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F O R E W O R D 

COLLECTIONS of problems are useful both for faculty use in the evaluation of the state of a 

student's knowledge and for the student himself to use in self-evaluation. This collection of 

problems is at the level of the present state of knowledge expected of a student candidate 

for certification in optics and many of these problems are, in fact, drawn from certification 

examinations. 

Physical optics is a traditional subject and a very large choice of problems is available in 

this area. An at tempt has been made here to provide a broad selection of modern material 

using some of the newer experimental and theoretical results and, in addition, those areas 

of electromagnetic theory relevant to optics. 

Quantum optics, which involves the elements of wave mechanics and its applications to 

atomic and molecular spectroscopy and, thus, to the propagation of electromagnetic 

radiation in material media, has only recently been introduced into optics courses. As a 

result of the relatively short experience in the presentation of these techniques, the problems 

in this area are generally presented at a somewhat lower level than the classical problems 

in spite of their significance in modern optical work. 

An attempt has been made here to find a balance between extreme detail in solution and 

sufficient detail as to be of use. In general, whenever detail is not presented in the solution, 

reference is made to the general principle used. References are often given in the form 

§ 8.3 (chapter 8, section 3) or § B.3 (Appendix B, section 3) and are keyed to the comple-

mentary volume Optics: Part 1, Electromagnetic Optics; Par t 2, Quantum Optics, which 

forms part of this series. References to Appendices A and Β of this volume are given in 

the form Appendix A (or B) and references to Problems (or parts thereof) as Problem 1 (or 

Problem 1, II. 1, etc.). 

Many thanks are due our colleagues who provided us with a selection of problems, thus 

enhancing our coverage. To these individuals, M M . Boiteaux, Fert , Françon, Jacquinot, 

Kahane, Nikitine, Rouard, Rousset, Servant, Vienot, goes our gratitude. The solutions, 

however, are ours, and thus any error in detail or omission must remain with us. 

We are also grateful to Professor J. W. Blaker for the accurate translation from the 

French. 

M. R., J. P. M. 
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P R I N C I P A L P H Y S I C A L C O N S T A N T S 

(MKS A rationalized units) 

Avogadro's number OL = 6.025 Χ 10
2 δ
 molecules/kilomole 

Volume of one kilomole of an ideal gas 

at standard conditions vm 
= 22,420 m

3 

Ideal gas constant R = SJ loPXlOSjoules /k i lomole^K 

Boltzmann constant k = RIOL - 1 .380XlO-
2 3

jou le /°K 

Permittivity of free-space εο = 8.834X 1 0 "
1 2
 farads/m 

Permeability of free-space μο = 4 π Χ ΐ 0 ~
7
 = 1 . 2 5 7 X l 0

_ 6
h e n r y s / m 

Faraday's constant (ψ = 96.522X 10
6
 coul/kilomole 

Electron charge e = 1 . 6 0 2 x l 0 -
1 9

c o u l 

Rest mass of the electron me = 9 . 1 0 8 3 X l 0 -
3 1

k g 

Mass of the proton MH = 1 . 6 7 2 4 X l 0 "
2 7

k g 

Specific charge of the electron e/me = l ^ X K F c o u l / k g 

Planck's constant h = 6.6252 Χ Ι Ο
- 3 4

 joule-sec 

Speed of light in vacuum c = 2.997 93 X 1 0
8
 m/s 

Rydberg constant for H RH = 10,967,758 m "
1 

Ground state radius of H = 0 . 5 2 9 2 X l 0 -
1 0

m 

Bohr magneton μΒ 
= eft/4OTn, = 9.27 X 10~

2 4
 A-m

2 

Compton wavelength for the electron Κ = 2A/mec = 4 .8524X10"
1 2
 m 

Energy conversion factors : 

1 calorie = 4.185 joules 

1 electron-volt = 1 .602X10"
1 9
 joules 

= 8068 c m r ^ X A c ) 

Unless otherwise indicated, these constants will be used for the calculations which follow. 



I N T E R F E R E N C E 

P R O B L E M 1 

Visibility of Young's Fringes 

In all of these problems assume that the source is monochromatic and radiates at a wave-

length λ = 0.55 μ. 

I 

1. A point source So illuminates two narrow, parallel slits, Fi and F 2 , ruled vertically in 

an opaque screen. The slits are separated by 2 mm. One observes the interference pattern 

in a plane π parallel to and at a distance of 1 m from the screen. A point M in the plane π is 

assigned the coordinates X and Y (Y parallel to the slits). Determine the expression govern-

ing the distribution of the illumination over the plane n. 

2. How is the image modified when So is replaced by a narrow slit Fo parallel to Fi and 

F 2 ? Calculate the interference pattern. 

3. The observation of the fringes is made using a Fresnel eyepiece similar to a thin lens of 

focal l e n g t h / = 2 cm. What are the advantages of observation with an eyepiece in compari-

son to observation with the naked eye? Indicate the positions of the eyepiece and the eye 

with respect to plane π for which the observation of the fringes is made under the best 

conditions. 

II 

Cover the slit F i with an absorbing screen (which introduces no phase-shift) of optical 

density Δ = 2. 

Find the visibility, V, of the fringes defined b y : 

where 7 m ax and / m i n represent the maximum and minimum intensities respectively. 

1 



2 PROBLEMS IN OPTICS [PROBLEM 1 

III 

Here a large incoherent source is used. 

1. The source slit has a height A (fixed) and a width a (variable). This is situated at a 

distance d = 1 m behind the plane of the slits F i and F 2 . Under these conditions, what is the 

expression for the illumination at a point M in the plane π ? How does the visibility of the 

fringes, V, vary as a function of al Use this expression to describe the phenomenon observed 

when one progressively opens the source slit F 0 . Determine the maximum width of the slit 

so that the loss in contrast does not exceed 10%. 

2. To increase the luminosity of the image an incoherently illuminated grating is used as a 

source (slits parallel to F i and F 2 ) . Determine the width a of the transparent intervals and 

the grating step ρ so that the visibility retains its preceding value. 

IV 

1. Assume that the source slit F 0 is sufficiently narrow that it can be considered as a line 

and replace the Fresnel eyepiece observing apparatus by a photocell. Place the slit of the cell 

in the plane π parallel to the fringes. The height of the slit is fixed; its width is variable. As-

sume that the intensity of the photocurrent is proport ional to the luminous flux falling on 

the cell. Give the law for the variation of the current as a function of the abscissa X of the 

slit. Describe what happens when the slit is opened. 

2 . What is the expression for the intensity of the current assuming that the source slit is 

not vanishingly fine but has width a ? Determine the visibility factor. 

V 

1. Take the width of the source slit as a = 0.01 mm and the width of the slit of the 

detector as b = 0.02 mm. Find the visibility. 

This theoretical visibility Vt is greater than the experimental visibility Vr which has a 

value Vr = 0.5. Show that this can be explained by taking into account the parasitic current 

$ 0 (dark current) found in the absence of all luminous flux. Calculate the ratio, So/Smax» 
of the dark current to the maximum signal intensity. 

2 . The width of the slit of the detector is fixed by its construction at a value b = 0.02 mm, 

while, on the other hand, the width a of the source slit can be altered. 

Calculate Vr and present graphically its variation as a function of a. For what value of a 

will Vr be maximum? What can be concluded from this investigation? 



PROBLEM 1] INTERFERENCE 3 

SOLUTION 

I. Coherent illumination 

1. Point source 

Designate by χ and y the coordinates in the plane of the pupil and by X and Y the co-

ordinates of a point M in the image plane (Fig. 1.1). The infinitely thin slits diffract uniformly 

in the plane perpendicular to Oy. 

ι; 

FIG. 1.1 

Only the line Ox is illuminated with a light distribution 

1=4 cos
2
 (nus) 

where 

u = 
sin ι ι 

Τ D λ 

(1) 

(2) 

One gets this result from the fact that , for coherent illumination, the distribution of the 

amplitude in the image is equal to the Fourier transform of the amplitude distribution in the 

pupil (see Appendix A). 

The amplitude in the exit pupil is 

The amplitude in the image plane is 

F(u) = F.T.[ / (x)] 

F(u) = A ^ H e ^ + e - * " " ] 

with 

from which 

and 

2· Linear source 

Δ( Μ ) = F.T.W*)] = 1 

F(u) = 2 cos nus -* period 2/s. 

I(u) = | F ( M ) |
2
 - 4 cos

2
 Ttus - period 1/s. 

(3) 

(4) 

(5) 

(6) 

(8) 

Here one observes no interference along the lines parallel to Oy. Each point on the source 

slit gives a light distribution centred on the geometric image and parallel to Ox. One then 

has fringes parallel to Fi and F2. 
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The period of these fringes is such tha t : 

Aw = 1/5 

giving a linear fringe spacing: 

Numerically: 

(9) 

(10) 

FIG. 1.2 

A * = 0.55 X ^ ? ^ = 0.275 mm. 

3 . Observation of the fringes 

Naked eye. A normal eye working a t its near point (25 cm) has difficulty in resolving the 

image. In effect the fringe spacing is seen at an angle : 

ε = 
0.275 

250 
1 0 -

3
 rad . 

This value is only slightly larger than the angular limit of resolution of the eye which is of 

the order of 1 minute or 3 X 10~
4
 rad. 

Eyepiece-{-eye. To avoid fatigue it is preferable that the eye does not accommodate. For 

this reason one uses an eyepiece whose focal plane coincides with the plane π; the image is 

then formed at infinity. This image is easily resolvable since the angular fringe spacing 

becomes 

0.275 
ε = 20 

= 0.0135 rad. 

The magnification of the eyepiece is 

angle at which the image is seen 
β _ 

ε angle of the object when at the near point 

Note. In principle the slits diffract through an angle of 180° so that, even with large 

aperture, the eyepiece cannot collect all of the rays. The observer, in order to collect the 

maximum light, must place his pupil in the plane F'v F'2 conjugate to the plane Fv F2 

(Fig. 1.3). 
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F ( « ) 

L 

I 
Ι 

F 
F
2 

1 

1 

FIG. 1.3 

The slits are at a distance I from the lens, their images are at a distance ξ', such that : 

_ L _ 1 _ 1 
! ' I ~ / 

1 _ 1 1 _ 52 

ξ' ~ 1 0 0 + / / ~ 102 

ξ' = 1.965 cm % 2 cm. 

The magnification is equal to 

η ~ ξ ~ 52 · 

The image has dimension 

All of the rays which enter the eyepiece get to the eye since the value of η' is less than the 

minimum diameter of the pupil of the eye. 

II . The vibrations passing through Fi and F2 are in phase but 

have different amplitudes 

When the vibrations are out of phase by φ, the intensity at point M is given by 

/(AO = A\+I4|+2IMA cos φ = / 1+/ 2-h2v /Ä4cos φ. (11) 

The maximum and minimum intensities are respectively equal to 

the visibility is 

iVhh ( 1 2 ) 

Assuming that the optical density filter is placed in front of F i one has : 

h h 
logio ~ r = 2 where — = 100, 

IL IL 
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1/5 2 / 5 

2 π 4 π 
φ 

FIG. 1.4 

f rom which V = 0 . 2 (Fig. 1.4) . 

The positions of the maxima and minima are the same with or without the filter. O n the 

other hand the visibility, V, is not unity unless the amplitudes passing through the slits are 

equal. 

I I I . Large source. Incoherent illumination ( § 6 . 7 ) 

1. The source is a large slit 

A l l the points lying on a line parallel to Oy give fringes parallel to Oy wi th period Aw = 1 Is. 

Break the slit (width a) into an infinite number of vanishingly thin slits. 
Let ν be the reduced coordinate of a point in the source plane. The width of the slit can be 

characterized by 

v0 = a/Xd. ( 1 3 ) 

The intensity produced on M by an element of width dv is 

dl = ^ X A { l + c o s 2n[(u+ v)s]} dv. ( 1 4 ) 

A = constant, kos = path difference between the disturbances arriving f rom Fi and F 2 . 
Each elementary slit o f infinitesimal width gives a system of fringes with period Aw = l/s 

and centred on the geometric image of the elementary slit. 
Thus, the intensity transmitted to M by the slit source is 

r+vo/2 
I = Ah [1 +cos 2n(u+v)s] dv ( 1 5 ) 

/o H cos 2nus \ 
nvos 

( 1 6 ) 

_ sm nvos 

nvns 

The graph of V is given in Fig. 1.5. 

One finds : 
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FIG. 1.5 

Numerical application. One wants V 0.9 so that 

sin nvos 

UVqS 

From the definition of v0 one gets 

As ~ λα 

V = 0.9 

0.9 — ττ^ο^ = — -> v0 = 7 - . 

4 4s 

so that a
 =

 d
4 s =

l 0
'

X
 4 X 2 

for 70 μ. 

The fringes vanish for Λ = 275 μ. 

The Van Cittert-Zernike theorem (Appendix B) gives this result immediately. The degree 

of coherence between the slits Fi and F2 is given by the Fourier transform of the intensity 

distribution in the source plane. Since the problem is one-dimensional, it is sufficient to 

assume that the source is a slit parallel to OY with a width a and that the pupil is formed by 

two points, Pi and P 2 , set in an opaque screen (Pi and P2 corresponding to the intersection 

of the slits F i and F2 with the line Ox are separated by a distance s). The intensity distribu-

tion in the source can be represented by a rectangular function (Fig. 1.6). 

I(v) = 0 for ν < - vo/2 and ν > + v0/2, (17) 

I(v) = 1 for — vo/2 < ν < + v0/2. 

IM 

t 

12 0 +
 V2 ' 

FIG. 1.6 FIG. 1.7 

2 R & Μ; ΡΙΟ 
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One finds 

FXlKt f l ] = m = (Fig.1.7). 
JIVqX 

(18) 

Place each imaginary diffraction spot ön the pupil so that its centre coincides with P i . 

The fringe visibility is equal to the value of φ{χ) a t point P 2 , that is, at <j>(s) (Fig. 1.7). One 

can see that the fringe contrast is still good for s — \vo. 

2. The source is an incoherently illuminated grating 

Call vp the reduced coordinate corresponding to the grating spacing p. 

(a) Assume initially that the illuminated strips are infinitely thin. 

The intensity distribution in the source is a Dirac series (Fig. 1.8). Its Fourier transform 

is a Dirac series of period l/vp (Fig. 1.9). 

1 

5»
 2v

p 

1 

0 

5 

p 

FIG. 1.8 FIG. 1.9 

As before, place the imaginary diffraction spot φ(χ) on the pupil so that φ(0) coincides 

with P i . The fringe visibility will be unity if 

l/vp = s (Fig. 1.9) 

that is, if 

s = Xd/p, 

so that 

p = ^ = 0.55X~= 275 μ. 

(b) The grating openings have a finite width a. I(v) is a unbounded series of rectangular 

functions (Fig. 1.10) with period vp and width v0. 

FIG. 1 .10 
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The Fourier transform is shown in Fig. 1.11. 

FIG. 1.11 

To have an image well contrasted one needs 

1 1 

~~ vp~~ 4v0 * 

Numerical results 

Grating spacing ρ = 275 μ. 

Width of the grating openings a = 70 μ. 

Note. One can also get these results by another simple process (Fig. 1.12). 

T- j 

P
2 

FIG. 1.12 

(a) Fine grating openings : the fringes remain fixed if the vibrations transmitted by an 

opening Τ are phase-shifted by an integral multiple of 2π when arriving at P i and P 2 . 

(b) Grating with large openings : the vibrations transmitted from the edges of any window 

should produce at P i and P 2 a path difference lying between kX and (k+\)X in which case 

the fringes do not overlap (the fringes produced by the extreme edges of an opening are 

shifted by a maximum of -j fringe). 

IV. The opening of the detector has finite width b 

1. The source slit is infinitely thin 

The fringes on plane π have unit contrast (see question I). On the other hand, because of 

the finite width of the detector slit, the flux recorded by the receiver is never zero (Fig. 1.13). 

The illumination is the same at all points along a single vertical in the observing plane. Break 

the window of the receiving cell down into elements of width dw and height /. 

2* 
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FIG. 1 .13 

Call uc the reduced coordinate which corresponds to the linear width b of the slit. The flux 

which penetrates through the surface element at abscissa u' is 

άΦ = Bl(\ + cos 2 nus) du, (19) 

from which 

φ(μ') = Γ
 + U e l2

 άΦ = Bluc [ l + cos Inu'À. (20) 

Ju>-uel2 L ™<* J 

As before, one can define a coefficient of visibility by 

= sin 7TMcty 

As long as uc is less than ^s, the intensity of the photocurrent, proportional to the luminous 

flux, varies in a reasonably sinusoidal fashion. When one opens the slit, the difference 

between the maxima and minima lessens. Finally, for uc = l/s9 the intensity of the photo-

current does not vary regardless of the placement of the cell. 

2 . The source slit has a finite width a 

One has 

τ/ χ x Γ* sinnvos ~ ~] 
I(u) = I0 1 + cos 2nus , (22) 

[ nvos J 

from which 

Φ(«') = Blvo r
+ U j2

 U +
 S

^^- cos 2nus\ du, (23) 
l>-uel2 L J 

,x l\ sinjrw^ unnvos ^ , 1 
Φ{μ') = BlucVo 1 + - X — cos Inu's . (24) 

L nucs nv0s J 



PROBLEM 1] INTERFERENCE 11 

One finds that 

sin 7iucs sin nv^s 
V = - X . 

nucs UVqS 

(25) 

The visibility can be defined using an "instrument function". 

V = F.T. (source slit, width v 0) X F . T . (cell opening, width uc) 

In the case of an infinitely fine source slit, the first term of the product reduces to a value 

of one since F.T. [δ(χ)] = 1. 

V. The effect of the dark current 

Recall equation (25) which gives the theoretical visibility. 

I. a = 0.01 mm, b — 0.02 mm (v0 = const, uc = const). 

One has 

F ( = 0 . 9 9 1 X ? î ^ = 0.987. 
nvos 

Taking the dark current into account, the intensity of the real current becomes 

3 r i « ) = 3 (")+3o. 

Hence, the experimental visibility is 

Vr = 
ο ο 
\5R max -or min 

Ο Ο 
Omax <omin 

\$r max min \jmax Η" \Smin ~H 2^0 

(26) 

(27) 

sin nUcS sin nvos 
' X " TtUcS TIVqS 

v0 

(28) 

(The constant coefficient Bluc has been set equal to one.) Thus one has the relationship 

V, 

Numerical application 

One has 

hence 

Vr = (29) 

1 + 
3o V, _ 0.987 

vo V, 0.5 
1.974, 

ο 

= 0.974. 
Vo 

Smax = V0[l + Vt] = V0[l.9S7], 

0.974 1 

3 m ax 1.987 2 
(in practice this value is much smaller). 

file:///jmax
file:///Smin
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2. a variable, b = 0.02 mm (v0 variable, uc = const). 
One has 

V t = 0.991 S i ^ . (30) 
nvos 

from which 

0.991 S i w 

K= , ™°* =0.991Xns
 S W 

l + $o/vo π φ ο + 3 ο ) ' 

Vr has a maximum for d K r / d K 0 = 0, so that 

tanjr#oJ = nvos+nsfto = π ^ ο ί + Ο . Ι Ι Ι . 

This equation is satisfied for nvos * 35°. 

36 1 

l ' 0 A ;ï 8 ô x " 2 x I œ
 = 1 0 " 4 μ _ 1 ' s i n c e *0 = l h 

hence 

a = ζ ; 0/λ = 1 0 " 4 X l 0 e X 0 . 5 5 

a = 0.55 μ. 

The variations of Vt and Vr as a function of v0 are shown in Fig. 1.13. For a = 55 μ one 
has 

180 

hence 
Vt 0.9 0.9 

Vr = 
1 + SoM) 1+0.974X10/55 1.1771 ' 

K r m ax = 0.77. 

Conclusion. In theory, to have the best contrast, it is advantageous to close the source slit 
to the smallest possible opening. In practice, in the presence of a dark current, it is necessary 
to give the source slit its optimal width. 

P R O B L E M 2 

Young's Experiment. Achromatic Fringes 

I 

Monochromatic source (λ = 0.55 μ). 
Young's apparatus as illustrated in Fig. 2.1 has the following characteristics: 

Slit separation a = 3.3 mm. 
Distance from the pupil to the screen D = 3 m . 
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2. a variable, b = 0.02 mm (v0 variable, uc = const). 
One has 

V t = 0.991 S i ^ . (30) 
nvos 

from which 

0.991 S i w 

K= , ™°* =0.991Xns
 S W 

l + $o/vo π φ ο + 3 ο ) ' 

Vr has a maximum for d K r / d K 0 = 0, so that 

tanjr#oJ = nvos+nsfto = π ^ ο ί + Ο . Ι Ι Ι . 

This equation is satisfied for nvos * 35°. 

36 1 

l ' 0 A ;ï 8 ô x " 2 x I œ
 = 1 0 " 4 μ _ 1 ' s i n c e *0 = l h 

hence 

a = ζ ; 0/λ = 1 0 " 4 X l 0 e X 0 . 5 5 

a = 0.55 μ. 

The variations of Vt and Vr as a function of v0 are shown in Fig. 1.13. For a = 55 μ one 
has 

180 

hence 
Vt 0.9 0.9 

Vr = 
1 + SoM) 1+0.974X10/55 1.1771 ' 

K r m ax = 0.77. 

Conclusion. In theory, to have the best contrast, it is advantageous to close the source slit 
to the smallest possible opening. In practice, in the presence of a dark current, it is necessary 
to give the source slit its optimal width. 

P R O B L E M 2 

Young's Experiment. Achromatic Fringes 

I 

Monochromatic source (λ = 0.55 μ). 
Young's apparatus as illustrated in Fig. 2.1 has the following characteristics: 

Slit separation a = 3.3 mm. 
Distance from the pupil to the screen D = 3 m . 



PROBLEM 2] INTERFERENCE 13 

D 

FIG. 2.1 

1. Calculate the fringe spacing i. 

2. Place a sheet of glass with plane parallel faces and thickness e = 0.01 mm in front of 

slit F i . 

(a) Determine the direction of the displacement of the fringes and the formula giving the 

relationship for their displacement. 

(b) Knowing that the fringes are displaced by 4.73 mm, find the index of the glass. How 

precise is this value of «, if the displacement can be measured to 0.01 m m ? 

I I 

Nature of the fringes in white light. 

The dispersion of glass is given by 

Α ί /70 = 1.50, 
11
 ~

 n
°

 +
1 ? \ A = 0.00605 for λ in microns. 

Express χ as a function of the interference order and the wave length. 

Give χ = f(X) for ρ = δ/λ = 1,0,— 1, and —2. 

1. Describe the nature of the zero-order fringe. 

2. Show that there exists a bright fringe for which χ is stationary (λ between 0.4 and 0.75 μ). 

What is the interference order of this achromatic fringe? 

SOLUTION 

I . Monochromatic source 

1. Fringes spacing 
Π 1 Υ ΙΟ

3 

i = i - = 0 . 5 5 X 1 0 "
3
X - , - ^

1
 = 0.5 mm. 

a 3.3 

2. (a) Displacement Ax of the fringes 

The difference in path length for the rays which interfere on M is : 

without the glass : 

oi = F i M - F 2 M = x i (1) 
ι 
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after insertion of the glass : 

δ = Xj+(n-l)e. (2) 

The fringe of order ρ which had abscissa χι = pi has the new abscissa : 

x=
 1

Σ[ρλ-(η-1)β]. (3) 

The system of fringes is displaced toward negative χ by an amount : 

Ax=-j(n-l)e. (4) 

(b) Measurement of the index 

From equation (4) one gets 

» = l - 7 — . (5) 

Now χ = —4.73 mm, thus 

Λ 0.55 Χ Ι Ο - 3 4.73 
n = l + 0.5 ΧΊ Ο ^ 

η = 1.5203. 
Error determination : 

d(Ax) d(«) 
Ax n-l 

with d(Ax) = 2 X 1 0 ~ 2 mm 

2 V 10~ 2 

d(n) = 0 . 5 X Z ^ ^ ^ 2 X 1 0 - 3 , 

η = 1.520±0.002. 

II. Fringes in white light 

In equation (3) replacing i by λΌ/d and n— 1 by 

A C A ^ „ c „ 0.00605 
0.50 + ^ = 0.50 + ^ ^ - , 

one gets 

x(p, λ) = - 4 . 5 4 5 + 0 . 9 0 9 / ^ - ^ ^ - . (6) 

with λ: in mm if λ is in microns. 

1. ρ = 0. One finds a coloured fringe (Fig. 2.2). When one scans in the direction χ < 0, 
the following tints are found : 

red for χ = —4.64 mm, 
yellow-green for χ = - 4 . 7 3 mm, 
blue for χ = —4.89 mm. 



PROBLEM 3] INTERFERENCE 15 

2. ρ = — 1. The spectrum bends back (Fig. 2.2). 

One finds dx/dA = 0 for λ near 0.5 μ. 

The achromatic fringe spreads out about χ = — 5.22 mm. 

Note. On Fig. 2.2 is traced a group of lines from the equation χ = - 4 . 5 4 5 + 0 . 9 0 9 ρλ 

corresponding to the fringes given by the insertion of a non-dispersive glass of index 

n0 = 1.50. 

P R O B L E M 3 

Fourier Spectroscopy 

One wants to determine the spectral distribution of the radiance Β{σ) of a source. For 

this a Michelson interferometer is used as a modulator. 

A point source Ρ is placed at the focus of a collimator Li. One of the mirrors is rigorously 

parallel to the image of the other formed in the beam splitter Sp. Mirror M1 is moved with 

a constant speed starting from the position of zero path-length difference. 

A i 

f. 

-Λ • 

/
 1 

/ ι 
/ . 

/
 1 

I Sp' 

FIG. 3.1 
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I. The path of the mirror is assumed to be unlimited 

1. Calling Δ the difference in path between the two mirrors, calculate the intensity received 

by the photocell R (placed at the focus of lens L 2) : 

(a) for a monochromatic source (<r0), and 

(b) for the case where the spectrum is comprised of σι and cr2. 

2. The expression for the intensity may be thought of as the sum of a constant term (mean 

intensity) and a term dependent on Δ. These two terms when multiplied by 2 form the inter-

ferogram: / (Δ) . 

Show that B{a) and /(Δ) can be derived from one another by the Fourier transformation. 

To facilitate these calculations, it will be useful to introduce artificially a spectrum Β(—σ) 

composed of negative frequencies and symmetric with B(o). One can then use the following 

property: the F.T. of an even function is an even function. In all of these problems one 

normalizes the functions. 

Applications. Describe and calculate the interferogram for the following cases : 

(a) The source emits a monochromatic radiation Β(σο) = δ(σ—σ0). 

(β) The ray is a doublet: Β(σ) — αιΧδ(<τ—σΊ)+α 2Χδ(σ·—o 2) (αϊ and α 2 are constants less 

than one). 

(γ) The ray has a gaussian profile : 

Δ is allowed to vary only between 0 and a maximal value L. Spectroscopists call the 

"instrument profile" the spectral distribution one obtains if the instrument receives a rigor-

ously monochromatic radiation of wave number Co. Starting with the interferogram limited 

by Δ = 0 and Δ = L, derive the instrument profile and represent it graphically. 

SOLUTION 

The rays are normal to the mirrors. 

For radiation with wave number σ*, the two plane parallel waves which interfere are out of 

phase by 

At L 2 one has a state of uniform interference which is detected at F. 

I. Consider the ideal case where the movement of the mirror Mi is unlimited 

1. Let It be the total intensity received at R. 

(a) Monochromatic source, 

II . The movement of the mirror is limited. Resolving power 

φ = 2πσ Δ. (D 

// = Β(σ0) cos
2
 πσ0 Δ = 

Β(σ0) (1 + c o s 2πσ0 Δ). (2) 2 
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(b) Polychromatic source. 

The element of intensity produced by every radiation in the interval da is 

dlt = B(a) cos
2
 πα Ada 

hence 

It 
I

 2 

[1+cos 2πα A] da. (3) 

2 . The interferogram thus has the form 

/(Δ) = Γ
 2

 B(a) cos 2na Ada. 
•Vi 

Only the positive frequencies occur. One has, therefore 

/(Δ) = B(a) cos 2πα Ada. 
Jo 

(4) 

B(a), for example, is given in Fig. 3.2. Generate an artificial spectrum B(—a) composed of 

negative frequencies symmetric with the preceding spectrum. If Bp(a) is the even par t of 

function B(a\ one can write 

BP{a) = i[B(a)+B(-a)] (see Fig. 3.3) (5) 

Β[Σ)[ 
BP(<5) 

Σ
2 

FIG. 3 .2 

•σ2 -σ, ο +q +c 2 

FIG. 3 .3 

Equation (4) can then be written 

/(Δ) = Bp(a) cos 2na Ada = j ° ° Bp(a) da. (6) 

If one knows the interferogram precisely for Δ varying between 0 and <» (then, in fact 

between — oo and since it is symmetric) the spectrum can be constructed exactly by the 

Fourier transform : 

BP(a) = \
+
° 

J— oo 

1(A) cos 2na A dA 
τ 

/ ( Δ ) β - '
2 π σ Δ

α Δ , 

2 ? , ( σ ) ^ / ( Δ ) . (7) 
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Applications (see Appendix A dealing with the Fourier transformation) 

Given Β(σ\ one can get Bp(o) and from this the interferogram by Fourier transforming 

(α) Β{σ) = δ(σ-σ0Χ 

Βρ(σ) = δ(σ+σ0)+δ(σ-σο) 1(A) = cos2na0A; 

(β) Β(σ) = κιδ(σ—σι)+α.2δ(σ—σ2) / (Δ) = αϊ cos 2πθ\ Δ+α2 cos 2πσ2 Δ. 

(See Fig. 3.4.) 

oc. 

a 
2 

Β(σ) 

σ, σ 2 σ 

/ ι \ Α / \ / 
III / 1 1 1 I 

1 Λ^· _ - " Ά I 

ψκ\ι_ I / U-\i 1 / δ 

σ2-σ, 

FIG. 3.4 

In the special case where αϊ = a2 the minima of the envelope are zero. 

(γ) Β(σ) = exp δ(σ—ör0)®exp 
i - * m 

Applying the convolution theorem (Appendix A ) : 

/(Δ) = cos2na0aXe-*
d(rX

*
y 

The envelope has a width 1 /da (Fig. 3.5). 

1 ' 

ο 

FIG. 3.5 

II. Resolving power 

1. Limited interferogram (0 < Δ 0 < L) 

This interferogram can be represented by the function / ' (Δ) such that : 

/ ' (Δ) = / ( Δ ) Χ ί ( Δ ) (8) 
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with 

* Υ Λ Ϊ = Ί
 1 

for Δ < —L and Δ > L 

Using Parseval's theorem one can write 

Gp(a) = F.T.[/ ' (A 0)] = F.T.[/(Ao)] ® F.T.[F(A 0)] . (10) 

One knows the F.T. of the slit function, namely, 

F.T.[F(A)] = ^ ^ , (11) 

hence 

, s i n 2 f f ( g - g 0 ) L sin 2 τ ι ( σ + g 0) L 
p W _

 2n(a-o0)L
 +

 2n(a+a0)L '
 ( 1 2) 

4 / ' ( Δ ) = /(Δ)Γ(Δ) 

FIG. 3 . 6 

The instrument profile is given in Fig. 3.6: 

_ s i n 2 ^ g - g 0 ) L 
G ( f f )

- 2n{o-o0)L •
 ( 1 3) 

G(tf) is the spectrum obtained from a strictly monochromatic radiaton source. G(o) has 

width Δσ* = \L. The resolving power for the radiation cr0 is then 

r = -^ =aoX2L = ^ = 2N. 
Δσ λ0 

The resolving power is thus proportional to the number of fringes, N9 recorded. 

Numerically : 

L = ΙΟ
3
, λ = 0.5 μ, 
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P R O B L E M 4 

Mach Interferometer 

Here one examines the interference of separate beams as shown in section in Fig. 4 .1. 

Β and D are two mirrors with unit reflectivity; A and C are two identical beam splitters 

placed as indicated in the figure. Take AB = CD = d and BC = AD = 2d. 

A point source, £ , at the focus of the objective Oi , emits monochromatic radiation of 

wavelength λ = 0.5 μ. 

I. Equal path interferometer 

1. With the apparatus in adjustment, show that the two plane waves travelling along Cx 

are coherent and in phase. What intensity does each separate beam have? Io is the source 

intensity. The reflection and transmission coefficients for the beam splitters are exactly y . 

Place an objective of focal length d at 02 so that C02 = d. This objective images the plane 

Ρ lying along BC and gives a real image at P'. What is the appearance of the plane P' ? 

2. Place at Ρ a thin film (assume the thickness, absorption, and dispersion negligible and 

the phaseshift uniform). Describe the new appearance of the field P. Show that by photo-

metric measurement, one can determine the phaseshift φ introduced by L. Take as the 

definition of the contrast : 

/ m a x / i r 

Numerical application. Calculate the phaseshifts φι and φ2 caused respectively by two 

films Li and L2 which give contrasts A = 1 and Γ2 = 0.25. 

3 . By what quantity Ay is it necessary to displace the beam splitter C parallel to itself in 

order to see a black field. Calculate the contrast and discuss the advantage of this method 

over the previous one. 
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II. Interferometer with fringes 

1. Consider the apparatus in 1.1. Rotate the mirror D through an angle α = 2 ' about an 

axis perpendicular to the figure. Describe the system of fringes and calculate their spacing. 

2. What is the appearance of the field in white light? 

3 . Reinsert the film L. Show that the displacement of the central fringe gives sufficient 

information to permit the evaluation of the phase shift introduced by the film. Calculate 

the displacement for the values φι and φι treated in 1.2. Take as the unit length the fringe 

spacing i corresponding to the wavelength λ = 0.5 μ. 

4. Enlarge the source S and find the plane in which the fringes are localized. 

1. The beams (1) and (2), coming from the same point source, propagate as coherent 

waves : 

the geometric paths ABC and ADC are equal. 

the reflections experienced at A and Β on one hand, and D and C on the other are the 

same and each beam passes through a beam splitter once. 

The optical paths are therefore equal and the waves moving along Cx are in phase. 

Since the source is a point, the interference is not localized. 

After reflection at A, ray (1) carries energy 7 0/2 , and after passing through the beam 

splitter C, its energy falls to Vo/4. 

Both vibrations which interfere have amplitude yj70/4. Thus, the field in the direction Cx 

is uniformly illuminated. 

Note. If one finds constructive interference along Cx, one finds destructive interference 

along Cy normal to Cx, since the reflections on the beam splitter C are of a different nature 

(air-glass for the ray Cx and glass-air for the ray Cy). 

Planes Ρ and P' are conjugate with unit magnification since these are the antiprincipal 

planes of the objective C%. Later in this problem it will be found necessary to remove the 

plane of observation from the interferometer in order to make measurements. 

2. The film L, when placed at P , produces a constant phaseshift for all the rays which 

traverse it. These rays have the amplitude : 

SOLUTION 

I. Equal path interferometer (§ 6.9) 

(1) 
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while the amplitude of the rays (2) remains as : 

Thus, the illumination of the image of the film is : 

/ 2 = y [ 1 + C O S 0 ] •*/<>. (2) 

The object will appear more or less dark on a bright field (Fig. 4.2) with contrast : 

ρ _ /max"/min _ h ~ h 1— COS
2
 φ β 

/max h 1 

FIG. 4.2 FIG. 4.3 

Numerical application: 

Γ = 1 h = 0 — φ = π , 3π, . . . the image of the object is dark on a bright 

field, 

Γ = 0.25 h = 0.75/c - ^ = y , y , . . . 

Γ = 0 / 2 = /ο ,0 = 2π, 4π, . . . the field will be uniformly bright and the 

object invisible 

F rom the photometric measurement of h and I2 one can deduce φ. 

Note. If the film introduces only a very slight phaseshift, the contrast can be written : 

In this expression φ is squared and thus the value of Γ is very small. This apparatus does 
not lend itself to the detection of a small phaseshift. 

3 . It is necessary that the vibrations of rays (1) (before inserting the object) and (2) be 

completely out of phase. When C is displaced, the path (1) does not change but path (2) 

is increased by (Fig. 4.3). 
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One wants to have 

From which 

Under these conditions 

/ i = 0, 

2π 
Αφ = -j- Ay = π. (4) 

Ay = A = 0.25 μ. 

Hence 

h = γ [1 + c o s (φ-π)] = y [1 - c o s φ] = Ι0 s in 2 ~-

ρ = / m a x - / m i n _ / 2 - / 1 _ / ρ S in
2
 (ft/2~0 = ^ 

/max h ~ /o sin
2
 0 / 2 

The object appears bright on a dark field with maximal contrast for any value of φ. Using 

this method extremely small variations in phase can be detected. 

II. Interferometer with fringes 

1. When mirror D is turned through a, the wave surface Σ2 turns through 2a. One sees 

vertical, linear fringes normal to the plane of the figure. The fringe of order zero is on the 

axis Cx. The system of fringes with bright central lines has spacing : 

. λ 0.5 Χ Ι Ο "
3 

ζ = — = - — - — - — — — Τ = 0.42 mm. 
2α 2 Χ 2 Χ 3 Χ 1 0 "

4 

2. Observation in white light. The central fringe is white and achromatic. The fringes which 

surround it are rainbow-like with blue toward the centre and red to the outside. 

3 . The reference wave Σ2 is not perturbed. Σ± has a shift (Fig. 4.4a). In the image of the 

film L, the white fringe is displaced from 1 to 2 (Fig. 4.4b). One can measure this displace-

ment with an ocular micrometer. 

FIG. 4.4 

3 R & Μ: ΡΙΟ 
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Numerical application. For φ = 2kn (any k\ the fringe displacement is equal to d = &/. 

1 ι 
φ = π ^ k = — — d = = 0.21 mm 
^ 2 2 

^ = ^ - ^ = 4 - ^ ^ = 4 - = 0.07 mm. 3 6 6 

To obtain φ two measurements are required : 

the displacement of the central fringe, 

the fringe spacing in monochromatic light of known wavelength. 

4. Localization. When the source S is extended the fringes become localized. 

THEOREM. The surface of localization is at the point of intersection of the two rays generated 

from the single incident beam (§ 6.6). 

FIG. 4 .5 

In the case of the Mach interferometer, the localization surface coincides with the image 

of D formed in the beam splitter C. It is the plane π passing through Ρ and inclined at 45° 

to BC (Fig. 4.5). (In practice the fringes are found to be localized in a somewhat more extended 

region surrounding P.) 

P R O B L E M 5 

Michelson Interferometer 

Consider the Michelson interferometer as shown in Fig. 5.1. The source S is placed at the 

focus of lens L±. Initially, mirrors Μ ι and AT2 are mutually perpendicular and are at 45° 

to the beam splitter C. One generally does not consider the effects related to reflection or 

transmission through G in this problem. 

M 

Ε F 

FIG. 5 .2 
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The point source S emits a monochromatic wave λ = 5461 Â. 

1. The mirror Mi remains in its initial position while M2 is swung through an angle α on 

the axis 0 2 normal to the figure (Fig. 5.2). Wha t does one see? 

(a) Explain why the fringes are not localized and have the same separation everywhere. 

(b) Calculate the fringe spacing in a plane Ε normal to the direction 7 0 1 , given α = Γ . 

2. Mi is again a plane mirror, but M2 is now replaced by a spherical mirror (convex or 

concave) with radius R = 10 m (Fig. 5.3). The center of M2 is on 7 0 2 . The vertex of M'2 

(the image of M 2 in the beam splitter) is in contact with Mi. The observing plane Ε passes 

through Oi . 

FIG. 5.3 

(a) What is the appearance of the centre of the rings? Calculate the radii of the first three 

bright rings observed under these conditions. Is the result the same for both concave 

and convex mirrors? 

(b) Mi is moved toward the beam splitter. Comment on the displacement of the rings if 

M2 is convex. 

(c) What happens in (b) if M2 is concave? 

II 

The point source S emits white light, 0.4 < λ < 0.8 μ. A spectrograph with dispersion 

proportional to wavelength has its slit in a plane conjugate to the plane E. The slit is parallel 

to the plane of the figure. Its centreline coincides with the extension of the axis 7 0 1 . What 

does one observe in the exit focal plane of the spectrograph when the experiments described 

in 1.1 and 1.2 are performed. 

In both cases give the precise position of the bright lines. (The height of the 

slit is / = 10 mm.) 

I l l 

S is now taken to be a large monochromatic source (A = 5461 Â). Mi remains in its 

initial position. M2 is again replaced by a plane mirror. Assume that M'2 is parallel to M1 

and at a distance very close to 1 cm from Mi (Fig. 5.4). 

The lenses Li and L 2 both have focal l e n g t h / = 1 m. 

3* 



26 PROBLEMS IN OPTICS [PROBLEM 5 

Ρ 

FIG. 5.4 

1. Explain why the fringes are localized. Where is the plane of localization? 

2. The centre of the observed rings has maximal intensity. Calculate the radius of the first 

three bright rings. How will the interference pattern vary if M2 is brought toward M x ? 

3 . What will be the minimal diameter of the source for which three fringes will be vis-

ible? 

4. What will occur if one moves the source S off centre by 12.8 m m ? Precisely draw the 

appearance of the localization plane. 

SOLUTION 

I. Monochromatic point source at infinity 

1. The mirrors Mi and M2 are planar 

(a) With a point source the fringes are never localized. If the mirrors are at an angle a, 

one has two plane waves which make an angle of 2a everywhere. One gets equidistant recti-

linear fringes normal to the plane of Fig. 5.2. 

^ . . .
 λ

 0.5461 , Λ . Λ Λ< 

(b) Fringe spacing: ι = — = 2 χ 3χ 1 Q- 4
X l

° =
 0 91 m m

-

2. Mi is planar, M2 is spherical 

The interference is now produced by : 

a plane wave Σί9 

a spherical wave Σ2 centred at the focus of the mirror at a distance of 

/mirror = T = 5 m (Fig. 5.5). 
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(a) The relative position of the two waves, Σ ι and 272, is shown in Figs. 5.6a and 5.6b. 

Regardless of the sign of the radius of Af2, one sees the same interference pattern (Fig. 

5.6). These are Newton's rings with a bright centre (since Σι and Σ2 are in contact on the 

axis). 

Ccncave mirror Convex mirror 
FIG. 5.5 FIG. 5.6a FIG. 5.6b 

At a distance χ from the axis, the path difference between the two rays is δ = e, such 

that 

x2 = (2f-e)e ^ 2fe = Re. (1) 

The radii of the bright rings (δ = kX) are given by : 

r = y/ky/XR = V * λ / 0 5 4 6 1 X 1 0 "
3
X 10X10

3 

/•mm = 2.34 \/k (k integer). (2) 

The radii of the first three bright rings a re : 

k = 1 r i = 2.34 mm, 

k — 2 r 2 = 3.30 mm, 

k = 3 r 3 = 4.04 mm. 

One now moves the mirror Mi toward the beam splitter. 

(b) M2 convex. The relative position of the wave surfaces is shown on Fig. 5.7a. When M\ 

is moved forward, the rings rise at the edges and contract into the centre. The number of 

rings is much greater than in the case of optical contact between the mirrors. 

(c) Mi concave. The rings rise at the centre and move outward. The central ring lies at the 

intersection of Σι and Σ2. 

Note. The interferometer when modified in this way is called the Twyman interferometer. 

It is used to check the quality of objectives (Fig. 5.8). 

One mounts the objective Ob in such a way that its image side focus coincides exactly 

with the centre, C, of M2. If the objective is flawless, the rays returning along this path appear 

as plane waves and one observes the interference pattern of two plane waves. If the objective 

has flaws, the wave Σ2 is no longer planar. This wave, after interference with the reference 

plane wave Σι (reflected by Mi ) , gives deformed fringes. 
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FIG. 5.7 FIG. 5.8 

II. Polychromatic source. Channelled spectra 

1. The slit of the spectrograph is perpendicular to the linear fringes and parallel to the 

face of Mi (along the x-axis) in the plane of the figure. 

One has constructive interference if 2ax = kX (k an integer). Since the dispersion of the 

spectrograph is proportional to λ (take the coefficient of proportionality equal to 1), the 

equation of the bright bands is 

x = ^-kX. (3) 
2a 

These are clusters of lines (Fig. 5.9a). 

The interference of two waves gives wide bands. 

FIG. 5.9a FIG. 5.9b 
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2. Expression (1) gives the equation of the bright bands 

x
2
 = RXkX. (4) 

These are parabolas (Fig. 5.9b) with vertices along the λ-axis coinciding with λ = 0. 

III . Large monochromatic source. Rings at infinity 

1. One observes fringes of equal inclination localized at infinity. 

2 . If ι is the angle of incidence of the rays on mirrors Mi and M 2 , the path difference 

between the reflected rays is 

b = 2ecosi = 2e(\-
1
-^. (5) 

The centre appears as a bright point. The interference order on the axis is an integer k0. 

The bright rings are produced by rays making the angle i with the axis such that 

ι = yjk^k (k integer). (6) 

In the focal plane of L 2 , the radii of the bright rings are given by 

r m m = / / = WVko-k | / = y/k^k \ / 5 4 . 6 1 

kfj—k = 1 ri = 7.39 mm, 
k0—k = 2 r2 = 10.45 mm, 
k0—k = 3 r 3 = 12.80 mm. 

3 . These rings form an image of the source (Li and L 2 have the same focal length, the 

source and its image has the same dimension). 

In order to be able to observe three rings, it is necessary that the source have a minimal 

dimension D = 2 r 3 = 2X 12.8 mm. 

D minimal = 25.6 mm. 

4. When one moves the source off the centre line, one only sees the portions of the rings 

lying on the geometric image of the source. The centre of the rings coincides none the less 

with the axis of the instrument. 

The rings are centred on the point S (Fig. 5.10) and the image of the source is centred on 

S' (SS' = 12.8 mm). 

Note. Newton's rings and the rings at infinity have the same appearance. The first are 

due to variations in thickness (constant incidence). The second are due to variations in 

the incident angle (constant thickness). In the first case k increases when one lengthens 

the axis and in the second it decreases. 
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Outline of the geometrical 

image of the source 

FIG. 5 . 1 0 

P R O B L E M 6 

Interference Filters 

Two semi-metallized sheets of glass are separated by a fixed distance e with a constant 

index of refraction η (Fig. 6.1). 

Metallic layer 

Glass 

FIG. 6.1 

1. One wants this filter to have a transmission maximum for normally incident waves of 

wave length λ = 5500 Â. Given the fact that the spacing material is cryolite with index, 

η = 1.35, determine the possible values for the spacing e. Only one pass band between 4000 

and 7500 À is wanted (neglect the phase shift due to reflections on the metallized surfaces). 

2. How is the wavelength of the transmission maximum changed when parallel rays fall 

on the filter at an angle of incidence ι rather than at normal incidence? 

SOLUTION 

1. Normal incidence (§ 7.5) 

The transmission maxima correspond to constructive interference, that is, to path 

differences 

δ = 2ne = Ιίολο = ... = kX (1) 

ko, ..., k are integers giving the interference order for wavelengths λο, . . . , λ. 
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One finds a transmission maximum for the filter for thicknesses of cryolite such that 

e = k 0 ^ = koe0 (2) 

e = k 0 X ^ ^ = koX2040A. 

Check for other pass bands in the visible spectrum. 

e 
Number of 
pass bands 

to k = 0.73 ko = 1 k = 1.37 1 
2e0 k = 1.46 k0 = 2 k = 2.74 1 

3*o k = 2.12 ko = 3 k = 4.11 2 

Only the spacings e = e0 = 2040 Â and e = 2eo = 4080 Â give but one pass band. 

2. Oblique incidence 

The path difference becomes : 

δ = 2ne cos r = k0X'0. (3) 

Compare this expression with equation (1). One finds the same interference order for shorter 

wavelengths. 

When the filter is inclined, the pass bands shift toward shorter wavelengths. 

P R O B L E M 7 

Fabry-Pérot Etalon. Use of Screens 

The plates of Fabry-Pérot étalon are held strictly parallel at a distance of 1 cm by means 

of three invar wedges. This étalon is placed between two identical converging lenses L i and 

L2 having focal length 15 cm. In the focal plane of Li one places a luminous source 1 cm in 

diameter (centred on the principal focus of Li). This source emits monochromatic radiation 

of wavelength λ = 0.49 μ (Fig. 7.1). 

Take the index of air equal to 1. 
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1. Calculate the interference order at point F'. 

How many bright rings can one observe in the focal plane of L 2 ? 

What is the order and the radius of the largest of these rings? 

2. Between the half-silvered plates place an opaque screen which covers half the surface 

of these plates. 
What is observed in the focal plane of L 2 ? 

3 . Replace the opaque screen by a transparent 0.5 mm plate of index 1.5. Explain the 

appearance of the field. Give the radii of the bright rings. 

4. What will one observe if this same glass plate is inserted in an apparatus which gives 

Newton's rings for normally incident light? (Fig. 7.2.) 

FIG. 7 .2 

SOLUTION 

1. Let ι be the angle of incidence. Two adjacent rays give a path difference : 

δ = 2ne cos ι = 2ne ( i ) 

The bright rings, corresponding to constructive interference, are given by 

2 * [ l - £ ] = tt 

where k is an integer. 

The interference order at the centre, 

, 2e 2X10* 4 Λ δ 1 ή„ 
k
° = Ί = " W

 = 4 0
'

8 1 6
·

3 2
· 

(2) 

(3) 

The interference order at the edge of the field ( z M representing the maximum/) = 0.5/15 = 
0.0333 = 3^ rad. 

£(*m) = k (0) 

*2 ~i 

\ - ~ \ =40,793.65. (4) 

The order of interference for the largest bright ring is equal t o : 40,794. 
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The angular radius corresponds to a value 

i = V 2 l/S = 0.03307 rad. 
r *(o> 

From which the linear radius 

r =fi = 0.4960 cm. 

The 22nd bright ring has a radius of 4.96 mm (it is essentially at the edge of the field). 

2. Half the incident rays are intercepted. The useful surface of the étalon is halved. The 

position and radius of the bright rings remain unchanged but their illumination is halved 

(Fig. 7.3). 

FIG. 7 .3 

3· Let a parallel bundle of rays make an angle i with the axis of the system. Two rays 

which pass through the lower par t of the étalon have a path difference 

δι = 2e cos ι. 

Two rays which pass through the upper par t of the étalon have a path difference δ 2 such 

that, if ë is the thickness of L, 

ô 2 ( 0 = 2(e—ë) cos i+2ne' cos r = ài(ï)+2e'[n cos r—cos / ] , 

Hi) = « 1 ( 0 + 2 e | ( « - l ) + y ( l - j ) ] = ii(i)+e'[l + ± 

Hence 

* * ) = * ! ( ! ) + 0 < 49 ( l + 3 ) . 

One sees in the field two systems of bright rings centred on F' (Fig. 7.4). 

-)· 

First ring 
system 

Second ring 
system 

Interference order at the centre 
Interference order at the edge 
Number of bright rings 

4 0 , 8 1 6 . 3 2 

4 0 , 7 9 3 . 6 5 

2 3 

4 1 , 8 3 6 . 7 3 

4 1 , 8 1 4 . 4 3 

2 2 
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4. At the same distance χ from the axis of the system, the rays have path differences 

x
2 

δ = — for the rays 1 and 2, 

δ' = ?*- + 2é(n-1) for the rays Γ and 2 ' , 

Whatever value of k is taken, the variation in the interference ordered [(2e'ß{n-\) = 

1020.41] differs by an integral number. One sees two ring systems as in Fig. 7.5. 

FIG. 7.4 FIG. 7.5 

P R O B L E M 8 

Observation of Phase Objects by the Tolansky Method 

Consider a Fabry-Pérot interferometer. The plates L\ and L 2 are parallel. Their surfaces 

are separated by a distance e and may be thought of as half-reflecting. The index of the central 

medium is 1.5. The interferometer is illuminated by a source S situated at the focus of a 

collimator C. The eye is placed at the focus of an objective Ο which allows one to focus on 

any plane between Li and L 2 (Fig. 8.1). 

1 

® \ 
c 0 

FIG. 8.1 
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I. Monochromatic point source (λ = 0.5 μ) 

1. The image of the source is formed on the pupil of the eye and the field observed 

appears uniformly illuminated. Recall that the illumination is given by 

1 
I — Im J— 

l + > w s i n
2
y 

m being a characteristic of the apparatus taken as 2500. Find φ as a function of e and «. 

While maintaining L± and L% parallel, vary the spacing e. Show graphically the variation 

of illumination as a function of e. 

2. Place between the plates a small "phase-shifting object", that is, a transparent object 

of thickness e' which differs from the medium by only its index n' ^ η (Fig. 8.2). 

il 

\ 
y / 
/ 
• / 
< 

e ' 

^) 

<S> 

\ 
f 

Li 
e 

FIG. 8 .2 

For a given spacing 

(a) Calculate the phase shift Αφ in the region occupied by the object. 

(b) Derive the variation of illumination Δ / in this region. Calculate the contrast of the 

object with respect to the "background" illumination. Take as the definition of 

contrast 

Γ = AI/L 

(c) For what values of e is the contrast maximal? 

(d) What is the smallest pa th difference detectable by this method if one can see a contrast 

Γ = 0.1? 

II. The influence of the size of the source 

The source is now a small luminous disc centred on S with diameter d. Each point on the 

source gives an illumination J(i, e, ri) as a function of spacing, index, and the angle of inci-

dence of the rays on the étalon. Assume that the illumination remains unchanged for the eye 

when φ(ί9 e, n) and φ(ο, e, ή) have a maximum variation of π/50. 

Derive the tolerances on the size of the source if the focal length of the collimator is 

/ = 50 mm and e — 1.5 mm. 
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III. The effect of the colour of the source 

Now consider a point source emitting radiation with a width άλ and a coefficient of 

fineness λ/dA.To this width corresponds a phase variation which should be, as before, less 

than tt/50. Derive the coefficient of fineness for the source. Again take e = 1.5 mm. 

SOLUTION 

I. Monochromatic point source 

1. Two adjacent parallel rays differ in phase by 

φ = ^X2ne. (1) 

One has an equal path interferometer. The field has the colour of the source and a uniform 

illumination given by (§ 7.4) 

I = IM - . (2) 
1 + m s in

2 Φ 

When e varies, the illumination varies: it passes through a maximum for e = kXßn (Fig. 

8.3). 

1 

1
/2 2nN 

Κλ 
2n 

( / ί + 1 ) λ 
2n 

FIG. 8.3 

2n 
FIG. 8.4 

These maxima have widths 

Δ , = — , w i t h Λ Γ — ^ ~ (3) 

2. (a) Fo r two rays which have passed through the object, one has a phase difference 

φ ' = φ+Αφ (4) 
such that 

and 

Αφ =
 2

^ΑΟ 

Δδ = 2e'(n'-n). 

(5) 

(6) 
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(b) By definition 

Γ _ AI _ —m sin φ/2 cos φ/2 _ 

Ύ ~ 1 + m s i n
2
 0 / 2 ^ " 

— m sin φ 

2 ( 1 + m sin
2
 φ/2) 

Αφ. 

(c) The contrast is maximal for άΓ/άφ = 0, so that 

Φ cos φ ^l + m sin
2 

sin 0 = 

sin
2
 φ β 

2\/m+\ 

= 2m s in
2
 φ/2 cos

2
 φ/2 

1 

ra-f 2 

2 

m + 2 γ
7
 m 

The Fabry-Pérot étalon should have a spacing 

4 

ÏOO' 

By substituting the value of φ in (7) one has 

_ mAφ \/m 

m 

- max / — 

2 y m + 1 
(d) If one takes T m a x = 0.1, one has 

Αφ = 25 Δφ. 

Δ ^ = 250 = 2 π Ί Γ ' 
hence 

Δδ = 
λ _ 5 X 1 0 - « 

2 π Χ 2 5 0
 _

 2 π Χ 2 5 0 
= 3.18 Â. 

(7) 

(8) 

(9) 

(10) 

Note. For the contrast to be good, it is necessary to place oneself a t a point Ρ on the curve 

8.3 where the variations o f / a r e large. The ideal point corresponds to 

d_ 

άφ 
or / / " - / ' * = 0. 

This does not coincide with the inflection point of the curve for which one has / " = 0 but 

it is very close to it in the case where m is large. 

One has 

II. Influence of the size of the source 

δ0 = 2ne, 

δ{ = 2necosr = 2 ^ 1 — ^ - j = 2ne — 

P i
2 

Αδ= 00-0,= δο^ = β - . 

( H ) 

(12) 
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One wants Αφ < π/50 where Δδ < λ/100. Thus, 

d ^ 0.224 mm. 

III . The influence of the spectral width of the source 

When the source is not monochromatic the phaseshift is not constant. F rom (1) one has 

So that this variation is less than π/50, it is necessary that 

λ 200ne 200X 1.5X 1.5X 10
3 

άλ λ 0.5 

so that 

This is a large coefficient of fineness. 

P R O B L E M 9 

Fabry-Pérot (Interference) Spectroscopy 

I 

Consider the interference apparatus formed by a layer of air of thickness e with parallel 

faces limited by two plates of glass whose opposite faces Ρ and Q have an improved reflec-

tion coefficient (Fabry-Pérot interferometer). The reflection of a light ray on each of these 

surfaces is accompanied by a phase shift which is taken to be zero for all radiation. Assume 

at the outset that the apparatus is such that reflection of light on faces other than Ρ and Q 

does not occur. The index of air is taken equal to one. A lens L of focal l e n g t h / w h o s e optic 

axis is normal to the faces Ρ and Q is situated behind the étalon (see Fig. 9.1). One wants 

to study the rings in the far-field resulting from transmission by the Fabry-Pérot inter-

ferometer. 

1. Recall in which plane one should observe the rings so that contrast will not be lost 

when one uses an extended source. 

2. Calculate the wavelengths of radiation λκ for which the centre of the system of rings 

has maximum light intensity when using the interference order corresponding t o K. 
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3 . With the interferometer illuminated by radiation with wavelength λ slightly less than 

the preceding value λκ, calculate the angular radius OLK(X) of bright rings corresponding to 

interference order Κ as a function of only λκ and λ. (One assumes that the difference λκ—λ 

is such that the the angle OLK(X) must be thought of as small.) 

II 

Consider a grating spectrograph formed essentially of an entry slit Ε which is infinitely 

fine and a transmission grating Τ with a width (normal to the rulings) of L = 5 cm and 

which has 1000 rulings per millimetre. The collimator C and the objective Ω both have the 

same focal length F = 3 m. The optical axis of the collimator is normal to the grating and 

the optical axis of the objective is parallel to the diffracted rays in the first order for the 

wavelength λ0 = 5000 Â (Fig. 9.1). 

Each image of the slit formed by the spectrograph for a monochromatic radiation is 

recorded on a photographic plate A normal to the optical axis of the objective. The points on 

this plate are referenced by a system of rectangular axes Ox and Oy. The various mono-

chromatic images from the slit are formed on Ox, Ο being the point where the optic axis 

of the objective intersects the plate. 

1. What is the distance on the plate which separates the images of the slit corresponding 

to wavelengths Ai = 4500 Â and A2 = 5500 Â in the first diffraction order? 

2. Calculate the values of the linear dispersion D = dx/dA in millimetres per Â for the 

wavelengths A0, Ai, and A2 in the first diffraction order. 

3 . Calculate the resolving power of the grating when used in the first order. 

4 R &M:PIO 
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III 

The entry slit of the preceding spectrometer is placed along a diameter of the system of 

rings of the interferometer, the middle of the slit coinciding with the centre of the system 

of rings (Fig. 9.2). Assume throughout that the grating always acts in the first order and here 

the investigation will be limited to radiation with wavelengths between λχ and λ2 so that 

one can consider the dispersion as being linear and equal to the value D calculated in II-2 

for the wavelength λ0. 

1. When the interferometer is illuminated by light with wavelength λ, show that one sees 

points of maximum illumination on the plate. Find the coordinates of these points in the 

xOy system defined above. 

2. When the interferometer is illuminated by two monochromatic waves with lengths λ 

and λ+ dA which are very close together, find the difference dy of the ordinates of the two 

maxima corresponding to the same order of interference K. Derive the value D' = άγΙάλ 

of the dispersion due to the interferometer. 

What happens to D' when the wavelength λ tends toward λκ1 

3 . When the interferometer is illuminated with white light, show that a set of maxima 

appears on the photographic plate as lines and find the equation of these lines in the xOy 

coordinate system. Describe the nature of these curves. 

Find the distance which separates the points of intersection of two successive curves with 

the Ox axis near λ = λ0 for e = 2 mm. 

4. Show that the difference y2—yi of the ordinates of two points M2 and M i with maxima 
corresponding to the Κ and K—l orders of interference for the wavelength λ, can be put 
in the form: 

where y represents an ordinate lying between y2 and y±. Assume that the difference is 

small and derive the difference in ordinate by which separates two points close to M i on 

FIG. 9 . 2 
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the plate for which the illumination is equal to half the maximum illumination under the 

assumption that the reflection coefficients of Ρ and Q are such that the coefficient of fineness 

has the value Ν = 30. 

What is the resolving power R' for this device near the wavelength λ 0 ? Compare this with 

the resolution of the grating spectrograph. Indicate why it is necessary to use the spectro-

graph in conjunction with the Fabry-Pérot interferometer. 

SOLUTION 

I. Rings in the far-field (§ 7.4) 

1. The very fine rings appearing bright on a dark background are localized at infinity. 

They can be observed in the focal plane Ε of the lens L. 

2. One finds a bright centre for all wavelengths such that 

(K integer). (1) 

3 . Rings of order Κ for wavelengths λ < λκ. One has 

2e cos <*κβ) Κλ. (2) 

Since ocK is small 

hence, by using (1), 

(3) 

II. Dispersion of the grating (§ 7.8) 

1. The incident rays are normal to the grating (i = 0). 

Let Ρ be the step of the grating. The principal maxima are given by 

Ρ sin V = ρλ (ρ integer). 

The first-order spectra are formed in a direction V such that 

. e/ « . ., λ 0.5 1 
Ρ sin ι = λ sin ι = — = —- = —, (4) 

V = 30°. 

By differentiating (4), one gets 

P c o s f di ' = dA. (5) 

4* 



42 PROBLEMS IN OPTICS [PROBLEM 9 

άλ Ρ cos ϊ Ρ y/\-X*IF* VP^T
2
' 

for which the grating dispersion D = άχ/άλ in the first-order is 

D = ^ - y I = . (7) 

One uses F in mm and Ρ and λ in Â. 
Numerical application : 

λι = 4500 À, D i = 7 = - = , = 0.335 mm. A " 1 

VlO8- (4.5) 210 6 VlO2- (4.5) 2 

3 X 10 3 3 
λ 2 = 5000 Â Do = , = , = 0.346 mm. Â " 3 

V l 0 8 - ( 5 ) 2 1 0 e
 \/\W-(5f 

3X 10 3 3 
λ3 = 5500 Â D2= , = - = , = 0.36 mm. Â " 1 

V l 0 8 - ( 5 . 5 ) 2 1 0 e V l 0 2 - ( 5 . 5 ) 2 

3 . Resolving power of the grating in the first order. 
For the two wavelengths λ and λ+άλ, two first-order spectra are separated by 

di ' = dA/Pcos /'. The width of each spectrum is 

&·' = 7 - ^ 7 . (8) L e o s ζ 

The two spectra are resolved if 

di
f
 ^ (80 

The resolving power of the grating in the first-order is 

R
 = 6*X>

 ( 9) 

so that, according to (8'), 

R = = number of rulings = nL, 

R = 1000X50 = 5 X 1 0 4 . 

The images of the entry slit corresponding to λι and λ 2 are separated by a distance of 

dx = Fài' = / d A . , = 3 χ 1 0 » χ 01 _ = 2 V3X102- (6) 
P c o s * V3 

djc = 346.5 mm. 

2 . Combining (4) and (5) one gets 

di ' 1 1 1 1 
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III. Dispersion of the Fabry-Pérot étalon 

The objectives C and Ω have the same focal length. The ordinate of conjugate points is 

the same in plane Ε as in plane A (unit magnification). I t is sufficient to examine the disper-

sion of the Fabry-Pérot étalon in the focal plane of L. 

1. Using a monochromatic wave of length λ. 

Bright rings occur for 

^ cos ajr = ~ (\- = Κ (Κ integer). (10) 

The entry slit of the spectrometer cuts these rings along a diameter. In the plane Ε the 

bright points have ordinates 

y =f*K 
Κλ 

e 
(Fig. 9.2). (11) 

The entry slit coincides with Oy. The photographic plate is normal to the first-order 

diffracted rays for λ0 = 5000 Â. Fo r this spectrum the grating is taken to have a constant 

dispersion 
dx 

D = ^, = 0.346 mm A "
1
. 

In the plane A, one observes bright points with coordinates (Fig. 9.3) 

x = DX = const. 

(12) 

2. One has here two monochromatic waves λ and λ+άλ. Thus one finds two concentric 

systems of rings in plane E, hence two series of bright points on the entry slit. On the plate 

one sees two series of bright points shifted by DXdl (Fig. 9.4). The derivation of (11) allows 
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one to write: 
1 

άλ (13) 

ày corresponding to the separation of two points such as Mm, 

From (13) one derives the dispersion of the étalon: 

(14) 

One can see that maximum dispersion is obtained for the maximum values of K, that is 

for rings of small diameter. At the limit, for λ = λκ = 2e/K, D' becomes infinite. 

3 . Band spectra. If the source emits all the wavelengths lying between Ai and λ 2, the equa-

tion of the lines of maximal illumination in the plane xOy is given by (12). By eliminating 

λ one finds the expression 

These are bright, very fine parabolas about the Ox axis. 

One passes from one parabola to the next by making a unit change in Κ (Fig. 9.5). The 

apexes are on Ox and have as abscissa 

(15) 

(16) 

0 
χ 

λ 1 =0,45μ λ ο=0,5μ λ 2=0,5δμ 

Spectra order +1 

FIG. 9.5 

Two successive apexes are separated by 

\Ax\=~DXAK = ^D = 0.2 mm. 

for λ χ = 4500 Â, one has KXl = 2eßi = 8888.8, 

λ0 = 5000 Â Ku = 2eß0 --- 8000.0, 

λ2 = 5500 Â Kh = 2eß2 = 7272.7. 
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One sees then ( 8 8 8 8 - 7 2 7 3 ) + 1 = 1616 "sections" of parabolas in the field. They are con-

cave towards the blue. 

4. Resolving power of the Fabry-Pérot . Wavelength λ. Orders Κ and Κ— 1. 

Let Ay be the distance between points M\ and M2 (Fig. 9.4). Expression (11) gives 

λ / ·
 λ Ακ 

""FT 
UAK= 1: 

e 

1 βλ 
Ay= V = M2Ml (18) 

y 2e ' 

FIG. 9 . 6 

The rings contract as one passes from the centre to the periphery (Fig. 9.6). For wavelength 

λ, the rings of order Κ and Κ— 1 are represented as solid lines. For the wavelength λ+άλ, 

the rings are represented as dotted lines. 

Consider a monochromatic wave λ. If Ay is the distance between two consecutive rings 

and by the width of the rings, one has 

<"> 

Ν is called the coefficient of fineness. Its v a l u e r \/R/(l —R) depends only on the reflection 

factor R of the Fabry-Pérot plates. 

If the source emits two close wavelengths λ and λ+dA, one says that two points such as 

Mx and M[ are resolved if the distance M^M\ = dy is greater than by (Fig. 9.7) : 

ay > by. (20) 

Combining (19) and (20) one arrives at the condition 

ày^~Ay. (21) 
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Ι *αλ Ι λ 
2ea I 2eoc 

FIG. 9.7 

Referring to the values of ay and Ay given by (13) and (17) and using them in the inequality 

(21) gives 

^r^KN = 30 K. 
αλ 

The Fabry-Pérot resolving power is 

R' = KN. (22) 

For λο, the highest order of interference is a t the centre : Κ = 8000. One finds 

R' = 30 X 8000 = 24,000 % R/2. 

The dispersion axes of the Fabry-Pérot (Oy) and of the grating (Ox) are crossed. One thus 

eliminates all ambiguity in spectral analysis for the case where one has overlapping of 

different interference orders at the same point of Oy. 



E L E C T R O M A G N E T I C O P T I C S 

P R O B L E M 10 

Interference of Hertzian Waves 

The electrical properties of the water of the Atlantic Ocean with respect to hertzian (r.f.) 

waves are characterized by the following constants : 

ε, = 81, μ Γ = 1 , γ = 4.3 Ω "
1
 m "

1 

1. Show that this water can be regarded as a good conductor for frequencies less than 

10
8
 Hz. In the following parts of the problem assume that the water is a perfect conductor. 

2. Under these conditions, consider a horizontal dipole antenna situated at point S at 

a height H above the surface of the sea emitting monochromatic hertzian waves with wave-

length λ. A receiver is placed at a point Ο at a height h above the water in the equatorial 

plane of the emission from the antenna and at a horizontal distance D from it. Assume 

that D is much larger than H and h and that the surface of the water, assumed planar, extends 

from S to Ο (Fig. 10.1). 

Find the variations of the electric field as a function of H, h, and λ for a given value of D. 

Determine the minimum value of h for which there is opt imum reception. Numerical 

application: H = 300 m, D = 10 km, λ = 30 m. 

3 . For small values of h, find the expression for the intensity of the wave at Ο as a function 

of D and compare this with the corresponding expression one would find in the absence of 

the ocean. Assuming that the waves propagate parallel to the surface of the sea (valid since 

Η and h are small), calculate the mean power (fP) which passes normally through a unit 

surface area at Ο as a function of the total mean power (Φ) radiated by the dipole. 

Numerical application: H = h = λ = 10 m, D = 10 km, (Φ) = 10 W. 

D 

FIG. 10.1 
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SOLUTION 

1. For a good conductor, the conduction current exceeds the displacement current and 

the imaginary par t of the complex index (§ 2.5) is larger than the real part . Now the ratio 

of these two variables for ocean water is 

y 6.1 Χ Ι Ο
9
 Ι Ο

9 

εοεΓω ω ν 

Thus this water is a conductor which insulates for ν < 10
9
 Hz (λ = 0.3 m) and is a good 

conductor for ν = 10
8
 Hz. 

2. The antenna receives both the wave propagating along SO and the wave reflected at Ρ 

by the surface of the water, which acts as a perfect mirror, a t an angle close to π/2 since 

D Η (here i % 88° 15'). The reflection factor is essentially equal to one. The electric 

field of the waves is horizontal and the reflection introduces a phase shift of π , with the 

result that the tangential component of the electric field is zero at the surface of the conductor 

(§ 2.6.3). 

The path difference of the waves reaching Ο is SPO — SO : 

SO = V D
2
+ ( H - h f * Z ) [ l + ! ^ A )

2
j , 

spo = V&HH+Kp *
 Z )

[
1 +

y (
J

^ )
2

] ' 

so that 

_ ΛΛ 2Hh 
δ = SPO-SO = — Ρ 

and the phase difference at Ο is 

2πδ 4nHh 
φ =

 Ί Γ
+ π

 = - Ί 0 ~
+ π

-

Neither the small difference in the optical path nor the presumed total reflection produces 

any reasonable difference between the direct and the reflected wave in amplitude (which 

varies as 1/r). Since these fields are parallel, the resultant field is given by: 

*o _ _ , Eo _ , ^ _ 2Eo ^ /_ , 2nHh\ ^ 2uHh E0 Eo , »̂  2£o . / 2πΗΗ\ 
— cos

 ω
*+-ρ cos (ωί-\-φ) = sin Ιω ίΗ— j^ -J 

One then gets at every instant on the vertical at Ο a set of maxima and minima in the ampli-

tude. At the surface of the water (h = 0) there is a zero minimum. The first maximum occurs 

at the height Αι = λΌ/4Η. 

Numerical application: 

. 30X10* 
h l

 = -4X3ÖÖT
 = 2 50 m

' 
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3. For A <3c Αι, one can replace sin InHhjXD by the angle. The amplitude of the electric 

field at Ο is then proportional to l/D
2
 and the intensity of the resulting wave to 1/Z)

4
, while 

the intensity of the direct wave varies as l / D
2
. 

The power (φ) is given by the expression (§ 2.3) 

<<P> = ï V f i & . (2) 

Em represents the field amplitude (1), so that 

4nHh 

The field E0/D, produced by the dipole antenna at a distance D in its equatorial plane, has 

an amplitude (with 0 = π/2) given by equation (10.10) of § 10.3: 

D 4JT60C
2
 D '

 w 

On the other hand, the total mean power (Φ) radiated by the sinusoidal dipole is given by 

equation (10.13) of § 10.3: 

Using (2), (3), (4), and (5), 
H

2
h

2 

Numerical application: 

P R O B L E M 11 

Fresnel Formulas 

I 

The Fresnel equations give the reflection coefficients obtained by assuming that the 

magnetic permeabilities μ ι and μ2οΐ the dielectric are equal to that of free space μ0. What 

happens to these equations if this assumption is set aside? 

