

E E

E E

E

x x

y y

z z

y z

x z

x

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

w w

w w

w w

w w

w w

w

2

2

2 EE y
( )w

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜
˜
˜
˜

 (6)

  where, Pi
(2w) = 

1

2
[ . .]

( )Pe c ci
t k z2 1w - +  (7)

 8. The nonlinearity tensor of lithium niobate is given by

   [d] = 

0 0 0 0

0 0 0

0 0 0

15 22

22 22 15

31 31 33

d d

d d d

d d d

-
-

Ê

Ë

Á
ÁÁ

ˆ

¯

˜
˜̃  (8)

 9. Using a periodic variation of nonlinearity along the propagation direction, it 

as quasi phase matching. The quasi phase matching spatial period required for 

second harmonic generation is given by

   L = 
p

w w w
c

n n| ( ) ( )|2 -
 = 

l

w w
0

2 2| ( ) ( )|n n-
 (9)

  where n(w) and n(2w) are the refractive indices of the material at the 

fundamental and second harmonic frequencies respectively and l0 is the 

fundamental wavelength in free space.

 10. The second harmonic generation can be considered to be a process in which 

two photons at frequency w merge to form a single photon at frequency 

2w. The phase matching condition is nothing but momentum conservation 

condition for this process.
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 11. In sum frequency generation one photon at frequency w1 and one photon at 

frequency w2 merge to form a single photon at frequency w3 given by

   w3 = w1 + w2 (10)

k1, k2 and k3 

are the propagation constants of the waves at the frequencies w1, w2 and w3 

condition:

   k3 = k1 + k2 (11)

nonlinear polarisation is given by

  Pnl = e0c (3) E3

 13. The refractive index of a medium possessing third order nonlinearity is given 

by

   n = n0 + n2 I (12)

  where, n2 = 
3

4

3

0 0

c ( )

c ne
 (13)

 14. In the presence of nonlinearity, the propagation constant of the mode is given 

by

   bNL = b + g P (14)

  where, g = 
k n

A
0 2

eff

; Aeff  = 2p
y

y

2
2

4

Ú
Ú

( )( )

( )

r rdr

r rdr
 (15)

 15. The phase shift suffered by an optical beam in propagating through a length L 

   F = b

0

L

Ú NL dz = bL + g P0 Leff (16)

  where, Leff = 
( )1 - -e La

a
 (17)

  is called the effective length for nonlinear effects. Here a is the attenuation 

PROBLEMS

 24.1 Two plane waves at frequencies w1 and w2 are incident on a nonlinear medium. 

What decides whether the nonlinear effect will lead to the generation of sum 

frequency (w1 + w2) or difference frequency (w1 – w2)?

 24.2 The refractive index of a medium at wavelengths of 1000 nm and 500 nm 

are given by 2.16 and 2.27 respectively. What is the velocity of the nonlinear 

polarisation generated at the second harmonic frequency?
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 24.3 Lithium niobate is a crystal with n0 > n e and in which phase matching for SHG 

is possible for propagation along the X direction (XYZ represents the principal 

axis system). From phase matching considerations, state what should be the 

state of polarisation of the fundamental and that of the second harmonic. Write 

down the corresponding phase matching condition.

 24.4 Consider SHG in quartz for which corresponding to a fundamental wavelength 

of 694 nm, 

  no
(w) = 1.541;  ne

(w) = 1.550;  no
(2w) = 1.566;  ne

(2w) = 1.577. 

  Can one obtain birefringent phase matching? Give brief reasons.

 24.5 Consider sum frequency generation as shown below. Obtain the maximum 

power at the sum frequency that can be generated.

Nonlinear

medium

1 m, 1 Wm

1.5 m, 1 mWm

 24.6 Consider sum frequency generation with wavelengths of 2 mm and 1 mm. 

 (a) What is the wavelength of the generated wave?

 (b) Write the corresponding phase matching condition in terms of refractive 

indices at different wavelengths.

 24.7 Consider second harmonic generation in lithium niobate and assume that the 

fundamental is an e-wave at 1 mm leading to an e-wave at 0.5 mm. Given that 

the refractive indices at these two wavelengths are 2.15 and 2.25 respectively, 

power is 1 W and the area of the beam is 1 mm2. Assume d = 30 ¥ 10–12 m/V. 

mm and a signal 

wavelength of 1.5 mm.

 (a) Obtain the wavelength of the idler.

 (b) If the input pump power is 1 W and an input signal power of 1 mW is 

frequency.  

 24.9 The ordinary and extraordinary refractive indices of lithium niobate for 

1.06 mm and 0.53 mm are given below:

   no (1.06 mm) = 2.2323; ne (1.06 mm) = 2.1561

   no (0.53 mm) = 2.3247; ne (0.53 mm) = 2.2355

 (a) If both w and 2w waves are extraordinary waves propagating along the 

x-direction, what period L0 would you choose for QPM to generate SHG 

 (b) If I choose the 1.06 mm to be an ordinary wave and that at 0.53 mm to be 

an extraordinary wave what would be the corresponding QPM period?
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 24.10 LiNbO3 is a uniaxial medium with n0 > ne with a d tensor given by Eq. (8). 