II 

Consider the possibility of linear polarization of reflected light resulting from reflection 

if μι and μ2 are different from μ0. 

III 

Show that under normal incidence the reflection coefficient is zero for a dielectric in 

vacuum where the relative permittivity er is equal to the relative permeability μΓ. 
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SOLUTION 

I 

Maxwell's equations for a plane wave give the following general expression relating the 

magnetic field H to the electric field Ε (§ 2.4): 

The equations of continuity relative to reflection and refraction at the surface between 

two transparent media for the component of the electric field normal to the plane of inci-

dence is given by Fig. 11.1 (§ 3.2). 

Ei+Er = Et, hence 1 + r = t\ 

(Hi—Hr) cos i i = Ht cos i 2 , from which ] / — (1 — r) cos h = λί^-1 cos / 2 . 

Σ 

FIG. 11.1 

The derived coefficient of reflection r, is 

and the transmission coefficient t± is 
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F., = 

One finds for the coefficients relative to the case where the Ε fields are in the plane of 

incidence 

1/ — COS I i — 1/ — COS I 2 

_ \ μ2 V μι 
ΐΑε2 . , if ει 
1/ COS I i - l - 1 / — COS I 2 

r μ* J μι ( 2) 

2 1/ — cos i i 
r μι 

1/ — COS I i + 1/ — COS I 2 

1 μι \ μι II 

Incidence at Brewster's angle causes to vanish. This condition occurs, using (2), for 

1/ — cos i i = 1/ — cos i 2 = 1/ — λ / 1 — s i n
2
1 2 . 

\ μ2 V μι 1 μι 

By using the law of refraction 

sin i 2 _ v2 _ ι Γ ειμί 

sin I i Vi y ε2μ2 

and by expressing sin i i and cos i i as a function of tan i i , one finds 

tan iB = 1/ g2(g2^1~£l^2) 
B
 f ει(ε2μ2-ειμ{)' 

For μι = μ2 = μ0, this expression reduces to 

. . ι[ε2 n2 
tan ι β = / — = —, 

F ει ni 

which is the usual expression for the Brewster angle. 

Equation (1) shows that under the assumptions made here, r± can also vanish. Proceeding 

as above, one finds that this occurs for an angle i'B such that 

tan ïB = ][ ^
β 2

^
1

~
β 1

^ 
B
 \ μι(εψι-ε2μ2) ' 

Under ordinary conditions where μι = μ2 = μ 0, one has tan i'B = V — 1. There is no 

Brewster angle for the vibration perpendicular to the plane of incidence. 
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III 

In the case of normal incidence, equations (1) and (2) become 

r i J * \ ^ = - r V r (3) 

\ μι V μι 

Since ε = ε 0ε Γ and μ = μ 0μ Γ, if ετ = μΓ, r = 0. One notes that the ratio V μ / ε is the intrinsic 

impedance of the medium (§§ 2.3 and 2.4). Realization of equation (3) at the surface of 

separation of two media is equivalent to the situation where the impedance is matched at 

the junction of two transmission lines. 

P R O B L E M 12 

Fresnel Formulas. Thin Films 

1. Starting with the Fresnel formulas for glassy reflection at normal incidence, show that 

the amplitude reflection coefficients r and r' for crossing the surface in bo th directions 

satisfy r = — r' and the corresponding transmission coefficients / and t' satisfy tf = 1 ~ r
2
. 

2. A layer of a transparent substance with index «ι, parallel faces, and thickness e covers 

a glass surface of index n2. Its upper face is in contact with the air whose index is taken as 

unity. A plane monochromatic wave of length λ in air and unit amplitude intersects the 

layer from the air at normal incidence. Show that the reflected intensity, taking into account 

the multiple reflections is given by 

_ r f + r ! + 2 / y 2 c o s φ 

1 + ^ 1 + 2 ^ 2 cos φ
9 

ri and r 2 being the reflection coefficients for air-layer and the layer-glass respectively and φ 

the phase difference between two successive reflected rays. 

3 . Show that if 1 < « i < « 2 , the transmission factor of the layer plus the glass is always 

greater than that of the glass alone for any spacing e. For ηχ = 1.35 and n2 = 1.50, by how 

much will the reflection factor R be lessened (relative to the intensity) from that of the glass 

alone by the deposition of a layer having the optimal spacing. 

Among the possible optimal spacings for the wavelength λ, why does one use only the 

smallest? 

4. Show that if « i > w2, the reflection factor at the glass is increased. For what thickness 

R is it maximal? D o the calculation for rii = 2.30. 

5. Indicate the advantages and disadvantages which occur for partially reflecting metal 

and dielectric films. 
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SOLUTION 

1. Fresnel formulas (§ 7.2). 

r = 
ni-n2 r = • r = — ι* 

The continuity of the electric field requires, for normal incidence: 1 + r = i, 

2«i 2 H 2 „ , T 0 

t = —-— , t = — ------ tt = l-r
2
. 

Λ 1 + Λ 2 Λ 1 + / 1 2 

2· Reflection factor. This can be found by the method used in Problem 14, par t II . 
Here, one is required to take into account multiple reflections (Fig. 12.1). 

(1) 

(2) 

To obtain the reflected amplitude, one can sum the amplitudes of the successive rays 
either in air or in the substance of index «i . The electric field has the same value on either 
side of Σι on the surface separating the media 

Medium of index 1 

Ε = Ei+Er 

Medium of index « 1 

Et 
(3) 

Calling φ the phase shift introduced by a double pass through the substance 

2π 

Φ = -j-X2nie, 
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\ l - r i r 2 / \ « 2 + " i / 

Numerical application: 

_ Γ ΐ . 5 0 - ( 1 . 3 5 η « _ Γ-0.32-1« ^ 

* - [ l .50+(1.35)»J - [ " W j ~
 0 01 

The condition nie = (2&+1)λ 0/4 is approximately satisfied for wavelengths about λ0 and 

more so in a larger domain when k is small. Hence the choice k = 0. 

(b) Plain glass : tfmaximum = i ? p l a in g l a ss if φ = 2kn (or nxe = kXJ2) : 

Ί - » . \ « / » - Ι · 5 \ · = 0 Ό 4. 

4. 1 < Hi > «2· Treatment of the surface can only increase the reflection factor, 

(a) * t r e a t ed = M a x i m u m
 i f

 Φ = ( 2 * + 1 ) » or = (2fe+ l ) A 0 / 4 : 

.— »·_ \ 2 / w . _ w ? \ 2 

(b) *plain glass = · 

r being < 1 one always has r** — 0 (N is the number of reflections). Value of the resulting 

field in air : 

E= l + r i + W i f i e - ^ l + r i r a e - i H . . . ] = 1 + Γ ι + » (
4
) 

Value of the resulting field in the substance : 

Ε = h[l+r'ir*-'*+ .. .] + h r # - » [ l . . . ] = ^ ^ i j · (5) 

One can easily verify that equations (4) and (5) are identical, since 1 + n = *i. 

Given that Ε = Et+Er = 1 + r, one can immediately get from (4), using (1) and (2), the 

reflected amplitude : 

r
 -

 r i +
 l + n ^ e - i * ·

 ( 6) 

The reflected energy value R = \r\
2
is given in the text of the problem. 

Note. As a further exercise, one can replace r\ and r2 by the values found from the Fresnel 

formulas and verify equation (6) here and equation (28) in Problem 14. 

3 . 1 < « i < « 2. Treatment of the surface can only increase the transmission factor. In 

effect, 

(a) Treated surface film: 

t r e a t e d = ^minimum ^ Φ = 1)* OX flf = (2fc+ l )A Q/ 4 , 

2 / w „ - w ? \ 2 
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Numerical application: 

plain glass 

_ r l . 5 0 - ( 2 . 3 )
2
1

2
 _ / 3 . 8 \

2 

" [l .504-(2.3)
2
J ~ \6 .8J 

= 0.04. 

= 0.31, 

5. Metallic films are absorbing. The dielectric films are selective. 

P R O B L E M 13 

Newton's Rings in Polarized Light 

One gets Newton's rings between a plano-convex glass lens with large radius of curvature 

and index n± and a glass flat whose index n2 differs significantly from n±. The incident light 

is parallel and linearly polarized. Describe qualitatively the effect of a variation of the angle 

of incidence on the visibility of the rings : 

1. When the vibration is parallel to the plane of incidence. 

2. When it is perpendicular. 

1. The transmitted intensity crossing the upper face of the lens increases uniformly with 

the incident angle. The amplitude reflected on the lower face vanishes for an angle of inci-

dence ii such that tan i"i = wi. There can no longer be interference with the rays reflected on 

the glass flat and the rings vanish. They also disappear for an angle of incidence i 2 such that 

tan i*2 = « 2 , the rays no longer being reflected on the glass plate. 

2. The visibility undergoes some small uninteresting variations, but never vanishes. 

A monochromatic plane wave whose amplitude can be taken as unity falls with normal 

incidence on a plane surface which separates two transparent media with indices n± and n2. 

1. Set up the Fresnel formulas giving the transmitted ampl i tude /and the reflected ampli-

tude r. 
Numerical application: n± = 1, n2 = 1.5. 

2. By using the conservation of energy, write the expression which connects r and t. 

5 R & Μ: ΡΙΟ 

SOLUTION 

P R O B L E M 14 

Propagation of Waves in a Stratified Dielectric Medium 

file:///6.8J
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SOLUTION 
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file:///6.8J
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II 

Consider a thin film of a transparent substance with index n, thickness d deposited on a 

support formed by a plate of plane glass L with index ns > n. The thickness of the glass is 

sufficiently large that it can be thought of as infinite. The set up is a "treated p la te" (Fig. 

14.1). A monochromatic plane wave (wavelength λ0 in vacuum) propagating in the direction 

Ο ζ falls on the treated plate under normal incidence. 

FIG. 14.1 

1. Write the equations of continuity for the electric and magnetic fields on the surface 

Στ (air-film) and on Ση (film-glass). Wha t expression relates the components of Ε and Η 

before and after traversing the thin film? Show that this thin film can be characterized by a 

four-element square matrix. Assume q = V ε/μο. 

2. Determine, as a function of the indices ns and η and the thickness d, the following char-

acteristics of the treated plate: transmitted amplitude t; reflected amplitude r\ transmission 

factor T; and reflection factor R . 

3. What should the thickness and index of the film be so that the treated surface is non-

reflecting? 

Numerical application: ns = 1.60, λ0 = 0.5 μ. 

III 

Consider now a system of ρ thin films characterized by : 

their respective thicknesses dv d2, ..., dp. 

their indices nv w2, . . . , np. 

The same illumination used above is used here. 

1. Determine the characteristic matrix for this stratified medium. Derive the transmitted 

amplitude and the reflected amplitude for the system of ρ films. 

2. One can make a mirror by using a system of thin films by using alternate high and low 

index films (the film in contact with the air being high index). Call the indices of these films 

nh (high) and nt (low). Assume that all the films have the same optical thickness λ 0/4 . Justify 

thus choice of thickness. 



PROBLEM 14] ELECTROMAGNETIC OPTICS 

(a) Determine the characteristic matrix relative to one period (two films), to 2p films and 

to (2p+l) films. 

(b) Calculate the reflection factor R of a mirror having 2p and (2/?+1) films. 

Numerical application : n0 = \\nh = 2.3 (zinc sulphide); nt = 1.38 (magnesium fluoride); 

ns = 1.52 (glass support). Number the films, 1, 2, . . 1 1 . Recall that the elements (c ö) 

of a matrix [C], equal to the product of matrices [A] and [B], are obtained by the following 

equation : 
ρ 

C
ij = Σ

 a
ikXbfçj-

k = l 

SOLUTION 

I. Glassy reflection. Fresnel formulas 

1. It is unnecessary to make a distinction between parallel and perpendicular vibration 

on the plane of incidence. In effect, for the case of normal incidence, all planes through 

which the rays pass are planes of incidence (Fig. 14.2). 

H. 

H. Η. 

(a) 
FIG. 1 4 . 2 

(b) 

Take the incident fields E, and Ht oriented as in Fig. 14.2. The sense of the transmitted 

fields remains the same. Fo r the reflected fields one has the choice between the orientations 

respresented on Fig. 14.2a and 14.2b. Arbitrarily take the case of Fig. 14.2a. The components 

of the electric and magnetic fields on the surface satisfy the continuity conditions 

Ει+Ε, = Ε ίχ 

Hi-Hr = H, J 

Between the Ε and Η fields of each sinusoidal plane wave one has the relationships 

(2) 

5 · 

57 
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With a dielectric medium one has μι = μο and 

Eliminating Η between equations (1) and (2) one gets the Fresnel formulas 

ni—n2 I—η 

= μο and 

ει _ c 
Πι = 5 

εο Vi 

ε2 _ c 
« 2 = . 

εο 
« 2 = 

V2 

(3) 

h. 
E, 

2m 
Ei 7Î1 + W2 

1+n 

2 

with η = — ; 
πι (4) 

Note 

(a) ί is always positive; ^ and,. Ε have the same sense, 

(b) r has the sign of ni — n2, 

if « i > « 2 , r > 0 (Fig. 14.2a); 

if / i i < / i 2, r < 0 (Fig. 14.2b). 

Numerical application: 

1-1 .5 0.5 
r= = =- o . 2 0 , 

1 + 1.5 2.5 

In the case where the reflection is made from a less refracting to a more refracting medium, 
the electric field shifts phase by π. 

2. Conservation of energy. The electromagnetic energy density is 

IV = εΕ
2 = μοΗ

2
. 

From this the energy contained in the volume d r is 

άΨ=εΕ
2
άτ. 

(5) 

(6) 

The amount of energy which passes through a surface element in time dt parallel to the 
plane of the wave is that amount of energy which is contained at time tin a cylinder of base 
dS and height ν dt (ν being the velocity of propagation of the wave in the medium). 

Equation (6) can be rewritten 

dW = eEïdSXvXàt. (7) 

The radiant energy flux passing the surface dS is then 

dW 
d0 = ^-= evE

2
dS. 

at 
(8) 
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The conservation of energy flux is written 

d0t = α Φ , + α Φ , . (9) 

After simplification one gets 

v&Ef = v1e1E?+v2e2Ef. (10) 

By dividing both sides of this equation by Ef and using the definitions of t and r, one gets 

l + r = * , 1 

1 =r
2
+nt

2
. J 

(12) 

For the energy, one has 
1 = R+T. (13) 

Thus : 

R = r
2
 1 

T=nt
2
 ^ t

2
. I 

(14) 

In effect, if the reflected beam propagates in the same medium as the incident beam, it 

differs from the transmitted beam : in general, the transmitted energy is not equal to the square 

of the transmitted amplitude. 

II . A ntireflection coatings 

1. Continuity conditions. The fields Ε and Ή are the result of two waves which propagate 

in opposite directions. 

Take 

Η = H
+
 + H~. J 

The positive exponent designates a wave travelling in the positive Oz direction while the 

negative exponent designates the wave traveling in the opposite direction. 

The second equation (15) can be written, using (2), 

If A and Β designate the amplitudes within the film, one has, taking k0 = 2π/λ0 

Emm = i l c - ^ + i e + J * * "
1
, 1 

# f i i m = ? [ i i c - J * ^ - i e + i * * « ] . j 

(16) 

(17) 

When passing from one medium to another, Maxwell 's equations require the continuity 

of the tangential components of the field vectors. Here, in the special case of normal 

incidence, Ε and Η which are perpendicular to Ο ζ should remain continuous. 

This expression could also have been found directly using the Fresnel formulas (4). 

Note. In the case of normal incidence, r and / are related by 

( Π ) 
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on Σ] 
, ί En = 
n
\Hii = 

Eliminate A and Β from equations (18) and (19). One gets 

En = ^[(qEi+Hdc-WH9Ei-Hi)e+W] 

Hn = YliqEi+H^e-^d-^-Hi)^'^], 

One is led to the following linear relationships : 

J 

[ P R O B L E M 14 

Also, 

or, in matrix form, 

En = Ει cos kond— — Hi sin kond, 

Hn = — jgEi sin kond + Hi cos kond. 

Ει = -En cos kond Λ-— Η η sin kond 

Hi = )qEn sin kond + Η η cos kond, 

Ει 

Mi. 

cos kond — sin kond 

.yq sin kond cos kond 

En 
= [Mi] 

En En 
= [Mi] 

En 

Jin. Mil. 

(20) 

(21) 

The matrix [Mi] characterizes the film. It is a unimodular matrix, that is, its determinant is 

unity. 

2. In the vacuum, on surface Σν equations (15) can be written 

Ει = Ei+Er 

Hi = qoiEi 

ET I 

Sl-Er). J 
(22) 

In the support, thought of as infinite, there exists no wave propagating in the negative direc-

tion. On the surface Ση, the field components are 

E u = E
' } (23) 

Hu = H, = qsE,. J 

Using equations (22) and (23), equation (20) becomes 

Ει +Er = E, cos kond+\ — sin kond ,ΛΜ̂  
L 9 \ (24) 

q^E—Er) = E,[jq sin k&td+qs cos kond]. 

On the surfaces Et and Σπ one has then 

„ ί E! = A+B, 

En = At-^+Be+i^, 

(18) 

(19) 
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From this one gets : 

(a) The transmitted amplitude t: 

f = = ?M (25) 
Ei q(qo+qs) cos k0nd+}(q

2
+qoqs) sin kond ' 

2 

(\+ns)coskond+j^+^^j sin k0nd 

(26) 

(b) The reflected ampli tude: 

= = q(<Io-<ls) c o s kond+}(qoqs-q
2
) sin fcptttf 

^ o + ? s ) c o s f c o w r f + j ( ^ + ^ 2) s i n f c f y K / 

(1—w5) cos kond+j (——w ) sin fe0«^ 

jihi · (28> 
( 1+n s) cos kond+j I + η J sin fcoftt/ 

(c) The transmission factor: 

r = ^ | i | 2 = i i t f* = ^tf*. (29) 
qo qo n0 

Since the outer media are not identical, one has Τ ^ t
2
. Equation (25) allows one to write 

fyoq^q* 
T =

 q\qo+qsf cos
2
 k„nd+ (q

2
+qoqsf s in

2
 kond '

 ( 3 0) 

Aqoqgq
2 

T = Z q\qo+1s)2+(q2-ql)(q2-q*) sin2 kjid * ( 3 1) 

or finally, as a function of the indices, 

Γ = ? . (32) (\+ns?+(n*-l) sin
2
 kond 

(d) The reflection factor : 
One gets immediately 

(1 -nsf+(n
2
-1) [ l - (̂Yl sin

2
 k,nd 

) " 2 . (33) 
(1 + n f )

2
+ ( , j

2
- 1 ) 1 - s i n

2
 kond 

3 . G o back to equation (32). Since 1 < η < ns, the second term in the denominator D is 
always negative. T o have Τ maximum, D must be a minimum, that is, sin kond maximum, 
or finally, 

nd = J.o/4. (34) 
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III. Multiple dielectric films 

1. Writing the continuity equations on surfaces Ση and Σηι: 

En cos kon2d2 — sin k0n2d2 -ElII 
= [M2]X 

Em En 
= [M2]X 

Em 

_]q2 sin kod2 cos km^ _ - # I I I - Mm. 

Using equation (21), one can write 

(38) 

(39) 

It follows that the relationship between Ετ and Ητ (the values of Ε and H on the plane 

ζ = 0) and 2 s p +1 and # Ρ + 1 (the values of Ε and H on the plane ζ = d1+d2+ . . . +<ί Ρ) is 

simply 

] Χ [M2] X . . . Χ [M,] X 
Ep+i 

Hp+i. 

or finally 

(40) 

(41) 

With a system of ρ thin films whose characteristic matrices are [Ai,], one has 

[Μ] = Π [Μι]. 
i=l 

(42) 

For this optical thickness in the treatment of the surface, the transmission factor will be 

T = jrfth 4n
2
ns G 5> 

«
2
( l + ^ )

2
+ ( n

2
- l ) ( «

2
- « s

2
) (n*+nsf

 K } 

This value is a maximum for 

«
2
 = ns. (36) 

Conclusion. The treated plate will be perfectly transparent if the thickness and index of 

the film satisfies the conditions 

η = y/ns, ( 3 ?) 

nd = Ao/4. 

Numerical application: 

η = V ^ 6 = 1-265, 

Note. There is no solid with an index less than 1.3. By depositing a single film one cannot 

get a perfect non-reflector, but rather only a close approximation. 
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Note. The matrix product is not commutative. The product should be taken in the order 

in which the incident wave falls on the films. 

[M] is always a unimodular matrix. This property is a result of the conservation of the 

energy transported by an electromagnetic wave. 

Equation (40) can be written 

\EA - \ m i 1 m i 2l Γ ^ + ι ] 
[Hi\ ~~ [m21 m 2 2\ L # I > + I J 

Transmitted amplitude t. Equation (22) is not modified. Equation (23) becomes: 

Ep+i — Et 1 

Hp+i = Ht = qsEt. J 

Combining (22), (43), and (44), one can write 

t = 
2q0 EL = 

Et qo(m11-\rqsm12) + (m21+qsm22) ' 

(43) 

(44) 

(45) 

Reflected amplitude r. In the same way as above one gets 

_ & _ qo(mu+qSMI2)- (m2i+qsm22) 

~~ Ei ~ ^ o ( w i i + ^ m i 2) + ( w 2 i + ^ W 2 2 ) 
(46) 

2. (a) Characteristic matrices. Since one has quarter-wave (λ 0/4) films, the matrices [Mi] 

and [M2] become 

[Mh] = 

[Mi] = 

The characteristic matrix for one period is 

[M± period or 2 films] = 

For ρ periods one gets 

[Mp periods or 2P films] ~ 

0 ± 
0 

0 j _ 

qi 

Mi 0 

0 

(47) 

(48) 

1h 

0 - <]h 

ft. 

-
N

J - ο 

0 -
ni 

(49) 

(50) 
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For (2 /7+1) the characteristic matrix is 

[M (2p + l ) films] = [Af2/;films]X[AfA] 

[ M ( 2 P +1 ) films] 

ο 

2p+l filmsj 

0 

31h 0 

(51) 

(52) 

(53) 

(b) Calculation of the reflection factor R = | r |
2
. Return to equation (46) giving /· and 

replace the zn's by the elements of matrix (50) or those of (53). 

Case with 2p films: 

r2p = 

hence 

Rip = 

Case with (2p+1) films: 

r
2p+l = 

R2p+1 — 

»0 \ H / / 

«0 \ « ; / 

/ 1 / nhy 

ζ®1 

+fê) 

(54) 

(55) 

(56) 

n\ 

non* 

MO"* 

(57) 

Numerical application. The results found in the following table are obtained from the 

publications of Abeles. The films do not absorb and R+T = 1. 

Number 
of ! ι 

films J 
2 3 4 5 6 7 8 9 10 11 

Τ 0.693 0.619 0.340 0.289 0.138 0.116 0.0522 0.0432 0.0191 0.0158 0.0069 

R 0.307 0.381 0.660 0.711 0.862 0.884 0.9478 0.9568 0.9809 0.9842 0.9931 
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Note. The choice of λ 0 / 4 as the optical thickness for the films is easily explained (Fig. 

14.3). If two consecutive reflections are of different kinds, the two reflected rays have a path 

difference of 2ηα+λ0/2. 

For these rays to produce constructive interference, it is necessary that nd = A 0 / 4 . 

Hence 
nhdh = λ 0/ 4 and ntdi = λ0/4. 

FIG. 1 4 . 3 

It is necessary that the reflections experienced by the rays 1 and 2 are of a different kind 

as well as the reflections experienced by the last two rays. In other words, one is interested 

in having an odd number of films, zinc sulphide being in contact with the air on one hand 

and the glass on the other. 

In the modern Fabry-Pérot interferometer the outer faces are treated with multiple di-

electric films. Note that the selectivity increases with the number of films (§ 7.4). 

P R O B L E M 15 

Electromagnetic Waves in a Resonant Cavity 

A resonant cavity in the form of a cube has one corner at Ο and the three edges are 

oriented along the Ox, Oy, and Ο ζ of a right tetrahedron. The cavity is evacuated and one 

assumes that the walls are perfectly conducting. 

I 

Produce an electromagnetic field in the cavity having frequency ν so that the excitation 

produces an electric field parallel to the Ο ζ axis. Starting with the electromagnetic wave 

equation and the conditions imposed on the wave field at the walls, show that one can 

obtain stationary states in which the field Is is parallel to Ο ζ and has a modulus independent 

of ζ for which there is a relationship between the length of the cavity, L, and the vacuum 

wavelength λο for a plane wave with frequency v. Take 

E2{x,y) = X(x)XY{y). 

Determine the minimum value of L and do the calculation for ν = 3 X 1 0
9
 Hz. 
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II 

Assign L the minimum value found above and let E0 be the maximum amplitude of Ez. 

Express the fields Ez, Hx, Hy, and Hz as a function of x, y, z, t, and of the parameters L, E0 

and ω = 2τπ>. Find the mean energy contained in the cavity as a function of L and Eo. 

Application: 

v = 3 X l 0
9
H z , E0 = 1 0

7
V / m . 

SOLUTION 

I 

For a monochromatic wave the wave equation is (§ B.2) 

2πν 2π\ 

For the desired field 

= 0, = 0, = Ex(x9 y) 

equation (1) becomes 

Substituting the solution suggested above E2(x, y) = X{x) Y{y) 

1 d
2
JSf 1 d

2
r , Λ 

τ ^ - + Υ φ ^ + σ 2 = 0· ( 2 ) 

The general solution is 

X = Ai sin ((Τιχ+ψι), Γ = A2 sin (σ · 2^+02) (3) 

and equation (2) requires 
σ\+σΙ = ο*. (4) 

The conditions imposed by the walls of a perfect conductor are that the tangential compo-

nent of Ε and the normal component of Η must be zero, hence 

X(0) = X(L) = 0, 7(0) = Y(L) = 0. 

Solutions (3) become 

v . Κιπχ . K27ty 
X = Ai sin — - — , Y = A2 sin — - — , 

Κι and K2 are integers which, using (4), satisfy 
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or 
4 L

2 

The eigenfrequencies of the cavity in the mode under consideration correspond to wave-

lengths 

λο — — . 

y/κΐ+κΐ 

The minimum value of L is obtained for Κχ = K2 = 1 

Lm = Ao/V2. 

For ν = 3 X 1 0
9
 Hz and λ 0 = 0.01 m, L m = 7.07 cm. 

II 

For L = Lm, the electric field is given by : 

i s r = £o sm — sin — cos ω/. 

One can find the magnetic field from 

dH 
curlf, = — μ 0 -

dt 

which gives 

QHX EQ 71 . 7VX 7ty 
•=— = — — sm -=r- cos cos ω/, 
σί μο ^ L 

SHy EQ π Tix . Tty 
— = — cos — sm -f - cos cot, 

ot μο E L L 

and, for the minimum value of L, 

EoTt . πχ Tty . ΛΓ^Ο . πχ n y . 
= -— sin — cos -p- sm cot = — 1/ =— l?o sm — cos -ψ- sin cot, 

μο£ω L L f 2μο L
 T 

E07t πχ . ny . ι / εο ^ . πy . 
/ /ν = — - — cos — sm - ~ sin cot = 1/ =—2s 0 C O S — sin —f- sin ω/. 

μοίΛύ L L |r 2μο £ L 

The mean energy contained in the cavity is obtained from the mean value of the energy 

density 

w = 1(ε 0£
2+μο# 2) 
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taken over time. Since one is dealing with sinusoidal functions, (Ëf) = E%f2. Finally, one 

must take the mean values over the volume 

/™ E
2
 I r

L
 . 9πχ Λ 1 C

L El 1 r
L
 . , πχ , 1 Ç

L
 . 9ny . El 1 

0 I „ . „ 2 I s l n2 * φ , _ ο χ 

Lé Ζ. 4 

< ^ - ^ [ ΐ ^ ( τ 4 ) ] - - ^ · 

Application. 

/ h a Î ^ X I O "
1
 . . . 

(PF) = — ^ 4.0 joules. 
8 X 4 X 3 . 1 4 X 9 X l 0

e
X 2 X \ / 2 

P R O B L E M 16 

Radiation Pressure 

Give the expression for the radiation pressure exerted by a monochromatic plane wave 

of frequency v, containing Ν photons per unit volume, on a plane surface in vacuum when 

falling on it at an angle of incidence i. Consider the following cases : (a) the surface is a black 

body; (b) the surface reflects specularly with a reflection factor R; and (c) the surface is a 

perfect radiation scatterer. 

Numerical application. Calculate the radiation pressure exerted by the sun's radiation on 

the earth assuming the earth is a perfect scatterer. The parameters are given in Problem 19. 

SOLUTION 

The momentum transported in one second by the incident photons contained in a 

cylinder of length c and cross-section S cos i (Fig. 16.1) i s 

Ν— cS cos ι 
c 
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since the momentum of a photon is equal to hv/c (§ 11.2). The force exerted on the mirror 

in the incident direction is 

F = NhvS cos i 

and the radiation pressure normal to the surface is 

_ _ F c o s ^ _ c o s2 1 _ w c o s2 1 ^ 

since the radiant energy density is equal to Nhv, hv being the energy of a photon. 

(a) If the surface is totally absorbing, the radiation pressure is given by (1). 

(b) If the surface is a mirror with reflection factor JR, a fraction R of the incident photons 

leave the mirror in a direction symmetric with the normal to the mirror and these photons 

impart a momentum 

Nhv 0 

R cS cos /. 
c 

The corresponding pressure is 

ω = RNhv cos
2
 / = Rw cos

2
 /. 

and the total radiation pressure becomes 

ω + ω ' = w(l -\-R) cos
2
 /. (2) 

(c) If the surface is a perfect scatterer, the incident photons are scattered from the surface 

in all directions with equal probability. The probability that a photon is scattered into the 

solid angle άΩ is then, dQ/2n = sin i di, taking for the solid angle that angle which lies 

between two cones with half-angles ι and i + d i respectively. The mean value of the pro-

jection of the impulse of a photon leaving the surface at angle i on the normal to the sur-

face is 

ί 
7112

 hv . . . . . . hv 
— cos ι sin ι άι = ^r— 

ο
 c

 2* 
This corresponds to a pressure 

_ hv w 
ω" = Ne cos / — = — cos /, 

2c 2 

to which is added the pressure of the incident photons given by (1). The total is 

ω = H > ( C O S
2
 i - f y cos i). (3) 

Numerical application. Using the parameters of Problem 19, 1 m
2
 of the earth 's surface 

receives at normal incidence a flux density Φ = 1.35X 10
3
 W. The energy density is w = Φ/c 

and for i = 0 equation (3) yields 

_ 3 3 X 1 . 3 5 X 1 0
3

 Λ. « ν 1 Λ . 5 ν / » 
ω =

 2
 w

 = 2X3X10B
 =

 ° ·
6 7 5 Χ 1

°
 N /m 

or about ^ mg/m
2
. 
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P R O B L E M 17 

Antennas 

I 

Plot, in a plane passing through a Hertzian dipole oriented along the z'Oz axis, the polar 

diagram representing the modulus of the electric field Ε and the radiant flux Φ. Show that 

one can put the flux in a form analogous to the Joule power dissipated by a sinusoidal 

current, with maximum value Im, which passes through the dipole. Calculate the resistance 

introduced thereby (radiation resistance of the antenna). Express the field as a function 

of the instantaneous intensity of the current, / . 

Consider a linear antenna oriented along z'Oz which has a slightly smaller length than the 

emitted wavelength and which is insulated at the ends. For I = λ/2, derive the stationary 

state of the current which is developed in the antenna. Give the expression I(z) for the 

current intensity as a function of the ordinate ζ of a point on the antenna. Take the origin 

at the centre of the antenna. Starting with the expression obtained in the first par t of the 

problem for the field Ε which can be now thought of as giving the field âE radiated by an 

element along the length of the antenna, find the radiated field at a large distance r0 from Ο 

and plot the polar diagram in a plane passing through z'z. 

Consider now a long linear antenna formed on JV segments of length λ/2 between which 

are inserted Ν— 1 identical self-inductances of negligible dimension and whose value is 

such that they phase shift the current by π. Establish the direction of radiation on a polar 

diagram in a plane through z'z. 

The radiant electric field at a distance τ from a Hertzian dipole in a direction making an 

angle 0 with the axis of the dipole is given by (§ 10.3) 

II 

III 

SOLUTION 

I 

(1) 

dm being the amplitude of the sinusoidal dipole which has angular frequency ω. A magnetic 

field H = e0cE0 corresponds to the field Ee in the electromagnetic wave. 



PROBLEM 17] ELECTROMAGNETIC OPTICS 71 

The radiant energy flux which crosses a surface element normal to the direction OP at a 

distance r from Ο is given by (Fig. 17.1) 

άΦ = SàE = Ε,ΗάΣ = e0cEldX = sin» (2) 

S = EH being the Poynting vector. 

The polar diagram of (1)—varying as sin θ—is given in Fig. 17.2. That of (2)—varying as 

sin
2
 θ—is in Fig. 17.3. 

FIG. 17.1 FIG. 17 .2 FIG. 17 .3 

The sinusoidal dipole moment d may be thought of as due to two oscillating charges 

±qm sin ωί separated by a small distance z. One has 

dm sin ωί = zqm sin ωί 

and the equivalent current is 

dq 
I = - jy = ωqm cos ωί = Im cos ωί, 

hence 

zlm = ωάηχ. (3) 

Furthermore, the total flux radiated over all space is obtained by integration of (2) with 

d27 = 2T2T
2
 sin θ d0, so that 

^ ω
4
*/

2
 . 9 / r\ ω

2
ζ

2
/ £ . 9 / r\ 

Φ = -2—sin
2
co|i J = ~ \ sin

2
eo ί 1. 

ojreoc
3
 y c ) οπεοΟ3

 \ c J 

The instantaneous power is in the form of a Joule power since it is proportional to 7
2
. 

One can then write φ — RI
2
 where R is the radiation resistance given by 

„ Φ ω
2
ζ

2
 2π / z \

2

 n o„ / z \
2 

R
 = Ρ = = ( λ ) =

 7 8 9
( τ ) °

h m S
' 

using the wavelength expression λ = 2πο/ω. 

6 R & Μ : ΡΙΟ 
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II 

A real linear antenna differs from a Hertzian dipole in two ways : the high-frequency 

current which runs through it does not have the same value at every point at a given instant ; 

and its length is not small with respect to the wavelength. In calculations one replaces the 

antenna by a line of dipoles the moment of each depending upon its position and propor-

tional to the current intensity at the point where it is found. The field at large distances is 

obtained by adding up the elementary fields and taking into account the phase differences 

resulting from the two points discussed above. 

In an antenna insulated at the ends the current is of necessity zero at these points at 

every instant. The sinusoidal current with angular frequency ω propagating along the length 

of such a conductor satisfies these condions at the ends and in the steady state establishes 

standing waves. The intensity is of the form (§ 3 . 7 ) 

7 = Im sin cot sin = Ιο s i n ^ ^ + ^ j 

I ο being the intensity at the centre Ο of the antenna. The conditions at the ends are 7 = 0 

for ζ = ± λ / 4 so that 

7 = 7o cos 2n ~. 

Using ( 3 ) , the expression for the field radiated by an element of the antenna of length dz 

obtained from ( 1 ) and the total field is given by 

_ / „ s i n θ f + "
4
 2nz . / r\ 

Ε = -=—=— cos - = - dz sin coi t 1 . (4) 
leocXr J_m λ \ cj 

The distance r, from an element dz situated at point A where OA = ζ (Fig. 17.4) to point jP, 

a t a distance r 0 large with respect to λ and thus to OA, is given by a close approximation 

by 

r = r 0—ζ cos 0 

which when introduced into (4) yields 

_ 7 o s i n 0 r
A / 4

r . / r0 z c o s 0 \ . / r0 z c o s 0 \ 1 2nz Λ 

E = Ä J 0 Γ Τ Τ — — )
+ i m a

y - T
+

— r - ) \
c o s

 τ
d z 

hence: 

f o s i n ö . / r 0 \ C
m
 2nz 2nzcos6 Λ — = — s i n c i ) ί 1 c o s - ^ - x e o s = dz 

eocAro \ c J J O λ λ 

M o u i w / N I 

soCÀro \ c J 

Γ λ . 2πζ ,Λ λ . 2 π ζ , , 

[27 r ( l+cos θ) λ 2 T T ( 1 - C O S 0 ) λ J 0 

„ 7ο sin θ . 
h = λ— sm ω 
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E = 
Ιο sin 0 

Ineocro 

cos ^ y cos 0 j cos ^ y cos 0 j 
ϊ ι η 1 ϊ f\ 1 + c o s 0 1—cos 0 

sin ω Η) 
cos ( ^ - c o s 0 ) cos (-^ cos 0) , x 

U 1 = 60 :— z sinco / sin col 
Ineocro sin θ \ c / r 0 

Figure 17.5 shows the polar diagram of the radiation. 

FIG. 17 .4 FIG. 17.5 

III 

The proposed antenna is equivalent to a set of Ν antennas of length / = λ/2 placed in 

series and with their currents in phase thanks to the presence of the inductances. In direc-

tion 0 the path difference between two successive elements is (λ/2) cos 0 (cf. Fig. 17.4). 

The calculation of the resulting field is made in exactly the same way as the diffraction cal-

culation for a series of Ν identical, equidistant slits radiating in phase (§ 7.7). The resulting 

field is 

ro 

cos 
In Λ . (Νπ A 
I y cos 01 sin I - y cos 01 

s i n 0 . tit A 
sin I y cos 01 

Xsin œ^t—^j. 

Figure 17.6 represents the variations of 

• 1Νπ Λ 

sin I - y - cos 01 

sin ^ y cos 0 j 

c 
(f-e) f FIG. 1 7 . 6 FIG. 17 .7 

θ 

6* 
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as a function of 0 for Ν = 10. Note that the difference in these relatively similar diagrams 

is that in the optical grating case there is only one principal maximum (0 = 0) since the 

grating step here is λ/2. 

Figure 17.7 is a polar diagram of the radiation. 

1. Treat the Fresnel mirror experiment from the point of view of electromagnetic theory. 

One can regard the source S as a Hertzian oscillator vibrating parallel to A, the line of 

intersection of the mirrors and then the images of the sources Si and S2 act as synchronous 

oscillators at separation /. Find the electric field, the magnetic field, and the Poynting vector 

of the resulting electromagnetic wave as a function of r, /, and α in a plane normal to A and 

a t a point Ρ at a distance CP = r0 from the centre C of SiS2, r0 being large with respect to 

/ and making with / the angle a. 

2. A light source which will be compared to a Hertzian oscillator is placed at the centre 

Ο of the line / / ' jo in ing two small plane dielectric mirrors M and M' (Fig. 18.1). The normals 

to the mirrors IN and ΓΝ' make the same angle π/4— ε (ε being a very small angle) with / / ' . 

Discuss qualitatively the possibility of interference between the reflected rays in each of the 

following cases : 

(a) dipole vibrating along z 'z; 

(b) dipole vibrating along y'y9 normal to the figure; 

(c) both dipoles above, assuming them to be identical, synchronous, and coherent. Study 

the state of polarization in the interference field. 

Assume that the solid angle subtended from Ο by the mirrors M and M' is very small 

and neglect the difference in the reflection coefficients for the two principal vibrations. 

P R O B L E M 18 

Hertzian Dipoles 

FIG. 18.1 

A light source Ο is made up of a set of Hertzian oscillators randomly oriented. Write, 

as a function of the angular coordinates, 0 and φ, the expression for the electric field Ε and 

its components Ex and Ez at a large distance from Ο for radiation emitted by the source: 
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(a) in direction Oy; 

(b) in the direction Oy' on the xOy plane making an angle γ with Oy. Calculate, as a 

function of y, the contrast of the fringes obtained through the interference of the radia-

tion emitted along Oy and along Oy'. 

SOLUTION 

1. The oscillator images Si and S2 are normal to the plane of the figure which constitutes 

the equatorial plane for both of them. 

The electric field of the electromagnetic wave emitted by each of them is normal to the 

Fig. 18.2 at Ρ and is given by (§ 10.3) 

r 1 codm . 
Ε = - 9 sin ω I (1) 

FIG. 18 .2 

The fields E± and E2, parallel at P , have a phase difference at Ρ due to the path difference 

δ = |r2—Γι|. If this path difference is small enough so that the amplitude difference due to 

the 1 \r factor is negligible, the fields have the same amplitude 

4ne0c
2
r0 ' 

On the other hand, one can take 

from which 

δ = I cos a, 

The resulting Ε field is given by the summation of two parallel vibrations with amplitude a 

and phase difference φ. Its intensity is 

Φ 

Thus 

A
2
 = 4a

2
 cos

2
 2 

. π / c o s a . / r 0 \ / 0Λ 2a cos — j — sm colt— — \. (2) 

The Η field is the resultant of the fields Η χ and H2 which are in phase with E\ and E2 re-

spectively, since the distance CP is large and for this same reason these fields are practically 
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parallel. Since for all electromagnetic plane waves in free space 

One gets from (2) 

The Poynting vector : 

Λ[εο πΐcos α . / r0\ Η = 2a \ — cos — = — sin œ\t ) . 
\ μο λ \ c J 

(3) 

S = EXH = 4a
2 | / g c o s ' ^ p s i n*eo (* -^ ) . 

2. Since the mirrors give images of Ο separated by a very small angle, one can assume 
that the radiation from Ο forms a quasi-parallel bundle of rays. The electric fields of the 
emitted waves are parallel to the dipole and thus are either in the plane of incidence to the 
mirrors or normal to it. 

1 -J-

FIG. 18 .3 

For incidence close to π /4 , less than the Brewster angle for all dielectrics, the vibrations 
parallel to z'z or to y'y undergo a phase advance of π by reflection. Their arrangement is as 
shown in Fig. 18.3. When the reflected bundles combine—which occurs at a large distance 
from Ο—there is, on the z'z axis, constructive interference for the vibrations parallel t o 
y'y and destructive interference for the vibrations emitted by Ο parallel to z'z (these are 
practically antiparallel at their point of recombination and are directed along x'x). 

When one moves off the centre of the interference field parallel to x'x, the vibrations 
parallel to y'y a re : 

E'y = Em cos tût, Ey = Em cos (ωί + φ) 

φ represents the phase difference due to the difference in the optical paths which vary 
linearly as a function of x. The resultant amplitude is 

Ey = 2Em cos ^ cos (4) 

The vibrations emitted parallel to z'z are 

E'x = Em cos tût, Ε'χ' = Em cos (ωί+π + φ). 
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The amplitude Em is the same as before since the reflection coefficients are assumed equal. 

The resultant amplitude is 

Ex = 2Em sin - | - sin (5) 

The vibrations (4) and (5) are perpendicular to each other and the ratio of their amplitudes 

varies with φ, that is, with the position of observational point along a line parallel to x'x. 

At each point the components give rise to a vibrational ellipse whose axes are parallel to 

y'y and x'x with variable dimensions respectively equal to 2Em cos φ/2 and 2Em sin φ/2. 

All of these ellipses can be inscribed in a square of edge Em y/l (Fig. 18.4). 

For φ = 0, the ellipse reduces to a line parallel to 7 , for φ = π to a line parallel to X, 

and for φ = π/2 and φ = 3π/2 , one finds circles. 

When the vibrations are squared, the resultant intensity is 

J = £*+£* = 4£* . 

This is constant. In the absence of an analyser, the interference field is uniformly illuminated. 

FIG. 18.4 FIG. 18 .5 

II 

Let θ and φ (Fig. 18.5) be the angles which define the orientation of a dipole OD in the 

rectangular system Oxyz. For an observer on the Oy axis, the electric field of the wave 

emitted by the dipole is proportional to sin ψ, ψ being the angle DÖy (§ 10.3). The field Ε 

is in the plane xOz since the free electromagnetic waves are transverse. The components are 

Ex = Ε sin θ cos φ, Ez = Ε cos 0. 

In the direction Oy' which makes the angle γ with Oy, the electric field is in the plane x'Oz 

(Ox' normal to Oy') and its components are given by 

E'x = Ε sin 0 cos (φ±γ), E'2 = Ε cos Θ. 
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But 

The vibrations Ex and Éx can interfere as can Ez and Éz. But the first do not interfere with 

the second since they are perpendicular. The fields emitted by the various dipoles, which 

are incoherent, do not interfere. The intensity maxima are given by 

ΙΜ = Σ{(ΕΧ+Εχγ+(Ε2+Ε'ζ)*} 

(the sum being taken over all the dipoles) and the minima by 

Ι„ = Σ{(ΕΧ-Ε'χγ+(Ε2-Ε'ζη 

Defining the contrast by 

ρ _ IM—Im 

I\i+Im ' 

one has 

r ^ Σ{2{ΕΧΕΧ+ΕΖΕ'Ζ)} _ Ν 

" Σ(^ΕΧ

2
+Ε

2

Ζ+Ε'Ζ

2
) " D ' 

It is now necessary to take into account the random orientation of the dipoles whose axes 

are uniformly distributed over all the solid angle elements άΩ = sin θ άθ άφ. The sums Ν 

and D become the integrals 

Jf* 271 /* τι/2 

I άφ άθ(ΕχΕ'χ+ΕζΕ'ζ) 
φ = 0 Λ = ο 

J
%
2n Λ π/2 Λ2π Λπ/2 

cos (φ±γ) cos φ άφ s in
3
 0 άθ+2 άφ cos

2
 0 sin θ άθ. 

Jf π/2 λ Γη/2 

I sin
3
 θ άθ = I (1 - cos 20) sin 0 d0 

ο Λ) 
= j " * (2 cos

2
 0 - 1 ) sin 0 d0 = ] . 

4 Γ
2 71

 4ττ 
iV = y cos (φ ± y ) cos 0 άφ -f - y 

4 Γ
2 π

 Γ
2 π

 . 4rr 
= γ cos y cos

2
 </3 άφ =f sin y sin φ cos φ άφ + ~ 

4ττ „ 
Ν = y (1+cos γ). 

Γ2π /»n/2 

Ζ) = d0 {sin
2
 ö[cos

2
 0 + cos

2
 ( 0 ± y ) ] + 2 cos

2
 0} sin 0 d0 

= p [cos
2
 ψ + cos

2
 (</>±y)] άφ I ^ sin

3
 0 d0 + 2 f d0 P'* cos

2
 0 sin 0 d0. 
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The last integral has been previously calculated. Since 

Γ
π /2 

s i n
3
0 d 0 = f , 

cos
2
(<£±y)d(</>±y) + y = y . 

1 + COS γ 

2 * 

For γ = 0, Γ = 1. The Fresnel mirror experiment approximates this case since one has 

interference of waves emitted by a single source along approximately parallel directions. 

For γ = π , Γ = 0. Finally, for γ = π /2 , Γ = \ . This latter result is similar to Selenyi's 

experiment. 

£> = _ I c o s
2
0 d < £ + 

2 r 2 * 

Then 
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P R O B L E M 19 

Photometry. The Earth-Sun System 

One square meter of the earth's surface illuminated by the sun at normal incidence receives 

a flux of 1.35 kW if one neglects the absorption by the atmosphere. 

1. Calculate the flux emitted by 1 m
2
 of the sun's surface assuming that it radiates accord-

ing to Lambert 's law. Recall that the apparent diameter of the sun when viewed from the 

earth is 2a = 32'. 

2· Calculate the sun's mass loss per second due to radiation given the ear th-sun distance 

as 15X10
7
 km. 

3 . Assume that the surface of the earth uniformly scatters a fraction ρ of the incident 

radiation flux. Calculate the luminance of the earth. 

4. Calculate the amplitude of the electric and magnetic fields due to solar radiation at the 

surface of the earth. 

SOLUTION 

1. The sun radiates according to Lambert 's law and its luminance JL is a constant. The 

flux emitted by a surface elements dS into a solid angle άΩ whose axis makes an angle 

0 with the normal to dS is 
d

2
0 = _ £ d . S c o s 0 d ß . (1) 

Taking as άΩ the solid angle lying between two cones with apex on dS and axis normal to dS 

having an aperture 20 (Fig. 19.1), one has 

d
2
0 = ^ d S c o s 0 x 2 ^ s i n 0 d 0 . 

FIG. 19.1 

80 
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άΦ = dS\sin
2
 θ Γ ^ = j r^ d.S\ 

The ratio άΦ/dS = Β is the emittance or emissive power of the surface. For an emitter which 

follows Lambert 's law, one has 
Β = τ Γ ^ . (2) 

Note that a sphere which emits according to Lambert 's law appears to be a plane disc, 

the factor cos 0 in (1) compensating exactly for the inclination of the surface when moving 

away from the normal (§ 1.8). This is the way the sun appears. 

The flux (1) emitted by the sun at normal incidence and falling normally on a surface dS" 

of the earth at a distance r from the sun, can be written 

d ^ = ^ d S ^ Ç . 
r

2 

The illumination intensity produced is, by definition, 

Λί> d
2
0 dS 

d c 5 =
d ^ 

The illumination intensity due to the solar disc viewed through its angle 

S
 2 

-μ =
π α 2 

is 
ô = JßmP. 

Thus, the emittance of the sun has the value 

2. The mass-energy equivalence (§9.11) allows one to write 

AW 
Δ/η = — I T - , 

c being the free-space velocity of light. 

One can calculate the total power lost by the sun by noting that it is equal to the power 

received by a unit area of the earth's surface multiplied by the surface area of the sphere 

with radius equal to the earth-sun distance, that is 

Φ = Ι ^ Χ ί Ο ^ π Χ ί ^ Χ ί Ο
2 0

 = 3.815Χ 10
2 β
 W. 

The flux radiated by dS into all exterior space is : 

dO = n£ dS f 2 sin θ cos θάθ=πΜ dS f ^ 2 sin θ d(sin 0) 
Jo Jo 

^ s i n
2
 e j 
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Hence, the mass loss per second is 

Φ 3.815X10*° 
c

2
 ~ ( 3 X 1 0

8
)

2 4
· ^

4 Χ ΐ υ K
& 

which corresponds to an annual loss of 1.4X10
13
 tons. However, the mass of the sun is 

2 X 1 0
2 7

 tons. 

3 . A surface area of the earth which receives a flux άΦ, reradiates to all space a flux 

άΦ' = ρ άΦ. Thus, the emittance of the earth is 

„ , <M>' άΦ -

and its luminance is 

π 

4. The mean illumination produced by a plane electromagnetic wave is related to the 

amplitude of the electric field by (§ 2.3) 

E
2 

hence 

_ 2(ύ) _ 2Χΐ .35ΧΐΟ»Χ36πΧΐΟ» _ 
E m

 - Ίοθ~ - 3 X 1 Ö ^ *
 1 0 1

·
8 Χ 1

° 

Em = 1010 V/m. 

The magnetic field of the wave has the amplitude (§ 2.3) 

M -JLlT
 1 0 10

 - i n A I 
n m

 - αμο
 m

 " 3 X l O » X l . 2 6 X l O - 6 "
 Z J A , m

' 

P R O B L E M 20 

The Spectra and Energy of a Laser 

Suitably excited, a ruby laser can emit giant light pulses of wavelength λ = 6935.9 Â 

(wave number ν = 14,418 c m
- 1

) . Assume that each pulse can be ascribed to a linearly 

polarized plane wave train of constant amplitude, duration τ = 0.1 milliseconds and carrying 

the energy W = 0.3 joule. The cross-section of the beam is circular with a diameter of 5 mm. 

The pulses propagate in air with the index taken as 1. 
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 1 0 10

 - i n A I 
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P R O B L E M 20 

The Spectra and Energy of a Laser 

Suitably excited, a ruby laser can emit giant light pulses of wavelength λ = 6935.9 Â 

(wave number ν = 14,418 c m
- 1

) . Assume that each pulse can be ascribed to a linearly 

polarized plane wave train of constant amplitude, duration τ = 0.1 milliseconds and carrying 

the energy W = 0.3 joule. The cross-section of the beam is circular with a diameter of 5 mm. 

The pulses propagate in air with the index taken as 1. 
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I 

Calculate the number, Ν, of photons carried in a pulse. Knowing that the fluctuation of 

the number of photons in a wave is equal to \/N9 derive the corresponding fluctuation in 

the phase φ of the wave associated with the Ν photons. What conclusion can be drawn about 

its preponderant appearance—particle or wave? 

II 

Calculate the frequency spectrum G{v) of each pulse. Derive the spectral width Δν9 

defined as half the separation of the two zeros of G(v) which enclose the central maximum. 

Derive an expression between the corresponding width in wave numbers and the length L 

of the wave train. 

Numerically find Av in millikaysers and Αλ in milliangstroms. 

If this pulse is injected into a Michelson interferometer, show, without new calculations 

what path difference will be required before one will no longer be able to observe the inter-

ference. Is this physically possible? 

I l l 

1. Calculate the volume energy density, vt>, carried by a pulse (to calculate the volume 

occupied by the wave train, neglect enlargement of the beam by diffraction). 

2. Derive a numerical value for the electric field of the wave. 

3 . Calculate the pressure exerted on a plane screen perpendicular to the beam in the 

following cases : 

(a) the screen is totally absorbing; 

(β) the screen is totally reflecting; and 

(γ) the screen has a reflection factor R = 0.9 and an absorption factor A = 0.1. 

IV 

Place on the trajectory of the beam an aberration free lens L with focal length F = 5 cm 

whose diameter is sufficiently large that it will not act as a pupil for the system. A film of 

steel 0.1 m m thick is placed in the plane of the focus of L (Fig. 20.1). 

Laser Laser 

L R 
FIG. 20.1 
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1. Calculate the radius ρ of the central diffraction spot. Assume that this spot receives 

7 5 % of the energy contained in the pulse (take into account the transmission factor of the 

lens). 

2 . The intensity absorption factor for the steel film R is equal to 0.1. The absorbed energy 

is transformed into heat and diffused about the spot isotropically. What amount of heat 

will be necessary to raise to the melting temperature a half-sphere of steel of radius 0.1 mm 

(Fig. 20.2)? Compare this value to the quantity of heat carried by one pulse. Conclusion? 

I R I 

FIG. 20.2 

Numerical values: 

A = 6 . 6 2 X l 0 -
3 4

m k s a , 

c = 3 X 1 0
8
 m, 

ε0 = | Q 9 rationalized mksa) 

1 kayser = 1 c m "
1
 = 100 m ~ \ 

density of steel = 7.83 g/cm
3
, 

specific heat of steel = 0.11X4.18 J/g, 

melting temperature of steel t = 1525°C. 

SOLUTION 

The energy of one pulse is equal to Ν times that of one of the photons carried so that 

W = Nhv = Nhcv 

0 3 
]sj — _ ^ ι o s y 1Π18 

6 . 6 2 X 1 0 "
3 4

X 3 X 108x14,418x1ο 2 - 1 A / J A 1U · 

The fluctuations in the number of photons and the phase of the wave are tied together by 

the uncertainty relation 

AW At s* A. 

In effect, the uncertainty in W is due to that in N, the quantum being well defined by the 
frequency. Thus, one has 

ANhv At A. 
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However, the uncertainty in the time At is related to the uncertainty Αφ in the phase. One 
finds 

2π * Τ "
 VU 

hence 

Αφ = 2πν At 
and 

AN Αφ ξ> 2π. 

If AN = λ/jV, 

^ 2 π / ν ^ . 

iV is large and Αφ is very small. For the frequencies corresponding to relatively long (red) 
wavelengths, the wave aspect is preponderant. 

II 

The pulse is represented by 

s(t) = a cos 2nv0t ( - τ / 2 < ί < r /2) . 

This has complex magnitude 

s(t) = α exp (—j 2nv0t). 

The corresponding frequency spectrum is 

η + r / 2 

-T/2 

«in O.triv— 
G(v) = at 

G(v) = α J + ~ exp ϋ 2 π ( ν - ν 0 ) ί ] d i = 2 j z {° _ V q ) [exp [j 2 T T ( V - v 0 ) i ] j + " 

sin2^(v— VO)T/2 

2π(ν-ν0)τ/2 

The first two zeros of the well-known function G(v) (§ A.7) arise for 2π(ν—vo)r/2 = ±π. 

The half-interval between these values corresponds to a frequency domain 

v—Vo = 1/r 

so that , since £ = v/c and the length L = c r ; 

Numerically 

Av = — = 3 χ 1 0 8

1

χ 1 0 , 4 = 0.33X ΙΟ" 4 m " 1 = 3.3 mkaysers, 
cr 

|Δλ | = λ* Αν = 4 8 . 1 0 X 1 0 " 1 4X 3 . 3 X 1 0 - 5 = 1 . 5 9 X l O " 1 7m = 1.59Χ10-* mÀ, 

L = - ^ = 3 X 1 0 4 m. 
Av 
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One no longer observes interference in the Michelson interferometer when the distance 

between the mirrors is of the order of L/2 or 10 km. One cannot obtain homogeneous optical 

paths on this distance. 

I l l 

The volume occupied by the wave train is 

nd
2 

v = --L= 5 9 X 1 0 "
2
 m

3
. 

4 

1. The density of energy 

- = v = ^
 = 0

-
5 08 J / m 3

-

2. The expression for the energy density in electromagnetic theory is (§ 2.3.2) 

w = ε0Ε
2
, 

hence : 

Ε = Λ^5Τ5ΧΪ0
8
 = 2.4X 10

5
 V/m. 

3 . The radiation pressure under normal incidence is (§§ 2.7 and 3.11.5) 

(α) ω = w = 0.508 N / m
2
, 

(ß) co = 2w= 1.016 N / m
2
, 

(γ) ω = (l+R)w = l.9w = 0.965 N / m
2
. 

IV 

1. ρ = \.21k¥\d = 8 . 5X10"
4
 cm (§ 5.11). 

2. The mass of the hemisphere of steel is 

M = \nr*à 

δ being the density and r the radius 

M= f X 3 . 1 4 X l 0 ~
e
X 7 . 8 3 = 1 6 . 9 X l 0 "

6
g . 

The amount of heat necessary to raise the ordinary temperature to the melting point is 

MCàt= 1 6 . 9 X l 0 -
6
X 0 . 1 l X 4 . 1 8 X ( 1 5 2 5 - 2 5 ) = 1.14X10"

2
 J. 

During one pulse the film receives an amount of energy equal to 

0.3 X 0.75 X 0.1 = 2 .25X10"
2
 J. 

The film will thus be melted at the point where it is struck by the radiation. 
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P R O B L E M 21 

Optical Constants of Germanium 

The index for λ 0 = 0.5 μ (in free-space) is given by 

η = 3.47-1.40J (j = V^)-

1. Calculate the reflection factor at normal incidence for a polished germanium surface. 

2. Calculate the phase shift φη introduced by reflection at normal incidence. 

3 . Calculate the depth which a plane wave penetrates into germanium when its intensity 

falls to 1/1000 of the incident intensity. 

SOLUTION 

The index of germanium is given in its complex form η = w—j&, η being the index of 

refraction and k the absorption index. The Fresnel formula is applicable to the complex 

index under normal incidence. The reflection coefficient for the light amplitude is complex 

(§3.5) 
n-l η—\k— 1 / 1X 

From which one gets the reflection factor 

and the phase advance of the reflected wave φη 

2k 

tan 0.= l _ n 2 _ k 2 . (3) 
1. With the given values one finds 

_ ( 3 . 4 7 - 1 )
2
+ ( 1 . 4 0 ) 2 6 .10+1.96 

" ( 3 . 4 7 + l )
2
+ ( 1 . 4 0 )

2
 19.98+1.96 ' ' 

2. 
2 go 2 80 

t a n Φ η =
 l - (3 .47)*- (1 .40)*

 =
 W

 =
 - ° ·

2 1 6
· 

φη = 180°-12.20° = 167.80° 

3 . The decrease in the light intensity as a function of the depth χ is exponential 

/ = / 0 e x p ( - 2 Ä j c ) 

7 R & M : P .O 
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One must have 

6.907, 

6.907X0.5 
* 4X3.14X1.40 ^

υ ζ
^ · 

P R O B L E M 22 

Absorption. Black Bodies and Coloured Bodies 

I 

A small plane disc receives solar radiation at close to normal incidence. Of the two sides 

of the disc, only the side F turned towards the sun will be considered, the other side does 

not play a role. Assume that the disc is placed in a vacuum far removed from all other objects 

and that its temperature is always uniform. Assume that the sun radiates as a black body 

at 6000°K and call H its emittance. Its apparent diameter when viewed from a point D is 

small and will be taken as 2a. Calculate the equilibrum temperature of the disc in the following 

cases : 

1. The disc emits and absorbs like a black body on the face F. Take 2a as 10~
2
 rad and 

then as 1 0 "
4
 rad. 

2. Repeat question 1 but assume here that the solar rays fall obliquely on the face F. 

The cosine of the angle of incidence can be taken to be 0.25. 

3 . Repeat question 1 replacing the disc D by a small sphere whose entire surface is a black 

body. 

II 

The disc has spectral energy emittance and an absorption factor which is zero for all 

radiation except for wavelengths very close to 0.40 μ. In this interval the disc acts like a 

black body. The angle 2a will be given the successive values 1 0 "
2
 and 10~

4
 rad. Assume that 

with 

_ Ink 
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near 0.40 μ the emittance of a black body is given in good approximation by the expression : 

\ogHx = û - y , with ^ = 0.385, 

a being a constant. Calculate the equilibrium temperature for 1 and 2 of par t I. 

I l l 

A black body with sufficiently small dimension that its temperature will always be uniform 

and with heat capacity M is placed in the experimental arrangement indicated above. 

Initially it was protected from radiation and its temperature highly depressed. It was then 

exposed to solar radiation. According to what law will its absolute temperature rise as a 

function of t ime? How does this law behave near the equilibrium temperature? 

SOLUTION 

According to the definition of the emittance energy H9 the energetic flux given off by a 

surface S into all exterior space is : 

Φ = HS. 

In the case of the sun of radius R which emits like a black body: 

S = 4nR
2
 and Η = σΤ$ (σ = 5.672X 10"

8
 W n r

2
d e g -

4
) . 

This flux travels through spheres of increasing radius and that which reaches an area s on 

the sphere of radius r is : 

^ = s^oTe = s«*aT0* (1) 

for a
2
 = R

2
/r

2
. 

On the other hand, the disc with area S at temperature T' radiates like a black body and 

its emittance is Η' = σΤ'
4
. At equilibrium the incoming and outgoing fluxes are equal. 

1. Normal disc, s = S. 

Sx
2
aT* = SaT'*, (2) 

hence, 

Γ ' 4 = a ^ o 4 , T' = V ä r 0 . 

For a = 0.5X ΙΟ"
2
, T' = 0.071 X6000 = 426°K. 

a = 0 .5X10"
4
, T' = 42.6°K. 

2 . Oblique disc. This presents as above a cross-section of area S to the radiation but now 

the area s = S cos i (Fig. 22.1). However, it always radiates from the entire surface area S9. 

7* 
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thus at equilibrium : 
S c o s / a

2
* ^

4
 = SaT"*, 

F o r a = 0.5 Χ ΙΟ"
2
, Τ" = 

F o r a = 0.5 Χ ΙΟ"
4
, Τ" = 

= 300°Κ. 

= 30°Κ. 

7V2. 

FIG. 22.1 

3 . y4 sphere of radius ρ. This intercepts from the rays a section with area s = π ρ
2
 and 

radiates from its entire surface area S = 4ττρ
2
, hence at equilibrium : 

As a result of the numerical value cos i = \ selected in (b) the temperature of the sphere 

in (c) is the same as that of the disc in (b). 

Let Δλ be the width of the spectral band in which the disc absorbs and emits, HXTQ the 

spectral emittance of the sun, ΗΛΤ, the spectral emittance of a black body at the equilibrium 

temperature T' of the absorbing body, and the absorption factor Αλ. Calling S the surface 

area of the absorber and s the area which receives radiation the spectral flux energy received 

is 
SO?HIT0M. 

The body absorbs a fraction Αλ of this. On the other hand, its spectral emittance is ΑλΗ· 

according to Kirchhoff 's law. The flux radiated is 

ΞΑχΗχτΆλ. 
Hence, at equilibrium, 

Taking the log of both sides and using the expression given for ΗΛ, this becomes 

πρ
2
<χ.

2
σΤ$ = 47τρ

2
σ·:Γ

4 

(4) 

a— 

from which 

T' = 
6000 

1+0.385 l o g - ^ 
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1. Normal dise: S = s. 

For α = 0 .5X10"
2
, Τ' = 2165°Κ. 

α = 0.5 Χ Ι Ο
- 4

, Τ' = 1392°Κ. 

2. Oblique disc or sphere: S = 4$·. 

For α = 0 .5X10 -2 , Τ' = 1998°Κ. 

α = 0 .5Χ10"
4
, Τ' = 1320°Κ. 

III 

The black body receives flux [see eqn. (2)] from the sun. When its temperature is Γ, it 

radiates the flux SoT
4
. If its temperature is raised by άΤ in time df, the energy balance is 

written 

So(T'*-T*)dt = Mat. 

Taking TjT' = χ and B= SoT'
3
/M this becomes 

dx 
= Bdt. 

l - j c
4 

This fraction can be broken down into more simple elements. One has in effect 

4 2 1 1 
+ 7 — + ^ l - x

4
 l + x

2
 ' l + x ' l - j c * 

Hence 
4Bt+C = 2 arctan x + l o g ( l + j c ) - l o g ( l - x ) , 

C being an integration constant. 

When the temperature approaches the equilibrium value, χ — 1, arctan χ π /4 , and 

log (1-fx) — log 2, thus 

Τ '—Γ varies according to a decreasing exponential in t. 

P R O B L E M 23 

Absorption. Kirchhoff's Law 

I 

1. A parallel beam of monochromatic light propagates in an absorbing liquid. Calling 

Io the intensity at a point taken as the origin and Κ the absorption coefficient, find the 

expression which will give the intensity Ix after the beam has travelled through a region of 

thickness χ and also find the optical density D of this region. 
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2. Find the order of magnitude of the error in Κ and D for a relative error ε in the ratio 

3 . The absorbing medium under consideration is a plate of coloured glass with parallel 

faces and thickness JC. This is placed normally across a beam of intensity / 0 and one measures 

•a new intensity h. 

The reflections which occur at the faces of the plate weaken the beam so that h cannot be 

used as Ix without introducing an error ε' in the ratio IJIX. Evaluate ε' by taking \ as the 

index of the glass and unity for the air index. How can one measure the optical density 

o f this absorbing plate in such a way as to prevent this error? Neglect beams arising from 

multiple internal reflections. 

II 

1. Consider a homogeneous flame whose radiation obeys KirchhofTs law and which is 

initially assumed to radiate monochromatically. Show that the spectral luminescence lx of 

this flame with thickness χ tends toward a limit as χ increases without bound. Call h dx the 

luminous energy, αχ dx the absorption factor of an infinite thin film of thickness dx for 

radiation at the wavelength λ and call Jl the luminance of a black body at the temperature 

of the flame. 

2. What occurs when the radiation is not rigorously monochromatic? 

SOLUTION 

I 

1. The intensity of a parallel beam measured by the illumination which it produces on a 

surface and which in this case is constant, is proportional to the radiation flux so that the 

law for the variation of the intensity in an absorbing medium is (§ 1.11) 

-dI=Khdx, 
hence 

Ix = hexp(-Kx). (1) 

The ratio Ix/I0 is the transmission factor of the substance with thickness x. The absorption 

factor is (I0—Ix)/I0. The optical density is given by 

D = - logio ^ = logio Y
5
- = 4τ

 Κ χ
' Ρ ) 

/ο LX 2.5 

The optical density is proportional to the distance travelled in the medium. 

2. Taking 

A = IolIx = cxp(Kx): (3) 

dA 
dA — x exp (Kx) dK, ε = —— = χ dK, 

A 
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3 . The reflection factor for one face of the plate under normal incidence is (§ 3.4) 

(n-\\
2 

The intensity which penetrates across the entry face is 

/ J = / o ( l - Ä ) . 

At the exit face this has reduced to 

Γ = I0cxp(-Kx). 

It then undergoes a second reflection and the emerging intensity is 

/ i = / ' ( l - R ) = 70(1 -R)
2
 exp (-Kx). (4) 

Comparing (1) and (4) one sees that 

h = Ix(l-R)
2
. 

As a result of the reflections, the value A defined by (3) is reduced by 

i l 1χ 

hence 

A (l-R)
2
 (l-Rf 

These values approach one another when R is small. In effect, 

1 .5 -1 \
2
 1 

Α - ( ί Γ 5 Τ γ ) " 2 5 ' 

ε' = 0.08. 

To eliminate the error caused by the reflections, it is necessary to make two intensity 

measurements on the transmitted ray for different thicknesses x i and x%. Let D' be the 

optical density due to the reflections. One has 

D l = D + J 3 K X U ° 2 = D' + JJKx2> 

hence 

D ! - D 2 = ^jK(X!-X2). 
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II 

1. Compare this flame to an isothermal volume limited at Ο by a plane normal to Ox 

(Fig. 23.1). The variation of lx in passing through a thin film of thickness dx is due to the 

emission lx dx and the absorption —a1lx dx following Beer's law. From this 

since h = βι<£, 

dlx = -aJx dx+h dx = a^Jß-Ιχ) dx, 

dlx = tfi dx. 

For χ = 0, /* = / i , hence log — r = aix. 
£ - l x 

M-lx = (M-l1)exp(-a1x) 

lx = £[l - e x p ( - f l ix) ] + /i exp ( - a i x ) . 

For χ °°, Ιχ 

2. If one is dealing with a set of radiations for which the absorption factor is not constant, 

the value of the total absorption factor evidently depends on the distribution of the energy 

in the radiation source. Now assume that this source follows Kirchhoff 's law, Ιλ = αλ£λ, the 

the total luminance is 

/= jhM= (αλ£λάλ 

and the total absorption factor is 

/ 
a =

J > 

hence 

In the case where the incident radiation arises in a body which completely absorbs all 

radiation in the spectral interval under consideration. Kirchhoff 's law applies to this set of 

radiations. 
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P R O B L E M 24 

Stokes
9
 Parameters. Poincaré Representation. Muller Matrices 

I 

Stokes' parameters 

The state of polarization of a monochromatic light wave can be characterized by four 

quantities, all having the same dimensions, known as Stokes' parameters. These are 

50 = a
2
+b

2
, Si = a

2
-b\ S2 = 2ab cos φ, S3 = lab sin φ. (1) 

a and b are the amplitudes along two perpendicular directions Oy and Oz in the plane of 

the wave and φ is the difference in phase between them. 

1. These four parameters are not independent. Find the relationship which exists between 

their squares. 

2. What does the parameter .SO represent? What are the four parameters relative to a 

linearly polarized wave along the Oy direction, along Oz, and at 45°; to right circular 

polarization, left circular polarization, and natural light (in this last case, in (1) use the 

mean values of the amplitudes) (§ 4.8.2)? 

3 . Prove the relationships 

51 = So cos 2ß cos 20, S2 = So cos 2ß sin 20, S3 = S0 sin 2/S, (2) 

β being the angle whose tangent is equal to the ratio of the axes of the elliptically polarized 

vibration and 0 the angle which the major axis of the ellipse makes with Oy. 

II 

Poincaré sphere 

The preceding equations show that the polarization state of a monochromatic vibration 

of given intensity can be represented on the surface of a sphere with radius So by a point 

M whose latitude is 2ß and whose longitude is 20. Su S2, and S3 are the cartesian coordinates 

of this point (Fig. 24.1). 

95 
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1. The amplitudes a and b relative to the point M can be thought of as the components 

of a rectilinear vibration making angle α with Oy. How are the angles α and φ represented 

on the sphere (§ 8.2)? 

2 . What points on the sphere correspond to the directions Oy and Ozl What is the locus 

of points representing linear polarization, circular polarization? What do points situated 

on the same parallel represent? 

3· Derive from II. 1 a simple geometric construction which will allow one to get M , being 

given a biréfringent medium with phase retardation φ and with known axes, for an incident 

linearly polarized wave coming in at angle a. Allow φ to vary and examine the results given 

by § 8 . 3 . 

4. Generalize the preceding construction representing the action of a biréfringent medium 

with phase retardation φ on a vibration M . Look into a quarter wave plate as a special 

case (§ 8.6.4). 

I l l 

Muller matrices 

The Stokes' parameters can be thought of as the four components of a column vector. 

One can represent the action of a polarizer or of a retarding system with known retardation 

and orientation on a light wave by a square matrix [M ] which when multiplied by the inci-

dent Stokes' vector [V] gives the Stokes' vector [V] of the outgoing vibration : 

[V') = [M][V]. (3) 

Here are several examples of the [M] matrices : 

1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 

1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 - 1 

2 0 0 0 0 "2 0 0 0 0 0 0 0 1 0 0 1 0 

0 0 0 0 1 0 0 1 0 0 - 1 0 0 1 0 0 

(M x) (M 2) (M 3) (M 4) 

M i : linear polarization with transmission direction Oy, 

M 2 : right circular polarization, 
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M 3 : quarter-wave plate with its advancing axis along Oy, 

M\\ quarter-wave plate with its axis at 45° to Oy. 