It is found that one can achieve noncritical phase matching for SHG while 

propagating along the X-axis of the crystal. XYZ are principal axes of the 

crystal. Given that

   Pi
(2w) = dijk Ej

(w) Ek
(w) (18)

  and that the input at w is Y polarised, obtain the components of the nonlinear 

polarisation at 2w. Which component of the nonlinear polarisation will be 

responsible for SHG?

   P = e0 c (3) E3 (19)

   Assuming the incidence of waves at frequencies w1 and w2 (with propagation 

constants b1 and b2) obtain an expression for the nonlinear polarisation 

generated at frequency w1.

n2 = 3.2 ¥ 10–20 m2/W and an effective mode 

area of 50 mm2

24.13 Waves corresponding to frequencies w1 and w2

(a) Obtain an expression for the nonlinear polarisation at a frequency w3 = 2w1 

– w2, and (b) What is the velocity of the nonlinear polarisation wave at w3?

 24.14 Light waves at frequencies w0 and w0 + Dw (Dw << w0) are incident in an 

w0 – Dw

24.15 Consider SHG for a fundamental wavelength of 1 mm over a crystal of length 

2.5 cm. Estimate the maximum allowed value of Dk so that the reduction in 

phase matched case.

24.16 The threshold condition of a parametric oscillator is given by

   cosh gth L = 
1 +

+
R R

R R
s i

s i

 (20)

  where symbols have their usual meaning. Show that the threshold gain required 

for a singly resonant OPO is much higher than that of a doubly resonant OPO.

 24.17 Give all possible wavelengths that can be generated using inputs at 800 nm 

and 1200 nm in a c(2) nonlinear medium.

 24.18 The phase matched SHG KDP

what value of Dk will the SHG

 24.19 In an SHG

the input power is 1 W. If the input wavelength is 1 mm, how many photons at 

the second harmonic frequency are exiting per unit time from the medium?
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SOLUTIONS

 24.1 The phase matching condition would determine which of the two processes will 

take place. If the phase matching condition for the sum frequency generation 

then it will lead to difference frequency generation.

 24.2 The nonlinear polarisation at the second harmonic frequency travels at the 

same velocity as the electromagnetic wave at the fundamental frequency. 

Hence, the velocity of the nonlinear polarisation at the second harmonic 

frequency is c/2.16.

 24.3 Since the refractive index increases with increase in frequency and for the 

given crystal no > ne, the fundamental should have ordinary polarisation and 

the second harmonic should have extraordinary polarisation so that the phase 

matching condition of no(w) = ne(2w

 24.4 Since no
(2w), ne

(2w) > no
(w), ne

(w) it is not possible to achieve birefringent phase 

matching in this case.

 24.5 The wavelength ls corresponding to the sum frequency is given by 

  
1

ls

 = 
1

1

1

1 5
+

.

  which gives us ls = 0.6 mm.

  For complete power conversion by sum frequency generation, the entire 

power at 1.5 mm would get converted to the sum frequency. In sum frequency 

generation, one photon at 1.5 mm and 1 photon at 1 mm fuse to form one photon 

at the sum frequency. Hence, if all the power at 1.5 mm is converted to the sum 

frequency, then the number of photons exiting at the sum frequency will be 

equal to the number of photons incident at the wavelength of 1.5 mm. The 

number of photons corresponding to 1.5 mm (referred to here as the frequency 

w1) entering the crystal per unit time is 

  n = 
P

�w1

  which should equal the number of photons exiting the crystal at 0.6 mm. 

Hence, the power exiting the sum frequency would be

  Ps = n�ws = 
w

w
s

1

P = 
l

l
1

s

P = 
1 5

0 6

.

.
1 = 2.5 mW 

 24.6 (a) Wavelength of the generated wave will be 0.666 mm.

   (b) The phase matching condition is given by

     
n( )l

l
3

3

 = 
n n( ) ( )l

l

l

l
1

1

2

2

+  (21)

  where n(l) is the refractive index of the medium at the wavelength l and l’s 

represent free space wavelengths.
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present case the two waves are not phase matched and hence Dk is nonzero. 

approximately 8 ¥ 10–10

nonphase matched interaction.

 24.8 (a) Idler wavelength is given by

     
1

li

 = 
1 1

l lp s

-  (22)

    Substituting values of the pump and signal wavelengths we obtain the 

idler wavelength to be 3 mm. 

   (b) The signal power increases by 0.5 mW. Since the number of photons 

generated at the idler must be equal to the number of signal photons added 

to the signal, the exiting power at the idler must be equal to the number of 

additional signal photons multiplied by the idler photon energy:

  Pi = 
DPs

s�w
�w i = 

l

l
s

i

DPs = 0.25 mW

 24.9 (a) The QPM period required is given by Eq. (9). Substituting the values of 

the extraordinary indices at w and 2w frequencies we obtain the required 

QPM period to be 6.67 mm.

   (b) In this case, we need to use the ordinary index at 1.06 mm and the 

extraordinary index at 0.53 mm to obtain the QPM period which comes 

out to be 165.6 mm.

 24.10 Since the fundamental wave is Y-polarised, we have

   Ex
(w) = 0, Ey

(w) π 0, Ez
(w) = 0 (23)

   Hence, the nonlinear polarisation generated is given by the following:
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z
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Á
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ˆ

¯

˜
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˜

 (24)

   Since the phase matching is achieved using birefringence phase matching, 

the generated second harmonic would be z-polarised (extraordinary polarisa-

tion). Hence, the z component of the nonlinear polarisation will be responsible 

for the generation of the second harmonic.
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   E = E1cos (w1t – b1z) + E2cos(w2t – b2z) 

    = 
1

2
( . .)

( )E e c ci t z
1

1 1w b- +  + 
1

2
( . .)

( )E e c ci t z
2

2 2w b- +  (25)

  Substituting in the expression for the nonlinear polarisation we obtain the 

nonlinear polarisation at the frequency w1 to be given by

   PNL
( )w1  = 

e0
3

8

c ( )

[( | | | | ) . .]
( )

3 61
2

2
2

1
1 1E E E e c ci t z+ +-w b   (26)

second term the cross phase modulation.

24.12 (a) Using the expression for the change in index we obtain

  Dn = n2I = n2
P

Aeff

 ª 6 ¥ 10–11 

  ( b) The nonlinear change in phase is given by

    DfNL = 
2

0

p
l

DnL = 
2

1 55 10 6

p

. ¥ - 6 ¥ 10–11 ¥ 20 ¥ 103 ª 1.55p

    which represents a large change in index. The change in phase is large 

inspite of a very small index change since the length of propagation is 

very large compared to the wavelength.

 24.13 Using a similar procedure as in Problem 24.11 we obtain the nonlinear 

polarisation at w3 to be 

   PNL
( )w1  = 

e0
3

8

c ( )

[3E1
2 E*

2 exp[i(w3t – (2b1 – b2)z)] + c.c.] (27)

   The velocity of the nonlinear polarisation wave is given by 

   vNL = 
w

b b
3

1 22 -
 (28)

 24.14 From Problem 24.12, we see that this situation corresponds to w1 = w0, and 

w2 = w0 – Dw
satisfy the condition that the velocity of the nonlinear polarisation and the 

electromagnetic wave at w0 – Dw be the same. This would happen if 

   Db = b (w0 + Dw) – {2b(w0) – b(w0 – Dw)} = 0 (29)

   Since Dw << w0 we can make Taylor series expansion of the propagation 

constants about the frequency w0 and obtain the following condition:

   D D
D

b b w w
b

w

w b

ww w w w

=
= =

( )
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w = w0. 
2 Dk L

2

Ê
ËÁ

ˆ
¯̃

. Thus, if the 

Dk = 0, then we must 

have Dk L/2 < 1.1 or Dk < 0.88 cm–1. 

 24.16 In a singly resonant oscillator Ri = 0. Thus, the threshold condition is given by

   cosh gth, s L = 
1

Rs

 (31)

Rs ~ 1 and we can write Rs = 1 – ds with ds << 1. 

Simplifying the above equation we get,

   gth,s L = 2 1( )- Rs  (32)

   For the doubly resonant oscillator assuming Ri ~ 1, we get

   gth,d L = ( ) ( )1 1- -R Rs i  (33)

   
g

g

th s

th d

,

,

 = 2

1( )- Ri

 (34)

  which is very large for Ri

for a doubly resonant oscillator.

 24.17 The new wavelengths would correspond to second harmonics of the two 

waves, the sum and difference frequencies. These correspond to 400 nm, 

600 nm, 480 nm, and 2400 nm.

Dk L/2 = p. This corresponds to Dk = 

0.4p cm–1. 

given by 20 mW. For a wavelength of 500 nm, this corresponds to about 

5 ¥ 1016 photons.