With this information we want to use these methods to generate the following known 

results : 

1. The action of a linear polarizer on natural light. 

2. The action of a right circular polarizer on natural light. 

3 . The action of a quarter wave plate with axis along Oy and Oz on right circular polar-

ized light. 

4. Repeat question 3 with the axis at 45°. 

In each case, find the components of the vectors [V] and [V] and verify equation (3). 

(The advantage of this method of calculation is that the action of a succession of polarizers 

and phase shifters on a light wave reduces to the multiplication of the Stokes' vector by a 

unique matrix which is the product of the matrices appropriate to the successive devices.) 

SOLUTION 

I 

1. 

si = si+si+si. (4) 
2. So represents the intensity of the vibration. F o r a linear polarization along Oy, b = 0, 

hence 

So = S i = a
2
, S2 = S3 = 0. 

Likewise, for linear polarization along Oz 

S0 = b\ S!=-b2, S 2 = S 3 = 0, 

linear polarization at 45° : 

So = 2a2, S i = 0, S 2 = 2a2, S 3 = 0, 

right circular: 

S 0 = 2a2, S i = 0, S 2 = 0, S3 = 2a2; 

left circular: 

S0 = 2a2, S i = 0, S 2 = 0, S 3 = - 2 a 2 ; 

natural light: 

So = 2<a2>, S i = 0, S 2 = 0, S 3 = 0. 

3 . The equations require that one go back to the classical expressions (§ 8.2): 

(a) S 3 = So sin 2ß, 2ab sin φ = (a2+b2) sin 2β 
sin 2ß = sin 2a sin φ. (5) 
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(b) Si = So cos 2ß cos 20, a
2
- b

2
 = ( a

2
+ f c 2 ) cos 2ß cos 26 

cos 2/Î cos 2Θ = cos 2a. (6 ) 

(c) S 2 = 5Ό cos 2ß sin 20, 2afc cos φ = (a
2
+b

2
) cos 2ß sin 2Θ thus using (5), 

sin 2a cos φ = cos 2ß sin 20: 

tan 2a cos φ = tan 20. (7) 

II 

1. Trace a great circle on the sphere passing through M and the origin of the longitudes A. 

In the spherical triangle ABM with a right angle at Β (Fig. 24.2), one has 

cos AM = cos Aß-cos Mi? 

Ρ 

so that, using (6) 
A M = 2a 

and 

sin AM = sin BM/sin MAB 

so that, with (5) 

MAB = φ. 

2. For the linear vibrations, β = 0 : the representative points are on the equator. For 0 = 0 

the vibration has the direction Oy and it corresponds to point A, the origin of the longi-

tudes. For 0 = JT /2 , the vibration is along Oz and it is represented by the point A' on the 

equator diametric with A (20 = π). 

For circular light, β = JT /4 . The representative points are the poles Ρ and P ' . The point 

Ρ represents right circular light (0 < φ < π) and Ρ ' left circular light (π < φ < 2π). 

Right elliptical vibrations are in the northern hemisphere and left elliptical in the south-

ern. 

The points along a given parallel represent ellipses of the same form but different inclina-

tion. 

The points on a given meridian represent vibrations of the same orientation and whose 

eccentricity varies from 0 on the equator to 1 at the poles. Figure 24.3 summarizes the state-

ments above. 
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ρ 

FIG. 2 4 . 3 

P' 

FIG. 2 4 . 4 

3. Let R be the point on the equator which represents the linear vibration and A the point 

which represents the vibration oriented along the optic axis Oy of this (uniaxial) biréfringent 

system (Fig. 24.4). Curve AR = 2α. With A as the centre, trace on the surface of the sphere, 

a circle, C, with radius AR. The intersection of this circle with the great circle passing 

through A and making angle φ with the equator is the required point. 

For φ = π /2 , M is on the meridian of A and the ellipse has its axes along Oy and Oz. If, in 

addition, α = π /2 , R is at R\ and the circle C is the meridian normal to OA and M passing 

through Ρ or P\ the vibration is circular. Fo r φ = π , the vibration is linear but with α 

changed in sign. 

4. Let AÄ be the diameter corresponding to the orientation of the biréfringent system 

acting on the vibration represented by the point M. Trace the great circle passing through A 

and M (Fig. 24.5). As has been seen in 3, the angle φο which this circle makes with the equa-

tor measures the phase difference between the vibrations entering along the neutral axis 

of the system and those entering along this one. The algebraic phase retardation φ is added 

to φο and the point M' is then obtained from M by a rotation of φ about A. 

If φ — π /2 , M passes into M" on a great circle passing through A and making an angle 

ψ with the equator such that 

ψ+~-+Φο = η. 

Ρ Ρ 

P' 

FIG. 2 4 . 5 

Ρ' 

FIG. 2 4 . 6 
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In the quarter-wave method, the linear vibration obtained from the polarizer is represented 
by point A (Fig. 24.6). The uniaxial lines of the biréfringent system under study are repre-
sented by Β and the diametric point. One adjusts AB = π/2. Consequently, the point M 

associated with the vibration leaving the system is on the meridian of A. The spherical 
triangle MBA is rectangular at M and A and from spherical trigonometry 

cos φ = cos MA = cos 2β. 

The neutral axes of the quarter-wave plate coincide by their adjustment with the ends of the 
diameter AÄ. The quarter-wave plate rotates the point M by π/2 about A, and the vibration 
leaving is represented by the point R. It is rectilinear and AR = AM = 2ß. 

III 

The results obtained in 1.2 give the following expressions for the Stokes' vector taking 
the incident vibration to have unit intensity : 

ί - " 1 " ' Γ " 1 " "1 " 
ο 1 - 1 0 0 
0 0 0 1 0 

. 0 . . 0 . . 0 . _ 0 _ . 1 _ 

(.Vi) (Vi) (V5) 

Vi = natural light, V2 = linearly polarized along Oy, F 3 = linear along Oz, K 4 = linear 
a t 45°, and F 5 = right circular. 

We detail the symbolic operation [V] = [M] [V]. The multiplication rule for matrices 
gives for the component V'lc of the vector [V'] related to row / and to column c: 

Mn is a term from row / of the matrix [M] and Vic is the term with the same index i in the 
column c of vector [V]. 

For [V] and [Κ'] , c can only have the value one. Thus 

VW = AfiiKii+JlfwK,i+ilfisK8i+Mi4F4i, 
Vii = MxxVn+MnVn+MtoVzi+MuViu 

Vii = J l fnKn+i l /a^ i i+MasKai+Af 84K41, 
Vii = MAiVn+MnVn+MtoVn+MuVn. 

I. In this case [V] = [Mi] [Vi]9 so that 

V[i = 1X1 + 1 X 0 + 0 X 0 + 0 X 0 = 1, 

v2\ = l x i + i x o + o x o + o x o = 1, 

Vii = 0 X 1 + 0 X 0 + 0 X 0 + 0 X 0 = 0, 

Vii = o x i + ο χ ο + ο χ ο + ο χ ο = ο, 
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then, taking into account the factor \ which acts on [Mi] , the vector [V] is 

[V] 

r l 
2 

2 

0 

L0 

This can be seen to be identical to [V2] to within the factor γ which shows the reduction 
in intensity due to the polarization. 

2 . Likewise one finds [M2] [Vi] = [Vi] to within the factor \ again due to polarization. 

3 . [M 3] [V5] = [F 4] rectilinear at 45°. 

4. [M 4] [V5] = [V3] linear along Oz. 

P R O B L E M 25 

Fresnel Formulas. Biréfringent Prism 

1. Recall the expressions for the reflection and transmission of a monochromatic, parallel 

beam of light incident from free space on the surface of a plane isotropic refracting medium 

with index n. Call rn and rp the amplitude reflection factors with the subscript ρ being with 

respect to Fresnel vibrations parallel to the plane of incidence and η normal to that plane. 

The corresponding transmission factors are designated by tp and tn. 

2. Apply the results of 1 to the following two questions: A glass prism whose apex 

angle is 60° has an index of 1.52 for the radiation being studied. The face AB of the prism 

receives a parallel monochromatic beam of this radiation normal to the edge A and with an 

incident angle such that the deviation of the beam leaving the face AC is minimal. The 

incident beam has been polarized linearly so that its vibrations are at 45° to the plane of 

incidence. What is the angle that the emerging vibrations make with the plane of incidence? 

3 . In what way is it necessary to modify the angle A of the prism and the incident polariza-

tion so that one loses no light by reflection at the point of entry and a t the exit point of the 

beam in the glass pr ism? 

4 . Assume now that the prism is of Icelandic spar which has been carefully cut so that the 

section ABC is an equilateral triangle, the face BC being planar and polished. The crystal 

axis is parallel to the face ABC. Show that a parallel beam of linearly polarized monochroma-

tic light falling normally on the face AB and propagating with its vibrations at 45° to the 

face ABC, is totally reflected at BC, but that a t its exit point on the face AC it is elliptically 

polarized. Neglect reflection losses in entering and leaving the prism since these are small 

near normal incidence and indicate how the emerging elliptical vibrations depend on the 

height h of the triangle ABC and on the two principal indices of spar n0 — 1.65 and ne = 1.48. 
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then, taking into account the factor \ which acts on [Mi] , the vector [V] is 

[V] 

r l 
2 

2 

0 

L0 

This can be seen to be identical to [V2] to within the factor γ which shows the reduction 
in intensity due to the polarization. 
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4. [M 4] [V5] = [V3] linear along Oz. 

P R O B L E M 25 

Fresnel Formulas. Biréfringent Prism 
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5. Assume finally that the crystal axis is normal to the entry face AB, that is, parallel to the 

incident beam. Show that it then has two distinct beams leaving the prism which have been 

reflected on BC. Find the direction of each of the emerging beams and indicate with what 

vibrations they propagate. 

SOLUTION 

2. One has (Fig. 25.1) 

FIG. 25 .1 

Using the appropriate expression [(8.28) of § 8.4] 

tan a, = cos (i — r) tan α,·, α, = 45°, tan α, = 1. 

The beam leaves at the same angle 

tan a, = cos
2
 (/— r), 

i-r = 49° 2 8 ' - 3 0 ° = 19° 28' , cos (i-r) = 0.94293, 

c o s
2
( i - r ) = 0.88912 

a, = 41° 39'. 

3 . The reflection factor is zero for vibrations in the incident plane at the Brewster angle. 

It is therefore necessary to polarize the incident beam so that the vibration is normal to the 

plane of incidence and the incidence is such that tan iB = w, hence 

iB = 56° 4 0 ' . 

For the emerging beam to be at the Brewster angle it is necessary for Â' = 2r. Thus 

sin r = cos ι Λ r = 90° - i B = 33° 20' . 

A' = 66° 40' , hence Ä — A = + 6 ° 4 0 ' . 

4. The incidence at / (Fig. 25.2) is at 60°, hence sin i = 0.866 is greater than 1 /ne = 0.675 

and 1 /n0 = 0.606. Thus there is total reflection. The propagation of the e- and owaves is 

normal to the axis so that the e- and ö-rays which are reflected and emerge are mixed. 

However, they are polarized, the ö-ray in the plane of the principal section and the e ray 

normal to this plane. Since the vibrations are coherent at the entry where the two principal 
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axes are parallel and perpendicular to the edge, the birefringence is n0-ne. The distance 

travelled is A sin 30° = A/2. One knows (§ 8.3.2) that for α = 45° the ellipse is oriented 

with its axes at 45° and the ratio of its axes is tan β such that tan 2ß = tan φ (Fig. 25.2) : 

, 2π A . . nh Λ „„ 
Φ = -γ y ( « ο - » , ) = χ

χ 0
·

1 7
· 

FIG. 2 5 . 2 FIG. 2 5 . 3 

5. The incident rays undergo no birefringence u p to / (Fig. 25.3). They are totally reflected 

at an angle of 60°, that is, in a direction making an angle θ = 60° with the optic axis. The 

normals to the reflected waves remain mixed, but one wave has an index no and the other η 

such that [(4.25) of §4 .4] 
n

2
 s in

2
 θ η

2
 cos

2
 θ 

• + ; = 1, 

^ 4 X 2 . 1 9 ^ 4 X 2 . 7 2 / 
1 = n

2 1 

2.304, 

0 .434 ' 

η = 1.517. 

The corresponding rays are separated: the ordinary ray, coinciding with the wave normal, 
strikes the face AC at a normal and passes out without deviation. Its vibration is normal to 
the plane of the figure. The extraordinary ray makes an angle with the ordinary ray given by 
[(4.37) of § 4.9] 

{n
2
-n%) tan θ (2.19 - 2.72)1.732 

tan ζ 
n

2
+ " o t a n

2
0 2 .19+2 .72X3 

- 5 ° 3 ' . 

= - 0 . 0 8 8 , 

The minus sign shows that the extraordinary ray makes an angle of 54°58' with the normal 

to BC. The incident angle at AC is ζ and the angle of refraction is 

sin i, = 1.517Xsin 5°3' = 1.517X0.0877 = 0.1335 

ι, = 7°40' . 

ρ 
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P R O B L E M 26 

The Field of Polarizing Prisms 

A spar polarizing prism has the form of a parallelepiped whose face ABCD (Figs. 26.1 

and 26.2) is normal to the optic axis. The plane of the cut contains the optic axis and lies 

along the line AC. The two halves of the prism are separated by a layer with parallel faces 

formed either of a transparent cement with index η = 1.540 or of a layer of air. Determine 

in both cases the maximum angular range of the polarizer for rays normal to the optic axis, 

that is, the sum of the angles which these rays can make on either side of the normal to the 

face AB so that the emergent beam is polarized. Also find the size of this range when the 

angles are symmetric with respect to the normal. Calculate the ratio R = L/h of the length 

AD of the prism to its height AB. The principal indices of spar are n0 = 1.658 and ne = 1.486. 

SOLUTION 

Propagation is directed normally to the optic axis and the ray direction is coincident with 

that of the normal to the waves. 

1. It is the ordinary ray with the higher index which is eliminated by total reflection in the 

case where the two halves of the prism have cement between them. The range is limited on 

the upper side (Fig. 26.1) by the angle of incidence / corresponding to the direction AC of 

the refracted extraordinary ray whose angle of refraction is the angle α which defines the 

shape of the prism 

A 1 
t a n a = — = — , (1) 

and one has, at A 

sin ι 

R 

ne sin a. (2) 

—lot 

FIG. 2 6 . 1 

On the lower side, the range is limited by the condition that the angle of refraction r of the 

ordinary ray be such that its angle of incidence on the cutting plane AC be at least equal to 

the limiting angle / 0 for spar-cement defined by 

Now 
sin /o = nffiQ. 

1 "
b
 / \ 

/o = y - ( a + r0), 
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hence 

cos (α-fro) = n/n0. 

The angle of incidence limiting the range on the lower side is such that 

sin i = «o sin r0. 

Combining equations (1), (2), (3), and (4), one gets 

(3) 

(4) 

sin / 
VÏ + R

2 

and 
( « g - «

2
) Ä

4
+ K - ^ - 2 , 2 ( r t+ ^ ) ] Ä 2 _ ( « + rte)2 = o. 

The numerical factors give 

R = L/h = 4 .93 

ι = 17°10', α = 11°30'. 

If one only wants to find the maximum symmetrical angular range, one must take α = r 0 

and (2) yields 

cos 2a = n/no = 0.9275 

a ^ 11° 
and one gets from (1): 

R = L/h = 5.14. 

This prism is called a Glazebrook prism. 

2. The condition for which the ordinary ray striking the face AB in the plane of the figure 

above the normal is totally reflected on AC is the same as above now with η = 1 : 

η . 1 
sin io = η sin r 0, α—r 0 ^ / ο , sm/ο = — . 

2 «ο 

But the extraordinary ray can also undergo total reflection and the range will be limited on 

the upper side by the condition that this ray can again exit at the face CD, which gives 

sin ie = ne sin re, <x.+re ^ le, sin le = — . 
2 ne 

FIG. 2 6 . 2 
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For the range to be symmetrical it is necessary for ie = i 0, so that 

sm io = n0 sm r0 = ne sm re. (4) 

Now the angles r0 and re are small since 

r0+re = / β - / 0 = 5 ° 1 1 ' . 

Thus, one can write, in place of (4) 

ίο = noTo = « Λ . 

from which the range 

2 / 0 = 
2nen0 

n+no 
(r0+re) = 

2« < f« 0 

«e + " 0 
( / e- / o ) = 8 ° 1 0 \ 

and the ratio 

R = cot α = cot (/o+fo) = cot = 0.825. 

This is called a Glan polarizer. It is much shorter than the Glazebrook prism but the light 

wasted is much larger since the reflection factor is larger at the spar-air interface than at the 

spar-cement interface. 

A parallel beam of white light passes through a spar plate of thickness e placed between 

two niçois set at extinction. The optic axis of the plate is at 45° to those of the niçois. In 

addition, the beam passes through a grating with 500 lines per millimetre and a converging 

lens with a focal length of 1 metre. On a white screen placed in the focal plane one observes 

the first order spectra which are formed about the central fringe. 

1. At what distances from the central fringe will the points Ρ and Q be found where the 

radiation of wavelengths λι = 0.6 μ and λ2 = 0.7 μ converge? 

2. There are dark bands at Ρ and Q and one finds forty-one bands (fringes) between these 

two points. What is the thickness of the spar? 

3 . Consider now the white light which leaves the spar plate and which does not pass 

the second nicol. 

(a) What are the wavelengths λ for which the polarization is linear? 

(b) What are the wavelengths λ for which the polarization is circular? 

Indices of spar: n0 = 1.658, ne = 1.486. 

P R O B L E M 2 7 

Rotary Dispersion 
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P R O B L E M 2 7 

Rotary Dispersion 
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SOLUTION 

1. A parallel beam of light which normally crosses a uniaxial biréfringent plate with 

parallel faces cut parallel to the axis remains parallel and does not undergo doubling. 

In effect, the normals to the ordinary and extraordinary waves are coincident within the 

crystal and are, in this case, both coincident with the rays since the normal to the extra-

ordinary wave is in the equatorial plane of the indicial ellipsoid (Fig. 27.1). It thus strikes 

the grating normally. The principal maximum in first order for radiation with wavelength λ 

is in the direction ιΊ 

sin ιΊ = λ/d, 

Optica! axis 

FIG. 2 7 . 2 

d being the grating step. One has d = 2μ and 

λ = 0.6 μ, sin ιΊ = M = 0.30, h = 17°27'30", 

0 7 

λ' = 0.7 μ, sin ft = ^ - = 0.35, ft = 20°29'15". 

The distances from these two beams to the central image (i = 0) are respectively 

Γι = / t a n ιΊ = 0.314 m, r[ = / t a n ft = 0.373 m. 

There are two spectra in the first order symmetric about the central image. 

2 . The band spectra observed are due to the variation with wavelength of the phase 

difference between the principal vibrations introduced by the biréfringent plate. The linear 

vibration OP from the first polarizer (Fig. 27.2) falls on the spar at 45° to the optic axes 

which are in the direction of the optic axis and normal to it, and has equal projections on 

these axes. After exiting from the plate, the vibration parallel to the axis, which is propagated 

with the index ne less than the index n0 of the perpendicular vibration, has taken a lead in 

optical path over the latter of : 

δ = e(n0-ne). 

This does not depend on the wavelength if one neglects the dispersion of the birefringence. 

This approximation, always good in the domain of radiation under consideration, is imposed 
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by the statement of the problem which only gives a single value for the indices. However, 

the phase difference 
2πδ lue 

φ = —χ - = —χ- (no—ne) 

varies with the wavelength. The intensity transmitted by the analyser (§ 6.19) is given by 

/ = s i n « - | - , (1) 

since the optic axes are at 45° to the direction of vibration given by the polarizer and which 

itself is crossed with the analyser. The intensity is zero for 

φ = 2Κπ or e(n0-ne) = Κλ, (^ in teger) . (2) 

All wavelengths for which this relationship is satisfied—that is, for which the thickness of 

the plate is equal to Κ times that of a single wave plate—are quenched. They then correspond 

to dark bands in the spectrum. 

To find the thickness of the plate, one needs to know the integer Κ (or K') relative to the 

λ band (or λ'). If one has forty-one bands between these two wavelengths 

# = / T + 4 2 . 
Thus one has 

e(n0-ne) = Κ'λ' = (K'+42)2, 
hence 

0.172 

and 

e — 

0.172 

K' = eX-QJ 

42X0.6 42X0.6X0.7 t n n. 
6
 = — Ö 6 T * 0.172X0.1

 = 1 0 26
 «*• 

3 . F rom one dark band to the next, the phase difference φ varies by 2π. For the wave-

lengths lying between these bands the vibration leaving the spar is generally elliptical. 

The axes of the ellipse are always oriented along the direction of the vibration OP defined 

by the polarizer and in the normal direction OA (§ 8.3). 

(a) The vibration is linear when this ratio is zero or infinite, that is, if : 

^ = Κπ or ^ = (2K+1) ^ (K integer). 

In the first case, one again gets equation (2) and the vibration parallel to OP is quenched 

by the analyser. In the second case, the thickness of the plate is equal to an odd number 

times that of a half-wave plate for the radiation under consideration and the linear vibration 

is parallel to OA and is passed by the analyser. Illumination of the spectrum is maximum for 

wavelengths defined by 

φο-«Λ = ( 2 # + 1 ) | . 
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(b) The vibration is circular for tan φ/2 = 1, so that 

The thickness of the plate is equal to an odd number times the thickness of a quarter-wave 

plate. This occurs for radiation whose wavelength satisfies 

e(n0-ne)=(2K+l)^-. 

P R O B L E M 28 

Two Passes through a Quarter-wave Plate 

A monochromatic light source emits a parallel beam which passes through a polarizing 

prism P. The emerging light rays fall at normal incidence on a crystalline quarter-wave plate 

(for the radiation utilized), Li, and are then reflected normally at the surface of a perfectly 

reflecting metallic mirror M (Fig. 28.1). 

FIG. 28 .1 

Calling α the angle formed by the plane of the principal section of the polarizer Ρ and the 

advancing optic axis of the plate Li, and I0 the luminous intensity of the incident beam 

before passing through polarizer P, one wants to know: 

1. The value of the luminous intensity / of the returning beam emerging from the polarizer. 

Discuss the special cases of the angle a. 

2. Rotating Ρ uniformly about the incident light beam with a frequency V(OL = 2nvt\ 

what will be the modulation frequency v' of the beam / ? 

In each case neglect the losses due to glassy reflection. 

SOLUTION 

The normal reflection on the mirror leads to a phase advance of π for all linear vibrations 

(§ 3.5). In addition, if one considers the most general polarization state of a light vibra-

tion—elliptical polarization—the reflection makes a phase advance of π both elliptical 

components thus the direction of the path is not modified. 

However, the propagation direction of the light is inverted by reflection and the plate 

Li receives an elliptical vibration in an inverted sense to that which it originally produced. 
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On the whole the experiment is equivalent to that illustrated in Fig. 28.2: 

3ZL 
- - L L L'

 A 

*Ί
 L

2
 u

\ 

FIG. 2 8 . 2 

Ρ and A: polarizer and analyser parallel; L\. a quarter-wave plate; L2: a half-wave plate 

having its optic axes parallel to the axes of the elliptical vibration exiting L±, it inverts the 

sense of the ellipse as does the mirror but without altering the direction of propagation; 

L[: a quarter-wave plate having its optic axes parallel to those of Lx\ I: the direction of 

observation. 

1. The linear vibration given by Ρ is a cos ωί with a = χ//o/2. Its components on the 

optic axes of Li can be written : 

on the entry side y ο = a cos α cos ωί, z 0 = a sin α cos ωί, 

on the exit side yi = a cos α cos ωί, z± = a sin α sin ωί, 

calling α the angle which the vibration a makes with the advancing optic axis y of the plate 

L\. The vibration is left-handed in this case with its axes along y and z. The plate L 2 has its 

optic axes also directed along y and z. It transforms the components yi and z i into 

y2 = a cos α cos ωί, z2— —a sin α sin ωί. 
The plate L[ gives 

a cos α cos ωί, z' -a sin α sin ^ ω / + - - | = —a sin α cos ωί. 
'2) 

The analyser A permits passage of the components 

y' cos α = a cos
2
 α cos ωί and z' sin α = — a sin

2
 α cos ω/, 

so that 

The intensity is 
fl(cos

2
 a —sin

2
 a) cos ωί = a cos 2a cos ωί. 

I = y cos
2
 2a . (1) 

It reaches its maximum value for α = 0 and α = π /2 . In both cases a linear vibration 

directed along Oy or Ο ζ passes through the entire apparatus. 

The intensity is zero for α = π/4. In this case, it exits from L i as a left-handed circular 

vibration (using the convention adopted). The plate L 2 transforms this into right-hand cir-

cular light. This is transformed into a linear vibration by L[. However, this latter vibration 

is perpendicular to the transmitting direction of the analyser which therefore quenches it. 

2 . The result is obtained immediately from (1) which gives 

I = cos
2
 4πνί, 

where ν is the frequency of rotation of the polarizer-analyser. The modulation frequency is 

therefore v' = 2v. 
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P R O B L E M 29 

Biréfringent Monochromator 

A parallel beam of light from a sodium vapour lamp passes through a polarizer analyser 

pair which have their transmitting directions parallel and which are separated by a calcite 

plate with parallel faces whose optic axis is fixed in the plane of the faces. What must be the 

minimal thickness of this plate so that only one of the sodium ZMines, separated by 6 Â, 

leaves the analyser with maximum intensity? The following table gives the principal indices 

of calcite in the region of the ZMines : 

λ(Α): 5876 5893 

ne : 1.486 47 1.486 41 

«o : 1.658 46 1.658 36. 

SOLUTION 

The obtain a zero minimum, it is necessary to have the axis of the plate at 45° to the 

principal plane of the polarizers. The intensity is (§ 6.19) 

/ = cos
2
 ^ e(wo-WE) 

since, for a plate parallel to the axis, the principal indices are n0 and ne. For the intensity at 

wavelength λ to be a maximum it is necessary that 

β(η0-η6) = Κλ (Κ integer). ( 1 ) 

For it to be zero at the same time for the wavelength λ' = λ+δλ, it is necessary that 

e(n0-n'e) = {Κ+\)λ' = (Κ+\)(λ+δλ). 

But 

hence 

dn0 &. , dne 

«o = n0- —j- ολ, ne = ne— ο A, 

f-».-(t-tH=K)<^> 
and, taking ( 1 ) into account, 

{ e(n0-ne) /dn0 dne\] . λ+δλ 

—λ—
e
[-dj - α ϊ ) )

6 1
 = — 
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and finally, neglecting δλ in the second term, 

_ ^ _ 1 

2δλ ~ , , , / d n o d ^ X * 

With 

λ = 5893, δλ = 6, = ^ =
6

^ -

one gets 

e % 17X10 6 Â % 1.7 mm. 

This arrangement can effectively serve to separate the components of a doublet. 

P R O B L E M 30 

Experiments of Fresnel and Arago 

I 

A collimator provided with a vertical slit and an astronomical telescope are situated in 

such a fashion that their optic axes are along the same horizontal. The two instruments are 

focused at infinity and the collimator is illuminated by a monochromatic radiation of wave-

length 0.54 μ (the green line of mercury). Between the objectives of these two instruments an 

opaque screen is placed normal to their common optic axis and the screen is provided with 

two vertical windows F and F'. The windows have the same width a = 1 mm and their 

centres, situated on the same horizontal, are separated by a distance d = 3 mm. Sketch the 

appearance of the fringes as they appear in the telescope and, knowing that the magnification 

of the telescope is 20, find: 

(a) the apparent diameter of the central maximum; 

(b) the angular separation between two consecutive interference fringes. 

II 

A nicol polarizer whose principal section is vertical is positioned between the collimator 

and the screen containing the windows. In addition one has transparent, easily cleaved mica 

whose two principal indices for the green mercury line at normal incidence and for the two 

vibrations at right angles lying along the optic axes L' and L" of the mica sheet are given by : 

ri = 1.5998, n" = 1.5948.| 

A half-wave plate of this mica is required for the green mercury line. Determine its thickness 

and show how one can verify that the cleaved plate is precisely half-wave. 
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and show how one can verify that the cleaved plate is precisely half-wave. 
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III 

F rom this half-wave plate two pieces are cut having the form of elongated rectangles. 

One of these rectangles ABCD has its long axis AB parallel to the optic axis L and the other, 

A'B'C'D', has a long axis A'B' which makes an angle of π/4 with the direction of L. These 

two plates are placed in front of and against the opaque screen with their sides AB and A'B' 

vertical so that each one covers one of the windows. Explain why under these conditions the 

interference fringes previously seen disappear completely and show that in order to make 

them reappear again in the same place it is necessary to introduce an appropriately oriented 

nicol analyser behind the windows. 

IV 

Can one, by initially placing a thin plate of mica suitably oriented and covering the entire 

field, make the fringes continually visible when one turns the nicol analyser but displaced 

in a continuous fashion depending on its ro ta t ion? 

SOLUTION 

This problem is a variation on the experiments of Fresnel and Arago on interference in 

polarized light (§ 6.17). 

Young's fringes are formed as with natural parallel monochromatic light. The angular 

distribution of the light passing through a system of windows is given by the usual expres-

sion (§ 6.1): 
πα sin ι \ 

/ = 4 /„ l " " " ' I " \ c o s 2/ ^ s i n j \ (1 
1
 πα sm ι I \ λ J 

h is the diffraction intensity along the axis of the system and i is the angle made with this 

central line in the plane of the diffraction. Since the magnification G of the telescope is, by 

definition, when focused at infinity equal to the ratio of the apparent diameters of the object 

when viewed with the instrument and the naked eye, it is only necessary to multiply the 

result given in (1) by G to obtain the required value. 

(a) The first factor of (1), which corresponds to diffraction by each slit vanishes for 

sin i i = λ/a. The angular diameter of the central maximum thus has the value 

2G sin ii = 2G - = 4 0 X - * ~ = 2.184X 1 0 "
2
 rad = 1°15\ 

a 10
3 

(b) The angular separation between two neighbouring fringes corresponds to the difference 

between two values of ι which cause the second term of (1) to go to zero, namely sin ι = λ/d 

and through the telescope 

G
 4 =

 2 0 x
 W W = ° -

3 6 4x 1 0 -2 r a d
-a 3 X 1 0

3 
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Thus one has 2.184/0.364 = 6 interference fringes in the central diffraction maximum. 

Since the central fringe is a maximum, the third bright fringe on either side of the central 

maximum falls in the direction h where the intensity goes to zero. Therefore, five inter-

ference fringes are visible (Fig. 30.1). 

a d d d d a 

FIG. 30 .1 

The intensity due to the second factor of (1), namely 

4 / 0 sin
2
 = 2 / 0( l - cos φ) (2) 

is modulated by the variations in the first factor. 

II 

The thickness of a half-wave plate (§ 8.3) is 

λ 0.546 _ 
6
 2 ( Λ ' - Λ " ) ~ 2X0.005 ~

 μ
* 

Verification requires that one recall that a half-wave plate converts a linear vibration into 

a linear vibration. By placing it—in any orientation—between a crossed polarizer-analyser 

pair, one can find extinction by rotating the analyser. The procedure does not distinguish 

between a plate giving a phase retardation of λ/2 and one giving fcA/2 (k integral) but one 

knows that the plate is essentially a half-wave plate. 

To increase the precision one uses the quarter-wave method (§ 8.6.4): the angle of rota-

tion of the analyser which acts from the zero transmission region to restore the illumination 

is equal to φ/2 = 90°. 

III 

The plate ABCD does not affect the orientation of the linear vibration given by the 

polarizer which is parallel to the optic axis L\ The plate A'B'C'D' rotates this same vibration 

through 90° since it is oriented at 45° to the optic axis L. The diffracted beams from the two 
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slits thus consist of coherent, linear vibrations of equal amplitude but oriented perpen-

dicularly to one another. These recombine to give elliptical vibrations which vary according 

to the phase difference but which contains a uniform distribution of energy. Thus there are 

no longer any interference fringes. 

The analyser prism allows passage of all linear vibrations parallel to its direction of trans-

mission. These components which then have the same polarization can interfere. Calling 

OV and OV (Fig. 30.2) the two linear components, OA the transmission direction of the 

analyser which makes an angle β with OV, and Ο ν and Ov' the respective projections of O F 

and OV on OA, one has : 

Ov — a cos β cos cot, Ον' = a sin β cos (cot—φ), 

FIG. 3 0 . 2 

with a the common amplitude of OV and OV and their phase difference which depends 

on the angle of diffraction. Combining Ov and Ον' gives the intensity: 

I = a
2
 s in

2
 ß+a

2
 cos

2
 β—2a

2
 sin β cos β cos φ = a

2
(\ + sin 2ß cos φ). 

To recover the original system of fringes where the distribution of intensities is given by (1), 

it is necessary to have sin 2β = 1 and β = π/4. The amplitudes Ov and Ov' are then equal 

and the fringe contrast is unity. The contrast is clearly zero for β = 0 or β = π/2 since only 

one of the vibrations OV or OV is transmitted by the analyser and there can be no inter-

ference. 

IV 

The preceding discussion shows that the visibility of the fringes depends on the azimuth β 

of the analyser. To have them independent of this it is necessary that the projections 

Ov and Ov' do not depend on this, that is, that the vibrations O F and OV are circular rather 

than linear. One can accomplish this by placing in front of the analyser a quarter-wave 

plate of mica with its optic axis at 45° to both OV and OV. The two vibrations are trans-

formed into circular vibrations with opposite senses (§ 8.3.3) and having the same ampli-

tude. At any point in the field one of these has a phase difference φ with respect to the other. 

However, one knows (§ 8.5) that the resultant of such vibrations is linear with an azimuth 

equal to φ/2. Between two points in the field where the phase difference varies by 2π, the 

linear resultant has rotated through π and at these points extinction will be obtained for 

the same orientation of the analyser. One has a system of fringes with the same separation 

as in natural light. Now, by turning the analyser through an angle a, one extinguishes all the 

vibrations inclined at an angle of α to those above and one sees a continuous displacement 

of the system of fringes. 
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This can be made more precise by a calculation. The components of OV on the optic 

axes OQ and OQ' of the quarter-wave plate (Fig. 30.3) are, at the exit side, 

OQi = — c o s ωί, OQ2 = —%= sin ωί (right circular), 
y/2 λ /2 

while those of OV are 

a — a OQi = —= cos (ωί - φ), OQ2 = — — sin (ωί - φ) (left circular). 
V 2 Λ/2 

The signs are those obtained by assuming that OQi is the advanced optic axis (that with 

the smaller index). 

v / 

\ \ A 
FIG. 3 0 . 3 

Let θ be the azimuth of the analyser OA with respect to OQi. The projections of the 

vibrations on OA are 

α Λ a . . Λ a ^ 
—p=- cos ωί cos 0Η — sin ωί sin θ = — — cos (ωί — θ), 
Λ/2 Λ/2 Λ/2 

^— cos (ωί—φ) cos θ — — s i n ( ω ί — 0 ) sin θ = — c o s (ωί—φ + θ). 
V2 Λ/2 Λ/2 

These are two vibrations in the same direction and with the same amplitude which have a 

phase difference 2Θ—φ with a resultant 

/ = 2a
2
 cos

2
 (θ-φ/2). 

If θ = 0 or Απ, one has the system of fringes represented by (1). If θ varies, the maxima are 

where θ = φ/2. 

P R O B L E M 31 

Polarization Interferometer. Differential Method 

I 

A ray of monochromatic natural light falls at normal incidence on a quartz plate Q\ 

having parallel faces and thickness e. The optic axis is in the plane of the figure and makes 

an angle of 45° with the normal to the plate (Fig. 31.1). One has ne = 1.533 and nQ = 1.544. 
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2
 cos

2
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Polarization Interferometer. Differential Method 

I 

A ray of monochromatic natural light falls at normal incidence on a quartz plate Q\ 

having parallel faces and thickness e. The optic axis is in the plane of the figure and makes 

an angle of 45° with the normal to the plate (Fig. 31.1). One has ne = 1.533 and nQ = 1.544. 
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1. Construct the path of the rays in the crystal. 

2. Calculate as a function of e, ne, and n0 the separation of the emerging rays. Give their 
states of polarization. 

0, 

/ 
0, 

/ 
<?2 

FIG. 31 .1 FIG. 3 1 . 2 

II 

One adds a second quartz plate Q2 identical to Qi. The faces of these two plates are 

parallel. Let α be the angle between the plane of the principal sections of these two plates 

(Fig. 31.2). Show that in general four rays leave Q2. Find for α = 0 ,45°, 90°, 135° and 180°: 

the relative positions of the rays on the screen Ε (giving the polarization state of each); 

the energy carried by each of them taking the source as unity. 

In what follows assume that the axes Qi and Q2 are parallel. 

I l l 

Place in front of Qi a polarizer Ρ which only lets passage of vibrations oriented at 45° 

to the plane of the figure. Between Qi and Q2 is placed a half-wave plate whose optic axes 

are at 45° to the plane of the figure. Sketch the path of the rays through the system and 

indicate the nature of the vibration transported by each one. 

IV 

Place behind the half-wave plate a transparent plate L to generate a phase variation (Fig. 

31.3). Call φ the phase difference introduced between rays (1) and (2) displaced by Δ. What 

is the nature of the vibration leaving Q2 in the case where 

ψ = 0, 0 < φ < ^ , φ=^ 

71 

— <</>< π and φ = τιΊ 
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Δ 

L 

FIG. 31 .3 

V 

1. One can cause the rays leaving Q2 to interfere. What is the function of the polarizer P ? 

How does it contribute to the production of good contrast? 

2. One illuminates the system by a plane wave Σ parallel to the faces of the quartz. Show 

that the waves issuing from Q2 are displaced laterally by an amount Δ. Assume that the 

plate L generates a phase constant variation throughout a groove of width a (Fig. 31.3). 

Find as a function of φ the illumination in the different regions of the image. 

In general one can detect objects with different phase and not measure the phase shift. 

Place behind Q2 an objective Ο focused in the plane of the plate L. With this objective (with 

given characteristics) are associated the quartz plates Qi and Q2 so that the separation Δ is 

less than the limit of resolution of the objective O. 

Find e given that Ο has a numerical aperture sin u = 0.2 and the wavelength used is 
λ = 0.5 μ. 

The incident plane wave breaks up within the crystal into an ordinary wave Σ0 and an 

extraordinary wave Σβ (Fig. 31.4). The ordinary wave is directly transmitted and the extra-

ordinary ray is deviated toward the axis (in the case of a quartz crystal). 

2. The intersection of the ellipsoid with the plane of the figure is an ellipse with equation 

VI 

SOLUTION 

1. Huygerfs construction (§ 4.2). 

The wave surface is made up of : 

a sphere of radius 1 /n0 

an ellipsoid of revolution with 

axes 1 /nQ and 1 jne 

tangent along the axis 

(Fig. 31.4). 

« g x
2
+ «

2
7

2
 = 1. (1) 
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FIG. 31.4 

At point Ν the tangent is parallel to the bisector of xOy and thus one has dy/dx = 1. Using 

equation (1) this becomes 

---If 
hence 

2 

Z = t a n a = ^ . (3) 
χ m

 K
 ' 

The separation of the two emerging rays is 

a 1
71
 , \ 1 + t a n a n

2

e—nk 
Δ = e tan ^ + a ) = e = , ^ - j . (4) 

Since the birefringence of the quartz is small, one can write 

. ne-n0 9 X 1 0 -
3 

A = e — = e - B ç r . (5) 

The extraordinary vibration is in the plane of the principal section (which contains the axis 

and the normal to the entry face). The ordinary vibration is perpendicular to the plane of the 

figure (Fig. 31.4). 

II 

One sees that the plate Qi splits the incident radiation into two rays situated in the plane 

of the principal section. 

Take ray 1 incident on Q2. If the vibration Ε does not coincide with the optic axis of Q2 

one has on the exit side two parallel rays in the plane of the principal section of Q2 and 

carrying the vibrations EE and EO. Likewise, ray 2 is split and the two rays carry the OE 

and 00 vibrations (Fig. 31.5). 

9 R & Μ: PIO 
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/ 
£ 

t 
EE_ 

/ 1 
___«_.?_ 

/ 
0

 2 00 

0} Q2 

FIG. 31 .5 

α = 0 00 and £ E are in the plane of the figure separated by 2Δ. Each ray carries 

energy | . 

α = π /4 four rays each with energy \ . 

α = π /2 two rays each with energy ~ . 

α = 3π/4 four rays each with energy \ . 

α = π two coincident rays with energy \ . 

The results are seen in Fig. 31.6. 

Note. The assembly of two identical plates making an angle of α = π /2 forms a "Savart 
plate" . 

α=0 oc =45° oc = 90° α = 135° oc =180° 
FIG. 3 1 . 6 

III 

The vibration transmitted by the polarizer Ρ can decompose into two rectangular vibra-

tions Px and Py having the same amplitude (Fig. 31.7). In the crystal Qv Px becomes ordi-

nary and Py extraordinary. If one does not insert the half-wave plate, one has the situation 

shown in Fig. 31.6a. Knowing that a half-wave plate transforms a linear vibration into 

another linear vibration symmetric with respect to its optic axes, the vibration which is 

extraordinary in Qi behaves (after rotation by 90°) like an ordinary vibration in Q2. In-

versely, the ordinary ray in Qi becomes extraordinary in Q2 (Fig. 31.7). The vibrations Ε and Ο 

are shifted out of phase in passing through g i ; however, EO and OE are again in phase 

after passing through Q2. 
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FIG. 3 1 . 7 

IV 

At the exit side of 02 , one has, in general, an elliptical vibration (formed from two linear 

vibrations out of phase by φ). The ellipse can be inscribed in a square and its axes coincide 

with the diagonals of the square (§ 8.3.2). 

φ = 0 linear 

0 < φ < π/2 right elliptical 

φ = π/2 right circular 

π/2 < φ < π right elliptical 

φ — π linear 

V 

1. The polarizer makes the vibrations coherent. It is necessary to add an analyser after 

Qi to render the vibrations parallel. The contrast is maximum and equal to one when 

the vibrations have the same amplitude, that is, when the favoured direction of the analyser 

is at 45° to the plane of the figure. 

2 . The wave Σ is split into two waves Σ0 and ΣΕ longitudinally and laterally out of phase. 

The two waves ΣΟΕ and ΣΕΟ are again found t o b e coincident and in phase as a result of the 

Σ 

Δ 

Before 01 After 0 1 After L 

FIG. 3 1 . 8 

After 0 2 

9* 
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compensation by Q2. However, if phase variations are introduced between Qi and Q2, the 

field contains two phase-shifted objects separated by Δ (Fig. 31.8). 

Δ > a total splitting method (Fig. 31.9a), 

Δ < a differential method (Fig. 31.9b). 

FIG. 31.9b 

a 
ρ — — - η 

. i
2
i . (3) J (4) i.(5) 

Δ 
FIG. 31.9a 

The phase shift and therefore the illumination varies in the different regions. The results are 

summarized in the following table: 

Region 1 2 3 4 5 

Phase difference 0 +Φ 0 -Φ 0 
Illumination 1 cos

2
 φ/2 1 cos

2
 φ 12 1 

This polarization interferometer leads to an interferometer with uniform brightness. If one 

uses white light, the phase variations show up in variations of colour. 

VI 

When one wishes to detect objects with different phase one uses the differential method 

and chooses a splitting less than the limit of resolution ρ of the objective. This requires 

Δ < ρ, (6) 

hence 

*(μ) 

nl-r\ ^ 1.2A 

1.5X1.2X0.5 

«?+«S < 2 sin u U) 

9 X 1 0 -
3
X 2 X 0 . 2 ' 

e < 250 μ. 
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P R O B L E M 3 2 

Electrical Birefringence 

A capacitor with rectangular plates A and Β of length / and separated by a distance A 

(Fig. 32.1) is immersed in a cell containing carbon disulphide at 22°C. A parallel beam of 

light with wavelength λ in air is directed between the plates and parallel to their long axis. 

This beam is polarized by a polarizer Ρ whose principal section makes an angle α with the 

plane of the plates. After ascertaining that the faces of the cell crossed by the incident light 

are isotropic, one applies to A and Β the potentials V\ and V2. Determine the orientation 

A 

FIG . 32 .1 

and ellipticity of the light leaving the apparatus . Fo r α = 45°, show precisely on a figure the 

positions of a quarter-wave plate and of the principal section of an analyser A corresponding 

to complete extinction of the emergent ray. 

For numerical purposes take / = 20 cm and h = 4 mm. For V\ and V2 take the pole 

potentials of a series of 5000 batteries of 2 volts each with the centre of the voltage source 

grounded. 

Note. One knows that carbon disulphide placed in an electrostatic field Eo behaves like a 

positive uniaxial crystal with axis parallel to the field and that the birefringence acquired 

by it at 22°C measured by the difference of the indices ne and n0 is such that : 

ne-n0 = 3 Χ ΐ Ο -
1 4

Χ λ £ 2 , 

the variables being in SI units. Neglect the effect of the edges of the capacitor and assume 

the field to be uniform. 

SOLUTION 

The cell acts like a crystalline plate with plane, parallel faces whose privileged directions 

are oriented along the direction Oz of the electric field (that is, normal to the plates of the 

capacitor) and Oy normal to Oz. Since the crystal is positive uniaxial, ne > n0. The direction 

of the extraordinary vibration Oz is retarded. 

The linear vibration OP = sin ωί given by the polarizer has the following components 

along the optic axes at the entrance to the cell : 

yo = cos α sin ωί9 ζ ο = sin α sin ωί; 

at the exit from the cell 
y = cos α sin ωί, ζ — sin α sin {ωί— φ), 
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with 

Φ= y ( » e - « o ) . 

The expression given in the problem allows us to calculate the birefringence. The field 

ΥΛ-V» 10
4 

£ o = ^ = 4 X Ï Ô ^ = 2 5 X l 0 5 V / m-

π , - Η ο = 3 X 1 0 - " X Â X ( 2 5 X 1 0 5 ) 2 

and 

φ =
 2 π Χ° · 2 ° χ 3 Χ 10~ 1 4XAx625X ΙΟ 1 0 = 0.075π = 0.236 rad = 13.2°. 

A 

The light which leaves the cell is elliptically polarized. For α = 45°, expression (8.19) 
from § 8.6 shows that 0 = α whatever φ may be. The axes of the ellipse are respectively 

ζ Ρ 

/Ay 

///' 

Ύ 

Fio. 32.2 

parallel and perpendicular to the direction of the incident linear vibration OP (Fig. 32.2). 

Equation (8.16) of § 8.6 gives sin 2ß = sin φ. The ratio of the axes of the ellipse is 

Φ 
tan ρ = tan - y , 

so that 

β = 6.6°. 

Since the direction Oz is retarded, the ellipse is traversed in the trigonometric sense 
(§8.3.1). 

The emergent beam can be eliminated by the analyser if the vibration it carries is linear. 
The quarter-wave plate can convert to linear the elliptical vibration leaving the cell if its 
privileged directions are oriented parallel to the axes of the ellipse. One can adjust the 
quarter-wave plate before having applied the electric field by crossing the polarizer OP and 
the analyser OA then positioning the quarter-wave plate and rotating it until extinction 
occurs. The optic axes of the quarter-wave plate are parallel to OP and OA. 
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If the advancing optic axis of the quarter-wave plate is placed along OP, the OP compo-

nent of the elliptical vibration, retarded by π/2 with respect to the component normal to it, 

is found to be advanced by π/2 after passage through the quarter-wave plate. The vibrations 

along OP and OA are then in phase and their resultant is a linear vibration OP which makes 

an angle β with OP. Extinction can be achieved then by adjusting the analyser, initially at 

OA, and bringing it to OA, that is, by turning it through an angle β in a sense inverse to 

that of the elliptical rotation (§ 8.6.4). 

P R O B L E M 33 

Rotary Power. Circular Dichroism 

Using the eye as a detector one wants to examine here the polarization states of a plane, 

monochromatic wave of sodium light, λ = 0.589 μ, which passes through a cell containing 

a liquid having an absorption and a natural rotary power. 

I 

(a) In the first experiment, the light is linearly polarized by a polarizer Ρ (Fig. 33.1) and 

one determines the azimuth of the vibration before and after passing through the cell which 

has a length of 0.5 cm. Knowing that the vibration has turned through a clockwise angle 

FIG. 33 .1 

α = 1.2° for the observer, and recalling that the rotary power is explained by circular 

birefringence, find the sign and magnitude of the difference in refractive indices for this 

liquid in right and left circular light of the wavelength given above. 

(b) The inclination of the vibration is found using a half-shadow analyser which is 

made up of a half-wave plate L (Fig. 33.1) rigidly mounted on a Glazebrook prism A and 

covering half the light beam. The transmission direction of this prism makes a small angle 

ε with the optic axis of L. The assembly can be turned through a known angle. Explain the 

function of this apparatus. 

II 

(a) In a second series of experiments the light is circularly polarized. This is accomplished 

through the use of a linear polarizer (Glazebrook, for example) and a quarter-wave plate 

with known optic axes. Indicate briefly using a drawing, how one can produce right and left 

circular light with this apparatus. 

(b) What is the thickness of the quarter-wave plate if it is cleaved from crystalline mica 

whose principal indices in the cleavage plane are η = 1.5977 and ri = 1.5936 in sodium 

light? 
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(c) Given this, one discovers, with the aid of a suitable flux detector, that a 1 mm cell 

full of the liquid transmits a fraction of 0.520 of the incident left-hand light and that a 

similar cell 2 mm in length transmits 0.320. Calculate the absorption coefficient of the liquid. 

Why is it necessary to measure it for two thicknesses? 

Repeat this for right-hand light where the transmitted intensities are 0.503 and 0.301. 

(Recall that for a homogeneous absorbing substance, the relative loss in intensity of a 

monochromatic light flux F in passing through a thickness dx of a substance is 

- Ύ = Κάχ 

where Κ is the absorption coefficient.) 

I l l 

Find the reduction in amplitude of right and left circular vibrations which pass through 

0.5 cm of the liquid. If one illuminates the liquid by linearly polarized light, show that the 

emergent light is elliptically polarized and find the ratio of the axes. 

IV 

Repeat the measurement of rotary power made in par t I. Now, without touching the 

analyser adjusted to extinction, place between the cell and the analyser a quarter-wave plate 

whose optic axes are parallel to those of the half-wave plate. What rotation of the analyser 

is required to re-establish extinction? Justify the result. 

V 

The absolute uncertainty in the orientation of a vibration as measured with an analyser 

at extinction and the eye varies inversely as the square root of the light flux received by the 

analyser. What thickness of this active, absorbing liquid will make the relative uncertainty 

minimal? 

SOLUTION 

I 

(a) One has (§ 8.5): 

α being given in radians. If the rotation occurs in the clockwise sense for the observer, it is 

the right circular vibrations which propagate most rapidly in the medium. nl > nr. 

1.2X0.589X10"
4

 7 Q W i n_ 7 

" ' - " ' = Î 8ÔX05 =
7
·

8 5
> <

1 0 7
· 
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(b) Let Oy and Oz (Fig. 33.2) be the directions of the optic axes of the half-wave plate, OA 

be the direction of the vibration transmitted by the analyser, and OV\ be the direction 

of the linear vibration carried by the beam falling on the plate. This vibration takes the 

direction OV2, symmetric with respect to OV± about Ο ζ in the half of the beam striking the 

half-wave plate. Let γ be the angle made by OVi with Oz. The projections of OV± and OV2 

on OA respectively are 

Ovi = OVi sin ( y + ε ) and Ov2 = OV2 sin {γ—ε). 

The intensities of the corresponding two beams after passing through the analyser are 

h = I sin
2
 (y + s) and I2 = I sin

2
 {γ—ε). 

2 
FIG. 3 3 . 2 

They are equal when γ = 0, that is to say, when Ο Vis parallel to Oz. They are faint since 

ε is a small angle; this is favorable for their comparison to be made by the eye (the solution 

γ % π/2 gives too large an intensity). One can then precisely locate the azimuth of the vibra-

tion OV before and after introduction of the active liquid. 

I I 

(a) The transmission direction of the polarizer OP is oriented at 45° to the optic axes of 

the quarter-wave plate. To obtain a left-hand vibration for the observer receiving the light 

leaving the quarter-wave plate, the "advancing" optic axis, tha t is, the optic axis correspond-

ing to the lower index of refraction, should be aligned along Oy {ny < ηΣ). This is reversed 

for a right-hand vibration. 

(b) For a quarter-wave plate of thickness e: 

e{n-n') = ^ 

or : 
0.589 

e
 4(1.5977-1.5936)

 μ
' 

which can be easily obtained from mica because of the ease of cleaving. 

(c) Expressing the absorption coefficient Κ in c m
- 1

, one has : 

for the 1-mm cell F i / F 0 = A exp {-OAK), 

for the 2-mm cell F2/Fo = A exp (—0.2ΑΓ), 
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F0 being the incident flux, A a constant coefficient which depends on the cell and especially 

which takes into account the reflection losses on its faces. Hence : 

| ? - = e x p ( - 0 . 1 A ) . 

For left-hand light: 
0 320 

exp ( - 0 . 1 * , ) = = 0.615, 

- 0 . 1 * / = 2.3 log 0.615 = 2.3(-0.21112) = - 0 . 4 8 5 6 . 

K, = 4.86 c m -
1
. 

For right-hand light: 

exp ( - 0 . 1 * ) = ^ = 0.599, 

-0AKR = 2.3 log 0.599 = 2.3(-0.22257) = -0.5119, 

Kr = 5.12 c m "
1
. 

It is to eliminate the effect of the cell accounted for by the coefficient A that requires the 

use of two measurements with varying thickness of cell. 

I l l 

(a) The intensity of a monochromatic light vibration is proportional to the square of the 

amplitude and the absorption coefficient for this latter is K/2. Hence, the values for the 

reduction factors resulting from passage through 0.5 cm are 

Left-handed vibration: e x p ( - 4 . 86X0 .5X0 .5 ) = exp (-1.200) = 0.3012. 
Right-handed vibration: exp ( -5 .12X0.5X0.5) = exp (-1.280) = 0.2791. 
The resultant of the two circular vibrations with the same amplitude and opposite sense 

is a linear vibration. For two vibrations occuring in the opposite sense with unequal ampli-

tude the resultant is an elliptical vibration. To see this, one can refer the circular vibrations 

occurring after passage through the medium to two general rectangular axes, Oy and Oz. 

The left-handed one is, for example, given by the expressions 

y ι = G cos cot, zi — G sin tot 

and the right-handed by 

yr — D cos (cot—φ), zr = D sin (cot—φ) 

with φ = 2α where α is the angle of rotation. With respect to the axes OY and OZ with 

which these make the angle a, the equations take the form 

Υ ι = G cos (cot—a), Z/ = G sin (cot—a), 

Yr= D cos (tot—a), Zr = —D sin (cot—a). 

The resultant of circular vibrations is 

Y = Yt+Yr = (G+D) cos ( ω ί - α ) , 

Ζ = Ζ / + Ζ Γ = (G—D) sin ( ω ί - α ) . 
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These are the equations of an ellipse related to its axes. They are respectively equal to 

2(G + D) and 2(G-D). The vibration is left-handed if G-D > 0 and right-handed if 

G-D < 0. The ellipse is described in the sense of a circular vibration less the absorption. 

The ratio of the ellipse axes is 

G-D _ 0 .3012-0 .2791 

G +~D 0 .3012+0.2791 * 

One can get this result also by a geometric reasoning. The two circular vibrations can be 

represented at each instant by the vectors OD = D and OG = G which rotate about Ο 

making equal angles about OY (Fig. 33.3). Construct the resultant OR of OG and OD then 

draw through R parallels to OY and OZ which strike OG a t M and JV. One finds GN = GR = 

OD. The point Ν describes a circle of radius D+G and MofD—G. The locus of Ä is obtained 

FIG. 3 3 . 3 

by considering the two concentric circumferences, a moving radius ON and, a t the points 

where it strikes the two circles, the parallels drawn respectively to OY and O Z . This is one 

definition of an ellipse. 

Note that the elliptical vibration is obtained here by a mechanism quite different than that 

of linear birefringence. In the latter case, the ellipicity of the vibration varies with the angle 

of the incident vibration with respect to the optic axes of the biréfringent system (§ 8.2). 

In the actual case, the ellipse does not depend on the angle of the initial vibration since 

optic axes in a liquid to which no field has been applied do not exist. The rotary power of a 

liquid turns the ellipse through an angle α independent of its orientation. 

IV 

The quarter-wave plate is situated with its optic axes parallel to the axes of the ellipse which 

leaves the cell, since the analyser at minimal transmission is set along the major axis of the 

highly flattened ellipse and since this axis is parallel to one of the optic axes of the half-wave 

plate. The quarter-wave plate transforms the elliptical light into linearly polarized light which 
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makes an angle β with its optic axes such that 

tan β = % β = 0.0330 * 2°. 
Cz + X/ 

The angle β is clockwise for the observer if the advancing optic axis of the quarter-wave 

plate coincides with the major axis of the ellipse. 

V 

The absolute uncertainty ε in the direction is 

ε = C\/F (C = Const) . 

The relative uncertainty is ε/α. However, α = Al (A = const.) and F = F 0e x p ( — K l ) . 

Hence 

ε_ _ C\/Fp e x p ( - £ / / 2 ) 

α " " A
 X

 / 

As a function of / this expression is minimal for 

^ = 1, from which I = ~ ^ ~ = OA cm. 

P R O B L E M 34 

Faraday Effect 

I 

Between two polarizers Ρ and P' (Fig. 34.1) set so that the direction of transmission of P' 

makes an angle of -f 45° with tha t of Ρ for an observer at Ο one places a column C of carbon 

disulfide C S 2 , 0 . 5 m long, in a uniform magnetic field Β parallel to the length of the column. 

What should be the direction and minimum value of Β so that the maximum flux leaving 

S reaches ΟΊ What happens if one exchanges the positions of S and Ο without changing 

anything else in the apparatus? 

The Verdet constant of C S 2 is 42 Χ 1 0
3
 min/tesla-m. 

B) 

FIG. 34 .1 
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II 

S and Ο are now replaced respectively by two identical bodies A and Β while maintaining 

the experimental set up described above such that one can operate in an adiabatic enclosure. 

The polarizers Ρ and P' are biréfringent prisms which eliminate the second beam by total 

internal reflection (Nicol prism, Glazebrook p r i s m . . . ) . The rejected beams reflect normally 

on the perfect mirrors Mv M2, M'v and M'2. Show, by examining the polarization state of 

all of the beams, that the exchange of radiant energy between A and Β does not alter the 

thermal equilibrium once it has been established. 

SOLUTION 

I 

The Faraday effect must equal + 4 5 ° for the observer. The sense of this rotation is 

the same as that of the current which produces the field B . For the rotation to be right at 

0 , the axial vector Β must in the conventional sense be directed from Ο to S. 

The magnitude of the rotation is given by Verdet's expression (§ 18.14) 

Hence, in SI units 

QoBl. 

The Faraday effect always preserves the sense of the current generator of Β and it 

changes the sense of the rotat ion for the observer when he exchanges positions with the 

source. The linear light formed by P' will then be found to be normal to the transmission 

direction of Ρ and light will not pass. 

This apparatus forms an optical valve; light passes freely in the sense SO but is stopped 

in the sense OS. 

II 

On the surface the reasoning involves taking the results of part I into account and saying 

that Β receives half the flux Φ which A transmits to Ρ (the other half being eliminated by 

total reflection) whereas A does not get half the flux Φ emitted by Β and which passes P' 

(the other half being totally reflected). The thermal equilibrium is then broken down con-

trary to the second law of thermodynamics. This is Wein's paradox. In the complete picture, 

taking the mirrors into account, A recovers the flux<£/2 which it has emitted and which is 

reflected on Mv Likewise, Β recovers the flux Φ/2 which it transmitted to M[ after total 

reflection in P'. The other half, which contains the light vibration EB crossing P' and C 

(Fig. 34.2) (the light vibration is ËB at the exit side of C), is totally reflected at P , then in M2, 
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FIG . 3 4 . 2 

then again in Ρ and returns toward B. But, at the exit from the cell, the orientation of the 

vibration is EB' normal to EB. The beam EB is then reflected in P\ then at then in P\ 

and returns toward Ρ which allows it to pass since the vibration now has the orientation ÉB". 

A then does, finally, receive the ΑιιχΦ/2 coming from Β and transmitted by P'. 



D I F F R A C T I O N 

P R O B L E M 35 

Far-field Diffraction 

Consider the apparatus shown in Fig. 35.1. It is made up of a centro-symmetric system 

of two lenses L i and L 2 , both having the same focal length / . A luminous object placed at 

Tii the focal plane of Li has its image formed at?r 2 in the focal plane of L 2 . 

The source emits monochromatic radiation of wavelength λ. 

FIG. 35 .1 

I 

Between L\ and L 2 is placed a rectangular pupil of width a and length b (b^> a). The 

centre of this slit coincides with the optic axis of the system. The coordinates of a point in 

the plane of the pupil are designated χ and y. 

1. Treat successively the cases dealing with the following type of object: 

(a) a dimensionless point placed at the focus of L±; 

(b) a small, infinitely thin line segment passing through F± and parallel to the edges of 

the diffracting slit. 

In both cases briefly describe the image. Find the distribution of the illumination in plane 

π2 where the general point is represented by the coordinates ξ and η. Graphically represent 

this distribution along the axis F 2£. (Use as the ordinate the illumination and along the 

abscissa plot u = (sin ι)/λ where i is the angle the diffracted ray makes with the normal to 

the plane of the pupil.) 

133 
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2. The object now taken is a series of fine luminous lines parallel to one another and to 

the diffracting slit. These lines are equidistant from one another (period d) and the size of 

the object is taken to be very large. 

What is the minimum value of d for which the image has a periodic structure : 

(a) when the object emits in a totally incoherent fashion. Recall that 

1 J _ _ ^ 
+
 3

2
~

+
5

2 _ +
 " ' ~ 8

s 

(b) when the illumination is coherent? 

Numerical application, a = 5 m m ; / = 1 m ; λ = 0.5 μ. 

Question 2b is difficult to solve if one does not use the Fourier transformation. 

II 

Again a point source is placed at Fi and in the plane xOy one places successively different 

gratings with step p. 

1. The grating is made up of infinitely fine straight rulings parallel to Oy and separated 

by opaque intervals of width p. 

(a) Determine the distribution of illumination on the plane π 2 . 

(b) Give the distribution of light graphically as a function of u = (sin ί)/λ. 

Consider the cases where the grating has an infinite width and then a finite width L. 

2. The grating rulings are all parallel to Oy but now the transparent and opaque intervals 

have the same width, namely p/2. Answer the questions above. 

3 . Now consider a sinusoidal grating. The transmitted amplitude at a point P(x, y) in the 

pupil is of the form : 

r 2πχ 
f(x) = c o s — . 

The transmittance is constant along lines parallel to Oy. As in the questions above, 

determine the distribution of the illumination and present it graphically. 

Numerical application: ρ = 2 μ; λ = 0.5 μ; L = °° then L = 10 cm. 

SOLUTION 

I. Diffraction by a slit 

Since the slit is long and narrow, it gives diffraction only along planes parallel to xOz. 

Throughout this problem we are going to reduce to a one-dimensional problem. Only the 

variables χ and ξ arise. 

1. (a) Point object. If the pupil is very large, diffraction does not occur and one image, 

identical with the object is formed at F 2 (the conjugate point to Fi). 
The insertion of the pupil causes a spreading of the image which does, however, remain 
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centred on the geometric image F 2 . Since the pupil is a slit parallel to Oy, the image spreads 

along the line F 2 | (Appendix A, III . 1). 

A calculation will establish this result (§ 5.10). 

In all of these problems we will normalize the results, that is, we will take the maximum 

intensity equal to 1. Thus 

. /sinnua\
2
 . sin i 

I(u) = , taking u = —^—. (1) 
\ 7iuü J A 

The image is made up of a set of small luminous segments situated along F 2 | (Fig. 35.2a). 

ξ 
FIG. 35.2a 

The variation in illumination is shown in Fig. 35.2b. 

I(u) 

FIG. 35.2b 

The central bright region is twice as wide (2/a) as the other lateral fringes. 

(b) The object is a very fine bright line. The problem does not specify the degree of spatial 

coherence of the light source. However, the result will be the same in all cases. The line 

segment can be thought of as being made up of a series of luminous points (Fig. 35.3) m0, 

m 1 9 . . . , mn. Each of these points gives a line of diffraction centred on its geometric image 

and parallel to Ol (Fig. 35.4). 

η 

FIG. 35.3 FIG. 35.4 

10 R & Μ: PIO 
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Since the locus of the diffraction lies in the planes parallel to | F 2 £ , there is never any 

interference found along F 2 ^ . When the source is made up of a short luminous line segment, 

the fringes formed are parallel to Oy (Fig. 35.5). The height of the fringes is equal to the 

height of the line source since in this case the magnification is unity. 

The distribution of illumination along any line parallel to Οξ is the same as previously 

calculated. 

IM 

I 
FIG. 35.5 

2. The object is a grating with step d. 

(a) Incoherent illumination. Each slit gives a system of fringes identical to that found 

above and centred on its geometric image. 

Since the line sources are incoherent, we have to consider the intensity given by each of 

these and then form the sum of these intensities. 

For simplification we are going to assume that the diffraction figure given by each slit is 

limited to the central fringe centred on its geometric image. The distribution of the illumina-

tion is shown in Fig. 35.6 where u0 is the ratio d/ft. 

One can clearly see that when d decreases eventually the situation will arise where the 

grating is no longer resolved. 

If one adopts as the resolution criterion the case where the diffraction maximum coincides 

with the first minimum of the neighbouring image, one has (Fig. 35.7) 

1 sini i' d 
u

° - - a - - - i r ~ j - ß ; 
(2) 

Hence 

dmin — λ — , (2 bis) 

In reality, if one takes the secondary maxima into account, one finds 

/max = 1(0) 

'-Η'(=)+'£)+'(έ)-··}· (3) 
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Equation (1) gives 

^max — 1? 

I m i n ~ 2 

Ληίη
 = 

8 Γι 1 

For u = u0, the image has no contrast. 

Hu) 

Periodic structure only appears for 

Va 
FIG. 35.7 

u > Mo, 

d>Xf\a. 

Numerical application: 

(4) 

1 1 

+ 2 5
4
" · · · " π

2 X 8 1 = / n 

</(μ) = 0.5 X 
10

3 

(5) 

> 0.1 mm. 

(b) Coherent illumination. I t is now necessary to sum the amplitudes rather than the 

intensities. There is no interference along F2r?, only along F 2f . 

II. Diffraction by a grating (§ 7.7) 

1. Grating with fine slits 

(a) Grating of width L. Each slit, infinitely fine, diffracts uniformly into space. 

As before, since the slits are parallel to Oy, there is only diffraction in planes parallel to 

xOz. In addition, as a result of the point source, the diffraction image is centred on the 

geometric image F 2 and spread out along F 2f . 

The Ν diffraction slits produce an intensity 

m = A(u)A%u)=(
S
™^)\ (6) 

\ sm nup f 

10* 



138 P R O B L E M S I N O P T I C S [ P R O B L E M 35 

The examination of (6) allows us to determine the position of the spectra : they are equidis-

tant with period Au = 1 /p. 

Their width is du = 1 jNp. The number of spectra is limited by the condition sin / < 1 

which here appears as < 4. Thus there are seven spectra visible all having the same 

intensity. 

Figure 35.8a represents the intensity variations in the plane of the image. The variables 

u = (sin /)/λ, sin ι, φ, and the interference order k are shown beneath each maximum on the 

figure. 

Α-

Ι 

— Np Γ / 

1_ I-

\ 

(a) 

(b) 

u 

1 

~ Ρ 
0 •* 4 

λ 

"Ρ 
0 sin ί ^ 

- 2 π 0 + 2 π + 4 π + 6 π Φ 

- 1 0 + 1 + 2 

FIG. 35.8 

+ 3 k 

Note. The term spectrum as used here does not refer to a coloured spectrum since we are 

using monochromatic light, but rather to a maximum in the illumination in the diffraction 

figure. 

(b) Infinite grating. The width of the spectrum öu = 1/Np decreases when Ν increases. 

For infinite N, the image is made up of a series of bright points on the axis F 2 | (Fig. 35.8b). 

2. Foucault grating (step p, width of the slits p/2) 

(a) Pupil with Ν slits. The diffraction amplitude from one of the slits in direction u is 

given by 
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The grating diffraction intensity in direction u is 

. TtUD 

sin . . , T 

Z Tcup 

(sin Nnup\ 

sin nup J (8) 

diffraction 
term 

interference 
term 

(a) 

(b) 

I(u) 

VNP 

5.10" 

2π/ /ν 

1/4 

2 π 

1/ί Λ/ +1 

V 2 

4 π 

3/4 

6 π 

+ 2 

FIG. 35.9 

+3 

.3iüJ = u 

-sin ί 

8 π 

+ 4 

The results are shown in Fig. 35.9a. The spectra of even order vanish and only spectra of 

orders 0, ± 1 , ± 3 remain. The distribution of the diffraction figure is always along F 2 | 

since we are dealing with a point source and a one-dimensional pupil. 

(b) Infinite grating. The discussion is the same as for the preceding case. Along the axis 

one finds five points of unequal intensity (Fig. 35.9b). 

In summary, the characteristics of the grating lead to the following characteristics in the 

image: 
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The width of the slits determines the amount of modulation. When the slits have a finite 

width (as is always the case in practice) the spectra do not have the same intensity. 

Certain orders can even vanish. 

The step of the grating determines the position of the spectra. They are equidistant in u 

space with period ΔΜ = 1 /p. 

The width of the grating characterizes the width of the spectra (ôu = 1 jNp = 1 /L). 

3 . Sinusoidal grating 

(a) Grating of width L. The amplitude in the u direction is given by 

Λ+Ζ./2 

A(u) = f(x) c^
ux
 dx 

-LI2 Î +L/2 

-LI2 

X 

Taking 
ui = lip. 

The preceding integral is written 

•+LI2 

thus 

A(u) = jj 
eJ 2 7 i ( « + K , ) * fa + 

LI2 

cos In — e
j 2 7 T W

* djc. 
m Ρ 

\ r+L/2 
Qj2n(u-Ul)x d x> 

2
 J-L/2 

1 Γ smn( 
A**) = — 

2 [ π(μ i+Ui)L 

Since L is very much larger than /?, one finds 

smn(u+u\)L ^ sinn(u—Ui)L 

n(u—Ui)L 

or 

1 1 
— <sc — 
L ρ 

<3C M i . 

The two spectra shown on Fig. 35.10a have practically no common point. 

(9) 

(10) 

( Π ) 

(12) 

FIG. 35.10 1 

I lu) 

J 

(a) V· j k (a) V· k 
i

 u 

(b) 

1 

"P 
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Thus one can correctly write for the normalized intensity 

r , , Γ sin7r(w+wi)L Ί
2
 Γ sinn(u—Ui)L I

2 

I(u) = — + — . 
[ n(u+u\)L J [ n{u—U\)L J 

(13) 

The variation in illumination is represented by two curves, analogous to the Fig. 35.2b and 

displaced by 2u\. 

The image on axis ξ is made up of two spectra separated by Aw = 2ui = 2/p and with 

width du = 1/L. 

One finds only spectra of orders + 1 and — 1 (Fig. 35.10a). 

(b) Infinite grating. The image reduces to two bright points situated on the | -axis, sym-

metric with respect to F 2 , and separated by Au = 2/p (Fig. 35.10b). 

All of these problems can be treated more simply using the Fourier transformation. 

1. (a) Coherent illumination. Since the source is a dimensionless point placed at the focus 

of Lu a plane wave parallel to the plane of the pupil illuminates the slit. 

The diffracted amplitude is the Fourier transform of the amplitude distribution on the 

pupil (see Appendix A, III. 1), namely 

Λ( \ /-γ \ sinnua 
A(u) = F(u) = ——. 

nua 

(b) Illumination by a line. A(u) retains the same value as above in paragraph (a). 

2 . The object a grating, (a) Incoherent illumination of the object. Notation. Call M a point 

in the object plane and M' a point in the image plane. In addition, we will approach this 

question as if the planes of the object and the image were coincident (the separation of these 

two planes does not arise explicitly in the calculation). Therefore the vector M—M' will be 

represented by the vector joining the point M' in the geometric image to point M. (M desig-

nates the vector FiM or F2M and Ρ the vector OP.) 

Each point M of the object gives a diffraction image centred on the geometric image (which 

we now call M also). 

Since the diffraction images have no definite phase relationship, the intensities add in the 

image plane. 

If 0(M) represents the intensity distribution in the object plane, the intensity at M' in the 

image is given by 

with D(M' — M) = \A(M' — M)\
2
 = the distribution of the intensity in the diffraction spot 

obtained with this pupil. Given that 

I. Pupil a slit 

'object 

(14) 

I(M) - S i i(P) 

0(M) o(P) (15) 

D{M) d(P) 
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Parseval's theorem allows transformation of the convolution (14) into a product 

i(P) = o(P)Xd(P). (16) 

We return to the special case in the text where the pupil, a fine slit, parallel to Oy, diffracts 

only along planes parallel to | F 2 £ . The only variables with which we have to deal are x, u, 

and u'. 

Thus 

Ι(μ') = J 0(u) D(u'-u) du (17) 

and 

i(x) = o(x)Xd(x). (18) 

We now will determine successively d(x), o(x), then i(x). 

(a) Calculation of o(x). The intensity distribution in the object plane is 

0(u)=
 +

f d(u-nuo). (19) 
n=—oo 

This is a "Dirac series" with step u0. 

The Fourier transform of a "Dirac series" with step w0 is a "Dirac series" with step l/w 0. 

One has 

o(x)= Σ (20) 

(/S) Calculation of d(x). We have taken 

D(u) = A(u) A*(u). (21) 

However, here A(u) is real and 

D(ü) = [A{u)f. (22) 

Parseval's reciprocity theorem allows us to write 

d(x)= \
+
°°f{X)f{x-X)aX 

J —σο 
(23) 

d(x) is the autocorrelation function of the pupil transparency (in amplitude). 

Since f(X) is a "rectangular" function, the convolution is equal to the common area of 

two rectangles displaced by χ (see Appendix A, B.III). 

Several cases arise depending on the value of u0. 

1/uo > a I (Fig. 35.11a). 

One has i(x) = o(x) d(x) = δ(χ). Only the fundamental is passed by the slit. 
One finds 

7(w') = F.T.[<5(x)], so that /(«') = 1 (Fig. 35.11b). (24) 
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The image plane is uniformly illuminated. 

J 1 / w o < a I (Fig. 35.12a). 

In addition to the fundamental a certain number of other spatial frequencies pass. These 

latter are always attenuated by the function d(x). To establish these concepts take the exam-

ple in Fig. 35.12. One finds 

with 

One gets from this 

7(w') = 1 + C [e^"
, / w

o + e- ^
w / / w

« ] (26) 

/(ιι') = l + 2Ccos2*r — . 
Wo 

Since 1 /w0 is less than a, the image has a periodic structure (Fig. 35.12b). 

We conclude that the grating is resolved for 

1 f 
— < a, that is, for d > λ —. 

iVöte. One sees that, even for values of w0 greater than 1 /a, the image does not always 

conform to the object. In effect, even if all the spatial frequencies pass, their amplitudes are 

modified by d(x). It is only the fundamental which is not affected. 
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(b) Coherent illumination of the object. Here it is necessary to take into account the 

phase relationships which exist between the various amplitudes transmitted to the image 

plane from points on the object. One needs then to evaluate the integral 

E(M ') = J ß ( M ) Â(M'-M) dM, (27) 

Ε{Μ') being the resultant amplitude at point M'. 

Take 

{ Ω(Μ) = amplitude distribution in the object plane; 

A(M) = amplitude distribution in the diffraction spot. 

If 

Ω(Μ) - ï i ω (Ρ) , 

A(M)^f(P\ 

Parseval's theorem leads to 

E(M)^e(P), 

e(P) = œ(P)Xf(P). 

The problem is always one-dimensional and thus one has 

the convolution: 

Ε{μ') = J Q(u)A(u'-u)du 

and the product: 

(28) 

(29) 

(30) 

(31) Φ0 = co(x)Xf(x). 

Take the product of the functions ω(χ) and f(x) and call this product e(x) (Fig. 35.13a) 

FIG. 35.13a 

FIG. 35.13b 

ϋ
ο/2 "ο 

FIG. 35.13C 
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One gets the following results : 

for 1/wo > a/2, only the fundamental is passed. 

E(u') = 1. The amplitude is uniform in the image plane. 

for 1/tto < a/2, the fundamental and some of the harmonics pass. 

In the example in Fig. 35.13a, one has 

e(x) =
 δ

( * ) +
δ

( * - ^ +
 δ

( * + ^ ) · (32) 

Hence 

E(u') = 1 + d 4 - e-***""* = 14- 2 cos 2π — . (33) 
Uo 

The curves 35.13b and 35.13c represent the amplitude and the corresponding intensity. 

The image has the same period as the object, but secondary maxima appear between the 

principal maxima. In summary, when l/u0 is less than a/2 the distribution of light in the 

image becomes periodic and the grating is resolved. The more spatial frequencies passed by 

the slit, the more the image resembles the object. In any case, the image will not be identical 

with the object since the width of the pupil is finite. 

Conclusion. Comparing the results for coherent and incoherent illumination, one finds 

that in each case one "resolves" the object for the following limiting values of wo: 

incoherent object l/w0 < a, 

coherent object. l/w0 < a/2, 

In addition one finds : 

the resolution increases with the width of the aperture, 

the resolution is better in incoherent than in coherent light (the ratio being 2). 

Note. The microscope is the optical instrument which allows one to vary to a great extent 

the coherence of the illumination. In effect, the operator can adjust the aperture of the con-

denser (condenser closed — coherent illumination, condenser open incoherent illumina-

tion). Microscopists know that they can improve the resolution by using the most incoherent 

light possible. 

II. Grating 

Since the source is a fixed point it is no longer useful to introduce the variable u'. One 

needs only deal with the conjugate variables χ and w. 

A. Grating with finite width (see Appendix A). 

The amplitude transparence of the pupil is characterized by 

g(x) = h(x)Xf(x), (34) 

h(x) is the amplitude transmitted by an infinite grating, 

f(x) is the amplitude transmitted by a slit of width L. 
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The diffracted amplitude in the direction u is given by the function G(u) such that : 

G(u) = H(u) ® F(u). 

1. The slits are infinitely fine. 

It is easy to determine the convolution graphically : 

F <g) H 

(see Figs. 35.14b, 35.15b, and 35.16). 

2 . Foucault grating (see Figs. 35.14b, 35.17b, and 35.18). 

3 . Sinusoidal grating (see Figs. 35.14b, 35.19b, and 35.20). 

Jix) kF
M 

L ο 
2 

FIG. 35.14a 

M x ) 

4 

Ο ρ 2p 

FIG. 35.15a 

ML 
FIG. 35.14b 

|C|// 

H ( u ) 

(35) 

1 

ο Vp Vp 
FIG. 35.15b 

G ( u ) 
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Β. Infinitely wide grating 

The problem is simplified since there is no slit diaphragm of width L. The amplitude 

distribution in the image plane is given by H(u) such that 

Η(μ) = F.T.[A(x)]. (36) 

For the three gratings treated, the amplitude distribution is given by the curves 35.15b, 

35.17b and 35.19b. 

P R O B L E M 36 

Diffraction by Circular Pupils 

Consider an objective Ο limited by a circular contour of radius r0 = 3 cm. 

This objective, assumed perfect, is illuminated by a point source at infinity along the axis 

of the objective 0 . 

The source is monochromatic and radiates at wavelength λ = 0.6 μ. 

Let α 0 be the maximum aperture of the objective (Fig. 36.1). Assume a 0 small. 
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M 

C 

Π 

c 

FIG. 36 .1 FIG. 3 6 . 2 

I. Open pupil 

1. Give the amplitude distribution and the illumination in the plane π . Characterize a 

point M in the plane π by its distance ρ from point C, the geometric image of the source. 

For simplification take Ζ = (2π/λ) α 0ρ. What is the illumination at the centre, C, of the 

diffraction figure? 

2. Find the angular radius θ of the first dark ring in the diffraction figure (0 is the angle 

which one sees from the optic centre Ο of the lens to the radius of the first dark ring). 

In front of the objective 0 , an opaque circular screen D is placed normal to the incident 

light. The centre of the screen is on the optic axis of the objective. The screen D subtends the 

half-angle αϊ at point C (Fig. 36.2). 

1. Give the amplitude and intensity distributions on plane π. What is the illumination 

intensity at the centre of the diffraction figure? Find the radius r± of D such that the intensity 

decrease not exceed 10% of that value found in question I. 

2. Find the angular radius of the first dark ring in the case where a 0 = 2ai . 

3 . Compare graphically the nature of the two diffraction spots : 

(a) without the screen Z>, 

(b) with the screen D. 

Optical systems with a central screen occur in certain telescopes. What happens in these 

cases to the resolution of the components of double stars? Assume the component stars have 

the same intensity. 

Assume now that the screen D almost completely covers the objective Ο in such a way 

that light only passes through an infinitely narrow ring. 

What is the structure of the diffraction pattern in planen;? 

What is the angular radius of the central diffraction spot? 

II. Opaque disc 

III. Annular pupil 
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IV. Identical screens distributed at random 

Replace the screen D by 1000 small opaque screens distributed at random in a plane in 

front of the objective O. Each screen subtends a very small angle at C equal to a 2 such that 

α 2 / α 0 = 10"
2
. Find the illumination in plane π at a distance 30/1.22 times the radius of the 

diffraction spot formed by the free objective Ο (in the absence of the small screens). Show 

initially that the conditions are such that Babinet's theorem can be applied. In the remainder 

of this problem the illumination produced by an open pupil at C is taken as unity. 

The objective is now used with its full aperture (the screens are removed) and with a plate 

of glass, L, with parallel faces in front of it (Fig. 36.3). Deposited on one face of the plate L 

is a thin film with non-uniform absorption which does not introduce a phase variation. The 

absorbing film is deposited so that the absorption is the same for all points situated on a 

circumference whose centre is the intersection O' of the optic axis of the objective with the 

plate. The variation of the amplitude as a function of α is given by the expression e ~
a a2 

where a is a coefficient which fixes the maximum absorption. 

Find the variation in illumination at the centre of the diffraction figure. Numerical applica-

tion: a 0 = 1/5 and a = 1. Can one form a diffraction figure if the absorption becomes 

very strong at the edge (a ^> 1)? 

The plate used in the last section is now replaced by a perfectly transparent plate which 

has a uniformly varying thickness. The variation is, as in question V, cylindrically symmetric 

about the optic axis of the objective. The thickness variation of the plate introduces a phase 

variation (through a path difference) as a function of α given by εα
2
/2 where ε is a coefficient 

which fixes the maximum path difference. Find the illumination at C. Examine the variations 

in illumination of the centre of the diffraction figure as a function of the phase difference 

Φ = πεοξ/λ (λ = wavelength of the light used). Plot the curve for values of Φ from 0 to 4π. 

Show that by removing the plate L and by slowly displacing the focal plane parallel to 

itself to some point, the variation in illumination at the centre of the diffraction figure is 

given by the preceding curve. 

V. Apodization 

L 

FIG. 3 6 . 3 

VI. Focusing defects 
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TABLE OF NUMERICAL VALUES 

Ζ UZ) 
Ί UZ) 
L
 ζ 

0 . 0 + 1 . 0 0 0 + 1 . 0 0 0 

1 . 0 0 + 0 . 7 6 5 + 0 . 8 8 0 

2 . 0 0 + 0 . 2 2 4 + 0 . 5 7 7 

3 . 0 0 - 0 . 2 6 0 + 0 . 2 2 6 

4 . 0 0 - 0 . 3 9 7 - 0 . 0 3 3 

5 . 0 0 - 0 . 1 7 8 - 0 . 1 3 1 

6 . 0 0 + 0 . 1 5 1 - 0 . 0 9 2 

7 . 0 0 + 0 . 3 0 0 - 0 . 0 0 1 

8 . 0 0 + 0 . 1 7 2 + 0 . 0 5 9 

9 . 0 0 - 0 . 0 9 0 + 0 . 0 5 4 

1 0 . 0 0 - 0 . 2 4 6 + 0 . 0 0 9 

Jo(Z) is zero for Ζ = 2.405, 5.52, 8.65, . . . 

7 i ( Z ) / Z is zero for Ζ = 3.83, 7.02, 10.17, . , 

SOLUTION 

Throughout this problem, where the examples studied have rotational symmetry, one 

uses cylindrical coordinates (Fig. 36.4). 

Determination of the amplitude at point M (§ 5.11). 

Y 

θ/ΓΤ 

IM 
c 

FIG. 3 6 . 4 

Note. It is not necessary to know the properties of the Bessel functions to solve this 

problem. One simply requires several useful results : 

e-)KccQcose d 6 = 2ττ/ 0(^αρ) 
0 

Γ J0(z)zdz = Z-J^Z). 

Λ 
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The general expression for the amplitude at point M is given by 

J exp ^ - j y αρ cos (θ - θ') j α da άθ. 

Changing the origin of the azimuths, one can write 

Λ α 0 Λ2π / 2ft \ 

A(M) = J J exp |̂  — j αρ cos 0 j α da do. (2) 

1. One has 

I. Open pupil 

A(M) = 2π Γ°/ο(Α:ρα)α 
Jo 

da. 

A(M) = ~ - j JoiKgx) Χ (ΑΓρα) d(ATga) = (ΛΓρα0) /ι(ΑΓρα0), 

Α{Μ)=π<4^ψ^- with Ζ = ^ - ρ α 0 . 

The diffracted intensity at M is then equal to 

I(M) = (πα*)
2 4 / | ( Z ) 

Z
2 

(3) 

(4) 

(5) 

The intensity distribution is given by Fig. 36.5. 

The diffraction "solid" has rotational symmetry about C. The first dark ring corresponds 

to Ζ = 3.83. 

The diffraction image is always centred on the geometric image. 

At point C one has 

/ (C) = (rcag)
2
X4 (IE. 

\ 0 
(πα

2
)

2 

(6) 

The intensity is always equal to the square of the area of the pupil S. 

I{Z) 

C 3 ,83 7,02 10,17 

FIG. 3 6 . 5 

11 R & M : P I O 
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This result seems paradoxical but is easily explained. In effect, the diffraction spot is 

spread out on a surface inversely proportional to the surface of the pupil. The total flux, 

equal to the volume of the "diffraction solid" is therefore proportional to S. 

2. Since the first dark ring corresponds to Ζ = 3.83: 

2π 2π r0 2π ρ 2π 
z = i a e =

 T 7
e =

 T
r

7
 = i r o 

Hence: 

3.83ΧΑ _ 3 .83X0.6X1Q-
4 

~ 2 x 3 . 1 4 X r o " 3.14X6 

θ = 1 .2XlO"
5
rad . 

II . Opaque disc 

1. Starting from the general expression for the amplitude, one can write 

A(M) = 2n r°Jo(K<xQ) α d a - 2 ^ Γ* J0(KXQ) a da, (7) 
Jo Jo 

o2 / i(Zo) 22 J i ( Z i ) /0 
A(M) = π<4 1 -π<χ\ —±— (8) 

^ 0 £<\ 

taking Zo = παορ and Z i = παιρ. 

The illumination then becomes 

' ( Μ ) = *\<*[-ζγ\ +«ΐ[-ζΓ\ -
2 α

»
α

' - ζ Γ - ζ Γ [
 ( 9) 

The illumination at C is equal to 

H P > - * 4 [ i - ( i ) ' 

whereas in the case of the open pupil one found t A c J . 
For the decrease in intensity not to exceed 10%, it is necessary to have 

, 2η2 
1 - > 0.90, so that 1 - ^ 0.95. 

05 or — < 0.22. 
a 0 

Hence 

(10) 

— «s 0 22 ί r
°

 = r a d i us o f t he
 objective, „ „ 

r0 \ n = radius of the opaque disc. 

Note. The result given by (10) shows that one does not have the right to apply Babinet's 

theorem near the geometric image. In effect, an objective which has an open pupil of radius 
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r1 gives at C an intensity 

"*4 •"**[·-(S)T (12) 

2. Radius of the first dark ring. The amplitude A(M) vanishes for values of ρ such that 

/ i ( Z 0 ) 2 / i ( Z i ) 
= 0. 

~
υ
 Zo ~

A
 Z i 

Returning to the definition of Z i and Z 0 , taking m = αι/αο one can write 

J i (Zo) = m / i ( m Z 0 ) . 

In the special case where m = 0.5, one finds 

7 i ( Z 0 ) = 0 .5 / i (0 .5Z 0) . 

(13) 

(14) 

Using the table 
Zo = 3.14 / i ( 3 . 1 4 ) - l / i ( 1 . 5 7 ) =4 -0 .00185 

Zo = 3.15 / i ( 3 . 1 5 ) - | / i ( 1 . 5 7 5 ) = - 0 . 0 0 2 3 

Through linear interpolation 

Thus 

0 = 

Zo = 3.144. 

3.144A A 6X1Q-* 

2 x 3 . 1 4 X r 0 ^ 2 r 0 ~ 60 

θ = 1 0 ~
5
r a d . 

3 · Comparison of the diffraction images. On Fig. 36.6 are plotted the distributions of 

illumination as a function of Ζ for the open pupil and for the opaque disc. One can see that 

the opaque centre leads to : 

a decrease in the illumination at the central peak ; 

a slight improvement in the power of separation. 

Note. In Fig. 36.6 only the central maximum is represented. If one examines the values 

of the intensity for Ζ > 3.14, one discovers that the rings take a much more important role 

in the case of the Airy curve. 

I(Z) 

C 3,14 3 . 8 3 

FIG. 3 6 . 6 
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One can approach this problem using the Heisenberg relation : if one decreases the dimen-

sions of the pupil, there is a spreading of the diffraction figure. 

In practice, this example arises in telescopes of the Cassegrainian form (see Fig. 36.7). 

Such an instrument is made up of two concentric mirrors. Covering of the pupil occurs 

because of the position of the small mirror. 

FIG. 3 6 . 7 

III . Annular pupil 

One can assume that the transparent ring, since it is taken to be infinitely thin, corresponds 

to a constant value of a 0 . Under these conditions, the amplitude at M becomes : 

A(M) = 2π/ο(^αορ). (15) 

Figure 36.8 gives /o(Z) as a function of Z . 

HZ) 

Ζ 
C 2 ,405 5,52 

FIG. 3 6 . 8 

The numerical values given in the table in the problem show that the decrease is much 

less rapid than in the case of the Airy disc. The first zero minimum in this diffraction figure 

is given by the first zero of Jo(Z), namely 

Ζ = 2.405 

which gives θ = 0.77λ/2/*0: 

θ = 0 . 7 7 X l O "
5
r a d . 

Notes. 1. When one covers the pupil, the illumination of the rings increases at the expense 
of the illumination in the central peak. 
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2. A pupil of this type is used in the phase-contrast microscope. The condenser is provided 

with an annular pupil. With respect to ordinary microscopic observations such illumination 

leads to : 

a loss of luminosity, 

an improvement in the power of separation, 

a considerable importance of the diffraction fringes which can make the interpretation 

of images difficult. 

IV. Identical screens distributed at random 

The amplitude at M is now given by : 

A{M) = j j e -J^ c o s ö a da d0 - j j e-j**<>coe*a d a d0 
open surface o f the 
pupil small screens 

Λ(Μ) = Ä!(M) -A2(M). 

The first integral has already been evaluated in the first question of the problem. The second 

integral represents the ampli tude diffracted by Ν openings, each of which has the same 

dimension as the small opaque screens (§ 5.16). 

A2(M) = a0(M) χ e*'». (17) 

(βο being the amplitude diffracted by a small hole on the axis of the instrument). 

Application of Babinefs principle 

Fix the distance CM = q2 set in the problem. If we call ρι the radius of the central 

diffraction spot given by the open pupil, we have 

e a = ï § ^ . , 0 8 ) 

» — Ί Ε Γ ·
 ( 1 9) 

Then: 

ρ 2 =
2 ^ ·

 ( 2 0) 

Calculating the diffracted amplitude for the open pupil a t this point 

Αλ{Μ) = π α ^ - — w i t h Ζ = ^ α 0 ρ 2 = 30π. 

For a large value of Z , the Bessel function of order 1 is practically zero. In this particular 

case we are able to state 
\A(M)\ = \A2{M)\ (21) 
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hence: 

So that finally 

I(M) = / 2 ( M ) . 

/ ( M ) = | *o (M) |
2
 χ f e ^ n 

diflfraction term for η=1 
1 small aperture ^rm d uc to 

interference 

I(M)= |α„(Μ ) |2 f £ e T O . X e- J « - v 
n=lm=l 

Since the phase distribution is random one can assume that it has both positive and negative 

terms. 

The preceding equation gives 
I(M) = N\a0(M)\*. (22) 

Although the illumination is coherent, the random distribution of screens destroys the 

phase relationships; the intensities add as if the illumination were incoherent. 

The point M is sufficiently removed from the geometric image that one can apply Babinet's 

principle. 

Numerical application: 

2 2 / i ( Z 2 ) 

with 

Oo(M) = πα
2
. 

„ 2π 2 τ τ 3 0 λ _ ^ _ ο 

2 = Τ Q2<*2 = Τ 2o7 % 

But 

Thus one has 
2 / i ( l ) % 1. 

/ ( Μ ) = Λ/π
2
α£ = 

Hence the normalized intensity 

/(AT) = tf^-)
4
 = K^X 10"

8
, 

/ ( M ) = 10"
5
. 

V. Apodization: absorbing pupil 

Here the pupil is not uniformly transparent as was the case previously. The transmission 

is such that 

r (a) = e-**
1
 for 0 < a < a 0, j 

r (a) = 0 for a > a 0 . J 
The general expression giving the amplitude at some point M is now 

I e-
a a t

e -
j / i : a e c o s e

d a d 0 . (24) 
ο Jo 
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At point C, one finds 

Jf a o Λ2π Λα,, 

I e-*
a 2

a da d0 = τι I e "
a a2

 d (a
2
) , 

ο Jo ·Ό ^ ( C ) = - ( 1 - e - ^ ) , hence / (C) = ^ [ l - e " * "
2
- ]

2
. (25) 

If a&l is very small as is the case with the values given, one can write by a series expansion 

A(C) = ^ [1 - 1 +αα§-α
2
α*/2] = ττα

2
[1 - α α

2
/ 2 ] . 

After introduction of the plate, one has A(C) = πα*. 

One gets the normalized intensity 

/ (C) = [ 1 - α α
2
/ 2 ]

2
. (26) 

Numerical application: 

a 0 = 1/5, a = 1. 

/ (C) = [ 1 - 0 . 0 2 ]
2
 = 1 -0 .04 = 96/100. 

Note. Returning to the general calculation of amplitude, one sees that the quantities α 

and ρ are conjugate variables (by taking the wavelength as the unit of length). 

The results obtained in II and V can also be stated in the language of the Fourier trans-

form. 

First example: a contraction in the α dimension leads to a dilation in the ρ dimension. 

FIG. 3 6 . 9 

Second example: the pupil's transmittance is governed by r(a) = e ~
û a2

 which is a gaussian 

function. Knowing that the Fourier transform of a gaussian function is a gaussian function, 

one can immediately predict a gaussian distribution for the amplitude distribution in the 

image plane (Fig. 36.9). Without going into details, the figure shows the cross-section of the 

diffraction solid with and without the apodizing plate. The apodization causes the diffrac-

tion rings to vanish; however, it does diminish the resolving power of the instrument. 
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VI. Phase plate, focusing defects 

The plate, L, with uniform transmittance does produce a variable phase-shift. 

r (a) = for ο < a < a 0 , 

r (a) = 0 for a > ao. 

One has 

e - j * e a 2 / 2 a da d6, - Π 
= 2π JH° e-J*«*« d^yj = [ e - * ^

2
] ? » 

The amplitude at C is now complex. The intensity becomes 

1(C) = ^ ( C ) X ^ * ( C ) , 
so tha t : 

/ (C) = ^ [ l - c o s 0 ] = 
16π

2
 . 2 Φ 

^ ε 2 sin 2 , 

„ _ 4/ δ ί η Φ / 2 \
2 

/ ( Q = <4(-φρ-) • 

The variations of 1(C) as a function of Φ are shown on Fig. 36.10. 

(27) 

(28) 

(29) 

(30) 

Focusing errors 

Displace the observation plane by a distance CC — ε. By virtue of Malus ' law and 

Fermat 's principle, the path difference Δ between the ray passing through C and the ray 

passing through C" is equal to the separation between the aberrant wave centred on the 



P R O B L E M 37] D I F F R A C T I O N 159 

point of observation C and the sphere centred on the gaussian image (Fig. 36.11). One 

finds 

Δ = / / = CJ-IK-KC = R-CI-KC = R-(R-ε)-ε cos α. 

Δ = e ( l - c o s a ) = εα
2
/2 . 

One can see that the phase plate introduced above introduces the same phase-shift as a 

focusing defect. 

FIG. 3 6 . 1 1 

Note. Using the results above, one sees that the centre of the diffraction image is alterna-

tively bright and dark when one moves the focusing plane from one side to the other of the 

gaussian image. This method is used in industry to control objectives. In effect, the periodic 

succession of bright and dark central images is produced only if the objective is free of 

aberrations. 

P R O B L E M 37 

Abbe's Experiment 

A Fraunhofer grating consists of parallel opaque lines separated by transparent intervals. 

It has Ν lines. The collimator which is illuminated by monochromatic light is made up of 

an infinitely fine slit F placed in the focal plane of a lens L±. A second lens L2 is used behind 

the grating and a photographic plate is placed in the image focal plane. Use the following 

notations and values : grating step ρ = 10 μ, number of lines Ν = 5000, wavelength of the 

light λ = 1.0 μ, focal length of = 50 cm, and the focal length of L2 : f2, and finally, 

the angle which the diffracted rays make with the normal to the grating is /. 

I 

The transparent lines of the grating are infinitely fine. 

1. Find sin / for the various images formed of F under the conditions of normal incidence. 

2 . Find the expression giving the angular width of a principal maximum in the diffraction. 

Find the theoretical resolving power in the spectra of various orders. Determine the focal 

length F 2 for which the photographic plate shows all the details which the resolving power 

allows one to distinguish. (Assume that the photographic plate separates precisely two 

images separated by a linear distance of 20 μ.) 
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Δ = / / = CJ-IK-KC = R-CI-KC = R-(R-ε)-ε cos α. 

Δ = e ( l - c o s a ) = εα
2
/2 . 

One can see that the phase plate introduced above introduces the same phase-shift as a 

focusing defect. 

FIG. 3 6 . 1 1 

Note. Using the results above, one sees that the centre of the diffraction image is alterna-

tively bright and dark when one moves the focusing plane from one side to the other of the 

gaussian image. This method is used in industry to control objectives. In effect, the periodic 

succession of bright and dark central images is produced only if the objective is free of 

aberrations. 

P R O B L E M 37 

Abbe's Experiment 

A Fraunhofer grating consists of parallel opaque lines separated by transparent intervals. 

It has Ν lines. The collimator which is illuminated by monochromatic light is made up of 

an infinitely fine slit F placed in the focal plane of a lens L±. A second lens L2 is used behind 

the grating and a photographic plate is placed in the image focal plane. Use the following 

notations and values : grating step ρ = 10 μ, number of lines Ν = 5000, wavelength of the 

light λ = 1.0 μ, focal length of = 50 cm, and the focal length of L2 : f2, and finally, 

the angle which the diffracted rays make with the normal to the grating is /. 

I 

The transparent lines of the grating are infinitely fine. 

1. Find sin / for the various images formed of F under the conditions of normal incidence. 

2 . Find the expression giving the angular width of a principal maximum in the diffraction. 

Find the theoretical resolving power in the spectra of various orders. Determine the focal 

length F 2 for which the photographic plate shows all the details which the resolving power 

allows one to distinguish. (Assume that the photographic plate separates precisely two 

images separated by a linear distance of 20 μ.) 
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II 

When the slit F is no longer narrow, what is the maximum value of its width which 

will allow one to make use of the resolving power of the grating? 

I l l 

Assume the width of the opaque rulings to be 2p/3. 

In the following consider the source slit to be very narrow and the light monochromatic. 

1. Draw the curve representing the illumination in the focal plane of L 2 as a function 

of sin /. 

2. Replace the photographic plate by a lens Ls whose focal l e n g t h / 3 = / 2 / 2 . What does 

one observe on a screen placed at a distance fi from L 3 in the following three cases : (a) one 

only allows the zero-order image to pass Lz, (b) one only allows the orders ± 1 to pass, and 

(c) one allows all the diffraction images to pass. 

IV 

Consider another grating having the same step and the same number of lines but with the 

opaque lines having the width p/3. Show that, for the same amplitude of incident plane 

wave, the amplitudes in the images of the first two orders are the same for both gratings. 

What is the ratio of the amplitudes in the zero order? Show that the results of par t IV can 

be tied to Babinet's theorem. 

SOLUTION 

I. Infinitely narrow linear source 

Characteristics of the grating: 

infinitely narrow slits, 

- grating step /?, 

grating width L = Np. 

One finds diffraction only in planes normal to the slits in the grating. 

There is no interference along lines parallel to the slits. 

1. Position of the diffraction maxima (normal incidence). Between two homologous rays 

there is a path difference (Fig. 37.1): 

δ = ρ sin ι (1) 

hence a phase shift : 

± 2π . . 
φ = -γρ sin ζ. (2) 
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The interference is constructive when 

ρ sin ι = kk (k integer). 

F rom which one gets the values of i corresponding to diffraction maxima 

. . kX 
sin ι = —. 

(3) 

Numerical application: sin i = kX~. 

The condition sin i ^ 1 implies k ^ 10. 

2. Resolving power. Each slit gives a highly spread out diffraction figure. The intensity 

in direction / is 

The principal maxima are given by : φ/2 = kit. 

Hi) 

Ρ λ 
Np 

λ . 
Ρ 

2λ 
Ρ 

(4) 

ι 

ρ 

sm L 

FIG. 37 .1 FIG. 3 7 . 2 

The zero minima correspond to Νφ/2 = k'n (k'/N ^ k). 

The variations of / are given in Fig. 37.2. 

By taking sin i as the variable, all the diffraction images are identical and they give: 

the same illumination, 

the same width sin i = λ/Νρ9 

the separation λ/ρ. 

There are nineteen of them (sin i < 1). 

Assume that the source emits two wavelengths λ and λ'. Since the deviation produced 

by the grating is proportional to the wavelength, the light distribution is similar to that 

shown in Fig. 37.3. For the wavelength λ, the positions of the maxima correspond to 

sin i = kX/p and the width of a diffraction peak becomes 

_λ_ 

Np
9 

so that 

M= „ λ <5) 
Np cos ι 

Δ sin ι 
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Κι) 

NpNp 

k=0 k=2 

For the wavelength λ' near λ such that λ' = λ+dA, the position of the maxima is given by 

λ' 
sin ï = k (6) 

In the spectrum of order k , two linear images corresponding to λ and λ' are separated by 

ô(sin i) = cos I-ÔÏ, hence 

öi = - ^ \ ^ - ± \ = J ^ M . (7) 
cos ι L Ρ Ρ J cos ζ ρ 

By convention one assumes that the two images are resolved when the maximum of one 

falls on the minimum of the adjacent one, that is, when 

Δι = δι 

Equations (5) and (7) then yield 

λ , άλ 
= k —. Np cos / ρ 

Hence, the resolving power of the grating is 

R = -— = kN= A;X5000. 
αλ 

(8) 

Note. R is maximum for k maximum so that one should utilize the spectra of high order. 

R is minimal for k = 1 (R = 5000). In these spectra, one can separate two lines where 

= _ ± _ = 1000 . 
5000 5000 

The angular separation of these two lines will be given by : 

λ λ 1 
Δι = 

Np cos ι ~ Np 10X 5000 
= 2 X l O "

5
r a d 

(9) 

(10) 
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and their linear separation in the image plane will be 

Ax=f2Ai. (11) 

It is now necessary to take into account the resolving power of the receiver dx = 20 μ. 

The two lines are resolved on the photographic plate if 

Ax > dx or f2 Ai > dx. (12) 

The minimum focal length of L2 is then 

f = dx 2 0 X 1 Q -
6 

h
 " Δι " 2 X 1 0 "

4
 * 

The focal length for resolution / 2 = 1 m. 

II. Slit source of finite width (incoherent illumination) 

One can enlarge the slit source in such a way as to increase the luminance without in 

every case decreasing the resolving power of the grating. Let d be the limiting width of 

the source which can be attained without modifying the appearance of the image. 

To treat this problem one can use two methods : 

either generate an expression giving the distribution of illumination in the image as a 

function of the slit width and compare this with the results found in 1 and then derive 

the maximum width; 

or directly determine the degree of coherence of the source. 

First method 

Determine I(u) for a slit source of finite width. The problem is one-dimensional. Call χ 

the abscissa of a general point in the pupil and u the conjugate variable such that 

u = (sin ί)/λ. Since the illumination is incoherent, the diffracted intensities of each point on 

the object add in the image plane. The resultant intensity a t a point M' in the image plane 

will be : 

7(fi') = J 0(M) D(U'-U) du = 0(u)®D(u\ (13) 

with: 0(u) = distribution of light in the object, 

D(u) = distribution of light in the diffraction image due to a point source (unit 

impulse). 

ParsevaPs theorem allows us to transform the convolution (13) into a product (see 

Appendix A, B.II): 
i(x) = o(x)-d(x) (14) 

with 

0(u) Ü o(x) 

D(u) - ^ i d(x) 

m — Κ*) 

(15) 
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o(x) 

0(u) is a slit function of width u0. 

One gets (see Appendix A) 

<*X) = 
sin nuox 

nuox 
(\6) 

fix) 

-/./g Op +Z./2 

Transparency of the grating 

FIG. 37.4a 

d{x) = f®f 

0\ 

Transfer function 

FIG. 37.4b 

p[x) 

-L 0 +L 

FIG. 3 7 . 5 

/ I \ X , o ( x ) 
/ I 

/ I 
/ I 

/ / 
\ / I 

/ / 

_ / _ J _ 0 + l 
0 0 

FIG. 37.6 

1. d(x) is the transfer function of the instrument (see p . 346). Here what is necessary 

is the determination of the autocorrelation function of a grating with infinitely narrow slits, 

step p, and width L = Np (Fig. 37.4 a and b). In the determination of the product o(x)*d(x) 

many cases can arise : 

when the source slit is highly narrowed, the curve o(x) is very much spread out (Fig. 37.5) 

and one has 

o(x)Xd(x) ^ d(x). (17) 

The distribution of light in the image is given by D(u). 

when the slit is widely opened the width of o(x) can be less than that of d(x) and the pro-

duct o(x) d(x) can be very different from d(x) (Fig. 37.6). 

Determination of the Fourier transforms : 
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Only the last case is of interest here. One has 

i(x) = d(x) 

that is, I(u) = D{u) if o(x) is about equal to 1 for — L < χ < +L. Assume that this condi-

tion is fulfilled for 

hence 

1 1 j- 1 λ/i _ 
Τ — ^

 L
 or — ^j- > L, 

4 w0 Ad 

Vi 
AL 

(18) 

(19) 

Numerical application: 
1X50X10* _ 

4 X 1 0 X 5000 

Second method 

Use the Van Cittert-Zernike theorem which is stated and proved in Appendix B. 

In the plane of the pupil (grating plane) place an artifical diffraction spot centred on P 0 

(Po corresponds to an edge of the grating). The distribution of amplitude in this diffraction 

spot is equal to the F.T. of the energy distribution in the source plane. 

Let 

o{P) 0(M). 

Of course this diffraction spot does not exist in the xOy plane which is in fact uniformly 

illuminated by the source. However, the amplitude distribution in the diffraction image is 

equal to the coherence distribution in the plane of the pupil. 

The degree of coherence between a point Ρ (a general point in the pupil plane) and the 

point Po is equal to the normalized amplitude o(P), that is to say, o(x) (Fig. 37.7). 

On Fig. 37.7 is shown both o(x) (dotted) and the pupil (amplitude) transparencef(x). 

The degree of coherence between Ρ and Po will be 1 if one has o(P) = 1. The illumination 

of the grating will be considered coherent if o(P±) = 1, that is, if o(Np) = o(L) — 1. 

o(x) 

f(x) 

Ρ ± Np 
0 

FIG. 37.7 
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One assumes that this condition is obtained if 

4w0 

One again finds (18). 

III. Abbe's experiment 

In the remainder of the problem assume that the illumination is coherent. 

1. The transparent lines have a finite width namely ρ β. The pupil ampli tude transmittance 

is shown on Fig. 37.8. 

fix) 

-L 

FIG. 37.8 

I (sin i) 

s in L 

Each slit, with width 2/?/3, has a diffraction amplitude in the direction i of 

( p sin A 

Τ " ) sin π I 

π 
ρ sm ι 

(20) 

The (normalized) intensity transmitted by the Ν slits in this direction is given by 

_ / s in φ/6\
2
 / s i n A t y / 2 \

2 

/ (
° - \ ~ 0 / 6 " j \ sin 0 /2 j 

(21) 
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with 
2π . . 

φ = -y-ρ sin ι. 

The variation of / as a function of sin i shown on Fig. 37.9. The spectra ± 3 , ± 6 , and ± 9 

vanish. 

2 . The lens L 3 acts between its antiprincipal points. With the grating acting behind L2, 

its image will be formed at 0'2 with magnification 1 (Fig. 37.10). Let u and χ be conjugate 

variables (u = (sin ι)/λ). The amplitude distribution in the planes R, L%, and 0 2 are given 

successively by 

Αχ) 

F{u) before the stop is inserted, and Φ(«) after [ (22) 

φ(χ). 

• ° 2 

FIG . 3 7 . 1 0 

(a) Lz acts as a stop in such a way as to pass only the Ο order spectrum. Thus 

s i n ^ L 

nuL 

Φ{μ) is the diffracted amplitude from a slit of width L. The final image is thus made up of a 

band of uniform light having the width L and the height of the grating. 

Using the language of the Fourier transformation 

ί 1 for -LI2 < χ < LI2 
φ(χ) = F.T. [0(u)) = Ι Λ A .

 7
 (24) 

I 0 otherwise, 

These two functions are shown in Figs. 37.1 l a and 37.1 l b . 

(b) Only the spectra of orders + 1 and — 1 are transmitted. 

These two spectra constitute two secondary sources which are coherent and in phase and 

which produce Young type fringes. In effect, if one calls Φ\ύ) the amplitude distribution 

after crossing L 3 , one has 

φ'(μ) =
 φ

( « + ~ )
 + φ

( " " " ^ ) (
F i

S - 37.12a). (25) 

12 R & M : ΡΙΟ 
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Φ(υ) 

FIG. 37.11b P/2 

Hence an amplitude distribution in the image plane 

φ\χ) = F.T. [Φ'(ύ)] = φ^ε^ρ+φίχ)^*^ 

φ\χ) = 20(JC)COS2TT — . (26) 
Ρ 

The image is made up of Young's fringes with step p/2 and width L (Figs. 37.12b and 37.12c). 

(c) Lens Lz passes all the spatial frequencies. 

One has 

Φ(ύ) = F(u) hence φ(χ) = f(x) The image and object are identical. 

Conclusion. If one suppresses or attenuates certain spatial frequencies, one can modify 

the image. 

We see two examples of this. 

(a) The fundamental passes and the image of the grating disappears completely. 

(b) The first two harmonics pass and the illumination in the image plane is periodic. 

However, even though the grating step is p, the period of the image is p/2. 

(c) It will be necessary for the lens to have infinite aperture for all spatial frequencies to 

pass so that the image will reproduce the object. In practice, objectives always have a 

finite aperture limited by the need to correct aberrations. One sees in Figs. 37.11 and 

37.12 that it is often quite difficult to reconstruct the object knowing the image. 
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IV. The complementary grating 

f(x) and / (s in i ) are given in Figs. 37.13 and 37.14. In the following table we summarize 

the performance of the grating treated above, (I), and this grating (II). Of course, since we 

wish to make comparisons of the intensities we no longer normalize the results. 

Grating I Grating II 

Width 

Step 

Slit width 

A(u) 

L 

Ρ 

pP 

Np sin π up/3 

3 Jittp/3 

L 

Ρ 

2ρβ 

pjlp sin nu2p/3 

3 π« 2/7/3 

Spectra order 0 A(0) 
Np 

T ~ 
N

2
-l 

3 

Spectra order 1 : A(l/p) 
Np sin π/3 

3 π/3 

pjlp sin 2π/3 

3 2π/3 

One sees that 

Au(0) = 2Λι(0) 

Anil/p) = Aul/p). 
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For the central image the amplitudes are in the ratio of two. For the spectra one finds the 

same amplitude. 

This just verifies Babinet's theorem : two complementary screens give the same illumina-

tion at all points in space not illuminated in their absence (in their absence one has the central 

image given by a pupil of width L). 

P R O B L E M 38 

Holography 

I. Recording of the hologram 

A coherent, monochromatic plane wave falls on the apparatus shown in Fig. 38.1. Pr: 

small angle prism, a, of index n. Ob : the object treated in transmission. At P(x) one examines 

the interference of the wave Σ transmitted by the object with complex amplitude Α(χ)&
φ{χ) 

a J 

1 ^ \ £ θ Plane wave 

i X 

Σ 

ob
 y 

Wave deformed by object 

FIG . 38 .1 

and the wave 270, known as the reference wave, which is deviated by the prism and which 

has the amplitude Α0&
Φο(χ)

. Assume that the object does not diffract. Determine the 

intensity function I(x) by finding the relation which exists between the prism deviation θ and 

the phase of the reference wave. 

II 

The results are recorded by a photographic plate placed in the plane π. This is arranged 

so that one works in the linear part of its characteristic, that is, in the region where the 

density D is given by D = γ log E. Find the relationship which ties I(x) to the amplitude 

transmittance function t(x) of the developed plate which is called a hologram. Show that 

t(x) takes a simple form when | A(x) \
2
<c \ A01

2
 (one looks for a series expansion of t(x) where 

the significant terms are easily treated for values of γ near 3 or 4 for example). 
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For the central image the amplitudes are in the ratio of two. For the spectra one finds the 
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image given by a pupil of width L). 

P R O B L E M 38 

Holography 

I. Recording of the hologram 

A coherent, monochromatic plane wave falls on the apparatus shown in Fig. 38.1. Pr: 
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and the wave 270, known as the reference wave, which is deviated by the prism and which 

has the amplitude Α0&
Φο(χ)

. Assume that the object does not diffract. Determine the 

intensity function I(x) by finding the relation which exists between the prism deviation θ and 

the phase of the reference wave. 

II 

The results are recorded by a photographic plate placed in the plane π. This is arranged 

so that one works in the linear part of its characteristic, that is, in the region where the 

density D is given by D = γ log E. Find the relationship which ties I(x) to the amplitude 

transmittance function t(x) of the developed plate which is called a hologram. Show that 

t(x) takes a simple form when | A(x) \
2
<c \ A01

2
 (one looks for a series expansion of t(x) where 

the significant terms are easily treated for values of γ near 3 or 4 for example). 
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III. Restoration of the object 

In the expression for t(x) which has been determined explain the role of each of the terms. 

The hologram behaves like a grating when it is placed in a parallel monochromatic beam. 

(One can find a "magnification" effect tied to the wavelength.) Show how the wave Σ is 

restored. 

IV. Holographic lens (Fig. 38.2) 

1. The reference beam remains unchanged. The object is replaced by an opaque screen 

containing a small hole T. The incident plane wave is transformed by diffraction into a 

spherical wave Σ centred on T. The distance from Τ to the plate is ca l led/ . 

(a) Give expressions for I(x) and t(x). 

(b) As before the hologram is illuminated by a coherent plane wave of wavelength λ. 

Show that the hologram acts on this wave as : 

a converging lens of focal l e n g t h / w h e n observed in the — 0 direction, 

a diverging lens when observed in the + 0 direction. 

f 

l^^^L Plane wave 

J 

Spherical wave centred on Τ 

0 

FIG . 3 8 . 2 

2. The screen is now pierced with two identical holes Γ ι and T2 symmetric with respect to 

the OT axis and separated by 2d. The waves Σ0 and Σ have the wavelength λ. 

(a) Give the expressions for I(x) and t(x). 

(b) This new hologram is now illuminated by a point source S situated at a distance ρ 

from the centreline of the hologram and emitting the wavelength λ'. 

Find the distance 2D which separates the images T[ and T2 from Tx and T2. Find the 

magnification of holographic lenses as a function of / ? , / , λ, and λ'. 

V. Sinusoidal grating 

The photographic recording of the interferogram obtained through the interference of 

two waves with greatly different amplitudes A\ » A2 (when the mirrors about δ ο = 0 are 

inclined at an angle θ with respect to one another) is nothing more than a hologram. Show 
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that I(x) = /(δ) and that by illuminating such a photographic plate with coherent light one 

obtains directly the spectral distribution of the source. Show this by means of an elementary 

apparatus. 

SOLUTION 

Introduction 

After crossing the object Ob, the electromagnetic wave carries an amplitude ct in the form 

cA = A(x) &
φ(χ)

. Both the real and complex amplitudes are required to characterize the 

structure of the wave. The majority of the detectors which are photographic plates are 

sensitive to variations in the illumination but do not provide information about the phase. 

The method shown here allows one to restore the wave Σ in its entirety. 

I. Recording the hologram 

The reference wave is deviated by an angle 0 such that 

θ = (n-\)a. 

This wave, 270, has a constant amplitude Ao. Its phase Φο(χ) varies linearly as a function of 

Λ: in the plane π. One has 

Φο(χ) = Ύθχ. (1) 

In all of the problems here one takes the origin of the phase on Ox and assumes that the 

rays which interfere at Ο are in phase. The waves which have not crossed Ox have a 

positive phase difference and those which have crossed have a negative one. 

The resultant amplitude at P(x) is given by 

Aoe-^>+A(x)eW*\ (2) 

The resultant intensity is 

I(x) = [ , 4 o e - ^ o < * > + ^ ( x ) e ^ 

I(x) = Al+A
2
(x)+2AoA(x) cos [ Φ 0( Χ ) + Φ ( Λ : ) ] . ( 3 ) 

Notes. The phase Φ ( χ ) occurs in the expression for I(x). A variation in Φ(χ) involves a 

modification in the step or the position of the fringes. A modification in A(x) changes the 

contrast of the fringes. 

II. Amplitude transmitted by the photographic plate 

The plate is exposed to the illumination E(x) such that : 

E(x) = I{x) — vibrational intensity. (4) 

This plate is developed then illuminated by a parallel beam normal to the surface and 
with amplitude 1. 
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Recall that the density of the plate is given by 

D = y\ogE. (5) 

On the other hand, one has 

Z> = log - ^ L = l o g I = l o g i . (6) 
•«transmitted ·* * 

T i s the transmission factor and t the amplitude transmitted by the hologram. 

Equating (5) and (6) one finds 

t{x) = I(x)-v*. (7) 

If the reference beam is much more intense than the beam which crossed the object, one 

has the condition 

Ao » A{x\ (8) 

which allows us to transform the expression for t(x) : 

t(x) = I(x)-v* = {A
2

i+A\x)+2A0A(x)cos [Φ0(χ)+Φ(χ)]}-
γ/2 

= At-toto-^Aïy-iAW-yAo^Aix) cos [Φ0(χ)+Φ(χ)] 

= ^ i - ( v / i ) J ^ 8 - | . ^ « ( j c ) - y ^ ( x ) c o s [ Φ 0 +
φ
] | · 

Dividing by the constant factor — 2Α^
γ
~

2
 one finds 

t(x) % -2Αΐ+γΑ
2
(χ)+γΑοΑ(χ)βΚ*·

+ φ
> + Μ ^ ( χ ) e - ^ «

+
* ) . (9) 

This equation can then be written 

t(x) = - 2 ^ § + y ^
2
( x ) + y ^ e

j
*

0
^ ^ (10) 

Notes. The γ of the plate occurs in the last three terms of (10). The amplitude of 27, namely 

>4(x)e
j
*

( j f)
 appears directly in the three terms. The recording of the hologram can, in princi-

ple, be made with any coherent source, but the ratio Ao/A(x) is very large and one must use 

a laser so that A(x) will not be too small. 

III. Restoring the object 

The restoration is easy and may be done without an optical system. 

The hologram is illuminated by a wave cr0 plane-parallel and coherent at the plate (Fig. 

38.3). The amplitude distribution in the plane of the plate is t{x) and we need the amplitude 

distribution in Fourier space. 

The four terms in t(x) correspond to the following spatial frequencies : 

-2Α%+γΑ
2
(χ) - frequency 0, 

γΑ0Α(χ)&
φ
Μ frequency + w 0 = +Θ/Α, 

γΑ0Α(χ) e-&M — frequency — u0 = — θ/λ. 
( Π ) 
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The results are shown in Fig. 38.3. One has 

a direct wave σ0 with amplitude —2Αΐ+γΑ
2
(χ) in the direction 6 = 0; 

a wave <r +1 making an angle -f 0 with Ox reproducing to within the coefficient γΑ0 the 

wave 27; 

a wave tr_ 1 having the same amplitude as σ+1 but opposite phase (in the direction — 0). 

To understand how the hologram acts on the plane wave <r, recall that a "apex down-

ward" prism with angle a rotates the beam through the angle 0 and introduces the phase-

shift + (2π/λ)θχ (Fig. 38.4). The third term of (10) can then be interpreted as the amplitude 

of the object transmitted by the prism above. 

FIG. 38.4 

The direct beam in the direction 0 = 0 is very bright while the beam diffracted in the 

direction + 0 is highly attentuated and restores the object. 

FIG. 38 .5 

Magnification. If the hologram is illuminated with a wavelength λ' different from the 

wavelength λ used to generate the hologram, the waves σ+1 and or_ 1 propagate along the 

direction + 0' and — 0' such that 

0 0' 
χ = -χτ (from grating theory). (12) 

One sees (Fig. 38.5) that the dimensions of the object vary directly with the wavelength. 
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IV. Holographie lenses 

One causes the plane wave Σ0 to interfere with the spherical wave Σ (Fig. 38.6). 

1. (a) The resultant amplitude at point Ρ is : 

Λ0£->
φ
οΜ+Α&

φ
(

χ
\ (13) 

One assumes that A(x) = A = constant and does not vary when one passes from the 

centre Ο to the edge of the field. Φ{χ) is the phase difference between the wave Σ centred at 

FIG. 3 8 . 6 

Τ and the plane Ox (see, for example, the problem dealing with Newton's rings) 

Φ(χ) = 
2π χ

2
 π 

= _ v2 
λ If If 

Putting this value of Φ(χ) in the general equation (3) one finds 

2π Γ χ
2
1 

I(x) = A
2
+A

2
+2A0A cosy fl* + J . 

(14) 

(15) 

(b) The amplitude transmitted by the hologram when illuminated by a coherent plane 

wave is 
f
.2ni 

t(x) = -2Α
2

0+γΑ
2
+γΑ0exp -^θχ^ΧΑ exp (j^^2j 

+γΑ0 exp ^ - j y θχ^ X A exp ^ - j x
2
 j . (16) 

Look at the expression for t(x) : 

the first and second terms: the hologram transmits a plane wave σο unperturbed having 

amplitude —2Al+yA
2
 in the direction 0 = 0; 

the third term: the hologram behaves like a point down prism (deviating the wave in the 

direction + 0) as if a divergent lens of focal length —/ (transforming the plane wave 

into a divergent wave (Fig. 38.7). σ+1 is a divergent wave restoring the object; 
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Divergent lens » Φ=β
+ ,
λ7* 

FIG. 38.7a 

Convergent lens 

FIG. 38.7b 

the fourth term: here one has the equivalent of a "point u p " prism and of a converging 

lens of focal l eng th / (F ig . 38.7b). a_x is a convergent wave. 

The final images are shown in Fig. 38.8. 

Hologram 

Incident beam 

Virtual. image 

Wave 
restoring the J 

object 

Unperturbed 
beam 

Real image 

FIG. 38.8 

2. (a) The resultant amplitude on the plate is 

(17) 

(b) One derives for the amplitude transmitted by the hologram: 

(18) 
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One has 

a wave in the direction 6 = 0, 

two divergent waves in the direction + 0, 

two convergent waves in the — 0 direction which give the real images T[ and of T± 

and TV 

For simplicity consider only these last two images. The last two terms of (18) show that 

T[ and T'2 are obtained by comparing the hologram to 

a point up prism, 

two convergent lenses of focal length / for the wavelength λ whose centres are separated 

by 2d (this distance is exaggerated in Fig. 38.9). 

Optical system 
equivalent to the hologram 

FIG. 3 8 . 9 

The two lenses when acting on the wavelength λ' have a focal length / ' such that (see 

Fresnel Zones, § 5.4): 

β.=/'λ'. (19) 

The lens equation allows us to determine the positions of T[0 and Γ ^ . One finds : 

ι ! + Ι β . * ± ? . (20) 
f ρ q pq 

Using the triangles SL^ and ST^T^ we can write 

2D p+q q q λ' 
g=ü = - r = 7 = jT- (21) 

If the plate is exposed with X-rays and the hologram illuminated with laser light at 

6328 Â, one gets a very significant magnification. It is necessary, however, that one does not 

forget that the photographic plate has a finite resolution. 

V. Sinusoidal grating 

One has 
In 

I(x) = Al+Al+2AXA2 cos -j- θχ. (22) 



178 P R O B L E M S I N O P T I C S [ P R O B L E M 38 

If Α ι A2, the developed plate transmits the amplitude 

' . 2 π , 

t(x) = -ΙΑΐ+γΑΐ+γΑ^ exp Ç θχ^+γΑ^ exp ^ - j Ç 0 x j . (23) 

This sinusoidal grating allows only the spatial frequencies 0, + w 0 , and — w0 to pass. 

Apar t from the direct image, one has the spectra of orders + 1 and — 1 where the dispersion 

is proportional to the wavelength (Fig. 38.10). This spectrogram does not contain spectra 

of order higher than 1. Unfortunately, the grain of the plate impairs the resolution. 

R 2 L + 1 

FIG. 3 8 . 1 0 

P R O B L E M 39 

Reflection Gratings 

I 

Consider a reflecting and diffracting pupil of width a and height h » a illuminated by a 

parallel monochromatic beam of light. 

The incident rays are normal to the large dimension h of the pupil. Let ι be their angle of 

incidence and V the angle of the diffracted rays relative to the normal to h which will form 

the basis of the problem. Find the expression for the far-field diffraction intensity in the 

direction / and specify the sign of / and 

FIG. 39 .1 FIG. 3 9 . 2 

II 

Consider a set of Ν pupils of width a and Ν pupils of width b illuminated as in par t I but 

displaced by e as indicated in Fig. 39.2. Their second dimension is always h >> b and 

» a. 
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1. What is the delay of the vibration diffracted by the centre C of (b) with respect to that 

diffracted by the centre C of (a)? 

2. Derive the diffracted intensity for the set of pupils (a) and (b). 

Assume that the angles / and V are sufficiently small that the incident and diffracted beams 

will not be noticeably separated. 

3 . This set of Ν pupils (N large) forms a reflection grating. Show that the proper choice 

o f e allows one to cancel out some orders. Take a = b and / = 0. 

III . Echelle grating 

Littrow's mounting (Fig. 39.3) uses an échelle grating. 

The ruling of the grating is as shown in Fig. 39.4. 

Cell 

FIG. 39.3 

FIG. 39.4 

On the metallic surface AB one rules grooves whose profile is saw-toothed. The surface 

MN of each tooth makes an angle 0 with AB and has a width MN = a. 

1. Explain the diagram. 

2. The incident rays are normal to the surface AB. 

(a) Give as a function of sin V the diffracted intensity in the direction Γ for a tooth of 

width a. 

(b) Find the intensity of diffraction in this direction for Ν teeth. 

3 . What minimum value must 0 have so that the diffracted energy from the grating will 

be concentrated in a particular spectrum near λ = 1 μ. What will be the order of this spec-

t rum? MN — a = 4 μ. 
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SOLUTION 

I 

Amplitude diffracted by a pupil of width a (§ 7.8). 

sin nua 
Fo(u) = a 

nua 
by taking 

u = 
sin ι + s i n V 

(1) 

(2) 

It is convenient to take the origin of the angles on the normal to the pupil and to take the 

usual trigonometric sense for positive and negative. 

II . Amplitude diffracted by a step 

1. Between the incident rays which reflect at C and C (Fig. 39.5) one finds a path differ-

ence 
d, = CH = C'L+LH = CK sin i + e cos i. 

Since i is small 

ό, = ~ sin i+e, with ρ = a+b. 

Between the rays reflected at C and C one has a path difference 

hence 

δ = ^ [ s i n i + s i n i ' ] + 2 t , 

An 
φ =npu+-j-e. 

2. Diffracted amplitude for a step of width p: 

sin nua , sin nub 
Fx(u) = a -

nua 
-+b-

nub 

(3) 

(4) 
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from which 

with 

η Λ χτ? f MS sin
2
JV<2>/2 

Φ = 2nup 

If a = b = p/2, equation (4) simplifies to 

_ sinTrwö ρ ι 'Λ-m ~ i l k lo sin nua . 
Fi(w) = α [l + e

J
*] = 2 a e ^

/ 2
 cos φ/2, 

nua nua 

(5) 

(6) 

(«') 

from which 

cos^ 
0 sin

2
7V0/2 

2 s i n
2
0 / 2 ' 

2 a » | / s in N2nua\
2 

(7) 
r/ \ yi . / s i n n w a \

2

 2 Γ 2π^1 /sin N2nua\ 
/(«) = 4 ö

2
 X c o s

2
 \ nua+-v- χ ( — _ j 

One can write finally: 
^ ο /

δ
ί

η π ί / Λ
\

2
 /sinN2nua\

2

 or 2 ^ 1 
/ ( ι β) =

 ^
2

( - ^ )
x

( i h ^ )
c

^ [ ™ + ί γ [ 

I π 

The product / represents the diffracted intensity for a Foucault grating of step ρ — 2a 

having Ν lines (see Problem 35). The spectra of even order (except k = 0) vanish. Only the 

spectra of orders k = 0, ± 1, ± 3 , ± 5 , . . . remain. The variations of / a s a function of u are 

shown in Fig. 39.6 by the solid line. 

ι / ω , . v2 

\ ι πυα / 

\
 1

 / 
\ c o s

2
f a / 

y
 1 Λ J

 ' 

0 1 _L 

2Λ/0 20 

FIG. 3 9 . 6 

hence the intensity is 

/ i ( « ) = I W I 2 

3 . Diffracted amplitude for a grating with Ν identical steps (§ 7.8): 

F(u) = Fi(w)[l + e ^ + . . . + e K * - D * ] , 
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/ is modulated by / / . The function cos
2
 (πησ+ΐτιβ/λ) has period I / O and the positions of 

the maxima and minima depend on the value of e. The variations of / / a r e shown in Fig. 39.6 

as dotted curves. Depending on the position of this function certain spectra can vanish. 

(a) If e = Κλ/2 (Κ integer) II = cos
2
 (pud). A maximum of the dotted curve coincides 

with O. Only the zero order spectrum is reflected. The odd order spectra vanish. 

(b) If e = Kn/4 (K odd) — / / = sin
2
 (nua). A minimum of the function occurs at the 

origin. Only the remaining odd-order spectra have maximal intensity. 

III. Echelle grating (§ 7.9) 

1. Littrow mounting (§ 20.5). 

2. (a) Amplitude diffracted by one too th : 

Fi(u) = a sin nua 

nua 
with: 

u = y (sin 0 + s i n /') 

(8) 

(8') 

/ = I Fi(«) I
2
 (see the dotted curve in Fig. 39.7). 

IS" 

-sin6 = - λ / 2 σ 

\ 
+λ/2σ 

I 
k = 0 

FIG. 39.7 

(b) Amplitude diffracted by the grating. 

One only requires (5) taking 

0 = 2nj = ^CH = ^CD sin CDH 

- 2n a . /n 

Φ= , 7j sin ( 0 - 0 · 
λ cos 0 

(see Fig. 39.8) 

(9) 

3 . Using equation (8) one can see that the modulation due to the diffraction by one tooth 

does not arise if u = 0 or V = — 0. This corresponds to the ordinary law of reflection. 
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FIG. 39.8 

For that value of Γ corresponding to a principal maximum 

Φ = 2kn 

or finally, using (9) 

— - τ : sin (Θ—/') = kX =
 ü

 n sin 20 = 2a sin 0. 
cos θ cos 0 

The smallest value allowed for 0 corresponds to k = 1, namely 

sin 0 = A = i - 0 = 7°24'· (10) 2α ο 

With the échelle ruled at this angle 0 the most intense spectrum corresponds to the order 

k = 4 - 1 and the diffracted rays lie in the direction V such that : 

. ., λ 
s in / = - ^ . 

The position of the other spectra is given by (9) where θ is replaced by its value but one can 

see that this coincides with the zero minima of (8). All the energy is concentrated in the 

+ 1-order spectrum (Fig. 39.8). 

P R O B L E M 40 

Irregular Grating 

A Fraunhofer diffraction grating has 3N+1 lines which are assumed infinitely narrow 

with the result that the diffraction factor of each of these can be thought of as constant. 

One covers one slit in three (including the first and last). Find the conditions for maximum 

intensity and the expression for the relative intensities when Ν becomes infinite. 

13 R & Μ ; PIO 
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FIG. 39.8 
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13 R & Μ ; PIO 
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SOLUTION 

I 

Number the slits from 0 to 3JV (Fig. 40.1). The diffracted amplitudes are all the same. 

From one slit to the next the phase difference varies by 

, 2nd sin / 
Φ = ϊ 

/ / . / / . / 
0 1 2 4 5 7 8 10 

FIG. 4 0 . 1 

by taking the origin at slit 0. One must find the sum 

exp (-j</>)+exp ( - 2 0 ) 4 - e x p ( -4j<£)+exp (-5j<£)+ . . . 

which can be written as the difference between two other sums. The first is obtained by 

considering the entire grating 

ο l - e x p ( - j 0 ) 

exp [ - j (3 f f+1) φ/2] χ exp [j(3AT+1) <ft/2]-exp [-j(3N+1) ΦΙΆ 

exp ( - J 0 / 2 ) exp ( j 0 / 2 ) - e x p (-j<£/2) 

The second sum is due to the covered slits 

v ™ w i w i 1 - e x p [-J3(JV+!)</.] _ / φ \ sin 3(N+ 1)φ/2 

?
C X P {

~
} 3 η φ) =

 l - « p ( - j 3 f l -
 CXP rj3JV

 TJ X
 sin 3tf>/2 ' 

The resultant vibration is given by 

* m l fs i" ( 3 i V + l ) 0 / 2 sin3(JV+l)<^/2-| 
e x p ^ - j 3 i V T j [ s in φ / 2 s in 3 0 / 2 J 

and the intensity is proportional to the square of the expression between the brackets which 

we will call A. 

The maxima are generated for: 

(a) φ β = Kn (K integer). The phases of 1 and 2 differ by 2n. All the emitted waves are 

in phase : 

A = 3 J V + l - ( i V + l ) = 2ΛΓ, 

/ oc 4N
2
. 
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(b) φ/2 = {(3K+ 1)/3}π. The phases of 1 and 2 differ by 2π/3 and those of 1 and 4 by 2π: 

A sin (3jV+1)TT/3 sin(JV+l)rc 
A = : 7 ^ : . 

sin π/3 sm π In the second term replac

e

 π

 by

 π—ε : 

Β = 
sin [ ( # + 1 ) ( π - ε ) ] sin [(Ν+ 1)π-{Ν+1) ε] 

sm ε 

Α = 1-(Ν+1) = -Ν, 

Α =-1+Ν+1 =Ν. 

sin (π—ε) 

Make ε go to zero : 

i f iViseven, Β N + l , 

if Ν is odd, Β - - ( i V + 1 ) , 

In the second case / oc iV
2
. 

(c) φ/2 = {(3ΛΤ+2)/3}π. The phases of 1 and 2 differ by 4π/3 and those of 1 and 4 by 4 π . 

Reasoning similar to that of (b) shows that 

/ o c i V
2
. 

Figure 40.2 shows the resultant amplitude values for the vibrations emitted by slits 1 and 2 

in cases (a), (b), and (c). 

The set of slits, 1 and 2, form the "basis" of a periodic grating which in its entirety is 

generated by a set of translations through 3d. This problem gives a simple model useful in 

the analysis of crystalline structures whose sites contain a basis composed of several a toms . 

II 

These results are obtained immediately using the Fourier transformation. 

One knows that the Fourier transform of a Dirac series of step ρ is a Dirac series of s tep 

1 lp (Appendix A). 

Consider successively a grating of step ρ and a grating of step 3/7. The diffracted ampli-

tudes are represented respectively on Fig. 40.3 and 40.4. 

3Λ/+1 

0 1/p 2/p 

FIG. 4 0 . 3 

13* 
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* A2 

[ P R O B L E M 40 

/V+1 

0 % p % p 

FIG. 4 0 . 4 

u 

The amplitude is proportional to the surface of the pupil, thus, here, to the number of 

slits. Let A be the amplitude diffracted by the covered grating: 

A — A\—A2. 

The values of / are shown as ordinates in Fig. 40.5. 

1/ 

auf 

One finds : 

intensity of the principal maxima 
intensity of the secondary maxima 

0 %p
2
/3PVp 

FIG. 4 0 . 5 

oc [ ( 3 # + 1 ) - ( Λ Γ + 1 ) ]
2
 = 4JV

2
; 

oc [N+lf^N
2
. 

u 

P R O B L E M 41 

Phase Grating 

(It is recommended that one first solve Problem 39.) 

Consider a metallic surface on which one has ruled parallel grooves of width a and height 

e. This is to form a reflection grating with step p = 2a whose profile is shown in Figure 41.1. 

The grating is assumed infinitely wide. 

Use the set-up shown in Fig. 41.2 to observe the surface of the grating. A slit source is 

placed at the focus F of the collimator, Li. This slit is parallel to the grating rulings and 

normal to the figure. It emits monochromatic light of wavelength λ. The incident rays are 

normal to the surface of the grating. The diffraction spectra Sp are formed in the focal plane 
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fix) 

e η Π Π Π 0 ο 2ο 3ο χ 

FIG. 4 1 . 1 

fix) F(u) 

R 

'F 

L 

FIG. 4 1 . 2 

of L2. Lenses L2 and L 3 are identical. The distances R02, O^Sp, Sp0& and 03R' are equal 

to the focal lengths of L 2 or L 3 . As a result, the planes R and i? ' are conjugate with a magni-

fication of 1. 

Assume that the lens openings are very large in order that there be no stop. Assume the 

Fourier transform applicable. 

Determine the amplitude distribution in the plane Sp. What are the amplitude and illumi-

nation distributions in the image plane R'l Find the appearance and the image contrast. 

Take as the definition of the contrast 

The heights e of the rectangles are small with the result that the phase shift introduced by 

them is very small. 

Place, in the plane .S^, a phase plate which retards the direct wave by π/2. Compare these 

results with those which are given by a Schlieren experiment. 

I. Ordinary observation 

Γ = 

Treat the special case where e = λ/2, λ/4, and e small. 

II . Observation by phase contrast 
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III 

To improve the sensitivity of the phase contrast method, one can reduce as desired the 

amplitude of the direct wave. To do this, one adds a phase plate in front of a biréfringent 

plane (Fig. 41.3). This latter plate is made up in the following way: from a half-wave plate 

one cuts three surfaces Su S 2, and S3 and inserts the element Si between S2 and S3 (Fig. 41.4) 

FIG. 4 1 . 4 . Half-wave plate shown from the front. FIG. 41.5 
The slow axes are represented by two arrows. 

The strip Si covers the image F of the slit F . The retarding optic axes are oriented as indi-

cated on Fig. 41.4. A polarizer Ρ which only passes vibrations OP parallel to the lines of the 

grating and an analyser A are set in position. The vibrations transmitted by A make the 

angle J T / 2 - 0 with OP (0 variable) (Figs. 41.3 and 41.5). Find the extremes of the intensity. 

Find the value of θ as a function of e for which the image is made up of bright bands of 

width a interspaced with dark bands of the same width. 

SOLUTION 

I. Direct observation 

1. Amplitude distribution in the spectra. If one recalls (6') in Problem 39 after normaliza-

tion and a change of the origin of phases it becomes : 

x sin nua sin INnua I 2ne\ 
F(w) = X — cos [nua+^r- . (1) 

nua sinznu \ λ J 
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Since Ν «>, the spectra are very narrow. They are equally spaced at a distance 

1 1 

ΔΗ = - = - χ - . 

ρ 2a 

The positions of certain spectra coincide with the zeros of the function 

sin nua . f 1 2 3 
, with u = —, —, —... 

nua a a a 

Finally, one only has the spectra of orders 0, ± 1 , ± 3 , ± 5 , etc. 

By taking 

Φ = λ ' 

one gets for the amplitudes of these spectra 

Φ F(0) = c o s - | -

2 . φ 

sin Y 
r . 1 , 3 \ _ 1 2 . ψ 

1 2 . ψ 

5 π 2 

or, more generally, 

f(«) = f ( ± * ) 

F(«) is shown on Fig. 41.6. 

Κ = 0, F(0) = cos | -

K o d d , f ( § ) 
T 1 2 . φ 

+ 2 sin Ä 
π 2 

-V Oll I _— 

F(u) 

V: 2 o 
3
/2c 

5
/ 2c 

-
5
/ 2 c -

3
/ 2 a -

1
/ 2 o ° 

I ü 

42sini£ 5 * 2 
3 π 2 

FIG. 4 1 . 6 tc 2 

189 
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2. Amplitude distribution in the image plane. This is precisely the same as in the object 

plane since the spectrum is transmitted in its entirety. One gets from the inverse of the Fou-

rier transform 

/ ' ( * ) = / ( * ) = F.T.[*X«)]. (5) 

Knowing that 

a ( » - é ) - (6) 

one finds 
φ 2 . φ 

/ ' ( * ) = / ( * ) = cos ~ sin 
π 

l 
— (çîhnxla g—j57i*/e^_j_ 

/
,
W = / ( x ) = c o s ^ - - s i n * 

Γ . χ 1 
- ^ s i n j r — 
2 π 2 [ Λ 3 

. . χ 1 . 
- sin 3π — h — sm 5π 
3 a 5 

(7) 

3 . Distribution of the illumination in the image plane (Fig. 41.8): 

I(x) = I
2
 = l / ( * ) |

2
 = c o s

2 4- + 4 sin2 4" . πχ 1 . 3JTJC 1 . 5πχ " i
2 

sin h r̂ sm Y— sm h 
a 3 Ö 5 α •ϊ 

(9) 

Since the periodic function between the brackets oscillates between + π / 4 and —π/4 (Fig. 

41.7), one finds 

Im 

In 

c o s
2
- | - + s i n

2
- | - = 1, 

= cos
2 φ 

Thus : 

Γ = sin
2
 - y (10) 

+
7 4 

sin ^ + i sin 3 ^ + 1 sin 
σ 3 ο 5 ο 

2a 

-
Π
/ 4 

FIG. 4 1 . 7 

Special cases: 

e — λ/2, φ — 2π. In the focal plane of L% one finds only the zero order spectrum. The 

image plane is uniformly illuminated (Γ = 0). The periodic structure of the object dis-

appears completely. 
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e = λ/4, φ = π. One only finds odd-order spectra : 

4j 
71 

. πχ 1 . 3πχ 
sin h^r

 s l
n 1- · « 

a 3 α 

The image plane, uniformly illuminated, has black striations equally spaced at a distance 

a(T = 1). It is not possible to distinguish the relief of the grating. 

e small, φ small. The image is similar to that above but with poor contrast. 

I(x) 

0 

cos*! 

σ 2a 

FIG. 4 1 . 8 

II. Observation by phase contrast (§ 5.15) 

The diffracted wave is advanced by π/2. 

The amplitude of the odd spectrum is multiplied by e
J 7 T /2

 = + / . 

Taking account of the fact that φ is small, 

K = 0, F(0) = c o s ^ - = 1 

. πχ 1 . 3πχ 
sin h-~- sin - — • + 

a 3 a 

Thus the amplitude in the image plane 

f'{x) = F.T. [F(u)] = 1+Q 
71 

and the intensity 

Ι TT 

Neglecting powers of φ greater than 2, one can write 

I(x) = \ + - φ 

/max = 1 + Φ, /min = 1 ~ 

Κπ Φ-

. πχ 1 . 3πχ 
sin — -f sin h . . . 

α 3 α 

Ί 1 2 

. Ttx 1 . 3πχ 
sin h sin h 

α 3 α 

2φ 
, hence Γ — 2φ. 

OD 

(12) 

(13) 

(14) 

(15) 
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I ! L_ 

0 a 2a 
FIG. 4 1 . 9 Phase contrast. 

Notes, (a) One has transformed the phase variations into amplitude variations to which 

the detector is sensitive. The grating relief appears as variations in the illumination, bu t the 

image has a poor contrast (proportional to φ) (Fig. 41.9). 

(b) In the case of Schlieren photography, one shifts the direct wave. The amplitude in the 

plane R' is then 

f\x) 

Thus 

/(*) 

Im 

The image formed has bright bands of width a separated by fine black lines (Fig. 41.10). 