Table 24.1 Values of second order nonlinear 

Material dij (m/V)

KDP d36 = 0.42 ¥ 10–12

d14 = 0.42 ¥ 10–12

LiNbO3 d31 = d51 = 5.95 ¥ 10–12

d33 = 34.4 ¥ 10–12

d22 = 3.07 ¥ 10–12

 



 

 1. Spherical aberration of a thin lens can be reduced by

   (a) Using monochromatic light
   (b) Using a doublet combination
   (c) Using a circular annular mask over the lens
   (d) Increasing the size of the lens

 2. A short linear object of length b lies along the axis of a thin convex lens of 
focal length f at a distance u from the center of the lens. The size of the image 
is approximately equal to

   (a) b
u f

f

-Ê
ËÁ

ˆ
¯̃

1 2/

   (b) b
u f

f

-Ê
ËÁ

ˆ
¯̃

   (c) b
f

u f-
Ê
ËÁ

ˆ
¯̃

1 2/

   (d) b
f

u f-
Ê
ËÁ

ˆ
¯̃

2

 3. A converging lens is used to form an image on a screen. When the upper half 
of the lens is covered by an opaque screen, then

   (a) The upper half of the image will disappear
   (b) The lower half of the image will disappear
   (c) The complete image will be formed
   (d) The image will become smaller

and second surfaces are R1 = +20 cm and R2 = –20 cm. The focal length of the 
lens will be

   (a) + 20 cm   (b) –20 cm 

   (c) +
1
20

 5. If the radius of curvature of a spherical mirror is 20 cm, the focal length of the 
mirror is approximately

   (a) 5 cm (b) 10 cm (c) 20 cm (d) 30 cm

 6. A plane wave given by y (x, y, z, t) = Ae i (w t + kz)

   (a) Propagates along the +z direction
    (b) Propagates along the –z direction
    (c) Propagates in the x-y plane
   (d) Represents a standing wave

APPENDIX

Multiple Choice Questions
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 7. A light wave with a free space wavelength of 1000 nm and propagating in 

a medium of refractive index 3  is incident at 60° at an interface with free 
space. The speed of propagation of the wave in the rarer medium is

   (a) 2 ¥ 108 m/s   (b) 3 ¥ 108 m/s

   (c) 2/ 3 ¥ 108 m/s   (d) 3 ¥ 108 m/s

   (a) There is no energy in the rarer medium.
   (b) Energy is present in the rarer medium and it propagates parallel to the 

interface.
   (c) Energy is present in the rarer medium and it propagates normal to the 

interface.
   (d) Energy is present in the rarer medium and propagates towards the 

interface.

 9. When a light wave propagates from one medium to another, which of the 
following associated quantity does not change

    (a) Velocity   (b) Frequency
    (c) Wavelength   (d) Intensity

 10. A wave of frequency w and wave vector ( x̂ + ŷ – ẑ)w /c is propagating 
through a medium. The magnitude of the phase difference between the points 
A (0, 1, 2) and B(2, 1, 0) is

   (a) 
6w
c

 (b) 0 (c) 
w
c

 (d) 
4w
c

 11. Which of the following represents a wave propagating along the negative 
z-direction (here t is measured in seconds and y and z are measured in 
centimeters)

   (a) y = 2 cos p (z – 2t)  (b) y = 3 sin p (z + 4t)
    (c) y = 3 sin p z cos 2pt (d) y = 3 sin 2pt e–2z

 12. The displacement represented by the following equation 

  y (x, t) = a cos (k x + w t )
  represents a

   (a) Transverse wave propagating in the + x direction
   (b) Longitudinal wave propagating in the +x direction
   (c) Transverse wave propagating in the – x direction
   (d) Longitudinal wave propagating in the – x direction

 13. A wave is represented by the following equation

y (x, t) = 5 sin (2x + 3t)

  where, x and y are measured in meters and t is seconds. The velocity of the 
wave is

   (a) 3 m/s (b) 
2
3

 m/s (c) 
3
2

 m/s (d) 
3
5

 m/s
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 14. The displacement associated with a wave is described by the equation

y (x, y, z, t) = A cos (3y – 4z – 5t) 

  where, x, y and z are measured in centimeters and t is seconds. The wave 
length of the wave is given by

   (a) 4p cm–1   (b) 0.4p cm–1

   (c) 4 cm–1   (d) 0.4 cm–1

 15. The displacement associated with a wave is described by the equation

y (x, y, z, t) = Acos (3y – 4z – 5t)

  where x, y and z are measured in centimeters and t is seconds. The unit vector 
along the propagating of the wave is given by

   (a) 0.6 ŷ – 0.8 ẑ   (b) –0.6 ŷ + 0.8 ẑ

   (c) 0.6ŷ + 0.8 ẑ    (d) –0.6 ŷ – 0.8 ẑ

 16. In a medium characterised by the refractive index variation n2(x) = n2
1 – g 2 x2, 

the ray paths are given by

 (a) x (z) = A + Bz

 (b) x(z) = Aeaz + Be–a z

 (c) x(z) = A sin (Gz + f)
 (d) x(z) = A + Bz2

  where A, B, a, f and G are constants.