/(*) 

ι ι ι ι 1 ι ι ι ι 1 
0 a 2a χ 

FIG. 4 1 . 1 0 

2 . Γ . πχ . 3πχ 1 
= H — φ sin hsin h . . . . (16) 

π ι a a J
 v 7 

iax 

4 ι οΓ . πχ . 3πχ ~|
2 

-, φ
2
 sm — + sm + . . . ( 1 7 ) 

π
2
 I a a J

 7 

- * Γ , /min = 0 - r = 1. ( 1 8 ) 

III. Variable phase contrast (Kastler-Montarnal apparatus) 

Equation (11) gives the amplitude of the spectra after crossing the phase plate. 

The polarizer Ρ polarizes the incident light. 

The strip Si does not modify the orientation of the vibration carried by the direct wave. 

The half-wave plates £ 2 and 53 turn the vibrations of the odd spectra through 90° (Fig. 

41.11) (see the properties of half-wave plates, § 8.3). 

The direct and diffracted waves are always at right angles, and their vibrations are normal. 

F(0) = 1 parallel to OP 

IK\ j .
 ( 1 9) 

F j ^ r — j = —^~Φ perpendicular to OP. 
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FIG. 41.11. Direction of vibrations after crossing the half-wave plate. 

The analyser only passes the components of the vibrations along OA so that 

F(0) = sin 0 parallel to OA, 

F
(Ê)

=
 ~Èz ^

c o s 6 p a r a l l el to O A
' 

Taking the Fourier transform of the amplitude distribution in the plane S 

f\x) = sin 0 + ^ - cos 0 
71 

. πχ 1 . 3πχ 
sm h sm 

a 3 r
+

- ] -

Hence, in the image plane R', 

ι Γ 7ΓΛ 
/(X) = sin

2
 θ + s i n θ cos 0 — sin — 

7r L Λ 

π χ 1 . 3πχ 
+ sin + . . 

3 α 

The extremes of the intensity are 

h = sin 0[sin Θ+Φ cos 0], 

7 2 = sin 0[sin 0-

- φ cos 0], 1 

φ cos 0]. J 

(20) 

(21) 

(22) 

(23) 

0 = 0. The direct wave is totally stopped. I(x) = φ
2
/Λ. 

This is ordinary Schlieren photography. 

0 > 0. If φ > 0, one has Ii > h. The phase advance is accompanied by an intensity 

increase. The phase contrast is positive. The intensity minimum is 0 if h = 0 so that : 

2π % 

φ = tan 0 % 0 = -^ -X2é\ 

Thus 

A0 

4 π 
(24) 

0 < 0. The effect is inverted and the phase contrast is negative. 



194 P R O B L E M S I N O P T I C S [ P R O B L E M 42 

P R O B L E M 42 

X-rays. Production and Diffraction 

I 

Describe briefly, using a drawing, the construction of a tube to produce X-rays. 

The radiation emitted from the tube consists of a continuous spectrum upon which is 

superimposed intense lines which characterize the anode. Briefly indicate the origins of 

the line spectra and the continuous spectrum (without taking into account their fine 

structure). 

1. Knowing the potential difference applied to the tube to be V = 40 kV, find the mini-

mum wavelength of the continuous spectrum. 

2. Given a copper anode whose ionization potential for the deepest level electrons 

(A^-shell) is 8.98 kV, find the wavelength of the ^-absorpt ion limit of copper. What should 

the minimum potential difference applied to the tube be for one to observe the line corre-

sponding to the transition between the L- and ΛΓ-shells? 

I I 

One wants to isolate the line (Ka) with wavelength λ — 1.54 Â by means of a crystal 

monochromator. A beam of X-rays from the tube Τ is collimated by fine slits F and F' 

(Fig. 42.1) and allowed to fall on the face of a cube of sodium chloride. What relationship 

FIG. 42 .1 FIG. 4 2 . 2 

exists between the wavelength λ, the distance d of the crystal planes parallel to the face of 

the cube, and the angle θ which the beam makes with the face of the crystal, so that the 

beam with wavelength λ will be selectively reflected? Find the smallest value of 0, given 

that the ions of Cl~ and N a
+
 alternate in the sodium chloride structure at a distance of 

a = 2.81 Â (Fig. 42.2). 

I l l 

Replace the sodium chloride crystal by another crystal whose crystal planes are separated 

by an unknown distance d'which we wish to measure by measuring the angle θ' of selective 

reflection of order Κ for λ = 1.54 Â. The angle θ' is determined with an uncertainty of 6'. 
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For what values of 0' will one get the best precision for d'l F rom what angle forward will 

the relative precision reach 1/1000? Near 3.1 Λ, what is the smallest value of Κ which 

corresponds to the greatest precision on d'l 

IV 

Show that if one removes the slit F' in Fig. 42.1 and if then one rotates the crystal about a 

point passing through C normal to the figure, the rays with wavelength λ which diverge at 

F after reflection will pass through a point Ρ in the plane such that CF = CP. 

One is given the values of c, A, e, and me. 

SOLUTION 

I 

1. The continuous radiation from an X-ray tube is due to the transformation of the kinetic 

energy Wk of the electrons into radiant energy through interaction with the anode (§ 11.3). 

A single electron can undergo numerous decelerations in passing through the atoms of 

the metal each time producing a photon with energy hv = —bWk. The maximum frequency 

vm of the photon which one can get through this process corresponds to the transformation 

of the entire kinetic energy of the electron into radiant energy at one time. With Wk = eVy 

one finds : 

. c he O ^ X I O - ^ X S X I O
8

 A Q l N / m_ 1 0 κ 
=
 Vm

 =
 ëV = 1 . 6 0 X 1 0 - ^ X 4 X 1 ^ = ° -

3 1 X l
°

 m Â )
' 

2 . The Κ absorption limit separates the radiations of very short wavelength which can 

produce ionization of the atomic ΛΓ-shell and the longer wavelengths. Fo r copper: 

. he 6 . 6 2 X 1 0 - ^ X 3 X 1 0 » , , „ v m _ 1 0 

λ κ
 = ëVk

 =
 1 .60X10-^X8980

 = 1 3 8 X 10 m
-

The emission of an X-ray corresponding to a transition of an electron between the various 

L, Μ, JV, . . . levels and the Κ level can only occur if the ΛΓ-shell, filled in all a toms from 

helium onward, has lost through ionization one of its two electrons. This is true in particular 

for the Ka line (L K, Fig. 42.3). It is necessary to have, therefore, the potential difference 

VK = 8.98 kV available. 

7-

Κ :— 
FIG. 4 2 . 3 
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II 

The expression required is the Bragg formula (§ 7.14): 

2d sin 0 = Κλ. (Κ integer) (1) 

The smallest value of 0 is obtained for Κ = 1 and for d equal to the minimum separation 

of two parallel crystal planes in sodium chloride parallel to the cube face* so that d = a, and 

sin 0 = ^ = 0.273, 0 = 15°50'. 
5.63 

F rom (1), one gets 

III 

2d' cos θ'ΆΘ'+2 sin Θ'-Ad' = 0 

Αθ' 

tanf l ' 

The greatest precision will be obtained for θ' = π/2. If one wants \Ad'/d'\ < 10
 3

, it is 

necessary for 

6 X 3 X I 0
"

4
 = 1.8, θ' = 58°. tan θ' --

ί ο - 3 

The minimal value of θ' is 58°. For all the integral values of K, only the value Κ = 4 gives 

θ' > 58°: 

IV 

Let α be the angle through which the reflecting surface of the crystal has been rotated 

(Fig. 42.4) so that the ray FC leaving F strikes this plane at the same angle θ as the ray FC 

before rotation. FC makes an angle α with FC. Let Ρ be the point of intersection of the 

* Note that the cube in Fig. 42.2 is not basic for NaCl; a is half the translation which will map the crystal 
lattice onto itself. 
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reflected ray corresponding to FC with the circumference of a circle with centre C and radius 

CF. Find the symmetric positions F1 and F[ of F with respect to the two successive posi-

tions of the reflecting plane. The arc F 1 F 1 ' = 2a and the angle F1PF'1 = a. The reflected ray 

in the second orientation is then CP. 

P R O B L E M 43 

X-ray Spectrometer with a Curved Crystal 

Cut a thin plate parallelepiped of sodium chloride whose thickness along OZ is small; 

then subject this to an external force so that it takes the form of a cylinder in which the planes 

initially parallel to XOY become coaxial cylinders whose axis is R = OC = 1 m and with 

the curved surface parallel to ΟΫ. With this deformation one can assume that the crystal 

lattice is not deformed but only its orientation varies. 

1. Show that the rays obtained by reflection from the crystal planes which remain parallel 

to YOZ before deformation are tangent to the same curve for a given order of diffraction 

K. Assume the plate infinitely thin. 

2 . What happens to the above result if the plate has an appreciable thickness? 

3 . Show that the rays corresponding to a diffraction order Κ are practically brought to a 

focus and find its position. 

Where are the various foci Fk obtained with λ = 1 Â located? The distance between crys-

tal planes parallel to YOZ is d = 2.8 À. 

SOLUTION 

1. The crystal planes, initially parallel to the plane YOZ and thereby parallel to the faces 

of the plate, reflect among the various incident X-rays those which, in the plane of the figure, 

make with their normal CO in this same plane, the angle 0k given by the Bragg formula 

(§ 7.14): 
2dùn6k = Κλ. (1) 

Κ is the diffraction order and d the crystal spacing. 

Assume initially that the plate is infinitely thin. After it is distorted into an arc SS" about 

the centre C (Fig. 43.1) the selective diffraction of order Κ at any point Ρ all occur giving the 

reflected ray with the same angle 6k with the normal CP to the crystal plane passing through 

P , or, in other words, with the radius to the centre C. When Ρ is displaced across the plate, 

the distance CP = R and the angle 6k remains fixed. F rom C draw the normal CF to the 

ray reflected at P. One has 
CF = R sin 0k = const. (2) 

In addition, the rays reflected from various points on SS' corresponding to the same 

diffraction order Κ are all tangent to the circle with radius R sin 6k and centre C. 
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2. Consider a plate of finite thickness and a ray PF reflected on the crystal plane CP at Ρ 

through angle dk. This ray passes through a point P' on the plate and makes an angle 6k 

with CP' to the crystal plane passing through P' (Fig. 43.2). One has 

CP sin dk = CP' sin 0* = CF. (3 

from the geometry: 
d CP 

d' ~ CP' 

and expression (3) becomes 
d sin 6k = d' sin θί. 

so that the direction PF is the same for the rays reflected at each point such that Ρ satisfies 

(1). The thickness of the plate thus makes no change in the conclusions of the first par t of 

the problem. 

3 . Since the plate has small dimensions, Fig. 43.1 shows that near F all of the reflected 

rays are concurrent to within the second order. The coordinates of F are 

χ = CF cos θ/c = R sin 0* cos dk, 

ζ = CF sin 0* = i ? s i n
2
0 * .

 ( 4) 

For the various values of K, equation (1) lets us find the various values of sin 6k and (4) 

gives the values of the corresponding focus Fk. One finds 

k = 1 2 3 4 

s in0* = 0.1786 0.3572 0.5358 0.7144 
Bk = 10

ο
17' 20°56' 32°24' 45°33' 

cos0* = 0.9839 0.9340 0.8443 0.7003 
xk (in m) = 0.175 0.333 0.452 0.500 
zk (in m) = 0.032 0.127 0.287 0.510 

When 6k varies, the geometric locus of Fk is a circle with the equation 

~(-T)"-S-
Its centre is at x0 = 0 and z0 = R/2. It is then situated about the centre of CO (Fig. 43.1). 

The circle passes through C and is tangent to the plate at O. 
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P R O B L E M 44 

Group and Phase Velocity 

Calculate the group velocity U of waves whose phase velocity V has the following func-
tional variation with wavelength: 

1. Acoustic waves in air : V = A, A a constant. 

2. Transverse elastic waves in a ba r : V = Α β. 

3. Deep water waves : V = 

4. Capillary ripples: V = AJv'X. 

5. Ionospheric electromagnetic waves : V = \/c
2
+A

2
X

2 (c is the free-space velocity of 
light). 

SOLUTION 

The group velocity of sinusoidal waves, each characterized by its angular frequency ω 

and by its wave vector a = 2π/λ, whose angular frequencies are distributed about a mean 
value co, are given by (§ B.3) 

dco άω _ dv _ . dK 

" d"<7 ~~ T/eoV ~ " 7 T V ~ dT" 

1. If F is constant the medium is not dispersive, dV/dk = 0, and U —V. 

2 V * 2 2 

4. U = ^L+- - 4 = = Α κ . 

y/λ 2 Λ/λ3 2 

5. i/ = V c H » - ^ 2 λ Α 2 + Λ 2 Α 2 Λ / ^ + ^ λ 2 Κ 

Also see Problems 54 and 56. 

14 R & Μ: ΡΙΟ 199 
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P R O B L E M 45 

Foucault Method for the Velocity of Light 

I 

The measurement of the velocity of electromagnetic waves using stationary waves gives 

the phase velocity νφ. The toothed-wheel method of Fizeau where one uses very short-wave 

trains gives the group velocity vg. Show that the Foucault rotating mirror method gives the 

group velocity. To do this take into account the frequency variation which arises from a 

moving mirror as a result of reflection. Show that after reflection on the rotating mirror M 

FIG. 4 5 . 1 

(Fig. 45.1), the wave front propagating in the dispersive medium contained in the tube Τ 

with length / undergoes an additional rotation after exiting into the air and this rotation 

adds to that previously produced by the mirror. 

II 

Michelson, using this method, measured the velocity of light in carbon disulphide con-

tained in the tube Τ and found it to be ν = c/1.77. The source S emits white light. The 

index of refraction of carbon disulphide has the following values for the wavelengths in air 

measured in microns : 

κ 0 . 5 8 9 0 . 5 5 0 0 . 4 8 6 

η 1 . 6 2 8 1 . 6 4 0 1 . 6 5 2 

Show that these values are in agreement with the conclusions of the first part . 

SOLUTION 

I 

After passing through the lens L, the plane wave, obliquely reflected on the rotating 

mirror M, enters the tube T. If one neglects the typically small relativistic effects (§ 9.10), 

displacement of a mirror with a velocity « in a direction normal to its plane produces, for 
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radiation with frequency ν falling on the mirror with angle of incidence i, the same effect 

that one would get by displacing the source with a velocity 2u cos /. Thus, the frequency 

variation due to the Doppler effect is 

ν = ±-
2u 

cos /. 

One takes the + or — signs depending upon whether the mirror is moving toward or away 

from the ray which strikes it. 

With this in mind, let MM' (Fig. 45.2) be the face of the mirror rotating about the axis Ο 

with the angular velocity ω. The reflected wave is no longer monochromatic. Its frequency is 

altered from M to M' by the amount 

A 4œRcosi 
Av = ν (1) 

Γ 1
L r v 

Λ 
A' A / 7 

\ Β 
M' 

M > 
FIG. 4 5 . 2 

by taking MM' = 2R, since u = coR at M and at AT. The wave front which enters the tube 

a t AB at normal incidence propagates in the dispersive medium contained in the tube with 

a phase velocity νφ as a function of ν 
All . 

(2) 

thus , using (1), 
. dvà 4ωνΚ cos ι 
Ή = • 

dv c 

(3) 

For carbon disulphide, as for all transparent media, άνφ/άλ is negative in the visible. 

Therefore, with the rotation ω in the direction indicated in the figure, one can easily see that 

the velocity of the wave front is greater at A than at B. The front propagates with a mean 

velocity, that of the phase velocity νφ, of the radiation incident at Ο where the frequency is 

not changed, but it undergoes a rotation which per unit time is given by 

ω = 
A'A" 

A'B' 

dv0 2ων 

2R cos ι dv X- (4) 

the minus sign being due to the fact that the direction of ω' is opposite that of ω. The expres-

sion relating the group velocity vg to the phase velocity (§ B.3) 

l _ d / v \ _ _ l ν άνφ 

vg dv \νφ) νφ νφ dv 

14* 
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allows one to write (4) in the form 
2ω J 1 1 , 2ω 2/ 1 1 \ 

co' = — ν
2
φ[ . 

c
 v

\vg νφ 

After the time At = 21/νφ necessary for up and back travel through the tube, the angle 

through which the front of the wave has turned is 

4ωΙ I 1 1 4ωΙ / 1 1 \ 
β = ω' At = , 

η \vg νφ 

η = civφ being the index for radiation of frequency v. When it enters the air, the wave front, 

which is inclined at a small angle β to the interface, undergoes refraction which transforms β 

into 

a = n£ = 4 c o/ / J -V 

This rotation resulting from the reflection turns ou t to be in the same direction as the rota-

tion of the mirror. The latter, neglecting the Doppler effect, is given by (§ 1.5) 

0 = — . (5) 
νφ 

for radiation of frequency v. The effective rotation is 

* 4ω/ 
α + θ = , 

"ι 

rather than (5). Thus one measures the group velocity. 

II 

Using the results above, the velocity c/1.77 is the group velocity. To relate this to the da ta 

given in the statement of the problem, it is necessary to express it in terms of the dispersion 

dn/άλο of carbon disulphide. One has (§ B.3) 

ο
 άν

Φ 

where λ is the wavelength in the medium. Since 

_ c an άνφ 

νφ

9
 η ~ νφ ' 

λ dny / ι ,
 λ ά η

\ 

Using λ 0 = λη 
άλ άλο dn 

λ λ0 η 
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hence 
λ dn _ λ0 dn / λ0 dn \ 

dl η η άλ0 ' \ η αλ 0 / 

The term between the parentheses represents a small correction. Hence, finally, 

ν
°

=ν
*\

1+
-η-άΓο)· 

The data from the problem statement gives 

dn _ 0.024 λ0 _ 0.55 

~n ~ 1.640 ' άλο~ ~ 0.1031 ' 

For the mean wavelength νφ = c/1.64, hence, 

^ - ^ = ^ ( - 0 . 0 7 7 ) 

( the negative sign because dn/άλ < 0). One gets 

The agreement is satisfactory. 

P R O B L E M 46 

Velocity of Light in Moving Water 

The Fizeau experiment on the velocity of light in moving water has been repeated with 

improved precision by Zeeman. 

The length / of each tube is 6 m and the velocity of the water is 5.50 m/s. The index of 

refraction for the green line of mercury (λ 0 = 546 nm) in water is 1.3345 at the temperature 

a t which the experiment was conducted. One registers the position of the central fringe for a 

given direction of flow and then reverses the direction of flow and finds the new position of 

the same fringe. 

1. Find the observed displacement as a function of the fringe spacing. 

2. In this experiment, the water through which the light is transmitted is in motion with 

respect to the source. One has, therefore, a Doppler effect. Calculate the new fringe positions 

taking this effect into account. Can one neglect this effect if the fringe position can be found 

within an uncertainty of 0.01 fringe separations? The index of water for λ0 = 589 nm is 

1.3330. 
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SOLUTION 

1. The difference in time of passage of the light in the two tubes is (§ 9.5) 

νφι νφι 

and if one neglects the Doppler effect, one has 

(2) 

hence 

Δ ' = , ; 1x h ~ n r - ~ (» 2- D- (3) 

η
 W

(* «
2
) n^

U
{^ w

2
) 

The displacement in terms of the fringe spacing is 

a , At cAt 2lu , 9 t. 

Δ
" ' = 3 χ ^ ™ < Τ . <

,
'

7 8 Ι 7
-

,
> =

 0
·

6 4
· 

2 . The radiation with wavelength λ 0 emitted by the source has a wavelength λ'0 = λ 0 + Δ λ in 

a system bound to the water. The index of the water must be found for λ'0. N o w 

and (§ 9.6) 

ri = η+^-Αλο 

Αλ0 _ u 

λ0 ~ ne 

the + sign relates to the tube in which the water moves away from the source. Hence 

. . dn un 1Λ . . dn u\ 

The phase velocity given by (2) becomes 

c
 _i_ / i

 1
 λ0 dn\ 

^ 71 \ «
2
 « άλο J 

by replacing H '
2
 with n

2
 which is equivalent to neglecting the terms in c/u. Equation (3) 

becomes 
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and the displacement of the fringes is 

Numerical application: 

dn 0.0015 2 _ 7 ß 
"TT = - T T T T T r w « - 1 = 0.78 
d/o 43X10

 9 

1.3345X456X10"
Ö
X0.0015\ 

Ap" = 0.64^1 + -
0 . 7 8 X 4 3 X 1 0 "

9
 / 

= 0.64(1+0.034) = 0.66 fringes. 

This effect should be taken into account as Zeeman has done in his experiment. 

P R O B L E M 47 

Propagation of Waves in a Periodic Discontinuous Medium 

Consider the longitudinal elastic waves which propagate along an infinite lattice of point 

particles each having mass m and distributed along the Ox axis with spacing d. Each of 

these particles exerts a repulsive force on its neighbours proportional to the change in their 

spacing from the equilibrium position (Fig. 47.1). 

1 '2 3 n-1 η n+1 

°" d ' d ' d ' - " — · — — * 

FIG. 47 .1 

1. Find the equation of motion of the particle indexed by «, calling the displacement 

from the equilibrium position sn and show that the simultaneous equations for the motions 

of the particles yields a solution of the type 

sn = S cos (œt—and). 

Show that the angular frequency ω varies with the wave vector a and always remains less 

than some value œm which should be determined. 

2. Find the phase velocity of the sinusoidal waves which can propagate along this lattice 

of particles and examine its variation as a function of a. Find the group velocity of the waves 

whose angular frequency is near a given value. 

3. Given that the refractive indices of crystalline NaCl and KCl have the following values 

at the two extremities of the visible spectrum 

NaCl 1.537 1.568 

KCl 1.483 1.510 

what must be the number of particles per wavelength to account for the dispersion due to 

the mechanism studied above? Is the preceding mechanism applicable to light waves? 



P R O B L E M 47] R E F R A C T I O N A N D D I S P E R S I O N 205 

and the displacement of the fringes is 

Numerical application: 

dn 0.0015 2 _ 7 ß 
"TT = - T T T T T r w « - 1 = 0.78 
d/o 43X10

 9 

1.3345X456X10"
Ö
X0.0015\ 

Ap" = 0.64^1 + -
0 . 7 8 X 4 3 X 1 0 "

9
 / 

= 0.64(1+0.034) = 0.66 fringes. 

This effect should be taken into account as Zeeman has done in his experiment. 
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ω has the same value as for a. The maximum value ω = œm is obtained for a = π Id. Figure 

47.2 respresents these results. Only the angular frequencies lying between 0 and com can be 

transmitted along this lattice. 

When exp(j2Äjr) = 1, the solutions of (2) for a and aK are identical. If one wants to get 

a unique relation between the vibrational state and the modulus of the wave vector, it is 

ω 

d d d d d d 

FIG. 4 7 . 2 

SOLUTION 

1. The equation of motion of the particle η is 

à
2
S n 

m = -k(sn-sn-1)-k(s„-sn+1) = k(sn-i+sn+1-2sn). (1) 

k being the Hooke's law coefficient. 

One wants to satisfy this equation with a progressive wave 

s(t) = S exp [)(ωί—σχ)]. 

The displacement is only defined about the abscissas nd(n = 1,2, . . . ) where one finds the 

particles, hence 

sn(t) = S exp [](œt - and)]. (2) 

By substituting the solution (2) in equation (1), one finds, following division by sn, 

mœ
2
 = — &[exp(—)od)+expQad) — 2] = 4A:sin

2 

hence 

. ad . nd 
ω = œm sm - y = œm sin , (3) 

with 

• * - £ · (4> 
The angular velocity ω varies periodically with a. The period of the variation is a = 2π/λ 

(λ = 2d). For the values of the wave vector 

2n 
aK = a+K-^ (K integer) 
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necessary to limit the latter to an interval 2n/d. One typically selects the following interval : 

71 71 

The positive values of a correspond to the waves which propagate along the direction of the 

lattice and the negative values to those which propagate in the inverse direction. 

FIG. 4 7 . 3 

One can find the conditions imposed on the wave vector by another method by considering 

the wavelength. Figure 47.3 represents a wave of length λ = I2d by the solid line so that 

σ = 2/l2d and the dotted curve represents a wave 

2JI 
(l2d+d)' 

sothat λ = 12rf/13. The displacements s are the same. 

2. Using (3), the phase velocity of the waves (2) is given by 

ω Wmd sin ad/2 _ sin ad/2 

~2 mlj2
 V

° ad/2 
(5) 

In this form the function (sin x)jx has an absolute value varying as a function of a as shown 

in Fig. 47.4. The phase velocity is a maximum for a = 0 (λ = o o ) and νφ = v0. I t has fallen 

to 2\n = 0.695 of this value for a = π/d and it goes to zero with ω for a = 2njd. 

0 , 6 3 5 K 

FIG. 4 7 . 5 

In Fig. 47.2 the phase velocity at a point Ρ is represented by the slope of segment OP 

(Fig. 47.5). The group velocity vg = dco/dcr is represented by the slope of the tangent PT 

at this point. One has, using (3), 

ω„4 od ad 
Vg = - y - COS -γ = Vo COS ~γ . 
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For very small values of <r, the curve ω(σ) can be taken to coincide with its tangent OA at the 

origin. As a result υφ is constant and the lattice of particles, which can be thought of as a 

continuous medium for the propagation of waves only when λ ^> d, is not dispersive. One 

knows that this is the case for elastic waves propagating along strings at an audio frequency. 

3 . Expression (5) can be written 
sin π/Ν 

calling Ν = λ/d the number of particles contained in a wavelength. The following table 

gives the values of υφ as a function of N: 

Ν 2 4 8 12 16 20 C O 

νφ/ν0 0.636 0.900 0.974 0.989 0.994 0.996 1 

Now the relative variations of the index and hence of the phase velocity approach 0.02 

for NaCl and 0.018 for KCl. The number of particles contained in a wavelength can never 

exceed ten, if one uses this model for a dispersive medium. But one know that the distances 

d are of the order of several angstroms and thus one has at least a thousand atoms in a wave-

length of visible light. The theory of dispersion in this region of the spectrum must involve 

intramolecular mechanisms. 

P R O B L E M 48 

Sellmeier Dispersion Equation 

I 

The quantum mechanical expression giving as a function of the frequency ν the refractive 

index dispersion of a pure material removed from regions of spectral absorption is written 

2N ^ "id? 
3heo »2 = ι + ^ Σ Α · 0 ) 

h is Planck's constant, ε 0 the permittivity of free space, dt the dipole moment of the transi-

tion with frequency i>/5 and Ν the number of molecules per unit volume. 

Taking the moments d{ as being produced by harmonic oscillators with charge qh mass mi 

and energy W = hvi9 show that expression (1) is equivalent to the classical expression : 

In this latter expression, each oscillator has only one eigenfrequency and there are as many 

oscillators as eigenfrequencies. ft is a numerical coefficient called the oscillator strength. 

Find an expression for ft in the case where only a single transition is considered. One sees 

then that ft is of the order of unity and in that which follows take/J = 1. 
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I I 

The dispersion of hydrogen under normal conditions of temperature and pressure can be 

represented between 0.4 μ and 9 μ by 

n
2
 = 1 + 2.721 X 1 0 "

4
+ ^ X 1 0 "

1 8
 (λ in metres). (3) 

To connect this expression with the theoretical expression (2), one writes it in the form 

Find the values of A and Β and verify that the eigenfrequency lies in the ultraviolet. Find the 

ratio q/m. To what particle does it apply? The density of hydrogen is μ = 9.0X 10"
2
 kg-m~

3
, 

the Faraday Ole = 9.65 Χ 1 0
7
 coulombs, where GL is the number of molecules per kilomole, 

and e is the elementary charge. 

I l l 

Between 0.3 μ and 10 μ the index of refraction of C a F 2 is given by 

2 & ΛΟ _ l _ 6 . 1 2 X 1 0 "
1 5
 , 5 .10X10-* 

H = 6 O 9 +
A

2
- 8 . 8 8 X l 0 - ^

+
A

2
- 1 . 2 6 X l 0 - ^

 {λ m
 ™

i T
*

S )
'
 ( 5) 

Put equation (2) in the form 

„2 _ A .
 C

l^l .
 C

3 ^ 2 

λ
2
— λ

2
~^~ λ

2
 — λ\' ^ 

By comparison with (5), give the expressions for A, C i , and C 2 . Find λ± and λ2 as well as 

the ratio C 2 / C i . By assuming that the oscillator responsible for the infrared absorption is 

made up of a set of two F " ions displaced with respect to a fixed C a
+ +

 ion, find the ratio 

mH/me of the mass of the proton to that of the electron and compare it with the theoretical 

value 1830. mF = l9mH. 

I V 

In the X-ray region, show that one can neglect all the electron eigenfrequencies and not 

consider the ions. Put (2) in the form 

η
2
 = Ι-Κλ

2
. (7) 

Give the expression for Κ and its numerical value for copper, A = 63, density μ = 8 X 1 0
3 

kg-m~
3
 and atomic number Ζ = 29. 

Calculate the phase velocity νφ and the group velocity vg in the X-ray region. 

What must the dispersive law be for a substance which satisfies υφν8 = c
2
 where c is the 

free-space velocity of light? 
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SOLUTION 

I 

The energy of a harmonic oscillator with frequency vt is given by 

IV i = hvt = 4n
2
miVfsf, 

si being the displacement. The dipole moment d{ = q^. For the oscillators of type /, one 
has 

INVjdf _ 2Nvffîq
2
 _ 2Nqj 

3sf/i 3ε0Α,·?>Ι· 3ε04π
2
τηί ' 

Therefore, comparing (1) and (2) one sees that 

/ / = 2/3. 

II 

For ν « vi9 equation (2) with a single term can be written 

Na
2 1 Na

2 

n
2
 = 1 + H - = 1 + —1 

4π
2
ε(ριν

2 j ν
2
 4π

2
ε(ρην 

Vf 

and with λ = c/v and λί = c/v f: 

with 
_ iVg2 _ ;2 _ . 2 Λ _ tftf2 

4π
2
ε0την

2 ' ~ if ' £ 4 : * V 2 m * 

Comparing the coefficients of (3) and (4) 

? 1 1 ν 1 0 ~
1 4 

A = 2.712X Ι Ο " 4 , Β = 2 721—
 =

 °
J S X 10

~™
 =

 ^ 

hence 

A, = VÖ/78X ΙΟ" 7 % 0.9X 1 0 " 7 m % 900 À 

λ,· is in the far ultraviolet. 

To determine the charge to mass ratio of the oscillators, q/m, one writes 

4 = *2-* N e 

B m 4π
2
εο€

2 9 

taking q = ke where e is the elementary charge and k an integer. One has Ν = Οίμ/Μ, (M is 
the molecular mass in this case 1) hence 

Ne = (Tieμ = 9.65X 10 7X 9X ΙΟ" 2 = 0 .87X10 7 coulombs 
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and 

hence 

. 4 π Χ 9 Χ ΐ 0
1 β 

1 9 e 2.721 Χ ΙΟ"
4
 3 .14X10

7
 , . l f t ll , , „ 

k
m = 0 . 7 8 X l 0 - ^

X
0 8 7 X Î y

 = 1 J X
^

 c o u l o m b s
/ k g . 

Thus the value of ejm is 1.76X 10
11
 C - k g

- 1
. N o w k = 1 and the oscillators which determine 

the ultraviolet absorption are the electrons. One knows that the ultraviolet transitions 

cause the electronic energy of the molecule to vary. 

I l l 

When one only retains the first two terms in (2), one has 

„2 = 1 +

 N
l t i X _ J _ • g 2 g L X _ l _ f 8 ) H 1

 ^/l~2„ ^
 Λ

 „.2 „ . 2 ^ / 1 M * 2 „.2 * W 4n
2
e(/n1 v\— v

2
 4ne^n2 v\—v

2 

Replacing ν by cjX this becomes 

W2 = 

M2 = 

n2 -

Thus 

47r%c2m1 ~λ2-λ\ 1 47r%c2m2 ^ - A 2 ' 
3

2
>l

2
 1 2 ; 2 n 2 _ 2 2 i 12\ Q2/;2_ 22j_ ;2\ 

ι ι Γ

 Λ Λ
1 , ^

 Λ Λ
2 _ \ χ Γ

 Α
1 \

Α Α
1-Γ

λ
ΐ) , ^ *>2\

Α Α
2^

Α
2) 

1+CxAf+C2A|+^21 ̂ 2 + χ^_
2
χ2 -

Λ — l + C j Ä f - f - C g A f , C± — -j—2~~kzr ' ^2 — ^
2 

47r2e0c
2w1 ' 47z2e0c

2m2 ' 

Comparison with the empirical expression (5) gives 

λι = <γ/88.8Χ Ι Ο "
1 6
 = 9.42X 10~

8
 m = 942 À (ultraviolet), 

λ2 = Λ / 1 2 . 6 Χ 1 0 "
1 0
 = 3 .55X10"

5
 m = 35 μ (infrared), 

Çt _ C2X* v λ{ _ 5 ,10X10- · / 8 . 8 8 X l 0 - i ^
2
 _ A l w m_ 5 tfrfj M 5.10X10-» / 8 . 8 8 X 1 0 - ^ \
2
 m> 

C ^ i
A

A i 6 . 1 2 X 1 0 "
1 5
 ^ 1 . 2 6 X 1 0 "

9
 j

 H 1 J A 1U
 JV^

2 Λ
 m 2 

The first term of the dispersion expression is the electron term and qx = e and w x = me. 

On the other hand, q2 — e (the F " ion is monovalent) and m2 — \9mH. There are two 

valence electrons which are both optical electrons and two F " ions. One takes Ni = N2. 

Hence 
M
H 1 1 / v™ 
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This value is of the order of magnitude of the ratio 1830. This kind of calculation with 

many approximations played an important role at the turn of the century in suggesting the 

atomic origin of the oscillators active in the infrared. 

IV 

(a) In the X-ray domain, ν is very large (of the order of 10
1 8

) and λ is very small (of the 

order of several Â). Thus ν ^> νχ :» v2. On the other hand, the masses m2 of the ions are 

about 2000 times greater than those of the electrons while in (5) Ni is of the same order as 

N2 and q\ as q2. Therefore, the latter term in this expression is negligible. One has then 

4n
2
eomec

2
 4n

2
eç£

2
me 

taking 

4n
2
E(fi

2
me 

Ν is the total number of electrons per unit volume since here ν is greater than all the electron 

eigenfrequencies. Each atom has Ζ electrons and one has 

For copper: 

hence 

Ne = 0 l e z 4 . 

ο ν if)
3 

Ne = 9 .65X10
7
X29X ^ , = 3 .5X10

1 1
, 

Κ = 3.5X 1<FX 1.76X 10
11
 X 3 1 4̂ 1 Q 7 = 2 X 1 0

1 5
. 

(b) By definition : 

c 
νφ = - = η -\/ΐ-Κλ

2 

» , = - ^ - = - ^ - = - ^ Â ) - . ( 9 ) 

One finds from (7) 

Hence 

Then one has 

•G) 8(?) »(ΐ) 
(χ)!+-(χ)' 

Vg = ne. 

νφΧν£ = β
2
. (10) 
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In general for (10) to be satisfied it is necessary for 

vg = nc, since v$ = c/n. 

But, using (9), 

thus 

where 

8
 ' -

x
 I dn η . dn 

n — X—r ' ( χ ) X dX λ
2
 dX 

One finds then 

which is the dispersion law (7). 

. dn c 1 
n-X α Ύ = — = — 

dX ne η 

2η dn _2dX 

~n~
2
~\ ~~ ~T~' 

n
2
-l = const. Χ λ

2
. 

P R O B L E M 49 

Dispersion in a Region of Weak Absorption 

1. Starting with equation (7) from Problem 51 giving the complex amplitude of the electric 

dipole moment induced by an electromagnetic wave on a classical model of the a tom, find 

the expression giving the complex index η = η—]k in a gaseous medium containing Ν atoms 

per unit volume. 

2. From the preceding expression derive an expression for the index of refraction η and 

the absorption index k in the case where the following assumptions can be made : the absorp-

tion is very weak so that one can neglect k in finding n \ the region with absorption is very 

narrow so that one can take 
ω

2
— ω

2
 = 2ω 0(ω 0—ω), 

relating ω and ω 0 when their difference is not a major factor; take η = 1 in the product nk. 

3 . Graph the variations in η and k in this case using the ratio 

u = — (ω 0—ω). 
g 

as the variable. 

4. The gas above is crossed by a parallel beam of polychromatic light carrying the energy 

flux per unit area Φ 0 = ί Φω άω where the interval dco entirely covers the region of spectral 
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8
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x
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2
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n
2
-l = const. Χ λ

2
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214 P R O B L E M S I N O P T I C S [ P R O B L E M 49 

absorption. Assuming that the monochromatic Ά\χχΦω has the same value for all the radia-

tion, find the flux absorbed —άΦ0 in passing through a thickness dx of the gas as a function 

of the absorption index k found in question 3 and the radiant energy density νν(ω). Recall 

that 

f + ~ du 

What is the expression giving the absorbed flux if the energy density is expressed as a 

function of the frequency ν rather than the angular frequency ω ? 

SOLUTION 

1. The starting expression for an oscillator with charge q and mass m is 

q
2
E 

m(œl—œ
2
+]gœ) 

The polarization ρ of a gas formed of such atoms is 

Ρ = Np 

and the complex index 

Ρ Na
2 

n
2
-l = e - \ = —- = 2

 q
 (2) 

ε0Ε e0m(œ
2

t-œ
2
+)gcu) 

Separating the real and imaginary parts of η = n—jk, this becomes 

and 

^^^2 CO
2 

n
 e0m (œl—œ

2
)

2
+g*œ

2
 ^ 

2nk=W *g 
6Q/W (œ$—œ

z
y+g

z
cû*

 v
 ' 

2. The approximations indicated in the problem statement give 

=

 Ν <
? w 2 ω 0 ( ω 0 - ω ) = iVg

2
 κ _ CM 

2e 0m
 Λ

 4 ω
2
( ω 0 - ω )

2
+ ^

2
ω

2
 2 ε ^ ω 0 ^

 X
 w

2
+ 1 ~~ w

2
+ 1 '

 1 } 

= JVg
2
 gco jygi 1 _ C 

2 £ o m
A
 4 ω

2
( ω 0 - ω )

2
+ £

2
ω

2
 2 ε 0 ^ ω 0 ^

A
 n»+1 n»+1 ·

 w 

calling C the constant 

Nq
2 

2e0mœ0g * 

3 . The curves representing n—l and A: as a function of u are given in Fig. 49.1. For u = 0 

(ω = ω 0) , n—l vanishes and kpasses through a maximum equal to C. For w = i 1 (| COQ—CO \ 
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= g fi), « — 1 passes through maxima (in absolute value) equal to C/2 a t the same time as k 

has the value C/2. The interval 2 | ω 0—ω \ = g is the width of the absorption line. 

FIG. 4 9 . 1 

4. The absorption law for a beam of monochromatic light is : 

dx
 ZK ω

' 

where Κ is the absorption coefficient related to the absorption index by Κ = kco/c (§ 2.5). 

Throughout the absorption region the flux loss is 

— = — Γ kco άω. (7) 
dx c J 

Replacing k in this expression by (6), ω by ω 0 , and dco by — g/2dw, it becomes 

άΦ0 0oNq
2 

dx 2e0mc 

r du J ^ Τ Γ 

The integral measuring the area lying between the curve k(u) and the abscissa in Fig. 49.1, 
is found to be arctan u. I t has about the same value in the spectral interval where the absorp-
tion is significant and in the interval — o o to - f °° . With the latter limits it has the value π, 

hence 
d0o 0oNnq

2 

dx 2eQmc (8) 

The flux carried by a parallel beam is related to the energy density by Φο = cw (c being the 

velocity of the electromagnetic waves in the medium where η is presumed close to unity). 

15 R & M: PIA 
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Now w can be expressed as a function of ω, with<&o from (7), (8) now becomes 

άΦ0 Nnq
2 

dx 2eom 

If one takes ν = ω/2π as the variable wi th0 o( eo ) άω = Φο(ν) dv 

1 c 
Φο(ω) = 2^Φο(ν) = 

and 

d 0 o Nq
2 

dx 4som 
w(v). (9) 

P R O B L E M 50 

Band Spectra. Anomalous Dispersion of a Vapour 

A Michelson interferometer is adjusted in such a way that the image M'2 of mirror M2 

given by the beam splitter Sp makes an angle α with the mirror Mi and the distance between 

Mi and M2 (image of Mi in Sp) measured along ΑΙΑ has a given value AB = e0. A lens L 

produces on Ρ an image of M with unit magnification (Fig. 50.1). 

A M. 

ΊΑ V 
β m; 

FIG. 5 0 . 1 

1 · The interferometer is illuminated with light of wavelength λ. Explain why one sees linear 

equidistant fringes on the plane P. Given that one finds 250 fringes in a distance of 5 cm, 

give the fringe spacing / and the angle α for λ = 3009.14 Â. 

2. The monochromatic source is now replaced by a continuous source. Given that e0 is 

of the order of 1 mm, what does one see on the plane P ? 

3 . Plane Ρ contains the entry slit of a spectrograph. The slit is extremely fine and parallel 

to the fringes observed in monochromatic light. It is situated at the point A\ the image of 
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Now w can be expressed as a function of ω, with<&o from (7), (8) now becomes 

άΦ0 Nnq
2 

dx 2eom 

If one takes ν = ω/2π as the variable wi th0 o( eo ) άω = Φο(ν) dv 

1 c 
Φο(ω) = 2^Φο(ν) = 

and 

d 0 o Nq
2 

dx 4som 
w(v). (9) 

P R O B L E M 50 

Band Spectra. Anomalous Dispersion of a Vapour 

A Michelson interferometer is adjusted in such a way that the image M'2 of mirror M2 

given by the beam splitter Sp makes an angle α with the mirror Mi and the distance between 

Mi and M2 (image of Mi in Sp) measured along ΑΙΑ has a given value AB = e0. A lens L 

produces on Ρ an image of M with unit magnification (Fig. 50.1). 

A M. 

ΊΑ V 
β m; 

FIG. 5 0 . 1 

1 · The interferometer is illuminated with light of wavelength λ. Explain why one sees linear 

equidistant fringes on the plane P. Given that one finds 250 fringes in a distance of 5 cm, 

give the fringe spacing / and the angle α for λ = 3009.14 Â. 

2. The monochromatic source is now replaced by a continuous source. Given that e0 is 

of the order of 1 mm, what does one see on the plane P ? 

3 . Plane Ρ contains the entry slit of a spectrograph. The slit is extremely fine and parallel 

to the fringes observed in monochromatic light. It is situated at the point A\ the image of 
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A given by L. What does one see on a photographic plate when the interferometer is illumi-

nated with a continuous spectral source? For this question and those that follow, make the 

following simplifying assumptions : 

the dispersion of the spectrograph is linear in wave number in the region under s tudy; 

one will locate the positions of maximum illumination on the plate by the corresponding 

wave numbers a; 

the magnification, normal to the direction of dispersion, is unity. 

Find e0, knowing that between λ = 3009.14 Â and λ2 = 3034.12 Â, one observes 50.2 

times the distance between two consecutive illumination maxima. 

4 . The spectrograph is inclined so that the entry slit, which will always pass through Ä, 

makes an angle 0 with the direction of the monochromatic fringes. The position of a point 

M on the slit is determined by its distance y = AM from A' (Fig. 50.2). On the figure the 

fringes are vertical and the interference order increases from left to right. Find the path 

difference for rays interfering at M as a function of y, e0, Θ, a and i, the fringe spacing for 

radiation a in the plane P. Wha t does one observe in the plane of the photographic plate 

when the source is continuous over an interval such that one can neglect the variation of i 

with σ. 

5 . In each arm of the interferometer is placed a sealed cylindrical cell of length d with 

transparent parallel windows and set parallel to the arms. The two cells are identical except 

that one is evacuated while the other contains heated tin vapour. The positioning of the 

cells is such that the path difference for the rays which interfere is lessened in absolute value 

for radiation in which the index of the gas is greater than one. 

Recall that the dispersion of the index of a gas is given by Sellmeier's equation, which, in 

the case of an isolated absorption line and for low pressure, can be written 

where λ0 ( = 1 /vo) is the wavelength of the absorption line and Β is a quantity related to the 

number of atoms per unit volume and the the charge and mass of the electron. (This expres-

sion is not valid for ν = v0 where ν is very close to vo-) 

The interferometer is always illuminated by a continuous spectral source. 

(a) What happens to the expression derived in the previous question? 

FIG. 5 0 . 2 

n-1 = 
- Β λ 0 

V—VQ 

15* 
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(b )Wha t does one find on the photographic plate about vol Show that each fringe 

generates two points on a horizontal tangent (parallel to the dispersion direction of the 

spectrograph). It will be useful to make the change of variables χ = ν—v0. 

(c) Find the values of χ and y at these points. Find their height separation and express 

it as a function of /, B, d, and eo. 

Numerical application: 

sind = 0.1 

d = 20 cm 

Β = 600 m for λ 0 = 3009.14 À. 

SOLUTION 

1. One has the localized fringes of a wedge of air (§ 6.5). The fringe spacing in monochro-

matic light is 

i =
 m

 = 0 2 m m
-

Additionally, one has 

. λ λ 3009.14 3 X 1 0 - * 
« = hence α = ^ = 2 x 0. 2 x l 07 - - 5 4 -

r a d
 =

 2 5
 · <

!
> 

2. Observation in white light. The interference order 

2 e 0 
λ ^ 4000 

is high. One sees white. 

3 . Spectrograph slit parallel to the fringes. One sees a channelled spectrum having about 

fifty bright bands between 3009 and 3034 Â. 

The path difference on the axis of the interferometer is such that 

hence 

and 

δ = 2e0 = M i = M 2 = (fei-50.2)A 2, (2) 

, 502A2 ^ , , , , 3 X 1 0 » 

1 50.2 9X10« 45.18 . 

e0 = 0.94 mm. 

4. S7/i of the spectrograph inclined at an angle θ to the fringes. Let Α'ξ be an axis normal 

to the direction of the fringes. The path difference of a point on the abscissa ξ is 

δι = 2(é> 0+a|). 
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Replacing α by the expression obtained in the first question and ξ by y sin 0, one has 

c ~ / λ . A ~ ν sin θ 
δι = 2(é?o+27>;sin0| = 2g0+ • 

Thus, the path difference at M is 

v s i n Ö 
δι = 2e0+ ^ — . (3) 

If the spectral interval is small, one can take ι as a constant. One gets constructive inter-

ference for 

δ1 = kl = kjv (k integer). (4) 

The dispersion of the spectrograph is linear in wave number (take the coefficient of linearity 

equal to 1). Combining (3) and (4) allows one to write by taking //sin 0 = const. = C 

y = C(k-2e0v). (5) 

This is the equation of a straight line with slope — 2Ce0. The y intercept is y = Ck and the 

intersection with Λ'ν is equal to ν = k/2e0. The bright bands are line segments (Fig. 50.3). 

The interference order at A' for the wavelength λ0 is denoted k0. 

5. Dispersion in tin vapour, (a) The cell leads to an additional path difference equal to 

2(n— \)d. Hence, the new path difference on M (taking into account the sign conventions 

of the text) is 

a2 = 2 | * o - ( « - l ) r f + - ^ s i i i ej 

Sellmeier's equation gives 

n-l = - „ „ . (6) 
V—VQ 

In the spectral interval where i can b e considered constant, one finds constructive inter-
ference for 

k Λ . BXod\ . y 1 
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Taking v—vo = x, this becomes 

y = C ^(k-2a0eo-2BXod)-2^xeo+^^. (7) 

(b) This equation allows one to describe the appearance of a band of order k in the spectral 
interval about v0 (but for ν τ* i>o). 

The points Pi and P 2 with horizontal tangent are given by 

d ^ 
dx 

Bd 
= 0, so that e0 ^ = 0 or 

/C+1 

'S* 
Ί 

~r 
t 
1 
I 

-4 

C(_k-k0)_ 

- \ m 

' ο 

Δ 7 = 2 Bd 

FIG. 5 0 . 4 

In substituting the values of A: in equation (7), one has obtained the slant separation between 
the two points P i and P 2 (Fig. 50.4) 

ày = 4c{e0 j / ^ + y^X V ^ r f ) = 8C V Ä . 

Numerical application: 

10"3 

Λ: = ±3 .47 c m " 1 

0.2 
Ay = 8 X ^ y V600X0 .2X10" 3 = l ö V ^ X l O " 1 = 5.5 mm. 

In equation (7), when χ — ±\/Bd/e0, the term 

2Βλοα= 2 X 6 0 0 X 0 . 3 X 1 0 - « X 0 . 2 = 72X10-« 

is negligible with respect to 2 <s/Bde0 = 2 y/T2X 1 0 _ 1. Near points P i and P2 the portions 
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of the bright band of order k have the equation : 

Bd\ 
y = C (k-ko^l^xeo+^j . (8) 

For other orders the bright fringes are resolved from one another by a translation parallel 

to Oy (Fig. 50.4). Figure 50.5 shows a picture taken of bands observed for a gas having many 

absorption lines. 

FIG. 5 0 . 5 

P R O B L E M 51 

Scattering of Electromagnetic Radiation Using a Classical Atomic Model 

Consider an atomic model involving an electron of mass me and charge e elastically bound 

to the a tom and capable of undergoing harmonic vibration. Let co0 be its natural angular 

frequency. 

I 

When this oscillator is put in free vibration it radiates energy. The energy loss per unit 

time is given by the expression : 

dW _ 1 

dt \2ne«?
 { P λ 

W being the energy, / the time, c the velocity of light, ρ the electric dipole moment of the 

oscillator, and (p
2
) the mean value of the square of the second derivative of ρ with respect to 

time. The energy loss induces a damping of the oscillation. Find the damping coefficient g 

resulting from the oscillation radiation. 
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II 

1. Ν identical, independent atoms per unit volume, described by the model above, are 

placed in a parallel radiation field of angular frequency ω where the electric field oscillates 

along the Oy direction. The incident radiation propagates in the Ox direction. Under the 

influence of this field the atomic oscillators undergo forced oscillation. Calculate the atomic 

electric dipole moment. 

The atomic oscillators in forced oscillation themselves radiate. Find the expression giving 

the total flux scattered by a unit volume of the material as a function of the incident radiant 

energy. 

2. Consider the case where ω
2
, » ω

2
 or λ

2
 <$c λ

2
. Show that the intensity of the scattered 

light is proportional to λ~
Α
 where λ is the wavelength of the incident and scattered radiation. 

Find the ratio of the intensity of the incident light to that of the scattered light per unit vol-

ume. Assume 
N= 10

2 8
 m -

3
, λ0/λ = 0.1. 

Also find the ratio of the scattered intensities in the red for λ = 7000 Â and in the violet 

for λ = 4000 Â assuming that the incident radiation intensity is the same in each case. 

Discuss these results and show that they explain the blue colour of the sky and the red colour 

of the setting sun. 

3 . Consider finally the case ω
2
 <sc ω 2, useful in the X-ray region. Find the expression for 

radiation scattering in this case. Calculate the ratio of scattered to incident radiation inten-

sity here taking Ν = 10
22
 c m

- 1
. 

Compare this ratio for HCu and ^ P b assuming the number of atoms per cm
3
 in the 

first case is 8 X 1 0
2 2
 and 3 X 1 0

2 2
 for the second. All of the electrons in the a tom are assumed 

to participate in X-ray scattering. 

I l l 

1. Consider now conductors with conductivity γ. Assuming the medium to be continuous, 

write Maxwell's equations for this case. Assuming the electric field to vary sinusoidally 

with angular frequency ω and to be propagating in the Ox direction, find the real and imag-

inary parts of the complex permittivity. 

2. Establish the dispersion relationship for a metal. In this case one can assume that the 

electrons giving rise to the optical properties are free so that ω 0 = 0. Assume the damping 

coefficient g to be different from zero. 

To determine the expressions giving the real and imaginary parts of the complex 

permittivity. 

(a) Examine the case ω ^> g. Find the real and imaginary parts of the permittivity. Com-

pare this with the results obtained in III. 1 and find the damping coefficient as a function 

of γ. What is noteworthy about this expression? 

(b) Finally, look at the case ω <sc g. Discuss the dispersion expression in this case. Find the 

wavelength λ0 for which the complex permittivity vanishes. Discuss the behaviour of 

the substance for λ > λ0 and for λ < λ0. 
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3 . In the case III.2 (b) express the complex permittivity as a function of λ0 and λ and 

calculate the reflection factor R of the substance for (λ /λ 0)
2
 <sc 1 and for (λ /λ 0)

2
 : » 1. 

4 . Find the oscillator intensities which arise in the calculations above for Cs, Rb , K, Na , 

and Li given the respective values of λ0 are 4400, 3600, 3150, 2100, and 2050 Â, and the 

number of free electrons/m
3
 as 0.85 X l O

2 8
, 1.1 X l O

2 8
, 1.3 X l O

2 8
, 2.5 X l O

2 8
, and 4.5 X l O

2 8
, 

respectively. 

SOLUTION 

I 

The oscillator has an electric dipole moment ρ = es where s is the amplitude of the elec-

tron motion. Since the motion is harmonic, one has ρ = —a%p. Since co0 is of the order of 

10
1 5
 s e c

- 1
, one can take the mean value (p)

2
 = \p

2
 in the expression for the energy lost per 

unit time 
dW cofc

2
s

2

m 

dt 12πεο<? ' d ) 

The energy of the oscillator is 

and (1) becomes 

W = \ηιβωΙΑ (2) 

dW œ
2
e

2 

dt 6neo(?mt 

Thus, the energy decrease is exponential in time 

6neo(?me 

W. (3) 

r = co
2
e

2 

r is the time constant. After time r , the energy is reduced to the fraction l/e = 0.368 of its 

initial value W0. For visible radiation ( ω 0 % 10
1 5

), this time is of the order of 10~
7
 sec. It 

therefore contains a large number of periods. The motion of the oscillator is not sinusoidal 

but rather sinusoidal with an exponential decay. It can be thought of as the solution of the 

equation 

'd
2
.s i n ds a>ls\ 

di
2 

dt me) 

where an artificial frictional force meg(ds/dt), proportional to the speed, has been introduced. 

g is the damping coefficient which is required. To find it we equate the loss in energy (3) to 

the work done by the artificial force over unit time 

ds ds ο ο « 
m e g

~ d t
X

l î t
= megSm

°^
 c os ω ΐ

' 
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FIG. 5 1 . 1 

II 

1. Under the influence of the field Ey = Em sin cot, the electron is subjected to a force 
eEy and undergoes forced movement with its equation, derived from that of the natural 
motion (4), being 

m (6) 

Corresponding to the sinusoidal field Ey take the complex field Em exp {yot) and to the 
displacement y the complex function y = ym exp (}φ) exp(jcoi) with the same angular fre-
quency as the imposed field. Equation (6) yields 

y m — 
-eEm 

me{œl-œ
2
+ygœ) 

and the moment induced has as its complex amplitude 

e
2
Em 

-eym = 

where the modulus is 

me(œ
2
-œ

2
+igœ) 

e
2
Em 

(7) 

me Λ / (cog—œ
2
)

2
+g

2
œ

2 

The radiation from the sinusoidal moment ρ is equivalent to that of a Hertzian dipole. The 
mean flux which it radiates into all space is given by (§§ 10.3 and 17.5) 

<φ> = (»VE* 

ω is the pseudo angular frequency and ω
2
 = ω\—g/2. Since the motion is only slightly 

damped, one finds, quite reasonably ω = ω 0 . 
The mean value of this work, which acts over a large number of pseudo-periods is 

\megs
2

mœl = gW 

hence, by equating to (3), 

g = 1/*. (5) 
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If the atoms are independent as in the case of an ideal gas, their radiations are incoherent 
and the mean flux radiated per unit volume is Ν(Φ). On the other hand, the energy of the 
incident monochromatic radiation which crosses a unit surface per unit time is given by 
(§ 2.3) 

<<5> = 
One finds then 

Ν(Φ) _ No)*e
l 

( £ ) 6 π ε · ^ [ ( ω § - ω 2 ) 2 + £ ν > 2 ] 

2. If ω 2 » ω 2 , expression (8) reduces to 

(8) 

Ν(Φ) _ Νω*β* _ 16?r>gW J _ 

(δ) ~ 6jr2ec4m2û>4
 ~ ό ε 2 , ^ 4 , Χ λ 4 ' {) 

since ω = 2ncß. One sees that t h e scattering intensity, all other things being equal, is 
proportional to A - 4. 

Fo r Ν — 10 2 8 m - 3 , ω/ω0 = 0.1, and the ratio (8) has the value 

Ν(Φ) _ 10»Χ(1.60Χ 1 0 - 1 9) 4 X 10~ 4Χ(36πΧ 10»)2 

{δ) 6 π Χ ( 3 Χ ΐ 0 8 ) 4 Χ ( 9 . 1 Χ ΐ 0 - 3 1) 2 WX ϋ 

The ratio of the scattered intensities in the blue and red is equal to (A R/A B)
4 if (ε) has the 

same value for both so that 

<XR\
l /7<XXV 

For the atmospheric phenomena involved see § 17.5. 

3 . If ω2, <sc ω 2 , as is the case for X-rays, since all the atomic electrons, Ζ in number, 
participate in the scattering, a unit volume contains NZ oscillators and (7) becomes (§ 10.4) 

Ν(Φ) _ NZe* _ 3 3 y l Q- , , N Z (m 

For §£Cu: = 3 . 3 X 1 0 - 3 3X 8 X 1 0 2 8X 2 9 = 7 .65X10" 4. 
Ν(Φ) 

For ^ P b : = 3.3X 1 0 " Μ Χ 3 Χ 1 0 2 8X 8 2 = 8.12X 10" 4. 

These two values are nearly equal. If one looks back at (10) for the scattering coefficient per 
unit mass by dividing by the density ρ of the element under study, ρ = NA /Ol, where A is 
the atomic mass and QI Avogadro's number, the ratio 

depends only on the ratio ZI A of the atomic number to the atomic mass of the element 
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considered. This ratio is equal to 0.453 for Cu and 0.395 for Pb . For the light elements it is 

close to 0.5 so that the mass scattering coefficient for X-rays is constant. This regularity, 

however, is only true for medium length X-rays (§ 15.14). 

I l l 

1. Maxwell's equation for an ohmic conductor are (§ 2.5) 

dE dH 
curl Η = γΕ+ ε , curl Ε = — μ0 ——. 

ot et 

One gets for the equation of propagation of an electric field varying along Oy and propagat-

ing in the Ox direction 
d*E i d

2
E , dE\ 

θ ^
 =

 ^ (
ε

^ Γ
+ γ

Ί » ) >
 (12

> 

which has as a solution a sinusoidal function of time. One has then 

dt
 J

 ' dt
2 

and (12) becomes 
d

2
E / . γ \ d

2
E 

9 ^
 =
 ^Τ^ ω ) dt

2
-' 

This equation has the form of the free-space wave equation 

d
2
E d

2
E 

but the permittivity ε0 of free space is replaced by the complex permittivity 

e = e-}^=eoL--îï-). (13) 
ω \ ε0ω ) 

εΓ is the real part of the complex permittivity and γ/εοω its imaginary part . 

2 . Under our assumptions, equation (6) for the motion of an electron in a metal re-

duces to 

mê ~-{-g ^ = -eEm sin ωί. (14) 

Its solution (§ 10.7) is 
—eE 

me(-oß+]g(o) 

One finds, as in part II. 1, the induced moment p, then the electric polarization of the medium 

Ρ = Np, and finally, the relative permittivity by the formula 
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One finds 
ι Ne

2
 1 

er = 1 + X-. . (15) 
εοτη€ω jg—ω 

This complex permittvity sr = ér+}er' has a real par t 

Ne
2
 1 

χ 

and an imaginary part 

Ne
2
g 1 

£oweco g
2
+ct>

: 

(a) For g : » ω, expressions (16) and (17) reduce to 

Ne
2 

e'r = 1-

Ne
2 

Comparison of this last expression with (13) shows that 

_γ_ _ Ne
2 

e0œ ~ soœmeg 

and this allows one to find g as a function of γ 

mey 

a value independent of ω. 

(b) For the dispersion expression (15) becomes 

Né
2 

g = -T7- (18) 

JVe
2
 iWA

2 

εοτη6ω
2 Λ

 4n
2
c

2
e&ne 

This expression vanishes for a wavelength λ 0 such tha t 

0
 "~ N<* *

 ( 2 0) 

For λ > A0, the metal has a complex permittivity which represents its absorption properties. 

For λ < λ 0, the permittivity is real and less than 1. The metal becomes transparent. 

3 . Expression (19) can be written, taking (20) into account 
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The reflection factor at normal incidence is given by 

For λ
2
 « λ

2
: 

R ~ 0 
For λ

2
» λ

2
: 

Ä ~ 1. 

This last expression is good when applied to a strongly absorbing body. 

4. The oscillator intensity (or oscillator s t r eng th ) / i s the number by which it is necessary 

to multiply the theoretical terms in the dispersion relationship to make it agree with the 

experimental values (§ 10.10). Expression (19) becomes 

Ne*X
2
f 

Er = 1 - -4n
2
c

2
eome 

and equation (20) gives 

Now, one has 

Νλ
2 

4n
2
c

2
eome 4 π

2
Χ 9 Χ 1 0 "

1 β
Χ 9 . ΐ Χ Ι Ο "

3 1 

4 π Χ 9 Χ ΐ 0 * Χ ( 1 . 6 0 Χ ΐ 0 -
1 9

)
2 = 11.15Χ10

1 4
. 

The data given in the problem lets one calculate the products iVA
2
, and hence the values 

of u s ing / (21 ) . One finds: 

Meta l : Cs Rb Κ N a Li 

JVAgXlO-
1 4
: 16.45 14.25 12.89 11.02 18.90 

/ : 0.68 0.78 0.86 5 1.02 0.59 

P R O B L E M 52 

Dispersion and Reflection of an Ionic Crystal in the Infrared 

Consider here a binary crystal of the NaCl type formed of N a
+
 and CI" ions situated at 

the nodes of a cubic lattice which is to be thought of as being infinite (Fig. 52.1). Thermal 

agitation produces, among other things, the vibration in which the two partial lattices of 

ions are displaced as a unit with respect to one another. Assume that the interaction of two 

neighbouring ions (action over a short distance) can be represented near the equilibrium 

configuration by an elastic restoring force with coefficient ko. The relative displacements of 

the ions create an electric dipole moment on each mesh of the lattice. The crystal acquires 

a homogeneous polarization Ρ and electric field Ε uniform over the interior of the crystal 

as a result and this subjects each ion to an additional force (long-distance force). 
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I 

1. Show that if M is the relative displacement of the positive and negative ions whose charge 

is ±e and reduced mass μ, the equation of motion is 

d
2
« 

μ = -koU+eE at
2 

and that the polarization Ρ is given by 

1 
Ρ = y[(*++a-)E+eu] 

(1) 

(2) 

oc+ and a_ being the polarizabilities of the two ions and V the volume containing a pair of 

ions. 

Recall to begin with, the definition of the electric displacement D in an isotropic medium 

of relative permittivity er: 

D = ε<>εΓΕ = εοΕ+Ρ. (3) 

2. The solution of equation (1) is a harmonic motion with angular frequency ω. This 

angular frequency will have the value ω Γ if only actions at a short distance exist. 

Find the dispersion expression ε Γ ( ω ) from equations (1), (2), and (3). Show that this can 

be written 
Eg Eoo 

n
2
 = ER = ε , χ , - f 

1-(ω/ω,)* (4) 

where ES is the relative permittivity in an electrostatic field (ω — 0) and E^ the relative per-

mittivity for high frequencies (ω » ω,). 

Draw the curve ε Γ ( ω ) . Let ω1 be the frequency for which ε Γ = 0. Find the ratio œjœt 

as a function of e, and e M . 
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II 

Draw the curve representing the reflection factor R of the crystal under normal incidence 

as a function of ω. 

Let œr be the frequency for which R = 0. Find a relationship between ω Γ, ω„ ε5, and ε^. 

Application: for NaCl the experimental values are λΓ = 31 μ, λ, = 61.1 μ, ε 5 = 5.62, and 

ε . = 2.25. 

With what precision is the preceding relationship satisfied? 

I l l 

The experimental curves εΓ(ω) and R(œi) differ significantly from the theoretical curves 

found in parts I and II. In particular, er remains finite for ω = ω, and one finds a maximum 

of R which is less than unity for a certain frequency œm. To interpret these results, one adds 

a damping term —yéujàt in equation (1) for the motion. What happens with this equation 

for periodic complex solutions? What happens with (4)? Assume the ratio yjœt small and 

examine how this modifies the R(œ) curve. 

Havelock has shown that the expression approaches 

= + (5) 

With the aid of this expression, find lm for NaCl and compare it to the experimental 

value of 52 μ for NaCl . 

SOLUTION 

I 

1. In the cubic crystal under consideration, the motion clearly has the same equation for 

displacements along a direction parallel to any one of the axes of the cube, x'x, y'y, or z'z 

(Fig. 52.2). As a result of the cubic symmetry of the ion sites, the coefficient k0 is the same 

regardless of the displacement direction. The equation of motion of the two ion species is 

then 

= —ko(u_ — u+)—eE. 

FIG. 5 2 . 2 
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Multiplying these equations by m_ and m + , then subtracting and dividing by m+ + m_ 

one gets equation (1). The dipole moments due to the two species of ions are, respectively, 

eu++<x.+E and — ew_+a_2s. 

The first term is due to the displacement (§ 10.3.1) of the ion and the second to its deforma-

tion. Since one has l/V ion pairs per unit volume, the polarization Ρ is obtained by multi-

plying the sum of the two dipole moments above by 1 jV and then one gets equation (2). 

2 . The harmonic solution of equation (1) is 

— œ
z
u = u-\ E. 

μ μ 

If the field Ε is zero, that is, if one has no long-distance actions, this equation reduces to 

—co
2
w = — — u = — ω?Ε 

hence 

u _ e 1 

Ε μ ω
2
— ω

2
" 

The permittivity er is obtained from (3), so that , using (2), 

(6) 

Ρ Λ α+ + α_ e u 

ε0Ε e0V e0V Ε 

At optical frequencies, the ions are too heavy to follow the field (§ 17.6) and only react to 

the first two terms of (7) 

In the electrostatic field £ 5( ω = 0), equation (7) gives 

u _ e 

E0 ~ μω
2 

hence 

ε * = 1 + - Ί ^ + ^ = ε ~ + ^ κ · ( 9) 

One gets from (7), (8), and (9) the dispersion relation 

1 - ( ω / ω Γ)
2 

One has εΓ = ~ for ω = ων ετ is positive for 0 < ω < ωί (the second term on the right-

hand side of (4) is then positive) and for ωι < ω, ω 7 being the value of ω above which the 

16 R & Μ: ΡΙΟ 
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second term takes a negative value less than in absolute value. ω, then corresponds to 

er = 0, so that 

If ω/ = œt 
(10) 

The index η = y/er is therefore complex: #i — n—jk. η is the index of refraction and k the 

absorption index. It has real values η below cot and above œt. Between these limits the values 

k are purely imaginary (Fig. 52.3). 

FIG. 5 2 . 3 

II 

The reflection factor under normal incidence is found by using FresnePs generalized ex-

pression (§ 3.5): 

R-\n+ï) - (n+lf+hf 

Between œt and ω / 5 where η is purely imaginary, R = k
2
/k

2
 = 1 (Fig. 52.4). It has total 

reflection (§ 3.3). R vanishes for η = 1 or er = 1, so that for a given frequency cor, using (4), 

/ ω Γ \
2

 = g f - l 

\cut) ~ £ o o - l 
(12) 

Application. One has λ = Inc/co, thus 

One the other hand, one has 

* -
! 4 62

 = 3 . 6 9 . 
ε « - 1 1.25 

Expression (12) is thus satisfied to within 5 % . 
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III 

For sinusoidal solution written in complex form, the equation of motion 

d
2
u 

dt
2
 ' ' dt 

.
 dU

 1 17 

becomes 

—ω
2
ιι / - û > ? + j — A U+—E. 

\ μ / μ 

It is then sufficient to replace ω
2
 by ω

2
+]γΙμ ω in the calculations of part I I of this problem 

to get in place of (4) the dispersion expression 

* = ( " " J * )
2
 = *r= e„+ _ = ε~ + ^ — — (13) 

1 
\œtJ μωί \œt) 

cot 
μ 

ω 

where Λ( = (ε 5—ε β ο)ω
2
 represents a constant. By separating the the real and imaginary 

parts of the complex index in (13), one finds 

Α(ω
2
-ω

2
) 

n
2
-k

2
 = ε ^ -

( ΰ ) 2 - ω
2
)

2
 + 4 ω

2 

Ink = 
Αγω 

( ω
2
- ω

2
)

2
+ ^ - ω

2 

μ 

One sees that the presence of the term in γ assures that n
2
 will always have a finite value and 

never be purely imaginary. In addition, R is always less than unity. Reflection is never total. 

R can only attain high values (0.8-0.95) between ω ί and ωι (Fig. 52.5). 

Application: with the given numerical values, equation (5) is written 

6 1 Λ χ 2= 1 +

5 Λ - } 2 5 . = 1.355 
(OhnV _ / 6 1 . 1 \ 

hence 
61.1 

Vl-355 

6 X 2 . 2 5 - 4 

= 52.5 μ. 

FIG. 5 2 . 5 

1 6 · 
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P R O B L E M 53 

Transmission of an Absorbing Thin Film 

Calculate the transmission factor Τ of an absorbing film with parallel faces, thickness d, 

and complex index n, placed in air and normally traversed by a plane wave of frequency ω. 

What happens to the expression for Τ when the thickness d is much smaller than the wave-

length of the incident radiation? 

If the dispersion of the index η can be written 

(cf. Problem 49) show that the transmission of a very thin film has a minimum for the 

frequency ω 0 . 

Let Et be the complex amplitude of the electric field of the incident wave (Fig. 53.1), Er 

the reflected field off the first face 27, Et the transmitted field, Ér the reflected field off the 

second face 27', and Ét the field transmitted by the second face. 

At 2" , where one places the origin of the phases, the continuity conditions for Ε give 

SOLUTION 

Er 

FIG. 5 3 . 1 

ε λ Κ = ε; ( ί ) 
and for Η = (η/ομ^Ε 

n(Et—E'r) = is/. (2) 

Likewise at Σ, taking into account the film thickness, one finds 

Et+Er = E, exp (—jand)+E'r exp (jand) (3) 
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and 

Ei—Er = nEt exp (—]and)—nE't exp (]and). (4) 

Adding (1) and (2) term by term one finds 

2E
f

t = (l + *)£, + (l-n)£;. 
By subtracting (2) from (1) 

(l-n)Et = - ( 1 + #!)£;. 

Adding (3) and (4) 

2Ei = (1 + n)Et exp ( - )and)+ (1 - exp (jand). 

Hence 

t = # = ( ι + π ) ^ + ( ι - λ ) ε ; 
(1 -f- n)£, exp ( - joTirf)+(1 - n)E'r exp (jand) 

(l + *)2-(l-i»)2 

(14- λ) 2 exp (—jand)— (1 — n) 2 exp (jand) 

If d <z λ, ad = 2TW//A 1. Taking the first two terms of the exponential expansion, this 
yields 

4/1 1 

4n - 2]and(\ + λ2) j _ jorf ( J + ^ 

The transmission factor is given by 

1 · - « · - - • χ 1 

ι - * ί < ι + « · ) 1 + J^(i+»-) ι + ^ ( » · » - # ) 

[ignoring terms in (ad/2)
2
]. Tis minimal when j(rt/(#i*2—n

2
) is maximal. Now if 

n
2 = n§H—r—4T^ ' 

one has, since a = ω/c, 

j*(/i*2-#i2) = ^ - - X -
c ~ ( ω 2 - ω 2 ) 2 + ^ 2 ω 2 ' 

The derivative 

d / ω 2 \ _ 2 ω ( ω 2 + ω 2 ) ( ω 2 - ω 2 ) 

άω [ (œ
2
-œ

2
)

2
+g

2
œ

2
 ) ~ [ ( ω 2 - ω 2 ) 2 + £ 2 ω 2 ] 2 

actually vanishes for ω = ω0. 
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P R O B L E M 54 

Electromagnetic Waves in a Plasma 

A gaseous atmosphere is made up of positive and negative ions and contains (per unit 

volume) Ν ions with charge + e and mass M and Ν ions with charge — e and mass mo. 

I 

Neglecting the effect of the neutral molecules, one wants : 

1. The expression for the relative permittivity of such a medium for electromagnetic 

waves of frequency v. Since the mass M is many times greater than w 0 , show that the role 

of the positive ions is negligible. 

2. The phase velocity νφ of electromagnetic waves of frequency ν when the medium has 

the magnetic permeability of free space. The minimal value of the frequency vc for which νφ 

has a real value. 

3 . The relationship between the velocity νφ9 the group velocity vg of the waves in such a 

medium and the velocity c of waves propagating in free space. 

4. What is the radius of curvature of the trajectories of the electromagnetic waves propagat-

ing in a direction perpendicular to the vertical, if one assumes that the gaseous atmosphere 

undergoes a 6% decrease in the relative value of Ν for an increase in altitude of 100 metres, 

the frequency of the waves involved being ν = 2vc. Determine the sense of the curvature of 

the trajectory. 

II 

1. An infinite plane separates two regions of space where one finds in the first (1) the ion-

ized atmosphere described initially and in the second (2) the same atmosphere bu t free of 

ions. Give the value of the energy reflection factor (normal incidence) for the waves of 

frequency ν = 2vc. 

2. For the same waves falling on the plane of separation, what is the value of incidence 

for which one would obtain reflected waves with their electric field vibrating perpendicular 

to the plane of incidence when the field of the incident wave has some given orientation. 

Treat both cases where the waves propagate in the sense (1) to (2) and (2) to (1). 

Numerical values: Ν = 1.226X 10
12
 m~~

3
 (one is also given the values of e, me, and c). 

SOLUTION 

1. The equation of motion of the ions is 

w 0 ^ 2 = ~eEm sin œt, 

eEm . 
s — sm œt, 

m0œ
2 

I 

(§ 10.4) 

M = eEm sin œt, 

c eEm . # 

S = r a S l n c ° ' ' 
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s and S have opposite directions, however, S/s = m0/M, and therefore, S is negligible with 

respect to s if m0 is negligible with respect to M. 

The polarization and the permittivity are then given by (§ 10.6) 

Ne
2

 Λ Ne
2 

Sr = 1 « = 1 - -εοίηοω
2
 4n

2
Etfntf>

2
 ' 

_ 1 . 2 2 6 Χ ΐ 0
1 2

Χ 2 . 5 6 Χ ΐ 0 -
3 8

Χ 4 π Χ 9 Χ ΐ 0
9
 _ 10

1 4 

8 r
 ~ 4 π

2
Χ 9 Χ ΐ Ο "

3 1
ΐ >

2
 ~ v

2 

2. The phase velocity νφ is related to the velocity of light in free-space by 

c c c 
νφ = Ver Ί Λ Ne

2 

\ 4π
2
εο/ηον

2
 \ ν

2 

So that νφ has a real value, the quantity under the radical must be positive, that is 

Ne
2

 l 

4 π
2
ε 0/ Η 0ν

2 

The frequency ν must then have a value greater than the cut-off frequency vc defined by 

One can then write 
v2 

V2 

3 . The relationship between the group velocity vg and the phase velocity νφ (§ B.3) can be 

written 

_L _ (°Λ - iL ll \ - 1 - 1 d(y \/7r) 
v

g

 ~~ deo \ VA/ άν\ν
φ

) c dv c dv 

so that 

vg dv 

Thus 

\ ) ν2) dv Vv2-v2 ' c 

ν2·νφ = c
2
. 

4. Formula (5.5) of § 5.1 gives the curvature of the wave normal with cos θ — 1 

1̂  _ dn 1_ d(n
2
) 1_ d ^ 

ρ ~~ η dz " In
2
 dz ~ 2er ~dz ' 

1 1 e
2
 dN 1 diV 

ρ ~~ 2ε Γ 4 π
2
ε 0 ^ 0 ν

2
 dz 2ε Γ Νν

2
 dz 
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For ν = 2vr 

1 - J L _L *0L 
ρ 8εΓ Ν dz 

and with er = 1 —^ = ~ , 

1 1 1 dN 1 6 1Λ . _ 1 

ρ 6 Ν dz 6 ΙΟ
4 

ρ = ΙΟ
4
 m. 

Since Ν decreases as the altitude increases, er increases and de r/dz is positive. The curvature 

is upward. 

II 

1. The reflection factor for energy at normal incidence is 

for any sense of the propagation. 

R = Kgg-M2
 = ( ° ^ i )

2
 = fzÔV - ( - 0 . 0 7 3 ) 2 = 5 3 X 1 0 - . 

W o . 7 5 + 1 / \ 0 . 8 6 6 + l / \ 1.866 / 

2. The desired angle is the Brewster angle iB defined by 

tan iB = η — λ/er = 0.866 

for waves moving into the ionized medium 

iB = 40°54' . 

For waves propagating in the opposite sense 

tan ι Β = ^ = cot iB, 

i'D = 49°6' . 

P R O B L E M 55 

Plasma Oscillations 

I 

Show that in an isotropic medium, Maxwell's equations have as solutions longitudinal 
plane waves, that is, plane waves in which the electric vector Ε is parallel to the wave vector σ. 
What conditions must be satisfied by the index of refraction of the medium so that these 
waves can propagate? 
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For ν = 2vr 

1 - J L _L *0L 
ρ 8εΓ Ν dz 

and with er = 1 —^ = ~ , 

1 1 1 dN 1 6 1Λ . _ 1 

ρ 6 Ν dz 6 ΙΟ
4 

ρ = ΙΟ
4
 m. 

Since Ν decreases as the altitude increases, er increases and de r/dz is positive. The curvature 

is upward. 

II 

1. The reflection factor for energy at normal incidence is 

for any sense of the propagation. 

R = Kgg-M2
 = ( ° ^ i )

2
 = fzÔV - ( - 0 . 0 7 3 ) 2 = 5 3 X 1 0 - . 

W o . 7 5 + 1 / \ 0 . 8 6 6 + l / \ 1.866 / 

2. The desired angle is the Brewster angle iB defined by 

tan iB = η — λ/er = 0.866 

for waves moving into the ionized medium 

iB = 40°54' . 

For waves propagating in the opposite sense 

tan ι Β = ^ = cot iB, 

i'D = 49°6' . 

P R O B L E M 55 

Plasma Oscillations 

I 

Show that in an isotropic medium, Maxwell's equations have as solutions longitudinal 
plane waves, that is, plane waves in which the electric vector Ε is parallel to the wave vector σ. 
What conditions must be satisfied by the index of refraction of the medium so that these 
waves can propagate? 
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I I 

Establish the equation giving the index of refraction of a plasma for a monochromatic 

wave. Neglect the collisions of the ions and electrons and, after indicating why, the effect of 

the ions relative to the electrons. Under what conditions can one establish longitudinal 

oscillations of the electric field in the plasma? Determine the phase and group velocities 

of the corresponding waves. 

SOLUTION 

I 

Maxwell's equations for a plane monochromatic wave with angular frequency ω are 

written (§ 2.3) 
Εχσ=-μ0ωΗ (1) 

Ηχσ = ωΌ. (2) 

D is the displacement vector related to Ε by 

D = εΕ = εΓε0Ε = ε0Ε+Ρ, (3) 

so that the relative permittivity ετ and the polarization Ρ of the medium are joined by the 

relationship 
P= (ε-1)ε0Ε. (4) 

The condition which defines a longitudinal wave, Ε\\σ involves from (1), Η = 0, hence 

from (2) D = 0 and from (3) 
ε0Ε = —P. (5) 

The vectors σ, £ , and Ρ are directed as shown in Fig. 55.1. Equation (5) introduced into (4) 

leads to 

ετ = 0. (6) 

0 

Ρ 0 c 

FIG. 55 .1 

Following Maxwell's relationships, the index η = VεΓ of the medium should vanish so that 

longitudinal electromagnetic waves can exist. 

I I 

Neglecting the effects of collisions amounts to treating the ions and electrons as free. 

Under these conditions, the displacement s of one of them with mass mi and (algebraic) 

charge et is given by the equation (§ 10.4) 

m z — = eiEmsm œt. 
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To this corresponds an electric dipole moment 

d = es = 
πιω

1 Em sin ωί 

and the polarization of the medium due to these charged particles, numbering Ν per unit 

volume and without mutual interaction, is Ρ = Nd. Equation (4) gives 

Ne and me refer to the electrons and Ni9 ei9 and mi to the various positive and negative ions. 

The sum is taken over all of the ions. Since the plasma is neutral, the concentration of the 

positive ions is equal to the sum of the concentrations of the negative ions and electrons. 

The term relative to the ions in (7) is negligible since their mass is much greater than that 

of an electron. Taking this simplification into account, equation (6) is satisfied if 

This expression shows that ω is independent of cr. In addition, the phase velocity νφ = ω[σ 

is not subject to the relationships one finds in the study of waves. The group velocity 

vg = deo/dor is zero. One sees that here one is dealing with oscillations of the electric field 

and of the electrons, rather than with the so-called waves. 

= 1 -
e

2
Ne y ejNj 

(7) 

(8) 
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P R O B L E M 56 

Electromagnetic and de Broglie Waves 

I 

Consider a beam of particles with rest mass w 0 moving in a straight line in a vacuum with 

uniform velocity u. 

1. Assume that all the particles have the same velocity, f a l l i n g the energy W and the 

momentum of the particles p, write an expression for the de Broglie wave associated with 

them. Write an expression for the phase velocity, νφ9 in terms of W and p. Also express νφ 

as a function of u and c, the free-space velocity of light. 

2. Assume that there is a distribution of velocities about w, the form of which is not known. 
Can one write an expression for a de Broglie wave? Show that the group velocity, vg, can 
be expressed generally as 

vg = dW/dp. 

Give vg as a function of the mean velocity, w, of the particles. 

What relationship exists between the phase velocity and the group velocity? 

3 . The particles are electrons whose velocity u is such that their wavelength λ is equal to 

half the Compton wavelength Ac. Calculate (a) their velocity, u; (b) the phase and group 

velocities of the associated wave; (c) their mass, m\ and (d) the potential difference V neces-

sary to produce this velocity if it is assumed that the electrons are emitted from a hot cathode 

with zero initial velocity. 

Compton wavelength: Ac = 2h/m0c. 

II 

Replace the beam of particles by a beam of photons having the same frequency ν as the 

de Broglie wave associated with the particles. The photons are travelling through a non-

absorbing medium of index n. Call λ' and ν the wavelength and the wave number respec-

tively in the medium. 

1. Assuming the beam to be monochromatic, give the phase velocity νφ as a function of 

ν and ν . 

241 
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2. A photon beam cannot be rigorously monochromatic. Show that by using ν and v\ 

the group velocity vg can be put in a form analogous to that in question 1.2 for the group 

velocity of particles. 

3 . What must be the dispersion law for the medium, η = / ( λ ) , so that between vg and νφ 

the same relationship is obtained as is obtained in question 1.2 for particle waves? 

4. In what region of the electromagnetic spectrum would you expect to find such a dispersion 

law in a material medium? Show that this law is a limiting case of the general dispersion 

law valid in regions remote from absorption bands : 

where v0 is the wave number in vacuum, vQi is the wave number of the centre of the absorp-

tion band, and At is a constant. Absorption bands are found in the visible, the infrared, and 

the near ultraviolet. 

SOLUTION 

I 

1. For a particle in uniform rectilinear motion, the momentum ρ = mu is a constant. T h e 

energy W is also constant. It is purely kinetic aside from the rest energy which requires the 

theory of relativity for its evaluation. The fundamental relationships 

W = hv (1) 

ρ = hv (2) 

allow one to associate with the motion of the particle a sinusoidal plane wave (§ 13.5) 

Ψ(χ, t) = A exp j l ( ^ - / 7 x ) j , (3) 

Ρ 

A being a constant and χ the direction of the wave. Hence the wavelength 

The phase velocity is given by 

νφ = λν. (4) 
To express νφ as a function of u and c, one must choose for ν the value which corresponds 

to the total energy defined by the theory of relativity, namely W = mc
2
, where m is t he 

inertial mass. The momentum ρ is here equal to mu and (4) can be written 

h W c
2 

νφ = — = — . (5) 
p h u 

2. A distribution of the speeds of the particles corresponds to a distribution of momenta. 

The monochromatic wave (3) is replaced by a group of waves in the form 

Ψ(χ, t) = j+~f(P) exp { |- W-px)J dp. (6) 
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This expression indicates that Ψ has a maximum within the domain Δρ surrounding p. 

The largest value of ï ' i s found when the phase of the wave 

φ = Wt-px 

remains almost constant in this domain, that is, when 

αφ dW 

dp dp 

The centre of the group of waves moves with a uniform motion, whose velocity is the group 

velocity 
χ dW 

8
 t dp

 w 

F r o m relativity: W2 = m 2c 4+ / ? 2c 2, hence WdW = c2p dp, and from (5) 

The group velocity is the velocity of the particle. 

3. The wavelength of the electrons under consideration is 

2 m0c 

A non-relativistic calculation then gives 

p h 

Wo Am ο 

which is an unacceptable result. It is necessary to take into account the relativistic variation 

of the mass 

, Γ 2" 
u = — = — = ' = cl/l- — 

m Am ληϊ0 y c
2
 '' 

hence, 

u = c/\/2. 

From (8) one finds 

and from (5) 

νφ = c Λ/2. 

The mass of electrons with velocity u is 
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Their kinetic energy is given to them entirely by the action of electrostatic forces 

eV = Wk = (m-m0)c
2
 = 0.414 rrioC

2 

hence 

moc
2
 0 9 X 1 0 "

3 0 

V = 0.414 — = 0 » 4 1 4 x ; ^ ^ _ 1 f lX 9 X l 0
1 6

 = 2 .22X10
4
 V. 

e 1.6X10
 19 

II 

1. By definition 

ν 
VA = X'V = — . 

V 

2. With the fundamental expressions (1) and (2), the wave group (6) can be written in 

the form 

Ψ(χ, t) = j + ~ f ( v ' ) exp {2n]{vt- v'x)) dv', (9) 

which suits electromagnetic waves. The same reasoning which led from (6) to (7) in this 

case gives 

dv 

3. Equations (5) and (8) show that 

v, = W . (10) 

ν8·νφ = c
2 

which when combined with (10) and v' = ν/νφ give 

1 _ ^ _ d / v \ 

vg ~~ c
2
 ~~ dv \νφJ 

or 

c
2
 νφ \νφ} 2 \υφ) 

hence 

ν \
2
 ν

2 

r i 

AT is a positive or negative constant, thus finally 

c
2
 Kc

2 

^ = «*= ι+^-= ι+/α§ , 
νφ ν2 

λο being the wavelength in vacuum. 
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4. This equation agrees with the dispersion law given in the text for v% :» v
2
; one has then 

in effect 

Σ ^ 

or 

This expression is valid for X-rays or whenever the wavelengths are very short compared 

to the wavelengths of the atomic or molecular absorption bands. 

P R O B L E M 57 

Five Exercises on Uncertainty Relationships 

I 

In a Michelson interferometry experiment it would seem possible at first inspection to 

determine if the photon associated with a wave train is reflected from one or the other of the 

two mirrors by measuring the recoil of the mirror. Show, using the uncertainty relationships, 

that this measurement is incompatible with the preservation of the coherence of the wave 

trains which interfere. 

SOLUTION 

In order for there to be coherence, it is necessary that the uncertainty in the position of 

the mirrors is much less than the wavelength of the light. If Δ * » A, the corresponding recoil 

should be : 

where Α/λ is the momentum of the photon. The experiment is therefore impossible. 

II 

Starting from the gedanken experiment on the measurement of position using the "Heisen-

berg microscope" (§ 13.7), determine the short wavelength limit on length measurement 

imposed by the relationship W = hv. 

SOLUTION 

Use of radiation with wavelength λ0 allows one to measure a minimal length of the order 

of Δ/ λο/2 sin u, with a microscope with numerical aperture sin w. The lower limit λ 7 

of λ useful for this corresponds to the annihilation of the reference particle, that is, to a 
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4. This equation agrees with the dispersion law given in the text for v% :» v
2
; one has then 

in effect 

Σ ^ 

or 

This expression is valid for X-rays or whenever the wavelengths are very short compared 

to the wavelengths of the atomic or molecular absorption bands. 

P R O B L E M 57 
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proper energy moc
2
 of the particle. Thus 

λι is then the Compton wavelength for the case where the particle is an electron (§ 11.4). 

λ/ = — = 2 . 4 2 X 1 0 - 1 2
 m. 

mec 

For heavier particles such as atomic nuclei, the limit decreases but only to about 10
- 15

 m. 

Measurement of lengths much smaller than this is without physical meaning (see L. Brillouin, 

Science and Information Theory, chap. 16). 

I l l 

In quantum mechanics a harmonic oscillator of mass m and frequency ν has in its ground 

state a residual, zero-point energy W0 = \hv with corresponding normalized eigenfunc-

t ion: 

where χ is the oscillator extension and a — Vh/4n
2
vm the amplitude. Calculate the mean 

value ( χ ) of χ and ((àx)
2
) = ((x—(x))

2
) and show that if the energy is well known and has 

value W0 the uncertainty relationship <(Δχ)
2
> (Δρχ)

2
) s> h

2
β results. 

SOLUTION 

The mean value of χ is 

(x) = xrplax = x e x p ( - £ ) dx = 0 

since it is the integral of an odd function. The mean quadratic value of the variation of 

χ is 

((Ax?) = ((x-(x)f) = <*
2
>, 

since (x) = 0, so that 

Integrating by parts this becomes 

- / ϊ Κ - (-5)]:>/ϊ ί Γ -ρ (-5) -
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The first term on the right-hand side is zero like (1). The value of the integral is a y/n and 

The energy expression is 

W = ^- + 2n
2
v

2
mx

2
. 

2m 

If this is fully determined, one can write 

W = ̂  + 2rcVm<x2), 
2m

 x
 ' 

and since (p) = 0 

W = ^^^+2n
2
v

2
m((Ax)

2
). 

The uncertainty relationship 

((Δρχ)
2
)χ((Δχ)

2
)^Λ

2
/4 

gives 

This expression has a minimum for 

h 
((Axf) = 

4nvm ' 

The minimum value of Wo is 
Wo = finv — hv/2. 

IV 

Starting from the uncertainty relationship between the momentum of a particle and the 

corresponding coordinate, evaluate the ground state energy of the hydrogen atom. 

SOLUTION 

The energy of an electron at a distance r from the nucleus is given by 

Ό
2
 e

2 

W = — - . 
2me 4nsor ' 

The minimal energy is obtained by taking the smallest possible values for ρ and r. However, 

according to the required uncertainty relationship 

Δ / 7 - Δ Γ c ~ h. 

17 R & M : PIO 
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(Note, in writing this expression, that the velocity is radial ; one says in effect that the angular 

momentum of the electron is zero in the ground state.) The mean values ( r ) of r and (p) 

of ρ cannot be less than Ar and Δρ respectively. Thus one has for the minimal mean values 

(r)X(p) - ft 

so that : 

h
2
 é

2 

^ = ïtruifTAne0{r) ' 

This expression has a minimum for 

(r) = 2 . 

This is the value of the first Bohr orbit or the most probable distance of the electron from 

the nucleus. One finds for the energy minimum the value 

uz 

One proposes to measure the magnetic moment M due to the spin of the electron by meas-

uring the magnetic field H which it produces at a distance r. In order for this experiment to 

have meaning, one must be able to localize the electron in a domain Ar <c r. It is also 

necessary that the magnetic field H' due to the motion of the electron (velocity v) is negligible 

compared to the field H. Show that these conditions are not consistent with the uncertainty 

relations. 

SOLUTION 

The maximal field H is given by (in ampere-metres) 

H^ — - . 
Απ r

3
 * 

The maximal field H' due to the motion of the electron is 

Απ r2 

One knows in addition that M is equal to a Bohr magneton (§ 15.6), so that 

jkyf eh 

The condition H ^> H' thus leads to 

h ^ > 2pr, 
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with ρ = mev. The uncertainty relationship leads to 

ArxAp ^ h9 

which, with Ar <$c r, gives 
h <zr Δ /7, 

an inequality incompatible with (1). 

P R O B L E M 58 

Potential Barrier 

A flux of single velocity particles of mass m and total constant energy W moving from x' 

to χ encounter a potential barrier of width d. 

I 

The cross-section of the barrier is shown in Fig. 58.1. 

Wp=W1 = 0 for χ < 0 

Wp = W2 for 0 < χ < d 

Wp = Wz for x>d. 

w 
w2 w2 

1 II III 

y* 0 d * 

FIG. 5 8 . 1 

Write the continuity conditions for the wave function associated with these particles and 

for its first derivative. Derive the transmission coefficient Τ for the potential barrier (ratio 

of the transmitted to incident flux) as a function of d and of the wave vectors ΟΊ, cr2, and <r3 

corresponding to the regions I, II , and III . Assume that W is greater than Wp. (Initially the 

energy of the particles is purely kinetic.) 

II 

Consider the special case where Wz = Wx and where W >Wp (Fig. 58.2). Give the t rans-

mission coefficient Γ for this barrier as a function of the reflection coefficient R\ at the poten-

tial discontinuity O. Show the analogy between this expression and that for the transmission 

of electromagnetic waves falling on a glass plate with plane parallel faces. The glass plate 

has index n2 and is situated in a homogeneous medium of index n±. 

17* 
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w 
~"w2 

0 d 

FIG. 5 8 . 2 

III 

Use the potential barrier above bu t consider the case where W < 

W = 1 eV, W2 = 2 eV and d = 1 Â for bo th electrons and protons. 
Wp. Calculate Τ for 

SOLUTION 

I 

Asymmetric barrier 

Schrödinger's equation is written 
in region I: 

in region II : 

in region III : 

d-V 
d x 2 

dx* 

+β%φ = 0, with <rx = 

+σ%ψ = 0, with σ2 = 

\/2mW 

\Z2m(W-W2) 

d > + < ^ = 0, with a3= V2m(W-Wz) 
dx

2 

(1) 

(2) 

(3) 

In regions I and II one has both a direct wave and a reflected wave. In region III, which is 
assumed to go to infinity, there is only a direct wave. 

The solutions of the Schrödinger equation corresponding to these three regions are 

ψιιι = te-****. 

(4) 

Recall the origin of the continuity conditions. The function ψ9 whose square measures the 
probability density for the particles at a point along x'x, can only have a single value at a 
given point. In addition, since the energies W2 and W$ are finite, equations (1), (2), and (3) 
show that the second derivative of ψ is also finite. Thus the first derivative is continuous. 
Writing the continuity equations on the plane χ = 0 

1 + r = A+B 

ffi(l-r) = (T2(A 
(5) 
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and on the plane χ = d* : 

A exp (—}u2d)+B exp (jcr^) = t exp (—j<r3d) 

a2[A exp ( - j c r ^ - ^ exp (jcr^)] = ta3 exp (-jcr 3rf). 
(6) 

We have already solved an identical system of equations in Problem 14. It is sufficient to 

replace t by t exp (-ja^d) in equation (25) and on the right-hand side q0, q, and qs by o\ 

<r2, and <r3 as well as k0 by <r2. 

Taking the modulus of this expression, one gets the transmission coefficient for the 

barrier 

4σΊσ|σ·3 
T = 

<*1(σι+°zf+(«Ι - °ι) ΟΙ" σΙ) sin2 (Ό 

Note. It is useful to show in parallel some results from physical optics and quantum optics 

obtained in Problems 14 and 58. 

Dielectric films 

One writes continuity expressions for the 

tangential components of the electric and 

magnetic fields. 

Potential barriers 

One writes continuity conditions for 

the wave function associated with the 

particle and for its first derivative. 

The same set of equations result : 

equations (18) and (22) equation (5) 

equations (19) and (23) equation (6) 

The different media are characterized by 

their index (n0, Wi , . . . ) hence the different 

wavelengths of the electromagnetic waves 

(λ0 = c/n0, λι = c / « i , . . . ) . 

The different regions are characterized 

by their potential energy Wp(x) hence by 

the different wavelengths associated with 

the particles and their corresponding wave 

numbers, 

Ol 
2π 

τ, 

V2m(W-WÏ) 

W > W2, σι r
 σ3. 

The equation for Τ simplifies to 

II 

~~" T~2 2Ϊ2! · ( ^ ) 

* It is necessary to write the exponential on the right-hand side and not just ι as is the case with thin films 
(eqn. (2), Problem 14). It is only through this condition that the factor σ 3 appears in the second equation (6). 
Later on exp (—jozd) cancels in the calculation of T. 
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On the other hand, the reflection coefficient at Ο is obtained by starting with equation 

(13.45) (Optics) which can be written 

•f- w 
from which : 

r = '
 W

 =
 σ ι

~
σ 2

 (9) 

The transmission coefficient at the potential barrier is 

Γ = 4/Γ * 

Notes 

1. The transmission coefficient of a thin plate has the same form. In effect, if in equation 

(31), Problem 14, one makes q0 = qs or nQ = ns = nv one has 

r
 = r 2 2 Ί2 · (

1 2
> 

l + l ^ L s i n ^ ^ 
4«fn| 

Fresnel's formula allows us to write 

* - (£5·)"· (13> 
and equations (11) and (12) are identical. 

2. The potential barrier, like the dielectric plate, is perfectly transparent when sin a^d = 0 

or d = λ 2/ 2 . An application of this quantum effect is the Ramsauer effect. 

A beam of approximately 0.1 eV electrons passes through an inert gas (neon or argon) 

as if there were no atoms in the path. The atoms appear practically transparent to electrons 

at this energy. When the electron energy is greater than or less than this value they are 

scattered away from their path. 

I l l 

W i < o*i = cr3 (Fig. 58.2). 

The solutions of the Schrödinger equation are 

ψιι = i l e - ^ + i e W , 

V i n = re-fax. 

(14) 
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Equations (5) and (6) become 

(l+r) = A+B9 J 

j ( T i ( l - r ) = a2(A-B)\ j 

A e-**
d
+Be

+(r
*

d
 = t e~^

d

9 1 

φ β - ^ - ί β + ^ Ι = jcriie-J
0
"^. j 

Solution of these equations gives (it is sufficient to replace jor2 by a2 in (6)) 

_ 4jcrior2e
_ j < r i </ 

' ~ (or 2+jo ' i )
2
e -

( r
'

i /
- ( (T- jof i )

2
e

0
' ^ * 

(15) 

(16) 

(17) 

Since the external media are identical, one has (taking into account the identities 

2 sinh χ = e*—e~* and j sin χ = sinh )x) 

ψ _ 1/12 = 4flr|gf / l o x 
1 1

 4ίr
2
(τ

2
+((yf+σ

2
)

2
sinh

2
ίr 2rf

, u ; 

Numerical application: 

l + sinh
2
cr2rf' 

o2a = τ u. 

For the electron, 

. 2X3.14 V 2 X 0 . 9 X 1 0 -
3 0

X 1 . 6 X 1 0 -
1 9

 m_ 1 0 

a
*

d =
 6 . 6 2 X 1 0 - "

 10
 ' 

a2d = 0.51, sinh a2d = 0.53, 

Τ = 
l-h(0.53)

2
 14-0.28 ' 

Τ = 0.77, 

R = 0.23. 

For the proton, m = 1840 me, a2d = 22, and the term exp (a2d) which arises in: 

sinh = 2~[exp (o2d)—exp (—cr2rf)] 

is of the order of 10
1 0

. Therefore, Τ ^ 0. 

P R O B L E M 59 

The Deuteron 

The deuterium nucleus (heavy hydrogen), called the deuteron, is made up of a proton and 

a neutron bound together by an attractive force derived from a central potential Wp(r). 

Assume the proton and neutron masses are equal (this is valid to within 0.007 parts) and 

are 1 .672X10"
27
 kg. 
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1. Write the time independent Schrödinger equation for the deuteron in the system of 

coordinates relative to its centre of mass. 

2. When the deuteron is in a spherically symmetric state, write the radial wave equation. 

3 . Experiment shows that when the deuteron is in its ground state, the absolute value of 

the binding energy is | W\ = 2.23 MeV. Give the sign of the energy and tell its significance. 

One can assume that the interaction energy Wp{f) in a first approximation can be represented 

by a square well such that Wp(r) = — W0 for r < r0 and Wp(r) = 0 for r > r0 (Fig. 59.1). 

Assuming the ground state to be spherically symmetric, determine the corresponding wave 

function (which along with its first derivative should be uniform, continuous, and bounded). 

One takes in the wave equation ripr(r) = u(r). 

FIG. 59.1 

4. Calculate the radius r0 of the potential well—that is, the nuclear interaction length-

for Wo = 21 MeV (one takes for r 0 the smallest possible value). 

5. Calculate the probability that r is larger than or less than r 0 . 

SOLUTION 

1. The system is equivalent to a particle of mass μ = m/2. The time independent Schrö-

dinger equation is 

Ay>+^[W-Wp(r)]w = 0. (1) 

2. In the spherically symmetric states (S states), ψ = const. X%(r). The laplacian is given 

by 

JL
 d

 / « 2 *Vr
y 

r
2 dr \ dr J 

and the wave equation 

3 . The binding energy is the difference between the energy of the two-component system 

and the energy of the components at rest at infinite separation. It is, therefore, negative 

since the proton and neutron attract one another. The value W = — 2.23 MeV of the ground 

state is the eigenvalue of the Schrödinger equation for this state. 
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Taking r\pr = u{r\ one has 

dyr _ 1 du u d
2
tpr _ 1 d

2
u 2 du 2u 

dr ~ r dr r
2
 ' d r

2
 r dr

2
 r

2
 dr r 3 

and equation (2) becomes 

For r > r0, Wp = 0, the solution of (3) is an exponential (since W < 0), so that 

Vm\W\ 
u(r) = A exp ( - Kr)+Β exp (Kr)9 with # = 

Β is zero, since r'
1
 exp (ATr) is not bounded at infinity. 

For r < r 0, Jf^ < W. The energy FT is the sum of the kinetic and the (non-zero) potential 

energy. The solution of (3) is sinusoidal, 

u(r) = C cos K'r+D sm K'r, with Jf' = —
v
 " ' — — . 

C is zero, since r
 1

 exp (K'r) is unbounded at the origin. The sine solution is acceptable, 

since as r 0 
1 . d / s i n Ä > \ 

— sin Κ r Κ and — ( 1 — 0. 

Using the continuity conditions for u and for dw/dr at r = r 0 

Z> sin K'ro = v4 exp (—Kr0), 

DK' cos Jf >o = - AK exp ( - Kr0), (4) 

from which 

Ä" cot K'r0 =-K (5) 

or 

VW^mcot r o =_ V J W ( 6) 

4. For I FF I = 2.23 MeV and W 0 = 21 MeV, one has 

2X3.14 V l ^ X l O - ^ X ^ X l O ' X l . o O X l O - 1 9 « , Μ „ 1 Λ Μ 

AT = 6 . 6 2 X 1 0 - «
 = 2 3 2 X 10 m

 ' 

AT' = Κ ψ ^ - ' ^ ' = 2.32X 1 0 " = 6.72X 10« m - . 

Using (5) one finds 

cot K'r0 = - 0 . 3 4 5 

iYV = y 4- arc tan 0.345 = —+0.332 + nn (n integer). 
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The smallest value of r0 is 

1.571+0.332 
r o =

 6.72X10" =
2
-

8 3 X l
°

 m
-

5. The probability that the proton-neutron separation exceed r0 is given by 

J. - C°° 2nA
2 

\y)\
2
4nr

2
dr = 4πΑ

2
 exp ( - 2 A > ) dr = - - ^ r - e x p ( - 2 & 0 ) . 

The probability that this distance is less than r0 is 

P ' = J \xp\
2
4nr

2
àr = 4nD

2 J s i t f t f V d r = ^ V 0 - y sin 2^V 0 j 
The ratio of these two quantities is, using (4) 

Ρ K' A
2
 e x p ( - 2 » 0 ) _ s i n

2
# V 0 

P ' # D
2
 K'r0-sin 2ATV0 ^ A > 0 - i sin 2 £ ' r 0 

One has : JSTV0 = 1.903, sin K'r0 = 0.945, sin 2K'n = -0.615, and P \ P ' = 1.17. 

Since P + P ' = 1, Ρ = 0.54 and P ' = 0.46. 

In the ground state of the deuteron, the proton and the neutron spend the majority of the 

time outside the range of the nuclear force. This accounts for the small value of the binding 

force W. 

P R O B L E M 60 

Double Potential Well 

I 

A particle of mass m can move along the Ox direction in regions where the potential 

energy has the following values : 

χ < 0, JF = o o ; 

0 < * < α, W = 0 (region 1); 

a < χ < a+b, W — Wo (region 2); 

a+b < χ < 2a+b, W = 0 (region 3); and 

2fl+6 < JC, W = 

1. Show that the wave function of the particle can be represented by : 

ψι = A sin coc, 

ψ3 = D sin cr[x— (2<z+è)]. 

in regions 1, 2, and 3, respectively. 

What are the values of a and a' when the energy W of the particles is less than Woï 
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2. Write the continuity conditions for the wave function at the various interfaces. What 

relationships can one derive between A and D on one hand, and between Β and C on the 

other? 

3 . By using these relationships, write the equation defining the possible values of the 

energy, W, of the particle in the form 

tan σα = /(<r, σ'). (1) 

For b sufficiently large (how large?) this equation can be put in a more simple form, 

tan σα = /0(ff, a'). (2) 

Resolve (2) graphically using the following numerical values : 

a = 0.4 Â h = 6.6 X 1 0 "
3 4

 J-sec 

Wo = 0.20 eV e = 1.6X 1 0 "
1 9
 coul 

m = 5X 10~
2 7
 kg b is measured in Â 

Derive the possible values of W. 

II 

Assume now that b is smaller. Show that (1) can be put in the approximate form 

tan σα = /0(<r, σ') (1 ±2η) (3) 

where η is a small quantity depending on b. Show the existence of a doubling of the levels 

determined in question 1.3. 

For what value of b does this doubling have a separation of 0.8 c m "
1
 for the first level? 

What then is the separation of the second level in c m "
1
? 

I l l 

The preceding problem refers to the inversion of N H 3 . Indicate quantitatively what 

happens for N D 3 (it is necessary to take twice the value of m) and for P H 3 (it is necessary 

to take 3 times the value of Wo) 

SOLUTION 

I 

1. Since the energy W of the particle is less than the height Wo of the potential barrier, 

in classical theory the particle can only reside in region I or in region III . In quantum theory 

it cannot exist to the left of region I or to the right of region III , but it can pass from I to III 

or from III to I (Fig. 60.1). The wave equation for the stationary states in I or III where 

Wp = 0 is 
h

2
 ah) 
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wnv , , οΓ / I ι I M 

α σ+6 2σ+6 
FIG. 6 0 . 1 

Its solution is sinusoidal and ψ must go to zero for χ = 0 and for χ = 2a+b. Hence 

ψι = A sin ax, 

ψζ = Dsina[x—(2a+b)], 

with a = Λ/2mWlh. In region II the wave equation is 

Since W < Wp, the solution of this equation is sinusoidal between χ = a and χ = a+b, 

so that 

ψ2 = Β exp (<τ' x ) + C exp (—<r'x), 

with 

β = 
V2m(W0-W) 

2. The continuity conditions for y and for άψ/dx are given by 

for χ = a: 

A sin σα = Β exp (ff 'a)+C exp (—a'a), 

a A cos σα = <r'[5 exp (σ'α)—C exp (—σ'ά)] ; 

for χ = a+b: 

Β exp [σ'(α -f b)] + C exp [ - σ'(α -μ 6)] î = D sin σα, 

cr'{£ exp [a'(a+b)]-C exp [-<r ' (a+6)]} = -oD cos σα. 

3 . By elimination of Β and C from the four equations above, one finds 

tan σα-f l^A exp (or'6) = tan σα-l^jD, 

^ tan σα— l^A exp (—a'b) = tan <ra+1 

The compatibility condition for these two equations is written 

^ tan σα+1^ exp (&b) = ± ^ tan <τα-1 
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from which 

tan σα 
& [ΐψεχρ (-a'b) ]' (1) 

This is the required general relationship. If b is sufficiently large that o'b is much greater 

than one, equation (1) simplifies to 

tan σα = T [1 ± 2 exp (-a'b)]. (2) 

In a first approximation, one sets aside the exponential, it being small with respect to unity, 

and then gets 

tan σα = r, 
σ 

independent of b. 

Equation (3) can be written 

σα = arctan K) 
Since 

one has finally 

sm σα = 
1 

+ kn (k an integer). 

ήσ 

V 1 + co t
2
 σα <\/σ

2
+σ'

2
 \/2mW0 

ha 
σα = kn—arcsin 

(3) 

(4) 

This transcendental equation, which determines σ and thereby W, can be solved graphically 

by finding the intersections of the line y = σα with the curve 

y = kn—arcsin 

The energy can be seen to be quantized. 

fia 

Λ/lmWo 
(Fig. 60.2). 

FIG. 6 0 . 2 
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When W « that is wh^n a « σ\ ths equation? (3) and (4) give as a solution 

σα = kn 

and the energy values are 

• • -155? · (5> 

One finds here again the energy levels for a particle in a box which is natural, since neglect-

ing W with respect to Wo is equivalent to enclosing the a intervals by infinite potential walls. 

With the given numerical values, the energy levels (5) have values 

wm - £5 - *°sxsxloSx'oaTxio-». - *
! χ 6

·
8 2 χ

 ' Ο " "
J
' 

while 

Wo = 0 . 2 0 X 1 . 6 X 1 0 "
1 9
 = 3 . 2 X 1 0 "

2 0
 J. 

The approximation made by taking W Wo is therefore a good one. A better approxima-

tion is given by (3). Since the right-hand side is small, one can take 

σ ( 1 ) = σ ( 0 ) - ^ <6) 

from which 

Λ » <M» 2 f f » » _ 2 £ » 
2m 2m 2/ησ'<°>α σ'<°>α 

This expression relates to the potential curve of Fig. 60.3 : Wp = <=° for χ = 0 and infinite 

width of the barrier of height W0. 

a 

FIG. 6 0 . 3 

II 

Equation (2) has the form required in the problem. By considering σα small, one can 

make the approximation as in (6) 

ο » = σα> ψ2 exp ( - • » > & ) , (7) 

from which 

W<& = W<V ψ e x p (-a'Wb). (8) 
σ *a 
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The last term leads to a doubling of the energy levels. The separation resulting from the 
splitting of the first (K = 1) level is 

A ^ » = ( r ^ e x p ( - f f ' ( % ) . (9) 

For 

AW{
2)
 = he Av, with àv = 0.8 Χ ΙΟ2 m " 1 , 

it is necessary that 

« p ( - ^ ) - V 3 J X l O r ^ X 3 . 1 4 X M X x 1 0 ^ X 3 X l O . X M X i y = , 

from which 

a'^b = 3.92. 

Since 

one has 

V3.2X 1 0 - ^ X 6 . 2 8 _ 
σ " 6 . 6 X 1 0 - " " 1 / X 1U ' 

6 = γ ^ Χ 1 0 " 1 1 = 2.3Χ Ι Ο " 1 1 m or 0.23 Â. 

The splitting of the second level is 

A Wi =
 c r W

 C X
P

 (
-

Σ
'

(
°

) 6 )
· 

Wf* is therefore negligible compared to WQ. 

Since 

W2V = ^ 2 ^ ( 0 ) = 4^(0) 5 

the splitting of level 2 is 4 times greater than that of level 1, namely 3.2 c m " 1 . 

I l l 

The problem of ammonia, N H 3 , inversion is as follows. This molecule has the symmetry 
of a pyramid with a triangular base. If the atoms are numbered Hi, H 2 , and H 3 one can see 
(Fig. 60.4) that as a result of inversion about the centre of mass the inverted molecule 
cannot be superimposed on the original molecule by any process of rotation or translation. 
This leads to two distinct molecular species and to two identical potential minima for the 
two positions of the Ν a tom with respect to the plane of the hydrogens. One then has the 
general situation treated in this problem with the more correct potential curve given in 
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Fig. 60.5. This, however, is difficult to solve. The value 0.8 c m
- 1

 adopted for the splitting 

of the first energy level above is that which is found for N H 3 . The transition which one sees 

between these levels is a dipole transition which gives rise to an absorption at λ = 1.25 cm. 

For N D 3 the form of the potential curve is the same as for N H 3 . If one doubles the value 

of m, <r
(0)
 is multiplied by y/l and W[

0)
 is divided by 2. The value of — or

, ( 0)
 b changes from 

3.92 to 3 .92ΧΛ/2 = 5.04 and exp (-a'^b) = 0 . 6 4 Χ Κ Γ
2
. Equation (9) shows that the 

value of Δσ is divided by about 9. 

FIG. 6 0 . 4 FIG. 6 0 . 5 

For P H 3 assuming that the width of the barrier b will remain unchanged but that the 

height Wo is multiplied by 3, <r'
( 0)
 is multiplied by V3, exp ( - c r '

( 0 )
6 ) = 0.11 X 10~

2
 and 

equation (9) where only <r'
(0)
 varies, shows that the value of Δσ is reduced to about 0.03 of 

the value for N H 3 . The full calculation is difficult. 

P R O B L E M 61 

Angular Momentum Operators 

The one-electron wave function for the state / = 2, m = 2 is given by : 

ψη22 = cfif) sin
2
 0 exp (2j0), 

where c is a constant. The funct ion/( r ) , the radial par t of the wave function depends on the 

principal quantum number η but is not important here. Show that ψη22 is an eigenfunction 

of the operators G2 and G
2
 but not of ôx or ôy (G being the angular momentum). 

SOLUTION 

1. The operator Gz is given by (§ 14.3) — j / i (ö/80) , from which 

ψη22 is thus an eigenfunction of ôz with eigenvalue 2Ä. 

2. The operator G
2
 is given by 

& = _ ρ f 1 A /s in θ 9 \ + * . SL1. 
[sin θ θθ \ 8 0 / sin

2
 θ ΰφ

2
\ 

262 
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 θ ΰφ

2
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One has : 

'«22 
80 

9>,i22 A ^ - = " 4 ^ 2 2 , 

= 2cf(r) sin 0 cos 0 exp (2j0), 

| s in 0 ^l^-j = c/(r) exp (2j0) [4 sin θ cos
2
 Θ - 2 sin

3
 0], 

#V„22 = -h
2
cf(r) exp (2j0) [4 cos

2
 0 - 2 sin

2
 θ -4 ] 

= A
2
c/(r) exp (2j<£).6 sin

2
 0 = 6ή

2
ψη22. 

^ λ 22 *
s
 therefore an eigenfunction of G

2
 with eigenvalue 6h

2
 which should be equal to 

/ ( /+ 1)A
2
 and therefore does have the required value for 1=2. 

3 . The operator Gx is given by 

( 9 8 \ 

sin0 g g + c o t 0 c o s ^ g 0 j 
from which 

GxWn22 = —}h{—2 sin φ sin θ cos Θ—2j cot θ sin
2
 θ cos φ)ψ„22. 

The right-hand side of this equation is not equal to the product of a constant with ^,,22 

and ψη22 is therefore not an eigenfunction of Gx. The same holds true for Gy. 

P R O B L E M 62 

The Compton Effect 

A monochromatic y-ray falls on a very thin metallic foil placed in a vacuum and, by the 

action of a uniform magnetic field B, electrons are extracted. Determine the energy, the 

frequency, and the wavelength of the incident radiation under the following conditions: 

R is the radius of curvature of the ejected electrons in a plane perpendicular to the field B; 

λκ is the wavelength corresponding to the work function of the metal ; and the constants 

A, c, me, and e are given. Neglect relativistic corrections. 

Numerically, Β = 15 Χ 1 0 "
4
 tesla, R = 0.10 m, and λκ = 0.15 Â. 

II 

The y-ray above passes through hydrogen. Derive the theory of the Compton effect using 

relativistic mechanics. Calculate the wavelength of the photon scattered through an angle 

of θ = 90° with respect to the direction Ox of the incident photon beam. 

18 R & Μ : ΡΙΟ 
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18 R & Μ : ΡΙΟ 
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Calculate the kinetic energy WK of the recoil electrons in a direction making an angle φ 

with respect to the incident direction Ox, as a function of the ratio α = λ€/λ (the Compton 

wavelength over the wavelength of the incident photon). Find a relationship between the 

angles φ and 0. Show on a polar plot, as a function of the angles φ and 0, the energy of 

the scattered photon and the recoil electron. 

SOLUTION 

I 

The energy balance for the action of a y-photon with frequency ν and wavelength λ is 

written : 

c 
hv = η-γ= work required to extract the e lec t ron+the electron kinetic energy (1) 

The γ quantum is energetic enough to ionize metal atoms by removing Κ electrons from 

them and once this is accomplished the energy necessary to remove the electrons from the 

mean potential of the metal is negligible. Since one is applying Newtonian mechanics to 

this electron, equation (1) becomes 

he he 1 „ 

The velocity ν of the electron having charge e and mass me is derived from the radius of 

curvature R which is a result of its trajectory normal to the magnetic field Β 

p R R 1 fiV Ι Ο
- 19 

v
 = — = Q x / m - 3 i Χ15X 10"

4
X ΙΟ"

1
 = 2 7 X 1 0

6
 m/s. 

me 9X10
 31 

Hence the photon energy 

£ _ 6^^^+^x , 0 -»x729X W » Ι β χ 1 0 - J; 

its frequency 

its wavelength 

W 165 Χ Ι Ο "
1 6

 - w m l „ „ 
ν
 = Ύ = 6 . 6 2 X 1 0 - " = 2 5 X 1 0 " Hz, 

7 = 2 ^ =
 0 1 2 x l

° -
1 0 m

 =
 0

-
1 2 Â

-

II 

In relativistic mechanics energy conservation in Compton scattering is written 

he he , / 1 Λ 
— = —+mec

2
 — 11, 

λ λ' Wl-ß
2
 ! 

(3) 
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with β = υ le, the ratio of the speed of the electron to the speed of light. Conservation of 

momentum along the axes Ox and Oy (Fig. 62.1) gives 

h h 
cos θ 

λ λ' 

λ' 
sin θ = 

meßc 

meßc 

cos φ 

sin φ. 

(4) 

(5) 

FIG. 6 2 . 1 

By eliminating φ and the velocity ßc of the electron from equations (3), (4), and (5), one 

gets the shift of the Compton ray 

λ'-λ = — (1 -cos Θ) = — sin2 I- = 0.0485 sin2 ^ . 
mec 

For θ = 90° 

λ' = 0.12+ 

mec 2 

0.0485 

(6) 

= 0.1443 Â. 

Equation (6) can be written 

with α = hv/mec
2
 one has 

λ' = A [ l + a ( l - c o s 0 ) ] , 

ν = l + a ( l - c o s Θ) ' 

From (3) and (7) one can get the kinetic energy of the electron 

a( l — cos Θ) 
Wk = h(y-v') = hv 

l + a ( l - c o s 0) 

(7) 

(8) 

By eliminating β from equations (3), (4), (5), and (7) one gets for a relationship between 0 

and φ 

2 
1—cos 0 = 

which when put into (7) yields 

Wk = hv 

l + ( l + a )
2
 t an

2
 φ 

2α 

1 + 2 α + ( 1 + α )
2
 t an

2
 φ 

(9) 

(10) 

18* 
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This is the required expression. Also, equation (9) can be written 

so that by noting that 0 and φ always have opposite signs 

0 
cot φ = - ( l + α ) tan y . 

Table 62.1 gives the values of φ, hv'/hv, and WJhv as a function of 0. 

TABLE 62.1 

(11) 

0 π/6 π/4 π/3 π/2 2π/3 3π/4 π 

cos Θ 1 0.866 0.707 0.500 0 - 0 . 5 0 0 -0 .707 - 1 
tan 0/2 0 0.268 0.414 0.577 1.00 1.732 2.414 ο ο 

cot φ 0 0.282 0.435 0.605 1.05 1.82 2.53 ο ο 

φ° 90 74.25 66.5 58.8 43.6 28.8 21.55 0 
hv'/hv 1 0.875 0.764 0.656 0.488 0.388 0.358 0.322 
Wkjhv 0 0.125 0.236 0.344 0.512 0.612 0.642 0.678 

FIG. 62.2 

Figure 62.2 represents the various cases found in the table. 

P R O B L E M 63 

Planck Radiation Formula 

1. Derivation. Consider an isothermal enclosure containing linear harmonic oscillators 

with eigenfrequency v0 and dipole moment d with density Ν per unit volume. At thermal 

equilibrium the power radiated by an oscillator in the form of electromagnetic waves is 

equal to that which it absorbs from the isothermal radiation which is characterized by a 
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density w(y) dv in the spectral interval dv. The power is radiated like a Hertzian dipole. To 

evaluate the absorbed power, one starts from the results of Problem 51. Assuming initially 

that the total mean energy of one of the oscillators obeys the equipartition principle, show 

tha t the expression obtained for w(v)—that is, the Rayleigh-Jeans formula—is inacceptable 

since it does not satisfy Stefan's law. Then making Planck's assumption that the oscillator 

can only take on values for its total energy which are integral multiples of an energy W, 

calculate the mean energy of an oscillator and the radiant energy density w(y\ assuming 

W = hv where h is Planck's constant. 

2. Show that Plank's formula reduces to the Rayleigh-Jeans expression at low frequencies. 

What form does it take at high frequencies? 

3 . By writing w(v) dv = — w(X) dX express Plank's formula in terms of the wavelength, λ, 

as a variable. Show that it takes the form w(X) = X~
5
f(lfXT) and that it satisfies Stefan's 

law: 

and Wein's law: XmT = C 2 . 

4. Experiments give for Wein's constant: C 2 = 2 .897XlO"
3
 m-deg and for Stefan's 

constant : d = 7 .562X10"
1 6
 W-m~

3
-deg -

4
. 

Given : 

f°° ^ d x __ π
4 

Jo ë ^ î - T 5 

and the solution of 5(e*— 1) = xt
x
 as χ = 4.965, find Planck's constant h and Boltzmann's 

constant k as a function of the velocity of light in free space. 

SOLUTION 

1. The mean power radiated by a linear Hertzian oscillator is given by (see Problem 

51, also § 10.3) 

(φ\= <
d
" 

If one introduces the oscillator energy 

1 1 d
2 

W = jmœ
2
s

2

m = jmœ
2
-^ 

and the frequency ν = ω/2ττ, one finds 

O n the other hand, the expression for the absorbed power is derived from the flux absorbed 

by a medium made up of classical oscillators (Problem 49). The flux Φο transported by a 
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plane wave of unit area through a distance dx encounters Ndx oscillators. The power 

absorbed άΦο is given by equation (9), Problem 49. Each oscillator absorbs power given by 

α Φ 0 q
2 

Νdx 4e0m 
w(v). (2) 

At thermal equilibrium (1) and (2) are equal, hence 

8πν
2 

But the thermal radiation in an isothermal enclosure being isotropic has a density 3 times 

greater than that corresponding to a single direction of propagation. Thus 

Φ) = ~-T
W
- (3> 

If one has equipartition of energy (cf. Problem 79) one knows that a linear harmonic 

oscillator has energy kT. Equation (3) gives 

W(y)= kT. (4) 

The integral w(v) dv has an infinite value if w(v) is given by (4) instead of being propor-

tional to T
A
 as required by the Stefan law. The Rayleigh-Jeans law (4) thus does not represent 

the spectral distribution of the black body. This expression results from the equipartition 

of energy obtained in turn by assuming that the energy can vary continuously (see Problem 79). 

Assume now the converse, that the energy of an oscillator with frequency ν can only take 

on values, 0, hv, 2hv, . . . , vhv (v being a positive integer) and that No is the number of oscilla-

tors which are not excited. The number of oscillators of energy nhv in the enclosure a t 

T° is, using the Boltzmann factor, 

The total number of oscillators is 

M r t I hv\ ι 2hv\ 1 No N =
 Nil+exp[-kf)+exp[-Wj+

 · · · ] = i - « p ( - f r / * D ' 
and the energy of the assembly is given by 

U = hvNoQxp ^-^j + 2hvN0Qxp (~^)+ ··· +vhvN0exp (~^)+ ··· · 

U is equal to the derivative of Ν with respect to 1 /kT, hence 
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The mean energy (W) of the oscillators is equal to C//iVand equation (2) becomes 

Snhv
3
 1 

w(v, T) 
c

3
 exp(hv/kT)-l 

(5) 

This is Planck's radiation law which gives the distribution of energy radiating from a black 

body with good precision. 

2 . For low frequencies, if hv « kT, one can expand the exponential in (5) in a series and 

limit it to its first two terms, giving 

, ^ 8πΑΐ>
3
 kT 

Η < * · Γ ) = 

The constant h vanishes and one again has the classical expression (4) which was unsuitable. 

At high frequencies, if hv ^> kT, the unity is negligible with respect to the exponential 

in (5) which leads to 
, δπ/ιν3 / hv\ 

* * γ ) = " ^ « ρ ( - * γ ) · ^ 

This expression defines a function of ν and Τ analogous to that which had been proposed by 

Wein before Planck by placing particular conditions on the emission and absorption of 

radiation. It is a good representation of the isotherms of a black body above 2 X 1 0
1 4

 Hz 

(see Fig. 63.1). 

,νν(λ) 

3 . Let w(v) be the energy density of radiation on a frequency interval dv and άλ the wave-

length interval corresponding to dv. One has 

λν = c, hence ν dA + λ dv = 0 
and 

w(v) dv = — w(?i) άλ 
hence 

™
 v

 %nhc 1 
w(X, T) = . = — /y . (7) 

v J
 λ

 W
 Λ° exp(/2c/Â:Ar-l)

 v
 ' 

This expression has the form \νλ = λ~
5
/(1/λΤ). 
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Figure 63.1 represents an isotherm of a black body (T = 1600°K). Curve I represents 

formula (7), curve II the expression derived from (4), and curve III represents the formula 

analogous to (6). 

Taking χ = hcjkTl, one has from (7) 

^ • ) - j [ " - f t r ) < u - ^ r . j [ - (8) 
e * - l

 v
 ' 

The integral is a number independent of T. Thus the total radiation from a black body is 

proportional to Γ
4
. This is Stefan's law. 

The maximum value of η>(λ, Τ) at a given temperature is found for the value, Am, of λ 

which minimizes 

he 

or 

4 * ^ > . with Λ = ( ^
5

. 
X* ' " \kTj • 

The minimum condition can be written 

5 ( e * - l ) = xt*. (9) 

The solution of this equation in χ gives a value of χ as a function of constants. Thus ληΤ 

is equal to a constant. This is Wein's law. 

4. Equation (8) using the value of the integral given in the problem yields 

= C i = 7 . 5 6 2 X l 0 -
1 6

W m -
3
d e g -

4
. 

Equation (9) has as its solution χ = 4.965 and one has 

he 

4.965A: 

One finds 

= ληιΤ = C 2 = 2897X10-« mdeg . 

. 7 . 6 5 2 X l 0 -
i e

X ( 4 . 9 6 5 x 2 . 8 9 7 )
4
X l 0 -

1 2
X l 5 £ ^ n 

h
 = 8X(3.14)*X3X10°

 = 6 6 2 7X 1 0
~

3 4 J s e C
" 

Also 
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P R O B L E M 64 

Ground State of a Two-electron Atom 

One wants here to estimate the ground state energy of a two-electron atom or ion using 

the uncertainty relations. To apply these semi-quantitative concepts, one reasons via a one-

dimensional system. The nucleus with charge Ze is assumed to be an infinitely heavy point 

nucleus situated at the origin. 

1. Write the expression for the mechanical energy of the system in terms of the coordinates 

r i and r2 and the momenta pi and p2 of the electrons. 

2 . Ri and R2 are the dimensions of the regions where the position probabilities of the 

two electrons are appreciable. What is the order of magnitude of the uncertainties Δ/?ι and 

Δρ2 of the momenta? 

3 . Estimate the order of magnitude of the ground state energy by finding W as a function 

of Ri and R2 then taking the minimum of this expression which is symmetric with respect 

to the two variables. 

4 . Compare the values thus obtained for the systems, H~, He, and L i
+
 with the experi-

mental values which are —14.2, —78.4, and —196.6 eV respectively. 

SOLUTION 

2m
yyi F 2J

 4πε0 \ η r2 r12 / '
 w 

with r i 2 = I r i—r 2\ . 

2. Δ/*ι = Ri9 A r 2 = R2, hence 

Δ/?ι - and Ap2 % A. 
Kl K2 

3 . The energy minimum is found classically when the two electrons are at rest (Wk = 0) 

at the origin (Wp minimally negative). This configuration is incompatible with the uncertainty 

relation. The states of the electrons are described by wave functions on the origin with 

extensions Ri and R2: 

w ~ 2 ^ ( i ? + ^ ) _ i { Z e 2 ( i 7 + ^ ) + Ä ^ R ; } - ( 2) 

The minimal value corresponds to dW/dRi = dW/dR2 = 0, so that , since W is symmetric 

in Ri and R2 and Ri = R2 = R 

h
2
 1 (2Ze

2
 e

2
 \ 

W %
 Ίη& ~ 4τιε~ο \ ΊΓ

 +
2R)'

 ( 3) 
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The condition dW/dR = 0 gives 

4neoh
2
 1 

R = ^ ^ _ x * ( 4) 

m
2
 Z - | 

By substituting this value in (3) 

^ m i n = ~ ( Z ~ ï ) ΙόΓίοΑ2 * ( 5 ) 

4. One notes that if one writes the uncertainty relationship in the form Δ / ? · Δ Γ ^ A, 

equation (4) contains the factor eoh^/nme
2
, which is the Bohr radius and (5) can be written : 

Wmin= (Z-±)
2
X2Wo 

where W0 is the ground state energy of the Η a tom (§ 14.5), namely 13.6 eV, and one finds 

then in eV 

Η " He L i
+ 

Ζ 1 2 3 

Wmin - 1 5 . 3 - 8 3 - 2 0 5 

in close agreement with the measured values. 

P R O B L E M 65 

First-order Perturbation. Ground State of Helium 

The helium atom is made up of a nucleus with Ζ = 2 and two electrons. 

1. Write the Schrödinger equation for the stationary states taking the potential as being 

coulombic. 

To solve this equation, one initially neglects the mutual interaction of the electrons 

(hydrogenic approximation). The equation is then in the form 

Ηοψο = Woipo (1) 

where H0 is the hamiltonian operator. What are the eigenvalues of the energy W0n and the 

eigenfunctions ψ0ηΊ Show that in the minimum energy state allowed by the Pauli principle 

the one-electron wave function is 

^ioo = Λ exp ^ ~ y j (2) 

where ρ = 4r / r 0, r being the distance from the nucleus to the electron and r 0 the mean radius 

of Η and A the normalization constant whose value one should calculate. 

2 . Consider the coulomb repulsion between the electrons as a perturbation, that is, 

replace equation (1) by 
(Η0+εΕ')ψ= Wy. (3) 



272 PROBLEMS IN OPTICS [PROBLEM 64 

The condition dW/dR = 0 gives 

4neoh
2
 1 

R = ^ ^ _ x * ( 4) 

m
2
 Z - | 

By substituting this value in (3) 

^ m i n = ~ ( Z ~ ï ) ΙόΓίοΑ2 * ( 5 ) 

4. One notes that if one writes the uncertainty relationship in the form Δ / ? · Δ Γ ^ A, 

equation (4) contains the factor eoh^/nme
2
, which is the Bohr radius and (5) can be written : 

Wmin= (Z-±)
2
X2Wo 

where W0 is the ground state energy of the Η a tom (§ 14.5), namely 13.6 eV, and one finds 

then in eV 

Η " He L i
+ 

Ζ 1 2 3 

Wmin - 1 5 . 3 - 8 3 - 2 0 5 

in close agreement with the measured values. 

P R O B L E M 65 

First-order Perturbation. Ground State of Helium 
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where H0 is the hamiltonian operator. What are the eigenvalues of the energy W0n and the 

eigenfunctions ψ0ηΊ Show that in the minimum energy state allowed by the Pauli principle 

the one-electron wave function is 

^ioo = Λ exp ^ ~ y j (2) 

where ρ = 4r / r 0, r being the distance from the nucleus to the electron and r 0 the mean radius 

of Η and A the normalization constant whose value one should calculate. 

2 . Consider the coulomb repulsion between the electrons as a perturbation, that is, 

replace equation (1) by 
(Η0+εΕ')ψ= Wy. (3) 
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eÛ' is the operator corresponding to the hamiltonian perturbation which is written this 

way (ε being a small real number) to indicate that this term is small compared to Êç>. Write 

the expression for ß'. To find the eigenvalues Wn and the eigenfunctions xpn, one makes a 

series expansion in powers of ε about W0n and ψ0η, respectively, 

Wn= Won+eW'n+e*W'n'+ . . . (4) 

ψη = ψοη+εψ'η+ε
2
ψ'η'+ . . . (5) 

Introducing these expansions in equation (3) one writes the equation giving the effect of the 

first-order perturbation. Replace ψ'η by an expansion on the eigenfunctions of the non-per-

turbed atomic system and show that the variation W'n which the energy level η undergoes as 

a result of the first order perturbation is given by 

W'n = ^ψζηΗ'ψοηάτ. (6) 

3 . Show that in the ground state, the calculation of W[ is similar to the energy calculation 

for an electric charge distribution with spherical symmetry subject to an analogous potential 

distribution. Calculate W[ numerically given the ground state energy of hydrogen as 13.56 eV 

and thereby find the ground state energy of the helium atom. Compare this with the experi-

mental value of —78.4 eV. 

SOLUTION 

1. The mass of the electrons are much smaller than the nuclear mass so that the nucleus 

can be considered as fixed. The hamiltonian is then given by 

p\ p\ Z<* Z<* é
2 

H = sr- — Λ — A + -2me 2me Απε^Τχ 4πεοΤ2 4πεοΤί2 " 

The indices 1 and 2 refer respectively to each of the electrons, r i and r2 are their respective 

distances from the nucleus, and r±2 is their mutual separation. If one regards the mutual 

coulomb repulsion as a perturbation, that is, the term 

é
2 

^ 4ττεοΤΐ2 ' ^ 

the hamiltonian for the unperturbed system is given by 

β — I - — Δ - Λ / h
* Δ

 2 62
 \ 0

 \ 2me

 1
 4πεοΤι) \ 2me

 2
 4ττε(/*2/ 

The variables are separable and the Schrödinger equation can be broken into two parts 

both of which are for the hydrogen problem with nuclear charge Ze. On can easily see 

tha t if, in the solution of the hydrogen a tom problem, one multiplies the potential energy 
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by Ζ the energy W is multiplied by Z
2
 and the eigenfunction ^100 becomes 

Zr\ 
ψιοο = A exp 

so that with Ζ = 2 this satisfies equation (2). The constant A can be calculated by writing 

the normalization condition 

ί y)f00 dr = 1 = 4πΑ
2
 exp (— ρ)ρ

2
άρ. 

ο Jo 
Integrating by parts 

j exp ( - ρ)ρ
2 dg = - ρ

2
 exp ( - ρ ) - 2 ρ exp ( - ρ ) - 2 exp ( - ρ). (8) 

The value of the integral is 2 and 

The Pauli principle allows two electrons to have the same eigenfunction yioo in the ground 

state if their spins are opposed. The eigenfunction of the ground state of the unperturbed 

system is the product of the eigenfunctions of the two electrons. 

Vioofa, r2) = ψιοο(η)Χψιοο(τ2). 

The energy of this state is the sum of the energies of each of the electrons and this is equal 

to Z
2
 = 4 times the ground state energy of the hydrogen atom. 

2. When one substitutes the expansions (4) and (5) in equation (3) and equates the zero 

and first powers of ε in the identity obtained in ε, one gets 

Άθψη + Ε'ψθη = WonWn+W'nWOn 

The first of these equations is only the unperturbed equation for the system (1). If in t h e 

second \p'n is replaced by the expansion 

ψη = Σ Cnn'VOn' 
Λ ' 

one gets, using (1), 
Z ^ ^ - ^ W = (W'n-H')WQn. (11) 

Multiplying both sides of this equation by y>ln and integrating over all space, one finds 

Σ C n n W w ~ WOn) J ψΟηψΟη' dt = W'n J ψθηψθη dt - J ψοηΗ' ψ0η dt 

or by taking into account the orthogonality and normalization 

W'n = J ^ V o n d r . (12) 
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This is the required expression. One sees that the shift of the energy level η is equal to the 

mean value of the perturbation for the unperturbed system in state n. 

3 . When one applies expression (12) to the problem of the ground state of helium where 

(7) gives the perturbation term, one finds 

The product ey*1Wi represents the electric charge density at some point due to the presence 

of an electron at that point. Equation (13) therefore represents the electrostatic energy of two 

spherically symmetric distributions each related to one electron. The energy can then be 

written, using (2) and (9), as 

with ρΐ2 = (4 / r 0) r i2 and the volume elements d t i and dr2 being expressed as functions of 

ρι and ρ2 respectively. To evaluate this integral, one forms at each point the expression 

for the coulomb potential due to the volume density exp (—ρι) and then the energy at this 

point for the volume density exp (—ρ 2) due to the other charge. The charge 

is contained in a spherical shell of thickness άρ\. At an interior point this gives a potential 

which is constant and equal to dV = d ß i / ρ ι . At an exterior point situated at a distance ρ 2 

from its centre it gives the same potential as if the charge contained in the shell were massed 

at the centre, namely dV' = d ß i / ρ ^ The potential due to the density distribution βψ(ρι) 

is then 

(13) 

(14) 

dßi = expi-Q^Ttgl dg1 

using (8) and the integral 

(15) 

one finds 

V(Q2) = — [ 2 - 2 e x p ( - ρ 2 ) - ρ 2 exp ( - ρ 2)] . 

The integral (14) then is given by 

and, by taking for dQ2 the charge of a spherical shell 

dQ2 = 4πρΙ exp ( - ρ 2) άρ2, 

S = (
4
* 0

2
 ί [2ρ2 exp ( - ρ2) - 2ρ 2 exp ( - 2ρ 2) - ρ | exp ( - 2ρ2)] άρ. 

'0 
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or, using (8) and (15), 

3 = ( 4 π ) * χ | . 

The energy (14) then has the solution 

5 4*
2
(4π)

2
 10 e* 

4
 Α

( 8 π )
2
( 4 π ε 0 ) Γ 0 4 (4πε 0)2 , · 0 ' 

Now the ground state energy of the hydrogen a tom is given by 

( 4 ^ o ) 2 r o ' 

from which 
Wi =-^Wx = + ^ X 13.56 = + 3 3 . 9 eV. 

The energy of the helium ground state in the approximation where one neglects the electronic 

interactions is, as was seen in no. 1, 

Wo = 2 X 4 ^ i = - 1 0 8 . 5 eV, 

Therefore, the corrected ground state energy becomes 

W = W 0 + WQ = - 1 0 8 . 5 + 3 3 . 9 = - 74.6 eV. 

One sees that W[ is not very small compared to W0 as should be the case in applying this 

method. None the less, the result obtained is still correct to within 5 % . 

1. By using the general perturbation method described in the second par t of Problem 65, 

write the equation for the effect of a second-order perturbation. To do this replace the sec-

ond-order term ψ'η' of the eigenfunction of state « by a series expansion of the eigenfunctions 

of the unperturbed system. Use an expansion analogous to that used in Problem 65 and 

find the coefficients. Show that the second-order correction which must be applied to the 

energy level η is given by 

2. A diatomic molecule, which has a moment of inertia / about an axis passing normally 

through the line joining the nuclei and through the center of mass of the molecule and a 

dipole moment d, will be treated as a planar rotor. It is placed in a constant uniform electric 

field Ε normal to the axis of rotation. By treating the action of this field as a perturbation, 

give the first non-zero term correcting the energy levels of this rotor. 

P R O B L E M 66 

Second-order Perturbation. Stark Effect for a Rotor 

(1) 
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2. A diatomic molecule, which has a moment of inertia / about an axis passing normally 

through the line joining the nuclei and through the center of mass of the molecule and a 
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P R O B L E M 66 

Second-order Perturbation. Stark Effect for a Rotor 

(1) 
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SOLUTION 

1. By introducing the expansions (4) and (5) from Problem 65 into equation (3) o f t h a t 

problem, the terms in ε
2
 are found to be 

Εοψ'η' + βΥη = WonWn'+Wny>'n+W'n'WOn 

or 

(Ho-Wordw'n' = (W'n-ß')y)n+Wn'y)0n. (2) 

Assuming, as indicated in the statement of the problem 

ψη = Σ ϊηη'ψΟη' 

and introducing this expansion in (2) then multiplying each term by ψ Ι η and integrating 

over all space, one finds, using equation (10) (Problem 65) and the expansion of ψ'η, 

Σ ynnWon'-Won) J ψΟηψΟη' dt = 

= Σ CnnW'n VonVOu'dT- Σ C™' Ψθη&Wdt+W'n ψΟηψΟηάΤ. 
n'^n J n'^n J J 

As a result of the orthonormality of the unperturbed eigenfunctions, the integral on the left 

and the first integral on the right are zero and the last integral on the right is unity. Thus 

W'n' = Σ < W fvC#Vo«'dT. 

To calculate cnn. one refers again to equation (11) (Problem 65) (changing the present indices 

ή and n") and multiplies both sides of the equation by % n . . One gets 

Σ Cnn(W0n>- W0n) J ψοη>ψθη» dt = J ^Qn{W'n-Η') ψ0η dr 

from which, for ri ι£ η and using equation (12) (Problem 65), 

J ψοη'Η'ψοη dr 

and a
ipon'H'\pQn dx\ yy — y 

11 n k n W o n - W o * ' 
which is equation (1). 

2 . The unperturbed rotor has only kinetic energy. The hamiltonian operator is 
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becomes 

which has eigenvalues 

and eigenfunctions 

h
2
 d

2
y)0 u, f~ 

- T l W
= W

W « (3) 

WOJ = ^ (4) 

= C XP ( ±
^ '

 ( 5) 

/ being zero or an integer. 

In a uniform electric field E, the potential energy of a rotor with dipole moment d is 

Wp = = -Edcos φ 

since £ , normal to the axis of rotation and making the angle φ with rf, is a suitable coordinate 

origin reference. 

The perturbed hamiltonian is H' = Wp and equation (3) is replaced by 

a
2
w 21 

d f 2 + /ρ* (Wo+Ed cos φ)ψ = 0. (6) 

Calculating the first order correction using equation (12) (Problem 65), one finds 

yS/ÄVft, dtf> = J exp [j(/-/)<£] cos φ άφ. (7) 

The integral is zero and as a result the energy shift of all the levels is zero in the first order. 

The second-order correction is given by equation (1) which is written here as 

ψοΐ'β'ψο/άφ^ 

w ' j ' = Σ x o

 w w—-- (8) 

The W0J are given by (4) and the y)0J by (5). One then has 

Γ2ττ ^ ßrf Λ2π 

J ipoj'H'ipoj άφ = - 2 ^ J exp [j(/' - / )<£] cos φ άφ. 

One knows that this integral is zero for all values of / ' — / e x c e p t for the value ± 1 in which 

case it is jr. The sum (8) then reduces to two terms, in agreement with the selection rule 

Gz being the angular momentum. By replacing the operator ô2 by its value (§ 14.3) 

where j = y/ — 1 and φ is the angle variable, Schrödinger's equation 

Ηοψο = 1¥0ψο 
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Aj = ± 1 for the rotor (§ 16.2) 

EtcP-
wy = 

wy = 

4 π
2 

EPeP ( 2 /π
2 

Γ π
2
 π

2
 ] 

\Woj-Wo,j-i
 +

 WOJ-WO,J+I J 

2 /π
2 Ε*ίΡΐ 

4 π
2
 | Α

2
[ Ρ - ( / - 1 )

2
 ^ Ä

2
[ 7

2
- ( / + l )

2
] h\4J*-l) ' 

Thus the energy levels of the perturbed rotor are given by 

», , m „ a2-72 £ W Wj= Woj+W'j' = —+ -
2 /

 1
 Ä

2
( 4 /

2
- l ) 

P R O B L E M 67 

Intramolecular Potential of Ethane 

One assumes that the function Wp — —W0 cos 3Θ suitably represents the variation in 

potential energy of the ethane molecule when the two methyl groups rotate with respect to 

one another about the carbon-carbon bond. The angle θ is the angle between C ' C H i and 

C C ' H i (Fig. 67.1) and W0 is a constant characteristic of the molecule. 

FIG. 6 7 . 1 

Take the bond lengths C H i = C H 2 = C H 3 = a and recall tha t the direction of the bonds 

from C to H i , H 2 , H3, and C have the symmetry of a regular tetrahedron. 

Two separate cases will be considered in this problem: 

Case 1: the ethane molecule H 3 C — C H 3 , and Case 2 : the hexachloroethane molecule 

CI3C—CCI3. 
Numerical values: mass of CI = 35.5 times the mass of H ; a = 1.08 Â (Case 1) and 1.8 Â 

(Case 2) ; W0 = 0.06 eV (both cases). Also given are the values of N, e, and A. 

1. Show that the Schrödinger equation can be writ ten: 

A2
 d ^ 

8 π
2
/ do2 + Wo cos 30 ·ψ = — Wip, 

/ being the reduced moment of inertia with respect to the CO axis. Find / for both Case 1 

and Case 2. 

19 R & Μ: PIO 
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8 π
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19 R & Μ: PIO 
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2. Assume initially that Wo is negligible with respect to W. 

(a) Solve the Schrödinger equation in this case giving the expression for the eigenvalues 

and the eigenfunctions of the system by taking into account the periodicity conditions 

on the function ψ. 