 17. Wavelength of gamma rays is of the order of

   (a) 5000 Å (b) 1 cm (c) 10–13 cm (d) 1 Å

 18. The k vector for the wave described by the equation E1 = A cos wt
x z

c
-

+È

Î
Í

˘

˚
˙

w ( )

2
 

is given by

   (a) k = 
w
c
x̂ + 

w
c
ẑ   (b) k = 

w

c 2
x̂ + 

w

c 2
ẑ

   (c) k = 
w
c
x̂ – w

c
ẑ   (d) k = 

w

c 2
x̂ – 

w

c 2
ẑ

 19. Two sources are said to be coherent when
   (a) Their phase difference is p
    (b) They are in phase
   (c) Their phase difference remains constant with time
   (d) Their phase difference depends on time

 20. A medium characterised by

n(z) = 1.5 + 0.001 sin (2pa z)

  (z is in m
normal illumination. The value of a (in mm–1) is

   (a) 2 (b) 1 (c) p (d) 0.5
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 21. In an interference pattern between two coherent sources, the maximum of 
intensity is 9I0 and the minimum is I0. The intensities of the individual waves 
are

    (a) I0 and I0   (b) 5I0 and 4I0

    (c) 4I0 and I0   (d) 9I0 and I0

  22. The entire setup of Young’s double hole experiment is immersed in water. The 
fringe spacing will

   (a) Increase   (b) Decrease
    (c) Remain the same   (d) No fringes will be observed

observed. If instead, an interference maximum is to be observed, the minimum 

    (a) 112.5 (b) 225.0 (c) 300.0 (d) 600.0

 24. In a Young’s double hole experiment, both holes are covered by thin sheets 
of refractive indices n1 and n2 and thicknesses t1 and t2 respectively. If it is 
required that the fringes should occupy the same position as in the absence of 
the two sheets, the ratio t1/t2 should be equal to

   (a) 
n

n
2

1
 (b) 

n

n
2

1

1

1

-
-

 (c) 
n

n
1

2

1

1

-
-

 (d) 
n

n
1

2

 25. Two waves E1 = Acos w
w

t
x z

c
-

+È

Î
Í

˘

˚
˙

( )

2
 and E2 = A cos w

w
t

z

c
-È

ÎÍ
˘
˚̇

 are 

simultaneously propagating through a medium. The planes describing 
intensity maximum would be given by

   (a) x + z = ml

   (b) x – z ( 2 – 1) = m 2l

   (c) x – z = ml

   (d) x + z ( 2  – 1) = m 2l

 26. S1 and S2 are two coherent sources (see Fig. 1). The interference fringes 
formed on the screen LL¢ will be

D

x
z

y

O

P

L

S

d

S
1

S
2

L¢

yn

Fig. 1
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   (a) Strictly circular

   (b) Strictly hyperbolae but approximately straight lines

   (c) Strictly straight lines

   (d) Strictly elliptical with major axis not equal to minor axis

 27. S1 and S2 are two coherent sources (see Fig. 2). The interference fringes 

formed on the screen PP¢ will be

   (a) Strictly circular

   (b) Strictly hyperbolae but approximately straight lines

   (c) Strictly straight lines

   (d) Strictly elliptical with major axis not equal to minor axis

y

P

O

P¢

d D

S
1

S
2

Fig. 2

 28. Two coherent plane waves, moving at angle q with respect to each other, 

are incident on a screen, placed normal to one of them. They form bright-

and-dark fringes on the screen. The separation between two bright fringes is 

1 mm and the wavelength of the waves is 6.33 ¥ 10–5 cm. The angle q will be 

approximately

   (a) 0.0036° (b) 0.036° (c) 0.36° (d) 3.6°

 29. A patch of oil on the surface of water produces beautiful colours. This is due 

to

   (a) Diffraction   (b) Interference

 30. A microscope lens of refractive index 1.55 is to be coated with a 

MgF2 n = 1.38) to increase transmission of normally incident yellow 

light (l
will be about

   (a) 10–7 cm   (b) 10–5 cm 

   (c) 10–3 cm   (d) 10–1 cm

and a spherical surface of radius 100 cm. If the radius of third dark ring is 

0.09 cm and of twenty eighth 0.25 cm, the wavelength of light used is

   (a) 1.038 ¥ 10–5 cm   (b) 2.176 ¥ 10–5 cm

   (c) 4.352 ¥ 10–5 cm   (d) 8.704 ¥ 10–5 cm

 32. A Gaussian beam is incident on a converging lens of focal length f with its 

waist at the front focal plane of the lens. The intensity distribution on the back 
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focal plane of the lens (assumed to have a transverse dimension much larger 

than the Gaussian beam width) would be

    (a) An Airy pattern

    (b) A Gaussian distribution of the same width as at input.

    (c) A Gaussian distribution with a width that is inversely proportional to the 

width of the incident Gaussian beam.

    (d) A Gaussian distribution with a width that is directly proportional to the 

width of the incident Gaussian beam.