(b) What is the probability of finding the various states of the system as a function of the 

angle 0? 

(c) Compare the energy levels found above with those of a rotor having the same moment 

of inertia about a fixed axis. 

(d) Is the condition Wo negligible with respect to W satisfied ? Calculate W in electron-volts 

for Cases 1 and 2. 

3 . Assume now that Wo plays an important role. 

(a) Show from purely physical considerations, that ψ takes on significant values for 

30 = 2kn {k integer). This leads to the study of the Schrödinger equation with the 

retention of only the first two terms of the expansion of cos 30. 

(b ) I s the form of the transformed equation recognizable? With what problem is it 

associated? 

4. One wants to determine the energy levels of the system defined by the preceding equa-

tion. Look for solutions of the form 

where b is a constant to be determined and P(0) is a polynomial. By writing P(0) with a 

finite number of terms, give the conditions which define the possible energy values W of the 

system. 

(a) Apply these conditions and write the general expression for W. 

(b) Compare W to Wo. Calculate the first three levels for W in electron-volts in Case 1 

and Case 2. Discuss the results. 

1. The rotation of the C H 3 groups with respect to one another takes place about the C — C 

axis fixed in the molecule. This axis is perpendicular to the plane of Fig. 67.1 with the group 

CHiHgHg being in front of C'HÎHgHg. The relative position of these two groups depends 

only on the angle 0. The problem is actually analogous to the rotor about a fixed axis 

(§ 14.2) but differs on two points. First, since the methyl groups are both mobile, the mo-

ment of inertia which applies is a reduced moment of inertia analogous to the reduced 

mass of a linear oscillator, it being in general 

SOLUTION 

1 = 
h+h ' 
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Here h = h = h and / = 7o/2, h being the moment of inertia of a methyl group with 
respect to the C C axis. One has (Fig. 67.2) 

7 0 = Emr
2
 = 3m(a sin a )

2 

where m is the mass of the hydrogen (or chlorine) a tom and α the supplement to the angle 

H2C = 109°28\ 

For C 2 H E: 

For QiCle: 

1 x l 0 ~
2 e 

/ = 2 x 6 025' (108X0.9428)2 = 2.66X K T *
7
 k g / m

2
. 

3 y i n ~
2 e

v ^ s ^ 
/ = 2 X 6 025 ί

1
· ^

0
·

9 4 2 8
)

2
 =

 2 5 4x 1 0
"

4 ? k
8 /

m 2
-

Secondly, one has here a potential energy Wp which does not exist for the rotor. Starting 

from the Schrödinger equation relative to the stationary states for a mass m 

a discussion analogous to that of the rotor shows that the first term can be put in the form 

h
2
 &ψ 

21 do 2 ' 

Additionally, taking into account the expression Wp= — W0 cos 3Θ given in the problem, 

one finds the Schrödinger equation to be equation (1) as required. 

2 . If the potential energy is negligible with resrieict to the energy of the molecule, equation 

(1) takes the form of a ro tor about a fixed axis. It has a free rotation for the two halves of 

the molecule one with respect to the other. The eigenfunctions have the form of the rotor 

functions (§ 14.2): 

r = C e x p ( ± j | /
r

^ ^ + a ) . (2) 

19* 
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But here, examination of Fig. 67.1 shows that the function is periodic for period 2π/3 

* o ) = v ( f ) . 

This condition, when applied to (2), gives 

e x p i ± j y - p - ' Τ ) = 1 

which determines the energy eigenvalues 

9/z
2 

w
'

 = J2
-2r C integer). (3) 

One out of three of the energy levels of a rotor about a free axis is permitted, 

ν For C 2 H 6 : 

9X(1 .054XlO -* ' )2 9.999X 10"«
8
 , Q_ v m_ 2 1 _2 . . 

^
 = 7

 2 X 2 . 6 6 X 1 0 - ^
 = 72

 5 . 3 2 X 1 0 - ^
 = L 9

°
X 1 0

 *
 J

°
u l eS 

The energy ^ 7 exceeds the value W0 of the second excited level ( / = 2). 

F o r C 2 C l 6 : 

W j _ ρ 9X(1.054X ΙΟ-**)* _ 2 χ 1 0- , / 2 c V 

^
/ _ , /

 2 X 2 5 4 X 1 0 - *
7
X 1 . 6 0 X 1 0 -

1
» "

 L 2 X iü
 ^

 C V
' 

This time, / must be equal to 23 for Wj to reach W0. Thus it is easy to cause an internal 

rotation by excitation of the C 2H e molecule while in contrast this is difficult in the case of 

the C 2Cle molecule. 

3 . Equilibrium exists in the molecule when the potential energy is minimal, that is for 

θ = 2Κπ/3. The probability of finding such a configuration is maximal. By virtue of the 

probabilistic interpretation of ψ, this function will have significant values for those values 

of θ above. For small values of 0, equation (1) becomes 

(4) 

In this form, where the potential energy is a quadratic form of the dependent variable of ψ9 

it appears similar to the equation for the harmonic oscillator. One has here rotational 

oscillations which produce a torsion in the molecule about the axis C C . 

4. To solve equation (5) one proceeds in the same way as for the harmonic oscillator 

(§ 14.4). Taking 
2 / 9 Π ν 
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equation (4) becomes 

àhp [a 

For values of q much greater than a/b, this equation has an asymptotic solution 

Ψ = exp =
 e x

P 

One then looks for a general solution of the form 

for which 

S--p(- i)[$-^-'4 
By substitution in equation (5) one gets 

M^)[£-*£*(î-'M-ft (6) 

The exponential term only vanishes for q = «>, therefore the expression within the brackets 

must be zero. Taking: 

P(q) = ao+aiq+a2q*+ . . . (7) 

substituting in (6) and letting the coefficients of the successive powers of q be zero, one finds 

2a2+ 1 y<> = 0, 6 ö 3 - 2 ö i + (f — = 0 . . . 

whose general form is 

( w + l ) ( r t + 2 ) a
n

+ * - 2 n a
n

+ { j - \ y
n

 = 0. 

Hence the recurrence relationship 

an+2 a\b-\-2n 

( n + l ) ( n + 2 ) 
(Λ integer or zero). (8) 

If a/b = 2 « + 1 , the series (7) ends with the term q
n
 since the coefficient of q

n
+

2
 and all 

terms of higher order vanish. The same is true for cf
+1
. One has then 

<«* . ι a 2y/l W+Wo 
2n+ 1 = — = — — , , 

b 3/i V ^ o 
hence 

^
 = 3

( "
+

τ )
Α

/ τ " ° " ^
0

·
 ( 9) 
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For CaHe the values of the first three energy levels are 

3 
0, W - X 1 . 0 5 4 X 1 0 "

3 4 Ί / 0 . 0 6 Χ 1 

X 2.66 

60X10"
1
» 

-0 . 06X1 . 60Χ10"
1 9 

2 Χ 2 . 6 6 Χ 1 0 "
4 7 

W+ Wo = 0.30Χ Ι Ο
- 20

 J = 1.87Χ 10~
2
 eV. 

The quantity W+ Wo is the energy measured from the minimum of the potential energy 

For OsCle: 

η = 1, W+W0 = 0 . 9 0 X 1 0 -
2 0
 J = 5 .61XlO~

2
eV 

« = 2, W+Wo = 1.50X Ι Ο "
2 0
 J = 9 .35X10"

2
 eV 

η = 0, W+W0 = 0 . 3 0 8 X l O
- 21

 J = 0 . 1 9 X 1 0 "
2
 eV 

η = 1, W+ Wo = 0.57 X 10~
2
 eV 

η = 2, W+W0 = 0.95 Χ 10~
2
 eV 

/ I \2ic/3/ ! 
Λ 4lt/3/1 

FIG. 6 7 . 3 

Figure 67.3 shows the value of the assumed potential energy (sinusoidal curve) and its 

value in the parabolic (II) approximation of equation (4). For large values of W, Wp is 

negligible and is treated like the line (III). 

P R O B L E M 68 

Vibrational-rotational Energy of a Diatomic Molecule 

One will consider in this problem a heteronuclear diatomic molecule in the Born-Oppen-

heimer approximation. Assume that the potential energy of the two-atom system (due both 

to the actions of the electrons and the nuclei) can be represented by the expression 

where r is the internuclear separation and a and D are constants (D being the dissociation 

energy of the molecule). 

1. Set up the time-independent Schrödinger equation characterizing the motion of the 

nuclei. 
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2 . Write in polar coordinates—the advantage of which should be shown—the general 

wave function solutions of the Schrödinger equation. 

3 . Write the equation which determines the radial par t of the wave function ψΓ(ρ) by 

using two dimensionless quantities, ρ = rfa and the parameter A
2
 = (2μα

2
/Λ

2
)ϋ. Show the 

analogy between this problem and the hydrogen a tom problem. One will rely on this 

analogy later on in the problem. 

4. Show that the equation giving ψ,(ρ) solutions of the form 

wAo) = QPexp(-bg) Χ / ( ρ ) . 

Determine the values of the constants p and b and write the equation which the function 

/ ( ρ ) must satisfy. 

5. Find the possible values of the rotation-vibration energy of the molecule as functions 

of the vibrational quantum numbers η and the rotational quantum numbers / . 

6. The parameter A is large compared to unity. For small values of η and / find a suitable 

expression for the energy inclusive of the second-order terms. Interpret this result. 

SOLUTION 

1. The Schrödinger equation relative to the molecule whose nuclei are numbers 1 and 2 is 

Δι and Δ2 are the laplacians expressed as functions of the coordinates of the two nuclei. 

By introducing the reduced mass 

_ M i M 2 
μ
 ~ M i + M 2 

and the internuclear distance r = r\—r2, one gets 

A v + ^ + 2 D ( f - £ ) } V = 0. (1) 

2. Since the potential is central, polar coordinates allow the separation of the variables 

(§ 14.7.3). One can assume (§ 14.5.1) 

W(r, θ, φ) = γν(/Ο·Φ(0, ΦΙ 

and one finds an equation analogous to the Η atom, namely 

ï ( ' ï ) ^ M r p ) - * + " ] h - 4 ( 2 ) 
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hence 

On the other hand, for ρ — 0, equation (3) is asymptotic to 

d\> e 2 dV A*+J(J+l) 

d ? + 7 d F ? * °· ( 6 ) 

a second-order differential equation with constant coefficients. A discussion analogous to 

that for the Η a tom shows that the solution of this equation must behave as ρ
ρ
, which gives 

by substitution in (6), the equation 

p
2
+p-A

2
-J(J+l) = 0. 

The only acceptable root is 

/ > = - i + V ^
2
+ ( / + l )

2
, (7) 

since ρ > — 1. 

Thus, the solution of (3) has the form required, namely 

Vr (e )= ρ ^ χ ρ ( - 6 ρ ) / ( ρ ) , (8) 

where ρ is given by (7) and b by (5). By substituting (8) in (3), one finds the equation which 

/ ( ρ ) satisfies 

= 0. 

5 . By reasoning similar to that applied in the Η a tom problem (§ 14.5.1) one finds that 

he must have 

3 . By taking ρ = r/a and cPjàr
2
 = I/a

2
 (d

2
/dg

2
), equation (2) becomes 

0dhpQ „ dw6 [2μα
2
Ψ 9 AD μα

2
 2D μα

2

 Ί /Ί ΛΛ 

or, setting A
2
 = 2D μα

2
/h

2
, 

dhpQ 2 dy, tA* 2A* A*+J(J+1)\\ _ 

d ^
 +

 7
 +

{ ^ ^
+

~ ρ ? }
%
 - °-

 ( 3) 

4 . Fo r ρ -* °°, the asymptotic equation derived from (3) is 

d«y>. A
2
W 

For which the proper solution is 

e x p ( - ^ | /
r

^ e ) 
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η being a positive integer. The energy is given by 

DA
2 

W = — (9) 
« + i + V ^ 2 + ( / + l ) 2 J 

6. If Λί
2
 : » « and / , one has 

and the denominator of (9) becomes 

from which the energy approximation is 

or : 

•'—"+*·(-4)+(/+ΐ)'έ 
by taking: 

2Z) λ 1/"22) 

(10) 

The first term of (10) represents the dissociation energy (calculated from a zero value of 

energy, without taking into account the ground state vibrational energy) (§ 16.3.1). The 

second term represents the harmonic vibrational energy (one should verify that ω has the 

dimensions of frequency). The third represents the rotational energy (§ 14.2). 
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P R O B L E M 69 

Spectrum of the Hydrogen Atom 

I 

Quantum theory of spectral line emission. Bohr theory. Application to light hydrogen. 

Calculate the Rydberg constant, RH, in the case of a fixed nucleus and in the case where the 

motion of the nucleus is taken into account. 

Numerical application: 

h = 6.625X 1 0 "
3 4
 J sec, c = 2.998X 10

8
 m/s, e = 1.602X 1 0 "

1 9
 coulomb. 

°° = *oà<W> m = 9 . 1 0 8 X 1 0 - k g . 

The ratio of the mass of the electron, m, to the mass of the nucleus of light hydrogen M is 

equal to 1/1838. 

I I 

Find the general relationship giving the number of waves per centimetre in the radiation 

emitted by a light hydrogen atom when the electron passes from the level η to the level ή. 

Numerical application. Calculate the wavelength in dry air at 15°C and at atmospheric 

pressure of the first four lines of the Balmer series (the lines H a , H^, H y , H,,). What is the 

wavelength of the series limit? What are the resonance potentials and the ionization potential 

for the light hydrogen a tom? 

Take as the index of dry air at 15°C and atmospheric pressure 1.000280 and for RH the 

experimental value 109,678 c m "
1
. 

I l l 

The spectrum of ionized helium and deuterium. Rydberg and Pickering series 

Numerical application. Calculate the Rydberg constant RO for deuterium (heavy hydrogen) 

for the case of a fixed nucleus and in the case where the motion of the nucleus is taken into 

account. The ratio of the mass of the electron to the mass of the deuterium nucleus is equal 

to 1/3571. 

288 
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Assuming that R O = 109,707 c m " 1 , determine the wavelengths in dry air a t 15°C and 
atmospheric pressure of the first four lines of the Balmer series of deuterium analogous to 
the H a , Hß, H y , and ΉΔ lines of light hydrogen. 

IV 

One wants to study the two H a lines assumed to be emitted with the same intensity from 
a mixture of light hydrogen and deuterium using a grating spectrograph with a plane 
reflection grating. The grating is 5 cm long with 500 lines/mm and is illuminated by a 
vanishingly narrow slit placed in the focal plane of an objective. The slit is parallel to the 
lines on the grating. 

The diffracted ray is observed with a telescope with a 40-cm focal length directed normally 
at the grating. 

What should be the angle of incidence so that the image of the slit, diffracted in third 
order, is formed on the crosshairs of the telescope? What is the value of the angular dis-
persion? What is the linear separation in the focal plane of the objective of two lines 1 À 
apar t? What is the linear separation of the H a lines of the light hydrogen and deuterium? 
What is the theoretical power of resolution? Wha t should the power of the ocular be so 
that the resolving power is effectively used? Assume that the eye can separate Γ of arc and 
the objective of the collimator and of the telescope have an opening sufficiently large so as 
not to lessen the characteristic resolving power of the grating. 

SOLUTION 

I 

In the primitive Bohr theory (§ 12.1) one assumes that the electron describes about the 
nucleus in the ground state of hydrogen (or about the centre-of-mass), a circular orbit of 
radius r 0 and that the Coulomb attraction 

F = - ^ - 2 (1) 

provides the required centripetal attraction for this orbit, viz. F' = mv
2
/ro and thus 

e
2 

4πεοΤ0 

The electrostatic potential energy is, using (1), 

= mv
2
. (2) 

w -
 e

* 
p
 4πεοτ0 

and the total energy 

e
2
 mv

2 

ΛπεοΤο 2 8πεοΓο 
Wo= W ^ W ^ - ^ — V ^ r ^ - ^ r (3) 
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(in accordance with the virial theorem, § 12.2.1). Bohr fixed the radius r0 by the condition 

that the angular momentum be equal to Α/2τζ, thus arbitrarily introducing quantization. 

In (2) one replaces ν with A/2jrwr 0 : 

r o = w ' ( 4) 

and using this latter value in (3), 

Equations (4) and (5) are found to coincide with the equation for the ground state of 

hydrogen found from quantum mechanics (§ 14.5). But the reasoning by which this is 

obtained here is not satisfactory since it is necessary to postulate a circular motion for the 

electron so that it has angular momentum. However, one knows that the ground state, like 

all s states, lacks angular momentum. The Bohr theory in addition fails when one tries to 

extend it to apply to excited states of hydrogen or to atoms with more than one electron. 

Using the definition of spectral term, one has (§ 12.2) 

W1=-hcR, (6) 
hence 

me* _ 9 . 1 0 8 X 1 0 -
3 1

X ( 1 . 6 0 2 X 1 0 -
1 9

)
4
X 1 6 X ( 3 . 1 4 )

2
X 8 1 X 1 0

1 8 

~ 8e§A
3
c 8X(6 .625X10"

3 4
)

3
X 2 .9 9 8 X 1 0

8
 " '

 m
 ' 

This value is obtained under the assumption that the electron moves about a fixed nucleus. 

To take into account the simultaneous motion of the electron and the nucleus with mass— 

about the centre-of-mass it is necessary to replace the mass m by the reduced mass (§ 14.2) 

Mm 
μ M+m 

One then finds 

= Roo — = Roo t ,
 1

 = 109,855.5 c m "
1
. (7) 

m l+m/M 

II 

Using the fundamental Bohr postulates—whose validity has survived in spite of its elemen-

tary nature—the emission and absorption of radiation of frequency ν and energy hv is 

accomplished by transition between two stationary states whose quantum energies are given 

for hydrogen by the expression 

( 8 > 

where η is a positive integer. The conservation of energy in passing from level η to level n' 

by emission {ή < ή) is written 

me
4 

/ 1 1 \ 
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Taking equation (6) into account and the expression ν = cv0 between the frequency and the 

spectroscopic wave number vo = 1/λ0, this becomes 

1 1 

λο = 1 Ivo is the wavelength in free space since equation (6) uses the velocity c. In a medium 

with index N, the wavelength λ = λ0/Ν. For the lines of the Balmer series ri = 2 thus 

H e vo = = 1 0 9 , 6 7 8 X ^ = 15,233.1 cm"
1 

λΛ = 6562.8 Λ 

Ηβ v0 = 1 0 9 , 6 7 8 ^ ~J^ = 109,678 X A - = 20,564.6 cm-
1 

λβ = 4861.3 A; 

H y v0 = 1 0 9 , 6 7 8 ^ - — ^ = 109,678 X 0.21 = 23,032.4 c m "
1 

Xy = 4340.5 Λ; 

! V 

36 
H 4 h = 109 ,678^- - j - j = 1 0 9 , 6 7 8 X - ^ = 24,372.9 cm"

1 

λ» = 4101.8 A. 

At the series limit, η = °°, hence 

_ R 109,678 
v0 = -r = — - . — = 27,419.5 c m "

1
, 

4 4 

λ„ = 3646.0 A. 

The successive resonance potentials, multiplied by the charge e, represent the energy 

necessary for the electron to pass from the ground state to the successive levels 

η = 1,2, . . . , with η having a finite value. 

For the first of these potentials, namely V\, one finds using (8) and (6) 

«*-*- ι'"£(τ4)-Μ( ,4)· 
hcR 3 6 .625X10~

3 4
X2.998X10

8
X 1.09678X10*X3 l rt i no 

V l
 = ~r

X
4

 =
 1 . 6 0 2 X 1 0 - ^ X 4 =

 1 0
-

I 9 8 e V
-

For the second resonance potential : 
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The ionization potential Vt is that potential through which the electron with charge e 

must pass from the level n0 = 1 to the state η = <», where it is separated from the nucleus. 

One has 
eVi =W1 = hcR 

from which, using the value calculated for Vu 

Κ, = — = 13.598 eV. 
e 

One notes that the ionization energy hcR corresponds to the Lyman series limit, ή = 1, 

η = » , whose wave number is then v0 = R. 

I l l 

The deuterium a tom D has only one electron and a nucleus with the same charge and 

twice the mass of that of light hydrogen. Its spectrum will be identical to that of Η if one 

neglects the motion of the nucleus. If one takes this motion into account, the value of the 

reduced mass is modified and so is the Rydberg constant which now becomes : 

RO = Roo 1
- γ - = 109,884.5 c m "

1 

1 +
 357f 

The ionized helium a tom H e
+
 has one electron, a mass 4 times that of hydrogen and twice 

the nuclear charge. The effect of the mass once again is given by (7). For the effect of the 

charge difference it is necessary to make the force and the Coulomb potential twice as large 

which leads to multiplication of the energy levels (8) by the factor 4. The helium lines as a 

result have wave numbers given by 

Λ * 1 1 

where 

RHC = R ~ T , * = 109,900.3 c m "
1
. 

For the Rydberg series, no = 3 and for the Pickering n0 = 4. 

The calculation of the lines in the Balmer series of deuterium is made in the same way 

as for those of hydrogen 

One finds 

a o = 1 0 9 , 7 0 7 ( 1 - - ! ) . 

D a v0 = 15,237.08 c m "
1
 λ 0 = 6561.1 A, 

Ώβ vo = 20,570.06 c m "
1
 λ 0 = 4860.1 Â, 

Όν Po = 23,038.47 c m "
1
 λ0 = 4339.3 A, 

D , h = 24,379.33 c m "
1
 λ0 = 4100.7 A. 
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This calculation can be done directly by use of the equation (§ 15.4) : 

Δν0 _ Δ Α 

taking for v0 the values found for H, for R the value 109,678 cm""
1
 found for hydrogen 

and for (109,707-109,678) c m "
1
. 

IV 

The assembly is shown in Fig. 69.1. The maximum of the third order is diffracted in the 

direction iK = 0. The grating equation gives as the angle of incidence ¥ 

FIG. 6 9 . 1 

Assuming the desired image is relative to λ0 = 0.6563 X 10~
3
 mm with d = 0.002 mm 

sin/, =
 3XTl0-310"3

 =
 ° -

9 8 4 4 5
'
 L

'
 = 7 9

°
5 2

' -

The angular dispersion (§ 7.9) with cos iK = 1 is given by 

Φ = f = 2 x W = 1 5 00 r a d / m m-

The linear separation of two lines separated by 1 Â = 10"
7
 mm is 

/ / M O "
4
 = 4 0 0 X 1 5 0 0 X 1 0 "

7
 = 60 mm. 

The linear separation of the H e lines is 

400X1500X(6562.8 - 6561 .1)X10-
7
 = 1.02 mm. 

Theoretical resolving power (§ 7.9) 

A- = NK= 5000X 5 X 3 = 75,000. 
OA 

So that two lines will be separated, it is necessary that their images are separated by an 

angle Δι λ/Nd (§ 7.8). This angle must be transformed by the telescope to an angle at 
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least equal to Γ (§ 5.13). The useful magnification of the telescope is 

3 X 1 0 - ' X 5 ^ 

0.6563 Χ Ι Ο "
4
 ~ 

Now G = 4 0 / / ' , hence 1 / / ' = 23/40 = 0.57 diopters. 

P R O B L E M 70 

Spectrum of Neutral Lithium 

Recall that the lithium atom has one optical electron and that its ground state is an 

S(l = 0) state. 

I 

1. Given that its ionization potential is V{ = 5.390 V, find: 

(a) The ground state term To in c m "
1
, taking the ionization limit as the origin of the 

terms. 

(b) The free space wavelength λ0 of the limit of the principal series given ejhc = 8.0682 X 

10
5
 (mks units). 

2 . By electrical methods the first ionization potential is measured and found to be V\ = 

1.85 volts. 

(a) Calculate the value of the corresponding term Ti in c m "
1
. What can one say about the 

precision with which Γ ι is then fixed? Compare this with the precision which will be 

found by spectroscopic methods. 

(b) Combine this term with the ground state term and find the wavelength of the corre-

sponding emission line. 

(c) By what symbol (5 , Ρ , Z>, i
7
, . . . ) should this term be designated? 

II 

1. One studies the emission treated above using a reflecting grating spectrograph. The 

grating has 1200 lines/mm. The spectrum is formed in the focal plane of a lens L\ with a 

2-m focal length. The grating is used in a Littrow mounting (that is, the diffracted rays 

coincide with the incident rays all assumed parallel). 

(a) Calculate the sine of the angle i between the rays and the normal to the plane of the 

grating for which the preceding conditions are satisfied in first order for the wave-

length λι. 

(b) With the grating placed in this position, one sees two lines in the focal plane of Li 

separated by 40 μ. Assuming that they form two lines in the first order, calculate their 

difference in wavelength and in wave number. 
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separated by 40 μ. Assuming that they form two lines in the first order, calculate their 

difference in wavelength and in wave number. 
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(c) Assuming that the emission lines are vanishingly narrow, what is the minimal width 

of the ruled grating that will allow resolution of these lines ? 

(d) How would one explain the doubling of the lines? What is represented by their differ-

ence in wave number? 

Assume tha t : 

the preceding doublet has been obtained by excitation of lithium vapour in thermal 

equilibrium at temperature T; 

the resolving power of the spectroscope is much greater that that considered above; 

under these experimental conditions the spectral line width comes only from the Doppler -

Fizeau effect. 

(a) Find the line profile, that is, the intensity distribution as a function of the wavelength 

(or wave number). 

(b) Give explicitly their half-width. 

(c) To what temperature can one heat the lithium vapour without destroying the resolution 

of these components (that is, that the width of each of them should at most be equal 

to the distance between the two lines calculated above)? 

Note. Recall that the fraction dN/N of a toms whose velocity component in a given 

direction lies between u and u+du is given by : 

where A is a constant whose value need not be explicitly known. M is the atomic mass (for 

lithium 7 X 1 0 "
3
 kg), R is the ideal gas constant (8.32 joules). 

Take log e 2 = 0.69 and c = 3 X 1 0
8
 m/s. 

Now work with an atomic beam of lithium (Fig. 70.1) travelling in the x'Ox direction 

coming from a small opening cut in the side of an oven and collimated by a hole cut in 

a screen. Assume that the diameter of both openings are vanishingly small. The lithium 

III 

IV 

Electrons 

Oven Lithium atoms 

θ 

0 χ 

FIG. 7 0 , 1 

20 R & Μ: PIO 
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atoms are excited by collision with an electron beam travelling in the z'Oz direction normal 

to x'Ox and accelerated by a potential difference slightly greater than Ki. Collect in a spectro-

graph the radiation emitted in a direction Oy normal to both beams. 

(a) Explain why here one gets much finer lines. 

(b) If one assumes that all other causes of broadening are eliminated (resolving power of 

the spectrograph, influence of the electric and magnetic fields, etc.) one again finds 

that the two lines have a width of the order of0.003 c m
- 1

. 

What is the source of this residual width? What characteristic can be deduced about one 

of the two levels involved in this transition? T o what level does it apply? 

V 

Set aside consideration of the doublet and examine the lines of the " sha rp" series (2P—nS 

series). 

(a) Why are all of the lines in this series doublets? What can one say about the wave 

number separation of the two lines of one of the doublets of this series? 

(b) In studying the first line of the sharp series, one discovers that it is a double and that 

the higher of the two lines has the wavelength 

λ 2 = 8128.75 Â. 

Derive the value in c m
- 1

 of the first term T2 of the corresponding transition and the 

separation in angstroms of the two components. 

SOLUTION 

I 

1. The ionization energy eVi corresponds to the difference between the energy origin and 

the ground-state level. The energy of a term having the value T i n c m
- 1

 is W = hcT(§ 12.1). 

(a) Hence, for the ground state: 

eVi = hcT0, 

The value of e/hc is given in S.I. units and thus will be given in m
- 1

: 

To = 8.0682X 10
5
X5.390 = 4348,700 m "

1
 = 43,487 c m "

1 

(b) λ 0 = 4" = 2 2 9 9 X10-8 c m = 2 2 9 9 A. 
I ο 

2. (a) The first excitation potential involves the energy necessary for the electron to be 
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excited from the ground state T0 to the level Γι . Thus one has 

Γ 0 - Γ 1 = 8.0682X10
5
X1.85 = 14,920 c m "

1 

and 
Γ ι = 43 ,487-14,920 = 28,567 c m "

1
. 

If one is given Vi = 1.85 volts, this implies, in the absence of other indication, an uncertainty 

of ±0.005 volt and thus an uncertainty in T± of 

8 . 0 6 8 2 X 1 0
5
X 5 X 1 0 "

3
 ~ 4000 c m "

1
, 

thus a relative uncertainty of the order of 0.1 (on the ground-state level). This uncertainty 

is much greater than that which can be obtained spectroscopically where one can get 

commonly a precision in wavelength of 0.1 Â and thus a relative uncertainty of the order of 

1 0 "
4
 to 10"

5
. 

(b) λι = = 6710 Â. 
i O - i l 

This line is the first of the principal series and is homologous to the /Mine of sodium. It is 

situated in the red and gives that characteristic coloration to flames charged with lithium 

salts. 

(c) The ground-state term is S (/ = 0) and this can only combine with a Ρ (/ = 1) term 

as a result of the selection rule / = 1 (§ 15.3). The term Γ ι is therefore a Ρ term. 

II 

1. (a) The grating equation (§ 7.8) gives with 1 = 1" in first order : 

- . . λ . . 6710X10"
7
X1200 Λ > ΙΛ 2 sm i i = - τ or sm Zi = = — 0.40. 

a 2 

(b) The distance / which separates the two lines in the focal plane is bound to their angular 

separation δι by 0/ = / · δ / , w h e r e / i s the focal length of L i , hence 

». 4 X 1 0 "
5

 A 

bix = 2 r a d -

On the other hand, one has (§ 7.9) 

bh 1 

δλ d cos I'I ' 

therefore 

δλ = J X c o s / ι Χ δ / ι = j ^ — X0.9165X = 0 .153X10"
7
 mm or 0.153 Â. 

One has ν = Ι/λ, hence bv = — δλ/λ
2 

20* 
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(c) In the assumption taken, the width of the lines is only due to diffraction and the finite 

width of the grating (§ 7.8). The theoretical resolution is defined by 

τ χ =
Ν Κ 

allowing one to calculate Ν and therefore the width of the ruled grating. For Κ = 1, one 

has 

Γ _ Ν _ λ _ 6710X1Q-
8 

n~ ηχδλ~ 1200X0.153X10"
8
 "

 J 6
*

6 m m
' 

(d) The doublet is due to spin-orbit interaction (§ 15.7). The separation in wave numbers 

multiplied by he represents the difference between two spin energy levels of the optical elec-

tron in the magnetic field caused by its orbital motion. 

I l l 

(a) The transverse Doppler effect is negligible (§ 9.10) and the spreading of the line is due 

only to the Doppler effect produced by the velocity u along the observational direction. For 

an atom, the variation in wave numbers which results is given by 

Δν Δν u 
4 - = — = ± - ω 

V V c 

the 4- sign relating to the case where the a tom is moving toward the observer. In a perfect 

gas (which is assumed for lithium vapour) the distribution of atomic velocities is statistical 

and the number of atoms of mass m whose velocity in a given direction and interval lying 

between u and w+dw at the equilibrium temperature Γ, is given by 

d A r = C e x p ( " w ) d M ( 2) 

C being a constant and k Boltzmann's constant (§ E.3). This expression is a result of t h e 

Maxwell-Boltzmann velocity distribution. With 

m _ Olm _ M 

~k ~~ Wk ~ ~ F ' 

TO being Avogadro's number, equation (2) can be written 

d J V = C e x p ( - ^ d « , (3> 

which is the expression given in the problem. 

To find the intensity distribution in a line as a function of the wave number, one notes 

that the emitted intensity in an interval dv is proportional to the number of atomic emitters 

whose wave number lies within that interval, since the emission is incoherent. Additionally, 

the interval dv is related to the interval du of atomic velocities. Putting in (3) the value of u 
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derived in (1), one gets the expression for the relative intensity I(y) 

Γ Mc
2 

/ 0 0 = / o e x p -^RTvf(*-
p
°)

2 (4) 

vo is the wave number of the centre of the line corresponding to zero velocity. The curve 

(Fig. 70.2) representing I(v) is symmetric about î>0 as a result of the random distribution of 

velocities. This is a gaussian curve. 

FIG. 7 0 . 2 

(b) The intensity at half the maximum 7 0 has wave n u m b e r / ' such that 

hence 

1 Γ Mc
2 ι 

2 = e X p L - - 2 ^ ( v - 1 , o ) 2 J -

_ 2 2RTv
2 

( ^ - ^ o )
2
 = - ^ l n 2 . 

The half-width is given by the wave-number interval : 

2\(v'-vo)\ = 2Ai>', 

2Δν' = 2vo ι 2RTln2 
M 

(5) 

(c) The two components considered in par t II cease to be resolved when the width of each 

of them is greater than the wave number interval by which they are separated, so that , using 

the results of question II. 1 (b) of 0.34 c m
- 1

, one has 

0.34 = 2 X -
14920 ι / 2Χ8.32ΓΧ0.59 

3 X 1 0
8 V 7 X 1 0 "

3 

hence, the maximal temperature which allows resolution 

\/T = 83.8, Τ = 7022° Κ. 
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IV 

(a) The atoms in an atomic beam (§ E.4) have a velocity variable about a mean but the 

direction is well defined. Since this is perpendicular to the observational direction the longi-

tudinal Doppler effect is eliminated, it does not exist for the transverse Doppler effect as a 

cause of line spreading and the effects of collision and atomic interaction are small in the 

rarified gas which constitutes the beam. Hence the lines are narrow. 

(b) If the preceding causes of spreading, those associated with the apparatus, are elimi-

nated there remains only the residual natural line width, a consequence of the uncertainty 

relationship ΔίνχΔί^ A. The energy uncertainty is, using the parameters from the problem 

statement, 
ΔΨ = ΗχοχΔν = hX3Xl(P0X3Xl0-\ 

One therefore has a uncertainty in the period of the corresponding transition 

Δίν 
Δί c * - f - ^ 9 X l 0 -

7
s . 

η 

Since the transition returns the lithium a tom to its ground state, its lifetime is infinite in the 

absence of perturbation. The interval Δΐ characterizes the upper level and is its mean life-

time. 

V 

(a) The lines of the sharp series are emitted by transitions from an nS level (n = 3 ,4 , . . . ) 

to the 2P level. Moreover, this latter level is doubled as a result of spin-orbit interaction 

into the levels 2P' and 2P" as seen in II (d) (Fig. 70.3); however, the S levels are not since 

FIG. 7 0 . 3 

their orbital moment is zero. The wave number separation of the sharp series doublets is 

Δν = (2P'-nS)-(2P"-nS) = 2P-2P". 

This value is constant. On the other hand, the lines of the principal series arising from tran-
sitions between the nP (n = 2, 3 , 4, . . . ) levels and the ground state 2S level of the optical 
electron lead to 

Δ* = (nP'-2S)-(nP"-2S) = nP'-nP" 

and this separation is variable since it decreases as η increases, 

(b) The wave number of the radiation studied is 
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The separation of the two components of this line is the same as that of the components of 

the first line of the principal series (Fig. 70.3) that is, to the separation calculated in question 

II. 1 (b), namely Δν = 0.34 c m "
1
. This is, in wavelength, 

|ΔΑ| = |Δί>|Χλ
2
 = 0.34X(8130)

2
 = 0.223 Â. 

P R O B L E M 71 

Doppler Effect. Spectral Line Width 

I 

The first spectral lines of the first two series of the hydrogen atom have the wavelengths 

respectively (in Â) : 

Lyman: 1215 .7 . . . 

Balmer: 6563.07; 4861 .33 . . . 

In addition the limit of the Balmer series is 3645.9. 

1. Recall the expression which leads to the calculation of these wavelengths and briefly 

explain its significance. 

2· Calculate the ionization potential Vt of the hydrogen atom. 

3 . Calculate the wavelength of the first line of the third (Paschen) series of hydrogen using 

the combination principle. 

II 

1. Hydrogen atoms, excited by an electric discharge in a low-pressure tube, escape through 

a channel in the cathode C (Fig. 71.1) and move into an evacuated space along the Cx 

direction. Examine with a spectroscope placed first at 0\ and then at 0 2 , the H^-line. One 

will find two different values for the wavelength, at Oi, Ai = 4855.45 Â and at 0 2 , λ 2 = 

4861.33 Â. Briefly interpret these results. Calculate the velocity of the atoms along Cx using 

the Lorentz transformation. Use a coordinate system S(xyz) fixed to the atoms moving 

with constant velocity u with respect to the laboratory system S'ix'y'z'). 

The argument of the sinusoidal frequency function, sin 2πν(ί—χ/ό) is an invariant in the 

Lorentz transformation. Neglect w
2
/c

2
 in finding u. 

FIG. 7 1 . 1 



PROBLEM 71] ATOMIC AND MOLECULAR SPECTRA 301 

The separation of the two components of this line is the same as that of the components of 

the first line of the principal series (Fig. 70.3) that is, to the separation calculated in question 

II. 1 (b), namely Δν = 0.34 c m "
1
. This is, in wavelength, 

|ΔΑ| = |Δί>|Χλ
2
 = 0.34X(8130)

2
 = 0.223 Â. 

P R O B L E M 71 

Doppler Effect. Spectral Line Width 

I 

The first spectral lines of the first two series of the hydrogen atom have the wavelengths 

respectively (in Â) : 

Lyman: 1215 .7 . . . 

Balmer: 6563.07; 4861 .33 . . . 

In addition the limit of the Balmer series is 3645.9. 

1. Recall the expression which leads to the calculation of these wavelengths and briefly 

explain its significance. 

2· Calculate the ionization potential Vt of the hydrogen atom. 

3 . Calculate the wavelength of the first line of the third (Paschen) series of hydrogen using 

the combination principle. 

II 

1. Hydrogen atoms, excited by an electric discharge in a low-pressure tube, escape through 

a channel in the cathode C (Fig. 71.1) and move into an evacuated space along the Cx 

direction. Examine with a spectroscope placed first at 0\ and then at 0 2 , the H^-line. One 

will find two different values for the wavelength, at Oi, Ai = 4855.45 Â and at 0 2 , λ 2 = 

4861.33 Â. Briefly interpret these results. Calculate the velocity of the atoms along Cx using 

the Lorentz transformation. Use a coordinate system S(xyz) fixed to the atoms moving 

with constant velocity u with respect to the laboratory system S'ix'y'z'). 

The argument of the sinusoidal frequency function, sin 2πν(ί—χ/ό) is an invariant in the 

Lorentz transformation. Neglect w
2
/c

2
 in finding u. 

FIG. 7 1 . 1 
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2 . The slit of the spectroscope is placed at Ο 2 and receives light emitted normally to Cx 

by the atoms in a segment of the atomic beam lying between χ and x+dx. By displacing the 

spectroscope parallel to Cx one sees an exponential decrease in the intensity of the 

radiation which follows the law, I = I0 exp(—Kx) with Κ — 138 m
- 1

, h is the intensity 

at the exit of the cathode. Calculate the mean lifetime τ of the hydrogen atom in the excited 

state, tha t is, the time required for the emitted intensity to fall to 1 le of its initial value. Derive 

the natural line width of assuming the lifetime of the lower level is very much longer than 

that of the excited state. 

I l l 

Now observe the emission of by the atoms in an ordinary discharge tube at 27°C. 

Analyse the light using a Fabry-Pérot interferometer where the plate separation has been 

increased to the point where the fringe visibility goes to zero. The limiting interference order 

is 50,000. What is the width of the line if one assumes the line profile to be rectangular? 

One finds a width much greater than the natural width. Assuming that the atoms all move 

with the same velocity, their mean thermal velocity ( v ) , calculate the line width due to the 

Doppler effect and compare this to the experimental value. 

Recall that in the kinetic theory of gases, (v) = ^/SRT/nA9 where R is the ideal gas 

constant, Γ the absolute temperature, and A the atomic mass. 

SOLUTION 

I 

M B ) -
R is the Rydberg constant, n0 is an integer which characterizes the spectral series (n0 = 1 for 

the Lyman series, n0 = 2 for the Balmer series, etc.), and « is a member of the infinite series 

of integers which characterize the lines of each series and which begin with the integer 

immediately greater than n0. 

2 . The ionization energy is that energy which must be given to the Η atom to remove the 

electron situated in the ground state from the field of the nucleus to infinity and place it 

there without kinetic energy. One has 

Wx = eVf = hvt 

e is the electron charge, vi the frequency limit of the Lyman series, so that, using (1) with 

« o = l and η = o o , 
Vt = hRc/e. 

R can be calculated from the series limit of the Balmer series given above, with n0 = 2 and 
η = o o , equation (1) yields 

1 - A 
λ ~ 4 

hence 
6 . 6 2 X 1 0 ~

3 4
X 4 X 3 X 1 0

8 
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3 . The first line in the Paschen series (no = 3) has wavelength 

since the first two lines of the Balmer series have wavelengths 

one sees that 

hence 

1 _ ! _ ! 
λ λ2 λ\ 

. λ±λ% 6563.07X4861.33 1 δ 7, δ Λ Α 

λ
 = Ί^Γ2

 = Î70L74 = Ι 8' 7 4 8° Α· 

II 

1. The Η + ions accelerated by the electric field between A and C capture electrons at C 
and exit into the vacuum with their acquired velocity. In the coordinate system of the emit-
ting atoms the frequency of the Ηβ radiation is v, in the laboratory it is v\ The monochro-
matic wave propagating along Cx is given by the expression in the S system 

Ε = Emexp | 2 T T > ^ - 7 ) ] · 

Its phase v(t—x/c) is an invariant (§ 9.10) and thus 

the primed letters referring to the system S". The Lorentz expressions 

x' = y(x-ut) f = v{t-~j 

1 
with 

give 

hence 

, x' I ux\ /x ut\ Λ u\ / j c \ 

(2) 
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The frequency is higher for the observer at Oi due to the longitudinal Doppler effect. If one 

neglects t /
2
/c

2
, and thus if γ = 1, the transverse Doppler effect, which exists in principle for 

the observer 0 2 although always very small (§ 9.10), vanishes. Thus 

v' = cßu ν = c/A2, 

and 

from which 
h - h \ (4861.33 - 4855.45)3Χ10

8 

-isr) 4855.45 
= 3.635XlO

5
 m/s. 

2 . The luminous intensity observed is proportional to the number of atoms contained 

in the volume limited by planes dx apar t and which de-excite per unit time (since the emis-

sion is incoherent). This number is also proportional to the number of atoms still excited 

in the same volume (§ 15.1). The spontaneous emission decreases with time according to the 

law 

and comparison with the expression given in the statement of the problem shows that 

Kx = t\x 
or 

T =
 ~Kx

 =
 ~KÜ

 =
 138X3.635ΧΙΟ

5 % 5 x 1 0
"

? H z 

In solution of the Schrödinger equation, one assumes that the excited levels of the a tom have 

a precise energy. The uncertainty relationship AW'At % h shows that since AW = 0, 

Δί = oo and these states are stationary. However, only the ground state has an infinite life-

time. The preceding experiment shows that the lifetime τ imposes on the excited energy 

level an uncertainty t^W % A/r. Since AW = h Δ ν, the natural line width of H^ is 

Δ ν ^ - % 5 X 1 0
5
 Hz 

or 

| Δ λ | = — | Δ ν | =
 α 2 3

^
Χ 5

 χ 10 -13 m = 0. 3 9 Χ 10~
3
 Â. 

c 3 

III 

Fringe visibility vanishes when for the path difference δ = ρλ the interference order ρ 

varies by 1 unit for the extremes of the radiation contained in the ray (§ 6.10), so that 

Δδ = ρ Δλ = λ Δ/?, 

λ 4861.33 . 
Δ λ =

ρ
=

- 5 0 ^ 0 -
 = 0 0 9 7 Α

· 

This width is much greater than the preceding natural line width. 
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In calculating the broadening produced by the Doppler effect taking as the velocity 

equation (2) given in the problem for the thermal motion, one finds 

, . iA&RT Λ[8X8.32Xiœx300 . 

<*>=y HÂ=y — 3 i 4 — = 2 5 3 0 m / s-

The velocity (v\ unlike the velocity u considered in par t II, is related both to the motion of 

the a tom toward the observer and away from him. The line width is therefore 

Δν _ 2(v}_ _ Δλ 

ν ~ c ~ λ 

hence 

Δλ = A * f> = 4 8 6 1 . 3 3 x 4 ^ = 0.082 Â, 

a value much closer to the experimental value than the natural line width. 

P R O B L E M 72 

Polarization of Resonance Radiation 

I 

The resonance radiation λ = 2537 Â emitted by a mercury a tom is produced when an 

electron drops from the 6
3
Pi excited state to the ό ^ ο ground state. This latter level is nor-

mally occupied by two electrons. 

1. Explain the significance of the symbols representing the two levels. Give the values of 

their Lande factors. 

2. Consider the gas ^ H g (in order to avoid certain complications due to nuclear spin) 

contained in a transparent tube at a sufficiently low pressure that atomic interactions are 

negligible and placed in a uniform magnetic field B . Show the splittings of the
 3

P i and
 Χ

5Ό 

states produced by the Zeeman effect, the statistical weight of each of the sublevels and the 

transitions permitted by the selection rules. 

3 . Emission of the resonance line is excited in the gas discussed above and this radiation 

is observed with an apparatus capable of separating the various components of the radiation 

spectrum. Assume that the separation of the levels produced by Β is small with respect to 

the thermal energy of the atoms. Determine the frequencies, the polarization states, and the 

relative intensities of the radiation observed in the following cases : (a) normal to the field 

lines B ; (b) parallel to these lines; and (c) at 30° to them. 
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T o do this, make use of the analogy between a quantum emitter of dipole radiation and a 

Hertzian oscillator. Recall that a circular oscillator is composed of two linear oscillators o f 

the same amplitude. 

Compare the power emitted in the various transitions and derive the relative probabilities 

for these spontaneous transitions. 

I I 

Mercury vapour, subject to no excitation and held at a temperature sufficiently low that 

all the atoms can be thought of as being in their ground state, is now illuminated by a paral-

lel beam of λ = 2537 Â radiation propagating in the Ox direction. One can linearly polarize 

this beam to give the electric field of the wave a fixed direction in the yOz plane. One observes 

the re-emitted radiation f rom the resonance in the Oz direction through an analyser. The 

gas is placed in a uniform magnetic field B, wi th adjustable direction and an intensity such 

that the Zeeman splitting is small compared to the thermal energy and with respect to the 

resonance line width formed by the excitation source. One observes the radiation along the 

Oz direction using a non-dispersive analyser. Determine the polarization state for the radia-

tion with the following orientations : 

E: Oy Oy Oy Oz Oz 

Β: Oy Ox Ο ζ Oy Οχ 

When Β is parallel to Oy, determine the angle, 0, which Ε must take with Β in the yO 

plane so that the radiation observed along Ο ζ w i l l be depolarized. 

I l l 

N o w consider sodium vapour. W i t h the knowledge that the transition of the single optical 

electron which gives rise to the Z>i transition is produced for the 3
2
P 1 /2 to 3

2
5 1 /2 transition, 

draw the emission diagram for these levels when they are subjected to a Zeeman field. 

Determine the relative intensity of the emission lines and the relative probabilities of the 

lines which are produced. Note that when Β = 0, the emitted radiation contains only a 

single non-polarized line and, reasoning by continuity, show that for transverse observation 

there exists a simple relationship between the sum of the intensities of the π components and 

those of the a components. Take into account in addition that the Zeeman spectra are 

symmetric in both intensity and frequency about the frequency v0. 

Place the sodium vapour in an arrangement analogous to that of the mercury vapour in 

part I I and illuminated by a parallel beam of Di radiation propagating along Oy. What is the 

polarization state of the resonance radiation in the presence of a Β field directed along Oy? 

I f the exciting radiation is circularly polarized, all things being equal, show that the 

irradiation of the vapour leads, after an unlimited time, to all o f the sodium atoms populat-

ing the mj = + y sublevel o f the lower state. 



SOLUTION 

I 

1. Using the nomenclature o f spectral terms (§ 15.8), the number η designates the electron 

shell o f the optical electron. I n the ground state, the two valence electrons of the mercury 

atom occupy the 6s subshell. They have an orbital angular momentum of zero, / = 0 (S state) 

and the total orbital angular momentum L is zero. They have opposite spins s = ± \ and 

the total spin angular momentum S is zero. The total angular momentum / = L-{-S is zero. 

The general symbol
 2S+1

Lj is ^ for the ground-state term. I n the excited state, one of the 

electrons remains in the initial s (/ = 0) state; the other moves into the state / = 1, since 

the total angular momentum L = 1 and the symbol is P ; the spins of the two electrons are 

parallel and the resultant spin, S — 1, since 2S+1 = 3. The total angular momentum, which 

can take on the values L + 1 , L , and L— 1 is 1. 

The Lande factor is given by (§ 15.11) 

= / ( / + 1 ) + S ( S + 1 ) - L ( L + 1 ) 
8
 2 / (7+1) 

I n the ground state J = S = L = 0, g = 1. 

I n the excited state, / = S = L = 19 g = 2. 

2. The magnetic field does not act on the ground state which lacks angular momentum 

and thereby a magnetic moment. The projection of the moment / = 1 of the excited state 

on the Β direction can take the values = + 1, 0, or —1. The degeneracy of the level 

corresponding to the various values of ntj for a given / is removed by the action of Β and 

each sublevel has the same statistical weight. 

The allowed transitions obey the rule (§ 15.10) 

Amj = + 1 or 0 or - 1 . 

Figure 72.1 shows the diagram for these transitions. The Grotr ian diagram (Fig. 72.1a) 

shows the energy levels. The Heisenberg diagram (Fig. 72.1b) displays on the same 

horizontal the levels wi th the same m / 5 but allows immediate distinction to be made between 

the vert icals ( A m y = 0) transitions and the σ+ (Διη7 = +1) and σ_ ( A w 7 = — 1). 

 1).  1).  1).  1). 
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3. Figure 72.1 a and b shows that the decay of the
 3

P i state to the x
So state corresponds to 

the emission of the normal Zeeman triplet : one line (π) whose frequency v0 is the same as in 
the absence of the field and two others (σ) which are symmetrically displaced by an amount 

Normal to the direction of the field one observes three linearly polarized lines : the π-line 
vibrating parallel to Β and the σ+ and cr_ lines normal to B. Parallel to the field the π line 
disappears and the a lines are circularly polarized in opposite senses. These results, which 
fol low from quantum theory (§ 15.10.4) can, in simple cases be tied to the classical theory 
of electric dipole emission. The vibration of a linear sinusoidal dipole d can in effect (Fig-
72.2) be decomposed into a vibration π along a general Oz axis and a vibration a in the xOy 

plane. This latter vibration can be thought of as the resultant o f two circular vibrations in 
opposite senses <r+ and a_ (see the Fresnel theory on Optical rotary power). 

FIG. 7 2 . 2 

The preceding resolution is shaped to the symmetry of the field B, an axis of revolution and 
a plane normal to that axis. Take the direction o f Β for the Ο ζ axis. The vibration along Ο ζ 

is not affected by the field Β which is parallel to the displacement o f the charge o f the dipole. 
The circular vibrators are subjected to the Lorentz force in opposite senses for σ+ and a_. 

One therefore concludes that their frequencies must change by an amount symmetric with 
respect to the unaltered π-radiation. (The classical calculation which gives rise to equation 
(1) is not of interest here.) 

I f one now considers a large set of dipole oscillators oriented at random, the three com-
ponents π , σχ, and oy (Fig. 72.2) or else π , σ+ and a_—have equal values. I f one observes 
the radiation emitted in a given direction when the dipoles are subjected to some directed 
action, one observes the transverse electric field emitted by the two components normal to 
the direction of observation while the component directed along this direction is zero 
(§ 10.3). The observed intensity is thus 27, where / is the maximal radiation intensity emit-
ted by each of the three components. 

I f the oscillators are placed in a uniform magnetic field, by observing in the direction Oz 

of the field lines, one observes the radiation emitted by the σ+ and a_ components but not 
that o f the τι component. The intensity is then 21. By observing normally to the field lines, for 
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example along Ox9 one see the maximal radiation wi th intensity / f rom the π component and 

the linear components parallel to Oy o f each o f the a components which have then the 

intensity 1/2. The total observed intensity is then 21 (F ig. 72.3). 

When one observes in a direction OP making an angle 0 wi th Ο ζ and situated, for example, 

in the zOx plane (Fig. 72.3), one sees the intensity / s in
2
 0 o f therc-component, the intensity 

7/2 cos
2
 0 o f the components o f a parallel to Oy, and the intensity 7/2 cos

2
 0 o f the compo-

nents of a parallel to Ox. The π radiation appears linearly polarized in the xOz plane and 

normal to OP. The a radiation is elliptically polarized and the ratio o f the elliptical axes 

has the value cos 0. 

F o r 0 = 30°, s in
2
 0 = ^ , cos

2
 0 = \ . The line wi th frequency v0 has intensity 7/4 and each 

of the lines wi th frequency ν0+Δν have intensity: 

FIG. 7 2 . 3 

The ratio 

A = I 
la 7 * 

The total intensity is therefore 27. 

One has seen that the statistical weight o f the Zeeman sublevels are equal. I f in addition 

the magnetic energies are small compared to the thermal energy kT9 all o f the sublevels are 

equally populated. The orientation of the orbital cannot affect the velocity o f the emission 

o f energy and the power radiated in the transition f rom any Zeeman sublevel is the same, 

whatever may be the number nij which characterizes the level. O n the other hand, a c-radia-

tion corresponds, all things being equal, to a power emission twice that o f a π-radiation 

since it has two linear components. Since the intensities o f thejr-line and each o f the cr-lines 

are equal, the relative transmission probabilities are 

I I 

The exciting radiation has a width which by hypothesis contains all o f the Zeeman com-

ponents. The action of the Β field separates all o f the Zeeman sublevels of the 6
3
P i level in 

the absorbing vapour. I f the Β and Ε fields are both parallel to Oy and normal to the 
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direction of observation Oz, only the ^-component of the resonance line is absorbed and 

only the rrij = 0 sublevel of the 6
 3
P i level is excited. The light re-emitted by the transition 

between this sublevel and the ground state is a jr-vibration (Fig. 72.1) and the resonance 

radiation is then linearly polarized parallel to Oy. 

If Ε = Ey and Β = Bx, this time the two σ-components are absorbed and re-emitted and 

the resonance radiation is circularly polarized with Ox as the axis. One sees in addition 

linear polarization parallel to Oy for observations made along Oz. 

If Ε = Ey and Β = Bz, one no longer observes the π component, but together the com-

ponents cr+ and a_, the light is not polarized. 

lfE = Ez and Β = By, only the levels m3 — ± 1 are excited, the σ+ and o_ components 

are re-emitted. One sees a linearly polarized radiation parallel to Ox. Likewise one sees a 

vibration parallel to Oy if Ε = Ez and Β = Bx. 

When in the yOz plane Ε makes an angle θ with Β (along Oy), one sees, in comparison to 

the first and fourth cases which have been studied, that the energies of excitation of the 

ττ-component and the er-components are respectively proportional to E
2
 cos

2
 θ and E

2
 sin

2
 Θ. 

Consequently, for sin
2
 θ = cos

2
 0, the linear components relative to Ox and Oy are equal 

when observed along Oz and the light is not polarized. For this θ = 54°44'. 

III 

The optical electron has a spin ~ with the result that the
 S

S and
 3

P levels are doublets 

(2s+1 = 2). For the S level, / = 0 and j = \ . For the Ρ level, / = 1 and j = \ or f. The 

transition P1/2 — S1(2 produces the Ώλ line and the P 3 / 2 — S1/2 transition the D2 line. Here 

we are interested with the first of these. Since the Lande factor is equal to 2 for the S level 

and to y for the Ρ level, the four possible transitions allowed by the selection rules give four 

lines of different frequency numbered 1,2, 3, and 4 on the diagram in Fig. 72.4a. 

The^r-component and the cr-components each appear in transverse observation as linearly 
polarized with two perpendicular azimuths. As at the limit for Β — 0, the radiation is not 
polarized and it is necessary that the intensity of the set of ^-components is equal to that 
of the c-components : 

ΣΙη = Σΐσ. (2) 
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The result obtained in 1.3 is consistent wi th this. F o r the Di- l ine, since Zeeman spectra 
are symmetric, one has 

/ i = h and / 2 = h. 

O n the other hand, equation (2) gives 

h+h = h+h. 
One gets 

h = h = h = h. 

The probabilities of the spontaneous transitions are thus in the ratio 

A± : A2 : As : At = 1 : 2 : 1 : 2 

since 1 and 3 are π-lines and 2 and 4 are σ-lines. 
When the sodium vapour is illuminated by an Ey radiation in a By field, the jr-transitions 

are excited. The two upper sublevels are populated equally and the reradiation to the ground 
state occurs through π- and ^-transitions of the same intensity. Therefore the observed 
radiation is not polarized. 

Excitation by circularly polarized light wi th a given sign, right for example, excites the 
atoms of the rrij = — \ sublevel o f the S level to the ntj = +-|· sublevel o f the upper state. 

Hence, decay to the ground state is made between the two sublevels, but, as indicated by 
the transition probability, two-thirds of the excited atoms decay to the original sublevel wi th 
emission of a a line and one-third to the rrij = + \ sublevel wi th emission of a ττ-line. These 
latter atoms can never be re-excited by the incident radiation and in principle their number 
continually increases. 

P R O B L E M 73 

Spectral Terms of Two-electron Atoms 

Consider an atom which has several electrons each of which has an orbital angular 

momentum Gl and a spin angular momentum Gs. A l l o w the orbital moments, on one 
hand, and the spin moments, on the other, to combine to give the total angular momenta 

GL and Gs. Significantly different atomic energy states correspond to the different values 

of L and S. Aga in the moments GL and Gs combine to give the total angular momentum 

Gj. Each atomic energy level—or each spectral term—is designated by a symbol +1Lj. 

I 

Determine the possible terms for two "non-equivalent" electrons, that is, electrons whose 
quantum numbers η and / are different and which belong to different subshells as a result. 
Consider the various cases where each of the two electrons can be s, p, or d. 

21 R & Μ : ΡΙΟ 
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21 R & Μ : ΡΙΟ 
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II 

Determine the possible term symbols for two "equivalent" electrons, that is, electrons 
having the same values of η and /. Take into account the Pauli principle. Consider the cases 
where the electrons are then p. 

Il l 

Determine the symbols of the ground state terms for the elements from Η ( Z = 1) to Ne 
( Z = 10). D o this taking into account the following empirical rules due to H u n d : (a) the 
lowest terms correspond to the maximal value of S and the maximal value of L compatible 
with the preceding value of S taking into account the Pauli principle, and (b) / = L—S 

for the elements having less than half the electrons of a group of equivalent electrons and 
J = L+S for those having more than half. 

SOLUTION 

The angular momentum coupling is Russell-Saunders coupling (§ 15.12.3). 

The resultants Gs = £ G 5 , GL = and Gs = G L + Gs fo l low the Russell-Saunders 
scheme and the results are quantized. 

I 

In the case where η and / are different for the two electrons, all the combinations are 
possible. For example, for two ^-electrons (/i = / 2 = 2), the possible values of L are different 
integers and lie between l\—h — 0 and / i + / 2 = 4. The possible terms are S, P, D9 F and G. 

Figure 73.1 shows the results in the inexact vector representation of G . 
One finds without any difficulty that for all of the electron couplings considered the L 

values are as follows : 

ss:0; sp:l; sd:2\ pp : 0,1,2; pd: 1,2,3. 

Z.=0 

Ρ D 

U3 

F 

L=4 

FIG. 73.1 

A s to the spin momentum, since s i = ± \ and s2 = ± y , S = 1 or 0* and the multiplicity 
of each of the terms is 2S+1 = 1 (singlet states) or 3 (triplet states). 

I t remains to determine / . I n the singlet states Gs = 0, Gj = GL and J = L. F o r the 
triplet states, 5 = 1 , whatever the value of L may be, a diagram similar to Fig. 73.1 shows 
that J can only take on the values L— 1, L , and L + 1 . 

* One must be careful not to confuse S with the symbol for the L = 0 state. 
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The possible terms symbols are collected in Table 73.1. 

TABLE 73.1 

Electrons Singlet term Triplet term 

ss *sx 

sp 
3
P0

 3
i \

 3
i>2 

sd l
D2 *DX

 3
D2

 3
Z ) 3 

PP 's0 *Λ 
3
5 x *P0 *PX *P2

 3
Dt

 3
D2 *D3 

Pd 'Ρι 'D2

 l
F , 

3
P 0

 8
P X

 3
P 2 *DX

 3
D2

 3
D3 *F2

 3
F 3 

dd 'S0 *Ρχ
 X
D2 *F3 *G4 

3
5χ

 3
/> 0

 3
Λ

 3
^ 2

 3
# i

 3
D2

 a
D3

 3
F 2

 3
F 3

 3
F 4 

3
G 3

 3
G 4

 3
G 5 

I I 

The two equivalent electrons having the same quantum numbers η and / must differ either 

in their quantum number m or in s. 

F o r .y-electrons, 1 = 0 and m = 0 thus the quantum numbers s of the two electrons under 

consideration are + \ and — \ and therefore 5 = 0 and since L = 0 the only term possible 

is ^ o . The triplet state is not permitted. 

F o r two p-electrons the situation is more complex. Table 73.2 lists the quantum cases o f 

an np subshell and the possible distributions o f two electrons taking into account their spin. 

The configurations \ \ and jt are equivalent. 

TABLE 73.2 

Configu-
ration m = + 1 m = 0 m =-1 M = X> L Term 

1 η 0 0 0 
X
S 

2 Ü + 2 0 2 *D 
3 n - 2 0 2 *D 
4 t * + 1 0 2 *D 
5 t l - 1 0 2 *D 
6 t I 0 0 2 

X
D 

7 t t + 1 1 1 3p 
8 t t - 1 1 1 3p 
9 t t 0 1 1 3p 

One has, as in I , L = 0, 1, or 2 thus S, P, or Z) states. The quantum number M = £ m 

is associated with the projection of G L on the z-axis. 

F o r L = 0, M = 0 can only be obtained for m i = m 2 = 0. Therefore the spins are op-

posed and one has a state (configuration number 1). 

F o r L = 2, the possible values of M are + 2 , + 1 , 0 , — 1, and —2. The first is obtained 

from m i = m 2 = +1 (configuration 2) and the last by m i = m2 = — 1 (configuration 3). 

Thus the spins are opposed and one has a
 1
Z>2 state. 

21* 
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This same term arises again with opposing spins for M = + 1 by the combination 

mi = + 1 and m 2 = 0 (no. 4), for M = 0 with mi = + 1 and m 2 = - 1 (no. 6), and for 

M = — l b y m i = — 1 and m 2 = 0 (no. 5). 

For L = 1, the values of M are + 1 , 0 , and — 1. The configurations 7, 8, and 9 correspond 

to this with S = 1 this time and thus
 3

P terms which subdivide into
 3

Pi ,
 3

P 2 , and
 3

Ps as has 

been seen in part I. 

Figure 73.2 shows the geometric construction relative to the number M. 

A/=0 

U1 L = 2 

FIG. 73.2 FIG. 73.3 

III 

For H with one Is electron, the ground state is
 2

S. 

For He, the two Is electrons form a complete ΑΓ-shell with ground state ^-S. 

For Li the third electron is 2s and the ground state
 2

S. 

For Be the two 2s electrons have opposing spins and the term is
 X

S. 

For Β the fifth electron is 2p hence a
 2
P term. 

For C which has two 2p electrons, the possible terms have been determined in part II. 

Hund's rules give a triplet term for the ground state, thus
 3

P . 

For Ν the maximum value of S is J- corresponding to parallel spins for the three 2p elec-

trons, which as a result each occupy one of the three 2p quantum states. The GL is then zero 

(Fig. 73.3). The ground state term is
 4

S . 

For Ο the fourth /7-electron can only occupy one of the p-levels which already has an 

electron hence S = 1. The total orbital angular momentum is due to the fourth electron 

since, as has been seen, the other three give a result of zero. The ground state term is
 3

P. 

To treat F it is best first to examine Ne which has a complete ρ sublevel and thus both the 

orbital angular momentum and the spin angular momentum are zero and the ground state 

TABLE 73.3 

Element H He Li Be Β c Ν Ο F Ne 

Atomic number 1 2 3 4 5 6 7 8 9 10 
S 1 

2 0 1 
2 

0 1 
2 1 3 

2 1 1 
2 0 

L 0 0 0 0 1 1 0 1 1 0 
J 1 

2 0 1 0 1 
2 

0 3 
2 

2 3 
2 

0 
Ground-state 

term 2
^ 1 / 2 'So 

2
^ l / 2 

2
^ l / 2 

3Λ> 4
* $ 3 / 2 

3Λ 2 ρ 
^ 3 / 2 
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is
 X
S. If one then removes one electron to return to the F structure, one sees that L = / = 1 

and S = s = \ and thus the ground state is
 2

P. 

The value of / is equal to S for the first four elements since L = 0. F rom Β to Ne where 

the 2p shell is being completed, / is given by the second of Hund 's rules, for Β and C 

J = L-S and for Ο and F , / = L+S. 

Finally, one gets the symbols shown in Table 73.3 for the ground state terms (Fig. 73.4): 

ΪΤΤΤΊ M H H IHM H IttlUM fïïlïïfn 
Ν Ne 

FIG. 73.4 

P R O B L E M 74 

Zeeman Effect in a Two-electron Atom 

In the many-electron atoms discussed in the previous question, the angular momentum 

components follow the Russell-Saunders rules. Use S and L for the spin and orbital an-

gular momenta and / for the total angular momentum. The magnetic moment of the a tom 

is related to its total angular momentum, just as in the case where there is only one electron, 

through the Lande factor whose existence results in the magnetic spin anomaly. 

I 

Give the general expression for the magnetic moment of an a tom in a fixed stationary state. 

Find, taking the Bohr magneton as unity, the magnetic moment of the following atoms 

in their ground state: H , He, Li, Ne, and Na . How can one verify these values experimen-

tally? 

II 

1. Study the emission spectrum of strontium (the a tom homologous to Be with the two 

optical electrons in the O-shell) when it is placed in a weak magnetic field. Show graphically 

the Zeeman levels for the following transitions and the permitted transitions : 

(a) λ = 4678 À 10 i F 3 - 7 W29 

(b) 4962 8
 3

Z>3 - 6
 3

P 2 , 

(c) 4892 8
 3

F 4 - 7
 3
Z>3. 

Recall that the selection rules for the quantum number m3 are the same as for a one elec-

tron a tom but that Δ / cannot be zero. Among the transitions considered are those which 

give a normal Zeeman effect? 

One finds that the structure of the Zeeman spectra line (c) is very close to that of (a) but 

not to that of line (b). Give the reason for this. 
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2. Calculate the separation in wave numbers of the a- and <r-components of line (c) 

in a magnetic field of 30,000 oersteds. The speed of light is c — 3 X 1 0
8
 m/s and ejme = 

1.67 X 1 0
1 1
 C/kg. 

SOLUTION 

I 

In Russell-Saunders coupling, one has £ = £ *, L = £ / and J = S + L . The 

modulus of / is Vj(J+l)h. Thus 

(1) 

g is the Lande factor and μΒ the Bohr magneton. 

Refer to Problem 73 which gives the ground states of the atoms and calculate g using the 

expression 
J(J+l)+S(S+l)-L(L+l) 

g=l + -

One finds (§ 15.11) 

2J(J+1) 

TABLE 74 .1 

(2) 

Atom H He Li Be Na 

Ζ 1 2 3 4 11 
S 1 

2 0 1 
2 0 1 

2 

L 0 0 0 0 0 
J 1 

2 
0 1 

2 
0 1 

2 

Term 2
*Sl/2 ' S 0 

2Si[2 
'So 

2
S 1 (2 

Vj(j+d Vf 0 Vf 0 VI 
g 2 1 2 1 2 

M V 3 0 V3" 0 V 3 

In the calculation for Na , take into account the fact that the L-shell is complete and its 

moments 5 , L , and / are zero as has been shown for the ^Γ-shell of He (§ 15.12). 

The Stern-Gerlach experiment (and its modern variation due to Rabi) allows one to 

measure M in the ground state. 

II 

1. / , mj, and g have the values shown in Table 74.2 for the levels under consideration 

(the principal quantum number is not important) . 

The number of Zeeman sublevels is the same as the number of values of rrij and their 

splitting is proportional to g. The upper parts of Fig. 74.1, 74.2, and 74.3 show these levels 

graphically for the three lines under consideration. 

The allowed transitions obey the selection rules 

Am/= 0 or + 1 or — 1 . 

The three lines behave differently. 
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TABLE 74.2 

317 

Level ^ 2 
3
^ 2 ^ 3 

3
^ 4 

/ 3 2 2 3 4 

mj 
g 

- 3 to + 3 
1 

- 2 to + 2 
1 

- 2 to 4-2 
3 
2 

- 3 to + 3 
4 

3 

- 4 to + 4 
5 
4 

<7«1 

<7-1 

Δ/77,= +1 

- + 3 

- + 2 
- +1 
- 0 
- - 1 
- - 2 

- 3 

-1 

+ 2 
+ 1 

0 
- 1 
- 2 

3
° 3 

' 4 

3'2 
9-\ 

A m J = +1 

• + 3 +4 
•+2 + % 

• + 1 +
4
/3 

• 0 0 
- 1 -

4
/ 3 

- 2 - % 
. - 3 - 4 

+ 2 + 3 

+ 1 + 3 / 2 

0 
- 3 / , 

10123 2Ϊ012 32101 

Δ V Δ V 

FIG. 74.1 

21012 21012 21017 
—35-

V 

FIG. 74.2 

For line (a), the Lande factor is the same for both levels with the result that the splitting 

of the Zeeman levels is the same. As a result the five transitions permitted by the selection 

rules have the same wave number and one observes a normal triplet. Each of the Arrij = ± 1 

lines are split symmetrically about the Arrij = 0 line by a number of c m
- 1

 equal to 

Av = 0.4675, (3) 

where Β is the magnetic field acting on the atom. 

For the lines (b) and (c), the initial and final states have different Lande factors. All of 

the lines corresponding to permitted transitions are distinct. The 0 0 line is not shifted 
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/TT, g.m3 

*=4 

• + 4 +5 
+ 3 +15/4 
+ 2 + 5/2 

• + 1 +5 /4 
• 0 0 
. - 1 - 5 / 4 
• - 2 - 5/2 
. - 3 -15/4 
• - 4 - 5 

y
 3 

A/77J = +1 

σ + π 
2 4 0 

. + 3 +4 

• + 2 + % 

• + 1 +V3 
• 0 0 
• - I -

4
/ 3 

. _ 2 - 8 / 3 

- - 3 - 4 
-1 

σ_ 
4 2 

3 3 0 

FIG. 74.3 

by the presence of the magnetic field. The wave number splitting of a Zeeman line relative 

to the 0 — 0 line (measured taking the normal splitting (3) as unity) is obtained by taking the 

difference between the numbers written to the right of the transition levels in the figures. 

For example, for the line (b) one finds 

Amj = 0 1 - 1 : - £ + 4 = 1; 2 + 2 : - f + 3 = f 

Amj= + 1 3 - 2 : 4 - 3 = | ; 2 - T : | - | = h 

1 - 0 : 4 - 0 = 1; 
0 + 1 : 0 + 1 = 4; 1 _ 2 : - 4 + 3 = f. 

One can easily verify that the splittings for Arrij = — 1 are symmetrical with those for 

Anij = + 1 . On the whole, to each of the three permitted values of rrij there corresponds a 

group of five lines separated by one-sixth the normal splitting. 

For the line (c), one also finds a symmetric distribution in three groups of seven lines 

with the splitting of two lines of a group being one-twelfth the normal splitting (3). The struc-

ture of this line is very close to that of line (b) of the normal triplet since the Lande factors 

of the levels involved are close to unity. 



PROBLEM 75] ATOMIC AND MOLECULAR SPECTRA 319 

2. The splitting of the π and a components of the (c) line is ~ of the normal splitting. 

In a field of 0.3 tesla, equation (3) gives 

Av = 0.467 X 0.3 X à = 0.0117 c m "
1 

a splitting difficult to detect. 

P R O B L E M 75 

X-ray Spectra 

Here one looks at the molybdenum absorption and emission spectra in the X-ray region. 

Assume for this purpose an X-ray spectrograph. 

I 

Describe briefly the construction and function of an X-ray spectrograph. 

II 

1. Explain the mechanism of X-ray absorption in an element with high atomic number Z . 

Why does one require a screening constant? Find the wave numbers of the first three absorp-

tion limits (or discontinuities) for molybdenum. Initially neglect the fine structure of the 

limits and take the Rydberg constant to be approximately R = 1.1 Χ 1 0
5
 c m

- 1
. For X-ray 

absorption one can assume in the calculation the screening constant to be CK = 3.5 for the 

Κ limit, CL = 14 for the L limit, and CM = 25.4 for the M limit. 

2 . Give the theory for line emission in the X-ray region for atoms of high atomic number. 

Set up the Moseley equation. Find the wave number of the ΑΓα- and A^-lines in molybdenum. 

With the Moseley law one assumes for a transition from an M or L-level to the ÄT-level one 

can take a single mean screening constant CK = 1. 

Show that one gets approximately the same values for the wave numbers of the ΑΓα- and 

A^-lines when one takes the wave number differences of the K, L, and M absorption edges 

(neglecting the fine structure). 

3 . Show how one can perfect the preceding theory explaining the fine structure of the 

emission lines and the X-ray edge absorption. Show that one can represent the fine-structure 

energy levels by the expression 

W_ = _ UZ-Cf / _ 1 _ 3 \ 1 

Rch L n
2
 n

3
 U + i 4n)\ 

where C and Cx are empirical screening constants which depend on the quantum numbers 

of the transitions involved. In this expression α is the fine-structure constant and the other 

notations have their usual significance. 
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Diagram the K, L, and M levels of molybdenum. Give the selection rules for transitions 

between these levels and indicate the permitted transitions on the diagram. 

4. Find the wave numbers of the Zq, L n , and molybdenum absorption limits. Take 

C = 14, C'Ll = 2, C i n , L m = 3.5, α
2
 = 5.3X 1 0 "

5
. 

Explain the origin of the screening doublet. 

5. Find the splitting of the spin doublet in molybdenum: 

ΔνΚΛιΚα9 = νΚαι-νΚΛ2. 

To do this make use of the fine-structure equation. 

Il l 

Explain the origin of the anode continuous emission spectrum of X-rays. 

Consider a flux of electrons accelerated by a 100 kV potential difference falling on a 

molybdenum anode. Find the wave-number limit of the continuous emission spectrum 

under these conditions. 

SOLUTION 

I. See §7 .15 . 

II 

1. When the atomic number Ζ is large the K,L,M, . . . , electron shells corresponding to 

the values 1, 2, 3, . . . of the principal quantum number η are filled in accordance with the 

Pauli principle. The absorption of an X-ray photon with considerable energy hv of the order 

of 10
4
 eV does not lead to a transition of an electron from a deep level to an already occupied 

higher level, but to the removal of this electron, that is, to the ionization of the atom. The 

work necessary to accomplish this is equal to the coulomb energy of the electron in the 

nuclear field if there are no other electrons and this is given by the hydrogen atom energy 

level expression (Problem 69): 

_ μβ*Ζ
2
 j _ _ chZ

2
R 

" Se oh
2
 n

2
 n

2 

μ is the reduced mass of the electron-nucleus system. This is roughly the same as the 

electron mass, me, when the atomic number—and therefore the mass number—is high. The 

Rydberg constant takes the value R^ as a result. 

In practice, the electrons present in deeper and shallower energy levels create a potential 

which detracts from that of the nucleus and lessens the value of Wn9 a quantity which 
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depends essentially on n. This is taken into account by using 

W'n =
 C

-^(Z-Cnf. (2) 

Cn is the screening constant which depends on the level η in a first approximation neglecting 

the fine structure which will be considered in question 4. 

Use the Hartree method (§ 14.7) to evaluate the constant C n . The potential energy of an 

electron at a distance r0 from the atomic nucleus is given by 

Λ _ . Λ Ze
2
 4ne

2 f Ό 4ne
2
 Ç°° 2ί , 2 Α 4ne0Wp(r0) = \p

2
(r)r

2
 àr--—^- y)

2
(r)r

2
 dr. 

ro r0 JQ <r> Jro 

The last two terms give the screening effect assuming that the density of electronic charge 

q(r) has a symmetric spherical distribution about the nucleus. The second term gives the 

internal screening effect which follows from the well-known electrostatics theorem which 

states that the potential does not depend on the details of the internal distribution of charges. 

The third term, relative to the external screening, has a different dependence. It is always 

much smaller than the second. For example, for a ^-electron, the screening effect of the 

other electron in the ΛΓ-shell is less than 1 (in units of Z ) which it would be equal to if its 

charge were concentrated at a distance less than r 0 . As to the eight L-electrons, since their 

mean distance (r) to the nucleus is of the order of 4rο their contribution to the screening 

effect (§ 14.6), which would be zero if their distance remained always beyond r0 and their 

symmetry spherical, is small. The same is true for the eighteen M electrons, etc. 

The wave numbers are given by the expression 

1 R(Z-Cn)
2 

λη η
2 

Using the given numerical values 

^ = l . l X l 0 5 ( 4 2 - 3 . 5 ) 2 = 1 6 >3 0 5 x l 0 4 c m_ 1 ; 

1 . 1 X 1 0 ^ - 1 4 ) ^ 2 1 5 6 x l 0 4 c m- l 5 

l . l X l 0
5
( 4 2 - 2 5 . 4 )

2

 1 Π ν 1 Λ4 _Λ 
vM = ^ = 313X 10

4
 cm

 3
. 

2. The Ä^-line arises in the transition L Κ (ηλ = 2 n2 = 1) and the Kß in the transi-

tion Μ - Κ («! = 3 - n2 = 1). Thus, with CK = 1, 

vKa = R(Z-CKf = U X l 0
5
X ( 4 2 - l )

2
X ^ l - - Î j = 13,868X 10

4
 c m "

1 

vKp = U X l 0
5
X ( 4 2 - l )

2
( l - i ) = 16,436X10* c m "

1
. 
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Also, one finds 
vK-vL = 14,146 x 1 ο 4 c m " 1 , 

vK-vM = 15,989X10* c m " 1 . 

Thus one gets similar values for vK(t and vK—vL and for νΚβ and vK—vM (§ 15.13.3). 

3 . Proving the expression given in the statement of the problem is extremely difficult. 
Here we limit ourselves to the statement that the first term between the brackets comes 
from the energy (2) and the second is a correction term. This is introduced when one takes 
into account simultaneously the relativistic form of the equations of motion and the spin-
orbit interaction (§ 15.7). The various values of the internal quantum number / correspond-
ing to a given value of the orbital quantum number L are in effect due to this latter interac-
tion. 

In the actual problem, the calculation of the energy of an a tom lacking an electron is 
analogous to that of an a tom having an electron with quantum numbers w, /, and j = 1 ± y . 
The fine structure consists of a doubling of the levels for which 1^0 (since for / = 0, 
j = +-|", the total angular momentum which depends on j cannot be negative). 

The diagram of the K, L, and M levels is presented in Fig. 75.1. 

n = 3 

n=2 

1 J 
2 4 

T e r m s y m b o l s 
Opt ica l X 

3 d% 

ML 

1
 J

 2
P3/5 

i f * 1 \ , 0f2 

M y 

Ä! 

-0 ± Is 

FIG. 7 5 . 1 

The selection rules Δ/ = ± 1 and Δ / = 0, ± 1 only permit the transitions indicated by the 
vertical arrows. 

4. For the L level, of which there are three, η = 2. The differences between levels is 
accounted for by the corrective terms in equation (1). One finds for these terms 

U (/ - 0, j 4 , C i - 2 ) : - 116.5X 10* c m -

La ( / = l , / = i , C i = 3.5) :̂ Z

27
35)4 (J--A) = 1.00x10· c m - , 

L m ( / = Uj = l C i - 3 . 5 ) ^ ^ ' ( f ^ - O . M x l O ' c m - ' . 
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These values are added to the value of vL = 2156X10
4
 c m "

1
 obtained in question I L L 

For given η and /, the differences in j are the origin of the spin doublet. For given η and j r 

the variation of the screening constant with / produces the screening doublet. For large Zr 

the spin doublet splitting is greater than the screening doublet splitting. 

5. The KAL line is due to the L M — Κ transition and the ΚΛ2 line is due to the — Κ 

transition. These lines form the spin doublet. One has (n = 2,j = ~ or y ) 

Δ* = vKuL1-vKat = **\Z-C& ^i__Vj = 0 8 0 x l 0 4 c m_ 1 

III 

See § 11.3. The conservation of energy in the transformation of the kinetic energy, eV> 

of an electron into a single photon gives the frequency limit 

hvt = eV, 

_ eV 1 . 60Χ10-"Χ10* _ χ 

^
 =

 ^
 =

 3X10BX6.5X 10 -34 =
 8 2 X 1 09 C M 

λ = -1 = 1.22X 1 0 "
1 1
 m = 0.122 Â. 

vi 

P R O B L E M 76 

Mössbauer Effect 

By radioactive transformation, the l]Co nucleus yields the i^Fe nucleus in an excited 

state with a mean lifetime τ = 1.45 X 1 0 "
7
 sec, 14.4 keV above the ground state. The decay 

of the excited state occurs with the emission of a y-photon. 

1. Find the width AW of the excited state as well as the relative natural width Av/v of 

the emitted y-ray. 

2. Assuming that the emitting nucleus is free and at rest, calculate the relative variation 
(Av/v)r resulting from recoil during emission at the given frequency. 

3 . Natural iron contains 2 % of i^Fe. This nucleus is capable, in principle, of absorbing 

the y-radiation by a process analogous to optical resonance. If the absorbant like the emitter 

is free and at rest, is the resonant absorption observable? 

4. To demonstrate this absorption, one places between the ^Co source and a y-detector> 

an iron screen which can move either toward or away from the source. Calculate the relative 

velocity of the screen and the source which corresponds to the natural line width, the fre-

quency variation Δ ν which corresponds to a relative velocity of 1 mm/s , and the relative 

velocity which must be given to the screen in order to observe the resonance. 
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5. Calculate the relative spreading {Avjv)T of the line due to thermal motions at Τ = 300°C 

using the hypothesis of equal partition of thermal energy as well as the corresponding 

relative velocity. 

6. In solid cobalt (mass density ρ = 7.8 Χ 1 0
3
 kg /m

3
) the elastic waves transfer a mechan-

ical motion at velocity ν = 3 km/s and, in particular, that due to nuclear recoil. Estimate the 

number of atoms which participate in the recoil and show that the relative frequency varia-

tion (Avfv)r is then negligible with respect to the natural line width of the v-line. 

7. At the top of a 23-m tower one places a l^Co source which emits y-photons toward 

the base where they are detected. Calculate the frequency variation (Av/v)g as a function 

of H, c, and the gravitational acceleration g = 9.81 m/s
2
. Is it detectable? 

SOLUTION 

1. Since the ground state is stable indefinitely, the energy uncertainty is due only to the 

limited lifetime of the excited state. The uncertainty relation relating time to energy gives 

(§ 12.9) 

τ-***">-> <" 
or 2.85X 1(T

8
 eV. (If one takes AW-r % A, AW = 4.5 X 1(T

9
 eV.) 

The relative natural line width of the γ line is 

Av _ hAv^ _ AFF _ 2 . 8 5 Χ Ι Ο "
8 

~V ~ ~Tw~ ~ ~W ~ 14.4X 10
3 

(with W = 4 . 5 X 1 0 "
9
 eV, Avfv = 3 .14X10"

1 3
) . 

= 1.98 X l O "
1 2

 (2) 

2. The nucleus with mass m receives a recoil momentum ρ equal to the momentum hv/c 

carried by the emitted photon. The recoil kinetic energy p
2
j2m subtracts from the transition 

energy W, with the result that the energy balance is 

A V . Λ hv \ 
W
 =

 h v +
 ^

 = h V
(

l +
 2mc^ & 

The relative frequency variation of the emitted photon is 

/Av\ _ /AW\ __ hv 

\
 V

 )r " I
 W

 / r '
 2 m c2

 * 

3 . The preceding frequency with a change of sign is produced in the photon absorption 

which gives its momentum to the nucleus with the result that the energy available to modify 

the internal state in this transition from the ground state to an excited state is equal to the 

photon energy less the kinetic energy acquired by the nucleus. The relative separation be-

tween the absorbed and emitted frequency is then 

hv 14.4X1Q3X1.6X10-"> _ 
mc

2
~ 5 7 χ 1 . 6 7 χ 1 0 -

2 7
χ 9 χ 1 0

1 β
 -

ζ
·

0 5 ,
*

ι υ
 · W 

http://14.4X1Q3X1.6X10-
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This is more than 10 5 times larger than the natural relative width. As a result, the emission 
and absorption lines do not overlap and one cannot observe resonant absorption. 

4. The motion of the iron screen leads to a variation in the frequency of absorption result-
ing from the Doppler effect. The frequency variation corresponding to a speed of 1 mm/s is 

* u hv AW ^ J s(\ λ *ττ 
Αν = — ν = w— = w —— = 11.60 M H z . 

c he he 

To compensate for the frequency variation due to the recoil given by equation (5), the 
screen must approach the source with a velocity 

A n = 3 X 1 0 8 X 2 . 6 9 X 1 0 " 7 = 81 m/s. 

5. The spreading due to thermal motion is given by (§ 12.9) 

(Δν\ ,f2kTlog2 0 ^ 2 X 4 . 1 4 X 1 0 - ^ X 2 . 3 X 0 . 3 0 1 1 Λ- ή ν 1 0_ 7 

l v j r

= 2 | / ^ - = 2 r 5 7 X 1 . 6 7 X 1 0 ^ X 9 X 1 0 ° = 1 6- 3 6 X l° · 

It is of the order of 10 6 times larger than the natural width. The relative velocity to which 
it corresponds is 

(Av\ 

• a -

3X10«X 16 .36X10- ' = 491 m/s 

6. During the γ emission mean lifetime τ, the recoil motion takes place over a distance 

vt in the metal and the momentum is transmitted to a volume 

V = -\nvh*. 

The number of atoms per cubic metre is 

QLq _ 6 X 1 0 2 6X 7 . 8 X 1 0 3 

A 57 

The number which receive momentum is 

4 X 3 . 1 4 X ( 3 X 1 0 3 X 1 . 4 5 X 1 0 - 7 ) 3 X 6 X 7 . 8 X 1 0 2 9

 Ο 0, ^ 1 Λ 19 N= 3 ^ « 2.83X10 . 

The momentum is then received by a mass equal to Ν times that of the emitter nucleus 
and the recoil kinetic energy, which arises in equation (3), is, as a result, negligible with 
respect to the energy hv. One can then observe resonance absorption, the target participating 
in the same way as the absorbing nucleus. 

7. One of the fundamental principles of general relativity is the equivalence between 
a gravitational field and an inertial force field resulting from an accelerated motion. Now 
the earth's gravitational field produces, when it acts alone, a uniformly accelerated motion 
and the speed acquired by a mass m after falling through a vertical height H in this field is 
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given by the kinetic energy theorem 

\mv
2
 = mgH, 

hence 

v
2 = 2gH. 

For an observer situated on the earth, the time interval At becomes At' in the system 

moving with velocity ν and one finds (§ 9.9.2) 

Λ, = Λ , γ , ^ = Α , | Λ ^ , Λ , ( , - € | ) . 

If the interval At represents the period of a clock (which can be an atomic nucleus), the 

relative variation due to changing the reference system has the value 

T-r _gH 

τ ~ ~ c
2
 ' 

This is also the relative frequency variation (Av/v)g, which one calls the "gravitational 

Doppler effect". 

With the given parameters 

Av 12X9.81 , _ , 1 3 > a o- 1 s 

ν ~ 9 X 1 0 "
 1 3 X 10

 · 

and this is difficult to observe. 

P R O B L E M 77 

Vibrational and Rotational Spectrum of the Hydriodic Acid Molecule 

Consider a diatomic hydriodic acid molecule HI at ordinary temperature. I t has a 

rotational motion about an axis passing through the centre of gravity G. 

1. Calculate the reduced mass μ of the molecule and its moment of inertia / about G. 

The interatomic distance is given as r = 1 . 6 X l O ~
1 0

m , the mass of the electron as 

m = 9.11 X l O
- 3 1

 kg, and the respective mass of the two atoms as m H = 1836m and 

Ml = 127w H. 

2. Given the laplacian in spherical coordinates as 

1 δ / „ θ \ 1 9 / . „ δ \ 1 θ
2 

Δ = 
/ a 8 _ \ 1 8 / . δ \ 1 _ 

Χ dr )
 +

 r
2
 sin θ θθ \

S 1
" 8 0 /

 +
 r

2
 s in

2
 θ 8 ψ

2 W 

325 
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write the t ime independent Schrödinger equation for the stationary states of rotation of the 

molecule. Calculate the values of its rotational energy Wj, given that the equation has a 

solution in the form ψ = e
j 7
^(sin 0)

J
. 

II 

1. What is the structure of the rotational spectrum of gaseous H I ? What is the frequency 

of the radiation emitted or absorbed in a transition between state Wj and an adjacent state 

WJ+11 Find W0, W2, Wz, and the wavelengths emitted in the transitions 0 ί ; 1,1 ^ 2, 

and 2 ^ 3. What frequency domain to they belong to? h = 6.62X 10~
3 4
 joule-s. 

2 . Assume now that the molecule has a vibrational motion independent of the rotational 

motion. When the two atoms are separated by a distance r different from r0 they are subject 

to a restoring force F = — kQs where s = \r—r0\. Making the change of variable q = s V è , 

Schrödinger's equation relative to this motion takes the form 

d
2
^ ( (a 

where 

&π
2
μΤΙ/ 4π

2
μν0 a == -rf Wv and b -

In these expressions Wv represents the vibrational energy of the molecule and 

its vibrational frequency. 

(a) Given that (2) has acceptable solutions only if a/b = 2v+1 (where υ is a positive inte-

ger), give the equation for the vibrational energy levels of the molecule. Wha t is the asymp-

totic solution of (2)? To what quantum principle can one appeal to justify the fact that the 

minimal vibrational energy is not zero? 

Recall that the dipole moment associated with all transitions nzz m giving rise to radia-

tion has the value 

(Dq)nm = e qw*nWm dq. 
J—oo 

Calculate (Dq)01 and knowing that (to within a normalization constant) 

W o = e - *
2
/ 2 , ψ1 = 0e~«

2 / 2
, ψ2 = (2q

2
-1) χ e " «

2 / 2
. 

Show that in this way one can verify the selection rule Δν = ± 1 between stationary vibra-

tional states. 

3 . Assume that the total energy of the molecule WT is the sum of its rotational and 

vibrational energy. Give the value of WT. What are the wave numbers of the radiation ν 

emitted and absorbed by the molecule assuming that only one vibrational level but a large 

22 R & Μ: PIO 
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number of rotational levels are excited? This set of wave numbers can be put in the form 

ν = vo±mAv. Give the numerical value of Δί>. Find i>o, ?o, and ko [defined by (3)], given 

ν = 2332 c m
- 1

 for m = 7. 

SOLUTION 

1. Reduced mass: 

= mnrm = 1 2 7 = 1?Ζχ 1 8 3 6 χ 9 u χ 1 0- 3 i = 1 . 66X10"
2 7
 kg. 

WH + ^ I 128 128 

The moment of inertia (§ 14.2): 

1 = μτ
2
=\.66 Χ Ι Ο "

2 7
 X2.56 Χ 1 0 "

2 0
 = 4.25 Χ 1 0 "

4 7
 k g / m

2
. 

2 . Schrodinger's equation relative to the stationary states of motion of the mass μ: 

here is, where Wp = 0, Δ is the given expression, and r 0 is constant during rotation, 

1 8 / . Λ dw\ 1 d
2
w 2u T rr 

or 

d
2
w ndw 1 d

2
w 2IW 

Substituting the assumed solution in this latter equation, one has 

2IW 
J(J- 1) cos

2
 0(sin θγ~

2
-7(sin 6)

J
 + J cos

2
 0(sin θ ) ^ "

2
- J

2
( s i n 0 ) ' -

2
 + — (sin 0 ) ' = 0, 

so that 

Wj = J(J+l)^. (5) 

Note that the assumed solution 

xp = exp (]J<f)) · (sin 6)
J 

is a special case of the general solution of equation (1) 

ψ = C exp (}ηιφ) P™(cos 0) 

when J — m. This can be verified using the definition of the associated Legendre poly-

nomials py. 
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II 

1. Hydriodic acid, as all polar diatomic molecules, has a dipole emission and absorption 

rotational spectrum. The selection rule for the permitted transitions is Δ / = ± 1 . Using 

(5), the first four energy levels are given by 

h
2
 3Λ

2
 6h

2 

With 

m_ ( 6 . 6 2 )
2
X l O - = 2 5_ 2 X 1 0_ 2 2 J; 

/ 4 X 9 . 8 7 X 4 . 2 5 X 1 0 -
4 7 

one has 

Wo = 0, Wi = 2 5 X 1 0 ~
2 2
 J, W2 = 75X K T

2 2
 J, W3 = 1 5 0 X 1 0 "

2 2
 J. 

The absorption frequency for a transition between an energy level and the next higher level 

is given by 
Wj+i-Wj h 

h 4 π
2
/ 

hence 

( / + 1 ) . 

, c 4n
2
cl 1 0.75 Χ Ι Ο "

3 

λ = Τ = -7Γ'ΤΓι = ~Ι+Γ- m' 

λ0ι = 0.75 mm, Λ 12 = 0.37 mm, A23 = 0.25 mm. 

These lines are in the microwave region. They have been widely studied since their discovery 

in 1945. 

2 . (a) Equation (2) is the harmonic oscillator expression (§ 14.4). One finds 

2v+l = — = -r—-, 
b hv0 

thus 

Wv = (v+{)hv0. 

The asymptotic solution of (2) for large values of r (and therefore of q) is found by neglecting 

a/b relative to q
2
. The equation is written 

and has the solution 
f= Aexp(-q

2
/2). 

The existence of a residual energy Wo = \hv for ν = 0 is a consequence of uncertainty (see 

Problem 57). 

22* 
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3 . One has 

WT=Wj+Wv = ^J(J+l)+(v+jyv0 

hence, the wave numbers of the emitted and absorbed lines, using only the vibrational 

transition ν = 0 -* ν = 1 

If, in addition, one takes the selection rule Δ 7 = ± 1 into account, one finds 

for J' = 7 + 1 : 
V
< > . / 7 . 1 \ h 

for J' = 7 - 1 : 

ν = J 
c 4n

2
Ic 

(b) Write the transition dipole expression between the first two energy levels and use the 

values for the wavefunctions given 
Λ + ο ο / · + ο ο 

(Dq)oi = e ςψοψι dq = e \ q
2
 exp (-q

2
) dq. 

J—oo J—oo 

The integration is done by parts : 

Λ + ο ο Γ Ί +
0 0

 Λ + ο ο 

q
2
 exp ( - q

2
) dq = - q

2
 exp (-q

2
) + y exp ( - q

2
) dq. 

J— o o L J —oo J—oo 

The quantity between the brackets is zero and the last integral is equal to y/n. Thus 

(η λ _eV™ 

The transition 0 1, with non-zero dipole moment is thereby allowed 

( £ « ) t » = e J
+
~ qÇtq

2
-1) exp (-q

2
) dq 

= 2e I q
3
 exp (—q

2
) dq — e I # exp (—#

2
) d#. 

J—oo J— o o 

The last integral is zero and one finds 

J + ~2ff» exp ( - $
2
) d? = [-q

2
 exp (-?2)J +~ + 2 J + ~ q exp ( - ?

2
) d ? . 

From what has been done above these integrals are zero. Thus (Dq)02 is zero and the transi-

tion 0 2 is forbidden. 
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All of the allowed values of ν can be represented by the expression 

_ , h , . . . 
ν = v0±m ^n2jc \

m a
 positive integer) 

Thus one has 

κ~_ h _ 6.62 X l O "
3 4

 , 1 ν 1 Λ8 _ ! 
Δ ν

 " 45Sfc " 4 X 9 . 8 7 X 4 . 2 5 X 1 0 "
4 7

X 3 X 1 0 * "
 1 J A X 1

^
 m

 ' 

The problem gives ν = ί>ο+7 Δί% thus 

*o = 2 3 3 2 - 7 X 1 3 . 1 = 2230 c m "
1
, 

v0 = cvo = o ^ X l O ^ s "
1
, 

k0 = 4π
2
μν* = 2.93 Χ 1 0

2
 N m "

1
. 

P R O B L E M 78 

Calculation of the Velocity of Light 

One precisely measures with a grating the wavelengths of the lines in the vibrat ion-

rotation band of carbon monoxide gas
 1 2

C
1 6

0 found near 4.67 μ and gets for the six lines 

surrounding the centre of the band, the following wave numbers in c m
- 1

 in vacuum: 

2131.635, 2135.550, 2139.430, 2147.084, 2150.858, and 2154.599. 

These values (and those of other lines in this band) are accurately described by the 

expression 
ν = vo±Bm-Cm

2
, (1) 

where m is an integer (m = 1, 2, 3, . . . ) , and Β and C are constants. 

In addition, electromagnetic millimeter waves produced by a klystron oscillator are 

absorbed when they are incident on the gas with the absorption frequency being 

ν = 114,737 X 1 0
6
 Hz which corresponds to the first line in the pure rotational spectrum 

( / = 0 - 1). 

With this information find the velocity of light in vacuum. 

SOLUTION 

When one compares a diatomic molecule to an oscillator and assumes that the vibrational 

and rotational energies are independent, the wave numbers of a rotation-vibration band 

are given by the expression (§ 16.3) 
vv , h 

v =
 T

± m
W c -

 ( 2) 

where vv is the vibration frequency, m a positive integer, and / the moment of inertia about 

an axis passing through the center of mass of the molecule and normal to the internuclear 
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 ( 2) 
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an axis passing through the center of mass of the molecule and normal to the internuclear 
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line. Equation (1) in the problem statement is derived from (2) with v0 = vjc and 

Β = hj4n
2
Ic. It also contains an additional term, Cm

2
, due to the interaction of the rotations 

and vibrations. 

Note that the first three given values differ in ν pairwise by 4 c m "
1
 as do the last three bu t 

that the difference between the third and the fourth is 8 c m "
1
. The pure rotational line i>o 

which does not appear in absorption (§ 16.35) is therefore situated between the third and 

fourth lines of the series. The values of m for the various lines can then be assigned. One 

finds 
h = 2147.084 = vo+B-C, 

h = 2150.858 = Ï0+2B-4C, 

h = 2154.599 = V0+3B-9C, 

v_! = 2139.430 = vo-B-C, 

v-2 = 2135.550 = V0-2B-4C, 

(3) 

i>_3 = 2131.635 = VO-3B-9C. 

The first and the fourth equations give 

vi+v-! = 2v0-2C. (4) 

The second and fifth 

hence 

One finds from (4) 

h+v-2 = 2v0— 8C, 

C = i(h+v-i)-(V2+Ï-2) = 0.0176. (5) 

h = | ( * i + * - i ) + C = 2143.274, (6) 

also the first equation in (3) gives 

Β = h-h+C = 3.8270. (7) 

Putting the values (5), (6), and (7) in (1) one gets the following values: 

h = 2154.597 i>_3 = 2131.635 

on good agreement with the given values. 

Also, the frequency of the first rotation line of C O is given by (§ 16.2) 

Wi-Wo h 
h 4π

2
Ι 

Hence 

ν 11.4737Χ10
10

 O Û Û 7 Û O N / i mo , 
C
 = Β = 3.8270

 = 2
· "

7 9 2 Χ 1 0 C m / S
* 

With more precise measurements using refinements not taken account of here, this 

method has been very effectively applied (Plyler et al, J. Opt. Soc. Amer., 45, 1955). 
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P R O B L E M 79 

Spectroscopy and Specific Heat 

The internal energy of a mole of a perfect gas can be thought of as being made up of 

four parts : 

u = aL(Wt+Wr+Wv+We). 

Wt is the mean value of the molecule's translational energy, Wr the mean rotational energy, 
Wv the vibrational energy, We the electronic energy and QI is Avogadro's number. The 
molar heat capacity at constant volume is given by C = (dU/dT)v where Τ is the absolute 
temperature. One wants to find U(T) and C(T) in the region 0°K to 2500°K using spectro-
scopic data. 

The mean value of an energy Wt can be found from the Boltzmann distribution law 

using the equation 

f giWiQxp(-ßWd 

Wt = ^ . (1) 
f > e x p ( - / ^ ) 
ο 

β = 1 jkT where k is Boltzmann's constant. The sum is taken over all the quantized energy 
states, gi is the statistical weight, the number of distinguishable quantum states having the 
same energy. In the case where the number of energy levels in a given energy interval is 
large, the sums in (1) can be replaced by integrals. 

I 

Show that at a very low temperature, Γ Κ for example, the translational energy of a 
molecule Wt enclosed in a volume of the order of 1 c m 3 has reached the value — kT9 which 
is given it by the prequantum principle of equipartition of energy. 

II 

Consider a diatomic molecule AB made up of two different atoms A and Β (complications 
due to symmetry arise in the case where A and Β are the same). Derive the expression for 
the mean value Wr of the rotational energy. Take as a variable the dimensionless ratio 
χ = Tr/T where Tr — h

2
ßkl (I = moment of inertia of the molecule about an axis passing 

through its centre of mass normal to AB) is a characteristic rotational temperature and 
study the behaviour for the function Wr (T). Examine two limiting cases : first, Τ <sc Tr where 
few rotational levels are excited and one can consider the first two alone, then secondly, 
where Τ ^>Tr where a great many levels are excited. Calculate the relative number of 
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molecules in the first eight levels when Τ = \0Tr. Give an expression for the rotational 

heat capacity and determine its behaviour with variation in temperature. 

Numerical application. Calculate Tr for the molecules H D , H
3 5

C1, and
 1 4

N
1 6

0 for which 

the values of AB = r are respectively 0.75, 1.27, and 1.15 Â. 

Il l 

By comparing a diatomic molecule to a linear harmonic oscillator, derive the expression 

for the mean vibrational energy Wr. Taking as a variable y = TJT where Tv = hv/k is the 

characteristic vibrational temperature, study the behaviour of the function Wv (T) and the 

corresponding molecular heat. 

Numerical application. Calculate Tv for H D , HCl, and N O given that the wave numbers 

of their Raman vibrational lines are respectively 3630, 2886, and 1880 c m
- 1

. 

IV 

Given the first electronic excitations of H D , HCl, and N O as 90,400 c m "
1
, 75,000 c m "

1 

and 45,000 c m
- 1

, respectively, show that it is not necessary to take We into account in the 

calculation of molecular heat up to 2500°K. 

SOLUTION 

I 

The study of the translational motion of a particle confined in a given volume (§ 13.10) 

shows that the lowest energy level corresponds to a de Broglie wavelength of the order of 

the linear dimensions of the container. The quantum translational energy is : 

W = - * - =
 4 4 X 1 0 - 68

 ~ — X 1 0 "
3 9

 J 
SmL 8 X 1 . 6 X 1 0 "

2 7
X M X 1 0 -

2
 M

 9 

M being the mass number of the molecule. This energy is much less than kT = 1.4X 1 0
- 2 3

 J 
for Τ = 1°K. At this temperature a very large number of levels are excited and one can 
write for one of their three translational degrees of freedom, χ for example, whose energy 
is | m v

2
: 

W 

Taking q
2
 = ßmv

2

x\2, one gets: 

J I mv
2
 exp ( - ß

 rrt
^j dvx 

exp (—q
2
) dq 



PROBLEM 79] ATOMIC AND MOLECULAR SPECTRA 335 

The total translational kinetic energy : 

mv 

has the value Wt = \kT and the molar heat capacity corresponds to the constant value: 

II 

The rotational energy of a free rotor which the diatomic molecule represents can take 

the values (§ 14.2): 

Wj = J(J+1) 2 j (J positive integer or zero) 

The statistical weight of one of these states is 2 7 + 1 , since the angular momentum 

can take m = 2J+1 different orientation with respect to a fixed axis. 

These values have the same energy in the absence of an external field acting on the molecule 

but can be separated in the presence of such a field. The selection rule for the rotational 

quantum number is Δ / = ± 1 . 

Thus, the expression for the mean rotational energy is : 

w, = 

or, taking χ = TJT and T, = fi
2
/2Ik, 

f J(J+ 1)(2J+ l ) exp [-J(J+ l)x] 

Wr = kTr 

f ( 2 7 + 1 ) exp [ - / ( . / + 
(2) 

The rotational molar heat capacity is : 

AW T 2 if
 J2

(
J
+ !)

2
 (2J+1) exp [-J(J+ \)x] 

£ ( 2 / + 1 ) exp [ - / ( . / + 

1) (2J+1) exp [-J(J+ l)x] 
_o 

f (2J+l)exp[-J(J+l)x) 
ο 

(3) 
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For Τ <κ Tr, if one only considers the levels / = 0 and / = 1, one has : 

These expressions tend to zero with T. 

For Τ » Tr, expression (2) becomes : 

2 /
3
e x p ( - /

2
x ) d x 

Wr = kTr

J
° 

f 2J exp (—J
2
x) dx 

so that, taking J
2
x = q : 

I qexp(-q)dq 

Wr = kT% = kT 

cxp(-q)dq 

and : 
Cr = R. 

One finds again the values corresponding to equipartition, because the linear rotor, which 

has only kinetic energy, has only two degrees of rotational freedom about axes normal to 

the line AB. In fact, the moment of inertia about the axis AB is not zero but only very small 

with the result that the corresponding quantum of rotation, inversely proportional to 

this moment of inertia, is so large that the molecule has no rotational energy about this axis 

except at very high temperature. 

The variation of equation (3) is not simple. Starting at 0, it passes the value R for Τ near 

0.6ΓΓ, approaches a maximum of the order of 1. IR for Τ near 0.&Tr, then tends asymptotically 

toward the value R to which it is very close for Τ = 2Tr (Fig. 79.1). 

The relative number of molecules in a given state / is 

( 2 / + 1 ) exp [ - / ( / + l)x] 

f ( 2 7 + 1 ) exp [ - / ( / + l)x] 
ο 

(4) 

Ν 

- J 

FIG. 79 .1 FIG. 7 9 . 2 
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For χ = 0.1, the numerators Ν of (4) are as follows for / from 0 to 7: 

0 Ν = 1 

1 3 exp ( - 0 . 2 ) = 2.457 

2 5 exp ( - 0 . 6 ) = 2.75 

3 7 exp ( - 1 . 2 ) = 2.10 

4 9 exp ( - 2 . 0 ) = 1.22 

5 11 exp ( - 3 . 0 ) = 0.55 

6 13 exp ( - 4 . 2 ) = 0.19 

7 15 exp ( - 5 . 6 ) = 0.05 

Such a distribution explains the relative intensity of the pure rotational spectral lines or 
vibration-rotation spectra (Fig. 79.2). 

Numerical application: 

_ _ A
2
 3.96X10-"« _ mm2 

μ is the reduced mass. 

For H D : 

μ = I X 1 . 6 7 X 1 0 - " kg, / = | - X l . 6 7 X l O - » X ( 0 . 7 5 ) i X l O - * » k g / m
2
, 

Tr = 64°K. 

For HCl : 

μ = | Χ 1.67X Ι Ο "
2 7
 kg, / = | Χ 1.67Χ 1 0 -

2 7
Χ ( 1 . 2 7 )

2
Χ Ι Ο

- 20
 k g / m

2
, 

Tr = 15°Κ. 

For N O : 

μ = 1 * Χ 1 . 6 Χ 1 0 -
2 7
 kg, / = 3fxl.6Xl0-»X(1.15)«X Ι Ο "

2 0
 k g / m

2
, 

Tr = 2.4°K. 

III 

The quantized energy of the harmonic oscillator is (§ 14.4) : 

ν is the oscillation frequency and ν a positive integer or zero. The mean value of the vibra-
tional energy is 

00
 hv

 00 00 

Σ(ν + \)ηνεχρ[-β(ν+γ)ην] -^ -£exp(- j fa>Ai>)+£ vhvexp (-ßvhv) 
Wv = - 5 = °-

u
 oo oo Σ exp [-ß(v+i)Ar] Σ

 e x
P (-ßvhv) 

, Σ vhv exp (—ßvhv) 

* . - y = - ^ · (5) 
J ] exp (—ßvhv) 



 

Note that the numerator of (5) is equal except for the sign, to the derivative of its denomi-

nator D with respect to β and thus one can write 

1 d(log D) _ _à_ 

D d ß ~ ' d ß ΛΟ !og Σ
 e x

P (-ß
vhv

)' dp ο 

D is the sum of a geometric series and has the value 

1 
D = 

l-exp(-ßhvY 

hence 

W v
 ^-~^ß(

l
°

g
l-exp(-ßhv)) -

hv kTv 

exp (ßhv) -1 exp (Tv/T) - 1 
(6) 

For Τ <sc Tv, the one is negligible with respect to the exponential and one gets 

hv 
kTv exp 

For T^>TV one can expand the exponential as a series and one obtains 

hv hv 

ßhv^l + ^hv+ . . . j 
(7) 

which tends toward l/ß = kT for high temperatures. This latter value corresponds to the 

equipartition of energy because the linear oscillator has only one degree of freedom, but at 

the same time potential and kinetic energy as quadratic functions of the coordinates and 

velocity respectively. 

One finds from (6) the equation for the molar vibrational heat capacity 

exp (Tv/T) dW T
2 

άΤ Γ
2
'

χ
 [ e x p ( 7 y r ) - l ] 2 

(8) 

This expression tends to zero with Τ and to R at high temperatures. Figure 79.3 shows 

the behaviour of the function. 

Numerical application: 

ΤΌ = ^ = ^ ν = 1.44X ΙΟ"
2
*. 

For H D : ΤΌ = 1.44X 10"
2
X3630X 10

2
 = 5227°K. 

For HCl : Tv = 1.44X 10"
2
X2886X 10

2
 = 4266°K. 

For N O : Tv = 1.44X 10"
2
X 1880X10

2
 = 2607°K. 

For N O
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IV 

Look at the ratio N2/N1 of the number of molecules excited into the first electronic level 
t o the number in the ground state by applying the Boltzmann distribution and assuming 
the statistical weights of the levels are unity (since this can only introduce a change of the 
order of unity) : 

N2 i w2-Wx\ 

O n e has kT = 1 . 3 8 X l 0 ~ 2 3X 2 5 X l 0 2 = 3 . 4 5 X 1 0 " 2 0 J, 

W2-Wx = hcv = 19.96X10-**. 

For H D : W2-Wi = 1 8 2 X 1 0 " 2 0, ^ = exp ( - 5 2 ) = 0 . 2 6 X 1 0 " 2 2. 
iVi 

F o r HCl : W2-W± = 150X10" 2 0, - J 2 - = e x p ( - 4 3 ) = 0 .21X10" 1 8. 
iVi 

For N O : W2-Wx = 9 0 X 1 0 " 2 0, ^ = e x p ( - 2 6 ) = 0 .51X10" 1 1. 
iVi 

The number of excited molecules is thus very small and the electronic energy does not 

contribute to the specific heat of the molecules under consideration. 

FIG. 79.4 

The general behavior of C(T) is given by the solid line in Fig. 79.4, and the translational, 
rotational, and vibrational contributions by the dotted curves. At ordinary temperatures 
the limiting value of the vibrational heat is not reached except for heavier molecules than 
those considered here. 



A P P E N D I X A 

THE F O U R I E R T R A N S F O R M A T I O N 

T H E Fourier transformation is a mathematical operation which is frequently applied in 

optics. This integral arises in many different problems (spatial coherence, temporal co-

herence, diffraction, structure factors for X-rays, uncertainty relations, . . . ) . 

This treatment will not be rigorous. It is presented simply as a tool for the opticist in order 

to help simplify his calculation. 

A. Definitions and General Properties of the Fourier Transformation 

I. Notation and definitions 

Let χ be a real variable lying between — «> and + 0 0 , and f(x) a function of χ having real 

or complex va lues . / (x) must be a summable function, that is, it must never go to <*> for 

χ — 00. This is always the case in optics. 

By definition : 

F.T.[/(x)] = F(u) = Γ
+ 0

° f (x ) t**
ux
 dx. (1) 

J—oo 

One writes 

f(x)^F(u). (2) 

One says that F(u) is the Fourier transform (F.T.) of f(x) or the spectrum of f(x). u and χ 

are called conjugate variables. 

Consider, for example, the propagation equation of: 

electromagnetic waves: Ε = Em exp [2π](vt—ax)], 

ν and t I ^ conjugate variables ; (3) 
a and χ J 

the wave associated with a particle, 

ψ = ipm exp (Wt-px) 

^ j are conjugate variables. (4) 
Wand 

ρ and 

340 
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II. Reciprocal property of the F.T. 

If F(u) is a known function, one can o b t a i n / ( x ) by the following operation: 

f(x) = j
 +
 °° F(u) t~^

ux
 du. (5) 

(Note the change in sign of the exponential in equation (5) compared to that in equation (1).) 

The equation with dimensions of (5) is 

lf] = [F) [«]; 

while for equation (1) one has 

[F] = [ / ] [ * ] ; 
hence 

lu] [x] = 1. (6) 

This latter relation leads to an easy introduction of the Heisenberg uncertainty relations. 

Note. Some other authors write these equations in the form 

and 

L C + 

Vi 
f(x) =~]=rV F(u)C-^du. 

III. Properties 

1. Linearity 

If one lets the two functions f\(x) and f2(x) have for their F .T., Fi(u) and F2(w), respec-

tively, and if a\ and a2 are constants, one finds : 

f
+
~ [aifi(x)+a2f2(x)] e

2
**"* dx = ax |

 +
°° fi(x) e

2
*"* dx+a2 f

+
° ° f2(x) e

2
*"* dx (7) 

or 

[aifi(x)+a2f2(x)] Ü [ a iF i ( i i )+ f la f2 (« ) ] . (8) 

The F .T. of a linear combination of functions is the linear combination of the F .T. of these 

functions. 

2. Translation 

Translate the function f(x) by the constant x'\ 

j
+
°°f(x-x')e

2
">

ux
dx = j*°°f(X) dX9 (9) 
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by taking X = x—x', (9) can be written 

J—oo 

(10) 

f(x-x')^ F(u)^
ux
\ (11) 

If one translates f(x) by the constant amount x\ its F.T. is multiplied by e
27TJM

*''. 

3. Symmetry property 

Taking the F.T. o f / ( x ) q ~
2
^

u
'

x
 with u' constant: 

) / ( x ) e - ^
v
^ e

2
^ d x = |

+
 f(x)e

2
^

u
-^

x
 dx = F(u-u

f
), (12) 

J—oo J—oo 

e-*w'
x
f(x) - ï i F(u-u'). (13) 

Note the analogy between equations (11) and (13). 

These results can be applied to various examples. 

f(x+x')+f(x-x') e -
2
^ ' + F ( w ) t+*wx' = 2F(u) cos 2nux\ 

(14) 

f(x-x')-f(x+x') F(u) t+^
ux
'-F(u) e - * * " ' = 2]F(u) sin 2nux\ 

(15) 

2f(x)-f(x-x')-f(x+x') 2F(u) [1 - c o s 2nux'] = 4F(u) sin
2
nux\ (16) 

f(x) cos 2nu'x = \f(x) [ e ^ + e - ^ ] | [ / r ( w + w' ) + ir ( M _ w ' ) ] 9 ( 1 7) 

f(x) sin 2nu'x = -^f(x) [ e ^ - e -
2

^ ] - i - [F(u+u')-F(u-i/)], (18) 

/ ( x ) sin
2
;tw';c = \f(x) [1 - c o s 27m'x] | [ 2 F ( W ) - F ( W + u ' ) - F ( u - u ' ) ] . (19) 

4. Expansion 

Let α be a real constant. The F.T. of f(ax) is desired. Make the change of variable y = ax. 

if a > 0 : 

if a < 0 : 

] J ~ ~ / ω e ^
v / e d

y = ~
F

( % ) '
 ( 2 1) 

In general one can write 

In the special case where a = — 1, equation (22) is written: 

/ ( - * ) — F ( - « ) . 



APPENDIX AI THE FOURIER TRANSFORMATION 343 

5. Symmetries 

Taking the F.T. o f /* (χ ) , one finds 

J+°7*(*) &
φ χ

 àx = e
- 2 7 1

^ dx *= F\-u). (23) 

/*(*) — F*(-u). (24) 

One often has occasion to examine functions with a special kind of symmetry. Assume 

that f(x) is made up of an even function p(x) and an odd function /(x). 

One can write 
f(x) = /?(x)+/(x) (25) 

where p(x) and /(x) may be complex. 

The F.T. off(x) reduces to 

p(x) cos 2nux dx 4- 2j i(x) sin 2TTWX dx. (26) 
ο Jo 

The following general results are found : 

/ ( x ) real, even F(u) real, even ; (27) 

/ ( x ) real, odd F(u) imaginary, odd ; (28) 

/ ( x ) imaginary, even - ^ i F(w) imaginary, even. (29) 

The following table summarizes these results. (Re designates the real par t of and Im the 

imaginary par t of.) 

/ ( x ) = />(x)+ z(x) = Re [/>(x)]+j Im [p(x)] + Re [/(*)]+j Im [/(χ)] (30) 

I i i ι ι χ 
F(u) = P(«)+/(w) = Re [P(w)]+j Im [P(w)] + Re [/(w)]+j Im [/(«)]. (31) 

The arrows indicate the correspondences between the F.T. 

IV. Extension to two variables 

Taking F(u9 v) as the F.T. of / ( x , y), one states 

Λ+οο Λ+οο 

F(w, ?;) = / ( x , ;>) β

2
* *

+ ,
* > dx d^ 

J—oo J—oo 

reciprocally, 

J—oo J—oo 

(32) 

(33) 

The func t ions / and F play symmetric roles, one being the spectrum of the other. 

These relationships arise, for example, in Huygen's principle where, if one has an ampli-

tude distribution on a wave surface, the F.T. allows one to calculate the spectrum F(u, v) 

of f(x,y) and thereby to get the diffraction patterm. Inversely, if one knows a diffracted 

amplitude F(u9 v), one can calculate the structure of the wave surface which gave rise to it. 

23 R & Μ : PIO 
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V. Various useful F.T. 

In the table at the end of this appendix is given a limited number of F.T. which the reader 

will encounter (see examples 1 to 9). 

In graphical representation the functions are normalized. 

B. Convolution 

I. Definition 

Let the two functions f(x) and g(x) be limited and summable (Figs. A. 10a and A. 10b). 

The convolution of these two functions is h(x) : 

h(x) 
- r 

J — oo 

f(y) g(*-y) ay-

This is often written using the notation 

Κ*) = /(*) ® 

(34) 

(35) 

Figures A. 10cand A.lOdillustrate the operations which give the convolution: the function 

g(—y) is translated by an amount x .Theproduc t / 0>)g(x—y ) is then formed. The ordinate 

h(x) in Fig. A.lOd is then equal to the shaded area in Fig. A. 10c. 

AW 1 

FIG. A. 10a 

FIG. A. 10b 

FIG. A.lOc 

FIG. A.lOd 

II. Properties 

A. The convolution product is commutative 

In equation (34) let x—y = Y 

(+~f(x-Y)g(Y)d(-Y)= r~f(x-Y)g(Y)dY 
J —oo J— oo 

Κ*) = g®f- (36) 
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B. Fourier transform of the convolution product 

f(x)I±F(u) 

g(x) G(u). 

Equation (34) can be written 

h(x) = J + 0 0/ 0 0 J ~ G(u) e-*«*-*> du dy 

thus, by reversing the order of integration, 

ί + οο Λ+00 

G(u) Q-^
ux
 f(y) e*** dy du 

_oo J —00 

h{x) = I °° F(ü)-G(u) e-^
ux
 du. 

In summary one has the following reciprocal theorem: 

f®gl±F-G 

This theorem is known as Parseval's theorem. 

III . Special cases 

(a) If χ = 0 in equation (34), one gets 

A(0 )= i
+0
°f(y)g(-y)dy= r~F(u)-G(u)du. 

J—OO J—oo 

For f = g, one finds 

(b) Correlation 

Taking 

r~f(x)f(-x)dx = r ^ F ^ d w . 
J—oo J—oo 

h\x) =/(*)®*·(-*> = Γ ν ω ^ - * ) ^ . 
J—oo 

Now 

Equation (43) becomes 

* · ( - * ) G*(«). I 

h\x) = f +~ F(u)-G*(u) e - * * « dw. 

23* 

345 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 
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In the special case where χ = 0 

A ' (0 )= F(u) G\u) du. (46) 

(c) Autocorrelation 

fix) = g(x) 

h'(x)=f(x)®f\-x). 

(47) 

(48) 

Equation (48) becomes 

h'{ 12 e-2niux fa. (49) 

The convolution f(x) ® /*(—x), called the autocorrelation function of f(x) its F.T. is 

| F ( W) |
2
. 

For χ = 0 : 

This theorem expresses the conservation of energy, independent of the plane where this is 

applied. (Rayleigh's theorem.) 

Applications of the autocorrelation 

As a standard example, find the autocorrelation of the slit function and then the F.T. of 

this autocorrelation function./(x) is a real, even function. One has 

The various functions are shown in Fig. A . l l . 

The autocorrelation function of the pupil, known as the transfer function, plays a very 

important role in optical instruments illuminated with incoherent light (see Problems 35 and 

(50) 

f®f^F\u). (51) 

37). 

F(u) 

-α Ο +σ χ 0 1/σ u 

FIG. A . l l 
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One can represent the general distribution of luminance of an object by a superposition 

of an infinity of sinusoidal variations, each of which is characterized by 

a characteristic direction, that of the wave vector; 

a spatial frequency proportional to the inverse of the wavelength (this is the frequency 

of the sinusoidal component under consideration); 

an amplitude and a phase. 

These various sinusoidal components are transmitted through the optical instrument. 

They are then acted upon by a filtering law given by the transfer function. 

The transfer function specifies the quality of the instrument. This provides information 

on all spatial frequencies. For this reason it is preferable to characterize an instrument 

by its transfer function rather than by its limit of resolution which gives the limiting frequency 

transmitted by the instrument, but no information regarding intermediate frequencies (see 

Problems 35 and 37). 

C. Dirac Distribution. Poisson Distribution 

Certain functions such as f(x) = l,f(x) = cos x, . . . do not satisfy the conditions for 

application of the F.T. In these cases it is only possible to define a F.T. by a limiting process. 

The Fourier series can only be put within the framework of the F.T. through use of distri-

butions. We are not going to deal with the theory of distributions here, but only give some 

useful definitions and properties. 

I. Dirac distribution 

1. Definition 

Consider an impulse δ(χ) with very narrow width and very large height such that its 

area is unity : 
f(x) = 0 for x = 0 (52) 

f 5 ( x ) d j c = l . (53) 

2. Representation 

The impulse δ(χ) is represented by a spike with its height normalized to one (Fig. A. 12a). 

3. Convolution 

One can write 

or 

ί 
ί 
r; 

+
~ 5 ( x ) / ( x ) d x = / ( 0 ) (54) 

+
~ o ( x - a ) / ( x ) d x = / ( a ) (55) 

+
~ δ ( χ ) / ( χ - α ) dx =f(-a). (56) 
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hence 

In summary: 

with 

Δ ( « ) = 1. (62) 

δ(χ) - î i Δ ( μ ) = 1 (Fig. A.12.b). (63) 

δ(χ) = e-
1
*** du. (64) 

If one translates the Dirac function by an amount a, one finds 

δχχ-α) Hi e
2
"*". (65) 

6. Properties 

δ(αχ) = -^-δ(χ), (66) 

δ(-χ) = δ(χ), (67) 

/(χ)[δ{χ)=/(0)δ(χ). (68) 

Or 

f(x) δ(χ-α) = / ( β ) δ(χ-α). (69) 

Extending this to convolution one gets 

ί
+
~ à(y)f(x-y) dy = ί

+
° ° ô(x-y)f(y) dy = / ( * ) (57) 

J—oo J — oo 

%x) ® / ( * ) = / ( * ) ® δ{χ) = / ( χ ) . (58) 

The Dirac function is the unit element for convolution (just as zero is the unit element for 

addition and one is the unit element for multiplication). 

4. Translation 

Starting with the preceding equation, one can write 

f(x-a)=f(x)®i(x-a). (59) 

Translation can be thought of as a convolution operation. 

5. Fourier transformation 

Call A(w)the F.T. of δ(χ): 

δ(χ) Hi Δ ( μ ) . (60) 

Applying the convolution theorem to (58) gives 

A(u)XF(u) = F(u). (61) 
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T a k i n g / ( x ) = x, one finds 

ί 
+ oo 

χδ(χ) = 0 or χδ(χ) = 0. (70) 

II. Fourier series 

1. Fourier transform of a Poisson distribution (or a Dirac "comb" series) 

We state, without proof, that the F.T. of a Poisson distribution of period ρ is a Poisson 

distribution of period l/p (Fig. A. 13), in other words that 

—oo — oo y ρ ι 
2. F.T. of an unbounded periodic function 

Let h(x) be an unbounded function of period p. 

One can assume that h{x) is obtained by translating by integral multiples of ρ the simple 

convergent function f(x) (Figs. A. 14a and A. 14a'). Since translation is a convolution process, 

one can take 

Kx)=f(x)®
 +

f %x-*p)- (72) 
*=- oo 

Taking the F.T. of each side, one gets 

H(u) = F(u) k

+fj[u-j) (73) 
u can only take on discrete values of k/p so tha t 

* ( » ) = Z > ( f ) x » ( » - f ) (74) 

(Figs. A. 14b and A. 14b'). 

In summary : 

the F.T. of an unbounded periodic function is a distribution; 

if the period of h(x) is /?, the period of H(u) is l/p; 

the uniformly spaced Dirac weightings are equal to F{kjp\ where F(u) is the F.T. off(x) 

and F(k/p) is the value of F(u) at point u = k/p. 

Reversibility. By substituting equation (73) in equation (72), one can see that the F .T. 

of and unbounded periodic distribution is an unbounded periodic function. This is only 

the case where the Dirac weightings have equal weight so that the F.T. of a distribution is a 

distribution. 
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Note. The special case of a function (or distribution) which is periodic and bounded can 

be easily treated by using previously obtained results. One can always assume that the bounded 

function (or distribution) is the product of a function g(x) with a periodic unbounded 

function (or distribution) (Fig. A. 15). Most commonly g(x) is a slit function. 

If 

h\x) = h(x)Xg(x) (the order of the factors must be retained) (75) 

H\u) = H(u)®G(u)9 (76) 

H\u) = F(u).
+
£ à(u-j\ (77) 



1.
 S

L
IT

 F
U

N
C

T
IO

N
 

./"
(χ

) 

1 

-σ
/2

 
Ο

 +
ο

/2
 

Χ
 

F
IG

. 
Α

.l
a 

/(
*

) 
=

 
ι 

fo
r 

-
a

/
2

<
x

<
+

a
/

2 

fix
) 

=
 

0 

fo
r 

x<
—

 
a/

2 
a

n
d 

χ 

Δ
χ 

=
 

a 

2.
 

G
A

U
SS

IA
N

 F
U

N
C

T
IO

N
 

lf
(*

) 

f(
x)

 
=

 e
-"

*
* 

T
A

B
L

E
S 

\ 

V
—

Δα
 

-
χ y

 
I/o

 
~ 

° 
\-

/2
/ 0

3
χ

Γ
 

F
IG

. 
A

.l
b 

F
( W

)=
: 

àu
 

=
 sin

T
rw

a 

1 

In
fl

ue
nc

e  
o

f 
th

e 
sp

at
ia

l 
m

ag
n

it
u

d
e 

o
f 

th
e 

so
u

rc
e 

(P
ro

b
-

le
m

 3
) 

Δ
σΧ

Δ
χ 

=
 

1 

In
fl

ue
nc

e 
o

f 
th

e 
m

ag
n

it
u

d
e 

o
f 

th
e 

sl
it

 
o

n 
th

e 
di

ff
ra

ct
io

n 

im
ag

e 
(P

ro
b

le
m

 3
5

) Δ
χ

Χ
Δ

μ 
=

 
1 

In
fl

ue
nc

e 
o

f 
th

e 
w

id
th

 o
f 

th
e 

en
er

gy
 l

ev
el

 o
n 

th
e 

li
fe

ti
m

e 

of
 a

 w
av

e 
p

ac
k

et
 (

P
ro

b
le

m
 7

1
) 

Δ
Ψ

Χ
Δ

ί 
=

 
1 

In
fl

ue
nc

e 
o

f 
th

e 
u

n
ce

rt
ai

n
ty

 i
n 

m
o

m
en

tu
m

 
o

n 
th

e 
p

o
si

-

ti
o

n 
o

f 
th

e 
p

ar
ti

cl
e 

(P
ro

b
le

m
 5

7
) 

Δ
ρΧ

Δ
χ 

=
 A

 

»
>

=
£ 

Q
-n

x*
Q

+
j2

nu
x 

fa
 

T
h

e 
p

re
ce

d
in

g 
ap

p
li

ca
ti

o
n

s 
c

a
n 

al
so

 
b

e 
tr

ea
te

d 

w
it

h  
a 

g
au

ss
ia

n 
pr

of
il

e 

APPENDIX AI THE FOURIER TRANS FORMATION 351 



F
o

r 
a 

ri
g

o
ro

u
s 

p
ro

o
f 

se
e 

th
e 

m
at

h
em

at
ic

s 
re

fe
re

nc
es

. 
O

n
e 

ta
k

es
 

Ζ
 

an
d 

as
su

m
es

 j
 t

o 
b

e 
a 

co
n

st
an

t 

F
(u

) 
=

 e
-«

1  J
+
~

e
-*

Z
8
d

Z
 

b
y 

m
ak

in
g 

th
e 

ch
an

g
e 

of
 v

ar
ia

b
le

s 
n

Z
2  

=
 

X
2 

F
(u

) 
=

 
e-

*
«

s  J
~e

~*
* 

dJ
T

 

S
in

ce
 Λ

"a
nd

 7
 a

re
 i

n
d

ep
en

d
en

t 
v

ar
ia

b
le

s,
 o

n
e 

ca
n 

st
at

e:
 

[F
(u

)]
2  

=
 

5
_ 

J 
J  

e-<
*

e
+

 y
e >

 d
JT

 d
F 

an
d

, 
tr

ea
ti

n
g 

th
e 

su
rf

ac
e 

in
te

g
ra

l 
in

 p
o

la
r 

co
o

rd
in

at
es

 

β
-

2
π

«
* 

Ζ
1 ·»

 
|»

2
λ 

po
o 

[F
{u

)f
 

=
 

~
—

- 
e

-
^

e
d

e
d

0 
=

 
e-

2 ""
* 

e
-e

'd
^

)2 

Jo
 

In
 t

h
e 

m
o

st
 g

en
er

al
 

se
n

se
: 

f(
x)

 
=

 
e-

™
2

/
f

l2  
F

(w
) 

=
 

e-
™

*"
'. 

352 PROBLEMS IN OPTICS 



3
. 

B
O

U
N

D
E

D
 

C
O

S
IN

U
S

O
ID

 

F
IG

. A
.3

a 

/(Λ
:) 

= 
co

s 2
nu

oX
 

fo
r 

-a
/2

 
<

 
χ 

<
 +

a/
2 

F
iu

) 

_J
/2
 _̂

 1
 

V
o

 

F
IG

. A
.3

b 

si
n7

t(
w

-f
-w

o)
# 

si
nr

c(
t/—

w
o)0

 
π

(Μ
+

«
ο

)Λ
 

n
(u

—
U

o)
a 

A
 p

er
fe

ct
ly

 m
o

n
o

ch
ro

m
at

ic
 w

av
et

ra
in

 
h

av
-

in
g 

fi
ni

te
 

d
u

ra
ti

o
n 

gi
ve

s  
a 

sp
ec

tr
al

 
li

n
e 

o
f 

fi
ni

te
 

w
id

th
 

T
h

e 
li

n
e  

is
 c

en
tr

ed
 o

n 
fr

eq
u

en
cy

 i
> 0

 a
n

d 
h

a
s 

w
id

th
 

1/
r 

w
h

er
e 

r 
is

 t
h

e 
li

fe
ti

m
e 

o
f 

th
e 

w
av

e 
tr

ai
n 

(P
ro

b
le

m
 3

).
 L

ik
ew

is
e,

 i
f 

o
n

e 

co
n

si
d

er
s 

th
e 

w
id

th
 A

x 
o

f 
th

e 
w

av
e 

tr
ai

n
, 

o
n

e 
fi

nd
s 

Δ
σΧ

Δ
χ  

=
 

1 

4
. 

B
O

U
N

D
E

D
 S

IN
U

S
O

ID
 

F
IG

. A
.4

a 

f(x
) 

= 
sin

 2
n
u
o
x 

fo
r 

—
a/

2 
<

 
χ 

<
 

+
tf

/2
 

X 
T

h
e 

si
n

u
so

id
al

 
o

r 
co

si
n

u
so

id
al

 
sy

st
em

s 

o
n

ly
 g

iv
e 

tw
o 

sp
ec

tr
a 

(P
ro

b
le

m
 

3
5

) 

F
IG

. A
.4

b 

1 
["

si
nj

r(
w

+w
o)0

 
si

n 
n{

u—
U

o)
a~

 

+
 

u
0)a

 
n

(u
-u

0)a
 

1 
fs

in
jr

l 
F

(u
) 

=
 

-.
- 

—
—

 
J 

L
 

APPENDIX A*. THE FOURIER TRANSFORMATION 353 



5.
 f

(x
) 

=
 

1
+

co
s 

2T
IU

O
X 

fo
r 

-a
/2

 
<

 
χ 

<
+

tf
/2

. 

t(
x)

 

m
 

W
W

 1Λ
Λ

Α
Λ

Ι 
, 

-a
/2

 
0 

+o
/2

 

FI
G

. 
A

.5
a 

Γ 
1/

2 
V

o
 

J
Ü

U
L 

FI
G

. 
A

.5
b

 

Γ
 s
*

n 
n

u
a  

1 
s *

n  
"o

)ö
 

J_
 

si
n

7
r(

n
-n

0
)f

l"
 

^ 
~"

 
Tt

w
a 

2 
τφ

+
ι/

ο)
Λ

 
2 

n(
u—

u 0
)a

 

T
ra

ns
m

is
si

on
 g

ra
ti

ng
 s

ys
te

m
 

f(
x)

 

gi
ve

s 
th

re
e 

u
n

eq
u

al
 s

pe
ct

ra
 

6
. 

Y
O

U
N

G
'S

 S
L

IT
S 

if
'(

x
) 

-p
/2

 

-
σ χ 

+
P

/2
 

FI
G

. 
A

.6
a 

2 
id

en
ti

ca
l 

sl
it

s 
o

f 
w

id
th

 a
 a

n
d 

se
pa

ra
ti

on
 ρ

 

Λ
*

)
)

+
/

(
*

-
£

) 

iP
(l

/)
 

/ 
/ 

/ 
/ 

\ 
I 

/ 
/ 

I 
1 

' 
ι 

ι 
ι 

/ 
ι 

ι 
ι 

\ 
v 

1 
/ 

\ 
N

 

1 
/ 

1 
N

 

1 
i

l 
\ 

/ 
1

1 
I 

μ/
ρ/

 
\ 

f^
^

y
s

 
s 

\ 
/ 

1 
1 

—
 

ν 
1 

I 
1 

ι 
\\

 
/ 

I
I 

Γ 
\ 

'V
a 

\ 
I 

I 
1

1 
' 

I
l 

/ 
\ 

I 
/ 

\ 
1

1 
1

1 
/ 

\ 
\ 

/ 
\ 

1 
J 

1 
I 

/ 

\ 
ι 
s
 

FI
G

. 
A

.6
b

 

y ρ
 

i/
o 

"
 

FI
G

. 
A

.6
C

 

[F
'(U

))*
 

=
 

j 
[F

(t
t)

P 
(1

+C
O

S 
2?

φ
Ιΐ

) 

_
„  

x 
si

n 
τπ

ια
 

F
'(

w
) 

=
 

co
s 

n
pu

 

354 PROBLEMS IN OPTICS 



7
. 

T
H

R
E

E
 

ID
E

N
T

IC
A

L
 

S
L

IT
S 

f'
(x

)=
f(

x)
+

f(
x+

p)
+

f(
x-

p)
 

[F
'M

]2 

lu
i 

\ 

VP
 2

/p
 3

/p
 

I/O
 

<*
 

F
IG

. 
A

.7
b

 

F
\u

) 
F

(u
) 

[1
 +

 2
 c

os
 

2n
pu

] 

8
. 

Ν
 

ID
E

N
T

IC
A

L
 

S
L

IT
S 

(G
R

A
T

IN
G

) 

«
=

0 

1/
Λ

/ρ
 

[F
'(

«)
]2 

U
L

 
1/

p 
2

/p
 3

/p
 

I/
O

 

F
IG

. 
A

.8
 

si
n 

N
np

u 
F

(u
)  

^
 

F
(u

)-
^

 
si

n 
np

u 

O
n

e  
c

a
n

 c
o

m
p

ar
e 

th
e 

th
re

e 
g

ra
p

h
s 

re
pr

es
en

ti
ng

 
[F

'(
u)

]2 

fr
o

m
 6

, 
7

, a
n

d
 8

 

th
e 

m
o

d
u

la
ti

o
n 

b
y
 F

(u
) 

is
 t

h
e 

sa
m

e,
 

th
e 

p
o

si
ti

o
n 

o
f 

th
e 

sp
ec

tr
a 

is
 t

h
e 

sa
m

e,
 

th
e 

w
id

th
 o

f 
th

e 
sp

ec
tr

a 
d

ep
en

d
s 

o
n
 t

h
e 

n
u

m
b

er
 

o
f 

sl
it

s 

APPENDIX A: THE FOURIER TRANSFORMATION 355 



9.
 

C
IR

C
U

L
A

R
 

F
U

N
C

T
IO

N
 

F
IG

. 
A

.9
a 

f(
r)

 
=

 

fo
r 

x2 +
y2  

= 
r2  

< 
a2 

nc
f 

A
IR

Y
 

F
U

N
C

T
IO

N
 

If
 

u
2 +

v2  
=

 
g2 

F
(Q

) 
=

 
2 

3ι
(2

πρ
ά)

 

2π
ρα

 

\ 
1,

22
 

ο
 

F
IG

. 
A

.9
b 

S
ee

 P
ro

b
le

m
 3

6 

10
. 

D
lR

A
C

 
IM

P
U

L
S

E
 

δ(
χ)

 

ο 
χ
 

F
IG

. 
A

. 1
2a

 

11
. 

D
IR

 A
C

 
S

E
R

IE
S 

t
t

t
t

t 
't

t
t

t
t

. 

F
IG

. 
A

.1
3a

 

Δ
(α

) 

ο 
υ 

F
IG

. 
A

.1
2b

 

Σ
δ

(«
-Α

) 

J
J

_
L

 
Ο

 
1/

p
 

2
/p

 
3

/p
 
U
 

F
IG

. 
A

.1
3b

 

U
n

ce
rt

ai
n

ty
 r

el
at

io
n

sh
ip

s 
: 

If
 o

n
e 

va
ri

ab
le

 i
s 

d
et

er
m

in
ed

 a
bs

ol
ut

el
y,

 t
h

e 
co

n
ju

g
at

e 

v
ar

ia
b

le
 i

s 
co

m
p

le
te

ly
 u

n
d

et
er

m
in

ab
le

. 
O

n
e 

ca
n 

re
-

ex
am

in
e 

th
e 

ex
am

pl
es

 g
iv

en
 w

it
h 

fi
gu

re
 1

 

in
fi

ni
te

ly
 

n
ar

ro
w

 
sl

it
s 

G
ra

ti
n

g 
\ 

sp
ac

in
g 

p 

w
id

th
 o

o 

S
p

ec
tr

u
m

 

in
fi

ni
te

 

n
u

m
b

er
 

sp
ac

in
g 

l/p
 

in
fi

ni
te

ly
 

sh
ar

p 

356 PROBLEMS IN OPTICS 



1
2

. 
U

N
B

O
U

N
D

E
D

 P
E

R
IO

D
IC

 F
U

N
C

T
IO

N
 

\H
(u

) 

i 
\ 

1 

.-
if

 1
 «—* 1

 
\ 

υ 

F
IG

. 
A

. 1
4b

 

1
3

. 
B

O
U

N
D

E
D

 
P

E
R

IO
D

IC
 

F
U

N
C

T
IO

N
 

g[
x)

xh
(x

) 

G
(u

)®
H

(u
) 

F
IG

. 
A

. 1
5b

 

F
IG

. 
A

. 1
5a

 

h{
x)

=
f{

x)
®

Y
db

{x
-k

p)
 

h\
x)

 
=

 
g(

x)
X

h(
x)

 
=

 
H

(u
)®

G
(u

) 

sl
it

 w
id

th
 #

 
G

ra
ti

n
g 

| 
sp

ac
in

g 
/?

 
S

p
ec

tr
u

m
 

w
id

th
 o

o 

m
o

d
u

la
te

d 
b

y 
I/

a 

sp
ac

in
g 

l/
p 

in
fi

ni
te

ly
 

sh
ar

p 

G
ra

ti
n

g 

sl
it

 w
id

th
 a

 

sp
ac

in
g 

ρ
 

-+
 S

p
ec

tr
u

m
 

w
id

th
 L

 

m
o

d
u

la
te

d 
b

y 
I/

a 

sp
ac

in
g 

l/
p 

w
id

th
 

l/
L

 

T
h

es
e 

re
su

lt
s 

c
a

n 
b

e 
co

m
p

ar
ed

 w
it

h 
th

o
se

 
o

b
ta

in
ed

 
in

 

F
ig

. 
A

.8
 

APPENDIX AI THE FOURIER TRANSFORMATION 357 



A P P E N D I X Β 

THE D E G R E E OF C O H E R E N C E B E T W E E N 
TWO P O I N T S I L L U M I N A T E D BY AN 

E X T E N D E D M O N O C H R O M A T I C S O U R C E 

T A K E : 

a finite, extended, monochromatic source whose points are represented by their reduced 

coordinates u and v; 

a pupil having two identical openings P i and P2 (Fig. B. l) . 

FIG. B.l 

If ö ι and a2 are the amplitudes transmitted by P i and P2, the energy at an arbitrary point 
Q in the interference field is : 

(AA*) = ((a1+a2&*)(a*1 +flîe-*)> 
φ being the phase difference between the paths P i Q and P2Ô. 

Equation (1) can also be written: 

(AA*) = (a1a*1)+(a2ai)+2Re[(a1aic-^)] 

(1) 

(2) 

(where Re implies the real par t of). 
φ being time independent, one only needs to make use of the mean for the variables, 

hence : 
(AA*) = <βιβΪ>+<β*ι5>+2Κβ [(a^a*) e~i*]. (3) 

Taking: 
aiaZ = |fliö5|e-#; 
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equation (3) becomes : 

(AA*) = <û ia î )+<a 2a j>+2<|a ia j |> cos ( 0 + 0). (4) 
One finds : 

maximal illumination (for φ+θ = 2kn), 

/ m a x = <αιαΐ>+<α 2α|>+2<|α 1α| |> (5) 

minimal illumination (for φ + θ = (2Κ+\)π\ 

/ m i n = (αιαί)^(α2αξ)-2(\α1(4\). (6) 

If one takes as the definition of the contrast 

-π / m a x I\ ' m a x * m i n 

/ m a x "f" / m i n 

Γ can be written as : 

r _ 2flflifl£|) 

<tfitf*>+<0202> 

(7) 

(8) 

Consider an a tom having coordinates w and ν which emits a vibration α(ί). These vibrations 

falling on P i and P 2 can be written respectively as : 

a(t) e-fr<«xi+vyô and a(t)e-'
i27i

v
x
*

+vy
*\ (9) 

Characterize by the index i the various atoms in the source. Their contribution to the fields 

at P i and P 2 is : 

(10) 
a2 = Eafàe-'W'iXi+wà. 

One can take : 

<ûiû2> = Σα{(ή e - W v i + ^ i ) 27α(ί) e + J 2 ^ * * * ^ . (11) 

One distinguishes between the products relative to a single a tom and those relative to two 

different atoms (these latter are zero since the atoms involved will radiate incoherently). 

One has : 

<ûiaî> = Σ(αίαΐ) e - i ^ ^ i - ^ + ^ i - ^ ) ] . (12) 

Since the density of atoms is large, the sum can be replaced by an integral and : 

(tfiOa) = J J I(u, ν) β - ί ^ « ( * ι - * · ) + « θ Ί - Λ ) ] du dv, (13) 

where I(u, v) is the energy contributed by the element of the source characterized by u, v. 

Additionally, 

(dial) = (a2ai) = J J I(u, v) du dv. (14) 
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The degree of partial coherence between Pi and P2 can thus be written : 

Γ(χι-x2,yi-y2) = (15) 

/(w, v) du d 

Van Cittert-Zernike theorem 

The degree of coherence between a fixed point Pi and a variable point P2 illuminated by 

an extended monochromatic source is equal to the complex amplitude, normalized at P i , 

of a diffraction pattern centred on P2. This artificial diffraction pattern is obtained by 

replacing the source by a pupil having the same dimensions and form as the source and 

with an amplitude distribution in the pupil equal to the intensity distribution in the source. 
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