 33. Diffraction of light

    (a) Always leads to divergence of the beam

    (b) Can lead to convergence or divergence

    (c) Always leads to convergence

    (d) Does not take place if the slit size is large

 34. Resolution of a telescope

    (a) Depends only on the objective lens

    (b) Depends both on the objective and the eye piece

    (c) Depends on the eye piece only

    (d) Depends on the spatial separation between the objective and the eyepiece

 35. Consider a grating with d = 3b

that in the zero order is

    (a) 1 (b) 27/4p2 (c) 9/4p2 (d) 3/4

 36. A laser beam of diameter 2b is incident on a convex lens of diameter 2a with 

a > b. The radius of the spot on the focal plane of the lens would be about

    (a) l f /a (b) l f /b (c) la/f (d) lb/f

 37. A plane light wave of wavelength l0 is incident on a converging lens. The 

intensity at the focus is I0. If the wavelength is increased to 2l0 and the 

incident intensity remains the same, the intensity at the focus will be

    (a) I0 (b) I0/2 (c) I0/4 (d) 2I0

 38. In a single slit Fraunhoffer diffraction pattern, the intensity of the central 

maximum is I0. If the slit width is doubled, the intensity of the central 

maximum would be

    (a) I0 (b) I0/2 (c) 2I0 (d) 4I0

 39. A beam of light of wavelength 600 nm from a distant source falls on a single 

slit 1 mm wide and the resulting diffraction pattern is observed on a screen 

the central bright fringe is

    (a) 1.2 cm (b) 1.2 mm (c) 2.4 cm (d) 2.4 mm

  40. The Fraunhoffer diffraction pattern of a circular aperture is observed on a 

screen placed at the focal plane of the lens. If the aperture is shifted upwards 

along its plane

    (a) The diffraction pattern will shift downwards.

    (b) The diffraction pattern will shift upwards.
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    (c) The diffraction pattern will not shift.

    (d) The diffraction pattern will disappear.

 41. A single slit is illuminated by light of wavelengths l1 and l2 so chosen that 

l1 coincides with the second minimum of l2. 

This implies that l1/l2 is equal to

    (a) 3/2 (b) 2/3 (c) 1/2 (d) 2

 42. As the f # of a camera lens increases

    (a) The image resolution becomes better.

    (b) The image resolution worsens.

    (c) The image resolution does not change.

    (d) The image becomes brighter.

 43. For a converging lens forming an image on a screen,

    (a) The resolution is determined only by the diameter of the lens.

   (b) The resolution is determined by both the diameter and the focal length of 

the lens.

    (c) The resolution is determined only by the focal length of the lens.

    (d) The resolution does not depend on the focal length of the lens.

 44. A parallel beam of light (l = 6 ¥ 10–7 m) passes through a circular aperture of 

radius r. A good geometrical shadow will be formed on the screen when

   (a) r = 1 cm   (b) r = 10–3 cm

   (c) r = 6 ¥ 10–5 cm   (d) r = 10–8 cm

 45. The resolution by a microscope will be better if

   (a) Wavelength of light is increased

   (b) Wavelength of light is decreased

   (c) Focal length of the eyepiece is increased

   (d) Focal length of the eyepiece is decreased

 46. The spatial frequencies in an object distribution given by

g (x) = A + B cos 6p x; (x in mm)

   are

    (a) 0 and 3 mm–1    (b) 0 and 6 mm–1

    (c) 3 mm–1    (d) 6 mm–1

g (x, y) = 2 + cos3 2p x

a

Ê
Ë

ˆ
¯

  On the back focal plane of the lens we would observe

    (a) 5 spots along the x-axis

    (b) 5 spots along the y-axis

    (c) 2 spots along the x-axis and 2 spots along the y-axis with one spot at the 

center

   (d) 2 spots along the x-axis
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 48. When a linearly polarised light wave passes through a quarter wave plate, the 

output state of polarisation is

    (a) Always circularly polarised

    (b) Can be only circularly or linearly polarised

    (c) Always linearly polarised

    (d) Can be linearly or circularly or elliptically polarised

 49. When a light wave propagates in a uniaxial medium

    (a) SOP changes if the propagation direction is along the optic axis.

   (b) SOP changes for any direction of propagation.

   (c) SOP changes if the propagation direction is other than along the optic 

axis.

    (d) SOP does not change for any propagation direction.

 50. A right circularly polarised wave is incident normally on a block of uniaxial 

medium of thickness 4 mm and having no = 1.66 and ne = 1.49; the optic axis 

of the medium is parallel to the surface of the block. If the wavelength of the 

wave is 680 nm, the SOP of the emerging light will be

    (a) Same as at input

    (b) Linearly polarised

    (c) Left circularly polarised

    (d) Linearly polarised along the optic axis

 51. An elliptically polarised wave can always be converted to a linearly polarised 

light wave with the help of a

    (a) l/4 plate    (b) l/2 plate

    (c) l plate    (d) 2l pate

E = 0.5( x̂ + ŷ)

cos (wt – kz) is

    (a) Right circular   (b) Left circular

    (c) Elliptical    (d) Linear

 53. A left circularly polarised beam is incident normally on a polaroid. The 

intensity of the emergent beam

   (a) Will be almost zero

   (b) Will almost remain the same

   (c) Will decrease by about half

   (d) Will increase slightly

 54. A right circularly polarised beam is incident normally on a quarter wave plate. 

The emergent beam will be

   (a) Unpolarised

   (b) Left Circularly polarised

   (c) Linearly polarised

   (d) Elliptically polarised but not circularly or plane plane polarised
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 55. A right circularly polarised beam is incident normally on a half wave plate. 

The emergent beam will be

   (a) Unpolarised

   (b) Left Circularly polarised

   (c) Linearly polarised

   (d) Elliptically polarised but not circularly or plane plane polarised

 56. A polarised beam is described by the following equations

  Ex = A cos (wt – kz) and Ey = A sin (w t – kz). 

  The wave is

   (a) Right Circularly polarised

   (b) Left Circularly polarised

   (c) Linearly polarised

   (d) Elliptically polarised but not circularly or plane plane polarised

 57. A plane wave propagates along a direction with the unit vector ˆκ = 3

2
ŷ

+ 
1

2
ẑ in a uniaxial medium. The unit vector along the direction of the D of 

the extraordinary wave is

   (a) n̂ = - 1

2
ŷ + 

3

2
ẑ

   (b) n̂ = 
1

2
ŷ + 

3

2
ẑ

   (c) n̂ = –
1

2
ŷ – 3

2
ẑ

   (d) n̂ = x̂

 58. Suppose you wish to make a resonator in which one of the mirrors is a convex 

mirror of radius of curvature 1 m. If the length of the resonator is to be 1 m, 

for the resonator to be stable the second mirror should be

    (a) A plane mirror

    (b) A concave mirror of radius of curvature between 1 m and 2 m

    (c) A concave mirror of radius of curvature greater than 2 m

    (d) A concave mirror of radius of curvature less than 1 m

 59. A gas laser of length 15 cm oscillates simultaneously in two adjacent 

longitudinal modes around a wavelength of 600 nm. The wavelength spacing 

between two longitudinal modes is

    (a) 1.2 pm (b) 1.2 nm (c) 2.4 pm (d) 2.4 nm

 60. The SI unit of Einstein’s B

   (a) J s–1   (b) m3 s–1

   (c) J –1 s–2 m3   (d) J s–1 m–2

 61. If A and B

nondegenerate energy levels separated by energy hn, then the ratio A/B
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    (a) Does not depend on n

    (b) Is proportional to n

    (c) Is proportional to n3

    (d) Is proportional to n–3

 62. A laser can be made to operate in a single longitudinal mode

    (a) By increasing the length of the cavity

    (b) By increasing the diameter of the cavity

    (c) By decreasing the length of the cavity

    (d) By increasing the pump power

propagation would be

    (a) 10 mW   (b) 0.125 mW

    (c) 0.05 mW    (d) 0.1 mW

 64. Consider a parabolic index medium with the following refractive index 

variation:

n2(x) = n1
2

1 2
2

- Ê
Ë

ˆ
¯

È

Î
Í

˘

˚
˙D x

a

  where D is positive. A ray is launched at x = a/10, z = 0 parallel to the z-axis. 

The

    (a) Ray will propagate straight without any bending.

   (b) Ray will bend away from the axis.

   (c) Ray will bend towards the axis.

   (d) The ray cannot propagate in the medium.

 65. When a ray propagates in the x-z plane in a medium with a refractive index 

depending only on x-co-ordinate, if q (x) is the angle made by the ray with the 

z-axis, then as the ray propagates

    (a) n(x) sin q (x) remains constant

    (b) n(x) cos q (x) remains constant

    (c) n(x) tan q (x) remains constant

    (d) sin q (x)/n(x) remains constant

 66. In a symmetric step index planar waveguide

V-value

    (b) Only the fundamental TE mode has no cutoff

    (c) Only the fundamental TM mode has no cutoff

    (d) Both the fundamental TE and the fundamental TM modes have no cutoff

 67. If the intensity pattern corresponding to an LPlm mode has one zero along the 

radial direction and four zeros the azimuthal direction, then the values of l and 

m are

    (a) 1 and 1 respectively (b) 0 and 1 respectively

    (c) 2 and 1 respectively (d) 2 and 2 respectively
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V-number.

all the modes are equally excited, then at the output

    (a) The maximum angle of emergence of the cone of rays is less in water 

than in air

   (b) The maximum angle of emergence of the cone of rays is more in water 

than in air

    (c) The maximum angle of emergence of the cone of rays is the same in 

water as in air

    (d) The change in the maximum angle of emergence of the cone of rays 

would depend on the core diameter.

 70. If the output power is 0.001 mW for an input power of 1 mW, the attenuation 

    (a) 10 dB (b) 20 dB (c) 30 dB (d) 0.001 dB

 71. Intermodal dispersion is highest in

 72. Consider a pulse propagating in the +x direction. At x = 0, the time variation 

is given by

     y (x = 0, t) = E0 e
– iw0 t | t | < 

1

2
t

      = 0 | t | > 
1

2
t

  The spectral widths Dw of the pulse is given by

   (a) ~ 
w

t

0

2
 (b) ~ w2

0t  (c) ~
1

t
 (d) ~

1
2t

 73. Consider a Gaussian pulse given by

  y (x = 0, t) = E0 exp -
È

Î
Í

˘

˚
˙

t2

22t
 e– iw0 t

  The spectral widths Dw of the pulse is given by

   (a) ~ 
w

t

0

2
 (b) ~ w2

0t  (c) ~
1

t
 (d) ~

1
2t

 74. The power of a 2 mW laser beam decreases to 15 mW after traversing through 

   (a) 0.085 dB/km   (b) 0.85 dB/km

   (c) 8.5 dB/km   (d) 85 dB/km
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output end is

   (a) 3 mW   (b) 1.5 mW

   (c) 0.3 mW   (d) 0.15 mW

n1 = 1.5, a = 40 mm and D = 
n n

n
1 2

1

-
 = 0.01 

operating at 850 nm with a spectral width of 20 nm. The value of 

d n

d

2

0
2l

 ª 0.0297 (mm)–2. The material dispersion is

   (a) 0.17 ns/km   (b) 1.7 ns/km

   (c) 17 ns/km   (d) 170 ns/km

 77. For pure silica, n (l0) ª 1.451 – 0.003 l
l

0
2

0
2

1-Ê
ËÁ

ˆ
¯̃

 where l0 is measured in mm. 

The zero material dispersion wavelength is approximately given by

   (a) 0.8 mm   (b) 1.32 mm

   (c) 1.55 mm   (d) 2.5 mm

 78. In a phase matched difference frequency generation setup an incident wave 

at 1000 nm and having a power of 1 W interacts with a wave at 1500 nm and 

having a power of 1 mW. If the power exiting at 1500 nm is 1.1 mW, the 

power exiting at the difference frequency would be

   (a) 0.1 mW   (b) 0.05 mW

   (c) 0.5 mW   (d) 1 mW

 79. Consider a medium with no = 2.26 and ne = 2.20. A light wave having ordinary  

polarisation and propagating along the – x direction interacts with an acoustic 

wave propagating along +x direction and gets diffracted to a wave propagating 

along –x

    (a) Have the same frequency as the incident wave

    (b) Have a higher frequency than the incident wave

    (c) Have a lower frequency than the incident wave

    (d) Will contain both higher and lower frequencies

 80. For the extra-ordinary wave propagating in an uniaxial crystal (with the optic 

axis along the z-direction)

   (a) D ◊ k is always zero.

   (b) Dz is always zero.

   (c) D is always at right angles to E.

   (d) D ¥ k is always zero.

 81. For a Gaussian beam (whose phase front is plane at z = 0) and whose spot size 

at z = 0 is w0, the spot size at large values of z is approximately given by 

   (a) w (z) ª 
l

p

w

z
0

   (b) w (z) ª 
l

p
z

w0
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   (c) w (z) ª 
w z0

pl
 

   (d) w (z) ª 
w z0

2

2pl
 82. A nonlinear medium has the following refractive indices: at 1000 nm, 

no = 4.80, ne = 6.25 and at 500 nm, no = 4.86 and ne = 6.32. If this medium is 

used for birefringence phase matching, then

   (a) The fundamental will be ordinary (o) and second harmonic will be 

extraordinarily (e) polarised

    (b) The fundamental will be e-polarised and the second harmonic will be 

o-polarised

    (c) Both fundamental and second harmonic will be o-polarised

   (d) Both the fundamental and second harmonic will be e-polarised

Answers to Multiple Choice Questions

 1. (b) 2. (d) 3. (c) 4. (a) 5. (b)

 6. (b) 7. (a) 8. (b) 9. (b) 10. (d)

 11. (b) 12. (c) 13. (c) 14. (b) 15. (a) 

 16. (c) 17. (c) 18. (b) 19. (c) 20. (a)

 21. (c) 22. (b) 23. (a) 24. (b) 25. (b) 

 26. (b) 27. (a) 28. (b) 29. (b) 30. (b) 

 31. (b) 32. (c) 33. (b) 34. (a) 35. (c) 

 36. (b) 37. (c) 38. (d) 39. (d) 40. (c) 

 41. (d) 42. (b) 43. (b) 44. (a) 45. (b) 

 46. (a) 47. (a) 48. (d) 49. (c) 50. (a) 

 51. (a) 52. (d) 53. (c) 54. (c) 55. (b) 

 56. (a) 57. (a) 58. (b) 59. (a) 60. (c) 

 61. (c) 62. (c) 63. (a) 64. (c) 65. (b) 

 66. (d) 67. (c) 68. (b) 69. (a) 70. (c) 

 71. (b) 72. (c) 73. (c) 74. (b) 75. (b) 

 76. (b) 77. (b) 78. (b) 79. (b) 80. (a)

 81. (b) 82. (b)
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